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Thèse

Contributions à l’Apprentissage Collaboratif non
Supervisé
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http://www.univ-paris13.fr/
http://lipn.univ-paris13.fr/~ghassany/
http://lipn.univ-paris13.fr/
http://www.univ-paris13.fr/ecole-doctorale-galilee/


Université Paris 13, Sorbonne Paris Cité
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“If Data Had Mass, the Earth Would Be a Black Hole”
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Résumé

Docteur d’Université

Contributions à l’Apprentissage Collaboratif non Supervisé

par Mohamad Ghassany

Le travail de recherche exposé dans cette thèse concerne le développement d’approches

de clustering collaboratif à base de méthodes topologiques, telles que les cartes auto-

organisatrices (SOM), les cartes topographiques génératives (GTM) et les GTM vari-

ationnelles Bayésiennes (VBGTM). Le clustering collaboratif permet de préserver la

confidentialité des données en utilisant d’autres résultats de classifications sans avoir re-

cours aux données de ces dernières. Ayant une collection de bases de données distribuées

sur plusieurs sites différents, le problème consiste à partitionner chacune de ces bases en

considérant les données locales et les classifications distantes des autres bases collabo-

ratrices, sans partage de données entre les différents centres. Le principe fondamental

du clustering collaboratif est d’appliquer les algorithmes de clustering localement sur

les différents sites, puis collaborer les sites en partageant les résultats obtenus lors de la

phase locale. Dans cette thèse nous explorons deux approches pour le clustering collab-

oratif. L’approche horizontale pour la collaboration des bases de données qui décrivent

les mêmes individus mais avec des variables différentes. La deuxième approche collab-

orative est dite verticale pour la collaboration de plusieurs bases de données contenant

les mêmes variables mais avec des populations différentes.

http://www.univ-paris13.fr/
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Abstract

Doctor of Philosophy

Contributions To Collaborative Clustering

by Mohamad Ghassany

The research outlined in this thesis concerns the development of collaborative clustering

approaches based on topological methods, such as self-organizing maps (SOM), gener-

ative topographic mappings (GTM) and variational Bayesian GTM (VBGTM). So far,

clustering methods performs on a single data set, but recent applications require data

sets distributed among several sites. So, communication between the different data sets

is necessary, while respecting the privacy of every site, i.e. sharing data between sites is

not allowed. The fundamental concept of collaborative clustering is that the clustering

algorithms operate locally on individual data sets, but collaborate by exchanging infor-

mation about their findings. The strength of collaboration, or confidence, is precised

by a parameter called coefficient of collaboration. This thesis proposes to learn it auto-

matically during the collaboration phase. Two data scenarios are treated in this thesis,

referred as vertical and horizontal collaboration. The vertical collaboration occurs when

data sets contain different objects and same patterns. The horizontal collaboration

occurs when they have same objects and described by different patterns.

http://www.univ-paris13.fr/
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Avant-Propos

Contexte et problématique

“Qui se ressemble s’assemble”.

La classification non supervisée, ou Clustering, est une approche importante en analyse

exploratoire de données non étiquetées. Sans connaissances a priori sur la structure

d’une base de données, l’objectif de la classification non supervisée est de détecter au-

tomatiquement la présence de sous-groupes pertinents (ou clusters). Un cluster peut

être défini comme un ensemble de données similaires entre elles et peu similaires avec

les données appartenant à un autre cluster (homogénéité interne et séparation externe).

Dans cette thèse, nous nous plaçons dans une situation où nous avons une collec-

tion d’ensembles de données existantes à différents sites. Il pourrait s’agir de données

décrivant les clients des institutions bancaires, magasins, ou des organisations médicales.

Les données pourraient inclure des données concernant différents individus. Elles pour-

raient représenter les mêmes personnes, mais avec différents descripteurs (attributs)

reflétant les activités de l’organisation. Le but ultime de chaque organisation est de

découvrir les principales relations dans son ensemble de données. Cette découverte peut

être raffinée en tenant compte des dépendances entre les différentes analyses effectuées

par les différents sites, afin de produire une image fidèle de la structure globale cachée

dans les différentes bases de données sans en avoir un accès direct. Dans certains cas,

il pourrait y avoir aussi des problèmes techniques, la classification d’un grand ensemble

de données unique ne peut pas être réalisable. Une approche collaborative permettrait

de distribuer les classifications et procéder à une fusion des différents résultats. Dans

cette thèse, nous nous intéressons au problème de l’apprentissage non supervisé (clus-

tering) et spécifiquement au clustering collaboratif en préservant la confidentialité des

données et en utilisant des modèles de classification à base de prototypes et permettant

la visualisation des données. Ayant une collection de bases de données distribuées sur

plusieurs sites différents, le problème consiste à partitionner chacune de ces bases en

considérant les données locales et les classifications obtenues par les autres sites pour

1
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améliorer/enrichir la classification locale, sans toutefois avoir recours au partage de

données entre les différents centres.

Nous explorons dans cette thèse deux approches pour la classification non supervisée

collaborative entre plusieurs classifications issues de plusieurs jeux de données distants.

L’approche horizontale pour la collaboration des bases de données qui décrivent les

mêmes individus mais avec des variables différentes. Cette approche peut être vue

comme une classification multi-vues où le traitement se fait sur des données multi-

représentées, c’est à dire sur un même ensemble d’individus mais décrits par plusieurs

représentations. La deuxième approche collaborative est dite verticale pour la collabo-

ration de plusieurs bases de données contenant les mêmes variables mais avec des pop-

ulations différentes.

Durant la phase de collaboration, nous n’avons pas besoin des bases de données mais

uniquement des résultats des classifications distantes. Ainsi, sur chaque site, on utilise

la base de données locale et les informations des autres classifications distantes, ce qui

permettrait d’obtenir une nouvelle classification qui soit le plus proche possible de celle

qu’on aurait obtenue si on avait centralisé les bases de données et faire un partition-

nement ensuite.

Nous nous intéressons en particulier aux méthodes de réduction de dimensionnalité et

de visualisation de données. La quantité de données enregistrées et stockées dans la

société ne cesse de crôıtre. Cependant, sans les moyens et les méthodes qui peuvent

aider à l’analyse, la quantité de données devient inutile. On ne peut rien analyser quand

on regarde les données brutes, par exemple, des tableaux de chiffres et de symboles

ou un grand nombre d’images similaires. Nous avons donc besoin d’ordinateurs pour

nous aider, non seulement dans la collecte et le stockage de données, mais aussi dans

l’analyse et le traitement de celles-ci. Notamment, si l’ordinateur peut être utilisé pour

synthétiser les données visuellement, les humains sont souvent capable d’interpréter ces

graphiques intelligemment.

Dans cette thèse nous proposons des algorithmes de clustering collaboratif basés sur

des méthodes de classification à base des prototypes. Les méthodes utilisées sont les

cartes auto-organisatrices (SOM), cartes topographiques génératives (GTM), et les GTM

Variationnelles Bayésiennes (VBGTM). Une caractéristique commune entre ces trois

méthodes c’est la réduction de dimensionnalité d’un espace de données de grande di-

mension (> 3) à un espace de basse dimension, généralement de dimension 2 pour

permettre la visualisation. Toutes les données dans cette thèse sont numériques.
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Organisation de la thèse

Ce manuscrit est organisé en quatres chapitres principaux encadrés par une introduction

et une conclusion générale.

Chapitre 1: Clustering Collaboratif Flou.

Nous commençons ce chapitre par une présentation générale du principe de l’appr-

entissage automatique des données, nous détaillons en particulier le cas de l’appren-

tissage non supervisé (clustering), où les données ne sont pas étiquetées et aucune

information a priori n’est disponible. Après, nous présentons le cas où les données

sont distribuées sur plusieurs sites et le besoin de formuler un algorithme qui traite

ces données de manière séparée, conservant ainsi leur confidentialité. Mais les

méthodes distribuées standards traitent tous les sites de données en un seul coup,

sans tenir compte de l’importance d’un site à un autre. Tandis que l’apprentissage

collaboratif permet une amélioration locale des résultats. Durant la phase de

collaboration les sites partagent leurs paramètres entre eux et “estiment” la con-

fiance qu’ils font aux autres sites. Selon cette confiance, nous pourrons procéder

à l’amélioration des résultats locaux. L’algorithme standard du clustering collab-

oratif présenté dans ce chapitre est basé sur la méthode de clustering flou, où les

données peuvent être attribuées à plusieurs groupes avec une certaine probabilité.

Nous présentons les deux approches horizontale et verticale. Ce chapitre représente

un point de départ pour les autres chapitres de la thèse.

Chapitre 2: Clustering Collaboratif basé sur SOM.

Dans ce chapitre, nous formulons deux algorithmes de clustering collaboratif en se

basant sur les cartes auto-organisatrices (SOM) comme méthode de clustering et

de visualisation. Une SOM est un algorithme neuro-inspiré (inspiré du fonction-

nement des neurones biologiques) qui permet la projection non linéaire de données

de grandes dimensions dans un espace à deux dimensions par l’intermédiaire d’un

apprentissage non supervisé compétitif. Cet algorithme est efficace pour la réduction

de dimensions et donc pour la visualisation des données sur une carte en deux di-

mensions. La carte est composée d’un ensemble de prototypes qui, à la fin de

l’apprentissage, représentent les données et leur structure. Dans l’algorithme que

nous proposons dans ce chapitre, nous ajoutons une étape à la phase de collab-

oration. Cette phase permet d’estimer automatiquement la meilleure valeur du

coefficient de collaboration. Nous présentons les deux cas de collaboration, hori-

zontale et verticale. Nous testons nos algorithmes sur quatre jeux de données du

site UCI. Nous validons nos résultats en utilisant des critères comme l’erreur de

quantification et l’indice de purité.
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Chapitre 3: Clustering Collaboratif basé sur un modèle génératif.

Malgré que SOM soit une méthode très populaire, elle souffre de plusieurs lim-

itations dont l’abscence d’un modèle probibiliste en particulier. Pour cela, nous

proposons dans ce chapitre un clustering collaboratif basé sur une méthode con-

currente à SOM, soit les cartes topographiques génératives (GTM). GTM est basée

sur un modèle génératif non linéaire. GTM a été définie pour conserver toutes les

propriétés utiles de SOM, comme le clustering et la visualisation de données multi-

dimensionnelles, tout en évitant le plus de ses limitations grâce à une formulation

entièrement probabiliste. Dans ce chapitre, nous décrivons d’abord qu’est-ce qu’un

modèle génératif, l’algorithme EM en particulier. Nous décrivons le modèle origi-

nal de GTM et nous le comparons à SOM. Ensuite, nous proposons un algorithme

de clustering collaboratif basé sur GTM. Pour le faire, nous modifions l’étape M

de l’algorithme EM en ajoutant un terme de collaboration à l’espérance de la

vraisemblance, celà conduit à des modifications dans les formules de mise à jour

des paramètres de GTM. Nous validons nos approches par quelques expériences

en utilisant des critères internes et externes.

Chapitre 4: Clustering Collaboratif Flou des GTM Variationnelles.

L’optimisation des paramètres du modèle GTM par l’agorithme EM ne tient pas en

compte la complexité du modèle et, par conséquent, le risque de sur-apprentissage

des données est élevé. Une solution élégante pour éviter le sur-apprentissage des

GTM est d’approximer GTM avec une vision variationnelle, la méthode est ap-

pelée GTM variationnelle Bayésienne (VBGTM). Dans ce chapitre, nous décrivons

d’abord l’inférence variationnelle, puis nous décrivons la VBGTM. Ensuite, nous

proposons un algorithme qui combine VBGTM et FCM pour effectuer la classifi-

cation et la visualisation des données en même temps, nous l’appelons F-VBGTM.

Enfin, nous proposons deux approches horizontale et verticale de clustering col-

laboratif basées sur le F-VBGTM. Un exemple de l’effet de la collaboration est

présenté. Nous présentons également quelques méthodes de calcul automatique

du coefficient de collaboration pendant la phase de collaboration.

Nous concluons cette thèse en exposant les points forts de nos contributions et les per-

spectives de recherche dans ce domaine.



Introduction

Clustering is the process of partitioning a set of data objects (or observations) into

subsets. It can be considered the most important unsupervised learning problem; so,

as every other problem of this kind, it deals with finding a structure in a collection

of unlabeled data. A loose definition of clustering could be “the process of organizing

objects into groups whose members are similar in some way”. A cluster is therefore

a collection of objects which are “similar” between them and are “dissimilar” to the

objects belonging to other clusters.

So far, clustering has operated on a single data set. Nowadays, computing environments

and technologies are more and more evolving towards a mobile, finely distributed, in-

teracting, dynamic environment containing massive amounts of heterogeneous, spatially

and temporally distributed data sources. In many companies data is distributed among

several sites, i.e. each site generates its own data and manages its own data reposi-

tory. Analyzing these distributed sources requires distributed clustering techniques to

find global patterns representing the complete information. The transmission of the en-

tire local data set is often unacceptable because of performance considerations, privacy

and security aspects, and bandwidth constraints. Traditional clustering algorithms, de-

manding access to complete data, are not appropriate for distributed applications. Thus,

there is a need for distributed clustering algorithms in order to analyze and discover new

knowledge in distributed environments.

In this thesis, we discuss a situation that arises when data is distributed over several

data sets. The structure we are seeking to reveal concerns all of them, but they need

to be processed separately. This leads to the fundamental concept of Collaborative

Clustering : the clustering algorithms operate locally (namely, on individual data sets)

but collaborate by exchanging information about their findings. Thus, each site uses

its clustering results and the information from other clustering, which would provide

a new clustering that is as close as possible to that which would be obtained if we

had centralized the data sets. We formulate our algorithms in two fundamental data

scenarios referred to as vertical and horizontal collaboration. The vertical collaboration

5
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occurs when data sets contain different objects and same patterns. The horizontal

collaboration occurs when they have same objects and described by different patterns,

this scenario is more difficult because different patterns include different feature space

dimension. The strength of collaboration is precised by a parameter which we propose

to learn automatically during the collaboration procedure. This parameter quantifies

the confidence between data sites, precising the strength of contribution of each site in

the consensus building procedure.

Beside the collaborative clustering algorithms, we are interested in this thesis in dimen-

sionality reduction and data visualization methods. The amount of data being recorded

and stored throughout society is steadily growing. However, without means and meth-

ods that can aid analysis, much data becomes useless. Human observers often find it

hard spotting regularities when looking at raw data, e.g. tables of numbers and symbols

or large numbers of similar images. We therefore need computers to aid us, not only

in the gathering and storing of data, but also in the analysis and processing of it. In

particular, if the computer can be used to summarize data visually, humans are often

capable of interpreting such graphical summaries intelligently.

Scope of the thesis

This thesis is concerned in formulating collaborative clustering algorithms using compu-

tational methods for finding ‘interesting’ structures in sets of data, with little or no need

of human intervention or guidance. The methods are: Self-Organizing Maps (SOM),

Generative Topographic Mapping (GTM) and Variational Bayesian Generative Topo-

graphic Mapping (VBGTM). A key feature of these methods is that they involve some

sort of dimensionality reduction, from the, typically high-dimensional, data space to a

low-dimensional model space defined by the method used. When visualization is the

ultimate aim, the model space is typically chosen to be two-dimensional. In this thesis,

both the data space and the model space are taken to be subsets of R∞.

Overview of the thesis

This thesis is structured into four chapters and organized as follows:

Chapter 1: Collaborative Fuzzy Clustering.

This chapter aims to introduce the basics of Machine Learning and its different

types, we describe in particular the type we are interested in, which is Cluster-

ing. Then we introduce the principle of distributed data clustering, where data is
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distributed over different sources and the need of an algorithm to reveal a com-

mon structure of all data, taking into consideration the confidentiality of data,

e.g. preserving its privacy. We introduce the original standard collaborative clus-

tering based on the Fuzzy c-means algorithm (FCM), which treats different data

sets separately and then collaborate them by exchanging information about their

findings. As well as the horizontal and vertical collaboration scenarios, as starting

point for the next chapters.

Chapter 2: Collaborative Clustering using Self-Organizing Maps.

This chapter starts by describing the Self-Organizing Maps (SOM), a very popu-

lar method that aims to discover some underlying structure of the data. SOM is

called a topology-preserving map because there is a topological structure imposed

on the nodes in the network. A topological map is simply a mapping that pre-

serves neighborhood relations. After describing SOM, we present our contribution:

a collaborative clustering algorithm based on SOM, both horizontal and vertical

collaboration are presented. In addition, we propose to learn automatically the

coefficient of collaboration (also called confidence parameter) during the collabora-

tion process. We complete the chapter with experiments. We test our algorithms

on four UCI data sets, using many validation criteria. Good and promising results

are shown by tables and figures.

Chapter 3: Collaborative Clustering using A Generative Model.

Despite that SOM has become very popular and was applied in several domains,

SOM suffers from many limitations. This is why we present a collaborative clus-

tering scheme using a concurrent method to SOM, the Generative Topographic

Mapping (GTM). GTM is a non-linear generative model. It was defined to retain

all the useful properties of SOM, such as the simultaneous clustering and visual-

ization of multivariate data, while eluding most of its limitations through a fully

probabilistic formulation. In this chapter, we describe first what is a generative

model, the EM algorithm in particular since GTM is based on it. We describe the

original GTM model and compare it to SOM. Then we propose a collaborative

clustering scheme based on GTM. To collaborate using GTM, a modification in

the M-step of its EM algorithm is proposed. We validate our approaches by some

experiments.

Chapter 4: Collaborative Fuzzy Clustering of Variational Bayesian GTM.

The optimization of the GTM model parameters through EM does not take into

account model complexity and consequently, the risk of data overfitting is ele-

vated. An elegant solution to avoid overfitting was proposed by applying the

variational approximation framework on GTM, it is called Variational Bayesian
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GTM (VBGTM). First in this chapter, we describe the Variational Bayesian Infer-

ence, then we describe the VBGTM. Next, we propose an algorithm that combines

VBGTM and FCM to do data visualization and grouping at the same time, we

call it F-VBGTM. Finally, we propose an horizontal and a vertical collaborative

clustering schemes based on F-VBGTM. An example of the effect of the collabora-

tion is presented. We present also some methods for calculating the collaboration

coefficients during the collaboration stage.

We finish this thesis by a conclusion with a summary of its main contributions. Fur-

thermore, a discussion on future directions, as well as of open questions of research, is

summarily outlined.
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Chapter 1

Collaborative Fuzzy Clustering

Machine Learning

One of the most interesting features of machine learning is that it lies on the boundary

of several different academic disciplines, principally computer science, statistics, mathe-

matics, and engineering. This has been a problem as well as an asset, since these groups

have traditionally not talked to each other very much. To make it even worse, the areas

where machine learning methods can be applied vary even more widely, from finance

and business [31] to biology [9, 71, 91] and medicine [117, 123] to physics and chemistry

[38] and beyond [178].

Around the world, computers capture and store terabytes of data every day. There are

computers belonging to shops, banks, hospitals, scientific laboratories, and many more

that are storing data incessantly. For example, banks are building up pictures of how

people spend their money, hospitals are recording what treatments patients are on for

which ailments (and how they respond to them). The challenge is to do something

useful with this data: if the bank’s computers can learn about spending patterns, can

they detect credit card fraud quickly? If hospitals share information, then can treatments

that don’t work as well as expected be identified quickly? These are some of the questions

that machine learning methods can be used to answer.

Science has also taken advantage of the ability of computers to store massive amounts

of data. Biology has led the way, with the ability to measure gene expression in DNA

microarrays producing immense data sets [42], along with protein transcription data

and phylogenetic trees relating species to each other. However, other sciences have not

been slow to follow. Astronomy [10] now uses digital telescopes, so that each night

the world’s observatories are storing incredibly high-resolution images of the night sky,

11
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Figure 1.1: (left) The world is data rich but information poor. (right) Data mining:
searching for knowledge (interesting patterns) in data. [79]

around a terabyte per night. Equally, medical science stores the outcomes of medical

tests from measurements as diverse as Magnetic Resonance Imaging (MRI) [152] scan

and simple blood tests. The explosion in stored data is well known; the challenge is to

do something useful with that data.

The size and complexity of these data sets means that humans are unable to extract

useful information from them. Even the way that the data is stored works against us.

Given a file full of numbers, our minds generally turn away from looking at them for

long. Take some of the same data and plot it in a graph and we can do something, the

graph is rather easier to look at and deal with. Unfortunately, our three-dimensional

world doesn’t let us do much with data in higher dimensions. This is known as the

curse of dimensionality. There are two things that we can do with this: reduce

the number of dimensions (until our simple brains can deal with the problem) or use

computers, which don’t know that high-dimensional problems are difficult, and don’t

get bored with looking at a massive data files of numbers.

This is one reason why machine learning is becoming so popular. The problems of

our human limitations go away if we can make computers do the dirty work for us.

Machine learning, then, is about making computers modify or adapt their actions so

that these actions get more accurate, where accuracy is measured by how well the

chosen action reflect the correct ones. It is only over the past decade or so that the

inherent multi-disciplinarity of machine learning has been recognized. It merges ideas
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from neuroscience and biology, statistics, mathematics, and physics, to make computers

learn.

Application of machine learning methods to large databases is called data mining

[58, 79, 82, 178]. The analogy is that large volume of earth and raw material is extracted

from a mine, which when processed leads to a small amount of very precious material;

similarly, in data mining, a large volume of data is processed to construct a simple model

with valuable use, for example, having high predictive accuracy. Its application areas are

abundant: In addition to retail, in finance banks analyze their past data to build models

to use in credit applications, fraud detection, and the stock market. In manufacturing,

learning models are used for optimization, control, and troubleshooting. In medicine,

learning programs are used for medical diagnosis. In telecommunications, call patterns

are analyzed for network optimization and maximizing the quality of service. In science,

large amounts of data in physics, astronomy, and biology can only be analyzed fast

enough by computers. The World Wide Web is huge; it is constantly growing, and

searching for relevant information cannot be done manually. Figure 1.1 illustrates the

phenomena of data mining.

Example 1 A search engine (e.g., Google) receives hundreds of millions of queries every

day. Each query can be viewed as a transaction where the user describes her or

his information need. What novel and useful knowledge can a search engine learn

from such a huge collection of queries collected from users over time? Interestingly,

some patterns found in user search queries can disclose invaluable knowledge that

cannot be obtained by reading individual data items alone. For example, Google’s

Flu Trends uses specific search terms as indicators of flu activity. It found a close

relationship between the number of people who search for flu-related information

and the number of people who actually have flu symptoms. A pattern emerges

when all of the search queries related to flu are aggregated. Using aggregated

Google search data, Flu Trends can estimate flu activity up to two weeks faster

than traditional systems can [70]. This example shows how data mining can turn

a large collection of data into knowledge that can help meet a current global

challenge.

Example 2 A supermarket chain that has hundreds of stores all over a country selling

thousands of goods to millions of customers. The point of sale terminals record

the details of each transaction: date, customer identification code, goods bought

and their amount, total money spent, and so forth. This typically amounts to

gigabytes of data every day. What the supermarket chain wants is to be able to

predict who are the likely customers for a product. Again, the algorithm for this

is not evident; it changes in time and by geographic location. The stored data
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becomes useful only when it is analyzed and turned into information that we can

make use of, for example, to make predictions.

We do not know exactly which people are likely to buy this ice cream flavor, or

the next book of this author, or see this new movie, or visit this city, or click this

link. If we knew, we would not need any analysis of the data; we would just go

ahead and write down the code. But because we do not, we can only collect data

and hope to extract the answers to these and similar questions from data.

We do believe that there is a process that explains the data we observe. Though

we do not know the details of the process underlying the generation of data, for

example customer behavior, we know that it is not completely random. People do

not go to supermarkets and buy things at random.

We may not be able to identify the process completely, but we believe we can

construct a good and useful approximation. That approximation may not explain

everything, but may still be able to account for some part of the data. We believe

that though identifying the complete process may not be possible, we can still

detect certain patterns or regularities. This is the niche of machine learning. Such

patterns may help us understand the process, or we can use those patterns to make

predictions: Assuming that the future, at least the near future, will not be much

different from the past when the sample data was collected, the future predictions

can also be expected to be right.

Based on the available information and on the desired objectives, there are different

types of Machine Learning Algorithms:

• Supervised learning (Classification): A training set of examples with the cor-

rect responses (targets) are provided and, based on this training set, the algorithm

generalizes to respond correctly to all possible inputs. This is also called learning

from exemplars. [37, 64, 118]

• Unsupervised learning (Clustering): Correct responses are not provided, in-

stead the algorithm tries to identify similarities between the inputs so that inputs

that have something in common are categorized together. [12, 80, 90, 97]

• Reinforcement learning: This is somewhere between supervised and unsuper-

vised learning. The algorithm gets told when the answer is wrong, but does not

get told how to correct it. It has to explore and try out different possibilities until

it works out how to get the answer right . Reinforcement learning is sometimes

called learning with a critic because of this monitore that scores the answer, but

does not suggest improvements. [101, 165, 177]
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• Evolutionary learning: Biological evolution can be seen as a learning process:

biological organisms adapt to improve their survival rates and chance of having

offspring in their environment. [29, 126]

The Unsupervised Learning (Clustering) is going to be the focus of this thesis. Data

Visualization equally. So, we’ll have a look at what it is, and the kinds of problems that

can be solved using it.

1.1 Fuzzy Clustering

Clustering (or Cluster analysis) is the process of partitioning a set of data objects (or

observations) into subsets. Each subset is a cluster, such that objects in a cluster are

similar to one another, yet dissimilar to objects in other clusters. The set of clusters

resulting from a cluster analysis can be referred to as a clustering. In this context,

different clustering methods may generate different clusterings on the same data set.

The partitioning is not performed by humans, but by the clustering algorithm. Hence,

clustering is useful in that it can lead to the discovery of previously unknown groups

within the data.

Example Imagine a Director of Customer Relationships at an Electronics store, and

he has five managers working for him. He would like to organize all the company’s

customers into five groups so that each group can be assigned to a different man-

ager. Strategically, he would like that the customers in each group are as similar

as possible. Moreover, two given customers having very different business patterns

should not be placed in the same group. His intention behind this business strat-

egy is to develop customer relationship campaigns that specifically target each

group, based on common features shared by the customers per group. Unlike in

classification, the class label of each customer is unknown. He needs to discover

these groupings. Given a large number of customers and many attributes describ-

ing customer profiles, it can be very costly or even unfeasible to have a human

study the data and manually come up with a way to partition the customers into

strategic groups. He needs a clustering tool to help.

Clustering has been widely used in many applications such as business intelligence,

image pattern recognition, Web search, biology, and security. In business intelligence,

clustering can be used to organize a large number of customers into groups, where

customers within a group share strong similar characteristics. In image recognition,
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clustering can be used to discover clusters or “subclasses” in handwritten character

recognition systems. Suppose we have a data set of handwritten digits, where each digit

is labeled as either 1, 2, 3, and so on. Clustering has also found many applications

in Web search. For example, a keyword search may often return a very large number

of hits (i.e., pages relevant to the search) due to the extremely large number of web

pages. Clustering can be used to organize the search results into groups and present the

results in a concise and easily accessible way. Moreover, clustering techniques have been

developed to cluster documents into topics, which are commonly used in information

retrieval practice.

Clustering is also called data segmentation in some applications because clustering

partitions large data sets into groups according to their similarity. Clustering can also

be used for outlier detection [81, 89, 160], where outliers (values that are “far away”

from any cluster) may be more interesting than common cases. Applications of out-

lier detection include the detection of credit card fraud and the monitoring of criminal

activities in electronic commerce. For example, exceptional cases in credit card trans-

actions, such as very expensive and infrequent purchases, may be of interest as possible

fraudulent activities [78].

As a branch of statistics, clustering has been extensively studied, with the main focus

on distance-based cluster analysis. Clustering tools were proposed like K-means, fuzzy

C-means, and several other methods. In data mining, efforts have focused on finding

methods for efficient and effective cluster analysis in large databases. Active themes of

research focus on the scalability of clustering methods, the effectiveness of methods for

clustering complex shapes (e.g., nonconvex) and types of data (e.g., text, graphs, and

images), high-dimensional clustering techniques (e.g., clustering objects with thousands

of features), and methods for clustering mixed numerical and nominal data in large

databases.

The simplest and most fundamental version of cluster analysis is partitioning, which

organizes the objects of a set into several exclusive groups or clusters. To keep the

problem specification concise, we can assume that the number of clusters is given as

background knowledge. This parameter is the starting point for partitioning methods.

The basic notions of data, clusters and cluster prototypes [30] are established and a

broad overview of different clustering approaches is given.

The Data Set

Clustering techniques can be applied to data that are quantitative (numerical), qualita-

tive (categorical), or a mixture of both. In this thesis, the clustering of quantitative data

is considered. The data are typically a number of observations. Each observation consists
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of D measured variables, grouped into a D-dimensional row vector xn = [xn1, . . . , xnD],

xn ∈ RD. A set of N observations is denoted by X = {xn|n = 1, . . . , N}, and is

represented as a N ×D matrix:

X =


x11 x12 . . . x1D

x21 x22 . . . x2D

...
...

...
...

xN1 xN2 . . . xND

 (1.1)

The rows of this matrix are called patterns or objects, the columns are called the features

or attributes, and X is called the data matrix.

UCI: There is a very useful resource for machine learning in the UCI Machine Learning

Repository [7]. This website hold lots of data sets that can be downloaded and used

for experimenting with different machine learning algorithms and seeing how well they

work. By using these test data sets for experimenting with the algorithms, we do not

have to worry about getting hold of suitable data and pre-processing it into a suitable

form for learning. This is typically a large part of any real problem, but it gets in the

way of learning about the algorithms.

Many clustering algorithms have been introduced in the literature. Since clusters can

formally be seen as subsets of the data set, one possible classification of clustering

methods can be according to whether the subsets are fuzzy or crisp (hard).

Hard clustering methods are based on classical set theory, and require that an object

either does or does not belong to a cluster. Hard clustering means partitioning the data

into a specified number of mutually exclusive subsets. The most common hard clustering

method is k-means, which is described in section 1.1.

Fuzzy clustering methods, however, allow the objects to belong to several clusters

simultaneously, with different degrees of membership. In many situations, fuzzy cluster-

ing is more natural than hard clustering. The most know technique of fuzzy clustering

is the fuzzy c-means, it is described in section 1.1.

K-Means

If you have ever watched a group of tourists with a couple of tour guides who hold

umbrellas up so that everybody can see them and follow them, then you have seen a

dynamic version of the K-means algorithm. K-means is even simpler, because the data

(playing the part of the tourists) does not move, only the tour guides move.
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Suppose that we want to divide our input data into K categories, where we know the

value of K. We allocate K cluster centres (also called prototypes) to our input space,

and we would like to position these centres so that there is one cluster centre in the

middle of each cluster. However, we don’t know where the clusters are, let alone where

their ’middle’ is, so we need an algorithm that will find them. Learning algorithms

generally try to minimize some sort of error, so we need to think of an error criterion

that describes this aim. There are two things that we need to define:

A distance measure: In order to talk about distances between points, we need some

way to measure distances. It is often the normal Euclidean distance, but there

are other alternatives like Manhattan distance, Correlation distance, Chessboard

distance and other.

The mean average: Once we have a distance measure, we can compute the central

point of a set of data points, which is the mean average. Actually, this is only true

in Euclidean space, which is the one we are used to, where everything is nice and

flat. Everything becomes a lot trickier if we have to think about curved spaces;

when we have to worry about curvature, the Euclidean distance metric isn’t the

right one, and there are at least two different definitions of the mean. So we aren’t

going to worry about any of these things, and we’ll assume that space is flat. This

is what statisticians do all the time.

We can now think about a suitable way of positioning the cluster centres: we compute

the mean point of each cluster, vi, i = 1, . . . ,K, and put the cluster centre there. This

is equivalent to minimizing the Euclidean distance (which is the sum-of-squares error)

from each data point to its cluster centre. Then we decide which points belong to which

clusters by associating each point with the cluster centre that it is closest to. This

changes as the algorithm iterates. We start by positioning the cluster centres randomly

though the input space, since we don’t know where to put them, and we update their

positions according to the data. We decide which cluster each data point belongs to

by computing the distance between each data point and all of the cluster centres, and

assigning it to the cluster that is the closest. For all the points that are assigned to a

cluster, we then compute the mean of them, and move the cluster centre to that place.

We iterate the algorithm until the cluster centres stop moving.

It is convenient at this point to define some notation to describe the assignment of data

points to clusters. For each data point xk, we introduce a corresponding set of binary

indicator variables uik ∈ 0, 1, where i = 1, . . . ,K describing which of the K clusters the

data point xk is assigned to, so that if data point xk is assigned to cluster i then uik = 1,
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and ujk = 0 for j 6= i. This is known as the 1-of-K coding scheme. We can then define

an objective function (and sometimes called a distortion measure), given by

J =
N∑
k=1

K∑
i=1

uik‖xk − vi‖2 (1.2)

which represents the sum of the squares of the distances of each data point to its assigned

vector vi. The goal is to find values for the {uik} and the {vi} so as to minimize J . We

can do this through an iterative procedure in which each iteration involves two successive

steps corresponding to successive optimizations with respect to the uik and the vi. The

algorithm of K-means is described in Algorithm 1.

Algorithm 1: The K-Means Algorithm

Data: X = {xkd, k = 1, . . . , N, d = 1, . . . , D} where D is the dimension of the feature
space.

Result: Cluster centres (Prototypes)
Initialization:
-Choose a value for K
-Choose K random positions in the input space
-Assign the prototypes vi to those positions.
Learning: repeat
for each data point xk do

-compute the distance to each prototype:

dik = min
i
d(xk,vi)

-assign the data point to the nearest prototype with distance

uik =

{
1 if i = arg minj ‖xk − vj‖2
0 otherwise

(1.3)

for each prototype do
-move the position of the prototype to the mean of the points in that cluster:

vi =

∑
k uikxk∑
k uik

(1.4)

Until the prototypes stop moving.

The denominator in the expression 1.4 is equal to the number of points assigned to

cluster i, and so this result has a simple interpretation, namely set vi equal to the mean

of all of the data points xk assigned to cluster i. For this reason, the procedure is known

as the K-means algorithm.

The two phases of re-assigning data points to clusters and re-computing the cluster

means are repeated in turn until there is no further change in the assignments (or until
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Figure 1.2: Illustration of the K-means algorithm using the re-scaled Old Faithful
data set, where K = 2. [24]

some maximum number of iterations is exceeded). Because each phase reduces the value

of the objective function J , convergence of the algorithm is assured. However, it may

converge to a local rather than global minimum of J . The convergence properties of the

K-means algorithm were studied by [129].

The K-means algorithm is illustrated using the Old Faithful data set in Figure 1.2. As

we can see, the K-means algorithm converges to two clusters (red and blue). Old Faithful

[24], is a hydrothermal geyser in Yellowstone National Park in the state of Wyoming,

U.S.A., and is a popular tourist attraction. Its name stems from the supposed regularity

of its eruptions. The data set comprises 272 observations, each of which represents a

single eruption and contains two variables corresponding to the duration in minutes of

the eruption, and the time until the next eruption, also in minutes.
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Fuzzy C-Means (FCM)

Fuzzy clustering [20] methods allow the objects to belong to several clusters simulta-

neously, with different degrees of membership. In many situations, fuzzy clustering is

more natural than hard clustering. Objects on the boundaries between several classes

are not forced to fully belong to one of the classes, but rather are assigned membership

degrees between 0 and 1 indicating their partial membership. The discrete nature of the

hard partitioning also causes difficulties with algorithms based on analytic functionals

(objective functions), since these functionals are not differentiable.

Generalization of the hard partition, described in the previous section, to the fuzzy

case follows directly by allowing uik to attain real values in [0, 1]. A partition can be

conveniently represented by the partition matrix U = [uik]C×N . The i-th row of this

matrix contains values of the membership function ui of the i-th cluster of X. Conditions

for a fuzzy partition matrix are given by [161]:

uik ∈ [0, 1], 1 ≤ k ≤ N, 1 ≤ i ≤ C (1.5)

C∑
i=1

uik = 1, 1 ≤ k ≤ N, and 0 <

N∑
k=1

uik < N, 1 ≤ i ≤ C

The functional of the fuzzy C-means is formulated as follows:

J(X;U, V ) =

N∑
k=1

C∑
i=1

(uik)
m‖xk − vi‖2 (1.6)

where m is the fuzzifier, which determines the fuzziness of the resulting clusters, it

is generally chosen to be 2. U = [uik]C×N is the fuzzy partition matrix of X, and

V = [v1,v2, . . . ,vC ], vi ∈ RD, is the matrix of prototypes (cluster centres). Both U

and V have to be determined in the learning process.

The minimization of the C-means objective function 1.6 represents a nonlinear optimiza-

tion than can be solved by using an iterative procedure. The algorithm of fuzzy C-means

looks similar to K-means, with an additional step in every iteration, which is updating

the partition matrix. The algorithm of fuzzy C-means (called FCM) is presented in

Algorithm 2.

Fuzziness Parameter: The weighting exponent m, called also fuzzifier is an important

parameter. It significantly influences the fuzziness of the resulting partition. Whether

the fuzzifier os adopted or not, the use of a fixed inner-product norm in the FCM
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Algorithm 2: The Fuzzy C-Means Algorithm: FCM

Data: X = {xkd, k = 1, . . . , N, d = 1, . . . , D} where D is the dimension of the feature
space.

Result: Prototypes matrix V and Partition matrix U
Initialization:
-Choose a value for C, 1 < C < N
-Choose the weighting exponent m > 1
-Choose the termination criterion (threshold) ε > 0
-Initialize the partition matrix U randomly, such that U verifies the conditions in 1.5
Learning: repeat
for l = 1, 2, . . . do

-Step 1: Compute the cluster prototypes:

v
(l)
i =

∑N
k=1

(
u

(l−1)
ik

)m
xk∑N

k=1

(
u

(l−1))
ik

)m , 1 ≤ i ≤ C. (1.7)

-Step 2: Compute the distances:

d2(xk,vi) = ‖xk − vi‖2, 1 ≤ i ≤ C, 1 ≤ k ≤ N. (1.8)

-Step 3: Update the partition matrix:
for 1 ≤ k ≤ N do

for i = 1, 2, . . . , C do

u
(l)
ik =

1
C∑
j=1

(
d(xk,vi)

d(xk,vj)

)2/(m−1)
(1.9)

Until ‖U (l) − U (l−1)‖ < ε.

algorithm induces fuzzy clusters of a certain shape (geometry). As m approaches one

from above, the partition becomes hard (uik ∈ {0, 1}) and vi are ordinary means of

the clusters. As m → ∞, the partition becomes completely fuzzy (uik = 1/C) and the

clusters means are all equal to the mean of X. For instance, hyperspherical clusters are

induced when the Euclidean norm is adopted, this means m = 2 is usually chosen.

Termination Criterion: The FCM algorithm stops iterating when the norm of the dif-

ference between U in two successive iterations is smaller than the termination parameter

ε. The usual choice is ε = 10−3.

FCM Variants

An important class of FCM variants is related to algorithms that are designed to find

clusters with different (possibly adaptive) geometries. This class includes the fuzzy C-

varieties (FCV) algorithm [20], which is able to detect linear structures (such as lines
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and planes) in data [5], and the well known GustafsonKessel (GK) algorithm [74], which

is able to find hyperellipsoidal fuzzy clusters with different spatial orientations. Other al-

gorithms, such as the fuzzy maximum likelihood estimates (FMLE) proposed in [21] and

the extended FCM and GK(E-FCM and E-GK)algorithms that are introduced in [109],

are believed to be more suitable to handle data sets with uneven spatial distributions,

namely data containing clusters with different volumes and densities [5, 62, 109].

Another important category of FCM relatives concerns algorithms that are more robust

(less sensitive) to outliers and noise [48]. This category includes, e.g., L1 norm-based

FCM variants [85, 111] and possibilistic (rather than probabilistic) versions of FCM,

such as the possibilistic C-Means (PCM) [121, 122], the fuzzy PCM (FPCM) [141], the

possibilistic fuzzy c-means [142], and other related algorithms [13, 168, 180].

There are many other categories of FCM variants that have been proposed in the liter-

ature:

• Algorithms for handling objects with non-numerical (categorical/symbolic) at-

tributes [54], whose main representatives are relational-data algorithms [120], such

as the fuzzy analysis (FANNY) algorithm [108], the relational FCM (RFCM) [86],

the non-Euclidean RFCM (NER-FCM) [83, 87], the fuzzy c-medoids (FCMdd)

[120], and the fuzzy c-trimmed medoids (FCTMdd) [120].

• Algorithms for handling objects with missing value attributes (incomplete data),

such as the partial distance strategy FCM (PDSFCM) and the optimal completion

strategy FCM (OCSFCM), both proposed in [84].

• Algorithms conceived to scale up FCM in terms of running time and memory

storage requirements, such as those based on some sort of fast numerical ap-

proximate solution or efficient exact algorithmic implementation of the FCM (see

[36, 55, 92], respectively), tree-structured-data-based FCM approaches [92, 95],

and subsampling-based FCM approaches [41, 140], among others, e.g., [102].

• Algorithms that are developed to incorporate partially supervised information

provided by users, such as the proximity-based FCM [127] and other related

knowledge-based algorithms [148, 149].

• Algorithms for handling distributed data, such as those described in [145, 151, 154].

This last category of FCM variants falls directly within the scope of this thesis, as

will be discussed in Chapter 1.

The FCM algorithm is illustrated in Figure 1.3 using the Old Faithful data set we used

in the previous section.
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Figure 1.3: Illustration of the FCM algorithm on the Old Faithful data set, where C =
2. The red ’+’ signs are the cluster centres. Contours show the degree of membership

of data to clusters.

1.2 Distributed Data Clustering

Nowadays, computing environments and technologies are more and more evolving to-

wards a mobile, finely distributed, interacting, dynamic environment containing massive

amounts of heterogeneous, spatially and temporally distributed data sources. Some typ-

ical examples of such ubiquitous computing environments are peer-to-peer systems, grid

systems and wireless sensor networks, [51]. In these environments, data is distributed

across several sources. So, communication between the different data sources and com-

puting locations is necessary. In same time, data mining algorithms must be able to

cope with privacy and security issues which prevent data from being gathered at a cen-

tralized repository. Traditional clustering algorithms perform its process of discovering

groups over centralized databases. But recent applications require data sets distributed

among several sites. A natural proposed solution is to concentrate all distributed data

on a central site before applying traditional algorithms. This may not be feasible, there

is a series of limitations which hinder the utilization of traditional clustering techniques

on distributed databases. There are two distinct situations that demand the need for

effecting cluster analysis in a distributed way. The first occurs when the volume of

data to be analyzed is relatively great, which demand a considerable computational ef-

fort, which sometimes is even unfeasible, to accomplish this task. The best alternative,
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then, is splitting data, cluster them in a distributed way and unify the results. The

second situation occurs when data is naturally distributed among several geographically

distributed units and the cost associated to its centralization is very high.

As a motivating example [145], imagine a situation in which we have a collection of data

sets existing at different organizations. These could be data describing customers of

banking institutions, retail stores, medical organizations, etc. The data could include

records of different individuals. They could also deal with the same individuals, but

each data set may have different descriptors (features) reflecting the activities of the

organization. The ultimate goal of each organization is to discover key relationships

in its data set. These organizations also recognize that as there are other data sets,

it would be advantageous to learn about the dependencies there occurring in order to

reveal the overall picture of the global structure. We do not have direct access to other

data, which prevents us from combining all data sets into a single database and carrying

out clustering there. Access may be denied because of confidentiality requirements (e.g.,

medical records of patients cannot be shared and confidentiality of banking data has

to be assured). There could also be some hesitation about the possibility of losing

the identity of the data of the individual organization. We are more comfortable with

revealing relationships in our own organization’s data set. While appreciating the value

of additional external sources of information, it is helpful to control how the findings

there could affect the results from the data within the company. In some cases, there

could be technical issues; processing (clustering) of a single huge data set may not be

feasible or sufficiently informative.

Currently, a growing number of companies have strived to obtain a competitive ad-

vantage through participation in corporative organizations, as local productive arrange-

ments, cooperatives networks and franchises. Insofar as these companies come together

to overcome new challenges, their particular knowledge about the market needs to be

shared among all of them. However, no company wants to share information about their

customer and transact business with other companies and even competitors, because it

is needed to maintain commercial confidentiality and due to local legislation matters.

So back to the traditional solution, gathering all distributed databases in a central unit

and following it by algorithm application is strongly criticized, because in these cases,

it is important to take into consideration some issus, namely:

- The possibility of existence of similar data with different names and formats, dif-

ferences in data structures, and conflicts between one and another database [183].
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- The unification of all of the registers in a single database may take to the loss of

meaningful information, once that statistically interesting values in a local context

may be ignored when gathered to other ones in a larger volume.

- Integration of several database in a single location is not suggested when it is com-

posed of very large databases. If a great organization has large disperse databases

and needs to gather all the data in order to apply on them data mining algorithms,

this process may demand great data transference, which may be slow and costly

[59].

- Any change that may occur in distributed data, for instance inclusion of new

information or alteration of those already existing will have to be updated along

with the central database. This requires a very complex data updating strategy,

with overload of information transference in the system.

- And the most important limitation is that in some domains such as medical and

business areas whereas distributed databases occurs, transferring raw data sets

among parties can be insecure because confidential information can be obtained,

putting in risk privacy preserving and security requirements.

Due to all of these problems related to database integration, research for algorithms

that perform data mining in a distributed way is not recent. Several researches about

algorithms to effectuate distributed data mining were presented [52], [2], [154].

Hence, a large number of studies in this research area, called privacy preserving dis-

tributed data mining (DDM), where security and confidentiality of data must be main-

tained throughout the process, have been prompted by the need of sharing information

about a particular business segment among several companies involved in this process,

respecting the privacy of its customers [46]. These studies seek to be able to process

clustering securely in a way that has motivated the development of algorithms to analyze

each database separately and to combine the partial results to obtain a final result, [68],

[119], [98]. A very rich and updated bibliography about the matter is available in [104],

[106].

Another example of the need of distributed algorithms is the NASA Earth Observing

System (EOS), a data collector for a number of satellites, holds 1450 data sets that are

stored, managed, and distributed by the different EOS Data and Information System

(EOSDIS) sites that are geographically located all over the USA. A pair of Terra space-

craft and Landsat 7 alone produces about 350 GB of EOSDIS data per day. An online

mining system for EOS data streams may not scale if we use a centralized data mining

architecture. Mining the distributed EOS repositories and associating the information

with other existing environmental databases may benefit from DDM, [143].
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To point out the mismatch between the architecture of centralizing data mining systems

and distributed data mining systems look to Figure 1.4 and Figure 1.5, [143]. Figure

1.4 presents a schematic diagram of the traditional data warehouse-based architecture

for data mining. This model of data mining works by regularly uploading mission

critical data in the warehouse for subsequent centralized data mining application. This

centralized approach is fundamentally inappropriate for most of the distributed and

ubiquitous data mining applications. As shown in Figure 1.5, the objective of DDM is to

perform the data mining operation based on the type and availability of the distributed

resources.

Figure 1.4: A data warehouse architecture

Figure 1.5: Distributed Data Mining Framerwork
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In literature, many models of interaction in DDM were introduced [163], [112], [45],

[134], [46]. But we are mostly interested in Collaborative Clustering [146]. The dif-

ference between DDM and Collaborative Clustering is in the level of interaction: the

Collaborative Clustering is positioned at the more active side where the structures are

revealed in a more collective manner; while DDM seeks to build a consensus clustering

focused at the stage of constructing clusters when there is no activement of data. In Col-

laborative Clustering, we exchange information between data sets to improve clustering

results before building the consensus. A more advanced use of Collaborative Cluster-

ing is to control this information exchange by estimating a coefficient of collaboration

precising the confidence between data sets.

Collaborative clustering was first investigated by Pedrycz [145–147, 150], using a fuzzy

c-means algorithm (FCM) [20]. The fundamental concept of collaboration is : “the

clustering algorithms operate locally (namely, on individual data sets) but collaborate

by exchanging information about their findings” Pedrycz.

In next section we present the collaborative fuzzy clustering based on FCM, introduced

by [145]. We detail the algorithms in its two distinct situations, horizontal collaboration

and vertical collaboration.

1.3 Collaborative Fuzzy Clustering

In 2002, Pedrycz [145] introduced a novel clustering algorithm, called Collaborative

Fuzzy Clustering, which intended to reveal the overall structure of distributed data

(i.e. data residing at different repositories) but, at the same time, complying with

the restrictions preventing data sharing. It can be stated that this approach exhibits

significant differences with other existing techniques under the umbrella of distributed

clustering [151].

In brief, the problem of collaborative clustering can be defined as follows:

Given a finite number of disjoint data sites, develop a scheme of collective development

and reconciliation of a fundamental cluster structure across the sites that it is based

upon exchange and communication of local findings where the communication

needs to be realized at some level of information granularity. The development of

the structures at the local level exploits the communicated findings in an active

manner through minimization of the corresponding objective function augmented

by the structural findings developed outside the individual data site. We also allow

for retention of key individual (specic) findings that are essential (unique) for the

corresponding data site.
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Figure 1.6: The essence of collaborative clustering in which we aim at striking a
sound balance between local ndings (produced at the level of locally available data)
and the ndings coming from other data sites building some global characterization of
data. Shown are only communication links between data site D[ii] and all other data

sites.

Generally speaking, two types of collaborative clustering are envisioned, the horizontal

mode and the vertical mode. The vertical mode assumes that each site holds information

on different objects described by the same variables, i.e. in the same feature space. The

horizontal mode, on the other side, assumes that each location holds information on

the same set of objects but described in different feature spaces. The horizontal mode

is more complicated since prototypes do not have the same dimension, so defining a

distance between them is impossible.

Suppose that we have P data sets. The general collaborative clustering scheme consists

of two phases:

Phase I: Generating the clusters without collaboration, using a local FCM algorithm

([53], [20]) on each data set. Although any objective-function based clustering

algorithm can be used. Obviously, the number of clusters has to be the same for

all data sets. FCM identifies c cluster centres and assigns each record k (customer,

pattern..) with a specific membership degree uik to cluster i. The membership de-

grees uik for i = 1, . . . , c are constrained to sum to 1. The FCM analysis minimizes

the following objective function Q[ii] (Eq. 1.10) where dik denotes the distance

between case k and cluster center i; [ii] refers to the data set where the local cluster

analysis is performed.
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Q[ii] =

N∑
k=1

c∑
i=1

u2
ik[ii]d

2
ik[ii] (1.10)

ii = 1, 2, ..., P.

Phase II: After the local phase each site gets an initial set of cluster centres and N × c
partition matrix containing the membership degrees of each case k to each cluster

i. Here comes the phase II, a collaboration between the clusters is performed.

Each site will exchange its partition matrix or prototypes with the other sites.

Because sites only exchange these findings, no private information is exchanged

and consequently no privacy constraints are violated. Once the sites receive the

exchanging parameters, the collaborative FCM can be applied, which minimizes a

modified objective function (Eq. 1.11 and Eq. 1.28).

The collaboration between the sites depend on collaboration links α[ii, kk] which

describe the intensity of collaboration between site [ii] and site [kk]. Usually

α[ii, kk] is non-negative. So, more this value α[ii, kk] is higher more the coop-

eration between sites is stronger. The set of all collaboration links is called the

collaboration matrix.

Schematically, we portray the essence of the collaborative clustering as presented in Fig.

1.6, which stresses an act of balance between collaborative activities occurring between

the data sites and reecting global and common characteristics of all data and the crucial

ndings implied by the locally available data.

1.3.1 Horizontal Collaborative Clustering

In horizontal clustering we deal with the same patterns and different feature spaces. The

communication platform is based on through the partition matrix (see Eq. 1.11). As we

have the same objects, this type of collaboration makes sense. The confidentiality of data

has not been breached: we do not operate on individual patterns but on the resulting

information granules (fuzzy relations, that is, partition matrices). As this number is far

lower than the number of data, the low granularity of these constructs moves us far from

the original data. The schematic illustration of this mode of clustering is presented is

Figure 1.7.
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Figure 1.7: A general scheme of Horizontal Clustering.

To accommodate the collaboration mechanism in the optimization process, the objective

function is expanded into the form:

Q∗[ii] =

N∑
k=1

c∑
i=1

u2
ik[ii]d

2
ik[ii] +

P∑
jj=1
jj 6=ii

α[ii, jj]
N∑
k=1

c∑
i=1

(uik[ii]− uik[jj])2d2
ik[ii] (1.11)

ii = 1, 2, . . . , P . The role of the second term in the above expression is to have the

ii-th data set become fully cognizant of what’s going on in the remaining subsets. So it

makes the clustering based on the ii-th subset ”aware” of other partitions. It is obvious

that if the structures in data sets are similar, then the differences between the partition

matrices tend to be lower, and the resulting structures start becoming more similar.

In the optimization task, we determine the partition matrix U [ii] and the prototypes

v1[ii], . . . ,vc[ii], separately for each of the collaborating subsets of patterns. The parti-

tion matrix is required to satisfy standard requirements of membership grades summing

to 1 for each pattern and the membership grades contained in the unit interval. So,

collaborative clustering converts into the following family of P optimization problems

with the membership constraints

min
U∈U,v1,...,vc

Q subject to U ∈ U

where U is a family of all fuzzy partition matrices.
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Calculation of the partition matrix

To determine the partition matrix, a technique of Lagrange multipliers is exploited so

that the constraint occurring in the problem becomes merged as a part of constraint-free

optimization. This lead to the new objective function V [ii]:

V [ii] =
c∑
i=1

u2
ik[ii]d

2
ik[ii] +

P∑
jj=1
jj 6=ii

α[ii, jj]
c∑
i=1

(uik[ii]− uik[jj])2d2
ik[ii]

− λ
( c∑
i=1

uik[ii]− 1

) (1.12)

for k = 1, . . . , N , where λ denotes a Lagrange multiplier. The necessary conditions

leading to the local minimum of V [ii] are

∂V [ii]

∂ust[ii]
= 0 and

∂V [ii]

∂λ
= 0 (1.13)

s = 1, 2, . . . , c, t = 1, 2, . . . , N . The derivative computed with respect to the partition

matrix is

∂V

∂ust
= 2ust[ii]d

2
st[ii] + 2

∑
jj 6=ii

α[ii, jj](ust[ii]− ust[jj])d2
st[ii]− λ = 0 (1.14)

Therefore,

ust[ii] =

λ+ 2d2
st[ii]

ϕst[ii]︷ ︸︸ ︷∑
jj 6=ii

α[ii, jj]ust[jj]

2

(
d2
st[ii] + d2

st[ii]
∑
jj 6=ii

α[ii, jj]︸ ︷︷ ︸
ψ[ii]

) (1.15)

Let’s introduce the following notation:

ϕst[ii] =
∑
jj 6=ii

α[ii, jj]ust[jj] (1.16)

ψ[ii] =
∑
jj 6=ii

α[ii, jj] (1.17)
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In light of the constraint imposed on the membership values
∑c

j=1 ujk[ii] = 1, the use

of the above expression yields the result

c∑
j=1

λ+ 2d2
jk[ii]ϕjk[ii]

2d2
st[ii](1 + ψ[ii])

= 1 (1.18)

Next, the Lagrange multiplier is computed in the form

λ = 2
1− 1

1+ψ[ii]

∑c
j=1 ϕjk[ii]∑c

j=1
1

d2jk[ii]

(
1 + ψ[ii]

)
(1.19)

Plugging this multiplier into the formula for the partition matrix produces the final

expression:

ust[ii] =
ϕst[ii]

1 + ψ[ii]
+

1− 1
1+ψ[ii]

∑c
j=1 ϕjt[ii]∑c

j=1
d2st[ii]

d2jt[ii]

(1.20)

Calculation of the prototypes

In the calculations of the prototypes, we confine ourselves to the Euclidean distance

between the patterns and the prototypes. The necessary condition for the minimum

of the objective function is of the form 5v[ii]Q[ii] = 0. Rewriting Q[ii] in an explicit

manner to emphasize the character of the distance function gives:

Q[ii] =

N∑
k=1

c∑
i=1

u2
ik[ii]

N∑
j=1

(xkj − vij [ii])
2 +

P∑
jj=1
jj 6=ii

α[ii, jj]

×
N∑
k=1

c∑
i=1

(uik[ii]− uik[jj])2
N∑
j=1

(xkj − vij [ii])
2

(1.21)

The patterns in this expression come from the iith data set. Computing the derivative

of Q[ii] with respect to vst[ii] (s = 1, 2, . . . , c, t = 1, 2, . . . , N) and setting it to 0, we

obtain
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∂Q[ii]

∂vst[ii]
= −2

N∑
k=1

u2
st[ii](xkt − vst[ii])

− 2
N∑
k=1

∑
jj 6=ii

α[ii, jj](usk[ii]− usk[jj])2(xkt − vst[ii]) = 0

(1.22)

which leads to expression of calculation of the prototypes:

vst[ii] =
Ast[ii] + Cst[ii]

Bs[ii] +Ds[ii]
(1.23)

s = 1, 2, . . . , c, t = 1, 2, . . . , N, ii = 1, 2, . . . , P

where

Ast[ii] =

N∑
k=1

u2
sk[ii]xkt (1.24)

Bs[ii] =
N∑
k=1

u2
sk[ii] (1.25)

Cst[ii] =
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑
k=1

(usk[ii]− usk[jj])2xkt (1.26)

Ds[ii] =
P∑

jj=1
jj 6=ii

α[ii, jj]
N∑
k=1

(usk[ii]− usk[jj])2 (1.27)

1.3.2 Vertical Collaborative Clustering

The concept of vertical collaborative clustering is the situation when we deal with dif-

ferent data sets where all the patterns are described in the same feature space [145]. In

this case we cannot establish communication at the level of the partition matrices, but

we can use the prototypes of this data sets since they are defined in the same feature

space. Figure 1.8 shows the general scheme of this case. This type of collaboration is

interesting in business applications. Lets take an example of two (or many) supermar-

kets trying to study their customer’s behavior. They have the same variables but they
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don’t have the same customers, they want to see if rich customers of the first behave

the same of rich customers of the second supermarket.

Another interesting application of vertical collaborative clustering occurs when dealing

with huge data sets. Instead of clustering them in a single pass, we split them into

individual data sets, cluster each of them separately, and reconcile the results through

the collaborative exchange of prototypes.

Figure 1.8: A general scheme of Vertical Clustering.

The proposed objective function governing a search for structure in the ii-th data set is

the following:

Q[ii] =

N [ii]∑
k=1

c∑
i=1

u2
ik[ii]d

2
ik[ii] +

P∑
jj=1
jj 6=ii

β[ii, jj]

c∑
i=1

N [ii]∑
k=1

u2
ik[ii]‖vi[ii]− vi[jj]‖2 (1.28)

where β[ii, jj] is a collaboration coefficient supporting an impact of jj-th data set and

affecting the structure to be determined in the ii-th data set. The number of patterns in

the ii-th data set is denoted by N [ii] (since it is not the same for all data sets). Equation

1.28 is interpreted as follows: the first term is the objective function used to search for the

structure of the ii-th data set, and the second term articulates the differences between
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the prototypes which have to be made smaller through the refinement of the partition

matrix.

The optimization of Q[ii] involves the determination of the partition matrix U [ii] and

the prototypes vi[ii]. As before, the problem is solved for each data set separately and

allow the results to interact, forming a collaboration between the sets.

Calculation of the partition matrix

The minimization of Q[ii] with respect to the partition matrix requires the use of La-

grange multipliers because of the existence of the standard constraints imposed on the

partition matrix (
∑c

i=1 uik[ii] = 1). We obtain the following

V [ii] =
c∑
i=1

u2
it[ii]d

2
it[ii] +

P∑
jj=1
jj 6=ii

β[ii, jj]
c∑
i=1

u2
it[ii]‖vi[ii]− vi[jj]‖2

− λ
( c∑
i=1

uit[ii]− 1

) (1.29)

where t = 1, 2, . . . , N [ii]. Taking the derivative of V [ii] with respect to ust[ii] and making

it 0, we obtain

∂V

∂ust
= 2ust[ii]d

2
st[ii] + 2

∑
jj 6=ii

β[ii, jj]ust[ii]‖vs[ii]− vs[jj]‖2 − λ = 0 (1.30)

Introducing the following notation:

Dii,jj,s = ‖vs[ii]− vs[jj]‖2 (1.31)

ψs[ii] =
P∑

jj 6=ii
β[ii, jj]Dii,jj,s (1.32)

The partition matrix is

ust[ii] =

( c∑
j=1

d2
st[ii] + ψs[ii]

d2
jt[ii] + ψj [ii]

)−1

(1.33)
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Calculation of the prototypes

For the prototypes, we complete calculations of the gradient of Q with respect to the

coordinates of the prototypes v[ii] and then solve the following equations:

∂Q[ii]

∂vst[ii]
= 0, s = 1, 2, . . . , c, t = 1, 2, . . . , N [ii]. (1.34)

We obtain

∂Q[ii]

∂vst[ii]
= 2

N [ii]∑
k=1

u2
st[ii](xkt − vst[ii])

+2
∑
jj 6=ii

β[ii, jj]

N [ii]∑
k=1

u2
st[ii](vst[ii]− vst[jj]) = 0

(1.35)

This leads to the calculation of the prototypes

vst[ii] =

∑
jj 6=ii β[ii, jj]

∑N [ii]
k=1 u

2
sk[ii]vst[jj]− 2

∑N [ii]
k=1 u

2
sk[ii]xkt∑

jj 6=ii β[ii, jj]
∑N [ii]

k=1 u
2
sk[ii]−

∑N [ii]
k=1 u

2
sk[ii]

(1.36)

We present the algorithm of collaborative clustering in Algorithm 3, for both horizontal

and vertical approaches.

Algorithm 3: The Collaborative Clustering scheme: Co-FCM

Data: subsets of patterns X[1],X[2], . . . ,X[P ].
Result: Prototypes and Partition matrix.
Initialization: Select the distance function, number of clusters c, termination
criterion, and collaboration matrix α[ii, jj].
Phase I
for each data set [ii] do

compute prototypes {vi[ii]}, i = 1, 2, . . . , c and partition matrix U [ii] for all subsets
of patterns.
until a termination criterion has been satisfied

Phase II
for each data set [ii] do

For given matrix of collaborative link α[ii, jj], compute prototypes and partition
matrices. Using (1.20) and (1.23) for horizontal clustering. Using (1.33) and (1.36)
for vertical clustering.
until a termination criterion has been satisfied
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1.3.3 Hybrid Collaborative Clustering

There could be also, situations when both collaborative clustering approaches: vertical

and horizontal are used in the same time. For example, when patterns from various

sources give rise to common subsets of data as well as being positioned in the same

feature space. This leads to a mode called ’hybrid collaborative clustering’. This leads

to the grid mode of clustering, with examples of collaboration shown in Figure 1.9.

Figure 1.9: Illustrative examples of grid-based clustering: (a) data structure with a
dominant component of vertical clustering; (b) data structure with a dominant compo-

nent of horizontal clustering and some linkages of vertical clustering.

In this case, the objective function formulated for the ii-th pattern as a subject of

minimization is an aggregation (sum) of the components used in the previous modes of

collaborative clustering. In general, we have

Q[ii] =

N∑
k=1

c∑
i=1

u2
ik[ii]d

2
ik[ii] +

P∑
jj=1
jj 6=ii
D1

α[ii, jj]

N∑
k=1

c∑
i=1

(uik[ii]− uik[jj])2d2
ik[ii]

+
P∑

jj=1
jj 6=ii
D2

β[ii, jj]
c∑
i=1

N [ii]∑
k=1

u2
ik[ii]‖vi[ii]− vi[jj]‖2

(1.37)
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using the same notation used earlier. Note that the summation points at the corre-

sponding data sets (operating in either mode of collaboration), that is, D1 (in Eq. 1.37)

involves all data sets that operate in the horizontal mode of clustering, whereas D2

concerns those using vertical collaboration.

We are not going to discuss it in this thesis, it may be a perspective for the future work.

1.4 Quantifying the Collaboration Effect

There are two levels of assessing a collaboration effect occurring between the clusters,

namely the level of data and the level of information granules.

The level of data

The level of data involves a comparison carried out at the level of numeric representa-

tives of the clustering, that is the prototypes. The impact of the collaboration is then

expressed in the changes of the prototypes occurring as a result of the collaboration.

The level of information granules

At this level (partition and fuzzy sets), the effect of collaboration is expressed in two

ways as show schematically in Figure 1.10 where the collaboration involves two data sets

(viz. P = 2) indicated by ii and kk . Similarly, by ii-ref and kk-ref we denote the

results resulting from the clustering carried out without any collaboration.

Figure 1.10: Quantification of the collaboration at the level of information granules
(results).
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The first measure compares the membership degrees of each data pattern k to each

clusters i before (uik[ii-ref]) and after (uik[ii]) the collaboration. The overall impact on

the partition matrices in a specific data site ii is expressed as

∆[ii] =
1

N

N∑
k=1

uik[ii]− uik[ii-ref] (1.38)

The average collaboration effect on the membership degrees for all data sites can then

be computed as

∆ =
1

P

P∑
ii=1

∆[ii] (1.39)

A significant variation in the membership degrees for each data site before and after the

collaboration (high value of ∆) translates into a stronger collaborative impact.

The second measure expresses how close two partition matrices are as a result of the

collaboration. The pertinent measure reads as an average distance between the partition

matrices U [ii] = {uik[ii]} and U [kk] = {uik[kk]}, that is

δ[ii, kk] =
1

N × c

N∑
k=1

c∑
i=1

uik[ii]− uik[kk] (1.40)

Evidently, the stronger the collaboration (higher values of the corresponding α), the

lower the values of δ. In this sense, this index helps us translate the collaboration

parameters α into the effective changes in the membership grades (that are the apparent

final result of such interaction).

1.5 Estimation of the Collaboration Coefficients

The collaborative clustering is aimed at forming a consensus and each external source

of information should be used to refine the already developed structure within the given

data set. In the previous section, two measures of the collaboration effect are presented.

Note that once the level of collaboration (the coefficients α) increases, the structures

within data sets start to exhibit smaller differences. The level of collaboration can be

adjusted, allowing for a certain maximal value of changes of the membership grades.

This is in case we consider (as presented in this chapter) that the level of collaboration

is fixed by the user.
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The good news would be how the collaboration can improve ALL the results, i.e., how

every clustering helps to improve the overall clustering, accepting good clustering and

rejecting bad clustering. So, an interesting task would be to estimate the level of col-

laboration, or to learn it automatically during the collaboration phase. By doing this,

each coefficient will tell how much a site trust another site, this task forces a sort of

discussion between the data sets before building the consensus, each site estimates the

confidence it gives for all other data sets. After doing this, we can move forward to the

construction of the consensus.

Some papers discussed this subject and proposed different methods to do the task [73],

[65], [56], [51].

In our paper [73], we presented a collaborative clustering scheme based on SOM as a local

phase of clustering, we estimated the coefficients of collaboration by using a gradient [4]

algorithm. More details are presented in Chapter 2.

In [56], the coefficients of collaboration are estimated using a Particle Swarm Optimiza-

tion (PSO [110]) driven algorithm. Later in his work, [51] used a multi-PSO to do the

task.

In [181], a method for calculating the coefficients of collaboration automatically is pre-

sented, basing on a similarity measure of partition matrices. This method, however,

works only for horizontal collaboration.

1.6 Summary

A cluster is a collection of data objects that are similar to one another within the same

cluster and are dissimilar to the objects in other clusters. The process of grouping a set

of physical or abstract objects into classes of similar objects is called clustering. Cluster

analysis has extensive applications, including business intelligence, image pattern recog-

nition, Web search, biology, and security. Cluster analysis can be used as a standalone

data mining tool to gain insight into the data distribution, or as a preprocessing step

for other data mining algorithms operating on the detected clusters. Clustering is a dy-

namic field of research in data mining. It is related to unsupervised learning in machine

learning.

Many clustering algorithms have been developed. These can be categorized from several

orthogonal aspects such as those regarding partitioning criteria, separation of clusters,

similarity measures used, and clustering space. This chapter discusses two fundamental

clustering partitioning methods.
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So far, clustering methods performs on a single data set, but recent applications require

data sets distributed among several sites. So, communication between the different data

sets is necessary, while respecting the privacy of every site, i.e. sharing data between

sites is not allowed.

Collaborative clustering is useful to achieve interaction between different sources of in-

formation for the purpose of revealing underlying structures and regularities within data

sets. It can be treated as a process of consensus building where we attempt to reveal a

structure that is common across all sets of data. The introduced models of horizontal

and vertical clustering achieve an active form of collaboration. Vertical, horizontal, and

hybrid clustering are essential mechanisms of communication between the clusters. The

level of granularity at which the communication takes place is a useful and practical way

of retaining the features of data security and confidentiality.

An interesting task to do is to estimate the level of collaboration (coefficients of collab-

oration) to evaluate the trust between the different data sets. It is an important task to

do before moving forward to the built of consensus.

An inconvenience of the algorithm proposed in this chapter is that FCM does not provide

any type of visualization once the dimension of the feature space is higher than 3. In this

thesis, we present a formalism of collaborative clustering using methods of topological

clustering, giving advantage of visualization. We started by applying the collaborative

clustering using Self-Organizing Maps (SOM) [115] as local step of clustering, the pro-

posed formalism is presented in next chapter. In chapter 3, we applied the collaborative

clustering scheme using a generative model, which is the Generative Topographic Map-

ping (GTM) [25], instead of SOM. GTM was proposed as a probabilistic counterpart of

SOM. But GTM suffers from some limitations, especially the risk of over-fitting. An el-

egant solution to this limitation is to apply a Variational Bayesian technique to GTM, it

was presented in [139] and called VBGTM. In chapter 4, we present a quick explanation

of the Variational Bayesian techniques and show a collaborative clustering scheme using

VBGTM. In addition, we propose a method to estimate the collaboration level during

the learning process.



Chapter 2

Collaborative Clustering using

Self-Organizing Maps

2.1 Introduction

A large variety of clustering methods has been developed. Several of these methods

are based on very simple fundamentals, yet very effective idea, namely describing the

data under consideration by a set of prototypes, which capture characteristics of the

data distribution (like location, size, and shape), and to classify or divide the data

set based on the similarity of the data points to these prototypes. The approaches

relying on this idea differ mainly in the way in which prototypes are described and

how they are updated during the model construction step. One of the most known

methods is the Self-Organizing Maps (SOM), introduced by Kohonen [115]. It has

been widely used for unsupervised classification and visualization of multidimensional

data sets. In this chapter, we present our algorithm of collaborative clustering for the

horizontal and vertical cases of collaboration, using SOMs as local step for clustering.

The chapter is organized as follows: we present an introduction of SOM algorithm, then

the principle of collaborative clustering using SOMs, we enrich our algorithm with a step

in the collaboration phase, which is estimating the coefficients of collaboration during

the process of collaboration. Finally we present our experimental results.

2.2 Self-Organizing Maps (SOM)

The self-organizing maps introduced by Kohonen ([114], [115], [116]) is a popular nonlin-

ear technique for unsupervised classification and has been widely used for dimensionality

43
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reduction and data visualization, with a very low computational cost. There is a wide

variety of algorithms for topological maps derived from the original model proposed

firstly by Kohonen ([25], [182], [172], [103]). These models are different from each other,

but share the same idea to present the large data in a simple geometric relationship on

a reduced topology.

The model can be seen as a K-means algorithm with topological constraints, usually with

a better overall clustering performance [40], it consists in the attempting of clustering

a learning set A = {x(i) ∈ Rn, i = 1, ..., N} where x(i) = (x
(i)
1 , x

(i)
2 , ..., x

(i)
j , ..., x

(i)
n ).

This classical model consists in a discrete set C of cells (neurons) called map. This

map has a discrete topology defined by undirected graph; usually it is a regular grid

in two dimensions. The influence notion of a cell k on a cell l, which depends on their

proximity, is presented by a kernel function K (K ≥ 0 and lim|x|→∞K(x) = 0). The

mutual influence between two units k and l is defined by the function Kk,l(.):

Kij =
1

λ(t)
exp

(
−d

2
1(i, j)

λ2(t)

)
(2.1)

where λ(t) is the temperature’s function modeling the neighborhood’s range:

λ(t) = λi(
λf
λi

)

t

tmax (2.2)

with λi and λf are the initial temperature and the final temperature (for example λi = 2

and λf = 0.5) and tmax is the maximum allotted time (number of iterations). The

Manhattan distance d1(., .) between two map units r and s of coordinates (k,m) and

(i, j), is defined by:

d1(r, s) = |i− k|+ |j −m| (2.3)

The function Kk,l(.) is a Gaussian introduced for each neuron of the map with a global

neighborhood. The size of this neighborhood is limited by the standard Gaussian devi-

ation λ(t). The units that are beyond this range have a significant influence (but not

null) on the considered cell. The range λ(t) is a decreasing function with time, so, the

neighborhood function Kk,l(.) will have the same trend with a standard deviation de-

creasing in time. For each cell k of the grid is associated a reference (prototype) vector

w(k) = (w
(k)
1 , w

(k)
2 , . . . , w

(k)
i , . . . , w

(k)
n ) of size n. We note by W the set of referents. The

learning of this model will be reached by minimizing the distance between input pattern
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Figure 2.1: Architecture of SOM: Mapping the data space to the self-organizing map
(left). SOM prototypes update (right). [75]

and prototypes of the map, weighted by the neighborhood. A gradient algorithm [4] can

be used for this purpose. The criterion to minimize in this case is:

R(χ,W) =
N∑
i=1

C∑
j=1

Kj,χ(x(i))‖x
(i) −w(j)‖2 (2.4)

where χ assigns each pattern (observation) x(i) to a single cell of the SOM.

At the end of the learning, the SOM determines a data partition in C groups associated

with each cell k of the map. Each group or cell is associated with a reference vector

w(k) ∈ Rn, which will be the representative, the ”local mean” or the prototype of the

observation’s set associated with this cell. It was proven in [34] that the generated SOM

is optimally topology-preserving in a very general sense.

2.2.1 Understanding SOM visualization

A SOM may be the most compact way to represent a data distribution. Because SOMs

represent complex data in an intuitive two-dimensional perceptional space, data depen-

dencies can be understood easily if one is familiar with the map visualization. The

following example provides an intuitive explanation of the basics of SOM visualization.
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Figure 2.2: Example of SOM visualization

Imagine 1000 people on a football field. We define a number of attributes (e.g. gender,

age, family status, income) and ask the people on the field to move closer to other people

who are most similar to them according to all these attributes. After a while, everyone

on the field is surrounded by those people that share similar attribute values. This

configuration is an example of a two-dimensional representation of multi-dimensional

data points.

Now imagine that, looking over the crowd, you ask everyone to raise a colored flag

according to their age (blue for <20, green for 20 to 29, yellow for 30 to 39, orange for

40 to 49, and red for 50 and over). The pattern of color that you see corresponds to

the distribution of the attribute Age in the football field. Next you ask the crowd to

remain in place and raise a colored flag according to their income, and so on for other

attributes. For each attribute, you take a photo of the color distribution in the field.

This color pattern corresponds to the color-coded maps visualized by SOM.

Finally, you can put all the photos side by side and inspect the dependencies. For

example, you might see clusters of younger people (blue/green) as well as clusters of

older people (orange/red). Further, you could detect some correlation between age

clusters and income clusters: e.g., higher incomes occur in older groups. Continuing in

this manner, you will discover further relationships among the defined attributes.

To better understand the vizualisation of SOM, a Matlab [130] toolbox for SOM [175]

is available with some demos showing different examples and applications.

2.2.2 Analytical applications based on SOMs

The unique SOM representation and visualization are powerful instruments for data

modeling and exploration. However, the above mentioned visualization is just the start-

ing point for much more extensive and in-depth data mining and predictive modeling.

The following have been chosen from a multitude of analytics capabilities to provide an

overview of some prominent fields of application.
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• Clustering: SOMs simplify clustering and allow the user to identify homogenous

data groups visually, [174][61] [169] [40].

• Prediction: A combination of the non-linear data representation of the SOM with

linear statistical prediction methods for each homogeneous sub-group improves

prediction accuracy, [14] [176].

• Data representation: Data are highly compressed using statistical methods, al-

lowing a single map that uses only a few megabytes of space to represent databases

that are orders of magnitude larger, [107] [173].

• Real-time classification: New data can be located in the map extremely quickly

up to 100,000 previously unseen data records can be classified per second allowing

real-time assessment of new data, [47].

2.3 Topological Collaborative Clustering based on SOM

While collaboration can include a variety of detailed schemes, as we saw in the previous

chapter, two of them are the most essential. We refer to them as horizontal and vertical

modes of collaboration or simply horizontal and vertical clustering. More descriptively,

given data sets X[1], X[2], . . . , X[P ] where P denotes their number and X[ii] stands for

the ii-th data set (we adhere to the practice of using square brackets to identify a certain

data set).

In horizontal clustering we have the same objects that are described in different feature

spaces. In other words, these could be the same collection of patients whose records

are developed within each medical institution. In horizontal clustering we deal with the

same patterns and different feature spaces. The communication platform is based on

through the partition matrix (Kernels in case of SOM). As we have the same objects, this

type of collaboration makes sense. The confidentiality of data has not been breached: we

do not operate on individual patterns but on the resulting information granules (fuzzy

relations, that is, partition matrices). As this number is far lower than the number of

data, the low granularity of these constructs moves us far from the original data.

Vertical clustering is complementary to horizontal clustering. Here the data sets are

described in the same feature space but deal with different patterns. In other words, we

consider that X[1], X[2], . . . , X[P ] are defined in the same feature space, while each of

them consists of different patterns, dim(X[1]) = dim(X[2]) = . . . = dim(X[P ]), while

X[ii] 6= X[jj]. In vertical clustering we are concerned with different patterns but the

same feature space. Hence communication at the level of the prototypes (which are
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high-level representatives of the data) becomes feasible. Again, because of the aggregate

nature of the prototypes, the confidentiality requirement has been satisfied.

2.3.1 Topological Horizontal Collaboration

Here we formulate the underlying optimization problem implied by objective function-

based clustering, and derive the detailed algorithm. There are P sets of data located

in different spaces (viz., the patterns there are described by different features). As

each subset deals with the same patterns, the number of elements in each subset is

the same and is equal to N . What we are going to propose is that the collaboration

between two subsets is established through an interaction coefficient which describes the

intensity of the interaction and able to be estimated. Let α
[jj]
[ii] and β

[jj]
[ii] non-negative

values. The higher the value of the interaction (collaboration) coefficients, the stronger

the collaboration between the corresponding data sets. In this paper, we will estimate

these coefficients during the collaboration phase of the algorithm. The main idea of the

horizontal collaboration between different SOM is that if an observation from the ii-th

data set is projected on the j-th neuron in the ii-map, then that same observation in

the jj-th data set will be projected on the same j neuron of the jj-th map or one of its

neighboring neurons. In other words, neurons that correspond to different maps should

capture the same observations. To accommodate the collaboration mechanism in the

optimization process, the objective function of the SOM is expanded into the form

R
[ii]
H (χ,w) = α

[jj]
[ii]

N∑
i=1

|w|∑
j=1

K[ii]
σ(j,χ(xi))

‖x[ii]
i − w

[ii]
j ‖

2

+
P∑

jj=1
jj 6=ii

β
[jj]
[ii]

N∑
i=1

|w|∑
j=1

(
K[ii]
σ(j,χ(xi))

−K[jj]
σ(j,χ(xi))

)2
‖x[ii]

i − w
[ii]
j ‖

2

(2.5)

where P represents the number of data sets (or the classifications), N the number of

observations, |w| is the number of prototype vectors from the ii-th SOM map (the

number of neurons). χ (xi) is the assignment function which allows to find the Best

Matching Unit (BMU), it selects the neuron with the closest prototype from the data

xi using the Euclidean distance.

χ(xi) = argmin
(
‖xi − wj‖2

)
(2.6)
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σ(i, j) represents the distance between two neurons i and j from the map, and it is

defined as the length of the shortest path linking cells i and j on the SOM map.

K[cc]
σ(i,j) is the neighborhood function on the SOM [cc] map between two cells i and j. The

nature of the neighborhood function K[cc]
σ(i,j) is identical for all the maps, but its value

varies from one map to another: it depends on the closest prototype to the observation

that is not necessarily the same for all the SOM maps.

Algorithm 4: The horizontal SOM collaboration algorithm: HCo-SOM

Random the collaboration matrix α
[jj]
[ii]

1. Local step:
for t = 1 to Niter do

For each DB[ii], ii = 1 to P :
Find the prototypes minimizing the classical SOM

w∗ = arg min
w

 N∑
i=1

|w|∑
j=1

K[ii]
σ(j,χ(xi))

‖x[ii]
i − w

[ii]
j ‖

2


2. Collaboration step:
For the horizontal collaboration of the [ii] map with the [jj] map:
Collaboration Phase 1:
Update the prototypes of the [ii]-th map minimizing the objective function of the
horizontal collaboration using the expression 2.9
Collaboration Phase 2:
The confidence exchange parameter is adapted using the following expression:

α
[jj]
[ii] (t+ 1) = α

[jj]
[ii] (t) +

∑N
i=1

∑|w|
j=1K

[ii]
σ(j,χ(xi))

2
∑N

i=1

∑|w|
j=1

(
K[ii]
σ(j,χ(xi))

−K[jj]
σ(j,χ(xi))

)2

with Kij =
(
K

[ii]
σ(j,χ(xi))

−K [jj]
σ(j,χ(xi))

)2

(2.7)

and β ← α2

The value of the collaboration parameter α is determined during the first phase of the

collaboration step, and β = α2. This parameter allows to determine the importance of

the collaboration between each two data sets, i.e. to learn the collaboration confidence

between all data sets and maps. Its value belongs to [1-10], it is 1 for the neutral link,

when no importance to collaboration is given, and 10 for the maximal collaboration

within a map. Its value varies after each iteration during the collaboration step. In the

case of the horizontal collaborative learning, as is shown in the Algorithm 4, the value of

the collaboration confidence parameter depends on topological similarity between both

collaboration maps. To compute the collaborated prototypes matrix, we use gradient

optimization technique, we obtain the following expression:
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w∗[ii] = arg min
w

[
R

[ii]
H (χ,w)

]
(2.8)

w
∗[ii]
jk (t+ 1) = w

∗[ii]
jk (t) +

N∑
i=1

K
[ii]
σ(j,χ(xi))

x
[ii]
ik +

P∑
jj=1
jj 6=ii

N∑
i=1

α
[jj]
[ii] Lijx

[ii]
ik

N∑
i=1

K
[ii]
σ(j,χ(xi))

+
P∑

jj=1
jj 6=ii

N∑
i=1

α
[jj]
[ii] Lij

(2.9)

where

Lij =
(
K

[ii]
σ(j,χ(xi))

−K [jj]
σ(j,χ(xi))

)2

Indeed, during the collaboration with a SOM map, the algorithm takes into account the

prototypes of the map and its topology (the neighborhood function). The horizontal

collaboration algorithm is presented in Algorithm 4.

2.3.2 Topological Vertical Collaboration

In the case of vertical collaborative clustering, contrarily to the horizontal case, we deal

with different data sets where all patterns are described in the same feature space. We

establish communication at the level of prototypes of the data sets, they are defined in

the same feature space. The basic idea of collaboration in this case is the following: a

neuron j of ii-th SOM map and the same neuron j of the jj-th map should be very

similar using the Euclidean distance. In other words, neurons that correspond to the

different maps should represent groups of similar observations. The proposed objective

function governing a search for structure in the ii-th data set is

R
[ii]
V (χ,w) = α

[jj]
[ii]

N∑
i=1

|w|∑
j=1

K[ii]
σ(j,χ(xi))

‖x[ii]
i − w

[ii]
j ‖

2

+
P∑

jj=1
jj 6=ii

β
[jj]
[ii]

N [ii]∑
i=1

|w|∑
j=1

(
K[ii]
σ(j,χ(xi))

−K[jj]
σ(j,χ(xi))

)2
‖w[ii]

j − w
[jj]
j ‖

2

(2.10)

where P represents the number of data sets, N - the number of observations of the ii-th

data set, |w| is the number of prototype vectors from the ii-SOM map and which is the

same for all the maps.
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We will estimate the coefficients of collaboration during the collaboration phase, as same

as we did in the horizontal case.

Using the gradient optimization procedure, we obtain the following formulas to compute

the prototypes matrix:

w∗[ii] = arg min
w

[
R

[ii]
V (χ,w)

]
(2.11)

w
∗[ii]
jk (t+ 1) = w∗[ii](t) +

N∑
i=1

K
[ii]
σ(j,χ(xi))

x
[ii]
ik +

P∑
jj=1
jj 6=ii

N [ii]∑
i=1

α
[jj]
[ii] Lijw

[jj]
ik

N∑
i=1

K
[ii]
σ(j,χ(xi))

+
P∑

jj=1
jj 6=ii

N∑
i=1

α
[jj]
[ii] Lij

(2.12)

where

Lij =
(
K

[ii]
σ(j,χ(xi))

−K [jj]
σ(j,χ(xi))

)2

The learning algorithm in this case is presented by Algorithm 5.

Algorithm 5: Vertical Collaboration algorithm of SOM: VCo-SOM

Choose randomly the collaboration matrix α
[jj]
[ii]

1. Local step:
for t = 1 to Niter do

For each DB[ii], ii = 1 to P :
Find the prototypes minimizing the classical SOM objective function:

w∗ = arg min
w

 N∑
i=1

|w|∑
j=1

K[ii]
σ(j,χ(xi))

‖x[ii]
i − w

[ii]
j ‖

2


2. Collaboration step:
For the vertical collaboration of the [ii]-th map with the map [jj]:
Collaboration phase 1:
Update the prototypes of the [ii] map minimizing the objective function of the vertical
collaboration using the expression 2.12.
Collaboration phase 2:
The collaboration confidence parameter is adapted using the following expression:

α
[jj]
[ii] (t+ 1) = α

[jj]
[ii] (t) +

∑N
i=1

∑|w|
j=1K

[ii]
σ(j,χ(xi))

‖x[ii]
i − w

[ii]
j ‖2

2
∑N

i=1

∑|w|
j=1

(
K

[ii]
σ(j,χ(xi))

−K [jj]
σ(j,χ(xi))

)2
‖w[ii]

j − w
[jj]
j ‖2

(2.13)

and β ← α2
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2.4 Experimental Results

To evaluate the proposed collaborative approaches on SOM we applied the algorithms on

several data sets of different size and complexity. The used data sets are the following:

waveform, Wisconsin Diagnostic Breast Cancer (wdbc), Isolet, Madelon and Spambase.

We will give more details on the results obtained on the waveform data set to illustrate

the principle of the proposed approaches, especially in the validation since the waveform

data set contains 21 relevant variables and 19 noisy variables, so it is useful to show the

effect of the collaboration in the horizontal approach.

2.4.1 Validation criteria

As criteria to validate the approaches we use the quantization error (distortion) on many

maps of different sizes and the purity index for each SOM.

Quantization error

The quantization error [164] is the most used criteria to evaluate the quality of a Ko-

honen’s topological map. This error measures the average distance between each data

vector and its winning neuron, e.g. Best Matching Unit (BMU). It is calculated using

the following expression:

qe =
1

N

∑
‖x(i) − wxi‖2 (2.14)

where N represents the number of data vectors and wx(i) is the nearest prototype to the

vector xi. The values of the quantization error depends on the size of data sets and on

the sizes of built maps, so these values can alter according to the data set.

Purity index

The purity index of a map is equal to the average purity of all the clusters of the map.

Larger purity values indicate better clustering.

Assuming we have K clusters cr, r = 1, . . . ,K. First, we calculate the purity of each

cluster, which is given by:

Pu(cr) =
1

|cr|
maxi(|cir|)



Chapter 2. Collaborative Clustering using Self-Organizing Maps 53

where |ck| is the total number of data associated to the cluster ck, |cir| is the number of

objects in cr with class label i.

In other words, Pu(cr) is a fraction of the overall cluster size that the largest class of

objects assigned to that cluster represents. Therefore, the overall purity of the clustering

solution is obtained as a weighted sum of the individual cluster purities and given as:

Purity =
K∑
r=1

|cr|
N
Pu(cr) (2.15)

where K is the number of clusters and N is the total number of objects.

2.4.2 Data sets

All data sets are available on UCI Machine Learning Repository [7].

• Waveform data set : This data set consists of 5000 instances divided into 3 classes.

The original base included 40 variables, 19 are all noise attributes with mean 0

and variance 1. Each class is generated from a combination of 2 of 3 ”base” waves.

• Wisconsin Diagnostic Breast Cancer (WDBC): This data has 569 instances with

32 variables (ID, diagnosis, 30 real-valued input variables). Each data observation

is labeled as benign (357) or malignant (212). Variables are computed from a

digitized image of a fine needle aspirate (FNA) of a breast mass. They describe

characteristics of the cell nuclei present in the image.

• Isolet : This data set was generated as follows. 150 subjects spoke the name of

each letter of the alphabet twice. Hence, we have 52 training examples from each

speaker. The speakers are grouped into sets of 30 speakers each, and are referred to

as isolet1, isolet2, isolet3, isolet4, and isolet5. The data consists of 1559 instances

and 617 variables. All variables are continuous, real-valued variables scaled into

the range -1.0 to 1.0.

• Madelon: MADELON is an artificial data set, which was part of the NIPS 2003 [1]

feature selection challenge. This is a two-class classification problem with contin-

uous input variables. MADELON is an artificial data set containing data points

grouped in 32 clusters placed on the vertices of a five dimensional hypercube and

randomly labeled +1 or -1. The five dimensions constitute 5 informative features.

15 linear combinations of those features were added to form a set of 20 (redundant)

informative features. Based on those 20 features one must separate the examples

into the 2 classes (corresponding to the +-1 labels). The order of the features
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and patterns were randomized. The original data set was splitting in three parts

(learning, validation and test), but we used only 2600 observations from learning

set and from validation for which the classes were known.

• SpamBase: The SpamBase data set is composed from 4601 observations described

by 57 variables. Every variable described an e-mail and its category: spam or

not-spam. Most of the attributes indicate whether a particular word or character

was frequently occurring in the e-mail. The run-length attributes (55-57) measure

the length of sequences of consecutive capital letters.

2.4.3 Data partitioning

The data sets mentioned above are unified and need to be divided in subsets in order

to have distributed data ”scenarios”, we will use the vertical and horizontal partitioning

(Figure 2.3). In the horizontal approach we divide the data sets into subsets so that each

algorithm operates on different features considering, however, the same set of individuals.

In the case of vertical approach, each algorithm operates on the same features, dealing,

however, with different set of individuals.

Figure 2.3: Vertical (left) and horizontal (right) partitioning.

2.4.4 Interpretation of the approach on the Waveform data set

We divided the Waveform data set, of size 5000 × 40, into four subsets to assume a

scenario of a horizontal collaboration between four sites. The first and the second part

of the data set 2× (5000× 10) correspond to all the relevant variables and the third and

fourth part 2× (5000× 10) contain noisy variables.

As the first an second data sets are relevant, we expect that the collaboration confidence

within these data sets is bigger than the 3rd and 4th data sets.

We selected maps of size 10 × 10. Then we achieved the local step of the proposed

approach on all four data sets which is to learn a SOM for all observations of these data
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(a) SOM1 (b) SOM2

(c) SOM3 (d) SOM4

Figure 2.4: Visualization of the prototypes after the first local step (classical SOM)

sets. Figure 2.4 represent the prototypes vectors obtained on all the four data sets after

the local step of the new learning approach. X-axis and Y-axis represent respectively the

indices of variables and prototypes for these maps. Figures 2.4(a) and 2.4(b) correspond

to the maps which contain the relevant variables from the waveform data set (1-20)

which are represented by the red (darker) color and have an index of purity of 81.64%

and 81.5% respectively. Knowing that the purity of the map presenting the waveform

data set before partitioning is 85.84% and the quantization error is 6.12.

We applied the second step of our algorithm to exchange the clustering information

between all the maps without using the original data. Figures 2.5(a) and 2.5(b) illustrate

the collaboration between 1st and 4th data sets. After the collaboration, the purity

index decreased to 78.93% because the SOM1 map (81.64%) has used the information

from a noisy map (SOM4) which has very low purity index (40.21%). Contrarily, by

applying the collaboration in the opposite direction, the purity index of the SOM4→1

map increased to 42.45% due to the collaboration with the relevant SOM1 map (75.71%

of purity). The learned collaboration confidence parameter are for the SOM1, α = 6.03,

and for SOM4, α = 1.34 which means that the algorithm gives more importance to
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the collaboration with SOM1 and less importance to SOM4 map which contains noisy

features.

After the collaboration of the ”relevant” second data set with the irrelevant SOM3 map,

the purity index decreased to 78.18% because the SOM2 map (81.5%) has used the

information from a noisy map (SOM3) with a very low purity index (39.37%). Contrarily,

by applying the collaboration step in the opposite direction, the purity index of the

SOM2→3 map increased to 41.67% due to the collaboration with the relevant SOM2

map with a collaboration confidence parameter equals to 5.9 higher than the confidence

parameter with the noisy SOM3 map which value is 1.2.

(a) SOM1→4 (b) SOM4→1

(c) SOM1→3 (d) SOM3→1

Figure 2.5: Horizontal collaboration between the data sets 1 and 4 and between the
1st and 3rd data set.

The collaboration of a noisy map with a relevant map leads to an improvement of its

quality (the purity index). The task of the horizontal collaboration is a complex problem

because in an unsupervised learning process it is difficult to identify relevant maps and we

are forced to make the collaboration in both directions, and here comes the importance

of learning the collaboration confidence parameters, in order to give more importance

to some links.
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Table 2.1 summarizes the purities of the maps and the quantization errors before and

after collaboration. As for the indices of purity, the quantization errors are improv-

ing (decreasing) after a collaboration with a more relevant map. We improve these

indices due to the collaboration process and the learning of the collaboration confidence

parameters, the value of each collaboration parameter is given in Table 2.1.

Table 2.1: Experimental results of the horizontal collaboration approach on the
waveform data set

Horizontal Collaboration

Map Purity qe α

SOM1 81.64 1.98
SOM2 79.61 1.87
SOM3 47.19 2.64
SOM4 40.21 2.41
SOM1→4 62.47 2.14 1.2
SOM4→1 54.63 2.27 5.9
SOM2→3 78.93 2.05 1.34
SOM3→2 41.45 2.35 6.03

Vertical collaboration process: waveform data set

To apply vertical collaboration on waveform data set, we divided the database into 4

subsets, the division was made randomly on the observations. We got 4 databases of

size 1250 × 40 and we chose 1 as the value of collaboration parameter (for the both

directions). The obtained results are summarized in Table 2.2. We note that in most

cases the purity index increases, as is the case for SOM2→1, SOM3→4, SOM1→4 and

SOM4→1 and the collaboration confidence parameters are similar because all the maps

are similar. As all four data sets are described in the same feature space, the purity

of the maps before and after the collaboration is higher compared to the horizontal

collaboration. The quantization error is also improved for the maps obtained after the

collaboration with the maps having a lower quantization error.

2.4.5 Validation on other data sets

We applied the same experimental protocol on other databases and all computed indices

are presented in Tables 2.3 and 2.4, for horizontal and vertical collaboration respectively.

The size of all the used maps were fixed to 10 × 10. From the Tables 2.3 and 2.4, we

note that the purity index of the SOM maps after the horizontal collaboration increases

for each data set and the quantization error decreases. This is due to the use of the
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Table 2.2: Experimental results of the vertical collaboration approach on the wave-
form data set

Vertical Collaboration

Map Purity qe α

SOM1 88.33 5.64
SOM2 87.75 5.83
SOM3 90.04 5.24
SOM4 88.76 5.57
SOM1→2 88.06 5.62 2.2
SOM2→1 87.93 5.79 2.47
SOM3→4 90.12 5.07 2.36
SOM4→3 89.57 5.16 2.27
SOM1→4 88.46 5.59 2.41
SOM4→1 88.57 5.51 2.36

Table 2.3: Experimental results of the horizontal collaborative approach on different
data sets

Data set Map Horizontal Collaboration

Purity qe α

Wdbc SOM1 94.95 1.99
SOM2 97.27 2.07
SOM1→2 95.77 1.84 1.74
SOM2→1 97.32 1.94 2.12

Isolet SOM1 81.20 12.61
SOM2 95.12 14.45
SOM1→2 81.39 12.21 2.05
SOM2→1 96.06 14.18 1.86

Madelon SOM1 60.88 15.58
SOM2 62.64 15.50
SOM1→2 61.01 15.48 1.65
SOM2→1 63.57 15.40 1.79

SpamBase SOM1 83.86 3.45
SOM2 85.72 2.55
SOM1→2 84.17 3.23 1.92
SOM2→1 83.59 2.41 1.59

information from the maps related to the collaborative data sets. Also, we can note that

the values of the collaboration confidence parameters are computed using the topological

structure of the distant maps (distant classifications) and learning these parameters

allows the system to detect the important collaboration links and directions and to

avoid a collaboration with are irrelevant classification.
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Table 2.4: Experimental results of the vertical collaborative approach on different
data sets

Data set Map Vertical Collaboration

Purity qe α

Wdbc SOM1 96.71 90.54
SOM2 97.87 67.60
SOM1→2 96.99 71.49 1.42
SOM2→1 97.49 61.47 4.16

Isolet SOM1 98.85 8.19
SOM2 98.46 8.76
SOM1→2 79.54 8.34 1.93
SOM2→1 98.30 8.78 2.04

Madelon SOM1 69.71 61.23
SOM2 69.87 61.15
SOM1→2 74.57 59.59 2.26
SOM2→1 70.71 59.55 2.39

SpamBase SOM1 76.26 61.83
SOM2 70.43 48.27
SOM1→2 72.28 45.98 1.47
SOM2→1 69.78 36.74 4.25

For the vertical collaboration experiments (Table 2.4 ), the size of all the maps is set to

10× 10, except for the Isolet data set which map size is 5× 5.

For the Wdbc data set, we note that the purity index of the first SOM map after

the collaboration has improved. Contrarily, the purity of the second SOM map after

the collaboration decreased. We also note that the quantization error of the first and

second map has improved after the collaboration. For the Isolet data set, we do not

observe any improvement on the maps obtained after the collaboration compared with

that before. The purity of the maps and the quantization errors after the collaboration

are improved for the Madelon dataset. For the Spam data set, the quantization error

has improved. For the vertical collaboration approach, these results show that the

purity of maps and the quantization error is not always improved after collaborating

the maps, and depends strongly on the relevance of the collaborative map (the quality

of the collaborative classification) and on the confidence on this map (the collaboration

parameter). This conclusion corresponds to the intuitive understanding of the principle

and to the consequences of such cooperation.
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2.5 Conclusion

In this chapter, we proposed a topological collaborative clustering based on SOM, for

both cases: horizontal and vertical. Plus a methodology to learn the collaboration

confidence parameters.

Collaborative clustering allows the interaction between the different sources of informa-

tion for the purpose to reveal (to detect) the underlying structures and the regularities

from the data sets. It can be treated as a process of consensus building where we search

for a structure that is common to all the data sets. The impact of the collaboration

matrix (the collaboration confidence values) over the overall effect of the collaboration

is very important since in an unsupervised learning model there is no information about

the data structure. The proposed horizontal learning approach is adapted for collabora-

tion between data sets that describe the same observations but with different variables,

and in this case choosing of the value of the collaboration confidence becomes very

important as the data sets are in different feature spaces. Contrarily, the vertical col-

laborative learning approach is adapted to the problem of collaboration of several data

sets containing the same variables but with different observations.

Since collaborative clustering is based on an specific algorithm in its local phase, we

believe that switching between algorithms, e.g. choosing a better clustering algorithm,

in the local phase affects the final results obtained by the collaboration phase, hence

leads to a better construction of the consensus.

Despite that SOM has become very popular and was applied in several domains, SOM

suffers from some limitations. That is why we decided to present a collaborative clus-

tering scheme using a concurrent method to SOM, which is the Generative Topographic

Mapping (GTM) [25]. In next chapter, we present the difference between SOM and

GTM, then we present the collaborative clustering algorithm based on GTM, [66, 67].



Chapter 3

Collaborative Clustering using A

Generative Model

3.1 Introduction

In the previous chapter, we presented an algorithm of collaborative clustering based on

SOM as an algorithm of clustering in the local phase. Although the SOM has been

subject of a considerable amount of research and applied to a wide range of tasks, there

are still a number of problems that remain unresolved [115]. Some of these problems

are:

• The SOM does not define a density model in the data space. Attempts has been

made to formalize the relationship between the distribution of reference vectors

and the distribution of the data, but has only succeeded under very restricted

conditions [158, 159].

• There is no general guarantee the training algorithm will converge.

• There is no theoretical framework based on which appropriate values for the model

parameters can be chosen.

• For SOM the choice of how the neighborhood function should shrink over time

during training is arbitrary, and so this must be optimized empirically [26].

• It is not obvious how SOM models should be compared to other SOM models or

to models with different architectures.

• The mapping from the topographic space to the data space in the original SOM

is only defined at the locations of the nodes.

61
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These problems would be resolved in a probabilistic setting, i.e. using generative

models. In a generative model the data is assumed to arise by first probabilistically

picking a point in a low-dimensional space, mapping the point to the observed high-

dimensional input space (via a smooth function), then adding noise in that space. The

parameters of the low-dimensional probability distribution, the smooth map and the

noise are all learned from the training data using the Expectation-Maximization (EM)

algorithm.

Generative models are defined stochastically and try to estimate the distribution of data

by defining a density model with low intrinsic dimensionality within the multivariate

data space. Possibly, Factor Analysis (FA) [113, 124] is the most widely used generative

model. It must be noted though, that FA is sometimes confused with rotated variations

of PCA [100] and both are used in similar applications.

Most of the interest in generative models stems from the fact that they fit naturally into

the Statistical Machine Learning category and, in general, to the much wider framework

of probability theory and statistics. Furthermore, generative models can directly make

use of well-founded techniques for fitting them to data, combining different models,

missing data imputation, outlier detection, etc.

GTM is a non-linear generative model introduced in [25]. In short, it was defined to

retain all the useful properties of Kohonen’s Self-Organizing Maps (SOM) [114], such as

the simultaneous clustering and visualization of multivariate data, while eluding most

of its limitations through a fully probabilistic formulation.

Basing on the above, we decide to choose the GTM [25–27] as a local step for collabora-

tive clustering. In this chapter, we present the standard model of GTM, then we present

an approach to use GTM in collaborative clustering [66, 67].

3.2 Expectation-Maximization (EM)

In some ways, the Expectation Maximization (EM) [50] approach to clustering can be

seen as an extension of K-means, with a more solid theoretical underpinning. What

is the model that K-means is applying to the data? It is that the each data point

belongs to one of K clusters that are defined by a set of K points. EM relaxes the

assumption that every point comes from a single cluster, and instead models the data

as the result of some generative process. For example, typically EM uses a model that

says that the data is being generated by a mixture of Gaussian (Normal) distributions.

Each distribution gives a probability density over the whole of the space for generating

points. If there are K such distributions, then the probability density function comes
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from taking the scaled union of these individual densities. Each of the distributions

can have different parameters, in the case of Gaussians, these need only be the mean

and standard deviation for one dimension; for higher dimensions, then there are more

parameters to describe the shape of the distribution.

The Expectation Maximization stage is, given the model and the data, to find the

settings of the parameters of the model that best explain the data. That is, they are

the most likely settings of the parameters given the data. The result of this means that

we do not allocate points to clusters but rather for each data point we can evaluate the

produced model at that point and see the relative probabilities that this point came from

each of the K different distributions. It is this model which represents the clustering,

and which can be used to predict future outcomes.

In order to generate the maximum likelihood settings of the parameters, various algo-

rithms can be employed which, at a high level, resemble K-means. From an initial guess

of the settings of the parameters, successive passes over the data refine these guess and

improve the fit of the data to the current model. The details depend on the distributions

used in the model (Gaussian, Log-Normal, Poisson, Discrete). For a model with a single

Gaussian distribution, the sample mean is the maximum likelihood estimator. For two or

more Gaussians, one can write out the expression for the mixture of these distributions,

and, based on the current estimates of the parameters, compute the likelihood that each

input point was generated by each of the distributions. Based on these likelihoods, we

can create new settings of the parameters, and iterate. Each step increases the likeli-

hood of the observed data given the current parameters, until a maximum is reached.

Note that this maximum may be a local maximum, rather than the global maximum.

The maximum that is reached depends on the initial setting of parameters. Hence we

see the connection to K-means, the principal differences being the greater emphasis on

an underlying model, and the way that each point has a probability or likelihood of

belonging to each cluster, rather than a unique parent cluster.

3.2.1 The Gaussian Mixtures

The Gaussian, also known as the normal distribution, is a widely used model for the

distribution of continuous variables. In the case of a single variable x, the Gaussian

distribution can be written in the form

N (x|m,σ2) =
1

(2πσ2)1/2
exp

{
− 1

2σ2
(x−m)2

}
(3.1)

where m is the mean and σ2 is the variance.
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Figure 3.1: Plots of the ’old faithful’ data in which the blue curves show contours of
constant probability density. On the left is a single Gaussian distribution which has
been fitted to the data using maximum likelihood. On the right the distribution is
given by a linear combination of two Gaussians which has been fitted to the data by
maximum likelihood using the EM technique, and which gives a better representation

of the data. [24]

For a D-dimensional vector x, the multivariate Gaussian distribution take the form

N (x|µ,Σ) =
1

(2π)D/2
1

|Σ|1/2
exp

{
−1

2
(x− µ)TΣ−1(x− µ)

}
(3.2)

where µ is a D-dimensional mean vector, Σ is a D×D covariance matrix, and |Σ| denotes

the determinant of Σ.

The Gaussian distribution arises in many different contexts and can be motivated from a

variety of different perspectives. But it suffers from significant limitations when it comes

to modeling real data sets. Consider the example shown in Figure 3.1 applied on the ’Old

Faithful’ data set described previously in this chapter. We see that the data set forms

two dominant clumps, and that a simple Gaussian distribution is unable to capture this

structure, whereas a linear superposition of two Gaussians gives a better characterization

of the data set. Such superpositions, formed by taking linear combinations of more basic

distributions such as Gaussians, can be formulated as probabilistic models known as

mixture distributions [131, 133].

We therefore consider a superposition of K Gaussian densities of the form

p(x) =

K∑
k=1

πkN (x|µk,Σk) (3.3)
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which is called a mixture of Gaussians. Each Gaussian density N (x|µk,Σk) is called a

component of the mixture and has its own mean µk and covariance Σk.

The parameters πk are called mixing coefficients. They verify the conditions

K∑
k=1

πk = 1 and 0 ≤ πk ≤ 1 (3.4)

In order to find an equivalent formulation of the Gaussian mixture involving an explicit

latent variable, let us introduce a K-dimensional binary random variable z having a 1-

of-K representation in which a particular element zk is equal to 1 and all other elements

are equal to 0. The values of zk therefore satisfy zk ∈ {0, 1} and
∑

k zk = 1, and we see

that there are K possible states for the vector z according to which element is nonzero.

The marginal distribution over z is specified in terms of the mixing coefficients πk , such

that

p(zk = 1) = πk

The conditional distribution of x given a particular value for z is a Gaussian

p(x|zk = 1) = N (x|µk,Σk) (3.5)

The joint distribution is given by p(z)p(x|z), and the marginal distribution of x is then

obtained by summing the joint distribution over all possible states of z to give

p(x) =
∑
z

p(z)p(x|z) =

K∑
k=1

πkN (x|µk,Σk) (3.6)

Now, we are able to work with the joint distribution p(x|z) instead of the marginal

distribution p(x). This leads to significant simplification, most notably through the

introduction of the Expectation-Maximization (EM) algorithm.

Another quantity that play an important role is the conditional probability of z given

x. We shall use r(zk) to denote p(zk = 1|x), whose value can be found using Bayes’

theorem
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r(zk) = p(zk = 1|x) =
p(zk = 1)p(x|(zk = 1)
K∑
j=1

p(zj = 1)p(x|(zj = 1)

=
πkN (x|µk,Σk)
K∑
j=1

πjN (x|µj ,Σj)

(3.7)

We shall view πk as the prior probability of zk = 1, and the quantity r(zk) as the corre-

sponding posterior probability once we have observed x. As we shall see in next section,

r(zk) can also be viewed as the responsibility that component k takes for ’explaining’

the observation x.

3.2.2 EM for Gaussian Mixtures

Suppose we have a data set of observations {x1, . . . , xN}, which gives a data set X of

size N × D like described previously in this chapter, and we wish to model this data

using a mixture of Gaussians. Similarly, the corresponding latent variable are denoted

by an N ×K matrix Z with rows zKn .

If we assume that the data points are i.i.d. (independent and identically distributed),

then we can calculate the log of the likelihood function, which is given by

ln p(X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}
(3.8)

An elegant and powerful method for finding maximum likelihood solutions for this mod-

els with latent variables is called the expectation-maximization algorithm, or EM algo-

rithm [50, 132].

Setting the derivatives of ln p(X|π, µ,Σ) in (3.8) respectively with respect to the µk,Σk

and πk to zero, we obtain

µk =
1

Nk

N∑
n=1

r(znk)xn (3.9)

where

Nk =

N∑
n=1

r(znk)

is the effective number of points assigned to cluster k.
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Σk =
1

Nk

N∑
n=1

r(znk)(xn − µk)(xn − µk)T (3.10)

and

πk =
Nk

N
(3.11)

We first choose some initial values for the means, covariances, and mixing coefficients.

Then we alternate between the following two updates that we shall call the E step

and the M step. In the expectation step, or E step, we use the current values for the

parameters to evaluate the posterior probabilities, or responsibilities, given by Eq. 3.7.

We then use these probabilities in the maximization step, or M step, to re-estimate the

means, covariances, and mixing coefficients using the results in Equations 3.9, 3.10 and

3.11. The algorithm of EM for mixtures of Gaussians is shown in Algorithm 6.

The EM algorithm for a mixture of two Gaussians applied to the rescaled Old Faithful

data set is illustrated in Figure 3.2. In plot (a) we see the initial configuration, the

Gaussian component are shown as blue and red circles. Plot (b) shows the result of the

initial E step where we update the responsibilities. Plot (c) shows the M step where

we update the parameters. Plots (d), (e), and (f) show the results after 2, 5, and 20

complete cycles of EM, respectively. In plot (f) the algorithm is close to convergence.

3.2.3 The EM Algorithm in General

In this section, we present the general view of the EM algorithm. The goal of the EM

algorithm is to find maximum likelihood solutions for models having latent variables.

We denote X the data matrix, Z the latent variables matrix. Let us denote θ the set of

all model parameters. Then the log likelihood function is given by

ln p(X|θ) = ln

{∑
Z

p(X,Z|θ)

}
(3.12)

Note that if the latent variables are continuous we get similar equations, we only replace

the over Z with an integral.

The presence of the sum prevents the logarithm from acting directly on the joint distri-

bution, resulting in complicated expressions for the maximum likelihood solution.

Suppose that, for each observation in X, we were told the corresponding value of the

latent variable Z. We shall call {X,Z} the complete data set, and we shall refer to the

actual observed data X as incomplete. The likelihood function for the complete data
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Algorithm 6: The EM for Gaussian Mixtures

Data: X = {xkd, k = 1, . . . , N, d = 1, . . . , D} where D is the dimension of the feature
space. Z the latent variables matrix.

Result: Posterior probabilities r(znk) and the model parameters µ,Σ and π.
Initialization:
-Choose a value for K, 1 < K < N
-Initialize the means µk, the covariances Σk and mixing coefficients πk randomly
-Evaluate the initial value of the log likelihood.
Learning: repeat
for l = 1, 2, . . . do

-E step: Evaluate the responsibilities using the current parameter values:

r(znk) =
πkN (x|µk,Σk)
K∑
j=1

πjN (x|µj ,Σj)

-M step: Re-estimate the parameters using the current responsibilities:

µk =
1

Nk

N∑
n=1

r(znk)xn

Σk =
1

Nk

N∑
n=1

r(znk)(xn − µk)(xn − µk)T

πk =
Nk

N

where Nk =
N∑
n=1

r(znk)

-Evaluate the log likelihood

ln p(X|π, µ,Σ) =
N∑
n=1

ln

{
K∑
k=1

πkN (xn|µk,Σk)

}

Until convergence of either the parameters or the log likelihood. If the convergence
criterion is not satisfied return to E step.

set simply takes the form ln p(X,Z|θ), and we shall suppose that maximization of this

complete-data log likelihood function is straightforward.

In practice, however, we are not given the complete data set {X,Z}, but only the

incomplete data X. Our state of knowledge of the values of the latent variables in

Z is given only by the posterior distribution p(Z|X, θ). Because we cannot use the

complete-data log likelihood, we consider instead its expected value under the posterior

distribution of the latent variable, which corresponds to the E step of the EM algorithm.

In the subsequent M step, we maximize this expectation. If the current estimate for the

parameters is denoted θold, then a pair of successive E and M steps gives rise to a
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Figure 3.2: Illustration of the EM algorithm using the Old Faithful set as used for
the illustration of the K-means algorithm in Figure 1.2. A mixture of two Gaussians is

used. [24]

revised estimate θnew. The algorithm is initialized by choosing some starting value for

the parameters θ0.

In the E step, we use the current parameter values θold to find the posterior distribution

of the latent variables given by p(Z|X, θold). We then use this posterior distribution

to find the expectation of the complete-data log likelihood evaluated for some general

parameter value θ. This expectation, denoted Q(θ, θold), is given by

Q(θ, θold) =
∑
Z

p(Z|X, θold) ln p(X,Z|θ) (3.13)

In the M step, we determine the revised parameter estimate θnew by maximizing this

function

θnew = argmax
θ
Q(θ, θold) (3.14)

Note that in the definition of Q(θ, θold), the logarithm acts directly on the joint dis-

tribution p(X,Z|θ), so the corresponding M-step maximization will, by supposition, be

tractable.
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Algorithm 7: The General EM Algorithm

Data: X = {xkd, k = 1, . . . , N, d = 1, . . . , D} where D is the dimension of the feature
space. Z the latent variables matrix. The joint distribution p(X,Z|θ) is over X
and Z is given, governed by parameters θ.

Result: Posterior probabilities r(znk) and the model parameters θ.
Initialization:
-Choose an initial setting for the parameters θold.
Learning: repeat
for l = 1, 2, . . . do

-E step: Evaluate p(Z|X, θold)
-M step: Evaluate θnew given by

θnew = argmax
θ
Q(θ, θold)

where
Q(θ, θold) =

∑
Z

p(Z|X, θold) ln p(X,Z|θ)

Until convergence of either the parameters or the log likelihood. If the convergence
criterion is not satisfied then let

θold ← θnew

and return to the E step.

The general EM algorithm is summarized in Algorithm 7. It has the property that each

cycle of EM will increase the incomplete-data log likelihood (unless it is already at a

local maximum).

3.3 The GTM standard model

GTM is defined as a mapping from a low dimensional latent space onto the observed

data space. The mapping is carried through by a set of basis functions generating a

constrained mixture density distribution. It is defined as a generalized linear regression

model:

y = y(z,W ) = WΦ(z) (3.15)

where y is a prototype vector in the D-dimensional data space, Φ is a matrix consisting

of M basis functions (φ1(z), . . . , φM (z)), introducing the non-linearity, W is a D ×M
matrix of adaptive weights wdm that defines the mapping, and z is a point in latent

space.
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Figure 3.3: In order to formulate a latent variable model which is similar in spirit to
the SOM, we consider a prior distribution p(x) consisting of a superposition of delta
functions, located at the nodes of a regular grid in latent space. Each node zk is
mapped to a corresponding point yk = y(zk;W ) in data space, and forms the center of

a corresponding Gaussian distribution [25].

The standard definition of GTM considers spherically symmetric Gaussians as basis

functions, defined as,

φm(z) = exp

{
−‖z − µm‖

2

2σ2

}
(3.16)

where µm the centres of the basis functions and σ their common width.

Let D = (x1, . . . , xN ) the data set of N data points. A probability distribution of a data

point xn ∈ <D is then defined as an isotropic Gaussian noise distribution with a single

common inverse variance β:

p(xn|z,W, β) = N (y(z,W ), β)

=

(
β

2π

)D/2
exp

{
−β

2
‖xn − y(z,W )‖2

}
(3.17)

Note that other models for p(x|W,β) might also be appropriate, such as Bernoulli for

binary variables (with a sigmoid transformation of y) or a multinomial for mutually

exclusive classes (with a ’softmax’, or normalized exponential transformation of y ([25]),

or even combination of these.

The distribution in x-space, for a given value of W , is then obtained by integration over

the z-distribution

p(x|W,β) =

∫
p(x|z,W, β)p(z)dz (3.18)
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and this integral can be approximated defining p(z) as a set of K equally weighted delta

functions on a regular grid,

p(z) =
1

K

K∑
i=1

δ(z − zi) (3.19)

So, equation (3.18) becomes

p(x|W,β) =
1

K

K∑
i=1

p(x|zi,W, β) (3.20)

For the data set D, we can determine the parameter matrix W , and the inverse variance

β, using maximum likelihood. In practice it is convenient to maximize the log likelihood,

given by

L(W,β) = ln
N∏
n=1

p(xn|W,β)

=
N∑
n=1

ln

{
1

K

K∑
i=1

p(xn|zi,W, β)

}
(3.21)

The EM Algorithm

The maximization of (3.21) can be regarded as a missing-data problem in which the

identity i of the component which generated each data point xn is unknown. The EM

algorithm for this model is formulated as follows.

E-step

The posterior probabilities, or responsibilities, of each Gaussian component i for every

data point xn using Bayes’ theorem are calculated in the E-step of the algorithm in this

form
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rin = p(zi|xn,Wold, βold)

=
p(xn|zi,Wold, βold)∑K
i′=1 p(xn|z′i,Wold, βold)

=
exp{−β

2 ‖xn −Wφ(zi)‖2}∑K
i′=1 exp{−β

2 ‖xn −Wφ(z′i)‖2}
(3.22)

M-step

As for the M-step, we consider the expectation of the complete-data log likelihood in

the form

E[Lcomp(W,β)] =

N∑
n=1

K∑
i=1

rin ln{p(xn|zi,W, β)} (3.23)

The parameters W and β are now estimated maximizing (3.23), so the weight matrix

W is updated according to

ΦTGΦW T
new = ΦTRX (3.24)

where, Φ is the K ×M matrix of basis functions with elements Φij = φj(zi), R is the

K ×N responsibility matrix with elements rin, X is the N ×D matrix containing the

data set, and G is a K ×K diagonal matrix with elements

gii =
N∑
n=1

rin (3.25)

The parameter β is updated according to

1

βnew
=

1

ND

N∑
n=1

K∑
i=1

rin‖xn −Wnewφ(zi)‖2 (3.26)

The summary of the GTM algorithm is presented in Algorithm 8.

3.3.1 Comparison of GTM and SOM

A comparison by figures between GTM and SOM is provided in [15, 16]. They concluded

that when evaluating different data sets, it is found that: The GTM method is preferable
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Algorithm 8: The GTM algorithm

The sequence of steps for constructing a GTM model:
Generate the grid of latent points {zk}, k = 1, . . . ,K.
Generate the grid of basis function centres {µm},m = 1, . . . ,M.
Select the basis functions width σ.
Compute the matrix of basis functions activation, Φ.
Initialize W , randomly or using PCA.
Initialize β.
Compute ∆, ∆in = ‖xn −Wφ(zi)‖2.
repeat
E-step
Compute R from (3.22) using ∆ and β.
Compute G from (3.25) using R.
W T = (ΦTGΦ)−1ΦTRX.
M-step
Compute ∆, ∆in = ‖xn −Wφ(zi)‖2.
Update β according to (3.26), using R and ∆.
until convergence.

when looking for representatives of the data. The GTM method yields decidedly smaller

quantization errors [115, 175] and much higher topological errors [115, 173, 175] as the

SOM does. Generally, the topology of both representations looks similar. In table 3.1

we show a comparison between the two methods.

3.3.2 Data visualization through GTM

As mentioned in the introduction, the GTM is embodied with clustering and visual-

ization capabilities that are akin to those of the SOM. Data points can be summarily

visualized in the low-dimensional latent space (1 or 2 dimensions) of GTM by two meth-

ods:

• The mode of the posterior distribution in the latent space:

zmoden = argmax
{zn}

rkn (3.27)

Where rkn is defined in 3.22. This method also provides an assignment of each

data point xn to a cluster representative zk, it is called posterior-mode projection.

The distribution of the responsibility over the latent space of states can also be

directly visualized.
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Table 3.1: Comparison between SOM and GTM

SOM GTM

Internal representation
of manifold

Nodes {wj}Cj=1 in L-
dimensional array, held
together by neighborhood
function h

Point grid {zk}Kk=1 in L-
dimensional latent space
that keeps its topology
through smooth mapping f

Definition of manifold
in data space

Indirectly by locations of
reference vectors

Continuously by mapping
f

Objective function No Yes: log-likelihood

Self-organization Difficult to quantify Smooth mapping f pre-
serves topology

Convergence Not guaranteed Yes, by the EM algorithm

Smoothness of manifold Depends on the neighbor-
hood function

Depends on basis function
parameters and prior dis-
tribution p(x)

Generative model No, hence no density func-
tion

Yes

Additional parameters
to select

Kk,l(.) None

Speed of training Comparable according to Bishop et al. [25]

Magnification factors Approximated by the dif-
ference between reference
vectors

Exactly computable any-
where

• The mean of the posterior distribution in the latent space:

zmeann =
K∑
k=1

rknzk (3.28)

known as the posterior-mean projection.

3.4 Collaborative Generative Topographic Mapping

As we mentioned before, according to the structure of data sets to collaborate, there are

three main types of collaboration principle: horizontal, vertical and hybrid collaboration.

In this chapter, we are specifically interested in horizontal and vertical collaborations,

as the hybrid collaboration is not more than a combination of the both horizontal and

vertical collaboration. We recall that the vertical collaboration is to collaborate the

clustering results obtained from different data sets described by the same variables, but

having different objects. Horizontal collaboration is more difficult since in such cases,

the groups of data are described in different feature spaces: each data set is described by

different variables, but has the same objects (samples) as other data sets. In this case
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the problem is how to collaborate the clusters derived out of a set of classifications from

different characteristics? and how to manipulate the collaborative/confidence parameter

where no information is available about the distant classification? Also, the computing

of the similarity between two maps becomes impossible as they are in different feature

space. In this chapter, we present a formalism to the collaboration between Generative

Topographic Mappings [66, 67]. Each data set is clustered through a GTM, and to sim-

plify the formalism, the maps built from various data sets will have the same dimensions

and the same structure.

To do the task, we will use a method of penalization of EM algorithm, since GTM

is based on EM, for more details see [72]. We consider the term of penalization as a

collaboration term, which will penalize the distance between the prototypes of different

data sets in the vertical case, while it will minimize the difference between the posterior

probabilities of the latent variables in different data sets in the horizontal case. By

penalizing a distance, the learning process leads to minimize this distance, that’s why it

is useful for doing the collaboration between different data sets. Minimizing the distance

between prototypes in the vertical case means that we seek to obtain similar prototypes

as clustering results. As same as for the posterior probabilities in the horizontal case.

Let L(θ) the log-likelihood (Eq. 3.21 for GTM), where θ is the set of parameters (θ =

{W,β} for GTM), we shall estimate θ by θ̃ maximizing

L(θ)− αJ(θ) (3.29)

where we regard exp{−αJ(θ)} as proportional to a prior for θ.

The EM algorithm for θ̃ is then obtained by repeatedly replacing a trial estimate θ by

that θ′ maximizing

Q(θ′|θ)− αJ(θ′) (3.30)

where Q(θ′|θ) is the expectation of the complete-data log-likelihood (3.23). At conver-

gence, we have θ = θ̃ = θ′.

This shows that we can add a collaboration term to the complete-data log-likelihood

(3.23). This collaboration term corresponds for each case, either vertical or horizontal.

This means that all the modifications will happen in the M-step, while the E-step will

stay at it is. For more information about penalized maximum likelihood see [57, 157].

Other papers discussed the use of EM for distributed data clustering, [23, 162, 184].
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We will consider that α is the coefficient of collaboration and θ is the vector of parameters

of the GTM.

3.4.1 Horizontal Collaboration

In the case of horizontal collaboration, all data sets are described by the same observa-

tions but in different feature space, i.e different number of variables, D[ii] 6= D[jj]. The

main idea of the horizontal collaboration is that the latent point zi responsible for the

model generation of the data point x
[ii]
n in the data set [ii] is also responsible for the

model generation of the data point x
[jj]
n in the data set [jj].

So, in the M-step of the EM algorithm, we find W [ii] and β[ii] maximizing

Lhor[ii] = E[Lcomp(W [ii], β[ii])]−
P∑

jj=1
jj 6=ii

α
[jj]
[ii]

N∑
n=1

K∑
i=1

β[ii]

2
(r

[ii]
in − r

[jj]
in )2‖xn −W [ii]φ[ii](zi)‖2

(3.31)

Lhor[ii] =

N∑
n=1

K∑
i=1

[
ln{p(xn|zi,W [ii], β[ii])}−

P∑
jj=1
jj 6=ii

α
[jj]
[ii]

β[ii]

2
(r

[ii]
in − r

[jj]
in )2︸ ︷︷ ︸

h
[jj]
in

‖xn −W [ii]φ[ii](zi)‖2
] (3.32)

Let us call h
[jj]
in = (r

[ii]
in − r

[jj]
in )2.

Maximization of W [ii]

By derivation of (3.32) w.r.t W [ii] and putting it equal to 0, we obtain

N∑
n=1

K∑
i=1

[
r

[ii]
in {xn −W

[ii]φ[ii](zi)}φ[ii]T (zi)−

P∑
jj=1
jj 6=ii

α
[jj]
[ii] h

[jj]
in {W

[ii]φ[ii](zi)− xn}φ[ii]T (zi)

]
= 0

(3.33)

And this can be conveniently be written in matrix notation in the form
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W [ii]T

new =

(
Φ[ii]TGΦ[ii] +

P∑
jj=1
jj 6=ii

α
[jj]
[ii] Φ[ii]TF [jj]Φ[ii]

)−1

×
(

Φ[ii]TRX +
P∑

jj=1
jj 6=ii

α
[jj]
[ii] Φ[ii]TH [jj]X

) (3.34)

where, Φ is the K ×M matrix of basis functions with elements Φij = φj(zi), R is the

K × N responsibility matrix with elements rin, X is the N × D[ii] matrix containing

the data set, G is a K×K diagonal matrix, H [jj] is a K×N matrix, and F [jj] is K×K
diagonal matrix with elements

gii =
N∑
n=1

r
[ii]
in (3.35)

h
[jj]
in = (r

[ii]
in − r

[jj]
in )2 (3.36)

f
[jj]
ii =

N∑
n=1

h
[jj]
in (3.37)

Maximization of β[ii]

By derivation of (3.32) w.r.t β[ii] and putting it equal to 0, we obtain

N∑
n=1

K∑
i=1

[
r

[ii]
in

D[ii]

β[ii]
− r[ii]

in ‖xn −W
[ii]φ[ii](zi)‖2−

P∑
jj=1
jj 6=ii

α
[jj]
[ii] h

[jj]
in ‖xn −W

[ii]φ[ii](zi)‖2
]

= 0

(3.38)

Then,

1

β
[ii]
new

=
1

ND[ii]

N∑
n=1

K∑
i=1

P∑
jj=1
jj 6=ii

(r
[ii]
in + α

[jj]
[ii] h

[jj]
in )‖xn −W [ii]

newφ
[ii](zi)‖2 (3.39)

The horizontal collaboration algorithm of GTM is presented in Algorithm 9.
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Algorithm 9: The horizontal GTM collaboration algorithm: HCo-GTM

1. Local step:
For each site [ii], ii= 1 to P:
we obtain for each site [ii]:
The matrix of basis functions Φ[ii].
The posterior probabilities matrix R[ii].
The weight matrix W [ii].
The variance β[ii].
The matrix G[ii] using (3.25).
2. Horizontal collaboration step:
Objective: find a new GTM for each site [ii], ie find new R[ii], W [ii] and β[ii].
For each site [ii], ii= 1 to P :

Compute ∆[ii], ∆
[ii]
in = ‖xn −W [ii]φ(zi)‖2. (xn is a data point from the site [ii], of

dimension D[ii], n = 1, . . . , N).

Compute H
[jj]
[ii] of elements h

[jj]
[ii] (i, n), for [jj] = 1, . . . , P , h

[jj]
[ii] (i, n) = (r

[ii]
in − r

[jj]
in )2, for

i = 1, . . . ,K and n = 1, . . . , N .

Compute F
[jj]
[ii] diagonal matrices of elements f

[jj]
[ii] (i, i) =

∑N
n=1 h

[jj]
[ii] (i, n) repeat

E-step
Compute R[ii] from (3.22) using ∆[ii] and β[ii].
Compute G[ii] from (3.25) using R[ii].
M-step
Compute W [ii] using (3.34).

Compute ∆[ii], ∆
[ii]
in = ‖xn −W [ii]φ[ii](zi)‖2.

Update β[ii] according to ( (3.39), using R[ii] and ∆[ii].
until convergence.

3.4.2 Vertical Collaboration

In the vertical case, all data sets have the same variables (same description space), but

have different observations. In this case, the observations of these data sets have the

same size, and the dimension of the the prototype vectors for all the GTMs will be

the same, N [ii] 6= N [jj]. Suppose that we seek to find the GTM of the data set [ii]

collaborating it with P other data sets, the E-step stays as it is, in which we find the

posterior probabilities

rin = p(zi|xn,W [ii]
old , β

[ii]
old)

=
p(xn|zi,W [ii]

old , β
[ii]
old)∑K

i′=1 p(xn|z′i,W
[ii]
old , β

[ii]
old)

=
exp{−β[ii]

2 ‖xn −W
[ii]φ[ii](zi)‖2}∑K

i′=1 exp{−β[ii]

2 ‖xn −W [ii]φ[ii](z′i)‖2}
(3.40)

where n ∈ {1, . . . , N [ii]}.
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In the M-step, we find W [ii] and β[ii] maximizing

Lver[ii] = E[Lcomp(W [ii], β[ii])]−
P∑

jj=1
jj 6=ii

α
[jj]
[ii]

N [ii]∑
n=1

K∑
i=1

rin
β[ii]

2
‖W [ii]φ[ii](zi)−W [jj]φ[jj](zi)‖2

(3.41)

Lver[ii] =

N [ii]∑
n=1

K∑
i=1

rin ln{p(xn|zi,W [ii], β[ii])}−

P∑
jj=1
jj 6=ii

α
[jj]
[ii]

N [ii]∑
n=1

K∑
i=1

rin
β[ii]

2
‖W [ii]φ[ii](zi)−W [jj]φ[jj](zi)‖2

(3.42)

Lver[ii] =

N [ii]∑
n=1

K∑
i=1

[
rin ln{p(xn|zi,W [ii], β[ii])}−

P∑
jj=1
jj 6=ii

α
[jj]
[ii] rin

β[ii]

2
‖W [ii]φ[ii](zi)−W [jj]φ[jj](zi)‖2

] (3.43)

Maximization of W [ii]

By derivation of (3.43) w.r.t W [ii] and putting it equal to 0, we obtain

N [ii]∑
n=1

K∑
i=1

[
rin{xn −W [ii]φ[ii](zi)}φ[ii]T (zi)−

P∑
jj=1
jj 6=ii

α
[jj]
[ii] rin{W

[ii]φ[ii](zi)−W [jj]φ[jj](zi)}φ[ii]T (zi)

]
= 0

(3.44)

This can be conveniently be written in matrix notation in the form
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Φ[ii]T
(
GΦ[ii]+

P∑
jj=1
jj 6=ii

α
[jj]
[ii] GΦ[ii]

)
W [ii]T

new =

Φ[ii]TRX − Φ[ii]T
P∑

jj=1
jj 6=ii

α
[jj]
[ii] GΦ[jj]W [jj]T

(3.45)

where, Φ is the K ×M matrix of basis functions with elements Φij = φj(zi), R is the

K ×N [ii] responsibility matrix with elements rin, X is the N [ii]×D matrix containing

the data set, and G is a K ×K diagonal matrix with elements

gii =

N [ii]∑
n=1

rin (3.46)

Then

W [ii]T

new =

(
Φ[ii]T

(
GΦ[ii] +

P∑
jj=1
jj 6=ii

α
[jj]
[ii] GΦ[ii]

))−1

×

Φ[ii]TRX − Φ[ii]T
P∑

[jj]=1,[jj]6=[ii]

α
[jj]
[ii] GΦ[jj]W [jj]T


(3.47)

Maximization of β[ii]

By derivation of (3.43) w.r.t β[ii] and putting it equal to 0, we obtain

N [ii]∑
n=1

K∑
i=1

[
rin

D

β[ii]
− rin‖xn −W [ii]φ[ii](zi)‖2−

P∑
jj=1
jj 6=ii

α
[jj]
[ii] rin‖W

[ii]φ[ii](zi)−W [jj]φ[jj](zi)‖2
]

= 0

(3.48)

Therefore,
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1

β
[ii]
new

=
1

N [ii]D

N [ii]∑
n=1

K∑
i=1

[
rin‖xn −W [ii]

newφ
[ii](zi)‖2−

P∑
jj=1
jj 6=ii

α
[jj]
[ii] rin‖W

[ii]
newφ

[ii](zi)−W [jj]φ[jj](zi)‖2
] (3.49)

The vertical collaboration algorithm of GTM is presented in Algorithm 10.

Algorithm 10: The vertical GTM collaboration algorithm: VCo-GTM

1. Local step:
For each site [ii], ii= 1 to P :
we obtain for each site [ii]:
The matrix of basis functions Φ[ii].
The posterior probabilities matrix R[ii].
The weight matrix W [ii].
The variance β[ii].
The matrix G[ii] using (3.25).
2. Vertical collaboration step:
Objective: find a new GTM for each site [ii], ie find new R[ii], W [ii] and β[ii].
For each site [ii], ii= 1 to P :

Compute ∆[ii], ∆
[ii]
in = ‖xn −W [ii]φ(zi)‖2. (xn is a data point from the site [ii], of

dimension D, n = 1, . . . , N [ii]).

Compute Ψ
[jj]
[ii] , for [jj] = 1, . . . , P , Ψ

[jj]
[ii] (i) = ‖W [ii]φ[ii](zi)−W [jj]φ[jj](zi)‖2, for

i = 1, . . . ,K.
repeat
E-step
Compute R[ii] from (3.22) using ∆[ii] and β[ii].
Compute G[ii] from (3.25) using R[ii].
M-step
Compute W [ii] using (3.47).

Compute ∆[ii], ∆
[ii]
in = ‖xn −W [ii]φ[ii](zi)‖2.

Update β[ii] according to (3.49), using R[ii] and ∆[ii].
until convergence.

3.5 Experimental Results

3.5.1 Results on horizontal approach

To evaluate our proposed approach we applied the algorithm on several data sets of

different sizes and complexity: Waveform, Wisconsin Diagnostic Breast Cancer (wdbc),

Glass and Spambase data set. All data sets are available in [7].
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As criteria to validate the approach we used an internal validity index and an external

one [76, 156]. External validation is based on previous knowledge about data, i.e real

labels. Internal validation is based on the information intrinsic to the data alone. The

internal criterion [125] we used is the Davies-Bouldin (DB) index [49]. The external

criterion is the Purity index (accuracy) explained in the previous chapter, section 2.4.1.

Davies-Bouldin index

The Davies-Bouldin (DB) index [49] is an internal validity index aiming to identify sets

of clusters that are compact and well separated. It is calculated as follows:

A similarity measure Rij between clusters ci and cj is defined basing on a measure of

scatter within cluster ci, called si, and a separation measure between two clusters, called

dij . Then Rij is defined as follows:

Rij =
(si + sj)

dij

Then, the DB index is defined as:

DBK =
1

K

K∑
i=1

max
j:i 6=j

Rij (3.50)

where K denotes the number of clusters.

The DBK is the average similarity between each cluster ci, i = 1, . . . ,K and its most

similar one. So, smaller value of DB indicates a better clustering solution, thus having

minimum possible similarity with the clusters. In order to compute the DB index of the

obtained results, we applied a Hierarchical Clustering [44, 99] on the prototypes matrix

of the map in order to cluster the map’s cells, in this way we obtain a clustering of each

data set (before and after the collaboration). We performed several experiments on four

data sets from the UCI Repository [7] of machine learning databases.

Data sets

• Glass Identification: Glass Identification data set was generated to help in crim-

inological investigation. At the scene of the crime, the glass left can be used as

evidence, but only if it is correctly identified. This data set contains 214 instances,

10 numeric attributes and class name. Each instance has one of 7 possible classes.
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• The other used data sets Waveform and Wisconsin Diagnostic Breast Cancer

(WDBC) are described in the previous chapter in section 2.4.2. In Figure 3.4 we

visualize the Waveform data set with its real labels, it shows the 3 original classes

partially separated.

Figure 3.4: Waveform original data set, 3 classes of waves are shown.

In the following, we will explain the results obtained after applying The Collaborative

GTM algorithms, HCo-GTM and VCo-GTM on these data sets. The data sets men-

tioned above are unified and need to be divided into subsets (or views) in order to have

distributed data ”scenarios”. We divided every data set into two views (subsets) so

that the algorithm operates on different features considering, however, the same set of

individuals, i.e. Figure 2.3(right).

First, we applied the local phase, to obtain a GTM map for every subset. We call the

resultant maps GTM1 and GTM2 respectively for the first and the second subset. The

size of all the used maps were fixed to 10× 10 except for the Glass data set whose map

size is 5 × 5. Then we applied the collaboration phase, in which we seek a new GTM

for the subset but collaborating it with the other subset. We call GTM2→1 the map

representing subset 1 and receiving information (clustering results) from subset 2.

As described before, the waveform data set is composed from two subsets of variables:

the variables from 1 to 21 representing relevant characteristics, variables from 22 to 40

are noisy. This data structure allows us to divide the data set in two views: first one

containing relevant variables and the second one containing only the noisy variables.

Results of local phases using GTM for these two views are presented in Figures 3.5 and

3.6 respectively for first and second view. These figures were obtained by projecting the
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data into two dimensional space using Principal Component Analysis [93, 144] applied

on the waveform data set, but the color of the points represent the class of each object

obtained using GTM and followed by a majority vote rule on the first subset (Figure

3.5) and on the second noisy set respectively (Figure 3.6).

Note, that for a better understanding of the results, the figures should be analyzed in a

color mode.

Figure 3.5: Waveform subset 1, relevant variables: labeling data using GTM1

Figure 3.6: Waveform subset 2, noisy variables: labeling data using GTM2



Chapter 3. Collaborative Clustering using A Generative Model 86

Figure 3.7: Waveform subset 1 after collaboration with subset 2: labeling data using
GTM2→1. We can see that the results sent from subset 2 reduce the quality of clustering

of the subset 1. Clusters are nor more well separated.

Figure 3.8: Waveform subset 2 after collaboration with subset 1: labeling data using
GTM1→2. It is obvious that the results sent from subset 1 help subset 2 to ameliorate

its clustering results.
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The three classes of the waveform data set are well represented and separated on Figure

3.5. While they are not in Figure 3.6 due to the variables noisiness of this view.

After applying the collaboration to exchange the clustering information between all the

maps without sharing data between them, we obtained the following:

After the collaboration of the first view (relevant variables of the waveform data set) with

the noisy variables clustered by GTM2 map, the purity index decreased from 86.25% to

72.78% (Table 3.3). Figure 3.8 shows the projection of data by labeling them using the

results of the collaborated map GTM2→1, we can see that clusters are not well separated

comparing to what we have obtain before collaboration in Figure 3.5.

Contrarily, by applying the collaboration in the opposite direction, the purity index of

the GTM1→2 map increased from 38.47% to 57.12% compared to the GTM2. Results

are shown in Figure 3.7 in which we can see that clusters are better separated now after

collaboration of noisy variables with relevant variables.

Results explained above are reasonable and show the importance of collaboration. When

a clustering of a set described by relevant variables collaborate with a clustering of a

set containing noisy variables, the quality of clustering decreases. While in the opposite

case, sending clustering results of a set described by relevant variables to the clustering

of noisy set increases its quality.

As for the other data sets, we divided them all to two views. We computed the purity

index and the DB index before and after collaboration and the results are shown in

Table 3.3.

Figure 3.9: Comparison of the purity obtained for Waveform subsets, before and after
the collaboration

In most of the cases, we remark that the purity of the map is getting higher or do not

change drastically after the collaboration and strongly depends on the relevance of the

collaborative map (the quality of the collaborative classification). The same analysis

can be made for the DB index which decreases after the collaboration using a relevant
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Table 3.2: Experimental results of the Horizontal Collaborative approach on different
data sets

Data set Map Purity (%) DB Index

Waveform GTM1 86.25 1.14
4000x21 GTM2 38.47 3.75
4000x19 GTM1→2 57.12 1.73

GTM2→1 72.78 1.31

Glass GTM1 92.32 0.74
214x5 GTM2 64.02 1.28
214x5 GTM1→2 73.42 1.05

GTM2→1 83.18 0.97

Wdbc GTM1 94.07 0.97
569x16 GTM2 96.27 0.87
569x16 GTM1→2 95.88 0.9

GTM2→1 94.92 0.92

SpamBase GTM1 80.17 1.12
4601x28 GTM2 84.26 0.95
4601x28 GTM1→2 83.35 0.98

GTM2→1 82.61 1.06

map. For example the DB index of the GTM2→1 for Glass data set obtained using the

information from GTM2 during the learning of the GTM1 decreases from 1.28 to 0.97

(Table 3.3). This shows an amelioration of the clustering results.

This conclusion corresponds to the intuitive understanding of the principle and to the

consequences of such cooperation. However, note that the goal was not to improve the

clustering accuracy but to take into account the distant information and to build a new

map using another view of the same data, and this procedure can decrease sometimes the

quality of clustering which depends on the variables relevance of the view to collaborate.

3.5.2 Results on vertical approach

To evaluate the vertical approach we applied the algorithm on the following data sets:

Waveform, Wisconsin Diagnostic Breast Cancer (wdbc), Isolet and Spambase.

The data sets are unified and need to be divided in subsets in order to have distributed

data scenarios. So, we divide every data set into two subsets, having the same features,

but with different observations, i.e. Figure 2.3(left).
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First, we applied the local phase, to obtain a GTM map for every subset. Then we

started the collaboration phase, in which we seek a new GTM for the subset but collab-

orating it with the other subset. We calculated the purity index of the new GTMs after

collaboration, we obtained the following results:

Table 3.3: Experimental results of the vertical collaborative approach on different
data sets

Data set Map Purity

Waveform GTM1 86.44
GTM2 86.52
GTM1→2 87.16
GTM2→1 87.72

Wdbc GTM1 96
GTM2 86.34
GTM1→2 96.15
GTM2→1 96.15

Isolet GTM1 87.17
GTM2 86.83
GTM1→2 87.29
GTM2→1 85.87

SpamBase GTM1 52.05
GTM2 51.68
GTM1→2 52.41
GTM2→1 52.17

In most of the cases, we remark that the purity of the map is getting higher after

collaboration.

3.6 GTM regularized models

The optimization of the GTM model parameters through Maximum Likelihood (ML)

does not take into account model complexity and consequently, the risk of data overfit-

ting [6, 88] is elevated as Svensèn remarked in his PhD thesis [166]. An advantage of

the probabilistic setting of the GTM is the possibility of introducing regularization in

the mapping.

This procedure automatically regulates the level of map smoothing necessary to avoid

data overfitting, resorting to either a single regularization term [27], or to multiple ones

(Selective Map Smoothing : [171]). The first case entails the definition of a penalized

log-likelihood of the form:
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Lpen(W,β) =
N∑
n=1

ln

[
1

K

K∑
i=1

p(xn|zi,W, β)

]
− 1

2
λ‖w‖2 (3.51)

where λ is a regularization coefficient and w is a vector shaped by concatenation of the

different column vectors of the weight matrix W .

A Bayesian approach to the estimation of the regularization coefficient λ as well as the

inverse variance β is introduced in [128]. These parameters are usually named hyper-

parameters since they control other parameter distributions. The Bayesian approach

applied to λ and β is developed in [27]. In this procedure, Bayes’ theorem is used to

estimate the distribution of the hyperparameters given the data points:

p(λ, β|X) =
p(X|λ, β)p(λ, β)

p(X)
(3.52)

In a practical implementation, λ and β are iteratively estimated during the training of

W . The use of a regularization term changes the M-step of the EM algorithm, which,

for the estimation of W , yields the expression:

(
ΦTGΦ +

λ

β

)
W T = ΦTRX (3.53)

where Φ, G and R are defined in section 3.3.

The second case is to use multiple regularization terms, one for each basis function.

This method is named Selective Map Smoothing (SMS) and it was originally introduced

in [171]. In SMS, there is M coefficients λm, where every λm defines a regularization

coefficient for each basis function. The use of multiple regularization term changes

the M-step of the EM algorithm for updating W , which will be calculated using the

expression:

(
ΦTGΦ +

1

β
Λ

)
W T = ΦTRX (3.54)

where Λ is a square matrix M×M with elemets λm in the diagonal and zeros elsewhere.

But these regularization methods are not effective in all cases of overfitting. A more

flexible and effective solution to avoid overfitting is presented in [139] using Variational

Bayesian framework as a principled solution to deal with this problem. In next chapter,

we present the Variational Bayesian framework and we make use of the Variational

Bayesian GTM to apply it to Collaborative Clustering.
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3.7 Conclusion

In this chapter we proposed a methodology to apply a Collaborative Clustering on

distributed data using a generative model, which is the Generative Topographic Mapping

(GTM). The proposed algorithm is based on GTM as a local phase of clustering, and

an extension of it in the collaboration phase. A horizontal approach is adapted to the

problem of collaboration of several data sets containing the same observations described

by different variables. The vertical approach is adapted to the problem of collaboration

of several data sets containing the same variables but with different observations.

During the collaboration phase, we do not need the share the data between sites but

only the results of the distant clustering. Thus, each site uses its clustering results and

the information from other clustering, which would provide a new clustering that is as

close as possible to that which would be obtained if we had centralized the data sets.

We presented and approach basing on probabilistic model to cluster the data, which

is the Generative Topographic Mapping. We presented the formalism of Collaborative

Clustering using an adapted extension of this method. The approaches were validated

on multiple data sets and the experimental results have shown promising performance.

In next chapter, we present an approach of Collaborative Clustering using Variational

Bayesian GTM, which is supposed to be a solution to avoid overfitting.





Chapter 4

Collaborative Fuzzy Clustering of

Variational Bayesian GTM

4.1 Bayesian modeling

Bayes’ theorem, independently discovered by Reverend Thomas Bayes [10] and Pierre-

Simon, marquis de Laplace [76], is one of the core tools in Statistical Machine Learning

(SML) and the starting point of several methods. The theorem is expressed as follows:

p(y|x) =
p(x|y)p(y)

p(x)
(4.1)

This simple relationship is a powerful expression in Statistical Machine Learning (SML):

it is a prescription on how to systematically update ones knowledge of a problem domain

given the data observed. That means, the understanding of y after seeing data x (the

posterior p(y|x)) is the previous knowledge of y (the priorp(y)) modified by how likely

the observation x is under that previous model (the likelihood p(x|y)). The denominator,

p(x), is a normalizing term called the marginal likelihood or evidence. Therefore, Bayes’

theorem allows one to infer knowledge that would otherwise be difficult to obtain (e.g.

hidden or latent knowledge) as well as to assess underlying models.

In a Bayesian approach, inference (or learning) entails the calculation of the posterior

probability density over the model parameters and the possible hidden variables. The

model parameters and the hidden variables are included into the learning process as

prior probability densities with further parameters called hyperparameters. Eventually,

the hyperparameters can be also estimated as part of the learning process. So, if a

model is built to infer knowledge from the observable data, Bayes theorem can be used

as follows:

93
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p(Θ|X,M) =
p(X|Θ,M)p(Θ|M)

p(X|M)
(4.2)

where Θ represents the parameters and hidden variables of the model, X represents

the observed data, and M embodies all the other assumptions and beliefs about the

model (i.e. the structure and the hyperparameters). The prior probability, p(Θ|M),

captures all the information known about the parameters and acts as a regularizer.

Consequently, a Bayesian approach model limits overfitting in a natural way because

takes into account the model complexity. The posterior probability, p(Θ|X,M) is a

measure of what is known after the data is seen and quantifies any new knowledge

acquired. The likelihood, p(X|Θ,M), is a measure of how well the model predicted the

data. The marginal likelihood or evidence, p(X|M), ensures the posterior is normalized

and is estimated by the following expression:

p(X|M) =

∫
p(X|Θ,M)p(Θ|M)dΘ (4.3)

In theory, learning the model is simply computing the posterior over the parameters.

Unfortunately, the integration in Eq. 4.3 is intractable for almost all the most common

models. Consequently, an increasing number of approximation methods to Bayesian

inference is being defined and becoming popular among the SML community.

We saw in the previous chapter that the central task in the application of probabilistic

models is the evaluation of the posterior distribution p(Z|X) of the latent variables

Z given the observed (visible) data variables X, and the evaluation of expectations

computed with respect to this distribution. For instance, in the EM algorithm we

need to evaluate the expectation of the complete-data log likelihood with respect to the

posterior distribution of the latent variables. For many models of practical interest, it

will be unfeasible to evaluate the posterior distribution or indeed to compute expectation

with respect to this distribution. This could be because the dimension of the latent space

is too high to work with directly or because the posterior distribution has a high complex

form for which expectations are not analytically tractable. In the case of continuous

variables, the required integration may not have closed-form analytical solutions, while

the dimension of the space and the complexity of the integrand may prohibit numerical

integration.

In such situations, we need to resort to approximation schemes, and these fall broadly

into two classes, according to whether they rely on stochastic or deterministic approxi-

mations. Stochastic techniques such as Markov chain Monte Carlo [69, 94], have enabled

the widespread use of Bayesian methods across many domains. They generally have the
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property that given infinite computational resource, they can generate exact results,

and the approximation arises from the use of a finite amount of processor time. In

practice, sampling methods can be computationally demanding, often limiting their use

to small-scale problems. Also, it can be difficult to know whether a sampling scheme is

generating independent samples from the required distribution.

In this chapter, we are interested in a new and elegant method to approximate the evi-

dence, which is known as the variational framework. It manages to avoid the limitations

of all other approximation methods. The variational approximation has its origin in the

calculus of variations [28, 137] and was originally used in statistical physics [35] to model

gases and systems of particles.

EM is expressed in terms of optimization in the quantity being optimized is a function.

While variational inference is an optimization problem in which the quantity being opti-

mized is a functional. The solution is obtained by exploring all possible input functions

to find the one that maximizes, or minimizes, the functional. The functional is a func-

tion that takes a vector as its input argument, and returns a scalar. Commonly the

vector space is a space of functions, thus the functional takes a function for its input

argument, then it is sometimes considered a function of a function. Its use originates

in the calculus of variations where one searches for a function that minimizes a certain

functional.

In next section, we detail the Variational Bayesian inference. In the rest of the chapter,

we present the Variational Bayesian version of GTM (VBGTM), introduced by [139],

then we apply a fuzzy clustering of VBGTM in order to group the data into clusters,

we call it F-VBGTM. And finally, we propose a collaborative clustering scheme based

on F-VBGTM.

4.2 Variational Bayesian inference

The variational method to approximating intractable computation encompasses a whole

gamut of tools for evaluating integrals and functionals. The variational method usually

employed in SML uses the mean-field theory, very popular in statistical physics [35]. In

the context of Bayesian inference, this framework is known as variational Bayes. The

central idea of variational Bayesian inference is to introduce a set of distributions over

the parameters into the marginal likelihood, in such a way that the integral Equation

4.3 becomes tractable. Variational Bayesian inference has quickly become a popular way

to learn otherwise intractable models (See for reference: [3, 63, 96]).
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The starting point of the variational Bayesian framework is the marginal likelihood,

which, in logarithmic form, can be expressed as follows:

ln p(X) = ln
p(X,Θ)

p(Θ|X)
(4.4)

where the model structure M is assumed to be implicit. At this point, a distribution

q over the parameters Θ can be introduced, which will be henceforth called variational

distribution, given that the log marginal likelihood does not depend on Θ:

ln p(X) =

∫
q(Θ) ln

p(X,Θ)

p(Θ|X)
dΘ (4.5)

After some mathematical transformations, Eq. 4.5 can be rewritten as:

ln p(X) =

∫
q(Θ) ln

p(X,Θ)

q(Θ)
dΘ +

∫
q(Θ) ln

q(Θ)

p(Θ|X)
dΘ

= F (q(Θ)) +DKL[q(Θ)||p(Θ|X)] (4.6)

where DKL[q(Θ)||p(Θ|X)] is the Kullback-Leibler (KL) divergence between the vari-

ational and the posterior distributions. Given that KL divergence is a strictly non-

negative term, F (q(Θ)) becomes a lower bound function on the log marginal likelihood.

As a result, the convergence of the former guarantees the convergence of the latter:

ln p(X) ≥ F (q(Θ)) (4.7)

In turn, F (q(Θ)) can be expressed as:

F (q(Θ)) =

∫
q(Θ) ln p(X,Θ)dΘ +

∫
q(Θ) ln

1

q(Θ)
dΘ

= Eq(Θ)(ln p(X,Θ)) +H(Θ) (4.8)

where H(Θ) is the entropy [105] of q(Θ). Thus, the ultimate goal in variational Bayesian

inference is choosing a suitable form for the variational distribution q(Θ) in such a way

that F (q) can be readily evaluated and yet which is sufficiently flexible that the bound

is reasonably tight. In the case of latent variable models, the latent or hidden variables

Z can be easily incorporated into the variational Bayesian framework as an additional
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set of model parameters. In this manner, a prior distribution p(Z) over the hidden vari-

ables will be also required. Taking as inspiration the expectation-maximization (EM)

algorithm [50], an efficient variational Bayesian expectation-maximization (VBEM) al-

gortihm [17] that could be applied to many SML latent variable models can be defined by

assuming independent variational distributions over Z and Θ, i.e. q(Z,Θ) = q(Z)q(Θ).

Thereby, the VBEM algorithm can be derived by maximization of F as follows:

VBE-Step:

q(Z)(new) ← argmax
q(Z)

F
(
q(Z)(old), q(Θ)

)
(4.9)

VBM-Step:

q(Θ)(new) ← argmax
q(Θ)

F
(
q(Z)(new), q(Θ)

)
(4.10)

In summary, variational Bayesian inference offers an elegant framework within which

inference can be performed in a closed way, and which allows efficient Bayesian inference

of the model parameters and hidden variables. Next section applies these concepts to

GTM to yield new powerful analytic methods.

4.2.1 Compared with EM

Variational Bayes (VB) is often compared with expectation maximization (EM). The

actual numerical procedure is quite similar, in that both are alternating iterative pro-

cedures that successively converge on optimum parameter values. The initial steps to

derive the respective procedures are also vaguely similar, both starting out with for-

mulas for probability densities and both involving significant amounts of mathematical

manipulations.

EM VB-EM

Goal: maximize p(θ|x) w.r.t. θ Goal: lower bound p(X)
E Step: compute VB-E Step: compute

q(t+1)(Z) = p(Z|X, θ(t)) q(t+1)(Z) ∝ exp
[ ∫

q(t+1)(θ) ln p(X,Z|θ)dθ
]

M Step: VB-M Step:

θ(t+1) = argmaxθ
∫
q(t+1)(Z) ln p(X,Z, θ)dZ q(t+1)(θ) ∝ exp

[ ∫
q(t+1)(Z) ln p(X,Z, θ)dZ

]
Table 4.1: Comparison of Variational Bayesian EM and EM for maximum a posteriori

(MAP) estimation.
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However, there are a number of differences, most important is what is being computed.

• EM computes point estimates of posterior distribution of those random variables

that can be categorized as “parameters”, but estimates of the actual posterior

distributions of the latent variables. The point estimates computed are the modes

of these parameters; no other information is available.

• VB, on the other hand, computes estimates of the actual posterior distribution of

all variables, both parameters and latent variables. When point estimates need

to be derived, generally the mean is used rather than the mode, as is normal in

Bayesian inference. Simultaneous with this, it should be noted that the param-

eters computed in VB do not have the same significance as those in EM. EM

computes optimum values of the parameters of the Bayes network itself. VB com-

putes optimum values of the parameters of the distributions used to approximate

the parameters and latent variables of the Bayes network. For example, a typ-

ical Gaussian mixture model will have parameters for the mean and variance of

each of the mixture components. EM would directly estimate optimum values for

these parameters. VB, however, would first fit a distribution to these parameters

typically in the form of a prior distribution, e.g. a normal-scaled inverse gamma

distribution and would then compute values for the parameters of this prior distri-

bution, i.e. essentially hyperparameters. In this case, VB would compute optimum

estimates of the four parameters of the normal-scaled inverse gamma distribution

that describes the joint distribution of the mean and variance of the component.

A comparison of VB and EM is presented in Table 4.1.

Related methods

A related method for approximating the integrand for Bayesian learning is based on an

idea known as assumed density filtering (ADF) [11, 18, 32], and is called the Expectation

Propagation (EP) algorithm [135, 136]. This algorithm approximates the integrand of

interest with a set of terms, and through a process of repeated deletion-inclusion of term

expressions, the integrand is iteratively refined to resemble the true integrand as closely

as possible. Therefore the key to the method is to use terms which can be tractably

integrated. This has the same flavour as the variational Bayesian method described here,

where we iteratively update the approximate posterior over a hidden state q(Z) or over

the parameters q(θ). The key difference between EP and VB is that in the update process

(i.e. deletion inclusion) EP seeks to minimise the KL divergence which averages accord-

ing to the true distribution, DKL[p(Z, θ|X)||q(Z, θ)] (which is simply a moment-matching
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operation for exponential family models), whereas VB seeks to minimize the KL diver-

gence according to the approximate distribution, DKL[p(Z, θ)||p(Z, θ|X)]. Therefore,

EP is at least attempting to average according to the correct distribution, whereas VB

has the wrong cost function at heart. However, in general the KL divergence in EP

can only be minimized separately one term at a time, while the KL divergence in VB is

minimized globally over all terms in the approximation. The result is that EP may still

not result in representative posterior distributions (for example, see [136], figure 3.6, p.

6). Having said that, it may be that more generalized deletion-inclusion steps can be

derived for EP, for example removing two or more terms at a time from the integrand,

and this may alleviate some of the ‘local’ restrictions of the EP algorithm. As in VB,

EP is constrained to use particular parametric families with a small number of moments

for tractability. An example of EP used with an assumed Dirichlet density for the term

expressions can be found in [135].

4.3 Variational Bayesian GTM

The original version of GTM, described in Chapter 4, used the Maximum Likelihood

method to estimate its model parameters. However, as Svensèn remarked in his PhD

thesis [166], this model version is too susceptible to overfit the data. A regularized

version of the GTM using the evidence approximation was in fact introduced in that

work. A MCMC method using Gibbs sampling [167], as well as a first approximation

using a variational framework, were applied to improve the parameter estimation of the

GTM model in [170]. In [139], a full variational version for the GTM was presented

based on the GTM with a Gaussian process (GP) [155] prior outlined in [27], to which

a Bayesian estimation of the parameters is added.

4.3.1 A Gaussian process formulation of GTM

The original formulation of GTM described in the previous chapter has a hard constraint

imposed on the mapping from the latent space to the data space due to the finite

number of basis functions used. An alternative approach is introduced in [27], where

the regression function using basis functions is replaced by a smooth mapping carried

out by a Gaussian Process (GP) prior.

So, a different formulation is assumed, a GP formulation introducing a prior multivariate

Gaussian distribution over Y, defined as:

p(Y ) = (2π)−KD/2|C|−D/2
D∏
d=1

exp

(
− 1

2
yT(d)C

−1y(d)

)
(4.11)
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where y(d) is each of the row vectors of the matrix Y , and C is a matrix where each of

its elements is a covariance function defined as:

C(i, j) = C(zi, zj) = ε exp

(
− ‖zi − zj‖

2

2α2

)
, i, j = 1, . . . ,K (4.12)

and where hyperparameter ε is usually set to a value of 1. The α hyperparameter

controls the flexibility of the mapping from the latent space to the data space.

Note that, this way, the likelihood takes the form:

p(X|Z, Y, β) =

(
β

2π

)ND/2 N∏
n=1

K∏
k=1

{
exp

(
− β

2
‖xn − yk‖2

)}znk
(4.13)

Eq. 4.13 leads to the definition of a log-likelihood and parameters Y and β of this model

can be optimized using the EM algorithm.

4.3.2 Bayesian GTM

The optimization of the GTM parameters through ML does not take into account model

complexity and consequently, the risk of data overfitting is elevated. The Bayesian

approach takes into account the complexity of the model and consequently avoids the risk

of data overfitting, by treating the model parameters as hidden variables, automatically

penalizing those models with more parameters than necessary.

A full Bayesian model of GTM is specified by defining priors over the hidden variables Z

and the parameters which are integrated out to form the marginal likelihood as follows:

p(X) =

∫
p(X|Z,Θ)p(Z)p(Θ)dZdΘ (4.14)

where Θ = (Y, β). A suitable choice for prior distributions is such as will yield a tractable

variational Bayesian solution. Since zkn are defined as binary values, a multinomial

distribution can be chosen for Z:

p(Z) =
N∏
n=1

K∏
k=1

γzknkn (4.15)

where γkn is an hyperparameter controlling the distribution over each of zkn. The prior

over parameters Θ could be defined as:
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p(Θ) = p(Y )p(β) (4.16)

that is assuming the parameters Y and β are statistically independent. The prior p(Y )

was set in the previous section (Eq. 4.11). Finally, a Gamma distribution is chosen to

be the prior over β:

p(β) = Γ(β|dβ, sβ) (4.17)

where dβ and sβ are the hyperparameters of the parameter β. A graphical representation

of the Bayesian GTM, including the hidden variables, parameters and hyperparameters,

is shown in Fig. 4.1.

Figure 4.1: Graphical model representation of the Bayesian GTM. [139]

4.3.3 Variational Bayesian approach of GTM

As described in section 4.2, variational inference allows approximating the marginal

log-likelihood through Jensen’s inequality:

ln p(X) ≥ F (q(Z,Θ)) (4.18)

The function F (q(Z,Θ)) is a lower bound such that its convergence guarantees the

convergence of the marginal likelihood. The goal is choosing a suitable form for the

variational distribution F (q(Z,Θ)) in such way that F (q) can be readily evaluated. We

assume that the hidden membership variable Z and the parameters Θ are i.i.d., i.e.

q(Z,Θ) = q(Z)q(Θ). Thereby, a Variational EM algorithm can be derived [17]: a VBE-

step as shown in Eq. 4.9 and a VBM-step as in Eq. 4.10.
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VBEM for GTM

VBE Step

The form chosen for the variational distribution q(Z) is similar of that the prior distri-

bution p(Z):

p(Z) =
N∏
n=1

K∏
k=1

γ̃zknkn (4.19)

where the variational parameter γ̃kn is given by:

γ̃kn =
exp

{
− 〈β〉2

〈
‖xn − yk‖2

〉}
∑K

k′=1 exp
{
− 〈β〉2

〈
‖xn − yk′‖2

〉} (4.20)

where the angled brackets 〈.〉 denote expectation with respect to the variational distri-

bution q(Z,Θ).

VBM Step

The variational distribution q(Θ) can be approximated to the product of the variational

distribution of each one of the parameters if they are assumed to be i.i.d. If so, q(Θ) is

expressed as:

q(Θ) = q(Y )q(β) (4.21)

where the natural choices of q(Y ) and q(β) are similar to the priors p(Y ) and p(β)

respectively. Thus,

q(Y ) =
D∏
d=1

N
(
y(d)|m̃(d), Σ̃

)
, (4.22)

and

p(β) = Γ(β|d̃β, s̃β) (4.23)
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Algorithm 11: The VBGTM Algorithm

Data: The data set X = {xkd, k = 1, . . . , N, d = 1, . . . , D} where D is the dimension
of the feature space. The number of cells K. The maximum number of
iterations maxIter.

Result: Responsibilities γ̃kn and the approximated variational distribution q(Θ) and
q(Z).

Initialization:
-Choose an initial setting for the parameters and the hyperparameters ε, α, d, s,Σ,m.
Learning: repeat
for l = 1, 2, . . . ,maxIter do

-VB-E step:
-Compute the responsibilities γ̃kn using Eq. 4.20.
-VB-M step:
Compute the intermediate values〈

‖xn − yk‖2
〉

= DΣ̃kk + ‖xn − m̃k‖2

-Calculation of the hyperparameters:
- Compute Σ̃ using Eq. 4.24.
- Compute m̃(d) using Eq. 4.25.

- Compute d̃β using Eq. 4.26.
- Compute s̃β using Eq. 4.27.
- Re-Compute

〈β〉 =
d̃β
s̃β

end for

Using these expressions in Eq. 4.10, the formulation for the variational parameters can

be obtained:

Σ̃ =

(
〈β〉

N∑
n=1

Gn + C−1

)−1

(4.24)

m̃(d) = 〈β〉Σ̃
N∑
n=1

xnd〈zn〉 (4.25)

d̃β = dβ +
ND

2
(4.26)

s̃β = sβ +
1

2

N∑
n=1

K∑
k=1

〈zkn〉
〈
‖xn − yk‖2

〉
(4.27)

where zn corresponds to each column vector of Z and Gn is a diagonal matrix of size

K × K with elements 〈zn〉. The moments in the previous equations are defined as:

〈zkn〉 = γ̃kn, 〈β〉 =
d̃β
s̃β

, and
〈
‖xn − yk‖2

〉
= DΣ̃kk + ‖xn − m̃k‖2.
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Lower bound function

According to Eq. 4.18, the lower bound function F (q) is derived from:

F (q) =

∫
q(Z)q(Y )q(β) ln

p(X|Z, Y, β)p(Z)p(Y )p(β)

q(Z)q(Y )q(β)
dZdY dβ (4.28)

Integrating out, we obtain:

F (q) = 〈ln p(X|Z, Y, β)〉−DKL[q(Z)||p(Z)]−DKL[q(Y )||p(Y )]−DKL[q(β)||p(β)] (4.29)

where the operator DKL[q||p] is the Kullback-Leibler (KL) divergence between q and

p. This equation implies that only the computation of the KL-divergence between the

variational and the prior distribution for each parameter and the expectation of the

log-likelihood are required to evaluate the lower bound function. The expectation of the

log-likelihood is calculated as follows:

〈ln p(X,Z, Y, β)〉 =
ND

2
〈lnβ〉 − ND

2
ln(2π)− 〈β〉

2

N∑
n=1

K∑
k=1

〈zkn〉
〈
‖xn − yk‖2

〉
(4.30)

Details of calculations can be found in [139]. The algorithm of VBGTM is presented in

Algorithm 11.

4.4 Fuzzy Clustering of VBGTM

Variational Bayesian Generative Topographic Mapping (VBGTM) produces posterior

probabilities for the centres of Gaussian components, but it doesn’t itself provide group-

ing function based on the latent variables and posterior probabilities. Fuzzy C-means

(FCM) algorithm has grouping function and produces posterior probabilities that indi-

cate the membership of the data points to clusters, but it doesn’t provide visualization

if the data dimension is large. VBGTM is more robust than FCM when processing data

set with large variations in probability distributions. So it is ideal to apply an extension

to make use of VBGTM technique for fuzzy clustering, so we propose a combination of

VBGTM and FCM algorithms with the goal of simultaneous visualization and clustering

of data set. To this end, we use the result of VBGTM in the high-dimensional input

space, that constitute a Gaussian mixture model (centres of Gaussian components) for

initialization of the FCM algorithm. The result of the FCM clustering is a cluster assign-

ment and cluster centers. The VBGTM therefore provides a low-dimensional mapping
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for visualization of the data and the FCM algorithm calculates the clustering. We call

the extension F-VBGTM.

Therefore, the goal of F-VBGTM is to train a VBGTM model and use FCM to help

VBGTM to cluster the input data into a desired number of clusters. The approach

consists of four consecutive step, like follows:

1. Train the VBGTM model

We train the model as described in section 4.3.3. The output of the model include

the centres of the Gaussian components in the input space (Eq. 4.25), which

can be used as candidate seeds for FCM. The output includes also the posterior

probabilities (Eq. 4.20)

γ̃kn = p(k/xn), 1 ≤ k ≤ K, 1 ≤ n ≤ N

where xn (n = 1, . . . , N) are D-dimensional data vectors.

2. Clustering m̃(d) using FCM

Suppose there are C clusters. After clustering, the FCM algorithm produces two

outputs:

• The cluster seeds: νc, 1 ≤ c ≤ C.

• The membership function for m̃(d): p(νc/k), 1 ≤ k ≤ K, 1 ≤ c ≤ C.

3. Bayes Theorem

Calculate the membership of xn in νc using Bayes theorem.

ucn = p(νc/xn) =
K∑
k=1

p(νc/k)× p(k/xn)

4. Adjusting

After step 3, the data vectors xn are assigned to clusters. As a result, the centres

have to be adjusted and the distances between data vectors and cluster centres

have to be calculated using the following equations

νc =

∑N
n=1 ucnxn∑N
n=1 ucn

, 1 ≤ c ≤ C and Dcn = ‖xn − νc‖2

The algorithm of combining FCM and VBGTM is presented in Algorithm 12.
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Figure 4.2: Illustration of the method, in level 1 we train a VBGTM model and
visualize data in the latent space (2-dimensional) using posterior-mean projection. Then

fuzzy clustering of VBGTM in level 2 to obtain C clusters.

4.4.1 Experiments of F-VBGTM

As explained in the previous section, our hybrid method permits data visualization and

grouping at the same time. So we will apply it on several data sets with different size

and complexity, then we will compare it with the original FCM to test its performance.

The chosen data sets are: Wine, Glass, Iris (all three are available from the UCI machine

learning repository [7]) and Oil flow data set (available from Netlab package [138]). We

will use two internal validity indexes as a criteria to compare the two methods. Internal

validation is based on the information intrinsic to the data alone, without taking into

account the real labels. The chosen indexes are: Xie and Beni’s index (XB) and Dunn’s

index (DI) calculated using Fuzzy Clustering and Data Analysis Toolbox [8] for Matlab.

Data sets

• Wine: This data set consists of 13 attributes and 179 cases, describing the results

of the chemical analysis of samples corresponding to three types of wine.

• Glass identification: A data frame with 214 observation containing examples of

the chemical analysis of 7 different types of glass. The problem is to forecast the

type of class on basis of the chemical analysis. The study of classification of types

of glass was motivated by criminological investigation. At the scene of the crime,

the glass left can be used as evidence (if it is correctly identified!).
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Algorithm 12: Fuzzy clustering of VBGTM: The F-VBGTM Algorithm

Data: The data set X = {xkd, k = 1, . . . , N, d = 1, . . . , D} where D is the dimension
of the feature space. The number of cells K.

Result: The VBGTM model of the data set & C clusters with membership degrees.
Initialization:
-Choose an initial setting for the parameters and the hyperparameters of VBGTM.
Learning:
-First step: Train the VBGTM model like described in Algorithm 11.
-Second step: Clustering of m̃(d) using FCM.
-Choose the number of clusters C.
for l = 1, 2, . . . do

-Compute the cluster centres νc, 1 ≤ c ≤ C.
-Compute the membership function for m̃(d): p(νc/k), 1 ≤ k ≤ K, 1 ≤ c ≤ C.

Until convergence
for 1 ≤ c ≤ C and 1 ≤ n ≤ N do

-Calculate the membership of xn in νc using Bayes theorem.

ucn = p(νc/xn) =
K∑
k=1

p(νc/k)× p(k/xn)

-Adjust the cluster centres

νc =

∑N
n=1 ucnxn∑N
n=1 ucn

, 1 ≤ c ≤ C and Dcn = ‖xn − νc‖2

• Iris: This data set consists of 50 samples from each of three species of Iris flowers

(Iris setosa, Iris virginica and Iris versicolor). Four features were measured from

each sample: the length and the width of the sepals and petals, in centimeters.

• Oil : This data set consisting of 12 attributes and 1,000 data points was artificially

generated from the dynamical equations of a pipeline section carrying a mixture of

oil, water and gas, which can belong to one of three equally distributed geometrical

configurations. It was originally used in [25].

Cluster Validation

As criterion to validate our method and compare it with FCM we use two internal

indexes, since internal criteria is used to measure the goodness of a clustering structure

without referring to external information (i.e. real labels). We chose two indexes that

suit the fuzzy family algorithms. The indexes are the following:

• Xie and Beni’s Index (XB): This index aims to quantify the ratio of the total

variation within clusters and the separation of clusters [179]. A lower value of XB
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indicates better clustering. It is equal to

XB(C) =

∑C
c=1

∑N
n=1(ucn)m‖xn − νc‖2

N ×minc,n ‖xn − νc‖2
(4.31)

Where C is the number of clusters.

• Dunn’s Index (DI): This index is part of a group of validity indexes including the

Davies-Bouldin index, in that it is an internal evaluation scheme. The aim is to

identify if clusters are compact, with a small variance between members of the

cluster, and well separated. For a given assignment of clusters, a higher Dunn

index indicates better clustering.

DI(C) = min
c∈C

(
min

k∈C,k 6=c

( minx∈Cc,y∈Ck d(x, y)

maxk∈C{maxx,y∈C d(x, y)}
))

(4.32)

Figure 4.3: Visualization of the Wine data set using posterior mean projection, with
no labels (left) and with labels obtained by applying F-VBGTM (right).

Figure 4.4: Visualization of the Iris data set using posterior mean projection, with
no labels (left) and with labels obtained by applying F-VBGTM (right).
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(a) Wine (b) Iris

Figure 4.5: Visualization of the Wine and Iris data sets using posterior mode pro-
jection. Each square represents a latent point of size proportional to the number of

data points assigned to it.

Figures 4.3 and 4.4 show the advantage of our method. First, at level 1, we train a

VBGTM model to the data set, we chose 169 latent points (grid of 13×13) for the Wine

data and 100 (10×10) latent points for Iris data. After training the model, we visualize

data using the posterior mean projection, results are shown for these two data sets in

Figures 4.3 and 4.4 (left).

Then, at level 2, for each VBGTM model we fix a number C of clusters and we apply our

method F-VBGTM to group the data, we assign every data point to a cluster (by the

highest membership degree) and we visualize the clusters into the same figure obtained

by VBGTM’s posterior mean projection. Results on data sets Wine and Iris are shown

in Figures 4.3 and 4.4 (right).

Comparison

As we mentioned above, a lower value of XB indicates better clustering. Table 4.2 shows

that for all the data sets, F-VBGTM has a lower XB value than FCM, which shows its

better performance based on this index. As for DI index, a higher Dunn index indicates

better clustering, this is the case for the data sets Iris and Glass.

4.5 Collaborative Clustering of Variational Bayesian GTM

Now let us suppose, like we previously saw in this thesis, that data is distributed among

different sites. We will consider both cases, horizontal and vertical. In vertical collabo-

ration, data sites come from different population but we have the same variables. In this
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Table 4.2: Clustering evaluation using XB and DI for several data sets.

Dataset Index FCM F-VBGTM

Wine XB 0.785 0.716

DI 0.664 0.172

Iris XB 3.794 2.856

DI 0.034 0.053

Glass XB 1.131 0.692

DI 0.022 0.025

Oil XB 1.594 1.517

DI 0.051 0.048

case, we can compute the distance between prototypes of different data sites and hence

reduce this distance by minimizing it during the collaboration process. In horizontal

collaboration, data come form the same population, i.e. same objects, but described by

different variables, therefore data sites in this case have different dimension, which com-

plicates the task of collaboration since computing the distances between prototypes of

different data sites is impossible. A solution to this case is to minimize the distance be-

tween partition matrices of different sites during the collaboration process (see Chapter

1, Algorithm 3).

In this section, the objective is to apply a collaborative clustering scheme based on the

Variational Bayesion GTM. To do this, we will make use of Fuzzy clustered VBGTM,

described in the previous section. The algorithm will be divided to two phases, local

and global (collaboration), described in the following:

Local Phase In the local phase, each site will apply the F-VBGTM on it, which will

combine VBGTM and FCM to produce both clustering and visualization of the

data set. The considered outputs of each site are the VBGTM model, the cluster

prototypes and the computed partition matrices.

Collaboration Phase Next, we start the collaboration phase (by pairs). Each site

will receive the results from a distant site, depending whether data come from

same of different population, then re-compute its cluster prototypes and its parti-

tion matrix taking by consideration these distant results. If data come from the

same population we call it horizontal collaboration. If data come from different

population but have same variables we call it vertical collaboration.
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4.5.1 Horizontal Collaboration of VBGTM: HCo-F-VBGTM

Suppose we have P data sets coming from the same population, so the number of objects

in each data set is N , the number of Gaussian centres is K. Each data set is referred

with an index [ii], ii = 1, . . . , P . The data sets do not have the same variables, so the

dimension of the feature space is different from data set to another, let D[ii] be the

dimension of the data set [ii], so D[ii] 6= D[jj] if [ii] 6= [jj].

In the horizontal case, as we mentioned above, the collaboration should be done by

exchanging the partition matrices between the sites, and not the prototypes because

prototypes in this case do not have the same dimension and hence we cannot calculate

the distances between them.

Let us suppose that, after training the VBGTM model on the sites [ii] and [jj] then

applying the F-VBGTM algorithm on these two sites, the partition matrix U [jj] has

been sent to the data site [ii]. Now we can compute the new cluster prototypes and

partition matrix of site [ii] following Algorithm 3 described in Chapter 1.

So, considering we have two data sets [ii] and [jj], the approach of horizontal collabo-

rative clustering of [ii] having received results of [jj] consists of 3 consecutive steps:

1. Train the VBGTM model using Algorithm 11.

2. Fuzzy clustering of the Gaussian centres m̃(d) like described in Algorithm 12. This

step will produce the cluster centres and the partition matrices:

• νi[ii] and U [ii] for data set [ii].

• νi[jj] and U [jj] for data set [jj].

The optimized objective function in this step is

J [ii] =
K∑
k=1

C∑
i=1

(uik[ii])
2‖m̃(k) − νi[ii]‖2 (4.33)

3. Collaborative fuzzy clustering of data set [ii] taking into consideration the partition

matrix U [jj] of data set [jj]. The objective function to be optimized in this step

is

J [ii, jj] =
K∑
k=1

C∑
i=1

(uik[ii])
2‖m̃(k)−νi[ii]‖2+β[ii, jj]

K∑
k=1

C∑
i=1

(uik[ii]−uik[jj])2‖m̃(k)−νi[ii]‖2

(4.34)
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Optimizing this objective with respect to νi[ii] and uik[ii] leads to the following

updates equations:

uik[ii] =
1

C∑
s=1

‖m̃(k) − νi[ii]‖2

‖m̃(k) − νs[ii]‖2

[
1− 1

1 + β[ii, jj]

C∑
s=1

β[ii, jj]usk[jj]

]
+
β[ii, jj]uik[jj]

1 + β[ii, jj]

(4.35)

νid[ii] =

K∑
t=1

u2
it[ii]m̃(t) + β[ii, jj]

K∑
t=1

(uit[ii]− uit[jj])2m̃(t)

K∑
k=1

u2
ik[ii] + β[ii, jj]

K∑
k=1

(uik[ii]− uik[jj])2

(4.36)

for i = 1, . . . , C, k = 1, . . . ,K and d = 1, . . . , D[ii].

4.5.2 Vertical Collaboration of VBGTM: VCo-F-VBGTM

In the vertical case of collaboration, data come from different population. So each data

set has its own observations, described by the same variables of other data sets. If we

have P data sets, N [ii] 6= N [jj] and K[ii] 6= K[jj] for [ii] 6= [jj], ii, jj = 1, . . . , P .

While all data sets have the same dimension D.

The vertical collaboration should be done by exchanging the prototypes between the

sites. This is feasible since prototypes of two different sites have the same dimension.

By doing this, the distance between prototypes of different sites is reduced after running

the algorithm, depending on the strength of the collaboration, i.e. the coefficients of

collaboration β.

Let us suppose that, after training the VBGTM model on the sites [ii] and [jj] then

applying the F-VBGTM algorithm on these two sites, the prototypes νc[jj] have been

sent to the data site [ii]. Now we can compute the new cluster prototypes and partition

matrix of site [ii] following Algorithm 3 described in Chapter 1.

So, considering we have two data sets [ii] and [jj], the approach of vertical collaborative

clustering of [ii] having received results of [jj] consists of 3 consecutive steps:

1. Train the VBGTM model using Algorithm 11.

2. Fuzzy clustering of the Gaussian centres m̃(d) like described in Algorithm 12. This

step will produce the cluster centres and the partition matrices:

• νi[ii] and U [ii] for data set [ii].
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• νi[jj] and U [jj] for data set [jj].

The optimized objective function in this step is

J [ii] =
K∑
k=1

C∑
i=1

(uik[ii])
2‖m̃(k) − νi[ii]‖2 (4.37)

3. Collaborative fuzzy clustering of data set [ii] taking into consideration the partition

matrix U [jj] of data set [jj]. The objective function to be optimized in this step

is

J [ii, jj] =

K[ii]∑
k=1

C∑
i=1

(uik[ii])
2‖m̃(k)−νi[ii]‖2+β[ii, jj]

K[ii]∑
k=1

C∑
i=1

(uik[ii])
2‖νi[ii]−νi[jj]‖2

(4.38)

Optimizing this objective with respect to νi[ii] and uik[ii] leads to the following

updates equations:

uik[ii] =
1

C∑
s=1

‖m̃(k) − νi[ii]‖2 + β[ii, jj]‖νi[ii]− νi[jj]‖2

‖m̃(k) − νs[ii]‖2 + β[ii, jj]‖νs[ii]− νs[jj]‖2

(4.39)

νid[ii] =

β[ii, jj]

K[ii]∑
k=1

(uik[ii])
2νid[jj]− 2

K[ii]∑
k=1

(uik[ii])
2m̃(k)

(β[ii, jj]− 1)

K[ii]∑
k=1

(uik[ii])
2

(4.40)

for i = 1, . . . , C, k = 1, . . . ,K[ii] and d = 1, . . . , D.

4.5.3 Experiments

To show the effect of the collaborative clustering on the data sites we test the algorithm,

like previous chapter, on a split Waveform data set. We choose this data set because

of its structure, it contains 21 relevant variables and 19 noisy variables, and 5000 ob-

servations. We split the data set into two subsets, the first subset contains the relevant

variables (of dimension 5000×21) and the second subset contains the noisy variables (of

dimension 5000× 19). By doing this, we get distributed data on two sites, data coming

from same population. The first has good clustering results since data are are separable

when they are described by the relevant variable. The second site has bad clustering

results since its variables are noisy.
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Figure 4.6: Visualization of the two subsets of the Waveform data set using posterior
mean projection, with labels obtained using F-VBGTM before collaboration. We can
see good clustering results on the first subset (left). The results of clustering on the

second subset of noisy variables are bad (right).

Figure 4.7: Effect of the Collaborative Clustering. When the second subset (bad)
sends results to first subset (good), clusters structure is deteriorated (left figure). While
clustering is ameliorated when the first subset collaborates with the second subset (right

figure).

The clustering results by F-VBGTM on the two subsets of the Waveform data set before

collaboration are shown in Figure 4.6.

Now moving to the collaboration phase, the way we divided the data set, i.e. two

subsets with same observations and different variables, permits us to apply the horizontal

collaborative clustering (see section 4.5.1). We expect that when we send the partition

matrix of the first subset (relevant) to the second subset (noisy) and then we compute

the new prototypes and partition matrix, the results must be better comparing to what

we got before the collaboration, because we send results from a good clustered data site

to a bad clustered one. The inverse is also true, i.e. when we send the results of the

second subset to the first one, this will deteriorate the results of the first subset. The
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results of the clustering after the collaboration are shown in Figure 4.7.

4.6 Collaborative Clustering of VBGTM with variable in-

teraction level

So far, we considered that the coefficient of collaboration β, also called interaction level,

is fixed by the user before the collaboration process

So far, the collaborative clustering algorithm described in the previous section requires

that the user sets the interaction level, β, which is used for all pairs of data sites and

kept constant (fixed) during the collaboration stages. In this section, we present some

methods that are capable of automatically estimating the interaction levels from data.

In some cases, these methods compute a corresponding interaction level before the col-

laboration process, i.e. basing on the clustering results. In other cases, they dynamically

adjusts, during the collaboration process, a particular β value for each pair of data sites.

In brief, if the cluster structures in two data sites are very different from each other,

then β should be low, leading to a weak collaboration between the two data sites under

consideration.

On the other hand, a pair of similar data sites should lead to a hight value for β, which

suggests that a strong collaboration between them can be accomplished.

4.6.1 In the horizontal case

4.6.1.1 PSO

In this approach, we focus on finding similar cluster compositions across companies.

It consists on learning the optimal collaboration matrix during the clustering analysis

by applying the evolutionary optimization technique of Particle Swarm Optimization

(PSO).

PSO is an evolutionary optimization technique developed by Kennedy et al. [110],

inspired by the swarming behaviour of bird flocks and fish schools.

The optimization algorithm first initializes Z particles xz, each particle representing a

possible solution to the optimization problem. Next, the particles start to fly through

the solution space and at each time interval t, the fitness of the solution is evaluated

by means of a fitness function. During their flight, each particle remembers its own

best position pz. The direction of a particle in the solution space is influenced by the
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particle’s current location xz(t), the particle’s current velocity vz(t), the particle’s own

best position pz and the global best position among all particles pg. The particle’s new

position xz(t+ 1) is calculated by Eq. 4.41 and Eq. 4.41.

vz(t+ 1) = wvt(t) + c1r1(pz − xz(t)) + c2r2(pg − xz(t)) (4.41)

xz(t+ 1) = xz(t) + vz(t+ 1) (4.42)

where w is the inertia weight and c1, c2 are the acceleration constants drawing the parti-

cle toward the local and global best locations, respectively. The stochastic component of

the PSO meta-heuristic is given by r1 and r2, which stand for two uniformly distributed

random numbers. All particles keep moving in the solution space until some criterion

is met. The global best position at the end is the solution to the optimization problem.

For a broader insight about this widespread optimization technique, refer to [33].

In our particular case, a single particle will represent a collaboration coefficient and the

flight of the particles represents the search for a collaboration matrix which optimizes

the similarity of the cluster compositions across data locations. To achieve such opti-

mization, we formulate an appropriate fitness function which represents the dissimilarity

in cluster composition across data locations. The goal of the PSO algorithm will be to

minimize this function. We redefine a cluster Ci[ii] as a set of membership degrees

{u1i[ii], . . . , uNi[ii]}, where N is the number of data (remind that we are considering the

horizontal case). Now we can express the dissimilarity between cluster i from data site

[ii] and cluster j from data site [jj] as follows:

d(Ci[ii], Cj [jj]) =
1

N

N∑
k=1

|uik[ii]− ujk[jj]| (4.43)

This dissimilarity measure will become zero, which is the lower bound, when all patterns

belong to both clusters with the same degree. On the other hand, it will become 1, which

is the upper bound, when both clusters are crisp and don’t have any pattern in common.

Furthermore, this measure is also symmetric. Next, to measure the dissimilarity between

the entire cluster solution of data site [ii] and data site [jj], we compare each cluster of

data site [ii] with each cluster of data site [jj] and only consider the smallest dissimilarity

for each cluster (cf. Eq. 4.44). Note that this measure equals to 0 when both cluster

solutions are identical.



Chapter 4. Collaborative Fuzzy Clustering of Variational Bayesian GTM 117

D[ii, jj] =
1

C

C∑
i=1

C
min
j=1

[d(Ci[ii], Cj [jj])] (4.44)

If we are dealing with P data sites at one time, the final fitness measure, which we will

term as ρ, can be envisioned as the mean dissimilarity of the cluster solutions across all

data sites.

ρ =
2

P (P − 1)

P∑
ii=1

P∑
jj>1

D[ii, jj] (4.45)

Given this fitness measure, we can use PSO to determine the optimal set of collaboration

links. Aside from the data locations, which we will call data nodes, we will need a

computing location which performs the PSO algorithm. This location will act as the

coordination node. It should be noted that the coordination node can be the same

physical location as a specific data node, but this isn’t necessary. Algorithm 13 shows

how the collaborative clustering scheme and the particle swarm optimization can be

integrated to automate the determination of the collaboration links.

Algorithm 13: The Collaborative clustering Algorithm using PSO for the coefficients
of collaboration.
Initialization:
-Initialize Z particles xz.
Learning: repeat
for each particle xz do

-Perform The Collaborative clustering algorithm with the collaboration coefficient
represented by xz (data nodes).
-Send the partition matrices to the coordination node.
-Calculate D[ii, jj] using Eq. 4.44 (coordination node).
-Calculate the new position xz(t+ 1) (coordination node).
-Update pz (coordination node).

end for
Until some termination criterion is reached (coordination node).
-Send the optimal collaboration links to the data nodes.
-Perform The algorithm of collaboration with the optimal collaboration coefficients
(data nodes).

4.6.1.2 Auto weighted Collaboration

In this method, weights (coefficients of collaboration) are automatically determined ac-

cording to the considerations of partition matrices. Even though it is difficult to directly

give the weights, it is easy to give some principle for determining the weights. For exam-

ple, we may expect to think a lot of the influence of data sets that have similar clustering
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result to that of the reference data set, we may also expect to think a lot of the influence

of data sets that have different clustering result, or expect to treat the external data

sets equally without discrimination. These expectations may be used as principles for

determining weights, while they are easy to be given out. In this section, we will give

some approaches to automatically calculate the weights according to these principles.

Measure of Partition Similarity

First, a similarity measure to measure the similarity between the clustering results of

the reference data set and those of external data sets is given. If the similarity between

two clustering results can be calculated, then the weights can be determined.

Let U and V two partition matrices on C clusters. We define two similarity measures of

partition matrices:

S1(U, V ) =

∑C
i=1 maxCj=1

{∑N
k=1(uik ∧ vjk)

}
∑C

i=1 minCj=1

{∑N
k=1(uik ∨ vjk)

} (4.46)

S2(U, V ) =

∑C
i=1 maxCj=1

{∑N
k=1(uik ∧ vjk)

}
N

(4.47)

It is easy to verify that S1(U, V ) and S2(U, V ) verify both the conditions of similarity

measures. Examples on these similarity measures are presented in [181].

There is two approaches in which we can make use of the similarity measures. The first

is an encouragement approach and the second is a penalty approach.

Encouragement approach

In this approach, an encouragement principle is assumed: The more similar the partition

matrix to the reference partition matrix, the larger the effect of the external data set.

In terms of this principle, we can choose a suitable similarity measure of partition ma-

trices, and calculate the similarity of the external partition matrices to the reference

partition matrix. The following three approaches to calculate weights are all encourage-

ment approaches.

Suppose r[ii] is the similarity of partition matrix U [ii] to the reference partition matrix

U, ii = 1, . . . , P , which is calculated under a similarity measure. Then the weight β[ii]
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expressing the degree of influence that U [ii] exerts onto U, ii = 1, . . . , P may be given

by the following three approaches:

Approach 1 : β[ii] =
r[ii]∑P
ii=1 r[ii]

(4.48)

Approach 2 : β[ii] =
r[ii]

minPii=1 r[ii]
(4.49)

Approach 3 : β[ii] =
r[ii]

maxPii=1 r[ii]
(4.50)

Penalty approach

Similar to the encouragement approach, similarity between reference partition matrix

and external ones should first be calculated under some similarity measure. But in

contrast to the encouragement approach, weights are calculated by such a principle:

the more similar the partition matrix to the reference partition matrix, the smaller the

corresponding weight.

The following approaches are for determining weights in penalty way:

Approach 1 : β[ii] =
(1− r[ii])∑P
ii=1(1− r[ii])

(4.51)

Approach 2 : β[ii] =
(1− r[ii])

minPii=1(1− r[ii])
(4.52)

Approach 3 : β[ii] =
(1− r[ii])

maxPii=1(1− r[ii])
(4.53)

4.6.2 In the Vertical Case

Let us consider two data site [ii] and [jj] and their respective prototypes νi[ii] and νi[ii],

i = 1, . . . , C. Let us suppose that the prototypes νi[ii] have been sent to the data site

[ii].

First, we compute the induced partition matrix Ũ [ii, jj]. This matrix is computed using

the prototypes communicated by the jjth data site and the objects from the iith data

site using the update equation of the FCM algorithm:

ũij [ii, jj] =

[ C∑
l=1

(
‖m̃j [ii]− νi[jj]‖
‖m̃j [ii]− νl[jj]‖

)2]−1

(4.54)
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From this matrix, we can compute the value of the induced objective function:

Q̃[ii, jj] =

K[ii]∑
k=1

C∑
i=1

ũ2
ik[ii, jj]‖m̃k[ii]− νi[jj]‖2 (4.55)

where ũ2
ik[ii, jj] is an element of the induced partition matrix Ũ [ii, jj] and m̃k[ii] is a

centre of Gaussian belonging the site [ii] computed in the VBGTM model.

The objective function for site [ii] is denoted by Q[ii] and calculated like in Eq. 4.37.

Then the interaction level β[ii, jj] between two data sites [ii] and [jj], at a given collab-

oration stage, is defined as in [43]:

β[ii, jj] = min

{
1,

Q[ii]

Q̃[ii, jj]

}
(4.56)

The value for Q̃[ii, jj] is typically greater than Q[ii] because it is computed based on

the prototypes sent from the jjth data site, whereas Q[ii] has been optimized for the

iith data site itself. Thus, the values for β[ii, jj] close to 0 suggest that the data sites

are very different and, so, this implies that the collaboration should be low. Contrarily,

if one assumes that the prototypes standalone convey all the information that describes

the cluster structures, then it is legitimate to consider that the partitions in data sites

[ii] and [jj] will be very similar when β[ii, jj] is close to 1, and vice-versa. In this case,

the collaboration level should be high.

The idea captured by Eq. 4.56 has been incorporated into the collaborative algorithm

in order to dynamically adjust the interaction level between every pair of data sites at

every collaboration stage. Now, uik[ii] and νid[ii] are computed like follows:

uik[ii] =
β[ii, jj]ũik[ii, jj]

1 + β[ii, jj]
+

1
C∑
s=1

‖m̃(k) − νi[ii]‖2

‖m̃(k) − νs[ii]‖2

[
1− 1

1 + β[ii, jj]

C∑
s=1

β[ii, jj]ũsk[ii, jj]

]

(4.57)

νid[ii] =

K[ii]∑
t=1

u2
it[ii]m̃(t) + β[ii, jj]

K[ii]∑
t=1

(uit[ii]− ũit[ii, jj])2m̃(t)

K[ii]∑
k=1

u2
ik[ii] + β[ii, jj]

K[ii]∑
k=1

(uik[ii]− ũik[ii, jj])2

(4.58)
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Following this idea, a more computationally efficient algorithm can be developed. Such

an algorithm, estimates values of β[ii, jj] only once before the collaboration process

takes place and keep them fixed throughout the collaboration stages. When using these

two algorithms (as well as the original collaborative alogorithm) the user implicitly

assumes that the data from different sites comes from different populations, because he

or she expects that only data sites that are similar (in some relative sense) should take

advantage of the collaborative clustering process. In other words, it is assumed, a priori,

that for very different data sites there is no reason to incorporate the shared information

provided by their respective prototypes into the collaborative process.

4.7 Summary

In this chapter, we presented the variational approximation principle, and the variational

Bayesian version of GTM (VBGTM). Its major advantage is to control data overfitting.

Then we developed a new method for fuzzy clustering by combining the Variational

Bayesian Generative Topographic Mapping VBGTM and the Fuzzy C-means FCM.

Then we used FCM to produce a desired number of clusters based on the output of

VBGTM. FCM is a tool for fuzzy clustering. VBGTM is mostly used for data visual-

ization of the distribution of data sets. By combining the two algorithms, we developed

a method than can do data visualization and grouping at the same time. Compared

to the combination of K-means and SOM, the method proposed in this paper provides

membership functions to indicate the likelihood of a data item belonging to a cluster.

The membership function is capable of revealing valuable information when performing

clustering in applications such as customers segmentation. Experiments showed that the

proposed F-VBGTM method consistently performed better than the FCM algorithm.

In the rest of the chapter, we made use of the proposed algorithm F-VBGTM to apply

it in the case of distributed data, more specifically in a collaborative clustering scheme.

We presented both approaches of it, horizontal and vertical. An example of the effect

of the collaboration is presented. Then we presented some methods for calculating the

collaboration links during the collaboration stage. We can apply these methods in order

to estimate the confidence between different data sites.





Summary and Conclusion

The main thrust of this thesis is to formulate Collaborative Clustering schemes based on

topological methods, such as Self-Organizing Map (SOM), Generative Topographic Map-

pings (GTM) and Variational Bayesian Generative Topographic Mappings (VBGTM).

Collaborative Clustering intend to reveal the overall structure of distributed data (i.e.

data residing at different repositories) but, at the same time, complying with the restric-

tions preventing data sharing. The fundamental concept of Collaborative Clustering is:

the clustering algorithms operate locally (namely, on individual data sets) but collaborate

by exchanging information about their findings. The strength of collaboration is precised

by a parameter called coefficient of collaboration, more it is high more the collaboration

is strong.

The main novel contributions of this thesis are briefly summarized next. This is fol-

lowed by an outline of some possible future directions of research stemming from our

investigation.

Summary of Contributions

Self-organizing maps (SOMs) are a data visualization technique which reduce the di-

mensions of data through the use of self-organizing neural networks. The problem that

data visualization attempts to solve is that humans simply cannot visualize high dimen-

sional data as is so techniques are created to help us understand this high dimensional

data. Chapter 2 formulates a horizontal and a vertical collaborative clustering schemes

based on SOM as local step of clustering. In the collaboration phase, data sites share

the parameters obtained in the local phase, which are for SOM the prototypes and the

neighborhood function values. Another contribution in this chapter is the automatic

estimation of the coefficient of collaboration. This parameter quantifies the confidence

between data sites, precising the strength of contribution of each site in the consensus

building procedure.
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We presented in chapter 3 a collaborative clustering scheme based on a generative model.

The used generative model is GTM, which was proposed as a probabilistic counterpart

of SOM. GTM was defined to retain all the useful properties of SOM, such as the si-

multaneous clustering and visualization of multivariate data, while eluding most of its

limitations through a fully probabilistic formulation. GTM is based on the EM algo-

rithm. To collaborate using GTM we modified the M-step by adding a collaboration

term to the complete log-likelihood function. This led to a modification in the update

formulas of the GTM parameters (the weight matrix and the variance). The collabora-

tion term depends whether the scenario of collaboration is horizontal or vertical. But

the risk of overfitting is elevated because the optimization of the GTM models through

EM does not take into account the model complexity. A solution for this is presented

in the next chapter.

Chapter 4 presents a collaborative clustering algorithm based on variational Bayesian

model. This model was presented as a solution to avoid overfitting of GTM. Is is called

VBGTM. We start the chapter by introducing the variational Bayesian inference. Then

we introduce VBGTM and its VB-EM algorithm. Next, we propose an extension to

make use of VBGTM for fuzzy clustering, the extension applies FCM on the centres of

Gaussian components obtained by VBGTM, then assign data to the clusters by applying

Bayes theorem on the posterior probabilities obtained by VBGTM and the membership

values obtained by FCM. By combining the two algorithms, we develop a method that

can do data visualization and grouping at the same time. After all, we propose a

collaborative clustering schemes using this extension. Experiments show the advantage

of the proposed method. We propose also some methods of collaborative clustering using

VBGTM with variable interaction level.

Future Directions

This thesis creates some clear opening for future lines of research. We consider an

important open perspective:

The collaborative clustering schemes described in this thesis consider the same clustering

algorithm applied in the local phase, and extend it to be applied in the distributed

data case. An important question to be asked is: what if the different data sources

uses different clustering algorithms? Or what if the same clustering algorithm is not

suitable for all the sources? We consider an important open perspective in this case,

in which we seek an algorithm taking into consideration different clustering algorithms

and collaborate them.
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Also, clustering algorithms in this thesis pertain to off-line (or batch) processing, in

which the clustering process repeatedly sweeps through a set of data samples in an

attempt to capture its underlying structure in a compact and efficient way. However,

many recent applications require that the clustering algorithm be online, or incremental,

in that there is no a priori set of samples to process but rather samples are provided

one iteration at a time. Accordingly, the clustering algorithm is expected to gradually

improve its prototype (or centroid) constructs. Several problems emerge in this context,

particularly relating to the stability of the process and its speed of convergence. So what

if we require a clustering algorithm applied on distributed data streams?

Other perspectives are also considered:

- Combine horizontal and vertical approaches to get a new hybrid collaboration approach.

- Fusion the obtained maps (SOM, GTM or VBGTM) after the collaboration to construct

a clustering “consensus” for all the sites.

- Test the impact of diversity between different models on the quality of the collaboration.

- Use the diversity between different models to guide the collaboration to be selective.

- Integrating background knowledge into collaborative clustering.

- Test the relation between collaborative clustering and transfer learning.

We are working on these perspectives in the ANR project COCLICO1, in collaboration

with: ICUBE2, AgroParisTech3, LIVE4 and UMR Espace Dev5.

1COllaboration, CLassification, Incrmentalit et COnnaissances. http://icube-coclico.unistra.fr/
2Laboratoire des sciences de l’Ingnieur, de l’Informatique et de l’Imagerie, Université de Strasbourg
3Institut des sciences et industries du vivant et de l’environnement
4Laboratoire Image, Ville, Environnement, Université de Strasbourg
5L’espace au service du dveloppement, Université Montpellier 2





Conclusion et perspectives

Dans cette thèse nous avons présenté plusieurs nouveaux algorithmes de Clustering

Collaboratif basés sur des méthodes à base de prototypes. Les méthodes utilisées sont

les cartes auto-organisatrices (SOM), les cartes topographiques génératives (GTM), et

les GTM Variationnelles Bayésiennes (VBGTM). Une caractéristique commune entre ces

trois méthodes est la visualisation des donnés de grande dimension. Ayant une collection

de bases de données distribuées sur plusieurs sites différents, le clustering collaboratif

consiste à partitionner chacune de ces bases en considérant les données locales et les

classifications obtenues par les autres sites pour améliorer/enrichir la classification locale,

sans toutefois avoir recours au partage des données entre les différents centres. La force

de la collaboration est précisée par un paramètre appelé coefficient de collaboration, ou

confiance, plus sa valeur est grande plus la collaboration est forte et pertinente.

La première contribution dans cette thèse est un algorithme de clustering collaboratif

basé sur SOM. Deux approches de collaboration sont proposées, l’approche horizontale

où les sites ont les mêmes observations mais différentes variables, et l’approche verticale

où les sites ont les mêmes variables mais différentes observations. Dans la phase de

collaboration, les sites partagent les résultats obtenus lors de la phase de classification

locale, qui sont dans le cas de SOM les prototypes et les valeurs de la fonction de

voisinage.

Pour le coefficient de collaboration, nous avons proposé un algorithme permettant de

l’estimer automatiquement en ajoutant une étape à la phase de collaboration. En esti-

mant ce paramètre, les sites peuvent automatiquement préciser la confiance qu’ils font

aux autres sites, par suite choisir les sites avec lesquels ils décident de collaborer.

Par contre, SOM souffre de quelques limitations dont l’abscense d’un modèle probabiliste

en particulier. Pour cela, nous avons proposé un algorithme de clustering collaboratif

basé cette fois sur GTM qui a été définie pour conserver toutes les propriétés utiles de

SOM tout en évitant le plus de ses limitations. Pour ce faire, nous avons ajouté un

terme de collaboration à l’étape M de l’algorithme EM de GTM. Par conséquent, les
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formules de mise à jour des paramètres du GTM sont modifiées (la matrice des poids et

la variance).

Néanmoins, le risque de sur-apprentissage en utilisant GTM est élevé. Nous avons alors

proposé un algorithm de clustering collaboratif en utilisant la version Variationnelle

de GTM (VBGTM) qui a été proposée comme solution évitant le sur-apprentissage

de GTM. Nous avons proposé une extension à VBGTM en appliquant une classification

floue (FCM) sur les centres des Gaussiennes obtenues lors du calcul de VBGTM. Ensuite,

l’agorithme de clustering collaboratif proposé utilise les résultats de cette classification

floue pour pouvoir faire collaborer les sites entre eux.

Enfin, nous avons présenté un choix de méthodes permettant d’estimer les coefficients

de collaboration d’une manière automatique.

Perspectives

Plusieurs perspectives de recherche peuvent être envisagées suite à ces travaux :

Les algorithmes de clustering collaboratif proposés dans cette thèse utilisent la même

méthode de clustering lors de la phase locale et suppose le même nombre de groupes

(clusters). Une extension consiste à faire une collaboration entre différentes méthodes de

classification en utilisant uniquement les matrices de partition. Le problème du nombre

variable de clusters peut être abordé à travers une mesure de similarité entre partition

permettant ainsi de choisir un nombre restreint de clusters de la partition la plus proche

lors de la collaboration.

Par ailleurs, les algorithmes de clustering proposés dans cette thèse traitent des données

d’une maniere hors-ligne (batch), c’est-a-dire que l’échantillon des données est traité en

une seule passe et la présence de l’ensemble des données au même temps est nécessaire.

Cependant, de nombreuses applications récentes exigent que l’algorithme de clustering

soit en-ligne, ou incrémentale, en particulier dans le cas de flux de données, i.e. les

données sont fournies de manière continue. En conséquent, l’algorithme de cluster-

ing devra progressivement améliorer ses résultats en fonction de l’arrivée des données.

Plusieurs problèmes apparaissent dans ce contexte dont la stabilité de la procédure de

classification et sa vitesse de convergence.

D’autres perspectives sont aussi envisageables, comme :

- Combiner les approches horizontales et verticales pour avoir une nouvelle approche de

collaboration hybride.

- Fusionner les cartes obtenues (SOM, GTM ou VBGTM) après la collaboration pour
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construire une classification “consensus” pour tous les sites.

- Etudier l’impact de la diversité entre les différents modèles sur la qualité de la collab-

oration.

- Utiliser la diversité entre les différents modèles pour guider la collaboration et la rendre

sélective.

- Guider la collaboration et l’enrichir en intégrant des connaissances.

- Analyser l’effet de la collaboration “négative” et proposer des approches permettant

de la détecter et ainsi de l’éviter pendant l’apprentissage.

- Etudier les liens entre l’apprentissage collaboratif et l’apprentissage par transfert.

Nous travaillons sur certaines de ces perspectives dans le cadre du projet ANR COCLICO6,

en collaboration avec : ICUBE7, AgroParisTech8, LIVE9 et Espace Dev10.

6COllaboration, CLassification, Incrémentalité et COnnaissances. http://icube-coclico.unistra.fr/
7Laboratoire des sciences de l’Ingénieur, de l’Informatique et de l’Imagerie, Université de Strasbourg
8Institut des sciences et industries du vivant et de l’environnement
9Laboratoire Image, Ville, Environnement, Université de Strasbourg

10L’espace au service du développement, Université Montpellier 2



Appendix A

Cluster Validity, Choosing the

Number of Clusters

The result of a clustering algorithm can be very different from each other on the same

data set as the other input parameters of an algorithm can extremely modify the behavior

and execution of the algorithm. The aim of the cluster validity is to find the partitioning

that best fits the underlying data. Usually 2D data sets are used for evaluating clustering

algorithms as the reader easily can verify the result. But in case of high dimensional

data the visualization and visual validation is not a trivial tasks therefore some formal

methods are needed.

The process of evaluating the results of a clustering algorithm is called cluster validity

assessment. Two measurement criteria have been proposed for evaluating and selecting

an optimal clustering scheme [19]:

• Compactness: The member of each cluster should be as close to each other as

possible. A common measure of compactness is the variance.

• Separation: The clusters themselves should be widely separated. There are three

common approaches measuring the distance between two different clusters: dis-

tance between the closest member of the clusters, distance between the most dis-

tant members and distance between the centres of the clusters.

There are three different techniques for evaluating the result of the clustering algorithms

[60], and several Validity measures are proposed: Validity measures are scalar indices

that assess the goodness of the obtained partition. Clustering algorithms generally

aim at locating well separated and compact clusters. When the number of clusters
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is chosen equal to the number of groups that actually exist in the data, it can be

expected that the clustering algorithm will identify them correctly. When this is not the

case, misclassifications appear, and the clusters are not likely to be well separated and

compact. Hence, most cluster validity measures are designed to quantify the separation

and the compactness of the clusters.

There are two types of clustering validity techniques [77], which are based on external

criteria and internal criteria.

• External Criteria: Based on previous knowledge about data.

• Internal Criteria: Based on the information intrinsic to the data alone.

If we consider these two types of cluster validation to determine the correct number of

groups from a data set, one option is to use external validation indexes for which a priori

knowledge of dataset information is required, but it is hard to say if they can be used

in real problems (usually, real problems do not have prior information of the dataset

in question). Another option is to use internal validity indexes which do not require a

priori information from data set.

We describe some of these validity measures in the following:

Internal validity indexes

• Davies-Bouldin index (DB) [49]:

This index aims to identify sets of clusters that are compact and well separated.

The Davies-Bouldin index is defined as:

DB(C) =
1

C

C∑
i=1

max
i 6=j

{
d(Xi) + d(Xj)

d(Ci, Cj)

}
(A.1)

Where C denotes the number of clusters, i, j are cluster labels, then d(Xi) and

d(Xj) are all samples in clusters i and j to their respective cluster centres, d(Ci, Cj)

is the distance between these centres. Smaller value of DB indicates a ”better“

clustering solution.

• BIC index [39]:

The Bayesian information criterion (BIC) [153] is devised to avoid overfitting, and

is defined as:

BIC = − ln(L) + ν ln(n) (A.2)
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Where n is the number of objects, L is the likelihood of the parameters to generate

the data in the model, and ν is the number of free parameters in the Gaussian

model. The BIC index takes into account both fit of the model to the data and

the complexity of the model. A model that has a smaller BIC is better.

• Dunn’s Index (DI) [22, 53]:

Dunn’s index is defined as:

DI(C) = min
1≤i≤C

{
min

{
d(Ci, Cj)

max1≤k≤C
(
d(Xk)

)}} (A.3)

Where d(Ci, Cj) defines the intercluster distance between cluster i and j, d(Xk)

represents the intracluster distance of cluster k and C is the number of cluster of

data set. Large values of index Dunn correspond to good clustering solution.

• Xie and Beni’s index (XB) [179]:

This index is adapted for fuzzy clustering methods. It aims to quantify the ratio

of the total variation within clusters and the separation of clusters. It is defined

as:

XB(C) =

C∑
i=1

N∑
k=1

(uik)
m‖xk − vi‖2

N ×mini,n ‖xn − vi‖2
(A.4)

The optimal number of clusters should minimize the value of the index.

External validity indexes

• Purity index :

We calculate the purity of a set of clusters. First, we determine the purity in each

cluster. For each cluster, we have the purity Pi = 1
ni

maxj(n
j
i ) is the number of

objects in i with class label j. In other words, Pi is a fraction of the overall cluster

size that the largest class of objects assigned to that cluster represents. The overall

purity of the clustering solution is obtained as a weighted sum of the individual

cluster purities and is given as:

Purity =

C∑
i=1

ni
N
Pi (A.5)

Where ni is the size of cluster i, C is the number of clusters, and N is the total

number of objects.

• Entropy :

Entropy measures the purity of the clusters class labels. Thus, if all clusters
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consist of objects with only a single class label, the entropy is 0. However, as the

class labels of objects in a cluster become more varied, the entropy increases. To

compute the entropy of a dataset, we need to calculate the

Ei =
∑
i

Pij ln(Pij) (A.6)

Where the sum is taken over all classes. The total entropy for a set of clusters

is calculated as the weighted sum of the entropies of all clusters, as shown in the

next equation:

E =

C∑
i=1

ni
N
Ei (A.7)

Where ni is the size of cluster i, C is the number of clusters, and N is the total

number of objects.

We used some of these validity measures in this thesis. Other measures are used as well

and are described in the thesis.
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[31] Bose, I., and Mahapatra, R. K. Business data mining—a machine learning

perspective. Information & management 39, 3 (2001), 211–225. 11

[32] Boyen, X., and Koller, D. Tractable inference for complex stochastic pro-

cesses. In Proceedings of the Fourteenth conference on Uncertainty in artificial

intelligence (1998), Morgan Kaufmann Publishers Inc., pp. 33–42. 98

[33] Bratton, D., and Kennedy, J. Defining a standard for particle swarm opti-

mization. In Swarm Intelligence Symposium, 2007. SIS 2007. IEEE (2007), IEEE,

pp. 120–127. 116

[34] Bruske, B. J., Ahrns, I., Sommer, G., Q-learning, H., and Ecml, S. T.

Competitive Hebbian Learning Rule Forms Perfectly Topology. 45

[35] Callen, H. B. Thermodynamics and an Introduction to Thermostatistics, 2 ed.

Wiley, Sept. 1985. 95

[36] Cannon, R. L., Dave, J. V., and Bezdek, J. C. Efficient implementation of

the fuzzy c-means clustering algorithms. Pattern Analysis and Machine Intelli-

gence, IEEE Transactions on, 2 (1986), 248–255. 23

[37] Caruana, R., and Niculescu-Mizil, A. An empirical comparison of super-

vised learning algorithms. In Proceedings of the 23rd international conference on

Machine learning (2006), ACM, pp. 161–168. 14



Bibliography 141

[38] Chen, N., Lu, W., Yang, J., and Li, G. Support vector machine in chemistry.

World Scientific, 2004. 11

[39] Chen, S. S., and Gopalakrishnan, P. S. Clustering via the Bayesian infor-

mation criterion with applications in speech recognition. In Acoustics, Speech and

Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference

on (1998), vol. 2, IEEE, pp. 645–648. 131

[40] Chen, Y., Qin, B., Liu, T., Liu, Y., and Li, S. The Comparison of SOM

and K-means for Text Clustering. Computer and Information Science 3, 2 (2010),

P268. 44, 47

[41] Cheng, T. W., Goldgof, D. B., and Hall, L. O. Fast fuzzy clustering. Fuzzy

sets and systems 93, 1 (1998), 49–56. 23

[42] Cho, S.-B., and Won, H.-H. Machine learning in DNA microarray analysis for

cancer classification. In Proceedings of the First Asia-Pacific bioinformatics con-

ference on Bioinformatics 2003-Volume 19 (2003), Australian Computer Society,

Inc., pp. 189–198. 11

[43] Coletta, L. F., Vendramin, L., Hruschka, E. R., Campello, R. J., and

Pedrycz, W. Collaborative fuzzy clustering algorithms: Some refinements and

design guidelines. Fuzzy Systems, IEEE Transactions on 20, 3 (2012), 444–462.

120

[44] Corpet, F. Multiple sequence alignment with hierarchical clustering. Nucleic

acids research 16, 22 (1988), 10881–10890. 83

[45] da Silva, J. C., Giannella, C., Bhargava, R., Kargupta, H., and Klusch,

M. Distributed data mining and agents. Engineering Applications of Artificial

Intelligence 18, 7 (2005), 791–807. 28

[46] da Silva, J. C., and Klusch, M. Inference in distributed data clustering. Eng.

Appl. Artif. Intell. 19, 4 (June 2006), 363–369. 26, 28

[47] Dahmane, M., and Meunier, J. Real-time video surveillance with self-

organizing maps. In Computer and Robot Vision, 2005. Proceedings. The 2nd

Canadian Conference on (2005), pp. 136–143. 47
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Résumé
Doctor of Philosophy

Contributions à l’Apprentissage Collaboratif non Supervisé

by Mohamad Ghassany

Le travail de recherche exposé dans cette thèse concerne le développement d’approches de

clustering collaboratif à base de méthodes topologiques, telles que les cartes auto-organisatrices

(SOM), les cartes topographiques génératives (GTM) et les GTM variationnelles Bayésiennes

(VBGTM). Le clustering collaboratif permet de préserver la confidentialité des données en

utilisant d’autres résultats de classifications sans avoir recours aux données de ces dernières.

Ayant une collection de bases de données distribuées sur plusieurs sites différents, le problème

consiste à partitionner chacune de ces bases en considérant les données locales et les

classifications distantes des autres bases collaboratrices, sans partage de données entre les

différents centres. Le principe fondamental du clustering collaboratif est d’appliquer les

algorithmes de clustering localement sur les différents sites, puis collaborer les sites en

partageant les résultats obtenus lors de la phase locale. Dans cette thèse nous explorons deux

approches pour le clustering collaboratif. L’approche horizontale pour la collaboration des

bases de données qui décrivent les mêmes individus mais avec des variables différentes. La

deuxième approche collaborative est dite verticale pour la collaboration de plusieurs bases de

données contenant les mêmes variables mais avec des populations différentes.

Abstract
The research outlined in this thesis concerns the development of collaborative clustering

approaches based on topological methods, such as self-organizing maps (SOM), generative

topographic mappings (GTM) and variational Bayesian GTM (VBGTM). So far, clustering

methods performs on a single data set, but recent applications require data sets distributed

among several sites. So, communication between the different data sets is necessary, while

respecting the privacy of every site, i.e. sharing data between sites is not allowed. The

fundamental concept of collaborative clustering is that the clustering algorithms operate locally

on individual data sets, but collaborate by exchanging information about their findings. The

strength of collaboration, or confidence, is precised by a parameter called coefficient of

collaboration. This thesis proposes to learn it automatically during the collaboration phase.

Two data scenarios are treated in this thesis, referred as vertical and horizontal collaboration.

The vertical collaboration occurs when data sets contain different objects and same patterns.

The horizontal collaboration occurs when they have same objects and described by different

patterns.
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