
UNIVERSITE PARIS 13 – INSTITUT GALILEE 

N° attribuée par la bibliothèque 

 

THESE 

Présentée pour obtenir le grade de  

DOCTEUR DE L’UNIVERSITE PARIS 13 

Discipline : Physique 

Présentée et soutenue publiquement 

Par 

Quentin RIPAULT 

Second-Harmonic Generation in Helium-implanted 

2D-PPLN waveguides 

Soutenue le: 16 Juillet 2013 

M.   Vincent COUDERC  Rapporteur 

M.   Philippe DELAYE  Rapporteur 

Mme.  Sara DUCCI   Examinateur 

M.   Frederick DU BURCK Examinateur 

M.  Esidor NSOENZOK  Examinateur 

M.   Azzedine BOUDRIOUA Directeur de Thèse 

M.  Lung Hang PENG  Directeur de Thèse 

M.  Min Won LEE   Membre encadrant 

 



  
Page 1 

 
  

 

  



  
Page 2 

 
  

Acknowledgements 

This thesis has been performed at the FEPED laboratory (Ferroelectric Photonics and Electronics 

Device lab.) of National Taiwan University and the LPL (Laboratoire de Physique des Lasers) of 

Paris XIII University. 

First, I want to thank Prof. Vincent Couderc and Prof. Philippe Delaye for accepting to be a main 

examiner of this work. I also thank the other members of the jury, Prof. Sara Ducci, Prof. 

Frederic Du Burck, Prof. Esidor Ntsoenzok and Dr. Min Won Lee for the interest they have 

shown in my manuscript. 

I express my deepest gratitude to Prof. Lung Peng Han and Prof. Azzedine Boudrioua who 

directed my thesis in Taiwan and France. I just thank both for their warm welcome. They have 

been present to advise and support me throughout my thesis. They are among those who have 

taught me what I know and forged me to this profession. 

Many people think that the work of a thesis, particularly at the writing time, is a solitary 

adventure. This is partly true for having appreciated this great independence. However many 

people have contributed to the elaboration and the realisation of this work. 

I warmly thank the CEMHTI team of the University of Orleans and particularly Esidor 

Nstoenzok for having supported my work and having allowed me the realisation of optical 

waveguides by ion implantation. 

Special thanks to Thierry Billeton for having shared his unique knowledge and expertise in 

precision optics and for his valuable help. 

I extend my deepest acknowledgement to Fadwa, Faiza, Min, Hadi, François, Anthony, 

Mohamed, Getachew, Elias, Lei, all people of the lab and the lab next door, permanent and PhD 

students. To those who have fed me, supported and encouraged me during these years, to those 

who are part of my life in one way or another, to those who enlightened me of their precious 

advices, to those who helped me to mature as a researcher, who taught me to take care of the 

style and the efficiency of these pages, who also taught me like no one else independence and 



  
Page 3 

 
  

love of learning, to those who would prevail their own intellectual path to share, confront, 

modify and constantly feed their paths with others. 

For bringing all your heart. For making me see the world with your eyes. With the hope that you 

stay with me a long time. 

I also want to thank those who read these pages. With the hope of sharing my path. 

 

  



  
Page 4 

 
  

  



  
Page 5 

 
  

Table of Contents 

 

General Introduction .................................................................................................................................. 9 

 

Nonlinear Optics Theory ....................................................................................................... 13 

1.1. Introduction ................................................................................................................................... 13 

1.2. Radiation-matter interaction ....................................................................................................... 14 

1.2.1. Second-Order Nonlinear Interactions ................................................................................. 16 

1.2.2. Second-Harmonic Generation ............................................................................................. 21 

1.2.3. Achieving Phase-Matching ................................................................................................... 25 

1.2.3.1. Birefringence Phase-Matching (BPM) ........................................................................ 25 

1.2.3.2. Quasi-Phase Matching (QPM) ..................................................................................... 28 

1.2.3.3. Second-harmonic conversion efficiency ...................................................................... 33 

1.2.3.4. Tuning and bandwidths in periodic structures .......................................................... 34 

1.2.3.5. Spectral bandwidth ....................................................................................................... 35 

1.2.3.6. Temperature bandwidth ............................................................................................... 36 

1.2.4. Materials for QPM ................................................................................................................ 38 

1.2.4.1. List of materials ............................................................................................................. 39 

1.2.4.2. Lithium Niobate ............................................................................................................ 39 

1.2.4.3. Poling methods .............................................................................................................. 41 

1.2.4.4. Poling Process according to Miller’s model ................................................................ 43 

1.3. General theory of integrated optics ............................................................................................. 47 

1.3.1. Planar optical waveguides .................................................................................................... 48 

1.3.2. Expression of the EM field profile ....................................................................................... 50 

1.3.3. Equation of the guided modes .............................................................................................. 54 

1.3.4. Reconstruction of the index profile by i-WKB method ..................................................... 56 

1.4. SHG in waveguide configuration ................................................................................................. 60 

1.4.1. Effect of optical confinement on SHG with Gaussian fundamental beam ....................... 60 

1.4.1.1. Improvement of interaction length .............................................................................. 61 

1.4.1.2. Parametric Interaction of focused Gaussian beam for SHG ..................................... 61 

1.4.2. SHG interaction in waveguide ............................................................................................. 66 

1.4.3. Expression of the Effective Area Overlap in a waveguide ................................................ 69 



  
Page 6 

 
  

1.4.4. Phase matching by modal dispersion .................................................................................. 70 

Summary .................................................................................................................................................... 71 

References .................................................................................................................................................. 73 

 

Nonlinear photonic crystal and fabrication process ....................................... 81 

2.1. Introduction ................................................................................................................................... 81 

2.2. Second-harmonic generation in 2D nonlinear photonic crystals .............................................. 81 

2.2.1. Real Lattice ............................................................................................................................ 82 

2.2.2. Reciprocal lattice ................................................................................................................... 85 

2.2.3. Angular tuning ...................................................................................................................... 89 

2.2.4. Angular acceptance ............................................................................................................... 93 

2.3. PPLN Fabrication process............................................................................................................ 97 

2.4. Fabrication of waveguides .......................................................................................................... 103 

2.4.1. Ionic diffusion technique .................................................................................................... 103 

2.4.2. Ion exchange technique ...................................................................................................... 105 

2.4.3. Physical and chemical deposition ...................................................................................... 106 

2.4.4. Organic materials ................................................................................................................ 106 

2.4.5. Nanocomposite materials ................................................................................................... 107 

2.4.6. Ion implantation technique ................................................................................................ 107 

2.4.7. Implantation in Lithium Niobate ....................................................................................... 108 

2.4.8. Realisation of planar waveguide on PPLN by He
+
 implantation .................................... 109 

2.4.8.1. He+ implantation process ........................................................................................... 109 

2.4.8.2. Implantation parameters ............................................................................................ 111 

2.4.8.3. Implantation interactions ........................................................................................... 112 

2.4.8.4. Ion implantation advantages ...................................................................................... 116 

2.4.8.5. Annealing treatment ................................................................................................... 117 

Summary .................................................................................................................................................. 118 

References ................................................................................................................................................ 119 

 

 

Second-harmonic generation in He
+
 implanted 2D-PPLN ...................... 127 

3.1. Introduction ................................................................................................................................. 127 



  
Page 7 

 
  

3.2. Characterisation of implanted waveguides in 2D-PPLN ......................................................... 129 

3.2.1. Linear characterisation ...................................................................................................... 129 

3.2.1.1. Dark m-line spectroscopy ........................................................................................... 129 

3.2.1.2. Effective index measurements .................................................................................... 131 

3.2.1.3. Attenuation measurement by optical surface analysis setup .................................. 136 

3.2.1.4. Experimental results ................................................................................................... 138 

3.2.2. Nonlinear characterisation ................................................................................................. 143 

3.2.2.1. Optical setup ................................................................................................................ 143 

3.2.2.2. SHG temperature tuning ............................................................................................ 147 

3.2.2.3. SHG angular dependence ........................................................................................... 150 

3.2.2.4. Conversion efficiency measurement in cw- and pulsed regime .............................. 153 

3.2.2.5. Photorefractive effects ................................................................................................ 157 

3.2.2.6. Photorefractive effect in the waveguide .................................................................... 160 

3.3. Characterisation of implanted waveguide in doped MgO:2D-PPLN ..................................... 164 

3.3.1. Linear characterisation ...................................................................................................... 164 

3.3.1.1. Refractive index profile .............................................................................................. 164 

3.3.1.2. Attenuation loss ........................................................................................................... 167 

3.3.2. Nonlinear characterisation ................................................................................................. 168 

3.3.2.1. SHG temperature tuning ............................................................................................ 168 

3.3.2.2. SHG angular dependence ........................................................................................... 170 

3.3.2.3. Conversion efficiency measurements ........................................................................ 171 

3.3.2.4. Photorefractive effect .................................................................................................. 173 

Summary .................................................................................................................................................. 174 

Reference ................................................................................................................................................. 175 

 

Conclusions .............................................................................................................................................. 176 

 

Annexe: implantation in nonlinear crystals .......................................................................................... 179 

Scientific articles ..................................................................................................................................... 183 

 

 



  
Page 8 

 
  

 

 

 

 

 

  



  
Page 9 

 
  

Introduction 

Nonlinearities are widely present in the world around us and are subject of study more and more 

deeply. The discipline of nonlinear optical science emerged by Franken et al. in 1961 [1]. 

However, nonlinear phenomena had been studied in other fields of physics a long time before: in 

mechanics, acoustics, fluid dynamics, electronics or chemistry. In general, the optical 

nonlinearities are weak phenomena and require significant optical fields to be highlighted. It is 

the advent of laser which led to the discovery of optical nonlinearities in volume, with an 

increase of the available optical power. Promptly, nonlinear optics had attracted much attention 

and created new research areas and technologies. For instance, wave-mixing via a nonlinear 

second-order interaction and second harmonic generation in nonlinear crystals were the areas 

which had received particular attention. The 1980’s had seen the emergence of new research 

topics, particularly nonlinear optical study of coherent sources such as widely-tunable parametric 

oscillators [2] and ultra-short pulse lasers [3]. Therefore, nonlinear crystals such as LiNbO3 have 

widely been used for this purpose. However, nonlinear effects are not optimised unless phase 

matching conditions are satisfied. Periodically-poled structures in 1D were proposed to 

overcome phase-matching problem in nonlinear crystals. The crystal studied in this thesis is 

periodically-poled lithium niobate (PPLN) allowing quasi-phase matching. 

It is also this period during which the interest in nonlinearities in optical waveguides or optical 

fibres had increased. In fact, guided optics had opened new horizons in nonlinear optics thank to 

the light propagation over long distance and the suppression of diffraction effects and the 

increase of nonlinear effects by optical confinement and accumulation. Another advantage of the 

waveguide structure is its small size, which allows for the fabrication of compact optical circuits 

or chips together with other photonic components for a rich variety of applications [4, 5]. Many 

technologies have been developed for the fabrication of integrated optical components and now a 

huge number of components of this kind is commercially available.  Most of components are 

integrated in a planar substrate. This integration aims at miniaturising optical systems like 

integrated electronic circuits for electronic devices. However, nonlinear effects are not always 

straightforward to integrated optics [6 - 8]. The difficulty lies on how to adapt the existing and 

abundant techniques of waveguides fabrication for nonlinear materials without altering their 

nonlinear properties. 
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In recent years, nonlinear optics has seen the new arrivals of nonlinear crystals with a periodic 

modulation of the nonlinear coefficient. The development of techniques for periodically-poled 

ferroelectric crystals in one or two dimensions allows very efficient quasi-phase matching 

technique proposed by N. Blombergen in 1962 [9]. Integrated optics using 2D nonlinear 

photonic crystals (NLPC) has recently been the subject of several developments for applications 

to the field of light sources and optical signal processing. Such an NLPCs produces many 

reciprocal lattice vectors (RLV) in the 2D reciprocal lattice. It has been reported that these lattice 

vectors provide one or more quasi-phase matching solution [10]compared to 1D structure. 

Despite of low QPM orders, the high flexibility of 2D structure allows multi-wavelength light 

generation by temperature and angular tuning. For this reason we have chosen 2D-PPLN to study 

SHG in a waveguide. 

The combination of nonlinear and integrated optics is an important issue to take full benefit of 

the advantage of a large energy confinement, a longer interaction length and the ability to adjust 

the phase-matching by designing suitable periodically-poled structures. The spin-offs of this 

research area have boosted new technologies for further development of optical 

components,solid tuneable coherent and miniature light sources, etc. Many of these techniques 

will be reported. 

Therefore, our study is based on the fusion of these principles and techniques: SHG by quasi-

phase matching in helium-implanted NLPC optical waveguide, and constitutes the originality of 

our works. 

In chapter 1, our aim is to bring to the reader an overview of the actual results and trends in 

integrated nonlinear optics. The choice is made to address most aspect favouring a theoretical 

and qualitative description of the phenomena and an intuitive analysis of concepts. Second-order 

nonlinear interactions, Quasi-phase Matching principle, effect of optical confinement on Second-

harmonic generation and fabrication of optical waveguides in nonlinear materials are among the 

discussed topics. 

Chapter 2 will be divided in two parts. The first part will focus on the special case of the second-

harmonic generation in NLPC, especially 2D-PPLN with a square lattice.  In a second part, we 
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will focus on the conception and the fabrication of our NLPC by electrical poling method and the 

fabrication of planar optical waveguide on the surface by helium implantation. 

Finally, chapter 3 presents our experimental results on our samples. The chapter includes a study 

of linear properties of our waveguides. It mainly consists guiding properties of the sample after 

the implantation process. It also concerns an estimation of the attenuation in that structure.  Then, 

a study of the nonlinear properties of the waveguide is presented. From the obtained 

experimental results, it will be demonstrated that this technique does not affect the non-linear 

properties of our 2D-PPLN. Furthermore, the waveguide influence on SHG according to QPM 

conditions is studied and compared with SHG in bulk crystal. Thus, through our observations 

and according to the theory, we will provide the information necessary for general understanding 

of a nonlinear interaction in that waveguide. This will allow us to conclude the high performance 

of our samples. 
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[1] P. Franken, A. E. Ill, C. Peter, G. Weinreich, Generation of optical harmonics, Phys. Rev. 

Lett. 7, 118 - 121(1961). 
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1995). 
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[4] S. D. Smith, I, Janossy, H. A. MacKenzie, J. G. H. Mathew, J. J. E. Reid, Nonlinear optical 

circuit elements as logic gates for optical computers – the first digital optical circuit, Opt. Eng. 

24, 569 – 574 (1985). 

[5] J. Oksanen, Modeling transmitters, amplifiers and nonlinear circuits for the next generation 

optical networks, Helsinki University of Technology Laboratory and Computational Engineering 

Publication (2006). 

[6] I. Kaminov, J. Carruthers, Optical waveguiding layer in LiNbO3 and LiTaO3, Appl. Phys. 

Lett. 22, 326 - 328 (1973). 
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Chapter 1 

Nonlinear Optics Theory 

 
1.1. Introduction 

The growing effort to miniaturisation, high performance low cost of optical devices have given 

rise to new research in materials and engineering fields for optical systems. Particularly, many 

integrated systems rely on second or third order nonlinear process. 

The purpose of this thesis work is to combine the nonlinear properties of Nonlinear Photonic 

Crystals (NLPC) with waveguides fabricated by helium implantation. The theoretical 

development is similar to the bulk case with added considerations of propagation wave vectors. 

This chapter is dedicated to the basic concepts of nonlinear optics and particularly the study of 

second-harmonic generation. We will provide the useful tools for understanding and exploiting 

the results presented in chapter 3. More specifically, we develop differential equations for 

modelling nonlinear interaction involving wave propagating in either bulk media and in optical 

waveguide. 

Firstly, we will seek to understand how an electromagnetic (EM) wave interacts with a dense 

medium and can create a new wavelength according to the nonlinear optics theory. We will also 

describe the main techniques used to improve nonlinear effects in materials, especially in 

ferroelectric crystals. These techniques are called Birefringence Phase matching (BPM) and 

Quasi-Phase Matching (QPM) and meet the conditions of nonlinear new frequency generation. 

We linger longer on the Second-harmonic Generation (SHG) that occurs between the 

fundamental and harmonic waves with the conversion efficiency. 
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In a second time, after a brief theoretical review about the propagation of light in planar optical 

waveguides, we will discuss the SHG mechanism in nonlinear optical waveguides as well as the 

modifications brought by this kind of structures, particularly SHG tuning and tolerance changes 

through the general theory. We will see particularly the modal dispersion influence on the QPM 

when the waveguide is multimodal. Then, after seeing the waveguide influence on the phase 

matching conditions and with the help of integrated optics theory, we will seek how to enhance 

the performance of a material by the use of a guiding structure. 

1.2.  Radiation-matter interaction 

Since the first experimental demonstration of laser effect, optics has undergone many upheavals 

due to the characteristics of laser sources such as the directivity, the degree of monochromaticity 

and the coherency. These characteristics gave rise to a number of new applications. Moreover 

their high optical power density has boosted nonlinear optics, many industrial applications and 

even Inertial Confinement Fusion projects for a new energy source [1]. In order to achieve 

frequency conversion, we usually need a laser with a reasonably high optical power , especially a 

pulsed laser. In fact, the electrical field of laser radiation can reach 10
8
 V/cm. This order of 

magnitude corresponds to atomic and molecular electrical fields linking valence electrons in 

matter. The orbital modification of electrons under laser radiation creates a polarisation of the 

material which is no longer linear to the EM field applied. The linear refractive laws considering 

a constant refractive index is no longer valid. In fact, in the beginning of the 20
th

 century, when 

Lorentz studied the first order dielectric susceptibility of materials, he considered electrons as 

harmonic oscillators in matter. In that case, the optical response of the material which processes 

such as reflection, transmission or absorption scale linearly with the intensity of the applied 

optical source. Then, Lorentz missed the anharmonic term which is not negligible when the 

applied electric field is close to the valence electron’s one. It was with the development of the 

ruby laser by Maiman in 1960 [2] that the first nonlinear optical effect was observed by Franken 

et al. [3]. In fact, Franken noticed a weak optical signal at 347.1 nm which was generated in a 

quartz crystal when the material was illuminated with a high power ruby laser at 694.2 nm. It 

was surmised that the new light source was due to the coherent mixing of two electrical fields in 

the quartz as a second-harmonic response was produced in the material. Franken measured an 

optical conversion efficiency at 10
-10 

% and the SHG response was characterised by a quadratic 
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dependence on the strength of the applied optical field. From those observations, Bloembergen et 

al. [4] formulated many of the classical and quantum mechanical theory of nonlinear optics 

showing that the nonlinear responses of matter are extensions of the linear optical interaction, 

depending on more than one optical field strength. The fast growth in the nonlinear optical 

community has been driven, in part by the technological need for new coherent light sources and 

optoelectronic devices in the telecommunications industry. 

The general description of nonlinear optical properties in this thesis is referred to R. L. 

Sutherland “Handbook of Nonlinear Optics” [5], Y. R. Shen “The principles of nonlinear optics 

[6], and R. W. Boyd “Nonlinear Optics”[7]. 

In order to understand this phenomenon, we consider the macroscopic electromagnetism. More 

specifically, the propagation of light is governed by the four Maxwell’s equations in the time 

domain: 

              (1.1.a)  

                 (1.1.b)  

            (1.1.c)  

                       (1.1.d)  

In this set of equations,     and      are the macroscopic electric and the magnetic field vectors, 

respectively,      and     are the electric displacement field and the magnetic induction, respectively, 

and the quantities    and    are the free electric charge and the current density, respectively, 

which are often considered as the sources of the fields     and     . Most dielectric materials have 

no free electric charge, and hence we can set     . We shall further assume that there is no 

external current such that       . For a particular set of boundary conditions, Maxwell’s equation 

(Eq. (1.1)) cannot be solved uniquely unless the relationship between     and     and that between 

    and      are known. To obtain a unique determination of the field vectors, Maxwell’s equations 

must be supplemented by the constitutive equations, 

                   (1.2.a)  

                    (1.2.b)  
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where     and      are the electric and the magnetic polarisations, respectively. We can set      = 0 

since the material we use is non magnetic. The origin of electric polarisation     lies at the 

microscopic level. When an electromagnetic field is present in matter, the electric field perturbs 

the motion of electrons and produces a polarisation     per unit volume. The components of the 

instantaneous polarisation field      can be related to the component of the instantaneous electric 

field     of the optical beams with               via the Taylor series expansion [5, 6]. If we 

consider only a single polarisation component of the electric field,    can be written as: 

               
                        

                          

        
                                       (1.3)  

where the quantities     , known as susceptibilities, arise from the material’s atomic structure. In 

this series expansion, the susceptibility      decreases with successive terms, so we generally 

need to consider the highest order terms only. The first term depends linearly on the electric field 

and defines the refractive index of the material, i. e.           
   . The rest of the terms 

can then be identified as the nonlinear polarisation field. It explains a nonlinear relationship 

between the instantaneous polarisation of the material and an applied electrical field. Hence the 

polarisation field can be split into: 

                     (1.4)  

where      is the linearly dependant polarisation field and       contains the nonlinear polarisation 

field. We will see more closely in section 1.2.1, the possible nonlinear interactions due to the 

nonlinear polarisation field       and the nonlinear susceptibility     . 

1.2.1. Second-Order Nonlinear Interactions 

The susceptibilities      are the intrinsic properties of material. The nonlinear susceptibilities 

describe the coupling efficiency of n optical fields in the bulk region of the material. Their 

tensorial forms reflect the structural symmetry of the material. For instance, the nonlinear 

susceptibility      is a tensor of rank 3 (    ) with 27 components according to the Cartesian 
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axes (x,y,z). With the product commutativity of the electrical fields                  

                , the tensor can be reduced at 18 components.  

The nonlinear polarisation can be written under the Voigt form: 

 

     

     

     

      

                        

                        

                        

 

 
 
 
 
 
 
 

  
 

  
 

  
 

     

     

      
 
 
 
 
 
 

    (1.5) 

Kleinman also demonstrate that      is symmetric relatively to the axes [8] so that      

                             . It reduces the tensor to 10 components. Finally, using 

the contracted notation           where: 

   11 22 33 23 = 32 13 = 31 12 = 21 

  1 2 3 4 5 6 

 

We can write the new expression of the polarisation by using that notation: 

 

     

     

     

      

                  

                  

                  

 

 
 
 
 
 
 
 

  
 

  
 

  
 

     

     

      
 
 
 
 
 
 

     (1.6) 

In all materials with inversion symmetry, such as liquids, gases, amorphous solids, many crystals 

and optical fibres, i. e. the so-called centrosymmetric materials, the        tensor components 

vanish and third-order nonlinear effects take place due to      instead. These vanishing       

tensor components result from the odd inversion symmetry of the electric field vector     and the 

electric polarisation vector    .  
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There exists an important class of materials known as ferroelectric, of which Lithium Niobate 

(LiNbO3) is a member. These materials possess a spontaneous electric dipole moment      in zero 

external fields [7], which originates from the shift of an ion from a symmetrical site [9]. Note 

that in this case, the instantaneous polarisation is written as: 

                     

This symmetry breaking results in nonzero      tensor components [7], which are responsible for 

the nonlinear interactions we are interested in. Several second-order nonlinear interactions 

attributed to      are qualitatively described in this section. From Eq. (1.3), for linearly-polarised 

light, the second-order polarisation in a nonlinear material is given by: 

             
                     (1.7) 

Let us consider an electric field with two frequency components,    and    in a nonlinear 

crystal such as lithium niobate. The field can be represented in scalar form by: 

                                                            (1.8) 

 

where        
  

 
      

  

 
        with the above electric field, the second-order nonlinear 

polarisation [Eq. (1.5)] can be rewritten as follows: 

              
          

  
                              

                           

                                   

      
                                    

  

    
              

      
             (1.9) 
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(a) Sum frequency generation 

 

(b) Difference frequency generation 

Figure 1.1: Illustration of geometries and energy-level description for two different second-order 

nonlinear interactions in a nonlinear crystal. 

One readily identifies the different frequency components of the nonlinear polarisation from the 

following interactions: 

  
                     

                    second-harmonic generation        (1.10.a) 

                         sum-frequency generation        (1.10.b) 

     
                     difference-frequency generation    (1.10.c) 

    
      

               optical rectification         (1.10.d) 

The three first interactions are illustrated in Fig. 1.1. They are known as parametric interactions 

producing new frequencies. Although the three nonlinear effects may occur simultaneously, 

generally only one is favoured by the phase matching condition in the nonlinear crystal to 

generate an output signal efficiently. Hence, we can consider them separately. 

Let us consider the sum-frequency generation (SFG). The input electric field has two distinct 

frequencies 1 and 2 which interact with each other along the nonlinear material to produce an 

1

2

)2(

1

2

3

3  = 1 + 2

1

2

)2(

1

2

3

3  = 1 - 2 

2
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output wave at a frequency 3 = 1 + 2This phenomenon can be visualised in terms of photon 

virtual energy levels, as depicted in Fig.1.1(a). In this process, the photons with energy 

ћandћare destroyed in the material to generate a new one. The energy conservation 

dictates that the produced photon has an energy ћћ ћIn addition, the total 

momentum in the interaction must be conserved, i. e.                  This requirement for the 

conservation of momentum is best-known as the phase-matching condition. For a collinear 

interaction, the conservation of momentum translates into 3 n(3)= n() + n(). 

However, this condition cannot generally be satisfied due to the chromatic dispersion of 

materials, thus resulting in the phase mismatch                    . The phase mismatch 

deteriorates the power transfer between the three waves, reducing the conversion efficiency. 

Several methods have been proposed to achieve phase-matching which will be discussed in the 

next section. When the input waves are at a degenerated frequencies 1 = 2 this interaction 

contributes to second-harmonic generation (SHG) only. Both the phenomena are commonly used 

to generate electromagnetic waves at higher frequencies such as frequencies for ultraviolet that 

are inaccessible by standard quantum transitions of atoms and/or molecules.  

The principle of difference frequency generation (DFG) is schematically depicted in Fig.1.1(b). 

The two input electromagnetic waves have distinct frequencies 1 and 2 which interact to 

produce an output wave at a frequency 3 = 1 - 2. Both the energy and momentum must be 

conserved in this process, i. e. ћћ ћand                  Superficially, DFG looks 

similar to SFG. However, upon close inspection of the energy level diagrams in Fig. 1.1(b), only 

higher-frequency photon is annihilated and another photon at lower frequency (2) is created 

together with a new photon 3 in the nonlinear crystal. Therefore, the input wave at the lower 

frequency can be amplified. For this reason, this process is also known as optical parametric 

amplification (OPA) [10]. In this case, the ћphoton at the input of the crystal stimulates the 

process. However, it can also occur with the ћphoton at the input only, which is known as 

optical parametric fluorescence [11]. If the nonlinear crystal is put inside a resonator, the 

electromagnetic waves at and/orcanbuild up a very high power. This configuration is 

known as an optical parametric oscillator (OPO) [12] with wide wavelength tuneability. Recently, 

an OPO using two nonlinear crystals was developed, giving a very wide range of tuneability [13]. 
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Second-order phenomena 

Sum-frequency generation [4 - 8] 

Difference frequency generation [4 - 8] 

Second-harmonic generation [4 - 8] 

Parametric amplification [4 - 14] 

Optical rectification [15] 

Optical field induced magnetisation [5, 16] 

Electro-optic effects [17] 

Magneto-optic effects [18] 

Third order phenomena 

Stimulated Raman scattering [4 - 8, 19] 

Two-photon absorption [4 - 8, 20] 

Optical field induced birefringence [4 - 8] 

Self-focusing [4 - 8, 21] 

Phase conjugation [4 - 8] 

Third harmonic generation [4 - 8] 

Electric-field induced SHG (Poling) [4 - 8, 22] 

Degenerate four-wave mixing [4 - 8, 23] 

Table 1.1: list of second- and third-order nonlinear interactions 

Most of second- and third-order nonlinear interactions are listed in Table 1.1. Generally, optical 

damages in materials limit most nonlinear effects at these orders. 

1.2.2. Second-Harmonic Generation 

In this section, we provide detailed SHG process as well as rigorous mathematical description. 

The description is done through the formulation of coupled mode equations for SHG and is 

easily applied to SFG. The coupled-mode equations can be formulated with Maxwell’s equations. 

From Maxwell’s equations (Eq. (1.1)) and the constitutive relation (Eq. (1.2)) wave equation 

taking into account the nonlinear polarisation field can be obtained as: 

              
  

    
                

               (1.11) 

Note that a similar wave equation can be derived for the magnetic field vector     . The nonlinear 

driving term on the righ-hand side of the equation can be considered as a small perturbation to 

the linear differential equation on the left-hand-side, involving in light interaction between 

frequencies. This interaction leads to an energy transfer between the different frequencies during 
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the wave propagation. The solution of the above nonlinear wave equation can be written as a 

sum of their various frequency components: 

                                                      (1.12) 

where          is the transverse field profile, and        is the slowly-varying amplitude of the 

electromagnetic wave at a frequency   .  

With the plane wave approximation we have              . Moreover, if we assume that the 

transverse mode profile does not significantly change during the propagation,     is independent 

on z. The angular frequency    and the propagation vector      determine the phase velocity of the 

wave     
  

      
.  

We need to find equations for the amplitude       which describe the evolution of each 

frequency component    due to the nonlinear effects. Let us consider the monochromatic case 

with an electromagnetic wave at the fundamental frequency (FF)    . The single frequency 

wave interacts with itself and 

medium, thus producing the following nonlinear polarisation 

wave at its second-harmonic frequency (           ): 

                                 
                        (1.13) 

with     
         

     
   

 , and     
         

     
   

  

And                          
   

                             (1.14) 

For the sake of simplicity, we consider a FF wave with the polarisations parallel or perpendicular 

to the optic axis of the crystal, using only a single component of     
   

                 . 

The substitution of Eq. (1.13) and Eq. (1.14) into Eq. (1.11), and the use of the slowly-varying 

envelope approximation (SVEA): 
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yields the following coupled-mode equations that govern the evolution of the FF and the SH 

amplitudes in the 

medium [7]. 

       

  
           

                         (1.15.a) 

       

  
          

                                (1.15.b) 

where                    
    is the phase mismatch caused by dispersion in the 

material,    
   

            is called coherent length, and    
 

 
    

   
 the reduced second 

order nonlinear susceptibility.  

 The coupling coefficient   is given by: 

   
 

   
       

 
 

    
          (1.16) 

where           is the refractive index of the material, and  

      
                           

 

                     
        (1.17) 

is called the effective overlap area between the transverse field profiles of the fundamental (   ) 

and harmonic waves (   ). We will see how the effective overlap area is included in the so 

called Boyd and Kleinman coefficient when the fundamental wave is considered with a Gaussian 

profile. One other global consideration is to lay that     and     are planar waves and x-, y-axis 

independent. In that case, we have      which corresponds to the FF beam surface in the crystal 

bulk (at the beam waist position). Although Equation (1.15) can be solved analytically [24], their 

solution is far from simple.  
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Figure 1.2: Second-Harmonic Generation tuning curve. We note that the maximum generated 

SHG power occurs when phase-matching        is achieved. 

A simple solution would be beneficial as it would provide physical understanding of the process. 

If the fundamental wave has sufficiently low input power in a way that the initial power is 

reduced less than 20 % throughout the interaction length, it can be considered undepleted, i. e. 

            . Hence, the generated SH power in a material of length L can be obtained by 

integrating directly Eq. (1.15.b) with the boundary condition          : 

           
       

  
  

 

 
 
 

                
           

 

 
     (1.18) 

where    
            . Therefore, a 


material can usually be characterised by SHG tuning 

curve, which shows SHG power as a function of the phase-mismatch, as plotted in Fig. 1.2. 

Normally, the phase mismatch can be varied by tuning the temperature of material or the input 

wavelength.  

A part from phase matching, in order to increase the SHG power, it is seen from Eq. (1.18) that 

we should also have: 

 A high coupling coefficient  , which particularly means a low effective overloap area in 

order to increase optical power density. More specifically in bulk case, it requires to seek 

the smallest beam size when injecting light into crystal. In single mode waveguide case, 
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the effective area is defined by the thickness of the guide. An additional problem is that 

we will have to take into account the transverse modal dispersion. In the case of 

multimode waveguide the effective overlap area can be decreased due to the nonlinear 

interaction between modes. 

 A high interaction length L. In bulk configuration, the interaction length and interaction 

surface (connected to the beam waist size) are correlated, so it is necessary to optimise 

the rate between the two variables.  

 A high nonlinear coefficient d. It depends on the choice of materials and the light 

polarisation used. 

 Phase matching condition must be improved. It is therefore necessary to overcome the 

chromatic dispersion of materials. For that, we will show, in the following chapter, two 

well-known techniques that can be used in bulk crystals. 

 

1.2.3. Achieving Phase-Matching 

In order to satisfy phase matching condition, there exist two methods: birefringence phase 

matching and quasi-phase matching. The two methods will be described in this section. 

1.2.3.1. Birefringence Phase-Matching (BPM) 

A simple and common way to achieve phase-matching        is the use of material 

birefringence. The ordinary and extraordinary indices in birefringent materials can give rise to 

phase-matching between polarised input waves,    . However this method restricts the 

choice of the 

tensor component that can be used. In addition it is usually achieved by tilting 

birefringent crystal with respect to the optic axis maintaining perpendicular to the ordinary axis. 

Tilting crystal normally results in spatial and Poynting-vector walk-offs and these walk-offs 

shorten the effective interaction length, thus reduce nonlinear effects. In this case, the 

extraordinary refractive index is modified by the tilting angle θ between the fundamental 

propagation direction and the crystal optic axis (z): 

 

  
    

 
       

  
  

       

  
          (1.19) 
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According to Eq. (1.19), the index of refraction associated with the propagation of the 

extraordinary wave can vary from    at      to     at      . In a negative uniaxial crystal 

like Lithium Niobate, the ordinary index is greater than the extraordinary one (no > ne). The 

ordinary and extraordinary refractive indices of Lithium Niobate are illustrated in Fig. 1.3(a). At 

a given temperature for certain wavelengths, we observe that phase-matching for SHG is 

possible when   
      

   . The fundamental wave is polarised perpendicular to the plane 

containing the z-axis of the crystal and the wave propagation axis, whereas the polarisation of 

SH wave is parallel to this plane (Fig. 1.3(b)). Furthermore, the effective nonlinear coefficient 

corresponding to the described SH and FF polarisation is given by:    
 

 
    

   
. 

More generally, if the relation   
      

    is satisfied, we can adjust the refractive indices by 

changing the FF propagation direction and/or the crystal temperature. There exists an angle   at 

which   
         

   . In order to achieve phase-matching in Lithium Niobate, the FF beam 

is launched along   as an ordinary ray, the SH beam will be generated along the same direction 

as an extraordinary ray.  

 

Figure 1.3: (a) The ordinary (red) and extraordinary (blue) refractive indices of raw lithium 

niobate at a temperature T = 24.5 °C, calculated from the Sellmeier equation [25, 26]. In this 

figure,    influences the fundamental wave at 1064 nm whilst    influences the SHG wave 

at 532 nm. (b) Normal index surface for the ordinary and extraordinary rays in that case. The 

condition   
      

    is represented by the red point. 
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Figure 1.4: (a) type I phase matching (b) and type II phase matching for a negative uniaxial 

crystal. 

The situation is described in Fig. 1.4(a), where the angle is determined by the intersection 

between sphere corresponding to the index surface of the ordinary beam at    and the index 

surface of the extraordinary ray. The method of phase matching depicted in Fig. 1.4(a) is known 

as type I phase matching. It indicates that the polarisation states of the FF and the SH are 

mutually orthogonal. Another mode of phase matching is possible in which the FF wave is a 

mixture of ordinary and extraordinary wave. For negative birefringent crystal, the SH wave is an 

extraordinary wave. The latter is known as type II phase matching (Fig. 1.4(b)) and is generally 

possible when the birefringence (        ) is twice larger than the index change due to 

chromatic dispersion (       ).  

BPM has several limitations to satisfy the phase-matching conditions: 

 The nonlinear crystal must be birefringent. 

 The limited tuneability of nonlinear interactions.  

 The limited nonlinear coefficient used, particularly BPM method cannot exploit the 

diagonal components of the susceptibility      which are the highest in nonlinear crystals. 
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 The nonlinear interaction is usually non-collinear, with a short interaction length and high 

angular sensitivity. 

 The generated beams have different polarisations. 

 

1.2.3.2. Quasi-Phase Matching (QPM) 

An alternative scheme, called quasi-phase matching (QPM), to compensate continuous phase 

drift was proposed by Armstrong et al. in 1962 [24]. The scheme involves a periodically-

repeated inversion of the relative phase between the fundamental and the second-harmonic 

waves. The inversion period corresponds to an odd number of coherence lengths, in order to gain 

the SH wave along the interaction length. It consists of a      micro-structured and geometrical 

shape in which the nonlinear coefficient sign is different from the background sign. In 

ferroelectrics, we use a repeated sign inversion of     . This can be done by reversing the 

spontaneous polarisation      every coherent length   . For example, this can be achieved by 

applying a spatially periodic external electric field onto a ferroelectric material, i. e. electric field 

poling, in order to reverse      with a period of twice coherence length   . The evolution of the 

second-harmonic wave along the interaction length is illustrated in Fig. 1. 6.   

In this section, the basic theory of quasi-phase matching SHG is presented in the wave vector 

mismatch domain also called Fourier transform approach [27]. It can also be presented in the 

space domain as discussed by several authors [27]. The phase-matching condition can be 

satisfied by spatially varying the nonlinear coefficient      for SHG. From Eq. (1.15.b) with no 

pump depletion, we get: 

 

       

  
         

                       (1.20) 

And assuming that      consists of domains of nonlinear coefficient    with sign changes 

periodically at every half period  
  . 

Let us write the normalised form of      as      
    

 
, taking any value between +1 and -1 for 

     . This function represents the space dependence of the nonlinear coefficients function. 

Equation (1.20) then takes the form: 
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               (1.21) 

where       is the Fourier transform of      and called the mismatch function. It can be 

described by: 

      
 

 
     

 

 
                      (1.22) 

In the case of a rectangular wave of period  , having the values ±1,      can be written with the 

positive sections of length l, by: 

         
  
                     (1.23) 

By the mth-harmonic grating wave vector    
   

 
 which is considered as closed to   , we 

have the total wave vector mismatch: 

                     (1.24) 

Assuming an achieved phase matching      ,  

         
  
                     (1.25) 

and noting the duty cycle as D   
  

  , the corresponding Fourier coefficient is found using a 

standard transform pair to be: 

    
 

  
                   (1.26) 

Equation (1.26) shows that the optimum duty cycle for odd number m is 50 %. In that case, as 

shown in Fig.1.5, we will only consider the 1
st
 order QPM, in order to simplify the calculation. 

Likewise, the optimum duty cycle for m = 2 is 25% - 75 %. The second order QPM corresponds 

to the alternating domains of    and    . 
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Figure 1.5: Dependence of the nonlinear coefficient       and thus the normalised efficiency 

with respect to the duty cycle of the 1
st
, 2

nd
, 3

rd
, and 4

th
 QPM order. 

In a Fourier space picture, also called reciprocal lattice space, the compensation can be achieved 

by a periodic structure of which the reciprocal lattice vector may create new phase matching 

between the fundamental and the harmonic waves. The periodic inversion of the nonlinear 

coefficient along the interaction length can be represented by the following Fourier series from 

Eq. (1.20): 

               
    

 

  
           

                 
 

 
        (1.27) 

               
       

  
         

      

 
      

     

 
     (1.28) 

Thus, we can notice two differences between QPM and perfect phase matching. First, the phase 

mismatch includes an additional term   , introduced by a periodical modulation of the nonlinear 

coefficient, secondly, the effective nonlinear coefficient is reduced by a factor   .  

Hence, we find that the intensity of the second harmonic        for the case of perfect QPM 

(     ) after an interaction length L and pumped with an intensity    : 

          
       

                  
       

              (1.29) 
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So, the interaction efficiency is proportional to the absolute square of the relevant Fourier 

coefficient   . We show now the relation to         as the normalised efficiency as illustrated 

in Fig. 1.5. 

We find that at an optimum duty cycle D, for which the sin factor is unity, the effective nonlinear 

coefficient is written:          
  

  
. 

QPM order (m) Duty cycle (D) % QPM/BPM 

1 50 (2/)² 

2 25/75 1/4(2/)² 

3 17/50/83 1/9(2/)² 

4 12/38/62/88 1/16(2/)² 

 

Table 1.2: Conversion efficiency rate between BPM and QPM considering the nonlinear 

coefficient constant. 

Note that the duty cycle of crystal must be known in order to look on the contribution of each 

QPM order (Fig. 1.5) in the conversion efficiency. It is also noted that the duty cycle is chosen 

with respect to the coherence length and the QPM conditions which can be varied by temperature 

or pump wavelength. Thus, in order to modify the coherence length without lattice change, we 

have the possibility of varying wavelengths or temperature for SHG associated with a QPM 

order. Thereafter, for a given duty cycle (D = 50% in our case), we will define the global 

nonlinear coefficient         =          , with an odd number m. As expected, the 

maximum nonlinear interaction efficiency is achieved from the first order Fourier components 

(m = 1).  
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Figure 1.6: SHG power as a function of the propagation length in the units of coherence 

length for non-phase matching (green line), phase matching (red line), first-order quasi-phase 

matching (dark blue line) and second order (blue line) conditions. 

For Lithium niobate, the QPM scheme is normally implemented with     
   

 which is the highest 

     tensor component of the crystal. Although the QPM scheme only allows 64%  
 

 
  of     

   
, it 

still provides a significant improvement of about 16 times over the birefringent phase-matching, 

considering     
 

 
    

   
          and       

 

 
    

   
         . Besides, the low 

birefringence of Lithium Niobate renders impossible to SHG in blue using BPM, whilst QPM 

can be achieved at any frequencies by an appropriate choice of the grating period. 

To resume, some benefits are found for QPM: 

 An access in all nonlinear materials, particularly having low-birefringence properties. 

 The ability to realise phase-matching at any frequencies in the crystal transparency range. 

 The phase matching is realised in collinear direction and by keeping the same 

polarisation between pump and generated beam. 

 An access to largest nonlinear coefficients, as illustrated with LiNbO3. 
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1.2.3.3. Second-harmonic conversion efficiency 

We can notice that the maximum SHG power occurs when the phase-matching        is 

achieved. As is apparent from Eq. (1.18), for     , the resulting power scales quadratically 

with the interaction length. When the conversion efficiency is very low (              ), it 

can be considered from Eq. (1.18) that the fundamental wave amplitude is not depleted and 

remains almost constant over the interaction length L. Thus, the expression of the SHG power 

with the interaction length L in a nonlinear medium is written as: 

            
       

  
  

 

 
 
 

              
 
      

        
    

             (1.30) 

where the normalised conversion efficiency      is the intrinsic nonlinear property of 


 

material at a frequency     . That value is independent on the input fundamental power and the 

interaction length: 

      
       

 

      
       

  
 

    
         (1.31) 

There are several ways to represent the conversion efficiency. The intrinsic conversion efficiency 

     is usually expressed in %.W
-1

.cm
-2

. Generally, for common nonlinear crystal like LBO, 

BBO, BiBO, KTP, LiNbO3, LiTaO3 and their periodically-poled derivatives, their intrinsic 

conversion efficiencies vary between 0.01 and 2%.W
-1

.cm
-2

. Another representation of 

conversion efficiency is the simple ratio between the SHG and FF powers. We see from Eq. 

(1.29) that the SHG power varies quadratically with the pump power. We define the nonlinear 

conversion efficiency as a drive parameter   : 

    
      

   
                   (1.32) 

Its unit is usually expressed in percentage (%).  We will use both of these notifications      and 

  to compare our final results considering the constant pump power. However, in the case of 

pump depletion (SHG power is very high), it is necessary to include a z dependence on       . 

When we integrate Eq. (1.15) including the pump depletion, we will get: 

    
      

   
                         (1.33) 
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As things stand, we will see that pump depletion consideration is not relevant, especially for a 

continuous wave source with low power density. 

1.2.3.4.Tuning and bandwidths in periodic structures 

For practical applications of QPM devices, it is important to establish the tolerances for 

variations in temperature, wavelength or angle, by estimating their effects on the conversion 

efficiency [27]. The angular dependence concerns particularly 2D nonlinear photonic crystals 

and will be discussed later. The conversion efficiency is investigated by taking into account the 

phase mismatch induced by these different parameters. For a device of total length L containing a 

uniform period, the phase matching factor for the power conversion efficiency in Eq. (1.27) 

relies on,           
 

 
 , so that QPM condition is similar to that of BPM. It only has been 

shifted by the wave vector    of the periodic structure away from the bulk value of   . We may 

use the fact that         
 

 
      when   

 

 
        , to find the full width at half 

maximum (FWHM) acceptance bandwidth for quantities as temperature, wavelength and angle 

tuning which affect the total wave mismatch. 

The FWHM bandwidth of the SHG tuning curve in Eq. (1.18) is given by:  

      
      

 
          (1.34) 

Considering              is a function of a parameter   (with   the FF wavelength or the 

crystal temperature), Fejer et al. developed the total phase mismatch in a Taylor series with 

respect to the value     such as phase mathing is achieves (   
       ):  

   
                 

  
    

 
 

 
      

   
     

      
+…   (1.35) 

In this case,    
  is widely accepted as a first order dependence on   and the higher order terms 

can be neglected. The FWHM bandwidth of length     is found by solving Eq. (1.35). The 

solution gives: 

            
           

  
  

  
      

 
      

  
  

    (1.36) 
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We will use this result throughout this section to calculate bandwidths for fundamental 

wavelength, temperature and angle of incidence. Note that it is inversely proportional to the 

interaction length. We will see that a large deviation from phase mismatching reduces 

significantly the conversion efficiency because a high power and/or a strong thermal effect can 

alter the acceptance bandwidth [27]. 

1.2.3.5. Spectral bandwidth 

It is obvious that the fundamental wavelength tuning has no effect on periodicity of the structure 

(  ). Thus, the unique contribution to the derivation of    
  comes from the phase mismatch 

due to the material: 

    
           

 
.          (1.37) 

Taking Eq. (1.36) the wavelength bandwidth is given by: 

        
    

 
 
   

  
 
      

  

  
    

 
  

       

   
 

  

    

  
 

 

 

    

  
 
      

  

  (1.38) 

where      is the value of the wavelength when         
 

 
     . The index variation with 

respect to the wavelength can be obtained numerically by using the Sellmeier equation fits for 

the material being used. At longer wavelengths the bandwidth tends to increase because of the 

decrease in index variation. Equation (1.38) is widely used to determine the interaction length 

experimentally by tuning the fundamental wavelength. But in our work, we will study rather the 

temperature bandwidth to calculate the interaction length and compare for the cases of bulk and 

waveguide. 

Figure 1.7 shows the theoretical single-pass nonlinear conversion efficiency for a nonlinear 

photonic crystal    studied in this thesis versus SHG wavelength at low-conversion efficiency 

(see Eq. (1.18) for the sinc dependence). 

          
  

 
              

   

  
  

 

 
       (1.39) 

In this case, we assume that the total periodically-polarised length (6 mm) is equal to the 

interaction length in the optimum configuration. 
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Figure 1.7: Theoretical nonlinear conversion efficiency (from Eq. (1.28)) as a function of the 

generated harmonic wavelength for collinear QPM SHG with           ,         

     m, and     mm, the total periodically-polarised length of our samples. 

 

1.2.3.6.Temperature bandwidth 

When the temperature is tuned, not only    changes due to the temperature dependence of 

refractive indices, but also the crystal undergoes a thermal expansion which alters both the 

period  , therefore   , and the total length L of the device. 

In this case, we must take the derivative expression with respect to the product       instead of 

  . At a temperature  , considering    
        we have the following Taylor series: 

   
                          

        
                (1.40) 

Firstly, with      
                and if we define   as the coefficient of the thermal 

expansion by: 

   
 

 
              (1.41) 

It means that              and          
  

    
        . 
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In literature, the first order thermal expansion for congruent lithium niobate (48.6 mol.% LiO2, 

poled along Z-axis) is 15.10
-6

 /°K along the z-axis direction correspond to the axis of wave 

vector propagation in the crystal. That value is 8 times higher than the coefficient of silicon. Now, 

taking                       , we get the expression: 

       
                    

  

 
             (1.42.a) 

   
             

  

 
                  (1.42.b) 

with    the fundamental wavelength. Otherwise, we find that in Eq. (1.42), the terms involving 

   are cancelled.  

Finally, we get: 

   
                     

  

 
               (1.43) 

If now, taking Eq. (1.36) we can have the temperature bandwidth: 

        
      

 

 

  
                

        (1.44) 

By determining        experimentally and calculating the    term with the Sellemier fits of 

the material, it is possible to estimate the interaction length L in a bulk or a waveguide. The 

semi-empirical determination of L by this method will be presented in chapter 3. 

Figure 1.8 presents the theoretical temperature dependence of the conversion efficiency for the 

same nonlinear photonic crystal studied in Fig. 1.7. Using Eq. (1.27), the theoretical curve shown 

in Fig. 1.8 is obtained from: 

          
  

   
                

   

     
  

 

 
      (1.45) 

We assume that the periodically-polarised length is equal to the interaction length in the 

optimum configuration. In this thesis, only the temperature bandwidth will be investigated in 

order to determine the interaction length.  

 



  
Page 38 

 
  

 

Figure 1.8: Theoretical conversion efficiency (from Eq. (2.28)) as a function of the crystal 

temperature for collinear QPM SHG with          nm,              m, and     

mm, the total length of one of our periodically-polarised samples. 

As the grating period   depends on the crystal temperature  , it can be read as: 

                                     (1.46) 

where the grating period is designed at a room temperature of 25°C. In fact, the thermal 

expansion coefficient   is very small. This can modify up to   0.03% of the grating period at 

200°C (the maximum temperature used in this thesis). So unlike the thermal variation of index, 

we neglect the thermal expansion dependence on the grating period later in our calculation. 

1.2.4.  Materials for QPM 

As we have seen in section 1.2.3.2, the frequency conversion by QPM needs a periodical 

modulation of the nonlinear coefficient in the crystal. In this section, we make a brief list of the 

principal materials used for QPM, mainly focused on LiNbO3. Thus we will show why lithium 

niobate is an ideal material for the realisation of periodically poled structures. More details will 

be given in chapter 2 for the realisation of PPLN by applying high electrical field. This will be 
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the opportunity to present the developed method at the Graduate Institute of Photonics and 

Optoelectronics (GIPO) at NTU. 

1.2.4.1. List of materials 

Different materials are used for QPM applications. Few works use semiconductors as CdTe or 

AlGaAs [28], but most of the research were conducted on dielectric and ferroelectric components.  

Lithium tantalate (LiTaO3) can be especially cited, as its transparency domain reach short 

wavelength, with high nonlinear coefficient and high optical damages threshold. [29 - 31]. 

Further works were done with KTP (KTiOPO4) [32]. This material is even used on marketed 

chipsets. However, KTP has a high ionic conductivity so the electrical poling method which will 

be introduced in the next sections is not available with this material. Besides, a physical-

chemical treatment has to be done before using. It consists on exchange potassium ions with 

rubidium ions on the surface of the crystal (RbTiOPO4) [33].  It induces lower ion mobility as 

rubidium has a bigger size than potassium. Risk et al. [34] realised QPM experimentations with 

RTA (RbTTiOAsO4). They used poling process proposed by Myers et al. [35]. This short list of 

materials show the furnished effort in research in order to develop PP structure for different 

applications: tuneable OPO laser sources, UV laser sources, integrated laser systems etc. 

We have oriented our choice on congruent LiNbO3. This material has one of the higher nonlinear 

coefficients for SHG applications. Furthermore, this material has interesting properties for 

fabrication of optical integrated components. 

1.2.4.2. Lithium Niobate 

In this section, the crystal nature of lithium niobate (LiNbO3) is described. This will allow us to 

introduce the reversal polarisation phenomena in such crystal.  

Lithium niobate is a dielectric which does not exist in the natural state. The crystal was 

synthesised and described for the first time in 1928 by Zachariasen, but it is in 1948 that the 

ferroelectric character is described by Matthias and Remeika in Bell laboratories. The interest on 

this material increases in 1965 when Ballman and Fedulov announced independently the 

synthesis of monocrystals by Czochralsky method.  
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The crystal has further electrical properties in addition to the presence of a spontaneous 

polarisation. It has high piezoelectric coefficients (                   , 

                   ) which is used for the fabrication of BAW (Bulk Acoustic wave) and 

SAW (Surface Acoustic Wave) sensors or resonators. The crystal has also a pyroelectric property 

meaning that the spontaneous polarisation decreases with temperature. An electric field appears 

when the material is subjected to a temperature gradient. The pyroelectric coefficient of lithium 

niobate is              making it a good material for application in IR detection. 

Its structure is generally represented by a stack of plans in a direction noted c+ and composed by 

three atoms of oxygen. Each successive triangle is shifted with an angle of 60°. It means that two 

successive plans form an octahedron. Considering that there is no stoechiometric defaults in 

crystal, ions of lithium (Li
+
) fill the centre of the triangles for one third and ions of Niobium 

(Nb
5+

) fill the centre of adjacent octahedrons as shown in Fig.1.9. Under the Curie temperature 

(1120°C), lithium niobate is in ferroelectrique phase. The high Curie temperature indicates that 

the ferroelectric phase has good thermal stability. In this case, the positions of Li
+
 range from 

0.037 nm perpendicularly to the oxygen plans, taking away the Nb
5+

 from their initial position. 

The shifted position of ions is causing the spontaneous polarisation. The passage from one 

polarisation state to another is structurally realised by the passage of the lithium ion from one 

side the other of its nearest oxygen plane.  

The crystal has an asymmetric configuration along the c axe. Figure 1.9. shows a perspective of 

(b) ferroelectric and (a) paraelectric phase where the spontaneous polarisation disappears. The 

paraelectric phase is observed at a temperature above the Curie temperature. There is different 

method to increase the Curie temperature in this material: when the ratio Li : Nb is close to the 

stoechiometric ratio or when the crystal is doped with MgO. 

LiNbO3 crystallises in a rhombohedral lattice R3c, but is often describe as a hexagonal lattice 

considering three rhombohedral cells. The structure has three mirror planes forming an angle of 

60° between them. The crystal is included in the symmetry group 3m with three symmetry axes 

around the c-axis as shown in Fig. 1. 9.(c). The convention sets the z-axis parallel to the c-axis, 

the y-direction is in one mirror plan, and the x-axis is normal to the y direction such as the 

triedron 0xyz is direct. 
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Figure 1.9: Position of Lithium and Niobium atoms compared to Oxygen plans in (a) para-

electric and (b) ferroelectric phases in LiNbO3 [36] . (c) The oxygen atoms form the 

hexagonal lattice, the mirror plans are represented in broken lines. 

The z+ face is defined as the side of ions Li
+
 and Nb

5+
. The poling process requires the z+ face 

identification, generally by using the pyroelectric effect: two electrodes are set on the z+ and z- 

faces of the sample and are connected to an ammeter. When the crystal is heated, the sign of the 

output current identifies faces. 

1.2.4.3.Poling methods 

Further methods have been developed for the periodically poling of the spontaneous polarisation 

in ferroelectrics. It mainly concerns ionic diffusion or exchange, or by applying a periodical 

electrical field. In all configurations, a mask is used for photolithography, allowing the repetition 

of the pattern in micro-scale on bulk. The first results have been performed in integrated optics 

by using the ionic exchange or ionic diffusion on localised surface of the sample. The first PPLN 

have been realised by Ti in-diffusion process [37 - 39], by diffusing titanium strips at 1000°C on 

z+ face. The poling process is realised in the diffused volume and creates no index modulation. 

In 1987, Nakamura et al. reported another heat treatment with LiO2 out-diffusion, which induces 

domain inversion in lithium niobate. The presence of titanium or the Li deficiency in the crystal 

is thought to lower the Curie temperature [40] and enables the pyroelectrically induced field to 

reverse the spontaneous polarisation [41]. Miyazama et al. [42] explain the partial domain switch 

of the spontaneous polarisation with the Titanium gradient concentration creating a field of 

charges. 
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PPLN were also produced using a modified-growth process which involved the application of a 

periodically alternating electric filed during growth. Two growth techniques are currently used. 

The first one is the laser heated pedestal growth (LHPG) based on the fusion of a compressed 

mono or polycrystalline powder rod  by a CO2 laser at 10.6 m. The orientation of the crystal is 

controlled by modifying the atmosphere or the pulling speed [43]. The second method comes 

from the Czochralsky (CZ) method and is called off-centred growth. It allows the fabrication of 

large size monocrystal with high optical quality. The reagents are lithium carbonate (Li2CO3) and 

niobium pentoxide (Nb2O5) and are annealed at 1000°C – 1200°C for 8h - 10 hours to ensure 

completion of the solid state reaction between the components of the compound and release of 

CO2. Then, the melts are fused just over the melting-point of the material (1250°C for LiNbO3) 

with a rotation of the system according to the temperature gradient.  Bermudez et al. [44] have 

observed that the local variation of the components induced the formation of domains which 

have opposite spontaneous polarisations and the crystal has an eccentric growth comparing with 

the temperature gradient. The phenomenom is similar if the crystal is doped with ion of Yb
2+

 

where its concentration gradient forces the direction of the polarisation at the Curie temperature. 

The next technique developed for domain inversion involved proton exchange in benzoic or 

pyrophosphoric acid followed by a heat treatment at a temperature just below the Curie 

temperature [44]. Mizuuchi et al. [45, 46] explain that the diffusion of protons creates a 

substitution of ions Li
+
 by H

+
 in the crystal. Diffusion creates a sufficient electrical field to 

switch the polarisation. Fabrication process had developed sufficiently to allow a device of 

inversion period less than 4 m to be fabricated for first-order SHG of blue light in lithium 

niobate [47]. 

All the processes mentioned required high temperature treatments which could degrade the 

sample for optical application. The first demonstration of room temperature domain inversion 

was reported in 1991 by Yamada and Kishima [48] in lithium niobate by using Electron Beam 

Scanning. They discovered that direct electron bombardment at 25 eV on the negative side of 

crystal caused domain inversion on a distance 100 times greater that of electron penetration in 

bulk. This technique was immediately applied to LiTaO3 [49], KTP [50], MgO:LiNbO3 [51] and 

Ti:LiNbO3 [52] and developed for harmonic generation with domain inverted grating periods of 

3 m. Recently, nano-domain (100 nm) structures are produced by Pulse Laser Heating [53] and 
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new techniques are developed by Vapour Transport Equilibration (VTE) treatment during the CZ 

growth in Nd doped near-stoichiometric LiTaO3 having a low coercive field [54] or by plasma-

source ion irradiation (Ar
+
), increasing the conductivity by oxygen out-diffusion [55]. 

The use of electrical field at room temperature had also been developed in 1993 [56]. The 

fabrication process was sufficient to produce fine period devices. The technique was developed 

in other materials, including LiTaO3 [57], MgO:LiNbO3 [58], Ti:LiNbO3 [59], RbTiOAsO4 [60] 

KTiOAsO4 (KTA) [61] and KTP [62] for use in frequency generation. In the next section, we 

develop in details this fabrication, especially the one developed by Miller [37]. 

1.2.4.4. Poling Process according to Miller’s model 

Presently, the most widely used method for the realisation of QPM structure is the electrical field 

application made through related micro-electrodes and deposited on crystal surface. Different 

factor influence the fabrication and the QPM lattice quality: how electrodes are deposited, nature 

of liquid or gel involved in electrical contact, nature of applied electrical pulses on the sample 

(current, voltage, duration). G. D. Miller [37] conducted a complete study on these poling 

parameters and particularly, their influence on nucleation site density and reversed domain sizes 

(depth and diameter). Miller developed a model in order to predict the electrical field distribution 

in the crystal according to the geometry of electrodes. Four interesting observations have been 

expressed from the model: 

 The electrical poling method proceeds step by step. 

From Miller’s calculation, the optimal applied electrical field has been determined as well as its 

spatial distribution. Following his observation, the model takes into account different 

assumptions in domain kinetics (domain creation and propagation) during electric field periodic 

poling: 

-The poling domains are flat and normal to the crystal-x axis. The domains define regions 

in the crystal where the spontaneous polarisation is reversed comparing to the original 

crystal polarisation (Fig. 1.10). 

The created domain walls grow transversally according to the z-component of the poling 

field. 
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-The domain walls have a transversal velocity related with the z-component of the poling 

field which is the same everywhere in the crystal. 

-The nucleation occurs exclusively at the electrodes (domain nucleation). 

-The ionic conductivity is neglected in all crystal volume. It indicates that dielectric 

relaxation times of the ferroelectric are assumed to be much longer than the poling time. 

 

Figure 1.10: Illustration of typical domain configuration of electric field periodically poled 

LiNbO3. The directions of spontaneous polarisations are in the crystal-z axis and periodically 

inversed (black arrows). 

 

Figure 1.11: The six stages of domain kinetics during electric field periodic poling [37]. (a) 

Domain nucleation at the electrode edge. (b) Domain tip propagation toward the opposite face of 

the crystal. (c) Termination of the tip at the opposite side of the crystal. (d) Rapid coalescence 

under the electrodes. (e) Propagation of the domain walls out from under the electrodes. (f) 

Stabilisation of the new domains. 
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Furthermore, from these assumptions, the growth of domains is given in six steps shown in Fig. 

1.11. First, domain nucleation starts at the edge of the electrodes. The created domains have a 

conical shape with a hexagonal base. Then, the domains propagate toward the opposite face of 

the crystal wherein the apex widen and take a hexagonal shape. Thus, the created domains have a 

tubular shape with a hexagonal cross section. At least, the domain wall spread out in the 

perpendicular direction to that of the applied field, firstly under the electrodes and then at both 

sides of the electrodes.  

 The electrical poling field has been determined depending on the crystal type. 

R. C. Miller et al. established a method to measure [63] the domain walls velocity according to 

the field magnitude. In 1994, G. D. Miller used that method for LiNbO3 by varying the electrical 

field from 19 kV/ mm to 28 kV/ mm [37]. He observed that domain wall velocity varying over 

10 orders of magnitude in this interval with an inflection point measured at 20.75kV/ mm. At this 

value called coercive field of the material, the domain wall velocity is most sensitive to electrical 

field modifications and has a value of 10
-5

 mm/s. It is important to consider this value when 

reversed domains grow beyond electrodes, electrical charges are deposited on surface, 

decreasing the field value in material. Thus, it has been observed that with an electric field 

density of 20.75 kV/mm, poling stops before the complete reversal of polarisation within crystal 

(the coalescence). 

The poling field density is generally determined by the study of the spontaneous polarisation 

hysteresis loop. It consists on applying a long ramp voltage (few seconds) from 0 to several 

kV/mm depending of the material and measuring the matched poling current delivered by the 

crystal. When we proceed in this way, a poling current is recorded when the applied voltage is 

sufficient to reach the coercive field. G. D. Miller determined that the coercive field for reversing 

and maintain the polarisation is 22.9 kV/mm and the coercive field to restore the original 

polarisation is -17.6 kV/mm [64]. The obtained hysteresis loop (Fig. 1.12) is used as an indicator 

of a built-in field.  
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Figure 1.12: Hysteresis loop for LiNbO3 [64], showing the needed coercive field in order to 

reverse the spontaneous polarisation (22.9 kV/mm) and restore it (17.6 kV/mm) 

However, there are still some fundamental problems in such materials for fabricating precise 

domain structures. The high electric field density required a large internal field for domain 

switching. It poses limitations on the sample thickness and the ability to control domain 

periodicity. In our case, we have studied congruent lithium niobates undoped and doped at 5% 

mol with magnesium oxide (MgO). One of the advantages in MgO doping is that it increases the 

intrinsic conductivity of the material, reducing the applied electrical field density to 4.5 kV/ mm 

while maintaining an accurate control of the domain propagation during poling process. 

 The period and the geometry of electrodes have been studied, particularly for 

determining the fill factor at 50 % in PPLN.  

In this work, our goal is to realise a PPLN structure for SHG at a wavelength of 1064 nm. Thus, 

according to the QPM conditions, the period is determined at ~ 6.9 m and the fill factor is 

fixed at 50 %. According to Miller’s results [37], we use a lattice of electrodes with a period 6.9 

m and the electrodes width (or diameter) is chosen at ~ 2.5 m. The periodic electrodes are 

prepared by a lift-off process on the z+ face of the mono-domain crystal. The total process is 

explained in chapter 2. 
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Furthermore, it is interesting to note, that for 1D PPLN, Miller have determined that the angle 

between the electrodes and the crystal directions OX and OY has influence on the domain wall 

propagation. The best results have been obtained when electrodes are parallel with the OY 

direction.  In our case, this consideration is not necessary, knowing that the inversed domains are 

symmetrical according to these axes. 

 The metal of electrodes is selected according to their relative influence on 

nucleation site density (NSD) after poling process. 

Miller tested different metal for electrodes such as aluminium, molybdenum, titanium, tantalum, 

chrome, nickel or nichrome. It has been determined that sputtered chrome, nichrome and nickel 

on z+ face greatly increase the NSD. We settled on titanium electrodes which has a lower cost 

for similar properties. 

In the classic poling method, the electrodes lattice in direct contact with the crystal surface is 

subject to as slightly higher electrical field than the coercive field of the material. This electrical 

field is applied until the total formation of domains under the electrodes and toward the opposite 

face of the crystal. Then, it is usual to slowly decrease the electrical filed magnitude to zero, in 

order to avoid backswitching phenomena within domains. It corresponds to a return of the 

polarisation in its initial direction. Shur et al. [39] used this phenomenon in order to produce 

submicron domain patterns through multiplication of the domain spatial frequency compared 

with the electrode one. In fact, when the electrical field is sharply reduced to zero, the 

backswitching happens only at the electrode edge. 

1.3.  General theory of integrated optics 

Generally, dielectric media of high refractive index can be employed to confine the propagation 

of the beam. In this section we develop the general theory about the propagation of light in 

planar guiding structures. These structures can support confined and guided electromagnetic 

propagation. As we know, any light beam with a finite transverse dimension diverges as it 

propagates in a homogeneous medium. This divergence disappears in a guiding dielectric 

structure under certain conditions. We shall derive first the properties of guided modes in an 

asymmetric planar waveguide. The guided optical waves are presented as the solution of the 
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eigenvalue equations derived from Maxwell’s equations, which are subject to the boundary 

conditions imposed by the waveguide geometry. Both the transverse electric (TE) and magnetic 

(TM) modes of the guided waves are presented in this section [65]. 

1.3.1. Planar optical waveguides 

A planar optical waveguide can be built up into the superposition of three homogeneous and 

transparent dielectric layers. As shown in Fig.1.13, we call   ,     and    the refractive index 

of the air (zone I when      ), the guiding zone (zone II when          ), and the substrate 

/ optical barrier (zone III when     ), respectively. In the guiding zone, the optical wave can 

be confined by total internal reflection (TIR) between the two interfaces when           . 

In this case the TIR is achieved at an angle  , but limited by a critical angle    with       

     
  

   
 . 

We will have to solve the equations of the propagation of an electromagnetic (EM) wave along 

the z-axis in the waveguide. The EM field at the pulsation   is progressive along the axis and it 

can be decomposed as: 

                                         (1.47)  

We set   the component of the wave vector in the z-direction, so the propagation constant is 

written by              and                 . The norm of the propagation vector 

relies on   inducing dispersion in material.  

 

Figure 1.13: Schematic diagram of a planar optical waveguide with step index. The guiding layer 

must have a higher refractive index than those of the other layers in order to confine the 

electromagnetic wave.  
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In order to get the EM field profile and the dispersion equation of the guided waves the ray 

theory can be used, but in our case, Maxwell’s equations will be solved.  

We consider that in the structure, each zone is set to be dielectric medium (    ,       ), with 

their own permittivity    
 (        ), knowing that    

   
  . The permeability remains 

constant and equals to   . Thus, Maxwell’s equations of the electric field     and the magnetic 

field      are written as: 

                      

                    

                   

                   

       (1.48) 

                     

                   
   

                   
  

                   
  

      (1.49) 

We will be interested in the electrical transversal modes (TE) and magnetic transversal modes 

(TM), knowing that all EM waves can be expressed as the linear combination of these 

polarisations. The TE and TM calculations will be detailed. 

In the case of TE polarisation: 

The electrical field is in the y-direction so that      and     . The medium is considered as 

uniform in this direction, so     . From Eq. (1.48) and Eq. (1.49) we can deduce that    

     . Likewise, noting the operator         we have from Eq. (1.49): 

    
 

   
                 

 

   
              (1.50) 

Finally, we get Helmholtz’s equation of the electrical field in the three zones: 

  
         

    
                 (1.51) 

In the case of TM polarisation: 

In this case, the magnetic field is in the x-direction, thus         , the Maxwell equations 

are written as: 
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          (1.52) 

Therefore, we obtain Helmholtz’s equation of the magnetic field in the three directions: 

  
         

    
                 (1.53) 

The global nature of the solutions EM field in Eq. (1.51) and Eq. (1.53) depends on the sign of 

each term    
    

     : 

 If     
     

        , the solutions are divergent in the three zones, so there is no 

physical solution. 

 If     
     

       , and     
    

      < 0, we get a real sinusoidal solution in 

the waveguide (zone II) and its amplitude decreases exponentially beyond the waveguide 

(zone I and III). These conditions are necessary to observe the guiding properties of the 

waveguide. In this case the propagating EM field will be introduced by using the 

boundary conditions. 

 If     
    

       , the solutions are sinusoidal in the waveguide and in the substrate: 

the EM field leaks out of the waveguide. This corresponds to radiating EM field. 

 

1.3.2. Expression of the EM field profile 

In the case of TE polarisation: 

In the guiding configuration, we have expressed in each zone the electrical field      , such that: 

      

 
  
 

  
                                                        

    
              

                                            
      

              

                                                     
    

                

   

(1.54.a) 
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We call      
 

  
   the effective refractive index of the propagated EM field in the central 

layer. Taking into account this solution in Eq. (1.49), we find the expression of the magnetic 

field in the z direction: 

       

 
 
 

 
   

  

    
                                                               

   

    
                                                 

 
  

    
                                                                

     (1.54.b) 

Finally, by applying the boundary conditions to each component of the EM field: 

                                                  

                                                  
     (1.55)  

It is possible to calculate the constants    ,    and   : 

 
 
 

 
 

     

     
  

   
  

               
  

   
            

        (1.56) 

The normalisation constant    is chosen so that the field    corresponds to a power flow of 1 

Watt (per unit width in the y-direction) along the z-axis. The normalisation condition is given by 

[65]: 

    
 

 
              

 
            (1.57.a) 

Or equivalently, from Eq. (1.52):  

 
 

 
    

  

  
  

     
 

    
        

   

  
         (1.57.b) 

The substitution of Eq. (1.54.a) for the wave function in Eq. (1.57.b), carrying out the integration, 

leads to: 

        
   

      
 

  
 

 

  
     

    
  

 

   

       (1.58) 



  
Page 52 

 
  

Thus, for this structure, we have presented the behaviour of the EM field in the guiding 

configuration which imposes the existence of a sinusoidal solution within the middle layer 

(   
   ), with evanescent waves in the outer media (  

 
and   

   ). 

In the case of TM polarisation: 

The solutions of the magnetic field       keep the same behaviour as Eq. (1.54.a). From the 

new boundary conditions:  

                                                    

                                                    
     (1.59) 

By a calculation similar to Eq. (1.56), with      
   

 

  
   , we get the constants   ,   , and   : 

 
 
 

 
 

     

     
   

   
  

               
   

   
            

        (1.60) 

The normalisation constant is again chosen so that: 

 
 

 
    

  

  
  

     
 

  
 

       
 

     

  

  
          (1.61) 

And finally, with      
   

 

  
    and by integrating       we obtain: 

     
   

    
     

 
 

   

    
 

   
  

 

  
   

 
   

    

   
     

 
 

  
   

 
   

    

   
     

 

 

   

    (1.62) 

In this way, Figure 1.14 represents the EM field in TE and TM polarisations within the three 

layer structure of a He
+
 implanted waveguide in LiNbO3 (z-cut) at wavelengths of 1064 nm for 

FF and 532 nm for SHG. It can be observed that in a step index waveguide, the distribution of 

the transverse EM field is independent on the wavelength.  
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Figure 1.14. (a) Field distribution of the three TE modes (b) and the two TM modes at 1064 

nm (red curve) and 532 nm (green curve) in a He
+
 implanted LiNbO3 asymmetric waveguide 

with                       ,                        ,                 

      ,                          ,          ,            [26]. 
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In the case of SHG, this is of great interest for the optimisation of the effective overlap area      

in Eq. (1.17), as the transverse field profiles match between FF and SHG (       ). Thus, a 

monomode step index waveguide is beneficial to optimise nonlinear interactions. Otherwise, we 

can observe that the optical barrier on the substrate confines one TE mode more than the TM 

ones. 

1.3.3. Equation of the guided modes 

In the case of TE polarisation: 

Up to now, we have not presented the concept of guided modes in the waveguide. Still using the 

Maxwell equations, Eq. (1.54.a) for the middle layer (zone II) can be rewritten as: 

         
                     (1.63) 

By substituting:      
      and       

      

We call   the coefficient corresponding to the phase term induced at the waveguide-air interface. 

Thus, by applying the boundary conditions at     to       and       (Eq. (1.55)), one can 

obtain: 

           
  

   
                          (1.64) 

Likewise, at the interface waveguide-substrate (at     ) the guided mode dispersion relation 

for the TE modes is given by: 

            
  

   
         

  

   
             (1.65) 

It represents the condition to confine the TE-polarised light within the guiding layer. The 

parameters in        correspond to the phase shift due to the TIR occurred at the interfaces. 

According to Eq. (1.65), the integer   corresponds to a TEm mode of the waveguide. In other 

words, not all ray trapped in the waveguide constitute a mode. By definition, a mode must have a 

unique propagation constant    (linked to the effective index       ) and a well-defined field 

amplitude at each point in space and time. So, we add into the propagation constant the 

transverse phase shift condition at the interfaces, which is an integer multiple of  .  
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In the case of TM polarisation: 

In the same way, we develop       and       at the boundary conditions in Eq. (1.59), and we 

obtain: 

           
   

   
                          (1.66) 

And the dispersion relation: 

            
   

   
         

   

   
             (1.67) 

Thus for TM polarisations, the equation contains an additional factor related to the ration of 

permittivity for adjacent layers in each interface. 

The dispersion equation for TE and TM modes allows a simulation of the effective index 

evolution as a function of the waveguide thickness for different modes. The method used to solve 

this transcendental equation is the dichotomy method [66]. It consists of finding the couple of 

values           
 

by solving Eqs. (1.65) and (1.67).  Figure 1.15 shows the dependence of the 

effective index dispersion on the waveguide thickness for a He
+
- implanted LiNbO3 waveguide 

(z-cut) at wavelengths of 1064 nm and 532 nm. As we consider a birefringent medium, the 

ordinary refractive index will be observed in TE polarisation and the extraordinary one in TM 

polarisation. The anisotropy of the crystal also induces a difference on the refractive index 

variation between the guiding layer and the optical barrier (considered as the substrate). Thus in 

such an implanted waveguide, we have found experimentally a maximum variation of 0.075 for 

the ordinary index and 0.034 for the extraordinary one (see section 3.3.2). On the one hand, the 

guided modes increase with the waveguide thickness. On the other hand, the effective index 

approaches its maximum value corresponding to a free propagation in the bulk whereas the 

minimum value corresponds to the substrate/optical-barrier refractive index below which the 

guided modes does not exist. From Eqs. (1.65) and (1.67), and suggesting          , we can 

calculate the maximum number of modes existing in the waveguide: 
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with     in TE polarisation and      in TM polarisation and IP means the integer part. We 

find that M increases with the waveguide thickness l and the variation of the refractive indices 

between the guiding layer and the substrate/optical-barrier (Δ         ). It is also possible 

to define a cut-off thickness associated with each mode: 

      

           
   

  
 
  

 
  

    
 

   
    

  

      
    

 
       (1.69) 

 

Figure 1.15: Effective index       vs. thickness of a He 
+
 - implanted LiNbO3 planar 

waveguide for TE and TM modes at (a) 1064 nm and (b) 532 nm with                 

      ,                       ,                      ,                   

      ,           ,            [26]. 

With a thickness of 4 m, we can observe in Fig. 1.15, 2 TM modes at 1064 nm and 4 TM 

modes at 532 nm. This will be compared to the experimental ones in chapter 3. 

1.3.4. Reconstruction of the index profile by i-WKB method 

Up until now, we have considered that the implantation of Helium ions in LiNbO3 creates 

asymmetric step index waveguides. In fact, during implantation, a low refractive index optical 

barrier is built up at the end of the ion track. The nuclear collisions produce lattice disorder in the 

crystal lattice and the creation of impurities (see section 2.7) [67]. The ionic implantation and the 

related damages distribution can induce material density and polarisation changes, modifying the 
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refractive index value. In general, the refractive index variation induced by ionic implantation 

can be represented with a gradual variation of the refractive index in the guiding layer (see Fig. 

1.16). The obtained structure is a graded index planar waveguide. In this condition, the guided 

modes dispersion equations (1.65 – 1.67) become: 

                
  

 
                       (1.70) 

with               
   

  
 

 ρ

 
       

     
  

    
        

  
 

   

 ,       and     in TE polarisation and 1 in 

TM polarisation and       
  . 

 

Figure 1.16: Effect of He
+
 implantation on the refractive index of material. 

The WKB method had been developed by Wentzel, Kramers and Brillouin concerning potentials 

which are continuously variable in quantum mechanics. There is great similarity between the 

Schrödinger equation of a particle in a potential well and the wave propagation equation in a 

planar waveguide. In that case, the waveguide is considered as a potential well:           . 

The i-WKB is a reconstruction method of refractive index profile      based on effective index.  

J. W. White et al. [68] reported for the first time a reconstructive approach of refractive index by 

finding the turning points considering the following boundary conditions: 
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             , with            at      ,  

 the phase shift at the interfaces       
 

 
 and       

 
 

 
  

      decreases monotonically. 

Equation (1.70) is written as a sum of integrals from Ref. [69], with                : 
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Therefore: 

               
   

              
   

    
    

 

  

    

 
        (1.72) 

When          ,      is developed in Taylor series at the first order: 

              
               

       
              (1.73) 

Then, in Eq. (1.73) if the second term of the Taylor series is replaced by a midpoint value of  

 
               

 
, we can develop and simplify the equation as: 

  
               

 
       

 
             

               

       
               

   

   
    

 

  

    
  (1.74) 

The recursive formula for    is: 

 
 
 

 
 

    

    
 

  
 

              

 
 

 
 

 
               

 
 

  

          
 

 
  

                

 
 

 
 

 
                 

 
 

    

    (1.75) 

 

With: 
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The refractive index profile can be reconstructed with a good approximation by adjusting the 

turning points set                    by a polynomial function. We observe that    depends 

on        (    ) which is unknown. An arbitrary method of selecting        is to choose a 

value of        that gives the smoothest profile. The method that leads to most realistic is to 

minimise the total area of the triangles built on the sets of points            ,                , 

               . The transcendental equation is solved by Newton’s iterative method. So the 

index profile is assumed to decrease monotonically for a mode number of    . 

Various methods of solution for    have also been proposed. Particularly we are interested in the 

one proposed by Chiang et al. [70] using a new recursive formula: 
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with: 

    
    

 
 

  

 
          

 
       

  
  

   
  
  

 
 

   

   

    
  

   
    
  

 
 

   

      
    

  
  

    

  
 

 
   

   

 
  

  
  

  

  
 

 
   

   

   (1.78) 

We have performed these methods in order to get the extrapolated refractive index profile of our 

He
+
 implanted LiNbO3 planar waveguides, all developed from the methods explained above. The 

missing parameters are the effective refractive indices of the waveguide       . We have 

measured experimentally       by dark m-line spectroscopy [71] presented in section 3.3.1. The 

effective index values are listed in Fig. 1.17. 
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Figure 1.17: (a) Ordinary and (b) extraordinary refractive index profiles of a He
+
 - implanted 

LiNbO3 planar waveguide obtained by the i-WKB method from the measured effective index at 

532 nm (red points for TE modes and blue points for TM modes). 

From the measured effective indices, Figure 1.17 shows the turning points           

         calculated from Eq. 1.75. The missing point            is obtained from the expression 

of    and by minimizing the triangle surface defined by              ,             ,      

        . Finally, the reconstructed refractive index profile is fitted with a polynomial function in 

both polarisations. The full experimental results are presented and analysed in chapter 3. 

1.4.  SHG in waveguide configuration 

We have detailed the basis of integrated optics in a planar waveguide. We will now study the 

influence of the waveguide on SHG QPM conditions and conversion efficiency. 

1.4.1. Effect of optical confinement on SHG with Gaussian fundamental beam 

One of the most interesting things about SHG in waveguide configuration is that the Gaussian 

beam diffraction problem can be overcome by guided-wave configuration. In such a 

configuration, the high optical density power is confined, thus increasing the interaction between 

waves along the waveguide. We will see in the next section that only the surface interaction term 

is modified in the expression of the efficiency.  

 



  
Page 61 

 
  

1.4.1.1. Improvement of interaction length 

Considering the optimum focusing conditions in bulk with Gaussian fundamental beam, the 

length   of confocal region (determined by the focal length of objectives and the minimum 

radius    of the laser beam) is defined by:    

        
            (1.79) 

The efficiency improvement gained by this configuration can be estimated at: 

          

     
  

     

          
  

   
 

          
 

  

            
     (1.80) 

For instance, using a typical LiNbO3 waveguide mode size ~80 m
2
 at 1064 nm, an 

improvement ratio is estimated at ~     where   is in cm. Therefore, it is very attractive to study 

waveguide configuration in order to improve nonlinear interaction efficiency. 

1.4.1.2.Parametric Interaction of focused Gaussian beam for SHG 

With the effect of optical confinement, it is expected that SHG is more efficient in waveguide 

configuration than in the bulk. By confining the high power density, the waveguide allows a 

longer interaction length than that in PPLN bulk. However the measurement depends on the 

coupling system. In our case, we have used the optical coupling system with the same 

microscope objective for bulk and waveguide.  The problem is that in the bulk configuration the 

pump beam divergence is very high and our configuration clearly does not meet the requirements 

to obtain optimum conditions. If we used an optical coupling system allowing the same 

interaction length as the one in waveguide, and if we used a more powerful laser in order to work 

with equivalent power density, it can be expected that the efficiencies of the bulk and the 

waveguide may be almost identical. However, this improvement is limited in bulk whilst the 

interaction length can be much longer in waveguide as in nonlinear optical fibre. 

It is interesting to investigate the coupling injection of a collimated laser beam to a periodically 

poled crystal for an optimum SHG power. The key problem considered in this chapter is that the 

nonlinear interaction maximisation depends on the focusing optical components used to inject 

the FF beam in the crystal. Considering the optimum focusing conditions, it is important to 

examine the coupling injection to a crystal with Gaussian fundamental electric field. In practice, 
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we use a microscope objective with a short confocal parameter L which the length of confocal 

region given by Eq. 1.79 (determined by the focal length of objectives and the minimum radius 

   of the laser beam in Fig. 1.18.).  

In 1966, the theory of SHG using BPM and focused Gaussian beams was described by Kleinman 

et al for negative and positive uniaxial crystal [72]. This theory can be applied to the case of 

QPM with some simplifications. Thus, the FF Gaussian beam is characterised by the direction of 

beam axis, the location of the focus f in the crystal (given by the parameter   
    

 
 ), the 

confocal parameter L, the frequency and the power. The crystal length   is fixed at 6 mm 

considering the length of the periodically poled zone of our samples (the details are given in 

section 3.1). The intrinsic linear and nonlinear optical properties of crystal are considered as the 

fixed parameters. In single-pass configuration (without resonator) the absorption of crystal is not 

considered for describing the interacting light field.  

Boyd and Kleinman investigated the SHG power optimisation as a function of the focusing 

parameter       , a strong focusing limit (   ) and an optimum phase matching (given by 

the parameter        
  ) for a variety of double refraction angles   (specific for anisotropic 

mediums). In our case, the QPM is implemented with a TM polarised FF beam, thus we assume 

a double refraction angle    . 

From these parameters we can deduce the optimised SHG power following the function       

   ,    also called Boyd and Kleiman function: 

     
        

 

   
          

      
                  (1.81) 

We observe that the SHG power     is proportional to              considering a Gaussian 

pump and not to    as shown before with a plane wave pump consideration. 

The beam is linearly polarised so that there is no birefringence effect on the beam refraction 

(   ), and the focus position is set to the centre of crystal (   ). Therefore, we can define 

the simplified function  : 
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                (1.82.a) 

And          
 

  
 

    

      

 

  
   with      

      

 
     (1.82.b) 

 

Figure 1.18: The crystal is shown as a rectangular solid with a length  . We consider the 

reference (x’, y’, z’) to be a source point emitting to the observer in the reference (x, y, z). The 

medium being embedded as an isotropic medium, we set (x’= x, y’ = y, z’= z). The laser beam is 

a Gaussian beam with a beam waist    at z = f. b is the confocal parameter and    is the 

diffraction half-angle. 

From Eq. (1.82), we use the optimum phase-matching parameter    with respect to each  . 

According to Boyd and Kleinman, the general form of phase matching parameter is given by: 

       
       

 
         (1.83) 

Figure 1.19(a) shows the phase matching parameter as a function of focusing parameter. As   

increases,   decreases. In Fig.1.19(b), we represent the Boyd and Kleiman focusing parameter 

        according to  . Interestingly, the optimum phase-matching is observed for      . 
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Thus at a confocal focusing (   ), we get         and             . An optimum 

focusing of               is obtained when       .  

 

Fig 1.19(a): The optimum phase-matching parameter      , with        
   in one of its 

approximation in log-log scale. (b): The SHG power is represented with the function         

for optimum phase matching in log-log scale.  

In this thesis, we characterise SHG in PPLN bulk and guided-wave configurations and taking 

care of the Gaussian beam focus consideration. Once the periodically poled region length    

determined and the optimum focusing parameter    fixed, it is possible to study SHG in the 

optimised focusing condition in the waveguide. Then, we will see how the beam focus affects the 

conversion efficiency by comparing our results in both the configurations. Furthermore from Eq. 

1.81, and knowing the Boyd and Kleiman function, it is possible to compare our results 

according to the beam shape in bulk and waveguide configurations. In order to facilitate the 

comparison we supposed that the waveguide effective index is identical with the bulk refractive 

index. 

In bulk configuration, as we supposed before, there is no birefringence effects (   ), the focus 

position is set to the centre of crystal (   ) in order to get the maximum efficiency. The other 

considered parameters are the general form of the phase matching parameter      
   

depending on the interaction length L.  

(a) (b)
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We consider that the interaction length correspond to twice the Rayleigh length (the length 

between which the beam goes from a radius of     to a radius of     ). For instance, by taking 

a beam radius of 9    theory gives that the interaction length in the bulk is: 

   
       

 

   
              (1.84) 

Thus it is possible to obtain the optimum phase-matching parameter                  

and the calculated function                in the bulk case. In Fig. 1.20, the results of 

             are exhibited in black curve with                 (blue spot). 

 

Figure 1.20: Boyd and Kleiman focusing parameter             (red curve),           (black 

curve) and .           (grey curve). We estimate                   (red spot) in the 

waveguide and                  in the bulk case (blue spot). 

Concerning the waveguide configuration, the light is coupled to the waveguide by focusing on 

the front facet of the sample (with    ). This time, the interaction length is fixed equal to once 

the Rayleigh length. Considering     , the Boyd and Kleiman focusing parameter can be 

written as: 
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     (1.85) 

with               
 

  
 

      

        

  

 
     and this time       

     

 
 

 

 
  

In Fig. 1.20,               is plotted in red curve. The maximum focusing parameter 

corresponding to the optimal focusing condition in this configuration is found           

                 (red spot). 

By this way, from Eq. 1.81, we can approximate a SHG power rate between bulk and waveguide. 

From Fig. 1.20, it is expected that by keeping the same optical coupling system, and considering 

only the focusing dependence, the SHG in the bulk is 24 % lower than that in the waveguide.  

1.4.2. SHG interaction in waveguide 

From the previous section, we have seen that waveguides are obtained by increasing locally the 

refractive index compared to surrounding ones. Such structures do not allow EM radiation to 

propagate freely. Instead, the EM radiation propagates as discrete modes inside the waveguide. 

The solution to the wave equation for the electric field           in such a structure is given by: 

               
             

          
                  

   
              (1.86) 

where   denotes the mode index,    
   

  
  

 
       is the propagation wave vector of mode   

with frequency    inside the waveguide, with        being the effective refractive index of the 

propagating mode. 

The coupled-mode equations describing the evolution of the fundamental and the second 

harmonic waves inside a waveguide are formally identical to Eq. (1.15), and are given by: 

       

  
           

                         (1.87.a) 

       

  
          

                     (1.87.b) 

The coupling coefficient , similar to Eq. (1.16), is given by: 
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         (1.88) 

There are two main differences in the above equations compared to Eq. (1.15):  

 The bulk material wave vector mismatch    is replaced by the waveguide wave vector 

mismatch: 

        
   

      
   

          (1.89) 

where     represent the mode indices of the fundamental and generated waves.  

 The new effective overlap area       is developed in the next section. Note also that the 

effective overlap area in waveguide can be optimised by a proper design of the waveguide 

structure to improve the conversion efficiency. 

As described before, the interaction between the FF wave and the material in the waveguide 

produces a polarisation wave   
   with SHG [See (Eq. 1.14)]. The polarisation wave travels at 

the same phase velocity as the fundamental wave, which is determined by        
   

, the effective 

index at    . The polarisation wave then radiates the SHG wave which travels at the phase 

velocity determined by        
   

, the effective index at    . When both the fundamental and the 

second harmonic waves propagate at the same phase velocity, then the energy transfers from the 

FF to the SHG waves. As previously mentioned, from Eq. (1.89) this condition is called phase-

matching and corresponds to     
    

 
        

   
        

   
 . However, it is known that 

       
   

           
   

 due to the variation of index with respect to the wavelength in most materials, 

including Lithium Niobate. In Fig. 1.20 the variation of effective index     
   

 calculated for 

          is shown for TM polarisation in the helium-implanted waveguide studied in this 

work. In this case, we have experimentally measured a refractive index difference of          

between the waveguide and the bulk, and a waveguide thickness of 4 m. For TM polarisation, 

the extraordinary refractive index is considered. Hence the fundamental and the second harmonic 

waves travel at different phase velocities, leading to a continuous phase shift between the waves. 

This phase shift alters the energy transfer between the FF and the SHG waves, as illustrated by 
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the green curve in Fig. 1.6. The alternation of the power flow yields a growth and decay cycle of 

the SHG wave along the interaction length. The length over which the fundamental and the 

second harmonic waves produce a  -phase shift is called the coherence length: 

    
 

Δ 
  

 

                  
         (1.90) 

which is a half period of the growth and decay cycle of the SHG wave. 

In the QPM case, the wave vector mismatch Din Eq. (1.89) must then be replaced with: 

Δ                      (1.91) 

with the pth-harmonic grating wave vector. We have so far assumed a perfectly-periodic QPM 

structure which remains unchanged between bulk and waveguide configuration. The waveguide 

is considered as homogeneous in the propagation direction. By comparing Eq. (1.24) with Eq. 

(1.91), we expect to observe a slight shift in the phase matching conditions by QPM between 

bulk and waveguide induced by index changes. 

 

Figure 1.20: Variation of effective index     
   

 for m=0, 1, 2 for TM polarisation in a typical 

helium implanted waveguide with         , and a thickness  of 4 m.  
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1.4.3. Expression of the Effective Area Overlap in a waveguide 

The calculation of the effective area overlap in a waveguide takes into account the EM field 

distribution between the possible FF and SHG transversal modes.  For the expression of     , we 

start from the expression of the normalised EM field with a spatial interaction between TM 

modes (TMFF
(m)

  TMSH
(n)

). The calculation can be generalised with other polarisations. 

      
       

    
 
              

    
 
      

 

        
          

    
 
       

       (1.92) 

From expression (1.90) and the normalisation condition given by Eq. (1.61), we define the 

overlap efficiency (expressed in m
-1

) such as: 

        
 

    
 

       
          

    
 
      

        
    

 
            

    
 
     

     (1.93) 

The overlap efficiency must be optimised, taking a value as close as possible of 1. The ideal case 

would be to have an interaction when    . In order to limit the energy dispersion in different 

propagation modes, it is important to work with single-mode waveguides, at least for the FF 

wavelength. As the dispersion probability is maximum between two modes with the same parity, 

we set a limit condition at 2 TM modes at 1064 nm. Considering the He
+
 implanted LiNbO3 

planar waveguide in Fig. 1.17, a thickness of        has been determined. The waveguide 

supports 1, almost 2 TM modes at the FF wavelength, and 4 TM modes at the SHG wavelength. 

If now we consider the obtained refractive index turning point from i-WKB, and we consider the 

refractive index profile as a multi-layer structure as shown in Fig. 1.21 (a), it is possible to plot 

the field distribution of the TM modes at 1064 nm (red curve) and 532 nm (green curve) in the 

waveguide.      
    and      

    are represented in Fig. 1.21 (b). 
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Figure 1.21: (a) The refractive index profile is approximated as a multi-layer structure with 

the considered turning point obtained from i-WKB. (b) TM0 field distribution at 1064 nm 

(red curve) and at 532 nm (green curve). 

With this coarse approximation on the refractive index profile, it is already possible to observe a 

large dependence of the field distribution with the wavelength. By applying Eq. 1.93, the overlap 

efficiency       between      
    and      

    has been determined at 68.3%. Furthermore, we 

have calculated that SHG interactions are preferably carried out for low-order modes. For 

instance, the effective area overlap between      
    and      

    is calculated at 54.9%. 

1.4.4. Phase matching by modal dispersion 

An effective SHG must satisfy the condition       . We have seen that in a multimodal 

waveguide, the effective index takes a value between the refractive index of the waveguide, and 

the highest refractive index of the surrounding layers. Figure 1.22. shows that phase matching 

possibilities are numerous. However, it should be noted that the conversion efficiency is very 

different according to the considered interaction due to the integration overlap in Eq.1.93. It is 

known that interactions between odd and even modes are highly disadvantaged. In addition, the 

losses (tunnelling losses) increase significantly with the propagation mode number. It can be 

assumed that the privileged modes interaction is between the modes of order 0.  

(a) (b)
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Figure 1.22: Modal dispersion of effective indices in a planar waveguide. 

However, the modal dispersion can cause multiple phase matching conditions. From       , 

we get: 

       
   

         
   

 
 

  
          (1.94) 

As illustrated in Fig. 1.22, by plotting the equation left side with the right side for different TM 

modes, we can observe the different effective SHG conditions at the crossing points. In this 

Figure, we have plotted the chromatic dispersion of different effective indices of a He
+
 implanted 

PPLN (          ) waveguide (     ,           ) at given temperature of 53°C. The 

utilisation of waveguide has an additional interest, it allows phase matching at different 

wavelength, even if the conversion efficiencies are far to be equal. 

Summary 

General qualitative descriptions of nonlinear interactions are presented in this chapter. Among 

nonlinear interactions, the Second-Harmonic generation (SHG) theoretical framework was 
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developed in this chapter. The principles that underlie the nonlinear optic effect in materials, 

particularly for achieved SHG by Quasi-phase Matching (QPM) have been theoretically 

described. The analysis revealed that the efficiency of the nonlinear interaction reaches 

maximum when the phase matching condition is achieved. Quasi-Phase Matching technique is 

an elegant scheme to achieve this condition by introducing an artificial periodic structure. The 

phase-matching wavelength can be chosen by changing the structure period. The whole theories 

provide the basis for the experimental analysis developed in chapter 3. 

Finally, we introduce integrated optics theory in order to understand the modifications bring by 

the waveguide in SHG interaction. Interactions between propagating modes and nonlinear 

improvements in a periodically poled lithium niobate guiding layer are particularly developed. It 

is provided by tight optical confinements and long interaction lengths. A helium implanted 

planar waveguide in PPLN is investigated for the purpose of enhancing the conversion efficiency.  
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Chapter 2 

Nonlinear photonic crystal and 

fabrication process 

 
 

2.1.  Introduction 

In this second chapter, we will specifically develop SHG theory in two-dimensional nonlinear 

photonic crystal (2D NLPC) particularly 2D PPLN. This study derived from the non linear 

theory in 1D NLPC seen in chapter 1. We will particularly see, how the nonlinear susceptibility 

change in this structure and how new QPM orders appears in the poled structure. Then, we will 

explain the fabrication process of periodically poled lithium niobate (LiNbO3) for QPM 

applications especially for 2D-PPLN with a square poled lattice.  

A second part deals with the existing fabrication process of optical waveguide in nonlinear 

materials with their advantages and their disadvantages. This will allow us to introduce the 

contribution of our used method on the realisation of optical waveguide by ion implantation. 

Then, we will develop our waveguide fabrication conditions in PPLN. 

2.2.  Second-harmonic generation in 2D nonlinear photonic crystals 

Nonlinear photonic crystals (NLPC) in two dimensions have a periodic or quasi-periodic two-

dimensional (2D) spatial distribution of      whilst their linear susceptibility      is 

homogeneous. For ferroelectrics crystals like LiNbO3 or LiTaO3, the sign of the nonlinear 

coefficient are regularly inverted in order to create a lattice in two dimensions. Since the 

introduction of two-dimensional NLPC by Berger in 1998 [1], there has been a growing interest 
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in these structure and in their potential applications. Two-dimensional NLPC provides greater 

flexibility in the nonlinear frequency conversion processes in a single crystal. Such structures 

have been studied for non-collinear SHG [2 - 4], simultaneous conversion of multiple 

wavelengths [5], third- to fifth-harmonic generations [6 - 8], multistep cascaded conversions [9], 

conversion of broadband sources [10] and conversion for ultrashort optical pulses [11]. Several 

structure designs of 2D NLPC were proposed to achieve simultaneous phase matching of 

arbitrary conversion processes. Most of the analyses on NLPCs have focused on the QPM aspect 

using the analysis of the 1D case seen in the last section and employing reciprocal lattices to 

picture the QPM process. Thus, in this 2D structure, the non-collinear QPM aspect can be 

reduced as a scalar problem, which simplifies the notations. 

 

2.2.1. Real Lattice 

In the case of nonlinear crystal in one dimension, we have investigated the spatial distribution of 

     with a periodic rectangular function which is approximated by a Fourier series (sum of sinus 

functions). In the case of 2D configuration, the      distribution is represented differently. Apart 

from aperiodic lattices, there are five types of periodic two-dimensional non linear structures as 

shown in Fig. 2.1. in the real space: hexagonal, square, rectangular, centred-rectangular and 

oblique. In these configurations, we can define two primitive, non collinear vectors       and       

and      the linear sum of these vectors, such as:                    , where   and   are real 

integer. Thus, the lattice can be represented as a distributed Dirac delta functions: 

 

                               (2.1) 

 

In order to complete the real distribution of      we have to convolve the real lattice distribution 

      with a suitable nonlinear optical motif delimitating the zone where the nonlinear 

coefficient is different comparing to the background. In the case of domain inverted 

ferroelectrics crystal, we consider an opposite sign of the nonlinear coefficient between the 

background and the motifs inner part. 
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Figure 2.1: The different types of direct-space lattices are referenced (also called Bravais 

lattices): (a) Hexagonal, (b) Square, (c) Rectangular, (d) centred-rectangular, and (e) Oblique. 

[12] 

 

Different patterns can be used and were studied [12]. In our work we focus on the case of square 

motifs and circular motifs. The circular motifs are convenient approximation of hexagonal 

inversed domain which is widely adapted to NLPCs with ferroelectrics as lithium niobate and 

lithium tantalate as shown in Fig. 2.2. In the case of square motif, with a side length of R, the 

motif function is given by: 

            
 

 
         

 

 
   

                         
                  

      (2.2) 

 

For a circular motif with a radius of  , the motif function is written: 
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Fig 2.2: Representation of the      lattice constants used in a set of distributed functions for a 

nonlinear photonic crystal in two dimensions. 

 

Furthermore, the considered lattice area is restricted by the crystal physical size and by an 

effective interaction area where QPM is achieved. We assume that the “active” area function is 

rectangular (this is not valid for a nonlinear interaction with a Gaussian beam) with an 

interaction length   within the crystal and a width corresponding to the beam spot size. In that 

case, the area function is: 

           
 

 
        

 

 
         (2.4) 

The relevant Cartesian component of the nonlinear dielectric tensor as a function of position can 

be therefore expressed mathematically into a spatial nonlinear coefficient function: 

   
                                                                                   

(2.5) 

where     is the component of the nonlinear susceptibility tensor for the Cartesian indices i and j, 

       are the possible grating wave vectors (see the next section) and   is the convolution 

operator. We have to express Eq. (2.5) in the Fourier space as it is developed for NLPC in one 

dimension. 
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2.2.2. Reciprocal lattice 

From the reciprocal geometrical shape mentioned above, QPM can easily be observed according 

to multiple possible grating wave vectors. These so-called reciprocal lattice vectors (RLV) are 

linear solutions of the reciprocal primitive vectors          and         (defining the first Brillouin zone): 

                                  (2.6) 

As such, real and reciprocal primate vectors follow the orthogonality relation:                  . 

In that case, the phase mismatch function is now written by:           
                 (see Eq. 

(1.24)). In Figure (2.3), we see the potential reciprocal lattice vectors observed in a square lattice 

which can contribute to the SHG according to the phase mismatch function.  

Thus, considering the presented lattice, we will develop the expression of the relevant (m, n) 

QPM order RLVs, and the corresponding Fourier coefficients which are important to estimate 

the interaction efficiency within the crystal. 

 

Figure 2.3: Representation of the phase mismatch function with different RLVs (blue arrows), 

in a square reciprocal lattice. 

Denoting   the angle between the two primitive vectors       and      , we can define the general 

and the complete primitive system in the real and reciprocal lattice: 
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                (2.7) 

with            and        in a square lattice. 

     
  

 
               

  

 
         and the norm of       :            

  

 
        . 

Furthermore, it is important to evaluate the conversion efficiency of the 2D lattice which 

depends on the calculated Fourier coefficients from Eq. (2.5). The general form is written by: 

     
 

   
         

 

                                    (2.8) 

with  ,  ,  , and   the two-dimensional Fourier transform of the direct lattice functions  ,  ,   

and   respectively.  

    corresponds to the area unit cell with a relation                    . For a square 

lattice we get         .  By separating the “active” area contribution          and the lattice 

contribution          from the efficiency, we get: 

                                   (2.9.a) 

With: 

          
     

  
                                                    (2.9.b) 

For the square motif: 

          
     

  
                                                  (2.9.c) 

For the circular motif: 

          
     

  
               

 

               
  

 
          (2.9.d) 

With      defined as the first order Bessel function. 
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Finally, Eq. (1.27) can be rewritten in two dimensions: 

               
               

        

 
 

        

 
       

        

 
 

   

       
        

 
    

(2.10) 

 

Figure 2.4: Dependence of the nonlinear coefficient        and thus the normalised 

efficiency with the duty cycle for the mn
th

 QPM order, (a) in NLPC 1D, (b) NLPC 2D with 

square motif and square lattice, (c) NLPC 2D with circular motif and square lattice, (d) 

NLPC 2D with circular motif and hexagonal lattice. 
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If we only consider the contribution of the Fourier coefficient    to the efficiency with a duty 

cycle      
   and square motif, we have: 

                                            (2.11) 

In this configuration, it is observed that the QPM order (1, 0) is similar to the QPM order 0 in 

one dimension. 

And for the circular motif, we find the expression: 

     
 

      
                              (2.12) 

With these motifs the efficiencies are simulated and presented in Fig.2.4. This simulation allows 

determining of dimensions and shape of the motif to optimise the efficiency. 

 Square motif Circular motif 

QPM order (m,n) D QPM/BPM D QPM/BPM 

(1,0) 50 0.405 77 0.158 

(1,1) 50 0.041 55 0.039 

(1,2) 30/70 0.006 44/100 0.017/0.039 

(1,3) 50 0.005 87 0.022 

 

Table 2.1: Conversion efficiency rate between QPM and BPM considering the nonlinear 

coefficient constant for 2D – NLPC with square and circular motifs. 

 

In Fig.2.4, we choose four specific QPM orders in each lattice: (m =1, n = 0, 1, 2, 3) , and we 

compare these results with those obtained in the 1D case. The first QPM order is generally the 

most efficient in a 2D structure. For instance, in the 1D case (m = 1) and the 2D case with square 

motif (m = 1, n = 0), which have the same expression of the efficiency; we find that the 
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maximum efficiency is 0.405 when       for perfect phase matching. Concerning the lattice 

with circular motifs, the results are very different: for         the maximum efficiency is 

reached at 0.158. We summarise results in the Table 2.1. It is also seen that the maximum 

efficiency tends to decrease more slowly when the QPM order n increase in the case of lattice 

with circular motif which is finally the closest model of our samples. 

The efficiency is also calculated considering hexagonal lattice with circular motif. In this case, 

the angle between the two primitive vectors is         and          . The expression of 

the Fourier coefficient is: 

     
 

         
     

  

  
                 (2.13) 

As can be observed in Fig. 2.4(d), the maximum efficiency of 0.118 is achieved at the QPM 

order (m = 1, n = 0) when       . In general, the calculated magnitude has lower value than 

one in square lattice. In this case, we conclude that the rectangular lattice is the most efficient 

structure, providing a higher efficiency than hexagonal lattice. 

In this study, a square lattice samples with a circular motif and a duty-cycle close to 50% is 

chosen. This configuration is very interesting and can provide at least 2 or 3 QPM orders. This 

theoretical approach will help us to interpret our experimental results in chapter 3, particularly to 

compare the conversion efficiencies of the different QPM orders in our 2D NLPC. 

2.2.3. Angular tuning 

We now study the QPM condition depending on the angle between the grating vector      and the 

fundamental wave vector    
       . We will compare the angular dependence to the extraordinary 

refractive index one in a BPM device. In this section we will also see how the different phase 

matching conditions are satisfied in 2D NLPCs according to the      structure in crystals. 

Furthermore, this will allow us to calculate the angular bandwidth as studied in the previous 

sections for wavelength and temperature. 

First, we consider the phase matching case, with the geometry indicated in the wave vector 

diagram of Figure 2.5(a). In the figure,    is the angle between the fundamental wave vector    
        

and the periodic wave vector     . For the sake of ease, we use      and rather than        to indicate 
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the spatial harmonic contributing to the QPM.   is the angle between    
        and the wave vector of 

the second harmonic wave    
       . Following the law of sines we find the angle relation: 

      
      

              
              (2.14) 

When the fundamental wave vector is not parallel to the structure wave vector (   ), a 

“walkoff” of SHG (   ) can be observed. Note that in the case of an isotropic medium     

and     do not depend on the angle. 

For a fundamental wavelength    , we can use the law of cosines in order to find the angular 

dependence of a NLPC (Eq. 2.14) and the period required for mn
th

 order QPM (Eq. 2.14): 

        
 

        
         

 
      

         
 

          
              

                 (2.15) 

    
         

 
        

         
 

           
 

          
                          (2.16) 

From Eq. (2.15) we can determine the “walkoff” angle   between the fundamental and the 

harmonic wave vectors for the mn
th

 order QPM within the crystal: 

            
 
            

  
 
 

     
      

  

       
       (2.17) 

Moreover, we can write Eq. (2.15) in the form of the nonlinear Bragg’s law which is generalised 

for nonlinear optics of Bragg’s law such as: 

     
  

            
                         

 
       (2.18) 

 

If the medium has no dispersion (        ), Eq. (2.18) gives the resonant scattering direction 

by a periodic set of scatterers: 

 

     
  

        
   

 

 
 = 2d    

 

 
        (2.19) 
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where d is the period between two planes of scatterers. We presume that the direction of 

propagation is subject to the Huyghens-Fresnel principle, giving the phase relation between the 

scatterers. 

 

 

 

Figure 2.5: Wave vector diagram for QPM angle tuning analysis in the phase matched case (a) 

and the non phase matched case (b). 

For 2D NLPC, using Snell’s law (the refractive index of air is considered as 1) and Eq. (2.17) we 

can predict the numerous far-field SHG “walkoff” angles   from the interface crystal/air 

traversed by the SHG wave. 
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In the last section, we have studied the case of a 2D NLPC with a square lattice and the periodic 

wave vectors norms         . Thus, we have calculated the angular distribution of the SHG signal 

obtained from a sample with a square lattice and a period of  = 6.92 µm at different 

temperatures and with the temperature dispersion of     and     (Figure 1.3(a)). 

 

Figure 2.6: Calculated angles of the SHG signal for each RLV, obtained from a sample with 

a square lattice and a period of  = 6.92 µm. 

From Eq. (2.20), the calculated angles at 60°C which is the optimal crystal temperature of RLV 

K10 for QPM are 0° for K10, ±4.58° for K1±1 and ±7.86° for K1±2. At 120°C which is the optimal 

temperature of RLV K
1±1

 for QPM we find ±4.53° for K1±1 and ±7.82° for K1±2. It is clearly seen 

from these angles that the temperature dispersion of the refractive index has quite no influence 

on the angle dispersion. 

By the same way, Eq. (2.15) can be rewritten according to  , resolving Eq. (2.16) and taking 

         as unknown: 

         
 

           
                              

         
 

      
         

 

      (2.21) 



  
Page 93 

 
  

From the condition of the side – side angle congruence ambiguity in geometry we can deduce 

from Eq. (2.21) two solutions for                    
               

        or just one solution for 

     
            

         which correspond to our QPM situation. 

           
  

      
                                 (2.22) 

Thus, Eq. (2.22) leads to the determination of the period for the mnth order QPM away from 

normal incidence of the fundamental input beam with the periodic structure. This is equivalent to 

adapt           for an optimal QPM by turning the NLPC, or even by achieving new QPM 

conditions by tuning fundamental wavelength or crystal temperature. 

2.2.4. Angular acceptance 

We now determine the angular acceptance bandwidths of the FF source in a square lattice NLPC 

represented in Fig 2.5.(b), assuming the refractive index as isotropic. The fundamental wave 

vector    
         lies in the x – z plane at an angle  . The grating wave vector is at angles   and   with 

respect to    
        and the z-axis, respectively. The SHG wave vector    

        propagates at an angle   

with respect to    
       . For     the situation is analogous to critical phase matching where the 

fundamental wave is not collinear to the grating wave vector. According to Eq. (1.35) we need to 

know        precisely to evaluate the angular acceptance bandwidth and its coherence length 

dependence. With the assumed geometry, we define              and the boundary conditions 

for the SHG require: 

                             (2.23.a) 

                                (2.23.b) 

From the derivation of Eq. (2.23.b) with respect to  , replacing                   from Eq. 

(2.23.a), considering Eq. (2.14), and the angle        with     we find: 

       
        

        
         (2.24) 
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Finally, we get from Eq. (2.23): 

    
      

 
          

           

                   
 
 

 
   

       

 

    

     
  

           

                  
 
 

 
   

(2.25) 

If we approximate the following form by assuming       and           

         
       

             
 
 

 
            

      (2.26) 

From Eq. (2.26) we see that for critical phase matching the pump angular bandwidth is inversely 

proportional to the number of domains      
  . In 2D NLPC, we can also see that when the 

nth QPM order increases (with    ),   increases, so the angular acceptance bandwidth of the 

fundamental input source decreases with n. 

In the case where    , we have    . We have to develop Eq. (1.35) to the second order 

term of the Taylor series as    has no first order dependence on  . In the case that the 

fundamental beam is quite collinear to the RLV K10, we obtain the angular acceptance 

bandwidth for non-critical phase matched interaction, as: 

      
      

 
   

    
  

         (2.28) 

Finally, with the same approximation made in Eq. (2.27), we have: 

                 
   

   
  

  

 
            

       (2.29) 

It is seen that the pump angular bandwidth depends inversely on the square root of the device 

length, resulting in a great enhancement of the angular bandwidth when    . Fig 2.7 presents 

the theoretical angular dependence of conversion efficiency for the same NLPC studied in Fig. 

1.7 and Fig. 1.8. The configuration corresponds to a fundamental wave vector which is collinear 

to the grating wave vector with the given mn
th

 QPM order. At a fixed fundamental wavelength, 

the theoretical angular dependence of conversion efficiency is given by: 

          
  

   
          

             

  
  

 

 
    when    ,    (2.30) 
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Figure 2.7: Theoretical angular acceptance ( ) for (1, 0) QPM order and the angular 

acceptance bandwidth of 6 mm long 2D periodically-poled lithium niobate (PPLN) with 

         nm,         and        m. 

 

Figure 2.8: Theoretical representation of angular acceptance ( ) for (1, ±1) QPM order and 

the Calculated angular acceptance bandwidth of   mm (see Eq. 2.30) long PPLN nonlinear 

photonic crystal with          nm,            and        m. 
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In Fig. 2.7, the fundamental wave vector    
        is collinear with (1, 0) QPM order RLV    

       .    can 

reach its maximum value when   is equal to zero. And the bandwidth        can be calculated 

from Eq. (2.30). 

Figure 2.8 shows the theoretical angular dependence of the conversion efficiency when the 

fundamental wave vector is not collinear with the mnth QPM order grating wave vector (   ). 

In this case, the theoretical angular dependence of conversion efficiency is given by: 

           
  

      
                              

                   

  
  

 

 
   

(2.31) 

The parameters used in Fig. 2.8 are the same as those used in Fig. 2.7, with the same interaction 

length. The FWHM is almost the same as one in Fig. 2.7. We see that    reaches its maximum 

value when       is equal to zero with     given by Eq. (2.31). 

In this section, it has been shown that the SHG in 2D-NLPC depends on new parameters 

according to the geometry of the lattice. The two-dimensional QPM orders create new conditions 

for non-collinear SHG. The conversion efficiency for optical intensity includes the effects of 

lattice, motif, and QPM order. From the theory, it has been shown that square lattice allows 

higher efficiency.  Moreover, the non-collinear interaction set an angular dependence of the SHG 

which is important to estimate. A general analysis of conversion efficiency has been also 

presented according to the angular acceptance. This analysis is particularly important to establish 

the SHG tolerance of the crystal in a 2D lattice and understand the angular tuning in this kind of 

structure. 

Once the structure defined, the next section is focused on the fabrication of our NLPC according 

to these parameters.  

  

 

 



  
Page 97 

 
  

2.3.  PPLN Fabrication process 

The PPLN samples have been realised at the Graduate Institut of Photonics and Optoelectronics 

(GIPO) of National Taiwan University. We have realised a lattice of metallic electrodes by lift-

off process. It is also possible to realise electrodes by wet etching with acid. 

The following improved poling process has been realised: 

 Samples preparation. 

The sample surface is around 1 cm
2
 with a thickness of 1 mm. We have performed a chemical 

cleaning: the sample is degreased with an ultrasonic bath of acetone during 3 min, then deionised 

water bath during 3 min, then ultrasonic bath of methanol. Finally, the sample is dried with 

nitrogen. 

 Photolithography. 

We use positive photo resist Shipley 18/13. The Shipley deposition is made on z+ face of the 

crystal by spin coating in two steps: 1000 rotations per second during 10 second then 4000 

rotations per second during 40 seconds. At this rotation velocity, the Shipley is deposited to a 

thickness of around 1.2 m. After this stage, the sample is being heated at 115°C on a hot plate 

(soft back) during 2 minutes. Then, the sample is air-cooled during few minutes in order to avoid 

thermal shocks. The sample is UV insulated with a mercury lamp behind an optical mask in 

order to lithography the photo resists lattice. The exposure time depends on the pattern size. For 

the realisation of a lattice with a periodicity of ~ 6.9 m the exposure time is 5 seconds. This 

parameter is even shorter that reflections on the opposite face of the crystal can over-insulated 

the Shipley. The feel factor quality highly depends on that exposure time. We have put our 

sample in a solution of microposit MF-319 developer during 40 seconds. Then, the sample is 

directly cleaned with deionised water. The result is shown in Fig. 2.9. We observe that at low 

periodicity, the pattern resolution remains excellent and correspond to our mask. 
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Figure 2.9: Example of photo resist lattice. The periodicity of holes is 6.92 m. 

 Realisation of electrodes lattice. 

Once the structure determined by photo-lithography, the metal is directly sputtered on the resin 

mask. The metal directly in contact with crystal forms the electrodes. We have sputtered 200 nm 

to 300 nm of titanium on the photo resist lattice. The metal part that is not covered by the photo 

resist (in direct contact with the substrate) will form the electrodes. We can complete the lift-off 

by dissolving the photo resist with acetone. However, this step is not necessary as the photo 

resist thickness is sufficient to block the poling current. An additional step is to over-coat the 

metallised z+ face with an insulator (generally with photo resist or spin-on glass). An opening of 

1      in the insulator is created to allow the contact between electrodes and electrolytes. 

 High voltage poling step. 

The poling dispositive includes a poling cell holding the sample between two o-ring contacts. 

The whole is immersed in a liquid electrode (tap water) used as contact. Note that experimental 

outcomes are not dependant on the choice of electrolyte comparing to metallic contact [12]. It is 

just necessary to ensure the absence of air bubbles, which can cause point effect and break the 

sample. Moreover, a metallic contact would provide local heating with the increased resistance at 

high voltage. 
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Figure 2.10: High voltage poling system with a detailed scheme of the sample holder. 

The applied voltage is directly recorded by an oscilloscope and the poling current      through 

the wafer is calculated from the measured voltage across the monitoring resistor           as 

such as: 

      
        

  
          (2.32) 

A current limiting resistor              is used in order to protect the circuit transmitting 

the current. 

During the poling process, the corresponding applied voltage (the blue line in Fig. 2.12) has 

gradual ramps at the beginning and the end of the process. This waveform has been chosen in 

order to maximise the duty cycle uniformity (maximise the number of nucleation sites for the 

poling initiation) and avoid domains to flip back in the back-switching process at the end. The 

poling duration is of around 50 ms with a sharp increase and decrease of the applied voltage to 

the corresponding coercive field (depending on the thickness of the sample). The poling current 

(the red line in Fig. 2.12) is recorded by oscilloscope at this duration. This measurement gives 

information on the domain wall velocity according to the method of Miller and Savage [13].  

The same procedure may be repeated few times until a design is obtained that achieves the 

desired domain duty cycle. In fact, as the domain duty cycle is proportional to the delivered 

charge in the sample, the accumulated charge is calculated by integrating the poling current with 

time. This value has been experimentally determined at 20 C. 
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Figure 2.12: Poling current according to the applied voltage for LiNbO3 during poling step. It is 

often necessary to repeat the operation several time in order to get a sufficient coalescence of the 

domain wall. 

It is important to note that the thickness of the bulk is limited at 500 m to 1 mm. In fact, at 

higher thicknesses, the electrical field periodicity created by electrodes disappears and become 

homogeneous. Furthermore, the poling thickness is even lower than the period is small. 

 Revelation of PP structures. 

After the poling step, the sample is cleaned with acetone, and deionised water. The domain 

pattern is revealed by hydrofluoric acid etching (HF) during 30 seconds and then abundantly 

rinsed with cold water. Chemical etching using HF acid is well known to selectively etch the z- 

crystalline face, with no effect on the z+ face. The chemical reaction goes fast and do not change 

after a while. 

 

 

time (ms)
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Figure 2.13(a): z+ and z- periodically-poled surfaces of congruent 2D-PPLN with a square lattice 

period of 6.92 µm revealed by chemical etching. 

 

Figure 2.13: z+ and z- periodically-poled surfaces of doped MgO:PPLN with a square lattice 

period of 6.96 µm revealed by chemical etching. 

The domain uniformity and the PP structuration are finally inspected with a microscope. For 

instance, an obtained poled area with congruent lithium niobate is shown in Fig. 2.13. The poled 

area is  6 mm x 6 mm at the centre of the sample and the thickness of the ample is 1 mm. Figure 

2.13 indicates both z+ and z- faces of the poled region with a 2D square lattice with a period of  

= 6.92 µm and a duty cycle of 50%. This square lattice period is particularly chosen to obtain 

QPM for SHG at 1064 nm. 

Z+ Z-
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 PPLN 1D PPLN 2D 

After 

photolithography 

  

Photoresist S1813 S1813 

UV exposition 20 s 20 s 

Developper MF319 MF319 

Period domain 

6,79 m 

(electrode width versus electrode 

period=1:3) 

6,92 m 

(electrode width versus electrode 

period=1:3) 

After poling etching 

(z+ face) 

 
 

After poling etching 

(z- face) 

 
 

Poling condition Applied voltage 16 kV Applied voltage 16 kV 

accumulation charge 38,9 C 20,3 C 

 

Table 2.1: Summary of the poling conditions for congruent 1D-PPLN and 2D-PPLN. 
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2.4. Fabrication of waveguides 

In this section, the most commonly used fabrication techniques of optical waveguides in LiNbO3 

are reviewed. Diffusion processes such as out-diffusion of lithium oxide from the crystal surface, 

in-diffusion of metals, ion exchange and proton exchange, and finally ion implantation are 

analysed. Planar and stripes dielectric waveguides can be fabricated on LN using these various 

technological processes. Waveguide fabrication techniques aim at creating a local variation of 

refractive index with a graded or a step profile. 

There are two distinct methods to realise waveguides: 

 By locally changing the structure of the material. Using this method the refractive index 

of the substrate surface can be modified. Thus. Ionic diffusion, ionic exchange and ionic 

implantation are different techniques illustrating this method. 

 By depositing a thin layer with a higher refractive index than the substrate such as 

epitaxy methods, chemical vapour deposition (CVD) or sol-gel method. 

Most of the reported works focus on LiNbO3, LiTaO3, KTP, which are widely used because of 

their good performance in nonlinear optics. These materials are available as transparent crystal 

with excellent electro-optical and acousto-optical properties. Therefore, they are commonly used 

for several active integrated optoelectronics devices such as modulators, switches, polarisation 

controllers and ring resonators. 

2.4.1. Ionic diffusion technique 

The first waveguides on LiNbO3 and LiTaO3 were developed by using out-diffusion which 

simply consists in heating the material at a temperature of about 1000 - 1100°C in vacuum or 

oxidizing ambient. At this temperature, lithium oxide is taken off (out-diffused) from the surface 

with a slight increase of the extraordinary index (         ) [14]. In fact, LiNbO3 can 

crystallise in the slightly non-stoechiometric form (Li2O)y (Nb2O5)1-y. Although the ordinary 

index is not affected as Li2O is removed from the crystal surface and the extraordinary index 

increases approximately linearly as   decreases.  This process also depends strongly on crystal 

orientation and the parameters of diffusion and vaporisation processes at the out-diffusion 

temperature. However, this technique has not become popular in favour of the diffusion of 
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metals or exchange proton. The different reasons are: the Curie temperature lies between 1100 - 

1180°C so the depolarisation of the crystal could occur except when y is in the 0.48 < y < 0.50 

range, the out-diffusion process can produce optical waveguides of thickness of the order of 10 

m, with a large effective width which may limit the operation of integrated optoelectronic 

devices based on LiNbO3. 

The thermal diffusion of metal such as Mg, Ni, Zn, Fe, Co, Cr, Ti, V for the elaboration of 

waveguides on LiNbO3 is more interesting because it allows a much higher index contrast 

(       ) for both polarisations. Thin films (10 - 100 nm) of metal are first deposited on the 

crystal surface by vacuum evaporation or sputtering. The diffusion process occurs at high 

temperature (850 to 1150 °C) in inert or reactive atmosphere, with activation energy typically in 

a range of 1.0 – 3.0 eV during few hours [15]. The diffusion of divalent metallic atoms such as 

Ni, Zn an Mg causes a reduction of the extraordinary index. The ordinary index also decreases 

when Ni or Zn diffuses. When trivalent or tetravalent atoms (Fe, Cr, and Ti) diffuse into LiNbO3, 

both no and ne increase. While divalent atoms are substitution of lithium atoms tri- or tetravalent 

atoms are substitutional of Nb in the LiNbO3 crystal lattice. 

The study of titanium in-diffusion into lithium niobate has received much attention because Ti 

yields a good light confinement with a relatively large increase of no and ne (        , 

        ) [16], with a Gaussian profile. Consequently, this technique allows the fabrication of 

optical waveguides supporting both TE and TM modes. Sugii et al. [17] suggested that the 

refractive index change is due to the increase of polarisability, and the photoelastic effect caused 

by the different size of Ti and Nb ions. Naitoh et al. [18] demonstrated the relationships between 

the surface index change, the diffusion depth and fabrication conditions.  

Titanium is more widely used because of the easy to deposit of a thin layer, its weak absorption 

in both visible and IR ranges and its high diffusion coefficient. The formation of low-loss 

(        ) slab and stripe waveguides by this technique has extensively been investigated 

since it was first used in 1974 [19]. Furthermore, the waveguide do not show significant 

photorefractive effect. At visible wavelengths, no optical damage has been observed using 

energy densities up to 10
5
 J/cm

2 
[20]. 
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2.4.2. Ion exchange technique 

This technique was developed using nonlinear materials by Shah in 1975 [21] and opened a wide 

range opportunities for optical components development [22]. The waveguides obtained by ion 

exchange on glass are already widely used in optical components such as multiplexers, 

demultiplexers, optical gyroscopes, couplers [23]. 

Shah developed the technique with x-cut LiNbO3. The crystal was immersed in a bath of molten 

silver nitrate at 360 °C for several hours (>3h). The substitution of Li
+
 ions by Ag

+
 modifies the 

structure and produces an increase of no and ne with maximum change of 0.13, and a step like 

index profile allowing a high index variation. Unfortunately poor quality waveguides were 

produced with optical attenuation of around 6 dB / cm. Li et al. [24] first presented the double 

proton exchange process with          and an optical loss of 0.4 dB/cm at 632.8 nm. They 

also demonstrated the possibility of combining this new fabrication process with Ti-indiffusion 

to produce good quality waveguides supporting both TE and TM modes (TIPE waveguides). 

Among ion exchange techniques, proton exchange is mainly adapted to the development of low-

loss waveguides. Proton exchange increases the extraordinary index (       ) and decreases 

the ordinary index (         ) in LiNbO3. The extraordinary refractive index assumes a very 

nearly step distribution. Furthermore, there have been achieved for x- and z- cut samples a high 

stability in time, low optical losses (0.5 – 1dB/cm), low in-plane scattering levels and a good 

electro-optic property [25].  In many works on LiNbO3, this technique has allowed the realisation 

of reliable waveguide for nonlinear optics [22]. More marginal tests were performed on the 

lithium niobate directly using water as source of protons [26]. 

These ion exchanges are usually done by immersing the crystal in an acid bath such as melted 

cinnamic acid (         ) [27], pyrophosphoric acid (          ) [27], benzoic acid 

(        ) [28], toluic acid (         ) [29], or stearic acid (        ) [30] at low 

temperature (150 – 300°C). A complete or partial exchange (under 75 %) can be made depending 

on the acidity of the medium. Complete exchange may cause structural modifications and cracks 

in the substrate. This can be avoided by adding  lithium benzoate (1%) in acid bath. 

Then, other ions like thallium, copper, manganese or chromium are also used for ionic exchanges. 
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In 1982, Jackel and Rice [31] showed that when lithium niobate is immersed in silver nitrate, ion 

exchange does not take place between Ag
+
 and Li

+
, but between H

+
 and Li

+
. The proton source is 

the water from the molten nitrate salts. In fact, the use of dehydrated salts prevents the proton 

exchange in the samples. A significant improvement was obtained by Jackel who produced 

waveguides with lower optical losses <2dB / cm for Dne≈0.05. 

Ionic exchange is also widely used on KTP and periodically-poled KTP for SHG [32 - 34] with 

Rb, Rb – Ba [35], Rb – Sr, Cs, Ba, Sr [36], Cu [37]. 

2.4.3. Physical and chemical deposition 

The epitaxy is used to achieve deposition of LiNb1-xTaxO3 and LiNbO3 in liquid phase [38] or by 

molecular spay [39]. Liquid Phase Epitaxy (LPE) consists of immersing the substrate in a bath 

containing oxides or dopants like rare-earth. The substrate is used as crystal seed and allows the 

growth of one or multiple thin layer in a similar lattice structure. By this way, Nd, Tm, Er, or Yb 

doped YAG thin layer have been obtained on nonlinear crystals as YAG substrate [40, 41]. Thin 

films of barium borates have been also obtained by this technique [42]. The epitaxy allows a 

good crystalline quality but often requires the use of monocrystalline substrate.  

Pulsed laser deposition (PLD) [43] allows the epitaxial deposition of dense thin-films on various 

substrates at low temperature but on small surface, typically around 1 or 2 cm
2
 [44].  

Thin films of LiNbO3 were also made by chemical vapour deposition (CVD) from metalorganic 

precursors (MOCVD) [45 -47] or by thermal plasma spray CVD [48, 49].  

Finally, by sol-gel deposition [50], thin-films of LiNbO3 with good optical quality have recently 

been obtained. However, the polycrystalline structure greatly increases the attenuation in the 

waveguide. 

2.4.4. Organic materials 

The recent interest in organic materials for nonlinear optics comes, at its origin, from the 

molecular engineering. Now, it is possible to give tailored nonlinear properties to these materials. 

Thus in the field of the second-order nonlinear optics, many organic materials have higher and 

faster nonlinear response than dielectrics crystals and are subject to a large number of studies. 
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The integration of organic materials in optical devices requires their implementation in a solid 

matrix ensuring their cohesion. The first studied nonlinear and doped polymer consists of a 

polymethylmethacrylate matrix (PMMA) doped with molecules of Disperse Red 1 (DR1) [51]. 

Many studies have shown the interest and performance of these molecules. The first work on 

matrices composed entirely of inorganic oxides (SiO2, TiO2) consisted of layer of TiO2 5% 

doped with DANS molecules [52]. The use of silicon matrices synthesised by sol-gel process has 

demonstrated the feasibility of such composites but also their weaknesses (bad aging, difficulty 

in maintaining the chromophores orientations which is necessary to maintain good nonlinear 

properties) [53]. Nucleation and growth of the organic phase in the pores of the silicon matrix 

occur when the temperature is lowered, decreasing the solubility caused by nucleation [54]. 

However, many research group working in this exciting field have shown the feasibility of 

waveguides for SHG from periodically-oriented polymer films, whose the conversion efficiency 

is very close to the conversion efficiency of periodic-poled structures on KTP and LiNbO3 [55]. 

2.4.5. Nanocomposite materials 

Most optical nonlinear materials currently used are normally not compatible with the standard 

silicon based technology. However, the technique described above using organic chromophores 

in glass can also be applied to the fabrication of a fully-inorganic composite material by 

nucleation and growth of nanocrystals in silicon. For example, it is possible to obtain nonlinear 

and luminescent materials used forself-doubling materials within a laser cavity. 

2.4.6. Ion implantation technique  

The key of this technique is to create a layer of defects at a well-defined depth from the substrate 

by bombarding the substrate with ions.  The impinging ions penetrate the substrate, losing their 

energy through electronic excitation and nuclear collision. It results in a crystalline surface layer 

damaged slightly and decreasing refractive index locally, thus, creating an optical barrier. The 

ion implantation with different ions such as N
+
, B

+
, He

+
, or Ne

+
 is possible with an index 

difference greater than 0.1, depending on the implantation dose [56]. The details of this 

technique will be developed in section 2.4.9. This technique has an advantage of waveguide 

fabrication on a wide variety of materials, but the damages created by radiations through the 

guiding layer reduce significantly its quality. Since the first proton-implanted waveguide in 
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fused-silica in 1968, implanted waveguides have been so far fabricated in more than 100 optical 

materials, in a wide range of ions at energies of several keV up to several MeV. Waveguides for 

SHG fabricated by ion implantation have been made on LiNbO3, LiTaO3, KTP, and more 

recently on borates (LTB, -BBO, and LBO) [56]. 

2.4.7. Implantation in Lithium Niobate 

Among all the electro-optical materials, LiNbO3 has been studied most extensively because of its 

combination of various excellent properties. Lithium niobate waveguides formed by the 

implantation of various ions, including H, He, B, C, N, O, F, Si, P, Ti, Cu, Ni, and Ag, with 

different electrovalence, energies and doses have been studied. The majority of these studies 

were focused on the fabrication and refractive index characterisations of LN waveguides by 

implantation of ions at a low dose (≈10
14

 ions/cm²) [57 - 61]. For the He
+
-implanted LN 

waveguides at high doses (≈10
16

 ions/cm²), the ordinary refractive index had a typical barrier 

type profile, while the extraordinary refractive index had a more complex change: at the surface 

region ne was increased, but the maximum increase was found to be peaked deep inside the guide. 

An index decreased barrier was located at the end of the ion track. Based on the experimental 

results, several hypotheses or models were suggested to explain the refractive index behaviour 

induced by the implantation. For high birefringent crystals (Dn ≈ 0.08), low dose implantation 

may induce a positive change of the lower index (ne for LiNbO3) while decrease the higher one 

(no for LiNbO3) [62]. Further investigations of the index behaviours focus on the electronic and 

nuclear damages created by the interactions between the implanted ions and the substrate lattice. 

The electronic energy deposition causes positive index changes in terms of Li diffusion or lattice 

relaxation. As we will see in the annealing treatment part, the ion implantation cause defects and 

lattice disorders in crystal. A high dose can even destroy the lattice which imposes a limitation in 

implantation doses provided to the crystal. These limited doses depend on the implanted ions. 

For instance, the case of O
3+

 implanted LN with a dose above 4.10
14

 ions/ cm², where it seems 

difficult to remove the lattice defects by annealing treatment in this case. For H
+
 ion irradiation 

at even much higher doses (up to 2.10
17

 ions/ cm²), the structure recovers to approximate original 

lattice [59], while He
+
 ion implantation generates large dimension clusters of different crystalline 

nature [60]. 
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It has been shown that after H
+
 - He

+
  implantation the values of electro-optic coefficients r13 and 

r33 were well preserved in the waveguide at high dose (5.10
16 
– 10

17
 ions/ cm²) [60]. The same 

thing has been observed for the non linear coefficient d33 in H
+
 implanted waveguides while for 

the He
+ 
implanted one it is reduced  by ≈ 48% [63]. The non-linear properties of those 

waveguides were found to be well retained in the guiding region. 

2.4.8. Realisation of planar waveguide on PPLN by He
+
 implantation 

This section describes the basic methods of ion-implanted waveguide fabrication and 

investigation. We have seen in section 1.2 that a planar waveguide can be made by increasing the 

refractive index of a blank LN substrate locally via ionic incorporation on the surface: exchange 

and diffusion techniques. On the other hand, the mechanism of implantation works differently. In 

fact, the refractive index decreases locally in a zone called nuclear damaged zone. The ions of 

the incident beam penetrate the substrate and lose their kinetic energy by multiple electronic and 

nuclear collisions within the crystal. So, the bombarded ions are stopped and accumulated in a 

zone which is used as an optical barrier. As such, the implantation parameters such as energy and 

dose affect the quality of waveguide. So the implantation energy and dose will be discussed for 

our waveguides. 

2.4.8.1.  He+ implantation process 

Ion implantation is a mature technology for semiconductor production, and has been widely used 

in the optical communication devices. In the research area of the ion-implanted waveguides, Van 

Der Graaf accelerators are often used because they offer high energies of specific implanted ion 

at acceptable dose [64]. We use an ECLAIR track 5 dispositive cooled by water at 18°C. The 

accelerator is composed of a generator where a high potential difference is built up and 

maintained on a smooth conducting surface by the continuous transfer of positive static charges 

from a moving isolated belt. The ions are created in a source chamber inside the high voltage 

terminal and are accelerated by the electric voltage between the high voltage terminal and ground. 

The implanted ions normally with positive charges are extracted out from the sources. A 

mass/energy – separating energy magnet is used to select the ion species (elements and isotopes) 

of interest. After this, the selected ions are focused and bombarded into the target materials 

(LiNbO3) by beam sweeping technique. A uniform and isotopically pure irradiation is ensured 
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over the sample surface. The implantation system is shown in Fig. 2.13. The ion beam has a 

dimension of 1.2   1.2 cm before focusing and 5   6 mm. The vacuum condition in the 

implantation chamber is 9.1   10
-5

 mbar and the average fluence is 2.12   10
12

 ion/cm
2
/s. 

 

Figure 2.13: Schematic drawing of an ion implantation system [65]. 

That method has been adopted for waveguide fabrication in a large number of optical materials 

and the ion-implanted waveguide have refractive index profile of optical barrier. The planar 

waveguide (1D) may be fabricated by directly ion implantation into the sample, in which case no 

specific masks are required as we could need for 2D waveguide formation. In the earlier works, 

masks were made by first deposing a thin photoresist or metal (e. g. Au), and using standard 

photolithography technique, then the waveguides are formed in the mask-protected region. 

Finally forming negative or positive metal stripes as protective layer according to the waveguide 

type. Alternatively, a special setup was lately designed for channel waveguide formation by 

Moretti et al. In that technique, the sample was fixed on a rotatable target holder, and then 

irradiated through a movable metal slit. By varying the angle of incident beam with sample 

surface continuously, the implantations of ions could create a closed barrier wall inside the 
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substrate, hence forming channel waveguides [66]. In our works, we have consciously made 

planar waveguides on z+ face of the 2D nonlinear photonic crystals, in order to study SHG for 

multiple QPM orders in guiding conditions. 

2.4.8.2. Implantation parameters 

Different parameters influence implantation: 

 The nature of ions. 

For equivalent implantation energy (kinetic energy), the lightest ions undergo more deeply in the 

substrate. The damages due to the passage of ions and their influence on the refractive index 

modification depend on the nature of implanted ions. We have exclusively used Helium ions 

(He
+
) during implantation, but one of the advantages of ion implantation is that the choice of 

implant ions is not limited by conventional rules or solubility and any ions may be used. 

 The nature of substrate. 

The materials do not react in the same way with implantation. Their refractive indices can be 

raised or reduced independently of the nature of implanted ions.  

 The dose (quantity of ions per unit surface). 

This parameter is important to control the refractive index variation. The refractive index 

behaviour is highly dependent on dose. It can even be contradictory in some cases. For instance, 

the extraordinary refractive index of LN increases at low dose whereas it decreases at high dose. 

 The implantation energy. 

This parameter affects the ions distribution in depth. Energy is associated with the ions 

penetration depth in material. This parameter is important to fix the waveguide thickness. An 

illustration is given in Fig. 2.14 [67], where the He
+
 penetration depth in LiNbO3 is estimated 

with TRIM (Transport of Ion in Matter) [68] according to the implantation energy. 
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Figure 2.14: He
+
 penetration depth in LiNbO3 is estimated with TRIM (Transport of Ion in 

Matter) [68] according to the implantation energy [67]. 

 The incident beam angle. 

This parameter has also an influence on penetration depth. In order to avoid channelling effect in 

substrate, the incident beam angle is fixed at a minimum angle of 7°. 

 The substrate temperature. 

The temperature has to be maintained constant and close to the room temperature. In fact, 

uncontrolled annealing effect disturbs the ions distribution in crystal. 

2.4.8.3. Implantation interactions 

The interaction ion/matter has different origins enumerated below: 

 Interaction with electrons at high energy: 

When charged particles go through matter, they mainly lose their energy by interaction with 

linked electrons. For ions at high energy, most of the transferred energy goes in ionizing inelastic 

collisions with creation of free electrons from the target and a potential energy decreasing for the 
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residual created ions (lattice ions). It includes the formation of damages through the ejected 

electrons path and chemical reaction with lattice ions. The free electron can be trapped by lattice 

defects forming coloured centres and absorbing certain wavelength.  

 Interaction with electrons at low energy: 

When the ions kinetic energy decreases, electrons are captured or delivered from residual ions 

(charge transfer with matter) with creation of new residual ions in matter. In that case, there are 

no ejected free electrons. Rarely, free electrons are delivered from ions without creating residual 

ions in lattice.  

 Interaction with the Coulomb field of atoms. 

The charged particles slow down almost entirely by Coulomb interaction with atomic electrons.  

In one hand, this phenomenon prevails with rapid particles (with a kinetic energy of few MeV) 

or heavy particles (from a few hundred keV).  In that case, the ions trajectory is not deflected 

during the transfer energy process. On the other hand the Coulomb interaction becomes 

negligible for particles at the end of their run.   

 Collisions with nucleus in matter. 

When the kinetic energy becomes sufficiently low, there is not enough energy transfer between 

projectiles and target particles to excite the atomic energy levels. The projectiles undergo nuclear 

elastic collision with atoms. Generally, it induces multiple cascade collisions within the crystal 

creating atomic displacement and gap in lattice. Both are known as Frenkel pair. Furthermore, 

the elastic collision creates vibrations of the crystal lattice dissipated as heat. 

 Magnetic momentum interactions between particles. 

 Radiation losses at very high energies (> 100 MeV) by the bremsstrahlung 

process, Cherenkov radiation and nuclear reactions. 

Each of these interactions contributes on the ion kinetic energy loss by collisions with electrons 

and atoms of the crystal. In our work, the involved energies are in the MeV range. In that case, 

only the four first processes occur and contribute to the formation of the waveguide. 
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Generally, the sum of interactions is expressed as the sum of kinetic energy loss by implanted 

ions. It is divided in one hand with inelastic process as electronic excitation and ionisation 

(electronic losses) and on the other hand with elastic process as nuclear collisions and 

displacements (nuclear losses). These interactions are schematically presented in Fig. 2.15 (a). 

They play a crucial role in the creation of a refractive index profile and the waveguide formation 

as illustrated in Fig. 2.15 (b). 

 

Figure 2.15: (a) Nuclear (red curve) and electronic (green curve) rates of the implanted ions 

energy deposition (or energy loss) according to their kinetic energy. Typically, nuclear lose are 

maximum for energies between 10 – 100keV, an electronic lose for energies of the order of MeV. 

(b) Accordingly, the ionisation deposition (green curve) and the impurity concentration (red 

curve) due to nuclear collisions (also called Bragg’s peak) are represented along the ionic path in 

the substrate. 

Thus, the total energy loss is defined as the sum of electronic and nuclear interactions: 

                                      (2.33) 

with x the direction of the ion beam and   
 

 
    the kinetic energy of the incident ions. 
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Considering the electronic collisions, the electronic energy loses are calculated from the Bethe-

Bloch formula [69], which is a good approximation implantation energy domain from several 

hundred keV to several hundred GeV: 

              
    

    
  

                 
       

 
     

 

 
      (2.34) 

Where    is the atomic number of the implanted ion,    the atomic number of the targeted atoms, 

  the elementary charge (1.6  10
-19

 C),   the atomic concentration of the target,    the 

permittivity,    is the mass of electron,        the incident ion speed,   the average excitation 

potential of the targeted atoms and   the correction from the charge density effect. 

We can consider different regimes according to the incident ion speed: 

 If     
 

                  the orbital velocity of electrons, the electronic energy 

loss varies as        . It corresponds to the electronic interaction at high energy [70]. 

 

 If      
 

   , we have to take into account the charge transfer with matter. The 

electronic energy loss varies linearly with   (or   ). It corresponds to the electronic 

interaction at high energy [71]. 

 

When the two velocities are equals, there is charge exchange with a capture of electrons by the 

ions. 

Considering the elastic nuclear lose, a physical model has been proposed by Lindhart et al. [71]: 

              
  

  
             (2.35) 

with the reduced coordinates: 

   
    

        
        and     

  

     
 
      

              (2.36) 
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and    
  

   
       

   
  is defined as the screening length (   is the Bohr radius 6 10

-9
 cm),    

the ion mass and    the targeted atom mass. 

The ions trajectory, the number of collisions and the fraction of energy lose at each collision are 

random values. The range distribution of the implanted ions is described according to the 

Maxwell-Boltzmann statistic. This results in the expression of the mean free path of the ions   in 

the incident direction [72]: 

    
  

     

 

  
          (2.37) 

The typical ion distribution is approximately a Gaussian in shape and may therefore be 

characterised by a projected range    and a straggling     such as: 

      
 

      
 

  
    
     

 
 

         (2.38) 

With   the total number of ions per cm
2
 (the dose). This distribution is illustrated in Fig. 2.15. 

(b). Information about irradiation damage can be obtained from the Monte Carlo simulation in 

TRIM (Transport of Ion in Matter) [69] developed by Ziegler, Biersack and Littmark. In these 

simulations the ion track of the implanted ion and all resulting recoils and atomic displacement 

are displayed. It allow us to simulate the electronic and nuclear loss profile, the impurity density 

profile causing the optical barrier and the pulverisation rate (ejected atoms from the surface 

leading to its erosion). 

2.4.8.4. Ion implantation advantages 

The technique of ion implantation needs heavy equipment in comparison with other techniques 

like ion exchange or diffusion methods. However, implantation gives access to a large control of 

different parameters (dose, energy, number of implantations, nature of ions,...) allowing the 

fabrication of quasi-step index waveguides with desired thickness and index variation. For 

instance, a precise control of the number of implanted ions is simple, as the ion beam is 

monitored as a current, a judicious choice of energy and dose can develop any desired refractive 

index profile under the surface, both being controlled by the implantation dose and energy. 

Moreover, the choice of implant ions is not limited by conventional rules of solubility and any 
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ion may be used with a high isotopic purity from the ion beam. It is also possible to place 

different ions at different depths. It is generally used to form a larger optical barrier and thus 

reduce the loss by tunnelling effect. Another advantage is that the implantation is made at low-

temperature which is essential to maintain the crystal phase, the nonlinearity and the poled lattice 

of the crystal, which is not often the case for other techniques. The temperature during 

implantation never exceeds 77°C. 

Moreover, since 1998, Levy et al. [72] have used this technique in order to obtain optical thin 

films by crystal ion slicing (CIS), with thicknesses at the micron or even nanometre scale. The 

effect of the high dose implantation (> 5 10
16

 He
+
/ cm

2
) is to generate a buried amorphous layer 

and bubbles under the surface. A lift-off by wet-etching (5% HF solution) or a thermal treatment 

allows peel-off the thin layer from the substrate. With this processing, LiNbO3 films can be 

bounded to silicon or other materials for further photonic applications. Further works have been 

previously made with obtained thin films of 4 m. However, it remains several problems with 

the proceeding: high losses, technological difficulties in the integration of these thin films in 

optical devices, cracks formation, weakening or even amorphisation of the implanted surface 

occur during implantation. We have tried to use this technique in order to perform PPLN thin 

layers having sufficient optical quality for SHG. We will briefly develop our experimental results 

in the perspective section. In fact, our results remains partial and work remains to be done to 

achieve NLPC thin layer. 

Our choice is naturally focused on this technique in order to perform and improve performance 

for NLPC. 

2.4.8.5. Annealing treatment 

Since the implantation creates optical absorption sites by electronic energy deposition, and 

destroys somehow the equilibrium of the original structures by nuclear collision (the 

implantation could destroy the lattice at high doses), an annealing treatment is commonly 

necessary for all ion-implanted waveguides [73]. The aim of anneals is to remove the unwanted 

defects within the guide region to maximally preserve the electro-optic or non-linear optic 

properties. The used method of annealing treatment includes a conventional oven. Thermal 

treatment at 220°C is performed for one hour (with a slow temperature ramp up and down: 
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3°/min). That method may reduce the propagation losses of the waveguides. Some other new 

techniques were performed using laser beam processing [73]. The laser energy may be confined 

to the surface layer to realise local heating which may remove intrinsic defects and induce 

crystal-line re-growth or solid phase epitaxy. 

Summary 

In this chapter, we develop the theory of the second-harmonic generated by quasi-phase 

matching in nonlinear photonic crystal. We observe that in 2D configuration, a periodically 

poled structure presents some differences comparing to 1D configuration. The modifications are 

mainly due to the occurrence of multiple-QPM orders in the crystal. These modifications concern 

the expression of the effective nonlinear coefficients and the angular dependence of the SHG 

associated with each QPM orders. Our choice fell on 2D-PPLN having a square reciprocal lattice 

for which we describe the fabrication process by electrical poling method. 

A second section is dedicated to the fabrication of optical waveguides in nonlinear materials. 

This preliminary overview allows us to understand the advantages and the limits of ion 

implantation process comparing with the other methods. Ion implantation is one of the most 

commonly used techniques of optical waveguides in lithium niobate. It is mainly due to a large 

control of the waveguide optical properties and geometrical configuration, a high index 

modification and reasonably conservation of the nonlinear properties of the optical waveguide. 

From literature, we develop and describe our own implantation proceeding with 2D-PPLN. 
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Chapter 3 

Second-harmonic generation in 

He
+
 implanted 2D-PPLN 

 
3.1.  Introduction 

In the previous chapters, we have developed a full theoretical study on the nonlinear behaviour 

of NLPC, especially SHG by QPM process. Moreover, we have carried out this study for planar 

waveguides and we have seen how SHG, particularly phase matching condition are affected by 

the waveguide structure. In this chapter, we will describe their behaviours observed 

experimentally. First, guiding properties due to ionic implantation will be show by identifying 

the transverse propagation modes of our structures. Following this, we will determine the optical 

losses and finally we will provide the experimental results on the nonlinear properties of NLPC 

in waveguide configuration. 

We have seen in chapter 2 the effects of ion implantation on dielectric materials. Particularly, the 

choice of energy ( ) and dose ( ) can develop any desired impurity profile beneath the surface, 

allowing the fabrication of suitable optical waveguides. By this method, we look for the 

fabrication of waveguides in periodically-polled lithium niobate with the least amount of 

possible transversal modes in order to avoid excessive TM modal dispersion with SHG. On the 

other hand, the number of modes must be enough to be able to calculate the index profile. In fact, 

single-mode implanted waveguides present the disadvantage of high optical loss because of the 

optical tunnelling effect (the tunnelling loss mechanism trends to change in      with   the 

waveguide thickness). The compromise is to obtain at least two TM modes in the waveguide 
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with different parity) at the fundamental wavelength 1064 nm. Thus, by using simulation TRIM 

[1], we have obtained implantation parameters to be set.  

First, a poling process described in Chapter 2 is done on LiNbO3 to realise PPLN samples. He+ 

implantation on the PPLN samples to fabricate waveguides should be performed after this 

process. In fact, the quality of PPLN structure depends on the purity of the substrate and the 

accommodated impurities at the optical barrier can disrupt the domain growth in the crystal. The 

procedure used in our work (poling, implantation, then annealing) allows the fabrication of 

optical waveguides preserving its nonlinear properties and the domain structure.  

Two PPLNs are prepared for implantation. The first one (PPLN 1) is a 2D-PPLN (congruent) 

with a poled area of 6 mm x 6 mm in the middle of the substrate. The thickness is 1 mm and a 

2D square lattice in the poled area has a period of  = 6.92 µm and a duty cycle of 50%. The 

second one (PPLN 2) is the same as PPLN 1, but it is doped with magnesium oxide (MgO) at 5% 

mol. and it has a poled period of  = 6.96 µm. 

The implantation dose is set to 1.5   10
16

 ions/cm
2
 which may weaken the surface of the samples. 

However, this dose ensures a maximum refractive index variation at the optical barrier, leading 

to a good optical confinement. The implantation energy is fixed at 1.5 MeV. The implantation is 

performed on the whole surface of the samples for building a planar waveguide. 

In general, it is recommended to perform a series of implantations with different energies in 

order to enlarge the optical barrier. However, the process takes very long the time during which 

the beam energy is changed (around 8 hours). For instance, Vincent et al. [2] made on the same 

sample a triple implantation with different energies of 1.5 MeV, 1.6 MeV and 1.7 MeV with the 

same dose 5   10
15

 ions/cm
2
 (the total being 1.5   10

16
 ions/cm

2
),. In this thesis, we have 

performed a single implantation in a few hours.  

After the implantation, the sample is annealed at 200°C for one hour in an oven [2]. The 

annealing treatment allows the crystal to recover from the implantation-induced defects [3]. Even 

if an optical barrier is created, it is quite impossible to observe guided modes, especially for TM 

polarisation without this treatment [3]. 
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3.2.  Characterisation of implanted waveguides in 2D-PPLN 

The purpose of this section is the linear and nonlinear study of the He
+
 - implanted 2D-PPLN 

waveguide (PPLN 1). It is proved that ion implantation creates a guiding layer in the crystal, and 

the global optical loss is measured. We seek a good optical confinement, a conservation of 

nonlinear properties of the implanted region, and a low attenuation along the waveguide. An 

experimental study of SHG is led in bulk and waveguide, and according to the different QPM 

orders.   

3.2.1. Linear characterisation 

The waveguide fabricated by the implantation is characterised by the refractive index profile and 

the optical attenuation. These characterisations are performed by indirect measurements. The m-

line spectroscopy and i-WKB method are carried out to measure the index profile, and CCD 

camera is used to measure the optical loss.  

3.2.1.1. Dark m-line spectroscopy 

Dark m-line spectroscopy is an experimental non-destructive method of optical analysis in order 

to determine the effective index of a guided mode. The principle consists in exciting the 

waveguide modes via a coupling prism through the surface of the waveguide. In fact, this 

method is one of the easiest ways to inject the incident wave to the waveguide with phase 

matching between the horizontal components of the incident wave vector and the guided wave 

vector. By scanning the incident wave angle, it is possible to seek the propagation modes one by 

one. Angles related to coupling in the waveguide are called synchronous angles. 

The m-line setup used in this thesis is illustrated in Fig. 3.1. The waveguide is pressed against the 

base of the prism at a gap distance of    
  . The incident beam is focused on the prism base in 

a zone called coupling point and is totally reflected with an angle    according to the Snell law. 

This reflection is accompanied with an evanescent wave which is coupled into the waveguide. 

Thus, the prism must have a higher refractive index than the thin layer and the substrate. Then, 

using a goniometer on which the coupling system is mounted, the normal direction of the prism 

input face is referenced by auto-collimation (collimation between the incident beam and the 
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reflected beam normal to the prism input face). It determines the zero angle   . The 

determination of the synchronous angles            is performed by measuring the 

reflected intensity. A sharp decreasing of the reflected intensity indicates that the incident beam 

is well coupled into the waveguide at these angles. This causes the appearance of dark lines on 

the reflected image of the incident beam. From the angular position of a dark line, the effective 

index of the mode is determined by the relation: 

                        
   Φ

 

  
         (3.1.a) 

with    the prism angle and    its refractive index. Equation (3.1.a) can be simplified: 

                
                         (3.1.b) 

 

Figure 3.1: The “m-line” setup used in the thesis. The photography at the upright side shows 

reflected dark-lines indicating a light coupling in the waveguide. 

Equations 3.1.b show that the measurable effective index range depends on the choice of the 

prism index   . Our choice fell on a right angle prism with angles of 30° - 60° - 90° made with 
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the crystalline titanium oxide under the rutile form. Rutile is transparent at the used wavelength 

(532 nm and 632.8 nm) and the orientation of the prism optical axis (ordinary axis) is 

perpendicular to its lateral faces such as           and           at 632.8 nm. The prism 

dimension is 5 x 5 mm at its base.  

It is possible to perform angular spectroscopy with the transmitted beam. In this case, the 

synchronous angles are determined by measuring the intensity at the edge of the waveguide or by 

using a decoupling prism. This configuration is particularly interesting to measure losses mode 

by mode. In that case, it is necessary to prepare a large sample so as to put two prisms. 

3.2.1.2. Effective index measurements 

First, we have measured the guiding properties of our He
+
 NLPC sample at different 

wavelengths (532 nm and 632 nm). For this purpose, we have used the well-known dark m-lines 

method based on prism coupling in order to excite the structure guided modes (see section 2.4.1). 

Figure 3.2 presents the index profile obtained by m-line measurements in polarisation TE and 

TM for PPLN 1. Our LiNbO3 sample is z-cut. Therefore, we can see from the figure that the 

waveguide supports both the ordinary and extraordinary guided modes for TE and TM modes, 

respectively. In fact, our samples are all cut according to the z-direction. The TE polarisation 

gives information on ordinary refractive index and TM polarisation on extraordinary index. To 

check our results, the measures must be invariant if the sample is turned around its z-axis.  

The m-line measurements of angle    are converted into the effective indices        by Eq. 

(3.1.b). From this measurement in Fig. 3.2, the ordinary and extraordinary effective indices are 

calculated by i-WKB method. From the figures, 5 TE and 2 TM modes are almost well identified 

in the sample at both wavelengths. The higher order modes are considered as radiating modes 

and not taken into account for the i-WKB calculation. Tables 3.1 summarise the effective 

refractive indices of each sample measured in the PPLN zone. We have also measured m-lines in 

blank LiNbO3 area (non-PPLN area), but no significant difference is observed compared to the 

one in the PPLN area. So it is evident that the poling process has no influence on the waveguide 

formation. 
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Figure 3.2: M-line measurements in PPLN 1 for TE modes (a) at 532 nm and (b) 633 nm (red 

line) TM-modes (c) at 532 nm and (d) 633 nm (red line).  
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At 532 nm Pol. nwg Depth (m) Mode order Eff. index 

PPLN 1 TE 2.3229 3.76 0 2.3159 

1 2.3082 

2 2.3014 

3 2.2945 

4 2.2856 

TM 2.2431 3.70 0 2.2347 

1 2.2288 

2 2.2221 

At 632 nm Pol. nwg Depth (m) Mode order Eff. index 

PPLN 1 TE 2.2858 3.68 0 2.2787 

1 2.2701 

2 2.2589 

3 2.2454 

4 2.2297 

TM 2.2137 3.62 0 2.2045 

1 2.1979 

2 2.1868 

Table 3.1: Effective index measured at 532 nm and 632 nm. 

 

Figure 3.3(a): Ordinary refractive index profile of PPLN 1  obtained by i-WKB resolution.  

Depth (m)
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Figure 3.3(b): Extraordinary refractive index profile of PPLN 1 obtained by i-WKB resolution. 

From the measured effective indices, we can determine the refractive index profile of our 

waveguides following the i-WKB method (see section 1.3.4). Figures 3.3(a) and 3.3(b) show the 

polynomial extrapolation from the calculated turning points                    of PPLN 1 at 

632 nm for both the polarisations. The index changes (  ) are obtained by subtracting the 

effective indices from the refractive indices of LiNbO3 at 632 nm (                    ). 

The i-WKB method shows the refractive index variations at the surface of the sample due to the 

ionisation interaction as well as in the waveguides. 

We observe in Figs. 3.3 that ionic implantation has not the same influence on the ordinary and 

the extraordinary indices. Three points are to be noted: 

 We have less extraordinary propagation modes than ordinary ones.  It has a direct 

influence on the refractive index contrast of the waveguide. We observe refractive index 

variation           and          . Since LiNbO3 is a crystalline material This 

difference indicates that during ion implantation, channelling effect of incident ions in the 

crystal reveal that on-axis implantation (extraordinary direction) causes less damage and 

less stress in the lattice that in off-axis case (ordinary direction) [4] . 

Depth (m)
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 The extraordinary refractive index in the guiding region        increases slightly after 

the implantation, whereas the ordinary one        decreases. We find that     

                   and                       . Hereafter, this will be 

considered in the QPM calculations. The positive change of    in the near surface region 

is well known. The profile has a typical enhanced well + barrier-type distribution as 

shown in Figs. 3.3. At higher dose extraordinary and ordinary refractive indices 

significantly change [3].  At a very high dose, the amorphisation of crystals can happen. 

 The optical barrier depth is estimated to 3.7 m in the ordinary direction and 3.6 m in 

the extraordinary direction. The results are in correlation with TRIM (Transport Ion in 

Matter) simulation, as the ion range at 1.5 MeV has created a barrier at 3.6 m as shown 

in Fig. 3.4. Therefore, the ion range results in the index barrier and this barrier depth is 

used as the thickness of our waveguides.   

 

Figure 3.4: Simulated TRIM He
+
 concentration in congruent LiNbO3 after an implantation at 

1.5MeV.  

Finally, there has to be noted that Zhang et al. [5] observed that the extraordinary profile has its 

maximum index position buried at a certain distance beneath the surface, which can confine light 

propagation in several modes called missing modes. These first modes cannot be detected by 
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traditional m-line techniques, unless by polishing the sample surface to a suitable thickness and 

by measuring the difference value of the first modes. They also attributed the    increase in this 

region to the depletion of lithium due to radiation-enhanced diffusion. The lithium ions diffuse 

toward the nuclear damage region at the end of the ion track and from the near surface region. 

The same diffusion process is possible at the substrate side, creating a second positive well 

beyond the optical barrier.  

3.2.1.3. Attenuation measurement by optical surface analysis setup 

In order to complete the linear characterisation of our samples, the attenuation loss in the 

waveguide is measured in TE configurations. It gives information about how the light is carried 

along the waveguide with reliability. Thus, in this section, we briefly recall the various physical 

origins of losses in the waveguide. The technique used to characterise the light attenuation in our 

waveguides is a surface analysis of the scattered light along the waveguide as shown in Fig. 3.5. 

In fact, if we consider that the surface scattered intensity is proportional to the guided intensity, it 

is possible to estimate the attenuation coefficient   corresponding to overall losses. The light 

injection in the waveguide is performed by a microscope objective following the end-fire 

coupling technique. The attenuation has been measured with CCD camera at three different 

wavelengths: 532 nm, 632 nm and 1064 nm. From the top-view of the light track, we have 

plotted the recorded scattered intensity along the waveguide. In general, the observation 

condition depends on the surface quality and the number of scattering sites in the waveguide. We 

have limited our observation to the PP area (6   6 mm) where the scattered light is more intense 

and easier to measure. The main difficulty is that it should be ensured to have an identical 

coupling at each wavelength and in both waveguides in order to overcome the coupling loss. For 

instance, the scattered light from the surface of the waveguide PPLN 1 is shown in Fig. 3.6.  

One other camera is placed at the output side in order to check the precise alignment of the 

experimental setup. It is also possible to measure the optical attenuation by collecting the 

transmitted intensity for waveguides with different length. The utilisation of this technique 

presents the disadvantage of non-selectivity of modes. It means that all guided modes are 

simultaneously excited and the individual mode cannot be collected. Furthermore, this technique 

needs a prior optical polishing of the waveguide edges. 
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The decay of light intensity as a function of travelled distance is written: 

         
  

              (3.2.a) 

It can be expressed as         rather than Np/cm as follows: 

                                            (3.2.b) 

 

 

Figure 3.5: Loss Measurements by the end-coupling method. Camera 1 takes a picture of the 

surface scattered light in order to estimate the attenuation in the waveguide. Camera 2 takes 

an image of the transmitted intensity. Images (1) and (2) in the figure are from Camera (1) 

and (2), respectively.  

Different mechanisms are at the origin of the optical losses in the waveguide: 

 Absorption losses: generally, absorption occurs when the photons transfer their energy to 

other particles. According to the nature of particle, different reasons may lead to 

increasing the absorption of the material: interband transitions of electrons which 

generally occur in semiconductor materials, intraband absorption when photons transfer 

their energy to free carrier (electrons from the conduction band or holes from the valence 

band) or absorption due to the presence of impurities.  
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 Radiation losses: they are linked to the confinement quality of the waveguide. This 

corresponds to the dissipated energy of the propagated wave in the substrate or the 

superstrate by tunnelling effect. It is generally predominant for leaky modes where the 

value of the effective indices is close to the cut-off index of the substrate. Radiation 

losses must increase with the order modes, and is generally considered negligible 

compared with the other losses at low order modes. 

 Conversion losses: they are associated to the energy transfer between different modes in a 

multimodal non-homogeneous waveguide structure. As the guided modes are orthogonal, 

the energy transfers between modes are generally omitted.  

 Diffusion losses: This can take two different forms. The first one is caused by the 

crystalline imperfections and defects in the material and called volume diffusion losses. It 

depends on the concentration of diffusions centre within the crystal. The second one is 

due to the surface roughness of the waveguide and called surface diffusion losses. These 

losses are linked to the total reflections number at the waveguide interfaces. That is why 

surface diffusion losses increase with higher order modes. 

However, the optical setup used in the work does not allow finding out the origin of losses, but 

give information on the overall losses by observing the light scattered at the surface of the 

waveguide. 

3.2.1.4. Experimental results 

For planar optical waveguides (with a confinement in one direction), the analysis of the intensity 

variation according to the propagation distance is possible by using two methods: 

The simplest one is to analyse the intensity decay on few pixel range and all along the light track. 

The intensity is linearly fitted in log scale according to Eq. (3.2). In that case, the difficulty is an 

appropriate selection of the area. Statistically, the measurement of the attenuation coefficient on 

adjacent pixels lines can change of few percent. In Fig.3.8, the experimental variation of light 

intensity as a function of the propagation distance is fitted by a linear regression in a logarithmic 

scale (see Eq. 3.2) in order to determine the optical losses.  
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Figure 3.6: Overall optical losses recorded on the surface of PPLN 1waveguide with a CCD 

camera (a) at 532 nm, (b) 632 nm (c) and a SPIRICON CCD camera at 1064 nm. 

We have found from Fig.3.8 that PPLN 1 present a global optical loss of 3 dB/cm. The precision 

in our loss estimation is not very accurate since a tendency is taken on a line with few pixels 

wide (about 10). In fact, a maximum difference of 0.2dB/cm (fixed as absolute error) can be 

observed between two adjacent pixel lines. From Fig. 3.7, we remark that optical loss decreases 

as the wavelength increases. 

As described in section 2.3.1, diffusion, absorption and tunnelling effects are at the origin of 

optical losses. We know that row PPLN is transparent at the considered wavelengths. By ion 

implantation nuclear defects and stress are created in the implanted region. They lead to 

increasing the absorption at short wavelength. Concerning diffusion loss, Rayleigh diffusion (for 

defects around 10 nm) can be at the origin of the attenuation behaviour (1/
4
), whereas the Mie 

diffusion is maximal at wavelengths close to the defaults size.  

Compared to scattering losses the loss due to tunnelling effect as an opposite effect on the optical 

loss behaviour with wavelength. In fact, as shown in Fig. 2.10, higher is the wavelength, higher 

is the electrical field penetration at the optical barrier. By this way, the optical losses should be 

higher at the pump wavelength (1064 nm) that at the SHG wavelength (532 nm). This behaviour 
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is assumed to be negligible comparing to scattering effect and considering the measurement 

precision. 

 

Figure 3.7: Overall optical losses obtained from the middle pixel line of the images in Fig. 3.6 at 

532 nm (green dots) 632 nm (red dots)  and 1064 nm (brown dots) along the He+ implanted 2D 

PPLN waveguides (PPLN 1). 

Another technique is based on top-view image only. In that case, we have to take care of the 

Gaussian decreasing measurement with a distance x in the waveguide. The intensity profile is 

expressed: 

             
 

   

              (3.3.a) 

with            and      the beam waist size is written as: 

            
  

   
  

 

        (3.3.b) 
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Figure 3.8 shows few results from this technique. The image in Fig. 3.8(a) is captured by Camera 

1. The light intensity of each pixel column of the image is averaged along the light trace of 3.7 

mm and linearly fitted in Fig. 3.8(b). From the fitting, the loss is obtained as 0.143 /mm which 

corresponds to 6.2 dB/cm from Eq. (3.3.a). 

However, the beam in the planar waveguide spreads out during the propagation as seen in Fig. 

3.6. With the optical confinement in y direction, we can write that      . If we now consider 

the intensity average in   direction, we get from equation (3.3.a): 

           
         

 
   

        
 
  

Δ 
        (3.3.c) 

with    the number of pixels in the image in   direction. If we consider that      , the 

integration can be simplified as: 

           
        

 

 
      

  

   
  

 

Δ 
        (3.3.d) 

Taking into account the beam waist increase, the averaged intensity is refitted from Eq. (3.3.d) in 

Fig. 3.8(c).  

The fit curve matches to the averaged intensity very well. The loss is obtained as 0.069.mm
-1

 

which corresponds to 3 dB.cm
-1

. This loss is considered as the loss of our sample hereafter.  

These both methods give the similar attenuation coefficient. All depends on the image area 

included in the calculation. 

Different ways allow the attenuation improvement along the waveguide: 

 By broadening the optical barrier through multiple-implantation energies ion 

implantation, it is possible to reduce the tunnelling effects. 

 The attenuation can be improved by increasing the annealing time after implantation. 

However, it may destroy the optical barrier if the annealing time is too long. Vincent et al. 
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demonstrated that 2-hour annealing at 200°C allows reducing the optical loss without 

destroying the guiding layer [1]. 

 

Figure 3.8: (a) Top view image of the light collected on the planar waveguide surface. (b) 

Averaged intensity of each pixel column along the light trace in log-scale with a. linear  fit 

curve in red line (c) with a modified fit curve taking into account the beam spread in red. 

ce.a)z(I bz 

dez.c1.a)z(I bz 

b =     -0.143/mm

b =     -0.069 /mm

Top-view of the scattered light on the 

waveguide surface
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3.2.2. Nonlinear characterisation 

The waveguide fabricated by He
+
- implantation is characterised by the refractive index and 

optical loss. As it has nonlinear properties, it is now essential to undertake its nonlinear 

characterisation. The experimental results for nonlinear characterisation include exclusively 

second harmonic generation (SHG) measurements from 2D-PPLN: The SHG intensity for 

different reciprocal lattice vectors (RLV) is measured according to the temperature, the angle 

dispersion and finally the SHG conversion efficiency is measured in cw-regime and in pulsed 

regime. The efficiencies in bulk and waveguides are compared. 

3.2.2.1. Optical setup  

The nonlinear characterisation of our sample is undertaken with different pump sources at 1064 

nm. In fact we have decided to study the influence of the optical power density on SHG 

conversion efficiency in CW (Continuous Wave) and pulse regimes.  

In cw-regime, we have used a laser diode Axcel Photonics (M9 A64-0350-S50) emitting cw at 

1064 nm ± 5 nm with a maximum optical power of 300 mW. The emission spectra of our laser 

diode are measured according to the driving current and temperature. This measurement allows 

finding the optimal conditions for our experiment and to check the stability of our source. We 

have measured the emission spectra using an OSA (Optical Spectrum Analyser Yokogawa 

Q8341) via an optical fibre while scanning the driving current. The measurement has been 

repeated for different temperature, in order to find a single-mode operating condition at 1064 nm. 

Figure 3.9(a) presents the spectra measurements as a function of the laser current at 38°C. The 

current is varied from 0 to 450 mA by a step of 1 mA (500mW corresponds to the kink current).  

From the figure the current threshold is measured as 28 mA and the laser diode emits a single-

mode emission at 1064 nm between 400 mA and 450 mA. The working conditions have been 

determined at 38°C and 430 mA. The corresponding spectrum is presented in Fig. 3.9(b), with a 

FWHM (Full-Width Half Maximum) of         nm at 1064.09 nm. We have also checked the 

drift of the optical power with the temperature. The laser source delivers a relative constant 

power with a drift of  0.3 mW/°C. 

 



  
Page 144 

 
  

 

Figure 3.9(a): Emission spectra of laser diode emitting cw at 1064 nm at 38°C with respect to the 

driving current. The colour scale indicates the optical power of the spectra in dBm. (b) 

Wavelength spectrum of the laser diode at 38°C and 430 mA. 

.  

Figure 3.10: Spectrum of the Nd:YAG Q-switched-Laser. 

For the pulsed regime, we have used an Nd:YAG Q-switched-Laser with a repetition rate of 10 

Hz and a pulse width (FWHM) of 6 ns at 1064 nm. The laser spectrum is shown in Fig. 3.10. 
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The experimental setup is illustrated schematically in Fig. 3.11. In the first place, the laser diode 

or the Q-switched laser is used as the pump laser. For the laser diode, the beam is collimated 

with an aspherical lens with a focal length of 4.51 mm. In this way, the beam-size is fixed to a 

diameter of 4 mm.  

For the Q-switched laser, we have used a 50 cm focal length lens to reduce the beam waist from 

3.5 mm to 450 m in front of the microscope objective. The laser beam waist measured by a 

SPIRICON CCD camera in combination with a graticule grid at the beam waist location. Most of 

nonlinear measurements are undertaken with the Q-switched laser and the laser diode is used 

only for the conversion efficiency measures in the cw-regime. 

Between the lens and the objective, two polarising beam splitter cubes and a half-wave plate 

ensure the laser polarisation and attenuation. TE- or TM-polarisation can be selected by these 

components and the pump power is adjusted by turning the half-wave plate.  

A microscope objective (MO x20) is placed at the beam waist position of the pump and AR 

coated at 1064 nm. Finally, the laser beam is coupled to the waveguide. However, this coupling 

configuration is not adapted for bulk case. This will be discussed later. 

 

 

 

Figure 3.11: SHG experimental setup. 

 

PM
OSA



  
Page 146 

 
  

 

Figure 3.12: Knife edge method used to measure the coupling beam waist. From the intensity 

obtained along the straight cut-section of a Gaussian profile, the beam waist at         is 

measured as 7.2 m. 

 

 

Figure 3.13: (a) SHG from the PPLN 1waveguide. (b) Top-view of PPLN 1 pumped at 1064 

nm. The output SHG far-field image(c) from the PPLN 1 bulk and (d) from the PPLN 1 

planar waveguide. 

At the focal distance
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The beam waist focused on the facet of waveguides has been measured by knife-edge method 

with a razor blade. The laser light is collected as moving the blade in a microscale at the focus 

position as shown in the photo of Fig. 3.12. The graph of Fig. 3.12 shows the normalised light 

intensity measured as a function the razor blade position. From the measure, beam size is 

obtained as 14.4 m. We will consider this measure as the beam waist at the front facet of the 

waveguide. 

With this configuration, the light is injected into waveguide at the normal incident angle and 

generates SHG signal as shown in Fig. 3.13. The NLPC samples are on a hotplate and 

temperature-controlled in order to achieve phase matching at the pump laser wavelength. The 

output SHG signal is then collected by an optical fibre through a lens and sent to an Optical 

Spectrum Analyser (Yokogawa AQ6373). For SHG power measurements, instead of the lens and 

the fibre a dichroic mirror HR tilted at 45° for removing 1064 nm and a powermeter are placed at 

the crystal output. 

3.2.2.2. SHG temperature tuning 

A first step is to measure the optimal crystal temperature conditions for SHG in PPLN 1. The 

hotplate is driven with a precision of 0.1°C and we heat the crystal from room temperature to 

140°C. A first measure is made with the OSA in order to observe the evolution of the SHG 

spectrum with temperature. Figure 3.14 shows the spectrum of the SHG emitted in normal 

direction from the sample. The maximum-peak wavelength is not shifted during the acquisition 

and remains at 532 nm. As we have seen in section 1.5.6, the temperature dependence of the 

SHG power can be fitted with a sinc function with a maximum measured at 53°C. 
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Figure 3.14: SHG spectrum of PPLN 1 taken at different temperatures. 

Then, the SHG power dependence with temperature (Figs. 3.15) is measured with a powermeter. 

Concerning the PPLN 1 bulk, the SHG from the RLV K10 is observed with a maximum power 

obtained at 53°C in Fig. 3.15(a). So, a QPM is achieved at this temperature. However, in 2D 

PPLN QPM is also possible from the reciprocal lattice vectors (RLV).  At higher temperatures, 

the RLVs K1±1 involve in producing a new QPM condition. The new QPM condition due to these 

RLVs is observed at 102°C. In the inset of Fig. 3.15(a), the image taken from the CCD camera 

clearly shows three SHG spots for the RLV K10 in the middle and K1±1 at the outer side. 

 

max = 532.084 nm

1
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Figure 3.15(a): Normalised optical SHG powers vs. temperature from PPLN 1 bulk 

 

Figure 3.15(b): Normalised optical SHG powers vs. temperature from PPLN 1 waveguide. 

 

(L =1,2mm)

(L =4.4 mm)
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Figure 3.15(b) shows the results for the waveguide case. The temperatures for the RLVs agree to 

those for the bulk case.  

 We observe a slight shift of the maximum peaks temperature in the waveguide 

configuration (≈ +0.2 °C). This shift is due to the slight modification of the extraordinary 

index in the waveguide and determined in section 3.2.2. From the model plotted in Fig. 

3.15, the maximum SHG power is calculated at 56°C, one supposition could be a 

modification of the poling period by thermal expansion of the crystal  

 However, the temperature bandwidths are different in waveguide or bulk configurations. 

For both QPM orders, the temperature bandwidth is lower in the waveguide than in the 

bulk. From the fitted curves, the interaction length   is obtained as 1.2 mm in the bulk 

(      5.45°C) and 4.4 mm in the waveguide (      2.76°C) for PPLN 1. So the 

nonlinear interaction has not occurred over 6 mm which is the total length of the poled 

region. As we work with a planar waveguide, the light confinement happens in only one 

direction. We suppose that the underestimated interaction length is due to the 

fundamental beam divergence in the non-confined direction.  

 

3.2.2.3. SHG angular dependence 

As shown in the previous section, we observe SHG at different QPM orders: at least (1, 0) and (1, 

±1) when the temperature changes. Figure 3.16 shows the far-field SHG images in the PPLN 1 

bulk and waveguide configurations. It indicates that the TM-modes can contribute to the SHG 

for the RLVs of K10, and K1±1. By using the nonlinear Bragg law (Eq. 1.63), we can predict the 

walk-off angles     of each RLV. 

From Eq. 2.20, the calculated angles     at 53°C are 0° for K10, ±4.6° for K1±1 and ±8.9° for 

K1±2. In Fig. 3.17(b), at 53°C the SHG signal is observed for K10 only. In Fig. 3.17(c), at 102°C 

the SHGs are also observed around ±5° in both the bulk and the waveguide, which are close to 

the calculated ones. 
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Figure 3.16(a): Far-field SHG images observed by a CCD camera in PPLN 1 for the bulk 

configuration 

 

Figure 3.16(b): Far-field SHG images observed by a CCD camera in PPLN 1 for the 

waveguide configuration. The first column shows SHG signal when the pump source is 

coupled into the planar waveguide. 
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Figure 3.17: (a) Schematic geometrical reciprocal lattice for SHG interaction. (b) Normalised 

far-field SHG intensity distribution from PPLN 1obtained at crystal temperatures of 53°C 

and (c) 102°C, in bulk (red trace) and waveguide (blue trace). The QPM orders (1, 0) and (1, 

±1) are visible. 

 

 

Figure 3.18: Measure of the maximum SHG intensity ratio between the QPM orders (1,0) 

and (1,±1). 

 

This is a clear evidence of the RLV contribution to SHG, which is not observed in 1D-PPLN. 

Moreover, the SHG intensity for K1±1 in the waveguide is higher than that in the bulk with a 

slight drift angle due to the refractive index change in the waveguide. It is clearly seen from the 

figure that the SHG efficiency is improved in the waveguide.  

Concerning the SHG intensity ratio between the QPM orders (1, 0) and (1, ±1) and defined by 

              
       

 , we observe that it never exceed experimentally 0.55 in the waveguide. 
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In theory, it has been demonstrated in section 1.6.2 that the effective nonlinear coefficient 

depends on the Fourier coefficients     obtained from the Fourier transform of the reversed 

poled distribution. Thus, in the case of phase matching with     , the SHG intensity is written: 

          
            

     
     

   
            (3.4) 

with   the fundamental frequency,     the nonlinear coefficient,     and    the refractive index 

of the crystal at the SHG and fundamental wavelengths,    the pump intensity and   the 

interaction length in the crystal. These parameters remain unchanged between two QPM orders 

in bulk or waveguide configuration. 

From Eq. (1.56), if we consider a square lattice with circular motif, we get: 

          
 

      
               

 

      (3.5) 

with (m, n) the QPM order,   the duty cycle (fixed at 50%) and    the first-order Bessel function. 

Finally, we assume that the limiting factor for       is only the rate between the absolute square 

of the relevant Fourier coefficients, such as: 

            
       

         
 
 

       

We observe that this limiting factor is reached in the optimal waveguide configuration. 

3.2.2.4. Conversion efficiency measurement in cw- and pulsed regime 

We report the SHG power at 532 nm versus the pump power at 1064 nm. For this work, we will 

study SHG in pulsed regime with the Q-switched laser as well as in cw regime at much lower 

pump power density with the diode laser. In both the cases, the Fresnel reflection is considered at 

the air/PPLN interface to estimated coupled power. These reflections occur when the optical 

connection presents a discontinuity, particularly during the coupling of light in the waveguide. 

The light which propagates in air undergoes partial reflection due to the abrupt change of 

refractive index of the propagation medium at the input waveguide face. This reflection can be 

evaluated from the Fresnel coefficient  , which represents the ratio between the reflected power 
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by the discontinuity   and the incident power   . If we consider that the input and output faces 

are polished, with non anti-reflection coating or index matching materials and if the incident 

wave propagation is perpendicular to these faces, we have: 

   
  

  
   

      

      
 

 

         (3.6) 

with    the refractive index of the external medium (air) and    the refractive index of the 

waveguide. Concerning the nonlinear characterisation of our samples, the input power at 1064 

nm has been measured and weighted by the Fresnel coefficient such as     ,           

and finally         . Thus, 86.6 % of the measured fundamental power is considered as the 

pump power. It represents a loss due to the Fresnel reflection: 

                              (3.7) 

between the injecting input power and the real power injected into the waveguide. This means 

that the reflected power is not negligible compared to the incident power. We have also 

estimated the coupling coefficient in waveguide which corresponds to 18% of the measured 

pump power. This value corresponds to the coupled energy of the pump beam with a waist of 7.2 

m in a waveguide with a thickness of 3.6 m. 

The SHG intensity is measured at the output of the waveguide and the pump source is filtered 

out. As SHG from different QPM orders (1, 0) at 53°C and (1, ±1) at 102°C are visible in pulsed 

regime for PPLN 1, we have measured the SHG power at these temperatures and by varying the 

pump power. The SHG power results in pulsed regime are shown in Figure 3.19 (a) from 

waveguides (b) and bulk and are expressed in peak power (the repetition rate is 10 Hz and the 

pulse width is 6 ns). Furthermore, Fig. 3.19 (c) shows that SHG curve tends to a saturation 

regime. The SHG saturation of the crystal results in the same saturating power at high pump 

power. Nevertheless, we observe a SHG improvement of   65 % in the waveguide configuration 

compared to the bulk configuration. However, the improvement lowers at 102°C from the QPM 

order (1, ±1).  

At high power density, we clearly see that the saturation regime is reached at lower pump 

intensity in the waveguide: around 200 MW/cm
2
 with a conversion efficiency of 56% in the 

waveguide and around 250 MW/cm
2
 with a conversion efficiency of 8.5% in the bulk.  
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Figure 3.19(a) SHG output power vs. pump power in the pulsed regimes in PPLN 1. (b) 

Conversion efficiency resulting from the PPLN 1 waveguide (black points) and the bulk (red 

points) in pulsed regime. 

53 C

102 C(a)

(c)

(b)
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Figure 3.20(a) SHG output power vs. pump power in the CW regimes in PPLN 1. the 

numerical fit results in a nonlinear conversion efficiency of 6.8%/W for the waveguide 

configuration and 0.4%/W in the bulk case. (b) Conversion efficiency resulting from the 

PPLN 1 waveguide (black points) and the bulk (red points) in CW regime. 

 

(b)

(a)
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The same measure is also realised in cw-regime. The results are presented in Fig. 3.20. The 

pump power is sufficiently low to measure the SHG quadratic behaviour. At the maximum 

power of the laser diode, the SHG power from the waveguide reaches 2.9 mW whereas 1.1 mW 

is measured from the bulk. Thus, the SHG power from the waveguide is three times stronger than 

that from the bulk. Taking into account the coupling loss, Figure 3.20 (a) shows the experimental 

results, fitted to the theoretical curve for second harmonic generation with a polynomial function. 

The fitting gives a nonlinear conversion efficiency of 6.8 %/W for the waveguide and 0.4 %/W 

for the bulk case. 

From these measures, Figure 3.20 (b) shows the SHG conversion efficiency (see Eq. (1.32)) 

dependence with the pump power density (normalised by the beam area). In cw-regime, a 

maximum conversion efficiency of 5.8 % is reached. The bulk and waveguide cases have linear 

behaviour with pump intensity, and their slope difference is firstly attributed to the interaction 

length difference, having a factor 16 between conversion efficiencies. 

At high power density, we clearly see that the saturation regime is reached at lower pump 

intensity in the waveguide: around 200 MW/cm
2
 with a conversion efficiency of 10% in the 

waveguide and around 250 MW/cm
2
 with a conversion efficiency of 8.5% in the bulk.  

3.2.2.5. Photorefractive effects 

At a high power density, the light in NLPC waveguide undergoes photorefractive effect. This 

nonlinear phenomenon is due to the onset of an electrical current proportional to the light 

intensity. This causes local damage of the crystal and leads to lowering conversion efficiency 

with the deformation of the optical beam. This section describes the causes of photorefractive 

effect in lithium niobate. One of solutions to overcome this disadvantage is doping crystals. In 

this thesis, MgO is proposed for a doping material. For this purpose a study on MgO-doped 

PPLN is undertaken. 

When the light propagates in a medium such as lithium niobate, ionic impurities and dopants 

(         ) can be photo-excited and produce carrier charges, following the mechanism [6]: 
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The created carrier charge may have different displacement in the crystal, following different 

physical phenomena. Generally the photo-excited electrons and holes have a higher density at the 

maxima of the light intensity. If the optical beam has non-uniform distribution intensity, the free-

carriers move towards the minima of the light intensity until they are trapped. The resulting 

charge distribution causes diffusion current: 

                  (3.8) 

with D the diffusion coefficient and n the carrier density. As their distributions are identical with 

opposite charge, the generated electrons and holes currents have opposite directions. 

The photovoltaic contribution is also considered. Noting that the free carrier density is 

proportional to the light intensity and knowing that these carriers are under an asymmetric 

potential in ferroelectric crystals (according to the c-axis for lithium niobate), they migrates in 

opposite directions, creating a photovoltaic current  following the c-axis such as: 

                     (3.9) 

with   the linear absorption coefficient,   the Glass constant [6] and   the light intensity. 

The generated currents create a charge density   as: 

                                       (3.10) 

The charge density is associated with a macroscopic electric field    : 

          
 

  
             (3.11) 

The generated electrical field is generally written as the current    considering Ohm’s law with   

the total conductivity of the material: 

                   (3.12) 

where    compensates the free-carriers displacement:                             . The total conductivity 

  takes into account the intrinsic conductivity of the material (without illumination) and the 

photoconductivity (depending on the carrier density and thus the light intensity). 
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Generally it is considered that the local diffusion of carriers is made on a small surface compared 

to the beam size. The effect can be neglected but increases if the thickness of the waveguide 

decreases. The photovoltaic effect is rapidly saturated with the light intensity. Its contribution to 

photorefractive effect does not change even if the beam size changes. Moreover, the photo-

excitation of impurities is sensitive to wavelength. This phenomenon is more important for SHG 

than OPO applications. 

The charge distribution causes an electro-optic effect causing a modification of the refractive 

index: 

          
   

 
           (3.13) 

In our case, this modification is higher in z-direction compared to y-direction as the electro-optic 

coefficient     >    . The typical modification of the refractive index is around 10
-4

 to 10
-3

. If the 

photorefractive effect is sufficient to modify the refractive index, we can observe a beam 

deformation along the c-direction. 

Different solutions are possible to increase the conductivity of the material (increasing the 

Ohm’s current and decreasing the photovoltaic current). By increasing the temperature or by 

doping the material with Mg, Zn, In, Sc, etc… (called extrinsic defects), it is possible to reduce 

the photorefractive sensitivity of crystal. It was reported the first time by Sweeney et al. [7]. The 

defect structure of MgO-doped LiNbO3 was characterised by Iyi et al. [8]. They concluded that 

optical damage threshold in doped crystal improves due to increase in Li vacancies. In general, it 

has been reported that Li/Nb ratio improves up to the doping concentration of 4.5 mol.% of MgO. 

At 7 mol.% doping, this ratio goes down even below congruent LiNbO3. In our works, we are 

interested in 5 mol.% MgO-doped LiNbO3 and we compared our SHG results with congruent 

crystal. In stoichiometric LiNbO3, a threshold doping at 1.8 mol.% is necessary to increase the 

optical damage threshold [9]. 
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Figure 3.21: Simplified scheme of the created photovoltaic current (blue arrows) in PPLN under 

light radiations. A loop is created, where carriers go though the inverted domains and return to 

their positions. 

It is also interesting to note, that photorefractive effects is weaker in PPLN crystal than mono-

domain crystals. In fact the created photovoltaic current changes its direction along the c-axis 

and periodically (Fig. 3.21). There can be charge compensation between two domains decreasing 

the electro-optic effect. Peng et al. [10] showed that it was possible to decrease the coercive field 

and control the propagation domains at the same time, in doped ZnO:LiNbO3. 

3.2.2.6. Photorefractive effect in the waveguide 

We have seen in the previous section that the nonlinear crystals are largely subject to 

photorefractive effects. The evolution of this nonlinear effect is measured over time in the 2D 

PPLN waveguides. A similar study was carried out by Vincent et al. with Zn-doped PPLN planar 

waveguide fabricated by He
+
 implantation. Firstly, we measure the SHG power from the PPLN 1 

waveguide at 58°C at different pump power using the Q-switched laser during 200 min. Three 

powers of 150 MW/cm
2
, 170 MW/cm

2
 and 200 MW/cm

2
 are chosen to investigate how the 

performance of sample deteriorates over 200 min. The results are shown in Fig. 3.22. The SHG 

intensity is normalised by the initial SHG intensity at    . As expected, when the pump 

intensity increases, the photorefractive effect influences on the deterioration of SHG emission.  

+ +

+ +-

-

-

-
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Figure 3.22: Normalised SHG intensity vs. time at different pump power intensity in the PPLN 1 

waveguide at 58°C. 

In literature, the optical damage threshold of raw lithium niobate is estimated to an intensity of 1 

kW/cm
2
 at 532 nm [6]. At a pump intensity of 150 MW/cm

2
,
 
we still observe 80% of the SHG 

intensity after 200 min. At 200 MW/cm
2
, only 45% of the measured SHG intensity is collected 

after 200 min. Furthermore, we note that the SHG intensity behaviour decreases exponentially 

with time. This behaviour can be explained by the fact that the photorefractive effect creates 

accumulated defects in crystal during time. At the end of the experimentation, we clearly see 

these created damages in the crystal.  

We have also measured the crystal temperature influence on photorefractive damages. The 

crystal temperature is set to 58°C for QPM orders (1,0) and 102°C for (1,±1). The SHG from 

both QPM orders is collected by a lens to the power meter. As it was made before, the SHG 

intensity is normalised with the SHG intensity measured at    . The normalised SHG 

intensities at these two temperatures are shown in Fig. 3.23. 
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Figure 3.23: Normalised SHG intensity vs. Time at different crystal temperature in PPLN 1 

waveguide configuration and at a fixed pump intensity of 170 MW/cm
2
. 

As expected, by increasing the crystal conductivity with temperature, it is possible to reduce 

optical damages due to photorefractive effect in the crystal. This is clear evidence that the 

photorefractive effect involves in lowering the SHG performance of sample. 

In order to carry out a quantitative comparison with the theory, we have fitted the SHG intensity 

by Eq. (3.18): 

             
                (3.14) 

with   the estimated life time,    the value of     when      and    a constant like          

     . In fact, the results show that the SHG intensities tend to a certain level which 

corresponds to   . As the time increases, it is expected that a further deterioration does not occur 

below this level. 

Considering all configurations, the values of     and    are given in Table 3.2 for the above result: 
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PPLN 1      

T = 58°C, P = 150 MW/cm
2
 65.9 0.80 

T = 58°C, P = 170 MW/cm
2
 42.8 0.56 

T = 58°C, P = 200 MW/cm
2
 40.5 0.47 

T = 102°C, P = 170 MW/cm
2
 44.2 0.75 

Table 3.2: Values of    and    from the fitting expression 3.14 of SHG intensity vs. Time. 

We observe two different things from this fitting: 

 Near the SHG saturation regime, the life-time of congruent PPLN is very short, between 

40 min and 1h. 

 From   , we notice that SHG photorefractive damages in crystal reach a limited damage 

(when       ) which is different from one configuration to another, thus the effect of 

photorefractive saturation is linked to the pump intensity and the crystal temperature. 
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3.3. Characterisation of implanted waveguide in doped MgO:2D-

PPLN 

3.3.1.  Linear characterisation 

The same experimental process is followed for He
+
- implanted 2D-PPLN doped at 5% mol. with 

magnesium oxide (MgO) and noted PPLN 2. The implantation dose and energy are the same 

than PPLN 1: successively 1.5   10
16

 ions/cm
2
 and 1.5 MeV. This time, the poling period is set 

at 6.96 µm. We will see that this period modification has a direct influence by decreasing the 

SHG peak temperature for the different QPM orders. For now we follow the same 

experimentation process for linear characterisation. 

3.3.1.1. Refractive index profile 

We use the same experimental dark m-line setup described in section 3.2.1.1. Figure 3.24 shows 

the measured effective indices        and calculated by Eq. (3.1.b). 

The refractive index profile is also calculated by i-WKB method. This time, the index changes 

(  ) are obtained by subtracting the effective indices from the refractive indices of 5% mol. 

LiNbO3 at 632 nm (                    ). As we expected, Figures 3. 25 show that a 

quasi-step index optical waveguide is formed in PPLN 2 with a similar behaviour of the 

refractive index profile than PPLN 1. We conclude that MgO doping has no significant influence 

on the guiding properties. 
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Figure 3.24: M-line measurements in PPLN 2 for TE-modes (a) at 532 nm and (b) 633 nm (red 

line), and TM-modes (c) at 532 nm and (d) 633 nm (red line). 
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At 532 nm Pol. nwg Depth (m) Mode order Eff. index 

PPLN 2 TE 2.3195 3.61 0 2.3116 

1 2.3039 

2 2.2957 

3 2.2879 

4 2.2810 

TM 2.2406 3.59 0 2.2328 

1 2.2272 

2 2.2205 

At 632 nm Pol. nwg Depth (m) Mode order Eff. index 

PPLN 2 TE 2.2830 3.54 0 2.2743 

1 2.2643 

2 2.2513 

3 2.2358 

4 2.2177 

TM 2.2126 3.47 0 2.2028 

1 2.1935 

2 2.1815 

Table 3.3: Effective index measured at 532 nm and 632 nm for PPLN 2 

 

Figure 3.25 (a): Ordinary refractive index profile of PPLN 2 obtained by i-WKB resolution.  

Depth (m)
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Figure 3.25 (b): Extraordinary refractive index profile of PPLN 2 obtained by i-WKB resolution.  

3.3.1.2. Attenuation loss 

As it has been done before, the attenuation has been measured with CCD camera at three 

different wavelengths: 532 nm, 632 nm and 1064 nm. From Fig. 3.26, we remark two points:  

 The optical loss decreases as the wavelength increases for both samples.  

 The measured loss is 11% lower in PPLN 2 than in PPLN 1. This difference can be 

considered as negligible, knowing that this method has low accuracy.  

A loss lower in MgO-doped PPLN 2 than in non-doped PPLN has never been observed before. It 

will need further investigations to confirm this claim. As both the samples undergo through the 

same treatment (implantation and annealing), it is expected that they manifest the same loss.  

Depth (m)
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Figure 3.26: Overall optical losses obtained from MgO doping PPLN (PPLN 2) at 532 nm (green 

dots) 632 nm (red dots) and 1064 nm (brown dots). 

3.3.2. Nonlinear characterisation 

In the following sections, the interest is to study the influence of doping on SHG. Except the 

refractive index difference between undoped and doped LiNbO3, we have seen, minor 

differences between waveguides in PPLN 1 and PPLN 2. The difference will certainly when we 

measure the photorefractive damages. It is first important to show that SHG is possible in PPLN2. 

3.3.2.1. SHG temperature tuning 

The optimal crystal temperature conditions for SHG in PPLN 2 are measured following the same 

process described in section 3.2.2.2. 
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Figure 3.27(a): Normalised optical SHG powers vs. temperature from PPLN 2 bulk. 

 
 

Figure 3.27(b): Normalised optical SHG powers vs. temperature from PPLN 2 waveguide. 
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If we compare the results between PPLN 1 (Fig. 3.15) and PPLN 2 (Fig. 3.27), we can 

observe two points: 

 In PPLN 2, the SHG peaks are measured at 34°C for the QPM order (1, 0) and 91°C for 

the QPM order (1, ±1), which are different to those in PPLN 1. These temperature shifts 

are due to the poling period difference between PPLN 1 ( = 6.92 µm) and PPLN 2 ( = 

6.96 µm) 

 In PPLN 2, the broadband temperature is wider in bulk and waveguide configuration. We 

only deduce that the coupling conditions are not exactly the same between PPLN 1 and 

PPLN 2. In fact, from Fig. 3.25, it is known that the optical confinement quality is 

identical in PPLN 1 and PPLN 2. Furthermore, the fundamental beam divergence was 

more important when we measured the SHG temperature dependence in PPLN 2. This 

illustrates the difficulty to have similar coupling conditions at each measure. With a 

higher divergence, the beam-waist is smaller, improving the coupling in the waveguide. 

In the PPLN 2 waveguide configuration, we obtain an unchanged interaction length of 

4.2 mm (      2.91°C), whereas the beam divergence remains unchanged with PPLN 2 

bulk configuration.  

 

3.3.2.2. SHG angular dependence 

The far-field SHG intensity profile from PPLN 2 is observed in bulk and waveguide 

configurations. We remark that SHG from (1, 0), (1, ±1) and (1, ±2) QPM orders are visible as 

shown in Fig. 3.28. Furthermore, we note from the figure that the SHG intensity for the K1±2 

RLVs is also observed in PPLN 2 at temperature above 140°C unlike PPLN 1. The lattice period 

of PPLN 2 (6.96 mm) is adapted to study SHG at lower temperature. 
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Figure 3.28: Normalised far-field SHG intensity distribution from PPLN 2 obtained at crystal 

temperatures of 34°C, 91°C and 150°C, in bulk (red trace) and waveguide (blue trace). The QPM 

orders (1, 0), (1, ±1) and (1, ±2) are visible. 

 

3.3.2.3. Conversion efficiency measurements 

The same process is followed for PPLN 2. The results cw-regimes are presented in Fig. 3.29. At 

the maximum pump power in cw-regime (Fig. 3.28(a)), the SHG power attains 1.35 mW in the 

waveguide and 0.58 mW in the bulk configuration. From the polynomial fit, the conversion 

efficiency is obtained as 4.33 %/W for the waveguide configuration and 0.41 %/W for the bulk 

configuration. Thus, compare to the waveguide in PPLN 1, the conversion efficiency is almost 

half of that one. The nonlinear susceptibility of congruent PPLN is 25.2 pm/V and that of 5%-

mol. MgO PPLN is 25 pm/V, so the lower efficiencies may come from measurement error. 

However the SHG emission from the waveguide is 10 times higher than that from the bulk. From 

Fig. 3.30 in pulsed regime, we observe that the saturation behaviour in PPLN 2 is similar to that 

in PPLN 1. The SHG is saturated at around 200 MW/cm
2
 with a maximum conversion efficiency 

of 50.3 % in the waveguide. 
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Figure 3.29(a): SHG output power vs. input power in CW regime for the PPLN 2 waveguide 

(black dots) and bulk (red dots). (b) Conversion efficiencies in CW regime. 

 

 

Figure 3.30: SHG conversion efficiency resulting from the PPLN 2 waveguide (black points) 

and the bulk (red points) in pulsed regime. 

 

 

 

(b)(a)
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3.3.2.4. Photorefractive effect 

Likewise, the photorefractive effect is studied in the PPLN 2 waveguide with the same 

experimental process as the PPLN 1 one, but the temperatures are set to 34°C for QPM order 

(1,0) and 91°C for (1,±1), which correspond to the optimum QPM conditions. In this case, we 

know that the photorefractive damage threshold of LiNbO3 doped with 5% mol. MgO is 

estimated to 300 MW/cm
2
 at 532 nm. Thus the pump intensities used in this work should not 

produce photorefractive effects.  

 

Figure 3.34: Normalised SHG intensity vs. Time at different crystal temperature (34°C and 91°C) 

and pump intensity (150 MW/cm
2
 and 170 MW/cm

2
) in PPLN 2 waveguide configuration. 

This time, it is interesting to note that the SHG intensity decay has not an exponential behaviour. 

We can even observe that at the lower pump intensity, the SHG signal remain stable. However, 

at 170 MW/cm
2
 we observe a SHG intensity decreasing. The photorefractive defaults created in 

the crystal is much less dependent on pump intensity or crystal temperature. This phenomenon 

becomes minor and seems to follow a random statistical. 
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It is clearly seen from Fig. 3.34 that the SHG intensity decay does not show an exponential 

behaviour. We can even observe that at the lower pump intensity, the SHG signal remain almost 

constant. However, at 170 MW/cm
2
 we observe a SHG intensity decreasing. The photorefractive 

effect in the crystal is much less dependent on pump intensity or crystal temperature. This 

phenomenon becomes minor. 

Summary 

This chapter experimentally complete the linear and non-linear studies of the NLPC waveguides 

fabricated by He
+
 implantation. All along our study, we have compared congruent PPLN and 

PPLN waveguide. This investigation demonstrates the feasibility of waveguide structure in 2D 

PPLN with an important conservation of the nonlinear properties of the crystal and the PP lattice. 

We have experimentally described the influence of the waveguide on SHG emission in NLPC, 

especially its influence on QPM according to the temperature, the QPM order and the SHG 

conversion efficiency. Moreover we have demonstrated that the MgO-doped PPLN waveguide 

resists better at high-pump power than the non-doped PPLN one. 
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Conclusions 

This thesis work has been performed in collaboration with the Laboratoire de Physique des 

Lasers (LPL) at the University of Paris 13 and the Graduated Institute of Photonics and 

Optoelectronics (GIPO) at the National Taiwan University. The main objective of the thesis 

consists of the study of SHG in 2D-PPLN implanted waveguides.. 

In order to demonstrate these objectives, the works have been undertaken mainly by 

characterising the waveguides: 

 linear characterisation: refractive index profile and optical loss 

 nonlinear characterisation: second-harmonic generation, observation of 2D reciprocal 

lattice vector, conversion efficiency, photorefractive damage over time 

In this context, we have demonstrated for the first time planar optical waveguides in 2D-PPLN 

by helium implantation technique. Second harmonic waves have successfully been generated 

from our waveguides using quasi-phase matching.   

A 2D structure period of 6.92 µm and a duty cycle of 50 % have been chosen to obtain quasi-

phase matching at a pump wavelength of 1064 nm. This structure has been realised by micro-

electrodes and high electric fields applied on LiNbO3 according to Miller’s method. This study 

has been done in the group of Professor L. –H. Peng at the GIPO. 

The optical waveguides have been fabricated in 2D-PPLN samples by helium implantation in the 

CEMHTI laboratory at the University of Orleans in collaboration with Professor E. Ntsoenzok. 

The implantation dose has been set to 1.5   10
16

 ions/cm
2
 for all samples in order to ensure a 

maximum refractive index variation at the optical barrier. The implantation energy has been set 

to 1.5 MeV with TRIM in order to create an optical barrier at 3.5 m below the z+ face.  

The refractive index profiles of the waveguides fabricated by He+ implantation have been 

measured by dark m-line spectroscopy at 532 nm and 632 nm. By observing several TM and TE 

modes in the samples, the guiding properties have been confirmed with a thickness of 3.9 µm 

which corresponds to the position of the optical barrier. With the implantation parameters, we 

have calculated by i-WKB resolution refractive index contrasts           and           

which ensure the guiding properties for TE and TM modes. We have measured a global optical 
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loss of 3 dB/cm at different wavelengths by a surface analysis of the light scattered from our 

optical waveguides. 

For SHG, the laser beam is injected into the waveguides and the optimal quasi-phase matching 

conditions are obtained at 53 °C for the reciprocal lattice vector K10 and 102 °C for K1±1, 

confirming the 2D structure. From this measurement, the SHG interaction length in the 

waveguide is obtained as 4.4 mm which is 3 times longer than that in the bulk. Due to this long 

interaction the conversion efficiency in the waveguides is obtained 3 times higher than that in the 

bulk. It is clearly shown from the experimental results that the pump power is well confined in 

the waveguides and the nonlinear properties of 2D-PPLN lattice are well preserved.  

We have also investigated a He-implanted 2D-PPLN waveguide doped with MgO in order to 

reduce the optical damage effects. A raw LiNbO3 is doped by MgO with 5% mol. before 2D 

stucturisation of the crystal. The same fabrication process of waveguide is applied to the doped 

sample. From the linear characterisation, the MgO-doped waveguide manifests the guiding 

properties similar to those of the non-doped waveguides. The SHG measurements have also been 

carried out in the MgO-doped bulk PPLN and waveguide. The experimental results show that the 

conversion efficiency in the waveguide is 2.3 higher than that in the bulk. 

The real interest of doping MgO lays down on improving the optical damage of waveguide due 

to optical high power density. For this purpose we have studied the photorefractive effect over 

200 minutes at near the SHG saturation regime. The MgO-doped waveguides have shown the 

resist to the high density power stronger than that of the non-doped waveguides. Particularly, the 

waveguide performance remains almost unchanged at a pump-power density of 150 MW/cm
2
. 

This study may provide the potential feasibility of tuneable micro-source lasers by using 

implanted optical waveguide. Some characteristics such as optical loss can be optimised. The 

study demonstrates that helium implantation is an excellent technique for fabricating optical 

waveguides. This technique potentially allows the fabrication of PPLN thin films or step-index 

waveguides by Crystal Ion-Slicing (CIS). In this case, it will be necessary to perform 

implantation at a dose over 5.10
16

 He
+
/cm

2
. However, a prior study would be necessary on the 

optical quality of the thin films particularly on the nonlinear conservation properties of PPLN at 

high implantation dose and the high modification of anisotropy in crystal. A study on the index 
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profile of PPLN at a high implantation dose has been realised with a high modification of the 

refractive index in the implanted region. We have especially observed a large decrease of the 

ordinary refractive index. However, this observation remains to be confirmed by other technical 

means like Raman spectrography. These studies will be the subject of future works.  

It will also be interesting to study channel optical waveguides in 1D-PPLN in order to increase 

the optical confinement and couple optical fibre system. 
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Annexe: 

 

Implantation in nonlinear crystals 

The non-linear crystals usually have high non-linear optical coefficients, which can be used for 

SHG, OPO and OPA. In this section, implanted waveguides in several important non-linear 

crystals will be discussed (except LN and PPLN). 

 Potassium Niobate 

Potassium Niobate has a large birefringence combined with a high nonlinearity and 

photorefractive sensitivity. Its densely-packed lattice and low Curie temperature make ion 

implantation the unique method for waveguide fabrication. The first successful waveguide in 

KNbO3 was reported by Bremer et al. [1], and more detailed investigation of waveguides 

formation and non linear property characterisation was performed by the group of Gunter [2]. 

One should point that the extraordinary refractive index has a positive change in the guide region, 

due to electronic energy deposition [2]. Moreover ridge waveguides were performed by 

combining He
+ 

ion implantation and Ar
+
 ion sputter etching [3]. The highest conversion 

efficiency for SH blue light generation is 12.1 %/W for a ridge waveguide [4]. 

 

 Potassium titanium oxide phosphate (KTiOPO4) 

KTP is an efficient non-linear optical crystal in the visible and infrared spectra. Waveguides in 

KTP have been fabricated by the implantation of H, He, Li, B, F, or P ions. Binder et al. [5] 

reported KTP waveguide formed by 2 MeV H
+
 implantations with a dose of 10

16
 ions/cm

2
. In 

their work the index increases (< 0.5%) very high at the surface region and decreases (< 9%) at 

the end of the ion range which builds up an optical confinement barrier. The technique 

progressed these last years with propagation loss in the channel waveguides determined at 2.9 

dB/cm [6]. Recently, Wang et al. [7] reported buried channel waveguide in KTP by multiple He 

ion implantations with the combination of masking technique and ion exchange. Up to 500°C. 

The SHG was reported in He
+
 implanted KTP waveguides with conversion efficiency of 25 % or 

incident pulses of 1 J (pulse with of 20 ns) [8]. 
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 Lithium triborate (LiB3O5) 

LBO has a wide transparency range (particularly in UV range), moderately high non-linear 

coupling and high damage threshold [9]. Conventional methods such as metal-diffusion and ion 

exchange cannot be applied to LBO, and only He
+
 ion-implantation allows LBO waveguides 

[10]. Davis et al. reported the channel waveguides in LBO, which were formed by multiple He
+
 

ion implantations with a gold mask to form sidewalls of channel waveguides [10]. The SHG 

conversion efficiency of 7.10
-5

% was achieved at a pump wavelength of 937 nm and a power of 

9.6 mW. The reason for this low value was attributed to the very low pumping power density and 

the multimode structures of the waveguide. Moreover, Bakhouya et al. [11] investigated the 

SHG in a LBO planar waveguide formed by double energy He
+
 ion implantation at a total dose 

of 3.9.10
16

 ions/cm
2
 and obtains 10

-4
%/W/cm

2
 at 923 nm with a pump power of 250 mW. 

 

 Gadolinium calcium oxoborate (Ca4GdO(BO3)3) 

GdCOB is one of the most interesting crystals for frequency doubling infrared laser diode light 

to achieve visible lasers. It is an ideal medium to realise possible self-frequency conversion [12]. 

As yet it seems that the ion implantation is the only method for the waveguide formation in the 

crystal [12]. Boudrioua et al. reported the formation of both planar and channel waveguides in 

GdCOB by MeV He
+
 implantation [13, 14]. It was proved that multiple-energy implantation is 

usually helpful to reduce the losses (2dB/cm) by widening the barrier and hence minimizing the 

tunnelling effect [14]. The SHG was achieved at the pumping laser excitation of 823 and 960 nm 

for an arrangement of type I phase matching [15]. A conversion efficiency of 10
-2 

% was 

obtained for the As-implanted planar waveguide in fundamental TM mode to harmonic TE mode 

and at pumping power of 250 mW. 

 

 Barium borate (BBO) 

It has a wide transparency range, large non-linear coefficients, wide thermal acceptance 

bandwidth and high damage threshold [16]. Up to now, planar waveguides in BBO have been 

fabricated by using MeV He
+
, O

+
 or Si

+
 ion implantation [17 - 18]. In the He

+
 implanted cases, 

both no and ne have an index-decreased barrier; however, in the guide region, no decreases 

slightly while ne has a small positive change even for high dose of 2.10
16

 ions/cm
2 

[18]. 
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Second-Harmonic Generation in Helium-implanted 2D-PPLN 

waveguides 

The optical confinement for second-harmonic generation (SHG) by Quasi-Phase Matching (QPM) has the interest to 

highly improve the conversion performances from the periodically poled structures (PP). It allows the use of low pump-

power. The originality of our works is that we have performed optical waveguides by helium implantation at MeV 

energies in congruent and MgO doped 2D-PPLN, having a square PP lattice and a periodicity of 6.92 m. 

Firstly, we have measured the linear properties of our samples by nondestructive methods. The refractive index profiles 

reconstruction by i-WKB method of the waveguides (no et ne) have been estimated from the effective indices measured at 

532 nm, 633 nm and 1064 nm by prism-coupling method (m-line by reflection). We have also measured the overall losses 

of the samples in implanted PP zone with CCD-camera at these wavelengths. 

A SHG experimental setup has been built in order to characterise and compare the nonlinear properties of our 2D-PPLN 

in bulk and waveguide configurations (SHG at different QPM orders according to temperature, SHG emission angle, 

conversion efficiency). The nonlinear optical setup uses a microscope objective -coupling system - optical fibre-decoupling 

system and the pump is a cw-laser diode at 1064 nm, allowing a maximum optical power of 300 mW. We find a 

conversion efficiency of 6.8 %/W in waveguide configuration and 0.4 %/W in bulk configuration.  

 

Guide d’onde optique dans le PPLN-2D par implantation Hélium 

pour la génération de second-harmonique 

 

Le confinement optique dans le cadre de la génération second-harmonique (GSH) par Quasi-Accord de Phase (QAP) a 

l’intérêt d’améliorer grandement les performances de conversion de la structure Périodiquement Polarisée (PP), 

autorisant l’utilisation de sources lasers à faible puissance de pompe. L’originalité de notre travail est d’avoir réalisé ces 

guides d’ondes par implantation d’ions He+ à des énergies de l’ordre du MeV dans des PPLN 2D congruent non dopés et 

dopés MgO à 5%, de maille PP carrée et de période 6,92 m. 

Dans un premier temps nous avons cherché à mesurer les propriétés linéaires de nos échantillons par des méthodes non-

destructives. La reconstruction des profils d’indice de réfraction i-WKB de nos guides d’ondes (no et ne) ont été extrapolé 

a partir de la mesure des indices effectifs a 532 nm, 633 nm et 1064 nm, et en utilisant la méthode du couplage par prisme 

(m-line en réflexion). Nous avons également mesuré les pertes optiques globales des échantillons dans la zone PP 

implantée avec une camera CCD à ces longueurs d’ondes. 

Un dispositif expérimental de GSH a également été monté afin de caractériser et comparer les propriétés non-linéaires de 

nos PPLN-2D  massifs et guides (GSH pour différents ordres du  QAP et suivant la température, angle d’émission de la 

GSH, efficacité de conversion). Le banc de caractérisation d’optique non-linéaire utilise un système de couplage par 

objectif de microscope - découplage par fibre et utilisant comme source une diode laser à 1064 nm en continue, pouvant 

monter à une puissance optique de 300 mW. Nous avons trouvé une efficacité de conversion de 6.8 %/W pour le guide et 

de 0,4 %/W dans le substrat. 

 

 


