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Abstract

This thesis aims at proposing an end-to-end approach which allows the automation

of the process of model transformations for the development of data warehousing

components. The main idea is to reduce as much as possible the intervention

of human experts by using once again the traces of transformations produced on

similar projects. The goal is to use supervised learning techniques to handle concept

definitions with the same expressive level as manipulated data. The nature of

the manipulated data leads us to choose relational languages for the description

of examples and hypothesises. These languages have the advantage of being ex-

pressive by giving the possibility to express relationships between the manipulated

objects, but they have the major disadvantage of not having algorithms allowing

the application on large scales of industrial applications. To solve this problem, we

have proposed an architecture that allows the perfect exploitation of the knowledge

obtained from transformations’ invariants between models and metamodels. This

way of proceeding has highlighted the dependencies between the concepts to learn

and has led us to propose a learning paradigm, called dependent-concept learning.

Finally, this thesis presents various aspects that may influence the next generation

of data warehousing platforms. The latter suggests, in particular, an architecture for

business intelligence-as-a-service based on the most recent and promising industrial

standards and technologies.

Keywords: Model-Driven Data Warehouse, Dependent-Concept Learning, Induc-

tive Logic Programming, Business Intelligence-as-a-Service.
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Résumé

L’objectif de ce travail de thèse est de proposer une approche permettant l’automatisation

complète du processus de transformation de modèles pour le développement d’entrepôts

de données. L’idée principale est de réduire au mieux l’intervention des experts

humains en utilisant les traces de transformations réalisées sur des projets sim-

ilaires. L’objectif est d’utiliser des techniques d’apprentissage supervisées pour

traiter les définitions de concepts avec le même niveau d’expression que les données

manipulées. La nature des données manipulées nous a conduits à choisir les

langages relationnels pour la description des exemples et des hypothèses. Ces

langages ont l’avantage d’être expressifs en donnant la possibilité d’exprimer les

relations entres les objets manipulés mais présente l’inconvénient majeur de ne

pas disposer d’algorithmes permettant le passage à l’échelle pour des applications

industrielles. Pour résoudre ce problème, nous avons proposé une architecture

permettant d’exploiter au mieux les connaissances issues des invariants de transfor-

mations entre modèles et métamodèles. Cette manière de procéder a mis en lumière

des dépendances entre les concepts à apprendre et nous a conduits à proposer un

paradigme d’apprentissage dit de concepts-dépendants. Enfin, cette thèse présente

plusieurs aspects qui peuvent influencer la prochaine génération de plates-formes

décisionnelles. Elle propose, en particulier, une architecture de déploiement pour

la business intelligence en tant que service basée sur les normes industrielles et les

technologies les plus récentes et les plus prometteuses.

Mots clés: Entrepôts de Données Dirigés par les Modèles, Apprentissage de

Concepts-Dépendants, Programmation Logique Inductive, Business Intelligence en

tant que Service.
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Chapter 1

Introduction

Decision support systems and business intelligence systems [1, 2] are the areas of

the information systems discipline that is focused on supporting and improving

decision-making across the enterprise. The decision-making process is a strategic

asset that helps companies to differentiate themselves from competitors, improve

service, and optimize performance results. The data warehouse [3, 4] is the central

component of current decision support and business intelligence systems and is

responsible for collecting and storing useful information to improve decision-making

process in organization. The context of development of decision support systems is

defined around several business, conceptual and technical constraints (figure 1.1).

The data warehousing and business intelligence projects are still exposed to several

risks and require more knowledge about the underlying business domain. The data

warehousing architecture is defined through several heterogeneous and interrelated

layers: data warehouse layers are mainly interrelated by design constraints and the

data exchange flow (i.e., Extraction, Transformation, and Loading - ETL). Also,

each layer contains different components and using different modelling profiles.

From the technical point-of-view, the urbanization of the decision support and data

warehousing systems can be made using one or more technologies (for example

Oracle as database, SAP Business Objects for reporting, etc.). From the conceptual

point-of-view, actual data warehouse modelling approaches use several standard

formalisms and profiles (e.g., UML and CWM). The Unified Modelling Language

(UML) is a general-purpose modelling language for specifying, constructing, and

documenting the artefacts of systems. The main purpose of the Common Warehouse

1



Chapter 1. Introduction 2

Standards: UML, CWM 
and QVT 

Technologies: Oracle, 
Microsoft, SAP, etc.   

Domain: The Data 
Warehousing Architecture 

The Automation Problem? 

Figure 1.1: Context of Decision Support Systems Developpement.

Metamodel (CWM) is to enable easy interchange of warehousing and business

intelligence metadata between warehouse tools, warehouse platforms and warehouse

metadata repositories in distributed heterogeneous environments. This complexity

of the decision support systems development process, makes the definition of a

solution for an automatic generation of data warehousing components increasingly

difficult.

Several data warehouse design frameworks and engineering processes have been pro-

posed during the last few years. However, the framework-oriented approaches [5–9]

fail to provide an integrated and a standard framework that is designed for all layers

of the data warehousing architecture. The process-oriented approaches [10–14] fail,

also, to define an engineering process that handles the whole development cycle

of data warehouse with an iterative and incremental manner while considering

both the business and the technical requirements. In addition, not much effort was

devoted to unify the framework and the process into a single integrated approach.

Moreover, no intelligent and automatic data warehouse engineering method is

provided. However, in the current context, successful organizations need an in-

frastructure to automate processes that ensure development, consistency, changes,

flexible deployment and manageability of their data warehousing environments.

By implementing automated and agile solutions, organizations are able to codify

best practices, reduce the burden on expensive engineering talent, and increase the

effectiveness of the development and delivery teams. Agile business intelligence

needs agile deployment architecture. Hence, Software-as-a-Service (SaaS) [15, 16]
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is a new information delivery model for business intelligence and data warehous-

ing. This architectural model has many advantages compared to the traditional

deployment model and it can be a good choice for our solution.

This thesis deals with these issues by studying (i) the use of the model-driven

engineering paradigm [17] for data warehouse components development, (ii) its

automation using machine learning techniques and ( iii) the recommended de-

ployment architecture to reduce costs of data warehousing infrastructures. The

proposed approach is based on the extension of the model-driven framework using

inductive machine learning [18, 19] and it is inspired from existing methods [20–23]

and recognized standards [24–26]. The proposed deployment architecture addresses

business intelligence-as-a-service requirements and it is also based on promising

architectural model, open standards and tools.

The model-driven data warehouse gathers approaches [27, 28] that align the develop-

ment of the data warehouse with a general model-driven engineering paradigm [17].

The model-driven engineering is mainly based on models, meta-models and trans-

formation design. Indeed, model- driven strategy encourages the use of models as

a central element of development. The models are in accordance with metamodels

and the transformation rules are applied to refine them. So, the model-driven

data warehouse represents a first stage of automatic data warehouse components

development and deployment. But, only are addressed the components of interme-

diate models (i.e., conceptual, logical, etc.): derivation and code generation are

considered in the automation process. Because in reality, model transformation

design is ensured by human experts and in general it generates an exorbitant cost.

Transformations are the central components of each model-driven process. However,

transformation development is a very hard task that makes the model-driven

approach more complex and entails additional costs. So, designers or programmers

must have high skills in the corresponding metamodels and the transformation

languages, e.g., the Query-View-Transformation (QVT) [29]. In addition, data

warehousing projects require more knowledge about the underlying business domain

and requirements. This raises many risks and challenges during the transformation

design. One of the main challenges is to automatically learn these transformations

from existing project traces. In this context, model transformation by-example

(introduced by [30]) is an active research area in model-driven software engineering

that uses artificial intelligence techniques and proposes to automatically derive
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transformation rules. It provides assistance to designers in order to simplify the

development of model transformations and it reduces complexity, costs and time of

development. This process of transformation learning represents a second stage of

an automatic approach for data warehousing components engineering. But actually,

in a model-driven data warehouse context, several steps are needed to automatically

learn the transformation rules.

The first step, which has been addressed as first part of this work, is a modelling

of the global solution. It consists in isolating steps where it is necessary to induce

transformation rules; in identifying the metamodels used to define the input/output

models of these transformations and in designing a conceptual framework for

transformation learning that uses adequate representation language. In this step,

the model-driven data warehouse framework is extended by machine learning

in order to support the expert in the transformation process. The architecture

of model-driven data warehouse is a composite architecture that uses multiple

components and presents several technical risks. Therefore, we focus on effective

modelling of the model-driven warehousing architecture in order to understand the

machine learning approach integration, how to make learning and how to deploy

the application effectively. This modelling step, considered as modelling bias (or

architecture bias) is important to manage these risks and make efficient the task of

transformation learning.

The attribute-based approaches are limited to non-relational descriptions of objects.

In fact, the learned descriptions do not specify relations among the objects’ parts.

The background knowledge is expressed in rather limited form and the concept de-

scription language is usually inappropriate for domains when relationships between

objects must be designed. In the proposed framework, the learning process will use

data-models (or data schemas) to set examples and background knowledge. So, the

definition of relations between model elements (e.g., class, attribute, association), is

required to set-up the learning process. Relational learning provides the appropriate

approach to answer this problem. This framework provides several advantages,

because the defined relational information plays an important role in the resulted

transformation rules. Thus, we focus on providing an optimized representation

of the language bias. The language bias (also known as declarative bias) aims

to restrict the representation to clauses that best define the transformation rules.

The unified modelling language and the common warehouse metamodel standards
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metamodels are used to find relations and to define the representation language. As

part of the modelling step, the task addresses the issues of translating a CWM-UML

transformation problem into a relational learning problem. Indeed, scaling in the

use of learning systems is a fundamental issue. This requires improving the design

process of the overall architecture of model-driven data warehouse that allows thus

an effective evaluation process.

We propose to express the model transformation problem as an Inductive Logic

Programming (ILP) one [31]. The ILP is interested in learning logic programs,

which allow to express complex relationships between models. The proposed

framework uses existing project traces to define ILP inputs (i.e., background

knowledge B and examples E) and to find the best transformation rules. The

inductive logic programming method then, learns the underlying concepts and

outputs as a solution a logic program to encode the learned concepts. ILP methods

choose the solution from a set of well-formed hypotheses, known as the hypothesis

language, denoted Lh. In this thesis, we show optimized ways to specify hypothesis

languages in the context of the studied application: model-driven data warehouse

and its automation using by-example techniques.

The second step, which has been addressed as second part of this work, consists of

defining an optimal approach to learn the transformations. In fact, within a model-

driven data warehouse application, dependencies exist between transformations.

We investigate a new machine learning methodology stemming from the application

needs: learning dependent-concepts. We propose a Dependent-Concept Learning

(DCL) approach where the objective is to build a pre-order set of concepts on this

dependency relationship: first learn non-dependent concepts, then, at each step,

add the learned concept as background knowledge for next concepts to be learned

according to the pre-order. This DCL methodology is implemented and applied

to our transformation learning problem. The experimental evaluation shows that

the DCL system gives significantly better results compared to learning concepts

independently.

The automation of data warehousing deployment and business intelligence delivery

require implementing web-based services in order to meet market demands for speed

and agility. Without a doubt, web-based business intelligence can be implemented

very fast and it is easy to configure and to scale-up. In addition, the emergence
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of software-as-a-service architecture has influenced current data warehousing in-

frastructures. Therefore, cloud-based business intelligence known as business

intelligence-as-a-service is an active research field and is a topic worth noting. This

field focuses on improving and optimising the deployment of data warehousing

components and services. So, considering these recent aspects, the third part of our

work is to propose a functional and a technical business intelligence-as-a-service

architecture to deploy the designed solution. We introduce the model-driven data

warehouse-as-a-service architecture and the promising open industry standards and

technologies recommended for use. This architecture offers many advantages, such

as lower Total Cost of Ownership (TCO) and better Return On Investment (ROI)

and an accessible, scalable and quick deployment. This work of architecture design

and implementation is important to improve the performance of the approach. But

also, it is a much anticipated result in this work, conducted as part of a partnership

between Intelligence Power Company (as industrial partner) and the Computer

Science Lab of Paris-Nord (LIPN).

The thesis starts with an introductory chapter clarifying the nature and the

motivations of this work. Chapter 2 presents the terminologies used and outlines the

concerned fields: the data warehousing architecture, the model-driven engineering

and machine learning techniques. It also presents and discusses the main related

efforts in each research field. Chapter 3 describes the research context and the work

scope. It also gives the definition of the problem and the main challenges. It finally

presents our vision, methods and tools to resolve the problem, and an overview of

the proposed solution. Chapter 4 covers our modelling effort and the architectural

aspects of the solution. It provides a detailed study of the proposed model-driven

data warehouse method. First, it presents standards and practices used for the

method specification. Then, it describes the model-driven design framework part

and the model-driven engineering process part. Finally, it provides the architecture

of the conceptual framework for transformations learning in this context. In

Chapter 5, the learning aspects of the solution are detailed. The chapter starts

by the formalisation of key concepts used in our approach. Then, it studies the

proposed machine learning approach (dependent-concepts) to learn transformation

rules. Chapter 6 gives experimental results and discussion. Chapter 7 covers the

implementation aspects of the solution. It introduces a design of a tool to support

our proposals. It examines the software-as-a-service architectural model for software

deployment and its use for business intelligence applications. It also presents the
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proposed functional and technical architectures for business intelligence-as-a-service

and model-driven data warehouse-as-a-service. The main perspectives and the

future research challenges are presented in Chapter 8. Chapter 9 summarizes our

contributions and gives our final conclusions and remarks.



Chapter 2

Background

In the problem that we are going to deal with, several concepts and research fields are

considered. This chapter investigates the definition of these fields and the associated

terminologies. It brings together the elements that are necessary to understand

the context of our work. It presents the data warehousing architecture and gives

an overview of current works on data warehouse components development. The

model-driven architecture specification is explained and the used meta-modelling

framework is defined.

The chapter also gives a summary of machine learning methods and presents with

more details the inductive logic programming approach. It provides a review of

related work in various areas (i.e., model-driven data warehouse approaches, model

transformation by-example framework and concept learning strategies) that concern

the solution provided by this dissertation.

8
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2.1 Data Warehousing Architecture

Data models are the result of the application of design practices and informal rules

specific to the organization. And this is more common today with the emergence of

the business model concept that is increasingly diverse and complex. Furthermore,

in the case of data warehousing systems, the model depends on the business

goals to achieve. So, there are important requirements and constraints, which

may be redundant, to include in the model. In this context, we need to know

more about the data warehousing architecture and relevant works that concern

the development of the data warehouse components. The data warehouse has

become the central element of current decision support systems because it provides

crucial business information to improve strategic decision-making processes [32].

The data warehousing architecture is defined through several heterogeneous and

interrelated layers. Moreover, each layer contains different components, using

different modelling profiles, and depends on several technologies. We distinguish

five main layers (figure 2.1) that compose the data warehousing architecture: the

data-source layer, the integration layer, the multidimensional layer, the analysis

layer, and the data-access layer. In this architecture, we consider that the staging

area is part of the integration layer, and the meta-data layer is an implicit layer

shared between all other layers.

Integration
Layer 

Data Access
Layer 

Analysis
Layer 

Multidimensionnal
Layer 

Data Source
Layer 

Data Warehouse
Repository

Data Marts

OLAP
Data Cube

Data Mining
Models

Internal

External

End Users

Reporting

Data 
VisualizationETL Jobs

Figure 2.1: Data Warehousing Architecture.

The data-source layer defines the sources of information used to feed the data

warehouse. It can be internal sources (transactional information systems, content

management systems or files) or external sources (remote systems, web data). The
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integration layer is responsible for data extraction, data transformation and data

loading into data warehouse. It defines the Extraction Transformation and Loading

(ETL) jobs and the mapping between data sources and data warehouse. The

multidimensional layer defines the structure of the data warehouse repository. The

dimensional modelling techniques [3, 32] are used to design the multidimensional

structures (i.e., facts and dimensions) of this layer. The multidimensional layer

can be organized as one companywide warehouse or/and multiple independent

data marts. The analysis layer defines the mapping between the multidimensional

layer and end-user applications. It contains special data structures (data cube

and data mining models) that are used by the end-user applications for goals of

analysis. The data-access layer defines the end-user applications used to access

and to analyze data from data warehouse repository through the analysis layer. It

contains Online Analytical Processing (OLAP) client’s tools, reporting tools and

so on.

Each of these layers presents its own problems and constraints, such as semantic

schemas integration studied in [33, 34], semantic data integration [35], ETL process

design and generation [36], multidimensional and analysis models derivation [37,

38]. Interoperability between layers, components portability and adaptability are

the commons problems encountered in such architecture. In addition, business

intelligence projects are still exposed to several technical risks and require more

knowledge about the underlying business domain. These aspects increase the costs

and the time of data warehouse development and make it a very difficult and

challenging task.

Current data warehouse development approaches can fall within three categories:

(1) The framework-oriented approaches focus on the data warehouse system design;

(2) The process-oriented approaches focus on the data warehouse development

process; and (3) The unified approaches that address the two problems (this

category includes also the model-driven approaches). We summarize below the

purpose of these common approaches, then we focus on the study of the model-driven

data warehouse approaches which interests us most. In the framework-oriented

category, we distinguish the approaches that focus on the design of one layer of

the data warehousing architecture [6, 39, 40], and those dealing with more than

one layer or all data warehouse layers [27]. We focus more on research efforts

on data warehouse repository design and extraction transformation and loading
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process development. For data-sources reverse and integration efforts you can

refer to [33, 34, 41], and to [37] for the analysis layer modelling, and concerning

data-access layer the works presented in [42, 43] will give more details.

Concerning the design of the data warehouse repository, authors in [6] propose a

Unified Modelling Language (UML) profile for multidimensional modelling in data

warehouses. Some standards are used in this approach such as, the Object Constraint

Language (OCL) to specify the constraints attached to the multidimensional model

and the Query-View-Transformation (QVT) for an automatic generation of the

implementation in a target platform. In [7] a UML-based data warehouse design

method that spans the three design phases (conceptual, logical and physical) is

presented. A set of metamodels is used to design each phase, as well as a set

of the OCL transformations to map schemas. However, these approaches focus

only on the design of the data warehouse repository and no other data warehouse

component is considered. Thus, these UML profiles do not provide a general

standard framework like the common warehouse metamodel that is integrated to

cover other layers of the data warehouse. Different other approaches [3, 44–46]

for the data warehouse conceptual design are also proposed. These approaches

share the same disadvantages with those previously presented and have other

limitations such as: no standard notation and framework are adopted; no formal

transformations are defined, and so on.

Concerning the development of Extraction, Transformation, and Loading processes,

a conceptual model for ETL scenarios is proposed in [39]. But, no standard

notation such as the unified modelling language is adopted. In [5] a UML based

approach for modelling ETL processes in data warehouses is proposed. However,

this UML conceptual metamodel does not comply with the common warehouse

metamodel profile. Therefore, metadata interchange becomes difficult. The logical

design of ETL scenarios was presented in [8] using a generic and customizable

framework. In [9] a formal transformation between these conceptual and logical

extraction transformation and loading models has proposed, the physical design

and optimization of the ETL processes were studied in [47]. However, these

transformations (conceptual to logical and logical to physical) are not based on

the query-view- transformation standard. An approach for designing extraction

transformation and loading processes using semantic web technologies is presented

in [35, 48] when an ontology is used to model the domain and formally specify the
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semantic of the datastore schemata. However, the definition of the ontology does

not use a standard metamodel such the Ontology Definition Metamodel (ODM)

that can be easily integrated in a model-driven architecture approach. In [40],

authors present Orchid, a system that converts declarative mapping specifications

into data flow specifications and vice versa. Orchid provides the OHM (Operator

Hub Model); a model for representing data transformation operations independently

of specific ETL platforms. However, the definition of this model does not comply

with the UML or the CWM. In addition to that, no standard approach using the

model-driven architecture and the query-view-transformation is defined to generate

mapping and ETL jobs.

The process-oriented approaches can fall within three major groups: data-driven,

goal-driven and user-driven. A detailed comparison and discussion about the

three approaches are presented in [49]. For example, Inmon [32] argues that data

warehouse environments are data-driven, while the Kimball et al. [3] approach

focuses on business processes in order to deliver consistent information throughout

the organization. The data warehouse development process can also be a mix of

these three approaches. In [10] a data-driven approach has been presented. Authors

propose a semi-automated methodology to build a dimensional data warehouse

model from the pre-existing E/R schemas that represent operational databases.

In [11] authors present an approach based on the SOM (Semantic Object Model)

process modelling technique in order to derive the initial data warehouse structure.

Finally, user-driven approaches are presented in [12, 13], and a mix-driven approach

is proposed in [14]. The main shortcomings of these approaches are as follows:

(i) there is no proposal for an iterative and an incremental development using

a standard process such as the Unified Process (UP) or the Two Track Unified

Process (2TUP); (ii) they do not propose a clear set of steps or phases including

development best practices; (iii) the definition of the technical requirements is not

taken into account; (iv) they do not address the whole data warehouse process; in

most cases only the data warehouse repository is considered.

The other and general methods for the data warehouse [50] and decision support

systems development [51] using the unified process and the unified modelling

language are proposed. These methods offer the advantage of integrating the

engineering process part and the design framework part. In fact, they propose at

the same time the data warehousing framework and the data warehousing process.
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These methods offer the advantage of integrating the engineering process part

and the design framework part. But, they present several disadvantages such

as: (i) they do not use any model driven approach to generate data warehouse

diagrams and no transformation process using the query-view-transformation is

defined; (ii) no standards metamodels for data warehouse development such as the

common warehouse metamodel or the CWM-eXtensions (CWMX) are explicitly

defined to design data warehouse layers; (iii) the development process does not

take into account the definition of the technical architecture of data warehouses.

2.2 Model-Driven Data Warehouse

The model-driven engineering represents a promising approach to support software

development practices [17, 52, 53]. This approach is mainly based on models, meta-

models, and model transformations design. Indeed, the model-driven development

strategy encourages the use of models as central element of development. The

models are conformed to metamodels and the transformations rules are applied to

refine them. Thus, transformations are the central components of the each model-

driven process. The Model- Driven Architecture (MDA) standard [24] represents

the Object Management Group, Inc.1 implementation to support the model-driven

approach. Founded in 1989, the object management group is an open membership,

not-for-profit computer industry standards consortium that produces and maintains

computer industry specifications for interoperable, portable and reusable enterprise

applications in distributed, heterogeneous environments. Membership includes

information technology vendors (e.g., IBM, Oracle) , end users, government agencies

and academia.

The MDA starts with the well-known and long established idea of separating the

specification of the operation of a system from the details of the way that system uses

the capabilities of its platform. The three primary goals of the MDA are portability,

interoperability and reusability. The model-driven architecture standard base

includes also many specifications. These include the unified modelling language, the

Meta-Object Facility (MOF), specific platforms models (i.e., CORBA, JEE), and the

common warehouse metamodel to design data warehouse components. The MDA

1http://www.omg.org/
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includes as well: the Ontology Definition Metamodel (ODM) to design ontologies

and to enable semantic model-driven development, the Query-View-Transformation

(QVT) as a standard language for model transformation, and the XML Metadata-

Interchange (XMI) as a standard format for models exchange and serialization.

The tables 2.1 and 2.2 below describes main modelling and metadata specifications

provided by the object management group. These standards which are part of the

model-driven architecture framework, define a powerful tool for modelling complex

systems that also helps companies develop future-proof technology investment.

Table 2.1: Core Standards of the OMG Metadata-Architecture.

Specification Summary

Meta-Object Facility The Meta-Object Facility (MOF) is metadata
interface standard that can be used to define and
manipulate a set of interoperable metamodels
and their instances (models). The MOF also
defines a simple meta-metamodel with sufficient
semantics to describe metamodels in various do-
mains.

Unified Modelling Language The Unified Modelling Language (UML) is a stan-
dard modelling language for specification, con-
struction, visualization, and documentation of
the artefacts of a software system.

XML Metadata Interchange The XML Metadata Interchange (XMI) is a
standard mechanism for the stream-based in-
terchange of MOF-compliant metamodels. The
XMI is essentially a mapping of the W3C’s eX-
tensible Markup Language (XML) to the MOF.

Table 2.2: Data Warehousing Standards of the OMG Metadata-Architecture.

Specification Summary

Common Warehouse Metamodel The main purpose of CWM is to enable
easy interchange of warehouse and business
intelligence metadata between warehouse
tools, warehouse platforms and warehouse
metadata repositories in distributed het-
erogeneous environments.

CWM Metadata Interchange Patterns The purpose of CWM MIP specification
is to add a semantic context to the inter-
change of metadata in terms of recognized
sets of objects or object patterns.
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The model-driven architecture is based on architecture with four meta-levels (figure

2.2), described as follows:

• The meta-metamodel level forms the foundation of the metamodeling hier-

archy. The primary responsibility of this level is to define the language for

specifying a metamodel. The level is often referred to as M3. The MOF

(Meta-Object Facility) and the EMF (Eclipse Modelling Framework) are ex-

amples of meta-metamodels. MetaClass, MetaAttribute and MetaOperation

represent elements of the model in this level.

• A metamodel is conformed to a meta-metamodel. The primary responsibility

of the metamodel layer is to define a language for specifying (and describing)

models. The metamodel layer is often referred to as M2. The UML and

the CWM are examples of metamodels. Class, Attribute, Operation and

Component define elements of the model in this level.

• A model is conformed to a metamodel. The primary responsibility of the

model layer is to define languages that describe semantic domains, i.e., to

allow users to model a wide variety of different problem domains, such as

software, business processes and requirements. This layer is often referred

to as M1. Product, Unit Price, Customer, and Sale are examples of model

elements at this level.

• The metamodeling hierarchy bottoms out at M0 which contains the runtime

instances (or data instances) of model elements. < Chair >, < Desk >,

$100, and $200 are examples of information that we found in this level.

The model-driven architecture supports the idea of separating the specification of a

system from the details of the way that system uses the capabilities of its platform.

Thus, the MDA approach specifies several viewpoints (CIM, PIM, PDM and PSM)

on a system (see figure 2.3 and below the description of these viewpoints):

1. The MDA transformation process starts by the definition of a CIM (Com-

putation Independent Model) viewpoint. The CIM defines the requirements

and goals for a system,
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M0 Level : Object Diagram
Runtime Instances, Data

M1 Level : Model Diagram
User-Defined Model/Specification

M2 Level : Metamodel
e.g., UML, CWM, ODM 

M3 Level : Meta-Metamodel
e.g., MOF, EMF

conform-to

conform-to

conform-to

Figure 2.2: The Metamodeling Architecture.

2. Then, based on the CIM, the model-driven architecture encourages specifying

the PIM (Platform Independent Model). The PIM represents the system

concepts with no specific information on the technology used to realize it,

3. This PIM is transformed into a PSM (Platform Specific Model) in order

to include specific technology or platform information defined by a PDM

(Platform Dependent Model). The PDM represents the technical conceptual

model, derived from the technical requirements description TCIM (Technical

CIM).

CIM

PIM

T

PDM T

PSM

CODECODE

PDMT

PSM

CODECODE

…

…

TT TT

…

Figure 2.3: The MDA Transformation Process.

The model-driven data warehouse represents approaches that align the develop-

ment of the data warehouse with a general model-driven engineering paradigm.
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In [27, 28], model-driven oriented approaches for the development of data ware-

houses are presented. These approaches provide several advantages (simplified

development, reusability, interoperability, etc.) resulting from the use of the model-

driven architecture and the query-view-transformation. The approach presented

in [28] describes derivation of OnLine Analytical Processing (OLAP) schemas

from ER schemas. The source and target PIMs are respectively conform to ER

and OLAP metamodels of the common warehouse metamodel. Authors describe

how an ER schema is mapped to an OLAP schema and provide, also, a set of

query-view-transformation rules (e.g., EntityToCube, AttributeToMeasure, Re-

lationShipToDimension, etc.) to ensure this. The approach presented in [27]

extends a previous work presented in [54]. It describes an integrated framework

for data warehousing layers development with the model-driven architecture and

the query-view-transformation. Authors focus on the MDA for multidimensional

modelling and provide an extension of the unified modelling language and the

common warehouse metamodel to build the different MDA models. They provide,

using the QVT language, transformations (e.g., Fact2Table, Dimension2Table, etc.)

between the MDPIM (Multidimensional PIM) and the MDPSM (Multidimensional

PSM).

EntityToCube 

e:Entity 

Name = N 

rse:RelationShipEnd 

Multiplicity =‘*’ 

a:Attribute 

Type = ‘Numeric’ 

c:Cube 

Name = ‘C’ + N 

cda:CubeDimensionAssocition 

m:Measure 

ER PIM OLAP PIM 

Where 

RelationShipEndToCDA(rse, cda) 
AttributeToMeasure(a, m) 

<<domain>> <<domain>> 

C E 

Figure 2.4: Graphical Notation of EntityToCube Relation.

The designed transformation rule in figure 2.4 (from [28]) shows a candidate Entity

that gets transformed to a corresponding Cube. The generated Cube has the

same name of the Entity but prefixed with a ”C”. Also, the transformation

rules RelationShipEndToCDA and AttributeToMeasure must be done as post-

conditions. The left part of the rule check the data-source elements (i.e., Entity,
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Attribute, etc) while the right part defines the derived multidimensional elements

(i.e., Cube, Measure, etc). By the transformation AttributeToMeasure, the numeric

attributes of the candidate Entity, gets transformed to a corresponding measures

of the Cube. Also, through the transformation rule RelationShipEndToCDA,

each RelationShipEnd role with multiplicity equal to many is matching with a

CubeDimensionAssosiation. Therefore, in the context of these two works, it is

necessary to understand the query-view-transformation framework. Furthermore,

the transformations are not built from previous projects which include knowledge

on how source and target models are interrelated. Therefore, we need a machine

learning based approach to synthesize transformation rules and assist developers.

2.3 Model Transformation By-Example

The model transformation by-example is related to several others supervised

approaches: query-by-example, programming-by-example, and XSLT (eXtensi-

ble Stylesheet Language Transformations) generation by-example. The query-

by-example approach [55] aims at proposing a language for querying relational

data constructed from sample tables filled with example rows and constraints.

Then programming-by-example [56, 57], where the programmer (often the end-user)

demonstrates actions on example data, and the computer records and possibly gener-

alizes these actions, has also proven quite successful. The by-example approach has

also been proposed in the XML world to derive XML schema transformers [58–60],

which generate XSLT code to carry out transformations between XML documents.

Varró et al. in [20], present an automated model transformation by-example

approach using the inductive logic programming, an improvement of an initial

proposal in [61]. The proposed method (based on Aleph ILP implementation)

aims at the inductive construction of first-order clausal theories from examples

and background knowledge (restricted to Prolog clauses). A running example is

provided where a source class’s diagram (based on the unified modelling language)

is mapped into a target relational database diagram. In [62], authors present a

general architecture for automating metamodel mapping using machine learning.

They explore machine learning techniques and their applicability to model-driven

engineering automation. Authors use the candidate elimination algorithm and
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formalism is defined with a vector representation of hypotheses. However, no

advanced experimentations and evaluation are presented.

Authors in [63], present a conceptual framework for model transformation by-

example to derive ATL (Atlas Transformation Language) [64] rules. The approach

uses the inter-model mappings representing semantic correspondences between

concrete domain models which is more user-friendly then directly specifying model

transformation rules or mappings based on the abstract syntax. The inter-model

mappings between domain models can be used to generate the model transformation

rules, by-example, taking into account the already defined mapping between

abstract and concrete syntax elements. Strommer et al., in [65], extend the model

transformation by-example approach to the domain of business process modelling

languages. The definition of requirements for model transformation by-example in

the context of business process modelling and the specification of proper mapping

operators comprise the main contribution of authors.

In [66], authors present a by-example approach, named MOdel Transformation

as Optimization by Example (MOTOE) which combines transformation blocks

extracted from examples to generate a target model. Authors use an adapted version

of Particle Swarm Optimization (PSO) where transformation solutions are modelled

as particles that exchange transformation blocks to converge towards the optimal

transformation solution. In a second paper [67] authors use the Simulated Annealing

(SA) to improve the performances of the approach. Dolques et al. in [68], study the

generation of transformation rules form transformations traces (transformations

examples) using an extension of the Formal Concept Analysis (FCA). FCA is based

on the philosophical understanding that a concept is constituted by two parts: its

extension which consists of all objects belonging to the concept, and its intention

which comprises all attributes shared by those objects. Authors use the Relational

Concept Anaysis (RCA), one of the extensions of formal concept analysis that

considers links between objects in the concept construction. Then, lattices allow

rules classification and help navigation among the generated results to choose the

relevant transformation rule. The experimental evaluations are provided using

LATEX to HTML transformation examples.

Authors in [69] discuss the limitations of above approaches and introduce a new

approach called model transformation by-demonstration instead of the model trans-

formation by-example approach. The model transformation by-example idea is
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about inferring the model transformation rules from a prototypical set of mappings.

However, the model transformation by-demonstration approach asks users to demon-

strate how the model transformation should be done by directly editing (e.g., add,

delete, connect, update) the model instance to simulate the model transformation

process step by step. Authors describe the model transformation by-demonstration

steps and provide a motivating example. Finally, ontology-based approaches allow

semantic reasoning techniques for metamodels alignment or matching. For exam-

ple, in [70], metamodels are mapped to a pivot ontology, then an ontology-based

reasoning is used to generate a Relational-QVT transformation. In [71] authors

apply refactoring to metamodels in order to make explicit hidden concepts of

metamodels and obtain an ontology where all concepts are reified before mapping.

The Similarity Flooding [72] algorithm allows similarity values propagation in a

labelled graph whose vertices are potential mappings, authors in [73] adapt it for

metamodel alignment.

However, in all these cases, no relational approach well suited to the context of

data models has been presented. Also, the notion of dependency between the

concepts of the model has not been Addressed. According to the work about layered

learning [21, 74], context learning [23, 75], predicate invention [76, 77] and cascade

learning [78, 79] methods, We propose the dependent-concept learning approach

that is based on the inductive logic programming framework.

2.4 Machine Learning Techniques

The goal of machine learning is to design algorithms that use example data or

past experience to improve their performance for solving a given problem [80].

Many successful applications of machine learning exist already, including systems

that analyze past sales data to predict customer behaviour, recognize faces or

spoken speech, and optimize robot behaviour so that a task can be completed

using minimum resources, and extract knowledge from bioinformatics data. In the

past fifty years, a wide variety of machine learning techniques have been developed,

just like many successful applications of machine learning. These applications vary

from data-mining programs that learn to detect fraudulent credit card transactions,

to autonomous vehicles that learn to drive on public highways. Machine learning
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algorithms and techniques have long been used for various purposes in software

engineering (testing, validation, security, etc.). For instance [81, 82] have studied

the advances and perspectives in applications of such approaches in the software

and data engineering fields. In our model-driven data warehouse framework, we

propose to discover transformation rules from previous project experiences using

supervised learning techniques.

2.4.1 Algorithms and Applications

One of the matters of interest is the steps to design a learning system. Mitchell

in [83], discusses the following steps: (i) choosing the training experience, (ii)

choosing the target function, (iii) choosing a representation for the target function

and (iv) choosing a function approximation algorithm. A well-posed learning

problem requires a well-specified task, performance metric, and source of training

experience. A more precise definition of this is provided by Mitchell:

Definition 2.1. (Learning from Experience) A computer program is said to

learn from experience E with respect to some class of tasks T and performance

measure P , if its performance at tasks in T , as measured by P , improves with

experience E.

With respect to this definition, we can specify, as examples, the following learning

tasks: (1) play checkers learning problem where the task T = playing checkers, the

performance measure P = percent of games won against opponents and the experi-

ence E = playing practice games against itself ; and (2) handwriting recognition

learning problem where T = recognizing and classifying handwritten handwriting

words within images, P = percent of words correctly classified and E = a database

of handwritten words with given classification.

In many cases, the learning task involves acquiring general concept definition from

specific training examples. This task is frequently referred to as concept learning, or

approximating a boolean-valued function from examples. A more precise definition

of this is also provided by Mitchell [83]:

Definition 2.2. (Concept Learning) When the learning task is to infer a boolean-

valued function from training examples of its input and output, this is known as

concept learning.
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Considering this definition, examples of concept learning tasks are given below:

(1) movie suggestion where the task is defined as T = determine which movies a

user will like, performance as P = percent of unwatched movies correctly predicted

(like/dislike) and experience as E = examples of movies that the user likes and

doesn’t like; and (2) graduate school admissions where T = predict which incoming

grad students will eventually complete their PhD, based on their applications, P

= the percentage of correct predictions, E = past grad students and their eventual

grad school outcome.

Machine learning approaches and algorithms includes Decision Tree Learning as

presented in [84–86], Support Vector Machines, studied in [87, 88], Artificial Neural

Networks [89, 90], Bayesian Learning [91], Genetic Algorithms as works of [92, 93]

and Relational Learning [31, 94–96]. In what follows, a definition of each category

is given.

Decision Tree Learning is one of the most widely used and practical method for in-

ductive inference. It is a method for approximating discrete-valued target functions,

in which the learned function is represented by a decision tree. Support vector

machines (SVM) are a group of supervised learning methods that can be applied to

classification or regression. SVMs deliver state-of-the-art performance in real-world

applications such as text categorisation, hand-written character recognition, image

classification, bio-sequences analysis, etc., and are now established as one of the

standard tools for machine learning and data mining. An Artificial Neural Network

(ANN) is a system based on the operation of biological neural networks, in other

words, is an emulation of biological neural system. ANNs combine artificial neurons

in order to process information and to perform tasks that a linear program cannot.

A Bayesian Learning model (naive Bayes classifier) is a probabilistic model of the

observed data based on applying the Bayes theorem. One of the most common

approaches is the Naive Bayesian Learner, where the estimation of the likelihood

is performed by means of the simplistic (naive) assumption that an attributes is

independent from each other, given the class. Genetic Algorithms (or GA for short)

is a programming technique that mimics biological evolution as a problem-solving

strategy. GA-based methods are also known as evolutionary computation. Given

a specific problem to solve, the input to the GA is a set of potential solutions to

that problem, encoded in some fashion, and a metric called a fitness function that

allows each candidate to be quantitatively evaluated.
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Logical and Relational Learning is the study of machine learning and data mining

within expressive knowledge representation formalisms encompassing relational or

first-order logic. It specifically targets learning problems involving multiple entities

and the relationships amongst them. This field covers Inductive Logic Programming

(ILP), Multi-Relational Data Mining (MRDM) and Statistical Relational Learning

(SRL) subfields. The domain knowledge in traditional learning techniques has to

be hardcoded into an algorithm and changes to domain knowledge often require

substantial modification of the program. Having sufficient background knowledge

often makes inductive logic programming learning much easier and more effective.

Indeed, learned hypotheses from ILP are more understandable than many other

learning techniques due to its powerful first-order representation. This has made

ILP particularly attractive and a popular machine learning technique. The next

subsection provides more details about the ILP framework, which will be used to

extend to extend our model-driven method.

2.4.2 Inductive Logic Programming

The term logical and relational learning to refer to the subfield of artificial in-

telligence, machine learning and data mining that is concerned with learning

in expressive logical or relational representations. The inductive logic program-

ming [94] is also an active research subfield of machine learning that addresses

relational learning and uses a first-order representation of the problem domain

and examples. Its objective is to provide practical algorithms for inductively

learning hypotheses, expressed as logical rules [95]. It was only with the advent of

inductive logic programming in the early 1990s that the field of relational learning

became popular. Whereas initial work was often concerned with logical (or logic

programming) issues, the focus has rapidly changed to the discovery of new and

interpretable knowledge from structured data, often in the form of rules, and has

soon generated important achievements in many application domains. The ILP

approach extends the theory and practice of computational logic by investigating

induction rather than deduction as the basic mode of inference [31].

The inductive logic programming approach offers several advantages: it uses a

powerful representation language and the given results are easy to understand.

It is possible, also, to add information about the domain (the domain theory).
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So, complex models can be constructed and it is easy to understand the given

results. The ILP systems have been applied to various problem domains which

benefit from the generated relational descriptions. Finally, a lot of free and open-

source ILP implementations are available online such as: Aleph [97], Foil [98, 99],

Progol [100], Tilde [101], Golem [102], etc., and this will help us to evaluate our

learning approach. At the same time ILP has some disadvantages, such as: in

complex situation it takes long time to get the results; it is difficult to use and it is

necessary a experienced in ILP user to implement the systems; also the search space

grows very quickly with the number of relations in the background knowledge.

An ILP learning task is defined by four aspects: the model theory defines the

semantic constraints on hypotheses, i.e., what to search for; the proof theory

describes the strategy to perform the search; the declarative bias explicitly defines

the hypothesis space, i.e., where to search; and the preference bias is concerned

with the generalisation performance of ILP. For a hypothesis to become a solution,

semantic requirements set by an ILP learning task have to be satisfied. The ILP

learning tasks can adopt two important settings: descriptive and predictive settings.

The descriptive setting is basically concerned with learning a set of rules (in the

form of a clause program) that holds for all examples. It is often considered as a

first-order upgrade to propositional data mining, such as association rules [103].

ILP systems that adopt the descriptive setting include Claudien [104–106], HR [107–

109], and Warmr [110–112]. The predictive setting is a form of supervised learning,

which is concerned with learning a set of rules (in the form of a clause program)

that best separate positive examples (denoted by E+) from negative ones (denoted

by E−). The well-known predictive ILP systems include Progol, Aleph, Foil, Tilde,

and ICL [113]. In our approach, we are concerned by the predictive setting using

the well known Aleph framework. The predictive setting in ILP is also defined

on the basis of the cover relation. In fact, a key to understand this setting is the

concept of the cover relation. The cover relation defines a boolean relationship

between a hypothesis and an example. The cover relation is the basis of hypothesis

completeness and consistency definitions. The predictive setting and the cover

relation are defined below.

Definition 2.3. (Predictive Setting) Given background knowledge B, some

positive examples E+ and negative examples E−, the predictive setting is to learn
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a hypothesis H, such that H covers all positive examples and none of the negative

examples, with respect to B.

Definition 2.4. (Cover Relation) An hypothesis H covers (or satisfies) an

example e, denoted covers(H, e), if and only if H(e) = true. covers(H,E) if and

only if ∀e ∈ E, covers(H, e).

The task of learning of a single concept (predicate) in ILP can be formulated in

this way: Given: A set of examples E described in a language Le with: positive

examples, E+ and negative examples, E−; A target predicate p; A language

description of hypotheses, Lh, giving the syntactic restrictions in the definition

of the predicate p; The background knowledge B, described in a language Lb,

defining predicates that can be used in the definition of p and can give additional

information about arguments from the examples of the target relation; and a cover

relatioship between hypotheses of Lh and examples of Le.

In general, we seek for a complete hypothesis (covering all positive examples)

and correct (does not cover any negative example). More formally it is defined

as follows: Find: A definition H for p, expressed in Lh, so that B ∧ H = E+

(i.e., completeness); and B ∧ H 6= E− (i.e., consistency). Therefore, when we

consider the background knowledge, the completeness and consistency also have to

be redefined as:

Definition 2.5. (Completeness and Consistency) A hypothesis H is complete

with respect to background knowledge B and examples E if all the positive examples

are covered, i.e., if covers(B,H,E+) = E+. A hypothesis H is consistent with

respect to background knowledge B and examples E if no negative example is

covered, i.e., if covers(B,H,E−) = ∅.

Any mechanism employed by a learning system to constrain the search for hypothe-

ses is named a bias [95]. The language bias defines the space of formulas used to

represent hypotheses and can be considered as part of the background knowledge.

Bias can either determine how the hypotheses space is searched (i.e., the search

bias) or determine the hypotheses space itself (i.e., the language bias). In general

there are three ways how to limit the size of the set generated by a refinement

operator: to define bias, to accept assumptions on the quality of examples, or to use

an expert [114]. The search bias refers to how the system makes the search between
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the space of clauses. The exhaustive search is responsible to run all the space

clauses and the heuristic search indicates us which parts of the search should be

used or ignored. The language bias defines the space of formulas used to represent

hypotheses. By selecting a stronger language bias the search space becomes smaller

and learning more efficient; however, this may prevent the system from finding a

solution which is not contained in the less expressive language. The bias should

be weak enough to allow complete and consistent programs and, simultaneously,

enough to have a good performance. Regarding the predictive setting and language

bias definitions, the objective of the ILP is to induce a hypothesis H that, with the

given background knowledge B, explains the examples E+ and is consistent with

E− [95].

2.5 Summary and Further Reading

In the proposed approach, we will define the transformation learning problem as

a concept search one. Concept learning can be viewed as search of the space of

concept descriptions. The predictive setting is applied and a knowledge base of

projects traces is used to define background knowledge B, some positive examples

E+ and negative examples E−. A new architecture based on optimized metamodels

is used to define the hypothesis language Lh and to determine the search space. We

propose metamodels (e.g., UML and CWM) that allow extracting a set of effective

predicates to define the hypothesis language, and that best meet the model- driven

data warehouse problem. Then, we will also investigate a new machine learning

methodology stemming from the application needs: learning dependent-concepts.

Based on existing concept-search methods as layered learning, context learning,

predicate invention and cascade learning, we propose a new methodology that

automatically updates the background knowledge of the concepts to be learned

(i.e., the learned child-concepts are used to update the background knowledge of

parent-concepts). In the following paragraphs we provide a brief summary of each

approach. A comparison between these methods and the proposed Dependent-

Concept Learning (DCL) approach will be given in Chapter 5.

The layered learning machine learning paradigm is firstly introduced in [21]. Au-

thors in [74] study the problem of constructing the approximation of higher-level
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concepts by composing the approximation of lower-level concepts. In [115, 116]

authors present an alternative to standard genetic programming that applies lay-

ered learning techniques to decompose a problem. The layered learning approach

presented by Muggleton in [117] aims at the construction of a large theory in small

pieces. Within the field of inductive logic programming, the term predicate invention

has been introduced in [118] and involves the decomposition of predicates being

learned into useful sub-concepts. Muggleton in [76] defines predicate invention as

the augmentation of a given theoretical vocabulary to allow finite axiomatisation

of the observational predicates. Stahl in [77, 119], studies the utility of predicate

invention task in ILP and its capabilities as a bias shift operation. Authors in [120],

investigate a specification language extension when no examples are explicitly given

of the invented predicate. In [22], authors introduce the cascade generalization

method. This approach is compared to other approaches that generate and com-

bine different classifiers like the stacked generalization approach [121–123]. In [79]

author proposes several speed-up variants of the original cascade generalization

and show that the proposed variants are much faster than the original one. The

model transformation by-example approach aims to find contextual patterns in

the source model that map contextual patterns in target model. This task is

defined as context analysis in [30]. The machine learning approaches that exploit

context to synthesize concepts are proposed in [23, 75]. In [23] author provides a

precise formal definition of context and list four general strategies for exploiting

contextual information. Authors in [75] introduce an enhanced architecture that

enables contextual learning in the Neurosolver (a problem solving system).
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Methodology

Decision support systems development is defined, by taking into account several

business, conceptual and technical constraints. Therefore, the definition of a solution

for an automatic generation of data warehouse components becomes increasingly

difficult. Also, current approaches propose a general framework applicable only

in simple examples of data-models, and away from the business and technical

complexity of data warehousing platforms. From the business point-of-view, the

generation of a decision (or analysis) model in accordance with needs and goals is

required. From the technical point-of-view, the urbanization of the decision support

and data warehousing systems can be made using one or more technologies. From

the implementation (also the deployment) point-of-view, the Software-as-a-Service

architecture is suitable as delivery model for business intelligence.

In this chapter, we describe the context of this work and we summarize the purpose

of each task. The problem statement will be discussed with more detail in order to

motivate the reason for this study. We explain what we mean by model-driven data

warehouse automation and business intelligence-as-a-service. Research questions

and the general and specific objectives were tackled. This is followed by our vision

and an overview of the proposed solution.

28



Chapter 3. Methodology 29

3.1 Context

We have showed that the design of transformations require an expert who knows

the business domain, the principles of model-driven approach, and the transfor-

mation languages [29, 124, 125]. Thus, the actual model-driven data warehouse

automation processes are partial because the design transformations remain manual

(for example, no proposal of a framework to learn these transformations). This

could increase the time and cost of developing the decision support information

system. Also, there is no guarantee that the proposed transformations are used for

any given data-model, and that elements defining the mapping are consistent with

the initial (business and technical) requirements. The basic idea is that: the depen-

dencies between metamodels concepts (e.g., Entity, Attribute, Cube, and Measure)

create a post-conditions dependency within the definition of transformations (e.g.,

EntityToCube and AttributeToMeasure). And so, this kind of dependencies may

change the way of transformations design and thus enable better finding elements

involved in the mapping.

We also showed that recent approaches, called model transformation by-example,

propose to automatically generate the transformations. These methods are based on

artificial intelligence techniques and try to learn the transformation from experiences

of previous developments. However, we identify three main limitations of current

by-example approaches: (i) They always treat a simple software design or example;

no adjustment for decision support systems has been made taking into account the

technical and the business complexity. (ii) There is no proposal for an advanced

learning system with a modelling bias to reduce the search space of transformation

rules and thus to increase performance. (iii) Current works do not offer advanced

experiments on a reference databases allowing the definition of the best way to

learn rules, and so supporting the adaptation the learning system (for example the

problem of dependent-concepts).

In the light of this context, this research aims to provide an unified and intelligent

method for decision support and data warehousing systems development and

so contributes to improve current approaches. Thus, this thesis deals with the

model-driven data warehouse engineering and how it can be automated using

machine learning techniques. We study the architecture of a framework that allows

connecting the data warehousing architecture, the model-driven paradigm and
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inductive learning approach. We focus on relational learning and we use the

inductive logic programming framework. The aim of ILP is to induce a compact,

correct, generalised, and understandable-by-humans description of facts. It induces

a set of rules from a given set of facts in a very expressive formal language. The

knowledge base (of projects experience) is used to define those facts and in general

the inputs of the inductive learning process. We propose, by using an ILP approach

to express the model transformation context, which transformation rules in the

framework of model-driven data warehouse can be discovered or synthesized from

previous projects experience. To this end, the proposed approach extends the

application scope of the relational learning and contributes to define the strategy

that answers best the use of machine learning in the model-driven context. A

new language based on the first-order logic for representing transformation rules is

defined. The new language, with the expressive power of first-order logic, allows

revealing of much complicated relations and information among model objects,

attributes of the objects and the domain theory (for effective reduction of the

UML-CWM transformation problem into ILP).

The first task of this work is the integration of the framework-oriented and the

process-oriented approaches in order to provide a unified model-driven approach.

We mainly use of the unified modelling language and the common warehouse meta-

model as standards notations for defining the data warehouse design framework,

and we propose the Model-Driven Architecture (MDA) and the Two Track Unified

Process (2TUP) standards implementations for defining the data warehouse engi-

neering process. This part of the work will provide answers to questions on data

warehouse components derivation, standards used for design and the engineering

process and as a result it defines the structure bias (a first level to simplify and

reduce the search problem).

The second task concerns learning dependent-concepts. We find that in the model-

driven data warehouse application, dependencies exist between transformations.

So, we investigate a new machine learning methodology, the Dependent-Concept

Learning (DCL), that is suitable to solve this kind of problem. The objective of the

DCL approach is to build a pre-order set of concepts on this dependency relationship

(a dependency-graph is defined): first learn non dependent concepts, then, at each

step, add the learned concept as background knowledge for next concepts to be

learned according to the pre-order. On the contrary, the Independent-Concept
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Learning (ICL) approach, widely used by current model transformation by-example

frameworks, proposes to learn the set of considered concepts independently. The

DCL approach is implemented and applied to our transformation learning problem.

And, compared to the ICL, the experimental evaluation shows that the dependent-

concept learning approach gives significantly better results.

The third task of our work is to design and to implement a new platform with

the best practices in engineering and in deployment of the solution (including the

proposed model-driven data warehouse framework). Indeed, in recent years the

data warehousing infrastructures have undergone many changes in various aspects.

This is usually due to many factors: the emergence of Software-as-a-Service (SaaS)

architecture model [15, 16, 126]; the success of agile and iterative data warehouse

development approaches; the changing needs of organizations and the extension

of the data warehouse into new application areas; and the evolving of standards

and open-source technologies. Also, the partner company (i.e., Intelligence Power)

plans to dispose an innovative solution that addresses current and future issues

of business intelligence. We study the software-as-a-service through successful

business intelligence implementations that have embraced this model and we

propose a functional and technical architecture for a common business intelligence-

as-a-service deployment infrastructure [127, 128]. We introduce the model-driven

warehousing development environment, named model-driven data warehouse-as-

a-service as part of the common infrastructure. We give recommendations for

standards and technologies used to implement the proposed architectures design.

This will provide a complete support for data warehouse engineering approaches

and to contribute to improve current data warehouse development tools.

3.2 Research Problem

The automation of information systems engineering and, in particular, data ware-

housing systems remains a very challenging task. Several data warehouses design

frameworks [6, 37, 39, 40, 47] and engineering processes [10–14] have been proposed

during the last few years. However, the framework-oriented approaches fail to

provide an integrated and standard framework that addresses the design of all data

warehouse layers. The process-oriented approaches fail also to define an engineering



Chapter 3. Methodology 32

process that addresses the whole development cycle of data warehouse with an

iterative and incremental manner while considering both the business and the

technical requirements. In addition, not much effort was devoted to unify the

framework and the process into a single integrated approach and no automated

architecture for engineering or a learning model to support the evolution of the

system are proposed.

In current architectures and modelling solutions it is difficult to answer several

questions needed to ensure a reliable automatic process. For example, from the

business point-of-view, the following questions are partially treated: how to generate

a decision (or analysis) model in accordance with needs and integrating new and

existing business constraints defined in previous projects? how to ensure the

development of the system if requirements or goals change (i.e., adaptability of

the system)? and how to reduce the costs of development and deployment of the

overall system. Then, technically, the questions of how to ensure interoperability at

conceptual and operational levels of the data warehousing architecture layers and

how to be independent from target platforms and better manage the heterogeneity

of the system. Several standards are available, UML and CWM for modelling

and mainly the Query-View-Transformation (QVT) as transformation language.

However, the use as such of these standards by experts is difficult, because no

detailed architecture showing the possible transformations for each layer (and

components) of the system is proposed. Also, the use as such of these standards

makes learning difficult or impossible because the number of elements in these

specifications is significant which enlarges the assumptions search space (we propose

a structure bias). So, a splitting by layer and components of these specifications

are required to reduce the search space.

The model-driven data warehouse framework provides several advantages (reusabil-

ity, interoperability, etc.) resulting from the use of the model-driven architec-

ture and the query-view-transformation. For example, In the case of actual ap-

proaches [27, 28] the Y process of the multidimensional layer derivation is defined as

the schemas of figure 3.1. The task of ”designing and applying transformation rule”

is the core step of this model-driven warehousing process. The data-source model,

denoted as DSPIM (Data-Source Platform Independent Model) and resulting from

data sources analysis step defines the first input of the task (it represents a con-

ceptual view of a data-source repository). Then, the business requirements model,
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Evaluate and Refine 
Intermediate Models 

Design and Apply 
Transformations 

Data Source Models 
Analysis 

Requirements and 
Goals Analysis 

Generate and Deploy 
the Component 

Figure 3.1: An Y Cycle for Multidimentional Layer Derivation.

denoted as CIM (for Computation Independent Model) in the MDA specification

and resulting from the study of organization requirements and goals represents

the second input. The results of applying transformation is a multidimensional

data-model (i.e., the target-model), usually denoted as MDPIM (Multidimensional

PIM). The MDPIM represents a conceptual view of a data warehouse repository.

The tasks of ”evaluate and refine intermediate models” and ”generate and deploy

the component” is concerned by the validation of the generated models/codes and

their refinement (e.g., conceptual-to-logical and logical-to-physical) by applying

the corresponding transformation rules.

The development of model transformations is a very hard task. Almost certainly,

designers or programmers must have serious skills with the corresponding meta-

models and the transformation languages [64, 129]. This creates many risks and

challenges during design of the transformations which makes the approach more

complex and entails additional costs. Thus, in this situation the automation

problem requires addressing many other questions: for example, which are the

specifications used to provide an integrated framework that automatically learns

transformations from previous data warehouse projects experiences? Then, what is

the common conceptual architecture, and what are the tools and techniques used

to define such framework and how it can be used within the proposed model-driven

data warehouse approach? Finally, the problem of which transformations we need
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to learn and in what order (i.e., the question of the search bias); which knowledge

representation language could offer the most benefits in this context and which

specific learning problems can we find in the case of model-driven engineering?

This helps in improving learning results and the quality of transformation rules. In

chapter 5, we answer these questions by proposing a framework and an approach

that respond to how we conduct the search for a solution for a given concept.

Decision support databases are usually very large and the input data for model

design or for decision making are often substantial. In these areas, the scalability

is a key requirement. Furthermore, response times must be very short for such

processes that support transformation rules modelling and learning. Indeed, several

alterations/ modifications, upgrades or iterations can be considered during the

development process. When we look at the problem of automation using machine

learning techniques, current and recent approaches are not directly applicable in

context of the data warehouse architecture. For example, different approaches

are proposed in [20, 63, 66, 68]. But they use simplifications of rules design

or templates-based examples representations. Some methods are not applicable

on datasets with a large number of models or a large number of components

(which is the case of the data warehousing architecture). Mainly, they propose

general frameworks (and processes) for components design (and for components

engineering). And, no structuring of an architecture based on partitions is defined.

These approaches do not explain how the problem of scaling will be able to be

resolved and, so, their application remains partial. Thus, the proposed designs

are not made under duress of scaling. The reduction of data warehouse models

transformation problem and the issue of scalability are at the heart of this thesis.

The model-driven data warehouse is a new and a complex application whose context

is different from usual applications. In this context, the learning process will use

data schemas (named also data patterns) to set examples and background knowledge.

These schemas are in the form of class diagram in the case of source-models and

multidimensional diagram or the On-Line Analytical Processing (OLAP) for the

target-models. Thus, these diagrams are defined in terms of relations between

several concepts: e.g., class, attribute, association in the case of source-diagram

and e.g., cube, measure, dimension for the target-diagram. Hence, it is essential

to choose a language to express such relational descriptions between objects. In

addition, as part of data warehousing systems, multiple business rules can be used
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as domain theory. Therefore, this domain theory can enrich the learning context

and thus improve performance and transformation rules quality. Consequently, to

ensure evolution and adaptability of the learning process, it is necessary to choose

a language that allows extending the background knowledge by domain theory.

The attribute-value learning is a setting for machine learning where the data to

be analyzed are given in a tabular format: each row represents an individual,

each column represents a property of the individual (also referred to as attribute

or variable), and the entries in the table are the values of these attributes for

each individual. The attribute-value setting is widely used in statistics and data

mining problems. However, attribute-based learning has the following strong

limitations: (i) background knowledge can be expressed in rather limited form; (ii)

the lack of relations makes the concept description language inappropriate for some

domains. On the other hand, the relational learning (as the ILP approach) provides

the appropriate approach to answer this problem. With the relational learning

framework, it can easily express the relational information between concepts. This

is an advantage, because the defined relational information (the context) plays

an important role in the resulted transformation rules. The advantage in ILP

systems is that the expert has the ability to define the language bias. In our

implementation, the main task now is to define relations and predicates to define

appropriate hypothesis. We propose a language that improves the quality of rules

to simplify the validation task by the expert but also performance of the learning

process. In our approach, we keep an invariable number of predicates extracted

from metamodels, which are already very well optimized and especially designed

to meet this problem.

Within the evolution of web architectures, we need to explore several aspects

that may influence the next generation of data warehousing platforms: First, we

deal with the problem of what is the functional and the technical architectural

requirements for business intelligence-as-a-service deployment? Then, we focus on

the question of how the model-driven data warehouse-as-a-service architecture is

defined and the challenges towards model-driven data warehousing and components

development in the cloud1. Finally, we make proposals to address the issue of which

open industry standards and technologies are recommended for the implementation

of such architectures. This helps to extend the current architectures of data

1The software-as-a-service applications are part of the cloud computing stack.
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warehousing systems and allows the company to have their own and new business

intelligence development model. Our proposals and contributions in this part are

present in chapter 7.

3.3 Solution Overview

We start by answering the following question: which standard approach is used

to automatically derive the data warehouse components from existing models?

This is to be based within a general framework providing basic concepts for the

automation of development. We address also the question of which standards

are used to design the data warehouse components and for models representation

and the question of which engineering process is used to provide an integrated

method for data warehouse development. This allows us to provide a complete

architecture, considered as modelling/structure bias for the learning process. This

architecture allows the definition of a hierarchy of transformations (conceptual,

logical and physical). It allows the knowledge of useful transformation to learn;

it also allows the knowledge for which transformations, machine learning could

add value. Indeed, the proposed architecture allows identifying transformations

that may be treated differently (e.g., using existing tools). The engineering process

defines the input and output models (or schemas) for each transformation to learn.

So, it simplifies the design of the learning process and the definition of predicates

used for background knowledge and examples.

We propose to solve the scalability problem on several levels: In a first step, we

propose an optimal model-driven data warehouse architecture based on industry

frameworks (the modelling specifications) and a standard process. This helps

creating a partition in the overall architecture and offers a simple and effective

way to integrate the learning methods. Partitions allow reducing the number of

predicates used in the learning of each concept. Therefore, reduce the search space

that remains invariant by increasing the number of data models. This is a significant

bias in the framework that we propose. It is defined as a modelling bias (or also as

architecture bias) . In fact, the architecture of model-driven data warehouse is a

complex architecture that uses multiple components and presents several risks. So,

this modelling step is important to manage these risks and makes effective the task
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of transformations learning. In our problem, we will first tackle the identification

of transformations useful to learn. Indeed, we identify transformations when

learning can bring more value and transformations for which existing techniques

or approaches can be used. As part of this task (modelling bias definition), we

propose for transformations to learn: (i) the input and output models of each

learning task, and (ii) the appropriate metamodels and their detailed specification.

This modelling bias is fundamental for understanding how to integrate the ILP

approach, and how to make learning and how to deploy the application effectively.

We define an approach to derive a set of rules that can assist the developer to

identify contextual metamodel elements. These contextual metamodels information

is used to design the final transformation rules. The automated approach for trans-

formations learning and its application in context of model-driven data warehouse

can be summarized in a three-stage process. Figure 3.2 shows these steps of the

automated data warehouse development approach. This part of the work will

provide answers to questions on the conceptual framework to learn transformations

from projects trace and in identifying specific learning problem in the context

of model-driven warehousing. We contribute to the definition of the modelling

bias, the language bias and we propose a solution that best meets the problem of

transformations learning in a model-driven setting.

Learning 
Mechanisms 

Approval 
Mechanisms 

Transformation 
Rules 

Projects Trace  
& History 

learn 

1 

2 

3 

reuse 

design 

Figure 3.2: Automated Transformations Learning Environment.

First, projects trace (or the knowledge base) defines the input of the transformations

learning engine. Then, a model-driven data warehouse workbench (an environment

for models design and derivation) stores the generated rules. So, rules can be
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validated, adapted or redesigned by the expert, to comply with the supported

transformation languages (e.g., query-view-transformation). The QVT is a standard

set of languages for model transformation defined by the Object Management Group

(OMG). It addresses the need for standardizing the way mappings are achieved

between models whose languages are defined using the meta-object-facility (the

standard metadata interface). Please refer to Appendix B for details concerning

the query-view-transformation standard. Finally, transformations are applied to

refine the designed models and to generate data warehousing components. We

used as learning engine the well known Aleph ILP system [97], because of its

ability to handle rich background knowledge, made of both facts and rules. Aleph

follows a top-down generate-and-test approach. It takes as input a set of examples,

represented as a set of Prolog facts and background knowledge as a Datalog

program.

We define the transformation learning problem as a concept-search one. Concept

learning can be viewed as search of the space of concept descriptions. The hypothesis

language determines the search space. The input of the inductive logic programming

comprises two types of information, examples and background knowledge. While

background knowledge, denoted by B, formalises existing knowledge on a problem

domain, examples, denoted by E, describe some underlying concepts not present

in background knowledge. Besides these conditions, the outcome of an ILP system

depends on several additional factors, the so called bias. For example, the language

bias aims at excluding unsuitable hypotheses from the hypotheses language Lh.

This allows reducing the search space and so, performances enhancement in general.

Therefore, one of the problems on which we focus in this thesis is to find an

optimized representation for the language bias in the model-driven data warehouse

framework. This language bias (also known as declarative bias) aims to restrict the

representation to clauses that define best the transformation rules. The proposed

representation allows for an improved learning process and also for a good quality

of the obtained rules. This will facilitate the task of understanding and validation

of the learned rules.

We have proposed the UML CORE and the CWM OLAP metamodels to design

respectively the source and the target models. The objective is (1) to provide

a set of model transformation examples at the model level (the model layer of

MDA, referred to as M1, defines elements that describe semantic domains); then
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(2) to run a learning engine that will build rules at the metamodel level (the

metamodel layer of the Model-Driven Architecture (MDA), referred to as M2, is

responsible of defining a language for specifying models). We mainly focus on

how to find an optimized representation of assumptions, and so the language

bias in the model-driven data warehouse framework. This language bias aims to

restrict the representation to clauses that define best the transformation rules. The

proposed representation allows for an improved learning process and also for a good

quality of the obtained rules. This will facilitate the task of understanding and

validation of the learned rules. This task of defining the knowledge representation

language is one of the contributions of this work. The contribution concerns

the issues of translating a CWM-UML transformation problem into a relational

learning problem. Thus, the definition of predicates is made following the study of

metamodels, part of the model-driven architecture. MDA is a standard recognized by

the software engineering community. Our work consists in studying and identifying

the metamodels that are useful and appropriate for data warehousing systems. The

choice of appropriate metamodels allows obtaining transformation rules similar to

transformation designed manually by developers using standard languages (e.g.,

QVT [29], ATL [64], Eclipse M2M [125]). This helps to assist the expert in the

validation and the integration process of these rules.

We define the language bias using the metamodel level (M2 level) of the meta-

modelling architecture. This gives the advantage to define a clear set of predicates

with an optimal level of abstraction. Predicates obtained from the M2 level will

ensure obtaining understandable transformation rules, equivalent to transformation

designed manually. In the proposed model-driven data warehouse framework, this

process will extract predicates from UML CORE and CWM OLAP metamod-

els. UML CORE defines the predicates used for the representation source-models

examples (denoted as DSPIMs). CWM OLAP defines the predicates used for

representing target-models examples (denoted as MDPIMs). For example, the

following are part of the defined predicates to describe source models (DSPIMs):

class(Name); property(Name, Type, Lower, Upper); association( Name, Source,

Target). As part of the defined predicates to describe target models (MDPIMs):

cube(Name); measure(Name, Type, Cube); dimension(Name, isTime, isMeasure)

. And type(Name) and multiplicity(Bound) are defined as common predicates

used for all models definition. As an example of trace model, consider a data

schema used to manage customers and invoices (figure 4.15). With respect to
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the defined UML CORE and CWM OLAP predicates the following code is ex-

ample of the generated background knowledge program of DSPIM: type(integer);

type(float); class(invoice); class( customer); property(amount, float, 1, 1). And,

cube(invoiceFact); measure(amount, float, invoiceFact); dimension(customerDim,

false, false) as part of the generated background knowledge program of MDPIM.

<<class>>

Invoice

amount : Float
discountAmount : Float
postDate : Date
dueDate : Date
comments : String

<<class>>

Customer

name : String

<<class>>

Region

name : String

<<class>>

Category

discountRate : Integer

<<class>>

Seller
*1*1

seller

*

region

1

1

*

category

invoice

<<cube>>

InvoiceFact

amount : Measure
discountAmount : Float
dueDate : Date

<<level>>

Customer

name : String

<<level>>

Region

name : String

<<level>>

Seller

<<level>>

Category

discountRate : Integer
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Figure 3.3: Mapping UML CORE Instance to CWM OLAP Instance.

The mapping model describes all transformations of source elements to target ele-

ments. The transformation predicates are of the form: transformation(SourceElement,

TargetElement) where SourceElement and TargetElement represent, respectively,

input and output of the transformation rule. A transformation rule expresses

in which conditions or in which context an element SourceElement in the source

model is transformed into a TargetElement in the target model. For instance, the

question is: in which context a class in the UML CORE model can be translated

to a cube in the CWM OLAP model. Given project traces, we extract the sit-

uation where the Invoice class is translated into a cube InvoiceFact, each such

situation defines a positive example. Similarly, the situation where a class is not

transformed into a cube defines a negative example. Then, Aleph is run on this

training set. In the example of figure 4.15, classtocube(invoice,invoiceFact) is a posi-

tive example and classtocube(customer,invoiceFact), classtocube(seller,invoiceFact),

classtocube(region,invoiceFact) are negative examples. This reduction of the

UML-CWM problem to ILP aims at inferring general rules that can assist a
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designer in the transformation development. For example, classtocube(A,B) :-

class(A), cube(B), associationOwnedAttribute(A,C), property(C,float,1,1), asso-

ciation(D,A,E). and classtocube(A,B) :- class(A), cube(B), associationOwnedAt-

tribute(A,C), property(C,integer,1,1), association(D,A,E). are inferred rules for

the ClassToCube concept.

In a model-driven data warehouse application, dependencies exist between trans-

formations. We investigate a new machine learning methodology stemming from

the application needs: learning dependent- concepts [130, 131]. This part of the

work will answer the questions about the search bias problem and the best way to

find concepts definition. Based on similar approaches as layered learning [21, 74],

context learning [23, 75], predicate invention [76, 77] and cascade learning [78, 79],

we propose a dependent-concept learning approach where the objective is to build

a pre-order set of concepts on this dependency relationship. This pre-order is

determined by the application, which is then used by the learning process: first

learn non dependent concepts, then, at each step, add the learned concept as

background knowledge for next concepts to be learned according to the pre-order.

This DCL methodology is implemented and applied to our transformation learning

problem. Experimental evaluation shows that the DCL system gives significantly

better results. So, the second step is the dependent-concepts learning approach.

It defines the search order of concepts, but also defined a way to extend concepts

language. Hence, it improves search performance in terms of accuracy and rules

quality. We thus offer an integrated approach covering several aspects (framework,

process and research) forming a bias to support the scaling. In the proposed

solution, the process part is considered as a modelling bias and the framework part

as a language bias.
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Modelling

Model-driven data warehouse represents an approach that aligns the development

of data warehousing systems with a general model-driven development paradigm.

Such approaches have several advantages (adaptability, integrity, extensibility and

standard development) and seem more promising. However, the architecture of

model-driven warehousing is a complex architecture that uses multiple components

and presents several risks. This modelling step is important to manage these risks

and makes effective the task of transformations learning.

This part of work will provide answers to questions on data warehouse components

derivation, standards used for design and the engineering process. But at the same

time it represents a significant bias in the framework that we propose (as modelling

bias or also as architecture bias). We focus, also, to find an optimized repre-

sentation for the language bias in the model-driven data warehouse context. The

problem of model transformation is so expressed with inductive logic programming

framework. This language bias (also known as declarative bias) aims to restrict the

representation to clauses that define best the transformation rules.

42
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4.1 Motivation

The data warehousing systems are defined through a complex architecture. Current

data warehouse development approaches fail to provide a unified method for

standard components design and automatic derivation from conceptual models.

In the light of this situation, the first goal of our work is to propose a unified

approach to develop data warehouses. This will identify the elements (design

metamodels, transformations, etc.) that are necessary to automate the process with

machine learning. Our unified method is based on the Model-Driven Architecture

(MDA) and the Two Track Unified Process (2TUP) standards. We propose a data

warehouse design framework as a first part of the method. The data warehouse

design framework shows the projection of the MDA viewpoints and meta-levels on

the data warehousing architecture to tackle the design of every data warehouse

component in an integrated and standard manner. Then, as a second part of

the method, we propose a data warehouse engineering process. The proposed

process shows the alignment of the 2TUP disciplines with the MDA transformation

process. This alignment ensure the coherence between the data warehouse design

framework and the data warehouse engineering process and to make our approach

more integrated. It also enables an iterative and an incremental development of

data warehouse layers, and to consider, at the same time, the business and the

technical aspects of the data warehouse.

The main advantages of the proposed approach are: (i) it addresses, at the same

time, the data warehousing design and engineering problems, indeed it integrates

the data warehouse design framework and the data warehouse engineering process ;

(ii) it uses open industry standards (i.e., MDA and 2TUP), which facilitate its

implementation and extension; (iii) it offers a mix-driven approach, in which, the

data-driven, the user-driven, and the goal-driven approaches are combined with the

model-driven, the semantic-driven, and the risk-driven approaches; ( iv) it offers an

innovative architecture to deliver on-demand model-driven data warehouse design

services that reduce time and costs of data warehouse components implementation.

The automation of the proposed model-driven data warehouse approach using

advisable and appropriate machine learning techniques represents our second goal.

Indeed, one of the main challenges is to automatically learn these transformations

from existing project traces. In this context, model transformation by-example



Chapter 4. Modelling 44

(introduced in [30]) is an active research area in model-driven software engineering

that uses artificial intelligence techniques and proposes to automatically derive

transformation rules. Other related research efforts on model transformation

by-example are presented with more details [132]. The by-example approach

provides assistance to designers in order to simplify the development of model

transformations and it reduces complexity, costs and time of development. Thus,

following this idea, the proposed model-driven method is extended by machine

learning (we illustrate this with a conceptual architecture) in order to support

the expert in the transformation process. We propose to express the model

transformation problem as an inductive logic programming one [31] and to use

existing project traces to find the best transformation rules.

The field of inductive logic programming had been under active investigation for a

long time before that and several successful applications have been proposed. An

overview of rule-learning (of which ILP is an instance) can be found in [83], and a

substantial amount of ILP theory is presented in [94]. Those applications are chosen

that specifically benefit from relational descriptions generated by ILP programs,

and from ILP’s ability to accommodate background knowledge in the learning

process. Applications include mainly: engineering, data mining, bioinformatics,

natural language processing and so on. Like other machine learning approaches,

ILP methods take as input some examples and then construct hypotheses that best

represents the underlying concepts. What distinguishes ILP from other methods is

that both examples and hypotheses are represented as clause programs. The input

of ILP comprises two types of logic programs, examples and background knowledge.

While background knowledge, denoted by B, formalises existing knowledge on a

problem domain, examples, denoted by E, describe some underlying concepts not

present in background knowledge. To the best of our knowledge, this work is the

only one effort that has been developed for automating model-driven data warehouse

with relational learning and it is the first effort that provides experimentations in

this context.

The remainder of the chapter is organized as follows. Section 4.2 presents the

proposed method for model-driven data warehouse engineering. The data warehouse

design framework and the data warehouse engineering process are explained. A

running example is given in Section 4.3 to detail some aspects of the proposed
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method. Section 4.4 presents the proposed conceptual framework for transforma-

tions learning in context of model-driven data warehousing. The transformations

learning architecture is provided and an example of reduction of the UML-CWM

problem to ILP is given. Finally, Section 7.4 summarizes the chapter.

4.2 Method for Model-Driven Data Warehouse

Actually, in a model-driven data warehouse context, several steps are needed to

automatically learn the transformation rules. The first step consists in isolating

steps where it is necessary to induce transformation rules and in identifying the

metamodels used to define the input/output models of these transformations. This

is the purpose of the designed method for data warehouse development. The

approach that we propose uses several development standards. A thorough study

of these standards is necessary to understand how to integrate them into the overall

approach. Appendix B, provides the results of our review and analysis of standards

and practices that are applicable for data warehouse development. It gives a

detailed description of the unified modelling language, the common warehouse

metamodel, the query-view-transformation and the two track unified process. Thus,

the content of this section describes our integration efforts, our proposals and

contributions to automate the development chain of data warehouses.

4.2.1 Data Warehouse Design Framework

The data warehouse design framework is structured on three main layers (as

shown in figure 4.1) showing the use of MDA meta-levels for data warehousing

components and services development. The data warehouse design framework is part

of the proposed technical architecture (defined in next section). The Meta-Object

Facility (MOF), is the M3 meta-level of model-driven architecture metamodeling

architecture and represents the first layer. The standards metamodels (CWM,

UML, etc.) which corresponds to M2 meta-level, are used to define the second

layer of the design framework. Then, the domain objects (or business objects) and

the data warehousing services, are the M1 meta-level and form the third layer. The

third layer contains also the MDA viewpoints (CIM, PIM, PDM, PSM, and CODE)
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which are derived by transformation services using the query-view-transformation.

Please refer to chapter 2 for a detailed description of MDA viewpoints.

Meta Object Facility (MOF)

Data Warehouse Design Framework

CWMXCWM ODM Profiles

Data Warehousing Models & Services

UML

Figure 4.1: Data Warehouse Design Framework.

Each data warehouse component has all viewpoints of the model-driven architecture,

and each component model in a specific viewpoint is defined by the MDA four-level

architecture (i.e., the meta-levels). For example, to design the multidimensional

layer we define the multidimensional computation independent model (Multidimen-

sional CIM), the multidimensional platform independent model (Multidimensional

PIM), the multidimensional platform dependent model (Multidimensional PDM),

and the multidimensional platform specific model (Multidimensional PSM) view-

points. These viewpoints correspond also to the M1 meta-level (multidimensional

models), and are instantiated using a set of data warehouse design metamodels

(M2 meta-level) conform to meta-object facility meta- metamodel (M3 meta-level)

as discussed before. Note that the CODE viewpoint and the instance (i.e., M0)

meta- level are not detailed because CODE represents another form of the platform

specific model and M0 is specific to every execution. In the following paragraphs,

we describe in details which metamodels (or packages) are used to design the data

warehousing layers (i.e., data source, integration, multidimensional, analysis, and

data access).

The data source layer is obtained by reverse engineering and by the integration of

data sources models. The data source platform specific model (Data Source PSM)

diagram represent the logical view of data sources. So, the suppliers platforms

metamodels, and the CWM Relational packages are used to design relational

databases. The CWM XML package can be used to represent semi-structured and

unstructured data. The Data Source PDM (platform dependent model) describes

the platforms where the sources are deployed; therefore platforms metamodels

(provided by platforms suppliers) are used to define Data Source PDM in order to
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facilitate the reverse engineering process. Then, the data source PIM represents

the conceptual view of the data sources; it is instantiated using CWM ObjectModel

(i.e., UML). In data source layer, we need a unified schema that gives a standard

representation of the data, thus offering a way to deal with the heterogeneity in

the sources. Thus, the data source computation independent model (Data Source

CIM) defines information for the semantic integration of schemas. This Data

Source CIM represents the domain ontology containing matching concepts to

solve heterogeneity during the generation of the integrated schemas (intentional

level of integration). We propose the Ontology Definition Metamodel (ODM) an

MDA-compliant metamodel to define this ontology.

Concerning the integration layer, we propose also the ontology definition metamodel

to design the integration computation independent model (Integration CIM) model.

The Integration CIM defines a semantic mapping between data sources and data

warehouse repository to solve heterogeneity during data integration (extensional

level of integration). Thus, the role of Integration CIM is to improve the trans-

formation process and solve data quality issues. The Integration PIM represents

the conceptual view of integration process. We propose the CWM Transformation

package to design data transformation activities, the CWM WarehouseProcess

package to design maintenance tasks and events. However, these metamodels are

too generic to represent explicit extraction, transformation, and loading operations.

Therefore, we recommend the use of CWM-profiles to simplify the Extraction,

Transformation, and Loading (ETL) model design and to ensure meta-data in-

terchange at the same time. The metamodels of ETL platforms such as SQL

Server Integration Services (SSIS) and DB2 Warehouse Manager (with CWMX

DB2WarehouseManager package) are used to design Integration PDM and to

generate the Integration PSM model.

The Multidimensional CIM level represents the enterprise goals and business needs

in our approach. In [133] UML profiles for i* modelling in the data warehousing

domain have been presented. This i* extension is used to define a CIM and it

can be easily integrated in a model-driven architecture approach through a set of

QVT transformations in order to derive the conceptual multidimensional models.

In our framework, this conceptual multidimensional model is defined through the

Multidimensional PIM viewpoint, and we use CWM OLAP metamodel to instanti-

ate it. The Multidimensional PDM is used to personalize the multidimensional
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PSM and to adapt it to the context of the target platform. Platforms metamodels

such as Oracle and Microsoft SQL Server are used to design the Multidimensional

PDM model. The multidimensional logical view is given by Multidimensional PSM

model, which is developed using the CWM Relational package.

Concerning the analysis layer, we recommend also i* framework to design Analysis

CIM (goals and requirements for analysis). This layer contains customs data

structures such as Online Analytical Processing (OLAP) data cubes and data

mining models used for analysis by end-users tools. Regarding the Analysis

PIM, we recommend CWM OLAP and CWM DataMining metamodels to design,

respectively, data cubes and data mining components. Concerning Analysis PDM,

some platforms are described in CWMX metamodel; as examples CWMX Express

for the Oracle Express server, CWMX Hyperion for Hyperion OLAP platform, etc.

Other platforms metamodels such as Mondrian for OLAP, SAS Data Mining for

data mining can also be used to define specific platforms representations. For the

Analysis PSM of the OLAP data cube, we have the choice between a relational

implementation (ROLAP) and a multidimensional implementation (MOLAP). So,

we propose the CWM Relational package to implement ROLAP case; and for

MOLAP case we propose the CWM Multidimensional package.

The goal of data access layer is to generate specific user interfaces in order to

develop reports and for information visualization. At the computation independent

model level (Data Access CIM), UML metamodel (use cases package part) or other

adapted profiles are used to define users requirements. Several CWM metamodels

can be used to design the Data Access PIM. In our approach, we propose the

CWMX InformationReporting package for reports construction and CWM Informa-

tionVisualization package to support information visualization. UML class diagram

metamodel is also used with these metamodels to design applicative and Graphical

User Interface layers at Data Access PIM level. Java Enterprise Edition (JEE)

and Microsoft .NET environments are, in general, used to generate these tools, so

we adopt them to define the Data Access PDM and the Data Access PSM levels.

The main advantages of the proposed data warehouse design framework are: (i)

Completeness: since, our framework covers the design of all data warehousing

components, and integrates all MDA viewpoints and meta-levels. (ii) Extensibility:

in our approach the metamodeling architecture using MOF simplifies the extension

of the framework through metamodeling techniques. (iii) Standard development:
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indeed, all data warehousing layers design diagrams are identified using a standard

metamodels for data warehouse development such as CWM, CWMX, ODM, etc.

4.2.2 Data Warehouse Engineering Process

The MDA transformation process does not include all engineering disciplines such

as preliminary study and tests. Moreover, result of model-driven architecture

process is a semi-complete system code. Thus, it is necessary to define a code

completion activity in the global development process. Also, the transformation

process of MDA is not an iterative and incremental process. To overcome these

limits, we propose to use the two tracks unified process process in order to develop

data warehouse components. We keep also the MDA approach in order to ensure

coherence between the data warehouse design framework and the data warehouse

engineering process. Therefore, in our data warehouse engineering process, the

MDA transformation process is a sub-process. Figure 4.2 shows the disciplines

and the iterations applied to develop the components of a one layer of the data

warehousing architecture. It represents, also, the mapping between the 2TUP

activities and the MDA transformation process steps. Then, we will adapt this

process for the development of all data warehousing layers in order to define the

data warehouse engineering process. Thus, in our process, the 2TUP activities are

adapted to enable the transformation process of MDA using QVT and to take into

account the data warehouse development constraints.

The data warehouse engineering process starts by the preliminary study activity.

The preliminary study contains a study of the enterprise business process to collect

business information’s, identifying preliminary requirements, and a study of market

platforms to prepare the technical requirements modelling. Each layer of the

data warehouse is developed using a MDA transformation process starting by the

definition of the layer BCIM (Business CIM), using the common TCIM (Technical

CIM) and ends with components code generation. So, the MDA process is repeated

for the construction of each data warehouse layer. If several components are

defined in a layer, then several 2TUP iterations may be applied (for example, runs

iteration per component). The final data warehouse engineering process showing

the development of all data warehousing layers is given by figure 4.3. In the
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Figure 4.2: The MDA/2TUP Integration.

following paragraphs, we describe in more details the execution of the proposed

data warehouse engineering process.

The model-driven warehousing architecture process starts by the development of

the data source layer. A reverse engineering process is applied since data source

code to obtain the data source logical model (Data Source PSM). Then the reverse

engineering process is applied on Data Source PSM using information’s given by

data source PDM and Data Source CIM, to obtain the data source conceptual model

(Data Source PIM). The Data Source PDM is used to solve the technical errors

related to reverse process and the Data Source CIM is used to solve the problems

related to the semantic heterogeneity of sources. The next step of the proposed data

warehouse engineering process is the derivation of the multidimensional components

(data warehouse repository and/or data marts). The Data Source PIM and the

Multidimensional CIM are merged using a QVT transformation to generate the

multidimensional conceptual model (Multidimensional PIM). The Multidimensional

PIM is instance of CWM OLAP metamodel already defined in our data warehouse

design framework. Then, the multidimensional logical model (Multidimensional

PSM) and CODE (i.e., code of the multidimensional schemas) are generated for

a specific platform using the description given by the multidimensional platform
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Figure 4.3: Data Warehouse Engineering Process.

dependent model (Multidimensional PDM).

The development of the conceptual ETL jobs (Integration PIM) requires three

models: the Integration CIM (semantic transformation rules), the Data Source

PIM (i.e., the source-model), and the Multidimensional PIM (i.e., the target-

model). The Data Source PIM and the Multidimensional PIM are used to define

mapping between sources and the data warehouse repository (or data marts). The

Integration CIM is used to solve problems related on heterogeneous data and to

make semantic data cleansing, correction, and integration. The Integration PSM

and Integration CODE (i.e., XML files in general) describing the mapping and

transformations are finally generated for a specific ETL tool. The fourth step of the

data warehouse engineering process is the customization of analysis models. So, a

set of OLAP cubes and data mining models (Analysis PIM) can then derived from

the multidimensional layer according to business requirements and goals defined

in the Analysis CIM model. The data warehouse engineering process ends with

the derivation of the data access layer (the fifth step). The data access tools and

reporting interfaces are developed using the analysis layer models (Analysis PIM)

and user requirements provided by the Data Access CIM. The MDA transformation
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process using QVT is also applied to generate the Data Access PIM and Data

Access PSM models. End-users applications are generated for a specific framework

(JEE or .NET) to obtain the Data Access CODE.

The main advantages of the proposed data warehouse engineering process are: (i)

the whole data warehouse development is tackled in an iterative and incremental

way; (ii) it is component oriented, offering flexibility to the model and supporting

the re-use; (iii) it allows a better technical risk management and thus constitutes

the deadlines and the costs control; (iv) the MDA transformation process is fully

integrated in the global engineering process, which includes additional disciplines

to improve quality.

4.3 Example of Application

In this section, we present some results of the proposed method, extracted from a

first experimental prototype. We study the generation process of the integration

layer, and we focus on the Integration Platform Specific Model (IPSM) derivation.

As it is already defined in our data warehouse engineering process, the IPSM is

derived during the weaving activity using the Integration Platform Independent

Model (IPIM) and the Integration Platform Dependent Model (IPDM). We choose

Microsoft SQL Server Integration Services (SSIS) [134] as target ETL platform.

The SSIS is a new version of Data Transformation Services (DTS) in SQL Server

2000. Thus, one of our contributions presented in this section is the extension

of the CWM Transformation package with a Platform Dependent Model (PDM)

for SSIS. As a transformation process example for SSIS, we use the tutorial given

in [135].

The objective of this case study is to develop an ETL package that extracts

and transforms currency data contained in a flat file source. These data are

then integrated into a fact table called FactCurrecyRate. The source is a set

of historical currency data, which has the following four columns: the average

rate of the currency, a currency key, a date key, and the end-of-day rate. The

FactCurrencyRate table (fact table) has also four columns: the average rate, the

currency key, the time key, and the end-of-day rate. The fact table has relationships

to two dimension tables (Currency and Time dimensions). These relationships
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indicate that lookups will be necessary to integrate the currency key and time key

values. This case study constitutes a first step to verify the approach feasibility

and to define which model is generated in each step of the transformation process.

Figure 4.4: Part of the Data Source Platform Independent Model.

For model interchange during the transformation process, we use the XML Meta-

data Interchange (XMI). XMI is a standard language for models description and

metadata serialization. The XMI is an object management group standard mech-

anism for the stream-based interchange of MOF-compliant metamodels. XMI is

essentially a mapping of the W3C’s eXtensible Markup Language (XML) to the

meta-object-facility. Figures 4.4 and 4.5 show a part of the conceptual model of

the data source (DSPIM) and the conceptual multidimensional target (MDPIM).

These models are instantiated using the corresponding CWM packages (i.e., CWM

ObjectModel and CWM OLAP) defined in Section 4.2.1. Note that to express some

semantic aspects of the models during transformation, we use the TaggedValue

element (defined in CWM ObjectModel metamodel). For example, it used to

define table type (case of the FactCurrencyRate in figure 4.5 ) or to define trans-

formation type in the conceptual ETL model. This allows for more comprehensive

models and reduces transformations errors. A part of the derived Integration

Platform Independent Model (IPIM) using CWM Transformation package is given

in figure 4.6.

The SQL Server Integration Services tasks are organized on two categories: (i) the

control flow components containing tasks for integration process control, precedence

constraints and events definition; (ii) the data flow components responsible for

data source and destination adapters, and data transformation elements. The

Integration Platform Dependent Model (IPDM) for SSIS is defined by an extension

of CWM Transformation package. This IPDM is made according to the definition
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Figure 4.5: Part of the Multidimensional Platform Independent Model.

of SQL Server Integration Services components and the specification of CWM

Transformation metamodel [136].

Figure 4.6: Part of the Integration Platform Independent Model.

The Control Flow components extend the TransformationActivity element (fig-

ures 4.7 and 4.8); the PrecedenceConstraint from SQL Server Integration Services

extends PrecedenceConstraint class from CWM Transformation with custom at-

tributes (figure 4.9); and the data flow components (such as FlatFileSource and

Lookup) extend the TransformationTask element.

During the weaving operation, the Integration Platform Specific Model (IPSM)

for SSIS is generated. The platform independent transformations defined in the

IPIM are derived into the IPSM using the target platform description (i.e., the

IPDM). The resulting ETL code files (i.e., the integration code - ICODE) represents

another level of the IPSM model. For SSIS case, the ICODE corresponds to a ”.dtsx”
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Figure 4.7: SSIS Control Flow Components Extension.

Figure 4.8: The Container Component Specialization.

Figure 4.9: PrecedenceConstraint Extension.
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file (SSIS package extension) which can be imported into SQL Server Business

Intelligence Development Studio for code correction and completion. Figure 4.10

shows the control flow part (Data Flow task) of the IPSM package. The SSIS Data

Flow task provides a data flow engine to extract data from sources, transform and

load data into destinations. Thus, figure 4.11 shows the corresponding data flow

transformations part of the derived IPSM.

Figure 4.10: Data Flow Task of IPSM.

Figure 4.11: Data Flow Transformations of IPSM.

4.4 Framework for Transformations Learning

Transformations development is a very hard task, because programmers must have

serious skills with the corresponding metamodels and the transformation languages.

This makes the approach more complex and entails additional costs, especially
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in the case of a data warehousing project. The aim of our research is to align

model transformation by-example approach to automate the model-driven data

warehouse development. The data warehouse design metamodels present a different

context from UML/ER metamodels alignment widely studied by related works.

So, this makes our work more interesting and challenging. In this section, we

start by presenting the context of model transformation and the architecture of

a conceptual framework for transformations learning. Then, we show how the

UML-CWM transformation problem is defined in the inductive logic programming

language.

4.4.1 Transformations Learning Architecture

The query-view-transformation is proposed by the object management group [29]

as standard language for model transformation. Figure 4.12 shows the operational

context of the QVT. A source-model Ma is transformed into a target-model Mb

according to a transformation definition T . The transformation definition T written

in any QVT implementation or language [64, 129]. The source Ma and the target

Mb models are conforms to their respective MMa and MMb metamodels. The

transformation definition is a model conforming to the query-view-transformation

metamodel. All metamodels conform to the meta- object facility meta-metamodel.

Ma MbT

MMbMMa QVT

MOF

TransformationConform to

Legend

Figure 4.12: The Query-View-Transformation Setting.
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The QVT Relations (QVT-R) specification is a declarative language that we use

for model-to-model transformation and it is an example of relational approach.

Figure 4.13 shows the ClassToCube relation as example. The left part defines

the source-model context (or source meta-elements), denote P(MM), where MM

is the source meta-model. The rigth part defines the target-model context (or

resulted target meta-elements), denote P(MN), where MN is the target meta-

model. P(MM) and P(MN) define respectively input and output patterns of the

transformation rules specification and they are used in the next chapter for the

formal definition of a model transformation. Following the QVT specification, a

relation in QVT-R framework is defined by the following three elements:

• Two or more domains: each domain is a distinguished set of elements

of a candidate model (source or target model). This set of elements must be

matched in that model by means of patterns.

• When clause: it defines the conditions under which the relation applies

(i.e., a precondition) and it usually corresponds to the execution of a parent-

relation.

• Where clause: it specifies additional constraint and conditions that must

be satisfied by all model elements participating in the relation (i.e., a post-

condition).

ClassToCube 

a:Class 

Name = N 

rse:RelationshipEnd 

Multiplicity =‘*’ 

p:Property 

Type = ‘Numeric’ 

c:Cube 

Name = N + ‘Cube’  

cda:CubeDimensionAssocition 

m:Measure 

UML:CORE CWM:OLAP 

Where 

RelationshipEndToCDA(rse, cda) 
PropertyToMeasure(p, m) 

<<domain>> <<domain>> 

Figure 4.13: Graphical Notation of ClassToCube Relation.

The question of how to provide an integrated framework that automatically learns

transformations from previous data warehousing projects (or experiences) is ad-

dressed in our previous work. We illustrate this by a conceptual architecture
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(figure 4.14). We focus on the DSPIM (Data-Source PIM) to MDPIM (Multidi-

mensional PIM) transformations learning. The DSPIM (source model) represents

a conceptual view of a data-source repository and the MDPIM (target model)

represents a conceptual view of a data warehouse repository. We have proposed the

UML CORE and the CWM OLAP metamodels to design respectively the source

and the target models. The objective is (1) to provide a set of model transformation

examples at the model level (the model layer of MDA, referred to as M1, defines

elements that describe semantic domains); then (2) to run a learning engine that

will build rules at the metamodel level (the metamodel layer of the model-driven

architecture, referred to as M2, is responsible of defining a language for specifying

models).

Transformations Learning
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Models Examples (M1 Level)
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Mappings
MDPIM
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Figure 4.14: Conceptual Architecture for Transformations Learning.

The transformations learning component is the core module of the framework. We

will see later that represents the inductive logic programming engine. The input for

transformation learning is a set of interconnected source and target model pairs

(learning examples). These examples of models represent the company projects

trace. So, they are designed in the M1 level of the metamodeling architecture of the

model-driven architecture and they are conforming to their respective metamodels.

In general, a pre-treatment step is necessary to ensure that project traces are

full conforming to the unified modelling language and the common warehouse

metamodel metamodels. The aim of the framework is to generate transformation

rules between the concepts of metamodels. Consequently, these transformation

rules define mapping at the metamodel level (i.e., the M2) mapping). As the

transformation design is an essential task during the model-driven engineering
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process, our work is focused on this task. We will focus our application on the

single transformation from UML metamodel to CWM metamodel. First, we

introduce the two main models (UML CORE and CWM OLAP) concerned with

this transformation (please refer to Appendix C for this). In the next sub-section,

we give a project trace transformation showing a mapping example between the

source and target instances. Then, we will show how to reduce this problem as an

inductive logic program.

4.4.2 Reduction of the UML-CWM Problem to ILP

The above discussion of ILP (i.e., chapter 2) assumes the existence of a hypothesis

language. Hypothesis language limits the set of clauses to be considered for a

learning task and therefore reduces the complexity of the learning process. Most

ILP systems allow users to explicitly specify the hypothesis language using some

form of declarative bias. Declarative bias, also known as language bias, often

applies a set of syntactic constraints on the hypothesis language. In this section, we

mainly focus on how to find an optimized representation of assumptions, and so the

language bias in the model-driven data warehouse framework. This language bias

aims to restrict the representation to clauses that define best the transformation

rules. The proposed representation allows for an improved learning process and

also for a good quality of the obtained rules. This will facilitate the task of

understanding and validation of the learned rules.

We define the language bias using the metamodel level (M2 level) of the meta-

modelling architecture. This gives the advantage to define a clear set of predicates

with an optimal level of abstraction. Predicates obtained from the M2 level will

ensure obtaining understandable transformation rules, equivalent to transformation

designed manually. In the proposed model-driven data warehouse framework, this

process will extract predicates from UML CORE and CWM OLAP metamodels.

UML CORE defines the predicates used for the representation source-models

examples (denoted as DSPIMs in figure 4.15). CWM OLAP defines the predicates

used for representing target-models examples (denoted as MDPIMs in figure 4.15).

So, according to UML CORE and CWM OLAP metamodels, we define the following

predicates to describe, respectively, source models (i.e., the DSPIMs) and target

models (i.e., the MDPIMs).
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Firstly, a few common predicates required for instantiating source and target

models are defined as:

type(Name). multiplicity(Bound).

isTime(Boolean). isMeasure(Boolean).

The defined predicates from UML CORE are:

class(Name). property(Name, Type, Lower, Upper).

association(Name, Source, Target).

associationOwnedAttribute(Class, Property).

associationMemberEnds(Association, Property).

Then, the defined predicates from the CWM OLAP are:

cube(Name). measure(Name, Type, Cube).

dimension(Name, isTime, isMeasure).

cubeDimensionAssociation(Cube, Dimension).

level(Name). levelBasedHierarchy(Name, Dimension).

hierarchyLevelAssociation(LevelBasedHierarchy, Level).

As an example of trace model, let us consider a data schema used to manage

customers and invoices (figure 4.15). With respect to the defined UML CORE and

CWM OLAP predicates, the following code is part of the generated background

knowledge program of DSPIM (Data Source Platform Independent Model) and

MDPIM (Multidimensional Platform Independent Model). First, we need a set

of common type definitions, as the following, that will be used in the source and

target predicates:

type(integer). type(float). type(string). type(date).

multiplicity(0). multiplicity(1). multiplicity(*).

isTime(true). isTime(false). isMeasure(true). isMeasure(false).

Then, a part of the DSPIM definition is as the following:



Chapter 4. Modelling 62

class(invoice). class(customer). class(category).

property(amount, float, 1, 1).

associationOwnedAttribute(invoice, amount).

association(invoice-customer, invoice, customer).

property(cInv, null, 0, *). property(iCust, null, 1, 1).

associationMemberEnds(invoice-customer, cInv).

associationMemberEnds(invoice-customer, iCust).

Finally, a part of the MDPIM definition will be:

cube(invoiceFact). measure(amount, float, invoiceFact).

dimension(customerDim,false,false). dimension(timeDim,true,false).

cubeDimensionAssociation(invoiceFact, customerDim).

level(customerLev). level(sellerLev).

levelBasedHierarchy(customerDimH1, customerDim).

hierarchyLevelAssociation(customerDimH1, customerLev).

hierarchyLevelAssociation(customerDimH1, sellerLev).

<<class>>

Invoice

amount : Float
discountAmount : Float
postDate : Date
dueDate : Date
comments : String

<<class>>
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name : String

<<class>>

Region

name : String

<<class>>
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discountRate : Integer

<<class>>
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Figure 4.15: Mapping UML CORE Instance to CWM OLAP Instance.

We introduce the two widely-used forms of language bias, namely mode declara-

tions (that are part of the background knowledge). Mode declarations were first
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introduced as a form of declarative bias in [137]. ILP systems that implement mode

declarations include Warmr [138], Foil [98], Tilde [101], Progol [100] and Aleph [97].

As the actual syntax varies from one system to another, we give in this section the

mode language supported by Aleph. These declare the mode of call for predicates

that can appear in any clause hypothesised by Aleph. The Modes indicates the

predicate format, and can be described as: predicate(ModeType1, ModeType2, ...

, ModeTypen). The declaration modeh indicates the predicate that will compose

the head of the rules. The modeb declaration indicates that the predicate can be

part of the body of the generated rules. We refer readers to Appendix D for a

brief review of Aleph syntax. For example, modes declaration of ClassToCube and

RelationShipToDimension concepts takes the form:

:- modeh(1,classtocube(+class,+cube)).

:- modeb(*,class(+class)).

:- modeb(*,cube(+cube)).

:- modeb(*,property(+property,#type,#multiplicity,#multiplicity)).

:- modeb(*,association(-association,+class,-class)).

:- modeb(*,associationOwnedAttribute(+class,-property)).

:- modeb(*,associationMemberEnds(+association,-property)).

:- modeh(1,relationshiptodimension(+association,+dimension)).

:- modeb(*,class(+class)).

:- modeb(*,cube(+cube)).

:- modeb(*,dimension(+dimension,#isTime,#isMeasure)).

:- modeb(*,classtocube(+class,+cube)).

:- modeb(*,association(+association,-class,-class)).

:- modeb(*,property(+property,#type,#multiplicity,#multiplicity)).

:- modeb(*,associationMemberEnds(+association,-property)).

The determinations are also used by Aleph as another form of search directives.

The determination statements declare the predicated that can be used to construct

hypotheses. They are part of the language and search restrictions for Aleph.

Determination statements declare the predicated that can be used to construct a

hypothesis. For ClassToCube and RelationShipToDimension concepts, they take

the form:
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:- determination(classtocube/2,class/1).

:- determination(classtocube/2,cube/1).

:- determination(classtocube/2,associationOwnedAttribute/2).

:- determination(classtocube/2,associationMemberEnds/2).

:- determination(classtocube/2,association/3).

:- determination(classtocube/2,property/4).

:- determination(relationshiptodimension/2,class/1).

:- determination(relationshiptodimension/2,cube/1).

:- determination(relationshiptodimension/2,cube/1).

:- determination(relationshiptodimension/2,classtocube/2).

:- determination(relationshiptodimension/2,associationMemberEnds/2).

:- determination(relationshiptodimension/2,association/3).

:- determination(relationshiptodimension/2,dimension/3).

:- determination(relationshiptodimension/2,property/4).

The mapping model describes all transformations of the source elements to the

target elements. The transformation predicates are of the form: transforma-

tion(SourceElement, TargetElement) where SourceElement and TargetElement rep-

resent, respectively, input and output of the transformation rule. A transformation

rule expresses in which conditions or in which context an element SourceElement

in the source model is transformed into a TargetElement in the target model. For

instance, the question is: in which context a class in the UML CORE model can be

translated to a cube in the CWM OLAP model. Given project traces, we extract

the situation where the Invoice class is translated into a cube InvoiceFact, each

such situation defines a positive example. Similarly, the situation where a class is

not transformed into a cube defines a negative example. Then, Aleph is run on this

training set. In the example of figure 4.15, classtocube(invoice,invoiceFact) is a posi-

tive example and classtocube(customer,invoiceFact), classtocube(seller,invoiceFact),

classtocube(region,invoiceFact) are negative examples. This reduction of the

UML-CWM problem to ILP aims at inferring general rules that can assist a

designer in the transformation development. For example, classtocube(A,B) :-

class(A), cube(B), associationOwnedAttribute(A,C), property(C,float,1,1), asso-

ciation(D,A,E). and classtocube(A,B) :- class(A), cube(B), associationOwnedAt-

tribute(A,C), property(C,integer,1,1), association(D,A,E). are inferred rules for

the ClassToCube concept.



Chapter 4. Modelling 65

4.5 Summary

In this chapter, we have contributed to improve current model-driven data warehouse

approaches, by providing a complete and an integrated method. Our unified

method for data warehouses development integrates at the same time the data

warehouse design framework and the data warehouse engineering process. We

started by presenting the data warehouse design framework based on the model-

driven architecture concepts. Then, the data warehouse engineering process based

on the 2 tracks unified process is described. The proposed method for data

warehouses development is a unified and mix-driven approach, which includes,

at the same time: the data-driven, the user-driven, the goal-driven, the model-

driven, the semantic-driven, and the risk-driven approaches. Indeed, the reverse

engineering and the schemas integration of data sources make our approach data-

driven at this layer. The enterprise goals and business needs are defined through

the MDCIM (Multidimensional CIM) and the ACIM (Analysis CIM), thus they

provide a goal-driven development for these layers. End-users requirements (i.e.,

within the DACIM) are considered to developing the Data Access layer, so we

consider the development process of this layer as a user- driven. The DSCIM (Data

Source CIM) and the ICIM (Integration CIM) models define two ontologies, which

are modelled using the ontology definition metamodel in order to solve schemas

integration and data integration problems. Therefore, the development of the Data

Source and the Integration layers follow also a semantic -driven process.

The main contributions of the work presented in this chapter are: (i) a definition

of current data warehousing and business intelligence problem statement including

data warehouses components construction and business intelligence applications

deployment; (ii) a proposal for a unified and a mix-driven data warehouse develop-

ment approach; (iii) introduction of a machine learning architecture based on the

inductive logic programming to support the proposed model-driven data warehouse

approach by addressing the problem of UML-CWM transformation problem.

The model transformation by-example [65, 66, 139–141] constitutes a solution to

derive transformations in model-driven software engineering environments. We

rely primarily on the conceptual model transformation by-example framework

presented by [63, 142]. Then, we propose an adapted version for model-driven data

warehouse context. This architecture will help us to apply learning and define
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what specific learning approach to use. The learned hypotheses can be easily

incorporated into later learning tasks. Noting that hypotheses take the same form

as background knowledge in the inductive logic programming , it is straightforward

to use previous learned hypotheses as background knowledge in the same fashion

as human knowledge for related learning tasks. So, the learned hypotheses can also

enrich our knowledge on the domain or they can be used in a second stage of the

learning process. This idea is applied in the proposed dependent-concept learning

approach. This problem is addressed and formalized in the next chapter. Then,

the evaluation of the dependent-concept learning method is provided in Chapter

6. Finally, in Chapter 7, we will introduce a multi-layered architecture of a tool

supporting the proposed model-driven warehousing approach.



Chapter 5

Learning Approach

Model transformation in the context of model-driven data warehouse is ensured by

human experts. It generates an exorbitant cost and requires high proficiency. We

have proposed an optimized model-driven approach and a machine learning frame-

work to reduce the expert contribution in the transformation process. We propose

to express the model transformation problem as an inductive logic programming one

and to use existing project traces to find the best business transformation rules. We

used the Aleph ILP system to learn such rules. Obtained results show that found

rules are close to expert ones.

Within our metamodeling context, we need to deal with several dependent concepts.

In fact, in a model-driven data warehouse application, dependencies exist between

transformations. We investigate a new machine learning methodology stemming

from the application needs: learning dependent-concepts. Following work about

layered learning [21, 74], context learning [23, 75], predicate invention [76, 77] and

cascade learning [78, 79], we propose a new methodology that automatically updates

the background knowledge of the concepts to be learned. The evaluation shows that

the dependent-concepts learning approach is better to deal with the model-driven

problem.

67
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5.1 Motivation

The model-driven data warehouse gathers approaches that align the development

of the data warehouse with a general model-driven engineering paradigm [17]. The

model-driven engineering is mainly based on models, meta-models and transfor-

mation design. Indeed, model-driven strategy encourages the use of models as a

central element of development. The models are conforming to metamodels and

the transformation rules are applied to refine them. Therefore, transformations are

the central components of the each model-driven process. However, transformation

development is a very hard task that makes the model-driven approach more

complex and entails additional costs. So, designers or programmers must have high

skills in the corresponding metamodels and the transformation languages, e.g., the

Query-View-Transformation (QVT). In addition, data warehousing projects require

more knowledge about the underlying business domain and requirements. This

raises many risks and challenges during the transformations design. One of the main

challenges is to automatically learn these transformations from existing project

traces. In this context, model transformation by-example (introduced by [30]) is

an active research area in model-driven software engineering that uses artificial

intelligence techniques and proposes to automatically derive transformation rules.

It provides assistance to designers in order to simplify the development of model

transformations and it reduces complexity, costs and time of development.

In the context of model-driven data warehouse, several steps are needed to auto-

matically learn the transformation rules. The first step, which has been addressed

in the previous chapter, consists in isolating steps where it is necessary to induce

transformation rules and in identifying the metamodels used to define the input/

output models of these transformations. The proposed method is extended by

machine learning in order to support the expert in the transformation process.

We propose to express the model transformation problem as an Inductive Logic

Programming (ILP) one [31] and to use existing project traces as a source of

examples to learn the best transformation rules. To the best of our knowledge, this

work is the only one effort that has been developed for automating model-driven

data warehousing with relational learning and it is the first effort that provides

experimentations in this context.
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We use the Srinivasan’s Aleph (A Learning Engine for Proposing Hypotheses) [97]

as ILP system. Aleph uses the Progol algorithm, proposed by [143], to learn rules

described as Prolog programs. The Aleph has a powerful representation language

that allows representing complex expressions and simultaneously incorporating

new background knowledge easily. Aleph also let choose the order of generation of

the rules, change the evaluation function and the search order. More information

about the most common settings allowed for the Aleph system can be found in the

Appendix D. The basic algorithm of Aleph follows procedure that can be described

in 4 steps:

1. Select: Select a positive example e+ ∈ E+ to be generalised. If none exist

(E+ = ∅), stop.

2. Saturation: Construct the most-specific-clause (i.e., the bottom clause) ⊥
that entails the selected example, and is within language restrictions provided.

3. Reduction: Search for a more general clause than the bottom clause. This

is done by searching for some subset of the literals in the bottom clause that

has the ”best” score.

4. Cover Removal: The clause with the best score is added to the current

theory, remove all redundant examples from E+. Return to Step 1.

The problem of learning more than one predicate together is known as multi-

predicate learning [144]. It deal with the case in which the definition of a certain

predicate p is function of another predicate q that has to be learned (the case extends

naturally to more than two predicates). In the model-driven data warehousing

problem, a predicate is defined for each model-element (e.g., class, attribute,

etc.) to transform dependencies exist between transformations. The question is,

what is the best order to choose to learn these rules of transformation? So, we

investigate a new machine learning methodology stemming from the application

needs: learning dependent-concepts. Following work about layered learning [21, 74],

context learning [23, 75], predicate invention [76, 77] and cascade learning [78, 79],

we propose a Dependent-Concept Learning (DCL) approach where the objective is

to build a pre-order set of concepts on this dependency relationship: first learn non

dependent concepts, then, at each step, add the learned concept as background



Chapter 5. Learning Approach 70

knowledge for next concepts to be learned according to the pre-order. This DCL

methodology is implemented and applied to our transformation learning problem.

Experimental evaluation shows that the DCL system gives significantly better

results.

This chapter is organised as follows: Section 5.2 provide a formalisation of main

background concepts of the model-driven domain. Section 5.3 details the used ma-

chine learning algorithms and introduces the dependent-concept learning approach.

Section 7.4 summarizes the chapter and gives our conclusions.

5.2 Key Concepts Formalisation

In this section we provide background definitions and concepts useful for under-

standing the application domain. A formal definition is also provided in order

to be used next in the definition of the transformation learning approach. First,

we define the notion of model. Then, we recall the definition of a metamodel and

the relation between models and metamodels. Finally, the definition of a model

transformation is given.

Definition 5.1. (Model) A model M = (G,MM,µ) is a tuple where: G =

(NG, EG,ΓG) is a directed multi-graph1, MM is itself a model called the reference

model of M (i.e., its metamodel) associated to a graph GMM = (NMM , EMM ,ΓMM ),

and µ : NG ∪ EG → NMM is a function associating elements (nodes and edges) of

G to nodes of GMM .

The relation between a model and its reference model (metamodel) is called con-

formance and is noted conformsTo. Elements of MM are called meta-elements (or

meta-concepts). µ is neither injective (several model elements may be associated to

the same meta-element) nor surjective (not all meta-elements need to be associated

to a model element). The relation between elements and meta-elements is an

instantiation relation. For example, the Invoice (respectively InvoiceFact) element

in a DSPIM (MDPIM) is an instance of Class (respectively Cube) meta-class in the

1A directed multi-graph G = (NG, EG, ΓG) consists of a finite set of nodes NG, a finite set
of edges EG, and a function ΓG : EG → NG × NG mapping edges to their source and target
nodes [145].
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UML CORE (CWM OLAP) metamodel. So, regarding this relation, the structure

of Invoice (InvoiceFact) is conformsTo Class (Cube) specification.

Definition 5.2. (Metamodel and Meta-Metamodel) A meta-metamodel is a

model that is its own reference model (i.e., it conforms to itself). A metamodel is

a model such that its reference model is a meta-metamodel [145].

The metamodeling architecture (part of the model-driven architecture international

standard) is based on meta-levels: M3, M2, M1 and M0. M3 is the meta-metamodel

level and it forms the foundation of the metamodeling hierarchy (the meta-object-

facility is an example of meta-metamodel). M2 consists of the metamodel level (the

unified modelling language and the common warehouse metamodel are examples of

metamodels). M1 regroups all user-defined models and M0 represents the runtime

instances of models.

Authors in [146] provide a classification of models transformation approaches

(template-based, graph-based, relational and so on). In our case, we are interested

in relational approaches that can be seen as a form of constraint solving. The

basic idea is to specify the relations among source and target element types

using constraints. Declarative constraints can be given executable semantics, such

as in logic programming. In fact, logic programming with its unification-based

matching, search, and backtracking seems a natural choice to implement the

relational approach, where predicates can be used to describe the relations [146].

For example, in [147], authors explore the application of logic programming. In

particular Mercury, a typed dialect of Prolog, and F-logic, an object-oriented logic

paradigm, to implement transformations. In [148] authors discuss a formalization

of modeling and model transformation using a generic formalism, the Diagrammatic

Predicate Logic (DPL). The DPL [149, 150] is a graph-based specification format

that takes its main ideas from both categorical and first-order logic, and adapts

them to software engineering needs.

Definition 5.3. (Model Transformation) A model transformation is defined

as the generation of a target model from a source model (a general definition).

Formally, a model transformation consists of a set of transformation rules which

are defined by input and output patterns (denoted by P) specified at the M2 level

(the metamodel level) and are applied to instances of these meta-models. Thus,

a model transformation is associated to a relation R(MM,MN) ⊆ P(MM) ×
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P(MN) defined between two metamodels which allows to obtain a target model N

conforming to MN from a source model M that conforms to metamodel MM [151].

5.3 Relational Learning of Dependent-Concepts

The data warehouse is a database used for reporting; therefore a candidate language

used to describe data is a relational database language. This language is close to

Datalog language used in relational learning. In addition, the conceptual models are

defined in term of relations between elements of different types (properties, classes

and associations). Therefore, it is natural to use supervised learning techniques

handling concept languages with the same expressive level as manipulated data in

order to exploit all information provided by the relationships between data. Even

if there are quite a number of efficient machine learning algorithms that deal with

attribute-value representations, relational languages allows encoding structural

information fundamental for the transformation process.

The attribute-based approaches are limited to non-relational descriptions of objects.

In fact, the learned descriptions do not specify relations among the objects’ parts.

The background knowledge is expressed in a rather limited form and the concept

description language is usually inappropriate for some domains. The mode-driven

data warehouse is a new and a complex application and it is different from usual

applications. In the proposed framework, the learning process will use data-models

(or data schemas) to set examples and background knowledge. So, the definition

of relations between model elements (e.g., class, attribute, association, etc.), is

required to set-up the learning process. Relational learning provides the appropriate

approach to answer this problem. This framework provides several advantages,

because the defined relational information plays an important role in the resulted

transformation rules. This is why ILP algorithms [31, 95] have been selected to deal

with this learning problem. As ILP suffers from a scaling-up problem, the proposed

architecture [132, 152] is designed in order to take into account this limitation.

Thus, it is organised as a set of elementary transformations such that each one

concerns a few number of predicates only, to reduce the search space. This section

reminder the relational learning theory, introduces the dependent-concept learning

approach and compares it related concept-search approaches.
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5.3.1 Relational Learning Setting

We consider the machine learning problem as defined in [153]. A (single) concept

learning problem is defined as follows. Given i) a training set E = E+ ∪ E− of

positive and negative examples drawn from an example language Le ii) a hypothesis

language Lh, iii) background knowledge B described in a relational language Lb, iv)

a generality relation≥ relating formulas of Le and Lh, learning is defined as search in

Lh for a hypothesis h such that h is consistent with E. A hypothesis h is consistent

with a training set E if and only if it is both complete (∀e+ ∈ E+, h, B ≥ e+)

and correct (∀e− ∈ E−, h, B 6≥ e−). We refer the reader to definitions (i.e., cover

relation) and (i.e., completeness and consistency) for more detail. In an ILP setting,

Le, Lb and Lh are Datalog languages, and most often, examples are ground facts or

clauses, background knowledge is a set of ground facts or clauses and the generality

relation is a restriction of deduction.

In the inductive logic programming framework, regarding the background knowledge

B and examples E, a model Mi is characterized by its description MDi (i.e., a

set of predicates that correspond to the involved elements). The predicates used

to represent Mi as logic programs are extracted from its metamodel MMi. For

example, consider a data model used to manage customers and invoices. The

classes Customer and Invoice are defined respectively by class(customer) and

class(invoice). As example the one-to-many association that relates Customer

to Invoice is mainly defined by association(customer-invoice, customer, invoice).

Then, the logic description of models from project’s traces constitutes the generated

background knowledge program in ILP.

Definition 5.4. (Transformation Example) A transformation example (or

trace model) R(M,N) = {r1, . . . , rk} ⊆ P(M)× P(N) specifies how the elements

of M and N are consistently related by R. A training set is a set of transformation

examples.

The transformation examples are project’s traces or they can be collected from

different experts [154]. For instance, we are interested in the transformation of the

Data-Source PIM (DSPIM) to the Multidimensional PIM (MDPIM). The DSPIM

represents a conceptual view of a data-source repository and its conformsTo the

UML CORE metamodel (part of the unified-modelling-language). The MDPIM
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represents a conceptual view of a target data warehouse repository and its con-

formsTo the CWM OLAP metamodel (part of the common-warehouse-metamodel).

The predicates extracted from the UML CORE metamodel to translate source

models into logic program are: type(name), multiplicity(bound), class(name),

property(name, type, lower, upper), association(name, source, target), associa-

tionOwnedAttribute(class, property), and associationMemberEnds(association,

property). Then, according to the CWM OLAP metamodel, the predicates defined

to describe target models are: cube(Name), measure(Name, Type, Cube), dimen-

sion(Name, isTime, isMeasure), cubeDimensionAssociation(Cube, Dimension),

level(Name), levelBasedHierarchy(Name, Dimension), and hierarchyLevelAssocia-

tion(LevelBasedHierarchy, Level).

By analysing the source and target models, we observe that structural relationships

(like aggregation and composition relations, semantic dependency, etc.) define

a restrictive context for some transformations. For instance, let us consider the

concept PropertyToMeasure. For instance, we know that there is a composition

relation between Class and Property and there is also a composition relation

between Cube and Measure in the metamodels. This implies that the concept

PropertyToMeasure must be considered only when the transformation ClassToCube

is learned. Therefore, the ClassToCube concept must be added as background

knowledge in order to learn the PropertyToMeasure concept. This domain specificity

induces a pre-order on the concept to be learned and defines a dependent-concept

learning problem. Therefore, in our approach, concepts are organized to define

a structure called dependency-graph. In [155], Esposito et al. use the notion of

dependency graph to deal with hierarchical theories. Authors define the dependency

graph as a directed acyclic graph of concepts, in which parent nodes are assumed

to be dependent on their offspring.

Definition 5.5. (Dependency Graph after [155]) A dependency-graph is a

directed acyclic graph of predicate symbols, where an edge (p, q) indicates that

atoms of predicate symbol q are allowed to occur in the hypotheses defining the

concept denoted by p. So, the concept p depends on the concept q (and denoted

p � q).
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5.3.2 Dependent-Concept Learning Problem

Let {c1, c2, . . . , cn} be a set of concepts to be learned in our problem. If we consider

all the concepts independently, each concept ci defines an independent ILP problem,

i.e., all concepts have independent training sets Ei and share the same hypothesis

language Lh and the same background knowledge B. We refer to this framework

as the Independent-Concept Learning (ICL). The second framework, Dependent-

Concept Learning (DCL), takes into account a pre-order relation2 � between

concepts to be learned such that ci � cj if the concept cj depends on the concept

ci or in other term, if ci is used to define cj (as definition 5.5 of dependency-graph).

More formally, a concept cj is called parent of the concept ci (or ci is the child

of cj) if and only if ci � cj and there exists no concept ck such that ci � ck � cj.

ci � cj denotes that cj depends on ci for its definition. A concept ci is called root

concept iff there exists no concept ck such that ck � ci (in other words, a root

concept ci does not depend on any concept ck, for k 6= i).

The DCL framework uses the idea of decomposing a complex learning problem

into a number of simpler ones. Then, it adapts this idea to the context of ILP

multi-predicate learning. A dependent-concept ILP learning algorithm accepts

a pre-ordered set of concepts, starts with learning root concepts, then children

concepts and propagates the learned rules to the background knowledge of their

parent concepts and continues recursively the learning process until all dependent-

concepts have been learned. Within this approach, we benchmark two settings: (i)

the background knowledge Bj of a dependent-concept (parent) cj is extended with

the child concept instances (as a set of facts, and this framework is referred to as

DCLI) and (ii) Bj is extended with child concept intentional definitions: all children

concepts are learned as sets of rules and are added to Bj, and this frameworks

is referred to as DCLR in the following sections. In both cases, DCLI or DCLR,

all predicates representing child of cj can be used in the body of cj’s definition.

Our claim here is that the quality of the cj’s theory substantially improves if

all its children concepts are known in Bj, extensionally or intentionally. In the

next chapter (i.e., Evaluation), we provide results concerning the impact of child

concepts’ representation (extensional vs. intentional) on the quality of the cj.

2A pre-order is a binary relationship reflexive and transitive.
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The task of empirical dependent-concept learning of model-driven context in ILP

can be formulated as follows:

Given a dependency graph Gd = (Cd, Ed) where Cd = {c1, c2, . . . , cn} the set

of concepts to learn such that ∀ci ∈ Cd a set of examples E = {E1, E2, . . . , Ek}
is given; and defined as (where m is the number of training models): Ei =

{Rj
i (M

j, N j) | Rj(M j, N j) ⊆ P(M j)×P(N j), j ≤ m} and a background knowledge

B which provides additional information about the examples and defined as:

B = {P(M j) ∪ P(N j) | M j conformsTo MM, N j conformsTo MN)}

Find: ∀ci ∈ Cd, given Ed (and following a BFS strategy3), learn a transformation

rule Ri(MM,MN) ⊆ P(MM) × P(MN); where MM is the reference source-

metamodel and MN is the reference target-metamodel.

Compared to layered learning, the dependent-concept learning approach aims at

learning a concept, using the concepts definition on which it depends. Then, while

the layered learning approach exploits a bottom-up, hierarchical task decomposition,

the DCL algorithm exploits the dependency relationships between specific concepts

of the given dependency-graph. The dependency structure in [21] is a hierarchy,

whereas our dependency structure is a directed acyclic graph. The DCL and

predicate invention approaches share the fact they correspond to the process

of introducing new theoretical relationships. However, in the case of predicate

invention, the approach is usually based on decomposition of the theory to learn on

simple sub-theories and the DCL approach is based on the composition of a theory

from the learned theories. Then, as the cascade generalization, the DCL approach

extends the background knowledge at each level with concepts of the sub-level

(according to the dependency-graph). But, within the proposed dependent-concept

learning, we use the same classifiers for all iterations.

In our experiments (provided in next chapter), we report the results of the extension

of the background knowledge by instances (i.e., a first setting named DCLI)

and the learned theory (i.e., a second setting named DCLR). Finally, the model

transformation by-example approach aims to find contextual patterns in the source

model that map contextual patterns in target model. This task is defined as context

3Start by an offspring and non- dependent concept (i.e., a root concept), then follow its parents
dependent-concepts
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analysis in [30]. However, the notion of context is different in the dependent-

concept learning. In fact, in the DCL, contextual information is the result of

the learning process (which will form the transformation rule); while within the

contextual learning strategy the context is part of input information’s that improve

the performance of the learner.

5.4 Summary

Machine learning techniques have been successfully applied to various problems

and applications [18, 19, 156]. Most of these applications rely on attribute-values

learning [85, 90, 157]. Attribute-based learning is limited to non-relational descrip-

tions of objects in the sense that the learned descriptions do not specify relations

among the objects’ parts. Examples representing relational information are difficult

to be encoded into propositional representation, i.e., using attribute-values. In

fact, the data warehouse system is defined as a database with relations between

different concepts: cube, measure, dimension, and so on. These relations are

necessary in the definition of the transformation (notion of transformation context).

Traditional machine learning, which only operates on propositional examples, relies

on propositionalisation [158, 159] to transform relational information into attribute-

values. However such transformation is not always possible and often causes loss

of information.

The term inductive logic programming was coined [160] in order to highlight

the emerging area of research on the intersection of machine learning and logic

programming. Both input and output of ILP take the form of first-order logic.

The representation of first-order logic gives ILP many advantages over attribute-

based machine learning techniques. It is remarkably easier to incorporate domain

knowledge with ILP than other machine learning techniques. In fact, background

knowledge can easily be amended by adding or removing clauses. However, in

complex systems the ILP approach takes long time to get the results. Therefore,

the search space is reduced because only part of the modelling specification is used

for each layer and each component. This is very well identified and described in our

architecture. The search space is also invariant, since research takes place at M2

(metamodel). The metamodeling architecture is defined as models abstraction with
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several levels (M0, M1, M2 and M3). The M2 specification is the generalization of all

models at level M1 (which defines projects trace). So, by using M2, our search space

remains invariant for the data-models (which are at M1). We choose recognized

standards (i.e., UML and CWM) to facilitate the exchange with the experts. This

also allows understanding of the obtained rules and for easy integration of our

framework in existing systems.

The main goal is to automatically derive the transformation rules to be applied

in the model-driven data warehouse process. This aims to reduce the contribu-

tion of transformations designer and thereby reducing the time and the cost of

datawarehouses development. We use the inductive logic programming frame-

work to express the model transformation and we find a new methodology (the

dependent-concept learning) that is suitable to solve this kind of problem. In

this chapter, a formalisation of model-driven concepts is provided and the prob-

lem statement in a relational learning setting is expressed. The DCL problem

is defined and the learning approach of model transformations is provided. For

the evaluation (presented and discussed in the next chapter), we propose to com-

pare the following approaches: (1) The independent-concept learning approach,

which proposes to learn the set of considered concepts independently; and (2) The

dependent-concept learning approach, which consider a dependency graph to learn

the concepts. Within this second approach, we benchmark two settings: (i) the

background knowledge B of dependent-concepts (i.e., parent-concepts) is updated

with their child instances ( which is denoted as DCLI) and (ii) with their child

intentional definitions (which is denoted as DCLR). The obtained results support

the conclusion that the dependent-concept learning approach is suitable to solve

this kind of problem.
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Evaluation

The proposed model-driven data warehousing architecture defines the input and

output data-models (or schemas) for each transformation to learn. So, it simplifies

the design of the learning process and the definition of predicates used for background

knowledge and examples. Then, one of the problems on which we focus is to find an

adequate representation for the language bias in the model-driven data warehouse

framework. The proposed representation allows for an improved learning process

and also for a good quality of the obtained rules. We define the language bias

using the metamodel level (denoted M2 level) of the meta-modelling architecture.

This gives the advantage to define a clear set of predicates with an optimal level of

abstraction. The experiments presented in this chapter allow also validating the

proposed architecture and language.

The evaluation is performed in two steps with two different datasets (i.e., by

two experiments). In, the first experiments use a set of real-world data models

provided by our industrial partner (i.e., Intelligence Power). Then, in the second

experiments, we use the Microsoft AdventureWorks 2008R2 sample database [161].

We use Aleph [162], an inductive logic programming engine, to learn first-order

transformation rules.

79
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6.1 Materials

The first experimental setup uses a dataset of real-world data models provided by

our industrial partner (i.e., Intelligence Power). It mainly compares the results of the

tested settings: ICL, DCLI and DCLR. The Independent Concept Learning (ICL)

approach proposes to learn the set of considered concepts independently. Then,

the Dependent Concept Learning (DCL) approach as it is described in the previous

section explores a dependency-graph to learn concepts. Within this approach, we

benchmark two settings: (i) the background knowledge B of dependent-concepts

is updated with parent concept instances (this setting is denoted as DCLI) and

(ii) with parent-concepts intentional definitions (and is denoted as DCLR). The

used set of real-world data models represent projects’ traces such as the example

presented in figure 4.15. In each project trace, we find the source-model(s), the

target-model(s) and the transformations. For these experiments, we have selected

10 model instances (of database schemas) describing several application domains

(invoices, sales, e-commerce, banking- investment, and so on). The source-models

description mainly includes the definition of classes, associations, and properties

elements. In the target-models, we find elements like cubes, measures, dimensions

and levels. From each model, we extract a set of positive and negative examples

that define respectively positive and negative transformations as explained before.

ClassToCube 

RelationShipToDimension PropertyToMeasure 

ClassToLevel 

Figure 6.1: Pre-order Dependency Relation Between Considered Concepts.

From the analysis of this first dataset, we identify the following concepts depen-

dencies (see figure 6.1):
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Table 6.1: Number of examples (E+ and E−) per-concept used for learning.

Concept Positive Examples Negative Examples Total Number
ClassToCube 27 44 71

PropertyToMeasure 47 202 249
PropertyToDimension 38 207 245

RelationShipToDimension 33 60 93
ElementToHierarchyPath 115 223 338
ElementToDimensionLevel 109 229 338

• ClassToCube � PropertyToMeasure: The PropertyToMeasure concept de-

pends on the concept ClassToCube. In general, transformation of properties

depends on contextual information of transformed classes and the context

of obtaining measures is part of the context of obtaining cubes. In fact,

properties that become measures are numeric properties of classes that be-

come cubes. So, we need information about the context of ClassToCube

transformation in order to find the context of PropertyToMeasure.

• ClassToCube � RelationShipToDimension: Indeed, dimensions are obtained

from relationships of the class that is transformed into cube. This is the

case of the invoice class and invoice-customer association. The CubeDi-

mensionAssociation meta-class relates a Cube to its defining dimensions as

showed by the CWM OLAP metamodel in [130]. These relationships define

the axes of analysis in the target multidimensional schema [163]. The ex-

periments presented in the next show significant performances improvement

when we extend the background knowledge of RelationShipToDimension by

ClassToCube instances.

• RelationShipToDimension � ClassToLevel: There is a two-level dependency

between ClassToLevel and ClassToCube concepts. As the example in fig-

ure 4.15, classes that participate in a transformed association into a dimension

are the levels of the resulting dimension. We will also experiment learning

the ClassToLevel concept using the knowledge provided by the ClassToCube

and RelationShipToDimension concepts.

Concerning the second set of experiments, we use the Microsoft Adventure-

Works 2008R2 reference databases [161]. The Microsoft AdventureWorks reference

databases are AdventureWorks Sample OLTP Database (AdventureWorksOLTP)

and AdventureWorks Sample Data Warehouse (AdventureWorksDW). The Adven-

tureWorksOLTP is a sample operational database used to define the source-model
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(i.e., the data- source schema – DSPIM). The AdventureWorksDW is a sample

data warehouse schema used as target-model (i.e., the multidimensional schema

– MDPIM). The AdventureWorksOLTP, AdventureWorksDW and the mapping

between them (evaluated by the expert) are considered as a reference project-trace.

This will allow us to benchmark our approach on a new extended schema (that

generate more examples) and a new dependency-graph. The databases elements

(i.e., classes, properties and associations) are encoded as background knowledge

(B) and the mapping instances between their elements allows to define positive

(E+) and negative (E−) examples. The number of examples, available pour each

concept are provided by table 6.1. Then, the average accuracy results from the

10x10-fold cross validation are then reported by figures below.

ClassToCube 

PropertyToDimension RelationShipToDimension PropertyToMeasure 

ElementToHierarchyPath ElementToDimensionLevel 

Figure 6.2: Considered Dependency-Graph of Second Experiments.

We run Aleph in the default mode, except for the minpos and noise parameters: :-

set( minpos, p) establishes as p the minimum number of positive examples covered

by each rule in the theory (for all experiments we fix p = 2); and :- set(noise, n) is

used to report learning performance by varying the number of negative examples

allowed to be covered by an acceptable clause (we use two setting n = 5 and

n = 10). We propose also to compare the Independent-Concept Learning (ICL)

and the Dependent-Concept Learning (with more different settings, DCLI, DCLR,

etc.) approaches. We use the concept dependencies illustrated by the graph in

figure 6.2. It integrates the ClassToCube � PropertyToMeasure and ClassToCube

� RelationShipToDimension dependencies; and adds the following dependencies

compared to the first graph:
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• ClassToCube � PropertyToDimension: This defines dependency between

classes transformed into cubes and their properties that can be transformed

into dimensions. Regarding the UML CORE metamodel, we find a structural

dependency between Class and Property elements (a Class includes attributes,

represented by the ownedAttribute role that defines a set of properties). Then,

regarding the CWM OLAP metamodel, we have a structural dependency

between Cube and Dimension elements. Current experiments confirm that

structural dependencies in the metamodel act on the ways to perform learning.

• (PropertyToDimension, RelationShipToDimension) � RelationShipToDimen-

sion: A Dimension has zero or more hierarchies. A Hierarchy is an organi-

zational structure that describes a traversal pattern through a Dimension,

based on parent/child relationships between members of a Dimension. Then,

elements that are transformed into dimensions (properties and relationships)

extend the background knowledge used to find hierarchy paths.

• (PropertyToDimension, RelationShipToDimension) � ElementToDimension-

Level: A LevelBasedHierarchy describes hierarchical relationships between

specific levels of a Dimension (e.g., Day, Month, Quarter and Year levels for

the Time dimension). So, rules of transforming elements into Dimension are

used to find rules of obtaining the levels.

The number of model-elements used for experiments forms the size of the back-

ground knowledge. In the first experiment we use a dataset consisting of 10 models

with 475 model-elements. In the second set of experiments, the sample consists

of 6 schemas (of AdventureWorks) containing 1028 elements (has doubled). The

results of running show almost equivalent performance between the first and sec-

ond experiment. The proposed architecture and the partitioning allow the use

of a small number and specific predicates for each concept. The search space

remains invariant as it always uses the same number of elements of metamodels

that describe the background knowledge and examples. This structure is used to

define invariants of transformation from the definition of metamodels. We conclude

that this type of model-driven architecture with a two-dimensional partitioning

(layers and design-levels) is the best to support and scaling-up machine learning

integration.
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6.2 Evaluation Methods

The first goal of this analysis is to examine if the choice of the number of training

models and examples influence the performances. We report the obtained test

accuracy curves of learning ClassToCube and PropertyToDimension concepts. They

represent concepts of the first-level (level 1 of learning, or child-concepts). The

second goal of the analysis is to study the performances of the DCL approach (with

the two settings DCLI and DCLR) compared to the ICL approach. We report the

Receiver Operating Characteristics (ROC ) curves of the tested approaches (ICL,

DCLI and DCLR) for learning PropertyToMeasure, RelationShipToDimension and

ClassToLevel concepts (concepts of level 2 and 3). For all experiments, we use the

repeated random sub-sampling validation strategy (the average of 10 iterations is

reported).

The ROC graphs are a useful technique for visualizing, organizing and selecting

classifiers based on their performance [164]. The following metrics are used to

report the ROC graphs. The true-positive-rate (also called hit rate and recall) and

the false-positive-rate (also called false alarm rate) of a classifier are estimated

as tp rate = TP
P

; fp rate = FP
N

. Additional terms associated with ROC

curves are sensitivity and specificity: sensitivity = recall = TP
P

; specificity =

1 − fp rate = TN
N

. ROC graphs are two-dimensional graphs in which tp rate

(sensitivity) is plotted on the Y axis and fp rate (1 - specificity) is plotted on

the X axis. For the second goal of our experiments, we build ROC graphs

for PropertyToMeasure, RelationShipToDimension and ClassToLevel to compare

performances of the tested approaches (ICL, DCLI and DCLR). Figure 6.5 shows

results obtained for PropertyToMeasure, figure 6.6 reports the result curves of

learning RelationShipToDimension and figure 6.7 gives performances of learning

ClassToLevel.

We use the accuracy measure for the first goal of this benchmark (i.e., to ex-

amine how the number of training model instances and examples influence the

performances). In machine learning accuracy is commonly used for comparing the

performance of algorithms. Thus, many researchers report their results in terms

of accuracy. The accuracy of a model can be interpreted as the expectation of

correctly classifying a randomly selected example. We examine the accuracy of the

learned rules to show the impact of the number of training models and examples
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on the training performances. Accuracy is defined, based on the contingency table

(also known as confusion matrix), as Accuracy = TP+TN
P+N

, where P (N) is the

number of examples classified as positive (negative), TP (TN) is the number of

examples classified as positive (negative) that are indeed positive (negative). Then,

the Area Under the ROC Curve, abbreviated AUC, is the common measure to

compare the tested methods. The AUC represents also a measure of accuracy.

6.3 Experiments

We performed experiments on two different datasets, and we note that in both cases,

the transformations (their number and the dependencies between them) are not the

same. Moreover, through these experiments, we conclude that more the number of

models (or data) from the knowledge base is important, more the dependency graph

is complex (increased number of nodes and relationships). Regarding the increased

number of transformations in the second graph, we show that the application

keeps acceptable performance in terms of execution time and quality rules. This

is explained by the fact that the proposed architecture has several advantages in

terms of division of the problem. The overall design is organized through several

levels of modelling (and so learning levels). The representation language is reduced

for each transformation and then offers a support for scalability.

We use Aleph [162], an inductive logic programming engine, to learn first-order

transformation rules. As input, Aleph takes: (i) background information in the

form of predicates, (ii) a list of modes declaring how these predicates can be

chained together, (iii) a designation of one predicate as the ”head” predicate to

be learned, and (iv) a lists of positive and negative facts of the head predicate

are also required. The learned logical clauses give the relationship between the

transformations and the contextual information (elements) in the models. The

contextual information in model-driven methodologies corresponds to the model

elements and the relationships between them (i.e., the concepts of the model) in

different abstraction levels. This context can be associated to a sub-model that

matches the required information to apply a transformation on a concept.

We run Aleph in the default mode, except for the minpos, parameter, :- set(minpos,

2) establishes as 2 the minimum number of positive examples covered by each rule
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in the theory. The mode definitions in Aleph are required to produce a theory. We

give below the Aleph modes declaration for ClassToCube and PropertyToMeasure

as examples:

:- modeh(1,classtocube(+class,+cube)).

:- modeb(*,class(+class)).

:- modeb(*,cube(+cube)).

:- modeb(*,property(+property,#type,#multiplicity,#multiplicity)).

:- modeb(*,association(-association,+class,-class)).

:- modeb(*,associationOwnedAttribute(+class,-property)).

:- modeb(*,associationMemberEnds(+association,-property)).

:- modeh(1,propertytomeasure(+property,+measure)).

:- modeb(*,measure(+measure,#type,+cube)).

:- modeb(*,class(+class)).

:- modeb(*,cube(+cube)).

:- modeb(*,classtocube(+class,+cube)).

:- modeb(*,property(+property,#type,#multiplicity,#multiplicity)).

:- modeb(*,associationOwnedAttribute(-class,+property)).

The accuracy of the second set of experiments based on the new dataset (of

AdventureWorks) confirm the first results reported also in [130]. Then, considering

the second dependency-graph, we study also the performances of the DCL approach

(with the two settings DCLI and DCLR) compared to the ICL approach. We report

in this section the ROC curves of the tested approaches (ICL, DCLI and DCLR)

based on the new dataset and the new enhanced dependency-graph. In order to

assess the impact of a child-concept rules quality on the learning performances of

a parent concept, we experiment the case where the child concept is noisy. This

experiment is made within the DCL approach, we add noise to the non-dependent

concept (i.e., ClassToCube) and we observe results of learning dependent-concepts

with different acceptable noise setting (n = 5 and n = 10). We report the cases

where 10% (denoted N-DCLI and N- DCLR) and 20% (denoted N2-DCLI and

N2-DCLR) of the examples are noisy. To add noise, we swap positives and negatives

examples.



Chapter 6. Evaluation 87

6.4 Results and Discussion

In figures 6.3 and 6.4, we report the obtained results for ClassToCube and Proper-

tyToDimension concepts (concepts of level 1). Figure 6.3 gives the average test

accuracy as a function of the number of training models. Figure 6.4 shows the test

accuracy, averaged over 10 models, now as a function of the number of training

examples. The obtained results indicate, as expected, that accuracy increases with

the number of models or examples. Results also give the minimum number of

model instances or examples required to learn these concepts. For instance, with 10

models, the accuracy is for 96, 5% for the concept ClassToCube and about 81, 3%

for concept PropertyToDimension. The main explanation, as shown by figure 6.4,

comes from the difference between number of examples describing the two concepts.

Then, from an expert point-of-view, we expect a potential dependency between

these two concepts which does not appear in the concerned data.
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Figure 6.3: ClassToCube and PropertyToDimension Accuracy as a Function
of the Number of Models (ICL Setting).

Aleph induces the following rules with the best score for ClassToCube:

classtocube(A,B) :- class(A), cube(B), property(C,float,1,1),

associationOwnedAttribute(A,C), association(D,A,E).

classtocube(A,B) :- class(A), cube(B), property(C,integer,1,1),

associationOwnedAttribute(A,C), association(D,A,E).
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Figure 6.4: ClassToCube and PropertyToDimension Accuracy as a Function
of the Number of Examples (ICL Setting).

A class A with property C of type either integer or float (from the source-model)

is transformed to a cube B (in the generated target-model) i.e., associationOwne-

dAttribute(A, B), property(B, float/integer, 1, 1).). This result defines the source-

context of ClassToCube transformation. The association(C, A, E). indicates that

the transformed class A participates is an association that can define a hierarchy-

path of a dimension (where A as a second parameter represent the source-element

of the association). This will defines contextual information for the transforma-

tion that generates dimensions and associates them to the cube. Concerning the

semantic of each predicate, please refer to Chapter 4 for details.

We note that the learned rules for ClassToCube are close to the rules designed

manually. We compare the resulted rules with those provided by related work.

For example in [28], the source-model context of the proposed EntityToCube is

formed by Entity, RelationShipEnd (with multiplicity = ’*’) and Attribute (with

numeric types) relations. In this format, the numeric type represents float and

integer numbers. Regarding the resulting rules, associationOwnedAttribute(A, C)

and association(D, A, E) atoms are associated with RelationShipEnd relation;

then property(C, float, 1, 1) and property(C, integer, 1, 1) to Attribute relation.

In fact, we have proposed a good language bias and a good modelling bias based on

the same domain metamodel used by experts (UML and CWM) and this explains

the obtained rules. Also, all of the resulting rules are found in a reasonable time:

30 (and 35) seconds on average for the first (for the second) experiments.

Concerning concepts PropertyToMeasure, RelationShipToDimension and ClassToLevel,

Aleph induces also the following rules with the best score. For each concept, the
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obtained rules include predicates of children-concepts in the dependency-graph,

when learned in the dependent-concept learning framework:

% PropertyToMeasure

propertytomeasure(P,M) :- associationOwnedAttribute(A,P),

measure(M,float,C), classtocube(A,C), property(P,float,1,1).

propertytomeasure(P,M) :- associationOwnedAttribute(A,P),

measure(M,integer,C), classtocube(A,C), property(P,integer,1,1).

% RelationshipToDimension

relationshiptodimension(C,D) :- association(C,A,E),

classtocube(A,B), dimension(D,false,false).

relationshiptodimension(C,D) :- association(C,A,E),

classtocube(A,B), dimension(D,true,false).

% ClassToLevel

classtolevel(D,L) :- level(L), association(C,A,E), classtocube(A,B),

relationshiptodimension(C,D), levelBasedHierarchy(H,D).
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Figure 6.5: ROC Curves of Learning PropertyToMeasure.

The first results on figures 6.5, 6.6 and 6.7 show that the DCLI has greater AUC

than other tested methods (i.e., ICL and DCLR). The DCLI curves follow almost the

upper-left border of the ROC space. Therefore, it has better average performance

compared to the DCLR and ICL (AUCDCLI > AUCDCLR > AUCICL). The ICL

curves almost follow to the 45-degree diagonal of the ROC space, which represents
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a random classifier (so poor performance). The DCLR setting exhibits good results

with respect to the ICL approach, which are nevertheless slightly worse than the

results of the DCLI setting.
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Figure 6.6: ROC Curves for Learning RelationShipToDimension.

Within DCLI configuration, when learning a concept of level i ≥ 2, uses in its

background knowledge concepts of level j < i as set of facts (extensional definition),

as opposed to DCLR, which previously learns as sets of rules definitions for concepts

of level j < i. If lower-level concepts (i.e., children-concepts) are not perfectly

identified, the learning errors propagate to higher- level concepts (i.e., parent-

concepts). We assume here that examples are noise-free, which explains why

DCLI has a better behaviour than DCLR. Thus, for PropertyToMeasure and

RelationShipToDimension (concepts of level 2), results integrate the error rate from

ClassToCube learned rules (concept in level 1). For ClassToLevel that depends

on RelationShipToDimension, results are influenced by the error rate propagation

from learning ClassToCube and then RelationShipToDimension.

Then, as example of obtained graphs within the second set of experiments, the

learning results for PropertyToMeasure and RelationshipToDimension are reported

by figures 6.8 and 6.9. The curves show that n = 10 setting (right part of each figure)

gives best performances compared to n = 5. Indeed, data quality and conceptual

models quality [165, 166] play an important role in the design of information

systems, and in particular decision support systems. Then, comparing ICL, DCLI

and DCLR approaches, results show that the DCLI has greater AUC than other

tested methods. The DCLI curves follow almost the upper-left border of the ROC

space. Therefore, it has better average performance compared to the DCLR and

ICL (AUCDCLI > AUCDCLR > AUCICL). The ICL curves almost follow to the
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Figure 6.7: ROC Curves of Learning ClassToLevel.

45-degree diagonal of the ROC space, which represents a random classifier. The

DCLR setting exhibits good results with respect to the ICL approach, which are

nevertheless slightly worse than results of the DCLI setting.
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Figure 6.8: Learning PropertyToMeasure, n = 5 (left) and n = 10 (right).

In the actual setting, AUCDCLI > AUCDCLR > AUCICL result is expected, because

the DCLI configuration, when learning a parent concept, uses in its background

knowledge child-concepts as set of facts ( extensional definition), as opposed to

DCLR, which previously learns as sets of rules definition for offspring concepts. In

case lower level concepts (i.e., child-concepts) are not perfectly identified, the errors

for offspring concepts propagate to parent concepts. We assume here that examples

are noise-free, which explains why DCLI has a better behaviour than DCLR. Thus,

for PropertyToMeasure, PropertyToDimension and RelationShipToDimension,

results integrate the error rate from ClassToCube learned rules. We observe also that

for the parent-concepts ElementToHierarchyPath and ElementToDimensionLevel
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that depend on PropertyToDimension and RelationShipToDimension, results are

influenced by the error rate propagation from learning ClassToCube and then

PropertyToDimension and RelationShipToDimension. Another remarkable point

concerning curves is that the gap between ICL and DCL becomes important for

top-level concepts (i.e., parent-concepts) in the dependency-graph. So in this

case, the contribution of DCL becomes more significant. For example that the

gap is most important for RelationShipToDimension concept (in figure 6.9) than

PropertyToMeasure concept (in figure 6.8). This is explained by the fact that when

finding top-level concepts using ICL, the learning configuration will be deprived of

much more information on all intermediate concepts.
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Figure 6.9: ROC Curves for Learning RelationshipToDimension.

Considering the N-DCLI, N2-DCLI, N-DCLR and N2-DCLR settings, we have

mainly: AUCN−DCLI > AUCN2−DCLI and AUCN−DCLR > AUCN2−DCLR. Curves

show that the obtained performances depend on the concept to learn and its

degree-of-dependence on ClassToCube (the noisy non-dependent concept of this

configuration). For instance, in figure 6.9, RelationShipToDimension is most im-

pacted than PropertyToMeasure in figure 6.8. The PropertyToDimension and

RelationShipToDimension concepts are highly dependent on ClassToCube. This

can be observed on most schemas (remarks provided in first experiments) and it

is confirmed by the expert point-of-view. For example, in the case of Relation-

ShipToDimension, the N2-DCLI curve seems to reach the 45-degree diagonal. This

gives us an idea of the noise that we can accept when learning specific dependency

relationships.

The model-driven process, based on two track unified process is one of the com-

ponents of the architecture that we propose. This process offers a comprehensive
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Table 6.2: Test Accuracy for Learning RelationShipToDimension (First Set-
ting).

Approach Test Accuracy Average (%)
(PropertyToDimension,RelationshiptoDimension),

i.e., information on the two concepts is given
DCLI (n=5) 87
DCLR (n=5) 71,9
DCLI (n=10) 87
DCLR (n=10) 77,6

partitioning by layer (or component) and a local partitioning (by design-level). The

proposed frameworks, largely based on unified modelling language and common

warehouse metamodel define the second component of the architecture. These

frameworks are used to define the representation language of transformations to

learn. The choice of industry standards (e.g., UML, CWM), recognized by experts,

allows ensuring a good level of system integrity and also provides an optimal

representation language (for understandable rules). The transformations whose

context is explained in Chapter 4, are bound by the execution-dependency (the

”where” relationship, or the post-condition). The proposed approach, based on

the dependency-graph is consistent with this definition of transformations. Indeed,

execution-dependencies are transformed (or reduced) into search- dependencies.

This reduction problem creates the best environment for defining parent-concepts

and improves the quality of the obtained rules; thus ensuring an effective assistance

to experts. When there are more changes, there are more execution-dependencies

(problem of scaling-up). If these dependencies are not considered (this is the ICL

case), the error rate, the lack of information and consistency will be more important

in scaling. The DCL approach addresses this problem by an analysis and definition

of a dependency-graph taking into account the number of possible transformations.

Table 6.3: Test Accuracy for Learning RelationShipToDimension (Second
Setting).

Approach Test Accuracy Average (%)
(-,RelationshiptoDimension), (PropertyToDimension,-),
i.e., losing PropertyToDimension i.e., losing RelationshiptoDimension

DCLI (n=5) 76,7 76,7
DCLR (n=5) 70,8 70,1
DCLI (n=10) 77,2 76,7
DCLR (n=10) 74,6 69,9

The third goal of the analysis is to experiment the case when we lost a node in the

dependency-graph. Tables 6.4 and 6.5 give results of learning ElementToHierar-

chyPath and RelationShipToDimension when (i) we consider all parent-concepts
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(i.e., PropertyToDimension and RelationShipToDimension), (ii) when we lost Prop-

ertyToDimension, denoted (-, RelationShipToDimension) and (iii) when we lost

RelationShipToDimension, denoted (PropertyToDimension, -). We report the test

accuracy average of 10-fold random sampling method. Results confirm that taking

into account the two dependency relationship, i.e., setting (PropertyToDimension,

RelationShipToDimension), is necessary to ensure good performances. For example,

we note a decrease of ' 10% when we lost PropertyToDimension or RelationShip-

ToDimension. This experiment allows us to verify dependency relationships and

their degree, then to validate the dependency-graph.

Table 6.4: Test Accuracy for Learning ElementToDimensionLevel (First Set-
ting).

Approach Test Accuracy Average (%)
(PropertyToDimension,RelationshiptoDimension)

i.e., information on the two concepts is given
DCLI (n=5) 89,4
DCLR (n=5) 73,4
DCLI (n=10) 89,4
DCLR (n=10) 77,7

This also allows for defining a certain degree-of-dependence of a concept against

another. For example test accuracy results of learning RelationShipToDimension

(table 6.3), in case of DCLR (n = 10) setting are: 74, 6% (for losing PropertyToDi-

mension) and 69, 9% (for losing RelationShipToDimension). Thus, losing Relation-

ShipToDimension gives a lesser accuracy result than losing PropertyToDimension.

We have the same observation in table 6.5 (learning ElementToDimensionLevel).

In case of DCLR (n = 10) setting, the accuracy results are: 74, 9% (for losing

PropertyToDimension) and 72, 6% (for losing RelationShipToDimension). This

joins our remark in the first experiments concerning the gain in accuracy. Finally,

advanced analysis of gain in accuracy and degree of dependence will be part of a

future work.

Table 6.5: Test Accuracy for Learning ElementToDimensionLevel (Second
Setting).

Approach Test Accuracy Average (%)
(-,RelationshiptoDimension) (PropertyToDimension,-)

i.e., losing PropertyToDimension i.e., losing RelationshiptoDimension
DCLI (n = 5) 79,7 79,6
DCLR (n = 5) 72,5 71,6
DCLI (n = 10) 79,6 79,6
DCLR (n = 10) 74,9 72,6
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6.5 Summary

We note that the obtained transformation rules are similar to the transformation

manually designed using the query-view-transformation language presented in [28].

Results show acceptable accuracy values for ClassToCube, the error rate is around

4% with 10 models and around 7% with E = 40. This shows that learning is

possible with a small number of models (examples). This is achieved through a

strong domain theory and the proposed efficient modelling. Indeed, in our model-

driven approach, the models used for learning are represented at a conceptual level

(resulting from the reverse engineering of logical schemas). This reduces numeric

attributes of type primary-key and/or foreign-key that we find in the database

logical representation and therefore it reduces the number of negative examples

covered by the learned rules. We consider this as an important language bias that

improves learning results and performances. This means that properties of type

date are transformed into dimensions, which covers many examples. However, for

PropertyToDimension, the error rate remains high: around 19% with 10 models

and around 18% with E = 30. Indeed, there is a high number of attributes

transformed into dimensions which are not of type date. This is the case for the

numeric degenerate dimensions [167] and the categorical dimensions [168] that can

have a string type. Such examples are obviously missing from our training set.

The analysis of project traces allows identifying specific business goals that must

be addressed by the generated data warehousing system. The structure of the

data warehouse will be generated by the learned transformations. Therefore the

context of these transformations must be consistent with the stated goals in order

to generate the expected data warehouse specification. It is concluded that a

step of data analysis project is required to identify the necessary transformations

and relationships between them (dependencies). A careful definition of the trans-

formations context and a faithful design of the dependency-graph can improve

learning performance thereafter. This step allows defining a language bias (i.e.,

the transformations context) of and a search bias (i.e., the dependency-graph).

We show that the DCLR improves transformation learning and allows for more

accurate results compared to the ICL approach. Then, we examine the gain in

accuracy (GA) of the DCLR and ICL. Let GAC
DCLR−ICL = AUCC

DCLR −AUCC
ICL

be the gain in accuracy (of DCLR compared to ICL) when learning the concept C.
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The gain in accuracy information allows us to define a degree-of-dependence of a

concept with respect to another. We introduce and we experiment the degree-of-

dependence within the second experiment. Within the actual configuration and

the example of PropertyToMeasure and RelationShipToDimension, we observe

that GAPropertyToMeasure
DCLR−ICL < GARelationShipToDimension

DCLR−ICL (this analysis will be part of a

future work).

The dependent-concept learning is better because adding a child-concept description

allows the definition of new information (new context) to consider when learning the

parent-concept. This adds dependency information considered as an information

that enriches the search space of the parent-concept and helps finding expected

relations. This plays as an additional language bias, but also a search bias, allowing

for good learning performances and good rules quality. The learned theory of the

child-concept extends the background knowledge with a specific theory simple

to learn, but at the same time it defines a sub-context of the parent-concept

theory. So, this learning strategy first finds relations that are simple to learn with

a minimum number of model elements. Then, the resulted sub-theories are used

to set-up the learning context of parents-concepts. This approach is suitable to

solve model-driven based problem because: (i) in metamodels definitions, we find

dependencies between model elements (class, attribute, cube, measure, etc.), and

(ii) in the manually designed rules, the ”where” part of the transformation defines

rules that must be activated (or executed) as post-condition. This post- condition

information is a form of dependency.

In this evaluation, a sensitivity analysis of classifiers is performed. Indeed, we

can tell how robust a classifier is, by noting the classification accuracy of learning

approaches using noisy data of different noise levels. We use two different percent-

ages of noise, 10% of the original data set (approaches working on the obtained

noisy dataset are denoted N-DCLI and N-DCLR) and 20% (the obtained datasets

are denoted N2-DCLI and N2-DCLR). Similar experiments on all datasets are

performed and the resulted behaviours are compared to the ICL and DCL results

using original datasets. Figures show that, in the presence of noise, and for most

concepts, the classification accuracy of the DCLs settings drops less than those of

the ICL approach. The performance degradation measures effect of noise on the

classifiers. A classifier is more tolerant and resistant to the noise when it shows

a smaller performance deviation. Regarding child-concepts (e.g., ClassToCube,
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PropertyToMeasure), the behaviour of approaches that learn on noisy-datasets

remains close to the DCLs settings those work on the standard datasets (noise-free

datasets). Nevertheless, the more we advance in levels of the dependency-graph,

the less resistant are these approaches to noise. Their accuracy will be much

lower than the non-noisy approaches and gets closer to the performance of ICL

setting. We conclude that child-concepts are more tolerant to noise, because the

learning environment is easier (none or few dependencies exist) and the search

space is reduced. Also, noisy-data do not support obtaining good performance

in the case of large dependency graphs. Thus, a larger hierarchy of concepts can

significantly reduce the quality of the rules at the parent-concepts, because their

learning environment is noisy by error propagation of learning child-concepts. This

part of work of learning using noisy data will be studied and evaluated with more

details in our future work.



Chapter 7

Implementation

In recent years, the data warehousing infrastructures have undergone many changes

in various aspects. This is usually due to many factors: the emergence of software-

as-a-service architecture model; the success of agile and iterative data warehouse

development approaches; the introduction of new approaches based on the model-

driven architecture; the changing needs of organizations and the extension of the

data warehouse into new application areas; and the evolving of standards and

open-source technologies.

This chapter explores several aspects that may influence the next generation of data

warehousing platforms: ( i) the architectural aspects for business intelligence-as-a-

service deployment; (ii) the promising open industry standards and technologies

recommended for use; and (iii) the emerging methodological aspects for data ware-

house components engineering.

98
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7.1 Motivation

The Software-as-a-Service (SaaS) is a model for software delivery that allows

lower total cost of ownership and better return on investment for subscribers [126].

Recently, several business intelligence platforms including some well known names

have embraced this new model of architecture. These solutions present many

advantages derived in general from the advantages of the SaaS concept. However,

not much information on the architecture of these on-demand solutions is provided.

In addition, few solutions offer integrated platforms that cover all functional

and technical aspects of the data warehousing architecture. Indeed, these tools

focus only on the problem of the business intelligence services deployment and

they provide a partial on-demand solution to the problem of data warehousing

design. Furthermore, none of these solutions offers an integrated model-driven data

warehouse development approach and a web- based environment that supports

this approach. Finally, there are few studies on open standards and open-source

business intelligence tools integration in this context.

This chapter deals with two important aspects of business intelligence-as-a-service

architectures: (i) the functional aspects to deliver business intelligence services

covering the model-driven data warehousing services; and (ii) the technical aspects

covering the recommended open industry standards and open-source tools. This

chapter provides, also, several recommendations for data warehousing standards

and development technologies. It, mainly, helps project managers and organizations

involved in developing web-based business intelligence solutions.

We study the advantages of SaaS deployment model and some industry experiences

(BusinessObjects, MicroStrategy, etc.) are presented. Then, a proposal for a

common functional business intelligence-as-a-service architecture is described. We

focus on the data warehousing projects management and components design services

and we discuss the model-driven data warehouse approaches integration. Indeed,

such approaches of data warehouse engineering provide several advantages and

their integration in a SaaS environment seem more promising. So, we introduce

the model-driven warehousing in the cloud using our approach [169] based on the

Model-Driven Architecture (MDA) and the 2 Track Unified Process (2TUP). The

MDA/2TUP based process for data warehouse engineering and its advantages are

thus presented.
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We study also the data warehousing standards and open-source business intelligence

and web-applications development tools integration. Indeed, only a few solutions

propose a standard and integrated data warehouse design framework like the

Common Warehouse Metamodel (CWM). Other MDA-compliant metamodels are

useful, but they are not yet integrated as the Ontology Definition Metamodel

(ODM). In addition, little information is available on the technical architecture of

data warehousing platforms. So, we give several recommendations concerning the

standard industry tools, languages, and business intelligence APIs which can be

integrated. Then, a technical architecture for the business intelligence-as-a-service

based on the most popular open-source frameworks is described. The proposed

technical architecture is based on Java Enterprise Edition (JEE) technologies using

spring framework.

The chapter is organized as follows: the next Section gives a review of the software-

as-a-service architecture. Section 7.3 describes the proposed architectures (i.e.,

functional and technical) for business intelligence-as-a-service including our ap-

proach for the model-driven data warehousing-as-a-service. Finally, Section 7.4

gives our conclusions and future work.

7.2 Software-as-a-Service Overview

The software-as-a-service is a model of architecture for software delivery where

a software company publishes one copy of their software on the Internet. It

allows individuals and companies (multi-tenant architecture) to ”rent” it through

a subscription model (pay-as-you-go model). The software company centrally

operates, maintains and supports all its customers using this centralized service.

The on-demand and pay-as-you-go models mean that in a SaaS architecture,

costs are directly aligned with usage. The cost may increase as the usage of the

application increases. Multi-tenant architecture model means that the physical

backend hardware infrastructure is shared among many different customers but

logically is unique for each customer [126]. Gartner1 defines SaaS as software that’s

owned, delivered and managed remotely by one or more providers. The provider

delivers an application based on a single set of common code and data definitions,

1http://www.gartner.com
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which are consumed in a one-to-many model by all contracted customers anytime

on a pay-for-use basis, or as a subscription based on usage metrics.

Lower Total Cost of Ownership (TCO) and better Return On Investment (ROI)

constitute the major benefits of SaaS. Indeed, several factors contribute to making

it considerably less expensive to implement a SaaS application than a traditional

on-premises application. These factors include: (i) lower IT costs; since when

you subscribe to a SaaS application, you avoid the overhead associated with

implementing conventional software (installing and maintaining servers, etc.). (ii)

Economies of scale; subscription costs for SaaS applications reflect the economies

of scale achieved by multi-tenancy; as example on database is used to store all

customers data, so, this makes the overall system scalable at a far lower cost. (iii)

Pay-as-you-go; companies who subscribe to a SaaS application pay a monthly

or annual subscription fee, sometimes depending also on the number of users or

transactions. Others key variables such as simplicity, flexibility and accessibility

constitute the advantages of SaaS deployment model.

In recent years, SaaS is gaining momentum with more and more successful adoptions.

Several companies including some well known names have embraced this new model

for software distribution. As SaaS providers, we cite Salesforce.com for on-demand

Customer Relationship Management (CRM) services; PeopleSoft On-Demand from

Oracle provides SaaS infrastructure for enterprise applications; ShareMinds that

offers an on-demand Enterprise Content Management (ECM). Google maps and

apps (mail, docs, sites, etc.); and recently Microsoft, that announces office web-

apps. Also, several business intelligence software solutions are exposed in a SaaS

model. SAP BusinessObjects, the world’s leading business intelligence software

company launched a hosted on-demand platform [170] to deliver analytic and

reporting functionality. PivotLink is one of the major actors of the on-demand

business intelligence [171]. PivotLink offers a SaaS business intelligence solution

covering data analysis, reporting and dashboards. MicroStrategy [172] is a leading

business intelligence applications provider. MicroStrategy introduces in [173] the

MicroStrategy platform architecture for hosted reporting, analysis and monitoring

applications.

LogiXML [174]provides a web-based ad-hoc reporting, analysis, dashboard and

data integration (i.e., ETL) applications. LogiXML solution is one of the few

solutions that offer a fully web-based data integration environment. Talend one of
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the most known open-source data integration solutions, starts recently the Talend

on-demand project [175]. Talend on-demand is a centralized and shared repository

hosted by Talend in order to consolidate Talend Open Studio metadata and project

information in online and to facilitate collaboration, object and code reuse. However,

it consists of a partial SaaS solution since the design of ETL package is made with

Talend Open Studio, the on-demand service covers only uploading, sharing and

collaboration functions. Finally, Pentaho Ad-Hoc Reporting [176] and OpenI [177]

are examples of open-source solutions for web-based business intelligence deployment

that allow build and publish reports, analyses, and dashboards. These solutions

present many advantages derived in general from the advantages of the SaaS

concept. But, not much information on the architecture of these on-demand

solutions is provided. In addition, few solutions offer integrated platforms that

cover all functional and technical aspects of the data warehousing architecture.

Indeed, these tools focus only on the problem of the business intelligence services

deployment and they provide a partial on-demand solution to the problem of

data warehousing design. Furthermore, none of these solutions offer an integrated

model-driven data warehouse development approach and a web-based environment

that supports this approach.

The goal of our work is to provide an integrated business intelligence-as-a-service

architecture covering the main data warehousing aspects (integration, analysis,

reporting, design, etc.). In addition, we give a description of the role of each

module in the architecture and recommendation for enterprise-class technologies

to implement it. The study of a web-based data warehouse components design and

derivation architecture using a model-driven approach (see Section 7.4) represents

the key contribution of this chapter.

7.3 Architecture for Business Intelligence-as-a-

Service

This section is divided into two parts: In Section 7.3.1 we propose a unified

and complete functional architecture for business intelligence-as-a-service; and

then an open-source based technical architecture for the corresponding functional

architecture is explained. In Section we focus on the model-driven data warehouse
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design component and we introduce the model-driven data warehouse-as-a-service

architecture.

7.3.1 Functional and Technical Architectures

The proposed business intelligence-as-a-service architecture is defined through

five main layers (figure 7.1): (i) the technical resources layer (data, applications

& deployment tools); (ii) the data warehouse design and management layer; (iii)

the infrastructure administration and configuration layer; (iv) the core business

intelligence services layer (meta-data, integration, analysis, reporting, and delivery

services); (v) and the end-users access tools layer (web portal, desktop, mobile).

The operating system and hardware layer is not discussed in this chapter. In fact,

it corresponds to the Platform-as-a-Service (PaaS) and the Infrastructure-as-a-

Service (IaaS) concepts of the cloud computing which are out of scope of this

work.
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Figure 7.1: Business Intelligence-as-a-service Functional Aspects.

The Technical Resources layer (data, applications & deployment tools) contains

the data warehousing components (database servers, ETL engine, analysis server,
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reporting engines, etc.) used to deploy and to execute the designed data warehousing

models. This layer corresponds also to data stored in the cloud, web data, and

accessible web services useful for the platform. The integration of these data and

the interoperability between all of these tools and APIs can be ensured using an

Enterprise Service Bus (ESB) like apache ServiceMix [178] or JBossESB [179]. A

detailed technical analysis is given in the next Section (technical architecture).

The Design and Management layer contains services to design data warehousing

models (ETL jobs, multidimensional models, reports, etc.) and services to manage

data warehouse development projects. It represents model-driven data warehouse

services part of a web-based environment to design and manage data warehousing

projects using our model-driven approach for data warehouse development presented

in [169]. This layer offers an on-demand data warehouse design in order to

ensure platform integrity (same technologies for all layers). It also simplifies the

deployment and the access to the development environment for developers whom

want to subscribe to this service. This reduces the installation time of development

infrastructure and its costs.

The Core Business Intelligence Services layer represents the basic business intel-

ligence applications used by business users. We identify five essential business

intelligence services: (i) The Meta-Data Service (MDS), which allows meta-data

and business information definition to facilitate information sharing and exchange

between all services. (ii) The Integration Service (IS), which offers an ad-hoc way

to define data integration jobs, jobs scheduling, etc. (iii) The Analysis Service

(AS), which allows definition of analysis data models (OLAP data cube), data cube

visualization and navigation. (iv) The Reporting Service (RS) can be defined using

existing reporting APIs like BIRT web viewer [180], or it can present same ad-hoc

reporting functionalities; the current version of the RS implementation supports

BIRT reporting and ad-hoc reporting. (v) The Information Delivery Service (IDS)

is an abstraction level to support many client interfaces and technologies (web

browser, mobile, office tools). It can be also presented as a web service for more

flexibility to access the platform.

The infrastructure administration and configuration layer offers a web-based tool

for administrators to manage user’s accounts, to customize services configuration

and to report same information on platform usage and performance. Finally, the

end-users access tools layer contains client applications used to access the platform
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and use its services. The web browser, web services, desktop/office tools, and

mobile applications are examples of client-side technologies to support.

The proposed technical architecture (figure 7.2) is based on Java Enterprise Edi-

tion (JEE) technologies using Spring framework2. Spring is a very popular frame-

work for enterprise Java applications development and integration. It allows easy

platform configuration and extension using several reusable modules (JavaConfig,

Security, Web, Integration, etc.). Spring framework and Spring development tools

are provided by the SpringSource company. Since 2009, SpringSource is a division

of VMware, a leader in virtualization and cloud solutions.
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Figure 7.2: The Proposed Technical Architecture.

At the data layer, we use PostgreSQL to store metadata. PostgreSQL is one of

the most mature and advanced open- source database management systems. For

the customer data (used for reporting, analysis, etc.) the platform supports many

databases such as Oracle, MSSQL, MySQL using configuration capabilities of

Spring. To facilitate access to customer data (in general is stored in a cloud-based

database), the integration of web data and the interoperability between remote

database management systems and local data warehousing tools we need an ESB.

For this purpose, we plan to use Spring Integration which provides a simple model

2http://www.springsource.org
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for building enterprise integration solutions via many supported ESB-features.

The Data Access layer allows a simplified way to access metadata and offers an

abstraction level for the services layers to manipulate much heterogeneous persistent

storage. The Object-Relational Mapping (ORM) tools, called also persistence APIs

such as Hibernate or iBatis, are in general used to support the implementation

of this layer. So, for persistence layer, we use the Java Persistence API (JPA)

to define the ORM using Java metadata annotations and Hibernate is used as

persistence provider for JPA.

The domain model layer contains domain objects that represent the business

concepts of the information system. The domain objects are used by all layers can

represent a large proportion of meta-data that are serialized into the data repository.

Current domain model implements the common warehouse metamodel and CWMX

(a CWM eXtension) metamodels. For the future, we plan to integrate other

metamodels and profiles as the ontology definition metamodel. The implementation

of these meta-models is based on the meta-object facility meta-metamodel. More

details about this layer (also called the framework layer) and the packages used

are provided in next section.

Spring Integration, Spring Security, Spring Web Services and Spring Context rep-

resent the main configuration layers of the platform. Spring Integration supports

the well-known Enterprise Integration Patterns and offers many ESB-features.

So, it simplifies integration of existing business intelligence tools, the access to

remote customer databases and interoperability through java messaging services.

Spring Security is a highly customizable, extensible authentication and authoriza-

tion framework for securing Spring-based applications. Spring Web Services is

used to expose business intelligence services on the web. Finally, Spring Con-

text offers automatic mechanisms to create objects and configuration (defines the

ApplicationContext) via dependency injection.

The business rules brick plays an important role in a service oriented infrastructure

and any business intelligence system (essentially performance management). Indeed,

a SaaS platform is shared by several customers that have different business processes,

the definition of a business rules engine is essential for the orchestration of services.

The Business Process Management (BPM) defines the process logic while the

Business Rules Management (BRM) implements the decision logic. Thus, we

recommend Drools [181] an open-source business rules management tools that
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can be easily integrated with Spring Context. For the presentation layer, we use

Java Server Faces (JSF) technology. Sun Mojarra, and Spring Faces are the JSF

libraries used to defines user interfaces. Finally, all services are configured with

spring context and run under Apache Tomcat web server, a standard container

for Java server technologies. An interesting survey of others open-source tools

for business intelligence (including databases, ETL, analysis, etc.) is presented

in [182].

Figure 7.3: Dashboard Example for Healthcare Case.

We are worked on a prototype of a platform integrating the concepts discussed

in this chapter. The project is named ODBIS (On-Demand Business Intelligence

Services) [127]. A first release covering the administration, metadata and reporting

services is available at [183]. The administration service provides a secure web-based

application to manage authorities (privileges), roles, users, and groups. It offers

also some search futures. The reporting services provides: (i) futures to manage

report-groups and reports; (ii) a BIRT reporting module that allows upload and

execute BIRT reports under the integrated BIRT Viewer; (iii) an ad-hoc reporting

module which offers an easy way to defines chart reports, data-table reports and

to build dashboards. The meta-data service provides futures to define data-sources

and data-sets. DataSource objects provide a set of information (e.g., url, user

and password) used to connect to database servers. DataSet objects are a SQL
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query abstraction used by charts, data-tables and dashboards. Figure 7.3 shows a

dashboard example using the ad-hoc reporting module for Healthcare case.

7.3.2 Towards Intelligent MDDW-as-a-Service

The model-driven data warehouse services module is part of the data warehouse

management and design layer of figure 7.1. It represents an implementation of

the proposed metamodeling architecture (mainly the data warehousing design

framework). The services set contains: (i) the services for the data warehousing

engineering process management based on the integration of 2TUP and the trans-

formation process of MDA; (ii) the services for the data warehousing models design

based on metamodeling architecture of MDA; and (iii) the services for models

deployment, exportation, and importation through meta-data (merged with the

meta-data service).

We introduce the architecture of a data warehouse development environment

that implements our unified method, in order to provide a complete support

for data warehouse engineering approaches and to contribute to improve current

data warehouse development tools. This data warehousing design environment

is called MDDWS for model-driven data warehouse services. MDDWS is a web-

based model-driven data warehouse development environment and it is developed

under the ODBIS platform [127]. The MDDWS application offers an innovative

architecture to deliver on-demand model-driven data warehouse design services that

reduce time and costs of data warehouse components implementation. The model-

driven data warehouse services stack (in figure 7.4) includes the data warehousing

project management service (methodology layer), the data warehousing design

service, and the data warehousing refinement and deployment services. The project

management service covers project steps definition and control, and project team

roles definition. We study the integration of existing web-based and open-source

project management tool like dotProject [184].

The data warehousing design service allows web-based diagramming features.

Indeed, interactive and rich web solutions (Adobe AIR, Microsoft Silverlight,

AJAX, etc.) are the key technologies to provide these features. Currently, we study

existing web-based diagramming tools: several products with different technologies

options (Ajax, Flex, and Silverlight) are provided by yWorks [185]. Gliffy [186] offers
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Figure 7.4: Model-Driven Data Warehouse Services Stack.

online modelling solution for different diagrams types (Flowchart, Network, UML,

Business Process, etc.). Gliffy is based on OpenLaszlo [187] an open source platform

for the development and delivery of rich Internet applications. MxGraph [188] is a

JavaScript library that uses built-in browser capabilities to provide an interactive

drawing and diagramming solution. MxGraph allows several modelling options:

Graph, Database, Org Chart, and Workflow. Finally, JS-Graph-IT [189] and

Jalava [190] are open-source JavaScript libraries to develop web-based diagram

editors.

7.4 Summary

This chapter has provided a study on the benefits of the software-as-a-service model

for the design of business intelligence architectures. First, we have defined current

data warehousing and business intelligence applications deployment issues; we dis-

cussed some of the most important related environments. Then, we have described

the proposed architecture to support common on-demand business intelligence

services (functional architecture); we introduce model-driven data warehouse-as-

a-service based on our approach to support model-driven data warehousing (that

uses MDA and 2TUP); and we have defined a flexible multi-layered technical
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architecture based on standard Java Enterprise with Spring and the most popular

open-source tools.

Concerning core business intelligence services, we work to improve current realized

services: administration, reporting and metadata. We will start soon the devel-

opment of the integration and analysis services, the development of model-driven

data warehouse services and security improvements. For the future, we plan to

study other dimensions of the cloud-computing in order to improve scalability

and configurability of data warehousing platforms. Therefore, we explore the

Platform-as-a-Service (PaaS) and the Infrastructure-as-a-Service (IaaS) concepts.

For example, we study the VMware vFabric Cloud Application Platform [191],

a solution for building, running, and managing Spring applications in the cloud.

We will explore also an advanced distributed data management platform like

GemFire [192].
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Future Research Directions

Regarding model-driven data warehouse automation, we will experiments the case

when a business goals model is considered during transformations in our future work.

For example, the derivation of the MDPIM ( Multidimensional Platform Indepen-

dent Model) from the pair (DSPIM, MDCIM), where MDCIM (Multidimensional

Computation Independent Model) defines the organisation requirements/goals. We

plan also to extend the approach to new application domains that provide a large

dependency-graph (e.g., the Extraction, Transformation and Loading (ETL) pro-

cess in the data warehousing architecture). Then, we plan for an extension of the

proposed model-driven architecture and the conceptual transformation learning

framework to knowledge engineering seems also an interesting and a challenging

future work. For example, a recent work in [193] proposes an MDA approach to

knowledge engineering that addresses the problem the mapping between Com-

monKADS knowledge models and Production Rule Representation (PRR). Below

we discuss others important directions in the fields of Data Warehouse Performance

Management and Semantic Model-Driven Policy Management that we consider

interesting.

The book entitled DW 2.0: The Architecture for the Next Generation of Data

Warehousing [194] describes an architecture of the second-generation data ware-

houses. It presents also the differences between DW 2.0 (introduced as the new

generation) and the first generation data warehouses. Authors start by an overall

architecture of DW 2.0 and give its key characteristics. Then, they present the DW

2.0 components and the role of each component in the architecture. The proposed

111
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architecture focuses on three key features: (i) the data warehouse repository struc-

ture (organization on four sectors: interactive, integrated, near line, and archival);

(ii) unstructured-data integration and organization; and (iii) unified meta-data

management. We confirm that unstructured data and web-data integration consti-

tutes a future challenge. Thus, we support semantic-based approaches [195] for

web-data integration and data warehouses contextualization with documents [196].

This kind of approaches will probably represent the essential part of what we call

the ”DW 3.0 architecture”. The DW 3.0 concept (or content data warehouse) is a

unified architecture that includes the data warehouse, the document warehouse

and the web warehouse. According to authors [194], DW 2.0 represents the way

corporate data needs to be structured in support of web access and Service Oriented

Architecture (SOA). For this purpose, an effort is provided by [197]. So, we believe

that business intelligence-as-a-service platforms need a more efficient, personal-

ized and intelligent web-services discovery and orchestration engines. The perfect

marriage of SOA/SaaS infrastructures is a key issue to design future on-demand

business intelligence services.

In [198], the author studies the evolving state of data warehousing platforms and

gives options available for next generation data warehousing. The options include

concepts presented in this chapter: SaaS and open-source business intelligence tools.

It presents also many important features such as: real-time data warehousing, data

management practices and advanced analytics. In [199], author discusses other

remaining challenges to extend traditional data warehouse architecture. The focus

is mainly given for the data warehouse full-scale problem (world warehouse) and

the privacy in data warehousing systems. The metadata management for business

intelligence-as-a-service infrastructures and cloud-based databases will be also an

interesting research direction. Indeed, current standards and models should be

extended in this new architectural context. Finally, we believe that our proposal for

model-driven data warehouse-as-a-service is a key characteristic to provide future

data warehouse design in the cloud.

The purpose of the Common Warehouse Metamodel (CWM) specification is to

define a common interchange specification for metadata in a data warehouse. This

definition provides a common language and metamodel definitions for the objects in

the data warehouse. CWM describes a format to interchange metadata, but lacks

the knowledge to describe any particular type of interchange. The need to define
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the context of a CWM interchange was discovered when the CWM co-submitting

companies produced the CWM interoperability showcase. In order to make an

effective demonstration of CWM technology, the participants needed to agree upon

the set of metadata to be interchanged. In this context, the object management

group propose the CWM Metadata Interchange Patterns (CWM MIP) specification

in order to address the limitations of the CWM. The purpose of CWM MIP

specification is to add a semantic context to the interchange of metadata in terms

of recognized sets of objects or object patterns. We will introduce the term Unit

of Interchange (UOI) to define a valid, recognizable CWM interchange. From this

information, a user of CWM, working in conjunction with CWM MIP, should be

able to produce truly interoperable tools. CWM MIP augments the current CWM

metamodel definitions by adding a new metamodel package. This new metamodel

will provide the structural framework to identify both a UOI and an associated

model of a pattern, and providing the necessary object definitions to describe both.

For future work, we will study in detail the CWM MIP in order to define new

features that can improve the proposed architecture.

The Ontology Definition Metamodel (ODM) has been used as a basis for ontology

development as well as for generation of OWL (Web Ontology Language) repre-

sentations. The specification defines a family of independent metamodels, related

profiles, and mappings among the metamodels corresponding to several interna-

tional standards for ontology and Topic Maps definition, as well as capabilities

supporting conventional modelling paradigms for capturing conceptual knowledge,

such as entity-relationship modelling. The ontology definition metamodel is used for

ontology development and analysis on research in context-aware systems [200–202].

As part of the object management group metamodeling architecture (ODM is a

MOF-compliant metamodel), the ODM enables using model-driven architecture

standards in ontological engineering. The ODM is applicable to knowledge rep-

resentation, conceptual modelling, formal taxonomy development and ontology

definition, and enables the use of a variety of enterprise models as starting points

for ontology development through mappings to UML and MOF.

The software engineering community is beginning to realize that security is an

important requirement for software systems, and that it should be considered

from the first stages of its development. Unfortunately, current approaches which

take security into consideration from the early stages of software development do
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not take advantage of model-driven development. Security should definitely be

integrated as a further element of the high-level software system models under-

going transformation until the final code generation [203]. Thus, model-driven

development for secure information systems, model-driven security and dynamic

refinement of security policy are a new promising research direction. Another

important aspect related to this, is semantics. In fact, dynamic refinement of

security requires applying innovative semantic reasoning techniques to security

metrics and contextual information. We consider this as an interesting problem for

model- driven approach and its application. Also, our participation in Predykot

European project1 was an opportunity to identify new areas of application of our

work and to discuss innovative ideas around several topics.

Predykot (Policies REfined DYnamically and Kept On Track) will provide an

innovative, modular and consistent eco- system of software modules to dynamically

refine a security policy and to ensure that it remains efficient whatever changes

occur to it: administrative, contextual etc. It intends to shift the focus of security

policy management from basic operational improvements to critical intelligence

for business process improvement. Intelligent mechanisms are indeed necessary to

ensure that a policy remains efficient in time, to take contextual information into

consideration to dynamically refine the policy, with the objectives of governance,

risk management and compliance. Predykot is targeting the markets where security

is crucial, such as cloud computing, large and mission- critical systems, identity &

access management, professional mobile radio, mobile near field communication

equipments and services.

We seek to answer the question of how to provide intelligent methods and techniques

to dynamically refine security policy using the contextual information? It addresses

different new issues such as: advanced semantic reasoning, recent security standards

integration and deployment of the approach in several application domains. The

project covers also the extension and the improvement of several existing approaches

such as: related-policies management, context-aware and smart nodes, and the

improvement of policies refinement techniques. Modularity, adaptability and

consistency will be the main features of the proposed architectures, methods

and standards. Thus, the dynamic policy refinement life-cycle proposed in this

document aims to ensure these important aspects. This proposal addresses the

1http://www.itea2- predykot.org/
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use of the model-driven development for security policies derivation and standards

recommendation for policies definition and representation. The general research

area related to this proposal is called model-driven security. The idea is derived

from the research challenges discussed in [203, 204], where authors briefly explore

some of the important related works [205–210] and standards [211, 212] to this

context. So, an adapted architecture using a model-driven approach and that

provide our vision of the problem is described.

Regarding the problem description, the ”Semantics and Reasoning” component will

represent the core workflow element of the proposed architecture. This component is

responsible of semantic policy adaptation (or reactions generation) based on policy

changes and users activity. The project description also implies that the overall

workflow contains a human approval step. Then, when we talk about automatic

derivation (or generation), the application of the model-driven architecture approach

is directly possible. In the case of the proposed framework, the terms are around

model-driven security or model-driven policy. The aim of our proposal is to take

advantages of the semantic-driven approaches and the model-driven approaches.

So, considering the ”Semantics & Reasoning” component definition and the model-

driven engineering definition, several questions arise: (i) how allow interoperability

between the reasoning process (reasoning mechanisms) and the MDA process

(policies generation mechanisms)? (ii) Which representation languages are available

to define policy in order to ensure the integrity of the entire process? And (iii) in

more general, how provide a unified semantic model-driven and reasoning approach?

To address this problem, we propose the use of several industry standards covering

the semantics, security, and the MDA aspects. In addition, based on our experience

on MDA-compliant architectures, a common approach showing the use of these

standards is defined.

The ontology is the central concept of any semantic-driven development. The

ontology definition metamodel specification [212] is an object management group

standard (MDA-compliant and extensible metamodel) that allows model-driven

ontology engineering. It provides standard profiles for ontology development in

UML and enables consistency checking, reasoning, and validation of models in

general. The ontology definition metamodel include five main packages: At the

core are two metamodels that represent formal logic languages: DL (Description

Logics) which, although it is non-normative, is included as informative for those
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unfamiliar with description logics and CL (Common Logic), a declarative first-order

predicate language. There are three metamodels that represent more structural or

descriptive representations that are somewhat less expressive in nature than CL

and some DLs. These include metamodels of the abstract syntax for RDFS, the

Ontology Web Language (OWL) and Topic Maps (TM). Thus, the ODM standard

is highly recommended in an MDA-based process because it is conform to MOF

metamodeling architecture. In this case, is important to have a generic ontologies

representation in order to: (i) facilitate the transformation of semantic models

using the MDA-enabled frameworks; and (ii) ensure interoperability between the

different components/tools (including the reasoning engine and the transformation

engine).

Security policy definition is very important in organization because it should cover

many aspects. Several security specifications are proposed. However, the object

management group security specifications [211] catalog remains the most compre-

hensive and extensible. The OMG catalog mainly contains: (i) the Authorization

Token Layer Acquisition Service (ATLAS) specification which describes the service

needed to acquire authorization tokens to access a target system using the CSIv2

protocol; (ii) The Common Secure Interoperability Specification, Version 2 (CSIv2)

which defines the Security Attribute Service that enables interoperable authentica-

tion, delegation, and privileges; (iii) the CORBA Security Service which provides a

security architecture that can support a variety of security policies to meet different

needs (identification and authentication of principals, authorization and infrastruc-

ture based access control, security auditing, etc.); (iv) the Public Key Interface

(PKI) specification which provides interfaces and operations in CORBA IDL to

support the functionality of a PKI (issuance, management, and revocation of digital

certificates); and (v) the Resource Access Decision Facility (RAD) specification

which provides a uniform way for application systems to enforce resource-oriented

access control policies. The integration of these standards in the final architecture

allows more quality in policy representation and a more unified, interoperable

model-driven security approach with the model-driven architecture. Note also that

the proposed approach is open for integration of others security specifications and

profiles.

In the proposed approach we focus on the ”Semantics & Reasoning” module. Thus,

we discuss some details of the ”Semantics & Reasoning” flow based on our main
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objectives (i.e., adaptability, consistency) and the model-driven support that we

add. Figure 8.1 illustrate the workflow that we explain below.

Semantic Reasoning   

Policy Adaptation 

 Consistency Verification 

Human Approval 
Policy 

Semantics 

Ontologies/ Context Ontologies/Rules/Context 

Model Transformation 

Conform to Security Conform to Security 

Profiles 

Figure 8.1: Semantic Model-Driven Policy Adaptation.

Semantic Reasoning: the policies adaptation flow starts by a semantic analysis

step. This step considers at the input several semantic conceptions: context,

user’s activities/profiles, auditing, etc. This information is represented in general

by ontologies and/or rules. Then, as discussed above, the ontologies models are

conform to the ontology definition metamodel metamodel.

Policy Adaptation: this step corresponds to the model-driven architecture trans-

formation process. Based on the results of semantic reasoning step, it selects the

appropriate transformation from transformations repository and apply it on current

policy model. Thus, information given by the reasoning engine is automatically

projected on policy by the transformation engine. In a model-driven context this

supposes that policy models are conforming to the specifications cited above (AT-

LAS, RAD, etc.) or other profiles already recognized by the transformation. This

allows for more interoperability between reasoning and transformation engines.

Consistency Verification: it is a machine approval foregoing the human approval.

During this step the system checks if the main security constraints are violated or

not. If a constraint is violated, the transformation process must be re-executed
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with new parameters (information about the violation is also audited), else the

system waits for human approval.

Human Approval: it can be a very important step in the approval workflow

mechanisms of some organizations. Indeed, in the detailed requirements we stress

this sentence: automatic reactions on a policy might not be accepted by security

officers, or even more simply might not be suitable in real-life.

Finally, in this proposal we discuss briefly the application of the model-driven

engineering for policy adaptation in the respect of the problem description. So,

based on our contributions to improve model-driven methodologies, an adapted

model-driven security approach is defined. Then, we provide also recommendations

for specification (perspectives to integrate new policy languages) to define policy.

Future work will provide a detailed analysis, more research and improvements

around the proposed approach.
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Conclusion

This thesis studies a complex problem at the crossroad of several research fields.

We study the model-driven data warehouse engineering and its automation using

machine learning techniques. The automation of information systems engineering

and, in particular, decision support systems remains a difficult and a challenging

task. Indeed, the model-driven warehousing requires a transformation phase of

the models that necessitate a high level of expertise and a large time span to

develop. The main goal of the proposed framework is to automatically derive the

transformation rules to be applied in the model-driven data warehouse process.

This process of transformation concerns for instance the creation of an OLAP cube

in business intelligence from an UML diagram of the considered application. The

proposed solution allows the simplicity of decision support systems design and

the reduction of time and costs of development. First, we use the model-driven

engineering paradigm for data warehouse components development (as first level of

automation). Then, we use inductive relational learning techniques for automatic

model transformation generation (as second level for automation). Finally, we

propose a deployment solution for business intelligence-as-a-service architecture

based on promising architectural model and open technologies in order to reduce

time and costs of the infrastructure installation.

Through the modelling step, we contribute in isolating steps where it is necessary

to induce transformation rules; in identifying the metamodels used to define the

input/output models of these transformations and in designing a conceptual frame-

work for transformations learning that use adequate representation language. We
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have focused on effective modelling of the model-driven data warehouse architecture

in order to simplify machine learning framework integration. This architecture

allows to effectively deploying the application, with respect to standards and data

warehousing requirements in organisations. This modelling step, considered as

modelling bias (or architecture bias) is important to manage these risks and make

efficient the task of transformations learning. In this step, the model-driven data

warehouse framework is extended by Inductive Logic Programming (ILP) capabili-

ties in order to support the expert in the transformation process. The ILP offers a

powerful representation language and the given results (i.e., transformation rules)

are easy to understand. We have focused on providing an optimized representation

of the language bias (or declarative bias) based on unified modelling language and

the common warehouse metamodel standards. This declarative bias addresses the

reduction of CWM-UML problem into ILP and aims to restrict the representation

to clauses that define best the transformation rules.

Through the learning approach step, we contribute to the definition of the optimal

way to learn transformation rules in model-driven frameworks. Indeed, dependencies

exist between transformations within the model-driven data warehouse architecture.

We investigate a new machine learning methodology stemming from the application

needs: Learning Dependent-Concepts (DCL). We used in our experiments the

well known Aleph ILP system, because of its ability to handle rich background

knowledge, made of both facts and rules. Aleph follows a top-down generate-and-

test approach. It takes as input a set of examples, represented as a set of Prolog

facts and background knowledge as a Datalog program. It also enables the user

to express additional constraints C on the admissible hypotheses. Aleph tries to

find a hypothesis h ∈ Lh, such that h satisfying the constraints C and which is

complete and partially correct. We used Aleph default mode: in this mode, Aleph

uses a simple greedy set cover procedure and construct a theory H step by step,

one clause at a time. To add a clause to the current target concept, Aleph selects

an uncovered example as a seed, builds a most specific clause as the lowest bound

of its search space and then performs an admissible search over the space of clauses

that subsume this lower bound according the user clause length bound. In the

next section, we show the reduction of the source-model, the target-model and the

mapping between them into an ILP problem. The DCL method is implemented

using Aleph and it is applied to our transformation learning problem. We show
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that the DCL approach gives significantly better results and performances across

several experimental settings.

Through the implementation step, we contribute in improving and optimising the

deployment of data warehousing components and services. We have studied the

functional aspects to deliver business intelligence services covering the model-driven

data warehousing services; and the technical aspects covering the recommended

open industry standards and open-source tools. A common functional and technical

business intelligence-as-a-service architecture is then described. This proposal

extends the data warehousing process automation because such deployment archi-

tecture (i.e., web-based services) allows for speed and agile business intelligence

delivery.
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This work is funded by the ANRT (National Association for Research and Technol-

ogy, http://www.anrt.asso.fr) 1, Grant CIFRE–1341/2008 and Intelligence Power

Company. The CIFRE is for Industrial Conventions for Training through Research.

The thesis work is also prepared in the LIPN (Computer Science Lab of Paris-Nord

University) and Intelligence Power Company. The LIPN (http://www-lipn.univ-

paris13.fr) is associated to the CNRS (UMR 7030). The LIPN researches deal

with the reasoning automation around strong axes of Combinatorics, Combina-

torial Optimization, Fundamental Computer Science and Artificial Intelligence.

These works are especially based on competences in Algorithmics, Logic, Nat-

ural Language, and Machine Learning. The Lab is structured into five teams

(A3, AOC, CALIN, LCR, and RCLN) whose research themes show numerous

meeting points. This work is supervised by Céline Rouveirol and Aomar Osmani,

members of Machine Learning and Applications (A3) team. Intelligence Power

(http://www.intelligencepower.com) is created with a vision to provide innovative

business intelligence solutions. It mainly focuses on research and development

of intelligent decision-making platforms. Thus, decision-support systems devel-

opment and the use of new approaches and applications (e.g., machine learning,

model-driven engineering) is the key activity of the company. This thesis is a very

important step to achieve R&D goals of Intelligence Power. The results from this

work will represent the key features of future enterprise decision-making tools and

will form part of Intelligence Power commercial offer.

1The French ANRT (Association Nationale de la Recherche et de la Technologie.)
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The advent of the model-driven development (also known as model-driven engi-

neering) paradigm in 2003 [24], was a significant change in the way of developing

software and information systems. It represents a promising approach to support

software development practices [17, 52, 53]. The approach is mainly based on

models, meta-models, and model transformation designs. Indeed, the model-driven

strategy encourages the use of models as central element of development. The mod-

els are conformed to metamodels and the transformations rules are applied to refine

them. In the case of database systems, this approach includes but not limited to

automatic generation of the logical model from the conceptual model; and the phys-

ical model from the logical by applying transformations. Then, the model-driven

data warehouse represents approaches [27, 28, 152] that align the development of

the data warehouse with a general model-driven engineering paradigm.

”Nothing is lost, nothing is created, all is transformed.” The transformations are

essential for each model-driven process. And, a simple model transformation

consists in defining the mapping between elements of a source model (i.e., the input

parameter of the transformation) and a target model (i.e., the resulted output of

the transformation execution). In this context, the Query-View-Transformation

(QVT) standard plays a central role, since it allows for the specification of model

transformation rules. However, transformations design requires highly skilled

experts, which results in additional cost and time for model-driven warehousing

development. We propose, in the framework of model-driven data warehouse, an

approach that transforms a knowledge base (of previous projects experiences) into

model transformation rules. The obtained rules are applied to transform schemas

of future data warehousing projects (e.g., conceptual-to-logical, logical-to-physical).

In the case of Extraction, Transformation, and Loading (ETL) model, the deployed

application transforms operational data into multidimensional data.
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Study of Standards and Practices

This appendix gives an overview on the Unified Modelling Language (UML), the

Common Warehouse Metamodel (CWM) and the Query-View-Transformation

(QVT) standards that are used to define the proposed data warehousing design

framework. It presents also the Two Track Unified Process (2TUP) standard

that is used to define the proposed data warehouse engineering process. The

unified modelling language, the common warehouse metamodel and the query-view-

transformation specifications are maintained by the Object Management Group, Inc.

(OMG). In the reference metamodeling architecture, the three standards appear in

the M2 level (metamodels) and are conform to the Meta-Object Facility (MOF)

meta-metamodel. Figure B.1 gives examples of instances of these metamodels and

details about each metamodel are provided in the following paragraphs.

The object management group is an international organization supported several

members, including information system vendors, software developers and users.

Founded in 1989, the OMG promotes the theory and practice of object-oriented

technology in software development [213]. OMG’s objectives are to foster the

growth of object technology and influence its direction by establishing the Object

Management Architecture (OMA) [214]. The OMA provides the conceptual infras-

tructure upon which all OMG specifications are based. The meta-object facility is

an OMG metadata interface standard that can be used to define and manipulate

a set of interoperable metamodels and their instances (models). The MOF also

defines a simple meta-metamodel (based on the unified modelling language with
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Specification Instances:
Visa 4012-8888-8888-1881

Shopping Carts System:
CreditCard,  cardNumber, etc.

UML Concepts:
Class, Property, Operation

MOF Concepts: 
Element, Factory, Class, etc.

instance-of

instance-of

instance-of

Transformation Instances:
InternetOrder  SalesFact

UML-To-CWM Mapping:
ClassToCube, PropertyToMeasure

QVT Concepts:
Transformation, Rule, Domain

MOF Concepts: 
Element, Factory, Class, etc.

instance-of

instance-of

instance-of

Data Instances:
$ 3, 522.00

Internet Sales DataMart:
SalesFact,  amount, etc.

CWM Concepts:
Cube, Measure, Dimension

MOF Concepts: 
Element, Factory, Class, etc.

instance-of

instance-of

instance-of

Figure B.1: Instances Examples of UML, QVT and CWM Metamodels.

sufficient semantics to describe metamodels in various domains starting with the

domain of object analysis and design.

The unified modelling language is a general-purpose modelling language for specify-

ing, constructing, and documenting the artefacts of systems. The UML specification

is defined by using a metamodeling approach that adapts formal specification tech-

niques. The InfrastructureLibrary for the UML metamodel contains the packages

Core and Profiles. The Core package (i.e., UML CORE) is the central reusable

part of InfrastructureLibrary, and is further subdivided as shown in the figure

below. The UML CORE package is subdivided into a number of interrelated

sub-packages: PrimitiveTypes, Abstractions, Basic, and Constructs. The figure

B.2 shows relationships between UML CORE sub-packages. We refer the reader to

Appendix C, for details concerning UML CORE.

The package PrimitiveTypes is a simple package that contains a number of pre-

defined types that are commonly used when metamodeling, and as such they are

used both in the infrastructure library itself, but also in metamodels like MOF

and UML. The package Abstractions contains a number of fine-grained packages

with only a few meta-classes each, most of which are abstract. The purpose of

this package is to provide a highly reusable set of meta-classes to be specialized

when defining new metamodels. The package Constructs also contains a number of

fine-grained packages, and brings together many of the aspects of the Abstractions.
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PrimitiveTypes

Abstractions Basic

Constructs

<<import>><<import>>

<<import>>

Figure B.2: The Main Sub-Packages of UML CORE.

The meta-classes in Constructs tend to be concrete rather than abstract, and are

geared towards an object-oriented modelling paradigm. Looking at metamodels

such as MOF and UML, they typically import the Constructs package since the

contents of the other packages of Core are then automatically included. The

package Basic contains a subset of Constructs that is used primarily for XMI

(XML Metadata Interchange) purposes. The Profiles package of UML contains

the mechanisms used to create profiles of specific metamodels, and in particular

of UML. This extension mechanism subsets the capabilities offered by the more

general MOF extension mechanism.

The main purpose of common warehouse metamodel is to enable easy interchange

of warehousing and business intelligence metadata between warehouse tools, ware-

house platforms and warehouse metadata repositories in distributed heterogeneous

environments. Hence, the CWM specification [26] addresses the metadata inter-

change requirement of the object management group repository architecture specific

to the data warehousing domain. CWM uses MOF as its meta-metamodel. CWM

uses UML as its graphical notation, and defines a base metamodel; that is, the

CWM Object Model that is consistent with the UML CORE metamodel [215].

The CWM supports a model-driven approach to metadata interchange, in which

object models representing tool- specific metadata are constructed according to

the syntactic and semantic specifications of a common metamodel. The common

warehouse metamodel is structured as a collection of related metamodels (or sub

-metamodels), each metamodel occupying its own package, and with a minimal



Appendix B. Study of Standards and Practices 127

number of inter-package dependencies. The CWM is also an extension of the unified

modelling language for data warehousing and business intelligence. Thus, all CWM

packages are dependent upon the core packages of the UML, which provides a

syntactic foundation for CWM. The CWM metamodels, and any models based on

them, are defined in UML. The CWM is also a domain-specific extension of the

OMG metamodeling architecture [24], and as such, implicitly supports the MOF,

UML, and XMI standards. Although CWM has certain compatibilities with various

other standards (as outlined in subsequent sections), these compatibilities should

be regarded as touch points for mapping or integration; they do not represent

dependencies of any kind. CWM is not dependent upon any standards outside of

those of the metamodeling architecture.

The query-view-transformation standard plays a central role in the the model-driven

development, since it allows for the specification of model transformation rules.

Related work [27, 28] have tried in 2008 to adapt the model-driven approach for

the development of data warehouses using the Model- Driven Architecture - MDA

(a standard implementation of the model-driven engineering) and the QVT. For

example, the approach presented in [28] describes derivation of OnLine Analytical

Processing (OLAP) schemas from Entity-Relationship (ER) schemas. The source

and target models are respectively conform to ER and OLAP metamodels from the

common warehouse metamodel. Authors describe how an ER schema is mapped

to an OLAP schema and provide, also, a set of query-view-transformation rules

(e.g., EntityToCube, AttributeToMeasure, RelationShipToDimension, etc.) to

ensure this. Model transformations are a key technique for automatic management

of modelling artefacts. The query-view-transformation represents a specification

for model transformations still under development by the object management

group. The QVT specification has a hybrid declarative/imperative nature, with

the declarative part being split into a two-level architecture (see figure B.3).

The declarative parts of this specification are structured into two-layer architecture.

The layers are:

• A user-friendly Relations metamodel and language that supports complex

object pattern matching and object template creation. Traces between model

elements involved in a transformation are created implicitly.
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Operational
Mappings

Relations

Core

Black
Box

RelationsToCore
Transformation

imperative imperativedeclarative

Figure B.3: Relationships Between QVT Metamodels.

• A Core metamodel and language defined using minimal extensions to EMOF

(Essential MOF) and OCL (Object Constraint Language). All trace classes

are explicitly defined as MOF models, and trace instance creation and deletion

is defined in the same way as the creation and deletion of any other object.

In addition to the declarative Relations and Core languages that embody the

same semantics at two different levels of abstraction, there are two mechanisms

for invoking imperative implementations of transformations from Relations or

Core: one standard language, Operational Mappings, as well as non- standard

Black-box MOF Operation implementations. Each relation defines a class that will

be instantiated to trace between model elements being transformed, and it has a

one-to-one mapping to an Operation signature that the Operational Mapping or

Black-box implements.

The two track unified process is a software development process that implements

the Unified Process (UP) and uses UML as a modelling language [216]. The 2TUP

process (also called Y shaped process or Y lifecycle) answers to the constraints of

change of the information systems that are subjected to two types of constraints:

(1) the functional constraints and (2) the technical constraints. Thus, 2TUP is

modelled by two branches (or tracks): The left branch makes an inventory of the

functional needs and analyzes it, which produces a model focused on the needs of

business users. The right branch contains a study of the technical needs and defines

the technical architecture of the solution. The two branches are then merged into

a medium branch which supports preliminary design, detailed design, coding, tests

and validation steps.

The choice of 2TUP comes owing to the fact that the evolution of the 2TUP

process is similar to the transformation process of the model-driven architecture. It
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will simplify the mapping between the MDA concepts and 2TUP disciplines, and

the integration of the MDA transformation process in our final process. In [217],

authors present a software development process for MDA called M2T. The M2T

process provides an implementation of the MDA approach while relying on a Y

shaped development cycle. The left branch of the Y cycle corresponds to the PIM

(Platform Independent Model), while the right one corresponds to what we call

an explicit PDM representing the target platform. Authors propose the Design

Decision Metamodel (DDM) to merge the PIM and the PDMs (Platform Dependent

Models), in order to produce the PSM (Platform Specific Model). However, the

DDM is not a standard and MOF-compliant language for models transformation

such as the Query-View-Transformation.
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UML CORE and CWM OLAP

The UML CORE package [25] is subdivided into a number of interrelated sub-

packages: PrimitiveTypes, Abstractions, Basic, and Constructs. Figure C.1 shows

the main elements of each sub- package and relations between them. Each sub-

package is organised into one or more diagrams.

Class

isAbstract: Boolean

Property

isReadOnly :  Boolean
default : String
isComposite : Boolean

Operation
Parameter

Type

+ class

+ ownedAttribute0..1

*

+ class

+ ownedOperation0..1

*

+ operation

+ ownedParameter0..1

*

+ raisedException

* *

NamedElement

name : String

TypedElement

0..1

*

+
 t

yp
e

Type

+ opposite

0..1

0..1

+ superClass

*

*

Element

Relationship

Association

Property

lower : Integer
upper: UnlimitedNatural + memberEnd

2..*

0..1

+ navigableOwnedEnd

0..1

*

Figure C.1: Part of the UML CORE Metamodel.

For example, the meta-classes in the Basic sub-package are specified using four

diagrams: Types, Classes, DataTypes, and Packages diagrams. The Types diagram

defines abstract meta-classes that deal with naming and typing of elements. Thus,

we find Element, NamedElement, Type and TypedElement meta-classes. The
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Classes diagram defines the constructs for class-based modelling. So, as example

we find Class, Operation, Parameter and Property meta-classes. However, Re-

lationship and Association meta-classes are specified by the Classes diagram of

the Constructs package. For instance, a Class includes a name (Class inherits

indirectly from NamedElement). A Class also includes attributes, represented by

the ownedAttribute role and operations, represented by the ownedOperation role.

The primary objective of the CWM OLAP package [26] is to define a metamodel

of essential and common Online Analytical Processing (OLAP) concepts to most

data warehousing systems. Figure C.2 gives the major classes and associations of

CWM OLAP package.

Cube

isVirtual : Boolean

Dimension

isTime : Boolean
isMeasure : Boolean

CubeDimensionAssociation

/ dimension : Dimension
/ cube : Cube
/ calcHierarchy : Hierarchy

HierarchyCubeRegion

isReadOnly : Boolean
isFullyRealized : Boolean

1 *
* 1

0..1

*
calcHierarchy

0..1

0..1

displayDefault

1

*

1

*

LevelBasedHierarchy ValueBasedHierarchy

Level

HierarchyLevelAssociation
1 *

{ordered}

*

1

1

*

MemberSelectionGroup MemberSelection
*

1

1

** 1..*

/memberSelection

Class

Attribute

Measure

*

1

Figure C.2: Part of the CWM OLAP Metamodel.

For instance, a Cube is a collection of analytic values, that is, measures that

share the same dimensionality. This dimensionality is specified by a set of unique

dimensions (Dimension meta-class). The CubeDimensionAssociation meta- class

relates a Cube to its defining dimensions. A Dimension has zero or more hierarchies.

A Hierarchy is an organizational structure that describes a traversal pattern through

a Dimension, based on parent/child relationships between members of a Dimension.

The OLAP metamodel specifies two subclasses of Hierarchy: LevelBasedHierarchy

class and ValueBasedHierarchy class. For example, the LevelBasedHierarchy



Appendix C. UML CORE and CWM OLAP 132

describes hierarchical relationships between specific levels of a Dimension (e.g.,

Day, Month, Quarter and Year levels).
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Aleph System

The A Learning Engine for Proposing Hypotheses (Aleph) system was developed

to be a prototype to explore ideas in inductive logic programming and was writ-

ten Prolog. Since then, the implementation has evolved to emulate some of the

functionality of several other ILP systems. The Aleph has a powerful represen-

tation language that allows representing complex expressions and simultaneously

incorporating new background knowledge easily. Aleph also let choose the order of

generation of the rules, change the evaluation function and the search order. Allied

to all this characteristics the Aleph system is open source making it a powerful

resource to all ILP researchers. The basic Aleph algorithm follows a very simple

procedure that can be described in 4 steps [97]: ( 1) Select an initial example to

be generalized. When there are not more examples, stop; (2) Construct of the

more specific clause based on the restrictions language and the example selected

in the last procedure. To this clause, we call bottom clause. To this step we call

saturation; (3) Search for a more general clause than the bottom clause. These

searches use the algorithm Branch-and-Bound. To this step, we call reduction; (4)

Add the best clause to the theory, remove all redundant examples and return to

step 1.

The Aleph has other important characteristics like:

• Instead of selecting one initial example to be generalized, it is possible to

choose more than one. If we choose more than one initial example, it is
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created a bottom clause to each one of them. After the reduction step, the

best of all reductions it is added to the theory;

• Let us construct the more specific clause, defining the place where the bottom

clause it is constructed;

• The search clauses can be changed, using other strategies instead of using

the branch-and-bound algorithm;

• It is possible to remove redundant examples to give a better perspective of

the result clauses.

Aleph uses three files to construct a theory. In order to work properly, these

three files should all have the same name. These are: (1) a file.b that contains

the background knowledge (intentional and extensional), the search, language

restrictions and type restrictions and the system parameters. All this content is in

the form of Prolog clauses. This file can also contain any directives understood by

the Prolog compiler being used; (2) the file.f which contains the positive examples

(only ground facts) to be learned with Aleph; and (3) a file.n that contains the

negative examples (only facts without variables). This file may not exist (Aleph

can learn only by positive examples). In order to use Aleph, a Prolog compiler is

needed. To compile Aleph it can be used one of these two platforms: Yap (Yet

Another Prolog) or SWI-Prolog. Both of these compilers are open-source and

available for download1.

The mode declarations stored in the file.b describe the relations (predicates) between

the objects and the type of data. Those declarations allow informing Aleph if

the relation can be used in the head (modeh declarations) or in the body (modeb

declarations) of the generated rules. The declaration modes also describe the kind

of arguments for each predicate, and have the follow format: mode(RecallNumber,

PredicateMode). The Recall number (also called recall), define the limit number of

alternative instances for one predicate (used for non determinate predicates). A

predicate instance it is a substitution of types for each variable or constant. The

recall can be any positive number greater or equal to 1 or ’*’. If it is known the

limit of possible solutions for a particular instance, it is possible to define them

1Yap:http://www.dcc.fc.up.pt/~vsc/Yap/andSWI-Prolog:http://www.swi-prolog.
org/

Yap: http://www.dcc.fc.up.pt/~vsc/Yap/ and SWI-Prolog: http://www.swi-prolog.org /
Yap: http://www.dcc.fc.up.pt/~vsc/Yap/ and SWI-Prolog: http://www.swi-prolog.org /
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by the recall. For instance, if we want to declare the predicate parent of(P,D)

the recall should be 2, because the daughter D, has a maximum of two parents

P. In the same way, if the predicate was grandparents(GP,GD) the recall should

be 4, because the granddaughter GD has a maximum of four grandparents GP.

The recall ’*’ is used when there are no limits for the number of solutions to one

instance.

The Modes indicates the predicate format, and can be described as: predi-

cate(ModeType1, ModeType2, ... , ModeTypen). The ModeTypes can be organized

in one of two ways: simple or structured. The simple modes can be one of: ’+’,

specifying that when a predicate p appears in a clause, the corresponding argument

it is an input variable; ’-’, specifying that the corresponding argument is an output

variable; and ’#’, specifying that the corresponding argument is a constant. A

structured ModeTypes is of the form f(...) where f is a function symbol, each

argument of which is either a simple or structured ModeType. An example of

this kind of ModeType is: :- mode( 1,mem(+ number,[+number—+list])). So as

example, for the learning relation uncle of(U,N) with the background knowledge

parent of(P,D) and sister of(S1,S2), the mode declarations could be:

:- modeh(1,uncle_of(+person,+person)).

:- modeb(*,parent_of(-person,+person)).

:- modeb(*,parent_of(+person,-person)).

:- modeb(*,sister_of(+person,-person)).

The declaration modeh indicates the predicate that will compose the head of

the rules. For this case, modeh inform us that the head of the rules should be

uncle of(U,N) where U and N are from the type person. The symbol ’+’ that

appears before the type indicates us that the argument of the predicate is a input

variable. In this way, the head of the rules can be of the type uncle of(U,N), and

not, for instance, uncle of(john,ana). The symbol ’-’ indicates us it is an output

variable. Instead of ’-’, if the symbol ’#’ appeared, indicates us that the argument

could be a constant. The modeb declaration indicates that the generated rules can

have, in the body of the rules, the predicate parent of(P,D), where P and D are

from the type person. The first modeb declaration in the example can be used to

add parent of in the body of the rules and add one or more parent(s) to a daughter
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(observe that call numbers have the value ’*’). Similarly, the second declaration

modeb let the predicate parent of be used in the body of the rules to find one or

more daughters of a parent. At last, the third modeb declaration can be used to

find one or more sister of a person. Types have to be specified for every argument

of all predicates to be used in constructing a hypotheses [97]. To the Aleph, these

types are names and these names means facts. For example, the description of

objects for the type person could be: person(john), person(leihla), person(richard),

etc. Variables of different types are treated distinctly, even if one is a sub-type of

the other.

The determination statements declare the predicated that can be used to construct

hypotheses. This declaration take the format: determination(Target Pred/Arity t,

Body Pred/Arity b). The first argument is the name and arity of the target

predicate. It is the predicate that will appear in the head of the induced rule.

The second argument it is the name of the predicate that can appear in the

body of the rule. A possible determination for a relation called uncle of(U,N) is:

determination(uncle of/2, parent of/2). Typically, lots of declarations should be

done for a target predicate. In case of non declared determinations, the Aleph

doesn’t construct any rule. Determinations are only allowed for 1 target predicate

on any given run of Aleph: if multiple target determinations occur, the first one is

chosen.

Finally, the positive examples of the concept to be learned should be stored

in the file with extension .f and the negative examples in the file with exten-

sion .n. For instance, to learn the concept uncle of(U,N), we could have the

follow positive examples in the file with extension .f: uncle of(Sam,Henry), un-

cle of(Martha,Henry), etc. And the follow negative examples in the file with

extension .n: uncle of(Lucy,Charles), uncle of(Lucy,Dominic), etc.
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[34] M. Polo, I. Garćıa-Rodŕıguez, and M. Piattini. An MDA-based approach for

database re-engineering. J. Softw. Maint. Evol., 19(6):383–417, 2007. ISSN

1532-060X.

http://www.omg.org/spec/UML/
http://www.omg.org/spec/CWM/
http://www.omg.org/spec/QVT/


Bibliography 140

[35] D. Skoutas and A. Simitsis. Designing ETL processes using semantic web

technologies. In DOLAP, pages 67–74. ACM, 2006. ISBN 1-59593-530-4.

[36] S. Dessloch, M.A. Hernández, R. Wisnesky, A. Radwan, and J. Zhou. Orchid:

Integrating Schema Mapping and ETL. In ICDE, pages 1307–1316. IEEE

Computer Society, 2008.

[37] J. Pardillo, J.-N. Mazón, and J. Trujillo. Model-Driven Metadata for OLAP

Cubes from the Conceptual Modelling of Data Warehouses. In DaWaK,

pages 13–22. Springer-Verlag, 2008. ISBN 978-3-540-85835-5.

[38] J. Pardillo, J.J. Zubcoff, J.-N. Mazón, and J. Trujillo. Towards A Model-

Driven Engineering Approach of Data Mining. In IADIS, pages 144–147,

2008.

[39] P. Vassiliadis, A. Simitsis, and S. Skiadopoulos. Conceptual modeling for

ETL processes. In DOLAP, pages 14–21. ACM, 2002. ISBN 1-58113-590-4.

[40] S. Dessloch, M.A. Hernández, R. Wisnesky, A. Radwan, and J. Zhou. Orchid:

Integrating Schema Mapping and ETL. In ICDE, pages 1307–1316. IEEE

Computer Society, 2008.

[41] F. Hakimpour and A. Geppert. Resolution of Semantic Heterogeneity in

Database Schema Integration Using Formal Ontologies. Inf. Technol. and

Management, 6(1):97–122, 2005. ISSN 1385-951X.

[42] P. Chowdhary, T. Palpanas, F. Pinel, S.-K. Chen, and F. Y. Wu. Model-

Driven Dashboards for Business Performance Reporting. In EDOC, pages

374–386. IEEE Computer Society, 2006. ISBN 0-7695-2558-X.

[43] M. Golfarelli and S. Rizzi. UML-Based Modeling for What-If Analysis. In

DaWaK, pages 1–12. Springer-Verlag, 2008. ISBN 978-3-540-85835-5.

[44] P. Giorgini, S. Rizzi, and M. Garzetti. Goal-oriented requirement analysis

for data warehouse design. In DOLAP, pages 47–56. ACM, 2005. ISBN

1-59593-162-7.

[45] N. Tryfona, F. Busborg, and J.G. Borch Christiansen. starER: a conceptual

model for data warehouse design. In DOLAP, pages 3–8. ACM, 1999. ISBN

1-58113-220-4.



Bibliography 141

[46] J. Lechtenbörger and G. Vossen. Multidimensional normal forms for data

warehouse design. Inf. Syst., 28(5):415–434, 2003. ISSN 0306-4379.

[47] Alkis Simitsis. Modeling and managing ETL processes. In VLDB PhD

Workshop. CEUR-WS.org, 2003.

[48] A. Simitsis, D. Skoutas, and M. Castellanos. Natural language reporting for

ETL processes. In DOLAP, pages 65–72. ACM, 2008. ISBN 978-1-60558-

250-4.

[49] B. List, R. M. Bruckner, K. Machaczek, and J. Schiefer. A Comparison

of Data Warehouse Development Methodologies Case Study of the Process

Warehouse. In DEXA, pages 203–215. Springer-Verlag, 2002. ISBN 3-540-

44126-3.

[50] S. Luján-Mora and J. Trujillo. A Data Warehouse Engineering Process. In

ADVIS, pages 14–23. Springer, 2004.

[51] C. Brandas. Unified Approach in the DSS Development Process. Informatica

Economica, Vol. 41, No. 1, pp. 98-102, 2007.

[52] Stuart Kent. Model driven language engineering. Electr. Notes Theor.

Comput. Sci., 72(4), 2003.

[53] Vinay Kulkarni, Sreedhar Reddy, and Asha Rajbhoj. Scaling up model driven

engineering - experience and lessons learnt. In MoDELS, pages 331–345.

Springer, 2010.

[54] Jose-Norberto Mazon, Juan Trujillo, Manuel Serrano, and Mario Piattini.

Applying MDA to the development of data warehouses. In DOLAP, DOLAP

’05, pages 57–66, New York, NY, USA, 2005. ACM.
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