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Abstract

Emotional characteristics and personality traits:

a study in mice of wild origin

Abstract: The mechanisms driving animal personality (i.e., consistent individual differences in

behavior across time and contexts) are still poorly understood. Recently, it has been proposed that

personality  traits  may emerge  from individual  differences  in  emotional  reactions.  This thesis

aimed to investigate how exploration tendency, one of the most frequently studied personality

traits, is related to consistent individual differences in emotions in different age classes, using two

rodent species of wild origin. In each chapter, we focused on one component of an emotional

reaction (respectively, behavior, cognition and physiology), to assess either valence (i.e., positive

or negative) or arousal (i.e., high or low) of the emotional experience. First, we showed that

isolation call rate could be used to phenotype emotional profiles of young house mice, as pups’

call rate was consistent over days and across three stressful situations. However, call rates were

not associated with exploration tendency during adulthood. Second, our results suggested that a

higher exploration tendency might  be associated  with a higher tendency to express negative

affective states (i.e., a more negative judgement bias). Third, using infrared thermography, we

found that fast explorative mound-building mice were characterized by a stronger sympathetic

reactivity, as expressed by lower peripheral tail temperatures, than slow explorers shortly after a

brief  handling  procedure.  Overall,  the  findings  of  this  research  project  contribute  to  the

understanding  of  the  emotional  basis  of  personality  traits  and  highlight  the  importance  of

considering individuality, through personality traits, when assessing emotions.

Keywords:  exploration  tendency;  affective  state;  isolation  calls;  cognitive  judgement  bias;

infrared thermography; house mouse; mound-building mouse
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Résumé

Caractéristiques émotionnelles et traits de personnalité :

une étude chez des souris d’origine sauvage

Résumé : Les mécanismes qui sous-tendent la personnalité animale (c.-à-d., les différences

individuelles de comportement stables à travers le temps et les contextes) sont encore mal

compris.  Il  a  été  suggéré  que  la  personnalité  pourrait  émerger  à  partir  de  différences

individuelles dans les réactions émotionnelles. Cette thèse a pour objectif d’étudier comment

la  tendance  à  l’exploration,  l’un  des  traits  de  personnalité  les  plus  étudiés,  est  liée  aux

différences individuelles d’émotions, à différentes classes d’âge chez deux rongeurs d’origine

sauvage. Chaque chapitre aborde un composant d’une réaction émotionnelle (comportement,

cognition  et  physiologie),  afin  d’évaluer  la  valence  ou  l’intensité  de  l’expérience

émotionnelle. Tout d’abord, nous avons montré que le taux d’appels d’isolement pouvait être

utilisé pour caractériser les profils émotionnels de jeunes souris domestiques, celui-ci étant

stable durant trois  jours et dans trois situations stressantes. Cependant,  ce taux n’était  pas

associé avec la tendance à l’exploration durant l’âge adulte. Deuxièmement, nos résultats ont

suggéré  qu’une  tendance  plus  forte  à  l’exploration  pourrait  être  liée  à  une  plus  grande

tendance à exprimer des états affectifs négatifs (c.-à-d., un biais de jugement plus négatif).

Troisièmement,  nous  avons  constaté  que  les  souris  glaneuses  plus  exploratrices  étaient

caractérisées  par  une  réactivité  plus  forte  du  système  sympathique,  exprimée  par  des

températures périphériques  de la queue plus basses, peu de temps après une procédure de

manipulation brève. Dans l'ensemble, les résultats de ce projet de recherche contribuent à la

compréhension de la base émotionnelle des traits de personnalité et soulignent l'importance de

prendre en compte l'individualité lors de l'évaluation des émotions.

Mots-clés :  tendance à l’exploration  ; état affective ; appels d’isolement ; biais de jugement

cognitif ; thermographie infrarouge ; souris domestique ; souris glaneuse
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1. General introduction

1. General introduction

1.1. Animal personality: concepts and interest

1.1.1. Terminology and background

Animal personality has been a huge topic of interest in the past years. It has been

reported in numerous clades that non-human animals (hereafter animals) within a population

of a given species behave differently from each other and that such individual variation can be

consistent over a long period of time (Carere & Eens, 2005; Carere & Maestripieri,  2015;

Gosling,  2001;  Sih  et  al.,  2004;  Vonk  et  al.,  2017).  Laboratory  animals  under  strictly

controlled  environmental  conditions,  including  individuals  from inbred  lines,  also  exhibit

individual variation in personality (e.g., in laboratory mice Mus musculus: Freund et al., 2013;

Lewejohann et al., 2011; Rödel et al., 2012). The field of animal personality benefits from

studies  of  various  disciplines  as  behavioral  ecology  (Dall  et  al.,  2004;  Sih  et  al.,  2015),

evolution  (Reader  et  al.,  2007;  Réale  et  al.,  2010);  neuroendocrinology  (Koolhaas  et  al.,

1999),  developmental  biology  (Stamps  &  Groothuis,  2010a,b),  neuroanatomy  (Corr  &

McNaughton,  2012;  Montag  &  Panksepp,  2017;  Wiese  et  al.,  2018)  and  genetics

(Dingemanse & Araya-Ajoy, 2015; Montag & Reuter, 2014; Phocas et al., 2006), contributing

to its conceptual and experimental richness.

In the following,  I  will  first  give some main definitions  underlying the concept of

animal personality, present the personality traits typically assessed and briefly explain why

personality traits are maintained within a population.

5



1. General introduction

1.1.1.1. Definitions

Why and how consistent between-individual differences in behavior emerge and are

maintained is now better understood due to the vast amount of research in the field and the

synthesis work of several reviews. Among important challenges still faced by the researchers,

and that some reviews aimed to overcome (Carter et al., 2013; David & Dall, 2016; Réale et

al., 2007), are the variety of terms used to describe such differences and the traits measured,

alongside  with  the  diversity  of  experimental  procedures  and  the  associated  behavioral

variables to be quantified.

‘Animal personality’  and ‘temperament’  are often used as analogous to  describe

between-individual  differences  in  behavior  that  are  consistent  across  time  and  contexts

(Archard  &  Braithwaite,  2010;  Bell,  2007;  Gosling,  2001;  Réale  et  al.,  2007).  Hence,

individuals  exhibit  a  particular  ‘personality  type’,  for  example,  being  repeatedly  more

aggressive  in  different  contexts  such  as  an  agonistic  encounter  with  a  conspecific  and  a

confrontation  with a predator.  Such differences  between individuals,  that  is,  their  ranking

within a population, are assumed to be maintained over time. However, this definition does

not assume that the behavior cannot change over the lifespan of the individuals, particularly

across  crucial  developmental  steps,  such  as  weaning  or  sexual  maturation  (Fawcett  &

Frankenhuis,  2015;  Herde  &  Eccard,  2013).  ‘Behavioral  syndromes’  refer  to  a  set  of

correlated behaviors across multiple  situations at  the population level,  while a ‘behavioral

type’ characterizes the individual within the syndrome (Bell, 2007; Sih et al., 2004). That is,

personality  traits  are  often  associated  with  each  other;  typically,  the  more  aggressive

individuals are also bolder, more explorative and more active. Finally, the concept of stress

‘coping  styles’  evaluates  the  consistent  individual  differences  in  behavioral  and

neuroendocrinological reactions to challenging situations (Koolhaas et al., 1999, 2010). The

6



1. General introduction

more recent view of coping style places the classical proactive-reactive continuum alongside

three dimensions: more proactive individuals can be characterized by a low emotional arousal,

a high reward sensitivity and a low executive control (de Boer et al., 2017).

1.1.1.2. Which traits are part of animal personality?

Five personality traits are predominantly investigated (also called the ‘Big Five animal

personality  traits’:  Réale  et  al.,  2007):  exploration,  boldness,  activity,  sociability  and

aggressiveness. Other traits can also be considered as part of an individual’s personality such

as anxiety (Ibáñez et al., 2007; Schrader & Müller, 2005) or the equivalents of the human

Homo sapiens Big  Five  personality  traits,  such as  Extraversion  or  Neuroticism evaluated

through  ratings  by  human  observers  (e.g.,  orange-winged  Amazons  Amazona amazonica:

Cussen  &  Mench,  2014;  cotton-top  tamarins  Saguinus  oedipus:  Masilkova  et  al.,  2018).

Personality traits are seen as a continuum; for instance, animals can be evaluated along the

shyness-boldness or the exploration-avoidance axis. Réale et al. (2007) define the shyness-

boldness axis as “an individual’s reaction to any risky situation, but not new situations”, while

the  exploration-avoidance  axis  refers  to  “an  individual’s  reaction  to  a  new  situation”,

including new environment, food, or object. The terminology proposed by Réale et al. (2007)

has been adopted by a majority of studies. However, these definitions have not been always

followed by authors referring to their terminology (e.g., Mazza et al., 2018), contributing to

the confusion and lack of consistency among studies about the definition of the traits, the

choice of the tests and the behavioral variables assumed to assess them. In this thesis, I will

use the term ‘exploration’ in the sense of Réale et al. (2007), that we assessed by combining

behavioral variables quantified in open field and novel object tests.
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1. General introduction

1.1.1.3. Maintenance of personality traits

Animal personality traits are heritable (van Oers et al., 2011, 2015) and are linked to

reproductive success, survival and longevity (Boon et al., 2007; Careau et al., 2010; Seyfarth

et al., 2012; Smith & Blumstein 2008), thus natural selection can act on them (Dall et al.

2004;  Sih  et  al.  2004).  Fitness  advantages  have  been  reported  to  be  associated  with  the

expression of certain personality types within a population. Typically, more aggressive, bolder

and/or active individuals gain more food intake and have an increased growth, which may

improve their reproductive success (Biro & Stamps, 2008). Yet, other personality types can

also be favored through balancing selection processes. For instance, rare personality types can

be advantaged through processes of negative frequency-dependent selection, similarly to the

Hawk–Dove  game  of  competition  for  resources  (Dall  et  al.,  2004;  Wolf  et  al.,  2008).

Furthermore,  various  personality  types  can  be  favored  depending  on  the  environmental

conditions, in particular within a heterogeneous environment (Dingemanse & Réale, 2005).

For instance, fast explorer male great tits Parus major had higher survival rates during winters

with high food availability while slow explorer males were favored during winters with low

food  availability  (Dingemanse  et  al.,  2004).  Personality  types  may  also  influence  how

individuals disperse and occupy their environments (Cote et al., 2014; Sih et al., 2012). The

maintenance  of  opposite  personality  types  within  a  population  could  be  explained  by

differences  between  individuals  in  their  investment  in  the  trade-offs  between  growth  and

mortality (Biro et al., 2004; Stamps, 2007) or between different life-history strategies (Wolf et

al., 2007; Wolf & Weissing, 2012). Finally, positive assortative personalities within breeding

pairs has also been shown to be associated with fitness advantages, such as a faster onset of

reproduction (Rangassamy et al., 2015) and higher offspring growth (Both et al., 2005), also

participating to the maintenance of personality variation.
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1. General introduction

1.1.2. Ontogeny of personality

The  development  of  personality  traits  results  from  complex  interactions  between

genetic effects (Dochtermann et al., 2014; Drent et al., 2003; Stamps & Groothuis, 2010b) and

the  environment  in  which  the  individual  develops.  Throughout  ontogeny,  various

environmental conditions and factors have the potential to influence the set-up of individual

(personality)  differences  (Hudson  et  al.,  2011;  Stamps  & Groothuis  2010a;  Trillmich  &

Hudson, 2007). Personality traits have been shown to be less consistent over large periods of

time  (Bell  et  al.,  2009;  Biro  &  Stamps,  2015;  Stamps  & Groothuis  2010b),  which  also

depends on the personality trait investigated (Herde & Eccard, 2013). In particular, behavioral

plasticity  is often considered to be high in young animals before decreasing over time, in

relation  to  the  strong  behavioral,  neural  and  physiological  changes  that  young  animals

undergo in their early life (Groothuis & Trillmich, 2011; West-Eberhard, 2003). This makes

their emerging personality more flexible and sensitive to environmental changes, even though

consistent individual behavioral profiles have been found in young animal (e.g., Hudson et al.,

2015; Myers & Young, 2018; Rödel et al., 2017; Špinka et al., 2018).

However, only a few studies investigated whether early behavioral profiles may be

predictive of later personality traits, especially across important developmental steps. These

studies  reported,  for  instance,  associations  between  early  vocalization  profiles  and

emotionality in adults (Brunelli & Hofer, 2007), or sociability and spatial memory (Yoshizaki

et al., 2017), which would deserve more attention (see section 5.2., p.146).
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1. General introduction

1.1.3. Personality and individual differences in cognition

Personality  traits  have  also  been  studied  as  potential  contributors  of  individual

differences in cognitive abilities (Boogert, et al. 2018; Carere & Locurto, 2011; Griffin et al.,

2015). ‘Cognition’ is defined as the acquisition, processing, storage and use of information

from environment (Shettleworth, 2010). Cognitives abilities are psychological processes and

thus cannot be directly quantified; they are inferred from the evaluation of their observable

manifestation:  the  behavior.  Hence,  research  in  animal  cognition  mainly  focuses  on  the

mechanistic basis of behavior, to know which cognitive abilities lead to changes in behavior.

Numerous cognitive processes are investigated, as perception, learning, behavioral inhibition,

self-recognition, language, memory or decision-making.

More recently, the individual variation in such abilities has become a topic of interest

by its own, in order to understand the differences in performance between individuals within a

population,  as  it  is  traditionally  done  in  human  psychology  (Carroll  &  Maxwell,  1979).

Individuals with distinct ‘cognitive styles’ consistently differ in the way they acquire, process,

store and act on the information, that is, a cognitive style does not depend on the ability per se

(Gruszka et al., 2010).

Hence,  several  authors  suggested  that  personality  types  may  be  closely  related  to

differences in cognitive styles (Carere & Locurto, 2011; Sih & Del Giudice, 2012). If the

causal relationships between these two concepts remain to be elucidated (Griffin et al., 2015),

one main  hypothesis  has  received important  attention  across  species:  fast  behavioral  type

individuals  (that is,  more proactive,  aggressive,  active,  explorative and bolder individuals)

should  exhibit  a  higher  speed  but  a  lower  accuracy  cognitive  style  compared  to  slow

behavioral  types  (speed-accuracy  trade-off:  Sih  &  Del  Giudice,  2012).  The  fast  type

individuals would learn faster but also tend to form more routines, hence exhibiting more
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1. General introduction

inflexible behavioral responses. That is, they would be less sensitive to small details of their

environment  and would  perform poorly  when the  task  requires  to  use fine  details  of  the

environment or to change the rules they previously learned (e.g., in reversal learning tasks).

This hypothesis first received experimental support in several species (e.g., guppies Poecilia

reticulata: Burns & Rodd 2008; guinea pigs Cavia aperea: Guenther et al., 2014; chickadees

Poecile atricapillus Guillette et al., 2011; bank voles Myodes glareolus: Mazza et al., 2018;

common ravens Corvus corax: Stöwe & Kotrschal, 2007).

However,  a  meta-analysis  conducted  by  Dougherty  &  Guillette  (2018)  revealed

inconsistencies in results both across and within species. Indeed, the direction of the proposed

association presented above was highly dependent on the study species, the population and the

context in which the personality traits were measured (see also Table 1 in Mazza et al., 2018).

For example, boldness assessed in response to a predator, but not in response to a novel object

or food, was positively associated with a high learning speed (Dougherty & Guillette, 2018).

As  also  highlighted  by  Griffin  et  al. (2015),  associations  between  personality  traits  and

cognitive styles should be assessed repeatedly for the population of interest, without assuming

its direction or its consistency over time (Boogert et al., 2018).

1.1.4. Application to animal welfare

Driven by pressure from public society and research, promoting a good welfare in

captive animals  is  a current major  interest.  Not only the prevalence of negative emotions

should  be minimized,  but  positive  emotional  states  should  also be encouraged (Boissy &

Erhard, 2014). Thus, animal welfare science aims to identify items and situations that induce

positive  or  negative  emotions  and  how their  modification  may  influence  the  individual’s
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1. General introduction

mood (that is,  longer-term emotional states, Mendl et al.,  2010), with the ultimate goal to

assess the animals’ subjective affective state (Broom, 2008; Fraser, 2009).

To this aim, taking into consideration the individual behavioral profiles of the animals,

that  is,  their  personality  traits,  helps  to  advance knowledge in  animal  welfare (Richter  &

Hintze, 2019). Indeed, similar rearing conditions may have differential effects depending on

the individuals’ personality (Bolhuis et al., 2004; Melotti et al., 2011). Specific personality

types may also be more likely to rely on environmental  conditions to maintain a positive

mood.  For  instance, proactive  domestic  pigs  Sus  scrofa were  always  more  optimistic

independently of their housing conditions whereas the mood of reactive pigs depended on the

enrichment of their environment (Asher et al., 2016). Moreover, some personality traits may

be more related to welfare issues than others, such as fearfulness (associated with pessimism:

Lecorps et al., 2018b) or proactivity (with development of stereotypy: Joshi & Pillay, 2016).

Hence,  as a  same situation  may be experienced as  positive by some individuals  but  may

constitute a source of stress (thus leading to a poorer welfare) to others, developing housing

conditions for group-housed species that fit different personality types remains a challenge

(Richter & Hintze, 2019).

Taken together, these findings highlight the importance of considering individuality

when  assessing  or  aiming  to  improve  animal  welfare,  instead  of  comparing  groups  or

generalizing  welfare  improvements  to  the  whole  species  (Fraser,  2009).  Particularly,  as

emotions constitute a central topic in animal welfare, the assessment of their consistency over

time and potential changes over ontogeny still remain to explore in more details (de Vere &

Kuczaj,  2016; Richter & Hintze, 2019), even though the consistency of fear- and anxiety-

related behaviors are increasingly considered in recent studies (Boissy & Erhard, 2014).
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1. General introduction

1.2. Emotions: theories and evaluation

1.2.1. History, definition and main approaches

The study of emotions is a key topic in human psychology and gave rise to numerous

theories about their emergence (e.g., peripheral theory: James, 1884; central theory: Cannon,

1927;  appraisal  theories:  Scherer,  1984;  Lazarus,  1991).  In  humans,  the  subjective  and

conscious emotional experience is central in these theories but, as subjective feeling cannot be

directly assessed in animals,  the study of emotions in non-humans is quite recent.  Darwin

(1872/1998) was among the firsts to consider the question, proposing a continuity between

human  and  animal  emotions  and  mental  lives.  However,  the  scientific  study  of  animal

emotions was seen out of the scope of scientific study during the majority of the 20th century

when  the  vision  of  the  behaviorists  was  predominant.  The  ethologist  Nicolaas  Tinbergen

(1963),  at  the  origin  of  the  four  questions  forming the basis  of  the discipline  (causation,

ontogeny,  function  and  evolution  of  behavior),  also  followed  that  vision.  Yet,  other

researchers of that period included subjective states in the study of animal behavior (for a

review see Fraser 2009); Burghardt (1995) even suggested to add a fifth question focused on

emotions as the study of behavior also helps to understand the affective states of animals.

Nevertheless, the existence of an emotional life in animals has often been denied and has been

excluded  from a  functional  explanation  of  behavior  (Fraser,  2009).  Nowadays,  emotions,

regardless  of  whether  they  are  felt  consciously,  have  been  recognized  as  essential  to

understand behavior (Wilson et al.,  2019), and the question is not anymore about whether

animals can have emotions.

Defining emotion is of major importance as the research question will differ depending

on the key elements highlighted in the definition (Paul & Mendl, 2018). Even if there is no

13



1. General introduction

clear consensus,  emotions can be defined as intense and brief states in response to a salient

stimulus or event (from the internal or external environment) and they involve behavioral,

physiological, neuronal, cognitive and subjective changes allowing the individual to respond

to the eliciting stimulus (Désiré et al., 2002; Ledoux, 2012; Paul et al., 2005; Rolls, 2005).

They are adaptive as they enable animals to avoid harm and punishers or to seek resources

and rewards (Cardinal et al., 2002; Panksepp, 1994; Rolls, 1999). Other terms are also often

encountered in animal emotion studies and may lead to confusion in the literature (de Vere &

Kuczaj, 2016):  affect may be used as analogous of emotion (Bliss-Moreau, 2017; Ledoux,

2012), as similar to mood (Paul et al., 2005) or to describe only the subjective experience (Ede

et  al.,  2019;  Fraser,  2009;  Panksepp,  2010),  whereas  mood usually  refers  to  more  ‘free-

floating’, longer-term states resulting from the accumulation of short-term emotions (Boissy

&  Lee,  2014;  Mendl  et  al.,  2010).  In  this  thesis,  I  will  use  emotion  and  affect  as

interchangeable terms and the term ‘mood’ following the previous definition. Emotions can be

separated in two categories: primary emotions (as fear, anger or joy) and secondary emotions

(as shame, guilt or jealousy, which might be shared with humans only by a few species such

as non-human primates) (Ha & Campion, 2019). The rest of this section will focus only on the

primary or ‘basic’ emotions, as they are assumed to be shared among at least all vertebrates

(Panksepp, 2011a).

Two main opposite views currently co-exist to describe emotions:  discrete emotions

and dimensional approaches. The discrete (also modular or basic) emotion approach argues

that it exists distinct emotions (e.g., fear, rage or play) supported by underlying specific neural

systems  and  related  to  specific  autonomic  changes  (Tracy  &  Randles,  2011).  The

dimensional (or core affect)  approach, in its most common definition, describes emotions

along two dimensions  (or  axes):  the valence  (either  positive  or negative  according to  the
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1. General introduction

rewarding  or  punishing  value  of  the  stimulus)  and  the  arousal  (that  is,  the  high  or  low

intensity), also under the control of specific neural circuits. Mendl et al. (2010) proposed an

integrative framework to reunite the two approaches (Fig. A); see also Panksepp (2007a) and

Izard (2007) for similar opinions.

Figure  A.  Representation  of  the  emotional  experience  according  to  the  conceptual  framework of

Mendl et al. (2010) which integrates both the core affect approach, represented by two dimensions

(arousal and valence), and the discrete emotion approach (basic emotions are noted in italics in their

proposed  locations  along  the  two  previous  dimensions).  In  italics  are  also  noted  the  subjective

affective states possibly experienced by the individuals inside each quadrant (positive in quadrants Q1

and Q2 and negative in Q3 and Q4). The red arrow represents a possible bio-behavioral system to

support punishment avoidance by changing the individual’s affective state from a calm/relaxed (Q2) to

a fearful/anxious (Q4) state. The green arrow represents a system that modifies a sad/depressed (Q3)

into a happy/excited state, underlying the acquisition of rewards.

15



1. General introduction

The  major  challenge  in  the  study of  emotions  in  non-human  animals  remains  the

assessment of its subjective, conscious part, as it cannot be assessed directly or, as in humans,

via verbal reports. To overcome this issue, researchers in the field of emotion aim to assess

the  affective,  internal  state  of  the  animals  through  the  evaluation  of  observable  and

quantifiable variables, such as physiological and behavioral variables (Ledoux & Hofmann,

2018), without making inferences about a potential consciousness of the internal state (e.g.,

Ede et al., 2019; Mendl et al., 2010; but see 1.2.5., p.25, for a different opinion about how to

assess the subjective experience). In that perspective, the whole emotional experience can be

decomposed in  different  elements.  I  will  follow here  the  classical  classification  (Dantzer,

1988; Désiré et al., 2002) with the addition of a more recent, cognitive component (Anderson

& Adolphs,  2014;  Clore  and Ortony,  2000;  Mendl  et  al.,  2009;  Paul  et  al.,  2005).  Thus,

emotions  can  be  divided  in  four  components:  behavioral,  physiological,  cognitive  and

subjective.  Each  of  them  will  be  further  detailed  in  following  sub-sections,  focusing  on

mammals  and  particularly  on  laboratory  rats  Rattus  norvegicus and  mice,  as  the  proxy

measures of an emotional reaction are species-specific.

1.2.2. Behavioral component

The most widely assessed component of emotions is behavior as it can be directly

observed. It may be of particular importance to evaluate the adaptive function of emotions

(Frijda,  1986).  In  this  context,  behavior  can be assessed at  different  scales,  from general

activity to fine facial expressions. Emotions are assumed to help individuals to avoid harmful

situations and seek out positive ones. Hence, the most basic behaviors that can be assessed, to

evaluate  the  elicited  emotional  valence,  are  approach  and  avoidance  (or  escape)  from  a
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stimulus. Usually, such approach/avoidance behaviors are complemented by the quantification

of more specific behaviors, such as the duration of freezing (Galliot et al. 2012), exploratory

activity  (Ohl,  2003), consumption (or its  absence in the study of anhedonia in depression

models: Neumann et al., 2011).

Numerous  tests  have  been  specifically  designed  to  assess  emotional  reactions  of

mammals, especially via the induction of negative emotions (mainly anxiety: Bouwknecht &

Paylor, 2002; Harro, 2018, and fear: Galliot et al., 2012; Mobbs, 2018) during tests leading to

unconditioned responses, such as the elevated plus maze (Carobrez & Bertoglio, 2005), open

field (Perals et al., 2017), novel object (Ennaceur et al., 2009), startle test (Yuen et al., 2017)

or light-dark box (Kulesskaya & Voikar, 2014) in rodents. Many of them have been widely

applied to investigate new treatments or to assess the effect of drugs in neuropsychological

human diseases (e.g., depression: Borsini et al., 2002; Czéh et al., 2016; schizophrenia: Sahin

et al.,  2016). For instance, exploration (also termed activity or exploratory activity) in the

open field is one of the most discussed behaviors (Carter et al., 2013; Perals et al., 2017; Réale

et  al.,  2007).  Exploration,  frequently  considered  to  be  “driven  by an  approach/avoidance

conflict” (Augustsson and Meyerson, 2004), is often reduced after injection of anxiogenics

and increased after the use of anxiolytics, leading researchers to interpret greater exploratory

activity in the open field as being representative of low anxiety levels (but see Ennaceur et al.

(2010) and Ennaceur (2014) for discussions on this phenomenon, as an increased activity may

also represent a tendency to escape, induced by a high state of fear).

Learned  responses  can  also  be  used  and  are  central  in  animal  welfare  science  to

identify  whether  a  specific  stimulus  is  perceived  as  positive  or  negative.  For  instance,

preference tests can be used to investigate which kind of surface (Telezhenko et al., 2007) or

nest material  (Blom et al.,  1996) the animals value the most (that is,  which one acts as a
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positive  reinforcer).  Yet,  such  tests  may  provide  little  information  about  the  absolute

perceived value as the results only provide a rank assessment (Ede et al., 2019).

Facial expressions can be used to assess emotional responses (Descovich et al., 2017),

either  negative  (e.g.,  fear  in  laboratory  mice:  Defensor  et  al.,  2012)  or  positive  (e.g.,  in

response  to  tickling  in  laboratory  rats:  Finlayson  et  al.,  2016).  For  example,  ears  in  a

backward position were associated with a low emotional reactivity in house mouse (Lecorps

& Féron, 2015). The ear position has also been used to distinguish the emotional valence in

sheep Ovis aries (Reefmann et al., 2009a,b) and cows Bos taurus (Proctor & Carder, 2014).

Also, ‘grimace scales’ have been designed to assess pain in rats (Sotocinal et al., 2011), mice

(Langford et al., 2009) and horses Equus caballus (Dalla Costa et al., 2014).

Vocalizations have been one of the most studied parameters in numerous species as

they allow a quick transmission of emotional  states  to  others (Briefer,  2012; Brudzynski,

2018). They have been predominantly studied as representative of arousal (see Table 3 in

Briefer, 2012), but animals also emit distinct calls in response to either positive or negative

situations (Barker, 2018). Thus, vocalizations are often considered as indicators of the valence

of  an  individual’s  affective  state.  For  instance,  laboratory  rats  emit  ultrasonic  ‘chirping’

vocalizations when tickled, which have been considered as a form of ‘laughter’, as in apes

(Davila-Ross et al., 2009) and in humans (Panksepp, 2007b; Panksepp & Burgdorf, 2010).

Laboratory rats have been particularly studied for their vocalizations as they emit two types of

vocalizations: ‘22-kHz calls’ in typically negative situations and ‘50-kHz calls’ in typically

positive situations (but see Simola & Brudzynski (2018) for more details about the contexts of

emission). Other species also express distinct calls depending on the valence as goats Capra

hircus (Briefer et al., 2015), silver foxes Vulpes vulpes (Gogoleva, et al., 2010), domestic pigs

(Ferreira da Silva Cordeiro et al., 2013) and cattle (Watts & Stookey, 2000). In laboratory
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mice, although no clear categorization of their vocalizations has been done, the emotional

state  of  the  individual  also  influences  its  calls  (Granon  et  al.,  2018).  Vocalizations  also

provide  the  advantage  that  they  can  be  studied  across  ontogeny  (Peleh  et  al.,  2019).

Particularly  dependent  young, when separated from their  caregivers  and siblings,  produce

isolation calls (also named distress calls) whose number may depend on the intensity of the

emotional distress experienced during isolation (Caruso et al., 2018; Winslow, 2009); that is, a

higher number of such calls showing a stronger negative emotional state. Pups’ isolation call

rates will be quantified in Chapter 1 to assess the individual consistency of such call rate over

three consecutive days and across three stressful situations (Verjat et al., 2019).

1.2.3. Physiological component

Most of the physiological parameters assessed in emotion research overlap with those

measured in stress research (Moberg & Mench, 2000), especially when investigating negative

emotions such as anxiety or fear. Earlier definitions of stress often excluded the affective part

related to the physiological stress reaction, although animals were usually placed in aversive

situations  that  may have led to  negative  emotions  (Moberg,  2000;  Ramos and Mormède,

1998; but see von Holst (1998) for a different perspective). However, one of the last definition

states that “the stress response is the sum of psychic arousal and changes in affect associated

with  physiological  reaction  where  resources  are  mobilized,  to  sustain  metabolic  and

behavioral adaptations, and allow the classical ‘fight or flight’ reaction” (Bombail, 2019).

As a consequences, the most studied parameters are the ones under the control of the

hypothalamic-pituitary-adrenal  (HPA)  axis  and  the  sympathetic-adrenal-medullary  (SAM)

system, after the confrontation with a stressor of interest (von Holst, 1998). For the HPA axis,
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ACTH  and  glucocorticoid  levels  (corticosterone  mainly  in  birds,  amphibians,  reptiles,

Murinae, and lagomorphs;  cortisol  in  the majority  of  fish and in  other  mammals:  Palme,

2019), that increase after the confrontation with a stressor, can be measured (Möstl & Palme,

2002;  Vera  et  al.,  2017;  Wingfield,  2013).  Traditionally,  their  analysis  is  done in  blood,

plasma or serum but, as the blood sampling itself may lead to an emotional reaction and be

confounded with the response to the stressor of interest, non- or low-invasive techniques have

gained in popularity and glucocorticoids can now be measured through the collection of saliva

(Menargues Marcilla et al., 2008), urine (Palme et al., 1996), feces (Palme, 2019), milk (Yeh,

1984), hair (Keckeis et al., 2012), feathers (Bortolotti et al., 2008) or eggs (Rettenbacher et al.,

2005).

Changes in the activity of the SAM axis can be assessed through heart rate, respiratory

rate, blood pressure, skin conductance, levels of catecholamines or other circulating hormones

(Caramaschi et al., 2013). Such markers of emotional reactions can be recorded in real time in

large animals  (except  for  hormone levels)  without  applying invasive telemetry  techniques

(e.g.,  by  using  a  chest  belt  with  an  external  heart  rate  monitor:  Tamioso  et  al.,  2018).

However, the use of these techniques, such as heart rate or blood pressure telemetry, in small

mammals as rodents typically requires surgery to implant a telemetry sensor (Krohn et al.,

2003; Niemeyer, 2016). As an alternative, infrared thermography allows the recording of real-

time changes in the body heat loss, a consequence of the cutaneous blood flow under the

control of the sympathetic nervous system (Mufford et al., 2016; Stewart et al., 2005; Vianna

& Carrive, 2012). This technique can be used in free-moving animals, at least within a smaller

scale, small enough to be surveyed by an infrared thermal camera. By this technique, the body

surface  temperature  can  be  correlated  with  the  simultaneous  behavior  shown  by  the

individual,  allowing an assessment  of its  emotional  reaction (Sato et  al.,  2018; Vianna &
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Carrive,  2012).  Infrared  thermography  has  been  proven  useful  to  record  stress  and  fear

responses in the laboratory rat (Ågren et al., 2009; Vianna et al., 2005), the laboratory mouse

(Gjendal et al., 2018) and the house mouse Mus musculus domesticus (Lecorps et al., 2016).

In  such  species,  the  typical  thermal  response  is  a  decrease  in  peripheral  body  parts  (in

particular  in  the tail)  and an increase  in  body and eye temperature.  We will  use infrared

thermography in  Chapter 3,  in the mound-building mouse  Mus spicilegus, to assess their

responses to handling in relation to their exploration tendency (Duparcq et al., 2019).

Nevertheless, measurements of the activity of the HPA axis and SAM system seem to

mainly  represent  changes  in  the  individual’s  arousal  level,  without  informing  about  the

valence of its affective state (Paul et al., 2005). A recent study showed specific changes in

nasal temperature  after  the presentation of positive and negative  stimuli  in male common

marmosets Callithrix jacchus using infrared thermography (Ermatinger et al., 2019). Although

differences  in  arousal  might  also explain  these  results,  further  studies  directly  comparing

positive  and  negative  stimuli  should  be  encouraged  to  potentially  describe  distinct

physiological reactions depending on the valence of the situation (see Appendix 6.3., p.182).

A few studies, mainly in farm animals, assessed the amount of visible eye white mediated via

sympathetic control, but found contradictory results regarding the valence associated with an

increase or a decrease in visible eye white (e.g., Sandem et al., 2002; reviewed in Ede et al.,

2019). Hence, there is a possible limitation of the interpretation of physiological parameters as

being unspecific proxies of the emotional intensity. However, positive emotions have received

little attention so far (de Vere & Kuczaj, 2016), leading to less available information about

physiological reactions to positive than to negative stimuli, but recent reviews should further

stimulate such research (Ahloy-Dallaire et al., 2018; Balcombe, 2009; Berenbaum et al, 2016;

Boissy  et  al.,  2007).  Moreover,  biomarkers  of  emotions  in  humans,  which  could  help  to
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distinguish  between  positive  and  negative  emotions,  are  currently  investigated  for  their

usefulness in animal research (e.g., immunoglobulin A: Staley et al., 2018).

1.2.4. Cognitive component

The influence between cognition and emotion is bidirectional, that is, distinct emotions

may arise after the cognitive evaluation of the situation and of the internal state of the subject

(appraisal  theories)  and  the  cognitive  abilities  of  the  individual  may  be  modified  by  its

emotional state (cognitive bias).

The term ‘appraisal theories’ refers to a theoretical approach started by Arnold (1960)

and Lazarus  (1966) and has been developed since then by several  authors  (e.g.,  Clore &

Ortony, 2000; Ellsworth & Scherer, 2003; Roseman, 2013; Scherer, 2013). Appraisal theorists

suggest  that  the  appraisal  (i.e.,  evaluation)  of  the  environment,  in  interaction  with  the

individual, plays the most important role in eliciting an emotion, as it will determine the type

and intensity of the emotional experience (Moors et al., 2013). Scherer (2001, 2009) proposed

that the evaluation (appraisal) of an event is based on four criteria of increasing complexity:

(i) its relevance (suddenness, familiarity, predictability, goal relevance and pleasantness), (ii)

its implications for the well-being and goals of the subject, (iii) the coping potential of the

individual (its ability to cope with the consequences and to control the event), and (iv) the

normative significance of the event and the response (compatibility with self-esteem, social

norms and moral rules). Although these theories have been first designed for humans, animals

have also been investigated for their appraisal abilities, mainly in farm animals with a welfare

perspective (Boissy & Erhard, 2014; Désiré et al., 2002; Veissier et al., 2009). For instance, it

has been shown that sheep (a) react to novelty and suddenness (Désiré et al., 2004, 2006) and
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express  different  responses  depending  on  (b)  the  consistency  of  the  event  with  their

expectations  (Greiveldinger  et  al.,  2011),  (c)  their  ability  to  control  the  situation

(Greiveldinger et al., 2009) and (d) their social context (Greiveldinger et al., 2012). In rodents,

only a few studies have been conducted but laboratory rats have been shown to develop less

ulceration when given the possibility to control the presence of electric shocks (Weiss, 1972)

or  to  predict  their  advent  (Weiss,  1971).  However,  appraisal  theorists  do  not  make  the

assumption that the evaluation processes of the situation are systematically conscious, and

such processes may be rather automatic for primary emotions (Paul et al., 2005).

In turn, the emotional state can also influence information processing through three

types of cognitive bias: attention, memory and judgement bias (Mendl et al., 2009; Roelofs et

al.,  2016).  Cognitive  biases  have  been  demonstrated  in  numerous  species,  since  the  first

judgement  bias  study by Harding  et  al.  (2004),  and have  been mainly  applied  in  animal

welfare  science  (Baciadonna  & McElligott,  2015;  Clegg,  2018;  Crump  et  al.,  2018)  and

psychopharmacology (Hales et al.,  2014). An attention bias involves a modification of the

attention  toward negative  or  (potentially)  threatening stimuli  when the  individual  is  in an

anxious emotional state (rhesus monkeys Macaca mulatta: Lacreuse et al., 2013; sheep: Lee et

al., 2016; Verbeek et al., 2019; cattle: Lee et al., 2018). Memory bias occurs when positive or

negative events (that is, with an emotional load) are more readily remembered than neutral

ones (laboratory rats: Burman & Mendl, 2018; rhesus monkeys: Lacreuse et al., 2013). The

most frequently investigated one is the judgement bias: the emotional state (or the mood) is

assumed to  influence  the  interpretation  of  ambiguous  information  (see  the  supplementary

material  of  Roelofs  et  al.  (2016)  for  a  review  of  the  main  judgement  bias  studies).  In

particular, judgement bias tests provide the major advantage to allow the evaluation of the

valence  of  the  individual’s  emotional  state,  as  an individual  with a  positive  mood would
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behave more optimistically (Boleij et al., 2012; Lalot et al., 2016). A positive judgement bias,

for instance, can be due to an increased expectation of a reward or a decreased expectation of

a punishment (Bateson & Nettle, 2015; Bateson 2016: Fig. B). A judgement bias test will be

used in Chapter 2 to assess the relationship between a personality trait (animals’ exploration

tendency) and individual differences in judgement bias.

Figure B. Simplified diagram of some of the possible processes underlying the decision (evaluation

and response) of an individual confronted to an ambiguous stimulus during a judgement bias task,

from Bateson (2016; adapted from Mendl et al., 2009). P refers to cues predicting a punishment and R

to cues predicting a reward. The affective state (or the mood), modulated by genes, experiences and

environment, might influence the attention or perception of the cues as well as the attribution of the

expected utility of the decision outcome. It is probable that the cognitive mechanisms occur in parallel,

and not as a suite of processes.
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1.2.5. Subjective component

As briefly introduced in the beginning of this section (see 1.2.1. History, definition and

main approaches), the subjective, internal part of the emotional experience has been seen as

out of the scope of scientific study for a long time, in part due to the influence of behaviorism.

A majority of researchers have been, and still are, reluctant to attribute an emotional, internal

life to animals. For instance, the emotional terms were often added with suffixes such as ‘-

like’, ‘sham-’ and/or putting the word between quotation marks (e.g., ‘anxiety-like’ instead of

‘anxiety’: Post et al., 2011; or ‘sham-rage’ for ‘rage’: Hess, 1954). Despite recent advances in

cognitive science and neuroscience, attributing a subjective life to animals is still often seen as

anthropomorphic (Fig. C) and out of a possible objective evaluation. As a result, most animal

emotion researchers voluntarily avoid to refer to or to assume the existence of a subjective,

conscious part in emotions (Dawkins, 2001; de Waal, 2011; Ledoux, 2012) and define them as

“states that may or may not be experienced consciously” (Mendl et al., 2010).

However, Panksepp and co-workers argue that human and non-human animals share

more  than  behavioral,  physiological  and cognitive  components  of  emotion,  but  also  their

subjective  part  due  to  common underlying  brain  systems  shared  at  least  among  mammal

species (Panksepp, 2005; 2011). Contrary to the advocates of appraisal theories who consider

that the evaluation of the situation is at the origin of the emotion,  researchers in affective

neuroscience argue that emotions emerge from distinct emotional brain circuits, without the

need of a cognitive evaluation (Davidson & Sutton, 1995; Davis and Montag, 2019; but see

Panksepp et al. (2017) for an exchange between researchers of both approaches).
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Figure C. Diagram representing

the  relations  between  the  ‘true

nature  of  the  world’  (i.e.,  the

potential  affective  life  of  non-

human  animals)  and  how  we

judge  the  world  on  a  scientific

perspective,  from  Panksepp,

(2011a).  The  author proposes

that the scientific study of the subjective component in emotions, here the feelings, has been prevented

due to a fear of anthropomorphism. During the 20th century, in order to avoid Type I errors, scientists

denied that animals could have an affective nature (‘anthropodenial’), thus leading to use terms as

‘anxiety-like behavior’ instead of anxiety. Panksepp argues that, based on the current data available,

scientists should adopt a ‘valid anthropomorphism’ perspective, to avoid Type II errors.

By using  deep  brain  electrical  stimulations,  pharmacological  challenges  and  brain

lesions  in  several  mammal  species,  they  described  seven  basic  emotional  circuits  in  the

subcortical  brain;  four  positives:  SEEKING,  LUST,  CARE,  PLAY  and  three  negatives:

FEAR, RAGE/ANGER and PANIC/SADNESS (Panksepp, 2011b). The stimulation of each

circuit  is  assumed  to  give  rise  to  the  corresponding  basic  emotion,  eliciting  a  specific

behavioral  and  physiological  pattern,  and  in  particular  inducing  the  subjective  feeling

associated to the raw emotion (Panksepp, 2011a,b). To support the existence of an affective

life in animals, the author highlights several arguments: the subcortical structures underlying

the seven emotions are homologous among the mammal species tested (Burgdorf et al., 2007;

Kruk, 1991; Panksepp, 2016; Siegel, 2005), the ablation of the neocortex in the young does

not prevent emotional reactions (Huston & Borbély, 1974; Panksepp et al., 1994; Valenstein,
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1966), and, in particular, the electrical stimulation of the different emotional circuits alone can

serve as a positive or negative reinforcer (Burgdorf et al., 2007; Delgado et al., 1954; Olds &

Milner,  1954;  Schlaepfer  et  al.,  2013;  Trowill  et  al.,  1969).  Finally,  the  stimulation  of

homologous brain regions in human can elicit an appropriate emotional experience that can be

verbally reported (Panksepp, 1985, 1998). In conclusion, although it is not currently possible

to know whether the type of evoked feelings differs between the systems or to assess their

content, there is now strong support in favor of internal affective states in animals (Panksepp,

2005).

1.3. Personality and emotions

1.3.1. Biological basis of personality

The causal mechanisms driving individual differences in personality traits and shaping

them  through  ontogeny  are  still  poorly  understood  in  animals,  although  they  have  been

investigated in humans for a long time (Eysenck, 1967). The neuroanatomical correlates of

personality have been predominantly investigated in humans (Kennis et al., 2013; Schmahl et

al., 2006). They also start to be studied in more details in other animal species, mainly with

the aim to better understand human personality and to develop new drugs to treat personality

and mood disorders (Khan & Echevarria, 2017; Mehta & Gosling, 2008). For instance, bolder

American minks Neovison vison presented more neurons in two regions of the amygdala, and

such a higher number of neurons was also associated with a higher emotional arousal (Wiese

et al., 2018). Recently, neuroimaging has been adapted to animals and used in the context of

personality. Using magnetic resonance imaging (MRI) in chimpanzees  Pan troglodytes, the

percentage of gray matter of the subgenual cingulate cortex was found to be associated with a

27



1. General introduction

lower social dominance and a higher conscientiousness (Blatchey & Hopkins, 2010). Another

large study in the same species highlighted the role played by asymmetries in the frontal

cortex in explaining diverse personality traits (Latzman et al., 2015). However, these studies

have been conducted on anesthetized individuals preventing a direct functional analysis. The

successful and increasing use of functional MRI (fMRI) in awake dogs Canis lupus familiaris

is promising (Andics & Miklósi, 2018; Czeibert et al., 2019; Haker et al., 2013) and may shed

light on the neurobiological foundations of personality.

Such  physiological  correlates  have  been  further  investigated  through  the  study  of

coping styles  (Carere et  al.,  2010;  Koolhaas  et  al.,  1999,  2010),  metabolic  rates  (Biro  &

Stamps, 2010; Holtmann et al., 2017) or molecular stress networks (Aubin-Horth et al., 2012).

In particular, studies on coping styles highlighted two distinct behavioral types with related

physiological  and  neurobiological  correlates  (de  Boer  et  al.,  2017;  Coppens  et  al.,  2010;

Koolhaas  et  al.,  2010),  although  on  a  continuous  scale  (Fig.  D).  Typically,  proactive

individuals are more aggressive, active and explorative, tend to form more routines and to

have a lower emotional arousal, in association with a lower reactivity of the HPA axis but a

higher SAM system reactivity.  In contrast,  reactive individuals exhibit opposite behavioral

and physiological profiles. In small  mammals such as rodents,  the sampling method (e.g.,

blood collection after the exposition to a stressor) does not allow to assess simultaneously

behavioral and physiological reactions. Such issue could be overcome by new non-invasive

methods such as the use of infrared thermography to assess the reactivity of the sympathetic

nervous system via changes in  body surface temperature  (Stewart  et  al.,  2005;  Vianna &

Carrive, 2012; see 1.2.3. Physiological component, p.19).
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Figure  D.  Representation  of  the  two  coping  styles  according  to  the  three-dimensional  model

developed by de Boer et al.  (2017). On the X-axis,  the degree of executive control is represented

(under the control of the prefrontal cortex). The Y-axis reflects the intensity of emotional arousal,

mediated by the amygdala-hypothalamic-periaquaductal gray-locus coeruleus brain circuit. The Z-axis

figures the reward sensitivity, controlled by the activity of the ventral tegmental-nucleus accumbens

pathway. Proactive individuals are graded low on the executive control and emotional arousal axes,

but high on the reward sensitivity axis; that is, they behave with more impulsivity, lower emotional

reactivity and are more sensitive to rewards than the reactive individuals.

Differences  in  emotionality  as  a  causal  mechanism  of  personality  has  been

predominantly  the focus of neurobiology and pharmacology fields,  investigating treatment

effects in animal models for potential applications to human mood or personality disorders,

such  as  depression  or  chronic  anxiety  (Blanchard  &  Meyza,  2019;  Czéh  et  al.,  2016;

Hernandez-Lallement  et  al.,  2018).  Although  emotions  were  integrated  into  the  early

definition of animal personality (“consistent patterns of feeling, thinking, and behaving” in

Gosling  (2001)  citing  Pervin  &  John  (1997)),  they  were  later  excluded  by  behavioral
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ecologists to only focus on the measurable part (i.e., behavior; e.g., Réale et al., 2007), but

emotions remained under the scope of animal welfare scientists (e.g., Boissy & Erhard, 2014).

Now,  the  most  recent  review  in  the  field  states  that  personality  refers  to  “individual

differences in behavior and emotion” (Wilson et al., 2019), but the two concepts are usually

seen as only correlated. The hypothesis of an emotional basis of personality is increasingly

considered  by  researchers  in  affective  neuroscience,  a  discipline  aiming  to  describe  the

neurobiological basis of seven primary emotions and their role in psychological well-being,

affective  brain  disorders  and consciousness  of  the  affective  life,  both in  human and non-

human animals (Montag & Davis, 2018; Panksepp, 2005, 2006). 

1.3.2.  Emotions  at  the  origin  of  personality:  Affective

neuroscience and personality

As previously introduced (see 1.2.5. Subjective component, p.25), Panksepp and his

colleagues described seven basic emotions shared by all mammals, associated with specific

physiological  and  behavioral  patterns  and  subjective  feelings  (Davis  &  Montag,  2019;

Panksepp,  2011b,  2015).  Three  have  a  negative  valence:  the  RAGE/ANGER  system

(according  to  the  author’s  nomenclature)  leads  the  individual  to  defend  himself  and  his

resources,  the  FEAR  system  helps  to  escape  from  threatening  situations  and  the

PANIC/SADNESS system leads the individual, in case of separation distress, to search for

social  support.  The  four  other  circuits  have  a  positive  valence:  the  most  important,  the

SEEKING system promotes exploration and appetitive behaviors, in close relationship with

the LUST (sexual urges), CARE (toward offsprings) and PLAY (driving pro-social activities

in young animals) systems.
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Affective  neuroscience  researchers  argue  that  personality,  considered  as  individual

differences  in  behavior,  emotion  and  cognition,  emerges  from  individual  differences  in

emotional  reactions  (Montag  &  Panksepp,  2017).  Driven  by  genetic  predispositions  and

environmental  factors  (Polderman  et  al.,  2015),  young  individuals  already  differ  in  their

subcortical  brain  functions  (e.g.,  hypothalamus,  amygdala,  etc.)  which  elicit  emotions  in

response to unconditioned stimuli. In particular, FEAR, RAGE, SEEKING and DISTRESS

emotions should be present since the first days of life as they are critical for the survival of the

young (Panksepp, 1998). For instance, two distinct lines of rats have been selected based on

the  amount  of  their  50-kHz vocalizations  (emitted  when  “tickled”  shortly  after  weaning:

Burgdorf et al., 2005), produced during appetitive social behavior and rewarding situations

(Knutson et al., 2002), and they showed distinct neural functioning (Burgdorf et al., 2009) and

gene expression in the brain (Burgdorf et al., 2011).

During  ontogeny,  by  the  confrontation  of  the  individual  to  various  environmental

factors, these primary-process emotions will lead to and control, in a bottom-up fashion, the

development of behavioral habits and traits through learning processes (e.g., conditioning) via

the upper limbic part of the brain (Panksepp, 2010). Furthermore, due to the maturation of the

neocortex,  in  particular  in  its  frontal  part,  emotional  arousal  will  become  increasingly

regulated by higher-cognitive processes, at least in primates (Davidson et al., 2010; Panksepp,

1998). Hence, the personality is assumed to develop from/based on individual differences in

emotional processes that will drive behavioral and cognitive differences, in interaction with

the  specific  life  experiences  of  the  individual.  As  a  result,  the  behavioral  expression  of

personality  is  assumed to be  the  result  of  the  combined  reactivity  of  emotional  primary-

processes from the subcortical brain and of emotional regulation from the neocortex (Fig. E).

In other words, personality is built from “the strengths and weaknesses found in the  basic
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affective systems” in interaction with the environment and particularly the early experiences

(Özkarar-Gradwohl, 2019).

Figure E. Schema of the conceptual framework developed by Montag & Panksepp (2017) about the

mechanisms underlying human personality. The environment influences the genetics of the individual

and, together, they shape the structure and the functionality of the brain, thus leading to individual

differences in brain activity. Personality emerges from these individual differences in activity of the

emotional,  subcortical  systems  and  is  also  modulated  by  regulation  processes  from  higher  brain

regions.
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In  2003,  the  Affective  Neuroscience  Personality  Scales  (ANPS),  a  self-report

questionnaire based on the neurobiological findings in affective neuroscience, was created to

evaluate human individual differences in primary emotions in order to better understand the

origin of personality traits and emotional disorders (Davis et al., 2003). Only six emotions

were included, as questions related to LUST might have led to socially-oriented answers. The

questionnaire has been validated by neurobiological studies (e.g., Reuter et al., 2009; van der

Westhuizen & Solms, 2015). After a first study in Americans (Davis et al., 2003), the results

have  been  applied  to  different  cultures  (e.g.,  Turkish:  Özkarar-Gradwohl  et  al.,  2014;

Japanese:  Narita  et  al.,  2017;  German  and  Serbian:  Knežević  et  al.,  2019;  see  Özkarar-

Gradwohl,  2019 for  a  review).  Strong correlations  have  been found between the  primary

emotions assessed through the ANPS and the personality traits evaluated via the Five Factor

Model of Personality (McCrae & Costa, 2004), supporting the hypothesis that the primary

emotions defined in affective neuroscience may represent the biological basis of personality

(Davis & Panksepp, 2011; Fig. F).

As the ANPS evaluates the personal feeling via self-report, it is not possible to directly

use it in other species. Yet, personality scales have been already applied to non-humans using

the Five Factor Model of Personality to rate the animal’s personality (e.g., in dogs; Gosling et

al., 2003; chimpanzees: King & Figueredo, 1997) and future studies might adapt the ANPS to

other  species.  Moreover,  emotions  are  also considered as the evolutionary  oldest  parts  of

personality (Montag & Panksepp, 2017), as they are elicited by the subcortical  and limbic

parts,  the  phylogenetically  oldest  layers  of  the  brain  that  are  shared  by  all  mammals

(MacLean, 1990). Thus, if individual differences in emotions and personality have been found

to be associated in humans, one might  expect  to find similar  associations in other animal

species as well.
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Figure F. Diagram of the most robust associations between primary emotional systems and the Big

Five/Five Factor Model of Personality, from Montag & Panksepp (2017). Emotional systems influence

the personality traits in a bottom-up fashion.

As a consequence, if emotions are underpinned by individual differences in subcortical

brain functioning, they should be stable over reasonable time spans. Indeed, neuroanatomical

modifications  are  costly  in  terms  of  time  and  energy  (DeWitt  et  al.,  1998),  which  also

constitutes one of the hypothesis for the consistency over time of personality traits (Dall et al.,

2004). Individual differences in affective styles, that is, considering emotions or at least the

tendency of an individual to show certain emotional responses in a given situation as a trait,

remain widely understudied. This particularly concerns positive emotions (de Vere & Kuczaj;

Fraser, 2009), whilst consistencies of fear and anxiety over time and situations have recently
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received attention (Boissy & Erhard, 2014). We propose that individual consistency over time

of  emotional  reactions  should  first  be  investigated,  starting  from  a  very  young  age.

Furthermore,  to  increase  our  understanding of the emotional  origin of animal  personality,

associations between individual differences in personality and in emotional reactions should

be studied in various situations across the life span of the individuals.

1.4. Objectives of the thesis

I aimed to investigate in this project how consistent individual differences in emotions

were related to personality traits in different age classes, using two different rodent species of

wild origin, the house mouse Mus musculus domesticus and the mound-building mouse Mus

spicilegus. We followed here a two-dimensional approach, that is, we aimed to evaluate the

emotional  valence  and/or  arousal  rather  than  discrete  emotions.  Thus,  in  line  with  the

argumentation that personality arises from individual differences in the reactivity of emotional

systems, this project had two main goals. First, we investigated, using non-invasive methods,

whether the individual differences in emotions were consistent over time and could be used to

phenotype  the  individuals.  Second,  we  evaluated  the  correlations  between  individual

differences in emotion and in behavior (i.e., personality traits, with a focus on exploration

tendency).  Each  chapter  focuses  on  one  of  the  components  of  an  emotional  reaction

(respectively, behavior, cognition and physiology).

The first chapter focuses on the behavioral component by assessing the consistency

of pup behavioral responses (pup calls) to isolation over three consecutive days and across

different stressful situations (repeated isolation,  presentations of odor cues stemming from
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their own nest and from the nest of an unfamiliar adult male), in house mouse pups. This first

chapter has been already published in Developmental Psychobiology. The section 5.2. of the

discussion  (p.146)  explores  the  association  between  pups’  isolation  call  rates  and  adults’

exploration tendency (under preparation).

Verjat, A., Rödel, H. G., & Féron, C. (2019). Isolation calls in house mouse pups: Individual consistency across

time and situations. Developmental Psychobiology, 00, 1–11. https://doi.org/10.1002/dev.21884

In the second chapter on the cognitive component of emotion, I investigated, in the

house mouse, the association between individual judgment bias and exploration trait, with the

aim to clarify whether the tendency to explore may be related to a higher tendency to express

either  positive or negative  affective  states.  The manuscript  has  been submitted  to  Animal

Cognition.

Verjat, A., Devienne, P., Rödel, H. G., & Féron, C. More exploratory house mice judge an ambiguous situation

more negatively. Submitted to Animal Cognition.

Finally, the  third chapter assesses the physiological component of emotion, in the

mound-building mouse. We designed a test to evaluate short-term thermal responses (as a

proxy of the sympathetic  nervous reactivity)  to a brief handling procedure,  using infrared

thermography.  Then,  we  asked  whether  individual  differences  in  thermal  responses  were

correlated  with  individual  differences  in  exploration  tendency.  This  last  chapter  has  been

published in Behavioural Brain Research.

Duparcq,  M.,  Jean,  O.,  Verjat,  A.,  Jaravel,  L.,  Jacquet,  D.,  Robles,  F.,  Féron,  C.,  & Rödel,  H.  G.  (2019).

Differences between fast and slow explorers in short-term tail temperature responses to handling in a rodent

of wild origin. Behavioural Brain Research, 376, 112194. https://doi.org/10.1016/j.bbr.2019.112194
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1.5. General methods

1.5.1. Study animals

The main study animal of this project was the house mouse Mus musulus domesticus

of  wild  origin.  Wild  mice  were  caught  around Marcy L’Etoile  (France)  and bred  for  10

generations  at  the  laboratory  RS2GP  (VetAgroSup  Lyon,  France)  before  arriving  at  our

laboratory in April 2013. Other wild mice were captured in several parts of France (Die and

Beaujolais  regions)  and  were  added  to  our  stock  in  2013  and  2014  (last  additions  in

September  2014).  Our  study  animals  were  descendant  of  the  7-10th generations  (see  the

Material  and Methods of  Chapters 1 and 2 for more details  about breeding and housing

conditions).  See  Forestier  (2018)  for  a  detailed  review  of  the  life  history  and  social

organization of the house mouse. As we aimed to evaluate individual differences from an

early age, we followed a longitudinal approach. Thus, mice were tested from postnatal day 9

to postnatal day 82 – 99 depending on the experimental group they were assigned to (Fig. G).

We used another  mouse species  of  wild origin  in  Chapter  3,  the mound-building

mouse  Mus spicilegus. For more details about the ecology of that species, please refer to a

thesis previously conducted in our group (Rangassamy, 2016).

1.5.2. Planning of experiments

All house mice, males and females, were first tested as pups for their behavioral and

thermal  responses  to  isolation  followed  by  three  different  treatments  (Early  emotional

profiles:  Chapter 1). At weaning, at postnatal  day 21, siblings were separated by sex and

groups of three or four males stemming from the same litter were formed. Between postnatal

days 28 and 71, male subjects (N = 122) underwent repeated tests to phenotype them for their
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personality  traits:  sociability  within  the  litter  group  (social  interaction  tests),  exploration

tendency (open field and novel object tests; following the definition of ‘exploration’ of Réale

et al., 2007) and anxiety (elevated plus maze tests; but see the general discussion, section 5.3.,

p.150). Note that for the three latter tests, males were housed in sibling groups until the first

session, they were isolated immediately after it and remained housed singly until the end of all

the tests. Finally, males were divided in three experimental groups: Motivational Conflict Test

(N = 38), Emotional Contagion Test (N = 45) and Judgement Bias Test (N = 39). Only the last

one will be presented in my thesis  (Chapter 2);  the remaining data will be analyzed and

published later on (Appendix 6.1. and 6.2.). The Judgement Bias Test group was trained to

discriminate between two distinct locations (reinforced cues) before being repeatedly tested

for their responses to an ambiguous cue. All experiments were filmed by an infrared thermal

camera (T650sc, FLIR, Wilsonville, USA) to allow further analyses of both the thermal and

behavioral responses of the individuals. Methods are detailed in the appropriate chapters or

appendix.

Two groups of mound-building mice were tested. A first subset was used to validate

the handling procedure (thermal-response test:  N = 5), using individuals between 39 and 41

days old. Individuals of the second subset (N = 54) were tested for their exploration tendency

(via  repeated  open  field  and  novel  object  tests,  on  postnatal  days  33  and  43)  and  their

responses to the thermal-response test  (repeatedly,  on postnatal  days 39 and 49).  A more

detailed description of the experiments conducted in the mound-building mouse is provided in

Chapter 3.
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39

Figure  G.  Chronology  of  all  the  experiments

conducted  on  house  mice  during  the  project.  The

experiments surrounded in color  are described and

analyzed  in  the  corresponding  chapters.  Note  that

only the open-field and novel object tests have been

used in Chapters 1 and 2; I explain why I excluded

the  elevated  plus  maze  test  from  analysis  in  the

general  discussion  of  the  thesis  (5.3.,  p.150).  The

social interaction tests and feces sampling, as well as

the Motivational Conflict and Emotional Contagion

tests (see Appendix 6.1. and 6.2.) will be the topic of

further publications.
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Aurélie Verjat, Heiko G. Rödel and Christophe Féron

Laboratoire d’Ethologie Expérimentale et Comparée E.A. 4443 (LEEC), Université Paris 13,
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version of the manuscript. CF conceived the R script to analyze ultrasonic vocalizations and
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Supplementary  results  are  given  in  the  discussion  (5.2.  Complement  of  Chapter  1:

Associations between individual differences in isolation call rate and exploration tendency;

p.146).
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ABSTRACT

Isolation calls are emitted by the offspring of many mammalian species when separated from

caregivers and siblings. Some studies indicate that isolation call rates constitute a consistent

individual  trait;  others  show  that  the  young  adjust  their  vocalization  rate  to  the  current

situation.  We  studied  this  in  the  house  mouse  (Mus  musculus  domesticus)  by  exploring

individual consistencies in pup isolation call rates and their potential modulation in different

social  situations.  We  carried  out  experiments  including  three  treatments  (repeated

measurements)  during  consecutive  days,  all  starting  with  an  initial  isolation  of  the  pup,

followed by (1) a reunion with mother and littermates and a second isolation hereafter, (2) the

confrontation of isolated pup with cues of its own nest or (3) with cues of an unfamiliar adult

male. The first treatment induced a significant increase while the others induced significant

decreases in pup isolation call rates. Pups showed consistent individual differences in initial

call  rates  across  the three  days  of  testing  (postnatal  days  9-11),  which were significantly

associated  with  individual  differences  in  call  rates  during  the  different  treatments.  We

conclude that pup isolation calls represent a consistent, trait-like behavior in the house mouse,

which can also express flexibility in response to social cues.

Keywords: individual differences; Mus musculus; separation; social cues; ultrasonic 

vocalization
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1. INTRODUCTION

Vocalizations produced by dependent offspring when separated from their mother or

other caregivers and from littermates are widespread among mammals (Ehret, 1980; Lingle,

Wyman, Kotrba, Teichroeb, & Romanow, 2012). These isolation calls serve a communicative

function as they trigger behavioral responses of the caregivers such as defensive behavior to

protect the young or to search for and retrieve the offspring to the nest or burrow (Hahn &

Lavooy, 2005; Lingle, Pellis, & Wilson, 2005; Noirot, 1972).

Recent studies in some altricial species have shown that offspring isolation call rates

constitute a highly consistent individual trait, indicating its usefulness as behavioral measure

to  assess  individual  differences  in  young  animals  (e.g.,  Homo sapiens:  Blum,  Taubman,

Tretina, & Heyward, 2002;  Felis silvestris catus and  Mus spicilegus: Hudson, Rangassamy,

Saldaña, Bánszegi, & Rödel, 2015;  Sus scrofa:  Špinka, Syrová, Policht, & Linhart,  2018).

Also studies in laboratory mouse pups (Mus musculus) have shown consistency over time in

the  number  of  ultrasonic  calls  emitted  during  isolation,  even  though  there  were  strain

differences in the general level of call rates (Barnes, Rieger, Dougherty, & Holy, 2017; Hahn

et al., 1998; Hahn & Lavooy, 2005; Rieger & Dougherty, 2016).

Despite such individual consistency in isolation call rates, altricial young are also able

to  express  contextual  behavioral  plasticity  in  isolation  call  production  depending  on  the

current situation (Rieger & Dougherty, 2016). For example, as it has been shown in studies in

the  laboratory  rat  (Rattus  norvegicus)  and  the  laboratory  mouse,  a  decrease  in  ambient

temperature  increases  call  production  of  isolated  pups  shortly  after  birth,  and  smaller  or

younger pups with lower insulation have been reported to be more prone to such effects (Allin

& Banks, 1971; Harshaw & Alberts, 2012; Sales & Skinner, 1979). Furthermore, pups can

modulate isolation call emission in response to the presence of conspecific odour cues. For
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example the odour of mother and littermates typically leads to a diminution of pup isolation

call rate in the laboratory mouse (D’Amato & Cabib, 1987; Marchlewska-Koj, Kapusta, &

Olejniczak, 1999; Moles, Kieffer, & D’Amato, 2004). The effect of male odour cues is more

controversial; some studies in the laboratory mouse did not find any effects on pup call rates

while  others  reported  an  increase  (Branchi,  Santucci,  Vitale,  &  Alleva,  1998;  Santucci,

Masterson, & Elwood, 1994). Furthermore, a second isolation after a short period reunited

with mother or familiar adults makes the pups to vocalize at higher rates (Scattoni, Crawley,

& Ricceri,  2009; Shair, 2007). However, to the best of our knowledge, the modulation of

isolation calls by a sequence of different social situations has never been assessed by repeated

measurements of same individuals, and using such an individual-based approach would allow

to address both individual consistency and variability of isolation calls.

Our study, carried out in the house mouse (Mus musculus domesticus), had 3 main

goals.  First,  we aimed to  confirm previous  results  on laboratory  mice  by testing  whether

individual differences in pup isolation call production were consistent across consecutive days

(Rieger & Dougherty, 2016). Second, we investigated in the same pups whether and how

isolation call  rates were modulated by three social  situations and whether these responses

were associated between the different situations. Third, we asked if individual differences in

isolation call rates were predictive of how individual pups will respond to the three different

treatments.

To answer the second question, we tested the pups in three different social situations,

following an initial isolation. The first situation consisted of a repeated isolation separated by

a short period back in the home cage with mother and littermates. For the second and third

situations,  we presented cues to the isolated pup, stemming from its  own nest or from an

unfamiliar adult male nest. Pups were expected to change their call rates in response to each
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situation,  either  with  an  increase  or  a  decrease,  thus  exhibiting  behavioral  flexibility.

Furthermore, we expected that pups showing a stronger response to one situation would also

show stronger responses to the others.  For the third question,  we expected that individual

differences in initial isolation call rates would be associated with differences in the amplitude

of changes of call rates in response to each treatment, thus characterizing isolation calls as a

consistent behavioral trait across situations.

2. MATERIAL AND METHODS

2.1. Study animals and housing conditions

The  animals  used  for  this  study  (house  mice  Mus  musculus  domesticus) were

descendants (7th – 10th generation) of individuals caught from the wild around Lyon, France,

and  were  bred  in  the  animal  facilities  of  the  Laboratoire  d’Ethologie  Expérimentale  et

Comparée at the Université Paris 13. A total of 320 individuals (146 females and 174 males,

mean litter sex ratio: 0.52 ± 0.20 SD; mean litter size: 7.9 ± 2.0 SD) were tested. For some of

them (33 females and 37 males, mean litter sex ratio: 0.53 ± 0.22 SD, mean litter size: 7.8 ±

2.5 SD), the maximal peripheral temperature was analysed. Another group of 102 individuals

was used as a control group; see below for details (52 females and 50 males, mean litter sex

ratio:  0.48 ± 0.22 SD, mean litter  size:  7.3 ± 2.0 SD).  Animals  were kept under a 14:10

light/dark cycle, with red light on at 09:00 am, a temperature of 20 ± 2.0 °C and a humidity of

50%.

From birth to postnatal day 21, pups of (unculled) litters were kept with their parents

in polycarbonate cages (37.5 × 23.5 cm and 16 cm high, PLEXX, Elst, The Netherlands), with

wood  shavings,  15  cotton  balls  as  nest  material  (COMED,  Strasbourg,  France)  and  two

cardboard rolls as enrichment (7.5  × 3.8 cm of diameter,  PLEXX, Elst,  The Netherlands).
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Food (rodent standard diet; Special Diet Services type M20, Witham, Essex, UK) and water

were provided ad libitum.

At postnatal day 8, each pup was individually marked with a permanent nontoxic hair

dye  to  allow  individual  recognition  within  the  sibling  group  (Nyanzol-D,  Greenville

Colorants, Jersey City, NJ, USA). To this end, animals were held by the experimenter and a

unique symbol was rapidly and softly drawn on their back using a fine paint brush.

Experiments  (see  details  below)  were  conducted  from postnatal  days  9  to  11,  as

isolation calls in Mus musculus are emitted only during the first two postnatal weeks (Elwood

& Keeling, 1982). Each pup was weighed at the end of the experiment (mean body mass at

postnatal day 9: 4.66 g ± 0.81 SD; day 10: 5.05 g ± 0.86 SD; day 11: 5.47 g ± 0.93 SD). At

postnatal day 21, sex was determined by external inspection of the anogenital region.

2.2. Experimental procedures

2.2.1. Description of the apparatus

The apparatus  used  for  isolation  experiments  of  pups  was  constituted  of  a  square

transparent plastic box (9.3 × 9.3 cm and 8.6 cm high), with top and bottom parts removed,

placed on a heating plate keeping a constant temperature of 20.0 °C, to counterbalance slight

changes of the room temperature (20.0 ± 2.0 °C). For each test and each individual, ultrasonic

call rates were recorded, and we measured and analysed peripheral body temperatures for a

subsample of individuals (see details below, 2.4). Peripheral body temperature was recorded

with an infrared thermal camera (T650sc, FLIR, Wilsonville, USA), mounted 50 cm above the

heating  plate.  Ultrasonic  calls  were  recorded  with  a  unidirectional  ultrasonic  detector

(Ultramic 250K, Dodotronic, Castel Gandolfo, Italy) placed on the edge of the box by the aid

of the software SoundChaser Pro (Acounect, France). Prior to the beginning of each test, the
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father was removed and placed in a separated clean cage until all pups of the litter were tested.

The mother remained in the cage with the pups. The pups were handled by softly lifting them

by the skin of their back and releasing them in the centre of the test apparatus once their paws

touched the heating plate.

2.2.2. Isolation experiments

Isolation experiments were repeated once per day during postnatal days 9, 10 and 11.

The first part of these experiments was always the same; each pup (one after the other) was

taken out from its home cage and placed individually in the centre of the test apparatus. After

5 min (repeated isolation treatment) or 2 min (nest treatment and  male treatment), the pup

was confronted to one of the three following experimental treatments. This first part of these

experiments was called thereafter “initial isolation” and only the first 2 min of each day were

statistically analysed.

The experimental days were always conducted following the same order, as we aimed

to investigate the consistency of individual differences in isolation call rates. Moreover, we

chose this particular order to avoid a potentially aversive effect of the confrontation to cues of

an unfamiliar  adult  male which could have affected the subsequent tests.  All  experiments

were done by the same experimenter,  who was not blinded to the experimental condition.

However, the experimenter was blinded to the individual identity of the pups when analysing

the recordings.

2.2.2.1. Repeated isolation treatment: Responses to a second isolation

On postnatal day 9, after the initial 5-min isolation (see 2.2.2.), the pup was brought

back to its home cage (including mother and litter siblings, cf. Scattoni et al., 2009), for 5 min.
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Then, the pup was isolated again for 5 min. At the end of this second isolation period, the pup

was returned to its nest and the next litter sibling was tested.

2.2.2.2. Nest treatment: Responses to cues of pup’s own nest

On postnatal day 10, a piece of cotton from the nest of the pup was presented to it after

the initial 2-min isolation. To do so, the experimenter sampled a small piece of cotton (around

1 cm of diameter) from its home cage and carefully placed it close to the head of the isolated

pup. This part of the test lasted for another 2 min before the pup was returned to its home

cage.

2.2.2.3. Male treatment: Responses to cues of an unfamiliar adult male

On  postnatal  day  11,  the  addition  of  cues  from  an  adult  unfamiliar  male's  nest

followed the initial 2-min isolation. A piece of cotton, sampled from the nest of an unfamiliar

male was placed close to the head of the isolated pup. The test lasted for another 2 min before

the pup was returned to  its  home cage.  Each litter  was tested with cues  from a different

unfamiliar adult male, which was not related to the pups for at least 2 generations.

2.2.3. Control treatment: Control condition to nest treatment and male treatment

The control group of pups underwent two days of control condition to test for potential

effects of the addition of the cotton itself in nest treatment and male treatment. At postnatal

days 10 and 11, each control individual was isolated during 2 min in the apparatus before a

piece of clean cotton, constituting the control cue, was added close to the head of the pup.

After 2 min, the pup was returned to its home cage. The isolation call rates were averaged

between the two control days.
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2.3. Analysis of isolation calls

For each experimental and control condition,  we assessed the number of ultrasonic

calls produced during each 10-s interval (call rate). For this, the audio files recorded were

analysed with R version 3.4.4 (R Core Team, 2018) using the packages tuneR (Ligges, Krey,

Mersmann, & Schnackenberg, 2018) and seewave (Sueur, Aubin, & Simonis, 2008). We only

considered  vocalizations  as  “isolation  calls”  which  were  longer  than  1  ms  and  with  a

frequency higher than 40 kHz, as isolation calls in pups of Mus musculus have been described

as ultrasonic vocalizations ranging between 40 and 90 kHz (Sales & Smith, 1978; Portfors,

2007).

2.4. Analysis of peripheral body temperature

The peripheral body temperatures of the pups during the different testing conditions

were assessed by the analysis of a sample of 70 pups, for which we permanently recorded the

experiments with an infrared thermal camera (see details above). For this, we captured the

maximal  peripheral  temperature  of  the  pup during each  30-s  interval  of  testing.  We first

selected 1 out of 10 frames to obtain three images per second (videos were recorded with 30

frames/s).  The images  were  then  imported  into  R to  select  those  for  which  the  maximal

thermal value corresponded to either the neck or the ear of the pup (see details on method of

analysis in Zepeda et al., 2018). For each 30-s interval, we kept at least 10 images where the

pup was in a similar position, with its four paws on the floor, and we calculated the median

value of the maximal temperature of this set of images.
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2.5. Statistical analysis

Statistical  analysis  were conducted using the software R version 3.4.4. We applied

linear  mixed  effects  model  (LMM)  using  the  package  lme4 (Bates,  Mächler,  Bolker,  &

Walker, 2015). All covariates variables were scaled for analysis. Homogeneity of variances

was checked by visual inspection of the plot of the residuals versus fitted values, and normal

distribution of the model residuals was verified by inspecting the normal probability plots

(Faraway, 2006). For models with multiple covariates (see Table 1), we verified that there

were no notable multicolinearities by calculating variance inflation coefficients (all  < 1.1)

(Zuur,  Ieno,  &  Elphick,  2010).  P-values  were  calculated  by  corrected  F-tests  using  the

Satterthwaite method (Bolker et al., 2009). Moreover, for all significant covariate effects, we

calculated a marginal pseudoR2 (package MuMIn; Barton, 2018), which can be interpreted as

the proportion of variation explained by the fixed effect (Nakagawa, Johnson, & Schielzeth,

2017).

First, we tested for the changes in the number of isolation calls (dependent variable)

during the initial  isolation of each day (see Fig.  2),  using LMM. The model  included an

interaction between the time (10-s intervals; covariate) and the day of test (postnatal days 9 to

11; factor with 3 levels), with litter identity and individual identity as random factors. We also

tested for repeatabilities of the individual call rates as well as of the individual increases of

call rates during the initial separation period with intra-class correlations (ICC), using a linear

mixed effects  model  based  on calculations  of  P-values  with 1000 permutations  using  the

package rptR (Stoffel, Nakagawa, & Schielzeth, 2017), with individual identity as a random

factor. Increases in call rates were calculated by the individual regression slopes (using data in

10 s intervals) across the 2-min initial isolation period for each day and for each individual

pup.
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Second, we tested for potential changes in isolation call rate (dependent variable) in

response  to  each  experimental  and  control  treatment  to  assess  whether  the  isolated  pups

perceived the modification of the situation,  using LMM. For this, we compared the mean

number of calls emitted during the last 60 s before and the first 20 s (immediate response) or

the second minute (1-min delayed response) after the treatment (factor with 2 levels: before or

after the treatment; see Fig. 1). One model was run for each treatment and type of response;

litter  and individual  identities  were set  as  random factors.  Then,  we calculated  these two

differences  (immediate  and 1-min delayed responses),  obtained for each experimental  and

control treatment, and used them as new dependent variables to compare the effect sizes of the

responses to nest and male treatments and control treatment according to the condition (factor

with 2 levels,  as three models were run separately for each type of response), using litter

identity as a random factor. All the following models were also run separately for immediate

and 1-min delayed responses.

Third, we tested for correlations between the responses to the experimental treatments

using  LMM.  Three  models  were  done  separately  to  compare  them  two  by  two  (the

independent  variable  was  always  the  response  to  the  treatment  tested  the  day before  the

dependent variable) and the litter identity was set as a random factor.

Finally, we assessed the associations between different predictor variables and the (a)

immediate and (b) delayed responses (that is, changes) in isolation call rates (see details above

and  in  Fig.  1).  Predictor  variables  were  the  averaged  individual  isolation  call  rates  and

increases  in  calls  (individual  regression  slopes,  see  above)  and  the  averaged  maximal

peripheral body temperature during first the 2-min initial isolation (all covariates), averaged

body mass (covariate) and sex (fixed factor). We ran three different models (LMM), one per

treatment, using litter identity as a random factor.
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2.6. Ethics note

The  study  was  conducted  in  accordance  to  the  ‘Guidelines  for  the  Treatment  of

Animals in Behavioural Research and Teaching’ (Animal Behaviour, 2012). All experimental

procedures were approved by the French authority for animal care and use (APAFIS# 7585-

201610121409165) and by the institutional ethics committee. The brief separation of the pups

from their mother did not show any apparent effects on the pups’ development as they all

gained weight throughout the study in the same way as untreated pups. After the experiments

ended on postnatal day 11, all animals were kept for further experimentation and for breeding.

Figure 1. Schemata of the time scales used to assess immediate and 1-min delayed responses to each

experimental and control treatment. Immediate responses were calculated as the difference between

the mean number of isolation calls produced during the last 60 s (in light grey) of the first period and

the first 20 s (in dark grey) of the second period of isolation. For 1-min delayed responses, the 2 nd

minute (in dark grey) was used instead of the first 20 s. See text for more details.

51



2. Chapter 1: Isolation calls in house mouse pups: individual consistency across time and situations

3. RESULTS

3.1. Changes in isolation call rates and consistency of individual differences 

across time during the 2-min initial isolation

During the 2 min of initial  isolation on postnatal  days 9 to 11, the pups showed a

general, significant increase in the number of isolation calls across time, measured in 10-s

intervals  (F1,11197 =  475.300,  P <  0.001;  Fig.  2a-c).  The  interaction  day  ×  time  was  not

significant  (F2,11195 =  1.85,  P =  0.157)  indicating  that  this  increase  was  not  age-specific.

However, the total number of isolation calls decreased significantly between the consecutive

testing days (F2,11197 = 182.910, P < 0.001).

Moreover,  the  pups’  initial  increase  in  vocalization  –  as  measured  by  individual

regression slopes across the first 2 min of separation per day (RICC = 0.246, P < 0.001), as well

as the total number of calls during this period (RICC = 0.577,  P < 0.001), were significantly

repeatable  across  the  3  days  of  testing.  This  indicates  the  existence  of  stable,  individual

differences in the pups’ individual vocalization patterns in response to isolation.

3.2. Changes in isolation calls in response to different treatments

3.2.1. Repeated isolation treatment: Responses to a second isolation

During this first experiment carried out on postnatal day 9, the pups were individually

isolated for a second time after a 5-min reunion with mother and siblings. We observed a

significant increase in the number of isolation calls of the isolated pups when comparing the

production during the last 60 s of the first isolation period and either the first 20 s (immediate

response:  F1,319 = 23.168, P < 0.001) or the second minute (1-min delayed response:  F1,319 =

4.791, P = 0.029) of the second isolation period (Fig. 2a).
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Figure 2. Average number of isolation calls (with 95% CI error bars) produced by house mouse pups

during the initial isolation and after the treatment of three experimental and one control conditions.

Pups were individually separated from the home cage for an initial isolation period of 2 min (or (a) 5

min) before being confronted to one treatment per day, at postnatal days (a) 9, (b) 10 and (c) 11. (d)

The calls  during control  condition were averaged between postnatal  days 10 and 11.  See text  for

details on statistics.

3.2.2. Nest treatment: Responses to cues of pup’s own nest

During  the  experiment  on  postnatal  day  10,  the  isolated  pups  responded  to  the

presentation of a small sample of their nest material by significant decreases in isolation call

rates, both immediately (F1,319 = 57.813, P < 0.001) and 1-min delayed (F1,319 = 148.84, P <

0.001) after the treatment (Fig. 2b).
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3.2.3. Male treatment: Responses to cues of an unfamiliar adult male

On postnatal  day 11, the isolated  pups were confronted  to  the nest  material  of an

unfamiliar adult male. This procedure also led to significant immediate (F1,319 = 71.961, P <

0.001) and 1-min delayed (F1,319 = 69.343,  P < 0.001) decreases in isolation call rates (Fig.

2c).

3.2.4. Control treatment: Responses to control cues

During  the  control  condition  on  postnatal  days  10  and 11,  the  isolated  pups  also

significantly decreased the number of isolation calls produced after the presentation of control

cues, both immediately (day 10: F1,101 = 7.566, P = 0.007; day 11: F1,101 = 4.723, P = 0.032)

and with a 1-min delay (day 10: F1,101 = 9.661, P = 0.002; day 11: F1,101 = 15.689, P < 0.001)

after the presentation of the clean cotton (Fig. 2d).

3.2.5. Comparisons of effect sizes: Nest and male treatments and control treatment

The immediate decreases in isolation call rates in response to  nest treatment and to

male treatment did not differ significantly (F1,319 
= 0.137, P = 0.712; Fig. 3a). However, the

decrease in call rate in response to male treatment was significantly stronger than the decrease

in the control group (F1,62 
= 4.923, P = 0.030), and there was a similar tendency of a stronger

decrease in call rate in response to nest treatment compared to the control treatment (F1,65 
=

3.268, P = 0.075).

At the longer-term, the decrease in isolation call rate in response to nest treatment was

significantly stronger than in  male treatment (F1,319 
= 11.903,  P < 0.001; Fig. 3b) and the

control treatment (F1,63 
= 6.021,  P = 0.017). However,  the decreases in response to  male
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treatment and to the  control treatment did not differ significantly from each other (F1,59 
=

1.397, P = 0.242).

Figure 3. Comparison of  the  average changes in  isolation call  rates  (with 95% CI error  bars)  in

response to nest treatment, male treatment and control treatment, in house mouse pups. See Fig. 1 for

details about the (a) immediate and (b) 1-min delayed responses. Isolated pups were confronted to cues

from the pup’s own nest (nest treatment; postnatal day 10), an unfamiliar adult male (male treatment;

day 11) or a new cotton ball (control treatment; average of days 10 and 11). Statistics by LMM with

litter identity as random factor,  see text  for details.  Significant differences between treatments are

indicated by different letters.

3.3. Associations between the changes in isolation call rates across the 

treatments

The immediate decrease in isolation call rates in response to cues of the pups’ own

nest was significantly and positively correlated with the decrease in response to cues of an

unfamiliar adult male (nest treatment vs. male treatment: pseudoR2 = 0.018; F1,318 = 5.867, P

= 0.016). All pairwise associations between the changes in response to the other treatments
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were not significant (repeated isolation treatment vs. nest treatment: F1,314 = 0.336, P = 0.562;

repeated isolation treatment vs. male treatment: F1,312 = 0.533, P = 0.466).

The  1-min  delayed  decreases  in  response  to  nest and  male  treatments were  also

significantly  and  positively  associated  (pseudoR2 =  0.048;  F1,315 =  15.334,  P <  0.001).

Moreover, the increase in call rates in response to the repeated isolation (repeated isolation

treatment) was significantly and negatively correlated with the decrease in response to male

treatment (pseudoR2 = 0.012; F1,304 = 4.238, P = 0.040). The changes in response to repeated

isolation treatment  and nest treatment were not significantly associated (F1,300 = 1.591,  P =

0.208).

3.4. Associations between predictor variables and changes in response to 

treatments

3.4.1. Associations with initial isolation call rates and individual increases of initial call rates

The  individual  differences  in  initial  isolation  call  rates  were  significantly  and

positively associated with the increase in response to the repeated isolation (repeated isolation

treatment;  Fig.  4a,b)  and  significantly  and  negatively  associated  with  the  decreases  in

response to the pup’s own nest (nest treatment;  Fig. 4c,d) and unfamiliar  adult male cues

(male treatment; Fig. 4e,f). That is, individual differences in initial isolation call rates showed

significant effects both for immediate and 1-min delayed responses (Table 1).

Furthermore, the initial individual increases of call rates were also significantly and

negatively associated with the immediate response to repeated isolation treatment (pseudoR2

= 0.036) and with the immediate (pseudoR2 = 0.021) and 1-min delayed responses (pseudoR2

= 0.036) to male treatment (Table 1).
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Figure 4. Associations between the changes in isolation call rates in response to three treatments and

the  number  of  isolation  calls  produced  during  the  2-min  initial  isolation,  in  house  mouse  pups.

Associations were tested for (a, c, e) immediate and (b, d, f) 1-min delayed responses (see Fig. 1).

Pups were individually separated from the home cage for an initial isolation period of 2 min before the

treatment  was  applied:  (a,  b)  a  second  isolation  after  a  short  reunion  with  mother  and  siblings

(repeated isolation treatment; postnatal day 9), the addition of cues from (c, d) the own nest of the pup

(nest  treatment;  day 10)  or  (e,  f)  an unfamiliar  adult  male  (male treatment;  day 11).  Each circle

represents the values of one individual. All associations shown were statistically significant; analysis

by LMM with litter identity as random factor, see text and Table 1 for details.

3.4.2. Associations with body temperature, body mass and sex

To untangle potential confounding effects that could explain the changes in isolation

call  rates  in  response  to  treatments,  we also  tested  for  associations  with  three  individual

characteristics (mean maximal peripheral temperature during the 2-min initial isolation, body

mass and sex). As the temperature (RICC = 0.315, P < 0.001) and body mass (RICC = 0.981, P <

0.001)  were significantly  repeatable  over  days,  they were averaged before  testing  for  the

associations.

The  averaged  body  mass  was  significantly  and  negatively  associated  with  the

immediate (pseudoR2 = 0.026) and 1-min delayed (pseudoR2 = 0.014) responses to repeated

isolation treatment, tended to be negatively associated with the longer-term response to nest

treatment,  and  was  not  significantly  associated  with  the  decreases  in  response  to  male

treatment (Table 1). The mean maximal peripheral temperature and sex were not associated

with the responses to any of the treatments.
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Table 1. Effects of  different  predictors on the changes in isolation call  rates in response to three

different treatments (see text  for details)  of  house mouse pups (Ntotal = 320, except  Ntemp = 70 for

analysis of max. peripheral temperature).  Responses to treatments were calculated as difference in

isolation call rate between 60 s before and (a) 20 s or (b) the 2 nd minute after treatment: see details in

Fig. 1. The call rate, the increase of calls (measured as individual regression slopes), and the averaged

maximal peripheral temperature (measured in 30 s intervals) were assessed during the first 2 min of

(initial)  isolation.  Analysis  by linear mixed-effects  models with litter  identity as a  random factor;

significant effects are given in bold.

Changes in call
rate

[Repeated
isolation

treatment]

Changes in call
rate

[Nest treatment]

Changes in call
rate

[Male treatment]

Predictor variables F P F P F P

(a) Initial call rates 47.842 < 0.001 37.356 < 0.001 48.277 < 0.001

Initial increase in call rates 12.519 < 0.001 1.281 0.259 6.725 0.010

Max. peripheral temperature 0.276 0.601 0.012 0.911 1.102 0.298

Sex 1.210 0.272 0.609 0.436 0.004 0.951

Body mass 6.203 0.016 2.748 0.102 1.754 0.190

(b) Initial call rates 12.951 < 0.001 68.652 < 0.001 46.436 < 0.001

Initial increase in call rates 0.021 0.884 0.015 0.902 12.443 < 0.001

Max. peripheral temperature 0.384 0.538 0.272 0.604 0.329 0.568

Sex 0.022 0.881 0.420 0.517 0.966 0.326

Body mass 4.876 0.031 3.368 0.070 0.312 0.578
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4. DISCUSSION

House mouse pups showed highly stable individual differences in isolation call rates

between  postnatal  days  9  and  11.  These  individual  differences  were  also  significantly

associated with their individual responses to different social situations during the isolation.

That is, pups characterized by high call rates responded stronger to the treatments either by an

increase in numbers of calls  when re-isolated or by a decrease when confronted to social

odour cues.

As expected, pups showed a certain behavioral flexibility depending on the current

situation.  First,  they vocalized at an increased rate when re-isolated after the reunion with

mother  and  siblings.  This finding  is  consistent  with  previous  studies  in  laboratory  mice

(parental  potentiation  studies:  Shair,  2007;  Scattoni  et  al.,  2009).  Even though we cannot

separate  the effects  of  handling  the  pups and the reunion itself,  our  results  underline  the

usefulness of this experimental paradigm leading to a general increase in pups’ call rates.

Moreover,  isolated  pups modulated  the number of  calls  when confronted to  social

odour cues. The here observed reduction of isolation call rate after the presentation of small

parts from the pup’s own nest suggests a calming effect of home cage or maternal odour cues,

as it has been reported in the laboratory mouse (Caruso, Sabbioni, Scattoni, & Branchi, 2018;

Moles et al., 2004) and laboratory rat (Shair, Masmela, & Hofer, 1999). As evident by our

comparison  with  the  control  treatment,  these  cues  had  both  immediate  and  longer-term

effects.  A similar pattern of response was observed when isolated pups were confronted to

cues of an unfamiliar and unrelated adult male, but the responses to these cues occurred only

immediately after their presentation. At first sight, this similar response, at least on the short

term, to home cage and maternal cues and to the cues of a stranger male might be surprising.

However, such similarities in responses to these different kinds of cues were also reported in a
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study on laboratory rats, in which pups were calmed down by maternal as well as by stranger

male cues, but only when pups were raised in the presence of a male  (Brunelli,  Masmela,

Shair, & Hofer, 1998). We propose that, in our study, the confrontation of odour cues of both

kinds had a similar effect than the “contact quieting” which can be provided by the presence

of conspecifics (Hofer, Shair, & Brunelli, 2002; Shair, 2007), but also by the presentation of

wood shavings from the home cage (laboratory rats: Brunelli et al., 1998; laboratory mice:

Wöhr, 2015).

Even  though  pups  demonstrated  flexibility  in  call  rates,  our  study  also  provides

evidence for individual consistency. As it has been shown already in several mammal species,

individual differences in the pup isolation calls remained stable across time, supporting the

usefulness of this behavioral measure to phenotype the young (Hudson et al., 2015; Špinka et

al., 2018). Furthermore, our study confirms that the repeatability of this parameter is quite

high (RICC = 0.577), at least during the relatively short study period of 3 consecutive days. A

previous study in laboratory mice reported lower repeatabilities of 0.17-0.20 although over

longer  time  spans  (postnatal  days  5-9  and  days  3-14;  Rieger  &  Dougherty,  2016),  thus

confirming the general pattern that repeatabilities tend to decrease with increased between-

sampling intervals (Stamps & Groothuis, 2010b).

Furthermore,  positive  associations  between responses to  the two social  odour cues

were found at both time scales; pups generally responded with different amplitudes to each

treatment  but  expressed  consistency  at  the  individual  level.  More  importantly  and  in

accordance with our main hypothesis, the consistent individual differences in initial call rates

were associated with their  responses to the three treatments.  Thus,  our study suggests the

existence  of  different  behavioral  types  (proactive  and  reactive,  cf.  Koolhaas,  de  Boer,

Buwalda,  & van Reenen,  2007) – although on a gradual  scale,  as pups with consistently
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higher isolation call rates also responded stronger to the different treatments (cf. laboratory rat

pups in Brunelli & Hofer, 2007).

We found indications that other individual characteristics than individual profiles in

call rate influenced the responses to the different treatments. This was evident as lighter pups

– at least on postnatal day 9 – showed a stronger increase in isolation call rates compared to

heavier ones when repeatedly isolated from mother and siblings. Maintaining a constant body

temperature is critical for the survival of pups (Blumberg, 2001), and thus, as the temperature

of lighter pups drops faster, they might increase the number of calls to be faster retrieved by

the mother (Hahn & Lavooy, 2005; Stanier, 1975). However, the body mass only showed a

weak effect on the increase in isolation calls (immediate response: pseudoR2 = 0.026; 1-min

delayed response:  pseudoR2 = 0.014) and we did not find a significant association between

isolation call  rates  and peripheral  body temperature to  support  this  hypothesis.  This  latter

absence of a significant association is consistent with previous studies in laboratory rat pups

(Brunelli, Vinocur, Soo-Hoo, & Hofer, 1997; Hofer & Shair, 1978; Shair, Masmela, Brunelli,

&  Hofer,  1997),  and  it  is  also  in  accordance  with  previous  results  on  the  thermogenic

performance of house mouse pups (Zepeda et al., 2018). This latter study showed that pups

develop their ability to keep a stable body temperature during periods of isolation at around

postnatal days 8-10.

Our results contribute to previous reports integrating isolation calls into the study of

the development of individual differences in behavioral traits (Hudson et al., 2015; Yoshizaki,

Koike, Kimura, & Osumi, 2017). For example, pups’ isolation calls have been shown to be

linked with sociability, spatial memory and emotionality in adults (laboratory rats: Brunelli &

Hofer, 2007; laboratory mice: Winslow et al., 2000; Yoshizaki et al., 2017).
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In conclusion, our study provides strong evidence that pups of Mus musculus are able

to  express  consistent  individual  differences  in  isolation  call  rates,  both  across  time  and

situations. Although isolation calls can be considered as a behavioral trait characterising the

individuals,  it  also shows variability and thus represents a suitable behavioral measure for

assessing  how  pups  perceive  changes  in  their  environment  and  how  they  discriminate

conspecifics or environmental conditions. Further studies are needed to explore whether such

stable individual differences in vocal responses to isolation or to other social situations could

be  considered  as  an  early  predictor  of  stable  individual  differences  in  behavioral  and

emotional reactions in adulthood.
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ABSTRACT

Exploration tendency,  one of the most investigated animal  personality  traits,  may be

driven by either positive (when seeking interesting information) or negative (to reduce the

uncertainty of the environment) affective/emotional profiles. To disentangle the valence of the

affective state associated with exploration trait, we applied a judgement bias test to evaluate

the animals’ responses in an ambiguous situation, allowing an assessment of their affective

state or mood. Experiments were carried out in male house mice (Mus musculus) of wild

origin. Individual differences in exploration tendency were assessed by repeated open field

and novel object tests. To evaluate the animals’ judgement bias, we trained the subjects during

8 days in a 3-arm maze to discriminate between two extreme locations (outer arms: either

positively  reinforced  with  sugary  water  or  less-positively  reinforced  with  plain  water),  in

terms  of  a  shorter  latency  to  approach  the  positively  reinforced  arm.  After  this  learning

criterion  was  reached,  we  repeatedly  tested  their  responses  to  an  ambiguous  location

(intermediate arm). The latencies to approach and consume the ambiguous reward were highly

repeatable over the 3 days of testing, hence individuals expressed a stable judgement bias.

Most importantly, more exploratory animals showed a more negative judgement bias, which

supports the hypothesis that a higher exploration tendency was associated with a negative

affective state. Further studies should investigate whether exploration in different situations

might be due to distinct affective states.

Keywords: animal  personality;  exploration;  cognitive  judgement  bias;  Mus  musculus;

affective state; emotion; curiosity
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1. INTRODUCTION

Animal  personality  can  be  defined  as  consistent  individual  differences  in  behavior

across time and/or context (Gosling & John, 1999; Wolf & Weissing, 2012). Personality traits,

such as aggressiveness, boldness or sociability, can be considered to be based on individual

differences  in  emotional  reactivity  (Boissy  & Erhard,  2014;  Montag  & Panksepp,  2017).

Exploration tendency is one of the most frequently studied personality trait (Careau, Bininda-

Emonds,  Thomas,  Réale,  &  Humphries,  2009;  Carter,  Feeney,  Marshall,  Cowlishaw,  &

Heinsohn,  2013;  Duparcq  et  al.,  2019;  Réale,  Dingemanse,  Reader,  & McDougall,  2007;

Rödel et al.,  2015) but its interpretation in terms of underlying emotions remains debated.

According to a model  formulated by Wolf  and co-workers (Wolf,  van Doorn,  Leimar,  &

Weissing,  2007),  exploration  should  be  positively  associated  with  boldness  and

aggressiveness,  thus  allowing  more  exploratory  individuals  to  cope  with  unpredictable

environments  (Careau,  et  al.,  2009).  And in fact,  such associations  among these different

personality traits are frequently found in various animal species (behavioral syndrome: Réale,

et al., 2007; Sih, Bell, & Johnson, 2004). From a psycho-biological point of view, exploration

towards new information is generally associated with curiosity, which may be defined as a

motivation to ‘know’, to ‘see’ or to ‘experience’,  leading to information-seeking behavior

(Berlyne, 1960; Litman & Jimerson, 2004). It has been suggested that on the one hand, an

animal’s curiosity/exploration tendency could be related to positive affective states involved

in the act of seeking out for information of potential interest. But on the other hand, curiosity/

exploration could be also related to a negative affective state leading the animals to search for

information  resolving  the  perception  of  environmental  uncertainty  (Litman,  2007).  We

suggest that an increased, consistent exploration tendency might be associated with a specific

affective profile. Thus, we propose that investigating relationships between judgment bias and
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exploration trait should help to clarify whether the tendency to explore may be related to a

higher tendency to express either positive or negative affective states.

Since recently, the judgement bias test (or “cognitive bias test”) has been increasingly

used to assess affective (or emotional) states and moods using different animal of different

taxa, mainly mammals and birds (Clegg, 2018; Hales, Stuart, Anderson, & Robinson, 2014;

Hintze et al., 2018; Roelofs, Boleij, Nordquist, & van der Staay, 2016). In such tests, each

individual is first trained to discriminate between two highly distinct cues (e.g., two locations,

tones, textures), one being associated with a positive outcome (food reward, access to the

home cage, etc.) and the other with a negative, or less positive outcome (no or delayed food

reward, air puff, etc.). In a second step, the subject is confronted to a novel, intermediate cue,

for example a spatial  cue located in the middle of the two previously learned ones, or an

average tone or texture. The response to this ambiguous stimulus is assumed to depend on the

valence of the affective state of the subject; that is, an animal in a more negative affective

state is expected to respond to the intermediate cue more similarly to the negatively or less

positively reinforced cue, i.e., with a higher latency to approach the intermediate cue (Mendl,

Burman, Parker, & Paul,  2009; Roelofs et al.,  2016). Such a response pattern is typically

interpreted as a more “pessimistic” response. On the other hand, when the individual shows

similar responses for intermediate and positive cues (e.g., approaching faster both cues), it

will be interpreted as an “optimistic” response, i.e., the expression of a positive affective state.

A negative judgement bias can be due to a decreased expectation of a reward or an increased

expectation of a punishment (Bateson & Nettle, 2015). Judgement bias tests have been used to

evaluate the changes in the valence of affective states after  an experimental manipulation,

mainly in relation to studies in the fields of psychopharmacology (Neville et al.,  2019) or

animal  welfare  (enrichment:  Bethell,  Holmes,  MacLarnon,  & Semple,  2012;  pain:  Neave,
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Daros, Costa, von Veyserlingk, & Weary, 2013; stereotypic behavior: Novak et al., 2016).

Some recent studies also showed that individual differences in judgement bias were consistent

over  time,  at  least  over  short  time  spans  (calves  Bos  taurus:  Lecorps,  Weary,  &  von

Keyserlingk, 2018; bottlenose dolphins Tursiops truncatus: Clegg, Rödel, & Delfour, 2017).

As  yet,  some  studies  investigated  the  relationship  between  personality  traits  and

individual differences in judgement bias, as the latter is assumed to reflect the valence of the

subject’s affective state. They highlighted positive associations between optimism (as a proxy

of a positive affective state of the animal) and different personality traits such as sociability

(dogs  Canis  familiaris:  Barnard,  Wells,  Milligan,  Arnott,  &  Hepper,  2018;  bottlenose

dolphins: Clegg et al., 2017) or proactivity (domestic pigs Sus scrofa: Asher, Friel, Griffin, &

Collins,  2016).  More  pessimistic  individuals  were  also  more  fearful  (calves  Bos  taurus:

Lecorps, Weary et al., 2018). Also in rodents, individual judgement bias has been shown to be

related to individual differences in affective states. For example, more optimistic laboratory

rats Rattus norvegicus were less vulnerable to stress-induced anhedonia (Rygula, Papciak, &

Popik, 2013), were more motivated to obtain a reward (Rygula, Golebiowska, Kregiel, Kubik,

& Popik, 2015) and were less anxious in open field and elevated plus maze tests (Parker,

2008). Yet, associations between personality traits, especially exploration, and judgement bias

remain sparsely studied in rodents. In particular, judgement bias is often used to assess an

animal’s ability  to react  to and cope with stressful situations (e.g.,  unpredictable  housing:

Parker, 2008; pain: Lecorps, Ludwig, von Keyserlingk, & Weary, 2019) or to study how the

judgement  bias  can  be  influenced  by  different  living  conditions  (e.g.,  environmental

enrichment in laboratory rats: Brydges, Leach, Nicol, Wright, & Bateson, 2011; Richter et al.,

2012). To the best of our knowledge, judgement bias tests have never been used as a way to

disentangle the emotional valence that may drive an animal’s exploration tendency.
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Based on the assumption that  exploration tendency (assessed through open field and

novel  object  tests)  is  related  to  the  tendency  to  show a  certain  affective  state  (Alcaro  &

Panksepp, 2011; Montag & Panksepp, 2017), this condition should affect the judgement bias

of  the  individuals.  A  positive  correlation  between  exploration  tendency  and  a  positive

judgement bias (hypothesis i) would support that high exploration is associated with a positive

affective  state  (i.e.,  an  increased  interest  for  novelty  in  the  environment)  (Berlyne,  1967;

Litman & Jimerson, 2004). In contrast, a negative correlation (hypothesis  ii) would support

that high exploration is associated with a negative affective state, e.g., due to the tendency to

reduce perceived environmental uncertainty for reassurance (Hebb, 1955; Litman & Jimerson,

2004).

2. MATERIAL AND METHODS

2.1. Study animals and housing conditions

A total of 122 male house mice Mus musculus domesticus (mean litter size: 8.1, 95% CI

[7.7,  8.4])  were  tested  for  consistent  individual  differences  in  exploration  behavior  by

repeated standard tests (see details in 2.2.1.). Animals were descendants of wild house mice

caught around Lyon (France) and bred in the animal facilities of the Laboratoire d’Ethologie

Expérimentale et Comparée (Université Paris 13, France) for 9-10 generations. Among them,

a subsample of 39 individuals (mean litter size: 7.9, 95% CI [7.3, 8.6]) was also used for the

judgement  bias  test.  Study  animals  were  kept  under  constant  conditions  with  a  14:10

light/dark  cycle  (light  off  at  09:00  am),  a  room temperature  of  20  ±  2.0°C,  and  with  a

humidity  of  approximatively  50%.  The  other  males  were  used  in  other  experiments,  as

phenotyping of exploration tendency was part of a larger project (not shown here).
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At postnatal day 21, animals were weaned, and groups of males stemming from the

same litter  (3 groups of 2,  16 groups of 3 and 17 groups of 4 individuals) were formed.

Females and surplus males were used for breeding and other experiments (not shown here).

Groups were kept in polycarbonate cages (32.5 × 16.5 cm and 14.2 cm high,  PLEXX, Elst,

The Netherlands), with a bedding of wood shavings, 4 cotton balls (COMED, Strasbourg,

France) per individual which the animals used as nest material, and two cardboard rolls as

enrichment (7.5 × 3.8 cm of diameter). Food (rodent standard diet; Special Diet Services type

M20, Witham, Essex, UK) and water were provided ad libitum.

At postnatal days 8, 11 and 35, each individual was marked with a permanent nontoxic

hair dye to allow individual recognition within the group (Nyanzol-D, Greenville Colorants,

Jersey City, NJ, USA). Animals were held by the experimenter and a unique symbol was

rapidly and softly drawn on their back with a fine paint brush.

2.2. Experimental procedures

Experiments  were conducted under red light condition,  corresponding to the activity

period  of  the  animals,  in  an  experimental  room maintained  under  the  same light  regime,

temperature and humidity than the housing room (see 2.1.). All experimental apparatuses (see

description in  2.2.1.  and 2.2.2.)  were cleaned between testing of different  individual  with

water and non-perfumed soap (Colgate-Palmolive, New York, USA).

2.2.1 Standard behavioral tests

Prior to the judgement bias test, subjects were phenotyped for their exploration tendency

(N = 122 subjects) by repeated (2 test sessions) open field and novel object tests (Carter, et al.,

2013; Réale, et al., 2007). Individuals were kept in sibling groups during the first test session
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(postnatal day 41, T1). Immediately after, they were isolated and placed into a new clean cage

(same dimensions and content  than the group cage,  see 2.1.)  until  the second test  session

(postnatal day 71, T2) and remained isolated until the end of the study. Behaviors were video

recorded  using  a  camera  (T650sc,  FLIR,  Wilsonville,  USA)  mounted  over  the  test

apparatuses, and video footage was stored for later analysis.

2.2.1.1. Open field test

The open field was a constituted of a circular arena (diameter of 60 cm; area of 2827

cm2),  surrounded  by  walls  (69  cm  high)  made  of  white  opaque  polyethylene.  A  central

circular area was defined (20 cm of diameter), representing one ninth of the total area.

Subjects were placed close to the wall of the arena and the test started for 5 min once the

animal was released. The video camera was mounted 140 cm above the center of the arena.

We quantified the total distance covered in the open field (Lecorps, Rödel, & Féron, 2016;

Mazza, Eccard, Zaccaroni, Jacob & Dammhan, 2018; Rangassamy, Dalmas, Féron, Gouat, &

Rödel,  2015;  Yuen,  Schoepf,  Schradin,  & Pillay,  2017),  using  Ethovision  XT10 (Noldus

Information Technology, Wageningen, The Netherlands).

2.2.1.2. Novel object test

The novel object test immediately followed the open field test: after the 5 min of the

latter test, the individual was caught with a plastic box and placed again close to the wall of

the arena. The object was positioned in the center of the arena, the individual was released and

the test lasted for 5 min.

The object used on postnatal day 41 (T1) was a small oval metal box (length: 9.5 cm;

height: 2.7 cm) and on postnatal day 71 (T2) the object was a round and opaque soft PVC toy
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(diameter of 8.5 cm and 4.5-5.0 cm high). The height of the objects allowed the animals to

jump on them; due to their size and weight, objects could not be moved by the animals. We

recorded the latency to approach and sniff the object for the first time and the percentage of

time spent exploring of the object (% time exploring the object), measured as the sum of time

spent  sniffing,  touching  (with  mouth  or  forepaws)  and  staying  on  the  top  of  the  object

(Duparcq et al., 2019; Mazza et al., 2018; Rangassamy et al., 2015, 2016). All behavioral

measures were analyzed using the software BORIS 6.2.2 (Friard & Gamba, 2016).

2.2.2. Judgement bias task

2.2.2.1. Description of the apparatus

The apparatus  (Fig.  1)  was made  of  opaque white  PVC (3  mm thick).  The walls

separating the arms from the central platform were removable, allowing the experimenter to

place the appropriate walls (with or without a swinging door, that is, a door that can swing

open in both directions) in front of the reference arms before each trial.  The walls of the

apparatus were 50 cm high to avoid the animals to jump out of it. A video camera (FDR AX-

100 4K, Sony, UK) was mounted 150 cm above the center of the apparatus.

2.2.2.2. Part 1: Training to the spatial discrimination task

The experiments started with a training phase during which individuals needed to learn

the association between one location and one type of reward. The individuals (N = 39) were

trained for 8 days, from postnatal day 75 to 82 and underwent one session of 4 trials per day.

During the first day, only positively reinforced trials were conducted, as it has been shown to

increase the speed of learning (Roelofs et al., 2016), although these data were not analyzed.

During  the  next  7  days,  two  of  the  trials  were  positively  reinforced  and  two were  less-
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positively  reinforced (see 2.3.2.1.).  The trials  were pseudo-randomized,  as  the individuals

were confronted with a different order each day. During each trial, only one arm (either the

left or the right reference arm; Fig. 1) was made accessible.

Figure 1.  Schema of the judgement bias apparatus. It is composed of a start box, a corridor and a

central platform leading to 3 same-sized arms placed at equal distance from the exit (4 × 4 cm) of the

corridor. Dotted lines represent removable walls. Tested individuals could access the open arm through

an opening (5 × 5 cm) with a squared swinging door. To avoid that the individuals could see which

arm was opened before entering the central platform, a wall was placed 5 cm before the exit of the

corridor with a rectangular opening (4 × 4 cm) at each side. See text for details on the experimental

protocol.
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2.2.2.3. Reinforcement of the reference arms

For one half of the individuals (randomly chosen), the right reference arm (Fig. 1) was

positively reinforced (hereafter: ‘positive arm’) and the left reference arm was less-positively

reinforced (hereafter: ‘less-positive arm’), while the other half of the individuals was trained

with the opposite location pattern. The positive reward consisted of a drop of sugar water

(10% of sucrose 99%) and the less-positive reward of a drop of plain water. To allow video

analysis of the consumption of the rewards, a blue food colorant (Vahiné, France) was added

to  the  water  for  both  positive  and  less-positive  rewards.  For  each  trial,  the  reward  was

deposited on the inner curved part of an open Petri dish (diameter: 3.5 cm) and fixed on the

back wall of the arm, 1 cm above the floor, i.e., at the level of the animals’ head to allow them

to consume in a quadrupedal position.

2.2.2.4. Experimental procedure

At the beginning of each daily test session, individuals were placed singly into the start

box (Fig. 1) and then the first trial started. During the first 3 min when the animal remained in

the start box, the appropriate reward was prepared as explained above (see 2.2.2.3.) and the

removable walls were placed to open or close the reference arms accordingly (Fig. 1). Then,

the start box was opened and the individual was able to explore the apparatus for a maximum

of 5 min. If during this time lapse, the individual entered the reference arm, it was given 1 min

to consume the reward before the trial was ended. At the end of this minute, or after 5 min in

case the animal did not enter in the arm, the individual was gently guided by the hand of the

experimenter to the start box and the second trial started as soon as the door of the start box

was closed. At the end of the four trials, the individual was returned to its home cage and the

apparatus was cleaned.
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2.2.2.5. Definition of the learning criterion

For each trial, the latency to approach and consume the reward after the animal entered

in the central  platform  was recorded.  To assess  if  the  individuals  learned to  discriminate

between the two reference arms, we plotted the averaged latencies to approach and consume

the positive and the less-positive rewards (in s) for each training day and visually compared

the two curves. The learning criterion was defined as follows: individuals had to approach and

consume the positive reward with a shorter latency than the less-positive reward for at least

two  consecutive  days.  Furthermore,  the  threshold  for  the  difference  between  these  two

latencies (positive and less-positive) was 5 s (mean difference among the individuals at the

day they reached the learning criterion: 28.16 s, 95% CI [21.64, 34.68]). Individuals were

considered as having learned the day this learning criterion (shorter latency to approach and

consume the positive reward of at least 5 s during two consecutive days) was reached and they

had to maintain the criterion until the end of the training period. Four individuals reached the

learning criterion during the last  training day (that is,  they approached and consumed the

positive reward faster during the last two training days) and were also considered as having

learned. In total, 25 out of 39 individuals (64%) reached the learning criterion and continued

the  test  (see  2.3.3.).  The  individual  speed  of  learning,  defined  as  the  day  at  which  the

individual  reached  the  learning  criterion,  was  not  significantly  associated  with  individual

differences in judgement bias (P = 0.192). Also, excluding the four ‘late learners’ from all

statistical analyses did not lead to different results than the ones presented below (see result

section).
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2.2.2.6. Part 2: Judgement bias test

After the training, only the animals which reached the learning criterion were tested for

their  responses  to  an  ambiguous  location.  During  these  trials,  the  centrally-located  arm

(hereafter: ‘the ambiguous arm’) was open while the two reference arms were closed. The test

period lasted for 3 days, from postnatal day 83 to 85, with one session of 3 trials per day. The

sessions were identical  each day:  a less-positive,  a positive then an ambiguous trial.  This

allowed us to control for motivational effects that could influence the latency to reach the

ambiguous reward depending on the valence of the trial preceding it. The ambiguous arm was

also  rewarded  with  plain  (non-sugary)  water  to  be  able  to  measure  the  latency  until

consumption. The test sessions were performed following the same experimental procedure

than the training sessions (see 2.3.2.2.).

During the three days of test,  the individuals  approached and consumed the positive

reward after on average 6.25 s, 95% CI [4.09, 8.41], the less-positive reward after 61.84 s,

95% CI [55.99, 67.68] and the ambiguous reward with an in-between latency of 45.84 s,  95%

CI [37.91, 53.77]. The latencies differed significantly from each other (P < 0.001).

2.2.2.7. Calculation of judgement bias index

For each individual successfully trained, we calculated a judgement bias index using the

following formula, where L represents the latency to approach and start consuming the reward

of the positively rewarded, the less-positively rewarded, or the ambiguous arm. The latency

(with a resolution of 1 s) was measured from the time the animal introduced its head by the

opening of the central platform until it started to consume the reward. Before the calculation

of the index, the latencies of the positive, less-positive and ambiguous arms were averaged

between the three testing days.
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Judgement bias index = 1 - ((Lambiguous - Lpositive) / (Lless-positive - Lpositive))

We obtained a  judgement  bias  index ranging from 0 (for  a  latency  to  consume the

ambiguous reward similar to the latency to consume the less-positive one) to 1 (for a latency

to consume the ambiguous reward similar to the latency to consume the positive one).

2.3. Statistical analysis

All statistical analyses were done with the software R, version 3.4.4 (R Core Team,

2019).  For  all  covariate  effects,  we  calculated  the  marginal  pseudoR2 using  the  package

MuMIn (Barton, 2018), which can be interpreted as the proportion of variation explained by

the fixed effect (Nakagawa, Johnson, & Schielzeth, 2017). Prior to analysis, the latency to

approach and sniff the novel object was log[x+1] transformed to adjust the data to a normal

distribution. All covariates were scaled for analysis.

First, to summarize the behavioral variables in a single score, we applied a principal

component analysis (PCA; R package  FactoMineR:  Lê, Josse, & Husson, 2008), using the

behaviors quantified in the open field (total distance covered in the open field) and the novel

object tests (latency to sniff the object, % time exploring the object), separately for each test

session (T1, postnatal day 41; T2, postnatal day 71;  N = 122 individuals). We only used the

first component of the PCA for later analysis as it had an eigenvalue > 1; that is, the first

component accounted for more variance than any of the original variables of the standardized

data (Kaiser, 1991). This component was interpreted as ‘exploration’ score for later analysis.

The repeatability of the exploration scores (N = 122), as well as of the judgement bias

index (N =  25,  that  is,  the number  of  individuals  that  reached the  learning criterion,  see

2.2.2.5.),  were  calculated  with  intra-class  correlations  (RICC),  using  a  linear  mixed-effects
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model  based on calculations  of  P-values with 10,000 Monte Carlo permutations  (package

rptR: Stoffel, Nakagawa, & Schielzeth, 2017), with individual identity as a random factor.

To test for associations between the exploration scores and the judgement bias index,

we first performed a new PCA, using the averaged behaviors quantified across the two test

sessions (N = 122). Then, we applied the predict function (package FactoMineR) to perform a

new PCA on the subsample of individuals which successfully passed the judgment bias test

(N = 25). This function allowed us to perform the PCA on the same space created for the PCA

based  on  the  122  individuals,  hence  giving  similar  first  components.  We  extracted  the

individual coordinates from the first component of the new PCA to obtain the exploration

scores of the subjects which passed the judgement bias test (N = 25). Then, we first log[x+0.1]

transformed the explanatory variable (judgement bias index averaged between the three days

of testing)  to increase the homogeneity  of models residuals (Faraway,  2006).  Second, we

tested for the association between exploration scores (averaged between the two test sessions;

independent variable, covariate) and individual judgement bias index (transformed; dependent

variable, covariate) by running a linear mixed-effects model (LMM) with litter identity as a

random factor, using the R package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core Team,

2019). P-value calculations were based on 10,000 Monte-Carlo permutations.

2.4. Ethics note

All experimental procedures were approved by the French authority for animal care and

use  (APAFIS#7585-201610121409165)  and  by  the  institutional  ethics  committee  (SBEA

LEEC UP13). The individuals tested for their personality traits but not for their judgement

bias  were  used  for  other  experiments  and  for  breeding.  Animals  which  underwent  the

judgement bias test were euthanized at the end of the study, at postnatal day 87.
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3. RESULTS

3.1. Consistent individual differences across time in exploration score

The first component of the PCA explained 49.7% (T1) and 47.0% (T2) of the variation of

the data. During both times, higher scores indicated a greater distance covered in the open

field (loadings during T1:  0.423; loadings  during T2:  0.787), a shorter latency to sniff  the

object for the first time (T1: -0.807; T2: -0.858) and a higher % time exploring the object (T1:

0.813; T2: 0.231).  The exploration score (RICC = 0.511,  P < 0.001, Fig. 2) was significantly

repeatable  across  the  two  test  sessions  (N =  122).  Thus,  individuals  showed  consistent

individual differences in exploration behavior.

Figure 2. Consistent individual differences in exploration scores across the two test sessions T1 and T2

(N =  122 adult  males).  Individual  scores  correspond to  the  first  component  of  a  PCA,  using the

averaged behaviors quantified in repeated open field and novel object tests (postnatal days 41 and 71).

Higher  scores  indicate  a  higher  exploration  tendency (greater  distance  covered  in  the  open field,

shorter latency to sniff and higher % time exploring the object). The association between the two test

sessions was statistically significant and tested by intra-class correlation, see text for details.
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3.2. Consistent individual differences across time in judgement bias index

The judgement bias index was significantly repeatable at the individual level across the

three  days  of  testing  (RICC =  0.711,  P <  0.001,  Fig.  3).  Thus,  individuals  showed  stable

individual differences in the relative latencies to approach the ambiguous cue.

Figure 3. Consistent individual differences of the judgement bias index across three days of testing (N

= 25 adult males). The calculation of the judgement bias index is detailed in the text. Judgement bias

ranges from 0 (negative bias) to 1 (positive bias). All associations shown were statistically significant

and tested by intra-class correlation, see text for details.
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3.3. Associations between individual differences in judgement bias index and

exploration scores

Individual  differences  in  judgement  bias  index  were  significantly  and  negatively

associated with individual exploration scores (pseudoR2 = 0.189, P = 0.035, Fig. 4). That is,

individuals which were more explorative during the open field and novel object test, showed a

longer latency to approach the ambiguous cue during the test situation (that is, they responded

with a latency more similar to the one they showed when approaching the less-positive cue).

Figure  4.  Association  between  judgement  bias  index  and  exploration  score  (N =  25  adult  males).

Judgement bias ranges from 0 (negative bias) to 1 (positive bias) and were averaged between the three days

of testing. Higher exploration scores (averaged between the two test sessions, at postnatal days 41 and 71)

indicate a higher exploration tendency (greater distance covered in the open field, shorter latency to sniff

and higher  % time exploring  the  object).  The association was statistically  significant  (details  in  text);

analysis by LMM.
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4. DISCUSSION

As expected, individual judgement bias was significantly associated with the animals’

exploration  tendency.  In  accordance  to  our  second  hypothesis,  more  explorative  subjects

showed a more negative judgement of the ambiguous test situation. 

Our results on the existence of consistent individual differences in exploration confirm

the  findings  of  previous  studies  in  laboratory  mice  Mus  musculus (Brust,  Schindler,  &

Lewejohann, 2015; Lewejohann, Zipser, & Sachser, 2011; Rödel et al., 2012) and other rodent

species  of  wild  origin  (mound-building  mouse  Mus  spicilegus:  Duparcq  et  al.,  2019;

Rangassamy et al., 2015; common vole Microtus arvalis: Herde & Eccard, 2013; bank vole

Myodes glareolus:  Mazza et al., 2018; Eurasian harvest mouse Micromys minutus:  Schuster,

Carl, & Foerster, 2017). To the best of our knowledge, our study is the first to demonstrate

consistent individual differences in exploration in house mice of wild origin.

We validated our judgment bias protocol based on positive and less-positive rewards, as

our  individuals  responded to  the  presentation  of  the  ambiguous  cue  with  an intermediate

latency between the positive and less-positive cues. It is important to develop judgement bias

tests which do not require the use of punishments, such as mild electric shocks (Enkel et al.,

2010) or air puffs (Brajon, Laforest, Schmitt, & Devillers, 2015), as they can directly modify

the affective state of the subjects and lead them to avoid the ambiguous cue, hence exhibiting

more pessimistic responses  (Mendl et al., 2009). Others have already developed such tests

using for example the presentation of 1 versus 2 food pellets in the laboratory rat  (Parker,

Paul, Burman, Browne, & Mendl, 2014) or of small versus large rewards in the domestic pig

(Roelofs, Nordquist, Josef, & van der Staay, 2017). An appropriate selection of the reinforcers

becomes more crucial when the baseline judgement bias is assessed, as it has been done in our

study. Furthermore, in accordance with studies in calves  Bos taurus  (Lecorps, Weary et al.,
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2018; Lecorps, Kappel, Weary, & von Keyserlingk, 2018), domestic pigs (Asher et al., 2016)

and bottlenose dolphins  (Clegg et al.,  2017), we demonstrated that wild-origin house mice

displayed consistent individual differences in judgement bias over three days of testing.

Returning to the main goal of our study, we found that individuals expressing a more

negative judgement bias were also the more explorative ones in open field and novel object

tests. Exploration of novel situations (environment and objects) is often used as a proxy to

assess anxiety and emotional reactivity (Harro, 2018; Ohl, 2003). Especially the behaviors we

quantified  (overall  activity  in  the  open field,  %  time  exploring  the  object and latency to

approach the objects) are likely to refer to the SEEKING system, a positive emotional system

underlying explorative and approach behavior proposed by Panksepp and co-workers (Alcaro

& Panksepp, 2011; Montag & Panksepp, 2017; Panksepp, 2005). According to this approach,

individuals with a more sensitive SEEKING system are more motivated to search for rewards

and to explore new stimuli, which could greatly impact the responses when confronted to an

ambiguous stimulus. In this context, we might expect that more explorative individuals would

have positive expectations about the outcome of the ambiguous cue (i.e., positive judgement

bias) and thus would faster approach and consume the ambiguous reward. Contradicting this

prediction,  our  results  show a  correlation  to  the  opposite  direction,  suggesting  that  more

explorative individuals might have more negative expectations in an ambiguous situation.

We conclude  that  our  results  are  consistent  with  others  suggesting  that  information

seeking  behaviors  may  be  mediated  through  curiosity  reduction  (curiosity-drive  theory:

Berlyne, 1954, 1960), i.e., individuals are motivated to explore their environment in order to

reduce  uncomfortable  states  due  to  environmental  uncertainty,  or  motivated  by  a  lack  of

available information (curiosity as a feeling-of-deprivation: Litman & Jimerson, 2004). These

models, which involve a degree of negative affectivity during exploration would imply that
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more explorative individuals have more difficulties to sustain the novelty of the environment

in  the  open-field  and  the  novel  object  tests,  pushing  them  to  increase  their  explorative

activities. These more explorative individuals might be characterized by a more pronounced

tendency to express negative affective states (i.e., more negative affective profiles), leading

them to  engage  in  the  exploration  of  novel  and  uncertain  situations  for  reassurance.  We

suggest that findings obtained by judgement bias test indicate such negative affective profiles.

Indeed,  during  the  judgement  bias  test,  individuals  may  have  invested  more  time  in

exploratory activity, instead of consuming the reward, to reduce the negative affective state

induced by the uncertainty of the novel, ambiguous cue, finally leading to a negative bias.

However, the association we reported here might remain highly dependent on the context we

measured  the  exploration  tendency.  For  futures  studies,  we  propose  that  associating  a

judgement bias test with the quantification of exploration in other experimental paradigms,

such as ‘free exposure’ open field and novel object tests (Fonio, Benjamini, & Golani, 2009;

Griebel, Belzung, Misslin, & Vogel, 1993) would bring further insights into the association

between individual differences in exploration tendency and affective profiles.

Finally,  such  explorative  and  proactive  individuals  (in  the  sense  of  Koolhaas  et  al.

(1999);  as  fast  exploration  is  a  key  component  of  proactivity),  despite  a  higher  novelty-

seeking, are also characterized by a lower executive control (de Boer, Buwalda, & Koolhaas,

2017). The ambiguity in judgement bias tests might create a conflict between the tendency to

explore and the behavioral inflexibility (i.e., low executive control) of proactive individuals.

Proactive individuals are also less sensitive to changes in their environment and being more

likely to form routines (Coppens, de Boer, & Koolhaas, 2010; Sih & Del Giudice, 2012). On

the contrary, slow explorers take more time to gather more detailed information, which allow

them  to  be  more  flexible  when  the  environment  changes.  Such  associations  between
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individual  differences  in  exploration  types  and  cognitive  abilities  have  already  been

highlighted  by  several  studies  (Guenther,  Brust,  Dersen,  &  Trillmichh,  2014;  Guillette,

Reddon,  Hoeschele,  &  Sturdy,  2010;  Mazza  et  al.,  2018;  Mazza,  Jacob,  Dammhahn,

Zaccaroni, & Eccard, 2019; Verbeek, Drent, & Wiepkema, 1994). For instance, proactive pigs

were less successful in a reversal learning task, due to difficulties to inhibit the behavioral

patterns they previously learned (Bolhuis, Schouten, Leeuw, Schrama, & Wiegant, 2004). In

our study, consistently with a study in carpenter ants  Camponotus aethiops (d’Ettorre et al.,

2017), more explorative individuals showed more pessimistic responses, that is, they showed

longer latencies to reach the ambiguous reward. Hence, according to this hypothesis, the here

observed negative judgement bias in more exploratory animals might not be an expression of

a negative affective state but might rather be explained by a greater inflexibility in adjusting

their behavior when confronted to a new situation due to routines formed during the training

period (Coppens et al., 2010; Sih & Del Giudice, 2012). This explanation would challenge the

prevalent interpretation of a negative judgement bias as the expression of a negative affective

state or mood.

In  conclusion,  our  study  is  consistent  with  others  showing  associations  between

individual differences in judgement bias and a personality trait (here, exploration tendency).

In  particular,  judgement  bias  and  personality  tests  could  complement  each  other  to  help

determining  the  affective  states  underlying  the  classical  personality  traits,  although  the

observed  associations  may  remain  highly  dependent  on  the  context  of  evaluation  of  the

personality traits. Further studies should also investigate the potential confounding effects of

behavioral inflexibility of proactive (and possibly more exploratory) individuals when aiming

to assess their affective state through judgement bias tests.
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ABSTRACT

Animals  of  different  behavioral  types  typically  show  associated  differences  in  their

physiological stress response, including differential reactivity of the sympathetic nervous system.

Infrared thermography offers the possibility to explore this link in a non-invasive way via the

quantification of fine-scale changes in peripheral body temperature due to changes in cutaneous

blood flow. We used this technique to investigate the association between exploration tendency, a

behavioral  trait  frequently  used  to  phenotype  mammals  and  birds,  and  short-term  thermal

responses  to  challenge  in  a  small  rodent  of  wild  origin,  the  mound-building  mouse  (Mus

spicilegus). We applied a brief handling procedure consisting in the transfer of subjects into a

small arena. This procedure led to a significant increase in subjects’ maximum peripheral body

temperature  (mainly  reflecting  the  temperature  of  the  eyes)  and  to  significant  decreases  in

maximum temperatures  at  different  positions  on the tail.  Maximum peripheral  body and tail

temperatures  showed  significant  individual-level  consistencies  in  response  to  repeated

applications of the handling procedure, suggesting stable individual differences in the animals’

sympathetic activity. We then compared the thermal responses to handling between ‘fast’ and

‘slow’ explorers, who were phenotyped through repeated open field and novel object tests. Fast

explorers showed significantly lower tail temperatures than slow explorers shortly after handling,

suggesting a stronger sympathetic reactivity in the former. Comparisons within sibling groups

kept in different  cages  showed that  the differences  between explorer types were particularly

pronounced during the first minute after handling, and increased in magnitude along the first

millimeters distal to the tail base.

Keywords: exploration  tendency;  infrared  thermography;  Mus  spicilegus;  personality;

stress; sympathetic activity
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1. INTRODUCTION

A large and still growing body of evidence from a wide range of taxa suggests that

animals  show consistent  individual  differences  in behavior  over time and across contexts,

frequently termed as animal  personality,  behavioral  syndrome or coping style  (Gosling &

John, 1999; Koolhaas et al., 1999; Réale, Reader, Sol, McDougall, & Dingemanse, 2007; Sih,

Bell, Johnson, & Ziemba, 2004; Stamps & Groothuis, 2010). These differences in behavioral

phenotypes are typically associated with underlying differences in neurophysiology, such as

in the animals’ stress response  (Carere, Caramaschi, & Fawcett, 2010; Ebner & Singewald,

2017;  Koolhaas,  de  Boer,  Coppens,  &  Buwalda,  2010;  Korte,  Koolhaas,  Wingfield,  &

McEwen, 2005).

The  physiological  stress  response  mainly  involves  two  complementary  systems,  the

hypothalamic-pituitary-adrenal (HPA) axis and the sympathetic adrenomedullary system (von

Holst,  1998). Consistent  findings in mammals  and birds show a generally  higher or more

chronic activation of the HPA axis in individuals with more reactive (as opposed to more

proactive individuals  (Koolhaas et al., 1999)), more passive (De Miguel et al., 2011; Rödel,

Monclús, & von Holst, 2006; von Holst, 1986), more anxious or fearful (Dhabhar et al., 2012;

Jones, Satterlee, & Ryder, 1994; Rangassamy et al., 2016), less aggressive (Veenema, Meijer,

De Kloet,  Koolhaas,  & Bohus,  2003) and less exploratory phenotypes  (Carere,  Groothuis,

Möstl, Daan, & Koolhaas, 2003; Montiglio, Garant, Pelletier, & Réale, 2012; Stöwe, Rosivall,

Drent, & Möstl, 2010). Furthermore, more proactive  (Ågren, Lund, Thiblin, & Lundeberg,

2009; Hessing, Hagelsø, Schouten, Wiepkema, & van Beek, 1994; Koolhaas et al., 1999; von

Holst, 1986), aggressive (Sgoifo, De Boer, Haller, & Koolhaas, 1996), and more active and
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exploratory types (Ferrari et al., 2013; Fucikova, Drent, Smits, & Van Oers, 2009; Montiglio

et al.,  2012) frequently show indications of a higher reactivity of the sympathetic nervous

system,  which  activates  immediate  physiological  changes  related  to  the  body’s  ‘fight-or-

flight’ response when individuals perceive a threat or danger (von Holst, 1998).

Measurements  of  circulating  hormone concentrations  related  to  the  activation  of  the

sympathetic adrenomedullary system require invasive blood sampling procedures, and thus

hardly  allow repeated  measurements  over  a  short  span  of  time.  Therefore,  low-  or  non-

invasive methods such as recordings of heart rate and breathing rate are frequently applied in

studies exploring changes in sympathetic activity in response to environmental perturbations

(Ferrari  et  al.,  2013; Fucikova et  al.,  2009; Hessing et  al.,  1994;  Montiglio  et  al.,  2012).

During  recent  years,  infrared  thermography  has  opened  new  directions  and  possibilities

towards  the  non-invasive  quantification  of  sympathetic  nervous  system activity  (Gjendal,

Franco, Lund Ottesen, Bratbo Sørensen, & Olsson, 2018; Herborn et al., 2015; Rekant, Lyons,

Pacheco, Arzt, & Rodriguez, 2016; Stewart, Webster, Schaefer, Cook, & Scott, 2005). This

method  consists  in  assessing  the  animals’  body  heat  loss  through  the  instantaneous

measurement of peripheral temperature, reflecting cutaneous blood flow (Vianna & Carrive,

2012).  Changes  in  this  parameter,  i.e.,  by vasoconstriction  or  vasodilatation,  constitutes  a

consequence of the stimulation of the sympathetic  nervous system  (von Holst,  1998).  For

example,  a  study  in  laboratory  rats  Rattus  norvegicus showed  sympathetic  cutaneous

vasoconstriction in tail and paws in response to a fear-inducing treatment while back, head

and  eye  temperatures  increased  (Vianna  &  Carrive,  2005).  Similarly,  house  mice  Mus

musculus domesticus exposed to open field and elevated plus-maze tests showed a decrease in
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tail temperature and an increase in eye temperature (Lecorps, Rödel, & Féron, 2016). So far,

infrared  thermography  has  been  hardly  applied  to  assess  sympathetic  nervous  system

reactivity  in  different  behavioral  types  (Ågren  et  al.,  2009),  and  continuous  recordings

exploring the time course of such differences directly after challenge are still lacking.

Using infrared thermography, we investigated whether differences between behavioral

types  in  short-term peripheral  body temperatures  responses  –  as  a  proxy of  the  animals’

sympathetic nervous reactivity – were detectable after a brief handling challenge. For this, the

animals  were  transferred  from  their  cages  into  a  novel  environment  (a  small  arena),  a

procedure which is part of the routines carried out during care of and experimentation with

rodents kept under laboratory  conditions.  Experiments  were conducted under standardized

laboratory  conditions  by  using  a  rodent  of  wild  origin,  the  mound-building  mouse  Mus

spicilegus.  Animals  of  wild  origin  are  advantageous  models  for  the  study  of  consistent

individual  differences  in  behavior  since such animals  often show a larger  inter-individual

variation in behavioral types compared to inbred laboratory strains (Koolhaas et al., 2010). In

our study, we focused on differences in exploration tendency (‘fast’ and ‘slow’ explorers), a

main behavioral (‘personality’) trait frequently used to phenotype mammals and birds (Carere

& Maestripieri, 2013; Dingemanse, Both, Drent, & Tinbergen, 2004; Réale et al., 2007; Rödel

et al., 2015), and a major trait component of the proactive-reactive continuum proposed by

Koolhaas and coworkers (Koolhaas et al., 1999; Koolhaas, De Boer, Buwalda, & Van Reenen,

2007).  Furthermore,  previous  studies  in  the  mound-building  mouse  have  already  shown

notable and consistent individual differences in behavioral responses during repeated standard

tests  such  as  in  the  open  field  and  during  novel  object  presentation,  frequently  used  to
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phenotype differences in exploration tendency (Rangassamy, Dalmas, Féron, Gouat, & Rödel,

2015; Rangassamy et al., 2016).

In a first step, we (i) tested whether our procedure consisting in handling and transfer of

subjects from their cages into a novel environment was sufficient to induce detectable stress

responses through short-term changes in peripheral body temperatures. We quantified (a) the

maximum  peripheral  body  temperature,  which  can  be  interpreted  to  mainly  reflect  the

temperature of the eyes (Lecorps, Rödel, & Féron, 2019), and (b) the surface temperature at

different positions on the tail. In accordance with previous findings in other rodent species

(Lecorps et al.,  2016; Vianna & Carrive, 2012), we expected a significant increase in the

maximum peripheral body temperature, but a significant decrease in tail surface temperature.

Furthermore,  we (ii)  explored consistencies  in the  animals’  thermal  responses to  repeated

applications of our stress-inducing procedure, which would suggest the existence of stable

inter-individual differences in sympathetic responses (Koolhaas et al., 2007; Koolhaas et al.,

2010). We (iii) tested for differential responses in animals with different exploration types. As

suggested by previous studies in mammals using other kinds of stressors and other measures

of  the  animals’  sympathetic  responses  (Koolhaas  et  al.,  1999;  Montiglio  et  al.,  2012;

Montiglio,  Ferrari,  &  Réale,  2013),  we  predicted  a  higher  maximum  peripheral  body

temperature  (mainly  reflecting  the  temperature  of  the  eyes),  but  a  lower  tail  surface

temperature  in  response to  our  handling  and transfer  procedure  in  fast  compared to  slow

explorers,  indicative  of  a  higher  sympathetic  reactivity  in  the  former  behavioral  type.  In

particular,  we investigated  the potentially  differential  response dynamics  of fast  and slow

explorers during the following minutes after the application of the stressor, and we compared

the differences between explorer types at increasing distances from the base of the tail. 
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2. MATERIAL AND METHODS

2.1. Study animals and housing conditions

Mound-building mice of our breeding stock at the animal facilities of the Laboratoire

d’Ethologie Expérimentale et Comparée, Université Paris 13 were descendants of 80 animals

caught  from the  wild  at  different  sites  in  Hungary  in  1999.  To  maintain  a  high  genetic

variation, additional individuals were captured at the same Hungarian collection sites every 2-

4 years. This has been done recently in 2016, 2.5 year before the onset of the present study,

when 10 wild-caught animals were added to our breeding stock.

For the production of experimental animals, breeding couples were housed with their

offspring in transparent polycarbonate cages (40.5  × 26.5 cm and 15 cm high, Tecniplast,

Buguggiate,  Italy)  containing  wood shavings as bedding material.  Around 15 cotton  balls

were always provided for nest building and cages were enriched with 2 cardboard rolls (3.7

cm diameter and 9.6 cm long). Water and food (rodent standard diet, Special Diets Services,

type M20, Witham, UK) were supplied ad libitum. The breeding and experimental rooms had

a 14:10 light/dark cycle with red light from 09:30 am until 07:30 pm, at a relative humidity at

approximatively 50% and a steady ambient temperature of 20 ± 0.5 °C (see controversial

suggestions  on  keeping  animals  in  the  laboratory  under  higher  ambient  temperature

conditions,  close  to  their  thermoneutral  zone  (Fischer,  Cannon,  &  Nedergaard,  2018;

Speakman & Keijer, 2012)).

In total, 59 juvenile mound building mice were used for experimentation in this study.

Until weaning on postnatal day 28, juveniles were housed with both parents. After weaning,

litter sibling groups were transferred to separate cages (40.5 × 26.5 cm and 15 cm high), also
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enriched with several cotton balls and 1 cardboard roll. To allow individual recognition of

litter siblings by the experimenter, animals were marked with different symbols on their back

with black, non-toxic hair dye (ProDye, Weaver Leather, Ohio, USA) on postnatal day 9, and

then again during the following weeks, in case the symbols started to fade. For this purpose,

the dye was quickly applied with a brush while pups were held by their flanks. For drying,

pups were  put  on a  paper  towel  sheet  under  a  heating  lamp for  5  min  before  they were

returned to the nest of their home cage.

A subset of the animals (sample A, N = 5 individuals from 5 different litters, 2 females

and 3 males) was used for a validation experiment of the thermal-response test. The other

subset (sample B,  N = 54 individuals from 8 different litters, 22 females and 32 males) was

first behaviorally phenotyped and then underwent the thermal-response test (details below).

2.2. Experimentation

Experiments were carried out in an experimental room adjacent to the breeding room

under the same light, temperature and humidity conditions. All tests (open field test, novel

object test, thermal-response test) were conducted under red light conditions, i.e., during the

animals’ activity period. Between the tests of different individuals, apparatuses were cleaned

with soap water and were dried afterward.

2.2.1. Behavioral phenotyping

Repeated  open-field  and  novel  object  tests  were  used  to  assess  the  animals’

exploration tendency. For each individual, the novel object test (duration: 5 min) was carried
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out right after the open field test (duration: 5 min). Tests were recorded by video cameras

(FDR AX-100 4K, Sony, UK) mounted 120 cm above the center of the test arena, and video

footage  was stored for  subsequent  behavioral  analyses.  Five min before the  beginning of

testing, home cages including experimental animals were transported from the breeding room

to the experimental room. Litter siblings were then separately taken from the home cage in a

random order for testing. Each individual was repeatedly tested, on postnatal day 33 (T1) and

day 43 (T2). The experimenter always left the room after the animals were entered into the test

apparatus.

2.2.1.1. Open field test

The  apparatus  consisted  of  a  white  opaque  polyethylene  circular  arena  of  60  cm

diameter, including a central and a peripheral part, surrounded by a 65 cm high wall. The

central  part  was  a  central  circle  not  visible  for  the  animals,  with  a  diameter  of  23  cm.

Individuals were always entered into the test arena at the same marked location close to the

wall of the apparatus. The test started when the individual was released. The total distance

covered and the distance covered by individuals in the central part of the open field were

quantified  using  the  software  EthoVision  XT 10 version 10.1 (Noldus,  Wageningen,  The

Netherlands).

2.2.1.2. Novel object test

Once the open field test  was completed,  the subject  was captured by the aid of a

transparent plastic tube open at one end (8 cm diameter and 17 cm high). Then, a novel object

was added in the center of the arena and the subject was released from the tube at the same
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starting location, close to the wall of the arena, as previously described during the open field

test.

On postnatal day 33 (T1), the novel object was a circular glass pot (6.7 cm diameter

and 4.6 cm high), whereas on postnatal day 43 (T1) it was a cylindrical silicone cake tin (8.9

cm diameter  and 4.6 cm high).  Three different behaviors were quantified during the tests

using the software BORIS version 6.2.2 (Friard & Gamba, 2016), the latency to approach and

to sniff the novel object, the time spent exploring it (sniffing, touching and climbing), and the

number of times that the animals climbed on the object (with all 4 paws on it).

2.2.2. Thermal-response test

The purpose of this test was to assess the animals’ short-term thermal responses to

handling including the transfer  into the test  apparatus  by measuring their  peripheral  body

temperatures  via  infrared  thermography.  The  test  apparatus,  into  which  the  animals  were

entered singly, consisted of a squared white PVC arena (23.5  × 23.5 cm) with 40 cm high

walls.  An  infrared  thermal  camera  capable  of  recording  video  sequences  (T650sc,  FLIR

Systems, Wilsonville, OR, USA; resolution: 640 × 480 pixels, sensitivity of < 20 mK at 30 °C

with an emissivity fixed at 0.95;  30 frames per s [30 Hz])  was mounted 136 cm over the

apparatus. The test procedure for animals from  sample A (N = 5) and  sample B (N = 54)

differed slightly (see below).
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2.2.2.1. Procedures during the thermal-response test

In a first step, we aimed to carry out a validation of the thermal-response test using

individuals of sample A (N = 5), who were between 39 and 41 days old at the time of testing.

For this sample, the test was only carried out once per individual. We aimed to explore the

changes in thermal response by comparing the (basal) thermal values quantified shortly before

handling,  when subjects  were still  in  their  standard  cages,  with the response  values  after

handling when transferred into the test apparatus. The procedure began by the isolation of

individuals in the evening of the day before testing. Being solitary is not an unusual situation

in the mound-building mouse; solitary females and males have been frequently found under

natural conditions (Gouat, Katona, & Poteaux, 2003; Simeonovska-Nikolova, 2012). For this,

we removed subjects from their home cages (in which they were housed with their siblings)

and placed them singly in a clean transparent polycarbonate cage (26.5 × 16 cm and 13 cm

high, Charles River, Wilmington, USA). The cage was left open to allow recordings from

above by the infrared thermal camera. To prevent the animals from jumping and climbing out

of their cages, the cage walls were extended by additional 60 cm high white and opaque PVC

walls. This isolation cage contained wood shavings, food pellets, and a filled water bottle. The

day after, two hours before the beginning of the test, the experimenter silently entered the

experimental room to switch the infrared thermal camera system into standby mode and then

left the room. For testing, the experimenter returned into the room, did not approach the cage

but switched on the camera via a cable connection to start the infrared thermal recording. The

isolated individual was filmed for 3 min within the cage, then was captured using a plastic

tube open at one end (8 cm diameter and 17 cm high) and moved to the right top corner of the

test apparatus (see description above). During this procedure, the apparatus was placed in such

a way that it was in focus of the thermal camera mounted above. Then, after this handling and
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transfer procedure, which lasted on average around 30 s per individual, thermal recordings of

subjects were continued in the absence of the experimenter for another 5 min. Four different

thermal parameters were recorded, see details below.

In a  second step,  responses  in  thermal  parameters  were measured  in  individual  of

sample B (N = 54 individuals). Testing was repeatedly done, on postnatal days 39 and 49.

However, the animals were not separated from their siblings during the night before. That is,

we only recorded thermal videos after the animals were placed singly into the test apparatus

for 5 min. Subjects were taken singly and in random order from their home cages containing

sibling groups and were placed into the test apparatus in the same way as described above.

2.2.2.2. Analysis of infrared thermal data

Measures of peripheral body temperatures (from whole body and tail, including the

eyes) were obtained from thermographic recordings with the software ResearchIR version

4.40.4.17 (FLIR System, Wilsonville, OR, USA).

Using recordings with a resolution of 30 frames per s, the maximum peripheral body

temperature for each individual and of each frame was saved to file, i.e., 900 measurements

per  30-s  interval.  For  each  30-s  interval,  we  only  chose  the  10%  highest  maximum

temperatures  recorded  to  select  frames  in  which  the  maximum  temperature  usually

corresponded to the temperature of the eyes or possibly (depending on the position of the

animal) to the inner parts of the ears (Lecorps et al., 2019). Based on this selection procedure,

we calculated the median of these 90 measurements.
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For the quantification of tail temperature parameters, thermal data were imported into

the program R version 3.5.3 (R Core Team, 2019) using the packages Therimage (Tattersall,

2019) and exiftoolr (O'Brian, 2019) and were processed using a script (written by one of the

co-authors,  CF)  to  sample  one  out  of  ten  successive  frames  from  the  thermal  videos.

Manually, two points were defined on each side of the tail at the base in order to define the

extremities of a first segment of pixels crossing the tail.  A third point was then manually

chosen in order to orientate and trace 10 successive parallel segments, each 1 pixel distant

from the other toward the distal part of the tail. Maximum temperatures of each segment of

pixels were then used to capture the tail temperature along 10 pixels (1st to 10th pixel distal to

the base of the tail), corresponding to a length of around 7 mm. Note that the complete tail

length of a mound building mouse of this age class (around 45 days) is approximately 6 cm;

see  (Lecorps et al., 2016) for a thermal image of a mouse including its tail using the same

infrared thermal camera system (Mus musculus, similar in size to M. spicilegus). Five frames

were  analyzed  using  this  method  at  each  5-s  interval  of  the  thermal  video  footage  for

individuals of  sample A (to reach a high, but time-consuming accuracy),  and at each 30-s

interval  for  individuals  of  sample B.  Median thermal  values  were calculated  for each 5-s

interval (sample A) or for each 30-s interval (sample B) for each tail position (1st, 5th and 10th

pixel distal to tail base).

2.3. Ethics note

Animals were kept and treated according to accepted international standards (Vitale et

al., 2018) and to the ethics and animal care guidelines of France, where the experiments were

carried  out.  Experimental  procedures  were  approved by the  local  authority  for  laboratory
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animal care and use (Comité d’Éthique en Expérimentation Animale Charles Darwin; #17922-

2018112916198301)  and  by  the  institutional  ethics  committee  (SBEA UP13).  Individuals

were bred for the purpose of a long-term study of which the presented results are part of; thus,

animals were kept for further follow-up experiments.

2.4. Statistical analyses

Statistical  analyses  were  done using  the  software  R version  3.5.3  (R  Core  Team,

2019). First, we analyzed data from  sample A (N = 5 individuals). For comparisons across

time of thermal parameters measured during the thermal-response test, we used linear mixed-

effects models LMM using the R package nlme (Pinheiro, Bates, DebRoy, Sarkar, & R Core

Team, 2019). As the sample size was rather small, we used a permutation test (10,000 Monte-

Carlo permutations, R package  pgirmess  (Giraudoux, 2018)) to calculate the  P-values. The

individual  identity  of  subjects  was  used  as  a  random  factor  to  account  for  repeated

measurements within the test.

We  used  a  principal  component  analyses  PCA  to  capture  the  information  of  the

animals’ (sample B,  N = 54) behavioral responses in the open field (total distance covered,

and the distance covered in the center of the arena) and in the novel object test (latency to

approach/sniff, time spent exploring the novel object, and number of climbing events on the

novel object) in a single score. This was done separately for the 2 days of testing T1 (postnatal

day 34) and T2 (postnatal day 44).  During  T1 and  T2, only the first component (first axis of

PCA) which we interpreted as an ‘exploration score’ for later analysis, had an eigenvalue > 1

118



4. Chapter 3: Differences between fast and slow explorers in short-term tail temperature responses

indicating that this component accounted for more variance than any of the original variables

of the standardized data. 

The exploration scores obtained by PCA were tested for repeatability across time (T1,

T2) using intra-class correlation  (Lessells & Boag, 1987). We used LMM-based calculations

of intra-class repeatability (RICC) with the R package rptR (Stoffel, Nakagawa, & Schielzeth,

2017).  P-value calculation was based on 10,000 Monte-Carlo permutations, with individual

identity  as  a  random  factor.  Furthermore,  we  considered  cage  identity  as  an  additional

(potentially confounding) random factor as litter sibling groups were housed in the same cage,

thus sharing the same environment and maternal origin.

Using  LMM-based  calculations  of  intra-class  repeatability,  we  also  checked  for

individual-level  (N =  54)  and  within-cage-level  (N =  8)  repeatabilities  of  the  different

peripheral temperature measures taken from animals of sample B during the 2 days of testing

(postnatal days 39 and 49). Individual identity and cage identity were used as random factors,

and the 30-s time interval after handling (10 levels, see Figs. 2, 3) and sex as fixed factors.

This was done to account for the variance explained by these two fixed effects by removing it

from  the  repeatability  estimate  (enhanced  agreement  repeatability  (Stoffel  et  al.,  2017)).

Temperature data were  standardized (scaled) within each day of testing to account for the

animals’ potentially different peripheral temperature levels on the different days of testing,

e.g. due to age-dependent differences in fur cover.

We aimed to assign individuals with clear fast and slow exploration tendency for later

analysis. Thus we discarded the central quartile (25%) of the distribution of exploration score,

i.e., animals (13 out of 54 individuals of  sample B) which were ambiguous with respect to

exploration trait.  By this procedure,  12.5% of the individuals above and 12.5% below the
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median  exploration  score  were  excluded  from further  considerations  (Rangassamy  et  al.,

2016).  The  remaining  animals  with  exploration  scores  above  this  threshold  interval  were

referred to as ‘fast explorers’ (N = 20), and individuals below this threshold interval as ‘slow

explorers’ (N = 20). This procedure was done overall, i.e., across all individuals of the sample.

Furthermore,  due to the strong and significant  differences  in thermal  response parameters

among cages (i.e., across litter  sibling groups; see Fig. A in the Suppl. Material),  we also

assigned an alternative, within-cage ranking of explorer types following the above-mentioned

procedure. That is, for each cage, we assigned fast and slow explorers relative to their litter

siblings and discarded ambiguous individuals whose exploration scores were within the 12.5

percentiles above or below the median exploration score of each cage (N = 8 cages; mean

litter size of sibling groups within cages: 7.4, range: 4–9 juveniles/cage).

Based  on  data  from  sample  B,  we  tested  for  differences  between  fast  and  slow

explorers  (fixed  factor  with  2  levels)  for  the  different  thermal  parameter,  using  absolute

peripheral  temperatures  (body and tail)  as  well  as  relative  temperatures  calculated  as  the

deviation from the cage mean (details in Table 2). We always included the 2-way interaction

between explorer type and time step (fixed factor with 10 levels) into the models to test for a

potentially differential dynamics in temperature values over time in fast and in slow explorers.

The models included two random intercept factors: individual identity and cage identity. In

case of the analysis of absolute temperature values, we provided the P-values of the random

factor ‘cage identity’ (by a likelihood ratio test, R package lmerTest (Kuznetsova, Brockhoff,

& Christensen, 2017)) to assess whether among-cage differences significantly contributed to

explaining the overall variance in the different thermal parameters. Analyses were carried out

by multifactorial LMM (R package lme4 (Bates, Maechler, Bolker, & Walker, 2015)). For the
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calculation  of  P-values,  we  applied  corrected  F-tests  with  Kenward-Roger  approximation

(Bolker et al., 2009). 

In cases where parametric statistics were used, we verified that model residuals were

well adjusted to a normal distribution by normal probability plots, and we checked for the

homogeneity of variances by plotting the fitted values versus the residuals (Faraway, 2006).

3. RESULTS

3.1. Thermal-response test

We compared the values of different thermal parameters 3 min before and 3 min after

subjects (sample A,  N = 5) were transferred from the isolation cage into the apparatus (light

gray bars in Fig. 1), taking into account a delay directly after the end of the transfer which was

not considered for analysis (dark gray bars in Fig. 1). After a delay of 2 min, the maximum

peripheral  body  temperature  (mainly  reflecting  the  temperature  of  the  eyes)  increased

significantly by on average 0.65 °C (LMM with 10,000 Monte-Carlo permutations: P < 0.001;

Fig. 1a). Already after a delay of 1 min, the maximum surface temperature close to the tail

base (distance of 1 pixel: P < 0.001; Fig. 1b) and at more distal positions on the tail surface (5

pixels: P < 0.001, Fig. 1c; 10 pixels: P < 0.001, Fig. 1d) decreased significantly by on average

0.64 °C, 0.42 °C and 0.25 °C, respectively.
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Figure  1. Time courses  of  4  thermal  parameters  quantified  during the  validation  of  the  thermal-

response test by infrared thermography. The transfer from the home cage into the test arena (handling)

lasted around 30 s. Each point represents the mean value ± SE of N = 5 individuals (sample A). Gray

bars represent the average temperature values over the indicated time spans.  Mind the differences in

scaling in (a-d), and note that the maximum peripheral body temperature (Tmax body) can be interpreted to

mainly reflect the temperature of the eyes. Statistical comparisons were carried out between values of

the 2 light  gray bars by LMM with 10,000 Monte-Carlo permutations;  significant  differences  are

indicated by different letters.
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3.2. Behavioral phenotyping

Before  the  thermal-response  test  carried  out  with  animals  of  sample  B  (N =  54),

subjects were behaviorally phenotyped by repeated open field and novel object tests. By a

PCA, we extracted scores (the first axis of the PCAs for T1 and T2, respectively) based on the

animals’ behavioral responses in these tests.

During both times of testing, higher individual score values of these first PCA axes

were associated with behaviors indicating high exploratory activity, such as a greater distance

covered in the open field arena (loadings T1: 0.402; loadings T2: 0.511) and in the center of the

open field (T1: 0.430; T2: 0.518), a shorter latency to approach and sniff the novel object (T1: –

0.329; T2: –0.272), a longer time spent exploring it (T1: 0.542; T2: 0.414), and a higher number

of climbing events on the novel object (T1: 0.501; T2: 0.475). The first axis of the PCA of T1

explained 54.5% and the first axis of T2 explained 49.2% of the total variance of the data.

Exploration scores were significantly repeatable across time at the individual level,

i.e., animals which had higher scores during  T1 also tended to have higher scores during  T2

(intra-class correlation by LMM with 10,000 Monte-Carlo permutations: RICC = 0.349, N = 54,

P =  0.003). For  further  analysis,  we assigned  individuals  with  low and  high exploration

tendency, which was based on the averaged exploration scores obtained during T1 and T2. To

this end, individuals with exploration scores of more than half a quartile below the median

were referred to as ‘slow’ explorers and individuals with scores of more than half a quartile

above the median were considered as ‘fast’ explorers. This procedure was applied (a) across

all individuals of the sample, as well as (b) for all individuals within each cage (Ncages = 8) to

obtain a categorization  of relatively  fast  and slow explorers  with respect  to  litter  siblings
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within the same cage. As a consequence, for both procedures (a, b) the sample sizes (sample

B) used for later analyses were reduced from N = 54 to N = 40 individuals.

3.3. Consistent individual differences in thermal responses

All thermal parameters considered, the maximum peripheral body temperature, and the

maximum surface tail temperatures measured at a distance of 1, 5 and 10 pixels to the tail

base, were significantly repeatable across the two times of testing, on postnatal days 39 and 49

–  although  intra-class  repeatabilities  were  moderate  or  low  (Table  1).  Cage-level

repeatabilities were not statistically significant, but there were statistical tendencies for some

temperature parameters (Table 1).

Table 1.  Individual-level and cage-level repeatabilities of different measures of peripheral body and

tail temperatures quantified by infrared thermography after subjects were handled and transferred into

a novel environment. Note that the maximum peripheral body temperature (Tmax body) can be interpreted

to mainly reflect the temperature of the eyes. Experiments were carried out on postnatal days 39 and

49, with  N = 54 individuals (sample B) kept in 8 cages (sibling groups). Analysis by LMM-based

intra-class correlations with 10,000 Monte-Carlo permutations, including individual identity and cage

identity as random factors. Significant effects are highlighted in bold.

Individual-level repeatability Cage-level repeatability

RICC Nindividuals P RICC Ncages P

Tmax body 0.122 54 < 0.001 0.200 8 0.142

Tmax tail – 1st pixel 0.046 54 < 0.001 0.170 8 0.062

Tmax tail – 5th pixel 0.061 54 < 0.001 0.085 8 0.079

Tmax tail – 10th pixel 0.065 54 < 0.001 0.021 8 0.184
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3.4. Differences in thermal responses in fast and slow explorers

3.4.1. Maximum peripheral body temperature

Overall differences: In accordance with the changes over time observed in  sample A

(N = 5; Fig. 1a), the measurements in sample B (N = 40) also showed significant increases in

the maximum peripheral body temperature (mainly reflecting the temperature of the eyes)

after handling and transfer into the apparatus (Fig. 2a; Table 1a). However, there were no

significant  differences  between  fast  and  slow  explorers.  Furthermore,  the  absence  of  a

significant interaction between time and explorer type indicated that there were no significant

time-specific differences in maximum body temperature (Table 2a).

There was a significant effect of between-cage variation in the maximum peripheral

body temperatures (Table 2a). This was also evident with respect to some tail temperatures,

see Table 2b, c (see also Fig. A in Suppl. Material).  Thus, we decided to also investigate

differences  between fast  and slow explorers  within sibling groups kept  in  the same cage,

respectively.

Within-cage differences: There was a significant interaction between the differences in

exploration type within cage and the time of measuring (Table 2a).  Post-hoc comparisons

revealed a significantly lower relative maximum body temperature (deviation from the cage

mean) in faster than in slower explorers only during the last time interval, 270-300 s after the

end of the handling and transfer procedure (Fig. 2b).

There were no significant differences between males and females, neither with respect

to absolute or relative (within-cage differences in) maximum body temperatures (Table 2a).
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Figure  2. Time courses  of  the  maximum peripheral  body  temperature  quantified  in  the  thermal-

response test (sample B) during 5 min after handling; (a) absolute values and (b) relative values within

cage  calculated  as  the  deviation  from  the  cage  mean.  Note  that  the  maximum  peripheral  body

temperature can be interpreted to mainly reflect the temperatures of the eyes. Mean values ± CI 95% of

fast explorers (black circles) and slow explorers (gray circles) are shown for each 30-s interval. (a)

Differences between fast and slow explorers were not significant. (b) The interaction between time

interval and behavioral explore type was significant, thus post-hoc comparisons were carried out for

each interval; significant differences are given (**P < 0.010). See Table 2 for details on statistics.

3.4.2. Maximum surface temperature of the tail

Overall differences: Also here, in accordance with the pattern observed in  sample A

(N = 5;  Fig.  1b-d),  the  measurements  of  tail  temperatures  in  sample  B (N =  40)  showed

significant decreases over time at the 3 different positions sampled (Fig. 3a-c; Table 2b-d). 
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Overall,  at  1,  5  or  10  pixels  distal  to  the  tail  base,  the  maximum  tail  surface

temperatures  were  significantly  lower  in  fast  than  in  slow  explorers,  and  the  average

differences in temperatures accounted 1.00 °C at the position closest to the tail base (pixel 1),

1.06 °C at the middle position (pixel 5), and 1.06 °C at the most distal position considered

(pixel 10). There were no significant interactions between time interval and explorer type,

indicating that the differences between fast and slow explorers were not time interval-specific

(Table 2b-d).

Also here, there were indications for significant between-cage variation in temperature

values,  at  least  with  respect  to  peripheral  maximum  tail  temperatures  measured  at  the

positions of pixel 1 and 5 (Table 1b, c; see also Fig. A in Suppl. Material).

Within-cage differences: For all 3 positions, at the 1st, 5th and 10th pixel distal to the tail

base, we found significant interactions between the differences in exploration type within cage

and the time of measuring (Table 2b-d). Overall, the time course of the average differences in

temperature deviations from the cage mean revealed more pronounced differences between

fast and slow explorers mainly during the earlier time intervals after handling. This trend was

increasingly  evident  with  respect  to  measurements  taken  more  distal  from the  tail  base,

confirmed by the pattern of statistically significant post-hoc comparisons between relatively

fast and slow explorers at the 3 different tail positions (statistics in Fig. 3d-f).

Again, there were no significant differences between males and females, neither with

respect to absolute or relative (within-cage) maximum tail temperatures (Table 2b-d).
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Figure 3. Time courses of the maximum surface tail temperatures quantified in the thermal-response

test (sample B) during 5 min after handling; (a-c) absolute values and (d-f) relative values within cage,

calculated as the deviation from the cage mean. Mean values ± CI95% of fast explorers (black circles)

and slow explorers  (gray  circles)  are  shown for  each  30-s  interval.  (a-c)  Thermal  values  of  fast

explorers were significantly lower than in slow explorers. (d-f) The interactions between time interval

and behavioral explore type were significant,  thus post-hoc comparisons were carried out for each

interval;  significant  differences  are  given (*P <  0.050;  **P <  0.010).  See Table  2 for  details  on

statistics.
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Table 2. Effects of different explanatory variables on thermal parameters, (a) the maximum peripheral

body temperature  (mainly reflecting the temperature of the eyes)  and (b-d) the  maximum surface

temperature of the tail measured 1, 5 or 10 pixels distal to the tail base (animals from  sample B).

Overall temperature differences as well as relative differences within cages, calculated as the deviation

from the cage mean (N = 8 cages), were analyzed. The factor exploration tendency contained 2 levels,

fast (N = 20) and slow (N = 20) explorers; the factor time step contained 10 levels as shown in Figs. 2,

3. Analysis by multifactorial LMMs including individual identity and cage identity as random factors.

Significant effects are highlighted in bold.

Overall differences in max.
temperature

Relative differences in max.
temperature (within cage)

Dependent variable Explanatory variables F df P F df P

(a) Tmax body Sex 0.090 1 0.329 1.502 1 0.229

Exploration tendency E 0.646 1 0.427 0.685 1 0.415

Time step T 26.223 9 < 0.001 0.101 9 0.999

E  T 0.700 9 0.709 1.965 9 0.043

1Cage identity 216.125 1 < 0.001 -- -- --

(b) Tmax tail – 1st pixel Sex 1.554 1 0.222 0.040 1 0.842

Exploration tendency E 5.198 1 0.029 7.599 1 0.010

Time step T 89.844 9 < 0.001 0.187 9 f0.995

E  T 1.119 9 0.348 2.482 9 0.009

1Cage identity 222.158 1 < 0.001 -- -- --

(c) Tmax tail – 5th pixel Sex 0.001 1 0.981 0.504 1 0.482

Exploration tendency E 6.839 1 0.013 10.188 1 0.003

Time step T 150.159 9 < 0.001 0.177 9 0.996

E  T 0.363 9 0.952 4.284 9 < 0.001

1Cage identity 27.814 1 0.005 -- -- --

(d) Tmax tail – 10th pixel Sex 0.097 1 0.758 1.511 1 0.227

Exploration tendency E 12.529 1 0.001 10.401 1 0.003

Time step T 203.558 9 < 0.001 0.131 9 0.999

E  T 1.148 9 0.328 5.937 9 < 0.001

1Cage identity 2 < 0.001 1 > 0.999 -- -- --
1 Cage identity was used as a random factor; the statistical significance of among-cage variance was calculated

by likelihood-ratio test and thus 2 chi-square values are provided.
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4. DISCUSSION

4.1. Thermal-response test

We successfully verified that our experimental design, consisting in a brief handling

and transfer procedure of subjects from their cage into a small arena caused significant and

quick changes in the maximum peripheral body and tail temperatures, assessed by infrared

thermography (see Fig. 1). The observed decreases in tail surface temperatures corroborate

previous  findings  in  rodents  using  other  kinds  of  brief  challenges  (Lecorps  et  al.,  2016;

Vianna & Carrive, 2005; Vianna & Carrive, 2012) and can be considered to result from the

stimulation of the sympathetic nervous system causing vasoconstriction of tail arterio-venous

anastomoses  thus  leading to  a reduction  of  the cutaneous blood flow  (Blessing,  2003;  de

Menezes, Ootsuka, & Blessing, 2009).

Thermal  recordings  of  the  visible  body  surface  in  adult  mice  indicate  that  the

maximum temperature usually corresponds to the temperature of the eyes, mostly driven by

the  blood  flow  in  the  rich  capillary  beds  surrounding  the  eyes  (Valera  et  al.,  2012).

Furthermore, eye temperatures as measured in studies using infrared thermography have been

shown to well reflect an animal’s body core temperature (Collins et al., 2018; Perez de Diego

et al., 2013). Eye temperature typically shows short-term increases in stressful situations due

to vasodilatory effect by sympathetic activation (Dai et al., 2015; Lecorps et al., 2016; Travain

et al., 2015), thus explaining the increase in the maximum peripheral body temperature in

response to handling observed in our study (but see (Gjendal et al., 2018)).
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4.2.  Association  between  exploration  tendency  and  the  animals’  consistent

thermal responses

We could  successfully  phenotype  the  animals  based  on  their  consistent  individual

differences in exploration tendency in repeated open field and novel object tests, confirming

previous findings in the mound-building mouse (Rangassamy et al., 2015; Rangassamy et al.,

2016), and in accordance with studies in other rodent species  (Ferrari et al., 2013; Herde &

Eccard, 2013; Mazza, Eccard, Zaccaroni, Jacob, & Dammhahn, 2018; Rödel & Meyer, 2011;

Yuen, Pillay, Heinrichs, Schoepf, & Schradin, 2015). The results of our study also suggest the

existence of consistent individual differences in sympathetic responder types as exemplified

by the significantly repeatable peripheral maximum body and tail temperatures in response to

the  handling  and  transfer  procedure  carried  out  at  different  ages.  The  existence  of

consistencies in an individual’s sympathetic (re)activity is part of the concept of coping style,

referring  to  individual  differences  in  both  behavioral  and  physiological  responses  to

environmental  perturbations  (Koolhaas  et  al.,  1999;  Koolhaas  et  al.,  2010).  This  is  for

example supported by studies in calves Bos taurus (Van Reenen et al.,  2005) and in wild

Alpine marmots Marmota marmota (Ferrari et al., 2013) showing individual consistencies in

breathing rates and/or in heart rates in response to stressful test situations. To date, there are

only  very  few published studies  suggesting  consistent  individual  differences  over  time  in

sympathetic activity based on infrared thermographic measurements  (Herborn et al., 2015),

and to the best of our knowledge, ours is the first to show such individual consistencies in tail

temperature responses to challenge. Repeatabilities in our study were low or moderate (see

Table 1), which might, on the one hand, indicate a higher degree of intra-individual plasticity

in sympathetic stress responses. 
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Returning to the main aim of the study, our findings provide clear support for a higher

sympathetic  reactivity  in fast  than in slow explorers by means of their  consistently  lower

maximum  tail  surface  temperatures  measured  repeatedly  during  5  minutes  following  the

handling and transfer procedure.  Similar  results have been obtained in studies using other

markers of the animals’ sympathetic reactivity. In alpine marmots, higher breathing rates and

heart rates were found in animals who were more active in the open field test (Ferrari et al.,

2013),  and  a  study  in  Eastern  chipmunks  Tamias  striatus found  a  comparatively  higher

increase in heart rates during a restraint test in animals phenotyped as fast explorers based on

their open field behavior  (Montiglio et al., 2012). Furthermore, great tit chicks Parus major

from a selected line of fast explorers showed a stronger increase in breathing rates in response

to  isolation  and  handling  stress  than  slow  explorer  individuals  (Fucikova  et  al.,  2009).

However, we surprisingly did not find clear and significant differences between fast and slow

explorers with respect to the maximum body surface temperature, which is usually interpreted

to reflect the temperature of the eyes  (Lecorps et al., 2019). We propose that studies using

more direct measurements of eye temperatures might be done to further investigate potential

differences between different personality types.

Although not part of the original focus of our study, we detected notable differences in

tail temperatures among sibling groups housed in different cages (see Fig. A in the Suppl.

Material).  This was further supported by highly significant  effects  of cage identity  in our

statistical analyses when comparing fast and slow explorers (see Table 2), and by statistical

tendencies pointing towards cage-level consistencies in peripheral body and tail temperatures

(see Table 1). The potential underlying causes for such a comparatively lower within-cage but

higher  between-cage  variance  in  peripheral  body  temperatures  in  response  to  our  stress-
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inducing procedure could be manifold,  ranging from cage-specific  differences  in huddling

behavior  thus  affecting  the  overall  peripheral  temperature  of  all  individuals  per  cage,  to

(epi)genetic  effects  driving  similarities  in  stress  responsiveness  between  litter  siblings

(Wilson, 2017; Young & Morrison, 1998). Thus, we decided to run additional analyses to

explore  possible  associations  between  within-cage  (and  thus  within-litter)  differences  in

exploration tendency and within-cage differences in thermal responses to our handling and

transfer  procedure.  By  this  approach,  we  intended  to  eliminate  potential  biases  due  to

between-cage  differences,  which  we  suggest  might  be  an  easily  overseen  issue  in

thermographic  experimentation  with  laboratory  animals.  Interestingly,  even  within  sibling

groups, relatively fast explorers showed significantly lower maximum temperatures on the tail

surface than their littermates with slow exploration type. And most importantly, these within-

cage analyses revealed more differential temporal response pattern between explorer types,

with  most  pronounced  differences  during  the  first  min  after  the  handling  and  transfer

procedure. Furthermore, the magnitude of these differences increased with increasing distance

to the tail base, although we quantified surface temperatures only along the first 7 mm (i.e., 10

pixels) distal to the base. These findings might have applied implications for the design of

thermographic studies in laboratory rodents.

4.3. Conclusions

The major strength of our approach using infrared thermography was the possibility to

record the temporal dynamics of individuals’ responses to a brief stress-inducing procedure

without any further disturbance of the animals by the measurement itself. By such recordings,

we could show consistently lower maximum tail surface temperatures in fast compared to
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slow explorers,  indicating  a  higher  sympathetic  activity  in  the former.  We emphasize  the

possibility to use thermal recordings of body surface temperatures in response to standard

handling procedures as a quick and feasible method to phenotype the animals’ sympathetic

(re)activity, and thus potentially their coping style (Ågren et al., 2009).

Furthermore,  by  our  findings,  we  draw  attention  to  differences  among  groups  of

animals (here: litter sibling groups) kept in different cages, as in our study such cage effects

accounted  for a  significant  part  of the  variance in  peripheral  body temperatures.  Keeping

laboratory rodents in groups is conform to animal welfare legislation, and for example in our

case mixing different litters of juvenile wild-origin mound building mice was not feasible as

this would have led to considerable perturbations within cages. Thus, we suggest the analysis

of  within-cage  (or  within-litter)  differences,  for  example  by  calculating  deviations  from

average values per cage, as a useful complementary approach to overcome potential biases

driven by cage or litter effects  (Lazic & Essioux, 2013; Rödel, Bautista, Roder, Gilbert, &

Hudson, 2017).
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SUPPLEMENTARY MATERIAL

Figure A.  Between-litter differences in (a) the maximum peripheral body temperature and (b-d) the

maximum surface temperatures of the tail 1 pixel, 5 pixels and 10 pixel distal to the base, averaged

over a period of 120 s to 300 s after handling and transfer of subjects to the apparatus (sample B, N =

54 individuals).  Note that  the maximum peripheral  body temperature can be interpreted to mainly

reflect  the  temperatures  of  the  eyes.  Open  circles  correspond  to  individual  temperature  values

(averaged over two times of measurements during postnatal days 39 and 49) of litter siblings within

each cage, and gray bars represent the average within cage. There were highly significant differences

between  the  different  litter  sibling  groups  kept  in  different  cages,  with  respect  to  all  4  thermal

parameters (linear models with 10,000 Monte-Carlo permutations: all P < 0.001). 
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5. General discussion

5.1. Overview of the results

The  aim  of  this  project  was  to  contribute  to  the  field  of  animal  personality,  by

exploring one of its possible mechanisms: the individual differences in emotional reactions, in

two rodents of wild origin (the house mouse and the mound building mouse). To this aim, I

first  assessed  the  short-term consistency  over  time  of  three  components  of  an  emotional

reaction  (behavior:  Chapter 1;  cognition:  Chapter 2;  physiology:  Chapter 3).  Second,  I

tested for associations between consistent individual differences in exploration tendency and

these three emotional components (see 5.2 for a complement to the  Chapter 1). Moreover,

rather than determining discrete emotions, such as joy or fear, I used different non-invasive

techniques  to  evaluate  the  valence  (judgement  bias:  Chapter  2)  and  the  arousal  (pups’

ultrasonic  vocalizations:  Chapter  1;  peripheral  temperature  via  infrared  thermography:

Chapter 3) of the emotional experience.

Overall, we found that the individual differences in each emotional component were

consistent over time, although on short time spans. Also, the house mouse pups’ isolation calls

were consistent across three distinct situations, that is, these calls could be used to phenotype

the  pups  from  an  early  age  (Chapter  1).  As  expected,  we  could  also  phenotype  our

individuals based on their exploration tendency in repeated open field and novel object tests.

Finally, we showed that more explorative individuals judged an ambiguous situation more

negatively  (house  mouse:  Chapter  2)  and  showed  a  stronger  sympathetic  reactivity  in

response to a mild stressor, particularly when considering differences within sibling groups

(mound-building mouse: Chapter 3).
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5.2.  Complement  of  Chapter  1:  Associations between

individual  differences  in  isolation  call  rate  and

exploration tendency

As a supplementary question to Chapter 1, with a developmental perspective, I asked

whether  and  how  individual  differences  in  pups’  isolation  calls  were  associated  with

individual differences in exploration tendency measured during early adulthood. To this aim,

from the 320 pups tested for their individual profiles in isolation call rate, a subsample of 118

males were tested for their individual exploration tendency through repeated open field and

novel  object  tests  (postnatal  days  41  and  71).  The  individual  exploration  scores  were

calculated by running a PCA based on the total distance covered in the open field, the latency

to first  sniff  the object  and the  percentage  of time spent  exploring the object;  behavioral

variables were averaged between the two times of test beforehand. All pairwise associations

were tested using linear mixed-effects models with litter identity as a random factor. More

details about the experimental procedure and the calculation of the exploration score are given

in the Material and Methods of Chapter 2 (p. 72).

Results 1: Associations between individual differences in exploration scores and in

isolation calls (rates and increases) during the 2-min initial isolation. Exploration scores were

not significantly associated with the average number of isolation calls emitted (i.e., isolation

call rate) during the first 2 min of separation each day (LMM:  pseudoR2 = 0.017;  F1,113 =

1.921,  p =  0.168)  or  with  the  average  initial  increase  in  vocalization,  as  measured  by

individual regression slopes during the same time period (pseudoR2 = 0.009; F1,113 = 1.179, p =

0.280).
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Results  2:  Associations  between  individual  differences  in  exploration  score  and

changes in isolation call rate in response to treatments. None of the pairwise associations

between exploration scores and the immediate or 1-min delayed responses to the treatments

were significant (Table 1). That is, the exploration tendency in early adulthood could not be

predicted by early vocalization profiles.

Table 1 Associations between exploration scores and changes in isolation call rates in response to

three different treatments (N = 118 males). Responses to treatments were calculated as the difference

in isolation call rate between 60 s before and (a) 20 s or (b) the 2nd minute after treatment (see details

in  Fig.  1  of  Chapter  1).  Exploration  scores  were  calculated  by  running  a  PCA based  on  three

behavioral variables averaged between the two times of test: the total distance covered in the open

field, the latency to first sniff the object and the percentage of time spent exploring the object. Analysis

by linear mixed-effects models with litter identity as a random factor; none of the tested associations

was statistically significant.

Changes in call rate
[Repeated isolation

treatment]

Changes in call rate
[Nest treatment]

Changes in call rate
[Male treatment]

pseudoR2 F p pseudoR2 F p pseudoR2 F p

(a) Exploration score 0.001 0.090 0.764 0.020 2.485 0.118 0.004 0.509 0.477

(b) Exploration score 0.000 0.058 0.810 0.000 0.026 0.872 0.022 2.920 0.090
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Discussion.  We did not find significant associations between the early vocalization

profiles  and  the  individual  differences  in  exploration  tendency  evaluated  during  early

adulthood. Our results  are consistent with another study conducted in the mound building

mouse  which  did  not  report  significant  correlations  between  the  number  of  calls  emitted

during a short separation from the nest and behavioral responses in repeated open field and

novel object tests (Rangassamy, 2016).

However,  the  latter  author  reported  that  pups  emitting  a  higher  number  of  early

isolation calls showed less positive social behaviors within their sibling group. Contradictory

results  have  been  reported  in  laboratory  mice,  in  which  high  vocalizer  pups  were  more

sociable when tested as adults (Yoshizaki et al.,  2017). Although both studies labeled the

variables quantified as ‘sociability’, the methods applied highly differed. Rangassamy (2016)

assessed the social interactions (number of initiations of contacts and approaches) within the

sibling  group,  composed  of  4  individuals,  in  their  home  cage.  Yoshizaki  et  al.  (2017)

confronted a single individual to an unfamiliar conspecific in a three-chamber apparatus and

recorded the time spent with it. Isolation calls are considered as an expression of an anxiety

state driven by the separation from the nest and caregivers (Caruso et al., 2018; Hofer et al.,

2002) and may be an expression of the PANIC/SADNESS system (Panksepp, 2005).  We

suggest that individuals showing a higher sensitivity of this latter system, which is triggered

by social  separation,  would spend more time near their  siblings.  Hence,  quantifying other

behavioral variables, such as time spent huddling and inter-individual distance, would indicate

whether the individuals might have been phenotyped as less sociable (i.e., they initiated less

contacts:  Rangassamy,  2016)  because  they  spent  more  time  in  close  proximity  to  their

siblings. Moreover, pups emitting a higher number of vocalizations may trigger more care

behaviors (e.g., licking) and interactions with the mother (Brouette-Lahlou, 1992; Hahn &
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Lavooy, 2005; Noirot, 1969), leading to an increased adult sociability, also expressed towards

unfamiliar conspecifics (Lassi & Tucci, 2017; Yoshizaki et al., 2017). Investigating sociality

in  different  situations  within  the  same  study  would  help  to  understand  the  mechanisms

underlying its associations with early isolation calls. Our next steps will be to evaluate the

social interactions among siblings, shortly after weaning (postnatal days 28 and 35, Fig. G),

using a method adapted from Rangassamy (2016), to potentially highlight similar associations

in the house mouse than the ones reported in the mound building mouse (Rangassamy, 2016).

We will also test for association between isolation call rates and responses to the emotional

contagion test (Appendix 6.2., p.179).

Based on our results reported in  Chapter 2 (more explorative mice showed a more

negative judgement bias; see also 5.4.3., p.161), we would have expected that the number of

isolation calls would be positively associated with exploration tendency, as both are assumed

to be driven by negative affective states. The absence of associations may be due to different

mechanisms driving the emission of early isolation calls and exploration tendency. Also, it

may be a consequence of the crucial changes (both behavioral, physiological and neuronal),

that  the  young  undergo  before  and  around  weaning  (Biro  &  Stamps,  2008;  Stamps  &

Groothuis, 2010a,b; Trillmich & Hudson, 2007; Trillmich et al., 2018).

The study of ultrasonic vocalizations outside courtship (Musolf et al., 2010) remain

recent  in  subadults  and  adult  mice  (Ferhat  et  al.,  2016;  Heckman  et  al.,  2016).  Such

vocalizations  have  been  shown to  be  expressed  during  affiliative  encounters  in  subadults

(Panksepp et al., 2007), during territorial interactions (Portfors & Perkel, 2014) or in response

to pain (Williams et al., 2008) and fear (Ko et al., 2005). It was also reported that adult male

laboratory mice vocalize when exploring a novel environment (Chabout et al., 2012; Mun et

al., 2015). The acoustic features of the ultrasonic calls also depend on the context of emission
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and, in particular, low-frequency calls may be emitted in more stressful situations (Mun et al.,

2015). We suggest that quantifying the number and type of ultrasonic vocalizations (Heckman

et  al.,  2016),  during  social  and  non-social  test  situations  in  subadults  and  adults,  may

considerably  contribute  to  the  study  of  the  ontogeny  of  early  isolation  calls  and  their

underlying emotional state.

In  conclusion,  we  suggest  that  individual  isolation  call  rates,  showing  a  high

consistency across time and situations, may reflect an early personality trait. Further studies

should emphasize on the contexts  in which personality  traits  and emotional  behaviors  are

assessed in adults, as it could explain the discrepancies reported across studies, and focus on

the  associations  between  early  and  adulthood  ultrasonic  vocalizations.  It  could  help  to

understand  whether  early  vocalization  profiles  might  predict  individual  differences  in

personality  traits  and coping ability  when confronted to challenging social  and non-social

situations in adulthood, and might shed light on the mechanisms of such associations.

5.3. About the difficulty to use the elevated plus maze

data to evaluate anxiety in the house mouse

It was initially planned to assess anxiety, through repeated elevated plus maze tests

(EPM, at  postnatal  days  40  and  70;  Fig.  G),  and to  test  for  associations  with  the  pups’

isolation calls (Chapter 1) and the adults’ judgement bias (Chapter 2). I finally decided to

exclude  the  EPM  test  from  analysis,  hence  to  not  assess  these  associations,  for  several

reasons.

First,  it  was surprising that the percentage of time spent in the open arms and the

number of entries in the open arms, two common variables evaluated in the EPM for anxiety

in rodents (Carobrez & Bertoglio, 2005; Harro, 2018; Lecorps et al., 2016; Rangassamy et al.,
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2016;  Rodgers  & Cole,  1994),  were  not  associated  with  any  of  the  behavioral  variables

assessed in  the open field and novel object  tests.  Yet,  numerous studies reported that  the

behavior of rodents in these three standard tests, although the name given to the variables

(exploration,  boldness,  anxiety,  etc.)  may differ  between researchers,  can form together  a

behavioral syndrome (e.g., mound-building mouse: Rangassamy, 2016; laboratory rat: Rödel

&  Meyer  2011;  guinea  pig:  Guenther  et  al.  2014;  house  mouse:  Lecorps  et  al.,  2016).

Typically,  less anxious individuals in the EPM are also more active in the open field and

explore  more  the  novel  objects.  Moreover,  the  behavior  in  EPM  was  not  significantly

associated  neither  with the pups isolation call  rates (Chapter 1)  nor with judgement  bias

(Chapter 2), where we expected that more anxious individuals would judge more negatively

the ambiguous cue (results not shown).

Second,  the  EPM  is  assumed  to  be  aversive  and  to  lead  to  unconditioned  fear

responses (Arabo et al., 2014; Carobrez & Bertoglio, 2005; Roy et al., 2009). Indeed, due to

the fear of rodents for open spaces leading to thigmotaxis behavior (that is, animals remain

close to vertical surfaces in a defensive purpose: Grossen & Kelly, 1972), it is expected that

individuals will prefer the closed arms and avoid the open ones (Carobrez & Bertoglio, 2005;

Pellow et al., 1985; Treit et al., 1993). When I assessed the overall time spent in open and

closed arm during the 5 min of test, I found that the individuals spent on average more time in

the open than in the closed arms (Table 2).
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Table 2. Average time spent in open and closed arms of the elevated plus maze, over the total 5 min of

the test,  for  (a)  the  first  test  session T1 at  postnatal  day 40 and (b)  the  second test  session T2 at

postnatal day 70 (N = 110 male house mice). The percentage of average time is also presented. 13

individuals,  which  repeatedly  jumped  out  of  the  apparatus,  were  excluded.  Description  of  the

apparatus is given in Rangassamy et al. (2016). The individual was counted as being entered in the arm

when at least half of its body crossed the entrance.

Average (s) % Average

(a) T1 Time spent in open arms 134.6 45.1

Time spent in closed arms 106.8 35.8

(b) T2 Time spent in open arms 101.8 34.2

Time spent in closed arms 112.1 35.5

Thus,  instead  of  analyzing  the  overall  5  min  of  test,  I  performed a more detailed

temporal analysis of the time spent in open and closed arms, for each minute, in a subsample

of 67 individuals during the first test session (Table 3), as it has been advised by Carobrez &

Bertoglio (2005).

Table 3. Repartition of the time spent in open and closed arms of the elevated plus maze during each

minute of the first test session at postnatal day 40 (N = 67 male house mice). The average time and

percentage of average time per minute are also presented. The trial lasted for 5 min. Description of the

apparatus is given in Rangassamy et al. (2016). The individual was counted as being entered into an

arm when at least half of its body crossed the entrance.

Time of the test 

1st min 2nd min 3rd min 4th min 5th min Average % Average

Time spent in open 
arms (s)

35.7 30.3 26.8 23.6 23.7 28.0 46.7

Time spent in closed
arms (s)

15.1 19.9 20.7 23.7 23.0 20.5 34.1
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I found that the mice exhibited an unexpected pattern of exploration in the EPM: a

higher initial time spent in the open arms that decreased over time and an opposite pattern for

the closed arms. The individuals did not show a clear preference for the closed arms.

Thus, our individuals did not exhibit the expected anxiety-related behavior which is

typically displayed in such test (that is, an avoidance of the open arms; Pawlak et al., 2012;

Rodgers & Johnson, 1995). In other studies, the arms of the EPM are most often illuminated

with white lights, which may directly increase anxiety-related behavior (Albani et al., 2015;

Griebel et al., 1993b; Hogg, 1996; Post et al., 2011). Furthermore, arms are either exposed

with different light intensities with the open arms being brighter (Pereira et al., 2005) or with

a similar illumination (Walf & Frye, 2007). Our experiment was conducted under red light

conditions, to imitate the night period. Thus, we tested the individuals during their activity

period, which might have led to higher arousal and risk-taking behavior. However, our EPM

method  has  been  previously  applied  with  success  by  others  within  our  group  to  assess

individual differences in anxiety in the house mouse (Lecorps et al., 2016) and the mound-

building mouse (Rangassamy et al., 2016). However, they did not report an analysis detailed

per minute,  which makes it  difficult  a direct comparison of these results  with our current

experiment.

Other researchers have conducted this type of minute-by-minute analysis and reported

a similar or a higher exploration of the open arms at the beginning of the trial, before shifting

towards  a  preference  for  the  closed  arms  from the  third  minute  on  (Arabo  et  al.,  2014;

Carobrez & Bertoglio, 2005; Casarrubea et al., 2013). Anxiety may arise from the conflict

between avoiding and exploring a threatening stimulus (Gray and MacNaughton, 2000; Ohl,

2003). Behavioral variables used to quantify anxiety should not be confounded with escape or

avoidance responses; anxiety should persist when there is no possibility to escape from the
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threat (Ennaceur et al., 2010). In the EPM, the open arms constitute such a threat and typically

should lead the animals to prefer the closed arms. However, it has been suggested that the

time spent in open arms within the first two minutes could be motivated by curiosity towards

the novelty  of  the situation  (Carobrez & Bertoglio,  2005).  From the third minute  on,  the

approach/avoidance conflict has been suggested to lead to a shift in behavior and the closed

arms  are  preferred  (Carobrez  &  Bertoglio,  2005).  Hence,  anxiety  due  to  the

approach/avoidance conflict would arise only after a familiarization to the apparatus and the

learning of its spatial  configuration (Arabo et al.,  2014; Rodgers & Shepherd,  1993; Roy,

2009). Some entries into the open arms within the first minutes might also be considered as

attempts to escape from the maze (Arabo et al., 2014), which would be coherent with other

studies reporting an increase in exploration of the open arms by individuals of a laboratory

mouse strain selected for high anxiety levels (Brinks et al., 2007).

As  an  alternative  to  ‘forced  exposure’  EPM,  it  has  been  suggested  to  allow  the

individuals to freely explore the maze from a familiar box connected to the extremity of a

closed arm (Roy et al., 2009). Studies comparing ‘free’ to ‘forced exposure’ EPM reported

that laboratory rats and mice avoided the open arms from the beginning of the trial (Arabo et

al., 2014; Roy et al., 2009). Although it was argued that the anxiety state should decrease

rapidly when there is a possibility to escape from the threat (Ennaceur et al., 2010), laboratory

mice exposed to ‘free exposure’ EPM showed behaviors indicating an approach/avoidance

conflict, such as a higher number of returns to the closed arms and risk-assessment behaviors,

and the animals spent less time in the open arms during the total duration of the trial (Arabo et

al., 2014).

However, in our EPM experiment, the individuals did not show any preference for the

closed arms, even during the last minute of the trial (Table 3). Therefore, it is not possible to
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interpret  their  anxiety  level  based solely  on the time spent  in  each type  of  arms.  Indeed,

spending more time in the open arms could result from low anxiety levels (Pellow et al., 1985;

Post et al., 2011), but it could also be interpreted as attempts to escape due to high anxiety

levels induced by the aversive situation (Roy et al., 2009). Other variables, as the number of

feces, number of rearing in open arms (Arabo et al., 2014) or other risk assessment behaviors

(Rodgers et.  al.,  1996;  Sorregotti  et  al.,  2013),  may be integrated  into  the analysis.  Such

variables might allow us to clarify the intensity of the emotional state driving the individuals

to  spend  more  time  in  the  aversive,  open  arms.  Furthermore,  the  number  of  individuals

jumping  out  of  the  apparatus  is  rarely  reported  (e.g.,  Frynta  et  al.,  2018)  and  might  be

interpreted as a way to escape from the maze. In our experiment, 12% of the tested individual

had to be excluded because they repeatedly jumped out of the apparatus within the first 3 min

of testing, which is higher than what has been reported by others (e.g., Frynta et al., 2018).

Finally,  it  has  been  reported  that  individuals  from  the  subspecies  Mus  musculus

domesticus of wild origin, as we used in this thesis, were bolder (Frynta et al., 2018), more

aggressive (Frynta et al., 2005) and exhibited a lower thigmotaxis (Hiadlovská et al., 2013)

than the subspecies Mus musculus musculus of wild origin. We suggest that the EPM, at least

in its ‘forced exposure’  configuration,  might not be a suitable  test to study anxiety in the

house mouse of wild origin. Comparing individual differences in short-term thermal responses

as a measure of anxiety, using infrared thermography, in ‘free’ and ‘forced exposure’ EPM

within  the  same  individuals  might  help  clarifying  the  intensity  of  the  emotional  state

experienced by house mice. In particular, the ‘free exposure’ EPM would avoid to induce a

stress reaction by handling the individuals (as we reported in Chapter 3), which might have

been a potential confounding effect in a previous study using infrared thermography to assess

anxiety in a ‘forced exposure’ EPM (Lecorps et al., 2016).

155



5. General discussion

5.4.  Relationships  between  individual  differences  in

emotions and personality

5.4.1. Consistency of emotional responses over time

The existence  of  a  consistency over  time  of  the  emotional  components  (behavior,

physiology and cognition) would support that differences in emotional systems may result in

distinct  personality  traits.  Indeed,  as personality  is  considered stable  over  reasonably long

periods  of  time,  its  causal  mechanisms  can  be  expected  to  also  show a  certain  temporal

consistency. Although we applied in this research project a correlational, and not a causal,

approach, our first aim was to assess the consistency over time of each emotional component.

Individual differences in isolation call rate (Chapter 1) and judgement bias (Chapter

2) were highly repeatable (respectively, RICC = 0.577 and RICC = 0.711). However, the maximal

peripheral temperatures showed only low to moderate individual-level repeatabilities in adults

(body: RICC = 0.122; tail 1st pixel: RICC = 0.046; tail 5th pixel: RICC = 0.061; tail 10th pixel: RICC =

0.065;  Chapter  3).  We found a  moderate  repeatability  in  pups  maximal  peripheral  body

temperature (RICC = 0.315; Chapter 1) but the measurements were done on three consecutive

days whereas 10 days separated the two test sessions in  Chapter 3, which may explain the

difference in repeatability estimates. A meta-analysis pointed out that hormones levels (e.g.,

glucocorticoids,  under  the  control  of  HPA axis)  showed  only  low repeatability  estimates

compared to behavior (Holtmann et al., 2017). However, repeatability estimates of heart rate

variability, controlled by the autonomic nervous system which also drives peripheral thermal

changes,  were  reported  to  be  moderate  to  high  in  humans  (Schroeder  et  al.,  2004)  and

domestic  horses (Pérez Manrique et  al.,  2019).  Further  studies should investigate  to what

extent short-term changes in peripheral temperature may be consistent over time.
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Consistent  behavioral  responses  over  time  when  animals  are  confronted  to

emotionally-challenging  situations  have  been  widely  reported  (Boissy  &  Erhard,  2014;

Mazurek et al.,2011). However, personality traits may modulate such behavioral responses

and explain why individuals react differently to an identical stimulus.  For instance,  in the

same fear-eliciting test, some individuals may immobilize (‘freezing’ behavior) while others

may increase their locomotor activity (Harro, 2018; Koolhaas et al., 2010). Yet, the tendency

to express certain emotions is rarely considered as a trait in animals and it has been suggested

that researchers should focus on the distinction between emotions as a trait or a state (de Vere

&  Kuczaj  et  al.,  2016).  For  instance,  anxiety  can  been  seen  as  a  trait  (that  is,  a  basal

characteristic of an individual) or as a state (that is, the anxiety level experienced in a specific

situation) (Lister,  1990). Individuals with a higher trait  anxiety may also experience more

intense  states  of  anxiety  in  challenging  situations  (Spielberger  et  al.,  1984).  Therefore,

evaluating the consistency over time of emotional responses may help to make the distinction

between trait and state, as a trait should be stable across reasonable periods of time (Carter et

al., 2013; Strelau, 2001).

Furthermore, numerous studies reported that environmental conditions can modify the

expression  of  emotional  reactions.  For  instance,  sheep  exposed  to  unpredictable  and

uncontrollable negative stimuli during a prolonged time period became more fearful (Destrez

et al., 2012). Interestingly, sheep exposed to such living conditions were also found to react

more strongly to emotional situations, both positively and negatively (Reefmann et al., 2012).

Hence, when aiming to assess the consistency of emotional reactions, it is crucial to maintain

stable  environmental  (e.g.,  housing)  conditions  and  to  take  into  consideration  potentially

unexpected changes between test sessions.
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Studies on affective styles (that is, variation between individuals in the intensity and

quality of emotional responses; Davidson, 1998) mainly focus on how individuals differ in

their expression of emotions, when conducted in animals. However, individual differences in

the regulation of emotions by secondary (via learning) and tertiary (via cognitive executive

functions) processes might bring new insights into the study of personality traits (Montag &

Panksepp, 2017; Pankepp, 2011; Paul et al., 2005; see an example in Braw et al., 2008).

5.4.2.  Assessment  of  early  emotional  profiles  using

isolation calls and infrared thermography

In Chapter 1, we focused on isolation call rates as a way to behaviorally phenotype

young  individuals.  Isolation  calls  also  represent  communicative  signals  of  a  negative

emotional state (Granon et al., 2018). The participation of emotion-linked brain regions in the

control of production of ultrasonic vocalizations (Hofer, 1996), the reduction of calling rate by

anxiolytics  drugs  while  anxiogenic  drugs  increase  it  (Simola  &  Granon,  2018;  Wöhr  &

Gaalen, 2018; Wöhr et al., 2015), as well as the selection of rodent pups for high vocalizations

leading to stronger emotional behavior during adulthood (Burgdorf et al., 2009; Zimmerberg

et al., 2005) are some of the arguments that led to consider the isolation-induced vocalizations

as “distress calls”, a behavioral measure of negative emotional reactions (Branchi et al., 2001;

Granon et al., 2018; Panksepp, 2005; Wöhr & Schwarting, 2013).

Surprisingly, some of the pups did not emit any vocalization during at least one of the

three days of test. It could be interesting to evaluate in more details what differentiates these

individuals from the ones vocalizing. The absence of calls might be due to a low body mass,

as the body temperature of lighter individuals decreases faster (Zepeda et al., 2018). Hence,
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calling might be too costly for pups with a low temperature. In our study (Chapter 1), we

tested  for  potential  effects  of  body  mass  and  body  temperature,  assessed  via  infrared

thermography, only on the changes in call rate in response to the treatments, but not on the

initial  isolation  call  rate,  as  it  was  not  the  main  goal  of  the study.  Therefore,  we cannot

exclude this potential explanation. Moreover, the maximal peripheral body temperature was

quantified  as  a  proxy of  the  internal  core  temperature,  and not  to  measure  an  emotional

reaction. A next step will be to conduct a more detailed analysis of the temperature on all the

individuals  instead  of  the  subsample  of  70  pups.  In  addition  to  the  maximal  peripheral

temperature,  the  temperature  of  proximal  and  distal  parts  of  the  tail  will  be  analyzed.

Furthermore, a 30-s detailed temporal analysis of the body and tail peripheral temperatures, as

in  Chapter 3, may shed light on subtle temporal changes in the emotional reaction. Such

analysis could help to understand why our pups reacted more strongly (by decreasing more

their call rate) to the nest than to the male treatment during the 2nd min after treatment, and

whether the  nest treatment led to a more calming effect (Chapter 1). Moreover, a precise

spectral analysis may also highlight the use of different call types depending on the situation

(Caruso et al., 2018). For instance, harmonic isolation calls that increase during the first days

of life may communicate a negative emotional state (Grimsley et al., 2011).

However, assessing emotional responses via the measurement of thermal responses is

challenging in pups, as such responses may be strongly impacted by developmental changes.

In adults, the maximal peripheral body temperature is usually related to eye temperature, and

this latter parameter has been shown to increase in reaction to a stressor in adult rodents (e.g.,

in  Chapter 3).  In  pups,  during the early days  of life  before the eyes open,  the maximal

peripheral body temperature corresponds to either the pups’ peripheral temperature in the ear

or the neck (Maurer et al., 2015; Zepeda et al., 2018), the latter being related to the activity of
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brown  adipose  tissue  that  allows  the  thermogenesis  by  young  pups  confronted  to  cold

challenges (Cannon & Nedergaard, 2004). Thus, it is crucial to not confound the measures of

emotional reaction and of thermogenesis activity. In our experiment, the pups were subjected

to a light cold challenge to improve the measurements taken by infrared thermography. The

room temperature was maintained at 20.0 ± 2.0°C and the pups were placed on a heating plate

kept at 20.0°C. Furthermore, we tested the pups between postnatal days 9 and 11, when they

start acquiring the ability to keep a stable body temperature outside their nest (Zepeda et al.,

2018). Thus,  it  is  likely  that  the tested  pups were not  at  the same stage of  development,

leading to  considerable  individual  variation.  As a  consequence,  the assessment  of the tail

temperature would prevent such confounding effect of thermogenesis activity. Moreover, the

time window to assess the emotional reaction through both isolation calls and temperature on

pups already capable to maintain their body temperature is very short. Our preliminary tests

conducted in house mouse pups (not shown here but see similar results in Elwood & Keeling,

1982) indicated that the number of isolation calls drastically drops from postnatal day 13 on,

when the eyes start to open.

Moreover, we showed in Chapter 3 that handling led to a physiological stress reaction

in adult mound-building mice. It has also been shown that handling can provoke the emission

of ultrasonic vocalizations in laboratory mouse pups (Hennessy et al., 1980; Okon, 1970). In

our tested pups, the assessment of both ultrasonic vocalizations and body temperature started

as soon as the pups were placed on the heating plate, to minimize the separation time from

mother and litter siblings. It is possible that the very first ultrasonic calls were due to both

isolation from the nest and handling of the pups. For instance, Branchi and co-authors (1998)

started the recording of the calls after a delay of 10 s following the transfer of the pup into the
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experimental apparatus. If the effect of handling on the vocalizations may disappear rapidly,

the physiological reaction may last longer and mask the effect of the isolation per se.

Finally,  similarly than in  Chapter 3 in which some results were found only when

considering individual  differences  within sibling groups,  inter-individual  variation in  early

emotional profiles, both in physiology and behavior, may be better highlighted by applying

the  same approach  in  house  mouse  pups.  Other  studies  have  also  successfully  used  this

method to report individual differences in behavior and body temperature in pups (Hudson et

al., 2015; Rödel et al., 2017; Zepeda et al., 2018).

5.4.3. Judgement bias test as a tool to assess the emotional

state driving exploration tendency

The motivation to explore new environments and items is crucial for animals, to meet

basic needs such as finding sexual partners or food, but also to seek out general information.

From  a  psychological  perspective,  information  seeking  behavior  may  be  motivated  by

curiosity, broadly defined as a “drive state for information” that stimulates learning (Kidd &

Hayden, 2015). Yet, curiosity has been poorly studied in animals (Byrne, 2013), except in a

comparative early work from Glickman and Sroges (1966) and by psychologists of the 20 th

century who built their theories based on studies in both human and non-human animals (e.g.,

Berlyne, 1966). Curiosity can also be considered as “a desire for new information aroused by

novel, complex, or ambiguous stimuli” (Litman & Jimerson 2004). Such curiosity state that

leads to exploration may be motivated by either  positive or negative affective states.  The

optimal arousal  model theorizes curiosity as a positive emotional experience,  arguing that

exploration aims to increase and maintain an optimal level of arousal (Berlyne, 1967; Hebb,

1955). In particular, when individuals are bored, i.e., under-aroused, they may explore to seek
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out novel or complex stimulations that will increase their level of arousal. Thus, the induction

of curiosity is thought as inducing positive feelings of interest (Berlyne, 1967; Hebb, 1955;

Leuba, 1955). On the contrary, the  curiosity-drive theory suggests that exploration arises to

reduce unpleasant feelings of uncertainty when confronted to complex, novel or ambiguous

information in the environment (Berlyne, 1950, 1955). Once the uncertainty is diminished or

suppressed, curiosity is reduced and exploration should stop. The reduction of curiosity is here

seen as rewarding.

Litman (2005, 2007) proposed a theory to combine both induction and reduction of

curiosity  as  a  motivation  for  exploration,  suggesting  that  both  were  rewarding:  the

Interest/Deprivation  (I/D)  model  of  curiosity.  The  author  defined  two  types  of  curiosity,

elicited depending on the situation. On the one hand, the  interest (I-type) curiosity may be

aroused  when  individuals  are  confronted  to  an  opportunity  to  acquire  new  information,

inducing  positive  feelings  of  interest  with  a  rewarding  value.  On  the  other  hand,  the

deprivation (D-type) curiosity would arise from uncomfortable feelings due to uncertainty in

the environment or lacking information, the gain of new information would have a rewarding

value by decreasing the negative affective state. Others have also reported that exploring to

reduce uncertainty or ambiguity has a rewarding value (Anselme, 2010; Franks et al., 2013;

Inglis, 2000).

Based  on  the  conceptual  approach  involving  the  primary-process  brain  emotion

systems  as  foundational  for  personality  (David  &  Panksepp,  2011),  we  expected  that

individual exploration tendency was strongly linked with an individual’s emotional profile.

We then used a judgement bias test in  Chapter 2 to better  understand the valence of the

emotional state underlying exploration tendency. Our results showed that more explorative

house mice judged ambiguous information (represented by an ambiguous spatial cue) more
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negatively.  According  to  the  theory  presented  above  (the  I/D  model  of  curiosity),  the

behavioral responses in repeated open field, novel object and judgement bias tests might be

driven by D-type curiosity (Litman, 2005, 2007). In the standard tests we applied, the novelty

of the environment and of the object may have induced negative affective states leading to an

increase in exploratory behavior (greater distance covered in the open field, shorter latency to

approach and to sniff the object, and more time exploring it). In the judgement bias test, this

would also be consistent with D-type curiosity, activated by the confrontation with the novel,

ambiguous stimulus. In such uncertain situation, the individual would be driven by D-type

curiosity to obtain the lacking information by exploring its environment. This would lead to

an increased latency to consume the ambiguous reward, interpreted as a pessimistic bias, as

individuals  would  spend more  time exploring  their  environment,  to  reduce  their  negative

affective state before consuming. Hence, the negative judgement bias would be representative

of  a  negative  emotional  state  –  but  see  the  discussion  of  Chapter  2 for  an  alternative

explanation regarding the behavioral inflexibility of more explorative individuals.

In humans, scaling systems have been created to assess individual differences in these

two types of curiosity (e.g., Day, 1971; Naylor, 1981), considering it as a personality trait. For

Litman and Jimerson (2004), following the theory of Loewenstein (1994), individuals exhibit

consistent differences in experiencing curiosity as a ‘feeling of interest’ (CFI, based on the I-

type curiosity) or as a ‘feeling of deprivation’ (CFD, based on the D-type curiosity) when

confronted  to  stimuli  that  can  evoke  curiosity.  This  would  be  consistent  with  the  high

repeatability we reported in individual differences in exploration tendency (RICC = 0.511) and

judgement bias (RICC = 0.711) and which might both be supported by curiosity as a ‘feeling of

deprivation’  (Chapter 2).  Moreover,  searching for  associations  with the personality  traits
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anxiety,  depression and anger,  Litman and Jimerson (2004) reported  that  the tendency to

express D-type curiosity was associated, although moderately, with a negative affectivity.

The  proximal  mechanisms  underlying  curiosity  became  more  evident  by  recent

advances in neuroscience reporting associations between curiosity-driven behaviors and the

reward system (Kidd & Hayden, 2015). Two studies investigated, through functional MRI in

humans, the neural correlates of curiosity as a negative state due to uncertainty or a gap in

knowledge, according to the psychological theory of Loewenstein (1994; similar to the D-type

curiosity of Litman, 2005). Jepma and co-authors (2012) presented ambiguous (blurry) visual

stimuli to their subjects before presenting clear, non-ambiguous pictures. They reported that

curiosity, induced by the presentation of blurry images, stimulated two brain regions usually

activated during arousal and aversive conditions such as conflict (anterior insula and anterior

cingulate  cortex).  The  presentation  of  the  clear  images  activated  the  striatum  circuits,

associated with rewarding processes. Their results support the theory that the deprivation-type

curiosity,  which  typically  occurs  when  the  individual  is  confronted  to  an  ambiguous

stimulation, leads to negative affective states whose relieving is rewarding (Litman, 2005).

Kang and co-authors (2009) found that self-reports of curiosity while reading trivia questions

were associated with the activation of caudate regions (caudate nucleus and inferior frontal

gyrus) that are involved in the anticipation of a reward. They also found that subjects were

willing to use resources (a token or waiting time) to receive the answer to the questions they

were  more  curious  about,  i.e.,  when  they  were  more  uncertain  about  it,  highlighting  the

rewarding value of the acquisition of missing information. This latter result was confirmed by

another study which reported that a high level of curiosity activated the brain dopaminergic

circuits (midbrain and nucleus accumbens; Gruber et al., 2014). Although the neural correlates

of curiosity remain to study in non-human animals, recent progresses in the application of
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functional MRI in awake and unrestrained dogs (Andics, 2014, 2018; Thompkins et al., 2016)

might bring new opportunities to the field and would help to disentangle the associations

between individual differences in I- and D-type curiosity and exploration tendency.

Finally, the positive association we found between exploration tendency and negative

judgement bias (Chapter 2) might be due to a negative mood (i.e.,  the sum of short-term

emotional states) of our animals. For instance, the housing conditions imposed by captivity

may have led to boredom, i.e., “a negative [emotional] state induced by barren conditions that

causes an increased, generalized interest in diverse stimuli” (Meagher et al., 2017). Boredom

can arise from a deprived, i.e., spatially and/or temporally monotonous, environment (Burn,

2017; Wemelsfelder,  2005).  When bored,  individuals  may experience  aversive suboptimal

levels of arousal (Burn, 2017) and new stimulations will induce exploratory behaviors (see the

optimal arousal model of curiosity described above: Berlyne, 1960, 1967; Hebb, 1955). For

instance,  sheep may experience boredom as a consequence from an invariable  and highly

predictable environment (Veissier et al., 2009). Bored minks Neovison vison, due to deprived

raising conditions, engaged in interactions with all kinds of stimuli, both novel and familiar

(Meagher  & Mason,  2012).  Despite  the  presence  of  cardboard  rolls  and nest  material  as

enrichment in the housing cages of our house mice, their environment was kept stable and

predictable to avoid a modification of the affective state that could bias their responses in the

different experiments conducted. Some individuals may have experienced boredom and, when

given the chance to interact with new environment (open field test) and objects (novel object

test), we suggest that this would most probably lead to more exploratory behaviors, driven by

a curiosity feeling to increase their  arousal  level  and end boredom (Berlyne,  1960, 1967;

Lilley  et  al.,  2017).  When  tested  for  their  judgement  bias,  bored  individuals  might  have

negative  expectations  about  future  outcomes,  hence  exhibiting  a  negative  judgement  bias
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(Burn, 2017). Evaluating the behavior of the animals in their home cage might increase our

understanding of their mood, as more explorative individuals might exhibit more abnormal or

stereotypic behaviors or, on the contrary, a prolonged inactivity when they are bored (Burn,

2017; Wemelsfelder, 1984, 2005).

It has also been recently suggested that free-choice exploration paradigms, allowing

the individuals  to retreat  to safe or familiar  places and/or  explore voluntarily  the devices,

would  avoid  some  issues  when  interpreting  exploratory  behavior  in  forced-choice  tests

(Franks, 2018). Individuals in a good welfare state should evaluate their environment more

positively,  thus  voluntarily  exploring  it  more,  in  search  for  new  cognitive  stimulations

(Franks, 2018). For instance, as an alternative to the forced-choice open field test used in this

thesis, a ‘free exploration’ open field may be applied, in which a safe area is connected to the

arena and the individual is free to enter and explore the apparatus (Fonio et al., 2009; Frynta et

al., 2018; Griebel, 1993a; Perals et al., 2017). Studies in laboratory rats (Franks et al., 2013)

and laboratory mice (Novak et  al.,  2015),  using an 8-arm radial  maze  with positive (safe

and/or with food) arms, also showed that the exploration tendency in such apparatus may be

associated  with  a  more  positive  affective  state.  Further  studies  should  investigate  which

personality traits  may facilitate boredom and whether house mice of wild origin are more

prone to it in standard laboratory conditions than laboratory mice (Latham & Mason, 2004;

Meagher, 2019).
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5.4.4.  The  use  of  infrared  thermography  to  investigate

individual emotional profiles underlying personality traits

The usefulness of  infrared thermography to remotely  assess emotional  reactions  is

increasingly recognized in human and non-human animals (Clay-Warner & Robison, 2015;

Pereira et al., 2018; Stewart et al., 2005; Topalidou & Ali, 2017). This method allows the

measurement, using a specific camera, of infrared radiations due to the animals’ body heat

loss  at  the  surface  of  their  skin.  Short-term changes  in  the  peripheral  temperature  reflect

variations of the cutaneous blood flow (i.e., by vasoconstriction or vasodilatation), under the

control of the sympathetic nervous system (Vianna & Carrive, 2012; von Holst, 1998). One of

the main reasons for the recent development of that technique is its non-invasive aspect, as the

temperature  can  be  assessed  remotely  without  restraining  the  individual  or  implementing

telemetry devices.

In  Chapter  3,  we demonstrated  that  infrared  thermography  can  be  used  to  assess

short-term thermal changes in response to a brief handling, a procedure commonly used in

laboratory conditions. The responses we reported (decrease in tail surface temperature and

increase  in  the  maximal  peripheral  body temperature  most  probably  corresponding to  the

eyes)  in  our  tested  mound-building  mice  were  consistent  with  previous  studies  in  the

laboratory rat (Ågren et al., 2009; Vianna & Carrive, 2005), the laboratory mouse (Miyazono

et al., 2018) and the wild-origin house mouse (Lecorps et al., 2016) confronted to stressful or

fearful situations. In other species, an increase in eye temperature has also been reported after

the exposition to a negative stimulus (e.g., in horses: Dai et al., 2015; in calves  Bos taurus:

Lecorps et  al.,  2018a; Stewart et al.,  2010; in dogs: Rigterink et al.,  2018; Travain et  al.,

2015). However, the time course of changes in eye temperature requires a detailed analysis, as

a decrease may precede the usually reported increase (Edgar et al., 2013; Stewart et al., 2008).

167



5. General discussion

Such decrease can also been observed in the Fig. 1 of  Chapter 3 (p.105), also we did not

analyze  it.  This  initial  drop in  eye temperature  might  be due to  a vasoconstriction  in  the

posterior border of the eyelid and the lacrimal caruncle, as a result of the sympathetic nervous

system  reactivity  (Stewart  et  al.,  2008).  Moreover,  the  localization  of  the  decrease  in

peripheral body part temperatures, similar to the drop in tail temperature in laboratory rats and

mice,  is  species-specific.  For  instance,  after  a  confrontation  with  a  negative  event,  cows

showed a drop in nasal temperature (Proctor & Carder, 2016). Dogs (Riemer et al., 2016) and

rabbits Oryctolagus cuniculus (Ludwig et al., 2007) showed a decrease in the ear temperature

and chickens Gallus domesticus in the comb temperature (Edgar et al., 2013).

Although  infrared  thermography  has  mainly  been  applied  to  investigate  negative

emotional  reactions  after  a  fearful  or  painful  stimulus,  some  recent  studies  investigated

whether this technique might be useful to distinguish the valence of the emotional reaction

(see also our side project in the Appendix 6.3., p.182). Studies first reported similar thermal

changes in response to positive stimuli than after a negative event, as reported above. In cows,

a drop in nasal temperature was reported after eating a favored food (Proctor and Carder,

2016) or being stroked in their preferred body part (Proctor and Carder, 2015). Anticipation

and consumption of a positive food reward also led to a decrease in the comb of chickens

(Moe et al., 2012). In dogs, the eye temperature increased after receiving a food treat (Travain

et al., 2016). However, contradictory results were found in sheep: a positive brushing induced

an  increase  in  nasal  temperature  (Tamioso  et  al.,  2017)  whereas  a  similar  gentle  touch

(stroking) was followed by a decrease in nose and eye temperature (Cyprinus et al., 2017).

It has been suggested that drops in the temperature of peripheral body parts may only

be due to a high arousal emotional state induced by a stimulus of high intensity, independently

from its positive or negative valence (e.g., humans: Kosonogov et al., 2017; cows: Stewart et
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al., 2010; laboratory rat: Vianna & Carrive, 2005). Yet, positive stimuli of low (Proctor and

Carder,  2015) and high (Proctor and Carder,  2016) intensity  both provoked a decrease in

cows’  nasal  temperature.  Further  studies  with  varying  emotional  arousal  and valence  are

needed, although it remains difficult to find adequate stimuli to separate valence from arousal.

For  instance,  male  common  marmosets  showed  distinct  thermal  responses  after  the

confrontation with positive and negative stimuli but the positive stimuli were assumed to have

induced a low arousal, relaxed emotional state while the negative ones may have led to a

higher arousal (Ermatinger et al., 2019).

More detailed analysis  may also help to  distinguish between positive and negative

emotions when using infrared thermography. In a study on several species of monkeys and

apes, the increase of the upper lip temperature was associated with the induction of a negative

emotional state whereas a decrease in nose temperature was related with a positive emotional

state (Chotard et  al.,  2018). In humans,  distinct patterns of temperature related to specific

emotions have been described (joy,  disgust, anger, fear and sadness: Cruz-Albarran et  al.,

2017;  happiness  and sadness:  Goulart  et  al.,  2019b;  disgust,  fear,  happiness,  sadness  and

surprise: Goulart et al., 2019a) and may be used to diagnose emotions (Cruz-Albarran et al.,

2017; Goulart et al., 2019a; Fu & Frasson, 2016). Hence, analyzing detailed thermal changes

in animals’ faces might help to determine distinct thermal patterns to differentiate positive and

negative emotions.

Coming back to  the  main  goal  of  my thesis,  we demonstrated  in  Chapter  3 that

specific  short-term thermal  responses  were associated  with two distinct  exploration  types.

That is, fast explorers had a higher sympathetic reactivity than slow explorers, as showed by

their  consistently lower maximum tail  surface temperature during 5 minutes following the

handling procedure. However, it might be difficult to infer their affective, internal state from
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the  physiological  component  alone.  For  instance,  in  humans,  some  individuals  did  not

verbally reported changes in their subjective feeling after the exposure to negative stimuli,

although changes in physiology were measured (e.g., skin conductance, heart rate: Stone &

Nielson, 2001).

We suggest that associating the evaluation of personality traits with individual thermal

profiles  would  help  to  interpret  thermal  reactions.  Such  relationships  between  individual

variation  in  behavior  and  physiology  have  been  the  focus  of  the  study  of  coping  styles,

investigating the neuroendocrinological mechanisms at the origin of behavioral variation in

response  to  stress  challenges  (Koolhaas  et  al.,  2010).  However,  researchers  in  that  field

consider that individual variation in coping styles (that is, the behavioral reaction per se) is not

induced by changes in the hypothalamic pituitary adrenocortical (HPA) axis or sympathetic-

adrenomedullary (SAM) system (de Boer et al., 2017). These physiological changes, such as

changes in the peripheral temperature, would not be a consequence of emotional arousal but

rather of the physical activity associated with the different coping styles (de Boer et al., 2017).

Indeed,  physical  activity  has  the  potential  to  critically  affect  measurements  via  infrared

thermography (Fukuzawa et al., 2016; Kano et al., 2016; Vianna & Carrive, 2005; see also

Pereira et  al.,  2018 for the assessment of activity  patterns  in an open field using infrared

thermography). Yet, several studies applying infrared thermography to investigate peripheral

thermal changes, under the control of the SAM system and in response to negative or positive

stimuli, excluded the general motor activity as a potential confounding effect of the thermal

changes observed (Boileau et al., 2019; Chotard et al., 2018; Ermatinger et al., 2019; Travain

et al., 2015). While controlling for physical activity, other parameters under the control of the

SAM system might also be evaluated to complement thermal measurements (e.g., eye white

exposure: Sandem et al., 2002). 
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Integrating  the  evaluation  of  personality  traits  when  assessing  peripheral  thermal

responses might shed light on the discrepancies across studies, allowing the description of

specific thermal profiles depending on the personality type but also reducing the unexplained

variation, hence increasing the robustness and reliability of the findings. So far, it has been

shown  that  more  extravert  dogs  showed  higher  pain  scores  and  a  greater  right  eye

temperature, which might be explained by a dominance of the right hemisphere in processing

and expressing emotional responses, in particular during painful or negative stimuli (Lush &

Ijichi, 2018). Personality differences might also be predictive of stress sensitivity, assessed

through eye temperature in cats (Foster & Ijichi, 2017). Finally, calves Bos taurus phenotyped

as more fearful and pessimistic showed a higher eye temperature after a short transportation

challenge (Lecorps et al., 2018a).

Moreover, it is neScessary to investigate associations between physiological responses

and personality traits in various situations, to study more diverse emotions (e.g., play or joy;

Ahloy-Dallaire et al., 2018) and capture the whole emotional lives of animals (de Vere &

Kuczaj, 2016; Ha & Campion, 2019). For example, infrared thermography has been used to

assess  peripheral  thermal  reactions  during  agonistic,  negative  social  encounters  in  the

domestic pig (Boileau et al., 2019), but positive situations might also be studied (e.g., during

play in piglets: Held & Špinka, 2011; Newberry et al., 1988), in association with, for instance,

vocalizations (Friel et al., 2019). We suggest that it might allow to categorize specific thermal

patterns  for  different  emotions  of  varying  valence  and  arousal,  similar  to  the  heat  facial

patterns described in humans (Cruz-Albarran et al., 2017; Goulart et al., 2019a,b).

In  turn,  such  thermal  profiles,  which  would  have  been  assessed  in  a  variety  of

situations,  might  be  applied  to  better  interpret  personality  traits.  For  instance,  emotions

driving exploration tendency might not be positive in all situations, as discussed in section
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5.4.3.  (p.161)  and  in  Chapter  2 (p.72).  We  suggest  that  comparing  peripheral  thermal

responses in exploration and judgement bias tests might clarify whether negative emotions

were driving behavioral responses during these tests. We filmed both experiments with an

infrared  thermal  camera,  thus  such analysis  will  be conducted  in  a  further  step.  Whether

exploration  tendency  and  judgement  bias  were  driven by negative  emotions  (e.g.,  due  to

deprivation-type curiosity: Litman & Jimerson, 2004), we hypothesize that more explorative

individuals should display (i) stronger thermal changes (i.e., decreases in tail temperature and

increases in eye temperature) when confronted to the ambiguous cue than during the training

days, and (ii) that such individuals should show similar patterns of thermal responses during

exploration and judgement bias tests. On the contrary, whether the association we reported

was related to a greater inflexibility of higher explorative individuals, these individuals should

show (i) similar thermal changes during the days of training and testing for judgement bias

and (ii) different patterns of thermal responses during exploration and judgement bias tests.

This  latter  hypothesize  might  also  challenge  the  ability  of  judgement  bias  tests  to  detect

changes in emotional states.

5.4.5.  Emotions  are  multimodal:  associating  several

components to improve our understanding of emotions and

personality

The foremost goal of emotion research in animals is to be able to infer the internal,

subjective state of the individual.  It is particularly important as  well-being is not only the

absence of prolonged negative emotions but also the presence of positive ones (Désiré et al.,

2002;  Fraser,  1995,  2009),  leading to  the concept  of  a  ‘life  worth living’  (Wathes  2010;

Webster 2016). Therefore, it is crucial to develop quantifiable and reliable cues based on the
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different  components  constitutive  of  an  emotional  reaction:  behavior,  physiology  and

cognition (Désiré et al., 2002; Mendl et al., 2010; Panksepp, 1998).

The interpretation of the affective state of an individual based on a single emotional

component is rarely straightforward. Therefore, we may reach a far better understanding of

the animals’ emotional life by combining measurements from different components (e.g., risk-

assessment behaviors,  cortisol concentration and attention bias) and/or measuring different

variables  within  each  component  (e.g.,  heart  rate,  cortisol  concentration  and  peripheral

temperature within the physiological component) (Baciadonna, 2017; Briefer et al., 2015; de

Vere & Kuczaj, 2016; Paul et al., 2005). In particular, the same behavioral or physiological

variable can be found to be involved in various emotional reactions (Ede et al., 2019; Kreibig,

2010; Paul et al., 2005). For instance, an increase in plasma concentrations of corticosteroids

can occur after the confrontation with a negative stimulus (Cockrem, 2013) or when expecting

a positive event (sexual partner: Colborn et al., 1991). Similarly, a decrease in general activity

might be due to high fear levels (e.g., freezing) or to a lack of motivation to explore (Guesgen

& Bench, 2017). By combining different emotional components, and various variables within

each one,  we might  be able  to  describe distinct  patterns  that  could  allow us  to  diagnose

emotions in animals. In this context, integrating the study of individual differences is essential

to understand why and how each individual perceives, interprets and reacts differently to a

same situation, leading to various emotional responses.

It  has  been suggested that  integrating  the  individuality  into  the  study of  emotions

might  also  help  to  dissociate  different  mechanisms  and  systems  involved  in  emotional

reactions (Paul et al., 2005). This is consistent with the theory developed by Panksepp and co-

workers:  individual  differences  in primary emotional  systems form the basis  of individual

differences in personality (Montag & Panksepp, 2017). In this perspective, each emotional
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system  organizes,  by activating  or  inhibiting,  various  behavioral  and autonomic-hormonal

changes  (Panksepp,  1998).  Hence,  we  should  find  coherent  patterns  of  behavioral,

physiological, cognitive and neuronal changes characteristic of specific, short-term emotions.

Evaluating the consistency over time of such patterns might also broaden our understanding of

animal personality by taking into account more than behavioral changes.

5.5. General conclusion

This  research  project  aimed  to  assess  the  consistency  over  time  of  behavioral,

cognitive and physiological emotional responses and their associations with personality traits,

although  we  focused  on  exploration  tendency.  We  could  successfully  phenotype  our

individuals  according  to  their  emotional  characteristics  (isolation  call  rate:  Chapter  1;

judgement bias: Chapter 2; peripheral thermal changes: Chapter 3) and to their exploration

tendency (assessed in open field and novel object tests). Although the pups’ early emotional

profiles were not related to adults’ exploration tendency, they might constitute an appropriate

tool  to  phenotype the young,  before  the personality  is  stable.  We also showed that  more

explorative  individuals  judged  an  ambiguous  situation  more  negatively  (house  mouse:

Chapter 2) and had a stronger decrease in tail temperature, indicative of a higher sympathetic

reactivity (mound-building mouse: Chapter 3).

Further research in emotions would gain by focusing on the individuality,  in close

relationship  with  the  individual’s  developmental  and  current  environment.  Evaluating  the

relationships between emotions and personality through the lifespan of the individuals would

also increase our understanding of the emergence and development of personality. A causal

approach may be considered, for instance by modifying the postnatal environment (e.g., by
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providing cognitive enrichment) at different age classes and assessing the potential effects in

emotional responses and personality traits later in life (Chapillon et al., 2002). Furthermore,

the “if-then” approach of personality  from human psychology (Mischel,  2004;  Mischel  &

Shoda,  1995)  theorizes  that  personality  may  be  expressed  differently  depending  on  the

situation: individuals should behave consistently when confronted to similar context but they

may react  differently  in  different  situations.  That  is,  an individual  should not show more

exploratory behaviors in all situations, but only under certain circumstances. This approach

has been rarely applied to animals (see an example in Franks et al., 2012) but it might also

bring new insights into the understanding of animal personality.

Moreover,  it  should  by  aimed  to  determine  objective  measurements  of  positive

emotions,  by  associating  behavioral,  physiological  and  cognitive  variables.  Applying

appraisal theories to a higher number of species, by giving an insight in how an individual

perceive a situation, might also help to characterize the perceived intensity and valence of an

event and therefore of the individual emotional reaction (Boissy & Erhard, 2014). We would

expect that different personality types would perceive and interpret a similar event differently.

Panksepp (2007a) argued that appraisal theories and affective neuroscience study the same

emotions but at a different level, hence it would be interesting to study how primary-process

emotions and cognitive evaluation of the situation interact together (e.g., Denson et al., 2009).

More  subtle  emotional  states,  such as  frustration  or  boredom,  but  also  more  complex,  as

inequity or empathy, would also deserve a strong interest.

Finally,  although  a  consensus  may  never  be  reached  about  whether  animals

subjectively experience emotions (see also Špinka, 2019 for a review about different types of

awareness to consider), it might be reasonable to act ‘as if’ and continue our efforts to have a

positive impact on the animals under human care by reducing negative events and promoting
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positive experiences. To this aim, it is necessary to continue developing objective measures of

emotions and to focus on their individuality.

176



6. Appendix (Ongoing projects)

6. Appendix (Ongoing projects)

I  will  present  in  the following sections  a brief  theoretical  background and a  short

description of material and methods used, for three ongoing projects conducted during the

thesis.

6.1. Motivational Conflict Test

Background

A motivational conflict typically arises when the animal is confronted to an event that

induces, at the same time, a drive to explore and to avoid the situation (Pereira et al., 1999) or

to remain at a comfortable place (Cabanac, 1999). Elevated plus-maze and open field tests are

two widely used experimental paradigms leading to such approach/avoidance conflict that is

assumed to induce  anxiety (Carobrez  & Bertoglio,  2005;  Ennaceur  et  al,  2010),  but  their

validity has been questioned (Ennaceur, 2014).

In our study, we intended to create  a motivational  conflict  situation with a  higher

ecological significance. We had three main goals: assessing behavioral and thermal changes in

response to odor cues stemming from females in estrus (i.e., sexual arousal) and in response to

such  cues  simultaneously  presented  with  a  strong  light  placed  on  top  of  them  (i.e.,

motivational conflict). Moreover, we asked whether exploration tendency would be associated

with the intensity of sexual arousal and with thermal changes and risk-taking behaviors during

the motivational conflict situation.
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Material and Methods

38 male house mice, previously phenotyped for their exploration tendency (Fig. G),

were used for this study. The apparatus was a square open field with a starting box in a corner

and a small opening in the wall of the opposite corner of the starting box, to enter pieces of

paper.  A strong flashlight  was fixed on the wall,  on top of the latter  opening.  A thermal

camera recorded peripheral temperature and behavior.

During  the  first  four  days,  individuals  were  habituated  to  the  apparatus  and

experimental  protocol.  They  were  first  entered  in  the  starting  box  and  allowed  to  freely

explore the open field during 10 min.  Then pieces of clean paper (Whatman paper) were

introduced  in  the  opening  and  individuals  were  given  another  10  min.  On the  fifth  day,

individuals were confronted to a first “sexual stimuli” situation: a mix of odor cues (urine

collected on Whatman paper) from three females in estrus was presented after the first 10 min.

Individuals were then given 10 min to explore it. On the next day, I simultaneously introduced

odors from three new females in estrus and lighted up the flashlight (motivational conflict

situation). Finally, a second “sexual stimuli” situation was presented to the mice on the last

day, with odors of three other females.

Thermal and behavioral data have already been analyzed. Similarly to Chapter 3, we

assessed  the  peripheral  maximal  body  (corresponding  to  the  eyes)  and  tail  temperatures.

Furthermore,  activity  has  been  analyzed  by quantifying  the  latency  to  enter,  the  distance

covered and the time spent in each zone (whole arena, starting box, corners, odor zone, light

zone).
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6.2. Emotional Contagion Test

Background

Emotional  contagion  can  be  defined  as  a  spontaneous  imitation  of  the  emotional

behavior expressed by another individual which leads the observer to share the affective state

of the demonstrator (Dezecache et al., 2015). In particular, studying emotional contagion may

help to understand the origin of empathy, which is crucial in social interactions in humans
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(Panksepp & Panksepp, 2013). It has been shown that laboratory mice observing a conspecific

receiving electric foot shocks displayed freezing behavior, that is, they may be capable of

emotional contagion (Jeon et al., 2010). However, although associations between personality

traits and emotional contagion have received attention in humans (e.g., Lundqvist, 2008), such

studies are still lacking in non-human animals.

In this study, we aimed to investigate whether and how emotional contagion (assessed

through behavioral and physiological correspondences between observers and demonstrators)

could be modulated by exploration tendency of individuals observing conspecifics receiving

light electric foot shocks. We also investigated whether exploration tendency was related to a

stronger emotional reaction to such stressors in the demonstrators, which may in turn induce a

stronger emotional contagion in the observers.

Material and Methods

We tested 45 male house mice (hereafter: observers), that were previously phenotyped

for their exploration tendency (Fig. G). Other 45 individuals (23 males and 22 females) were

used  as  demonstrators  and  were  also  tested  for  their  exploration  tendency  (Fig.  G).  The

apparatus was constituted of two chambers separated by a transparent Plexiglass plate drilled

of little holes to allow visual and olfactory, but not tactile communication between the two

individuals.  A  thermal  camera,  placed  on  top  of  the  apparatus,  recorded  peripheral

temperature and behavior of both individuals. Ultrasonic vocalizations were also recorded in

the observer’s chamber.

Each  observer  was  paired  with  the  same  demonstrator  for  the  whole  procedure.

Individuals were first habituated to each other, as well as to the apparatus and experimental

protocol, during three consecutive days: the observer was first placed in its chamber for 10
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min, then the demonstrator was placed in the adjacent chamber for 19 min. The first day of

test was conducted the next day, individuals were placed following the same procedure than

during habituation  but  after  10 min  in  the  apparatus,  the  demonstrator  received  one light

electric foot shock (0.3 mA) every 10 s during 4 min. After 5 min of recuperation period, the

test was ended. Three days of rest, without experiment, were given to the individuals. Then, a

second habituation period was carried out, identically to the first one. On the following day, 3

h before the second test,  demonstrators were placed in their  chamber for 10 min,  without

observers, then received light shocks (one every 10 s) during 4 min, followed by a 5 min

recuperation period. Then, 3 h after this procedure, a second test was carried out following the

same protocol than the first test.

For the behavioral analysis, each chamber was separated in three zones (close, middle

and distant to the central Plexiglas plate) and I quantified the latency to enter, the distance

covered and the time spent in each zone for each individual. Thermal data are currently being

analyzed.
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6.3.  Short-term  thermal  response  to  consumption  of

positive  and  negative  food  items  in  association  with

exploration tendency

This project was conducted in collaboration with Andrea Urrutia, PhD student, and Pr.

Robyn Hudson (Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de

México (UNAM), Mexico). We conceived and planned the study with Andrea Urrutia, under

the supervision of Robyn Hudson, Heiko G. Rödel and Christophe Féron. We carried out the

experiments in November 2016. The behavioral and thermal data were analyzed in November

2016 and December 2017. However, as the thermal data were analyzed manually with the Flir

software, we plan to re-analyze the data using the R script developed by CF. 

Background

The  necessity  to  study  positive  emotions  has  been  outlined  due  to  the  increasing

interest  in  animal  sentience  and  welfare  (Proctor,  2012),  as  a  good  welfare  is  not  only

characterized by the absence of prolonged negative emotions,  but also by the presence of

positive ones (Boissy et al., 2007; Mellor, 2015). However, it is still  necessary to develop
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quantifiable  and  reliable  indices  of  positive  emotional  experiences,  as  it  has  been  done

regarding  negative  emotions  (see  for  instance  the  intensive  study  of  animal  models  of

depression and anxiety: Borsini et al., 2002; Kumar et al., 2013; Neumann et al., 2011).

Using  a  multimodal  approach  by  evaluating  facial  expressions,  behaviors  and

peripheral temperature (via infrared thermography), we had three main goals. First, we aimed

to describe patterns of emotional reactions that might be used to differentiate positive and

negative emotions,  in the house mouse.  Second, we aimed to assess individual  emotional

profiles  to  determine  whether  the  intensity  (arousal)  of  emotional  responses  might  be

consistent  across  situations.  Third,  we  investigated  the  associations  between  individuals

differences in emotional reactions and in exploration tendency.

Material and Methods

We tested the same individuals (17 adult male house mice) in three situations, using

food stimuli expected to elicit distinct emotions. Each individual underwent 12 consecutive

days  of  testing,  consisting  of  four  experimental  conditions,  each  repeated  during  three

successive days.  The apparatus was constituted of two chambers:  individuals  were placed

during 5 min in the first chamber then a sliding door was opened in the middle to allow the

individual to enter the second chamber where the food item was presented in a Petri dish, for

another 5 min. A thermal camera placed on top of the apparatus recorded their  peripheral

temperature  and behavior.  Another camera was placed on the floor,  behind the Petri  dish

containing the food, and filmed the second chamber to record facial expressions when coming

to eat and while eating.

The first three days constituted habituation days to the apparatus and experimental

protocol and an empty Petri dish without food item was presented. Then, during three days,
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considered as the ‘Neutral’ condition, a piece of their usual food pellet was provided. This

condition allowed us to obtain the basal temperature of the individuals and served as a control

for the next two conditions. During the following three days (‘Positive’ condition), a piece of

sugary cornflake was presented and expected to elicit a more positive emotional reaction than

the usual food pellet.  Finally,  the last three days constituted a ‘Negative’ condition as the

individuals were presented a piece of cornflake sprayed with quinine that was expected to

induce a more negative emotion.

Moreover,  we were  particularly  interested  by  the  modifications  of  reactions  when

changing the valence of the food, as surpassing the individual’s expectations by giving a food

of higher quality than expected (that is, from ‘Neutral’ to ‘Positive’ condition) or frustrating

the  animals  by giving  a  food of  lower  palatability  (that  is,  from ‘Positive’  to  ‘Negative’

condition) may lead to, respectively, more positive or negative emotional reactions (Flaherty,

1982).
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Emotional characteristics and personality traits:
a study in mice of wild origin

Abstract: The mechanisms driving animal personality (i.e., consistent individual differences in behavior across time
and contexts) are still poorly understood. Recently, it has been proposed that personality traits may emerge from
individual differences in emotional reactions. This thesis aimed to investigate how exploration tendency, one of the
most frequently studied personality traits, is related to consistent individual differences in emotions in different age
classes, using two rodent species of wild origin. In each chapter, we focused on one component of an emotional
reaction (respectively, behavior, cognition and physiology), to assess either valence (i.e., positive or negative) or
arousal (i.e., high or low) of the emotional experience. First, we showed that isolation call rate could be used to
phenotype emotional profiles of young house mice, as pups’ call rate was consistent over days and across three
stressful situations. However, call rates were not associated with exploration tendency during adulthood. Second, our
results suggested that a higher exploration tendency might be associated with a higher tendency to express negative
affective  states  (i.e.,  a  more  negative  judgement  bias).  Third,  using infrared  thermography,  we found that  fast
explorative mound-building mice were characterized by a stronger sympathetic reactivity, as expressed by lower
peripheral tail temperatures, than slow explorers shortly after a brief handling procedure. Overall, the findings of this
research  project  contribute  to  the  understanding  of  the  emotional  basis  of  personality  traits  and  highlight  the
importance of considering individuality, through personality traits, when assessing emotions.

Keywords: exploration tendency; affective state; isolation calls; cognitive judgement bias; infrared thermography;
house mouse; mound-building mouse

Caractéristiques émotionnelles et traits de personnalité :
une étude chez des souris d’origine sauvage

Résumé : Les  mécanismes  qui  sous-tendent  la  personnalité  animale  (c.-à-d.,  les  différences  individuelles  de
comportement stables à travers le temps et les contextes) sont encore mal compris. Il a été suggéré que la personnalité
pourrait émerger à partir de différences individuelles dans les réactions émotionnelles. Cette thèse a pour objectif
d’étudier comment la tendance à l’exploration, l’un des traits de personnalité les plus étudiés, est liée aux différences
individuelles d’émotions, à différentes classes d’âge chez deux rongeurs d’origine sauvage. Chaque chapitre aborde un
composant  d’une  réaction  émotionnelle  (comportement,  cognition  et  physiologie),  afin  d’évaluer  la  valence  ou
l’intensité de l’expérience émotionnelle. Tout d’abord, nous avons montré que le taux d’appels d’isolement pouvait
être utilisé pour caractériser les profils émotionnels de jeunes souris domestiques, celui-ci étant stable durant trois jours
et dans trois situations stressantes. Cependant, ce taux n’était pas associé avec la tendance à l’exploration durant l’âge
adulte. Deuxièmement, nos résultats ont suggéré qu’une tendance plus forte à l’exploration pourrait être liée à une plus
grande tendance à exprimer des états affectifs négatifs (c.-à-d., un biais de jugement plus négatif). Troisièmement,
nous avons constaté que les souris glaneuses plus exploratrices étaient caractérisées par une réactivité plus forte du
système sympathique, exprimée par des températures périphériques de la queue plus basses, peu de temps après une
procédure  de  manipulation  brève.  Dans  l'ensemble,  les  résultats  de  ce  projet  de  recherche  contribuent  à  la
compréhension de la base émotionnelle des traits de personnalité et soulignent l'importance de prendre en compte
l'individualité lors de l'évaluation des émotions.

Mots-clés : tendance à l’exploration ; état affective ; appels d’isolement ; biais de jugement cognitif ; thermographie
infrarouge ; souris domestique ; souris glaneuse
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