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Abstract

This thesis focuses on clustering approaches inspired from topological models and an
autonomous hierarchical clustering method. The clustering problem becomes more
complicated and di�cult due to the growth in quality and quantify of structured
data such as graphs, trees or sequences. In this thesis, we are particularly interested
in self-organizing maps which have been generally used for learning topological
preservation, clustering, vector quantization and graph visualization. Our study
concerns also a hierarchical clustering method AntTree which models the ability of
real ants to build structure by connect themselves. By combining the topological
map with the self-assembly rules inspired from AntTree, the goal is to represent data
in a hierarchical and topological structure providing more insight data information.
The advantage is to visualize the clustering results as multiple hierarchical trees and
a topological network.

In this report, we present three new models that are able to address clus-
tering, visualization and feature selection problems. In the �rst model, our study
shows the interest in the use of hierarchical and topological structure through several
applications on numerical datasets, as well as structured datasets e.g. graphs and
biological dataset.

The second model consists of a �exible and growing structure which does
not impose the strict network-topology preservation rules. Using statistical charac-
teristics provided by hierarchical trees, it accelerates signi�cantly the learning process.

The third model addresses particularly the issue of unsupervised feature
selection. The idea is to use hierarchical structure provided by AntTree to discover
automatically local data structure and local neighbors. By using the tree topology,
we propose a new score for feature selection by constraining the Laplacian score.
Finally, this thesis o�ers several perspectives for future work.
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Chapter 1

Context of the work

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.2 Objectives and contributions . . . . . . . . . . . . . . . . . . . 13

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.1 Introduction

Clustering is considered as the most important unsupervised learning problem. It is
a main task of data mining and the common technique that has been used in many
�elds, including machine learning, data mining, pattern recognition, web mining, tex-
tual document collection, image segmentation, biology, etc... [Everitt 2011].

A typical example of the clustering problem is depicted in Figure 1.1. Assuming
that a distribution of input objects in a feature space is given as in Figure 1.1(a). The
problem is now to distribute these objects into di�erent groups such that the objects
in each group carry a common property. It becomes very complicated while no extra
information on object class or label is available. Then what should be the rule to put
an object in a speci�c group? Likely, only similarity among objects becomes useful
in this case. Similarity between two objects is often measured by their respective
distance in the case of continuous data. Therefore, two objects are supposed similar

if they are close to each other in the data space. A desired solution is shown in Figure
1.1(b) where three groups (or clusters): blue, green and red are well separated. The
objects in each group are close together and far apart from the others.

We can re-de�ne the clustering as following: the clustering task consists in group-
ing a set of unlabeled data objects based on similarity such that the objects in the same
cluster (group) are similar to each other and dissimilar to those in the other clusters
[Jain 1999]. In this kind of problem, there is little prior information available about
data, in other words, the labels (pre-classi�ed) are not provided [Everitt 2011]. Due
to the absence of class label, clustering becomes more challenging and complicated.
How can we analyze or validate the clustering results? For clustering quality, many
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(a) Data sample in 2D (b) A clustering solution with 3 clusters

Figure 1.1: Data clustering

criteria such as Davies-Bouldin index [Davies 1979], Dunn index [Bezdek 1995], Rand
index [Rand 1971], Jaccard index [Tan 2005], etc... have been proposed. They mea-
sure various cluster aspects, for example: distance between centroids, cluster density,
etc... Clustering visualization becomes an indispensable step to help in analyzing and
discovering quickly meaningful information of clustering. There are several explorable
tasks of clustering visualization such as:

• how clusters are well de�ned?

• how the clusters are di�erent from each other?

• what the clusters' size is?

• how we can detect the objects belong strongly to the cluster or vice-versa?

Due to the explosive growth in the quantity, quality of data, especially structured
data which is available in form of graphs, trees, sequences, etc..., clustering and
visualization become crucial steps to help data analysis. For example, many practical
problems in biological, social and information systems can be represented by graphs
[West 2000, Bang-Jensen 2008]. An iterative visualization can quickly provide insight
information of clustering results that may suggest the adequacy of the solution and
what further experiments to conduct. In this thesis, we will present a solution for data
visualization. An attractive way to visualize data is to map high dimensional data in
low dimensional space, which is also able to preserve topological properties of the input
space. Furthermore, a hierarchical structure enables to de�ne a relationship between
a pair of objects. Both hierarchical and topological structures are well studied in
the clustering problem. The question is how to combine hierarchical and topological
structures to deal with the clustering problem?
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(a) Topological network:

Self-Organizing Map (SOM)

[Kohonen 2001].

(b) Hierarchical structure: AntTree

[Azzag 2007].

→
(c) Hierarchical and topological model:

SoT implemented the principle of SOM

and AntTree.

Figure 1.2: SoT principle

1.2 Objectives and contributions

This thesis is divided into three parts:

• Part 1: Self-Organizing Trees (SoT)

• Part 2: Growing Self-Organizing Trees (GSoT)

• Part 3: Hierarchical Laplacian Score (HLS)

In the �rst two parts, we don't only focus on the clustering problem, but also on the
problem of clustering visualization. To deal with these two problems at the same
time, we propose two new hierarchical and topological models: Self-Organizing Trees
(SoT) and Growing Self-Organizing Trees (GSoT) which can perform unsupervised
learning, determine cluster con�dence and visualize clustering results as trees. We
will show how these structures are employed when we obtain clusters of various gran-
ularities organized into several levels.

In fact, self-organizing or topological models are based on unsupervised learn-
ing. The principle is to map data from high dimensional space to low dimensional
space which is non-linear and discrete. This map space is often represented in 1D
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(a) Topological network:

Growing Neural Gas (GNG)

[Fritzke 1995b].

(b) Hierarchical structure:

AntTree [Azzag 2007].

→
(c) Hierarchical and topological model:

GSoT implemented the principle of

GNG and AntTree.

Figure 1.3: GSoT principle

or 2D [Kohonen 2001]. This dimensional reduction makes topological models a good
approach for data visualization. On the other hand, hierarchical structures (or trees)
are often used to illustrate data arrangement. Typically, in human perspective, a
hierarchical tree is an e�cient tool and an optimal representation to represent the
nature of data structure [Vicente 2004, Hastie 2009]. In this bias, we are interested
in particularly in AntTree [Azzag 2007] modeling the ability of arti�cial ants to build
automatically complex structures. Due to the self-assembly rules de�ned by AntTree,
this approach can be adaptive to the self-organizing models.

Our goal is to propose two new models which represent data in a hierarchical and
topological structure simultaneously. The advantage of using the hierarchical and
topological structure is to visualize a clustering result as multiple hierarchical trees
and a topological network as example in Figure 1.2 and 1.3. This way provides much
more insights into data structure. Two proposed structures consist of:

• Network (or map) describes the topological space where data will be mapped
discretely.

• Network node (square node) represents a cluster in the topological space. This
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node is called also support or the tree root to which the �rst tree nodes are
going to connect.

• Topological link is created between a pair of network nodes if they are considered
as neighbors because of a certain neighborhood function.

• Tree node (circle node) represents one input object in the map space.

• Hierarchical link is created between a pair of tree nodes if they satisfy a simi-
larity test.

Nevertheless, both structures can be easily exploited by descending from a general
structure, i.e. topological level (network) to a particular part, i.e. any level of hierar-
chical trees. This provides useful information about the clustering and data structure
as well as data topology. The interesting uses of these models in clustering and visu-
alization will be shown in the experiments studied on various types of data such as
vector, image, graph and protein.

The third part of this thesis is devoted to the unsupervised feature selection prob-
lem. All along with clustering, feature selection has got a lot of attention in data
mining. Data often come with large and high dimension and many clustering algo-
rithms are sensitive to high dimensionality. It leads to the curse of dimensionality

[Bellman 2003]. An e�cient way of handling this problem is to select a subset of
relevant features [Liu 1998, Guyon 2006]. As a step in data pre-processing, choosing
appropriate and relevant features brings advantages and e�ects to clustering results
di�erently. It helps in �nding clusters e�ciently, understanding the data better and
reducing data size for e�cient storage, collection and processing.

Feature selection consists in selecting the most discriminative and relevant features
for data analysis. This is a challenge in feature selection research when dealing with
unlabeled data. In literature, Laplacian score is well-known for its ability to re�ect
the underlying manifold structure. In fact, the hierarchical relations between a pair
of objects provided by AntTree may be integrated into the Laplacian score [He 2005]
as hierarchical constraints. By constraining the Laplacian score, we focus on ranking
the relevance of a feature according to its locality preservation. The performance of
this score will be evaluated by both supervised and unsupervised learning methods.

1.3 Organization

This thesis is organized as following:

1. Chapter 2 de�nes the clustering problem in which the research is placed. In
this chapter, we brie�y review some aspects of the clustering problem. Then
we provide some possible approaches. The principles of these approaches are
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highlighted.
In this thesis, we are particularly interested in self-organizing maps which has
several bene�cial properties such as vector quantization and projection; and
hierarchical methods which are an optimal representation of data. Here we will
di�er the proposed models to the other existing methods which share the same
principles in the hierarchical and topological structure.

2. Chapter 3 presents the �rst method called Self-Organizing Trees (SoT) to ad-
dress both the clustering problem and data visualization. It o�ers the ability to
represent the data in a 2D map where data are organized in tree-like structures.
SoT o�ers a simple representation of the dataset allowing visualizing clusters as
multi-hierarchical trees related to each other due to their topological relation-
ship. It provides remarkably more degrees of freedom. This makes SoT a good
tool for clustering and visualization.

3. In Chapter 4, we introduce our second model called Growing Self-Organizing
Trees (GSoT) which is an extension of SoT. As a growing algorithm, GSoT can
be used for learning topological preservation, clustering, vector quantization,
quick data indexation as well as data visualization. Using statistical character-
istics provided by hierarchical trees, GSoT is able to accelerate signi�cantly the
learning process.

4. Chapter 5 presents our work on unsupervised feature selection. Many di�erent
approaches proposed robust scores to evaluate the relevance of each feature. In
this work, the hierarchical relations in the tree structure built by AntTree are
employed as score constraints to improve the performance e�ciency of Laplacian
Score.

5. Finally, this thesis ends up with Chapter 6 where we will sum up all our works
and propose some perspectives extending from these works.
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Clustering generalities
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Clustering have been intensely studied and successfully applied to many applica-
tions in the past several decades. Di�erent approaches have been proposed to deal
with speci�c problems.

Before going into details, we de�ne all the necessary notations in Section 2.1
and data pre-processing before learning in Section 2.2. We resume some similarity
measures in Section 2.3.We highlight some clustering approaches which are the most
adapted or closest to our algorithms in Section 2.4. To compare the running time
of these methods, the complexity of each method will be presented in Section 2.5.
Section 2.6 presents some benchmark criteria to measure clustering quality. Finally,
this chapter comes up with a conclusion.
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2.1 Notations

In this thesis we assume that a set of N objects X are given. An object i (where
i = 1, .., N) is described by a vector containing a set of d real values (features), thus
an object i is represented by the feature vector xi = (f1i , ..., fdi) ∈ Rd. Each object
i is thus represented as one data point xi in a feature space X . The clustering task
is to group a set of data objects based on similarity (or a distance measure) such
that the objects in the same group are similar to each other and dissimilar to those
in the other groups. The number of clusters is denoted by K, thus we denote that
C = {C1, .., CK} is a random variable for cluster assignments. Each cluster Ck is often
associated with a weight vector or prototype wk.

2.2 Data pre-processing

Data pre-processing plays a very important role in many learning algorithms
[Pyle 1999, Famili 1997]. It has a signi�cant impact to learning results.

2.2.1 Data normalization

In practice, many methods work better after the data has been normalized
[Shalabi 2006]. In our research, our datasets are all normalized to minimize redun-
dancy and dependency between data. Normalization scales all numeric features in
the range [0,1]. Two below formulas are usually well-known for data normalization

frnew =
fr − fmin
fmax − fmin

(2.1)

where fmin and fmax are respectively the minimal and maximal values of each feature
r = 1, .., d

xnew =
x− µ
σ

(2.2)

where µ is the mean of all input vectors; and σ their standard deviation.

µ =
1

N

N∑
i=1

xi (2.3)

σ =

√√√√ 1

N

N∑
i=1

(xi − µ)2 (2.4)
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2.2.2 Spectral clustering

Spectral clustering [Belkin 2001, Kannan 2004, Luxburg 2007] is known as a pre-
processing step to change the data representation. Spectral clustering techniques
make use of the spectrum including eigenvectors and eigenvalues of the similarity
matrix of the data to perform dimensionality reduction before clustering in fewer
dimensions. Spectral clustering is usually applied on graphs where the similarity
between a pair of objects is not explicitly available. But what is a graph? Which
properties does graph possess?

2.2.2.1 Notations and de�nition

Graph [West 2000, Bang-Jensen 2008] is a combinatorial object described by degree,
connectedness, path and edge weight. We denote G(V,E) an undirected graph, a set
of vertices V and a set of edges E. A direct link between two vertices vi and vj ∈ V
creates an edge (vi, vj) ∈ E. The adjacency matrix of G on N vertices is de�ned as

W (i, j) =

{
1 if (vi, vj) ∈ E and i 6= j,∀i, j = 1, .., N

0 otherwise.
(2.5)

The adjacency matrix contains only binary information of the connectedness between
vertices of G. The other information that can be obtained is the degree. The degree
of vertex vi denoted by deg(vi) is the number of edges incident to the vertex. The
degree matrix is a diagonal matrix de�ned as:

D(i, j) =

{
deg(vi) if i = j, ∀i = 1, .., N

0 otherwise.
(2.6)

We associate to each cluster Ck a prototype denoted L(Ck) whose expression is
de�ned as follows:

L(Ck) = arg max
i=1,..,nCk

(deg(vi)) (2.7)

where the local degree deg(vi) is the number of internal edges incident to vi; and nCk
is the cardinality of Ck.

In the graph context, we associate to each wk a prototype denoted Lk whose
expression is de�ned as follows:

Lk = arg max
i=1,..,nCk

(deg(vi)) (2.8)

where the local degree deg(vi) is the number of internal edges incident to vi; and
nCk is the cardinality of Ck. In Ck, the set of internal edges in the graph is Ek
(∀i, j = 1..nCk , Ek = {(vi, vj) ∈ E}). The expression for the local degree of node vi is
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as follows:

deg(vi) =

nCk∑
j=1

a(i, j) (2.9)

where

a(i, j) =

{
1 if (vi, vj) ∈ Ek and vi, vj ∈ Ck
0 otherwise.

2.2.2.2 Laplacian matrix

The degree and adjacency matrices are not considered as a metric that explicitly
calculate either an appropriate similarity or distance measure. Thus, the Laplacian
matrix [Chung 1997, Luxburg 2007] is used. The Laplacian matrix denoted by ML is
a representation of graph through the adjacency and degree matrix from 2.5 and 2.6.

• The unnormalized Laplacian matrix

ML = D −W (2.10)

• The normalized Laplacian matrix

ML,normalize = D−
1
2MLD

− 1
2 (2.11)

since the degree matrix D is diagonal, its reciprocal square root D−1/2 is simply
de�ned as a diagonal matrix, having diagonal entries which are the reciprocals
of the positive square roots of the corresponding positive diagonal entries of D.

The study of the Laplacian called spectral graph theory has pointed out that some
of the underlying structure can be seen in the properties of the Laplacian. These
properties are available in the eigenvalues and eigenvectors of the Laplacian.

MLe = λe (2.12)

where e is an eigenvector and λ is an eigenvalue.
The Laplacian and its eigenvectors can be used to describe many properties of

graphs [Chung 1997, Luxburg 2007]. A combination of eigenvectors is enough to
form a sub-space representing all graph properties. In this sub-space, it is possible to
compute vertex similarity or geometric distance.

Following spectral graph theory, we take the �rst Ne (Ne ≤ N) smallest eigenvec-
tors of the Laplacian matrix.

Xnew =

eT1 , eT2 , · · · , eTNe

 (2.13)
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where ∀i = 1, .., Ne and ei ∈ RN . Instead of a N × N dimensional space, a N × Ne

dimensional one is used. A row xi ∈ Xnew illustrates a vertex vi ∈ V . Thus we have
reduced and mapped a graph G into Xnew where the similarity between two vertices
vi and vj is de�ned as the distance between their respective vectors xi, xj.

From this moment in graph context, we consider three notations: an object i, a

vector xi and a vertex vi which are identical.

2.2.3 Feature selection

With the goal of data visualization, feature selection is addressed to reduce the large
number of dimension. In the unsupervised framework, it is an important challenge
due to the absence of class labels that would guide the search for relevant informa-
tion. Feature selection algorithms can be divided into three categories: the �lter, the
wrapper and the hybrid models [Kohavi 1997, Yu 2003, Guyon 2006].
The wrapper principle is shown in Figure 2.1. Wrapper methods always require a

Figure 2.1: Main wrapper steps for unsupervised feature selection

learning model to train each new subset which is generated in certain way. The error
rate of the model will be the score for that subset. These processes will be repeated
until stopping criteria are ful�lled or a subset that is considered as the best one is
found. As wrappers train a new model for each subset, the wrappers are usually
computationally expensive [Kohavi 1997] and costly to be applied on large datasets;
however they usually provide the good performing feature subset for that particular
model.

On the other hands, the �lter principle is seen in Figure 2.2. Filter methods
use a measure instead of the error rate to score each feature. Revelant features often
return a good score. A number of features will be selected to be trained by a model
that will perform an evaluation of the selection. Without a learning model to train
each subset, �lters are less computationally costly than wrappers.

In the next sub-sections, we review brie�y several well-known �lter methods, but
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Figure 2.2: Main �lter steps for unsupervised feature selection

we �rstly give out the necessary notations for the feature selection problem. We use
f1, f2, ...fd to denote the d features. Let fri denote the i-th sample of the r-th feature,
i = 1, .., N and r = 1, .., d, thus the row vector is de�ned as:

fr = (fr1 , ..., frN )T

2.2.3.1 Max Variance

Data variance is perhaps the simplest way to select relevant features. This crite-
rion essentially projects the data points along the dimensions of maximum variances
[He 2011]. A high variance indicates a large spread in the data distribution. We
remark that data objects in the same group are often close in term of distance. The
large spread indicates that there are data objects of di�erent groups. As we don't
have any information about data class, features that give high variances can be taken
into account to best describe the input data. The variance of a feature can be written
as

var(fr) =
1

N

N∑
i=1

(fri − µr)2

where µr = 1
N

∑N
i=1 fri

2.2.3.2 Laplacian Score

Laplacian score is a recently proposed unsupervised feature selection algorithm
[He 2005]. Laplacian Score tends to select relevant features with stronger locality
preserving power or its consistency with the manifold structure and with large vari-
ances, which are more representative of the high-dimensional data. In order to ap-
proximate the manifold structure, one can construct a nearest neighbor graph k-NN.
The importance of a feature can be thought of as the degree to which it respects this
graph structure. A good feature should be the one on which two data objects are
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close to each other and they are neighbors. Selecting features with LS is to minimize
the following score:

Lr =

∑
i,j(fri − frj)2Sij∑
i(fri − µr)2Dii

(2.14)

There are many choices of the weight matrix S. Let N (xi) denote the set of k nearest
neighbors of xi. The simplest de�nition of S is as follows:

Sij =

{
1 xi ∈ N (xj) or xj ∈ N (xi)

0 otherwise
(2.15)

Let D be a diagonal matrix, Dii =
∑N

j=1 Sij. When Sij = 1 if xi and xj are neighbor,
a direct link is created between these two objects. Then a nearest neighbor graph
is de�ned as: a graph composes of the input objects as its set of vertices and their
neighbor link as its set of edges [Eppstein 1997].

We develop LS by following some algebraic steps as follows:∑
i,j

(fri − frj)2Sij =
∑
ij

(f 2
ri

+ f 2
rj
− 2frifrj)Sij

= 2
∑
ij

f 2
ri
Sij − 2

∑
ij

friSijfrj = 2fTr Dfr − 2fTr Sfr = 2fTr Lfr (2.16)

where L = D − S, L is the Laplacian matrix.

µr =
1

N

N∑
i=1

fri =
N∑
i=1

(fri
Dii∑
iDii

)

=
1∑
iDii

(
N∑
i=1

friDii) =
fTr D1

1TD1
(2.17)

where 1 is the all-ones vector of length N . A new feature vector is de�ned as:

f̃r = fr −
fTr D1

1TD1
(2.18)

Thus, from 2.17 and 2.18, we have∑
i

(fri − µr)2Dii = f̃r
T
Df̃r (2.19)

As consequence from 2.16 and 2.19, we have:

Lr =
fTr Lfr

f̃r
T
Df̃r

=
f̃r
T
Lf̃r

f̃r
T
Df̃r

(2.20)
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2.3 Similarity measures

It is most common to calculate the similarity between two objects using a distance
measure de�ned on the input space. Since similarity is fundamental to determine a
cluster, the distance measure must be chosen carefully. The choice of the distance
is very important for the clustering method depending on the data type [Jain 1999,
Everitt 2011].

• Euclidean distance, in Rd, describes the geometric distance between two objects.

d(xi,xj) =
d∑
r=1

√
(fri − frj)2 (2.21)

• Mahalanobis distance is a descriptive statistic that provides a relative measure
of a data object's distance from a common point.

d(xi,xj) =
d∑
r=1

√
(fri − frj)2

σ2
r

(2.22)

where σr is the standard deviation of the fri and frj over the sample set.

• Manhattan distance is a measure between two objects, which is the sum of the
absolute di�erences of their vector in the data space.

d(xi,xj) =
d∑
r=1

|fri − frj | (2.23)

• Chebyshev distance (or maximum distance) between two vectors is de�ned as
the greatest of their di�erences along any feature dimension.

d(xi,xj) = max
r=1,..,d

(|fri − frj |) (2.24)

• Cosine similarity is a measure of similarity between two vectors of an inner
product space that measures the cosine of the angle θ between them.

d(xi,xj) = cos(θ) =
xTi xj
‖xi‖‖xj‖

(2.25)

In this work we use the Euclidean distance in Equation 2.26 which is the most adapted
for our algorithms and for the nature of the selected datasets.

d(xi,xj) =
d∑
r=1

√
(fri − frj)2 = ‖xi − xj‖ (2.26)
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2.4 Clustering algorithm categories

The taxonomy of clustering techniques can be described as following [Jain 1988,
Jain 1999]:

• Agglomerative vs divisive: An agglomerative approach begins with each object
in a distinct cluster and successively merges clusters together until a stopping
criterion is ful�lled. A divisive method begins with all learning objects in a
single cluster and performs splitting it into smaller clusters until a stopping
criterion is met.

• Deterministic vs stochastic: A deterministic model is used in that situation
wherein the result is established straighforwardly from a series of conditions. In
a situation wherein the cause and e�ect relationsip is stochastically or randomly
determined the stochastic model is used.

• Incremental vs non-incremental: This issue arises when the data set to be clus-
tered is in high dimension. It a�ects directly to execution time or memory
space. The increment is able to reduce the number of objects examined during
execution or reduce the size of data structures used in the algorithm operations.

In the next sections of this chapter we will introduce the main families of clustering
algorithms:

• Centroid-based clustering algorithms,

• Hierarchical clustering algorithms,

• Density-based clustering algorithms,

• Distribution-based clustering,

• Hybrid clustering algorithms.

2.4.1 Centroid-based clustering algorithms

The centroid-based clustering algorithms aim to group N observations into a number
of clusters in which each observation belongs to the cluster with the nearest mean.
Clusters are often represented by a weighted vector (or prototype). The goal is now to
determine K clusters (C = {C1, .., CK} and K ≤ N) into which N objects are divided
in the way that all objects found in a cluster Ci (i = 1, .., K) are similar. A similarity
measure (or a distance measure) is a metric on the feature space used to quantify
data similarity. The clustering problem is known as an optimization problem of
NP-hard, and thus the common approach is to search only for approximate solutions.
One of the most well-known algorithms of this family is K-means.
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2.4.1.1 K-means algorithm

The most common example of clustering algorithms is K-means [Jain 1988]. Clusters
are represented by a mean vector called weighted vector or prototype wk, where
k = 1, .., K, which may not necessarily have a physical point in data space. Thus
we can re-de�ne the clustering problem as an optimization problem: �nd the cluster
centers such that the intra-class variance is minimized, i.e the sum of squared distances
from each object within a cluster to its corresponding prototype. To minimize intra-
class variances means to minimize the quantization error expressed as following:

error = arg min
K∑
k=1

nCk∑
i=1

‖xi −wk‖2 (2.27)

where nCk is the cardinality of cluster Ck.
The minimization of Equation 2.27 is the known problem: minimize the quantiza-

tion error of data gathering within each cluster [Everitt 2011]. To minimize this error,
each object should be assigned to the nearest cluster center. For each assignment, the
prototype vector will move toward the assigned object. The quantization error will
be minimized step by step, iteration by iteration. In the mean time, K-means also
tries to maximize the distance between a couple of two centroids. The algorithm is
resumed in Figure 2.3 and written as following:

Algorithm 1 K-means algorithm
1: initialize randomly K prototypes
2: repeat

3: for i = 1 to N do

4: k = arg mink=1,..,K ‖xi −wk‖2
5: Ck = Ck ∪ xi // assign xi to cluster Ck
6: end for

7: for k = 1 to K do

8: wk = 1
nCk

∑nCk
j=1 xj // update prototype k, where nCk is the cardinality of

cluster Ck
9: end for

10: until stopping criterion has been ful�lled

K-means is the heuristic algorithm which has few defaults: it converges to a local
optimum, and the result depends on K and the initial prototypes. Therefore, some
variants have been developped including topological models for example: SOM and
Neural Gas that give more advantages, because of the topological preservation.
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(a) Initial step: Data distribution

is given and K = 3 initial pro-

totypes are randomly generated

within the data space.

(b) Assignment step: The clus-

ters are formed by assigning every

single object to the cluster whose

prototype is the nearest to this

object.

(c) Update step: The prototypes

are updated and move to the lo-

cal minimum and to cover data

distribution.

(d) The algorithm repeats until

convergence or a stopping crite-

rion has been ful�lled.

Figure 2.3: Clustering with K-means

2.4.1.2 Self-Organizing Map

Based on K-means, SOM proposed by Kohonen [Kohonen 2001] is a type of arti�cial
neural network for unsupervised learning. SOM has the ability of creating spatially
organized internal representations of input objects and their abstractions. As in
Figure2.4, SOM produces a low-dimensional (1D or 2D) discretized representation
(called a map or network) from the high-dimensional space of the input objects.
SOM uses a neighborhood function to preserve the topological properties of the input
space. SOM forms a discretely topological map where similar objects are grouped close
together and dissimilar ones apart. Like most arti�cial neural networks [Haykin 1998],
SOM has two-fold objectives:

• Training map (projection): build the topological map using the input objects.
A map consists of a number of network nodes arranged according to a structure
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de�ned a priori. The usual arrangement of network nodes is a 1D or 2D, hexag-
onal or rectangular grid. Associated with each network node is a prototype (or
a weight vector) of the same dimension as the input data objects.

• Mapping (quantization): put the input objects into a non-linear, discrete map.
Vector quantization techniques encode a data object in a prototype such that
the distance from this object to the best match prototype is closest. This process
will respect the neighborhood function to preserver data topology. Data objects
which are similar into the input space will be put onto neighbor network nodes.

Figure 2.4: SOM principles: mapping and quantization

At the start of the learning, a discrete topological map of size p × q = K is ini-
tialized. We denote C = {C1, .., CK} where Ci (i = 1, .., K) is a network node. C is
associated with W = {w1, ..,wK} where wi is the prototype associated with the net-
work node Ci. For each pair of network nodes Cc and Cr on C, their mutual in�uence
is de�ned by the function KT (δ(Cc, Cr)) [Elghazel 2009]. A Gaussian function is a
common choice for K that will shrink with time. Due to the use of this function K, in
the training the whole neighborhood network nodes move along in the same direction
towards the learning data, similar data tend to be put in the adjacent network nodes
[Kohonen 2001]. δ(Cc, Cr) is de�ned as the shortest distance (Euclidean distance, see
Equation 2.26) between two network nodes (δ(Cc, Cr) = mini=1,..,nc;j=1,..,nr ‖xi − xj‖2
where nc, nr are respective the number of data grouped in the network node Cc, Cr).
T represents the temperature function that controls the size of the neighborhood and
the algorithm convergence. Assume that Niter is the number of iterations and ith is
the current iteration; Tmax and Tmin are respectively denoted for the initial and �nal
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temperature, the expression to calculate T is as following:

T = Tmax(
Tmin
Tmax

)
ith

Niter−1

We present two versions of SOM algorithm: stochastic (Algorithm 2) and batch (Al-
gorithm 3), both aim to minimize the cost function presented in Equation 2.28.

R(φ,W) =
N∑
i=1

K∑
k=1

KT (δ(φ(xi), Ck))‖xi −wk‖2 (2.28)

where φ(xi) is the assignment function, or more presicely, φ(xi) returns the network
node to which xi get assigned.

The learning steps are the same as K-means:

• Initialization: initalize the map structure, i.e: the number of network nodes (or
K clusters), the arrangement shape: hexagonal or rectangular and the initial
prototypes.

• Assignment: assign data objects to the nearest prototype (best match unit).
This assures that the cost function R(φ,W) is minimized in regard to the as-
signment function φ assuming that the prototype vectors are constant. Addi-
tionally, this step maps data into network nodes.

• Update: re-compute the prototype vectors. The prototypes and their neighbors
move along together towards the assigned data such that the map tends to
approximate the data distribution. It includes minimizing the cost function
R(φ,W) in regard to the prototypes vectors assuming that data are all assigned
to the best match unit.

Unlike the stochastic version, the batch one has taken into account the neighborhood
function in the assignment step. This is to minimize rigorously the cost function in
Equation 2.28.
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Stochastic SOM

Algorithm 2 Stochastic SOM version
1: initialize K prototypes and W
2: while stopping criteria have not been ful�lled do
3: for i = 1→ N do

4: φ(xi) = arg mink=1,..,K ‖xi − wk‖2 // Find the best match unit to the

current selected vector.

5: for all Cr is a neighbor of φ(xi) (including φ(xi) itself) do
6: wr = wr+KT (δ(Cφ(xi), Cr))(xi−wr) // Update the nodes in the neigh-

borhood of φ(xi) (including the node φ(xi) itself) by pulling them closer to

the input vector.

7: end for

8: end for

9: end while

Batch SOM

Algorithm 3 Batch SOM version
1: initialize K prototypes and W
2: while stopping criteria have not been ful�lled do
3: for i = 1→ N do

4: φ(xi) = arg mink=1,..,K KT (d(xi,wk))‖xi − wk‖2 // Find the best match

unit to the current selected vector.

5: Cφ(xi) = Cφ(xi) ∪ {xi} // Put xi into cluster φ(xi)

6: end for

7: for k = 1→ K do

8: wk =
∑K
r=1KT (δ(Cc,Cr))

∑nCr
j=1 xj∑K

r=1KT (δ(Cc,Cr))nr
// Update prototype vectors where nr is the

number of data found in cluster r

9: end for

10: end while

2.4.1.3 Neural Gas

As a robustly converging alternative to the K-means, Neural Gas [Martinetz 1991,
Fritzke 1991] is inspired by the SOM. While SOM map dimensionality must be chosen
a prior; depending on the data distribution, the topological network of neural gas may
have di�erent arrangement. Neural Gas is more �exible network capable of quantizing
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tological data and learning the similarity among the input objects without de�ning
a network topology. Unlike SOM, the adaptation strength in Neural Gas is constant
over time and only the best match prototype and its direct topological neighbors are
adapted.

Given a network of K clusters C = {C1, .., CK} associated with K prototypes
W = {w1, ..,wK}. They are adapted independently of any topological arrangement
of the network nodes within the network. Instead, the adaptation step is a�ected by
the topological arrangement within the input space. For each object xi is selected,
prototypes will be ajusted by distortions D(xi, Ck) = ‖xi−wk‖,∀k = 1, .., K. The re-
sulting adaptation rule can be described as a "winner take most" instead of a "winner
take all" rule [Fritzke 1991]. The winner network node denoted by k0 is determined
by the assignment function k0 = φ(xi) = arg mink=1,..,K ‖xi−wk‖. The network node
adjacent denoted by k1 to the winner node develops connection between each other
which is manipuled by a matrix S representing the neighborhood relationships among
the input data.

Sij =

{
1 if a connection exists between Ci and Cj (∀i, j = 1, .., K, i 6= j

0 otherwise

When an object is selected, the prototypes moves toward this object by adjusting
the distortion D(xi, Ck0). Furthemore, it is in the way controlled by a neighborhood
function KT . In [Fritzke 1991], this function is �xed, e.g. KT = expknnk/T where
knnk is the number of neighborhood network nodes of Ck. This a�ects directly to the
adaptation step for wk which is determined by:

wk = wk + εKT (xi −wk)

To capture the topological relations between the prototypes, each time an object is
presented, the connection between k0 and k1 is established by setting Ck0,k1 from zero
to one. Each connection is associated with an "age" variable. Only the connection
between k0 and k1 is reset, the other connections of k0 age, i.e. their age increment.
When the age of connection exceeds a speci�c lifetime Maxage, it is removed, i.e. Cij
is re-set to zero. The way to update the age of the connections is to increase with
each incoming input object is learnt. Finally, Neural Gas can be summarized by the
following algorithm:
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Algorithm 4 Neural Gas algorithm
1: Initialize K prototypes and set all Sij to zero
2: for all xi ∈ X do

3: determine the sequence (Ck0 , Ck1 , ..., CkN−1
) such that

‖xi −wk0‖ < ‖xi −wk1‖ < .. < ‖xi −wkK−1
‖

// wk0 is the best match prototype, i.e the nearest prototype; wk1 is the

second nearest prototype to xi
4: for all Cj with Sk0,j == 1 do
5: wj = wj +εKT (xi−wj) // perform an adaptation step for the prototypes

6: end for

7: if Sk0,k1 == 0 then
8: Sk0,k1 = 1 // create a topological connection between Ck0 and Ck1
9: agek0,k1 = 0 // set age for this connection

10: end if

11: for all Cj with Sk0,j == 1 do
12: agek0,j = agek0,j + 1 // increase the age of all connections of k0 by one

13: if agek0,j > Maxage then

14: Sk0,j = 0 // remove all connections of k0 which exceeded their age

15: end if

16: end for

17: end for

In these two algorithms, stopping criteria can be either:

• a number of iterations

• a threshold for the quantization error.

2.4.1.4 Growing Neural Gas

The incremental variant of Neural Gas [Fritzke 1995a, Fritzke 1995b], Growing Neu-
ral Gas (GNG), is introduced, which is able to learn the important topology in the
data. This method has no input parameters which change over time and is able to
continue learning, adding network units and connections. As an incremental vari-
ant of Neural Gas, GNG inherits its principle; however it does not impose the strict
network-topology preservation rule. The network incrementally learns the topologi-
cal relationships inherent in the dataset, and continues until a stopping criterion is
ful�lled. Before learning, only K = 2 prototypes are initialized. Step by step, after a
certain number of iterations (called epoch), a new network node is successively added
into the topological network. But how to add a new network node? Now, this relates
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to quantization error. In the clustering problem, the goal is always to minimize the
quantization error of datasets or data within the clusters. Therefore, the cluster that
provides a high value of quantization error is not a good one. We should divide this
cluster into smaller clusters. GNG �nds the two clusters Cp and Cq which have the
highest quantization error. Then a new node is inserted halfway between these two
nodes by the following expression:

wnew =
1

2
(wp −wq) (2.29)

The node insertion will be repeated until a stoping criterion is ful�lled.

2.4.2 Hierarchical clustering algorithms

Hierarchical clustering methods [Vicente 2004, Jain 1999] share the same principle
based on the similarity between a couple of objects. The intuition is that objects are
more related to nearby objects than to objects farther away. A hierarchical structure
(tree) will be formed according to di�erent similarities. These algorithms do not
provide directly a clustering of the data set; however, a data hierarchy is provided.

2.4.2.1 Agglomerative hierarchical clustering

Agglomerative hierarchical clustering (AHC) generates a hierarchical binary cluster
tree or dendrogram [Hastie 2009]. A dendrogram consists of many links that connect
data objects. This algorithm is a bottom-up approach:

Figure 2.5: Example of the AHC structure

• Initially all objects represent a separate cluster
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• Successively, a pair of clusters is merged into a new cluster according to their
similarity.

• The algorithm proceeds until a stopping criterion is ful�lled. Stopping criterion
can be distance criterion where the merge clusters are too far apart; or number
criterion where a number of clusters has been reached.

The very simple algorithm is presented in Algorithm 5. The nearest clusters in Line
2 can be variously de�ned as:

• Single-linkage: the link between two clusters is made by a single pair of ob-
jects that are closest to each other. The shortest of these links that remains
at any step causes the fusion of the two clusters whose objects are involved
[Hastie 2009].

d(Ci, Cj) = min
x∈Ci,x′∈Cj

d(x,x′)

• Complete-linkage: the link between two clusters contains all object pairs, and
the distance between clusters is equal to the distance between those two objects
that are farthest away from each other. The shortest of these links that remains
at any step causes the fusion of the two clusters whose objects are involved
[Everitt 2011].

d(Ci, Cj) = max
x∈Ci,x′∈Cj

d(x,x′)

• And the other distances that have been presented in Section 2.3 can be employed
to build the AHC structure.

Algorithm 5 AHC algorithm
Input: Each objects x1, ..,xN ∈ X is in its own cluster C1, .., CN
1: repeat

2: merge the nearest clusters involving Ci and Cj
3: until only one cluster is left

2.4.2.2 Minimum Spanning Tree

In the graph context, we assume that a undirected and weighted graph with a
set of vertices and edges is given. A spanning tree of this graph is a sub-graph such
that it �nds the way to connect all the vertices using the given set of edges. Thus,
a graph can have many di�erent spanning trees. A minimum spanning tree (MST)
is the spanning tree having the lowest sum of the weights of the edges in spanning
trees.
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Algorithm 6 MST: Prim's algorithm
Input: A set of objects X and d(xi,xj) is the distance between xi and xj ∈ X
1: Xnew = {xi} // where xi is randomly initialized and i = 1, .., N

2: tree = {}
3: repeat

4: for all xi ∈ Xnew do
5: xj = arg min∀xj 6∈Xnew d(xi,xj) // �nd xj which has the shortest distance

to xi and xj has not yet found in Xnew
6: Xnew = {xj} ∪ Xnew // add xj to Xnew
7: tree = {(xi,xj)} ∪ tree // add (xi,xj)) to tree

8: end for

9: until Xnew == X // Xnew contains every object of X

In the clustering context, if we consider data objects as graph vertices, links
between a pair of objects as graph edges, and distances between a pair of objects as
graph weights. MST structure can be considered as a hierarchical tree based on data
proximity. More precisely, it �nds a subset of the links that forms a tree. A MST
includes every input objects such that the total distance in the tree is minimized.

In MST structure, there is only distance metric between data, there is no notion
of cluster prototype or centroid though. However, the main principle is that the
clusters should be far away from each other, therefore, larger distances should be
penalized. Ideally, to �nd K clusters [Grygorash 2006], the K− 1 longest links in the
tree have to be removed as example in Figure 2.6. There are two common techniques
to build MST: Prim [Prim 1957] and Kruskal [Kruskal 1956]. We present Prim's
algorithm in Algorithm 6.
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(a) Problem: Find K = 3 clusters (b) MST structure building using Algo-

rithm 6: the shortest path is in blue

(c) Finding the K−1 longest links (red)
in the obtained MST structure.

(d) K = 3 clusters are formed

Figure 2.6: MST for clustering

2.4.3 Hybrid clustering algorithms

Hybrid algorithms usually refer to the ones that combine di�erent approaches to solve
a speci�c problem. In this thesis, the study concerns hybrid algorithms providing hi-
erarchical and topological structure for clustering and visualization. Of course, the
idea of creating hierarchical and topological networks is not new. Finding hierarchical
relations among the input data can be addressed conveniently within the data topol-
ogy. Recenlty, many tree-structured variants of SOM or GNG have been developped.
A tree-structured representation provides remarkably more degrees of freedom to an-
alyze input data. It allows to compare directly the similarity between data objects in
the hierarchical structure.

The methods are di�erent from each other in many features. In this section, we
just discuss about the main principles and the way of building the hierarchical and
topological structure of these methods. In Table 2.1 we make a comparison of the
hierarchical and topological approaches. The aspects to compare are network size,
hierarchy level, number of output trees, type of tree node and number of data gath-
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ering in each tree node. As it can be noted in this table, only SoT and GSoT output
multiple trees while the others build one single tree.

Method Network Hierarchy Trees Node type # Data/node

GH-SOM variant layers/maps single vector single

S-TREE �xed prototypes single vector variant

SOM-AT �xed data single attribute single

TreeSOM �xed prototypes / data single vector variant

TS-SOM variant layers/prototypes single vector single

HOGNG variant layers single vector variant

TreeGNG variant prototypes single vector variant

SoT �xed data multiple vector single

GSoT variant data multiple vector single

Table 2.1: Numerous features in structure of di�erent hierarchical and topological
methods

2.4.3.1 Growing Hierarchical Self-Organizing Maps

Growing Hierarchical Self-Organizing Maps (GH-SOM) [Dittenbach 2000] proposed
a hierarchical structure of multiple layers where each layer consists of a number of
independent self-organizing maps (Figure 2.7). Each layer is exactly a SOM map.
The model starts with a virtual layer 0 which consists of only one single network
node initialized as the average of all input data. The training process basically con-
tinues with the layer 1 which must be initalized a prior. After a certain number of
training iterations, the network node with the highest intra-class variance is selected.
In between this network node and its most dissimilar neighbor in terms of similarity
(or distance measure), either a new row or a new column of network nodes is inserted.
This new map will be added to the hierarchy as the next layer and the input data
mapped on the respective layer are self-organized in this new map. This principle is
repeated with any further layers until the quantization error has reached a thresh-
old. In this method, the hierarchy represents map evolution during the unsupervised
training process.

2.4.3.2 S-Tree

S-TREE [Campos 2001] is used for unsupervised learning to construct a tree-
structured model. S-TREE divides the input space into a nested structure which
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Figure 2.7: GH-SOM structure extracted from [Dittenbach 2000]

corresponds to a binary tree (Figure 2.8). Each tree node is associated with a proto-
type vector. The learning begins with the root node. Each input object is traversed
with a search from the root to the leaf node. At each internal node, a test is per-
formed to compare the input vector to the prototypes of the two child nodes and then
select the child node whose the prototype is the closest to this object. After a leaf
node has been found, S-TREE performs a test to decide whether the tree node will
be modi�ed. If the distortion at the winning leaf node is too great, this node will be
splitted. If the tree has reached its maximum size, the tree will be pruned.

2.4.3.3 Self-Organizing Map of Attribute Trees

Self-Organizing Map of Attribute Trees (SOM-AT) [Peura 1999] is based on adjusting
schemes for attribute trees (Figure 2.9). In the input, the standard vectors are
replaced by attribute trees. The key idea is based on subtree indexing: subtrees are
recursively represented and matched according to their topological descriptors. The
goal is to maximize the number of matched branches and not to violate the structure
of the input trees by looping or stretching.

2.4.3.4 TreeSOM

TreeSOM [Samsonova 2006] represents SOM map as a consensus tree (Figure 2.10)
which represents an average of a set of trees with frequencies of occurrence of its
branches compared to the set of all trees representing reliable clusters as subtrees. In
this method, only the leaf nodes may get many data elements, and other nodes none
at all.
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Figure 2.8: S-TREE structure extracted from [Campos 2001]

2.4.3.5 Tree-Structured Self-Organizing Maps

Tree-Structured Self-Organizing Maps (TS-SOM) [Koikkalainen 2007] has apparantly
the same idea with GH-SOM for the use of layers to build a hierarchy (Figure 2.11).
Instead self-organzing maps are built at each layer, each tree node of TS-SOM cor-
responds to the prototype which is associated with a subgroup of data. Similar to
GH-SOM, the centroid on the layer 0 de�nes the mean of all data. Then the next layer
l will be generated with nl−1× 2D network nodes where D is the map dimension and
usually, D = 1 or 2; and nl−1 is the number of network nodes in the previous layer.
The training is repeated layer by layer using knowledge about the prototypes of the
frozen layer in the assignment on the next layer. The assignment is restricted to the
small set of objects that are linked to the prototypes and its neighbors on the previ-
ous level. As a signi�cant advantage of the TS-SOM, this reduces the computational
complexity.

2.4.3.6 Hierarchical Overlapped Growing Neural Gas

In Hierarchical Overlapped Growing Neural Gas (HOGNG) [Cao 2003], the network
(Figure 2.12) is initialized with just one layer called the base layer. The base layer
is trained using the unsupervised GNG algorithm. Having completed the learning in
the base layer, a new layer called SGNG is created for each node in the base layer.
The learning process continues for each layer consisting in a small group of data given
by the base layer. The SGNG network consists of a hidden layer and an output layer.
The hidden layer of each SGNG network in the second level is initialized using the
values of its base layer unit (i.e., root unit) and the direct topological neighbors of
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Figure 2.9: SOM-AT structure extracted from [Peura 1999]

Figure 2.10: TreeSOM structure extracted from [Samsonova 2006]

the base layer unit, with their connections duplicated.

2.4.3.7 TreeGNG

TreeGNG [Doherty 2005] (Figure 2.13) extends the GNG algorithm by maintaining a
time history of the learned topological mapping. In (i), a network is initialized with
two nodes linked by a single topological connection. The tree consists of a single root
node R. In (ii), following a period of standard GNG dynamics, the dashed connection
is deleted from the GNG network. As this connection is deleted in (iii), the tree splits
and node R grows two children A and B to represent the increase in the number of
tree nodes. A growth window is opened for node R. The step repeats until a stopping
criterion has been ful�lled. From (iv) to (viii), the tree structure expands more nodes
and the leaf nodes represent obtained clusters.
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Figure 2.11: TS-SOM structure extracted from [Koikkalainen 2007]

Figure 2.12: HOGNG structure extracted from [Cao 2003]

Figure 2.13: TreeGNG structure extracted from [Doherty 2005]
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2.4.4 Bio-inspired clustering algorithms

Bio-inspired algorithms belong to a category of algorithms that imitate the way nature
performs. Recently this category has been quite popular, since numerous problems
can be solved without rigorous mathematical approaches.

In DNA computing [Adleman 1994, Amos 2005], self-assembling models concern
the sequential construction of a given graph, referring to the Accretive Graph Assem-
bly Problem (AGAP) [Reif 2005, Angelov 2006]. An AGAP instance is a triplet (i.e.
a graph GA with weighted edges, a seed vertex in GA and a system temperature) for
which one determines if a vertex sequence exists from the seed to build a graph. The
edge weights in�uence the attraction and repulsion forces for a given temperature.
After stabilizing the system, an assembled sub-graph is obtained. In some studies, the
graph structure is determined in advance, and the problem to be solved is �nding a se-
quence of actions to build the target graph [Garzon 1999, Danos 2005, Danos 2007].

In robotics, interesting studies consider "modular robots", as in [Murata 1994],
where complex shapes can be achieved, or the Swarm-Bot project [Mondada 2004],
where collective robot assemblages increase their abilities to drag objects or cross
empty spaces. A recent work surveyed this topic [Groÿ 2007].

The self-assembly behavior of individuals can be observed in several insect species,
including ants and bees [Anderson 2002]. This biological phenomenon is a partic-
ular case of self-organization that represents the minimum assembly of two sim-
ilar entities with the same connecting mechanisms without human intervention
[Camazine 2001, Krasnogor 2005].

The principles of bio-inspired clustering algorithms are often based on:

• Genetic algorithms

• Ant-based algorithms

• Swarm Intelligence

• etc...

In the next sections, we give a review on the bio-inspired clustering algorithm AntTree
from which our researches extend.

2.4.4.1 AntTree

AntTree [Azzag 2007] provides the hierarchical structure where each tree node repre-
sents one data object. The main principles are the following (Figure 2.14(a)): Initially,
all objects are placed on the support which corresponds to the tree roof. An object
will connect to the support or a connected object in order to connect itself to a conve-
nient location in the tree structure. The way to connect an object to another depends
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on a similarity test (Figure 2.14(b)). Once all the objects are connected in the tree,
the tree structure can be interpreted.

(a) General principle of AntTree for

tree building with self-assembly rules (a

data object is represented by an ant).

[Azzag 2007]

(b) Connecting rules to �nd the

nearest ant

Figure 2.14: AntTree principles

Considering the clustering problem de�ned in the previous chapter, during the
assembly of the structure, each object xi will be either:

• moving on the tree: xi moving over the support or over an other object denoted
by xpos, but xi is not connected to the structure. It is thus completely free to
move on the support or toward another object within its neighborhood. If xpos
denotes the object where xi is located on, then xi will move randomly to any
immediate neighbors of xpos in the tree.

• connected to the tree: xi can no longer move anymore from the structure. Each
object has only one connection with other ants.

Let us denote: x+, x− are respectively the most similar and dissimilar child node
of xpos to xi; TDissim(xpos) the lowest similarity value, which can be observed among
the children of xpos; subtreexi the subtree contains xi and its child nodes. xi is
connected to xpos if and only if the connection of xi decreases further this value.
Since this minimum value can only be computed with at least two nodes, then the �rst
two objects are automatically connected to the tree structure as two �rst tree nodes
without any test (Rule 1 in Algorithm 7). This may result in "abusive" connections
for the second node. Therefore the second node is removed and disconnected as soon
as the third node is connected (Rule 2). For this latter node, we are certain that
the dissimilarity test has been successful. We note that for each xpos, we allow to
disconnect only once to assume the convergence of the algorithm. If we have already
disconnected data from xpos, the Rule 3 is employed.
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Algorithm 7 AntTree algorithm
1: Rule 1: less than 2 data connected to xpos
2: connect xi to xpos
3: End rule

4: Rule 2: more than 2 data connected to xpos and for the �rst time
5: TDissim(xpos) = max(d(xi,xj)) // where xi and xj are any pair of data

connected to xpos; d(xi,xj) = ||xi − xj||2, xi,xj are normalized
6: if sim(xi,x

+) < TDissim(xpos) then

7: disconnect x+ from xpos // disconnect recursively all childs of x+

8: connect xi to xpos
9: else

10: move xi to x−

11: end if

12: End rule

13: Rule 3: more than 2 data connected to xpos and for the sencond time
14: if sim(xi,x

+) < TDissim(xpos) then

15: connect xi to xpos
16: else

17: move xi to x+

18: end if

19: End rule

In classical clustering methods such as dendrogram or HCA, tree nodes are often
�xed after being get assigned; however the AntTree rules allow to disconnect objects
recursively at a moment so it's able to correct mis-classi�cation of previous steps.

2.5 Complexity

The clustering algorithms are proposed to tackle the same goal, but their computa-
tional time [Goldreich 2008] may be various depending on their principles. Usually
the e�ciency or running time of an algorithm is related to the length of learning pro-
cess or number of steps (time complexity) and storage locations (space complexity).
Complexity is often denoted by O or Θ. In Table 2.2 we study the time complexity
of the main algorithms presented previously [Martinetz 1993, Xu 2005, Hastie 2009].
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Clustering algorithm Complexity

K-meams Θ(KN)

SOM Θ(KNlogN)

Neural Gas Θ(KNlogN)

AHC Θ(N3)

AntTree Θ(NlogN)

MST Θ(N2logN)

Table 2.2: Computional complexity of clustering algorithms

2.6 Clustering quality

Now the next question is how to de�ne a good clustering? or how to measure clustering
quality? There are many suggestions for a quality measure [Rand 1971, Everitt 2011].
Such a measure can be used to compute the quality of a clustering. Several methods
take into account high similarity within a cluster and low similarity among clusters
to compare the clustering quality given by di�erent clustering algorithms. We will
introduce some well-known criteria to measure the clustering quality.

2.6.1 Internal validation

The internal validation measures [Estivill-Castro 2002] base on the data that was
clustered. These methods usually �nd a high score to the algorithm that produces
clusters with high similarity within a cluster and low similarity between clusters. One
drawback of using internal criteria in cluster validation is that high scores on an in-
ternal measure do not necessarily result in e�ective information retrieval applications.
And these index works well on distance-based methods for example K-means and the
results may be local.

2.6.1.1 Davies-Bouldin index

Davies-Bouldin (DB) index [Davies 1979] is an internal measure between two clusters.
A good algorithm output clusters with high intra-cluster similarity and low inter-
cluster similarity will have a low DB index. This index is de�ned as:

DB =
1

N

K∑
i=1

max
j,i6=j

µi + µj
d(wi,wj)

(2.30)
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where µi is the average distance of all elements in cluster Ci to its respective centroid,
i.e prototype wi.

2.6.1.2 Dunn index

The Dunn index [Bezdek 1995] measures dense and well-separated clusters. It is
de�ned as the ratio between the minimal inter-cluster distance to maximal intra-
cluster distance. The Dunn index can be calculated by the following formula:

Dunn = min
i=1,..,K

( min
j=1,..,K;i 6=j

(
d(xi,xj)

maxl=1,..,K ∆(l)
)) (2.31)

where ∆(l) is the intra-cluster distance which may be measured in a variety ways,
such as the maximal distance between any pair of objects in cluster. Algorithms that
ouput clusters with high Dunn index are more desirable.

2.6.2 External validation

It's hard to evaluate a clustering with little data information given a priori. In external
validation [Färber 2010], clustering results are evaluated based on data whose class
labels are available as external benchmarks. Such benchmarks consist of a set of pre-
classi�ed items, N objects are associated with a set of L classes. Clustering methods
group these objects into K clusters, thus two partitions to compare are de�ned:
X = {x1, ..,xN}, where φ(xi), the cluster contains xi, C = {C1, .., CK} is a random
variable for cluster assignments, and Y = {y1, .., yN}, where yl ∈ B = {B1, .., BL} is
a variable for labels. The contingency table can be expressed as in Table 2.3.

B\C C1 C2 · · · Ck · · · CK Sum
B1 n11 n12 · · · n1k · · · n1K nB1

B2 n21 n22 · · · n2k · · · n2K nB2

...
...

...
. . .

...
. . .

...
...

Bl nl1 nl2 · · · nlk · · · nlK nBl
...

...
...

. . .
...

. . .
...

...
BL nL1 nL2 · · · nLk · · · nLK nBL
Sum nC1 nC2 nCk nCK N

Table 2.3: Contingency table
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2.6.2.1 Accuracy

A simple approximation of accuracy for unsupervised learning often uses external
class information. Between the class labels and the clusters in a given dataset, accu-
racy criterion re�ects the proportion of objects that were correctly assigned. A high
value for this measure generally indicates a good clustering. The formula to compute
accuracy is below:

Acc =
1

N

K∑
k=1

max
l=1,..,L

(nlk) (2.32)

2.6.2.2 Normalized Mutual Information

Normalized Mutual Information (NMI) [Strehl 2003] measures how much information
is shared between a clustering and a ground-truth classi�cation that can detect a non-
linear similarity between two clusterings. A good clustering method will produce high
quality clusters or the intra-cluster variance is high and the inter-cluster variance is
low. So the problem is now to maximize NMI which is de�ned by the following
formula:

NMI =

∑L
l=1

∑K
k=1 nlklog2(

Nnlk
nBlnCk

)

(
∑L

l=1 nBllog2(
nBl
N

))(
∑K

k=1 nCk log2(
nCk
N

))
(2.33)

2.6.2.3 Rand index

The Rand index [Rand 1971] computes how similar the obtained clusters are to the
benchmark classi�cations. Rand value varies between 0 and 1, where 1 means that
the two partitions are identical, and 0 indicates that the partitions have no common
objects.

Rand =
N00 +N11

N
2

(2.34)

where N11 is the number of data pairs in the same cluster in both B and C and N00

is the number of data pairs in di�erent clusters in both B and C.

2.6.2.4 Jaccard index

The Jaccard index [Tan 2005] is similar to the Rand index. The Jaccard index is used
to quantify the similarity between two partitions.

Jaccard =
N11

N00 +N10 +N01

(2.35)

where N11 is the number of pairs in the same cluster in both B and C; N10 is the
number of data pairs in the same cluster in B but not C; N01 is the number of data
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pairs in the same cluster in C but not B; and N00 is the number of data pairs in
di�erent clusters in both B and C.

2.6.2.5 Quality measures for graph clustering

For graph datasets we present several quality criteria [Leskovec 2010] as below.
We consider a graph G(V,E) divided into K clusters C = {C1, .., CK}. The
number of nodes in Ck is denoted nCk ; mCk the number of internal edges in Ck,
mCk = |{{u, v};u, v ∈ Ck}|; and bCk the number of edges on the boundary of Ck,
bCk = |{{u, v};u ∈ Ck, v /∈ Ck}|. Criteria used are de�ned as

• Conductance [Kannan 2004] measures the fraction of total edge volume that
points outside the cluster Ck. A desired graph clustering is in the sense that
there are more internal edges and fewer edges connected with inter-clusters. It
will return a low value of conductance.

Conductance =
bCk

2mCk + bCk
(2.36)

• Expansion [Radicchi 2004] measures the number of edges per node that point
outside the cluster Ck.

Expansion =
bCk
nCk

(2.37)

• Cut Ratio [Fortunato 2010] measures the fraction of all possible edges leaving
the cluster. Algorithms what produce a few number of edges on the boundary
of cluster are desired, thus they minimize this cut ratio.

Ratio =
bCk

nCk(N − nCk)
(2.38)

• Internal density [Radicchi 2004] is the internal edge density within the cluster
Ck. High internal density indicates a good partition.

Density =
mCk

nCk(nCk − 1)/2
(2.39)

2.7 Conclusion

As an important technique for data mining, clustering often consists in forming a set
of groups according to a similarity measure. This process includes a di�erent number
of steps, ranging from data pre-processing, selecting similarity measure and algorithm
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development, to solution validity and evaluation. Each of them is tightly related to
each other and becomes great challenges to the scienti�c disciplines.

This chapter presented an introduction to the clustering algorithms as an im-
portant technique for data mining. Clustering consists in either constructing a hi-
erarchical structure, or forming a set of groups. We have reviewed a wide variety
of approaches appearing in the literature. These algorithms evolve from di�erent
research in numerous �elds. Clustering algorithms can o�er approximate solutions
or favor some type of biases. Although some comparisons are possible, there is no
clustering algorithm that solves all problems for all the data types. Though many
real-world applications are successfully resolved by clustering, but there remain many
open problems due to the growth of data in many ways, e.g.: structured data, fuzzy
data, sequence data, etc.

In the next chapters we will present our work on the extensions of the SOM model.
We have selected SOM because it allows data visualization that our studies concern.
Another aspect of the clustering problem is the visualization which is not possible for
the most of clustering techniques. This is why we focus on the SOM algorithm which
allows to tackle both the data clustering and the data visualization problems.
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3.1 Introduction

As mentioned in the previous chapters, our study is always placed in the clustering
problem. We use Kohonen's Self-Organizing Maps and AntTree as the basic mod-
els for our model SoT (Self-Organizing Trees), which allows to view the clustering
from di�erent perspectives leading to reliable clusters. SoT makes one further step
in proposing a network revealing the topology of clusters and multiple trees revealing
the hierarchy of input data.

In literature, SOM is a powerful technique for data visualization due to the
ability of projecting high-dimensional data onto a 1D or 2D network [Peura 1999,
Vesanto 1999, Kohonen 2001, Doherty 2005]. This method was employed in many
numerous practical problems in order to reduce the dimensionality then visualize
data. Another useful property of these models is topology preservation, i.e. the
preservation of neighborhood relations among data. A mapping also preserves neigh-
borhood relations if nearby objects in the input space remain close in the map space.
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Data gathering in clusters are often similar in term of distance. In the meantime,
AntTree introduces the rules of connecting objects to hierarchical structure and/or
disconnecting objects from it. It can be naturally integrated into the self-organizing
models like SOM so that we are able to correct the misclassi�cation of previous steps.
By combining both SOM and AntTree, our purpose is to decompose a given dataset
into multi-hierarchical trees in order to preserve topological structure within network
nodes and �nd a clustering. Practically, SoT creates a set of hierarchical links that
cover all similar objects. A hierarchical link represents an one-to-one relation between
a pair of objects. Ideally, these links could be considered as shortest paths.

This chapter will provide the details of SoT including the principles, the algo-
rithms, the computional complexity, etc. In order to evaluate SoT, a numerous series
of applications are conducted on real-world datasets. Furthermore, some intensive
applications on structured data such as graph or protein are carefully studied. Graph
as structured data is popularly used to model structural relationships among objects
in many application domains such as web, social networks and interaction networks,
etc. In this study, we seek to show the use of the hierarchical and topological structure
in data analysis, especially in retrieving information from structured data. Moreover,
the shortest paths given by SoT can be studied thoroughly. During the learning pro-
cess, SoT is able to create a link between two graph nodes if they pass a similarity test.
This kind of links can be either original (existing in the original graph) or synthetized
(not existing in the original graph). Several interesting issues are as following:

• Could the synthetized links be helpful to analyze data?

• Are the original links all good? or are these links the most important in the
graph?

To answer these questions, few experiments are conducted and divided into three
parts:

1. The �rst application on vectorial datasets compares the SoT e�eciency with the
other clustering methods in term of clustering quality measures. Not only the
numerical results are provided but also the visual ones are available.

2. The second application is conducted on graph datasets which are used as bench-
marks to test algorithms. The purpose of this application is to summarize a
graph into a smaller one by proposing new graph decomposition. The sum-
marization provided by the proposed hierarchical and topological structure will
simplify the original graph. It becomes particularly attractive for graph cluster-
ing, especially for graph visualization. Concerning graph datasets, the problem
of graph clustering and summarization is well studied and the literature on the
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subject is very rich [Kannan 2000, Everitt 2009, LeFevre 2010, Zhang 2010]. In-
deed, most of the research in graph summarization suggests reducing the number
of nodes by grouping similar node in the same cluster.

3. The third application is conducted on the protein dataset ASTRAL. The moti-
vation is to study intensively the hierarchical and topological structure provided
by SoT. Since an expert classi�cation of this dataset is available in form of hi-
erarchy, so we seek to compare it with the hierarchical clustering classi�cation.

3.2 Principles

3.2.1 Clustering discovery with hierarchical relations

The idea is to add a new hierarchical dimension to a SOM map (or network) (see
Figure 3.1). It means to generate a set of trees arranged according to certain topology.
The network preserves the data topology while data similarity lies on the hierarchical
structure. The network nodes represent the prototypes in the grid. The tree nodes in
SoT structure corresponds to the input data. The proposed algorithm is able to detect
clusters and to represent these clusters as topological and hierarchical structure. Here
each tree is not only a cluster but a sub-tree from any branch is also a sub-cluster.
Con�dence of each cluster may be easily observed because of hierarchical relations
among the input data.

In this hierarchical and topological structure, similarity between a pair of data
objects is available through hierarchical links, while distances between two clusters
depend on the topological links. Additionally, the hierarchical links can be seen as
the shortest paths connecting objects together according their similarity.

(a) SOM (b) SoT

Figure 3.1: SOM vs SoT
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3.2.2 SoT - Topological and hierarchical clustering

For us in this thesis, the notations: an input data object or vector xi and a tree node i

are all identical. A cluster k, a network node Ck, the prototype wk are also identical.

In the SoT model, the size of the grid denoted by K = p × q must be provided
a priori. Each network node Ck ∈ C associated with a prototype wk ∈ W as well as
a treek. So by following this initialization, we should have K trees in the network.
For each pair of treec and treer, their mutual in�uence is de�ned by the function
KT (δ(Cc, Cr)) = exp(−δ(Cc,Cr)

T
). Based on Equation 2.28, the new cost function is

re-written to adapt to the hierarchical structure as in Equation 3.1.

R(φ,W) =
K∑
c=1

nCk∑
i=1

K∑
r=1

KT (δ(φ(subtreexi), Cr))‖xi −wr‖2 (3.1)

where φ is the assignment function which is expressed as following:

φ(subtreexi) = φ(xi) = arg min
r=1,..,K

K∑
c=1

KT (d(Cc, Cr)) ‖xi −wc‖2 (3.2)

where subtreexi contains xi and all tree nodes recursively connected to it. It should
be noted that data in the sub-tree are similar due to the self-assembly rules. We
take this as an advantage to reduce algorithm complexity. Lemma 3.2.1 shows how
to assign simultaneously a data group.

Lemma 3.2.1

∀xj ∈ subtreexi , φ(xj) = φ(xi) (3.3)

Proof Let d(xi, Cc) be the distance from xi to wc and suppose that Cc = φ(xi) then
we have:

d(xi, Cc) < d(xi, Ck),∀k = 1, .., K

When xj ∈ subtreexi =⇒ xi and xi are similar, their distance should tend to 0.

lim
xj→xi

d(xi,xj) = 0

We deduce that:

d(xj, Cc) ≈ d(xi, Cc) + d(xj,xi) < d(xi, Ck) + d(xj,xi) ≈ d(xj, Ck)

=⇒ φ(xj) = Cc or φ(xj) = φ(xi) = Cc

Minimizing cost function R(φ,W) is a combinatorial optimization problem. In
this work we propose to minimize the cost function in the same way as batch version
using statistical characteristics provided by trees to accelerate the convergence of the
algorithm. These characteristics are used in the assignment function 3.2.
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3.2.3 Batch algorithm

Here we want to show how to adapt the self-assembly rules provided by AntTree
in Algorithm 7 to topological models including SOM. During the learning process,
the status of a tree node can be various due to the connecting or disconnecting rules.
Therefore, we de�ne three possibilities for the tree node status:

1. Initial : the default status before training;

2. Connected : the tree node is currently connected to another node;

3. Disconnected : the tree node were connected at least once but now gets discon-
nected.

Let us denote xposi is the support (the tree root) or the tree node position where xi
is located. At the beginning, xi is located on the support and will move in the tree
(toward other tree nodes) in order to �nd its best position; x+ and x− two tree nodes
connected to xposi which are respectively the most similar and dissimilar tree node to
xi. Let L denote a list of tree nodes. Before training, L contains all the initial tree
nodes, whenever a tree node becomes connected, it is immediately removed from L;
alternatively whenever a tree node and its children get disconnected from a tree, we
put them back onto L. After several iterations, L might contain both the initial and
the disconnected tree nodes.

The batch algorithm is shown in Algorithm 8. The algorithm includes three steps
as in the SOM algorithm (Section 2.4.1.2). Besides, SoT has an additional step for tree
construction. While the initialization stays the same as the one in SOM, the others
must be modi�ed to adapt to the new structure. Then SoT can proceed by alternating
between three steps: assignment, tree construction and prototype adaptation.

Assignment

This step (Line 6 in Algorithm 8) is to assign data objects to the nearest prototype
or the best match tree, such in Equation 3.2. This assures that the cost function
R(φ,W) in Equation 3.1 is minimized in regard to the assignment function φ

assuming that the prototype vectors are constant. An initial object xi is assigned, it
will be connected to the best match tree in the tree construction step. However, if
xi has currently one of the other status: connected or disconnect, we have to check
whether it does exist other child nodes in subtreexi? If in the case, following Lemma
3.2.1, the child nodes will follow the assigment of xi.

An example where a sub-tree assignment happens is shown in Figure 3.2. Due to
the last update, subtreex consists of three violet nodes that are no longer connected
to treecold . Now we have to determine the new best match treec for the node x using
φ(subtreex). The assignments of child nodes of x follow automatically the one of x
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Figure 3.2: Sub-tree assignment from treecold to treec

using the statistical characteristics of tree, each object is connected to its nearest
neighbor (1-NN). Even though these three nodes are now found in the new cell c,
the hierarchy in the new cell remains that of the old cell cold.

Tree construction

This step is realized by the procedures constructTree and constructTreeSub (respec-
tively, Algorithm 10 and 9) in which we use the rules from Algorithm 7. Here we
must di�er these two procedures:

1. constructTree is called for one single object (see Line 9 in Algorithm 8). This
procedure is used to connect to a tree or probably disconnect an object from
the existing tree.

2. constructTreeSub is called by a sub-tree (see Line 21 in Algorithm 8). This
procedure will call directly constructTree for only the sub-tree root (see Line 1
Algorithm 9). It should be noted that data in the sub-tree are similar due to
the self-assembly rules. The child nodes will automatically follow the sub-tree
root if it is succesfully connected. In this case, we try keeping the sub-tree
structure as in Line 3 Algorithm 9. By using statistical characteristics of
hierarchy, we take this as an advantage to reduce algorithm complexity.

During the learing process, there is a chance that objects can be disconnected.
Concerning to the disconnection, there are two distinct cases:

1. disconnect tree node(s) due to the assignment (Line 18 in Algorithm 8),

2. disconnect tree node when a tree node comes into play (Line 7 in Algorithm
10).

Whenever a tree node gets disconnected from a tree, we have to check whether it
does exist other child nodes in subtreexi or not? If in the case, we disconnect all of
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Figure 3.3: Disconnect subtreex from treecold and put it in list

them or for more speci�c subtreexi . A simple example of disconnection for a group
of nodes (or sub-tree) is depicted in Figure 3.3. Given treecold as in this example, the
tree node x consisting of three violet nodes is to disconnect from this tree. All the
nodes connected to x must be recursively disconnected too; it applies to two child
nodes of x. Therefore subtreex has disconnected status and is immediately put back
onto the list L.

Suppose that xi becomes connected at a moment, we will keep this sub-tree struc-
ture by re-connecting these child nodes together; hence this way can accelerate the
learning process. For example, let's re-take the example in Figure 3.3. After getting
new assignment, x is going to connect to treec. It leads to that the child nodes of
x have treec as their best match tree too. We systematically connect this sub-tree
to treec and the result is shown in Figure 3.4. We remind that this subtree is not
kept till the end of learning, there is a possiblity that the nodes in the subtree will be
disconnected in next iterations.

Figure 3.4: Re-connect subtreex to treec

Prototype adaptation

This step is necessary to compute the new prototypes. We can easily adapt our
algorithm to choose a representative prototype. The prototypes and their neighbors
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move along together towards the assigned data such that the map tends to approx-
imate the data distribution. It includes minimizing the cost function R(φ,W) in
Equation 3.1 in regard to the prototypes vectors assuming that data are all assigned
to the best match unit. The choice of prototype can depend on data structure, it
can be seen as centroid in the case of traditional continuous datasets or as leaders
[Stanoev 2011] (see Equation 2.8) in the case of graph datasets.
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Algorithm 8 SoT batch algorithm
1: initialize k prototypes
2: while stopping criteria have not been ful�lled do

3: initialize L
4: while L is not empty do
5: xi is the �rst data from L
6: c = φ(xi) // �nd the best match tree

7: if xi is initial then
8: xposi = 0 // set the tree root as the position of xi
9: constructTree(treec,xi,x

pos
i ) // connect xi to treec

10: else

11: if xposi is in treec then
12: xposi gets the current position of xi
13: else

14: xposi = 0

15: end if

16: subtreexi = {xi and all tree nodes recursively and temporarily connected
to xi}

17: if xi is connected and c 6= cold then

18: subtreexi = disconnect subtreexi from treecold
19: end if

20: if xi is disconnected then

21: constructTreeSub(treec, subtreexi ,x
pos
i ) // connect either xi or

subtreexi to treec
22: end if

23: end if

24: if xi is not connected then

25: put xi at the end of L
26: else

27: remove subtreexi from L
28: end if

29: end while

30: update the prototypes
31: end while
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Algorithm 9 constructTreeSub
Input: treec, subtreexi ,x

pos
i

Output: treec,xix
pos
i

1: treec = constructTree(treec,xi,x
pos
i ) // connect the sub-tree root to the tree

2: if xi is connected then

3: connect recursively all nodes in subtreexi to treec
4: end if

Algorithm 10 constructTree
Input: treec,xi,x

pos
i

1: if less than 2 data connected to xposi (Rule 1) then
2: connect xi to xposi

3: else

4: TDissim(xposi ) = max(d(xi,xj)) // where xi and xj are any pair of data

connected to xposi ; d(x,xj) = ||xi − xj||2, x,xj are normalized
5: if more than 2 data connected to xposi and for the �rst time (Rule 2) then
6: if sim(xi,x

+) < TDissim(xposi ) then

7: disconnect x+ from xposi // disconnect recursively all childs of x+

8: connect xi to xposi

9: else

10: xposi = x− // set x− as the new position of x

11: end if

12: else

13: // Rule 3

14: if sim(xi,x
+) < TDissim(xposi ) then

15: connect x to xposi

16: else

17: xposi = x+ // set x+ as the new position of xi
18: end if

19: end if

20: end if
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3.2.4 Computational complexity

Lemma 3.2.2 SoT has a complexity of Θ(NiterN logN), where Niter is the number

of total iterations when the learning has been terminated.

Proof Algorithm 8 requires Niter iterations to reach all the stopping criteria. Cover-
gence or quantization error can be used as a stopping criterion. During one iteration,
an operation includes three iterative steps: assignment, tree construction and updat-
ing support. The number of assignments starts from 100% and decreases taking the
advantage from the tree structure (the subtree nodes follow the node root assignment),
which allows the run time to be reduced. To terminate training for N objects and to
exit from the second loop (Line 4 in Algorithm 8), it requires a complexity of N logN

operations. This is exactly the AntTree complexity [Azzag 2007]. Finally, SoT has a
complexity of Θ(NiterN logN) which is competitive with traditional topological map
SOM.

3.3 Experiments on real-world datasets

The experimental section is divided into three parts:

1. Application on several classical datasets from the UCI Repository (http://
archive.ics.uci.edu/ml/) as well as few image datasets. This helps to validate
SoT along with other clustering methods such as SOM and MST. We would like
to show that SoT can achieve the performance that is comparable to the one
given by the other methods.

2. Application on graph datasets. The hierarchical and topological relations in
the SoT structure contain insight information that is interesting to analyze.
Especially for graph datasets, this structure can be implicitly used for graph
summarization.

3. Application on the biological dataset ASTRAL. We applied SoT on bioinfor-
matics domain to show how SoT structure provides much more information than
the expert classi�cation.

The experimental part includes two phases: numerical and visual validations.

3.3.1 First application on vectorial datasets

3.3.1.1 Dataset description

We use traditional vectorial datasets that come from the UCI machine learning repos-
itory and additionally, two image datasets: COIL-20 [Nene 1996] consists of the
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Dataset Size # Features # Classes
Arrhythmia 420 278 2
Cancer 699 9 2
Ecoli 336 7 8
Glass 214 9 6
Ionosphere 351 17 2
Iris 150 4 3
Pima 768 8 2
Sonar 208 60 2
Thyroid 215 5 3
Wine 178 13 3
COIL-20 1440 1024 20
Yale 165 1024 15

Table 3.1: Vectorial dataset description

set which contains images of 20 di�erent objects with 72 images per object; Yale
[Cai 2007] contains 165 grayscale images of 15 individuals. Table 3.1 describes the
characteristics of the selected datasets. These datasets are often used as benchmarks
for clustering algorithm validations.

Figure 3.5: Sample images of 20 objects in COIL-20 dataset
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3.3.1.2 Experimental protocol

We de�ne the input parameters and experimental protocol as following:

1. Each dataset must be normalized before training as in Equation 2.1. For each
dataset, 10 runs are conducted using random initializations.

2. The shape of map's topology is rectangular. A network node must have at least
one data object at the end of the learning process.

3. The size of map is set 3× 3 for real datasets from UCI in Table 3.1, except for
COIL-20 5×5 and Yale 4×4. The motivation is to choose the map size superior
to the number of classes for each dataset so that a map is large enough to cover
data space.

4. We select SOM and not the hierarchical SOM variants presented in Section
2.4.3 due to the fact that these variants don't have the same structure and
initialization parameters. Moreover, they don't improve the assignment rules
so their performance should be the same as SOM's. We have also studied the
experimental results of MST because both SoT and MST are based on a similar
tree-like structure, preseve the data topology using the paths connecting among
data objects.

3.3.1.3 Numerical validation

In order to measure the clustering quality, the three criteria: Accuracy (Equation
2.32), NMI (Equation 2.33) and Rand (Equation 2.34) are employed. Table 3.2 shows
the values of these quality measures averaged over 10 runs for the selected datasets.
We observe that SoT provides similar results and quite comparable to SOM in most
of cases. Looking to the columns associated to SoT comparing to MST, we observe
that the SoT performance is high for the majority of datasets. Our purpose through
this comparison, is not to assert that our method is the best, but to show that SoT
can obtain the same good results as other clustering algorithms. We present below
a particular study of COIL-20 dataset to highlight the hierarchical and topological
properties of SoT.

Dataset Map size Method Acc NMI Rand

Arrhythmia

2× 2

SOM 0.581 0.013 0.504
MST 0.571 0.0321 0.509
SoT 0.601 0.033 0.513

3× 3

SOM 0.619 0.037 0.528
MST 0.580 0.058 0.511
SoT 0.623 0.051 0.530
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Cancer

2× 2

SOM 0.972 0.774 0.938
MST 0.656 0.018 0.546
SoT 0.940 0.548 0.764

3× 3

SOM 0.965 0.782 0.933
MST 0.656 0.018 0.548
SoT 0.952 0.710 0.908

Ecoli

2× 2

SOM 0.723 0.556 0.824
MST 0.476 0.201 0.372
SoT 0.673 0.453 0.740

3× 3

SOM 0.750 0.630 0.856
MST 0.580 0.457 0.585
SoT 0.740 0.563 0.824

Glass

2× 2

SOM 0.478 0.366 0.624
MST 0.467 0.315 0.54
SoT 0.507 0.262 0.638

3× 3

SOM 0.574 0.354 0.648
MST 0.443 0.156 0.389
SoT 0.590 0.320 0.675

Ionosphere

2× 2

SOM 0.891 0.038 0.460
MST 0.894 0.033 0.605
SoT 0.894 0.035 0.461

3× 3

SOM 0.891 0.005 0.806
MST 0.900 0.148 0.819
SoT 0.892 0.027 0.807

Iris

2× 2

SOM 0.796 0.668 0.803
MST 0.753 0.653 0.777
SoT 0.812 0.597 0.788

3× 3

SOM 0.900 0.756 0.888
MST 0.906 0.614 0.820
SoT 0.930 0.813 0.918

Pima

2× 2

SOM 0.682 0.080 0.539
MST 0.652 0.017 0.544
SoT 0.682 0.059 0.518

3× 3

SOM 0.695 0.0706 0.577
MST 0.654 0.032 0.547
SoT 0.703 0.079 0.582

Sonar

2× 2

SOM 0.584 0.022 0.505
MST 0.533 0.091 0.497
SoT 0.567 0.013 0.502
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3× 3

SOM 0.600 0.028 0.518
MST 0.557 0.066 0.504
SoT 0.630 0.051 0.532

Thyroid

2× 2

SOM 0.765 0.357 0.558
MST 0.711 0.095 0.549
SoT 0.754 0.241 0.563

3× 3

SOM 0.825 0.378 0.744
MST 0.730 0.172 0.576
SoT 0.839 0.448 0.755

Wine

2× 2

SOM 0.854 0.662 0.814
MST 0.634 0.533 0.697
SoT 0.771 0.544 0.761

3× 3

SOM 0.733 0.416 0.744
MST 0.634 0.465 0.667
SoT 0.733 0.416 0.739

COIL-20

5× 5

SOM 0.554 0.727 0.939
MST 0.116 0.241 0.179
SoT 0.556 0.649 0.931

7× 7

SOM 0.653 0.699 0.952
MST 0.309 0.454 0.539
SoT 0.722 0.710 0.955

Yale

4× 4

SOM 0.378 0.464 0.865
MST 0.157 0.238 0.217
SoT 0.400 0.414 0.853

5× 5

SOM 0.451 0.504 0.910
MST 0.230 0.428 0.455
SoT 0.513 0.528 0.911

Table 3.2: Competitive performance on vectorial
datasets. The quality criteria are averaged over 10 runs.

Case of COIL-20 datasets

Columbia Object Image Library dataset (COIL-20) [Nene 1996] contains 72 gray
level images for each of a set of 20 various objects, taken at intervals of �ve degrees
3D-rotation. The COIL-20 visualizations are presented in Figure 3.6, 3.7 and 3.8.
In our work, we use Tulip as framework [Auber 2003] to draw all the visualizations.
Figure 3.6 presents the multi-level view where the network nodes in black color
represent the root of trees; and the colored nodes correspond to the tree node or the
input data. Data from the same class are depicted by the same color. Many regions
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Figure 3.6: Hierarchical and topological structure given by SoT on COIL-20 dataset

with pure colors can be noticed from Figure 3.6, this results from a good clustering.
Due to the nature that a COIL-20 vector is an image, we generate two zoom

samples extracted from Figure 3.6. In the �rst zoom (Figure 3.7) extracted from the
top left of Figure 3.6, even though we have grouped images of di�erent objects in
the same sub-tree, the geometric shapes of objects, i.e.: cars, are quite similar. It
would be interesting to note that in sub-trees, the car objects turn respectively in the
same direction of their parent node. Figure 3.8 displays the second zoom extracted
from the center. This is the result of a good classi�cation, since the images of a
"cup" object are found together. The bene�t of SoT is to decompose and represent
COIL-20 dataset in multi-level organization. Thus, hierarchical schemes provide a
multi-level decomposition of the original data in a tree structure producing nested
clusters at di�erent levels either from top to bottom or vice versa.
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Figure 3.7: First zoom extracted from the top left of Figure 3.6

Figure 3.8: Second zoom extracted from the center of Figure 3.6
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3.3.2 Second application on graph datasets for graph summer-
ization

3.3.2.1 Graph decomposition and summarization

Graph clustering aims to partition the graph into several dense connected components.
The majority of existing methods focus on the topological structure of a graph so that
each partition achieves a cohesive internal structure. Such methods include clustering
based on normalized cut [Shi 1997], modularity [Girvan 2002] or structural density
[Xu 2007]. Thereby self-organizing map is commonly employed to solve problems of
graph clustering in the sense that they work with topology preserving mapping ability
[Macdonald 2000, Boulet 2008].

By applying SoT on graph datasets, our purpose is to summarize a given graph into
a smaller one by proposing a new decomposition of original graph. Simultaneously, we
provide a topological map and a topological trees using self-organizing maps. Thus,
it is possible to summarize large graph into topological and tree-like organizations.
Especially the hierarchical nature of the summarization data structure is particularly
attractive.

Intuitively, the vertices in a community should have a high density of edges within
the community than between other communities. As the reason, minimizing the
number of edges running between clusters or �nding many edges within each cluster
as many as possible are the most often adopted approach for graph summarization.

3.3.2.2 Dataset description

Dataset Size # Features # Classes
Adjective and Noun 112 425 2
Football Teams 115 616 10
Les Miserables 77 254 N/A
Political blogs 1490 19090 2

Table 3.3: Graph dataset description

The selected datasets for this experiment is presented in Table 3.3. They are
available at http://www-personal.umich.edu/~mejn/netdata/. Graphs in these
datasets are undirected and unweighted, which is enough to compute the Laplacian
(Equation 2.10). Their description is as following:

• Adjective and Noun: An adjacency network of common adjectives and nouns
in the novel David Copper�eld by Charles Dickens introduced by [Newman 2006]
where each node corresponds to a word whose type is either adjective or noun.

http://www-personal.umich.edu/~mejn/netdata/
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• Football Teams: The network of American football games between Division
IA colleges during regular season Fall 2000 [Girvan 2002]. Vertices in the graph
represent teams, while edges represent regular-season games between the two
teams they connect.

• Les Miserables: An unweighted network of characters in the novel "Les Mis-
erables" [Knuth 1993]. The characters become the vertices of a graph. Two
vertices are adjacent if the corresponding characters encounter each other, in
selected chapters of the book.

• Political Blogs: A directed network of hyperlinks between webblogs on US
politics, recorded in 2005 by Adamic and Glance [Adamic 2005]. The vertices
are the blogs retrieved from Internet. If a blog cited by other, an edge is created.
There are only 2 classes, the number of citations (≥ 17 or < 17) in a blog decides
the label of blog.

3.3.2.3 Experimental protocol

We de�ne the input parameters and experimental protocol which is completely the
same as the previous experiment:

1. For the graph datasets, by following the spectral clustering in Section 2.2.2
we select a number of �rst smallest eigenvectors λ = {5,

√
N} of the regularized

Laplacian. For each dataset, 10 tests are conducted using random initializations.

2. The shape of map's topology is rectangular. A network node must have at least
one data object.

3. The size of map is respectively �xed K = 3 × 3 for "Les Miserables" and
"Adjective and noun"; K = 5 × 3 for "Football Teams" 5 × 5 (k = 25) for
"Political blogs".

4. For graph datasets, leaders [Stanoev 2011] are considered as prototypes. Instead
of following Line 23 in Algorithm 8, the prototype expression is modi�ed as
following:

wc = arg max
∀i∈treec

(deg(vi)) (3.4)

where the local degree deg(vi) is the number of internal edges incident to vi.
Choosing a representative prototype allows easily adapting our algorithm.

3.3.2.4 Numerical validation

In this section, we performed extensive experiments to evaluate the SoT performance
on graph datasets. We compare the e�ciency of SoT with di�erent similar clustering
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algorithms. To measure the quality of SoT, Accuracy Equation 2.32, NMI Equation
2.33, presented in Section 2.6, are used. For graph datasets, two other extra measures:
Conductance Equation 2.36 and Density Equation 2.39 [Leskovec 2010] are computed.

In Table 3.4, the performance values show that the quality measures for SOM and

Method λ Accuracy ↗ Conductance ↘ Density ↗ NMI ↗
Adjective and noun (3× 3)

SOM
5 0.574 0.743 0.174 0.073
11 0.576 0.691 0.213 0.072

MST
5 0.553 0.903 0.007 0.290
11 0.562 0.910 0.006 0.280

SoT
5 0.565 0.783 0.207 0.115

11 0.560 0.736 0.299 0.134

Football Teams (5× 3)

SOM
5 0.568 0.529 0.692 0.505
11 0.406 0.645 0.735 0.544

MST
5 0.330 0.956 0.0643 0.299
11 0.400 0.968 0.045 0.313

SoT
5 0.880 0.564 0.714 0.687

11 0.878 0.532 0.791 0.685

Les Miserables (3× 3)

SOM
5 N/A 0.482 0.455 N/A
9 N/A 0.426 0.430 N/A

MST
5 N/A 0.794 0.350 N/A
9 N/A 0.899 0.010 N/A

SoT
5 N/A 0.546 0.589 N/A
9 N/A 0.486 0.572 N/A

Political Blogs (5× 5)

SOM
5 0.861 0.854 0.068 0.064
39 0.827 0.844 0.061 0.056

MST
5 0.530 0.960 0.006 0.148
39 0.512 0.560 0.000 0.141

SoT
5 0.854 0.884 0.093 0.168

39 0.767 0.785 0.226 0.178

Table 3.4: Competitive performance on graph datasets. The quality criteria are
averaged over 10 runs.

SoT are mostly equal. However, the poor results for MST are quite disappointing. On
the "Football" dataset, our method is superior where density is equal to 0.791. On
the contrary, the di�erence in conductance values is not signi�cant. Unlike the "Ad-
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jective and Noun" dataset, the clustering quality of MST appears much more better
but still far behind. For "Les Miserables", a small set like "Adjective and Noun", on
all quality criteria there is no method that obtains the best performance. However,
SoT produces satisfactory results. The best values of SoT is on the "Political blogs"
dataset where the proposed method dominates all the quality criteria except for Ac-
curacy.

Comparing the two tree-structure methods: MST and SoT. In general SoT man-
ages to output better values in term of quality measures while results obtained from
MST are unexpected. MST has a weakness: dependence on the distribution of data.
It works moderately well in the case of "Football Teams" where the nodes are almost
uniformly distributed, i.e. their di�erence in degree is not too considerable. The
clusters are well separated one from each other. The only competitive method with
SoT is SOM.

3.3.2.5 Graph visualization: decomposition and summarization

We are interested here to present the advantage of SoT for graph visualization. Our
objective is to propose summarized graphs by building tree representation that deletes
inconsistent edges in the original graph, i.e. the edge distance values are signi�cantly
larger for nearby edges in the trees. SoT is applied on graph datasets to detect and
remove the inconsistent edges, which results in a set of disjoint trees. Each tree
represents a cluster and possesses topological links connected to the neighbor trees.
These topological links provided by SoT structure permit to not disconnect the graph.

Our advantage is to simultaneously propose multi-level structure: hierarchical and
topological. These structures simplify the exploitation of the graph by proposing a
summarized graph. We use also Tulip [Auber 2003] as the framework to visualize
the graph. Using GEM layout, we provide here two types of architecture for graph
visualization:

1. Original view: the default graph is drawn from the original collection of edges
and vertices. We discriminate the leaders from the other nodes using the symbol
L and the node size that varies with their degree.

2. Summarized view: here we propose a new organization of graph which is
more visible and easier to visualize and analyze than the original organization.
The new graph is drawn from the graph nodes as well as map nodes, where
their structure has a form of hierarchy and topology given by SoT. The map
cells (square) are located in the center surrounded by trees. Links between map
cells represent the topological links de�ned by SoT. We have the same number
of trees as the map size de�ned a prior. A tree including its root is attached to
the respective map node.
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In the aim to analyze the connection between a pair of node, we have introduced
a new visualization illustrated in Fig. 3.9 and 3.10. For this purpose we explore
the structure of the graph by analyzing the added and/or the deleted direct links
between a pair of nodes in the original graph. In the proposed visualization Red

links represent the original links (links are founded in both the original graph and
the summarized graph). Green links represent the synthetized links (new direct links
created by SoT in the summarized graph). Gray links represent the non-used links
(the original links of the default graph that are not used in the summarized graph).

After studying the visualizations we notice that visual results given by SoT
lead to important insight on the graph content. Our approach tries to improve the
standard visualization by building summarized topological and hierarchical ordered
clusters. SoT preserves and maintains links when graph is dense and contains a large
number of edges. Whereas, SoT deletes links when the graph is sparse (with a less
number of edges) or when clusters are far away from each other. In this last case
SoT creates a short path to maintain a link between similar nodes. Atypical nodes
are also clearly pinpointed with this approach and can be further studied by the
analyst. The SoT decomposition provides a clear visualization in which the analyst
can easily navigate. A hierarchical visual exploration is provided by descending from
topological level to the last level of trees, which provides useful information about
the clustering and nodes.

In the multi-level visualizations, each tree can be considered as a small cluster.
Due to the topological relationship, we eliminate isolated vertices or isolated groups
of vertices. A node is isolated if its degree is equal to 0, a group of vertices are
isolated if these vertices have only internal connections between them and not
external connections to the others. We also note that nodes with the highest degree
are not always selected as leaders because some nodes have external edges towards
other clusters. In multi-level visualizations, leaders are not central of clusters. This
is due to two reasons: leader is not the centroid and the position of leaders depends
on the order of nodes which were �rstly selected to connect to the root.

Case of "Les Miserables"

The visualization of "Les Miserables" is shown in Figure 3.9. Each cluster is repre-
sented by a unique color. We note that 57.89% of direct edges in the summarized
view exist in the original graph. We also compute the percentage of edges (52.36%)
formed between a pair of nodes in the original graph but these edges are removed in
the summarized view and these two nodes are separated into two di�erent cells.

Looking to Figure 3.9(a), 3.9(b) and 3.9(c), we observe that when clusters in the
original graph are dense, SoT preserves the majority of original links. These links
correspond to red links in Figure 3.9(a) and 3.9(b). Whereas SoT does not maintain
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(a) Original graph. The red links repre-

sent the original links that exist in both

the original and the summarized graph; the

green links represent the synthetized links

or the new shortest paths given by SoT.

(b) Original graph. The red links repre-

sent the original links that exist in both

the original and the summarized graph; the

gray links represent non-used links.

(c) Original graph. The green links repre-

sent the synthetized links or the new short-

est paths given by SoT; Gray links represent

non-used links.

(d) Summarized graph. Links between

square nodes represent topological links.

Figure 3.9: Graph visualization of "Les Miserables". Each cluster provided by SoT
is set with a unique color.
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links in the clusters that have a low density, as an example we can observe the yellow
and purple cluster which represent the isolated cluster located in the top right in
Figure 3.9(a). However even SoT removes links from the original graph, it creates the
new shortest paths that best represent clusters with a low density. The synthetized
links are represented by the green links in Figure 3.9(a) and 3.9(c).

Case of "Football"

Di�erent from the other, this dataset has more balanced distribution of data.
"Football" dataset has 115 nodes classi�ed into 10 di�erent classes, the obtained
visualization is shown in Figure 3.10. Each class label is represented by a single
color. We have chosen a number of cells superior than the number of classes
(i.e. 15 cells vs 10 classes). The number of nodes are quite balanced in each
cell. Figure 3.10(d) shows several pure clusters represented by leaders L1, L2,
L6. In this case, the di�erences between the proposed clustering and the ground
truth are not important. The SoT structure and the original graph have several
common links (see Figure 3.10(a), 3.10(b)). Indeed, Football dataset being very
dense, as explained previously, SoT preserves much more original links. Thus we
observe that 79.54% of direct links in the summarized view exist in the original graph.

Conclusion

In the graph summarization problem, the other methods try to compress the original
graphs by reducing the number of nodes as well as the number of edges. In this second
application, we have approached this problem using SoT. It results in reducing only a
large number of graph edges but not nodes. It will be hard to perform a comparison
with existing methods. The links in the SoT structure should be studied profoundly
by experts ou by user-validations. As consequence, we carry out another experiment
on the protein dataset with an expert.
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(a) Original graph. The red links repre-

sent the original links that exist in both

the original and the summarized graph; the

green links represent the synthetized links

or the new shortest paths given by SoT.

(b) Original graph. The red links represent

the original links that exist in both the orig-

inal and the summarized graph; the gray

links represent non-used links.

(c) Original graph. The green links repre-

sent the synthetized links or the new short-

est paths given by SoT; Gray links repre-

sent non-used links.

(d) Summarized graph. The links between

square nodes represent the topological links.

Figure 3.10: Graph visualization of "Football". Each class label is set with a unique
color.
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3.3.3 Third application on biological datasets

3.3.3.1 Motivation

In bioinformatics, visualizing high-dimensional and large-scale biological datasets such
as protein or gene expression data is a challenge. Proteins receive attention from ex-
perts because their structures harbor information that is not immediately obvious
without integration and analysis. Graphical representations help experts to analyze
and interpret easily protein datasets.

Proteins are large polymeric molecules made of one or more amino acids chains.
They support a wide range of biological functions such as structure, transport, bind-
ing, catalysis, and so on. The function of a protein is closely related to the three
dimensional (3D) arrangement (fold) of its chain into a compact structure. This
structure can be described at many levels: locally at the atomic level to understand
biochemical processes and more globally at the domain level to understand evolution-
ary processes. A protein domain can be de�ne as a compact module of the protein
structure shared by multiple proteins. Usually a protein can be made by one or more
domains where each domain may support a di�erent role of the protein function.
Protein domains are considered to have a speci�c sequence and structure evolution
pattern.

The Protein Data Bank [Bernstein 1977] (PDB) o�ers a comprehensive view of
the available three-dimensional (3D) protein structures. In order to investigate their
evolutionary relationships by detecting shared similarities at the sequence and at the
structure level, a �rst step is to establish a classi�cation of these objects. As for
all complex objects, the clustering process is a di�cult task. It can be done auto-
matically by an algorithm, manually by a human expert or by combining automated
and manual approaches. So far, reference protein structure classi�cations used in
structural biology like SCOP [Murzin 1995] or CATH [Pearl 2003] are completely or
partially constructed by human experts. If they present the advantage of being of high
quality, the counterpart is the di�culty to maintain their exhaustivity in a context
of quadratic growth of solved 3D-structures. For example, the last release of SCOP
classi�cation [Andreeva 2008] (version 1.75) done in june 2009 do not take into ac-
count PDB entries added from that date which represent more than 25000 structures
and a growth of about 40% between 2009 and 2012. To face with this issue a �rst
solution consists in the development of more accurate algorithmic tools to cluster or
classify automatically 3D biological molecules. Another way is to propose to human
experts new solutions to help in the investigation of protein structure similarities.

In this work we propose an original visualization tool to investigate protein domain
structure similarity proximities.
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3.3.3.2 Expert classi�cation of protein domains

The protein domain dataset used in this study derives from the SCOP_v_1.75 classi-
�cation [Andreeva 2008] which is available at http://scop.berkeley.edu/sunid=0
and its statistics are resumed in Table 3.5. It contains 110800 domains described in
term of sequences relying to 38221 solved 3D structures of the Protein Data Bank.
They are organized in a 4-level hierarchical classi�cation, namely the "Class", "Fold",
"Super Family" and "Family" levels, organizing the domains by increasing similar-
ities. For example, domains in the same "Class" only share very coarse structural
similarities (secondary structure composition) and domains of the same "Family" are
selected to share a high similarity level in term of length and �ne spatial organization
of the amino-acids.

(a) >d1co4a_ 7.47.1.1 (A:) Zinc domain

conserved in yeast copper-regulated tran-

scription factors

(b) >d2aghb1 1.12.1.1 (B:586-672) Kix do-

main of CBP (creb binding protein)

Figure 3.11: Sample protein domains

Class # Folds # Super Family # Family
1: All alpha proteins 284 507 937
2: All beta proteins 174 354 820
3: Alpha and beta proteins (1/2) 147 244 911
4: Alpha and beta proteins (1+2) 376 552 1190
5: Multi-domain proteins (1 and 2) 66 66 101
6: Membrane, cell surface proteins, peptides 57 109 129
7: Small proteins 90 129 231

Table 3.5: SCOP_v_1.75 statistics

From these 110800 protein domains we kept the ASTRAL_40 sub-
set [Brenner 2000]: the 3D structures of SCOP domains presenting less than 40%

http://scop.berkeley.edu/sunid=0
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sequence identity. For each pair of protein domains, a structure alignment is done
with Yakusa [Carpentier 2005]. This algorithm seeks to �nd the set of longest com-
mon sub-structures between a query protein domain and any protein of a data base.
Each alignment is evaluated in term of a z-score measuring the signi�cance of spatially
compatible aligned blocks relatively to found alignments: higher is the z-score, more
signi�cant is the alignment and more similar the protein domains are considered.

3.3.3.3 Graph of pairwise similarities

Let Gz = (V,E) be the graph of pairwise protein domain structures similarities de�nes
as in [Santini 2012]. Each vertex vi ∈ V represents a protein domain, and an edge
(vi, vj) occurs between two domains if their alignment provided by Yakusa presents a
z_score > z where z_score = si−S

σS
. Figure 3.12 displays the original graph ASTRAL

G7 and G6 and Table 3.6, 3.7 and 3.8 show the statistics of G6 and G7. The protein
domains from the same SCOP "Class" in the 4-level hierarchical classi�cation have
the same tone of color, i.e. all the "alpha" proteins are associated with red tone; all
the "beta" proteins are associated with green tone; all the "alpha and beta" proteins
are associated with blue tone, etc. Within each tone, each SCOP "Family" has a
unique color. Given two vertices vi and vj with four labels according to the 4-level
hierarchical SCOP classi�cation class(vi) = {l,m, n, o} and class(vj) = {l′,m′, n′, o′}
where l, m, n and o (ie l′, m′, n′ and o′) stand respectively for "Class", "Fold", "Super
Family" and "Family" SCOP identi�cators. More precisely, let's take an example in
Figure 3.11. In Figure 3.11(a), d1co4a_ indicates the protein id; 7.47.1.1 indicates
that "Class": l = 7, "Fold": m = 47, "Super Family": n = 1, Family o = 1. In
Figure 3.11(b), d2aghb1 indicates the protein id; 1.12.1.1 indicates that "Class": l =
1, "Fold": m = 12, "Super Family": n = 1, Family o = 1.

Class # Folds # Super Family # Family

1: All alpha proteins 192 320 505

2: All beta proteins 123 265 562

3: Alpha and beta proteins (1/2) 127 202 674

4: Alpha and beta proteins (1+2) 243 329 656

5: Multi-domain proteins (1 and 2) 52 52 72

6: Membrane, cell surface proteins, peptides 55 79 89

7: Small proteins 66 98 167

Table 3.6: ASTRAL G6 statistics
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Class # Folds # Super Family # Family

1: All alpha proteins 126 206 317

2: All beta proteins 99 204 416

3: Alpha and beta proteins (1/2) 108 164 549

4: Alpha and beta proteins (1+2) 181 236 462

5: Multi-domain proteins (1 and 2) 38 38 57

6: Membrane, cell surface proteins, peptides 55 79 89

7: Small proteins 66 98 167

Table 3.7: ASTRAL G7 statistics

Class # Data/G6 # Data/G7

1: All alpha proteins 1188 786

2: All beta proteins 1822 1482

3: Alpha and beta proteins (1/2) 2397 2103

4: Alpha and beta proteins (1+2) 2004 1617

5: Multi-domain proteins (1 and 2) 168 153

6: Membrane, cell surface proteins, peptides 149 118

7: Small proteins 499 347

Total 8227 6606

Table 3.8: Data statistics per class. The last row shows the total number of data in
the G6 and G7

We de�ne the class distance ∆class between two vertices as a function of their
SCOP classi�cation as following:

• ∆class(vi, vj) = 0 if class(xi) = class(xi) or l = l′;m = m′;n = n′; o = o′

• ∆class(vi, vj) = 1 if l = l′;m = m′;n = n′

• ∆class(vi, vj) = 2 if l = l′;m = m′

• ∆class(vi, vj) = 3 if l = l′

• ∆class(vi, vj) = 4 otherwise

It is clear that both graphs G7 and G6 show many di�culties to explore the graph.
Thus, this is one of the motivations to use SoT algorithm, which allows decomposing
the original graph into another clear structure. This structure has the distinction of
being topological and hierarchical.
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(a) G7

(b) G6

Figure 3.12: Original graph of the ASTRALG7 andG6 dataset. Each SCOP "Family"
has a color in the SCOP "Class" color tone.
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3.3.3.4 Experimental protocol

We set input parameters as following:

1. Each dataset must be normalized before training. For each dataset, 10 tests are
conducted using random initializations.

2. The shape of map's topology is rectangular. A network node must have at least
one data object.

3. As a graph dataset, we will use the Laplacian (Equation 2.10) to generate data
space X . The number of the selected smallest eigenvectors of the Laplacian is
equal to the number of clusters, λ = K.

4. For graph datasets, leaders [Stanoev 2011] are considered as prototypes. Instead
of following Line 23 in Algorithm 8, the prototype expression is modi�ed as
following:

wc = arg max
∀i∈treec

(deg(vi)) (3.5)

where the local degree deg(vi) is the number of internal edges incident to vi.

3.3.3.5 Study on the removed and synthetized edges

mK,dist
z ∆class 4 3 2 1 0 MK

z

G7

K = 900 653 490 287 3274 11257 15961
K = 2000 629 477 292 3281 11489 16165
ndist7 699 518 309 3526 13147 18199

G6

K = 900 2789 1999 738 6558 17402 29486
K = 2000 2793 1997 746 6620 17752 29908
mdist

6 2793 2000 747 6690 18258 30488

Table 3.9: The number of removed edges relative mK,dist
z to the class distance. MK

z

is the total number of removed edges in the respective graph given by SoT for each
value of K. mdist

z is the number of edges in Gz relative to the class distance.

The ratio Rdist = mK,distz /MK
z

mdistz /Mz
is a measure of how SoT removes edges in function

of distance dist during learning. Mz is the total number of edges in graph Gz; MK
z

the total number of edges removed from Gz by SoT algorithm for each value of K;
mz
K,dist the number of Gz edges between vertices at class distance ∆class; and mdist

z

the number of edges in Gz between vertices at class distance ∆class. As shown in
Table 3.10 for di�erent values of K and z, we observe that the smallest value of Rdist
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Figure 3.13: ASTRAL G7 - SoT: hierarchical and topological structure. Each node
has respectively its color in the original graph corresponding to SCOP class.

(a) SoT structure extracted from Figure

3.13

(b) Original graph extracted from Figure

3.12(a)

Figure 3.14: Sample visualizations for z = 7 centered on cluster 4.58.7.1
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Rdist ∆class 4 3 2 1 0

G7
K = 900 1.065 1.0786 1.0590 1.0587 0.9763
K = 2000 0.9880 1.0184 1.0396 1.0483 0.9838

G6
K = 900 1.0325 1.0335 1.0215 1.0136 0.9855
K = 2000 1.0194 1.0179 1.0180 1.0087 0.9911

Table 3.10: The ratio of removed edges Rdist

Table 3.11: Number of synthesized edges with respect with the distance for each value
of K in the G7 and G6 graph.

∆class 4 3 2 1 0 Total

G7
K = 900 950 477 92 509 611 2639
K = 2000 633 189 22 80 183 1107

G6
K = 900 3307 1453 130 365 394 5649
K = 2000 3049 1314 69 235 265 4932

is reached when ∆class = 0. So for each value of K, SoT removes relatively less edges
between data within the SCOP "Family".

SoT creates a tree topology structure where each tree node represents a data.
Deleting links is not enough to reach this structure, thus SoT also creates synthesized
edges to build tree structure. In the original graph, these synthesized edges allow
to �nd a path between the tree nodes belonging to the same class. Table 3.11 lists
the number of synthesized edges for di�erent values of K. It is di�cult to see the
result on the original graph, but it is clear that the tree structure provided by SoT
in Figure 3.14(a) and 3.16(a) decreases complexity of visualization and exploration
of these graphs. Here we provide various views for data visualization which proofs
that our method can o�er more useful information. Tulip [Auber 2003] is used as the
framework for the visualization. In this section, we only use K = 900 to visualize
the ASTRAL G7 and G6 datasets.

Figure 3.13 and 3.15 present tree topology view of ASTRAL G7 and G6 respec-
tively. The map cells (squares) are located in the center surrounded by trees. Figure
3.14 and 3.16 show two zooms of a region in the SoT structure and a related zone of
the original graph involving same data points for comparison. Here Figure 3.14(a)
and 3.16(a) complete the visualization along with the original graphs presented in
Figure 3.14(b) and 3.16(b).
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Figure 3.15: ASTRAL G6 - SoT: hierarchical and topological structure. Each node
has respectively its color in the original graph.

(a) SoT extracted from Figure 3.15 (b) Original graph extracted from Figure

3.12(b)

Figure 3.16: Sample visualizations for z = 6 centered on cluster 3.91.1.1.

3.3.3.6 Clustering quality

In this dataset, the protein domains are connected by pair to form an aligmnent. For
this reason, the clusters which contain only one protein domain are eliminated. We
don't take into account these clusters but only the ones with at least two protein
domains to compute the clustering quality. SoT provides a good clustering: the
Rand values are close to 1 in Table 3.12. Moreover we can compare the clustering
quality provided by SoT in visual aspect. Figure 3.17 shows the original graph of
the ASTRAL G7 and G6 dataset after applying the majority vote rule. These �gures
enable the di�erence in color with Figure 3.12.
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(a) G7

(b) G6

Figure 3.17: Original graph of the ASTRAL G7 and G6 datasets with the majority
vote.
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K NMI Rand

G7
900 0.943 0.781
2000 0.941 0.805

G6
900 0.994 0.731
2000 0.994 0.739

Table 3.12: Quality measure (NMI and Rand) for G7 and G6

3.4 Conclusion

We have presented in this chapter the �rst approach named Self-Organizing Trees.
This novel method provides a new look at self-organizing models allowing better hi-
erarchical clustering. Thus, we improve their applicability to structured (graph) and
no structured datasets for the clustering problem. The SoT network is able to deter-
mine both the hierarchical distribution of the nodes and its structured topology. In
addition, SoT reveals the ability to represent data distribution in multiple levels of
granularity, and this is achieved without the necessity of computing the entire tree
again. In practice, the SoT model provides tree-like for every network node. This
leads us to �nd the proximity between two trees which are located in neighbor net-
work nodes. We may conclude that those trees belong to one cluster.

Furthermore, our model proposes a friendly visualization space by o�ering a sum-
marized visualization in the case of graph dataset. The bene�t of our approach is
to fast analyze with di�erent visualizations from the general dataset to a particular
part of data. We notice that this method works well with several real world datasets
through the experiments.

In the bioinformatics context, the SoT approach revealed to be very e�cient. It
allows the exploration of protein domains. It simpli�es the representation of struc-
tural neighborhoods, not only by reducing and reorganizing the links between protein
domains, but also by providing a relevant clustering of 3D structures coherent to the
stand of the art expert classi�cations. In addition, tree organization that is provided
by SoT algorithm is of great interest and should be investigated in a further analysis.
In particular the hierarchy of structure and the derived distances that could be com-
puted between proteins from these trees could give evolutionary informations helping
to investigate processes that drive the conservation or the divergence of protein struc-
ture and function.

The purpose of SoT for protein dataset certainly needs more investigations and
testing. We want to perform a user-study to highlight the possible application of the
proposed method to interactive clustering. The main advantage of Interactive Pro-
tein Data Clustering is that the expert has a high con�dence in these results because
he/she has visually validated them.
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4.1 Introduction

Discovering the inherent structure and its uses in datasets has become a major chal-
lenge for data mining applications. An attractive way to help analysts to explore data
is to use unsupervised approaches that allow for the clustering and mapping of high-
dimensional data in a low-dimensional space. In the previous chapter, we have shown
how SoT can address both clustering and visualization at the same time. However, as
one of SOM variants, SoT is sensible to the initial parameters a prior. In this study,
we introduce the second model GSoT that can overcome this issue.

Other SOM variants allow sensitivity to topology to be overcome by
dynamically growing the grid or network, including the Growing Neural
Gas (GNG) [Fritzke 1995b], and a growing hierarchical self-organizing map
[Michael Dittenbach 2002]. A growing algorithm is generally used for learning
topological preservation, clustering, vector quantization and quick data indexation
[Costa 2007]. Identifying these hierarchical relations cannot be addressed conve-
niently within the GNG or SOM models. We do not aim to �nd an optimal data
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clustering but to obtain good insight into the data cluster structure for data mining.
AntTree has been adapted into the self-organizing model in the previous chapter.
Here by combining the GNG and AntTree, the incrementally hierarchical and topo-
logical structure is o�ered. The clustering method should thus be robust and visually
e�cient.

The GSoT method can assure the clustering task and provide hierarchical and
topological structure. A tree is constructed from data assigned to its respective clus-
ter (or network node). Tree building is based on rules from the AntTree method. The
growing algorithm is the adaptive process where a network adapts supports to cover
the data distribution. In other words, network nodes follow the probability density
of input data. Statistical information is used to determine an appropriate position to
insert a new cell in the network [Fritzke 1995b]. Due to its nature, the network size
is incremental over time, and the evolutive network topology depends on the input
data. The reference vector position varies with the random selection of data used in
the training step. A connection has an age variable that is used to decide when to
remove old edges and keep the topology updated.

In Section 4.2, we will present the GSoT principles implemented from GNG. In
Section 4.3 the experiments are performed on several real-world datasets. In this
chapter, we also discuss about the acceleration process in the GSoT algorithm. This
chapter ends up with the conclusion in Section 4.4.

4.2 Principles

4.2.1 Incrementally hierarchical and topological clustering

The GSoT algorithm seeks to successively add new trees to an initially small network
by evaluating local statistical measures. During one epoch, GSoT generates a number
of trees corresponding to the number of units in the network. Each network unit
represents a tree root and is associated with a prototype.

The GSoT output space contains a set of trees arranged in a network, usually
in 1D or 2D (see Figure 4.1). The number of trees is incremental, and the topology
is evolutive. Similar to SoT, each tree node represents one single data object. This
allows an immediate comparison among data using visualization. A hierarchical
structure can be exploited by descending from the topological level to the last level
of trees, which provides useful information about the clustering, data structure and
data topology.

The GSoT principles are de�ned as the example in Figure 4.1. Black square nodes
refer to supports (network units); circle nodes refer to tree nodes, which correspond
to input data (observation). Two trees are topological neighbors if an edge is created
between their supports. The network is �rst initialized with only two supports, as
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(a) GSoT structure: two trees linked by a

topological connection

(b) New GSoT structure adapting to an in-

serted new tree

Figure 4.1: The GSoT architecture in two successive growing process epochs. Black
square nodes refer to supports. Circle nodes refer to observations.

in Figure 4.1(a). These supports are considered hierarchical tree roots. When all
data are connected to their best match tree, we add a new support to extend the
network. The next step is computing new assignments for input data. When the
data and their associated sub-trees have found their new best match support, they
are disconnected from the old tree and reconnected to the new one. The network
grows incrementally, and several hierarchical trees are obtained while the training
process still continues (Figure 4.1(b)).

4.2.2 Algorithm

GSoT is autonomous because we have limited parameters. We do not �x the number
of observations used in the assignment step, as does the traditional GNG. Our method
constructs tree-like organizations over time. The only required parameters are stop-
ping criteria or quantization errors. The algorithm and new support insertions stop
when a maximum tree has been reached. Topological neighbors are considered to
update the tree network. The GSoT network consists of:

• A set of K trees (or K clusters C = {C1, .., CK} associated with W =

{w1, ..,wK}). A tree root is represented by a network node that does not con-
tain any information of input objects. Only the internal or leaf nodes represent
the input objects.

• A set of connections between pair of supports. These connections preserve
the topological relations between the trees in the network. Connections are
characterized by an age. At begining, all connection ages are set to zero.

We use in this section the same notations presented in Chapter 3. The GSoT algo-
rithm (see Algorithm 11) proceeds by alternating four steps: assignment, tree con-



90 Chapter 4. Growing Self-Organizing Trees

struction, prototype adaption, tree insertion in order to minimize the quantization
error:

error = arg min
K∑
k=1

nCk∑
i=1

‖xi −wk‖2

In order to stop autonomously the algorithm, we can employ a threshold of quality
measure such as the quantization error. Or simply, we just consider a number of trees
as stopping criterion [Martinetz 1991, Fritzke 1991].

Assignment

This step (see Line 6 in Algorithm 11) is necessary to minimize the quantization error
while supposed that the prototypes are all constant. The goal is to �nd the best
match tree for each object. This assignment step is extactly the same as that of SoT.
The assignment function is as in Equation 3.2. Then we will verify whether a sub-tree
exists, it follows the principe of the sub-tree assignment.

Figure 4.2: Sub-tree assignment from Ck1 to Ck0

We recall here how to do the sub-tree assignment in Figure 4.2. In this example,
subtreex consists of three tree nodes that get assigned from treek1 to treek0 . These
three nodes are now found in the new network node Ck0 with the same hierarchy as
in the old one Ck1 .

Tree construction

The connecting and disconnecting rules were used in the SOM model. This time they
will be adapted in the GNG model. The tree construction step is entirely realized by
the functions constructTree and constructTreeSub presented respectively by Algorithm
9 and 10) in Chapter 3. Here each object will pass a series of similarity tests to be
connected to a tree or disconnected from an existing tree.
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Algorithm 11 GSoT algorithm
1: intialize two prototypes W = {w1,w2}
2: while stopping criteria have not been ful�lled do

3: initialize L
4: while L is not empty do
5: xi is the �rst data from L
6: k0 = φ(xi) // �nd the best match tree

7: if xi is initial then
8: xposi = 0 // set the tree root as the position of xi
9: constructTree(treek0 ,xi,x

pos
i ) // connect xi to treek0

10: else

11: if xposi is in treec then
12: xposi gets the current position of xi
13: else

14: xposi = 0

15: end if

16: subtreexi = {xi and all tree nodes recursively and temporarily connected
to xi}

17: if xi is connected and k0 6= kold then

18: subtreexi = disconnect subtreexi from treekold
19: end if

20: if xi is disconnected then

21: constructTree(treek0 , subtreexi ,x
pos
i ) // connect either xi or

subtreexi to treek0
22: end if

23: end if

24: if xi is connected then

25: remove subtreexi from L
26: end if

27: updatePrototype(W , k0,xi)

28: end while

29: W = addNewNode(W) // add new network node; also add a new empty

tree associated with this new node

30:

31: end while

Prototype adaptation

While the clusters are all �xed with a number of objects, this step requires to mini-
mize the quantization error. GSoT follows the same process as the Neural Gas and
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GNG model to update prototypes. Once an object has been assigned to a prototype,
this prototype and its neighbors are ajusted and moved toward the assigned object
according to the "winner take most" rule [Fritzke 1991]. For each time it happens,
the age variables are also updated as in Algorithm 12.

Algorithm 12 updatePrototype: updating the prototypes
Input: W , k0,xi
Output: W
1: for all xj ∈ subtreexi do

2: increment the age of all edges from k0
3: add the squared distance between wk0 and xj to the local errork0 :

errork0 = errork0+ ‖ wk0 − xj ‖2

4: move k0 and its topological neighbors (i.e., all supports connected to k0 by an
edge) towards xi by fractions εb and εr of the distance:

∆k0 = εb(xj −wk0) (4.1)

∆r = εr(xj −wr) (4.2)

∀r is neighbor to k0 (4.3)

5: �nd the second nearest support k1 of xi.
6: if treek0 and treek1 are connected by an edge then
7: set the age of that edge to 0.
8: else

9: create a new edge between them.
10: end if

11: remove the edges with an age larger than Maxage. If there are supports with
no edges after this step, then remove these supports

12: decrease the error of all network node by factor β

errork = errork − β × errork

13: end for

Tree insertion

The network is made �exible by the possibility of adding new trees. New trees can
only be added if an epoch has passed. In our case, an epoch is a number of iterations
necessary to successfully connect all objects from L. When a new tree is inserted into
the network, objects are re-assigned again to de�ne new tree structures. GSoT can
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thus avoid misclassi�cation in the previous step. Algorithm 13 gives details of this
step.

Algorithm 13 addTree: adding new trees into the network
Input: W
Output: W
1: �nd the network node q with the maximum accumulated error.

q = arg max(errork), ∀k = 1, .., K

2: insert a new network node p halfway between q and its neighbor f with the largest
error:

wp =
1

2
(wq −wf )

3: initialize a new tree for the node p
4: insert edges connecting p with q and f and remove the edge between q and f .
5: decrease the local errors of q and f by multiplying them by a constant α
6: initialize the error value of p with the new error value of q.

4.2.3 Computational complexity

Lemma 4.2.1 GSoT has a complexity of Θ(KN logN).

Proof Algorithm 4 requires K epochs to build K trees. During one epoch, an op-
eration includes three iterative steps: assignment, tree construction and updating
support. GSoT algorithm uses a small data subset in each epoch. The number of
assignments starts from 100% and decreases; few data must be re-assigned, which
allows the run time to be reduced. To terminate training for N observations, these
steps require N logN operations. A new support is added, and this step is executed
once per epoch. Finally, GSoT has a complexity of Θ(KN logN).

4.3 Experiments

In this section, several experiments are performed to show the e�ectiveness of GSoT
for a clustering knowledge discovery task. The experimental part includes two phases:
numerical and visual validation. Our experiments employ real-world datasets, which
are used in the previous chapter. Table 4.3 re-summarizes the data features.
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Dataset # data # features # class

Arrhythmia 420 278 2

Cancer 699 9 2

COIL-20 1440 1024 20

Ecoli 336 7 8

Glass 214 9 6

Ionosphere 351 17 2

Iris 150 4 3

Sonar 208 60 2

Thyroid 215 5 3

Wine 178 13 3

Yale 165 1024 15

Table 4.1: Data features

4.3.1 Numerical validation: competitive performance

In this experiment, we compare the GSoT model to two algorithms that possess sim-
ilar structure or use the same initialization e.g. GNG and MST. For each dataset,
we choose a value for K that is greater than the number of classes: K = 30 clusters
for COIL-20 and Yale, K = 20 trees for Ecoli and Glass and K = 10 for the others.
For each experiment, 10 tests are conducted using random selections with several
constant parameters: maximum age (max = 50) and scaling factors to reduce errors
in nodes (α = 5.10−2, β = 5.10−3, εb = 0.1, εr = 5.10−4).

Table 4.2 and the radar chart (Figure 4.3) show the clustering quality of three
algorithms. In practice, GSoT and GNG provide equivalent values in most selected
datasets. MST is always less e�cient than the others. Because of its poor perfor-
mance, MST should be avoided. The most signi�cant cases for which GSoT dominates
all three measures are the Cancer, Iris, Wine and Yale datasets. For COIL-20, our
method provides better Accuracy than the others (i.e., Acc = 0.809 vs. 0.782 and
0.181). For Ecoli, GSoT obtains better values in Accuracy (Acc = 0.856) and Rand
index (Rand = 0.761). For Yale, although GSoT and GNG have almost equal Rand
index values, our algorithm obtains higher values for Accuracy (Acc = 0.624) and
NMI (NMI = 0.648).
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(a) Accuracy (b) Normalized Mutual Information

(c) Rand

Figure 4.3: Quality criteria in a radar chart
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Dataset Method Accuracy NMI Rand

GSoT 0.962 0.479 0.656

Cancer GNG 0.957 0.484 0.618

MST 0.691 0.097 0.567

GSoT 0.809 0.803 0.969

COIL-20 GNG 0.782 0.805 0.968

MST 0.181 0.353 0.360

GSoT 0.856 0.540 0.761

Ecoli GNG 0.848 0.542 0.753

MST 0.639 0.363 0.622

GSoT 0.703 0.414 0.754

Glass GNG 0.700 0.410 0.750

MST 0.672 0.374 0.681

GSoT 0.892 0.075 0.291

Ionosphere GNG 0.883 0.081 0.309

MST 0.894 0.046 0.684

GSoT 0.954 0.641 0.789

Iris GNG 0.918 0.634 0.759

MST 0.840 0.559 0.780

GSoT 0.676 0.094 0.514

Sonar GNG 0.673 0.096 0.513

MST 0.634 0.148 0.508

GSoT 0.930 0.462 0.558

Thyroid GNG 0.907 0.458 0.566

MST 0.772 0.241 0.553

GSoT 0.934 0.594 0.761

Wine GNG 0.910 0.559 0.740

MST 0.634 0.453 0.666

GSoT 0.624 0.648 0.939

Yale GNG 0.593 0.613 0.933

MST 0.600 0.612 0.911

Table 4.2: Competitive performance



4.3. Experiments 97

4.3.2 Discussions: GSoT components

4.3.2.1 Growing performance

In this experiment, we study how GSoT trees evolve over time in their Accuracy and
NMI values. We use the same parameters as in the previous experiment, except that
K = 30 is �xed for all selected datasets. It is interesting to observe the cluster-
ing performance when the network is growing and has {5,10,20,30} trees. Table 4.3
summarizes the average GSoT measures versus the number of trees for 10 runs. For
several datasets, including Cancer, Ionosphere, Iris, Thyroid and Wine, the Accuracy
values increase from K = 2 to K = 30, while the NMI values decrease signi�cantly.
These datasets share one common feature: only two or three classes are known be-
forehand. For COIL-20 and Yale, a good performance is obtained when the network
has at least 20 trees. Accuracy thus increases and NMI decreases over time. The
possibility of over�tting exists. To avoid this disagreement, we run 10 tests for each
experiment.

4.3.2.2 Number of assignments

The trees in GSoT are considered intermediary steps to memorize all assignments in
the previous epoch. The ratio expression of the number of assignments is de�ned as
follows:

Ratio =
number of assignments

number of data
(4.4)

Figure 4.4 and Table 4.4 display the ratios of the number of assignments during
training. The x-axis refers to the number of epochs, and the y-axis refers to the ratio
of the number of assignments over the number of data. The entire dataset must be
trained using the GNG algorithm (i.e., Ratio = 100%), but the GSoT algorithm uses
a small data subset for training in each epoch. Initially, the number of assignments
starts from 100%; the number of new assignments then decreases because only few
datasets must be re-assigned to new trees. Most selected datasets are in this case,
where the ratio decreases to 40% after 29 �rst epochs. However, data can be discon-
nected and assigned to another best match tree several times because of autonomous
connection/disconnection rules and updated supports at each epoch, which explains
why several curves increase, including Cancer, COIL-20 and Thyroid.
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Dataset Criterion 5 trees 10 trees 20 trees 30 trees

Cancer
Accuracy 0.954 0.962 0.965 0.967

NMI 0.555 0.479 0.407 0.392

COIL-20
Accuracy 0.206 0.357 0.609 0.809

NMI 0.380 0.536 0.707 0.803

Ecoli
Accuracy 0.714 0.791 0.856 0.868

NMI 0.530 0.552 0.540 0.527

Glass
Accuracy 0.506 0.614 0.703 0.733

NMI 0.284 0.344 0.414 0.432

Ionosphere
Accuracy 0.891 0.892 0.897 0.903

NMI 0.049 0.075 0.120 0.132

Iris
Accuracy 0.930 0.954 0.961 0.956

NMI 0.717 0.641 0.567 0.535

Sonar
Accuracy 0.620 0.676 0.770 0.836

NMI 0.038 0.094 0.185 0.252

Thyroid
Accuracy 0.900 0.930 0.931 0.951

NMI 0.479 0.462 0.438 0.434

Wine
Accuracy 0.912 0.934 0.953 0.958

NMI 0.655 0.594 0.550 0.528

Yale
Accuracy 0.203 0.340 0.573 0.624

NMI 0.221 0.382 0.602 0.648

Table 4.3: Evolutive GSoT performance on the real-world datasets

Data-set 5 trees 10 trees 20 trees 30 trees

Cancer 0.605 1.047 1.034 0.767

COIL-20 1.037 1.121 0.713 0.392

Ecoli 0.458 0.776 0.529 0.229

Glass 0.869 0.500 0.163 0.144

Ionosphere 0.626 1.103 0.467 0.364

Iris 0.626 1.103 0.153 0.060

Sonar 0.626 1.103 0.153 0.060

Thyroid 1.288 0.644 0.120 0.028

Wine 0.584 0.735 0.196 0.050

Yale 0.848 0.575 0.121 0.072

Table 4.4: Assignment ratio
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Figure 4.4: Percentage of new assignments during the training process for all chosen
datasets
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(a) Tree structure for a 2-tree network after

majority vote (NMI = 0.356; Acc = 0.146;

Rand = 0.685)

(b) Tree structure for a 10-tree network

after majority vote (NMI = 0.559; Acc =

0.368; Rand = 0.895)

(c) Tree structure for a 20-tree network after majority

vote (NMI = 0.735; Acc = 0.612; Rand = 0.945)

Figure 4.5: COIL-20: Data structure presented using the GSoT algorithm. Each
color represents one real input data class.
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(a) Tree structure for a 2-tree network (NMI =

0.421; Acc = 0.616; Rand = 0.674)

(b) Tree structure for a 5-tree network

(NMI = 0.550; Acc = 0.726; Rand =

0.821)

(c) Tree structure for a 10-tree network (NMI =

0.637; Acc = 0.794; Rand = 0.869)

Figure 4.6: Ecoli: Data structure presented using the GSoT algorithm. Each color
represents one real input data class.
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(a) Tree structure for a 2-tree network

(NMI = 0.114; Acc = 0.121; Rand = 0.513)

(b) Tree structure for a 5-tree network

(NMI = 0.270; Acc = 0.236; Rand =

0.736)

(c) Tree structure for a 10-tree network

(NMI = 0.387; Acc = 0.315; Rand = 0.850)

Figure 4.7: Yale: Data structure presented using the GSoT algorithm. Each color
represents one real input data class.
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4.3.3 Visual validation

This experimental phase shows how the proposed method provides more information
than other clustering approaches. Its main advantage is that it provides simultaneous
hierarchical and topological structure. This feature simpli�es data exploration by
o�ering friendly and interactive visualization. We use Tulip [Auber 2003] as the
framework to visualize and analyze a network. Figures 4.5, 4.6 and 4.7 show the
evolution of the Ecoli, COIL-20 and Yale data structures, respectively, provided by
GSoT in successive epochs. In the new organization, data are more visible and easier
to visualize and analyze. The supports (black squares) located in the center are
entoured by trees. Each support is associated with its respective tree. We provide
the multi-level structure given by GSoT when the network size is {2, 10, 20} for
COIL-20 and {2, 5, 10} for Ecoli and Yale. Each time, a view displays unique colors
for di�erent input classes.

Figure 4.5 shows several pure clusters, including the celeste and brown classes.
We zoom into two samples extracted from Figure 4.5(c) to study similarity between
images (data) in hierarchical sub-trees. We select two sub-tree levels, as in Figure 4.8:
one from the celeste cluster (the top square) and another from a mixed cluster (the
bottom square). In the �rst zoom (Figure 4.8(a)), GSoT has good classi�cation. The
same object type (a cup) with visible symbols is grouped together. The second zoom
(Figure 4.8(b)) shows images of di�erent objects in the same cluster. The geometric
shapes are similar e.g. in the form of cars. In these sub-trees, cars have the same
direction as their parent node.

For the Ecoli dataset, we have 336 data points grouped into eight clusters.
There are two clusters with only two data types (purple and orange), which are often
misclassi�ed using a majority vote. When a network has two or �ve trees (Figure
4.6(a) and 4.6(b)), GSoT cannot detect all input classes. Otherwise, the network size
increases and is superior to the number of input classes. Figure 4.6(c) contains large
clusters.

Figure 4.7 shows a visual sample from the Yale dataset, in which some data are
misclassi�ed due to the size of this dataset, which has 15 classes. However, the results
improve after each epoch. One pure yellow tree is generated and found in Figure
4.7(c). Figure 4.9 shows a zoom to analyze information lying in sub-tree images.
This zoom displays the three �rst levels of a sub-tree. The images in the sub-tree
have one similar feature to their parent node. In the left sub-tree, the two images are
from two di�erent classes, but both show a face with glasses. In the middle sub-tree,
the face shows either the eyes or mouth opened. The same case is found for the
right sub-tree, where men have one or two eyes closed. The same analysis could be
performed using the rest of the dataset.
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(a) First zoom sample extracted from the top center of

Figure 4.5(c): images belong to one class

(b) Second zoom sample extracted from the left of Fig-

ure 4.5(c): images belong to three di�erent classes

Figure 4.8: Zoom views of COIL-20

Figure 4.9: Zoom sample view of Yale extracted from the top center of Figure 4.7(c)
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4.4 Conclusion

This chapter presented the second model Growing Self-Organizing Trees to address
both clustering and visualization. The proposed method provides a topological and
hierarchical model based on growing process and autonomous tree-building technique.
Furthermore, it is able to continue learning, evolving the topological structure as well
as hierarchical one until a criterion has been met. The GSoT network is more dy-
namic and �exible due to its evolutive network.

The tree structure allows the user to understand and analyze large amounts of
data in an explorative manner. GSoT attempts to improve the standard visualiza-
tion by o�ering topological and hierarchical structure. Data are pinpointed using this
approach and can be further studied. Furthermore, we can directly visualize data in
hierarchical and topological trees. In practice, analysts can apply our multi-structure
to data indexation and exploration (e.g. a search engine).

The GSoT algorithm requires no a priori information about the input data, includ-
ing an estimate of the number of clusters or cluster shapes. Moreover, the advantage
of using GSoT is to accelerate the learning processing and to reduce the number of
assignments epoch by epoch. The GSoT e�ciency is demonstrated by several ex-
periments on real-world datasets. The experimental results are promising, and the
proposed clustering methodology produces high classi�cation success.
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5.1 Introduction

This chapter is devoted to the problem of unsupervised feature selection. Feature se-
lection is an important step in data pre-processing. The feature selection problem has
been addressed by the statistics and machine learning communities for many years.
Feature selection is particularly a problem to deal with the objects e.g., images and
texts which are represented as points in high dimensional space [Saeys 2007]. High di-
mensionality signi�cantly increases the time and space requirements for training data,
moreover learning tasks such as clustering or classi�cation are analytically or compu-
tationally manageable in low dimensional spaces. Feature selection [Guyon 2006] is
a task which focuses mainly on selecting the small subset of relevant features. This
reduction in dimensions seeks to represent better the input dataset. There are many
potential bene�ts of feature selection such as:

• defying the curse of dimensionality to improve the performance of machine
learning algorithms,
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• reducing in dimensions to facilitate data visualization,

• reducing the computational costs and speeding up the learning process.

The main contributions are as following:

1. The main interest of using the tree structure is to automatically discover local
data structure and local data neighbors. AntTree is able to determine nearest
neighbors for each data object, thus the parameter k is no longer necessary.

2. We propose to constrain the Laplacian Score (LS) using unsupervised hierarchi-
cal constraints. The idea is to discover a natural local structure and constraints
within data without knowledge of any class labels. Our purpose is to assess
the ability of features in preserving the local geometric structure o�ered by
unlabeled data, while respecting the unsupervised constraints.

Due to the low cost and easy implementation, �lters are more interesting for re-
searchers. In litterature, LS as a �lter method, is well-known because of its topology
preservation. LS tries to discover feature properties given by the nearest neighbor
graph, k-NN. In pratice, the hierarchical tree provided by AntTree can be consid-
ered as a neighbor graph. Therefore, it may be integrated into the Laplacian score
[He 2005] as hierarchical constraints. We propose, in this chapter, a new score named
Hierarchical Laplacian Score (HLS) that constrains the Laplacian Score.

5.2 Hierarchical Laplacian Score

5.2.1 Tree topology structure as nearest neighbor graph

Many feature selection approaches which have been proposed [Roweis 2000,
Tenenbaum 2000, Belkin 2001, Zhao 2007, Zhao 2013] require a nearest neighbor
graph to model the local geometric structure and perform the feature selection task.
The general method to build a nearest neighbor graph is generally k-NN.

Based on this idea, we are interested in the tree structure of AntTree. As we
mentioned in the two previous chapters, AntTree build a shortest path within the
input data. This is enough to be considered as a nearest neighbor graph. Comparing
to k-NN, this algorithm takes an advantage in the complexity (θ(N logN)) and runs
automatically without any initial parameter.

In this structure, the objects belonging to a sub-tree are close to each other.
Instead an object must have equally k neighbors, each object xi (a tree node) will
automatically obtain its ki neighbors in the proposed graph. These ki neighbors
represent the objects that are directly connected to xi. For example in Figure 5.1, x1
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Figure 5.1: An example of tree topology structure.

has k1 = 5 (one with the higher level and four with the lower level) and x2 has only
k2 = 2 (two with the lower level). Here the direct links connected to the root are not
counted because the root is not an object and does not contain any data information.
The way to build the tree topology structure is shown in Algorithm 10 in Chapter 3.

5.2.2 Hierarchical constraints for unsupervised feature selec-
tion

Studying the proposed hierarchical structure, we propose to constraint LS while pre-
serving local structure ability. This hierarchical information is certainly necessary for
feature selection, especially for unlabeled data. Here we want to de�ne SL (Strong
Link) and WL (Weak Link) as following:

• Strong Link constraint (SL): involving xi and xj, speci�es that they are
neighbors.

SLij = 1 if xi and xj are neighbors.

• Weak Link constraint (WL): involving xi and xj, speci�es that they are
NOT neighbors.

WLij = 1 if xi and xj are not neighbors.

With the unsupervised constraints de�ned above, a new score named HLS is to be
minimized as in Equation 5.1.

HLSr =

∑
i,j(fri − frj)2Sij∑
i(fri − αir)2Dii

(5.1)

where

Sij =

{
e−
||xi−xj ||

2

λ if ∀xi and xj, SLij = 1

0 if ∀xi and xj,WLij = 1
(5.2)
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and
αir =

1

N − ki

∑
j,WLij=1

frj (5.3)

LS selects features with large variance which have more representative power and
respect the pre-de�ned graph. Indeed, LS tries to �nd relevant features while maxi-
mizing the variance of data features for both similar and dissimilar objects. It would
be important to note that since data objects are not close, their features should be
signi�cantly distinct. Our purpose is to maximize the local feature variance at each
graph node. By not considering its neighbors (similar data), we maximize the vari-
ance of only dissimilar objects. While computing this variance, the matrix SL and
WL model the local density of the data objects

HLS is similar to LS by developping the algebraic steps:∑
i,j

(fri − frj)2Sij = 2fr
TLfr (5.4)

We develop the expression in 5.3 as following:

αir =
1

N − ki

∑
j,WLij=1

frj

αir =
1

N − ki
fTr WL1

We de�ne f̃ ′r as following

f̃ ′r = fr −
1

N − ki
fTr WL1

Thus, ∑
i

(fri − αir)2Dii = f̃ ′r
T
Df̃ ′r (5.5)

We re-de�ne HLS as the below expression

HLSr =
fr
TLfr

f̃ ′r
T
Df̃ ′r

(5.6)

Algorithm 14 presents the three steps for feature selection and ranking using HLS.
Lemma. Algorithm 14 is computed in time θ(max(N logN, d×max(log d,N2)))

Proof. The �rst step of the algorithm has a complexity θ(N logN). The second
step computes the scores for d features requiring dN2 operations. The last step ranks
features according to their scores requiring d log(d) operations.
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Algorithm 14 HLS
Input: Data set X
1: Build a tree topology structure as in Algorithm 7 and generate SL and WL

matrices
2: for r = 1 to d

compute HLSr score for each feature r according to Equation 5.6
end

3: Rank the features r according to their score in ascending order

5.3 Experiments

In this section, several experiments were performed on several real-world data set.
These experiments are divided into two categories: clustering application and nearest
neighbor classi�cation. In order to compare the performance, we use the following
two feature selection algorithms:

• Laplacian Score, which selects the variables that can preserve the local structure.

• MaxVariance, which selects the variables that maximize variances in order to
re�ect representative power.

5.3.1 Datasets and methods

Data set Size # Features # Classes
ARP10P 130 2400 10
COIL-20 1440 1024 20
Isolet 1559 617 26
Sonar 208 60 2
Soybean 47 35 4

Table 5.1: Data features

We run the experiments on several datasets which are collected from di�erent
repositories. The features of these databases are summarized in Table 5.3.1 and their
description is as following:

• AR10P can be found in http://featureselection.asu.edu/datasets.php.
This database contains face images of 10 di�erent persons with 13 images per
person.

• COIL-20 [Cai 2011] consists of a set which contains images of 20 di�erent objects
with 72 images per object.

http://featureselection.asu.edu/datasets.php
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• Isolet [Cai 2011] contains 150 subjects who spoke the name of each letter of the
alphabet twice. They are grouped into sets of 30 subjects each, and are referred
to as Isolet1 through Isolet5. Isolet5 is selected in our experiment.

• Sonar and Soybean are the two famous real-world data sets that can be down-
loaded from UCI Machine Learning Repository.

5.3.2 Clustering results

Accuracy NMI
K 10 15 20 10 15 20
HLS 0.376 0.461 0.584 0.416 0.474 0.511

LS 0.292 0.438 0.576 0.274 0.374 0.450
MaxVariance 0.407 0.492 0.538 0.384 0.410 0.426
All Features 0.184 0.307 0.400 0.133 0.268 0.371

Table 5.2: Clustering quality by using 250 selected features on the AR10P data
set.The last row shows the performance by using all the 2400 features.

(a) 10 Clusters (b) 15 Clusters (c) 20 Clusters

(d) 10 Clusters (e) 15 Clusters (f) 20 Clusters

Figure 5.2: Clustering performance (Accuracy and NMI) vs. the number of selected
features on AR10P database
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Accuracy NMI
K 10 20 30 10 20 30
HLS 0.346 0.608 0.722 0.425 0.680 0.695

LS 0.348 0.576 0.683 0.390 0.628 0.640
MaxVariance 0.333 0.548 0.640 0.382 0.587 0.645
All Features 0.361 0.646 0.761 0.573 0.660 0.781

Table 5.3: Clustering quality by using 100 selected features on the COIL-20 data
set.The last row shows the performance by using all the 1024 features.

(a) 10 Clusters (b) 20 Clusters (c) 30 Clusters

(d) 10 Clusters (e) 20 Clusters (f) 30 Clusters

Figure 5.3: Clustering performance (Accuracy and NMI) vs. the number of selected
features on COIL-20 database

To facilitate the comparison between di�erent methods, we perform K-means
clustering by using the selected features. In these experiments, we �x k = 5 to
build k-NN graph for Laplacian Score. For the proposed score, we construct tree
structure using Algorithm 7. To evaluate the clustering quality with di�erent number
of clusters, we adopt this parameter s as following K = 10, 15, 20 on AR10P, K = 10,
20, 30 on COIL-20, K = 13, 26, 39 on Isolet and K = 4, 6, 8 on Sonar and Soybean.
For each test of K, we conduct di�erent algorithms to select a number of features m
(m = 1, ..., 500 on AR10P, m = 1, ..., 200 on COIL-20 and Isolet, m = 1, ..., 60 on
Sonar andm = 1, ..., 35 on Soybean) and applyK-means for clustering. TheK-means
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Accuracy NMI
K 13 26 39 13 26 39
HLS 0.423 0.606 0.626 0.726 0.702 0.675

LS 0.385 0.499 0.559 0.606 0.646 0.610
MaxVariance 0.405 0.479 0.510 0.704 0.629 0.598
All Features 0.406 0.532 0.585 0.596 0.701 0.672

Table 5.4: Clustering quality by using 100 selected features on the Isolet data set.
The last row shows the performance by using all the 617 features.

(a) 13 Clusters (b) 26 Clusters (c) 39 Clusters

(d) 13 Clusters (e) 26 Clusters (f) 39 Clusters

Figure 5.4: Clustering performance (Accuracy and NMI) vs. the number of selected
features on Isolet database

algorithm are applied 10 times with di�erent random initialization.
Figure 5.2 - 5.6 display the plots of clustering performance (Accuracy and NMI)

versus the number of selected features on the datasets: AR10P, COIL-20, Isolet,
Sonar and Soybean, respectively. Generally HLS consistently outperforms all the
other methods. In Figure 5.2, HLS algorithm provides reasonably good results in
Accuracy and NMI criteria. On the COIL-20 dataset (Figure 5.3), HLS gives the best
results in Accuracy and NMI with typically around 50-100 features for all three tests.
We note that, for K = 30, our proposed algorithm are clearly better than the others.
On the other hand, a study on Figure 5.4 reveals that the accuracy of HLS increases
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Accuracy NMI
K 4 6 8 4 6 8
HLS 0.663 0.716 0.759 0.067 0.078 0.109

LS 0.596 0.634 0.677 0.015 0.040 0.083
MaxVariance 0.620 0.615 0.620 0.031 0.046 0.049
All Features 0.649 0.658 0.682 0.055 0.080 0.097

Table 5.5: Clustering quality by using 15 selected features on the Sonar data set. The
last row shows the performance by using all the 60 features.

(a) 4 Clusters (b) 6 Clusters (c) 8 Clusters

(d) 4 Clusters (e) 6 Clusters (f) 8 Clusters

Figure 5.5: Clustering performance (Accuracy and NMI) vs. the number of selected
features on Sonar database

steadily. As we have been seen in COIL-20 data set, HLS dominates over LS and
MaxVariance with K = 30. In Figure 5.5, we can note that our values are better
than the others, even better than the quality values by using all the features. Figure
5.6 presents the clustering results for Soybean dataset. Remarkably, HLS achieves
Acc = 100% in most of cases K = 4, 6 and 8 by using only 9 features.

In Table 5.2 - 5.6, we summarize the clustering results of AR10P, COIL-20, Isolet,
Sonar and Soybean respectively. The numerical results of AR10P presented in Table
5.2 show us an improvement in NMI performance provided by HLS. For Accuracy,
HLS is comparable with the two others LS and MaxVariance. In Table 5.3 for COIL-
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Accuracy NMI
K 4 6 8 4 6 8
HLS 1 0.978 0.978 0.979 0.696 0.632

LS 0.787 0.766 0.851 0.720 0.516 0.500
MaxVariance 0.829 0.957 0.936 0.752 0.663 0.577
All Features 0.425 0.468 0.510 0.079 0.196 0.303

Table 5.6: Clustering quality by using 9 selected features on the Soybean data set.
The last row shows the performance by using all the 35 features.

(a) 4 Clusters (b) 6 Clusters (c) 8 Clusters

(d) 4 Clusters (e) 6 Clusters (f) 8 Clusters

Figure 5.6: Clustering performance (Accuracy and NMI) vs. the number of selected
features on Soybean database

20 dataset, we remark that in 20 clusters case and only 100 features are selected, the
NMI value given by HLS is 68.0%, which is even better than the clustering result by
using all the 1024 features (66.0%). For Isolet (Table 5.4), even though the Accuracy
and NMI results with 100 features are not the best but they are very comparable with
the ones with 617 features. In Table 5.5, it can be noted that our methods perform
slightly well on Sonar dataset in Accuracy. We can achieve Accuracy value Acc =
68.2% by using 9 features with K = 6 or 8. Finally, on Soybean dataset, HLS is the
only method which can achieve good results in both Accuracy and NMI.
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5.3.3 Classi�cation results with Nearest Neighbor

For the supervised learning, we use the nearest neighbor classi�er to compare the
performance of the selected algorithms. We perform leave-one-out cross validation as
follows: For each data point xi, we �nd the nearest neighbor NN(xi).

NN(xi) = argmin∀j=1,..,N(xi − xj)
2

Let y′i the class label of xNN(xi) (y
′
i = NN(yi)). The classi�cation error is thus de�ned

as following:

Error = 1− 1

N

N∑
i=1

δ(y′i, yi)

where δ(y′i, yi) = 1 if y′i = yi and 0 otherwise.

(a) AR10P (b) COIL-20 (c) Isolet

(d) Sonar (e) Soybean

Figure 5.7: Classi�cation error vs. the number of selected features

Figure 5.7 shows the classi�cation error of the �ve selected databases. In general,
the classi�cation errors of HLS are better than the errors of LS and MaxVariance.
On AR10P set, we obtain a good classi�cation by using only around 125 features
(Error = 0.186). It is interesting to note on COIL-20 dataset, HLS can achieve
the classi�cation error = 0.043 by using only 100 features. On Isolet dataset, HLS
starts converging around 50 features. The HLS result is slightly better than LS and
MaxVariance on Sonar dataset. Particularly on Soybean dataset, HLS performs well



118 Chapter 5. Hierarchical Laplacian Score for feature selection

AR10P COIL-20 Isolet Sonar Soybean
# Features 250 100 100 15 9
HLS 0.215 0.043 0.192 0.182 0

LS 0.330 0.143 0.221 0.192 0.148
MaxVariance 0.415 0.045 0.258 0.256 0.02
All Features 0.500 0 0.124 0.125 0

Table 5.7: Classi�cation error by using a number of features. The last row shows the
error rate by using all the features.

and the classi�cation error reaches 0 very fast with no more than 9 features. Table
5.7 presents the nearest neighbor classi�cation error with di�erent features for each
dataset. HLS provides comparable results with that using all the features.

5.4 Conclusion

In general, it is signi�cantly more challenging than the conventional setting of feature
selection because of the lack of labeled training dataset. To address this challenge,
we proposed a �lter approach for unsupervised feature selection. The new score was
proposed based on Laplacian Score to evaluate the relevance of features based on
tree topology structure and unsupervised constraints. Our algorithm is essentially
autonomous without using pre-de�ned parameters. Finally, experimental results on
several datasets prove that HLS algorithm achieves signi�cantly higher performance
for clustering and classi�cation.

As future work, it would be interesting to investigate hierarchical constraints for
more e�cient semi-supervised feature selection. Another direction for semi-supervised
feature selection is to iteratively propagate labels from labeled data to unlabeled data
while carrying out hierarchical constraints for feature selection. One may also extend
the current algorithm to handle di�erent features in the case of biological datasets in
the aim to clustering gene expression datasets and selecting relevant genes.
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Conclusions

In this thesis we have mainly investigated the clustering problem. We tried to answer
the following questions:

• How can data be grouped in clusters based on their similarity?

• What should be the basis for a decision to assign an object to a cluster?

• What should be the objective function to minimize the quantization error?

• How can a clustering result be evaluated when class labels are not available?

The clustering problem appears when in a classi�cation problem labels in the data
are not available. In this case only the similarity of the data might be known, clusters
can be found with high con�dence in some senses (see Chapter 2, 3 and 4). Several
approaches proposed to �nd clusters according to data hierarchy or topology or even
both.

A complication emerges when a clustering method is evaluated. When there is
no known class labels, only the intra-variance or intra-density can be used. Unfor-
tunately, these types of measure are under the in�uence of the number of clusters
which must be de�ned a priori by a user. To overcome this small issue, the class
labels become indispensable. In practice, the user has another option to evaluate
clustering methods through data visualization. Clustering and visualization are both
big challenges.

6.1 What has been done in this thesis?

In Chapter 3 we presented SoT, the derivation of the Self-Organizing Maps, which
added a hierarchical dimension into the topological map. Instead of a hierarchical
map, it builds automatically a hierarchical tree for the data group in each network
node. In SoT, the map is �xed and has to be initialized with certain input parameters
like in SOM. GSoT in Chapter 4 is extended Growing Neural Gas using the same
principle. It appears that combining a topological model and a hierarchical model
brings more advantages. These methods are, therefore, suited for data clustering and
visualization mentioned above. The self-assembly rules that are used to build the
hierarchical structure allow to correct the mis-classi�cation of the previous iterations.
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Furthermore, we pro�t the hierarchical properties to accelerate the learning process,
and to reduce the number of assignment in each learning step.

Due to the hierarchical and topological structure, SoT and GSoT o�er �exible and
friendly way to visualize data. The topological map enables to visualize data from
high-dimensional space to low-dimensional space; while the trees allow to visualize the
data relations in any hierarchical level. Moreover, these relations can be considered
as the shortest paths that connect all the data in a cluster. These properties have
not seen in any clustering methods presented in Chapter 2. The hierarchical and
topological structure seems to be interesting in the case of graph datasets where it
exists links between a pair of graph vertices. The links that are found in the proposed
structure can lead to insight information.

We also discussed the performance of SoT and GSoT on several real-world datasets
e.g. vectors, images, proteins or graphs. The applicability of these methods for
all types of data was measured through the experiments in Chapter 3 and 4. We
have performed the evaluations in term of the clustering quality as well as the data
visualization.

With the interest of data visualization in a low-dimensional space, the feature
selection was studied in Chapter 5. Here we de�ned the hierarchical constraints
implemented into a �lter score for feature selection. This is the task of data pre-
processing (see Chapter 2) that helps improving the algorithm performance. In this
approach, we preserved locally the variance for each feature and the data topology.

6.2 What can be concluded from this thesis?

Some conclusions can be drawn from this thesis:

• First, the hybrid models combining the hierarchical and topological models are a
good tool for visualizing data, especically high-dimenstional data. They enables
both hierarchical and topological relations of input data.

• The properties of AntTree can be widely studied and applied in many problems.
In this thesis, we have shown how to use these properties to deal with the
clustering problem: combining with the topological models for data visualization
and accelerating the learning process.

• Both SoT and GSoT work well on real-world datasets. Their competitive per-
formances are acceptable comparing to other methods.

• Finally, the hierarchical constraints provided by the tree topology contain useful
information for feature selection. These constraints are used to preserve the local
structure properties.
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6.3 What can be done in the future?

This thesis o�ers several perspectives for future work:

• In the short term, the problems encountered in data visualization can be in-
tensively studied in the hierarchical and topological structure. There are also
a number of potential avenues for future research, such questions still can be
posed:

� Is the hierarchical and topological structure useful?

� Do all the synthetized and original links in the hierarchical and topological
structure contain any helpful information?

Indeed, these questions are very attractive in the problem of graph summariza-
tion, thus it requires throughly user-validation studies.

• GSoT has its own particulars as a growing model. This model can be extended
to take into account the data that increment or evolve over time. It seems
especially interesting to process data streaming. The purpose is to study how
GSoT interferes and builds increasingly growing trees for this type of data.

• In the long term, another perspective work is that how to apply the hierarchical
and topological models on big data? Big data often refer to a collection of
datasets with a complex and large volume. It is hard to process using traditional
methods, it should require new ways of processing to enhance decisions, discover
insight information, etc. Heuristic learning algorithms should be sign�cantly
improved to help in process optimization by reducing the implementation time
and cost. To handle large data sets, one of newest paradigm is MapReduce which
performs map and reduce operations. In map step, the input problem is divided
into smaller sub-problems which are solved separately and independently. The
reduce step collects the answers to all the sub-problems then forms the �nal
answer to the input problem.
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