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Résumé

Une nouvelle méthode a été mise en place pour débruiter la matrice de corrélation des ren-

dements des actions en se basant sur une analyse par composante principale sous contrainte

en exploitant les données �nancières. Des portefeuilles, nommés �Fundamental Maximum

variance portfolios�, sont construits pour capturer de manière optimale un style de risque

dé�ni par un critère �nancier (�Book�, �Capitalization�,etc.). Les vecteurs propres sous

contraintes de la matrice de corrélation, qui sont des combinaisons linéaires de ces porte-

feuilles, sont alors étudiés. Grâce à cette méthode, plusieurs faits stylisés de la matrice ont

été mis en évidence dont: i) l'augmentation des premières valeurs propres avec l'échelle

de temps de 1 minute à plusieurs mois semble suivre la même loi pour toutes les va-

leurs propres signi�catives avec deux régimes; ii) une loi �universelle� semble gouverner la

composition de tous les portefeuilles �Maximum variance�. Ainsi selon cette loi, les poids

optimaux seraient directement proportionnels au classement selon le critère �nancier étu-

dié; iii) la volatilité de la volatilité des portefeuilles �Maximum Variance�, qui ne sont pas

orthogonaux, su�rait à expliquer une grande partie de la di�usion de la matrice de cor-

rélation; iv) l'e�et de levier (augmentation de la première valeur propre avec la baisse du

marché) n'existe que pour le premier mode et ne se généralise pas aux autres facteurs de

risque. L'e�et de levier sur les beta, sensibilité des actions avec le �market mode�, rend les

poids du premier vecteur propre variables.

Mots clefs: corrélation, �ltre, diagonalisation sous contrainte, modèle mul-

tifactoriel, portefeuilles optimaux, gestion d'actifs, di�usion
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Avant-Propos

Cette thèse a débuté en janvier 2016 dans le laboratoire CEPN (UMR

7234, CNRS) de l'université Paris-XIII. Le travail de recherche a été réa-

lisé chez John Locke Investments, société de gestion indépendante et à taille

humaine (15 salariés), pour laquelle j'ai continué à travailler à pleins temps

en tant que chercheur et gérant des fonds systématiques John Locke Equity

Market Neutral et John Locke Smart Equity. J'ai ainsi pu pro�ter de mon

expérience concrète des marchés �nanciers pour adapter mes modèles à la

réalité. Aussi j'ai dû me concentrer sur des modèles qui devaient avoir un in-

térêt certain pour la gestion d'actifs et les deux fonds que je gère. Modéliser la

matrice de corrélation des actions est clef chez John Locke Investments. Ainsi

les portefeuilles optimaux pour faire du trend following se basent uniquement

sur l'exploitation de la matrice de corrélation qu'il faut maitriser, nettoyer,

inverser, modéliser très proprement pour pouvoir ampli�er les faibles autocor-

rélations en performances robustes. Ainsi les compétences de certains gérants

peuvent très bien se limiter à la bonne modélisation de la matrice de cor-

rélation. Les papiers de recherche devaient aussi être pratiques et constituer

un support intellectuel pour convaincre les clients des fonds du fondement

scienti�que de mes modèles de gestion.

Trois papiers ont été présentés lors des conférences en 2016 (Liège, Belgique),

en 2017 (Valence) et en 2018 (Paris) de l'AFFI et un quatrième sera présenté

lors de la conférence en Juin 2019 (Laval, Quebec):

� le papier �Emergence of Correlation between Securities at Short Time
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Scales� a été présenté au 35th International Conference of the French

Finance Association à l'ESCP à Paris du 20 au 24 mai 2018. Le papier

est présenté en premier au chapitre 1 car il explique l'origine physique

des corrélations entre actions;

� le papier �Fundamental Market Neutral Maximum Variance Portfolios�

a été soumis en janvier 2019 au 36th International Conference of the

French Finance Association à Laval au Quebec. Le papier justi�e la

méthodologie utilisée dans la thèse pour débruiter la matrice de correla-

tion. Le papier est à cheval entre plusieurs spécialités (model factoriels,

matrice aléatoires, Asset Pricing) et doit être restructuré et découpé en

plusieurs projets pour être publiable. Le papier est présenté au chapitre

2.

� le papier �The Reactive Beta Model� a été présenté au 34th International

Conference of the French Finance Association à Valence le 31 mai et

1er et 2 juin 2017. Le papier est présenté au chapitre 4;

� le papier �Should Employers Pay Better their Employees? An Asset

Pricing Approach� a été présenté au 33rd International Conference

of the French Finance Association à HEC-Management School of the

University of Liege du 23 au 25 mai 2016. Le papier est présenté dans

le manuscrit au chapitre 6 comme une application.
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1. Introduction

La matrice de corrélation des rendements des actions est nécessaire à

l'analyse du risque d'un portefeuille. Une modélisation �ne est nécessaire

pour construire les portefeuilles optimaux robustes (maximiser le gain po-

tentiel tout en minimisant le risque). Les mesures empiriques de la matrice

de corrélation sont bruitées du fait d'un nombre trop faible de rendements

indépendants et homoscedastiques disponibles et d'un nombre trop grand

d'actions. Ainsi il est courant de devoir mesurer les corrélations entre 500

actions ou plus avec beaucoup moins d'un an d'historique 1 a�n de pouvoir

supposer que les corrélations restent à peu près constantes sur cette période.

L'échantillon se réduit encore lorsqu'on s'intéresse aux corrélations des ren-

dements mensuels voire annuels, qui importent le plus pour les investisseurs.

Les autocorrélations des rendements sont faibles mais su�santes pour défor-

mer la matrice selon l'horizon de temps et transformer des facteurs de risque

1. ce qui correspond à moins de 250 rendements journaliers qui ne sont que très ap-
proximativement gaussiens
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négligeables à l'horizon de la journée en signi�catif à l'horizon du mois pour

un gérant. Les mesures empiriques, qui se basent sur un échantillon trop pe-

tit, capturent des corrélations fallacieuses. Ces mesures fallacieuses peuvent

résulter en portefeuilles qui semblent sans risque dans l'échantillon utilisé

pour mesurer la matrice mais risqués dans un autre échantillon. La moindre

optimisation de portefeuille, qui cherche à minimiser le risque pour une même

rentabilité espérée, va forcément privilégier les portefeuilles qui semblent sans

risque ou très peu risqués �in the sample� et il en résulte un manque de ro-

bustesse. Les vraies corrélations sont réputées être de plus très variables en

fonction du temps. Ainsi quand le marché est stressé, les investisseurs se

mettent à paniquer et les corrélations ont tendance à augmenter, si bien que

toutes les actions sont entrainées par les mouvements des indices. Lorsqu'un

facteur de risque devient majeur, lorsqu'un évènement inattendu survient,

alors toutes les actions qui capturent ce facteur de risque vont se corréler

brusquement. Lorsqu'une action sous-performe ou surperforme, ses corréla-

tions avec les autres actions vont changer. Ainsi on peut parler de corrélations

non linéaires car les corrélations dépendent des trajectoires de chaque action

mais une grande partie des variations semblent complètement stochastiques.

Une grande di�culté est donc de mesurer les corrélations de �population�

sans erreur et sans retard. Une autre di�culté est aussi de prévoir comment

la matrice risque de varier. Malgré les enjeux, de nombreux faits stylisés de

la matrice de corrélation, qui sont noyés dans le bruit, restent pourtant en-

core à découvrir. Cette thèse, qui cherche à mettre en évidence plusieurs faits

stylisés, remplit un vide dans la littérature académique et fait le lien entre

plusieurs disciplines entre mathématiques (processus stochastique), �nance
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(modèles multifactoriels), gestion d'actifs (portefeuilles optimaux), econophy-

sique (matrice aléatoire) et économie (Asset Pricing).

Je me suis d'abord intéressé à l'origine des corrélations des rendements des

actions: j'ai ainsi modélisé l'émergence des corrélations des rendements des

actions européennes et américaines de 2000 à 2017 sur des échelles courtes (de

1 minute à 1 jour) grâce à un modèle de retard inspiré de la microstructure. A

des échelles très courtes, de l'ordre de la seconde, les corrélations sont nulles

puis elles apparaissent et augmentent avec l'échelle de temps. L'émergence

des corrélations est en fait la conséquence de l'impact des transactions, qui

se matérialisent entre les actions similaires via des algorithmes de trading.

J'ai mis en place, dans le chapitre 1, un modéle de retard qui reproduit très

bien l'e�et d'échelle mesuré qui permet d'extrapoler la vision de la matrice

des rendements 1 minute à la journée.

Pour identi�er la structure et la dynamique des valeurs propres et vec-

teurs propres, j'ai mis en place, dans le chapitre 2, une méthodologie basée

sur l'analyse par composante principale contrainte qui permet de débruiter la

matrice en tirant béné�ce des informations �nancières, comme, par exemple,

le ratio entre la valeur comptable et la valeur de marché de l'action (�Book�),

la valeur capitalistique de l'action (�Capitalization�) ou de nombreux autres

ratios �nanciers. L'analyse par composante principale appliquée aux rende-

ments de l'ensemble des actions revient à diagonaliser la matrice de corréla-

tion des rendements. La matrice de corrélation est préférable à la matrice de

covariance pour éviter un biais vers les actions les plus volatiles. La diago-

nalisation permet d'identi�er les portefeuilles d'actions decorrélés les uns des

autres qui génèrent le plus de volatilité pour un même investissement (mesu-
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rée exactement par la volatilité du portefeuille obtenue sans tenir compte des

corrélations entre les actions). Les rendements de ces portefeuilles particuliers

permettent de modéliser simplement les mouvements principaux du marché:

ces portefeuilles particuliers sont réputés proches des combinaisons très brui-

tées de stratégies de base (les indices pondérés par les capitalisations, les

indices sectoriels, les indices investis sur les petites capitalisations, les indices

investis sur les entreprises de croissance, les indices �Min Variance� investis

sur les actions peu volatiles, les indices investis sur les entreprises �Value�,

etc.). Les variances de ces portefeuilles lorsqu'ils sont normalisés sont propor-

tionnelles aux valeurs propres. Les corrélations entre actions sont quasiment

toutes positives et rend l'identi�cation du premier vecteur propre plutôt aisée:

le premier vecteur propre est très signi�catif. Il reste proche du portefeuille

investi sur chacune des actions avec une valeur propre de l'ordre de 100 2. Les

autres vecteurs propres ont des valeurs propres beaucoup plus petites (infé-

rieure à 20) et représentent des portefeuilles �long/short� et �market neutre�

d'abord plutôt sectoriels puis plutôt de style. Cependant l'instabilité de la

matrice de corrélation associée au bruit de mesure rend di�cile l'interpréta-

tion des vecteurs propres �long/short� mesurées. Ainsi d'un côté, on devrait

réduire la profondeur sur laquelle on mesure la corrélation pour espérer une

certaine stabilité des corrélations sur la période de mesure, mais, de l'autre

coté, on devrait augmenter la période et la fréquence pour réduire le bruit

de mesure.

Pour �ltrer le bruit de mesure, inhérent à l'analyse par composante prin-

cipale, j'ai contraint l'analyse au sous espace des facteurs de risque princi-

2. proche de la corrélation moyenne de l'ordre de 0.4 au carré multipliée par le nombre
d'action de l'ordre de 500 dans mon cas
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paux, déjà identi�és dans la littérature, dont j'ai optimisé la construction.

J'ai inclus les facteurs de styles principaux (�Momentum�, �Capitalization�,

�Quality�, etc.) et les facteurs de risque sectoriel. Les facteurs principaux

optimisés ont été nommés �Fundamental Maximum variance market neutral

portfolios�, car la variance de leurs rendements a été optimisée par construc-

tion. Ces facteurs peuvent aussi être directement utiles dans l'industrie de

la gestion d'actifs, car ils optimisent théoriquement le gain ajusté du risque

des primes de risque alternatives, qui sont devenues des véhicules d'investis-

sement très populaires. Aussi grâce à l'optimisation, j'ai pu relier les valeurs

propres sous contraintes débruitées aux valeurs propres bruitées de la ma-

trice. Cela m'a permis de débruiter la matrice de corrélation et de caractériser

�nement une loi universelle, selon laquelle, les poids optimaux des facteurs

de risque seraient uniformément distribués pour tous les critères �nanciers

ce qui est particulièrement intriguant (on aurait attendu une distribution

gaussienne et non uniforme plus logique pour obtenir des vecteurs propres

aléatoires). Cette loi universelle a des conséquences importantes dans l'As-

set Pricing: la norme dans cette discipline est de construire des portefeuilles

�long/short� investis à l'achat sur le premier quintile selon le critère �nancier

étudié et à la vente sur le dernier quintile. Si le portefeuille capture une per-

formance signi�cativement di�érente de zéro alors une anomalie de marché

est identi�ée. Une construction plus optimale du portefeuille avec une règle

d'investissement linéaire au lieu de la marche en escalier peut aider à obtenir

des performances plus signi�catives pour les petites anomalies.

Le �ltre du bruit de mesure m'a aussi permis de caractériser �nement

la dynamique de la matrice de corrélation et d'identi�er notamment les vio-
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lents changements des valeurs propres (la valeur propre du premier mode

peut passer de 200 à 30 soit une variation de corrélation moyenne de 0.5

à 0.05 en quelques mois seulement). Ce violent changement peut être mo-

délisé par l'e�et de levier (corrélation négative entre les rendements et les

volatilités) pour la premiére valeur propre. J'ai aussi véri�é que les premiers

vecteurs propres s'investissaient sur les facteurs fondamentaux de risque les

plus risqués qui sont di�érents selon les périodes. Selon les crises, il peut

s'agir du secteur IT, du secteur de la �nance, du secteur de l'énergie, des

REITs ou des entreprises exposées à la dette. Les entreprises qui sont peu

sensibles aux variations de l'indice, et celles qui constituent les composants

du facteur �Momentum�, restent très représentées dans le deuxième et troi-

sième vecteurs propres. Les facteurs �Capitalization� et �Book� de Fama et

French sont très peu représentés dans les premiers vecteurs propres de la

matrice de corrélation.

La première application de la méthodologie que j'ai introduite et qui

permet de débruiter la matrice de corrélation a consisté à étendre l'étude

de l'e�et d'échelle sur les valeurs propres de 1 minute à 1 journée sur des

échelles de temps plus longues entre 1 jour et plusieurs mois. Les corrélations

continuent d'augmenter avec l'échelle de temps. Cela explique par exemple

que la norme dans l'Asset Pricing est de se baser sur les rendements mensuels

pour estimer les corrélations. En e�et, même si l'utilisation des rendements

journaliers donnerait des résultats plus robustes, les chercheurs dans l'Asset

Pricing préfèrent travailler avec les rendements mensuels, car les corrélations

sont réputées plus fortes lorsqu'elles sont mesurées à partir de rendements

mensuels qu'à partir des rendements journaliers à cause d'un e�et d'echelle
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que les chercheurs redoutent. La réduction de la matrice de corrélation dans

le sous espace généré par les portefeuilles fondamentaux �Maximum variance�

permet de con�rmer cette crainte avec des mesures signi�catives. Les corré-

lations ont tendance à continuer à augmenter sur des horizons de temps plus

long. Ce phénomène est expliqué grâce à un modèle d'autocorrélation, qui

permet de reproduire l'e�et de manque de liquidité du marché. L'illiquidité

crée de l'inertie et fait qu'un mouvement de marché dure et peut être prolongé

par le comportement moutonnier des investisseurs. Les autocorrélations, in-

troduites dans le chapitre 3, apparaissent plus robustes que les anomalies

non conditionnelles pas toujours signi�catives telles qu'identi�ées dans l'As-

set Pricing. Ces anomalies se matérialisent par des primes de risque alter-

natives pour justi�er les incohérences avec le modèle d'évaluation des actifs

�nanciers (MEDAF ou CAPM en anglais), selon lequel, les primes de risque

ne doivent dépendre que du beta, sensibilité de l'action avec les variations de

l'indice.

La deuxième application de de la méthodologie que j'ai introduite et qui

permet de débruiter la matrice de corrélation a consisté à caractériser la dy-

namique de la matrice de corrélation qui est importante à modéliser pour

estimer les risques. En e�et la matrice de corrélation de population peut

changer et cela peut représenter un risque. Le problème est que la matrice

est déjà tellement bruitée qu'espérer mesurer ces changements est illusoire,

si bien que les modèles stochastiques théoriques ne peuvent pas facilement

être validés empiriquement. Dans le chapitre 5, j'ai réussi à faire plusieurs

mesures grâce à la méthodologie qui permet d'utiliser les informations �nan-

cières pour réduire la taille de la matrice de corrélation et grâce à l'utilisation
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des rendements 5 minutes. J'ai ainsi mis en évidence certains faits stylisés de

la di�usion de la matrice de corrélations très mal connus et très mal repro-

duits par les modèles standard issus de Wishart, comme la distribution des

valeurs propres des incréments de la matrice de corrélations des actions (il

s'agit ici précisément de la matrice de corrélation des actions sous sa forme

réduite dans le sous espace des 24 facteurs fondamentaux Maximum Variance

pour éliminer le bruit de mesure). L'étude de cette distribution permet de

caractériser la di�usion des vecteurs propres de la matrice de corrélation des

actions. Cette distribution ne suit pas une loi demi-cercle de Wigner mais une

distribution avec des queues, qui peuvent être interprétées par la présence de

valeurs propres extrêmes. Ces valeurs propres extrêmes expliquent que des

corrélations entre actions peuvent changer beaucoup plus brutalement que

les modèles classiques ne peuvent le prévoir. J'ai ainsi modélisé l'instabilité

de la matrice de corrélation avec un processus empirique plus réaliste. La dif-

fusion dans la composition des premiers vecteurs propres explique en grande

partie la distribution des valeurs propres des incréments de la matrice de

corrélation. Cette di�usion s'explique quasiment entièrement par la volati-

lité de la volatilité des portefeuilles fondamentaux �Maximum variance�. Les

portefeuilles n'étant pas orthogonaux, la volatilité de la volatilité permet de

répliquer la di�usion des vecteurs propres tout en supposant les corrélations

entre portefeuilles fondamentaux �xes.

Une composante particulière de la di�usion de la matrice a aussi fait l'ob-

jet d'une grande attention: la dynamique des poids du premier vecteur propre

qui sont liés aux beta, qui est la sensibilité des rendements d'une action avec

les indices boursiers, a été analysée en profondeur. Les beta constituent par
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ailleurs une mesure du risque qui est capitale car ils forment une indication

d'un risque systématique qui ne peut pas se diversi�er ou s'éliminer pour un

investisseur classique. Cela justi�e intuitivement que les actions à fort beta

doivent rémunérer plus les actionnaires et que les primes de risque doivent

être proportionnelles au beta qui est à la base du MEDAF. Aussi les fonds

alternatifs, qu'on appelle aussi �hedge funds�, ont la capacité à prendre des

positions vendeuses avec des ventes à découvert pour neutraliser l'exposition

de leur investissement aux variations des indices boursiers. Cela permet de

mieux contrôler le risque et de proposer des investissements diversi�ant aux

épargnants. Pour construire des portefeuilles immunisés contre les variations

de la bourse, qu'on appelle �beta neutre�, il est extrêmement important de

se baser sur des mesures �ables et sans biais des betas d'autant plus que cer-

taines stratégies très populaires ont tendances à ampli�er les biais de mesure

du beta. Cela m'a motivé à modéliser �nement l'e�et de levier et l'élasticité

des beta, qui décrivent aussi la composante du premier vecteur propre de

la matrice. Par exemple, lorsqu'une action sous performe, son beta va aug-

menter. Lorsque la volatilité de l'action augmente plus que les autres, son

beta va augmenter aussi. J'ai mis au point, dans le chapitre 4, une méthode

réactive de la mesure des beta nécessaire pour construire des facteurs fon-

damentaux beta et secteur neutre moins biaisés et potentiellement mieux

valider le MEDAF. Des tests montrent l'intérêt d'un tel modèle par rapport

à des méthodes standards (OLS, régression par quantile, DCC GARCH).

En�n une application concrète de mes travaux, dont la portée peut ne pas

se limiter à la gestion d'actifs, met en avant l'intérêt de la méthode que j'ai

introduite en se révélant assez �ne pour distinguer le facteur �Rémuneration�
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du bruit. Dans le chapitre 6, je montre que facteur �Rémuneration� s'avère

être un facteur de risque commun signi�catif. Les entreprises qui rémunèrent

mieux leurs employés ont un risque en commun. Ces entreprises ont aussi

tendance à avoir des meilleures performances. J'ai ainsi découvert une nou-

velle anomalie par rapport au MEDAF et aux facteurs de Fama et French

qui pourrait avoir une portée managériale voire politique.

Cette thèse peut donc avoir de multiples applications: une meilleure ana-

lyse du risque, une optimisation plus robuste d'un portefeuille, une meilleure

modélisation des autocorrélations qui sont exploitées par les programmes de

trading d'arbitrage de style, une meilleure mesure des anomalies dans l'As-

set Pricing, une modélisation plus réaliste de la dynamique de la matrice de

corrélations pour évaluer des produits dérivés. Elle peut aussi avoir des impli-

cations très concrètes en économie et en management car, par exemple, elle

permet de montrer que les entreprises qui rémunèrent bien leurs employés

partagent un risque signi�catif en commun et ont aussi tendance à mieux

performer.
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2. Revue de la littérature

Ce travail de recherche s'est articulé autour de six champs disciplinaires

relativement cloisonnés entre plusieurs disciplines �nance, économie, écono-

physique et mathématiques appliquées.

2.1 Gestion de portefeuille

La bonne estimation des corrélations des rendements des actions est né-

cessaire pour l'analyse de risque d'un portefeuille et pour son optimisation.

La bonne compréhension des variations temporelles des corrélations en cours

ou potentielles est aussi critique pour la gestion d'un portefeuille et notam-

ment d'un fonds �market neutre� qui utilise un fort e�et de levier �nancier

et dont l'arbitrage de style est un des moteurs de performance. L'arbitrage

de style est une stratégie de trading qui consiste à investir sur les styles de

gestion porteurs. Par exemple si le style de gestion qui consiste à acheter
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des petites capitalisations et à vendre des grosses capitalisations est pro�-

table, la stratégie va acheter les petites capitalisations et vendre les grandes.

Dans le cas inverse, la stratégie va acheter les grosses et vendre les petites.

Plus de 240 styles de gestion ou facteurs de risques pro�tables ont été pu-

bliés dans la littérature scienti�que décrites dans la section 2.5. L'intérêt du

market timing ne fait pas consensus (Lee (2017); Bender et al. (2018); Bass

et al. (2017)) et certains préfèrent béné�cier simplement de la diversi�cation.

DeMiguel et al. (2017) montrent qu'en pratique il su�t, pour construire un

portefeuille, de sélectionner 15 critères �nanciers signi�catifs sur plus de 100.

Les stratégies de market timing peuvent être complexes. Elles s'appuyent

sur des modèles de prévision. Hodges et al. (2017) cherchent des prédicteurs

des facteurs dans di�èrent régimes économiques et di�érentes conditions de

marché. Ils trouvent que l'utilisation d'une combinaison d'indicateurs sur le

cycle économique, la valorisation, la tendance et la dispersion serait plus

e�cace que l'utilisation d'indicateur individuel. Ainsi Dichtl et al. (2018) fa-

briquent un portefeuille �long/short� grâce à la méthode d'optimisation des

paramètres introduite par Brandt et al. (2009) en utilisant plusieurs indi-

cateurs de valorisation et de tendance et ils montrent que le market timing

permet de surperformer le portefeuille investi équitablement sur les di�érents

styles de gestion dont les primes de risque sont positives. La fragilité de ces

résultats vient du risque de surapprentissage. De plus ces stratégies en gé-

néral peuvent sou�rir de chocs de corrélations entre les di�érents styles de

gestion qui peuvent survenir et générer des pics de volatilités. Ainsi les stra-

tégies quantitatives d'habitude non corrélées peuvent se corréler fortement de

manière brutale. Cela s'est passé du 8 au 9 août 2007, quand la plupart des
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fonds d'arbitrage de style ont subi des pertes très signi�catives brutalement

en même temps (Stein (2009)). Lors de cet évènement, nommé plus tard

�quant crash�, la plupart des fonds touchés employaient des stratégies �mar-

ket neutre� quantitatives sans exposition au marché ce qui remet en question

leur statut �market neutre� (Khandani and Lo (2011)). Il semble en fait que

trop de gérants étaient investis sur les même �crowded� stratégies avec trop

de levier et qu'ils ont tous voulu réduire leurs positions en même temps au

même signal. De tels risques de �crowding� a�ectent une grande variété de

stratégies, comme le style �Momentum� (acheter les actions qui ont surper-

formé et vendre les actions qui ont sous performé) car ils ne dépendent pas

d'estimation indépendante des valeurs fondamentales des entreprises (Hong

and Sraer (2016); Stein (2009)).

Des centaines de milliards de dollars sont aussi gérées directement en

utilisant l'optimisation Mean-Variance introduite par Markowitz (1952) en

préférant se baser sur des hypothèses simples concernant les espérances des

rendements. La valeur ajoutée des gérants viendrait seulement d'une modé-

lisation plus adaptée de la matrice de corrélation et d'une bonne capacité à

exécuter les ordres en minimisant l'impact de marché. Ainsi le portefeuille

�Min Variance� suppose que les espérances des rendements sont toutes iden-

tiques et que la matrice de corrélation peut se modéliser simplement, par

exemple, avec un modèle à un facteur (Clarke et al. (2013)). Le portefeuille

�Max Diversi�cation� introduit par Choueifaty and Coignard (2008) suppose

que les espérances sont proportionnelles au risque. Ces deux derniers porte-

feuilles nécessitent d'inverser la matrice de corrélation ce qui peut poser pro-

blème si la matrice n'est pas proprement modélisée. Le portefeuille �Equal-
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Risk Contribution� introduit par Maillard et al. (2010) est moins sensible

aux bruits de mesure et est donc plus robuste mais n'est plus théoriquement

optimal. Benichou et al. (2017) introduisent le portefeuille �Agnostic Risk

Parity�. Les espérances ne sont plus forcément positives mais dépendent des

rendements passés. Le portefeuille dépend alors de l'inverse de la racine carré

de la matrice de corrélation multipliée par des signaux qui représentent des

indicateurs techniques des tendances. Ce portefeuille �trend following� alloue

le même risque sur chaque vecteur propre de la matrice de corrélation.

2.2 Econophysique

Aujourd'hui les performances des di�érents styles de gestion et les perfor-

mances sectorielles sont très suivies par tous les acteurs du marché qui ne se

contentent plus d'avoir une vue binaire (le marché va-t-il monter ou baisser?)

et s'auto-alimentent par un phénomène d'e�et moutonnier très bien décrit

dans la littérature (Guedj and Bouchaud (2005); Michard and Bouchaud

(2005); Cont and Bouchaud (2000); Wyart and Bouchaud (2007); Lux and

Marchesi (1984)). Ainsi quand tel ou tel style de gestion chute, les acteurs

vont le vendre en même temps et accentuer sa chute. La moindre nouvelle

macroéconomique va impacter les indices mais aussi les autres facteurs de

risque. Quand la Réserve fédérale des États-Unis se dit prête à augmenter

les taux d'intérêt, le facteur levier (vente d'actions endettées, achat d'actions

peu endettées) sera joué puis d'autres facteurs seront entrainés. Benzaquen

et al. (2017) mettent en évidence le lien entre le trading et la matrice de cor-

rélation en partant de la microstructure et du cross impact des transactions

sur les prix. Les corrélations ne décriraient que l'interaction entre actions par
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le jeu des traders. Les corrélations sont aussi réputées pour augmenter avec

l'échelle de temps: les rendements mensuels sont plus corrélés que les rende-

ments journaliers qui sont plus corrélés que les rendements 1 minutes (Epps

(1979)). Bouchaud and Potters (2018) avaient déjà proposé dans la partie

�some open problem� une piste (les rendements de l'action i n'impactent pas

instantanément les rendements de l'action j mais avec un certain retard) pour

expliquer la dépendance des corrélations à la fréquence mais ne l'avait pas

développé.

2.3 Modèles multifactoriels

Depuis l'article majeur de Markowitz (1952), l'optimisation ((Mean Variance ))

est devenue une méthode rigoureuse pour construire un portefeuille d'inves-

tissement. Deux ingrédients fondamentaux sont nécessaires: les espérances

des rendements de chaque action et la matrice de covariance des rendements.

L'estimation de la matrice de covariance a toujours été un sujet important. La

méthode de base se contente d'agréger les rendements historiques et de cal-

culer leurs covariances historiques. Malheureusement cela crée des problèmes

bien documentés (Jobson and Korkie (1980)). Pour l'expliquer simplement,

quand le nombre d'actions est grand devant le nombre d'observations dis-

ponibles, ce qui est généralement le cas, la matrice de corrélation historique

comporte beaucoup d'erreurs. Cela implique que les coe�cients les plus ex-

trêmes prennent des valeurs extrêmes non pas à cause de la réalité mais

à cause d'erreurs extrêmes. Invariablement les optimisations de portefeuille

vont miser leurs plus gros paris sur ces erreurs extrêmes ce qui rendra l'op-

timisation extrêmement non �able. Michaud (1989) appelle ce phénomène
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�error-optimization�. De manière alternative on peut considérer une estima-

tion avec beaucoup de contraintes, comme le (( single-factor model )) de Sharpe

(1963). Ces estimateurs de la matrice de corrélation contiennent d'un côté

peu d'erreurs mais de l'autre beaucoup d'erreurs de spéci�cation et de biais.

Une alternative est le �Shrinkage� qui consiste à un mélange entre l'esti-

mation sans contrainte et l'estimation avec la contrainte (Ledoit and Wolf

(2003, 2012)). L'APT (�Arbitrage Pricing Theory�) de Ross (1976) a généré

un intérêt croissant dans les modèles multifactoriels. Ainsi le standard de

l'industrie de la gestion d'actifs est d'utiliser des modèles multifactoriels.

Quelques entreprises, comme APT, Barra et Axioma (Barra (1998)) qui sont

devenues incontournables dans l'industrie de la gestion d'actifs, proposent à

leurs clients des matrices de covariances qui s'adaptent mieux aux optimisa-

tions de portefeuille. Ces sociétés ont été accusées d'être à l'origine du �quant

crash� de 2007, déjà mentionné dans la section 2.1, car elles favorisaient le

�crowding� en fournissant les même facteurs de risque à tous les gérants. Ces

méthodes se basent sur des modèles multifactoriels fondamentaux combi-

nant une cinquantaine de facteurs sectoriels et d'autres risques. Ces facteurs

utilisent le rendement des portefeuilles associés à certains critères �nanciers

observables tel que le �Dividend Yield�, le �Book to Market� ratio ou les

secteurs d'appartenance. Une autre approche est d'utiliser les facteurs sta-

tistiques issus de l'analyse par composante principale, qui est décrite dans la

section 2.4, avec un nombre total de facteurs de l'ordre de 5. Connor (1995)

montre que les modèles multifatoriels �fondamentaux� permettent d'expliquer

42% (R2 = 42% étant le pouvoir explicatif du modèle) des rendements alors

qu'une simple analyse par composant principale sur 5 facteurs explique deja
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39%. Connor (1995) trie les facteurs selon leur pouvoir explicatif. Les secteurs

permettent d'augmenter de 18%, puis le facteur �Low Volatility� (proche du

facteur �Low Beta�) augmente le R2 de 0.9% puis les facteurs �Momentum�,

�Capitalization�, �Liquidity�, �Growth�, �Earning�, augmentent de moins de

0.8%. Puis il reste par ordre d'importance décroissant des facteurs plutôt

mineurs: le �Book to market�, le �Earning Variability�, le �Leverage�, l'inves-

tissement à l'étranger, le coût du travail et en�n le �Dividend Yield�. Toutefois

la sélection des facteurs nécessaires et le choix du nombre a fait l'objet de

nombreuses controverses (Roll and Ross (1980, 1984); Dhrymes et al. (1984);

Luedecke (1984); Trzcinka (1986); Conway and Reinganum (1988); Brown

(1989)). Connor and Korajczyk (1993) proposent une méthodologie simple

pour estimer le nombre de facteurs signi�catifs: si le rajout d'un facteur ne

réduit pas signi�cativement le carré du résidu alors le facteur n'est pas consi-

déré comme signi�catif. La plupart des études académiques se base sur une

analyse historique depuis 1967 en exploitant la base de données du centre de

recherche des prix des actions (Center of Research in Security Prices). Cette

base de données regroupe principalement les actions cotées à la bourse du

New-York Stock Exchange depuis 1926.

2.4 Analyse par composante principale

L'analyse par composante principale (ACP) prend sa source dans un ar-

ticle de Karl Pearson publié en 1901. Encore connue sous le nom de transfor-

mée de Karhunen-Loeve ou de transformée de Hotelling, l'ACP a été de nou-

veau développée et formalisée dans les années 1930 par Harold Hotelling. La

puissance mathématique de l'économiste et statisticien américain le conduira
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aussi à développer l'analyse canonique, généralisation des analyses factorielles

dont fait partie l'ACP. Les champs d'application sont aujourd'hui multiples,

allant de la biologie à la recherche économique et sociale, et plus récemment

le traitement d'images.

La théorie de la matrice aléatoire, dont la distribution des valeurs propres

obtenues par l'ACP suit la loi de Mar£enko-Pastur pour les grandes matrices,

modélise les bruits de mesure des corrélations et montre que les petites va-

leurs propres en dessous d'une valeur propre critique sont sous estimées et

ne sont pas signi�catives (Laloux et al. (1999); Plerou et al. (1999, 2002);

Potters et al. (2005); Wang et al. (2011)). Bun et al. (2016) appliquent une

méthode théorique introduite par Ledoit and Péché (2011), qu'ils appellent

�Rotationnaly invariant estimator�, pour debiaiser de manière continue les

valeurs propres empiriques et ils montrent que la méthode semble plus ro-

buste que celles du �Clipping� ou du �Shrinkage� qui sont bien documentées

par Ledoit and Wolf (2004, 2003)). Allez and Bouchaud (2012) modélisent

l'impact du bruit sur le premier vecteur propre et montre que ce dernier

tourne légèrement autour d'un vecteur �xe. L'angle de rotation dépend du

ratio entre la première valeur propre et les autres. En appliquant ce modèle

aux autres vecteurs propres, on comprend qu'ils tournent aussi autour d'axes

�xes mais avec un angle de rotation bien plus important. Ils sont ainsi très

bruités ce qui explique la di�culté à les interpréter.

L'ACP avec une contrainte linéaire est une alternative aux �ltres issus

de la théorie de la matrice aléatoire pour éliminer le bruit de mesure et est

entièrement résolu depuis longtemps (Golub (1973)). Dans ce cas les vecteurs

propres sous contrainte appartiennent tous au sous espace solution de la
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contrainte : les vecteurs propres sous contrainte sont simplement les vecteurs

propres d'une matrice qui a été réduite et débruitée. Toute la di�culté est de

dé�nir les facteurs formant le sous espace contraint pour que les contraintes

n'impactent principalement que le bruit des valeurs propres. Pour cela, il

est possible de s'inspirer de la littérature de l'Asset Pricing décrite dans la

section 2.5) et des modèles multifactoriels décrite dans la section 2.3).

2.5 Asset pricing

Fama (1965) a abouti à la théorie des marchés e�cients, selon laquelle,

les prix suivent des marches aléatoires. Puis Sharpe (1964) dérive le MEDAF

à partir d'hypothèses plus ou moins réalistes, comme l'absence de coût de

transaction et la rationalité des investisseurs. Selon le MEDAF, l'espérance

des rendements doit être théoriquement proportionnel au beta, seul risque

qui n'est pas diversi�able et qui doit être rémunéré. Depuis 1970, di�érentes

anomalies ont été observées par rapport à cette théorie. Les facteurs clas-

siques de Fama and French (1992, 1993) sont investis à l'achat sur le top

20 %, selon le critère �nancier étudié, et investis à la vente sur le bottom

20%. Ces facteurs peuvent capturer une anomalie par rapport à la théorie

des marchés e�cients s'ils génèrent des gains signi�cativement di�érents de

zéros. La construction top 20 % bottom 20% est clairement sous optimale,

selon Asness et al. (2013), mais reste paradoxalement la référence dans le do-

maine de l'Asset Pricing. La régression de Fama and MacBeth (1973) est la

méthode la plus utilisée pour mettre en évidence des anomalies par rapport

au MEDAF. Plusieurs modèles ont été développés pour fournir une interpré-

tation économique aux nombreuses anomalies et pour améliorer le MEDAF.
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Fama and French (1993) ont proposé un modèle à trois facteurs pour mo-

déliser les espérances des rendements. Harvey and Liu (2018) ont listé 316

facteurs potentiels censés capturer une anomalie à partir de 313 articles de-

puis 1967. Selon eux, la plupart des facteurs peuvent être le fruit du data

mining et ne seraient pas robustes. La plupart de ces facteurs se recoupent

c'est pourquoi une vingtaine peut su�re mais le niveau de signi�cativité

pour caractériser les anomalies ne fait pas consensus. Les travaux acadé-

miques ont d'abord retenu les critères �nanciers tels que la �Capitalization�,

le �Price Earning Ratio�, le �Cash Flow�, le �Book to Market�, la croissance

et le �Momentum�. Par exemple les actions de petites capitalisations tendent

à surperformer (Banz (1981)). La volume moyen semble plus adéquate que

la taille pour Ciliberti et al. (2017). Une autre anomalie importante est la

prime �Value�: les entreprises �Value� tendent à surperformer les entreprises

de croissance (Fama and French (1998)). La pro�tabilité proche du �Cash

Flow� est aussi une variable explicative signi�cative de l'espérance des ren-

dements (Fama and French (2015)). L'anomalie �Low Volatility� ou �Low

Beta� ont aussi été révélées (Jordan and Riley (2013); Fu (2009); Ang et al.

(2006)). L'anomalie la plus populaire reste le �Momentum�: les actions qui

ont surperformé auront tendance à continuer à surperformer (Jegadeesh and

Titman (1993)). Les anomalies sont directement exploitées dans la gestion

d'actifs dont les strategies sont décrites dans la section 2.1. Asness et al.

(2013) expliquent ainsi qu'une stratégie de base d'investissement et très po-

pulaire simplement allouée en partie sur le �Momentum� et sur l'anomalie

�Value� permet d'atteindre un Sharpe �in the sample� supérieur à 1.

Les théories �nancières pour justi�er de telles primes de risque alterna-
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tives (manque de liquidité, asymétrie) sont remises en cause car les anomalies

ont tendance à disparaitre une fois publiées. McLean and Ponti� (2016) ont

plusieurs explications alternatives: le biais �in the sample� avec le problème

de la suroptimisation ou l'adaptation des marchés.

A ma connaissance aucune étude ne s'est encore intéressée à la mise en évi-

dence des autocorrélations des rendements des facteurs de risque qui pourrait

constituer une ine�cience plus subtile et plus robuste des marchés �nanciers.

Une explication est que les autocorrélations sont trop di�ciles à caractéri-

ser de manière signi�cative. Des articles existent mais la signi�cativité et la

robustesse de leurs résultats ne sont pas convaincants. Ainsi Hodges et al.

(2017) cherchent des prédicteurs des facteurs dans di�èrents régimes éco-

nomiques et di�érentes conditions de marché. Ils trouvent que l'utilisation

d'une combinaison d'indicateurs sur le cycle économique, la valorisation, la

tendance et la dispersion serait plus e�cace que l'utilisation d'indicateurs

individuels.

2.6 Processus stochastique

L'instabilité de la matrice de corrélation de population a d'abord été

modélisée par des modèles de di�usion pour évaluer des produits dérivés

(Possamai and Gauthier (2011)). Les modèles théoriques ont été ajustés pour

retrouver les prix des produits dérivés sans chercher à connaitre la réalité de

la dynamique de la matrice de corrélation empirique car cette dernière est

di�cilement mesurable avec la précision recherchée: les modèles ARCH ont

été initialement développés pour décrire l'heteroscedasticité des variations de

l'in�ation (Engle (1982)) mais ont ensuite été utilisés pour modéliser la dy-
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namique de la volatilité des actions pour évaluer des options (Duan (1995)).

Des modèles de type �Dynamic Conditional Correlation� (DCC GARCH,

Engle (2002, 2016)) ont étendu le modèle GARCH à une dimension et ont

été développés pour modéliser la dynamique des corrélations et des volatili-

tés. De la même façon le processus introduit par Cox et al. (1985), qui est

très populaire en �nance pour décrire la dynamique des taux d'intérêt et de

la volatilité des actions pour évaluer des produits derivés, a aussi été étendu

à partir de la di�usion Feller pour modéliser la dynamique des covariances:

les processus de Wishart généralisent à plusieurs dimensions la di�usion de

Feller. Gourieroux (2006) introduit ainsi un terme de retour vers la moyenne

au processus de Wishart en le rendant stationnaire et généralise le proces-

sus de Cox et al. (1985). Da Fonseca et al. (2007) généralisent de la même

manière le modèle d'Heston (1993) pour valoriser les options multi asset. Un

processus de Wishart peut être vu comme le carré de Browniens ou dans sa

version stationnaire d'Ornstein-Uhlenbeck. Cuchiero et al. (2011) analysent

les fondations des processus stochastiques a�nes continus sur l'univers des

matrices de covariance motivé par l'utilisation de tels modèles pour valoriser

des options multi-asset ou pour décrire les intensités de défauts. Bru (1991)

dérive les équations stochastiques pour décrire la dynamique de la matrice

et la dynamique des valeurs propres. D'autres matrices aléatoires sont aussi

très étudiées, comme les matrices gaussiennes dont la distribution des va-

leurs propres suit la loi circulaire de Wigner. Ahdida and Alfonsi (2013)

s'intéressent à des matrices de corrélations aléatoires à travers la di�usion de

Wright-Fisher pour modéliser les corrélations des actions. Des algorithmes

ont aussi été implémentés pour générer des marches aléatoires parmi les ma-
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trices de rotation. Cela permet de décrire la di�usion des vecteurs propres

de la matrice de corrélation. Ainsi la marche aléatoire de Kac (1959) est un

algorithme assez e�cient mais il ne contient pas de retour vers la moyenne,

si bien qu'au bout d'un certain temps la matrice n'a plus aucun lien avec la

matrice initiale.

D'autres phénomènes assez �ns, comme l'e�et de levier restent mal mo-

délisés par les modèles de la littérature. Ainsi des versions asymétriques des

modèles type DCC GARCH ont été développées pour tenir compte de l'ef-

fet de levier. Malgré une littérature conséquente sur l'e�et de levier (quand

les prix baissent, la volatilité augmente, selon Black (1976); Christie (1982);

Campbell and Hentschel (1992); Bekaert and Wu (2000); Bouchaud et al.

(2001)), aucun ne s'intéresse à la réalité et la complexité du phénomène bien

décrite dans Bouchaud et al. (2001). De nombreux papiers rapportent que les

beta, sensibilité des prix des actions aux variations de l'indice, peuvent varier

(Blume (1971); Fabozzi and Francis (1978); Jagannathan and Wang (1996);

Fama and French (1997); Bollerslev et al. (1988); Lettau and Ludvigson

(2001); Lewellen and Nagel (2006); Ang and Chen (2007)) sans établir de

relation précise entre entre l'e�et de levier et l'augmentation des beta. Les

actions à fort e�et de levier sont plus exposées à un beta instable (Galai and

Masulis (1976); DeJong and Collins (1985)). Bien tenir compte de la variabi-

lité des beta est important aussi pour bien tester les modèles d'Asset Pricing.

Ainsi Bali et al. (2017) prétendent qu'une fois que les beta sont bien estimés

à partir d'un modèle DCC GARCH, alors l'anomalie �Low Beta� disparait et

le MEDAF est alors en�n véri�é empiriquement (le rendement espéré serait

bien proportionnel au beta quand il est bien mesuré).
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3. Contributions principales

Le travail de recherche s'est focalisé sur six sujets pointus et s'est décliné

sous la forme de six projets d'articles. Les contributions principales pour

chacun des six sujets sont les suivantes:

� �Emergence of Correlation of Securities at Short Time Scales� (chapitre

1) : l'article introduit un modèle multifactoriel de retard, qui reproduit

assez �dèlement les mesures de l'e�et d'échelle sur les valeurs propres.

Le modèle s'inspire du modèle d'impact de Kyle (1985). Le modèle sup-

pose que les transactions sur les facteurs de risque, impactent le prix

des actions avec un certain retard. Je dérive, sous certaines hypothèses,

une formule simple pour décrire la dépendance des valeurs propres avec

l'échelle de temps. La formule contient deux paramètres pour chaque

valeur propre: la valeur propre asymptotique et un temps de relaxa-

tion de l'ordre d'1 minute qui traduit un retard moyen de l'ordre de

quelques minutes entre les actions et les facteurs de risque. Ainsi les
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corrélations apparaissent à partir d'une minute. Toutefois ce retard de

quelques minutes continue d'impacter les valeurs propres de la matrice

de corrélation des rendements 20 minutes et au-delà à cause d'une loi

en puissance qui s'explique par un mécanisme relativement subtile bien

que le phénomène sature. L'article identi�e donc une ine�cience signi-

�cative du marché, qui pourrait générer des gains dans le cas théorique

où les coûts de transactions sont nuls.

� �The Fundamental Market Neutral Maximum Variance Portfolios� (cha-

pitre 2): l'article introduit le �FCL� d'un portefeuille (ratio entre la

variance du portefeuille et la variance du portefeuille dans le cas où

les corrélations entre actions seraient nulles). Le �FCL� est un concept

proche des valeurs propres et a l'avantage de s'appliquer non seulement

aux vecteurs propres mais aussi à n'importe quel facteur de risque. Le

�FCL� serait une mesure idéale pour caractériser la signi�cativité d'un

facteur de risque. J'introduis aussi le portefeuille �fundamental Max

variance� qui optimise le �FCL� et qui peut être interprété comme un

vecteur propre de la matrice de corrélation sous contrainte pour captu-

rer au mieux un style donnée de�ni par un critère �nancier. Je montre

que les poids optimaux dépendent directement des classements des ac-

tions en fonction de ce critère et suivent une même loi universelle qui

s'applique à tous les critères �nanciers. Je montre que cette optimisa-

tion permet de répliquer au mieux la matrice de corrélation à partir de

quelques facteurs ainsi que sa dynamique en �ltrant le bruit. Je fais le

lien entre les di�érents �FCL�, les valeurs propres sous contraintes et

les valeurs propres empiriques. Je montre en�n que les vecteurs propres

36



principaux de la matrice de corrélation s'investissent sur les facteurs qui

ont les �FCL� les plus élevés. Les �FCL� sont volatiles et sont bien modé-

lisés par des processus d'Orstein-Ulhenbeck avec un temps de relaxation

de 60 jours. La composition des vecteurs propres est donc très variable

ce qui explique pourquoi leur interprétation est di�cile à l'exception

du premier. Je montre aussi sous certaines hypothèses que le Sharpe

des portefeuilles �maximum variance� est optimal théoriquement. Les

résultats de ce chapitre ont été obtenus en collaboration avec Stanislav

Kuperstein.

� �Time Scale E�ect on Correlation at Long Time Horizon� (chapitre 3):

l'article décrit une forme plus subtile mais plus robuste d'ine�cience

des marchés �nanciers que les écarts entre les espérances non condi-

tionnelles des rendements et les prédictions du MEDAF. Il s'agit de

l'autocorrélation des rendements des facteurs de risque qui s'explique

par l'illiquidité des marchés �nanciers et par le comportement mouton-

nier des investisseurs qui ont tendance à acheter les produits qui ont

marché. Cette autocorrélation qui n'est pas décrite dans la littérature

va rendre les vecteurs propres et les valeurs propres de la matrice de

corrélation sensibles à l'échelle de temps.

� �The Reactive Beta Model� (chapitre 4): l'article décrit le modèle de

levier systématique (la corrélation augmentent lorsque l'indice baisse),

spéci�que (le beta d'une action augmente lorsque elle sous performe) et

d'élasticité (lorsque la volatilité relative augmente le beta augmente).

Il ressort qu'une grande partie de la variabilité des beta s'explique par

ces phénomènes. L'approche qui consiste à normaliser les rendements
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pour corriger ces petits phénomènes permet de réduire le bais de cer-

tains facteurs (�Momentum� et �Low Beta�) par rapport à la régréssion

linéaire directe sur les rendements. Des tests empiriques montrent la

supériorité du modèle par rapport à la simple régréssion linéaire. Des

simulations Monte-Carlo montrent aussi l'avantage d'un tel modèle par

rapport aux méthodes robustes telles que les régressions par quintiles

et les modèles de type DCC GARCH symétriques ou asymétriques. Je

montre que mon modèle semble le plus adapté à la réalité des marchés

car il a été conçu pour s'adapter à des phénomènes bien caractérisés et

mesurés.

� �The Model of Di�usion of the Correlation between Securities� (chapitre

5): l'article identi�e quelques faits stylisés qui caractérisent la di�usion

des vecteurs propres empiriques des marchés. Les vecteurs propres de

la matrice à l'instant t voient leur corrélation en utilisant la matrice à

l'instant t +τ augmenter très légèrement avec τ . Je m'intéresse à la dis-

tribution des valeurs propres des incréments de la matrice de corrélation

qui est di�érente de la loi demi-cercle de Wigner et de la distrution qui

ressemble à un chapeau pointu. Les équations stochastiques standard

(Wright-Fisher, Feller) qui simulent directement la matrice de corréla-

tion ainsi que d'autres méthodes simples qui simulent des trajectoires

aléatoires de la matrice de rotation autour de la matrice identité avec

un terme de retour vers la moyenne pour simuler la di�usion des vec-

teurs propres ne permettent pas de reproduire la distribution empirique

des valeurs propres. La di�usion des FCL, dé�nies dans le chapitre 2,

permet de generer simplement cette distribution. Les résultats de ce
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chapitre ont été obtenus en collaboration avec Stanislav Kuperstein.

� �Should Employers Pay Better their Employees? An asset Pricing Approach�

(chapitre 6) : le facteur rémunération est identi�é comme un facteur de

risque commun signi�catif grâce au �FCL� mesuré qui est signi�cative-

ment supérieur à 1. Le facteur est ainsi aussi signi�catif que le facteur

�Book� de Fama et French. Le facteur rémunération révèle aussi une

faible anomalie de marché: les entreprises qui payent bien leurs em-

ployés ont un risque en commun et tendent à surperformer les autres.

L'article remet en cause la méthodologie de Fama et French qui ne se-

rait pas assez �ne pour caractériser une telle anomalie. Ainsi il semble

très important de maintenir à chaque instant le facteur beta neutre et

pas seulement en moyenne seulement pour mesurer l'anomalie.
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Emergence of correlations between securities at short

time scales

Abstract

The correlation matrix is the key element in optimal portfolio allocation and risk

management. In particular, the eigenvectors of the correlation matrix corresponding

to large eigenvalues can be used to identify the market mode, sectors and style factors.

We investigate how these eigenvalues depend on the time scale of securities returns in

the U.S. market. For this purpose, one-minute returns of the largest 533 U.S. stocks are

aggregated at di�erent time scales and used to estimate the correlation matrix and its

spectral properties. We propose a simple lead-lag factor model to capture and reproduce

the observed time-scale dependence of eigenvalues. We reveal the emergence of several

dominant eigenvalues as the time scale increases. This important �nding evidences

that the underlying economic and �nancial mechanisms determining the correlation

structure of securities depend as well on time scales.

1 Introduction

How do the eigenvalues of securities correlation matrices emerge at di�erent time scales?
This fundamental question is important because cross-correlations change over di�erent in-
vestment horizons while a reliable empirical determination of the correlation matrix remains
di�cult due to its time and frequency dependence. This was �rst evidenced by Epps, who
demonstrated the decay of correlations among U.S. stocks when shifting from daily to intra-
daily time scales (or frequencies) [1]. In other words, the price correlation decreases with
the duration of the time interval over which price changes are measured. The economic
argument behind the Epps e�ect is that the information is not instantaneously transmitted
at shorter time intervals, where the average adjustment lag in response of prices lies ap-
proximately between 10 and 60 minutes. This appears to reduce the scope of the E�cient
Market Hypothesis [2] at short time scales given that tick data prices seem to adjust to new
information only after a lag time, thus do not re�ect all available information. Since its
inception, the Epps e�ect has been con�rmed by several studies, although its impact has
been progressively declined in the NYSE, indicating that the market becomes increasingly
more e�cient [3].
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The dependence of securities cross-correlations on time scales can be captured via the
eigenvalues of the correlation matrix. In particular, the largest eigenvalue re�ects changes in
the average correlation between stocks, whereas the corresponding eigenvector is associated
to the �market mode�. Kwapien et al. showed a signi�cant elevation of the largest eigenvalue
with increasing time scale using data from 1 minute to 2 days from NYSE, NASDAQ and
Deutsche Börse (1997-1999) [4]. Using high-frequency stock returns from NYSE, AMEX and
NASDAQ (1994-1997), Plerou et al. supported the idea that the largest eigenvalue and its
eigenvector re�ect the collective response of the entire market to stimuli such as certain news
breaks (e.g., central bank interest rates hikes) [5]. This is particularly true during periods
of high volatility when the collective behavior is enhanced. Coronnello et al. con�rmed that
the largest eigenvalue, computed from 5-minute data, describes the common behavior of the
stocks composing the LSE stock index (2002) [6].

As �rms having similar business activities are correlated, some other eigenvectors can
economically be interpreted as business sectors [7]. So, Gopikrishnan et al. computed the
eigenvectors of cross-correlation matrices of 1000 U.S. stocks at a 30-minute scale (1994-1995)
and a 1-day scale (1962-1996) [7]. They found that the correlations in a business sector,
captured via an eigenvector, were stable in time and could be used for the construction of
optimal portfolios with a stable Sharpe ratio. In the same vein, as similar trading strategies
induce cross-correlations in stocks, some eigenvectors can be �nancially interpreted as style
factors. The corresponding eigenvalues are thus expected to exhibit non-trivial dependence
on time scales. However, an accurate statistical analysis of multiple eigenvalues at di�erent
time scales is challenging due to measurement noises. In fact, as the correlation matrix
is estimated from time series of stocks' returns, its elements are unavoidably random and
thus prone to �uctuations. These �uctuations become larger as the length of time series is
reduced, i.e., when the time scale is increased. While the largest eigenvalue typically exceeds
the level of �uctuations by two orders of magnitude, the other eigenvalues rapidly reach
this level and become non-informative. Several researchers employed the random matrix
theory to distinguish economically signi�cant eigenvalues from noise [8, 9, 10, 11, 12]. In
particular, Laloux et al. showed that only 6% of the eigenvalues carried some information
of the S&P 500 (1991-1996), while the remaining 94% eigenvalues were hidden by noise
[8]. Guhr and Kalber proposed an alternative statistical approach to reduce noise that they
called �power mapping� [13]. Andersson et al. extended this work by comparing the power
mapping approach to a standard �ltering method discarding noisy eigenvalues for Markowitz
portfolio optimization using daily Swedish stock market returns (1999-2003) [14].

In this paper, we consider the correlation matrix of �nancial securities and investigate the
emergence of its eigenvalues at small time scales. As the �nancial literature on this critical
issue remains sparse, this research �lls the gap by investigating the eigenvalues at intraday
time scales using 1-min returns. We propose a simple model, coined the �lead-lag factor
model�, as an adaptation of the well-known �one-factor marker model� [15] to smaller time
scales and to multiple sectors and style factors. In this model, stock returns are correlated to
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the returns of selected factors at earlier time steps. A detailed description of the eigenvalues
as functions of the time scale is then derived. An empirical validation is performed on long
time series of 1-min returns of a large universe of U.S. stocks. To get several signi�cant
eigenvalues at time scales from 1 minute to 2 hours, the correlation matrix was estimated
over the whole available period (2013-2017) so that variations of cross-correlations over time
were ignored (note that the dynamics of the eigenvalues and eigenvectors over time has been
investigated elsewhere [16, 17, 18]). In spite of its simple character, the lead-lag factor model
is shown to be able to reproduce the dependence of large eigenvalues on the time scale.

The paper is organized as follows. In Sec. 2, we estimate the correlation matrix of
U.S. stocks' returns at di�erent time scales and present the empirical dependence of large
eigenvalues on the time scale. To rationalize the observed behavior, we develop in Sec. 3
the lead-lag factor model and compare it to empirical results. Section 4 summarizes and
concludes. Some derivations and more technical analysis of the lead-lag factor model are
presented in Appendices.

2 Empirical results

2.1 Data description

We study the correlation structure of a universe that includes 533 U.S. stocks whose capi-
talization exceeded 1 billion dollars in 2013. For the considered period from 1st of January
2013 to 28th of June 2017, our database contains 338 176 1-min returns for each stock. We
have also veri�ed that the arithmetic aggregation of returns, ri(1) + . . . + ri(τ), is almost
identical to considering the product (1+ri(1)) . . . (1+ri(τ))−1, given that the 1-min returns
ri(t) are very small.

From the time series of 1-min returns, we estimate the correlation matrix over the whole
available period, and then compute its eigenvalues. Then we aggregate the returns into 2-
min, 4-min, ..., 128-min returns, producing time series with 169 088, 84 544, ..., 2 642 points,
respectively. At each time scale τ , we repeat the computation to investigate the dependence
of the eigenvalues on τ .

2.2 Empirical results

Figure 1a shows the four largest eigenvalues of the covariance matrix of 533 U.S. stocks' re-
turns, computed by aggregating 1-min returns with the time scale τ , ranging from 1 minutes
to 128 minutes (2 hours). The �rst two eigenvalues exhibit almost linear growth with τ ,
the others show minor deviations from linearity at small τ but scale linearly with τ at large
τ . This behavior re�ects the di�usion-like growth of the variance of aggregated returns; in
particular, if the returns were independent, the eigenvalues of the corresponding covariance
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Figure 1: Four largest eigenvalues of the covariance matrix (a) and of the correlation matrix
(b) for returns of 533 U.S. stocks, computed by aggregating 1-min returns with the time
scale τ , varying from 1 minute to 128 minutes (2 hours).

matrix, Cij = τσ2
i δij, would be just λi = τσ2

i , and thus proportional to τ . Although correla-
tions a�ect this linear growth, their e�ect is subdominant, at least for large eigenvalues, as
witnessed by Fig. 1a. To highlight the e�ect of correlations, we focus on the eigenvalues of
the correlation matrix. This choice is also justi�ed from the �nancial point of view to level
o� the variability of stocks volatilities.

Figure 1b shows the four largest eigenvalues of the correlation matrix of the same 533 U.S.
stocks' returns. If the returns were independent, the correlation matrix would be the identity,
and thus all its eigenvalues would be equal to 1. The growth of these eigenvalues with the
time scale τ indicates strong cross-correlations between stocks. The largest eigenvalue can
be naturally attributed to the market mode, whereas the next eigenvalues correspond to
di�erent sectors and style factors.

After a sharp growth at short time scales (few minutes), the eigenvalues slowly approach
to their long-time limits. The existence of these upper bounds is expected because the sum of
eigenvalues of a correlation matrix is equal to its size (i.e., to the number of stocks, N). This
saturation e�ect contrasts with the unlimited growth of eigenvalues of the covariance matrix
(Fig. 1a). Finding the functional form of this approach and identifying its characteristic time
scales present the main aim of our work. Recently, Benzaquen et al. proposed a multivariate
linear propagator model for dissecting cross-impact on stock markets and revealing their
dynamics [19]. Due to its very general form accounting for both cross-correlations and auto-
correlations of stocks, the proposed model contains too many parameters, while the resulting
formulas are not explicit. Our ambition is rather the opposite and consists in suggesting an
explicit model, as simple as possible, that would capture the empirical results shown in Fig.
1b and thus provide a minimalistic framework for their �nancial interpretation.
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3 The lead-lag factor model

3.1 Basic lead-lag one-factor model

We consider a trading universe with N assets. In a conventional one-factor model, the return
of the i-th asset at time t, ri(t), is modeled as a combination of a speci�c, asset-dependent
random �uctuation, εi(t), and an overall market contribution, R(t),

ri(t) = εi(t) + βR(t), (1)

with a market sensitivity β (that we generalize below to other factors). The asset-speci�c
random �uctuations εi(t) are typically modeled as independent centered Gaussian variables
with volatilities σi.

We propose a modi�cation of this conventional model by incorporating the lead-lag e�ect,
in which the i-th asset return at time t is in�uenced by a common factor R(t− k) at earlier
times t− k, with progressively decaying weights:

ri(t) = εi(t) + β

∞∑

k=0

αkR(t− k), (2)

where 0 ≤ α < 1 characterizes the relaxation time of the memory decay. Note that the
upper limit of the sum in Eq. (2) is formally extended to in�nity, bearing in mind that
contributions for very large k are exponentially small. We will analyze the model in the
stationary regime as t→∞ in order to eliminate transient e�ects.

The common term R(t) can be interpreted as an idealized factor without auto-correlations
in an e�cient market that most stocks follow with a lead lag delay. We model therefore R(t)
by independent centered Gaussian variables with volatility Σ. The term R(t) can represent
the market mode but also sectors or style factors, or any popular trading portfolio. Moreover,
R(t) can also be interpreted as being linked to the market order transactions for a particular
strategy (market, sector or styles). In this light, our model can be seen as an extension
of the Kyle model [20] that explains the impact of transactions on price for a single stock
and without delay. Here, we consider multiple stocks and include an exponential decay of
the impact. While more sophisticated models with a power law decay of the impact were
proposed [19, 21], we will show that our minimalistic model is enough to reproduce a slow
growth of the eigenvalues of the correlation matrix. For the sake of clarify, we �rst analyze
this basic lead-lag one-factor model and then discuss its several straightforward extensions.

The one-factor relation (2) is the basic model for returns at the smallest time scale. We
then consider the returns aggregated on the time scale τ :

rτi (t) =
τ−1∑

`=0

ri(t− `), (3)

5



with t being a multiple of τ . Under the former Gaussian assumptions, the covariance function
of the aggregated returns reads (see A):

Cτ
ij = 〈rτi (t)rτj (t)〉 = τσ2δij +

β2Σ2
(
τ(1− α2)− 2α(1− ατ )

)

(1− α2)(1− α)2
, (4)

where 〈· · · 〉 denotes the expectation, and δij = 1 for i = j, and 0 otherwise. Note that we
set here σi = σ for all assets for simplicity (this simpli�cation will be relaxed below). As we
consider the stationary regime, the covariance function does not depend on time t.

Denoting

κα(τ) =
τ(1− α2)− 2α(1− ατ )

1− α2
, (5)

one gets the correlation matrix

Cτij =
Cτ
ij√

Cτ
iiC

τ
jj

=

{
1 i = j,

ρ2(τ) i 6= j,
(6)

with
ρ(τ) =

(
1 + η(τ)/γ

)−1/2
, (7)

where

γ =
Σ2β2

σ2
(8)

and

η(τ) =
τ

κα(τ)/(1− α)2
=

(1− α)2

1− 2α
1−α2 (1− ατ )/τ . (9)

The function η(τ), that will play the central role in our analysis, monotonously decreases
from η(1) = 1− α2 to η(∞) = (1− α)2.

Since the matrix Cτ − (1 − ρ2(τ))I has rank 1 (I being the identity N × N matrix),
there are N − 1 eigenvalues λi = 1 − ρ2(τ). In turn, the single largest eigenvalue of the
correlation matrix Cτ can be obtained as follows: N = Tr(Cτ ) = λ1 + (N − 1)λi, from which
λ1 = 1 + (N − 1)ρ2(τ). We get thus the complete description of the eigenvalues as functions
of the time scale τ :

λ1 = 1 + (N − 1)ρ2(τ), (10)

λi = 1− ρ2(τ) (i = 2, 3, . . . , N). (11)

In the limit of very large τ , one �nds

ρ2(∞) =
(
1 + (1− α)2/γ

)−1
. (12)
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This simplest lead-lag one-factor model predicts a monotonous growth of the largest eigen-
value (corresponding to the market mode) with the time scale τ , up to a saturation plateau.
In turn, the other eigenvalues exhibit a monotonous decrease to a plateau. In spite of the
exponential decay of the lead-lag memory e�ect in Eq. (2), the approach to the plateau is
governed by a slow, 1/τ power law, in a qualitative agreement with the empirical observation
(see Sec. 3.5 for quantitative comparison). In particular, this approach has no well-de�ned
time scale.

While the basic model can potentially capture the behavior of the largest eigenvalue, it
clearly fails to distinguish other eigenvalues. One needs therefore to relax some simplifying
assumptions to render the model more realistic.

3.2 General lead-lag one-factor model

We start by introducing arbitrary volatilities σi and sensitivities βi of the i-th asset to the
common factor R(t):

ri(t) = εi(t) + βi

∞∑

k=0

αkR(t− k). (13)

In this case, the computation is precisely the same, the only di�erence is that

Cτ
ij = τσ2

i δij + Σ2βiβjκα(τ). (14)

As a consequence, the structure of the correlation matrix is fully determined by βi, whereas
the dependence on the time scale τ is still represented by κα(τ). The correlation matrix
reads

Cτij =

{
1 (i = j),

ρi(τ)ρj(τ) (i 6= j),
(15)

with

ρi(τ) =
(
1 + η(τ)/γi

)−1/2
, γi =

Σ2β2
i

σ2
i

. (16)

The eigenvalues of this correlation matrix can be computed as follows.
If all γi are distinct1, the components of an eigenvector are

vi =
ρiQ

λ− 1 + ρ2i
(i = 1, . . . , N), with Q =

N∑

i=1

ρivi , (17)

1 When some γi are identical, the analysis of eigenvalues becomes more involved (see B), but the largest
eigenvalue still satis�es Eq. (18) and can thus be approximated by Eq. (19). In particular, if all γi = γ, one
gets λ1 ≈ Nρ2(τ), which is close to the exact solution (10).
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from which one gets the equation on the eigenvalues λ

N∑

i=1

ρ2i
λ− 1 + ρ2i

= 1. (18)

This equation has N distinct solutions that can be characterized in terms of ρ2i (see B). When
N is large, the largest eigenvalue is expected to be large, and the asymptotic expansion of
Eq. (18) yields

λ1 ≈
N∑

i=1

ρ2i =
N∑

i=1

(
1 + η(τ)/γi

)−1
. (19)

In turn, the other eigenvalues are below 1 (see B). As a consequence, such a lead-lag one-
factor model cannot reproduce several eigenvalues larger than 1. For this purpose, one needs
to consider multiple factors.

3.3 General lead-lag multi-factor model

Now we consider a general lead-lag multi-factor model

ri(t) = εi(t) +
∞∑

k=0

αk
F∑

f=1

βi,f Rf (t− k), (20)

where εi(t) are independent centered Gaussian variables (representing random �uctuations
speci�c to the stock i) with variance σ2

i , F is the number of factors, Rf (t) are independent
centered Gaussian returns of the factor f with variance Σ2

f , βi,f is the sensitivity of the stock
i to the factor f , and α sets the relaxation time. Repeating the computation from A, one
gets

Cτij = δij + (1− δij)
F∑

f=1

ρi,fρj,f , (21)

where

ρi,f (τ) =
Σfβi,f
βi

ρi(τ) (22)

and

ρi(τ) =
(
1 + η(τ)/γi

)−1/2
, γi =

β2
i

σ2
i

, β2
i =

F∑

f=1

Σ2
f β

2
i,f . (23)

Considering ρi,f as the elements of an N ×F matrix ρ, one can rewrite Eq. (21) in a matrix
form

Cτ = (I − P ) + ρρ†, (24)

8



where P is the diagonal matrix formed by ρ2i , and † denotes the matrix transpose.
The matrix ρ of size N×F plays the central role in the following analysis. As the elements

of the matrix ρ are real, ρρ†, as well as ρ†ρ, are positive semi-de�nite matrices which have
nonnegative eigenvalues. The rank of the matrix ρ is equal to that of matrices ρρ† and ρ†ρ
and thus cannot exceed min{F,N}. Given that F � N , the correlation matrix Cτ appears
as the perturbation of a diagonal matrix by a low-rank matrix.

The eigenvalues of the correlation matrix are the zeros of the determinant

0 = det
(
λI − Cτ

)
= det

(
λI − I + P − ρρ†

)
. (25)

Since ρρ† is a low-rank perturbation, one can expect, as in the one-factor case of B, that
most eigenvalues coincide with that of the unperturbed diagonal matrix I −P , i.e., they are
given by 1 − ρ2i for some indices i. These eigenvalues are essentially hidden by noise and
non-exploitable in practice. We are interested in large eigenvalues that (signi�cantly) exceed
1.

If λ exceeds 1, it cannot be equal to 1−ρ2i for all i, the matrix λI− I +P is nonsingular,
its inverse exists, so that one can rewrite Eq. (25) as

0 = det
(
λI − I + P

)
det
(
I − ρ†(λI − I + P )−1ρ

)
, (26)

from which one gets a new equation on eigenvalues:

0 = det
(
I − ρ†(λI − I + P )−1ρ︸ ︷︷ ︸

φ(λ)

)
. (27)

(here we used a general property: if A ∈ Cm×m is nonsingular matrix and U, V ∈ Cm×r,
then det(A+ UV ∗) = det(A)det(I + V ∗A−1U), see [22]). Denoting the F × F matrix in the
determinant as φ(λ), one can write explicitly its elements as

φf,g(λ) =
N∑

i=1

ρi,f ρi,g
λ− 1 + ρ2i

. (28)

The solutions of Eq. (27) determine some eigenvalues λ of the correlation matrix in Eq. (21).
As one typically deals with the situation N � F , the reduction of the original determinant
equation (25) for a matrix of size N×N to Eq. (27) for a matrix of size F ×F is a signi�cant
numerical simpli�cation of the problem. Most importantly, this formal solution allows one
to get analytical insights onto the eigenvalues, as we did in the one-factor case in B. Note
that in the one-factor case (F = 1), the determinant equation (27) is simply reduced to

0 = det(I − φ(λ)) = 1− φ1,1(λ) = 1−
N∑

i=1

ρ2i
λ− 1 + ρ2i

, (29)
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i.e., we retrieve Eq. (18).
If one searches for large eigenvalues, λ� 1, one can neglect the matrix P−I in comparison

to λI in Eq. (27), that yields
det
(
λI − ρ†ρ

)
= 0. (30)

In other words, the large eigenvalues of the correlation matrix can be approximated by the
eigenvalues of the matrix ρ†ρ of size F × F . This symmetric positive semi-de�nite matrix
has F nonnegative eigenvalues that correspond to F factors.

3.4 Practical approximation

As we will discuss in detail in Sec. 3.5, empirical data exhibit the short-range memory e�ect
(α is small) and the relatively small impact of the factors onto the variance of individual
stocks as compared to the stock-speci�c �uctuations (γi are small). In this situation, which
is particular to the time series of securities returns at the considered time scales, one has
η(τ)/γi � 1 so that ρi(τ) in Eq. (23) can be approximated as

ρ2i (τ) ' γi
η(τ)

. (31)

This approximation greatly simpli�es the elements of the matrix ρ†ρ:

(ρ†ρ)f,g =
N∑

i=1

Σfβi,fρi(τ)

βi︸ ︷︷ ︸
=ρi,f

Σgβi,gρi(τ)

βi︸ ︷︷ ︸
=ρi,g

≈ N

η(τ)
Γf,g , (32)

where the matrix elements Γf,g do not depend on the time scale:

Γf,g =
ΣfΣg

N

N∑

i=1

βi,fβi,g
σ2
i

. (33)

As a consequence, all the elements of the matrix ρ†ρ and thus its eigenvalues exhibit the
same dependence on the time scale τ , expressed via the explicit function η(τ) given by Eq.
(9). Denoting the eigenvalues of the matrix Γ as γf (f = 1, . . . , F ), one gets the following
approximation for large eigenvalues of the correlation matrix:

λf ≈
Nγf
η(τ)

(f = 1, . . . , F ) . (34)

From the explicit form (16) of η(τ), one deduces a slow, 1/τ , power law approach of the
eigenvalue to the saturation level as the time scale τ increases. Within this approximate
computation, all large eigenvalues exhibit the same dependence on the time scale.
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f 1 2 3 4
γ 0.17 0.03 0.02 0.01
α 0.16 0.25 0.18 0.26

tα (min) 0.55 0.72 0.58 0.74

Table 1: Two adjustable parameters of the �tting formula (34) applied to four largest
eigenvalues of the correlation matrix of N = 533 U.S. stocks' returns. The corresponding
relaxation time tα in minutes is obtained as 1 min/ ln(1/α).

In practice, one aims at constructing the factors Rf to capture independent features of
cross-correlations in the market. The sensitivies βi,f and βi,g of the stock i to factors Rf

and Rg are thus expected to be �orthogonal�, and this property can be formally expressed
by requiring that the nondiagonal elements of the matrix Γ are negligible. In this case, the
eigenvalues γf are given by the diagonal elements

γf = Γf,f =
1

N

N∑

i=1

Σ2
fβ

2
i,f

σ2
i

. (35)

This is a kind of empirical mean of the squared sensitivities β2
i,f , normalized by the squared

volatilities σ2
i .

3.5 Application to empirical data

We aim at applying the lead-lag factor model to �t the eigenvalues of the empirical correlation
matrix of U.S. stocks' returns. The �tting formula (34) has two adjustable parameters: the
relaxation time α in the function η(τ) and the amplitude Nγf . Using the least square �tting
algorithm implemented as the routine lsqcurvefit in Matlab, we apply the formula (34)
separately to each empirical eigenvalue.

Figure 2 shows the �tting of the four largest eigenvalues. The good quality of the �t by
the lead-lag factor model indicates that, in spite of numerous simplifying assumptions on
which the model was built, it captures the overall behavior qualitatively well. In particular,
the eigenvalues converge to limiting values, at least for the considered short-time scales (up
to 2 hours). Moreover, this saturation level is approached slowly, with the characteristic 1/τ
power law dependence. The adjustable parameters are summarized in Table 1. Rewriting
the attenuation factor αk in the lead-lag factor model (2) as exp(−t/tα) with t = kτ0 and
tα = τ0/ ln(1/α), where τ0 = 1 min is the �nest time scale of the time series used, one
gets the relaxation time tα in minutes. One can see that the relaxation times α (or tα)
for four eigenvalues are close to each other. In other words, all the dominant eigenmodes
evolve at comparable time scales. This is an important conclusion which refutes a common
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Figure 2: Fitting by Eq. (34) of the four largest eigenvalues of the correlation matrix of
N = 533 U.S. stocks' returns, computed by aggregating 1-min returns with the time scale
τ . The adjustable parameters α and γ are summarized in Table 1.

belief that the market mode (corresponding to the largest eigenvalue) evolves at a time scale
that is signi�cantly di�erent from other modes (sectors and style factors). The values of
tα are of the order of one minute, in agreement with predictions by Benzaquen et al. [19].
Remarkably, while the lead-lag memory e�ects vanish so rapidly, they impact the behavior
of the eigenvalues at much longer time scales. In particular, if the lead-lag was ignored (by
setting α = 0), the largest eigenvalue would be ' Nγ1 and independent of the time scale
τ . For instance, using the estimated value γ1 = 0.17 and setting α = 0, one would get the
largest eigenvalue to be 90, which is signi�cantly smaller than the expected limit 128 for
α = 0.16 or the observed value 130 at τ = 128 min.

4 Conclusion

We investigated the dependence of the eigenvalues of the correlation matrix on the time
scale τ . Aggregating 1-min returns of the largest 533 U.S. stocks (2013-2017) to estimate
the correlation matrix at di�erent time scales, we showed that its large eigenvalues grow with
τ and apparently saturate to limiting values. This growth re�ects the important phenomenon
that inter-stock correlations accumulate over time scales.

To rationalize this phenomenon and to interpret empirical observations, we developed
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the lead-lag factor model. In the one-factor case, each stock is considered to be partly
correlated to a given lead-lag factor. Under several simplifying assumptions, we derived
a simple formula for large relevant eigenvalues. This formula containing just two easily
interpretable adjustable parameters, was then validated on empirical data.

The relaxation time of the stock market was estimated to be around 1 minute. A possible
interpretion of this observation can be that a transaction can generate a cascade of transac-
tions that decays in 1 minute so that the impact of transaction on price decays in 1 minute.
As correlations emerge from the cross-impact of transactions on prices, we model this e�ect
by extending the Kyle model to the impact of transaction on preferential portfolios with a
lead lag e�ect.

The small value of the observed relaxation time suggests that correlation measurements
based on 5 minutes returns should provide a good proxy of correlation of daily returns for risk
management, in line with the conclusion by Liu et al. on volatility estimation [23]. However,
other phenomena are likely to occur at much larger time scales (from day to month), e.g.,
autocorrelations of returns of �nancial factors (book, size, momentum) due to herding e�ect,
or lack of liquidity. An accurate estimation of correlations at larger time scales remains a
challenging problem because of a limited number of the available returns and thus higher
impact of noise in the estimated correlation matrix. To overcome this limitation, one can
either consider time horizons over several decades (in which case neglecting variations of
corrections over time becomes debatable), or reduce the number of considered securities and
thus the dimension of the correlation matrix (in which case �nancial meaning of estimated
correlations may be debatable). A possible solution consists in constructing relevant �nancial
factors and investigating how their correlations change with the time scale, as suggested by
our factor-based model.

A Computation of the covariance matrix

The covariance matrix of aggregated centered Gaussian returns rτi (t) de�ned by Eq. (3) is

Cτ
ij = 〈rτi (t)rτj (t)〉 (36)

= τσ2δij + β2

τ−1∑

`1,`2=0

∞∑

k1,k2=0

αk1αk2〈R(t− `1 − k1)R(t− `2 − k2)〉.

The �rst term in this expression comes from the uncorrelated stock-dependent �uctuations.
The independence of returns R(k) implies

Cτ
ij = τσ2δij + β2σ2

m

τ−1∑

`1,`2=0

∞∑

k1,k2=0

αk1αk2δ`1+k1,`2+k2 . (37)
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To calculate these four sums, it is convenient to consider separately various terms depending
on `1 and `2:
• there are τ terms with `1 = `2 that implies k1 = k2, whose contribution is

τ

∞∑

k=0

α2k =
τ

1− α2
; (38)

• there are τ − 1 terms with `1 = `2 + 1 that implies k1 = k2 − 1, whose contribution is

(τ − 1)
∞∑

k=0

α2k+1 =
(τ − 1)α

1− α2
. (39)

Moreover, the same contribution comes from `1 = `2 − 1 and k1 = k2 + 1.
• similarly, there are τ − j terms with `1 = `2 + j that implies k1 = k2 − j, whose

contribution is

(τ − j)
∞∑

k=0

α2k+j =
(τ − j)αj

1− α2
, (40)

and this contribution is doubled by the symmetry argument.
• �nally, there is one term with `1 = `2 + (τ − 1) and thus k1 = k2 − (τ − 1) whose

contribution is ατ−1/(1− α2).
Combining all these terms, one gets after simpli�cations Eq. (4).

B Analysis of the lead-lag one-factor model

We study in more detail the model (15) of the correlation matrix C, with ρi(τ) given by Eq.
(16). This matrix is a perturbation of the identity matrix by a rank one matrix, for which
many spectral properties are known (see, e.g., [24]). This matrix combines both e�ects:
the correlation coe�cient ρ and the impact of the exponential moving average (with the
coe�cient α). We search for an eigenvector of this matrix as v = (v1, v2, . . . , vn)†. Writing
explicitly Cv = λv, we get

vi(1− ρ2i ) + ρiQ = λvi (i = 1, . . . , N), (41)

where

Q =
N∑

i=1

viρi. (42)

First, we note that if ρi = 0 for some i, then the above equation is reduced to vi = λvi
that has two solutions: either λ = 1 and vi can be arbitrary; or vi = 0. One can check that
if ρi1 = . . . = ρik = 0 for k stocks, then the correlation matrix has the eigenvalue λ = 1 with
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the multiplicity k. The corresponding eigenvectors can be chosen as an orthogonal basis
in the subspace Rk. In turn, the remaining n − k eigenvalues are nontrivial, and can be
determined as discussed below. In what follows, we focus on these nontrivial eigenvalues,
i.e., we assume that all ρi 6= 0.

The equation (41) has two solutions:
(i) either λ = 1− ρ2i and Q = 0; or
(ii) λ 6= 1− ρ2i and

vi =
ρiQ

λ− 1 + ρ2i
. (43)

In the latter case, one can substitute this expression into Eq. (42) to get an equation on the
eigenvalue λ:

N∑

i=1

ρ2i
λ− 1 + ρ2i

= 1. (44)

This equation can be seen as a polynomial of degreeN which hasN (a priori complex-valued)
zeros. Finally, Q can be �xed by setting the normalization condition on v:

1 =
N∑

i=1

v2i = Q2

N∑

i=1

ρ2i
(λ− 1 + ρ2i )

2
. (45)

This is a generic situation.
Let us return to the �rst option, namely, we suppose that λ = 1 − ρ2k for some index k

that implies that Q = 0. If all ρi are distinct, i.e., ρ1 6= ρ2 6= . . . 6= ρN , so that vi = 0 for
all i 6= k, but, due to Q = 0, it would also imply that vk = 0. As a consequence, v = 0 but
this is not an eigenvector. We conclude that, if all ρi are distinct, then λ cannot be given by
1− ρ2i , and this option is excluded.

Now, we consider the case when two or more values ρi are identical. For instance, let us
assume that ρ1 = ρ2 6= ρ3 6= . . . 6= ρN . In this case, λ = 1−ρ21 is indeed an eigenvalue. In fact,
one gets Q = 0 and thus vi = 0 for i > 2. However, one has Q = ρ1v1+ρ2v2 = ρ1(v1+v2) = 0,
implying that v1 = −v2. The normalization condition implies thus v1 = −v2 = 1/

√
2. We

conclude that λ = 1− ρ21 is then a single eigenvalue. More generally, if ρ1 = ρ2 = . . . = ρk 6=
ρk+1 6= . . . 6= ρN , then the eigenvalue λ = 1− ρ21 has the multiplicity k − 1.

In general, it is convenient to denote zi = 1−ρ2i and to order them in an increasing order:

z1 ≤ z2 ≤ z3 ≤ . . . ≤ zN (46)

or, equivalently, by grouping the eventual identical values:

z1 = z2 = . . . = zi1 < zi1+1 = zi1+2 = . . . = zi1+i2
< . . . < zi1+...+im = zi1+...+im+1 = . . . = zN .

(47)
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In other words, there are i1 identical values z1 = . . . = zi1 ; i2 identical values zi1+1 =
. . . = zi1+i2 , etc. (note that when all zi are distinct, one has i1 = i2 = . . . = 1). In
this con�guration, the correlation matrix has: the eigenvalue z1 with the multiplicity i1 − 1
(if i1 > 1); the eigenvalue z2 with the multiplicity i2 − 1 (if i2 > 1); etc. If for some k,
zik = 1, then this eigenvalues has the multiplicity ik. Finally, the remaining eigenvalues are
determined as solutions of Eq. (44) that can be written as f(z) = 1, with

f(z) =
N∑

i=1

ρ2i
z − 1 + ρ2i

=
N∑

i=1

1− zi
z − zi

. (48)

The terms with zi = 1 (resulting in the eigenvalue λ = 1) are excluded from this sum.
Moreover, if some zi are identical, the corresponding terms are just grouped together. As
a consequence, the equation f(z) = 1 is reduced to a polynomial of degree at most N (the
degree N corresponding to the case when all zi are distinct).

It is worth noting that the function f(z) is decreasing everywhere:

f ′(z) = −
N∑

i=1

ρ2i
(z − zi)2

< 0. (49)

As a consequence, one gets immediately that each interval (zi, zi+1) (with zi < zi+1 and
zN+1 = ∞) has exactly one solution of the equation f(z) = 0, i.e., one eigenvalue. In
particular, one gets the following bounds for the smallest eigenvalue

z1 ≤ min
1≤i≤N

{λi} ≤ z2. (50)

We conclude that all eigenvalues are positive if and only if z1 ≥ 0, i.e., ρ2i ≤ 1 for all i. In
other words, the inequalities ρ2i ≤ 1 for all i present the necessary and su�cient condition
for the positive de�niteness of the matrix. These conditions are evidently satis�ed in our
setting.

Since f(1) ≥ 1, one also gets the following bound for the largest eigenvalue

λ1 = max
1≤i≤N

{λi} ≥ 1 (51)

(note that the eigenvalues are ordered in descending order, λ1 ≥ λ2 ≥ . . ., in contrast to
zk). However, this bound is rather weak. In turn, since λ2 ≤ zN = 1 − ρ2N < 1, all other
eigenvalues are below 1:

λi < 1 (i = 2, 3, . . . , N). (52)
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The Fundamental Market Neutral Maximum-Variance Portfolios

January 17, 2019

Abstract

We introduce Maximum-Variance portfolio that maximises the exposure to a given fundamental
signal while remaining market neutral. Using real stock data we show that the Maximum-Variance
portfolio weights are proportional to the stock rankings with respect to the signal, implying that the
signal sensitivities are uniformly distributed among the stocks. Those signals are derived from �nancial
factors, like Book, Size, etc. and the portfolio constructions are performed independently for each factor.
We argue that this results in a large overlap between the subspaces spanned by the Maximum-Variance
portfolios and the leading eigenvectors of the sample correlation matrix. Reducing the initial space allows
us to reproduce the eigenvalues of the sample correlation matrix with remarkable accuracy. We thus can
replicate any alternative beta strategy more e�ciently than by using the mainstream 20% top-bottom
approach. Moreover, our method permits to mimic the eigenvalue dynamics. The empirical analysis
is carried out on the 500 largest U.S. stocks within di�erent time scales and with 24 most popular
factors, both fundamental and sectoral. Under certain hypotheses, the Maximum-Variance portfolio
also optimises the Sharpe ratio, although our 18 years of data are insu�cient for statistically signi�cant
backtesting results.

Keywords: Portfolio Management, Factor Investing, Alternative Risk Premia, Correlation.
JEL classi�cation: C5, C61, G11, G12, G23, G4.

1 Introduction

This paper develops a theoretical portfolio, coined �Maximum-Variance� as it is obtained when optimising
the variance correlated to a signal while minimising the speci�c risk, to provide a sound rule for determining
optimal alternative beta portfolios. Alternative beta factors refer to the traditional Fama and French ([1], [2],
[3]) setting where the long/short 20% stocks are ranked by their factor signal (i.e., size, book-to-market etc.).
The fact that such long/short positions are not optimal is a crucial issue for investors. This issue is even
no addressed by the classical �long-only� optimal management because it optimises the Sharpe ratio, which
is not adopted at all for alternative beta. To that end, our solution, hereafter �Maximum-Variance�, that
intends to improve the 20% top/bottom approach, formulates this important problem in terms of maximising
the risk exposure to the targeted factor, while minimising speci�c risk and other systematic risks.

The objective of the Maximum-Variance approach is to provide an optimal solution for the alternative
beta portfolios. The risk-based �long-only� portfolios,1 namely the �Minimum Variance�, the �Risk Parity�,

1By opposition to the (non-optimal) heuristic rule-based portfolios, Value-Weighted and the Equally-Weighted. A drawback
is that it has no theoretical grounds in contrast to Mean-Variance theory. It is also the case for the most popular Equally
Weighted heuristic portfolio, known as �1/n-portfolio�, which assigns equal weights to all constituents (see e.g. [4] and [5]). It
is relevant in the absence of any information on expected returns and on the covariance matrix. It is Mean-Variance optimal
only if asset classes have the same expected returns and covariances [6]. Such an equal weighting scheme, expressed in terms
of market value, tends to produce a systematically higher allocation to undervalued stocks at the expense of overvalued ones,
which explains its high performance [7]. A drawback is that diversi�cation is not optimal in terms of risks.
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or the �Maximum Diversi�cation� provided solutions to overcome the ine�ciency of the market capitalisation
weighted indices but cannot help for the alternative beta issues. The properties of the �Minimum Variance�,
the �Risk Parity�, or the �Maximum Diversi�cation� have been well documented in asset management lit-
erature (See e.g. [8], [9], [10], [11], [6]). Such risk budgeting allocation approaches are known to be robust
because they do not require any return forecasts. It is the case for the well-known Minimum Variance port-
folio [8] that has the lowest risk of all portfolios as it is located in the left-most part of the e�cient frontier.
It has the unique property that optimal security weights are solely dependent on security covariance matrix
without regards to the expected returns; hence, it does not rely on any speci�c expected return estimate
(see e.g. [12]), which makes it appear more robust than the mean-variance framework. Minimum-Variance
strategies have gained popularity notably due to the empirical �nding that low-volatility stocks tend to have
returns that tend to exceed in average the market returns [13]. A drawback is that the portfolios concentra-
tion around is very sensitive to the covariance matrix noises, while it could be more equally distributed. This
trouble is solved through the Risk Parity approach that induces a more conservative way of allocating assets
according to their risk contribution to the portfolio. The Maximum Diversi�cation relies on the concept of
diversi�cation ratio as the ratio of the weighted average of volatilities divided by the portfolio volatility [11].
The maximisation of the diversi�cation ratio is equivalent to the minimisation of the variance in a universe
where all stocks have the same expected volatility. In this case where all stocks have the same volatility, the
Most Diversi�ed portfolio becomes equal to the global Minimum Variance portfolio. The objective function
is motivated by maximising the Sharpe ratio where expected asset returns are assumed to be proportional to
asset volatility. All these portfolios have optimal risk-based weights equations determined with semi-closed-
form analytical solutions, where Minimum-Variance weights are generally proportional to inverse variance,
while Maximum Diversi�cation and Risk Parity weights are generally proportional to inverse volatility [10].
It is also the case for the market neutral Maximum-Variance, we introduced in the paper. The di�erence is
that the Maximum-Variance portfolio optimises under a market neutral constraint a di�erent ratio than the
Sharpe ratio that appears not adapted to the alternative beta issue. To do so, we introduced the concept of
Factor �Correlation Level� (FCL) as the ratio between the variance of the portfolio and the variance of the
portfolio as if the correlation between single stocks were zero. FCL can also be simply interpreted as the
average correlation between stocks within a given portfolio, or as a weighted average of the eigenvalues of
the correlation matrix with the weights given by the squares of the eigenvectors projections of the portfolio.
In fact, the FCL ratio is closely related to the diversi�cation ratio that can also be de�ned as the square
root of the ratio between the variance of the portfolio as if correlations were one and the variance of the
portfolio. We argue that the FCL plays an equivalent role of the Sharpe ratio in the context of alternative
beta portfolios but could be measured more accurately (theoretical expected Sharpe ratio for a market neu-
tral portfolio is null with the e�cient market hypothesis, and empirically the expected returns are rarely
signi�cantly di�erent from zero and remain very controversial in the literature [14]. We also show that the
Maximum-Variance portfolio has a robust and theoretically optimal Sharpe ratio under some hypotheses
that are di�erent from the e�cient market ones.

The Maximum-Variance portfolio is de�ned as the market neutral portfolio that optimises the FCL, when
using a Two-Factor model for the returns. The Two-Factor model including the dominant factor and the
style of interest is justi�ed as the e�ect of additional orthogonal factors is small [15]. We argue that the
parameters of the model could be �tted via a linear law depending on the ranking of the stocks according
to the signal.

In fact, this weighting scheme has been already implemented in [16] for the value and momentum factors,
as a means to reduce the in�uence of outliers (lowest and highest ranked stocks), but without further
theoretical and empirical justi�cation.

Remarkably, the law seems to be universal for any signal. To model the correlation matrix in that
way introduces a constraint and avoid getting the sample eigenvectors as the optimal portfolios. The style
of interest could be sectoral risk or include fundamental factors that have been mainly formed on �rm
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characteristics such like capitalisation [17, 1, 2], book-to-market [18, 1, 2], low volatility/beta [19, 13] or
momentum [20, 21], to quote only the most popular.

The authors of [22] study more than 330 return predictive signals that are mainly accounting based and
show the large diversi�cation bene�ts by suitably combining these signals. In[23] an out-of-sample approach
is used to study the post-publication bias of discovered anomalies. The overall �nding of this literature is
that many discovered factors are likely false. In [24] more than 300 di�erent factors were listed, claimed to
capture an alternative risk premia but they argue that most claimed research �ndings are likely false. In [14]
14 major factors were selected and it was showed that the original market factor is by far the most important
factor in explaining the cross-section of expected returns.

Market participants have extended this risk-based investment style with what is generally named the
alternative risk premia, which corresponds to any risk premia that can be earned by building long-short
portfolios exposed to common risk factors as opposed to the long-only exposure of the so-called �traditional
risk premia� approach. Alternative risk premia can be aggregated to build multi-factor portfolios likely
to extend the horizon of assets for a better diversi�cation, while providing, not only a more economically
meaningful investment opportunity, but also a more transparent systematic risk exposure to investors. Gen-
erally, risk premia factors constructions are not optimal as they have a top-down approach to gain access
to the interest factor and they are beta market neutral. In the classical setting [1, 2, 3], factor construction
is generally based on a long-short basket approach that is long/short the top 20% stocks ranked by the
factor signal (i.e., size, book-to-market etc.). Other approaches from the industry, that are not necessarily
disclosed, are often of a bottom-up type. Additionally, the methodology applies constraints on region-sector
exposure, maximum constituent weights, liquidity and turnover and did little e�ort to discuss the problems
of optimisation. The optimised risk premia factors, through the Maximum-Variance approach, constitute a
set of portfolios that allows replicating easier any alternative beta strategies than a set of 20% top/bottom
risk premia factors would do. Moreover, the conventional way to identify factors to model the correlation
matrix is done through fundamental2 multi-factor models.3 These models specify that expected returns are
linearly related to the weights of the common factors, but remained generally silent on the number of factors,
which has induced some controversy4, in the �nancial economics literature. We argue in our paper that using
the optimised factors should improve the explanation power of the cross-section of single stock returns and
that the FCL should be a criterion of the importance of a factor used to decide to select it or not into the
model.

Furthermore, when using enough factors, the optimised factors could also be used as an e�cient �lter-

2Indeed, the multi-factor models of security market returns can be divided into three types (macroeconomic, fundamental
and statistical), but the fundamental model remains more suited to ensure whether those factors are associated with risk premia.
The fundamental model slightly outperforms the statistical model as it explains 42.6% of the total explanatory power, against
39% for statistical models and only 10.9% for macroeconomic model [25].

3Recall that the multi-factor model, initially formulated in [26], through the Arbitrage Pricing Theory (APT) o�ers a testable
alternative to the Capital Asset Pricing Model (CAPM) introduced initially in [27]. The two major di�erences between the
APT and the CAPM model is that the APT allows for a more than just one generating factor and demonstrates that every
equilibrium will be characterized by a linear relationship between each asset's expected return and its return's loading on the
common factors [28]. Notice that while [28] suggests that APT results are invariant to rotation of the original factors, [29]
brings a nuance by stating that the statistical tests for the number of priced factors are not invariant to rotation.

4Some early in�uential papers were written on that particular topic in the �nancial economic literature. [30] explain that as
one increases the number of securities, the number of factors increases. [31] demonstrate that returns can be linearly related
to n factors if n eigenvalues of the covariance matrix of returns become large as the number of securities increases. [32] �nds
evidence that one eigenvalue at most dominates the covariance matrix indicating that a one-factor model may describe security
pricing.[33] obtain that the number of factors common across securities was limited to three or �ve.[34] �nd the existence of only
one dominant factor and suggest the e�ect of adding orthogonal factors is small. [35] shows that one market factor explains the
major part of security returns. [36] explain if n is the correct number of pervasive factors, then there should be no signi�cant
decrease in the cross-sectional mean square of idiosyncratic returns in moving from n to n + 1 factors. A wide collection of
in�uential papers has also addressed this issue in the econo-physics literature to �nd roughly comparable conclusions around
the idea of one large eigenvalue (see e.g.,[37],[38],[39])
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ing method of the correlation matrix that allows obtaining constrained eigenvalues as close as possible to
eigenvalues of the correlation matrix. We highlighted two interesting applications. First, we argue that the
optimised factor enables to replicate better any strategy, which is the purpose of alternative beta products.
Second, we argue that �ltering the correlation matrix is a key issue in asset management and portfolio op-
timisation in general, because sample correlation matrix may become too noisy and the optimisation could
be over-�tted by noises and fallacious hedges. This can be related to a well-known problem in portfolio
optimisation typically called �error maximisation� by [40] who explains that optimisation scheme tends to
maximise the e�ects of errors in the input assumptions as these inputs are not without statistical error.

Our �ltering method could help to understand better the dynamics of the correlation matrix and their
eigenvectors that is not well identi�ed [41]. So far, it seems to be an unequivocal empirical support that very
few eigenvalues dominate the correlation matrix but the interpretation of the corresponding eigenvectors
remain di�cult except for the market mode. We argue that the constrained5 eigenvectors into the subspace
of the optimised factors could be a very good approximation of the true eigenvectors. The main constrained
eigenvectors are combinations of Maximum-Variance portfolios which have the highest FCL. As FCL can
change in a brutal way depending on market issues, the eigenvectors can also change brutally that explains
the di�culty to interpret directly di�erent eigenvectors. The Maximum-Variance �nally enables to �lter the
correlation matrix and relies on a diagonalisation method that enables to obtain orthogonal factors as close
as possible to eigenvectors of the correlation matrix. It corresponds to a dimension reduction introduced by
economic constraints to �lter noises. Roughly speaking, those economic constraints applied to these factors
act like �constrained eigenvectors� and constitute a kind of �lter of the correlation matrix that consists in a
reduction of the traded universe dimension from several hundred single stocks or more to few tens factors.
The �lter introduced by economical constraints helps to interpret the �rst constrained eigenvectors and also
allows one to capture small eigenvalues that are typically hidden by noises.6 Maximum-Variance enables
to show that small eigenvalues are mainly coming from combination of styles like capitalisation and book.
The �lter is complementary to the standard approach based on the Random Matrix theory, which makes
statements about the density of the eigenvalues of large random matrices. The empirical correlation matrix
computed on a given realisation must be distinguished from the true correlation matrix of the underlying
statistical process as the large number of simultaneous noisy variables creates important systematic errors
in the computation of the matrix eigenvalues [46].

To our knowledge, there has so far been just no published study on how to build optimal portfolios for
alternative beta portfolios despite the current major issues at stake with the emergence of the alternative
risk premia vehicles as the low cost and e�cient solution of Hedge Fund that are made available to any
investor to manage assets. Building upon the body of evidence discussed above, this paper provides a novel
methodology with a closed-form solution to compute optimal risk premia portfolios. To test the Maximum-
Variance methodology, we use stock returns at multiple time scales (from 5 minutes to 100 days) from a
panel of the largest 500 U.S. stock since 2000 to compute the di�erent Maximum-Variance portfolios and to
test the improvement brought by the optimisation in the capture of the eigenvalues and their dynamics. This
shows that optimising factors helps to increase the explanation power of the cross-section of single stocks
returns and to replicate better any alternative beta strategy. We also test improvement of the Sharpe ratio
but, as expected, measurements are not signi�cant. We have restricted ourselves to the 24 most popular
factors according to the literature (market mode, dividend yield, capitalisation, volume/capitalisation, STR,

5[42] already introduced in 1971 the concept of constrained eigenvalues and eigenvectors into a subspace. They correspond
to the eigenvalues and eigenvectors of a transformed matrix projected into the subspace

6The need to `clean' the empirical correlation matrix requires a device for distinguishing signal from noise [43]; it requires
distinguishing meaningful eigenvalues (beyond the edge) from noisy ones (inside the bulk) given that all eigenvalues in the bulk
of the Mar£enko-Pastur spectrum are deemed as noise; to that end, [44] de�ne a threshold that separates only those eigenvalues
that are outside the noise band. The standard approach to clean up the empirical correlation matrix requires separating the
largest eigenvalue, economically interpreted as the �market mode�, from the bulk where all other eigenvalues reside and are
buried under the noise [45].
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momentum, beta, leverage, sales to price, book to price, cash to price, price to earning, growth of earning,
sensitivity to Euro dollar, sensitivity to 10 years rates, energy, �nance, IT, utilities, consumer, industry,
pharmacy, consumer discretionary vs. staple, REITs). This selection is similar to the one of [14].

The paper is organized as follows. Section 2 develops the theoretical framework. Section 3 discusses the
practical implementation of the Maximum-Variance portfolio. Section 4 summarizes the empirical tests and
compares performances and the ability to capture eigenvalues with the classical 20% top-bottom approach.
Sections 5 describes remaining open problems around the correlation matrix that the Maximum-Variance
approach should help to answer.

2 The Maximum-Variance Factor

The main objective of this paper is to show how one can �clean� a correlation matrix by using supplementary
information regarding the time-series at hand. Two series having similar characteristics according to the new
input information should have close correlations with the other time-series. Our method allows to reduce
the initial N -dimensional space to a smaller K-dimensional subspace, where N and K are the number of
the time-series and the characteristics respectively. The method consists of two steps. First, we �nd K one-
dimensional subspaces for each characteristic independently. Second, we determine the optimal eigenvectors
in the K-dimensional subspace, which is the sum of the smaller K 1-dimensional subspaces.

We then use our method to noise-�lter a correlation matrix of single stocks returns. In this application
the �rst eigenvalue is much larger than the others, and plenty of �nancial information data is available (Book,
Capitalisation, etc.).

On three occasions in this section we used the same strategy that consists to reduce the number of the
optimization parameters (the space dimension) either from N (the number of single stocks) to N − 1 (the
dimension of the subspace of returns orthogonal to the stock index that is highly correlated to the �rst
eigenvector), either from N to K (the number of characteristics) or from N to Q (the number of quantiles
to group stocks with similar characteristics). Our approach relies on the fact that constrained eigenvectors,
namely those forced to belong to a given subspace, are also the eigenvectors of the matrix reduced to this
subspace. If the choice of the reduced space (for example, the K Maximum-Variance or the Q quantile
portfolios) has a su�cient overlap with the space spanned by the leading eigenvectors then the constrained
eigenvalues will be close to the unconstrained eigenvalues of the correlation matrix.

In Section 2.1 we de�ne the covariance and the overlap matrices of N elementary single stocks. The
covariance and overlap matrices between any K or Q portfolios can be generalized. We de�ne then the
Factor Correlation Level (FCL) that measures the variance of a portfolio when it is normalized by the
overlap matrices.

In Section 2.2 we introduce the Two-Factor model which can be implemented independently for each
�nancial characteristic. It helps us to generate one solution per characteristic, that is implemented inde-
pendently from other characteristics, that optimizes the FCL and that is correlated to the characteristic of
interest.

In Section 2.3 we de�ne the Fundamental Maximum-Variance portfolio as such a solution and we derive an
explicit formula from the Two-Factor Model parameters. In Section 2.4 we demonstrate that the Maximum-
Variance portfolios are the portfolios replicating as best as possible the entire correlation matrix given a
selection of characteristics. In Section 2.5 we describe a methodology to measure the parameters of the
Two-Factor model, the factor loadings.

In Section 2.6 we comment on on empirical universal law that we found for the optimal factor loadings
and in Section 2.7 we �nally compare our methodology with the usual ordinary least square (OLS) and the
Fama-MacBeth regressions. In Section 2.8 we provide some plausible theoretical patterns of the correlation
matrix of single stocks returns that explain why the overlap between the K Maximum-Variance and the
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space spanned by the leading eigenvectors is higher than we could have expected if the eigenvectors were
randomly generated.

2.1 Notations and De�nitions

Let us �rst introduce notations that we will use throughout the paper. ri(t) are the time series of N
single stock returns with i = 1, . . . , N . For a given functional ϕ (ri(t)) we will denote by Et−1 (ϕ (ri(t)))
the conditional expectation of ϕ (ri(t)) based on information available from the entire previous period. For
instance, we will assume that Et−1 (ri(t)) = 0, unless otherwise mentioned. With this assumption ΣΣΣ is the
volatility vector7 de�ned by Σi(t) =

√
Et−1 (r2

i (t)). With these conventions the conditional covariance and
correlation matrices of returns are given by:

Hij(t) = Et−1 (ri(t)rj(t)) and Cij(t) =
Hij(t)

Σi(t)Σj(t)
. (1)

Notice that Σi =
√
Hii and so Cii(t) = 1 for any t as it should be for a correlation matrix. For the

upcoming de�nitions we will also de�ne ΓΓΓ as the covariance matrix of positions. In the special case where
the constituents of the base do not have any common position as it is for the elementary single stocks, the
matrix ΓΓΓ will correspond to the diagonal matrix of variances Γij ≡ Σ2

i δij , from which

C = ΓΓΓ−
1
2HΓΓΓ−

1
2 . (2)

Since the correlation matrix is less biased towards high-volatility stocks and therefore is more adapted for
the application considered in this paper than the covariance matrix, the ΓΓΓ−1 matrix will be often used
to calculate vector products. For example, we will refer to two vectors u1 and u2 as ΓΓΓ−1-orthogonal if
they satisfy uT1ΓΓΓ

−1u2 = 0. In �nancial terms it reduces the weights of companies with large volatilities.
As volatilities change with time, thus generating heteroscedasticity, it makes another reason to prefer the
correlation over the covariance matrix.

A generic portfolio p is determined by N (time-dependent) weights ωpi (t) and its return is then given
by rp(t) =

∑
i ω

p

i (t)ri(t). Among all possible ωωωp's the market-mode portfolio plays a special role. We will
denote it by ωωωm(t) and the corresponding return by rm(t). In the paper, rm is taken to be the stock index
return, which is very close to the value-weighted portfolio return. In the latter the weight of each stock
is proportional to its market capitalisation, which we will denote by Capi(t). The market-mode portfolio
weights are close, therefore, to the principal component of the matrix

√
CapiHij

√
Capj (with neither i

nor j summations). rm(t) provides a good proxy of the accumulated gain or loss for all investors. It thus
corresponds to the real systematic risk that all investors want to avoid for alternative beta vehicles in order
to diversify and optimise their investments. The value weighted portfolio di�ers slightly from the principal
component of C. The two portfolios produce highly correlated returns but the value-weighted portfolio is
invested primarily in companies with large capitalisation whereas the principal component of C is invested
mainly in the small �rms as they are better represented in portfolios with large N .

In our conventions a given stock beta describes the conditional sensitivity of the stock return to the stock
index:

βi(t) ≡
Et−1 (ri(t)r

m(t))

Et−1

(
(rm(t))

2
) or βββ ≡ (Σm)

−2 ·Hωωωm (3)

7With a few obvious exceptions we will use the bold font for matrices and vectors with no explicit indices.
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in the matrix notations. We will also need an additional time-series of returns derived from βββ:

rm? (t) =

N∑
j=1

rjβjΣ
−2
j

N∑
k=1

(
βkΣ

−1
k

)2
, (4)

where the time-dependence on the right-hand side is, again, implicit. For reasons to be clari�ed below, we
will refer to rm? (t) as the return of Maximum-Variance market-mode portfolio. This portfolio is optimal in
a sense to be clari�ed shortly. The relation between rm? (t) and rm(t) is straightforward. Starting from the
stock index return rm(t) one can compute the betas as in (3). On the other hand, knowing the full set
of βi=1,...,N (t) and the stock returns ri(t), the index return might be reproduced (or, to be more precise,
approximated) by rm? (t). Importantly, if beta's time-dependence is negligible, we may interpret both (3)
and (4) as outputs of the weighted least-squares (WLS) and the ordinary least-squares (OLS) regressions
respectively, both based on ri(t) = βir

m(t) relation. In Appendix A we show that for a �xed time-period
T computing iteratively the (constant) betas from the market mode and the market return from the betas
leads (after a su�ciently large number of iterations) to �xed-point values, where the identity rm? (t) = rm(t)
holds and the product bir

m(t) is merely the principal component (PC) of the correlation matrix.
It will be later on useful to introduce two additional notations: the ρH -correlation of two portfolios

ωωωp1 and ωωωp2 , which denotes the conditional correlation between the corresponding returns, rp1,2(t) =∑
i ω

p1,2

i (t)ri(t), and the similarly de�ned position overlap ρΓ :

ρH (ωωωp1 ,ωωωp2) ≡ ωωωp1THωωωp2

(
ωωωp1THωωωp1

) 1
2
(
ωωωp2THωωωp2

) 1
2

ρΓ (ωωωp1 ,ωωωp2) ≡ ωωωp1TΓΓΓωωωp2

(
ωωωp1TΓΓΓωωωp1

) 1
2
(
ωωωp2TΓΓΓωωωp2

) 1
2

(5)

A portfolio p is market-neutral if its return is uncorrelated with rm(t), that is Et−1 (rp(t)rm(t)) = 0. In
terms of the weights it amounts to ρH (ωωωm(t),ωωωp(t)) = 0. Using (3) this is also equivalent to

βββT(t)ωωωp(t) = 0 . (6)

Employing these notations, we de�ne the factor correlation level (FCL) mentioned earlier in Introduction:

λ(0) (ωωωp) ≡ (ωωωp)
T
Hωωωp

(ωωωp)
T
ΓΓΓωωωp

, (7)

where for the sake of shortness we omitted the time-dependence. It follows from (2) that, once
√
ΓΓΓωωωp is

chosen to be an eigenvector of the correlation matrix (2), the FCL is equal to the corresponding eigenvalue.
Otherwise it could be interpreted as the weighted average of the eigenvalues of C with the weights given by
the squares of the eigenvectors projections on ωωωp. Indeed, if ei=1,...,N are the eigenvectors of the correlation

matrix in (2) and `i=1,...,N are the corresponding eigenvalues, then C =
∑N
i=1 `ieiei

T/
(
eTi ei

)
and

λ(0) (ωωωp) =

N∑

i=1

(api )
2
`i , where api ≡ ρΓ

(
ΓΓΓ−

1
2 ei,ωωω

p

)
with

N∑

i=1

(api )
2

= 1 . (8)

As we explained above, the main goal of this paper is to optimise the FCL (7) in a reduced subspace that
contains the leading eigenvectors. To identify the subspace we use the �nancial information coming in form
of signals as we review in the next section.
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2.2 The Two-Factor Model

As it was brie�y outlined in Introduction we want to optimise the FCL in (7) separately for each of the K
factors/styles. To estimate λ(0) we will approximate the returns using a Two-Factor model pertinent for a
given factor as will be described below.

Each of these K models employs the market mode rm(t) and an additional factor mode rfa(t) for a =
1, . . . ,K that captures the relevant style information encoded in a time-dependent signal sa,i(t). These K
di�erent signals correspond to book, capitalisation and other �nancial criteria we list in Table 14 of Appendix
B. The signals determine (a priori time-dependent) rankings of the stocks. We will denote the rankings by
qa,i(t) and we will drop the a-index all the way up to Section 2.4 focusing meanwhile on a single factor/style.
The rankings take values among 1, . . . , N and by de�nition qi(t) < qj(t) if and only if si(t) < sj(t).

8 For
example, if N = 3 and we have (s1(t), s2(t), s3(t)) = (5., 9.,−3.) then (q1(t), q2(t), q3(t)) = (2, 3, 1).

The usual practice is to model rf(t) by the so-called benchmark portfolio return, rb.m.(t). The latter
is built by buying the top 20% of the stocks and shorting the bottom 20%, while sizing the two legs to
keep the portfolio beta market-neutral. The weights of the benchmark portfolio may appear either in the
equal-weighted or the equal-risk-weighted version:

ωb.m.

i (t) =




Equal
weighted

Equal-risk
weighted

qi(t)

ω+(t) ω+(t)/Σi(t) qi(t) > 0.8

0 0 0.2 < qi(t) < 0.8

ω−(t) ω−(t)/Σi(t) qi(t) 6 0.2




rb.m.(t) =
N∑

i=1

ωb.m.

i (t)ri(t) . (9)

Here ω+(t) and ω−(t) are �xed by the benchmark portfolio market-neutrality condition, see (6):

N∑

i=1

βi(t)ω
b.m.

i (t) = 0 , (10)

and by the over-all normalisation max(ω+(t), ω−(t)) = 1/N . Notice that the solutions for ω+(t) and ω−(t)
depend on the choice of the version in (9).

One may extend the benchmark portfolio construction to include as well stocks which are not part of our
original selection of N stocks. If the number of stocks is su�ciently large the speci�c risk will vanish and
the new benchmark portfolio, ωωωf(t), will be an exogenous factor. We will denote by rf(t) the return of ωωωf(t).
The Two-Factor model then relates the residual returns ri − βirm? and the factor return rf(t) as follows:9

ri(t)− βi(t)rm? (t) = bir
f(t) + εi(t) for i = 1, . . . , N , (11)

where the last term stands for the idiosyncratic returns. We will refer to bi as factor loadings. The model
has to satisfy two orthogonality conditions:

• All of εi(t)'s are uncorrelated with the factor return, rf(t):

Et−1

(
rf(t)εi(t)

)
= 0 . (12)

• The vector ΓΓΓ−
1
2 b is an eigenvector of ΓΓΓ−

1
2HεΓΓΓ−

1
2 , where Hε(t) = Et−1 (εi(t)εj(t)) is the covariance

matrix of the idiosyncratic returns:

Hε(t)ΓΓΓ−1(t)b = `ε,bbb(t) · b , (13)

8In this section we assume that the signals do not coincide.
9Notice that we have rm? rather than rm in this formula.
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while for any t the eigenvalue `ε,bbb remains much smaller than the variance of the factor return:

`ε,bbb �
(
Σf
)2

where
(
Σf
)2 ≡ Et−1

((
rf(t)

)2)
(14)

We will clarify later on in this section what do we mean by su�ciently �small�.

Importantly, both requirements above are motivated by the principal component analysis of the correlation
matrix. If the βir

m
? (t) and the bir

f terms were respectively the leading and the sub-leading terms in the
PCA expansion of the correlation matrix C, the orthogonality of the modes (12) would not be an additional
constraint but rather a direct consequence of the expansion. Moreover, it would as well enforce `ε,bbb = 0. We
show it in Appendix A. In our case neither the betas nor the market return are principal components of
C, but we may adopt the orthogonality property as a good approximation for our model (see the previous
subsection).

Before closing the section we should stress that (11) is conceptually di�erent from the multivariate factor
model well explored in the literature. In this model there would be a single equation combining the market
return, K additional factors returns and one series of the idiosyncratic returns. In our approach there are
instead K equations for each factor with a di�erent εi(t) term. This will allow us to optimise FCL separately
within each one of the K Two-Factor models, thus reproducing eventually the largest eigenvalues of the
correlation matrix. We come back to this issue in Appendix H.

2.3 The Maximum-Variance Market-Neutral Portfolio

Given a fundamental signal, a corresponding Two-Factor model (11) generates the matrices H(t), ΓΓΓ (t) and
C(t) in terms of rm(t), βi(t), r

f(t), bi and εi(t). Modelling H(t) and ΓΓΓ (t) by means of the Two-Factor
model (11) helps to isolate among the N −1 market-neutral portfolios whose weights ωi(t) optimise (locally)
the FCL (7), a single optimal portfolio that is highly correlated with the factor return rf. We call this

portfolio/vector the maximum-variance market-neutral factor and denote it by ωωω
(0)
? and the optimal of FCL

value by λ
(0)
? (as was already mentioned earlier we omit the factor index a).10 To recapitulate:

λ
(0)
? = λ(0)

(
ωωω

(0)
?

)
with

δλ(0)(ωωω)

δωωω

∣∣∣∣
ωωω=ωωω

(0)
?

= 0 and βββTωωω
(0)
? = 0 , (15)

and for any other market-neutral portfolio ωωω′ satisfying the optimisation condition in (15), yet di�erent from

ωωω
(0)
? , one necessarily has11

ρH
(
ωωωf,ωωω′

)
< ρH

(
ωωωf,ωωω

(0)
?

)
(16)

with the short-cut notations (5). Again, we dropped above the explicit time-dependence on order to keep

the formulae short and readable. The optimisation, in fact, takes place for any t and thus λ
(0)
? = λ

(0)
? (t) is

also time-dependent.

The weights ωωω
(0)
? are called themaximum-variance market-neutral portfolio with the �rst part of the name

coming from the fact that it maximises (optimises) the variance (the numerator in the FCL de�nition (7)),
while maintaining market-neutrality and the correlation with the given signal. Importantly, the conditions

10Here the ? alludes to the FCL optimisation and the (0) superscript will be clari�ed in subsection 2.4.
11In fact the de�nition can be presented mathematically as

ωωω
(0)
? ≡ argmax

opt

s.t.βββTωωω=0

(λ(0)(ωωω))

(
ρH

(
ωωωf,ωωω

))

but this de�nition is too cumbersome to be exploited.

9



(15) and (16) �x the weights only up to an overall rescaling, ωi → const · ωi. The ambiguity might be easily

eliminated, for instance, by setting to one the ωωω
(0)
? -portfolio variance.

It is worth emphasising here that ωωω
(0)
? does not necessarily provide a maximum of the FCL. In Appendix

C we argue that the signature of the Hessian matrix obtained from an FCL-like Lagrangian at one of its
optimal points has both positive and negative directions, thus describing a saddle point, rather than a (local)
maximum, which, in turn, appears only if we pick up the highest eigenvalue as the optimisation solution.

Despite the somewhat verbose de�nition of λ
(0)
? it apparently has a simple straightforward interpretation.

First, notice that the unconstrained optimisation of (7) is equivalent to solving for eigenvalues of the matrix

ΓΓΓ−
1
2HΓΓΓ−

1
2 . To see this, one can simply rede�ne vector ωωω by ωωω → ΓΓΓ

1
2ωωω. Second, as we explain in details in

Appendix D, �nding constrained eigenvectors vi of a square matrixM subject to an additional requirement
cTvi = 0 is equivalent to the unconstrained diagonalisation of P cMP c, where P c is a projection operator
de�ned by P cc = 0 and (P c)

2
= P c. To be more speci�c, if li 6= 0 and ui are an eigenvalue/eigenvector

pair of P cMP c, then vi = P cui is a constrained eigenvector of M .
In our caseM = ΓΓΓ−

1
2HΓΓΓ−

1
2 and the constraint vector is c = ΓΓΓ−

1
2βββ, where the ΓΓΓ -factor comes from the

aforementioned rede�nition of ωωω.
To summarize, the maximum-variance market-neutral portfolio ωωω

(0)
? can be found following these four

steps:

1. To �nd all eigenvectors with non-vanishing eigenvalues of the P c-projection of the correlation matrix
P cΓΓΓ−

1
2HΓΓΓ−

1
2P c, where c = ΓΓΓ−

1
2βββ and thus

(P c)ij =


δij −

(
βiΣ

−1
i

) (
βjΣ

−1
j

)

N∑
l=1

(
βlΣ

−1
l

)2


 . (17)

Notice that the maximum number of such vectors is (N − 1).

2. To calculate the P c-projection of each of these eigenvectors with P c given in (17).

3. To multiply the projected eigenvectors by ΓΓΓ−
1
2 .

4. To arrive at ωωω
(0)
? , the vector/portfolio producing the strongest correlation to the factor return, see (16),

should be selected among the available vectors.

Let us now rewrite (17) in terms of the returns de�ned by the Two-Factor model (11). Upon (11) the

matrix P cΓΓΓ−
1
2HΓΓΓ−

1
2P c becomes:

(
P cΓΓΓ−

1
2HΓΓΓ−

1
2P c

)
ij

= Σ−1
i Σ−1

j Et−1

((
bir

f + εi
) (
bjr

f + εj
))

=
(
ΓΓΓ−

1
2

((
Σf
)2 · bbbbbbT +Hε

)
ΓΓΓ−

1
2

)
ij
. (18)

Here
(
Σf
)2

= Et−1

((
rf(t)

)2)
is the conditional variance of the factor return. In deriving this result we used

the �rst property of the Two-Factor model (12) and the relation

∑

j

P cij

(
rj
Σj

)
=

1

Σi
(ri − βirm? ) , (19)

which follows directly from (17), as well as the de�nitions (3) and (4).

Notice now that by virtue of the last property of the Two-Factor model, see (13), the vector ΓΓΓ−
1
2bbb is an

eigenvector of the matrix P cΓΓΓ−
1
2HΓΓΓ−

1
2P c. Indeed, this is an eigenvector of all terms on the right-hand

side of (18), so it should also be an eigenvector of their sum.

10



Finally, ΓΓΓ−
1
2 times the P c-projection of the vector ΓΓΓ−

1
2bbb is equal to:12

(
ω

(0)
?

)
i
(t) ∼ Σ−2

i (t)


bi −

N∑
j=1

bjβj(t)Σ
−2
j (t)

N∑
k=1

β2
k(t)Σ−2

k (t)

βi(t)


 or ω0? (t) ∼ ΓΓΓ−1(t)

(
b− bTΓΓΓ−1(t)βββ(t)

βββT(t)ΓΓΓ−1(t)βββ(t)
· βββ(t)

)
.

(20)
This is precisely the maximum-variance market-neutral portfolio that we de�ned in this section. All we have
to do in order to verify it, is to calculate the correlation between the factor return rf(t) and the return of
the portfolio (20). Using the de�nition of rm? (t) in (4) and the Two-Factor model (11) we obtain:

N∑

i=1

(
ω

(0)
?

)
i
ri(t) ∼

N∑

i=1

bi
Σ2
i (t)

(ri(t)− βi(t)rm? (t)) =
N∑

i=1

b2i
Σ2
i (t)
· rf(t) +

N∑

i=1

biεi(t)

Σ2
i (t)

. (21)

The property (12) then guarantees that

Et−1

(
rf ·

N∑

i=1

(
ω

(0)
?

)
i
ri

)
∼ bTΓΓΓ−1b ·

(
Σf
)2

Et−1



(

N∑

i=1

(
ω

(0)
?

)
i
ri

)2

 ∼

(
bTΓΓΓ−1b

)2

·
(
Σf
)2

+ bTΓΓΓ−1HεΓΓΓ−1b . (22)

Using (13) and the de�nition of ρH from (5) we thus have:

ρH

(
ωωωf,ωωω

(0)
?

)
=


1 +

`ε,bbb

(Σf)
2
(
bTΓΓΓ−1b

)



−1/2

. (23)

We see, �nally, that (14) ensures a strong correlation between the return of the portfolio (20) and the factor

return rf(t), and therefore for su�ciently small `ε,bbb
(
Σf
)−2

all other portfolios satisfying (15) will also ful�l
the second part of the maximum-variance market-neutral portfolio de�nition, the inequality (16).

In Section 2.5 we will present a robust method to estimate the factor loadings bi. We will see that the
ratios bi/Σi can be well modelled empirically by the ranking of stock according to the signal. The estimate
works well for most of the factors/styles con�rming the universality of the Two-Factor model.

Before closing this subsection let us make two comments:

• There is a connection between the Two-Factor model (11) and the principal component analysis (PCA).
In the paragraph following (4) we have already mentioned the way rm, rm? and βββ are related to the
PC of the correlation matrix, C. Similarly, the right-hand side of (11) alludes to the sub-leading
term in the PCA. In Appendix A we present an expression for bi as if it were derived from the WLS
regression of the left-hand side of (11) with respect to rf. In particular, this expression leads to the
second eigenvector of C (and so `ε,bbb = 0), provided rf is replaced by the sub-leading term in the PCA
expansion of the correlation matrix. It is very important to stress, nevertheless, that we do not expect
b to resemble any of C's eigenvectors, as it would have implied, among other things, that b is the same
for all factors. Instead, the procedure described in Section 2.5 leads to di�erent results for bi.

12We use the ∼ sign to keep in mind the overall rescaling.
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• The weights of the Maximum-Variance market-mode portfolio, that was �rst mentioned below (4), are

(ωm? )j (t) =
βjΣ

−2
j

N∑
k=1

(
βkΣ

−1
k

)2
, (24)

In Appendix E we argue that ωωωm? optimizes the FCL but without any market-neutral constraint treating
instead the market mode as yet another factor and replacing bi and r

f in (11) by βi and r
m
? respectively

and drop the βir
m
? term on the left-hand side. The Maximum-Variance market-mode portfolio could

be interpreted as the complementary portfolio of the Minimum Variance and Maximum Diversi�cation

portfolios. Contrary to these two popular portfolios, the weights (24) are higher for higher-beta stocks.

2.4 Reproducing the Eigenvalues of the Empirical Correlation Matrix

Once the K styles are selected and the corresponding K di�erent Maximum-Variance portfolios
(
ωωω

(0)
?

)
a

(a = 1, . . . ,K) are derived, we may also determine their best combinations to match the unconstrained
eigenvectors of the full N ×N correlation matrix. In a very idealistic (and highly unrealistic) scenario each

factor corresponds to a di�erent PC of the stock returns. In practice, the vectors
(
ωωω

(0)
?

)
a
are not eigenvectors

of neither H nor ΓΓΓ−1/2HΓΓΓ−1/2, and they are by no means expected to be orthogonal. Therefore, in order
to mimic the (largest) eigenvalues of the correlation matrix, we have to diagonalize H in the K-dimensional

subspace spanned by
(
ωωω

(0)
?

)
1
, · · · ,

(
ωωω

(0)
?

)
K
subject to the ΓΓΓ -product normalisation. In other words, we have

to �nd a new base of K vectors
(
ωωω

(1)
?

)
a

= R b
a

(
ωωω

(0)
?

)
b
, which maximise

(
ωωω

(1)
?

)T
a
H
(
ωωω

(1)
?

)
a
for each a with

the constraint
(
ωωω

(1)
?

)T
a
ΓΓΓ
(
ωωω

(1)
?

)
b

= δab.

This, in turn, is equivalent to the optimisation of
(
RhRT

)
aa

for each a with the extra constraint of

RγγγRT = IK , where γab ≡
(
ωωω

(0)
?

)T
a
ΓΓΓ
(
ωωω

(0)
?

)
b
and hab ≡

(
ωωω

(0)
?

)T
a
H
(
ωωω

(0)
?

)
b
. This is equivalent to saying

that O = Rγγγ1/2 is the diagonalisation matrix of h:

Oγγγ−1/2hγγγ−1/2OT =




λ
(1)
? 1 · · · 0
...

. . .
...

0 · · · λ
(1)
? K


 , (25)

where λ
(1)
? a's are the eigenvalues to be compared to those of the empirical correlation matrix. This formula

reduces to the diagonalisation of the full correlation matrix for K = N , since in this case γγγ = ΓΓΓ , h = H.
Crucially, for any other K the matrix γγγ is not diagonal as it is no longer related to the covariance matrix by
γγγ = diag (h). Indeed, a necessary condition for γγγ = diag (h) to happen is to have zero overlap between the

factor portfolios
(
ωωω

(0)
?

)
a
, which is very unrealistic. Consequently, γγγ−1/2hγγγ−1/2 does not have ones along its

main diagonal, and so the trace is not equal to K.
The matrices γγγ and h have a simple relation to the FCLs of Maximum-Variance portfolios:

λ
(0)
? a ≡ λ(0)

(
ωωω

(0)
? a

)
=
haa
γaa

for a = 1, . . . ,K , (26)

where we used the FCL de�nition (7). Alternatively, one can say that λλλ
(0)
? are the eigenvalues of the diagonal

matrix diag (γγγ)
− 1

2 diag (h)diag (γγγ)
− 1

2 .
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We interpret ωωω
(1)
? a and λ

(1)
? a as the constrained eigenvectors and eigenvalues of the correlation matrix

inside the subspace generated by all of the Maximum-Variance factors. Recall that we have already encoun-
tered the constrained diagonalisation. The market-neutrality constraint is replaced now by the requirement

to remain in the K-dimensional space spanned by
(
ωωω

(0)
?

)
a
for a = 1, . . . ,K. The analogue of P c would be

now the projection matrix from the N -dimensional into the K-dimensional space spanned by the vectors(
ωωω

(0)
?

)
a
, which is by de�nition the same space as the one spanned by

(
ωωω

(1)
?

)
a
:

Pωωω
(0)
? ≡

K∑

a=1

P a , where P a ≡
(
ωωω

(1)
?

)
a

(
ωωω

(1)
?

)T
a
ΓΓΓ . (27)

Here we used the fact that
(
ωωω

(1)
?

)
a
are already ΓΓΓ -orthonormalised (see the end of this section's �rst para-

graph).
Our approach is, in fact, similar to the model of linear combination of atomic orbitals in quantum

chemistry (LCAO). Since the Schrödinger wave equation is hard to solve for a system with many electrons,
the model limits the molecule orbital wave function to a linear combination of atom orbitals. The Hartree-
Fock method is then used to determine the coe�cients. The analogue of the molecular and atomic orbitals are

the ωωω
(0)
? and ωωω

(1)
? vectors respectively, and the FCL optimisation can be seen as the energy level minimisation

of the molecular and atomic Hamiltonians: the former corresponds to λ
(1)
? and the latter to λ

(0)
? .

Overall the procedure of �nding the eigenvalues of C can be summarised in the diagram:

λλλ(0) Optimisation−−−−−−−−→
see (15)

λλλ
(0)
?

Diagonalisation−−−−−−−−−−→
see (25)

λλλ
(1)
?

?≈ λλλEmp (28)

where the latter denotes the �rst K eigenvalues of the empirical correlation matrix C.
In Appendix G we prove that λλλ(1) are maximised in the Maximum-Variance portfolio (the �rst arrow in

the diagram) assuming that the optimisation does not impact too much the o�-diagonal elements of h. To

be more explicit, we show that the ordered λ
(1)
i 's derived from DhD are smaller than those obtained from

the diagonalisation of h provided D is diagonal matrix with entries smaller than one. This shows that the
FCL optimisation (15) is the right way to reproduce the eigenvalues of the correlation matrix, λλλEmp. That
is to say that the Maximum-Variance factors allow one to replicate as good as possible any alternative beta
strategy.

In Section 4 we show that λλλ
(1)
? captures well λλλEmp and its dynamics, meaning that the �nancial and

economic constraints help to withdraw some noises in the measurement of λλλEmp. We also show that the

constrained eigenvectors ωωω
(1)
? a appear to be unstable portfolios. Indeed, they are invested mainly in the

factors with the highest
(
λ

(0)
?

)
a
, which in turn vary strongly with time explaining the portfolio instability.

2.5 Measurement of the optimal weights

The goal of this section is to estimate the sensitivities bi's appearing in the Two-Factor model (11). As we
brie�y mentioned below (11), knowing the covariance matrix of the residual returns, the factor return rf, the
sensitivities as well as the market stock index and the betas, one may readily model the correlation matrix
of the returns, C.

To use (11) as a de�nition of bi, one has to provide the rf(t) time-series. We may replace rf(t) by the
benchmark return rb.m.(t), see (9), which should be a reasonable approximation for su�ciently large N . In
general, one may start using rb.m. to extract bi from (11) using either OLS or WLS linear regression. This
should be equivalent to picking an eigenvector bi of the market-neutral projection of the correlation matrix,
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P c-projection of the correlation matrix P cΓΓΓ−
1
2HΓΓΓ−

1
2P c, whose respective Maximum-Variance portfolio

return
∑
i

(
ω

(0)
?

)
i
ri(t) has the strongest correlation with rb.m.(t) among all eigenvectors. This method is,

however, not practical for two reasons. First, most eigenvectors are determined with a lot of noises. Second,
the correlation between the most correlated eigenvector and the signal could be insigni�cant.

Let us �rst discuss how to reduce the noise. The simplest way to achieve this goal, is to group (aggregate)
stocks whose signals, and so the rankings, are su�ciently close to each other with respect to the given style
F , and to follow the analysis of the previous paragraph for groups rather than for single stocks. If two
stocks fall into two di�erent groups with respect to the signal associated with factor F , but into the same
groups with respect to a di�erent factor F ′, then the impact of the F ′ signal on our eigenvector analysis
will be signi�cantly suppressed. As we want the groups to be of the same size, the aggregation is equivalent
to grouping the stocks into quantiles. The new parameter Q should be su�ciently small in order to reduce
the noise, but still large enough in order for the regression/eigenvector analysis results to be reliable. We
denote the overall number of these quantiles by Q, meaning that at any time there are N/Q stocks in every
group/quantile. We will employ a new notation qi(t) for the quantiles. That is qi(t) ∈ [1, . . . , Q] for any t,
in contrast to qi(t) ∈ [1, . . . , N ]13 and14

qi =

[
qi ·

Q

N

]
. (29)

To go on with the grouping idea we have to rede�ne the sensitivities (factor loadings) bi's. Two stocks
i and j belonging to the same quantile should now have identical sensitivities: bi = bj . This identi�cation,
however, seems to be far-fetched for stocks of di�erent size classes. In view of (11) it makes sense to normalise
the factor loadings by the corresponding stock volatilities: Σ−1

i bi = Σ−1
j bj . This normalisation is yet another

manifestation of the fact that the fundamental object describing the stocks dynamics is the correlation, rather
the covariance, matrix. We thus have to rede�ne the factor loadings as functions of the quantile rankings:

bi → Σi(t)B (qi(t)) . (30)

This is one of the central formulae in this paper, and it is worth making two important comments. First,
contrary to the original theoretical Two-Factor model the factor loadings are now time-dependent. This
time-dependence, however, comes from the ranks and the volatilities, both varying much slower than the
other functions, rm(t) for instance. We thus do not depart too far form (11). Second, we are about to argue
that the function B (q) is surprisingly the same for most of the factors. This is one of our main observations.
We will refer to B (q) as the quantile factor loading (or quantile sensitivity) of the q-quantile.

Here we determine the Market neutral Maximum-Variance portfolio that optimizes the FCL in the sub-
space generated by the Q equal-risk weighted quantile portfolios de�ned by:

(
ω(q)

)
i
(t) ≡

{
Σ−1
i (t) if qi(t) = q
0 otherwise

. (31)

The Maximum Variance portfolio will be the �rst market neutral constrained eigenvector of the projected

matrix γ̃γγ
− 1

2 h̃γ̃γγ
− 1

2 of ΓΓΓ−
1
2HΓΓΓ−

1
2 into the subspace of dimension Q. The γ̃γγ and h̃hh are the covariance matrix

of positions and the covariance matrix of returns between the Q quantile portfolios ω(q)(t) and are obtained
in the same way as the γγγ and hhh matrices of Section 2.4. The �rst di�erence is that instead of reducing the
dimension from N single stocks to K Maximum-Variance portfolios, we reduce here the dimension from N
single stocks to the Q quantile portfolios. The second di�erence is that there is no overlap between the Q
quantile portfolios so that γ̃γγ is diagonal. The important point is that there is no need to use the unknown

13We skip the factor superscript f, because until late in the section we consider only one factor at a time.
14[x] sands for the integer part of x.
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two-factors model in (11) to model the matrix γ̃γγ
− 1

2 h̃γ̃γγ
− 1

2 to be sure that one of the constrained eigenvector
captures well the signal. Indeed, if Q is small enough, the �rst constrained eigenvector is very likely to
capture the signal, if it is strong enough, as we will see later. By identi�cation with the theoretical portfolio

(20) we can therefore determine the B (q) as the market neutral constrained �rst eigenvector of γ̃γγ
− 1

2 h̃γ̃γγ
− 1

2 .
We determine the beta reduced in Q dimension used in the market neutral condition as the beta of each

quantile portfolio through (32).

β̃q(t) ≡
∑

qi(t)=q

Σ−1
i (t)βi(t) . (32)

By analogy with the �original� covariance matrix of returns and of positions of single stocks, we de�ne
the covariance matrix of returns and of positions of the Q quantile portfolios (see (1) and (2)):

The covariance matrix
The position

overlap
matrix

The correlation
matrix

Dimensions Indices

H ΓΓΓ = diag (H) C = ΓΓΓ−
1
2HΓΓΓ−

1
2 N ×N i, j, · · ·

h̃ γ̃γγ C̃ = γ̃γγ
− 1

2 h̃γ̃γγ
− 1

2 Q×Q q, q′, · · ·

(33)

It is important to remind here, that while the �rst line in Table (33) has no reference to any particular
style/factor, the quantities in the second line are di�erent for each factor. If the relevant signal is su�ciently

strong and/or the Q parameter is correctly chosen, the �rst market neutral constrained eigenvector C̃ would
be a good proxy of the Market neutral Maximum Variance portfolio derived from the correlation matrix (18)
computed from the returns modelled by (11). Therefore by simple term identi�cation, we may expect B (q)
15 to be the �rst market neutral constrained eigenvector of C̃. There are three important obstacles:

• First, the estimation of C̃ of the previous sections was based on the conditional expectations, see (1),
which is a purely theoretical concept. In practice we have a single length-T time-series for each stock.
The best way to built a �smoothed� covariance matrix h̃ from this data is to use the exponential moving
average (EMA) with a parameter α satisfying 1� α−1 � T . In Appendix I we explain in details the

EMA of all the matrices leading to our estimate of C̃(t). In what follows we denote by
〈
C̃(t)

〉
the

average of this matrix over the entire period T .

• Second, β̃q(t) could depend on time, and we believe that subtracting βi(t)r
m(t) from the stock returns

used to estimate h̃ could lead to a very minor improvement of the estimation of market neutral FCL.

As the constrained eigenvectors of
〈
C̃(t)

〉
would be only market neutral on average and not at any

time, we believe that subtracting βi(t)r
m(t) would simulate an hedge with the stock index to maintain

the eigenvectors returns hedged against the index at any time and not only on average so that there is
no contribution of the market mode into the FCL.

• Third, to estimate the market neutral constrained eigenvector we have to consider, once more, the
constrained eigenvectors of C̃. Recall that the latter is a Q×Q matrix, while the original P c projection
operator in (18) is N × N , as c = ΓΓΓ−

1
2βββ is an N -vector. The new projection vector is determined

through c = γ̃γγ
− 1

2 β̃ de�ned in (32).

Contrary to the correlation matrix C, however, it will be di�cult to project out the market mode
independently for each t as we did for the Two-Factor model around (18). This is so because we use

15We estimate a market neutral form ofB (q) that is to say it is possible that in reality the weights correspond toB (q)+kγ̃γγ−
1
2 β̃
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Figure 1: The graphs show B(q) (blue line) and B′(q) (red line) for two factors: Beta (left) and Cash (right)
with Q = 10. In both cases the adjustment of the second step is quite small for all quantiles q = 0, . . . , 9.
The same holds for the remaining eleven factors.

EMA to compute the empiric correlation matrix C̃. To make sense of the projection one then has to

�smooth� as well the corresponding P̃ c matrix built from β̃q(t), ending up with a projection matrix

that does not satisfy the basic property P 2 = P . We will prefer instead to diagonalise
〈
C̃(t)

〉
with a

constant projection de�ned by:

P̃ c = Iq −
β̃ββγ̃γγ
−1
β̃ββ
T

β̃ββ
T
γ̃γγ
−1
β̃ββ

where β̃ββ ≡ 〈βββ(t)〉 (34)

is the mean of the betas over the T -period and I is the Q × Q identity matrix. As we discussed in
this section on two di�erent occasions, the constrained diagonalisation of C̃ is equivalent to the regular

diagonalisation of P̃ cC̃P̃ c. This additional subtraction of the market-mode should provide a better
estimation of the factor sensitivities.

With these three points in mind we propose a two-step procedure to evaluate the factor loadings B(q).

First step. We calculate the EMA version of the correlation matrix C̃(t) from the Σ-normalised quantile
portfolio ωq(t) de�ned in (31) while subtracting the part of the portfolio returns explained by the stock

index, and use P̃ c to �nd the (Q − 1) constrained eigenvectors of
〈
C̃(t)

〉
orthogonal to γ̃γγ

− 1
2 β̃q(t).

Each of the eigenvectors, which we will denote by B(p) with p = 1, . . . , Q− 1 and their eigenvalues by
λB
p ≡ λ

(
B(p)

)
, gives rise to a portfolio v(p) de�ned by (20) with factor loadings determined by

bi(t) = Σi(t)B
(p) (qi(t)) . (35)

These (Q−1) portfolios are by construction market-neutral and, as we commented above the portfolio

built from Bqi(t), that is v, has a good chance to mimic the Maximum-Variance portfolio ωωω
(0)
? provided

the signal is strong enough and the number of quantiles is properly chosen to capture it. Accordingly,

the �rst constrained eigenvalue, λB
1 , associated with B1 is a good estimate of λ

(0)
? , the optimal FCL

from (15). The signal strength is directly translated into λB
1 's value.

Second step. At the �nal stage of the �rst step we get (Q − 1) portfolios. We used (20) to ensure their
market-neutrality for any t. This adjustment does not necessarily respect the optimisation involved in
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�nding B(q). Therefore, these portfolios are not a priori optimal. The second step will correct the v
portfolios slightly so they become optimal while staying market neutral at any time. We may consider

the covariance matrices (h̃′, γ̃γγ′) of positions and of returns of the vp portfolios for p = 1, . . . , (Q− 1).
To obtain this matrix we proceed as in the previous step (including the EMA and the time average),
but replacing the normalised quantile portfolios ω(q)(t) with the (Q−1) v(p) portfolios. The covariance

matrices h̃′, γ̃γγ′ should be very close to be diagonal, since the portfolios were by construction orthogonal
to each other before being slightly adjusted. Let us denote by O the rotation matrix that diagonalises

the covariance matrix γ̃γγ
− 1

2 h̃γ̃γγ
− 1

2 and λB
′

p the eigenvalues. Then the improved sensitivities B(p)′ are:

B(p)′ =

Q−1∑

p̄=1

Op
p̄ B

(p̄) (36)

As above for each vectorB(p)′ we have a corresponding market-neutral portfolio, v(p)′, and v(1)′ should
provide even a better approximation for Maximum-Variance market-neutral portfolio (20), than v(1)

of the �rst step. The �rst eigenvalue λB
′

1 associated with O is expected to be a better estimation of

the optimal λ
(0)
? than the previous λB

1 . This step may be repeated again, but we will see that there is
no need in doing so, as the portfolio stabilises after the very �rst adjustment.

The two-step procedure can be summarized in the following diagram:

(
ri(t)
qi(t)

)
(31)7→ ω(q)(t)

(33)(32)7→



γ̃γγ

h̃

β̃


 7→

(
B(p)

λB
p

)
(35)7→ bi

(20)7→ v
(p)
i 7→

(Op1
p2

λB
′

p

)
(36)7→ Bp

′ (35)7→ b′i
(20)7→ v

(p)
i

′
=
(
ω

(0)
?

)
i

(37)
with

i ∈ [1, N ] q ∈ [1, Q] p ∈ [1, Q− 1] . (38)

It is crucial to emphasize here that the de�nition of the Maximum-Variance market-neutral portfolio included
the maximum correlation condition (16) which we have not yet mentioned here. Instead we select the �rst

constrained eigenvector and use it to construct ωωω
(0)
? . To verify the consistency of this approach we will �nd

the correlation between the returns of the portfolio obtained in the end of (37) and the benchmark portfolio.
In Table 14 of Appendix B we list the fourteen factors used to estimate the quantile sensitivities. We set

Q = 10. We summarise technical details in Appendix I, with the �rst two lines of Table 18 being the reference

for the relevant calculation. Our results show that the di�erence between B(p)′ and B(p) is insigni�cant
for all the factors. On Figure 1 we present both functions for two randomly selected factors with p = 1 to
illustrate this fact. We thus may assume that the eigenvalues λB

p do not change much after the second step

adjustment. In order to avoid clustering of indices and superscripts we will omit the ′ in B(p) and λB
p .

On Figure 2 we demonstrate the B(1) results for all fourteen factors. We see that with a common overall
normalisation for nine factors this function is very well approximated by:

B? (q, Q) ≈ 1

Q− 1
· (q− 1)− 1

2
for q = 1, . . . , Q . (39)

This con�rms the universal nature of our Ansatz (35). This is one of our main observations. As for the
remaining factors, we will argue below that their signals capture a risk factor that is too weak, explaining
the deviation of their B (q) functions from (39).

On Figure 4 we compare the double Heaviside function used to construct a benchmark portfolio (9),

B? (q, Q) of (39) and a random form of B(p) (q). Since for Q = 10 (and in fact for any other multiple
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Figure 2: For nine factors (left) the function B (q) is very close to (39). For the remaining �ve factors
these functions have a di�erent shape that could be explained either by noises or by convergence to another
factor/risk. We will see below that �ve signals capture risk factors that are too weak to measure B (q)
properly. The normalisation is identical for all factors.

of 5) the Heaviside function of the benchmark portfolio might be represented as a linear combination of Q

generic vectors B(p) (q), we may assume that the benchmark portfolio is, in turn, a linear combination of
the Q market-neutral quantile portfolios v(p)'s. This simple observation allows us to use (8) in the (Q− 1)
dimensional subspace spanned by v(p)'s, in order to �nd the benchmark portfolio FCL as a weighted sum of
the eigenvectors λB

p :

λ(0)
(
ωωωb.m.

)
=

Q−1∑

p=1

(
ab.m.

p

)2
λB

p with ab.m.

p ≡ ρΓ
(
γ̃γγ
− 1

2 v(p),ωωωb.m.

)
and

Q−1∑

p=1

(
ab.m.

p

)2
= 1 . (40)

Though this equation is only an approximation, we may use it to evaluate the strength signal for di�erent
factors. Ordering the eigenvalues λB

p , we see that:

(
ab.m.

1

)2 >
λ(0)

(
ωωωb.m.

)
− λB

2

λB
1 − λB

2

. (41)

The right-hand side of this inequality may serve as indications for the signal strength. The value of λB
1 may

be seen as the optimised FCL in the (Q−1) dimensional space of market-neutral quantile portfolios. On the
other hand, ωωωb.m. is our proxy for the factor portfolio ωωωf. Thus for a strong signal (strong means that the
signal captures a risk that is high and that both λ(0)

(
ωωωb.m.

)
and λB

1 should be high) and a properly chosen

Q, one should get λ(0)
(
ωωωb.m.

)
closer to λB

1 than to λB
2 , implying that the right-hand side of (41) is greater

than 1
2 . That implies that ab.m.

1 , that measures the position overlap between the benchmark portfolio and
the �rst constrained eigenvector, is higher than 1

2 . This makes it very likely for the �rst eigenvector to be

the most correlated to the signal. For weaker signals with low λ(0)
(
ωωωb.m.

)
one should get λ(0)

(
ωωωb.m.

)
closer

to λB
2 than to λB

1 , meaning that the right-hand side of (41) is below 1
2 . For weak signals it is very likely

that the �rst eigenvector captures some noise or a risk that has nothing to do with the original signal. We
believe that λB

2 is increasing with Q so that for weaker signal we should set a smaller Q in order to increase
the possibility for the �rst constrained eigenvector to capture well its signal.

On Figure 3 we show the dependence between the time average of the two sides of (41). The inequality
holds for all fourteen factors, and even more impressively, the values are close to one exactly for the those
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Figure 3: For the left graph the (x, y)-values are the right and the left-hand sides of the inequality (41)
respectively for di�erent factors averaged over the T -time period. While the inequality holds for all factors,
the values are close to the point (.5, .75) (surrounded by the red ellipse) only for the �strong� factors with

measurements that resemble B(1) (q) of (39). On the right graph we plotted the same position overlaps
versus the H-correlation coe�cients (5). The red ellipse encircles the same factors as on the left graph.

factors whose vector B is well-approximated by (39). On the same �gure we show the connection between

the position overlap ρΓ

(
γ̃γγ
− 1

2v,ωωωb.m.

)
and the ρH -correlation between the same portfolios, as it was de�ned

in (5). The two quantities are closely related. For two portfolios with similar positions, the corresponding
returns will be strongly correlated. As the graph shows, the points standing for the factors producing (39)
are indeed close to (ρΓ , ρH) = (1, 1).

2.6 Validation of the empirical universal law

In the previous subsection we showed how to estimate the factor loadings bi's by grouping the N stocks into
Q quantiles. The �nal result

bi(t) = Σi(t)B? (qi(t)) with B? (q) =
1

Q− 1
· (q− 1)− 1

2
. (42)

is universal for nine stronger factors out of fourteen.
We �nd this result very surprising. Ignoring the impact of di�erent Σi's, the linear form of B? (q)

guarantees that for a �xed range of factor loadings, between b̄ and b̄ + δb, there is the same number of
quantiles with loading in this range regardless of b̄. Extrapolating to the full 1, . . . , N ranking, it means that
the sensitivities have a uniform distribution. This is in contrast to our expectations of getting a distribution
close to the Gaussian one. This would lead to higher values of B (q) for lower quantiles, and smaller B (q)
for larger q's. Instead we observe a very good straight line approximation.

By its very construction the estimate forces a sensibility bi(t) to depend on the relevant quantile ranking
qi ∈ [1, . . . , Q] rather than the standard ranking qi(t) ∈ [1, . . . , N ]. Once we have arrived at the �nal estimate,
however, we may take one step forward and adapt (39) for the full rankings qi(t)'s:

bi(t) = Σi(t)B? (qi(t)) with B? (q) =
1

N − 1
· (q − 1)− 1

2
. (43)

Here the expression for B? (q,N) follows from (42) by replacing (q, Q) → (N, q). In what follows we will
sometimes refer to B? (q) and B? (q) as the �multi-step� and (simply) the linear B-functions. They appear
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Figure 4: the schematic comparison between the benchmark
weights (9) with the 20% bottom/top double Heaviside func-
tion shown in black, the linear B? (q, Q) function of (39)

shown in red and �nally a generic form of B(p) (q) for p > 1
in light blue. For simplicity we use the same normalisation
for the two functions and ignore the Σ-factors in (9). The
double Heaviside function may be approximated by a linear
combination of the Q− 1 functions B(p) (q).

on Figure 5. As we have mentioned in Introduction, a similar version of this weighting (without the volatility
factor) was used in [16] for the Value (Book in our conventions) and Momentum factors.

With the factor loadings (42) and (43) at hand we may now construct two portfolios using (20). From
the discussion of the previous subsection, it is clear that the former is the Maximum-Variance market-

neutral portfolio of the pair
(
h̃, γ̃γγ

)
. It is thus natural to expect that the portfolio built from (43) is a good

approximation for the Maximum-Variance market-neutral portfolio of the original pair (H,ΓΓΓ ). With this

assumption in mind, we denote by λ
(0)
? the (optimised) FCL of this portfolio. We already referred to the

(optimised) FCL of (42) as λB
1 . We summarise the values λ

(0)
? and λB

1 on Table 1 for all fourteen factors.

2.7 Comparison with the Fama-MacBeth Regression

In this section we would like to compare our �ndings with the most popular approaches known in the
literature.

In the previous section we argued that a straightforward linear regression between ri(t) and one of the
benchmark returns rb.m.(t) is not the best tool to estimate the factor loadings. Instead we adopted Ansatz
(35) and avoided almost completely the use of rb.m.(t). Nevertheless, it is interesting to compare the FCL
with the classical R2 that is optimized in the Fama-MacBeth regression [47] when using the linear regression
analysis. R2 (q) for each quantile portfolio is estimated for the market model (CAPM) and the Two-Factor
model:

• R2
2FM (q) obtained from a multi-linear regression of the Two-Factor model (11) and

• R2
CAPM (q) obtained from a simple linear regression of the pair (ri(t), r

m(t))

The di�erence between the two coe�cients may measure the improvement in the replication of asset return
by the two returns, rm(t) and rf(t), of (11), over that with the single rm(t) return of the CAPM within the
given quantile q.

This approach was carried out by Fama and French in [2] for the celebrated Three-Factor Model. Table 4
of this paper summarizes the R2 coe�cients for the CAPM �tting within each group of the Small-Minus-Big
(SMB) classi�cation of market capitalizations and the High-Minus-Low (HML) classi�cation of book-to-
market ratios. The coe�cients in this table are signi�cantly smaller as compared to their counterparts in
Table 7a, where the multi-linear regression now includes two additional returns: those of the SMB and the
HML benchmark portfolios. This increase con�rms the predictive power of the Three-Factor Model.

In Figure 6 we plot the optimised FCL λ
(0)
? for all our factors as a function of

〈
R2

2FM −R2
CAPM

〉
, with the

average over the Q quantiles. We see that the higher the FCL is the higher the improvement in R2 could be
expected. In Appendix H we provide more details about the similarities and di�erences between the classical
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Figure 5: The comparison between the linear
(blue) function B? (q) and the multi-step (red)
function B? (q) of (42) and (43) respectively.
The relation between q and q appears in (29).
The black dashed lines correspond to two dif-
ferent values of q. They intersect B? (q) on
the same �step�, and yet yield di�erent values of
B? (q). This may explain the results in Table 1.

approach of [47, 2] and the one of our paper. We also argue in Appendix D that the FCL optimisation might
be interpreted as a constrained WLS regression analysis, in contrast to the unconstrained OLS of [47, 2].
Another important point is that the original Fama-MacBeth approach does not yield optimal factors, unless
one repeats the regression analysis iteratively. Nevertheless, successive iterations will eventually converge to
the eigenvectors of the empirical covariance matrix (either in its full version or reduced version). In the best
case scenario these eigenvectors are, in turn, a noisy mixture of the initial signals. In the worst case, they will
have no relation to the initial signals. Moreover, the number Q of quantiles in the Fama-MacBeth approach
is proportional to K2 (the number of factors squared), making the dimensional reduction very di�cult in
the regime, where Q � N does not hold any more. That explains why the 20% top-bottom approach has
remained a standard tool in �nance even though it is not optimal.

2.8 Random factors and the robustness check

Our method of �nding the eigenvalues of the correlation population matrix consists of two main steps. First,

we optimise the FCL for each factor separately. This yields K Maximum-Variance portfolios
(
ωωω

(0)
?

)
a
for

a = 1, . . . ,K. We denoted optimal FCLs values by
(
λ

(0)
?

)
a
. At the second step we optimise the FCL in the

K-dimensional subspace spanned by the K portfolios. This results in yet another K pairs ωωω
(0)
? a, λ

(0)
? a.

The goal of this section is to test the second step using randomly generated factor portfolios
(
ωωω

(0)
?

)
a
.

This is a robustness check of our scheme.
We start with a random correlation matrix Cr.. We denote its eigenvectors/eigenvalues pairs by (er.

i , `
r.

i )
for i = 1, . . . , N as in (8). Then the ith component of the ath factor portfolio is generated by:

(vr.

a )i =
N∑

j=1

(
`r.j
)µ/2 (

er.

j

)
i
Eja , (44)

where E is a N × K matrix of standard normal random variables simulating our returns, and µ is a free
positive parameter to be �xed soon. The intuition behind this Ansatz is that for a given a the portfolio vr.

a is
a random linear mixture of the correlation matrix eigenvectors with weights determined by their eigenvalues.
To put it di�erently, the linear combination is dominated by the leading eigenvectors, and this dominance is
controlled by µ. In particular, in the limit µ→∞ all of the vectors de�ned in (44) are proportional to the
�rst eigenvector, while for µ = 0 there is no preference to any particular eigenvector.

We identify (44) with the Maximum-Variance market-neutral portfolios ωωω
(0)
? :

vr.

a ∼ ωωω
(0)
? a (45)
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Factor λ
(0)
? λB

1

Beta 6.35 6.10 •
Momentum 5.87 5.34 •
5Y Rates 5.38 5.35 •

Capitalisation 4.43 4.39 •
STR 4.10 4.14 •

Dividend 3.86 5.64

Euro 3.72 3.60 •
Sales 2.88 2.96 •

Liquidity 2.82 2.88 •
Book 2.49 2.60 •

Leverage 2.08 2.32

Earning 1.89 2.09

Cash 1.52 1.64

Growth 1.47 1.68

Table 1: Summary of two FCLs λ
(0)
? and λB

1 , correspond-
ing to the Maximum-Variance portfolios based on (43) and

(42) respectively. We see that λ
(0)
? outperforms λB

1 for the
three leading factors, while the situation is di�erent for the
smallest values. It can be explained by the fact that the
multi-step function fails to capture the impact of two stocks
that fall into the same quantile, but nevertheless have signif-
icantly di�erent correlations with the factor return, see Fig-
ure 5. This is obviously more relevant for larger FCLs. For

smaller ones λB
1 > λ

(0)
? instead, because λB

1 comes from a
genuine optimisation rather than from the �educated guess�
(43). The bullet on the right-hand side denotes factors
(styles) with strong signals, see Figure 3.

It is now straightforward to compute the FCL associated with vr.

a : the �rst formula in (8) is precisely what
we need. We obtain:

λr.(0)
a =

N∑
j=1

(
`r.j
)1+µ E2

ja

N∑
j=1

(
`r.j
)µ

. (46)

Continuing along the lines of Section 2.5 we can also �nd the constrained eigenvalues
(
λr.(1)

)
a
. As we

described in details in Section 2.5, they are the optimised FCLs in the K-dimensional space spanned by the
vectors vr.

a , and one can easily compute them from the diagonalisation of the matrix γγγr.− 1
2hr.γγγr.− 1

2 , where

hr.

ab = vr.

aC
r.vr.

b and γr.

ab =
N∑

i=1

(vr.

a )i C
r.

ii (vr.

b )i . (47)

Following previous notations we denote the constrained eigenvalues by λr.
(1)
i .

To summarize so far, we showed how to derive the λr.(0)
a and λr.

(1)
i eigenvalues from the random correlation

matrix Cr. and a Gaussian matrix E. To �nally test our method we still have to decide how to generate
the correlation matrix. For su�ciently large N , the eigenvalues of a random covariance matrix Ωij with

trace equal to N (Tr (ΩΩΩ) = N) and of the corresponding correlation matrix Ωii
− 1

2 ΩijΩii
− 1

2 are very close
to each other. We therefore will construct Hr. instead of Cr.. Furthermore, we will set the eigenvectors
er.

i to be a random orthonormal basis (rows of an orthonormal matrix), while for the eigenvalues `r.i we will
take the empiric eigenvalues in the penultimate column of Table 5. Recall that these values were obtained
from 5-minutes returns over almost six-years long period. The Mar£enko-Pastur ratio N/T is therefore very
small, meaning that these empiric eigenvalues should not be di�erent from the eigenvalues of the �theoretical�
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Figure 6: The FCL λ
(0)
? (the �rst column of

Table (1)) as a function of the mean di�erence
R2

2FM (q)−R2
CAPM (q). We see that the di�erence

is always positive, indicating a better regression �t.
Moreover, the improvement clearly works much bet-
ter for factors with larger FCL. It means that the
stronger the signal, the better works the Two-Factor
model (11). We used here the equal-weighted version
of the benchmark portfolio, see (9), to be closer to the
original computations of [2].

population correlation matrix. Notice as well that for i > K these eigenvalues are very noisy. It makes then
to set all `r.i for i > K to the same constant value `c., which is �xed by the trace condition. To summarize:

Hr. =

K∑

a=1

λEmpa er.

ae
r.

a
T + `c.

N∑

j=K+1

er.

j e
r.

j
T with `c. = 1−

K∑
a=1

λEmpa

N −K . (48)

Overall our test follows the following diagram:

(
`r.i =

(
λEmpa , `c.

)
Table 5

er.

i random, er.

k
Ter.

l = δkl

)
→
(
λr.(0)

a

λr.(1)
a

)
. (49)

Here the a-index reminds that we are interested in matching the �rst K eigenvalues only. We present our
results on Figure 7. We found that the best matching between λr.(1)

a and λEmpa occurs for µ = 1.4. This
enabled us to reproduce the empirical link between the ordered FCLs and the ordered (constrained and
unconstrained) eigenvalues (the blue line on Figure 7 is close to the yellow points).

Notice that so far, we have had no need to generate the returns. This can be done by

ri(t) =
N∑

j=1

√
`r.j
(
er.

j

)
i
εj(t) , (50)

where both er.

j are `r.j are de�ned as in (48) and εj(t) are TN standard normal random variables. For T � N
the covariance matrix of these returns reduces to (48), but away from this regime these matrices are di�erent.
Starting from these returns we calculate the new correlation matrix, Cr., as well as its N unconstrained and
K constrained eigenvalues with the hr. and γγγr. matrices computed from (47). We demonstrate the output
of this calculation on Figure 7.

From the bottom-left graph of Figure 7 we learn that the projection into the subspace generated by the
K random factors helps to reduce the noises and the bias for T � N . That is also interesting (and somewhat
intriguing) to see from the bottom-right plot that for T � N the matching between the simulated constrained
eigenvalues and the unconstrained eigenvalues of the population correlation matrix is much weaker than we
could have expected from the empirical results of Table 5 of Section 4.2.

The discrepancy between our simulation and empirical measurements could be explained by the universal
linear law that we could not have respected. To do so one needs to generate a random rotation matrix eij
(44) whose j-row elements have a uniform distribution instead of the more natural �bell-like� distribution.
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Figure 7: Top left: theoretical distribution of λ
(0)
? with µ = 1.4. We simulate the λ

(0)
? distribution based on

a random selection of signals. We suppose that the angle between the random factor and any unconstrained
eigenvector is a Gaussian random variable with a standard deviation proportional to the square root of the
unconstrained eigenvalue power µ. We apply a Monte Carlo simulation with 3, 000 trajectories. Top middle:

within this model, we explain the relationship between the ordered values of λ
(0)
? and the true λEmp without

the measurement noises. µ = 1.4 is the best �t among µ = 1, µ = 2.4 and µ = 3.4. Top right: within

the model, we explain the relationship between the ordered values of λ
(1)
? and the true λEmp without the

measurement noise. Surprisingly µ = 3.4 and µ = 2.4 are the best �t among µ = 1, µ = 1.4. T = 50
(Bottom left) and T = 80, 000 (Bottom right) are used to replicate the measurement noise of the simulated
empirical eigenvalues. T = 80, 000 is the number of 5 minutes returns used in Table 5. In both cases
(T = 50 and T = 50, 000) the simulated constrained eigenvalues with µ = 3.4 are the best estimation of
the true eigenvalues. For T = 50 the simulated empirical eigenvalues overestimate the true eigenvalues very
signi�cantly whereas the simulated constrained eigenvalues with µ = 3.4 remains close to the true eigenvalues
until the 10th rank. For T = 80, 000 the measurement noise is considerably reduced. The real constrained
eigenvalues perform better than the simulated ones as they �t until the 15th rank. We suspect that the

inconsistency (µ = 1.4 �ts the λ
(0)
? in the top middle plot but does not �t the λ

(1)
? whereas µ = 3.4 does

not �t the λ
(0)
? in the top middle plot but �ts the other plots) is coming from a drawback of the random

generation of factors that does not take into account the Maximum-Variance optimization and the 'universal
law' that is an important pattern of the empirical correlation matrix and that should play an important role.

3 Empirical improvements

Here we describe di�erent variations of the Maximum-Variance and benchmark portfolios tested in the paper.
In the last subsection we summarise all of the proposed improvements in a single table.

3.1 Optimisation of the Sharpe ratio

We argue that under certain additional assumptions regarding the Two-Factor model (11), the Maximum-
Variance portfolio (20) has also the largest Sharpe ratio under the market-neutral constraint that captures
the signal.

We adopt the following conjectures:
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• We suppose that the signal captures a positive risk premium and we thus have Et−1

(
rf
)
> 0, while

residual returns are expected to have mean zeros, Et−1 (εi(t)) = 0.

• The covariance matrix of the residual returns takes the formHε = kΓΓΓ , where k is a positive constant.16

In other words, di�erent εi's are uncorrelated, Et−1 (εiεj) = 0, and their volatilities are proportional to
the corresponding stock volatilities, Et−1

(
ε2i
)

= kΣ2
i .

For the sake of simplicity we will also ignore the time-dependence of the portfolio weights. With these
assumptions and focusing meanwhile exclusively on a market neutral portfolio with weights ωi, we �nd that:

Et−1

(
N∑

i=1

ωiri

)
=
(
bTωωω

)
Et−1

(
rf
)

and Et−1



(

N∑

i=1

ωiri

)2

 =

(
bTωωω

)2 (
Σf
)2

+ k
(
ωωωTΓΓΓωωω

)
. (51)

The Sharpe ratio is therefore:

Sf ≡
Et−1

(
N∑
i=1

ωiri

)

√√√√Et−1

((
N∑
i=1

ωiri

)2
) =

Et−1

(
rf
)

√√√√(Σf)
2

+ k ·
(
ωωωTΓΓΓωωω

)
(
bTωωω

)2

. (52)

Maximising this expression with respect to ωωω subject to the market-neutrality condition βββTωωω = 0, we arrive
at (20). We can conclude therefore that �nding the highest Sharpe ratio of a market-neutral portfolio is
equivalent to the FCL optimisation.

The same approach might be used as well if we weaken the second assumption above. We may presume
instead that the covariance matrix of the residual returns has a small rank-1 o�-diagonal market-neutral term:
Hε = k

(
ΓΓΓ + εuεuεT

)
. Requiring ωωω both to be market neutral and orthogonal to uε, ωωωTuε = ωωωTβββ = 0, the

new solution is

ωωω? ∼ ΓΓΓ−1

(
b− b

TΓΓΓ−1βββ

βββTΓΓΓ−1βββ
· βββ − bTΓΓΓ−1uε

uεTΓΓΓ−1uε
· uε
)
. (53)

Here the �rst two terms appear already in the Maximum-Variance market-neutral portfolio (20), while the
last one guarantees the uε-orthogonality. This is a Maximum-Variance portfolio which is both market and
uε-neutral, as it optimises the FCL under these two constraints.

3.2 Parameter ν

The formula (43) for bi(t) might be generalised to

bi(t) = Σν
i (t)B? (qi(t)) , (54)

where the original assumption (30) corresponds to ν = 1, andB? (q) is the same as in (43). For E(rf) > 0, the
Two-Factors model (11) implies that the excess expected return satis�es (E(ri)− βiE(rm)) ∼ Σν

i B? (qi(t)).
We will consider the following variations:

• ν = 0. This is equivalent to assuming that the excess expected return of a single stock does not depend
on its volatility. Alternatively, one may say that the risk is not fairly rewarded.

16The model would be called a scalar strict factor model, if Hε were proportional to the identity matrix.
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• ν = 1. This choice makes sense from the economic point of view and was also brie�y justi�ed in the
paragraph above (30). It implies that the reward is proportional to the single stock volatility. There
is a direct link between the ν = 1 choice and the Maximum-Diversi�cation portfolio of [11]. The main
hypothesis behind the construction in [11] is the proportionality between the expected return of a stock
and its volatility, E(ri) ∼ Σi. Together with the central CAPM result, E(ri) = βiE(rm), it leads to
βi ∼ Σi. The analogue of the Maximum-Diversi�cation hypothesis for the excess return should be
(E(ri)− βiE(rm)) ∼ ΣiB? (qi(t)), and according to the Arbitrage Pricing theory [26] the same excess
return is proportional to the factor sensitivity, (E(ri)− βiE(rm)) ∼ bi provided E(rf) > 0. Combining
the two formulae we see that bi ∼ ΣiB? (qi(t)). We also argue that the Maximum Variance portfolio
with ν = 1 is equivalent to the constrained WLS regression (see Appendix D).

• ν = 2. It describes the situation where most volatile stocks generating more reward than expected for
ν = 1. It also corresponds to the common-practice OLS regression but with constraints: comparing
the two last columns of Table 17, we see that the ν = 2 Maximum Variance portfolio is close to the
constrained OLS regression with ν = 0.

3.3 The �residual� as the alternative method of orthogonalisation

In Section 3.1 we presented (53) that is an extension of the Maximum Variance portfolio that is not only
market neutral but also neutral to another main factor of risk, the control variable, that remains to de�ne.
It is usually one of the Fama and French popular Book or Size factors. The extended portfolio was derived
to get the optimal Sharpe ratio. That motivates to develop a method to make factors as decorrelated as
possible. We presented a methodology, in the Section 2.4, that transforms the initial risk premia factors
into the constrained eigenvectors of the correlation matrix, that would be the natural orthogonalized risk
premia. Unfortunately we show in the empirical validation part that these constrained eigenvectors present
an unstable combination of initial risk premia factors. We believe that this instability is intrinsic to any
methodology that claims to orthogonalize the factors. Here we present the alternative methodologies, one
of which will be implemented and tested in Section 4.

Multiply-sorted portfolios are implemented in [3]. More complex schemes are used in Asset Pricing models
to withdraw bias, when di�erent characteristics are correlated [48, 49]. To solve the dependency problem
betweens factors, an optimal procedure is proposed in [50] to �nd orthogonalized risk premia inspired from
the methodology attributed to [51]. Normalising returns of factors by the square root of the covariance matrix
is also used in agnostic risk parity [52]. The new orthogonalized risk premia may diverge signi�cantly from
the original ones. Many �orthogonalisation� methods, though popular in the Asset Management industry,
are yet to be documented. One of the most famous ones is known as the residual method, since it tries
to withdraw the common part directly from signals. Suppose that for any time t and stock i we are given
the raw ranking qri (t) of the variable to be priced and qci (t) of the control variable. For �xed t, we regress
qr1(t), . . . , qrN (t) against qc1(t), . . . , qcN (t) treating the regression residual as the new signal of the variable to
be priced. The �orthogonalized� signal is therefore the residual ranking that is not explained by the control
variable. This is ideologically close to the so-called residual momentum strategy, �rst presented in [53], where
the regression analysis is performed instead on the residual returns rather than the rankings.

We select Book, Size and Beta as the three control variables. The Book and Size are justi�ed, since
according to Fama and French they are the best candidates to explain the cross-section of the expected
returns. The Beta signal was selected because according to its empirical FCL it appears to be the most
important factor. As we will see later, the empirical results are very disappointing. Our interpretation is
that there is no way to determine which control variable to select as it requires to prefer some signals over
the others. As we brie�y discuss in 4, the hierarchy could be determined based on raw FCL though it may
change very rapidly with time.
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Notation Model ν
Number

of
clusters

Number of
sectoral
factors

Residual

MaxVar(1,6,9) Maximum-Variance 1 6 9

MaxVar(0,6,9) �"� 0 6 9 -
MaxVar(2,6,9) �"� 2 6 9 -

MaxVar(1,6,30) �"� 1 6 30 -

MaxVar(1,1,9) �"� 1 1 9 -

MaxVar(1,6,9,Beta) �"� 1 6 9 Beta

MaxVar(1,6,9,Book) �"� 1 6 9 Book

MaxVar(1,6,9,Size) �"� 1 6 9 Size

BM-ERW(6,9) Benchmark (equal-risk weighted) - 6 9 -

BM-EW(6,9) Benchmark (equal-weighted) - 6 9 -

Table 2: Di�erent methods of the portfolio construction tested in the paper. The equal-risk-weighted and
equal-weighted benchmark portfolios were introduced in (9) and ν is the model parameter in (54), which
is relevant for the Maximum-Variance models only. The next two columns correspond to the number of
industries and sectoral factors used for signal sorting. The last column speci�es the residual choice for the
orthogonalisation method discussed in Section 3.3. It will be tested only for three factors listed in this table.

3.4 Sectoral constraints and sectoral factors

Most academic papers do not take into account the sectors as control variable, even though it may reduce
noises of measured risk premia and increase Sharpe ratios. As we will show in the next section, common
factors extracted from industry returns explain signi�cant cross-sectional returns, even surpassing the ex-
planatory power of Book and Size. We estimate that more than 40% of the unconstrained factors variance is
explained by sectoral risk (di�erence between the FCL with or without sectoral constraint). This is in line
with [54] which showed that the Sharpe ratio of the Value (Book in our conventions) factor is higher if the
sectoral risk is completely withdrawn. Conversely, the Momentum premium is found to be better explained
when the sectors are taken into account [55].

We thus decided to investigate sectoral factors (either 9 or 30), while maintaining our fourteen styles
(Book, Size, etc.) sector-neutral. An additional incentive for our choice is the fact that most alternative risk
premia vehicles are marketed as sector-neutral portfolios. Since the signals for the sector factors can only be
binary (a company at question either belongs or does not belong to the sector) we can use neither the linear
function B?(q) of (43)) nor the step-function B?(q) of (42). Instead we adopt the following weight function
for a given sector s and a company i:

Bs(i) =





1− ns
N

if the company i belongs to the sector s

−ns
N

if it does not
, (55)

where ns is the sector s size and N =
∑
s ns is the total number of stocks. Notice that the sum

∑
iB

s(i)
vanishes for all s, exactly as it does for B?(q) and B?(q).

Our style portfolio construction is based on sorting with respect to the relevant signal. To impose sector-
neutrality we rank the stocks separately within 6 industry clusters (more on this below) and then combine
the rankings to get a single sorting list. In other words, six �rst-ranked stocks are to be followed by six
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second-ranked stocks, etc. Since we deal with a su�ciently large number of stocks, the way the stocks with
identical rankings are ordered between them, is unimportant. These six clusters are explained in Appendix
F. They are not optimised but rather inspired by the Global Industry Classi�cation Standard (GICS), which
also was the basis for our selection of 9 sectoral factors presented in the same appendix.

3.5 Financing, liquidity, turnover and leverage constraints

In this paper we have not considered any liquidity, turnover and leverage constraints. Liquidity is important
in order to examine the full impact of trading. Turnover incurs brokerage fees and slippage. Leverage
generates �nancial cost because of the gap between the borrowing and lending rates. All the more, we
assume that all interest rates are zero, and so all stocks could be borrowed and be shorted with the zero
interest rate. The Sharpe ratio of those factors that require more �nancing for the long legs than for the
short legs, for instance the Low-Beta (Beta below) factor, should be sensitive to this assumption.

3.6 Summary of the improvements

In Table 7 we summarize di�erent modi�cations of the Maximum-Variance and benchmark portfolios. For
the former we test three values of the ν-parameter, 6 versus a single industry cluster, either 9 or 30 sectoral
factors, and, �nally, three di�erent control factor selections. For the benchmark portfolios we explore the
equal-risk and the equal-risk-weighted schemes, while keeping 6 clusters and 9 sectoral factors.

4 Empirical validation

The goal of this section is to test the ideas discussed so far with empirical data on stock returns.

4.1 Data

Our universe consists of 611 USA stocks selected in 2013, all of whom had capitalisation above one billion
dollars back in the period. Between 2000 to 2013 the universe su�ered from the survivor bias. It impacts
only the daily data and the measured Sharpe ratio of the Capitalisation factor, overestimating it by 1. At
the same time, it underestimates the Momentum Sharpe ratio by 0.2 and has negligible in�uence on market-
neutral factors. By the end of November we expect to have the unbiased results for a rolling universe that
replicates the historical constituents of the SP500 for the daily data.

We have two types of data:

• Five-minutes returns for the period 2013-2018 provided by John Locke Investments. The market
relaxation time is believed to be around one minute [56], and thus the correlation should be su�ciently
stable on the scale between �ve minutes and one day. Nevertheless, we detect a weak autocorrelation
that changes the correlation matrix measurements as we move between the 1-day and the 100-days
time-scales.

• Daily returns for the period 2000-2018 provided by FactSet.

As we have already explained in the previous section, stock's companies are divided into 30 industries
according to their GICS classi�cation, see Appendix F. They are further grouped into 6 clusters, as shown
in the same appendix.

Finally, we have 14 signals for the styles summarised in Appendix B. The �nancial information is provided
on daily basis by FactSet. Importantly, the data is accessible with a one-day shift. For all but one case in
Table 2, the 14 styles are accompanied by exactly 9 sectoral factors. Since we always take into account the
market mode, it amounts to capturing the �rst 24 eigenvectors of the empirical correlation matrix.
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Five-minutes returns Daily returns 100 days returns

conditional
T = 72 · 5

unconditional
T = 72 · 5 · 52 · 6

conditional
T = 255 · 18

unconditional
T = (255 · 18)/100

λλλEmp (N = 610) 5.30 1.15 1.86 21.58
λλλ(1) (N = 24) 1.58 1.03 1.15 2.97

Table 3: The Mar£enko-Pastur threshold `+ = `+(N,T ) for λλλEmp and λλλ(1) with the number of available
returns. Notice the high value of the threshold for the unconditional empirical estimation based on 100 days.
The table may be easily extended to other time-scales of Tables 10 and 11, but here we report only the
extreme values.

4.2 Measurements method

In the theoretical part of the paper we used the conditional expectations Et−1 (· · · ) to construct the covariance
and other matrices. In practice we can only estimate these conditional expectations. A common practise
is to use the [t, t−∆t] period average of a given time-series as an estimate of the conditional expectation
of the relevant quantity at time t. To get a better result one can use an Exponential Moving Average
(EMA) with the parameter α−1 = 1/∆t. As we explain in Appendix I for the 5-minutes returns the optimal
averaging period is one week (5 days). As for the daily returns, we do not possess su�ciently long historic
data to estimate conditional expectations of various eigenvalues. Nonetheless, we can use the daily data to
�nd multi-day returns, which, as we explain below, lead to di�erent results for the same eigenvalues. In
what follows we will occasionally refer to conditional results as time-dependent, and to unconditional as
time-independent.

We are interested in three di�erent sets of eigenvalues: λλλ(0), λλλ(1) and λλλEmp. The �rst two are determined
by the h and γγγ matrices as in (26) and (25) respectively. In Appendix I we explain in details how to estimate
the conditional (time-dependent) and unconditional (constant) matrices h and γγγ based either on the 5-
minutes or the (multi-)daily returns. In the last subsection of the same appendix we describe the derivation
of the empiric eigenvalues λλλEmp. Our ultimate goal is to compare λλλ(1) and λλλEmp. As we will explain shortly,
the latter are our best shot at the eigenvalues of the �true� (also called population) correlation matrix.
Obviously, the closer λλλ(1) to λλλEmp, the better our approach. To avoid further confusion we will stick to the
dictionary:

λλλ(0) : FCLs λλλ(1) : Constrained eigenvalues λλλEmp : Empiric eigenvalues (56)

Here constrained refers to the fact that λλλ(1) were obtained from the constrained diagonalisation, see Section
2.4.

Before proceeding to other quantities investigated in this section let us make an important comment.
According to the celebrated paper [57] by Mar£enko and Pastur, the eigenvalues `i of the matrix XTX, an
T ×N matrix of IID standard normal variables, are non-uniformly distributed between two parameters, `−
and `+:

`± =

(
1±

√
N

T

)2

(57)

provided both N,T →∞ with N/T hold �ned. The larger this ratio, the stronger `i deviate from the �true�
value of 1. In spite of the fact that our �true� eigenvalues are very di�erent from 1 (in fact, we will see that
the largest eigenvalue is of order N/5) and the distribution is far from the Gaussian one, we might still adopt
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Five-minutes returns
Daily and multi-daily

returns

conditional unconditional conditional unconditional

λλλEmp Figure 8 Table 5 - -

λλλ(0) Figure 8 Tables 6 and 7 - Tables 8 and 9

λλλ(1) Figure 8 Table 5 - Tables 10 and 11

xab Figure 9 Table 12 - -

Sharpe ratio - - Figure 10 Table 13

Table 4: Summary of the �gures and tables of this section according to the data used (either 5-minutes or
daily returns) and the time-dependence: the �gures present conditional (time-dependent) variables and the
tables are reserved for unconditional (constant) results.

`+ as the threshold between the signi�cant and noisy eigenvalues. In what follows we refer to this value as
the Mar£enko-Pastur threshold.

For λλλEmp we always use the full collection of stocks, and so N = 611 as we already mentioned in the
beginning of this section. For λλλ(1), on the other hand, N = K since we obtain these eigenvalues from
the γγγ−

1
2hγγγ−

1
2 diagonalisation in the subspace spanned by K Maximum-Variance portfolios. In this paper

K = 14 (styles) + 9 (sectoral factors) + 1 (market) = 24. The situation is slightly more complicated for T .
For instance, for the unconditional measurement based on the 5-minutes returns we have on average 72 daily
returns, 5 working days, 52 weeks per year and, �nally, 6 six years of data. Thus T ≈ 1.1 · 105. At the same
time, for the respective conditional calculation T = 72 · 5 = 360, if we take one week as the averaging period
to estimate the expectation. Conversely, for the daily returns T = 255 · 18, because now we have 18 years
of data. In Table 3 we summarise the Mar£enko-Pastur (MP) thresholds for the empiric and constrained
eigenvalues, and di�erent evaluation schemes. The thresholds are important, as they indicate how many
eigenvalues we should consider as non-noisy. There are two lessons we might learn from this table. First, the
MP threshold for the unconditional empiric eigenvalues on the time-scale of 100 days is very large. We will
see that it leaves out only the market mode. Second, the one-day threshold, though much lower, is still well
above the unconditional threshold for the 5-minutes returns. We conclude therefore it is worth to evaluate
the empiric eigenvalues only from the 5-minutes returns that will serve as a reference to evaluate how well
our method reproduces the �true� eigenvalues. Consequently we will investigate the time-scale dependence
of the eigenvalues using only the constrained eigenvectors method, see the second row of Table 3.

Apart from the eigenvalues we consider two additional measurements: the transformation matrix O from
Maximum-Variance portfolio to constrained eigenvectors introduced in (25), and the Sharp ratio. Since the
factors may capture di�erent level of risk, it will be more illustrative to compare the rescaled components,

xab = Oab

√
λ

(1)
b

√
λ

(0)
a . In this paper the Sharpe ratio is measured as the ratio between the average and

the standard deviation of the daily-returns based portfolio. We also multiply the expression by
√

255 in
order to annualise the �nal result. To compare the Sharpe ratios for di�erent factors we exploit only daily
data from 2000 to 2017. We stick with the constant gross-investment normalisation,

∑
i |ωi(t)| = const, as

it is commonly accepted in Asset Pricing. It was shown in [58] that due to the non-Gaussian distribution
of returns, the normalisation by monthly look-back volatilities leads to the anomalies and the Sharpe ratios
which are di�erent from those derived with the constant gross-investment normalisation. We veri�ed that
all our observations regarding the Sharpe ratio still hold under the normalisation method of [58].
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#
λ

(1)
? , Maximum-Variance λ(1) λ

(1)
? λEmp %

(1,6,9) (0,6,9) (2,6,9) (1,1,9)
(1,6,9,
Beta)

(1,6,9,
Book)

BM-ERW
(6,9)

BM-EW
(6,9)

MaxVar
(1,6,30)

1 100.35 100.27 100.17 102.33 100.07 99.63 102.93 100.53 101.06 109.02 -3

2 20.49 20.17 20.43 21.37 20.42 20.33 18.40 17.68 20.88 22.32 11

3 12.44 10.94 11.69 13.31 12.40 12.25 11.76 10.45 12.62 12.84 6

4 8.65 7.92 8.56 9.12 8.62 8.52 8.43 8.24 9.19 10.01 3

5 7.55 7.48 7.55 7.74 7.55 7.39 7.02 6.78 7.63 7.94 8

6 5.28 4.83 5.19 6.38 5.28 4.87 4.97 4.52 5.62 5.92 6

7 5.14 4.69 5.06 5.67 5.13 4.73 4.78 4.20 5.32 5.79 8

8 4.27 4.04 4.25 5.24 4.27 4.22 3.64 3.53 4.37 4.70 17

9 3.84 3.73 3.82 4.88 3.83 3.45 3.24 2.90 4.00 4.29 19

10 3.52 3.40 3.47 4.36 3.48 3.13 2.69 2.67 3.85 3.53 31

11 3.28 3.20 3.28 3.69 3.22 2.98 2.51 2.38 3.30 2.77 30

12 2.95 2.91 2.96 3.17 2.92 2.40 2.30 2.22 3.10 2.42 28

13 2.49 2.42 2.49 2.89 2.49 2.34 2.08 1.98 2.63 2.38 20

14 2.24 2.28 2.21 2.47 2.22 2.09 1.79 1.68 2.42 2.23 25

15 1.86 1.90 1.84 2.07 1.98 1.86 1.58 1.51 2.16 2.10 18

16 1.52 1.44 1.50 1.96 1.62 1.62 1.35 1.34 1.99 2.03 13

17 1.31 1.28 1.30 1.69 1.47 1.50 1.19 1.18 1.85 1.96 11

18 1.20 1.16 1.18 1.44 1.25 1.26 1.03 1.05 1.83 1.92 16

19 1.11 1.10 1.09 1.40 1.11 1.17 0.97 0.96 1.74 1.84 14

20 1.05 1.04 1.04 1.23 1.05 1.05 0.92 0.94 1.70 1.73 14

21 0.95 0.94 0.94 1.12 0.96 0.95 0.89 0.89 1.64 1.64 7

22 0.91 0.88 0.90 1.08 0.91 0.93 0.86 0.85 1.49 1.60 6

23 0.87 0.87 0.87 1.04 0.87 0.92 0.83 0.82 1.45 1.56 5

24 0.84 0.83 0.82 0.92 0.83 0.88 0.80 0.81 1.38 1.50 5

Table 5: The 2013-2018 conditional eigenvalues obtained with di�erent methods of Table 2. λEmp-column
are the sample eigenvalues. The last column shows the improvement of the MaxVar(1,6,9) method compared
to the standard benchmark equal-risk weighted portfolio. We see that Maximum-Variance increases all but
the �rst eigenvalue, which corresponds to the market mode. Recall that to construct the Maximum-Variance
market-neutral portfolio we used the stock index rm(t) and its proxy rm? (t), rather than the �rst principal
component of the returns matrix. We believe owing to this approximation the equal-risk-weighted portfolio
performs better than ωωωm.(0)

? . For λEmpi (i = 2, . . . , 5) the Maximum-Variance improvement comes largely
from the sectoral factors. On the other hand, the Sharpe ratio increases in the last column for eigenvalues
ranging between 2 and 6 is due to the style factors, mostly Book. These issues are discussed in more details
in Section 4.3.1. Among all Maximum-Variance methods, MaxVar(1,1,9) has the best results.

In Table 4 we list all �gures and tables containing the measurements of the eigenvalues, the transformation
matrix elements and the Sharpe ratio both conditional and unconditional and based on the 5-minutes or
(multi-)daily returns.
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λ
(0)
? , Maximum-Variance λ(0), Benchmark

Sectoral
factor

(1,6,9) (0,6,9) (2,6,9) (1,1,9) BM-ERW(6,9) BM-EW(6,9)

Utilities 14.04 13.65 14.03 14.04 12.99 12.74

Energy 10.27 9.08 9.25 10.27 9.81 8.67

Reits 9.76 9.43 9.69 9.75 9.59 9.53

Finance 7.74 7.09 7.64 7.74 7.87 7.70

Pharmacy 5.75 5.18 5.62 5.76 5.62 5.39

IT 5.33 4.97 5.22 5.33 5.22 5.02

Consumer 4.56 3.98 4.47 4.56 4.61 3.71

Discretionary vs Staples 3.83 3.68 3.84 3.83 3.47 3.03

Industry 3.53 3.56 3.57 3.53 3.14 2.97

Table 6: Di�erent unconditional FCL (λ(0)) for the sectoral factors obtained for the 2013-2018 period with
di�erent methods of Table 2. Improvement from the Maximum-Variance optimisation is very limited for
sectoral factor as the signal is binary. The sectoral factors have higher FCL than the style factors. The
major sectoral factor is Utilities, that is expected to be a highly leveraged sector, despite its small size, as it
is used by traders to speculate on the FED policy that was the major issue during the period. Energy and
REITS were also very volatile due to the oil price decline and the crisis of Malls.

4.3 Reproducing the true eigenvalues

From Table 5 we see that the Maximum-Variance portfolios capture well the �true� empirical eigenvalues
measured with 5-minutes returns of the average correlation matrix: λ(1)

? (MaxVar(1, 6, 9)) are very close
to the λEmp. The 24 �rst unconstrained eigenvectors explain R2 = 41.48% of the cross-section regression

of normalized returns (R2 =
(∑K

k=1 λ
Emp
k

)
/N = 41.48%) whereas the 24 �rst constrained eigenvectors

ωωω
(1)
? (MaxVar(1, 6, 9)) obtained with the Maximum-Variance optimisation (MaxVar(1,6,9)) explain 37.62%

(40.03% when sector constraints are withdrawn, MaxVar(1,1,9)). We �nd also a signi�cant di�erence be-

tween λ
(0)
? (MaxVar(1, 6, 9)) and λ

(1)
? (MaxVar(1, 6, 9)) (see Tables 7 and 6). This is the impact of the strong

interaction between the economic factors (see Section 2.4). Moreover, all market-neutral factors have FCLs
much smaller than the FCL of the market mode (70), which is close to 100. This is consistent with our choice
to have K Two-Factor models for all the factors di�erent from the market rather using a single multi-factor
model, see the last paragraph of Section 2.2.

We observe as well that the major market-neutral factors ωωω
(0)
? (MaxVar(1, 6, 9)) are mostly the sectoral

factors: Utilities, a small size sector, has surprisingly the highest λ
(0)
? (MaxVar(1, 6, 9)). This could be speci�c

to the sample period when the monetary policy change played a crucial role. Traders used to speculate on
shorting the Utilities, believed to be highly indebted, in the goal to take positions on an upward interest
move.

Presence of Utilities in the �rst eigenvector was con�rmed by [59] in which Finance, Oil and Utilities

were found to be the main components of this eigenvector. We also see Reits as an important factor most
certainly due to the Malls crisis in 2017. We �nd that the two most popular risk premia, Momentum and
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λ
(0)
? , Maximum-Variance λ(0), Benchmark

Style
factor

(1,6,9) (0,6,9) (2,6,9) (1,1,9) (1,6,9,Beta) (1,6,9,Book) ERW(6,9) EW(6,9)

10Y Rates 8.10 8.58 8.42 14.62 7.76 6.94 4.38 3.76

Beta 7.63 7.71 7.76 12.72 7.63 7.52 4.82 4.47

Momentum 6.10 5.69 5.81 9.39 6.09 4.29 4.39 3.95

Capitalisation 5.14 4.79 4.99 6.08 5.14 2.21 4.00 3.65

Dividend 4.28 4.59 4.45 6.01 4.27 4.27 2.47 2.16

Euro 3.85 3.97 3.89 6.82 3.86 3.36 2.49 2.27

Liquidity 3.70 3.23 3.17 6.24 7.03 6.73 3.13 3.00

Book 3.53 3.27 3.31 5.74 3.54 3.54 2.75 2.59

STR 3.44 3.46 3.42 5.51 3.39 3.05 2.29 2.09

Sales 3.35 3.04 3.28 4.58 3.36 1.53 2.71 2.45

Leverage 2.05 2.25 2.12 2.99 2.05 2.31 1.27 1.22

Earning 2.04 2.01 2.06 3.12 2.04 2.03 1.48 1.45

Cash 1.79 1.92 1.85 2.50 1.78 1.71 1.19 1.14

Growth 1.24 1.16 1.17 1.84 1.24 1.24 1.06 1.05

Table 7: The 2013-2018 unconditional FCL obtained with di�erent methods of Table 2 and for all styles.

The six λ
(0)
? -columns correspond to the Maximum-Variance method and so we omit the common part in

the method references. Similarly, we save space for the last two benchmark columns. Comparing the
MaxVar(1,6,9) and the BM-ERW(6,9) columns, one might notice an improvement of 45% thanks to the
Maximum-Variance optimisation. We also see that the sectoral constraints are suboptimal: MaxVar(1,1,9)
appears to be the best method. But to maintain the sector constraints, on average MaxVar(1,6,9) appears
the best. The model ν = 1 appears to be most realistic for most factors even if some exception could be
real. The most important style factors are the 10Y Rates (stocks that are the most sensitive positively to
the interest rate increase vs stock that are less) as the FED policy was a major issue on the period. The
Beta and Momentum factors are the two other major factors whereas the traditional Fama & French factors,
Capitalisation and Book, seem to be far less important.

Beta, are the 6th and the 7th risk factors in λ
(0)
? (MaxVar(1, 6, 9)). The Book factor has a surprising low

λ
(0)
? (MaxVar(1, 6, 9)) at a 5-minutes time scale whereas it is supposed to be an important factor at least at a

longer time scale based on the known results in the literature. The Growth factor is very close to noise as its
FCL is just slightly above an FCL of a random signal. We see that Maximum-Variance approach manages
nevertheless to improve its FCL.

4.3.1 Comparison between the Maximum-Variance and the benchmark portfolios

For the 14 styles the Maximum-Variance optimisation allows to improve λ(0) by 45% compared to the
benchmark portfolios (see Table 7). As we have already mentioned above the improvements for the sectoral
factors are signi�cantly weaker. This is actually not too surprising if we think of the Maximum-Variance
function B?(q) as the �smoothed� version of the double Heaviside function used for the benchmark portfolio
construction (9). No such �smoothing� option exists for a sectoral factor, whose signals are strictly binary.
Thus the linear function optimisation has a weaker impact.
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Factor 1 day 5 days 10 days 20 days 40 days 80 days 100 days

Beta 6.35 7.99 8.77 9.34 10.37 11.64 14.45

STR 4.10 4.73 5.00 5.51 6.72 8.45 12.21

Momentum 5.87 7.09 7.64 8.20 9.00 9.60 10.80

Capitalisation 4.43 4.95 5.24 5.66 6.48 7.53 9.54

Book 2.49 2.94 3.40 3.99 4.89 5.50 6.40

Sales 2.88 3.47 3.85 4.19 4.85 5.26 6.30

Dividend 3.86 4.44 4.90 5.28 5.77 5.83 5.79

10Y Rates 5.38 6.24 6.26 6.06 5.80 5.80 5.42

Liquidity 2.82 2.93 3.12 3.34 3.77 4.11 4.91

Euro 3.72 4.12 4.15 4.08 3.82 3.74 3.55

Leverage 2.08 2.30 2.54 2.72 2.93 3.10 3.41

Earning 1.89 2.09 2.20 2.24 2.40 2.59 3.17

Cash 1.52 1.66 1.72 1.73 1.85 2.04 2.46

Growth 1.47 1.67 1.76 1.78 1.92 2.00 2.00

Table 8: The FCL of the Maximum Variance MaxVar(1,6,9) at di�erent time scales are optimised by 47%
as compared to the benchmark BM-ERW(6,9). Improvement are 41% for 1 day scale to 49% to 100 days
scale. Based on daily data from 2000 to mid 2018.

This observation provides a good explanation for the last column of Table 5. The sectoral factors contribu-
tion is more signi�cant for the leading (the �rst four) eigenvalues, while it decreases for the intermediate ones.

As a result our Maximum-Variance approach is more successful for λ
(1)
i , with i > 4. The λ(0) improvement

is more signi�cant for longer time scales as one can see from Tables 8 and 9.
Surprisingly, the �rst constrained eigenvalue for the benchmark portfolios, λ(1) (BM-ERW(6, 9))1, is

slightly higher than the �rst Maximum-Variance eigenvalue λ
(1)
? (MaxVar(1, 6, 9))1 meaning that it is slightly

better to model the market-mode portfolio as an equal-risk-weighted portfolio (9) than the Maximum-
Variance market-mode portfolio (70). This is also evident from the fact that the FCL of the Maximum-

Variance market-mode portfolio λm(0)
? (MaxVar(1, 6, 9)) ≈ 92.12 is slightly lower than the FCL of the equal-

risk-weighted portfolio λm(0) (BM − ERW (6, 9)) ≈ 92.44. We believe that it is related to our choice to stick
with the β's derived from the stock index rm(t), rather than the Maximum-Variance return rm? (t) (4). We
discussed in details the di�erence between the two available indices in the paragraphs preceding (3).

The upshot of the last two paragraphs is that R2 of the cross-section regression with the 24 factors is
improved only slightly from 36.23% with the benchmark to 37.62% with the Maximum-Variance portfolios.
With longer time scale the improvement is even more signi�cant (10% for 100 days) and the R2 is higher
as well (59.44% for 100 days) (Tables 10 and 11). This is thanks to the quarter returns being stronger
correlated than the daily returns. We see that FCL for the styles are always optimised for the Maximum-
Variance portfolios compared to the benchmark portfolios for any time scale (Tables 8 and 9) and interestingly
the FCLs are increasing with the time scale. The Book factor becomes the �fth most important factor after
Beta, Capitalisation and Momentum at 100-days time scale.
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Factor 1 day 5 days 10 days 20 days 40 days 80 days 100 days

Beta 4.13 4.98 5.44 5.94 6.82 7.90 10.12

STR 2.94 3.23 3.37 3.64 4.29 5.29 7.55

Momentum 4.27 4.91 5.18 5.49 5.97 6.39 7.31

Capitalisation 3.25 3.61 3.89 4.29 4.98 5.86 7.24

Book 1.80 1.97 2.22 2.58 3.11 3.39 3.79

Sales 2.36 2.80 3.13 3.45 3.98 4.26 5.10

Dividend 2.51 2.75 2.99 3.16 3.47 3.50 3.35

10Y Rates 3.07 3.42 3.35 3.26 3.17 3.12 2.73

Liquidity 2.18 2.19 2.31 2.49 2.85 3.03 3.39

Euro 2.47 2.64 2.67 2.62 2.47 2.48 2.49

Leverage 1.43 1.52 1.62 1.77 1.95 2.12 2.45

Earning 1.39 1.49 1.57 1.59 1.69 1.81 2.18

Cash 1.13 1.17 1.20 1.23 1.36 1.51 1.79

Growth 1.17 1.26 1.32 1.35 1.50 1.57 1.52

Table 9: The FCL of the benchmark BM-ERW(6,9) at di�erent time scales. Based on daily data from 2000
to mid 2018.

Di�erent versions of the Maximum-Variance portfolios MaxVar(1,6,9), MaxVar(0,6,9) and MaxVar(2,6,9)
give similar results as volatilities Σk are not heterogeneous enough.

We see that the sectoral constraints appear to be highly suboptimal as the solution without any sec-

toral constraints MaxVar(1,1,9) gives higher FCL λ
(0)
? (MaxV ar(1, 1, 9)) and higher constraint eigenvalues

λ
(1)
? (MaxV ar(1, 1, 9)) (Tables 7 and 5).
The application of the residual methods (columns MaxVar(1,6,9,Beta) and MaxVar(1,6,9,Book) of Table

7) is surprisingly e�cient only for the following three factors: Liquidity, Momentum and Capitalisation.
The immediate interpretation is that the signals of these three factors are strongly correlated to the Book

signal. As for the λ
(1)
? eigenvalues in Table 10, the variations MaxVar(1,6,9,Beta), MaxVar(1,6,9,Book) and

MaxVar(1,6,9,Size) produce almost the same results as the Maximum-Variance method MaxVar(1,6,9). We
conclude, therefore, that the residual method does not bring any major improvement. Apart from that,
as we discussed at the end of Section 3.3, the control variable selection has the drawback of breaking the
rotational symmetry between the K factors.

4.3.2 Capturing the dynamics of eigenvalues and eigenvectors

Up to this point we discussed only the means of the empirical and modelled correlation matrices and their
eigenvalues. In this section we would like to focus instead on the dynamics (time-dependence) of the eigen-
systems.

The Maximum-Variance FCL, λ
(0)
? , resonates stronger with the factor volatility jumps than the relevant

benchmark portfolio. We demonstrate this phenomenon on the top three graphs of Figure 9. The strong
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Eigenvalue 1 day 5 days 10 days 20 days 40 days 80 days 100 days

1 152.08 164.58 163.63 166.58 164.34 165.96 174.74

2 17.05 20.46 22.37 23.48 24.45 25.08 27.76

3 12.67 13.41 14.09 14.80 15.91 17.00 21.24

4 8.68 10.12 10.60 11.59 12.57 14.16 15.78

5 7.31 7.76 7.97 8.07 8.67 9.70 11.72

6 5.78 6.67 6.93 7.38 7.86 8.36 9.41

7 5.21 5.76 6.12 6.53 7.14 8.08 8.04

8 4.67 5.00 5.51 5.71 6.37 6.60 6.20

9 4.07 4.28 4.50 5.01 5.27 4.92 4.56

10 3.88 4.21 4.12 4.13 4.47 4.51 4.39

11 3.41 3.62 3.61 3.53 3.64 3.75 3.64

12 2.96 3.12 3.02 3.18 3.59 3.62 3.30

Table 10: λ
(1)
? (MaxVar(1, 6, 9)) from the Maximum-Variance is a good proxy for true eigenvalue of the

correlation matrix. We see that correlation increase sharply with time scale and that the optimisation is
working for any time scale. Indeed the (MaxVar(1,6,9)) optimised by an average of 23% compared to BM-
ERW(6,9). The improvement is 16% in daily scales to 27% in 100-days scales. The trace is increased by
10% at the longer time scale. Daily data from 2000 to mid 2018

resonance helps the constrained eigenvalues λ
(1)
? to capture well the dynamics of the �rst empirical eigenvalues

λEmp, see the bottom three graphs of Figure 9.
For large dimensions the �rst eigenvalue of a correlation matrix is linked to the average of its o�-diagonal

elements. In �nancial terms it implies that the high volatility of the �rst (market-mode) eigenvalue might be
interpreted as the increased correlation between single stocks. Both the empirical and Maximum-Variance
eigenvalues reproduce this behaviour as one can see on Figure 9. Moreover, the dynamics of the two eigen-
values (the constrained and the unconstrained) are very close to each other. The same holds for the second
and the third eigenvalues.

The �rst eigenvector is well known as the market mode but the second eigenvector has always remained
di�cult to interpret according to the literature. Our �ndings clarify the origin of this problem. The largest
components of the 2nd eigenvector come from the factors with the highest FCLs. The latter, however,
are very volatile, and so are the components of the second eigenvector. In general the eigenvalues of a
large random matrix are expected to be repulsive and so no crossover phenomenon usually happens. What
we observe nevertheless is the crossover of the factor FCLs and their components in the second and third
eigenvectors. For example, as soon as the Financials sector FCL exceeds Utilities's FCL, the components
of the second eigenvector change accordingly. This is shown on Figure 9. Beta, Rates and Utilities are the
main contributors to the second eigenvector in the period from 2013 to 2018 (Table 12 and Figure 9).

4.4 Evidence of alternative risk premia

4.4.1 Improvement of the Sharpe ratio

The measured Sharpe ratio is improved thanks to the Maximum-Variance optimisation as expected theo-
retically for the factors with the most signi�cant risk premia within the sample period. In other words, for
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Eigenvalue 1 day 5 days 10 days 20 days 40 days 80 days 100 days

1 155.83 166.85 165.11 167.72 165.34 167.39 176.27

2 14.56 16.76 18.10 18.82 19.42 19.60 20.95

3 12.29 12.59 13.14 13.76 14.26 14.50 15.69

4 8.17 9.04 9.15 9.55 10.27 11.60 13.47

5 6.58 6.66 6.83 6.91 7.52 8.42 10.12

6 4.92 5.21 5.40 5.84 6.40 6.84 6.98

7 4.69 5.03 5.31 5.49 5.52 6.11 6.80

8 4.08 4.35 4.70 4.87 5.33 5.42 5.14

9 3.51 3.48 3.67 4.02 4.15 4.05 3.70

10 2.93 2.90 2.96 3.12 3.51 3.49 3.29

11 2.67 2.80 2.70 2.69 2.89 2.86 2.81

12 2.43 2.34 2.28 2.49 2.75 2.79 2.47

Table 11: λ(1) (BM-ERW(6, 9)) calculated for the daily returns from 2000 to mid 2018.

those factors the value E(rf) in our Sharpe ratio (52) is su�ciently large. These factors are STR, Liquidity
and Cash. We present the results in Table 13 and Figure 10. On the other hand, for the three most popular
factors, Momentum, Book and Capitalisation, the value E(rf) is too small, the benchmark Sharpe ratio is
weak (or even negative) and therefore we cannot test our optimisation method for this period. Indeed, the
Sharpe ratio during these 18 years is only 0.51 annualized for Book and so is not even actually statistically
signi�cant (t-statistics is 0.51

√
18 ≈ 2). The Sharpe ratio for Beta is only 0.34 and is even negative for

Momentum. The three factors are nevertheless the most popular risk premia: Beta for quality, Momentum

for trend and growth and Book for value. According to most of the references on market anomalies and
asset pricing in Table 14 these factors are substantially pro�table but on a much longer period (usually since
1960), though even this claim is controversial. The 2008 crisis generated exceptional losses to the Beta and
Momentum factors, although these losses are not representative for a longer historical period (see Figure
10). The factor returns are highly non-Gaussian with extreme losses accumulating into a short period and
t-statistics that are common test in asset pricing should be interpreted with caution. Consequently, the
Sharpe ratio estimation is very sensitive to the portfolio normalisation. At the end of Section 4.2 we already
mentioned two possible ways to normalise the portfolios.

To summarize, the theoretical Sharpe ratio improvement in the framework of the Maximum-Variance
optimisation could not be con�rmed empirically in a conclusive manner, since the 20 years period is too
short of a sample to produce statistically signi�cant results. This is not really disappointing. To verify
empirically a (very optimistic) annual Sharp ratio improvement of 0.2 with tstat > 2, we would need at
least 100 years of daily data. Despite all this we �rmly believe that upon the assumption that there is a
substantial alternative risk premium, the Maximum-Variance portfolio has a higher expected Sharpe ratio
than the standard 20% top-bottom portfolio.

4.4.2 Skewness, Leverage e�ect and alternative risk premia

Based on our measurements the daily returns skewness is not necessarily signi�cant. It is negative (−0.44) for
the market mode. Momentum, Beta and Liquidity exhibit negative skewness (-0.35, -0.39, -0.08 respectively)
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Figure 8: Top: measure from 2013 to 2018 of the λ
(0)
? (MaxVar(1, 6, 9)) and λ(0)BM-ERW(6, 9) for Momen-

tum, Beta and 10Y Rates. λ
(0)
? (MaxVar(1, 6, 9)) correspond to the optimal case (Maximum-Variance (1))

and λ(0) (BM-ERW(6, 9)) to the benchmark case (top-bottom 20% (4)). We see that the optimal case enters
easier in resonance like in April to August 2016 where the three factors were excited. Bottom: measure

of the �rst three eigenvalues λ
(1)
? (MaxVar(1, 6, 9)) and λEmp. λEmp corresponds to the sample but noisy

eigenvalue without any constraint. λ
(1)
? (MaxVar(1, 6, 9)) corresponds to the constrained eigenvalues using

the Maximum-Variance optimisation (MaxVar(1,6,9)) . It appears that λ
(1)
? (MaxVar(1, 6, 9)) looks to be

less noisy and be a good proxy of de-noised λEmp. We see how brutally the �rst eigenvalues increased in
February 2018. We also see hat the excitation of the second eigenvalue in April to August 2016 corresponds
to the excitation of Momentum, Beta and 10Y Rates of the Top graphs. We also see a spike in July 2017 in
the third eigenvalue with an interaction with the second one.

while STR, Cash, Capitalisation and Book factors all have positive skewness (0.79, 0.18, 0.12, 0.05 respec-

tively). By the Central Limit Theorem argument the skewness is expected to decrease as (time scale)
−2
.

the negative skewness of factor returns may justify theoretically and empirically the presence of alternative
risk premia (see, for example, [60]). In short, investors prefer to combine occasional strong gains with frequent
small losses. This translates into a positive skewness of the returns distribution. Once the skewness becomes
negative, the same investors would like to have an alternative risk premia to compensate for the unattractive
risk pro�le.

The Leverage E�ect (LE), that is negative correlation between returns and volatility variation, is a well-
known phenomena in stock market. That generates high negative skewness for a large variety of time scales
[61, 62, 63]. We believe that for any portfolio this is more natural to study LE by analysing the variation of
portfolio's FCL rather than its volatility (or variance) variation. The FCL is the ΓΓΓ -normalised variance of
portfolio's returns. As an example, for the Maximum-Variance market portfolio the FCL variation accounts
for the variation of the average correlation between single stocks rather than the variation of the average
single stock volatility. Moreover, in this case, the FCL variation is a good proxy of the variation of the
correlation matrix �rst eigenvalue, see Section 4.3.2.

To analyse LE for di�erent factors, we start with the ΓΓΓ -normalised Maximum-Variance portfolio of a
given factor. We then regress the monthly variations of its FCL against its monthly returns. The higher the
coe�cient of determination, R2, the stronger the evidence for LE.

We found that the market mode is the only factor that exhibits a signi�cant LE with R2 = 0.38. All other
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Factor ωωω
(1)
? (MaxVar(1, 6, 9))1 Factor ωωω

(1)
? (MaxVar(1, 6, 9))2

Market Mode -9.17 Utilities 2.63

Capitalisation 0.10 10Y Rates -1.65

Beta 0.07 Beta -1.49

Energy -0.07 Reits 1.37

Liquidity -0.07 Energy -0.92

Momentum 0.07 Dividend 0.73

Table 12: A composition measured from 2013 to 2018 in risk of �rst and second conditional constrained

eigenvector ωωω
(1)
? (MaxVar(1, 6, 9))1, ωωω

(1)
? (MaxVar(1, 6, 9))2 obtained through the Maximum-Variance optimi-

sation. We present only the 6 highest risk contributions. The constrained �rst eigenvector of the average
matrix is exposed to the market mode risk and the capitalisation whereas the second eigenvector is exposed
to the utilities, rates and beta factors. But if we focus on the eigenvectors of the conditional weekly matrix,
we would see that the second eigenvector is changing and that the beta factor arrived in the top position for
the �rst and second eigenvectors.

market-neutral factors do not exhibits any LE as R2 < 0.08, see Table 13. Without any LE, the skewness is
expected to converge quickly to zero at larger time-scales and that could challenge the theory of alternative
risk premia.

5 New open problems

Here we summarize some results and open problems relevant for the realistic correlation matrix modelling
given relatively precise measurements realized by means of our economics constraints �lter:

• The �rst eigenvalue of the correlation matrix of γγγ−
1
2hγγγ−

1
2 is weakly volatile (see the yellow line on

Figure 11) and its dynamics seems to be governed by a systematic factor and the market mode FCL,

λm(0)
? , appears to be a good candidate. This �rst eigenvalue is relatively stable for di�erent time

periods and may be interpreted as the average correlation between fundamental factors as if the position
overlaps were completely suppressed. The factor overlap (blue line on Figure 11) moves only moderately
with time and seems to be correlated with the momentum performance.

• The time dependence of ln(λ(0))(t) can be modelled by an Ornstein�Uhlenbeck process with a relaxation
period of 60 days. It is tempting to model the correlation matrix di�usion by the FCLs di�usion, while
keeping constant the correlation matrix of γγγ−

1
2hγγγ−

1
2 , and then to compare the patterns with those of

the classical Wishart process [64].

• It will be interesting to use the autocorrelation model of [65, 66] to reproduce the time scale dependency
of λ(0) and λ(1) (see Figures 10 and 11). This autocorrelation model introduces a drift following an
Ornstein�Uhlenbeck process that might be justi�ed by the lack of liquidity and the herding e�ect. As
a consequence, the moving average of the factor returns may serve a good proxy for the conditional
expected returns, while the unconditional ones remain zeros. The model captures ine�ciency in the
stock market, which is yet to be documented. It is di�erent from the Epps e�ect [67, 56] that identi�es
stocks lags at the intra-day time scale. The autocorrelation of [65, 66] could be more robust than
the classical anomalies describing the discrepancy between the measured unconditional expected factor
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Figure 9: Left and Centre: A composition in risk from 2013 to 2018 of the �rst constrained eigenvector

(ωωω
(1)
? (MaxVar(1, 6, 9))1) and second conditional constrained eigenvector (ωωω

(1)
? (MaxVar(1, 6, 9))2). We see

that the interaction between the market mode, Capitalisation and Beta factors makes the �rst constrained
eigenvector oscillate around the market mode, while the second eigenvector is exposed to the Beta factor
despite its relatively low FCL. In July 2017, a new risk factor, the �nance factor, replaced Beta and Utilities.
The increases of the FCL of the �nancial factor appears at the same period (Right).

returns and the theoretical CAPM. Recently it has been argued in [23] that certain stock market
anomalies become weaker after a study describing it has being published. In the same spirit most of
the known anomalies were claimed to be fallacious and rather explained by over-�tting or selection
bias [24].

6 Conclusion

We introduced the Maximum-Variance optimisation to build Maximum-Variance portfolios that capture as
purely as possible the di�erent signals used for extracting risk premia. We introduced the factor correlation
level that the Maximum-Variance portfolio is optimising at any time scale. The Sharpe ratio under certain
assumptions is also optimised and Maximum-Variance portfolios capture as best as possible the de-noised
eigenvalues of the correlation matrix. An empirical test con�rms the improvement from 5 minutes to 100
days time scales. The Maximum-Variance optimisation could therefore be used to reduce the dimension and
to model and �lter in a proper way the correlation matrix. The Maximum-Variance optimisation opens new
problems to solve in the model of the correlation matrix around the dynamics and time scale dependency of
eigenvalues and eigenvectors.

7 Acknowledgements

A PCA and Linear Regression

General idea

In this appendix we elaborate the connection between the principal component analysis (PCA) and the (or-
dinary, weighted or generalized) least squares approaches in a linear regression model. The results presented
here appear rather scattered in the literature.

Let Z be an m× n matrix for m > n. We present it in a form

Z = xyT +E , (58)
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Figure 10: Cumulated gains at the same volatility for the Momentum, Beta and Book factors (top), and for
the Liquidity, STR and Cash factors (bottom) from 2000 to May 2018. The three graphs on the top cover
the most popular risk premia: Beta for quality, Momentum for trend-and-growth and Book for value. These
factors were shown to be signi�cantly pro�table, but on a longer period (usually since 1960). The 2008
crisis generated exceptional losses to the beta and momentum factors that are not representative of a longer
historical period. Bottom: the most signi�cant factors on the period from 2000 to 2018: Liquidity, STR and
Cash. We tested the Maximum-Variance optimisation with MaxVar(1,6,9), MaxVar(0,6,9), MaxVar(2,6,9)
and BM-ERW(6,9). We see that the Maximum-Variance MaxVar(0,6,9) overperforms slightly for Beta fac-
tor but the Benchmark BM-ERW(6,9) overperforms slightly for Momentum and Book factors whereas the
Maximum-Variance is theoretically expected to be the optimal solution for the Sharpe ratio. Our interpreta-
tion is that the backtest is noisy and not signi�cant enough as the period is too short based on the weakness
of di�erent risk premia. Nevertheless the Maximum-Variance optimisation is con�rmed empirically when
risk premia is strong enough (Cash, STR and Liquidity factor) and if investors are convinced that a risk
premium could actually exist, they should use the FCL (empirical or theoretical) to determine the best way
to capture it.

where x and y are m-by-1 and n-by-1 vectors respectively, and the error matrix E has the same dimensions

as Z. There are two ways to minimise E. Either one �nds y = ymin that minimises Tr
(
ETMxE

)
for

given x and a symmetric positive-de�nite n × n matrix Mx, or x = xmin that does the same job for

Tr
(
EMyE

T
)
but this time for a �xed y and a di�erent symmetric positive-de�nite m×m matrixMy. If

theM 's are unit matrices, the two minimised quantities are identical and in both cases we have the ordinary
least squares (OLS), while for diagonal and general M 's we have weighted (WLS) and generalised (GLS)
least squares respectively. Starting (say) with x(0) we may determine y = y(0) that minimises the square

of E = Z − x(0)y
T, and then x = x(1) for E = Z − xyT(0), etc. Proceeding this way we will obtain the

sequence
x(0) → y(0) → x(1) → y(1) → x(2) → y(2) → · · · (59)

with the following recursive identities:

y(i) =
ZTMxx(i)

xT(i)Mxx(i)

and x(i+1) =
ZMyy(i)

yT(i)Myy(i)

. (60)
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Factor
λ

(0)
?

ρH

S S (· · · )− S(BM-ERW(6,9)) S (· · · )− S(MaxVar(1, 6, 9))
R2

MaxVar MaxVar MaxVar MaxVar MaxVar MaxVar MaxVar MaxVar

(1,6,9) (1,6,9) (1,6,9) (0,6,9) (2,6,9)
(1,6,9,
Beta)

(1,6,9,
Book)

(1,6,9,
Size)

10Y Rates 8.10 0.95 -0.20 -0.02 -0.03 -0.04 -0.02 -0.05 -0.24 0.01

Beta 7.63 0.96 0.34 -0.07 0.02 -0.02 -0.00 -0.24 -0.46 0.05

Momentum 6.10 0.97 -0.23 -0.12 -0.12 -0.08 -0.02 0.03 -0.04 0.01

Capitalisation 5.14 0.96 1.44 -0.15 -0.33 -0.23 -0.11 -0.58 0.00 0.01

Dividend 4.28 0.95 -0.22 -0.05 0.04 -0.04 -0.00 -0.00 1.01 0.00

Euro 3.85 0.95 0.40 0.05 0.12 0.08 0.00 -0.06 0.16 0.00

Liquidity 3.70 0.94 0.77 0.17 0.16 0.15 -0.14 -0.39 0.01 0.08

Book 3.53 0.93 0.51 -0.13 -0.24 -0.19 -0.05 0.00 -1.34 0.01

STR 3.44 0.96 1.89 0.07 0.13 0.10 0.01 0.05 -0.31 0.05

Sales 3.35 0.94 -0.07 0.08 0.26 0.13 0.07 0.50 0.98 0.07

Leverage 2.05 0.89 0.46 0.05 0.04 0.08 0.00 0.05 -0.73 0.03

Earning 2.04 0.91 0.52 -0.04 0.03 0.04 0.00 0.01 0.61 0.00

Cash 1.79 0.89 1.13 0.01 -0.22 0.00 0.00 -0.35 -0.17 0.01

Growth 1.24 0.91 0.27 -0.04 -0.02 0.01 0.00 0.00 0.11 0.00

Table 13: Di�erence in the Sharpe ratios between the Maximum-Variance and the benchmark portfolios (see
Table 2) from 2000 to April 2018. ρH is the correlation between returns that are very high. Maximum-
Variance and the 20% top-bottom are therefore highly correlated. The Sharpe ratio is statistically not
signi�cant for most factors except for STR (without cost), Cash and Liquidity. Capitalisation's Sharpe ratio
is overestimated as it su�ers from the survival bias of our data. According to the literature (see Table 14
for a partial list of references) shows that for a much longer period (around 50 years) Book, Momentum and
Capitalisation are the main signi�cant risk premia even if there is no consensus on these anomalies that
appear to be very sensitive to the normalisation method (see the discussion in the very end of Section 4.2).
The di�erences between the empirical Sharpe ratios are statistically insigni�cant (below one sigma) as the
period is too short and as risk premia are too weak. The last column presents the R2-coe�cient of the

linear regression between the monthly variations of λ
(0)
? (MaxVar(1, 6, 9)) and the monthly factor returns.

The connection between these coe�cients and the leverage e�ect for all these factors was covered in Section
4.4.2.

Eliminating x we arrive at the relation between y(i+1) and y(i):

y(i+1) = κ(i) ·ZTMxZMyy(i) , where κ(i) ≡
yT(i)Myy(i)

yT(i)MyZ
TMxZMyy(i)

. (61)

With a little algebra it can be shown that the sequence (59) converges to:

x? =
ZM

1
2
y vi

vTi vi
y? = M

− 1
2

y vi , (62)
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Figure 11: Measure of the �rst eigenvalue of the correlation matrices of the covariance matrix h, γ and
γγγ−

1
2hγγγ−

1
2 . A random selection of factor with µ = 1.4 generates an �rst eigenvalues of 7.52 for the correlation

matrix of h and 3.15 for the correlation matrix of γ in agreement with the graph. The �rst eigenvalue of
the average correlation matrix h and γ are only slightly di�erent ( 6.13 and 2.6). We can guess that the

dynamics of the �rst eigenvalue of the correlation matrix of γγγ−
1
2hγγγ−

1
2 appears to be linked to the dynamics

of the �rst eigenvalue of the correlation matrix of the returns of the signal stocks. When the stock market
gets stress, the volatility increases, the �rst eigenvalue of the correlation matrix of single stock returns and
the �rst eigenvalue of the correlation matrix of γγγ−

1
2hγγγ−

1
2 increase meaning that the fundamentals factors

tend to become more volatile and more correlated when market is stressed.

where vi is the ith eigenvector of the matrixM
1
2
yZ

TMxZM
1
2
y , and its norm is �xed by the choice of x(0).

17

It is very important to notice that (62) implies

EMyy? = 0 and xT?MxE = 0 . (63)

The relation to PCA becomes explicit if we replace M 's by the identity matrices: xyT is just the ith
term of the PCA expansion of Z,

(
λiviv

T
i

)
/
(
vTi vi

)
, where λi is the ith largest eigenvalue of ZTZ (and

therefore also of ZZT) and vi is the corresponding eigenvector of ZTZ.

The Market Mode

To reproduce (3) and (4) one has to set (m,n) = (T,N), (Z)ti = ri(t) as well as Mx = T−1IT and
My = ΓΓΓ−1. Then plugging x(0) = rm(t) and i = 0 into (60) we arrive at y(0) = βββ and then x(1) = rm? (t)
exactly as in the two formulae. The only di�erences are the conditional expectation in (3) replaced here by
the regular mean, and the fact we used time-dependent betas in (4) rather then constant ones like here.

17Notice that the square root of My is well-de�ned since this matrix is positive-de�nite.

43



The Two-Factor Model Loadings

To �nd bi in the Two-Factor model (11) using the linear regression we need the �rst equation of (60) for
i = 0 with (Z)ti = ri(t)− βirm? (t), Mx ∝ IT , x0 = rf(t) and y0 = b. This leads to

bi =

T∑
t=1

(ri(t)− βirm? (t)) rf(t)

T∑
t=1

(rf(t))
2

=
(
Σf
)−2 〈

(ri − βirm? ) rf
〉
. (64)

The market-neutrality
N∑
i=1

βibi = 0 follows directly from (3) and (4) .

B Styles

In Table 14 we provide a brief description of all the �nancial styles used in the paper. The sectoral factors
are presented in the next appendix.

C Maxima, minima and saddle points

Let M be an N × N positive matrix, (`i,vi) its sorted (`1 > `2 > · · · > `N ) eigenvalue/eigenvector pairs
and Hi be the Hessian matrix of the Lagrangian

L (v) =
vTMv

vTv
(65)

computed at a local optimal point v = vi. We search for the signature of Hi. Substituting v + viδv into
the Lagrangian one can easily see that

L (v) = `i +
1

vTi vi
· δvT (M − `i · IN ) δv +O

(
δv3
)
, (66)

where as expected the linear term vanishes upon Mvi = `ivi. It immediately follows that the signature is:


−1, · · · ,−1︸ ︷︷ ︸

i−1

, 0, 1, · · · , 1︸ ︷︷ ︸
N−i


 . (67)

Here the �at direction corresponds to δv ∝ vi. We conclude that v = vi is a maximum (minimum) only for
i = 1 (i = N). For any other 1 < i < N the solution v = vi is a saddle point.

The derivation generalises trivially for the constrained eigensystems of Appendix D. Instead of δv one
has to consider P cδu, and replace M by P cMP c.

D Constrained eigensystems

Let us search for an eigensystem (eigenvectors and eigenvalues pairs) of an n × n symmetric non-singular
matrixM , that is vTMv is optimised, under an additional constraint vTc = 0 for a unit vector c, cTc = 1.
It was shown in [42] that the (n−1) constrained eigenvalues ofM will coincide with the non-zero eigenvalues
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Style De�nition
Long/Short
high/low

Literature

Dividend Yield
Annual dividend income per share
divided by the current share price

↗ [68]

Capitalisation
Total market value of
a company's shares

↘ [1, 17]

Liquidity
Volume of transaction in

value divided by Capitalisation
↘

[69, 70, 71, 72, 73,
74, 75]

Short-term
Reversion (STR)

Short-term reversal based on a
20 days moving average of returns

↗ [76]

Momentum
Based on the last

12 months-1 month moving average
↗ [21]

Beta
Based on the 90 days regression
on daily returns using the SP500

↘
[13, 77, 78, 19, 79,
80, 81, 82, 83]

Leverage Debt to Equity ↗ [84, 85]

Book Book to Price ratio ↗ [1]

Cash Cash to Price ratio ↗ [86, 87, 88]

Earning Price to Earning ratio ↗ [18, 89]

Growth
One year change of Earning

divided by Equity
↗ [90]

Euro
Price sensitivity to

the weekly change in Euro/dollar
based on the last 200 days

↗ [91]

Rates
Price sensitivity to the weekly

change in 10 years US Bond yield
↘ [92]

Sales Sales to Price ratio ↘ [89, 93, 94, 95]

Table 14: summary of the basic information about the styles (non-sectoral factors) used in this paper. Apart
from the de�nition and the relevant references we also present the long/short strategy. Our notations are as
follows: ↗ stands for long high & short low and↘ for long low & short high.

of the matrix P cMP c, where P c = In−ccT is the projection matrix into the subspace of vectors orthogonal
to c. Moreover, if u is an eigenvector of P cMP c with a non-zero eigenvalue `, then P cu is necessarily an
eigenvector of P cM with exactly the same eigenvalue `.
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To prove this statement one starts with a Lagrangian (see (1.4) of [42]):

L (v,Λ1,Λ2) ≡ vTMv − Λ1

(
vTv − 1

)
+ 2Λ2v

Tc , (68)

where Λ1 and Λ2 are the Lagrange multipliers ensuring the normalisation of v and the orthogonality of c
respectively. From the equations of motion with respect to the three variables one �nds then that

P cMv = Λ1v , (69)

where P c is the projection operator satisfying (P c)
2

= P c. This guarantees that the eigenvalues of P cM
coincides with those of P cMP c (recall that for any two square matrices A and B, the eigenvalues of AB
coincide with those of BA.) We see, therefore, that Λ1 is a constrained eigenvalue of M . Moreover, v in
the last equation might be written as P cu, where u is a standard eigenvector of P cMP c.

In Appendix A we discussed linear regressions with the cost functions Tr
(
ETMxE

)
and Tr

(
EMyE

T
)
.

It can be easily extended to the cost function minimisation under a given constraint, that is to say to the
constrained WLS: the eigenvector vi in (62) will be simply replaced by a constrained eigenvector of the

matrix M
1
2
yZ

TMxZM
1
2
y . This is directly related to the Maximum-Variance portfolio of Section 2.5, where

we had Mx = I, My = ΓΓΓ−1 and ZTZ = H.

E The Maximum-Variance Market-Mode portfolio

One way to exploit the approach of Section 2.3 is to treat the market mode as a factor. To this end we may
replace bi and r

f in (11) by βi and r
m
? respectively and drop the βir

m
? term on the left-hand side. This way

we �discover� the Capital Asset Pricing Model (CAPM): ri(t) = βrm? (t) + ε(t)i. As we have discussed above,
it is related to the PCA analysis of the correlation matrix.

Proceeding as above we arrive at the Maximum-Variance market-mode portfolio:
(
ωm?

(0)
)
i
∼ Σ−2

i βi . (70)

As we have already mentioned below (4), the return of ωωωm?
(0) is equal to rm? (t). The fastest way to obtain

(70) is to replace bi by βi in (20) and to omit the irrelevant part of the market-neutrality projection.

It is worth to compare ωωωm?
(0) with other market portfolios proposed in the literature. In [10] the 1-factor

model was used to introduce Minimum Variance and Maximum Diversi�cation portfolios. The former is
the optimal Sharpe ratio portfolio under the assumption that the expected stock returns are identical and
positive. Maximum Diversi�cation, on the other hand, is Sharpe-optimal if we assume that the expected
returns are proportional to their volatilities. The Minimum Variance and Maximum Diversi�cation portfolios
may contain only long positions, although this condition is weak as all betas are close to one (see below).
We will show later that the Maximum-Variance portfolio has the optimal Sharpe ratio if the expected
returns are proportional to their betas, which is akin to the e�cient market hypothesis, and if the residual
return volatilities (Σi) and the stock volatilities are proportional. The latter is a meaningful and robust
approximation that avoids problematic concentration due to fallacious correlation [40]. Table 15 brings
together the three portfolios.

F Sectors

In Table 16 we report all Sectors and Industries of the Global Industry Classi�cation Standard (GICS) used
to construct the sectoral factors and the clusters as outlined in Subsection 3.4.
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Maximum Diversi�cation Minimum Variance Maximum-Variance





Σi
σ2
i

(
1− βiΣ

m

ΣiρL

)
if

βiΣ
m

ρLΣi
< 1

0 otherwise





1

σ2
i

(
1− βi

βL

)
if

βi
βL

< 1

0 otherwise

(
ω?

m(0)
)
i

=
βi

Σi
2

Table 15: Summary of the weights of the two portfolios proposed in [10] (the �rst two columns) and the one

de�ned by (70). Notice that the
(
ω?

m(0)
)
i
> 0 restriction does not a�ect many stocks. The parameters ρL

and βL are �xed from the Sharpe ratio optimisation, see [10]. The Minimum and the Maximum-Variance
portfolios are invested in the low-beta and the high-beta stocks respectively. In these two portfolios the
weights are inversely proportional to the square of volatilities, though for Minimum Variance these are the
volatilities of the residual returns. Thus the Minimum and the Maximum-Variance portfolios can be seen as
complementary.

Sector Industry GICS Cluster

1 Energy
1 Energy Equipment & Services 101010 1

2 Oil Gas & Consumable Fuels 101020 1

- Materials 3

Chemicals 151010 1

Construction Materials 151020 1

Containers & Packaging 151030 1

Paper & Forest Products 151050 1

4 Metals & Mining 151040 1

2 Industrials

5

Aerospace & Defence 201010 2

Building Products 201020 2

Electrical Equipment 201040 2

Trading Companies & Distributors 201070 2

6 Machinery 201060 2

7
Commercial Services & Supplies 202010 3

Professional Services 202020 3

8

Air Freight & Logistics 203010 3

Airlines 203020 3

Marine 203030 3

Road & Rail 203040 3

9 Transportation Infrastructure 203050 3

To be continued
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Sector Industry GICS Cluster

3
Consumer

Discretionary

10
Auto Components 251010 3

Automobiles 251020 3

11

Household Durables 252010 3

Leisure Products 252020 3

Textiles, Apparel & Luxury Goods 252030 3

12
Hotels, Restaurants & Leisure 253010 3

Diversi�ed Consumer Services 253020 3

13 Media 254010 3

14

Distributors 255010 3

Internet & Direct Marketing Retail 255020 3

Multiline Retail 255030 3

Specialty Retail 255040 3

4
Consumer
Staples

15 Food & Staples Retailing 301010 4

16

Beverages 302010 4

Food Products 302020 4

Tobacco 302030 4

17
Household Products 303010 4

Personal Products 303020 4

5 Health Care

18

Health Care Equipment & Supplies 351010 4

Health Care Providers & Services 351020 4

Health Care Technology 351030 4

19

Biotechnology 352010 4

Pharmaceuticals 352020 4

Life Sciences Tools & Service 352030 4

6 Financials

20
Banks 401010 5

Thrifts & Mortgage Finance 401020 5

21

Diversi�ed Financial Services 402010 5

Consumer Finance 402020 5

Capital Markets 402030 5

22 Mortgage Real Estate Investment Trusts (REITs) 402040 5

23 Insurance 403010 5

7
Information
Technology

24
Internet Software & Services 451010 6

IT Service 451020 6

25 Software 451030 6

26

Communications Equipment 452010 6

Technology Hardware Storage & Peripherals 452020 6

Electronic Equipment Instruments & Components 452030 6

27 Semiconductors & Semiconductor Equipment 453010 6

To be continued
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Sector Industry GICS Cluster

-
Telecommunication

Services
28

Diversi�ed Telecommunication Services 501010 4

Wireless Telecommunication Services 501020 4

8 Utilities 29

Electric Utilities 551010 4

Multi-Utilities 551030 4

Water Utilities 551040 4

Independent Power and
Renewable Electricity Producers

551050 4

9 Real Estate 30
Equity Real Estate Investment Trusts (REITs) 601010 5

Real Estate Management & Development 601020 5

Table 16: The �rst two columns on the left describe the nine GICS sectors used for all but the MaxVar(1,6,30)
method, see Table 2. The next two columns contain the 30 industries used to build the sectoral factors of
MaxVar(1,6,30). The last column marks the six clusters employed in all but the MaxVar(1,1,9) method,
which has no clustering.

G Proof of optimal capture of eigenvalues

Let us denote by λi(M) the i-th largest eigenvalue of a n× n Hermitian matrix M . In other words,

λ1(M) > λ2(M) > · · · > λn(M) .

In this appendix we demonstrate that:

λk

(
ΓΓΓ−

1
2DhDΓΓΓ−

1
2

)
6 λk

(
ΓΓΓ−

1
2hΓΓΓ−

1
2

)
for any k = 1, . . . ,K . (71)

To remind the reader, h is a covariance matrix (and so by de�nition positive de�nite), ΓΓΓ is a correlation
matrix, and �nally D is a diagonal matrix whose (real) entries belong to the range (0, 1], or 0 < λk (D) 6 1,
but as we will see below this might be replaced by a weaker condition 0 < |λk (D)| 6 1, while D does not
have to be diagonal, but rather only symmetric.

According to Lidskii [96] the following holds for two arbitrary n × n positive semide�nite Hermitian
matrices U and V :

l∏

s=1

λis (UV ) 6
l∏

s=1

λis (U)λs (V ) , (72)

with any
1 6 i1 6 · · · 6 il 6 K and l = 1, . . . ,K . (73)

In particular, for l = 1 this theorem implies that

λi (UV ) 6 λi (U)λ1 (V ) for any i = 1, . . . , n . (74)

We now apply this inequality for U = ΓΓΓ−
1
2hΓΓΓ−

1
2 and V = ΓΓΓ

1
2DΓΓΓ−1DΓΓΓ

1
2 :

λi

(
ΓΓΓ−

1
2DhDΓΓΓ−

1
2

)
=λi

(
hDΓΓΓ−1D

)
=

=λi

(
ΓΓΓ−

1
2hΓΓΓ−

1
2 ·ΓΓΓ 1

2DΓΓΓ−1DΓΓΓ
1
2

)
6 λi

(
ΓΓΓ−

1
2hΓΓΓ−

1
2

)
λ1

(
ΓΓΓ

1
2DΓΓΓ−1DΓΓΓ

1
2

)
. (75)
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K = 2 ITPCSR 2-Step K = 1 TPCSR (OLS) 2-Step K = 1 TPCSR (WLS)

ωf
(0)
? bi −

N∑
k=1

bkβk

N∑
k=1

β2
k

βi bi −

N∑
k=1

bkβk

N∑
k=1

β2
k

βi Σ−2
i


bi −

N∑
j=1

bjβjΣ
−2
j

N∑
k=1

β2
kΣ
−2
k

βi




ωm(0)
? βi −

N∑
k=1

βkbk

N∑
k=1

b2k

bi βi Σ−2
i βi

Table 17: The weights of the market (second line) and all other styles/factors (�rst line) in di�erent ap-
proaches.

Here we used the fact that for two square non-singular matrices A and B, the eigenvalue spectra of AB
and BA are always identical. To complete the proof we notice that:

λ1

(
ΓΓΓ

1
2DΓΓΓ−1DΓΓΓ

1
2

)
6
(
λ1

(
ΓΓΓ

1
2DΓΓΓ−

1
2

))2

= (λ1 (D))
2 6 1 , (76)

where in the �rst inequality we used (74) once more.

H Comparison with Other Cross-Sectional Regressions

Two-pass cross-sectional regression (TPCSR) was frequently used to estimate the optimal factor loadings
and weights from a general K-factor model. Recall that in our treatment we have K di�erent two-factor
models (11). Here we would like to outline the similarities and the di�erences between TPCSR and our
model.

A good starting point is to notice that the model (11) might be re-written as r = BTRf+εεε, where BT =
(βββ, b) is the (N, 2)-matrix of style loadings (market and a single style from our set of styles), Rf =

(
rmi , r

f

i

)

is the (2, T )-matrix of factor returns, and εεε are the idiosyncratic returns. These matrices can be trivially
generalised to capture K > 2 di�erent factor/styles. The matrices B and Rf will then be of size (K,T )
and (K,N) respectively. With these conventions, TPCSR consists of recurrent time- and cross-sectional
regressions. Starting from a given set of factor returns (for example, with rb.m.

i (t)) one �xes the factor
loadings with the OLS linear regression of the time series, ri(t) against R

f. At the second step the B-matrix

is used to determine a new matrix of factor returns, Rf′, by means of the cross-sectional (cross-factorial
to be more precise) OLS linear regression. One can repeat these two-step procedure inde�nitely, in which
case the model goes under the name ITPCSR. As was pointed out in [97], the iteration has a �xed point,
where the factor returns converge to the K �rst eigenvectors (the eigenvectors corresponding to the K largest
eigenvalues) of the N ×N covariance matrix. This is just a K > 1 generalisation of the PCA decomposition
discussed in Appendix A.

The loadings B
(0)
? of our model de�ned in Section 2.5 might be seen as a two-stage implementation of

the K = 1 version of ITPCSR construction with the market-neutrality constraint.

• For a short time scale of 90 days, we use an exponential moving average of the K = 1 version of
ITPCSR to determine the betas. In practise we do not repeat the iteration in order to get the beta
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with respect to the stock index return, rm(t), rather than with respect to the Maximum-Variance
market mode portfolio return, rm? (t). It enables to take into account the variation of β(t), which is an
important feature of �nancial markets [98]. It was shown in [87] that time-varying beta makes the low
volatility anomaly disappear, thus improving the empirical validation of the CAPM. Our methodology
supports a time-varying beta which is not the case of multi-factorial ITPCSR that needs more data
than 90 days in order to estimate as precisely as possible the eigenvectors.

• At the second stage, for a long time scale of several years, we applied K = 1 version of ITPCSR with
market-neutrality constraint. This second ITPCSR when using a WLS instead of OLS and aggregation
of similar stocks into Q = 10 di�erent portfolios lead to the �rst constrained eigenvector of matrix

γ̃γγ
− 1

2 h̃γ̃γγ
− 1

2 (demonstrated in Appendix D). We will thus refer to our approach as the two-stage K = 1
version of ITPCSR.

Let us address the following crucial points:

• We used the WLS instead OLS, since it �ts better with the heterogeneity of the stock volatilities and
correct the e�ect of the heteroscedasticity. This can be seen in the Σ2 factors in (20).

• The �xed point portfolio corresponds to the Maximum-Variance portfolio if the signal is strong enough
(λ(0)

(
ωωωb.m.

)
should be high enough).

• In Table 17 we summarize the weights obtained using the standard K = 2 ITPCSR applied to the
market and an additional factor (�rst column), and the weights derived using our method with the
OLS linear regression (second columns) and the WLS (last column). Di�erent versions give similar
weights except that WLS is inversely proportional the variance and that in the 2 step K = 1 case the
weights for the market mode is not interfering with the signal. By keeping K = 1 at every step we
avoided mixing between the market return and the given style return. The K = 2 TPCSR with the
same factor and the market mode will loose all the information about the original signal of this style
after the �rst few iterations. In our approach, however, the factor return is kept mark-neutral at every
iteration with equivalent weights to every stock in the same quantile, and thus the �xed point return
and the sensitivity will preserve connection to the initial signal input. Even more importantly, the
market weights, the betas, will not be a�ected at all at the second step.

• We obtain factors which are market-neutral with respect to the value-weighted stock index, while
the factors of [97] for K = 2 (the market and an additional factor) become, after su�ciently many
interactions, neutral with the respect to the �rst component of the covariance matrix.

• For K � 1 (including K = 24) the iterative procedure of [97] fails to incorporate the grouping of stocks
into quantiles. For instance, Q = 10 necessitates 10K di�erent portfolios. This is in contrast with our
approach, since we group stocks separately for each factor and so there are overall K × Q portfolios.
As a result, the iteration can converge only to the noisy eigenvalues of the N ×N correlation matrix,
while quickly losing connection to the initial �nancial information.

To conclude, the input of the initial benchmark portfolio is washed away in the iterative process of linear
regressions that yield to a solution that is �nally not optimal. As a consequence the only available solution
is the benchmark portfolio. Even if it is not optimized, ωb.m. remains the reference method to capture
�nancial signals. As an example, in the mainstream Fama-French framework ωb.m. is implemented in its
equal-weighted and neutral in nominal:

∑
i ωi = 0 instead of

∑
i βiωi = 0.

51



I Conditional and unconditional estimates based on the EMA

Estimating conditional volatilities and beta based on daily returns

To estimate the matrices γγγ(t), h(t) and all other matrices we have �rst to �nd the volatilities Σi(t) and
the betas βi(t). As we discussed in the main text, we aim to estimate the conditional values referred to in
Section 2.1 as Et−1 (· · · ). The best way to do this is to average the time-dependent variables over the period
[t, t−∆t]. The better practice is, however, to use the exponential moving average with α = ∆−1 instead of
the moving-window. Although it cannot account for all the delays, this approach still provides a good proxy
for the conditional values.

We determine the variances with α−1
Σ2 = 40 days, and then use the conditional volatility of the stock

index to estimate the betas with α−1
β = 90 days:

Σ2
i (t+ δt) = (1− αΣ2) ·Σ2

i (t) + αΣ2 · r2
i (t)

βi (t+ δt) = (1− αβ) · βi (t) + αβ ·
ri (t) rm (t)

Σm2 (t)
.

(77)

Here δt = 1 day and respectively all the returns are daily. We neglected the daily mean of the returns and
used the same moving average to �nd the volatility index as for the single stocks:

(Σm)
2
i (t+ δt) = (1− αΣ2) · (Σm)

2
i (t) + αΣ2 · (rm)

2
i (t) . (78)

Estimating h and γγγ for di�erent time scales based on daily returns

In this appendix we outline the algorithm to approximate the unconditional values of the matrices h(τ) and
γγγ(τ) at di�erent time scales τ from 1 day to 100 days. We will write down a single generalised formula that
covers all the instances of these matrices discussed in this paper. The main di�erences between the instances

are the portfolio weights, for example vvi of Section 2.5 or ωωω
(1)
? of Section 2.4. Below we denote the portfolio

weights simply by ωAi(t). As before the i index stands for the single stocks, whereas the capital letters
indices should be replaced depending on the case at hand. For example, for the calculation of Section 2.4
one needs the factor indices, meaning A,B, · · · → a, b, · · · , and the matrices h(τ) and γγγ(τ) are accordingly
K ×K.

First, recall that the Maximum-Variance (20) as well as the benchmark weights (9) are well-de�ned only
up to an overall time-dependent normalisation. This issue was already mentioned at the end of Section 4.2.
For the purposes of this section we keep constant the following quantity:

N∑

i=1

ω2
Ai(t)Σ

2
i (t) . (79)

Notice that the normalisation constant is the same for all t and A.
Second, we introduce two sample means, the mean return of portfolio A and the mean (market-neutral)

return of all single stocks:

r̂i(t) = ri (t)− η · βi(t)rm (t) µA ≡
1

T

T∑

t=1

N∑

i=1

ωAi (t) r̂i(t) r =
1

TN

T∑

t=1

N∑

i=1

ri (t) . (80)
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In all cases but one we set η = 0. With these formulae we de�ne the following two auxiliary functions:

EhAB (t, τ) ≡
t∑

t′=t−τ

(
N∑

i=1

ωAi (t′) r̂i(t
′)− µA

)
t∑

t′=t−τ

(
N∑

i=1

ωBi (t′) r̂i(t
′)− µB

)

EγγγAB (t, τ) ≡
N∑

i=1

(
t∑

t′=t−τ
ωAi (t′) (ri (t′)− r)

)(
t∑

t′=t−τ
ωBi (t′) (ri (t′)− r)

)
.

(81)

Here τ is the time-scale used to estimate the matrices, see, for example, Table 10. In other words, the
summation

∑t
t′=t−τ gives the accumulated portfolio return for the period [t− τ, t]. Notice also that all the

parentheses in (81) contain only zero-mean quantities.
Next, we use the exponential moving average with α−1

h,γ = 3τ−1 days to �smooth� these matrices:

ẼhAB (t+ δt, τ) ≡
(

1− αh,γ
τ

)
· ẼhAB (t, τ) +

αh,γ
τ
· EhAB (t, τ)

ẼγγγAB (t+ δt, τ) ≡
(

1− αh,γ
τ

)
· ẼγγγAB (t, τ) +

αh,γ
τ
· EγγγAB (t, τ) ,

(82)

where, again, δt = 1 day. We are �nally in a position to write down the expressions for h and γγγ:

hAB (τ) =
1

T

T∑

t=1

ẼhAB (t, τ)√
ẼγγγAA (t, τ) ẼγγγBB (t, τ)

γAB (τ) =
1

T

T∑

t=1

ẼγγγAB (t, τ)√
ẼγγγAA (t, τ) ẼγγγBB (t, τ)

(83)

Let us explain these formulae. The time-dependent matrices Eh and Eγγγ in (81) follow directly from the
de�nition of h and γγγ, and the EMA is the standard procedure to reduce the impact of extremely volatile
one-day returns. For Eγγγ the measurement noise is further weakened for large N , because, in contrast to Eh,
it has a single summation of the stock index. Regardless of the noise, the volatility is a rough stochastic
process close to the fractional Brownian motion [99]. This is precisely where the normalisation ((79) )becomes
important. For larger Σi(t)'s, it keeps the portfolio weights lower, reducing the crisis impact on Eγγγ . This
way the �nal results for h and γγγ are not overweighted by the contribution of large volatility periods. The
normalisation comes with a cost though. The conditional volatilities de�ned in (77) have a α−1

Σ2 = 40 days
delay that brings in an �arti�cial� volatility in both Eh and Eγγγ . To treat this problem, we can adjust
the normalisation. In (79) the weights were normalised by the diagonal matrix Γij = δijΣ

2
i . It therefore

makes sense to use Ẽγγγ for the last step normalisation, and this is precisely what the square roots in (83)
were introduced for. The procedure is similar to what is usually done to reduce the heteroscedasticity of
a stochastic volatility process: one divides the stochastic function by its standard deviation. The formulae
(83) can also be seen as weighted means over the entire time period. Since the product γγγ−1/2hγγγ−1/2 is
invariant under a simultaneous rescaling of the matrices h and γγγ, we do not have to divide by the sum of

the weights,
∑
t

(
ẼγγγAAẼγ

γγ
BB

)−1/2

. Finally, let us add a comment on αh,γ . The EMA of Eh is strictly speaking

unnecessary, as its impact becomes irrelevant after the t-averaging in (83). The EMA of Eγγγ , on the other
hand, is important as it changes the normalisation. As we wrote above, for large N the function Eγγγ(t, τ) is
not too noisy and so we keep αh,γ small compared to other EMA parameters, α−1

Σ2 and α−1
β .
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A,B, · · · ωAi(t) τ η

The �rst step
of the B?(q) evaluation

in Section 2.5
q, q′, · · · (31) one day 1

The second step
of the B?(q) evaluation

in Section 2.5
p, p′, · · ·

Maximum-Variance portfolio v(p)

derived from (20) and (35)
with B(q) found at the previous step

one day 0

Section 4
a, b, · · · Maximum-Variance portfolios (20) of

Table 2 with the universal law (43)

1, · · · , 100 days
(as in Tables

8, 9, 12 and 10)
day 0

a, b, · · · Benchmark portfolios (9)
of Table 2

1, · · · , 100 days
(as in Tables

8, 9, 12 and 10)
0

Table 18: Di�erent instances of applications of (83) in the paper.

Estimating h(t) and γγγ(t) based on 5-minutes returns

In this appendix we describe the computation of h(t), γγγ(t) and the correlation matrix both conditional

(time-dependent) and unconditional (time-independent).
We start with two successive EMA �lters:

ECij (t+ 5 min.) =
(

1− αC
72

)
· ECij (t) + αC · ri(t)rj(t)

ẼCij (t+ 1 day) = (1− αC) · ẼCij (t) + αCECij (t) ,
(84)

where α−1
C = 5days and we set the 72 factor because this is the average number of available 5-minutes

returns for one day. The �ve days averaging period is important because of the daily [100] and the weekly
[101] U-patterns of the return variation.

With ECij (t) at hand we calculate the conditional empiric correlation matrix as:

CEmp
ij (t) =

ẼCij (t)√
ẼCii (t)ẼCjj (t)

. (85)

The time-dependent eigenvalues of this matrix, λEmpi (t), appear in Figure 8, and the time-independent

eigenvalues, λEmpi , of the average of CEmp
ij (t), that is of

C
Emp
ij =

1

T

∑

t

CEmp
ij (t) (86)

are given in Table 5.
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To arrive at the conditional constrained eigenvalues λ(1)(t) we �rst de�ne

EhAB (t) ≡
N∑

i,j=1

ωAi(t)ẼCij (t)ωBj(t)

EγAB (t) ≡
N∑

i=1

ωAi(t)ẼCii (t)ωBi(t) .

(87)

Here ωAi(t) are the weights from the last two lines of Table 18. We assume that they evolve weakly compared
to the returns. This simpli�es the formulae greatly. We then proceed to the third and �nal EMA:

ẼhAB (t+ 1 day) = (1− αC) · EhAB (t) + αC · ẼhAB (t)

ẼγγγAB (t+ 1 day) = (1− αC) · EγγγAB (t) + αC · ẼγγγAB (t) ,
(88)

Finally, the matrices we are interested in, follow from ẼhAB and ẼγγγAB similarly to (83):

hAB(t) =
ẼhAB(t)√
ẼγγγAA(t)ẼγγγBB(t)

γAB(t) =
ẼγγγAB(t)√
ẼγγγAA(t)ẼγγγBB(t)

(89)

The dynamics of the eigenvalues of γγγ−
1
2 (t)h(t)γγγ−

1
2 (t) is shown on Figure 8 and the time-independent eigen-

values of
1

T

∑

t

γ
− 1

2

ik (t)hkl(t)γ
− 1

2

lj (t) (90)

are listed in Table 5.
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Abstract

The dependence of correlations on time scales larger than a week is di�cult to

measure due to insu�cient data and strong noises. Here, such measurements are made

possible by reducing the size of the correlation matrix to 24 risk factors. We observe that

correlations continue to grow signi�cantly. We propose a model for autocorrelation of

increments of various risk factors that reproduces the scaling e�ect. While this model

presents some ine�ciencies that are more subtle than the alternative risk premia, it

seems to be more robust.

1 Introduction

Valeyre, Grebenkov and Aboura (2018) measured and modeled a simple lead-lag e�ect on
correlations at time scales from 1 minute to 1 day. However, such a measurement became
too noisy above the 1 day time scale. This problem is well explained by the random matrix
theory (Laloux et al. (1998)). Valeyre et al. (2018) proposed a practical solution of this
problem by reducing the size of the correlation matrix to 24 major risk factors that reproduce
the largest eigenvalues and their dynamics. This solution allows one to reduce noises and
con�rms the Epps e�ect up to the horizon of one year. The Epps e�ect (Epps (1979)) was
observed initially only at the intraday time scales as noises were too problematic at daily
scales. In our study, we model this e�ect di�erently by introducing an autocorrelation term
into the returns of risk factors. This term of positive autocorrelations can be explained by
a herd behavior of investors (Guedj and Bouchaud (2005); Michard and Bouchaud (2005);
Cont and Bouchaud (2000); Wyart and Bouchaud (2007); Lux and Marchesi (1999)) and by
lack of market liquidity implying that a move of market takes some time as an investor needs
time for his transaction being executed. We rely on the model developed by Grebenkov and
Serror (2014) that describes autocorrelations between di�erent stock indices and explains the
performances of trend following strategies and CTA funds over two centuries (Lemperiere
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et al. (2014)). This model of autocorrelation represents an ine�ciency that is more subtle
but also more robust than than the alternative risk premia. Harvey and Liu (2015) listed
316 potential factors from 313 articles published since 1967. The majority of these factors
overlap with each other. Fama and French (2015) proposed a 5-factor model (size, book, cash,
momentum et accrual). In order to justify such alternative risk premia (lack of liquidity,
asymmetry), the �nancial theories are revised because these anomalies tend to disappear
after their publication. McLean and Ponti (2015) propose multiple explainations: the bias in
sample, along with problems in optimization and adaptation to markets. To our knowledge,
no prior works attempted to reveal autocorrelations of risk factors that may present an
ine�ciency that is more subtle but also more robust in �nancial markets. Strategies based
on factor timing are however well documented but do not use only trend indicators and
there is not consensus about their robustness and pro�tability (Asness (2016); Lee (2017);
Bender et al. (2018); Bass, Gladstone et Ang (2017); DeMiguel et al. (2017); Hodges et al.

(2017); Dichtl et al. (2018); Brandt, Santa-Clara et Valkanov (2009)). Our autocorrelation
model could support the pro�tability of strategies using a factor timing based on trend
following signals.

2 Model and measures

We project the correlation matrix between single stocks onto the optimized subspace of 24
maximum variance portfolios introduced in Valeyre et al. (2018). The eigenvalues of the
full correlation matrix, called �unconstrained eigenvalues�, are then close to the �constrained
eigenvalues� of the projected matrix C(τ) = γ

−1/2
0 h0(τ)γ

−1/2
0 . Here h0 and γ0 are the 24×24

covariance and overlap matrices of 24 factors that were also introduced in Valeyre et al.

(2018). τ is the time scale. We suppose that only the correlations between stocks depend on
the time scale, whereas the matrix γ0 and stocks' volatilities do not depend on τ . We also
suppose that the correlation between factors (Corrcov(h0(τ))) does not depend on τ (see
the plot on Fig. 1(bottom, right) that partly validates this hypothesis).

We suppose that there is an inertia in the returns of the Maximum variance portfolios
that represent the main elements of the systematic trading. This inertia can be explained
either via the herding e�ect, or by lack of liquidity. We start from the autocorrelation
model developed in Grebenkov and Serror (2014) but apply it directly to the returns of the
Maximum variance portfolios which are normalized in such a way that the diagonal elements
of the matrix γ(t) are equal to 1 in every time moment. Denoting rkt the return of the k-th
factor at day t, we get

rkt = εkt + κk

t∑

i=−∞
(1− χ)t−1−i ξki (1)
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where ε and ξ are Gaussian random variables without autocorrelation. One can show that

C(τ) = γ
−1/2
0 V −1/2τ∞ h0(1)V

−1/2
τ∞ γ

−1/2
0 (2)

where Vτ∞ is a diagonal matrix where every element in the diagonal is derived from Eq. (9)
of Grebenkov and Serror (2014):

Vk(τ) = 1 +
2 (1− χ) [κ0k]

2

χ (1 + [κ0k]
2)

(
1− 1− (1− χ)τ

τχ

)
(3)

with
κk = κ0k

√
χ (2− χ) (4)

One can show that the eigenvalues at the time scale τ correspond to the eigenvalues at
time scale of 1 day multiplied by the same coe�cient Vτ∞ if all the factors have the same
autocorrelation κk = κ.

The problem is getting more complicated when some factors are more correlated than
the others. It seems to be the case as the sectorial factors are less cross-correlated than the
style factors. This changes the eigenvectors as well:

• The measures (see Fig. 1) rely on the methods introduced in Valeyre et al. (2018)
to estimate the returns of the maximum variance factors, γ0(τ) and h0(τ), then C(τ).
One can use the method introduced in Grebenkov and Serror (2014) to estimate the
variograms. However, the variagrams estimated from 20 years of historical daily data,
are very noisy. The di�erences in measurement among factors are in agreement with
the noise. On average, they show that the factor returns are positively correlated. The
FCLs, introduced in Valeyre et al. (2018), increase for style factors but remain stable
for sectorial ones. Finally, the eigenvalues increase with the time scale. The ranking
of style factors according to their FCL is very sensitive to the time scale (see Fig. 3).
Note that the Book and Capitalization factors appear in the 4th and 5th places after
the Beta STR and Momentum factors, whereas they were ranked to be less relevant at
the time scale of one hour.

• The simulation of the model (Fig. 2) is based on the matrices γ0 et h0 generated
randomly only once by the method described in section 2.8 of Valeyre et al. (2018)
from the empirical eigenvalues of the averaged correlation matrix of daily returns. The
style and sectorial factors are generated randomly only once, with κ0 = 0.08 for 13
style factors and κ0 = 0 for 9 sectorial factors. One �xes χ = 0.011 to reproduce the
measurements correctly. It turns out that the parameters correspond also to the model
of autocorrelation of the DowJones index that could be estimated accurately due to
its 120 years of data, see Grebenkov and Serror (2014).
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Figure 1: Top left: measurement of the variograms of the style factors; Top Middle: FCLs
of sectorial factors that do not increase (i.e., these factors are just weakly autocorrelated);
Top Right: FCLs of style factors that grow, particularly, the book factor by Fama and
French that arrives at the 5-th place at long time scales (strong herding); Bottom left:
constrained eigenvalues; Bottom Middle: constrained eigenvalues without the largest one.
One can see that correlation keep strongly growing with the time scale; Bottom right: the
�rst eigenvalue of Corrcov(C) that is equivalent to 1 + 24ρ(τ)2 with ρ(τ) being the average
correlation between factors.

3 Conclusion

The dependence of correlations on time scales larger than a week is di�cult to measure due to
insu�cient data and strong noises. Here, such measurements are made possible by reducing
the size of the correlation matrix to 24 risk factors. We observe that correlations continue
to grow signi�cantly. We propose a model for autocorrelation of increments of various risk
factors that reproduces the scaling e�ect. While this model presents some ine�ciencies that
are more subtle than the alternative risk premia, it seems to be more robust.
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Abstract

We present a reactive beta model that accounts for the leverage e�ect and beta elastic-

ity. For this purpose, we derive a correlation metric for the leverage e�ect to identify

the relation between the market beta and volatility changes. An empirical test based

on the most popular market neutral strategies is run from 2000 to 2015 with exhaustive

data sets, including 600 US stocks and 600 European stocks. Our �ndings con�rm

the ability of the reactive beta model to withdraw an important part of the bias from

the beta estimation and from most popular market neutral strategies. To examine the

robustness of the reactive beta measurement, we conduct Monte Carlo simulations over

seven market scenarios against �ve alternative methods. The results con�rm that the

reactive model signi�cantly reduces the bias overall when �nancial markets are stressed.

Keywords: Beta, Correlation, Volatility, Leverage e�ect, Market Neutral Strategies.

JEL classi�cation: C5, G01, G11, G12, G32.
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1 Introduction

Finding an appropriate measurement of market betas is of paramount importance for many
�nancial applications, including market neutral hedge fund managers who target a near-zero
beta. Contrary to common belief, perfect beta neutral strategies are di�cult to achieve
in practice, as the mortgage crisis in 2008 exempli�ed, when most market neutral funds
remained correlated with stock markets and experienced considerable unexpected losses.
This exposure to the stock index (Banz, 1981; Fama and French, 1992, 1993; Carhart, 1997;
Ang et al., 2006) is even stronger during down market conditions (Mitchell and Pulvino,
2001; Agarwal and Naik, 2004; Bussière et al., 2015). In such a period of market stress,
hedge funds may even add no value (Asness et al., 2001).

In this paper, we derive a stock market beta measure that we implement to test the
quality of hedging for four popular strategies in the hedge funds industry. The �rst and most
important strategy captures the low beta anomaly (Black, 1972; Black et al., 1972; Haugen
and Heins, 1975; Haugen and Baker, 1991; Ang et al., 2006; Baker et al., 2013; Frazzini
and Pedersen, 2014; Hong and Sraer, 2016) that de�es conventional wisdom on the risk
and reward trade-o� predicted by the CAPM (Sharpe, 1964). According to this anomaly,
high beta stocks underperform low beta stocks. Similarly, stocks with high idiosyncratic
volatility earn lower returns than stocks with low idiosyncratic volatility (Malkiel and Xu,
1997; Goyal and Santa-Clara, 2003; Ang et al., 2006, 2009). The related strategy consists
of shorting high beta stocks and buying low beta stocks. The second important strategy
captures the size e�ect (Banz, 1981; Reinganum, 1981; Fama and French, 1992), in which
stocks of small �rms tend to earn higher returns, on average, than stocks of larger �rms.
The related strategy consists of buying stocks with small market capitalization and shorting
those with high market capitalization. The third strategy captures the momentum e�ect
(Jegadeesh and Titman, 1993; Carhart, 1997; Grinblatt and Moskowitz, 2004; Fama and
French, 2012), where past winners tend to continue to show high performance. This strategy
consists of buying the past year's winning stocks and shorting the past year's losing ones.
The fourth strategy captures the short-term reversal e�ect (Jegadeesh, 1990), where past
winners in the last month tend to show low performance. This strategy consists of buying
the past month's losing stocks and shorting the past month's winning stocks, which would be
highly pro�table if there were no transaction cost and no market impact. Testing the quality
of the hedge of the strategies is equivalent to assessing the quality of the beta measurements,
which is di�cult to realize directly as the true beta is not known.

The implementation of all these strategies requires a reliable estimation of the betas to
maintain the hedge. Ordinary least squares (OLS) estimation remains the most frequently
employed method, even though it is impaired in the presence of outliers, especially from
small companies (Fama and French, 2008), illiquid companies (Amihud, 2002; Acharyaa and
Pedersen, 2005; Ang et al., 2013), and business cycles (Ferson and Harvey, 1999). In these
circumstances, the OLS beta estimator might be inconsistent. To overcome these limitations,
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our approach consists of renormalizing the returns to make them closer to Gaussian and thus
to make the OLS estimator more consistent. In addition, many papers report that betas
are time varying (Blume, 1971; Fabozzi and Francis, 1978; Jagannathan and Wang, 1996;
Fama and French, 1997; Bollerslev et al., 1988; Lettau and Ludvigson, 2001; Lewellen and
Nagel, 2006; Ang and Chen, 2007; Engle, 2016). This can lead to measurement errors that
could create serious bias in the cross-sectional asset pricing test (Shanken, 1992; Chan and
Lakonishok, 1992; Meng et al., 2011; Bali et al., 2017) . In fact, �rms' stock betas do change
over time for several reasons. The �rm's assets tend to vary over time via acquiring or
replacing new businesses, which makes them more diversi�ed. The betas also change for �rms
that change in dimension to be safer or riskier. For instance, �nancial leverage may increase
when �rms become larger, as they can issue more debt. Moreover, �rms with higher leverage
are exposed to a more unstable beta (Galai and Masulis, 1976; DeJong and Collins, 1985).
One way to account for the time dependence of betas is to consider regime changes when
the return history used in the beta estimation is long enough. Surprisingly, only one paper
(Chen et al., 2005) suggests a solution to capture the time dependence and discusses regime
changes for the beta using a multiple structural change methodology. The study shows that
the risk related to beta regime changes is rewarded by higher returns. Another approach is to
examine the correlation dynamics. Francis (1979) �nds that �the correlation with the market
is the primary cause of changing betas... the standard deviations of individual assets are
fairly stable�. This �nding calls for special attention to the correlation dynamics addressed
in our paper but that are apparently insu�ciently investigated in other works.

Despite the extensive literature on this issue, little attention has been paid to the link
between the leverage e�ect1 and the beta. The leverage e�ect is de�ned as the negative
correlation between the securities' returns and their volatility changes. This correlation
induces residual correlations between the stock overperformances and beta changes. In fact,
earlier studies have heavily focused on the role of the leverage e�ect on volatility (Black,
1976; Christie, 1982; Campbell and Hentchel, 1992; Bekaert and Wu, 2000; Bouchaud et al.,
2001; Valeyre et al., 2013). Surprisingly, despite its theoretical and empirical underpinnings,
the leverage e�ect has not been considered so far in beta modeling, while it is a measure of
risk. We aim to close this gap. Our paper starts by investigating the role of the leverage e�ect
in the correlation measure by extending the reactive volatility model (Valeyre et al., 2013),

1Note that we are not dealing with the restricted de�nition of the �leveraged beta� that comes from the
degree of leverage in the �rm's capital structure. Notice that the market beta may be non-linearly related
to the market return, which could lead to spurious inference in beta measurement (DeBondt and Thaler,
1987) while leverage e�ect could possibly be a major explanation of such non-linearity (e.g. Garlappi and
Yan (2011) relate leverage to default probability; Daniel, Jagannathan and Kim (2012) relate the �nancial
leverage to the operating leverage; Choi (2013) relates leverage to economic conditions; Moreira and Muir
(2017) relate leverage and volatility managed portfolios; Liu, Stambaugh and Yuan (2018) relate the leverage
to the beta-idiosyncratic volatility relation). In this context, the time-variation e�ect in conditional beta
adds on this bias (Boguth et al., 2011).
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which e�ciently tracks the implied volatility by capturing both the retarded e�ect induced
by the speci�c risk and the panic e�ect, which occurs whenever the systematic risk becomes
the dominant factor. This allows us to set up a reactive beta model incorporating three
independent components, all of which contribute to a reduction in the bias of the hedging.
First, we take into account the leverage e�ect on beta, where the beta of underperforming
stocks tends to increase. Second, we consider a leverage e�ect on correlation, in which a stock
index decline induces an increase in correlations. Third, we model the relation between the
relative volatility (de�ned as the ratio of the stock's volatility to the index's volatility) and the
beta. When the relative volatility increases, the beta increases as well. All three independent
components contribute to a reduction in the biases in the naive regression estimation of the
beta and therefore considerably improve hedging strategies.

The main contribution of this paper is the formulation of a reactive beta model. The
economic intuition behind the reactive beta model is the derivation of a suitable beta measure
allowing market beta estimation with reduced bias and a smaller standard deviation. The
model is coined "reactive" because the beta measurement is adjusted as soon as prices move.
An empirical test is performed based on an exhaustive dataset that includes the 600 largest
American stocks and the 600 largest European stocks over the period from 2000 to 2015,
which includes several business cycles. This test validates the superiority of the reactive beta
model over conventional methods.

We further examine the robustness of the reactive beta measurement using Monte Carlo
simulation against �ve alternative methods (ordinary least squares, minimum absolute de-
viation, trimean quantile regression, and dynamic conditional correlation with or without
asymmetry) over seven scenarios that re�ect various market conditions from calm (Gaussian
universe) to stressed (Non-Gaussian universe). The results con�rm that the reactive beta
presents a lower bias when stressed market conditions are included.

The article is organized as follows. Section 2 outlines the methodology employed for the
reactive beta model. Section 3 describes the data and empirical �ndings. Section 4 provides
several robustness checks to assess the quality of the reactive beta model against alternative
methods. Section 5 expands the discussion beyond the �eld of portfolio management, while
Section 6 concludes.

2 The reactive beta model

In this section, we present the reactive beta model with three independent components.
First, we take into account the speci�c leverage e�ect on the beta. Second, we consider
the systematic leverage e�ect on the correlation. Third, we model the relation between the
relative volatility and the beta via nonlinear beta elasticity.
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2.1 The leverage e�ect on beta

We �rst account for relations among returns, volatilities, and the beta, which are character-
ized by the so-called leverage e�ect. This component takes into account the phenomenon
where a beta increases as soon as a stock underperforms the index. Such a phenomenon can
be fairly well described by the leverage e�ect captured in the reactive volatility model. We
call the speci�c leverage e�ect the negative relation between speci�c returns and the risk
(here, the beta), where the speci�c return is the nonsystematic part of the returns (a stock's
overperformance). The speci�c leverage e�ect on the beta follows the same dynamics as the
speci�c leverage e�ect introduced in the reactive volatility model.

2.1.1 The reactive volatility model

This section aims to capture the dependence of betas on stock overperformance (when a stock
is overperforming, its beta tends to decrease). For this purpose, we rely on the methodology
of the reactive volatility model (Valeyre et al., 2013) to derive a stable measure of the beta
by using the renormalization factor that depends on the stock's overperformance. The model
describes the systematic and speci�c leverage e�ects. Systematic leverage, which is due to the
panic e�ect, and speci�c leverage, which is due to a retarded e�ect, have very di�erent relax-
ation times and intensities. These two di�erent e�ects were investigated by Bouchaud et al.

(2001), who introduced the measurement of the returns' volatility correlation function at dif-
ferent time scales τ . They de�ned this measurement as L (τ) = E (r2(t+ τ)r(t)) /E2 (r2(t)),
where r(t) is the daily return at day t, and they showed that it exhibits an exponential de-
cay curve depending on τ with 2 parameters: the relaxation time and the initial amplitude,
which describes the intensity of the leverage. The intensity measured is 9 times higher for
the stock index than for the single stocks, and the relaxation time is 6 times smaller for the
stock index. The higher intensity and the shorter relaxation times applied to the stock index
were explained by the panic e�ect that occurs as soon as all single stocks decrease at the
same time. The low intensity and the longer relaxation time applied to single stocks were
explained by the retarded e�ect: On short time scales, the standard deviation of di�erences
in price is the criteria used by traders to assess the risk, whereas on longer time scales, the
standard deviation of returns is used. The retarded e�ect works as if traders need time to
take into account a change in price in the analysis of the risk. The reactive volatility model
reproduces very well the measurement of L (τ) for the stock index and for the single stocks.

We start by recalling the construction of the reactive volatility model, which explicitly
accounts for the leverage e�ect on volatility. Let I(t) be a stock index at day t. It is well
known that arithmetic returns, rI(t) = δI(t)/I(t−1), are heteroscedastic, partly due to price-
volatility correlations. Throughout the text, δ refers to the di�erence between successive
values, e.g., δI(t) = I(t) − I(t − 1). The reactive volatility model aims to construct an
appropriate �level� of the stock index, L(t), to replace the original returns δI(t)/I(t − 1)
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with less-heteroscedastic returns δI(t)/L(t− 1).
For this purpose, we �rst introduce two �levels� of the stock index as exponential moving

averages (EMAs) with two time scales: a slow level Ls(t) and a fast level Lf (t). In addition,
we denote by Lis(t) the EMA (with the slow time scale) of the price Si(t) of the stock i at
time t. These EMAs can be computed using standard linear relations:

Ls(t) = (1− λs)Ls(t− 1) + λsI(t), (1)

Lf (t) = (1− λf )Lf (t− 1) + λfI(t), (2)

Lis(t) = (1− λs)Lis(t− 1) + λsSi(t), (3)

where λs and λf are the weighting parameters of the EMAs that we set to λs = 0.0241
and λf = 0.1484, relying on the estimates by Bouchaud et al. (2001). The slow parameter
corresponds to the relaxation time of the retarded e�ect for speci�c risk, whereas the fast
one corresponds to the relaxation time of the panic e�ect for systematic risk. These two
relaxation times are found to be rather universal, as they are stable over years and do
not change among di�erent mature stock markets. The appropriate levels, L(t) and Li(t),
accounting for the leverage e�ect on the volatility to correctly normalize the di�erence in
price, were introduced for the stock index and individual stocks, respectively. 2

L(t) = I(t)

(
1 +

Ls(t)− I(t)

I(t)

)(
1 + `

Lf (t)− I(t)

Lf (t)

)
, (4)

Li(t) = Si(t)

(
1 +

Lis(t)− Si(t)
Si(t)

)

︸ ︷︷ ︸
speci�c risk

(
1 + `i

Lf (t)− I(t)

Lf (t)

)

︸ ︷︷ ︸
systematic risk

, (5)

with the parameters ` and `i quantifying the leverage. The parameter ` was introduced by
Valeyre et al. (2013) to reproduce the exponential �t of the returns' volatility correlation
function L (τ) at di�erent time scales τ . The initial parameters of the exponential �t were
estimated on 7 major stock indexes so that ` was deduced to be approximately 8. If ` = `i, the
correlation between the stock index and the individual stock i is not impacted by the leverage
e�ect. In turn, if ` > `i, the correlation increases when the stock index decreases. Although
`i can generally be speci�c to the considered i-th stock, we ignore its possible dependence
on i and set `i = `′. Using the levels L(t) and Li(t), we introduce the normalized returns:

r̃I = r̃I(t) =
δI(t)

L(t− 1)
, r̃i = r̃i(t) =

δSi(t)

Li(t− 1)
(6)

2In practice, a �ltering function is introduced to attenuate the contribution from eventual outliers (extreme

events or wrong data). The �lter was applied to z = Ls(t)−I(t)
I(t) and z = Lis(t)−Si(t)

Si(t)
in Eqs. (4, 5) and was

de�ned as Fφ(z) = tanh(φz)/φ with φ = 3.3 (in the limit φ = 0, there is no �lter: F0(z) = z).
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and compute the renormalized variances σ̃2
I and σ̃

2
i through the EMAs as:

σ̃2
I (t) = (1− λσ)σ̃2

I (t− 1) + λσr̃
2
I (t), (7)

σ̃2
i (t) = (1− λσ)σ̃2

i (t− 1) + λσr̃
2
i (t), (8)

where λσ is a weighting parameter that has to be chosen as a compromise between the accu-
racy of the estimated renormalized volatility and the reactivity of that estimation. Indeed,
the renormalized returns are constructed to be homoscedastic only at short times because
the renormalization based on the leverage e�ect with short relaxation times (λs, λf ) cannot
account for long periods of changing volatility related to economic cycles. Since economic
uncertainty does not change signi�cantly over a period of two months (40 trading days),
we set λσ to 1/40 = 0.025. This sample length leads to a statistical uncertainty of ap-
proximately

√
1/40 ≈ 16%. Finally, these renormalized variances can be converted into the

reactive volatility σI(t) of the stock index quantifying the systematic risk governed by the
panic e�ect, and the reactive volatility σi(t) of each individual stock quantifying the speci�c
risk governed by the leverage e�ect:

σI(t) = σ̃I(t)
L(t)

I(t)
, (9)

σi(t) = σ̃i(t)
Li(t)

Si(t)
. (10)

This reactive volatility captures a large part of the heteroscedascticity, i.e., a large part
of the volatility variation is completely explained by the leverage e�ect. That was the main
result of Valeyre et al. (2013): For instance, if the stock index loses 1%, L(t)

I(t)
increases by

`×1% = 8%, and the stock index volatility increases by 8%. That e�ect is enough to capture
a large part of the VIX variation, with R2 = 0.46. In turn, if the stock underperforms the
stock index by 1%, Li(t)

Si(t)
increases by 1%, and the single stock volatility increases by 1%.

2.1.2 The speci�c leverage e�ect in the reactive beta model

The volatility estimation procedure naturally impacts the estimation of the beta. Many
�nancial instruments rely on the estimated beta, βi, which corresponds to the slope of a
linear regression of the stocks' arithmetic returns ri on the index arithmetic return rI :

ri = βirI + εi, with ri =
δSi(t)

Si(t− 1)
, rI =

δI(t)

I(t− 1)
, (11)

where εi is the residual random component speci�c to stock i. We consider another beta
estimate, β̃i, based on the reactive volatility model, in which the renormalized stock returns
r̃i are regressed on the renormalized stock index returns r̃I :

r̃i = β̃i r̃I + ε̃i, with r̃i =
δSi(t)

Li(t− 1)
, r̃I =

δI(t)

L(t− 1)
. (12)
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We then obtain a reactive beta measure:

βi(t) = β̃i(t)
σi(t) σ̃I(t)

σI(t) σ̃i(t)
= β̃i

Lis(t)I(t)

Ls(t)Si(t)
, (13)

which includes two improvements:

• β̃i, which becomes less sensitive to price changes by accounting for the speci�c leverage
e�ect;

• σiσ̃I/(σI σ̃i), which changes instantaneously with price changes.

When taking into account the short-term leverage e�ect in correlations, the reactive term
is reduced to Lis(t)I(t)

Ls(t)Si(t)
. This term has a signi�cant impact, as the beta of underperforming

stocks should increase.

2.2 The systematic leverage e�ect on correlation

2.2.1 The empirical estimation of `′ for single stocks

We use the term systematic leverage e�ect to denote the negative relation between systematic
returns and the risk (here, the correlation), where the systematic returns are the nonspeci�c
part of the returns (stock index performance). The systematic leverage e�ect on the corre-
lation follows the same dynamics as the systematic leverage e�ect introduced in the reactive
volatility model (the phenomenon's duration is approximately 7 days for λf = 0.1484). All
correlations are impacted together in the same way by the systematic leverage e�ect, and
single stocks and their stock indexes should also shift in the same direction. This explains
why the stock's beta will not change with respect to the index. The implication is that betas
are not very sensitive to the systematic leverage e�ect, in contrast to the speci�c leverage
e�ect. We consider the impact of the short-term systematic leverage e�ect on correlation.
Assuming that the correlation between each individual stock and the stock index is the same
for all stocks, one can de�ne the implied correlation as: 3

ρ(t) =

σ2
I (t)−

∑
i

w2
i σ

2
i (t)

∑
i 6=j

wiwjσi(t)σj(t)
, (14)

where wi represents the weight of stock i in the index. Denoting

eI(t) =
L̂s(t)

I(t)
− 1, ei(t) =

L̂is(t)

Si(t)
− 1, (15)

3See http://www.cboe.com/micro/impliedcorrelation/impliedcorrelationindicator.pdf
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we use Eqs. (9, 10) to obtain:

ρ =

σ̃2
I (1 + eI)

2
(

1 + `
Lf−I
Lf

)2
−
(

1 + `′
Lf−I
Lf

)2∑
i

w2
i (1 + ei)

2σ2
i

(
1 + `′

Lf−I
Lf

)2∑
i 6=j

wiwjσ̃iσ̃j(1 + ei)(1 + ej)
. (16)

If the weights wi are small, we can ignore the second term; in addition, if ei are small, then

∑

i 6=j
wiwjσ̃iσ̃j(1 + ei)(1 + ej) ≈ (1 + eI)

2σ̃2
0,

where σ̃2
0 is an average of σ̃2

i . Keeping only the leading terms of the expansion in terms of
the small parameter (Lf − I)/Lf , one thus obtains

ρ ≈ σ̃I
2

σ̃0
2

(
1 + 2(`− `′)Lf − I

Lf

)
. (17)

This relation shows the dynamics of the implied correlation ρ induced by the leverage e�ect
(accounted for through the factor (Lf − I)/Lf ). We assume that the same dynamics are
applicable to correlations between individual stocks, i.e.,

ρi,j = ρ̃i,j

(
1 + 2(`− `′)Lf − I

Lf

)
, (18)

where ρ̃i,j are the parameters speci�c to each pair of stocks i and j. From this relation, we
derive a measure of correlation accounting for the leverage e�ect between the single stock i
and the stock index:

ρi = ρ̃i

(
1 + (`− `′)Lf − I

Lf

)
, (19)

where ρ̃i are the parameters speci�c to each stock i. Note that there is no factor 2 in front
of (` − `′) in Eq. (19) because we have a one-factor model here. We use Eq. (19) in the
reactive beta model (see Eqs. (34, 36) below) to take into account the varying nature of
the correlation in the regression. We rescale the measurement by the normalization factor
(1 + (` − `′)(Lf − I)/Lf ) and then recover the variation of the correlation through the
denormalization factor 1/(1 + (` − `′)(Lf − I)/Lf ). We emphasize that the parameter ` in
Eq. (4) that quanti�es the systematic leverage for the stock index is slightly di�erent from the
parameter `′ in Eq. (5) that quanti�es the systematic leverage for single stocks. According
to Eq. (18), when the market decreases, correlations between stocks increase as ` > `′,
and therefore, the stock index volatility increases more than the single stock's volatility:
δ(σi/σI) < 0. Once again, the beta is, in contrast to the correlation, weakly impacted by the
systematic leverage e�ect, as all correlations increase in the same way. More precisely, this
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Figure 1: Daily variations of the CBOE S&P 500 Implied Correlation Indices (ICI) since their
inception, divided by their mean, versus daily variations of the leverage factor (Lf − I)/Lf .
A linear regression (solid line) yields the coe�cient 1.82± 0.16 (i.e., 2(`− `′) = 1.82), with
R2 = 0.13 and t-statistics of 11.4. Period: 2007-2015.

means that the impact of the increase in correlation in the beta measurement is compensated
by a decrease in the relative volatility: δ(σi/σI) < 0, i.e., the single stock volatility increase
is lower than that of the stock index volatility. For this reason, the reactive beta model in
Eqs. (34, 36) is not very sensitive to the choice of `′. Nevertheless, we explain in this section
how `′ is calibrated using the implied volatility index. We measure the level of the systematic
leverage e�ect `′ for a single stock by regressing Eq. (17) with data from the market-implied
correlation S&P 500 index. Figure 1 illustrates the slope of this regression. By regressing
Lf−I
Lf

against ρ
ρ̃0
, where ρ̃0 is the average of ρ, we deduce that empirically, we can set:

`− `′ = 0.91± 0.08, (20)

with a t-statistic of 11.4. Since ` − `′ � `(= 8), we deduce an important result, namely,
that the systematic leverage impact on the correlation is more than 8 times smaller than
the systematic leverage impact on the volatility. The main consequence is that although it
is statistically signi�cant, the leverage e�ect is not a major component of the correlation.

2.2.2 The systematic leverage e�ect component in the reactive model

As discussed above, the correlation increases when the stock index price decreases. This
e�ect could generate a bias in the beta measurement, as stock index prices could �uctuate in
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a sample used to measure the slope. Our solution is to adjust the beta between renormalized
returns through the correction factor L(t), de�ned as

L(t) = 1 + (`− `′)
(
Lf (t− 1)− I(t− 1)

Lf (t− 1)

)
, (21)

The correction factor L(t) should be used to estimate the slope between the stock index and
single stock returns and should then be used to denormalize the slope to obtain the reactive
beta that depends directly on L(t).

2.3 The relation between the relative volatility and beta

2.3.1 The empirical estimation of beta elasticity

In this part, we identify correlations between the relative volatility and beta changes. We
choose the relative volatility, de�ned as the ratio σ̃i/σ̃I , as an explanatory variable of β̃i
because β̃i is expected to be constant if the ratio σ̃i/σ̃I is constant. However, empirically,
the ratio σ̃i/σ̃I can change dramatically between periods of high dispersion (i.e., when stocks
are, on average, weakly correlated) and low systematic risk (i.e., when stock indexes are not
stressed) and periods of low dispersion and high systematic risk. Figure 2 illustrates, for
both European and US markets, that the dispersion among stocks decreases, on average,
when markets become volatile. A linear regression of rescaled daily variations of σ̃i yields:

δσ̃i(t)

σ̃i(t− 1)
≈ 0.4

δσ̃I(t)

σ̃I(t− 1)
+ εi, (22)

where εi is the residual (speci�c) noise. Using the standard rules for in�nitesimal increments,
we �nd from this regression the following:

δ

(
σ̃i
σ̃I

)
' δσ̃i

σ̃I
− σ̃i δσ̃I

σ̃2
I

=
σ̃i
σ̃I

(
δσ̃i
σ̃i
− δσ̃I

σ̃I

)
' −0.6

σ̃i
σ̃I

δσ̃I
σ̃I

, (23)

i.e., the relative volatility σ̃i/σ̃I is relatively stable, but its small variations can still impact
the beta estimation. This empirical relation shows that when there is a volatility shock in
the market, the stock index volatility increases much faster than the average single stock
volatility.

Because we want to take into account the impact of the relative volatility change on the
beta measurement, we introduce the beta elasticity as the derivative of the beta with respect
to the logarithm of the squared relative volatility:

f(β̃i) =
dβ̃i

d ln(σ̃2
i /σ̃

2
I )

=
dβ̃i

d(σ̃i/σ̃I)

σ̃i
2σ̃I

. (24)
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Figure 2: Normalized daily variations of σ̃i, δσ̃i/σ̃i = σ̃i(t)−σ̃i(t−1)
σ̃i(t−1) versus normalized daily

variations of σ̃I , δσ̃I/σ̃I = σ̃I(t)−σ̃I(t−1)
σ̃I(t−1) for the European market (blue crosses) and the US

market (red pluses). The two gray lines show the linear regressions of the two datasets, with
regression coe�cients of 0.40 (R2 = 0.60) and 0.42 (with R2 = 0.59) for the European and
US markets, respectively. The time frame includes observations from the technology bubble
burst, U.S. subprime, and Euro debt crises. Period: 1998-2015.
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We expect that f(β̃i) is positive and increasing with β̃i. Indeed, we expect that a stock
with a low beta should have a stable beta (less sensitive to its relative volatility increase),
as the increase in this case is most likely due to a speci�c risk increase. In such a case, the
sensitivity of the beta to the relative volatility is weak. In the opposite case of a high beta, a
stock that is highly sensitive to the stock index will face a beta decline as soon as its relative
volatility decreases. Consequently, when there is a volatility shock in the market, δ( σ̃i

σ̃I
) is

negative, and therefore, the beta of stocks with a high beta and a high f is reduced. In turn,
the stocks with a low beta are less impacted because f is smaller and δ(σ̃i/σ̃I) is expected
to be less negative.

When the correlation of the stock with the stock index is constant, we can use a linear
model: f(β̃i) = β̃i/2. In fact, using the relation β̃i = ρ̃i

σ̃i
σ̃I

and the assumption that ρ̃i is

constant (i.e., it does not depend on σ̃i
σ̃I
), one obtains from Eq. (24) f = ρ̃i

σ̃i
2σ̃I

= β̃i/2. In
general, however, the correlation can depend on the relative volatility, and thus, the function
f may be more complicated. To estimate f , one needs the renormalized beta and the relative
volatility. For a better estimation, we aim to reduce the heteroscedasticity even further by
using an exponential moving regression of the returns r̃i and r̃I that are renormalized by the
estimated normalized index volatility σ̃I . We denote these renormalized returns as:

r̂i(t) =
r̃i(t)

σ̃I(t− 1)
, r̂I(t) =

r̃I(t)

σ̃I(t− 1)
. (25)

Computing the EMAs,

φ̂i(t) = (1− λβ)φ̂i(t− 1) + λβ r̂i(t) r̂I(t), (26)

σ̂2
I (t) = (1− λβ)σ̂2

I (t− 1) + λβ
[
r̂I(t)

]2
, (27)

with λβ = 1/90, we estimate the beta as:

β̂i(t) =
φ̂i(t)

σ̂2
I (t)

. (28)

Here, φ̂i is an estimation of the covariance between stock index returns and single stock
returns that includes two normalizations: the levels Li and L from the reactive volatility
model and σ̃I to further reduce heteroscedasticity. We write β̂i instead of β̃i to stress this
particular way of estimating the beta. Similarly, the hat symbol in Eq. (27) is used to
distinguish σ̂I(t), computed with renormalized index returns, from σ̃I(t). In principle, the
above estimate β̃ could be directly regressed to the ratio of earlier estimates of σ̃i and σ̃I
from Eqs. (7). However, to use the normalization by σ̃I consistently, we consider the ratio
of these volatilities obtained in the renormalized form, i.e., σ̂i(t)/σ̂I(t), where σ̂I(t) is given
in Eq. (27), and

σ̂2
i (t) = (1− λβ)σ̂2

i (t− 1) + λβ
[
r̂i(t)

]2
. (29)
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Figure 3: Relation between the beta β̂i and the doubled logarithm of the relative volatility
ln(σ̂i/σ̂I), from which the mean values 〈β̂i〉 and ln(〈σ̂i/σ̂I〉) were subtracted (the mean is
obtained by averaging over time for each i). A linear regression is shown by the solid line:
β̂i−〈β̂i〉 = 0.76

[
ln(σ̂i/σ̂I)−ln(〈σ̂i/σ̂I〉)

]
, with R2 = 0.14. For better visualization, only 10,000

randomly selected points are shown (by circles) among 271,958 points from the European
dataset. Period: 2014-2015.

Figure 3 illustrates the sensitivity of the beta to relative volatilities by plotting β̂i(t) from
Eq. (28) versus ln(σ̂i(t)/σ̂I(t)) for all stocks i and times t from 2000 to 2015, although we
only display the time frame of 2014-2015 for clarity of illustration. On both axes, we subtract
the mean values 〈β̂i〉 and ln(〈σ̂i/σ̂I〉) averaged over all times in the whole sample. This plot
enables us to measure the average of the f(β̃i) in Eq. (24), which is close to 0.76/2 = 0.38.

To obtain the dependence of f on the beta, we estimate the slope between β̂i(t) − 〈β̂i〉
from Eq. (28) and 2 ln(σ̂i(t)/σ̂I(t)) − 2 ln(〈σ̂i/σ̂I〉) locally around each value of β̂i. For this
purpose, we sort all collected values of β̂i and group them into successive subsets, each with
10,000 points. In each subset, we estimate the slope between β̂i(t) − 〈β̂i〉 from Eq. (28)
and 2 ln(σ̂i(t)/σ̂I(t))− 2 ln(〈σ̂i/σ̂I〉) by a standard linear regression over 10,000 points. This
regression yields the value of f of that subset that corresponds to some average value of
β̂i. Repeating this procedure over all subsets, we obtain the dependence of f on β̂i, which
is plotted in Figure 4. We show that f increases with the beta. For both European and
US markets, we propose the following approximation of the function f with three di�erent
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Figure 4: The function f from Eq. (24) versus the beta for the European market (blue
crosses) and the US market (red pluses). This function is estimated locally for 4 di�erent
time periods. The solid black line shows the approximation (30). Period: 2000-2015.

regimes:

f(β̃i) =





0, β̃i < 0.5,

0.6(β̃i − 0.5), 0.5 < β̃i < 1.6,

0.6 β̃i > 1.6.

(30)

In the �rst regime, for low beta stocks (mostly quality and value stocks), the beta elasticity is
zero, which is equivalent to the constant beta case. For the intermediate regime, the elasticity
increases linearly with β̃i and is close to the constant correlation case with f(β̃i) = β̃i/2. In
the third regime for high beta stocks (mostly speculative and growth stocks), the elasticity
is constant. The shape of the beta elasticity is similar for the European market and the US
market.

2.3.2 The nonlinear beta elasticity component in the reactive model

According to Eq. (30), the sensitivity of the normalized beta to changes in the relative
volatility is nonlinear. This elasticity could generate bias in the beta estimation if the
relative volatility changes in a sample used to measure the slope. Our solution is to adjust
the beta between normalized returns through the correction factor F(t), de�ned as:

F(t) = 1 +
2f(β̃i(t))

β̃i(t)
∆

(
σ̃i
σ̃I

)
. (31)
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The function f is approximated by Eq. (30), `− `′ is given by Eq. (20), and

∆

(
σ̃i
σ̃I

)
=
σ̃i(t− 1)/σ̃I(t− 1)−

√
κi(t− 1)√

κi(t− 1)
(32)

with

κi(t) = (1− λβ)κi(t− 1) + λβ

(
σ̃i(t)

σ̃I(t)

)2

(33)

being the EMA of the squared relative volatility (σ̃i/σ̃I)
2. The ∆(σ̃i/σ̃I) quanti�es deviations

of the relative volatility from its average over the sample that will be used to estimate the
beta.

The correction factor F(t) should be used to estimate the slope between stock index and
single stock returns and should then be used to denormalize the slope to obtain the reactive
beta that depends directly on F(t).

2.4 Summary of the reactive beta model

In this section, we recapitulate the reactive beta model that combines the three independent
components that we described in the previous sections: the speci�c leverage e�ect on the
beta, the systematic leverage e�ect on correlation, and the relation between the relative
volatility and the beta. Starting with the time series I(t) and Si(t) for the stock index
and individual stocks, one computes the levels Lf (t), L(t), and Li(t) from Eqs. (2, 4, 5),
the normalized stock index and individual stock returns r̃I(t) and r̃i(t) from Eqs. (6), the
normalized stock index volatility σ̃I(t) from Eq. (7), the renormalized stock index and
individual stock returns r̂I(t) and r̂i(t) from Eq. (25), the associated volatilities σ̂I(t) and
σ̂i(t) from Eqs. (27, 29), and the renormalized beta β̂i(t) from Eq. (28). From these
quantities, one re-evaluates the covariance between r̂i and r̂I by accounting for the leverage
e�ects and excluding the other e�ects. In fact, we compute Φ̂i(t) as an EMA of the normalized
covariance of the normalized daily returns:

Φ̂i(t) = (1− λβ)Φ̂i(t− 1) + λβ
r̂i(t) r̂I(t)

L(t)F(t)
, (34)

where L(t) and F(t) are two correction factors de�ned in Eq. (21) and Eq. (31) that are
used to withdraw bias from the systematic leverage and the beta elasticity. The parameter
λβ describes the look-back used to estimate the slope and is set to 1/90, as 90 days of
look-back appears to us as a good compromise. In fact, for a longer look-back, variations in
beta, correlation and volatilities are expected to happen due to changes in market stress and
business cycles and are not taken into account properly by our reactive renormalization. In
turn, for a shorter look-back, the statistical noise of the slope would be too high.
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Finally, the stable estimate of the normalized beta is

β̃i(t) =
Φ̂i(t)

σ̂2
I (t)

, (35)

with σ̂2
I (t) de�ned in Eq. (27) from which the estimated reactive beta of stock i is deduced

as

βi(t) = β̃i(t)

(
Li(t) I(t)

Si(t)L(t)

)
L(t)F(t). (36)

The estimation of the normalized stable beta β̃i(t) is close to the slope estimated by an OLS4

but with exponentially decaying weights to accentuate recent returns and with normalized
returns to withdraw di�erent biases. Then, the normalized stable beta β̃i(t) is �denormalized�
by the factor that combines the three main components: the speci�c leverage e�ect on beta,
(Li/Si)(I/L), the systematic leverage e�ect, L(t), and nonlinear beta elasticity, F(t). The
�nal beta estimation βi(t) is a reactive dynamic conditional estimation that is adjusted as
soon as prices moves through the instantaneous variations of the 3 correction factors.

Every term impacts the hedging of a certain strategy:

• the term with L(t) does not have a signi�cant impact on the beta, as it is compensated
in Li/L, which models the short-term systematic leverage e�ect on the correlation in
Eqs. (34, 36) (introduced in Sec. 2.2), whereas the levels Li and L were introduced in
the reactive volatility model. However, it could impact the correlation by +10% if the
market decreases by 10%.

• the term with LiI/(LSi) that models the speci�c leverage e�ect on volatilities (intro-
duced in Sec. 2.1.2) could impact the beta by 10% if the stocks underperform by 10%.
This term impacts the hedging of the short-term reversal strategy.

• the term with F(t) that models the nonlinear beta elasticity, which is the sensitivity
of the beta to the relative volatility (introduced in Sec. 2.3), could impact the beta by
10% if the relative volatility increases by 10%. This term impacts the hedging of the
low volatility strategy.

The reduced version of the reactive beta model, when only the leverage e�ect is introduced
without beta elasticity and stochastic normalized volatilities, de�nes an interesting class of
stochastic processes that appears to be a mean reverting with a standard deviation linked
to σ̃i

√
1/λs and a relaxation time linked to 1/λs.

The reactive beta model is based on the �t of several well-identi�ed e�ects. Implied
parameters work universally for all stock markets (`− `′ is the only one that was �tted only

4We assumed that the average of daily returns was zero. That assumption makes sense as at a daily time
scale, and the average of returns can be completely neglected compared to the standard deviation.
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on the US market, as the implied correlations for other countries are not traded). Here, we
summarize the di�erent parameters used in the reactive beta model:

• λf = 0.1484, which describes the relaxation time of 7 days for the panic e�ect;

• λs = 0.0241, which describes the relaxation time of 40 days for the retarded e�ect;

• l = 8, which describes the leverage intensity of the panic e�ect;

• `− `′ = 0.91 based on implied correlations on the US stock market;

• the di�erent thresholds in the function f(β̃i) from Eq. (30) that describes the nonlinear
beta elasticity.

3 Empirical �ndings

3.1 Data description

We used only daily returns. For the empirical calibration of ` − `′, we chose the CBOE
S&P 500 Implied Correlation Index (ICI), which is the �rst widely disseminated market-
based estimate of implied average correlation of the stocks that comprise the S&P 500 Index
(SPX). This index begins in July 2009, with historical data going back to 2007. We take
the front-month correlation index data from 2007 and roll it to the next contract until
the previous one expires. We also use the daily S&P 500 stock index. For the empirical
calibration of the other parameters of the reactive beta model, we use the daily S&P 500
stock index and the 600 largest US stocks from January 1, 2000, to May 31, 2015. For the
European market, we consider the EuroStoxx50 index and the 600 largest European stocks
over the same period. The same data are used for both the calibration of parameters and
empirical tests.

For consistency, we kept the parameters of the reactive volatility model that describe the
intensity of the panic e�ect (l), the relaxation time of the panic e�ect (λf ) and the relaxation
time of the retarded e�ect(λs) identical to those that were calibrated in a period prior to
2000 by Bouchaud et al. (2001), since they are seen as being universal.

3.2 Empirical results

In this section, we show that exposure to common risk factors can sometimes lead to a high
exposure of market neutral funds to the stock market index if the betas are not correctly
assessed. Indeed, although market neutral funds should be orthogonal to traditional asset
classes, this is not always the case during extreme moves (Fung and Hsieh, 1997). For in-
stance, Patton (2009) tests the zero correlation against the nonzero correlation and �nds
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that approximately 25% of the market neutral funds exhibit signi�cant non-neutrality, con-
cluding that �many market neutral hedge funds are in fact not market neutral, but overall
they are, at least, more market neutral than other categories of hedge funds.� The reactive
beta model can help hedge funds be more market neutral than others. To demonstrate this,
we empirically test the e�ciency of hedging using the most popular market neutral strategies
(low volatility, short term reversal, momentum and size):

• low volatility (beta) strategy: buying the stocks with the highest 30% beta and shorting
those with the lowest 30% beta (estimated by the OLS);

• short term reversal: shorting the stocks with the highest 15% one-month returns and
buying those with the lowest 15% one-month returns;

• momentum strategy: buying the stocks with the highest 15% two-year returns and
shorting those with the lowest 15% two-year returns;

• size strategy: buying the stocks with the highest 30% capitalization and shorting those
with the lowest 30% capitalization.

The construction of the four most popular strategies that target beta neutrality is ex-
plained in Appendix B. The di�erent portfolios are dynamic. The e�ciency of the hedge
depends on the accuracy of the beta estimation. For each strategy, we compare two di�erent
methods to estimate the beta that use only the past information to avoid look-ahead bias:
ordinary least squares (OLS) (which corresponds to a speci�c case of our model with Li = Si,
L = I, ` = `′ = 0, and f = 0, with the same exponential weighting scheme) and our reactive
method. We analyze two statistics:

• Statistic 1: the CorSTD, which is de�ned as the standard deviation of the 90-day cor-
relation of the strategy with the stock index returns, describes the lack of robustness
of the hedge and, consequently, the ine�ciency of the beta measurement. The more
robust the strategy is, the lower the CorSTD statistics are. If the strategy was well
hedged, the correlation would �uctuate around 0, within the theoretical 10% stan-
dard deviation, and CorSTD would be 10% (a CorSTD of 10% is obtained with two
independent Gaussian variables for 90-day correlations).

• Statistic 2: the Bias, which is de�ned as the correlation of the strategy with the stock
index returns on the whole period, describes the bias in the hedge of the strategy and,
therefore, the bias of the beta measurement.

These statistics present a proxy for assessing the quality of the beta measurement, which
is very di�cult to realize directly, as true betas are not known.
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Table 1 summarizes the statistics of the four strategies for the US and Europe markets.
We see the highest bias for the low volatility strategy when hedged with the standard ap-
proach (−25.5% for USA and −22.4% for Europe). The CorSTD is approximately 20%, i.e.,
twice as high as expected if the volatility was stable, which means that the e�ciency of the
hedge is time-varying. This could represent an important risk for the funds of funds man-
agers, where hidden risk could accumulate and arise especially when the market is stressed.
Indeed, the bias seems to have been higher by approximately −60% for both the USA and
Europe when the market was stressed in 2008. The use of the reactive beta model reduces
the bias in the low volatility factor, and the residual bias comes from the selection bias
(see Appendix A). When using the OLS, the possible loss in 2008 would have been −9.6%
(= −60% × 40% × 8%/20%) for a 40% stock decline with a fund invested entirely in a low
volatility anomaly with a bias of −60% and a target annualized volatility of 8% for the fund
and 20% for the index.

We also see a signi�cant bias for the short-term reversal strategy when hedged with
the standard approach (approximately 13.1% in the USA and in Europe). The CorSTD is
approximately 18%. The e�ciency of the hedge depends on the recent past performance
of the strategy. As soon as the strategy starts to lose, the e�ciency will decline and risk
will arise, as in 2009. Again, we see that the reactive beta model reduces the bias in the
short-term reversal factor. The biases and CorSTD are lower for the momentum strategy
(−6.3% in the USA, with a CorSTD of 18.3%) and are of the same magnitude for the size
strategy (−7.6% in the USA with a CorSTD of 17.0%). The reactive beta model further
reduces the bias and the CorSTD. This is also valid for the European market.

We conclude that the reactive beta model reduces the bias of the low volatility factor
when it is stressed by the market. The remaining residual is most likely explained by the
selection bias (see Appendix A for a formal proof). The improvement is more signi�cant for
the momentum factor and the size factor in the U.S. only.

We also illustrate these �ndings by presenting the correlation between the stock index and
the low volatility strategy (Figure 5) and the short-term reversal strategy (Figure 6), which
are the strategies with the highest bias. A period surrounding the �nancial crisis was chosen
(2007-2010). One can see that the beta computed by the OLS is highly positively exposed
to the stock index in 2008. In turn, the exposure is reduced within the reactive model. The
improvement becomes even more impressive in extreme cases when the strategies are stressed
by the market. We see that in some extreme cases (a stress period with extreme strategies),
the common approach could generate high biases (−50% for the short-term reversal strategies
in 2008-2009 and −71% for the beta strategy in 2008). In each case, our methodology allows
one to signi�cantly reduce the bias.
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Figure 5: Ninety-day correlation of the low volatility factor with the stock index in the
European market (a) and in the USA market (b). Solid and dashed lines present the
proposed reactive beta model and the OLS methodology, respectively. The dotted horizontal
line shows the selection bias of −19.10%, as shown in Appendix A. A time frame surrounding
the �nancial crisis is chosen. Period: 2007-2010.
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Figure 6: Ninety-day correlation of the short-term reversal factor with the stock index in the
European market (a) and in the US market (b). Solid and dashed lines present the proposed
Reactive beta model and the OLS methodology, respectively. A time frame surrounding the
�nancial crisis is chosen. Period: 2007-2010.
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Strategy \ Method OLS Reactive
U
S

Statistics : Bias CorSTD Bias CorSTD
low volatility -25.54% 21.73% -16.79% 21.43%

short-term reversal 13.09% 18.96% -6.06% 18.50%
momentum -6.27% 18.28% -2.95% 16.54%

size -7.56% 17.00% -1.84% 17.26%

E
u
ro
p
e

low volatility -22.39% 19.97% -14.68% 20.94%
short-term reversal 13.05% 17.51% 0.64% 14.52%

momentum -4.42% 18.03% -1.55% 17.23%
size 3.12% 17.15% 3.79% 15.63%

Table 1: Bias is de�ned as the correlation over the whole sample between the stock index
and each of the OLS and Reactive strategies for the US and Europe markets. CorSTD is
de�ned as the standard deviation of the 90-day correlation over the whole sample between
the stock index and each of the OLS and Reactive strategies for the US and Europe markets.
The residual bias for the low volatility strategy in the reactive method can be explained by
the selection bias, as demonstrated in Appendix A. Period: 2000-2015.

4 Robustness Checks

This section presents a robustness check analysis by comparing the quality of several methods
for beta measurements against the reactive beta model. We build the comparative analysis
based on two important articles. Chan and Lakonishok (1992) enables the assessment of the
robustness statistics of some alternative methods to the classical ordinary least squares (OLS)
method when assuming implicitly that betas are static and returns are homoscedastic. This
section extends their work by including alternative dynamics beta estimators to be consistent
with our reactive model and with the work by Engle (2016) that demonstrates that the betas
are signi�cantly time-varying using dynamic conditional betas. The models and the methods
are presented in detail in Appendix C.

4.1 Monte Carlo simulations

In �nancial research, one often resorts to simulated data to estimate the error of measure-
ments. For instance, Chan and Lakonishok (1992) built their main results on numerical
simulation while applying real data for simple comparison between betas estimated with
OLS and quantile regression (QR).

The comparative analysis is based on a two-step procedure. The �rst step simulates
returns using di�erent models that capture some market patterns, and the second step
estimates the beta from simulated returns by using our reactive method and alternative
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methods. We tested the same estimators as used by Chan and Lakonishok (1992), including
OLS, the minimum absolute deviation (ABSD), and the Trimean quantile regression (TRM).
We also added two variations of the dynamical conditional correlation (DCC), which has
become a mainstream model to measure the conditional beta when the beta is stochastic
(Bollerslev et al., 1988; Bollerslev, 1990; Engle, 2002; Cappiello et al., 2006). We analyze the
error of measurements, which we de�ned as the di�erence between the measured beta and
the true beta of the simulated data.

4.1.1 The �rst step: simulation

The �rst step simulates 30,000 paths of T=1,000 consecutive returns for both the stock
index (rI) and the single stock (ri). It also allows one to generate 1,000 conditional �true�
expected betas per path (Fig. 7). To that end, following Chan and Lakonishok (1992),
normally distributed residuals and Student-t distributed residuals are considered to take
into consideration the robustness of di�erent methods to outliers.

In our setting, we implemented seven Monte Carlo simulations for the returns ri and rI .
In the simulations, we target the realistic case of an unconditional single stock annualized
volatility of 40%, an unconditional stock index volatility of 15% and an unconditional beta
of 1. We also target the realistic case of a correlation between the index and the stock of
0.4, since the relative precision of the beta measurement is inversely proportional to the
square root of the number of returns when the correlation is close to zero. First, we consider
the naive version of the market model, based on Eq. (11), which we call �the basic market
model�. For the case of a constant beta, as in the paper by Chan and Lakonishok (1992),
the simulated data are based on the hypothesis of a null intercept, and the beta is set equal
to 1 to characterize the ideal case with a Gaussian (MC1) or a Student-t distribution (MC2)
for residuals. In the most simple reactive version of the market model, which we call �the
reduced reactive market model� (MC3 and MC4), normalized returns r̃i and r̃I are �rst
generated randomly through Eq. (12) with a normalized beta set to 1. Then, based on the
levels Ls, Lis, which are respectively the slow moving averages of the stock index and the
stock prices de�ned in Eq. (1), we generate δI and δS de�ned in Eq. (6) and then ri and rI .
Finally, we update Ls and Lis. That model is su�cient to capture the leverage e�ect on beta
with increasing beta as soon as a single stock underperforms the stock index. Even if the
normalized beta is set to unity, the denormalized beta in Eq. (13) becomes time dependent
(Fig. 7). As previously, MC3 and MC4 di�er by the distribution of residuals, Gaussian
(MC3) versus Student-t (MC4).

The full reactive market model (MC5) includes all the components described in Sec. 2,
i.e., the leverage e�ect and the nonlinear beta elasticity. For the full version, we generated
stochastic σ̃i and σ̃I , which generate r̃i and r̃I from Eq. (12), using the normalized beta �xed
to F(t)L(t) (see de�nitions in Eqs. (31) and (21)). This allows the generation of returns
that capture the leverage e�ect pattern and the empirical nonlinear beta elasticity (Fig. 3
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and Fig. 4).
We also used another way to generate random returns that captures a time-varying beta

through the implementation of the dynamic conditional correlation (DCC) model (Engle,
2002, 2016), which generalizes the GARCH(1,1) process to two dimensions. This is a main-
stream model that has two variations: symmetric and asymmetric, the latter capturing the
leverage e�ect. The symmetric and asymmetric versions of the DCC model are denoted as
MC6 and MC7, respectively.

To summarize, the seven Monte Carlo simulations are the following:

• MC 1: The basic market model in Eq. (12), where residuals (εi) are normally dis-
tributed, and the constant beta is set to 1.

• MC 2: The basic market model in Eq. (12), where residuals (εi) follow a Student-t
distribution (with three degrees of freedom), and the constant beta is set to 1.

• MC 3: The reduced reactive market model in Eq. (12), where residuals (ε̃i) are normally
distributed with constant volatilities (σ̃i, σ̃I) and constant renormalized beta (β̃) is set
to 1, but the denormalized beta is now time-dependent (Fig 7). The conditional beta
(β) is a mean reversion process with a relaxation time 1/λs = 40 days. MC3 includes
only the leverage e�ect and ignores the nonlinear beta elasticity.

• MC 4: The reduced reactive market model in Eq. (12), where residuals (ε̃i) follow a
Student-t distribution (with three degrees of freedom) with constant relative volatility
and a constant renormalized beta set to 1, as in MC3.

• MC 5: The full reactive market model in Eq. (12), where residuals (ε̃i) follow a
Student-t distribution (with three degrees of freedom) whose standard deviation (si)
is stochastic and where the normalized stock index return (r̃I) is a Gaussian whose
standard deviation (sI) is also stochastic. We suppose that log(sI) and log(si)− log(sI)
follow two independent Ornstein-Uhlenbeck processes (with a relaxation time of 100
days and a volatility of volatility of 0.04). In that way, the stock index annualized
volatility could jump up to 40%. The normalized beta that was set to 1 in MC4 is
now set to F(t)L(t) to take into account the nonlinear beta elasticity (see de�nitions
in Eqs. (31) and (21)). Both the leverage e�ect and stochastic normalized volatilities
make the volatilities and the beta de�ned in Eq. (36) time-dependent (Fig. 7).

• MC 6: The symmetric DCC model in two dimensions, which generates volatilities of
volatilities and a correlation of similar amplitude as MC5 (Fig. 7).

• MC 7: The ADCC model in two dimensions, which generates volatilities of volatilities
and a correlation of similar amplitude as MC5 (Fig. 7).
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In Fig. 7, we plot a Monte Carlo path generated for a true beta for MC 3 to 7 (MC1 and
MC2 are excluded, as they generate a true beta of 1). We also plot the conditional correlation
and volatilities that are highly volatile and thus make the estimation of the conditional beta
complicated.

4.1.2 The second step: measurements

The second step is devoted to the analysis of the error measurement of the beta estimations,
de�ned as the di�erence between the measured beta and the true beta of the simulated data.
In our setting, we test 5 alternative beta estimations that should replicate the true beta as
closely as possible. Note that in all �ve con�gurations, we use an exponentially weighted
scheme to give more weight to recent observations, to be in line with the reactive market
model (1/λβ = 90). Consequently, in a path of T=1,000 generated returns, only the 90 last
returns truly matter (note that Chan and Lakonishok (1992) is based on the statistics from
35 returns with an equal weight scheme). The �rst alternative method is the ordinary least
squares (OLS) of the returns, which was also implemented in the empirical test based on
real data. Note that the OLS5 would give the same measurement as our reactive method if
the parameters were set di�erently (λs = 1, λf = 1, l = l′ = 0, f = 0). The square errors in
the OLS are weighted by (1 − λβ)T−t. The second method estimates the beta by using the
minimum absolute deviation (MAD), which is supposed to be less sensitive to outliers because
absolute errors are minimized instead of square errors. The absolute errors are weighted by
(1−λβ)T−t. The third alternative is the beta computed from the Trimean quantile regression
(TRM), which is reputed to be more robust to outliers according to Chan and Lakonishok
(1992). The absolute errors are also weighted by (1− λβ)T−t. The fourth and �fth methods
are the conditional beta computed from the DCC model. The DCC method was calibrated
using the same exponential (1− λβ)T−t weights introduced in the log-likelihood function to
extract the optimal unconditional volatilities and correlations, while other parameters such
as the relaxation time and volatilities of volatilities and volatilities of correlations were set
to the values that were used for the Monte Carlo simulation.

We summarize the reactive method and the �ve alternative methods that were imple-
mented to estimate the beta as follows:

• βOLS: beta estimated by the ordinary least squares method;

• βMAD: beta estimated by the minimum absolute deviation method;

• βTRM : beta estimated by the trimean quantile regression;

• βDCC : T th conditional beta estimated by using the DCC model;

5We assumed that the average of daily returns was zero. That assumption makes sense because at a daily
time scale, the average of returns can be completely neglected compared to the standard deviation.
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• βADCC : T th conditional beta estimated by using the ADCC model;

• βR: beta estimated by the reactive method in Eq. (36).

4.1.3 The statistics

We analyze for every path the error of measurement, de�ned as the di�erence between the
measured beta based on di�erent methods applied to T returns and the true beta value at
time T .

To assess the quality of di�erent methods, we use three statistics following Chan and
Lakonishok (1992). The �rst statistic is the bias, which gives the average error of measure-
ment. Obtaining the bias is more informative than simply obtaining an estimated average
estimation of the beta, because in our case, the true beta is not always 1 but �uctuates
around 1 for time-varying models from MC3 to MC7. Because we focus on capturing the
leverage e�ect in the beta measurement, we also de�ne winner (loser) stocks, which are stocks
that have outperformed (underperformed) the stock index during the last month. Due to
the leverage e�ect, the OLS method is expected to underestimate the beta for loser stocks
and to overestimate the beta for winner stocks. It would be interesting to see how robust
the improvement of the reactive beta estimation is. We therefore measure the average error
among the loser stocks and among the winner stocks. The loser and winner biases are related
to the bias in hedging of the short-term reversal strategy measured on real data, and they
can con�rm the robustness of the empirical measurements. We also de�ne the low (high)
beta stocks, which are the stocks whose conditional true beta is lower (higher) than 1. We
measure the average error among low and high beta stocks that are related to the bias in
hedging of the low beta strategy measured from real data and can con�rm the robustness of
the beta measurement when adding the component describing the nonlinear beta elasticity.

The second statistic is the ABSolute Deviation (ABSD) of a measurement. It re�ects the
average absolute errors such that the positive and negative sign errors cannot be mutually
compensated. It is a measurement of the robustness.

The third statistic, which is equivalent to ABSD, is the inverse of the variance of the errors
of measurement (VOLS

Vm
) to characterize the relative robustness of the alternative beta estima-

tion. The alternative beta method (with subscript m) that brings the highest improvement
is the one with the highest ratio.

The three statistics that were implemented are summarized as follows:

• Statistic 1: the bias, the winner bias and the loser bias, the low beta bias and the high
beta bias;

• Statistic 2: the absolute deviation of measurement (ABSD);

• Statistic 3: the relative variance statistics VOLS
Vm

.
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4.2 Empirical tests

We summarize the statistics in Table 2. We see that all methods are unbiased on average
in most Monte Carlo simulations. However, this is misleading, as biases from one group of
stocks can be signi�cant and can o�set others.

4.2.1 Winner and loser bias

The estimated βDCC and βADD appear to be biased as soon as fat tails are included (MC2).
The reactive beta is the only one to be unbiased for winner and loser stocks when the

leverage e�ect is introduced in Monte Carlo simulations (MC 3, 4, 5). The biases for winner
stocks and loser stocks are signi�cant for all methods except for the reactive beta. The biases
are ampli�ed when a fat tail of residual distribution is introduced (MC 4). Winner/loser
biases can reach 14%. This is in line with the empirical test implemented on real data,
where we see that the reactive method reduces the bias of hedging of the short-term reversal
strategy (Tab. 1).

When all components that deviate from the Gaussian market model are mixed in MC5
(fat tails, nonlinear beta elasticity, stochastic volatilities, leverage e�ect), we see a kind of
cocktail e�ect, as bias is generated for most methods on average and not only in some groups
of stocks. The reactive method provides the best results and is the only method that has no
bias. βMAD and βTRM , which were supposed to be robust, appear to perform very poorly,
with high bias (average, loser or winner) as soon as the stochastic volatility is added, which
is con�rmed with MC6 and MC7.

We also see that the reactive model looks to be incompatible with the DCC and ADCC
models. Indeed, MC5 generates high bias for βDCC and βADD in the winner and loser
stocks even if the leverage e�ect and the dynamic beta are implemented in the ADCC. In
the same way, MC 6 generates bias for the reactive method that is even ampli�ed when
leverage e�ect is generated through MC7. We can wonder which model is the most realistic.
Both ADCC and the reactive model capture the volatility clustering and leverage e�ect
patterns, but their dynamics are very di�erent. For example, in the reactive model, volatility
increases as soon as the price decreases, and it decreases as soon as the price increases. In
contrast, the volatility in ADCC increases only if the return is more negative than the
unconditional standard deviation (γ

(
σ2
i [ξ
−
i (t)]2 − σ̃2

i

)
> 0, see Eqs. (67, 69)). The reactive

beta model has three components that were tailored to three well-identi�ed e�ects (the
speci�c leverage through the retarded e�ect, the systematic leverage through the panic e�ect
and the nonlinear beta elasticity) whose main parameters appear to be stable and universal
for all markets. Bouchaud et al. (2001) measured most of the parameters for seven main stock
indexes. The relaxation time is approximately 1 week for the panic e�ect (λs = 0.1484), the
relaxation time is 40 days for the retarded e�ect (λs = 0.0241), and the leverage parameter
for the panic e�ect is l = 8. The systematic leverage parameter on correlation `− `′ = 0.91
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was the only one that has been measured through the implied correlation only from the
US market. The parameters of the beta elasticity were measured for both the European
and the US markets. Whereas the reactive model was tailored to the market, the DCC
and ADCC models are more generic constrained models whose parameters were obtained
when optimizing the log-likelihood of returns, which in reality are a result of the complex
mixture of the three e�ects, without focusing on each element. DCC and ADCC do not take
into account that, in fact, a large part of the heteroscedasticity comes in reality from the
complex leverage e�ect and not from simple autoregressive conditional heteroskedasticity.
The parameters that we used describing the relaxation times, the volatilities of volatility,
the volatility of correlation and the asymmetries of the DCC and ADCC models were based
on the work by Sheppard (2017) and Cappiello et al. (2006). Relaxation times of 10 days
and 13 days were estimated for the US market and are di�erent from those used in the
reactive volatility model. In Table 5 of Cappiello et al. (2006), we see that the relaxation
time would be 2.5 days for Belgian stocks (the decay factor is β = 0.6184 for the univariate
GARCH), 4 days for French stocks (the decay factor is β = 0.7497) and 14 days for Spanish
stocks (the decay factor is β = 0.9360). It is not surprising to see this variation if simple
autoregressive conditional heteroskedasticity cannot capture the complexity of the leverage
e�ect. We think it would be better to apply autoregressive conditional heteroskedasticity to
model the residual part of the heteroskedasticity of returns once the part due to the leverage
e�ect is withdrawn through normalized returns from the reactive model. The relaxation time
in that case is expected to be a couple of months.

4.2.2 High and low beta bias

The reactive beta is the only one that reduces the bias for low and high beta stocks when
stochastic volatility is introduced and when the empirical nonlinear beta elasticity is imple-
mented (MC 5). This is in line with the empirical test applied to real data, where we see
that the reactive method reduces the bias of hedging of the low volatility strategy (Tab. 1).

4.2.3 ABSD and VOLS/Vm

The βOLS, which is the theoretical optimal estimation for Monte Carlo simulated returns
with the Gaussian market model (MC1), gives similar statistics to that of the reactive beta
for the MC3. In this case (MC3), the reactive method outperforms the other considered
methods. The ABSD of 0.17 is entirely explained by irreducible statistical noise that is
intrinsic to any regression based on approximately 90 points with a weak correlation.

When a fat tail is incorporated to the residual (MC4), the ABSD of the reactive beta is
increased and becomes intermediate between the ABSD of βOLS, βMAD and βTRM . βMAD

and βTRM are more robust in the presence of fat tails. The reactive beta is expected to be
as sensitive as the OLS would be due to the outliers. The reactive method could be still
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improved if a TRM regression were implemented instead of the classical OLS to measure the
normalized beta between normalized returns. When stochastic volatility and correlation are
introduced (MC5, MC6 and MC7), the reactive beta becomes as robust as βMAD and βTRM
based on ABSD.

Method Bias Winner Bias Loser Bias Low Bias High Bias ABSD Vols/Vm

MC1 Gaussian basic market model

βOLS -0.00 -0.00 -0.00 0.16 1.00

β Reactive 0.00 -0.05* 0.05* 0.18 0.79

βDCC 0.04* 0.05* 0.03* 0.23 0.51

βADCC 0.09* 0.01 0.17* 0.25 0.44

βMAD -0.00 0.00 -0.01 0.20 0.65

βTRM -0.00 0.00 -0.01 0.20 0.68

MC2 t-Student basic market model

βOLS -0.00 0.01 -0.01 0.28 1.00

β Reactive 0.01 -0.06* 0.08* 0.31 0.82

βDCC 0.13* 0.14* 0.12* 0.39 0.67

βADCC 0.25* 0.15* 0.35* 0.46 0.57

βMAD -0.00 -0.00 -0.00 0.22 2.18

βTRM -0.00 -0.00 -0.00 0.22 2.24

MC3 Gaussian reduced reactive market model

βOLS -0.00 0.07* -0.07* 0.07* -0.07* 0.19 1.00

β Reactive -0.00 0.02* -0.02* 0.02* -0.02* 0.17 1.27

βDCC 0.04* 0.10* -0.02 0.11* -0.02 0.24 0.62

βADCC 0.09* 0.06* 0.12* 0.07* 0.11* 0.24 0.66

βMAD -0.01 0.06* -0.08* 0.06* -0.08* 0.22 0.73

βTRM -0.01 0.06* -0.08* 0.06* -0.08* 0.22 0.75

MC4 t-Student reduced reactive market model

βOLS 0.01 0.13* -0.11* 0.12* -0.10* 0.35 1.00

β Reactive -0.01 0.02 -0.04* 0.03 -0.05* 0.31 1.30

βDCC 0.12* 0.22* 0.02 0.27* -0.01 0.47 0.84

βADCC 0.26* 0.24* 0.28* 0.30* 0.21* 0.52 0.83

βMAD -0.03* 0.09* -0.14* 0.10* -0.14* 0.27 2.68

βTRM -0.03* 0.09* -0.14* 0.10* -0.14* 0.27 2.76

MC5 t-Student full reactive market model

βOLS -0.01 0.13* -0.14* 0.14* -0.22* 0.50 1.00

β Reactive -0.04* -0.00 -0.07* 0.05* -0.17* 0.41 1.42

βDCC -0.01 0.10* -0.12* 0.20* -0.32* 0.52 1.31

βADCC 0.10* 0.10* 0.11* 0.29* -0.17* 0.54 1.32

βMAD -0.09* 0.04* -0.22* 0.09* -0.37* 0.38 2.43

βTRM -0.09* 0.04* -0.22* 0.09* -0.36* 0.37 2.46

MC6 Gaussian symmetric DCC model

βOLS -0.11* -0.10* -0.11* 0.06* -0.27* 0.32 1.00

β Reactive -0.07* -0.11* -0.02 0.09* -0.23* 0.33 0.93

βDCC -0.01 -0.00 -0.02* -0.01 -0.01 0.16 4.09

βADCC 0.02* -0.08* 0.12* 0.05* -0.01 0.22 2.06

βMAD -0.14* -0.13* -0.15* 0.04* -0.32* 0.34 0.89

βTRM -0.14* -0.13* -0.15* 0.04* -0.32* 0.34 0.90

MC7 Gaussian asymmetric DCC model

βOLS -0.09* 0.03 -0.24* 0.09* -0.25* 0.30 1.00

β Reactive -0.07* 0.02 -0.17* 0.10* -0.21* 0.27 1.21

βDCC -0.04* 0.04* -0.15* -0.00 -0.08* 0.21 2.08

βADCC -0.01 -0.01 -0.01 -0.00 -0.01 0.15 3.74

βMAD -0.13* -0.02 -0.28* 0.06* -0.29* 0.32 0.92

βTRM -0.13* -0.01 -0.28* 0.06* -0.29* 0.32 0.92

Table 2: Monte Carlo robustness tests. Statistics are provided for seven Monte Carlo simu-
lations and six di�erent methods to estimate the beta. We estimated statistics such as bias,
which is the average error of beta measurements. Winner/loser biases are the biases among
winner/loser stocks. Low/High biases are the biases among low/high beta stocks. ABSD
is the average of the error in absolute value. Vols/Vm is the variance of the error in the
OLS case divided by the variance of the error. * indicates a bias greater than 3 standard
deviations.
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Figure 7: Simulated paths for models MC4 � MC7. The true conditional beta (top), true
conditional correlation (middle left), true conditional stock index volatility (middle right),
true conditional single stock volatility (bottom left), and true conditional relative volatility
(bottom right) are plotted. Paths limited to 500 days, which are independent from model to
model, capture the same order of magnitude of variation in volatilities, beta and correlation.
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5 Open problems in other �elds

The estimated beta is used in a wide range of �nancial applications, including security val-
uation, asset pricing, portfolio management and risk management. This extends also to
corporate �nance in many applications, such as �nancing decisions to quantify risk associ-
ated with debt, equity and assets and �rm valuation when discounting cash-�ows using the
weighted average cost of capital. The most likely reason is that the beta describes systematic
risk that could not be diversi�ed and that should be remunerated. However, as explained,
the OLS estimator of the beta is subject to measurement errors, which include the presence
of outliers, time dependence, the leverage e�ect, and the departure from normality.

5.1 Asset Pricing

Bali et al. (2017) apply the DCC model by Engle (2016) to assess the cross-sectional variation
in expected stock returns. They estimate the conditional beta for the S&P 500 using daily
data from 1963 to 2009. They test whether the betas have predictive power for the cross-
section of individual stock returns over the next one to �ve days. They show that there
is no link between the unconditional beta and the cross-section of expected returns. Most
remarkably, they also show that the time-varying conditional beta is priced in the cross-
section of daily returns. At the portfolio level, they indicate that a long-short trading strategy
of buying the highest conditional beta stocks and selling the lowest conditional beta stocks
yields average returns of 8% per year. Thus, conditional CAPM is empirically valid, whereas
unconditional CAPM is not empirically valid. Moreover, they show that improvements in
beta measurement from unconditional to conditional betas would not have signi�cant pricing
impacts on major anomalies (size, book, momentum...). Thus, one can see that DCC greatly
changes the pricing of the low volatility anomaly that disappears and improves the empirical
validation of the CAPM but does not change the pricing of other major anomalies. We
expect that the reactive method can bring further improvements. Indeed, as revealed by
our robustness tests in Sec. 4, the leverage e�ect and the nonlinear beta elasticity are likely
to generate bias in the DCC estimation. Because our reactive method was designed to
correct for these biases, its use can help reveal pricing e�ects of the dynamic beta on major
anomalies. This point is an interesting perspective for future research.

5.2 Corporate Finance

To determine a fair discount rate for valuing cash-�ows, the �rm's manager must select
the appropriate beta of the project given that the discount rate remains constant over time,
while the project may exhibit signi�cant variation over time and the leverage e�ect due to the
debt-to-equity ratio. As such, Ang and Liu (2004) discuss how to discount cash-�ows with
time-varying expected returns in a traditional set-up. For instance, the traditional dividend
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discount model assumes that the expected return along with the expected rate of cash-�ow
growth are set as constant while they are time-varying and correlated. In practice, in the
�rst step, the manager computes the expected future cash-�ows from �nancial forecasts. In
the second step, the manager uses a constant discount rate, usually relying on the CAPM
for the discounting factor. In contrast, Ang and Liu (2004) derive a valuation formula that
incorporates the correlation among stochastic cash-�ows, betas and risk premia. They show
that the greater the magnitude of the di�erence between the true discount rate and the
constant discount rate, the greater the project's misvaluation. They even show that when
computing perpetuity values from the discounting model, the potential mispricing can even
become worse. They conclude that accounting for time-varying expected returns can lead
to di�erent prices from using a constant discount rate from the traditional unconditional
CAPM. The impact of the leverage e�ect and of the nonlinear elasticity of the beta on
potential mispricing deserves to be investigated. Indeed, our results seem to indicate that
the mispricing might be higher for low and high beta stocks over a long period. This could
be an interesting topic for future work.

5.3 Alternative asset classes

Notice that in this paper, the reactive beta model is tailored for stocks. However, it could
help to withdraw some bias in a context involving assets other than stocks such like hedge
funds or mutual funds. Indeed the simple market neutral strategies (Short term reversal,
momentum, size) can be extended to simple directional strategies (contrarian, trend follow-
ing) to model the behaviors of funds managers. Some identi�ed bias in beta measurement
described in Sec 3.2 captured by the market neutral strategies are also most likely to occur
in the directional ones.
An application of the reactive beta model on hedge funds would raise interesting concerns
about a better estimation of non-linearity features that would stem from option-like strate-
gies or higher moments as documented by the literature: Fung and Hsieh (2001) warn that
hedge funds employ dynamic trading strategies that have option-like returns even if the
manager does not trade in derivatives markets. This means that asset pricing models of
investment styles are not designed to capture non-linear returns that commonly character-
ized hedge fund industry. Agarwal and Naik (2004) observe that hedge funds report large
losses during crisis episodes, which suggests that they may be bearing signi�cant left-tail
risk particularly during large market downturn. They �nd that the non-linear option like
pay-o�s from a wide range of equity-oriented hedge funds resembles to a strategy of writ-
ing a put option on the equity index. Recall that hedge funds generally employ long-short
dynamic strategies to capture non-standard risk premia, in constrast to mutual funds that
employ overall long position on buy-and-hold strategies to capture standard risk premia like
equity/bond risk premia. Agarwal, Arisoy and Naik (2004) build on an augmented version
of the Fung and Hsieh (2004) a seven-factor model to �nd that hedge funds with greater
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leverage, longer time in existence and larger assets under management have more negative
uncertainty betas. This echoes the �ndings of Bali, Brown and Tang (2017) for stocks that
provide evidence of signi�cant non-linearity in uncertainty premium. Agarwal, Green, and
and Ren (2018) measure risk-adjusted hedge fund performance using a range of single and
multi-factor models to �nd that, surprisingly, hedge fund �ows are being better explained
by CAPM alpha than by more sophisticated models. This echoes the �ndings of Berk and
van Binsbergen (2016) who �rst use capital �ows of mutual funds for asset pricing models
to �nally conclude that the CAPM better explains risk than no model at all.
An application on mutual funds would also raise interesting concerns about the estimation
errors in the individual beta estimate because beta is exposed to estimation errors for in-
dividual stocks (see e.g. Chordia, Goyal and Shanken (2015)). But since mutual funds are
themselves diversi�ed portfolios, it should alleviate the estimation error in the beta estimate.
This is important because it addresses the controversy in the literature as to whether some
expected return variations associated with factor loadings (betas) are due to economic risk,
or are due to mispricing e�ects linked to this measurement error. At the same time, using
portfolios could also hide some precious information that exists at the individual stock level
as documented by the literature (Black et al., 1972; Fama and MacBeth, 1973). Such an
investigation on alternative asset classes is left open towards a future research.

6 Conclusion

We propose a reactive beta model with three components that account for the speci�c lever-
age e�ect (when a stock underperforms, its beta increases), the systematic leverage e�ect
(when a stock index declines, correlations increase), and beta elasticity (when relative volatil-
ity increases, the beta increases). The three components were �tted and incorporated through
elaborate statistical measurements. An empirical test is run from 2000 to 2015 with exhaus-
tive data sets including both American and European securities. We compute the bias for
hedging the most popular market neutral strategies (low volatility, short-term reversal, mo-
mentum and capitalization) using the standard approach of the beta measurement and the
reactive beta model. Our main �ndings emphasize the ability of the reactive beta model
to signi�cantly reduce the biases of these strategies, particularly during stress periods. We
further extend the research design to include robustness checks based on simulated data to
compare the reactive method with �ve alternative methods (ordinary least squares, minimum
absolute deviation, trimean quantile regression, and dynamic conditional correlation with or
without asymmetry) over seven Monte Carlo scenarios re�ecting di�erent market conditions
from calm (Gaussian residuals, no leverage e�ect, constant beta) to stress (non-Gaussian
residuals, leverage e�ect, nonlinear beta elasticity, stochastic volatility, nonconstant volatil-
ity of volatility and volatility of correlation). We �nd that the overall results con�rm that the
reactive beta presents the lower bias when stressed market conditions are included. Further,
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the reactive model can be useful in other empirical applications such as asset pricing and
corporate �nance and alternative asset classes such as hedge funds and mutual funds. This
provides a good starting point for future research.
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A Selection bias

Here, we provide some evidence that the bias in beta of the low volatility factor comes from the selection
bias: selection of the bottom beta stocks yields the stocks whose beta is underestimated.

The measured beta βim of stock i is obtained by a standard linear regression of the i-th stock returns,
ri, to the stock index returns, rI ,

ri = βimrI + εi, (37)

where εi is the residual return. We suppose that the measured beta of the stock i, βim, is a�ected by noise,

βim = βiT + ηi, (38)

where βiT is the true beta (which is unknown), and ηi is the error of the measurement inherent to the linear
regression. The standard deviation of ηi, σηi , depends on the average correlation between the single stock
i and the stock index and on the number n of independent points used for the regression (which we set at
n = 1

λβ
= 90):

σηi =
σεi
σI

1√
n
, (39)

where σεi is the standard deviation of the residual returns εi. Averaging the above relation over all stocks,
we obtain

ση =
〈σεi〉
σI

√
λβ , (40)

where 〈σεi〉 denotes the average. According to Eq. (37), the standard deviation of the stock returns, σi, is

σi =
√
β2
imσ

2
I + σ2

εi ≈ σεi, (41)

because (βimσI/σi)
2 � 1 (stocks are much more volatile than the index). We thus obtain

ση ≈
〈σi〉
σI

√
λβ . (42)

The low volatility factor is 50% long of the 30% top βim stocks and 50% short of the 30% bottom βim
stocks (here, we consider only one sector for simplicity). We adjust the most volatile leg to target a beta
neutral factor if we suppose that ηi are null. In reality, when taking into account the di�erence between the
measured and the true beta, we obtain the beta of the low volatility factor as:

βlow factor = −50%〈βiT |i ∈ Bottom〉+ 50%
〈βim|i ∈ Bottom〉
〈βim|i ∈ Top〉 〈βiT |i ∈ Top〉. (43)

This is essentially the beta neutral condition that we impose when constructing the factor (see Appendix
B). Here, 〈βim|i ∈ Bottom〉 is the average of the measured beta over the stocks i in the 30% bottom in the
measured beta values βim (similar for other averages).

De�ning ∆βB and ∆βT as

〈βiT |i ∈ Bottom〉 = 〈βim|i ∈ Bottom〉+ ∆βB , (44)

〈βiT |i ∈ Top〉 = 〈βim|i ∈ Top〉+ ∆βT , (45)
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we rewrite Eq. (43) as

βlow factor = −50% (〈βim|i ∈ Bottom〉+ ∆βB) + 50%
〈βim|i ∈ Bottom〉
〈βim|i ∈ Top〉 (〈βim|i ∈ Top〉+ ∆βT )

= −50%∆βB + 50%
〈βim|i ∈ Bottom〉
〈βim|i ∈ Top〉 ∆βT . (46)

Given that 〈βim|i ∈ Bottom〉 � 〈βim|i ∈ Top〉 (as the βim in the top quantile are higher than the βim in the
bottom quantile), we obtain the following approximation

βlow factor ≈ −50%∆βB . (47)

If one knew the true βiT values and used them for constructing the low volatility factor, the excess ∆βB
would be zero. However, the true values are unknown, and one uses the measured beta βim that creates a
selection bias and the nonzero ∆βB , as shown below.

To estimate ∆βB , we consider the true beta βiT and the measurement error ηi as independent random
variables and replace the average over stocks by the following conditional expectation

∆βB = 〈βiT − βim|i ∈ Bottom〉 ≈ E{βiT − βim|i ∈ Bottom} = B. (48)

We have, then,

−B = E{ηi|i ∈ Bottom} =

∞∫

−∞

η P{ηi ∈ (η, η + dη)|i ∈ Bottom}

=

∞∫

−∞

η
P{ηi ∈ (η, η + dη), i ∈ Bottom}

P{i ∈ Bottom} , (49)

where we wrote explicitly the conditional probability. The denominator is precisely the threshold determining
the bottom quantile, P{i ∈ Bottom} = p, which we set to 30%. We thus obtain

−B =
1

p

∞∫

−∞

η P{ηi ∈ (η, η + dη), βim − β0 < Q}, (50)

where the event i ∈ Bottom is equivalently written as βim < β0 +Q, where Q is the value of the measured
beta that corresponds to the quantile p, and β0 is the mean of βim. Using Eq. (38) and the assumption that
βiT and ηi are independent, one obtains

−B =
1

p

∞∫

−∞

η P{ηi ∈ (η, η + dη), βiT − β0 < Q− η}

=
1

p

∞∫

−∞

η P{ηi ∈ (η, η + dη)}P{βiT − β0 < Q− η}. (51)

To obtain some quantitative estimates, we make a strong assumption that both βiT and ηi are Gaussian
variables, with means β0 and 0 and standard deviations σβ and ση, respectively. We then obtain

−B =
1

p

∞∫

−∞

dη η
exp(−η2/(2σ2

η))√
2π ση

Φ
(
(Q− η)/σβ

)
, (52)
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where

Φ(x) =

x∫

−∞

dy
e−y

2/2

√
2π

(53)

is the cumulative Gaussian distribution. Changing the integration variable, one obtains

−B =

√
2ση
p
√
π

∞∫

−∞

dxx exp(−x2)Φ
(
(Q− x

√
2ση)/σβ

)
. (54)

Integrating by parts and omitting technical computations, we obtain

B =

√
2ση
p
√
π

ση

2σβ
√

1 + b2
exp

(
− a2

1 + b2

)
, (55)

where a = Q/(
√

2σβ) and b = ση/σβ . Setting

Q = σβ
√

2 q, q = erf−1(2p− 1), (56)

we obtain

B =
ση

p
√

2π

1√
1 + (σβ/ση)2

exp

(
− q2

1 + (ση/σβ)2

)
, (57)

from which

βlow factor ≈ −50%
ση

p
√

2π

1√
1 + (σβ/ση)2

exp

(
− q2

1 + (ση/σβ)2

)
. (58)

From the data for the USA, we estimate the standard deviation of the measured beta (σβ = 0.43),
the volatility of the stock index (σI = 19.77%), the volatility of the low volatility factor (3.46%), and
〈σi〉/σI = 1.53. Setting λβ = 1/90, we obtain from Eq. (42) ση = 1.53

√
1/90 = 0.1613. For p = 0.3

(bottom 30%), we obtain q = −0.3708 and, thus, βlow factor ≈ 0.0334 from Eq. (58). Finally, we conclude
that ρlow factor = 3.34% 19.77%

3.46% = 19.1%.

B Construction of the beta-neutral factors

We implement the four most popular strategies as four beta-neutral factors that are constructed as follows.
First, we split all stocks into six clusters of sectors of similar sizes to minimize sectorial correlations. For each
trading day, the stocks of the chosen cluster are sorted according to the indicator (e.g., the capitalization)
available the day before (we use the publication date and not the valuation date). The related indicator-
based factor is formed by buying the �rst pN stocks in the sorted list and shorting the last pN stocks, where
N is the number of stocks in the considered cluster and p is a chosen quantile level. As described in Sec. 3.2,
we use p = 0.15 for short-term reversal and long-term momentum factors and p = 0.30 for the capitalization
and low volatility factors. The other stocks (with intermediate indicator values) are not included (weighted
by 0). To reduce the speci�c risk, the weights of the selected stocks are set inversely proportional to the
stock's volatility σi, whereas the weights of the remaining stocks are 0. Moreover, the inverse stock volatility
is limited to reduce the impact of extreme speci�c risk. For each trading day, we recompute the weight wi
as follows

wi =





+µ+ min{1, σmean/σi}, if i belongs to the �rst pN stocks in the sorted list,
−µ−min{1, σmean/σi}, if i belongs to the last pN stocks in the sorted list,

0, otherwise,
(59)
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where σmean = 1
N (σ1 + . . .+σN ) is the mean estimated volatility over the cluster of sectors. In this manner,

the weights of low-volatility stocks are reduced to avoid strongly unbalanced portfolios concentrated in such
stocks. The two common multipliers, µ±, are used to ensure the beta market neutral condition:

N∑

i=1

βiwi = 0, (60)

where βi is the sensitivity of stock i to the market obtained either by an OLS or by our reactive method.
In every case, the method to estimate beta uses the rolling daily returns and only past information to avoid
the look-ahead bias. If the aggregated sensitivity of the long part of the portfolio to the market is higher
than that of the short part of the portfolio, its weight is reduced by the common multiplier µ+ < 1

2pN , which

is obtained from Eq. (60) by setting µ− = 1
2pN (which implies that the sum of absolute weights |wi| does

not exceed 1). In the opposite situation (when the short part of the portfolio has a higher aggregated beta),
one sets µ+ = 1

2pN and determines the reducing multiplier µ− < 1
2pN from Eq. (60). The resulting factor

is obtained by aggregating the weights constructed for each supersector. We emphasize that the factors are
constructed on a daily basis, i.e., the weights are re-evaluated daily based on updated indicators. However,
most indicators do not change frequently, so the transaction costs related to changing the factors are not
signi�cant.

C Description of alternative methods

C.1 Unconditional beta

The theory. Chan and Lakonishok (1992) produce an empirical analysis that describes various robust
methods for estimating constant beta, as they provide an alternative to ordinary least squares (OLS). Their
method is built on the work of Koenker (1978), which provides robust alternatives to the sample mean using
a more complex linear combination of order statistics in order to face the case of non-Gaussian errors, which
are the source of outliers. Instead of minimizing the sum of squared residuals, they consider an estimator
that is based on minimizing the criterion, including a penalty function % on the residuals ε:

T∑

t=1

%θ(εt) (61)

for %θ(εt) = θ |εt| if εt ≥ 0, or (1− θ) |εt| if εt < 0, where 0 < θ < 1.
Chan and Lakonishok (1992) minimize the sum of absolute deviations of the residuals εit from the market

model instead of the sum of squared deviations. The resulting minimum absolute deviations (MAD) estimator
of the regression parameters corresponds to the special case of θ = 1/2, where half of the observations lie
above the line, while half lie below. More generally, large or small values of the weight θ attach a penalty to
observations with large positive or negative residuals. Varying θ between 0 and 1 yields a set of regression

quantile estimates ˆβ(θ) that is analogous to the quantiles of any sample of data. However, they recognize
that MAD does not prove itself to be a clearly superior method, and they suggest that it may be improved
via linear combinations of sample quantiles such as trimmed means.

For that reason, Chan and Lakonishok (1992) test di�erent combinations of regressions quantiles serving
as the basis for the robust estimators. They discuss the general case of the trimmed regression quantile
(TRQ) given as a weighted average of the regression quantile statistics:

β̂α = (1− 2α)−1
∫ 1−α

α

β̂(θ)dθ (62)
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where 0 < α < 1/2 and 0 < θ < 1.
More speci�cally, Chan and Lakonishok (1992) suggest a more straightforward and equivalent method

that considers estimators that are �nite linear combinations of regression quantiles (QR) and are computa-
tionally simpler:

βω =

N∑

i=1

ωiβ̂(θi) (63)

where weights 0 < ωi < 1, i = 1, ..., N and
∑N
i=1 ωi = 1. The speci�c case of the weighted average is given

by Tukey's trimean (TRM) estimator:

β̂TRM = 0.25β̂(1/4) + 0.5β̂(1/2) + 0.25β̂(3/4) (64)

The application. Their analysis is based mainly on simulated return data, although they add some
tests with actual return data. The main advantages of a simulation are that the true values of the underlying
parameters are known and that the extent of departures from normality can be controlled. They begin with
a baseline simulation with 25,000 replications using data generated from a normal distribution. They also
consider the case where the residual term is drawn from a Student-distribution with three degrees of freedom
in order to explain the observed leptokurtosis in daily return data. We follow the same methodology to assess
the quality of the OLS, the MAD and the TRM beta estimators using Gaussian and t-Student residuals in
the seven types of Monte Carlo simulations (MC1,...,MC7).

To replicate the exponential weight scheme of the reactive model (λβ = 1/90), Eq. (61) is replaced by

T∑

t=1

(1− λβ)
T−t

%θ(εt) (65)

C.2 Conditional Beta

The theory. The �rst application of time-varying beta was proposed in Bollerslev et al. (1988), since
the beta was computed as the ratio of the conditional covariance to the conditional variance. Engle (2002)
generalizes Bollerslev (1990)'s constant correlation model by making the conditional correlation matrix time-
dependent with the Dynamic Conditional Correlation (DCC) model, which constrains the time-varying
conditional correlation matrix to be positive de�nite and the number of parameters to grow linearly by
a two-step procedure. The �rst step requires the GARCH variances to be estimated univariately. Their
parameter estimates remain constant for the next step. The second stage is estimated conditioned on the
parameters estimated in the �rst stage.

Hereafter, we extend the modeling of the DCC beta for the inclusion of an asymmetric term in the
conditional variance equation. In the case of asymmetry in the conditional variance, we select the GJR-
GARCH(1,1) speci�cation by Glosten et al. (1993), which assumes a speci�c parametric form with leverage
e�ect in the conditional variance (DCC-GJR beta). The basic idea is that negative shocks at period (t− 1)
have a stronger impact on the conditional variance at period t than positive shocks. Note that even though
the conditional distribution is Gaussian, the corresponding unconditional distribution can still present excess
kurtosis.

We select the ADCC model by Cappiello et al. (2006) to incorporate asymmetry in correlation.6 The
case mixing asymmetry located in the variance equation (GJR-GARCH) and in the correlation equation

6There is a rich literature documenting the existence of asymmetry in correlation overall during bear
markets. To cite a few examples, Ang and Bekaert (2000) �nd evidence of the presence of a high volatility
and high correlation regime that tend to coincide with a bear market. Longin and Solnik (2001) �nd that
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(ADCC) is examined (ADCC-GJR GARCH). In our paper, the symmetric GARCH DCC will be called
simply DCC, and the asymmetric ADCC-GJR will be called simply ADCC.

Let us consider ri and rI as the returns of a single stock and the stock index, respectively. We assume
that their respective conditional variances follow a (GJR-)GARCH(1,1) speci�cation. The stock return ri is
de�ned by its conditional volatility, σi, and a zero-mean white noise ξi(t):

ri(t) = σi(t− 1)ξi(t) (66)

The conditional variation speci�cation of the stock return is the following:

σ2
i (t) = (1− a− b− γ/2)σ̃2

i + aσ2
i (t− 1)[ξi(t)]

2 + bσ2
i (t− 1) + γσ2

i [ξ−i (t)]2 (67)

where σ̃i is the unconditional volatility, and a, b, and γ are parameters re�ecting respectively the ARCH,
GARCH and asymmetry e�ects. When γ = 0, the speci�cation collapses to a GARCH model; otherwise, it
stands for the GJR-GARCH model, where the asymmetric term is de�ned as ξ−i (t) = ξi(t) if ξi(t) > 0, or
ξ−i (t) = 0 otherwise.

The stock index return rI is de�ned by its conditional volatility, σI , and a zero-mean white noise ξI(t)
that is correlated to ξi(t):

rI(t) = σI(t− 1)ξI(t) (68)

The conditional variance speci�cation of the stock index return is the following:

σ2
I (t) = (1− a− b− γ/2)σ̃2

I + aσ2
I (t− 1)[ξI(t)]

2 + bσ2
I (t− 1) + γσ2

I [ξ−I (t)]2 (69)

We de�ne the normalized conditional variance diagonal terms as follows:

qii(t) = (1− aρ − bρ − γρ/2) + aρξi(t− 1)ξi(t− 1) + bρqii(t− 1) + γρξ
−
i (t− 1)ξ−i (t− 1) (70)

qII(t) = (1− aρ − bρ − γρ/2) + aρξI(t− 1)ξI(t− 1) + bρqII(t− 1) + γρξ
−
I (t− 1)ξ−I (t− 1) (71)

The normalized conditional covariance term qiI(t) is given by:

qiI(t) = (1− aρ − bρ − γρ/4)ρ̃+ aρξi(t− 1)ξI(t− 1) + bρqiI(t− 1) + γρξ
−
i (t− 1)ξ−I (t− 1) (72)

correlation among large negative returns is much larger than the correlation among large positive returns.
Forbes and Rigobon (2002) warn that the correlation can increase only because the volatility increases even
if the beta remains constant. To that end, there has been a controversy in the literature on the statistical
signi�cance of such an asymmetry. For this purpose, Ang and Chen (2002) develop a summary statistic that
quanti�es the degree of asymmetry in correlations across downside and upside markets relative to a particular
model. They �nd that stocks from either small �rms, value �rms, or low past returns �rms, tend to exhibit
greater asymmetric correlations. Hong, Tu and Zhou (2006) extend the Ang and Chen (2002) analysis to a
model-free approach so that if symmetry is rejected, then the data cannot be modeled by any symmetrical
distributions. They �nd that the betas can be asymmetric even if there is no asymmetry in the correlation.
They also �nd strong evidence of asymmetries for both size and momentum portfolios, but no evidence for
book-to-market portfolios. Jiang, Wu and Zhou (2018) extend the Hong, Tu and Zhou (2006)'s correlation-
based test approach to �nally �nd that asymmetry is much more pervasive than previously thought. Indeed,
they address asymmetry beyond the second moment as the correlation coe�cient is a measure of linear
dependence, captured by the market beta, between individual stock returns and the market portfolio return.
In contrast to Hong, Tu and Zhou (2006), they �nally �nd evidence of asymmetry in some portfolios sorted
by the book-to-market ratio.
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When γρ = 0, the speci�cation collapses to a DCC model; otherwise, it stands for the ADCC model,
where the asymmetric term is de�ned as ξ−i (t) = ξi(t) if ξi(t) > 0, or ξ−i (t) = 0 otherwise.

The conditional correlation between ξI(t+ 1) and ξi(t+ 1) is then updated by:

ρiI(t) = qiI(t)/
√
qII(t)qii(t) (73)

The beta DCC and beta ADCC estimation are de�ned in the same way:

βDCC(t) = ρiI(t)σi(t)/σI(t) (74)

The log-likelihood function is optimized to calibrate the parameters ρ̃, σ̃I and σ̃i for estimation:

LDCC =
1

2

T∑

t

(LV (t) + LC(t)) (75)

LV (t) = −2 log(2π)− ξI(t)2 − ξi(t)2 − 2 log(σI(t))− 2 log(σi(t)) (76)

LC(t) = − log(det(R(t)))− U ′(t)R(t)−1U(t)− U ′(t)U(t) (77)

with det as the determinant of a matrix, and

R(t) =

[
1 ρiI(t)

ρiI(t) 1

]
, U(t) =

[
ξi(t)
ξI(t)

]
(78)

The application. For Monte Carlo simulation purposes:

• ξi(t) is either generated randomly in MC6 and MC7 according to a standard Gaussian or measured
through returns ri(t) and σi(t− 1) for beta DCC estimation.

• γ = 0 for MC6 and beta DCC estimation but γ > 0 for MC7 and beta ADCC, which captures the
asymmetry term of the GJR-GARCH.

• ξI(t) is either generated randomly in MC6 and MC7 according to a standard Gaussian random variable
that is correlated with the random variable ξi(t) (the correlation between ξi(t) and ξI(t) is ρiI(t− 1))
or is measured through returns rI(t) and σI(t− 1) for beta DCC estimation.

• γρ = 0 for MC6 and beta DCC but γρ > 0 for MC7 and beta ADCC, which captures the asymmetry
term of the ADCC.

The �xed parameters that are supposed to be known when testing the beta DCC are set to US market
estimates from Sheppard (2017):

• �xed parameters for the univariate symmetric GARCH(1,1) process (MC6, i.e., DCC):

b = 0.89, b is the decay coe�cient, and 1/(1 − b) is related to the number of days the process
needs to mean revert;

a = 0.099 describes the level of the volatility of the volatility.

• �xed parameters for the univariate asymmetric GJR-GARCH(1,1,1) process (MC7, i.e., ADCC):

b = 0.901, b is the decay coe�cient, and 1/(1 − b) is related to the number of days the process
needs to mean revert;

a = 0.0, a+ γ/2 describe the level of the volatility of the volatility;

γ = 0.171, γdescribe the asymmetry.
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The �xed parameters that are supposed to be known when testing the DCC and ADCC betas are set to
US market estimates from Cappiello et al. (2006):

• �xed parameters for the symmetric cross-term process (MC6, i.e., DCC):

bρ = 0.9261, bρ is the decay coe�cient and is linked to the relaxation time;

aρ = 0.0079 describes the level of the volatility.

• �xed parameters for the asymmetric cross-term process (MC7, i.e., ADCC):

bρ = 0.9512, bρ is the decay coe�cient and is linked to the relaxation time;

aρ = 0.0020, aρ + γρ/4 describes the level of the volatility of the correlation;

γρ = 0.0040, γρ describes the asymmetry.

The �xed parameters that are not known when testing the DCC beta and are estimated through the
optimization of log-likelihood are set by MC simulation to:

• ρ̃ = 0.15/0.4, unconditional correlation;

• σ̃I = 0.15/
√

255, σ̃i = 0.4/
√

255 unconditional stock index volatility;

• σ̃i = 0.4/
√

255 unconditional single stock volatility.

To replicate the exponential weight scheme in the reactive model (λβ = 1/90), Eq. (75) is replaced by

LDCC =
1

2

T∑

t

(1− λβ)
T−t

(LV (t) + LC(t)) (79)
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5. The Model of Di�usion of Correlations

between Securities

1

1. The results of this chapter were obtained in collaboration with Stanislav Kuperstein.
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The model of di�usion of the correlations between

securities

June 7, 2019

Abstract

The measurement of di�usion of the correlation matrix between securities is almost

impossible as di�usion of the correlation of population is hidden by measurement noises.

The use of �ve minutes returns and the reduction of the dimension of the matrix from

500 single stocks to the 23 main market neutral risk factors by taking into account

�nancial information allow us to measure some di�usion patterns. The empirical dis-

tribution of the eigenvalues of the increments of the correlation matrix is estimated.

The deformation of that distribution with time scale is also studied. We introduce an

alternative model that is based on a stochastic equation governing the volatilities of

the risk factors. The non-orthogonality of the factors enables to generate an interesting

behavior and enables to �t the empirical di�usion patterns of the eigenvectors: The

eigenvectors of the matrix tend to be invested at time t on the risk factors that are the

most volatile at time t and therefore di�use as well due to the endless rotation of the

most volatile factors.

1 Introduction

The measurement of di�usion of the correlation matrix between securities is almost impos-
sible as the di�usion is hidden by in measurement noises. Allez and Bouchaud (2012) show
that the empirical main eigenvector is oscillating around the population one and that the
angle of oscillation is related to the ratio between the second eigenvalue and the �rst eigen-
value and to the ratio between the size of the matrix and the number of independent returns
per instrument. We could extend this rule for other eigenvectors and we guess that they are
measured with a lot of noises as eigenvalues become closer to their neighbors. As a result
the eigenvectors with corresponding small eigenvalues are not well de�ned or are chaotic.
Valeyre et al. (2018) introduces a powerful method that takes advantage of the �nancial
information to �lter the measurement noises by reducing the dimension of the correlation
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matrix of single stock returns to 24 main risk factors, among which 23 are market neutral.
This method reproduces the main eigenvectors orthogonal to the market mode and their
dynamics. We exclude the market mode from the analysis as the �rst eigenvector appears to
be less noisy and less random with a high eigenvalue. So we focus the study on the market
neutral sub space. When the method introduced by Valeyre et al. (2018) is applied with
5 minutes returns to estimate the correlation matrix, we can measure properly the weekly
variation of the correlation. That enables to test for the �rst time how well the di�erent
mainstream and theoretical models of the literature, that describe how population covariance
matrix can change and be stochastic, can reproduce the empirical statistics of the variations.

The Wishart process is a mainstream tool to model the dynamics of the covariance
matrix. This process can be interpreted as the �square� of a matrix of Brownian motions
or in its stationary version as the square of a matrix of Ornstein-Uhlenbeck processes. Bru
(1991) derived the stochastic equation that describes the dynamics of the eigenvalues that
repulse each other. Their distribution follows the Mar£enko-Pastur law for high-dimensional
matrices.

Motivated by price multi-asset option or default intensities, Cuchiero et al. (2011) ana-
lyzed the foundation of the stochastic continuous a�ne process on the universe of covariance
matrices. The Wishart process extends in fact the Feller di�usion from one dimension to
several dimensions. Gourieroux (2007) introduced a mean reversion term and extended the
process of Cox, Ingersoll and Ross (1985) from one to several dimensions. The process of
Cox, Ingersoll and Ross (1985) is very popular in �nance to model the dynamics of the
interest rate or the volatility of single stocks. In that way, Gourieroux (2007) could model
properly the risk of a portfolio taking into account the risk that correlation could change. In
the same way Fonseca, Grasselli and Tebaldi (2008) extended to several dimensions to price
basket options the model of Heston (1993) where the volatility of the Brownian process, that
describes prices, is stochastic and modeled by a CIR process.

Other stochastic matrices are very well documented. Ahdida and Alfonsi (2013) worked
on a mean reversion process of correlation matrix through the Wright-Fisher di�usion. Plenty
of algorithms were also documented to generate random walk among the ensemble of the
rotation matrices, that can be used to describe directly the di�usion of the eigenvectors of
the correlation matrix. As an example the Walk by Kac (1959) is a very e�cient algorithm
that generates random paths but there is no mean reversion component so that after a
while the matrix loses the connection with the initial matrix. Gaussian matrices were also
very well studied. The distribution of the eigenvalues of the symmetric Gaussian matrix is
the well-known Wigner semi-circle law. This is an important point if we consider that the
increment of a covariance or correlation matrix could be well modeled by a Gaussian matrix,
we can guess that the distribution of the eigenvalues of the increment should be close to the
semi-circle law.

In this paper we �rst de�ne in Section 2 the empirical di�usion patterns we want to
reproduce. We then introduce our di�usion model in Section 3. We then present how well

2



the model captures the empirical patterns in Section 4. We �nally compare with the results
obtained with the mainstream models from the literature in Section 5.

2 The description of the empirical di�usion patterns

2.1 The introduction of the proxy of the correlation matrix between
single stocks

Valeyre et al. (2018) proposed a practical solution to �lter noises of the correlation matrix
between single stocks, noted as C(t), by reducing the size of the correlation matrix from
500 or more single stocks to 24 major risk factors that reproduce the largest eigenvalues
and their dynamics. These factors were named 'Fundamental Maximum Variance Market
neutral' portfolios as their construction was optimized to capture as best as possible the
empirical eigenvalues.

We use the same data and factors as in Valeyre et al. (2018): we selected the 500
most liquid stocks from the US stock market, from 2013 to 2018 and the K = 23 most
popular market neutral factors according to the literature (dividend yield, capitalization,
volume/capitalization, STR, momentum, beta, leverage, sales to price, book to price, cash
to price, price to earning, growth of earning, sensitivity to Euro dollar, sensitivity to 10 years
rates, energy, �nance, IT, utilities, consumer, industry, pharmacy, consumer discretionary
vs. staple, REITs). So we exclude from the analysis the market mode and select only market
neutral factors.

Instead of analyzing di�usion of the large and noisy matrix C(t), we analyze di�usion
of its proxy which is the reduced matrix Cp(t), Eq. (1), introduced in Eq. (25) of Valeyre
et al. (2018). Cp(t) depends on the reduced h(t) and γγγ(t) matrices, that can be interpreted
as the overlap between the K factors positions and as the covariance between the K factors
returns. They can be estimated accurately using 5 minutes returns based on Eq. (89) of
Valeyre et al. (2018).

Cp(t) = γγγ−
1
2 (t)h(t)γγγ−

1
2 (t) (1)

Valeyre et al. (2018) argue that the main eigenvalues from Cp(t) measured from 5
minutes returns with a lookback of 1 week are very close to the main empirical eigenvalues
of the correlation matrix of single stocks and that the dynamics of eigenvalues are also well
reproduced. Therefore Cp(t) can be used as a good proxy of C(t).

2.2 The introduction of di�usion patterns

In this subsection, we introduce some di�usion patterns that we believe are important to re-
produce. As di�usion of the eigenvalues of the correlation matrix is already well documented
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in the literature, we focus on di�usion of the eigenvectors. We only know from the literature
that Allez and Bouchaud (2012) model the stability of the subspace generated by successive
eigenvectors based on the overlap between the new subspace and the old one. But they
assumed that the population correlation matrix was constant and that only measurement
noise could explain the di�usion of the empirical eigenvectors.

We de�ne the matrix O(t) of the eigenvectors that diagonalize Cp(t). These eigenvectors
could be interpreted as the constrained and �ltered eigenvectors of the large correlation
matrix between single stocks. We have OT(t)Cp(t)O(t) = Ω(t), where the diagonal matrix
Ω(t) contains the eigenvalues of Cp(t) but could be interpreted as the constrained eigenvalues
of the large correlation matrix between single stocks.

We de�ne S0(t, τ) in Eq. (2) as the increment of the correlation matrix corresponding to
the time increment τ . We changed the basis and set S0(t, τ) into the basis generated by the
initial eigenvectorsO(t). We de�ne S1(t, τ) in Eq. (3) as a tilted version to minor the impact
of change in eigenvalues Ω(t+τ)−Ω(t) after the time increment τ and get measurement only
sensitive to di�usion of eigenvectors of single stocks but not to the di�usion of eigenvalues.
We de�ne, in Eq. (4), S2(t, τ) as a tilted version to minor the impact of the eigenvalues Ω(t)
in the weighting and get measurement that is based on the same weight for all eigenvectors
(major or minor ones).

S0(t, τ) = OT(t) (Cp(t+ τ)−Cp(t))O(t) , (2)

S1(t, τ) = (Ω(t)/Ω(t+ τ))
1
2 OT(t)Cp(t+ τ)O(t) (Ω(t)/Ω(t+ τ))

1
2 −OT(t)Cp(t)O(t) , (3)

S2(t, τ) = CorrCov
(
OT(t)Cp(t+ τ)O(t)

)
− Id , (4)

Matrices S0(t, τ), S1(t, τ) and S2(t, τ) quantify whether �old� eigenvectors O(t) are still
close to be the �new� eigenvectors O(t + τ). S(t, τ) measures the way the portfolios that
were initially �xed as eigenvectors start to be correlated to each other as time τ elapses.
We can interpret the eigenvalues of S(t, τ) as a measure of the way how the eigenvectors of
the proxy of the large correlation matrix between single stocks di�use. The direct way that
would have consisted in measuring the distance between old and new eigenvectors would
have not made any sense as eigenvectors with corresponding small eigenvalues are close to
be chaotic and change dramatically as τ changes a little, while the eigenvalues of S remain
empirically continuous with τ .

To be more precise as the eigenvalues of S0(t, τ) are also simply the eigenvalues of Cp(t+
τ)−Cp(t), the eigenvalues of S0(t, τ) could be interpreted as the eigenvalues of the increments
of the large but cleaned correlation matrix between single stocks.

The eigenvalues of S2(t, τ) are also simply the eigenvalues of the change in correlation
between main risk factors. S2(t, τ) is particularly interesting and could reveal peculiar

4



properties as S2(t, τ) is rather homogeneous and random so it could be close to symmetric
Gaussian matrix and we can expect that the distribution of the eigenvalues looks like to a
deformed version of the Wigner semi-circle law, without any tails and singularities.

We de�ne two di�usion patterns to measure from real data that we want to reproduce
with stochastic models for both S0, S1 and S2:

• |λ|max(τ) is the largest eigenvalues in absolute value of S0(t, τ), S1(t, τ) or S2(t, τ) the
depending on the time scale of the increment τ and averaged on the di�erent t. The
increase of |λ|max(τ) with τ describes the way the portfolios that were initially set as
eigenvectors starts to be more and more correlated. |λ|max(τ) will converge toward an
asymptotic value when τ tends to ∞ with a certain relaxation time;

• ρτ (λ) is the distribution of the eigenvalues of of S0(t, τ), S1(t, τ) or S2(t, τ) for all
di�erent t. The shape of the distribution depends on τ , the time scale of the increment.
We cannot reduce di�usion of the largest eigenvalue |λ|max(τ) and it is important to
worry about the distribution of all eigenvalues. Indeed that is important to understand
if the risk of correlations change can be extreme and localized by concentrating on only
one factor, i.e that is important to determine whether the distribution ρτ (λ) could
have tails or not if the tails are the results of the distribution of the eigenvalues of the
correlation matrix or the results of a more sophisticated phenomenon. That explains
why it is interesting to measure the shape of ρτ (λ) for both S, S1 and S2.

3 The di�usion model governed by the di�usion of the

FCL

λ0i (t) =
hii(t)

γγγii(t)
(5)

λ01(t), ..., λ
0
K(t) are the time dependent Factor correlation levels, �FCL�, of the K factors,

which were introduced in Valeyre et al. (2018). The interpretation of Eq. (5), that de�nes
the �FCL�, is that it corresponds to the conditional variance of the returns of the corre-
sponding normalized risk factor. The �FCL� has very appealing properties as for example it
corresponds to the weighted average of the eigenvalues of the correlation matrix of the single
stocks returns, with the weights given by the squares of the eigenvectors projections of the
risk factor. Each market neutral factor was determined with the Maximum Variance formula
(Eq.43 combined with Eq.54 of with Valeyre et al. (2018) ν = 1), that enables to optimize
the �FCL� and to reproduce very well the empirical eigenvalues and their dynamics.

x1(t), ..., xK(t) are the logarithm of the ratio between λ0i (t) and λ00i the unconditional
�FCL� estimation (Eq.6) and according to Valeyre et al. (2018) they could be well modeled by
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independent Ornstein-Uhlenbeck processes (Eq.7). σ describes the volatility and α describes
the inverse of the relaxation time.

xi(t) = ln

(
λ0i (t)

λ00i

)
(6)

dxi(t) = −αxi(t)dt+ σdBi(t) . (7)

The parameter α could be �tted from a normalized variogram introduced in Grebenkov
and Serror (2014) through Eq. (11). The left graph of Fig. 1 exhibits the normalized
variogram of the daily variation of x1(t), .., xK(t) for the K risk factors. The normalized
variograms are �tted for most factors by an Ornstein-Uhlenbeck process with a relaxation
time of 60 days. Some factors deviate but it could be explained by the noise of the mea-
surement of the method. The right graph of Fig. 1 shows the empirical eigenvalues of the
unconditional correlation matrix 〈C(t)〉.
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Figure 1: Left: Normalized variogram of the daily variation of the logarithm of the FCL
λ01, .., λ

0
K using �ve minutes returns from 2013 to 2018. Each curve corresponds to a risk

factor. Most of the empirical measurement are �tted by theoretical variogram obtained
for the Ornstein-Uhlenbeck process with 1/α = 60. Right: Eigenvalues of the empirical
unconditional correlation matrix, we exclude from the analysis the �rst one that corresponds
to the market mode.

We de�ne γγγ0 and h0 as the unconditional covariance and the unconditional overlap ma-
trices whereas h(t) et γγγ(t) are the conditional matrices depending on time.

We introduce in Eq. (8) the model of di�usion of the correlation matrix that is gov-
erned by di�usion of the �FCL�. Csim

p (t) could be generated completely in a random way,
to replicate empirical patterns of Cp(t). Eq. (44) of Valeyre et al. (2018) describes how

to generate the random unconditional matrices (hsim0 , γγγsim0 and Csim
p0 = γγγsim0

− 1
2hsim0 γγγsim0

− 1
2 )
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through the random selection of the K factors. They are generated randomly once based on
the eigenvalues of the empirical unconditional correlation matrix between single stocks. A
summary is described in Appendix B. The unconditional empirical eigenvalues Ω0 are based
on empirical eigenvalues using the 5 minutes data from 2013 to 2018 and are reported in Ta-
ble 1. The �rst eigenvalue was excluded. Eq. (8) helps to simulate the heteroscedsacticity of
the correlation matrix through change in �FCL� with the stochastic processes x1(t),...xK(t)
that can be updated step by step randomly from t = 1 to T using the parameters of Eq. (7).
That enables to generate stochastic �FCL� that we could interpret as volatilities for the K
risk factors. For numerical simulation we set T = 1071.

λEmp

1 109.02
2 22.32
3 12.84
4 10.01
5 7.94
6 5.92
7 5.79
8 4.70
9 4.29
10 3.53
11 2.77
12 2.42
13 2.38
14 2.23
15 2.10
16 2.03
17 1.96
18 1.92
19 1.84
20 1.73
21 1.64
22 1.60
23 1.56
24 1.50

Table 1: λEmp are the sample unconstrained eigenvalues of the correlation matrix between
single stocks obtained from 2013-2018 with 5 minutes returns. Ω0 is set as λ

Emp
2 ,...,λEmp24 .
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Csim
p (t) =



ex1(t) ... 0
...
0 ... exK(t)



− 1

2

Csim
p0



ex1(t) ... 0
...
0 ... exK(t)



− 1

2

(8)

4 Simulations against measurements

Fig. 2 displays the time scale dependency of |λ|max(τ) for empirical S0 and simulated S0sim.
We see that simulation captures well the measurement. The �t could have been much better if
the parameter σ was optimized. The curve looks like a square root law that is a characteristic
of di�usion but in fact it seems to converge to a value between 8 and 12 with an exponential
decay and a relaxation time close to 60 days (1/α). We can interpret that the asymptote
between 8 and 12 as close to the �rst eigenvalue of Csim

p multiplied by σ
√

1/α. We include
|λ|max(τ) obtained for S1 when withdrawing the impact of di�usion of the eigenvalues Ω(t)
of the correlation matrix on the measurement. We see a small di�erence between |λ|max(τ)
obtained for S0 and |λ|max(τ) obtained for S1 and that di�usion of eigenvalues Ω(t) has a
smaller impact than di�usion of the eigenvectors into di�usion of the correlation matrix of
single stocks. The very likely scenario that explains di�usion of the correlation matrix is
therefore a permanent rotation between factors that matters for risk. In that scenario the
distribution of the eigenvalues of the correlation matrix is maintained rather stable.

Fig.3 exhibits |λ|max(τ) for empirical S2 and simulated S2sim. At τ = 60 days |λ|max(τ)
is close to 1.5 but we have to add another 0.5 to achieve the likely asymptote and another 1 to
estimate the �rst eigenvalue of the correlation matrix between factors that were set initially
as eigenvectors of the empirical conditional correlation matrix. Indeed that �rst eigenvalue
corresponds to the �rst eigenvalue of Id + S2sim(t, τ = ∞). So 3 should be compared to
4.01 that corresponds to the value of �rst eigenvalue of the correlation matrix derived from

the empirical unconditional γγγ
− 1

2
0 h0γγγ

− 1
2

0 or to 4.14 that corresponds to the average of the

�rst eigenvalue of the correlation matrix derived from the random matrix γγγsim0
− 1

2hsim0 γγγsim0
− 1

2

based on a random selection of the K factors. It is therefore almost not worth to try to
orthogonalize the random factors as correlation change will destroy a large part of the e�ect
of the orthogonalization after 60 days or more.

Fig. 4 displays ρτ (λ), the empirical histogram of the eigenvalues of S0 and the histogram
of the simulated S0sim for di�erent time scales τ from 1 to 30 days. We see that the empirical
and simulated histograms are very close. They have tails and are very di�erent from the
Wigner semi-circle law, we could have expected if the variations of the correlation matrix
were Gaussian. The model appears to be realistic. That is con�rmed by Fig. 5 obtained
for S1 that is very similar to Fig. 4 obtained for S0. Fig. 6 obtained for S2, that minors
the impact of the eigenvalues Ω(t) in the weighting and get the measurement of di�usion
that is based on the same weight for all eigenvectors (major or minor ones), still exhibits a
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Figure 2: |λ|max(τ) based on S0, S0sim, S1 and S1sim. It corresponds to the largest eigenval-
ues in absolute value of the increment of the proxy of the correlation matrix between single
stocks depending on τ , the time horizon of the increment. �Empirical S0� and �Empirical
S1� are the empirical measurements. �Empirical S1� is the case where the impact of di�usion
of the eigenvalues Ω(t) is arti�cially withdrawn. �simulation S0� and �simulation S1� were
obtained with σ = 0.0545 and 1/α = 60 to make the �FCL� stochastic. The simulation
is generated by our model that captures well the empirical measurements based on the 5
minutes returns on the period 2013-2018.

distribution with tails and remains very di�erent from the Wigner semi-circle law or from
the pointed hat shape distribution for both empirical and simulated cases.

5 Comparison with the mainstream models from the lit-

erature

To determine how well our model is adapted to the reality, we compare it to other models,
that were selected among mainstream models from the literature. We will check if the
standard models from the literature also could generate histogram ρτ (λ) corresponding to
S0, S1 and S2 that are close to the empirical ones.

5.1 Feller Di�usion with the Wishart process

Feller Di�usion with the Wishart process is used to model di�usion of the covariance between
portfolios that were initially �xed as eigenvectors.

Csim
p,t (τ) = Ω

1
2
0

Id+ σBT
t (τ)Bt(τ)

1 + σ2τL
Ω

1
2
0
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Figure 3: |λ|max(τ) based on S2, S2sim for both the Wishart model (derived from Eq. 9)
and the model governed by the stochastic �FCL�. It corresponds to the largest eigenvalues in
absolute value of the normalized increment of the proxy of the correlation matrix between
single stocks depending on τ , the time horizon of the increment.

with Bt(τ) set as a Brownian matrix of size K × L with the path t, as if di�usion was
coming only from statistical error of measurement of the correlation as in Allez and Bouchaud
(2012). The di�usion model of the population eigenvectors by the error of measurement of
the empirical eigenvectors sounds weird. We simulated |λ|max(τ) and ρτ (λ) for S0sim(t, τ)
de�ned by the Eq. (9)

S0sim(t, τ) = Ω
1
2
0

Id+ σ2BT
t (τ)Bt(τ)

1 + σ2τL
Ω

1
2
0 − Ω0 (9)

Here we chose to have independent paths t. We generate plenty of paths t = 1, .., t =
T = 1071. Ω0 is set to empirical unconditional eigenvalues of the large correlation matrix
between single stocks, the measurements are reported in the Tab.1. The �rst empirical eigen-
value that corresponds to the market mode was excluded. L and σ were �tted to replicate
approximatively, without any optimization, the empirical measurement of |λ|max(τ).

Fig. 7 shows that the quality of the �t whereas Fig. 8 exhibits how the model reproduces
well the empirical histogram of the eigenvalues of S0.

When we simulate

S2sim(t, τ) = CorrCov
(

Ω
1
2
0

Id+ σ2BT
t (τ)Bt(τ)

1 + σ2τL
Ω

1
2
0

)
− Id,

we see in Fig. 9 that the model could not manage to replicate the tails of ρτ (λ), the
histogram of the increments and generate only distribution without any tails close to the
deformed semi-circle law of Wigner.
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Figure 4: ρτ (λ) based on S0 and S0sim with τ = 1, 10 or 30 days. The histograms correspond
to the empirical distribution of the eigenvalues of the increments of the correlation matrix.
τ = 1, 10 or 30 days correspond to the time horizon of the increment. The simulation, that
was obtained with σ = 0.0545 and 1/α = 60 to make the �FCL� stochastic, captures well
the measurement based on the 5 minutes returns on the period 2013-2018 at any time scale.

In conclusion the Wishart model could not reproduce the empirical normalized change in
correlation. We could have tested with the large matrix Csim of dimension N = 500 instead
of Csim

p of dimension K but it would have generate the same disappointing results with the
incapacity to get for ρτ (λ) a distribution whose shape is very di�erent from the Wigner
semi-circle law.

5.2 Wright-Fisher di�usion with mean reversion term

This di�usion is used to model di�usion of the correlation between portfolios that were
initially �xed as eigenvectors. We simulated directly the stochastic correlation matrix, A(t, τ)
generated by the stochastic process introduced by Ahdida and Alfonsi (2013). The di�erent
parameters were �tted to replicate approximatively, without any optimization, the empirical
measurement of |λ|max(τ) (Fig. 10). We generated plenty of path t = 1, ..., t = T = 1071 and
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Figure 5: ρτ (λ) based on S1 and S1sim with τ = 1, 10 or 30 days. The histograms correspond
to the empirical distribution of the eigenvalues of the increments of the correlation matrix
readjusted by the eigenvalues increments. τ = 1, 10 or 30 days correspond to the time
horizon of the increment. The simulation, that was obtained with σ = 0.0545 and 1/α = 60
to make the �FCL� stochastic, captures well the measurement based on the 5 minutes returns
on the period 2013-2018 at any time scale.

A(t, 0) was initialized at the identity matrix for every path. The �mean matrix� of the mean
reversion term was also set to the identity. We also plot the histogram of the eigenvalues of
S0sim(t, τ) de�ned by Eq. (10) (Fig. 11) that looks realistic.

S0sim(t, τ) = Ω
1
2
0A(t, τ)Ω

1
2
0 − Ω0 (10)

When we simulate S2sim(t, τ) = A(t, τ)− Id, the Wright-Fisher di�usion could not help
to avoid for getting the distribution ρτ (λ) that looks like a Wigner semi-circle law (Fig.12).
In conclusion the di�usion of Wright-Fisher with mean reversion term could not reproduce
the empirical normalized change in correlation;

12



Figure 6: ρτ (λ) based on S2 and S2sim with τ = 1, 10 or 30 days. The histograms correspond
to the empirical distribution of the eigenvalues of the increments of the correlation matrix
readjusted by the eigenvalues increments. τ = 1, 10 or 30 days correspond to the time
horizon of the increment. The simulation, that was obtained with σ = 0.0545 and 1/α = 60
to make the �FCL� stochastic, captures well the measurement based on the 5 minutes returns
on the period 2013-2018.

5.3 Mean reversion random walk on the ensemble of the rotation
matrices

Mean reversion random walk on the ensemble of the rotation matrices describes directly
di�usion of the eigenvectors of Csim

p . We simulate directly O(t, τ) initialized to the identity
matrix. We simulated |λ|max(τ) and ρτ (λ) for S0sim(t, τ) = OT(t, τ)Ω0O(t, τ)−Ω0 for di�er-
ent path t = 1, .., t = T = 1071. We also test S2sim(t, τ) = CorrCov

(
OT(t, τ)Ω0O(t, τ)

)
−Id.

Parameters were set to reproduce approximatively, without any optimization, the empirical
measurement of |λ|max(τ) for the three di�erent following methods:

• Gram-Schmidt algorithm that is described in Appendix C.1. We �t the parameters
through Fig.13. But Fig.14 exhibits two abnormal bumps on the right and the left and
Fig.15 exhibits an abnormal pointed hat shape;
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Figure 7: |λ|max(τ) based on S0, S0sim, S1 and S1sim. It corresponds to the largest eigenval-
ues in absolute value of the increment of the proxy of the correlation matrix between single
stocks depending on τ , the time horizon of the increment. �Empirical S0� is the empirical
measurements. �simulation S0� is derived from a Wishart process in Eq. (9) derived from
a Gaussian matrix of dimension L × K with L = 30 and K = 23. The last parameter is
σ = 0.06.

• Algorithms based on the Walk by Kac (1959) that was tuned to include a mean rever-
sion term that is described in Appendix C.1;

• A new stochastic di�erential equation that is described in Appendix C.1.

In the two cases, we �t the parameters through Fig.13 (Fig.16). But Fig.14 (Fig.17) ex-
hibits two abnormal bumps on the right and the left and Fig.15 (Fig.21)exhibits an abnormal
pointed hat shape.

5.4 The classical model

Classical model where the eigenvalues of the matrix, instead of the �FCL�, are stochastic. In
that model the eigenvectors are stable and do not di�use.

6 Conclusion

The measurement of di�usion of the correlation matrix is almost impossible as di�usion is
hidden by measurement noises. The use of �ve minutes returns and the reduction of the
dimension of the matrix from 500 single stocks to 24 main risk factors allow us to measure
some di�usion patterns. The distribution of the eigenvalues of the variation of the matrix
is measured. The deformation of the distribution with time scale is studied. The empirical
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Figure 8: ρτ (λ) based on S0 and S0sim using the Wishart model (Eq. 9) with τ = 1, 10 or
30 days. The histograms correspond to the empirical distribution of the eigenvalues of the
increments of the correlation matrix readjusted by the eigenvalues increments. τ = 1, 10 or
30 days correspond to the time horizon of the increment. The simulation was obtained with
L = 30 and σ = 0.06.

patterns are not well reproduced by the standard stochastic models derived from the Wishart
process or from standard random walk on rotation matrices. We introduce a new alternative
model that is based on a stochastic equation for the volatilities of the risk factors that �t the
empirical patterns. The eigenvectors of the matrix tend to be invested on the risk factors that
are the most volatile and therefore di�use. Mainstream models could not capture extreme
changes of correlation localized in one direction. Our alternative model appears more robust
and realistic.

A Variogram

Vi(τ) =
VarT2u=T1 (li(u)− li(u− τ))

VarT2u=T1 (li(u)− li(u− 1)) + ...VarT2u=T1 (li(u− τ)− li(u− τ − 1))
(11)
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Figure 9: ρτ (λ) based on S2 and S2sim using the Wishart model (normalized version of
Eq. 9) with τ = 1, 10 or 30 days. The histograms correspond to the empirical distribution
of the eigenvalues of the increments of the correlation matrix readjusted by the eigenvalues
increments. τ = 1, 10 or 30 days correspond to the time horizon of the increment. The
simulation was obtained with L = 30 and σ = 0.06.

where VarT2u=T1 is the empirical variance based on the sample from T1 to T2.

B Generating Csim(t) governed by stochastic FCL

In the Paper we we modelled the returns by

ri(t) =
N∑

j=1

√
`r.j
(
er.

j

)
i
εj(t) , (12)
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Figure 10: |λ|max(τ) based on S0sim. It corresponds to the largest eigenvalue in absolute
value of the increment of the proxy of the correlation matrix between single stocks depending
on τ , the time horizon of the increment. S0sim is derived from Ahdida and Alfonsi (2013) (
Eq. 10) with |λ|max (τ) for (k, a) = (1., 0.9) and c = I. This choice of k and a provides the
best match.

where εj(t) are TN standard normal random variables, er. is a random orthonormal basis
(meaning that er.

j are entries of an SO(N) matrix) and

`r.i =





λEmpi for i 6 K

1− (N −K)−1
K∑
a=1

λEmpa for i > K
. (13)

For large N the covariance matrix of ri(t), Hr., is close to the correlation obtained from the
same returns. In other words, Hr.

ii ≈ 1. Next, we modelled the Maximum-Variance market
neutral portfolios as

(
ωωω(0)
? a

)
i

=
N∑

j=1

(
`r.j
)µ/2 (

er.

j

)
i
Eja , (14)

where E is a N × K matrix of standard normal random variables simulating our factor
loadings, and µ is a free parameter �xed to µ ≈ 1.4 in order to match the observations.
With these conventions the unconditional matrices become:

hr.

0 ab = ωωω(0)
?

T

aH
r.ωωω(0)

? b and γγγr.

0 ab =
N∑

i=1

(
ω(0)
? a

)
i
Hr.

ii

(
ω(0)
? b

)
i
. (15)

These matrices are used to de�ne

Cr.

0 = γγγγγγγγγr.

0
−1/2hr.

0γγγγγγγγγ
r.

0
−1/2 (16)

17



Figure 11: ρτ (λ) based on S0sim using Ahdida and Alfonsi (2013) (Eq. 10) with τ = 1,
10 or 30 days. The histograms corresponds to the simulated distribution of the eigenvalues
of the increments of the correlation matrix. τ = 1, 10 or 30 days corresponds to the time
horizon of the increment. The simulation, that was obtained with (k, a) = (1., 0.9) and with
100 iterations (paths).

Figure 12: ρτ (λ) based on S2sim using Ahdida and Alfonsi (2013) (normalized version of Eq.
10) with τ = 1, 10 or 30 days. The histograms correspond to the simulated distribution of
the eigenvalues of the increments of the correlation matrix. τ = 1, 10 or 30 days correspond
to the time horizon of the increment. The simulation was obtained with (k, a) = (1., 0.9)
and with 100 iterations (paths).

Finally we model the FCL dynamics by the following Ornsteinâ��Uhlenbeck process:

dxa(t) = −αxa(t)dt+ σdBa(t) . (17)

Here Ba(t) are independent Wiener processes and the parameters α and σ are determined
from the best match to the FCL variograms. The time variation is then mimicked by

Csim(t) =




ex1(t) · · · 0
...

. . .
...

0 · · · exK−1(t)


Cr.

0




ex1(t) · · · 0
...

. . .
...

0 · · · exK−1(t)


 (18)
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Figure 13: |λ|max(τ) based on S0sim. It corresponds to the largest eigenvalue in absolute
value of the increment of the proxy of the correlation matrix between single stocks depending
on τ , the time horizon of the increment. S0sim is derived by a Gram-Schmidt algorithm for
ε = 0.015

Figure 14: ρτ (λ) based on S0sim using a Gram-Schmidt algorithm with τ = 1, 10 or 30
days. The histograms correspond to the simulated distribution of the eigenvalues of the
increments of the correlation matrix. τ = 1, 10 or 30 days correspond to the time horizon
of the increment. The simulation was obtained for ε = 0.015

C Random Matrices from the literature

To measure the �distance" between two matrices we will use the normalized version of the
Hilbert-Schmidt operator also known as the Frobenius inner product :

d (A,B) =
1

2N
〈A,B〉HS ≡

1

2N
Tr
(
A†B

)
. (19)

If A is real and orthonormal (AAT = ATA = 1N×N), while B = 1N×N , then the above
reduces to:

d (A,1N×N) =

(
1− TrA

N

)
. (20)
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Figure 15: ρτ (λ) based on S2sim using a Gram-Schmidt algorithm with τ = 1, 10 or 30
days. The histograms correspond to the simulated distribution of the eigenvalues of the
increments of the correlation matrix. τ = 1, 10 or 30 days correspond to the time horizon
of the increment. The simulation was obtained for ε = 0.015

The distance is, therefore, equal to 0 if and only if A = 1N×N . Similarly the maximal
possible distance d (A,1N×N = 2) requires A = −1N×N (notice that it is possible only for
even N).

C.1 (Ornstein-Uhlenbeck) random walk on SO(N)

Below we list various options to generate a random walk on SO(N) that will not depart �too
far" from the identity matrix (a random work around an arbitrary orthogonal matrix is a
trivial generalisation).

C.1.1 Gram-Schmidt based algorithm

Let us denote by GS(V ) the Gram-Schmidt orthogonalisation (and normalisation) procedure
that acts on the rows of a (square) matrix V . We require that the algorithm doesn't mix
di�erent rows and columns, ans so GS(V + δV ) is close to V if V is orthonormal and δV is
su�ciently small.

We can then generate the aforementioned walk with:

O(t+ 1) = GS (O(t) + µ · I + ε ·W ) , (21)

where µ is the drift parameter, W is a random N × N matrix and ε is the parameter
controlling the random walk around the identity matrix I. Figure 22 presents the simulation
output for N = 50 and parameters listed in the caption.

The result seems to be satisfactory, but it comes with a performance cost. A �hand-
written" Python code runs 0.2 seconds for a single (!) 500 × 500 matrix and is therefore
impractical for T = 70000. At the same time the already existing numpy routine for the GS
algorithm is ten times faster but unfortunately it mixes the rows of the matrix and so cannot
be used for the numerical simulation.
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Figure 16: |λ|max(τ) based on S0sim. It corresponds to the largest eigenvalue in absolute
value of the increment of the proxy of the correlation matrix between single stocks depending
on τ , the time horizon of the increment. S0sim is derived the Kac Walk for θ = 0.07 and
n = 15 random 2× 2 rotations per δt = 1.

C.2 Kac walk based approaches

To reduce the running time we have to avoid using costly matrix operations (like, for in-
stance, matrix products) since they have N2 complexity, and instead operating on selected
rows/columns of O(t). For example, the di�usion can be modelled by a sequence of rotations

(
O(t+ 1)i
O(t+ 1)j

)
=

(
c −s
s c

)(
O(t)i
O(t)j

)
, (22)

where c, s = cos(δ), sin(δ) for a small angle δ, and the pair of rows i, j is selected randomly.
In terms of the O(t)'s columns this is just the Kac walk often used to model di�usion on a
sphere.

Repeating these so-called Givens rotations leads to a random walk on SO(N) though
de�nitely with no �mean-reversion�. To introduce the drift we have somehow to rotate O(t)
back each time in order to bring it closer to the identity matrix.

We tried two di�erent approaches:

1. Identify a pair of indices i, j for which the value |O(t)i,j −O(t)j,i| is maximal. This
corresponds to a plane where O(t) deviates the most from the identity matrix. Rotate
then in this plane by a �xed portion of the angle needed to bring this part of O(t)
maximally close to the identity matrix:

γγγ · arcsin

(
Oj,i −Oi,j√

(Oj,i −Oi,j)2 + (Oi,i +Oj,j)2

)
(23)
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Figure 17: ρτ (λ) based on S0sim using Kac walk with τ = 1, 10 or 30 days. The histograms
correspond to the simulated distribution of the eigenvalues of the increments of the corre-
lation matrix. τ = 1, 10 or 30 days correspond to the time horizon of the increment. The
simulation was obtained for with θ = 0.07, n = 15 random 2 × 2 rotations per δt = 1 and
with 1000 iterations (paths) with Kac walk

Figure 18: ρτ (λ) based on S2sim using Kac walk with τ = 1, 10 or 30 days. The histograms
correspond to the simulated distribution of the eigenvalues of the increments of the corre-
lation matrix. τ = 1, 10 or 30 days correspond to the time horizon of the increment. The
simulation was obtained for with θ = 0.07, n = 15 random 2 × 2 rotations per δt = 1 and
with 1000 iterations (paths) with Kac walk

2. Proceed the same as above but select i for which the value |O(t)i,i − 1| is maximal and
take j with the largest |O(t)i,j −O(t)j,i|.

The two algorithms have overall four di�erent parameters:

• The number of random consecutive Givens rotations, nRW.

• The constant angle used for these rotations, δ.

• The number of the consecutive �reversions" applied after Givens rotations, nRev.

• The parameter γγγ needed to control the reversion/drift.

The �rst approach performs slightly better, but the search for the pair (i, j) has an N2

cost, while the latter has only N -order complexity. Figure 23 demonstrates the N = 50
implementation of the second algorithm with parameters described in the caption.
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Figure 19: |λ|max(τ) based on S0sim. It corresponds to the largest eigenvalue in absolute value
of the increment of the proxy of the correlation matrix between single stocks depending on τ ,
the time horizon of the increment. S0sim is derived the new Stochastic Di�erential Equation
for µ = 1. and σ = 0.2

References

Ahdida,A., A. Alfonsi. �A mean-reverting SDE on correlation matrices.� Stochastic process
and their application 2013

R. Allez and J.-P. Bouchaud, �Eigenvector dynamics: General theory and some applica-
tions�,Phys. Rev. E 86, 046202 (2012).

Bru, M.F.. �Wishart processes�. J. Theoret. Probab., 4(4):725â��751, 1991.

Cox,J. , J. Ingersoll, and S. Ross. �A theory of the term structure of interest rates�. Econo-
metrica, 53:385â��407, 1985

Cuchiero,C., D. Filipovi , E. Mayerhofer, and J. Teichmann. �A�ne processes on positive
semide�nite matrices�. Ann. Appl. Probab., 21(2):397â��463, 2011.

Fonseca,J. Da, M. Grasselli, and C. Tebaldi. �Option pricing when correlations are stochas-
tic: an analytical framework�. Springer, 2008.

Grebenkov, D., J. Serror �Following a trend with an exponential moving average: Analytical
results for a Gaussian model� Physica A 2014

Gourieroux, C., �Continuous time Wishart process for stochastic risk�. Econometric Reviews,
25:2:177 â�� 217, 2007.

23



Figure 20: ρτ (λ) based on S0sim using the new Stochastic Di�erential Equation with τ = 1,
10 or 30 days. The histograms correspond to the simulated distribution of the eigenvalues
of the increments of the correlation matrix. τ = 1, 10 or 30 days correspond to the time
horizon of the increment. The simulation was obtained for µ = 1, σ = 0.2, and with 1000
iterations (paths) with Stochastic Di�erential Equation.

Figure 21: ρτ (λ) based on S2sim using the new Stochastic Di�erential Equation with τ = 1,
10 or 30 days. The histograms correspond to the simulated distribution of the eigenvalues
of the increments of the correlation matrix. τ = 1, 10 or 30 days correspond to the time
horizon of the increment. The simulation was obtained for µ = 1, σ = 0.2, and with 1000
iterations (paths) with Stochastic Di�erential Equation.
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Figure 22: The OU walk de�ned by (21) for N = 50 and (µ, ε) = (0.01, 0.015). The
horizontal axis is t and the vertical axis corresponds to the distance between O(t) and the
identity matrix as de�ned by (20). The matrix O(0) is a random orthogonal matrix, so the
distance is close to 1. The process starts to oscillate around Id at t = 400. Notice that
d = 0.3 is in fact a very small distance for N = 50.

Figure 23: The horizontal axis is t and the vertical axis corresponds to the distance between
O(t) and the identity matrix as de�ned by (20). The parameters are (nRW, δ, nRev, γγγ) =(
10, 0.05 · π

2
, 10, 0.2

)
. In this simulation O(0) = I.
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Should employers pay their employees better?

An asset pricing approach

ABSTRACT

We uncover a new anomaly in asset pricing that is linked to the remuneration: the more

a company spends on salaries and benefits per employee, the better its stock performs, on

average. Moreover, the companies adopting similar remuneration policies share a common

risk, which is comparable to that of the value premium. For this purpose, we set up an

original methodology that uses firm financial characteristics to build factors that are less

correlated than in the standard asset pricing methodology. We quantify the importance of

these factors from an asset pricing perspective by introducing the factor correlation level as

a directly accessible proxy of eigenvalues of the correlation matrix. A rational explanation

of the remuneration anomaly involves the positive correlation between pay and employee

performance.

JEL classification: G12, G32, J30, C4

Keywords: Anomalies, Asset Pricing, Remuneration, Performance, Factor Correlation.



”The wages of labour are the encouragement of industry, which like every other human

quality, improves in proportion to the encouragement it receives. Where wages are high,

accordingly, we shall always find the workmen more active, diligent, and expeditious, than

where they are low.” Adam Smith (1776).

I. Introduction

Should employers pay their employees better? Although this question might appear

provoking because lowering production costs remains a cornerstone of the contemporary

economy, we present the first attempt to report the real effects of employee remuneration

on asset pricing. Remuneration – defined as the annual salaries and benefits expenses (e.g.,

wages, bonuses, pension expenses, health insurance payment, etc.) per employee – is the basis

of any employment contract. For instance, pay was shown to explain, on average, 65% of

the variance in evaluations of overall job attractiveness (Rynes et al., 1983). Classical theory

states that profit-maximizing firms choose the level of labor pay by setting the marginal

cost of labor (i.e., the wage rate) equal to the marginal revenue product of labor (i.e., the

marginal benefit). Beyond this paradigm, we provide strong evidence that firms that pay

their employees better tend to over-perform on the stock market.

Our objective is to examine whether remuneration is an anomaly that can be priced in

asset pricing models. Schwert (2003) defines anomalies as “empirical results that seem to be

inconsistent with maintained theories of asset-pricing behavior (the CAPM). They indicate

either market inefficiency (profit opportunities) or inadequacies in the asset-pricing model.

After they are documented and analyzed in the academic literature, anomalies often seem

to disappear, reverse, or attenuate.” Anomalies are typically identified either by regressing

a cross-section of average returns (e.g., the seminal Fama and MacBeth (1973) approach

uses the capitalization and book-to-market values), or by using a panel regression of the

cross-section of returns with different factor returns through the F-Statistic (Gibbons et al.,

1989), or by using a portfolio-based approach that segregates individual stocks with similar

capitalization and book-to-market values into different style portfolios (Fama and French,

1993). In the latter case (which we refer to as the “FF approach”), the factors formed

on small minus big market capitalization portfolios (SMB) and high minus low book-to-

market portfolios (HML) explain an important part of the identified anomalies (Fama and

French, 1996). Over recent decades, the growing number of discovered anomalies suggests

that the standard asset pricing models fail to explain much of the cross-sectional variation

in average stock returns. Meanwhile, the effect of remuneration on company performance

has surprisingly never been tested, despite the fact that employers pay particular attention
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to labor costs in attempting to maximize profits.

This research contributes empirically to the asset pricing literature by introducing an

observable firm characteristic, namely the remuneration, as a candidate anomaly. More

precisely, we focus on remuneration as a priced factor. Indeed, it remains unclear how

far remuneration can explain the cross-section of returns despite a sizeable literature on

labor economics that relates labor to asset pricing. This branch of literature has intensively

investigated the impact of labor decisions on the firm’s value, notably through the operating

leverage, which affects the equity returns riskiness. However, to our best knowledge, there

are no asset pricing studies that incorporate employee’s wages as a pricing factor. Besides,

based on the impressive list of anomalies analyzed by Harvey et al. (2016), we find only

one paper that highlights income as a potential factor. Indeed, Gomez et al. (2015) analyze

the relation between U.S. census division-level labor income and the cross-section of returns

using the standard Fama and French (1993) approach. More specifically, these authors use

per capita personal income (from the Bureau of Economic Analysis) as a new candidate

factor and conclude that the cross-section of stock returns depends on the census district in

which the headquarters of the firm are located. Unfortunately, as Harvey et al. (2016) has

noted, “most of the division level labor income have a non-significant t-statistic. We do not

count their factors”. Moreover, we use remuneration at the company level to generate results

that are more realistic from an asset pricing perspective, which contrasts with Gomez et al.

(2015), whose scope is limited to income per state and per division.

This research contributes also theoretically to the asset pricing literature by introducing

a new methodology to build factors that is conceptually close to principal component anal-

ysis (PCA) but goes beyond its noise-induced limitations. This methodology presents many

advantages compared with the conventional multi-factor approach developed by Fama and

French (1992, 1993). We propose a new measure of “explanatory power” of factors where

the relevance of the factor does not depend on the number of considered factors, in contrast

to the R-squared argument of the FF setting. Hence, we introduce the Factor Correlation

Level (FCL) as a metrics of common risks that measures the ability of stocks within the

factor to fluctuate in a common way. Importantly, it allows ordering the factors according to

their capacity of taking into account the variability of stocks, and therefore to their impor-

tance from an asset pricing perspective. In this respect, our ranking by the FCL indicator

resembles principal component analysis. At the same time, this indicator is also linked to the

R-squared value of the factor in the asset pricing model: higher FCLs correspond to higher

R-squared values in the asset pricing model with one factor. The empirical validation of the

FCL methodology is founded on an exhaustive testing protocol. First, we use ten factors

that summarize most of the existing factors: dividend, capitalization, liquidity, momentum,
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low-volatility, debt-to-book, sales-to-market, book-to-market, cash and, of course, the remu-

neration factor; those which are not present in this list remain correlated with some of these

factors; we check that performance associated with the remuneration factor is not explained

by other major factors such as low-volatility, capitalization, book-to-market, or momentum.

Second, we consider six “supersectors” that are used to split stocks into comparable groups

since remuneration varies strongly from one sector to another. Third, we employ a large data

set of 3612 daily single stock close prices from January 2001 to July 2015 for the 569 biggest

companies in Europe. For comparison, we also treat the same number of randomly selected

companies in the U.S.A. whose capitalization exceeds 1 billion of dollars. Although we do

not access the remuneration data for these companies, the analysis of other factors allows

us to validate the FCL methodology on the U.S. market (often considered as a benchmark)

and to compare our predictions to whose of the FF approach. Fourth, we perform several

robustness checks to examine if the results change with the tested variations; for instance, we

perform a separate analysis with the 258 biggest companies from U.K. to check for potential

domestic biases; we also run the methodology on monthly data to check the role of time scale;

in the spirit of comparability, we evaluate the factor performances with seven incremental

transitions from the standard FF approach to our methodology. Finally, we compare our

results with the basic PCA and illustrate its limitations. Our main result indicates that a

market neutral investment strategy based on the remuneration anomaly would likely deliver

positive annual returns of 2.42% above the market.

The remainder of the paper is organized as follows. Section II offers a literature review

that covers several fields of research. Section III describes the novel methodology. Section

IV presents the data, whereas Section V presents the empirical results. Section VI discusses

the advantages and limitations of our methodology and compares it with the FF approach.

Section VII summarizes the main findings and concludes.

II. Literature review

A. The asset pricing

This article is mainly related to the asset pricing literature in which previous studies have

shown that the average returns of common stocks are related to firm characteristics such as

capitalization, price-earnings ratio, cash flow, book-to-market, past sales growth and past

returns. For example, stocks with lower market capitalization tend to have higher average

returns (Banz, 1981). Another important anomaly is the value premium: value stocks have

higher returns than growth stocks, which is likely because the market undervalues distressed
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stocks (Fama and French, 1998). More precisely, small stocks and value stocks have higher

average returns than their betas can explain (Campbell and Vuolteenaho, 2004). Profitability

and investment also add to the description of average returns (Fama and French, 2015). The

low volatility anomaly was revealed for medium and big stocks in addition to growth stocks

(Jordan and Riley, 2013). Those stocks that are expected to have high idiosyncratic risk earn

high returns in the cross-section (Fu, 2009). This result contradicts previous findings made

by Ang et al. (2006), who posit that stocks with high idiosyncratic volatility have low average

returns. Macroeconomic risk has also been connected with the cross-section of returns. For

instance, the growth rate of industrial production is seen as a priced risk factor in standard

asset pricing tests (Chen et al., 1986; Liu and Zhang, 2008). There is a size effect in bank

stock returns that differs from the market capitalization effects documented in non-financial

stock returns (Gandhi and Lustig, 2015). The most popular anomaly is momentum: stocks

with low past returns tend to have low future returns while stocks with high past returns tend

to have high future returns (Jegadeesh and Titman, 1993). Hence, the momentum strategy

that buys past winners and sells past losers should earn abnormal returns in upcoming years.

Return momentum has also been observed when spreads in average momentum returns

decrease from smaller to bigger stocks (Fama and French, 2012). However, momentum

strategies seem to produce losses specifically in January (Jegadeesh and Titman, 1993),

probably based on taxation effects (Grinblatt and Moskowitz, 2004). Similarly, changes in

book equity appear to be more informative about expected stock returns than price returns

(Bali et al., 2013). Notably, certain stock market anomalies may appear and then disappear

after publication in academic journals (McLean and Pontiff, 2015). In spite of the abundant

literature, the work by Gomez et al. (2015) seems to be the sole article that considers income

as a candidate anomaly although it is still not an income per employee but rather per state

and per division. Several models have been developed to provide economic interpretations of

numerous stylized anomalies and to improve the performance of the CAPM.1 Simultaneously,

the anomaly-based evidence against the CAPM has been questioned because anomalies have

primarily been confined to small stocks (Cederburg et al., 2015).2

1 Campbell and Vuolteenaho (2004) introduced a two-beta model to explain the capitalization and book-
to-market value anomalies in stock returns by splitting the CAPM into a cash-flow beta with a higher
price of risk than a discount-rate beta. Fama and French (1993) proposed a three-factor model to capture
the patterns in U.S. average returns associated with capitalization and value-versus-growth. Even after
a theoretical rationale for the three-factor model was provided by Ferguson and Shockley (2003), many
anomalies remain unexplained by the three-factor model (Fama and French, 2015). Although a four-factor
model has been derived (Carhart, 1997), it has also failed to absorb all the momentum in U.S. average stock
returns (Avramov and Chordia, 2006). Recently, a five-factor model was introduced to capture capitalization,
value, profitability, and investment patterns in average stock returns and is reputed to perform better than
the three-factor model (Fama and French, 2015).

2 In line with this criticism, doubt was cast on the set of anomalies to consider in a multi-factorial setup,
given that Harvey et al. (2016) have summarized 316 potential factors by reviewing 313 papers published
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B. Corporate finance

This article is also related to the extensive literature on corporate finance, which has

also continued to investigate the relation between remuneration and performance, although

it has usually focused on managerial pay as opposed to the broader category of employees

that we consider in the present study. This branch of literature typically examines the wage

as a managerial incentive likely to reduce agency costs by designing an optimal job contract.

In that sense, we may consider that solving the incentive problem leads to shareholder value

creation affecting stock returns. Indeed, managers face both discipline and opportunities pro-

vided by the free market economy that leads to the notion that there is no need for explicit

contracts to resolve incentive problems (Fama, 1980). Nevertheless, market forces cannot

act as a complete substitute for contracts (Holmstrom, 1999) because career concerns must

be considered to design optimal contracts and to arrive at strong incentives (Gibbons and

Murphy, 1992). The effects of incentives depend on how they are designed (Gneezy et al.,

2011), given that managers have considerable power to shape their own pay arrangements –

and perhaps to even hurting shareholder interest (Bebchuk et al., 2002). Indeed, public com-

pany disclosures do not provide a comprehensive measure of managerial incentive to increase

shareholder value (O’Byrne and Young, 2010). Many explanations were brought forward

to justify top managers’ remuneration. Firms with abundant investment opportunities pay

their executives better (Gaver and Gaver, 1995). The increase in the level of stock-option

compensation can be explained by the inability of boards to evaluate its real costs (Hall

and Murphy, 2003; Jensen et al., 2004). The capitalization of large firms explains many

patterns in top manager pay across firms, over time, and between countries (Gabaix and

Landier, 2008). Manager fixed effects, interpreted as unobserved managerial attributes and

understood as a proxy for latent managerial ability, are important in explaining the level

of executive remuneration (Graham et al., 2012). Overall, remuneration matters because

it may affect a corporation’s level of risk as bonus-driven remuneration might encourage

excessive risk-taking. However, pay and risk are correlated not because mis-aligned pay

drives risk-taking, but rather because principal agent theory predicts that riskier but more

profitable firms must pay more remuneration than less risky firms to provide a risk-averse

manager the same incentives (Cheng et al., 2015).

since 1967. In the same vein, 38 out of 80 potential firm-level anomalies were shown to be insignificant in
the broad cross-section of average stock returns (Hou et al., 2015). In addition, mistakes can easily be made
in this field due to multiple testing or data mining methods. As noted by Harvey and Liu (2015), many
discovered factors are likely to be false if their t-statistics do not exceed 3. Finally, these papers suggest that
many claims in the anomalies literature are likely to be exaggerated regarding the associated t-statistics.
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C. Labor economics

The labor economics literature treats this question through the “efficiency wage theory”

by relating it to unemployment. Yellen (1984) and Akerlof and Yellen (1990) did a remark-

able work with an analysis that is built – unlike most economic models – mainly on sociology

and psychology with experimentation that delivers salient stylized facts on human behavior

in a working context. Efficiency wage theory maintains that rising wages is the best way

to increase output per employee because it links pecuniary incentives to employee perfor-

mance. In particular, the use of performance pay packages by employers has been shown

to increase employee productivity (Lazear, 2000) and job satisfaction (Green and Heywood,

2008). There are several interesting studies that relate labor market to asset pricing. All

these empirical results emphasize the significant impact of labor decisions, in which wage

plays a prominent role, onto firm’s value. Santos and Veronesi (2006) show that labor income

to consumption ratio is a strong predictor of long horizon returns. Danthine and Donaldson

(2002) explain that operating leverage is more significant for the riskiness of equity returns

than financial leverage. In other words, attention should be paid to wages, particularly be-

cause the priority nature of wages enhances the risk of dividends. In this spirit, Kuehn et

al. (2013) note that a high value of unemployment makes wages inelastic, which gives rise to

operating leverage. The impact of inelastic wages is even stronger in bad times as it amplifies

the equity risk premium. Gourio (2007) argues that because wages are smooth, revenues are

more cyclic than costs, making the profits more volatile. In particular, firms with high book-

to-market or with low productivity, i.e. value firms, have more pro-cyclic earnings. Ochoa

(2013) finds a positive and statistically significant relation between the reliance on skilled

labor and expected returns. In times of high volatility, firms with a high share of skilled

workers earn an annual return of 2.7% above those with a high share of unskilled workers

notably because their labor is more costly to adjust. Labor decisions made by workers can

affect firm risk (Donangelo, 2014) while hiring decisions can also be the determinants of firm

risk (Carlson et al., 2004; Belo et al., 2014). Indeed, Donangelo (2014) discusses the idea that

mobile workers carry some of the firm’s capital productivity when they leave an industry. He

finds that portfolios that hold long positions in stocks of high-mobility industries (general

workers) and short positions in stocks of low-mobility industries (industry-specific workers)

earn an annual return spread of over 5%. Like Monika and Yashiv (2007) who explain that

labor should matter since firms’ market value embodies the value of hiring, Belo et al. (2014)

argue that the market value of a firm reflects the value of its labor force because the firm can

extract rents as compensation for the costs associated with adjusting its labor force. They

find that long positions in stocks of low-hiring firms and short positions in high-hiring firms

earn an average annual excess stock return of 5.6%. Favilukis and Xiaoji (2016) introduce
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infrequent renegotiation in standard wages model showing that it leads to smooth average

wages. Due to this wage rigidity, they find that wage growth forecasts long-horizon excess

equity returns.

D. Social sciences

This article is also broadly related to several streams of research in various social sciences,

including sociology, psychology and human resources. In these fields, wage acts like a moti-

vator since it typically reflects a social preference for rewards likely to affect the employee’s

performance. Sociological studies have developed a theory of social exchange in which there

are equivalent rewards on both sides (Blau, 1955), which is consistent with the preference

for reciprocity that is viewed as a social preference, as it depends on the behavior of the

reference person (Fehr and Falk, 2002). Reciprocity induces agents to cooperate voluntarily

with the principal when the principal treats them correctly; the evidence for reciprocity is

based on a so-called gift exchange experiment.

Psychological studies highlight the exchange in working situations in which the perceived

value of labor equals the perceived value of remuneration, based on the theory of equity

(Adams, 1963). When there is no mismatch between effort and wages, employees may

change their perceived effort and even their perceived level of remuneration by redefining

the non-pecuniary component.

Human resources studies generally offer evidence that money is an important motivator

for most people (Rynes et al., 2004), as pay can help climbing on the Maslow’s motivational

hierarchy of needs, including social esteem and self-actualization. Nevertheless, tangible

rewards might also produce secondary negative effects on motivation (Baker, 1992) by fore-

stalling self-regulation (Deci et al., 1999).

III. Methodology

In this section, we introduce a new methodology to build factors that combines advantages

of the PCA and the Fama and French (1993) approach. As would be the case with the PCA,

our factors are built to be uncorrelated with the market index and with sectorial factors. For

each factor, we introduce and estimate the Factor Correlation Level (FCL) that

allows us to order the factors based on their importance and to select the most

important ones in asset pricing models.
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A. Conventional diagonalization of the covariance and correlation matrices

Identifying common risks of multiple assets is necessary to diversify investments and can

help to profit from style’s arbitrage opportunities. Conventional approaches, such as PCA,

attempt to diagonalize the empirical covariance (or correlation) matrix of the traded uni-

verse, i.e., to decorrelate assets by constructing independent linear combinations (portfolios)

of assets. Each eigenvector of the covariance matrix represents the coefficients of one such

combination while the corresponding eigenvalue gives its variance. If the covariance ma-

trix does not contain negative elements (i.e., if there are no negatively correlated assets),

the eigenvector corresponding to the largest eigenvalue has positive elements that can be

interpreted as relative weights of stocks in the market mode. The classical long portfolio,

following the market, can be constructed by investing in proportion to these weights. In

turn, market neutral portfolios should be orthogonal to the market mode and therefore have

both long and short positions (the latter corresponding to negative weights). The other

eigenvectors capture different common risks of the traded universe, and the most common

include sectorial risks (e.g., banking sector, commodities, energy, etc.).

In mathematical terms, if the covariance matrix Ω of stocks was known precisely, it might

be diagonalized to identify uncorrelated linear combinations of stocks and their variances

to assess the related risks. For a traded universe with n stocks, let r1, . . . , rn denote the

daily returns of these stocks at a given time. The covariance matrix has n eigenvalues

λ1, . . . , λn and n eigenvectors V1, . . . , Vn satisfying ΩVα = λαVα (for each α = 1, . . . , n).

Each eigenvector Vα determines one linear combination of stocks, (Vα)1r1 + . . . + (Vα)nrn,

which is decorrelated from the others, while the eigenvalue λα is its variance (under the

condition that Vα is appropriately normalized).

The above eigenbasis can be interpreted as follows. For any linear combination of stocks

with weights wi, rπ = w1r1 + . . .+wnrn = (w · r) (written as a scalar product), the variance

of such a portfolio π can be expressed as

〈rπ2〉 = 〈
(

n∑

i=1

wiri

)2

〉 =
n∑

i,j=1

wiwjΩi,j =
n∑

i,j=1

wiwj

n∑

α=1

λα(Vα)i(Vα)j =
n∑

α=1

λα(w · Vα)2, (1)

where 〈. . .〉 denotes the expectation, and the returns rk were assumed to be centered. In

other words, the variance is decomposed into a sum of variances λα of independent linear

combinations proportional to the projection of the weights wi onto the corresponding eigen-

vector Vα. If the weights wi are chosen in proportion to the elements of one eigenvector, i.e.,
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wi = c(Vα)i for some α and c, then the orthogonality of Vα to other eigenvectors yields

〈rπ2〉 = λαc
2(Vα · Vα)2 = λα (w · w), (2)

where we used the L2-normalization of the eigenvectors: (Vα · Vα) = 1. As expected, the

variance of such a linear combination is fully determined by the corresponding eigenvalue

λα. Notably, the above relation can also be written as

λα =
〈rπ2〉∑n
i=1w

2
i

(3)

to estimate the variance of the linear combination whose weights are constructed close to an

eigenvector.

As different stocks exhibit quite distinct volatilities, it is convenient to rescale the stock’s

return ri by its realized volatility σi: r̃i = ri/σi. This rescaling is also known to reduce

heterogeneity of volatilities among stocks and heteroskedasticity (Andersen et al., 2000;

Bouchaud et al., 2001; Valeyre et al., 2013). In other words, one can write

〈rπ2〉 = 〈
(

n∑

i=1

wiσir̃i

)2

〉 =
n∑

i,j=1

w̃iw̃jCi,j, (4)

where w̃i = wiσi and C = 〈r̃ir̃j〉 is the covariance matrix of the renormalized returns r̃i

or, equivalently, the correlation matrix of returns ri: Ωi,j = σiσjCi,j. To proceed, the

eigenvalues and eigenvectors of Ω can be replaced by the eigenvalues λ̃α and eigenvectors Ṽα

of the correlation matrix C, CṼα = λ̃αṼα, i.e.,

〈rπ2〉 =
n∑

i,j=1

w̃iw̃j

n∑

α=1

λ̃α(Ṽα)i(Ṽα)j =
n∑

α=1

λ̃α(w̃ · Ṽα)2. (5)

If the volatility-normalized weights w̃i are chosen to be proportional to the elements of an

eigenvector, w̃i = c(Ṽα)i, one obtains 〈rπ2〉 = λ̃αc
2(Ṽα · Ṽα) = λ̃αc

2 = λ̃α(w̃, w̃), from which

λ̃α =
〈rπ2〉∑n
i=1w

2
i σ

2
i

, (6)

where the L2-normalization of Ṽα was used: (Ṽα · Ṽα) = 1. As previously discussed, λ̃α is

the rescaled variance of the linear combination of the volatility-normalized returns r̃i (given

by the eigenvector Ṽα), each of which is decorrelated from other such combinations. By

construction, the variance λ̃α is normalized, which facilitates the comparison of different
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factors and different markets. We emphasize that diagonalizations of the covariance and

correlation matrices are generally not equivalent; in particular, the eigenvalues λα, λ̃α and the

eigenvectors Vα, Ṽα are different (though in our case, their interpretations should be close).

We choose the second option (i.e., Eq. (6)), which inherently reduces stock heterogeneity

and heteroskedasticity due to rescaling.

Unfortunately, a straightforward diagonalization of the empirical covariance or correlation

matrix estimated from stock price series is known to be very sensitive to noise (Laloux et al.,

1999; Plerou et al., 1999, 2002; Potters et al., 2005; Wang et al., 2011; Allez and Bouchaud,

2012). In particular, only a few eigenvectors corresponding to the largest eigenvalues can be

estimated, as illustrated and further discussed in Sec. V.D. As a consequence, conventional

diagonalization does not appear suitable for building various representative factors.

B. Our methodology: Indicator-based factors

We propose a different approach to building factors. We begin from the available eco-

nomic and financial indicators regarding the traded companies, such as their capitalization,

sales-to-market, dividend yields, etc. We expect that companies with comparable indica-

tors – at least those with comparable indicators in the extreme quantiles of the indicator

distribution – will exhibit correlations in their stock performance. This hypothesis allows

us to construct and then test indicator-based factors beyond sectors. To minimize sectorial

correlations, we split the stocks into six supersectors of similar sizes, as detailed in Appendix

A. The following construction is performed separately for each supersector and then the data

are aggregated (see below).

We consider ten indicator-based factors:

1. The dividend factor, which is based on the dividend yield.

2. The capitalization (or size) factor, which is based on capitalization.

3. The liquidity factor, which is based on the ratio of the weekly exponential moving

average to the total number of shares (i.e., capitalization/close price).

4. The momentum factor, which is based on the 3-year exponential moving average of

past daily returns.

5. The low-volatility (or beta) factor, which is based on the sensitivity to the stock index.

6. The leverage factor, which is based on the debt-to-book value ratio.

7. The sales-to-market factor, which is based on the ratio of sales to market value at the

end of the fiscal period.

8. The book-to-market factor, which is based on the ratio of the book value to the market

value at the end of the fiscal period.
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9. The remuneration factor, which is based on salaries and benefits expense per employee.

10. The cash factor, which is based on the ratio between the free cash flow and the latest

market value.

We believe that considering these 10 factors is sufficient and including additional factors

will not significantly change our results. In particular we might have included the investment

and profitability factors following Fama and French (2015), but we expect that our 10 factors

already capture the common risk from these two factors. Indeed, sales and cash should

be correlated with profitability, whereas the dividend yield and leverage ratio should be

correlated with investment.

For each trading day, the stocks of the chosen supersector are sorted according to the

indicator (e.g., remuneration) available the day before (we use the publication date and not

the valuation date). The related indicator-based factor is formed by buying the first qns

stocks in the sorted list and shorting the last qns stocks, where ns is the number of stocks in

the considered supersector, and 0 < q < 1
2

is a chosen quantile level. The other stocks (with

intermediate indicator values) are not included (weighted by 0). In the simplest setting, one

can choose equal weights:

wi =





+1, if i belongs to the first qns stocks in the sorted list,

−1, if i belongs to the last qns stocks in the sorted list,

0, otherwise.

(7)

In attempting to reduce the specific risk, the common practice suggests to invest inversely

proportional to the stock’s volatility σi, i.e., to set wi = ±1/σi or 0. Moreover, the inverse

stock volatility should also be bounded to reduce the impact of extreme specific risk. Each

trading day, we recompute the weight wi as follows

wi =





+µ+ min{1, σmean/σi}, if i belongs to the first qns stocks in the sorted list,

−µ− min{1, σmean/σi}, if i belongs to the last qns stocks in the sorted list,

0, otherwise,

(8)

where σmean = 1
ns

(σ1 + . . . + σns) is the mean estimated volatility over the supersector. In

this manner, the weights of low-volatility stocks are reduced to avoid strongly unbalanced

portfolios concentrated in such stocks. The two common multipliers, µ±, are used to ensure

the beta market neutral condition:

ns∑

i=1

βiwi = 0, (9)
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where βi is the sensitivity of stock i to the market (obtained by a linear regression of the

normalized stock and index returns based on the reactive volatility model (Valeyre et al.,

2013); note that the use of standard daily returns leads to similar results, see Appendix

B). If the aggregated sensitivity of the long part of the portfolio to the market is higher

than that of the short part of the portfolio, its weight is reduced by the common multiplier

µ+ < 1
2qns

, which is obtained from Eq. (9) by setting µ− = 1
2qns

(which implies that the

sum of absolute weights |wi| does not exceed 1). In the opposite situation (when the short

part of the portfolio has a higher aggregated beta), one sets µ+ = 1
2qns

and determines the

reducing multiplier µ− < 1
2qns

from Eq. (9). This method of ensuring the market neutral

condition is better than leaving the residual beta (as in the FF approach) or withdrawing it

by subtracting an appropriate constant from all weights. Indeed, under our approach, the

factor is maintained to be invested only in stocks that are sensitive to this factor. In turn,

subtracting a constant would affect all stocks, even those that were “excluded” and whose

weights were set to 0 in Eq. (8). We also emphasize the difference with the conventional FF

approach: our factors are built to be market-neutral under Eq. (9), whereas the

FF portfolio is built to be delta-neutral (i.e., to have zero net investment):

ns∑

i=1

wi = 0. (10)

The resulting factor is obtained by aggregating the weights constructed for each super-

sector. This construction is repeated for each of the ten factors listed above. We emphasize

that the factors are constructed on a daily basis, i.e., the weights are re-evaluated daily

based on updated indicators. However, most indicators do not change frequently so that the

transaction costs related to changing the factors are not significant.

The above procedure can be extended to construct factors from other quantiles, in ad-

dition to the first and the last. In this manner, we will consider three portfolios for each

factor:

• Q1: long positions for stocks whose indicator belongs to the first 15% quantile and

short positions for stocks in the last 15% quantile, as discussed above (for q = 0.15).

• Q2: long positions for stocks in the second 15% quantile and short positions for stocks

in the next-to-last 15% quantile (i.e., positive weights are assigned to stocks ranging

between 0.15ns and 0.30ns in the list, and negative weights are assigned to stocks

ranging between 0.70ns and 0.85ns).

• Q3: long positions for stocks in the third 15% quantile (0.30ns − 0.45ns) and short

positions for stocks in the third-to-last 15% quantile (0.55ns − 0.70ns).
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To evaluate common risk with each factor, we introduce the factor correlation level (FCL)

as the square root of the ratio between the empirical variance of the indicator-based factor

and the total empirical variance of the constituent stocks:

FCL(t) =

(
EMA {rπ2(t)}

EMA {∑n
i=1w

2
i (t)σ

2
i (t)}

)1/2

, (11)

where rπ(t) is the daily return of the factor,

rπ(t) =
n∑

i=1

wi(t)ri(t), (12)

where wi(t) is the weight of the stock i in the factor, and σi(t) is the volatility of the stock i

estimated using the reactive volatility model (Valeyre et al., 2013). The exponential moving

average (EMA) is used with a long averaging period of 200 days to reduce noise by smoothing

measurements. We emphasize that the above sum aggregates stocks from all supersectors.

We also considered the standard volatility estimator based on a 40-days exponential moving

average and obtained similar results (see Appendix B). The square root in Eq. (11) is taken

to operate with volatilities instead of variances. The estimator (11) is built analogously

to Eq. (6) for the eigenvalues λ̃α of the correlation matrix. This analogy relies on the

assumption that the indicator-based weights wi are close to an eigenvector of the correlation

matrix. Since the true correlation matrix is unavailable, it is impossible to directly validate

this strong assumption. We will therefore resort to indirect validations based on empirical

correlations of the constructed factors and on the profitability of trading strategies derived

from such factors. Note also that the weights wi depend on the choice of the quantile q, such

that we expect to have slightly different results for different quantiles (see Fig. 4 below).

Simultaneously, the analogy to eigenvalues of the correlation matrix allows various factors to

be classified according to their “importance”: larger values of FCL mean stronger volatility

of the factor and therefore higher common risks. For example, when the correlation of small

capitalization firms increases while the volatility of individuals stocks remains stable, the

FCL of the capitalization factor will increase, and the volatility of the factor will increase.

In general, the risk of a factor is proportional to the average individual volatility multiplied by

the FCL. For this reason, FCL can be interpreted as an average correlation measure

between stocks within the factor that is also directly linked to the common risk

level underpinning the factor. It must also be emphasized that the FCL estimator is

dynamic, i.e., it can capture changes in the correlation structure of the market over time.
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IV. Data

In this study, we use only liquid stocks (most with capitalization greater than 800 million

euros), thus excluding microcap firms that are typically the main focus of the labor stud-

ies we have cited. Thanks to the European accounting regulations, the remuneration must

be provided by European companies on a regular basis and can thus be accessed through

commercial databases such as FACTSET. Lacking such information for the U.S. market, we

mainly focus on the European companies. To reveal possible nation-specific features, the

analysis is performed for two trading universes: (i) the 569 biggest companies in Europe

(London Stock Exchange, Euronext, Eurex, Sixt), and (ii) the 258 biggest companies on the

London Stock Exchange only. Although the twice-as-large European universe is expected

to increase the statistical significance of the results, the consideration of the U.K.-bounded

universe allows us to eliminate country biases and additional fluctuations (e.g., due to cur-

rency exchange rate variations). We will show that the major conclusions are similar for

both universes. In addition, we will validate our indicator-based methodology on the U.S.

universe that includes the 569 randomly selected companies whose capitalization is above 1

billions of dollar. Note that the universe of the 1229 biggest firms in the U.S. studied by

Fama and French (2008) is comparable to our European universe in terms of capitalization

and liquidity.

All the companies that we include in the European and U.K. universes belong to the

small (below 1 billion euros), mid (between 1 and 5 billion euros), large (between 5 and 20

billion euros), or big (above 20 billion euros) capitalization categories. The data set consists

of 3612 daily single stock close prices from January 2001 to July 2015. Note that most

Fama and French data begin from 1963, which leads to greater t-statistics. We rely

on daily prices (instead of the monthly prices that are commonly used in the literature) to

have more precision in the temporal granularity of our FCL estimation. In addition, several

economic and financial indicators are extracted from the FACTSET database: book-to-

market, capitalization, sales-to-market, dividend yield, debt-to-book, free cash flow, salaries

and benefit expenses, and the number of employees on an annual basis (see Table I). For the

European universe, we partly offset geographical biases in each indicator by renormalizing it

to its median in the country. For instance, remuneration is divided by its median by country,

whereas the median by country is subtracted from the moving average of returns in the case

of momentum.
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Capitalization Number of employees Remuneration
Europe (13± 25) Be (41± 78) thousand (0.13± 0.99) Me
U.K. (11± 21) B£ (38± 87) thousand (0.08± 0.08) M£

Table I Basic statistics (mean and standard deviation) regarding capitalization (in billions
of euro/pounds), number of employees (in thousands), and remuneration (in millions of
euro/pounds) from the FACTSET database. Since minimal capitalization is approximately
800 million euros, the distribution is truncated at small capitalizations.

V. Empirical results

In this section, we present the main results of our methodology applied to the European,

the U.K. and the U.S. universes. We mainly focus on the remuneration indicator, which has

largely been ignored so far. We will show that remuneration yields a non-negligible common

risk and represents a small anomaly. The possibility of revealing the role of the remuneration

factor relies on the proposed FCL methodology.

A. Correlation between remuneration and capitalization

First, we inspect the empirical joint distribution of remuneration and capitalization. This

inspection is important because a positive size-wage effect has already been well documented

in the economic literature for microcapitalization firms (Lallemand et al., 2007). The wage

gap due to firm size is approximately 35% (Oi and Idson, 1999) because large firms (but

remaining in the microcapitalization category) demand a higher quality of labor and set a

higher performance standard that must be supported by a compensating wage difference.

Note that the magnitude and determinants of the employer-size wage premium vary across in-

dustrialized countries. Indeed, individual effects explain approximately 90% of inter-industry

and firm-size wage differences in France (Abowd et al., 1999), while almost 50% of the firm-

size wage differentials in Switzerland derive from a firm-size effect (Winter-Ebmer et al.,

1999). In the U.K., larger firms pay better because of internal labor markets that reward

effort and firm-specific capital (Belfield et al., 2004). A visual inspection of Figure 1 (top)

suggests that there is almost no correlation between remuneration and capitalization within

the class of liquid stocks (that excludes microcapitalization firms) and, in any case, residual

correlation is not significant. As a consequence, a larger firm from our sample does not

necessarily pay its employees more. This result is consistent with the literature.

To confirm that the remuneration anomaly exists for different capitalizations, we split

our sample in two groups: the above-median group of stocks whose capitalization exceeds

the median size of our sample, and the below-median group with the remaining stocks
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Figure 1. Remuneration versus capitalization (top) and remuneration versus capitalization
per employee (bottom). Full circles and empty diamonds present large U.K. and European
companies, respectively. Both quantities are shown in local currency and plotted on a loga-
rithmic scale to account for significant dispersion in capitalization and remuneration. Solid
and dashed lines indicate the linear regression between the logarithms of these quantities for
the U.K. and European universes, respectively (the respective slopes are 0.34 and 0.30, and
R2 goodness of fit are 0.48 and 0.58, respectively). Since the records on remuneration and
capitalization of each company in the FACTSET database are updated at different moments
of the year, data were averaged over the period from 15/12/2014 to 30/07/2015. Similar re-
sults were obtained by taking the latest record for each company (not shown). Two subplots
show the empirical distributions of capitalization (top) and remuneration (right) among the
biggest European companies. 17
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Figure 2. Similar cumulative performance anomalies of two remuneration factors for quan-
tile Q1: one is constructed from stocks whose capitalization exceeds the median size of our
sample, and the other is constructed from the remaining stocks. The cumulative performance
of both factors after 15 years is approximately 9%, yielding an annualized performance of
0.6% (compared with 0.68% in Table IV). These curves are obtained for the European uni-
verse (the results for the U.K. universe are similar and thus not shown). The annualized
performance for the remuneration factor is thus biased and cannot be fully explained by an
unbiased random walk.

(we recall that both groups exclude microcapitalization firms). For each group, we build

its own remuneration factor. Figure 2 shows that the cumulative performances of both

remuneration factors are statistically different from 0 and behave similarly. An apparent

slight outperformance of the factor constructed for the below-median group is not significant

and can be attributed to statistical fluctuations.

Further investigations on the size-wage effect compel us to explore this relation per em-

ployee. Figure 1 (bottom) reveals that remuneration is positively correlated to cap-

italization per employee, i.e., remuneration increases with the amount of capitalization

per employee. One plausible explanation for this phenomenon might be that reducing the

number of employees (in particular, underperforming employees) increases marginal remu-

neration. In summary, there is no correlation between capitalization and remuneration for

both universes of firms with capitalization over 800 million euros. Simultaneously, remuner-

ation increases with the amount of capitalization per employee – as if the cake had to be

shared fewer times.
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B. Remuneration as a common risk

The motivation for building indicator-based factors relies on the hypothesis that the

stocks with close indicator values behave similarly and thus share common risks. To verify

this hypothesis, we compare three realizations of the remuneration factor built on different

quantiles (Q1, Q2, and Q3), as described in Section III.B. Figure 3 shows weak but highly

significant correlation between the daily returns of the remuneration factors from quantiles

Q1 and Q2 (top) and Q1 and Q3 (bottom), notwithstanding that these factors have no

stocks in common, which is the indirect proof that the companies adopting similar

remuneration policies (e.g., paying their employees well) share a common risk.

The weak correlation can be explained by a rapid decrease of the stock sensitivity to the

remuneration factor with the quantile: the correlation level of (Q1,Q3) is measured to be half

that of (Q1,Q2). The common risk is of the same order of magnitude as the residual risk,

even for Q1. In summary, only the stocks in the extreme quantiles are the most sensitive

to the remuneration factor. This observation is also confirmed by the anomalies that are

more important for extreme quantiles, as shown in Figure 4.

C. Factor correlation level as a proxy of the eigenvalues

Ordering the factors based on their importance is central for the asset pricing analysis.

As discussed in Sec. III.B, the relevance of indicator-based factors can be characterized

using the factor correlation level (FCL) defined by Eq. (11). If the factor weights were

approximately proportional to the elements of an eigenvector of the correlation matrix, the

FCL would be an estimator of the volatility of this factor. The factors with larger FCL

would most likely have greater impact on the portfolio returns for the same exposure. In

general, the risk of a factor is proportional to the average individual volatility multiplied by

the FCL. Thus, FCL can be interpreted as an average correlation measurement

between stocks within the factor.

Using the daily returns of each factor and estimating the realized volatility of each stock,

we compute the FCL for each factor based on Eq. (11). Figure 5 shows the time evolution

of the FCLs for ten indicator-based factors defined in Sec. III.B. For comparison, we plot

the FCLs for the European and the U.S. universes (the FCLs for the U.K. universe behave

similarly and are thus not shown). First, the FCLs exhibit strong variations over time. In

particular, the FCLs of two factors can cross each other, i.e., the ordering of the factors

based on their “importance” can evolve over time. For both universes, the low-volatility

factor appears as the most important, followed by capitalization and momentum factors.

Other factors are smaller but statistically significant. Averaging the FCL over 15 years al-
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Figure 3. (Top) Correlation between the daily returns of the two remuneration factors
constructed on quantiles Q1 (0%–15% and 85%–100%) and Q2 (15%–30% and 70%–85%),
which have no stocks in common. The daily returns of these factors are weakly correlated but
correlation is significant: the slope and its 95%-confidence interval is 0.19±0.03. (Bottom)
For comparison, the correlation between the daily returns of the remuneration factors Q1
and Q3 (30%–45% and 55%–70%) is shown, with the slope and its 95%-confidence interval
0.10 ± 0.03. Both graphs were obtained for the European universe. Similar graphs for the
U.K. universe yield the slopes 0.23±0.03 and 0.02±0.03 for Q1-Q2 and Q1-Q3 correlations,
respectively (graphs are not shown but are available upon request).

20



2001 2003 2005 2007 2009 2011 2013 2015
−10%

−5%

0%

5%

10%

15%

yearc
um

ulativ
e p

erfo
rm

ance 

 

Q1

Q2Q3

Figure 4. The cumulative performance of the remuneration factor for the three quantiles
(Q1, Q2 and Q3) for the European universe (the graph for the U.K. universe is similar and
is available upon request). Biases are more pronounced for Q1 than for Q2 or Q3, which
might be explained by the possibility that stocks belonging to the extreme quantile are the
most sensitive to the remuneration anomaly.

lows us to order the factors according to their importance. Table II suggests the following

order for the European universe: low-volatility (1.73), capitalization (1.72), mo-

mentum (1.41), sales-to-market (1.22), liquidity (1.19), book-to-market (1.13),

dividend (1.09), leverage (1.07), remuneration (0.99), and cash (0.92). All these

FCLs are higher than the noise level of 0.78 that we estimated by building a “noise factor”

according to an arbitrary non-financial indicator, such as an alphabetic order. Even though

the remuneration factor is relatively small, its magnitude remains statistically relevant in

comparison with other well-known factors. For example, the FCLs of the book-to-market,

dividend, leverage and cash factors are close to that of the remuneration factor. Their low

values mean that these factors are not particularly volatile and that the related common

risks are low. Conversely, the low-volatility factor (excluded from the FF approach) has the

highest FCL and is thus identified as the first potential source of risk in a portfolio, after

market index and sectorial risks. Notably, the low-volatility factor is comparable to the

capitalization factor and greatly exceeds the book-to-market factor, the two “major” factors

identified in the Fama and French (1993) model.
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Figure 5. Evolution of the factor correlation level (FCL) for ten factors (quantile Q1): the
European (top) and USA (bottom) universes (the behavior for the U.K. universe is similar
and available upon request). In our interpretation, FCL is a measure of “importance” of
factors in asset pricing models. Thick lines highlight the three major factors: low-volatility,
capitalization, and momentum. The mean FCLs averaged over 14 years are summarized
in Table II. All FCLs are highly volatile, but this volatility is not linked to stock market
volatility. In addition, we can see the jump- and cross-over of FCLs. During the 2007–2008
financial crisis, several FCLs collapse for the U.S. universe. Note that we could not construct
the remuneration factor for the U.S. universe because of lack of systematic remuneration data
for U.S. companies.
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FCL Div. Cap. Liq. Mom. Low Lev. Sales Book Rem. Cash Market
Europe 1.09 1.72 1.19 1.41 1.73 1.07 1.22 1.13 0.99 0.92 10.41
U.K. 0.97 1.45 0.92 1.15 1.38 0.96 1.03 0.96 0.93 0.83 6.73
U.S. 1.49 1.73 1.49 1.62 2.10 1.15 1.41 1.12 − 0.95 12.35

Table II The mean value of the FCL for ten factors (quantile Q1) averaged over the period
from 10/08/2001 to 31/07/2015, for the European, U.K., and U.S. universes. According to
these values, the main factors for asset pricing are the low-volatility factor (excluded from
the FF approach), followed by the capitalization, and momentum factors. We see that the
book-to-market and remuneration factors are of the same order of magnitude such that the
remuneration factor should have the same importance in asset pricing models as the book-
to-market factor. We also estimated the FCL of the market (last column). The FCL of a
noise factor was estimated to be around 0.8 for three universes implying that all presented
factors exceed noise. Note that we could not construct the remuneration factor for the U.S.
universe because of lack of systematic remuneration data for U.S. companies.

D. Comparison with the principal component analysis

The principal component analysis (PCA), which is applied to decorrelate time series,

consists in forming the empirical correlation matrix from daily stock returns and then finding

its eigenvalues and eigenvectors. In practice, the number of stocks in a traded universe

(typically 500 - 1000) is often comparable to the number of available historic returns per

stock (for instance, 3612 daily returns in our dataset), that makes this general method

strongly sensible to noise, as discussed in (Laloux et al., 1999; Plerou et al., 1999, 2002;

Potters et al., 2005; Wang et al., 2011; Allez and Bouchaud, 2012).

In order to illustrate this limitation, we apply the PCA to the European universe and

compute numerically 569 eigenvalues. Figure 6 shows the histogram of square roots of the

obtained eigenvalues, i.e., how many eigenvalues are contained in successive bins of size

0.0626. The largest value, λ
1/2
market ≈ 12.62, corresponding to the market mode, was excluded

from the plot for a better visualization of other values. One can identify approximately

ten well-separated single eigenvalues that are typically attributed to market sectors. In

turn, the remaining part of (smaller) eigenvalues lying close to each other and thus almost

indistinguishable, can be rationalized by using the random matrix theory (Laloux et al.,

1999). If the daily stock returns were distributed as independent Gaussian variables (with

mean zero and variance one), the eigenvalues of the underlying empirical correlation matrix

would asymptotically be distributed according to the Marcenko-Pastur density

ρ(λ) =

√
4qλ− (λ+ q − 1)2

2πqλ
, (13)
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Figure 6. Histogram of square roots of eigenvalues, λ1/2, of the empirical correlation
matrix obtained from daily returns of 569 stocks in the Europe universe over the period
from 10/08/2001 to 31/07/2015. The largest value, λ

1/2
market ≈ 12.62, corresponding to the

market mode, was excluded from the plot for a better visualization of other values.

where q = N/T is the ratio between the number of stocks, N , and the number of daily

returns per stock, T . These eigenvalues lie between two critical values, λmin = (1−√q)2 and

λmax = (1+
√
q)2. As a consequence, the eigenvalues obtained by diagonalizing the empirical

correlation matrix and lying below λmax can be understood as statistical uncertainty of the

PCA. In other words, the PCA cannot reliably identify the factors with λ < λmax. For our

European universe, q = 569/3612 so that
√
λmax ≈ 1.4 determines a theoretical threshold

between larger, significant eigenvalues, and smaller, noisy ones.

Comparing large values in Fig. 6 to the FCL from Table II, we conclude that PCA

might identify three major factors: low-volatility (1.73), capitalization (1.72), and momen-

tum (1.41). In turn, the other factors whose the FCL is smaller than the PCA threshold

1.4, would thus be understood as statistical uncertainty in the PCA method. The crucial

advantage of our method, in which factors are built from firm-based indicators

while market and sectorial correlations are eliminated by construction, is the

possibility to go beyond this PCA limit and to identify the factors with smaller

FCLs. Moreover, this identification can be performed over time.
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E. Net investment as a proxy of the exposure to the low-volatility factor

Building market-neutral portfolios requires nonzero net investment when the portfolio

is exposed to the low volatility anomaly. This anomaly is governed by the low-volatility

factor, which is the most influential factor (after market and sectors) according to our FCL

measurement (Table II), and unfortunately a residual exposure to the low-volatility factor

cannot be easily reduced. As a result, most factors can still be correlated to the low-volatility

factor. Thus, when the average beta of long stocks in a factor is significantly different from

the average beta of short stocks, the factor is also exposed to the low-volatility factor with

a nonzero net investment. The net investment is defined as the difference between long

(ωi > 0) and short (ωi < 0) investments normalized by total investment, i.e.,

∆ =

∑n
i=1wi∑n
i=1 |wi|

. (14)

By construction, ∆ can vary between −1 and 1 or, equivalently, between −100% and 100%.

Replacing the individual sensitivities βi in the market neutral relation (9) by the averages

〈βL〉 and 〈βS〉 for long and short stocks, the net investment ∆ from Eq. (14) can also be

expressed as

∆ =
〈βS〉 − 〈βL〉
〈βS〉+ 〈βL〉

. (15)

When the average sensitivities for long and short stocks are similar, net investment is close

to 0. In turn, a net bias in ∆ occurs when the average beta is different for long and short

stocks. ∆ is a proxy of the exposure to the low-volatility factor that is more reactive and

more precise than the estimation obtained through the usual regression of returns.

The bias in the long and short betas in Eq. (15) may also be related to the sensitivity

to the market (i.e., to the stock index) of a factor built with the FF approach (i.e., neutral

in nominal but not in beta):

βFF = 〈βL〉 − 〈βS〉 = −2〈β〉∆, (16)

where 〈β〉 = 1
2
(〈βS〉+〈βL〉) is the average beta of the universe that we estimated as 〈β〉 ≈ 0.65

for the period from 2001 to 2015. The net investment ∆ can also be related to the sensitivity

of any beta neutral portfolio or factor (both in the FF approach and in our methodology)

to the low-volatility factor (the most influential factor, according to the FCL).

Figure 7 shows that the low-volatility factor has the most important short investment

(negative values of ∆ ranging between −80% and −60%), although its sensitivity to the

market was maintained at 0. Other factors also have a bias in ∆, including the capitalization
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Figure 7. Evolution of the net investment ∆ for five indicator-based factors for the Euro-
pean universe: capitalization, momentum, low-volatility, book-to-market, and remuneration
(the results for the U.K. universe are not shown but are available upon request). We recall
that ∆ is a proxy of the exposure to the low-volatility factor. The remuneration ∆ is around
zero, and the factor therefore has no correlation with the low-volatility factor. Other factors
seem to be more exposed to the low-volatility factor.

and the momentum factors, in particular. In the FF approach, these factors would therefore

also have a significant sensitivity to the market. In particular, the low-volatility factor built

with the FF approach would be strongly correlated to the market. Moreover, ∆ indicates

that most factors have a residual correlation with the low-volatility factor that remains

uncorrected by our method. Since 2003, the ∆ of the book-to-market factor (one of the

major anomalies investigated by Fama and French) has shrunk, and the related book-

to-market anomaly has almost disappeared (see Table IV). Finally, the remuneration

factor shows nearly zero net investment, i.e., it remains uncorrelated with the low-volatility

factor.

F. Other inter-factor correlations

Correlations between factors matter as long as one needs uncorrelated portfolios for asset

pricing purposes. The indicator-based factors were introduced to build as many uncorrelated

portfolios as possible. At the same time, such an explicit construction does not guarantee

to yield truly uncorrelated combinations, such as the eigenvectors of the covariance (or

correlation) matrix. Moreover, some indicators may capture the same economic or financial

features of the company and may thus be correlated; in other words, different factors may
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approximate the same eigenvector and thus be highly correlated. In particular, adding new

indicator-based factors does not necessarily help to capture new features and may thus be

redundant. The choice of the ten indicator-based factors studied in this paper is judged

as sufficient with respect to the trade-off between capturing information and remaining

uncorrelated. Table III presents the correlation coefficients between ten indicator-based

factors estimated from their volatility-normalized daily returns. Clearly, many indicator-

based factors remain correlated. If the same estimation was applied to ten independent

Gaussian vectors of the same length (m = 3612 elements), the standard deviation of the

estimated correlation coefficients would be 1/
√
m ≈ 0.0166. In other words, the presented

correlations between the indicator-based factors are highly significant.

The remuneration factor exhibits correlations with some other factors, and the most

significant of these include the following: the sales-to-market (−0.38), dividend (−0.23),

and momentum (0.20) factors. These correlations can be explained as follows. First, the

companies with low sales-to-market ratios have a high margin and thus the abil-

ity to pay their employees well (strong negative correlation −0.38). The direct link

between a firm’s margin and wage is well documented in the labor economics literature.

More precisely, there is a relation between margin and labor cost. For instance, a study by

the European Central Bank (ECB) and the Organization for Economic Co-operation and

Development (OECD) reveals that larger firms make more extensive use of margin for la-

bor cost-cutting strategies, i.e., firms choose to reduce benefits as a cost-cutting strategy

(Babecky et al., 2012). In addition, the positive relation between firm size and the use of

cost-cutting strategies that is monotonically increasing and highly significant, is uncovered.

Second, the companies that pay high dividends to shareholders tend to remu-

nerate their employees less, yielding a negative correlation of −0.23, which is a direct

representation of profit-sharing within firms. Indeed, dividend payments are charged on the

profits of the business after all salaries and benefits expenses are paid out. Although this

result appears intuitive, it remains important as it reveals the level of correlation between

both quantities. The labor economics literature and the corporate finance literature are not

very well documented on this particular issue. Finally, companies that perform well

and show strong momentum can offer higher remuneration to their employees

or, alternatively, the higher remuneration stimulates employees to work better

and to imbue the company with momentum (positive correlation 0.20). This is a

central and very important result of our research because it highlights the positive relation

between pay and performance. The rationale behind this result is discussed in Section VI.

It is worth emphasizing that these correlations between factors are not static (as pre-

sented in Table III by averaging over 15 years) but evolve over time. For example, Fig.
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Div. Cap. Liq. Mom. Low Lev. Sales. Book. Rem. Cash
Div. 0.10 0.14 -0.33 0.02 0.29 0.26 0.18 -0.23 0.14
Cap. 0.10 0.08 0.10 0.13 0.21 -0.20 -0.06 0.05 -0.01
Liq. 0.14 0.08 -0.21 0.20 0.09 0.05 0.05 -0.06 0.05

Mom. -0.33 0.10 -0.21 -0.18 -0.24 -0.25 -0.36 0.20 -0.04
Low 0.02 0.13 0.20 -0.18 0.02 0.01 0.07 -0.03 0.05
Lev. 0.29 0.21 0.09 -0.24 0.02 0.23 0.11 -0.17 -0.02

Sales. 0.26 -0.20 0.05 -0.25 0.01 0.23 0.31 -0.38 0.23
Book. 0.18 -0.06 0.05 -0.36 0.07 0.11 0.31 -0.13 0.05
Rem. -0.23 0.05 -0.06 0.20 -0.03 -0.17 -0.38 -0.13 -0.11
Cash 0.14 -0.01 0.05 -0.04 0.05 -0.02 0.23 0.05 -0.11

Table III Correlation coefficients between 10 indicator-based factors for the U.K. companies:
Dividend (1), capitalization (2), liquidity (3), momentum (4), low-volatility (5), leverage
(6), sales-to-market (7), book-to-market (8), remuneration (9), and cash (10). These coef-
ficients were estimated from daily returns of these factors over the period from 23/02/2001
to 27/07/2015. Daily returns of each factor were normalized by their volatility averaged
over 20 days to reduce the effects of heteroskedasticity. Similar correlation coefficients were
obtained for the European companies (available upon request).

8 shows the evolution of two correlation coefficients between volatility-normalized daily re-

turns of remuneration, low-volatility, and sales-to-market factors. The correlation between

the remuneration and low-volatility factors remains close to zero, with eventual deviations

beyond the Gaussian significance range (e.g., during the subprime and financial crises in

2007-2009). These two factors can be considered uncorrelated. In turn, the negative cor-

relation between the remuneration and sales-to-market factors always remains beyond the

Gaussian significance range.

G. The anomaly of the remuneration factor and its interpretation

Table IV compares the remuneration anomaly with other factors in terms of the annual-

ized bias (the annualized cumulative return between the last and the first observation days),

the Sharpe ratio (the annualized bias normalized by annualized volatility), and t-statistics

(the Sharpe ratio multiplied by the square root of the total duration in years). In particular,

the t-statistic allows one to reject the null hypothesis of no bias at the 90% confidence level.

The bias reveals the level of overperformance due to a particular factor. We observe a

significant bias for the dominant capitalization and low-volatility factors, which have been

previously documented. The anomaly of the book-to-market factor seems to have disap-

peared (see Table IV). In fact, the Sharpe ratio that we estimated to be 0.49 for the period
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Figure 8. Correlation coefficients between daily returns of the remuneration factor and of
the low-volatility factor (solid line) or the sales-to-market factor (dashed line) for the largest
U.K. companies. The coefficients were computed over a sliding window of 90 days. Prior to
computation, the daily returns were renormalized by their average volatility over the previous
20 days. The mean values over 15 years are −0.03 and −0.38 (see Table III), respectively.
Horizontal dashed lines show the standard deviation, 0.105, of the same estimator applied to
two independent Gaussian samples. Similar results were obtained for the European universe
(available upon request).
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from 1926 to 2008 in the U.S.3, became much smaller in recent years (and even changed

the sign for the European universe, becoming −0.08). We suspect that this result can be

explained by the change in its exposition to the low-volatility factor. The momentum factor

has also changed direction.

The remuneration factor appears as the sixth most important anomaly in the U.K. mar-

ket, and the eighth most important anomaly in the European market. A bias of 1.21%

means that companies that pay better should overperform their less paying com-

petitors by 2× 1.21%. The prefactor 2 appears if we assume that 50% is invested in high

remuneration and 50% in low remuneration (i.e., there is no exposure to the low-volatility

factor and volatility is nearly homogeneously distributed). This is one of the most impor-

tant results in this paper, as it shows that a market neutral investment style arbitrage

strategy based on the remuneration anomaly is likely to deliver positive returns.

Next, assuming that the bias in the remuneration factor consists of an intrinsic bias and

contributions from biases of other factors due to inter-factor correlations, the relative im-

pacts of these biases can be estimated by multiplying them by the correlation coefficients

in the 9th line of Table III. These relative impacts are summarized in the last line of Table

IV. Since most contributions from other factors are negative, it might be surmised that the

intrinsic remuneration bias is even higher than 1.21% (estimated to be around 2.85%) but

that its value is reduced due to correlations with other factors. If we were able to build a re-

muneration factor fully decorrelated from other factors, we would have obtained most likely

a t-statistic above 3 (around 3.29, see Table IV) that fulfills the requirements formulated

by Harvey et al. (2016). Note also that there is no selection bias in our study (we have not

analyzed all the different possibilities to finally retain the remuneration factor), such that

the condition requiring a t-statistic greater than 3 when taking into account the number

of possible anomaly candidates is not applicable. In any event, the observed bias of 1.21%

cannot simply be explained by the biases of other factors. The Sharpe ratio of 0.37 indicates

that a horizon of 1/0.37 ≈ 2.7 years is required for the anomaly to be captured and to have

a positive return with a likelihood of 84%. From an asset management point of view, it

suggests the recommended time horizon to take profits based on this market anomaly.

H. The rationale behind the remuneration anomaly

Our analysis clearly reveals correlations between remuneration policies of a company and

performances of its stock. Do higher wages imply better performances, or better perfor-

mances lead to higher wages? More generally, is the relation between remuneration and

3Based on the publicly available data from Fama and French, http://mba.tuck.dartmouth.edu/pages/
faculty/ken.french/data_library.html
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Div. Cap. Liq. Mom. Low Lev. Sales. Book. Rem. Cash

E
u
ro

p
e Bias, % 2.39 -5.72 -0.95 -1.60 -4.15 -1.95 0.08 -0.23 0.68 1.66

Sharpe 0.80 -1.69 -0.41 -0.42 -1.46 -0.74 0.03 -0.08 0.25 0.65
t-stat 3.04 -6.42 -1.57 -1.59 -5.57 -2.81 0.11 -0.30 0.97 2.46

U
.K

. Bias, % 2.12 -4.29 -0.11 -2.81 -3.81 -1.01 0.92 0.34 1.21 2.60
Sharpe 0.65 -1.38 -0.05 -0.71 -1.25 -0.35 0.31 0.11 0.37 0.92
t-stat 2.48 -5.24 -0.18 -2.71 -4.77 -1.34 1.16 0.40 1.40 3.51

Impact, % -0.49 -0.21 0.01 -0.56 0.11 0.17 -0.35 -0.04 2.85 -0.29

Table IV The annualized bias (the annualized cumulative return between the last and
the first observation days, as a percentage), the Sharpe ratio (annualized bias normalized
by annualized volatility), and the t-statistic (the Sharpe ratio multiplied by the square
root of the total duration in years, i.e., by

√
14.5 ' 3.81) for the following 10 indicator-

based factors (quantile Q1): dividend (1), capitalization (2), liquidity (3), momentum (4),
low-volatility (5), leverage (6), sales-to-market (7), book-to-market (8), remuneration (9),
and cash (10). These quantities are estimated for the period from January 2001 to July
2015, for the largest European companies (top lines) and for the largest U.K. companies
(bottom lines). The last line shows the relative impacts of the biases of various factors
on the remuneration bias (1.21) for the U.K. companies. These impacts are obtained by
multiplying the biases in the fourth line by the correlation coefficients from the 9th line of
Table III. The annualized bias for the remuneration factor in the U.K. universe is 1.21%
with a t-statistic of 1.40. Moreover, if we subtract all the impacts from remuneration’s
annualized bias, we obtain an intrinsic remuneration bias of 2.85%. Therefore, we would
have a t-statistic of approximately 2.85 × 1.40/1.21 = 3.29 that would fulfill the
requirements formulated by Harvey et al. (2016).
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performance causal? In analogy to the chicken or the egg causality dilemma, wages and

performances are likely to be entangled, while the causality direction can change from firm

to firm or even over time. Although these challenging questions are difficult to answer in

a quantitative way, we provide two arguments in favor of a causal relation between wages

and performances. First, the remuneration factor is built on the published balance sheets

that reflect wages of the past year. As a consequence, there is a significant one or even two-

year delay between earlier remunerations and current performances. In this way, we capture

the impact of wages on performances. Second, the top and bottom remuneration quantiles

are not static but change in time (half of the companies in each quantile are replaced in

approximately 5 years). One can speculate that the management of a company competes

with others by offering higher remuneration to attract the best employees who will make

the performance of the company stronger. As football team managers, companies could buy

success by investing in human resources (Simmons and Forrest, 2004).

In a survey paper, Yellen (1984) poses the question of why firms do not cut wages in an

economy characterized by involuntary unemployment? Indeed, unemployed workers would

prefer to work at the real wage rather than being unemployed, but firms will not hire them

at a lower wage simply because any reduction in wage would lower employee productivity.

This is Yellen’s most-cited paper, and it stipulates that the amount of effort that employees

put into their job depends on the difference between the wage they are getting paid and what

they perceive as a “fair wage”. The bigger the difference, the less hard they tend to work,

which highlights the idea that paying employees more than the market clearing wage may

boost productivity and ends up being worthwhile for the employer. Paradoxically, cutting

wages may end up raising labor costs since it will negatively affect productivity (Stiglitz,

1981). Hence, productivity is the main argument, which is confirmed by other theoretical

papers that consider employees to be more productive in larger firms and thus explain why

they demand higher wages (Idson and Oi, 1999). The other arguments are as follows. Given

job contract incompleteness, not all duties of an employee can be specified in advance. For

this reason, monitoring is a central instrument to control production costs (Alchian and

Demsetz, 1972). Unfortunately, monitoring is too costly and sometimes inaccurate due to

measurement error. Instead of having costly and imperfect monitoring, firms can offer higher

wages to their employees to create an incentive for the employee not to lose their high wage

by being fired (Shapiro and Stiglitz, 1984). In this context, paying a wage in excess of the

market clearing wage can be seen as an efficient way to prevent employees from shirking.

The attractiveness of wages to skillful workers also contributes to reduce their turnover.

Moreover, raising wages partly eliminates job demands from less performing candidates who

would fear competing with overperforming candidates. This adverse selection is a subtle
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support for the fair wage hypothesis because paying fair wages will attract only the more

skillful workers and deter lemons and will thus help avoid costly monitoring devices in the

recruitment processes. In summary, the motivation for the fair wage-effort hypothesis is

a simple observation of human nature arguing that employees who receive less than what

they perceive to be a fair wage will not work as hard as a consequence. In the very same

vein, Akerlof and Yellen (1990) set up a model of unemployment in which “people work less

hard if they are paid less than they deserve, but not harder if they receive more than they

deserve”. The model puts in equation the fair wage-effort hypothesis to represent the idea

that a poorly paid employee may be keen on taking its revenge on its employer.

VI. Discussion

A. Fama and French approach

Fama and French (1993, 2015) use time series of 25 portfolios, each portfolio built with

similar capitalization and book-to-market stocks. They regress the monthly performance

Ri(t) of each portfolio i on the returns fj(t) of different factors j:

Ri(t) = ai +
∑

j

bi,jfj(t) + εi(t),

where ai and εi(t) are portfolio-specific intercept and noise, and bi,j is the estimated sensi-

tivity of the i-th portfolio to the j-th factor.

If the remuneration factor had to be investigated using the FF approach, how could one

proceed? Five different portfolios might be built with stocks sorted according to remunera-

tion and then at least three major factors might be used: the market index, capitalization,

and book-to-market factors (the factor returns, fj(t), would be estimated through the per-

formance of the long-short portfolio, e.g., buying the high capitalization and shorting the

low capitalization, or buying the high book-to-market and shorting the low book-to-market).

The intercept, ai, for the 5 different portfolios might be measured with their t-statistics to

assess whether the remuneration is an anomaly. One might also measure the ahigh−alow and

its t-statistics, as in Table 2 by Fama and French (2008). Finally, the remuneration factor

might be added to the regression panel and the R2 for every portfolio might be measured to

quantify how well the data fit the statistical model and how well the common factors explain

the price returns.

Instead, we simply measure the average returns of the HML portfolio (see Table IV)

built to be beta-neutral without any regression, as we construct our remuneration factor
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Sectors Median book-to-market Median remuneration (in euros)
Consumer discretionary 0.31443 22 859.96
Consumer staple 0.24681 39 416.51
Energy 0.81440 137 625.91
Financial 0.87972 126 498.10
Health 0.24442 51 452.06
Industrial 0.32765 58 626.27
IT 0.19867 77 854.94
Material 0.55733 32 516.14
Telecom 0.39122 66 283.21
Utilities 0.32572 47 014.69

Table V Sectorial variations of the median of the book-to-market and of the remuneration
(in euros) for the U.K. universe in 2014. Both book-to-market value and remuneration vary
substantially across different sectors.

as uncorrelated to the main factors. That should be close to the 1
2
(ahigh − alow) of the FF

approach, or close to the average return of the HML portfolio built to be delta-neutral (see

Table I from Fama and French (2015)). This is due to the fact that the remuneration factor

is not exposed to the market index, low-volatility and book-to-market factors. However, the

FF approach would not account for the fact that remuneration depends on sectors (see Table

V). Using the volatility of the portfolio, we can also measure the t-statistics to learn whether

the anomaly is statistically significant, and we measure the FCL to quantify how well the

common factors explain the price returns.

In Appendix B we compare the FF approach to our methodology. In particular, we

show that sectorial constraint and beta-neutral property were the two key advantages of

our factors construction: without them, the FF approach applied to the same period,

would give insignificant results for the remuneration factor (we recall that most

Fama and French data begin from 1963, which leads to greater t-statistics).

B. Advantages and limitations of the methodology

Our methodology has several advantages over the FF approach:

1. The estimated FCL quantifying the relevance of the factor does not depend on the

number of considered factors, in contrast to the R2 argument of the FF approach (e.g.,

see Table 6 in Fama and French (1993)). Thus, one can select the most important fac-

tors (e.g., stock index, low-volatility, capitalization, liquidity, and momentum factors)

in asset pricing models.

2. The sensitivities of the different common risk factors to the market (i.e., to the stock
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index) are maintained at zero even for the low-volatility factor, which is an important

feature because the market mode may have a hundred times greater impact on portfolio

returns than other factors.

3. The factors are constructed to be sector neutral, which allows one to better identify

their impacts on price variations, which is important because intra-sector correlations

are typically more important than within-factor correlations. Notably, the book-to-

market factor of FF approach also captures sectorial risk, as the firms are not priced in

the same way from one sector to another (see Table V). In particular, the remuneration

is very different from one sector to another.

4. Weights (wi) of the stocks that are close in capitalization (or in book-to-market, or in

remuneration, etc., depending on the factor) are of the same order of magnitude that

reduces the specific risk of the factor.

5. Maintaining factors beta-neutral at any time reduces the noise of factors, even those

that are not supposed to be correlated to the stock index. In fact, we will show in

Appendix B that in the case of factors uncorrelated to the stock index, the beta-neutral

constraint reduces the volatility of the factor by 1.2% on an annualized basis.

6. Our method enables the inclusion of the low-volatility factor into the cross-section of

average returns (in contrast to the FF approach) without any multiregression model.

The low-volatility and capitalization factors were found to provide the largest anomaly

(see Table IV). In addition, the low-volatility factor was also identified as the major

contribution to risk, according to our measurement (see Fig. 5). Surprisingly, the

capitalization factor, which had previously been considered as the most important,

now occupies the second position. Moreover, the book-to-market factor identified by

Fama and French (1993) as important, has eventually become a minor factor (and is

just slightly more important than the remuneration factor) after having eliminated the

sectoral and market modes.

The main limitations to our methodology are related to the methodology itself. Indeed,

although introducing indicator-based factors and their relevance assessments through the

FCL were inspired by eigenbasis, this construction does not pretend to yield true eigenvectors

and eigenvalues of the covariance (or correlation) matrix. In particular, correlations observed

between several factors (e.g., the remuneration and sales-to-market factors) indicate that the

decorrelation performed is not perfect. Although the construction of factors can be further

refined to make them less correlated (e.g., by splitting the stocks into smaller groups than

supersectors), it is difficult to quantitatively assess the quality of such improvements.
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VII. Conclusion

We identify a new anomaly in asset pricing that is statistically significant and econom-

ically relevant. It is linked to remuneration: the more a company pays for salaries and

benefits expenses per employee, the better its stock performs. We show that remuneration is

a common risk factor although its magnitude appears relatively small compared with domi-

nant factors such as low-volatility or capitalization. It also appears that only the companies

that belong to extreme quantiles are sensitive to the remuneration factor. To validate the

abnormal performance associated with the remuneration factor, we check that performance

is not explained by other major factors such as low-volatility, capitalization, book-to-market,

or momentum. This finding is an empirical contribution to the asset pricing because em-

ployee’s remuneration has not been accounted for in so far, while it is a determinant element

in social sciences including labor economics, sociology or management. These various strands

of literature show that strong attention should be paid to wages and more generally to labor

decisions that are likely to affect firms’ value. The economic interpretation of our key finding

is mainly based on a rational explanation of the remuneration anomaly: wages and employee

performance are positively correlated. This argument is overall supported by the efficiency

wage theory, which claims that rising wages is the best way to increase output per employee

because it links pecuniary incentives to employee performance. But it is also supported by

several studies highlighting the prominent role of operating leverage as a main source of

riskiness of equity returns that is comparable in magnitude to financial leverage.

For this purpose, we introduce an original methodology, coined “Factor Correlation Level”

(FCL), to build indicator-based factors. The FCL describes the ability of stocks within the

factor to move in a common way and thus reflects the common risk level underpinning each

factor. The FCL methodology is a theoretical contribution to the asset pricing literature.

Indeed, it allows ordering the factors according to their capacity of taking into account the

variability of stocks. This ranking can help fund managers to select the most important

factors to set up an asset pricing model and well balanced portfolios. The FCL approach is

an alternative to the common practice in asset pricing studies where factor selection depends

on several statistical criteria that do not necessarily convey the same information.

Implications of this work are important, numerous and go far beyond asset pricing lit-

erature. A first investment style implication of our finding is that the companies that pay

better should overperform their competitors by 2.42% per year. In other words, a market

neutral investment style arbitrage strategy based on the remuneration anomaly would likely

deliver positive returns. A second economics implication is that a company might operate

better if it could attract the best human resources while maintaining the company as com-
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petitive as possible by keeping only those employees who are productive. While we find

that a company that pays too much its shareholders, pays less to its employees according

to the negative correlation between remuneration and dividend factors, attention should be

brought by top managers to this trade-off between equity capital and labor remuneration.

A third research implication is that our new methodology suggests the following ranking for

the European stocks according to their respective FCLs: low-volatility (1.73), capitalization

(1.72), momentum (1.41), sales-to-market (1.22), liquidity (1.19), book-to-market (1.13),

dividend (1.09), leverage (1.07), remuneration (0.99), and cash (0.92). In particular, the

low-volatility factor, which is excluded from the FF approach, is the next most important

component following the market factor (i.e., the stock index). The remuneration factor is

comparable to the book-to-market factor and thus not negligible. We conclude that a five

factor model should encapsulate the first five anomalies ordered by their FCL.

Appendix A. Supersectors

Following the Global Industry Classification Standard (GICS), we constructed six super-

sectors as summarized in Table VI. This redistribution has been performed manually and

has aimed at minimizing intrasector correlations and at obtaining an almost equal number

of stocks in each supersector. We emphasize that final portfolios include the stocks from all

supersectors, i.e., this redistribution is only an intermediate technical step to improve the

factors.

Appendix B. Comparison with FF approach

In order to highlight the advantages of our methodology as compared to the standard FF

approach, it is instructive to consider incremental transformations from one method to the

other. In this way, one can analyze the respective roles of several proposed improvements.

For this purpose, we implement the standard FF approach and its progressive modifications.

• A0 (the standard FF approach): According to Table I from Fama and French (2015),

stocks are subdivided two groups of small (below median) and large (above median)

capitalization. Within each of two groups, assets are ordered according to the chosen

indicator (e.g., remuneration) and then split into three subgroups (top, medium and

bottom 33%). The related portfolio is constructed by buying the top 33% and selling

the bottom 33% assets from the sorted list with equal weights. Such prepared two

portfolios (for small and large capitalization groups) are then merged into a single
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1 Food & Staples Retailing
Food, Beverage & Tobacco
Health Care Equipment & Services
Household & Personal Products
Pharmaceuticals, Biotechnology & Life Sciences

2 Banks
Diversified Financials
Insurance

3 Consumer Durables & Apparel
Consumer Services
Media
Retailing

4 Materials
Real Estate

5 Energy
Transportation
Utilities

6 Automobiles & Components
Capital Goods
Commercial & Professional Services
Software & Services
Technology Hardware & Equipment
Telecommunication Services

Table VI Six supersectors that we used to split stocks and to construct the indicator-based
factors (from the FACTSET database). Note that we mixed very different industries to have
6 supersectors with approximately the same number of stocks. Even if different industries
were grouped randomly into six supersectors, we show in Appendix B that our methodolody
would reduce significantly the sectorial risk of different factors.
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FF portfolio. To be comparable with our methodology, the portfolio is rebalanced on

daily basis (note that the original FF approach stipulated monthly rebalancing). The

constucted portfolio is delta-neutral.

• A1: The same rules as A0 except for buying top 15% and selling bottom 15% assets

(as in our methodology);

• A2: The same rules as A1 except that the splitting into small and large capitalization

groups is withdrown;

• A3: The same rules as A2 except that we add sectorial and geographical constraints as

in our methodology. In other words, assets are split into 6 supersectors (see Appendix

A), the portfolio construction is performed individually for each supersector and then

the obtained portfolios are merged. In addition, we normalize the chosen indicator

(e.g., remuneration) by the median per country to correct for geographical biases;

• A4: The same rules as A3 except that equal weights are replaced by volatility-based

weights as in our methodology;

• A5: The same rules as A4 except that the volatility-based weights are rescaled by fac-

tors µ± to get beta-neutral portfolios (beta’s are estimated throuh a standard method-

ology);

• A6 (our methodology): The same rules as A5 except that a standard volatility and beta

estimations (by exponential moving averages) are replaced by the reactive volatility

model.

Each of these seven approaches (A0, ..., A6) has been applied to both U.K. and European

universes. We computed the mean return and volatility of ten factor-based portfolios intro-

duced in this paper. To be closer to the standard Fama and French framework, we present

results on monthly basis, in contrast to the main text, in which daily basis was used. Table

VII recapitulates the main findings for the European universe (similar results were obtained

for the U.K. universe, available upon request).

As expected, the change of quantiles (passage from the standard A0 approach to A1)

almost does not affect the results. Similarly, a standard volatility/beta estimator and the

reactive volatility/beta model lead to similar results (passage from A5 to A6). The most

significant changes are observed when passing from A2 to A3 and from A4 to A5.

• In the former case, adding the sectorial constraints (see Appendix A) reduces secto-

rial biases and allows one to better capture the indicator-based factors. To illustrate this

point, let us suppose that remuneration is very high in the energy industry and is low (at

approximately the same level) in all other industries. If there was no sectorial constraint, the

remuneration factor would be long on the energy industry and short in all other industries.

In other words, it would be 100% invested in energy, with eventual high risks. In turn, the
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Div. Cap. Low Mom. Liq. Lev. Sales. Book. Rem. Cash.

A
0

Mean 0.35% -0.93% 0.30% -0.64% 0.68% 0.02% -0.46% -0.33% -0.03% 0.35%
Std 3.20% 0.56% 4.90% 5.72% 3.92% 2.87% 3.16% 3.16% 2.04% 1.99%
t-stat 1.46 -22.40 0.83 -1.49 2.32 0.10 -1.97 -1.40 -0.18 2.37

A
1

Mean 0.37% -0.92% 0.34% -0.79% 0.75% 0.07% -0.53% -0.42% -0.02% 0.32%
Std 3.15% 0.44% 4.81% 5.52% 3.77% 2.80% 2.98% 3.04% 1.98% 1.97%
t-stat 1.58 -27.98 0.95 -1.91 2.66 0.32 -2.40 -1.87 -0.12 2.17

A
2

Mean 0.37% -1.12% -0.21% -0.49% 0.31% -0.23% -0.49% -0.27% -0.07% 0.38%
Std 3.41% 1.39% 4.80% 6.01% 3.85% 2.54% 3.18% 3.47% 2.00% 1.96%
t-stat 1.45 -10.82 -0.59 -1.09 1.07 -1.20 -2.09 -1.05 -0.44 2.62

A
3

Mean 0.41% -0.96% -0.19% -0.61% 0.31% -0.21% -0.40% -0.39% 0.00% 0.39%
Std 2.65% 1.17% 3.85% 4.99% 3.35% 2.31% 3.05% 2.60% 1.91% 1.69%
t-stat 2.06 -10.97 -0.68 -1.63 1.22 -1.23 -1.77 -2.03 0.02 3.11

A
4

Mean 0.41% -0.96% -0.19% -0.60% 0.30% -0.21% -0.41% -0.40% 0.00% 0.40%
Std 2.65% 1.17% 3.85% 4.98% 3.34% 2.31% 3.05% 2.59% 1.91% 1.68%
t-stat 2.06 -10.97 -0.68 -1.62 1.22 -1.19 -1.79 -2.06 0.03 3.17

A
5

Mean 0.41% -1.16% -0.86% -0.11% -0.34% -0.46% 0.02% -0.08% 0.22% 0.25%
Std 2.09% 1.97% 1.90% 3.34% 2.37% 1.58% 1.95% 1.94% 1.53% 1.61%
t-stat 2.61 -7.88 -6.04 -0.43 -1.94 -3.94 0.13 -0.58 1.92 2.06

A
6

Mean 0.45% -1.17% -0.82% -0.16% -0.36% -0.40% -0.03% -0.10% 0.19% 0.24%
Std 2.05% 1.91% 1.94% 3.33% 2.44% 1.59% 2.06% 2.00% 1.50% 1.60%
t-stat 2.94 -8.19 -5.63 -0.66 -2.00 -3.36 -0.22 -0.66 1.73 1.98

Table VII Progressive evaluation of factor performances with incremental transition from
the FF approach (A0, top) to our methodology (A6, bottom). For each factor, we present
mean monthly return (Mean) and volatility (Std), as well as their ratio (t-stat).
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sectorial constraint reduces this risk by approximately 1/6 because the strong concentration

on energy only remains in the 5th supersector while investments in other industries are nec-

essarily imposed for other supersectors. For instance, if the annualized sectorial volatility is

12%, such an enforced diversification would reduce it to 2% on an annualized basis.

• In the latter case, we switch from the delta-neutral to beta-neutral portfolios, i.e., we

(partly) remove correlations with the stock market index. We evoque two possible origins

to rationalize the significant decrease of volatility when passing from A4 to A5. First, if

we suppose that stock beta’s follow a distribution with standard deviation sβ, the average

aggregated beta of a random delta-neutral factor built with 2×15%×500 = 150 stocks would

be 0, while its standard deviation would be 2sβ/
√

150 ≈ 16%sβ ≈ 6%, where we estimated

sβ ≈ 0.37 from our data. As a consequence, the volatility added by the random exposure to

the market index is around 6%× σm ≈ 1.2% on an annualized basis, where σm ≈ 21% is the

annualized volatility of the market index. Second, our construction of beta-neutral portfolio

reduces their leverage to ensure Eq. (9). Consequently, smaller investments lead to smaller

volatility, as compared to the Fama and French construction with a constant investment.

One also observes that volatilities of factors progressively diminish when passing from

A0 to A6. This observation indicates that our modifications better withdraw other common

risks and manage to concentrate on the risk of interest.

Looking more specifically to the remuneration factor, one can observe a significant in-

crease of t-stat, from −0.18 (insignificant) to 1.73 (significant), when passing from the stan-

dard FF approach (A0) to our methodology (A6). In other words, implementing the

above improvements allowed us to level up the remuneration factor from noise

to a small but significant anomaly.

We complete this Appendix by the following general remark. The variability of results

presented in Table VII indicates their dependence on a chosen data analysis method and its

parameters. The methodology plays therefore the crucial role, especially when dealing with

small anomalies such as remuneration. This highlights the advantage of our method that

enabled to detect and quantify such small features in the market behavior. At the same

time, our methodology remains robust against some changes in construction of factors, such

as replacing conventional volatility estimator by reactive volatility model, using volatility

renormalized weights, or changing daily to monthly returns.
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Les propriétés empiriques de la matrice de corrélation des rendements des

actions ne sont pas bien documentées dans la littérature car elles sont noyées

dans le bruit de mesure. L'originalité de la méthode que j'ai introduite permet

de débruiter la matrice de corrélation en pro�tant de données disponibles en

plus des rendements pour contraindre les vecteurs propres. Elle ouvre donc de

nouvelles portes. La méthode est particulièrement adaptée aux matrices de

corrélation des actions car la première valeur propre est bien plus grande que

les autres et de nombreuses données �nancières sont disponibles (�Book�,

�Capitalization�, �Cash Flow�, etc.). Le débruitage de la matrice a permis

de mettre en évidence de nouvelles propriétés importantes de la matrice de

corrélation des actions:

� l'instabilité des valeurs propres et des vecteurs propres. Ces derniers

sont investis en priorité sur les facteurs de risque les plus importants.

L'importance d'un facteur est mesurée à travers le �FCL�, notion que

j'ai introduite. Le �FCL� est la variance normalisée d'un facteur de

risque et correspond aussi à la moyenne pondérée des valeurs propres

par les projections au carré du facteur sur les di�érents vecteurs propres ;

� la di�usion du logarithme des �FCL� modélisée par de simples processus

d'Orstein-Uhlenbeck semble su�re pour expliquer une grande partie

de la di�usion de la matrice de corrélation. Cela permet de retrouver

une distribution des valeurs propres des incréments de la matrice de

corrélation;

� les poids des facteurs de risque qui optimisent les �FCL� sont repartis

de manière uniforme ce qui n'est pas compatible avec une distribution

aléatoires des vecteurs propres. En e�et on aurait à priori attendu une
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distribution gaussienne des poids qui aurait été naturelle si les vec-

teurs propres étaient complètement aléatoires. Cela a beaucoup d'ap-

plications notamment dans la construction des portefeuilles �risk pre-

mia� qui sont devenus importants dans l'industrie de la gestion d'actifs.

Ces portefeuilles, qui capturent un style donné sont construits, selon

la méthode de Fama et French, avec une fonction �double Heavyside�

c'est-à-dire investis à l'achat sur les top 20% et à la vente sur le bot-

tom 20% par rapport à un critère donné (�Book�, �Capitalization�,

�Momentum�,etc.). Ces portefeuilles peuvent être optimisés avec une

règle linéaire compatible avec la distribution uniforme au lieu de la

�double Heavyside� de Fama et French. J'ai nommé ces portefeuilles op-

timaux �Fundamental Market Neutral Maximum Variance Portfolios�

car ces portefeuilles capturent de manière optimale un style donné en

minimisant le risque spéci�que. Ils ont théoriquement un Sharpe et un

�FCL� optimaux ;

� l'e�et d'échelle sur les corrélations avec deux régimes:

� aux petites échelles de temps entre quelques secondes et quelques

minutes, un e�et de retard de l'ensemble des actions avec un temps

de relaxation de quelques minutes explique les petites autocor-

rélations et l'augmentation des valeurs propres avec l'échelle de

temps. J'ai développé un modèle de retard et j'ai dérivé une for-

mule simple qui décrit cette augmentation qui intègre curieuse-

ment une loi en puissance. Le modèle reproduit précisément les

mesures. Aussi, on peut interpréter les corrélations entre actions

comme la conséquence des interactions entre les actions par l'in-
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termédiaire des traders ;

� aux grandes échelles de temps entre 1 jour et plusieurs mois une

faible autocorrélation est initiée par un manque de liquidité et

un comportement moutonnier des acteurs. De la même façon un

modèle d'autocorrélation qui inclut des tendances qui suivent un

processus d'Ornstein-Ulhenbeck permet de reproduire les augmen-

tations des valeurs propres sur des échelles de temps longues.

� l'e�et de levier qui est caractérisé par l'augmentation des corrélations

et de la première valeur propre avec la baisse du marché, ne se géné-

ralise pas aux autres facteurs de risque. Lorsqu'un facteur chute, son

�FCL� et les valeurs propres n'augmentent pas. Cela est théoriquement

intéressant économiquement dans la mesure où les facteurs de risque

alternatifs ne peuvent pas avoir de risque asymétrique sur un horizon

de temps long à cause de la loi des grands nombres, s'il n'y a pas d'ef-

fet de levier et ne peuvent pas justi�er une prime de risque positive.

En e�et c'est l'e�et de levier principalement avec ou sans les queues

épaisses des distributions des rendements qui rend la convergence vers

la distribution gaussienne très lente en maintenant l'asymétrie. Sans

e�et de levier les rendements des primes de risque doivent converger

plus rapidement vers la distribution gaussienne.

Par ailleurs j'ai aussi étudié �nement la dynamique des beta qui est la sen-

sibilité d'une action par rapport aux variations de l'indice, qui est directement

liée à la composition du premier vecteur propre de la matrice de corrélations

et qui constitue le paramètre clef de risque. J'ai proposé un modèle réac-

tif avec 3 composants intégrant l'e�et de levier spéci�que (lorsqu'une action
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sous performe, son beta augmente), l'e�et de levier systématique (lorsque

l'indice baisse les corrélations augmentent), l'élasticité des beta (quand la

volatilité relative augmente, les beta augmentent). Les trois composants ont

été calibrés et testés. J'ai testé le biais du modèle à partir de 4 stratégies

�market neutre� de base et j'ai montré la supérioté du modèle par rapport

à une simple régression linéaire. J'ai aussi procédé à un test Monte-Carlo

qui con�rme la supériorité du modèle par rapport aux méthodes alternatives

(�Minimum Absolute Deviation�, �Trimean Quantile Regression� et �Dynamic

Conditional Correlation� avec ou sans asymetrie).

En�n j'ai présenté une application très pratique qui présente des implica-

tions concrètes pour la gestion d'entreprise en montrant empiriquement que

les entreprises qui rémunèrent bien leurs employés partagent une partie signi-

�cative de leur risque et ont tendance à surperformer. La �nesse de methode

de mesure permet d'identi�er cette anomalie de marché et met en lumière

les limitations de la méthode classique de Fama et French. Cette anomalie

qui reste néanmoins relativement faiblement signi�cative semble intuitive et

évidente aux professionnels.
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Titre: Modélisation �ne de la matrice de covariance/corrélation des actions
Résumé: Une nouvelle méthode a été mise en place pour débruiter la matrice de corrélation des

rendements des actions en se basant sur une analyse par composante principale sous contrainte en
exploitant les données �nancières. Des portefeuilles, nommés �Fundamental Maximum variance portfo-
lios�, sont construits pour capturer de manière optimale un style de risque dé�ni par un critère �nancier
(�Book�, �Capitalization�,etc.). Les vecteurs propres sous contraintes de la matrice de corrélation, qui
sont des combinaisons linéaires de ces portefeuilles, sont alors étudiés. Grâce à cette méthode, plusieurs
faits stylisés de la matrice ont été mis en évidence dont: i) l'augmentation des premières valeurs propres
avec l'échelle de temps de 1 minute à plusieurs mois semble suivre la même loi pour toutes les valeurs
propres signi�catives avec deux régimes; ii) une loi �universelle� semble gouverner la composition de
tous les portefeuilles �Maximum variance�. Ainsi selon cette loi, les poids optimaux seraient directement
proportionnels au classement selon le critère �nancier étudié; iii) la volatilité de la volatilité des porte-
feuilles �Maximum Variance�, qui ne sont pas orthogonaux, su�rait à expliquer une grande partie de la
di�usion de la matrice de corrélation; iv) l'e�et de levier (augmentation de la première valeur propre
avec la baisse du marché) n'existe que pour le premier mode et ne se généralise pas aux autres facteurs
de risque. L'e�et de levier sur les beta, sensibilité des actions avec le �market mode�, rend les poids du
premier vecteur propre variables.
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Summary: A new methodology has been introduced to clean the correlation matrix of single

stocks returns based on a constrained principal component analysis using �nancial data. Portfolios
were introduced, namely �Fundamental Maximum Variance Portfolios�, to capture in an optimal way
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leverage e�ect on the beta, which is the sensitivity of stocks with the market mode, makes variable the
weights of the �rst eigenvector.

Key words: correlation, �lter, constrained diagonalization, multi factorial model, optimal portfo-
lios, portfolio management, di�usion

Discipline: Economics/ Portfolio Management

Centre d'Économie de l'Université Paris Nord
U.F.R Sciences Economiques et Gestion

École Doctorale ERASME
Université Paris 13 � Campus Villetaneuse

99 avenue Jean-baptiste Clément
93430 Villetaneuse

280


