
Université Paris 13

École Doctorale Galilée

THÈSE

présentée par

Michele BARBATO

pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ
Spécialité: INFORMATIQUE

A Polyhedral Approach for the Double TSP with

Multiple Stacks and Lexicographical Orders

soutenue publiquement le 05 octobre 2016 devant le jury :

R. Wolfler Calvo Directeur de Thèse
R. Grappe Co-encadrant
M. Lacroix Co-encadrant

A.R. Mahjoub Président de jury
M. Iori Rapporteur
F. Meunier Rapporteur
L.E. Gouveia Examinateur
F. Roupin Examinateur

Université Paris 13

École Doctorale Galilée

THÈSE

présentée par

Michele BARBATO

pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ
Spécialité: INFORMATIQUE

A Polyhedral Approach for the Double TSP with

Multiple Stacks and Lexicographical Orders

soutenue publiquement le 05 octobre 2016 devant le jury :

R. Wolfler Calvo Directeur de Thèse
R. Grappe Co-encadrant
M. Lacroix Co-encadrant

A.R. Mahjoub Président de jury
M. Iori Rapporteur
F. Meunier Rapporteur
L.E. Gouveia Examinateur
F. Roupin Examinateur

Résumé

Dans cette thèse nous considérons deux problèmes d’optimisation combinatoire.
Le premier s’appelle problème du double voyageur de commerce avec contraintes de

piles. Dans ce problème, un véhicule doit ramasser un certain nombre d’objets dans une
région pour les livrer à des clients situés dans une autre région. Lors du ramassage, les
objets sont stockés dans les différentes piles du véhicule et la livraison des objets se fait
selon une politique de type last-in-first-out. Le ramassage et la livraison consistent chacune
en une tournée Hamiltonienne effectuée par le véhicule dans la région correspondante.
Nous donnons une formulation linéaire en nombres entiers pour ce problème. Elle est
basée sur des variables de précédence et sur des contraintes de chemins infaisables. Nous
donnons par la suite des résultats polyédraux sur l’enveloppe convexe des solutions de
notre formulation. En particulier, nous montrons des liens forts avec un polytope associé
au problème du voyageur de commerce et des liens avec un polytope de type set covering.
Cette étude polyédrale nous permet de renforcer la formulation initiale et de développer
un algorithme de coupes et branchements efficace.

Le deuxième problème que nous considérons consiste à trouver la description des poly-
topes lexicographiques. Ces derniers sont les enveloppes convexes des points entiers lex-
icographiquement compris entre deux points entiers fixés. Nous donnons une description
complète de ces polytopes en terme d’inégalités linéaires. Nous démontrons que la famille
des polytopes lexicographiques est fermée par intersection.

Mots clés: problème du double voyageur de commerce avec contraintes de piles, étude
polyédrale, polytope, inégalité valide, set covering, problème de séparation, algorithme de
coupes et branchements, polytope lexicographique.

3

Abstract

In this thesis we consider two problems arising in combinatorial optimization.
The first one is the double traveling salesman problem with multiple stacks. In this

problem a vehicle picks up a given set of items in a region and subsequently delivers them
to demanding customers in another region. When an item is picked up, it is put in a
stack of the vehicle. The items are delivered observing a last-in-first-out policy. The
pickup phase and the delivery phase consist in two Hamiltonian circuits, each performed
by the vehicle in the corresponding region. We give a new integer linear programming
formulation for this problem. Its main features are the presence of precedence variables
and new infeasible path constraints. We provide polyhedral results on the convex hull of
the solutions to our formulation. In particular, we show strong links with a specific TSP
polytope and a specific set covering polytope. We deduce strengthening inequalities for
the initial formulation, subsequently embedded in an efficient branch-and-cut algorithm.

The second problem we consider consists in finding the description of the lexicographical
polytopes. These are convex hulls of the integer points lexicographically between two
given integer points. We give a complete description of these polytopes by means of linear
inequalities. We show that the lexicographical polytope family is closed under intersection.

Keywords: double traveling salesman problem with multiple stacks, polyhedral study,
polytope, valid inequality, set covering, separation problem, branch-and-cut algorithm,
lexicographical polytope.

5

Remerciements

Je tiens à remercier tout d’abord mes pères scientifiques Roberto Wolfler Calvo, Mathieu
Lacroix et Roland Grappe pour m’avoir accepté en thèse et pour m’avoir guidé au cours
de ces quatre années. Ce manuscrit est surtout le fruit des enseignements que Roberto,
Mathieu et Roland m’ont transmis.

Je me souviendrai à jamais de la profonde humanité de Roberto, sans laquelle je n’aurais
pas été capable de faire face aux périodes les plus difficiles de mon doctorat. D’ailleurs
l’expérience de Roberto m’a permis d’acquérir un regard scientifiquement solide sur les
problèmes traités dans cette thèse.

Je remercie particulièrement Mathieu pour m’avoir guidé jusqu’au dernier jour dans le
déroulement du travail de recherche: à plusieurs reprises ses remarques ont été éclairantes
et ont ouvert de nouvelles routes. De plus, les compétences et la patience de Mathieu
ont été décisives pour surmonter les obstacles techniques rencontrés pendant l’obtention
des résultats contenus dans ce manuscrit. Sans doute, si aujourd’hui je ne crains pas les
difficultés qu’une démonstration mathématique peut présenter je le dois à Mathieu.

Je suis très reconnaissant à Roland pour m’avoir appris l’importance de l’élégance dans
les mathématiques: ses intuitions m’ont souvent aidé à simplifier et formaliser mes idées
initialement compliquées ou vagues.

Je souhaite remercier le Prof. Frédéric Meunieur et le Prof. Manuel Iori pour avoir
accepté de rapporter ce manuscrit. Je remercie également le Prof. Lúıs Eduardo N. Gou-
veia et le Prof. Frédéric Roupin pour avoir accepté d’examiner mes travaux. Je souhaite
exprimer ma gratitude au Prof. Ali Ridha Mahjoub pour avoir accepté d’examiner mes
travaux et de présider le jury.

Plusieurs personnes m’ont encouragé et aidé à entrer dans le monde de la recherche.
Parmi ces personnes j’aimerais citer les Prof. Michele Conforti, Antoine Deza et Andrea
Lodi.

Ma gratitude va ensuite à Emiliano, Paolo Gianessi et Fabio pour les échanges scien-
tifiques et pour leur amitié. Je n’aurai pas pu survivre aux démarches administratives
et aux heures d’enseignement de l’Université de Paris 13 sans le soutien de ces collègues:
Antoine, Joseph, Julien, Lucas, Sébastien, Sophie et Sylvie.

Je tiens à remercier chaleureusement tous les doctorants du LIPN pour leur amitié
et leur aide, et en particulier: Domenico, Leila, Moufida, Hanane, Aı̈cha, Ievgen, Pegah

7

et Luc. Un grand merci à Marco pour tous les moments passés ensemble à discuter de
l’informatique et de la société et pour tous ses conseils.

Il s’est passé beaucoup de temps depuis mes premiers pas comme étudiant en mathématiques
à l’Université de Padoue. Dans cette petite ville de l’Italie mon chemin a croisé ceux de
personnes merveilleuses: Giovanni, Gigi, Buoso (déjà Davide), Gianluigi, Anna et Valeria.
Je les remercie pour être restés à mes côtés pendant toutes ces années et parce que, avec
eux, la vie redevient immédiatement sans souci.

Mes jours à Paris auraient été sûrement plus durs sans d’autres amis exceptionnels.
Tout d’abord Vito: sa gentillesse et les moments heureux passés ensemble seront parmi
mes plus beaux souvenirs de Paris. Paolo et Beatrice avec qui j’ai passé des très belles
soirées gourmandes. Irene et Rapha qui ont rempli mes journées de giuoia, un mot que
l’on pourrait traduire par “joie” mais que l’on peut comprendre seulement en regardant le
sourire de leur enfant, Diego. Marcos, qui un jour réussira à m’apprendre le portugais. Et
également, Fiorella, Camilla, Giovanni R. (c’est-à-dire Rosso ou Risotto), Paolo, Gianma,
Annalaura, Ariane, Arthur, Daniele, Dario, Didier, Francesca, Joel, Margherita, Peppe,
Riccardo, Sanela et Valentina.

Infine il ringraziamento più sentito va ai miei due fratelli, Enrico e Lorenzo. Li ringrazio
per essere rimasti generosi e comprensivi come sempre, nonostante tante difficoltà si siano
messe di traverso. Grazie alle loro generosità e comprensione immutate ho potuto stare
lontano da casa, in un anno cos̀ı complicato, a finire questa tesi. Tesi che, per questo,
dedico ai miei due fratelli.

8

Contents

Introduction 13

1 General Definitions 17
1.1 Sets . 17
1.2 Linear Algebra . 18

1.2.1 Matrices . 18
1.2.2 Vectors and Vector Spaces . 19
1.2.3 Linear Functions . 20
1.2.4 Linear Independence and Bases . 20
1.2.5 Affine Spaces . 21
1.2.6 Conic and Convex Combinations 22

1.3 Graphs . 22
1.3.1 Undirected Graphs. 22
1.3.2 Directed Graphs . 26

1.4 Notions of Computational Complexity Theory 27
1.5 Polyhedral Theory . 28
1.6 Combinatorial Optimization Problems and Integer Linear Programming . . 30

1.6.1 Polyhedral Approach . 32
1.6.2 Cutting Plane Method . 33
1.6.3 Branch-and-Cut Algorithm . 33
1.6.4 Heuristics . 34

I The Double Traveling Salesman Problem With Multiple Stacks
37

2 The Double Traveling Salesman Problem with Multiple Stacks 39
2.1 Introducing the Double Traveling Salesman Problem with Multiple Stacks . 39
2.2 The Double TSP with Multiple Stacks in Terms of Graphs 41
2.3 Links with Other Routing and Pickup and Delivery Problems 44

2.3.1 The Traveling Salesman Problem 45
2.3.2 Pickup and Delivery Problems . 50
2.3.3 Pickup and Delivery Problems with Last-in-First-Out Constraints . 56

9

CONTENTS

2.4 State of the Art on the Double TSP with Multiple Stacks 58
2.4.1 Integer Linear Programming Formulations 58
2.4.2 Theoretical Results . 60
2.4.3 Heuristic Approaches . 62
2.4.4 Exact Methods . 66

3 Models for the Double TSP with Multiple Stacks 71
3.1 Definitions . 72
3.2 Stacks of Finite Capacity . 73

3.2.1 Integer Linear Programming Formulation 73
3.2.2 Recognizing the s, q-consistency by Graph Coloring 78

3.3 Stacks of Infinite Capacity . 82
3.3.1 Integer Linear Programming Formulation 83
3.3.2 Recognizing the s-consistency by Graph Coloring 84

3.4 Conclusions . 86

4 Polyhedral Results 87
4.1 Focus on Routing . 88

4.1.1 Faces from the PATSP Polytope . 89
4.1.2 Links with the PATSP Polytope . 91

4.2 Focus on Consistency . 98
4.2.1 The Restricted Set Covering Polytope 100
4.2.2 Faces from the Restricted Set Covering Polytope 104
4.2.3 Focus on Two Stacks: A Vertex Cover Approach 108

4.3 Conclusion and Perspectives . 115

5 A Branch-and-Cut Algorithm 117
5.1 Overall Description of the Algorithm . 118
5.2 Separation Algorithms . 120
5.3 Finite Capacity Case . 128
5.4 Experimental Results . 130

5.4.1 Implementation Details . 130
5.4.2 Instances . 131
5.4.3 Results in the Infinite Capacity Case 131
5.4.4 Results in the Finite Capacity Case 137

5.5 Conclusions and Perspectives . 143

II Lexicographical Polytopes 145

6 Polyhedral Study of Lexicographical Polytopes 147
6.1 Known Results . 148
6.2 Definitions and Preliminary Results . 150

10

CONTENTS

6.3 Convex Hull of Componentwise Maximal Points 152
6.3.1 A Flow Model for X4s`,u . 152

6.3.2 Description of conv(X4s`,u) . 153
6.4 Lexicographical Polytopes . 154

6.4.1 Description of Top-lexicographical Polytopes 154
6.4.2 Lexicographical Polytopes . 156

Conclusion 161

11

Introduction

We spend most of our time making decisions. Perhaps we all are familiar with the difficul-
ties that arise when looking for the best decision. Making the best decision often amounts
to solve an optimization problem. This can be a hard task for several reasons: in some
cases good solutions to a problem are counter-intuitive, in other cases finding them without
appropriate methods is too time-consuming. The necessity of designing general paradigms
to help the decision process has attracted the interest of many researchers, leading to the
development of the Operations Research. This latter is a flourishing discipline at the in-
tersection of mathematics and computer science, which provides several methods to solve
optimization problems. Due to this dual nature, Operations Research has given rise to
both applied and theoretical investigations. In this thesis we consider both aspects.

The first of our goals is to apply some well-established methods of the Operations Re-
search to a problem arising in logistics. Logistics deals with the organization of transports
at several stages. The recent technological advances and social changes have made logistics
central in global economy. For instance, the availability of widely differing products at a
low cost (made possible by a more and more automated mass production and by the reloca-
tion of the production) has generated an increase of good exchanges and commercial traffic
in last years. To avoid loss of competitiveness and to limit the harmful effects of the traffic
increase (e.g., pollution, congestion,. . .), a topical research subject is the optimization of
the routes of the transport vehicles.

In this thesis we consider the double traveling salesman problem with multiple stacks,
in which the construction of optimal routes is severely constrained by the rules governing
the disposition of the merchandise in a vehicle. In this problem, first some goods have to
be picked up in one region. Subsequently they are delivered to demanding customers in
another region, very far from the first one. For this transport, the items are positioned in
stacks obeying the last-in-first-out rule for unloading.

The double traveling salesman problem with multiple stacks is a combinatorial opti-
mization problem. Many successful methods to tackle this kind of problems rely on the
polyhedral approach introduced by Edmonds [54].

The idea behind the polyhedral approach is to associate the solutions to a combinatorial
optimization problem with a set of points in a suitable space. Such a set of points can be
associated to a geometrical object called polytope. A complete description of this polytope
by means of linear inequalities can be used to solve the starting problem in practice. Un-
fortunately, complete descriptions of this type are unlikely to be found for hard problems.

13

INTRODUCTION

This is why we often have to combine partial descriptions with integrality constraints in
order to formulate the problem properly. Integer Programming is a research area which
develops tools to solve such kind of formulations, called integer linear programs. A well-
known approach in Integer Programming is to seek an optimal solution by performing a
dichotomic search and by exploiting the partial description in terms of linear inequalities
to avoid a complete enumeration of all possible solutions. A method of this type is called
branch-and-cut algorithm. The polyhedral approach and the branch-and-cut paradigm
have proven to be very efficient in tackling hard combinatorial optimization problems.

In this thesis we study a polytope associated with the double traveling salesman prob-
lem with multiple stacks. We show that it is linked to a polytope associated with the
traveling salesman problem and to a polytope associated with a specific set covering prob-
lem. These are combinatorial optimization problems that have been thoroughly studied
from the Integer Programming point of view. By exploiting the links with these prob-
lems we derive linear inequalities subsequently embedded in an effective branch-and-cut
algorithm for the double traveling salesman problem with multiple stacks.

In the second part of this manuscript we focus on lexicographical polytopes. A lexico-
graphical polytope is the convex hull of the integer points in an n-dimensional box that
are lexicographically between two given integer points in the box. Our goal is to provide
a full description of the lexicographical polytopes. Our interest is mainly theoretical as
we generalize known results on binary lexicographical polytopes. Nevertheless, the latter
have proven to be useful in a wide range of practical situations, such as in the design of
cryptosystems, in the design of wireless networks and in the resolution of integer linear
programs by binary substitution of general integer variables.

The thesis is organized as follows. The first chapter presents the definitions used in
subsequent chapters. The remainder of the thesis is divided into two parts. Part I is
devoted to the double traveling salesman problem with multiple stacks. Chapter 2 in this
part describes the problem and motivates its applications in real-world situations. The
literature appeared on similar pickup and delivery problems is surveyed. Finally, also the
theoretical and computational results obtained on the double traveling salesman problem
with multiple stacks since its appearance are reported. In Chapter 3 a new integer linear
programming formulation for the double traveling salesman problem with multiple stacks
is presented. Two variations of the problem are considered: the general case, in which
the stacks of the vehicle have a finite capacity and the special case in which the capacity
is infinite. In this latter case the formulation can be simplified. Chapter 4 is devoted to
the study of the polytope obtained as convex hull of the solutions to the formulation in
the infinite capacity case. An important result presented in this chapter is that two facet-
defining inequalities for this polytope can be retrieved from a facet-defining inequality of a
polytope associated with the traveling salesman problem. Subsequently, polyhedral links
with a specific set covering polytope are derived. The set covering polytope is shown to be
a vertex cover polytope in the two stack case. This observation enables the derivation of
new inequalities for the polytope of the double traveling salesman problem with two stacks.
In Chapter 5 the polyhedral results previously found are embedded in a branch-and-cut

14

algorithm for the two stack case. In the case of the double traveling salesman problem
with two stacks the experimental results show that this algorithm outperforms the existing
ones.

Part II of the thesis is devoted to the study of lexicographical polytopes. It consists
of one chapter. The literature on lexicographical polytopes is first described. Then an
extended formulation for the componentwise maximal integer points of lexicographical
polytopes is presented. The extended formulation is projected and a complete descrip-
tion of the lexicographical polytopes is deduced. Finally, it is proven that the family of
lexicographical polytopes is closed under intersection.

Some of the results reported in this thesis have been published or accepted for publica-
tion in international scientific journals. The polyhedral links with the traveling salesman
problem polytope and their use in a branch-and-cut algorithm are the core of the article
Polyhedral results and a branch-and-cut algorithm for the double traveling Salesman prob-
lem with multiple stacks (M. Barbato, R. Grappe, M. Lacroix, R. Wolfler Calvo, Discrete
Optimization 21 (2016): 25–41). The polyhedral links with the set covering and the vertex
cover polytopes are reported in the article written in collaboration with R. Grappe, M.
Lacroix and R. Wolfler Calvo and titled A Set Covering Approach for the Double Travel-
ing Salesman Problem with Multiple Stacks. This article will appear in the Lecture Notes
in Computer Science proceedings of the 4th International Symposium on Combinatorial
Optimization (Vietri Sul Mare, May 2016).

Finally, the results on lexicographical polytopes are collected in the article Lexicograph-
ical Polytopes written in collaboration with R. Grappe, M. Lacroix, C. Pira and submitted
for publication.

15

Chapter 1

General Definitions

This chapter provides the notations and basic definitions used throughout the thesis.

1.1 Sets

In this section we fix the notations on numbers and sets that could be nonstandard. For
more details on sets we refer the reader to Halmos’ book on naive set theory [96].

The symbols Z, R and Q denote respectively the sets of integer, real and rational
numbers. A real number a is nonnegative if a ≥ 0. We define R+ = {a ∈ R : a ≥ 0},
that is R+ is the restriction of R to its nonnegative elements. Similary, Z+ and Q+ are
respectively the restrictions of Z and Q to their nonnegative elements. Given a ∈ R, we
define bac as the lower integer part of a and dae as the upper integer part of a.

The cardinality of a set S is the number of its elements and it is denoted |S|. A set S
is finite if |S| < +∞, otherwise it is infinite. The set of all subsets of S is its power set,
denoted 2S.

Let S1 and S2 be two sets. The relative complement of S1 in S2 is:

S2 \ S1 = {s ∈ S2 : s 6∈ S1}.

When S1 ⊆ S2, the relative complement of S1 in S2 is simply called complement of
S1 in S2 and it is indicated with S̄1. The symmetric difference of two sets S1 and S2 is
S14 S2 = (S1 ∪ S2) \ (S1 ∩ S2).

A k-uple is an ordered list of k elements. In this writing, k-uples will be written by
listing their elements within two parenthesis, e.g., (2, 1, 7, 4) is a 4-uple of integer numbers.
A pair is a 2-uple. Given S1, . . . , Sm sets, their product set is

S1 × · · · × Sm = {(s1, . . . , sm) : si ∈ Si, i = 1, . . . ,m}.

17

CHAPTER 1. GENERAL DEFINITIONS

Ordering Relations on Sets

Given a finite set S, a binary relation R on S is a subset of S×S. For the purposes of this
section, given s1, s2 ∈ S it is convenient to write s1Rs2 instead of (s1, s2) ∈ R. Here, we
are interested in binary relations called partial orderings and linear orderings. A partial
ordering of S is a binary relation 4 on S such that:

• s 4 s for all s ∈ S (i.e., 4 is reflexive),

• if s1 4 s2 and s2 4 s1 then s1 = s2 for all s1, s2 ∈ S (i.e., 4 is antisymmetric),

• if s 4 t and t 4 u then s 4 u for all s, t, u ∈ S (i.e., 4 is transitive).

A partial ordering 4 of S is total if in addition s1 4 s2 or s2 4 s1 for all s1, s2 ∈ S. Note
that the totality of a partial ordering implies its reflexivity.

To every total partial ordering 4 of S it is associated a linear ordering ≺ of S defined
by a ≺ b if and only if a 4 b and a 6= b. Note that a linear ordering is not reflexive.

If S is a finite set and ≺ is a linear ordering on S, the pair (S,≺) is a finite totally
ordered set. It can be shown that a finite totally ordered set (S,≺) admits a least element
`, that is ` ≺ s for all s ∈ S. From this it follows that (S,≺) can be represented by a
sequence s1, s2, . . . , s|S| meaning that si ≺ sj and si 6= sj for all 1 ≤ i < j ≤ |S|.

1.2 Linear Algebra

In this section we define matrices and vectors as well as the operations on these structures
that will be used in this thesis. We focus in particular on real matrices and vectors.

1.2.1 Matrices

A matrix is a disposition of elements in a rectangular array, with a finite number of rows
(indexing the vertical dimension) and columns (indexing the horizontal dimension). The
elements of a matrix are also called entries in this writing. The entry placed in row i and
column j of a matrix A is denoted Aij. The transpose a matrix A is the matrix A> defined
element-wise by A>ij = Aji.

We define Em×n to be the set of matrices with m rows, n columns and all entries in the
ground set E. For instance, the set of binary matrices is {0, 1}m×n, i.e., this is the set of
matrices containing only 0’s and 1’s. Other well-known examples are real matrices Rm×n,
integer matrices Zm×n and so on. We will identify R1×1 with R. The elements of R are
called scalars.

18

1.2. LINEAR ALGEBRA

Binary Operations on Matrices

Here are some common operations on real matrices.

• The sum of two matrices A,B ∈ Rm×n is C = A+B defined by Cij = Aij +Bij, for
all 1 ≤ i ≤ m and 1 ≤ j ≤ n. Hence C ∈ Rm×n.

• The multiplication of A ∈ Rm×n with a scalar α ∈ R is the matrix C ∈ Rm×n defined
element-wise by Cij = αAij, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n. We indicate this
product by αA.

• The product of two matrices A ∈ Rm×k and B ∈ Rk×n is the matrix AB ∈ Rm×n

defined element-wise by (AB)ij =
∑k

`=1 Ai`B`j, for all 1 ≤ i ≤ m and 1 ≤ j ≤ n.

• Given A,B ∈ Rm×n, we write A ≤ B whenever Aij ≤ Bij for all 1 ≤ i ≤ m and
1 ≤ j ≤ n. Then A = B if and only if A ≤ B and B ≤ A.

1.2.2 Vectors and Vector Spaces

Given n ∈ Z+, a real vector of dimension n is v ∈ Rn×1. For short we will write v ∈ Rn

instead of v ∈ Rn×1 and vi instead of vi1 for every i = 1, . . . , n. The scalar product of two
n-dimensional real vectors c and v is c>v =

∑n
i=1 civi. Unless differently stated, we will

always omit the transposition symbol and write instead cv for the scalar product of c and
v. Two nonzero vectors u, v ∈ Rn are called orthogonal if uv = 0. The symbols 0 and 1
will denote the vectors having all entries equal to 0 or to 1, respectively. The dimension
of these vectors will be clear from the context.

The real vector (or linear) spaces of dimension k is the set Rk (for some k ∈ Z+)
provided with the operations of sum of vectors and product of vectors with scalars defined
above. It is easily verified that Rk with these two operations coincides with a vector space
over R, — for a definition of vector space in general see Lang’s book [121].

Let us consider a finite set E. Since |E| ∈ Z+, the vector space R|E| can be defined
by following the above notations. However, we will think in this case that the entries of
v ∈ R|E| are indexed by the elements of E (assuming a fixed order on them). In this notation
ve is the coordinate corresponding to the element e of E. We define v(F) =

∑
f∈F vf for

all F ⊆ E. Similarly, R|E|×|F |, with E and F finite sets, is the set of real matrices with
row indices in E and column indices in F . In this case, for A ∈ R|E|×|F |, the entry Aef is
the one corresponding to e ∈ E and f ∈ F .

Let us consider the vector space Rn for some n ∈ Z+. A vector subspace, or just subspace
when no confusion may arise, is V ⊆ Rn such that:

VS1. u, v ∈ V implies u+ v ∈ V ,

VS2. α ∈ R and v ∈ V imply αv ∈ V .

19

CHAPTER 1. GENERAL DEFINITIONS

1.2.3 Linear Functions

Given two vector spaces Rm and Rn, a linear function is a function φ : Rm → Rn such that
φ(u+ v) = φ(u) + φ(v) and φ(αv) = αφ(v), for all u, v ∈ Rm and α ∈ R.

The kernel of a linear function φ : Rm → Rn is ker(φ) = {v ∈ Rm : φ(v) = 0}. The
image of φ is im(φ) = {w ∈ Rn : w = φ(v), for some v ∈ Rm}.

Example 1.2.1 (Orthogonal Projection). Let us consider two integers n and p. The
orthogonal projection of S ⊂ Rn+p onto the subspace Rn is:

projx(S) = {x ∈ Rn : ∃z ∈ Rp such that (x, z) ∈ S}.

1.2.4 Linear Independence and Bases

In this section Rn denotes the real vector space of dimension n, for some n ∈ Z+. That is,
we will implicitly assume that the sum between vectors and the multiplication with scalars
are available.

The vectors v1, v2, . . . , vk ∈ Rn are linearly independent if λ1v
1 + λ2v

2 + · · ·+ λkv
k = 0

(with λ1, λ2, . . . , λk being scalars) implies λ1 = λ2 = · · · = λk = 0. If v1, v2, . . . , vk are not
linearly independent, they are said linearly dependent.

A vector v ∈ Rn is a linear combination of the vectors v1, v2, . . . , vk ∈ Rn if there exist
scalars λ1, . . . , λk such that v = λ1v

1 + λ2v
2 + · · ·+ λkv

k.

We will often use implicitly the following important and well-known result:

Proposition 1.2.2. The vectors v1, v2, . . . , vk ∈ Rn are linearly independent if and only if
none of them is a linear combination of the others.

Let V be a subspace of Rn. We say that v1, . . . , vk generate V if every element of V
is a linear combination of v1, . . . , vk. Conversely, the set of the linear combinations of
v1, . . . , vk ∈ Rn is a subspace of Rn, the subspace generated by v1, . . . , vk.

A basis B of a vector subspace V of Rn is a minimal set of vectors generating V , i.e.,
there is no B′ ⊂ B whose elements generate V .

Theorem 1.2.3. A set B of vectors of Rn is a basis of V if and only if

• B ⊆ V;

• the elements of B are linearly independent;

• the elements of B generate V.

In addition, all bases of a vector subspace of Rn have the same cardinality.

20

1.2. LINEAR ALGEBRA

Let B be a basis for V a subspace of Rn. The cardinality of B is called dimension of V ,
denoted dim(V).

From the theorem above it follows that if B = {b1, . . . , bk} is a basis for V subspace of
Rn then each element v of V is v = λ1b

1 + · · ·+λkb
k with λi uniquely determined for every

i = 1, . . . , k. Assuming that the elements of B are ordered following the subscripts from 1
to k, we write vB = (λ1, . . . , λk)

>.

We point out that Rn has dimension n because, in view of previous theorem, the set
of its vectors e1 = (1,0)>, e2 = (0, 1,0)>,. . . ,en = (0, 1)> is a basis of Rn with n elements.
The basis of Rn given by E = {e1, e2, . . . , en} is called standard basis and ei is called, for
every i = 1, . . . , n, i-th canonical vector. Note that vE = v for every v ∈ Rn.

Let us consider a linear function φ : Rm → Rn. We get that φ corresponds exactly to
one matrix F defined by Fij = (φ(ej))i, for 1 ≤ i ≤ m and 1 ≤ j ≤ n. We have φ(v) = Fv.
Conversely, for every matrix F ∈ Rm×n, the function φ : Rm → Rn defined by Fv for all
v ∈ Rm is linear.

The row rank of a matrix is the greatest number of linearly independent rows it has.
The column rank of a matrix is the greatest number of linearly independent columns it has.
A matrix is said to be of full row rank (resp. full column rank) if all its rows (resp. columns)
are linearly independent.

1.2.5 Affine Spaces

In this section we define the affine independence, affine combinations and affine spaces. In
this context v ∈ Rn is called point.

The points v1, v2, . . . , vk ∈ Rn are affinely independent if and only if the system

k∑
i=1

λiv
i = 0,

k∑
i=1

λi = 0

implies λ1 = λ2 = · · · = λk = 0.
A point v ∈ Rn is an affine combination of v1, v2, . . . , vk ∈ Rn if and only if vk =∑k
i=1 λiv

i for some λ1, λ2, . . . , λk such that
∑k

i=1 λi = 1.

It is well-known that the points v1, v2, . . . , vk are affinely independent if and only if
none of them can be expressed as an affine combination of the others.

An affine space of Rn is A ⊆ Rn closed under affine combinations. Given A an affine
space of Rn, a set B ⊆ A is an affine subspace of A if B is closed under affine combinations.

An affine basis of an affine space A is a set of affinely independent points v1, . . . , vk+1 ∈
A such that every point in A can be expressed as an affine combination of v1, . . . , vk+1. In
this case we define the dimension of A as dim(A) = k. The previous definition relies on
the fact that all bases of an affine space of Rn have the same cardinality.

The affine hull of a set S ⊆ Rn is the smallest affine space of Rn containing S. The
affine hull of S is denoted aff(S). We define the dimension of S as dim(S) = dim(aff(S)).

21

CHAPTER 1. GENERAL DEFINITIONS

1.2.6 Conic and Convex Combinations

A conic combination of the vectors v1, . . . , vk ∈ Rn is v = λ1v
1 + · · · + λkv

k with λi ≥ 0,
for all i = 1, . . . , k. It is called convex combination if, in addition, λ1 + λ2 + · · ·+ λk = 1.

A set S ⊆ Rn is convex if it is closed under convex combinations of its elements. The
convex hull of S ⊆ Rn, denoted conv(S), is the smallest convex set containing S. It can
be shown that conv(S) is the set of the convex combinations of finitely many points of S.

A set C ⊆ Rn is a convex cone if it closed under conic combinations. Given D ⊆ Rn,
the convex cone generated by D is the set cone(D) of all conic combinations of vectors
of D. Let C 6= {0} be a convex cone. A ray of C is any set of the type cone(r) with
r ∈ C. We will identify r with cone(r). We say that two rays r1 and r2 are distinct if
r2 6∈ cone(r1). An extreme ray of C is a ray r of C such that no distinct rays r1, r2 ∈ C
exist with r = λ1r1 + λ2r2 for some λ1, λ2 > 0.

1.3 Graphs

In this section we give the notation for undirected and directed graphs.

1.3.1 Undirected Graphs.

A simple undirected graph or just graph is a pair of sets G = (V,E) with V being finite and
E ⊆ {{u, v} : u 6= v ∈ V }. When E = {{u, v} : u 6= v ∈ V } the graph G is said complete.

The set V is called vertex set and an element of V is a vertex of the graph G; the set
E is called edge set and an element of E is an edge of G. If e = {u, v} ∈ E is an edge of
a graph G, the vertices u and v are called endpoints of e. In this case, u and v are said
adjacent and we also say that e is incident to u and v. The set of edges incident to a vertex
v is denoted δ(v). The neighborhood of W ⊆ V is the set of vertices adjacent to at least
one vertex in W . A vertex v of a graph is isolated if the neighborhood of {v} is empty.

For each vertex v ∈ V , its degree is deg(v), the number of edges incident to v. For
every graph G = (V,E) the degree of vertices and the number of edges are linked by the
relation:

∑
v∈V deg(v) = 2|E|.

A graph G = (V,E) is k-regular if deg(v) = k for all v ∈ V . The maximum degree of
G = (V,E) is ∆(G) = maxv∈V {deg(v)}.

Graphs can be drawn as follows. For each vertex we draw a point; for each edge {u, v}
we draw the line linking the points corresponding to u and v.

A graph G = (V,E) admits other representations. The first one is the adjacency matrix.
It is the binary matrix A ∈ {0, 1}|V |×|V | such that Auv = 1 if and only if u and v are adjacent
in G, for every u, v ∈ V . A second representation is the incidence matrix. It is the binary
matrix B ∈ {0, 1}|E|×|V | such that Bev = 1 whenever v is an endpoint of e. Note that each
row of B has exactly two nonzero entries.

22

1.3. GRAPHS

Two graphs G1 = (V1, E1) and G2 = (V2, E2) are isomorphic, denoted G1
∼= G2 when

there is a bijection f : V1 → V2 such that {x, y} ∈ E1 if and only if {f(x), f(y)} ∈ E2.

The complement of a graph G = (V,E) is the graph Ḡ = (V, Ē) in which {i, j} ∈ Ē if
and only if {i, j} 6∈ E.

Weighted Graphs. A vertex-weighted graph is (G,w), where G = (V,E) is a graph and
w ∈ R|V |. For all v ∈ V , we call wv the weight of v. An edge-weighted graph is defined in
analogous manner, with w ∈ R|E|. In this case, for every e ∈ E, we call we the weight of e.
For every E ′ ⊆ E the weight of E ′ is w(E ′).

Subgraphs. A subgraph of a graph G = (V,E) is a graph H = (U, F) with U ⊆ V and
F ⊆ E. Unless differently stated, given a subgraph S of G, we denote by V (S) the set of
vertices of S and by E(S) the set of its edges. Let G = (V,E) be a graph and U ⊆ V . The
subgraph of G vertex-induced by U is G[U] = (U, F) where F = E ∩{{i, j} : i 6= j ∈ U}. If
W is a subset of V , we write G\W for G[V \W]. Similarly, the subgraph of G edge-induced
by E ′ ⊆ E is G[E ′] = (V (E ′), E ′), where V (E ′) is the set of vertices that are endpoints of
some edges in E ′. We simply say induced if it is clear from the context whether a subgraph
is vertex induced or edge induced.

Walks, Paths and Circuits. A walk of a graph G = (V,E) is a set of vertices and
edges {v0, e1, v1, . . . , vk−1, ek, vk}, where vj ∈ V for all 0 ≤ j ≤ k and ej = {vj−1, vj} for
all 1 ≤ j ≤ k. We say that the walk visits its vertices. The vertices v0 and vk are called
extremities of the walk. The walk is called closed if v0 = vk, non-closed otherwise.

A non-closed walk is called path when all its edges and vertices are distinct. Given a
path P , a subpath of P is a path whose vertex set and edge set are contained in P . A
v0, vk-path is a path having v0 and vk as extremities.

A closed walk is called circuit if all its vertices (except its extremities) are pairwise
distinct. A circuit of a graph G is Hamiltonian if it contains all vertices of G.

Unless differently stated, the parity of walks, paths and circuits is understood according
to the number of their edges. Note that walks, paths and circuits naturally give rise to
subgraphs, by considering their vertex and edge sets. Hence, when needed we will identify
them with the corresponding subgraphs.

In addition, we will also identify the set of edges of a walk with the walk itself. The
length of a walk is the number of its edges. Similar considerations hold for paths and
circuits.

Let U be the vertex set of a walk and F be its edge set. In a vertex-weighted graph
(G,w), the vertex-weight of the walk is w(U). In an edge-weighted graph (G,w), the
edge-weight of the walk is w(F). When the context is clear, we simply write weight.

Let us take a walk W in a graph G and consider {u, v} and {v, t} edges of this walk.
If we replace the two edges {u, v} and {v, t} with the edge {u, t} we get a new walk W ′.

23

CHAPTER 1. GENERAL DEFINITIONS

We write in this case W ′ = W/v. The same definition is given on paths. In particular if v
is an extremity of a path P , the new path P/v is the one obtained by removing v and the
edge of P incident to v.

Subdivisions. Let G be a graph and {u, v} one of its edges. We subdivide {u, v} if we
replace it with a u, v-path. The graph resulting from G after subdividing some of its edges
is called a subdivision of G.

Connectivity and Cuts. We say that a graph G is connected when, for every two
vertices u, v of G, there exists a u, v-path in G. Given W ⊆ V , the W -cut is the set δ(W)
of edges having one endpoint in W and the other in V \W .

Given two vertices s, t ∈ V , an s, t-cut is a W -cut with s ∈ W and t ∈ V \W .

A minimum weight cut (resp. minimum weight s, t-cut) is a W -cut (resp. s, t-cut) of
minimum weight.

Cliques. A clique of a graph G is a subset of vertices of G inducing a complete subgraph
of G. A clique of G is maximal if it is not properly contained in a clique of G. It is a
maximum clique if it is a clique of G of greatest cardinality. The clique number of G,
denoted ω(G), is the cardinality of a maximum clique of G.

Stable Sets. A stable set of a graph G is a subset of vertices of G pairwise nonadjacent.
A stable set of G is maximal if it is not properly contained in a stable set of G. It is a
maximum stable set if it is a stable set of maximum cardinality. The stability number of
G, denoted α(G), is the cardinality of a maximum stable set of G.

Colorings. A proper vertex coloring of a graph G, or simply coloring in this writing,
consists in assigning labels to the vertices of G so that any two adjacent vertices have
different labels. The labels are called colors. Note that every graph G = (V,E) admits a
coloring using |V | colors. From now on, the colors in a coloring of G = (V,E) are identified
with the natural numbers 1, 2, 3,

Let us consider a graph G = (V,E) and a coloring for this graph. For every i = 1, . . . , n,
we define the color class of i as the set of vertices of G that are assigned color i in this
coloring.

A coloring of a graph is a k-coloring if it has at most k nonempty color classes. Given a
graph G, the smallest k ∈ Z+ for which G admits a k-coloring is called chromatic number
of G. The chromatic number of a graph G is denoted χ(G).

It follows from the definitions that χ(G) ≥ ω(G) for every graph G.

24

1.3. GRAPHS

Bipartite Graphs. A graph G is bipartite if χ(G) ≤ 2. It follows that the vertex set
of a bipartite graph G can be divided into two stable sets U and V of G. Hence, we will
indicate a bipartite graph by G = (U, V ;E) where U and V are the two vertex sets and E
the edge set of the graph.

For a bipartite graph G = (U, V ;E), we say that C ⊆ V covers T ⊆ U if the neighbor-
hood of C coincides with T . A bipartite graph with at least two vertices is called complete
if χ(G) = 2 and every vertex in a color class is adjacent to all vertices in the other color
class.

Perfect Graphs

A perfect graph is a graph G = (V,E) such that χ(G) = ω(G) and χ(G[W]) = ω(G[W])
for all W ⊆ V .

Theorem 1.3.1 (Lovász, [130]). A graph G = (V,E) is perfect if and only if its complement
Ḡ is perfect. This is also equivalent to ω(G[W])α(G[W]) ≥ |W | for all W ⊆ V .

We cite few examples of known perfect graphs.

Comparability Graphs. Given a graph G = (V,E) and an edge {u, v} ∈ E, an orien-
tation of {u, v} is one of the two pairs (u, v) or (v, u). That is, we enforce an order on the
endpoints of the edge.

An orientation F of G = (V,E) is a set containing exactly one orientation of e, for each
e ∈ E. An orientation F of G = (V,E) is transitive if (u, v) ∈ F and (v, t) ∈ F implies
(u, t) ∈ F for all u, v, t ∈ V .

A graph G is a comparability graph if it admits a transitive orientation.

Theorem 1.3.2 (See p.133 Golumbic [82]). Comparability graphs are perfect.

Permutation Graphs. Let us be given a permutation π of {1, 2 . . . , n}. We associate
π with a graph G(π) = (Vπ, Eπ) defined by

• Vπ = {1, 2, . . . , n},

• Eπ = {{i, j} : i > j and π(i) < π(j) for all i, j ∈ Vπ}.

We say that a graph G = (V,E) is a permutation graph when there exists a permutation
π of {1, . . . , |V |} such that G is isomorphic to G(π).

Every permutation graph is a comparability graph as it can be seen by orienting as (i, j)
each edge {i, j} ∈ Eπ with i > j. In fact, using comparability graphs we can completely
characterize permutation graphs.

Theorem 1.3.3 ([159]). A graph G is a permutation graph if and only if G and Ḡ are
comparability graphs.

It follows that permutation graphs (and their complement) are perfect.

25

CHAPTER 1. GENERAL DEFINITIONS

1.3.2 Directed Graphs

A directed simple graph or simply digraph is a pair of sets D = (V,A) with V being finite
and A ⊆ {(i, j) : i 6= j ∈ V }. The set V is called vertex set of D and its elements are called
vertices. The set A is the arc set of D and its elements are called arcs. Hence an arc is
a pair of vertices. The digraph D is complete if its arc set contains all possible pairs of
distinct vertices of D. A subgraph of a digraph D = (V,A) is any digraph D′ = (V ′, A′)
with V ′ ⊆ V an A′ ⊆ A. Unless differently stated, given a subgraph D′ of D, we denote
by V (D′) the set of vertices of D′ and by A(D′) the set of its arcs. A vertex-weighted
digraph is (D,w) with D = (V,A) being a digraph and w ∈ R|V |. An arc-weighted digraph
is (D,w) with D = (V,A) being a digraph and w ∈ R|A|. We simply say weighted if the
context is clear.

For each arc a = (u, v) of a digraph, u and v are called respectively the tail of a and the
head of a. In addition, we say that a is an arc entering in v and leaving u. The out-degree
deg+(v) (resp. in-degree deg−(v)) of a vertex v is the number of arcs leaving (resp. entering
in) v. Similarly, given W ⊆ V we define its outcut δ+(W) as the set of arcs having their
tail in W and their head in V \W . Its incut δ−(W) is defined analogously as the set of arcs
having their head in W and their tail V \W . Outcuts and incuts of a graph are referred
generically as cuts of the graph. The degree of a cut is the number of its arcs. We define
an (s, t)-cut of a digraph D = (V,A) to be an outcut of W ⊆ V with s ∈ W and t 6∈ W .

Given a weighted digraph (D,w), the weight of a cut of D is the sum of the weights
associated with the arcs in the cut. A minimum weight cut is one whose weight is minimum
among all cuts. Analogous definitions are given for (s, t)-cuts.

Digraphs can be drawn as graphs but using arrows instead of lines to represent the
arcs. The arrow goes from the tail of the arc to its head. Note that an orientation of a
graph yields a digraph.

A directed walk of a digraph D = (V,A) is a set of the form {v0, a1, v1, . . . , vk−1, ak, vk}
with vj ∈ V for all 0 ≤ j ≤ k and aj = (vj−1, vj) for all 1 ≤ j ≤ k. We say that the
walk starts at v0 and ends in vk and that v0 and vk are respectively the starting and
ending points of the walk. The walk is called closed if v0 = vk, non-closed otherwise. A
non-closed walk is a directed path if all its vertices and arcs are distinct. Given a directed
path P , a subpath of P is any directed path whose vertex set and arc set is contained in
P . A (v0, vk)-path is a path having v0 as starting point and vk as ending point. A closed
directed walk is called directed circuit if all its vertices (except the starting and ending
points) are pairwise distinct. A directed circuit of a digraph D is Hamiltonian if it visits

all vertices of D. Given a directed path or circuit C the reverse of C, denoted
←
C is the

path or circuit composed of the opposite arcs of C. We will omit the word “directed” when
no confusion may arise. A digraph D = (V,A) is strongly connected if it has a (u, v)-path
and a (v, u)-path for every u, v ∈ V .

As for walks, paths and circuits of undirected graphs, also in digraphs we will identify
them with the corresponding subgraph and with the set of their arcs. Their length is then
defined as the number of their arcs.

26

1.4. NOTIONS OF COMPUTATIONAL COMPLEXITY THEORY

Let us consider a directed walk of a digraph D with vertex set U and arc set B. If
(D,w) is a vertex-weighted digraph, the vertex-weight of the walk is w(U). If (D,w) is a
arc-weighted digraph, the arc-weight of the walk is w(B).

Let us take a walk W in a digraph D and consider (u, v) and (v, t) arcs of this walk. If
we replace in W the two arcs (u, v) and (v, t) with the arc (u, t) we get a new walk W ′. We
write W ′ = W/v. We give the same definition on paths. In this case, if v is an the starting
or ending point of the directed path P , the new directed path P/v is the one obtained by
removing v and the arc incident to v.

Let D be a digraph and (u, v) one of its arcs. We subdivide (u, v) if we replace it with
a (u, v)-path. The digraph resulting from D after subdividing some of its arcs is called a
subdivision of D.

1.4 Notions of Computational Complexity Theory

We give an informal presentation of the tools used in computational complexity to analyze
the difficulty of problems and the performance of algorithms. A more complete treatment
of this topic can be found in [69].

Algorithms. An algorithm is a procedure decomposable into a finite sequence of elemen-
tary arithmetic operations that transforms an initial input into an output. The number
of elementary operations performed by an algorithm is the running time of the algorithm.
The size of an input is the amount of space needed to write down the input.

Problems. A problem is a general question which depends on some parameters (whose
values are unknown). A problem also requires to specify the list of the properties of its
solutions. An instance of a problem is obtained by fixing the values of the parameters.
The size of an instance is the amount of space necessary to write down the instance.

An algorithm for a problem P is an algorithm which takes an instance of P as initial
input and produces a solution to P . We also say that the algorithm solves P .

Polynomial Algorithms

Let A be an algorithm. Given a function f : Z+ → Z+, we say that algorithm A runs in
O(f(n)) time in the input size if there exist a scalar α and a natural n0 such that, for any
input of size n ≥ n0, the running time of A is at most αf(n). If A is an algorithm for a
problem P that runs in O(f(n)) time we say that P can be solved in O(f(n)) time. If f is
a polynomial function we say that A runs (resp. P can be solved) in polynomial time in the
input (resp. instance) size. For short we also say that A is a polynomial time algorithm.

27

CHAPTER 1. GENERAL DEFINITIONS

The classes P and NP

A decision problem is a problem having only two possible answers: yes or no. The class P
is the set of decision problems that can be solved in polynomial time.

Let P be a decision problem. The Y-instances of P is the set of its instances having
answer yes. A certificate for a Y-instance is a proof that yes is the correct answer for that
instance. We say P belongs to the class NP if all its Y-instances admit a certificate whose
correctness can be verified in polynomial time. The class P is contained in the class NP.

NP-Completeness and NP-hardness

We say that the decision problem P ′ is reducible in polynomial time to a problem P if
there exists a polynomial algorithm that, taking an instance I of P ′ as input, produces as
output a Y-instance of P if and only if I is a Y-instance of P ′.

A decision problem P is NP-complete if P ∈ NP and all decision problems in NP are
reducible in polynomial time to P . A problem P is NP-hard if all problems in NP are
reducible in polynomial time to P . Hence the NP-complete problems are also NP-hard
problems.

1.5 Polyhedral Theory

We recall some basic notions in polyhedral theory. We follow to a large extent the book [40].

Polyhedra and Polytopes. A polyhedron of Rm is P = {x ∈ Rm : Ax ≤ b}, where
A ∈ R`×m and b ∈ R` for some positive integers ` and m. If b = 0 then P is called
polyhedral cone. A bounded polyhedron is called polytope. A polyhedron P of Rn is full
dimensional if dim(P) = n.

Note that polyhedral cones are convex cones.

Recession Cone and Lineality Space Given a polyhedron P = {x ∈ Rn : Ax ≤ b},
its recession cone is the polyhedral cone rec(P) = {x ∈ Rn : Ax ≤ 0}. The lineality space
of P is the set lin(P) = {x ∈ Rn : Ax = 0}. A polyhedron P is pointed if lin(P) = {0}.

Faces. A valid inequality for a polyhedron P of Rn is a linear inequality ax ≤ δ verified
by all points of P . A face of a polyhedron P is any set of the form P ∩ {x ∈ Rn : ax = δ}
with ax ≤ δ a valid inequality of P . In this case, we say that ax ≤ b defines the face. A
face F of a polyhedron P is proper if ∅ ⊂ F ⊂ P . A facet of a polyhedron P is a proper
face maximal with respect to the inclusion. A vertex or extreme point v of a polyhedron P
is a point of P that cannot be expressed as a convex combination of two points of P other
than v.

28

1.5. POLYHEDRAL THEORY

Integer Hulls. The integer hull PI of a polyhedron P of Rn is the convex hull of its
integer points, that is PI = conv(P ∩ Zn).

Linear Programs. A linear program is the problem of optimizing a linear function over
a polyhedron. In its maximization form it is:

max cx

subject to:

Ax ≤ b

x ∈ Rn

for some c ∈ Rn, A ∈ Rm×n and b ∈ Rm. For short we will also write max{cx : Ax ≤ b}
to indicate the linear program above. The dual of the linear program max{cx : Ax ≤ b} is
the linear program min{ub : A>u = c, u ≥ 0}.

Known Results

Here is a compendium of well-known results in polyhedral theory. The proofs are omitted.
They can be found in e.g., [40].

Proposition 1.5.1 (Farkas’ Lemma). Let us take A ∈ R`×m and b ∈ R`. The system of
inequalities Ax ≤ b is infeasible if and only there exists λ ∈ R`

+ such that A>λ = 0 and
λb < 0.

Proposition 1.5.2 (Strong Duality). Given A ∈ Rm×n, b ∈ Rm and c ∈ R if P = {x ∈
Rn : Ax ≤ b} and {u ∈ Rm : A>u = c, u ≥ 0} are nonempty, then:

max{cx : Ax ≤ b} = min{ub : A>u = c, u ≥ 0}.

In addition if P 6= ∅ then max{cx : x ∈ P} = +∞ if and only if D = ∅.

Given V,R ⊆ Rn their Minkowski sum is:

V +R = {x ∈ Rn : x = v + r for some v ∈ V and r ∈ R}.

Theorem 1.5.3 (Minkowski-Weyl Theorem). A subset P ⊆ Rn is a polytope if and only
if it is the convex hull of a finite number of points of Rn. More generally, it is a polyhedron
if and only if P = Q+C with Q being a polytope and C being a cone generated by a finite
set.

Theorem 1.5.4 (Decomposition Theorem for Polyhedra, see e.g., [40]). Let P be a pointed
polyhedron, let V = {v1, . . . , vk} be the set of its vertices and C = {r1, . . . , r`} be the set of
extreme rays of rec(P). Then P = conv(V) + cone(C).

Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron of Rn. The system Ax ≥ b is a minimal
representation of P if P is strictly contained in {x ∈ Rn : A′x ≤ b′} for every subsystem
A′x ≤ b′ of Ax ≤ b.

29

CHAPTER 1. GENERAL DEFINITIONS

Proposition 1.5.5. Let P = {x ∈ Rn : Ax ≤ b} be a full-dimensional polytope, with
A ∈ Rm×n, b ∈ Rm and Ax ≤ b being a minimal representation of P . Then P has m facets
and for every facet F of P we have F = {x ∈ P : Aix = bi} for exactly one 1 ≤ i ≤ m
where Ai is the i-th row of A. Conversely, for every facet-defining inequality αx ≤ β for
P there exists λ > 0 such that α = λAi and β = λbi. An inequality cx ≤ d is valid for P
if and only if there exists u ≥ 0 such that uA = c and ub ≤ d.

Proposition 1.5.6. Let P = {x ∈ Rn : Ax ≤ b} be a polyhedron of Rn. If A and b have
rational entries, then PI is a polyhedron. If PI 6= ∅, then rec(P) = rec(PI).

Proposition 1.5.7. Let P be a nonempty polyhedron. Then a face F of P is a facet of P
if and only if dim(F) = dim(P)− 1.

In the following example we summarize the concepts introduced in this section.

Example 1.5.8 (Set Covering Polytope). A set covering polytope is the convex hull of the
binary solutions to a system Az ≥ 1, where A is a binary matrix and 1 = (1, 1, . . . , 1)>.
When A is the incidence matrix of a graph, it is called vertex cover polytope.

Proposition 1.5.9 (e.g., [143]). Let SCA = conv{z ∈ {0, 1}m : Az ≥ 1} be a set covering
polytope with A ∈ {0, 1}`×m. We have:

1. SCA is nonempty if and only if each row of A has at least one positive entry;

2. SCA is full-dimensional if and only if each row of A has at least two positive entries.

Additionally, if SCA is full dimensional, then for every 1 ≤ j ≤ m the following hold:

(a) the inequality zj ≥ 0 is facet-defining for SCA if and only if each row of A has two
positive entries other than entry j;

(b) the inequality zj ≤ 1 is facet-defining for SCA;

(c) every other facet-defining inequality for SCA is of the form αz ≥ β with αk ≥ 0 and
β ≥ 0.

1.6 Combinatorial Optimization Problems and Inte-

ger Linear Programming

A combinatorial optimization problem consists in minimizing (or maximizing) a function
over a finite (but usually huge) set of elements, called feasible solutions to the problem.

As an example, finding a shortest path linking two locations in a network can be seen
as a combinatorial optimization problem. In fact, a shortest path problem in a network can
be easily modeled using a weighted digraph. In general, the word “combinatorial” refers
to the existence of an underlying abstract structure of finite cardinality (as the digraph of
our example). Another well-known example is the Traveling Salesman Problem.

30

1.6. COMBINATORIAL OPTIMIZATION PROBLEMS AND INTEGER LINEAR
PROGRAMMING

Example 1.6.1 (The Traveling Salesman Problem). Let us consider a weighted digraph
(D,w). The Traveling Salesman Problem (TSP) is to find the least weight Hamiltonian
circuit of D, that is to solve min{w(H) : H is a Hamiltonian circuit of D}. A feasible
solution to the TSP can be imagined as a route that visits exactly once each location in
a network. The weight associated with an arc (i, j) is also called cost since it represents
the distance covered to reach the location represented by i, starting from j. Hence, often
in TSP literature, we assume that the weights are nonnegative. The weight of the circuit
will be then its cost.

Combinatorial optimization comes in different flavors. In this thesis we will always
consider the case in which a linear function (called objective function) is to be optimized
over a finite subset of Rn.1

Example 1.6.2 (The Binary Knapsack Problem). A binary knapsack set is

K = {x ∈ {0, 1}n : ax ≤ b}

for some a > 0 and b > 0. The corresponding binary knapsack problem is max{cx : x ∈ K}
for some c ∈ Rn.

Incidence Vectors. Requiring that the feasible solutions to a combinatorial optimiza-
tion problem yield a finite subset of Rn can seem restrictive at first. Actually, this setting
lets us model many combinatorial optimization problems. Let us consider a finite set U and
a finite set S ⊆ 2U . We define the incidence vector of S ∈ S as the vector χS ∈ {0, 1}|U |
such that χSj = 1 if and only if j ∈ S, for every j ∈ U .2

Note that U 6⊆ Rn in general. It can be any type of combinatorial structure. For
instance we could take U = {subgraphs of a digraph D} and S = {(s, t)-paths of D}, for
fixed vertices s and t of D. In this case the set of the feasible solutions to a shortest
(s, t)-path problem corresponds to {χS : S ∈ S}.

It turns out that the considered setting is powerful enough to capture many problems
arising in real life, such as transportation problems, scheduling problems, facility location
problems, to cite a few.

Combinatorial optimization problem can be reformulated as the problem of optimizing a
linear function over a polytope. Using this latter property, algorithmic frameworks working
quite well in practice have been designed to deal with difficult combinatorial optimization
problems.

1Therefore, from now on combinatorial optimization refers only to this setting.
2We prefer the letter χ to indicate incidence vectors. Sometimes we will adopt other letters, by pointing

out that they represent incidence vectors.

31

CHAPTER 1. GENERAL DEFINITIONS

1.6.1 Polyhedral Approach

Let us consider the problem P of minimizing a linear function cx over a finite set S ⊂ Rn,
i.e., P is:

min{cx : x ∈ S}.

The set S is called feasibility region. A x ∈ S attaining the minimum in the expression
above is called optimal solution to P . If x? is an optimal solution to P then cx? is the
optimal value of P . However, it can be shown that P is equivalent to:

min{cx : x ∈ conv(S)}.

Suppose to know the linear description of conv(S), that is the linear inequalities corre-
sponding to the faces of this polytope. In this case, by the equivalence above, the resolution
of P can be performed with the resolution of a linear program. The resolution of linear
programs can be done in polynomial time [119, 115]. The idea of converting a combina-
torial optimization problem in the resolution of a linear program is due to Edmonds [54]
and is known as polyhedral approach.

The effectiveness of the polyhedral approach can be undermined by the size of the
linear program to which the original combinatorial optimization problem has been reduced.
Indeed, the number of inequalities in the linear description of conv(S) can be exponential
in the input size. In this case, we have no guarantee that the resolution of the linear
program can be accomplished in polynomial time in the input size.

Fortunately enough, Grötschel, Lovász and Schrijver have proven that the linear pro-
gram min{cx : Ax ≥ b} over a polyhedron can be solved in polynomial time independently
on the number of inequalities in Ax ≥ b, provided that the following problem, called
separation problem, can be solved in polynomial time [89]:

Separation Problem. Given x? ∈ Rn, decide whether x? ∈ P = {x ∈ Rn : Ax ≥ b} or
find a inequality αx ≥ β valid for P such that αx? < β.

The above important result is also known as the “equivalence of separation and opti-
mization” and it is based on the ellipsoid method [119].

Integer Linear Programming Formulations. Given a combinatorial optimization
problem P an integer linear programming formulation for P is F = {x ∈ Zn : Ax ≥ b}
such that the elements of F are in one-to-one correspondence with the feasible solutions to
P . The linear relaxation of F is then L = {x ∈ Rn : Ax ≥ b}. With abuse of language we
call LI the integer hull of the formulation F . Let L be the linear relaxation of an integer
linear programming formulation F for a combinatorial optimization problem requiring to
optimize cx. Solving the linear relaxation of F means to optimize cx over L. Problems
requiring to optimize a linear function cx over sets of the form {x ∈ Zn : Ax ≥ b} are called
integer linear programs.

32

1.6. COMBINATORIAL OPTIMIZATION PROBLEMS AND INTEGER LINEAR
PROGRAMMING

1.6.2 Cutting Plane Method

The cutting plane method aims at solving the integer linear program over a polyhedron
P = {x ∈ Zn : Ax ≥ b} with linear objective function cx. In the discussion, we assume
that the integer linear program is min{cx : Ax ≥ b, x ∈ Zn}.

The cutting plane method initially solves the linear program min{cx : Ax ≥ b, x ∈ Rn}
getting an optimal solution x?. At this point it solves the separation problem for x? and
PI : if x? ∈ PI then x? is also optimal for the starting integer linear program. Otherwise,
the separation problem produces αx ≥ β valid for PI and violated by x?. The inequality
αx ≥ β is added to the system Ax ≥ b. The process above is repeated on the optimal
solution to the linear program min{cx : Ax ≥ b, αx ≥ β, x ∈ Rn}.

The inequalities generated during the separation step are called cutting planes. The
cutting plane method is a general framework. The generation of cutting plane methods can
vary. One of the first examples of cutting planes is due to Gomory [83]. They are generated
from the output of the simplex method. Under nonrestrictive conditions Gomory’s cutting
plane method terminates after a finite number of iterations, see p. 356 in [174].

The same method can be used to solve linear programs with a huge number of con-
straints. In this case one initially discards a large subset C of inequalities from the constraint
set, so as to obtain a tractable relaxation of the initial problem. Then the cutting plane
method is applied to the solution to this relaxation, by solving its separation problem with
respect to the constraints in C.

1.6.3 Branch-and-Cut Algorithm

In general, the cutting plane method as described above converges very slowly to an opti-
mal solution to an integer linear program. Nevertheless, it is nowadays successfully used
in the so-called branch-and-cut algorithm. We explain how this algorithm can solve a
combinatorial minimization problem. Suppose to have an integer linear programming for-
mulation for this problem. The branch-and-cut algorithm solves the linear relaxation of
the formulation. If its solution is also integer, then it is optimal and the algorithm ter-
minates. Otherwise a separation step takes place. It performs several iterations of the
cutting plane method. This generates, from a prescribed set of inequalities valid for the
integer hull of the formulation, one or more inequalities violated by the optimal solution to
the current linear relaxation. The inequalities are added to the linear relaxation and the
resulting linear program is solved again. The separation step continues until no violated
inequality is found by the last fractional solution. At this point the algorithm performs
a branching step. In general, the goal of the branching step is to partition the feasibility
region in smaller sets, so that the integer linear programs on these sets are easier to solve.
This can be done e.g., by choosing a fractional coordinate of the fractional solution and by
separately setting its value to an integer value (among the possible ones). Hence a number
of new integer linear programs is generated by the branching step and added to a list of
unsolved problems. Solutions to these problems are, by construction, upper bounds for the

33

CHAPTER 1. GENERAL DEFINITIONS

value of the original problem. The algorithm can discard an unsolved problem from its list
whenever the lower bound obtained from its linear relaxation is higher than the best upper
bound found so far (the solution associated with this upper bound is called incumbent).
This latter mechanism is called bounding step. It is useful to reduce the number of integer
linear programs to be solved during the algorithm. After the bounding step, all unsolved
problems still in the list can be solved by applying separately the same method described
above. When no unsolved problem is left, an optimal solution to the original problem is
the last incumbent.

When the algorithm ends it has solved a number of integer linear programs that are
organized in a tree (called search tree): indeed each of these linear programs generates
several integer linear programs during the branching step. Each integer linear program
solved during the algorithm is called node of the search tree.

The role of the cutting plane method in the branch-and-cut algorithm is to produce good
lower bounds on the optimal value of the problem so that many integer linear programs
are discarded during the bounding step. In other words, it is used to avoid a complete
exploration of the feasibility region and hence to limit the size of the search tree. In
the context of branch-and-cut algorithms the linear inequalities generated dynamically
during the separation step are called, among others, strengthening cuts or strengthening
inequalities.

1.6.4 Heuristics

In the branch-and-cut algorithm described in previous section the bounding step is crucial.
It relies on two ingredients. Good lower bounds obtained by solving linear programs,
possibly reinforced in the separation step, and good upper bounds. Upper bounds are
automatically produced by the branch-and-cut algorithm, when it finds feasible solutions
to the original problem. However, one can provide the algorithm with upper bounds of
good quality by using heuristics for the problem to be solved.

Sometimes, heuristics guarantee a certain quality of the found solution. Consider the
problem P of minimizing a linear function over a finite set S ⊆ Rn. An α-approximation
algorithm for P is a polynomial algorithm that, for every c, returns x̃ ∈ S such that the
optimal value of min{cx : x ∈ S} is at least cx̃

α
. We refer to Williamson and Shmoys’

book [188] for more details on approximation algorithms.

Other types of heuristics belong to the category of local search methods [127, 128].
These methods use a so-called neighborhood and a descent method. Given a solution to a
combinatorial optimization problem, its neighborhood is a set of solutions considered close
to it and that can be produced in a few steps by a neighborhood operator. The operator
in general modifies the current solution to produce new feasible solutions. The descent
methods are used to choose a solution in the neighborhood of the current solution and to
decide whether the latter has to be replaced by the new one. The simplest descent method
consists in taking always the best solution according to its value. This method is called

34

1.6. COMBINATORIAL OPTIMIZATION PROBLEMS AND INTEGER LINEAR
PROGRAMMING

steepest descent method. In the basic local search methods the neighborhood has a small
size hence the descent can in general test all possibilities. On the other hand, doing so
the local search often gets stuck in local optima. Hence a number of strategies have been
designed to escape from local optima. The combination of these strategies with the local
search framework has given rise to many different heuristic schemes. We list some of them.

• Tabu Search: invented by Glover [78, 79, 80] in this method a worsening of the current
solution is admitted. In addition, to avoid of revisiting repeatedly the same solution,
some solutions are marked as tabu according to some rule (e.g., if a solution has been
previously visited within a short-term period).

• Large Neighborhood Search: introduced by Shaw [177] it consists in a local search
in which the neighborhood size grows exponentially with the instance size. The
neighborhood of a solution is defined as the set of solutions that can be obtained by
partially destroying the current solution and subsequently rebuilding the destroyed
solution. Both phases of the neighborhood operator can be accomplished in several
ways, e.g., by a random destruction and a greedy repair.

• Variable Neighborhood Search (VNS): invented by Mladenović and Hansen [139] it
consists in considering more than one neighborhood for the current solution x. For
each neighborhood in a given order, it produces a random solution in that neighbor-
hood. Then a local search is applied starting from this new solution. If the local
optima x? reached by the local search is better than the current solution x, then the
new current solution is set to x?. Now the process repeats on x? by considering the
first neighborhood in the order. If x? is not better than x then the VNS chooses the
next neighborhood of x in the order.

• Generalized Variable Neighborhood Search (GVNS): it is identical to the VNS apart
from the local search step. The latter is performed by using many neighborhoods in
a given order. That is, given the starting point x′ in a neighborhood of the current
solution, x′ is improved by considering the first neighborhood in the order. When
no improvement is obtained, another neighborhood is selected according to the order
and so on until having tried all neighborhood. This special type of local search step
is called Variable Neighborhood Descent (VND).

35

Part I

The Double Traveling Salesman
Problem With Multiple Stacks

37

Chapter 2

The Double Traveling Salesman
Problem with Multiple Stacks

In this chapter we present the problem studied in the first part of this thesis, the double
traveling salesman problem with multiple stacks. In Section 2.1 we first give an informal
description of the problem, by motivating its applicability in logistics. Then we formally
describe the problem in terms of graphs. In Section 2.3 we provide a literature survey of
routing and pickup and delivery problems. The material in Section 2.3 is useful to find
the similarities between the double traveling salesman problem with multiple stacks and
problems already studied in the literature. In Section 2.4 we report the results obtained
on the double traveling salesman problem with multiple stacks in previous research works.
The content of Section 2.4 is useful to better locate the contributions of this thesis to the
problem.

2.1 Introducing the Double Traveling Salesman Prob-

lem with Multiple Stacks

The double traveling salesman problem with multiple stacks (abbreviated to double TSP
with multiple stacks) is a combinatorial optimization problem introduced in 2009 by Pe-
tersen and Madsen in their paper entitled “The double travelling salesman problem with
multiple stacks – Formulation and heuristic solution approaches” [158]. In this section we
will briefly see how the double traveling salesman problem with multiple stacks models a
specific situation arising in real-world logistics. To this purpose, our description goes along
the same lines of Petersen and Madsen’s paper which originally motivated the interest in
the problem. This section is meant to be a gentle introduction to the double traveling
salesman problem with multiple stacks. For a detailed account of the results obtained by
the scientific community on this problem, we refer the reader to Section 2.4 of this chapter.

Let us consider a logistic company that needs to satisfy a set of orders structured as
follows. First, a prescribed amount of pallets of identical dimension (henceforth called

39

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

Figure 2.1: This truck has two rows obeying a last-in-first-out principle. The rows can be
imagined as vertical stacks.

items) has to be collected by performing a route in a “pickup region”. Next, each collected
item must be delivered to a corresponding customer in a “delivery region”, very far from
the first one. The company has at its disposal two truck stations (hereafter called depots),
one in each region, and a container in which the items can be packed. The items are all
identical from a packing point of view, i.e., they occupy the same volume in a row. The
pickup route is performed by a truck onto which the container is loaded. This route has to
start from the depot, and it has to visit exactly once each location of the region where an
item is present before coming back to the depot. Each time a location other than the depot
in the pickup region is visited, the corresponding item is loaded into the container. The
container is organized in rows of identical capacity. This implies that each item is loaded
in exactly one row without exceeding the given capacity. In addition each row obeys a
last-in-first-out principle. This means that before delivering an item packed in a row, all
items collected after it and packed in the same row, must be delivered too. Instead, items
packed in two distinct rows do not generate any constraint in the unloading operations.
Another important constraint that the company must observe is that a repacking of the
items in the rows is not permitted, i.e., once an item has been assigned to a row it cannot
be reassigned. In Figure 2.1 we schematically illustrate two rows as those described above.
Figure 2.1 also clarifies the name of the problem: the rows can be seen as vertical stacks
each subject to a last-in-first-out rule.

Once the pickup route has been completed, the container is transported by a long-
distance means of transport (e.g., a train or a ship) to the depot of the delivery region.
Starting from this depot, the container is transported again by a truck that visits exactly
once each customer in the delivery region before coming back to the depot. Clearly, the
delivery route will partially depend on the assignment of items to the rows, because of the
last-in-first-out principle. The goal of the company is to minimize the sum of the total
distances traveled for the pickup and the delivery routes, without violating the constraints.

40

2.2. THE DOUBLE TSP WITH MULTIPLE STACKS IN TERMS OF GRAPHS

The long-distance transportation of the container from the pickup region to the delivery
region is not taken into account in the distance to be minimized.

The situation described above can occur in real life. In fact, the double TSP with
multiple stacks was introduced in the scientific literature during the collaboration between
the authors of [158] and a company producing fleet management software for small and
medium size transportation companies. The double TSP with multiple stacks was encoun-
tered at one of the perspective customers of this software company. Here, we motivate
the hypothesis of the problem, again following the discussion in [158]. First, it is not very
restrictive to assume that the items to be collected are identical from a packing point of
view: indeed, in many situations, they are standard Euro Pallets that are arranged in
several rows (three in the original description of the problem). In addition, the forbidden
rearrangement of the items in the rows can be motivated by a number of arguments: fragile
or heavy content of the Euro Pallets for instance, but also costs deriving from handling the
pallets as well as union restriction compliance. Finally, we do not take into account the
cost to transfer the container from the pickup region to the delivery region. Indeed, one
could imagine that this cost is constant due to the fact that the two depots are the start
and end points in both the pickup and delivery routes and that they are very far from each
other.

2.2 The Double TSP with Multiple Stacks in Terms

of Graphs

We formalize the problem described above by using the graph terminology. To this end, we
assume that n, s and q are three positive integers. Informally speaking, n is the number of
items to be transported, s the number of stacks1 of the vehicle and q their capacity. Unless
differently stated, we will assume that n ≥ 3, and sq ≥ n. The second condition ensures
that the vehicle can contain all the items picked up in the pickup city.

In the double TSP with multiple stacks, a vehicle performs a pickup route to collect n
items in a city. Subsequently it performs a delivery route to deliver the items to n customers
in another city. Items and customers are paired, meaning that each item corresponds to
exactly one customer. Hence the transportation networks of the two cities are modeled
by two arc-weighted digraphs (Gn, c

1) and (Gn, c
2), where Gn = (V,A) is the complete

digraph with V = {0, . . . , n} as vertex set and c1, c2 ∈ R|A|. In this representation, (Gn, c
1)

is the pickup city and (Gn, c
2) is the delivery city. In both digraphs, vertex 0 represents

the depot. For every i ∈ {1, . . . , n}, vertex i of (Gn, c
1) represents the location of the

i-th item, whereas vertex i of (Gn, c
2) is the customer to which the i-th item has to be

delivered. Finally, c1
ij (resp. c2

ij) represents the cost to visit i immediately before j in the
pickup (resp. delivery) city, for all distinct i, j ∈ V . Note that we use a digraph because

1From now on in this manuscript, the term “stack” will be preferred to “row”, since it is widely adopted
in the scientific works on the double TSP with multiple stacks.

41

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

we consider the asymmetric version of the problem, where in general cTij 6= cTji for some
i, j ∈ V and T = 1, 2. Unless differently stated, we consider paths and circuits of Gn as
sets of arcs.

Vertex 0 corresponds to the depot, hence every Hamiltonian circuit of Gn induces a
linear ordering on {1, . . . , n}. More precisely, if H = {(0, v1), (v1, v2), . . . , (vn−1, vn), (vn, 0)}
is such a Hamiltonian circuit, the corresponding linear ordering, denoted ≺H , is defined by
v1 ≺H v2 ≺H · · · ≺H vn. Conversely, each linear ordering ≺ on {1, . . . , n} corresponds to a
Hamiltonian circuit H of Gn because the latter is complete. Namely, if v1 ≺ v2 ≺ · · · ≺ vn
the corresponding Hamiltonian circuit is H = {(0, v1), (v1, v2), . . . , (vn, 0)}. We will also
write H = 0, v1, . . . , vn, 0 for short.

The pickup and the delivery routes are represented by a pair of Hamiltonian circuits of
Gn. Conversely, let us consider two Hamiltonian circuits H1 and H2 of Gn. They represent
a pickup and a delivery routes feasible for the double TSP with multiple stacks if and
only if they allow to construct a disposition of the items in s stacks of capacity q that
is consistent with the last-in-first-out rule. This means that the following requirements
must be fulfilled. First, each item is in exactly one stack after the pickup route has been
performed. Additionally, the capacity of the stacks is not exceeded. Finally, in each stack
the items are ordered from the bottom to the top exactly as in the order in which they
appear in H1. Of course, the last-in-first-out rule is respected for this stack if this order is
the reverse of that of H2.

Hence, we define an s, q-loading plan for the pair (H1, H2) as a partition of {1, . . . , n}
into s totally ordered sets {(Q1,≺Q1), . . . , (Qs,≺Qs)} such that |Qi| ≤ q and k ≺Qi

`
implies k ≺H1 ` and ` ≺H2 k for i = 1, . . . , s and for all k, ` ∈ Qi.

A pair (H1, H2) of Hamiltonian circuits of Gn is s, q-consistent if there exists an s, q-
loading plan for (H1, H2).

Note that if a pair of Hamiltonian circuits (H1, H2) is s, q-consistent, so is (H2, H1)
(take the same s, q-loading plan with reversed linear orderings). Hence, we will also say
that H1 and H2 are s, q-consistent.

When q is infinite, we write s-loading plan and s-consistent. The property of a pair of
Hamiltonian circuits of being s, q-consistent is called s, q-consistency (s-consistency if q is
infinite) or simply consistency when no confusion may arise.

Given the number of items n and the cost vectors c1 and c2, the double TSP with s stacks
of capacity q consists in finding an s, q-consistent pair (H1, H2) of Hamiltonian circuits of
Gn that minimizes c1(H1) + c2(H2) and in finding an s, q-loading plan for (H1, H2).

Here is an example to illustrate the notions introduced above. It also shows that, in
general, several loading plans could be available for an s, q-consistent pair of Hamiltonian
circuits.

Example 2.2.1. Let us consider an instance of the double TSP with two stacks of capacity
three. We assume that six items are to be delivered to six corresponding customers. A
feasible solution to this instance is given by the 2, 3-consistent pair of Hamiltonian circuits:

42

2.2. THE DOUBLE TSP WITH MULTIPLE STACKS IN TERMS OF GRAPHS

5 2

6 4

3 1

1

2

3

4

0 1

2

3

4

0

6 6

5 5

Figure 2.2: On the left a pickup circuit H1 for the instance defined in Example 2.2.1, on the
right a delivery circuit H2 such that (H1, H2) is 2, 3-consistent. In the center of the figure,
the disposition of the items corresponding to the 2, 3-loading plan L defined in Example
2.2.1.

43

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

• H1 = 0, 6, 5, 4, 3, 2, 1, 0

• H2 = 0, 1, 3, 2, 5, 6, 4, 0

The 2, 3-loading plan L = {(Q1,≺Q1), (Q2,≺Q2)} defined by

• Q1 = {3, 5, 6} and 6 ≺Q1 5 ≺Q1 3

• Q2 = {1, 2, 4} and 4 ≺Q2 2 ≺Q2 1

proves the 2, 3-consistency of (H1, H2). In Figure 2.2 we give a representation of L in terms
of disposition of items in the stacks. Another 2, 3-loading plan for the same pair of circuits
is L′ = {(Q′1,≺Q′1), (Q

′
2,≺Q′2)} defined by:

• Q′1 = {2, 5, 6} and 6 ≺Q′1 5 ≺Q′1 2

• Q′2 = {1, 3, 4} and 4 ≺Q′2 3 ≺Q′2 1

It is noteworthy that in two special cases the double TSP with multiple stacks is
equivalent to a TSP. The first special case is when the vehicle has only one stack, that
is s = 1. Then the delivery circuit must be the reverse of the pickup circuit. Hence the
problem is equivalent to find the Hamiltonian circuit of Gn that minimizes c(H), where
cij = c1

ij + c2
ji for every distinct i, j ∈ V . The second special case arises when s ≥ n, i.e.,

when the vehicle has at least as many stacks as the number of items. In this case, the
pickup and the delivery circuits are independent, since each item can be put in a different
stack. Hence the problem amounts to find two Hamiltonian circuits H1 and H2 of Gn that
minimize, respectively c1(H1) and c2(H2).

2.3 Links with Other Routing and Pickup and Deliv-

ery Problems

The double TSP with multiple stacks exhibits similarities with problems previously studied
in transportation science. Clearly, it is inherently connected to the TSP, and in fact we have
shown that it is a generalization of the latter. Additionally, it involves the transportation
of items to customers via pickup and delivery operations. Problems taking into account
the latter aspect are generically known as pickup and delivery problems. Pickup and
delivery problems are widely studied because of their importance and ubiquity in modern
transportation systems.

It is useful to classify such problems, since they attracted the interest of many re-
searchers, consequently generating a large amount of scientific works. In fact, Berbeglia et
al. [20] propose a classification scheme based on the structure of the pickup and delivery
locations, on the type of operations allowed at a given location and on the number of
vehicles involved in the transportation process. Following [20] we then distinguish many-
to-many problems from one-to-many-to-one problems and from one-to-one problems. In

44

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

the first case, any vertex can be the source or the destination of any commodity. In one-
to-many-to-one problems an initial set of commodities is provided by a depot and these
commodities are destined to some demanding customers (corresponding to the delivery
locations); in addition, some customers (corresponding to pickup locations) provide ad-
ditional commodities destined to the depot. In one-to-many-to-one problems pickup and
delivery locations can coincide. Finally, in one-to-one problems each commodity is located
at a given origin and destined at a given customer.

On top of this structural classification, Berbeglia et al. [20] also introduce the notation
PD that designates those problems in which at each location a pickup and a delivery
operation take place simultaneously exactly once during the route. In other problems
(denoted as P-D), the pickup and delivery operations associated with a given location can
be performed separately. Finally, in problems indicated as P/D, at each location either a
pickup or a delivery operation take place but not both.

According to Berbeglia et al.’s classification described above, we get that the double
TSP with multiple stacks is a single vehicle one-to-one P/D problem. However, the double
TSP with multiple stacks presents some complicating constraints due to the last-in-first-
out rule governing the stacks of the vehicle. Problems of this type have also been studied,
generalizing some pickup and delivery problems in which the disposition of the items in
the transport vehicle is not considered.

Since we want to locate the double TSP with multiple stacks in the vast literature on
routing problems and pickup and delivery problems, we first pay attention to the relevant
scientific works in these areas. For a detailed account of the literature concerning the
double TSP with multiple stacks the reader is instead referred to Section 2.4.

2.3.1 The Traveling Salesman Problem

The TSP, defined in Example 1.6.1, is to find a Hamiltonian circuit of minimum weight in
a complete arc-weighted digraph. Although its initial motivation lies in logistics, the TSP
finds applications in several other areas: examples of TSP have been observed in scheduling,
frequency assignment problems and cellular manufacturing to cite a few, see Gutin and
Punnen’s book [95] for more details. “Traveling salesman problem” is a name appeared
probably for the first time in 1949 in a technical report by Robinson [168]. It designates
however the same problem in which other researchers have been interested earlier (e.g.,
Menger [134], Mahalanobis [133]).

It is customary to consider two distinct cases of the TSP. In the first case, the weight
of arc (i, j) equals the weight of arc (j, i) for every distinct vertices i, j of the digraph. In
this case we call the problem Symmetric TSP (STSP); otherwise, the problem is called
Asymmetric TSP (ATSP). The STSP is usually restated as the problem of finding a least
cost Hamiltonian circuit in a weighted complete undirected graph. In the following, we
will say simply TSP if the distinction between the symmetric and asymmetric cases is not
relevant to the discussion. We mention that, quite surprisingly, each ATSP on a digraph can
be expressed as a STSP on a suitable undirected graph having twice as many nodes [112].

45

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

The TSP is an NP-hard problem, as first proved in 1972 by Karp [116]. Neverthe-
less, one of the greatest advances in combinatorial optimization has been the design of
algorithms that made possible to practically solve TSP instances of considerable size. In
particular, branch-and-bound and branch-and-cut methods turned out to be very effective
for the exact resolution of the TSP. We now review the main works on the TSP, focusing in
particular on exact methods. We consider separately the symmetric and the asymmetric
case.

Symmetric Traveling Salesman Problem

The solutions to the STSP in a graph G = (V,E) with |V | ≥ 5 can be described by means of
their incidence vectors which are the solutions to the following integer linear programming
formulation:

x(δ(v)) = 2 ∀v ∈ V, (2.1)

x(δ(S)) ≥ 2 ∀S ⊆ V such that 2 ≤ |S| ≤ |V |/2, (2.2)

xe ∈ {0, 1} ∀e ∈ E. (2.3)

It is based on binary variables each corresponding to an edge of G. Constraints (2.1) ensure
that each vertex has degree 2. Constraints (2.2) ensure that the solution corresponds to a
connected subgraph of G. Constraints (2.2) are called subtour elimination constraints.

The integer hull of this formulation is called STSP polytope and denoted STSPn when
G has n vertices. It is well-known that dim(STSPn) =

(
n
2

)
− n, see Queyranne and

Wang [162].

In [95] p. 34 it is reported that a simple combination of a branch-and-bound algorithm
and a cutting plane method that generates dynamically the subtour elimination constraints
(using a minimum cut-based separation routine) is able to solve almost all problems of the
TSPLIB set [165] in very few iterations.

So far, probably the best method to tackle large non-trivial instances of the STSP is the
branch-and-cut algorithm. According to the discussion of Chapter 2 in Gutin and Punnen’s
book on the TSP [95], besides the problem-defining subtour elimination constraints, other
good families of inequalities to be added during the separation step of a branch-and-cut
algorithm for the STSP could be the comb inequalities [37, 91] and the path inequalities [42].

One of the best solvers for the STSP based on the branch-and-cut paradigm is CON-
CORDE by Applegate, Bixby, Chvátal and Cook [7]. The largest instance from the
TSPLIB set solved using this solver has 85900 vertices. For the implementation details of
CONCORDE we refer the reader to Chapter 2 in [95]. Since any instance of the ATSP
can be transformed in one instance of the STSP, CONCORDE can be used to tackle the
asymmetric case. In addition, it has been observed experimentally, see e.g., [167], that
the performance of CONCORDE on large ATSP instances remains comparable to the per-
formances of other state-of-the-art branch-and-cut algorithms for the ATSP, two of which
will be briefly described later.

46

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

Asymmetric Traveling Salesman Problem

According to Gutin and Punnen’s book on the TSP [95], a “systematic study of the ATSP
as a combinatorial optimization problem began with the work of Dantzig, Fulkerson, and
Johnson [47]”.

Dantzig, Fulkerson and Johnson’s Formulation. Dantzig, Fulkerson and Johnson
propose in [47] the following integer linear programming formulation for the ATSP in the
complete digraph G = (V,E):

x(δ+(i)) = 1 ∀i ∈ V, (2.4)

x(δ−(i)) = 1 ∀i ∈ V, (2.5)

x(δ+(S)) ≥ 1 ∀ S ⊂ V \ {0} such that 2 ≤ |S| ≤ |V | − 1, (2.6)

xij ∈ {0, 1} ∀ distinct i, j ∈ V. (2.7)

It involves binary variables, each representing one arc of G. Hence these variables are
called arc variables. Constraints (2.4) and (2.5) are called assignment constraints and
they ensure that each vertex has exactly one leaving and exactly one entering arc in a
solution; constraints (2.6) are called subtour elimination constraints and they ensure that
the solution is a connected subgraph of the given digraph. The resulting formulation has
exponential size in the number of vertices of the digraph, since the subtour elimination
constraints are exponentially-many. Nevertheless, the optimization over its linear relax-
ation can be performed efficiently, e.g., with the procedure introduced by Padberg and
Rinaldi [149]. This is due to the fact that the subtour elimination constraints can be
separated in polynomial time by computing minimum weight cuts in G [150].

The integer hull of the formulation is called ATSP polytope and denoted ATSPn when G
has n vertices. It is equivalently the convex hull of the incidence vectors of the Hamiltonian
circuits of the complete digraph with n vertices. It is well-known that dim(ATSPn) =
n2 − 3n+ 1, see Grötschel and Padberg [92].

Since the STSP is a special case of the ATSP, all inequalities valid for the STSP
polytope can be transformed into inequalities valid for the ATSP polytope, see e.g., p. 120
of Gutin and Punnen’s book [95]. The inequalities arising in this way are also called
symmetric inequalities. The symmetric inequalities do not characterize completely the
ATSP polytope. In fact, several families of inequalities have been found for the ATSP
that cannot be obtained from the STSP, see again Chapter 2 of [95]. To cite two of non-
symmetrical inequalities (commonly used in branch-and-cut algorithms for the ATSP), we
have the D+

k and the D−k inequalities found by Grötschel and Padberg [87, 92] and the Odd
Closed Alternating Trail (CAT) inequalities by Balas [8]. Both these families are facet-
defining for the ATSP (except two special cases of the Odd CAT inequalities), see [61] for
the D+

k and D−k inequalities and [8] for the Odd CAT inequalities.

Other Formulations. The literature on the TSP has shown that formulation (2.4)–
(2.6) is by far the most useful formulation to tackle the TSP. However, other formulations

47

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

for the TSP have been proposed. A well-known formulation is the MTZ formulation,
named after Miller Tucker and Zemlin who presented it for the first time in 1960 [136].
The simple idea behind this formulation is to consider, beside the arc variables seen above,
also new variables uj for each vertex j of the digraph different from a fixed vertex k. Then
the value of uj in an integer solution to the MTZ formulation, corresponds to the position
of vertex j in the circuit (starting from k). Using the arc variables and these new position
variables, a polynomial number of constraints can be used to guarantee that an integer
solution to the formulation represents a connected subgraph. In the following, we will
call these constraints subtour breaking inequalities. The lower bound yielded by the MTZ
formulation turns out to be quite weak, hence the formulation is rarely used to tackle the
ATSP.

On the other hand, the MTZ formulation inspired a number of subsequent works.
Firstly, Desrochers and Laporte [49] reinforced the MTZ formulation by replacing its sub-
tour breaking inequalities with three new families of inequalities involving again the arc
and the position variables. In fact, one of the three families is obtained by lifting the
subtour breaking inequalities — see e.g., [93] for the notion of lifting.

Reformulating the MTZ subtour breaking inequalities, Gouveia and Pires [85] find new
formulations for the ATSP. They imagine to fix a starting vertex for the Hamiltonian
circuits in the digraph, say v0. Then they introduce precedence variables yij for every
distinct vertices i, j in the digraph. Each of these variables is 1 in a solution exactly when
i is in the path between v0 and j in the Hamiltonian circuit corresponding to the solution.
Using these new variables they propose four new formulation for the ATSP and establish
the relations between their linear relaxations in terms of yielded lower bounds.

Building upon the same precedence variables, Sarin et al. [171] have introduced a for-
mulation to deal with the ATSP in which some precedence relations between vertices can
be imposed. We refer the reader to Section 3.2.1 of this thesis for a formal presentation
of Sarin et al.’s formulation. We mention that the ATSP in which some precedence con-
straints between vertices are present can be also modeled only using arc variables, see
e.g., [13]. Subsequently, Gouveia and Pesneau [84] have given a number of strengthening
inequalities for the formulations of Gouveia and Pires and Sarin et al. and tested them in
a computational test session, to assess their quality. In Gouveia and Pesneau’s work both
polynomial-size and exponential-size families of strengthening inequalities are found and
the corresponding separation algorithms are discussed.

We refer to Roberti and Toth’s survey [167] for other polynomial-size formulations for
the ATSP and for a comparative analysis of their linear relaxation as well as their behavior
in a computational framework.

Branch-and-Bound Algorithms for the ATSP. According to Roberti and Toth’s
survey on the ATSP [167], a variety of branch-and-bound methods have been proposed for
this problem [18, 70, 179, 28, 10, 137, 156, 155, 64, 27]. Following Roberti and Toth three
of the most effective ones are those of Fischetti and Toth [64], of Pekny and Miller [155]
and Carpaneto et al. [27]. For their description we follow [95].

48

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

The methods in [64, 155, 27] are based on Carpaneto and Toth’s method [28]. The
latter solves at each iteration a so-called Modified Assignment Problem (MAP) relaxation.
It consists in discarding the subtour elimination constraints from the formulation, in fixing
the value of some arc variables to 0 or to 1 and in solving to optimality the resulting integer
linear program. The resolution of a MAP relaxation can be done efficiently as it is based
on a O(n3) time algorithm for the assignment problem (AP), see [125]. A solution to a
MAP corresponds to a subgraph being either a Hamiltonian circuit or the union of circuits.
In the latter case, the algorithm branches on the variables corresponding to the arcs of one
of these circuits, by fixing their value to 0 or 1. This step generates new MAP’s and it is
proven to be correct for partitioning the feasibility region.

Fischetti and Toth [64] use the same branching scheme, and calculate the lower bound
by combining other relaxations of ATSPn, i.e., they consider, besides the AP relaxation,
also the Spanning r-Arborescence Problem (r-SAP) and the Spanning r-Antiarborescence
Problem (r-SAAP) relaxations, obtained by removing from formulation (2.4)–(2.6) one of
the two families of assignment constraints. Both these relaxations can be solved in O(n2)
time, see e.g., [181]. Each relaxation produces a lower bound to the ATSP. The lower
bounds are combined using the additive bounding technique [63]. It consists in generating
a sequence of ATSP instances starting from the original one and in calculating for each
of them a lower bound using a different relaxation. It can be proven that the sum of the
computed lower bounds is a lower bound to the original ATSP instance.

Pekny and Miller [155] propose an effective procedure obtained by parallelizing the
original algorithm of Carpaneto and Toth [28]. It also has some new features. At root
node the cost matrix of the instance is made sparse by the removal of costs greater than
a prescribed threshold. The correctness of the algorithm is proven using a condition that
certificates when an optimal solution for the modified cost matrix is also optimal for the
original cost matrix. A patching algorithm due to Karp [117] is used to merge two non-
Hamiltonian circuits obtained from the resolution of the AP, in a circuit containing all
their vertices.

The algorithm of Pekny and Miller [155] exhibits comparable performance with the
last effective branch-and-bound algorithm we describe. It is due to Carpaneto et al. [27].
With respect to the algorithm of [155], the cost matrix is made sparse only at root node,
by removing the arcs that cannot be in an optimal solution. This is accomplished using
bounding arguments on the reduced costs obtained by solving AP relaxations. Indeed the
reduced costs indicate how much a solution will increase its value under setting variables
to 1. If the increase for a variable is too high, then that variable cannot be in an optimal
solution. With respect to the algorithm of [28], the number of subtours that constitute an
optimal solution to a MAP at a given node is decreased by using a fast “subtour merging”
procedure. This choice is made because some experimental tests indicated that the nodes
in the search tree that generate few new nodes correspond to MAP’s whose solutions do
not contain many subtours.

49

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

Branch-and-Cut Algorithms for the ATSP. Another exact algorithm that turned
out to be very effective in the resolution of large ATSP instances is the branch-and-cut
method. This heavily relies on the polyhedral study of the ATSP polytope since inequalities
corresponding to the faces of the ATSP polytope (and in particular its facets) are added
during the separation step. In successful branch-and-cut algorithms for the ATSP, both
symmetrical and non-symmetrical inequalities are added during the separation step. The
separation problem for the symmetric inequalities of the ATSP polytope can be performed
by applying directly the separation routines used for the STSP.

The algorithm of Fischetti and Toth [65] is one of the most effective for the ATSP.
It combines the common branch-and-cut framework with the resolution of the so-called
AP pricing problem which lets one work on the problem with a small set of variables,
dynamically updated, see [65] for more details. The algorithm uses both symmetric and
non-symmetric inequalities as strengthening cuts. It uses as strengthening cuts the 2-
matching inequalities (a special case of comb inequalities), the D+

k and the D−k inequalities,
as well as the Odd CAT inequalities. Also the subtour elimination constraints are added
dynamically during the separation step. The separation of all these families is simplified by
two procedures called clique lifting [11] and shrinking [150]. The branch-and-cut algorithm
in [65] finally branches on variables that maximize a score function.

Another exact algorithm for the ATSP is the one of [62]. Its main difference with the
algorithm of [65], is in the branching scheme: in [62] the variables on which the algorithm
branches are those that have been persistently fractional in the last optimal solutions to the
linear programs solved during the current node. This more sophisticated criterion is called
Fractionality Persistency. In a computational comparison made in [167], CONCORDE
(after the transformation of the ATSP instances into STSP instances) and the algorithm
of [62] turned out to be the best ones to solve large real-world instances of the ATSP.

2.3.2 Pickup and Delivery Problems

We now consider routing problems involving pickup and delivery operations. These belong
to a wide area of investigation thus an exhaustive survey of the literature is not provided.
We focus our attention on those problems exhibiting similarities with the double TSP with
multiple stacks. In particular, we consider only static problems, i.e., problems in which
the information on the pickup and delivery requests is known in advance. Also, only single-
vehicle cases are treated here. Finally, we are interested in problems where a location in
a transportation network can be either a pickup or a delivery location, but not both. For
more versions of problems with pickup and delivery requests, we refer the interested reader
to [17, 52, 153, 154].

Problems with Backhauls and Linehauls

We first report problems with backhauls and linehauls. These are similar to the double
TSP with multiple stacks for the capacity constraints of the vehicle and for the presence
of a depot as starting and ending points of the route. Indeed, in problems of this type,

50

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

a single vehicle having a finite capacity transports two heterogeneous kinds of good. One
unit of good of the first type is required at each delivery location (by a so-called linehaul
customer). Similarly, one unit of the second type of good has to be picked up at each
pickup location (from a so-called backhaul customer). The goods to be delivered have to
be loaded by the vehicle at a depot. The goods to be picked up have to be transported
by the vehicle to the depot. The vehicle starts its route from a depot with the entire load
sufficient to fulfill all the linehaul requests. Without exceeding its capacity, it has to visit
all the linehaul and the backhaul customers before coming back to the depot.

According to [153], problems with backhauls and linehauls can be divided into two
categories: TSP with mixed linehauls and backhauls (TSPMB),2 and TSP with clustered
backhauls (TSPCB). In the first case, the pickup and the delivery orders can be satisfied in
an arbitrary order. In the second case, the linehauls must be served before the backhauls.
Note that this special feature of the TSPCB is very close to the requirement of the double
TSP with multiple stacks of a pickup phase entirely preceding the delivery phase.

TSP with Mixed linehauls and Backhauls. The study of the TSPMB was initiated
by Mosheiov [140] to solve the problem of transportation of under-privileged children to
some host families during the vacation period. The transportation is made by a vehicle
performing a single route. The children starting their vacation period represent the “good”
satisfying the linehaul customers’ request. The children ending their vacation period in-
stead satisfy the backhaul customers’ demand. In Mosheiov’s formulation of the problem,
both the total amounts of requested pickup quantities and delivery quantities equal the
capacity of the vehicle. A route of the vehicle corresponds to a Hamiltonian circuit in the
complete digraph whose vertices represent all the pickup and delivery locations and the
depot. It is feasible if the vehicle can perform it without exceeding its capacity.

In [140] the author first gives an integer programming formulation for the TSPMB. Then
he observes that an α-approximation algorithm for the TSP yields a 1 + α-approximation
algorithm for the TSPMB. Using the Christofides’ 1.5-approximation algorithm [36] for
the TSP he gets a 2.5-approximation algorithm whose running time is O(n3) where n is
the total number of customers. The algorithm is finally tested against another heuristic
algorithm for the same problem based on cheapest insertion, introduced in the same paper.

In a subsequent work, Anily and Mosheiov [5] propose a 2–approximation algorithm for
the TSPMB. They consider a minimum spanning tree of the graph whose vertices represent
all the locations to be visited (including the depot). Their heuristic is based on the fact
that two copies of such a minimum spanning tree can be combined to get a feasible solution
to the TSPMB. The running time to perform this task is O(n2) where n is the total number
of locations to be visited. Their heuristic is computationally compared to a Mosheiov’s
heuristic presented in [140]. They observe that the latter is slower than the former but
yields a better approximation.

2We will use this name from now on. Note, however, that other names have been used in the literature:
TSP with Delivery and Backhauls (TSPDB) in [5], TSP with Deliveries and Collections (TSPDC) in [15]
and Traveling Salesman Problem with pickup and Delivery (TSPD) in [140].

51

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

Another heuristic approach to the TSPMB is given by Gendreau et al. [74]. By using
a farthest insertion scheme they initially get in O(n2) time a Hamiltonian circuit of the
original graph in which the TSPMB instance is defined. Subsequently they solve the
TSPMB using as underlying graph the Hamiltonian circuit obtained in the first step. A
solution H to this special TSPMB is finally converted in a solution for the original TSPMB
by following the order in which the vertices are visited in H. The whole procedure yields
a 3–approximation algorithm for the TSPMB. In the same paper this algorithm is also
post-processed by means of a constant-time local search method. Finally in [74], also two
tabu search methods for the TSPMB are presented.

An exact algorithm to tackle TSPMB has been presented by Baldacci et al. [15]. They
consider the case in which the underlying weighted digraph is symmetric. Their approach
is based on the resolution of an integer linear programming formulation for the TSPMB
via a branch-and-cut algorithm. The formulation they propose is a two-commodity flow
formulation in which with each couple of vertices {i, j} of the underlying graph it is as-
sociated a couple of flow variables fij and fji with the following meaning: if the vehicle
takes arc (i, j) in its route, then fij is its total load at the moment of traversing (i, j),
while fji is its available space. Arc variables xij are then combined with the flow variables
to obtain a valid integer linear programming formulation for the TSPMB. The authors
also introduce several families of strengthening inequalities for their formulation. A first
set of strengthening inequalities only involves the flow variables. The other two families
of inequalities only involve the arc variables and are based on a reinforcement of classical
subtour elimination constraints for the TSP and on the capacity limit of the vehicle (ca-
pacity constraints). Efficient separation algorithms of these families are then discussed and
implemented to develop a branch-and-cut algorithm. This is finally tested on 3 classes of
instances solving some of them with up to 200 customers.

TSP with Clustered Backhauls. In the TSPCB all linehaul customers must be served
before the backhaul customers, a strong similarity with the double TSP with multiple
stacks in which the pickup phase must be completed before the delivery phase starts. In
[72] the authors propose heuristic methods to solve the TSPCB. All heuristics are based
on the heuristic GENIUS [71] for the ATSP. This starts from a circuit on three vertices
and iteratively inserts a new vertex v between two vertices already in the circuit that are
in a neighborhood of v (according to some neighborhood structure). This insertion phase
is called GENI. Once all vertices have been inserted, a post-optimization phase, called
US, takes place. This consists in removing each vertex from the circuit and reinserting it
according to the GENI rule. The best heuristic for the TSPCB presented in [72] consists
in applying the GENIUS heuristic to a modified cost matrix that forces a low cost solution
to visit all the linehauls before serving the backhauls. The remaining heuristics are minor
modifications to the heuristic above, obtained e.g., by applying GENIUS to different sub-
sets of vertices in the underlying graph, or by performing cheapest insertions followed by
post-optimization phases. In terms of solution quality the first heuristic turns out to be
the best one, although it is more time consuming.

52

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

A 1.5-approximation algorithm has been designed in [73]. The idea of such an algorithm
goes along the same lines of the Christofides’ approximation algorithm for the TSP [36]:
given the graph on which one aims at solving the TSPCB, the algorithm of [73] seeks a
minimum spanning tree containing a spanning tree for the subgraph of the pickup vertices
and a spanning tree for the subgraph of delivery vertices; then it exploits a minimum
weight matching and shortcut operations as in the Christofides’ algorithm to construct a
feasible solution to the TSPCB.

Mladenović and Hansen introduce in [139] the VNS metaheuristic and test its effec-
tiveness on the TSPCB, improving results obtained in [72] for the TSPCB. We finally
mention another heuristic for the TSPCB, based on a neural network approach (see [76]
for details).

Problems with Pickups and Deliveries

We now report two additional categories of routing problems involving pickup and delivery
operations. The first one is the pickup and delivery TSP (PDTSP),3 concerned with the
pickup and the delivery of only one kind of good. Although in the double TSP with
multiple stacks several goods are to be transported, in the PDTSP we still have a vehicle
of finite capacity to perform the pickup and delivery route.

The second category of problems differ from the PDTSP only in one respect: each
pickup location holds a different item that must be delivered to a corresponding customer
in the same network. A problem of this type is called pickup and delivery problem (PDP).
The PDP is similar to the double TSP with multiple stacks in that paired items and
customers are considered. However, the PDP does not present the complication of stacks
governed by the last-in-first-out rule, which is instead an inherent aspect of the double
TSP with multiple stacks.

Pickup and Delivery TSP. In the PDTSP a vehicle having finite capacity visits,
following a Hamiltonian circuit, the pickup and the delivery locations of a network. A
depot is the starting and ending point of the circuit. At each pickup location i, the vehicle
collects exactly qi units of the good. At each delivery location j, the vehicle delivers the
demanded dj units of the good. The transportation of the good from pickup locations to
delivery locations can be performed in any order. An optimal solution to the PDTSP must
fulfill all the delivery requests without violating the capacity constraints and minimize the
total traveled distance.

The PDTSP first appeared in [102, 103]. In [102], the complexity of the PDTSP is
discussed. It is shown that not only the PDTSP generalizes the TSP, and thus is NP-hard,
but also deciding if it has a feasible solution is an NP-complete problem as it generalizes the
3–partition problem [68]. In addition, it is given a method to transform an instance of the

3Even in this case several other names appeared in the literature indicate (variants of) the same problem:
the PDTSP is also called capacitated traveling salesman problem with pickups and deliveries in [4], One-
Commodity Pickup and Delivery Traveling Salesman Problem (1-PDTSP) in [102] and traveling salesman
problem with pickup and delivery in [103].

53

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

TSPMB into an instance of the PDTSP. In [103], the asymmetric-cost PDTSP is modeled
by means of a mixed-integer linear programming formulation involving arc variables and
variables recording the load of the vehicle when traversing an arc. In addition, using
the Benders’ decomposition [19] on a similar formulation for the symmetric-cost PDTSP,
the authors get a formulation that only involves binary arc variables. The formulation is
essentially characterized by the so-called Benders’ cuts. An exact separation algorithm for
the Benders’ cuts is then presented. This algorithm runs in time O(n3) where n is the
number of locations. Two families of strengthening cuts are also presented, the rounded
Benders’ cuts and the clique inequalities. For both families, heuristic separation algorithms
are described. The integer formulation and the strengthening cuts are finally tested in a
branch-and-cut algorithm. Such an algorithm is used to solve instances for the PDTSP but
also for the TSPMB. Instances of the PDTSP with up to 50 items are solved to optimality;
instances of the TSPMB with up to 75 items are solved to optimality.

The exact method for the PDTSP described above has been subsequently improved
in [100]. The core of the paper is the adaptation of valid inequalities arising from the
Capacitated Vehicle Routing Problem (CVRP) [182] to the PDTSP, and their inclusion
in a branch-and-cut algorithm. Instances of the PDTSP with up to 100 locations and
instances of the TSPMB with up to 261 locations are solved to optimality.

Exact polynomial resolution methods can be given for the PDTSP when the underlying
graph has a special structure (namely, when it is a path or a tree), according to the capacity
of the vehicle [187].

The best available heuristic for the PDTSP so far is the one by Mladenović et al. [138].
Combining the GVNS method with efficient data structures, they report solutions for
instances of the PDTSP with up to 1000 customers, outperforming other heuristics for the
PDTSP previously appeared (an “incomplete optimization” heuristic i.e., a branch-and-
cut applied to a restricted set of variables [99], the heuristic of [101] combining the GRASP
approach [59] and a VNS algorithm, a genetic algorithm [189] and a VNS algorithm [104]).

All the approaches described above are devoted to the resolution of the PDTSP in
which the pickup and delivery requests cannot be split. If we assume that the requests can
be split, then each location giving or demanding a quantity w of the good can be split in w
locations giving or demanding 1 unit of the good [187]. In this special case (i.e., in which
each pickup location has 1 unit of the good and each delivery location requires 1 unit of
the good) a 9.5-approximation algorithm has been introduced [34]. The approximation
factor of this algorithm is independent of the capacity of the vehicle. The algorithm is
obtained by adapting the Christofides’ approximation algorithm for the TSP [36]. A better
approximation factor of 2 can be obtained for the case in which the capacity is infinite or
1 [34] (improving a 2.5-approximation algorithm for the case of capacity 1 given in [4]).

We mention also that, more recently, some research works have addressed variants of
the PDTSP that can be applied to the bike sharing systems, see e.g., [55, 97].

Pickup and Delivery Problems. In the PDP the pickup and the delivery operations
are made using one vehicle, which can have finite or infinite capacity. The vehicle starts

54

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

from a depot, visits all the locations exactly once and comes back to the depot. As in the
classical TSP, the resulting route is an Hamiltonian circuit. In this case the underlying
complete graph has 2p+ 1 vertices, where p is the number of pickup locations (indeed the
number of delivery locations equals the number of pickup locations, since they are paired;
the depot is not a pickup nor a delivery location). Such a Hamiltonian circuit must however
guarantee that each delivery location is visited after the corresponding pickup location and
that the capacity of the vehicle is never exceeded.

According to Berbeglia et al.’s classification given in [20], the PDP are single vehicle
one-to-one P/D problems.

The seminal work in the category of PDP is the one by Psaraftis [160]. In fact, in [160]
the problem was also called dial-a-ride problem since it dealt with the transportation of
customers in a network. For this reason, the objective is to minimize a linear combination
of the total amount of time spent to perform the whole Hamiltonian circuit and the “dis-
satisfaction” of the customers (computed as a weighted sum of the time the customer waits
before being picked up, and the riding time to reach the corresponding delivery location).
The proposed solution approach consists in a simple dynamic programming approach run-
ning in O(p23p) time, where p is the number of pickup locations. The state space is given
by the (p + 1)-uples in which the first entry is the vertex currently visited by the vehicle
and each other entry corresponds to a customer; the value of the latter entries can be one
of the three available statuses of the customer (i.e., waiting, loaded, delivered).

Early approximation results on the PDP in its dial-a-ride form are due to Stein [180]
(providing a method that, with probability 1, yields a 1.06-approximation algorithm for the
PDP with infinite capacity to serve origins and destinations in an area of a given region) and
to Psaraftis [161] (proposing a 3-approximation algorithm for the PDP without capacity
in the plane in which the triangle inequality holds) .

A branch-and-bound procedure has been also proposed to tackle the PDP with finite
and infinite capacity by Kalantari et al. [114]. In this procedure, the lower bound is
calculated by using the reduced matrix introduced by Little et al. [129] for the TSP. The
branching is made over the arcs that the vehicle would cross. Finally, the cost matrix
is modified so that the arcs taken in the subsequent nodes of the exploration tree of
the algorithm do not violate any precedence relationship between pickup and delivery
customers.

In [63] another branch-and-bound algorithm for the PDP is presented. It uses an
additive bounding procedure to get lower bounds. This type of procedure has been briefly
described in the presentation of [64] in Section 2.3.1. In [63] the bounds are obtained from
shortest spanning trees, assignment problems, decompositions and disjunctions.

The paper [169] proposes a branch-and-cut algorithm for the PDP. The authors first
introduce a linear integer programming formulation that only involves arc variables. Then
they show the validity of four families of linear inequalities conceived to tighten the starting
formulation. Finally, they run a branch-and-cut algorithm that uses the strengthening valid
inequalities as cutting planes. They describe simple exact and heuristic routines to separate
the proposed inequalities and they also introduce a heuristic to get a good quality upper

55

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

bounds.

A subsequent paper by Dumitrescu et al. [53] enhanced the branch-and-cut approach
described above. In [53] the integer hull of the integer formulation proposed in [169] is
thoroughly studied. The authors first determine the dimension of this integer hull. They
introduce several families of valid inequalities for their formulation. In addition, they are
able in some cases to provide conditions under which known and new valid inequalities
are facet-defining for the integer hull of their formulation. Exact and heuristic procedures
to separate the valid inequalities are also described. Finally, a branch-and-cut is run on
benchmark instances. It solves problem instances with up to 35 pickup locations.

2.3.3 Pickup and Delivery Problems with Last-in-First-Out Con-
straints

The combination of stacks obeying a last-in-first-out rule with the regular PDP gives rises
to the pickup and delivery TSP with LIFO loading (TSPPDL) and to pickup and delivery
TSP with multiple stacks (PDTSPMS). The first one only involves one stack of infinite
capacity, the second one involves multiple stacks.

A very recent generalization of the double TSP with multiple stacks is the traveling
purchaser problem with multiple stacks and deliveries (TPPMSD) [16]. In this problem,
the routing and loading constraints are identical to the double TSP with multiple stacks.
The only difference is that a pickup location, here called market, can hold more than one
item and the same item can be picked up at several markets. Each item, however, is picked
up exactly once.

We point out that in all the above mentioned families of problems each item is assigned
exactly to one stack and the items occupy the same amount of space in the stack. That is,
they are identical from a packing point of view, exactly as in the double TSP with multiple
stacks. For problems admitting more complicated stack configurations we refer the reader
to e.g., [108].

Pickup and Delivery TSP with LIFO Loading. The TSPPDL is a PDP in which
the vehicle has exactly one stack obeying a last-in-first-out principle. Both the finite and
infinite capacity versions of the problem are considered in the literature. This type of
problem has been first described by Ladany and Mehrez [120]. Heuristics for the TSPPDL
are reported by Pacheco [146, 147] (the first reference is in Spanish; the second reference
presents a simulated annealing for the problem), by Cassani [33] who gives greedy heuristics
along with a VNS and by Carrabs et al. [31] who propose a VNS.

Pacheco [148, 145] and Cassani [33] also propose exact methods for the TSPPDL. The
first author uses an adaptation of the branch-and-bound algorithm of Kalantari et al. for
the PDP [114] mentioned above. The second author resorts to bounds obtained from
the assignment problem. An additive branch-and-bound for the TSPPDL is introduced
by Carrabs et al. [29]. In their algorithm, the bounds are again obtained through TSP
relaxations but they are improved with respect to their standard form by using filters.

56

2.3. LINKS WITH OTHER ROUTING AND PICKUP AND DELIVERY PROBLEMS

These are criteria that, given a solution partially constructed, predict arcs that cannot be
taken in the residual part of the solution. The same idea will be applied to the double TSP
with multiple stacks and we refer the reader to the next section for more details on additive
branch-and-bound combined with filters. The best of the previous three algorithms solves
instances with up to 21 items [29].

A branch-and-cut algorithm for the TSPPDL has been proposed by Cordeau et al. [41].
The branch-and-cut algorithm is used to solve to optimality instances of the TSPPDL
with up to 25 items. The algorithm is run on the best of three models proposed in the
same paper [41]. The first model is a modification of the model used by Ruland and
Rodin for the PDP [169]. It involves arc variables along with demand variables, and
families of constraints enforcing the last-in-first-out rule fulfillment. These families are
obtained after linearizing nonlinear constraints expressing the last-in-first-out rule. The
second model employs flow variable, keeping track of the load of the vehicle on each arc.
The third model (the best one in the preliminary computational results) only involves arc
variables and uses an exponential-size family of constraints to model the last-in-first-out
rule. Many strengthening cuts for the three models are presented and both exact and
heuristic procedure of separation are discussed.

Pickup and Delivery TSP with Multiple Stacks. The PDTSPMS is a generaliza-
tion of both the double TSP with multiple stacks and the TSPPDL seen above. Indeed,
the only difference with the TSPPDL is that the vehicle has more than one stack. All
stacks in this case obey the last-in-first-out principle. With respect to the double TSP
with multiple stacks in the PDTSPMS the pickup phase has not to be completed neces-
sarily before the delivery phase starts. However, by choosing suitable costs on the arcs of
the graph representing the network for the PDTSPMS instance, one can transform such an
instance into an instance of the double TSP with multiple stacks. The problem has been
addressed by Côté et al. [44], Côté et al. [45] and Sampaio and Urrutia [170]. The first two
references also provide results for the double TSP with multiple stacks. Hence we discuss
them in next section, that is dedicated to this problem. Sampaio and Urrutia implement
a branch-and-cut algorithm based on a integer linear programming formulation with two
sets of variables. The first set contains arc variables. The second set includes variables
with three indices and keep track of which stack (first index) has been modified by loading
or delivering a given item (second index) immediately after having visited a given location
(third index). Some strengthening cuts are also provided to be added dynamically during
the execution of the algorithm. A comparison of the computational results with those
obtained by the branch-and-cut of Côté et al. [44] shows that the algorithm is competitive
in average (although slower), solves some new instances and reduces the optimality gap on
unsolved instances.

Traveling Purchaser Problem with Multiple Stacks and Deliveries. In the
TPPMSD, each customer demands exactly one item present in a pickup region. All the
items must be picked up before the delivery phase starts, as in the double TSP with multi-

57

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

ple stacks. The pickup (resp. delivery) phase consists in performing a Hamiltonian circuit
in the pickup (resp. delivery) region. If customers and items are paired in the TPPMSD,
this is no longer the case for the pickup and delivery locations. Indeed, each item can
be picked up at several locations (the so-called markets) and each location could provide
several items. Each time an item is collected, a cost depending on the market is payed. In
addition, each item is collected exactly once and loaded in vehicle with multiple stacks of
finite capacity obeying a last-in-first-out rule as in the double TSP with multiple stacks.
The goal is to find a pair of pickup and delivery circuits that fulfills all constraints, and
yields the minimum total cost, calculated as the sum of the total traveled distance and the
total cost payed to collect the items. Hence the TPPMSD is a generalization of the double
TSP with multiple stacks. The TPPMSD has been introduced in [16]. The authors pro-
pose a formulation for the problem and a branch-and-cut algorithm for its resolution. Since
both are adapted to the double TSP with multiple stacks we describe them in Section 2.4.1
and in Section 2.4.4 dedicated to this problem.

2.4 State of the Art on the Double TSP with Multiple

Stacks

In this section we review the literature on the double TSP with multiple stacks. As
mentioned in Section 2.1, this problem has been introduced by Petersen and Madsen [158]
in 2009. It has received since a growing interest, resulting in a number of resolution
approaches as well as some theoretical results.

2.4.1 Integer Linear Programming Formulations

The first integer linear programming formulation for the double TSP with multiple stacks
has been presented in [158]. The cities are modeled by using two complete digraphs GP =
(V P , EP) and GD = (V D, ED). Let dP and dD be the vertices representing the depot
respectively in the first and the second city. Let also R be the set of stacks. Petersen et
al. model the problem in which each stack has capacity q and is fully loaded in a solution.

58

2.4. STATE OF THE ART ON THE DOUBLE TSP WITH MULTIPLE STACKS

Their formulation involves three sets of binary variables x, y, z subject to constraints:

xT (δ+(i)) = 1 ∀i ∈ V T , T = P,D (2.8)

xT (δ−(i)) = 1 ∀i ∈ V T , T = P,D (2.9)

yTij + yTji = 1 ∀ distinct i, j ∈ V T \ {dT}, T = P,D (2.10)

yTik + yTkj ≤ 1 + yTij ∀ distinct i, j, k ∈ V T \ {dT}, T = P,D (2.11)

xTij ≤ yTij ∀ distinct i, j ∈ V T \ {dT}, T = P,D (2.12)

yPij + zir + zjr ≤ 3− yDij ∀ distinct i, j ∈ V T , r ∈ R (2.13)∑
r∈R

zir = 1 ∀i ∈ V P \ {dP} (2.14)∑
i∈V P \{dP }

zir = q ∀r ∈ R (2.15)

Variables xij are arc variables as in formulation (2.4)–(2.7). Variables yij are called prece-
dence variables since they capture the precedence relations between pairs of vertices in
the same route. Variables zir record the stack r in which item i is packed. Petersen and
Madsen tried to solve exactly the problem using their formulation but they only succeeded
for very small numbers of items (10 items to be packed in two stacks or 12 items to be
packed in three stacks) within a time limit of one hour with a 1.2GHz processor.

A variation of the model above has appeared in [157]. It is called row precedence
model. The difference with the formulation (2.8)–(2.15) is that the precedence variables
are replaced by binary variables wrij which are 1 if and only if item i is picked up before
item j and both are in the same stack r. Constraints involving precedence variables are
replaced by exponential size families of constraints that guarantee the correctness of the
resulting formulation. The latter includes the subtour elimination constraints (2.6) and
constraints indexed by all paths linking two pickup locations or two delivery locations.

Other two formulations are introduced in [157]. The first one is referred to as flow
model. This model considers one copy of each pickup location for each different stack. The
pickup and delivery routes correspond then to two circuits in this extended digraph. The
circuits visit exactly one copy of each location. A stack corresponds to a directed path
that visits the copies of vertices associated with the items in that stack. The last model is
called infeasible path model. It consists in duplicating the formulation (2.4)–(2.7) for the
TSP by using arc variables xP and xD. They describe pairs of Hamiltonian circuits. The
feasibility of the pair for the problem is then ensured by the infeasible path constraints :

x(P) ≤ |P | − 1 ∀P infeasible path. (2.16)

Here an infeasible path is a directed path given by the last portion of a pickup circuit and
the first portion of a delivery circuit. The path is infeasible if no loading plan exists for the
whole sequence of vertices appearing in the path. In the above constraint, the expression
x(P) is the sum of variables xPij and xDij associated with the arcs in P .

59

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

The infeasible path model has been considered also in [2]. The only difference is in the
definition of constraints (2.16). Indeed in this case they are replaced by

xP (P1) + xD(P2) ≤ |P1|+ |P2| − 1 ∀(P1, P2) infeasible pair of paths. (2.17)

In constraints (2.17), the pair (P1, P2) is infeasible if there is no way to accommodate the
items picked up by following the directed path P1 and to unload them while performing
P2 without violating the last-in-first-out rule or the capacity limit of some stack.

Formulations from Generalizations. Some formulations can be obtained also by
considering generalizations of the double TSP with multiple stacks. Côté et al. [44, 45]
introduce several formulations to tackle the PDTSPMS (recall that this problem generalizes
the double TSP with multiple stacks). In [45] the authors initially provide an integer linear
programming formulation for the PDTSPMS that includes arc variables, variables to keep
track of the stack assignment, variables to keep track of the position of each vertex in the
route, and variables to keep track of the load of each stack upon leaving a vertex in the
circuit. In [44] this formulation is simplified by removing the variables keeping track of the
positions of the vertices in a circuit.

Other two formulations are proposed in [44]. The first one is an adaptation of a model
for the TSPPDL presented in Cordeau et al. [41] and based on flow variables. The second
formulation is again an infeasible path model similar to the one of Petersen et al. [157] and
Alba Mart́ınez et al. [2]. In [44], the infeasible path constraints are of the form (2.16), with
P being an infeasible path whenever it visits pickup and delivery locations in such a way
that the last-in-first-out rule or the capacity constraints are necessarily violated.

Another integer linear programming formulation for the double TSP with multiple
stacks arises from the TPPMSD, see Section 2.3. It is due to Batista-Galván [16]. The
formulation models the pickup and the delivery circuits with two distinct sets of variables.
The pickup circuit is modeled by arc variables as a TSP in a graph in which each vertex
coincides with a pair market-item. The delivery circuit is instead treated as a regular TSP
in the graph representing the delivery city, and is thus described by variables associated
with arcs in this graph. Additional variables record the market in which an item is picked
up. With respect to a classical duplication of the TSP formulation in terms of arc variables,
the model of [16] includes constraints to ensure that each item is picked up exactly once
and all markets are visited exactly once, and infeasible path constraints for the loading
rules (last-in-first-out policy and capacity of the stacks).

2.4.2 Theoretical Results

The double TSP with multiple stacks has stimulated a number of theoretical investigations.
The NP-hardness of the problem is an easy consequence of the observation that in the single
stack case the double TSP with multiple stacks is a TSP. In addition, several authors have
focused on the complexity of subproblems of the double TSP with multiple stacks or on
some relaxations.

60

2.4. STATE OF THE ART ON THE DOUBLE TSP WITH MULTIPLE STACKS

In [32] Casazza et al. study theoretical properties of the infinite capacity case. They
are first interested in determining a loading plan consistent with a fixed pair of pickup
and delivery circuits that uses the minimum number of stacks. They reduce the problem
to a coloring problem on a permutation graph having as many vertices as the number of
items in the instance of the problem (see Section 1.3.1 and Section 3.3.2 for more details
respectively on permutation graphs and on the reduction to a graph coloring problem).
From this they get that a solution to the problem of determining such a loading plan
can be found in O(n log n) time, where n is the number of items in the instance. Their
result also yields a characterization of s-consistent pairs of Hamiltonian circuits in terms of
sequences of vertices, see also Section 3.3.2. The second subproblem the authors consider
is to find the pair of Hamiltonian circuits which is consistent with a given loading plan and
that has minimum total cost. They use a dynamic programming algorithm to solve this
problem. Its running time is in O(ns) where n is the number of items and s is the number
of stacks in the instance. The last subproblem the authors consider is the construction
of a so-called partial loading plan. This is simply a loading plan in which the items of a
subset of customers do not appear. The subproblem is to find a partial loading plan of
the items in at most s stacks that is consistent with a given pair of pickup and delivery
circuits and that includes the maximum number of items. Casazza et al. reduce this task
to the computation of a minimum cost flow in an auxiliary weighted graph.

In Toulouse and Wolfler Calvo [183] it is observed that good quality solutions to the
TSP may not lead to good solutions to the double TSP with multiple stacks of infinite
capacity. Their construction can be resumed as follows. They construct two heuristics for
the double TSP with two stacks of infinite capacity, based on the possibility of solving to
optimality a single TSP. Then they show that these heuristics can have an unbounded error
with respect to the optimal solutions to the double TSP with multiple stacks of infinite
capacity, on specific instances.

An important complexity result has appeared in Bonomo et al. [23]. The authors focus
on the problem of deciding whether a pair of Hamiltonian circuits admits an s, q-loading
plan for fixed values s of the stacks and q of their capacity. Bonomo et al. show that this
subproblem of the double TSP with multiple stacks can be solved in O(ns

2+s+1s3) time.
Their idea is to reduce the problem to a bounded coloring problem of a permutation graph.
This reduction is explained in greater detail in Section 3.2.2, hence we skip it here. We
however precise that a bounded coloring of a graph is a proper coloring of the vertices in
which each color class contains at most a prescribed amount of vertices. To prove their
result, Bonomo et al. resort to the notion of k-thin graph, i.e., a graph whose vertices can
be partitioned in k classes and ordered with a linear ordering ≺ such that if vr ≺ vs ≺ vt
and vr and vs are in the same class, then the adjacency of vt and vr in the graph implies
the adjacency of vt and vs. The thinness of a graph is the least k such that the graph is
k-thin and Bonomo et al. show that the thinness of a co-comparability graph is bounded
above by its chromatic number. Bonomo et al. prove that the bounded s-coloring can
be solved in O(nks+s+1s2k)-time in a k-thin graph, using an approach very similar to a
classical dynamic programming. Then the result follows since a permutation graph is a

61

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

co-comparability graph and the chromatic number of the latter can be found in O(n3).

The last results we survey here are those of Borne et al. [26]. Their paper proposes a
polyhedral study of the infeasible path model based on constraints (2.17) in the infinite
capacity case. Borne et al. prove that the dimension of the integer hull of their formulation
is twice the integer hull of the ATSP polytope. They also show that each facet of the
ATSP polytope induces two facets of the integer hull of their formulation. The authors
then focus on the double TSP with two stacks of infinite capacity. They give a polynomial
time algorithm to separate their infeasible path constraints over fractional points. From
this result, they infer that the optimization problem over the linear relaxation of their
formulation for the two stack case is polynomially solvable. The last part of their paper
introduces some new families of strengthening inequalities for the case of the double TSP
with two stacks of infinite capacity.

2.4.3 Heuristic Approaches

Several heuristic methods have been used to tackle the double TSP with multiple stacks.
To the best of our knowledge the best of these methods are the LNS approaches and the
VNS approaches.

LNS Approaches. The first LNS approach to the double TSP with multiple stacks
is due to Petersen and Madsen [158]. To generate a starting solution for their LNS the
authors solve heuristically the double TSP with one stack: as seen in Section 2.2, this
special case amounts to solve a TSP and in a solution the delivery circuits is the opposite
of the pickup circuit. The resulting pair of circuits is then s, q-consistent for every s and q.

For the removal strategies in their LNS method, Petersen and Madsen use the concept
of relatedness described in [177] and the idea of removing the most expensive orders to
cover. Reinsertion is based on nearest, farthest, cheapest and most expensive operators, see
Chapter 4 of [113]. The LNS of [158] is then computationally compared to other heuristic
approaches presented in the same paper (namely, a tabu search, a simulated annealing
and an iterated local search). To this purpose Petersen and Madsen create benchmark
instances, widely used also in subsequent works on the double TSP with multiple stacks.
These instances are described in Section 5.4.2 of this thesis. The quality of the heuristics is
determined by comparing their results on short runs (10 seconds or 3 minutes of execution)
with the best known upper bounds for instances with 12, 33 and 66 items. The best upper
bounds are obtained by running the LNS for about two hours or, for 12 item instances, by
solving exactly an integer linear programming formulation proposed in the same paper. The
LNS approach outperforms all other heuristic methods presented in [158]. In particular,
it solves to optimality all the instances with 12 items and it is at most 6% above the best
known solutions to the instances with 33 items. For the larger instances with 66 items all
heuristics fail to find solutions of good quality.

A second LNS approach is proposed by Côté et al. in [45]. Their algorithm is designed
to tackle the PDTSPMS which generalizes the double TSP with multiple stacks, see Sec-

62

2.4. STATE OF THE ART ON THE DOUBLE TSP WITH MULTIPLE STACKS

tion 2.3.2. They introduce four operators for the removal of requests, i.e., paired pickup and
delivery locations, from a solution represented by a Hamiltonian circuit. The first removal
operator consists in randomly choosing the pickup and delivery requests to be removed.
The second and third operators remove a random request and then the requests that are
close (according to two distinct measures) to the previously removed request. The last
removal operator eliminates requests that correspond to consecutive vertices in the route,
by starting at a random pickup vertex. Two insertion operators are proposed. The first
one reinserts a vertex in a partial solution so as to minimize the cost of the resulting circuit.
The second insertion operator minimizes instead a so-called generalized regret, see p. 23
in [45] for details. The removal and insertion operators are then used in a LNS which also
contains a probabilistic acceptance condition inherited from the simulated annealing. The
solution obtained by the LNS is finally postprocessed by means of a dynamic programming
algorithm: this constructs the optimal solution consistent with the evolution of the stacks
of the LNS solution. We resume the results obtained by the heuristic of Côté et al. [45] on
the double TSP with three stacks (only this case is considered in [45]). It is tested over
the four sets of instances with 12, 33, 66 and 132 requests introduced in [158, 57]. For
each instance, the results are of two types that we will call A and B. For the first type,
an average value of the solutions returned by three runs of the LNS on a given instance
is calculated, and the result of type A is then the gap of this value over the best known
value for the same instance. In results of type B, the best value obtained by the LNS in
the three runs is used to compute the gap with the best known value. In all instances
with up to 66 items results of type A obtained by Côté et al. are better or similar to those
obtained by the previously known heuristics. On the same instances results of B type
improve substantially the results obtained by the previous heuristics. This improvement is
also more apparent for the instances with 132 items, where, out of the total of 20 instance,
the algorithm of Côté et al. finds 12 new best solutions.

VNS Approaches. The paper [57] by Felipe et al. presents a VND, a GVNS and a
“hybridized” VNS for the double TSP with multiple stacks. To generate an initial solution,
the authors solve the single stack case of the problem, as done in [158]. They also randomly
generate a pickup circuit and subsequently construct a consistent delivery circuit, according
to several schemes. For instance, they can simply reverse the pickup circuit. More complex
schemes involve the construction of a loading plan and a subsequent unloading of the
items yielding the delivery circuit. The construction of a loading plan can be done e.g.,
by following the order of the pickup circuit and randomly assigning items to the stacks,
see [57] for additional criteria. The unloading phase either considers consecutive items in
the same stacks, or observe some distance-based criteria, such as nearest delivery location,
farthest one, etc. Besides some neighborhood previously introduced in [158] for their local
search algorithms, the authors also propose four new neighborhoods. They essentially
consist in swapping two or more items in the same stack, or in changing the positions
of one or more requests in the circuits. The neighborhoods are used in all the proposed
algorithms, that is a VND, a GVNS and a hybridized GVNS. The latter is an application

63

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

of the GVNS combined with some tabu lists to a large set of random initial solutions.
This application returns a set of improved solutions. The GVNS is subsequently applied
to the best solution in this set. In their test session, Felipe et al. consider instances with
33, 66 and 132 items. The sets of instances with 33 and 66 items is the same as used in
Petersen and Madsen [158]. The set with 132 items is new but generated following the
same method. Their results show that the hybridized method outperforms the other two
methods and improves the results of [158].

An enhancement of the previous heuristic method is given in [58] where the hybridized
VNS of [57] is combined with new neighborhood structures producing neighbors possibly
infeasible for the double TSP with multiple stacks. However, the algorithm is organized in
such a way that, at its termination, the feasibility of the output is guaranteed. Infeasible
neighbors are generated by allowing an extra capacity on the stacks (Capacity Infeasibility
(CI)) or by allowing violations to the last-in-first-out rule (Precedence Infeasibility (PI)). To
reconstruct a feasible solution from a neighbor presenting the CI, two similar procedures are
used, the Multi-Step Reduction with Backtracking (MSRB) and the Global Reduction with
Adjustable Size (GRAS). Both are based on the notion of target solution: given a loading
plan with overloaded stacks the procedures attempt to generate a new loading plan (the
target) in which the stacks are less overloaded. Both procedures try to perform this change
without modifying the total cost of the pair of circuits given in the generated neighbor.
While the MSRB reduces of one unit the overload (hence it must be applied iteratively
to reach the target), the GRAS provides a simultaneous reduction of the overload of the
stacks. It may be possible that the procedures fail to produce the target without changing
the neighbor cost. In this case, so-called projection operators modify both the loading plan
and the pair of pickup and delivery circuits, ensuring feasibility but increasing the total
cost. To fix the PI, Felipe et al. develop operators similar to the ones discussed about the
CI, but able to remove and reinsert the items causing the PI. The authors also design two
infeasibility measures, one to evaluate the degree of CI in a solution, the other to measure
the PI. The choice of the next neighbor is guided by a weighted sum of the cost of the
neighbor and its CI and PI measures. The resulting algorithm is called Exterior Search
Algorithm (EXT). The EXT is combined with the hybridized VNS approach of Felipe et
al. [57], in a new algorithm called EXT-HVNS. Here, the EXT is used to escape from local
optima, and the hybridized VNS to get local optima of good quality. The computational
results show an improvement in terms of gap with the best known solutions when compared
to the previous heuristic algorithm of [57]. In particular, the improvement becomes more
evident when the size of instances increases to 132 items.

Other Heuristics. Here we discuss heuristic methods for the double TSP with multiple
stacks that do not fall into the LNS and the VNS categories.

The first one is given by Casazza et al. [32]. The authors design an Alternating Routing-
Loading (ARL) heuristic for the double TSP with multiple stacks of infinite capacity. The
ARL heuristic is based on the resolution of several subproblems of the double TSP with
multiple stacks of infinite capacity. In the same paper, the resolution of the subproblems is

64

2.4. STATE OF THE ART ON THE DOUBLE TSP WITH MULTIPLE STACKS

shown to be tractable, see also Section 2.4.2 of this thesis. The ARL works as follows. First,
it finds a pair of pickup and delivery circuits. Then it solves the problem of determining a
partial loading plan for this pair; the latter is nothing but a loading plan consistent with the
circuits but containing a restricted set of items. Next, the ARL creates an optimal pair of
circuits consistent with the given partial loading plan and initially containing only the items
in the partial loading plan. The removed items/customers are reinserted in the circuits by
following some locally optimal criteria. Finally also the stacks are filled with the missing
items so that, along with the given pair of Hamiltonian circuits, it represents a solution to
the double TSP with multiple stacks of infinite capacity. The procedure is repeated several
times starting from the lastly found solution and until a stopping criterion is met. In the
test session, the authors show that the ARL heuristic exhibits a good performance in terms
of quality of the found solution. The ARL algorithm is also adapted to handle the finite
capacity case. To this purpose, the items in stacks exceeding the capacity are moved to
stacks with available space and in which no conflict due to the last-in-first-out policy can
be generated. If this is not possible, then the items causing the violation of the capacity
in some stacks are removed from the routes, and reinserted in other positions of the routes
so that the capacity constraint is no longer violated. This repair procedure is shown to
produce only a small increase of the value of a solution with respect to the best solution of
the corresponding uncapacitated double TSP with multiple stacks instances and without
increasing the computational time.

The most recent heuristic method for the double TSP with multiple stacks is due
to Urrutia et al. [184]. Their heuristic is a combination of tabu and local searches in
which, instead of considering the construction of the routes, one considers the construction
of loading plans. Starting from any loading plan, optimal pickup and delivery circuits
consistent with it are reconstructed using a refined version of a dynamic programming
algorithm of Casazza et al. [32]. Only the three stack case is considered in [184]. The
algorithm proposed in [184] needs several initial solutions. These are found by solving the
single stack case of the problem by a randomized version of a TSP insertion heuristic and
then adapting the obtained solution to the three stack case. A solution obtained in this
way is improved as much as possible by a tabu search and by a local search before the next
initial solution is generated. In addition, using a technique called path relinking [166], the
authors also generate other solutions from a set of good feasible solutions found during
the previous iterations of the tabu search. A solution for the tabu search is simply a
disposition of the items in the stacks. The cost of a solution corresponds to the cost of
the optimal pair of circuits consistent with it; nevertheless the authors also introduce some
more efficient evaluation operators to speed up the execution. The neighborhood of a
solution in the tabu search contains the loading plans obtainable by the solution itself by
exchanging the position of three items in the stacks. A neighbor cannot be reached from
the current solution (i.e., it is tabu) if it has at least one exchanged items in the same
position. The neighborhood of the local search is obtained by considering the exchange
of two items in the stacks. The described approach does not improve the results obtained
by heuristics of Felipe et al. [57] to which it is compared in the test session, although it

65

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

remains competitive.

2.4.4 Exact Methods

We describe exact methods to solve the double TSP with multiple stacks that have appeared
in previous research works. At the end of the section we report a short discussion on the
computational results obtained by the best of these algorithms. These have been tested on
the benchmark instances introduced in [158] restricted to small numbers of items. Instance
sets are identified by expressions of the type s× q, where s is the value of available stacks
in the vehicle and q the value of their capacity. The number n of items equals the product
sq.

Ad Hoc Methods. The double TSP with multiple stacks presents some specific struc-
tures, hence two similar ad hoc methods have been designed for its resolution in [132, 131].
The algorithms are based on the generation of the k-best Hamiltonian circuits in the
weighted digraphs representing the pickup and delivery cities. These are k Hamiltonian
circuits ordered by increasing total weight, and such that all the Hamiltonian circuits not
in the set have a higher total weight. In [132] the k-best Hamiltonian circuits are computed
with an algorithm due to Lawler [124]. The algorithm presented in [132] consists of three
steps. First, the set of the k-best Hamiltonian circuits in both the pickup and the deliv-
ery circuits are computed. Subsequently, all possible pairs of pickup and delivery circuits
from this set are produced. The pairs are sorted according to their total cost. Finally,
the algorithm checks, in the resulting order, whether a pair is feasible for the double TSP
with multiple stacks. The latter check is made by solving an integer linear program whose
structure depends on the pair. The algorithm is run multiple times for increasing values of
k but some lower bounds (obtained considering also infeasible pairs of circuits) limit the
number of repetitions.

The algorithm of [131] is sped up by including two preprocessing techniques before the
second step, i.e., before checking the feasibility of a pair. The preprocessing techniques are
indeed faster than the resolution of the integer linear program involved in the second step.
Preprocessing techniques of the first type deduce the minimal position the pickup circuit
(resp. delivery circuit) in which an item is picked up (resp. delivered) from its delivery
(resp. pickup) position and in function of the number of stacks. Preprocessing technique
of second type find the largest common sequence of vertices in the pickup and delivery
circuits (see also Section 3.3.2 for more details on this subproblem). For a pair of circuits
to be feasible for the double TSP with multiple stacks, the sequence cannot have length
greater than the number of stacks.

A Branch-and-Bound Algorithm. A branch-and-bound approach has been proposed
by Carrabs et al. [30]. The branch-and-bound algorithm constructs a research tree level
by level, in a depth-first fashion. Each level corresponds to a newly visited vertex. At
level 0 the vertex corresponding to the depot is added. The first n levels correspond to

66

2.4. STATE OF THE ART ON THE DOUBLE TSP WITH MULTIPLE STACKS

the construction of the pickup circuit hence also an assignment to an item to one stack
is decided. Therefore, at level n a complete pickup circuit and a corresponding loading
configuration are available. The construction of the delivery circuit at this point is made
using Casazza et al.’s dynamic programming algorithm [32] see Section 2.4.2. Lower bounds
are computed from TSP relaxations and combined in an additive fashion, see e.g., [63] for
additive bounding techniques. The algorithm uses filters to ensure that lower bounds
calculated from the TSP relaxations are of good quality also for the double TSP with
multiple stacks. A filter detects arcs that cannot be used to complete the partial solution
of an intermediate level because of the last-in-first-out policy. The proposed algorithm
possibly creates equivalent paths. The latter are feasible paths that are also associated to
the same loading configuration. The authors show that the lower bounds calculated by
using the TSP relaxation technique must be the same for all equivalent paths. Computing
only once such a lower bound for a given path and then accessing its value quickly whenever
an equivalent path is found, reduces the computational effort. The branch-and-bound is
tested on instances already used by Petersen et al. [157] and only in the case of two stacks.
An initial upper bound is calculated by using the heuristic of Côté et al. [45].

Branch-and-Cut Algorithms. The first exact approach for solving the double TSP
with multiple stacks is the branch-and-cut algorithm of Petersen et al. [157]. In the paper
four formulations are considered, see also Section 2.4.1. From a computational point of
view the best of these formulations is the one based on infeasible path constraints (2.16),
that we now describe. Both constraints (2.16) and the subtour elimination constraints
are separated dynamically during the branch-and-cut algorithm. Constraints (2.16) are
separated only when a solution obtained during the branch-and-cut execution corresponds
to a pair of Hamiltonian circuits (hence they are separated after the subtour elimination
constraints). In this case, a violation to (2.16) is reduced to test the feasibility of an integer
linear program. The authors remark that this test is equivalent to a bounded coloring of a
graph and that it is more convenient to separate constraints (2.16) associated with minimal
infeasible paths. For their computational tests, the authors set a time limit of one hour and
provide the tested algorithms with an initial solution obtained by running the simulated
annealing algorithm of [158].

Côté et al. [44] also propose branch-and-cut algorithms using the formulations intro-
duced in [44] for the PDTSPMS. The formulation based on infeasible path constraints (2.16)
exhibits a better computational performance hence we limit the discussion to it. Con-
straints (2.16) are added dynamically during the separation step. The approach to detect
violation to (2.16) is similar to the one given in [157]. Namely, it is reduced to the feasi-
bility of an integer linear program and only when the solution represents a Hamiltonian
circuit (remember that the PDTSPMS admits a single route as a solution). However, the
infeasible path model of [44] is reinforced by means of strengthening cuts. Some of them
are strengthening cuts inherited from the ATSP with and without precedence constraints
between pairs of locations [13, 90]. New cuts are instead based on the last-in-first-out rule
and on the capacity limit of the stacks. These cuts are also added dynamically during the

67

CHAPTER 2. THE DOUBLE TRAVELING SALESMAN PROBLEM WITH
MULTIPLE STACKS

separation step of the branch-and-cut algorithm. Exact separation routines are given for
the new cuts, whereas the ATSP cuts are separated following the procedures given in [41].
The algorithm is tested with a time limit of 3 hours of CPU time on the benchmark in-
stances. Initially, the upper bound calculated by the large neighborhood search of Côté et
al. [45] is provided to the algorithm.

A branch-and-cut approach for the double TSP with multiple stacks is proposed in [2]
by Alba Mart́ınez et al. The algorithm is based on the infeasible path model with con-
straints (2.17) incorporated in the classical TSP formulation with arc variables. Several
strengthening cuts are introduced. A first family of cuts is obtained by adding to con-
straints (2.17) variables corresponding to arcs linking non-adjacent vertices in the paths
of an infeasible pair. Only “forward arcs” are considered. Constraints of this form are
called tournament constraints. When the pair of paths is infeasible in the infinite capac-
ity relaxation, the tournament constraints are further strengthened by adding variables
corresponding to specific “backward arcs”. This gives rise to so-called lifted tournament
constraints. Other infeasible pairs of paths derive from the observation that if an item is
picked up after π items and delivered after δ items then it must hold π+ δ− 2 ≤ q where q
is the capacity of the stacks. Pairs of paths violating this inequality give rise to infeasible
pairs of paths. Finally, other infeasible pairs of paths are found by trying to extend a given
pair of paths toward the depot. Given a pair of pickup and delivery paths, the separation
routine for constraints (2.17) and the tournament constraints first looks for a violation of
the last-in-first-out rule in the infinite capacity case. To do this, Alba Mart́ınez et al. use
the so-called CPM algorithm of Kelley [118] on an acyclic digraph. If the paths are feasible
in the infinite capacity case, the routine enumerates all possible disposition of items in
the stacks to test whether the pair is infeasible. Some intermediate heuristics try to speed
up the whole procedure and are used to separate the remaining families of strengthening
cuts. The constraints are separated on both fractional and integer solutions by considering
pairs of paths associated with variables whose value can possibly lead to a violation. The
algorithm is provided with an initial solution, found by applying the heuristic of Côté et
al. [45].

A recent branch-and-cut algorithm for the double TSP with multiple stacks is the one
presented by Batista-Galván et al. [16]. Actually, this algorithm is designed to handle the
TPPMSD, a generalization of the double TSP with multiple stacks. The formulation used
in the branch-and-cut algorithm is the one for the TPPMSD presented in Section 2.4.1.
Some constraints of this formulation are strengthened and three types of the infeasible
path constraints provided in [2] are adapted to take into account the specificity of the
problem. As a consequence they use the same separation routines of that paper, although
some refinements are added to improve the overall time spent to find constraint violations.

Another branch-and-cut method is due to Iori and Riera-Ledesma [109]. It is based on a
formulation similar to the one presented in [2]. The formulation has however some specific
aspects needed to take into account the characteristics of the Double VRP with Multiple
Stacks (DVRPMS) for which it is originally designed. The DVRPMS is a generalization of
the double TSP with multiple stacks introduced in [109]. Its difference with respect to the

68

2.4. STATE OF THE ART ON THE DOUBLE TSP WITH MULTIPLE STACKS

latter lies in the possibility of using more than one vehicle to perform the pickup phase.
Each used vehicle then performs the delivery phase, according to the rules of the double
TSP with multiple stacks. During the branch-and-cut algorithm of [109] the strengthening
inequalities presented in [2] are added dynamically applying the same separation routines
of [2].

Column Generation Methods. In [109] also a branch-and-price and a branch-and-
price-and-cut methods are presented. They are designed to tackle the DVRPMS and are
as a consequence adaptable to the double TSP with multiple stacks. Both algorithms are
based on Dantzig-Wolfe reformulations of an infeasible path model presented in the same
paper [109] (see p. 330 in [40] for an explanation of Dantzig-Wolfe reformulation). In the
first reformulation the columns are associated to pairs of pickup and delivery circuits per-
formed by the vehicles and that are consistent with the loading constraints of the problem
(last-in-first-out rule and capacity constraints). In the second reformulation each column
represents a pickup or a delivery circuit. A column generation approach [50] is used in
the resolution of both reformulations. The pricing problem for the first reformulation is
an elementary shortest path problem with capacity and pickup-and-delivery, see [178]. The
pricing problem for the second reformulation is reduced to a shortest path with resource con-
straints [110]. For the second reformulation a separation step is needed in order to include
the infeasible path constraints, thus giving rise to a branch-and-cut-and-price algorithm

Comparison. Among all exact algorithms the best computational performances are re-
ported in [2] and [16] whose results are comparable. On benchmark instances, the algorithm
of [2] solves an instance with 28 items (for a 4×7 configuration). However, the results of the
exact methods surveyed in this section clearly indicate that the computational difficulty
of the problem increases with the value of the capacity. In this sense, the two stacks case
seems to be the most difficult one. This is experimentally confirmed by the results obtained
by the algorithms described above: the algorithm of [2] solves to optimality instances with
two stacks and 14 items, within three hours. Only the algorithm of [44] solves three out of
twenty benchmark instances with two stacks and 16 items.

69

Chapter 3

Models for the Double TSP with
Multiple Stacks

Contents
3.1 Definitions . 72

3.2 Stacks of Finite Capacity . 73

3.2.1 Integer Linear Programming Formulation 73

3.2.2 Recognizing the s, q-consistency by Graph Coloring 78

3.3 Stacks of Infinite Capacity . 82

3.3.1 Integer Linear Programming Formulation 83

3.3.2 Recognizing the s-consistency by Graph Coloring 84

3.4 Conclusions . 86

In this chapter we introduce a new formulation for the double TSP with multiple
stacks. The formulation we propose is based on an extended integer linear programming
formulation for the TSP (possibly with precedence relations between locations) presented
in Sarin et al. [171]. The latter involves two sets of variables: the arc variables that are used
to determine the route of the traveling salesman in the city and to compute the value of
solutions, and the precedence variables that determine whether a certain location precedes
another location in the route.

To formulate the double TSP with multiple stacks as an integer linear program, we
duplicate the model of Sarin et al. to describe pairs of Hamiltonian circuits and we introduce
a new family of constraints ensuring that both Hamiltonian circuits respect the last-in-first-
out policy. These new constraints involve only the precedence variables and are similar
to the so-called infeasible path constraints used in Alba Mart́ınez et al. [2] to ensure the
consistency with the last-in-first-out policy.

In this chapter we will also consider the particular case of the double TSP with multi-
ple stacks of infinite capacity. The infinite capacity case is easier to study than its finite

71

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

capacity counter-part, since its combinatorial structure is better understood and charac-
terized. More precisely, one can decide efficiently whether a pair of Hamiltonian circuits
represents a feasible solution to the double TSP with stacks of infinite capacity [32, 183].
Using this result, the precedence variables allow us to model the feasible solutions to this
version of the problem by using polynomially-many constraints, when the number of stacks
is fixed. In fact, this was our initial motivation for modeling the problem using precedence
variables.

The remainder of this chapter consists of four sections. In Section 3.1 we introduce the
notation used throughout the chapter to formulate the double TSP with multiple stacks as
an integer linear program. We next consider two versions of the double TSP with multiple
stacks. In Section 3.2 we consider the case in which the stacks have a finite capacity. We
first provide a new formulation for the problem. Then we discuss the problem of recognizing
whether a pair of Hamiltonian circuits is feasible. In Section 3.3 we consider the double
TSP with multiple stacks of infinite capacity. We show that the formulation for the general
case can be greatly simplified when the stacks have an unlimited loading capacity. This
simplification relies on an elegant characterization found in [32, 183], of the s-consistent
pairs of Hamiltonian circuits. In Section 3.4 we draw some conclusions.

3.1 Definitions

In this chapter n represents the number of items to be transported in the double TSP with
multiple stacks, s the number of stacks of the vehicle and q their capacity. To avoid some
triviality we will always assume that n ≥ 3, and sq ≥ n. As already done in Section 2.2,
we also consider the complete digraph Gn = (V,A), where V = {0, . . . , n}. For every
A′ ⊆ A, the set of vertices entered or left by the arcs in A′ is indicated with V (A′). Unless
differently stated, we consider paths and circuits of Gn as sets of arcs. We recall that a
pair of Hamiltonian circuits is s, q-consistent if it admits an s, q-loading plan. The latter
is informally a disposition of the items in s stacks of capacity q allowing to perform the
circuits in the pair without infringing the last-in-first-out rule.

For later convenience, we extend the notion of s, q-loading plan to pairs of paths. To
this end, we point out that a path R = {(v1, v2), (v2, v3), . . . , (vk−1, vk)} of Gn \{0} induces
the partial ordering ≺R on {1, . . . , n} defined by vi ≺R vj whenever 1 ≤ i < j ≤ k. An
s, q-loading plan for a pair (R1, R2) of paths of Gn is a stack disposition of the items that
are commonly carried by both paths and such that the items are loaded according to the
order of the first path and unloaded according to the reverse order of the second path.

More formally, given two integers s and q and a pair (R1, R2) of paths of Gn with
0 /∈ V (R1) and 0 /∈ V (R2), an s, q-loading plan for (R1, R2) is a collection of s finite totally
ordered sets {(Q1,≺Q1), . . . , (Qs,≺Qs)} such that:

LP1. Q1, . . . , Qs partition V (R1) ∩ V (R2)

LP2. |Qi| ≤ q for every i = 1, . . . , s

72

3.2. STACKS OF FINITE CAPACITY

LP3. for every i = 1, . . . , s, we have that k ≺Qi
` implies k ≺R1 ` and ` ≺R2 k for all

k, ` ∈ Qi

The pair (R1, R2) is said s, q-consistent if it admits an s, q-loading plan. As for Hamil-
tonian circuits we will also say that R1 and R2 are s, q-consistent whenever (R1, R2) is.
When q is infinite, we write, as usual, s-loading plan and s-consistent. This observation is
straightforward:

Observation 3.1.1. Let H1 and H2 be two Hamiltonian circuits of Gn. Let H ′1 and H ′2 be
the paths obtained respectively from H1 and H2 by removing vertex 0. The pair (H1, H2)
is s, q-consistent if and only if (R1, R2) is s, q-consistent for every subpath R1 of H ′1 and
every subpath R2 of H ′2.

3.2 Stacks of Finite Capacity

In this section we focus on the double TSP with multiple stacks of finite capacity. According
to the description given in Section 2.2 the problem consists in finding a pair (H1, H2) of
s, q-consistent Hamiltonian circuits of Gn minimizing c1(H1) + c2(H2) and a loading plan
for (H1, H2). We recall that when s = 1 or s = n, then the double TSP with multiple
stacks is equivalent to the TSP. Hence, from now on, we assume that 2 ≤ s ≤ n− 1.

We first give a new integer linear programming formulation. Then we focus on the
problem of recognizing the s, q-consistency of a pair of Hamiltonian circuits.

3.2.1 Integer Linear Programming Formulation

We formulate the double TSP with multiple stacks of finite capacity as an integer linear
program. We start by reviewing an integer linear programming formulation for the TSP
on which we base our work. Then we adapt it to formulate our problem.

An Interlude on the Traveling Salesman Problem

Here we consider the ATSP on the digraph Gn. We now review a formulation for this
problem introduced by Sarin et al. [171]. It is based on two sets of variables that arise
from the equivalent description of Hamiltonian circuits as subgraphs of Gn, and as linear
orderings of {1, . . . , n}. Indeed, recall that, since 0 is the depot, each Hamiltonian circuit
of Gn induces a linear ordering ≺H over V \ {0}, see Section 2.2.

Given a Hamiltonian circuit H of Gn, we call characteristic point of H the point

73

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

(χH , γH) ∈ {0, 1}n(n+1) × {0, 1}n(n−1) defined by:

χHij =

{
1 if (i, j) ∈ H,
0 otherwise,

for all i 6= j ∈ V ,

γHij =

{
1 if i ≺H j,

0 otherwise,
for all i 6= j ∈ V \ {0}.

Hence, χH describes the route of the traveling salesman corresponding to H whereas γH

captures the precedence relations between pairs of locations visited performing this route.

A point (x, y) ∈ Rn(n+1) × Rn(n−1) is the characteristic point of a Hamiltonian circuit
of Gn if and only if it is a solution to the following system of contraints [171]:

n∑
j=0,j 6=i

xij = 1 for all i ∈ V, (3.1)

n∑
i=0,i6=j

xij = 1 for all j ∈ V, (3.2)

yij + yji = 1 for all i 6= j ∈ V \ {0}, (3.3)

yij + yjk + yki ≥ 1 for all i 6= j 6= k 6= i ∈ V \ {0}, (3.4)

xij ≤ yij for all i 6= j ∈ V \ {0}, (3.5)

yij ∈ {0, 1} for all i 6= j ∈ V \ {0}, (3.6)

xij ∈ {0, 1} for all i 6= j ∈ V. (3.7)

From now on, variables x will be called arc variables, and variables y precedence variables.
Under the integrality constraints (3.6) and (3.7), constraints (3.1) and (3.2) impose that
each vertex of a Hamiltonian circuit H has exactly one entering and one leaving arc.
Constraints (3.3) and (3.4) respectively describe the antisymmetry and the transitivity of
the linear ordering ≺H . Hence they are respectively called antisymmetry and transitivity
constraints. Finally (3.5) implies that if (i, j) ∈ H then i ≺H j.

Remark 3.2.1. Given a finite set {1, . . . , n} and a linear ordering ≺ on this set, the
incidence vector of ≺ is the vector ζ≺ ∈ {0, 1}n(n−1) defined by ζ≺ij = 1 if and only if
i ≺ j. The convex hull of the incidence vectors of the linear orderings of {1, . . . , n}
is called Linear Ordering Polytope. Grötschel et al. [88] show that the Linear Ordering
Polytope is conv{y ∈ {0, 1}n(n−1) : (3.3)–(3.4) are satisfied}. The correspondence between
Hamiltonian circuits in a complete digraph and linear orderings implies that for n ≥ 3,
projy{(x, y) : (3.1)–(3.7) are satisfied} coincides with the set of the vertices of the Linear
Ordering Polytope.

74

3.2. STACKS OF FINITE CAPACITY

From the TSP to the Double TSP with Multiple Stacks

In order to describe the solutions to the double TSP with multiple stacks of finite capacity,
we introduce the variables (x1, y1, x2, y2) ∈ Rn(n+1) × Rn(n−1) × Rn(n+1) × Rn(n−1). Here,
(xT , yT) is a pair of arc and precedence variables as those used in the TSP formulation
presented above, for T = 1, 2. We are interested in the case in which (x1, y1) and (x2, y2)
represent a feasible pair of pickup and delivery Hamiltonian circuits for the double TSP
with multiple stacks. A natural requirement is that (x1, y1) and (x2, y2) are the char-
acteristic points of two Hamiltonian circuits H1 and H2 of Gn. In this case, the point
(x1, y1, x2, y2) is called characteristic point of the pair (H1, H2). In order to consider ex-
actly the characteristic points of the s, q-consistent pairs of Hamiltonian circuits of Gn, we
now introduce a new family of constraints.

The y-infeasible Path Constraints. A pair (R1, R2) of paths of Gn \ {0} is s, q-
infeasible if (R1, R2) is not s, q-consistent. Given an s, q-infeasible pair of paths (R1, R2),
the corresponding y-infeasible path constraint is the inequality:

y1(R1) + y2(R2) ≤ |R1|+ |R2| − 1. (3.8)

Since (R1, R2) is s, q-infeasible if and only if (R2, R1) is s, q-infeasible, we also say that the
two paths R1 and R2 are s, q-infeasible. The family of s, q-infeasible pairs of paths is closed
under taking subdivisions of s, q-infeasible paths, as shown in this lemma.

Lemma 3.2.2. Let R1 and R2 be two s, q-infeasible paths of Gn. Let also R?
1 be obtained

from R1 by replacing one of its arcs by a path P of Gn not visiting 0 nor the vertices in
V (R1). Then R?

1 and R2 are s, q-infeasible.

Proof. Suppose that R?
1 and R2 have an s, q-loading plan L? = {(Q?

1,≺Q?
1
), . . . , (Q?

s,≺Q?
s
)}.

For i = 1, . . . , s, we define

• Qi = Q?
i ∩ V (R1) ∩ V (R2)

• p ≺Qi
q if and only if p ≺Q?

i
q for all p, q ∈ Qi.

Since V (R?
1) ∩ V (R2) ⊇ V (R1) ∩ V (R2) and LP1–LP3 are verified by L?, we get that

{(Q1,≺Q1), . . . , (Qs,≺Qs)} is an s, q-loading plan for R1 and R2, a contradiction.

Formulation. The integer linear programming formulation we propose for the double
TSP with s stacks of finite capacity q is given by the following system of constraints:

75

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

n∑
j=0,j 6=i

xTij = 1 for all i ∈ V and T = 1, 2, (3.9)

n∑
i=0,i6=j

xTij = 1 for all j ∈ V and T = 1, 2, (3.10)

yTij + yTji = 1 for all i 6= j ∈ V \ {0} and T = 1, 2, (3.11)

yTij + yTjk + yTki ≥ 1 for all i 6= j 6= k 6= i ∈ V \ {0} and T = 1, 2, (3.12)

xTij ≤ yTij for all i 6= j ∈ V \ {0} and T = 1, 2, (3.13)

y1(R1) + y2(R2) ≤ |R1|+ |R2| − 1 for all s, q-infeasible paths R1 and R2, (3.14)

yTij ∈ {0, 1} for all i 6= j ∈ V \ {0} and T = 1, 2, (3.15)

xTij ∈ {0, 1} for all i 6= j ∈ V and T = 1, 2. (3.16)

In this proposition we prove the correctness of our formulation for the double TSP with
multiple stacks.

Proposition 3.2.3. A point (x1, y1, x2, y2) is the characteristic point of an s, q-consistent
pair (H1, H2) of Hamiltonian circuits of Gn if and only if it satisfies (3.9)–(3.16).

Proof. We show the sufficiency first. Let (x1, y1, x2, y2) satisfy (3.9)–(3.16). Then (x1, y1)
and (x2, y2) satisfy (3.1)-(3.7). From the latter we get that (x1, y1) and (x2, y2) respectively
are the characteristic points of two Hamiltonian circuits H1 and H2 of Gn.

Suppose that H1 = 0, v1, v2 . . . , vn, 0 and H2 = 0, w1, w2 . . . , wn, 0. If H1 and H2 are not
s, q-consistent, the pathsR1 = {(v1, v2) . . . , (vn−1, vn)} andR2 = {(w1, w2), . . . , (wn−1, wn)}
are s, q-infeasible. In addition x1(R1) = n − 1 = x2(R2), yielding x1(R1) + x2(R2) =
|R1|+ |R2|. Since y1

ij ≥ x1
ij and y2

ij ≥ x2
ij for all distinct i, j ∈ {1, . . . , n}, also (x1, y1, x2, y2)

violates (3.14) associated with R1 and R2, a contradiction.
We now show the necessity. Let us take an s, q-consistent pair (H1, H2) of a Hamil-

tonian circuits of Gn. We have that (χH1 , γH1) and (χH2 , γH2) satisfy (3.1)-(3.7). This
means that, the point (χH1 , γH1 , χH2 , γH2) satisfies all constraints in our formulation, ex-
cept maybe (3.14).

Suppose that (3.14) is violated by (γH1 , γH2) for some s, q-infeasible paths R1 and R2.
Then γH1

a = 1 for all a ∈ R1 and γH2
b = 1 for all b ∈ R2. Then there exist two paths

R?
1 and R?

2 of Gn \ {0} respectively obtained from R1 and R2 by arc substitutions as in
Lemma 3.2.2 and such that χH1

a = 1 for every a ∈ R?
1 and χH2

b = 1 for every b ∈ R?
2.

By Lemma 3.2.2, R?
1 and R?

2 are s, q-infeasible, since so are R1 and R2. By Obser-
vation 3.1.1 and by H1 ⊇ R?

1 and H2 ⊇ R?
2, the s, q-loading plan for (H1, H2) yields an

s, q-loading plan for R?
1 and R?

2, a contradiction.

The y-infeasible path constraints are similar to the infeasible path constraints intro-
duced in Alba Mart́ınez et al. [2] as explained in Remark 3.2.4.

76

3.2. STACKS OF FINITE CAPACITY

Remark 3.2.4. Let R1 and R2 be two paths in Gn such that no pair (H1, H2) of s, q-
consistent Hamiltonian circuits such that H1 ⊇ R1 and H2 ⊇ R2 exists. The corresponding
infeasible path constraint proposed in Alba Mart́ınez et al. [2] is:

x1(R1) + x2(R2) ≤ |R1|+ |R2| − 1. (3.17)

A pair of Hamiltonian circuits H1 and H2 is s, q-consistent only if (χH1 , χH2) satisfies
(3.17) [2]. By an example we show that the family of infeasible path constraints 3.17 is
larger than the family of y-infeasible path constraints 3.14. Indeed, let us consider an
instance of the double TSP with two stacks of capacity three and six items, and the two
paths R1 = 1, 2, 5, 3, 4 and R2 = 3, 4, 1, 2. Given Hamiltonian circuits H1 ⊇ R1 and
H2 ⊇ R2, then either 5 ≺H2 3 ≺H2 4 or 1 ≺H2 2 ≺H2 5 and the same ordering relations
hold in the circuit H1. Thus, such H1 and H2 cannot be 2-consistent. It follows that
constraint (3.17) associated with R1 and R2 must be satisfied by the 2, 3-consistent pairs
of Hamiltonian circuits of G6. On the other hand, the paths R1 and R2 admit the 2, 3-
loading plan {(Q1,≺Q1), (Q2,≺Q2)} with Q1 = {2, 3}, 2 ≺Q1 3 and Q2 = {4}. Hence
we cannot define constraint (3.8) for R1 and R2. In addition, trying to do so would
result in an incorrect constraint for the double TSP with multiple stacks. Indeed, the
circuitsH1 = 0, 1, 2, 5, 3, 4, 6, 0 andH2 = 0, 6, 3, 4, 5, 1, 2, 0 are 2, 3-consistent and (γH1 , γH2)
violates the constraint (3.8) associated with R1 and R2.

We conclude with an important property of y-infeasible path constraints. We show that
the y-infeasible path constraints are stronger when associated with s, q-infeasible paths of
small length. Let us make this idea more precise. We recall that, for any path R, the path
R1/v is the path obtained by “skipping” the vertex v when following R, see Section 1.3.2.
Suppose that R1 and R2 are two s, q-infeasible paths and consider the two paths R′1 = R1/v
and R′2 = R2/v where v is a vertex visited by at least one path of R1 and R2. Under mild
conditions, if also R′1 and R′2 are s, q-infeasible, the y-infeasible path constraint associated
with R1 and R2 is implied by the one associated with R′1 and R′2.

Proposition 3.2.5. Let (x1, y1, x2, y2) ∈ [0, 1]n(n+1)× [0, 1]n(n−1)× [0, 1]n(n+1)× [0, 1]n(n−1)

satisfy (3.9)-(3.13). Let R1 and R2 be two s, q-infeasible paths of Gn and, for some v ∈
V (R1)∪V (R2) let R′1 = R1/v and R′2 = R2/v. If R′1 and R′2 are s, q-infeasible paths of Gn

and (x1, y1, x2, y2) satisfies

y1(R′1) + y1(R′2) ≤ |R′1|+ |R′2| − 1 (3.18)

then it also satisfies the y-infeasible path constraint associated with R1 and R2.

Proof. Let us prove that (x1, y1, x2, y2) satisfies y1(R1) + y2(R2) ≤ |R1| + |R2| − 1 under
the hypothesis of the proposition. For T = 1, 2, we define bT ∈ {0, 1} such that bT = 1 if
and only v ∈ RT . For T = 1, 2, if v ∈ RT then R′T is obtained by removing two arcs of RT

and adding one new arc, then we have:

|R′T | = |RT | − bT for T = 1, 2. (3.19)

77

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

In addition, y1(R1) ≤ y1(R′1) + b1. The only nontrivial case to verify is when b1 = 1,
that is when v ∈ R1. If v is the starting or the ending point of R1, the equality above
follows from the observation that R′1 is a subpath of R1 and from y1

vj ≤ 1 and y1
jv ≤ 1 for

all j ∈ V \ {0, v}. Thus, let us consider the case in which v is not the starting nor the
ending point of R1. Let us call P the subpath of R1 going from its starting point to the
vertex p preceding v in R1. Similarly, let us call S the subpath of R1 going from the vertex
s following v in R1 to its ending point. We obtain y1(R1) = y1(P) + y1(S) + y1

pv + y1
vs ≤

y1(P) + y1(S) + y1
ps + 1. To get the last inequality in the previous expression we rewrite

the transitivity constraint y1
ps+y1

sv +y1
vp ≥ 1 from (3.12) as y1

pv +y1
vs ≤ y1

ps+ 1 by using the
antisymmetry constraints (3.11). Since R′1 = P ∪{(p, s)}∪S we have y1(R1) ≤ y1(R′1)+1.
In a similar manner one can prove that y2(R2) ≤ y2(R′2) + b2. Hence summing up these
two expressions we finally have:

y1(R1) + y2(R2) ≤ y1(R′1) + y2(R′2) + b1 + b2 ≤ |R′1|+ |R′2| − 1 + b1 + b2 = |R1|+ |R2| − 1.

In the last equality we used (3.19). This concludes the proof.

We say that two paths R1 and R2 are minimally s, q-infeasible if R1/v and R2/v are
s, q-consistent for every v ∈ V (R1) ∪ V (R2). The result of Proposition 3.2.5 implies that
the y-infeasible path constraints are more interesting when associated with minimally s, q-
infeasible paths.

3.2.2 Recognizing the s, q-consistency by Graph Coloring

In the previous section we have introduced a new integer linear programming formulation
for the double TSP with s stacks of capacity q. In this section we discuss the construction
of an s, q-loading plan starting from an s, q-consistent pair of Hamiltonian circuits. Indeed,
our formulation only involves variables describing the pickup and the delivery circuits. In
particular, a feasible solution to formulation (3.9)–(3.16) does not carry any information
about the construction of an s, q-loading plan. It only ensures that the corresponding pair
of Hamiltonian circuit is s, q-consistent. This is without loss of generality because the
following question admits a positive answer when s is fixed (as first proved by Bonomo et
al. [23]).

Question 3.2.6. Given a pair of Hamiltonian circuits (H1, H2) of Gn, can we decide,
in polynomial time in n, whether it is s, q-consistent and, in positive case, construct a
corresponding s, q-loading plan?

Bonomo et al. give an algorithm answering Question 3.2.6 that runs in O(ns
2+s+1s3)

time. The underlying idea is to reduce Question 3.2.6 to an equivalent problem of graph
coloring. We now recall their construction since we want to show that when s = 2 there is
a O(n2) algorithm that solves Question 3.2.6. As a side remark, we mention that several
authors [44, 2, 157] have observed that the difficulty of the double TSP with multiple
stacks of finite capacity increases, from a computational point of view, with the value of
the capacity. Hence, the case of the double TSP with two stacks is challenging on its own.

78

3.2. STACKS OF FINITE CAPACITY

Let us be given a pair (H1, H2) of Hamiltonian circuits of Gn. We may assume, up
to a relabeling of the indices, that H1 = 0, n, n − 1, n − 2, . . . , 1, 0. We describe H2 by a
permutation π : {1, . . . , n} → {1, . . . , n} where π(i) is the position of vertex i in the circuit
H2. Clearly, π can be constructed in linear time when H2 is known. We point out that,
for all distinct i, j ∈ {1, . . . , n}, π is defined equivalently by:

π(i) < π(j) if and only if i ≺H2 j.

If H1 and H2 are respectively a pickup and a delivery circuits for the double TSP with
multiple stacks fulfilling the last-in-first-out rule, items i and j cannot be in the same stack
when i ≺H1 j and i ≺H2 j. The first precedence relation is equivalent to i > j, whereas the
second is equivalent to π(i) < π(j). We can describe these “conflicts” by the permutation
graph G(π) = (Vπ, Eπ) defined as follows. The vertex set is Vπ = V \ {0} = {1, . . . , n} and
there is an edge between i and j if and only if both i > j and π(i) < π(j) hold, for every
i, j ∈ V \ {0}.

We now show that Question 3.2.6 is equivalent to a specific coloring problem on G(π).
A coloring of a graph is a labeling of the vertices of the graph, in which the labels are
called colors and such that the endpoints of each edge are not assigned the same color. A
k-coloring is a coloring using at most k distinct colors. See Section 1.3.1 for more details.

Unless differently stated, given a k-coloring of G(π), Ci denotes the color class of i, i.e.,
the set of vertices colored with color i, for every i = 1, . . . , k. As observed by Bonomo et
al. [23], Question 3.2.6 is then equivalent to the so-called Bounded Coloring Problem [98]
of G(π):

Problem 3.2.7 (Bounded Coloring Problem of G(π)). Given the integers s, q ≥ 1, find
an s-coloring of G(π) such that |Ci| ≤ q for each i = 1, . . . , s, or prove that none exists.

We show the equivalence. Let us take a pair (H1, H2) of Hamiltonian circuits of Gn.
Without loss of generality, let H1 = 0, n, n−1, . . . , 1, 0 and π be the permutation describing
H2 under this assumption. Given a coloring solving Problem 3.2.7, it can be seen that
L = {(C1,≺1), . . . , (Cs,≺s)} where i ≺k j if and only if i > j for every distinct i, j ∈ Ck and
1 ≤ k ≤ s, is an s, q-loading plan for (H1, H2). Conversely, if {(Q1,≺Q1), . . . , (Qs,≺Qs)}
is an s, q-loading plan for (H1, H2), then assigning color i to vertex j for all j ∈ Qi and
i = 1, . . . , s yields an s-coloring solving Problem 3.2.7.

Example 3.2.8 illustrates the construction of G(π) for a pair of Hamiltonian circuits,
as well as the relation between colorings and loading plans.

Example 3.2.8. Let us consider the pair of Hamiltonian circuits (H1, H2) of G6 where:

• H1 = 0, 6, 5, 4, 3, 2, 1, 0,

• H2 = 0, 1, 3, 2, 5, 6, 4, 0.

79

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

2

3

4

5

1

6

Figure 3.1: The permutation graph G(π) corresponding to H1 and H2 of Example 3.2.8.
The shape of the vertices indicates a 2-coloring that solves Problem 3.2.7 for s = 2 and
q = 3. Circles indicate vertices in C1, triangles those in C2.

Since π represents the position of the vertices in the delivery circuit, we get π(1) = 1, π(2) =
3, π(3) = 2, π(4) = 6, π(5) = 4, π(6) = 5. The graph G(π) is represented in Figure 3.1.
The pair (H1, H2) is 2, 3-consistent. Indeed the following 2-coloring of G(π) solves Problem
3.2.7 for q = 3: C1 = {3, 5, 6} and C2 = {1, 2, 4}. Hence a 2, 3-loading plan is given by
{(C1,≺1), (C2,≺2)} with 6 ≺1 5 ≺1 3 and 4 ≺2 2 ≺2 1. A different 2-coloring of G(π) that
solves the same problem is described in Figure 3.1. It yields the 2, 3-loading for (H1, H2)
where items 6, 5 and 2 are in this order in the first stack, and items 4, 3 and 1 are in this
order in the second stack.

Bonomo et al. [23] solve in polynomial time, for fixed s, the following generalization of
Problem 3.2.7:

Problem 3.2.9 (Capacitated Coloring Problem of G(π) [23]). Given nonnegative integers
s and κ1, . . . , κs, find an s-coloring of G(π), such that |Ci| ≤ κi for i = 1, . . . , s, or prove
that none exists.

Clearly, choosing κ1 = κ2 = · · · = κs = q, a polynomial time algorithm to solve
Problem 3.2.9 is also a polynomial time algorithm to solve Problem 3.2.7. We mention
that Problem 3.2.7 is NP-hard even for fixed q ≥ 6, a result found by Jansen [111]. The
main result of Bonomo et al. [23] is that Problem 3.2.9 can be solved in O(ns

2+s+1s3) time.
Since we may always assume that the number of stacks is fixed, checking whether a pair
of Hamiltonian circuits is s, q-consistent can be done in polynomial time. In positive case
Bonomo et al.’s algorithm also yields an s, q-loading plan. However, this algorithm is quite
expensive even when the number of stacks is low. We provide a more efficient algorithm
when there are two stacks, as shown in the following proposition.

Proposition 3.2.10. The Capacitated Coloring Problem of G(π) can be solved in O(n2)
time when s = 2.

80

3.2. STACKS OF FINITE CAPACITY

Proof. Without loss of generality let us assume that the instance of the Capacitated Color-
ing Problem for s = 2 is such that κ1 ≥ κ2. Let G1, . . . , Gk be the connected components
of G(π), with vertex set respectively V (G1), . . . , V (Gk). We check that G(π) admits a
2-coloring. This can be done by exploring the edge set of G(π) and thus the check is
performed in O(n2) time. From now on, we assume that G(π) admits a 2-coloring, as
otherwise Problem 3.2.9 for s = 2 has no solution. A 2-coloring can be explicitly found by
performing the same exploration used to certificate its existence.

Let C1 and C2 be respectively the color classes of 1 and 2 in this 2-coloring of G(π). For
j = 1, . . . , k we define the pair (mj,M j) where mj (resp. M j) is the minimum (resp. maxi-
mum) between |C1∩Gj| and |C2∩Gj|. Note that the pair does not depend on the considered
2-coloring of G(π), because, when it exists, a 2-coloring of a connected graph is unique up
to switching the two colors. The construction of the pairs (mj,M j) for all j = 1, . . . , k
takes O(n) time. At this point, if κ2 <

∑k
j=1m

j no solution to the Capacitated Coloring
Problem exists. We have the following Claim.

Claim 3.2.11. The Capacitated Coloring Problem for G(π) and s = 2 admits a solution
if and only if the optimal value of the following problem is at least

∑k
j=1M

j − κ2:

max
∑k

j=1 zj(M
j −mj)∑k

j=1 zj(M
j −mj) ≤ κ1 −

∑k
j=1m

j (K)

zj ∈ {0, 1}
Proof. We first prove the “only if” part. Let us consider a 2-coloring solving the Capaci-
tated Coloring Problem for G(π) and s = 2. We assume that K1 and K2 are respectively
the color classes of 1 and 2 in this 2-coloring. We identify the latter with the vector
z? ∈ {0, 1}k defined for j = 1, . . . , k by

z?j =

{
1 if |K1 ∩ V (Gj)| = M j,
0 otherwise.

In other words, z?j = 1 whenever the 2-coloring uses M j times color 1 in Gj.
Hence, z?` = 0 whenever it uses m` times color 1 in component G`. Thus, defining

J = {j ∈ {1, . . . , k} : z?j = 1} and using |K1| ≤ κ1, we have that:

k∑
j=1

mj +
k∑
j=1

z?j (M
j −mj) =

∑
j∈J

M j +
∑
`∈J̄

mj ≤ κ1.

Hence z? is a feasible solution to problem (K). Note also that the color 2 is used mj times
in the components indexed by J and M j times in those indexed by J̄ . This means that:∑

j∈J

mj +
∑
`∈J̄

M j ≤ κ2. (3.20)

81

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

The value of z? in problem (K) is
∑k

j=1 z
?
j (M

j −mj) =
∑

j∈J (M j −mj). Using (3.20) the

latter is at least
∑

j∈J Mj +
∑

j∈J̄ Mj − κ2 =
∑k

j=1M
j − κ2. Hence problem (K) admits

an optimal solution of value at least
∑k

j=1M
j − κ2.

We now prove the “if” part. Let z? be the optimal solution to problem (K). Each pair
(mj,M j) corresponds to a 2-coloring of the component Gj, that is explicitly known. For
every j = 1, . . . , k, let Vj be the set of vertices of Gj of cardinality M j and whose elements
have the same color in this 2-coloring. For every j = 1, . . . , k, if z?j = 1 we assign color 1
to the vertices in Vj and color 2 to the vertices in V (Gj) \ Vj; if z?j = 0 we assign color 1
to the vertices in V (Gj) \ Vj and color 2 to the vertices in Vj. This results in a 2-coloring
of G(π) solving the Capacitated Coloring Problem for G(π) and s = 2. �

Problem (K) in the previous claim is a knapsack problem, see Section 1.6. It can
be solved in O(k(κ1 −

∑k
j=1m

j)) time using a dynamic programming algorithm since

M j −mj ≥ 0 for all j = 1, . . . , k. In the case of the Capacitated Coloring Problem above
it is not restrictive to assume κ1−

∑k
j=1 m

j ≤ n. This, together with k ≤ n, yields a O(n2)
running time of our algorithm.

Remark 3.2.12. Please, note that in the previous proof we do not use the fact that G(π)
is a permutation graph. Then the Capacitated Coloring Problem can be solved in O(n2)
time for s = 2 on every graph. (In the general case, the Capacitated Coloring Problem for
s = 2 is obtained from Problem 3.2.9 by replacing G(π) by a generic graph G.)

Remark 3.2.13. We point out that the resolution of the Capacitated Coloring Problem
via the knapsack problem (K) of Claim 3.2.11 can be used to decide whether a pair of
paths is s, q-consistent or not. In this case a permutation graph is constructed as done for
a pair of Hamiltonian circuits. The difference is that the vertex set of the permutation
graph contains precisely the vertices visited by both paths, hence in general has cardinality
smaller than n.

3.3 Stacks of Infinite Capacity

In this section we are interested in the double TSP with multiple stacks of infinite capacity.
Since this is a special case of the general problem studied in Section 3.2, it can be stated as
the problem of finding an s-consistent pair (H1, H2) of Hamiltonian circuits of two weighted
digraphs (Gn, c

1) and (Gn, c
2) such that c1(H1) + c2(H2) is minimum. That is, we omit

the construction of an s-loading plan from our description. It turns out that an s-loading
plan for an s-consistent pair of Hamiltonian circuits can be constructed in polynomial
time, independently on the number of stacks. In Section 3.3.1 we present a simplification
of formulation (3.9)–(3.16) for the infinite capacity case. In Section 3.3.2 we report the
construction of an s-loading plan for an s-consistent pair of Hamiltonian circuits.

82

3.3. STACKS OF INFINITE CAPACITY

3.3.1 Integer Linear Programming Formulation

The formulation of Section 3.2.1 can be greatly simplified to describe the solutions to
the double TSP with multiple stacks of infinite capacity. We obtain a polynomial-size
formulation when s, the number of stacks, is fixed. Note that this is not the case in general
for the formulation of Section 3.2.1, since constraints (3.14) are exponentially-many.

The simplification of our formulation relies on the following characterization of s-
consistent Hamiltonian circuits, whose proof is postponed to Section 3.3.2:

Proposition 3.3.1 ([32, 183]). Two Hamiltonian circuits of Gn are s-consistent if and
only if no s+ 1 vertices of V \ {0} appear in the same order in both circuits.

The integer linear programming formulation (3.9)–(3.16) can then be rewritten as fol-
lows in the case of the double TSP with s stacks of infinite capacity:

n∑
j=0,j 6=i

xTij = 1 for all i ∈ V and T = 1, 2, (3.21)

n∑
i=0,i6=j

xTij = 1 for all j ∈ V and T = 1, 2, (3.22)

yTij + yTji = 1 for all i 6= j ∈ V \ {0} and T = 1, 2, (3.23)

yTij + yTjk + yTki ≥ 1 for all i 6= j 6= k 6= i ∈ V \ {0} and T = 1, 2, (3.24)

xTij ≤ yTij for all i 6= j ∈ V \ {0} and T = 1, 2, (3.25)
s∑
i=1

(y1
jiji+1

+ y2
jiji+1

) ≥ 1 for all distinct j1, . . . , js+1 ∈ V \ {0}, (3.26)

yTij ∈ {0, 1} for all i 6= j ∈ V \ {0} and T = 1, 2, (3.27)

xTij ∈ {0, 1} for all i 6= j ∈ V and T = 1, 2. (3.28)

The only difference of formulation (3.21)–(3.28) with the formulation of Section 3.2.1
is that we replace (3.14) by constraints (3.26). We call constraints (3.26) s-consistency
constraints. The s-consistency constraints can be rewritten as

s∑
i=1

(y1
jiji+1

+ y2
jiji+1

) ≤ 2s− 1,

for all distinct j1, . . . , js+1 ∈ {1, . . . , n}, by using constraint (3.23). Thus, from Propo-
sition 3.3.1 and the fact that γH1

ij = 1 (resp. γH2
ij = 1) means that i precedes j in the

Hamiltonian circuit H1 (resp. H2), constraints (3.26) are nothing but y-infeasible path
constraints associated with all minimally s-infeasible paths of Gn. By Proposition 3.2.5
they imply all other y-infeasible constraints in the infinite capacity case. Hence (3.21)–
(3.28) is a correct formulation for the double TSP with multiple stacks of infinite capacity.

83

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

3.3.2 Recognizing the s-consistency by Graph Coloring

Here we report a proof of Proposition 3.3.1 characterizing the s-consistent Hamiltonian
circuits of Gn. The characterization was independently found in Casazza et al. [32] and
Toulouse and Wolfler Calvo [183]. The proof of Proposition 3.3.1 can be also seen from
an algorithmic perspective, thus yielding an s-loading plan for an s-consistent pair of
Hamiltonian circuits.

We remember that the consistency requirement can be represented by a suitable permu-
tation graph G(π), as done in Section 3.2. For the sake of clarity, we repeat the construction
of G(π).

Let us be given two Hamiltonian circuits H1 and H2 and without loss of generality let
H1 = 0, n, n − 1, . . . , 1, 0. Hence H2 corresponds to a permutation π of {1, . . . , n} where
π(i) is the position of i in H2. We construct the permutation graph G(π) = (Vπ, Eπ) by
setting Vπ = {1, . . . , n} and linking i and j by an edge whenever i > j and π(i) < π(j).

Proposition 3.3.1 states that the two Hamiltonian circuits H1 and H2 are s-consistent
if and only if no s + 1 vertices of V \ {0} appear in the same order in both circuits. The
starting point is the equivalence of an s-coloring of G(π) with the existence of an s-loading
plan for H1 and H2. More precisely, the color classes of an s-coloring correspond to a
partition of the items in s sets C1, . . . , Cs. Then Ci can be ordered by restricting ≺H1 to
its elements, for every i = 1, . . . , s. The resulting collection of finite totally ordered sets is
an s-loading plan for (H1, H2). Conversely, each set in the partition corresponding to an
s-loading plan for (H1, H2) can be seen as a color class in an s-coloring of G(π). We can
now prove Proposition 3.3.1.

Proof of Proposition 3.3.1 (adapted from [26]). The necessity follows from the pigeonhole
principle applied to the number of stacks (remember that n > s). For the sufficiency,
consider (H1, H2) a pair of Hamiltonian circuits with no s + 1 vertices of V \ {0} in the
same order. It corresponds to a permutation graph G(π) = (Vπ, Eπ) thus having the
following properties:

GP1. Every clique of G(π) is given by a set of vertices C ⊆ Vπ appearing in the same order
in both H1 and H2;

GP2. G(π) being perfect — see Section 1.3.1 on perfect graphs — the chromatic number
of G(π) is equal to its clique number, that is χ(G(π)) = ω(G(π)).

By GP1 and our assumption, ω(G(π)) ≤ s. By GP2, G(π) admits an s-coloring and we
conclude.

Using the result of Proposition 3.3.1 and its proof, we describe a polynomial algorithm
given in [32] to decide the s-consistency of two Hamiltonian circuits H1 and H2 of Gn.
This algorithm runs in O(n log n) time and, in case (H1, H2) is s-consistent, it constructs
a corresponding s-loading plan. To see this, first observe that in linear time we can relabel
the vertices of Gn so that H1 = 0, n, n − 1, . . . , 1, 0 and also obtain the permutation π
corresponding to the circuit H2 under this relabeling. Now, an s-loading plan for (H1, H2)

84

3.3. STACKS OF INFINITE CAPACITY

Capacity limit

41

2

3

(a) 2-consistency for P̃ = 0, 1, 2, 3, 4, 0
and D̃ = 0, 3, 2, 1, 4, 0.

3 2 4

31

3

21

44

1 2

(b) Loading plans for P̃ not violating capacity con-
straints. But D̃ cannot be performed.

Figure 3.2: The s-consistency does not imply the s, q-consistency, in general.

can be constructed from an s-coloring of G(π). We solve then the minimum coloring
problem on G(π). This is done in O(n log n), e.g., with the algorithm described at p. 167–
168 in Golumbic’s book [82]. It essentially consists in a greedy algorithm in which the
choice of the first available color is made in O(log n) time by a dichotomic search. The
coloring algorithm outputs the chromatic number χ(G(π)) along with a χ(G(π))-coloring.

We can improve the previous running time if we are only interested in proving the
s-consistency of H1 and H2, without exhibiting an s-loading plan in positive case. In the
following discussion Hamiltonian circuits are seen as linear orderings of V \ {0}. Let H1,
H2 and π be as above. Deciding the s-consistency of (H1, H2) amounts to exhibit a largest
cardinality set S = {i1, . . . , ik} of vertices in V \{0} appearing in the same order in both H1

and H2. Finding such a S is the same as finding the greatest k such that i1 > i2 > · · · > ik
and i1 ≺H2 i2 ≺H2 · · · ≺H2 ik for ij ∈ V \ {0} and j = 1, . . . , k. This is known as the
Longest Decreasing Subsequence Problem [173]. It can be solved in O(n log log n) time,
see Hunt and Szymanski [105]. This time complexity holds because H2 corresponds to a
permutation of V \{0} and it is achieved by using van Emde Boas trees [185] as underlying
data structures.

Remark 3.3.2. The previous complexity results do not depend on the number of stacks
s defining the instance of the problem.

We conclude with an example showing that, in general, this infinite capacity version of
the problem is a relaxation of its finite capacity counterpart.

Example 3.3.3. Let us consider a small instance of the double TSP with two stacks of
capacity two in which 4 items are to be delivered to the corresponding customers. The
circuits P̃ = 0, 1, 2, 3, 4, 0 and D̃ = 0, 3, 2, 1, 4, 0 are 2-consistent as it can be seen by putting
item 4 in one stack and all other items in the other stack (see Figure 3.2a). However,
the loading configuration that guarantees the 2-consistency violates the capacity of one
stack. In Figure 3.2b we depicted the three possible loading configurations that fulfill the
prescribed capacity and that can be constructed by performing P̃ (up to switching the two
stacks). None of them corresponds to a 2, 2-loading plan for (P̃, D̃).

85

CHAPTER 3. MODELS FOR THE DOUBLE TSP WITH MULTIPLE STACKS

3.4 Conclusions

In this chapter we have modeled the double TSP with multiple stacks. We have considered
the problem as presented in Petersen and Madsen [158] as well as the particular case in
which the stacks have unlimited loading capacity.

We have first introduced a new formulation for the double TSP with multiple stacks. Its
main feature is the presence of precedence variables. These are inherited from a formulation
for the TSP introduced by Sarin et al. [171]. The precedence variables let us model the s, q-
consistency by introducing the family of y-infeasible path constraints. These constraints
along with those used to model the routing part, are sufficient to formulate the double
TSP with multiple stacks as an integer linear program.

Our formulation does not take into account the construction of a loading plan but, as
observed in Section 3.2.2, this is not restrictive. In particular, in the case of two stacks of
capacity q, we have provided a O(n2) time algorithm to solve the subproblem of deciding
whether a pair of Hamiltonian circuits is 2, q-consistent. Our algorithm also generates a
2, q-loading plan and improves, in the two stack case, the worst-case running time of an
algorithm introduced by Bonomo et al. [23].

When adapted to the double TSP with multiple stacks of infinite capacity our formula-
tion can be greatly simplified. Indeed, in this case, only a polynomial number of y-infeasible
path constraints is needed, when the number of stacks is fixed. This property stems from
the fact that, for both the finite capacity and infinite capacity cases, the strongest y-
infeasible path constraints are those associated with minimally infeasible paths. Using a
complete characterization of s-consistent pairs of Hamiltonian circuits given in terms of
vertex sequences (see Proposition 3.3.1) we can provide all “minimal” y-infeasible path
constraints in the infinite capacity case. Of course, the same constraints can be used in
the formulation for the double TSP with multiple stacks with finite capacity.

86

Chapter 4

Polyhedral Results

Contents
4.1 Focus on Routing . 88

4.1.1 Faces from the PATSP Polytope 89

4.1.2 Links with the PATSP Polytope 91

4.2 Focus on Consistency . 98

4.2.1 The Restricted Set Covering Polytope 100

4.2.2 Faces from the Restricted Set Covering Polytope 104

4.2.3 Focus on Two Stacks: A Vertex Cover Approach 108

4.3 Conclusion and Perspectives . 115

In this chapter we investigate the structure of the convex hull of the integer points
satisfying the constraints of the formulation introduced in Section 3.3.1 for the double
TSP with multiple stacks of infinite capacity. In the following, we refer to this polytope as
the DTSPMS polytope. Our formulation exhibits two components. The first one is given
by constraints (3.21)–(3.25),(3.27),(3.28) used to describe pairs of Hamiltonian circuits in
a complete digraph; the second component is given by constraints (3.26) enforcing the
s-consistency. Accordingly, the polyhedral study conducted in this chapter is divided into
two parts.

The first part provides links between the DTSPMS polytope and the PATSP polytope.
The latter is the convex hull of the points satisfying constraints (3.1)–(3.7) in the ATSP
formulation of Section 3.2.1. Our main contribution in this part is to show that the
DTSPMS polytope inherits all the facets of the PATSP polytope, see Theorem 4.1.7. This
is a desirable property since the latter has 2Ω(

√
n) facets [60]. Hence, our result characterizes

a super-polynomial number of facets of the DTSPMS polytope. In order to prove this
result we also give closed-form expressions for the dimensions of the DTSPMS and PATSP
polytopes. On the other hand, due to the s-consistency requirement, the facets inherited

87

CHAPTER 4. POLYHEDRAL RESULTS

from the PATSP polytope are not sufficient for a complete description of the DTSPMS
polytope.

Therefore, in the second part of this chapter we focus on the convex hull of the binary
points satisfying the s-consistency constraints (3.26). This convex hull is a set covering
polytope and its valid inequalities induce inequalities valid for the DTSPMS polytope. The
facial structure of set covering polytopes has been widely investigated since the pioneering
work of Fulkerson [67] and Padberg [152]. Then the existing knowledge on set covering
polytopes can be exploited to derive valid inequalities for the DTSPMS polytope.

This “set covering approach” provides a general framework allowing to strengthen the
s-consistency in our formulation for the double TSP with multiple stacks. Additionally, we
show that the study of the set covering polytope arising from the s-consistency constraints
can be reduced to the study of a simpler set covering polytope. The latter simplification
turns out to be advantageous in the case of the double TSP with two stacks. Indeed, it
reveals a link between the corresponding DTSPMS polytope and a specific vertex cover
polytope. Using this link, valid inequalities for the DTSPMS polytope in the case with two
stacks can be derived by detecting specific structures in a suitable graph. In particular, we
introduce two new families of inequalities valid for the DTSPMS polytope in the case with
two stacks: the odd-hole inequalities and the wheel inequalities. We point out that these
inequalities are not easily interpreted in terms of structures of the digraph Gn on which
we have modeled the problem in Section 2.2. From this point of view, the abstraction
provided by this set covering approach is a useful tool to get valid inequalities for the
DTSPMS polytope that convey the s-consistency.

We summarize the organization of this chapter. In Section 4.1 we give some general
results linking the DTSPMS polytope and the PATSP polytope. In Section 4.1.1 we
report some known valid inequalities for the PATSP polytope. These are also valid for
the DTSPMS polytope hence they define faces of the latter. In Section 4.1.2 we find the
closed-form expression of the dimensions of the two polytopes and we show that every facet
of the PATSP polytope gives rise to two facets of the DTSPMS polytope. In Section 4.2
we show that the DTSPMS polytope is linked to a set covering polytope obtained from
the s-consistency constraints. Using known results on set covering polytopes we derive
a large family of valid inequalities for the DTSPMS polytope. In the special case of the
double TSP with two stacks, we show that our approach amounts to study a vertex cover
polytope. Exploiting this additional property, we derive inequalities valid for the DTSPMS
polytope that are associated with structures of a suitable undirected graph. Section 4.3 is
a conclusion to the chapter and presents some directions for future works on the polyhedral
properties of the double TSP with multiple stacks.

4.1 Focus on Routing

In this section we focus on the routing aspects of the double TSP with multiple stacks.
We investigate these aspects from a polyhedral point of view. The objects of interest in

88

4.1. FOCUS ON ROUTING

our discussion are two polytopes.

The first one is the PATSP polytope PATSPn = conv{(x, y) satisfying (3.1)–(3.7)}.
Each Hamiltonian circuit H of Gn corresponds to exactly one vertex (χH , γH) of PATSPn,
and conversely. The second polytope is the DTSPMS polytope defined by:

DTSPMSn,s = conv{(x1, y1, x2, y2) satisfying (3.21)–(3.28)}.

The vertices of DTSPMSn,s are in one-to-one correspondence with the s-consistent pairs
of Hamiltonian circuits of Gn. If (H1, H2) is such a pair and (χH1 , γH1 , χH2 , γH2) is the
corresponding vertex of DTSPMSn,s then we call it the characteristic point of the pair
(H1, H2).

The facial description of the PATSP polytope yields a partial facial description of
the DTSPMS polytope. Indeed, if (χH1 , γH1 , χH2 , γH2) is the characteristic point of an
s-consistent pair of Hamiltonian circuits, then (χH1 , γH1) and (χH2 , γH2) satisfy every in-
equality ax+ by ≥ c valid for the PATSP polytope. This implies that if ax+ by ≥ c defines
a face of the PATSP polytope then ax1 + by1 ≥ c and ax2 + by2 ≥ c are satisfied by all
vertices of the DTSPMS polytope, hence, by convexity, they define faces of this latter. In
next section we report some inequalities valid for the DTSPMS polytope arising from the
PATSP polytope.

4.1.1 Faces from the PATSP Polytope

In this section we describe classes of inequalities valid for the PATSP polytope. As pointed
out in the previous section, they induce faces of the DTSPMS polytope and hence they can
be used to strengthen our formulation for the double TSP with multiple stacks of infinite
capacity. Here we focus on inequalities mixing arc and precedence variables, i.e., of the
form ax+ by ≥ c with a, b 6= 0.

Two families of inequalities valid for PATSPn are the following:

x0i ≤ yij ∀ distinct i, j ∈ V \ {0}, (4.1)

xi0 ≤ yji ∀ distinct i, j ∈ V \ {0}. (4.2)

The first (resp. second) inequality states that i is the first (resp. last) vertex visited by a
Hamiltonian circuit of Gn if and only if it precedes (resp. follows) all other vertices.

Valid inequalities for the PATSP polytope can be used to strengthen formulation (3.1)–
(3.7) for the ATSP. Since the same formulation can be adapted to model the ATSP with
precedence constraints between locations, it is not surprising that several classes of valid
inequalities have been introduced for the PATSP polytope [84, 86]. The remainder of
the section is devoted to the description of inequalities for the PATSP polytope appeared
in [84]. We mention that Gouveia and Pesneau [84] also test them in computational
experiments to assess their quality. Here we report the inequalities presented in [84] that
turned out to be more effective from a computational point of view.

89

CHAPTER 4. POLYHEDRAL RESULTS

Lifted Transitivity Constraints. A first polynomial size family of valid inequalities
is obtained by strengthening the transitivity constraints (3.4), see e.g., [84]. Namely, the
inequality:

yij + yjk + yki − xij ≥ 1 (4.3)

is valid for PATSPn for every 3-uple (i, j, k) of distinct vertices in V \ {0}. Indeed, if H is
a Hamiltonian circuit, when χHij = 0 for i, j ∈ V \{0} we have that the characteristic point
of H satisfies (4.3) because it satisfies (3.4). If χHij = 1 then γHij = 1 therefore γHjk = 0 = γHki
yields a contradiction since then i ≺H k ≺H j. Hence also in this case the characteristic
point of H satisfies (4.3). Inequality (4.3) is stronger than (3.4) because the right-hand-side
is the same in both inequalities whereas the left-hand-side of (4.3) has a positive variable
with a negative coefficient more. We call inequalities (4.3) lifted transitivity constraints.

The Generalized Disaggregated Desrochers and Laporte Inequalities. The next
inequalities are the so-called Generalized Disaggregated Desrochers and Laporte inequal-
ities, reported in Proposition 4.1.1. Remember that, given S a vertex set of a digraph,
A(S) denotes the set of arcs with their tail and their head in S.

Proposition 4.1.1 ([84]). The Generalized Disaggregated Desrochers and Laporte (GDDL)
inequality

yki + x(A(S)) ≤ ykj + |S| − 1 (4.4)

is valid for PATSPn, for all distinct i, j, k ∈ {1, . . . , n} and for all S ⊆ V \ {0, k} and
i, j ∈ S.

Inequality (4.4) is satisfied by all vertices (x, y) of PATSPn. To see this, the only non-
trivial case to consider is when x(A(S)) = |S| − 1. Then (x, y) describes a Hamiltonian
circuit of Gn containing a path visiting all vertices in S. As a consequence, k /∈ S precedes
both i and j in this Hamiltonian circuit, whenever it precedes one of them.

When yki = 0 = ykj, inequality (4.4) boils down to a classical subtour elimination con-
straint (2.6) associated with S. As explained by Gouveia and Pesneau [84] and previously
noted by Gouveia and Pires [86], if we sum the inequality (4.4) corresponding to given
vertices i, j, k with the inequality (4.4) in which the role of i and j is reversed, we get an
equivalent form of (2.6) associated with S. Therefore constraints (2.6) are redundant with
respect the GDDL inequalities (4.4).

The Simple Cut Inequalities. The last families of inequalities we describe are the
Simple Cut Inequalities introduced in [84]. We illustrate the idea behind these inequalities
with an example. Let us consider a Hamiltonian circuit of Gn and let i 6= j ∈ V \ {0}. If
i precedes j in the Hamiltonian circuit, the latter contains a path from 0 to i not visiting
j. Therefore the Hamiltonian circuit has nonempty intersection with any (0, i)-cut in the
digraph Gn \ {j}. Similarly, if i precedes j, there exists a path from i to j in Gn \ {0} and
a path from j to 0 in G \ {i}. This implies Proposition 4.1.2 below.

90

4.1. FOCUS ON ROUTING

1

2 3 4

S0 5

Figure 4.1: Graphical representation of inequality (4.5), with n = 5, S = {1, 2, 3}, i = 1
and j = 4.

Proposition 4.1.2 ([84]). The following Simple Cut Inequalities are valid for PATSPn
for all distinct i, j ∈ V \ {0}:

yij ≤
∑

u∈V \(S∪{j})

∑
t∈S

xut S ⊆ V such that 0, j /∈ S, i ∈ S, (4.5)

yij ≤
∑

u∈V \(S∪{0})

∑
t∈S

xut S ⊆ V such that 0, i /∈ S, j ∈ S, (4.6)

yij ≤
∑

u∈V \(S∪{i})

∑
t∈S

xut S ⊆ V such that i, j /∈ S, 0 ∈ S. (4.7)

4.1.2 Links with the PATSP Polytope

In this section we derive some general polyhedral links between the DTSPMS polytope
and the PATSP polytope. The main result of this section is in Proposition 4.1.7: there we
prove that every facet of the PATSP polytope induces two facets of the DTSPMS polytope.
Proposition 4.1.7 relies on a number of intermediate results relating the dimension of the
PATSP polytope to the dimension of the DTSPMS polytope.

Remember that, in general, the dimension of the linear relaxation of a formulation only
provides an upper bound for the dimension of its integer hull. In some cases, however, this
upper bound is tight. For instance, it is known [88] that constraints (3.3) yield a minimal
set of equalities for projy(PATSPn) of rank

(
n
2

)
. Similarly, it is known [92] that, for n ≥ 4,

the rank of the matrix of constraints (3.1)–(3.2) is 2n + 1 and this is a minimal set of
equalities for projx(PATSPn).

In the first contribution of this section we parallel the results cited above: namely,
we show that equalities (3.1)–(3.3) yield a minimal system of inequalities for PATSPn.
Note that from the above-mentioned results, it follows that the rank of the matrix of
equations (3.1)–(3.3) is

(
n
2

)
+2n+1 = n2+3n+2

2
. Let dn indicate the dimension of PATSPn.

The number of variables involved in the formulation (3.1)–(3.7) being 2n2, we get that
dn ≤ 3n2−3n−2

2
. We now prove that equality actually holds. The proof is based on an

exhaustive enumeration of affinely independent points belonging to the PATSP polytope,
combined with an inductive argument. From now on, we say that two Hamiltonian circuits

91

CHAPTER 4. POLYHEDRAL RESULTS

are affinely (resp. linearly) independent whenever their characteristic points are.

Proposition 4.1.3. If n ≥ 4, then dim(PATSPn) = 3n2−3n−2
2

.

Proof. To prove the result, we define kn = 3n2−3n−2
2

and we find kn+1 affinely independent
points of PATSPn, for every n ≥ 4. We proceed by induction. For the base case n =
4 we observe that k4 = 17 and that the following 18 Hamiltonian circuits are affinely
independent:1

0, 1, 2, 3, 4, 0 0, 1, 2, 4, 3, 0 0, 1, 3, 2, 4, 0 0, 1, 3, 4, 2, 0 0, 1, 4, 2, 3, 0 0, 1, 4, 3, 2, 0

0, 2, 1, 3, 4, 0 0, 2, 1, 4, 3, 0 0, 2, 3, 1, 4, 0 0, 2, 3, 4, 1, 0 0, 2, 4, 1, 3, 0 0, 2, 4, 3, 1, 0

0, 3, 1, 2, 4, 0 0, 3, 1, 4, 2, 0 0, 3, 2, 1, 4, 0 0, 3, 2, 4, 1, 0 0, 3, 4, 1, 2, 0 0, 4, 1, 2, 3, 0

Now, assuming that the proposition holds for PATSPn we prove that it also does for
PATSPn+1. By the inductive hypothesis, there exist C1, . . . , Ckn+1 affinely independent
Hamiltonian circuits of Gn. By inserting n+ 1 at the end of each Ci, we get a set of kn + 1
affinely independent Hamiltonian circuits of Gn+1. Since kn+1−kn = 3n, it suffices to com-
plete this set with 3n new Hamiltonian circuits of Gn, maintaining the affine independence.
The circuits are added in an iterative fashion. We indicate by C(i,j) a circuit that contains
the arc (i, j) not belonging to any of the circuits added in the previous iterations; similarly,
C?

(i,j) indicates a circuit where i precedes j for the first time until the given iteration. Then,
by construction, adding the 2n+1 circuits below, in the order they are presented, preserves
the affine independence:2

C(n,0) = 0, 2, 3, . . . , n− 1, n+ 1, 1, n, 0

C?
(n+1,2) = 0, 3 . . . , n− 1, n+ 1, 1, 2, n, 0

C?
(n+1,i) = 0, 2 . . . , i− 1, i+ 1, . . . , n− 1, n+ 1, 1, i, n, 0 for i = 3, . . . , n− 2

C?
(n+1,n−1) = 0, 2 . . . , n− 2, n+ 1, 1, n− 1, n, 0

C(n+1,i) = 0, 1, . . . , i− 1, n+ 1, i, . . . , n, 0 for i = 2, . . . , n

C(0,n+1) = 0, n+ 1, 1, 2, . . . , n, 0

C(2,0) = 0, 1, 3, . . . , n− 1, n+ 1, n, 2, 0

C̃1 = 0, 1, 3, . . . , n, n+ 1, 2, 0

Adding C̃1 maintains the affine independence since every previous circuit C such that
γCn(n+1) = 1 also verifies χC(n+1)0 = 1. Hence, C̃1 cannot be obtained as an affine combination
of the previous circuits. Finally, we add the following n− 1 circuits:

C(1,0) = 0, 2, 3, . . . , n+ 1, 1, 0

C(i,0) = 0, i+ 1, . . . , n+ 1, 1, . . . , i, 0 for i = 3, . . . , n− 1

C̃2 = 0, 2, 3, . . . , n− 1, n+ 1, n, 1, 0

1These Hamiltonian circuits have been found by computing, in a computer-assisted proof, a non-singular
submatrix of the matrix containing all the characteristic points of the vertices of PATSP4.

2The set of circuits C?
n+1,i is empty if n = 4.

92

4.1. FOCUS ON ROUTING

Adding C̃2 preserves the affine independence since every previous circuit C such that
γC(n+1)1 = 1 also verifies χC(n+1)1 = 1. The whole family of circuits above forms an affinely
independent set, and this concludes the proof.

Having a formula for the dimension of PATSPn at hand, we want to find a formula for
the dimension of DTSPMSn,s. For this purpose, we need the intermediate Lemma 4.1.4.
We fix a Hamiltonian circuit, and we consider the convex hull of the Hamiltonian circuits
that are s-consistent with the former. The lemma provides a formula for the dimension of
this convex hull. Note that in the case of 2-consistency such a formula is not the same as
in the cases of s-consistency where s ≥ 3.

Lemma 4.1.4. The set of Hamiltonian circuits that are s-consistent with a fixed Hamilto-
nian circuit of Gn has dimension dn for n ≥ 4 and s ≥ 3 and dimension dn − 3 for n ≥ 5
and s = 2.

Proof. Let us fix a Hamiltonian circuit of Gn. We can assume that this circuit is Cn =
0, n, n − 1, . . . , 1, 0, as otherwise we can relabel the vertices. Let us call Cn,s the set of
Hamiltonian circuits that are s-consistent with Cn. We split the proof into two cases.

Case s ≥ 3 The case n = 4 holds because the 18 Hamiltonian circuits given in the be-
ginning of the proof of Proposition 4.1.3 are s-consistent with C4 and affinely independent.
This shows that dim(C4,3) = 17. Therefore, dim(C4,s) = 17 for every s ≥ 3. Then we can
apply induction, observing that the circuits constructed in the proof of Proposition 4.1.3
are s-consistent with Cn+1 when s ≥ 3.

Case s = 2 Note that in the case with two stacks and n ≥ 5, the following three equalities
are valid for the set Cn,2 by Proposition 3.3.1:

x02 = y21 (4.8)

x(n−1)0 = yn(n−1) (4.9)

xn1 = yn1 (4.10)

It is easy to see that the equations (4.8)–(4.10) are linearly independent. In addition,
they cannot be expressed as linear combination of equations (3.1)–(3.3) because yij and yji
appear with the same coefficient in all these equalities, for every distinct i, j ∈ {1, . . . , n}.
Therefore, adding (4.8)–(4.10) to equations (3.1)–(3.3) we get dim(Cn,2) ≤ dn − 3.

Let n ≥ 5 and let us prove by induction that dim(Cn,2) = dn−3. Since d5−3 = 26, the
base case n = 5 is proved by the following 27 Hamiltonian circuits that are 2-consistent
with C5 and affinely independent.

0, 1, 2, 3, 5, 4, 0 0, 1, 2, 4, 3, 5, 0 0, 1, 3, 2, 4, 5, 0 0, 1, 3, 2, 5, 4, 0 0, 1, 3, 4, 2, 5, 0 0, 1, 3, 4, 5, 2, 0

0, 1, 3, 5, 2, 4, 0 0, 1, 4, 2, 3, 5, 0 0, 1, 4, 2, 5, 3, 0 0, 1, 4, 5, 2, 3, 0 0, 1, 5, 2, 3, 4, 0 0, 2, 1, 3, 4, 5, 0

0, 2, 1, 3, 5, 4, 0 0, 2, 1, 4, 3, 5, 0 0, 2, 1, 4, 5, 3, 0 0, 2, 1, 5, 3, 4, 0 0, 2, 3, 1, 4, 5, 0 0, 2, 3, 1, 5, 4, 0

0, 2, 3, 4, 1, 5, 0 0, 2, 3, 4, 5, 1, 0 0, 2, 3, 5, 1, 4, 0 0, 2, 5, 1, 3, 4, 0 0, 3, 4, 5, 1, 2, 0 0, 3, 5, 1, 2, 4, 0

0, 4, 1, 5, 2, 3, 0 0, 4, 5, 1, 2, 3, 0 0, 5, 1, 2, 3, 4, 0

93

CHAPTER 4. POLYHEDRAL RESULTS

Assuming that the result holds for Cn,2, let us prove it also for Cn+1,2. By the inductive
hypothesis, there exist C1, . . . , Cdn−2 affinely independent Hamiltonian circuits of Gn that
are 2-consistent with Cn. By inserting n + 1 at the end of each Ci we get a set C of
dn − 2 independent Hamiltonian circuits of Gn+1 that are 2-consistent with Cn+1. For
later convenience, let us partition C in the two sets C1 = {C ∈ C : χC(n−1)(n+1) = 1} and

C2 = C \ C1.
Observe that if C ∈ C2, by (3.3) and (4.9) it follows that γC(n−1)n = 1. As in the proof

of Proposition 4.1.3, it suffices to complete C with 3n affinely independent circuits that
are 2-consistent with Cn+1. For these new circuits, we use the notation from the proof
of Proposition 4.1.3. By construction, the affine independence is ensured when the two
circuits below are added in the following order:

C(n,0) := 0, 2, . . . , n− 1, n+ 1, 1, n, 0

C(n+1,n) = 0, 1, . . . , n− 1, n+ 1, n, 0

Next, we add the circuit:

C̃1 = 0, 2, . . . , n− 1, 1, n+ 1, n, 0

Claim 4.1.5. The set C ∪ {C(n,0), C(n+1,n), C̃1} is a set of affinely independent circuits.

Proof. By contradiction, we may assume that C̃1 is a combination of the circuits in C ∪{
C(n,0), C(n+1,n)

}
. We indicate with λC the coefficient of the circuit C in such a combination.

Since there is a direct arc from n to 0 only in C(n,0), C(n+1,n) and C̃1, and a direct arc

from n + 1 to n only in C(n+1,n) and C̃1, we get that λC(n,0) = 0 and λC(n+1,n) = 1. In

addition χC̃1

(n−1)(n+1) = 0, then
∑

C∈C1 λ
C = −1. Similarly, as χC̃1

(n+1)0 = 0, we have also that∑
C∈C1 λ

C +
∑

C∈C2 λ
C = 0, i.e.,

∑
C∈C2 λ

C = 1. But this would imply γC̃1

(n−1)n = 2 — a
contradiction.

Subsequently, we iteratively add the following 2n− 2 circuits:

C?
(n+1,2) = 0, 3 . . . , n− 1, n+ 1, 1, 2, n, 0

C?
(n+1,i) = 0, 2 . . . , i− 1, i+ 1, . . . , n− 1, n+ 1, 1, i, n, 0 for i = 3, . . . , n− 2

C?
(n+1,n−1) = 0, 2 . . . , n− 2, n+ 1, 1, n− 1, n, 0

C(n+1,i) = 0, 1, . . . , i− 1, n+ 1, i, i+ 1, . . . , n, 0 for i = 2, . . . , n− 1

C(0,n+1) = 0, n+ 1, 1, 2, . . . , n, 0

C(2,0) = 0, 1, 3, . . . , n, n+ 1, 2, 0

By construction, the resulting set contains only affinely independent circuits. The next
circuit we add is:

C̃2 = 0, 3, . . . , n, n+ 1, 1, 2, 0

94

4.1. FOCUS ON ROUTING

The circuit C̃2 is independent of the previous ones because γC̃2
n1 = 1 and χC̃2

n1 = 0,
whereas each circuit C added in the previous steps such that γCn1 = 1 belongs to C, and
also verifies χCn1 = 1, because of (4.10). Finally, the last n − 2 circuits we add are the
following ones:

C(1,0) = 0, 2, 3, . . . , n+ 1, 1, 0

C(i,0) = 0, i+ 1, . . . , n+ 1, 1, 2, . . . , i, 0 for i = 3, 4, . . . , n− 1

whose independence again follows by construction. The 3n circuits above are 2-consistent
with Cn+1, and this concludes the proof.

Now we are ready to prove that the dimension of the DTSPMS polytope is twice the
dimension of the PATSP polytope.

Proposition 4.1.6. For n ≥ 5 and s ≥ 2, we have dim(DTSPMSn,s) = 2dn.

Proof. Given the inclusions DTSPMSn,2 ⊆ DTSPMSn,s ⊆ PATSPn × PATSPn, it is
enough to prove the result for s = 2.

For n ≥ 5, let P1, . . . , Pdn+1 be affinely independent Hamiltonian circuits of Gn. From
Lemma 4.1.4 there exist D1, . . . , Ddn−2 affinely independent Hamiltonian circuits such that
Vi = (P1, Di) are pairs of 2-consistent Hamiltonian circuits. By relabeling the vertices, we
can assume that P1 = 0, n, . . . , 1, 0. Under this assumption, every Di satisfies (4.8)–(4.10).
Given Pj, for some 1 < j ≤ dn + 1, we will now construct D̃j satisfying (4.8)–(4.10) such
that Vdn−3+j = (Pj, D̃j) is a pair of 2-consistent Hamiltonian circuits. From the affine
independence of the Pj for j = 1, . . . , n, it will follow that the characteristic points of the
pairs V1, . . . , V2dn−2, taken in the order given by the subscripts, will be affinely independent.

Roughly speaking, D̃j is obtained by perturbing
←
Pj in such a way that equations (4.8)–

(4.10) are satisfied; we exploit the observation that (Pj,
←
Pj) is a pair of 2-consistent Hamil-

tonian circuits to find a perturbation such that also the new pair (Pj, D̃j) of circuits is
2-consistent.

In detail, if 2 ≺←
Pj
n, then D̃j is obtained from

←
Pj by putting 2 at its beginning and

n at its end. Note that (Pj, D̃j) is a solution to the double TSP with two stacks and D̃j

verifies (4.8)–(4.10). Therefore, assume n ≺←
Pj

2. If also 1 ≺←
Pj

2, then D̃j is obtained from
←
Pj by moving n in its last position. Even in this case, D̃j is 2-consistent with Pj and
verifies (4.8)–(4.10).

From now on, let n ≺←
Pj

2 ≺←
Pj

1. Suppose
←
Pj = 0, X1, n,X2, n − 1, X3, 2, X4, 1, X5, 0

where the Xi’s represent sequences of vertices. Then, a circuit 2-consistent with Pj and
verifying (4.8)–(4.10), is D̃j = 0, X1, X2, n− 1, n, 1, X3, 2, X4, X5, 0.

Lastly, if n − 1 ≺←
Pj
n or 2 ≺←

Pj
n − 1, let

←
Pj = 0, X1, X2, 0 where X2 is the part of the

circuit starting at node 2. In both cases, D̃j = 0, X2, X1, 0 is 2-consistent with Pj and
satisfies (4.8)–(4.10).

95

CHAPTER 4. POLYHEDRAL RESULTS

To conclude the proof, consider the following three Hamiltonian circuits:3

D?
1 = 0, 3, 2, 1, 4, . . . , n− 2, n, n− 1, 0

D?
2 = 0, 2, 1, n, n− 1, 3, . . . , n− 2, 0

D?
3 = 0, 2, n, 3, 1, 4, . . . , n− 1, 0

Note that the D?
k above are well defined because n ≥ 5. Setting P ?

k =
←
D?
k, we get that

the characteristic points of the pairs V2dn−2+k = (P ?
k , D

?
k) are all independent with each

other and with the previous points, because D?
k only violates the k-th equation of (4.8)–

(4.10). The characteristic points of the pairs V1, . . . , V2dn+1 form a family of 2dn+1 affinely
independent points of DTSPMSn,2.

In Theorem 4.1.7 we finally prove that every facet-defining inequality of the PATSP
polytope induces two facet-defining inequalities for the DTSPMS polytope. A result of
this flavor can be found in [26]. More precisely, it is proved there that every facet of
projx(PATSPn) induces two facets of proj(x1,x2)(DTSPMSn,s). Nevertheless, their result
cannot be applied to derive facet-defining inequalities involving precedence variables for
our formulation.

Theorem 4.1.7. For n ≥ 5 and s ≥ 2, if ax + by ≥ c defines a facet of PATSPn, then
ax1 + by1 ≥ c and ax2 + by2 ≥ c define two facets of DTSPMSn,s.

Proof. Let us consider an inequality ax+ by ≥ c valid for the PATSP polytope, such that
the set F ′ = {(x, y) ∈ PATSPn : ax + by = c} is a facet of PATSPn. Without loss of
generality, let us show that F = {(x1, y1, x2, y2) ∈ DTSPMSn,s : ax1 + by1 = c} is a facet
of DTSPMSn,s.

Note that F is a face of DTSPMSn,s: indeed, ax1 + by1 ≥ c is valid for DTSPMSn,s
because DTSPMSn,s ⊆ PATSPn × PATSPn and ax + by ≥ c is valid for PATSPn. To
prove that F is a facet of DTSPMSn,s we will exhibit 2dn affinely independent points in
F . Since DTSPMSn,2 ⊆ DTSPMSn,s for every s ≥ 2, it is enough to prove the existence
of these affinely independent points for s = 2.

By hypothesis there exist P1, . . . , Pdn affinely independent Hamiltonian circuits belong-
ing to F ′. In addition, it is not restrictive to assume P1 = 0, n, . . . , 1, 0. Under this
assumption, and repeating the reasoning used in the proof of Proposition 4.1.6, we can
construct Hamiltonian circuits D1, . . . , Ddn−2 and D̃2, . . . , D̃dn such that the 2dn − 3 pairs
of circuits

(P1, D1), . . . , (P1, Ddn−2), (P2, D̃2), . . . , (Pdn , D̃dn) (4.11)

are 2-consistent, and their characteristic points form an affine independent set of F and
verify:

x2
02 = y2

21 (4.12)

x2
(n−1)0 = y2

n(n−1) (4.13)

x2
n1 = y2

n1 (4.14)

3In the case n = 5, we set D?
1 = 0, 3, 2, 1, 5, 4, 0

96

4.1. FOCUS ON ROUTING

Now, assume that ax1 + by1 ≥ c coincides with the inequality x1
01 ≥ 0. In this case,

the Theorem holds, since we can complete the set in (4.11) to an affine basis of F by
adding the pairs of Hamiltonian circuits (P ?

k , D
?
k) as constructed in the proof of Proposition

4.1.6. Indeed, their characteristic points satisfy xP01 = 0 and the affine independence of the
resulting set is seen as in Proposition 4.1.6. The same also applies if ax1 +by1 ≥ c coincides
with x1

(n−1)0 ≥ 0 or with x1
n0 ≥ 0.

Therefore, assume that ax1 + by1 ≥ c does not coincide with any of the inequalities
x1

01 ≥ 0, x1
(n−1)0 ≥ 0, x1

n0 ≥ 0.

By hypothesis, there exists a circuit P ?
1 ∈ F ′ such that χ

P ?
1

01 = 1. In other words, P ?
1 =

0, 1, X1, 2, X2, 0 for some sequences of vertices X1 and X2. We first assume that X2 6= {n}.
Then if X2 6= ∅, we define D?

1 = 0,
←
X ′2, 2,

←
X ′1, 1, n, 0, where X ′1 and X ′2 are respectively

obtained from X1 and X2 by removing n. If X2 = ∅, then P ?
1 = 0, 1, X3, n,X4, 2, 0 for

some sequences X3 and X4. In this case, when X4 = ∅ we define D?
1 = 0, r, 2,

←
X ′3, n, 1, 0,

where X ′3 is obtained from X3 by removing its last vertex r. Instead, if X4 6= ∅, we set

D?
1 = 0, t, 2,

←
X ′4,

←
X3, n, 1, 0, where X ′4 is obtained from X4 by removing its first vertex t. In

each case, (P ?
1 , D

?
1) ∈ F (because it is a pair of 2-consistent Hamiltonian circuits) and its

characteristic point violates (4.12) (while satisfying (4.13) and (4.14)). As a consequence,
it cannot be in the affine subspace generated by the points in (4.11).

Similarly, there exists a Hamiltonian circuit P ?
2 ∈ F ′ such that χ

P ?
2

(n−1)0 = 1 (possibly

P ?
2 = P ?

1). We distinguish the following two cases, where X5, X6, X7 denote suitable
sequences of vertices:

(1) P ?
2 = 0, X5, n,X6, 1, X7, n− 1, 0

(2) P ?
2 = 0, X5, 1, X6, n,X7, n− 1, 0

We define D?
2 = 0, 1, n, n−1,

←
X7,

←
X6,

←
X5, 0 in case (1), whereas in case (2), D?

2 = 0, n, 1, n−
1,
←
X7,

←
X6,

←
X5, 0. In both cases, (P ?

2 , D
?
2) ∈ F and the affine independence of its charac-

teristic point with the previous ones is given by the fact that it violates only (4.13) while
satisfying (4.12) and (4.14).

Finally, let P ?
3 ∈ F ′ be a Hamiltonian circuit such that χ

P ?
3
n0 = 1 (P ?

3 may coincide
with P ?

1). Since P ?
3 = 0, X8, 1, X9, n, 0 for some sequence of vertices X8 and X9, defining

D?
3 = 0, n,

←
X9,

←
X8, 1, 0 gives that (P ?

3 , D
?
3) ∈ F . In addition, its characteristic point cannot

be obtained as an affine combination of the previous ones, as it violates equations (4.12)–
(4.14).

Completing the set of circuits in (4.11) with the pairs (P ?
i , D

?
i) yields a set of 2dn affinely

independent pairs of Hamiltonian circuits belonging to F and this concludes the proof for
the case in which X2 6= {n}.

Finally, let us assume that X2 = {n}. We define D?
1 = 0, 2, n − 1, n,

←
X ′1, 1, 0 where

X ′1 is obtained from X1 by removing n − 1. Note that, since n ≥ 5, X ′1 is not empty.
Now, (P ?

1 , D
?
1) ∈ F and its characteristic vector violates (4.14), while satisfying (4.12) and

(4.13). We construct the points (P ?
2 , D

?
2) and (P ?

3 , D
?
3) as done above. The same argument

97

CHAPTER 4. POLYHEDRAL RESULTS

used for the case X2 6= {n} shows that, also in the case X2 = {n}, completing the set of
circuits in (4.11) with the pairs (P ?

i , D
?
i) yields a set of 2dn affinely independent pairs of

Hamiltonian circuits belonging to F . This concludes the proof.

Remark 4.1.8. Fiorini et al. [60] have recently shown that any extended formulation
for the ATSP has 2Ω(

√
n) facets. Hence Theorem 4.1.7 characterizes implicitly a super-

exponential number of facets of the DTSPMS polytope.

The problem of determining whether the inequalities presented in Section 4.1.1 induce
facets for the PATSP polytope remains open. Using Theorem 4.1.7, a result of this kind
would immediately provide facets also for the DTSPMS polytope.

4.2 Focus on Consistency

This section addresses the study of the s-consistency from a polyhedral perspective. To
this purpose we consider the relaxation of our formulation given by the s-consistency con-
straints (3.26). Exploiting the structure of these constraints we observe that the considered
relaxation relates to a specific set covering polytope. The latter result is then used to in-
troduce new faces of the DTSPMS polytope, borrowed from the literature on set covering
polytopes.

Our approach is motivated by the following arguments. In our formulation for the
double TSP with multiple stacks of infinite capacity, only constraints (3.26) enforce the
s-consistency property. The new faces of the DTSPMS polytope obtained in this section
correspond to strengthening inequalities for our formulation that convey additional infor-
mations on the s-consistency. Note that this is not the case for the inequalities presented in
Section 4.1.1, since they are valid also for a formulation for the ATSP, in which constraints
(3.26) are not present. Actually, Theorem 4.1.7 yields a super-polynomial number of facets
of the DTSPMS polytope arising from the PATSP polytope yet they are not sufficient to
fully characterize the convex hull, as we now explain.

Example 4.2.1. Consider the following instance of the double TSP with five items and
two stacks of infinite capacity. We consider two symmetrical cost vectors c1 and c2, that
is c1

ij = c1
ji and c2

ij = c2
ji for all i 6= j ∈ V . We choose vector c1 such that the TSP

on the arc-weighted digraph (G5, c
1) admits P ? = 0, 1, 2, 3, 4, 5, 0 as optimal solution.

We also choose c2 such that D? = 0, 1, 2, 5, 4, 3, 0 is a least cost Hamiltonian circuit of
the arc-weighted digraph (G5, c

2). In the following, let L be the linear relaxation of our

formulation for DTSPMS5,2. Neither (P ?, D?) nor (P ?,
←
D?) is 2-consistent, because in

both pairs three vertices appear in the same order in both Hamiltonian circuits yielding

the pair. Additionally, the point S? = (χP
?
, γP

?
, 1

2
χD

?
+ 1

2
χ
←
D?
, 1

2
γD

?
+ 1

2
γ
←
D?

) does not
belong to DTSPMS5,2. Indeed, the inequality y1

12 + y1
25 + y2

12 + x2
21 + x2

25 ≤ 3 is valid for
DTSPMS5,2: a pair of Hamiltonian circuits could violate it only by verifying y1

12 +y1
25 = 2

and y2
12 + x2

25 = 2 because x2
21 + x2

25 ≤ 1; but in this case the pair is not 2-consistent
since 1, 2 and 5 appear in the same order in both Hamiltonian circuits. The point S?

98

4.2. FOCUS ON CONSISTENCY

1 0.50

1

2

3

4

5

0

1

2

5

4

3

Figure 4.2: The point S?. The left-hand circuit corresponds to (χP
?
, γP

?
). The right-hand

circuit corresponds to (1
2
χD

?
+ 1

2
χ
←
D?
, 1

2
γD

?
+ 1

2
γ
←
D?

).

violates the previous inequality, hence it cannot be in DTSPMS5,2. However, S? belongs
to L. To prove it, let us first consider constraints (3.26). They are satisfied by S? since
1
2
γD

?

ij + 1
2
γ
←
D?

ij = 1
2
. All other constraints of our formulation must be satisfied by S?, since

both (χP
?
, γP

?
) and (1

2
χD

?
+ 1

2
χ
←
D?
, 1

2
γD

?
+ 1

2
γ
←
D?

) belong to PATSP5. The same argument
proves that no inequality from Section 4.1.1 cuts off S?. We mention that S? is actually an
extreme point of L ∩ (PATSP5 × PATSP5) and also an optimal solution to the problem
of minimizing the function c1x1 + c2x2 over this polytope.

The same argument as above holds, as long as P ? and D? are optimal solutions for the
symmetric TSP’s on Gn and symmetrical cost vectors c1 and c2, respectively. Thus, for
symmetrical cost vectors, the lower bound yielded by the linear relaxation of our formu-
lation cannot be better than the value obtained by independently optimizing the pickup
and delivery circuits, i.e., by independently solving two traveling salesman problems.

In view of tackling the double TSP with multiple stacks by means of a polyhedral
approach, the situation illustrated in Example 4.2.1 is undesirable: not only the linear
relaxation of our formulation strictly contains the DTSPMS polytope but, in general, it
also yields weak lower bounds. Moreover, this situation is not solved by the inequalities
presented in Chapter 4.1.1. We need to strengthen the consistency requirement in our
formulation. To this end we define the following polytope, based on the s-consistency
constraints of our formulation for the double TSP with multiple stacks of infinite capacity:

SCn,s = conv{(y1, y2) ∈ {0, 1}n(n−1) × {0, 1}n(n−1) : (3.26) are satisfied}.

The polytopes SCn,s and DTSPMSn,s are related by the following:

proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s.

Thus every inequality valid for SCn,s is also valid for DTSPMSn,s.

We recall that, given a matrix A ∈ {0, 1}`×m, the associated set covering polytope is
SCA = conv{z ∈ {0, 1}m : Az ≥ 1}. Thus, SCn,s is the set covering polytope associated

99

CHAPTER 4. POLYHEDRAL RESULTS

with the binary matrix corresponding to the left-hand-side coefficients of constraints (3.26),
restricted to the precedence variables. Set covering polytopes have been intensively studied
— see for instance [24]. The study of set covering polytopes can be transferred to a graph
theoretical setting, as proposed by Sassano [172]. We report his construction since it will
be useful later.

Let SCA = conv{z ∈ {0, 1}m : Az ≥ 1} be a set covering polytope, where A ∈
{0, 1}`×m. We define the bipartite graph B = (U ,V ; E) as follows:

• U = {u1, . . . , u`} (one vertex for each row of A),

• V = {v1, . . . , vm} (one vertex for each column of A),

• {ui, vj} ∈ E if and only if Aij = 1.

We recall that C ⊆ V covers U if the neighborhood of C coincides with U . We call such
a C a cover of B. For C a cover of B, its incidence vector zC ∈ {0, 1}|V| is defined by
zCj = 1 if and only if j ∈ C, for all j ∈ V . Then SCA coincides with the polytope

Q(B) = conv{zC ∈ {0, 1}|V| : C covers U}, see [172]. We now give an example of set
covering polytope as well as the corresponding bipartite graph.

Example 4.2.2. Let us consider the set covering polytope associated with the following
constraints, expressed in the variables yTij for i 6= j ∈ {1, . . . , 5} and T = 1, 2:

y1
12 + y1

23 + y2
12 + y2

23 ≥ 1 (4.15)

y1
23 + y1

34 + y2
23 + y2

34 ≥ 1 (4.16)

y1
34 + y1

45 + y2
34 + y2

45 ≥ 1 (4.17)

y1
45 + y1

51 + y2
45 + y2

51 ≥ 1 (4.18)

y1
51 + y1

12 + y2
51 + y2

12 ≥ 1 (4.19)

This set covering polytope is obtained by considering a subset of s-consistency con-
straints (3.26) for n = 5. The associated bipartite graph B is depicted in Figure 4.3, where
we omitted the isolated vertices corresponding to the variables with a zero coefficient. A
solution to system (4.15)–(4.19) corresponds, in this graph, to a subset of white vertices
covering all blue vertices. From Figure 4.3 it is apparent that at most one vertex between
y1

12 and y2
12 is needed in a cover of B, because they have the same neighborhood. In fact,

this remains true for every pair of variables of the type y1
ij and y2

ij appearing in the previous
system. This property of s-consistency constraints will be used in next section.

4.2.1 The Restricted Set Covering Polytope

In this section we analyze the specific structure of SCn,s. From basic properties of set
covering polytope — see Proposition 1.5.9 — we get that SCn,s is a full dimensional,
nonempty polytope for every n ≥ 3 and s ≥ 2. In this case, the bound inequalities yTij ≥ 0
and yTij ≤ 1 define facets of SCn,s for all distinct i, j ∈ {1, . . . , n} and T = 1, 2. Facets

100

4.2. FOCUS ON CONSISTENCY

y1
12

y1
23

y1
34

y2
45

y1
45

y2
51

y2
23

y2
34

y2
12

y1
51

(4.16)

(4.17)

(4.18)

(4.15)

(4.19)

Figure 4.3: The bipartite graph corresponding to the set covering polytope described in
Example 4.2.2.

of this type are called trivial. Conversely, every facet-defining inequality other than the
bound inequalities is called non-trivial.

We observe that for s ≥ 2, the variables y1
ij and y2

ij have the same coefficient in con-
straints (3.26), for all i 6= j ∈ V \ {0}. Using this property, we prove that all facets of
SCn,s can be obtained by studying the following polytope, hereafter called restricted set
covering polytope:

RSCn,s = conv{ y ∈ {0, 1}n(n−1) :
s∑
i=1

yvivi+1
≥ 1 for all distinct v1, . . . , vs+1 ∈ V \ {0}}.

Indeed, we can prove the following result.

Proposition 4.2.3. Every non-trivial facet-defining inequality of SCn,s is of the form
ay1 + ay2 ≥ b, where ay ≥ b is a non-trivial facet-defining inequality of RSCn,s.

Before proving Proposition 4.2.3, we point out that the polyhedral study of RSCn,s
can lead to new faces of DTSPMSn,s. Indeed, Proposition 4.2.3 asserts that the linear
description of the set covering polytope RSCn,s immediately gives the description of SCn,s
and, as we already observed, proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s. The process described
above is represented schematically in Figure 4.4

The remainder of the section is devoted to the proof of Proposition 4.2.3. It uses some
intermediate results. In the first one we show how the vertices of RSCn,s are connected to
the ones of SCn,s. In our proofs we often implicitly use the fact that a binary point of a
binary polytope is one of its vertices.

101

CHAPTER 4. POLYHEDRAL RESULTS

projy1,y2(DTSPMSn,s)

DTSPMSn,s

RSCn,sSCn,s

Figure 4.4: Passing from RSCn,s to DTSPMSn,s. An arrow indicates that the tail is
contained in the head. The double line at the bottom indicates a polyhedral equivalence.

Lemma 4.2.4. For y = (y1, y2) ∈ Rn(n−1) × Rn(n−1), define f(y) ∈ Rn(n−1) by f(y)ij =
max{y1

ij, y
2
ij}, for all distinct i, j ∈ {1, . . . , n}. Then,

RSCn,s = conv{f(y) ∈ Rn(n−1) : y is a vertex of SCn,s}.

Proof. Let P = conv{f(y) ∈ Rn(n−1) : y is a vertex of SCn,s}. To show P ⊆ RSCn,s, let v̄
be a vertex of P . By construction, v̄ = f(ȳ) for some vertex ȳ of SCn,s. Since ȳ is binary,
so is v̄. In addition, v̄jiji+1

= 0 if and only if ȳ1
jiji+1

= ȳ2
jiji+1

= 0. The vector v̄ being
binary,

∑s
i=1 v̄jiji+1

< 1 if and only if v̄jiji+1
= 0 for all i = 1, . . . , s. But this can happen

only if
∑s

i=1(ȳ1
jiji+1

+ ȳ2
jiji+1

) = 0, which is impossible by ȳ ∈ SCn,s and (3.26). Hence,
v̄ ∈ RSCn,s. As this holds for every vertex v̄ of P , convexity implies P ⊆ RSCn,s.

We prove now that RSCn,s ⊆ P . Given a vertex v̄ of RSCn,s, we define ȳ = (ȳ1, ȳ2) ∈
{0, 1}n(n−1) × {0, 1}n(n−1) as follows:

ȳ1
jiji+1

= ȳ2
jiji+1

= 1 if v̄jiji+1
= 1,

ȳ1
jiji+1

= ȳ2
jiji+1

= 0 otherwise.

For distinct j1, . . . , js+1, we have
∑s

i=1(ȳ1
jiji+1

+ ȳ2
jiji+1

) = 0 if and only if v̄j1j2 = v̄j2j3 =
· · · = v̄jsjs+1 = 0. The latter is impossible since v̄ ∈ RSCn,s. Hence, since ȳ is binary,
it satisfies (3.26). Thus ȳ is a vertex of SCn,s. By construction, we have v̄ = f(ȳ),
therefore v̄ is a vertex of P . This holds for every vertex v̄ of RSCn,s, hence RSCn,s ⊆ P
by convexity.

We can now show that the linear description of SCn,s can be deduced from the one of
RSCn,s.

Proof (of Proposition 4.2.3). Recall that from Proposition 1.5.9 we have the following
properties:

102

4.2. FOCUS ON CONSISTENCY

(i) SCn,s is full dimensional.

(ii) Inequalities yTij ≤ 1 define facets of SCn,s for all distinct 1 ≤ i, j ≤ n and T = 1, 2.

(iii) If a1y1 + a2y2 ≥ b is non-trivial and defines a facet of SCn,s, then b > 0 and aTij ≥ 0
for all distinct 1 ≤ i, j ≤ n and T = 1, 2.

We first prove that all facets of RSCn,s define facets of SCn,s.

Claim 4.2.5. If ay ≥ b is a non-trivial facet-defining inequality of RSCn,s, then ay1+ay2 ≥
b is a facet-defining inequality of SCn,s.

Proof. We first prove that ay1 + ay2 ≥ b is valid for SCn,s. Let γ = (γ1, γ2) be a vertex of
SCn,s and suppose that aγ1 + aγ2 < b. By Lemma 4.2.4, f(γ) is a vertex of RSCn,s. From
γ ≥ 0, we get f(γ)ij ≤ γ1

ij + γ2
ij for all distinct 1 ≤ i, j ≤ n. Since, by (iii), aij ≥ 0, we get

af(γ) ≤ aγ1 + aγ2 < b, contradicting the validity of ay ≥ b for RSCn,s.

We now prove that ay1 + ay2 ≥ b defines a facet of SCn,s. Let F ′ denote the facet of
RSCn,s defined by ay ≥ b and {ξ1, . . . , ξn(n−1)} be an affine basis of F ′. Since b > 0 these
vectors are linearly independent. Thus the 2n(n−1) vectors {(ξ`,0), (0, ξ`)}`=1,...,n(n−1) are
linearly independent points of SCn,s, satisfying ay1 + ay2 ≥ b with equality. �

We now show that non-trivial facet-defining inequalities of SCn,s have a symmetric
structure:

Claim 4.2.6. Let a1y1 + a2y2 ≥ b be a non-trivial facet-defining inequality of SCn,s. Then
a1 = a2.

Proof. Let us fix i, j ∈ {1, . . . , n} with i 6= j and let us write for convenience the vectors
γ ∈ R2n(n−1) as (γ̄, γ1

ij, γ
2
ij). By contradiction, we suppose that a1

ij > a2
ij. By (iii), we get

a1
ij > 0. If (γ̄, 1, 1) is a vertex of SCn,s, then so are (γ̄, 1, 0) and (γ̄, 0, 1), since, in each of

constraints (3.26), the coefficients of y1
ij and y2

ij are the same.

Let F = SCn,s ∩ {a1y1 + a2y2 = b} be the facet defined by the given inequality and B
a basis of F . It is not restrictive to assume B is composed of vertices of SCn,s. Then, no
element of B has the form (γ̄, 1, 1), as otherwise, by āγ̄+a1

ij+a2
ij = b and a1

ij > 0, we would
get that (γ̄, 0, 1) violates the given inequality. Given that F arises from a non-trivial facet-
defining inequality of SCn,s, there exists (γ̄, 1, 0) ∈ B as otherwise, F ⊆ SCn,s ∩ {y1

ij = 0}.
This implies that (γ̄, 0, 1) violates the facet-defining inequality. We deduce that a1

ij ≤ a2
ij.

Symmetrically, a2
ij ≤ a1

ij and the desired equality follows. �

We finally prove that all the facets of RSCn,s can be obtained from those of SCn,s.

Claim 4.2.7. If ay1 + ay2 ≥ b is a non-trivial facet-defining inequality of SCn,s, then
ay ≥ b is a non-trivial facet-defining inequality of RSCn,s.

103

CHAPTER 4. POLYHEDRAL RESULTS

Proof. The point (γ,0) is a vertex of SCn,s whenever γ is a vertex of RSCn,s. Thus the
validity of ay ≥ b for RSCn,s follows from the validity of ay1 + ay2 ≥ b for SCn,s.

Now, let us suppose, by contradiction, that ay ≥ b does not define a facet of RSCn,s.

Then there exists an integer f ≥ 2 such that a =
∑f

i=1 λia
i and b ≤

∑f
i=1 λib

i, where
λi > 0 and aiy ≥ bi is a facet of RSCn,s for every 0 ≤ i ≤ f . Thus, the inequalities

aiy1 + aiy2 ≥ bi are valid for SCn,s. However, (a, a) =
∑f

i=1 λi(a
i, ai), contradicting the

fact that ay1 + ay2 ≥ b defines a facet of SCn,s. �

We stress that a polyhedral study of RSCn,s can be useful to find faces of the DTSPMS
polytope. Such a study is greatly simplified by the observation that RSCn,s is a set covering
polytope. Indeed, set covering polytopes are pervasive in combinatorial optimization, see
p. 54 of [40] and the references therein. Consequently, the facial structure of set covering
polytopes has been investigated by several authors e.g., [67, 152, 172, 43, 143, 39, 56, 122,
175, 142]. Moreover, much of this previous literature focused on classes of inequalities
valid for set covering polytopes defined by well-structured matrices. In our case, this latter
approach is very useful, because the matrix defining RSCn,s exhibits structures associated
with known inequalities. This is the subject of next section.

4.2.2 Faces from the Restricted Set Covering Polytope

In this section, we introduce a general class of faces of the DTSPMS polytope. In fact,
it arises directly from a family of inequalities valid for specific set covering polytopes
introduced by Letchford [126]. We need the following definition. Given A ∈ {0, 1}`×m and
1 ≤ i ≤ `, the support of the i-th row of A is supp(i) = {j ∈ {1, . . . ,m} : Aij = 1}. Then
we have the following theorem.

Theorem 4.2.8 ([126]). Let A ∈ {0, 1}`×m and let p and q be two integers such that
2 ≤ q < p ≤ ` and q does not divide p. Let N0, . . . , Np−1 ⊆ {1, . . . ,m} such that there exist
row indices ik for k = 0, . . . , p − 1 with supp(ik) ⊆ Nk ∪ Nk+1 ∪ · · · ∪ Nk+q−1 (subscript
indices are modulo p). Then the inequality

p−1∑
k=0

z(Nk) ≥
⌈
p

q

⌉
(4.20)

is valid for SCA = conv{z ∈ {0, 1}m : Az ≥ 1}.

Inequality (4.20) is called generalized cycle inequality. We point out that Letchford also
proves that the generalized cycle inequalities belong to a larger family of inequalities valid
for SCA which can be separated in polynomial time [126]. However, this result is based on
the equivalence of separation and optimization [89] and it seems to be not easily adaptable
to obtain fast separation routines. Theorem 4.2.8 provides a generalization of families of
inequalities independently found in previous works on set covering polytopes. Namely, for

104

4.2. FOCUS ON CONSISTENCY

q = 2 inequality (4.20) was already known as aggregated cycle inequality [25]. When the
Nk’s are pairwise disjoint and all of cardinality 1, inequality (4.20) is a q-rose inequality of
order p [172].

Remark 4.2.9. The q-rose inequalities of order p can be seen also in the graph theoretical
setting presented in Section 4.2. Let p and q be two integers with 2 ≤ q < p. A q-rose of
order p is a bipartite graph B = (U ,V ; E) with the following properties:

• V = {v1, . . . , vp};

• U = {u1, . . . , up} such that N(ui) = Vi, where Vi = {vi, . . . , vi+q−1} (subscripts taken
modulo p);

When B is a q-rose of order p, a cover of B has cardinality at least
⌈
p
q

⌉
, see [172]. As a

consequence, the inequality (which is a q-rose inequality of order p)

z(V) ≥
⌈
p

q

⌉
is valid for Q(B). Actually, it defines a facet of Q(B) if and only if q does not divide p, as
shown by Sassano [172].

Inequalities Associated with Circuits of Gn. Using Theorem 4.2.8, we can easily
construct s-rose inequalities of order at least s+1 valid for RSCn,s from the matrix defining
this set covering polytope.

Proposition 4.2.10. Let C be a circuit of Gn with |C| ≥ s+ 1. Then

y(C) ≥
⌈
|C|
s

⌉
(4.21)

is a s-rose inequality valid for RSCn,s.

Proof. Let C = {(v1, v2), (v2, v3), . . . , (vd−1, vd), (vd, v1)} be a circuit of Gn. By our as-
sumption, d ≥ s + 1. Consider constraints yvivi+1

+ yvi+1vi+2
+ · · · + yvi+s−1vi+s

≥ 1, for
every i = 1, . . . , d (indices taken modulo d). These constraints yield a subsystem of the
system defining RSCn,s. Moreover, (4.21) is exactly (4.20) by taking Nk as the singleton
containing the column index corresponding to variable yvkvk+1

, for 1 ≤ k ≤ d (indices taken
modulo d+ 1). Hence (4.21) is valid for RSCn,s. By the definition of s-rose inequality, we
have the desired result.

The proof of Proposition 4.2.10 also shows that inequalities (4.21) are interesting only
when s does not divide |C|. This corollary follows from Claim 4.2.5 and Proposition 4.2.10.

105

CHAPTER 4. POLYHEDRAL RESULTS

Corollary 4.2.11. Let C be a circuit of Gn with |C| ≥ s+ 1. Then

y1(C) + y2(C) ≥
⌈
|C|
s

⌉
(4.22)

is valid for DTSPMSn,s.

Remark that the point S? described in Example 4.2.1 is cut off by the inequality∑
T=1,2(yT54 + yT43 + yT32 + yT21 + yT15) ≥ 3. The latter is inequality (4.22) associated with

the circuit C of G5 defined as C = {(5, 4), (4, 3), (3, 2), (2, 1), (1, 5)}.
The graph representation of set covering polytopes is very useful to visualize schemat-

ically the valid inequalities of RSCn,s. In the examples that follow, the reader can recon-
struct such inequalities by observing the following guidelines. We represent the inequalities
with blue vertices and the variables with white vertices. We will label the vertices with the
name of the variables, e.g., y12, y13, . . . To avoid unnecessary notational burden, the white
vertices will be identified with the corresponding variables. In this way, when W is a set
of white vertices, the notation y(W) indicates the sum of the variables corresponding to
the vertices in W .

We conclude this section with two examples in which we describe valid inequalities for
some DTSPMS polytopes arising from generalized cycle inequalities. In the first example
we provide an inequality obtained from a 2-rose inequality not associated with a circuit of
Gn, as was the case in Corollary 4.2.11; in the second example we give an inequality valid
for DTSPMSn,3 which does not arises from a 3-rose inequality. Thus, on the one hand
Proposition 4.2.10 lets us characterize faces of the DTSPMS polytope; on the other hand
the facial structure of the latter seems somewhat richer.

Example 4.2.12. The bipartite graph in Figure 4.5 is a 2-rose of order 7. It corresponds
to a subset of constraints defining RSCn,2 for n ≥ 7. Hence, calling V the set of white
vertices in Figure 4.5 we have that y1(V) + y2(V) ≥ 4 is valid for DTSPMSn,2 for every
n ≥ 7. Note that this inequality cannot be expressed as in Proposition 4.2.10 since, for
example, the subscript 1 is always in first position. In other words, the 2-rose of Figure
4.5 does not correspond to a circuit of Gn.

Example 4.2.13. Consider the bipartite graph in Figure 4.6. It corresponds to 10 con-
straints defining RSCn,3, with n ≥ 9. Let A be the left-hand matrix of this subset of
constraints. We define Ni−1 = {yi,i+1} for i = 1, . . . , 6, N6 = {y79, y95}, N7 = {y86},
N8 = {y69}, N9 = {y91}. Note that the Nk’s are pairwise disjoint. Hence, calling W the
set of white vertices in Figure 4.6, we get from Theorem 4.2.8 that y1(W) + y2(W) ≥ 4 is
valid for DTSPMSn,3. This generalized cycle inequality is not associated with a circuit of
Gn as in Proposition 4.2.10, since the subscript 8 appears only in first position.

In next section we apply the set covering approach to the double TSP with two stacks.
In this case, the set covering polytope reduces to a specific vertex cover polytope.

106

4.2. FOCUS ON CONSISTENCY

y23

y12

y45

y64

y76

y27

y34

Figure 4.5: A 2-rose of order 7 arising from RSCn,2, where n ≥ 7. It does not arise from a
circuit of Gn.

y12
y91

y23

y67

y56

y45

y34

y79

y69

y95

y86

Figure 4.6: The graph corresponding to the generalized cycle inequality of Example 4.2.13.
Blue vertices are constraints, white vertices correspond to variables.

107

CHAPTER 4. POLYHEDRAL RESULTS

4.2.3 Focus on Two Stacks: A Vertex Cover Approach

The starting point of this section is the observation that, in the special case of the double
TSP with two stacks, the restricted set covering polytope RSCn,2 is the vertex cover
polytope of a suitable graph. Thus, valid inequalities for the vertex cover polytope can be
converted, by Claim 4.2.5, into inequalities valid for the DTSPMS polytope.

An Interlude on Vertex Cover Polytopes

A vertex cover of a graph G is a set S of vertices such that each edge of G is incident to
an element of S. The vertex cover polytope of a graph G is the convex hull of the incidence
vectors of its vertex covers and it is denoted V CG. It is immediate that for every graph
G = (W,E):

V CG = conv{y ∈ {0, 1}|W | : yu + yv ≥ 1,∀{u, v} ∈ E}. (4.23)

Vertex cover polytopes can be seen equivalently as stable set polytopes. Indeed, a
subset of vertices of a graph is a vertex cover if and only if its complement is a stable set.
The stable set polytope of G is defined as the convex hull of the incidence vectors of its
stable sets. Given a graph G = (W,E), let SSG be the stable set polytope of G. Then we
have:

SSG = {z ∈ R|W | : z = 1− y, y ∈ V CG}. (4.24)

In fact, stable set polytopes arise frequently from combinatorial optimization problems [21],
hence they have been intensively studied. By (4.24), all inequalities valid for the stable set
polytope can be transferred to the vertex cover polytope (and vice-versa) by complementing
the variables. Our goal is to exploit the existing literature on stable set and vertex cover
polytopes to provide new inequalities valid for RSCn,2.

The Vertex Cover in DTSPMSn,2

Let us consider the double TSP with two stacks. The polytope RSCn,2 is:

conv{y ∈ {0, 1}n(n−1) : yij + yjk ≥ 1 for all distinct i, j, k ∈ V \ {0}}.

As it turns out, RSCn,2 can be expressed as a vertex cover polytope. Let Sn = (U, F) be
the graph whose vertices are uij for all distinct i, j ∈ V \{0} and whose edges are {uij, ujk}
for all distinct i, j, k ∈ V \ {0}. To describe the vertex cover polytope of Sn we associate
the variable yij with the vertex uij, for all distinct i, j ∈ V \ {0}. Note that RSCn,2 and
the vertex cover polytope of Sn have the same variables. Moreover, each constraint in
the RSCn,2 definition contains two variables which correspond to the extremities of an
edge of Sn. Therefore RSCn,2 is nothing but the vertex cover polytope of Sn. We deduce
that every inequality valid for the vertex cover polytope of Sn can be transformed into an
inequality valid for DTSPMSn,2.

108

4.2. FOCUS ON CONSISTENCY

The graph Sn can be interpreted as a simplification of the graph theoretical setting for
set covering polytopes described at the end of Section 4.2. Let B be the bipartite graph
associated with the set covering polytope defined by the 2-consistency constraints. The
vertices of B associated to the 2-constraints have all degree 2. Hence one can think that B
is obtained from Sn by subdividing the edges of Sn.

Several inequalities valid for the vertex cover polytope of a graph G are associated with
subgraphs of G. We now derive inequalities valid for DTSPMSn,2 by studying subgraphs
of Sn.

Odd Hole Inequalities. Using the vertex cover approach we describe the 2-rose in-
equalities of RSCn,2 in relation to specific vertex subsets of Sn. We say that H ⊆ U is an
odd hole of Sn if |H| is odd and the subgraph induced by H in Sn is a circuit. There is
a one-to-one correspondence between the vertices of Sn and the arcs of Gn. However, if
every odd circuit of Gn provides an odd hole of Sn, the converse is not true (see Example
4.2.12). Hence, the following corollary generalizes Corollary 4.2.11 in the two stack case.

Corollary 4.2.14. Inequalities

y1(H) + y2(H) ≥ |H|+ 1

2
for all odd circuits H of Sn, (4.25)

are valid for DTSPMSn,2. If H is not an odd hole of Sn then (4.25) cannot define a facet
of DTSPMSn,2.

Proof. It is well-known [151] that y(H) ≥ |H|+1
2

is valid for the vertex cover polytope of a

graph when H is one of its odd circuits. Therefore, y(H) ≥ |H|+1
2

is valid for RSCn,2 for
every odd circuit H of Sn. By Claim 4.2.5 we get that (4.25) is valid for SCn,2 and thus
for DTSPMSn,2. The last part of the proposition follows from Proposition 4.2.3 and from

the observation that y(H) ≥ |H|+1
2

does not define a facet of RSCn,2 if H is not an odd
hole of Sn, see e.g., [163].

Inequalities of the form (4.25) are called odd hole inequalities when H is an odd hole
of Sn. The odd hole inequalities have been discovered by Padberg [151] in the context of
the stable set polytope of a generic graph G.

Wheel Inequalities. Using the vertex cover approach we now give a new family of
valid inequalities for RSCn,2 that cannot be obtained, in general, as generalized cycle
inequalities. These are called non-simple wheel inequalities and have appeared in several
flavors in the literature on stable set polytopes [35, 48]. For their description we follow to
a large extent the approach of de Vries [48].

For k ≥ 1, we define a k-wheel as the graph (W,R) with W = {w0, w1, . . . , w2k+1}
and R = {{w0, wi}, {wi, wi+1} : i = 1, 2, . . . , 2k + 1} (assuming 2k + 2 ≡ 1). The vertex
w0 is called hub, the other vertices are called spoke ends and the subgraphs induced by

109

CHAPTER 4. POLYHEDRAL RESULTS

u1

u2

u3

u4

u5

ww

u1

u2

u3

u4

u5

Figure 4.7: On the left, a 2-wheel, with hub in w and spoke ends in u1, . . . u5. On the right
one of its odd subdivisions.

{w0, wi, wi+1} are called faces of the k-wheel, for i = 1, . . . , 2k+ 1 (with 2k+ 2 ≡ 1). Note
that H = W \ {w0} is an odd hole of (W,R).

A subdivision of a k-wheel is obtained from a k-wheel by subdividing some of its edges
in such a way that each face remains a circuit of odd length. Given a k-wheel with hub w0

and spoke ends w1, . . . , w2k+1, we distinguish the following types of subdivisions:

• odd subdivision of the k-wheel, in which, in addition, we require that each subdivision
of an edge incident in w0 is a path with an odd number of edges;

• even subdivision of the k-wheel, in which, in addition, we require that each subdivi-
sion of an edge incident in w0 is a path with an even number of edges.

As a consequence, in both cases the subdivision of the edge {wi, wi+1} is a path with an
odd number of edges, for every i = 1, . . . , 2k + 1 and 2k + 2 ≡ 1. See Figure 4.7 for the
illustration of an odd subdivision of a 2-wheel.

Odd (or even) subdivisions of a k-wheel give rise to inequalities valid for the vertex
cover polytope of a graph G. Let us suppose that a subgraphW of G is an odd subdivision
of a k-wheel. Let w be the vertex of G corresponding to the hub of W and let W be the
vertex set of W . Then the following inequality is valid for the vertex cover polytope of G,
see [35]:

kyw + y(W \ {w}) ≥ |W |
2

+ k. (4.26)

Similarly, if W is an even subdivision a k-wheel having W as vertex set and w as hub,
and W is a subgraph of G, then the inequality

(k + 1)yw + y(W \ {w}) ≥ |W |+ 1

2
+ k (4.27)

110

4.2. FOCUS ON CONSISTENCY

is valid for the vertex cover polytope of G. We call (4.26) and (4.27) odd wheel inequality
and even wheel inequality, respectively. Applying them to the vertex cover polytope of Sn
(i.e., to RSCn,2), we immediately get valid inequalities for DTSPMSn,2.

Corollary 4.2.15. Let us consider a subgraph W of Sn. Let W be the vertex set of W.
Then:

• if W is an odd subdivision of a k-wheel with w being its hub, the inequality

ky1
w + ky2

w + y1(W \ {w}) + y2(W \ {w}) ≥ |W |
2

+ k (4.28)

is valid for DTSPMSn,2;

• if W is an even subdivision of a k-wheel, the inequality

(k + 1)y1
w + (k + 1)y2

w + y1(W \ {w}) + y2(W \ {w}) ≥ |W |+ 1

2
+ k (4.29)

is valid for DTSPMSn,2.

When no confusion may arise, inequalities (4.28) and (4.29) are also called odd wheel
inequality and even wheel inequality, respectively.

Now, we present an important example whose goal is twofold. Firstly, it shows that
subdivisions of k-wheels do appear in the graph Sn. Secondly, it provides an example of
an odd wheel inequality that is not implied by the generalized cycle inequalities (4.20) of
RSCn,2.

The odd wheel inequality we consider is y(W) ≥ 6, where W is the vertex set of the
graph W depicted in Figure 4.8. Such a graph is a subgraph of S8 and it is actually an
odd subdivision of a 1-wheel, having its hub in u56 and spoke ends in u12, u23 and u31. Let
us consider the vertex cover polytope of W . It is the convex hull of the binary solutions
to A′y ≥ 1, where A′ is the left-hand-side matrix of the subsystem of constraints defining
RSC8,2 that corresponds to the edges of W . The matrix A′ has 10 columns and each row
contains exactly two nonzero entries. Therefore, the vertex cover polytope of W is full-
dimensional. It can be proven by exhibiting an affine basis, that the inequality y(W) ≥ 6
is facet-defining for the vertex cover polytope of W .

As a consequence, up to multiplying it by a positive scalar, y(W) ≥ 6 is not implied
by any of the inequalities valid for the vertex cover polytope of W .

We now prove that y(W) ≥ 6 cannot be obtained as a generalized cycle inequality
from the constraints A′y ≥ 1. By contradiction, suppose that

∑
w∈W µyw ≥ 6µ, for some

integer µ ≥ 1 can be obtained as a generalized cycle inequality starting from constraints
A′y ≥ 1. This means that there are N0, . . . , Np−1 such that

∑
w∈W µyw =

∑p−1
i=0 y(Ni) and⌈

p
q

⌉
= 6µ, for some 2 ≤ q < p ≤ 12 (because A′ has 12 rows). Hence, we immediately

get that µ = 1, implying that each variable of the generalized cycle inequality appears in
exactly one Nj, for some j = 0, . . . , p − 1. Therefore the nonempty Nj’s form a partition

111

CHAPTER 4. POLYHEDRAL RESULTS

u56

u12u31

u43

u64

u67

u23

u72

u68

u81

Figure 4.8: An odd subdivision of the 1-wheel. Each edge corresponds to a constraint of
RSC8,2 whose variables correspond to its endpoints.

of the variables of the generalized cycle inequality. Now if q = 2, we have that the variable
associated to vertex u43 belongs to Nk ∪Nk+1 (k ∈ {0, . . . , p− 2}), the variable associated
with vertex u12 belongs to N` ∪N`+1 (` ∈ {0, . . . , p− 2}) and the variable associated with
u23 belongs to Nr ∪Nr+1 (r ∈ {0, . . . , p− 2}). Since u31 is the neighbor of u12, u23 and u43

its corresponding variable belongs to Ni ∪ Ni+1 for i ∈ {k, `, r}, a contradiction because

the Nj’s form a partition of the variables. Therefore q ≥ 3 and this implies
⌈
p
q

⌉
≤ 4 for

every 2 < p ≤ 12, a contradiction again. Finally, all the constraints defining RSC8,2 that
are not in A′y ≥ 1 contain at least one variable corresponding to a vertex of S8 \W . Thus,
the inequality y(W) ≥ 6 is not a generalized cycle inequality obtained from the constraints
defining RSC8,2.

We conclude by mentioning a further generalization of the odd and even wheel inequal-
ities, first introduced in [35] and refined in [48]. The generalized inequalities are associated
with graph structures obtained from the identification of vertices of odd (or even) subdi-
visions of wheels. Identifying two vertices v1 and v2 of a graph G = (W,E) to w means
replacing them by a new vertex w which is incident to all edges previously incident to v1 or
v2, see p. 55 in Bondy and Murty’s book on Graph Theory [22]. This operation transforms
G in a new graph having (W \ {v1, v2}) ∪ {w} as vertex set. Any valid inequality for the
vertex cover polytope of a graph can be transformed into a valid inequality of the vertex
cover polytope of the graphs obtained by identifying vertices.

Proposition 4.2.16 (see [35, 48]). Let G = (W,E) be a graph. Let
∑

v∈W avyv ≥ b be a
valid inequality of V CG and let T ⊆ W be a set of mutually non-adjacent vertices of G.
Finally let G′ = (W ′, E ′) be the graph obtained from G by identifying the vertices in T to
a single vertex t. Then

(∑
w∈T aw

)
yt +

∑
v∈W ′\{w} avyv ≥ b is valid for V CG′.

Let us call non-simple odd wheel inequality any inequality obtained by applying Propo-
sition 4.2.16 to an odd wheel inequality. Analogously define the non-simple even inequality.

112

4.2. FOCUS ON CONSISTENCY

Corollary 4.2.17. Let
∑

v∈U avyv ≥ b be an odd (resp. even) wheel inequality valid for
RSCn,2. Then any non-simple odd (resp. even) wheel inequality obtained from it is valid
for RSCn,2.

Odd Hole Inequalities: Facet Condition in RSCn,2. We now focus on the odd

hole inequalities of RSCn,2, that is inequalities of the form y(H) ≥ |H|+1
2

where H is an
odd hole of Sn. The condition that H induces a circuit of Sn is not sufficient to guarantee
that such an inequality is facet-defining for RSCn,2. Indeed, take a vertex u of Sn and
suppose that it is adjacent to three vertices u1, u2, u3 of H. If, in the circuit induced by
H, the paths linking u1 to u2 and u2 to u3 are odd, then the graph induced by H ∪ {u}
contains an odd subdivision of a 1-wheel as subgraph. The associated odd wheel inequality
y(H ∪ {u}) ≥ |H|+1

2
+ 1, summed to the bound inequality yu ≤ 1, implies the odd hole

inequality obtained from H. Using the specific structure of Sn we prove that in all other
cases, odd hole inequalities do define facets of RSCn,2.

Proposition 4.2.18. Let H be an odd hole of Sn. The odd hole inequality

y(H) ≥ |H|+ 1

2

defines a facet of RSCn,2 if and only if for every vertex u ∈ U \ H, the graph induced in
Sn by H ∪ {u} does not contain an odd subdivision of a 1-wheel.

The necessity has already been observed above. Hence, in order to prove Proposition
4.2.18, we only need to show the sufficiency of the condition. More specifically, we initially
fix an odd hole H = {u1, . . . , uh} and a vertex u of Sn \ H. We prove that, under the
condition that H ∪ {u} induces in Sn a graph without any odd subdivision of the 1-wheel,
there is a vertex cover of Sn not containing u and whose incidence vector belongs to the face
of RSCn,2 defined by the odd hole inequality associated with H. The incidence vectors
constructed in this way then let us prove the maximality of the face induced by such
inequality. For the sake of clarity, we write y ∈ Rn(n−1) as y = (yu1 , . . . , yuh , yu, ȳ) with
ȳ ∈ Rn(n−1)−h−1. In addition, we assume that ui is adjacent to ui+1 in the graph induced
by H in Sn, for all i = 1 . . . , h (uh+1 ≡ u1).

Lemma 4.2.19. Let H = {u1, . . . , uh} be an odd hole of Sn and u ∈ U \H such that the
graph induced by H ∪ {u} in Sn does not contain an odd subdivision of a 1-wheel. Then
there exists a vertex cover Qu of Sn such that u 6∈ Qu, v ∈ Qu for all v ∈ U \ (H ∪ {u})
and whose incidence vector belongs to RSCn,2 ∩ {y(H) = |H|+1

2
}.

Proof. Let us first suppose that u has only one neighbor uj in H for some j ∈ {1, . . . , h}. If
j is even, we define Qj = {u1, u2, u4, . . . , uj, uj+2, . . . , uh−1}. Similarly, if j is odd we define

the set Qj = {u1, u3, u5, . . . , uj, uj+2, . . . , uh}. In both cases, |Qj| = |H|+1
2

. Let zj ∈ {0, 1}h
be defined by zjw = 1 if and only if w ∈ Qj. The vector βu = (zj, 0,1) is the incidence
vector of a vertex cover Qu of Sn since it satisfies all constraints of RSCn,2. In addition,

z(H) = |H|+1
2

hence βu proves the result in this case.

113

CHAPTER 4. POLYHEDRAL RESULTS

Similarly, let us suppose that u has exactly two neighbors uj and uk in H, for distinct
1 ≤ j < k ≤ h. We can always construct a vertex cover Qj,k of the graph induced by H in
Sn such that uj, uk ∈ Qj,k and Qj,k has cardinality |H|+1

2
. For example, if both j and k are

odd, one could take Qj,k = {u1, u3, . . . , uj, uj+2, . . . , uk, uk+2, . . . , uh−2, uh−1}. The other
cases are similar. As before, let zj,k ∈ {0, 1}h be defined by zj,kw = 1 whenever w ∈ Qj,k.
The vector βu = (zj,k, 0,1) proves the result as before.

We can now suppose that u has at least three neighbors in H. Let us indicate them
with uj, uk, u` for distinct j, k, ` ∈ {1, 2 . . . , h}. By definition H induces a circuit in Sn
with an odd number of edges. Since h is odd, it is without loss of generality to assume
that uj and uk are linked in this circuit by a path with an odd number of edges and not
containing any other neighbor of u. Let us call Pjk this path. We orient the circuit induced
by H in Sn in the sense going from uj to uk along Pjk. We denote by Qj,k the subset of H
given by uj, its neighbor in Pjk and then by alternating vertices in Qj,k to vertices outside
Qj,k by following the orientation. The set Qj,k is a vertex cover of the circuit induced by H
and having |H|+1

2
vertices. In addition, all the neighbors of u in this circuit are contained

in Qj,k, as otherwise the graph induced in Sn by H ∪ {u} contains an odd subdivision of a
1-wheel. As above let zj,k ∈ {0, 1}h be defined by zj,kw = 1 if and only if w ∈ Qj,k. Then,
the vector βu = (zjk, 0,1) proves the result.

Remember that Sn[H] is the graph induced by the vertex subset H in the graph Sn.
This result is well-known, see e.g., [43].

Lemma 4.2.20. Let H be an odd hole of Sn. Then y(H) ≥ |H|+1
2

defines a facet of the
vertex cover polytope of Sn[H].

If H = {u1, . . . , uh} is an odd hole of Sn, then dim(V CSn[H]) = h and the previous
result guarantees the existence of κ1, κ2, . . . , κh affinely independent vectors belonging to
V CSn[H] ∩ {y(H) = |H|+1

2
}. Without loss of generality, the κi’s are binary vectors. We are

now ready to prove Proposition 4.2.18.

Proof of Proposition 4.2.18 (sufficiency). Let us assume that H = {u1, . . . , uh}. For every
i = 1, 2, . . . , h, we define βi = (κi,1) ∈ {0, 1}|U |, where we remember that U is the vertex
set of Sn and κ1, . . . , κh are the vectors giving a basis of the face defined by the odd
hole inequality associated with H in V CSn[H]. For every, u 6∈ H we define βu to be the
incidence vector of the vertex cover Qu defined in Lemma 4.2.19. Now the set B = {βi : i =
1, . . . h}∪{βu : u 6∈ H} contains |U | affinely independent points. Indeed, the independence
of the vectors in the first set of the previous union follows from the independence of
κ1, . . . , κh; moreover, each βu in the second set of the union is affinely independent of all
other vectors, because it is the only one to have a zero in the coordinate corresponding
to u 6∈ H. By construction, all the points in B belong to RSCn,2 ∩ {y(H) = |H|+1

2
}. We

conclude that B is an affine basis for the odd hole inequality defined by H in RSCn,2.

Remember that each facet of SCn,2 can be retrieved from a facet of RSCn,2. In par-
ticular, Proposition 4.2.18 also characterizes the odd hole inequalities that define facets

114

4.3. CONCLUSION AND PERSPECTIVES

of SCn,2. The question of which conditions should hold so that the odd hole inequalities
define facets of DTSPMSn,2 remains open.

4.3 Conclusion and Perspectives

In this chapter we have focused our attention on the DTSPMS polytope (DTSPMSn,s),
i.e., the convex hull of the solutions to our formulation for the double TSP with stacks
of infinite capacity presented in Chapter 3. We have studied the links between the DT-
SPMS polytope and the PATSP polytope, i.e., the convex hull of the solutions of the TSP
formulation (3.1)–(3.7). The PATSP polytope has been studied by several authors in the
literature on the TSP. In particular the work of Gouveia and Pesneau [84] has introduced
several families of inequalities valid for the PATSP polytope. This yields immediately valid
inequalities for the DTSPMS polytope. From a polyhedral point of view, we have shown
that the dimension of the DTSPMS polytope is twice the dimension of the PATSP polytope
and that every facet-defining inequality for the PATSP polytope yields two facet-defining
inequalities for the DTSPMS polytope. The latter result characterizes a super-polynomial
number of facets of the DTSPMS polytope, using a recent result of Fiorini et al. [60].
Moreover it prompts the following open question:

Open Question 4.3.1. Find conditions under which the inequalities presented in Sec-
tion 4.1.1 define facets of PATSPn.

Note that any answer to the previous question would have consequences in both the
TSP theory and the double TSP with multiple stacks theory.

In the second part of the chapter we have shown the link between the DTSPMS poly-
tope and the polytope SCn,s, i.e., the convex hull of the binary points satisfying the
s-consistency constraints (3.26). We have observed that SCn,s is a set covering polytope.
Since proj(y1,y2)(DTSPMSn,s) ⊆ SCn,s we have introduced some new faces for the DT-
SPMS polytope by resorting to the known literature on set covering polytopes. In addition,
the polyhedral structure of SCn,s can be completely retrieved from the polyhedral structure
of a slightly simpler set covering polytope, called RSCn,s.

An important property of RSCn,s is that when s = 2 (i.e., in the case of the double
TSP with two stacks) it is the vertex cover polytope of a suitable graph. Using this
correspondence we were able to give specific inequalities for the DTSPMS polytope based on
odd hole and wheel structures of a suitable graph. Finally, we have presented a preliminary
study on the facet-defining property of the inequalities arising from the odd holes of this
graph. Our result gives an equivalent condition for such an inequality to be facet-defining
for RSCn,2.

Concerning our set covering approach, a first direction for future work would be to give
a better understanding of RSCn,s.

Open Question 4.3.2. Find inequalities valid for RSCn,2 different from the odd hole and
the wheel inequalities presented in this chapter. Generalize to RSCn,s.

115

CHAPTER 4. POLYHEDRAL RESULTS

The following direction of work is instead more related to the double TSP with multiple
stacks. We would like to find conditions under which the facet-defining inequalities of
RSCn,s induce facets of the corresponding DTSPMS polytope. More precisely we have
this open question.

Open Question 4.3.3. Under which conditions an inequality defining a facet of SCn,s is
also facet-defining for the DTSPMS polytope?

We think that this question is not easy to answer. In fact, the DTSPMS polytope
is contained in another, more complex, set covering polytope obtained from transitivity
constraints (3.24) and from a relaxed form of the antisymmetry constraints (3.23). That
is, one could think to study the convex hull CATn,s of the binary solutions to the following
system of constraints:4

s∑
i=1

(y1
jiji+1

+ y2
jiji+1

) ≥ 1 for all distinct j1, . . . , js+1 ∈ V \ {0}, (4.30)

yTij + yTji ≥ 1 for all i 6= j ∈ V \ {0} and T = 1, 2, (4.31)

yTij + yTjk + yTki ≥ 1 for all i 6= j 6= k 6= i ∈ V \ {0} and T = 1, 2. (4.32)

The interest of polytope CATn,s is that proj(y1,y2)(DTSPMSn,s) is one of its faces, as it
can be seen by setting at equality constraints (4.31). Hence, a third research direction is
to give a polyhedral understanding of this new set covering polytope. This understanding
could be valuable to further improve the set covering approach for the double TSP with
multiple stacks devised in this chapter.

4CAT is for Consistency–Antisymmetry–Transitivity.

116

Chapter 5

A Branch-and-Cut Algorithm

Contents
5.1 Overall Description of the Algorithm 118

5.2 Separation Algorithms . 120

5.3 Finite Capacity Case . 128

5.4 Experimental Results . 130

5.4.1 Implementation Details . 130

5.4.2 Instances . 131

5.4.3 Results in the Infinite Capacity Case 131

5.4.4 Results in the Finite Capacity Case 137

5.5 Conclusions and Perspectives 143

In this chapter we describe a branch-and-cut algorithm for the double TSP with two
stacks. The algorithm is based on several families of inequalities that are added to our
formulation for the problem in order to strengthen its linear relaxation. The inequali-
ties used in our branch-and-cut algorithm correspond to faces of the DTSPMS polytope
DTSPMSn,2 presented in Chapter 4. We recall that they can be divided into two cate-
gories: routing inequalities, arising from the PATSP polytope and consistency inequalities,
arising from a set covering polytope. Not surprisingly, and as we also report in this chap-
ter, the time complexity of the separation routines for the routing inequalities does not
depend on the number of stacks. In addition, for the routing inequalities presented in
Chapter 4, Gouveia and Pesneau have described in [84] polynomial-time exact separation
algorithms. On the other hand, in the two stack case we give a polynomial-time exact
separation algorithm for the odd hole inequalities (4.25), easily embeddable in a branch-
and-cut algorithm. Hence the two stack case lets us test the effectiveness of inequalities of
both routing and consistency types.

Although the focus on the two stack case can seem restrictive at first, previous works
on the double TSP with multiple stacks have shown that, computationally, it is the hardest

117

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

case to deal with, when the capacity is finite. More precisely, the exact algorithms designed
for a general number of stacks and presented in [2, 131, 157] are able to solve instances
of the double TSP with two stacks with up to 14 items and only the algorithm in [44]
solves three instances of the problem with two stacks and 16 items within three hours of
computational time. This is much less than in the double TSP with three or four stacks
for which the state-of-the-art algorithm of [2] solves instances respectively with up to 21
and 28 items. Thus, we believe that it is important to address the design of faster methods
for the special case of the double TSP with two stacks.

The chapter is organized as follows. In Section 5.1 we describe the main features of the
branch-and-cut algorithm, such as the starting formulation, the strengthening inequalities
and the order of separation. In Section 5.2 we give polynomial-time algorithms to solve
the separation problem of the strengthening inequalities embedded in our algorithm. In
Section 5.4 we present the computational results obtained by our algorithm. In Section 5.5
we draw some conclusions and present possible extensions of our work.

5.1 Overall Description of the Algorithm

In this section, we introduce the general branch-and-cut framework subsequently used to
tackle the double TSP with two stacks, that is we consider the case s = 2. We present it
in the infinite capacity case. In Section 5.3 we explain how to adapt it to the case of stacks
of finite capacity.

Unless differently stated, we understand routing inequalities (those not mixing pickup
and delivery variables) to be duplicated in the pickup and delivery variables.

The goal of our branch-and-cut algorithm is to find an optimal solution to the problem:

min c1x1 + c2x2

(x1, y1, x2, y2) satisfies (3.21)–(3.28). (5.1)

Our algorithm is based on some modifications to the formulation given in Section 3.3.1
and defining the constraint set of problem (5.1) above. We first motivate these modifica-
tions, then we describe the algorithm.

Starting Formulation. A first modification to the constraint set of problem (5.1) con-
sists in replacing the transitivity constraints (3.24) with constraints (4.3). This is motivated
by the fact that (4.3) is stronger than (3.24), as explained in Section 4.1.1.

According to the description provided in Section 1.6.3, a branch-and-cut algorithm seeks
an optimal solution for a combinatorial optimization method by exploring the feasibility
region of the problem. Bounding arguments are used to avoid a complete exploration. In a
minimization problem like the double TSP with multiple stacks the computation of lower
bounds is particularly important.

118

5.1. OVERALL DESCRIPTION OF THE ALGORITHM

In our branch-and-cut algorithm the initial lower bound is obtained from the linear
relaxation of an integer linear programming formulation. We describe its specific features.
The starting formulation involves arc and precedence variables. It contains constraints
(3.21)–(3.23) and (3.25). In addition, the starting formulation contains the O(n2) size
families (4.1) and (4.2). Finally, if the instance is defined by symmetrical cost vectors
(symmetrical instance), the resulting symmetry is reduced by including in the formulation
the equation:

y1
12 = 1.

We detail more on this latter point. If c1, c2 ∈ R|A|+ are symmetrical cost vectors over the

arcs of Gn = (V,A), it is immediate to see that c1(H1) + c2(H2) = c1(
←
H1) + c2(

←
H2) for

every pair of 2-consistent Hamiltonian circuits (H1, H2) of Gn. In addition, also (
←
H1,

←
H2)

is 2-consistent. Thus, if an instance of the double TSP with multiple stacks is defined by
symmetrical cost vectors we can remove exactly one between (H1, H2) and (

←
H1,

←
H2) without

removing all optimal solutions to the problem. This removal reduces the feasibility space
speeding up the whole algorithm. In the case of the double TSP with multiple stacks
defined on symmetrical instances, this symmetry reduction can be accomplished e.g., by
supposing that item 1 is always picked up before item 2, in formulas y1

12 = 1 holds for all
(x1, y1, x2, y2) representing pairs of Hamiltonian circuits of Gn.

We point out that the lifted transitivity constraints (4.3) and the 2-consistency con-
straints (3.26) are not considered in the starting formulation. The removal of constraints (4.3)
and (3.26) is motivated by the fact that they are the largest families of problem defining con-
straints, each containing O(n3) constraints, where n is the number of items of an instance.
They can be added by means of row generation procedures, described in Section 5.2.

The algorithm. Let us suppose to have an instance of the double TSP with two stacks
with n items and cost vectors c1 and c2 on the graph Gn = (V,A). The branch-and-cut
algorithm starts by solving the following linear program:

min c1x1 + c2x2

(x1, y1, x2, y2) satisfies (3.21)–(3.23),(3.25),(4.1),(4.2),

y1
12 = 1, (5.2)

xTij ∈ [0, 1] ∀ distinct i, j ∈ V, T = 1, 2,

yTij ∈ [0, 1] ∀ distinct i, j ∈ V \ {0}, T = 1, 2.

Let us suppose that we obtain as optimal solution to the linear program above a binary
point (x̄1, ȳ1, x̄2, ȳ2). This point is feasible for the double TSP with two stacks exactly
when it satisfies (3.26) and (x̄T , ȳT) satisfies (4.3) for T = 1, 2. In general, this is not the
case. Then, the separation step takes place and the branch-and-cut algorithm generates
violated constraints from both families (3.26) and (4.3) and adds them to the initial linear
program. Now, the resulting linear program is solved. The algorithm continues in this way
by adding violated constraints to the current linear program.

119

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

We point out that, at any iteration of this process, the optimal solution to the current
linear program could be fractional. In this case, the algorithm separates the family of con-
straints (3.26), (4.3) and other strengthening families. In our algorithm we consider several
families of strengthening inequalities presented in Chapter 4: the GDDL inequalities (4.4),
the Simple Cut inequalities (4.5)–(4.7) and the odd hole inequalities (4.25). The algorithm
looks for a violation of each family following a prescribed order. When a family yields a
violation, violated inequalities from that family are generated and added to the current
linear program. The algorithm then does not check the violation of the subsequent families
and proceeds instead with the resolution of the resulting linear program. We mention how-
ever that in our implementation we let the solver CPLEX add automatically all families of
strengthening inequalities it provides. The order in which the algorithm checks a violation
of the families above is the following:

• 2-consistency constraints (3.26),

• GDDL inequalities (4.4),

• Simple Cut inequalities (4.5)–(4.7),

• lifted transitivity constraints (4.3),

• odd hole inequalities (4.25).

When in the separation step no violation is found, either the last optimal solution is
binary, or it is not. In the first case, it is also a feasible solution to the double TSP with
multiple stacks. In the second case, the algorithm branches on a fractional coordinate of
the last optimal solution. The choice of the variable to branch on is made according to
the strong branching strategy embedded in CPLEX [6, 107]. After the branching, two new
linear programs are generated. The procedure described above is repeated on an unsolved
linear program. The next linear program on which to apply the separation step is the one
with the best objective function. When no linear program is left unsolved, the algorithm
takes the best integer feasible solution found so far as the optimal solution to the problem.
For a more schematic presentation of our branch-and-cut algorithm, please see Algorithm 1.

We point out that all the inequalities added during the separation steps are globally
valid. However we decided to add them locally i.e., they are discarded when the algorithm
backtracks in the search tree. This lets the algorithm solve linear programs of moderate
size along its execution.

The next section addresses the separation problems of each family of strengthening
inequalities used in our algorithm.

5.2 Separation Algorithms

In this section we present the routines used in our branch-and-cut algorithm to find viola-
tions of the inequalities considered in the separation step.

120

5.2. SEPARATION ALGORITHMS

Algorithm 1: Branch-and-cut algorithm for the double TSP with two stacks

Data: A digraph G = (V,A), two cost vectors c1, c2 ∈ R|A|
Result: Optimal solution to (5.1)

1 PL← (5.2);
2 Solve PL;
3 z∗ ←optimal solution to PL;
4 if z? is binary then
5 if z∗ satisfies (3.26) and (4.3) then
6 z∗ is a feasible solution to (5.1);
7 go to 22;

8 else
9 Add to PL violated constraints from (3.26) and (4.3);

10 Go to 2;

11 end

12 else
13 for family=(3.26),(4.4),(4.5)-(4.7),(4.3),(4.25) do
14 Check whether z? violates inequalities from family ;
15 if a violation is found then
16 Add violated inequalities from family to LP;
17 Go to 2;

18 end

19 end

20 end
21 Branch on a fractional coordinate of z?;
22 Choose an unsolved linear program LP’ among those generated by branching;
23 if LP’ does not exist then
24 pick the best feasible solution found so far. STOP;
25 else
26 LP←LP’;
27 Go to 2;

28 end

121

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

In all the separation algorithms presented below, we assume that (x̃1, ỹ1, x̃2, ỹ2) is a so-
lution found by solving a linear programming generated during the branch-and-cut process.
All families but the 2-consistency and the odd hole families contain routing inequalities.
For the routing inequalities, we describe the separation algorithms by considering only the
pickup part of the solution (x̃1, ỹ1).

Lifted Transitivity Constraints

We split the discussion into two cases. In the first case we assume that (x̃1, ỹ1, x̃2, ỹ2) is
binary. In the second case we suppose that it is fractional. In the first case, we check
whether there is a violation in the O(n3) family of constraints (4.3) in O(n2) time.

Binary Solution. If (x̃1, ỹ1, x̃2, ỹ2) is binary, then (x̃1, ỹ1) corresponds to the character-
istic point of a subgraph S of Gn. If S is a Hamiltonian circuit of Gn no lifted transitivity
constraints (4.3) is violated, since constraints (4.3) define faces of the PATSP polytope.
Using (x̃1, ỹ1), we decide in O(n2) time whether S is a Hamiltonian circuit of Gn.

Let us suppose that S is not a Hamiltonian circuit. By the assignment constraints (3.21)
and (3.22), we have that S is the union of several circuits of Gn. We can always find one
such a circuit C not containing the vertex 0. For notational convenience let us suppose
that C = {(c1, c2), (c2, c3), . . . , (ck−1, ck), (ck, c1)}, for some vertices c1, c2, . . . , ck of Gn\{0}.
Finding C takes O(n2) time. Note that k ≥ 3 since (x̃1, ỹ1, x̃2, ỹ2) satisfies the antisymmetry
constraints (3.23).

Let 3 ≤ ` ≤ k be the first index such that ỹ1
c`c1

> 0. Then ỹ1
c1c`−1

+ ỹ1
c`−1c`

+ ỹ1
c`c1

> 2.
This is a violated transitivity constraint (3.4). Thus also its lifted form (4.3) is violated
by (x̃1, ỹ1) and added to the current linear program. See Figure 5.1 for an example.

Discovering the index ` as above takes O(n) time, since it suffices to fix one vertex c1

of C and, for every j = 3, . . . , k − 1, to check whether ỹ1
cjc1

= 1.
The procedure described above is an exact separation routine for the transitivity con-

straints (4.3) when (x̃1, ỹ1, x̃2, ỹ2) is binary.

Fractional Solution. When (x̃1, ỹ1) is fractional, a violation to constraints (4.3) is
found by enumerating (in the worst case) all these constraints. In this case all violated
constraints are added to the current linear program. This is clearly an exact separation
routine for constraints (4.3) that runs in O(n3) time.

Consistency Constraints

The family of 2-consistency constraints (3.26) contains Θ(n3) inequalities. We can separate
them exactly in O(n2) time. Consider j? ∈ V \ {0}. Let

i? = arg min
i∈V \{0,j?}

{ỹ1
ij? + ỹ2

ij?}

k? = arg min
i∈V \{0,j?}

{ỹ1
j?k + ỹ2

j?k}.

122

5.2. SEPARATION ALGORITHMS

Algorithm 2: Exact separation algorithm for the lifted transitivity constraints

Data: A point (x̃1, ỹ1, x̃2, ỹ2), a value 0 < ∆tr ≤ 1
Result: A set of constraints (4.3) violated by (x̃1, ỹ1, x̃2, ỹ2) of at least ∆tr

1 if (x̃1, ỹ1, x̃2, ỹ2) is binary then
2 S ←the subgraph of Gn corresponding to (x̃1, ỹ1);
3 if S is a Hamiltonian circuit then
4 No constraint (4.3) can be violated. STOP;
5 else
6 find a circuit C contained in S \ {0};
7 v ←arbitrary vertex of C;
8 Following C find its first vertex t such that ỹ1

tv = 1;
9 u←last index visited before t;

10 Return y1
vt + y1

tu + y1
uv − x1

uv ≥ 1. STOP;

11 end

12 else
13 for distinct 1 ≤ v, u, t ≤ n do
14 if ỹ1

vt + ỹ1
tu + ỹ1

uv − x̃1
uv ≤ 1−∆tr then

15 Return y1
vt + y1

tu + y1
uv − x1

uv ≥ 1;
16 end

17 end

18 end

123

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

c2

c5

c4

c3

c1

ck

Figure 5.1: Black arrows are variables x1, dashed ones are variables y1; here vertices
c1, c4, c5 yield a violated transitivity constraint.

If ỹ1
i?j? + ỹ2

i?j? + ỹ1
j?k? + ȳ2

j?k? < 1, then the inequality (3.26) associated with i?, j?

and k? is violated because (3.3) guarantees that i? 6= k?. Otherwise, no inequality (3.26)
associated with i, j? and k is violated by (x̃1, ỹ1, x̃2, ỹ2). Applying this procedure to each
j? ∈ V \ {0} gives an exact separation of the 2-consistency constraints in O(n2).

Algorithm 3: Exact separation algorithm for the 2-consistency constraints

Data: A point (x̃1, ỹ1, x̃2, ỹ2), a value ∆cc > 0
Result: A set of constraints (3.26) violated by (x̃1, ỹ1, x̃2, ỹ2) of at least ∆cc

1 ι = +∞ // will hold the min over indices i
2 κ = +∞ // will hold the min over indices k
3 for 1 ≤ j ≤ n do
4 ι← mini∈V \{0,j}{ỹ1

ij + ỹ2
ij};

5 i? ←an index attaining the minimum above;
6 κ← mink∈V \{0,j}{ỹ1

ki + ỹ2
ki};

7 k? ←an index attaining the minimum above;
8 if ι+ κ ≤ 1−∆cc then
9 Return y1

i?j + y2
i?j + y1

jk? + y2
jk? ≥ 1

10 end

11 end

The Generalized Disaggregated Desrochers and Laporte Inequalities

The GDDL inequalities (4.4) can be separated exactly in O(n6) time by computing a
minimum weight cut of Gn = (V,A) for every pair of two vertices in V , see Gouveia and
Pesneau [84]. We instead use a heuristic method to detect a violation of (4.4) having a

124

5.2. SEPARATION ALGORITHMS

O(n4) time complexity. Our method is very close to the exact method presented in [84],
but we reduce the number of minimum cuts to be computed, attempting to limit this
computation to the most promising cases. For fixed i, j, k ∈ V \ {0}, and S ⊆ V \ {0, k}
and i, j ∈ S, the corresponding GDDL inequality expressed in pickup variables can be
rewritten as:

y1
ki − y1

kj + 1 ≤ x1(δ+(S)).

Our heuristic method computes for every k ∈ V \ {0} two indices ik and jk such that
ỹ1
kik
≥ ỹ1

ki for all i ∈ V \ {0, k} and ỹ1
kjk
≤ ỹ1

kj for all j ∈ V \ {0, k}. Subsequently, if

ik 6= jk, it seeks a subset W ? of the vertices of Gn such that

x1(δ+(W ?)) ≤ x̃1(δ+(W))

for all subsets W of vertices of Gn such that ik, jk ∈ W , 0, k 6∈ W . This problem amounts to
compute a minimum (ik, 0)-cut in (Gn, x̃

′) where x̃′
ikjk

= x̃′
jkik

= M and x̃′0k = x̃′k0 = M for
some big value of M , whereas all other coordinates of x̃′ are identical to the corresponding
coordinates of x̃1. Let mk be the weight of this cut and Sk be the set of vertices that
originates the cut and that contains ik and jk. If mk < ỹ1

kik
− ỹ1

kjk
+ 1 then the GDDL

constraint above with i = ik, j = jk and S = Sk is violated by (x̃1, ỹ1). The process
described above takes place for all k ∈ V \ {0} and it is interrupted when a violation
is found. The computation of the minimum weighted cuts of (Gn, x̃

′) is performed with
the preflow push-relabel algorithm of Goldberg and Tarjan [81] having running time in
O(|V |2

√
|A|). As a consequence, the entire heuristic algorithm has running time in O(n4).

The Simple Cut Inequalities

The Simple Cut inequalities can be separated exactly in O(n5) time by computing a mini-
mum cut of Gn = (V,A) for every pair of vertices in V , see Gouveia and Pesneau [84]. We
instead use a heuristic method to detect a violation of (4.5)–(4.7) having a O(n4) time com-
plexity. Our method is very close to the exact method presented in [84]. It simply reduces
the number of minimum cuts to be computed. We give details only for the family (4.5),
since the other cases are analogous. For the sake of clarity, we recall constraints (4.5)
expressed in the pickup variables:

y1
ij ≤

∑
u∈V \(S∪{j})

∑
t∈S

x1
ut S ⊆ V such that 0, j /∈ S, i ∈ S.

In our heuristic algorithm we find for each j ∈ V \ {0} the index ij such that ỹ1
ijj ≥ ỹ1

ij

for all i ∈ V \ {0, j}. Then for each j ∈ V \ {0} we compute a minimum (0, ij)-cut in the
weighted graph (G′, x̃′) where G′ = Gn \ {j}, and x̃′ is the restriction of x̃1 to the variables
corresponding to arcs not incident to j in Gn. Let mj be the weight of the minimum cut
obtained above and Sj be the set of vertices originating this cut and containing ij. If

125

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

Algorithm 4: Heuristic separation algorithm for the GDDL inequalities (4.4).

Data: A point (x̃1, ỹ1, x̃2, ỹ2), a value ∆gddl > 0
Result: A constraint (4.4) violated by (x̃1, ỹ1, x̃2, ỹ2) of at least ∆gddl

1 for k = 1, . . . , n do
2 Find the index ik ∈ V \ {0, k} such that ỹ1

kik
≥ ỹ1

ki for all i ∈ V \ {0, k};
3 Find the index jk ∈ V \ {0, k} such that ỹ1

kjk
≤ ỹ1

kj for all j ∈ V \ {0, k};
4 if ik 6= jk then
5 Choose a big value M ;
6 x̃1

ikjk
←M , x̃1

jkik
←M ;

7 x̃1
0k ←M , x̃1

k0 ←M ;
8 mk ←value of a minimum (ik, 0)-cut in (G′, x̃′);
9 Sk ←set of the tails of the cut above;

10 if mk ≤ ỹ1
kik
− ỹ1

kjk
+ 1−∆gddl then

11 Return y1
kik
− y1

kjk
+ 1 ≤

∑
u∈Sk

∑
t∈V \Sk x1

ut. STOP;

12 end

13 end
14 Recover the original values of x̃1;

15 end

mj < ỹ1
ijj the constraint above with S = Sj and i = ij is violated. The computation of the

minimum weighted cuts is executed for decreasing values of ỹ1
ijj. When a violation is found

the subsequent minimum cuts are not computed. However, the algorithm is repeated, with
the obvious modifications, to find violations of inequalities (4.6) and (4.7). Hence at most
three Simple Cut inequalities are added each time the separation routine is called.

The computation of the minimum weighted cuts of (G′, x̃′) is performed as for the GDDL
inequalities. As a consequence, the entire heuristic algorithm has worst-case running time
in O(n4).

Odd Hole Inequalities

We recall that the odd hole inequalities (4.25) are associated with odd holes of the graph
Sn = (U, F) with U given by the ordered pairs of distinct indices in {1, . . . , n}. Note that

if H is an odd hole of Sn then ỹ1(H) + ỹ2(H) <
⌈
H
2

⌉
= |H|+1

2
if and only if w(H) < 1

2
,

where the weight vector w ∈ R|F | is defined by w{u,v} = ỹ1u+ỹ2u+ỹ1v+ỹ2v−1
2

for all u, v ∈ U . If we
construct the vector w under the assumption that (x̃1, ỹ1, x̃2, ỹ2) satisfies the 2-consistency
constraints, then w{u,v} ≥ 0. This is in fact the case, because of the separation order
given in Section 5.1. Thus (x̃1, ỹ1, x̃2, ỹ2) violates (4.25) if and only if the odd circuits of
minimum weight in the edge-weighted graph (Sn, w) have weight smaller than 1

2
.

In order to find an odd circuit of minimum weight in (Sn, w) we use a classical algorithm
first described by Gerards and Schrijver [75]. It consists in computing |U | shortest paths
in an auxiliary graph Sn = (U ,F) constructed as follows. We obtain the vertex set U

126

5.2. SEPARATION ALGORITHMS

Algorithm 5: Heuristic separation algorithm for the Simple Cut inequalities of
type (4.5). It is repeated for (4.6) and (4.7).

Data: A point (x̃1, ỹ1, x̃2, ỹ2), a value ∆sc > 0
Result: A constraint (4.5) violated by (x̃1, ỹ1, x̃2, ỹ2) of at least ∆sc

1 for j ∈ V \ {0} do
2 Find the index ij ∈ V \ {0, j} such that ỹ1

ijj ≤ ỹ1
ij for all i ∈ V \ {0, j};

3 end
4 Sort the indices j for decreasing value of ỹ1

ijj;

5 for each j in the order obtained above do
6 Create the digraph G′ from Gn by removing j from the vertex set;
7 Create the weight vector x′ from x̃1 by removing coordinates with j in the

subscript;
8 mj ←value of a minimum weight (0, ij)-cut in (G′, x̃′);
9 Sj ←the set of vertices of G′ containing the heads of the cut above;

10 if mj ≤ ỹ1
ijj −∆sc then

11 Return y1
ijj ≤

∑
u∈V \(Sj∪{j})

∑
t∈Sj x1

ut. STOP;

12 end

13 end

by creating two copies u1 and u2 for each vertex u ∈ U . We say that u is the original
vertex of u1 and u2. In addition, for every edge e = {u, v} of Sn we create the two edges
e1 = {u1, v2} and e2 = {u2, v1} of Sn. We say that e is the original edge of e1 and e2. We
associate with e1 and e2 the weight we of their original edge. Now, every walk Pu of Sn with
extremities u1 and u2 corresponds to an odd closed walk of Sn containing u, the original
vertex of u1 and u2. The correspondence is found by replacing in sequence, starting with
u1, each vertex of Pu with its original vertex and each edge of Pu with its original edge.
The weight of the path Pu is the same as the weight of the resulting odd closed walk. Each
odd closed walk contains an odd hole having the same weight, since the weights on the
edges of Sn are nonnegative. Therefore, we can find the odd hole of Sn of minimum weight
by computing for each u ∈ U the shortest path having u1 and u2 as extremities. Note that,
since the edge-weights in Sn are nonnegative, the shortest paths can be computed by using
Dijkstra’s algorithm [51], see [66] for a O(|F|+ |U| log |U|) time implementation.

We did not implement directly the procedure described above. We instead used the odd
hole inequality separation algorithm described in [164], whose source code was available
at the URL http://rebennack.net/Publications.htm at the time of this writing. It
is identical to the procedure described above apart from two details: first, the weighted
graph (Sn, w) is preprocessed by eliminating the vertices u ∈ U such that wu = 0, since
they cannot belong to an odd hole H yielding a violated odd hole inequality; second,
the computation of the shortest path linking u1 to u2 is not performed if their original
vertex u belongs to an already found odd hole of Sn yielding a violated inequality. Finally,
when the algorithm finds an odd hole yielding a violation and containing a vertex u, it

127

http://rebennack.net/Publications.htm

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

does not look for additional odd holes containing u but it proceeds to the next available
vertex of Sn on which to execute the shortest path routine. The total running time is in
O(|U | · (|F| + |U| log |U|)). Since |U |, |U| ∈ O(n2) and |F| ∈ O(n3) we get a O(n5) time
separation algorithm.

Algorithm 6: Separation algorithm for the odd hole inequalities (4.25).

Data: A point (x̃1, ỹ1, x̃2, ỹ2), the graph Sn = (U, F) and a value ∆oh > 0
Result: A set of constraints (4.25) violated by (x̃1, ỹ1, x̃2, ỹ2) of at least ∆oh

1 U ← ∅;
2 F ← ∅;
3 for u ∈ U do
4 U ← U ∪ {u1, u2};
5 end
6 for {u, v} ∈ F do
7 F ← F ∪ {{u1, v2}, {u2, v1}};
8 w{u1v2} ← ỹ1u+ỹ2u+ỹ1v+ỹ2v−1

2
;

9 w{u2v1} ← ỹ1u+ỹ2u+ỹ1v+ỹ2v−1
2

;

10 end
11 for u ∈ U do
12 if u is not in an odd hole yielding a violation then
13 Compute a shortest path Pu between u1 and u2 with Dijkstra’s algorithm;
14 val←the value of this shortest path;
15 if val≤ 1

2
−∆oh then

16 Find an odd hole Hu of Sn contained in the odd closed walk of Sn
obtained from Pu;

17 Return y1(Hu) + y2(Hu) ≥
⌈
|Hu|

2

⌉
. Continue the for loop with a vertex

6= u;

18 end

19 end

20 end

5.3 Finite Capacity Case

In this section we explain how our branch-and-cut algorithm can be adapted to the double
TSP with two stacks of capacity q.

We point out that all the constraints and strengthening inequalities described in Sec-
tion 5.1 can be used in the finite capacity case. Hence we separate all those constraints
also in the branch-and-cut algorithm for the double TSP with two stacks of finite capacity,
by applying the same separation routines described in Section 5.2.

128

5.3. FINITE CAPACITY CASE

Our formulation for the finite capacity case differs from the formulation for the infinite
capacity case only for the presence of the y-infeasible path constraints (3.14). Since these
are exponentially-many, we need to separate them during our algorithm. To ensure the
correctness of our algorithm it is only necessary to separate constraints (3.14) on binary
solutions to the linear programs obtained during the branch-and-cut algorithm. We show
that this task can be performed in polynomial time.

Let (x̃1, ỹ1, x̃2, ỹ2) be an optimal solution to a linear program solved during the branch-
and-cut algorithm and let us suppose that it is binary. Our separation algorithm for (3.14)
works under the assumption that (x̃1, ỹ1, x̃2, ỹ2) satisfies all the lifted transitivity con-
straints. Hence it takes place only after the separation routine for the lifted transitivity
constraints described in Section 5.2 and only if this routine returns no violation to (4.3).
In this case, (x̃1, ỹ1) and (x̃2, ỹ2) correspond to two Hamiltonian circuits H1 and H2. For
later convenience, let us assume that H1 = 0, P1, 0 and that H2 = 0, P2, 0 for some paths
P1 and P2 of Gn \ {0}. From now on we consider P1 and P2 as sets of arcs.

By solving the knapsack problem (K) of Claim 3.2.11 we test the 2, q-consistency of
(H1, H2). If the pair is 2, q-consistent, no y-infeasible path constraint can be violated by
(x̃1, ỹ1, x̃2, ỹ2). Otherwise, we know (Proposition 3.2.3) that the y-infeasible path constraint
y1(P1) + y2(P2) ≤ |P1|+ |P2| − 1 is violated by (x̃1, ỹ1, x̃2, ỹ2).

Since (K) can be solved inO(n2) time, the separation of the y-infeasible path constraints
on a binary point can be performed in O(n2) provided that (x̃1, ỹ1, x̃2, ỹ2) also satisfies (4.3).

It is important to remark that a solution to problem (K) can also certify that (H1, H2)
is not 2-consistent. In this case one should add to the formulation a violated 2-consistency
constraint (3.26) because by minimality it is stronger than y1(P1)+y2(P2) ≤ |P1|+ |P2|−1.
For this reason we run the separation routine of the 2-consistency constraints (3.26) before
the separation algorithm for the y-infeasible path constraints. Under this assumption, a
solution to (K) certifies a violation of a y-infeasible path constraint due to the finiteness
of the capacity. Also in this case, it is more convenient to add a violated y-infeasible path
constraint associated with minimally 2, q-infeasible paths. In general, the paths P1 and P2

above have not this property. In order to find minimally 2, q-infeasible paths we proceed
as follows. We remove a vertex v from both P1 and P2. Then we check, by solving (K),
whether the two resulting paths P ′1 = P1/v and P ′2 = P2/v are 2, q-infeasible. If not, we
reinsert v in its original position in both P1 and P2 and we repeat the previous procedure
on a new vertex. If we do not generate any new infeasible pair of paths, P1 and P2 are
minimally 2, q-infeasible. Otherwise by removing one vertex from both P1 and P2 we get
two new 2, q-infeasible paths P ′1 and P ′2. Now the process can be iterated on these new
paths. The whole procedure takes O(n4) time since it generates at most n pairs of new s, q-
infeasible paths from which we remove at most n vertices. Solving (K) to check whether
each new pair of paths is 2, q-infeasible takes O(n2) time. We resume in Algorithm 7 the
separation routine for the y-infeasible path constraints.

129

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

Algorithm 7: Separation algorithm for the y-infeasible path inequalities (3.8).

Data: The characteristic point (x̃1, ỹ1, x̃2, ỹ2) of a pair of Hamiltonian circuits
Result: A constraint (3.8) violated by (x̃1, ỹ1, x̃2, ỹ2)

1 (H1, H2)←Hamiltonian circuits corresponding to (x̃1, ỹ1) and (x̃2, ỹ2);
2 P1 ← H1 \ {0};
3 P2 ← H2 \ {0};
4 for v ∈ V (P1) do
5 P ′1 ← P1/v // obtained by skipping v in P1

6 P ′2 ← P2/v // obtained by skipping v in P2

7 if P ′1 and P ′2 are 2, q-infeasible then
8 P1 ← P ′1;
9 P2 ← P ′2;

10 Go to 4;

11 end

12 end
13 Return y1(P1) + y2(P2) ≤ |P1|+ |P2| − 1;

5.4 Experimental Results

In this section we present the experimental results obtained with our branch-and-cut al-
gorithm. We provide informations about the implementation details, the instances used
for testing the algorithm and finally we show tables of results. The results obtained are
useful to draw some conclusions on the effectiveness of families of valid inequalities found
in Chapter 4.

5.4.1 Implementation Details

The algorithm has been coded in C++ and uses CPLEX 12.5 [106] as underlying LP solver
and branch-and-bound framework. The routines that compute cuts in graphs have been
coded using the library LEMON COIN-OR [38].

The code has been compiled using g++ 4.7.2 and run in a Debian environment on an
Intel Core i7-3770 of frequency 3.40GHz and using 8 GB of RAM. The code has been run
in sequential mode (1 thread).

We let CPLEX choose automatically the LP solver for both the root and the subproblem
nodes of branch-and-cut tree. Since we experienced numerical issues during preliminary
test session, we set the Markowitz tolerance of CPLEX to a value of 0.08 and 0.09 de-
pending on the models used in the different tests. Its default value in CPLEX is 0.01. An
increased value of the Markowitz tolerance results in numerically stable solutions to the
linear program solved by CPLEX.

In Algorithms 2–6 described in Section 5.2 we use ∆ values to control the degree of vio-
lation of each inequality added to the current linear program. In our final implementation

130

5.4. EXPERIMENTAL RESULTS

we set ∆cc = ∆sc = ∆tr = 0.1, ∆gddl = 0.7 and ∆oh = 0.4.

In our tests we used the heuristic of Côté et al. [45] to get an initial upper bound in
the branch-and-cut algorithm. We impose a CPU time limit of three hours to solve each
instance.

5.4.2 Instances

The instances used for the tests are taken from the seminal paper on the double TSP with
multiple stacks [158] and have been used in all previous works on the double TSP with
multiple stacks. We describe them. Each instance is retrieved from two files, one containing
the vertices of the pickup city the other containing the vertices of the delivery city. Each
vertex is represented by two real coordinates randomly chosen in the 100 × 100 square
centered in (50, 50). The depot of each city is always in the center of the square. The cost
of an arc is the Euclidean distance between its endpoints rounded to the nearest integer.
Hence the instances are symmetrical. Each file contains 34 vertices, depot included. If we
want to deal with k items and customers we limit the computation of the distance to the
first k vertices in each file. In our tests we consider two stacks and even values of k from
12 to 16 or to 18, depending on the model used.

5.4.3 Results in the Infinite Capacity Case

We describe the computational results obtained by the branch-and-cut algorithm described
in the previous sections for the the double TSP with two stacks of infinite capacity.

In order to assess the impact of the families of strengthening inequalities used in our
algorithm we run several tests. For sake of clarity, we call (A1) the branch-and-cut algo-
rithm with no strengthening inequalities at all. This means that only the 2-consistency
constraints and the transitivity constraints are separated during the separation step. We
call (A2) the branch-and-cut algorithm in which also the odd hole inequalities are sepa-
rated. That is, in (A2) only the Simple Cut inequalities and the GDDL inequalities are
not separated. We call (A3) the algorithm obtained from (A1) by separating also the
Simple Cut inequalities and the GDDL inequalities, i.e., only the odd hole inequalities are
not separated. Finally, we call (A4) the algorithm in which all families of inequalities are
separated. The Markovitz tolerance has been set to 0.08 for the tests based on (A1) and
(A2) and to 0.09 for the tests based on (A3) and (A4).

Due to space limits, we present the experimental results obtained by these four al-
gorithms in three tables. Each table reports the performance of two algorithms for an
increasing and even number of items starting from 12. Table 5.1 resumes the results of
algorithms (A1) and (A2). The largest instances tested with these two algorithms have 16
items. The results of (A3) and (A4) are resumed in Table 5.2 and Table 5.3, respectively
for instances with up to 16 items and for instances with 18 or 20 items.

In each table the first two columns are independent of the algorithm version: in column
labeled Instance we report the instance name, as given in [158], and in column Items we

131

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

report the number of items in the instance. Hence each line of the table corresponds to
exactly one instance of the problem. For each algorithm the remainder of the tables reports
the following informations divided into columns:

– column UB: it reports the best upper bound found within the time limit.

– column LB: it reports the best lower bound found within the time limit.

– column Time: it reports the CPU time in seconds spent to solve to optimality the
instance. Since this is not always the case, a value of 10800 seconds indicates that
the time limit has been reached without a proof of optimality.

– column Nodes: it reports the number of nodes in the branch-and-cut tree.

– column Gap: it reports the gap in percentage between the values of columns UB and
LB in the same line. The value of this column is calculated as 100 · (UB−LB)/UB.
Gap values are highlighted in boldface if they are 0 i.e., if the corresponding instances
have been solved to optimality.

The only exception is in Table 5.2 where the column Gap is not present since the algorithms
(A3) and (A4) solve all the tested instances to optimality within the time limit. In all tables
we also report, in the lines labeled Average, the average values of columns Time, Nodes
and Gap. The average is calculated over the instances having the same number of items.

Table 5.1 and Table 5.2 show that all the four algorithms solve to optimality all the
instances with 12 and 14 items within the time limit. Concerning the instances with 16
items, only five of them are solved to optimality by (A1) and only four of them are solved
to optimality by algorithm (A2). Algorithms (A3) and (A4) solve all the instances with
16 items.

Table 5.3 shows that both (A3) and (A4) are able to solve 11 out of the 20 instances
with 18 items within the time limit. Both algorithms solve the same instances with 18
items. Finally, instance R13 with 20 items is solved to optimality within the time limit by
both (A3) and (A4). Algorithm (A3) additionally solves instance R09 with 20 items.

We now compare the four algorithms. Looking at the average running times of (A1) and
(A2) reported in Table 5.1 we conclude that both algorithms exhibit similar performances,
with (A2) slightly slower in average for all the considered numbers of items in the instances.
Recall that (A2) differs from (A1) for the presence of the odd hole inequalities. To see
on which instances (A2) is faster than (A1), we highlighted in boldface those running
times obtained by (A2) that are at least 10% smaller than the corresponding running
times obtained by (A1). Table 5.1 shows that (A2) is faster than (A1) on six out of the
20 instances with 12 items and on five instances with 14 items. With 16 items (A2) is
faster than (A1) only on instances R01 and R06 (this latter is not solved to optimality by
algorithm (A1)). The average gap of (A1) is smaller than the average gap of (A2) on the
instances with 16 items.

132

5.4. EXPERIMENTAL RESULTS

Table 5.1: Results of (A1) and (A2) on instances with up to 16 items and stacks of infinite
capacity.

(A1) (A2)

Instance Items UB LB Time Nodes Gap UB LB Time Nodes Gap

R00 12 716 716,00 21,56 595 0,00 716 716,00 36,04 887 0,00
R01 12 741 741,00 15,31 471 0,00 741 741,00 15,87 471 0,00
R02 12 651 651,00 72,69 2098 0,00 651 651,00 69,16 1787 0,00
R03 12 690 690,00 4,84 133 0,00 690 690,00 3,54 89 0,00
R04 12 659 659,00 46,95 1405 0,00 659 659,00 68,82 1971 0,00
R05 12 627 627,00 180,04 5808 0,00 627 627,00 206,41 5916 0,00
R06 12 789 789,00 14,58 488 0,00 789 789,00 14,53 401 0,00
R07 12 589 589,00 111,70 3744 0,00 589 589,00 150,58 4241 0,00
R08 12 749 749,00 67,09 1901 0,00 749 749,00 87,49 2349 0,00
R09 12 686 686,00 8,43 273 0,00 686 686,00 6,38 200 0,00
R10 12 663 663,00 170,86 5493 0,00 663 663,00 124,85 3666 0,00
R11 12 622 622,00 26,89 794 0,00 622 622,00 21,07 568 0,00
R12 12 741 741,00 14,12 469 0,00 741 741,00 18,26 557 0,00
R13 12 683 683,00 10,94 323 0,00 683 683,00 9,65 235 0,00
R14 12 680 680,00 127,85 4090 0,00 680 680,00 151,54 4301 0,00
R15 12 624 624,00 67,52 2206 0,00 624 624,00 85,32 2427 0,00
R16 12 610 610,00 22,07 557 0,00 610 610,00 18,79 436 0,00
R17 12 780 780,00 264,27 7298 0,00 780 780,00 253,38 6529 0,00
R18 12 735 735,00 6,63 227 0,00 735 735,00 5,99 170 0,00
R19 12 782 782,00 38,92 1117 0,00 782 782,00 60,70 1599 0,00

Average 64,66 1974,50 0,00 70,42 1940,00 0,00

R00 14 766 766,00 328,65 5786 0,00 766 766,00 475,96 8011 0,00
R01 14 761 761,00 205,69 4088 0,00 761 761,00 589,56 10776 0,00
R02 14 690 690,00 117,58 2234 0,00 690 690,00 143,16 2500 0,00
R03 14 791 791,00 188,99 3635 0,00 791 791,00 90,05 1590 0,00
R04 14 756 756,00 2744,00 47198 0,00 756 756,00 3081,46 50116 0,00
R05 14 773 773,00 3402,97 64479 0,00 773 773,00 3440,48 60995 0,00
R06 14 811 811,00 131,76 2601 0,00 811 811,00 92,26 1616 0,00
R07 14 693 693,00 744,80 14224 0,00 693 693,00 994,74 18779 0,00
R08 14 824 824,00 753,88 13351 0,00 824 824,00 776,23 13043 0,00
R09 14 733 733,00 27,90 655 0,00 733 733,00 26,62 491 0,00
R10 14 733 733,00 2108,38 39234 0,00 733 733,00 3200,05 56914 0,00
R11 14 719 719,00 704,38 13181 0,00 719 719,00 883,69 15617 0,00
R12 14 803 803,00 494,62 8819 0,00 803 803,00 228,78 3903 0,00
R13 14 743 743,00 978,18 17743 0,00 743 743,00 999,01 17418 0,00
R14 14 747 747,00 4322,62 79610 0,00 747 747,00 4780,96 84509 0,00
R15 14 765 765,00 249,85 4525 0,00 765 765,00 445,94 7459 0,00
R16 14 685 685,00 191,61 3585 0,00 685 685,00 137,87 2287 0,00
R17 14 818 818,00 1607,63 28627 0,00 818 818,00 1698,15 28615 0,00
R18 14 774 774,00 172,45 3360 0,00 774 774,00 212,07 3734 0,00
R19 14 833 833,00 2184,96 39776 0,00 833 833,00 1002,02 16302 0,00

Average 1083,05 19835,55 0,00 1164,95 20233,75 0,00

R00 16 804 759,12 10800,00 102463 5,58 795 763,00 10800,00 98707 4,03
R01 16 794 794,00 1610,67 19886 0,00 794 794,00 1237,40 13813 0,00
R02 16 752 702,00 10800,00 95493 6,65 752 694,50 10800,00 84208 7,65
R03 16 855 790,00 10800,00 101799 7,60 855 796,67 10800,00 94340 6,82
R04 16 792 792,00 4655,07 46526 0,00 792 792,00 4665,08 43764 0,00
R05 16 823 760,27 10800,00 103347 7,62 823 759,42 10800,00 97171 7,73
R06 16 900 898,58 10800,00 128224 0,16 900 900,00 8815,20 104367 0,00
R07 16 756 756,00 9120,89 113688 0,00 756 750,75 10800,00 122900 0,69
R08 16 909 866,50 10800,00 90976 4,68 908 868,94 10800,00 83127 4,30
R09 16 796 796,00 375,14 4737 0,00 796 796,00 455,08 5555 0,00
R10 16 755 706,58 10800,00 98524 6,41 755 707,50 10800,00 93244 6,29
R11 16 759 759,00 5194,92 62263 0,00 769 754,50 10800,00 112312 1,89
R12 16 825 808,67 10800,00 103212 1,98 825 804,00 10800,00 93500 2,55
R13 16 824 818,16 10800,00 125047 0,71 824 815,50 10800,00 116766 1,03
R14 16 823 728,06 10800,00 97766 11,54 823 724,33 10800,00 90494 11,99
R15 16 807 777,75 10800,00 101719 3,62 807 765,62 10800,00 93402 5,13
R16 16 781 762,00 10800,00 112255 2,43 781 766,83 10800,00 111309 1,81
R17 16 857 812,72 10800,00 105049 5,17 852 807,00 10800,00 95960 5,28
R18 16 846 826,73 10800,00 107810 2,28 846 816,00 10800,00 97441 3,55
R19 16 882 863,27 10800,00 108122 2,12 882 858,29 10800,00 97295 2,69

Average 9147,83 91445,30 3,43 9398,64 87483,75 3,67

133

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

Table 5.2: Results of (A3) and (A4) on instances with up to 16 items and stacks of infinite
capacity.

(A3) (A4)

Instance Items UB LB Time Nodes Time Nodes

R00 12 716 716,00 6,75 115 12,19 193
R01 12 741 741,00 5,29 109 5,05 79
R02 12 651 651,00 31,09 661 24,3 441
R03 12 690 690,00 1,66 24 2,02 14
R04 12 659 659,00 13,95 281 15,24 297
R05 12 627 627,00 19,01 353 23,83 474
R06 12 789 789,00 5,22 89 6,73 114
R07 12 589 589,00 7,11 128 9,21 139
R08 12 749 749,00 35,06 787 20,84 418
R09 12 686 686,00 3,46 75 4,79 72
R10 12 663 663,00 5,17 108 5,26 96
R11 12 622 622,00 11,20 243 15,52 298
R12 12 741 741,00 2,66 41 2,99 35
R13 12 683 683,00 1,92 28 4,5 61
R14 12 680 680,00 3,69 65 4,1 59
R15 12 624 624,00 14,65 297 17,5 331
R16 12 610 610,00 9,97 216 6,35 107
R17 12 780 780,00 27,18 546 25,29 477
R18 12 735 735,00 3,95 93 3,65 66
R19 12 782 782,00 15,12 317 25,02 472

Average 11,21 228,80 11,72 212,15

R00 14 766 766,00 112,78 1431 161,6 1924
R01 14 761 761,00 26,49 304 22,23 219
R02 14 690 690,00 56,59 714 51,23 567
R03 14 791 791,00 75,85 1116 24,67 312
R04 14 756 756,00 401,77 5208 697,29 8983
R05 14 773 773,00 127,48 1536 81,49 896
R06 14 811 811,00 16,68 155 19,7 194
R07 14 693 693,00 27,50 341 23,5 238
R08 14 824 824,00 297,97 4081 288,75 3750
R09 14 733 733,00 9,16 82 9,58 63
R10 14 733 733,00 98,83 1428 72,99 950
R11 14 719 719,00 206,65 2865 209,36 2700
R12 14 803 803,00 95,39 1239 58,34 685
R13 14 743 743,00 22,01 265 36,12 429
R14 14 747 747,00 177,59 2301 136,17 1565
R15 14 765 765,00 22,31 245 22,08 209
R16 14 685 685,00 33,97 449 27,39 308
R17 14 818 818,00 110,51 1293 122,7 1372
R18 14 774 774,00 85,21 1256 78,98 1151
R19 14 833 833,00 240,87 3164 142,41 1613

Average 112,28 1473,65 114,33 1406,40

R00 16 795 795,00 1414,19 10685 1783,13 13298
R01 16 794 794,00 120,46 872 97,56 642
R02 16 752 752,00 5738,98 45042 5427,46 40629
R03 16 855 855,00 2487,10 19324 3521,08 26700
R04 16 792 792,00 2676,19 21745 2707,43 20325
R05 16 820 820,00 995,85 7741 1882,26 13849
R06 16 900 900,00 668,24 5403 649,76 4862
R07 16 756 756,00 166,54 1276 98,1 725
R08 16 907 907,00 1408,09 11761 1214,73 10178
R09 16 796 796,00 53,16 427 85,89 697
R10 16 755 755,00 424,26 3443 412,44 3250
R11 16 759 759,00 760,43 6547 793,8 5841
R12 16 825 825,00 643,64 5235 522,88 4136
R13 16 824 824,00 408,69 3258 389,07 2809
R14 16 823 823,00 3140,47 24722 5288,23 39818
R15 16 807 807,00 406,53 3091 916,95 6824
R16 16 781 781,00 1075,12 9035 472,86 3864
R17 16 852 852,00 2309,26 18161 1704,2 12833
R18 16 846 846,00 1390,37 11996 1044,22 9193
R19 16 882 882,00 1299,35 9810 1044,82 7670

Average 1379,35 10978,70 1502,84 11407,15

134

5.4. EXPERIMENTAL RESULTS

Table 5.3: Results of (A3) and (A4) on instances with 18 and 20 items and stacks of infinite
capacity.

Instance Items (A3) (A4)

UB LB Time Nodes Gap UB LB Time Nodes Gap

R00 18 839 839,00 3488,88 17894 0,00 839 839,00 3972,65 20517 0,00
R01 18 825 825,00 791,71 3496 0,00 825 825,00 694,46 3415 0,00
R02 18 793 753,02 10800,00 46344 5,04 793 758,21 10800,00 48600 4,39
R03 18 899 851,68 10800,00 43227 5,26 899 859,00 10800,00 42919 4,45
R04 18 832 785,67 10800,00 43162 5,57 832 783,90 10800,00 42166 5,78
R05 18 873 873,00 8984,39 48919 0,00 873 873,00 9181,43 47196 0,00
R06 18 930 930,00 8001,76 43377 0,00 930 930,00 3622,55 18763 0,00
R07 18 805 805,00 1048,62 5653 0,00 805 805,00 2700,83 14181 0,00
R08 18 959 919,44 10800,00 47286 4,13 962 923,44 10800,00 48645 4,01
R09 18 815 815,00 151,61 750 0,00 815 815,00 187,73 941 0,00
R10 18 856 830,15 10800,00 49487 3,02 856 832,77 10800,00 47435 2,71
R11 18 823 787,69 10800,00 51464 4,29 813 791,97 10800,00 53444 2,59
R12 18 871 871,00 3982,70 20864 0,00 871 871,00 2245,87 11038 0,00
R13 18 845 845,00 2185,50 10921 0,00 845 845,00 1791,80 8940 0,00
R14 18 874 827,28 10800,00 44578 5,35 866 828,97 10800,00 45528 4,28
R15 18 868 838,87 10800,00 46897 3,36 869 836,34 10800,00 47538 3,76
R16 18 811 811,00 5787,25 31662 0,00 811 811,00 3297,92 16891 0,00
R17 18 900 859,24 10800,00 44310 4,53 900 859,86 10800,00 43181 4,46
R18 18 883 883,00 10274,22 52388 0,00 883 883,00 10700,68 55468 0,00
R19 18 909 909,00 5978,36 29985 0,00 909 909,00 6697,51 30803 0,00

Average 7393,75 34133,20 2,03 7114,67 32380,45 1,82

R00 20 879 824,25 10800,00 27952 6,23 879 820,72 10800,00 28855 6,63
R01 20 879 859,94 10800,00 31929 2,17 879 863,72 10800,00 33700 1,74
R02 20 830 759,19 10800,00 31140 8,53 830 757,18 10800,00 31900 8,77
R03 20 951 843,89 10800,00 29599 11,26 951 854,24 10800,00 28160 10,17
R04 20 874 787,50 10800,00 27808 9,90 874 786,65 10800,00 28117 9,99
R05 20 917 863,00 10800,00 31686 5,89 917 864,57 10800,00 31312 5,72
R06 20 978 927,12 10800,00 33000 5,20 971 936,67 10800,00 34317 3,54
R07 20 916 843,29 10800,00 30460 7,94 920 841,65 10800,00 30403 8,52
R08 20 979 894,18 10800,00 30317 8,66 979 898,75 10800,00 30534 8,20
R09 20 888 888,00 10164,86 36150 0,00 888 861,04 10800,00 34360 3,04
R10 20 945 847,52 10800,00 30437 10,32 945 853,53 10800,00 29088 9,68
R11 20 846 786,19 10800,00 33091 7,07 846 785,00 10800,00 30834 7,21
R12 20 922 863,16 10800,00 30141 6,38 925 865,73 10800,00 29607 6,41
R13 20 888 888,00 5817,28 19704 0,00 888 888,00 7385,40 24509 0,00
R14 20 921 832,09 10800,00 29971 9,65 921 841,43 10800,00 28138 8,64
R15 20 947 855,85 10800,00 26330 9,62 947 858,13 10800,00 25509 9,38
R16 20 869 837,27 10800,00 32738 3,65 869 822,18 10800,00 32574 5,39
R17 20 928 869,69 10800,00 28961 6,28 928 865,15 10800,00 29685 6,77
R18 20 928 855,17 10800,00 32691 7,85 928 865,62 10800,00 32442 6,72
R19 20 969 893,55 10800,00 29667 7,79 969 895,98 10800,00 28464 7,54

Average 10519,11 30188,60 6,72 10629,27 30125,40 6,70

135

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

We now compare the average running times reported in Table 5.1 with the average
running times of (A3) in Table 5.2. We see that (A3) is roughly six times faster than (A1)
and (A2) on instances with 12 items, ten times faster on instances with 14 items and seven
times faster in the case of 16 items. Similar ratios are observed by comparing the average
running times of (A4) with those of (A1) and (A2). We also see that the algorithms
in Table 5.2 enumerate considerably less branch-and-cut nodes than the algorithms in
Table 5.1.

We finally compare our best algorithms (A3) and (A4). In Table 5.2 we observe that in
average the running times of (A3) and (A4) are very close on the instances with 12 and 14
items, but (A3) is faster than (A4) on the instances with 16 items. Additionally, we recall
that both (A3) and (A4) solve to optimality the same set of 11 instances with 18 items.
Table 5.3 shows that (A4) is faster than (A3) in average on these instances. We already
observed that (A3) solves to optimality just two instances with 20 items, one more than
(A4). Hence a comparison of the running times of (A3) and (A4) on these instances would
not be very telling.

Please, remember that (A4) differs from (A3) for the presence of the odd hole inequal-
ities. In Table 5.2 and Table 5.3 we highlight in boldface the running times of (A4) that
are at least 10% less than the corresponding running times of (A3). We see that, if we
do not consider the easy instances with 12 items, the presence of the odd hole inequalities
improves the running times in roughly the 40% of the instances solved by both algorithms.

The number of branch-and-cut nodes enumerated by both algorithms is always compa-
rable. Finally, for the unsolved instances in Table 5.3 we see that the average gap obtained
by (A4) is smaller than the average gap obtained by (A3) in both the cases of instances
with 18 and 20 items.

From the analysis of Tables 5.1–5.3 we draw several conclusions. The computational
results of algorithm (A1) indicate that our formulation can be used to solve easily instances
of the double TSP with two stacks of infinite capacity with up to 14 items.

In order to increase the size of the instances solved with our approach, our analy-
sis clearly shows that the routing inequalities have to be included in the branch-and-cut
algorithm.

From a running time point of view the odd hole inequalities did not show a clear
beneficial impact in average. However, we have observed that they are able to speed up
the algorithm on several instances and for every instance size considered in this test session.
In addition, the odd hole inequalities help in reducing the optimality gap for the unsolved
instances.

Finally, we point out that our algorithm (A3) solves to optimality 73 out of the 100
tested instances within three hours of computational time. The heuristic of Côté et al. [45]
yields the optimal value of 41 instances out of the 73 solved to optimality by (A3). The
largest instances solved to optimality with our approach have 20 items.

136

5.4. EXPERIMENTAL RESULTS

5.4.4 Results in the Finite Capacity Case

The existing exact algorithm for the double TSP with multiple stacks consider the case in
which the stacks have a finite capacity [16, 30, 44, 109, 131, 132, 2, 157]. In this section
we report the computational results obtained by our algorithm for the double TSP with
two stacks of finite capacity.

The study presented in this section is the starting point for several discussions. Firstly,
it lets us assess the quality of the strengthening cuts in the finite capacity case. It also
clarifies the contribution of our approach with respect to the existing computational studies
on the double TSP with two stacks of finite capacity. Finally, it enables a comparison
between the results obtained in the finite capacity case with those obtained in the infinite
capacity case.

To this end, we adapt the four versions of the algorithm described in Section 5.4.3
by including also the separation routine of the y-infeasible path constraints described in
Section 5.3. In particular, the y-infeasible path constraints are separated only when the
current solution is binary and yielded no violation to the transitivity and 2-consistency
constraints.

For the sake of clarity we define the four “capacitated” versions of the algorithm
schematically as follows:

• (CA1): it is the branch-and-cut algorithm with no strengthening cuts at all i.e., only
the 2-consistency, transitivity and y-infeasible path constraints are separated during
the separation step;

• (CA2): with respect to (CA1), the odd hole inequalities are also separated. That is,
only the Simple Cut and the GDDL inequalities are not separated;

• (CA3): with respect to (CA1), the Simple Cut and the GDDL inequalities are also
separated, hence only the odd hole inequalities are not separated;

• (CA4): all strengthening cuts are separated.

The results obtained by Algorithms (CA1)–(CA4) are collected in Tables 5.4–5.6. The
informations reported in such tables are organized as described in Section 5.4.3.

We proceed now to the discussion of the computational results. From Table 5.4 we
see that both (CA1) and (CA2) solve to optimality all the instances with 12 items and
all instances but instance R14 with 14 items. Instead both algorithms mostly fail when
passing to instances with 16 items.

Table 5.5 shows that (CA3) and (CA4) are able to solve all instances with up to 16
items within the time limit. In addition, as reported in Table 5.6, both (CA3) and (CA4)
solve the same set of 11 instances out of the 20 instances with 18 items. Finally, we observe
that (CA3) solve to optimality only instance R09 with 20 items whereas no instance with
20 items is solved within the time limit by (CA4).

As in the infinite capacity case, we see that using only the odd hole inequalities as
strengthening cuts does not reduce, in general, the running time of the algorithm. Indeed,

137

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

in Table 5.4 Algorithm (CA1) appears slightly faster than (CA2). In addition, (CA1)
solves one instance with 16 items more than (CA2). We also observe that the inclusion
of the odd hole inequalities reduces the optimality gap in six out of the 17 instances not
solved to optimality by (CA1).

As was the case for stacks of infinite capacity, one gets significantly better performances
by including the Simple Cut and the GDDL inequalities as strengthening cuts. Indeed, the
comparison between the computational results in Table 5.4 and Table 5.5 shows that both
(CA3) and (CA4) are superior to (CA1) and (CA2) in terms of running time and number
of branch-and-cut nodes.

Algorithms (CA3) and (CA4) exhibit very similar average running times for the in-
stances with 12 and 14 items, as shown in Table 5.5. On instances with 16 items (CA3) is
faster than (CA4) in average. Conversely, Table 5.6 reveals that (CA4) reaches optimal so-
lutions of the solved instances with 18 items in less time than (CA3). Also, the optimality
gap for the unsolved instances with 18 items is oftentimes smaller when using (CA4). In
Table 5.5 and Table 5.6, we highlighted in boldface those running times obtained by (CA4)
that are at least 10% smaller than the corresponding running times obtained by (CA3).
Then, if we consider the instances with at least 14 items, we get that (CA4) improves of
at least the 10% the running times of (CA3) in roughly the 42% of the cases. Finally, we
observe that, with respect to (CA3), Algorithm (CA4) reduces the optimality gap in seven
out of the nine unsolved instances with 18 items.

We now compare the results described in this section with those obtained in the existing
literature on the double TSP with two stacks of finite capacity. As far as we know, the best
computational results for this problem have been obtained by Alba Mart́ınez et al. in [2].
The code of [2] has been implemented in C++ using CPLEX 12 and tested with a 3GHz
Intel Core 2 Duo processor, with a CPU time limit of three hours. In [2] optimal solutions
for instances with up to 14 items are reported.

In Table 5.7 we compare our best algorithms (CA3) and (CA4) with the algorithm
of [2]. The lines of Table 5.7 correspond to the instances identified by their name and the
number of items, as reported in the first two columns. We have three additional columns
each corresponding to one algorithm. For every instance these three columns contain the
CPU times of the corresponding algorithms. We highlighted in boldface those running
times of (CA3) and (CA4) that are smaller than the corresponding running times of the
algorithm of [2].

We see that both (CA3) and (CA4) are faster than the algorithm of [2] in 23 out of
the 40 considered instances. In addition, the average running time of (CA3) and (CA4)
is considerably smaller for the instances with 14 items. We explain this latter result by
observing that the algorithm of [2] has high running times on difficult instances with 14
items, such as instances R04, R08, R11, R14 and R17, whereas (CA3) and (CA4) exhibit
more uniform performances. From the discussion above we conclude that our approach
improves the existing computational results of the exact algorithms for the double TSP
with two stacks of finite capacity.

138

5.4. EXPERIMENTAL RESULTS

Table 5.4: Results of (CA1) and (CA2) on instances with up to 16 items and stacks of
finite capacity.

(CA1) (CA2)

Instance Items UB LB Time Nodes Gap UB LB Time Nodes Gap

R00 12 726 726,00 37,55 1086 0,00 726 726,00 45,66 1204 0,00
R01 12 741 741,00 15,27 471 0,00 741 741,00 15,91 471 0,00
R02 12 660 660,00 128,75 3681 0,00 660 660,00 110,77 2901 0,00
R03 12 690 690,00 4,85 133 0,00 690 690,00 3,55 89 0,00
R04 12 659 659,00 47,08 1405 0,00 659 659,00 69,01 1971 0,00
R05 12 631 631,00 208,82 6810 0,00 631 631,00 250,78 7188 0,00
R06 12 793 793,00 18,04 597 0,00 793 793,00 17,99 493 0,00
R07 12 593 593,00 128,05 4353 0,00 593 593,00 167,41 4716 0,00
R08 12 749 749,00 67,22 1901 0,00 749 749,00 87,74 2349 0,00
R09 12 692 692,00 11,71 397 0,00 692 692,00 12,58 402 0,00
R10 12 663 663,00 170,67 5493 0,00 663 663,00 125,59 3666 0,00
R11 12 625 625,00 33,18 1007 0,00 625 625,00 28,07 749 0,00
R12 12 741 741,00 14,12 469 0,00 741 741,00 18,28 557 0,00
R13 12 694 694,00 16,15 486 0,00 694 694,00 20,87 532 0,00
R14 12 680 680,00 127,90 4090 0,00 680 680,00 152,15 4301 0,00
R15 12 628 628,00 77,84 2537 0,00 628 628,00 91,94 2666 0,00
R16 12 610 610,00 22,11 557 0,00 610 610,00 18,84 436 0,00
R17 12 780 780,00 264,64 7298 0,00 780 780,00 254,53 6529 0,00
R18 12 735 735,00 6,63 227 0,00 735 735,00 6,01 170 0,00
R19 12 789 789,00 66,35 1979 0,00 789 789,00 75,78 2080 0,00

Average 73,35 2248,85 0,00 78,67 2173,50 0,00

R00 14 774 774,00 439,66 8051 0,00 774 774,00 602,09 10469 0,00
R01 14 761 761,00 205,94 4088 0,00 761 761,00 592,49 10776 0,00
R02 14 690 690,00 117,72 2234 0,00 690 690,00 143,96 2500 0,00
R03 14 791 791,00 189,16 3635 0,00 791 791,00 90,35 1590 0,00
R04 14 756 756,00 2748,03 47198 0,00 756 756,00 3089,76 50116 0,00
R05 14 775 775,00 3429,03 65560 0,00 775 775,00 3777,32 65715 0,00
R06 14 824 824,00 190,40 4105 0,00 824 824,00 188,75 3539 0,00
R07 14 697 697,00 896,31 17412 0,00 697 697,00 1260,95 23721 0,00
R08 14 824 824,00 754,41 13351 0,00 824 824,00 779,01 13043 0,00
R09 14 739 739,00 53,92 1255 0,00 739 739,00 46,47 901 0,00
R10 14 733 733,00 2112,82 39234 0,00 733 733,00 3211,25 56914 0,00
R11 14 725 725,00 989,19 18623 0,00 725 725,00 1129,00 20288 0,00
R12 14 803 803,00 495,29 8819 0,00 803 803,00 229,27 3903 0,00
R13 14 746 746,00 1100,57 20052 0,00 746 746,00 1206,87 20980 0,00
R14 14 765 745,00 10800,00 173328 2,61 765 750,40 10800,00 175262 1,91
R15 14 765 765,00 250,34 4525 0,00 765 765,00 446,45 7459 0,00
R16 14 685 685,00 192,04 3585 0,00 685 685,00 138,15 2287 0,00
R17 14 818 818,00 1609,22 28627 0,00 818 818,00 1704,45 28615 0,00
R18 14 774 774,00 172,51 3360 0,00 774 774,00 213,38 3734 0,00
R19 14 836 836,00 2696,59 49004 0,00 836 836,00 1280,37 20768 0,00

Average 1472,16 25802,30 0,13 1546,52 26129,00 0,10

R00 16 804 759,14 10800,00 102542 5,58 804 761,06 10800,00 96488 5,34
R01 16 794 794,00 1614,41 19886 0,00 794 794,00 1238,08 13813 0,00
R02 16 752 702,00 10800,00 95513 6,65 752 694,50 10800,00 84266 7,65
R03 16 855 790,00 10800,00 100850 7,60 855 796,33 10800,00 92645 6,86
R04 16 801 801,00 9139,49 91741 0,00 801 801,00 8517,75 81307 0,00
R05 16 823 760,29 10800,00 103342 7,62 823 759,40 10800,00 97199 7,73
R06 16 906 891,72 10800,00 118573 1,58 906 893,54 10800,00 116759 1,37
R07 16 756 756,00 9116,20 113688 0,00 756 750,83 10800,00 123042 0,68
R08 16 909 866,50 10800,00 90806 4,68 909 868,67 10800,00 82935 4,44
R09 16 800 800,00 521,78 6792 0,00 800 800,00 524,97 6540 0,00
R10 16 755 706,58 10800,00 98501 6,41 755 707,50 10800,00 93264 6,29
R11 16 777 754,16 10800,00 112459 2,94 777 750,00 10800,00 104998 3,47
R12 16 825 808,67 10800,00 103184 1,98 825 804,00 10800,00 93470 2,55
R13 16 831 814,00 10800,00 116390 2,05 831 808,76 10800,00 106639 2,68
R14 16 823 728,00 10800,00 97544 11,54 823 724,33 10800,00 90475 11,99
R15 16 807 777,75 10800,00 101708 3,62 807 765,62 10800,00 93377 5,13
R16 16 781 762,01 10800,00 113125 2,43 781 766,93 10800,00 111656 1,80
R17 16 858 812,50 10800,00 104629 5,30 858 806,34 10800,00 95232 6,02
R18 16 846 826,71 10800,00 107772 2,28 846 816,00 10800,00 97525 3,55
R19 16 882 863,31 10800,00 108247 2,12 882 858,25 10800,00 97041 2,69

Average 9659,59 95364,60 3,72 9694,04 88933,55 4,01

139

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

Table 5.5: Results of (CA3) and (CA4) on instances with up to 16 items and stacks of
finite capacity.

(CA3) (CA4)

Instance Items UB LB Time Nodes Time Nodes

R00 12 726 726,00 15,12 299 19,27 351
R01 12 741 741,00 5,37 109 5,06 79
R02 12 660 660,00 53,03 1134 37,39 709
R03 12 690 690,00 1,69 24 2,02 14
R04 12 659 659,00 14,18 281 15,25 297
R05 12 631 631,00 28,41 559 29,08 596
R06 12 793 793,00 6,64 120 7,93 136
R07 12 593 593,00 7,75 139 10,34 165
R08 12 749 749,00 35,69 787 20,87 418
R09 12 692 692,00 4,87 122 8,42 157
R10 12 663 663,00 5,23 108 5,29 96
R11 12 625 625,00 12,83 273 16,54 322
R12 12 741 741,00 2,72 41 3,00 35
R13 12 694 694,00 3,70 68 5,07 83
R14 12 680 680,00 3,75 65 4,12 59
R15 12 628 628,00 16,53 341 17,95 356
R16 12 610 610,00 10,12 216 6,37 107
R17 12 780 780,00 27,65 546 25,44 477
R18 12 735 735,00 4,02 93 3,66 66
R19 12 789 789,00 26,46 558 33,68 649

Average 14,29 294,15 13,84 258,60

R00 14 774 774,00 152,69 1979 247,86 3032
R01 14 761 761,00 27,29 304 22,25 219
R02 14 690 690,00 58,12 714 51,24 567
R03 14 791 791,00 77,95 1116 24,71 312
R04 14 756 756,00 412,28 5208 698,79 8983
R05 14 775 775,00 141,05 1674 95,55 1078
R06 14 824 824,00 30,83 346 27,91 333
R07 14 697 697,00 30,42 380 27,03 291
R08 14 824 824,00 305,95 4081 289,18 3750
R09 14 739 739,00 14,92 166 15,12 154
R10 14 733 733,00 101,40 1428 73,53 950
R11 14 725 725,00 319,65 4370 305,59 3917
R12 14 803 803,00 97,67 1239 58,74 685
R13 14 746 746,00 25,93 306 40,47 480
R14 14 765 765,00 516,63 6245 395,94 4688
R15 14 765 765,00 22,87 245 22,26 209
R16 14 685 685,00 34,84 449 27,54 308
R17 14 818 818,00 113,29 1293 123,65 1372
R18 14 774 774,00 87,33 1256 79,56 1151
R19 14 836 836,00 274,21 3476 177,28 2045

Average 142,27 1813,75 140,21 1726,20

R00 16 804 804,00 2424,13 18632 3046,54 22601
R01 16 794 794,00 120,06 872 97,56 642
R02 16 752 752,00 5724,79 45042 5412,28 40629
R03 16 855 855,00 2474,61 19324 3532,05 26700
R04 16 801 801,00 4789,36 38639 5102,74 38661
R05 16 823 823,00 1255,92 9752 2175,92 16069
R06 16 906 906,00 846,31 6941 817,02 6164
R07 16 756 756,00 166,15 1276 98,41 725
R08 16 909 909,00 1684,53 13790 1359,68 11359
R09 16 800 800,00 65,90 554 102,12 855
R10 16 755 755,00 423,26 3443 412,80 3250
R11 16 777 777,00 3343,26 27766 2135,59 16776
R12 16 825 825,00 643,16 5235 523,26 4136
R13 16 831 831,00 499,17 4098 464,15 3464
R14 16 823 823,00 3135,90 24722 5316,48 39818
R15 16 807 807,00 405,52 3091 920,19 6824
R16 16 781 781,00 1072,41 9035 473,23 3864
R17 16 858 858,00 3223,62 25471 2547,03 19180
R18 16 846 846,00 1377,10 11996 1053,68 9193
R19 16 882 882,00 1286,18 9810 1058,20 7670

Average 1748,07 13974,45 1832,45 13929,00

140

5.4. EXPERIMENTAL RESULTS

Table 5.6: Results of (CA3) and (CA4) on instances with 18 and 20 items and stacks of
finite capacity.

Instance Items (CA3) (CA4)

UB LB Time Nodes Gap UB LB Time Nodes Gap

R00 18 839 839,00 3441,34 17894 0,00 839 839,00 3979,04 20517 0,00
R01 18 857 857,00 4379,60 22658 0,00 857 857,00 4824,54 25717 0,00
R02 18 793 753,32 10800,00 47100 5,00 793 758,28 10800,00 48738 4,38
R03 18 899 851,72 10800,00 43348 5,26 899 859,00 10800,00 42938 4,45
R04 18 832 785,77 10800,00 43383 5,56 832 784,00 10800,00 42528 5,77
R05 18 873 873,00 8944,67 48919 0,00 873 873,00 9074,50 47196 0,00
R06 18 930 930,00 7886,89 43377 0,00 930 930,00 3571,23 18763 0,00
R07 18 805 805,00 1035,03 5653 0,00 805 805,00 2664,87 14181 0,00
R08 18 962 919,42 10800,00 47888 4,43 962 923,59 10800,00 49173 3,99
R09 18 815 815,00 150,07 750 0,00 815 815,00 185,57 941 0,00
R10 18 856 830,51 10800,00 50350 2,98 856 833,07 10800,00 48204 2,68
R11 18 823 787,95 10800,00 52500 4,26 823 788,14 10800,00 51696 4,24
R12 18 871 871,00 3928,58 20864 0,00 871 871,00 2211,18 11038 0,00
R13 18 860 860,00 3542,27 19592 0,00 860 860,00 4120,56 21969 0,00
R14 18 874 827,53 10800,00 45315 5,32 874 828,90 10800,00 46280 5,16
R15 18 869 838,92 10800,00 47466 3,46 869 836,61 10800,00 48230 3,73
R16 18 819 819,00 9823,54 55071 0,00 819 819,00 5112,37 27047 0,00
R17 18 900 859,50 10800,00 45200 4,50 900 860,07 10800,00 43971 4,44
R18 18 883 883,00 10127,94 52388 0,00 883 883,00 10553,73 55475 0,00
R19 18 909 909,00 5956,23 29985 0,00 909 909,00 6598,92 30803 0,00

Average 7820,81 36985,05 2,04 7504,83 34770,25 1,94

R00 20 879 824,28 10800,00 28009 6,22 879 820,72 10800,00 28853 6,63
R01 20 879 859,97 10800,00 31953 2,17 879 863,73 10800,00 33709 1,74
R02 20 830 759,21 10800,00 31194 8,53 830 757,22 10800,00 31936 8,77
R03 20 951 843,89 10800,00 29609 11,26 951 854,27 10800,00 28204 10,17
R04 20 874 787,49 10800,00 27855 9,90 874 786,66 10800,00 28135 9,99
R05 20 917 863,01 10800,00 31722 5,89 917 864,57 10800,00 31301 5,72
R06 20 983 926,50 10800,00 32733 5,75 983 934,31 10800,00 33817 4,95
R07 20 920 843,24 10800,00 30450 8,34 920 841,65 10800,00 30385 8,52
R08 20 979 894,18 10800,00 30307 8,66 979 898,78 10800,00 30530 8,19
R09 20 888 888,00 10167,85 36150 0,00 888 861,03 10800,00 34343 3,04
R10 20 945 847,51 10800,00 30411 10,32 945 853,50 10800,00 29032 9,68
R11 20 846 786,20 10800,00 33100 7,07 846 785,00 10800,00 30858 7,21
R12 20 925 863,16 10800,00 30264 6,69 925 865,73 10800,00 29567 6,41
R13 20 919 881,83 10800,00 33579 4,04 919 879,74 10800,00 32049 4,27
R14 20 921 832,09 10800,00 29951 9,65 921 841,42 10800,00 28117 8,64
R15 20 947 855,88 10800,00 26335 9,62 947 858,25 10800,00 25633 9,37
R16 20 869 837,35 10800,00 32958 3,64 869 822,18 10800,00 32604 5,39
R17 20 928 869,69 10800,00 29008 6,28 928 865,15 10800,00 29689 6,77
R18 20 928 855,17 10800,00 32682 7,85 928 865,62 10800,00 32483 6,72
R19 20 969 893,57 10800,00 29684 7,78 969 895,98 10800,00 28458 7,54

Average 10766,88 30897,70 6,98 10800,00 30485,15 6,99

141

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

Table 5.7: Running times of our best algorithms (CA3) and (CA4) and of the algorithm
of [2].

Instance Items (CA3) (CA4) [2]

R00 12 15,12 19,27 8,30
R01 12 5,37 5,06 1,80
R02 12 53,03 37,39 42,80
R03 12 1,69 2,02 0,20
R04 12 14,18 15,25 40,70
R05 12 28,41 29,08 176,80
R06 12 6,64 7,93 3,30
R07 12 7,75 10,34 8,50
R08 12 35,69 20,87 30,10
R09 12 4,87 8,42 1,80
R10 12 5,23 5,29 12,00
R11 12 12,83 16,54 17,90
R12 12 2,72 3,00 0,30
R13 12 3,70 5,07 1,40
R14 12 3,75 4,12 4,20
R15 12 16,53 17,95 20,60
R16 12 10,12 6,37 25,40
R17 12 27,65 25,44 92,30
R18 12 4,02 3,66 0,70
R19 12 26,46 33,68 9,00

Average 14,29 13,84 24,91

R00 14 152,69 247,86 156,60
R01 14 27,29 22,25 41,90
R02 14 58,12 51,24 125,50
R03 14 77,95 24,71 24,10
R04 14 412,28 698,79 3815,10
R05 14 141,05 95,55 392,60
R06 14 30,83 27,91 33,40
R07 14 30,42 27,03 48,40
R08 14 305,95 289,18 672,50
R09 14 14,92 15,12 5,30
R10 14 101,40 73,53 390,80
R11 14 319,65 305,59 989,00
R12 14 97,67 58,74 86,50
R13 14 25,93 40,47 26,40
R14 14 516,63 395,94 10134,90
R15 14 22,87 22,26 22,10
R16 14 34,84 27,54 66,60
R17 14 113,29 123,65 956,70
R18 14 87,33 79,56 31,20
R19 14 274,21 177,28 149,30

Average 142,27 140,21 908,45

142

5.5. CONCLUSIONS AND PERSPECTIVES

Another observation is that the best versions of our algorithm are able to solve to opti-
mality previously unsolved instances of the double TSP with two stacks of finite capacity.
Indeed, to the best of our knowledge only three instances with 16 items have been solved to
optimality in [44] within three hours of CPU time and no larger instance has been solved
before our work. Conversely, both (CA3) and (CA4) solve to optimality all instances with
16 items and also solve to optimality 11 out of the 20 instances with 18 items — see
Table 5.5 and Table 5.6.

We finally point out that, for every instance of the double TSP with two stacks of finite
capacity solved to optimality by our algorithm, the upper bound returned by the heuristic
of Côté et al. [45] used for our tests coincides with the optimal value.

We conclude by presenting a comparison between the results described in this section
with those described in Section 5.4.3 in the infinite capacity case. We focus on the best
versions of our algorithm. Note that (CA3) (resp. (CA4)) is the “capacitated” version of
(A3) (resp. (A4)), in the sense that it is obtained from (A3) (resp. (A4)) by just including
the y-infeasible path constraints.

If we consider instances with up to 18 items, we observe that (CA3) and (CA4) solve
to optimality exactly the same instances solved by (A3) and (A4). For 20 items, our best
algorithm for the infinite capacity case (A3) solves one instance more than its “capacitated”
version. Hence we have that the same set of 72 instances is solved to optimality in both
the cases where capacity is infinite or finite. In 41 of these 72 instances we observe that
the optimal values in the infinite capacity and finite capacity cases are the same.

As expected, (CA3) and (CA4) are in general slower than (A3) and (A4). Nevertheless,
if we compare the average running times of Table 5.2 and Table 5.5 we see that they are of
the same order of magnitude. More precisely, the finiteness of the capacity increases the
average running times of less than 30% for every instance size.

From the above observations we infer that, with our approach, the finiteness of the
capacity is not the major computational difficulty in solving to optimality benchmark
instances involving two stacks.

5.5 Conclusions and Perspectives

In this chapter we have presented a branch-and-cut algorithm for the double TSP with two
stacks. We have proposed four versions of our algorithm, each corresponding to a different
combination of strengthening inequalities among those presented in Chapter 4. For each
of the used families of inequalities we have presented polynomial-time separation routines
subsequently embedded in our algorithm. The four versions of the algorithm have been
tested on instances of the double TSP with two stacks of infinite capacity as well as on
instances where the capacity is finite.

We have observed that the finiteness of the capacity does not affect the overall behavior
of our algorithm. With respect to the existing literature on the problem, our approach
reduces the computational time needed to solve instances of the double TSP with two

143

CHAPTER 5. A BRANCH-AND-CUT ALGORITHM

stacks of finite capacity and also solves previously unsolved instances. The largest instance
solved to optimality has 20 items.

By comparing the four versions of our algorithm we have concluded that the formulation
presented in Chapter 3 can be successfully used in a branch-and-cut algorithm to tackle
instances of this problem with up to 14 items. To solve larger instances, our computational
tests indicate that the routing inequalities presented in Section 4.1.1 should be used as
strengthening inequalities. Since the routing inequalities do not carry any information on
the consistency requirement that characterizes the double TSP with multiple stacks, we
used the odd hole inequalities arising from the vertex cover approach to further improve
our algorithm. Our tests have shown that the odd hole inequalities speed up our algorithm
on several instances and reduce the average optimality gap for large unsolved instances.

From these observations we believe that a promising direction for future works is to
enhance our algorithm for the double TSP with two stacks by exploiting the vertex cover
approach. To this end, it is necessary to design fast heuristic separation routines for the
odd hole inequalities. Heuristic separation routines should also be designed for the wheel
inequalities presented in Corollary 4.2.15. Indeed, a polynomial separation algorithm for
these inequalities is given in [48] but, in the case of the double TSP with two stacks and
n items, its time complexity is in O(n7) hence we decided to not implement it in our
algorithm. From the same point of view, we also believe that it is important to find new
strengthening inequalities arising from the vertex cover approach.

Another interesting research direction is to consider the adaptation of our branch-and-
cut algorithm to the important case of the double TSP with more than two stacks. In
particular, we would like to investigate the computational effectiveness of the generalized
cycle inequalities (4.20) arising from the set covering approach presented in Chapter 4. We
point out that the existence of an exact separation routine for inequalities (4.20) was proven
by Letchford in [126]. Unfortunately, this positive result does not seem easily transferable
to separation algorithms likely to be effective in practice, since it relies on a disjunctive
argument combined with the equivalence of separation and optimization. Hence, we think
that the design of both heuristic and exact algorithms for the separation of such inequalities
based on more combinatorial arguments needs to be addressed.

144

Part II

Lexicographical Polytopes

145

Chapter 6

Polyhedral Study of Lexicographical
Polytopes

In this chapter we study the lexicographical polytopes. Within a fixed integer box of Rn,
a lexicographical polytope is the convex hull of the integer points of the box that are lexi-
cographically between two given integer points of the box . Similarly, a top-lexicographical
polytope (resp. bottom-lexicographical polytope) is the convex hull of the integer points of
the box that are lexicographically equal or smaller (resp. greater) than a given integer
point of the box.

Lexicographical polytopes can be seen in the more common context of knapsack poly-
topes i.e., the convex hulls of the solutions to a binary knapsack problem. More precisely,
every top-lexicographical polytope is a so-called superdecreasing knapsack polytope, and
conversely (see Section 6.2 for the proof of this equivalence). The definition of superde-
creasing knapsack polytopes that will be given in Section 6.2 is similar to the one of superin-
creasing knapsack polytope already present in the literature, see e.g., [172, 46, 94, 144]. In
fact, both superincreasing and superdecreasing knapsack polytopes can be studied with the
same techniques and we can refer indifferently to any of them. Superincreasing knapsack
polytopes have a wide range of applications and, by the equivalence above, they motivate
the interest in lexicographical polytopes.

A first application is in the design of knapsack cryptosystems. These are cryptosys-
tems that define a public “hard” binary knapsack problem to hide a corresponding binary
superincreasing knapsack problem, whose resolution is tractable. The resolution of the
superincreasing knapsack problem lets a receiver easily decipher any message encrypted
according to specific rules, whereas an eavesdropper can decipher the same message only
by solving the hard knapsack problem. See [144] for more details.

A second application is in the design of wireless networks [46]. Some standard available
models for this task exhibit numerical issues. To overcome these difficulties the models can
be reformulated as binary integer linear programs. The resulting knapsack constraints in
the new programs have the superincreasing property hence they can be replaced by the set
of inequalities describing the associated binary superincreasing knapsack polytopes. This
operation partially solves the numerical issues.

147

CHAPTER 6. POLYHEDRAL STUDY OF LEXICOGRAPHICAL POLYTOPES

In general, one reformulates integer linear programs by replacing general integer vari-
ables by several binary variables, using the so-called binary expansion, see e.g., p.477 [186].
Each variable substitution generates a binary superincreasing knapsack constraint. Thus,
all inequalities valid for the corresponding superincreasing knapsack polytope can be added
to the reformulated program as strengthening cuts.

We point out that the above mentioned applications are based on binary superincreasing
knapsack polytopes. Hence, it is not surprising that several researches have been interested
in these polytopes. In particular, a complete linear description of binary superincreasing
knapsack polytopes has been found independently by many authors over the past years.
From the equivalence mentioned at the beginning of this introduction, the description
provides a complete description of binary top-lexicographical polytopes. In this chapter
we give a similar result in the general integer case, that is we provide a complete linear
description of top-lexicographical and bottom-lexicographical polytopes. In addition we
exploit them to obtain a complete linear description of lexicographical polytopes. Finally,
we show that the intersection of two lexicographical polytopes yields a lexicographical
polytope.

The chapter is organized as follows. In Section 6.1 we survey the known results on lex-
icographical polytopes. In Section 6.2 we give the fundamental definitions used through-
out the chapter, as well as the proof of the equivalence between top-lexicographical and
superdecreasing knapsack polytopes. In Section 6.3, we provide a flow based extended for-
mulation of the convex hull of the componentwise maximal points of a top-lexicographical
polytope. Projecting this formulation is surprisingly straightforward and thus, we get the
description in the original space. In Section 6.4, using the fact that a top-lexicographical
polytope is, up to translation, the submissive of the above convex hull, we derive the de-
scription of top-lexicographical polytopes. We then show that a lexicographical polytope
is the intersection of its top- and bottom-lexicographical polytopes.

6.1 Known Results

Results on superincreasing knapsack polytopes are also a contribution to the lexicographical
polytope theory, hence we report known results in both topics.

Superincreasing Knapsack Polytopes. The study of superincreasing knapsack poly-
topes starts in [123]. The authors show that a binary knapsack polytope is completely
described by its minimal cover inequalities [14] if and only if it is a binary superincreasing
knapsack polytope. They use an argument on Mengerian clutters due to Seymour [176].
Finally, they explicitly determine the minimal cover inequalities in terms of the coefficients
defining the knapsack constraint and deduce that the optimization problem on binary
superincreasing polytopes can be solved in polynomial time.

148

6.1. KNOWN RESULTS

In [3] Angulo et al. consider two binary knapsack sets:

K≤ = {x ∈ {0, 1}n : ax ≤ b},
K≥ = {x ∈ {0, 1}n : ax ≥ c},

where the coefficients of ax ≤ b and ax ≥ c satisfy a binary superincreasing property,
i.e.,

∑k
i=1 ai ≤ ak+1. The goal of the paper is to provide a polynomial-size extended

formulation for the polytopes obtained from the unit hypercube by removing a prescribed
list of its vertices. Via a result of Balas on the union of polyhedra [9], they show that
this is possible, provided that a polynomial-size formulation exists for conv(K≤ ∩ K≥).
Hence, they prove that conv(K≤ ∩K≥) = conv(K≤) ∩ conv(K≥) and conclude using the
description of conv(K≤) and conv(K≥) given in [123].

Given u ∈ Zn+, Gupte [94] provides a complete description of the convex hull of the
points in the knapsack set

K≤ = {x ∈ Zn : ax ≤ b,0 ≤ x ≤ u},

when the coefficients of ax ≤ b satisfy a superincreasing property, i.e.,
∑k

i=1 aiui ≤ ak+1.
His result generalizes the one of [123] since the binary superincreasing knapsack polytopes
studied in [123] are a special case of conv(K≤). The proof in [94] are completely based
on polyhedral arguments, first by proving the validity of the so-called packing inequalities
for conv(K≤), and subsequently showing their sufficiency for a complete description. The
author observes that the same results can be obtained by considering the convex hull of
the points in:

K≥ = {x ∈ Zn : ax ≥ b,0 ≤ x ≤ u}.

with ax ≥ b satisfying the superincreasing property. Finally, he proves that conv(K≤ ∩
K≥) = conv(K≤) ∩ conv(K≥). In this case he uses a well-known result on the union
of polyhedra due to Balas [9]. This latter result generalizes the one of Angulo et al. [3]
described above.

Lexicographical Polytopes. The study of lexicographical polytopes is initiated in the
binary case in [77]. A complete linear description of binary top-lexicographical polytopes
is provided, and the authors deduce that the minimum number of facets that a binary
d-dimensional polytope with n vertices can have is bounded above by 3d. The structure of
lexicographical polytopes is used to support the hypothesis that sorting lexicographically
randomly generated binary points might be a good strategy to have fast incremental al-
gorithms for the construction of their convex hull — an incremental algorithm constructs
the convex hull of the first i+ 1 points in a set from the convex hull of the first i points.

In the second part of their paper, the authors study the graph Ln = (V,E) of n-
dimensional top-lexicographical polytopes. They show that for an n-dimensional lexico-
graphical polytope, the average degree of a vertex in Ln is at most 4+n. Finally, they prove
that the edge-expansion of the same graph, defined as min{ δ(S)

|S| : S ⊂ V, 0 < |S| ≤ |V |
2
},

149

CHAPTER 6. POLYHEDRAL STUDY OF LEXICOGRAPHICAL POLYTOPES

is at least one, thus supporting a conjecture of Mihail and Vazirani [135] stating that this
holds for every binary polytope.

In [141], Muldoon et al. independently find the results of the above mentioned paper
by Angulo et al. [3] about the intersection of binary superincreasing knapsack polytopes.
However, the approach of [141] is initially to consider binary lexicographical polytopes.
Subsequently in the paper, the equivalence with the superdecreasing knapsack is revealed.
Finally, the authors employ the inequalities describing the binary lexicographical polytope
to strengthen the reformulations of challenging integer linear programs via the binary
expansion of integer variables. They show that solving the reformulation needs in average
only 59% of the time needed to solve the original formulation.

Very recently (April 2016) Adams et al. [1] have proven some of the results found in [94]
from the lexicographical polytope point of view. That is they provide a linear description
of the lexicographical polytope (not necessarily in the binary case). They first present
a family of inequalities valid for a top-lexicographical polytope. Subsequently, they show
that the coefficients of these inequalities are related to the inverse of structured lower trian-
gular matrices. Exploiting this relation, they show that the proposed inequalities are also
sufficient to describe the top-lexicographical polytopes. Using Balas’ results on the union
of polyhedra [9] they also provide an extended formulation for top lexicographical poly-
topes as well as an approximation of the convex hull of the matrices with lexicographically
nonincreasing columns.

6.2 Definitions and Preliminary Results

Throughout, `, u, r, s will denote integer points satisfying ` ≤ r ≤ u and ` ≤ s ≤ u, that is
r and s are within [`, u]. A point x ∈ Zn is lexicographically smaller than y ∈ Zn, denoted
by x 4 y, if x = y or the first nonzero coordinate of y − x is positive. We write x ≺ y if
x 4 y and x 6= y. Note that ≺ is a linear ordering over Zn. The lexicographical polytope
P r4s
`,u is the convex hull of the integer points within [`, u] that are lexicographically between
r and s:

P r4s
`,u = conv{x ∈ Zn : ` ≤ x ≤ u, r 4 x 4 s}.

The top-lexicographical polytope P4s`,u = conv{x ∈ Zn : ` ≤ x ≤ u, x 4 s} is the special case

when r = `. Similarly, the bottom-lexicographical polytope is P r4
`,u = conv{x ∈ Zn : ` ≤ x ≤

u, r 4 x}.
There is a close relations between top-lexicographical polytopes and the so-called su-

perdecreasing knapsack polytopes. Given a, u ∈ Rn
+ and b ∈ R+, the knapsack polytope

defined by Ka,b
u = conv{x ∈ Zn, 0 ≤ x ≤ u, ax ≤ b} is superdecreasing if:∑

i>k

aiui ≤ ak for k = 1, . . . , n. (6.1)

Observe that a superdecreasing knapsack Ka,b
u is the top-lexicographical polytope P4s0,u,

where s the lexicographically greatest integer point of Ka,b
u . The non trivial inclusion

150

6.2. DEFINITIONS AND PRELIMINARY RESULTS

actually holds because every integer point x of P4s0,u satisfies ax ≤ as. Indeed, by definition,
if x ≺ s, there exists k ∈ {1, . . . , n} such that xk + 1 ≤ sk and xi = si for i < k. Hence,
we have b− ax ≥ as− ax ≥

∑
i>k ai(si − xi) + ak ≥

∑
i>k ai(si − xi + ui) ≥ 0, because of

(6.1), si ≥ 0 and ui ≥ xi.
It turns out that top-lexicographical polytopes are superdecreasing knapsack polytopes.

Indeed, let P4s`,u be a top-lexicographical polytope for some s within [`, u]. Possibly after
translating, we may assume ` = 0. Define a by ak =

∑
i>k aiui + 1, for k = 1, . . . , n, and

let b = as. Since the associated knapsack polytope Ka,b
u is superdecreasing, if x 4 s then

ax ≤ as = b, for all x within [0, u]. Moreover, the converse holds because, inequalities (6.1)
being all strict, s ≺ x implies b = as < ax. Therefore, P4s0,u = Ka,b

u . These observations are
summarized in the following.

Remark 6.2.1. Superdecreasing knapsacks are top-lexicographical polytopes, and con-
versely (up to translations).

The equivalence in Remark 6.2.1 has been observed by several authors. For the 0/1
case, that is when ` = 0 and u = 1, Gillmann and Kaibel [77] first noticed that top-
lexicographical polytopes are special cases of superdecreasing knapsack ones, and the con-
verse has been later established by Muldoon et al. [141]. Recently, Gupte [94] generalized
the latter result by showing that all superdecreasing knapsacks are top-lexicographical
polytopes.

Example 6.2.2. Let us consider the following knapsack polytope

Ka,b
u = conv{x ∈ Z4 : 0 ≤ x ≤ u

594x1 + 54x2 + 9x3 + x4 ≤ 4200},

where u = (7, 10, 5, 8), a = (594, 54, 9, 1) and b = 4200. It can be verified that it is a
superdecreasing knapsack polytope since

∑
i>k aiui ≤ ak for k = 1, . . . , 4. It can be easily

verified that s = (7, 0, 4, 6) is the lexicographically greatest point in Ka,b
u , hence, according

to the definitions given above we have Ka,b
u = P4s0,u. The forthcoming Theorem 6.4.2 can

then be used to show that Ka,b
u is the set of points (x1, x2, x3, x4) satisfying the bound

inequalities 0 ≤ xi ≤ ui for i = 1, . . . , 4 and the following set of inequalities:

4x1 + 2x3 + x4 ≤ 42

10x1 + x2 ≤ 70

x1 + x3 ≤ 11

x1 ≤ 7.

In next sections, we provide the description of the lexicographical polytopes which,
thanks to Observation 6.2.1, gives alternative proofs of the results of Gupte [94] and Adams
et al. [1]. We would like to emphasize that our approach provides very simple and short
proofs and conveys a geometrical insight. This is due to the efficient combination of
polyhedral arguments together with a suitable extended formulation for the convex hull of
componentwise maximal integer points.

151

CHAPTER 6. POLYHEDRAL STUDY OF LEXICOGRAPHICAL POLYTOPES

6.3 Convex Hull of Componentwise Maximal Points

From now on, X4s`,u will denote the set of the points pi = (s1, . . . , si−1, si − 1, ui+1, . . . , un),

for i = 1, . . . , n+ 1 such that si > `i, p
n+1 = s by definition. Note that X4s`,u consists of the

componentwise maximal integer points of P4s`,u , to which we added, for later convenience,
the point pn = (s1, . . . , sn−1, sn − 1) if sn > `n.

6.3.1 A Flow Model for X4s`,u

We first model the points of X4s`,u as paths from 1 to n + 1 in the digraph given in Figure
6.1.

n

yk

zk

n+ 1

tk

1 2 k

source

sink

Figure 6.1: Path representation of the points of X4s`,u.

Our digraph is composed of n+1 layers, each containing two nodes except the first and
the last ones. There are three arcs connecting the layer k to the layer k + 1, an upper arc
yk, a diagonal arc tk and a lower arc zk. The only exception concerns the first level, which
does not have the upper arc.

The arcs connecting two successive layers correspond to a coordinate of x ∈ X4s`,u. More
precisely, given a directed path P from 1 to n + 1, we define the point x by setting, for
k = 1, . . . , n,

xk =

uk if yk ∈ P,
sk − 1 if tk ∈ P,
sk if zk ∈ P.

As shown in Observation 6.3.1, the set of (x, y, z, t) satisfying the following set of
inequalities is an extended formulation of conv(X4s`,u):

xi = uiyi + (si − 1)ti + sizi for i = 1, . . . , n, (6.2)

y1 = 0 (6.3)

yi = yi−1 + ti−1 for i = 2, . . . , n, (6.4)

zi = zi+1 + ti+1 for i = 1, . . . , n− 1, (6.5)

ti = 0 whenever si = `i, (6.6)

yn + tn + zn = 1 (6.7)

yi, ti, zi ≥ 0 for i = 1, . . . , n. (6.8)

152

6.3. CONVEX HULL OF COMPONENTWISE MAXIMAL POINTS

Observation 6.3.1. conv(X4s`,u) = projx{(x, y, z, t) satisfying (6.2)-(6.8)}.

Proof. First, note that there is a one-to-one correspondence between the points of X4s`,u and

the paths from layer 1 to layer n+1 of the digraph. This implies that X4s`,u is the projection
onto the x variables of the integer points of Q = {(x, y, z, t) satisfying (6.2)–(6.8)}. The
digraph being acyclic, the set of (y, z, t) satisfying (6.3)-(6.8) is a path polytope and thus
is an integral polytope. The integrality of u and s implies that Q is integral, hence so is
its projection onto the x variables, which concludes the proof.

6.3.2 Description of conv(X4s`,u)

In the following result, we use Observation 6.3.1 to provide a linear description of conv(X4s`,u).

Lemma 6.3.2. conv(X4s`,u) is described by the inequalities:

n∑
i=1,si>`i

Ai(x) ≥ −1 (6.9)

Ak(x) ≤ 0 for k = 1, . . . , n, (6.10)

Ak(x) ≥ 0 when sk = `k, (6.11)

where, for k = 1, . . . , n,

Ak(x) := (xk − sk) + (uk − sk)
k−1∑

i=1,si>`i

(xi − si)
k−1∏

j=i+1,sj>`j

(uj − sj + 1).

Proof. By Observation 6.3.1, it suffices to project onto the x variables of the set of x, y, t, z
satisfying (6.2)-(6.8).

For k = 1, . . . , n, we get yk =
∑k−1

i=1 ti by (6.3) and (6.4). This, combined with (6.5),

(6.7), yields zk = 1 −
∑k

i=1 ti. Using those two equations in (6.2), and tk = 0 whenever
sk = `k, we obtain

tk = sk − xk + (uk − sk)
k−1∑

i=1,si>`i

ti, for k = 1, . . . , n. (6.12)

We now show by induction on k that, for all k = 1, . . . , n,

k∑
i=1,si>`i

ti =
k∑

i=1,si>`i

(si − xi)
k∏

j=i+1,sj>`j

(uj − sj + 1). (6.13)

By definition of tk, (6.13) holds for k = 1. Let us suppose that (6.13) holds for k < n and
show that it holds for k + 1. The result is immediate if sk+1 = `k+1, hence assume that

153

CHAPTER 6. POLYHEDRAL STUDY OF LEXICOGRAPHICAL POLYTOPES

sk+1 > `k+1. We have

k+1∑
i=1,si>`i

ti = (sk+1 − xk+1) + (uk+1 − sk+1)
k∑

i=1,si>`i

ti +
k∑

i=1,si>`i

ti (6.14)

= (sk+1 − xk+1) + (uk+1 − sk+1 + 1)
k∑

i=1,si>`i

(si − xi)
k∏

j=i+1,sj>`j

(uj − sj + 1)

(6.15)

=
k+1∑

i=1,si>`i

(si − xi)
k+1∏

j=i+1,sj>`j

(uj − sj + 1).

Above, equality (6.14) follows from (6.12) applied to tk+1 and equality (6.15) follows using
(6.13).

Injecting (6.13) in (6.12) leads to

tk = sk−xk + (uk− sk)
k−1∑

i=1,si>`i

(si−xi)
k−1∏

j=i+1,sj>`j

(uj− sj + 1) for k = 1, . . . , n. (6.16)

Up to now, we only used linear transformations, thus projecting out the variables y, z gives
us (6.16),

∑n
i=1,si>`i

ti ≤ 1, tk = 0 whenever sk = `k and tk ≥ 0 otherwise. Then, projecting
onto the x variable gives the desired result.

Note that the following derives from the above proof by combining (6.12) and the fact
that, by (6.16), we have tk = −Ak:

Ak(x) = (xk − sk) + (uk − sk)
k−1∑

i=1,si>`i

Ai(x), for k = 1, . . . , n. (6.17)

6.4 Lexicographical Polytopes

In this section, we first provide the description of top-lexicographical polytopes. We
then show that a lexicographical polytope is the intersection of its top- and bottom-
lexicographical polytopes.

6.4.1 Description of Top-lexicographical Polytopes

The following observation unveils the polyhedral relation between a top-lexicographical
polytope and the convex hull of its componentwise maximal points.

Observation 6.4.1. P4s`,u = (conv(X4s`,u) + Rn
−) ∩ {x ≥ `}.

154

6.4. LEXICOGRAPHICAL POLYTOPES

Proof. Since conv(X4s`,u) is integer and contained in {x ≥ `}, the polyhedron on the right
is integer. Seen the definitions, the observation follows.

Remark that, when ` = 0, P4s`,u is precisely the submissive of conv(X4s`,u) — see [12]
for the definition of submissive of a polytope. Now, we derive from Lemma 6.3.2 and
Observation 6.4.1 the linear description of top-lexicographical polytopes.

Theorem 6.4.2. P4s`,u = {x ∈ Rn : ` ≤ x ≤ u,Ak(x) ≤ 0, for k = 1, . . . , n}.
Proof. Theorem 6.4.2 immediately follows from Observation 6.4.1 and the following de-
scription of conv(X4s`,u) + Rn

−,

conv(X4s`,u) + Rn
− = {x ∈ Rn : x ≤ u and Ak(x) ≤ 0, for k = 1, . . . , n}. (6.18)

To prove (6.18), denote by Q its right hand side. By Lemma 6.3.2, the above inequalities
are valid for conv(X4s`,u). Since their coefficients for x are nonnegative, they also hold for

conv(X4s`,u) +Rn
−. Note that the latter and Q have the same recession cone, thus it remains

to show that the vertices of Q are vertices of conv(X4s`,u). Let us prove it by induction on
the dimension, the base case being immediate. We may assume that un > sn, as otherwise
An(x) = xn − sn and the induction concludes. Let x̄ be a vertex of Q.

Claim 6.4.3.
n∑

i=1,si>`i

Ai(x̄) ≥ −1.

Proof. The indices i of Ai(x) involved in sums throughout this proof satisfy si > `i, yet
to ease the reading, we will omit the subscripts “si > `i”. By contradiction, assume that∑n

i=1 Ai(x̄) < −1. Since x̄ is a vertex, and xn appears only in xn ≤ un and An(x) ≤ 0, at
least one of them holds with equality. If the latter does, then by (6.17) and un > sn, we get
the contradiction 0 = An(x̄) ≤ (un − sn)(1 +A1(x̄) + · · ·An−1(x̄)) < (un − sn)(1− 1) = 0.
Therefore An(x̄) < 0 and x̄n = un. For x ∈ Rn, we denote x′ := (x1, . . . , xn−1). Necessarily,
x̄′ satisfies to equality n− 1 linearly independent of the remaining inequalities, and hence
x̄′ is a vertex of {x ∈ Rn−1 : xk ≤ uk, Ak(x) ≤ 0, for k = 1, . . . , n− 1}. By the induction
hypothesis, x̄′ is a vertex of conv(X4s

′

`′,u′) + Rn−1
− , hence

∑n−1
i=1 Ai(x̄

′) ≥ −1. But now
An(x̄) < 0, x̄n = un and (6.17) imply A1(x̄′) + · · ·+ An−1(x̄′) < −1, a contradiction. �

Let us show that Ak(x̄) = 0 whenever sk = `k. Indeed, in this case, x̄k only appears
in Ak(x̄) ≤ 0 and x̄k ≤ uk, and one is satisfied with equality since x̄ is a vertex. If
x̄k = uk, then by (6.17), Claim 6.4.3 and Ai(x̄) ≤ 0, for i = 1 . . . , n, we get 0 ≥ Ak(x̄) =
(uk − sk)(1 +

∑k−1
i=1,si>`i

Ai(x̄)) ≥ 0. Consequently, x̄ belongs to conv(X4s`,u) and this proves
(6.18).

Symmetrically, bottom-lexicographical polytopes are described as follows.

Corollary 6.4.4. P r4
`,u = {x ∈ Rn : ` ≤ x ≤ u,Bk(x) ≤ 0, for k = 1, . . . , n}, where, for

k = 1, . . . , n,

Bk(x) = (rk − xk) + (rk − `k)
k−1∑

i=1,ri<ui

(ri − xi)
k−1∏

j=i+1,rj<uj

(rj − `j + 1).

155

CHAPTER 6. POLYHEDRAL STUDY OF LEXICOGRAPHICAL POLYTOPES

6.4.2 Lexicographical Polytopes

By definition, we have P r4s
`,u ⊆ P r4

`,u ∩P
4s
`,u . It turns out that the converse holds, see Theorem

6.4.5. In particular, P r4
`,u ∩ P

4s
`,u is an integer polytope.

Theorem 6.4.5. A lexicographical polytope is the intersection of its top- and bottom-
lexicographical polytopes.

Proof. It remains to prove that P r4s
`,u ⊇ Q, where Q = P r4

`,u ∩ P
4s
`,u . Let us prove it by

induction on the dimension, the one-dimensional case being immediate.
If r1 = s1, then the problem reduces to the (n−1)-dimensional case, and using induction

concludes.
If r1+1 ≤ π ≤ s1−1 for some integer π, then let `′ be obtained from ` by replacing `1 by

π. By s1 > `′1 and the definition of Ak(x), applying Theorem 6.4.2 gives P4s`,u ∩{x1 ≥ π} =

P4s`′,u. Moreover, since π > r1, the latter is contained in P r4
`,u . Therefore Q∩{x1 ≥ π} = P4s`′,u

is integer. Similarly, Q ∩ {x1 ≤ π} is integer, hence so is Q, and we are done.
The remaining case is when r1 = s1−1. Let x̄ ∈ P r4

`,u∩P
4s
`,u . If x̄1 = s1, when x̄ is written

as a convex combination of integer points of P4s`,u , all of them have their first coordinate

equal to s1, and hence belong to P r4s
`,u . By convexity, so does x̄ and we are done. A similar

argument may be applied if x̄1 = r1. Therefore, we may assume that r1 < x̄1 < s1.
Let λ = x̄1−r1, and define y by y1 = s1 and yk = uk+ x̄k−uk

λ
for k = 2, . . . , n. Similarly,

define z by z1 = r1 and zi = `i + x̄i−`i
1−λ , for i = 2, . . . , n. The following claim finishes the

proof, where, given two points v and w of Rn, max(v, w) (resp. min(v, w)) will denote the
point of Rn whose ith coordinate is max{vi, wi} (resp. min{vi, wi}) for i = 1, . . . , n.

Claim 6.4.6. x̄ is a convex combination of ȳ = max(y, `) and z̄ = min(z, u) which both
belong to P r4s

`,u .

Proof. First, let us show that y ∈ conv(X4s`,u) + Rn
−. As x̄ ≤ u, we have y ≤ u. Moreover,

A1(y) = y1 − s1 = 0. Now, we prove by induction that Ak(y) = 1
λ
Ak(x̄) for k = 2, . . . , n.

Using (6.17), A1(y) = 0, the definition of yk, and the induction hypothesis, we have
Ak(y) = 1

λ
[x̄k−sk+(λ−1)(uk−sk)+(uk−sk)

∑k−1
i=2,si>`i

Ai(x̄)]. Since λ−1 = x̄1−s1 = A1(x̄)

and s1 = r1 + 1 > `1, we get by (6.17) that Ak(y) = 1
λ
Ak(x̄), for k = 2, . . . , n. Since

Ak(x̄) ≤ 0, we have Ak(y) ≤ 0. Hence, y ∈ conv(X4s`,u) + Rn
−. Therefore, there exists y+ of

conv(X4s`,u) with y+ ≥ y. Clearly, y+ ≥ ` hence y+ ≥ max(y, `). Thus, max(y, `) belongs

to conv(X4s`,u) + Rn
− and, by Observation 6.4.1, to P4s`,u . Moreover, as its first coordinate

equals s1, max(y, `) belongs to P r4s
`,u . Similarly, min(z, u) also belongs to P r4s

`,u .
Finally, we have (1 − λ)z̄1 + λȳ1 = (1 − λ)(s1 − 1) + λs1 = s1 − 1 + λ = x̄1. For

i ∈ {2, . . . , n}, we have (1−λ)z̄i+λȳi = min(x̄i−λ`i, (1−λ)ui)+max((λ−1)ui+ x̄i, λ`i) =
x̄i−max(λ`i, (λ− 1)ui + x̄i) + max((λ− 1)ui + x̄i, λ`i) = x̄i. Therefore, x̄ = (1− λ)z̄ + λȳ
and we are done. �

Note that the above result implies that the family of lexicographical polytopes defined
on a fixed box [`, u] is closed by intersection. Beside, combined with Theorem 6.4.2 and
Corollary 6.4.4, it provides the description of lexicographical polytopes.

156

6.4. LEXICOGRAPHICAL POLYTOPES

Corollary 6.4.7. The lexicographical polytope P r4s
`,u is described as follows.

P r4s
`,u =

x ∈ Rn : Ak(x) ≤ 0 for k = 1, . . . , n

Bk(x) ≤ 0 for k = 1, . . . , n
` ≤ x ≤ u

 .

157

159

Conclusion

In this thesis we have studied two problems arising in combinatorial optimization.

In the first part of the thesis we have considered the double TSP with multiple stacks.
In this problem a vehicle picks up a set of items in one region and delivers them to a
corresponding set of customers in a far region. The items are put in stacks and can be
unloaded only following a last-in-first-out rule.

We have given a new integer linear programming formulation for the double TSP with
multiple stacks. Our formulation is based on a model for the TSP involving precedence
variables [171] and on the so-called y-infeasible path constraints introduced in this thesis.
A solution to our formulation coincides with a pair of Hamiltonian circuits representing
a feasible pair of pickup and delivery circuits. In the case of the double TSP with two
stacks we have presented an algorithm to retrieve from such a pair a loading plan, i.e.,
a disposition of the items in the stacks that is consistent with the pair of circuits. Such
an algorithm is based on the resolution of a binary knapsack problem and improves the
worst-case running time of an algorithm presented in [23]. We have also focused on the
special case of the problem in which the stacks have an infinite capacity. In this latter case
our formulation contains a polynomial number of constraints when the number of stacks
is fixed.

Afterward, we have studied the DTSPMS polytope, i.e., the convex hull of the solutions
to our formulation in the infinite capacity case. The study has been divided into two main
parts, accordingly with the dual nature of our formulation. In the first part we have focused
on the routing aspects. The DTSPMS polytope is related to the PATSP polytope, i.e., the
polytope of the solutions to an extended integer linear programming formulation for the
TSP. Our main result is that every facet of the PATSP polytope induces two facets of the
DTSPMS polytope. We have then considered the consistency part of our formulation, i.e.,
the one modeling the last-in-first-out rule. From this part we have derived a set covering
relaxation that can be exploited to obtain new valid inequalities for our formulation. Not
only this set covering approach is theoretically elegant. It also captures some aspects of the
double TSP with multiple stack that make this problem so challenging. Our construction
has proven to be very advantageous in the two stack case where the set covering relaxation
relates to a vertex cover polytope. We have then introduced new families of inequalities
based on odd hole and wheel inequalities which are well-known inequalities valid for the
vertex cover polytope.

Finally, we have described a branch-and-cut algorithm for the double TSP with two

161

CONCLUSION

stacks. This algorithm relies on the polyhedral results described above. In particular
several strengthening cuts arising from the TSP and introduced in [84] as well as the
odd hole inequalities have been used in our algorithm. This was possible since we could
provide polynomial-time separation routines for all the tested families. We have drawn
the conclusion that the inequalities arising from the TSP are useful in speeding up our
algorithm. In addition, we have observed that our approach based on set covering polytopes
is promising to improve our computational results. In the case of the double TSP with
two stacks, the best version of our algorithm outperforms the existing algorithms for the
problem in terms of computational time and size of solved instances.

In the second part of the thesis we have studied the lexicographical polytopes. Given
an n-dimensional box, a lexicographical polytope is the convex hull of the points in the
box that are lexicographically between two fixed points in the box. We have provided a
complete linear description of these polytopes, thus generalizing results already known in
the binary case [3, 141]. Our construction is based on simple polyhedral arguments and
offers an alternative point of view on results independently found by Gupte [94] and Adams
et al. [1].

This thesis opens several directions for future works, all related to the double TSP with
multiple stacks. From a polyhedral point of view, it would be interesting to find facets
of the DTSPMS polytope. A way to obtain results of this kind would be to exploit the
link between the facets of the DTSPMS polytope and the facets of the PATSP polytope.
Another perspective is to find conditions under which the inequalities presented in this
thesis and arising from the set covering approach define facets for the DTSPMS polytope.

From a computational point of view, we believe that it is important to design heuristic
separation routines for the strengthening inequalities presented in this thesis. In addition,
we believe that our branch-and-cut algorithm can be enhanced by including new strength-
ening inequalities arising from the set covering approach. Thus an additional direction to
extend our work is to find new inequalities of this type. In this sense, a first step is to
focus on the two stack case where we can exploit the vertex cover setting.

162

Bibliography

[1] W. Adams, P. Belotti, and R. Shen. Convex hull characterizations of lexicographic
orderings. Journal of Global Optimization, pages 1–19, 2016.

[2] M. A. Alba Mart́ınez, J.-F. Cordeau, M. Dell’Amico, and M. Iori. A branch-and-cut
algorithm for the double traveling salesman problem with multiple stacks. INFORMS
Journal on Computing, 25(1):41–55, 2013.

[3] G. Angulo, S. Ahmed, and S. Dey. Forbidding extreme points from the 0-1 hypercube.
Optimization Online, May 2012.

[4] S. Anily and J. Bramel. Approximation algorithms for the capacitated traveling
salesman problem with pickups and deliveries. Naval Research Logistics (NRL),
46(6):654–670, Sept. 1999.

[5] S. Anily and G. Mosheiov. The Traveling Salesman Problem with Delivery and
Backhauls. Oper. Res. Lett., 16(1):11–18, Aug. 1994.

[6] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Finding cuts in the TSP (A
preliminary report), volume 95. Citeseer, 1995.

[7] D. Applegate, R. Bixby, V. Chvátal, and W. Cook. Concorde: A
code for solving traveling salesman problems. World Wide Web,
http://www.math.princeton.edu/tsp/concorde.html, 2003.

[8] E. Balas. The asymmetric assignment problem and some new facets of the traveling
salesman polytope on a directed graph. SIAM Journal on Discrete Mathematics,
2(4):425–451, 1989.

[9] E. Balas. Disjunctive programming: Properties of the convex hull of feasible points.
Discrete Applied Mathematics, 89(1):3–44, 1998.

[10] E. Balas and N. Christofides. A restricted lagrangean approach to the traveling
salesman problem. Mathematical Programming, 21(1):19–46, 1981.

[11] E. Balas and M. Fischetti. A lifting procedure for the asymmetric traveling salesman
polytope and a large new class of facets. Mathematical Programming, 58(1-3):325–
352, 1993.

163

BIBLIOGRAPHY

[12] E. Balas and M. Fischetti. On the monotonization of polyhedra. Mathematical
Programming, 78(1):59–84, 1996.

[13] E. Balas, M. Fischetti, and W. R. Pulleyblank. The precedence-constrained asym-
metric traveling salesman polytope. Mathematical programming, 68(1-3):241–265,
1995.

[14] E. Balas and R. Jeroslow. Canonical cuts on the unit hypercube. SIAM Journal on
Applied Mathematics, 23(1):61–69, 1972.

[15] R. Baldacci, E. Hadjiconstantinou, and A. Mingozzi. An exact algorithm for the
Traveling Salesman Problem with Deliveries and Collections. Networks, 42(1):26–41,
Aug. 2003.

[16] M. Batista-Galván, J. Riera-Ledesma, and J. J. Salazar-González. The traveling
purchaser problem, with multiple stacks and deliveries: A branch-and-cut approach.
Computers & Operations Research, 40(8):2103–2115, 2013.

[17] M. Battarra, J.-F. Cordeau, and M. Iori. Pickup-and-delivery problems for goods
transportation. In P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods
and Applications. MOS/SIAM series on Optimization, pages 161–192. SIAM, 2014.

[18] M. Bellmore and J. C. Malone. Pathology of traveling-salesman subtour-elimination
algorithms. Operations Research, 19(2):278–307, 1971.

[19] J. F. Benders. Partitioning procedures for solving mixed-variables programming
problems. Numerische mathematik, 4(1):238–252, 1962.

[20] G. Berbeglia, J.-F. Cordeau, I. Gribkovskaia, and G. Laporte. Static pickup and
delivery problems: a classification scheme and survey. Top, 15(1):1–31, 2007.

[21] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique
problem. In Handbook of combinatorial optimization, pages 1–74. Springer, 1999.

[22] J. Bondy and U. Murty. Graph theory, 2008.

[23] F. Bonomo, S. Mattia, and G. Oriolo. Bounded coloring of co-comparability graphs
and the pickup and delivery tour combination problem. Theoretical Computer Sci-
ence, 412(45):6261–6268, 2011.

[24] R. Borndörfer. Aspects of set packing partitioning, and covering. Doctoral Thesis,
Technischen Universität Berlin, 1998.

[25] R. Borndörfer and R. Weismantel. Discrete relaxations of combinatorial programs.
Discrete applied mathematics, 112(1):11–26, 2001.

164

BIBLIOGRAPHY

[26] S. Borne, R. Grappe, and M. Lacroix. The uncapacitated asymmetric traveling
salesman problem with multiple stacks. In A. R. Mahjoub, V. Markakis, I. Milis,
and V. T. Paschos, editors, Combinatorial Optimization, number 7422 in Lecture
Notes in Computer Science, pages 105–116. Springer Berlin Heidelberg, 2012.

[27] G. Carpaneto, M. Dell’Amico, and P. Toth. Exact solution of large-scale, asymmetric
traveling salesman problems. ACM Transactions on Mathematical Software (TOMS),
21(4):394–409, 1995.

[28] G. Carpaneto and P. Toth. Some new branching and bounding criteria for the
asymmetric travelling salesman problem. Management Science, 26(7):736–743, 1980.

[29] F. Carrabs, R. Cerulli, and J.-F. Cordeau. An additive branch-and-bound algorithm
for the pickup and delivery traveling salesman problem with lifo or fifo loading.
INFOR: Information Systems and Operational Research, 45(4):223–238, 2007.

[30] F. Carrabs, R. Cerulli, and M. G. Speranza. A branch-and-bound algorithm for the
double travelling salesman problem with two stacks. Networks, 61(1):58–75, 2013.

[31] F. Carrabs, J.-F. Cordeau, and G. Laporte. Variable neighborhood search for the
pickup and delivery traveling salesman problem with lifo loading. INFORMS Journal
on Computing, 19(4):618–632, 2007.

[32] M. Casazza, A. Ceselli, and M. Nunkesser. Efficient algorithms for the double trav-
eling salesman problem with multiple stacks. Computers & Operations Research,
39(5):1044–1053, 2012.

[33] L. Cassani. Algoritmi euristici per il tsp with rear-loading. Degree thesis, Università
di Milano, Italy, 2004.

[34] P. Chalasani and R. Motwani. Approximating Capacitated Routing and Delivery
Problems. SIAM Journal on Computing, 28(6):2133–2149, Jan. 1999.

[35] E. Cheng and W. H. Cunningham. Wheel inequalities for stable set polytopes. Math-
ematical Programming, 77(2):389–421, 1997.

[36] N. Christofides. Worst-case analysis of a new heuristic for the travelling salesman
problem. Technical report, DTIC Document, 1976.

[37] V. Chvátal. Edmonds polytopes and weakly hamiltonian graphs. Mathematical
programming, 5(1):29–40, 1973.

[38] COIN-OR project. LEMON–Library for Efficient Modeling and Optimization in
Networks. 2013.

[39] M. Conforti, D. G. Corneil, and A. R. Mahjoub. Ki-covers I: Complexity and poly-
topes. Discrete mathematics, 58(2):121–142, 1986.

165

BIBLIOGRAPHY

[40] M. Conforti, G. Cornuéjols, and G. Zambelli. Integer programming, volume 271.
Springer, 2014.

[41] J.-F. Cordeau, M. Iori, G. Laporte, and J. J. Salazar González. A branch-and-cut
algorithm for the pickup and delivery traveling salesman problem with lifo loading.
Networks, 55(1):46–59, 2010.

[42] G. Cornuéjols, J. Fonlupt, and D. Naddef. The traveling salesman problem on a
graph and some related integer polyhedra. Mathematical programming, 33(1):1–27,
1985.

[43] G. Cornuéjols and A. Sassano. On the 0,1 facets of the set covering polytope. Math-
ematical Programming, 43(1-3):45–55, 1989.

[44] J.-F. Côté, C. Archetti, M. G. Speranza, M. Gendreau, and J.-Y. Potvin. A branch-
and-cut algorithm for the pickup and delivery traveling salesman problem with mul-
tiple stacks. Networks, 60(4):212–226, 2012.

[45] J.-F. Côté, M. Gendreau, and J.-Y. Potvin. Large neighborhood search for the pickup
and delivery traveling salesman problem with multiple stacks. Networks, 60(1):19–30,
2012.

[46] F. D’Andreagiovanni. Pure 0-1 programming approaches to wireless network design.
4OR: A Quarterly Journal of Operations Research, 10(2):211–212, 2012.

[47] G. Dantzig, R. Fulkerson, and S. Johnson. Solution of a Large-Scale Traveling-
Salesman Problem. Journal of the Operations Research Society of America, 2(4):393–
410, Nov. 1954.

[48] S. de Vries. Faster separation of 1-wheel inequalities by graph products. Discrete
Applied Mathematics, 195:74–83, 2015.

[49] M. Desrochers and G. Laporte. Improvements and extensions to the miller-tucker-
zemlin subtour elimination constraints. Operations Research Letters, 10(1):27–36,
1991.

[50] J. Desrosiers and M. E. Lübbecke. A primer in column generation. In Column
generation, pages 1–32. Springer, 2005.

[51] E. W. Dijkstra. A note on two problems in connexion with graphs. Numerische
mathematik, 1(1):269–271, 1959.

[52] K. Doerner and J.-J. Salazar-González. Pickup-and-delivery problems for people
transportation. In P. Toth and D. Vigo, editors, Vehicle Routing: Problems, Methods
and Applications. MOS/SIAM series on Optimization, pages 193–212. SIAM, 2014.

166

BIBLIOGRAPHY

[53] I. Dumitrescu, S. Ropke, J.-F. Cordeau, and G. Laporte. The traveling salesman
problem with pickup and delivery: polyhedral results and a branch-and-cut algo-
rithm. Mathematical Programming, 121(2):269–305, 2010.

[54] J. Edmonds. Maximum matching and a polyhedron with 0, l-vertices. J. Res. Nat.
Bur. Standards B, 69(1965):125–130, 1965.

[55] G. Erdoğan, G. Laporte, and R. W. Calvo. The one-commodity pickup and deliv-
ery traveling salesman problem with demand intervals. Submitted for publication to
Transportation Science, 2013.

[56] R. Euler, M. Jünger, and G. Reinelt. Generalizations of cliques, odd cycles and
anticycles and their relation to independence system polyhedra. Mathematics of
Operations Research, 12(3):451–462, 1987.

[57] Á. Felipe, M. T. Ortuño, and G. Tirado. The double traveling salesman problem with
multiple stacks: a variable neighborhood search approach. Computers & Operations
Research, 36(11):2983–2993, 2009.

[58] A. Felipe, M. T. Ortuño, and G. Tirado. Using intermediate infeasible solutions to
approach vehicle routing problems with precedence and loading constraints. European
journal of operational research, 211(1):66–75, 2011.

[59] T. A. Feo and M. G. Resende. Greedy randomized adaptive search procedures.
Journal of global optimization, 6(2):109–133, 1995.

[60] S. Fiorini, S. Massar, S. Pokutta, H. R. Tiwary, and R. D. Wolf. Exponential Lower
Bounds for Polytopes in Combinatorial Optimization. J. ACM, 62(2):17:1–17:23,
2015.

[61] M. Fischetti. Facets of the asymmetric traveling salesman polytope. Mathematics of
Operations Research, 16(1):42–56, 1991.

[62] M. Fischetti, A. Lodi, and P. Toth. Solving real-world ATSP instances by branch-and-
cut. In Combinatorial Optimization—Eureka, You Shrink!, pages 64–77. Springer,
2003.

[63] M. Fischetti and P. Toth. An additive bounding procedure for combinatorial opti-
mization problems. Operations Research, 37(2):319–328, 1989.

[64] M. Fischetti and P. Toth. An additive bounding procedure for the asymmetric trav-
elling salesman problem. Mathematical Programming, 53(1-3):173–197, 1992.

[65] M. Fischetti and P. Toth. A polyhedral approach to the asymmetric traveling sales-
man problem. Management Science, 43(11):1520–1536, 1997.

167

BIBLIOGRAPHY

[66] M. L. Fredman and R. E. Tarjan. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM (JACM), 34(3):596–615, 1987.

[67] D. R. Fulkerson. Blocking and anti-blocking pairs of polyhedra. Mathematical Pro-
gramming, 1(1):168–194, Dec. 1971.

[68] M. R. Garey and D. S. Johnson. Complexity results for multiprocessor scheduling
under resource constraints. SIAM Journal on Computing, 4(4):397–411, 1975.

[69] M. R. Garey and D. S. Johnson. Computers and intractability, volume 29. WH
Freeman, New York, 2002.

[70] R. S. Garfinkel. Technical note—on partitioning the feasible set in a branch-and-
bound algorithm for the asymmetric traveling-salesman problem. Operations Re-
search, 21(1):340–343, 1973.

[71] M. Gendreau, A. Hertz, and G. Laporte. New insertion and postoptimization pro-
cedures for the traveling salesman problem. Operations Research, 40(6):1086–1094,
1992.

[72] M. Gendreau, A. Hertz, and G. Laporte. The Traveling Salesman Problem with
Backhauls. Comput. Oper. Res., 23(5):501–508, May 1996.

[73] M. Gendreau, G. Laporte, and A. Hertz. An Approximation Algorithm for the
Traveling Salesman Problem with Backhauls. Operations Research, 45(4):639–641,
Aug. 1997.

[74] M. Gendreau, G. Laporte, and D. Vigo. Heuristics for the traveling salesman problem
with pickup and delivery. Computers & Operations Research, 26(7):699–714, July
1999.

[75] A. M. Gerards and A. Schrijver. Matrices with the Edmonds—Johnson property.
Combinatorica, 6(4):365–379, 1986.

[76] H. Ghaziri and I. H. Osman. A neural network algorithm for the traveling salesman
problem with backhauls. Computers & Industrial Engineering, 44(2):267–281, Feb.
2003.

[77] R. Gillmann and V. Kaibel. Revlex-initial 0/1-polytopes. Journal of Combinatorial
Theory, Series A, 113(5):799 – 821, 2006.

[78] F. Glover. Tabu search-part I. ORSA Journal on computing, 1(3):190–206, 1989.

[79] F. Glover. Tabu search—part II. ORSA Journal on computing, 2(1):4–32, 1990.

[80] F. Glover and M. Laguna. Tabu search, 1997. Kluwer Academic Publishers, 1997.

168

BIBLIOGRAPHY

[81] A. V. Goldberg and R. E. Tarjan. A new approach to the maximum-flow problem.
Journal of the ACM (JACM), 35(4):921–940, 1988.

[82] M. C. Golumbic. Algorithmic graph theory and perfect graphs, volume 57. Elsevier,
2004.

[83] R. E. Gomory. An algorithm for integer solutions to linear programs. Recent advances
in mathematical programming, 64:260–302, 1963.

[84] L. Gouveia and P. Pesneau. On extended formulations for the precedence constrained
asymmetric traveling salesman problem. Networks, 48(2):77–89, 2006.

[85] L. Gouveia and J. M. Pires. The asymmetric travelling salesman problem and a refor-
mulation of the miller–tucker–zemlin constraints. European Journal of Operational
Research, 112(1):134–146, 1999.

[86] L. Gouveia and J. M. Pires. The asymmetric travelling salesman problem: on gener-
alizations of disaggregated Miller–Tucker–Zemlin constraints. Discrete Applied Math-
ematics, 112(1–3):129–145, 2001.

[87] M. Grötschel. Polyedrische charakterisierungen kombinatorischer optimierungsprob-
leme. 1977.

[88] M. Grötschel and M. Jünger. Facets of the linear ordering polytope. Mathematical
Programming, 33(1):43–60, 1985.

[89] M. Grötschel, L. Lovász, and A. Schrijver. Geometric algorithms and combinatorial
optimization, volume 2. Springer Science & Business Media, 2012.

[90] M. Grötschel, M. Padberg, et al. Polyhedral theory. The traveling salesman problem,
pages 251–305, 1985.

[91] M. Grötschel and M. W. Padberg. On the symmetric travelling salesman problem i:
inequalities. Mathematical Programming, 16(1):265–280, 1979.

[92] M. Grötschel and M. W. Padberg. Lineare Charakterisierungen von Travelling Sales-
man Problemen. Zeitschrift für Operations Research, 21(1):33–64, Feb. 1977.

[93] Z. Gu, G. L. Nemhauser, and M. W. Savelsbergh. Sequence independent lifting in
mixed integer programming. Journal of Combinatorial Optimization, 4(1):109–129,
2000.

[94] A. Gupte. Convex hulls of superincreasing knapsacks and lexicographic orderings.
Discrete Applied Mathematics, 201:150–163, 2016.

[95] G. Gutin and A. P. Punnen. The traveling salesman problem and its variations,
volume 12. Springer Science & Business Media, 2006.

169

BIBLIOGRAPHY

[96] P. R. Halmos. Naive set theory. Springer Science & Business Media, 1960.

[97] L. Han, B. T. Luong, and S. Ukkusuri. An algorithm for the one commodity pickup
and delivery traveling salesman problem with restricted depot. Networks and Spatial
Economics, pages 1–26, 2015.

[98] P. Hansen, A. Hertz, and J. Kuplinsky. Bounded vertex colorings of graphs. Discrete
Mathematics, 111(1):305–312, 1993.

[99] H. Hernández-Pérez and J.-J. Salazar-González. Heuristics for the one-commodity
pickup-and-delivery traveling salesman problem. Transportation Science, 38(2):245–
255, 2004.

[100] H. Hernandez-Perez and J.-J. Salazar-Gonzalez. The One-Commodity Pickup-and-
Delivery Traveling Salesman Problem : Inequalities and Algorithms. Networks,
50(4):258–272, 2007.

[101] H. Hernández-Pérez, I. Rodŕıguez-Mart́ın, and J. J. Salazar-González. A hybrid
GRASP/VND heuristic for the one-commodity pickup-and-delivery traveling sales-
man problem. Computers & Operations Research, 36(5):1639–1645, May 2009.

[102] H. Hernández-Pérez and J.-J. Salazar-González. The One-Commodity Pickup-and-
Delivery Travelling Salesman Problem. In M. Jünger, G. Reinelt, and G. Rinaldi,
editors, Combinatorial Optimization — Eureka, You Shrink!, number 2570 in Lecture
Notes in Computer Science, pages 89–104. Springer Berlin Heidelberg, 2003. DOI:
10.1007/3-540-36478-1 10.

[103] H. Hernández-Pérez and J.-J. Salazar-González. A branch-and-cut algorithm for a
traveling salesman problem with pickup and delivery. Discrete Applied Mathematics,
145(1):126–139, Dec. 2004.

[104] M. I. Hosny and C. L. Mumford. Solving the One-Commodity Pickup and Delivery
Problem Using an Adaptive Hybrid VNS/SA Approach. In R. Schaefer, C. Cotta,
J. Ko lodziej, and G. Rudolph, editors, Parallel Problem Solving from Nature, PPSN
XI, number 6239 in Lecture Notes in Computer Science, pages 189–198. Springer
Berlin Heidelberg, Sept. 2010. DOI: 10.1007/978-3-642-15871-1 20.

[105] J. W. Hunt and T. G. Szymanski. A fast algorithm for computing longest common
subsequences. Communications of the ACM, 20(5):350–353, 1977.

[106] IBM. IBM ILOG CPLEX Optimization Studio 12.5. 2012.

[107] I. ILOG. Cplex 9.0 reference manual. ILOG CPLEX Division, 2003.

[108] M. Iori and S. Martello. Routing problems with loading constraints. Top, 18(1):4–27,
2010.

170

BIBLIOGRAPHY

[109] M. Iori and J. Riera-Ledesma. Exact algorithms for the double vehicle routing prob-
lem with multiple stacks. Computers & Operations Research, 63:83–101, 2015.

[110] S. Irnich and G. Desaulniers. Shortest path problems with resource constraints. In
Column generation, pages 33–65. Springer, 2005.

[111] K. Jansen. The mutual exclusion scheduling problem for permutation and compara-
bility graphs. Information and Computation, 180(2):71–81, 2003.

[112] R. Jonker and T. Volgenant. Transforming asymmetric into symmetric traveling
salesman problems. Operations Research Letters, 2(4):161–163, 1983.

[113] M. Jünger, G. Reinelt, and G. Rinaldi. The traveling salesman problem. Handbooks
in operations research and management science, 7:225–330, 1995.

[114] B. Kalantari, A. V. Hill, and S. R. Arora. An algorithm for the traveling sales-
man problem with pickup and delivery customers. European Journal of Operational
Research, 22(3):377–386, 1985.

[115] N. Karmarkar. A new polynomial-time algorithm for linear programming. In Pro-
ceedings of the sixteenth annual ACM symposium on Theory of computing, pages
302–311. ACM, 1984.

[116] R. M. Karp. Reducibility among combinatorial problems. In Complexity of computer
computations, pages 85–103. Springer, 1972.

[117] R. M. Karp. A patching algorithm for the nonsymmetric traveling-salesman problem.
SIAM Journal on Computing, 8(4):561–573, 1979.

[118] J. E. Kelley Jr. Critical-path planning and scheduling: Mathematical basis. Opera-
tions research, 9(3):296–320, 1961.

[119] L. Khachiyan. A polynomial algorithm for linear programming. Soviet Math. Dokl.,
(20):191–194, 1979.

[120] S. P. Ladany and A. Mehrez. Optimal routing of a single vehicle with loading and
unloading constraints. Transportation Planning and Technology, 8(4):301–306, 1984.

[121] S. Lang. Linear Algebra. Undergraduate texts in mathematics. Springer-Verlag, New
York, 1987.

[122] M. Laurent. A generalization of antiwebs to independence systems and their canonical
facets. Mathematical Programming, 45(1-3):97–108, 1989.

[123] M. Laurent and A. Sassano. A characterization of knapsacks with the max-flow–min-
cut property. Oper. Res. Lett., 11(2):105–110, Mar. 1992.

171

BIBLIOGRAPHY

[124] E. L. Lawler. A procedure for computing the k best solutions to discrete optimization
problems and its application to the shortest path problem. Management science,
18(7):401–405, 1972.

[125] E. L. Lawler. Combinatorial optimization: networks and matroids. Courier Corpo-
ration, 2001.

[126] A. N. Letchford. On disjunctive cuts for combinatorial optimization. Journal of
Combinatorial Optimization, 5(3):299–315, 2001.

[127] S. Lin. Computer solutions of the traveling salesman problem. The Bell System
Technical Journal, 44(10):2245–2269, 1965.

[128] S. Lin and B. W. Kernighan. An effective heuristic algorithm for the traveling-
salesman problem. Operations research, 21(2):498–516, 1973.

[129] J. D. Little, K. G. Murty, D. W. Sweeney, and C. Karel. An algorithm for the
traveling salesman problem. Operations research, 11(6):972–989, 1963.

[130] L. Lovász. A characterization of perfect graphs. Journal of Combinatorial Theory,
Series B, 13(2):95–98, 1972.

[131] R. M. Lusby and J. Larsen. Improved exact method for the double TSP with multiple
stacks. Networks, 58(4):290–300, 2011.

[132] R. M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. An exact method for the dou-
ble TSP with multiple stacks. International Transactions in Operational Research,
17(5):637–652, 2010.

[133] P. C. Mahalanobis. A sample survey of the acreage under jute in bengal. Sankhyā:
The Indian Journal of Statistics, pages 511–530, 1940.

[134] K. Menger. Das botenproblem. Ergebnisse eines mathematischen kolloquiums, 2:11–
12, 1932.

[135] M. Mihail. On the expansion of combinatorial polytopes. In International Symposium
on Mathematical Foundations of Computer Science, pages 37–49. Springer, 1992.

[136] C. E. Miller, A. W. Tucker, and R. A. Zemlin. Integer programming formulation of
traveling salesman problems. Journal of the ACM (JACM), 7(4):326–329, 1960.

[137] D. Miller and J. Pekny. Results from a parallel branch and bound algorithm for the
asymmetric traveling salesman problem. Operations Research Letters, 8(3):129–135,
1989.

[138] N. Mladenović, D. Urošević, S. Hanafi, and A. Ilić. A general variable neighborhood
search for the one-commodity pickup-and-delivery travelling salesman problem. Eu-
ropean Journal of Operational Research, 220(1):270–285, July 2012.

172

BIBLIOGRAPHY

[139] N. Mladenović and P. Hansen. Variable neighborhood search. Computers & Opera-
tions Research, 24(11):1097–1100, Nov. 1997.

[140] G. Mosheiov. The Travelling Salesman Problem with pick-up and delivery. European
Journal of Operational Research, 79(2):299–310, Dec. 1994.

[141] F. Muldoon, W. Adams, and H. Sherali. Ideal representations of lexicographic order-
ings and base-2 expansion of integer variables. Operations Research Letters, 41:32–39,
2013.

[142] G. L. Nemhauser and L. E. Trotter Jr. Properties of vertex packing and independence
system polyhedra. Mathematical Programming, 6(1):48–61, 1974.

[143] P. Nobili and A. Sassano. Facets and lifting procedures for the set covering polytope.
Mathematical Programming, 45(1-3):111–137, 1989.

[144] A. Odlyzko. The rise and fall of knapsack cryptosystems. In Cryptology and Com-
putational Number Theory, pages 75–88. A.M.S, 1990.

[145] J. A. Pacheco Bonrostro. Problemas de rutas con carga y descarga en sistemas lifo:
soluciones exactas. Estudios de economı́a aplicada, (3):69–86, 1995.

[146] J. A. Pacheco Bonrostro. Heuŕıstico para los problemas de rutas con carga y descarga
en sistemas lifo. 1997.

[147] J. A. Pacheco Bonrostro. Metaheuristic based on a simulated annealing process for
one vehicle pick-up and delivery problem in lifo unloading systems. In Proceedings
of the Tenth Meeting of the Europen Chapter of Combinatorial Optimization (ECCO
X). Tenerife, Spain, 1997.

[148] J. A. Pacheco Bonrostro. Problemas de rutas con ventanas de tiempo. Universidad
Complutense de Madrid, Servicio de Publicaciones, 2002.

[149] M. Padberg and G. Rinaldi. An efficient algorithm for the minimum capacity cut
problem. Mathematical Programming, 47(1-3):19–36, 1990.

[150] M. Padberg and G. Rinaldi. Facet identification for the symmetric traveling salesman
polytope. Mathematical programming, 47(1-3):219–257, 1990.

[151] M. W. Padberg. On the facial structure of set packing polyhedra. Mathematical
programming, 5(1):199–215, 1973.

[152] M. W. Padberg. Covering, packing and knapsack problems. Annals of Discrete
Mathematics, 4:265–287, 1979.

[153] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery
problems. Part I: Transportation between customers and depot. Journal für Betrieb-
swirtschaft, 58(1):21–51, 2008.

173

BIBLIOGRAPHY

[154] S. N. Parragh, K. F. Doerner, and R. F. Hartl. A survey on pickup and delivery
problems. Part II: Transportation between pickup and delivery locations. Journal
für Betriebswirtschaft, 58(2):81–117, 2008.

[155] J. F. Pekny and D. L. Miller. A parallel branch and bound algorithm for solving large
asymmetric traveling salesman problems. Mathematical programming, 55(1-3):17–33,
1992.

[156] J. F. Pekny, D. L. Miller, and D. Stodolsky. A note on exploiting the hamiltonian
cycle problem substructure of the asymmetric traveling salesman problem. Operations
research letters, 10(3):173–176, 1991.

[157] H. L. Petersen, C. Archetti, and M. G. Speranza. Exact solutions to the double
travelling salesman problem with multiple stacks. Networks, 56(4):229–243, 2010.

[158] H. L. Petersen and O. B. G. Madsen. The double travelling salesman problem with
multiple stacks – formulation and heuristic solution approaches. European Journal
of Operational Research, 198(1):139–147, 2009.

[159] A. Pnueli, A. Lempel, and S. Even. Transitive orientation of graphs and identification
of permutation graphs. Canad. J. math, 23(1):160–175, 1971.

[160] H. N. Psaraftis. A dynamic programming solution to the single vehicle many-to-many
immediate request dial-a-ride problem. Transportation Science, 14(2):130–154, 1980.

[161] H. N. Psaraftis. Analysis of an O(N2) heuristic for the single vehicle many-to-
many euclidean dial-a-ride problem. Transportation Research Part B: Methodological,
17(2):133–145, 1983.

[162] M. Queyranne and Y. Wang. Hamiltonian path and symmetric travelling salesman
polytopes. Mathematical Programming, 58(1-3):89–110, 1993.

[163] S. Rebennack. Stable set problem: Branch & cut algorithms stable set prob-
lem: Branch & cut algorithms. In Encyclopedia of Optimization, pages 3676–3688.
Springer, 2008.

[164] S. Rebennack, M. Oswald, D. O. Theis, H. Seitz, G. Reinelt, and P. M. Pardalos. A
branch and cut solver for the maximum stable set problem. Journal of combinatorial
optimization, 21(4):434–457, 2011.

[165] G. Reinelt. TSPLIB—A traveling salesman problem library. ORSA journal on
computing, 3(4):376–384, 1991.

[166] M. G. Resende, C. C. Ribeiro, F. Glover, and R. Mart́ı. Scatter search and path-
relinking: Fundamentals, advances, and applications. In Handbook of metaheuristics,
pages 87–107. Springer, 2010.

174

BIBLIOGRAPHY

[167] R. Roberti and P. Toth. Models and algorithms for the asymmetric traveling sales-
man problem: an experimental comparison. EURO Journal on Transportation and
Logistics, 1(1-2):113–133, 2012.

[168] J. Robinson. On the hamiltonian game (a traveling salesman problem). Technical
report, DTIC Document, 1949.

[169] K. Ruland and E. Rodin. The pickup and delivery problem: Faces and branch-and-
cut algorithm. Computers & mathematics with applications, 33(12):1–13, 1997.

[170] A. H. Sampaio and S. Urrutia. New formulation and branch-and-cut algorithm for the
pickup and delivery traveling salesman problem with multiple stacks. International
Transactions in Operational Research, 2016.

[171] S. C. Sarin, H. D. Sherali, and A. Bhootra. New tighter polynomial length formu-
lations for the asymmetric traveling salesman problem with and without precedence
constraints. Operations Research Letters, 33(1):62–70, 2005.

[172] A. Sassano. On the facial structure of the set covering polytope. Mathematical
Programming, 44(1-3):181–202, 1989.

[173] C. Schensted. Longest increasing and decreasing subsequences. Canad. J. Math,
13(2):179–191, 1961.

[174] A. Schrijver. Theory of Linear and Integer Programming. Wiley, 2001.

[175] Y. Sekiguchi. A note on node packing polytopes on hypergraphs. Operations Research
Letters, 2(5):243–247, 1983.

[176] P. D. Seymour. The matroids with the max-flow min-cut property. Journal of
Combinatorial Theory, Series B, 23(2-3):189–222, 1977.

[177] P. Shaw. Using constraint programming and local search methods to solve vehicle
routing problems. In Principles and Practice of Constraint Programming—CP98,
pages 417–431. Springer, 1998.

[178] M. Sigurd, D. Pisinger, and M. Sig. Scheduling transportation of live animals to
avoid the spread of diseases. Transportation Science, 38(2):197–209, 2004.

[179] T. H. Smith, V. Srinivasan, and G. Thompson. Computational performance of three
subtour elimination algorithms for solving asymmetric traveling salesman problems.
Annals of Discrete Mathematics, 1:495–506, 1977.

[180] D. M. Stein. An asymptotic, probabilistic analysis of a routing problem. Mathematics
of Operations Research, 3(2):89–101, 1978.

[181] R. E. Tarjan. Finding optimum branchings. Networks, 7(1):25–35, 1977.

175

BIBLIOGRAPHY

[182] P. Toth and D. Vigo. Vehicle routing: problems, methods, and applications, vol-
ume 18. Siam, 2014.

[183] S. Toulouse and R. Wolfler Calvo. On the complexity of the multiple stack tsp, kstsp.
In Proceedings of the 6th Annual Conference on Theory and Applications of Models of
Computation, TAMC ’09, pages 360–369, Berlin, Heidelberg, 2009. Springer-Verlag.

[184] S. Urrutia, A. Milanés, and A. Løkketangen. A dynamic programming based local
search approach for the double traveling salesman problem with multiple stacks.
International Transactions in Operational Research, 22(1):61–75, 2015.

[185] P. van Emde Boas. Preserving order in a forest in less than logarithmic time and
linear space. Information processing letters, 6(3):80–82, 1977.

[186] F. Vanderbeck and L. Wolsey. Reformulation and decomposition of integer programs.
In M. Jünger, T. M. Liebling, D. Naddef, G. L. Nemhauser, W. R. Pulleyblank,
G. Reinelt, G. Rinaldi, and L. A. Wolsey, editors, 50 Years of Integer Programming
1958-2008, pages 431–502. Springer Berlin Heidelberg, 2010.

[187] F. Wang, A. Lim, and Z. Xu. The one-commodity pickup and delivery travelling
salesman problem on a path or a tree. Networks, 48(1):24–35, Aug. 2006.

[188] D. P. Williamson and D. B. Shmoys. The design of approximation algorithms. Cam-
bridge University Press, 2011.

[189] F. Zhao, S. Li, J. Sun, and D. Mei. Genetic algorithm for the one-commodity
pickup-and-delivery traveling salesman problem. Computers & Industrial Engineer-
ing, 56(4):1642–1648, May 2009.

176

	Introduction
	General Definitions
	Sets
	Linear Algebra
	Matrices
	Vectors and Vector Spaces
	Linear Functions
	Linear Independence and Bases
	Affine Spaces
	Conic and Convex Combinations

	Graphs
	Undirected Graphs.
	Directed Graphs

	Notions of Computational Complexity Theory
	Polyhedral Theory
	Combinatorial Optimization Problems and Integer Linear Programming
	Polyhedral Approach
	Cutting Plane Method
	Branch-and-Cut Algorithm
	Heuristics

	I The Double Traveling Salesman Problem With Multiple Stacks
	The Double Traveling Salesman Problem with Multiple Stacks
	Introducing the Double Traveling Salesman Problem with Multiple Stacks
	The Double TSP with Multiple Stacks in Terms of Graphs
	Links with Other Routing and Pickup and Delivery Problems
	The Traveling Salesman Problem
	Pickup and Delivery Problems
	Pickup and Delivery Problems with Last-in-First-Out Constraints

	State of the Art on the Double TSP with Multiple Stacks
	Integer Linear Programming Formulations
	Theoretical Results
	Heuristic Approaches
	Exact Methods

	Models for the Double TSP with Multiple Stacks
	Definitions
	Stacks of Finite Capacity
	Integer Linear Programming Formulation
	Recognizing the s,q-consistency by Graph Coloring

	Stacks of Infinite Capacity
	Integer Linear Programming Formulation
	Recognizing the s-consistency by Graph Coloring

	Conclusions

	Polyhedral Results
	Focus on Routing
	Faces from the PATSP Polytope
	Links with the PATSP Polytope

	Focus on Consistency
	The Restricted Set Covering Polytope
	Faces from the Restricted Set Covering Polytope
	Focus on Two Stacks: A Vertex Cover Approach

	Conclusion and Perspectives

	A Branch-and-Cut Algorithm
	Overall Description of the Algorithm
	Separation Algorithms
	Finite Capacity Case
	Experimental Results
	Implementation Details
	Instances
	Results in the Infinite Capacity Case
	Results in the Finite Capacity Case

	Conclusions and Perspectives

	II Lexicographical Polytopes
	Polyhedral Study of Lexicographical Polytopes
	Known Results
	Definitions and Preliminary Results
	Convex Hull of Componentwise Maximal Points
	A Flow Model for Xs,u
	Description of `39`42`"613A``45`47`"603Aconv(Xs,u)

	Lexicographical Polytopes
	Description of Top-lexicographical Polytopes
	Lexicographical Polytopes

	Conclusion

