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Résumé et remerciements/ Abstract
Résumé. Cette thèse présente des modèles probabilistes et déterministes de rupture et des

phénomènes de branchement, on étudie : les processus de branchement à valeurs mesures et

leur EDP non linéaires, les processus de Markov de la subordination au sens de Bochner sur

les espaces Lp, et les EDP non linéaires liées au déclenchement des avalanches.

La première partie présente les aspects stochastiques. On utilise plusieurs outils théoriques,

analytiques et probabilistes de la théorie du potentiel. D’abord, on construit des processus

de branchement (de Markov) sur l’ensemble des configurations finies de l’espace d’état d’un

processus standard, contrôlés par un noyau de branchement et un noyau tuant. On établit

des connexions avec les équations différentielles partielles liées aux fonctions de transition

d’un processus de branchement. Si le processus de base est le mouvement brownien, on a une

équation d’évolution non linéaire avec le gradient au carré. Si on part d’un super-processus,

on obtiendra un processus de branchement ayant l’espace d’état des configurations finies

de mesures positives finies sur un espace topologique. L’outil principal pour démontrer la

régularité des trajectoires d’un processus de branchement est l’existence des fonctions surhar-

moniques convenables, ayant les niveaux compacts. En suite, on démontre que la subordina-

tion induite par un semi-groupe de convolution (la subordination au sens de Bochner) d’un C0

-semi-groupe d’opérateurs sous-markoviens sur l’espace Lp est associée à la subordination de

processus droit de Markov. En conséquence, on résout le problème des martingales associé au

Lp -générateur infinitésimal d’un semi-groupe subordonné. Il s’avère qu’un élargissement de

l’espace de base est nécessaire. La principale étape de la preuve est la préservation sous une

subordination de la propriété d’un processus de Markov d’être un processus droit borélien.

La deuxième partie de la thèse est consacrée à la modélisation du déclenchement d’une

avalanche d’un matériau visco-plastique de faible épaisseur (sols, neige ou autre géo-matériaux)

sur une surface avec topographie (montagnes, vallées). On part d’un modèle d’un fluide

visco-plastique avec topographie et on introduit un critère simple, capable de distinguer si

une avalanche se produit ou pas. Ce critère est déduit d’un problème d’optimisation (analyse

de la charge limite). Comme la fonctionnelle de dissipation plastique est non régulière et non

coercive dans les espaces de Sobolev classiques, on utilise l’espace des fonctions à déformation

tangentielle bornée, pour prouver l’existence d’un champ de vitesse optimal, associé au

déclenchement d’une avalanche. On propose aussi une stratégie numérique, sans maillage,

pour résoudre le problème de la charge limite et pour obtenir la fracture de déclenchement. La

fracture du matériau pendant la phase de déclenchement est modélisée par une discontinuité

de ce champ de vitesse. Enfin, l’approche numérique proposée est illustrée par la résolution

de certains problèmes modélisant le déclenchement des avalanches.

Mots-clefs. Fonction excessive, processus de Markov, fonction compacte de Lyapunov,

branchement discret, processus à valeurs mesures, noyau de branchement, subordination au

sens de Bochner, Lp semi-groupe, déclenchement d’avalanche, fluide visco-plastique, topogra-

phie, déformation tangentielle bornée, méthode sans maillage, analyse de charge limite.
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Abstract. The thesis presents probabilistic and deterministic models for rupture and branch-

ing type phenomena, by studying: measure-valued discrete branching processes and their

nonlinear PDEs, the Markov processes of the Bochner subordinations on Lp-spaces, and the

nonlinear PDEs associated to the flow onset of dense avalanches.

The first part presents the stochastic aspects. Several analytic and probabilistic potential

theoretical tools are used. First, it is given a construction for the branching Markov processes

on the space of finite configurations of the state space of a given standard process (called base

process), controlled by a branching kernel and a killing one. There are established connections

with the nonlinear partial differential equations associated with the transition functions of

the branching processes. When the base process is the Brownian motion, then a nonlinear

evolution equation involving the square of the gradient occurs. Starting with a superprocess

as base process, the result is a branching process with state space the finite configurations of

positive finite measures on a topological space. A key tool in proving the path regularity of

the branching process is the existence of a convenient superharmonic function having compact

level sets. Second, it is shown that the subordination induced by a convolution semigroup

(the subordination in the sense of Bochner) of a C0-semigroup of sub-Markovian operators

on an Lp space is actually associated to the subordination of a right (Markov) process. As a

consequence, it is solved the martingale problem associate with the Lp-infinitesimal generator

of the subordinate semigroup. It turns out that an enlargement of the base space is necessary.

A main step in the proof is the preservation under such a subordination of the property of a

Markov process to be a Borel right process.

The second part of the thesis deals with the modeling of the onset of a shallow avalanche

(soils, snow or other geomaterials) over various bottom topologies (mountains, valleys). Start-

ing from a shallow visco-plastic model with topography, a simple criterion able to distinguish

if an avalanche occurs or not, is introduced. This criterion is deduced from an optimization

problem, called limit load analysis. The plastic dissipation functional involved is non-smooth,

and non coercive in the classical Sobolev spaces. The appropriate functional space is the space

of bounded tangential deformation functions and the existence of an onset velocity field (col-

lapse flow) is proved. To propose a numerical strategy, a mesh free method is used to reduce

the limit load problem to the minimization of a shape dependent functional. The collapse flow

velocity field, which is discontinuous, is associated to an optimum sub-domain and to a rigid

flow. The description of the sub-domains is given through a level set of a Fourier function

while genetic algorithms are used to solve the resulted non convex and non-smooth global

optimization problem. Finally, the proposed numerical approach is illustrated by solving

some safety factor problems associated to avalanche onset.

Keywords. Excessive function, Markov process, compact Lyapunov function, discrete branch-

ing, measure-valued process, branching kernel, subordination in the sense of Bochner, Lp-

semigroup, avalanche onset, visco-plastic fluid, topography, bounded deformation functions,

mesh free method, limit load problem.
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Introduction

The branching phenomena arise in applicative fields such as mechanics (avalanches,

disintegration of snow blocs) or astrophysics (formation and fragmentation of planets).

This thesis is related to the present scientific effort in developing the connection between

branching processes and the fragmentation phenomenon with applications to material

ruptures models, as the avalanche phenomena. We construct and study measure-valued

branching processes and their nonlinear partial differential equations, we associate

Markov processes to the subordination in the sense of Bochner of the Lp-semigroups,

and we investigate the nonlinear partial differential equations modeling the flow onset

of dense avalanches (visco-plastic Saint-Venant model with topography), we emphasize

a numerical approach.

The branching processes describe the time evolution of a system of particles, located

in an Euclidean domain. A branching process is interpreted in a suggestive way as de-

scribing the evolution of a random cloud. It turns out that, in order to describe such

Markovian time evolution phenomena, the natural state space to be considered is a

set of positive finite measures on that domain. Therefore, the methods of constructing

measure-valued Markov processes are of particular interest. We establish natural con-

nexions with nonlinear partial differential equations of the type ∆u−u = −
∑∞

k=1 qku
k,

where the coefficients qk are positive and
∑∞

k=1 qk = 1, associated with the transition

functions of the branching processes.

The subordination in the sense of Bochner is a convenient way of transforming

the semigroups of operators and their infinitesimal generators. Recall that in partic-

ular, this is a method of studying the fractional powers of the Laplace operator. The

second objective from the stochastic processes part of the thesis is to show that any

subordination in the sense of Bochner of a sub-Markovian Lp-semigroups is actually

produced by the subordination of a Markov process. It turns out that an enlargement

of the base space is necessary. Our approach to the branching processes and Bochner

subordination uses analytic and probabilistic tools from potential theory.

Modeling avalanche formation of soils, snow, granular materials or other geomate-

rials, is a complex task. The main method in modeling the shallow avalanche onset

7



8 Introduction

is the study of a global non smooth optimization problem, called the safety factor (of

limit load) problem. This optimization problem is reconsidered in the space of bounded

deformations functions, a suitable space to capture the discontinuities of the onset ve-

locity field and the velocity boundary conditions are relaxed. We prove that the initial

optimization problem is not changed and the reformulated safety factor problem has

at least one solution, modeling the onset flow field of the avalanche. We also develop a

Discontinuous Velocity Domain Splitting method (DVDS method), a numerical tech-

nique to solve the safety factor problem through a shape optimization problem. Our

numerical approach is illustrated by numerical simulations of some limit load problems.

The thesis is the result of a PhD program which started in September 2010, in the

frame of a cotutelle agreement between Paris 13 University, France, and Simion Stoilow

Institute of Mathematics of the Romanian Academy (IMAR) in Bucharest, Romania.

It was funded jointly by the French Institute in Bucharest and by IMAR (POSDRU

project 82514).
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Branching and subordinate Markov

processes
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Introduction to Part I

The organization of this part of the thesis is the following. In Chapter 1 we collect

some preliminaries on the resolvents of kernels and basic notions of potential theory.

We present in (1.3.2) and Proposition 1.3.4 a suitable result on the existence of a càdlàg,

quasi-left continuous strong Markov processes, given a resolvent of kernels, imposing

conditions on the resolvent.

The description of a discrete branching process is as follows (cf. e.g., [92], page 235,

and [34]). An initial particle starts at a point of a set E and moves according to a stan-

dard Markov process with state space E (called base process) until a random terminal

time when it is destroyed and replaced by a finite number of new particles, its direct de-

scendants. Each direct descendant moves according to the same right standard process

until its own terminal time when it too is destroyed and replaced by second generation

particles and the process continues in this manner. N. Ikeda, M. Nagasawa, S. Watan-

abe, and M. L. Silverstein (cf. [53], [54], and [92]) indicated the natural connection

between discrete branching processes and nonlinear partial differential operators Λ of

the type

Λu := Lu+
∞∑
k=1

qku
k,

where L is the infinitesimal generator of the given base process and the coefficients qk
are positive, Borelian functions with

∑∞
k=1 qk = 1. In the description of a branching

process this particular case means that each direct descendant starts at the terminal

position of the parent particle and qk(x) is the probability that a particle destroyed at

x has precisely k descendants. It is possible to consider a more general nonlinear part

for the above operator, generated by a branching kernel B; the descendants start to

move from their birthplaces which have been distributed according to B. Thus, these

processes are also called ”non-local branching” (cf. [34]); from the literature about

branching processes we indicate the classical monographs [47], [5], [4], the recent one

[67], and the lecture notes [66] and [35].

In Chapter 2 we construct discrete branching Markov processes associated to op-

11



12 Introduction to Part I

erators of the type Λ, using several analytic and probabilistic potential theoretical

methods. The base space of the process is the set S of all finite configurations of E.

The branching kernels on the space of finite configurations are introduced in Section

2.1.

Section 2.5 is devoted to the construction of the measure-valued discrete branching

processes. The first step is to solve the nonlinear evolution equation induced by Λ (see

Proposition 2.2.1 and Remark 2.2.2 (ii) below). Then, using a technique of absolutely

monotonic operators developed in [92], it is possible to construct (cf. Theorem 2.3.1)

a Markovian transition function on S, formed by branching kernels. We follow the

classical approach from [53] and [92], but we consider a more general frame, the given

topological space E being a Lusin one and not more compact (see Ch. 5 in [4] for the

locally compact space situation).

The second step is to show that the transition function we constructed on S is

indeed associated to a standard process with state space S. The main result of this

Chapter is Theorem 2.5.2, its proof involves the entrance space S1, an extension of S

constructed by using a Ray type compactification method. We apply the mentioned

results from Section 1.3 and Section 1.2, showing that the required imposed conditions

from (1.3.2) are satisfied by the resolvent of kernels on S associated with the branching

semigroup constructed in the previous step. In Proposition 2.4.2 (ii) we emphasize

relations between a class of excessive functions with respect to the base process X

and two classes of excessive functions (defined on S) with respect to the forthcoming

branching process: the linear and the exponential type excessive functions. A particular

linear excessive function for the branching process becomes a function having compact

level sets (called compact Lyapunov function) and will lead to the tightness property

of the capacity on S (see Proposition 2.4.2 (iii)). It turns out that it is necessary to

make a perturbation of L with a kernel induced by the given branching kernel, and we

present it in Proposition 1.4.2.

The above mentioned tools were useful in the case of the continuous branching pro-

cesses too (cf. [12] and [19]), e.g., for the superprocesses in the sense of E. B. Dynkin

(cf. [40]; see Section 3.1 for the basic definitions), like the super-Brownian motion,

processes on the space of all finite measures on E induced by operators of the form

Lu−uα with 1 < α 6 2. We establish in Remark 2.3.2 several links with the nonlinear

partial differential equations associated with the branching semigroups and we point

out connections between the continuous and discrete branching processes. Note that a

cumulant semigroup (similar to the continuous branching case; see (2.6.2) below) is in-

troduced in Theorem 2.3.1 for the discrete branching processes. In particular, when the

base process X is the Brownian motion, then the cumulant semigroup of the induced

discrete branching process formally satisfies a nonlinear evolution equation involving
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the square of the gradient. Finally, recall that the method of finding a convenient com-

pact Lyapunov function was originally applied in order to obtain martingale solutions

for singular stochastic differential equations on Hilbert spaces (cf. [15] and [22]) and

for proving the standardness property of infinite dimensional Lévy processes on Hilbert

spaces (see [17]).

We complete the main result of Chapter 2 with an application as suggested in [47],

page 50, where T. E. Harris emphasizes the interest for branching processes for which

”each object is a very complicated entity; e.g., an object may itself be a population”.

More precisely, because we may consider base processes with general state space, it

might be a continuous branching process playing this role. In Section 2.6, Corollary

2.6.1, we obtain in this way a branching Markov process, having the space of finite

configurations of positive finite measures on E as base space; an additional suggestive

interpretation of this branching process is exposed in Remark 2.6.2. Note that in

[11] new branching processes are generated starting with a superprocess and using an

appropriate subordination theory.

In Chapter 3 we study the subordination in the sense of Bochner for Lp-semigroups

and the associated Markov processes. Let (Pt)t≥0 be a C0-semigroup on a Banach space

B and µ = (µt)t≥0 be a convolution semigroup on R+. Recall that the subordinate of

(Pt)t≥0 in the sense of Bochner is the C0-semigroup (P µ
t )t≥0 on B defined as

P µ
t u :=

∫ ∞
0

Psu µt( ds), t ≥ 0, u ∈ B.

The probabilistic counterpart of the Bochner subordination is a procedure of introduc-

ing jumps in the evolution of a given Markov process, by means of a positive real-valued

stationary stochastic process (ξt)t>0, with independent nonnegative increments (called

subordinator), induced by µ = (µt)t>0. More precisely, if X = (Xt)t>0, is a (Borel) right

Markov process with state space E, then define the subordinate process Xξ = (Xξ
t )t>0

as

Xξ
t := Xξt , t > 0.

A specific problem is to show that regularity properties are transferred from the

given process X to the subordinate one Xξ; for example the Feller or strongly Feller

properties of the corresponding transition functions (see, e.g., [61] and Section 3 from

Ch. V in [27]). Applications to the Dirichlet forms are developed in [63] and [1], to the

pseudo differential operators in [61] and [62], while to establish Harnack inequalities

in [46]. Recall that the classical example of such an operator obtained by Bochner

subordination is the square root of the Laplace operator; see (3.2.1) below for some

details. For other various developments and applications see [90], [50], [31], [36], [91],

and [28].
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Recall that if (Pt)t>0 is the C0-semigroup on Lp(E,m) induced by the transi-

tion function of X = (Xt)t>0 (where m is a σ-finite Pt-subinvariant measure, i.e.,∫
E
Ptf dm 6

∫
E
f dm for all f ∈ Lp(E,m), f > 0, and t > 0), then the transition func-

tion of the subordinate process Xξ = (Xξ
t )t>0 is (P µ

t )t>0. A converse of this statement

is the main result of Chapter 3 and it is given in Section 3.4 below, Theorem 3.4.1.

Consequently, one can apply results on the subordination (in the sense of Bochner)

of the Markov processes for the subordination of the Lp-semigroups on arbitrary Lusin

measurable state spaces. As an example, the process Xξ from Theorem 3.4.1 may

be regarded as the solution of the martingale problem associate with the infinitesimal

generator Lµ of the subordinate semigroup (P µ
t )t>0. The precise result is given in

Corollary 3.4.3.

A second consequence of Theorem 3.4.1 is the validity of the quasi continuity prop-

erty for the subordinate semigroup (P µ
t )t>0, with respect to the Choquet capacity

associated with the given C0-semigroup (Pt)t>0. Recall that this property is analogous

to the quasi-regularity condition from the Dirichlet forms theory (cf. [73]); the role of

the capacity induced by the energy is played in this Lp frame by the capacity associated

to the process. We give more details in Section 3.4, Corollary 3.4.4.

The crucial argument in proving Theorem 3.4.1 is the association of a right process

to a C0-resolvent of sub-Markovian contractions on an Lp-space, proved in [16], where

the necessity of the enlargement of the space E is also discussed; for the reader’s con-

venience we present in Section 3.4, Remark 3.4.2, some details about the construction

of the larger space E1. A second main argument is to show that if X is a transient

(Borel) right process with state space a Lusin topological space then Xξ is a (Borel)

right process with the same state space and topology, in particular, it is strong Markov.

Results of this type were obtained by Bouleau in [31]. We present here a different ap-

proach (cf. Corollary 3.3.2 below), based on a characterization of the property of a

resolvent of kernels to be associated to a right process, in terms of excessive measures

(due to Steffens, see [93]), combined with a result of Sharpe on the preservation of

the properties of a process under change of realization (cf. Theorem (19.3) from [91]).

Note that according with [16] (Theorem 1.3 and the comment before it) there are some

difficulties in applying Steffens’ result in the non-transient case, therefore we present

it in Section 1.1. Note also that the paper [51] contains a related result, namely, it is

shown that the resolvent of a semigroup of kernels obtained by subordination from the

transition function of a transient right process is the resolvent of a right process, but

possible in some different topology and assuming in addition that it is proper; however,

no information about the subordinate process is given and no process is associated to

a given transition function (semigroup of kernels), as we are doing in Corollary 3.3.2.

The above mentioned result of Steffens is an essential argument in [51] too.
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A preliminary result is to show that the min-stability property of the excessive func-

tions is preserved under the subordination by a convolution semigroup (cf. Proposition

3.2.3). We complete in this way results from [22], where this property was supposed to

be satisfied by the subordinate resolvent, in order to associate to it a càdlàg Markov

process; see the Example following Corollary 5.4 from [22]. Recall that from the prob-

abilistic point of view the stability to the point-wise infimum of the convex cone of all

excessive functions is precisely the property that all the points of the state space of the

process are nonbranch points.

This first part of the thesis is essentially based on results from the papers [18] and

[70].
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Chapter 1

Analytic and probabilistic potential

theory for resolvents of kernels

1.1 Excessive functions and measures, energy func-

tional

Let (E,B) be a measurable space. We denote by pB the set of all numerical, positive

B-measurable functions on E.

For a familiy G of real-valued functions on E we denote by σ(G) (resp. by T (G)) the

σ−algebra (resp. the topology) generated by G and by bG (resp. [G], G) the subfamily

of bounded functions from G (resp. the linear space spanned by G, the closure in the

supremum norm of G).

Kernels. A kernel on (E,B) is a map N : pB −→ pB such that N0 = 0 and for each

sequence (fn)n ⊂ pB we have N(
∑

n fn) =
∑

nNfn. The kernel N is called Markovian

(respectively sub-Markovian, bounded) provided that N1 = 1 (resp. N1 6 1, N1 is a

bounded function).

(i) If N is a kernel on (E,B) then for each x ∈ E the map f 7−→ Nf(x) is a measure

on (E,B) denoted by Nx or N(x, ·), i.e, : Nf(x) =
∫
f dNx, N(1A)(x) = N(x,A) =

Nx(A) for all A ∈ B.
(ii) If (Nk)k is a sequence of kernels then

∑
k

Nk is a kernel and N1 ◦ N2 is also a

kernel on (E,B).

Example. If g : E × E −→ R+ is B × B-measurable and λ is a σ-finite measure on

(E,B), then we define Gf(x) :=
∫
E
g(x, y)f(y)λ( dy) for all x ∈ E, f ∈ pB. By Fubini

theorem it follows that G is a kernel on (E,B).

17
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Let E = Rd, λ be the Lebesgue measure on Rd, v : Rd −→ R+ a Borel measurable

function, and set g(x, y) := v(x− y). Then

Gf(x) =

∫
Rd
f(y)v(x− y)λ( dy) = v ∗ f(x), x ∈ Rd.

G is called convolution kernel with density with respect to the d-dimensional Lebesgue

measure.

Resolvent of kernels. A family U = (Uα)α>0 is called resolvent of kernels on (E,B)

provide that Uα is a bounded kernel on (E,B) for each α > 0 and the resolvent equation

holds, that is,

Uαf = Uβf + (β − α)UαUβf for all α, β > 0 and f ∈ bpB.

Note that in particular we have UαUβ = UβUα for all α, β > 0 and Uα 6 Uβ provided

that α > β. In particular, we may consider the kernel U := supα Uα,

Uf(x) := sup
α
Uαf(x) = lim

α→0
Uαf(x) for all f ∈ pB and x ∈ E.

The kernel U is called the initial kernel of the resolvent U = (Uα)α>0.

The resolvent U is called proper provide there exists f ∈ pB, f > 0, such that Uf

is a bounded function.

A resolvent of kernels U = (Uα)α>0 is called Markovian (resp. sub-Markovian)

provided that each kernel αUα, α > 0, is Markovian (resp. sub-Markovian), i.e.,

αUα1 = 1 (resp. αUα1 6 1).

If U = (Uα)α>0 is a sub-Markovian resolvent of kernels on (E,B) and q > 0, then

the family of kernels Uq = (Uq+α)α>0 is also a sub-Markovian resolvent of kernels on

(E,B) and its initial kernel is Uq. In particular, the resolvent Uq = (Uq+α)α>0 is always

proper, since Uq is a bounded kernel.

Transition function. A family of kernels T = (Tt)t>0 on (E,B) is called (time

homogenous) transition function provided that Tt is a sub-Markovian kernel on (E,B)

for each t > 0 and Tt ◦ Ts = Tt+s for all t, s > 0 i.e.,

Tt+s(x,A) =

∫
E

Ts(y, A)Tt(x, dy) for all A ∈ B and x ∈ E

(the Chapman-Kolmogorov equation). We assume that T0 is the identity operator and

for each f ∈ bpB the real-valued function R+ × E 3 (t, x) 7−→ Ttf(x) is measurable.
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The transition function T = (Tt)t>0 on (E,B) is called Markovian provided that

Tt1 = 1, t > 0.

The resolvent of kernels associated with the transition function T = (Tt)t>0 is the

family U = (Uα)α>0 on (E,B) defined by

Uαf :=

∫ ∞
0

e−αt Ttf dt, f ∈ pB.

Note that the resolvent of kernels U = (Uα)α>0 associated with the transition

function T = (Tt)t>0 is sub-Markovian. Indeed, we have Uα1 =
∫∞

0
e−αtTt1 dt 6∫∞

0
e−αt dt = 1

α
. Analogously, if T = (Tt)t>0 is Markovian, then the associated resolvent

has the same property.

Examples

(1.1.1) Convolution semigroups on Rd. Let (µt)t>0 be a (vaguely continuous) convolu-

tion semigroup of probability measures on Rd, that is, (µt)t>0 is a family of probability

measures on (Rd,B(Rd)), µ0 = δ0, µt ∗ µs = µt+s for all s, t > 0, and
∫
f dµt → f(0)

(as t tends to zero) for every f ∈ C0(Rd). Define then for f ∈ bpB and t > 0

Ttf(x) := f ∗ µt(x) =

∫
Rd
f(x+ y)µt( dy).

Then the family T = (Tt)t>0 is a Markovian transition function on Rd.

(1.1.2) The Gaussian semigroup on Rd. Recall that the density of the Gaussian kernel

on Rd is the function gt : Rd −→ R, t > 0, defined as

gt(x) :=
1

(2πt)
d
2

e−
|x|2
2t , x ∈ Rd.

One can check (see e.g., Ch. 0 in [27]) that the family (gt)t>0 has the following

convolution property: gs ∗ gt = gs+t for all s, t > 0. Consequently, the family of

probabilities (νt)t>0, where νt := gt · λ if t > 0 and ν0 := δ0, is a convolution semigroup

on Rd as described in (1.1.1); here we have denoted by λ the d-dimensional Lebesgue

measure. The Gaussian kernel Pt, t > 0, is the (Markovian) convolution kernel (defined

above) induced by the density gt, Ptf := gt ∗ f for all f ∈ pB, that is

Ptf(x) =
1

(2πt)
d
2

∫
Rd
e−
|x−y|2

2t f(y) dy, x ∈ Rd.

The Gaussian semigroup on Rd is the family of kernels P = (Pt)t>0, where P0 is the

identity operator, that is, P0f := f for all f . Clearly, the Gaussian semigroup is
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a Markovian transition function on Rd, it is induced by the convolution semigroup

(νt)t>0.

(1.1.3) The translation to the right semigroup on the line. For each t > 0 let µt := δt.

Then the family (µt)t>0 is a convolution semigroup of probability measures on R, which

induces (by convolution, cf. (1.1.1)) the transition function of the uniform motion to

the right; see, e.g., (3.7) in Ch. I of [28].

For the rest of this chapter U = (Uα)α>0 will be a fixed sub-Markovian resolvent of

kernels on the measurable space (E,B). As basic references for the presentation below

we indicate the monographs [91], [36], and [13].

Excessive function. A B-universally measurable function v : E −→ R+ is called

U-supermedian if αUαv 6 v for all α > 0.

Clearly, the property of U to be sub-Markovian means that the constant function

one is U -supermedian.

A U -supermedian function v is named U-excessive if in addition supα>0 αUαv = v.

Observe that for each v is U -supermedian and x ∈ E, the function α 7−→ αUαv(x)

is increasing and therefore we may consider the function v̂ : E −→ R+ defined as

v̂(x) := sup
α>0

αUαv(x) = lim
α→∞

αUαv(x), x ∈ E.

The function v̂ is called the U-excessive regularization of v.

We denote by E(U) (resp. S(U)) the set of all real-valued B-measurable U -excessive

functions (resp. U -supermedian functions).

(1.1.4) Basic properties of the U -supermedian and U-excessive functions

• The sets S(U) and E(U) are ordered convex cones and S(U) is min-stable (i.e., if

u, v ∈ S(U) then inf(u, v) ∈ S(U)).

• If (vn)n is a sequence of U -supermedian functions, then infn vn and lim infn vn
are also U -supermedian functions. More generally, if A is a family of U -supermedian

functions and we know that the function infA is B-universally measurable, then it is

easy to see that infA is also U -supermedian. An example of main interest is the reduced

function RA
q u of an Uq-excessive function u on a set A ∈ B, which is a Uq-supermedian

function; see Section 1.2 below.

• If v is a U -supermedian function then v̂ (its U -excessive regularization) is an U -

excessive function, v̂ 6 v, and the set [v 6= v̂] is U -negligible, that is Uβ(1[v 6=v̂]) = 0 for

some (and therefore for all) β > 0.
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(1.1.5) • Let v ∈ S(U). Then v̂ ∈ E(U), it is the biggest U -excessive function point-

wise dominated by v, and it coincides with the Uq-excessive regularization of v.

Consequently, the following assertions are equivalent:

(a) We have v = v̂.

(b) The function v is U -excessive.

(c) The function v is Uq-excessive for some q > 0.

• If u, v ∈ E(U) then there exists the greatest lower bound of u and v in E(U) with

respect to the point-wise order relation, denoted u ∧ v. More precisely, we have

u ∧ v = ̂inf(u, v).

• If f ∈ pB then the function Uf is U -excessive. If q > 0 and v ∈ S(Uq) the Uβv is

Uq-excessive for all β > 0.

• If (vn)n is a sequence of U -supermedian functions which is point-wise increasing

to v, then the function v is also U -supermedian and the sequence (v̂n)n increases to v̂.

• Let (vn)n be a sequence of U -excessive functions. Then there exists the greatest

lower bound of (vn)n in E(U) with respect to the point-wise order relation, denoted∧
n

vn, and we have ∧
n

vn = înf
n
vn.

If in addition the sequence (vn)n is point-wise increasing to v, then the function v is

also U -excessive.

• (Hunt’s Approximation Theorem) Assume that the resolvent U is proper. Then

for each v ∈ E(U) there exists a sequence (fn)n in bpB such that Ufn is bounded for

all n and the sequence (Ufn)n is point-wise increasing to v. (For the proof see, e.g.,

Proposition (2.6) in Ch. II from [28]).

• If q < q′ then S(Uq) ⊂ S(Uq′), E(Uq) ⊂ E(Uq′), and S(U) =
⋂
q>0 S(Uq), E(U) =⋂

q>0 E(Uq).
(1.1.6) • Assume that the resolvent U = (Uα)α>0 is associated with a transition func-

tion T = (Tt)t>0 and consider the set E(T) defined as

E(T) := {v ∈ pB : Ttv 6 v for all t > 0 and lim
t→0

Ttv = v}.

Then E(U) = E(T). To prove that, let u ∈ E(T). From Ttu 6 u for all t > 0 we

obtain Uαu =
∫∞

0
e−αtTtu dt 6

∫∞
0
e−αtu dt = u

∫∞
0
e−αt dt =

u

α
and so, u ∈ S(U).

Because u ∈ E(T), the map t 7−→ Ttu is decreasing and there exists the point-wise

limit limt↘0 Ttu = supt>0 Ttu = limn→∞ Ttnu = u, where (tn)n is a sequence of positive
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numbers decreasing to zero. We have αUαu = α
∫∞

0
e−αtTtu dt =

∫∞
0
e−sTs/αu ds. For

each fixed s > 0 we have Ts/αu −→ u as α→∞, therefore by dominated conver-

gence we get limα→∞
∫∞

0
e−sTs/αu ds =

∫∞
0
e−su ds = u

∫∞
0
e−s ds = u. It follows that

û = limα→∞ αUαu = limα→∞
∫∞

0
e−sTs/αu ds = u. Hence u ∈ E(U) and we conclude

that E(T) ⊂ E(U). Let now u ∈ E(U). Passing to the level q > 0 of the resolvent we

may assume that the initial kernel U is proper. Indeed, it is easy to see that, as in the

case of the U -excessive functions (cf. 1.1.4), we have also E(T) =
⋂
q>0 E(Tq), where

Tq is the transition function defined as Tq := (e−qtTt)t>0. Note also that Uq is precisely

the resolvent family associated with Tq. By Hunt’s Approximation Theorem (cf. 1.1.4)

there exists a sequence (fn)n ∈ bpB such that Ufn ↗ u. Consequently, to prove that the

function v belongs to E(T), it is enough to show that TtUf 6 Uf for all t > 0 and that

limt→0 TtUf = Uf . We have TtUf =
∫∞

0
Tt+sf ds =

∫∞
t
Tsf ds 6

∫∞
0
Tsf ds = Uf and

limt→0 TtUf = limt→0

∫∞
t
Tsf ds =

∫∞
0
Tsf ds = Uf. �

Examples. (i) Suppose that v ∈ C2(Rd). Then v is excessive with respect to the

Gaussian semigroup P = (Pt)t>0 on Rd introduced in the example (1.1.2) (i.e., v belongs

to E(P)) if and only if v is a classical superharmonic function on Rd, that is, ∆v 6 0.

(ii) A positive real-valued function defined on R is excessive with respect to the

translation to the right semigroup on the line (see the example (1.1.3) if and only if it

is decreasing and lower semicontinuous.

(iii) A typical example of an U -supermedian function which in general is not U -

excessive is the point-wise infimum of a sequence of U -excessive functions; see also

(1.1.4).

Excessive measure. Let Exc(U) be the set of all U-excessive measures on E: ξ ∈
Exc(U) if and only if it is a σ-finite measure on (E,B) such that ξ ◦ αUα 6 ξ for all

α > 0. Recall that if ξ ∈ Exc(U) then actually ξ ◦ αUα ↗ ξ as α→∞.

We denote by Pot(U) the set of all potential U -excessive measures: if ξ ∈ Exc(U)

then ξ ∈ Pot(U) if ξ = µ ◦ U , where µ is a σ-finite on (E,B).

Energy functional. If q > 0 then the energy functional Lq : Exc(Uq)× E(Uq) −→ R+

is defined as

Lq(ξ, u) := sup{ν(u) : Pot(Uq) 3 ν ◦ Uq 6 ξ}.
By Theorem 1.4.5 from [13] for all ξ ∈ Exc(Uq) and u ∈ E(Uq)

Lq(ξ, u) = sup{ξ(f) : f ∈ pB, Uqf 6 u}

and as a consequence if f ∈ pB and u = Uqf then

Lq(ξ, u) = ξ(f).
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Also, if ξ = µ ◦ Uq ∈ Pot(Uq) and u ∈ E(Uq) then

(1.1.7) Lq(ξ, u) =

∫
u dµ.

If the resolvent U is proper then we also consider the case q = 0. The 0-level energy

functional is denoted by L and all the above properties remain true.

From now on in this section we assume that:

(1.1.8) (E,B) is a Lusin measurable space (i.e., it is measurable isomorphic to a Borel

subset of a metrizable compact space endowed with the Borel σ-algebra) and B is gen-

erated by bE(Uq) for some q > 0.

Non-branch points for a resolvent of kernels. Suppose that the resolvent U =

(Uα)α>0 is proper. We denote by DU the set of all non-branch points with respect to

U ,

DU := {x ∈ E : inf(u, v)(x) = ̂inf(u, v)(x) for all u, v ∈ E(U) and 1̂(x) = 1}.

Since B is countably generated, we have DU ∈ B and the set E \DU is U -negligible.

The next result is essentially from [93] (see also Corollary 2.3 from [12]) and it

turns out that it will be a main tool in the next chapters. Therefore, for the reader

convenience we present its proof here.

(1.1.9) Let q > 0. Then the following three assertions are equivalent for the proper

resolvent U .

(i) All the points of E are non-branch points with respect to U .

(ii) We have 1 ∈ E(Uq) and the following two properties hold:

(UC) Uniqueness of charges for Uq: If two potential Uq-excessive measures µ◦Uq, ν◦
Uq are equal then µ = ν.

(SSP ) Specific solidity of potentials for Uq: If η, η′, µ ◦Uq ∈ Exc(Uq) are such that

η + η′ = µ ◦ Uq, then there exists a measure ν on E such that η = ν ◦ Uq.

(iii) The linear space [bE(Uq)] spanned by bE(Uq) is an unitary algebra.
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Proof of (1.1.9).

We show first a property of the Uq-supermedian functions, q > 0; we use the nota-

tion U0 = U .

(1.1.10) If v : E −→ R+ and ϕ : I −→ R+ is an increasing concave function, where

I = [0, a), a > 0, Im(v) ⊂ I, and if v ∈ S(Uq), then ϕ ◦ v ∈ S(Uq). Particularly, the

vector space [bS(Uq)] spanned by S(Uq) is an algebra.

The first assertion follows by Jensen’s inequality, applied to the sub-probability

measure µx(dy) := αUq+α(x, dy) for all x ∈ E. Indeed, we may assume that ϕ(0) = 0

and for all x ∈ E we have

αUq+α(ϕ ◦ v)(x) =

∫
ϕ ◦ v dµx 6 ϕ(µx(v)) = ϕ(αUq+αv(x)) 6 ϕ(v(x)),

where the last inequality holds because ϕ is increasing and note that µx(v) ∈ I because

0 6 µx(v) 6 v(x).

To prove that [bS(Uq)] is an algebra, it is sufficient to show that v2 ∈ [bS(Uq)] for

every v ∈ bS(Uq). We may assume that v 6 1 and let ϕ : [0, 1] −→ R+ defined by

ϕ(x) = 2x− x2. Then ϕ is concave and increasing, so, by the above consideration we

have ϕ ◦ v ∈ bS(Uq) and therefore v2 = 2v − ϕ ◦ v ∈ [bS(Uq)]. Hence (1.1.10) holds.

(i) =⇒ (iii). As before, to prove that [bE(Uq)], q > 0, is an algebra, it is sufficient to

show that v2 ∈ [bE(Uq)] for every v ∈ bE(Uq). We may assume that v 6 1. By (1.1.10)

v2 belongs to [bS(Uq)], v2 = 2v − w with w := 2v − v2 ∈ bS(Uq). It remains to show

that w ∈ E(Uq). But w is a finely continuous Uq-supermedian function, hence it is

Uq-excessive; see e.g. Corollary 1.3.4 from [13].

(iii) =⇒ (i). Let A be the closure of [bE(Uq)] in the supremum norm, it is a Banach

algebra and therefore a lattice with respect to the point-wise order relation. Since

limα→∞ αUq+αv = v, point-wise for all v ∈ E(Uq), it follows that the same property

holds for all v ∈ A. Consequently, since 1 ∈ A, we have 1̂ = 1 and if v1, v2 ∈ E(Uq)
then the Uq-supermedian function v := inf(v1, v2) belongs to A, therefore v̂ = v and

we conclude that DUq = E.

(i) =⇒ (ii). We show that the uniqueness of charges property (UC) holds for Uq, q > 0,

that is: if µ, ν are two measures on (E,B) such that their potentials µ ◦Uq and ν ◦Uq
are σ-finite and

µ ◦ Uq = ν ◦ Uq,
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then µ = ν.

Indeed, the resolvent equation implies that if β > 0 then the measures µ◦Uq+β and

µ ◦ UqUq+β are σ-finite, hence

(1.1.11) µ ◦ Uq+β = ν ◦ Uq+β for all β > 0.

Let further g ∈ bpB, g > 0, be such that µ ◦ Uq(g) = ν ◦ Uq(g) < ∞ and Uqg is

bounded (in the case q = 0). Set h := Uqg, so 0 < h ∈ L1(E, µ + ν) ∩ bE(Uq). If

f ∈ [bE(Uq)], 0 6 f 6 1, then fh belongs to [bE(Uq)] (because it is an algebra by the

already proved implication (i) =⇒ (iii)) and therefore limn nUq+n(fh) = fh. Since

nUq+n(fh) 6 nUq+nh 6 h ∈ L1(E, µ+ ν), by (1.1.11) and the dominated convergence,

we obtain that µ(fh) = ν(fh) for all f ∈ [bE(Uq)], which is an algebra of bounded

functions generating the σ-algebra B. By the monotone class theorem we conclude

that µ = ν. Hence the uniqueness of charges property (UC) holds for the resolvent Uq.
We prove now that the specific solidity of potentials property (SSP) also holds for

Uq. Let ξ, η, µ ◦ Uq ∈ Exc(Uq) such that ξ + η = µ ◦ Uq. We may assume that the

measure µ is finite. Consider the functional ϕξ : bE(Uq) −→ R+ defined as

ϕξ(v) := Lq(ξ, v) for all v ∈ bE(Uq).

Note that Lq(ξ, v) 6 Lq(µ ◦ Uq, v) = µ(v) < ∞. We may extand ϕξ to a real valued

linear functional on [bE(Uq)] and we get

(1.1.12) ϕξ(f) + ϕη(f) = µ(f) for all f ∈ [bE(Uq)]

Observe that ϕξ is positive, i.e.,

(1.1.13) ϕξ(f) > 0 provided that f ∈ [bE(Uq)] is positive.

This follows because (by the properties of the energy functional Lq) ϕξ is increasing

as a functional on E(Uq): if u, v ∈ E(Uq) and u 6 v, then ϕξ(u) 6 ϕη(v). We claim

that if (fn)n ⊂ [bE(Uq)] is decreasing poinwise to zero then the sequence (ϕξ(fn))n also

decreases to zero. Note first that by monotone convergence we have limn µ(fn) = 0.

From (1.1.12) and (1.1.13) it follows that 0 6 ϕξ(fn) 6 µ(fn) for all n and thus

0 6 lim
n
ϕξ(fn) 6 lim

n
µ(fn) = 0.

We can apply now Daniell’s theorem on the vector lattice [bE(Uq)], for the functional

ϕξ. Hence there exists a positive measure ν on B = σ([bE(Uq)]) such that

ϕξ(f) = ν(f) for all f ∈ bpB.
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Taking f = Uqg with g ∈ bpB, we get ξ(g) = Lq(ξ, Uqg) = ϕξ(f) = ν(Uqg) for all

g ∈ bpB, so ξ = ν ◦ Uq.

(ii) =⇒ (iii). Let q > 0. We prove first the following assertion:

(1.1.14) If m1,m2 are two Uq-excessive measures such that m1 + m2 = δx ◦ Uq for

some x ∈ E, then there exist two positive constants c1, c2 with c1 + c2 = 1, such that

mi = ci δx, i = 1, 2.

Indeed, by the specific solidity of potentials property (SSP) for the resolvent Uq
there exists µ1 ◦ Uq, µ2 ◦ Uq ∈ Exc(Uq) such that m = µ1 ◦ Uq and m2 = µ2 ◦ Uq. It

follows that δx ◦ Uq = (µ1 + µ2) ◦ Uq and by the uniqueness of charges property (UC)

for the resolvent Uq we get µ1 + µ2 = δx, mi = ci δx, i = 1, 2, as claimed.

We extend by linearity the Uq-excessive regularization operator ̂ from bS(Uq) to

[bS(Uq)]. We have ĝ(x) = limα αUq+αg(x) for any g ∈ [bS(Uq)] and it follows that ̂ is

monotone on [bS(Uq)] and that the mapping g 7−→ ĝ(x) is continuous in the uniform

norm on [bS(Uq)].
Recall that by (1.1.10) [bS(Uq)] is an algebra, therefore, to show that [bE(Uq)] is

also an algebra we have to prove that

(1.1.15) if g, h ∈ [bE(Uq)] then ĝh = gh.

Fix g ∈ [bS(Uq)] with 0 ≤ g ≤ 1, and define for all f ∈ bpB

m1(f) := ĝUqf(x), m2(f) := ̂(1− g)Uqf(x).

Each mi is additive and m1+m2 = δx◦Uq. Thus, by Daniell’s Theorem, each mi defines

a measure on (E,B). We claim that moreover m1 and m2 are Uq-excessive. Indeed,

using the monotonicity of ̂ we have m1(αUq+αf) = ̂g(αUq+αUqf)(x) 6 ĝUqf(x) =

m1(f). From (1.1.14) we get now mi = ci δx ◦ Uq, i = 1, 2, with c1 + c2 = 1.

We choose a sequence Uqfn of potentials increasing to the constant Uq-excessive

function 1. It follows that c1 = limn c1Uqfn(x) = limnm1(fn)(x) = limn ĝUqfn(x) 6
ĝ(x), hence c1 ≤ ĝ(x) and analogously, c2 6 1− ĝ(x). Since 1 = c1 + c2 ≤ ĝ(x) + (1−
ĝ(x)) = 1 we get c1 = ĝ(x), c2 = 1− ĝ(x), and we conclude that

ĝUqf(x) = ĝ(x)Uqf(x) for all g ∈ [bS(Uq)] and f ∈ bpB.

Let now h ∈ bE(Uq) and consider an increasing sequence of (bounded) potentials

(Uqfn)n, converging point-wise to h. Reasoning as before and using the last equal-

ity we obtain

ĝh(x) = ̂lim
n
gUqfn(x) ≤ lim

n
ĝUqfn(x) = lim

n
ĝ(x)Uqfn(x) = ĝ(x)h(x)
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and analogously ̂(1− g)h(x) ≤ (1− ĝ(x))h(x), which implies

ĝh(x) = ĝ(x)h(x) for all g ∈ [bS(Uq)] and h ∈ [bE(Uq)].

This, in particular, yields

ĝh = gh and any g, h ∈ [bE(Uq)],

hence (1.1.15) holds and therefore [bE(Uq)] is an unitary algebra. �

Further we also consider the following condition:

(1.1.16)
All the points in E are non-branch points with respect to Uq for some q > 0.

Remark 1.1.1. (i) Conditions (1.1.16) and (i) of (1.1.9) are equivalent provided that

the resolvent U is proper. Indeed, since 1 ∈ S(U), by (1.1.5) we have: 1 ∈ E(U) if

and only if 1 ∈ E(Uq). Also, by the equivalence (b) ⇐⇒ (c) from (1.1.5) we get the

inclusionDUq ⊂ DU . It remains to show that ifDU = E and u, v ∈ E(Uq) then inf(u, v) ∈
E(Uq). By Hunt’s Approximation Theorem (see (1.1.4)) there exist two sequences (fn)n,

(gn)n ⊂ bpB such that Uqfn ↗ u, Uqgn ↗ v and since U is proper we may assume

that U(fn + gn) is a bounded function for all n. Because inf(Uqfn, Uqgn)↗ inf(u, v), it

is sufficient to show that for each n the function w := inf(Uqfn, Uqgn) is Uq-excessive.

For, observe that the hypothesis DU = E implies that [bE(U)] is a vector lattice with

respect to the point-wise infimum and supremum. By the resolvent equation we have

Uqfn, Uqgn ∈ [bE(U)] and therefore w also belongs to [bE(U)]. Since for every f ∈
[bE(U)] we have limα→∞ αUαf = f point-wise, we conclude that limα→∞ αUq+αw =

limα→∞ αUαw = w, hence w ∈ E(Uq).
(ii) We shall prove in Section 1.4, Proposition 1.4.1, that the linear space [bE(Uq)]

spanned by bE(Uq) does not depend on q > 0, even in the non-transient case. Conse-

quently, conditions (1.1.8) and (1.1.16) do not depend on q > 0 (use also the equiva-

lence (i) ⇐⇒ (iii) from (1.1.9)). Note that the fact that (1.1.16) does not depend on

q > 0 is also a consequence of the above assertion (i).

(iii) If conditions (1.1.8) and (1.1.16) are satisfied then, using again (1.1.9), the

following assertions hold: if µ and ν are two finite measures on (E,B) such that∫
v dµ =

∫
v dν for all v ∈ bE(Uq) then µ = ν.
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1.2 Completion of the space, fine and natural topolo-

gies, induced capacities

In this section we assume that conditions (1.1.8) and (1.1.16) hold. Our presentation

follows that from [13], Ch. 1.

Completion of the base space E. There exists a second Lusin measurable space

(E1,B1) such that E ⊂ E1, E ∈ B1, B = B1|E, and a resolvent of kernels U1 = (U1
α)α>0

on (E1,B1) such that for some q > 1 σ(E(U1
q )) = B1, every point of E1 is a non-branch

point with respect to U1
q , U

1
q (1E1\E) = 0, and U is the restriction of U1 to E (i.e.,

Uαg = U1
αg

1 for all α > 0, where g1 ∈ pB1 and g1|E = g).

We clearly have Exc(Uq) = Exc(U1
q ) and the following property holds (for one and

therefore for all q > 0):

(1.2.1) every ξ ∈ Exc(U1
q ) with Lq(ξ, 1) <∞ is a potential on E1 (with respect to U1

q ).

One can take for E1 the set of all extreme points of the set {ξ ∈ Exc(Uq) : Lq(ξ, 1) =

1}, endowed with the σ-algebra B1 generated by the functionals ũ defined as

ũ(ξ) := Lq(ξ, u) for all ξ ∈ E1 and u ∈ E(Uq).

Let (E ′,B′) be a Lusin measurable space such that E ⊂ E ′, E ∈ B′, B = B′|E, and

there exists a proper sub-Markovian resolvent of kernels U ′ = (U ′α)α>0 on (E ′,B′) with

DU ′q = E ′, σ(E(U ′q)) = B′, U ′q(1E′\E) = 0, E ′ satisfies (1.2.1) with respect to U ′, and U
is the restriction of U ′ to E. Then the map x 7−→ δx ◦U ′q is a measurable isomorphism

between (E ′,B′) and the measurable space (E1,B1).

Fine topology. The fine topology on E (associated with U) is the coarsest topology

on E such that every Uq-excessive function is continuous for some q > 0. Note that by

the assertion (i) of Remark 1.1.1 the fine topology does not depend on q > 0.

Extension of excessive functions from E to E1. For every u ∈ E(Uq) we consider

the function ũ : E1 −→ R+ defined above,

(1.2.2) ũ(ξ) := Lq(ξ, u), ξ ∈ E1.

Then by (1.1.7) we have ũ(εx ◦ Uβ) = u(x) for all x ∈ E and therefore, by the

embedding of E in E1,

ũ|E = u.

In addition, ũ is U1
q -excessive and it is the (unique) extension by fine continuity of u

from E to E1. Consequently, the fine topology on E is the trace of the fine topology
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on E1 (generated by the U1
q -excessive functions) and E is a finely dense subset of E1.

Ray cone. If q > 0 then a Ray cone associated with Uq is a cone R of bounded

Uq-excessive functions such that: Uα(R) ⊂ R for all α > 0, Uq
(
(R − R)+

)
⊂ R,

σ(R) = B, it is min-stable, separable in the supremum norm and 1 ∈ R. Using a

slightly modified version of Proposition 1.5.1 from [13], one can show that such a Ray

cone always exists.

If the initial kernel of U is bounded, then one can take q = 0, that is, there is a Ray

cone of U -excessive functions.

Below, if we say Ray cone it is always meant to be associated with one fixed resolvent

Uq.
A Ray topology on E is a topology generated by a Ray cone. A Ray topology is

Lusin and its Borel σ-algebra is B.

A metrizable Lusin topology on E is called natural provide that its Borel σ-algebra

is precisely B and it is smaller than the fine topology on E.

Since a Ray cone is a subset of Uq, we clearly have that any Ray topology on E is

natural.

Reduced function and the induced Choquet capacities. If q > 0, then for all

u ∈ E(Uq) and every subset A of E we consider the function

RA
q u := inf{v ∈ E(Uq) : v > u on A},

called the q-order reduced function of u on A.

It is known that if A ∈ B then RA
q u is universally B-measurable and in addition it

is a Uq-supermedian function; cf. (1.1.4). If the set A ∈ B is finely open and u ∈ pB
then RA

q u ∈ pB.

Let λ be a finite measure on (E,B). We also fix a natural topology T on E and let

uo := Uq1. It turns out that the functional M 7−→ cqλ(M), M ⊂ E, defined as

cqλ(M) := inf{
∫
RG
q uo dλ : G ∈ T , M ⊂ G}

is a Choquet capacity on the topological space E (endowed with the topology T ).

Tightness of the capacity induced by a sub-Markovian resolvent of kernels.

The capacity cqλ on (E, T ) is named tight provided that there exists an increasing

sequence (Kn)n of T -compact sets such that

inf
n
cqλ(E \Kn) = 0
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or equivalently infnR
E\Kn
q uo = 0 λ-a.e.

(1.2.3) The following assertions are equivalent (see Proposition 4.1 in [22] and Propo-

sition 2.1.1 in [21]):

(i) The capacity cqλ is tight.

(ii) There exist a Uq-excessive function v which is finite λ-a.e. and a bounded

strictly positive Uq-excessive function u such that the set [ v
u
6 α] is relatively compact

for all α > 0.

(iii) There exists a Uq-excessive function v which is λ-integrable and such that the

set [ v
uo
6 α] is relatively compact for all α > 0; recall that uo := Uq1.

Remark 1.2.1. If there exists a strictly positive constant k such that k 6 uo (in

particular, this happens if the resolvent U is Markovian), then in the above assertion

(ii) one can take u = 1. In this case we say that v has compact level sets.

1.3 Markov processes associated with a resolvent

of kernels, path regularity

Remark 1.3.1. Suppose that U is the resolvent of a Borel right Markov process with

state space E, a metrizable Lusin topological space (i.e., E is homeomorphic to a Borel

subset of a compact metrizable space) and B is the Borel σ-algebra on E. Then the

topology of E is natural, conditions (1.1.8) and (1.1.16) are satisfied and the following

property is verified provided that U is proper:

(NSP ) Natural solidity of potentials: Every U-excessive measure dominated by a

potential is also a potential.

Proposition 1.3.2. The following assertions hold for the sub-Markovian resolvent of

kernels U = (Uα)α>0.

(i) Assume that conditions (1.1.8) and (1.1.16) are satisfied and that U is the

resolvent of a transition function T = (Tt)t>0 on (E,B), i.e.,

Uαf =

∫ ∞
0

e−αt Ttf dt for all f ∈ pB.

Then T = (Tt)t>0 is uniquely determined by U = (Uα)α>0.
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(ii) Suppose that U = (Uα)α>0 is the resolvent family of a (Borel) right process

X = (Ω,F ,Ft, Xt, θt, P
x) with state space E, that is

Uαf(x) = Ex

∫ ∞
0

e−αtf(Xt) dt for all f ∈ bpB and x ∈ E.

If in addition U is the resolvent of a transition function T = (Tt)t>0 on (E,B), then

T = (Tt)t>0 is precisely the transition function of the process X, i.e.,

Ttf(x) = Ex(f(Xt)), f ∈ pB and x ∈ E.

Proof. Assertion (ii) is clearly a consequence of (i) since by Remark 1.3.1 conditions

(1.1.8) and (1.1.16) are satisfied provided that U is the resolvent of a (Borel) right

process.

To prove (i), let T′ = (T ′t)t>0 be a second transition function having the same

resolvent U . If q > 0, v ∈ bE(Uq), and x ∈ E, then using (1.1.6) we deduce that

both functions t 7−→ Ttv(x) and t 7−→ T ′tv(x) are right continuous on [0,∞) and by

hypothesis ∫ ∞
0

e−αtTtv(x) dt = Uαv(x) =

∫ ∞
0

e−αtT ′tv(x) dt for all α > 0.

The uniqueness property of the Laplace transform implies now that Ttv(x) = T ′tv(x)

for all v ∈ bE(Uq), x ∈ E, and t > 0. By assertion (iii) of Remark 1.1.1 we conclude

that the kernels Tt and T ′t coincide, so, assertion (i) holds.

We present now a result related to the existence of a right process having U as

associated resolvent, showing essentially that the converse of the assertion from Remark

1.3.1 is true.

(1.3.1) The following assertions are equivalent for a sub-Markovian resolvent of kernels

U on the Lusin measurable space (E,B).

(1.3.1a) All the points of E are nonbranch points with respect to Uq, B is gen-

erated by bE(Uq), and the natural density of potentials property hold for some Uq,
q > 0.

(1.3.1b) There exists a Lusin topology on E such that B is the σ-algebra of all

Borel sets of E, and there exists a right process with state space E, having U as the

associated resolvent.

(1.3.1c) For every natural topology on E there exists a right process with state

space E, having U as the associated resolvent.

The equivalence between (1.3.1a) and (1.3.1b) is essentially due to J. Steffens [93]

in the transient case; see also Sections 1.7 and 1.8 in [13]. For the non-transient case
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see Theorem 1.3 from [16]. The implication (1.3.1a) =⇒ (1.3.1c) follows from [13],

Corollary 1.8.12, using Proposition 3.5.3.

Observe that condition (1.3.1a) means precisely that conditions (1.1.8), and (1.1.16)

for some q > 0 are satisfied.

Remark. (i) If U is the resolvent of a right process X, then the following fundamental

result of G. A. Hunt holds for all A ∈ B, x ∈ E, and u ∈ E(Uq):

RA
q u(x) = Ex(e−qDAu(XDA)),

where DA is the entry time of A,

DA := inf{t > 0 : Xt ∈ A};

see e.g. [36].

(ii) If λ is a finite measure on (E,B) then the tightness of the capacity cqλ is

equivalent to

P λ(lim
n
DE\Kn < ζ) = 0.

In particular, if the capacity cqλ on (E, T ) is tight for one q > 0 then this happens for

all q > 0.

Path regularity: the càdlàg and the quasi-left continuity properties of the

trajectories. Recall that a right (Markov) process X = (Ω,F ,Ft, Xt, θt, P
x) with

state space E is called standard if for every finite measure µ on (E,B) X has càdlàg

trajectories under P µ, i.e., it possesses left limits in E P µ-a.e. on [0, ζ) and X is quasi-

left continuous up to ζ P µ-a.e., that is, for every increasing sequence (Tn)n of stopping

times with Tn ↗ T we have XTn −→ XT P
µ-a.e. on [T < ζ], ζ being the life time of

X; a stopping time is a map T : Ω −→ R+ such that the set [T 6 t] belongs to Ft for

all t > 0.

The next result is the convenient one for the construction of the discrete branching

measure-valued processes we give in Section 2.5 below, it follows from [19], Theorem

2.1, and it is a consequence of [22], Theorem 5.2, Corollary 5.3 (ii), and Theorem 5.5

(i).

(1.3.2) Suppose that the following three conditions are satisfied by the sub-Markovian

resolvent of kernels U = (Uα)α>0 on (E,B):

(h1) Conditions (1.1.8) and (1.1.16) are satisfied, that is: σ(E(Uq)) = B and all

the points of E are non-branch points with respect to Uq for some q > 0.
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(h2) For every x ∈ E there exists vx ∈ E(Uq) such that vx(x) < ∞ and the set

[vx 6 n] is relatively compact for all n; such a function vx is called compact Lyapunov

function.

(h3) There exists a countable subset F of [bE(Uq)] generating the topology of E,

1 ∈ F , and there exists uo ∈ E(Uq), uo < ∞, such if ξ, η are two finite Uq-excessive

measures with Lq(ξ+ η, uo) <∞ and such that Lq(ξ, ϕ) = Lq(η, ϕ) for all ϕ ∈ F , then

ξ = η; here recall that Lq denotes the energy functional associated with Uq, defined in

Section 1.1.

Then there exists a càdlàg process X with state space E such that U is the resol-

vent ofX, i.e., for all α > 0, f ∈ bpB, and x ∈ E we have Uαf(x) = Ex
∫∞

0
e−αtf(Xt) dt.

Remark 1.3.3. (i) As we already noted in Remark 1.3.1 and (1.3.1), condition (h1)

is necessary in order to deduce that U is the resolvent family of a (Borel) right process;

see [91], [93], [13], and [16].

(ii) According to [71] and [14], condition (h2) is necessary for proving that the

process X has càdlàg trajectories. It is related to the tightness of the associated capacity,

we gave some details in (1.2.3).

(iii) The quasi-left continuity of the forthcoming measure-valued branching process

will be deduced from the next proposition. Some arguments in its proof are classical,

e.g., similar to the Ray resolvent case (see for example Theorem (9.21) from [91] ,

the proof of Lemma IV.3.21 from [73], and the proof of Theorem 3.7.7 from [13]).

However, none of the existing results covers our context, therefore we present here a

complete proof of it.

Proposition 1.3.4. Let X be a right process with state space E and càdlàg trajectories.

Let T = (Tt)t>0 be its transition function and U = (Uα)α>0 its resolvent. Assume that

there exists a countable subset F of [bE(Uq)] generating the topology of E and a family

K ⊂ [F ] which is multiplicative (i.e., if f, g ∈ K then fg ∈ K) and separating the

points of E. Then the process X is quasi-left continuous, hence standard, provided that

Ttf belongs to [F ] for all f ∈ K and t > 0. If (Tt)t>0 is Markovian then it is enough

to assume that K is a family of bounded, continuous, real-valued functions on E which

is multiplicative, separating the points of E, and Ttf is a continuous function for all

f ∈ K and t > 0.

Proof. As we already mentioned, we follow the classical approach, cf., e.g., page 48

from [91], page 115 in [73], see also pages 133-134 in [13] and the proof of Theorem 5.5

(ii) from [22].

We start with the construction of a convenient compactification of E, as in the

proof of Theorem 5.2 from [22].
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Let K be the compactification of E with respect to F . Since for every real-valued

function u ∈ E(Uoq ) the real-valued process (e−qtu ◦ Xt)t>0 is a right continuous (P x-

integrable) supermartingale under P x for all x ∈ E, it follows that this process has left

limits P x-a.s. and we conclude that X has left limits in K a.s.

Let (Tn)n be an increasing sequence of stopping times and T = limn Tn. It is no loss

of generality to assume that T is bounded. From the above considerations the limit

Z := limnXTn exists in K a.s. and Z(ω) ∈ E if T (ω) < ζ(ω).

In order to prove that Z = XT a.s. on [T < ζ], it is enough to show that for every

x ∈ E and G ∈ pbB(K ×K),

(1.3.3) Ex(G1E×E(Z,XT )) = Ex(G1E×E(Z,Z)).

Indeed, taking as G the indicator function of the diagonal of K ×K, from (1.3.3)

we get P x([Z ∈ E,Z 6= XT ]) = 0.

Note that every function f from [F ] has an extension by continuity from E to K,

denoted by f . Since [bE(Uq)] is an algebra, we may assume that F is multiplicative.

In order to prove (1.3.3) we first use the strong Markov property (clearly, f(Z) ∈ FT )

and then the P x-a.s. equality limn f(XTn)Ttg(XTn) = f(Z)Ttg(Z) (because we take

f ∈ [F ] and Ttg belongs to [F ] provided that g ∈ K):

Ex(f(Z)Uαg(XT )) = Ex(f(Z)EXT

∫ ∞
0

e−αtg(Xt) dt) = Ex(f(Z)eαT
∫ ∞
T

e−αtg(Xt) dt) =

lim
n
Ex(f(XTn)eαTn

∫ ∞
Tn

e−αtg(Xt) dt) = lim
n
Ex(f(XTn)Uαg(XTn)) =

lim
n
Ex(f(XTn)

∫ ∞
0

e−αtTtg(XTn) dt) = Ex(f(Z)

∫ ∞
0

e−αtTtg(Z) dt).

By a monotone class argument we have for all h ∈ bpB(K)

Ex(h1E(Z)Uαg(XT )) = Ex(h1E(Z)

∫ ∞
0

e−αtTtg(Z) dt)

and therefore

Ex(h1E(Z)Uαg(XT )) = Ex(h(Z)

∫ ∞
0

e−αtTtg(Z) dt;Z ∈ E) = Ex(h(Z)Uαg(Z);Z ∈ E).

Because limα→∞ αUαg = g (since g is continuous), multiplying by α and letting α tend

to infinity we get

Ex(h1E(Z)g(XT )) = Ex((hg1E)(Z)).
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Using again monotone class arguments we obtain first

Ex(h1E(Z) · k1E(XT )) = Ex(h1E(Z) · k1E(Z)) for all h, k ∈ pbB(K),

and then (1.3.3).

If the transition function (Tt)t>0 is Markovian then the limit Z = limnXTn exists

in E a.s. Therefore, in this case it is enough to show that (1.3.3) holds for every

G ∈ pbB(E × E). Note that the extensions by continuity of f and Ttg from E to K

are not longer necessary, in particular, limn f(XTn)Ttg(XTn) = f(Z)Ttg(Z) P x-a.s.

1.4 Perturbation with kernels of the sub-Markovian

semigroups

The first result of this section is a direct consequence of Hunt’s Approximation Theo-

rem, applied to the level q > 0 of a resolvent of kernels U = (Uα)α>0 on a measurable

space (E,B).

Proposition 1.4.1. The vector space [bE(Uq)] does not depend on q > 0. If in addition

U is bounded then [bE(U)] = [bE(Uq)] for all q > 0.

Proof. Observe first that if U is proper then there exists a second resolvent of kernel

U ′ = (U ′α)α>0 on (E,B) such its initial kernel is bounded and E(U ′) = E(U). Therefore,

in this case (replacing U by U ′) we may suppose that the kernel U = U0 := supUα is

bounded.

If 0 6 α < q then because E(Uα) ⊂ E(Uq) it is sufficient to prove that bE(Uq) ⊂
[bE(Uα)]. For, if v ∈ bE(Uq) then clearly Uαv ∈ bE(Uα) and by Hunt’s Approximation

Theorem (see (1.1.4)) we also have that v + (q − α)Uαv belongs to bE(Uα). So, v =

(v + (q − α)Uαv)− (q − α)Uαv) ∈ [bE(Uα)].

Let X = (Ω,F ,Ft, Xt, θt, P
x) be a fixed right (Markov) process with state space E.

Let further T = (Tt)t>0 be its transition function and assume that U = (Uα)α>0 is the

associated resolvent of kernels.

We fix a function c ∈ bpB and we denote by Tc = (T ct )t>0 the transition function of

the process obtained by killing X with the multiplicative functional (e−
∫ t
0 c(Xs) ds)t>0.

It is given by the Feynman-Kac formula:

T ct f(x) = Ex(e−
∫ t
0 c(Xs) dsf(Xt)), t > 0, f ∈ bpB, x ∈ E.

Note that if L is the infinitesimal generator of X, then the above killed process has the

generator L − c.
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We denote by U c = (U c
α)α>0 the resolvent of kernels induced by Tc = (T ct )t>0, i.e.,

the resolvent family of the process killed with c,

U c
αf(x) = Ex

∫ ∞
0

e−α−
∫ t
0 c(Xs) dsf(Xt) dt, α > 0, f ∈ bpB, x ∈ E.

Proposition 1.4.2. Let K be a sub-Markovian kernel on (E,B). Then for any f ∈ bpB
the equation

(1.4.1) rt(x) = T ct f(x) +

∫ t

0

T ct−u(cKru)(x) du, t > 0, x ∈ E,

has a unique solution Qtf ∈ bpB, the function (t, x) 7−→ Qtf(x) is measurable and the

following assertions hold.

(i) The family Q = (Qt)t>0 is a semigroup of sub-Markovian kernels on (E,B) and

it is the transition function of a Borel right process with state space E.

(ii) The function t 7−→ Qtf(x) is right continuous on [0,∞) for each x ∈ E if and

only if the function t 7−→ T ct f(x) has the same property.

(iii) Let Uo = (U o
α)α>0 be the resolvent of kernels on (E,B) induced by Q = (Qt)t>0,

U o
α =

∫ ∞
0

e−αtQt dt, α > 0.

Then for all β > 0 we have

U o
β = U c

β + U c
βcKU

o
β = U c

β +GβU
c
β,

where Gβ is the bounded kernel defined as

Gβ :=
∑
k>1

(U c
βcK)k.

(iv) We have

E(Uoβ) ⊂ E(U cβ), [bE(Uoβ)] = [bE(U cβ)] = [bE(Uβ)], and Gβ(E(U cβ)) ⊂ E(Uoβ).

Proof. The uniqueness is a straitforward consequence of Gronwall’s Lemma: If rt and

r′t are two solutions of (1.4.1) and we set vt := ‖rt − r′t‖∞ then vt 6
∫ t

0

‖T ct−ucK(ru −

r′u)‖∞du 6 β0

∫ t

0

vudu for all t > 0, where β0 = ‖cK1‖∞, hence vt = 0. To prove the

existence, define inductively the kernels Qn
t , n > 0, as Q0

tf := T ct f,

(1.4.2) Qn+1
t f := T ct f +

∫ t

0

T ct−ucKQ
n
ufdu, f ∈ bpB.
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Clearly the function (t, x) 7−→ Qn
t f(x) is measurable. We claim that the sequence

of kernels (Qn
t )n is increasing. Indeed, Q1

tf = T ct f +
∫ t

0
T ct−ucKQ

0
ufdu > Q0

tf . If

we suppose that Qn−1
t f 6 Qn

t f then Qn+1
t f = T ct f +

∫ t
0
T ct−ucKQ

n
ufdu > T ct f +∫ t

0
T ct−ucKQ

n−1
u du = Qn

t f . We can now define the kernel Qt as Qt := supnQ
n
t . The

function (t, x) 7−→ Qtf(x) is measurable and we claim that Qt is sub-Markovian.

Indeed, it is sufficient to prove by induction that Qn
t 1 6 1 for all n > 0. The in-

equality holds for n = 1 because (T ct )t>0 is sub-Markovian and Q0
t1 = T ct 1. If we

assume that Qn
t 1 6 1 then Qn+1

t 1 = T ct 1 +
∫ t

0
T cu(cKQn

t 1)du 6 T ct 1 +
∫ t

0
T cuc du =

Ex(e−
∫ t
0 c(Xu) du+

∫ t
0
e−

∫ s
0 c(Xu) duc(Xs) ds) = 1. Passing to the limit (pointwise) in (1.4.2)

we get that Qtf is indeed a solution of (1.4.1).

The semigroup property of (Qt)t>0 is a consequence of the uniqueness. We have

to show that Qt′+tf = Qt(Qt′f), so, it is enough to prove that the mapping t 7−→ Qt′+tf

verifies (1.4.1) withQt′f instead of f . We haveQt′+tf = T ct T
c
t′f+

∫ t′
0
T ct (T ct′−ucKQufdu)+∫ t′+t

t′
T ct′+t−ucKQufdu = T ct (T ct′f +

∫ t′
0
T ct′−ucKQufdu)+

∫ t
0
T ct−scKQt′+sfds = T ctQt′f +∫ t

0
T ct−scKQt′+sfds.

To prove (ii) observe first that because the family (Qt)t>0 is a semigroup, it is

enough to verify the right continuity in t = 0. The assertion follows by dominate

convergence since Qtf(x) is a solution of (1.4.1) and the function u 7−→ T ct−ucKru(x)

is bounded on [0,∞): limt↘0

∫ t
0
T ct−ucKru(x) du = 0.

(iii) and (iv). The equality U o
β = U c

β + U c
βcKU

o
β follows from (1.4.1) by a straight-

forward calculation. Then by induction

U o
β = U c

β + (U c
βcK)U c

β + . . .+ (U c
βcK)nU c

β + (U c
βcK)n+1U o

β

and letting n tends to infinity we have U o
β = U c

β + GβU
c
β. The kernel Gβ is bounded

because

U c
βcK1 6 || c

c+ β
||∞ lim

t→∞

∫ t

0

T c+βu (c+ β) du 6
co

co + β
,

where co := ||c||∞. If u ∈ bE(Uoβ) then clearly αU c
β+αu 6 u for all α > 0 because

U c
α 6 U o

α. From limt→0Qtu = u we get by (ii) that limt→0 T
c
t u = u, hence u ∈ E(U cβ),

bE(Uoβ) ⊂ E(U cβ). The inequality U c
β 6 U o

β for all β > 0 implies that the function

GβU
c
βf = U o

βf − U c
βf is Uoβ-excessive for every f ∈ bpB. If v ∈ bE(U cβ) then we take

a sequence (fn)n ⊂ bpB such that U c
βfn ↗ v and therefore GβU

c
βfn ↗ Gβv ∈ E(Uoβ),

U o
βfn ↗ v+Gβv ∈ bE(Uoβ), so v ∈ [bE(Uoβ)]. We clearly have E(Uβ) ⊂ E(U cβ) ⊂ E(Uco+β)

and by Proposition 1.4.1 we get [bE(Uβ)] = [bE(Uco+β)] = [bE(U cβ)].

To complete the proof of (i) we check now that (1.1.8) and (1.1.16) hold for Uo. From

[bE(Uoβ)] = [bE(U cβ)] and since U c verifies (1.1.8) and (1.1.16) we get B = σ(E(U cβ)) =

σ(E(Uoβ)) and by (1.1.9) we conclude that (1.1.16) holds for Uo too. The constant

function 1 is Uo-supermedian and it belongs to [bE(Uoβ)] because 1 ∈ E(Uβ) ⊂ [bE(Uoβ)].

Therefore, using also (1.1.6), we get limt↘0Qt1 = limt↘0 e
−βtQt1 = 1, hence 1 ∈ E(Uo).
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It remains to show that (Qt)t>0 is the transition function of a right process with

state space E. By Proposition 5.2.4 from [13] it follows that the natural solidity of

potentials property (NSP) holds for Uoβ . Because U is the resolvent of a right process

with state space E and we proved that [bE(Uoβ)] = [bE(Uβ)], it follows that the topology

of E is natural for Uo too. From the property (1.1.16) we get that all the points of E are

nonbranch points with respect to Uoq . By (1.3.1) (the implication (1.3.1a) =⇒ (1.3.1c))

we conclude that there exists a right process with state space E, having Uo as associated

resolvent. From assertion (ii) of Proposition 1.3.2 we conclude now that the transition

function of this right process is precisely (Qt)t>0, completing the proof.

Remark. (i) Proposition 1.4.2 is a result on the perturbation with kernels of the sub-

Markovian semigroups and resolvents. In fact, the existence of the solution of the

equation (1.4.1) is a linear version of Proposition 2.2.1 below.

(ii) In the particular case of a Banach space, if A is the generator of the semigroup

(T ct )t≥0 then the solution of the equation (1.4.1) has as generator A− c+ cK, where K

is a bounded operator (see Lema 1.4 from [23] for a complete proof).

If M ∈ B, β > 0, and u ∈ E(U cβ) (resp. u ∈ E(Uoβ)), let cRM
β u (resp. oRM

β u) be the

reduced function of u on M with respect to U cβ (resp. Uoβ). Let further vo := U o
β1 =

U c
βfo, where fo := 1 + cKU o

β1, and fix a finite measure λ on (E,B). We denote by ccλ
(resp. coλ) the induced capacity:

ccλ(M) := inf{
∫

cRD
β vo dλ : D open,M ⊂ D}

(resp. coλ(M) := inf{
∫

oRD
β vo dλ : D open,M ⊂ D}).

Corollary 1.4.3. We have coλ 6 ccλ′ 6 cλ′, where λ′ := λ+λ ◦Gβ. In particular, if the

capacity cλ′ is tight then the capacities ccλ′ and coλ are also tight.

Proof. Because E(Uβ) ⊂ E(U cβ) we get cRM
β vo 6

cRM
β uo 6 RM

β uo for every M ∈ B (where

recall that uo = Uβfo > vo) and therefore ccλ′ 6 cλ′ . By assertion (iii) of Proposition

1.4.2 we may apply the result from [13], Proposition 5.2.5, to obtain the inequality of

kernels oRM
β 6

cRM
β +Gβ

cRM
β which leads to coλ(M) 6 ccλ′(M).

Remark. A result related to Corollary 1.4.3 was stated in Proposition 3.7 from [24].



Chapter 2

Discrete branching Markov

processes on the finite

configurations

2.1 Spaces of measures, branching kernels, branch-

ing processes

Let M(E) be the set of all positive finite measures on E.

For a function f ∈ pB we shall consider the mappings lf : M(E) −→ R+ and

ef : M(E) −→ [0, 1], defined by

lf (µ) := 〈µ, f〉 :=

∫
fdµ, µ ∈M(E), ef := e−lf .

M(E) is endowed with the weak topology and note that the Borel σ-algebraM(E) on

M(E) is generated by {lf : f ∈ bpB}.
A second set of measures as state space for a forthcoming discrete branching process

will be the set S of all positive measures µ on E which are finite sums of Dirac measures:

µ =
∑m

k=1 δxk , where x1, . . . , xm ∈ E, called the space of finite configurations of E (cf.

[92]). The space S of all finite configurations of E is identified with the union of all

symmetric m-th powers E(m) of E, hence

S =
⋃
m≥1

E(m);

E(m) is the factorization of the Cartesian product Em by the equivalence relation in-

duced by the permutation group σm; for details see, e.g., [53] and [20]. The space

E(m) is endowed with the quotient topology, where Em is equipped with the product

39
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topology. The space S is equipped with the canonical topological structure and we

denote by B(S) the Borel σ-algebra on S.

Branching kernels. Recall that if p1, p2 are two finite measures on M(E), then their

convolution p1 ∗ p2 is the finite measure on M(E) defined for every F ∈ bpM(E) by∫
p1 ∗ p2(dν)F (ν) :=

∫
p1(dν1)

∫
p2(dν2)F (ν1 + ν2).

In particular, if f ∈ pB then

(2.1.1) p1 ∗ p2(ef ) = p1(ef ) · p2(ef ).

Note that if p1 and p2 are concentrated on S then p1 ∗ p2 has the same property.

According with [92], a kernel N on (S,B(S)) (resp. on (M(E),M(E))) which is

sub-Markovian (i.e., N1 ≤ 1) is called branching kernel provided that for all µ, ν ∈ S
(resp. for all µ, ν ∈M(E)) we have

Nµ+ν = Nµ ∗Nν ,

where Nµ denotes the measure on (S,B(S)) (resp. on (M(E),M(E))) such that

Ng(µ) =
∫
g dNµ for all g ∈ bpB(S) (resp. g ∈ bpM(E)).

A right (Markov) process with state space M(E) or S is called branching process

provided that its transition function is formed by branching kernels. For the proba-

bilistic interpretation of this analytic branching property see e.g., [43], page 337.

Example of branching kernels on M(E). We set S := bpB. Recall that a function

ϕ : S −→ R is called negative definite provided that for all n ≥ 2, {f1, f2, ..., fn} ⊂ S,

and {a1, a2, ..., an} ⊂ R with
∑n

i=1 ai = 0 we have∑
i,j

aiajϕ(fi + fj) ≤ 0.

(2.1.2) Let ϕ : S −→ R+ be a negative definite function such that if (fn)n is pointwise

decreasing to f then (ϕ(fn))n is decreasing to ϕ(f). Then there exists a unique finite

measure P̄ on (M(E),M(E)) such that

P̄ (ef ) = e−ϕ(f) for all f ∈ S.

Let now V : S −→ S be a map such that for every x ∈ E the function f 7−→ V f(x) is

negative definite. Applying (2.1.2), there exists a unique kernel Q on (M(E),M(E))

such that

(2.1.3) Q(ef ) = eV f for all f ∈ S
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(see (A.6) from [43] and Proposition 4.1 in [12]). We claim that Q is a branching kernel

on M(E). Indeed, we have to prove that for all µ, ν ∈M(E)

Qµ+ν = Qµ ∗Qν .

By a monotone class argument it is sufficient to check the above equality for functions

on M(E) of the form ef , f ∈ S. Using (2.1.1) and (2.1.3) then we have

Qµ ∗Qν(ef ) = Qµ(ef ) ·Qν(ef ) = eV f (µ) · eV f (ν) = Qµ+ν(ef ).

Multiplicative functions and branching kernels on S. For every real-valued

B-measurable function ϕ consider the function ϕ̂ :
⋃
m≥1E

m −→ R defined as

ϕ̂(x) := ϕ(x1) · . . . · ϕ(xm) for x = (x1, . . . , xm) ∈ Em.

Note that the restriction of ϕ̂ to each Em is invariant under the action of σm. Therefor ϕ̂

may be considered as a real-valued function defined on S. Such a function ϕ̂ : S −→ R
is called multiplicative (cf. [92]; see also [20]).

With this notation a multiplicative function ϕ̂, ϕ ∈ pB, ϕ ≤ 1, is the restriction to

S of an exponential function on M(E),

ϕ̂ = e−lnϕ.

(2.1.4) For every sub-Markovian kernel B : pB(S) −→ pB there exists a branching

kernel B̂ on (S,B(S)) such that for every B-measurable function ϕ, |ϕ| ≤ 1, we have

B̂ϕ̂ = B̂ϕ̂.

Conversely, if H is a branching kernel on (S,B(S)) then there exists a unique sub-

Markovian kernel B : pB(S) −→ pB such that H = B̂ (see Proposition 3.2 in [20]).

Example of branching kernels on S. Let qk ∈ pB, k ≥ 1, satisfying
∑

k≥1 qk ≤ 1.

Consider the kernel B : pB(S) −→ pB defined as

(2.1.5) Bg(x) :=
∑
k≥1

qk(x)gk(x, . . . , x), g ∈ bpB(S), x ∈ E,

with gk := g|E(k) for all k ≥ 1. Using (2.1.4) there exists a branching kernel B̂ on S

such that for all ϕ ∈ pB, ϕ ≤ 1, we have

B̂ϕ̂|E =
∑
k≥1

qkϕ
k.
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2.2 Nonlinear evolution equations

Let X = (Ω,F ,Ft, Xt, θt, P
x) be a fixed Borel right process with space E and suppose

that its transition function (Tt)t>0 of X is Markovian.

Let B : bpB(S) −→ bpB be a sub-Markovian kernel such that

(2.2.1) sup
x∈E

Bl1(x) <∞.

Note that (2.2.1) is precisely condition 4.1.2 from [92], (2.1) in [34], or (4.3.1) from

[67] and if B is given by (2.1.5) then (2.2.1) is equivalent with

sup
x∈E

∑
k>1

kqk(x) <∞.

In Section 1.4 we fixed a function c ∈ bpB and we denoted by (T ct )t>0 the transi-

tion function of the process obtained by killing X with the multiplicative functional

(e−
∫ t
0 c(Xs)ds)t>0. Recall that U = (Uα)α>0 is the resolvent of the process X and

U c = (U c
α)α>0 the resolvent of kernels induced by (T ct )t>0, i.e., the resolvent family

of the above mentioned killed process (by means of the function c).

Denote by Bu the set of all functions ϕ ∈ pB such that ϕ 6 1. Recall that a

map H : Bu −→ Bu is called absolutely monotonic provided that there exists a sub-

Markovian kernel H : bpB(S) −→ bpB such that Hϕ = Hϕ̂ for all ϕ ∈ Bu. By (2.1.4)

we have:

(2.2.2) A map H : Bu −→ Bu is absolutely monotonic if and only if there exists a

branching kernel Ĥ on S such that Ĥϕ̂ = Ĥϕ for all ϕ ∈ Bu.

We also have (cf. Lemma 2.2 and Theorem 1 from [92]):

(2.2.3) If H,K are absolutely monotonic then their composition HK is also abso-

lutely monotonic and ĤK = ĤK̂. The map H 7−→ Ĥ is a bijection between the set of

all absolutely monotonic mappings and the set of all branching kernels on S.

In the next proposition we solve an appropriate integral equation (following the

approach of [92], see also [20]).

Proposition 2.2.1. For any ϕ ∈ Bu the equation

(2.2.4) ht(x) = T ct ϕ(x) +

∫ t

0

T ct−u(cBĥu)(x)du, t > 0, x ∈ E,
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has a unique solution (t, x) 7−→ Htϕ(x) jointly measurable in (t, x), such that Htϕ ∈ Bu
for all t > 0 and the following assertions hold.

(i) For each t > 0 the mapping ϕ 7−→ Htϕ is absolutely monotonic and it is Lipschitz

with the constant βot, where

βo := ‖c‖∞‖Bl1‖∞.

(ii) The familiy (Ht)t>0 is a semigroup of nonlinear operators on Bu. If B1 = 1

then Ht1 = 1 for all t > 0.

(iii) For each x ∈ E the function t 7−→ Htϕ(x) is right continuous on [0,∞),

provided that t 7−→ T ct ϕ(x) is right continuous.

Proof. Let

Kϕ := Bϕ̂.

With this notation (2.2.4) becomes

(2.2.5) ht(x) = T ct ϕ(x) +

∫ t

0

Tt−ucKhu(x) du, t > 0, x ∈ E.

We prove first the uniqueness. As in [92], the inequality (4.11), one can see that if

ϕ, ψ ∈ Bu and µ ∈ S then

(2.2.6) |ϕ̂(µ)− ψ̂(µ)| 6 l1(µ)||ϕ− ψ||∞.

From (2.2.1) and the (2.2.6) we conclude that

(2.2.7) the mapping ϕ 7−→ cKϕ is Lipschitz with the constant β0.

If ht and h′t are two solutions of (2.2.4) then for all t > 0

‖ht − h′t‖∞ 6
∫ t

0

‖Tt−u(| cKhu − cKh′u |)‖∞du 6 βo

∫ t

0

‖ hu − h′u ‖∞ du.

It follows by Gronwall’s Lemma that ‖ ht − h′t ‖∞= 0.

To prove the existence, define inductively the operators Hn
t , n > 0, as H0

t ϕ := T ct ϕ,

(2.2.8) Hn+1
t ϕ := T ct ϕ+

∫ t

0

Tt−ucKH
n
uϕ du, ϕ ∈ Bu.

Clearly the function (t, x) 7−→ Hn
t ϕ(x) is measurable. We claim that the sequence

(Hn
t ϕ)n is increasing. Indeed, H1

t ϕ = T ct ϕ +

∫ t

0

Tt−ucKH
0
uϕ du > H0

t ϕ. If we

suppose that Hn−1
t ϕ 6 Hn

t ϕ then Hn+1
t ϕ = T ct ϕ +

∫ t

0

Tt−ucKH
n
uϕ du > T ct ϕ +
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0

Tt−ucKH
n−1
u ϕ du = Hn

t ϕ. The last inequality holds because if ϕ 6 ψ then

cKϕ 6 cKψ and in addition one can prove inductively that Hn
t ϕ 6 Hn

t ψ for all

n.

We claim now that

(2.2.9) Hn
t 1 6 1 for all n > 0.

We proceed again by induction. The inequality holds for n = 1 because (T ct )t>0 is

sub-Markovian and H0
t 1 = T ct 1. If we assume that Hn

t 1 6 1 then Ĥn
t 1 6 1 and

therefore

Hn+1
t 1 = T ct 1 +

∫ t

0

T cu(cBĤn
t 1)du 6 T ct 1 +

∫ t

0

T cuc du =

Ex(e−
∫ t
0 c(Xu) du +

∫ t

0

e−
∫ s
0 c(Xu) duc(Xs) ds) = 1.

If ϕ ∈ Bu then by (2.2.9) Hn
t ϕ ∈ Bu for all n > 0. For x ∈ E, t > 0, and ϕ ∈ Bu

we set

Htϕ(x) := sup
n
Hn
t ϕ(x).

The function (t, x) 7−→ Htϕ(x) is measurable, by (2.2.9) we have Ht1 6 1, Ht(Bu) ⊂
Bu, and passing to the pointwise limit in (2.2.8) it follows that (Htϕ)t>0 verifies (2.2.5).

(i) We show inductively that for all n the operator Hn
t is absolutely monotonic. If

n = 1 then H1
t ϕ = T ct ϕ = Ttϕ̂, where Tt : bpB(S) −→ bpB is the kernel defined by

Ttg = T ct (g|E) for all g ∈ bpB(S). Hence H1
t ϕ = Ttϕ̂ for all ϕ ∈ Bu and therefore H1

t

is absolutely monotonic. Suppose now that Hn
t is absolutely monotonic, Hn

t ϕ = Hn
t ϕ̂.

We have

Hn+1
t ϕ = Ttϕ̂+

∫ t

0

Tt−ucBĤn
uϕ du = (Tt +

∫ t

0

Tt−ucBĤn
u du)ϕ̂,

where Ĥn
u is the branching kernel on S associated by (2.2.2) with Hn

u. Taking

(2.2.10) Hn+1
t := Tt +

∫ t

0

Tt−ucBĤn
u du,

it follows that Hn+1
t is also absolutely monotonic. One can deduce from (2.2.10) that

for all t > 0 the sequence of kernels (Hn
t )n>0 is increasing and therefore we may consider

the kernel Ht defined as Ht := supn Hn
t . From the above considerations for all ϕ ∈ Bu

we have Htϕ = supnH
n
t ϕ = supn Hn

t ϕ̂ = Htϕ̂ and we conclude that Ht is absolutely

monotonic.
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We prove now the Lipschitz property of the mapping ϕ 7−→ Htϕ. For, if ϕ, ψ ∈ Bu
and t > 0 then by (2.2.5) and (2.2.7)

||Htϕ−Htψ||∞ 6 ||ϕ− ψ||∞ + β0

∫ t

0

||Huϕ−Huψ||∞du

and by Gronwall’s Lemma we conclude that ||Htϕ−Htψ||∞ 6 β0t||ϕ− ψ||∞.

(ii) The semigroup property of (Ht)t>0 is a consequence of the uniqueness. Indeed,

we have to show that Ht′+tϕ = Ht(Ht′ϕ), so, it is enough to prove that the mapping

t 7−→ Ht′+tϕ verifies (2.2.5) with Ht′ϕ instead of ϕ. We have

Ht′+tϕ = T ct Tt′ϕ+

∫ t′

0

T ct (T ct′−ucKHuϕdu) +

∫ t′+t

t′
T ct′+t−ucKHuϕdu =

T ct (Tt′ϕ+

∫ t′

0

T ct′−ucKHuϕ du) +

∫ t

0

T ct−scKHt′+sϕds = T ctHt′ϕ+

∫ t

0

T ct−scKHt′+sϕds.

Suppose now that B1 = 1 and define inductively the operators H ′nt , n > 0, as

H ′0t ϕ := T ct ϕ+
∫ t

0
T cucKϕdu,

(2.2.11) H ′n+1
t ϕ := T ct ϕ+

∫ t

0

T cucKH
′n
t−uϕ du, ϕ ∈ Bu.

We already observed that T ct 1 +
∫ t

0
T cuc du = 1, therefore H ′0t 1 = 1 and by induction we

get that H ′nt 1 = 1 for all n ∈ N. Using (2.2.7) as before we obtain

||H ′n+1
t ϕ−H ′nt ϕ||∞ 6 βo

∫ t

0

||H ′nu ϕ−H ′n−1
u ϕ||∞du

and because ||H ′1t ϕ−H ′0t ϕ||∞ 6 βo||ϕ||∞
∫ t

0
(2 + βou)du =||ϕ||∞(2βot+ (βot)2

2
) again by

induction

||H ′n+1
t ϕ−H ′nt ϕ||∞ 6 ||ϕ||∞

(
2

(βot)
n+1

(n+ 1)!
+

(βot)
n+2

(n+ 2)!

)
.

Consequently, if to > 0 is fixed then

sup
x∈E
t6to

∣∣H ′n+1
t ϕ(x)−H ′nt ϕ(x)

∣∣ 6 (2
(βoto)

n+1

(n+ 1)!
+

(βoto)
n+2

(n+ 2)!

)
.

It follows that the sequence (H ′nt ϕ)n is Cauchy in the supremum norm and passing to

the limit in (2.2.11), we deduce that the point-wise limit of this sequence verifies (2.2.5),

hence it is Htϕ by the uniqueness of the solution. In particular, Ht1 = limnH
′n
t 1 = 1.

(iii) Because the family (Ht)t>0 is a semigroup, it is enough to prove the right conti-

nuity in t = 0. Since Htϕ(x) is a solution of (2.2.5) and the function u 7−→ T ct−ucKhu(x)

is bounded on [0,∞), by dominate convergence we get limt↘0

∫ t
0
T ct−ucKhu(x) du = 0,

hence t 7−→ Htϕ(x) is right continuous in t = 0.
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Remark 2.2.2. (i) If ϕ ∈ Bu and t > 0 then the sequence (Hn
t ϕ)n>0 defined by (2.2.8)

converges uniformly to the solution Htϕ of (2.2.4). The assertion is a consequence of

the following inequality which may be proved by induction:

‖Hn+1
t ϕ−Hn

t ϕ‖∞ 6
(βot)

n

n!
‖ϕ‖∞ for all n > 0.

(ii) Note that if L is the infinitesimal generator of the base process X, then (2.2.4)

is formally equivalent to

d

dt
ht = (L − c)ht + cBĥt, t > 0.

(iii) If B is given by (2.1.5) then the condition B1 = 1 is equivalent with∑
k>1

qk(x) = 1 for all x ∈ E.

2.3 Semigroups of branching kernels on the finite

configurations, the cumulant semigroup

Let further (Ht)t>0 be the semigroup of nonlinear operators on Bu given by assertion

(ii) of Proposition 2.2.1.

Theorem 2.3.1. For each t > 0 let Ĥt be the branching kernel on S associated by

(2.2.2) with the absolutely monotonic operator Ht from Proposition 2.2.1, Htϕ = Ĥtϕ̂|E
for all ϕ ∈ Bu. Then the following assertions hold.

(i) The family (Ĥt)t>0 is a sub-Markovian semigroup of branching kernels on (S,B(S)).

(ii) For each t > 0 and f ∈ bpB define the function Vtf ∈ pB as

Vtf := −lnHt(e
−f ).

Then the family (Vt)t>0 is a semigroup of (nonlinear) operators on bpB and

(2.3.1) Ĥt(ef ) = eVtf for all f ∈ bpB.

Proof. Assertion (i) follows from (2.2.3) and Proposition 2.2.1. To prove assertion (ii)

it is enough to show that if f ∈ bpB then Vtf ∈ bpB. If f 6 M , because Ht(e
−M) >

T ct (e−M) and since the transition function of X is Markovian, we have Vtf 6 VtM 6
−ln(e−MEx(e−

∫ t
0 c(Xs)ds)) 6 M + t‖c‖∞.
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Remark 2.3.2. (i) If v ∈ Bu is such that v̂ is an invariant function with respect to the

branching semigroup (Ĥt)t>0 on S, then v belongs to the domain of L (the infinitesimal

generator of the base process X) and

(2.3.2) (L − c)v + cBv̂ = 0.

In particular, if B is given by (2.1.5), then v is the solution of the nonlinear equation

(L − c)v + c
∑
k>1

qkv
k = 0.

It turns out that (Ĥt)t>0 is the main tool in the treatment of the (nonlinear) Dirichlet

problem associated with the equation (2.3.2); see Proposition 6.1 and Subsection 6.2 in

[20].

(ii) The equation (2.2.4) and the equality (2.3.1) are analogous to (2.2) and re-

spectively (2.4) from [34], where, however, the forthcoming branching process having

(Ĥt)t>0 as transition function is used. Assertion (ii) of Theorem 2.3.1 shows that the

semigroup approach for the continuous branching (developed by E.B. Dynkin [40] and

P.J. Fitzsimmons [43]; see also [12] and [67]) is analogue to the above construction of

the branching semigroup in the discrete branching case, due to N. Ikeda, M. Nagasawa,

S. Watanabe, and M.L. Silverstein. Recall that in the case of the continuous branching

the family (Vt)t>0 is the so called “cumulant semigroup”; for more details see Section

2.6 below.

(iii) Assume that E is an Euclidean open set, X is the Brownian motion on E,

and B is given by (2.1.5). Then by (2.3.1) and Remark 2.2.2 (ii) one can see that the

cumulant semigroup (Vt)t>0 is formally the solution of the following evolution equation

d

dt
Vtf = ∆Vtf − |∇Vtf |2 + c(1−

∑
k>1

qke
(1−k)Vtf ), t > 0.

This should be compare with the equation satisfied by the cumulant semigroup of a

mesure-valued continuous branching process (cf. (2.2)′ from [43] and (2.6.1) below), in

particular, in the case of the super-Brownian motion: d
dt
Vtf = ∆Vtf − (Vtf)2, t > 0.

(iv) We refer to the survey article [19] for a version of assertion (ii) of Theorem

2.3.1 and for further connections between the continuous and discrete measure-valued

processes.

2.4 Linear and exponential excessive functions

Let further

β1 := ||Bl1||∞.



48 2 Discrete branching Markov processes on the finite configurations

and assume that B1 = 1, hence β1 > 1. We suppose that β1 > 1 and that the function

c is such that c < β1
β1−1

. Let (Qt)t>0 be the semigroup given by Proposition 1.4.2, with

the sub-Markovian kernel K on (E,B) defined as Kf := c
c+β1

B(lf ) and with c + β1

instead of c.

Lemma 2.4.1. If B is given by (2.1.5) and c does not depend on x ∈ E, then

Qtf(x) = e−(c+β1)tEx(e
∫ t
0 cqo(Xs) dsf(Xt)), f ∈ bpB, x ∈ E, t > 0,

where qo :=
∑

k>1 kqk, and we have [bE(Uo)] = [bE(Uβ)] for all β > 0.

Proof. Observe first that in this case

B(lf ) = qof, f ∈ bpB,

and equation (1.4.1) with c+ β1 instead of c and Kf = c
c+β1

B(lf ) becomes

kt(x) = Ttf(x)−
∫ t

0

Tt−u(bku)(x)du, t > 0, x ∈ E,

where kt := e(c+β1)trt and b := −cqo. By Proposition 3.3 (i) from [12] the above equation

has a unique solution T bt f and consequently Qt = T c+β1−cqot for all t > 0. The claimed

expression of Qt follows now also from [12], the equality (3.3). Let β2 := c+ β1 − cβ1.

From Proposition 3.3 (iii) from [12], since 0 < β2 6 c + β1 − cqo 6 β1, we have

T β1t 6 Qt 6 T β2t , E(Uβ2) ⊂ E(Uo) ⊂ E(Uβ1). By Proposition 1.4.1 we conclude that

[bE(Uo)] = [bE(Uβ1)] = [bE(Uβ)] for all β > 0.

In the next proposition we prove relations between a set of excessive functions with

respect to the base process X and excessive functions with respect to the forthcoming

branching process on S. The key tool is the equality from the assertion (i) below. Note

that a similar equality was obtained in the case of continuous branching processes in

[43], Proposition 2.7 (see also [12], Proposition 4.2). It turns out that a perturbation

of the generator of the base process was necessary in that case too, however a simpler

one, the perturbed semigroup (Qt)t>0 being expressed with a Feynman-Kac formula,

as in the particular case discussed in the above Lemma 2.4.1.

Proposition 2.4.2. The following assertions hold.

(i) If f ∈ bpB and t > 0 then

e−β1tĤt(lf ) = lQtf .

(ii) If β > 0 and β′ := β1 + β then the following assertions are equivalent for every

u ∈ bpB.
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(ii.a) u ∈ bE(Uoβ).

(ii.b) lu ∈ E(Ûβ′).
(ii.c) For every α > 0 we have 1− eαu ∈ E(Ûβ′).
(iii) If u ∈ E(Uoβ) is a compact Lyapunov function on E then l1+u ∈ E(Ûβ′) is a

compact Lyapunov function on S.

Proof. (i) We show first that if f ∈ bpB and N is a kernel on S or from S to E, such

that N(l1) is a bounded function then

(2.4.1) N(eλf )
′
λ=0 := lim

λ→0

N(eλf )−N1

λ
= −N(lf ).

Indeed, the assertion follows since
1−eλf
λ
↗ lf pointwise on S. The Lipschitz prop-

erty of Ht (Proposition 2.2.1 (i)) implies

||Ht(e
−f )− 1||∞ 6 βot||1− e−f ||∞ 6 βot||f ||∞,

∣∣∣∣Ht(e
−λf )− 1

λ

∣∣∣∣ 6 βot||f ||∞.

Applying (2.4.1) with N = Ĥt and since Ĥt(eλf )|E = Ht(e
−λf ) we deduce that

Ĥt(lf )|E 6 βot||f ||∞ and we claim that

(2.4.2) Ĥt(lf ) = −Ĥt(eλf )
′
λ=0 = l

Ĥt(lf )|E
.

By (2.4.1) it is sufficient to show the second equality. Let µ ∈ E(m), µ =
∑m

k=1 δxk .

Using again (2.4.1) for the kernel Ĥt|E and since Ĥt1 = 1 we get

Ĥt(eλf )
′
λ=0(µ) = (

m∏
k=1

Ĥt(eλf )|E(xk))
′
λ=0 =

(Ĥt(eλf )|E)′λ=0(x1) · Ĥt(e0)(x2) · . . . · Ĥt(e0)(xm) + . . . =

−[Ĥt(lf )(x1) + . . .+ Ĥt(lf )(xm)] = −l
Ĥt(lf )|E

(µ).

For each t > 0 define the function ϕt : R+ −→ bpB by ϕt(λ) := Vt(λf). We clearly

have Ht(e
−λf ) = e−ϕt(λ) and from Proposition 2.2.1 we obtain

e−ϕt(λ) = T ct (e−λf ) +

∫ t

0

T ct−ucBĤt(eλf )du, t > 0.

We have ϕt(0) = 0, and using (2.4.2) we get ϕ′t(0) = Ĥt(lf )|E. By derivation of the

above equation in λ = 0 and multiplying with e−β1t, applying (2.4.1) forN = T ct−ucBĤt,

and again from (2.4.2) we conclude that

e−β1tϕ′t(0) = T c+β1t f +

∫ t

0

T c+β1t−u (c+ β1)K(e−β1uϕ′u(0))du, t > 0,
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where Kf := c
c+β1

B(lf ) and (T c+β1t )t>0 is the transition function of the process obtained

by killing X with the multiplicative functional (e−β1t−
∫ t
0 c(Xs)ds)t>0, T c+β1t = e−β1tT ct .

Hence e−β1tϕ′t(0) verifies (1.4.1) with c+β1 instead of c and the kernel K. Proposition

1.4.2 implies e−β1tϕ′t(0) = Qtf and by (2.4.2) e−β1tĤt(lf ) = l
e−β1tĤt(lf )|E

= lQtf .

The proof of (ii) is similar to that of Corollary 4.3 from [12], using the above

assertion (i).

(iii) Let u ∈ E(Uoβ) be a Lyapunov function on E and for each n ∈ N∗ consider the

compact set Kn such that [u 6 n] ⊂ Kn. Since l1 = m on E(m), m > 1, we conclude

that [l1+u 6 n] is included in the compact set Kn ∪ (Kn)(2) ∪ . . . ∪ (Kn)(n) of S.

2.5 Construction of branching processes on the fi-

nite configurations

Let A := [bE(Uβ)] (= the closure in the supremum norm of [bE(Uβ)]). Note that A is

an algebra; see, e.g. Corollary 2.3 from [12]. By Proposition 1.4.1 A does depend on

β > 0 and using also Proposition 1.4.2 (iv) we get A = [bE(U cβ)] = [bE(Uoβ)]. We need

a supplementary hypothesis:

(∗) There exist a countable subset Fo of bE(Uoβ) which is additive, 0 ∈ Fo, and

separates the finite measures on E and a separable vector lattice C ⊂ A such that

{e−u : u ∈ Fo} ⊂ C and T ct ϕ, T
c
t (cBϕ̂) ∈ C for all ϕ ∈ C ∩ Bu and t > 0.

Remark. Recall that 1− e−u ∈ E(Uoβ) provided that u ∈ E(Uoβ) (cf. Proposition 2.4.2

(ii)) and therefore {e−u : u ∈ Fo} ⊂ A ∩ Bu.

Proposition 2.5.1. The following assertions hold.

(i) If c does not depend on x ∈ E and B is given by (2.1.5) with
∑

k>1 ||qk||∞ <∞,

then (∗) is verified taking any countable subset Fo of bE(Uoβ) which is additive, 0 ∈ Fo,
and separates the finite measures on E, and as C the closure in the supremum norm

of a separable vector lattice Co ⊂ A such that {e−u : u ∈ Fo} ⊂ Co, (qk)k>1⊂ Co and

Tt(Co) ⊂ Co for all t > 0.

(ii) Assume that E is a locally compact space, (T ct )t>0 a C0-semigroup on C0(E),

c ∈ bC(E), and Bϕ̂ and B(lϕ) also belong to C0(E) for all ϕ ∈ C0(E) ∩ Bu. Then (∗)
holds taking C = C0(E)⊕R and for any countable subset Fo of C0(E) ∩ bE(Uoβ) which

is additive, 0 ∈ Fo, and separates the finite measures on E.

(iii) If condition (∗) holds then Vt(Fo) ⊂ C (the closure in the supremum norm of

C) for every t > 0.
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Proof. By (2.1.5) Bϕ̂ =
∑

k>1 qkϕ
k and C is an algebra. Therefore Bϕ̂ ∈ C ∩ Bu

provided that ϕ ∈ C ∩ Bu, so, assertion (i) holds.

Assertion (ii) is clear, observing that C0(E)⊕ R ⊂ A. Note that by Remark 2.2.2

(i) we have Qt(C0(E)) ⊂ C0(E) for all t > 0 and using (1.4.1) one can see that (Qt)t>0

is also a C0-semigroup on C0(E).

(iii) Using condition (∗) it follows that Hn
t (e−u) ∈ C ∩Bu for all n > 0 and u ∈ Fo,

where Hn
t is given by (2.2.8). Since the sequence (Hn

t (e−u))n converges uniformly (see

Remark 2.2.2, Ht(e
−u) also belongs to C which is an algebra and we conclude that

Vtu = −lnHt(e
−u) ∈ C.

We state now the main result of this chapter, the existence of a discrete branching

process associated with the base process X, the branching kernel B an the killing kernel

c.

Theorem 2.5.2. If the base process X is standard and condition (∗) holds then there

exists a branching standard process with state space S, having (Ĥt)t>0 as transition

function.

Proof. According to (1.3.2), in order to show that (Ĥt)t>0 is the transition function of

a càdlàg process with state space S, we have to verify conditions (h1)-(h3) for Ûβ′ .
We show first that (h1) is satisfied by Ûβ′ , in particular, all the points of S are

non-branch points for Ûβ′ . We proceed as in the proof of Proposition 4.5 from [12].

According to Corollary 3.6 from [93], it will be sufficient to prove that the uniqueness

of charges and the specific solidity of potentials properties hold for Ûβ′ = (Ûβ′+α)α>0,

where recall that Ûα =
∫∞

0
e−αtĤt dt.

The uniqueness of charges property. We have to show that if µ, ν are two finite measures

on S such that µ ◦ Ûβ′ = ν ◦ Ûβ′ then µ = ν. We get µ(1) = ν(1) and by Hunt’s

approximation theorem µ(F ) = ν(F ) for every F ∈ [bE(Ûβ′)]. We already observed

that the multiplicative family of functions

F̂o := {eu : u ∈ Fo}

is a subset of [bE(Ûβ′)]. Therefore µ(eu) = ν(eu) for every u ∈ Fo and B(S) = σ(F̂o) =

σ(Ê(Uβ′)). By a monotone class argument we conclude that µ = ν.

The specific solidity of potentials. We have to show that if ξ, µ ◦ Ûβ′ ∈ Exc(Ûβ′) and

ξ ≺ µ ◦ Ûβ′ , then ξ is a potential. Here ≺ denotes the specific order relation on the

convex cone Exc(Ûβ′) of all Ûβ′-excessive measures: if ξ, ξ′ ∈ Exc(Ûβ′) then ξ ≺ ξ′ means

that there exists η ∈ Exc(Ûβ′) such that ξ + η = ξ′.
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Let Ao be the additive semigroup generated by {Vtu : u ∈ Fo, t > 0} and [Âo] the

vector space spanned by {ev : v ∈ Ao}. Then [Âo] is an algebra of functions on S,

1 ∈ [Âo], and since F̂o ⊂ [Â] we have σ([Â]) = B(S). We prove now that

(2.5.1) [Âo] ⊂ [bE(Ûβ′)].

Since F̂o ⊂ [bE(Ûβ′)] we get from (2.3.1) that eVtu ∈ [bE(Ûβ′)] for all u ∈ Fo. By

Corollary 2.3 from [12] the vector space [bS(Ûβ′)] is an algebra and therefore ev ∈
[bS(Ûβ′)] for all v ∈ Ao. It remains to prove that the map s 7−→ Ĥs(ev)(µ) is right

continuous on [0,∞) for every v ∈ Ao and µ ∈ S. Because Ĥs(ev) = Ĥs(e−v), we have

to prove the right continuity of the mapping s 7−→ Hs(e
−v)(x), x ∈ E. According to

Proposition 2.2.1 (iii) it will be sufficient to show that the map s 7−→ T cs (e−v)(x) is

right continuous for every v ∈ Ao and x ∈ E. This last right continuity property is

satisfied since by Proposition 2.5.1 (iii) the function e−v belongs to the algebra A.

Let ξ, µ ◦ Ûβ′ ∈ Exc(Ûβ′), ξ ≺ µ ◦ Ûβ′ . We may suppose that µ(1) 6 1; if it is not

the case, then µ =
∑
n

µn with µn(1) 6 1 for all n and by Ch. 2 in [13] there exists

a sequence (ξn)n ⊂ Exc(Ûβ′) such that ξ =
∑
n

ξn and ξn ≺ µn ◦ Ûβ for every n. Let

ϕξ : E(Ûβ′) −→ R+ the functional defined by ϕξ(F ) := L̂β′(ξ, F ), F ∈ E(Ûβ′), where

L̂β′ denotes the energy functional associated with Ûβ′ . By (2.5.1) we may extend ϕξ
to an increasing linear functional on [Âo]. Let M be the closure of [Âo] with respect

to the supremum norm. Clearly, M is a vector lattice and we claim that ϕξ extends

to a positive linear functional on M. Indeed, if (Fn)n ⊂ [Âo] is a sequence converging

uniformly to zero and we consider a sequence (νk ◦ Ûβ′)k ⊂ Exc(Ûβ′), νk ◦ Ûβ′ ↗ ξ, then

we have |ϕξ(Fn)| = supk |νk(Fn)| 6 lim infk νk(|Fn|) 6 ε lim infk νk(1) = εL̂β′(ξ, 1) 6
εµ(1) 6 ε, provided that n > n0 and ||Fn||∞ < ε for all n > n0. Since ξ ≺ µ ◦ Ûβ′ we

have ϕξ(F ) 6 µ(F ) for every F ∈ M+. Consequently, if (Fn)n ⊂ M+ is a sequence

decreasing pointwise to zero, then ϕξ(Fn) ↘ 0. By Daniell’s Theorem there exists

a measure ν on (S,B(S)) such that ϕξ(F ) = ν(F ) for all F ∈ M. In particular, if

u ∈ Fo then L̂β′(ξ, Ĥt(eu)) = ϕξ(eVtu) = ν(Ĥt(eu)) and therefore L̂β′(ξ, Ûβ′(eu)) =

limk νk(Ûβ′(eu)) =
∫∞

0
e−β

′t limk νk(Ĥt(eu))dt =
∫∞

0
e−β

′tL̂β′(ξ, Ĥt(eu))dt = ν(Ûβ′(eu)).

We conclude that ξ = ν ◦ Ûβ′ . Observe that actually we proved he following assertion:

(2.5.2) If ξ, η are two finite measures from Exc(Ûβ′) and L̂β′(ξ, Ĥt(eu)) = L̂β′(η, Ĥt(eu))

for all u ∈ Fo and t > 0, then ξ = η.

Because X is a Hunt process, Theorem (47.10) in [91] implies that X has càdlàg

trajectories in any Ray topology (see Section 1.2). Consider a Ray topology T (R)

with respect to Uo, which is finer than the original topology and it is generated by a
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Ray cone R ⊂ bE(Uoβ) such that Fo ⊂ R. So, without loosing the generality, we may

assume in the sequel that the original topology of E is a Ray one.

We check now condition (h2). Let λ ∈ S and set as before λ′ = λ+λ◦Gβ. Since the

base process X on E has càdlàg trajectories the capacity cλ′ is tight (see Remark 1.3.3)

and by Corollary 1.4.3 the capacity coλ is also tight. According to (1.2.3) and Remark

1.2.1 there exists a compact Lyapunov function u ∈ E(Uoβ) ∩ L1(λ). Proposition 2.4.2

(ii) implies that lu ∈ E(Ûβ′) is a compact Lyapunov function on S and lu(λ) < ∞,

hence (h2) holds.

We show that (h3) also holds for Û ′β. We take l1 as the function uo; observe that by

Proposition 2.4.2 (ii) we have l1 ∈ E(Ûβ′) and clearly l1 is a real-valued function. Let

Co be a countable subset of bE(Uoβ) such that Fo ⊂ Co, Co is additive, and pC is included

in the closure in the supremum norm of (Co−Co)+. Let further Ro be a countable dense

subset of the Ray cone R such that Co ⊂ Ro. We may consider R̂o := {eu : u ∈ Ro}
as the countable set F from (h3). Note that since Ro generates the (Ray) topology

on E, by Lemma 0.2 from [53] (see also the proof of Lemma 2.4 from [20]), one can

see that R̂o generates the topology of S. Let further ξ, η be two finite E(Ûβ′)-excessive

measures such that L̂β′(ξ, eu) = L̂β′(η, eu) for all u ∈ Ro and

(2.5.3) L̂β′(ξ + η, l1) <∞.

To show that ξ = η we can now proceed as in the proof of Theorem 4.9 from [12],

Step I, page 699; this procedure was also used in the proof of Theorem 3.5 from [19].

Because the σ-algebra B(S) is generated by the multiplicative family F̂o, a monotone

class argument implies that ξ = η provided that

ξ(eu) = η(eu) for all u ∈ Fo.

By (2.5.2) the above equality holds if

(2.5.4) L̂β′(ξ, Ĥt(eu)) = L̂β′(η, Ĥt(eu)) for all u ∈ Fo and t > 0.

From (2.5.3) and (1.2.1) there exist two measures µ and ν on S1 such that ξ = µ ◦ Û1
β′

and η = ν ◦ Û1
β′ . Let further C̃o := {ẽu : u ∈ Co}. Because C̃o is a multiplicative class

of functions on S1 and µ(ẽu) = L̂β′(ξ, eu) = L̂β′(η, eu) = ν(ẽu) for every u ∈ Co, by the

monotone class theorem we have

(2.5.5) µ(F ) = ν(F ) for all F ∈ σ(C̃o).

If u ∈ Fo then by Proposition 2.5.1 (iii) there exists a sequence (fn)n ⊂ (Co − Co)+

converging uniformly to Vtu. Note that if f ∈ (Co−Co)+ then ef has a finely continuous
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extension ẽf from S to S1. Since eu ∈ [bE(Ûβ′)], using by (2.3.1) we get that eVtu
belongs to [bE(Ûβ′)] and by (1.2.2) it has a unique extension ẽf from S to S1 (by

fine continuity too). As a consequence, and using (2.2.6), for every λ ∈ S we have

|efn(λ) − eVtu(λ)| 6 ||fn − Vtu||∞ · l1(λ), hence |ẽfn − ẽVtu| 6 ||fn − Vtu||∞ · l̃1 on S1.

It follows that (ẽfn)n converges pointwise to ẽVtu on the set [l̃1 < ∞] ∈ σ(C̃o). From

(2.5.3) we get (µ + ν)(l̃1) = L̂β(ξ + η, l1) < ∞, hence l̃1 < ∞ (µ + ν)-a.e. Therefore,

1[l̃1<∞] · ẽVtu is σ(C̃o)-measurable and by (2.5.5) we now deduce that µ(ẽVtu) = ν(ẽVtu)

for all u ∈ Fo. We conclude that (2.5.4) holds, so ξ = η. Applying (1.3.2), Û is the

resolvent of a standard process with state space S.

The quasi-left continuity follows by Proposition 1.3.4, taking F̂o as the multiplica-

tive set K, since by Proposition 2.2.1 (ii) the semigroup (Ĥt)t>0 is Markovian.

2.6 Continuous branching as base process

In this section we give an example of a branching Markov process, having as base

space the set of all finite configurations of positive finite measures on a topological

space. Note that an example of branching type process on this space was given in [20],

obtained by perturbing a diagonal semigroup with a branching kernel.

Let Y be a standard (Markov) process with state space a Lusin topological space

F , called spatial motion. We fix a branching mechanism, that is, a function Φ : F ×
[0,∞) −→ R of the form

Φ(x, λ) = −b(x)λ− a(x)λ2 +

∫ ∞
0

(1− e−λs − λs)N(x, ds)

where a>0 and b are bounded B-measurable functions and N : pB((0,∞)) −→ pB(F )

is a kernel such that N(u ∧ u2) ∈ bpB(F ). Examples of branching mechanisms are

Φ(λ) = −λα for 1 < α ≤ 2.

We first present the measure-valued branching Markov process associated with the

spatial motion Y and the branching mechanism Φ, the (Y,Φ)-superprocess, a standard

process with state space M(F ), the space of all positive finite measures on (F,B(F )),

endowed with the weak topology (cf. [43] and [40], see also [12]). For each f ∈ bpB(F )

the equation

vt(x) = Ptf(x) +

∫ t

0

Ps(x,Φ(·, vt−s))ds, t > 0, x ∈ F,

has a unique solution (t, x) 7−→ Ntf(x) jointly measurable in (t, x) such that sup
0≤s≤t

||vs||∞ <

∞ for all t > 0; we have denoted by (Pt)t>0 the transition function of the spatial motion
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Y . Assume that Y is conservative, that is Pt1 = 1. The mappings f 7−→ Ntf , t > 0,

form a nonlinear semigroup of operators on bpB(F ) and the above equation is formally

equivalent with

(2.6.1)

{
d
dt
vt(x) = Lvt(x) + Φ(x, vt(x))

v0 = f,

where L is the infinitesimal generator of the spatial motion Y . For every t > 0 there

exists a unique kernel Tt on (M(F ),M(F )) such that

(2.6.2) Tt(ef ) = eNtf , f ∈ bpB(F ),

where for a function g ∈ bpB(F ) the exponential function eg is defined on M(F ) as

in Section 2.1. Since the family (Nt)t>0 is a (nonlinear) semigroup on bpB(F ), (Tt)t>0

is a linear semigroup of kernels on M(F ). Suppose that F is a locally compact space,

(Pt)t>0 is a C0-semigroup on C0(F ), and a, b, and N do not depend on x ∈ F . We may

assume that b > 0. Arguing as in the proof of Proposition 4.8 from [12] one can see that

Nt(C0(F )) ⊂ C0(F ) and that Nt(bE(Ub′)) ⊂ bE(Ub′) for every t > 0, where b′ := b+ β,

with β > 0. Then (Tt)t>0 is the transition function of a standard process with state

space M(F ), called (Y,Φ)-superprocess; see, e.g., [43], [12], and [19]. In addition, the

(Y,Φ)-superprocess is a branching process on M(F ), i.e., Tt is a branching kernel on

M(F ) for all t > 0. Recall that the nonlinear semigroup (Nt)t≥0 is called the cumulant

semigroup of this branching process.

We can apply now the results from Section 2.5, starting with the (Y,Φ)-superprocess

as base process with state space E := M(F ).

Corollary 2.6.1. Let c and (qk)k>1 be positive real numbers such that
∑

k>1 qk = 1,∑
k>1 kqk =: qo <∞, and 0 < β < c+ qo − cqo. Then there exists a discrete branching

process with state space the set of all finite configurations of positive finite measures on

F, associated to c and (qk)k>1, and with base process the (Y,Φ)-superprocess.

Proof. We apply Thoerem 2.5.2, so, we have to check condition (∗). Let R be a Ray

cone with respect to the resolventW = (Wα)α>0 of the process Y on F , constructed as

in the proof of Proposition 4.8 from [12], R ⊂ bE(Wb′), such that [R∩C0(F )] is dense

in C0(F ). Let Ro be a countable, additive, dense subset of R. Then {er : r ∈ Ro} is

a multiplicative set of functions on E and separates the measures on E. Let further

C be the closure in the supremum norm of the vector space spanned by {ew : w ∈
bE(Wb′) ∩C0(F )} and denote by U = (Uα)α>0 the resolvent of the (Y,Φ)-superprocess

on E. By Corollary 4.4 from [12] 1− ew ∈ E(Uβ) for all w ∈ bE(Wb′). Therefore C ⊂ A
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and we may take as Fo the additive semigroup generated by the set {1−ew : w ∈ Ro}.
From (2.6.2) and the above considerations Tt(C) ⊂ C and since C is a Banach algebra

we clearly have {e−u : u ∈ Fo} ⊂ C, hence condition (∗) holds.

The following comment completes the Final Remark from [20], page 27.

Remark 2.6.2. Recall first a suggestive description of a superprocess, stated in [41],

page 55: ”A measure-valued Markov process describes the evolution of a random cloud.

The branching property means that any parts of the cloud at time t do not interact after

t.” Consequently, taking into account the interpretation of a branching process given

in Introduction to Part I, one can think that the process constructed in Corollary 2.6.1

describes the evolution of a random cloud not only controlled by a branching mechanism

Φ but also driven by a discrete branching process, in a new dimension, along which the

splitting into a random number of clouds takes place, commanded by a branching kernel

B.



Chapter 3

Subordination in the sense of

Bochner and associated Markov

processes

3.1 Convolution semigroups on the real line, sub-

ordinators

Consider a convolution semigroups (µt)t>0 on the real line, as introduced in the exam-

ple (1.1.3).

Bernstein function of a convolution semigroup (µt)t>0. An arbitrarily often

differentiable function f : (0,∞) → R is called Bernstein function if f > 0 and

(−1)nf (n) 6 0 hold for n ∈ N. Bernstein functions can be fully characterized by a

Lévy-Khinchin formula,

f(x) = a+ bx+

∫ ∞
0

(1− e−sx)µ(ds),

with a, b > 0 and a non-negative measure µ on (0,∞) such that
∫∞

0
s(s+ 1)−1µ(ds) <

∞. These and the following result can be found in the monograph [10].

(3.1.1) Every convolution semigroup (µt)t>0 of sub-probability measures on [0,∞) is

uniquely characterized by some Bernstein function f, and vice versa. This correspon-

dence is given by ∫ ∞
0

e−sxµt(ds) = e−tf(x).

57
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Examples. The function x 7−→ a, a > 0, is a Bernstein function with corresponding

convolution semigroup (e−atδ0)t>0. Further, the function x 7−→ bx, b > 0, is a Bernstein

function with associated convolution semigroup (δbt)t>0. For b = 1, then the transition

function define as in exemple (1.1.1) is Ttf(x) = f(x+ t).

(3.1.2) Bernstein functions of special interest are the fractional powers, defined for

any α ∈ [0, 1] by fα(x) = xα, that is

xα =
α

Γ(1− α)

∫ ∞
0

(1− e−xs)s−α−1 ds, x > 0.

The corresponding convolution semigroup of the fractional powers is called the one-

sided stable semigroup of order α, denoted by (ηαt )t>0. For α = 0 we find η0
t = e−αtδ0,

and for α = 1 is follows that η1
t = δt.

Subordinator associated with a convolution semigroup on the real line. We

may interpret the convolution semigroup (µt)t>0 as the transition function of a positive

real-valued stationary stochastic process (ξt)t>0 with independent nonnegative incre-

ments. Since µ0 = δ0 and since the measures µt are supported on [0,∞), we have

almost surely ξ0 = 0 and almost surely increasing paths t 7−→ ξt. The converse as-

sertion is also true: every such process defines (uniquely) a convolution semigroup of

sub-probability measures on [0,∞]. We call (ξt)t>0 the subordinator induced by (µt)t>0.

3.2 Subordination in the sense of Bochner of the

C0-semigroups and resolvents of kernels

In the sequel we fix a transition function P = (Pt)t>0 on (E,B) and a convolution

semigroup (µt)t>0 on R∗+.

For each t > 0 we define the kernel P µ
t on (E,B) by

P µ
t f :=

∫ ∞
0

Psfµt(ds) for all f ∈ bpB.

The next proposition collects some basic properties of the subordination of the

semigroups of kernels; we follow the approach of [27], Ch. V, Section 3, and for the

reader convenience we also present the proof.

Proposition 3.2.1. The family Pµ = (P µ
t )t>0 is a sub-Markovian semigroup of kernels

on (E,B) and E(P) ⊂ E(Pµ).
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Proof. Since for all t1, t2 > 0, and f ∈ bpB we have

P µ
t1P

µ
t2f =

∫ ∞
0

Ps1(P
µ
t2f)µt1(ds1) =

∫ ∞
0

(∫ ∞
0

Ps1(Ps2f)µt2(ds2)

)
µt1(ds1) =

∫ ∞
0

∫ ∞
0

Ps1+s2fµt2(ds2)µt1(ds1) =

∫ ∞
0

Psf(µt1 ∗ µt2)(ds) =

∫ ∞
0

Psfµt1+t2(ds) = P µ
t1+t2f,

it follows that the family of kernels Pµ = (P µ
t )t>0 is indeed a semigroup.

If u ∈ pB is P-supermedian (i.e., Psu 6 u for each s > 0 then P µ
t u =

∫∞
0
Psuµt(ds) ≤∫∞

0
uµt(ds) = uµt(1) = u. Hence the function u is Pµ-supermedian too. In particular,

taking u = 1, we get that P µ
t is a sub-Markovian kernel for each t > 0.

We prove now that

E(P) ⊂ E(Pµ).

Fix u ∈ E(P). Then we already observed that P µ
t u 6 u for every t > 0. Let x ∈ E, a <

u(x) and 0 < b < 1. Then there exist s0 > 0 and t0 > 0 such that Psu(x) > a for every

0 < s < s0 and µt0(]0, s0[) > b, hence P µ
t0u(x) >

∫ s0
0
Psu(x)µt0( ds) > ab. This implies

that u ∈ E(Pµ).

The semigroup Pµ = (P µ
t )t>0 is called the sub-Markovian semigroup subordinated

to P = (Pt)t>0 by means of (µt)t>0.

Subordination of infinitesimal operators. Let (A,D(A)) be the infinitesimal gen-

erator of a C0-contraction semigroup (Pt)t≥0 on a Banach space B; formally we have

Pt = etA. Let further (P µ
t )t≥0 be the subordinate of (Pt)t≥0 in the sense of Bochner

(by means of (µt)t>0), and let (Af ,D(Af )) be the infinitesimal generator of (P µ
t )t≥0,

called the subordinate generator. Hence again formally etA
f

= P µ
t =

∫∞
0
esAµt( ds) and

comparing with (3.1.1) we deduce that

−Af = f(−A),

(see also [90]).

(3.2.1) If we take A = ∆ (i.e., A is the generator of the Gaussian semigroup) and the

Bernstein function f(x) = x1/2, x ∈ R (this is possible, according with (3.1.2)), then

−(−∆)1/2 is obtain from the ∆ by subordination. So, the subordination in the sense of

Bochner is a convenient way to obtain the fractional powers of the Laplace operator.

Let P = (Pt)t>0 be a measurable sub-markovian semigroup on (E,B). If µt =

e−αtδt, t > 0, for some α > 0, then Pµ = (Pt)
α
t>0, where Pα

t = e−αtPt, t > 0.



60 3 Subordination in the sense of Bochner and associated Markov processes

We recall that if (Pt)t>0 is the C0-semigroup on Lp(E,m) induced by the tran-

sition function of X = (Xt)t>0 (where m is a σ-finite Pt-subinvariant measure, i.e.,∫
E
Ptf dm 6

∫
E
f dm for all f ∈ Lp+(E,m) and t > 0), then the transition function of

the subordinate process Xξ = (Xξ
t )t>0 is (P µ

t )t>0. A converse of this statement is the

main result of this chapter.

Let (Vα)α>0 be the (sub-Markovian) strongly continuous resolvent of contractions

on Lp(E,m) induced by (Pt)t>0,

Vα =

∫ ∞
0

e−αtPt dt, α > 0.

Subordination by convolution semigroups. For a familiy G of real valued func-

tions on E we denote by bG the subfamily of bounded functions from G.

Recall that a family µ = (µt)t>0 of measures on R+ is called a (vaguely continuous)

convolution semigroup on R+ if for all s, t > 0 one has

µs ∗ µt = µs+t , µt(R+) 6 1, and lim
t→0

µt = µ0 := δ0 (vaguely) .

Let Uµ = (Uµ
α )α>0 be the resolvent of the subordinate semigroup Tµ = (T µt )t>0.

Let L : Exc(U)×E(U) −→ R+ be the energy functional (associated with U) defined

as

L(η, v) := sup{µ(v) : Pot(U) 3 µ ◦ U 6 η}

for all η ∈ Exc(U) and v ∈ E(U); where µ(v) :=
∫
E
v dµ. The energy functional

associated with Uµq , q > 0, will be denoted by Lµq .

Lemma 3.2.2. Let η, ν ◦Uµ
q be two Uµq -excessive measures with η 6 ν ◦Uµ

q and suppose

that the measure ν ◦ U is σ-finite. Define the positive measure η′ on (E,B) as

η′(f) := Lµq (η, Uf), f ∈ bpB.

Then the measure η′ is U-excessive.

Proof. If α > 0 then η′ ◦ αUα(f) = Lµq (η, αUαUf) 6 Lµq (η, Uf) = η′(f). We show now

that η′ is a σ-finite measure. If f0 ∈ bpB, f0 > 0, is such that ν(Uf0) < ∞, then

η′(f0) =Lµq (η, Uf0) 6Lµq (ν ◦ Uµ
q , Uf0) =ν(Uf0) < ∞. Hence the measure η′ is σ-finite

and we conclude that it is U -excessive. �

Proposition 3.2.3. Assume that the resolvent U is proper and that all the points of E

are nonbranch points with respect to U . Then the same property holds for the resolvent

Uµq , q > 0.
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Proof. By (1.1.9) we have to show that conditions (UC) and (SSP ) are verified by the

resolvent Uµq . Let ν1 and ν2 be two positive finite measures on E such that ν1 ◦ Uµ
q =

ν2 ◦ Uµ
q . Using Hunt’s approximation theorem (see e.g. Theorem 1.2.8 from [13]), we

have ν1(v) = ν2(v) for all v ∈ E(Uµq ) and because E(U) ⊂ E(Uµ) ⊂ E(Uµq ), we get

ν1(v) = ν2(v) for all v ∈ E(U). In particular, we have ν1(Uf) = ν2(Uf) for all f ∈ pB,

hence ν1 ◦ U = ν2 ◦ U . Since by hypothesis all the points of E are nonbranch points

with respect to U , by (1.1.9) it follows that the uniqueness of charges property (UC)

holds for U , hence ν1 = ν2 and we conclude that (UC) also holds for Uµq .

We check now that the specific solidity of potentials property (SSP ) holds with

respect to Uµq . Let η1, η2, and ν ◦ Uµ
q be Uµq -excessive measures such that

(3.2.2) η1 + η2 = ν ◦ Uµ
q .

We may assume that ν is a finite measure, consequently the measures η1 and η2 are

also finite. We define the positive measures η′1 and η′2 on E as

η′1(f) := Lµq (η1, Uf), η′2(f) := Lµq (η2, Uf) for all f ∈ bpB.

By Lemma 3.2.2 the measures η′1 and η′2 are U -excessive and using (3.2.2) we have for

every f ∈ bpB

η′1(f) + η′2(f) = Lµq (η1, Uf) + Lµq (η2, Uf) = Lµq (ν ◦ Uµ
q , Uf) = ν(Uf).

We obtain the following equality of U -excessive measures: η′1 + η′2 = ν ◦ U. Since by

hypothesis the property (SSP ) holds for U , we deduce from the last equality that there

exists a measure λ on E such that η′1 = λ ◦ U . Hence for all f ∈ bpB

Lµq (η1, Uf) = η′1(f) = λ(Uf) = Lµq (λ ◦ Uµ
q , Uf).

In particular, taking f = Uµ
q g, with g ∈ bpB, and since UUµ

q = Uµ
q U , it follows that

η1(Ug) = Lµq (η1, UU
µ
q g) = Lµq (λ ◦ Uµ

q , U
µ
q Ug) = λ ◦ Uµ

q (Ug) for all g ∈ bpB.

Note that in addition we have η1(Ug) 6 ν(Uµ
q Ug) 6 1

q
ν(Ug). In particular, the mea-

sures η1 ◦ U and (λ ◦ Uµ
q ) ◦ U are σ-finite and equal. By the uniqueness of charges

property (UC) for the resolvent U we conclude that η1 = λ ◦ Uµ
q , so, the property

(SSP ) holds with respect to Uµq . �

3.3 Subordination of right processes

Theorem 3.3.1. Assume that E is a Lusin topological space with B as Borel σ-algebra

and let T = (Tt)t>0 be the transition function of a transient (Borel) right process with
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state space E. Then the subordinate semigroup Tµ = (T µt )t>0 is also the transition

function of a (Borel) right process with state space the topological space E.

Proof. By Proposition 3.2.3 all the points of E are nonbranch points with respect to

Uµq . Since E(U) ⊂ E(Uµ) ⊂ E(Uµq ) we get that any natural topology with respect to U
is also natural with respect to Uµ.

We show that (NSP ) holds for Uµq , i.e., if η, ν ◦ Uµ
q ∈ Exc(Uµq ) and η 6 ν ◦ Uµ

q

then there exists a measure λ such that η = λ ◦ Uµ
q . Indeed, we may suppose that the

measure ν is finite and by Lemma 3.2.2 the measure η′ belongs to Exc(U) and we have

for all f ∈ bpB
η′(f) = Lµq (η, Uf) 6 Lµq (ν ◦ Uq, Uf) = ν(Uf).

Since U is the resolvent of a right process and η′ 6 ν ◦U, by Remark 1.3.1 there exists a

measure λ such that η′ = λ◦U. Reasoning as in the last part of the proof of Proposition

3.2.3, we conclude that η = λ ◦ Uµ
q .

By Proposition 3.2.3 and the implication (1.3.1a) =⇒ (1.3.1c) from (1.3.1) applied

to the resolvent Uµ, there exists a right process with state space E, having Uµ as as-

sociated resolvent. From Proposition 1.3.2 we conclude that the transition function of

this process is precisely Tµ = (T µt )t>0. �

Remark. In [22] it is derived the existence of a right process with càdlàg trajectories,

having Tµ as transition function, as an application of a result about the preservation

of the path regularity of a process by certain transformations. A main argument in

that approach is the relation between the càdlàg property of the trajectories and the

existence of a nest of compact sets (cf. [14] and [13]), or equivalently, the existence of

an excessive functions having compact level sets (a so called compact Lyapunov func-

tion); see [15] and [22] for further developments and applications.

Let X = (Ω,F ,Ft, Xt, θt, P
x) be a (Borel) right process with state space E and

(ξt)t>0 be the subordinator with path space Ω′ (and state space R+) induced by µ =

(µt)t>0. For each t > 0 define the subordinate process Xξ = (Xξ
t )t≥0 as

Xξ
t (ω, ω′) := Xξt(ω′)(ω) for all (ω, ω′) ∈ Ω× Ω′ and t > 0.

For a detailed discussion about the the appropriate probability space structure and

filtration of Ω×Ω′ see Section 8 in the pioneering article of E. Nelson [79]; see also [31]

for a different approach.

Corollary 3.3.2. Let X = (Ω,F ,Ft, Xt, θt, P
x) be a (Borel) right process with state

space the Lusin topological space E and transition function T = (Tt)t>0 and let ξ =
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(ξt)t>0 be the subordinator induced by µ = (µt)t>0. Then the subordinate process Xξ =

(Xξ
t )t≥0 is a right process with state space E and transition function Tµ = (T µt )t>0.

Proof. By Theorem 5 from [79] it follows that Xξ = (Xξ
t )t≥0 is a Markov process with

transition function Tµ = (T µt )t>0. For the reader’s convenience we check here that the

transition function of Xξ is indeed Tµ: if P ′0 is the probability on Ω′ corresponding to

ξ0 = 0, with the notations from [79] we have for all t > 0 and f ∈ bpB

T µt f(x) =

∫ ∞
0

Tsf(x)µt( ds) =

∫ ∞
0

Ex[f(Xs)]µt( ds)∫
Ω′

(∫
Ω

f(Xξt(ω′)(ω))P x( dω)

)
P ′0( dω′) = P x·P ′0(f(Xξ

t )).

Clearly t 7−→ Xξ
t is right continuous and therefore Xξ is a right continuous realization

of the semigroup Tµ. On the other hand Theorem 3.3.1 implies that Tµ has a right

continuous realization which is a right process and note that by [13], Section 1.7, the

Uµq -excessive functions are nearly Borel. From Theorem (19.3) in [91] we conclude that

Xξ = (Xξ
t )t≥0 is also a right process. �

3.4 Markov processes associated with subordinate

Lp-semigroups

Let (Vα)α>0 be the (sub-Markovian) strongly continuous resolvent of contractions on

Lp(E,m) induced by (Pt)t>0,

Vα =

∫ ∞
0

e−αtPt dt, α > 0.

Theorem 3.4.1. Let p ∈ [1,∞) and (Pt)t>0 be a C0-semigroup of sub-Markovian

contractions on Lp(E,m), where (E,B) is a Lusin measurable space and m is a σ-

finite measure on (E,B). Assume that m is a Pt-subinvariant measure and

(∗) there exists f ∈ Lp(E,m), f > 0, such that Vαf 6 1 for all α > 0.

Let further µ = (µt)t>0 be a convolution semigroup on R+.

Then there exist a Lusin topological space E1 with E ⊂ E1, E ∈ B1 (the σ-algebra

of all Borel subsets of E1), B = B1|E, and a (Borel) right process X with state space

E1 such that the transition functions of X and of the subordinate process Xξ, regarded

as families of operators on Lp(E1,m1), coincide with (Pt)t>0 and the subordinate semi-

group of operators (P µ
t )t>0 respectively,

P µ
t u = E·[u(Xξ

t )], t > 0, u ∈ Lp(E,m),
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where m1 is the measure on (E1,B1) extending m with zero on E1 \ E.

Proof. By Theorem 2.2 from [16] (see also Remark 3.4.2 below) there exist a Lusin

topological space E1 with E ⊂ E1, E ∈ B1, B = B1|E, and a right process X with state

space E1, such that its resolvent of kernels U = (Uα)α>0, regarded on Lp(E1,m1), coin-

cides with (Vα)α>0 (the resolvent of operators induced by (Pt)t>o). Since by hypothesis

m is Pt-subinvariant, the measure m1 on E1 is U -excessive; recall that m1 is the mea-

sure on (E1,B1) extending m with zero on E1 \ E. In addition, from (∗) there exists

f ∈ pB1, f > 0, such that Uf <∞ m-a.e., where U is the initial kernel of U . By [16],

Proposition A1 (the implication 4) =⇒ 1)), the measure m is dissipative. Therefore

we can apply Proposition 1.4 from [16] to deduce that the process X is transient.

Let T = (Tt)t>0 be the transition function of the right process X. If f ∈ pB1

then
∫
Ttf dm1 6

∫
f dm1 and so, Ttf = 0 m1-a.e., provided that f = 0 m1-a.e. It

follows that Tt becomes a linear contraction on both spaces L∞(E1,m1) and L1(E1,m1).

Consequently, Tt induces a contraction on Lp(E1,m1) for all p ∈ [1,∞) and one can

see that (Tt)t>0 is a C0-semigroup of sub-Markovian contractions on Lp(E1,m1). We

derive that, regarded as a family of operators on Lp(E1,m1), (Tt)t>0 coincides with

(Pt)t>0 (having the same resolvent).

By Corollary 3.3.2 the subordinate process Xξ is also a right process with state

space E1 and Tµ = (T µt )t>0 is its transition function. Note that m1 is an excessive

measure with respect to Tµ = (T µt )t>0. As before, (T µt )t>0 becomes a C0-semigroup of

sub-Markovian contractions on Lp(E1,m1). Let (P µ
t )t>0 be the semigroup of operators

on Lp(E,m) obtained from (Pt)t>0 by subordination with µ. If f ∈ Lp(E1,m1) and

g ∈ Lp′(E1,m1), where 1
p

+ 1
p′

= 1, then by the properties of the Bochner integral and

using Fubini Theorem,∫
E1

gP µ
t f dm1 =

∫
E1

g(x)

∫ ∞
0

Psf(x)µt( ds) m1( dx) =

∫ ∞
0

µt( ds)

∫
E1

g(x)Tsf(x) m1( dx) =∫
E1

g(x)

∫ ∞
0

Tsf(x)µt( ds)m1( dx) =

∫
E1

gT µt f dm1.

We conclude that T µt and P µ
t coincide for each t > 0, regarded as operators on

Lp(E1,m1) and the proof is complete.

Remark 3.4.2. We present some details about the construction of the larger space E1

from Theorem 3.4.1; we follow the proof of Theorem 2.2 from [16].

(i) For each α > 0 we consider a kernel V α on (E,B) such that Vα and V α coincide as
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operators on Lp(E,m).

(ii) Using a ”trivial modification” procedure (see also Subsection 3.2 from [22]), there

exists a sub-Markovian resolvent of kernels U ′ = (U ′α)α>0 on (E,B) such that (1.1.8)

holds for U ′q, all the points of E are nonbranch points with respect to U ′q for some q > 0,

and V αf = U ′αf m-a.e. for all f ∈ pB and α > 0.

(iii) Let E1 be the set of all extreme points of the set {η ∈ Exc(U ′q) : Lq(η, 1) = 1},
endowed with the σ-algebra B1 generated by the functionals ũ, ũ(η) := Lq(η, u) for all

η ∈ Exc(U ′q) and u ∈ E(U ′q).; here Lq denotes the energy functional associated with U ′q.
(iv) It turns out that (E1,B1) is a Lusin measurable space, the map x 7−→ εx ◦ U ′β
identifies E with a subset of E1, E ∈ B1, B = B1|E and there exists a sub-Markovian

resolvent of kernels U = (Uα)α>0 on (E1,B1) such that (1.3.1a) holds for Uq on E1 and

U ′ is the restriction of U to E, i.e., Uαf |E = U ′α(f |E) for all f ∈ pB1 and α > 0. Note

that by (1.3.1) U is the resolvent of a right process with state space E1.

The martingale problem

Corollary 3.4.3. Under the assumptions of Theorem 3.4.1, let (Lµ, D(Lµ)) be the in-

finitesimal generator of the semigroup (P µ
t )t≥0, the subordinate in the sense of Bochner

on Lp(E,m) of the C0-semigroup (Pt)t≥0. Let further η be a probability measure on

(E,B) having density with respect to m, dη
dm
∈ Lp

′

+(E,m), where 1
p

+ 1
p′

= 1, and

consider the probability P η of the subordinate process Xξ with the initial distribution η.

Then for every u ∈ D(Lµ) the process

u(Xξ
t )−

∫ t

0

Lµu(Xξ
s ) ds, t ≥ 0,

is a martingale under P η with respect to the filtration of Xξ.

Proof. The assertion follows from [15], Proposition 1.4, applied on the larger space E1,

the state space of the subordinate process Xξ given by Theorem 3.4.1.

A second consequence of Theorem 3.4.1 is the validity of the quasi continuity prop-

erty for the elements of a dense subspace of the domain D(Lµ) of the subordinate

semigroup (P µ
t )t>0, with respect to the capacity on E1 associated with the process

X. Recall that this property is analogous to the quasi-regularity condition from the

Dirichlet forms theory (cf. [73]); the role of the capacity induced by the energy is

played in this Lp frame by the capacity associated to the process. The precise result is

the following corollary.

Corollary 3.4.4. There exists a subspace D of the Lp domain D(Lµ) of the infinites-

imal generator of the subordinate semigroup (P µ
t )t≥0, which is dense in Lp(E,m) and
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such that every element of D possesses a quasi continuous version with respect to the

capacity associated with the right process X on E1 and any finite measure on E.

Proof. We present first the suitable capacity of the transient Markov process X on E1.

Let M ∈ B1 and PTM be the associated hitting kernel,

PTMf(x) = Ex(f ◦XTM ; TM <∞) , x ∈ E, f ∈ pB1,

where TM(ω) := inf
{
t > 0 : Xt(ω) ∈ M

}
, ω ∈ Ω. Fix p := Uf0, with 0 < f0 6 1,

f0 ∈ pB1, and let λ be a finite measure on (E,B). Then the functional M 7−→ cλ(M),

M ⊂ E1, defined as

cλ(M) := inf
{∫

PTGp dλ : M ⊂ G open
}
,

is a Choquet capacity on E1 (see e.g. [13]).

Let β > 0 and set D := Uµ
βUβ(Lp(E1,m1)). Since Uµ

βUα = UαU
µ
β for all α, β > 0, we

get D ⊂ D(L)∩D(Lµ). Because (Uα)α>0 and (Uµ
α )α>0 are C0-resolvents of contractions

on Lp(E1,m1), we deduce that D is dense in Lp(E1,m1). The claimed assertion follows

now because by Proposition 3.2.6 from [13] if f ∈ pB1∩Lp(E1,m1), then Uβf is cλ-quasi

continuous.

Remark. The subordinate of a Lévy process on Rd is a Lévy proces too. Consequently,

the methods developed by [26] for the simulation of the Lévy processes using Monte

Carlo method is also applicable to the process obtained after introducing jumps by the

Bochner subordination in the evolution of a given Lévy process.



Part II

Deterministic approach of the

shallow avalanche onset
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Introduction to Part II

An important issue in geophysics is the understanding of the phenomena related to

shallow avalanche of soils, snow or other geomaterials ([2, 85]). The real problem

is three dimensional and the mathematical and numerical modeling is very complex.

For that, reduced 2-D models (called also Saint-Venant models) are introduced (see

[6, 8, 9, 88, 89, 97, 74, 75]) to capture the principal features of the flow.

Figure 3.1: A snow avalanche flow.

Natural avalanches and debris flows are often associated with complicated mountain

topologies, which makes the prediction very difficult (see Figure 3.1). For that, a lot

of studies include the bottom curvature effect into the classical Saint-Venant equations

to describe channelized flows along talwegs [45, 98, 86, 97] (see also the review [87]) or

flows on more general basal geometries [64, 29, 30]. Very recently, the model obtained

in [55] for plane slopes, was extended in [56] to the case of a general basal topography

by using a local base given by the bottom geometry and the associated differential

operators.
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The first goal of the second part of the thesis is to show that the model obtained

in [56] can describe also the avalanche onset of a flow. We introduce here a simple

criterion, which relates the yield limit (material resistance) to the external forces dis-

tribution, able to distinguish if an avalanche occurs or not. This criterion is related

with the maximum of the loading parameter such that the fluid/solid can withstand

without collapsing. The safety factor is the solution of an global optimization problem,

called limit load analysis. The velocity field, solution of this optimization problem, is

called the collapse flow or onset velocity field.

Figure 3.2: The onset of a snow avalanche as a fracture process.

In many applications, the strains are localized on some surfaces where the velocity

of the collapse flow exhibits discontinuities (see Figure 3.2). From mathematical and

numerical points of view, the avalanche onset modeling was and remains a difficult

problem. The second objective is to prove the existence of an onset velocity field in an

appropriate functional space. Since the functional involved in the global optimization

is non-smooth, and non coercive in classical Sobolev spaces, we have to consider it

in the space of bounded tangential deformation functions (i.e., the space of velocities

which have their tangential rate of deformation in the space of bounded measures),

similar to the space introduced in [94, 96].

The third objective is to propose a numerical strategy to solve the limit load prob-

lem and to get the onset flow field of the avalanche. The numerical solutions methods in

limit analysis are based on the discretization of the kinematic or static variational prin-

ciples (established in [38]) using the finite element method technics and the convex and

linear programming. Despite great progress in the last decades (X-FEM, re-meshing
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techniques), the finite element method remains associated to continous fields and it

is not so well adapted for modeling strain localization and velocities discontinuities

on unknown surfaces. For that, we will adapt here the discontinuous velocity domain

splitting (DVDS) method, introduced in [60]. DVDS is a mesh free method which does

not use a finite element discretization of the solid. It focuses on the strain localization

and completely neglect the bulk deformations. The limit load problem is thus reduced

to the minimization of a shape-dependent functional (plastic dissipation power). The

avalanche collapse flow velocity field, which is discontinuous, is associated to an opti-

mum sub-domain and a rigid flow. It has localized deformations only, at the boundary

of the sub-domain.

The main novelty of this part consists in finding the appropriate functional space

of the limit load problem, in obtaining an existence result for the onset velocity field.

The specific Stokes formula are proved, the variational formulation of the velocity field

by using the tangential plane Stokes formula associated to these operators, and the set

of tangential rigid velocities are deduced. As far as we know, the use of a mesh free

technique (DVDS) for a numerical approach of the shallow avalanche onset problem is

also new. All the new results of this part can be found in [58, 59].

This part is organized as follows: In Chapter 4 we present the 3-D dimensional

mechanical problem and we discuss the choice of the visco-plastic model adopted here.

In Chapter 5 we introduce the shallow flow problem. Firstly, we give a geometrical

description of the bottom surface and the expressions of the differential operators acting

in the tangential plane. We prove here specific Stokes formula and we deduce the set of

tangential rigid velocities. We recall from [56] the boundary-value problem for the visco-

plastic Saint-Venant model with topography formulated on the local base associated

to the bottom surface. Finaly, we give the variational formulation of the velocity field

by using the tangential plane Stokes formula associated to these operators.

Chapter 6 is devoted to the mathematical approach of the limit load problem ob-

tained from the variational formulation, described before. We introduce a global opti-

mization problem (called the limit load analysis or safety factor problem) on classical

Sobolev spaces to study the link between the yield limit, the external forces and the

thickness distributions for which the shallow flow of a visco-plastic fluid does, or does

not occur. Then, we consider the same optimization problem in the space of bounded

tangential deformation functions. The boundary conditions, expressed for smooth func-

tions have to be relaxed for non-smooth velocity fields considered in this new functional

framework. For that, we have to add some additional boundary integrals on the plastic

dissipation functionals and external forces power. In these integrals, which are mod-

eling a discontinuity of a non-smooth velocity field located at boundary, we have to

define the tangential normal on a bottom boundary. We prove that the above relax-
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ation of the boundary conditions does not change the initial optimization problem. At

the end of this chapter we prove that the reformulated safety factor problem has at

least a solution, modeling the avalanche onset. For that, we have to study coercivity

properties of the plastic dissipation functional and to describe the kernel of the tangen-

tial deformation operator by using the space of tangential rigid velocities introduced

before.

In Chapter 7 we adapted the DVDS numerical technique ([60]) to solve the safety

factor problem. This last problem is reduced to a shape optimization problem. The

description of the subset shape is given by a level set of a Fourier function and we use

genetic algorithms to solve the resulted non convex and non-smooth global optimization

problem. We illustrate the proposed numerical approach in solving some safety factor

problems. First, we consider the case of a plane slope with a non-uniform thickness

distribution. For a circular dome geometry of a Bingham (Von-Mises plasticity) fluid

we give a comparison between our results and a dynamic finite element/finite volume

method. Then, we analyze the avalanche of a square dome of a Drucker-Prager fluid,

and the last example concerns the avalanche of a thick Bingham fluid over an obstacle.

Finally, we illustrate our technique in the case of a complex basal topography. For a

half-sphere et quarter of a sphere covered with a Bingham fluid/solid with constant

thickness distribution we compute the safety factor and the avalanche onset. In the

last example we analyze the case of a quarter of a ellipsoid filled with a Drucker-Prager

fluid/solid with a non-uniform thickness distribution.



Chapter 4

3-D mechanical modeling

In last few years, a lot of efforts in geophysics and engineering have been devoted to

the study of the physics of avalanche formation and to the flow of soils, snow or other

geomaterials. It has been recognized that the real problem is 3-D and that the behavior

of the material is best represented by visco-plastic fluid type models.

4.1 Field equations and boundary conditions

We consider here the evolution, on the time interval (0, T ), of a visco-plastic fluid/solid

occupying a domain D(t) ⊂ R3. In what follows the space and time coordinates, as

well as all mechanical fields, are non dimensional. The boundary ∂D(t) is divided into

three disjoint parts ∂D(t) = Γb(t) ∪ Γs(t) ∪ Γl(t), the bottom, the free and the lateral

boundaries (see Figure 4.1).

The notation u stands for the velocity field, σ for the (non dimensional) Cauchy

stress tensor field, p = − trace(σ)/3 for the (non dimensional) pressure and σ′ =

σ + pI3 the (non dimensional) stress deviator tensor. The momentum balance law in

the Eulerian coordinates reads

(4.1.1) ρ
(

St
∂u

∂t
+ (u · ∇)u

)
− divσ′ +∇p =

1

Fr2
ρf in D(t),

where ρ > 0 is the (non dimensional) mass density and f denotes the (non dimensional)

body forces. We have denoted by

St =
Lc
VcTc

, Fr2 =
V 2
c

Lcfc

the Strouhal and Froude numbers, where ρc, Vc, Lc, fc, Tc are the characteristic density,

velocity, length, body forces and time respectively and we have chosen the characteristic

yields stress κc = ρcV
2
c . Since we deal with an incompressible fluid, we have

(4.1.2) div u = 0 in D(t).
73
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Γs	  

Γb	  

Γl	  

Figure 4.1: 3-D representation of the domain D(t) and the partition of the boundary

∂D(t).

The fact that the fluid region is advected by the flow is expressed by

(4.1.3)
d

dt
1D(t) = St

∂1D(t)

∂t
+ u · ∇1D(t) = 0,

where 1D(t) is the characteristic function of the domain D(t).

To complete equations (4.1.1–4.1.3) with the boundary conditions let n be the

outward unit normal on ∂D(t). We denote by σn = σn · n, un = u · n and by

σT = σn− σnn, uT = u− unn the normal and tangential parts of surface forces and

of the velocity on the boundary. On Γb(t), which corresponds to the bottom part, the

visco-plastic fluid is in contact with Coulomb friction with a rigid structure, described

by:

u · n = 0, σT = CfσnΛ
f (uT ),

 Λf (uT ) =
uT
|uT |

if |uT | 6= 0,

|Λf (uT )| ≤ 1 if |uT | = 0,

where Cf is the friction coefficient. The (unknown) boundary Γs(t) is a free surface, i.e.,

we assume a stress free condition σn = 0. We will suppose that the lateral boundary
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Γl(t), is splinted into two parts, Γ0
l (t) and Γ1

l (t), and we will consider two kinds of

boundary conditions: adherence u = 0 on Γ0
l (t) and a stress free condition σn = 0 on

Γ1
l (t). Finally, the initial conditions are given by

u(0) = u0, D(0) = D0.

4.2 The visco-plastic model

Let us begin by describing the visco-plastic fluid model used. In contrast with a classical

viscous fluid, which cannot sustain a shear stress at rest, the Cauchy stress tensor σ

of a visco-plastic fluid belongs to an admissible convex set K = {σ ∈ R3×3
S ; ||σ′|| ≤

κ(p)}, where κ = κ(p) is the yield limit. The boundary of K stands for the flow/no

flow condition. Conversely, if the stress is in K then the rate of deformation tensor

D(u) =
1

2
(∇u+∇Tu) vanishes. If the stress tensor is not in K then we deal with an

incompressible viscous flow described by the following constitutive equation:

(4.2.1)

 σ′ =
2

Re
η(‖D(u)‖, p)D(u) + κ(p)

D(u)

‖D(u)‖
if D(u) 6= 0,

‖σ′‖ ≤ κ(p) if D(u) = 0,

where η = η(‖D(u)‖, p) > 0 is the (non dimensional) viscosity (‖A‖ =: |A|/
√

2 =√
A : A/2 denotes the second invariant of the stress deviator tensor) and Re = ρcVcL/ηc

is the Reynolds number (with ηc is the characteristic viscosity). We can recast the above

equation in a different form by writing the rate of deformation D(u) as a function of

the stress deviator

(4.2.2) D(u) =
Re

2η
[F(σ)]+

σ′

‖σ′‖
,

where [ x ]+ = (|x|+ x)/2 is the positive part, and F is the yield function:

F(σ) := ‖σ′‖ − κ(p).

The expression (4.2.2) of the visco-plastic constitutive law (4.2.1) was used by Perzyna

[84] and Duvaut Lions [39] in extending inviscid plastic models to account for rate

effects (visco-plastic regularization method).

Note that the state of stress, σ′, is represented as the sum of a viscous contribution

σV = 2η(‖D‖, p)D (rate dependent) and a contribution S = κ(p)
D

‖D‖
, related to
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plastic effects (rate independent). The viscous part of the stress σV , as for a classical

viscous fluid, is continuous in D and vanishes for D = 0, i.e.,

(4.2.3) ‖D‖η(‖D‖, p)→ 0, for ‖D‖ → 0.

At difference with the viscous contribution σV , the plastic part S is not continuous in

D and S does not vanish for D = 0. For D 6= 0 we get ‖σ′‖ = ‖D‖η(‖D‖, p)+κ(p) >

κ(p) and since (4.2.3) holds we obtain a continuous transition between flow and no-flow

states (i.e., the flow rule and the non flow condition are compatible).

For κ(p) ≡ 0 the plastic effects are vanishing and (4.2.1) reduces to a viscous fluid

model. If η is independent of ‖D‖ and p, (4.2.1) reduces to the incompressible Navier-

Stokes model but other choices can also be considered (Prandtl-Eyring, Norton, etc).
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Figure 4.2: The 3-D flow/no flow condition (||σ′|| = κ(p)) represented in the space

of principal stresses O(−σ1)(−σ2)(−σ3) and the intersection with the deviatoric plane

σ1 +σ2 +σ3 = 0. Left: Von-Mises model (κ0 = 1, µ = 0). Right: Drucker-Prager model

(κ0 = 1, µ = 0.2).

The Von-Mises plasticity criterion (see Figure 4.2 left):

κ(p) ≡ κ0 > 0

was introduced to describe the plasticity of metals. If η is independent of ‖D‖ and p the

constitutive equation (4.2.1) recover the classical Bingham fluid model (see [25]), used

for many fluids with a solid like behavior (for instance soils or sediments in oil drilling

processes). This model, also denominated “Bingham solid” (see for instance [80]) was

also considered to describe the (high rate) deformation of many solid materials having

a fluid like behavior.
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The plasticity (flow/no flow) criterion

κ(p) = κ0 + µp

(see Figure 4.2 right) is called the Drucker-Prager model (see [37]). This yielding

criterion was constructed as a simplification of Mohr-Coulomb plasticity: τmax(σ
′) ≤

C + p tan(φ) where τmax(σ
′) is the Mohr-Coulomb tangential stress, C is the cohesion

and φ is the angle of internal friction. The fact that the Mohr-Coulomb criterion is

expressed in terms of the eigenvalues σ3 ≤ σ2 ≤ σ1 of the stress tensor σ through

σ1 − σ3 + (σ1 + σ3) sin(φ) ≤ 2C cos(φ), makes it very difficult to handle numerically.

This is not the case for Drucker-Prager yield condition: ‖σ′‖ ≤ κ0 +µp which involves

the norm of the stress deviator tensor. The correspondence between the constitutive

coefficients κ0 and µ of the Drucker-Prager model and the coefficients of the Mohr-

Coulomb model is not simple to establish. The usual choice is κ0 = C cos(φ), µ =

tan(φ), but other choices can be found if one choose to reproduce different experimental

settings. For the non-associate incompressible flow we can consider µ = sin(φ) in the

in-plane case and µ = 6 sin(φ)/(
√

3(3 − sin(φ)) for the triaxial compression (see for

instance in [77]). For constant viscosity η (not depending on ‖D‖ and p) we refer to

the model as the ”Drucker-Prager fluid”. With an appropriate choice of the viscosity η

the constitutive law (4.2.1) recovers the model proposed by Jop, Forterre and Pouliquen

[44] for granular materials.



78 4 3-D mechanical modeling



Chapter 5

The shallow flow problem

Since the numerical integration of the three dimensional equations of visco-plastic fluids

is very complex and poses many challenges, reduced 2-D models, called also Saint-

Venant models, are generally considered. Such models are able to capture the principal

features of the flow: onset, dynamic propagation and arrest.

When the fluid is relatively shallow and spreads slowly, lubrication-style asymp-

totic approximations can be used to build reduced models for the spreading dynamics

of visco-plastic fluids. For two-dimensional (sheet) flow lubrication models were intro-

duced by Liu and Mei [68, 69] and applied to problems of mud flow, while Balmforth

et al. [6] considered the axisymmetric version of the problem to model the extrusion of

lava domes. The lubrication model has been successfully extended to three dimensions

in [7] and used thereafter in [8, 9]. Other model, which considers the same adherence

conditions on the bottom as the lubrication models, was recently obtained in [42].

When the movement is faster, shallow water theory for non-viscous flows may be

used in conjunction with Coulomb frictional type boundary condition at the bottom.

A depth integrated theory, obeying a Mohr-Coulomb type yield criterion, was intro-

duced by Savage and Hutter [88, 89] and developed thereafter by many authors (see

for instance [97, 74, 75]). These models takes into account the frictional dissipation

between the flowing layers parallel to the basal plane through an anisotropy factor

which depends on the friction angles. The importance of this anisotropy factor is still

an open question and an accurate derivation of the equations is still lacking (see e.g.

[83]).

A large number of complex fluids exhibit an effective slip between the fluid and

the wall. As it has been noted in [9], if slip becomes sufficiently severe, the flow can

become relatively plug-like across the film thickness. Then, the shear stresses, which

are dominant in the lubrication models become small, while the extensional and in-

plane shear stress becomes important. This is the case when dealing with free liquid
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threads and films [81], ice shelves and streams [72] or snow avalanches. This situation

demands a different depth integrated theory, obtained in [55] for fluids with a Drucker-

Prager type yield criterion (which includes the Bingham model) flowing down inclined

planes and extended in [56] to the case of a general basal topography.

5.1 Geometrical description of the bottom surface

Coordinates associated to the bottom surface. To describe the shallow flow of a

visco-plastic fluid/solid we shall use a system of coordinates adapted to the geometry

of the flow. Let us describe first the bottom surface Sb (see Figure 5.1), given through a

general parametric representation by rb(x1, x2) = B1(x)c1 +B2(x)c2 +B3(x)c3, where

x = (x1, x2) are the parametric coordinates belonging to a two dimensional domain

Ω ⊂ R2 and {c1, c2, c3} is the Cartesian basis with the vertical in the c3 direction.

Note that, in general, x = (x1, x2) are not physical coordinates.

c1 

c3 c2 

e3 

b1 

b2 

e3 

z 

b2 

b1 Πb	


Sb 

Ω	


x1 

x2 

rb(x1,x2) 

Figure 5.1: 3-D representation bottom surface Sb, described through a parametric

representation by rb(x1, x2).

Let Πb = Πb(x) be the two dimensional vectorial space tangent to the bottom

surface Sb. We denote by

b1(x) =
∂rb
∂x1

(x), b2(x) =
∂rb
∂x2

(x)
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the covariant basic vectors and by g11 = |b1|2, g22 = |b2|2, g12 = b1 · b2, the covariant

fundamental magnitudes of the first order. Le Πb = Πb(x) be the two dimensional

vectorial space tangent to the bottom surface Sb (i.e., Πb(x) := Sp{b1(x), b2(x)}). We

denote by L1, L2 the Lamé coefficients and by g the element of area in the tangent

plane

L1(x) =
√
g11, L2(x) =

√
g22, g(x) =

√
g11g22 − g2

12.

We denote also by e1, e2 the covariant physical basis and by e3 the unit normal vector

on Sb:
e1 =

1

L1

b1, e2 =
1

L2

b2, e3 =
b1 ∧ b2

g
.

To introduce the contravariant tangent basis, denoted by b1, b2, and the contravariant

fundamental magnitudes of the first order

g11 = |b1|2 =
g22

g2
, g22 = |b2|2 =

g11

g2
, g12 = b1 · b2 = −g12

g2
.

The fundamental magnitudes of the second order are given by

k11 =
∂2rb
∂x2

1

· e3, k22 =
∂2rb
∂x2

2

· e3, k12 = k21 =
∂2rb
∂x1∂x2

· e3.

which define the curvature tensor k:

k = kijb
i ⊗ bj = kijbi ⊗ bj = kijbi ⊗ bj,

with summation on i and j from 1 to 2.

Differential operators in the bottom tangent plane. We recall the formula

associated to the differential operators in the tangent plane.

For a scalar field acting on Sb and given through φ : Ω→ R the tangential gradient

∇Tφ is given by

∇Tφ =
∂φ

∂xk
bk =

∂φ

∂xk
gkibi,

where the summation is done from 1 to 2. For a vector field acting on Sb and given

through Ψ : Ω→ Πb, with Ψ(x) = Ψi(x)bi(x) = Ψi(x)bi(x) we have

(5.1.1) ∇TΨ = (
∂Ψi

∂xk
+ΓijkΨ

j)bk⊗bi = (
∂Ψi

∂xk
−ΓjkiΨj)b

k⊗bi = gkl(
∂Ψi

∂xl
+ΓijlΨ

j)bk⊗bi

(5.1.2) DT (Ψ) =
1

2
(∇TΨ + ∇t

TΨ),
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divTΨ =
∂Ψk

∂xk
+ ΨiΓkik = gki(

∂Ψi

∂xk
−ΨjΓ

j
ki),

where the Christoffel symbols are given by Γkij =
∂2rb
∂xi∂xj

· bk. Let us also note that for

a tensor T = T ijbi ⊗ bj the trace and the norm are given by

trace(T ) = gijT
ij, |T |2 = gikgjlT

lkT ij.

Tangential normal and Stokes formula. We give here the definition of the tan-

gential normal to a boundary of a domain laying in the bottom surface and Stokes

formula associated to the tangential plane operators.

Let define the tangential normal nT of a subdomain ωb of Sb. For that, let ω be

a subdomain of Ω such that ωb = {rb(x);x ∈ ω}. The boundary ∂ωb of ωb is defined

through a curve C = {s → rb(x1(s), x2(s))} := ∂ωb, where s → (x1(s), x2(s)) is the

parametric representation of the curve C := ∂ω ⊂ Ω̄. Here s is the curvilinear length,

i.e., the unitar tangent and normal vectors are

(τ1, τ2) =

(
dx1

ds
,
dx2

ds

)
, (n1, n2) = (−τ2, τ1).

Let nT be the intersection of NC, the normal plane on C, with the tangent plane

Πb on Sb, i.e., Sp{nT} = Πb ∩NC (see Figure 5.2). More precisely, we define

nT = nib
i = −τ2b

1 + τ1b
2.
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Figure 5.2: Reprezentation of the tangential normal nT on a curve C = ∂ωb ⊂ Sb.

For a smooth function Ψ we have the following formula

(5.1.3)

∫
ω

divT (Ψ)gdx =

∫
∂ω

Ψ · nTgdS,
∫
ω

∇TΨgdx =

∫
∂ω

Ψ⊗ nTgdS,
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(5.1.4)

∫
ω

DT (Ψ)gdx =

∫
∂ω

ET (Ψ)gdS,

where ET is given in (6.2.3). To prove these, we remark that

∂g2

∂x1

= 2g2

(
∂2rb
∂x2

1

· b1 +
∂2rb
∂x1∂x2

· b2

)
and

∂g2

∂x2

= 2g2

(
∂2rb
∂x1∂x2

· b1 +
∂2rb
∂x2

2

· b2

)
.

Using the Christoffel symbols, we obtain:

∂g2

∂x1

= 2g2Γk1k,
∂g2

∂x2

= 2g2Γk2k, and
∂g

∂xi
= gΓkik for i = 1, 2.

Taking Ψ = Ψibi we have g divT (Ψ) =
∂

∂x1

(gΨ1) +
∂

∂x2

(gΨ2), and the first formula

in (5.1.3) yields.

To prove the second formula in (5.1.3) let us remark that∫
Ω

∇TΨgdx =

∫
Ω

g
∂Ψi

∂xk
bk ⊗ bi + gΨjΓ

i
jkb

k ⊗ bidx

=

∫
Ω

∂

∂xk
(gΨib

k ⊗ bi)−Ψi
∂

∂xk
(gbk ⊗ bi) + gΨjΓ

i
jkb

k ⊗ bidx.

We multiply the last two terms of the integral with bn to the left and bm to the right

and using the Christoffel symbols we have

Ψi
∂

∂xk
(gbk⊗bi)−gΨjΓ

i
jkb

k⊗bi = g

{[
Ψmbn ·

∂bk

∂xk
+ Ψi

∂bi
∂xn
· bm

]
+ ΨmΓlnl −ΨjΓ

m
jn

}
.

Because
∂bk

∂xk
· bn = −bk · ∂bn

∂xk
= −Γknk, we obtain:

∫
Ω

∇TΨgdx =

∫
∂Ω

gΨibk ⊗ binkdS =

∫
∂Ω

gnT ⊗ΨdS.

Since gDT (Ψ) = DT (gΨ)− (∇Tg ⊗Ψ + Ψ⊗∇Tg) from (5.1.3) we get (5.1.4).

5.2 Geometrical description of the shallow flow

The system of parallel surfaces. We introduce the 3-D system of coordinates by

using a system of parallel surfaces, defined as the loci of points at constant distances

along the normals of the bottom surface Sb. The position vector r is expressed from
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the curvilinear coordinates (x, z) (here z is the coordinate representing the distance to

Sb) through

r = r(x, z) = rb(x) + ze3(x).

We use now the 3-D system of coordinates, introduced above, to describe the domain

D(t) ⊂ R3 (see Figure 5.3) occupied by the visco-plastic fluid/solid on the time interval

(0, T ) through a single scalar variable h(t, x) ≥ 0, the thickness of the fluid/solid:

D(t) = {r(x, z) ; x ∈ Ω, 0 < z < h(t, x)}.

c1 

c3 c2 

e3 

b1 

b2 

e3 

z 

z=h(x) 

b2 

b1 Πb	


Sb 

Ω	


x1 

x2 

rb(x1,x2) 

Figure 5.3: 3-D representation bottom surface Sb, described through a parametric rep-

resentation by rb(x1, x2), and of the fluid domain D(t), described through the thickness

function z = h(t, x1, x2).

Normal and tangential decomposition. We shall use the following unique decom-

positions into tangential v and normal w components of the velocity field,

u = v + we3, v · e3 = 0.

σ33 ∈ R and σ3T ∈ Πb are the normal and tangent components of the stress vector

acting on the surfaces z = const and σT ∈ Πb⊗Πb is the tangential part of the Cauchy

stress tensor acting from Πb into Πb, defined through the unique decomposition

σ = σT + σ3T ⊗ e3 + e3 ⊗ σ3T + σ33e3 ⊗ e3.

The body forces f are decomposed into the tangent and normal parts with respect to

the bottom surface:

f = fT + fNe3, fT · e3 = 0.
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The fact that region D(t) is advected by the flow (see (4.1.3)) can be written now as

(5.2.1) St
∂h

∂t
+ v · ∇Th− w = 0 for z = h(t, x).

Boundary conditions. The partition of ∂D(t) could be described as Γs(t) = {r(x, z) ; x ∈
Ω, z = h(t, x) > 0}, Γb(t) = {r(x, z) ; x ∈ Ω, z = 0, h(t, x) > 0}, Γl(t) =

{r(x, z) ; x ∈ ∂Ω, h(t, x) > z > 0}. For the sake of simplicity we will suppose that

h(t, x) > 0 for all x ∈ ∂Ω and the lateral boundary Γl(t) could be split into two parts

Γ0
l (t) = {r(x, z) ; x ∈ Γ0, h(t, x) > z > 0} and Γ1

l (t) = {r(x, z) ; x ∈ Γ1, 0 < z <

h(t, x)} following a partition of ∂Ω = Γ0 ∪Γ1. We will consider two kinds of boundary

conditions: adherence on Γ0
l (t) and non stress on Γ1

l (t).

5.3 Assumptions and conservation equations

The shallow flow assumptions. In the shallow flow approximation, ε � 1 will

be a small parameter representing the aspect ratio of the thickness. The shallow

model presented in this section was derived in [56] under the following asymptotic

assumptions: the normal components of the velocity as well as the tangential stresses

are of order of ε, i.e., :

h = O(ε), w = O(ε), σ3T = O(ε).

As a consequence of the above assumptions, the tangential component v has a

small variation with respect to the thickness variable z, i.e., v = v(t, x)+O(ε2). Other

consequences of the above scalings are the expression of the normal stress acting on

the bottom and its average on the thickness

σ33|z=0 = −ρh(kv · v − fN
Fr2

) +O(ε2), σ33 = −ρh(
1

2
kv · v − 1

Fr2

fN
2

) +O(ε2),

as a function of the tangential velocity, the bottom curvature and the normal body

forces. We denote with a the average on the thickness of any function a:

a(x) :=
1

h(x)

∫ h(x)

0

a(x, z) dz.

The shallow problem consists in finding the thickness h : [0, T ]×Ω→ R+, the tangential

velocity v : [0, T ] × Ω → Πb, and the tangential averaged stress τ : [0, T ] × Ω →
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Πb ⊗ Πb defined bellow. The tangential averaged stress τ is related to the average of

the tangential part of the Cauchy stress through

τ = σT − σ33I2,

where I2 is the identity tensor in the tangent plane.

The thickness equation. The fact that the fluid region is advected by the flow (see

(5.2.1)) is expressed by an evolution equation for the thickness function h:

(5.3.1) St
∂h

∂t
+ divT (hv) = 0.

The shallow momentum balance equation. The tangential momentum balance

equation reads (see (4.1.1))

(5.3.2) hρ
(

St
∂v

∂t
+(v ·∇T )v

)
−divT (hτ )+hρ

[
− 1

Fr2
fN + kv · v

]
+

CfΛ
f (v) =

h

Fr2
F,

where F are the ”shallow external forces”

F = ρfT + ρ
1

2h
∇T (h2fN),

with fN ,fT computed for z = 0.

5.4 The shallow constitutive law

The shallow constitutive (visco-plastic), see (4.2.1), which relates the averaged stress

τ to the rate of deformation DT (v) = 1
2
(∇Tv + ∇t

Tv) acting in the tangential plane

Πb, is

(5.4.1)
τ =

2ηshallow

Re
[divT (v)I2 +DT (v)] + κ

DT (v) + divT (v)I2√
1
2

[
|DT (v)|2 + (divTv)2

] if |DT (v)| 6= 0,

√
1

2

[
|τ |2 − 3r2

]
≤ κ if |DT (v)| = 0,

where ηshallow is the shallow viscosity deduced form the expression of the 3-D viscosity

η, which may depend on the strain rate and on the pressure.

The above equation can also be written in an inverse form. To state it, we have to

introduce the shallow yield function F shallow : R2×2
S → R, defined through:

F shallow(τ ) :=

√
1

2

[
|τ |2 − 3r2

]
− κ(r), with r = −1

3
trace(τ ),
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while the yield limit κ is the same as for the three dimensional yielding (flow/no flow)

criterion.
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Figure 5.4: The shallow flow/no flow condition (F shallow(τ ) = 0) represented in the

plane of principal plane stresses O(−τ1)(−τ2). Left: the shallow Von-Mises model

(κ̄0 = 1, µ = 0). Right: the shallow Drucker-Prager model (κ̄0 = 1, µ = 0.2).

In Figure 5.4 it is plotted the shallow flow/no flow condition (F shallow(τ ) = 0) in the

plane of the averaged principal plane stresses. The shallow yield conditions correspond

to the 3-D flow/no flow condition plotted in Figure 4.2. On the left hand side it is

plotted the shallow Von-Mises model (κ̄0 = 1, µ = 0) while the shallow Drucker-Prager

model (κ̄0 = 1, µ = 0.2) is depicted on the right hand side. Remark the fact that the

Drucker-Prager model is not symmetric with respect to the origin. Indeed, this model

have a different behavior for ”traction” or ”compression” (consolidation) processes.

The constitutive equation of the shallow rigid visco-plastic fluid (5.4.1) have now

the following expression:

(5.4.2) DT (v) =
Re

2ηshallow
[
F shallow(τ )

]
+

τ + rI2√
1
2

[
|τ |2 − 3r2

] ,
Notice that the 3-D model and the shallow model have the same structure. To see

the link between these two models one has to consider the plain stress imbedding of the
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Figure 5.5: The 3-D flow/no flow condition (||σ′|| = κ(p)) represented in the space of

principal stresses O(−σ1)(−σ2)(−σ3) and the intersection with the plane σ3 = 0. Left:

Von-Mises model (κ0 = 1, µ = 0). Right: Drucker-Prager model (κ0 = 1, µ = 0.2).

2-D stress tensors space into a 3-D stress tensors space. More precisely, τ and DT (v)

satisfy the shallow flow constitutive law (5.4.1) (or equivalently (5.4.2)) if and only

if σ and D(u) satisfy (4.2.1) (or equivalently (4.2.2)). That means that the shallow

constitutive equation is the plane stress projection of the initial (3-D) visco-plastic

model (see Figure 5.5).

5.5 Shallow rigid velocities

We study here the kernel of the tangential rate of deformation operator DT and we

introduce the set of tangential rigid velocities RT , defined as:

(5.5.1) RT =: {rT = rT ib
i ; rT i(x) = a · bi(x) + (rb(x) ∧ bi(x)) ·w, a,w ∈ R3}.

Let us prove that the tangential rigid motions defined above by (5.5.1) is the kernel

of the tangential strain rate operator DT . This space is the projection on the tangential

plane Πb of the 3-D rigid motions R =: {r = a+ x ∧w, ; a,w ∈ R3}.
For that, let rT ∈ RT and from (5.1.1) and (5.1.2) we have DT (rT ) = [DT (rT )]ijb

i⊗
bj.

[DT (rT )]ij =
1

2

(
∂rT i
∂xj

+
∂rTj
∂xi

)
− ΓlijrT l

= (a+w ∧ rb) ·
[

1

2

(
∂bi
∂xj

+
∂bj
∂xi

)
− Γlijbl

]
+

1

2
[(w ∧ bi) · bj + (w ∧ bj) · bi].
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But (w ∧ bi) · bj = −(w ∧ bj) · bi if i 6= j and

(
∂bi
∂xj

+
∂bj
∂xi

)
− Γlijbl = 0, hence

DT (rT ) = 0.

5.6 Statement of the shallow flow problem

We can formulate now the shallow flow problem of a rigid visco-plastic fluid: find the

thickness h : [0, T ] × Ω → R+, the horizontal velocity v : [0, T ] × Ω → Πb, and the

averaged stress τ : [0, T ]× Ω → Πb ⊗ Πb which satisfies the equations (5.3.1), (5.3.2),

(5.4.2), the boundary conditions

v = 0 on Γ0, and τn = 0 on Γ1,

and the initial conditions:

h(0) = h0, v(0) = v0.

Comparison with Savage and Hutter model. We summarize here the principal

features of the visco-plastic shallow flow model by comparison with Savage and Hutter

model [88, 89]. The constitutive model of Savage and Hutter deals with an incompress-

ible, inviscid fluid/solid with a cohesion-less Mohr-Coulomb plasticity (flow/no-flow)

condition, which implies a linear dependence of the yield limit with respect to the

pressure. The model used here deals with an incompressible, viscous fluid/solid with

a rather general plasticity condition for which the yield limit could have a general

dependence on the pressure. It can include Drucker-Prager and Von-Mises /Bingham

plasticity models excluded by Savage and Hutter model. Morever, with an appropriate

choice of the viscosity, the model described in this section recovers the visco-plastic

model proposed by Jop, Forterre and Pouliquen [44]. Concerning the bottom bound-

ary, both models use Coulomb frictional conditions. The bottom surface is described

by its elevation in the Savage and Hutter model, while a general parametric descrip-

tion is given here. The thickness evolution equation (5.3.1) has the same form for both

models while the shallow momentum equation is different. In the Savage and Hutter

model the frictional terms and the plastic terms of the shallow model are introduced

as external forces through ”net driving acceleration” terms and ”pressure coefficients”

terms, respectively. In contrast, in our model the resulting shallow equations have the

same structure as the three dimensional ones: the 2-D (tangent) momentum balance

law (5.3.2) is completed with a ”shallow constitutive equation” (5.4.2) which links the

projection of the averaged stresses on the tangent plane to the rate of deformations
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(expressed through the tangent differential operators). Even if the shallow flow/no flow

(yield) condition and viscosity are not the same as in the three dimensional case, the

shallow constitutive law (5.4.1), which has the same structure, can be derived from the

3-D model (4.2.1).

Shallow flow variational formulation. In what follows we need to characterize the

rest configuration, i.e., to see when h(t) ≡ h0,v(t) ≡ 0 is a solution of the shallow

problem defined above. Since (5.3.1) is trivially verified we need to see when (5.3.2)

and (5.4.2) are satisfied for v(t) ≡ 0. This cannot be done directly (the constitutive

equation (5.4.2) and the friction law are not invertible for v(t) ≡ 0). That is why, we

need a variational formulation in terms of velocities which include (5.3.2) and (5.4.2).

From the tangential momentum balance equation (5.3.2) and from the shallow rigid

visco-plastic law (5.4.2) we have deduced the following variational inequality in terms

of velocities v(t) ∈ V =: {Ψ ∈ H1(Ω)2 ; Ψ(x) ∈ Πb(x) ; Ψ = 0 on Γ0 }:

(5.6.1)

1

St

∫
Ω

hρ
∂v

∂t
· (Ψ− v)g dx+

∫
Ω

hρ(v · ∇T )v · (Ψ− v)g dx+

1

Re

∫
Ω

2ηshallowh
[
DT (v) : DT (Ψ− v) + divTvdivT (Ψ− v)

]
g dx+∫

Ω

hρ

[
− 1

Fr2
fN + kv · v

]
+

Cf (|Ψ| − |v|)g dx

+

∫
Ω

hκ
[√1

2
[|DT (Ψ)|2 + (divTΨ)2]−

√
1

2
[|DT (v)|2 + (divTv)2]

]
g dx

≥ 1

Fr2

∫
Ω

hρ
[
fT · (Ψ− v)− hfN

2
divT (Ψ− v)

]
g dx,

for all Ψ ∈ V . To obtain the above variational formulation we have used appropriate

Stokes formula for integrals over curved surfaces.



Chapter 6

The limit load problem and the

flow onset

The onset of the flow (or collapse flow field) is best studied through an idealized

mechanical model (perfectly rigid-plastic material) subjected to a slowly increasing

load, called the ”limit analysis problem” (see [33] for a complete description). The

main problem is to find the maximum multiple of the force distribution, that the

solid/fluid can be withstand without flowing (collapsing), and the associated (collapse,

onset) flow field. The final result of such an analysis is a non-dimensional number

called ”safety factor” (or ”limit load”).

6.1 Safety factor analysis problem

When modelling landslides, or snow avalanches, the fluid/solid is totally at rest (blocked)

in its natural configuration and the beginning of a flow can be seen as a ”disaster”.

In order to get the characterization of the fact the fluid is totally at rest in its initial

configuration we have to check whenever h(t) ≡ h0,v(t) ≡ 0 is a solution of (5.6.1) and

(5.3.1). If we look for v = 0 in (5.6.1) then we get the following variational inequality

(6.1.1)

∫
Ω

h0κ0

√
1

2
[|DT (Ψ)|2 + (divTΨ)2]g dx+

1

Fr2

∫
Ω

ρh0[−fN ]+Cf |Ψ|g dx

≥ 1

Fr2

∫
Ω

h0ρ
[
fT ·Ψ−

fN
2
h0divTΨ

]
g dx,

for all Ψ ∈ V , where κ0 is the distribution of the shallow yield limit in the rest

configuration.

Note that the onset variational inequality (6.1.1) has no time dependency, while the

Saint-Venant visco-plastic model described through the variational problem (5.6.1) is

91
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time dependent. Moreover, the problem (6.1.1) is rate independent which means that

the viscous effects, related to the rate dependency, will disappear in the optimization

problem modeling the avalanche onset. This fact has important mathematical con-

sequences for the regularity of the solution. As we can see in the next, the solutions of

the rigid-plastic shallow flow problem (6.1.1) have spatial discontinuities.

The above variational inequality can be written in terms of safety factor (or limit

load). To do that, we denote by φ(x, ·) : Πb(x)⊗ Πb(x)→ R+

φ(x,DT ) =:

√
1

2
[|DT |2 + (traceDT )2],

the shallow plastic strain rate potential and by

G(Ψ) =:

∫
Ω

aφ(DT (Ψ)) gdx+

∫
Ω

q|Ψ| gdx, L(Ψ) =:

∫
Ω

(c ·Ψ + bdivT (Ψ)) gdx.

the total dissipation power (plastic and frictional dissipation) and the external forces

dissipation power, where

a =: h0κ0, q =:
ρ

Fr2
[−fN ]+h0Cf , c =:

ρ

Fr2
h0fT , b =: − ρ

2Fr2
h2

0fN .

We can define the safety factor (or limit load) λ∗ as

(6.1.2) λ∗ = inf
Ψ∈V,L(Ψ)=1

G(Ψ).

and we remark that (6.1.1) is verified (i.e., the solid/fluid is at rest) if and only if the

safety factor λ∗ ≥ 1. We can formulate now the following flow/no flow criterion:

The avalanche shallow flow of the visco-plastic fluid/solid starts if and only if λ∗ < 1.

6.2 Functional framework

The plastic dissipation functional G involved in (6.1.2) is non-smooth, and non coercive

in the classical Sobolev spaces. Moreover, its expression is valid only for smooth velocity

fields from the Sobolev space V . On the other hand, fractures are modeled by velocity

fields with discontinuities and the gradient operator involved in the definition of the

rate of deformation tensor has to be understood in the sense of distributions. The

space of bounded deformation (i.e., the space of velocities which have their rate of

deformation in the space of bounded measures) was introduced in [94, 96] to handle

non-smooth velocity fields in plasticity.
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Let define now BDT (Ω), the space of bounded tangential deformations functions Ψ,

for which the tangential strain rate DT (Ψ) belongs to the space of bounded measures

M1(Ω):

BDT (Ω) =: {Ψ : Ω→ R2 ; Ψ ∈ L1(Ω)2, DT (Ψ) ∈M1(Ω)2×2}.

We assume the following regularity conditions:

rb ∈ [C2(Ω̄)]3, a, b ∈ C0(Ω̄), a(x) ≥ a0 > 0, c ∈ [L∞(Ω)]2, q ∈ L∞(Ω), q ≥ 0.

Since the fundamental magnitudes gij ∈ C1(Ω̄) and the Christoffel symbols Γkij ∈
C0(Ω̄), we get that D(Ψ) ∈ M1(Ω)2×2 if and only if DT (Ψ) ∈ M1(Ω)2×2. Hence we

can identify BD(Ω) (introduced and discussed in [76, 94, 95, 96]) with BDT (Ω), defined

above.

Since Ψ → φ(Ψ) is an equivalent norm on R2×2 and satisfies the conditions of

theorem 4.1, chapter 2 from [95], φ(Ψ) is a bounded positive measure on Ω. We can

use this to extend the functionals G and L for all Ψ ∈ BD(Ω) through the formula

G(Ψ) =

∫
Ω

a gdφ(Ψ) +

∫
Ω

q|Ψ| gdx, L(Ψ) =

∫
Ω

c ·Ψ gdx+

∫
Ω

b gddivT (Ψ).

In order to handle the velocity boundary conditions on Γ0 for non-smooth velocity

fields, we have to add some additional boundary integrals in functionals G and L. These

integrals are modeling a discontinuity surface of a non-smooth velocity field located at

the boundary Γ0. To do that we introduce

G0(Ψ) =:

∫
Γ0

1

2
a
√

[|Ψ|2 · |nT |2 + 3(Ψ · nT )2] gdS, G̃(Ψ) =: G(Ψ) +G0(Ψ),

L0(Ψ) =: −
∫

Γ0

bΨ · nT gdS, L̃(Ψ) =: L(Ψ) + L0(Ψ),

recall that nT is the normal on the boundary Γ0 laying in the tangent plan Πb.

If we reformulate the optimization problem (6.1.2) as the relaxed safety factor (or

limit load) problem through

(6.2.1) λ̃∗ = inf
Ψ∈BDT (Ω),L̃(Ψ)=1

G̃(Ψ),

and since G0(Ψ) = 0 and L0(Ψ) = 0 for all Ψ ∈ V , we get that

λ̃∗ = inf
Ψ∈BDT (Ω),L̃(Ψ)=1

G̃(Ψ) ≤ λ∗ = inf
Ψ∈V,L(Ψ)=1

G(Ψ).

The following theorem states that the above relaxation of the boundary conditions

does not change the initial optimization problem.
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Theorem 6.2.1. The safety factor for the initial optimization problem is equal with

the safety factor for the relaxed optimization problem, i.e.,

λ̃∗ = inf
Ψ∈BD(Ω),L̃(Ψ)=1

G̃(Ψ) = λ∗ = inf
Ψ∈V,L(Ψ)=1

G(Ψ).

Proof. We shall prove that for all Ψ ∈ BD(Ω) there exists a sequence Ψn ∈ V such that

L(Ψn)→ L̃(Ψ) and G(Ψn)→ G̃(Ψ). It is sufficient to give the proof for Ψ ∈ C∞(Ω̄)

only. Indeed, if Ψ ∈ BD(Ω) then there exist Φn ∈ C∞(Ω̄) such that Φn → Ψ

strongly in L1(Ω)2, DT (Φn) → DT (Ψ) narrowly on Ω (i.e., DT (Φn) → DT (Ψ) weak*

in M1(Ω)2×2, ||DT (Φn)||M1(Ω) → ||DT (Ψ)||M1(Ω)) and G(Φn) → G(Ψ) (see Theorem

5.2, chapter 2 from [95]). Using the continuity of the trace map with respect to the

above intermediate topology we obtain G0(Φn)→ G0(Ψ) and L0(Φn)→ L0(Ψ).

On	   Qn	  

Ωn	  

Γ0	  

Figure 6.1: The decomposition of the domain Ω.

Let Ψ ∈ C∞(Ω̄). For all n ∈ N we define On = {x ∈ RN ; dist(x,Γ0) < 1/n},
Ωn = Ω \ Ōn and Qn = Ω ∩ On (see Figure 6.1). Let un ∈ C∞c (RN) such that

0 ≤ un ≤ 1, un = 0 on Γ0 and un = 1 on Ωn. If we take Ψn = Ψun then Ψn ∈
C∞(Ω̄) ∩ V and for all v ∈ C∞(Ω̄) we have

∫
Ω

v
∂

∂xi
Ψn gdx =

∫
Qn

∂

∂xi
(vΨun) gdx −∫

Qn

unΨ
∂

∂xi
(v) gdx +

∫
Ωn

v
∂

∂xi
(unΨ) gdx. Using (5.1.3) in the first integral, denoted

by I1, we get I1 =
∫
∂Qn

vunΨ · nT gdS, and having in mind that un = 0 on Γ0 we

deduce I1 → −
∫

Γ0
vΨ · nT gdS. Since the measure of Qn is vanishing the second

integral converges to 0 and from un = 1 on Ωn we get that the third integral converges

to

∫
Ω

v
∂

∂xi
Ψ gdx. We have just obtained that

(6.2.2)

∫
Ω

v
∂

∂xi
Ψn gdx→

∫
Ω

v
∂

∂xi
Ψ gdx−

∫
Γ0

vΨ · nT gdS.

Denoting by

(6.2.3) ET (Ψ) =:
1

2
(Ψ⊗ nT + nT ⊗Ψ)
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and using again (5.1.3) we get

∫
Ω

vDT (Ψn) gdx→
∫

Ω

vDT (Ψ) gdx−
∫

Γ0

vET (Ψ) gdS.

From the convergence (6.2.2) we get
∫

Ω
b divT (Ψn) gdx→∫

Ω
b divT (Ψ) gdx−

∫
Γ0
bΨ · nT gdS, which means that L(Ψn)→ L̃(Ψ).

Since DT (Ψn) = unDT (Ψ) +
1

2
(∇Tun ⊗ Ψ + Ψ ⊗ ∇Tun), from (5.1.4) we get∫

Ωn
gφ(DT (Ψn)) →

∫
Ω
gφ(DT (Ψ)) and

∫
On
gφ(DT (Ψn)) →

∫
Γ0
gφ(−ET (Ψ)). Bearing

in mind that trace(ET (Ψ)) = Ψ · nT and |ET (Ψ)|2 = 1
2
(|Ψ|2 · |nT |2 + (Ψ · nT )2),

we get G0(Ψ) =
∫

Γ0
φ(−ET (Ψ)) gdS, hence G(Ψn) =

∫
Ωn
gφ(Ψn) +

∫
On
gφ(Ψn) →∫

Ω
gφ(Ψ) +

∫
Γ0
gφ(−ET (Ψ))g = G̃(Ψ).

6.3 Existence of an onset velocity field

We prove here the existence solution in the space BDT (Ω) of the relaxed optimization

problem (6.2.1).

Theorem 6.3.1. We assume that meas(Γ0) > 0 or q > 0. Then there exist an

onset velocity field v∗ ∈ BDT (Ω), with L̃(v∗) = 1, solution of the relaxed optimization

problem

G̃(v∗) = λ̃∗ = min
Ψ∈BDT (Ω),L̃(Ψ)=1

G̃(Ψ).

Proof. Let vn ∈ BD(Ω), with L̃(vn) = 1 be a minimizing sequence. Because G̃(vn)→
λ̃∗, the sequence G̃(vn) is bounded. Since meas(Γ0) > 0 we deduce that the continuous

semi-norm Ψ → G0(Ψ) +
∫

Ω
q|Ψ| gdx is a semi-norm on the space of tangential rigid

motions RT .

Now, we can use Proposition 2.4 of [95] to obtain that Ψ→ G̃(Ψ) is an equivalent

norm on BD(Ω). This means that (vn) is bounded in BD(Ω), hence it contains a

subsequence, denoted again by (vn), and there exists v∗ ∈ BD(Ω) such that vn → v∗

weakly in BD(Ω). Since L̃ is a linear continuous functional we get L̃(vn) → L̃(v∗),

which means that L̃(v∗) = 1. Using the weak lower semicontinuity of G̃ to get that

G̃(v∗) ≤ lim inf G̃(vn) = λ̃∗.
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Chapter 7

Numerical approach and

simulations

The classical numerical methods used in solving the limit load extremal problems,

as (6.1.2), are based on the finite element discretization and the convex and linear

programming (first results were obtained in [49, 52], but see also [3, 33, 32, 65, 78]).

Even if the finite element method have been intensively developed in the last years

(X-FEM, re-meshing techniques), it is associated to continuous fields and it is not

adapted for capturing discontinuities on unknown surfaces. But, almost all nontrivial

known solutions of the limit load problems have spatial discontinuities. This is not

so surprising if we have in mind that the extremal problem (6.1.2) models phenomena

as ductile fracture or strain localization. For that, to solve the limit load extremal

problem (6.2.1), involving G̃, we make use here of a mesh free method which does

not use a finite element discretization of the solid. This new limit analysis method is

called discontinuous velocity domain splitting (DVDS). Even if a detailed description

of DVDS can be found in [60], we shall briefly recall it in the next section.

7.1 Discontinuous velocity domain splitting method

The mathematical foundation of the DVDS method is given in [57] (see also [48]),

while a detailed description of this limit analysis method, can be found in [60]. For

in-plane or 3-D problems the DVDS method considers a special class of velocities fields

constructed as follows. First, the body is split into two sub-domains: on one sub-

domain the velocity is vanishing and on the other one the velocity corresponds to a

rigid motion. Thus, the discontinuous velocity field is determined only by the shape

of one sub-domain (more precisely by its boundary) and by a rigid motion. In this

way, the deformation is concentrated (localized) at the boundary of a sub-domain and

97
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the plastic dissipation power depends only on the shape of the sub-domain and on the

rigid velocity. The problem is thus reduced to the minimization of a shape dependent

functional.

Let describe here the DVDS test function set. We consider as test functions the

velocity fields of the form rT1ω, where rT belongs to the set of tangential rigid motions

(5.5.1) and 1ω is the characteristic function of a subdomain ω ⊂ Ω (i.e., 1ω(x) = 1 if

x ∈ ω and 1ω(x) = 0 if x /∈ ω) (see Figure 7.1). To be more precisely let us define V
the set of DVDS velocity fields

V := {rT1ω ; ω ⊂ Ω, rT ∈ RT}.

Since the space of bounded deformation BDT (Ω) include functions with spatial

discontinuities we have rT1ω ∈ BDT (Ω) and V ⊂ BDT (Ω). We can take now test

functions from V in G̃ to get an upper-bound λ∗1 of λ∗:

λ∗1 = inf
rT 1ω∈V,L̃(rT 1ω)=1

G̃(Ψ) ≥ λ∗ = inf
Ψ∈BDT (Ω),L̃(Ψ)=1

G̃(Ψ).

.

c1 

c3 c2 

Ω	


ω	


x1 

x2 

rb 

ω	


rT 

-

Figure 7.1: The DVDS special class of velocities.

Having in mind that DT (rT ) = 0, for all DVDS velocity field the plastic dissipation

involved in (6.1.2) can be computed explicitly as a function of ω and rT from ω and rT .

Using the formula of G̃(rT1ω), L̃(rT1ω), which could be obtained in a similar way as

in the proof of Theorem 6.2.1, we introduce the following shape dependent functional

JT (ω, rT ):

JT (ω, rT ) :=
G̃(rT1ω)[
L̃(rT1ω)

]
+

=

∫
∂ω\Γ1

1

2
a
√

[|rT |2|nT |2 + 3(rT · nT )2] gdS +
∫
ω
q|rT | gdx[∫

ω
c · rT gdx−

∫
∂ω\Γ1

brT · nT gdS
]

+

,
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where [s]+ = (s + |s|)/2 is the positive part and nT is the normal to ∂ω in the plane

Πb. Then we have

λ∗1 =: inf
ω⊂Ω,rT∈RT

JT (ω, rT ) ≥ λ∗.

The optimal value λ∗1 is an upper-bound for the safety factor (limit load) λ∗. For

the anti-plane flow DVDS gives an exact evaluation of the safety factor, i.e., λ∗1 = λ∗

(see [57] for a rigorous proof). Moreover, as it was founded in [60], in all in-plane

flows problems for which we have an estimation of the safety factor λ∗, the DVDS

upper-bound λ∗1 is very close (less than 2-5 %) to the global minimum λ∗.

From the optimal set ω∗, which is the solution of the above shape optimization

problem, and the optimal rigid flow r∗T , i.e.,

JT (ω∗, r∗T ) =: min
ω⊂Ω,rT∈RT

JT (ω, rT ),

one can construct the DVDS onset velocity filed v∗ =: r∗T1ω∗ . The boundary of ω∗,

delimiting the flow zone from the non-flow zone, represents the collapse fracture surface.

The existence of an the optimal set ω∗ and of an optimal rigid flow r∗T could be proved

using similar arguments as developed in [57] for the anti-plane problem, while the

uniqueness results cannot be expected in general (see again [57] for details). The study

of the existence and of the uniqueness of the optimal set ω∗ and the optimal rigid flow

r∗T is beyond of the scope of the present work.

7.2 Level set approach

We use a level set approach to represent the sub-domain ω involved in the minimization

of the functional JT . This is an useful tool in representation of the optimal set when

the topology is not known. Since the global minimization technique makes use of

genetic algorithm the description of the level set function have to be done through a

few number of parameters. Thus, the main features of our approach consists in the

following principal ingredients: the description of the sub-domain ω as a level set of a

function described by a small number of parameters, the description of the vector field

rT , the reconstruction of the topology of ω and the computation of the cost function

JT .

The parameterization of the level set function, which describe the sub-domain ω is

based on Fourier’s series. To illustrate this approach we consider Ω = (0, 1) × (0, 1)

and let a0, (ai,j) ⊂ [−1, 1] (0 ≤ i, j ≤ m) be a family of (m + 1)2 parameters. At each

choice of parameters (ai,j) we consider the function φ(ai,j) : [0, 1]× [0, 1]→ R as

φ(x1, x2) :=
m∑

i,j=1

1

ij
ai,j sin(πix1/2) sin(πjx2/2)+

m∑
i=1

1

i
ai,0 sin(πix1/2)+

m∑
j=1

1

j
a0,j sin(πjx2/2),
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and after the normalization of the coefficients (ai,j) we define the function Φ(a0, aij) :

[0, 1]× [0, 1]→ R

Φ(x1, x2) =: 2
φ(x1, x2)−mφ

Mφ −mφ

+ a0 − 1,

where mφ = minφ(x1, x2),Mφ = maxφ(x1, x2). The function Φ(a0, aij) defines the

subset ω through its level set

ω = ω(a0, aij) = {(x1, x2) ∈ [0, 1]× [0, 1] : Φ(x1, x2) > 0}.

The boundary of ω, defined as

∂ω = {(x1, x2) ∈ [0, 1]× [0, 1] : Φ(x1, x2) = 0} ∪ (∂Ω ∩ ω̄).

is a union of no overlapping simple closed curves.

Because the shape depend functional JT is homogenous of degree 0 in rT , it is

sufficient to consider normalized rigid motions belonging to the set of normalized rigid

motions RT,1:

RT,1 =: {rT ; rT i = a′ · bi + (rb ∧ bi) ·w′, a′,w′ ∈ R3, |a′|2 + |w′|2 = 1}.

Indeed, for all rT ∈ RT we have rT/
√
|a|2 + |w|2 ∈ RT,1 and

JT (ω, rT ) = JT (ω, rT/
√
|a|2 + |w|2).

We can use now the angles ψ ∈
[
0,
π

2

]
, θ, θ̄ ∈ (0, 2π) and ϕ, ϕ̄ ∈ (0, π) to describe a′

and w′ involved in the definition of rT ∈ RT,1:

a′ = cos(ψ)(cos(θ) sin(ϕ)c1 + sin(θ) sin(ϕ)c2 + cos(ϕ)c3),

w′ = sin(ψ)(cos(θ̄) sin(ϕ̄)c1 + sin(θ̄) sin(ϕ̄)c2 + cos(ϕ̄)c3),

which means that rT = rT (ψ, θ, θ̄, ϕ, ϕ̄). Using this simplification we define the cost

function JT : R(m+1)2+4 → R+ by

JT (a0, ai,j, ψ, θ, θ̄, ϕ, ϕ̄) =: JT (ω(a0, aij), rT (ψ, θ, θ̄, ϕ, ϕ̄)),

as a discretization of the DVDS total dissipation functional JT on the set of subsets

ω(a0, aij) defined as level sets of Fourier’s series. We can see now that the cost function

can be computed from integrals on Ω and on the level set of {Φ = 0}:

JT =

∫
{Φ=0}\Γ1

1
2
a
√

[|rT |2|nT |2 + 3(rT · nT )2] gdS +
∫

Ω
H(Φ)q|rT | gdx[∫

Ω
H(Φ)c · rT gdx−

∫
{Φ=0}\Γ1

brT · nT gdS
]

+

,
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where we have denoted by H(x) = (x/|x| + 1)/2 the Heaviside step function. To

compute the above expresion of the functional JT (ω, rT ) we use the following formula:

rT · nT = riT · ni, |rT |2 = rT i · riT , |nT |2 = gijninj,

where riT (x) = a · bi(x) + (rb(x) ∧ bi(x)) ·w, a,w ∈ R3.

To compute the boundary integrals on every connected sub-domains of ω, we use

the rectangle method, while for the integrals over Ω we use the Simpson method.

Finally, for the global minimization of the cost functional JT over [−1, 1](m+1)2 ×(
0,
π

2

)
× (0, 2π)2 × (0, π)2 we use standard genetic algorithm techniques (see [82] for

details on stochastic optimization methods).

7.3 Plane slope computations

Ω	   α	  

x2 

x1 

z 

f 

fT 
fN h(x1, x2) 

c3 
c2 

c1 

Figure 7.2: 3-D representation of the fluid domain D0 flowing on a plane slope of angle

α, the bottom part Γb and the Ox1z section described through the thickness function

(x1, x2)→ z = h(t, x1, x2).

We consider here a plane slope of angle α (see Figure 7.2), which can be written in

the general framework of a system of parallel surfaces through

rb(x1, x2) = x1c1 + cos(α)x2c2 + sin(α)x2c3

where x = (x1, x2) are the coordinates in the slope plane. For all numerical simulations

presented in this section we choose the domain Ω = [0, 1] × [0, 1], the slope angle
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α = 45◦, the density ρ = 1 and the gravitational acceleration γ = 10. All the integrals

involved in the cost function J were done on 50× 50 points grid.

Circular dome. In the first example we consider a circular dome (see Figure 7.3),

given by the following thickness distribution:

h0(x1, x2) =

 hD

(
1 + cos

π

δ

√
(x1 − x01)2 + (x2 − x02)2

)
+ he if (x1, x2) ∈ B(x0, δ),

he else.

where x0 = (0.5, 0.5), δ = 0.25 and hD = 0.125, he = 0.01.

Figure 7.3: The distribution of the thickness function and the circular dome geometry

of the shallow fluid.

For a Bingham fluid (µ = 0, κ0 = 10) with no friction (Cf = 0) we obtain the safety

factor λ∗ = 0.6464. The avalanche onset velocity v∗, plotted in Figure 7.4 left, shows

that the fracture is circular and occurs at the base of the dome. In order to compare

this result with another method we compute the dynamic onset of the flow for a visco-

plastic fluid using the finite element/finite volume numerical method described in [55].

In Figure 7.4 right, we plot the norm of the velocity field computed at the beginning of

the flow. We can see that the onset region described by the our approach is the same

as for the dynamic computations.
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Figure 7.4: Left: the fracture and the velocity onset obtained with our approach for

the circular dome geometry. Right: the norm of the velocity field at the beginning of

the flow obtained with dynamic finite element/finite computations .

Square dome. In the second simulation we consider a square dome (see Figure 7.5

left), given by:

h0(x1, x2) =


hD(1 + cos (

π

δ
(x1 − x01)))(1 + cos (

π

δ
(x2 − x02))) + he,

if |x1 − x01|, |x2 − x02| < δ,

he else,

for a Drucker-Prager fluid (µ = tan(300), κ0 = 0.1) with no friction (Cf = 0). We

obtain the safety factor λ∗ = 0.3053 and the onset velocity is plotted is Figure 7.5

right. We remark that the avalanche fracture, which is a rounded rectangle, occurs at

the base of the dome.
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Figure 7.5: Left: the distribution of the thickness function for the square dome geom-

etry. Right: the velocity onset obtained with our approach.

Circular dome with obstacles. In the third simulation we consider a circular dome

over a thick uniform fluid in the presence of a circular obstacle B = B(xo0, δ
o) (see

Figure 7.6 left). The obstacle is located at xo0 = (0.5, 0) and has a radius of δo = 0.2,

while the thickness function h0 is the same as in the first simulation, but with he = 0.1,

ten times larger. It is more suitable to model the obstacle by the penalization of the

yield limit κ0. For that, we consider the same domain Ω = [0, 1] × [0, 1], as before,

but with κ0 = 1 on Ω \ B outside the obstacle and κ0 = 50 inside the obstacle Ω ∩ B.

We find the safety factor λ∗ = 3.4713 and the onset velocity v∗ is plotted is Figure 7.5

right. We remark that the avalanche fracture is rather different form the dome over a

thin film, computed in the first simulation. The fracture is close to the corners of the

domain and avoids the circular obstacle B.
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Figure 7.6: Left: the distribution of the thickness function for a thick fluid with an

obstacle. Right: the velocity onset obtained with our approach.

.
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7.4 Complex basal topography computations

In this section we give some numerical computations of the safety factor λ∗ and of

the onset velocity v∗ for complex basal topography. For all numerical simulations we

choose the density ρ = 1 and the gravitational acceleration γ = 10. All the integrals

involved in the cost function JT were done on 50× 50 points grid.

Figure 7.7: The half sphere covered with an uniform thickness Bingham fluid, computed

with a DVDS approach. The fracture ∂ω∗ associated to the velocity onset v∗ =: r∗T1ω∗

occurs in the inferior part of the half sphere.

Half sphere with uniform thickness. In the first example, which is an academic

problem, we have considered a half sphere with a constant thickness h0(x) = 0.1 (see

Figure 7.7). The parametric representation of the bottom surface Sb is given by:

rb(θ, ϕ) = (cos(θ) sin(ϕ), sin(θ) sin(ϕ), cos(ϕ)).

where x1 = θ ∈ [0, 2π), x2 = ϕ ∈ [0,
π

2
),Ω = [0, 2π) × [0,

π

2
). The half sphere

is covered uniformly (h0 =0.1) with a Bingham fluid (µ = 0, κ0 = 10) which is in

contact with friction (Cf = 0.5) with the bottom surface. The half sphere has stress

free boundary conditions on the horizontal-plane, i.e., Γ0 = ∅,Γ1 = {ϕ = π/2}. The

computed safety factor was founded to be λ∗ = 0.10 and the onset velocity v∗ =: r∗T1ω∗ ,

plotted in Figure 7.7, shows that the fracture occurs at the inferior part of the half

sphere. In this region, the tangential gravitational forces are more important, while the

frictional resistance, proportional to the normal gravitational forces is very reduced.
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Figure 7.8: The quarter of a sphere covered with an uniform thickness Bingham fluid,

computed with a DVDS approach. The fracture associated to the velocity onset v∗ =:

r∗T1ω∗ occurs at the boundary of the optimal sub-domain ∂ω∗.

The rigid motion r∗ associated to the onset velocity is given by a vertical translation

(a′ = (0, 0,−1),w′ = (0, 0, 0)).

Quarter of a sphere with uniform thickness. In the second example we consider

a quarter of a sphere with Dirichlet boundary conditions (see Figure 7.8) covered by

the same material (Bingham), with the same thickness and the same friction coefficient

as in the previous example. For that we put x1 = θ ∈ (0, π), x2 = ϕ ∈ [0,
π

2
), Ω =

(0, π)× [0,
π

2
) and Γ0 = {ϕ = π/2} ∪ {θ = 0} ∪ {θ = π},Γ1 = ∅. The computed safety

factor is λ∗ = 0.1324 and the DVDS onset velocity v∗ =: r∗T1ω∗ is plotted in Figure 7.8.

As before in the optimal subdomain ω∗, included in the inferior part of the sphere, the

tangential gravitational forces are important, while the frictional resistance is reduced.

We remark the influence of the boundary conditions on {θ = 0} ∪ {θ = π} in the

shape of the optimal set ω∗. Moreover, we can see here that the fracture occurs on

the horizontal boundary {ϕ = π/2}, where the shallow material is fixed. This example

illustrate the importance of the relaxation of the boundary conditions.
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Quarter of an ellipsoid with nonuniform thickness. In the last simulation we

consider a quart of an ellipsoid (see Figure 7.9), which is described by the following

parametric representation of the bottom surface Sb:

rb(θ, ϕ) = (a cos(θ) sin(ϕ), b sin(θ) sin(ϕ), c cos(ϕ)).

where x1 = θ ∈ (0, π), x2 = ϕ ∈
(π

2
, π
]

and Ω = (0, π)×
(π

2
, π
]
.

Figure 7.9: The quarter of an ellipsoid filled with an non uniform thickness Drucker-

Prager fluid, computed with a DVDS approach. The fracture ∂ω∗ associated to the

velocity onset v∗ =: r∗T1ω∗ occurs in the upper part of the ellipsoid.

We consider here a Drucker-Prager fluid/solid (µ = tan(30o), κ0 = 0.1) with a

non-uniform thickness (given by h0(θ, ϕ) = −0.2 cos(θ)) which is in frictionless contact

(Cf = 0) with the bottom surface. The quarter of ellipsoid has stress free boundary

conditions, i.e., Γ0 = {θ = 0} ∪ {θ = π},Γ1 = {ϕ = π/2}. The computed safety factor

is λ∗ = 0.1590 and from the onset velocity v∗ =: r∗T1ω∗ , we deduce that the fracture

occurs (see Figure 7.9) at the upper part of the ellipsoid. As in above example in the

onset region, the gravitational forces are very close to the tangential plane.
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[21] L. Beznea and M. Röckner, Applications of compact superharmonic functions:

path regularity and tightness of capacities. Compl. Anal. Oper. Theory 5 (2011),

731-741.
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Résumé. Cette thèse présente des modèles probabilistes et déterministes de rupture et des phénomènes de 
branchement, on étudie : les processus de branchement à valeurs mesures et leur EDP non linéaires, les processus 
de Markov de la subordination au sens de Bochner sur les espaces Lp, et les EDP non linéaires liées au 
déclenchement des avalanches. La première partie présente les aspects stochastiques. On utilise plusieurs outils 
théoriques, analytiques et probabilistes de la théorie du potentiel. D'abord, on construit des processus de 
branchement (de Markov) sur l'ensemble des configurations finies de l'espace d'état d'un processus standard, 
contrôlés par un noyau de branchement et un noyau tuant. On établit des connexions avec les équations 
différentielles partielles liées aux fonctions de transition d'un processus de branchement. Si on part d'un super-
processus, on obtiendra un processus de branchement ayant l'espace d'état des configurations finies de mesures 
positives finies sur un espace topologique. L'outil principal pour démontrer la régularité des trajectoires d'un 
processus de branchement est l'existence des fonctions surharmoniques convenables, ayant les niveaux compacts. 
En suite, on démontre que la subordination induite par un semi-groupe de convolution (la subordination au sens de 
Bochner) d'un C0 -semi-groupe d'opérateurs sous-markoviens sur l'espace Lp  est associée à la subordination de 
processus droit de Markov. En conséquence, on résout le problème des martingales associé au Lp -générateur 
infinitésimal d'un semi-groupe subordonné. Il s'avère qu'un élargissement de l'espace de base est nécessaire. La 
principale étape de la preuve est la préservation sous une subordination de la propriété d'un processus de Markov 
d'être un processus droit borélien. La deuxième partie de la thèse est consacrée à la modélisation du déclenchement 
d'une avalanche d'un matériau visco-plastique de faible épaisseur (sols, neige ou autre géo-matériaux) sur une 
surface avec topographie (montagnes, vallées). On introduit un critére simple, déduit d'un problème d'optimisation 
(analyse de la charge limite), capable de distinguer si une avalanche se produit ou pas. Comme la fonctionnelle de 
dissipation plastique est non régulière et non coercive dans les espaces de Sobolev classiques, on utilise l'espace 
des fonctions à déformation tangentielle bornée, pour prouver l'existence d'un champ de vitesse optimal, associé au 
déclenchement d'une avalanche. La fracture du matériau pendant la phase de déclenchement est modélisée par une 
discontinuité de ce champ de vitesse. On propose aussi une stratégie numérique, sans maillage, pour résoudre le 
problème de charge limite et pour obtenir la fracture de déclenchement. Enfin, l'approche numérique proposée est 
illustrée par la résolution de certains problèmes modélisant le déclenchement des avalanches. 
 
Probabilistic and deterministic models for fracture type phenomena 
 
Abstract. The thesis presents probabilistic and deterministic models for rupture and branching type phenomena, 
by studying: measure-valued discrete branching processes and their nonlinear PDEs,  the Markov processes of the 
Bochner subordinations on Lp spaces, and the nonlinear PDEs associated to the flow onset of dense avalanches. 
The first part presents the stochastic aspects. Several analytic and probabilistic potential theoretical tools are used. 
First, it is given a construction for the branching Markov processes on the space of finite configurations of the state 
space of a given standard process (called base process), controlled by a branching kernel and a killing one. There 
are established connections with the nonlinear partial differential equations associated with the transition functions 
of the branching processes.When the base process is the Brownian motion, then a nonlinear evolution equation 
involving the square of the gradient occurs. Starting with a superprocess as base process, the result is a branching 
process with state space the finite configurations of positive finite measures on a topological space. A key tool in 
proving the path regularity of the branching process is the existence of a convenient superharmonic function 
having compact level sets. Second, it is shown that the subordination induced by a convolution semigroup (the 
subordination in the sense of Bochner) of a C0 -semigroup of sub-Markovian operators on an Lp space is actually 
associated to the subordination of a right (Markov) process.  As a consequence, it is solved the martingale problem 
associate with the Lp -infinitesimal generator of the subordinate semigroup. It turns out that an enlargement of the 
base space is necessary. A main step in the proof is the preservation under such a subordination of the property of 
a Markov process to be a Borel right process. The second part of the thesis deals with the modeling of the onset of 
a shallow avalanche (soils, snow or other geomaterials) over various bottom topologies (mountains, valleys). 
Starting from a shallow visco-plastic model with topography, a simple criterion able to distinguish if an avalanche 
occurs or not, is introduced.  This criterion is deduced from an optimization problem, called limit load analysis. 
The plastic dissipation functional involved is non-smooth, and non coercive in the classical Sobolev spaces. The 
appropriate functional space is the space of bounded tangential deformation functions and the existence of an onset 
velocity field (collapse flow) is proved. To propose a numerical strategy, a mesh free method is used to reduce the 
limit load problem to the minimization of a shape dependent functional. The collapse flow velocity field, which is 
discontinuous, is associated to an optimum sub-domain and to a rigid flow. Finally, the proposed numerical 
approach is illustrated by solving some safety factor problems associated to avalanche onset.  
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processus à valeurs mesures, noyau de branchement, subordination au sens de Bochner, Lp semi-groupe, 
délenchement d'avalanche, fluide visco-plastique, topographie, déformation tangentielle bornée, méthode sans 
maillage, analyse de charge limite. 
 
Université Paris 13, Sorbonne Paris Cité,  LSPM, 99 Avenue Jean-Baptiste Clément, Villetaneuse, France et 
Institut de Mathématique Simion Stoilow de l'Académie Roumaine,  21 Calea Grivitei, Bucarest, Romania. 
 


	coperta1paris
	paggoala
	copie
	paggoala
	teza-depusa Paris
	paggoala
	coperta2paris

