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Abstract
Thèse de doctorat de l’université Sorbonne Paris Nord

Enumeration of triangulations modulo symmetries and of rooted
triangulations counted by their number of (d− 2)-simplices in dimension d ≥ 2

by Nicolas Dub

O(N) invariants are the observables of real tensor models. We represent them by regular
colored graphs dual to d-dimensional triangulations. We enumerate the invariants using
permutation group techniques and reveal that the algebraic structure organizing them
differs from that of the unitary invariants. At fixed rank and fixed number of vertices,
an associative semi-simple algebra with dimension the number of invariants naturally
emerges from the formulation. Using the representation theory of the symmetric group,
we enlighten a few crucial facts: the enumeration of O(N) invariants gives a sum of con-
strained Kronecker coefficients, there is a representation theoretic orthogonal basis of the
algebra that reflects its dimension; normal ordered 2-point correlators of the Gaussian
model evaluate using permutation group language, these functions provide other repre-
sentation theoretic orthogonal bases of the algebra.
Tensor models are furthermore generalizations of matrix models and as such, it is natural
to ask whether they satisfy some form of the topological recursion. The world of unitary-
invariant observables is howbeit much richer in tensor models. It is therefore a priori un-
clear which set of observables could satisfy the topological recursion. Here we show that
some set of observables is present in arbitrary tensor models which have non-vanishing
couplings for the quartic melonic interactions. It satisfies the blobbed topological re-
cursion in a universal way. The spectral curve is a disjoint union of Gaussian spectral
curves, with the cylinder function receiving an additional holomorphic part. This result
is achieved via a perturbative rewriting of tensor models as multi-matrix models due
to Bonzom, Lionni and Rivasseau. It is then possible to formally integrate all degrees
of freedom except those which enter the recursion, meaning interpreting the Feynman
graphs as stuffed maps. We further provide new expressions to relate the expectations of
U(N)d-invariant observables on the tensor and matrix sides.
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Résumé
Thèse de doctorat de l’université Sorbonne Paris Nord

Enumeration of triangulations modulo symmetries and of rooted
triangulations counted by their number of (d− 2)-simplices in dimension d ≥ 2

par Nicolas Dub

Les invariants orthogonaux sont les observables des modèles de tenseurs réels. Nous les
représentons au travers de graphes colorés et réguliers qui sont duaux à des triangula-
tions de dimension d. Nous énumérons ces invariants à l’aide de méthodes empruntées
au groupe symétrique et montrons que la structure algébrique qui les régit diffère du cas
unitaire. À rang et nombre de sommets fixés, une algèbre associative et semi-simple de
dimension le nombre d’invariants émerge naturellement de notre formulation. À l’aide
de la théorie des représentations du groupe symétrique nous prouvons notamment que
l’énumération des invariants orthogonaux se traduit par une somme de coefficients de
Kronecker contraints et qu’il existe une base de Fourier orthogonale de l’algèbre qui re-
flète sa dimension.
Les modèles de tenseurs généralisent les modèles de matrices, l’on est de fait en droit
de se demander s’ils satisfont une certaine forme de récurrence topologique. Le monde
des observables unitaires étant néanmoins bien plus riche pour les tenseurs, il est difficile
a priori de savoir quel ensemble d’observables est en mesure de satisfaire cette récur-
rence. Un de ces ensembles est cependant présent dans tout modèle de tenseurs dont les
constantes de couplage des interactions quartiques meloniques sont non nulles. La courbe
spectrale est une union disjointe de courbes spectrales gaussiennes, et l’amplitude du
cylindre se dote d’une part holomorphe. Ce résultat est obtenu par une réécriture pertur-
bative des modèles de tenseurs en modèles dits multi-matrices, et due à Bonzom, Lionni
et Rivasseau. Il est ainsi possible d’intégrer, du moins formellement, tous les degrés de
liberté, sauf ceux entrant dans la récurrence. Les graphes de Feynman s’interprètent alors
comme des cartes farcies. Finalement, nous donnons de nouvelles relations liant valeurs
moyennes des observables tensorielles et matricielles.
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Introduction

Matrix and tensor models – Random tensor models are a generalization of matrix
models. Since their inception [1, 2, 3], random tensors offer a framework for studying
random discrete geometries as they aim at extending the successful relationship between
random matrices [4] and two-dimensional quantum gravity to higher dimensions. The
main goal of this approach is to devise a transition from discrete geometries to contin-
uum geometries in any dimension. Howbeit, the original proposals for tensor models were
plagued with difficulties and no significant development occurred in the field for twenty
years. Only recently have random tensor models witnessed major progress [5] with, for
instance, the advent of a new large N expansion generalizing ’t Hooft genus expansion [6]
for higher dimensional (pseudo-)manifolds. Moreover, recall that matrix models are in-
timately connected to combinatorial maps, the latter being generated by the Feynman
expansion of the former [4, 7]. For instance, in the 1-Hermitian matrix model,

ˆ
dM e−

N
2t

trM2+N
∑
k≥1

tk
k

trMk

=
∑
maps

tn

n!
N2−2h

∏
k≥1

tnkk , (1)

where the sum is over maps of genus h with n labeled edges and nk faces of degree k ≥ 1.
The quantity in the exponential on the left-hand side is called the action, or the potential,
and the tks are called the coupling constants. In tensor models, this relationship is also
generalized, meaning that the Feynman expansion of tensor models generate piecewise-
linear d-dimensional (pseudo-)manifolds [5, 8, 9, 10]. This is why tensor models were
already proposed as candidate for quantum gravity in the early 90s, long before a large
N limit was found [11]. The existence of such a limit for tensors naturally unveiled several
analytical results, among which the discovery of their critical behavior (branched poly-
mers [12, 13]), the universal property of random tensors [14], and the discovery of new
families of renormalizable non-local quantum field theories with interesting UV [15, 16, 17]
and nonperturbative behaviors supporting the discovery of new universality classes for
gravity [18, 19, 20].
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More recently, and quite unexpectedly, tensor models have been shown to provide the
same large N limit as the Sachdev-Ye-Kitaev (SYK) model [21, 22] of condensed matter
physics (a model which is exactly solvable at large N in the IR and exhibits maximal
chaos, it is dual to the Jackiw-Teitelboim 2D gravity [23, 24]). For its deep connections
with black hole physics and AdS/CFT correspondence, the SYK model embodies a vi-
brant topic of research. This has driven the development of tensor models in the last
few years. Indeed, new models have been introduced and their large N limit explored
[25, 26]. Some models could also be explored beyond leading order using combinatorial
techniques [27].

A key feature of tensor models is that the set of observables and interactions is quite
larger than in matrix models [28], and grows with d. In U(N)-invariant matrix models,
observables are products of traces trMn, for M Hermitian. In U(N)2-invariant models,
they are products of traces tr(MM †)n, for M a complex matrix. In both cases, there is
a single invariant at fixed degree in M (in addition to products of invariants of smaller
degree). More generally, there is a set of generators of the ring of U(N)d-invariant poly-
nomials, called the set of bubbles. They are characterized by a d-tuple of permutations,
up to a left and a right action on the tuple. There is a graphical representation as d-
regular bipartite graphs with edges labeled by a color from J1, dK such that all colors are
incident on every vertex. They have been studied in [29, 30, 31], where a relation to
Kronecker coefficients was found. Enforcing other sets of symmetries leads to other sets
of observables, like using O(N)d instead of U(N)d relaxes the bipartiteness of the bubbles
[33, 32] as will be seen later on.
This enlarged set of observables in tensor compared to matrix models is the source of
various universality classes found in the large N and continuum limit. Indeed, it is well-
known in 2D that models built with interaction trMk, generating k-angulations, have
all the same universality class (that of pure 2D quantum gravity). However, for d > 2,
there are more possible bubbles, i.e. more interactions at fixed order k in T, T , which
correspond to different d-dimensional building blocks. Choosing different bubbles as in-
teractions can then lead to different universality classes [9]. This however does not seem
to be the case in 3D, where all planar bubbles (dual to building blocks homeomorphic to
the ball) used as interactions always lead to the universality class of random trees (i.e.
branched polymers) [10].
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Figure 1 – Symmetric group view of unitary invariants.

Orthogonal invariants – As already mentioned, several, if not all, of the previous
studies heavily rely on the understanding of the combinatorics of the Feynman graphs
and observables of the considered tensor model. Let us now introduce two particular
contributions on tensor model graphs that the present work extends.
In [29], the authors worked out the enumeration of the unitary invariants, as observables
in complex tensor models. One way of comprehending the theory space of rank-d complex
tensor models is to specify its set of observables. The latter are merely U(N)d-invariants
(at time, we simply call them U(N), complex or unitary tensor invariants). We know that
a convenient manner to represent U(N) invariants defines as a canonical mapping to d-
regular bipartite colored graphs [34]. Stated in this way, the inventory of tensor invariants
formulates by uniquely using permutation groups (see Figure 1). One should record that
these symmetry group techniques and its representation theory have been developed dur-
ing the last years [35]–[46]. They turned out to be powerful, flexible and versatile enough
to address diverse enumeration problems from scalar field theory and matrix models, to
gauge (QED, 2D and 4D Yang-Mills) and string theories. In physics, for instance, they
brighten the half-BPS sector of N = 4 SYM [35]–[40]. Moreover, unforeseen correspon-
dances arise from these studies, for instance, counting Feynman graphs in φ4 scalar field
theory relates to string theory on a cylinder or listing Feynman graphs of QED relates to
the counting of ribbon graphs [39]. These correspondances emerge from another interface
playing a hinge role between enumeration problems: via the Burnside lemma, with each
enumeration problem using the symmetric group (and its subgroups), we can associate
a Topological Field Theory on a 2-complex (named TFT2) with gauge group given by
the symmetric group (and its subgroups). Such a formulation also unfolds multiple in-
terpretations of the counting formulae with links with the theory of covering spaces in
algebraic and complex geometry (see references in [39]). The reference [29] establishes
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several enumeration formulae pertaining to observables of complex tensor models. Using
the Burnside lemma, one recasts the enumeration of U(N) invariants into a partition
function of a permutation lattice gauge field theory, a TFT2. It is via this mapping that
one elucidates that counting unitary invariants corresponds to counting branched covers
of the 2-sphere. Branched covers are well known objects in algebraic and complex geom-
etry [47], in topological string theory, and in dimension 2, they correspond to complex
maps [38]. Thus, there is an underlying geometry inherited by tensor models from the
TFT2 formulation that still needs to be understood. There is however a proviso: the
counting formulae are only valid when the size N of the tensor is larger than the number
of tensors convoluted. More generally, one should resort to a more careful study [45, 46].
The study of tensor invariants has a follow-up in [30]. Their equivalent classes are viewed
as the basis elements of a vector space Kd(n), a subspace of C[Sn]⊗d, the rank-d group
algebra of the symmetric group Sn. Kd(n) shows stability under an associative prod-
uct, and it is endowed with a non-degenerate pairing. Therefore, at a fixed rank d and
fixed number of vertices n, tensor invariants span a semi-simple algebra. (Note that,
importantly, other algebraic structures could be set up on tensor invariants [48, 49, 50].
The above structure is however unique, up to isomorphism.) As a consequence of the
Wedderburn-Artin theorem, any semi-simple algebra decomposes as a sum of irreducible
matrix subalgebras. The representation theory of the symmetric group sheds more light
on the remaining analysis as it enables to reach the Wedderburn-Artin matrix decomposi-
tion of the algebra of tensor observables: the dimension of the algebra is a sum of squares
of the Kronecker coefficients (these are multiplicity dimensions in the decomposition of
a tensor product of representations in irreps; Kronecker coefficients are still under active
investigation in Combinatorics and Computational Complexity Theory, see, for instance,
[51, 52] and more references therein), each square matching exactly the dimension of a
matrix subalgebra. The orthogonal bases of the algebra and its matrix subalgebras have
been worked out, meanwhile the Gaussian 2-point correlators also provide new represen-
tation theoretic orthogonal bases.

In this work, we consider O(N) tensor models and their observables and investigate
if they support the same previous enumeration and algebraic analysis. Fleshed out the
first time in [33], such models extended the large N expansion to real tensors. The
graphs that determine the O(N) invariants keep the edge coloring but are not bipartite.
This naturally leads to a class of observables wider than that of the U(N) tensor mod-
els. To enumerate O(N) invariants, we use a standard counting recipe: we use tuples
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of permutations on which act permutation (sub)groups that define equivalence classes.
We then count the points in the resulting double coset space. The equivalence relation
in the present setting is radically different from the U(N) situation and requires more
work to obtain a valuable counting formula. With their generating functions in hand, we
provide software (Mathematica, Sage) codes to achieve the counting of O(N) observables
for any tensor rank. We emphasize that our results match the seminal work of Read in
[55] that dealt with the enumeration of k-regular graphs with 2n vertices with k-edge-
coloring. However, Read’s formula was only evaluated for the k = 3 regular graphs with
2n = 2, 4, 6 vertices with edges of three different colors. Our code extends this counting
for any k and any n. We produce integer sequences that are new (un-reported as of yet)
to the On-Line Encyclopedia of Integer Sequences [56].
Moreover, seeking other correspondances, we address the TFT formulation of our count-
ing and show that to count O(N) observables amounts to count covers of glued cylinders
with defects (the rank of the tensors relates to the number of cylinders and defects). After
introducing the algebra of O(N) invariants, we show that it is semi-simple, and as such,
admits a Wedderburn-Artin decomposition. An invariant orthogonal basis of the algebra
transpires in our analysis but it does not yield the decomposition of the algebra in ma-
trix subalgebras. We proceed to the representation theoretic formulation of the counting
and its consequences. As to be distinguished from the U(N) case, the dimension of the
algebra is a sum of constrained Kronecker coefficients restricted to partitions with all
even length rows. The representation theoretic tools exhibit a basis of the algebra, the
dimension of which directly reflects the sum of constrained Kroneckers. The Gaussian 2-
and 1-point correlators also compute in terms of permutation group formulae. A corol-
lary of that analysis is that 2-point functions, in the normal order, select a representation
theoretic orthogonal basis of the algebra. In that sense, the Gaussian integration in the
representation Fourier space performs as a pairing of observables.

Blobbed topological recursion – A natural question for tensor models is to go be-
yond the large N limit. In particular, it is natural to ask whether the methods used for
this purpose for matrix models still work for tensor models and whether it depends on
the set of chosen interactions. In this work we will focus on the topological recursion of
Eynard-Orantin [57, 58, 59, 60]. Let us nevertheless mention previous works on tensor
models beyond the large N limit. A standard combinatorial analysis of maps was applied
to the Feynman graphs of the so-called colored tensor models by Gurau and Schaeffer
[61], and extended to the set of Feynman graphs of the multiorientable model (which has
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U(N)2×O(N) symmetry, at d = 3) by Fusy and Tanasa [62]. They classify the Feynman
graphs appearing at a given order of the 1/N expansion of their respective models. They
also identify those which are the most singular in the continuum limit at each order of
the 1/N expansion, thereby allowing for a double-scaling limit, whose 2-point function
was calculated.
In parallel, interest grew around the so-called quartic melonic model. It is a tensor model
with up to d quartic interactions having a special structure called melonic. This interest
in the quartic model comes from the existence of the Hubbard-Stratonovich technique
which transforms this tensor model into a multi-matrix model. It opened up a new way of
analyzing tensor models through matrix models. The double-scaling limit for this model
was done in [63] (for a result similar to [61]). It was also realized in [64] that in the large
N limit, the eigenvalues do not spread because the Coulomb repulsion is subdominant.
Instead, they all fall in the potential well, as anticipated in [65]. One can then study the
fluctuations around the saddle point, an analysis started in [64] where the leading order
fluctuations were shown to obey Wigner’s semi-circle law.

In [66], the first instance of topological recursion in the context of tensor models was es-
tablished. Recall that in the ordinary Hermitian 1-matrix model, the topological recursion
applies to the calculation of the n-point, genus g, correlation functions Wn,g(x1, . . . , xn)

which appear in the expansion of connected n-point functions

〈tr 1

x1 −M
· · · tr 1

xn −M
〉c =

∑
g≥0

N2−n−2gWn,g(x1, . . . , xn). (2)

In terms of maps, it is a recursion on the generating functions of maps of genus g, with n
marked faces whose perimeters are tracked by the variables x1, . . . , xn. The topological
recursion takes a universal form, and uses a spectral curve as initial data. The spectral
curve is determined by the disc and cylinder functions W1,0(x) and W2,0(x1, x2).
In [66], the matrix model is the one obtained in [64] for the fluctuations of the eigenvalues
around the saddle point. It has d Hermitian matrices M1, . . . ,Md where Mc is said to be
of color c and the correlations now need to have the colors of their variables specified,

Wn(x1, c1; . . . , xn, cn) = 〈tr 1

x1 −Mc1

· · · tr 1

xn −Mcn

〉c. (3)

As it turns out, the coupling between the colors is not too strong and a topological
recursion can be derived where the spectral curve is a disjoint union of d spectral curves for
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Gaussian matrix models, with an additional holomorphic term for the cylinder function.
This is due to

condition 1 the U(N)d symmetry. It implies that the matrices of different colors can
only interact through products of traces of different colors. The action is of the
form

SN(M1, . . . ,Md) =
∑

p1,...,pd≥0

tN(p1, . . . , pd) trMp1

1 . . . trMpd
d , (4)

condition 2 the 1/N expansion. It is such that only the quadratic terms of the action
survive the large N limit,

SN(M1, . . . ,Md) ∼
N→∞

N
d∑
c=1

actrM
2
c +

d∑
c,c′=1

bcc′trMctrMc′ , (5)

(in which sense is explained in the text).

Those two conditions guarantee that an extension of the topological recursion, called
the blobbed topological recursion, or rather a multi-colored extension of the latter, holds
with the spectral curve being a disjoint union of Gaussian spectral curves, except for
W2,0(x1, c1;x2, c2) which has an additional holomorphic part compared to its usual form.
The blobbed topological recursion was introduced by Borot [67] and further formalized
by Borot and Shadrin [68]. In our context, it applies to matrix models with multi-trace
interactions having a topological expansion, i.e. of the form

SN(M) =
∑
n,h≥0

∑
p1,...,pn≥0

N2−n−2h t(h)(p1, . . . , pn) trMp1 . . . trMpn . (6)

Combinatorially, those types of models generate stuffed maps, defined in [67]. They are
maps which are not built by the gluings of disks but as gluings of surfaces of genus h
with n boundary components of perimeters p1, . . . , pn. In [66] this interpretation survives
with an additional coloring of the boundary components.
In the blobbed topological recursion, the recursion for correlation functions still has the
same universal term as the ordinary topological recursion, which calculates the singu-
lar parts of the correlation functions. In addition, there are now holomorphic contri-
butions [67, 68]. It is also important to keep in mind that the action (4) is in fact
topological only for d = 4d′ + 2, for d′ ∈ N [66], meaning that the couplings take the
form tN(p1, . . . , pd) =

∑
h≥0N

2−d−2ht(h)(p1, . . . , pd). For other values of d, one can do
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as if the action were topological by absorbing some N -dependence into the couplings
t(h)(p1, . . . , pd), and then apply the blobbed topological recursion.
Here we show how to apply this approach to arbitrary U(N)d-invariant models, provided
that there are quartic melonic interactions (among others) and some invertibility con-
dition of a quadratic form at large N . This revolves around the fact that after some
intermediate field techniques and formal integration, such tensor models can always be
rewritten as matrix models with a set of d Hermitian matrices satisfying the conditions
1 and 2. Therefore, the correlation functions of these matrices satisfy the blobbed topo-
logical recursion, with the same spectral curve as in the quartic melonic model of [66].
Remarkably (and evidently from [67]), the specifics of the model, i.e. the choice of in-
teractions, only contribute to some effective action and not to the form of the blobbed
topological recursion. In combinatorial terms, the specifics only contribute to the generat-
ing functions of the stuffings of the maps. Proving the blobbed topological recursion does
not require knowing the explicit effective action, but only that the conditions 1 and 2 are
satisfied. In this sense, the blobbed topological recursion is universal in our framework.
The only difference between our formulas and those of [66] is that the generating func-
tions of the stuffing were explicitly known in [66] while their explicit dependence on the
coupling constants will be left unknown here (their N -dependence is however important).

Method – There are however some technical obstacles to overcome. Arbitrary tensor mod-
els cannot be directly transformed into matrix models using the Hubbard-Stratonovich
transformation as the latter only works for quartic interactions. This first obstacle was
overcome in [70] where it was shown that there are still matrix models rewritings. This
was proven using a bijection between the Feynman graphs of the tensor model and those
of the corresponding matrix model. A second proof was also provided by manipulations
of formal integrals (integrals which are only defined as their Feynman series). Here we
will repeat this proof, adapting it to go through the second obstacle, which we explain
now.
The method of [70] turns a tensor model into a matrix model with complex matrices MC

labeled by subsets of J1, dK, i.e. C ⊂ J1, dK. However, applying the same recipe as in
[66] requires to have d Hermitian matrices M1, . . . ,Md instead. This is remedied in two
steps. We first show that it is possible to replace the complex matrices MC with pairs of
Hermitian matrices (YC ,ΦC)C⊂J1,dK. Then, provided that the quartic melonic interactions
are turned on, it is possible to integrate formally over all matrices except Y1, . . . , Yd. In
terms of Feynman graphs, this means that one has combinatorial maps with colored edges
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corresponding to the matrices Y1, . . . , Yd, and everything else is packed in some stuffing
of the maps. Keeping in mind the goal of the topological recursion, it is necessary to
control the N -dependence of the stuffings in terms of their boundary components.
The next step is to observe that all the eigenvalues of Y1, . . . , Yd fall into some potential
well at large N , and move on to the study of their fluctuations. This is where one ob-
serves that the conditions 1 and 2 are still satisfied and lead to the blobbed topological
recursion. It would be interesting to know whether condition 2 could be removed in gen-
eral. It is known to be possible in the case of a single matrix model as originally done
in [67]. However, in the multi-colored case, it would require a 1-cut (Brown’s) lemma for
a system of coupled equations with catalytic variables, thus extending the framework of
[71], which is outside the reach of this manuscript.

Expectations – When discussing the topological recursion in the context of tensor mod-
els, there is another natural question to address, which is how to relate the expectations
of generic observables on the tensor side to the quantities evaluated via the topological
recursion on the matrix side. In [64] for the quartic melonic model, it was shown that
the expectations of trMn

c are expectations of Hermite polynomials of some melonic cyclic
bubbles on the tensor side. This relation can also be inverted via Hermite polynomi-
als. In [66], the expectations of arbitrary tensor observables (bubbles) were expressed in
terms of quantities evaluated by the matrix models, but it involved summing over Wick
contractions.
In the present work, we generalize the Hermite polynomial relationship of [64] to arbi-
trary observables on both the tensor and matrix sides. To express the expectation of a
matrix observable in terms of tensorial observables, one has to take derivatives of the
potential (which in the case of the quartic melonic model is quadratic, therefore leading
to Hermite polynomials). The other way around, i.e. to express the expectation of a
tensorial observable in terms of matrix expectations, one has to take derivatives of some
effective potential for the matrices YCs (in the quartic melonic model, it reduces again to
a quadratic potential, hence Hermite polynomials), which comes from integrating all the
matrices ΦCs.

Plan – The manuscript is structured as follows. Chapter 1 starts by briefly introducing
the problem of quantum gravity in any dimension, and then gives the recipe for working
it out in d = 2 with the help of random matrices. It ends by an elementary example of
the topological recursion formalism applied to Hermitian matrices. In Chapter 2 random
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tensor models are defined and some of their properties and features are given. The sym-
metric group techniques for counting tensor invariants are also discussed. In Chapter 3
things get more involved. A particularly important type of tensor model is introduced,
viz. the quartic melonic model, and the heavy machinery of the topological recursion
formalism applied to it, it serves as a reference point for our study in Part III. Chapter 4
sets up our notations for real tensor models and their O(N) invariants. We then develop
the double coset counting using permutation group formalism. We also discuss therein
the TFT formulation of the counting and its consequences, introduce the basics of the
representation theory of the symmetric group, and re-interpret the counting in that lan-
guage. Chapter 5 discusses the double coset algebra built out of the O(N) invariants and
lists its properties. Next, Chapter 6 details the 1- and 2-point correlators of the Gaussian
tensor models and their representation theoretic consequences. Chapter 7 briefly lists
a few remarks on the counting of invariants of the real symplectic group Sp(2N). The
counting principle here is similar to that of the O(N) model, but with subtleties that
one should pay heed to. In Chapter 8 we define the tensor models of interest and their
multi-matrix equivalent. Theorems 8.3.2 and 8.3.3 give some of the relationships be-
tween the expectations of observables on the tensor and matrix sides. Chapter 9 explains
how to formally integrate all matrices except Y1, . . . , Yd, leading to an effective matrix
model in Theorem 9.1.1. We use the same technique of formal integration to express the
expectations of tensorial observables in terms of matrix expectations in Theorem 9.2.1.
The large N limit of the effective model is discussed and leads to a matrix model for
the fluctuations. We study the latter in Chapter 10, by describing the Schwinger-Dyson
equations, which can be analyzed along the lines of [66, 67]. We only present some key
aspects which are needed to state Theorem 10.4.1, about the blobbed topological recur-
sion, since everything works as in [66]. We then summarize our work and draw some of its
perspectives. Finally, the manuscript closes with an appendix that divides into two main
parts: the first collects identities of the representation theory of the symmetric group
that are useful in the text, while the other details the software codes that generate the
sequences of numbers of invariants at sundry tensor ranks d = 3, 4, ....
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Introduction en Français

Matrices et tenseurs aléatoires – Les modèles de tenseurs aléatoires sont une gé-
néralisation des modèles de matrices. Depuis leur création [1, 2, 3], ils offrent un cadre
dans lequel étudier la géométrie aléatoire et visent à étendre le succès des modèles de
matrices [4] quant à la gravité quantique 2D aux dimensions supérieures. Cette approche
a pour but d’opérer une transition entre géométries discrètes et continues en dimension
arbitraire. Cependant, les premiers modèles de tenseurs proposés souffraient de multiples
difficultés et aucun développement significatif ne vit le jour pendant une vingtaine d’an-
nées. Ce n’est que récemment que d’importants progrès [5] ont été réalisés, comme par
exemple la découverte d’un nouveau développement en 1/N généralisant le développe-
ment en genre de ’t Hooft [6] aux (pseudo-)variétés de dimension supérieure. Il convient
également de rappeler que les modèles de matrices sont intimement liés aux cartes com-
binatoires, ces dernières étant générées par le développement en graphes de Feynman de
ceux-ci [4, 7]. Par exemple, dans le cas du modèle à une matrice hermitienne, on a :

ˆ
dM e−

N
2t

trM2+N
∑
k≥1

tk
k

trMk

=
∑
cartes

tn

n!
N2−2h

∏
k≥1

tnkk , (7)

où la somme porte sur les cartes de genre h avec n arêtes étiquetées et nk faces de degré
k ≥ 1. La grandeur à l’intérieur de l’exponentielle dans le terme de gauche est appelée
action, ou potentiel, et les tk sont les constantes de couplage. Les modèles de tenseurs
généralisent également cette relation. En effet, le développement en graphes de Feynman
des modèles de tenseurs génère des (pseudo-)variétés de dimension d, linéaires par mor-
ceaux [5, 8, 9, 10]. C’est pourquoi les modèles de tenseurs avaient déjà été proposés comme
solution au problème de la gravité quantique au début des années 1990, bien avant qu’une
limite large N ne soit découverte [11]. L’existence d’une telle limite pour les tenseurs a
naturellement contribué à dévoiler plusieurs résultats analytiques, parmi lesquels on peut
citer la découverte de leur comportement critique (polymères ramifiés [12, 13]), la pro-
priété d’universalité des tenseurs aléatoires [14] et la découverte de nouvelles familles de
théories quantiques des champs renormalisables et non-locales, avec des comportements
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non-perturbatifs et UV intéressants [15, 16, 17], appuyant ainsi la découverte d’une nou-
velle classe d’universalité pour la gravité [18, 19, 20].

Plus récemment, et de manière plutôt étonnante, il a été montré que les modèles de ten-
seurs admettaient la même limite largeN que le modèle Sachdev-Ye-Kitaev (SYK) [21, 22]
de la matière condensée. Ce dernier est exactement résoluble à large N dans l’IR, il mani-
feste la propriété de chaos maximal et est dual à la gravité 2D de Jackiw-Teitelboim [23,
24]. En partie pour ses liens avec la physique des trous noirs et la correspondance
AdS/CFT, le modèle SYK est un sujet de recherche brûlant qui a porté le dévelop-
pement des modèles de tenseurs ces dernières années. En effet, de nouveaux modèles ont
été introduits et leur limite large N étudiée [25, 26]. Certains d’entre eux ont même pu
être explorés au-delà de l’ordre dominant en usant de techniques combinatoires [27].

Un trait caractéristique des modèles de tenseurs est le fait que leurs ensembles d’ob-
servables et d’interactions sont bien plus larges que dans les modèles de matrices [28], et
croissent avec d. Dans les modèles de matrices dits U(N)-invariants, les observables sont
des produits de traces trMn, où M est hermitienne. Dans les modèles U(N)2-invariants,
ce sont des produits de traces du type tr(MM †)n, où M est une matrice complexe. Dans
les deux cas, il n’y a qu’un seul invariant à degré en M fixé (en plus de produits d’inva-
riants de degrés inférieurs). Plus généralement, il existe un ensemble de générateurs de
l’anneau des polynômes U(N)d-invariants appelés bulles. Celles-ci se caractérisent par un
d-uplet de permutations, aux actions à gauche et à droite près sur ce dernier. L’on peut les
représenter graphiquement comme des graphes bipartis d-réguliers dont les arêtes portent
une couleur dans J1, dK de telle sorte que toutes les couleurs soient incidentes à chaque
sommet. Ces graphes ont été étudiés dans [29, 30, 31], où une relation avec les coeffi-
cients de Kronecker a été mise à jour. Enfin, imposer d’autres symétries amène d’autres
ensembles d’observables, comme le fait d’utiliser O(N)d à la place de U(N)d qui assouplit
la condition de bipartisme des bulles [33, 32] comme nous allons le voir.
Cet ensemble élargi d’observables tensorielles est source de nombreuses classes d’universa-
lité qui apparaissent dans les limites large N et continue. En effet, il est bien connu que les
modèles 2D, construits avec une interaction de type trMk et générant les k-angulations,
ont tous la même classe d’universalité, à savoir celle de la gravité quantique 2D dans le
vide. Néanmoins, pour d > 2, il existe potentiellement plus de bulles, donc plus d’inter-
actions à ordre k fixé en T , T , qui correspondent à différents composants élémentaires
de dimension d. Un choix différent de bulles comme interaction peut alors conduire à
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Figure 2 – Invariants unitaires représentés au travers du groupe symé-
trique.

différentes classes d’universalité [9]. Cela ne semble cependant pas être le cas en 3D,
où toutes les bulles planaires (duales à des composants élémentaires homéomorphes à la
sphère) utilisées comme interaction mènent toujours à la classe d’universalité des arbres
aléatoires (polymères ramifiés) [10].

Invariants orthogonaux – Comme mentionné précédemment, de nombreuses, si ce
n’est toutes les études sus-citées reposent sur la compréhension de la combinatoire des
graphes de Feynman et observables du modèle de tenseurs considéré. Ce travail s’appuie
sur et étend deux principaux résultats sur les graphes des modèles de tenseurs.
Dans [29], les auteurs ont énuméré les invariants unitaires comme des observables dans
des modèles de tenseurs complexes. En effet, une façon de décrire l’espace des tenseurs
complexes de rang d est d’en donner les observables. Ces dernières ne sont autres que
les invariants U(N)d (nous les appellerons indifféremment invariants U(N), complexes ou
unitaires). Nous savons que ces invariants sont idéalement représentés par des graphes
colorés bipartis d-réguliers [34]. Leur inventaire est alors uniquement déterminé par des
groupes de permutations (voir Figure 2). Il est important de noter que ces techniques
de groupes symétriques ainsi que leurs théories des représentations ont été développées
ces dernières années [35]–[46]. Elles se sont révélées puissantes, flexibles et suffisamment
versatiles pour s’attaquer à divers problèmes d’énumération tant en théorie des champs
scalaires et modèles de matrices qu’en théories de jauge (QED, Yang-Mills en 2D et 4D)
et théories des cordes. En physique, par exemple, elles jettent un éclairage nouveau sur le
secteur demi-BPS de la théorie de Yang-Mills Supersymétrique N = 4 [35]–[40]. De plus,
de nouvelles correspondances inattendues se dégagent de ces études, comme par exemple
le lien entre graphes de Feynman de la théorie φ4 et théorie des cordes sur un cylindre,
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ou encore entre graphes de Feynman de l’électrodynamique quantique et le comptage
de graphes à rubans [39]. Ces dernières émergent d’une autre interface occupant un rôle
charnière entre problèmes d’énumération. En effet, via le lemme de Burnside, à tout pro-
blème d’énumération impliquant le groupe symétrique, on peut associer une théorie des
champs topologique sur un 2-complexe (appelé TFT2) dont le groupe de jauge est donné
par le groupe symétrique. Une telle formulation amène à de nouvelles interprétations des
formules de comptage avec notamment des liens avec la théorie des revêtements en géo-
métrie algébrique et complexe (voir les références dans [39]). La référence [29] établit de
nombreuses formules se rapportant à l’énumération des observables des modèles de ten-
seurs complexes. À l’aide du lemme de Burnside, l’énumération des invariants unitaires
est refondue en une fonction de partition d’une théorie de jauge sur réseau, une TFT2.
Ainsi, compter les invariants unitaires revient à compter les revêtements ramifiés de la
2-sphère. Les revêtements ramifiés sont des objets bien connus en géométrie algébrique et
complexe [47], en théorie des cordes topologique et correspondent, en dimension 2, à des
applications complexes [38]. Il existe donc une géométrie sous-jacente pour les tenseurs,
héritée de la formulation en termes de TFT2 et qui reste à être élucidée. Il est cependant
important de souligner que les formules de comptage ne sont valides que lorsque la taille
N des tenseurs est supérieure à leur nombre. Plus généralement, une étude plus appro-
fondie est nécessaire [45, 46].
L’étude des invariants tensoriels se poursuit dans [30]. Leurs classes d’équivalences sont
vues comme les éléments d’une base d’un espace vectoriel Kd(n), un sous-espace de
C[Sn]⊗d, l’algèbre de groupe de rang d du groupe symétrique Sn. L’espace Kd(n) est
stable par produit associatif et est muni d’un produit scalaire. C’est pourquoi, à rang d et
nombre de sommets n fixés, les invariants tensoriels engendrent une algèbre semi-simple.
(Il est néanmoins important de noter que d’autres structures algébriques peuvent être
construites à partir de ces invariants [48, 49, 50]. La précédente est en revanche unique, à
isomorphismes près.) Par le théorème de Wedderburn-Artin, toute algèbre semi-simple se
décompose en somme de sous-algèbres de matrices irréductibles. La théorie des représen-
tations du groupe symétrique permet ensuite d’expliciter la décomposition en matrices de
Wedderburn-Artin de l’algèbre : la dimension de l’algèbre n’est autre qu’une somme de
carrés de coefficients de Kronecker (ces derniers peuvent être vus comme les multiplicités
dans la décomposition d’un produit tensoriel de représentations en représentations irré-
ductibles ; ils sont toujours activement étudiés en combinatoire et théorie de la complexité
computationnelle, voir par exemple [51, 52] et les références qui y sont contenues), chaque
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carré correspondant exactement à une des sous-algèbres de matrices. Les bases orthogo-
nales de l’algèbre et de ses sous-algèbres ont été explicitées, d’autres encore proviennent
des corrélateurs gaussiens à 2 points.

Dans ces travaux, nous nous intéressons aux modèles de tenseurs O(N) (appelés aussi
orthogonaux, ou réels), ainsi qu’à leurs observables et cherchons à déterminer s’ils suivent
le même schéma d’énumération que précédemment ou ont le même comportement algé-
brique. Etudiés avec précision pour la première fois dans [33], ces modèles étendent le
développement large N aux tenseurs réels. Les graphes correspondant aux invariants or-
thogonaux conservent la coloration de leurs arêtes mais perdent leur caractère biparti.
Cela amène tout naturellement une classe d’observables plus large que dans le cas unitaire.
Pour énumérer les invariants orthogonaux, nous utilisons des n-uplets de permutations sur
lesquels agissent des (sous-)groupes de permutations, définissant ainsi des classes d’équi-
valences. Nous comptons ensuite les points dans la classe double ainsi formée. La relation
d’équivalence est ici radicalement différente du cas unitaire et nécessite plus de labeur
pour obtenir une formule de comptage satisfaisante. Equipés de leurs fonctions généra-
trices, nous donnons quelques codes informatiques (Mathematica, Sage) pour compter
les observables orthogonales à n’importe quel rang. Nous soulignons que nos résultats
sont en accord avec les travaux fondateurs de Read [55] qui traitent de l’énumération
des graphes à 2n sommets k-réguliers à arêtes k-colorées. Cependant, Read n’appliqua sa
formule qu’aux cas k = 3 pour 2n = 2, 4, 6, alors que notre code étend ce comptage à tous
k et n. Nous produisons des suites nouvelles (non encore rapportées) qui n’apparaissent
pas dans l’OEIS [56].
De plus, la formulation en termes de TFT de notre comptage montre que compter les
invariants orthogonaux revient à compter des revêtements de cylindres accolés présentant
des lacunes (le rang des tenseurs est en lien direct avec le nombre de ces cylindres et la-
cunes). Après avoir introduit l’algèbre des invariants orthogonaux, nous montrons qu’elle
est semi-simple et en tant que telle admet une décomposition de Wedderburn-Artin.
Notre analyse révèle l’existence d’une base orthogonale invariante de l’algèbre, mais qui
ne fournit pas la décomposition de l’algèbre en sous-algèbres matricielles. Par opposition
au cas unitaire, la dimension de l’algèbre est une somme de coefficients de Kronecker
contraints et restreints aux partitions paires. Les outils de la théorie des représentations
fournissent une base à l’algèbre, dont la dimension dépend directement de la somme des
Kronecker contraints. Les corrélateurs gaussiens à 1 et 2 points s’expriment également
dans le langage du groupe symétrique. Comme corollaire à cette analyse, les fonctions
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à 2 points normalement ordonnées sélectionnent une base orthogonale de représentation
de l’algèbre. En ce sens, l’intégration se traduit par un couplage des observables dans
l’espace de Fourier.

Récurrence topologique à blobs – Une question qui se pose pour les modèles de
tenseurs est la possibilité d’aller au-delà de la limite large N . Tout particulièrement, il
est naturel de se demander si les méthodes utilisées à cette fin dans les modèles de ma-
trices sont encore applicables aux tenseurs et si elles dépendent des interactions choisies.
Dans ces travaux nous nous focaliserons sur la récurrence topologique d’Eynard-Orantin
[57, 58, 59, 60]. Citons néanmoins quelques travaux précédents menés sur les modèles de
tenseurs au-delà de la limite large N . Une analyse combinatoire standard a été appliquée
aux graphes des modèles dits colorés par Gurau et Schaeffer [61], et étendue à l’ensemble
des graphes de Feynman du modèle multi-orientable (qui a pour symétrie U(N)2×O(N)

en dimension d = 3) par Fusy et Tanasa [62]. Les graphes de Feynman apparaissant à
un ordre donné en 1/N ont été classés dans chaque modèle. Les auteurs ont également
identifié les graphes les plus singuliers dans la limite continue à chaque ordre en 1/N ,
prouvant ainsi l’existence d’une double limite d’échelle dont la fonction à 2 points a été
calculée.
En parallèle, un modèle particulier, dit quartique melonique, commença à attirer l’at-
tention. C’est un modèle possédant jusqu’à d interactions quartiques d’une structure
particulière appelée melonique. L’intérêt porté au modèle quartique melonique provient
essentiellement de l’existence de la technique d’Hubbard-Stratonovich qui transforme ce
modèle de tenseurs en un modèle multi-matrices, ce qui ouvrit ainsi la voie à une nouvelle
méthode d’analyse des modèles de tenseurs, à savoir au travers des modèles de matrices.
La double limite d’échelle de ce modèle fut explicitée dans [63] (un résultat similaire à
[61]). Dans [64], les auteurs ont également réalisé que dans la limite large N , les valeurs
propres ne s’étalent pas car la répulsion coulombienne est sous-dominante. En revanche,
elles tombent toutes au fond du puits de potentiel, comme anticipé dans [65]. L’on peut
alors étudier leurs fluctuations autour du point col, une analyse débutée dans [64], où il a
été montré que l’ordre dominant des fluctuations obéit à la loi du demi-cercle de Wigner.

Dans [66], une première instance de la récurrence topologique dans le contexte des modèles
de tenseurs a été établie. On rappelle que dans le cas du modèle à une matrice hermitienne,
la récurrence topologique s’applique au calcul des fonctions de corrélationWn,g(x1, . . . , xn)

à n points, de genre g qui apparaissent dans le développement des fonctions à n points
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connexes
〈tr 1

x1 −M
· · · tr 1

xn −M
〉c =

∑
g≥0

N2−n−2gWn,g(x1, . . . , xn). (8)

Dans le langage des cartes, c’est une récurrence sur les fonctions génératrices des cartes
de genre g avec n faces marquées dont les périmètres sont reliés aux variables x1, . . . , xn.
La récurrence topologique revêt une forme universelle et repose sur la donnée initiale
d’une courbe spectrale. La courbe spectrale est quant à elle déterminée par les fonctions
du disque et du cylindre W1,0(x) et W2,0(x1, x2).
Dans [66], le modèle de matrices obtenu est celui trouvé en [64] pour les fluctuations des
valeurs propres autour du point col. Il se compose de d matrices hermitiennesM1, . . . ,Md

où Mc est dite de couleur c et où les fonctions de corrélation doivent refléter la couleur
des variables,

Wn(x1, c1; . . . , xn, cn) = 〈tr 1

x1 −Mc1

· · · tr 1

xn −Mcn

〉c. (9)

Il se trouve que le couplage entre les couleurs est relativement faible et l’on peut écrire une
récurrence topologique où la courbe spectrale est une union disjointe de d courbes spec-
trales de modèles de matrices gaussiens, à ceci près que la fonction du cylindre acquiert
un terme holomorphe. Ceci est dû aux conditions suivantes :

condition 1 la symétrie U(N)d. Celle-ci implique que les matrices de différentes couleurs
ne peuvent interagir qu’au travers de produits de traces de différentes couleurs.
L’action prend la forme

SN(M1, . . . ,Md) =
∑

p1,...,pd≥0

tN(p1, . . . , pd) trMp1

1 . . . trMpd
d , (10)

condition 2 le développement en 1/N . Il est tel que seuls les termes quadratiques de
l’action survivent dans la limite large N ,

SN(M1, . . . ,Md) ∼
N→∞

N
d∑
c=1

actrM
2
c +

d∑
c,c′=1

bcc′trMctrMc′ . (11)

Ces deux conditions garantissent qu’une extension de la récurrence topologique, dite à
blobs (ou multi-colorée), existe et dont la courbe spectrale est une union disjointe de
courbes spectrales gaussiennes, excepté pour W2,0(x1, c1;x2, c2) qui se dote d’une partie
holomorphe supplémentaire. La récurrence topologique à blobs a été introduite par Borot
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[67] et plus tard formalisée par Borot et Shadrin [68]. Dans notre contexte, elle s’applique
aux modèles de matrices avec des interactions multi-traces admettant un développement
topologique, à savoir de la forme

SN(M) =
∑
n,h≥0

∑
p1,...,pn≥0

N2−n−2h t(h)(p1, . . . , pn) trMp1 . . . trMpn . (12)

D’un point de vue combinatoire, ces types de modèles génèrent des cartes farcies, définies
en [67]. Ce sont des cartes qui ne sont pas construites en recollant des disques, mais des
surfaces de genre h à n composantes du bord de périmètres p1, . . . , pn. Dans [66], cette
interprétation survit avec néanmoins une coloration supplémentaire des composantes du
bord.
Dans la version à blobs, la récurrence sur les fonctions de corrélation possède toujours le
même terme universel que dans le cas ordinaire, à savoir celui qui calcule les parties singu-
lières de ces fonctions. Qui plus est, des contributions holomorphes s’ajoutent [67, 68]. Il
reste néanmoins important de garder à l’esprit que l’action (10) n’est en fait topologique
que pour d = 4d′ + 2, pour d′ ∈ N [66], ce qui signifie que les constantes de couplage
prennent la forme tN(p1, . . . , pd) =

∑
h≥0N

2−d−2ht(h)(p1, . . . , pd). Pour d’autres valeurs
de d, on peut faire comme si l’action était topologique en réabsorbant une partie de la
dépendance en N dans les constantes de couplage t(h)(p1, . . . , pd), puis en appliquant la
récurrence topologique.
Ici nous montrons comment mettre cette approche en œuvre pour des modèles U(N)d-
invariants arbitraires, sous réserve qu’il existe des interactions quartiques meloniques
(entre autres) ainsi qu’une certaine condition d’inversibilité d’une forme quadratique à
large N . Tout cela repose sur le fait qu’après emploi de certaines techniques de champ
intermédiaire et d’intégrations formelles, de tels modèles de tenseurs peuvent toujours
être réécrits comme des modèles de matrices à d matrices hermitiennes satisfaisant aux
conditions 1 et 2. C’est pourquoi les fonctions de corrélation de ces matrices satisfont la
récurrence topologique à blobs et ce avec la même courbe spectrale que le modèle quar-
tique melonique de [66]. De manière remarquable (et évidente d’après [67]), les détails du
modèle, à savoir le choix des interactions, ne contribuent qu’à une action effective et non
pas à la forme de la récurrence topologique à blobs. En termes combinatoires, les détails
ne contribuent qu’aux fonctions génératrices de la farce des cartes. Démontrer la validité
de la récurrence à blobs ne nécessite pas de connaître explicitement l’action effective, mais
seulement que les conditions 1 et 2 soient satisfaites. En ce sens, la récurrence topolo-
gique à blobs est universelle dans notre cadre. La seule différence entre nos formules et
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celles de [66] repose sur le fait que les fonctions génératrices de la farce étaient connues
explicitement dans [66], alors que leur dépendance en les constantes de couplage demeure
inconnue ici (leur dépendance en N reste néanmoins importante).

Méthode – Il existe cependant quelques obstacles techniques à surmonter. Tout modèle
de tenseurs ne peut être directement transformé en un modèle de matrices grâce à la
transformation d’Hubbard-Stratonovich étant donné que cette dernière ne fonctionne
qu’avec des interactions quartiques. Ce premier obstacle a été surmonté dans [70] où il a
été montré qu’il était toujours possible de réécrire le modèle avec des matrices. Ceci fut
prouvé en utilisant une bijection entre les graphes de Feynman du modèle de tenseurs
et ceux du modèle de matrices correspondant. Une seconde preuve fut également donnée
par des manipulations d’intégrales formelles (qui ne sont définies que via leurs séries de
Feynman). Ici nous répéterons cette preuve en l’adaptant afin de surmonter le second
obstacle que nous explicitons maintenant.
La méthode employée dans [70] transforme un modèle de tenseurs en un modèle de
matrices avec des matrices complexes MC étiquetées par des sous-ensembles de J1, dK, à
savoir C ⊂ J1, dK. Néanmoins, appliquer la même recette que dans [66] nécessite à la place
d’avoir d matrices hermitiennesM1, . . . ,Md. Ce problème est résolu en deux étapes. Nous
montrons d’abord qu’il est possible de remplacer chaque matrice complexe MC par une
paire de matrices hermitiennes (YC ,ΦC)C⊂J1,dK. Ensuite, et sous réserve que les interactions
quartiques meloniques soient allumées, il est possible d’intégrer formellement sur toutes
les matrices hormis Y1, . . . , Yd. En termes de graphes de Feynman, cela signifie que l’on
est en présence de cartes combinatoires à arêtes colorées correspondant aux matrices
Y1, . . . , Yd, tout le reste étant entassé dans une quelconque farce de la carte. Gardant en
mémoire le but de la récurrence topologique, il est nécessaire de contrôler la dépendance
en N des différentes farces en termes de leurs composantes du bord.
La prochaine étape consiste à observer que toutes les valeurs propres de Y1, . . . , Yd tombent
dans un puits de potentiel à large N et de poursuivre par l’étude de leurs fluctuations.
C’est ici que l’on observe que les conditions 1 et 2 sont toujours satisfaites et conduisent à
la récurrence topologique à blobs. Il serait intéressant de savoir si la condition 2 peut être
supprimée en général. L’on sait cela possible dans le cas d’un modèle mono-matrice [67],
cependant, dans le cas multi-coloré, cela nécessiterait un lemme à une coupure (ou lemme
de Brown) pour un système d’équations couplées possédant des variables catalytiques,
élargissant partant le cadre de [71], ce qui dépasse les limites de ce manuscrit.
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Attentes – En traitant de la récurrence topologique dans le contexte des modèles de ten-
seurs, il est une autre question qui vient naturellement à l’esprit, à savoir comment relier
les valeurs moyennes d’observables du côté des tenseurs aux quantités évaluées via la ré-
currence topologique du côté des matrices. Dans [64] pour le modèle quartique melonique,
il a été montré que les valeurs moyennes de trMn

c sont des valeurs moyennes de polynômes
d’Hermite en des bulles cycliques melonique du côté des tenseurs. Cette relation peut être
inversée grâce aux polynômes d’Hermite. Dans [66], les valeurs moyennes d’observables
tensorielles (bulles) arbitraires ont été exprimées en termes de quantités évaluées par les
modèles de matrices, mais cela impliquait de sommer sur des contractions de Wick.
Dans ce manuscrit, nous généralisons la relation sur les polynômes d’Hermite de [64] à
des observables arbitraires à la fois du côté des tenseurs et des matrices. Afin d’expri-
mer la valeur moyenne d’une observable matricielle à l’aide d’observables tensorielles,
l’on est contraint de dériver le potentiel (qui dans le cas quartique melonique est qua-
dratique, ce qui conduit aux polynômes d’Hermite). Dans le cas contraire, c’est-à-dire
exprimer la valeur moyenne d’une observable tensorielle en termes de valeurs moyennes
matricielles, il faut prendre les dérivées d’un potentiel effectif en les matrices YC (dans
le modèle quartique melonique, il s’agit encore d’un potentiel quadratique, d’où les poly-
nômes d’Hermite), qui vient par intégration de toutes les matrices ΦC .

Plan – Ce travail est structuré de la manière suivante. Le Chapitre 1 commence par
introduire le problème de la gravité quantique en dimension arbitraire, puis en donne
une solution en dimension d = 2 à l’aide des modèles de matrices, qu’il introduit. Il se
termine par un exemple élémentaire d’application du formalisme de la récurrence topo-
logique au modèle hermitien mono-matrice. Dans le Chapitre 2, on définit les modèles
de tenseurs aléatoires et on en donne les principales propriétés et caractéristiques. L’on
introduit également les techniques issues de la théorie du groupe symétrique pour comp-
ter les invariants tensoriels. Dans le Chapitre 3 on rentre dans le vif du sujet. Un modèle
de tenseurs aléatoires particulièrement important est introduit, à savoir le modèle quar-
tique melonique, et le formalisme de la récurrence topologique lui est appliqué ; il sert de
référence pour l’analyse de la Partie III. Le Chapitre 4 présente nos notations pour les
tenseurs réels et leurs invariants orthogonaux. L’on développe ensuite le comptage double
classe en utilisant le formalisme du groupe des permutations. L’on discute également dans
ce chapitre de la formulation TFT du comptage et de ses conséquences, puis on introduit
le b.a.-ba de la théorie des représentations du groupe symétrique avant de réinterpréter
le comptage dans ce langage. Le Chapitre 5 traite de l’algèbre double classe construite
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à partir des invariants O(N) et liste ses propriétés. Ensuite, le Chapitre 6 détaille les
corrélateurs gaussiens à 1 et 2 points et leurs conséquences en termes de théorie des re-
présentations. Le Chapitre 7 liste brièvement quelques remarques concernant le comptage
d’invariants du groupe symplectique réel Sp(2N). Le principe est similaire au cas orthogo-
nal, moyennant quelques subtilités. Dans le Chapitre 8, on définit les modèles de tenseurs
qui nous intéressent, ainsi que leurs équivalents multi-matriciels. Les théorèmes 8.3.2 et
8.3.3 révèlent quelques relations entre valeurs moyennes d’observables du côté tensoriel
et matriciel. Le Chapitre 9 explique comment formellement intégrer toutes les matrices
à l’exception de Y1, . . . , Yd, ce qui conduit à un modèle de matrices effectif dans le théo-
rème 9.1.1. Les mêmes techniques d’intégration formelle sont utilisées pour exprimer les
valeurs moyennes d’observables tensorielles en termes de valeurs moyennes matricielles
dans le théorème 9.2.1. La limite large N du modèle effectif est discutée et conduit à
un modèle de matrices pour les fluctuations. Ce dernier est étudié dans le Chapitre 10
à l’aide des équations de Schwinger-Dyson suivant l’analyse de [66, 67]. Seuls certains
aspects essentiels à l’établissement du théorème 10.4.1 sur la récurrence topologique à
blobs sont traités, étant donné que tout fonctionne comme dans [66]. Nous résumons en-
suite nos travaux et en tirons les perspectives. Finalement, le manuscrit se clôt sur un
appendice qui se divise en deux grandes parties. La première recueille des identités de
la théorie des représentations du groupe symétrique qui nous sont utiles dans le texte,
alors que la seconde détaille les codes informatiques qui génèrent les suites du nombre
d’invariants à divers rangs d = 3, 4, . . .
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Chapter 1

Quantum gravity as random geometry

Quantum gravity (QG) has been evading physicists for quite some time now. From
as early as the 1960s, Feynman rules for the gravitational field are established and an
attempt to combine the mathematics of quantum mechanics and General Relativity (GR)
results in the Wheeler-DeWitt field equation [72]. However, the latter remains ill-defined
as standard quantum field theory methods fail because of the nonrenormalizability of GR.
Hawking’s “wave function of the universe” approach [73] is similarly flawed and one has
to wait until the 1980s for a renaissance of the genre with string theory and later Loop
Quantum Gravity and Tensorial Field Theories. For further accounts on the history of
QG, see for instance [74].

1.1 Looking for a quantum theory of gravity

Let d > 2 be an integer. In d-dimensional space, pure gravity is described by the partition
function

ZEH =

ˆ
D[g]e−SEH [g], (1.1)

where the integration is performed over the space of all (semi-)Riemannian metrics of a
given smooth manifold Σ. Denoting by R the (Ricci) scalar curvature of g and Λ the
cosmological constant, the Einstein-Hilbert (EH) action reads in local coordinates

SEH [g] =
1

16πG

ˆ
Σ

ddx
√
|g|(R− 2Λ), (1.2)

in natural units where c = 1, G is Newton’s fundamental constant of gravity and |g|
the determinant of the metric. In the classical theory, one then recovers the vacuum
Einstein field equations by applying the least action principal to SEH . Namely, in local
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coordinates, for µ, ν ranging from 1 to d and Rµν being the Ricci tensor (gµνRµν = R):

Rµν −
1

2
Rgµν + Λgµν = 0. (1.3)

From there one can obtain some rough insight into QG by “linearizing” Einstein’s equa-
tions on Minkowski space, i.e. by taking the metric to be a small perturbation of the flat
Minkowski metric ηµν : gµν = ηµν + εhµν and demanding that this metric be a solution
of (1.3) up to first order in ε. The quantum theory thus obtained turns out to be the
theory of a massless spin-2 particle called the graviton. The standard viewpoint of quan-
tum field theory would then be first to study the linearized equations and then turning
on the interactions by incorporating the non-linear terms. This approach however vio-
lates the “background independance” spirit of GR as it privileges the particular solution
being perturbed about (the Minkowski metric). This plagues the theory with infinities:
it is not renormalizable. As it is now thought that for a theory to accurately describe
our universe, it should be renormalizable, this failure calls for a different approach. A
common one - mainly developed by Regge [75] - consists in discretizing the manifold in
the following way. Consider a triangulation1 T of Σ consisting of blocks of d-simplices
σd. Historically, the discretized EH action treats all the lengths of the triangulation as
many geometric degrees of freedom, yielding a classical approximation of gravity on the
triangulation. Assume now that all edges have the same length, say l. The theory now
becomes an intrinsically quantum one, as the degrees of freedom are the triangulation
itself. Such a triangulation can be seen as piecewise flat, the d-simplices are flat and the
curvature is concentrated around the (d − 2)-simplices. The latter being given by the
so-called deficit angle

δ(σd−2) = 2π −
∑

σd−1⊃σd−2

θ(σd−1, σd−2), (1.4)

where the θ(σd−1, σd−2) are the dihedral angles hinged on σd−2 and the sum is taken over
pairs of (d − 1)-simplices sharing the same (d − 2)-simplex. For instance in dimension
d = 2, the curvature is concentrated over the vertices where arrangements of triangles
meet. A vertex with positive (resp. negative) deficit angle thus represents a concentration
of negative (resp. positive) curvature.
The EH action then takes the discrete form of the Regge action, where the first term en-
codes curvature and the second being the total volume of Σ, measured by the cosmological

1 Such a triangulation may not exist in general when Σ is only topological [76]. However, we know
from [77, 78] that every smooth manifold admits a (piecewise-linear) triangulation.
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constant:
SRegge =

1

8πG

(∑
σd−2

vol(σd−2)δ(σd−2)− 2Λ
∑
σd

vol(σd)
)
. (1.5)

Denoting by vk = lk

k!

√
k+1
2k

the volume of a k-simplex and by nk the number thereof, it
can be shown [12] that the action reduces to

SRegge =
1

8πG
(vd−2∆d−2 − 2Λndvd), (1.6)

where ∆d−2 = 2π nd−2 − d(d+1)
2

arccos
(

1
d

)
nd is the sum of the deficit angles. Indeed, the

deficit is linked to the number d(d+1)
2

of σd−1 simplices around each σd−2 simplex, the
dihedral angle being arccos

(
1
d

)
2. We then substitute the integral over the metrics of Σ

with a sum over homogeneous triangulations of the manifold
ˆ
D[g] ←→

∑
T triangulation of Σ

. (1.7)

A complete account of this substitution in d dimensions can be found in [12, 79], here we
only cite the result for d = 2:

Z(Λ) =
[
e−

1
4G

]2−2h(Σ) ∑
T triangulation of Σ

[
e

Λ
8πG

]#triangles
, (1.8)

where h(Σ) is the genus - the number of handles - of the surface Σ.

Let us now turn our focus to the two dimensional case, where the problem of QG can be
solved explicitly. This will allow us to introduce the central notion of random matrices.

1.2 Discretizing surfaces

Take d = 2 and suppose Σ is an orientable compact manifold without boundary. In this
setting, classical gravity is trivial. Indeed, from the Gauss-Bonnet theorem, the scalar

2 It is worth noticing that in dimension d = 3, as arccos
(
1
3

)
6= p

qπ, the sum of deficit angles cannot
be zero, hence the question of simulating flat three dimensional spaces with tetrahedra.
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curvature3 term is topological, thus non-dynamical:
ˆ

Σ

d2x
√
|g|R = 4πχ(Σ), (1.9)

where4 χ(Σ) = 2 − 2h(Σ) is the Euler characteristic of the surface. This, however, does
no longer hold in the quantum case, the reason of which is twofold. On the one hand,
large quantum fluctuations may change the genus of the surface, the partition function
should hence involve a sum over surfaces of all genera h. We write

Z(Λ) =
∑
h

ˆ
D[g]e

− 1
16πG

(´
d2x
√
|g|R−2Λ

´
d2x
√
|g|
)

=
∑
h

ˆ
D[g]e−

1−h
2G

+ Λ
8πG

A,

(1.10)

with A =
´
d2x
√
|g| being the area of the surface. On the other, at fixed genus, the

random contributions stem from local (quantum) fluctuations of the metric field that
modify locally the area of the surface - it can be seen by factoring out the Gauss-Bonnet
term in the path integral (1.10). An illustration of this phenomenon is best given by the
Brownian map, where “random fluctuations” of the graph distance produce highly fractal
patterns as seen in Figure 1.1.
Note that even in two dimensions, the integral over the (infinite dimensional) space of
metrics is hard to perform in general, especially if Σ is not compact. Nevertheless, a way
was developed by Polyakov [81] in the 1980s as he was working on the quantization of
the bosonic string and which is nowadays known as Liouville’s approach to QG (see [4]
for a quick review). We, however, will not be taking this route. So let us once again
discretize the surface with triangles. The triangles are chosen to be equilateral so that the
triangulation is locally flat when there are exactly six triangles incident to a vertex v and
has positive (resp. negative) curvature when there are less (resp. more). More precisely,
the discrete equivalent of the Ricci scalar for each vertex is Rv = 2π(6− deg v)/ deg v, so
that

1

4π

ˆ
Σ

d2x
√
|g|R →

∑
v∈V (T )

(
1− deg v

6

)
, (1.11)

where deg v is the degree of the vertex v ∈ V (T ), i.e. the number of triangles incident
3 Note that in dimension d = 2, the Gaussian curvature is simply given by half the Ricci scalar.
4 When Σ is non-orientable the Euler characteristic reads χ = 2−k, where k, the non-orientable genus,

is the number of real projective planes appearing in a connected sum decomposition of the surface.
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Figure 1.1 – A Brownian map of genus 0, or more precisely a very large
random bipartite quadrangulation of the sphere. Image by Jérémie Bet-

tinelli [80].

to it. Writing V , E and F respectively the total number of vertices, edges and faces
(triangles) in T , the following relations hold:

∑
v∈V (T ) deg v = 3F (as there are three

corners per triangle) and 3F = 2E (since each face has three edges, each of which shared
by two faces). From (1.6) it now follows that the discretized action takes the form

SRegge(Λ) =
1

4G
(V − 1

2
F )v0 −

Λ

8πG
v2F. (1.12)

But from the definition of the Euler characteristic,

2− 2h = V − E + F
3F=2E

= V − 1

2
F, (1.13)

the action reduces to the expression

SRegge(Λ) =
1

4G
(2− 2h)− Λ

8πG
v2F, (1.14)

given at the end of the previous section.
A way of implementing such triangulations of surfaces uses the theory of random matrices,
that we now introduce.
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1.3 Random matrices

Broadly speaking, random matrix theories deal with probability laws on spaces of matri-
ces. Originally introduced by Wishart [82] in multivariate statistics, they made their first
appearances in physics with Wigner in the 1950s [83] through the study of the energy
spectrum of large nuclei. Since that time, random matrices have spread to almost every
field of mathematics and physics. They have been used in chaotic quantum theory to
compute for instance the Rydberg levels of hydrogen atoms in a strong magnetic field
[84], by ’t Hooft [6] in the large N limit of U(N) Quantum Chromodynamics, in string
theory and to count various maps and knots [85].
A random matrix theory is defined by the choice of both a matrix ensemble and proba-
bility measure on that ensemble. Depending on the symmetries of the system, one finds
that one has to consider three sets of matrices, invariant respectively under the orthogonal
O(N), unitary U(N) and symplectic group Sp(2N). It is conventional to refer to them
by the integer β = 1, 2, 4 that counts the number of real parameters of the off-diagonal
entries. One can furthermore assume that the matrices follow a Gaussian distribution:

ρ(M)dM ∝ exp

(
−1

2
βM2

)
dM. (1.15)

For β = 2 this defines the Gaussian Unitary Ensemble (GUE) of random matrices. The
Lebesgue measure is then expressed as the product of the Lebesgue measures on the real
components of the matrix:

dM =
∏
i

dMii

∏
i<j

dReMij d ImMij. (1.16)

However, measures that we will encounter are all constructed via a potential V :

dµ(M) = e−trV (M)dM, (1.17)

often chosen to be a polynomial function, but more involved potentials, sometimes called
semi-classical, can also be considered. A matrix of the GUE has real eigenvalues and can
be diagonalized as M = UΛU †, where Λ = diag(λ1, . . . , λN) and U is a unitary matrix.
The measure (1.16) can then be rewritten in terms of the measures on Λ and U as

dM = ∆2(λ)dΛ dU, (1.18)
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where dΛ =
∏

i dλi is the Lebesgue measure on RN , dU is the Haar measure on U(N)

and ∆(λ) is the Vandermonde determinant

∆(λ) := det
i,j

λj−1
i =

∏
j<i

(λi − λj). (1.19)

To show this, notice that (1.16) is invariant under U(N)-conjugation, thus one has for
the differential of M :

dMij = (dΛ + [dU,Λ])ij

= δijdλi + (λi − λj)dUij.
(1.20)

Computing the Jacobian then yields

dM

dΛdU
= det

i,i′

(
dMii

dλi′

)
det

i 6=j,i′ 6=j′

(
dMij

dUi′j′

)
= ∆2(λ). (1.21)

The partition function associated to the measure dµ(M) (1.17) then becomes

Z =
1

Z0

ˆ
RN

N∏
i=1

dλi∆
2(λ)e−

∑
i V (λi), (1.22)

where Z0 is a normalizing factor related to the volume of the GUE. Explicitly5, it
reads [101]

Z−1
0 =

1

(2π)NN !
vol (U(N)) =

π
N(N−1)

2∏N
j=1 j!

. (1.23)

It will henceforth be omitted.

Introductory example – Following what was said in the previous section, we consider
a particular random triangulation of a surface as examplified in Figure 1.2. Consider
N ×N Hermitian matrices, the partition function of such a model is given by

Z(t3, N) =

ˆ
dM e−N( 1

2t
trM2− t3

3
trM3), (1.24)

where the measure of integration is (1.16). This integral may be computed by formally
expanding the t3-term of the exponential, and by explicitly performing the term-by-term

5 The prefactor in the intermediate term stems from the liberty in choosing U in the diagonalization
of M . Indeed, the set of eigenvalues remains unchanged if one multiplies U on the right by elements of
the sets U(1)N of unitary diagonal matrices and SN of permutation matrices.
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Figure 1.2 – An example of a random triangulation of a surface. Each
triangle is dual to a three point vertex of a matrix model.

Gaussian integration:

Z(t3, N) =
∞∑
k=0

Nk t
k
3

k!

ˆ
dM

(trM3)k

3k
e−

N
2t

trM2

=
∞∑
k=0

Nk tk3
3kk!
〈(trM3)k〉.

(1.25)

These integrations can be carried out by applying Wick’s theorem:

〈Mi1j1 . . .Mi2nj2n〉 = N−n
∑
{pa,qa}

n∏
m=1

δipmjqmδiqmjpm , (1.26)

where the sum is taken over all the pairings of indices such that
⋃n
a=1{pa, qa} = J1, 2nK.

As an example let us work out the case k = 2:

〈
trM3 trM3

〉
= MMMMMM +MMMMMM +MMMMMM

+MMMMMM +MMMMMM +MMMMMM

+MMMMMM +MMMMMM +MMMMMM (1.27)

+MMMMMM +MMMMMM +MMMMMM
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+MMMMMM +MMMMMM +MMMMMM,

where each matrix pair contraction is given by the propagator

MijMkl = 〈MijMkl〉 =
t

N
δilδjk. (1.28)

Hence we obtain (repeated indices are summed):

〈N2 trM3 trM3〉 = N2〈MijMjkMkiMlmMmnMnl〉

=
1

N
(δikδjjδkmδilδmlδnn + δikδjjδknδinδlnδmm + . . . )

= 12N2 + 3.

(1.29)

This computation can be given the following graphical interpretation. Consider the gen-
eral matrix model (7). To each matrix element Mij one associates an oriented double
half-edge, where each line carries an index of the matrix. Each factor of the form trMk

is pictured as a k-valent vertex with k outgoing double half-edges, each vertex carrying
a weight Ntk. By virtue of Wick’s theorem, the result of the Gaussian integration is
obtained by summing over all possible ways of connecting the half-edges of the integrand
into pairs so as to form a closed graph, called fat or ribbon graph. Each vertex now
counts for a power of N , the sum over all indices results in a weight N per loop (face) of
the graph, and each propagator, or edge, comes with a t/N factor. We obtain the total
dependence on N of a ribbon graph as

NV−E+F = Nχ = N2−2h. (1.30)

We conclude that in our example, the dominant graphs O(N2) are the (twelve) planar
ones, that can be drawn on the sphere, there are also three non planar O(1) graphs,
that can only be drawn on the torus. This result can be generalized to arbitrary n-point
correlation functions of traces of powers of M :

Theorem 1.3.1 (’t Hooft [86], Brézin–Itzykson–Parisi–Zuber [87]).〈
n∏
k=1

N
trMpk

pk

〉
c

=
∑

Γ

Nχ(Γ)

|Aut(Γ)|
, (1.31)

where the sum is taken over all connected graphs Γ with n vertices of valence pk, k ∈ J1, nK.
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Furthermore, on taking the logarithm of the partition function, one is left with only
connected graphs. In our example, we get the following expansion for what is called the
free energy

lnZ(t3, N) = F (t3, N) =
∑
h≥0

N2−2hFh(t3), (1.32)

where Fh is the generating function of triangulations of genus h. In the large N limit,
only the leading order F0 survives, it counts the planar triangulations, i.e. triangulations
of the sphere S2.

1.3.1 The steepest way to the continuum limit

One way of computing this large N limit is through the so-called steepest descent method
- or stationary phase approximation - that we now introduce. Consider the general matrix
model given by the partition function

Z(N) =

ˆ
dMe−N trV (M)

=

ˆ ∏
i

dλi∆
2(λ)e−N

∑
i V (λi),

(1.33)

where ∆(λ) is again the Vandermonde determinant, the λis are the eigenvalues of M and
we consider a polynomial potential. Let us first rewrite this integral as:

Z(N) =

ˆ N∏
i=1

dλie
−NS(λ), (1.34)

the action being:

S(λ) =
N∑
i=1

V (λi)−
2

N

∑
j<i

log |λi − λj|. (1.35)

This action exhibits a remarkable feature. Because of the presence of the Vandermonde
determinant, the eigenvalues cannot all fall in the potential well created by V , it is as if
they were experiencing a (2D logaritmic) Coulomb repulsion6. We are now interested in

finding the stationary points of the action, i.e. in solutions {λi} satisfying
∂S

∂λi
= 0, for

6 This is known in the litterature as the Coulomb gas picture.
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all i ∈ J1, NK. We obtain the following equations for all i ∈ J1, NK,

2

N

∑
j 6=i

1

λi − λj
= V ′(λi). (1.36)

They can be solved by introducing the (trace of the) resolvent of the matrix M :

ω(x) =
1

N
tr

1

x−M
=

1

N

∑
i

1

x− λi
. (1.37)

Multiplying now (1.36) by 1/(x− λi) and summing over i, one gets successively

2

N

∑
i

∑
j 6=i

1

λi − λj
1

x− λi
=
∑
i

V ′(λi)

x− λi
,

1

N

∑
i

∑
j 6=i

1

λi − λj

(
1

x− λi
− 1

x− λj

)
=
∑
i

V ′(λi)− V ′(x)

x− λi
+
∑
i

V ′(x)

x− λi
1

N

∑
i,j

1

x− λi
1

x− λj
− 1

N

∑
i

1

(x− λi)2
=
∑
i

V ′(λi)− V ′(x)

x− λi
+NV ′(x)ω(x)

ω2(x) +
1

N
ω′(x)− V ′(x)ω(x) =

1

N

∑
i

V ′(λi)− V ′(x)

x− λi
,

(1.38)

where we have divided the whole expression by N . We denote p(x) = 1
N

∑N
i=1

V ′(x)−V ′(λi)
x−λi ,

it is a polynomial in x of degree l− 2 for deg V = l. In the large N limit, we can neglect
the ω′/N term, we arrive at the equation:

ω2(x)− V ′(x)ω(x) + p(x) = 0. (1.39)

Notice that in this limit, the distribution of eigenvalues ρ(λ) = 1
N

∑
i δ(λ − λi) becomes

continuous and ω is given by the Stieltjes transform of ρ:

ω(x) =

ˆ
dλ

ρ(λ)

x− λ
. (1.40)

Eq. (1.36) can then be rewritten

ˆ
dλ′

ρ(λ′)

λ− λ′
= V ′(λ). (1.41)
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The eigenvalue density is extracted from ω(x) via

ρ(x) =
1

2iπ
lim
ε→0

(ω(x+ iε)− ω(x− iε)) . (1.42)

A general treatment of (1.39) can be found in [4], here we will focus on the Gaussian
case, in order to introduce the topological recursion later on. Let us write

W1(x) = 〈tr 1

x−M
〉 =

∑
n≥0

x−n−1〈trMn〉,

P1(x) = 〈trV
′(x)− V ′(M)

x−M
〉 and set V (x) =

1

2t
x2.

(1.43)

Note that in the saddle-point approximation, W1(x) ∼ Nω(x), such that the 1-point
correlation function W1 satisfies again (1.39) with P1 = lim

N∞
p. The solution reads

W1(x) =
V ′(x)

2
−
√
V ′(x)2 − 4P1(x)

2
, (1.44)

where we chose the negative branch asW1 scales like 1/x for |x| large and with P1(x) = 1
t
.

In the general case, W1 has 2(l − 1) branch points corresponding to the roots of the
polynomial V ′2 − 4P1. The support of ρ is then composed of l − 1 disconnected pieces.
In the simplest case, which interests us here, the potential has only one minimum, there
is thus just one connected support, thus only two branch points (with opposite values as
V is even). Then:

V ′(x)2 − 4P1(x) =
x2

t2
− 4

t

=
1

t2
(x− 2

√
t)(x+ 2

√
t),

(1.45)

which was to be expected according to Brown’s lemma (see next section). Such that

W1(x) =
1

2t

(
x−
√
x2 − 4t

)
, (1.46)

from which we get back Wigner’s celebrated semi-circle law: for λ ∈ [−2
√
t, 2
√
t],

ρ(λ) =
1

2πt

√
4t− λ2. (1.47)
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1.3.2 The double scaling limit

Consider now the following quartic model,

Z(t4, N) =

ˆ
dM e−N( 1

2
trM2+

t4
4

trM4). (1.48)

The free energy F (t4, N) = logZ(t4, N) admits an expansion over Feynman graphs.
Graphs contributing to F (t4, N) are ribbon graphs with 4-valent vertices and no external
leg, while those contributing to the 2-point function G2(t4, N) = 〈 1

N
trM2〉 are graphs

with quartic vertices and a marked edge. Let us now use the apparatus developed in the
previous paragraphs to compute the 2-point function in the large N limit. The potential
is now the following

V (x) =
1

2
x2 +

t4
4
x4, (1.49)

and the correlation function becomes

W1(x) =
1

2
(x+ t4x

3)− 1

2
(1 + t4x

2 + 2t4a
2)
√
x2 − 4a2, (1.50)

with
a2 =

1

6t4
(
√

1 + 12t4 − 1). (1.51)

From (1.42) together with (1.43) we find that

ρ(λ) =
1

2π
(1 + t4λ

2 + 2t4a
2)
√

4a2 − λ2. (1.52)

Notice that as t4 → 0, a → 1 and we recover Wigner’s semi-circle law (for t = 1). We
may now compute the 2-point function from

G2(t4) =

ˆ
dλλ2ρ(λ). (1.53)

This leads to (the sum is taken over the unmarked faces):

G2(t4) =
(1 + 12t4)3/2 − 18t4 − 1

54t24
=
∑
n≥1

2 · 3n

(n+ 1)(n+ 2)

(
2n

n

)
(−t4)n−1, (1.54)

a result already obtained by Tutte in the 1960s [88] for counting rooted planar quadran-
gulations. From Theorem 1.3.1, it follows that G2(t4, N) can be expanded over powers of
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N , indexed by the genus h of the surface:

G2(t4, N) =
∑
h≥0

N2−2hG2,h(t4). (1.55)

From Eq. (1.54) we see that the planar contribution of the 2-point function exhibits a
critical behavior (square root branch point) at tc = − 1

12
and can thus be expanded as

G2(t4) ∼
t→t4

∑
n

nγ−3

(
t4
tc

)n
∼
t→t4
|tc − t4|2−γ, (1.56)

which is known as the critical limit. In our quartic potential example, γ = −1
2
. This is

generalized for higher order genera to7 8

G2,h(t4) ∼
t→t4

∑
n

n(γstr−2)(1−h)−1

(
t4
tc

)n
∼
t→t4

ah|tc − t4|(2−γstr)(1−h). (1.57)

We see that the higher genus contributions are enhanced when t4 approaches tc, this
means that if we take simultaneously the limit N → ∞ and t4 → tc, the large N genus
suppression would be compensated by the enhanced t4 → tc one, enabling every genus
surfaces to be treated on equal footing. To see this, define

κ−1 = N(t4 − tc)(2−γstr)/2 (1.58)

and take the limits N →∞ and t4 → tc by keeping fixed the coupling κ, yielding

G2(κ) =
∑
h≥0

ahκ
2h−2. (1.59)

This is known as the double scaling limit.

7 The critical exponent γstr is called the string susceptibility exponent, it characterizes asymptotically
the number of planar graphs with a fixed number of vertices. Note that in the planar case, γstr coincides
with γ of (1.56).

8 This is quite a striking result, it holds for every genus and while the exponent could a priori be any
complicated function of h, it is merely linear.
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1.3.3 Loop equations and topological expansion

We now turn our attention to the loop equations. In essence, loop equations are re-
lations between correlation functions obtained by integrating by parts in the matrix
integral. Equivalently, loop equations follow from the invariance of the matrix integral
under changes of integration variables – in this sense, loop equations are Schwinger–Dyson
equations and we will use the two names interchangeably. Consider thus the following
vanishing integrals:

1

Z

ˆ
dM

∑
a,b

∂

∂Mab

(
(Mn)abe

−N trV (M)
)

= 0, (1.60)

and let us define the connected correlation functions of order n:

Wn(x1, . . . , xn) =
∑

k1,...,kn

n∏
i=1

x−ki−1

〈
n∏
i=1

trMki

〉
c

=

〈
n∏
i=1

tr
1

xi −M

〉
c

, (1.61)

where the subscript c of course stands for “connected” and the connected expectation
value is defined by restricting its Feynman expansion to connected graphs only. For our
model, the loop equations yield

n−1∑
k=0

(
〈trMk〉〈trMn−1−k〉+ 〈trMktrMn−1−k〉c

)
−N〈tr(MnV ′(M))〉 = 0. (1.62)

To get the equation satisfied by the generating functions, multiply this equation by x−n−1

and sum over n. The first term becomes W1(x)2 +W2(x, x). For the second term use the
following trick

∑
n≥0

〈tr(MnV ′(M))〉x−n−1 = 〈tr V
′(x)

x−M
〉 − 〈trV

′(x)− V ′(M)

x−M
〉

= V ′(x)W1(x)− P1(x),

(1.63)

yielding the 1-point equation

W1(x)2 +W2(x, x)−NV ′(x)W1(x) +NP1(x) = 0. (1.64)

We will now act repeatedly on (1.64) with the loop insertion operator defined as follows.
If we write the potential as V (M) =

∑
n tnM

n, then for all x ∈ C, δ
δV (x)

=
∑

n x
−n−1 ∂

∂tn
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is such that
δ

δV (x)
Wn(x1, . . . , xn) = Wn+1(x, x1, . . . , xn). (1.65)

Before giving the n-point equation, define the sets I1, I2 ⊆ J2, nK that are such that
I1 t I2 = J2, nK. We furthermore write xIα the |Iα|-tuple of x values. We then have∑

I1,I2

W|I1|+1(x1, xI1)W|I2|+1(x1, xI2) +Wn+1(x1, x1, . . . , xn)

+
n∑
j=2

∂

∂xj

Wn−1(x1, . . . , xj−1, xj+1, . . . , xn)−Wn−1(x2, . . . , xn)

x1 − xj

−NV ′(x1)Wn(x1, . . . , xn) +NPn(x1, . . . , xn) = 0,

(1.66)

where we defined

Pn(x1, . . . , xn) =

〈
tr
V ′(x1)− V ′(M)

x1 −M

n∏
i=2

tr
1

xi −M

〉
c

, (1.67)

it is a polynomial function in its first argument x1.

Finally, we know by Theorem 1.3.1 that all correlation functions admit the following
topological expansion

Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−nWn,g(x1, . . . , xn). (1.68)

Plugging this into (1.66) then yields∑
g1+g2=g

∑
I1,I2

W|I1|+1,g1(x1, xI1)W|I2|+1,g2(x1, xI2) +Wn+1,g−1(x1, x1, . . . , xn)

+
n∑
j=2

∂

∂xj

Wn−1,g(x1, . . . , xj−1, xj+1, . . . , xn)−Wn−1,g(x2, . . . , xn)

x1 − xj

−NV ′(x1)Wn,g(x1, . . . , xn) +NPn,g(x1, . . . , xn) = 0.

(1.69)
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1.4 A story of maps

There are various ways to define combinatorial maps, that will not be listed here. Instead
we will focus on two particular definitions that will be of interest for us, namely the
topological one and through Feynman graphs.

Definition 1.4.1 (Cellular embedded graph). A cellular embedded graph is the datum
(S,G, f) where

• S is a closed (connected, oriented) topological surface,

• G is a connected graph,

• f : G→ S is such that

(i) f(G) is a union of Jordan arcs,

(ii) S\f(G) is a union of simply connected open subsets of S.

Two cellular embedded graphs (S,G, f) and (S ′, G′, f ′) are said to be isomorphic if and
only if there exist a surface homeomorphism ψ : S → S ′ and a graph homeomorphism
φ : G→ G′ such that the following diagram commutes

. (1.70)

We are now equipped to give our first definition of a map.

Definition 1.4.2 (Combinatorial map [60]). A map is an equivalence class of cellular
embedded graphs modulo graph isomorphisms.

We call face a connected component of S\f(G), its degree is defined as the number of arcs
making up its boundary. A face can be marked by marking an edge, which is oriented so
that the face is on its right. A map with n boundaries is then a map with n marked faces
such that each face has only one marked edge oriented such that it is on its right. Let
us define the set of maps with n boundaries, v vertices and genus g as Mv

n,g and write
for m ∈ Mv

n,g, ni(m) the number of unmarked faces of m of degree 1 ≤ i ≤ l and kj(m)

the degree of the jth marked face. We furthermore allow marked faces to have degree at
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least one9, except for the atomic map for which k1(•) = 0. The generating function of
these maps is given by:

Wn,g(x1, . . . , xn|t1, . . . , tl|t) ≡
∞∑
v

tv
∑

m∈Mv
n,g

l∏
i=1

t
ni(m)
i

|Aut(m)|

n∏
j=1

x
−kj(m)−1
j

∈ Q[x−1
1 , . . . , x−1

n , t1, . . . , tl][[t]],

(1.71)

where |Aut(m)| = 1 for all n ≥ 1, as marking a face kills the symmetries of the map.
Notice also that the number of vertices is redundant in the previous formula. Indeed,
from the definition of the Euler characteristic of a map with boundaries m ∈Mv

n,g,

χ(m) = 2− 2g − n = v − e+
l∑

i=1

ni(m), (1.72)

where e is the number of edges of the map, that expresses as twice the number of half-
edges:

2e =
n∑
j=1

kj(m) +
l∑

i=1

ini(m), (1.73)

yielding overall

v =
1

2

n∑
j=1

kj +
1

2

l∑
i=1

(i− 2)ni + χ. (1.74)

Wn,g can thus be recast into a formal power series inQ[[x−1
1 , . . . , x−1

n , t1, . . . , tl]] by making
the following substitutions

ti → tit
i
2
−1, xj →

xj√
t
, t→ 1, (1.75)

and working with t = 1. We will use the two definitions interchangeably and merely write
Wn,g(x1, . . . , xn) the generating function. It relates to the matrix correlation functions
by setting the potential to

V (x) =
x2

2
+

l∑
i=1

ti
i
xi. (1.76)

9 This means that our graphs may contain tadpoles and multi-edges.



1.5. Topological recursion for the 1-Hermitian matrix model 43

1.5 Topological recursion for the 1-Hermitian matrix

model

The topological recursion (short for Eynard-Orentin topological recursion [57, 58, 59, 60])
is in layman’s terms, a way of counting maps of a given topology, using only planar maps.
Recall Equation (1.44) of the previous section where we solved for W1(x) in the Gaussian
case. Let us now get more involved. First define

f(x, y) = y2 − V ′(x)y + P1(x). (1.77)

Notice thatW1 satisfies f(x,W1(x)) = 0. We know thatW1 is defined near infinity
(
∼ 1

x

)
but the form of the polynomial

V ′(x)2 − 4P1(x) ∝
2l−2∏
i=1

(x− ai) (1.78)

tells us it cannot be analytically continued on the whole complex plane, but instead on

Ĉ \
l−1⋃
i=1

[a2i−1, a2i], (1.79)

where Ĉ is the Alexandroff compactification of C obtained by adding a point at infinity,
Ĉ = C∪{∞} ' CP1 and is called the Riemann sphere. Also the intervals [a2i−1, a2i] := Γi

are the branch cuts and we write Γ =
⋃l−1
i=1 Γi. One can thus define W1 either on Ĉ\Γ or

on the whole Riemann sphere, rendering it multivalued. In the case where W1 has only
one branch cut [a−, a+], one has the following useful lemma, referred to as Brown’s or
1-cut lemma:

Lemma 1.5.1 (Brown). The singular part of W1 can be written

V ′(x)2 − 4P1(x) = M(x)2(x− a+)(x− a−), a± = α± 2γ, (1.80)

where


α ∈ C[t1, . . . , tl][[t]], α = O(t)

γ2 ∈ C[t1, . . . , tl][[t]], γ2 = t+O(t2)

M(x) ∈ C[t1, . . . , tl][[t]][x], M(x) =
V ′(x)

x
+O(t).
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So that the solution to f(x, y) = 0 is given by

W1(x) =
V ′(x)

2
± 1

2
M(x)

√
(x− a+)(x− a−), (1.81)

which is of course (1.44) when we choose the negative branch. At this point however,
W1 remains multivalued, it is then convenient to introduce a two-sheeted cover of the
Riemann sphere. This is done by parametrizing the algebraic curve f(x, y) = 0 through
the so-called Zhukowsky transformation given for z ∈ Ĉ by

x(z) =
a+ + a−

2
+
a+ − a−

4
(z + z−1),

y(z) =
4

a+ − a−
z−1.

(1.82)

The exterior of the unit disc |z| > 1 then corresponds to the physical sheet, i.e. Equa-
tion (1.81) with the negative sign, while the interior |z| < 1 is mapped to the non-physical
sheet, i.e. Equation (1.81) with the positive sign. The two sheets are exchanged by the
(local Galois) involution that leaves the covering map x invariant:

ι : z 7→ 1/z. (1.83)

Note that the fixed points of ι are the zeros of x′(z), namely the branch points z = ±1,
and their images by x are the extremities of the cut a− and a+.

1.5.1 Disc and cylinder functions

From (1.68) we immediately see that in the large N limit the only surviving terms are
the planar ones, i.e those for which g = 0. The planar correlation functions then sat-
isfy (1.66). There are two of them of importance for us here:

• the disc function W1,0(x) = limN→∞
1
N
W1(x), which is the generating function for

rooted planar maps with one marked face, and

• the cylinder function W2,0(x1, x2) = limN→∞W2(x1, x2), which is the generating
function for planar maps with two boundaries.

Disc function – We already computed the disc amplitude in the previous section, it is
given by

W1,0(x) =
1

2t

(
x−
√
x2 − 4t

)
, (1.84)
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it has a cut along Γ = [−2
√
t, 2
√
t].

Cylinder function in the Gaussian case – By setting n = 2 in (1.66), one gets

(V ′(x1)− 2W1,0(x1))W2,0(x1, x2) =
∂

∂x2

W1,0(x1)−W1,0(x2)

x1 − x2

+ P2,0(x1, x2). (1.85)

We now restrict ourselves to the Gaussian case again, then by denoting the singular part
σ(x) =

√
x2 − 4t, we have

∂W1,0(x)

∂x
= −W1,0(x)

σ(x)
, (1.86)

which leads to the following expression for the Gaussian cylinder function

W2,0(x1, x2) =
x1x2 − σ(x1)σ(x2)− 4t

2(x1 − x2)2σ(x1)σ(x2)
. (1.87)

1.5.2 Topological recursion formula

Our correlation functions are singular on the cut Γ = [−2
√
t, 2
√
t] except for (n, g) ∈

{(1, 0), (2, 0)}, we thus perform a Zhukowsky tranformation (1.82)

x(z) =
√
t(z + z−1), (1.88)

that allows us to turn our correlation functions into differential forms by defining

ωn,g(z1, . . . , zn) := Wn,g(x1, . . . , xn)dx1 . . . dxn + δ(n,g),(2,0)
dx1dx2

(x1 − x2)2
, (1.89)

where for all i ∈ J1, nK,

xi = x(zi) and dxi = x′(zi)dzi. (1.90)

They have the following properties [60] that we do not prove here:

1. ωn,g(z1, . . . , zn) is a meromorphic form in every variable,

2. ωn,g is ι-antisymmetric, i.e. for all i ∈ J1, nK, (n, g) 6= (1, 0),
ωn,g(z1, . . . , zn) = −ωn,g(z1, . . . , ι(zi), . . . , zn), and

3. for 2g − 2 + n > 0 and (n, g) /∈ {(1, 0), (2, 0)}, ωn,g(z1, . . . , zn) has poles in z1 only
at z1 → ±1.
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One can then compute the disc and cylinder forms of the GUE:

ω1,0(z) =
1− z−2

z
dz

ω2,0(z1, z2) =
dz1dz2

(z1 − z2)2
.

(1.91)

Finally, we will need the following notations. For a differential form ϕ denote

∆ϕ = ϕ− ι∗ϕ, (1.92)

where the ∗ denotes the pullback on differential forms, also write

G(z, z1) =

ˆ z

ι(z)

ω2,0(·, z1), (1.93)

and define the recursion kernel

K(z, z1) =
∆G(z, z1)

2∆ω1,0(z)
. (1.94)

This allows us to write the following theorem:

Theorem 1.5.2 (Eynard ’04). For all 2g − 2 + n > 0, one has

ωn,g(z1, . . . , zn) = Res
z→±1

K(z, z1)

[
ωn+1,g−1(z, ι(z), z2, . . . , zn)

+

′∑
I1tI2=J2,nK
g1+g2=g

ω|I1|+1,g1(z, zI1)ω|I2|+1,g2(ι(z), zI2)

]
,

(1.95)

where the primed summation
∑′

is to be understood as the exclusion of the terms
(I1, g1) = (∅, 0) and (I1, g1) = (J2, nK, g). This formula expresses ωn,g in terms of invariants
with larger Euler characteristic χ = 2− 2g− n, hence the name topological recursion. It
stops after |χ| steps, when it reaches χ = 0 and hence ω2,0.
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Chapter 2

Random tensor models

Tensor models are a natural generalization in dimension d > 2 of matrix models. Intro-
duced almost thirty years ago, their aim was to reproduce the successes of matrix models
in providing a theory of random geometries, especially in ways of quantizing QG. The
basic idea is that a certain integral over a space of rank-d tensors is the partition function
of a theory of d-dimensional triangulations.
Let V be a vector space over a field K of dimension dimK V = N . A tensor T of type
(p, q) can be seen as an element of V ⊗p ⊗ V ∗⊗q, where V ⊗p is to be understood as the
tensor product of p copies of V , and V ∗ is the corresponding dual space. If we equip
V and V ∗ with the canonically associated bases {ea} and {εb} (εb(ea) = δba) then the
components of T are defined as

T = T
a1...ap

b1...bq
ea1 ⊗ · · · ⊗ eap ⊗ εb1 ⊗ · · · ⊗ εbq , (2.1)

where repeated indices are summed. In what follows we will often identify the tensor with
its components in a given basis (that will not be specified). Also we do not distinguish
between covariant (down) and contravariant (up) indices. Hence, for us a tensor of rank
d ∈ N>2 will be written Ta1...ad , where of course ac ∈ J1, NK for all c ∈ J1, dK.
Consider now such a tensor and its complex conjugate, treated as independent variables.
We further assume that they obey no symmetry relations upon permutation of their
indices. In general, the main object of interest in any quantum theory is the expectation
value of a certain observable O, taken to be a function O(T, T ) of the components of the
tensor, we define it as

〈
O(T, T )

〉
=

1

Z(N)

ˆ
V ⊗d

dµC(T, T )O(T, T )e−N
d−1V (T,T ), (2.2)
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where Z(N) =
´
dµC(T, T )e−N

d−1V (T,T ) is the partition function and dµC(T, T ) the Gaus-
sian measure of covariance C defined as

dµC(T, T ) = detC−1e
−Nd−1

∑
ap,bp

Ta1...ad
(C−1)

a1...ad
b1...bd

T b1...bd
∏
ap

dTa1...addT a1...ad . (2.3)

Standard (invariant) tensor models are built from the standard Gaussian measure with
identity covariance, reducing the Gaussian measure to

dµ0(T, T ) := e−N
d−1 T ·T

∏
ap

dTa1...addT a1...ad . (2.4)

Non invariant tensor models, such as those arising from group field theories require
more involved covariances [89], such as projectors over gauge invariant states or in-
verse Laplacians. Finally, a typical interaction term V (T, T ) may be written in the form
V (T, T ) =

∑
i∈I N

δiλiBi(T, T ), for some finite set I, scaling coefficients {δi} and coupling
constants {λi}. The Bis are polynomials in the tensor entries and will be introduced in
the next section. We will get back to them in many more details in Part III. An example
of such an interaction term is given by the so-called multi-orientable model [90] where
Vmo(T, T ) = λ

4

∑
i,j,k,l,m,n TijkT imnTnjlT lmk.

2.1 Uncolored tensor models

There is a natural transformation of a complex covariant rank d > 2 tensor T under the
action of the tensor product of representations of

⊗d
c=1 U(Nc) where each factor acts on

a tensor index independently. The complex conjugate of T is a contravariant tensor of
the same rank and denoted T . Here T is considered an object in W =

⊗d
c=1 Vc, where Vc

for all c ∈ J1, dK is some Hermitian space of dimension dimC Vc = Nc.
This defines uncolored tensors1, they transform in a given basis as

TUa1...ad
=
∑
b1,...,bd

U
(1)
a1b1

. . . U
(d)
adbd

Tb1...bd

T
U

a1...ad
=
∑
b1,...,bd

U
(1)

a1b1
. . . U

(d)

adbd
T b1...bd ,

(2.5)

1 The name is historical. The first models [11] to be proven to admit a large N expansion required
d+1 pairs of colored conjugate tensors T c, T̄ c. It was then shown that integrating out all tensors but one
in the initial colored model leads to an action for a single uncolored tensor, hence effectively uncoloring
the colored model [28].
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where for all c ∈ J1, dK the U (c)s are in fact the matrices of the group representations
ρc ∈ Hom(U(Nc), GL(Vc)). One can of course construct other such models by taking a
different Lie group in lieu of each U(Nc), e.g. in the multi-orientable model [90],W carries
a representation of U(N1)×O(N2)× U(N3), while the main focus of Part II will be put
on real tensors transforming under tensor products of representations of the orthogonal
group O(N).
We are now interested in constructing polynomial invariants of the components of the
tensors, called - by analogy with matrix models - trace invariants. Those can be obtained
by contracting, in all ways possible, pairs of covariant and contravariant tensors. As it
turns out, these contractions are in bijection with k-edge-colored bipartite graphs called
bubbles that we now introduce.

Definition 2.1.1 (k-bubble). A bipartite closed k-colored graph or k-bubble is a graph
B = (V (B), E(B)) that is a collection V (B) of vertices of fixed valence k and set E(B)

of edges, such that

• V (B) can be partitioned into two disjoint sets V • and V ◦ of equal size, such that
each edge e may only connect a vertex v• ∈ V • called black to a vertex v◦ ∈ V ◦

called white;

• the graph has a k-line coloring τ , that is an assignment of a color to each edge,
τ : E(B)→ J1, kK, such that the colors of the k edges incident to any vertex are all
different. Note that τ−1(c) is the subset of lines of color c.

The trace invariant associated to the k-bubble B is denoted

TrB(T, T ) or B(T, T ) :=
∑
i,j

δBij
∏

v,v′∈V (B)

TivT jv′ , δBij =
k∏
c=1

∏
ec∈τ−1(c)

δic
v•(ec) j

c
v◦(ec) (2.6)

Following the Italian school of Pezzana, we know that every regular bipartite (d + 1)-
edge-colored graph G represents a d-dimensional colored triangulation of an orientable
pseudo-manifold. Besides, from our previous definition, a k-bubble of G is a maximally
connected subgraph of G comprising only edges with k fixed colors. We then get the
colored triangulation by duality, where every k-bubble Bk represents a (d−k)-subsimplex
σd−k and the (k + 1)-bubbles containing Bk represent the faces of σd−k. In particular,
(d−2)-subsimplices correspond to cycles in the graph alternating two different colors. In
general we have the following correspondences:
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dual triangulation colored graph
d-simplex ↔ vertex

(d− 1)-simplex ↔ edge
(d− 2)-simplex ↔ bicolored cycle
(d− k)-simplex ↔ k-bubble

A colored d-simplex is a simplex, the boundary (d−1)-subsimplices of which have a color
in J0, dK such that each color appears exactly once. Through the colors, we can thus
define a canonical attaching rule between colored simplices as follows.
Notice that in a colored d-simplex, every (d − 2)-subsimplex is shared by exactly two
(d − 1)-subsimplices, say of colors c, c′, and can thus be labeled by the pair of colors
{c, c′}. Similarly, a (d− k)-subsimplex is identified by a k-bubble of colors in J1, dK. The
attaching rule is then the following. Take two different (d− 1)-subsimplices σc and σ′c of
the same color c ∈ J0, dK living in two different d-simplices and attach them in the only
way that identifies all the subsimplices of σc and σ′c which have the same color labels. In
other words, it is the only attaching map which preserves all induced colorings of their
k-subsimplices for k ∈ J0, d−1K. Let us give two lower-dimensional examples for the sake
of clarity.
In two dimensions, a colored triangle has edges of colors 0, 1, 2, and vertices ((d − 2)-
simplices) labeled by the pairs of colors {0, 1}, {1, 2}, {0, 2} where the vertex with colors
{c, c′} is the one shared by the edges of colors c and c′. Two triangles can be glued along
an edge of say color 0 by identifying the vertices of colors {0, 1} on both triangles, and
similarly identifying the vertices of colors {0, 2}, see Figure 2.1.

Figure 2.1 – Unique gluing of triangles of colors {0, 1, 2} which respects
all subcolorings.

In three dimensions, a colored tetrahedron has four triangles (faces) of colors 0, 1, 2, 3,
six edges ((d− 2)-simplices) colored {c, c′}0≤c<c′≤3 where {c, c′} labels the edge shared by
the triangles of colors c and c′, and four vertices ((d− 3)-simplices) with labels {0, 1, 2},
{0, 1, 3}, {0, 2, 3}, {1, 2, 3} where the vertex with label {c, c′, c′′} is the one shared by the
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three triangles of colors c, c′ and c′′. Two tetrahedra can be glued along a triangle of
color say 0 by identifying pairwise the edges which have 0 in their labels, i.e. both edges
of colors {0, c} for c 6= 0 in the two tetrahedra are identified, and further identifying
pairwise the vertices which have 0 in their labels, i.e. both vertices with colors {0, c, c′}
in the two tetrahedra are identified for all 1 ≤ c < c′ ≤ 3, as shown in Figure 2.2.

Figure 2.2 – Unique gluing of tetrahedra of colors {0, 1, 2, 3} which re-
spects all subcolorings.

2.2 Gurau degree and melons

Let us now introduce some definitions.

Definition 2.2.1 (Jacket). Let G be a (d+ 1)-colored graph and τ be a cycle on J0, dK.
A colored jacket J of G is an edge-colored ribbon graph having as 1-skeleton the graph G
and with faces made of graph cylces of colors (τ q(0), τ q+1(0)), for q ∈ J0, dK, modulo the
orientation of the cycle.

There are d!/2 such jackets for every (d+1)-colored graph, and being ribbon graphs, they
are completely classified by their genus gJ .

Definition 2.2.2 (Gurau degree [5]). The degree ω(G) of a colored graph G is the sum
of the genera of its jackets

ω(G) =
∑
J

gJ ≥ 0. (2.7)

The main characteristic of the degree is that it allows to count the number of faces of a
graph. Indeed, for a (d + 1)-colored graph with 2p vertices, the total number of faces is
given by

F =
d(d− 1)

2
p+ d− 2

(d− 1)!
ω(G). (2.8)
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The (reduced) degree can also be defined for the dual d-dimensional triangulation T and
reads

ω(T ) = d+
d(d− 1)

4
nd − nd−2. (2.9)

Notice that for d = 2, the degree corresponds to (twice) the genus of the surface. In higher
dimensions, it provides a generalization of the latter. It is not a topological invariant,
but it combines topological and combinatorial information about the graph.
There is a single quadratic trace invariant up to a factor, it is associated to the dipole, a
bubble made of two vertices and connected by d edges. Its trace invariant reads

TrD(T, T ) =
∑
ap

Ta1...adT a1...ad = T · T , (2.10)

and is used to construct the normalized Gaussian measure (2.4). Let now I be a finite
set, {Bi}i∈I a set of bubbles and {ti} their coupling constants. This allows us to define
the most general (d + 1)-dimensional generic tensor model via the following partition
function:

Z({ti}, N) =

ˆ
dµ0(T, T ) exp−Nd

∑
i∈I

N−
2

(d−1)!
ω(Bi)tiBi(T, T ). (2.11)

Remark 2.2.3. A large N expansion exists if and only if ω is bounded from below.

Let us now focus on a specific family of graphs called melonic, defined by inserting
recursively dipoles on the fundamental melon, himself a d-dipole.

Definition 2.2.4 (Melon). The melonic graphs or melons are the graphs generated by
melonic insertions on the elementary melon.

This process is illustrated in Figures 2.3 and 2.4 hereunder.

Figure 2.3 – The D-dipole or elementary melon.

Theorem 2.2.5 (Bonzom, Gurau, Riello, Rivasseau, 2011 [12]). The degree of a graph
vanishes if and only if the graph is a melon.
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Figure 2.4 – A melonic insertion on an edge of color i.

Proof. Let us give the proof for the necessary condition, the reverse being trivial. We start
by computing the degree for the elementary melon, from which we can generate every
melonic graph by repeated melonic insertions. For the elementary melon M , F = d(d+1)

2

and p = 1, hence from (2.8) ω(M) = 0.

Lemma 2.2.6. Melonic insertion leaves the degree unchanged.

Proof. By melonic insertion, {
p → p+ 1

F → F + d(d−1)
2

,
(2.12)

such that again by (2.8), the degree remains the same. 2

Which completes the proof. 2

Remark 2.2.7. Melonic graphs form an infinite family of diagrams with vanishing degree.

From (2.7) and Theorem 2.2.5 one can then conclude that the generic tensor model (2.11)
has a well defined large N expansion dominated by melonic interactions Feynman graphs.

2.3 Counting U(N) invariants

In this section we restrict our discussion to d = 3, generalization to arbitrary dimension
is straightforward.

2.3.1 Symmetric group enumeration

Recall that invariants are generated by all the possible ways to contract pairs of covariant
and contravariant tensors. Diagrammatically, one can view these contractions as all
possible pairings between, say, n white and n black vertices, as depicted in Figure 2.52.

2 In Figure 2.5 the color labels have been made explicit to emphasize the fact that each white vertex
connects to a black one through edges of the same color. This is the most general 3-bubble with invariant
given by Equation (2.6).
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Figure 2.5 – Diagrammatic contraction of pairs of rank-3 tensors defining
the triple of permutations (σ1, σ2, σ3).

The different connections can be parametrized by a permutation σ ∈ Sn. Different
permutations can give the same graph if they are related by an equation of the form
σ′ = γ1σγ2, where γ1, γ2 live in subgroups H1, H2 of Sn related to the symmetries of the
white and black vertices respectively. This allows to count invariants as points in double
cosets of permutation groups. The enumeration of possible graphs is then recast into
counting triples of permutations

(σ1, σ2, σ3) ∈ (Sn × Sn × Sn), (2.13)

under the equivalence relation

(σ1, σ2, σ3) ∼ (γ1σ1γ2, γ1σ2γ2, γ1σ3γ2), (2.14)

where γ1, γ2 ∈ Sn. We are thus counting points in the double coset

Diag(Sn)\(Sn × Sn × Sn)/Diag(Sn). (2.15)

We denote the number of points in this double coset as Z3(n). For more general subgroups
H1 ≤ G, H2 ≤ G, the cardinality of such a coset is given by (see below)

|H1\G/H2| =
1

|H1||H2|
∑
C

ZH1→G
C ZH2→G

C zC , (2.16)

where the sum runs over conjugacy classes C of G, ZH→G
C is the number of elements

of H in C and zC stands for the size of the centralizer of C. The conjugacy classes
of S 3

n are entirely determined by a triple of partitions of n, namely (p1, p2, p3). This
correspondence holds because each conjugacy class is determined by a cycle structure.
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The diagonal subgroup now produces conjugacy classes of the form (p, p, p), and applying
(2.16), one gets

Z3(n) =
1

(n!)2

∑
p`n

(
n!

zp

)2

z3
p =

∑
p`n

n∏
i=1

ipipi! , (2.17)

where the sum over p = (p`)` is performed over all partitions of n =
∑

i ipi and

zp =
∏
i

ipipi! (2.18)

denotes the number of elements in Sn commuting with any permutation of cycle type p.
This sequence can be generated [29] and shows

1, 4, 11, 43, 161, 901, 5579, 43206, 378360, 3742738, . . . (2.19)

which corresponds to the series A110143 of the OEIS website.
Note that the number Z3(n) counts both connected and disconnected invariants. Fig-
ure 2.6 on the next page shows the graphical representation of the connected invariants
up to n = 3. The first order terms are (the capital letters refer to Figure 2.6):

• Z3(1) = 1 consists in the single connected dipole A,

• Z3(2) = 4 consists in three connected invariants, B1, B2 and B3, one of which being
given by ∑

ia,i′a

T
ic1 ic2 ic3

T
i′c1 ic2 ic3

Ti′c1 i
′
c2
i′c3
T
ic1 i
′
c2
i′c3 (2.20)

while the two others are obtained by a color permutation, plus one disconnected
invariant of the form (∑

ia

Tic1 ic2 ic3T ic1 ic2 ic3

)2

, (2.21)

which is nothing but twice the dipole term (A,A),

• Z3(3) = 11 consists in seven connected invariants, viz. C1, C2, C3, D1, D2, D3

and E, plus four disconnected ones given by the combinations (A,A,A), (A,B1),
(A,B2) and (A,B3).

To get the number of connected invariants Zc
3(n) one can use the plethystic logarithm

function (see Chapter 4) and finds

1, 3, 7, 26, 97, 624, 4163, 34470, 314493, 3202839, . . . (2.22)
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Figure 2.6 – Colored graphs associated to connected contractions of pairs
of rank-3 tensors defining the triple of permutations (σ1, σ2, σ3).

Note that Equation (2.17) easily generalizes to arbitrary dimension d:

Zd(n) =
∑
p`n

zd−2
p . (2.23)

Let us now revisit this counting once more in the Topological Field Theory framework.
Equation (2.16) is in fact a consequence of Burnside’s lemma for counting the number of
orbits of a group action, we state it without proof:

Proposition 2.3.1. (Burnside’s lemma)
Consider a finite set X and a finite group H acting on it by multiplication. The number
of orbits of the H-action on X, denoted |X/H| is given by the average number of fixed
points of the group action. More explicitly,

|X/H| = 1

|H|
∑
h∈H

Xh, (2.24)

where Xh = {x ∈ X |h · x = x} is the set of fixed points of h ∈ H.
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Consider thus the double coset as the orbit of the H1×H2 - action on G. The fixed-point
counting formula for the number of orbits is given by

|H1\G/H2| =
1

|H1||H2|
∑
h1∈H1

∑
h2∈H2

∑
g∈G

δ(h1gh2g
−1), (2.25)

where δ is the delta function over the group G, equal to 1 if the argument is the identity
element and 0 otherwise. From this definition of the delta function, one sees that h1 and
h2 have to be in the same conjugacy class of G. Next, organise the sums according to
the conjugacy classes C of G and note the number of elements in the conjugacy class C
from H1 (resp. H2) ZH1→G

C (resp. ZH2→G
C ). So the counting picks up a ZH1→G

C ZH2→G
C

term from the h1, h2 sums and for each such pair, there are zC possible gs, hence (2.16).
Particularizing to our double coset (2.15), this becomes - using (A.5) -,

Z3(n) =
1

(n!)2

∑
γi∈Sn

∑
σi∈Sn

δ(γ1σ1γ2σ
−1
1 )δ(γ1σ2γ2σ

−1
2 )δ(γ1σ3γ2σ

−1
3 )

=
1

(n!)2

∑
γi∈Sn

∑
Rl`n

χR1(γ1)χR1(γ2)χR2(γ1)χR2(γ2)χR3(γ1)χR3(γ2)

=
∑
Rl`n

C(R1, R2, R3)2,

(2.26)

where the symbol

C(R1, R2, R3) =
1

n!

∑
σ∈Sn

χR1(σ)χR2(σ)χR3(σ), (2.27)

stands for the Kronecker coefficient that can be defined as the multiplicity of the irre-
ducible representation R3 in the tensor product of the irreps R1 and R2, or equivalently
as the multiplicity of the one-dimensional representation in R1 ⊗ R2 ⊗ R3. We refer the
reader to Appendix A for a precise definition of representations and characters of the
symmetric group. Hence, counting observables of tensor models of rank 3 coincides with
a sum of squares of Kronecker coefficients. As it turns out, this sum is also the dimension
of an algebra:

dimK3(n) =
∑
Rl`n

C(R1, R2, R3)2. (2.28)
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2.3.2 Double coset algebra

In what follows we only state the main results pertaining to this algebra, a detailed
account thereof can be found in [30], while the orthogonal case will be addressed in
Chapter 5. We consider C[Sn] := SpanC{σ, σ ∈ Sn} the group algebra over Sn.

K3(n) as a double coset algebra in C[Sn]⊗3 – Consider elements σ1⊗σ2⊗σ3 ∈ C[Sn]⊗3

and the left and right diagonal action of Diag(C[Sn]) on the triple as:

σ1 ⊗ σ2 ⊗ σ3 →
∑
γi∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2, (2.29)

K3(n) is the vector subspace of C[Sn]⊗3 which is left invariant by this group action:

K3(n) = SpanC

{∑
γi∈Sn

γ1σ1γ2 ⊗ γ1σ2γ2 ⊗ γ1σ3γ2, σ1, σ2, σ3 ∈ Sn

}
. (2.30)

The equivalence classes defining K3(n) are the double cosets (2.15). Noticing that
id⊗ id⊗ id is the unit of K3(n), one easily verifies the following proposition.

Proposition 2.3.2. K3(n) is an associative unital subalgebra of C[Sn]⊗3.

A Fourier basis of invariants – The Fourier transform of the basis (2.29) gives another
basis of invariants labeled by the tuple (R1, R2, R3, τ1, τ2) and given by

QR1,R2,R3
τ1,τ2

= κ
∑
σl∈Sn

∑
ia, ja

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(σ1)DR2
i2j2

(σ2)DR3
i3j3

(σ3)σ1 ⊗ σ2 ⊗ σ3,

(2.31)
with κ = d(R1)d(R2)d(R3)

(n!)3 and ia, ja ∈ J1, d(Ra)K. Besides, CR1,R2;R3,τ1
i1,i2;i3

are Clebsch-Gordan
coefficients involved in the tensor product representations of Sn with multiplicities τ1, τ2 ∈
J1,C(R1, R2, R3)K. These basis elements are invariant under left and right diagonal action
and multiply like matrices

QR1,R2,R3
τ1,τ2

QR′1,R
′
2,R
′
3

τ2,τ3
= δ~R,~R′Q

R1,R2,R3
τ1,τ3

, (2.32)

where we denoted ~R = (R1, R2, R3).
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Orthogonality of the Q-basis – Consider the pairing δ3 : C[Sn]⊗3 × C[Sn]⊗3 → C

δ3(σ1 ⊗ σ2 ⊗ σ3, σ
′
1 ⊗ σ′2 ⊗ σ′3) = δ(σ1σ

′−1
1 )δ(σ2σ

′−1
2 )δ(σ3σ

′−1
3 ), (2.33)

which extends linearly to the Q-basis:

δ3(QR1,R2,R3
τ1,τ2

, Q
R′1,R

′
2,R
′
3

τ ′1,τ
′
2

) = κd(R3)2δ~R,~R′δτ1,τ ′1δτ2,τ ′2 . (2.34)

Hence the Q-basis is orthogonal and since the pairing is bilinear non-degenerate, the
following theorem holds.

Theorem 2.3.3. K3(n) is an associative unital semi-simple3 algebra.

3 A (finite-dimensional) algebra is said to be semi-simple if it can be expressed as a Cartesian product
of simple algebras, i.e. algebras having no non-trivial two-sided ideals.
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Chapter 3

The quartic melonic tensor model

In this chapter we will cite results pertaining to the so-called quartic melonic model. This
model is of significance as it is the first tensor model on which the topological recursion
formalism has successfully been applied, yielding a blobbed topological recursion [66].
As before, we denote by Ta1...ad the components of the tensor T of rank d > 2 and size
N and T a1...ad those of T . Let Ec ' CN be the vector space of color c. Then T lives in⊗d

c=1 Ec and transforms as

T →
d⊗
c=1

U (c)T. (3.1)

For all c ∈ J1, dK and ĉ its complement, we denote the quartic melonic bubble invariant
of color c as

Bc(T, T ) =
∑
ap, bp

Ta1...ac...adT a1...ac−1bcac+1...adTb1...bc...bdT b1...bc−1acbc+1...bd = .

(3.2)
We furthermore define Hc(T, T ) as the matrix obtained by contracting all the elements of
T with those of T except for the ones in position c. It can be written out in components
as

Hc(T, T )ab =
∑

a1,...,ac−1,ac+1,...,ad

Ta1...ac−1aac+1...adT a1...ac−1bac+1...ad . (3.3)

Our bubble invariant then rewrites Bc(T, T ) = trEc HcH
†
c and the partition function of

the model reads

ZTensor(N, {gc}) =

ˆ
(CN )⊗d

dµ0(T, T ) exp−Nd−1 1

2

d∑
c=1

g2
cBc(T, T ), (3.4)
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where the gcs are the bubbles’ coupling constants. We now introduce an intermediate
Hermitian N ×N matrix field Xc in order to split the interaction term; this is known in
the litterature as the Hubbard-Stratonovich transformation and expresses as

exp−Nd−1 1

2
g2
cBc(T, T ) =

ˆ
dXc exp−Nd−1

(
1

2
trEc X

2
c − igctrEc

(
Hc(T, T )Xc

))
.

(3.5)
The integral over T and T is now a Gaussian integral and can be computed explicitly.
Introducing the notation X̃c = 1⊗(c−1) ⊗Xc ⊗ 1⊗(d−c), we rewrite the partition function
using the previous representation as

ZTensor(N, {gc}) =

ˆ d∏
c=1

dXc exp
[
− 1

2

d∑
c=1

tr⊗cEc X̃
2
c − tr⊗cEc ln

(
1⊗d + i

d∑
c=1

gcX̃c

)]
.

(3.6)
If P (T, T ) is a polynomial in the tensor entries and f a polynomial function that takes
as argument an N ×N matrix, we have the corresponding expectation values:

〈P (T, T )〉T =
1

ZTensor

ˆ
dµ0(T, T ) P (T, T ) e−N

d−1 1
2

∑d
c=1 g

2
cBc(T,T ),

〈f(Xc)〉M =
1

ZTensor

ˆ d∏
c=1

dXc f(Xc) e
− 1

2

∑d
c=1 tr⊗cEc X̃

2
c−tr⊗cEc ln(1⊗d+i

∑d
c=1 gcX̃c).

(3.7)

In particular, in the symmetric case where g2
c = λ

2
, ∀c ∈ J1, dK, we have the following

proposition [64]

Proposition 3.0.1. For p ∈ N∗ we have:

〈trH ′c(T, T )p〉T = 〈trHp(Xc)〉M , (3.8)

and
〈trXp

c 〉M = 〈trHp(H
′
c(T, T ))〉T , (3.9)

where H ′c =
√
λ

2i
√

2
Hc is a rescaling of our matrix (3.3), and Hp is the Hermite polynomial

of order p defined as Hp(x) = e−
1
2
d2

dx2 xp.

This result will be generalized in Theorems 8.3.4 and 9.2.1 of Part III to arbitrary tensor
models with arbitrary bubble invariants.
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3.1 Large N limit and fluctuations

The large N limit of general quartic models is addressed in [9, 104]. To put it in a nutshell,
general quartic interactions possess two pairs of vertices linked together by k ≥ 1 colors
and two other pairs by d− k colors. The large N limit always yields branched polymers
as long as k is different from d/2. For k = d/2, the model possesses a branched polymer
phase and a planar map one, with a transition between the two. The melonic models
correspond to k = 1 (or k = d − 1 by symmetry). Let us now turn our attention to the
study of the eigenvalue fluctuations for the latter.
In [64] the saddle point analysis revealed that all the eigenvalues collapse into the potential
well by following a Wigner semi-circle law of width 1/(1 − α2). The usual spreading of
the eigenvalue density is here absent due to the fact that the Vandermonde is negligible
at large N . The extremum of the potential found by the authors is

α =

√
1 + 2dλ− 1

2id
√
λ/2

. (3.10)

This result is further generalized in [66] to the non symmetric eigenvalue distribution of
the model (3.6), and reads

αc = gc

√
1 + 4

∑
p g

2
p − 1

2i
∑

p g
2
p

. (3.11)

In order to study the fluctuations around these values, we follow again [64, 66] and make
the change of variables

Xc = αc 1Ec +
1

N
d−2

2

Mc, (3.12)

where the scaling of the fluctuations is chosen such that the leading terms in the action
for the Xcs scale like the Vandermonde contribution, i.e. in N2. The partition function
then rewrites

ZTensor(N, {gc}) =
e−

Nd

2

∑
c α

2
c

(1 + i
∑

c gcαc)
NdZFluct(N, {αc}), for

ZFluct(N, {αc}) =

ˆ d∏
c=1

dMc exp

(
− N

2

∑
c

trEcM
2
c +

∑
p≥2

N
2−d

2
p

p
tr⊗cEc

(∑
c

αcM̃c

)p)
,

(3.13)
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with the same notational convention as earlier M̃c = 1⊗(c−1) ⊗Mc ⊗ 1⊗(d−c). Notice that
the second term of ZFluct consists of multi-trace interactions. In order to derive the loop
equations for this model, we follow [66] and write them for the general d-matrix model
with interactions

∏d
c=1 trM qc

c with generic action

S = N

d∑
c=1

trVc(Mc) +N2−d
∑

a1,...,ad≥0

ta1...ad

d∏
c=1

trMac
c . (3.14)

3.2 Correlation functions

We introduce the following generating functions for products of n traces of colors c1, . . . , cn,

W n(x1, c1; . . . ;xn, cn) =
〈 n∏
i=1

trEci
1

xi −Mci

〉
=

∑
k1,...,kn≥0

W
(k1,c1;...;kn,cn)

n

n∏
i=1

x−ki−1
i ,

(3.15)
i.e.

W
(k1,c1;...;kn,cn)

n =
[ n∏
i=1

x−ki−1
]
W n(x1, c1; . . . ;xn, cn) =

〈 n∏
i=1

trEciM
ki
ci

〉
, (3.16)

and their connected counterparts

Wn(x1, c1; . . . ;xn, cn) =
〈 n∏
i=1

trEci
1

xi −Mci

〉
c

=
∑

k1,...,kn≥0

W (k1,c1;...;kn,cn)
n

n∏
i=1

x−ki−1
i ,

(3.17)
i.e.

W (k1,c1;...;kn,cn)
n =

[ n∏
i=1

x−ki−1
]
Wn(x1, c1; . . . ;xn, cn) =

〈 n∏
i=1

trEciM
ki
ci

〉
c
. (3.18)

The variable xi is said to be of color ci when it is the generating parameter for trEciM
ki
ci

expanded around infinity. We denote Cc the copy of C of color c, so that xi ∈ Uci for
some open subset of Cci . We will also need the functions

W
(k1,c

′
1;...;kl,c

′
l)

n (x1, c1; . . . ;xn−l, cn−l) =
〈 l∏
i=1

trEc′
i

Mki
c′i

n−l∏
j=1

trEcj
1

xj −Mcj

〉
c
, (3.19)
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which are obtained from Wn(x1, c1; . . . ;xn−l, cn−l;x
′
1, c
′
1; . . . ;x′l, c

′
l) by extracting some se-

ries coefficients, viz.

W
(k1,c

′
1;...;kl,c

′
l)

n (x1, c1; . . . ;xn−l, cn−l) =
[ l∏
i=1

x′−ki−1
i

]
Wn(x1, c1; . . . ;xn−l, cn−l;x

′
1, c
′
1; . . . ;x′l, c

′
l).

(3.20)
Furthermore we write (ki, ci) := (k1, c1; . . . ; ki−1, ci−1 ; ki+1, ci+1; . . . ; kn, cn), ∀i ∈ J1, nK.
It will also appear natural to introduce global correlation functions which are defined on
(an open subset of)

En =
( d⋃
c=1

Cc \ Γc

)n
, (3.21)

so that each xi can be evaluated on any color. These correlation functions are

Wn(x1, . . . , xn) =
d∑

c1,...,cn=1

Wn(x1, c1; . . . ;xn, cn)
n∏
i=1

1(xi, ci). (3.22)

where 1(x, c) is 1 if x ∈ Cc and 0 otherwise. In terms of components,

Wn(x1, . . . , xn) =
∑

k1,...,kn≥0
(c1,...,cn)∈J1,dKn

W (k1,c1;...;kn,cn)
n

n∏
i=1

x−ki−1
i 1(xi, ci). (3.23)

The correlation functions Wn(x1, c1; . . . ;xn, cn) are said to be the local expressions of
Wn(x1, . . . , xn), since each variable is assigned a fixed color. We are now ready to derive
the loop equations of the quartic melonic model.

3.3 Exact resolvent equations

3.3.1 1-point equation

The Schwinger-Dyson equations are obtain from the family of equations

∀c ∈ J1, dK,
1

Z

ˆ d∏
i=1

dMi

∑
a,b

∂

∂(Mc)ab

(
(Mn

c )abe
−S) = 0. (3.24)
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Computing the derivatives explicitly and summing over n ≥ 0 with x−n−1 yields

W 2(x, c;x, c)−N
∑
n≥0

〈tr (Mn
c V
′
c (Mc))〉x−n−1

−N2−d
∑
ac≥1

ac′≥0, ∀c′ 6=c

acta1...ad

∑
n≥0

〈trMn+ac−1
c

∏
c′ 6=c

trM
ac′
c′ 〉x

−n−1 = 0,
(3.25)

for all c ∈ J1, dK. The second and third terms are split using the standard trick

∑
n≥0

trMn+ax−n−1 = xa tr
1

x−M
− tr

xa −Ma

x−M
, (3.26)

yielding for the second contribution∑
n≥0

〈tr (Mn
c V
′
c (Mc))〉x−n−1 = V ′c (x)W 1(x, c)− P1(x, c), (3.27)

where P1(x, c) = 〈tr V ′c (x)−V ′c (Mc)
x−Mc

〉. The last contribution is similar and reads∑
n≥0

〈trMn+ac−1
c

∏
c′ 6=c

trM
ac′
c′ 〉x

−n−1

= xac−1〈tr 1

x−Mc

∏
c′ 6=c

trM
ac′
c′ 〉 − 〈tr

xac−1 −Mac−1
c

x−Mc

∏
c′ 6=c

trM
ac′
c′ 〉.

(3.28)

The quantity 〈tr xac−1−Mac−1
c

x−Mc

∏
c′ 6=c trM

ac′
c′ 〉 must be further split by

xac−1 −Mac−1
c

x−Mc

= −
ac−2∑
q=0

xac−2−qM q
c , (3.29)

yielding overall, for all c ∈ J1, dK and x ∈ Cc,

W 2(x, c;x, c)−NV ′c (x)W 1(x, c) +NP1(x, c)

−N2−d
∑
ac≥1

ac′≥0, ∀c′ 6=c

acta1...ad

(
xac−1W

(a1,c
′
1;...;ad−1,c

′
d−1)

d (x, c) +
ac−2∑
q=0

xac−2−qW
((ac,c) ; q,c)

d

)
= 0.

(3.30)
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We now would like to rewrite (3.30) in terms of connected correlation functions. For this
purpose denote R = {R1, . . . , R`(R)} a set-partition of J1, nK, then

W n(x1, c1; . . . ;xn, cn) =
∑

R`J1,nK

`(R)∏
α=1

W|Rα|({xRα , cRα}), (3.31)

with the short-hand notation {xRα , cRα} = {xr, cr}r∈Rα . This first gives

W 2(x, c;x, c) = W1(x, c)2 +W2(x, c ; x, c). (3.32)

Now take R = {R1, . . . , R`(R)} to be as set-partition of J1, dK and for c ∈ J1, dK denote
Rc = {c} ∪R′c the part that contains c, where R′c can be empty. Then,

W
(a1,c

′
1;...;ad−1,c

′
d−1)

d (x, c) =
∑

R`J1,dK

W
(aR′c

,cR′c
)

|Rc| (x, c)
∏
α

Rα 6=Rc

W
(aRα ,cRα )

|Rα| , (3.33)

and
W

((ac,c) ; q,c)

d =
∑

R`J1,dK

W
(aR′c

,cR′c
; q,c)

|Rc|

∏
α

Rα 6=Rc

W
(aRα ,cRα )

|Rα| . (3.34)

The loop equation now reads in terms of connected components

W1(x, c)2+W2(x, c ; x, c)−NV ′c (x)W1(x, c) +NP1(x, c)

−N2−d
∑

R`J1,dK

∑
ac≥1

ac′≥0, ∀c′ 6=c

acta1...ad

∏
α

Rα 6=Rc

W
(aRα ,cRα )

|Rα|

×

(
xac−1W

(aR′c
,cR′c

)

|Rc| (x, c) +
ac−2∑
q=0

xac−2−qW
(aR′c

,cR′c
; q,c)

|Rc|

)
= 0.

(3.35)

3.3.2 n-point equations

For a potential of the form Vc(x) =
∑

n t
(c)
n xn define the colored loop insertion operator

as δ
δVc(x)

=
∑

n x
−n−1 ∂

∂t
(c)
n

and for integers A, n denote IA(n) the set of lists of the form

I = (I1, . . . , IA) such that Iα ⊆ J2, nK and
⊔A
α=1 Iα = J2, nK. Repeated action of the loop
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insertion operator on (3.35) then gives for the global correlation functions∑
(I1,I2)∈I2(n)

W|I1|+1(x1, xI1)W|I2|+2(x1, xI2) +Wn+1(x1, x1, . . . , xn)

−N
d∑
c=1

1(x1, c) (V ′c (x1)Wn(x1, . . . , xn)− Pn(x1, . . . , xn))

+
n∑
j=2

1(x1, xj)
∂

∂xj

Wn−1(x2, . . . , xn)−Wn−1(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

−N2−d
∑

R`J1,dK

∑
(I1,...,I`(R))∈I`(R)(d)

d∑
c=1

1(x1, c)
∑
ac≥1

ac′≥0, ∀c′ 6=c

acta1...ad

∏
α

Rα 6=Rc

W
(aRα ,cRα )

|Rα|+|Iα| (xIα)

×

(
xac−1

1 W
(aR′c

,cR′c
)

|Rc|+|Ic| (x1, xIc) +
ac−2∑
q=0

xac−2−q
1 W

(aR′c
,cR′c

; q,c)

|Rc|+|Ic| (xIc)

)
= 0.

(3.36)
Ic is defined as Iα∗ where α∗ is the index such that Rα∗ = Rc. Moreover, we defined
1(x, y) =

∑d
c=1 1(x, c)1(y, c), it is 1 if and only if x and y are of the same color.

3.4 Disc and cylinder function at genus zero

Having treated the general potential case, we come back to the quartic melonic model,
where we have the following.

• The potentials are Vc(x) = x2/2 for all c ∈ J1, dK and x ∈ Cc;

• The color couplings are [66]

ta1...ad = − 1∑
c ac

( ∑
c ac

a1, . . . , ad

) d∏
c=1

αacc N
d−2− d−2

2

∑
c ac ,

∑
c

ac ≥ 2. (3.37)

Crucially the ta1...ads depend on N and we read from (3.37) that the dominant ones are
given by

∑
c ac = 2. As the ac ≥ 0, the latter reduce to the two only couplings t0...2...0

and t0...1...1...0, where all dots represent zeros. Thus at large N the action behaves as

SN∞ = −N
2

d∑
c=1

(1− α2
c)trM

2
c +

∑
c 6=c′

αcαc′trMctrMc′ . (3.38)
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We will now cite, without re-deriving them, the expressions for the disc and cylinder
functions.

3.4.1 Colored disc functions

With the previous large N action, the disc function of color c satisfies the equation [66]

W1,0(x, c)2 − (1− α2
c)xW1,0(x, c) + (1− α2

c) = 0, ∀c ∈ Cc, (3.39)

the solution of which being

W1,0(x, c) =
1− α2

c

2

(
x−

√
x2 − 4

1− α2
c

)
. (3.40)

This is the disc function of the GUE, it has a cut along Γc =

[
− 2√

1−α2
c

, 2√
1−α2

c

]
which is

said to be the cut of color c.

3.4.2 Colored cylinder functions

We introduce the notation

σ(x, c) =

√
x2 − 4

1− α2
c

, ∀x ∈ Cc\Γc. (3.41)

Then it can be shown that the colored cylinder functions take the form

W2,0(x1, c;x2, c) =
x1x2 − σ(x1, c)σ(x2, c)− 4/(1− α2

c)

2(x1 − x2)2σ(x1, c)σ(x2, c)

−
∑

p6=c(αcαp)
2∑d

p=1 α
2
p − 1

W1,0(x1, c)W1,0(x2, c)

(1− α2
c)σ(x1, c)σ(x2, c)

, for (x1, x2) ∈ C2
c

(3.42)

and

W2,0(x1, c1;x2, c2) = − αc1αc2∑d
p=1 α

2
p − 1

W1,0(x1, c1)W1,0(x2, c2)

σ(x1, c1)σ(x2, c2)
, for (x1, x2) ∈ Cc1 × Cc2 .

(3.43)
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3.5 Blobbed topological recursion

3.5.1 Spectral curve

As before, we denote Ĉc the copy of color c ∈ J1, dK of the Riemann sphere. For each
color, define

fc(x, y) = y2 − (1− α2
c)xy + (1− α2

c). (3.44)

These polynomials vanish along a curve C ⊂
⋃d
c=1 Ĉc defined by

f(x, y) =
d∑
c=1

1(x, c)1(y, c)fc(x, y) = 0. (3.45)

We then introduce the following Zhukovski parametrization

x(z) =
d∑
c=1

1(x, c)1(z, c)
1√

1− α2
c

(z + z−1). (3.46)

In order to write the topological recursion, we will pull back the correlation functions
on the z-planes using the Zhukowski transformation, this will allow us to turn them into
differential forms:

ωn(z1, . . . , zn) = Wn(x(z1), . . . , x(zn))dx(z1) . . . dx(zn)

− δn,2
d∑
c=1

1(z1, c)1(z2, c)
dx(z1)dx(z2)

(x(z1)− x(z2))2
,

(3.47)

and give the expressions for the disc and cylindar differentials. The (global) disc function
has simple zeroes at z = ±1, those are the zeroes of dx(z):

ω1,0(z) =
d∑
c=1

1(z, c)
1− z−2

z
dz. (3.48)

While the cylinder forms are

ω2,0(z1, c; z2, c) =
dz1dz2

(z1 − z2)2
−
∑

p6=c(αcαp)
2∑d

p=1 α
2
p − 1

dz1dz2

z2
1z

2
2

,

ω2,0(z1, c1; z2, c2) = −
αc1αc2

√
(1− αc1)(1− αc2)∑d
p=1 α

2
p − 1

dz1dz2

z2
1z

2
2

.

(3.49)
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Notice that ω2,0(z1, c; z2, c) has a double pole on the diagonal z1 = z2 and that both
ω2,0(z1, c; z2, c) and ω2,0(z1, c1; z2, c2) have poles on z1 = 0 and z2 = 0 on each color. The
points z = ±1 in each color are called ramification points and we write

R = {z = ±1|∀c ∈ J1, dK, z ∈ Cc}. (3.50)

Finally we define a global bi-differential by writing

ω2,0(z1, z2) =
d∑

c1,c2=1

1(z1, c1)1(z2, c2)

(
δc1c2

dz1dz2

(z1 − z2)2
− Ωc1c2

dz1dz2

z2
1z

2
2

)
, (3.51)

where

Ωcc′ =
αcαc′

√
(1− αc)(1− αc′) + α2

c

(∑
p6=c α

2
p + αc − 1

)
δcc′∑

p α
2
p − 1

. (3.52)

3.5.2 Blobbed topological recursion formula

We know that correlation functions admit a topological expansion, this is true also for
their associated differential forms, thus we write

Wn(x1, . . . , xn) =
∑
g≥0

N2−2g−nWn,g(x1, . . . , xn), (3.53)

ωn(z1, . . . , zn) =
∑
g≥0

N2−2g−nωn,g(z1, . . . , zn). (3.54)

With the same notations as in section 1.5.2, the kernel of the topological recursion is
again given by

K(z, z1) =
∆G(z, z1)

2∆ω1,0(z)
, (3.55)

and finally define the polar Pωn,g and holomorphic Hωn,g parts of ωn,g(z1, . . . , zn) by

Pωn,g(z1, . . . , zn) =
∑
z∈R

Resz G(z, z1)ωn,g(z, z2, . . . , zn)

Hωn,g(z1, . . . , zn) = ωn,g(z1, . . . , zn)− Pωn,g(z1, . . . , zn).

(3.56)
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We can then give topological recursion formulae for Pωn,g and Hωn,g, viz.

Pωn,g(z1, . . . , zn) =
∑
z∈R

ReszK(z, z1)

(
ωn+1,g−1(z, ι(z), z2, . . . , zn)

+
′∑

(I1,I2)∈I2(n)
g1+g2=g

ω|I1|+1,g1(z, zI1)ω|I2|+1,g2(ι(z), zI2)

)
,

Hωn,g(z1, . . . , zn) =
1

2πi

˛
⋃d
c=1 U(1)c

ω2,0(z1, z)νn,g(z, z2, . . . , zn),

(3.57)

where U(1)c is the copy of the unit circle of color c, and

νn,g(z, z2, . . . , zn) = Vn,g(x(z), x(z2), . . . , x(zn))dx(z2) . . . dx(zn), (3.58)

for

Vn,g(x, x2, . . . , xn) =
d∑
c=1

∑
R`J1,dK
Rc={c}

∑
(I1,...,I`(R))∈I`(R)(d)

1(x, c)

∑
h1,...,h`(R)≥0

d−`(R)+
∑`(R)
α=1 hα=g

∑
ac≥1

ac′≥0,∀c′ 6=c

acta1...adx
ac
∏

Rα 6={c}

W
(aRα ,cRα )

|Rα|+|Iα|,hα(xIα).
(3.59)
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Part II

On the counting of orthogonal tensor
invariants
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Chapter 4

Counting O(N) invariants

We now turn our attention to real tensor models and begin by setting up our notations.
Consider d ≥ 2 real vector spaces Vc, c ∈ J1, dK, of respective dimensions Nc, and the
action of

⊗d
c=1O(Nc) on

⊗d
c=1 Vc. Let T be a tensor of rank d with components Ti1...id

transforming under the tensor product of d fundamental representations of the groups
O(Nc). Each group O(Nc) acts independently on a tensor index ic and we can write

TOi1...id =
∑
j1,...,jd

O
(1)
i1j1

. . . O
(d)
idjd

Tj1...jd . (4.1)

The observables in this model are the contractions of an even number, say 2n with n ∈ N,
of tensors T which are obviously invariant under

⊗d
c=1O(Nc) transformations. We simply

name them O(N) invariants. Such invariants generalize real matrix traces and will be
denoted:

OK(T ) =
∑
j
(k)
c

K({j(k)
c }

1≤k≤2n
1≤c≤d )T

j
(1)
1 ...j

(1)
d
. . . T

j
(2n)
1 ...j

(2n)
d

, (4.2)

where the kernel K(·) factors in Kronecker deltas and identifies the indices of the tensors
in a particular pattern; the sole contractions permitted involve the tensor indices with
identical color labels c ∈ J1, dK. An elegant way of encoding the contraction pattern
of tensors consists in a d-regular graph with edge coloring with d different colors, and
one of each color at every vertex (representing each tensor). Those graphs are defined
as the bubbles of Chapter 2 albeit for the bipartiteness condition that is relaxed. We
hence slightly shift the notation and write b the colored graph, the invariant denotes
equivalently OK(T ) or Ob(T ). We will detail this in the next chapter.
We build a physical model by introducing a partition function

Z =

ˆ
dν(T ) exp(−SN(T )) , (4.3)
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where the action SN(T ) =
∑

b λbN
−ρ(b)Ob(T ) is defined as a finite sum over some O(N)

tensor invariants representing the model interactions each with coupling λb and scaling
parameter ρ(b); dν(T ) is a tensor field measure. In this part, we will consider only
correlators that are Gaussian. This means that the field measure will be Gaussian and
of the form

dν(T ) =
∏
jl

dTj1...jd e
−O2(T ) , O2(T ) =

∑
jk

(Tj1...jd)
2 . (4.4)

In other terms, O2(T ) plays the role of a quadratic mass term. The free propagator of
the Gaussian measure is given by

〈Ti1...idTj1...jd〉 =

ˆ
dν(T )Ti1...idTj1...jd = δi1j1 . . . δidjd , (4.5)

and will be used in the Wick theorem for computing Gaussian correlators. We will be
interested in the mean values of observables that are defined by

〈Ob(T )〉 =
1´
dν(T )

ˆ
dν(T )Ob(T ) ,

〈Ob(T )Ob′(T )〉 =
1´
dν(T )

ˆ
dν(T )Ob(T )Ob′(T ) . (4.6)

The second correlator will be restricted to normal order allowing only Wick contractions
from Ob(T ) to Ob′(T ). In Chapter 6, enlightened by the symmetric group formulation of
the O(N) invariants, we will reformulate (4.6) and analyse the representation algebraic
structure brought by the 2-point correlator. The first correlator is sketched as it evaluates
by modifying the previous calculation method.

We now proceed to the counting per se. Counting the number of invariants based on the
contractions of 2n copies of real tensors Ti1...id starts by a symmetric group construction.
Actually, this enumeration problem expresses as a permutation-TFT that we also discuss.
Finally, switching to representation theory, we derive the same counting formula in terms
of the Kronecker coefficients.
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Figure 4.1 – Diagrammatic contraction of rank-3 orthogonal tensors
defining the triple of permutations (σ1, σ2, σ3).

4.1 Enumeration of rank d ≥ 3 tensor invariants

Orthogonal invariants are in one-to-one correspondence with d-regular colored graphs
(see for instance [33]). We emphasize again that contrary to the graphs corresponding
to unitary invariants [11, 29], the present graphs are not bipartite and, so, their dual
triangulations might be non-orientable. It is however always possible to make a graph
bipartite by inserting another type of vertex of valence 2 called “black” (henceforth the
initial vertices are called “white”) on each edge of the graph. We therefore perform that
transformation and denote the new vertices vci , i ∈ J1, nK (recall that 2n is the number of
tensors) and c ∈ J1, dK. The resulting graph is neither regular, nor properly edge-colored,
as opposed to the unitary case. It is however bipartite as illustrated in Figure 4.1, that is
to be compared with Figure 2.5 of the previous part. This property concedes a description
of a colored graph in symmetric group language. We shall focus on d = 3 as the general
case will follow from this one.
We denote S2n the symmetric group of order (2n)!. Counting possible graphs consists in
enumerating triples

(σ1, σ2, σ3) ∈ S2n × S2n × S2n, (4.7)

subjected to the equivalence

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ) , (4.8)
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where γ ∈ S2n and the γis belong to the wreath product1 subgroup Sn[S2] ⊂ S2n. We
intend to count the points in the double coset

(Sn[S2]× Sn[S2]× Sn[S2])\(S2n × S2n × S2n)/Diag(S2n) . (4.9)

Let us denote Z3(2n) the cardinality of this double coset. Recall from Chapter 2 that in
a broader setting, for two subgroups H1 ≤ G and H2 ≤ G, the cardinality of the double
coset |H1\G/H2| is given by

|H1\G/H2| =
1

|H1||H2|
∑
C

ZH1→G
C ZH2→G

C zC , (4.10)

where zC stands for the number of elements of G commuting with any element in the
conjugacy class C. The sum is over conjugacy classes of G, and ZH→G

C is the number of
elements of H in the conjugacy class C of G. The conjugacy classes of S2n×S2n×S2n are
determined by triples (p1, p2, p3), where each pi is a partition of 2n. The presence of the
subgroup Diag(S2n) implies that only conjugacy classes determined by a triple (p, p, p)

should be conserved in the above sum. Applying (4.10), we get

Z3(2n) =
1

[n!2n]3(2n)!

∑
p`2n

Z
Sn[S2]3→S 3

2n

(p,p,p)

(2n)!

zp
z3
p

=
1

[n!2n]3

∑
p`2n

Z
Sn[S2]3→S 3

2n

(p,p,p) z2
p ,

(4.11)

with zp =
∏

i i
pipi! and where the sum over p = (p`)` is performed over all partitions

of 2n =
∑

i ipi. The cardinality of a conjugacy class Cp of S2n with cycle structure2

determined by a partition p is given by |Cp| = (2n)!/zp. Next, we must determine the
size of ZSn[S2]3→S 3

2n

(p,p,p) which factors as

Z
Sn[S2]3→S 3

2n

(p,p,p) = (ZSn[S2]→S2n
p )3 . (4.12)

1 The wreath product Sn[S2] = S2 o Sn is defined as the semi-direct product Sn
2 o Sn and is known

in the literature as the hyperoctahedral group. Seen as a permutation group, it is the signed symmetric
group of permutations of the set {−n,−n+ 1, . . . ,−1, 1, . . . , n− 1, n}.

2 Two permutations have the same cycle structure or are of the same cycle type if the unordered list of
sizes of their cycles coincide. The cycle type of a permutation in S2n determines a list p = (p1, . . . , p2n)
of numbers pi ≥ 0 of cycles of length i. The list p is a partition of 2n.
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We can get a single factor in this product from

1

n!2n
ZSn[S2]→S2n
p = [tnxp]ZS∞[S2](t, ~x), (4.13)

where appears the generating function of the number of wreath product elements in a
certain conjugacy class p ` 2n, namely

ZS∞[Sd](t, ~x) =
∑
n

tnZSn[Sd](~x) = exp
∞∑
i=1

ti

i

∑
q `d

1

zq

d∏
`=1

xν``i , (4.14)

with ~x = (x1, x2, . . . ), q = (ν`)` a partition of d such that
∑

` `ν` = d and in multi-index
notation xp := xp1

1 . . . xp2n

2n . We adopt the “combinatorists’” notation and write as [xα]Z(x)

the coefficient of xα in the series expansion of Z. To understand where this comes from,
define the cycle index polynomial of H ≤ Sn as

ZH(~x) =
1

|H|
∑
p`n

ZH→Sn
p

∏
i

xpii . (4.15)

The generating function for cycle index polynomials of Sn is (see Chapter 15.13 in [53])

ZS∞(t, ~x) =
∞∑
n=0

tnZSn(~x) = exp
∞∑
i=1

tixi
i
. (4.16)

The cycle index polynomial of a wreath product is given for H ≤ G by (see Chapter 15.5
in [54])

ZG[H](~x) = ZG(~r), with ri = ZH(xi, x2i, x3i, . . . ), (4.17)

so that finally one can write the generating function of cycle index polynomials of Sn[Sd]
3:

ZS∞[Sd](t, ~x) =
∞∑
n=0

tnZSn[Sd](~x)

=
∞∑
n=0

tn
∑
p`2n

1

dnn!
ZSn[Sd]→S2n
p

∏
i

xpii

= exp
∞∑
i=1

ti

i
ZSd(xi, . . . , xdi),

(4.18)

which is indeed (4.14).

3 For d = 2, ZS∞[S2](t, ~x) = exp
∑∞

i=1
ti

2i (x
2
i + x2i).
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The expression (4.11) finally computes to

Z3(2n) =
∑
p`2n

(
[tnxp]ZS∞[S2](t, ~x)

)3
z2
p . (4.19)

In general, for arbitrary d, the above calculation is straightforward and yields, for any
d ≥ 2,

Zd(2n) =
∑
p`2n

(
[tnxp]ZS∞[S2](t, ~x)

)d
zd−1
p . (4.20)

We can generate the sequences Z3(2n) and Z4(2n) (both with n ∈ J1, 10K) using a Math-
ematica program shown in Appendix B.1 and obtain, respectively,

1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330 (4.21)

and
1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472,

220685007519070, 75649235368772418 .
(4.22)

Following Read [55], the number Zd(2n) of d-regular colored graphs made with 2n vertices
is the coefficient of tn in

∏
m Φm(t), where

Φm(t) =



∞∑
j=0

Am/2(j)d

j!mj
tmj/2 if m is even,

∞∑
j=0

((2j)!)d−1

(j!)d

(
md−2

2d

)j
tmj if m is odd,

(4.23)

and the function Ak(j) relates to the jth Hermite polynomial by Ak(j) = (i
√
k)jHj(

1
2i
√
k
).

We generate the corresponding sequences Z3(2n) and Z4(2n), n ∈ J1, 10K, using a Math-
ematica program (in Appendix B.2) and the results match with (4.21) and (4.22), re-
spectively. Hence, both methods yield the same results. The sequence (4.21) naturally
corresponds to the OEIS sequence A002830 (number of 3-regular edge-colored graphs with
2n nodes) [56]. The sequence (4.22) however is not yet reported on the OEIS. Hence,
the formula (4.20) is likely to generate arbitrary new sequences for each d > 3. We must
underline that the above counting of observables concerns connected and disconnected
graphs (generalized multi-matrix invariants). To obtain only connected invariants, we
use the plethystic logarithm (for recent applications of this function in supersymmetric
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Figure 4.2 – Connected colored graphs associated with rank-3 orthogonal
tensor invariants with up to 6 vertices.

gauge theory and further references, see [99]) transform on the generating series of the
disconnected invariants. This is achieved in the following manner. Define the generating
function of disconnected invariants as

Z3(x) =
∞∑
n=0

Z3(n)xn, (4.24)

the plethystic logarithm is defined as

PlogZ3(x) =
∞∑
k=1

µ(k)

k
logZ3(xk), (4.25)

where µ(k) is the Möbius function given by

µ(k) =


1 if k = 1,

0 if k has repeating prime factors,
(−1)n if k is a product of n distinct primes.

(4.26)



82 Chapter 4. Counting O(N) invariants

We obtain the enumeration of connected invariants (see Appendix B.2) as the coefficients
in the previous series’ expansion. For rank d = 3 and 4, respectively, up to order n = 10

they read,
1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138 (4.27)

and
1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991,

219822379032704, 75417509926065404 .
(4.28)

As an illustration, Figure 4.2 depicts the rank-3 connected orthogonal invariants up to
order 3.

4.2 Topological Field Theory formulation

From the above symmetric group formulation of the counting of tensor invariants, one
extracts more information via other correspondences. In particular, the enumeration
reformulates as a partition function of a Topological Field Theory on a 2-complex (in
short TFT2) with S2n and its subgroup Sn[S2] as gauge groups. For a review of TFTs,
see [91, 92] and, in notation closer to what we aim at, [38, 39]. Let us however recall
some key features here. Consider a 2-dimensional cellular complex (a Hausdorff space
together with a cellular structure) X. We call vertices the 0-cells, edges the 1-cells and
plaquettes the 2-cells. Then one can define a partition function for a finite group G by
assigning a group element ge to each edge e and a weight w(gP ) to each plaquette P ,
where gP =

∏
e∈P ge. A natural choice independent of the size of the plaquette is given

by

w(gP ) = δ(gP ) =

{
1 if gP = id,
0 otherwise.

(4.29)

The partition function of the model then writes

Z[X;G] =
1

|G|V
∑
ge

∏
P

w(gP ), (4.30)

where V is the number of vertices in the cell decomposition. We will be interested in
cases where G is taken to be the groups S2n and Sn[S2], but let us exemplify it with
Sn. Take as an elementary example the torus realized as a rectangle, with opposite sides
identified. This is a cell decomposition with a single vertex, two edges a, c and a single
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plaquette. Assign to each edge a group element in Sn:

a −→ σ , c −→ γ. (4.31)

Thus the weight for the single plaquette is

w(gP ) = δ(γσγ−1σ−1), (4.32)

and the partition function is given by

Z[T2;Sn] =
1

n!

∑
σ,γ∈Sn

δ(γσγ−1σ−1). (4.33)

This partition function counts equivalence classes of homomorphisms from the fundamen-
tal group of the torus π1(T2) ' 〈a, c | cac−1a−1 = 1〉 to Sn (weighted by the number of
elements of Sn which fix the homomorphism under conjugation) where the equivalence
relation identifies a homomorphism with each of its conjugates by elements in Sn. By
Riemann’s existence theorem, this is equivalent to counting equivalence classes of covering
spaces of T2 of degree n (see for instance [100]), counted with weight equal to the inverse
of the order of the automorphism group of the cover. The partition function (4.33) thus
counts n-fold covers of the torus and can be interpreted as a partition function of a TFT2

on a cellular complex having the topology of a cylinder, as shown in Figure 4.3 below.

Figure 4.3 – TFT2 associated with the counting of n-fold covers of the
torus.

Consider now the counting of classes in the double coset (4.9), denote it as Z3(2n), and
then consider the relation (4.10). Using Burnside’s lemma, we have in standard notations:

Z3(2n) =
1

[n!2n]3(2n)!

∑
γi∈Sn[S2]

∑
σi∈S2n

∑
γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 ) , (4.34)

where δ is the Kronecker symbol on S2n. This counting interprets as a partition function
of a TFT2 on a cellular complex given by Figure 4.4. On that lattice, we use two gauge
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groups S2n and Sn[S2]. The topology of that 2-complex is that of three cylinders sharing
the same end circle. Thus, enumerating orthogonal invariant corresponds to a S2n–TFT2

on three cylinders glued along one circle, with a restriction of the gauge group to be
Sn[S2] at the opposite boundary circle. This TFT2 has boundary holonomies endowed
with Sn[S2] group elements.

Figure 4.4 – S2n-TFT2 associated with the counting of orthogonal invari-
ants.

By successively integrating some delta functions, the TFT2 formulation produces alterna-
tive interpretations of the same counting. We extract γ from (4.34) and get γ = σ−1

3 γ−1
3 σ3

such that

Z3(2n) =
1

[n!2n]3(2n)!

∑
γi∈Sn[S2]

∑
σi∈S2n

δ(γ1σ1(σ−1
3 γ−1

3 σ3)σ−1
1 )δ(γ2σ2(σ−1

3 γ−1
3 σ3)σ−1

2 ) .

(4.35)
A change of variables σ1,2 ← σ1,2σ

−1
3 leads us to

Z3(2n) =
1

[n!2n]3

∑
γi∈Sn[S2]

∑
σ1,2∈S2n

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) . (4.36)

This integration illustrates, in Figure 4.5, as the removal of a 1-cell associated with
the variable γ in the 2-complex. The partition function therefore shows two types of
invariances: the extraction of γ corresponds to one type of topological invariance, and
then, it is followed by the change of variables σ1,2 → σ1,2σ

−1
3 corresponding to a topological

invariance of a second kind.
Thus, the partition function (4.36) can also be written as

Z3(2n) = Z(S1 × I;DSn[S2]
×3) , (4.37)
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Figure 4.5 – Topological transformations of the 2-complex leaving the
partition function stable.

where Z(S1 × I;DSn[S2]
×3) is the partition function obtained by inserting three Sn[S2]-

defects - written DSn[S2] -, one at each end of the cylinder S1 × I, and another one at
finite time t0 ∈ I, for some finite interval I, see Figure 4.6. A defect is defined as a closed
non-intersecting loop with a marked point. The relation (4.37) shows that orthogonal
invariants are in one-to-one correspondence with n-fold covers of the cylinder with three
defects, up to a (symmetry) factor, viz. the stabilizer subgroup of the graph that we
denote Aut(Gσ1,σ2,σ3).

Figure 4.6 – Cylinder with three defects.

The order of the stabilizer infers from

Sym(σ1, σ2) =
∑

γi∈Sn[S2]

δ(γ1σ1γ3σ
−1
1 )δ(γ2σ2γ3σ

−1
2 ) = Aut(Gσ1,σ2,σ3), (4.38)

which also relates to the number of equivalences (Sn[S2]×Sn[S2])\(Sn×Sn)/Diag(Sn[S2])

corresponding to a fixed (σ1, σ2).
The TFT formulation of the counting enriches it with a geometrical picture. Most of
the time, the base space of the TFT is viewed as a string worldsheet. The counting now
becomes a counting of worldsheet maps over a cylinder with defects. As noticed elsewhere
[29, 30], this once again shows that a link may exist between tensor models and string
theory, which could be elucidated via the TFT formalism. Such a link may be worth
investigating in the future.
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Rank-d counting and TFT2 – More generally, for rank d ≥ 3, the counting Zd(2n)

has a TFT2 formulation that generalizes what we discussed above in a straightforward
manner:

Zd(2n) =
1

[n!2n]d(2n)!

∑
γi∈Sn[S2]

∑
σi∈S2n

∑
γ∈S2n

d∏
i=1

δ(γiσiγσ
−1
i )

=
1

[n!2n]d

∑
γi∈Sn[S2]

∑
σi∈S2n

d−1∏
i=1

δ(γiσiγdσ
−1
i ) , (4.39)

where we extracted γ as previously: γ = σ−1
d γ−1

d σd.
The first equation of (4.39) shows that, in rank d, the TFT2-formulation of the counting
extends Figure 4.4 as the gluing of d cylinders along one circle. After integration, the
second equation reveals that the counting of orthogonal invariants therefore amounts to
the counting of weighted covers of d− 1 cylinders with d defects, one of the defects being
shared by all cylinders. In formula, denoting Ci the ith cylinder with base circle S1

i and
Cd−1 the quotient space

⊔d−1
i=1 Ci / ∼, with the identification S1

i ∼ S1
j , we have

Zd(2n) = Z(Cd−1;DSn[S2]
×d).

4.3 The counting as a Kronecker sum

We now revisit the counting (4.34) under a different light, that of the representation
theory of the symmetric group (Appendix A reviews the main identities used in this
chapter and the following). Irreducible representations (irreps) of the symmetric group
S2n are labeled by partitions R ` 2n, that are also Young diagrams.
Starting from the Burnside lemma formulation of (4.34), consider the following expansion
of the counting of rank-3 invariants using the representation theory of S2n:

Z3(2n) =
1

[n!2n]3(2n)!

∑
γl∈Sn[S2]

∑
σl∈S2n

∑
γ∈S2n

δ(γ1σ1γσ
−1
1 )δ(γ2σ2γσ

−1
2 )δ(γ3σ3γσ

−1
3 )

=
1

[n!2n]3(2n)!

∑
γl∈Sn[S2]

∑
γ∈S2n

∑
Rl ` 2n

χR1(γ1)χR1(γ)χR2(γ2)χR2(γ)χR3(γ3)χR3(γ)

=
1

[n!2n]3

∑
Rl ` 2n

C(R1, R2, R3)
∑

γ1∈Sn[S2]

χR1(γ1)
∑

γ2∈Sn[S2]

χR2(γ2)
∑

γ3∈Sn[S2]

χR3(γ3),

(4.40)
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where χR denotes the character in the representation R, we used the identity (A.5) in
Appendix A.1 to compute the deltas, and the Kronecker coefficient is defined as

C(R1, R2, R3) =
1

(2n)!

∑
γ∈S2n

χR1(γ)χR2(γ)χR3(γ) . (4.41)

Recall that the Kronecker defines the multiplicity of the representation R3 in the tensor
product R1 ⊗ R2, or the multiplicity of the trivial representation in R1 ⊗ R2 ⊗ R3 when
expanded back in irreps.
Above, the sums over the subgroup Sn[S2] have not yet been performed. To proceed with
these sums, we will use a useful result by Howe [93] (see also [95, 96] or a more recent
use of it in [43]):

1

|Sn[S2]|
∑

γ∈Sn[S2]

χR(γ) = δR,even, (4.42)

where δR,even = 1 if R is an “even” partition, that is, all its row lengths are even - we
denote it naturally 2R - and δR,even = 0 otherwise. This result is actually a consequence
of what is called Littlewood’s formula and Frobenius’s reciprocity, which we now recall.
Written out in terms of characters, Littlwood’s formula (see Proposition 4.1 in [94]) reads,
for all σ ∈ S2n,

1Sn[S2] ↑S2n (σ) =
∑
S `2n

χ2S(σ), (4.43)

where 1Sn[S2] ↑S2n is the character of the trivial representation of Sn[S2] induced on S2n.
Now denoting χR ↓Sn[S2] the restriction of a character of S2n to Sn[S2], the following
equality, known as Frobenius’ reciprocity theorem4, holds:

〈
1Sn[S2], χ

R ↓Sn[S2]

〉
Sn[S2]

=
〈
1Sn[S2] ↑S2n , χR

〉
S2n

. (4.44)

By expliciting the scalar products, the previous equation becomes successively

1

n!2n

∑
γ∈Sn[S2]

1Sn[S2](γ)χR ↓Sn[S2] (γ) =
1

(2n)!

∑
σ∈S2n

1Sn[S2] ↑S2n (σ)χR(σ), (4.45)

1

n!2n

∑
γ∈Sn[S2]

χR(γ) =
1

(2n)!

∑
S `2n

∑
σ∈S2n

χ2S(σ)χR(σ), (4.46)

1

n!2n

∑
γ∈Sn[S2]

χR(γ) =
∑
S `2n

δR,2S, (4.47)

4 This is a special case. In all generality, for G a finite group with subgroup H and class functions
ϕ : G→ C and ψ : H → C, the theorem states 〈ψ,ResGH ϕ〉H = 〈IndG

H ψ,ϕ〉G.
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which gives the desired result. Note that in the second line we used Littlewood’s formula
and the fact that by definition for γ ∈ Sn[S2], 1Sn[S2](γ) = 1 and χR ↓Sn[S2] (γ) = χR(γ),
while in the third, the characters’ orthogonality relation (A.6) was used.
Thus, we obtain, inserting this in (4.40)

Z3(2n) =
∑
Rl ` 2n

C(2R1, 2R2, 2R3) . (4.48)

Comparing this sequence and (4.21), we produce a Sage code (see Appendix B.3) showing
that the numbers generated by (4.48) match with (4.21).
In the next chapter, we will show that this number is also the dimension of an algebra
K3(2n). It is an interesting problem to investigate how the counting of colored graphs
could contribute to the famous problem of giving a combinatorial interpretation to the
Kronecker coefficients [51, 52] (in the same way that Littlewood-Richardson coefficients
have found a combinatorial description). From previous work [30], we know that the sum
of squares of Kronecker coefficients associated with Sn equals the number of d-regular
bipartite colored graphs made with n black and n white vertices. Here the interpretation is
the following, the number of d-regular colored graphs (not necessarily bipartite) equals the
sum of all Kroneckers precluded those that are defined with partitions with odd rows. An
idea to contribute to the above problem is to refine the counting of graphs in a way to boil
down to a single Kronecker coefficient. In other words, given a non vanishing Kronecker
coefficient is it possible to list all graphs contributing to that Kronecker coefficient ? This
is certainly a difficult problem that will require new tools in representation theory.

Counting rank-d tensor invariants – The above counting generalizes quite naturally
at any rank d as

Zd(2n) =
1

[n!2n]d(2n)!

∑
γl∈Sn[S2]

∑
σl∈S2n

∑
γ∈S2n

d∏
i=1

δ(γiσiγσ
−1
i )

=
1

[n!2n]d

∑
Rl ` 2n

∑
γl∈Sn[S2]

Cd(R1, . . . , Rd)χ
R1(γ1) . . . χRd(γd)

=
∑
Rl ` 2n

Cd(2R1, . . . , 2Rd),

(4.49)

where we introduced the notation

Ck(R1, . . . , Rk) =
1

(2n)!

∑
γ∈S2n

χR1(γ) . . . χRk(γ) . (4.50)
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This counts the multiplicity of the one dimensional trivial S2n irrep in the tensor product
of irreps R1⊗. . .⊗Rk, k ≥ 4. It expresses as a convoluted product of Kronecker coefficients
as

Ck(R1, . . . , Rk) =
∑
Sl`2n

C(R1, R2, S1)

[
k−4∏
i=1

C(Si, Ri+2, Si+1)

]
C(Sk−3, Rk−1, Rk) . (4.51)
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Chapter 5

Double coset algebra

We now discuss the underlying structure, an algebra, determined by the counting of the
O(N) invariants. The rank-3 case is first addressed for the sake of simplicity, and from
that, we will infer the general rank-d case whenever possible.
Consider C[S2n], the group algebra of S2n. Our construction depends on tensor products
of that space.

5.1 Kd(2n) as a double coset algebra in C[S2n]
⊗d

We fix d = 3. Consider σ1 ⊗ σ2 ⊗ σ3 as an element of the group algebra C[S2n]⊗3, and
three left actions of the subgroup Sn[S2] and the diagonal right action of Diag(C[S2n]) on
this triple as:

σ1 ⊗ σ2 ⊗ σ3 →
∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ . (5.1)

K3(2n) is the vector subspace of C[S2n]⊗3 which is invariant under these subgroup actions:

K3(2n) = SpanC

 ∑
γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ, (σ1, σ2, σ3) ∈ S 3
2n

 . (5.2)

It is obvious that dimK3(2n) = Z3(2n), since each basis element represents the graph
equivalent class counted once in Z3(2n). Pick two basis elements, called henceforth graph
basis elements, and consider their product[ ∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
][ ∑

τi∈Sn[S2]

∑
τ∈S2n

τ1σ
′
1τ ⊗ τ2σ

′
2τ ⊗ τ3σ

′
3τ
]
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=
∑

γi,τi∈Sn[S2]

∑
γ,τ∈S2n

γ1σ1γτ1σ
′
1τ ⊗ γ2σ2γτ2σ

′
2τ ⊗ γ3σ3γτ3σ

′
3τ

=
∑

τi∈Sn[S2]

∑
γ∈S2n

[ ∑
γi∈Sn[S2]

∑
τ∈S2n

γ1(σ1γτ1σ
′
1)τ ⊗ γ2(σ2γτ2σ

′
2)τ ⊗ γ3(σ3γτ3σ

′
3)τ
]
.(5.3)

This shows that the multiplication remains in the vector space. Hence, K3(2n) is an
algebra and (5.3) defines a graph multiplication. The proof is totally similar for Kd(2n)

(considering d factors in the tensor product) which is thus an algebra of dimension Zd(2n).

The product of graphs in the algebra K3(2n) illustrates as in Figure 5.1 below.

Figure 5.1 – Product of two graph basis elements (on the left) gives a
sum of graphs (on the right).

Gauge fixing – There is a gauge fixing procedure in the construction of orthogonal
invariants. One initially fixes a permutation σi but is still able to generate all invariants.
Consider ξ = (12)(34) . . . (2n − 1, 2n), and fix σ1 to belong to the stabilizer of ξ, i.e.
σ−1

1 ξσ1 = ξ. Since Stabξ = Sn[S2], we simply mean that we choose σ1 to be in that
subgroup. We already observe a difference with the unitary case [30]. Indeed, while
the gauge fixing in the unitary case leads to the definition of a permutation centralizer
algebra, the gauge fixing here will not bring such an algebra. The main difference with
the unitary case also rests on the fact that the left and right invariances on the triple
(σ1, σ2, σ3) in this case are radically different.
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Associativity – In the graph basis, we can check the associativity of the product of
elements of K3(2n):([ ∑

γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
][ ∑

τi∈Sn[S2]

∑
τ∈S2n

τ1σ
′
1τ ⊗ τ2σ

′
2τ ⊗ τ3σ

′
3τ
])

×
[ ∑
αi∈Sn[S2]

∑
α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α
]

=
∑
τi, αi

∑
γ, τ

[∑
γ,α

γ1σ1γτ1σ
′
1τα1σ

′′
1α⊗ γ2σ2γτ2σ

′
2τα2σ

′′
2α⊗ γ3σ3γτ3σ

′
3τα3σ

′′
3α
]

=
[ ∑
γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ
]

×

[ ∑
τi∈Sn[S2]

∑
τ∈S2n

τ1σ
′
1τ ⊗ τ2σ

′
2τ ⊗ τ3σ

′
3τ
][ ∑

αi∈Sn[S2]

∑
α∈S2n

α1σ
′′
1α⊗ α2σ

′′
2α⊗ α3σ

′′
3α
] .

(5.4)

The proof easily extends to any d, and we therefore claim the following:

Proposition 5.1.1. K3(2n) is an associative unital sub-algebra of C[S2n]⊗3.

The unit is given by the equivalence class of (id, id, id). Such element corresponds to the
disconnected graph made with n connected components with full contraction of n pairs
of tensors (i.e. dipole graphs).

Pairing – There is an inner product (that we will call pairing) on Kd(2n) defined from
the linear extension of the delta function from the symmetric group to the tensor product
group algebra (see (A.24) in Appendix A.3 for details pertaining to the following nota-
tion). Take two basis elements (in obvious notation) and evaluate using proper change
of variables:

δ
(∑
γi,γ

d⊗
i

γiσiγ ;
∑
τi,τ

d⊗
i

τiσ
′
iτ
)

=
∑
γi,γ

∑
τi,τ

d∏
i

δ(γiσiγ(τiσ
′
iτ)−1)

= (2n)!(n!2n)
∑
γi,γ

d∏
i

δ(γiσiγ(σ′i)
−1) .

(5.5)

Thus, either the tuples (σ1, . . . , σd) and (σ′1, . . . , σ
′
d) define equivalent graphs Gσ1...σd and

Gσ′1...σ
′
d
, respectively, or the result is 0. This precisely tells us that the graph basis forms

an orthogonal system. The above computes further using the order of the automorphism
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group of the graph

δ
(∑
γi,γ

d⊗
i

γiσiγ ;
∑
τi,τ

d⊗
i

τiσ
′
iτ
)

= (2n)!(n!2n)δ(Gσ1...σd ;Gσ′1...σ
′
d
)Aut(Gσ1...σd) . (5.6)

Therefore, there exists a non degenerate bilinear pairing on Kd(2n) and the following
holds:

Theorem 5.1.2. Kd(2n) is an associative unital semi-simple algebra.

As a corollary of Theorem 5.1.2, the Wedderburn-Artin1 theorem guarantees that Kd(2n)

decomposes into matrix subalgebras. It might be interesting to investigate a basis of such
a decomposition of Kd(2n) in irreducible matrix subalgebras. One could be tempted to
think that, at d = 3, restricting to K3(2n), the Kronecker coefficients for even partitions
could be themselves squares, and therefore define the dimensions of the irreducible sub-
algebras. This is not the case as can easily be shown using the same Sage code given in
Appendix B.3 (by printing the Kronecker). This point is postponed for future investi-
gations. In the meantime, it is legitimate to ask a representation basis with labels that
reflect the dimension (4.48). This is the purpose of the next section.

5.2 Constructing a representation theoretic basis of K3(2n)

Let us introduce the representation basis of C[S2n] given by the elements

QR
ij =

κR
(2n)!

∑
σ∈S2n

DR
ij(σ)σ , with κ2

R = (2n)! d(R) , (5.7)

that obey the orthogonality relation δ(QR
ij ;QR′

i′j′) = δRR′δii′δjj′ . The basis {QR
ij} counts∑

R`2n d(R)2 = (2n)! elements and forms the Fourier theoretic basis of C[S2n]. Appendix
A.3 collects a few other properties of this basis for a general permutation group.
We fix d = 3 and build now the invariant representation theoretic (Fourier for short)
basis of the algebra K3(2n) (5.2). Consider the right diagonal action ρR(·) and the three

1 The Wedderburn-Artin theorem states that any finite dimensional semi-simple algebra is isomorphic
to a finite product of matrix algebras over division algebras.
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left actions %i(·) on the tensor product C[S2n]⊗3. Then we write:∑
γ1, γ2, γ3∈Sn[S2]

∑
γ∈S2n

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

=
∑
γa

∑
γ

γ1Q
R1
i1j1
γ ⊗ γ2Q

R2
i2j2

γ ⊗ γ3Q
R3
i3j3

γ

=
∑
γa

∑
γ

∑
pl ,ql

DR1
p1i1

(γ1)QR1
p1q1

DR1
j1q1

(γ)⊗DR2
p2i2

(γ2)QR2
p2q2

DR2
j2q2

(γ)⊗DR3
p3i3

(γ3)QR3
p3q3

DR3
j3q3

(γ)

=
(2n)!

d(R3)

∑
γa

∑
pl ,ql

∑
τ

CR1,R2;R3,τ
j1,j2;j3

CR1,R2;R3,τ
q1,q2;q3

DR1
p1i1

(γ1)DR2
p2i2

(γ2)DR3
p3i3

(γ3)QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(5.8)
We used (A.22) to multiply group elements with the Q-basis, see Appendix A.3; then use
(A.18) to sum over γ the three representation matrices, see Appendix A.2.
We couple this last result with a Clebsch-Gordan coefficient, in order to get, using (A.16):∑

jl

CR1,R2;R3,τ
j1,j2;j3

∑
γa

∑
γ

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

= (2n)!
∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

∑
γ1

DR1
p1i1

(γ1)
∑
γ2

DR2
p2i2

(γ2)
∑
γ3

DR3
p3i3

(γ3)QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(5.9)
Once again, we should stress that

∑
γ∈Sn[S2] D

R
pq(γ) 6= 0 if and only if R is a partition of 2n

with even rows. This condition will be always assumed in the next calculations. Now, we
can split the Wigner matrix element using branching coefficients of Sn[S2] in S2n. Consider
V R an irrep of S2n (see Appendix A listing a few basic facts on representation theory of
Sn and our notations), and the subgroup inclusion Sn[S2] ⊂ S2n, we can decompose V R

in irreps V r of Sn[S2] as

V R =
⊕
r

V r ⊗ VR,r, (5.10)

where VR,r is a vector space of dimension the multiplicity of the irreducible representations
r in R. A state in this decomposition denotes |r,mr, νr〉, where mr labels the states of
V r and νr ∈ J1, dimVR,rK.
The branching coefficients that are of interest are the coefficients of |r,mr, νr〉 when
decomposed in an orthonormal basis of the irreps R:

BR; r,νr
i;mr

= 〈R, i |r,mr, νr〉 = 〈r,mr, νr |R, i〉 . (5.11)
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The last relation is deduced from the fact that we use real representations. Using the
decomposition of the identity, the branching coefficients satisfy the following identities∑

i

BR; r,νr
i;mr

BR; s,νs
i;ms

= δrsδνrνsδmrms (5.12)∑
r,mr,νr

BR; r,νr
i;mr

BR′; r,νr
i′;mr

= δRR′δii′ . (5.13)

We have the following useful relation, for σ ∈ Sn[S2],∑
j

DR
ij(σ)BR; r,νr

j;mr
=
∑
m′r

Dr
mrm′r

(σ)BR; r,νr
i;m′r

, (5.14)

where Dr
mrm′r

(σ) is the representation matrix of σ as an element of Sn[S2]. Restricting
this to r = [2n], the one-dimensional trivial representation of Sn[S2], we obtain:∑

j

DR
ij(σ)B

R;[2n],1
j;1 = D

[2n]
11 (σ)B

R;[2n],1
i;1 = B

R;[2n],1
i;1 . (5.15)

We now treat the sum over the representation matrices in (5.9). Inserting twice a complete
set of states therein, we get∑

σ∈Sn[S2]

DR
ij(σ) =

∑
σ∈Sn[S2]

∑
r,νr,mr
s,νs,ms

BR; r,νr
i;mr

BR; s,νs
j;ms

〈r, νr,mr|σ|s, νs,ms〉 . (5.16)

Noting that
∑

σ∈Sn[S2] σ =
∑

σ∈Sn[S2] 1Sn[S2](σ)σ is, up to the factor 1/[n!2n], nothing but
the projector onto the trivial representation of Sn[S2], the overlap computes to∑

σ∈Sn[S2]

〈r, νr,mr|σ|s, νs,ms〉 = (2nn!)δr,[2n]δs,[2n]δ1mrδ1msδ1νsδ1νr , (5.17)

since we have∑
σ∈Sn[S2]

σ|s, νs,ms〉 =
∑

σ∈Sn[S2]

1Sn[S2](σ)
∑
k

Ds
msk(σ)|s, νs, k〉

=
∑

σ∈Sn[S2]

D
[2n]
11 (σ)

∑
k

Ds
msk(σ)|s, νs, k〉 =

2nn!

d([2n])

∑
k

δs,[2n]δ1msδ1νsδ1k|s, νs, k〉

= (2nn!)δs,[2n]δ1msδ1νs|[2n], 1, 1〉 . (5.18)
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Hence, ∑
σ∈Sn[S2]

DR
ij(σ) = 2nn!BR

i B
R
j , (5.19)

where we have defined BR
i = 〈R, i |[2n], 1, 1〉.

From the above calculation, we finally get from (5.9):∑
jl

CR1,R2;R3,τ
j1,j2;j3

∑
γa

∑
γ

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

= (2n)!(n!2n)3BR1
i1
BR2
i2
BR3
i3

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1
p1
BR2
p2
BR3
p3
QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

(5.20)

We now define an element

QR1,R2,R3,τ = κ~R

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1
p1
BR2
p2
BR3
p3
QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3

= κ~R
κR1κR2κR3

((2n)!)3

∑
σi

∑
pl,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏
i=1

BRi
pi
DRi
piqi

(σi)
]
σ1 ⊗ σ2 ⊗ σ3,

(5.21)

where κ~R is a normalization constant to be fixed later and the notation ~R stands for
(R1, R2, R3). The set {QR1,R2,R3,τ} is of cardinality the counting of orthogonal invariants
given by (4.48).

Invariance – Let us check that the element QR1,R2,R3,τ is invariant under left multipli-
cation on each factor and diagonal right multiplication:

(γ1 ⊗ γ2 ⊗ γ3)QR1,R2,R3,τ (γ ⊗ γ ⊗ γ) = κ~R

∑
pl ,ql

CR1,R2;R3,τ
q1,q2;q3

BR1
p1
BR2
p2
BR3
p3

×
∑
`1,j1

DR1
`1p1

(γ1)QR1
`1j1

DR1
q1j1

(γ)⊗
∑
`2,j2

DR2
`2p2

(γ2)QR2
`2j2

DR2
q2j2

(γ)⊗
∑
`3,j3

DR3
`3p3

(γ3)QR3
`3j3

DR3
q3j3

(γ)

= κ~R

∑
jl

CR1,R2;R3,τ
j1,j2;j3

∑
pl,`l

DR1
`1p1

(γ1)BR1
p1
DR2
`2p2

(γ2)BR2
p2
DR3
`3p3

(γ3)BR3
p3
QR1
`1j1
⊗QR2

`2j2
⊗QR3

`3j3

= κ~R

∑
jl,`l

CR1,R2;R3,τ
j1,j2;j3

BR1
`1
BR2
`2
BR3
`3
QR1
`1j1
⊗QR2

`2j2
⊗QR3

`3j3

= QR1,R2,R3,τ , (5.22)

where we used once again (A.22) and (A.16) as intermediate steps and the identity (5.15)
to get the last line. We now check a few properties of the product of elements of K3(2n).
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Product – The elements (5.7) of the Fourier basis of C[S2n] multiply as follows (see
Appendix A.3.)

QR
ijQ

R′

kl =
κR
d(R)

δRR′δjkQ
R′

il . (5.23)

The definition (5.21) and relation (5.23) allow us to compute the product

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′

=
κ~Rκ ~R′κR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

∑
pl ql al bl

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R′3,τ

′

b1,b2;b3

×BR1
p1
BR2
p2
BR3
p3
BR′1
a1
BR′2
a2
BR′3
a3
Q
R′1
p1b1
⊗QR′2

p2b2
⊗QR′3

p3b3
δq1a1δq2a2δq3a3

=
κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

[∑
ql

CR′1,R
′
2;R′3,τ

q1,q2;q3
BR′1
q1
BR′2
q2
BR′3
q3

]
QR′1,R

′
2,R
′
3,τ
′
.

(5.24)

Hence, the product of two basis elements expands in terms of QR1,R2,R3,τ . In a compact
notation, we write

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′
= δ~R ~R′k( ~R′, τ)QR′1,R

′
2,R
′
3,τ
′
, (5.25)

which shows that the product is almost orthogonal. Still it cannot represent the basis of
the Wedderburn-Artin matrix decomposition. The basis {QR1,R2,R3,τ} therefore decom-
poses K3(2n) into blocks mutually orthogonal in the labels R1, R2, R3. Still in each block
the decomposition remains unachieved.

Associativity – We check the associativity of the product in the Q-basis. On the one
hand, we have(

QR1,R2,R3,τQR′1,R
′
2,R
′
3,τ
′
)
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′

=
κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′

[∑
ql

CR′1,R
′
2;R′3,τ

q1,q2;q3
BR′1
q1
BR′2
q2
BR′3
q3

]
×

κ ~R′κR′1κR′2κR′3
d(R′1)d(R′2)d(R′3)

δ ~R′ ~R′′
[∑

ql

CR′′1 ,R
′′
2 ;R′′3 ,τ

′

q1,q2;q3
BR′′1
q1
BR′′2
q2
BR′′3
q3

]
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′
,

(5.26)
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while on the other,

QR1,R2,R3,τ
(
QR′1,R

′
2,R
′
3,τ
′
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′
)

=
κ ~R′κR′1κR′2κR′3

d(R′1)d(R′2)d(R′3)
δ ~R′ ~R′′

[∑
ql

CR′′1 ,R
′′
2 ;R′′3 ,τ

′

q1,q2;q3
BR′′1
q1
BR′′2
q2
BR′′3
q3

]
×

κ~RκR1κR2κR3

d(R1)d(R2)d(R3)
δ~R ~R′′

[∑
ql

CR′′1 ,R
′′
2 ;R′′3 ,τ

q1,q2;q3
BR′′1
q1
BR′′2
q2
BR′′3
q3

]
QR′′1 ,R

′′
2 ,R
′′
3 ,τ
′′
.

(5.27)

The two expressions are identical.

Pairing – We use the pairing on C[S2n]⊗3 along the lines of (A.26) and evaluate:

δ(QR1,R2,R3,τ ;QR′1,R
′
2,R
′
3,τ
′
)

= κ~Rκ ~R′
∑

pl,ql,al,bl

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R′3,τ

′

b1,b2;b3
BR1
p1
BR2
p2
BR3
p3
BR′1
a1
BR′2
a2
BR′3
a3

× δ(QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
;Q

R′1
a1b1
⊗QR′2

a2b2
⊗QR′3

a3b3
)

= κ~Rκ ~R′
∑

pl,ql,al,bl

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R′3,τ

′

b1,b2;b3
BR1
p1
BR2
p2
BR3
p3
BR′1
a1
BR′2
a2
BR′3
a3

× δ~R ~R′δp1a1δp2a2δp3a3δq1b1δq2b2δq3b3

= κ2
~R
d(R3)

∑
pl

[ 3∏
i=1

BRi
pi

]2

δ~R ~R′δττ ′

= κ2
~R
d(R3)δ~R ~R′δττ ′ ,

(5.28)

where, in the first line, we used (A.26), in the last, (A.13), and the fact that, by (5.12),
the following holds

∑
p(B

R
p )2 =

∑
p〈[2n], 1, 1|R, p〉〈R, p |[2n], 1, 1〉 = 1, for all R ` 2n.

We could therefore fix the normalization κ2
~R

= 1/d(R3).
The following statement holds:

Proposition 5.2.1. {QR1,R2,R3,τ} is an invariant orthonormal basis of K3(2n).

Proof. It is sufficient to show that the graph basis expands in terms of the Q-basis. We
express any graph basis element Gσ1,σ2,σ3 =

∑
γi∈Sn[S2]

∑
γ∈S2n

γ1σ1γ ⊗ γ2σ2γ ⊗ γ3σ3γ as

Gσ1,σ2,σ3 =
∑
Rl,τ

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3)QR1,R2,R3,τ . (5.29)

The definition of QR1,R2,R3,τ calls a linear combination of triples τ1 ⊗ τ2 ⊗ τ3 that must
have a non trivial overlap with Gσ1,σ2,σ3 . Let us compute the overlap between the bases.
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Start with (5.21) and then write (using (A.16) and then (5.15))

δ(QR1,R2,R3,τ ;Gσ1,σ2,σ3) = κ~R
κR1κR2κR3

((2n)!)3
((2nn!))3(2n!)

∑
al ,bl

CR1,R2;R3,τ
b1,b2;b3

[ 3∏
i=1

BRi
ai
DRi
aibi

(σi)
]
.

(5.30)

This number is, up to the normalization factor ((2nn!))3(2n!), the coefficient of the triple
σ1 ⊗ σ2 ⊗ σ3 in QR1,R2,R3,τ . 2

We note that the basis {QR1,R2,R3,τ} is of the correct cardinality, that of Z3(2n) as we
sought. Finding the Wedderburn-Artin matrix basis of K3(2n) would mean that Z3(2n)

can be written as a sum of squares. Interestingly, within the TFT2 formulation of the
counting, we note that the partition function (4.36) computes further using (A.5) as

Z3(2n) =
1

[n!2n]3

∑
Rl`2n

(∑
γ1

χR1(γ1)
)(∑

γ2

χR2(γ2)
)(∑

γ3

χR1(γ3)χR2(γ3)
)

=
1

n!2n

∑
Rl`2n

∑
γ3

χ2R1(γ3)χ2R2(γ3)

=
1

n!2n

∑
γ3

(∑
R`2n

χ2R(γ3)

)2

,

(5.31)

thus, as a normalized sum of squares. This shows that Z3(2n) could admit several decom-

positions into squares. If
(∑

R`2n χ
2R(γ3)

)2

is the dimension of a subalgebra (given that
the characters are integers via the Murnaghan-Nakayama rule), this would mean that this
decomposition into subalgebras would be labeled by γ3 and will be even different from
the Wedderburn-Artin decomposition. This decomposition deserves further clarification
in the present O(N) setting.

About projectors – Let us conclude this chapter by defining the normalized projectors

P
Sn[S2]
i =

1

n!2n

∑
γi∈Sn[S2]

%i(γi),

P S2n
R =

1

(2n)!

∑
γ∈S2n

ρR(γ),

(5.32)
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and by checking that the trace of their product indeed yields the dimension of the algebra
K3(2n):

dimK3(2n) = trC[S2n]⊗3(P
Sn[S2]
1 P

Sn[S2]
2 P

Sn[S2]
3 P S2n

R ) = trK3(2n)(1) . (5.33)

We have ∑
γa∈Sn[S2]

∑
γ∈S2n

%1(γ1)%2(γ2)%3(γ3)ρR(γ)QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3

=
∑
γa

∑
γ

∑
pl,ql

DR1
p1i1

(γ1)DR1
j1q1

(γ)DR2
p2i2

(γ2)DR2
j2q2

(γ)DR3
p3i3

(γ3)DR3
j3q3

(γ) (5.34)

×QR1
p1q1
⊗QR2

p2q2
⊗QR3

p3q3
.

To compute the trace, pair this with QR1
i1j1
⊗QR2

i2j2
⊗QR3

i3j3
using the orthonormality property

δ(QR
ij;Q

S
kl) = δRSδikδjl and sum over Rl, il, jl yielding∑
Rl`2n

∑
γa

∑
γ

∑
pl,ql,il,jl

DR1
p1i1

(γ1)DR1
j1q1

(γ)DR2
p2i2

(γ2)DR2
j2q2

(γ)DR3
p3i3

(γ3)DR3
j3q3

(γ)

× δi1p1δj1q1δi2p2δj2q2δi3p3δj3q3

=
∑
Rl`2n

∑
γa

∑
γ

∑
il,jl

DR1
i1i1

(γ1)DR1
j1j1

(γ)DR2
i2i2

(γ2)DR2
j2j2

(γ)DR3
i3i3

(γ3)DR3
j3j3

(γ)

= (2n)!
∑
Rl`2n

∑
γa

C(R1, R2, R3)χR1(γ1)χR2(γ2)χR3(γ3) . (5.35)

Hence we find (4.40) using Burnside’s lemma, and we have Z3(n) = dimK3(2n).
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Chapter 6

Correlators

Let us now analyze Gaussian correlators, starting with d = 3 we then extend the result
to any d. We consider the normal ordered correlator of two observables Ob(T )Ob′(T ) in
the Gaussian measure dν(T ) (4.4). Normal order means that we only allow contractions
from Ob(T ) to Ob′(T ).

6.1 Rank d = 3 correlator

Before computing the correlators, a few remarks are in order. A 3-tuple of permutations
labels the observables: Ob(T ) = Oσ1,σ2,σ3(T ) and Ob′(T ) = Oτ1,τ2,τ3(T ). Recall that
an observable Oσ1,σ2,σ3(T ) is in fact defined by a contraction of tensor indices. This
contraction pattern, that gives in return the colored edges of the graph associated with
the observable, is not defined by the triple (σ1, σ2, σ3) but instead by the following triple

(σ̃1, σ̃2, σ̃3) = (σ−1
1 ξσ1, σ

−1
2 ξσ2, σ

−1
3 ξσ3), (6.1)

where we recall that ξ is the fixed permutation (12)(34) . . . (2n− 1, 2n). The justification
of this is immediate: each swap in ξ corresponds to a label of the half-lines of the vertex
vci , see Figure 4.1. Consider the lth edge of color c from the lth tensor. The vertex links vci
the image of σc(l) and the pre-image through σc of ξ(σc(l)). We will need the following
convenient notation for tensors: Tai1ai2ai3 , where the index i ∈ J1, 2nK stands for the
label of the tensor which at the end will not matter in the definition of the observable.
Using this, an observable made of the contraction of 2n tensors can be expressed, for
aic ∈ J1, NK, as:

Oσ1,σ2,σ3(T ) =
∑
aic

2n∏
i=1

3∏
c=1

δaicaσ̃c(i)c

2n∏
i=1

Tai1ai2ai3 . (6.2)
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There are many redundant Kroneckers δs in the previous expression. However, the cal-
culus here is discrete and so there are no particular issues. When we will compute the
correlator using Wick’s theorem, it is the triple (σ̃1, σ̃2, σ̃3) that will be concerned.
The Wick contraction between two observables, in the normal order, introduces a permu-
tation µ ∈ S2n. A correlator simply counts cycles of a convolution of permutations. Let
us determine which convolution that is, using twice (6.2) and the free propagator (4.5):

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
1´
dν(T )

ˆ
dν(T )Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )

=
∑
µ

∑
aic,bkl

[ 2n∏
i=1

3∏
c=1

δaicaσ̃c(i)cδ
bic
bτ̃c(i)c

][ 2n∏
i=1

3∏
c=1

δaicbµ(i)c

]
.

(6.3)

Summing over the bkl variables and using a change of variables, bic = aµ−1(i)c, lead us to

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑
µ

∑
aic

[ 2n∏
i=1

3∏
c=1

δaicaσ̃c(i)cδ
aµ−1(i)c
aµ−1τ̃c(i)c

]
=
∑
µ

∑
aic

[ 2n∏
i=1

3∏
c=1

δaicaσ̃c(i)cδ
aic
aµ−1τ̃cµσ̃c(i)c

]
,

(6.4)

where we also used σ̃−1
c = σ̃c. We can already guess that the correlator expresses as a

power of N in a number of cycles of µ−1τ̃cµσ̃c. However, the proof is not obvious because
of the redundancy of the δs introduced in the definition of the observable, see (6.2).
The following statement holds

Lemma 6.1.1. Let ai be an integer, ai ∈ J1, NK, for i ∈ J1, 2nK. Then (at fixed color c
that we will omit in the ensuing notation),

∑
ai

[ 2n∏
i=1

δaiaσ̃(i)
δaiaµ−1τ̃µσ̃(i)

]
= Nc(µ−1τ̃µσ̃) , (6.5)

where c(σ) is the number of cycles of the permutation σ.

Proof. The sole issue here is the redundancy of the Kroneckers. In fact, there is enough
information in the above sum to withdraw the correct number of cycles. Call “vertex δs”
those appearing in the product

∏2n
i=1 δ

ai
aσ̃(i)

, and (Wick) “contraction δs” the remaining ones
coming from the resolution of the Wick contraction. Note that there are redundancies in
each product of δs.
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Consider a fixed index i: to make things easier, we start by the simple case given by
µ−1τ̃µσ̃(i) = i. If µ−1τ̃µσ̃−1(i) = i, then (i) is a 1-cycle of µ−1τ̃µσ̃ and we also have
σ̃(i) = µ−1τ̃µ(i). Thus we have, among the contraction δs, two distinct δs which become
trivial, viz. δaiai and δ

aσ̃(i)
aσ̃(i) . The sums over ai and aσ̃(i) boil down to a single sum precisely

because of the vertex δaiaσ̃(i)
. Hence that cycle is counted once.

Let us inspect the general case. For an arbitrary i, call qi ≥ 1 the smallest integer such
that (µ−1τ̃µσ̃)qi(i) = i, and which defines a qi-cycle of µ−1τ̃µσ̃ (the case qi = 1 has been
dealt with above). In the product (6.5), we collect all contraction δs involved in the cycle
starting at some fixed i

qi∏
l=1

δ
a

(µ−1τ̃µσ̃)l−1(i)
a

(µ−1τ̃µσ̃)l(i)
. (6.6)

Since this product is at arbitrary i, we have a companion and distinct product of con-
traction δs that starts at σ̃(i):

∏qi
l=1 δ

a
(µ−1τ̃µσ̃)l−1(σ̃(i))
a

(µ−1τ̃µσ̃)l(σ̃(i))
. Hence, we combine both products

and multiply by one vertex δ

δaiaσ̃(i)

qi∏
l=1

δ
a

(µ−1τ̃µσ̃)l−1(i)
a

(µ−1τ̃µσ̃)l(i)
δ
a

(µ−1τ̃µσ̃)l−1(σ̃(i))
a

(µ−1τ̃µσ̃)l(σ̃(i))
, (6.7)

which evaluates to N after performing the sum over the corresponding ajs. Again, the
qi-cycle is counted once. It just remains to observe that the cycles, each defined by a
subset of indices aj, define partitions of the entire set of indices ai (once an index is used
in a cycle it cannot reappear in another). Thus, the sum over ai factorizes along cycles,
which completes the proof. 2

Note that there may be alternative ways of defining real tensor observables using pairings
and without introducing the gauge redundancy. In any case, we could work in this setting,
keeping track of the necessary information.
From Lemma 6.1.1 applied to each color c = 1, 2, 3, we finally come to

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑
µ

N
∑3
c=1 c(µ−1τ̃cµσ̃c) . (6.8)

The 1-point correlator can be recovered from the above discussion. First, the 1-point
correlator cannot be normal ordered. Introduce the Wick contraction µ that belongs to
S∗2n the subset defined by the pairings of S2n (a permutation pairing is made only of
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transpositions). Then, we obtain

〈Oσ1,σ2,σ3(T )〉 =
∑
µ∈S∗2n

∑
aic

[ 2n∏
i=1

3∏
c=1

δaicaσ̃c(i)c

][ 2n∏
i=1

3∏
c=1

δaicaµ(i)c

]
. (6.9)

Next, we adapt Lemma 6.1.1 to
∑

ai

[∏2n
i=1 δ

ai
aσ̃(i)

δaiaσ̃µ(i)

]
= Nc(σ̃µ) and get

〈Oσ1,σ2,σ3(T )〉 =
∑
µ∈S∗2n

N
∑3
c=1 c(µσ̃c) . (6.10)

6.2 Representation theoretic basis and orthogonality

We re-express the 2-point function in order to make explicit some of its properties. In-
serting three auxiliary permutations αc ∈ S2n, the above sum (6.8) reads

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉 =
∑
µ, αc

N
∑3
c=1c c(αc)

3∏
c=1

δ(µ−1τ̃cµσ̃cαc) = N6n
∑
µ

3∏
c=1

δ(µ−1τ̃cµσ̃cΩc),

(6.11)
where we introduced the central element Ωc =

∑
αc∈S2n

Nc(αc)−2nαc. The proof rests on
the equality c(α−1

c ) = c(αc), which holds because each cycle has an inverse, a cycle of the
same length. Then, we can rewrite (6.11) as

〈Oσ1,σ2,σ3(T )Oτ1,τ2,τ3(T )〉

= N6n
∑
µ

δ[(µ−1)⊗3(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(Ω1 ⊗ Ω2 ⊗ Ω3)]

= N6n
∑
µ

δ[(τ̃1 ⊗ τ̃2 ⊗ τ̃3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)] , (6.12)

where in the last equation we used the fact the Ωcs are central. We introduce the repre-
sentation theoretic element by pairing a basis element QR1,R2,R3,τ (5.21) and an observable
Oσ1,σ2,σ3 as

OR1,R2,R3,τ =
∑
σl

δ(QR1,R2,R3,τσ−1
1 ⊗ σ−1

2 ⊗ σ−1
3 )Oσ1,σ2,σ3

= κ~R

3∏
i=1

κRi
(2n)!

∑
σl

∑
pl,ql

CR1,R2;R3,τ
q1,q2;q3

[ 3∏
i=1

BRi
pi
DRi
piqi

(σi)
]
Oσ1,σ2,σ3 .

(6.13)
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As a linear combination of observables, we can calculate their correlators:

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉 = N6nκ~Rκ~R′

[ 3∏
i=1

κRi
(2n)!

κR′i
(2n)!

]
×
∑
µ

δ

[∑
σl,σ

′
l

∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R′3,τ

′

q′1,q
′
2;q′3

[ 3∏
i=1

BRi
pi
DRi
piqi

(σi)B
R′i
p′i
D
R′i
p′iq
′
i
(σ′i)

]
×(σ̃′1 ⊗ σ̃′2 ⊗ σ̃′3)µ⊗3(σ̃1 ⊗ σ̃2 ⊗ σ̃3)(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6nκ~Rκ~R′
[ 3∏
i=1

κRi
(2n)!

κR′i
(2n)!

]∑
µ

δ

[ ∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R′3,τ

′

q′1,q
′
2;q′3

×
[ 3⊗
i=1

B
R′i
p′i

∑
σ′i

(σ′i)
−1ξD

R′i
p′iq
′
i
(σ′i)σ

′
i

]
µ⊗3
[ 3⊗
i=1

BRi
pi

∑
σi

(σi)
−1ξDRi

piqi
(σi)σi

]
(µ−1)⊗3

×(Ω1 ⊗ Ω2 ⊗ Ω3)

]
. (6.14)

Next, we introduce the operator Tξ : S2n → S2n that acts on S2n as Tξ(σ) = σ−1ξσ = σ̃

and extends by linearity on C[S2n]. The operator Tξ actually maps any permutation to
a pairing. Its image in C[S2n] is the vector subspace generated by all pairings (more
properties are derived in Appendix A.3). We re-express the above correlator as

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉

= N6nκ~Rκ~R′
∑
µ

δ

[ ∑
pl,ql,p

′
l,q
′
l

CR1,R2;R3,τ
q1,q2;q3

C
R′1,R

′
2;R′3,τ

′

q′1,q
′
2;q′3

×
[ 3⊗
i=1

B
R′i
p′i
TξQ

R′i
p′iq
′
i

]
µ⊗3
[ 3⊗
i=1

BRi
pi
TξQ

Ri
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑
µ

δ

[[
T⊗3
ξ

∑
p′l,q
′
l

C
R′1,R

′
2;R′3,τ

′

q′1,q
′
2;q′3

3⊗
i=1

B
R′i
p′i
Q
R′i
p′iq
′
i

]
µ⊗3

×
[
T⊗3
ξ

∑
pl,ql

CR1,R2;R3,τ
q1,q2;q3

3⊗
i=1

BRi
pi
QRi
piqi

]
(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]

= N6n
∑
µ

δ

[
(T⊗3

ξ QR′1,R
′
2,R
′
3,τ
′
)µ⊗3(T⊗3

ξ QR1,R2,R3,τ )(µ−1)⊗3(Ω1 ⊗ Ω2 ⊗ Ω3)

]
= N6n(2n)! δ

[
(T⊗3

ξ QR′1,R
′
2,R
′
3,τ
′
)(T⊗3

ξ QR1,R2,R3,τ )(Ω1 ⊗ Ω2 ⊗ Ω3)
]
,

(6.15)
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where we used the right diagonal invariance of the basis QR′1,R
′
2,R
′
3,τ
′ to achieve the last

stage of the calculation. Hence, this correlator computed with the Gaussian measure
of O(N) tensor models in the normal order, regarded as an inner product on the space
of observables, corresponds to the group theoretic inner product of the algebra K3(2n)

calculated on a product of the transformed basis T⊗3
ξ QR1,R2,R3,τ with an insertion of the

factor Ω1 ⊗ Ω2 ⊗ Ω3. The action T⊗3
ξ on QR1,R2,R3,τ reflects the fact that it is the triple

(σ̃1, σ̃2, σ̃3) which plays a major role for computing the cycles associated with Feynman
amplitudes in this theory (meanwhile the triple (σ1, σ2, σ3) was associated with the class
counting of the double coset space and its resulting algebra). In U(N) models [29], there
is a correspondence between Gaussian 2-point correlators in normal order and the inner
product on the algebra of observables but without the presence of the operator T⊗3

ξ . The
presence of T⊗3

ξ determines therefore a feature proper to O(N) tensor models.
We can further evaluate the above inner product as in Appendix A.4 and find:

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉 = δ~R′ ~Rδτ ′τ

∑
Si,τi

3∏
i=1

DimN(Si)

( ∑
bi,ci,pi

DSi
bici

(ξ)CSi,Si;Ri,τi
bi,ci;pi

BRi
pi

)2

,

(6.16)
which expresses the orthogonality of the representation theoretic basis {OR1,R2,R3,τ} (cor-
responding to normal ordered Gaussian correlators) of K3(2n). Note also that the pairing
between basis elements is a representation translation of the Gaussian integration.

Rank-d 2-point correlator – We obtain the 2-point correlator at rank d in a straight-
forward manner from the above derivation. We generalize (6.2) and (6.3) by extending
the product over c up to d ≥ 3 and considering a tensor Tai1ai2...aid . The calculations are
direct: we get (6.8) and (6.10) by changing the sum over c running over the colored cycles
up to d. Meanwhile, the orthogonality of the 2-point function is a property specific to
the rank 3 and cannot be reproduced easily at any rank.
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Chapter 7

On Sp(2N) tensor invariants

We provide a few remarks on the counting of real Sp(2N) tensor invariants. Carrozza and
Pozsgay recently addressed symplectic complex tensor models in the context of tensor-
like SYK models [26]. The authors focused on the complex group U(N) ∩ Sp(2N,C)

(its quantum mechanical tensor model admits a large N expansion and shares similar
properties with the SYK model) and, at the combinatorial level, on the improvement of
the numerical computations of the number of its singlets in rank 3. We could ask, in the
same vein as discussed above using symmetric group formulae, how to enumerate real
symplectic invariants in the pure tensor model setting, i.e. with no spacetime attached
to the tensor. We stress that, unlike in [26], we are interested in real and Bosonic fields
and address in the following the symplectic group itself Sp(2N,R) = Sp(2N) and its
(symplectic) invariants in any rank. We show below that they follow an enumeration
principle with the same diagrammatics than that of the O(N) invariants albeit with
some changes occuring at the level of the coset equivalence relation. Interestingly in
this Sp(2N) setting, the “virtual” vertices vci , in Figure 4.1, find an interpretation: they
correspond precisely to symplectic matrix J insertions in the Sp(2N) invariants.
Let us recall the usual notation and introduce the real 2N × 2N symplectic matrix J

which writes in blocks

J =

(
0 1N

−1N 0

)
, J2 = −12N , (7.1)

where 1N , for all N , is the identity matrix of MN(R). A matrix K ∈ Sp(2N) obeys
KTJK = J .
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A rank-d real tensor T , with components Tp1...pd , pc ∈ J1, 2NK, transforms under the
fundamental representation of

⊗d
c=1 Sp(2Nc) for fixed Nc, if each group Sp(2Nc) acts on

the index pc such that the transformed tensor satisfies:

TKq1...qd =
∑

p1,...,pd

K(1)
q1p1

. . . K(d)
q1p1

Tp1...pd , (7.2)

where K(c) ∈ Sp(2Nc), c ∈ J1, dK.
Observables in Sp(2N) tensor models are the contractions of an even number of tensors
T . They are invariant under

⊗d
c=1 Sp(2Nc) transformations and we call them Sp(2N)

invariants.
In understood notation, we define a new trace on two rank-d tensors as

Tr(T Jd T ) =
∑
pi,qi

J (1)
p1q1

. . . J (d)
pdqd

Tp1...pdTq1...qd . (7.3)

Thus, the tensor indices that are contracted couple with J . This is the generalization of
the symplectic form over matrices which is defined as ωJ(M,W ) = tr(MTJW ), and that
is invariant under symplectomorphisms.
We check that Tr(T Jd T ) is invariant under symplectic transformations:

Tr(TK Jd TK) =
∑
ri,si

∑
pi,qi

(
Kp1r1Kq1s1J

(1)
p1q1

)
. . .
(
KpdrdKqdsdJ

(d)
pdqd

)
Tr1...rdTs1...sd

= Tr(TJdT ) .

(7.4)

Now, we extend the trace (7.3) to arbitrary number of tensors. Still the contraction
obtained is an Sp(2N) invariant. We can easily observe that the Sp(2N) invariants can
be viewed once again in terms of d-regular colored graphs with a decoration on each edge.
The decoration seals the symplectic matrix J on each pair of contracted tensor indices.
Therefore, J can be represented by a new vertex on each edge which plays precisely the
same role as a black vertex vci in Figure 4.1.

The counting of Sp(2N) invariants is more subtle than that of O(N) invariants. Indeed,
for simplicity, let us consider in rank 3 (generalizing the following argument at any rank d
is straightforward), 2n tensors and count the possible triples (σ1, σ2, σ3) ∈ S2n×S2n×S2n
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subjected to the following invariance:

(σ1, σ2, σ3) ∼ (γ1σ1γ, γ2σ2γ, γ3σ3γ), (7.5)

where, on the right, we have the ordinary diagonal action of Diag(S2n) on the triple.
Meanwhile, on the left, the γis belong to an identical subgroup Gi = G′ but that is not
any more Sn[S2]. Switching the half-edges of the vertices vci produces a sign. This hints
to the fact that we should switch to the group algebra C[S2n]×C[S2n]×C[S2n] to perform
the coset. At this point, note that nothing excludes that the number of Sp(2N) invariants
matches the number of orthogonal invariants. Such interesting questions require much
more work and is left for future investigations.
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Part III

Blobbed topological recursion for
correlation functions in tensor models
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Chapter 8

Definition of the tensor and matrix
models

8.1 Bubbles and partition function

Let us begin this chapter by refreshing the reader’s memory about (un)colored tensor
models and expanding upon it.
Let d > 2 be an integer. For c ∈ J1, dK, we call Ec ' CN the space of color c. Recall
from Chapter 2 that a tensor T of rank d is an object in

⊗d
c=1Ec and its elements are

denoted Ta1...ad , with ac ∈ J1, NK for all c ∈ J1, dK. Also, in (un)colored tensor models, one
is interested in polynomials in the tensor entries which are invariant under the natural
action of (a representation of) U(N)d on T and T . This group acts as a different copy of
U(N) on each color index,

T →
⊗
c∈J1,dK

U (c) T. (8.1)

The only way to realize this invariance is to identify the index of a T and a T which are
in the same position, i.e. have the same color, and sum over the values of that index.
This is represented graphically as follows

N∑
ac=1

T···ac···T ···ac··· = c
T T

a1

ad

b1

bd
. (8.2)

A bubble is a connected, bipartite graph whose edges are labeled by a color in J1, dK, and
such that each vertex has degree d and all colors are incident to each of them. If B is a
bubble, the above rule associates to it a polynomial which is invariant under U(N)d and
denoted B(T, T ). These polynomials generate the ring of U(N)d-invariant polynomials.
If B has 2n vertices and one labels the white vertices from 1 to n and similarly for black
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vertices, then B can be described as a d-tuple (τ (1), . . . , τ (d)) of permutations on J1, nK.
Set τ (c)(v) = v′ if there is an edge of color c connecting the white vertex v to the black
vertex v′. The associated polynomial is

B(T, T ) =
∑

(i
(c)
1 ,...,i

(c)
n )

(j
(c)
1 ,...,j

(c)
n )

δτ
(1)···τ (d)

(i
(c)
1 ,...,i

(c)
n ),(j

(c)
1 ,...,j

(c)
n )

n∏
v=1

T
i
(1)
v ···i

(d)
v
T
j
(1)
v ···j

(d)
v
, (8.3)

with by definition

δτ
(1)···τ (d)

(i
(c)
1 ,...,i

(c)
n ),(j

(c)
1 ,...,j

(c)
n )

=
n∏
v=1

d∏
c=1

δ
i
(c)

v
, j

(c)

τ(c)(v)

. (8.4)

Invariance under relabeling of the white and black vertices implies invariance of B(T, T )

under left product of τ (1), . . . , τ (d) by σL and right product by σR, two permutations on
J1, nK. If C ⊂ J1, dK and Ĉ is its complement, then denote

EC =
⊗
c∈C

Ec and HC(T, T̄ ) =

C

Ĉ

C

T

T

∈ EC ⊗ E∗C , (8.5)

the matrix obtained by contracting all the colors from Ĉ between T and T . We will write(
HC(T, T )

)
(i(c)),(j(c))

the matrix elements. There is a single quadratic invariant (up to a
factor), given by the contraction of T with T along all colors, namely our dipole (2.10),

T · T =
N∑

a1,...,ad=1

Ta1···adT a1···ad = H∅(T, T ). (8.6)

For quartic invariants, we choose a color subset C ⊂ J1, dK and connect the indices of T
with colors in C with a T and those with colors in Ĉ with another T ,

QC(T, T ) = trEC

(
HC(T, T )2

)
=

C

C

Ĉ Ĉ
, (8.7)

where the notation trEC indicates that the trace is taken in the spaces with colors in C.
It is invariant under C → Ĉ. Note that for C = {c} for some c ∈ J1, dK we get back
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the quartic melonic model of Chapter 3. In this part, we will furthermore consider cyclic
interactions, labeled by a color set C and an integer n ≥ 2

BC,n(T, T ) = trEC

(
HC(T, T )n

)
=

C

C

C
Ĉ

Ĉ . (8.8)

It is again symmetric under the exchange of C and Ĉ. We say that the cyclic interaction
is melonic if |C| = 1, meaning that in HC(T, T ), T and T are contracted along all colors
except one. Let I be a finite set and {Bi}i∈I a finite set of bubbles, {ti} their coupling
constants and {si} some scaling coefficients. Denote B = {(Bi, ti, si)}i∈I . Then the
partition function is

ZTensor(N,B) =

ˆ
(CN )⊗d

dTdT exp−Nd−1T · T + VN,B(T, T ),

with VN,B(T, T ) =
∑
i∈I

N sitiBi(T, T ),
(8.9)

and the free energy is given by F (N,B) = lnZTensor(N,B). Here the measure dTdT is
proportional to the product of the Lebesgue measures over the tensor entries, normalized
so that

ZTensor(N, ∅) =

ˆ
(CN )⊗d

dTdT exp−Nd−1T · T = 1. (8.10)

Moreover, we only consider (8.9) to make sense by expanding eVN,B(T,T ) as a series in T, T
and integrating each term with the Gaussian weight e−Nd−1T ·T , i.e. we write

eVN,B(T,T ) =
∑

{ni≥0}i∈I

∏
i∈I

1

ni!

(
N sitiBi(T, T )

)ni , (8.11)

and perform the integral at fixed {ni} using Wick’s theorem. More precisely, we expand
Bi(T, T )ni as a polynomial in the tensor entries∏
i∈I

Bi(T, T )ni =
∑

{a(c)
q ,b

(c)
q }

δ({ni})
(
{a(c)

q , b
(c)
q }
)
T
a

(1)
1 ···a

(d)
1
T
b
(1)
1 ···b

(d)
1
. . . T

a
(1)
p ···a

(d)
p
T
b
(1)
p ···b

(d)
p
, (8.12)

by taking a product of (8.3). The tensor δ({ni}) is thus a product of Kroneckers. Here p is
the total degree, i.e. if Bi is of degree pi in T, T , then p =

∑
i∈I nipi. Then Wick’s theorem
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is applied, and leads to an expansion onto pairings, which are here simply permutations
σ ∈ Sp on the set of p elements,

ˆ
dTdT e−N

d−1T ·TT
a

(1)
1 ...a

(d)
1
T
b
(1)
1 ...b

(d)
1
. . . T

a
(1)
p ...a

(d)
p
T
b
(1)
p ...b

(d)
p

= N−(d−1)p
∑
σ∈Sp

δ(σ)
(
{a(c)

q , b
(c)
q }
)
,

(8.13)

with

δ(σ)
(
{a(c)

q , b
(c)
q }
)

=

p∏
q=1

d∏
c=1

δ
a

(c)
q , b

(c)
σ(q)

. (8.14)

A Feynman graph denoted G = ({ni}, σ) has amplitude

AN,B(G) = N−(d−1)p
∏
i∈I

(N siti)
ni

ni!

∑
{a(c)
q ,b

(c)
q }

δ({ni})
(
{a(c)

q , b
(c)
q }
)
δ(σ)
(
{a(c)

q , b
(c)
q }
)
. (8.15)

Since the tensors δ({ni}) and δ(σ) are products of Kroneckers, and the sums range from 1 to
N , those sums give NF (G) for some function F (G) which can be given a simple graphical
interpretation. Draw ni copies of Bi(T, T ) and use σ to connect each white vertex (labeled
with q) to a black vertex (labeled σ(q)) with an edge. It is customary to give the color
0 to those edges. A bicolored cycle of colors {0, c} is a closed path alternating an edge
of color 0 and an edge of color c. Denote Fc(G) the number of bicolored cycles of colors
{0, c}. Then, by tracking the sequence of index identification along the Kroneckers in
the above calculation, it comes that F (G) is the total number of such bicolored cycles,
F (G) =

∑d
c=1 Fc(G). Therefore

AN,B(G) = NF (G)−(d−1)p+
∑
i∈I sini

∏
i∈I

tnii
ni!
, (8.16)

and the free energy reads

F (N,B) =
∑

connected G

AN,B(G). (8.17)

The parameters si are necessary so that the model has a large N limit which is non-trivial.
A non-trivial large N limit is such that F (N,B) appropriately rescaled1 is a non-trivial2

1 The usual rescaling is N−d.
2 In fact, one usually requires a condition which is a bit stronger: that an infinite number of graphs

from the Feynman expansion contributes to limN→∞ F (N,B)/Nd. It could be that only a finite number
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function of the coupling constants. A priori, those parameters depend on the whole set
{Bi}. However, all models solved so far are such that si is determined by Bi solely. For
instance, if Bi = BC,n then si = (|C| − 1)n + d − |C|. If P (T, T ) is a polynomial in the
tensor entries, its expectation is

〈P (T, T )〉B =
1

ZTensor(N,B)

ˆ
dTdT P (T, T ) exp−Nd−1T · T + VN,B(T, T ). (8.18)

8.2 Contracted bubbles

We introduce another representation of U(N)d, this time on matrices. Let (ΦC)C⊂J1,dK be
a set of Hermitian, or complex, matrices labeled by all color subsets (except the empty
set), such that ΦC ∈ EC ⊗ E∗C . The action of U(N)d is

ΦC →
⊗
c∈C

U (c) ΦC

⊗
c∈C

U (c)†. (8.19)

Bubbles are graphs which can be associated to polynomials which generate the ring of
U(N)d-invariant polynomials in T, T . In this representation, the same role is played by
contracted bubbles.

Definition 8.2.1. A contracted bubble P = (B, π) is obtain from a bubble B by

• orienting the edges of B from white to black vertices,

• choosing a pairing π of the vertices of B into pairs {v, π(v)} where v is white and
π(v) is black,

• identifying the vertices v and π(v) of each pair and removing the loops.

Equivalently, i.e. by a trivial bijection, P is a connected graph with oriented edges, each
carrying a color c ∈ J1, dK, and such that the sub-graph Pc, for c in J1, dK, made of the
edges of color c only, is a disjoint union of oriented cycles. As a remark, we recall that
P can further be transformed into a map with colored edges, as shown in [70]. This will
not be necessary here. There is a bijection between the vertices of P = (B, π) and the
white vertices of B. For this reason we will identify them and use the same notations.
From the definition, we see that every vertex v of P carries a color set Cv ⊂ J1, dK, with

of graphs contribute at large N so that the free energy is a polynomial in the coupling constants. In
practice, these two conditions have always been equivalent and we will not discuss these subtleties further.
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exactly one incoming and one outgoing edge of every color c ∈ Cv. To obtain an invariant
polynomial P ({ΦC}) from the contracted bubble P , one associates to every vertex vC of
color set C a matrix ΦC , to every incoming incident edge of color c a right index j(c)

v and
to every outgoing incident edge a left index i(c)v , e.g.

(
Φ{c1,c2,c3,c4}

)
(i(c1)i(c2)i(c3)i(c4)),(j(c1)j(c2)j(c3)j(c4))

=

j(c1)

j(c2)

j(c3)

j(c4)

i(c2)

i(c3)

i(c1)

i(c4)

. (8.20)

A left index of color c of a ΦC at vertex vC is identified with the right index of the same
color of a ΦC′ at vertex vC′ if there is an edge of color c from vC to vC′ .

Proposition 8.2.2. The polynomial associated to the contracted bubble P = (B, π) is
related to the bubble polynomial of B as follows

P ({HC(T, T )}) = BP (T, T ). (8.21)

Proof. We simply rewrite B(T, T ) in terms of the matrices HC(T, T ) given the choice of
pairing π. Indeed, each white vertex carries a T and each black vertex carries a T . If v
and π(v) are connected by edges with colors in Ĉ, then the sums over the indices of this
T and T with colors in Ĉ form the matrix HC(T, T ). Therefore

B(T, T ) =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

n∏
v=1

[
HCv(T, T )

(i
(c)
v ),(j

(c)
π(v)

)

∏
c∈Cv

δ
i
(c)

v
,j

(c)

τ(c)(v)

]

=
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

n∏
v=1

HCv(T, T )
(i

(c)
v ),(j

(c)
v )
,

(8.22)

with

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

=
n∏
v=1

∏
c∈Cv

δ
i
(c)

v
,j

(c)

π−1◦τ(c)(v)

. (8.23)
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Using the bijection between the white vertices of B and the vertices of P = (B, π), we
recognize the dependence on HC as the function P ({HC}),

P ({ΦC}) =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

n∏
v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
, (8.24)

which concludes the proof. 2

8.3 Multi-matrix model and expectation values

Let {Pi}i∈I be a finite set of contracted bubbles and denote P = {(Pi, ti, si)}i∈I and

VN,P({ΦC}) =
∑
i∈I

N siti Pi({ΦC}). (8.25)

We then define the partition function, for pairs of matrices {XC ,ΦC}C⊂J1,dK,

ZMM(N,P) =

ˆ ∏
C⊂J1,dK

dXCdΦC exp−
∑

C⊂J1,dK

trEC
(
XCΦC

)
+ VN,P({ΦC})

− tr⊗cEc ln
(
1−N−(d−1)

∑
C

X̃C

)
,

(8.26)

where X̃C = 1E
Ĉ
⊗ XC is the lift of XC to

⊗d
c=1Ec by adding the identity to the

colors c 6∈ C. Here MM stands for “multi-matrix”. In order to proceed to the Feynman
expansion, the above logarithm has to be expanded as

−tr⊗cEc ln
(
1−N−(d−1)

∑
C

X̃C

)
=
∑
n≥1

N−(d−1)n

n
tr⊗cEc

(∑
C

X̃C

)n
=

∑
words w = C1 · · ·Cn

N−(d−1)n

n
tr⊗cEcX̃C1 · · · X̃Cn .

(8.27)

There are two possibilities for the integral over XC ,ΦC , for each C ⊂ J1, dK, and the
precise form of the Feynman expansion depends on those choices:

• XC = Φ†C are complex matrices, adjoint to each other;
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1

− t
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1
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Φ

Y Y

Figure 8.1 – On the left hand side are the Feynman rules for the complex
model, with one propagator and two types of bivalent vertices. On the right
hand side are the Feynman rules for the Hermitian model, with two types

of propagators and one type of bivalent vertices.

• ΦC is Hermitian and XC = −iYC where YC is Hermitian. In this case, one needs
the coupling constant of the quartic bubble QC to be negative. We write it −tC/2
with tC > 0.

The equivalence between those two choices is not a given a priori because they require
different Feynman expansions. In the first case, one uses the quadratic term trECXCΦC

to define the propagator. In the second case however, one cannot use this term since it
reads −itrECYCΦC in terms of Hermitian matrices, and this is not positive-definite. This
is the reason why we need to add the condition tC > 0. The following lemma proves the
equivalence we need.

Lemma 8.3.1. For positive coupling constants t, τ , and a potential U which is a series
in two variables, the following equality holds formally
ˆ
MN (C)

dZdZ† e−trZZ†− t
2

trZ2− τ
2

trZ†2+U(Z,Z†) =

ˆ
H2
N

dY dΦ eitrY Φ− t
2

trΦ2− τ
2

trY 2+U(Φ,−iY ).

(8.28)
Here MN(C) is the set of complex N ×N matrices and HN the set of N ×N Hermitian
matrices.

Proof. The Feynman rules of the left hand side and right hand side, for propagators
and bivalent vertices, are in Figure 8.1. The Feynman expansion of the left hand side is
obtained from the expansion

∑
l,n,m

(−t/2)n(−τ/2)m

l!n!m!

ˆ
MN (C)

dZdZ† e−trZZ†
(

trZ2
)n(

trZ†2
)m
U(Z,Z†)l, (8.29)

and performing Wick contractions between Zs and Z†s. The Feynman rules are thus
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• solid half-edges corresponding to the matrix Z and dotted half-edges corresponding
to Z†;

• the propagator, coming from the quadratic term −trZZ†, gives rise to edges which
have a solid half and a dotted half, with weight 1;

• special vertices of degree 2 with weight − t
2
with two incident solid half-edges;

• special vertices of degree 2 with weight − τ
2
with two incident dotted half-edges;

• other vertices coming from the series expansion of U(Z,Z†).

We call the set of graphs from this expansion Gcomplex. The Feynman expansion of the
right hand side is obtained from the expansion

∑
l,p

ip

l!p!

ˆ
H2
N

dY dΦ e−
t
2

trΦ2− τ
2

trY 2
(

tr ΦY
)p
U(Φ,−iY )l, (8.30)

and performing independent Wick contractions between pairs of Φs and between pairs of
Y s.

• Solid half-edges corresponding to the matrix Φ and dotted half-edges corresponding
to X;

• propagators, coming from the quadratic terms− t
2
trΦ2− τ

2
trY 2, give rise to two types

of edges: either two solid half-edges, with weight 1/t, or two dotted half-edges, with
weight 1/τ ;

• special vertices of degree 2 with weight i with an incident solid half-edge and an
incident dotted half-edge;

• other vertices coming from the series expansion of U(Φ,−iY ).

We call the set of graphs from this expansion GHermitian. We show that summing the
chains of bivalent vertices in both Gcomplex and GHermitian leads to the same new set of
rules, for a set of graphs we denote Gsummed. These graphs are defined as follows.

• They have solid and dotted half-edges, and three types of edges: fully solid edges
with weight τ/(tτ + 1), fully dotted edges with weight −t/(tτ + 1) and edges made
of a solid and a dotted half-edge with weight 1/(tτ + 1).

• Other vertices coming from the series expansion of U .
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In the expansion of U , the solid half-edges are associated to the first variable (Z or Φ)
and the dotted half-edges to the second variable (Z† or −iY ). The sum of bivalent chains
starting and ending on solid half-edges in Gcomplex gives

a
b

a′

b′ =
∑
n≥0

( )n
=

τ

tτ + 1
δaa′δbb′ . (8.31)

Here the indices a, b, a′, b′ are the matrix indices which are identified along Wick contrac-
tions. Notice that each vertex contributes to either 2× (−t/2) or 2× τ/2 where the extra
factors of 2 come from the two possibilities to add the bivalent vertices, since they are
symmetric under the exchange of their incident half-edges. The sum of bivalent chains
starting and ending on dotted half-edges is obtained by exchanging τ with −t,

a
b

a′

b′ =
∑
n≥0

( )n
=
−t

tτ + 1
δaa′δbb′ . (8.32)

The last sum of bivalent chains is between a solid half-edge and a dotted half-edge

a
b

a′

b′ =
∑
n≥0

( )n
=

1

tτ + 1
δaa′δbb′ . (8.33)

These are indeed the rules for Gsummed. Performing the same operation in GHermitian, one
gets

a
b

a′

b′ =
∑
n≥0

( )n
=

1

t

∑
n≥0

(
i2

tτ

)n
=

τ

tτ + 1
δaa′δbb′ (8.34)

a
b

a′

b′ =
∑
n≥0

( )n
=

1

τ

∑
n≥0

(
i2

tτ

)n
=

t

tτ + 1
δaa′δbb′ (8.35)

a
b

a′

b′ =
∑
n≥0

( )n
=

i

tτ

∑
n≥0

(
i2

tτ

)n
=

i

tτ + 1
δaa′δbb′ .

(8.36)

These are not exactly the expected rules, but the difference is compensated by the other
vertices. Indeed, in GHermitian, the other vertices come from U(Φ,−iY ), i.e. there is a
factor −i on each dotted half-edge incident to such a vertex. Those factors can be re-
absorbed so that the weight of the vertices really comes from U(Φ, Y ), by multiplying
each dotted half-edge in (8.34), (8.35) and (8.36) by −i. This turns those rules into those
of Gsummed. 2
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Let O({XC ,ΦC}) a U(N)d-invariant function (for the simultaneous action (8.19) on XCs
and ΦCs). Its expectation is

〈O({XC ,ΦC})〉P =
1

ZMM(N,P)

ˆ ∏
C⊂J1,dK

dXCdΦC O({XC ,ΦC})

× exp−
∑

C⊂J1,dK

trEC
(
XCΦC

)
+ VN,P({ΦC})− tr⊗cEc ln

(
1−N−(d−1)

∑
C

X̃C

)
. (8.37)

Lemma 8.3.2. Let f be a series which takes as arguments N × N matrices labeled by
the subsets of J1, dK. Then

〈f({HC(T, T )})〉VN,B=0 = 〈f({ΦC})〉VN,P=0. (8.38)

It was proven in [70], both using a bijection between their Feynman expansions, and
using formal integrals in the case of complex variables. Here we briefly reproduce the
calculation using formal integrals, in order to later relate the expectations of observables
on the tensor and matrix sides using the same technique.

Proof. Let us first focus on the case where the expectation on the right hand side of
(8.38) is evaluated using complex variables only, Φ†C = XC . Then (8.38) comes from

f(h1, . . . , hm) =

ˆ
Cm

m∏
l=1

dxldφl e
∑m
l=1(−xlφl+xlhl) f(φ1, . . . , φm), (8.39)

where xl = φl for each l. It holds via Wick’s theorem, order by order in its series
expansion. Making use of (8.39) with every matrix elements of HC ,ΦC as variables, one
gets

f({HC(T, T )}) =

ˆ ∏
C

dΦCdXC e
∑
C trEC (−XCΦC+XCHC(T,T ))f({ΦC}). (8.40)

It is now possible to directly integrate the above equation over T, T with a Gaussian
distribution, leading to

ˆ
dTdT f({HC(T, T )}) e−Nd−1T ·T

=

ˆ ∏
C

dΦCdXC f({ΦC}) e−
∑
C trECXCΦC−tr⊗

c Ec
ln
(
1−N−(d−1)

∑
C X̃C

)
.

(8.41)
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This equality holds up to irrelevant constants. Moreover, the measure on the tensor side
has been normalized. On the matrix side, the normalization is trivial when VN,P = 0. This
proves (8.38). In the case one wishes to use the Hermitian ΦC , YC with XC = −iYC , it is
necessary to have, instead of vanishing potentials, VN,P({ΦC}) = −Nd−1tCtrECΦ2

C/2 (and
in turn to have on the tensor side a quartic interaction VN,B(T, T ) = −Nd−1tCQC(T, T )/2).
Then Lemma 8.3.1 can be applied to turn the integrals over the complex matrix elements
to real matrix elements. The coefficient τ needed in Lemma 8.3.1 comes from the expan-
sion of the logarithm in the definition (8.37) of the expectation. 2

Theorem 8.3.3. Let B = {(Bi, ti, si)}i∈I as in Section 8.1 and P = {(Pi, ti, si)}i∈I such
that Pi = (Bi, πi). Then,

ZTensor(N,B) = ZMM(N,P). (8.42)

Let f be a series which takes as arguments N×N matrices labeled by the subsets of J1, dK.
Then

〈f({HC(T, T )})〉B = 〈f({ΦC})〉P . (8.43)

Again, (8.42) was proved in [70], both using a bijection, and using formal integrals.

Proof. The equality between the partition functions simply derives from Lemma 8.3.2
for f({ΦC}) = eVN,P ({ΦC}) and the fact that, from Proposition 8.2.2, VN,P({HC(T, T )}) =

VN,B(T, T ). This takes care of the denominators in (8.43), and the latter is then equivalent
to

〈f({HC(T, T )})eVN,P ({HC(T,T )})〉VN,B=0 = 〈f({ΦC})eVN,P ({ΦC})〉VN,P=0, (8.44)

which follows from Lemma 8.3.2. 2

Theorem 8.3.4. With the same notations as previously,

〈P ({XC})〉P =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

〈
e−VN,B(T,T )

n∏
v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P
∣∣
ΦC=HC(T,T )

〉
B
.

(8.45)

This theorem generalizes Proposition 1 of [64] in two ways.

• First, [64] is focused on the quartic melonic model, VN,B =
∑

c
−tc
2
Nd−1trHc(T, T )2.

In this case, VN,P({ΦC}) =
∑

c
−tc
2
Nd−1tr Φ2

{c} is quadratic. The theorem thus
explains the appearance of Hermite polynomials in [64].
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• Second, Theorem 8.3.4 presents the expectation of an arbitrary contracted bubble,
while [64] only considered 〈trEcXn

{c}〉.

The reciprocal theorem is Theorem 9.2.1. It is presented later because it uses the tech-
nique of partial integration of Section 9.1.

Proof. To prove (8.45), we apply Lemma 8.3.2 to the expectation on the right hand side,

〈
e−VN,B(T,T )

n∏
v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P
∣∣
ΦC=HC(T,T )

〉
B

=
〈
e−VN,P ({ΦC})

n∏
v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P
〉
P
,

(8.46)

which can then be rewritten as〈
e−VN,P ({ΦC})

n∏
v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P
〉
P

=
1

ZMM(N,P)

ˆ ∏
C

dXCdΦC

n∏
v=1

−∂
∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

eVN,P ({ΦC})

× exp−
∑
C

trEC
(
XCΦC

)
− tr⊗cEc ln

(
1−N−(d−1)

∑
C

X̃C

)
=

1

ZMM(N,P)

ˆ ∏
C

dXCdΦC

n∏
v=1

∂

∂
(
ΦCv

)
(j

(c)
v ),(i

(c)
v )

e−
∑
C trEC (XCΦC)

× expVN,P({ΦC})− tr⊗cEc ln
(
1−N−(d−1)

∑
C

X̃C

)
=

1

ZMM(N,P)

ˆ ∏
C

dXCdΦC

n∏
v=1

(
XCv

)
(i

(c)
v ),(j

(c)
v )

× exp−
∑
C

trEC
(
XCΦC

)
+ VN,P({ΦC})− tr⊗cEc ln

(
1−N−(d−1)

∑
C

X̃C

)
=
〈 n∏
v=1

(
XCv

)
(i

(c)
v ),(j

(c)
v )

〉
.

(8.47)

In the second equality, we have used integration by parts. Summing over all indices with
the tensor δτ (1)···τ (d),π, one recognizes the expansion (8.24) of P ({XC}). 2
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Chapter 9

Effective matrix model

Denote Xc = X{c} for c ∈ J1, dK to make the notation lighter. We will show that correla-
tors of the form 〈

trVc1
1

xc1 − δXc1

· · · trVcn
1

xcn − δXcn

〉
c
, (9.1)

where δXc is some fluctuation of Xc around its saddle point value, satisfy the blobbed
topological recursion. To this aim, we will integrate over all matrices except forX1, . . . , Xd

to get an effective matrix model for them. This effective matrix model has multi-trace
interactions. It is convenient to write them using partitions. Given a set of integers
λ1 ≥ · · · ≥ λl > 0, we say that λ = (λ1, . . . , λl) is a partition of length `(λ) = l and size
|λ| =

∑`(λ)
i=1 λi. We also allow the special case λ = (0) with `(λ) = 1. If M is a matrix on

V , we denote the multi-trace (also known as power sums)

Iλ(M) =

`(λ)∏
i=1

trVM
λi . (9.2)

Furthermore, we denote λ = (λ(1), . . . , λ(d)) a vector of partitions, one for every color,
and

Iλ({Mc}) =
d∏
c=1

Iλ(c)(Mc). (9.3)

It contains `(λ(c)) traces of color c, for a total of `(λ) =
∑d

c=1 `(λ
(c)) traces. It is of total

degree |λ| =
∑d

c=1 |λ(c)| in the matrices.

Proposition 9.0.1. A series F in the matrices X1, . . . , Xd which is invariant under
U(N)d has an expansion

F ({Xc}) =
∑
λ

F (λ)Iλ({Xc}). (9.4)
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Proof. F has an expansion onto contracted bubbles. The latter are easily seen to be
disjoint union of unicycles for all colors, and their corresponding polynomials are Iλ. 2

9.1 Partial integrals

We will assume

• the free energy F (N,B) has a 1/N expansion

F (N,B) = Nd′
∑
i≥0

N−δiFi(B), (9.5)

where (δi)i≥0 is an increasing, positive sequence and d′ > 2. As far as we know, all
tensor models for which the scaling of the free energy is known satisfy d′ = d;

• I is a finite set and si is rational for all i ∈ I. This implies rationality of the δis via
Equation (8.16);

• each Fi(B) exists in a neighborhood of the origin in the space of coupling constants;

• denoting −tc/2 the coupling constant of the quartic bubble Q{c} for c ∈ J1, dK,
we will need tc > 0 in order to choose Φ{c} Hermitian and Xc = −iYc with Yc

Hermitian.

The results of this section are a bit simplified by rescaling the matricesXc in the definition
(8.26) by Nd−1, so that up to irrelevant constants,

ZMM(N,P) =

ˆ ∏
C⊂J1,dK

dXCdΦC exp−
∑

C⊂J1,dK

Nd−1trEC
(
XCΦC

)
+ VN,P({ΦC})

− tr⊗cEc ln
(
1−

∑
C

X̃C

)
.

(9.6)

Denote

L({XC}) = −tr⊗cEc ln
(
1−

∑
C

X̃C

)
− 1

2
Nd−1

d∑
c=1

trEcX
2
c , (9.7)

which just removes some quadratic terms from the expansion of the logarithm (recall
Xc = X{c}).
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Theorem 9.1.1. Define the partial free energy

expFN,P({Xc}) =

ˆ ∏
C⊂J1,dK
|C|≥2

dXCdΦC

d∏
c=1

dΦ{c}e
−
∑
C N

d−1tr(XCΦC)+VN,P ({ΦC})+L({XC}),

(9.8)
where Xc = −iYc, Yc Hermitian for c ∈ J1, dK. In the integral Φ{c} are Hermitian, while
the pairs {ΦC , XC} can be chosen complex, Φ†C = XC, or with XC = −iYC with ΦC , YC

Hermitian (provided tC > 0) for all |C| > 1. Then

FN,P({Xc}) =
∑
λ

Nd′−`(λ) tN,P(λ) Iλ({Xc}), (9.9)

where tN,P(λ) has a 1/N expansion which starts at order O(1)

tN,P(λ) =
∑
i≥0

N−δi(λ)t
(i)
P (λ), (9.10)

and (δi(λ))i≥0 are positive, increasing sequences of rationals. Furthermore

ZTensor(N,B) =

ˆ d∏
c=1

dXc exp

(
1

2
Nd−1

d∑
c=1

trEcX
2
c + FN,P({Xc})

)
, (9.11)

with the same relation between B and P as in Theorem 8.3.4.

Proof. The proof first establishes (9.11), by showing that the Feynman expansion of
ZTensor(N,B) can be obtained from that of FN,P({Xc}). Then, for each Feynman graph
of the expansion of FN,P({Xc}), we build a special Feynman graph for ZTensor(N,B) in
a way such that the N -dependence of this construction is controlled. Thus, the 1/N

expansion of the ZTensor(N,B) implies (9.9), (9.10).

Feynman rules – Theorem 8.3.4 allows for studying the matrix model instead of the
tensor model. Then proving (9.11) amounts to show that one can write the Feynman rules
so as to integrate first over all matrices ΦC , XC , except X1, . . . , Xd, and then integrate the
latter. This will be clear once we have described how we use the Feynman expansion on
ZMM(N,P). We choose for the Feynman expansion of ZMM(N,P) to use Φ{c} Hermitian
and Xc = −iYc with Yc Hermitian for c ∈ J1, dK. As for the matrices ΦC , XC for |C| > 1,
we can use the complex matrices or the Hermitian matrices either way. Let us choose
the latter, since it will let us have a unified description of the Feynman rules, and it is
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the setup for Theorem 9.2.1. This however requires tC > 0. We thus write integrals over
Hermitian matrices,

ZMM(N,P) =

ˆ ∏
C

dΦCdYC e
∑
C trEC

(
iNd−1ΦCYC−

tC
2

Φ2
C−

Nd−|C|
2

Y 2
C

)
+VN,P ({ΦC})+K({YC}),

(9.12)
with

K({YC}) = −tr⊗d
c=1 Ec

ln
(
1+ i

∑
C

ỸC

)
+

1

2

∑
C

Nd−|C|trECY
2
C

=
∑

words w ∈W

(−i)|w|

|w|
tr⊗d

c=1 Ec
ỸC1 . . . ỸC|w| ,

(9.13)

which is the series expansion of the logarithm minus its single-trace, quadratic terms
(since we have isolated them to be used for the propagators). The set W is a set of words

W = {w = C1 · · ·C|w|| ∀q ∈ J1, |w|K, Cq ⊂ J1, dK, |w| 6= 2 or w = C1C2 with C1 6= C2}.
(9.14)

We have also separated from VN,P its quadratic terms but we retain the notation. To
perform the Feynman expansion, we first expand

e
∑
C trEC iN

d−1ΦCYC+VN,P ({ΦC})+K({YC})

=
∑

{nC},{ni},{nw}

i
∑
C nC (−i)

∑
w nw|w|

(
N siti

)ni∏
C nC !

∏
i ni!

∏
w nw!|w|

×
∏
C

(
trECΦCYC

)nC∏
i

(
Pi({ΦC})

)ni∏
w

(
tr⊗

c Ec
ỸC1 . . . ỸC|w|

)nw
.

(9.15)

Here the indices C span the subsets of J1, dK, and i ∈ I, and w ∈ W . Wick’s theorem
can then be applied and, at fixed {nC , ni, nw}, expresses the Gaussian moments as sums
over pairings {σC , ρC}, the first identifying pairs of ΦCs and the second identifying pairs
of YCs, ˆ

e−
tC
2

trECΦ2
CΦCa1b1 . . .ΦCa2nb2n =

1

tnC

∑
σC

∏
{i,j}∈σC

δai,ajδbi,bj , (9.16)

where a pairing σC is a way to partition J1, 2nK into disjoint pairs {i, j}, and
ˆ
e−

Nd−|C|
2

trECY
2
CYCa1b1 . . . YCa2nb2n = N−(d−|C|)n

∑
ρC

∏
{i,j}∈ρC

δai,ajδbi,bj . (9.17)
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We call a Feynman graph G = ({nC , σC , ρC}C⊂J1,dK, {ni}i∈I , {nw}w∈W ). The Feynman
rules are as follows.

• Solid half-edges of color type C correspond to the matrix ΦC , and dotted half-edges
of color type C correspond to YC .

• Propagators come from the quadratic terms −1
2

∑
C(tCtrECΦ2

C+Nd−|C|trECY
2
C) and

give rise to two types of edges: fully solid edges of color type C with weight 1/tC

and fully dotted edges of color type C with weight N |C|−d.

• A special bivalent vertex of weight iNd−1 with an incident solid half-edge and an
incident dotted half-edge.

• Vertices coming from the expansion of K have dotted incident half-edges, and ver-
tices coming from the expansion of VN,P have solid incident half-edges.

The sums over all the indices, identified along interactions and Wick contractions will
be described below. Denote G the set of connected Feynman graphs for this Feynman
expansion. It is clear with those rules that one can first perform the integrals over
the matrices ΦC , YC for |C| > 1 and Φ{1}, . . . ,Φ{d} by summing over the corresponding
pairings, and then integrate over Y1, . . . , Yd by summing over ρ1, . . . , ρd. This proves
(9.11). In fact, one can integrate the matrices ΦC , YC in any particular order. This
means that partial integrals can be performed as one wishes. However, only in our case
will we be able to describe the effective action FN,P({Yc}). We denote G({Yc}) the set of
connected Feynman graphs for FN,P({Yc}). They are constructed using the same set of
Feynman rules except that fully dotted edges of color c ∈ J1, dK are not allowed anymore.
This means that all dotted half-edges of color c ∈ J1, dK are left hanging, viz.

H

c1

c2

. (9.18)

For instance, in the expansion of K({YC}), one finds terms with w = c1 · · · cn ∈ J1, dKn.
They contribute to Hw ∈ G({Yc}) as graphs with a single vertex and n hanging dotted
half-edges of colors c1, . . . , cn (respecting the cyclic order). Clearly there is a bijection
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between G and collections of graphs from G({Yc}) connected by Wick pairings ρ1, . . . , ρd.
Graphically, one obtains from G ∈ G the collections of graphs from G({Yc}) by cutting
all dotted edges into half-edges. The other way around, performing the Wick pairings
ρ1, . . . , ρd means connecting the corresponding dotted half-edges. From the above Feyn-
man rules we have found

FN,P({Yc}) =
∑

G∈G({Yc})

AG(N,P ; {Yc}), (9.19)

where AG(N,P ; {Yc}) is the amplitude of G. It is a polynomial in the matrices Ycs (since
it is a finite object). From the invariance under unitary transformations and Proposition
9.0.1, we find that

FN,P({Yc}) =
∑
λ

FN,P(λ)Iλ({Yc}). (9.20)

To establish the 1/N expansion of FN,P(λ), we need to look into the structure of the
Feynman graphs and their N -dependence. The reader already familiar with faces as the
origin of the N -dependence can skip this discussion.

Faces of Feynman graphs – As usual in matrix models, a factor N comes from
each face, but we need to explain what faces are in this multi-matrix, multi-size context.
In ordinary single-trace matrix models, it corresponds to a sequence of identifications
of matrix indices via propagators and interactions on a Wick contraction. In terms of
Feynman graphs, there is a cyclic order of the half-edges incident to each vertex. This
means that Feynman graphs are in fact combinatorial maps. A face is then a closed path
which follows an edge to a vertex, then uses the cyclic order around that vertex to move
to another half-edge (e.g. counter-clockwise), then follows that edge, etc. Consider an
index of color c of a ΦC in VN,P , or of a XC in K({XC}), for c ∈ C. In a Feynman
graph G ∈ G, the propagator identifies it with an index of another interaction which has
the same color, then because the interaction are unitary invariant, it is further identified
with an index of the same color of another matrix, which is then identified to another
index of the same color by a propagator, and so on. One ends up with a free sum from
1 to N for each such cycle, hence a power of N . We thus see that there could be a
notion of faces, but it is color by color, and it requires to track the index identifications
in VN,P({ΦC}). One of the key results of [70] is that the interaction VN,P({ΦC}) can be
given the structure of a map with edges labeled by color type C ⊂ J1, dK. Consider G ∈ G
and denote Gc ⊂ G for c ∈ J1, dK the sub-graph whose edges have color set C 3 c. It is
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a disjoint union of ordinary combinatorial maps and the faces of color c are defined as
the faces of those maps. The weight of a graph then goes like NF (G) (and other factors
of N).

Feynman graphs for FN,P({Yc}) – Let H ∈ G({Yc}). It has faces of color c ∈ J1, dK as
defined above, but some faces go around some hanging dotted half-edges. We call them
external faces, while the others are internal faces. Every internal face contributes with a
factor N . However, since dotted half-edges of color c correspond to the matrix Yc which
is not integrated over, the Feynman amplitude receives a matrix Yc every time one goes
around a face and meets a hanging dotted half-edge. The matrix indices of Yc are then
identified along the face. An external face thus receives trEcY

lf
c where lf is the number

of such bivalent interactions around the face. This shows that for every H ∈ G({Yc}),
there exists a unique λ such that

AH(N,P ; {Yc}) = ÃHN
η(G)Iλ({Yc}), (9.21)

where ÃH is independent of N and of the matrices Ycs. For H ∈ G({Yc}), we denote ni
the number of interactions Pi, and bC the number of bivalent interactions tr(XCΦC) for
C ⊂ J1, dK, and Fint(G) the number of internal faces. It comes

η(H) = Fint(H) +
∑
i∈I

nisi +
∑
C

(d− 1)bC . (9.22)

We can thus write G({Yc}) =
⋃
λ Gλ({Yc}), where the amplitude of H ∈ Gλ({Yc}) is

proportional to Iλ({Yc}), and

FN,P(λ) =
∑

H∈Gλ({Yc})

ÃHN
η(H). (9.23)

Denote
dλ = sup

H∈Gλ({Yc})
η(H). (9.24)

If dλ < ∞, then dλ is actually a maximum. Indeed, we see in Equation (8.16) that the
exponent of N is a finite sum of integers - except for the si, but there are a finite number
of them and they are rationals and the same for all graphs. Therefore one can write the
exponents of N with the same denominator for all graphs, while the numerators consist
in a sequence of integers. If the latter has a finite supremum, it is obviously a maximum.
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1/N expansion – A graph G ∈ G is made out of sub-graphs Hλ1 , . . . , HλR ∈ G({Yc})
connected by dotted edges of colors in J1, dK. We denote E ′ the number of those edges and
further denote F ′c the number of faces of color c which go along them, and F ′ =

∑d
c=1 F

′
c.

The sub-graphs Hλ1 , . . . , HλR ∈ G({Xc}) come with powers of N , η(Hλ1), . . . , η(HλR)

and amplitudes ÃHλ1
, . . . , ÃHλR . Altogether, the amplitude of G is

AN,P(G) = NF ′−(d−1)E′+
∑R
r=1 η(Hλr )

R∏
r=1

ÃHλr . (9.25)

Consider H ∈ Gλ({Yc}). We build a graph G(H) ∈ G as follows. Let Hc ∈ G({Yc}) be
the graph which consists in a single vertex and a single dotted half-edge of color c. Then
we connect each hanging dotted half-edge of color c of H to Hc,

G(H) = H

c1

c2

, (9.26)

H corresponds to the interaction Iλ and therefore has `(λ) external faces, and |λ| hanging
dotted half-edges. In G, each external face of H becomes an internal face, adding a factor
of N to the amplitude. Each univalent vertex Hc is also a connected component for the
d − 1 sub-graphs Gc′ , c′ 6= c. The total number F ′ of faces which go along the newly
added, fully dotted edges of color c ∈ J1, dK is thus `(λ) + (d− 1)|λ|. The number E ′ of
those new edges is equal to |λ|. Formula (9.25) thus gives

AN,P(G(H)) = N `(λ)+η(H) A(G(H)). (9.27)

By assumption, this is bounded by Nd′ for all H. Taking the supremum over all H ∈
Gλ({Yc}), one finds

dλ ≤ d′ − `(λ), (9.28)

further implying that dλ is a maximum. This shows that FN(λ) ≤ Nd′−`(λ) and it is
obvious that the sub-leading orders are rational powers of N . 2
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While it is not necessary for our purposes, the leading order of F (N,P) can be described
as follows.

Proposition 9.1.2. The graphs contributing to the leading order of F (N,P) are trees
over sub-graphs Hλ1 , . . . , HλR, with Hλr ∈ Gλr({Yc}), satisfying η(Hλr) = d′ − `(λ).

Proof. We start with the following lemma: an edge e in G ∈ G is not a bridge, then G is
not leading order. Indeed, if e is of color c and not a bridge, it can be cut into edges of
color c as follows without disconnecting G,

G =

e

v1 v2
c → G′ = v1 v2

c

e1
v′1
v′2

e′2c

. (9.29)

The exponent of N for G′ is calculated from the Feynman rules as follows

AN,P(H) = NF+
∑
i∈I nisi+

∑
C(d−1)bC−(d−|C|)ECA(H), (9.30)

for any H ∈ G, where A(H) is independent of N . We now look at the variations of the
quantities appearing in this formula. From G to G′, the number of edges changes by 1,
the number of contracted bubbles bC of each type is unchanged. The number Fc of faces
of color c can increase or decrease by one. Moreover, {v′1} and {v′2} are new connected
components of the sub-graphs Gc′ for c′ 6= c, implying that the number of faces Fc′ varies
by exactly two. Therefore the total variation of the exponent of N is

∆
(
F +

∑
i∈I

nisi − (d− 1)(E − b)
)

= ±1 + 2(d− 1)− (d− 1) ≥ d− 2 > 0, (9.31)

which proves the lemma. As a consequence, a leading order graph is a tree over sub-
graphs Hλ1 , . . . , HλR ∈ G({Xc}). To maximize the exponent of N , we need to maximize
each η(Hλr). As seen in the above proof, Hλr therefore contributes to the leading order
if and only if η(Hλr) = d′ − `(λ). It is then easy to check that every graph obtained this
way behaves as Nd′ with respect to N and is thus a leading order graph. 2

9.2 Bubble observables

In Theorem 8.3.4, we wrote the expectations of the multi-matrix model in terms of
expectations of the tensor model. Here we provide the reverse theorem.
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Theorem 9.2.1. Define the effective action

eWN,P ({XC}) =

ˆ ∏
C⊂J1,dK

dΦC e−
∑
C trEC (XCΦC)+VN,P ({ΦC}), (9.32)

with the same techniques as in the proof of Theorem 9.1.1 to define FN,P({Xc}). Then
for any contracted bubble P = (B, π),

〈B(T, T )〉B =
∑

(i
(c)
v )c∈Cv

(j
(c)
v )c∈Cv

δτ
(1)···τ (d),π

(i
(c)
v )c∈Cv ,(j

(c)
v )c∈Cv

〈
e−WN,P ({XC})

∏
v

−∂
∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

eWN,P ({XC})
〉
P
.

(9.33)

It is the reciprocal of Theorem 8.3.4. It also generalizes [64] in the same two ways: to
arbitrary bubbles B(T, T ) instead of melonic cycles trH{c}(T, T )n, and to an arbitrary
model instead of the quartic melonic one. There, since VN,P({ΦC}) =

∑d
c=1−

tc
2

trEcΦ
2
{c},

the integral defining WN,P can be performed to find WN,P({Xc}) = 1
2tc

trEcX
2
c . This is

how we recover the Hermite polynomials found in [64]. Notice that the equivalent of our
theorems 8.3.4 and 9.2.1 in [64] both feature Hermite polynomials. Here we see that in
general it is not the same object in both theorems, since one has derivatives with respect
to VN,P({ΦC}), while the other has derivatives with respect to WN,P({XC}).

Proof. We start with the following equalities

〈B(T, T )〉B = 〈P ({HC(T, T )})〉B = 〈P ({ΦC})〉P , (9.34)

the first one being Proposition 8.2.2 and the second Theorem 8.3.3. Then we expand P
as a polynomial (8.24) and use the matrices XCs as sources,

〈
n∏
v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
〉P =

1

ZMM(N,P)

ˆ ∏
C⊂J1,dK

dXCdΦC eVN,P ({ΦC})−tr⊗cEc ln
(
1−N−(d−1)

∑
C X̃C

)

×
n∏
v=1

−∂
∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

e−
∑
C trEC (XCΦC),

(9.35)
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then integrate by parts

〈
n∏
v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
〉P =

1

ZMM(N,P)

ˆ ∏
C⊂J1,dK

dXCdΦC e−
∑
C trEC (XCΦC)+VN,P ({ΦC})

×
n∏
v=1

∂

∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

e
−tr⊗cEc ln

(
1−N−(d−1)

∑
C X̃C

)
.

(9.36)
At this stage, one performs the integrals over all ΦCs,

〈
n∏
v=1

(
ΦCv

)
(i

(c)
v ),(j

(c)
v )
〉P =

1

ZMM(N,P)

ˆ ∏
C⊂J1,dK

dXC eWN,P ({XC})

×
n∏
v=1

∂

∂
(
XCv

)
(j

(c)
v ),(i

(c)
v )

e
−tr⊗cEc ln

(
1−N−(d−1)

∑
C X̃C

)
,

(9.37)
and integrate by parts again to find the Theorem. 2

9.3 Comparison with ordinary multi-trace matrix mod-

els

The model (9.11) with action (9.9) has a natural interpretation in terms of stuffed maps
as introduced in [67], with additional colors on their boundary components, and a non-
topological expansion. Recall that a map can be seen as a gluing of polygons along their
boundaries. Here a polygon is simply a 2-cell homeomorphic to a disc, with k boundary
edges. We then call k the perimeter of the boundary. In stuffed maps, polygons are
replaced with elementary 2-cells of topology (h, λ), where λ = (λ1, . . . , λ`(λ)) is a partition.
Such a 2-cell is homeomorphic to a surface of genus h with `(λ) boundary components of
perimeters λ1, . . . , λ`(λ). A stuffed map is a gluing of elementary 2-cells along the edges of
their boundary components. In matrix models, a polygon of perimeter k corresponds to
an interaction trXk in Feynman graphs. In matrix models with multi-trace interactions,
whose partition functions are of the form

ˆ
dX exp

∑
λ,h

N2−`(λ)−2ht(h)(λ)Iλ(X), (9.38)
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the interaction N2−`(λ)−2hIλ(X) is naturally interpreted as an elementary 2-cell of topol-
ogy (h, λ). Each trace in Iλ(X) =

∏`(λ)
i=1 trXλi gives rise to a boundary component, and

the exponent λi gives its perimeter. When interpreting the Feynman expansion of a ma-
trix model with multi-trace interactions in terms of stuffed maps, notice that the only
way to associate the genus h to an elementary 2-cell is that the exponent of N in front
of Iλ(X) is N2−`(λ)−2h and the coupling constant t(h)(λ) is independent of N . In fact, a
matrix model with an interaction like∑

λ

N2−`(λ)tN(λ)Iλ(X), (9.39)

has a well-defined large N limit when tN(λ) itself admits a 1/N expansion starting at
order O(1), i.e. tN(λ) =

∑
i≥0 t

(i)(λ)N−δi(λ) where (δi(λ))i≥0 is an increasing sequence
of non-negative numbers. However, for the expansions of the free energy and of the
correlation functions to be called topological, they must be series in 1/N2. It is the case
when the coupling constants tN(λ) are themselves series in 1/N2, i.e. δi(λ) ∈ 2N but not
in general. The model (9.46) fits into this framework, with the following amendments.

• It has d matrices X1, . . . , Xd and interaction in the form Iλ({Xc}). In terms of
stuffed maps, it simply means that the boundary components of elementary 2-cells
are now colored and a partition λ(c) is needed to describe the perimeters of the
boundary components of each color c ∈ J1, dK. An elementary 2-cell with boundary
profile λ moreover comes with the weight Nd′−`(λ)tN,P(λ).

• Obvious from the above discussion, the 1/N expansion is not topological, since
d′ 6= 2, and the sequence (δi(λ))i≥0 in (9.10) may not consist of even integers.

In the following section we first focus on the consequence of d′ > 2 for the large N limit.

9.4 Large N limit and fluctuations

Theorem 9.1.1 provides the form we are looking for to be able to apply the blobbed
topological recursion, as in [66]. In this section, we thus follow the first step of [66] which
is to subtract the leading contribution at large N .
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9.4.1 Subtracting the leading order

Changing variables from Xc = UcDcU
†
c to unitary matrices (U1, . . . , Ud) and eigenvalues,

Dc = diag(x
(c)
1 , . . . , x

(c)
N ) for all c ∈ J1, dK, in the matrix formulation of Theorem 9.1.1,

the angular parts are trivially integrated out. The change of variables also produces a
squared Vandermonde determinant for all c ∈ J1, dK. This gives

ZMM(N,P) =

ˆ d∏
c=1

N∏
ic=1

dx
(c)
ic

exp
(1

2
Nd−1

d∑
c=1

trEcD
2
c+FN,P({Dc})+2

d∑
c=1

∑
ic<jc

ln|x(c)
ic
−x(c)

jc
|
)
.

(9.40)
If one looks for saddle-points such that the eigenvalues do not scale with N , then one
sees that

• the quadratic terms scale like Nd,

• all terms from FN,P({Xc}) scale like Nd′ ,

• all the terms from Vandermonde determinants scale like N2.

This means that we can look for a solution without repulsion between eigenvalues, mean-
ing the eigenvalues x(c)

i can simply fall onto their preferred value for all c. We moreover
set d′ = d so the two first types of contributions have the same scale. Consider

Xc = αc1Ec +
1

N
d−2

2

Mc. (9.41)

The αcs are set on a saddle point of the action for {Xc}. Moreover, the scaling 1/N
d−2

2

of the fluctuations is chosen so that the leading terms of the action in the Xcs scale like
N2, i.e. the same as the Vandermonde contributions.

9.4.2 Matrix model for the fluctuations

Before plugging (9.41) into (9.11), let us see its effect on a multi-trace interaction for a
single color (which we do not write explicitly),

Iλ

(
α1+

1

N
d−2

2

M
)

=

`(λ)∏
i=1

tr
(
α1+

1

N
d−2

2

M
)λi

=

λ1,...,λ`(λ)∑
µ1,...,µ`(λ)=0

`(λ)∏
i=1

(
λi
µi

)
αλi−µi N−

d−2
2
µitrMµi .

(9.42)
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It is easily rewritten as a sum over partitions µ ⊂ λ. We denote the skew-partition
λ − µ = (λ1 − µ1, . . . , λ`(λ) − µ`(λ)) (we can complete µ with zeros if needed for µi≥`(µ))
and |λ− µ| =

∑
i≥1 λi − µi. Also use the notation

(
λ
µ

)
=
∏`(µ)

i=1

(
λi
µi

)
. Then

Iλ

(
α1+

1

N
d−2

2

M
)

=
∑
µ⊂λ

(
λ

µ

)
α|λ−µ|N `(λ)−`(µ)− d−2

2
|µ| Iµ(M). (9.43)

We thus get the same expansion for Iλ({αc1Ec + Mc/N
d−2

2 }) by taking a product over
the colors. Overall,

FN,P

(
{αc1Ec +

1

N
d−2

2

Mc}
)

=
∑
µ

N2−`(µ)− d−2
2

(|µ|−2) sN,P(µ) Iµ({Mc}), (9.44)

where the sum runs over all d-tuples of partitions µ = (µ(1), . . . , µ(d)) and `(µ) =∑d
c=1 `(µ

(c)) and |µ| =
∑d

c=1 |µ(c)|. The coefficients are

sN,P(µ) =
∑
λ⊃µ

tN,P(λ)
d∏
c=1

(
λ(c)

µ(c)

)
α|λ

(c)−µ(c)|
c . (9.45)

They all have 1/N expansions starting at order O(1), simply obtained by using the 1/N

expansion of the coefficients tN,P(λ) =
∑

i≥0N
−δi(λ)t

(i)
P (λ). As a result, the matrix model

from Theorem 9.1.1 becomes

ZMM(N,P) = e
1
2
N2
∑
c α

2
c+FN,P ({αc1Ec}) ZFluct(N,P),

with ZFluct(N,P) =

ˆ d∏
c=1

dMc exp
(1

2
N
∑
c

trEcM
2
c + SN,P({Mc})

)
,

(9.46)

where SN,P({Mc}) is

SN,P({Mc}) =
∑
µ,|µ|≥2

N2−`(µ)− d−2
2

(|µ|−2)sN,P(µ) Iµ({Mc}), (9.47)

with
sN,P(µ) =

∑
i≥0

N−ηi(µ)s
(i)
P (µ), (9.48)

and (ηi(µ))i≥0 is an increasing sequence of non-negative rationals. The reason there is no
linear term in (9.46) (and no |µ| = 1 term above) is that the set {αc} is a saddle point.



140

Chapter 10

Blobbed topological recursion for
colored, multi-trace matrix models

Going back to the discussion of Section 9.3, but replacing the original model ZMM(N,P)

with the one for the fluctuations, ZFluct(N,P) and action (9.47), we see that the latter
differs from the multi-trace models of [67] by

• the fact that it has d matrices,

• the fact that the 1/N expansions of the coupling constants in (9.47) are not topo-
logical.

To remedy the first difference, consider the following model, which is a generalization of
[67] to colored matrices. For a vector ` = (`1, . . . , `d) of non-negative integers, denote
|`| =

∑d
c=1 `c. Also denote

E` =
d⊗
c=1

E⊗`cc , (10.1)

and M (i)
c = 1⊗ · · · ⊗Mc⊗ · · · ⊗ 1 the matrix acting on E⊗`cc by Mc on the ith factor and

the identity everywhere else. Consider the model with partition function

ZTop(N,S) =

ˆ d∏
c=1

dMc exp
∑
`

N2−|`|trE`SN,`(M
(1)
1 , . . . ,M

(`1)
1 ; . . . ;M

(1)
d , . . . ,M

(`d)
d ).

(10.2)
When the action has the following expansion

SN,`(M
(1)
1 , . . . ,M

(`1)
1 ; . . . ;M

(1)
d , . . . ,M

(`d)
d )

=
∑
h≥0

N−2hS
(h)
` (M

(1)
1 , . . . ,M

(`1)
1 ; . . . ;M

(1)
d , . . . ,M

(`d)
d ), (10.3)
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it is said to be topological (because it leads to an expansion in 1/N2 for the free energy,
like the genus expansion of single-trace matrix models). When it has an expansion onto
products of traces of the matrices Mcs, i.e.

trE`SN,`(M
(1)
1 , . . . ,M

(`1)
1 ; . . . ;M

(1)
d , . . . ,M

(`d)
d ) =

∑
λ

`(λ(c))=`c

SN(λ)Iλ({Mc}), (10.4)

and an invertible quadratic form, then the Feynman expansion corresponds to an expan-
sion onto stuffed maps (non-necessarily topological), as described in Section 9.3. Finally,
a topological expansion onto stuffed maps is obtained from

trE`SN,`(M
(1)
1 , . . . ,M

(`1)
1 ; . . . ;M

(1)
d , . . . ,M

(`d)
d ) =

∑
h≥0

`(λ(c))=`c

N−2hS(h)(λ)Iλ({Mc}). (10.5)

We will present the loop equations of this model. However, we will calculate the disc and
cylinder function only in the case where a special property of (9.47) is satisfied, namely

S(0)(λ) = O(N
d−2

2 ), for |λ| ≥ 3, (10.6)

which in fact will imply that the large N limit is that of a Gaussian model. The second
key difference with [67] is that (9.47) is in general non-topological. Since the leading
order of the coupling constants is nevertheless N2−`(λ), as in (10.2). Therefore, we can
define new coupling constants as follows

N−2hS
(h)
N,P(λ) =

∑
i≥0

2h=b d−2
2

(|λ|−2)+ηi(λ)c

N−
d−2

2
(|λ|−2)−ηi(λ) s

(i)
P (λ), (10.7)

i.e. we absorb s
(i)
P (λ) and its N -dependent prefactor into the coefficients S(h)

N,P(λ) by
rounding down its order to the closest 2h. Here we will follow the same route as in
[66, 67] and do everything as if S(h)

N,P(λ) were independent of N , except for the explicit
evaluation of the disc function and the cylinder function using (10.6). In principle, one
also has to eventually re-expand the coefficients S(h)

N,P(λ) as in (10.7).
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10.1 Correlation functions

If P ({Mc}) is an observable, its expectation is

〈P ({Mc})〉 =
1

ZTop(N,S)

ˆ d∏
c=1

dMc P ({Mc})

× exp
∑
`

N2−|`|trE`SN,`(M
(1)
1 , . . . ,M

(`1)
1 ; . . . ;M

(1)
d , . . . ,M

(`d)
d ).

(10.8)
The natural set of observables are the expectations of products of traces of the matrices
{Mc}, i.e. expectations of Iλ({Mc}). We recall here for the reader’s sake the definitions
of the correlation functions introduced in section 3.2

W n(x1, c1; . . . ;xn, cn) =
〈 n∏
i=1

trEci
1

xi −Mci

〉
=

∑
k1,...,kn≥0

W
(k1,c1;...;kn,cn)

n

n∏
i=1

x−ki−1
i ,

(10.9)
i.e.

W
(k1,c1;...;kn,cn)

n =
[ n∏
i=1

x−ki−1
]
W n(x1, c1; . . . ;xn, cn) =

〈 n∏
i=1

trEciM
ki
ci

〉
, (10.10)

and their connected counterparts

Wn(x1, c1; . . . ;xn, cn) =
〈 n∏
i=1

trVci
1

xi −Mci

〉
c

=
∑

k1,...,kn≥0

W (k1,c1;...;kn,cn)
n

n∏
i=1

x−ki−1
i ,

(10.11)
i.e.

W (k1,c1;...;kn,cn)
n =

[ n∏
i=1

x−ki−1
]
Wn(x1, c1; . . . ;xn, cn) =

〈 n∏
i=1

trEciM
ki
ci

〉
c
. (10.12)

The variable xi is said to be of color ci when it is the generating parameter for trEciM
ki
ci

expanded around infinity. We denote Cc the copy of C of color c, so that xi ∈ Uci for
some open subset of Cci . We will also need the functions

W
(k1,c′1;...;kl,c

′
l)

n (x1, c1; . . . ;xn−l, cn−l) =
〈 l∏
i=1

trEc′
i

Mki
c′i

n−l∏
j=1

trEcj
1

xj −Mcj

〉
c
, (10.13)
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which are obtained from Wn(x1, c1; . . . ;xn−l, cn−l;x
′
1, c
′
1; . . . ;x′l, c

′
l) by extracting some se-

ries coefficients

W
(k1,c′1;...;kl,c

′
l)

n (x1, c1; . . . ;xn−l, cn−l) =
[ l∏
i=1

x′
−ki−1
i

]
Wn(x1, c1; . . . ;xn−l, cn−l;x

′
1, c
′
1; . . . ;x′l, c

′
l).

(10.14)
As a special case of such functions, when λ = (λ(1), . . . , λ(d)) is a d-tuple of partitions, and
c ∈ J1, dK and j ∈ J1, `(λ(c))K, we denote λ(c,j) = (λ′(1), . . . , λ′(d)) the d-tuple of partitions
with

λ′
(c′)

= λ(c′) for c′ 6= c and λ′
(c)

=
(
λ

(c)
1 , . . . , λ

(c)
j−1, λ

(c)
j+1, . . . , λ

(c)

`(λ(c))

)
, (10.15)

i.e. the jth row of λ(c) is removed. Then we denote

W
(λ(c,j))
n (x1, c1; . . . ;xp, cp) = W

(λc
′
i ,c
′)

(c′,i)6=(c,j)

(c′,i)∈J1,dK×J1,`(λ(c′))K
n (x1, c1; . . . ;xp, cp), (10.16)

with n = p+`(λ)−1. It will also appear natural to introduce global correlation functions
which are defined on (an open subset of)

En =
( d⋃
c=1

Cc \ Γc

)n
, (10.17)

so that each xi can be evaluated on any color. These correlation functions are

Wn(x1, . . . , xn) =
∑

c1,...,cn∈J1,dK

Wn(x1, c1; . . . ;xn, cn)
n∏
i=1

1(xi, ci), (10.18)

where 1(x, c) is 1 if x ∈ Cc and 0 otherwise. In terms of components

Wn(x1, . . . , xn) =
∑

k1,...,kn≥0
c1,...,cn∈J1,dK

W (k1,c1;...;kn,cn)
n

n∏
i=1

x−ki−1
i 1(xi, ci). (10.19)

The correlation functions Wn(x1, c1; . . . ;xn, cn) are said to be the local expressions of
Wn(x1, . . . , xn), since each variables is assigned a fixed color.
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10.2 Loop equations

In this section we use the form (10.4) of the action.

10.2.1 1-point equation

The Schwinger-Dyson equations are obtained from

1

ZTop(N,S)

ˆ d∏
c=1

dMc

N∑
a,b=1

∂

∂(Mc)ab

((
Mn

c

)
ab
e
∑
λN

2−`(λ)SN (λ)Iλ({Mc})
)

= 0, (10.20)

by making the action of the derivative above explicit on each term of the integrand, and
summing over n ≥ 0 with x−n−1. One gets

W 2(x, c;x, c)+
∑
λ

N2−`(λ)SN(λ)

`(λ(c))∑
j=1

λ
(c)
j

〈
trEc

M
λ

(c)
j −1

c

x−Mc

∏
i 6=j

trEcM
λ

(c)
i

c

∏
c′ 6=c

Iλ(c′)(Mc′)
〉

= 0.

(10.21)
We now work towards rewriting (10.21) in terms of connected correlation functions. De-
note R = {R1, . . . , R`(R)} a set-partition of J1, nK, then

W n(x1, c1; . . . ;xn, cn) =
∑

R`J1,nK

∏
α

W|Rα|({xRα , cRα}), (10.22)

with the short-hand notation {xRα , cRα} = {xr, cr}r∈Rα . This first gives

W 2(x, c;x, c) = W1(x, c)2 +W2(x, c;x, c). (10.23)

The contribution of the interaction is split in the usual way using

M
λ

(c)
j −1

c

x−Mc

=
xλ

(c)
j −1

x−Mc

+

λ
(c)
j −2∑
q=0

xλ
(c)
j −2−qM q

c , (10.24)
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which leads to

〈
trEc

M
λ

(c)
j −1

c

x−Mc

∏
i 6=j

trEcM
λ

(c)
i

c

∏
c′ 6=c

Iλ(c′)(Mc′)
〉

= xλ
(c)
j −1W

(λ(c,j))

`(λ) (x, c)−
λ

(c)
j −2∑
q=0

xλ
(c)
j −2−qW

(λ(c,j);q,c)

`(λ) .

(10.25)

Then rewrite each of the two terms using connected correlations. To do so, denote

L(λ) = {(c, i)|(c, i) ∈ J1, dK× J1, `(λ(c))K}, (10.26)

and P(L(λ)) the set of partitions of L(λ), i.e. R = {R1, . . . , R`(R)} ∈ P(L(λ)) if the Rαs
are non-empty, disjoint, and

⊔
αRα = L(λ). Moreover, for a fixed pair (c, j) ∈ L(λ), we

denote R(c, j) the part which contains (c, j), and

R(c, j) = {(c, j)} ∪R′(c, j), (10.27)

where R′(c, j) can be empty. Then,

W
(λ(c,j))

`(λ) (x, c) =
∑

R∈P(L(λ))

W
(λR′(c,j),cR′(c,j))

|R(c,j)| (x, c)
∏
α

Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα| . (10.28)

Here we use the short-hand notation (λRα , cRα) = (λ
(c′)
i , c′)(c′,i)∈Rα . Furthermore

W
(λ(c,j);q,c)

`(λ) =
∑

R∈P(L(λ))

W
(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|

∏
α

Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα| . (10.29)

The loop equation (10.21) then reads

W1(x, c)2 +W2(x, c;x, c) +
∑
λ

R∈P(L(λ))

`(λ(c))∑
j=1

N2−`(λ)SN(λ)
∏
α

Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|

× λ(c)
j

(
xλ

(c)
j −1W

(λR′(c,j),cR′(c,j))

|R(c,j)| (x, c)−
λ

(c)
j −2∑
q=0

xλ
(c)
j −2−qW

(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|

)
= 0, (10.30)
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which can also be written as a global equation

W1(x)2 +W2(x, x) +
∑
λ

R∈P(L(λ))

d∑
c=1

1(x, c)

`(λ(c))∑
j=1

N2−`(λ)SN(λ)
∏
α

Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|

× λ(c)
j

(
xλ

(c)
j −1W

(λR′(c,j),cR′(c,j))

|R(c,j)| (x, c)−
λ

(c)
j −2∑
q=0

xλ
(c)
j −2−qW

(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|

)
= 0. (10.31)

10.2.2 n-point equations

The single-trace terms of the potential are

d∑
c=1

∑
λ≥1

N
(
s(0)(λ, c) + o(1)

)
trEcM

λ
c . (10.32)

Then the loop insertion operator with respect to color c ∈ J1, dK is

δx =
d∑
c=1

∑
λ≥0

1(x, c)x−λ−1 ∂

∂s(0)(λ, c)
. (10.33)

With the notations of paragraph 3.3.2, repeated actions of the loop insertion operator on
(10.31) gives

∑
(I1,I2)∈I2(n)

W|I1|+1(x1, xI1)W|I2|+1(x1, xI2) +Wn+1(x1, x1, . . . , xn)

+
n∑
j=2

1(x1, xj)
∂

∂xj

Wn−1(x2, . . . , xn)−Wn−1(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

+
∑
λ

R∈P(L(λ))

∑
(I1,...,I`(R))∈I`(R)(n)

d∑
c=1

1(x1, c)

`(λ(c))∑
j=1

N2−`(λ)SN(λ)
∏
α

Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|+|Iα| (xIα)

×λ(c)
j

(
x
λ

(c)
j −1

1 W
(λR′(c,j),cR′(c,j))

|R(c,j)|+|I(c,j)| (x1, xI(c,j))−
λ

(c)
j −2∑
q=0

x
λ

(c)
j −2−q

1 W
(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|+|I(c,j)| (xI(c,j))
)

= 0.

(10.34)

I(c, j) is defined as Iα∗ where α∗ is the index such that Rα∗ = R(c, j). Moreover, 1(x, y) =∑d
c=1 1(x, c)1(y, c) is 1 if and only if x and y are variables of the same color.
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10.2.3 Topological expansion

All correlation functions admit the usual topological expansion

W
(k1,c1;...;kp,cp)
n+p (x1, . . . , xn) =

∑
h≥0

N2−n+p−2hW
(k1,c1;...,kp,cp)
n+p,h (x1, . . . , xn). (10.35)

Plugging it into (10.34) leads to

∑
(I1,I2)∈I2(n)
h=0,...,g

W|I1|+1,h(x1, xI1)W|I2|+1,g−h(x1, xI2) +Wn+1,g−1(x1, x1, . . . , xn)

+
n∑
j=2

1(x1, xj)
∂

∂xj

Wn−1,g(x2, . . . , xn)−Wn−1,g(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

+
∑
λ

R∈P(L(λ))
(I1,...,I`(R))∈I`(R)(n)

∑
h,h1,...,h`(R)≥0

`(λ)−`(R)+h+
∑`(R)
α=1 hα=g

d∑
c=1

1(x1, c)

`(λ(c))∑
j=1

S(h)(λ)
∏
α

Rα 6=R(c,j)

W
(λRα ,cRα )

|Rα|+|Iα|,hα(xIα)

×λ(c)
j

(
x
λ

(c)
j −1

1 W
(λR′(c,j),cR′(c,j))

|R(c,j)|+|I(c,j)|,h(c,j)(x1, xI(c,j))−
λ

(c)
j −2∑
q=0

x
λ

(c)
j −2−q

1 W
(λR′(c,j),cR′(c,j);q,c)

|R(c,j)|+|I(c,j)|,h(c,j)(xI(c,j))
)

= 0,

(10.36)

where h(c, j) is the hα∗ where α∗ is such that Rα∗ = R(c, j).

10.3 Large N limit

Restricting (10.36) to g = 0 gives the constraint h = h1 = · · · = h`(R) = 0, which in turn
implies `(R) = `(λ). This reduces the sum over partitions of L(λ) to a single one for
each λ, i.e. the partition into singletons, R = {{c′, i}}, for c′ ∈ J1, dK and i ∈ J1, `(λ(c′))K.
For (I1, . . . , I`(λ)) ∈ I`(λ)(n), we denote I(c′, i) = Iα when Rα = {c′, i}. This gives, for a
generic potential,

∑
(I1,I2)∈I2(n)

W|I1|+1,0(x1, xI1)W|I2|+1,0(x1, xI2)

+
n∑
j=2

1(x1, xj)
∂

∂xj

Wn−1,0(x2, . . . , xn)−Wn−1,0(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1
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+
∑
λ

(I1,...,I`(λ))∈I`(λ)(n)

d∑
c=1

1(x1, c)

`(λ(c))∑
j=1

S(0)(λ)
∏

(c′,i) 6=(c,j)

W
(λ

(c′)
i ,c′)

|I(c′,i)|+1,0(xI(c′,i))

× λ(c)
j

(
x
λ

(c)
j −1

1 W|I(c,j)|+1,0(x1, xI(c,j))−
λ

(c)
j −2∑
q=0

x
λ

(c)
j −2−q

1 W
(q,c)
|I(c,j)|+1,0(xI(c,j))

)
= 0. (10.37)

In the case (9.46) of ZFluct(N,P), which we are interested in, the leading order coefficients
S(0)(λ) actually have an extra N -dependence and satisfy (10.6). It implies that the
partitions λ appearing in (10.37) must be of size 2, viz. |λ| = 2. These partitions are of
the form λ = (λ(1), . . . , λ(d)) with

• either λ(c) = (2) for some c. We write the corresponding part of the action
1
2

∑d
c=1 actrEcM

2
c ;

• or λ(c) = (1, 1) for some c. We write the corresponding part of the action
1
2

∑d
c=1 bcc

(
trEcMc

)2;

• or λ(c) = (1) and λ(c′) = (1) for some c 6= c′. We write the corresponding part of
the action 1

2

∑d
c 6=c′ bcc′trEcMc trEc′Mc′ , with bcc′ = bc′c.

This means that at large N , the correlation functions behave as if the action simply was

−N
2

∑
c

trEcM
2
c−
∑
|λ|=2

N2−`(λ)s
(0)
P (λ) Iλ({Mc}) =

N

2

∑
c

actrEcM
2
c +

1

2

∑
c,c′

bc,c′trEcMc trEc′Mc′ .

(10.38)
Then (10.37) becomes

∑
(I1,I2)∈I2(n)

W|I1|+1,0(x1, xI1)W|I2|+1,0(x1, xI2)

+
n∑
j=2

1(x1, xj)
∂

∂xj

Wn−1,0(x2, . . . , xn)−Wn−1,0(x1, . . . , xj−1, xj+1, . . . , xn)

xj − x1

−
d∑
c=1

1(x1, c)
(
acx1Wn(x1, . . . , xn)+

∑
(I1,I2)∈I2(n)

W|I1|+1,0(x1, xI1)
d∑

c′=1

bcc′W
(1,c′)
|I2|+1,0(xI2)

)
= 0.

(10.39)
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10.3.1 Disc function

The disc function of color c isW1,0(x, c) = limN→∞
1
N
W1(x, c), i.e. the generating function

of planar stuffed maps with a single boundary of arbitrary perimeter. The global disc
function is W1,0(x) =

∑d
c=1 1(x, c)W1,0(x, c). Equation (10.39) can be directly applied.

Before doing so, however, let us briefly mention the case of a generic potential, by setting
n = 1 in (10.37). For a fixed color c,

W1,0(x, c)2

+
∑
λ

`(λ(c))∑
j=1

S(0)(λ)
∏

(c′,i)6=(c,j)

W
(λ

(c′)
i ,c′)

1,0 λ
(c)
j

(
xλ

(c)
j −1W1,0(x, c)−

λ
(c)
j −2∑
q=0

xλ
(c)
j −2−qW

(q,c)
1,0

)
= 0.

(10.40)
This is thus a set of d equations on d functions W1,0(x, c) with a single catalytic variable,
and some explicit dependence on coefficients of the unknown series. This generalizes
the classical equation of the 1-matrix, multi-trace model [67]. The analytic properties
of its disc function, described in [69], derive from an extension of [71], which applies to
stuffed maps with unbounded face degrees. Here, we would require a further extension,
to a system of equations. Instead of pursuing the generic route, we focus on the specific
model ZFluct(N,P). Setting n = 1 in (10.39), one finds

W1,0(x, c)2 − ac
(
xW1,0(x, c)− 1

)
= 0, (10.41)

where we have used W
(1,c′)
1,0 = 0 for all c′, since W (1,c′)

1,0 = limN→∞
1
N
〈trEc′Mc′〉 and the

model is invariant under {Mc} → {−Mc} at large N . The disc function of color c is thus

W1,0(x, c) =
ac
2

(
x−

√
x2 − 4

ac

)
, (10.42)

as in [66]. It has a cut along Γc = [− 2√
ac
, 2√

ac
] (if ac > 0), which is said to be the cut of

color c. The global disc function W1,0(x) =
∑d

c=1W1,0(x, c)1(x, c) thus has d cuts, along⋃d
c=1 Γc.
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10.3.2 Cylinder function

The cylinder function is the leading order of the two-point function. The local expression
is

W2,0(x1, c1;x2, c2) = lim
N→∞

W2(x1, c1;x2, c2) = lim
N→∞

〈trEc1
1

x1 −Mc1

trEc2
1

x2 −Mc2

〉c.

(10.43)
By setting n = 2 in (10.39), one finds

(
2W1,0(x1, c1)− ac1x1

)
W2,0(x1, c1;x2, c2) + δc1,c2

∂

∂x2

W1,0(x1, c1)−W1,0(x2, c2)

x1 − x2

−W1,0(x1, c1)
d∑

c′=1

bc1c′W
(1,c′)
2,0 (x2, c2) = 0, (10.44)

where a term −W2,0(x1, c1;x2, c2)
∑d

c′=1 bc1c′W
(1,c′)
1,0 has been removed because W (1,c′)

1,0 = 0

in this model. It generalizes the equations found for W2,0(x1, c1;x2, c2) in [66]. The
method used to solve them still works here. It processes by first finding the values of
W

(1,c′)
2,0 (x2, c2). To do so, we extract the coefficient of the equations at order 1/x1. It gives

− ac1W
(1,c1)
2,0 (x2, c2)−

d∑
c′=1

bc1,c′W
(1,c′)
2,0 (x2, c2) = δc1,c2

∂W1,0(x2, c2)

∂x2

, (10.45)

which can be given a matrix form. Introduce the following d×dmatricesA = diag(a1, . . . , ad),
B = (bc,c′)1≤c,c′≤d and

W
(1)
2,0 (x) =

(
W

(1,c)
2,0 (x, c′)

)
1≤c,c′≤d, ∂W1,0(x) = diag

(∂W1,0(x, c)

∂x
, . . . ,

∂W1,0(x, c)

∂x

)
.

(10.46)
It comes

W
(1)
2,0 (x) = −(A+B)−1∂W1,0(x), (10.47)

provided A+B is invertible. Denoting σ(x, c) =
√
x2 − 4/ac, we have

∂W1,0(x, c)

∂x
= −W1,0(x, c)

σ(x, c)
, (10.48)
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and it comes

W2,0(x1, c1;x2, c2) = δc1c2
x1x2 − σ(x1, c1)σ(x2, c2)− 4/ac1

2(x1 − x2)2σ(x1, c1)σ(x2, c2)

− 1

ac1

(
B

1

A+B

)
c1c2

W1,0(x1, c1)W1,0(x2, c2)

σ(x1, c1)σ(x2, c2)
.

(10.49)

The first part of this formula is the cylinder function for the GUE, while the other term
is due to the multi-trace interaction. Notice that the latter is not manifestly invariant
under the exchange symmetry (x1, c1)↔ (x2, c2). The cylinder function is thus basically
the same as in the quartic melonic model [66]. The difference is that in that case, the
matrices A,B were specific functions of the coupling constants t1, . . . , td, while they are
here, in general, functions of all the coupling constants ti, i ∈ I.

10.4 Blobbed topological recursion

The remaining is exactly similar to [66], with the replacement ac = 1−α2
c , which already

followed the theorems of [67, 68].

10.4.1 Spectral curve

Denote the Riemann sphere Ĉ, and Ĉc its copy of color c ∈ J1, dK. For each color, define

fc(x, y) = y2 − acxy + ac. (10.50)

The Gaussian spectral curve is defined as CGaussian ⊂
⋃d
c=1 Ĉ

2
c by

f(x, y) =
d∑
c=1

1(x, c)1(y, c)fc(x, y) = 0. (10.51)

Recall that Γc = [− 2√
ac
, 2√

ac
] (for ac > 0) and denote Γ =

⋃d
c=1 Γc. It can be checked

as in [67] that our correlation functions Wn,g(x1, . . . , xn) are only singular along Γ (with
respect to each variable), except for (n, g) ∈ {(1, 0), (2, 0)}. We therefore introduce a
Zhukovski parametrization

x(z) =
d∑
c=1

1(x, c)1(z, c)
1
√
ac

(z + z−1), (10.52)



152 Chapter 10. Blobbed topological recursion for colored, multi-trace matrix models

for |z| ≥ 1 in each color. As shown in [67], the correlation functions for (n, g) 6∈
{(1, 0), (2, 0)} are holomorphic for |z| ≥ 1 except at z = ±1. Moreover, they can be
analytically continued to the interior of a neighborhood of the unit circle, except at
z = ±1. In our case (see below), this analytic continuation can be performed for all
0 < |z| < 1. The correlation functions can thus be turned into differential forms

ωn,g(z1, . . . , zn) = Wn,g(x(z1), . . . , x(zn))dx(z1) . . . dx(zn)

+ δ(n,g),(2,0)

d∑
c=1

1(z1, c)1(z2, c)
dx(z1)dx(z2)

(x(z1)− x(z2))2
.

(10.53)

For (n, g) 6∈ {(1, 0), (2, 0)}, they are holomorphic on CnGaussian except at zi = 0,±1. In
the framework of the blobbed topological recursion, the singularities at 0 and at ±1 play
different roles. This is because the disc function has (simple) zeroes at z = ±1,

W1,0(x(z)) =
d∑
c=1

1(z, c)

√
ac
z

⇒ ω1,0(z) =
d∑
c=1

1(z, c)
1− z−2

z
dz, (10.54)

because they are the zeroes of dx(z). As for the cylinder function, it becomes

ω2,0(z1, z2) =
dz1 dz2

(z1 − z2)2

d∑
c=1

1(z1, c)1(z2, c)

− dz1dz2

z2
1z

2
2

d∑
c1,c2=1

1(z1, c1)1(z2, c2)
√
ac1ac2

1

ac1

(
B

1

A+B

)
c1c2

,

(10.55)

which is singular along the diagonal z1 = z2 as expected, but also has poles at z1 = 0 and
z2 = 0 on each color. The points z = ±1 in each color are called the ramification points
and we denote

R = {z = ±1 ∈ Cc, c ∈ J1, dK}. (10.56)

The spectral curve is also supplemented with the canonical involution ι(z) = 1/z which
preserves the ramification points.

10.4.2 Topological recursion formula

Recall the notations G(z, z1) =
´ z
ι(z)

ω2,0(·, z1), and ∆ϕ = ϕ − ι∗ϕ for a differential form
ϕ. The kernel of the topological recursion is K(z, z1) = ∆G(z,z1)

2∆ω1,0(z)
. We further define the
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polar and holomorphic part of ωn,g(z1, . . . , zn) as follows (terminology justified below)

Pωn,g(z1, . . . , zn) =
∑
z∈R

Resz G(z, z1)ωn,g(z, . . . , zn),

Hωn,g(z1, . . . , zn) = ωn,g(z1, . . . , zn)− Pωn,g(z1, . . . , zn).

(10.57)

Theorem 10.4.1. Assume that A+B is invertible, so that ω2,0 is given by (10.55). For
all (n, g) 6∈ {(1, 0), (2, 0)}, the holomorphic part is holomorphic while the polar part has
poles on R. They are given by

Pωn,g(z1, . . . , zn) =
∑
z∈R

ReszK(z, z1)
(
ωn+1,g−1(z, ι(z), z2, . . . , zn)

+
′∑

(I1,I2)∈I2(n)
g1+g2=g

ω|I1|+1,g1(z, zI1)ω|I2|+1,g2(ι(z), zI2)
)
,

(10.58)

and
Hωn,g(z1, . . . , zn) =

1

2iπ

˛
z∈
⋃d
c=1 U(1)c

ω2,0(z1, z)νn,g(z, z2, . . . , zn), (10.59)

where U(1)c is the copy of the unit circle of color c, and

νn,g(z, z2, . . . , zn) = Vn,g(x(z), x(z2), . . . , x(zn)) dx(z2) . . . dx(zn) (10.60)

for

Vn,g(x, x2, . . . , xn) =
d∑
c=1

∑
λ

`(λ(c))∑
j=1

∑
R∈P(L(λ))
R′(c,j)=∅

∑
(I1,...,I`(R))∈I`(R)(n)

1(x, c)

∑
h,h1,...,h`(R)≥0

`(λ)−`(R)+h+
∑`(R)
α=1 hα=g

S(h)(λ)xλ
(c)
j

∏
Rα 6={(c,j)}

W
(λRα ,cRα )

|Rα|+|Iα|,hα(xIα).

(10.61)

Proof. The loop equations have the same form as in [66] and all the arguments, which
were borrowed from [67, 68] apply. 2
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Summary and outlook

First of all, this work paves the way for a new formulation of real tensor models, their
observables and correlators in terms of symmetric groups and their representation theory.
The formulation is particularly convenient for implementing heavy computations using
software resources, thus, leading to a gain of confidence in the computational process.
Furthermore, with its multiple facets, the formalism elaborated here may shed a new
light on some results since it bridges theories - combinatorics, TFT and physics through
observables and correlators - which from the outset may look rather different.
We have enumerated O(N) or rank-d real tensor invariants as d-regular colored graphs
using a permutation group formalism. These invariants define the points of a double coset
of S d

2n. We used Mathematica and Sage codes to generate the sequences associated with
the number of these invariants from their generating functions. The sequences obtained
at d ≥ 4 are new according to the OEIS. Translated into the TFT2 formulation, the same
counting delivers the number of covers of gluing of cylinders with defects. Such covers
have been also observed while counting Feynman graphs of scalar field theory [39] and
relate to a string theory on cylinders. Thus, there should be an equivalent way of de-
scribing tensor observables in purely string theoretic language. Moreover, this link with
covers must be made precise: covers in 2D are related to holomorphic maps and may, in
return, give a geometry to the space of orthogonal invariants. This point fully deserves
further investigation.
Another piece of information reveals itself with the representation theoretic formulation
of the counting: the number of orthogonal invariants is a sum of constrained Kronecker
coefficients. The Kronecker coefficient is a core object in Computational Complexity the-
ory: either finding a combinatorial rule describing it (finding which combinatorial objects
it counts), or its vanishing property or otherwise remains under active investigation (see
references in [51, 52]). It concentrates a lot of research efforts since one expects that,
roughly speaking, understanding that object could lead to a separation of complexity
classes P vs NP. In our present work (as is similarly done in [30]), we show that the
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number of tensor model observables - represented by colored graphs and thus combina-
torial structures - links to a sum of Kronecker coefficients (in [30], it is a sum of square
of these coefficients). It remains of course to be seen how this would help with one of the
famous problems stated above. Perhaps a refined counting of colored graphs (endowed
with specific properties) could boil down the sum to a single Kronecker element. Such a
study may bring some progress in the field.
The equivalence classes associated with the colored graphs are mapped in the tensor prod-
uct of the group algebra C[S2n]⊗d. They form the basis vectors of a subspace, namely
Kd(2n), that is in fact a semi-simple algebra. We call it a double coset algebra. Note also
that, as elements of an algebra, d-regular colored graphs multiply in a specific way, and
yield back a combination of d-regular colored graphs. In rank 3, we have found a “natu-
ral” representation theoretic basis {QR,S,T,τ}, of K3(2n), i.e. invariant and orthonormal.
Unlike the unitary case [30], this basis decomposes the algebra into blocks but does not
provide its Wedderburn-Artin (WA) decomposition in matrix subalgebras. This raises
other questions: in which basis can the WA decomposition be made explicit? Is there
a simple enough combination starting from QR,S,T,τ that produces the WA decomposi-
tion? A starting point of that analysis might be given by the work of Bremner [97] that
constructs the WA basis of a finite dimensional unital algebra over rationals. Finally, is
there a way to understand why the sum of constrained Kronecker coefficients is actually
a sum of squares (each of which being the dimension of a matrix subalgebra entering in
the WA decomposition)? Such points deserve future clarifications.
We also addressed normal ordered Gaussian 2-point correlators in this work and showed
that they formulate completely as a function of the size N of the tensor indices and
permutation cycles. We generated an orthogonal representation basis from these corre-
lators. This result is similar to what is observed in the unitary case, with the following
distinction: there is an operator acting on the triple defining the observables. We showed
that computing Gaussian correlators in representation theory space actually translates
to computing an inner product. Finally, we briefly sketched the main feature of Sp(2N)

invariants: although they obey the same diagrammatics than the O(N) invariants, they
satisfy a different rule concerning their equivalence classes. Thus, for the symplectic
group and its invariants, the story could be radically different from the orthogonal case
and will require more work.

On a different note, we have shown that, as long as there are quartic melonic interactions,
one can find in arbitrary tensor models a set of correlation functions which satisfy the
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blobbed topological recursion in a universal way. The spectral curve is then a disjoint
union of Gaussian spectral curves, with an additional holomorphic part to the cylinder
function which always has the same form.
Those results rely on the conditions 1 and 2 presented in the introduction and detailed
throughout Part III. In particular, the specifics of the model, i.e. the choice of interac-
tions, do not matter as long as the effective action obtained after the formal integration of
all the matrices except Y1, . . . , Yd has a well-defined 1/N expansion as we have described
in Theorem 9.1.1. This is why our formulae all have the same structure as in the case of
the quartic melonic model in [66].
We have also provided theorems 8.3.3, 8.3.4 and 9.2.1 to relate the expectations of the
U(N)d-invariant observables on the tensor and matrix sides.
There are still many interesting questions about the topological recursion for tensor mod-
els. Are there other sets of correlation functions satisfying the topological recursion? Is
it always a blobbed recursion? Can condition 2 from the introduction be removed? Is
it possible to proceed without going to matrix models and derive topological recursions
directly in the tensor formulation? There have been some efforts to use directly the
Schwinger-Dyson equations of tensor models, in [65] and [102], thus extracting the dou-
ble scaling limit of tensor models with melonic interactions for instance, but this is still
far from the topological recursion. We hope some of those questions can be tackled in
the near future.
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Appendix A

The symmetric group and its
representation theory

This appendix gathers useful identities and notations about the symmetric group Sn and
its representation theory. The presentation here is a summary of Appendix A, withdrawn
from [30], and the textbook by Hammermesh [98].

A.1 Representation theory of the symmetric group

Let n be a positive integer and Sn, the group of permutation of n elements. The Young
diagrams or partitions R of n, denoted R ` n, label the irreducible representations (irreps)
of Sn. Consider VR a space of dimension d(R) (that will be made explicit below). An irrep
%R : Sn → End(VR) is given by a matrix DR with entries %R(σ)|R, i〉 =

∑d(R)
l=1 DR

li (σ)|R, l〉
with σ ∈ Sn and with |R, i〉, i ∈ J1, d(R)K, an orthogonal basis of states for VR (this basis
obeys 〈R, j|R, i〉 = δij).
We write in short %R(σ) = σ and define the matrix elements as 〈R, j|σ|R, i〉 = DR

ji(σ). It
is common to assimilate the irreducible representation %R and the carrier space VR with
their label R.
From the commuting action of the unitary group U(N) and Sn on a tensor product space
V ⊗n, the Schur-Weyl duality teaches us that we associate an irrep R of Sn with an irrep of
U(N), provided N bounds the length l(R) of the first column of R, in symbol l(R) ≤ N .
Let us denote d(R) the dimension of R and DimN(R) the dimension of an irrep of U(N),
then those are given by

d(R) = n!/h(R) , DimN(R) = fN(R)/h(R) , (A.1)
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where h(R) is the product of the hook lengths and fN(R) is the product of box weights
(the content shifted by N) given respectively by h(R) =

∏
i,j(cj − j + ri − i + 1) and

fN(R) =
∏

i,j(N − i+ j); the pairs (i, j) label the boxes of the Young diagram with i the
row label and j the column label. The ith row length is ri and cj is the column length of
the jth column.
We now restrict to real representations and so the DR

ij(σ) must be real matrices. These
satisfy the following properties:∑

i

DR
ai(σ)DR

ib(σ
′) = DR

ab(σσ
′) , DR

ab(id) = δab , DR
ij(σ

−1) = DR
ji(σ) , (A.2)

∑
σ∈Sn

DR
ij(σ)DS

kl(σ) =
n!

d(R)
δRS δikδjl (orthogonality) . (A.3)

The character of a given irrep R is simply the trace of DR(σ), χR(σ) = tr(DR(σ)) =∑
iD

R
ii (σ). The Kronecker delta δ(σ) of the symmetric group (defined to be equal to 1

when σ = id and 0 otherwise) decomposes as

δ(σ) =
∑
R`n

d(R)

n!
χR(σ). (A.4)

The following identities are easily proven using the orthogonality relations of the repre-
sentation matrices: ∑

γ∈Sn

δ(γσγ−1τ−1) =
∑
R`n

χR(σ)χR(τ) (A.5)∑
σ∈Sn

χR(σ)χS(σ) = n! δRS (A.6)

∑
γ∈Sn

χR(AγBγ−1) =
n!

d(R)
χR(A)χR(B)

If B is a
=

central element
n!χR(AB) (A.7)

Another useful identity expresses as

1

n!

∑
σ∈Sn

χR(σ)Nc(σ) = DimN(R) ,
∑
σ∈Sn

DR
ij(σ)Nc(σ) = δijfN(R) , (A.8)

where c(σ) is the number of cycles of σ.
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Defining the central element Ω ∈ C[Sn], as Ω =
∑

σ∈Sn N
n−c(σ)σ, the first relation in

(A.8) can also be written as

Nn

n!
χR(Ω) = DimN(R) . (A.9)

A.2 Clebsch-Gordan coefficients

Consider two carrier spaces VR1 and VR2 of two irreps of Sn labeled by two Young diagrams
R1 and R2, respectively. The tensor product representation VR1⊗VR2 can be decomposed
into a direct sum of irreps VR3 with multiplicities

VR1 ⊗ VR2 =
⊕
R3`n

VR3 ⊗ V m
R3
. (A.10)

The tensor product space is spanned by a tensor product of the basis |R1, i1〉⊗ |R2, i2〉 :=

|R1, i1;R2, i2〉. On the right hand side, the direct sum corresponds to a basis set |R3, i3, τR3〉.
The label i3 runs over states of R3, and τR3 , the so-called multiplicity, runs over an or-
thogonal basis in the multiplicity space V m

R3
.

The Clebsch-Gordan coefficients are the branching coefficients between these bases:

C
R1,R2;R3, τR3
i1,i2; i3

:= 〈R1, i1;R2, i2|R3, τR3 , i3〉 = 〈R3, τR3 , i3|R1, i1;R2, i2〉 (A.11)

Note that they are real.
The following relations are detailed in Appendix A.2 in [30]:∑

j1,j2

DR1
i1j1

(γ)DR2
i2j2

(γ)CR1,R2;R3, τ
j1,j2; j3

=
∑
i3

CR1,R2;R3, τ
i1,i2; i3

DR
i3j3

(γ) ; (A.12)∑
i1,i2

CR1,R2;R3, τ
i1,i2; i3

C
R1,R2;R′3, τ

′

i1,i2; j3
= δR3R′3

δττ ′ δi3j3 ; (A.13)∑
R3,i3,τ

CR1,R2;R3, τ
i1,i2; i3

CR1,R2;R3, τ
j1,j2; i3

= δi1j1 δi2j2 ; (A.14)∑
R3,τ ; i3,j3

CR1,R2;R3, τ
i1,i2; i3

DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= DR1
i1j1

(γ)DR2
i2j2

(γ) ; (A.15)∑
j1,j2,j3

DR1
i1j1

(γ)DR2
i2j2

(γ)DR3
i3j3

(γ)CR1,R2;R3, τ
j1,j2; j3

= CR1,R2;R3, τ
i1,i2;i3

; (A.16)∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(γ1σ1γ2)DR2
i2j2

(γ1σ2γ2)DR3
i3j3

(γ1σ3γ2)
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=
∑
il,jl

CR1,R2;R3,τ1
i1,i2;i3

CR1,R2;R3,τ2
j1,j2;j3

DR1
i1j1

(σ1)DR2
i2j2

(σ2)DR3
i3j3

(σ3) ; (A.17)

∑
σ∈Sn

DR1
i1j1

(σ)DR2
i2j2

(σ)DR3
i3j3

(σ) =
n!

d(R3)

∑
τ

CR1,R2;R3,τ
i1,i2;i3

CR1,R2;R3,τ
j1,j2;j3

. (A.18)

Furthermore, we can generalize the second relation (A.8) as follows: given two permuta-
tions A and B, we have∑

σ∈Sn

DR
ij(σ)Nc(σ−1AσB)

=
∑
γ,σ∈Sn

DR
ij(σ)δ(γ−1σ−1AσB)Nc(γ)

(A.4)
=
∑
S,a

d(S)

n!

∑
γ,σ

DR
ij(σ)DS

aa(γ
−1σ−1AσB)Nc(γ)

=
∑
S,a

d(S)

n!

∑
m,n,o,p

[∑
γ

DS
ma(γ)Nc(γ)

][∑
σ

DS
nm(σ)DS

op(σ)DR
ij(σ)

]
DS
no(A)DS

pa(B) ,

(A.19)
with the property c(γ) = c(γ−1). We now use (A.8) and (A.18) to write∑

σ∈Sn

DR
ij(σ)Nc(σ−1AσB)

=
∑
S,a

d(S)

n!

∑
m,n,o,p

δmafN(S)
( n!

d(R)

∑
τ

CS,S;R,τ
n,o;i CS,S;R,τ

m,p;j

)
DS
no(A)DS

pa(B)

=
∑
S,τ

d(S)

d(R)
fN(S)

(∑
n,o

CS,S;R,τ
n,o;i DS

no(A)
)(∑

a,p

CS,S;R,τ
a,p;j DS

pa(B)
)
.

(A.20)

A.3 Basis of the group algebra C[Sn]

The matrix basis of the group algebra C[Sn] is defined by the elements

QR
ij =

κR
n!

∑
σ∈Sn

DR
ij(σ)σ , (A.21)

where the constant κ2
R = n!d(R) is fixed by a normalization. The basis set {QR

ij} is of
cardinality

∑
R`n(d(R))2 = n!. The elements QR

ij form a representation theoretic Fourier
basis for C[Sn].
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The left and right multiplication by group elements on QR
ij expand as

τ QR
ij =

∑
l

DR
li (τ)QR

lj , QR
ij τ =

∑
l

QR
il D

R
jl(τ) . (A.22)

Using the definition of the basis and (A.22), one gets

QR
ijQ

R′

kl =
κRκR′

(n!)2

∑
σ∈Sn

∑
τ∈Sn

DR
ij(σ)σDR′

kl (τ)τ =
κR
n!

∑
σ∈Sn

DR
ij(σ)σQR′

kl

=
κR
n!

∑
σ∈Sn

DR
ij(σ)

∑
m

DR′

mk(σ)QR′

ml =
κR
n!

∑
m

n!

d(R)
δRR′δimδjkQ

R′

ml

=
κR
d(R)

δRR′δjkQ
R′

il .

(A.23)

We consider the Kronecker δ on Sn, and extend it (by linearity) as a pairing denoted
again δ on C[Sn], and then once again extend the result to C[Sn]⊗d, d > 1, such that

δ(σ1 ⊗ . . .⊗ σd;σ′1 ⊗ . . .⊗ σ′d) = δ(σ1σ
′−1
1 ) . . . δ(σ−1

d σ′−1
d ) . (A.24)

Calculating the inner product δ(QR
ij;Q

R′

i′j′), we obtain

δ(QR
ij;Q

R′

i′j′) =
κ2
R

n!d(R)
δRR′δii′δjj′ = δRR′δii′δjj′ . (A.25)

Then, for multiple tensor factors, we obtain

δ(QR1
i1j1
⊗ . . .⊗QRd

idjd
; Q

R′1
i′1j
′
1
⊗ . . .⊗QR′d

i′dj
′
d
) =

d∏
a=1

δRaR′aδiai′aδjaj′a (A.26)

Hence, the basis {QR1
i1j1
⊗ . . .⊗QRd

idjd
} is a Fourier theoretic orthonormal basis for C[Sn]⊗d.

In the text, we focus on S2n and we introduce the operator Tξ : S2n → S2n that acts
on S2n as Tξ(σ) = σ−1ξσ. In a natural way, Tξ extends by linearity on C[S2n]. Then,
without any possible confusion with the tensor notation T itself, Tξ ∈ End(C[S2n]) is the
image of the mapping T : S2n → End(C[S2n]), ξ 7→ Tξ. We then extend T by linearity to
T : C[S2n]→ End(C[S2n]), λξ + ρ 7→ Tλξ+ρ = λTξ + Tρ, λ ∈ C.
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We are interested in the properties of the transformed basis TξQR
ij which is nothing but

the Fourier transform of the pairing σ−1ξσ. First, let us see how they multiply:

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
σ,ρ∈S2n

DR
ij(σ)DR′

i′j′(ρ)σ−1ξσρ−1ξρ . (A.27)

Note that the group order is now (2n)!. Introduce a change of variable σ → σρ−1, and

(TξQ
R
ij) (TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
σ,ρ∈S2n

∑
k

DR
ik(σ)DR

kj(ρ)DR′

i′j′(ρ)ρ−1σ−1ξσξρ

=
κR′

(2n!)

∑
ρ∈S2n

DR′

i′j′(ρ)
∑
k

DR
kj(ρ)T(TξQ

R
ik)ξ(ρ)

=
κR′

(2n!)

∑
ρ∈S2n

DR′

i′j′(ρ)T∑
kD

R
kj(ρ)(TξQ

R
ik)ξ(ρ) . (A.28)

Thus, the product of the transformed basis elements does not re-express easily in terms
of the transformed elements themselves. The left and right multiplications of fixed per-
mutations on the elements TξQR

ij, counterparts of (A.22), are given by:

τ(TξQ
R
ij) =

∑
a

(TξQ
R
ia)D

R
aj(τ)τ , (TξQ

R
ij)τ =

∑
a

(TξQ
R
ia)D

R
ja(τ)τ . (A.29)

The inner product of these elements expresses as:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
σ,ρ∈S2n

DR
ij(σ)DR′

i′j′(ρ) δ(Tξ(σ), Tξ(ρ)) . (A.30)

This is simply the Fourier transform of the delta δ(σ−1ξσρ−1ξρ) which tells us that the
sole terms remaining in this sum are those which define the same pairing. A closer
look shows that δ(σ−1ξσρ−1ξρ) = δ(ξσρ−1ξρσ−1). Then, this means that the elements
that contribute to the sum are those σρ−1 that belong to the stabilizer of ξ, that is
σρ−1 ∈ Sn[S2]. Hence, we change variable as σ → σ̄ = σρ−1, rename again σ̄ as σ and
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then rewrite, using the orthogonality of the representation matrices:

δ(TξQ
R
ij, TξQ

R′

i′j′) =
κRκR′

(2n!)2

∑
ρ∈S2n

∑
σ∈Sn[S2]
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i′j′(ρ)
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(2n!)2

∑
a

∑
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DR
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∑
ρ∈S2n
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aj(ρ)DR′
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= δRR′δjj′
κ2
R

(2n!)2

2n!

d(R)

∑
a

∑
σ∈Sn[S2]

DR
ia(σ)δai′

= δRR′δjj′
∑

σ∈Sn[S2]

DR
ii′(σ) .

(A.31)

In the text, we compute a formula for that sum in terms of branching coefficients, see
(5.19). It turns out that the sum is non vanishing only if the partition R is even, meaning
that the length of each of its rows is even. Hence, from the above relation, (A.31), the
set of the transformed basis elements does not form an orthogonal system.
It is instructive to perform the same evaluation in an alternative way to discover new
identities satisfied by the Clebsch-Gordan coefficients. Consider the expansion of the
above inner product as follows:

δ(TξQ
R
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(A.32)
where, at some intermediate steps, we used successively (A.18) and (A.13), and where
F (S,R, τ ; i) =

∑
b,cD

S
bc(ξ)C

S,S;R,τ
b,c;i . Using

∑
σ∈Sn[S2]D

R
ij(σ) = (2nn!)BR

i B
R
j (see (5.19)),
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we arrive to a new identity:

∑
S,τ

d(S)
(∑
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)(∑
e,f
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)
=

(2nn!)

d(R)
BR
i B

R
j . (A.33)

Note the similarity of the left-hand-side member with (A.20) (adjusted for the symmetric
group S2n).
There exist graphical ways of representing identities in representation theory in general.
For the permutation group, Appendix A2 of [30] lists such graphical representations for
most of the identities given above. For instance, we use the graphical representation of
the representation matrix DR

ij(σ) as σi j , the Clebsch-Gordan coefficient CR2,R2;R3,τ
i1,i2;i3

represents as follows
τ

i1

i2

i3
R3

R1

R2

and the branching coefficient BR; r,νr
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i
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mr
R r

. Then the convolution given by (A.33) translates as the factorization:
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R R
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1
R [2n]

j
1

1
R [2n] , (A.34)

hence, a new identity satisfied by the Clebsch-Gordan of the symmetric group.

A.4 2-point correlator evaluation

We prove in this part (6.16). To proceed, we will make use of (A.8), (A.13) and (A.18), or
alternatively (A.20), of Appendix A.2. Introducing k~R = κ~R

κR1
κR2

κR3

((2n)!)3 , then from (6.15),
we focus on the δ function:
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It is the moment to use (A.18) to integrate the representation matrices and get:
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The evaluation finally yields

〈OR1,R2,R3,τ OR′1,R
′
2,R
′
3,τ
′〉 = δ~R′ ~Rδτ ′τF (R1, R2, R3, τ)
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. (A.37)

This is (6.16) and implies the orthogonality of the representation theoretic basis {OR1,R2,R3,τ}.
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Appendix B

Codes

We list here some algorithms which count the number of orthogonal invariants as given
in Part II. We use Mathematica and Sage softwares in the following.

B.1 Mathematica code for Zd(t)

We wish to compute the number Zd(2n) of rank-d orthogonal invariants made with 2n

tensors. In order to obtain that number, we first code the generating function, denoted
Z[X,t], of the counting of the number of elements of the wreath product Sn[S2] in a
certain conjugacy class of S2n. Doing this, we use the built-in function Count[list,

pattern] which counts the number of elements in a list matching a pattern. Then, we
extract a coefficient of tn in Z[X,t] that is involved in Zd[X,n,d] that encodes Zd(2n).
We finally give the counting for ranks 3 and 4, successively, for n ∈ J1, 10K.

X = Array[x, 20];
PP[n_] := IntegerPartitions[n]
Sym[q_, n_] := Product[i^(Count[q, i]) Count[q, i]!, {i, 1, n}]
Symd[X_, k_, q_] := Product[(X[[k*l]]/l)^(Count[q, l])/(Count[q, l]!), {l, 1, 2}]

Z[X_, t_] := Product[Exp[(t^i/i)*Sum[Symd[X, i, PP[2][[j]]], {j, 1, Length[PP[2]]}]],
{i, 1, 15}]

Zprim[X_, n_] := Coefficient[Series[Z[X, t], {t, 0, n}], t^n]
CC[X_, n_, q_] := Coefficient[Zprim[X, n], Product[X[[i]]^(Count[q, i]), {i, 1, 2*n}]]
Zd[X_, n_, d_] := Sum[(CC[X, n, PP[2*n][[i]]])^d*(Sym[PP[2*n][[i]], 2*n])^(d - 1),

{i, 1, Length[PP[2*n]]}]

Table[Zd[X, i, 3], {i, 1, 10}]

(out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}
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Table[Zd[X, i, 4], {i, 1, 10}]

(out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472, 220685007519070,
75649235368772418}

B.2 Mathematica code for counting with Hermite poly-

nomials

This part is dedicated to the implementation of an algorithm realizing Read’s enumera-
tion of k-regular graphs on 2n vertices with edges of k different colors where one of each
color is at every vertex. We want to compare Read’s results with the previous sequences.
Read’s generating function that encodes the above enumeration denotes ZR[t,d,n], in
the following program. Then, ZR[d,n] yields the counting at rank d with 2n vertices
and that is given by the coefficient of tn in ZR[t,d,n]. We evaluate Z3(2n) and Z4(2n)

for the ranks 3 and 4, respectively, and confirm that the results of Read match with the
previous results.
Next, the number of connected rank-d tensor invariants made with 2n tensors, written
below ZRc[d,n], can be obtained using the plethystic logarithm (Plog) function. The
Plog function PlogZd(t), denoted Plog[ZR,t,d,n], is defined with the MoebiusMu imple-
menting the Möbius function.

A[p_, v_] := (I Sqrt[p])^v HermiteH[v, 1/(2 I Sqrt[p])]
ZR[t_, d_, n_] = 1;

For[m = 0, m <= 20, m++
{If[OddQ[m],
Phi[m, t_, d_, n_] := (Sum[((2 v)!)^(d - 1)/(v!)^(d)*(m^(d - 2)/2^d)^

v t^(m v), {v, 0, n}]),
Phi[m, t_, d_, n_] := (Sum[(A[m/2, v])^d/(v! m^v) t^(m v/2), {v, 0, n}])]
};

ZR[t_, d_, n_] = ZR[t, d, n]*Phi[m, t, d, n]
]

ZR[d_, n_] := Coefficient[Series[ZR[t, d, n], {t, 0, n}], t^n]
Plog[F_, t_, d_, n_] := Sum[MoebiusMu[i]/i Log[F[t^i, d, n]], {i, 1, n}]
ZRc[d_, n_] := Coefficient[Series[Plog[ZR, t, d, n], {t, 0, n}], t^n]

Table[ZR[3, i], {i, 1, 10}]
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(Out) {1, 5, 16, 86, 448, 3580, 34981, 448628, 6854130, 121173330}

Table[ZR[4, i], {i, 1, 10}]

(Out) {1, 14, 132, 4154, 234004, 24791668, 3844630928, 809199787472, 220685007519070,
75649235368772418}

Table[ZRc[3, i], {i, 1, 10}]

(Out) {1, 4, 11, 60, 318, 2806, 29359, 396196, 6231794, 112137138}

Table[ZRc[4, i], {i, 1, 10}]

(Out) {1, 13, 118, 3931, 228316, 24499085, 3816396556, 805001547991, 219822379032704,
75417509926065404}

B.3 Sage code: Counting from the sum of Kroneckers

in rank d = 3

We provide here a Sage code that recovers the same counting through the sum of con-
strained Kronecker coefficients with even partitions (4.48).
We need the library SymmetricFunctions(QQ) which - as its name suggests - introduces
symmetric functions. The Kronecker coefficient associated with three partitions R, S and
T deduces as the usual Hall scalar product of Schur symmetric functions. In the following,
s(S) is the Schur function associated with the partition S.

s = SymmetricFunctions(QQ).s()
for n in range(1,4) :

Total=0
for R in Partitions(2*n) :

i=0
rep=0
while ( (i < R.length()) & (rep==0) ):

if ( (R.get_part(i)%2) !=0 ):
rep = 1

i=i+1
if (rep ==0) :

for S in Partitions (2*n) :
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j=0
rep2=0
while ( (j < S.length()) & (rep2==0) ):

if ( (S.get_part(j)%2) !=0 ):
rep2 = 1

j=j+1
if (rep2 ==0) :

for T in Partitions (2*n) :
k=0
rep3=0
while ( (k < T.length()) & (rep3==0) ):

if ( (T.get_part(k)%2) !=0 ):
rep3 = 1

k=k+1
if (rep3 ==0) :

a = ( s(S).itensor(s(T)) ).scalar ( s(R) )
Total =Total+a

print "Number of invariants at 2n =", 2*n, "is", Total

(out) Number of invariants at 2n = 2 is 1
Number of invariants at 2n = 4 is 5
Number of invariants at 2n = 6 is 16
Number of invariants at 2n = 8 is 86
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