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2 CHAPTER 1. INTRODUCTION

1.1 Image Segmentation and Medical Images

Segmentation is a fundamental step for image pattern recognition. It involves detecting and

extracting different objects of interest from image. Essentially, it aims at partitioning pixels

of the image into meaningful regions (objects), according to image properties for a specific

task. These properties may be intensity, color, textures, intensity gradient and may be

characterized statistically by the probability distribution function (pdf) or parameters such

as means and variance. Segmentation is a basic step in image analysis or interpretation for

many domains such as motion tracking and video surveillance where segmentation allows

detecting and identifying objects or persons in movement [6, 7].

In medical imaging, segmentation plays a crucial role for the diagnosis [8], monitoring

and treatment of diseases [9], as well as intro-operative navigation [10, 11, 12, 13, 14, 15].

Its role is to assist medical imaging experts in their task of identifying, analyzing and

interpreting the useful information available in an image. More precisely, segmentation

algorithms are used to identify anatomical structures, tissues or lesions within one or more

medical images, providing measurements for the location, shape and volume of desired

objects to detect. These algorithms are also used to determine the stage of the disease

and monitor treatment response. In this crucial respect, information extracted from med-

ical images must be accurate and repeatable for the benefits of the quality in diagnosis,

radiotherapy and surgery. While classical segmentation approaches to general images are

significant, the special nature of medical images requires specific and high-level treatments.

This specificity stems from their methods of acquisition depending on the imaging modal-

ity. An imaging modality refers to an imaging system which uses a particular technique to

produce images. Medical imaging includes techniques that provide information of anatomy

or tissues below the skin.

Nowadays, with the advance in digital medical imaging technologies, many medical

imaging modalities exist. They can be classified into two categories depending upon radia-

tion type used: ionizing radiation and non-ionizing one. Ionizing radiation corresponds to

radiation that has sufficient energy to ionize atoms and molecules within the body. Ionizing

radiation consists of X-rays and gamma-rays. It is worth noting that these radiations need

to be handled prudently to avoid harmful side-effects on the human body. In the other

hand, non-ionizing radiation, such as ultrasound (high-frequency sound) has very low level

of risks associated with its use.

More precisely, imaging modalities obtained with ionizing radiation, i.e. from X-ray

and gamma-rays are divided in:

i) X-rays-based imaging technique including:

- X-ray Projection Radiography

- Fluoroscopy (FC)
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- Mammography

- Computed Tomography (CT)

ii) Gamma-rays-based imaging technique including:

- the planar scintigraphy (or planar -imaging),

- the single-photon emission computed tomography (SPECT), and

- the positron emission tomography (PET).

As to medical imaging modalities obtained with non-ionizing radiation, there are mainly:

- Ultrasound Imaging

- Magnetic Resonance Imaging (MRI).

For more details on medical imaging, we refer the readers to [16, 17, 18].

Medical images may be in the 2D (two dimensional) form such as traditional X-ray

radiography, or in the 3D (three dimensional) forms in case of Computed-Tomography

(CT), Magnetic Resonance (MR) imaging, 3D Ultrasound, Positron Emission Tomogra-

phy (PET) or Single Photon Emission Tomography (SPECT). While X-Ray, CT or MRI

images provide information about anatomy and structure of the body, PET modality gives

information of the function and metabolism of the organs, by injecting radioactive sub-

stance into the body. This modality is useful for detecting and treating cancer, heart and

neuropsychiatric diseases. Generally, these modalities are all helpful and may be com-

plementary, with the same objective to provide quantitative and meaningful information

to complement the qualitative judgments by experts. These images contain information

about the target object of interest which may be an organ, a tissue or cancer tumors.

However, these target objects of interest may not be directly obtained from these imaging

modalities. Segmentation is then required for delineating the overall images issued from

these modalities to generate and isolate the desired objects of interest.

1.1.1 Challenges of segmentation in medical imaging

Although tremendous works have been devoted, segmentation in medical imaging still poses

high challenges due to many reasons.

First, the target objects in medical images are complex and highly variable from person

to person, in the intensity, in their shape and in their textures, e.g. soft and deformable

tissues such as liver, brain, lung, airways and so forth. A target object can be easily

segmented when it is somewhat homogeneous and surrounded by a different and relatively

homogeneous background. However, there are many cases of superimposed structures in

images, i.e. when many organs or tissues overlap (e.g. X-ray image due to its projectional
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Figure 1.1. Chest X-ray with rib shadows.

nature) with the same range of intensity values. Segmenting such structures is not easy.

Figure 1.1 illustrates the case of a chest X-ray with rib shadows making the segmentation

of lung nodule difficult, even in-feasible without reducing rib shadows. Many occlusion

problem of a 2D projection due to the presence of underlying tissue can be avoided with

3D image data. However, similar situation may arise in 3D images when an organ is in

contact with other soft tissues or organs, and conventional segmentation methods cannot

correctly identify each adjacent tissue.

Second, the segmentation of 3D images has to be performed on a very large number

of image slices (2D images), which can be time-consuming and complex. The volumetric

(3D) images are composed of a series of 2D slices for a give slice thickness. For example,

Figure 1.2 shows the result of segmentation of different organs segmented by the method

in [3] from a 3D image volume consisting of a thorax CT image series of resolution 257×
459×150 and voxel size 1.17×1.17×1.5mm3 (there are 150 slices of 2D images of 257×459

pixels for a 1.5 mm slice thickness). Three of the slices are presented in Figures 1.2a - 1.2c.

Another challenge in segmentation is related to the quality of medical images which is

often limited by poor resolution and intrinsic noises as well as various other artifacts (For

CT: see [19]).

Low-resolution adversely affects the level of detail discernible in image. As a conse-

quence, structures of size smaller than that of the image spatial resolution would not be

accurately detected. Likewise, small objects or structures that are adjacent to one an-

other would not be correctly identified. In the other hand, noise is the inherent and major

limiting factor of medical image quality. Depending upon its nature and level, noise can

reduce not only the contrast but also the visibility of details or structures (Figures 1.3

and 1.4). Noises can result in edges blurred or discontinues. Thus, it would be difficult to

distinguish for example tissues or tumors with poor contrast to their surroundings. Other

types of artifacts can be caused by exterior factors such as the unavoidable anatomical

motion of organs (e.g. cardiac motion) causing blurs, or the presence of metallic object

(e.g. prosthesis) in the body causing streak artifact (appearing as intense straight lines
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(a) (b) (c)

(d) (e)

Figure 1.2. A thorax 3D image of voxels 1, 17 × 1, 17 × 1, 5 mm3 from 150 slices of 2D
of 257 × 459 pixels. (a)(b)(c) Three 2D slices of a thorax 3D image (image courtesy of
J.-M. Rocchisani, Avicenne-Medicine Nucleaire Hospital, Bobigny, France); (b) Obtained
surface of the lung from the thorax 3D image by the C LGR method [3]; (c) The bronchi
tree inside the lung from the thorax 3D image by the C LGR method [3].

across the image) which may cause heavy intensity gradient (see Figure 1.4).

More particularly, medical images are prone to some major artifacts induced by the

data acquisition methods such as the Volume Partial Effect (VPE) and the Intensity In-

Homogeneity (IIH). The VPE is caused by a poor spatial resolution of the image, resulting

in blurring edges between different organ or tissue types and reducing the accuracy of

data taken in the images. As to the IIH, this is another major artifact for segmentation

techniques that we will focus on in the thesis and present in the next sub-section.

1.1.2 Intensity in-homogeneity (IIH)

One of the well-known artifact in medical imaging is the intensity in-homogeneity (or

intensity non-uniformity or intensity bias), also referred to as shading artifact. This artifact

is due to the acquisition mode and systems. Visually, it appears as local variation in

intensity of the same object. This artifact can be produced by different imaging modalities,
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Figure 1.3. Low-dose CT image of
thorax at the level of the pulmonary
arteries, acquired with optimized re-
construction filter, 2mm thickness, and
different parameters of tomography re-
construction. Image courtesy of J.-
M. Rocchisani, Avicenne-Medicine Nu-
cleaire Hospital, Bobigny, France.

Figure 1.4. Low-dose CT image of ab-
domen at the liver level, affected by noise
and streak artifact. Image courtesy of J.-
M. Rocchisani, Avicenne-Medicine Nu-
cleaire Hospital, Bobigny, France.

(a) (b) (c)

Figure 1.5. (a) A blood vessel X-ray with intensity in-homogeneity inside and outside
the vessel to be detected (very heteregenous background) (source http://www.unc.edu/

~liwa/); (b) Vessel is not correctly segmented due to intensity in-homogeneity by the
method in [35]; (c) Vessel is well segmented by the method in [3].

such as MRI, CT, X-ray, ultrasound, etc. Figures 1.5 and 1.6 show two examples of an

Blood vessel X-ray and a heart MRI images affected by this artifact. In general, this artifact

is not easy to detect since gradual changes in these modalities do not appear artificial. As

a consequence, this artifact may mimic pathology, and lead to misdiagnosis if it is not well

detected.

In MR images, this artifact is typical and mostly due to the geometry and electro-

magnetic properties of the subject or object being scanned, as well as many other factors

related to the acquisition system. For more details on the technology of the MRI, we refer

the reader to [20, 21].

http://www.unc.edu/~liwa/
http://www.unc.edu/~liwa/
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(a) (b) (c)

Figure 1.6. (a) A heart (left ventrice) MR image, with intensity in-homogeneity (source
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm); (b) Accurate boundary is not
correctly detected due to intensity in-homogeneity by the method in [80]; (c) Good result
of segmentation by the method in [1].

In X-ray and especially in CT imaging, shading is one of major artifacts together with

streaking, rings and bands. Shading artifacts usually appear near objects of high contrast,

e.g. in the soft tissue area near bony structure. In this modality, the shading artifacts are

more ominous and need to be considered with high caution. These artifacts are caused

by the inconsistency in the projection measurement (for 3D reconstruction), generally by

a group of views that diverge (from the true measurement) and without net discontinuity

in the signal. The images produced by these errors do not contain clear boundaries.

Depending on the error magnitude, the artifacts may largely cover regions or an entire

organ, leading to erroneous measurement [22]. It is worth noting that the IIH affects most

particularly medical images but can be observed in natural images.

Thus, the shading artifacts may have impact on visual observer. More particularly,

many medical image analysis methods, such as segmentation can be sensitive to the high

variations of image intensities, inducing hence inaccurate segmentation results. Thereby,

these artifacts may compromise the diagnosis of systems involving the segmentation such

as expert systems or interpretation systems, where anatomical structures or organs derived

from the segmentation method are used as prior or atlas for diagnosis purposes. Indeed,

since most of these methods rely on image intensity or on the assumption of homogeneity

of objects to detect, these artifacts may affect the accuracy of the segmentation results,

especially for heavy intensity variation in the image. Until now, challenge still remains al-

though this artifact has been taken into consideration by many segmentation methods. The

reader may refer to some review and articles on this artifact and conventional segmentation

methods dealing with this artifact in [23, 24].

In such situations and more generally, manual segmentation from human experts is

primordial. However, manual segmentation is a tedious task due to the large volume of

images to achieve, and tiredness may affect the quality and reliability of segmentation. For

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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applications which require full automation of the segmentation process, the IIH artifact

would be efficiently dealt.

Basically, semi-automatic or automatic segmentation methods should:

i) handle usually large amounts of data with high performance;

ii) provide accurate and repeatable results even in case of noise and artifacts;

iii) be designed with fast algorithm, which can be expected with the increasingly high-

speed computers.

1.2 Objectives

We are interested in designing a computer-aided segmentation tool to extract clinically

useful information about anatomic structures or lesions through different medical imaging

modalities as well as for other images such as lesion skin images. Accurate segmentation is

still a challenge due to limitations of the imaging system with its artifacts such as noises,

intensity in-homogeneity, partial volume effect, as well as the variability and diversity of the

biological tissues. This makes the boundaries between different tissues indistinguishable.

In this work, we focus on noises and more specially in intensity in-homogeneity for its high

interest in the medial imaging community [77, 82, 78, 79, 83, 80].

Our objective in this work is to develop efficient segmentation methods which should

be:

a) capable of dealing with IIH and providing the robustness to noises and weak edges,

b) independent of initialization, hence suitable for an automation,

c) implemented with fast algorithms to handle large volume of data.

In the scope of this thesis, we have adopted region-based active contour models in a vari-

ational framework as segmentation methods to achieve our objectives. Unlike conventional

pixel (voxel)-based methods, active contours are well-known models capable of providing

accurately smooth and closed curves/surface as final segmentation. In a variational frame-

work, the active contour is obtained by minimizing an energy functional. Depending upon

the choice of the energy functional, its convexity would provide a global solution, hence

repeatable and reliable results. Thereby, convex energy functional-based models would be

particularly suitable for an automatic segmentation system. By adopting this framework,

we will address the IIH and the globally convex segmentation. In addition, we are mo-

tivated by the implementation of these methods with fast algorithms to be competitive

while treating high volume of data.
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In this context, these objectives have allowed my participation in the multidisciplinary

BQR (Bonus Qualité Recherche) project (2011/2012), for “Automatic and adaptive seg-

mentation methods for the detection and monitoring of pathology by medical imaging

analysis” in collaboration with the LAGA laboratory (Laboratoire Analyse, Géometrie et

Aplications, UMR CNRS 7539) (Professor Françoise DIBOS, head of project), the Centre

Hospitalier Universitaire Avicenne (Bobigny) (Dr Jean-Marie ROCCHISANI, M.D.). On

the other hand, we also collaborate with the Texas A&M University Commerce in USA

(Dr. Nikolay Metodiev Sirakov and Dr. Richard Selvaggi, M.D.) for the segmentation of

skin lesion images for the purpose of a computerized automated interpretation system of

melanoma dots and globules. Note that medical images are not the same for skin lesion

images. In such system, segmentation methods are used for accurately extracting bound-

ary of dots typical of melanoma. This system aims at assisting experts in the screening

of melanomas, improving the visual diagnosis, leading to earlier diagnosis, increasing the

probability of biopsy for suspicious skin lesion and reducing the biopsy rates of benign

lesions. Figure 1.7 illustrates a skin lesion image with visible melanoma dots.

Figure 1.7. A skin lesion image with visible melanoma dots (image courtesy of Nikolay
Metodiev Sirakov and Richard Selvaggi, The Texas A&M University-Commerce).

In the next sub-sections, we will present an overview of active contour model in the

variational framework as well as the region-based active contour models that are known

for robustness to noises and initialization, followed by problem of intensity in-homogeneity

problem that can be solved by taking into account local information into a region-based ac-

tive contour model. Finally, the globally convex segmentation problem is briefly described.

1.2.1 Active contour model and optimization

Many recent efficient segmentation techniques can be described by the formulation as

an optimization problem, where segmentation is obtained by minimizing an appropriate

criteria or an energy functional. This is the case of the variational approach and the

Bayesian framework.
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In Bayesian framework, segmentation techniques involve the probability density func-

tion (pdf) or the parameters to characterize the properties of images via descriptor such

as intensity or textures. The distribution of image regions may be modelled by stochas-

tic/probabilistic models and segmentation is performed by maximum a posteriori (MAP)

or maximum likelihood (ML) estimation methods.

In variational framework, the segmentation is obtained by minimizing an energy func-

tional. To minimize this functional, the common way is to compute the Euler-Lagrange

equation. Then, an optimizer can be computed using a gradient descent method. The vari-

ational models are formulated in spatially continuous setting, thus offering well-established

mathematical description. It addition, in this framework, it is easy to incorporate and im-

pose a priori constraints such as geometric prior (smoothness), and other prior information

accounting for the object features (intensity distribution, texture, homogeneity, motion,

shape). Among the most popular variational models, Active Contour (AC) models are

well-known for their accuracy and robustness in case of noise or weak boundaries.

Active contour models are also referred to as snakes or deformable models. Basically,

active contours are curves (or surfaces) defined in the image that can be evolved towards

the boundary or other desired features of the object of interest, according to a partial

differential equation (PDE). This latter can be derived from the minimization of an energy

functional. Such functional can be a criterion that accounts for image properties while

satisfying the internal geometric properties of the contour. Since the publication of the

paper on Snakes by Kass, Witkin, and Terzopoulos in 1988 [25], these models have become

very popular in the literature, along with successful applications, particularly in analysis

of medical images [26, 27, 28]. The AC can be parameterized, leading to the so called

parameterized models. Such approaches convey certain advantages. Firstly, the AC is

defined using an energy function that can be regularized to constrain the curve to be smooth

and offer robustness to noise and gaps of boundary. Second, AC is implemented on the

continuum, achieving sub-pixel segmentation accuracy, which is primordial for applications

such as medical imaging. Moreover, the implementation is straightforward and rapid,

using the finite difference for example. However, one of drawbacks is that by default they

cannot allow change of topology of the evolving contour, implying that the segmentation of

several objects or multiply-connected objects is not possible. To overcome this limitation,

the Geometric AC models proposed by Caselles, Catte, Coll, and Dibos [29] have been

addressed in 1993. Although these models are not derived from a variational approach,

they have revolutionized the AC models, providing automatic change of topology and

making possible the segmentation of complex shapes. In these models, the contour is

implicitly represented by level set function and the curve evolving is defined using the

evolution theory (i.e. using only geometric measures such as unit normal and curvature

of the contour to study its deformation). Using always the level set representation of the

contour to benefit from the automatic change of topology, another AC contour model,
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namely the geodesic active model has been later proposed, but deriving from a variational

framework by Caselles, Kimmel, Sapiro in 1995 [30] and successfully followed by many of

its variants. We will refer to this model as the GAC model.

1.2.2 Regions-based active contour models - Robustness to
noise and initialization

More recent AC models are based on regions. Recall that in variational approach, the

problem is to define the energy functional/criterion to be minimized. For the classical active

contour or snake, which is the edge-based (or boundary-based) active contour model, an

energy functional should be composed of terms with information related to the boundary,

for example the gradient information along the curve. On the other hand, in region-based

variational model, an energy functional may include terms that describe the properties of

regions such as its mean, variance, or histogram. Generally, region-based criteria/energy

functionals depend on the statistical properties of the region. It is important to note that

the region-based approaches often combine both region-based terms and boundary-based

ones, mainly to reflect the characteristics of regions and add constraints on the contour by

introducing a regularization term of the contour.

One of the first region-based models is the Mumford-Shad model [32] which is considered

as a basic AC region-based model where a region-based criteria in the energy functional is

used to penalize deviations from smoothness within region and guiding the active contours

towards smooth regions. The Mumford-Shad model can represent regions by piece-smooth

approximations. However, this model is computationally complex. Then, by assuming that

the regions to detect are piecewise-constant, Chan and Vese proposed Mumford-Shah-based

models [33, 34] which can be considered as the most popular region-based models where

global intensity information of region is taken into account. This model exhibits promising

and robust solutions with respect to noise and initialization. Another advantage to take

into account global intensity information is the robustness of the results to detect objects

with smooth or discontinuous boundaries. Likewise, in [36], the equivalence between a

probabilistic formulation of the segmentation problem and the region-based functionals is

established with demonstration on the advantage of the region-based segmentation models

over the boundary-based models. Indeed, even though these energy functionals are non-

convex and the optimization problem performed in local manner, the segmentation results

have less local minima than the boundary-based models and are very robust to noise and

initialization.

Hence, region-based active contour is a promising model for ensuring robustness to

noise, smooth boundary and varying initialization.
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1.2.3 Intensity in-homogeneity and local region-based active
contour model

The intensity in-homogeneity (IIH) issue has been widely addressed in the segmentation

literature using threshold-based methods [37] and clustering ones, such as the adaptive

fuzzy c-means method of Pham and Prince [38], or the Expectation-Maximization meth-

ods [39, 40]. In most of the methods, the IIH correction may be considered as a necessary

preprocessing step for better segmenting the image. Thus, many algorithms have been pro-

posed to segment and correction for the IIH field simultaneously. These pixel-wise methods

offer less or more good performances and many methods depend on the initial condition.

In the active contour and variational model, we propose to tackle IIH issue without

estimating the IIH field. As stated above, region-based active contour models are well-

known for being robust to noises and initialization. In the active contour and variational

model, many models have been proposed successfully for segmenting objects by assuming

homogeneity of intensity. Among them, the popular region-based Chan-Vese (Chan-Vese)

model [33] is a simplified version of the Mumford-Shah function [32] by assuming that the

intensities in each region inside and outside the object contour are homogeneous. However,

by using only global information, such model fails to segment objects corrupted with IIH.

Later, many other region-based have been proposed such as the Piecewise-Constant (PC)

convex model in [41] proposed by Bresson et al. and the PC convex model in [42]. These

models suffer the same drawback when treating images with intensity in-homogeneity.

Generally, the assumption of homogeneity of feature in a region results in spatially homo-

geneous region models. Statistically, this refers to have the same probability density of

all points in a region [33, 43], and the contour is driven by the global differences in the

distributions of the intensity.

However, when the region intensity values change locally in the same object, as in

the case of medical images where the target object of interest is affected by IIH, this

results in a local change of intensity or non-constant regions (see Figure 1.6c). In case of

heavy intensity gradient, it is not easy to accurately identify the target objects. For such

cases, neither the assumption of having globally constant or smooth luminance is satisfied.

Consequently, using only global region information as in the case of homogeneous region

models is not sufficient to well separate image objects. However, such assumption can be

valid locally, i.e. within local neighborhood. Generally, for piecewise-smooth assumption,

Brox and Cremer [43] have presented a more general framework with a new interpretation

of the Mumford-Shad model in the Bayesian approach and showed that the Mumford-

Shad model allows the piecewise-smooth approximation of intensity within a region. Hence,

while the homogeneous region statistics cannot model this, local region statistics can. They

state that minimizing the full piecewise-smooth Mumford-Shad functional is equivalent to

a first-order approximation of a Bayesian a posteriori maximization based on local region



1.3. MAIN CONTRIBUTIONS 13

statistics.

Therefore, in order to tackle the IIH, we propose to take into account local region infor-

mation in the energy functional of a region-based model inspired from the two approaches:

the Chan-Vese model (for its simplicity and efficiency) and the Bayesian formulation with

full statistics to obtain more accurate segmentation. Here, we use the pixel intensity to

characterize region information, and a neighborhood for each pixel is used to compute local

statistics.

A state-of-the-art of the existing local region-based active contour models will be pre-

sented in Section 2.2.2 and show the performance of these methods. However, due to the

non convexity of most of these models, their results are not reliable.

1.2.4 Towards globally optimal segmentation using convex
energy function

The variational models proposed in the literature generally result in the minimization of

a non-convex energy functional [25, 78, 68, 33, 80, 82, 83]. In this case, the minimization

problem may have local minima, implying that the segmentation results may vary with the

initialization. As a consequence, the obtained results may be inaccurate, hence unreliable.

Some variational models are convex but do not account for IIH [35, 41, 44, 47].

Therefore, in order to get reliable segmentation, it is necessary to design segmentation

models robust to varying initialization and ideally a globally convex segmentation which

will allow for random initialization and hence more suitable to an automatic system. Fur-

thermore, the energy functional should be defined with respect to IIH. Despite numerous

researches, finding an efficient and globally optimal segmentation to deal with intensity

in-homogeneity still remains an open problem.

1.3 Main Contributions

This thesis introduces four novel region-based active contour models to address the intensity

in-homogeneity while ensuring robustness to noise and weak boundaries. In particular,

three convex segmentation models are proposed to provide reliable and suitable solution

for an automation. In addition, the implementation of these methods is efficiently achieved

using fast algorithms.

The four proposed region-based AC models for addressing IIH are:

1. The ROBUST Local and Global Region-Based model (R LGR)

2. The Convex Local Region-based Active Contour model (C LR)

3. The Convex Local and Global Region-based Active Contour model (C LGR)
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4. The Convex Local and Global Fuzzy Gaussian Distribution Energy Minimization for

Active Contour Model (C LGFGD)

To define these models, we are interested in variational models such as the geomet-

ric/geodesic AC (GAC) models [29, 30], the Convex Active Contour model of Chan el

al. [35], the Mumford-Shah-based model of Chan and Vese [33], and more general models

from the probabilistic approach, to benefit from their advantages as described above.

The challenge in medical images is to obtain accurate segmentation when dealing with

artifacts such as IIH. To cope with IIH, we adopt the local region-based model where

local intensity is used to characterize the region. In the other words, image feature, i.e.

intensity (when dealing with IIH) is considered in a neighborhood using a local window

(e.g. Gaussian window). Hence each region is modelled by the intensity statistics estimated

in a local neighborhood to take account for spatial varying intensity of the IIH. In the other

hand, it is established that the global region-based methods provide accurate results and

robustness with respect to noises, weak edges and gaps as well as varying initialization.

It is hence interesting to take account for global and local intensity information in order

to take advantages of the two approaches. Besides, it is possible to adaptively control the

weight between these two terms.

In fact, the region-based active contour models search to characterize regions delineated

by the contour using global or local features of the regions such as mean, variance and

entropy. In the four models, we use the assumption that the intensity is modelled by

Gaussian distribution. The first three models (Chapter 3 and Chapter 4) are characterized

by local and (or) global intensity means, while the standards-deviation are fixed. In the

last model (Chapter 4), we consider full statistics with means and standards-deviations.

As we adopted the region-based active contour approach, the segmentation is less sensi-

tive to initial contour. However, challenge arises when the energy functional is not convex.

Many of the AC models proposed in the literature suffer from this drawback. Non convex

model may yield local minima. This implies that an accurate result requires a good posi-

tion of the initial contour. This is not suitable for an automation. In contrast, a convex

model guarantees the same results independently with respect to the initial contour, hence

the reliability of the segmentation result. In order to cope with the dependence of result

to the initialization, we have proposed to design convex energy functional to design our

proposed region-based active contour models.

Although the first model, namely the ROBUST Local and Global Region-Based model

(R LGR) is not convex, it is useful to be firstly presented (in Chapter 3), for a better under-

stating of the way how a model should be designed to deal with intensity in-homogeneity

and noise. Besides, this is the first objective (objective a) in our works. Then, in the second

step (in Chapter 4), we focus on the design of convex energy functional, while proposing

different energy functionals capable to deal with IIH and noise.
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Table 1.1. The potential applications of the proposed region-based active contour models.
+: good enough, ++: good, //: fail, ?: to develop.

Model Synthetic X-ray MR CT PET Ultrasound Skin lesion

R LGR ++ + + // // + *

C LR ++ ++ + // // * ++

C LGR ++ ++ ++ ++ + * ++

C LGFGD ++ ++ ++ ++ // * +

Table 1.2. Maximum of the standard deviations (that the proposed models can deal with)
and corresponding parameters (see Chapter 3 and Chapter 4).

Model Standard deviation σ µ λ λ2

R LGR 160 3 x 100 x

C LR 15 25 1 x x

C LGR 40 1 1 0.01 1

C LGFGD 140 1 1 0.99 x

Based on the Gaussian distribution of intensity for all the modalities of medical images

or synthetic images considered in our experiences, the ability of our proposed models for

addressing IIH is summarized in Table 1.1. Furthermore, the robustness of our models when

dealing with noise is reported in Table 1.2. In this table, we only report one experience

giving the maximum level (Gaussian) noise such that each model achieves accurate result.

Other noise test also gives the same results in Section 4.6.

Our contributions are summarized as below.

1.3.1 The ROBUST Local and Global Region-Based model
(R LGR)

In Chapter 3, a novel level set region-based model is proposed to reduce the dependence to

the initial contour by combining local and global intensity information in a variational level

set formulation. We refer to this model as the Level Set Local and Global Region-based

model (R LGR).

More precisely, the energy functional proposed for this model consists of two compo-

nents: global and local components described by the intensity using the mean as in the

Chan-Vese model [33]. By introducing the local intensity information term, the images

with intensity in-homogeneity can be efficiently segmented. Due to the global intensity
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information, the model is expected to be robust to noises and initialization. There is no

regularization term in this model, reducing hence the number of parameters. However,

by using the Gaussian filtering to re-initialize the level set function to a signed distance

function, and avoid classical and periodical re-initialization, this guarantees at the same

time the smoothness of the level set function. Experimental results show that this model

is very efficient in case of intensity in-homogeneity and provide high robustness to noises

and initialization. However, this model is not convex with respect to the level set function.

Therefore, we have proposed three convex models presented in Chapter 4.

1.3.2 The Convex Local Region-based Active Contour model
(C LR)

For the first convex model, we search for curves that are attracted by the true region

boundaries and of minimal length using an implicit boundary-based approach, and at the

same time create a partition of the image that minimize the local differences in the means

by the region-based approach to handle IIH. Inspired from the convex regularization term

of the Bresson’s model [41], we adopted this term for its efficiency.

So, the first convex model is a local region-based active contour models which hybridizes

the local region-based AC model with the regularization term resulting from the combina-

tion of the GAC model and the total variation of the level set function restricted in [0,1]

(Bresson’s regularization term).

Hence, our proposed model allows for taking advantages from the regularization con-

straint term of the Bresson’s model [41] and the ability to address the IIH from the local

region-based AC model. More precisely, the local region is described by the means of the

intensity in a Gaussian neighborhood. The length regularization constraint is performed

by coupling the total variation of the level set function constrained to lie in [0,1] as in the

convex model of Chan et al. [35], with an edge detector function as in the GAC model, in

order to find the minimal length geodesic curve. Thus, the contour is guided towards the

final solution by the PDE (partial differential equation), which is derived from the joint

minimization of the boundary length and the local differences in the means (local region

Gaussian distribution with fixed variance) of the intensity inside and outside the contour

in a local region. We refer to this model as the Convex Local Region-based AC model

(C LR).

Furthermore, instead of solving the Euler-Lagrange equation, this model is minimized

in a computationally efficient way by adapting the algorithm of Bresson et al. [41], which is

based on the algorithm of Chambolle for denoising [45]. Experimental results on synthetic

and real-world images such as medical images demonstrate the effectiveness of our models.

Due to the convexity of the energy functional, the results of segmentation are independent

from the initial contour, hence appropriate for an automatic segmentation.
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1.3.3 The Convex Local and Global Region-based Active
Contour model (C LGR)

The second convex model is an extension of the first convex model by incorporating global

intensity information in addition to local information. This model takes the advantages of

the local and global region-based approaches, to deal with the IIH while improving robust-

ness to noises, and weak/blur object boundaries, without depending on initial contour. We

refer to this model as the Convex Local and Global Region-based AC model (C LGR).

More precisely, in this model, the curve is evolved by the local and global differences in

the means of the intensity. The curve is regularized with the same term as for C LR (term

hybridizing the GAC model with the total variation of the level set function restricted in

[0,1] or the Bresson’s regularization term [41]).

The C LGR model is more robust to noises and IIH compared with the C LR model.

Again, due to the convexity of the energy functional, the segmentation results are inde-

pendent from the initialization, hence appropriate for an automation process. Likewise,

instead of solving the Euler-Lagrange equation, this model is also minimized in a computa-

tionally efficient way by adapting the same algorithm of Bresson et al. [41], which is based

on the algorithm of Chambolle for denoising [45]. Experimental results on synthetic and

medical images showed the effectiveness of our models.

1.3.4 The Convex Local and Global Fuzzy Gaussian
Distribution Energy Minimization for Active Contour
model (C LGFGD)

The two previously proposed convex models have proven their ability of dealing with IIH

and the robustness to noises as well as weak boundaries. However, a trade-off is necessary

in case of images affected with IIH and noises, limiting hence the performance of the model

when compared with the case when the image is only corrupted with IIH.

In order to improve the performance when dealing with simultaneous IIH and noises,

we propose lastly in this section, another convex region-based AC model which results

from the hybridization of a fuzzy clustering with the region-based AC model defined in the

Bayesian formulation.

In this fuzzy region-based AC model, fuzzy c-means (FCM) clustering and region-

based AC are combined in the Bayesian approach and provide the local and global region

information to attract the curve towards object boundaries. A length regularization term

imposes smoothness constraints on the geometry of the curve, yielding accurate and stable

result in case of noises. The combination of the FCM and the AC model in the Bayesian

with full statistics can effectively improve the segmentation results especially in case of

simultaneous noises and IIH.
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In this model, the contour is driven by the local and the global differences in the

distributions (using means and standard deviations). More precisely, by using the fuzzy

energy, we search a partition of regions which minimize the local and global differences

of the Gaussian statistics (mean and standard deviation) between the pieceswise-smooth

approximation partition of regions and that of the original image, while taking into ac-

count the fact that a point in region may have partial membership inside and outside the

contour. Here local information is considered in a local Gaussian neighborhood as for the

two other convex models. The regularization term is performed with the total variation of

the membership function (the regularization term of the convex model of Chan et al. [35]).

Moreover, instead of using the bounded level set function, membership function is used

for extracting the contour. This makes the model independent from the initial position

of the contour and also suitable for an automatic segmentation. Furthermore, the energy

function is minimized in a computationally efficient way by calculating the fuzzy energy

alterations directly [46, 47]. Experiments are carried out to prove the performance of the

proposed models over some existing methods. The obtained results confirm the efficiency

of the methods.

1.4 Thesis Layout

The thesis is organized in six chapters as follows:

Chapter 1: This chapter gives a general introduction of our thesis with a brief description

of image segmentation in medical images, followed by our objectives, then our main

contributions and lastly the thesis layout.

Chapter 2: This chapter presents some state-of-the-art of the active contour models. In

this chapter, we first review the AC models including the boundary-based models

and the region-based ones. In the boundary-based model, we give an overview of the

classical active contour or snake then the level set-based (or implicit) models. Then,

after a description of some basic region-based AC models, we present a state-of-the-

art of the models addressed for dealing with intensity in-homogeneity.

Chapter 3: In this Chapter, we introduce the ROBUST Local and Global Region-Based

model (R LGR) model, then the implemented algorithm. Then, we present the

sensibility analysis of the models as well as comparison with the other methods.

Chapter 4: This chapter describes the three proposed convex AC models: The Convex

Local Region-based Active Contour model (C LR), the Convex Local and Global

Region-based Active Contour model (C LGR), and the Local and Global Fuzzy Gaus-

sian Distribution Energy Minimization for Active Contour model (C LGFGD). Each
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model is first presented, followed by the implementation and the algorithm. Then,

we present the sensibility study of parameters and the experimental results as well

as comparison with the other state-of-the-art methods.

Chapter 5: This chapter presents some application of the proposed models for medical

images such as skin lesion images and medical images such as lung and airways.

Chapter 6: This chapter presents the general conclusion of our thesis and our prospective

works.
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In this thesis, we consider the problems of segmentation using active contour in the

variational framework to design accurate and reliable models robust to noise and artifact

such as the intensity in-homogeneity. Therefore, a review of active contour models in the

variational framework is necessary before introducing our proposed segmentation models

in subsequent chapters.

Active contour (AC) is a curve (or surface) evolving from an initial position towards

the boundary or a desired feature of the object of interest. In variational approaches, the

evolving curve is a partial differential equation (PDE) derived from the minimization of

the energy functional, and the final contour corresponds to the minimum of this energy.

Such functional should be defined to account for image data while satisfying some internal

geometric properties of the contour. The advantage of variational model to describe the

image segmentation problem is to allow for a priori information (such as external force or

shape [48]), additional features (such as color, texture, motion [49]).

There are two main families of AC models: the boundary-based active contours, and the

region-based active contours. The boundary-based AC methods make use of local image

properties such as intensity gradient. On the other hand, the region-based AC models tend

to characterize region delineated by the contour using a descriptor.

Among boundary-based AC models, the most well-known ones are the original ac-

tive contour or Snake introduced by Kass, Witki and Terzopoulos in 1987 [25], the Ge-

ometric Active contour [29] and the Geodesic Active Contour [30]. The original active

contour/snake [25] is defined explicitly by a parameterized curve of points, whereas the

Geometric Active contour [29] and Geodesic Active Contour [30] implicitly represent the

contour with the zero-level set of the level set function. In the implicit approaches, seg-

mentation is achieved by evolving the level set function according to a partial differential

equation (PDE). Compared to the parameterized approach of the Snake model, the im-

plicit approaches offer the advantage of allowing change in curve topology when merging

and breaking occur. These implicit models have been extensively used and extended for

various applications.

In this section, we address relations to prior works through a state-of-the-art of seg-

mentation based on a variational approach. First, we review two families of the active

contours: the boundary-based active contours and the region-based active contours. In

the boundary-based active contour models, the traditional Snake model is first described.

Then, we present the evolution theory and the level set method which allow for the im-

plicit representation of the active contour in the Geometric active contour model and the

Geodesic active contour model. The Geometric active contour model is not defined in the

variational framework but it is interesting to make a brief review of this model to better un-

derstand the geodesic active contour model which was proposed later but in the variational

framework. Finally, we present a state-of-the-art of the region-based models. In particu-

lar, as intensity in-homogeneity can be efficiently addressed by region-based approaches,
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(a) (b)

Figure 2.1. An illustration for active contour: (a) The initial contour (red); (b) The final
contour (yellow).

we will also present a review of those dealing with this artifact.

2.1 Boundary-based Active Contours

2.1.1 Original snake or active contour

Since the publication of the article [25] by Kass, Witki and Terzopoulos, in 1988, active

contours or snakes have become popular and successfully applied in many applications.

The key idea is to identify a desired object by evolving an initial contour, like a snake,

towards the boundary of the object, using an edge detector function to detect image inten-

sity variations, i.e. which takes small values near boundaries (large image gradient) and

large values in smooth image region.

Figure 2.1 shows the snake at the beginning and at the end of the evolution process.

In the variational framework, active contour is a curve C parameterized by p ∈ [0, 1]

such that it minimizes a weighted energy functional FSnake associated with an observed

image I ∈ L1(Ω) of continuous position variables (x1(p), x2(p)) defined on a domain Ω and

any positive weighting parameters α, β, ω:

FSnake(C) = Fint(C) + Fext(C) (2.1)

with

Fint(C) =
1

2

(
α

1∫
0

∣∣∣∂C(p)
∂p

∣∣∣2dp+ β

1∫
0

∣∣∣∂2C(p)
∂p2

∣∣∣2dp) (2.2)

Fext(C) =ω

1∫
0

Eimage(I(C(p)))dp (2.3)
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where Fint is the internal energy functional which imposes smoothness (tension) and rigidity

constraints on the geometry of the curve, and Fext is the external energy functional defined

over the image domain. The first term of Fint discourages stretching of the snake and

models this latter like an elastic membrane, while its second term discourages bending

of the snake and makes it behave like a thin plate. The weighting parameters α and β

control the strength of the model’s tension and rigidity respectively. The external energy

term, i.e. Fext, depends on the data term Eimage, defined to attracts the curve toward the

object’s boundaries using an edge detecting function which vanishes at infinity such as the

function:

Eimage(I) = −|∇I|2 or Eimage(I) = −|∇[Gσ ∗ I]|2 (2.4)

where Gσ is a Gaussian function with standard deviation σ and ∇ is the gradient operator.

By this way, the data term takes smaller values at object boundaries. Note that this second

term possesses local minima at the image edges.

The variational model is then derived by finding a curve C(p) which minimizes the

energy functional FSnake. As this function is not convex, the segmentation result is not

unique. A local minimum of FSnake can be reached by solving its Euler-Lagrange equa-

tion [25, 64]:
∂

∂s

(
α
∂C

∂s

)
− ∂2

∂s2

(
β
∂2C

∂s2

)
−∇Eimage(C) = 0 (2.5)

It is worth noting that minimizing the total energy yields internal forces and external

forces. Internal forces correspond to the first two terms: the first term is the elastic internal

force which holds the curve together while the second term can be referred to as the rigidity

internal force because it keeps the curve from over-bending. External force is defined over

the image to attract the curve toward the desired object boundaries. Thus, Equation (2.5)

can be seen as a force balance equation.

Now, searching a solution to Equation (2.5) can be achieved by making the curve C

dynamic. Then, a local minimum of the contour can be found by applying the gradient

descent algorithm. This is the same as setting the partial derivative of C(p, t) w.r.t. time

t equal to the left-hand side of Equation (2.5), leading to Equation (2.6), with coefficient

γ such that units of the two hands are consistent:

γ
∂C

∂t
=

∂

∂s

(
α
∂C

∂s

)
− ∂2

∂s2

(
β
∂2C

∂s2

)
−∇Eimage(C) (2.6)

A solution of this problem is the one which stabilizes C(p, t), i.e. when the left side

vanishes. This is equivalent to placing an initial contour on the image and forcing it to

deform according to Equation (2.6). Numerical implementation can be fast and efficiently

performed by finite differences method in discrete formulation [25].

Although the success of this parameterized AC model, it has the main following draw-

backs.
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- First, the energy functional is not intrinsic because it depends on parameterization

of the contour.

- Moreover, when the image force term involves the Gaussian function as in Equa-

tion (2.4), standard deviation σ must be selected to have a small value. By this way,

the contour can follow the boundary accurately according to the image force term.

This in turn implies that this image force can only attract the contour toward the

boundary when it is initialized nearby.

To increase the attraction range, Cohen [50] propose in the active contour model also

called balloons, a pressure force defined as:

Ep(C) = wpN (2.7)

where N is the inward unit normal and wp is a constant weighting parameter. The

sign of wp is chosen by the user whether to balloon or deflate the curve. Hence,

this is not necessary for the initial curve to be near the desired object boundaries.

The strength of the pressure force is determined by the value of wp, maintaining

the curve ballooning or deflating until it is stopped by the external force. External

force defined in Equations (2.4) is guided by gradient information, which would lead

to unreliable results in case of noise. Indeed, the evolving curve can be stopped at

spurious or weak edges, resulting in a local solution of the energy minimizing problem.

Adding the pressure force with a large enough value allows the curve to pass through

spurious edges. On the other hand, this force should be smaller than the external

force (derived from data as in (2.4)) at important edges in order to be stopped by

the external force. Hence, the value of wp should be correctly selected under the risk

of forming loops and causing singularities during deformation. The selection is not

easy, which is the weakness of this model.

- The discretization of the derivative of order four in the rigidity term (2.2) may lead

to numerical instability.

- Automatic change of topology such as splitting or merging parts is not possible. This

implies that object with unknown topology or complex comply can not be correctly

segmented, and it is not possible to detect more than one object. This is because

new parameterization must be set up when topology changes, requiring sophisticated

adaptations and computations [52]. Generally, the topology of initial contour should

be selected similarly with the topology of the target object.

2.1.2 Implicit approach

To overcome the limitations of the parameterized active contour models, Caselles, Catte,

Coll and Dibos [29] have successfully proposed a novel active contour, namely the Geometric
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Active Contour models. The idea is to evolve the curve using the curve evolution theory and

the level set method [53, 54]. However, the Geometric Active Contour is not derived from

a variational approach. Later, using the same representation of the contour by the level

set function, Geodesic Active Contour (GAC) model has been proposed in the variational

framework by Caselles, Kimmel and Sapiro [30]. These models have been widely adopted.

In what follows, we will first describe the curve evolution theory and the level set

method before presenting the two Geometric and Geodesic AC models.

2.1.2.1 Curve evolution theory [55]

As stated above, the key of the Geometric AC is to be independent of parameters. Hence,

it is more convenient to study the deformation of curves by geometric measures such as

the unit normal and its curvature. This can be studied with the curve evolution theory.

Let us denote a curve C(p, t) where p ∈ [0, 1] is a parameterization and t ∈ [0,∞) is the

time:

C : [a, b]× [0,∞] → R2

(p, t) 7→ C(p, t) = x(p, t) =
(
x1(p,t)
x2(p,t)

)
(2.8)

Then, the evolution of C can be obtained by a partial differential equation:{
∂C(p,t)
∂t

= v(p, t)

C(p, 0) = C0(p)
(2.9)

where C0 is the initial contour, and v is the evolution velocity (or speed) of the curve

(Figure 2.2). The velocity depends on the curvature. Let us decompose the velocity

v in the Frenet coordinate system associated with the curve C. Then, we obtain two

components, according to the unit tangent T and the inward unit normal N to the curve,

respectively (Figure 2.3). We obtain:

∂C(p, t)

∂t
= v(p, t) = vN(p, t)N(p, t) + vT (p, t)T (p, t) (2.10)

where vN and vT are the normal and tangential components of the evolution velocity v,

respectively. Let us consider that normal component of the velocity is a geometric function

of the curve, i.e. which is independent from a particular parametrization (e.g. Euclidean

arc-length). Then, according to [56, 55], the geometry of the curve is only affected by this

normal, while the tangential component only affects the parametrization. In other words,

this normalized velocity is geometrically intrinsic to the curve. So, by assuming that the

normal component of the velocity does not depend on the curve parametrization, we can
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Figure 2.2. Evolution of the active contour C(p, t) with the velocity v towards the the
boundary of th object of interest.

Figure 2.3. Decomposition of the velocity v according to the coordinate system asscoiated
with the contour C.

consider the following pdf as the evolution of the curve along its normal direction:{
∂C(p,t)
∂t

= v(p, t) = vN(p, t)N(p, t)

C(p, 0) = C0(p)
(2.11)

Hence, the curves move in the normal direction with a speed function vN . Also, a curve

moving with a velocity in an arbitrary direction can always be re-parameterized to have

the same form as Equation (2.11) [53].
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Let us mention two common deformations: the curvature deformation and the constant

deformation.

- The curvature deformation is defined by its speed proportional to the curvature, that

is:
∂C

∂t
= ακN (2.12)

where α is a positive constant and the curvature κ is defined by

κN =
∂2C

∂p2
(2.13)

where p is the arc-length parameter of the curve. The curvature deformation plays the

same role as the elastic internal force in the parameterized model (2.6). Hence, the

curvature deformation will smooth the curve, removing hence singularities.

- The constant deformation is defined by a constant speed, that is:

∂C

∂t
= V N (2.14)

where V is a constant. Hence, the constant deformation has the same role as the pressure

force of the balloon in the parameterized model of snake. Recall that this force allows for

extension of the attraction range which is useful when the initial contour is not initialized

nearby [50]. Like the pressure force, the drawback of the constant deformation is the

creation of singularities on the evolving curve.

As conclusion, the speed function can be designed to characterize the nature of the de-

formation of the curve. Thus, curvature deformation smooths the curve and corresponds

to the internal smooth geometrical constraint imposed on the curve, while constant defor-

mation increases the attraction range, corresponding hence to an external constraint. In

order to stop the contour toward the desired object boundaries, the image data term is

required. We will see in more details in Section 2.1.2.3 and Section 2.1.2.4 the image data

term used in the geometric and the geodesic AC models.

2.1.2.2 The level set method

The level set method was proposed by Osher and Sethian [53] for implementing curve

evolution. Let us recall that the level set is a set of points that have the same value. The

level set method consists of representing implicitly the moving curve as a level set of a 2D

scalar function, also referred to as level set function. The level set method has the main

advantage of handling topological merging and splitting naturally, and can work in any

number of space dimensions.
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This method is used as an implicit implementation in the geometric active contour

model and the geodesic active contour model [29, 30], where the contour is represented by

the zero level set of a higher dimensional function. Let ϕ be the level set function which

satisfies the following conditions:

1. ϕ : R2 × R+ −→ R is a Lipschitz function, defined on the same domain Ω as the given

image.

2. x ∈ C(p, t) ↔ ϕ(x, t) = 0, or we can rewrite as follows:

ϕ(C(p, t), t) = 0, ∀p ∈ [a, b], ∀t ≥ 0 (2.15)

3. ϕ(x) is the signed distance between the point x and the contour C(p, t)), i.e. the zero

level set. The sign of ϕ(x) depends on the position of x inside or outside the contour

which are denoted by Ωin(t) and Ωout(t), respectively. By convention, ϕ(x) is negative

(positive) if x is a pixel inside (outside, respectively) the contour (see Figure 2.4). So,

the function ϕ is the signed distance function if it satisfies the three following conditions:
ϕ(x, t) = 0 if x ∈ C(p, t)

ϕ(x, t) = −d(x,C(p, t)) if x ∈ Ωin(t)

ϕ(x, t) = d(x,C(p, t)) if x ∈ Ωout(t)

(2.16)

where d(x,C(p, t)) denotes the Euclidean distance from the point x to the contour

C(p, t)):

d(x,C(p, t)) = min
xc∈C(p,t)

|x− xc| (2.17)

So, the signed distance function of x gives the Euclidean distance to the contour of the

curve (closed curve) with a sign to indicate whether x is inside or outside of the curve.

On the other hand, if the level set function ϕ is known, we can determine the contour

by finding the zero level set of ϕ. So, evolving the curve implies updating ϕ, which can be

done by solving the level set equation of ϕ. This equation can be obtained as follows.

Consider the curve C evolving with the speed vN as in Equation (2.11). By definition,

C satisfies Equation (2.15). Now, taking the derivative of Equation (2.15) with respect to

time t on the both sides yields the following equation:

∂ϕ

∂t
+∇ϕ · ∂C

∂t
= 0 (2.18)

where ∇ = ( ∂
∂x1
, ∂
∂x2

) is the gradient operator in R2, and · is the scalar product between

two vector in R2.
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Figure 2.4. Illustration for a signed distance function ϕ.

Replacing ∂C
∂t

in Equation (2.18) by ∂C
∂t

= vNN in Equation (2.11), yields the following

equation:
∂ϕ

∂t
+ vN∇ϕ ·N = 0 (2.19)

Following the representation of level set function in (2.16), the inward unit normal is

given by N = − ∇ϕ
|∇ϕ| (note that if we select ϕ(x) > 0 for x ∈ Ωin and ϕ(x) < 0 for x ∈ Ωout,

we have N = ∇ϕ
|∇ϕ|). Then, the gradient flow of previous equation can be re-written as:

∂ϕ

∂t
= vN |∇ϕ| (2.20)

On the other hand, the initial condition C(p, 0) = C0(t) is replaced by ϕ(x, 0) = ϕ0(x)

which is the signed distance function to C0. Then, PDE (2.11) is reformulated by the level

set function ϕ as the following PDE (also known as level set equation):{
∂ϕ
∂t
(x, t) = vN |∇ϕ(x, t)|

ϕ(x, 0) = ϕ0(x)
(2.21)

Equation (2.21) allows performing curve evolution using the level set method. First,

an initialization step consists in building the zero level set function (ϕ(x) = 0) using the

signed distance function in (2.16). Then, the level set method evolves a curve by updating

ϕ at fixed coordinates through time. This is equivalent to extend level set equation (2.21)

to remain valid while the curve can change its topology. However, the solution of Equa-

tion (2.21) can become too steep or flat near the contour [57, 58]. Therefore, to recover ϕ,
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a procedure called re-initialization [57, 58, 59, 60] is periodically employed to reshape ϕ to

be a signed distance function during the evolution of ϕ. The fact that ϕ be a signed dis-

tance function is a desirable condition for numerical accuracy and stable evolution. There

are many method for re-initialization of ϕ. In [61], Chopp proposed very time-consuming

periodical re-initialization in the whole domain. Rudin and Tourin proved in [62] that the

solution of |∇ϕ| = 1 is itself a signed distance function. From this result, the following

re-initialization equation was proposed by Sussman et al. in [57]:{
∂ψ
∂s
(x, s) = sign(ϕ(x, t))

(
1− |ψ(x, s)|

)
ψ(x, 0) = ϕ(x, t)

(2.22)

where s is the time variable of ψ, ϕ(x, t) is the solution of Equation (2.21) at time t and

sign(ϕ(x, t)) is characteristic function of the sign of ϕ(x, t). Then ϕ(x, t) will be replaced

by ψ which is obtained at the steady state of Equation (2.22). Here, re-initialization is

the process of replacing ϕ(x, t) by another function ψ(x, t) that has the same zero contour

as ϕ(x, t) but behaves better. Then, this function ψ(x, t) is taken as initial data until the

next re-initialization.

Generally, the re-initialization procedure by Equation (2.22) is still a difficult method

and needed much time. To avoid the resolution of Equation (2.22), Li et al. [65] proposed

a signed distance penalizing energy function:

P (ϕ) =
1

2

∫
Ω

(
|∇ϕ(x)| − 1

)2
dx (2.23)

Equation (2.23) measures the closeness between a level set function ϕ and a signed distance

function in the domain Ω ⊂ R2. By calculus of variation [63, 64], the gradient flow of P (ϕ)

is obtained as:
∂ϕ

∂t
= −∂P

∂ϕ
= ∇ ·

(
∇ϕ
(
1− 1

|∇ϕ|

))
(2.24)

where ∇· = ∂
∂x1

+ ∂
∂x2

is the divergence operator in R2. Equation (2.24) is a diffusion

equation with the rate r1(ϕ) = 1 − 1
|∇ϕ| . However, we can see that r1(ϕ) −→ −∞ when

|∇ϕ| −→ 0, which may cause oscillation in the final level set function ϕ [66]. This problem

is solved by applying a new diffusion rate [66] as follows:

r2(ϕ) =

{
sin(2π|∇ϕ|)

2π|∇ϕ| if |∇ϕ| ≤ 1

1− 1
|∇ϕ| if |∇ϕ| > 1

(2.25)

Xie [67] also proposed a constrained level set diffusion rate as

r3(ϕ) = Hϵ(|∇ϕ| − 1) (2.26)
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where Hϵ(z) =
1
2

[
1 + 2

π
arctan

(
z
ϵ

)]
and ϵ is a fixed positive parameter.

In [78], Zhang et al. used a convolution between ϕ with a Gaussian kernel to re-

initialize ϕ without the re-initialization procedure. This way saves more execution time.

In Section 3.3, we will show that this method allows us not only to obtain the signed

distance function but also to ensure the smoothness of contour.

Generally, level set method offers the advantages such as:

1. The change of topology is automatic.

2. The signed distance function ϕ allows for stable and accurate numerical schemes.

3. Geometric properties (such as the normal direction, local mean curvature,..) of the

contour can be easily estimated from the function ϕ. For example

N = − ∇ϕ
|∇ϕ|

, as normal direction

κ = ∇ ·

(
∇ϕ
|∇ϕ|

)
, as local mean curvature

4. The formula can be easily extended to higher dimensions.

Since Osher and Sethian proposed the level set method for the evolution, the geometric

AC model and the geodesic AC model [29, 30] are the first boundary-based AC models

to represent the active contour with the level set method, while the model of Chan and

Vese [33] is considered as the first region-based model which applied the level set function

in the energy function. Many other methods using the level set function have also been

proposed with promising results.

In the next sub-section, we describe the geometric AC model [29] and the geodesic AC

model [30].

2.1.2.3 Geometric active contour

The geometric active contour models were proposed by Caselles, Catte, Coll, and Di-

bos [29]. Their works have greatly contributed to alleviate the drawbacks of parameterized

active contours, by using the curve evolution theory and the level set method. Their mod-

els are independent of parameterization, and the curves (or surfaces) can be represented

implicitly as a level set of a higher dimensional function.

This model is not derived from a variational framework, i.e. from an energy minimiza-

tion formulation. Instead, the curve evolution is defined directly with its speed function

by an equation of the form:

∂C

∂t
= g(|∇I(C)|)(c+ κ)|∇ϕ| (2.27)
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where c is a positive constant, κ is the curvature of the contour C defined as

κ = ∇ ·

(
∇ϕ
|∇ϕ|

)
(2.28)

and g is an edge detection function defined as follows:

g(|∇I|) = 1

1 + |∇Gσ ∗ I|p
, p = 1, 2. (2.29)

where Gσ ∗ I is the convolution between the image I and a Gaussian kernel Gσ:

Gσ(x) =
1√
σ
exp− |x|2

4σ , x ∈ R2 (2.30)

with σ is a positive constant.

This means that each of the level set ϕ evolves according to:

∂C

∂t
= g(|∇I(C)|)(c+ κ)N (2.31)

This model is expressed with a constant deformation (c) and a curvature deformation

(κ). The curvature deformation accounts for the geometric smoothing properties, while the

constant deformation has the same role as the pressure force in [50]. The curve evolution

is coupled with the image data through the edge detection function in order to stop the

curve towards the boundary of the target object. Depending in the sign of c, this constant

deformation pushes the curve inwards or outward.

As we have just mentioned, the geometric active contour offers the important advantage

which is the automatic change of the topology of objects, compared with the classic active

contour proposed by Kass et al. [25]. However, there are two following major inconveniences

of this method:

1. The constant c is fixed in advance and chosen such that c+κ remains always positive,

meanwhile the value of κ varies with the evolution of the contour. Therefore, we have

to estimate the variation of κ in the evolution of the contour to select c.

2. Theoretically, the evolution of a curve governed by Equation (2.31) will stop when

g is equal to zero which corresponds to an ideal contour. However, in practice, the

discrete value of the gradient is bounded and generally, g is not exactly equal to

zero. This is why this model may leak out (passes through the boundary) when the

object boundary is weak or has gaps especially for medical images, because g cannot

completely stop the curve.

In order to overcome these problems, Caselles, Kimmel and Sapiro have proposed the

geodesic active contour [30, 31].
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2.1.2.4 Geodesic active contour

Unlike the Geometric Active Contour model, the Geodesic Active Contour [30] is derived

from an energy minimization formulation to design the speed function in the curve evolu-

tion. In [30], Caselles, Kimmel and Sapiro considered a particular case of the classic snake

model (2.1)-(2.3) in [25] by selecting β = 0. They obtain the following energy function E1:

E1(C) = α

∫ 1

0

|C ′(p)|2dp+ λ

∫ 1

0

g(|∇I(C(p))|)dp (2.32)

The authors also proved that the minimization of E1(C) is equivalent with the following

intrinsic energy function which is not dependent on a new curve parameterization:

EGAC(C) =

∫ 1

0

g(|∇I(C(p))|)|C ′(p)|dp =
∫ L(C)

0

g(s)ds (2.33)

where s is the arc-length parameterization of the curve, L(C) is the Euclidean length of the

curve C with L(C) =
∫ 1

0
|C ′(p)|dp =

∫ L(C)

0
ds. The evolving curve is a new length obtained

by weighting the Euclidean element of length by the edge detection function g. The authors

proved that the curve minimizing EGAC is actually a geodesic or a minimal distance in a

Riemannian space whose metric is defined by the image content: The boundary detection

is equivalent to finding a curve of minimal weighted length. The weighting function is the

edge detection function g which was proposed in the geometric active contour (2.29) [29].

This is the reason why this model is called Geodesic Active Contour and some time referred

to as Geometric/Geodesic AC.

By the calculus of variations, the evolution equation of C is derived as follows:

∂C

∂t
=

[
g
(
|∇I(C)|

)
κ−∇g

(
|∇I(C)|

)
·N
]
N (2.34)

where κ is the curvature of C.

By using the level set function ϕ, and taking ∂C
∂t

from Equation (2.34) into Equa-

tion (2.18) with the inward unit normal N = − ∇ϕ
|∇ϕ| , we obtain the following evolution

equation:
∂ϕ

∂t
= g(|∇I|)|∇ϕ|κ+∇g · ∇ϕ (2.35)

In [30], to detect non-convex objects and to increase the attraction of the deforming

contour towards the boundary, the authors have added a constant c whose effect is as

the balloon force introduced by Cohen [50] and Caselles et al. [29] to obtain the following

evolution equation:
∂ϕ

∂t
= g(|∇I|)|∇ϕ|(c+ κ) +∇g · ∇ϕ (2.36)
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The new force, ∇g · ∇ϕ increases the attraction of the deforming contour towards the

boundary, more precisely toward the “valley” of the g function and especially when gradient

values of this boundary vary highly. Therefore, this model is robust to small gaps and can

detect boundary with high differences of its gradient information.

2.1.2.5 Conclusion

We have presented two main implicit boundary-based active contours which are the geomet-

ric and geodesic active contours. The methods in this category utilize the local information

of edge and the gradient of image to evolve the initial contour towards object boundary.

Thereby, they fail to segment image with noise or weak boundary such as discontinuous or

smooth edges. Furthermore, like the Snake, these models are sensitive to local minimum

and the results depend on the initial contour. In order to alleviate these shortcomings,

region information characteristics inside and outside the contour are exploited to make the

boundary-based AC models less sensitive to noise and to varying initialization. This leads

to region-based active contour models that will be described in the next subsection.

2.2 Region-based Active Contour Models and the

Intensity In-homogeneity (IIH)

An effective alternative to boundary-based active contours is the region-based active con-

tours, which uses statistical region information of the image (such as mean and variance)

to evolve the contour towards the boundary of the target object. Compared with the

boundary-based models, the region-based models provide better performance for their abil-

ity to segment object having weak or blur boundary and for their robustness to the initial

position of the contour. Generally, the region-based AC models often combine both region-

based terms and contour-based terms, mainly to model the characteristics of regions and

impose regularization constraints on the contour (contour-based term). More generally,

in region-based model, the problem is to determine the energy functional/criterion to be

minimized. This functional describes the statistical properties of the regions. Beside, it

has been proven the equivalence between the Mumford-Shah functional and the Bayesian

maximum a posteriori (MAP) estimation [43, 68]. Here the advantage of the MAP model

is that it allows a more general variational approach, and the segmentation is formulated as

an optimization problem with respect to the a posteriori segmentation probability where

the region properties need to be described by the probability density functions or statistical

models, and the regularity constraints (or prior) favour a short length of the boundary.

The very popular region-based model, namely the Chan-Vese model, and many of

its variants, which are based on the assumption that an image is composed of statistically

homogeneous regions [33, 34, 35, 41, 47], were very successful. However, these models fail to
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detect image with intensity in-homogeneity. Recall that intensity in-homogeneity behaves

as gradual and local change of intensity within the object to detect. In this case, one can

assume that the image consists of regions of approximately piecewise-smooth intensities.

The MAP formulation has established that local statistics may account for the piecewise-

smooth approximation of intensity within a region in the Mumford-Shad model [43]. So,

we propose to tackle IIH issue by incorporating local information in a region-based model,

inspired from two approaches: the Chan-Vese model [33] (for its simplicity and efficiency),

and the Bayesian formulation to benefit fully from the statistical Gaussian distribution to

get more accuracy of segmentation.

In this section, we will first present a review of the basic region-based models and then,

describe some state-of-the-art region-based models proposed for dealing with the intensity

in-homogeneity.

2.2.1 Basic region-based active contour models

In this section, we present two main approaches of the region-based active contours that

inspired our proposed models in this thesis: the Mumford-Shah model and the Bayesian

model.

The early work of D. Mumford and J. Shah made in 1985 has opened a branch, more

geometric, in the field of segmentation based on regions [32]. This method is considered

as the first model of the region-based active contours. However, this model is difficult

to minimize in practice and has limited the application of this method. Much later, in

2001, Chan and Vese proposed the active contour without edge [33], also referred to as

Chan-Vese model, based on the work of Mumford and Shah and by assuming that the

regions in an image are homogeneous. This is a level set based segmentation that takes

the region information into account. The success of this model is also due to the level set

which simplifies representation and implementation. Since that, this model has inspired

many other region-based models.

Also, the first Bayesian region-based model, namely “region competition” is introduced

by Zhu et al. [68] in 1996. This model combines the statistical techniques of region growing

and the snake/balloon model as regularization constraint and obtain the solution by mini-

mizing a Bayes and the Minimum Description Length (MDL) criteria using the variational

approach. In particular, the authors consider the pixels of the image as a realization of a

random variable with Gaussian probability density. Based on the works of [70], Paragios

introduce (in a purely Bayesian) geodesic active regions that unify boundary and region

statistical information to find the best minimal length geodesic curve and at the same time

create regions which maximize the a posteriori frame partition probability. This model was

proposed for supervised segmentation of scalar images, and tracking of moving objects in

video sequences [70, 71]. Then, Rousson and Derich [72, 73] extended the works of Paragios
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to segmentation of color and textured areas that do not meet the Gaussian distribution.

Let us give more details on the two approaches in the following subsections.

2.2.1.1 The Mumford-Shah model

The goal of the Mumford-Shah (MS) approach is to find a partition of the image into

distinct homogeneous regions, separated by smooth boundaries [74, 32]. This is performed

by minimizing the following MS function:

EMS(f, C) =

∫
Ω

(f(x)− I(x))2dx+ λ

∫
Ω\C

|∇f(x)|2dx+ µHN−1(C) (2.37)

where λ and µ are positive constants, I is an image defined on a domain Ω, x ∈ Ω is a

pixel, f corresponds to a piecewise smooth approximation of the original image I, N = 2

or 3, C represents a curve in Ω and the length of C is given by the (N − 1)-dimensional

Hausdorff measure HN−1(C). The first term in Equation (2.37) is a fidelity term between

the given image I and the the approximative image f . The second term is a regularization

term that constraints the appoximative image f not to vary much inside the regions Ω\C.
The last term is another regularization constraints (length for N = 2) on the contour C.

The idea of MS approach is very interesting, but the implement is very difficult because

of the properties of the energy function EMS. First, the unknown C leads to the complexity

when discretizing it. Second, C is a (N − 1)-dimensional set while f is a function defined

on a N -dimension space. Third, the component HN−1(C) is not lower semi-continuous

which does not allow for the calculus of variations of Equation (2.37) to obtain the Euler-

Lagrange equation. Therefore, it is necessary to find a topology that ensures at the same

time lower semi-continuous of EMS and compactness of the minimizing sequences. To

overcome this problem, an idea is to approximate the MS function EMS by a sequence of

regular function Eϵ, with ϵ > 0. The convergence of Eϵ to the initial MS function EMS

as ϵ → 0 is understood in the Γ-convergence framework [75, 76]. These methods allow

for proving the existence of a solution of the MS function, but it is very complex to find

the solutions when discretizing. Finally, Chan and Vese [33] proposed to approximate the

term HN−1 by using the level set method [53] in order to use directly the Euler-Lagrange

equation. This will provide the model of “Active Contour Without Edges” [33].

In [33], based on the MS function EMS and by assuming that the given image I includes

two homogeneous regions, Chan and Vese proposed the following energy function:

E2(c1, c2, C) =

∫
Ωin

(I(x)− c1)
2dx+

∫
Ωout

(I(x)− c2)
2dx+ µ|C| (2.38)

where Ωin and Ωout are the regions inside and outside the contour C, respectively, c1 and

c2 are two constants to approximate the intensities in Ωin and Ωout, respectively, µ is a

positive constant, |C| is the length of C.
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Now, by using the level set function ϕ, we have:

C = {x ∈ Ω : ϕ(x) = 0}
Ωin = {x ∈ Ω : ϕ(x) > 0}
Ωout = {x ∈ Ω : ϕ(x) < 0}

Then, to represent the regions Ωin and Ωout, the Heaviside function H is used:

H(z) =

{
1 if z ≥ 0

0 if z < 0
(2.39)

It follows that Ωin is determined by the pixels x such that H(ϕ(x)) = 1 and Ωout is

determined by the pixels x such that H(ϕ(x)) = 0. Then, the energy functional (2.38) can

be reformulated in terms of the level set function ϕ as follows:

ECV (c1, c2, ϕ) =

∫
Ω

(I(x)− c1)
2H(ϕ(x))dx

+

∫
Ω

(I(x)− c2)
2(1−H(ϕ(x)))dx+ µ

∫
Ω

|∇H(ϕ(x))|dx (2.40)

To apply the calculus of variations method [63, 64], Heaviside function H is replaced by a

smooth function Hϵ as follows:

Hϵ(z) =
1

2

[
1 +

2

π
arctan

(
z

ϵ

)]
, z ∈ R (2.41)

where ϵ > 0 is small. Then, by calculus of variations, minimizing the energy functional

ECV with respect to c1 and c2, for fixed ϕ gives c1 and c2 as follows:

c1 =

∫
Ω
I(x)Hϵ(ϕ(x))dx∫
Ω
Hϵ(ϕ(x))dx

(2.42)

c2 =

∫
Ω
I(x)(1−Hϵ(ϕ(x)))dx∫
Ω
(1−Hϵ(ϕ(x)))dx

(2.43)

For fixed c1 and c2, minimizing ECV with respect to ϕ gives the Euler-Lagrange equation.

Then, by using artificial time t as parameter for the descent direction, ϕ = ϕ(x, t) is a

solution of the following equation:

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇ ·

(
∇ϕ
|∇ϕ|

)
− (I − c1)

2 + (I − c2)
2

]
(2.44)

where δϵ = H ′
ϵ and ∇· is the divergence operator.
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Figure 2.5. Object with smooth contour. Top: results using Chan-Vese model [33].
Bottom: results using the geometric active contour model [29].

Compared with the boundary-based active contour models, the Chan-Vese model can

segment the object with smooth boundaries. Figure 2.5 shows a comparison between

results of the Chan-Vese model and the geometric active contour model on an image with

a smooth boundary of object. It is clear that the Chan-Vese model can extract the object

boundary, which is not the case of the geometric active contour model. Another advantage

of Chan-Vese model is its ability to extract objects with discontinuous boundaries and

weak gradient as shown in Figure 2.6.

From Equations (2.42) and (2.43), we can see that c1 and c2 are the average intensities

related to the global properties of the image contents inside and outside the contour,

respectively. So, c1 and c2 represent the global information. In other words, they model the

region information globally. However, these average intensities can be quite different from

the original data if the intensities in either Ωin or Ωout are not homogeneous. Therefore, the

Chan-Vese model fails to segment images with intensity in-homogeneity (see Figure 2.8 as

an example). Note that, as mentioned in Section 2.1.2, the obtained solution from Equation

(2.44) is re-initialized to the signed distance function to its zero-level curve. This prevents

the level set function to become too flat. However, this procedure slows down the speed to

obtain the solution. Another inconvenience of this model is due to the fact that the energy

function is not convex. Then, it may have local minimum which could result in another

segmentation than the expected result. So, for this model, the quality of the segmentation

depends on the initial contour.

To overcome the dependence on the initial contour, Chan et al. proposed a convex
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Figure 2.6. Examples for discontinuous boundaries and weak gradient: the evolution of
the contour and segmentation by the Chan-Vese model [33].

model (convex Chan-Vese model) in [35] to find the global solution of the Chan-Vese

model. However, this model is based also on the similar assumption as the Chan-Vese

model. So, it is unable to segment images affected with intensity in-homogeneity. This

method will be described in Chapter 4.

To segment more than two regions, Vese and Chan proposed a model using multiphase

level set functions in [34], called piecewise-constant model. Using for example three level

set function ϕ1, ϕ2 and ϕ3, this model can segment 8 (= 23) regions as illustrated in

Figure 2.7. Moreover, in this paper, Vese and Chan also proposed the piecewise-smooth

model in order to tackle the problem of intensity in-homogeneity. This model is similar

with the model proposed by Tsai et al. proposed in [69]. However, these models are

very complex and computational expensive, limiting hence their applications. In addition,

to reduce the computational cost, these methods usually require that the initial contour

should be near the object boundaries.

2.2.1.2 The Bayesian approach

Let us first recall the formulation of the maximum a posteriori (MAP) expressed in [70,

71, 73] and its links with previous works which are also based on a Bayesian approach for

image segmentation.

Let A(Ω) be a partition of a given image I and p(A(Ω)|I) denote the a posteriori

segmentation probability function with respect to A(Ω) given the image I. An optimal

partition A(Ω) is obtained if the probability p(A(Ω)|I) is maximized. According to the
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(a) (b)

Figure 2.7. Correspondence of the level set functions and regions: (a) representation of
four (= 22) regions with two level set functions, (b) representation of eight (= 23) regions
with three level set functions.

Bayes’ rule, we have the following formula:

p(A(Ω)|I) = p(I|A(Ω))

p(I)
p(A(Ω)) (2.45)

where p(I) is the probability of the image I. p(A(Ω)) is the probability of the partition

A(Ω) of the image among all possible partitions. p(I|A(Ω)) is the a posteriori segmentation

probability for the image I, given the partition A(Ω). Note that, p(I) is independent from

A(Ω). Thus, this value is considered as a constant and could be neglected. On the other

hand, because of the independence between partitions, the value of p(A(Ω)) can be chosen

as 1
Z
, where Z is the number of possible partitions. Therefore, Equation (2.45) becomes:

p(A(Ω)|I) ∼ p(I|A(Ω)) (2.46)

The calculus of p(I|A(Ω)) requires some assumptions as follows:

1. The regions of the optimal partition are not correlated. This assumption is reasonable

by the goal of image segmentation. Then, we have:

p(I|A(Ω)) = p(I|(Ωin,Ωout)) = p(I|Ωin)p(I|Ωout) (2.47)
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where p(I|Ωin) and p(I|Ωout) are the a posteriori probabilities for the image I given

by the regions Ωin and Ωout, respectively.

2. The second assumption is that the pixels in a region must be independent. This

assumption leads to:

p(I|Ωin) =
∏
x∈Ωin

p(I(x)|Ωin) (2.48)

p(I|Ωout) =
∏

x∈Ωout

p(I(x)|Ωout) (2.49)

where p(I(x)|Ωin) and p(I(x)|Ωout) are the probabilities of an intensity I(x) in the

regions Ωin and Ωout, respectively.

Taking a logarithm, the maximization can be converted to the minimization of the

following energy:

E(Ωin,Ωout) = − ln
(
p(A(Ω)|I)

)
(2.50)

Replacing the expressions of Equations (2.46)-(2.49) into Equation (2.50), we obtain:

E(Ωin,Ωout) = −
∫
Ωin

ln p(I(x)|Ωin)dx−
∫

Ωout

ln p(I(x)|Ωout)dx (2.51)

By introducing the length term |C| of the contour C to regularize it, we obtain the following

final energy function:

E(Ωin,Ωout, C) = −
∫
Ωin

ln p(I(x)|Ωin)dx−
∫

Ωout

ln p(I(x)|Ωout)dx+ µ|C| (2.52)

where µ is a positive constant.

In [70, 71, 73, 68], the authors chose p(I(x)|x ∈ Ωi), where i = in, out, to be a Gaussian

distribution and permit for each region Ωin and Ωout not only different means c1 and c2,

respectively, but also different standard deviation σ1 and σ2, respectively:

p(I(x)|Ωin) =
1√
2πσ1

exp
− (I(x)−c1)

2

2σ2
1 (2.53)

p(I(x)|Ωout) =
1√
2πσ2

exp
− (I(x)−c2)

2

2σ2
2 (2.54)

Note that, the minimization of Equation (2.51) is similar with the model proposed by

Zhu et al. in [68]. However, the expression of the energy function is not obtained from
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MAP but the technique MDL (Minimum Description Length). Hereafter, Equation (2.52)

will be reformulated by the level set function ϕ as the following energy function:

E(c1, c2, ϕ) =µ

∫
Ω

|∇Hϵ(ϕ(x))dx

−
∫
Ω

ln

(
1√
2πσ1

exp
− (I(x)−c1)

2

2σ2
1

)
Hϵ(ϕ(x))dx

−
∫
Ω

ln

(
1√
2πσ2

exp
− (I(x)−c2)

2

2σ2
2

)
(1−Hϵ(ϕ(x)))dx (2.55)

where Hϵ is a regularized version of the Heaviside function as mentioned in the description

of the Chan-Vese model. Note that the Chan-Vese model corresponds to fixed standard

deviation.

The variables c1, c2, σ1 and σ2 are calculated dynamically during the evolution of the

contour. For fixed ϕ, the formulas of these parameters are obtained by calculus of variations

as follows:

c1 =

∫
Ω
I(x)H(ϕ(x))dx∫
Ω
H(ϕ(x))dx

(2.56)

c2 =

∫
Ω
I(x)(1−H(ϕ(x)))dx∫
Ω
(1−H(ϕ(x)))dx

(2.57)

σ2
1 =

∫
Ω
(I(x)− c1)

2H(ϕ(x))dx∫
Ω
H(ϕ(x))dx

(2.58)

σ2
2 =

∫
Ω
(I(x)− c2)

2(1−H(ϕ(x)))dx∫
Ω
(1−H(ϕ(x)))dx

(2.59)

Meanwhile, if these variables are fixed, ϕ = ϕ(x, t) is a solution of the following evolution

equation:

∂ϕ

∂t
= δϵ(ϕ)

[
∇ ·
(

∇ϕ
|∇ϕ|

)
− (I(x)− c1)

2

2σ2
1

+
(I(x)− c2)

2

2σ2
2

+ ln

(
σ1
σ2

)]
(2.60)

Note that, minimizing Equation (2.52) by using level set function requires the re-

initialization procedure as in the Chan-Vese model.

By observing Equations (2.56)-(2.59), we can see that the variables c1, c2, σ1 and σ2 have

the global property as the Chan-Vese model. Thus, this model fails to segment images with

intensity in-homogeneity which behaves as local change of intensity in the object. A natural

idea is to incorporate the local information in the energy function. Then, these variables

are computed in a neighborhood to account for local region inside or outside the object.
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2.2.2 Region-based active contour models and the intensity
in-homogeneity

The main idea to deal with intensity in-homogeneity is to take into account the local

information in the energy function such as models proposed later by Li et al. [77], Zhang et

al. [78], Guo et al. [82] and Wang et al. [83].

In [77], Li et al. proposed the Local Binary Fitting (LBF) model to deal with intensity

in-homogeneity in segmentation by taking into account local intensity information. This

model adapted the Chan-Vese model for taking into account local intensity information

instead of global intensity information. More precisely, instead of using the constants c1
and c2 in the Chan-Vese model, two varying functions f1(x) and f2(x), with x ∈ Ω is an

image pixel, are used in the LBF model to locally approximate the image intensities inside

and outside the contour in a Gaussian neighborhood. The energy function to minimize the

LBF model is formulated as follows:

FLBF (f1, f2, C) = µ|C|+ λ1

∫
Ω

[ ∫
Ωin

Kσ(x− y)(I(y)− f1(x))
2dy

]
dx

+ λ2

∫
Ω

[ ∫
Ωout

Kσ(x− y)(I(y)− f2(x))
2dy

]
dx (2.61)

where λ1 and λ2 are two positive constants, Kσ is a Gaussian kernel with standard de-

viation σ. This kernel is used to account for local region. Indeed, the Gaussian kernel

Kσ(x− y) decreases drastically and approaches to zero as the point y goes away from the

center point x. Therefore, the local energy at the pixel x:

λ1

∫
Ωin

Kσ(x− y)(I(y)− f1(x))
2dy + λ2

∫
Ωout

Kσ(x− y)(I(y)− f2(x))
2dy (2.62)

is dominated by the intensities I(y) of the points y in a neighborhood of x. This localization

property plays a key role in segmenting the images with intensity in-homogeneity. For

example, Figure 2.8a is an image affected by intensity in-homogeneity. One may see that

the intensity of both background and foreground varies. In Figure 2.8b, final contour of the

Chan-Vese model does not stop at the object boundary. In the other hand, the result of

the LBF model in Figure 2.8c gives us the accurate final contour on the object boundary.

As the Chan-Vese model, the authors used the level set function ϕ and the regularized

version Hϵ of the Heaviside function H to reformulate Equation (2.61). Moreover, to

eliminate the re-initialization procedure, which is the basic procedure when working with

level set function to reshape the level set function as a signed distance function, the authors

added the distance regularizing term published in [65] to penalize the deviation of the level

set function ϕ from a signed distance function. The deviation of the level set function ϕ
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(a) (b) (c)

Figure 2.8. Result of the Chan-Vese and the LBF models on an image with intensity
in-homogeneity. (a) Original contour. (b) Final contour of the Chan-Vese model. (c) Final
contour of the LBF model.

from a signed distance function is characterized by the following integral as mentioned in

Section 2.1.2:

P(ϕ) =

∫
Ω

1

2
(|∇ϕ(x)| − 1)2dx (2.63)

Then, the energy function of the LBF model is reformulated as follows:

FLBF (f1, f2, ϕ) =µL(ϕ) + νP(ϕ)

+ λ1

∫
Ω

[ ∫
Ω

Kσ(x− y)(I(y)− f1(x))
2Hϵ(ϕ(y))dy

]
dx

+ λ2

∫
Ω

[ ∫
Ω

Kσ(x− y)(I(y)− f2(x))
2(1−Hϵ(ϕ(y)))dy

]
dx (2.64)

where L(ϕ) =
∫
Ω
|∇Hϵ(ϕ(x))|dx is the length of the contour C.

Here we can see that each region is modeled by the mean estimated in a local Gaussian

neighborhood.

The calculus of variations for FLBF with respect to f1, to f2 for fixed ϕ allows to find

the formulas of f1, f2 as follows:

f1(x) =

∫
Ω
Kσ(x− y)I(y)Hϵ(ϕ(y))dy∫
Ω
Kσ(x− y)Hϵ(ϕ(y))dy

(2.65)

f2(x) =

∫
Ω
Kσ(x− y)I(y)(1−Hϵ(ϕ(y)))dy∫
Ω
Kσ(x− y)(1−Hϵ(ϕ(y)))dy

(2.66)
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and ϕ = ϕ(y, t) is a solution of the following evolution equation when fixing f1 and f2:

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇ ·

(
∇ϕ
|∇ϕ|

)
+ ν∇ ·

(
∇ϕ
(
1− 1

|∇ϕ|

))
− λ1

∫
Ω

Kσ(x− y)(I(y)− f1(x))
2dx

+ λ2

∫
Ω

Kσ(x− y)(I(y)− f2(x))
2dx

]
(2.67)

where δϵ is defined in Equation (2.44).

(a) (b)

(c) (d)

Figure 2.9. Result of the LBF model [77]. (a) (c) Original image and initial contour
(red). (b) (d) Final contour (yellow) and values of f1, f2 for some points.

By using the local information, this model has achieved promising results for images

with intensity in-homogeneity. However, because of the non-convexity property of the en-

ergy functional, its minimization may introduce local minimums. These local minimums

are dependent on the initial position of the contour. Consequently, the result of segmen-

tation is sensitive to the initial contour. The dependence on the initialization of the LBF

model is shown in Figure 2.9. This figure gives us a simple experiment of the LBF model

for a binary image with two initial contours Figure 2.9a and Figure 2.9c. The intensities of

the background and foreground are 50 and 150, respectively. Figure 2.9b and Figure 2.9d
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show the final segmentation results of the LBF model corresponding with the two different

initial contours in Figure 2.9a and Figure 2.9c, respectively. One may observe that the con-

tour in Figure 2.9b is accurate. In this case, the spatially varying fitting functions f1 and

f2 approximate the local intensities on the two sides of the contour very well. For example,

the values of f1 and f2 at the red point in this figure are 148.36 and 51.76 respectively,

which are consistent with the local intensities. In contrast, the contour in Figure 2.9d is

stuck in the middle of both background and foreground regions. This can be explained

by investigating the values of f1 and f2 at some points. For example, the values of f1
and f2 at three points p1, p2 and p3 are shown in Figure 2.9d. For points p1 and p3, the

values are equal to the intensities of the background and foreground, respectively. Thus,

the fitting energy FLBF at the points p1 and p3 is minimized to zero, but the final contours

in these case are incorrect. For the point p2, the values of f1 and f2 approximate the local

intensities on both sides of the contour very well. As a result, the local fitting energy

FLBF is minimized, and therefore the contour is stopped. But, the overall contour is not

the accurate object boundary.

Latter, K. Zhang et al. [78] proposed the Local Image Fitting (LIF) model by minimizing

the difference between a fitted image and the original image. The formulation is as follows:

FLIF (ϕ) =
1

2

∫
Ω

|I(x)− uLFI(x)|2dx (2.68)

where uLFI , a local fitted image (LFI) formulation, is defined as follows:

uLFI = m1Hϵ(ϕ) +m2(1−Hϵ(ϕ)) (2.69)

where m1 and m2 are defined as follows:{
m1 = avg(u0 ∈ ({x ∈ Ω|ϕ(x) < 0} ∩Wk(x)))

m2 = avg(u0 ∈ ({x ∈ Ω|ϕ(x) > 0} ∩Wk(x)))
(2.70)

where Wk(x) is a truncated Gaussian window Kσ(x) with standard deviation σ and of size

(4k+1)× (4k+1), where k is the greatest integer smaller than σ. This window allows for

taking into account local information.

Using the calculus of variations and the steepest descent method [63, 64], the authors

minimize FLIF with respect to ϕ to get the corresponding gradient descent flow:

∂ϕ

∂t
= δϵ(ϕ)(I − uLFI)(m1 −m2) (2.71)

where δϵ is defined in Equation (2.44).

As the LBF model, the LIF model demonstrate promising performances for dealing

with intensity in-homogeneity in images. However, the LIF has the same inconvenience as
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the LBF model such as the non-convexity of its energy functional. Again, the results of

the LIF model depend on the initial contour.

More recently, other models combine the local and global information in the region-

based energy functional [79, 80, 81] to benefit from the advantages of the two approaches.

The global information allows to cope with noises and objects with smooth or non-continuous

boundaries, while the local information allows to deal with the intensity in-homogeneity.

These methods give promising results.

In [79], the LGIF (Local and Global Intensity Fitting) model was recently proposed

by Wang et al. to segment images with intensity in-homogeneity. To represent the global

information, the authors make use of the constants c1 and c2 as in the Chan-Vese model [33],

while two spatially varying fitting functions f1 and f2 are used to approximate the local

intensities inside and outside the contour and to describe the local information. Note

that this local information is inspired from the LBF model [77]. The energy functional to

minimize is as follows:

FLGIF (ϕ, f1, f2, c1, c2) = (1− ω)FLIF (ϕ, f1, f2) + ωFG(ϕ, c1, c2) + FR (2.72)

with

FLIF = α1

∫
Ω

[ ∫
Ω

Kσ(x− y)|I(y)− f1(x)|2Hϵ(ϕ(y))dy

]
dx

+ α2

∫
Ω

[ ∫
Ω

Kσ(x− y)|I(y)− f2(x)|2(1−H(ϕ(y)))dy

]
dx (2.73)

FG = α1

∫
Ω

|I(x)− c1|2Hϵ(ϕ(x))dx+ α2

∫
Ω

|I(x)− c2|2(1−Hϵ(ϕ(x)))dx (2.74)

FR = ν

∫
Ω

1

2
(|∇ϕ(x)| − 1)2dx+ µ

∫
Ω

|∇Hϵ(ϕ(x))|dx (2.75)

where ω is a positive constant (0 < ω < 1) that controls the influence of the local and

global terms. When the images are corrupted by intensity in-homogeneity, value of the

parameter ω should be chosen small enough. In Equation (2.73), Kσ is a Gaussian kernel

with standard deviation σ which is used to control the local property as in the LBF model.

The parameters ν and µ in Equation (2.75) and α1, α2 in Equations (2.73) - (2.74) are

positive constants. In Equation (2.75), the first term is a regular term added to describe

the closeness of the level set function to a signed distance function. This term corresponds

to the term P(ϕ) in the LBF model, while the second term in (2.75) corresponds to the

contour length which is the term L(ϕ) in the LBF model. In Equations (2.73), (2.74) and

(2.75), ϕ is the level set function, Hϵ is a smooth version of the Heaviside function. The



2.2. REGION-BASED ACTIVE CONTOUR MODELS AND THE INTENSITY
IN-HOMOGENEITY (IIH) 49

authors use Hϵ as in the Chan-Vese model:

Hϵ(z) =
1

2

[
1 +

2

π
arctan

(
z

ϵ

)]
, z ∈ R (2.76)

where ϵ is a small positive constant.

Another model is the Local Chan-Vese (LCV) [80] which also combines global and

local information to deal with intensity in-homogeneity. Like the LGIF model, the energy

functional FLCV of the LCV model has three terms, i.e., global term (FG), local term (FL)

and regularization term (FR) that are described as follows:

FLCV = αFG + βFL + FR (2.77)

where α, β are positive constants, and the regularization function FR and the global term

FG are defined in (2.74) while the local term FL is as follows:

FL(ϕ, d1, d2) =

∫
Ω

|gk ∗ I(x)− I(x)− d1|2Hϵ(ϕ(x))dx

+

∫
Ω

|gk ∗ I(x)− I(x)− d2|2(1−Hϵ(ϕ(x)))dx (2.78)

where gk is an average convolution operator with a k× k size window, while d1 and d2 are

the intensity averages of difference image (gk ∗ I(x)− I(x)) inside and outside the contour,

respectively, ϕ is the level set function, and Hϵ is determined as in (2.76).

Note that, by using the penalizing term P(ϕ) =
∫
Ω

1
2
(|∇ϕ(x)|− 1)2dx in the regulariza-

tion term FR, there is no need for the re-initialization procedure in both the LGIF and the

LCV models. Experiments have demonstrated the desired performance for images affected

by intensity in-homogeneity. In addition, the results of the LGIF and the LCV models also

demonstrated that the dependence on the initial position of the contour is reduced com-

pared with models using only the local information such as the LBF [77] and the LIF [78]

models. However, this dependence is not reduced completely because the energy function

is not convex. Therefore, there may be local minimums when segmenting the same image

with varying initial contours.

In 2006, Guo et al. [82] used the local information to replace the global information

in the model of Zhu [68] based on the Bayesian approach to obtain the following energy
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functional

E(f1,f2, σ1, σ2, ϕ) = µ

∫
Ω

|∇Hϵ(ϕ(x))dx

−
∫
Ω

[ ∫
Ω

χB(x,r(x))(y)Hϵ(ϕ(y)) ln

(
1√

2πσ1(x)
exp

− (I(y)−f1(x))
2

2σ2
1(x)

)
dy

]
Hϵ(ϕ(x))dx

−
∫
Ω

[ ∫
Ω

χB(x,r(x))(y)(1−Hϵ(ϕ(y))) ln

(
1√

2πσ2(x)
exp

− (I(y)−f2(x))
2

2σ2
2(x)

)
dy

]
(1−Hϵ(ϕ(x)))dx

(2.79)

where local region is represented by a circle B(x, r(x)) of center x and radius r(x) which

depends on x:

r(x) =
r1

1 + r2|∇Ĩ(x)|
(2.80)

with Ĩ is a smoothed version of the updating image I obtained through convolving it with

a smooth kernel. r1 is an integer chosen based on noisy level of the image I: r1 is higher if

the noisy level is high, and chosen smaller otherwise, r2 is chosen to be small all the time to

enhance boundaries while smoothing, χB(x,r(x)) is the characteristic function of B(x, r(x)),

Hϵ is an regularized version of the Heaviside function, f1(x) and f2(x) are respectively the

intensities inside and outside the contour, in the local region B, at the pixel x, σ1(x) and

σ2(x) are the local standard deviations inside and outside the contour, respectively, at the

pixel x.

However, to reduce the computational complexity, the author replaced the logarithm of

the Gaussian kernel by a quadratic kernel such as P (u) = 3
4
(1− u2)χ[−1,1](u), where χ[−1,1]

is the characteristic function of [−1, 1]. Note that, I(y)− fi(x), i = 1, 2, is assumed to be

in the interval [−1, 1]. Thus, the following energy function is obtained:

EGuo(f1,f2, ϕ) = µ

∫
Ω

|∇Hϵ(ϕ(x))dx

−
∫
Ω

[ ∫
Ω

χB(x,r(x))(y)Hϵ(ϕ(y))
3

4

(
1− (I(y)− f1(x)

)2
dy

]
Hϵ(ϕ(x))dx

−
∫
Ω

[ ∫
Ω

χB(x,r(x))(y)(1−Hϵ(ϕ(y)))
3

4

(
1− (I(y)− f2(x)

)2
dy

]
(1−Hϵ(ϕ(x)))dx

(2.81)

In 2009, Wang et al. [83] proposed the LGDF (Local Gaussian Distribution Fitting)
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model which minimizes the following energy function:

ELGDF (f1, f2, σ1, σ2, ϕ) = µL(ϕ) + νP(ϕ)

−
∫
Ω

[ ∫
Ω

Kσ(x− y) ln

(
1√

2πσ1(x)
exp

− (I(y)−f1(x))
2

2σ2
1(x)

)
Hϵ(ϕ(y))dy

]
dx

−
∫
Ω

[ ∫
Ω

Kσ(x− y) ln

(
1√

2πσ2(x)
exp

− (I(y)−f2(x))
2

2σ2
2(x)

)
(1−Hϵ(ϕ(y)))dy

]
dx (2.82)

where L,P are defined in the energy function of the LBF model (2.64), while Hϵ is a

regularized version of the Heaviside function.

The penalized term P(ϕ) allows the LGDF model to avoid the re-initialization proce-

dure which is not the case of the Guo’s model.

Generally, these models give good results when segmenting images with intensity in-

homogeneity. However, like other models using level set function, the energy functional

of these models is not convex. Thus, the quality of segmentation result depend on the

position of the initial contour, which cannot provide reliable results. This is the main

shortcoming of these models.

2.3 Conclusion

We have presented in this chapter a state-of-the-art of the AC models including the

boundary-based models and the region-based ones with a review of those allowing for

handle the intensity in-homogeneity. We also shown that the region-based models exhibit

many advantages over the boundary-based ones, such as robustness to noises, to weak and

smooth boundaries, to gaps as well as to varying initialization. We have also described

some state-of-the-art region-based models following two groups, the Mumford-Shad model

and the Bayesian one. Here we limit on works using Gaussian statistics to model a region

globally or locally. While local region information allows to account for piecewise-smooth

approximation as in the case of intensity in-homogeneity, the global intensity information

allows for improving the robustness to noises weak boundary and gaps as well as varying

initialization.

We have presented an overview of the region-based models capable of addressing the

intensity in-homogeneity by using local intensity information. This study shows that the

main weakness of the existing methods is the non-convexity of their energy functional,

making these models dependent on the initial contour. Hence, the issue for these models

is to find good initial contour. This problem can be overcome by convexification of the

local information of the region-based models. This is the motivation for our works in this

thesis.
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MODEL (R LGR)

3.1 Introduction

As it has been presented in Chapter 2, local information may be taken into account in

the energy functional of a region-based AC model to deal with intensity in-homogeneity.

The Local Binary Fitting (LBF) model proposed by Li et al. [77] is considered as the first

model using the local image intensity to deal with IIH. Whereas the Chan-Vese model [33]

describes the region using global intensity information, the LBF model extends the Chan-

Vese model by incorporating local intensity information instead of the global intensity

information to segment the images affected by intensity in-homogeneity. Like the Chan-

Vese model [33], the active contour of the LBF model is characterized by zero level of the

level set function. Another advantage of the LBF is related to the procedure changing

the level set function to the signed distance function. Indeed, instead of the classical

re-initialization procedure, the LBF model uses a penalty term in the energy functional,

allowing automatic change of the level set function to the signed distance function in the

evolution process.

Recently, Zhang et al. take into account the local information in a region-based AC

model and propose the Local Image Fitting (LIF) model [78]. As the LBF model, Zhang

et al. also utilize a Gaussian kernel window to calculate the local intensities for a fitting

image to approximate the original image. However, the difference of the LIF model from

the LBF model is that there is neither a regularization term in the LIF energy function or

the penalty term to change the level set function to the signed distance function. However,

to ensure that the contour is smooth and the level set function is changed to the signed

distance function, the level set function in the LIF model is convoluted with a Gaussian

kernel in the implementation.

For a better understanding of the contribution of the local and global information,

the objective in this chapter aims at Intensity In-homogeneity without requiring that the

model be convex, i.e. the independence of the model with respect to initialization, because

this issue will be addressed in the Chapter 4.

So, in this chapter, a simple region-based active contour model is proposed in the

variational framework in order to illustrate how combining global and local information in

the energy functions can deal with IIH while providing robustness to noise, to weak edges

and to initialization. This model is inspired from the Chan-Vese model [33] and the LIF

model [78] but we use a constant window to compute local intensities. Hereafter, we will

refer this model as ROBUST Local an Global Region-based (R LGR).

In the next sections of this chapter, the R LGR model will be presented firstly. Then,

the numerical implementation will be presented for the minimization of the energy func-

tional, followed by the investigation on the sensibility of model parameters as well as the

experiments results to evaluate the performance of the proposed model.
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3.2 The Proposed ROBUST Local and Global

Region-based Model (R LGR)

Let Ω ⊂ R2 be an image domain and I : Ω → R+ denote the image determined on Ω.

Let us denote by C an active contours in Ω, and by ϕ a level set function whose values

are positive (negative) inside (outside, respectively) C and vanish on C. Let us denote by

Ωin = {x ∈ Ω : ϕ(x) > 0} the domain inside the contour C and by Ωout = {x ∈ Ω : ϕ(x) <

0} the domain outside the contour C.

We propose to associate the global and local components in the energy function to

take advantages of the two terms. In the global component, a global fitting image IG is

presented to approximate the given image I, while a local fitting image IL is introduced

to approximate I in the local component. The energy function to minimize of the R LGR

model is as follows:

E(ϕ) =

∫
Ω

(
I(x)− IG(x, ϕ)

)2
dx+

λ

2

∫
Ω

(
I(x)− IL(x, ϕ)

)2
dx (3.1)

where x is a pixel in Ω and λ is a positive constant.

For a better understanding of the model, let us illustrate first the global fitting image

IG in Section 3.2.1, then the local fitting image IL in Section 3.2.2.

3.2.1 The global fitting image

The global fitting image IG is determined as follows:

IG(x, ϕ) = c1H(ϕ(x)) + c2(1−H(ϕ(x))) (3.2)

where H is the Heaviside function: H(z) is 0 if z < 0 and is 1 else, c1 and c2 are two

constants. Then, the best approximation of I is c1 in Ωin while the best approximation of

I is c2 in Ωout.

As it can be seen in Figure 3.1, c1 and c2 are constants to approximate the image

intensity in the brown (Ωin) and white (Ωout) regions, respectively.

3.2.2 The local fitting image

The local fitting image IL is determined as follows:

IL(x, ϕ) = f1(x)H(ϕ(x)) + f2(x)(1−H(ϕ(x))) (3.3)

where f1(x) and f2(x) are two average intensities of I on a neighborhood Vx of the pixel x

inside and outside the contour:

f1(x) = avg(I) on Vx ∩ {y ∈ Ω : ϕ(y) > 0} (3.4)

f2(x) = avg(I) on Vx ∩ {y ∈ Ω : ϕ(y) < 0} (3.5)
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Figure 3.1. Illustration for c1 and c2 in our global fitting image.

(a) (b) (c)

Figure 3.2. Illustration for f1 and f2 in our local fitting image.

Because f1(x) and f2(x) are calculated on a neighborhood Vx of the pixel x, they are called

the local intensities. To determine the neighborhood Vx, we use a constant window Kσ

with value 1 and its size is σ × σ.

Figure 3.2 gives some illustrations of the local intensities f1 and f2 at three positions

of the pixels p1, p2 and p3. In Figure 3.2a, the neighborhood Vp1 of the pixel p1 has two

components: yellow region (inside the contour) and green region (outside the contour).

The value of f1(p1) is the average intensity of I on the yellow region, while the value of

f2(p1) is the average intensity of I on the green region. In Figure 3.2b, the neighborhood

Vp2 of the pixel p2 is the green region. In this case, the value of f1(p2) is 0 while the

value of f2(p2) is the average intensity of I on the whole green region. In Figure 3.2c, the

neighborhood Vp3 of the pixel p3 is the yellow region. In this case, the value of f1(p3) is

the average intensity of I on the whole yellow region, while the value of f2(p3) is 0.

Before giving solutions of the proposed R LGR model, we will show another way to

represent this energy function by Proposition 3.1. This alternative representation is useful

for our calculation later (in Equation (3.9)).
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Proposition 3.1. The global component in Equation (3.1) can be represented as follows:∫
Ω

(
I(x)−IG(x, ϕ)

)2
dx =

∫
Ω

(
I(x)−c1

)2
H(ϕ(x))dx+

∫
Ω

(
I(x)−c2

)2
(1−H(ϕ(x)))dx (3.6)

Proof. Indeed, we will develop the left-hand side of Equation (3.6) to obtain the right-hand

side of the same Equation.∫
Ω

(
I(x)− IG(x, ϕ)

)2
dx =

∫
Ω

(
I(x)− c1H(ϕ(x))− c2(1−H(ϕ(x)))

)2
dx

=

∫
Ωin

(
I(x)− c1H(ϕ(x))− c2(1−H(ϕ(x)))

)2
dx

+

∫
Ωout

(
I(x)− c1H(ϕ(x))− c2(1−H(ϕ(x)))

)2
dx (3.7)

Note that H(ϕ(x)) = 1 if x ∈ Ωin and H(ϕ(x)) = 0 if x ∈ Ωout. It follows that Equa-

tion (3.7) becomes:∫
Ω

(
I(x)− IG(x, ϕ)

)2
dx =

∫
Ωin

(
I(x)− c1

)2
dx+

∫
Ωout

(
I(x)− c2

)2
dx

=

∫
Ω

(
I(x)− c1

)2
H(ϕ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−H(ϕ(x)))dx

(3.8)

One may see that Equation (3.8) is exactly Equation (3.6).

Remark 3.1. One may observe that the right-hand side in Equation (3.6) is the first and

second in the energy function (2.40) of the Chan-Vese model. This why we have told that

the R LGR model is inspired from the Chan-Vese model.

By Proposition 3.1, in this chapter, we use the following energy function:

E(ϕ) =

∫
Ω

(
I(x)− c1

)2
H(ϕ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−H(ϕ(x)))dx

+
λ

2

∫
Ω

(
I(x)− IL(x, ϕ)

)2
dx (3.9)
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3.3 Numerical Algorithm

To minimize the energy function (3.9), we use the iteration method with two steps in each

of the iterations.

Step 1. In this step, the level set function is fixed. Then, by applying calculus of

variation [63, 64] for (3.9) with respect to c1 and to c2, we obtain:

c1 =

∫
Ω
I(x)H(ϕ(x))dx∫
Ω
H(ϕ(x))dx

(3.10)

c2 =

∫
Ω
I(x)(1−H(ϕ(x)))dx∫
Ω
(1−H(ϕ(x)))dx

(3.11)

To calculate values of f1 and f2, we thank to the Heavisie function and note that Kσ

is 1 on the neighborhood V and 0 otherwise, we have the formulas of f1 and f2 as follows:

f1(x) =

∫
Ω
Kσ(x− y)I(y)H(ϕ(y))dy∫
Ω
Kσ(x− y)H(ϕ(y))dy

(3.12)

f2(x) =

∫
Ω
Kσ(x− y)I(y)(1−H(ϕ(y)))dy∫
Ω
Kσ(x− y)(1−H(ϕ(y)))dy

(3.13)

Remark 3.2. One may observe that the formulas of c1 and c2 are the same as in formulas

of the global intensities in the Chan-Vese model presented in Section 2.2.1. This is why c1
and c2 are called the global intensities.

Step 2. In this step, for fixed c1, c2, f1 and f2, we find ϕ by the calculus of variations

method and the steepest descent method. Note that ϕ is considered as a variable of the

Heaviside functionH. However, the Heaviside functionH is not continuous at 0. Therefore,

to apply the calculus of variation for ϕ, we replace H by a smooth version Hϵ as the other

models using level set function mentioned in Chapter 2:

Hϵ(z) =
1

2

[
1 +

2

π
arctan

(
z

ϵ

)]
, z ∈ R (3.14)

where ϵ is small positive. Then Equation (3.9) yields the following energy function:

Eϵ(ϕ) =

∫
Ω

(
I(x)− c1

)2
Hϵ(ϕ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−Hϵ(ϕ(x)))dx

+
λ

2

∫
Ω

(
I(x)− ILϵ (x, ϕ)

)2
dx (3.15)

where ILϵ (x, ϕ) = f1(x)Hϵ(ϕ(x)) + f2(x)(1−Hϵ(ϕ(x))).

Theorem 3.1 and Theorem 3.2 presented as follows allow us to obtain the derivative of

Eϵ with respect to ϕ.
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Theorem 3.1. Let c1 and c2 be two constants, ϕ ∈ L2(Ω)−the space of square-integrable

functions on Ω. Consider the following functions:

EG
ϵ (ϕ) =

∫
Ω

(
I(x)− c1

)2
Hϵ(ϕ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−Hϵ(ϕ(x)))dx (3.16)

The derivative of EG
ϵ with respect to ϕ is as follows:

∂EG
ϵ

∂ϕ
= δϵ(ϕ)

[(
I − c1

)2 − (I − c2
)2]

(3.17)

Proof. [33]. See Appendix B.1.

Theorem 3.2. Let f1 and f2 be given functions determined on Ω, ϕ ∈ L2(Ω)−the space

of square-integrable functions on Ω. Consider the following functions:

EL
ϵ (ϕ) =

λ

2

∫
Ω

(
I(x)− f1(x)Hϵ(ϕ(x))− f2(x)(1−Hϵ(ϕ(x)))

)2
dx (3.18)

The derivative of EL
ϵ with respect to ϕ is as follows:

∂EL
ϵ

∂ϕ
= −δϵ(ϕ)

[
λ
(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)(
f1 − f2

)]
(3.19)

Proof. [78]. See Appendix B.2.

From Theorem 3.1 and Theorem 3.2, we obtain the derivative of Eϵ with respect to ϕ

as follows:

∂Eϵ
∂ϕ

= −δϵ(ϕ)
[
λ
(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)(
f1 − f2

)
− (I − c1

)2
+
(
I − c2

)2]
(3.20)

Then, by the steepest descent method [63, 64], we obtain the evolution equation of ϕ

with respect to time t as follows:

∂ϕ

∂t
= −∂Eϵ

∂ϕ
= δϵ(ϕ)

[
λ
(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)(
f1 − f2

)
− (I − c1

)2
+
(
I − c2

)2]
(3.21)

Note that, in the energy function (3.15), there is not the regularization term L(ϕ) =∫
Ω
|∇Hϵ(ϕ(x))|dx as in the Chan-Vese and the LBF models. On the other hand, to re-

initialize ϕ to the signed distance function, we use the convolution ϕ ∗ G√
2t between the

solution ϕ of Equation (3.21) and a Gaussian kernel G√
2t with standard deviation

√
2t.

Indeed, let us consider the evolution of ϕ such that the following regularization term is

minimized:

L(ϕ) =
∫
Ω

|∇Hϵ(ϕ(x))|dx (3.22)
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which has the derivative with respect to ϕ (see Appendix B.3) as follows:

∂L
∂ϕ

= −δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
(3.23)

where δϵ(z) = H ′
ϵ(z), z ∈ R, and ∇· is the divergence operator.

Then, by the steepest descent method [63, 64], we obtain the evolution equation of ϕ

as follows:
∂ϕ

∂t
= δϵ(ϕ)∇ ·

(
∇ϕ
|∇ϕ|

)
(3.24)

In [59] and [33], the authors shown that we can replace δϵ(ϕ) by |∇ϕ| to extend the

evolution to all level sets of ϕ. Then, the evolution equation of ϕ becomes:

∂ϕ

∂t
= |∇ϕ|∇ ·

(
∇ϕ
|∇ϕ|

)
(3.25)

Now, by the re-initialization procedure to obtain |∇ϕ| = 1, we have then:

∂ϕ

∂t
= ∇ · (∇ϕ) = ∆ϕ (3.26)

with the initial condition ϕ(x, 0) = ϕ0(x), x ∈ Ω. This is the heat equation which has an

unique solution [63] as follows:

ϕ = ϕ0 ∗G√
2t (3.27)

where G√
2t is a Gaussian kernel with standard deviation

√
2t.

So, if we have ϕk which is the solution of Equation (3.21) at the iteration k, we can use

the evolution ϕk ∗G√
2t to re-initialize ϕk to the signed distance function while keeping the

smoothness of the level set function. For more details, please refer to [78].

Remark 3.3. When the Heaviside function H is replaced by the smooth function Hϵ, the

formulas (3.10), (3.11), (3.12) and (3.13) become the following equations:

c1 =

∫
Ω
I(x)Hϵ(ϕ(x))dx∫
Ω
Hϵ(ϕ(x))dx

(3.28)

c2 =

∫
Ω
I(x)(1−Hϵ(ϕ(x)))dx∫
Ω
(1−Hϵ(ϕ(x)))dx

(3.29)

f1(x) =

∫
Ω
Kσ(x− y)I(y)Hϵ(ϕ(y))dy∫
Ω
Kσ(x− y)Hϵ(ϕ(y))dy

=

(
Kσ ∗ (IHϵ(ϕ))

)
(x)

(Kσ ∗Hϵ(ϕ))(x)
(3.30)

f2(x) =

∫
Ω
Kσ(x− y)I(y)(1−Hϵ(ϕ(y)))dy∫
Ω
Kσ(x− y)(1−Hϵ(ϕ(y)))dy

=

(
Kσ ∗ (I(1−Hϵ(ϕ)))

)
(x)(

Kσ ∗ (1−Hϵ)
)
(x)

(3.31)
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Now, to discretize Equation (3.21) in ϕ, we use an explicit scheme. We first recall the

usual notation: let ∆t be the time step, h be the space step, and (xi, yj) = (ih, jh) be

the grid points, for 1 ≤ i ≤ m1, 1 ≤ j ≤ m2 (m1 × m2 is the size of the image I). Let

ϕni,j = ϕ(n∆t, xi, yj) be an approximation of ϕ(t, x, y), with n ≥ 0, ϕ0 = ϕ0.

The algorithm is as follows: knowing ϕn, we first compute cn1 , c
n
2 , f

n
1 and fn2 using

Equations (3.28), (3.29), (3.30) and (3.31). Then, we compute ϕn+1 by the following

discretization of Equation (3.21) in ϕ:

ϕn+1 − ϕn

∆t
= δϵ(ϕ

n)

[
λ
(
I − fn1Hϵ(ϕ

n)− fn2 (1−Hϵ(ϕ
n))
)(
fn1 − fn2

)
− (I − cn1

)2
+
(
I − cn2

)2]
(3.32)

Remark 3.4. The computational cost of f2 in Equation (3.31) can be effectively done.

First, we notice that f2 in Equation (3.31) can be rewritten as follows:

f2(x) =

(
Kσ ∗ I

)
(x)−

(
Kσ ∗ (IHϵ(ϕ))

)
(x)(

Kσ ∗ 1
)
(x)−

(
Kσ ∗Hϵ(ϕ)

)
(x)

(3.33)

where 1 is the constant function with value 1. In the above expression of f2 (3.33), the

second terms in the numerator and the denominator as the same as the numerator and

the denominator in f1 (3.30), while the term Kσ ∗ I in the numerator and Kσ ∗ 1 in the

denominator do not depend on the evolution of the level set function ϕ. Therefore, the two

convolutions Kσ ∗ I and Kσ ∗ 1 can be computed only once before the iteration. So, during

the iterations, only the two convolutions Kσ ∗ (IHϵ(ϕ)) and Kσ ∗Hϵ(ϕ) are calculated for

the evolution of ϕ.

Remark 3.5. By Proposition B.1 in Appendix B, Section B.3, we need the boundary

condition: ∂ϕ
∂N

= 0, where N is the exterior normal to the boundary ∂Ω. This condition

can be taken in each iteration as follows:

ϕ(xi, y1) = ϕ(xi, y2), i = 1, ...,m1 (3.34)

ϕ(xi, ym2) = ϕ(xi, ym2−1), i = 1, ...,m1 (3.35)

ϕ(x1, yj) = ϕ(x2, yj), j = 1, ...,m2 (3.36)

ϕ(xm1 , yj) = ϕ(xm1−1, yj), j = 1, ...,m2 (3.37)

where m1 ×m2 is the size of the image I.

Finally, the principal steps of the algorithm are summarized as follows:

Step 1. Initialize ϕ0 by ϕ0, n = 0.

Step 2. Compute cn1 , c
n
2 and fn1 using Equations (3.28), (3.29) and (3.30), respectively,

while f2 is computed as Remark 3.4.
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(a) Original image (b) σ = 6 (c) σ = 15 (d) σ = 54

Figure 3.3. Results of the R LGR model on a non-homogeneous synthetic images with
different values of σ.

Step 3. Solve the PDE (3.21) in ϕ using Equation (3.32) to obtain ϕn+1.

Step 4. Regularize the level set function by a convolution with a Gaussian kernel, i.e.

ϕn+1 = Kζ ∗ ϕn+1, where Kζ is a Gaussian kernel with the standard deviation ζ.

Step 5. Satisfy the boundary condition to ϕ using Remark 3.5.

Step 6. Check whether the evolution is stationary. If not, n = n+1 and repeat to Step 2.

3.4 Sensibility of the Parameters

In the proposed model, local average intensity is used to handle intensity in-homogeneity

(IIH). As stated in Section 3.2.2, to determine this local average intensity, we use a constant

window Kσ with value 1 and size is σ × σ. Therefore, the main parameters chosen by the

user for this method are σ and λ.

3.4.1 Parameter σ

In the proposed method, the intensity of a pixel is approximated by the average of the

intensity in the neighborhood Kσ inside and outside the evolution contour. Therefore, a

small value of σ may provide high sensibilities to local image information such as noise.

On the contrary, if σ is large, e.g. such that the constant window Kσ may contain the

whole image, the local intensity will become the global one and the model would not be

able to deal with IIH.

One may observe in Figure 3.3 that we can obtain accurate result with σ bounded in

an interval of values. A suitable and small enough σ (in this interval depending on the

nature of image) allows for an accurate segmentation (if λ is well chosen) (see Figure 3.3b

and Figure 3.3d).

For more results, please see Appendix E.
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(a) Original image (b) λ = 100 (c) λ = 1000

Figure 3.4. Results of the R LGR model on a non-homogeneous synthetic images with
different values of λ.

3.4.2 Parameter λ

The parameter λ controls the sensibility of the local with respect to the global terms.

If λ is large (at least superior than 2), then the sensibility of the local term is stronger

than that of the global term. On the contrary, the local term is weaker than the global

term, resulting in the equivalent Chan-Vese model, hence providing robustness to noise

but resulting in inability to cope with IIH. Therefore, if the given image is corrupted with

intensity in-homogeneity, then the value of λ should be large enough. On the other hand,

if λ is small, then the model approaches the global energy function, and would not be able

to deal with IIH.

Figure 3.4 validate the above argumentation by applying multiple values of λ. In

Appendix E, we can find more results of the proposed model with varying values of λ.

To summarize, in order to obtain good accuracy in segmenting object with IIH, λ should

be large and σ should be in an interval of values (not too large values). Indeed, a too large

σ would not enable segmentation of image with IIH.

If the image is corrupted by IIH and noise, a trade-off between the values of σ and λ

should be made to obtain good accuracy.

3.5 Experimental Results

To evaluate the performance of our R LGR method, several experiments have been carried

out on images with non-homogeneous regions and on noisy images with non-homogeneous

regions. Examples are shown here for some synthetic, noisy ultrasound, MR and X-Ray

images. A comparative evaluation has been performed to demonstrate the advantages of

our R LGR method over some state-of-the-art methods such as the Chan-Vese [33] and

the LIF [78] models. The code of the LIF model can be downloaded on the page of the

author (http://www4.comp.polyu.edu.hk/~cslzhang/).

We used the MATLAB r2008a to implement our algorithm. The program was run on

a Dell (OptiPlex 360), which has Intel Core 2 Duo E7500 @ 2.93GHz and 4GB RAM. The

parameters in this section are given in Table 3.1.

http://www4.comp.polyu.edu.hk/~cslzhang/
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Results on a non-homogeneous synthetic image are reported and compared with the

Chan-Vese and the LIF methods (Figure 3.5). We see that the Chan-Vese model fails

to detect the object boundary, while the LIF and our R LGR methods provide accurate

segmentation of the object. This can be explained by the fact that the intensity of the tested

image is non-homogeneous, while the Chan-Vese model utilizes only the global intensity

information in the energy function to approximate the image. In contrast, the LIF and

our R LGR methods utilize the local intensity to better detect variation inside the object

or the background.

Figure 3.5. Result for a synthetic image with intensity in-homogeneity. From left to
right: Original image and initial contour; result of the Chan-Vese method, the LIF method
and the proposed R LGR method.

In Figure 3.6, results of the LIF and our R LGR methods on a real image of DNA

channel are reported for comparison regarding the ability of these models to handle inten-

sity in-homogeneity. The task is to segment object with intensity variation. In this figure,

nuclei appear much brighter than the background in the DNA channel and some nuclei are

very close to each other. One may observe that the LIF model (σ = 3 (see Equation (2.70))

failed to segment the nuclei boundaries, whereas our result not only satisfies the segmen-

tation but also separates nuclei distinctly. In the case of higher values of σ (σ =11), the

results of the LIF are still far from expected, even at the expense of the computational

time.

In Figure 3.7, the segmentation results for three blood vessel X-Ray images with the

intensity in-homogeneity are reported for comparison with the Chan-Vese and the LIF

methods. It can be seen from the second and the third columns that the Chan-Vese and

the LIF methods failed to segment all the three images. For the Chan-Vese method, the

reason is due to the disadvantage of not using the local information, while the reason of

the LIF method is due to the non-convexity of the model, the initial contours in these

cases are not suitable to yield good results. We can find better results of the LIF method

published in [78]. In contrast, our results presented in the third column clearly show that

the boundaries were accurately segmented. Besides, it can be seen from Figure 3.8 that

our R LGR method is less sensitive to the position of initial contour while giving accurate
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(a) (b) (c)

Figure 3.6. Results on a real image of DNA channel. Green (red) line is the initial (final)
contour: (a) result of the LIF method, (b) result of the proposed R LGR method, (c) zoom
of our R LGR method.

Figure 3.7. Results for blood vessel X-Ray images (source http://www.unc.edu/

~liwa/). From left to right: original images and initial contour; results of the Chan-Vese
method, the LIF method and the proposed R LGR method.

results. However, the energy function of the proposed model is not convex which implies

that the final contour of our R LGR model still depends on the position of the initial

http://www.unc.edu/~liwa/
http://www.unc.edu/~liwa/
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contour.

Figure 3.8. Results of the proposed R LGR on X-Ray vessel images with different po-
sitions of initial contour. The red and yellow lines are the initial and final contours,
respectively.

Lastly, we have also compared our R LGR method with the LIF model on very noisy

medical images. In Figure 3.9, the top (the bottom) row shows the results for a noisy

ultrasound (MR, respectively) image. The third column shows the results of our R LGR

method, which are obviously more accurate than the results of the LIF model. These

images illustrate the perfomance of the proposed model to deal with IIH, discontinuity of

boundary and noise (Figure 3.9 for ultrasound image).

3.6 Conclusion

In this chapter, we have proposed a new method for segmentation image which utilizes the

advantage of global and local information of image to deal with intensity in-homogeneity.

Local information allows to deal with IIH, while global information provide more robustness

to noise and weak or blur edges as well as gaps. Our proposed model is inspired from the

Chan-Vese model [33]. Moreover, for stability of the curve and avoiding to be trapped into

many local minimum in case of noise, the smoothness of the evolving curve is derived from

a Gaussian filtering in the implementation as in [78]. The experimental results have shown
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Figure 3.9. Comparison of the proposed R LGR with the LIF method on UltraSound and
MR images (sources http://www.unc.edu/~liwa/ and http://www4.comp.polyu.edu.

hk/~cslzhang/RD/RD.htm). Original images and initial contours are in the first column.
The results of the LIF and our R LGR methods are in the second and third columns
respectively.

Table 3.1. Parameters used in Chapter 3

3.8 3.9
Figure 3.5 3.6

col. 1 col. 2 col. 3 col. 4 top bottom

σ 15 5 5 11 9 11 5 7

ζ 2.5 0.5 3 1.5 1.5 0.5 2 2

ϵ 1.5 0.5 1.5 1.5 1.5 1.5 1.5 1.5

λ 99 9 9 9 9 9 9 9

the efficiency of our R LGR method both on the non-homogeneous synthetic or real-world

images, especially for the medical images.

The contribution of this model

1. The proposed R LGR provides a better understanding of the contribution of the

local and global energy functional when considering region-based Active Contour

model for dealing with the intensity in-homogeneity which could affect the quality of

http://www.unc.edu/~liwa/
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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segmentation.

2. The proposed R LGR parameters λ and σ have been analyzed and recommendations

have been provided regarding the values that will yield high accuracy of boundary

extraction to non-homogeneous regions with/or without noise and gaps.

3. From the application field point of view, the R LGR can be used for medical images

such as the X-Ray, MR and UltraSound images, as well as synthetic and other real-

world images.

Weakness of the method

The resulting model provide accuracy segmentation in case of IIH and robustness to simul-

taneous noises and IIH. The main weakness to the proposed model is the dependence of

the initial contour, which is not suitable for an automation. Therefore, it is necessary that

the energy functional of the model is convex to provide reliable and accurate segmentation.

This is the goal of the next Chapter.
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4.1 Introduction and Related Works: Region-based

Convex Active Contour

In Chapter 2 and Chapter 3, we have seen the negative impact of the intensity in-homogeneity

(IIH) on the accuracy of the segmentation. Also the energy functional of the active con-

tours using traditional level set function is not convex. Therefore, the final contour is

dependent on the position of the initial contour. It means that it requires a suitable and

good position of the initial contour to have an accurate result of the final contour. There-

fore, even though these methods have gotten achievements in handling IIH, the results

are not reliable because they cannot guarantee the same results independently from initial

contour. The challenge is then to cope with the non-convexity of the energy functional.

This is also the objective of this chapter.

In a variational approach, the problem is to define a suitable energy functional to

cope with the objective of segmentation. On the other hand, to avoid local minimum

solution, i.e. the dependence with respect to the initial contour, it is necessary that the

energy functional is a convex function. Efforts have been effective in this direction since

the publication of the works on the convex region-based model of Chan et al. [35]. This

is a convexification of the Chan-Vese model. We will then refer to this model as the

convex Chan-Vese model. Inspired from this model, Bresson et al. [41] proposed another

convex model by modifying the regularized term (which accounts for smoothing of the

curve), into a weighted version one using gradient information of the image via an edge

detection function. The similarity of these two models relies on restricting the level set in

the interval [0,1]. Later, in the so called Fuzzy Energy-Based AC (FEBAC) [47], Krinidis

et al. proposed to use the membership function, which is naturally in the interval [0,1] to

obtain the independence of their model to initial condition when there is no regularization

of the curve. However, all these models are based on the assumption of approximately

piecewise-constant regions in image. Therefore, they fail when addressing IIH.

In our works, we assume piecewise-smooth approximation of regions in image and design

convex energy functions to handle IIH. As explained in Chapter 2 and Chapter 3, we tackle

IIH by using the local statistical information in a region-based active contours approach.

Moreover, we incorporate global information to improve the robustness with respect to

noises and weak/blur edges. In this chapter, we will focus more on dealing with convex

energies.

Here, we introduce three novel convex region-based active contour models to efficiently

tackle IIH while offering the globally optimal segmentation thanks to the convexity of

the associated energy functionals. Thus, the proposed models are convex which implies

that the accuracy and repeatability of the results are invariant with respect to the initial

position of the active contour. Furthermore, the energy function of the proposed models
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is minimized in a computationally efficient way using two fast algorithms: the first one

(Section 4.3 and Section 4.4) uses the Chambolle method [45] proposed for denoising and

adapted by Bresson et al. [41] for segmentation; the second (Section 4.5) is a fast numerical

scheme proposed by Song et al. [46] and developed by Krinidis et al. [47].

First, we will present related works on some existing state-of-the art convex active

contour models, namely the convex model of Chan et al. [35], the Bresson et al.’s model [41]

and the Krinidis et al.’s model [47]. Particularly, these models inspired our proposed

convex energy functions. Then, we present our proposed convex models which are: i)

The Convex Local Region-based Active Contour model (C LR); ii) The Convex Local and

Global Region-based Active Contour model (C LGR); iii) The Convex Local and Global

Region-based with Fuzzy Gaussian Distribution for Active Contour model (C LGFGD).

The major advantage of these models is that their energy functions are convex. Therefore,

the obtained minimizer of the energy function is global and invariant with respect to the

initial position of the active contour.

4.2 Related Works

All the following state-of-the-art models assume that image regions are characterized by

piecewise-constant intensity.

4.2.1 The convex Chan-Vese model

In [35], the so-called convex Chan-Vese model was proposed to make the region-based

Chan-Vese model proposed in [33] independent from the initial condition.

Let us first recall the Chan-Vese model. The Chan-Vese model assumes that image

regions are characterized by piecewise-constant intensity. The corresponding energy func-

tional is:

E(c1, c2, C) =

∫
Ωin

(I(x)− c1)
2dx+

∫
Ωout

(I(x)− c2)
2dx+ µ|C| (4.1)

where Ωin and Ωout are the regions inside and outside the contour C, respectively, con-

stants c1 and c2 are the average intensities inside and outside the contour Ωin and Ωout,

respectively, µ is a positive constant, and |C| is the length of C. The length term is used

to regularize the curve C, accounting for smoothing the curve.

Then, when fixing c1 and c2 and using a level set function ϕ as well as a smooth

Heaviside function Hϵ, the optimal curve can be obtained, by the following gradient flow:

∂ϕ

∂t
= δϵ(ϕ)

[
µ∇ ·

(
∇ϕ
|∇ϕ|

)
− (I − c1)

2 + (I − c2)
2

]
(4.2)
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where δ′ϵ = H ′
ϵ and ∇· is the divergence operator.

In order to eliminate the problem of non-convex function, Chan et al. [35] observed

that the steady state solution of the previous equation is the same for the steady state of a

simpler gradient flow which corresponds to an energy functional where the regularization

term is the total variation of the level set ϕ. Due to the non-uniqueness of level set

representation, Chan et al. demonstrated that by restricting ϕ on [0,1], the minimization

problem is convex, resulting in the so-called convex Chan-Vese model:

min
c1,c2
0≤f≤1

{
µ

∫
Ω

|∇f(x)|dx+
∫
Ω

f(x)(c1 − I(x))2dx+

∫
Ω

(1− f(x))(c2 − I(x))2dx

}
(4.3)

where x = (x1, x2) ∈ Ω is a pixel, f is the level set function which is restricted in [0,1],

|∇f(x)| =
√(

∂f
∂x1

)2
+
(
∂f
∂x2

)2
. Using the calculus variation [64], these constants are calcu-

lated by calculus variation by deriving the above energy functional with respect to c1 and

c2:

c1 =

∫
Ω
I(x)f(x)dx∫
Ω
f(x)dx

, (4.4)

c2 =

∫
Ω
I(x)(1− f(x))dx∫
Ω
(1− f(x))dx

(4.5)

Note that, when c1 and c2 are fixed, problem (4.3) is equivalent to the following problem:

min
0≤f≤1

F (f) = µ

∫
Ω

|∇f(x)|dx+
∫
Ω

f(x)er(x)dx (4.6)

where er(x) = (c1 − I(x))2 − (c2 − I(x))2. Then, the constraint 0 ≤ f ≤ 1 of problem (4.6)

is eliminated using the unconstrained problem according to the following claim [35].

Claim 4.1. [35] Let er(x) ∈ L∞(Ω), for c1, c2 ∈ R, µ ∈ R+, then the convex constrained

minimization problem (4.6) has the same set of minimizers as the following convex and

unconstrained minimization (UM) problem:

min
f

{
FUM(f) = µ

∫
Ω

|∇f(x)|dx+
∫
Ω

(f(x)er(x) + αψ(f(x)))dx

}
(4.7)

where ψ(z) = max{0, 2|z − 1
2
| − 1} is a penalty function to enforce the constraint provided

that the constant α is chosen large enough such as α > 1
2
∥er(x)∥L∞(Ω).

Then, the minimizer f ∗ of (4.7) can be determined by using the classical Euler-Lagrange

equations method:
∂FUM

∂f
= 0 (4.8)
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where ∂FUM

∂f
is the partial derivative of FUM with respect to f [35] as follows:

∂FUM

∂f
= −µ∇ ·

(
∇f
|∇f |

)
+ er(x) + αψ′(f) (4.9)

Then the gradient descent method is used to establish the evolution equation of the contour:

∂f

∂t
= −∂F

UM

∂f
(4.10)

The authors in [35] also proved that if c1 and c2 are fixed, and if f ∗ is a solution of

Equation (4.10), the set M = {x : f ∗(x) > αthres}, ∀αthres ∈ (0, 1), determines a global

minimizer of the convex Chan-Vese model. In other words, the segmentation result is

determined by thresholding the level set according to the set M .

4.2.2 The Bresson et al.’s model

Later, in [41], Bresson et al. modified the total variation regularization term (first term of

Equation (4.3)) of the convex Chan-Vese model, by incorporating gradient information via

an edge detection function to weight the total variation of the restricted level set function

f . The resulting energy function of this model is as follows:

min
c1,c2
0≤f≤1

{
µ

∫
Ω

g(x)|∇f(x)|dx+
∫
Ω

f(x)(c1 − I(x))2dx+

∫
Ω

(1− f(x))(c2 − I(x))2dx

}
(4.11)

where c1 and c2 are mentioned in Equation (4.3) and calculated by Equations (4.4) and (4.5)

for fixed f , while g is an edge indicator function so that it gets small value at object

boundaries. In [41], Bresson et al. used g(x) = 1
1+|∇I(x)|2 ,

The weighted regularization term behaves as the GAC. This encourages segmentation

where the edge detection function is minimum, resulting in more detailed segmentation

while maintaining smooth contours.

For fixed c1 and c2, problem (4.11) is transformed to the following problem by Claim 4.1:

min
f

{
µ

∫
Ω

g(x)|∇f(x)|dx+
∫
Ω

(f(x)er(x) + αψ(f(x)))dx

}
(4.12)

where er and ψ are defined in the convex Chan-Vese model.

Remark 4.1. For technical convenience, problem (4.12) above is the same as the following

problem:

min
f

{∫
Ω

g(x)|∇f(x)|dx+
∫
Ω

(
1

µ
f(x)er(x) +

α

µ
ψ(f(x)))dx

}
(4.13)
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Problem (4.13) can be solved by the Euler-Lagrange equation as in the case of the

convex Chan-Vese model. However, the convergence of solution is very slow because of

the regularization process of the first term (the total variation norm of f). To avoid this

problem, first, Bresson et al. [41] used a variable v to change problem (4.7) to the following

dual problem:

min
f,v

FB−dual(f, v) =

∫
Ω

g(x)|∇f(x)|dx+ 1

2θ

∫
Ω

(f(x)− v(x))2dx

+

∫
Ω

(
1

µ
v(x)er(x) +

α

µ
ψ(v(x)))dx (4.14)

where the parameter θ > 0 is chosen small enough so that f be close to v. Indeed, if θ is

small, 1
2θ

is large. Thus, |f − v| must be small to minimize FB−dual.

Remark 4.2. Obviously, one may observe that the dual function FB−dual(f, v) is convex

with respect to f and to v. Therefore, the global solution can be computed by separately

minimizing f and v and iterate until convergence.

Then, a fast algorithm for solving (4.14) is proposed using the fast algorithm introduced

by Chambolle for denoising [45]. This algorithm consists of two following minimization

problems:

1) Fixing f , v is the solution of the following problem:

min
v

{
1

2θ

∫
Ω

(f(x)− v(x))2dx+

∫
Ω

(
1

µ
er(x)v(x) +

α

µ
ψ(v(x)))dx

}
(4.15)

2) Fixing v, f is the minimizer of the problem:

min
f

{
TVg(f) +

1

2θ

∫
Ω

(f(x)− v(x))2dx

}
(4.16)

The above problems are solved by the following two propositions proven in [45, 41].

Proposition 4.1. [45, 41] The solution of Equation (4.15) is given by:

v(x) = min{max{f(x)− θ

µ
er(x), 0}, 1}. (4.17)

Proposition 4.2. [45, 41] The solution of Equation (4.16) is given by:

f = v − θdivp (4.18)
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where div is the divergence operator and p = (p1, p2) is given by Equation (4.19):

g(x)∇(θdivp− v)− |∇(θdivp− v)|p = 0 (4.19)

The previous equation can be solved by a fixed point method with the initial value p0 = (0, 0)

and iteration formula:

pn+1 =
pn + τ∇(divpn − v

θ
)

1 + τ
g(x)

|∇(divpn − v
θ
)|

(4.20)

where τ is the temporal step. For more details, please refer to [45, 41].

4.2.3 The Krinidis et al.’s model

The fuzziness in FEBAC [47] is inspired by the fuzzy c-means (FCM) method published

by Dunn in 1973 [86] and improved by Bezdek in 1981 [87].

In [47], Krinidis et al. hybridize the region-base active contour model with the soft

clustering technique namely the fuzzy c-means to take advantages of the two approaches.

Fuzzy clustering methods provide robust data clustering, while region-based active contours

are robust to noise, weak/blur edges and initialization. Generally, fuzzy c-means method

is a clustering technique that searches to cluster data points by iteratively computing a

fuzzy membership function and the mean value for each cluster. The fuzzy membership

function gives an indication of the degree of similarity between the data value at a location

and the centroid (prototype) of its cluster. Thus, a high membership value indicates that

the data value at a location is near the centroid for the cluster in consideration.

More specifically, a criterion is designed to fit a problem which may be formulated as

the sum-of-squared-error-criterion, to find the partition of n data points into c clusters

with respect to the fuzzy membership functions and the centroids. The criterion may be a

distance or a similarity measure between the centroid of a cluster and a data point in the

same cluster.

The problem is equivalent to finding the fuzzy membership uik of each data point xk
(k = 1, 2, ..., n) to a cluster wi (i = 1, 2, ..., c). A cluster k is defined by the cluster centroid

which is calculated as the mean of data points in the cluster. Each data point can be a

member in one or different clusters. This implies that each data point has a partial fuzzy

membership in multiple clusters. Therefore, the fuzzy membership of a data point in the

feature space is a continuous fuzzy membership functions.

As the fuzzy membership function is constrained to be in the interval [0, 1], and similar

to the two previously presented methods, it is taken into account as a pseudo-level set

function into the mixed model named Fuzzy Energy-Based Active Contour (FEBAC) for

segmentation [47]. This model is formulated as the minimization of the following energy
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function with respect to the curve C, constants c1 and c2 that approximate image intensity

inside and outside the contour C respectively, and the fuzzy membership function u:

F (C, c1, c2, u) = µ|C|+
∫
Ω

[u(x)]m
(
I(x)− c1)

2dx+

∫
Ω

[1− u(x)]m
(
I(x)− c2)

2dx (4.21)

where Ω is the set of pixel locations in the image domain, µ is a positive constant, |C| is
the length of the curve C, m ≥ 1 is a weighting exponent on each fuzzy membership and

determines the fuzziness of the fuzzy clustering. The higher m, the fuzzier the membership

assignment is. Here, there are only two clusters namely, the regions inside Ωin and outside

Ωout the contour with corresponding centroids c1 and c2 respectively. The fuzzy membership

of an image pixel I(x) at location x for cluster Ωin (inside the contour C) is u(x) ∈ [0, 1].

As a consequence, the fuzzy membership of the image pixel I(x) at location x for cluster

Ωout (outside the contour) is (1− u(x)). Then, one may observe that a pixel x belongs to

the cluster Ωin (inside the active contour with the centroid c1) if it attains high membership

value u(x). On the contrary, a pixel x belongs to the cluster Ωout (outside the contour or

background, with the centroid c2) if it attains high membership value 1− u(x).

Hence, problem (4.21) is to search for a minimal length of curve, while at the same

time defining a partition of data into two clusters which minimize the global differences

between the observed image intensity and the centroids, i.e. average intensity inside (or

outside) the contour. Indeed, the first term of Equation (4.21) is the regularity term which

accounts for smoothing of the curve C, while the two last terms in this equation are the

fidelity terms between the image I with c1 and c2, respectively.

The curve C is represented by the pseudo level-set formulation which is defined similarly

to the level set method [53], based on the membership values u. Hence, the curve C is

represented by the Lipschitz function u by: C = {x ∈ Ω : u(x) = 0.5}, inside(C) = {x ∈
Ω : u(x) > 0.5}, outside(C) = {x ∈ Ω : u(x) < 0.5}.

The result is given by alternate minimization.

For fixed u, minimizing the energy function F (C, c1, c2, u) in (4.21) with respect to c1
and c2 by using calculus of variations method [63, 64] gives the following formulas of c1
and c2:

c1 =

∫
Ω
[u(x)]mI(x)dx∫
Ω
[u(x)]mdx

(4.22)

c2 =

∫
Ω
[1− u(x)]mI(x)dx∫
Ω
[1− u(x)]mdx

(4.23)

Then, for fixed c1 and c2, the minimization of the energy function F (C, c1, c2, u) in (4.21)

with respect to u is done by calculus of variations method [63, 64], yielding the variable u
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as follows:

u(x) =
1

1 +
[
(I(x)−c1)2
(I(x)−c2)2

] 1
m−1

(4.24)

Note that the regularity term in (4.21) is calculated as follows:

|C| =
∑
i,j

√(
Qi+1,j −Qi,j

)2
+
(
Qi,j+1 −Qi,j

)2
(4.25)

where Qi,j = H(ui,j−0, 5), ui,j is the value of u at the (i, j) pixel and H(·) is the Heaviside
function. Thus, the length term can be computed knowing H(u− 0, 5). For more details,

please refer to [47].

For the sake of simplicity, without losing the generality, the above minimization (4.24)

has been considered without the length term (µ = 0). The authors have shown that the

result is independent from the initial contour in this case, µ = 0 (without regularization).

Indeed, one may observe that the energy functional (4.21) is convex with respect to u when

µ = 0.

For µ ̸= 0, the contour length is calculated by Equation (4.25), then the FEBAC energy

functional is not convex with respect to u. However, regularization constraint is useful to

segment images affected by noise and objects with week boundaries.

In the Convex Local and Global Region-based with Fuzzy Gaussian Distribution for

Active Contour model (C LGFGD) that we propose in Section 4.5, we developed the

contour length regularization term so that the C LGFGD energy functional is convex for

any µ.

The usual approach to solve a minimization of an energy function as (4.21) is to compute

its Euler-Lagrange equation and use the steepest descent method, then perform an implicit

iteration method. This method requires a smooth version of the Heaviside function and

some conditions to ensure numerical stability constrains such as the value of time step in

a PDE. To avoid these issues, the authors in [47] proposed an algorithm method for the

FEBAC model as follows:

1) Give an initial partition of the image, set u > 0.5 for one part and u < 0.5 for other.

2) Compute c1 using (4.22) and c2 using (4.23).

3) Assume that the value of the x0 pixel is I0 and the corresponding fuzzy membership for

this point is ux0 . The fuzzy membership ux0 changes to the new value unx0 by (4.24).

Denote by ∆F the difference between the new and old energies calculated at the new

and old fuzzy memberships of I0. The formula of ∆F is expressed as follows (see

Appendix C):

∆F = µ∆l +
s1∆um
s1 +∆um

(
I0 − c1

)2
+

s2∆vm
s2 +∆vm

(
I0 − c2

)2
(4.26)
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where ∆l is the change of the contour length, s1 =
∑

x∈Ω[u(x)]
m, s2 =

∑
x∈Ω[1−u(x)]m,

∆um = [unx0 ]
m − [ux0 ]

m, ∆vm = [1− unx0 ]
m − [1− ux0 ]

m.

If ∆F < 0, then change ux0 with unx0 , else keep the old (ux0) one.

4) Repeat Step 3 to compute the total energy F of the image.

5) Repeat Steps 2-4 until the total energy F remains unchanged.

The convex models of Chan et al. [35], Bresson et al. [41] and Krinidis et al. [47]

generally give the global solution for their segmentation problem (except the Krinidis et

al.’s model with regularization term). The results of these models published in [35, 41, 47]

proved that they can be applied successfully for image with homogeneous regions, noises

and weak boundaries. However, these models cannot handle the intensity in-homogeneity

because the global intensities c1 and c2 account for the intensity homogeneity of regions. It

is necessary to take into account local image information in the energy function to segment

image affected by intensity in-homogeneity.

In the next sections of the chapter, we will present three proposed convex models which

incorporate the local information with or without combining the global information in the

energy function to tackle the intensity in-homogeneity issue.

4.3 First Proposed Convex Model: A Convex Local

Region-based Active Contour Model for Image

Segmentation (C LR)

In this section, we will first describe the C LR model, then the minimization problem,

followed by the fast algorithm used to solve the minimization problem. Finally, we present

the investigation on the sensibility of model parameters as well as the experiments results

to evaluate the performance of the proposed convex model.

4.3.1 Description of the C LR model

Let us introduce the basic idea of this model. The proposed model is designed to:

i) accurately segment objects affected by IIH, noises or objects with smooth, blur or

discontinuous boundaries.

ii) provide the same and reliable results whatever the initialization.

In order to achieve objectives i), we adopt the region-based approach for its robustness

to noises and weak/blur boundaries. To cope with IIH, we simply take into account local
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intensity information into the region-based active contour models. Thus, instead of using

global and constant means, we use smooth functions that approximate the local intensities

inside and outside the contour.

In order to obtain accurate and stable result in case of noises, we need to regularize

the evolving curve by choosing appropriate length regularized term to obtain the minimal

distance while smoothing the curve to avoid the model to be trapped into local minimum.

This can be handled by adopting the weighted total variation regularization term of the

Bresson et al.’s model [41]. Indeed, this regularization term combines the accuracy of

an edge detection using gradient information with the smoothness constraint by the total

variation of the level set function restricted in [0,1]. By this way, this regularization function

is convex with respect to this level set function and similar with the GAC model.

Hence, as final segmentation, we can expect for a smooth contour of minimal length

which minimizes the fidelity (in terms of local intensity differences) between the original

image intensity and the associated piecewise-smooth approximation of the original image.

We will now give more details on the method.

Let Ω ⊂ R2 be a bounded image domain and I : Ω → R+ be a given image on this

domain.

As the model takes into account local information, local intensity mean is used as

descriptor and computed on a neighborhood using a non-negative kernel function K :

R2 → [0,+∞) with the following properties:

1. K(−u) = K(u),

2. K(u) ≥ K(v) if |u| ≤ |v|,

3.
∫
R2 K(x)dx = c, where c > 0.

It follows from property 3) that lim|u|→∞K(u) = 0. To comply with the above condi-

tions, the following Gaussian function is selected as a kernel:

Kσ(u) =
1√
2πσ

exp

(
−|u|2

2σ2

)
(4.27)

where σ is the standard deviation.

As explained above, to cope with the requirements i) and ii), the convex local region-

based active contour model is formulated as follows:

min
u1,u2
0≤f≤1

{
E(u1, u2, f) = µTVg(f) +

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx

}
(4.28)

where x is a pixel in Ω, u1 (and u2) is the smooth function that approximates local intensity

inside (outside, respectively) the contour, µ denotes a positive constant, f is a bounded
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level set function in [0, 1]. An illustration for u1 and u2 is presented in Figure 4.1 where

u1 is the average intensity of I(x) on the yellow region and u2 is the average intensity of

I(x) on the green region.

The energy function (4.28) contains three terms. The first one is the weighted total

variation regularization term, with TVg(f) defined as:

TVg(f) =

∫
Ω

g(x)|∇f(x)|dx. (4.29)

where |∇f(x)| =
√(

∂f
∂x1

)2
+
(
∂f
∂x2

)2
and g is the edge detection function: g(x) = 1

1+|∇I(x)|2 .

The second and third terms are the data fidelity terms. Here, ein (eout) represents the

local differences in intensity between the average intensity u1 (u2, respectively) and the

image I. These data fidelity terms are computed within the local Gaussian Kσ window :

ein(x, u1) =

∫
Ω
Kσ(x− y)(I(x)− u1(y))

2dy∫
Ω
Kσ(x− y)dy

(4.30)

eout(x, u2) =

∫
Ω
Kσ(x− y)(I(x)− u2(y))

2dy∫
Ω
Kσ(x− y)dy

(4.31)

where x and y are pixels. We can also see that these fidelity terms are the local variances

of image in this local Gaussian window.

Note that, if the pixel y is far from the pixel x, the Gaussian kernelKσ(x−y) approaches
zero. In particular, the values of this kernel are effectively zeros when |x − y| > 3σ [77].

Therefore, the energy:

Ex(u1, u2, f) = f(x)ein(x, u1) + (1− f(x))eout(x, u2) (4.32)

is dominated by only the pixels in the neighborhood {y : |x−y| ≤ 3σ}, and we can consider

Ex in a ball with a center x and radius 3σ.

Remark 4.3. Note that formulas (4.30) and (4.31) are not the same as the formulas of

local intensity fitting functions in the Local Binary Fitting (LBF) model [77]: First, the

local energy functions defined by ein(x) and eout(x) are computed with the contribution of

u1(y) and u2(y) and evaluated for y varying over a neighborhood of a point x (integral

with respect to y which is the variable of u1 and u2), while the local fitting energy of the

LBF model is evaluated with the contribution of original image I(y) (integral with respect

to y which is the variable of I). Furthermore, we divide the weight function Kσ(x− y) by∫
Ω
Kσ(x− y)dy, which can be considered as the area of the neighborhood of x.

To determine the finite values of ein and eout, we assume that u1 and u2 belong to the

space L2(Ω) which is a space of square-integrable functions on Ω.
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Figure 4.1. An illustration of u1 and u2.

As for the convex Chan-Vese model [35] and the Bresson et al.’s model [41], function

f in our proposed model, is a restricted level set function in [0,1] and plays the same

role as the level set function. However, comparing with the conventional level set method

where the contour is determined by the zero-level set, the contour in our C LR method

is determined by a threshold αthres, where αthres ∈ (0, 1). Theorem 4.1, formulated in

Section 4.3.3, allows us to select the above threshold as an arbitrary value from (0,1).

4.3.2 Convexity and Fast Minimization

First, we can see that our energy functional E in (4.28) is convex with respect to each

variable f , u1 and u2. This is an important property of the model used to obtain its

globally optimal solution. For more details, a proof is provided in Appendix D.

Since energy function E in (4.28) is convex, any minimizer of E is a global minimizer.

Here, minimization of the energy functional in (4.28) is performed in two steps by iteration

to find a globally optimal solution of the segmentation model. In the first step, for fixed

f , using the calculus of variation, u1 and u2 are computed using calculus of variation. In

the second step, for fixed u1 and u2, we adopt the Fast minimization method based on a

Dual Formulation of the Total Variation Norm in [45, 41] to find f . The details of these

steps are as follows.

Step 1: For fixed f , using variation calculus method [63, 64] for problem (4.28) with

respect to u1 and to u2, we obtain:

u1(y) =

∫
Ω
Kσ(x− y)I(x)f(x)dx∫
Ω
Kσ(x− y)f(x)dx

(4.33)

u2(y) =

∫
Ω
Kσ(x− y)I(x)(1− f(x))dx∫
Ω
Kσ(x− y)(1− f(x))dx

(4.34)

Step 2: For fixed u1 and u2, Equation (4.28) is equivalent to the following problem:

min
0≤f≤1

{
E(f) = µTVg(f) +

∫
Ω

f(x)eCLRr (x, u1, u2)dx

}
(4.35)
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Figure 4.2. Graph of the function ψ(z) = max{0, 2|z − 1
2
| − 1}.

where eCLRr (x, u1, u2) = ein(x, u1)− eout(x, u2), x ∈ Ω.

Then, we consider the following claim proposed by Chan et al. [35] to change the

constrained minimization problem (4.35) to an unconstrained minimization problem.

Claim 4.2. [35] Let eCLRr (x) ∈ L∞(Ω), for u1, u2 ∈ R, µ ∈ R+, then the convex constrained

minimization problem (4.35) has the same set of minimizers as the following convex and

unconstrained minimization problem:

min
f

{
F (f) = µTVg(f) +

∫
Ω

(f(x)eCLRr (x) + αψ(f(x)))dx

}
(4.36)

where ψ(z) = max{0, 2|z − 1
2
| − 1} is a penalty function provided that the constant α is

chosen large enough such that α > 1
2
∥eCLRr (x)∥L∞(Ω).

Note that, one can solve the minimization problem (4.36) by two different approaches.

In the first approach, one can use the PDE method as in Chan et al. [35] to solve the

problem by deriving its Euler-Lagrange equation and the gradient descent based method.

For that, its Euler-Lagrange equation is obtained with:

∂F

∂f
= 0 (4.37)

where
∂F

∂f
= −µ∇ ·

(
g
∇f
|∇f |

)
+ eCLRr (x) + αψ′(f) (4.38)

Then, the gradient descent method is used to obtain the following evolution equation of

the contour:
∂f

∂t
= −∂F

∂f
(4.39)
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For numerical implementation, an approximation of the term |∇f | in Equation (4.38)

is required by
√
|∇f |2 + ϵ, where ϵ is a small positive constant. This approximation is

necessary because |∇f | in the term TVg(f) is not differentiable with respect to f if |∇f | ≡
(0, 0). However, the iteration process depends on ϵ which slows down the speed to obtain

the steady-state solution. On the other hand, if ϵ is not small enough, the obtained solution

does not belong to [0, 1].

Unlike the first approach for solving the problem (4.36), the second approach uses a

convex regularization by a dual formulation of the Total Variation Norm algorithm which

is proposed by Chambolle [45] for denoising, and adapted by Bresson et al. [41] for segmen-

tation. Since the second method is computationally cheaper, we select this one to solve

our minimization problem (4.36).

Fast minimization for Dual Formulation

For technical convenience, we change Problem (4.36) to the following equivalent problem:

min
f

{
F (f) = TVg(f) +

∫
Ω

(
1

µ
f(x)eCLRr (x) +

α

µ
ψ(f(x)))dx

}
(4.40)

The dual problem of (4.40) is formulated by incorporating a variable v as follows:

min
f,v

{
F dual(f, v) = TVg(f) +

1

2θ

∫
Ω

(f − v)2dx+

∫
Ω

(
1

µ
eCLRr (x, u1, u2)v(x) +

α

µ
ψ(v(x)))dx

}
(4.41)

where θ > 0 must be chosen sufficiently small to force |f − v| to be close to 0. Indeed, if θ

is small, 1
2θ

is large. Thus, |f − v| must be small to minimize F dual.

Remark 4.4. We can see that the energy function F dual(f, v) in (4.41) is the same as the

energy function FB−dual(f, v) in (4.14) (in the convex model of Bresson et al. [41]). Thus,

energy functional (4.41) is convex with respect to f and to v. It follows that we can use the

iteration method to find the value of each of the variables f and v to minimize F dual(f, v).

Therefore, the two following minimization problems are considered to solve the mini-

mization problem (4.41).

1) For fixed f , we determine v as a solution of:

min
v

{
1

2θ

∫
Ω

(f(x)− v(x))2dx+

∫
Ω

(
1

µ
eCLRr (x, u1, u2)v(x) +

α

µ
ψ(v(x)))dx

}
(4.42)
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2) For fixed v, we search for f as a solution minimizing:

min
f

{
TVg(f) +

1

2θ

∫
Ω

(f(x)− v(x))2dx

}
(4.43)

The Equations (4.42) and (4.43) allow us to apply the following two propositions proven

in [45, 41].

Proposition 4.3. The solution of Equation (4.42) is given by:

v(x) = min{max{f(x)− θ

µ
eCLRr (x, u1, u2), 0}, 1}. (4.44)

Proposition 4.4. The solution of Equation (4.43) is given by:

f = v − θdivp (4.45)

where div is the divergence operator and p = (p1, p2) is given by the approximate solution

of Equation (4.46):

g(x)∇(θdivp− v)− |∇(θdivp− v)|p = 0 (4.46)

The previous equation can be solved by a fixed point method with the initial value p0 = (0, 0)

and iteration formula:

pn+1 =
pn + τ∇(divpn − v

θ
)

1 + τ
g(x)

|∇(divpn − v
θ
)|

(4.47)

where τ is the temporal step.

4.3.3 Algorithm for segmentation by the C LR model

To find the final segmentation with this model, an iterative approach is used with two steps

for each iteration. In the first one, we fix f and calculate the local intensities u1 and u2 by

using variation calculus method [64]. In the second step, we fix u1, u2, and determine f by

applying the algorithm of Chambolle [45] for denoising adapted by Bresson et al. [41] for

segmentation.

1) In the first step, by fixing f and using variation calculus, we obtain the following

formulas:

u1(y) =

∫
Ω
Kσ(x− y)I(x)f(x)dx∫
Ω
Kσ(x− y)f(x)dx

(4.48)

u2(y) =

∫
Ω
Kσ(x− y)I(x)(1− f(x))dx∫
Ω
Kσ(x− y)(1− f(x))dx

(4.49)
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It is easy to see that local intensities u1(y) and u2(y) are calculated by the integral on the

Gussian Kσ window, but expressed here by the integral on Ω. Indeed, since Kσ(x − y) is

small enough if |x−y| ≥ 3σ. So the functions under the integrals are small (as we mentioned

in section 4.3.1). It follows that the values of these integrals could be approximated with

the integrals on the neighborhood {x : |x − y| ≤ 3σ} of the pixel y, providing u1(y) and

u2(y) in this neighborhood of y. This is the reason why they are called local intensities.

Remark 4.5. We can rewrite the formulas (4.48) and (4.49) under the convolution for-

mulas as follows:

u1(y) =

∫
Ω
Kσ(x− y)I(x)f(x)dx∫
Ω
Kσ(x− y)f(x)dx

=

(
Kσ ∗ (If)

)
(y)

(Kσ ∗ f)(y)
(4.50)

u2(y) =

∫
Ω
Kσ(x− y)I(x)(1− f(x))dx∫
Ω
Kσ(x− y)(1− f(x))dx

=

(
Kσ ∗ (I(1− f))

)
(y)(

Kσ ∗ (1− f)
)
(y)

(4.51)

Computational cost for computing u2 in Equation (4.51) is saved as follows. First, we

notice that u2 in Equation (4.51) can be rewritten as follows:

u2(y) =

(
Kσ ∗ I

)
(y)−

(
Kσ ∗ (If)

)
(y)(

Kσ ∗ 1
)
(y)−

(
Kσ ∗ f

)
(y)

(4.52)

where 1 is the constant function with value 1. In the above expression of u2 (4.52), the

second terms in the numerator and the denominator as the same as the numerator and

the denominator in u1 (4.50), while the term Kσ ∗ I in the numerator and Kσ ∗ 1 in

the denominator do not depend on the evolution of the function f . Therefore, the two

convolutions Kσ ∗ I and Kσ ∗1 can be computed only once before the iteration. During the

iterations, only the two convolutions Kσ ∗ (If) and Kσ ∗ f are calculated for the evolution

of f .

2) In the second step, we fix u1 and u2, then the minimizer f is found as the solution

of the minimization problem (4.35) by applying Propositions 4.3 and 4.4.

Then, the global solution of our model is given by a threshold value αthres ∈ (0, 1)

determined by the following theorem proven in [35]:

Theorem 4.1. [35] If g(x) ∈ [0, 1] for ∀x ∈ Ω, and for fixed u1 and u2, and if f is a

minimizer of E(u1, u2, ·) in problem (4.28), then the function

1{x:f(x)≥αthres}(x), x ∈ Ω (4.53)

is a global minimizer of E(u1, u2, ·) for all αthres ∈ (0, 1), where 1{x:f(x)≥αthres}(x) is the

characteristic function of the set {x : f(x) ≥ αthres}. Its value is 0 if f(x) < αthres, and is

1 if f(x) ≥ αthres.
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Following the above theory, the fast segmentation algorithm for solving our C LR model

is summarized below.

Algorithm 4.1

Input I, g, θ, , τ, σ, µ, f and αthres
Repeat (*)

Calculate u1, u2 by (4.50) and (4.52)

Calculate ein, eout by (4.30)-(4.31)

Calculate eCLRr as in (4.35)

v = min{max{f − θ
µ
eCLRr , 0}, 1}

p0 := (0, 0)

Repeat (**)

pn+1 =
pn+τ∇

(
div(pn)− v

θ

)
1+ τ

g
|∇
(
div(pn)− v

θ

)
|

To pn+1 ≈ pn
f := v − θdiv(pn+1)

To convergence

f(x) = 0 if f(x) < αthres
f(x) = 1 if f(x) ≥ αthres

Output f

Paper [45] states that the convergence of pn is guaranteed for τ ≤ 1
8
. The stopping

criteria is max(|fk+1 − fk|, |vk+1 − vk|) ≤ ϵ, where fj and vj are values of f and v at the

jth iteration, j = k, k + 1, and ϵ is a given positive constant.

4.3.4 Sensibility of the parameters of the C LR model

The goal of this study is to investigate the effects of the parameters of the model on the

segmentation.

There are two main parameters which control the results of the C LR model: the

regularization parameter µ (in (4.28)) and the standard deviation σ of local Gaussian

window (in (4.27)).

4.3.4.1 Regularization parameter µ

Parameter µ is a positive constant to control the contour length or the scale of segmen-

tation. Large µ allows for detection of as many objects as possible at the finest level.

Decreasing µ tends to augment the length of the contour, resulting in segmentation of

coarser level by grouping of objects together.

On the other hand, the regularization term TVg(f) (first term in (4.28)) also includes

edge detector g which depends on the gradient of the image information. Thus, the edge
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(a) (b) (c) (d)

Figure 4.3. An application of the new region based convex active contour C LR on a
skin lesion image (image courtesy of Nikolay Metodiev Sirakov and Richard Selvaggi, The
Texas A&M University-Commerce). (a) Original image. (b)-(d) Results with µ = 1

3
.104,

103 and 1, respectively. (θ = τ = 0.1 and σ = 3).

Figure 4.4. Graph of Gaussian kernel.

detector allows for the segmentation of narrow details and fine scale while maintaining

smooth curves.

The effect of µ on the scale of the segmentation can be observed in Figure 4.3 which

is used for the detection of small objects such as lesion dots. For large values of µ it can

be seen as in Figure 4.3b that the C LR recognizes multiple small objects (lesion dots)

with sharp contour. In contrast, smaller value of µ leads to the segmentation of objects

at coarser level, grouping many objects into one larger region with smoothly changing

contour, as it is shown in Figures 4.3c and 4.3d. Since the dots are small objects, we need

to give a high weight for the regularization term. Hence, µ should be large.

4.3.4.2 Standard deviation σ of the local Gaussian window Kσ

In what concerns the parameter σ, the size of the Gaussian kernel window Kσ is defined by

(4σ+1)× (4σ+1). The local intensities u1 and u2 are calculated by the average intensities
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(a) Original image (b) convex Chan-Vese (c) σ = 2 (d) σ = 7 (e) σ = 13

Figure 4.5. Results of the C LR model (c)-(e) on a non-homogeneous synthetic image
with different values of σ.

in the neighborhood inside and outside the evolution contour with weights provided from

the Gaussian kernel Kσ. Figure 4.4 shows how the graph of the Gaussian changes when

σ varies. One may observe that if σ is small (blue line), the value of Kσ(x − y) at pixel

x closed to y is different from its value at pixel x further from y. This makes the model

sensitive to noise. On the contrary, if σ is large (red line), the value of Kσ(x−y) at a pixel

x closed to y is similar with its value at a pixel x farther from y. If the value of σ is large

enough such that the Gaussian window contains the whole image, the local information

will become the global information. We may observe the sensibility of σ for dealing with

intensity in-homogeneity in Figure 4.5. If σ is small (Figure 4.5c), the window used for the

kernel is small. Thus a lot of local information is missed and artifacts are captured. For

large σ (Figure 4.5e), the local information is used as global information and the result

is rather similar to the one from the convex Chan-Vese [35] (in Figure 4.5b) which uses

only global information. On the other hand, the result in Figure 4.5d is accurate with a

suitable value of σ.

To summarize, small value of σ makes the model sensitive to noise, while a high value

of σ makes the model more robust to noise but this could not handle IIH. Therefore, to

deal with IIH and the robustness to noise, σ should be in a bounded interval of values

(neither too large or too small).

More results of the C LR model with varying values of σ can be found in Appendix E.

4.3.5 Experimental results and performance evaluation

To evaluate the performance of our C LR method, several experiments have been carried

out on images with intensity in-homogeneity. Examples are shown here for some synthetic

and MR as well as X-Ray images. A comparative evaluation has been performed to demon-

strate the advantages our convex region-based model over some existing state-of-the-art

convex models such as the convex Chan-Vese [35] and the LBF [77] models. Note that the

LBF model is the region-based model which only uses local intensity information in the

energy function as our proposed model C LR, while the convex Chan-Vese only uses global

intensity information. The code of the LBF model can be downloaded on the page of the
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(a) (b) (c)

Figure 4.6. Test on a homogeneous synthetic image: (a) Original image; (b) Result of
the convex Chan-Vese model; (c) Result of the C LR model.

(a) (b) (c)

(d) (e) (f)

Figure 4.7. Test on two synthetic image: First column: Initial contour; Second column:
Result of the convex Chan-Vese model; Third column: Result of the C LR model.

author (http://www. engr.uconn.edu/∼cmli/)

We use the MATLAB r2008a to implement our algorithm. The program was run on a

Dell (OptiPlex 360), which has Intel Core 2 Duo E7500 @ 2.93GHz and 4GB RAM. In our

numerical experiments, we use the following values of parameters: τ = 0.01, αthres = 0.5.

The other parameters are specified in Table 4.3.

Local intensity information versus local intensity information for the intensity
in-homogeneity

The goal of this test is to show the advantage of using local information instead of global

information to accurately segment image with IIH.

First, we compare the C LR and the convex Chan-Vese models on a synthetic image

which has some homogeneous objects with different intensities in Figure 4.6. One may see

that the convex Chan-Vese model detects only three objects with intensities (Figure 4.6b)
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(a) initial contour (b) 3rd iteration (c) 6th iteration (d) 23rd iteration

(e) initial contour (f) 3rd iteration (g) 6th iteration (h) 23rd iteration

Figure 4.8. The evolution of the evolving curve by the convex Chan-Vese model (first
row) and the C LR model (second row) for Figure 4.7d.

very different from intensity of background. The three other objects are missed because

they have quite similar intensities with the background. This is due to the fact that the

convex Chan-Vese model approximates the original image by a piecewise-constant version

given by only two global intensities c1 and c2 in the energy function. Thus, in this case, the

missed objects are considered as background in the result of the convex Chan-Vese model

because of their similar intensities with the true background, while the other objects are

considered as objects by this model because of the clear difference of their intensities with

the background. Contrary to the convex Chan-Vese model, the C LR recognizes all the

objects by using the local intensities instead of global intensities (Figure 4.6c). Indeed, all

the objects are considered as “one” object with non-constant intensities. However, since

the edge detector in the regularization term helps enhancing the detection at fine scale

with an appropriate value of µ, this allows the detection of all these objects.

Figure 4.7 reports the results of the C LR and the convex Chan-Vese models on two

synthetic images where one of them (Figure 4.7a) has two homogeneous objects with similar

intensities, while Figure 4.7d is an image with non-homogeneous object and background.

As it can be seen in Figure (4.7b) and Figure (4.7c), the final contours of the C LR and

the convex Chan-Vese stop at object boundaries. However, for the image with intensity

in-homogeneity in Figure (4.7d), the convex Chan-Vese model cannot evolve the initial

contour to the true object boundary, while the C LR gives the accurate result. We also

present the evolution of the contour of this test image (Figure (4.7d)) versus the number

of iterations in Figure 4.8.
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Figure 4.9. Test of the C LR and the LBF models on blood X-ray (source http://

www.unc.edu/~liwa/) and heart MR images (sources http://www4.comp.polyu.edu.hk/

~cslzhang/RD/RD.htm and http://www.unc.edu/~liwa/). First row: Initial contour;
Second row: Result of the LBF model; Third row: Result of the C LR model.

Convexity versus Non-Convexity

The objective of this study is to compare the performance of our convex model, namely the

C LR with the non-convex model, namely the LBF, both of them are local region-based

AC model.

We achieve the comparison of these models on a blood X-Ray image and three heart

MR images in Figure 4.9. These medical images are affected by in-homogeneity. Since,

both of the two models use the local information in the energy function, they can efficiently

apply to non-homogeneous images. However, while all the results of the C LR are quite

accurate, those of the LBF are only quite good for two heart MR images (3rd and 4th

columns). The reason why the LBF failed may be due to the unsuitability of the position

of the initial contour. In Figure 4.10, we report the results of the C LR and the LBF

models for some positions of the initial contour. We can see that certain initial contours

lead to the accurate result by the LBF model but not for all of the initial contours. On the

contrary, the C LR model gives the same and accurate results for all of the initial contours

(position and size and so forth). Moreover, we show in Figure 4.11 the results of the C LR

model for other images with different positions of the initial contour to see that the C LR

model is not dependent on the initial contour since the energy function of the model is

convex.

http://www.unc.edu/~liwa/
http://www.unc.edu/~liwa/
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www.unc.edu/~liwa/


4.3. FIRST PROPOSED CONVEX MODEL: A CONVEX LOCAL REGION-BASED
ACTIVE CONTOUR MODEL FOR IMAGE SEGMENTATION (C LR) 93

Figure 4.10. Comparison of the C LR and the LBF models for different initial contours
on a heart MR image (source http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm).
First row: Result of the LBF model; Second row: Result of the C LR model. Red line:
Initial contour; Yellow line: Final contour.

Figure 4.11. Result of the C LR model for different initial contours on a synthetic image
and a blood vessel X-ray image. Red line: Initial contour; Yellow line: Final contour.

Robustness to weak/ blur edges of the C LR model

Thanks to the regularization term and local information, the proposed C LR model success

in segmenting not only objects with intensity in-homogeneity (see above) but also objects

with smooth and blur boundaries. This can be observed in the Blood vessel X-ray images

in Figure 4.9 and Figure 4.11 where vessel boundaries are very blur or in some parts of the

heart image in Figure 4.12.

Accuracy of the C LR model

To evaluate quantitatively the accuracy of the proposed model, results of this model are

compared with the ground truth established by our expert. In Figure 4.12, an example is

reported for the heart MR images. One may observe that the ventricle boundaries of the

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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Figure 4.12. Comparison of the result of the C LR model with the ground truth on two
heart MR images (sources http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm and
http://www.unc.edu/~liwa/). First column: Original image; Second column: Ground
truth; Third column: Result of the C LR model.

Table 4.1. DSC values for third column of Figure 4.12

Row 1 Row 2

left part 0.93 0.93
DSC

right part 0.98 0.97

heart are accurately extracted, as compared with the contour segmented by our expert.

Moreover, to quantitatively evaluate the accuracy of our results, we use Dice Similarity

Coefficient (DSC) [88], which is defined as:

DSC =
2N(S1 ∩ S2)

N(S1) +N(S2)
(4.54)

where S1 and S2 represent the obtained segmentation and the ground truth, respectively,

N(·) indicates the numbers of pixels in the enclosed set. The closer the DSC value is to

1, the better the segmentation is. Table 4.1 shows the DSC values of our C LR method.

From this table, our results are very close to the ground truth established by expert, since

the DSC values are very close to 1.

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www.unc.edu/~liwa/
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Figure 4.13. The accurate segmentation results of the LBF (top) and the C LR models
(bottom). Red line: Initial contour; Yellow line: Final contour.

Table 4.2. Comparison of the CPU time (in second) and the number of iterations (NoI)
between the C LR and the LBF model for Figure 4.13

Column 1 Column 2 Column 3

Time(s) NoI Time(s) NoI Time(s) NoI

The LBF model 0.21 18 1.03 160 2.84 160

The C LR model 0.12 8 0.20 18 0.58 15

Table 4.3. Parameters of the C LR model in Section 4.3.5

4.7 4.9
Figure 4.6

Row 1 Row 2 Column 1 Column 2 Column 3 Column 4

µ 1 1 1 1 10 10 1

θ 0.01 0.01 0.01 0.01 0.1 0.1 0.01

σ 3 7 7 5 13 13 7

Performance in terms of computational time

Finally, we have made a comparative study for the CPU time between the C LR and the

LBF model using the same images and segmented results. As shown in Figure 4.13 and

Table 4.2, the C LR method not only is faster but also takes less numbers of iterations

than the LBF model.
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4.3.6 Conclusion

In this section, we have proposed a novel region-based convex active contour model (CLR-

GAC) using local intensity information to cope with the intensity in-homogeneity. Unlike

existing state-of-the-art local region-based active contour models designed for addressing

the intensity in-homogeneity, such as the LBF, we use the bounded level set function

instead of the classical level set function to represent the contour and make the energy

function convex.

More precisely, to design a convex energy functional, we hybridize the regularization

term as in the Bresson et al.’s model with the local intensity information from a region-

based active contour model. The mean of intensity is used to characterize the region, while

the regularization term is the weighted total variation of a bounded level set function (in

[0,1]). By restricting the level function in [0,1] and using the total variation regularization,

the model is convex, i.e. the segmentation results are the same even if the initial contour

starts from different image positions. This makes the accuracy of segmentation invariant

with respect to the position of the active contour. It means that every time we apply

the C LR method anywhere on one image, the C LR model produces the same result and

accuracy. These features make the C LR model reliable and user friendly and suitable for

automation. Furthermore, the implementation of our model is performed using the dual

formulation and the fast iterative algorithm of Chambolle [45] for denoising and developed

by Bresson et al. [41] for segmentation.

The list of the main contribution of Section 4.3 is as follows:

1. We have developed a novel local region-based convex energy functional (4.28) with

respect to the bounded level set function f used to determine the active contour;

2. The combination of local intensity image information with the convex regularization

term allows for addressing the intensity in-homogeneity while guaranteeing accurate

and reliable results independently from the initial contours;

3. The region-based active contour using local information allows for robustness with

respect to noises, weak/blur edges and gaps.

4. The C LR parameters µ and σ have been studied and recommendations have been

given regarding the values that will provide high accuracy of boundary extraction to

non-homogeneous regions with/or without noise.

The advantages of our paper versus the other convex methods and active contours [35,

41, 77] are as follows:

a) Higher accuracy of extraction of multiple non-homogeneous regions;
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b) The obtained results are invariant with respect to the position of the initial curve

which is guaranteed by the convexity of the model;

c) Computationally fast numerical implementation.

d) From the application field point of view, the C LGR can be used for medical images

such as the X-Ray and the MR images, as well as synthetic and natural images such

as those used for dots of skin lesion detection.

4.4 Second Proposed Convex Model: A Convex

Local and Global Region-based Geodesic Active

Contour for Image Segmentation (C LGR)

The C LR model proposed previously is a convex model that takes into account local inten-

sity information into a region-based active contour model to deal with IIH. In this section,

we propose to extend the C LR model by incorporating global intensity energies in addition

to the local intensity energies, in order to benefit from the advantages offered by the two

local and global energies: the model can efficiently deal with the intensity in-homogeneity,

while offering improved performance in terms of robustness when segmenting noisy images

or objects with weak/blur boundaries. Furthermore, since the energy functional is convex,

it offers reliable segmentation results. Hereafter, we will refer to the proposed model in

this section as the C LGR (convex local and global region-based geodesic active contour).

Like the other approaches, such as the LGIF [79] and the LCV [80] models (please see

Section 2.2.2) which combine global and local information for dealing with IIH, the robust-

ness of segmentation to noises and initialization is improved compared to the region-based

model which only takes into account local information. However, these models are not

convex. Thus, they cannot provide reliable results.

First, we will describe the C LGR model, then present the convex minimization by

dual minimization problem, followed by the algorithm used to solve the C LGR problem.

Afterwards, we will present the study on the sensibility of model parameters as well as the

experiments results to evaluate the performance of the proposed convex model.

4.4.1 Description of the C LGR model

Let Ω ⊂ R2 be a bounded image domain and I : Ω → R+ be a given image on this domain.

The objective is always to cope with IIH but the model should offers better robustness

to noises and weak/blur edges, while being independent of the initialization.

The region-based contour model is considered. In order to improve the robustness to

noises and weak/blur object boundaries, we take into account not only the local intensity
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(a) (b)

Figure 4.14. Illustration for c1, c2, u1 and u2 of the C LGR model.

information for dealing with IIH but also the global intensity information in the region-

based approach for its robustness to noises and weak object boundaries. Here, the regions

are described locally or globally by the intensity means. So, to take into account the global

intensity information, we assume that the image I consists of two regions inside (object) and

outside (background) the contour of approximately piecewise-constant intensities of distinct

values c1 and c2. On the other hand, local intensity information is taken into account by

smooth functions that approximate the intensities inside and outside the contour on a local

neighborhood using a window. This results in a piecewise-smooth approximation of the

image I.

In addition, to obtain a convex model, we adopt the smoothness regularization of the

Bresson et al.’s model [41] as in the proposed C LR model (see Section 4.3).

The energy function of the C LGR model is formulated as follows:

min
u1,u2,c1,c2

0≤f≤1

E(u1, u2, c1, c2, f) = µ

∫
Ω

g(x)|∇f(x)|dx+ λEL(u1, u2, f) + λ2EG(c1, c2, f)

(4.55)

where x is a pixel in Ω, c1 and c2 are constants to approximate global intensities inside and

outside the contour respectively, while u1 and u2 are smooth functions that approximate

the local intensities inside and outside the contour respectively in a local neighborhood

which is the Gaussian kernel Kσ window as in the C LR (Section 4.3), parameters µ, λ, λ2
are positive constants, f is a bounded level set function in [0, 1], and the function g is

the edge detection function: g(x) = 1
1+|∇I(x)|2 . In Figure 4.14, an illustration for c1, c2, u1

and u2 is presented. In Figure 4.14a, c1 and c2 are the average intensities of I(x) on the

brown and white regions, respectively, while u1 and u2 are the average intensities of I(x)

respectively on the yellow and green regions in Figure 4.14b.

The energy function (4.55) contains three terms. The first one is the weighed total

variation regularization term, with TVg(f) defined in (4.28). The second and third terms

are the local (EL) and global (EG) data fidelity terms respectively.
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EL is the local energy function which depends on the local intensities u1, u2, and the

function f . Correspondingly, EG is the global energy function which depends on the global

intensities c1, c2, and f . These local and global energy functions are defined as follows:

EL =

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx (4.56)

EG =

∫
Ω

f(x)(I(x)− c1)
2dx+

∫
Ω

(1− f(x))(I(x)− c2)
2dx (4.57)

where ein (eout) represents the fidelity term between u1 (u2, respectively) and the image I:

ein(x, u1) =

∫
Ω
Kσ(x− y)(I(x)− u1(y))

2dy∫
Ω
Kσ(x− y)dy

(4.58)

eout(x, u2) =

∫
Ω
Kσ(x− y)(I(x)− u2(y))

2dy∫
Ω
Kσ(x− y)dy

(4.59)

where y is a pixel in Ω, Kσ is a Gaussian kernel with a standard deviation σ.

Hence, as final segmentation, we expect for a smooth contour of minimal length which

minimizes the fidelity in terms of local (and global) intensity differences between the origi-

nal image intensity and the associated piecewise-smooth (piecewise-constant respectively)

approximation of the original image.

Remark 4.6. One may observe that EL and EG are the fidelity components of the C LR

and the convex Chan-Vese models, respectively. Therefore, the C LGR model is a combi-

nation between the C LR and the convex Chan-Vese models. Moreover, because µ, λ and

λ2 are positive and because of the convexity of the C LR and the convex Chan-Vese models,

the energy function of the C LGR model is convex with respect to each variable f, c1, c2, u1
and u2.

4.4.2 Convex minimization problem

As it has been stated in Remark 4.6, the energy functional E(u1, u2, c1, c2, f) in (4.55) is

convex with respect to u1, u2, c1, c2 and f . This implies that we can minimize the energy

function (4.55) with respect to f , to u1, to u2, to c1 and to c2, separately.

The minimums with respect to u1, u2, c1 and c2 are calculated by the calculus of

variations [64], while the minimum f is found by minimizing a dual minimization problem

as presented in the next section.

4.4.2.1 Minimization

As the energy function is convex, we can perform minimization of the model (4.55) in two

steps and iterate to obtain the globally optimal final curve.
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Step 1: For fixed f, by using variation calculus [64] for problem (4.55) with respect to

c1, to c2, to u1 and to u2, we obtain:

c1 =

∫
Ω
f(x)I(x)dx∫
Ω
f(x)dx

(4.60)

c2 =

∫
Ω
(1− f(x))I(x)dx∫
Ω
(1− f(x))dx

(4.61)

u1(y) =

∫
Ω
Kσ(x− y)I(x)f(x)dx∫
Ω
Kσ(x− y)f(x)dx

(4.62)

u2(y) =

∫
Ω
Kσ(x− y)I(x)(1− f(x))dx∫
Ω
Kσ(x− y)(1− f(x))dx

(4.63)

When u1 and u2 are fixed, Equation (4.55) is equivalent to the following problem:

min
0≤f≤1

{
E(f) = µTVg(f) +

∫
Ω

f(x)eCLGRr (x)dx

}
(4.64)

where

eCLGRr (x) = λe1r(x) + λ2e
2
r(x),

e1r(x) = ein(x, u1)− eout(x, u2), (4.65)

e2r(x) = (I(x)− c1)
2 − (I(x)− c2)

2, x ∈ Ω

Like the C LR, we consider the following claim proposed by Chan et al. [35] to change

the constrained minimization problem (4.64) to unconstrained minimization problem.

Claim 4.3. Let eCLGRr (x) ∈ L∞(Ω), for u1, u2 ∈ R, µ ∈ R+, then the convex constrained

minimization problem (4.64) has the same set of minimizers as the following convex and

unconstrained minimization problem:

min
f

{
F (f) = µTVg(f) +

∫
Ω

(f(x)eCLGRr (x) + αψ(f(x)))dx

}
(4.66)

where ψ(z) = max{0, 2|z − 1
2
| − 1} is a penalty function provided that the constant α is

chosen large enough such that α > 1
2
∥eCLGRr (x)∥L∞(Ω).

One can observe that Equation (4.66) is similar to Equation (4.36) (in the C LR model).

Using the PDE method to solve (4.66) has the same inconvenience as we mentioned in Sec-

tion 4.3.2. That is why we apply the algorithm proposed by Chambolle [45] for denoising,

and adapted by Bresson et al. [41] for segmentation to solve (4.66) since its computationally

cheaper.
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4.4.2.2 Dual problem

For technical convenience, Problem (4.66) is rewritten as the following equivalent problem:

min
f

{
F (f) = TVg(f) +

∫
Ω

(
1

µ
f(x)eCLGRr (x) +

α

µ
ψ(f(x)))dx

}
(4.67)

The dual problem of (4.67) is obtained by incorporating a variable v as follows:

min
f,v

{
F dual(f, v) = TVg(f) +

1

2θ

∫
Ω

(f − v)2dx+

∫
Ω

(
1

µ
eCLGRr (x)v(x) +

α

µ
ψ(v(x)))dx

}
(4.68)

where θ > 0 must be chosen sufficiently small to force |f − v| to be close to 0.

Like the dual problem (4.41) of the C LR model, Equation (4.68) is convex with respect

to f and to v which implies that we can use an iteration method to find the value of each of

the variables f and v to minimize the dual function. Therefore, the following minimization

problems are considered:

1) For fixed f , v is a solution of:

min
v

{
1

2θ

∫
Ω

(f(x)− v(x))2dx+

∫
Ω

(
1

µ
eCLGRr (x)v(x) +

α

µ
ψ(v(x)))dx

}
(4.69)

2) For fixed v, we search for f as a solution minimizing:

min
f

{
TVg(f) +

1

2θ

∫
Ω

(f(x)− v(x))2dx

}
(4.70)

The Equations (4.69) and (4.70) allow for applying the following two propositions

proven in [45, 41].

Proposition 4.5. The solution of Equation (4.69) is given by:

v(x) = min{max{f(x)− θ

µ
eCLGRr (x), 0}, 1}. (4.71)

Proposition 4.6. The solution of Equation (4.70) is given by:

f = v − θdivp (4.72)

where div is the divergence operator and p = (p1, p2) is given by the approximate solution

of Equation (4.73):

g(x)∇(θdivp− v)− |∇(θdivp− v)|p = 0 (4.73)
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The previous equation can be solved by a fixed point method with the initial value p0 = (0, 0)

and iteration formula:

pn+1 =
pn + τ∇(divpn − v

θ
)

1 + τ
g(x)

|∇(divpn − v
θ
)|

(4.74)

where τ is the temporal step.

4.4.3 Algorithm of segmentation by the C LGR model

To solve the C LGR model, an iterative approach is used with two steps for each itera-

tion. In the first one, we fix f and calculate u1, u2, c1 and c2 by using variation calculus

method [64]. In the second step, we fix u1, u2, c1, c2 and determine f by applying the

algorithm of Chambolle [45] for denoising adapted by Bresson et al. [41] for segmentation.

1) In the first step, by fixing f and using variation calculus, we obtain the following

formulas:

c1 =

∫
Ω
f(x)I(x)dx∫
Ω
f(x)dx

(4.75)

c2 =

∫
Ω
(1− f(x))I(x)dx∫
Ω
(1− f(x))dx

(4.76)

u1(y) =

∫
Ω
Kσ(x− y)I(x)f(x)dx∫
Ω
Kσ(x− y)f(x)dx

(4.77)

u2(y) =

∫
Ω
Kσ(x− y)I(x)(1− f(x))dx∫
Ω
Kσ(x− y)(1− f(x))dx

(4.78)

As mentioned above, the value of Kσ(x− y) is close to 0 if x is far from y. Therefore,

the values of local intensities u1(y) and u2(y) are dominated by the values I(x) and f(x)

when the pixels x are near the pixel y, e.g., when the pixels x are within the neighborhood

of the pixel y determined by Kσ. Unlike u1 and u2, c1 and c2 are calculated without any

special point. Thus, c1 and c2 are called by global intensities.

Remark 4.7. As in Remark 4.5 in Section 4.3.3 for the C LR model, we can rewrite the

formulas of u1 and u2 in (4.77) and (4.78) respectively and under the same convolution

formulas and save computation time for u2.

2) In the second step, we fix u1 and u2, then the minimizer f is found as the solution

of the minimization problem (4.64) applying Propositions 4.5 and 4.6.

Then, the global solution of the C LGR model is given by a threshold value αthres ∈
(0, 1) determined by the Theorem 4.1 in Section 4.3.3.

Therefore, the fast segmentation algorithm for solving the C LGR model is summarized

below.
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Algorithm 4.2

Input I, g, θ, µ, λ, λ2, τ, σ, f and αthres

Repeat (*)

Calculate c1, c2, u1 and u2 by (4.75) (4.76) (4.77) and (4.78)

Calculate ein, eout by (4.58)-(4.59)

Calculate e1r, e
2
r, e

CLGR
r as in (4.64)

v = min{max{f − θ
µ
eCLGRr , 0}, 1}

p0 := (0, 0)

Repeat (**)

pn+1 =
pn+τ∇

(
div(pn)− v

θ

)
1+ τ

g
|∇
(
div(pn)− v

θ

)
|

To pn+1 ≈ pn

f := v − θdiv(pn+1)

To convergence

f(x) = 0 if f(x) < αthres

f(x) = 1 if f(x) ≥ αthres

Output f

Paper [45] states that the convergence of pn is guaranteed for τ ≤ 1
8
. The stopping

criteria is max(|fk+1 − fk|, |vk+1 − vk|) ≤ ϵ, where fj and vj are values of f and v at the

jth iteration, j = k, k + 1, and ϵ is a given positive constant.

4.4.4 Sensibility of the parameters of the C LGR

The objective of this study is to investigate the effects of the parameters of the model

on the segmentation results. There are four parameters in our C LGR method: λ (local

coefficient), λ2 (global coefficient), µ (regularization coefficient) and σ.

4.4.4.1 Local and Global trade-off via λ and λ2 to account for intensity
in-homogeneity

The couple of parameters λ and λ2 control the trade-off between the local term and the

global term. When the intensity in-homogeneity is evident, the local component should be

dominant to accurately locate object boundaries and the value of λ should be greater than

that of λ2. Generally, we fix λ = 1 and adapt the value of λ2 accordingly. In Figure 4.15,

we test the C LGR model on a synthetic image with intensity in-homogeneity, for variable

values of λ2 being 0.01, 1 and 10. We fix µ = 1 and λ = 1. We can see that when

λ2 increases (Figure 4.15c and Figure 4.15d), the global term is more dominant, and the

object is not well detected.
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(a) (b) (c) (d)

Figure 4.15. Result of the C LGR model on a non-homogeneous synthetic image with
some different values of λ2. (a) Original image. (b)-(d) Results with λ2 = 0.01, 1 and 10,
respectively.

(a) (b)

(c) (d) (e)

Figure 4.16. Experiment for a synthetic image. (a) Original image. (b) Version noise of
(a). (c) Result of the C LGR for noisy image (b) with σ = 3 and λ2 = 0.01. (d) Result
of the C LGR for noisy image (b) with σ = 9 and λ2 = 0.01, (e) Result of the C LGR for
noisy image (b) with σ = 3 and λ2 = 10.

4.4.4.2 Regularization parameter µ

The parameter µ controls the effect of contour length or the scale of segmentation. The

role of this parameter is the same as µ in the C LR model: the larger µ, the higher the

weight is, resulting in smaller length of the contour or detection of as many objects as

possible at the finer level of the segmentation. Conversely, small µ allows for segmentation

of a coarse level by grouping of objects together.
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4.4.4.3 Standard deviation σ of the local Gaussian window Kσ

Parameter σ has the role as for the as for the C LR model analyzed in Section 4.3.4.2,

since it is also used to define local windows in which the smooth intensities u1 and u2 are

estimated. Hence, a too small value of σ may result in missed local information and hence

fail to deal with IIH, while a too high value of σ tends to approximate local intensity to

global intensity.

Moreover, σ has also the influence on noises. Thus, in the C LGR model, this parameter

is particularly useful when segmenting image with high noise. Small value of σ makes the

model sensitive to noise, while a high value of σ makes the model more robust to noise.

Therefore, to deal with IIH and the robustness to noise, σ should be neither too large or

too small.

In the other hand, as previously mentioned, noise influence can be reduced by the global

term (third term of Equation (4.55)) in the C LGR model by selecting high value of λ2
with respect to λ. However, in case of severe noisy image with intensity in-homogeneity,

normally parameter λ2 should be small with respect to λ to segment objects with intensity

in-homogeneity. This in turn leads to reducing the influence of the global term, thus

making the effect of noise visible. In this case, a reasonably large value of σ should be

chosen to reduce the noise influence. We can see that a trade-off on the value of σ should

be made to deal with the robustness to noise (high σ) and IIH (σ should not be too high or

too small). This means that without IIH, the model can allows better robustness to noise

(high σ).

To summarize, in case of severe image noise, dealing with IIH can be achieved by

choosing λ2 smaller than λ and σ should be in a bounded interval of values.

We can see in Figure 4.16 that the result of segmentation in case of noise is better

in the case of high value of σ (σ = 9) and λ2 = 0.01 (see Figure 4.16d) compared with

the case of smaller σ and the same global coefficient λ2 = 0.01 (see Figure 4.16c) where

some contours which are not boundaries of objects are detected, due to the effect of noise.

On the other hand, if we augment the value of λ2 (λ2 = 10) to have dominant the global

term, the accurate result in case of noise is also obtained although σ is small (σ = 3, see

Figure 4.16e). Note that µ = 1 and λ = 1 are used for all experiments in this figure.

More experiments for a comparison study of the results with those of the C LR model

with respect to varying values of σ can be found in Appendix E.

4.4.5 Experimental results

In this section, to evaluate the performance of proposed model for images with intensity

in-homogeneity, we present the comparison between the C LGR model with the LGIF [79]

and the LCV [80] models as well as with the ground truth given by our expert. Note
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(a) (b) (c) Original image

Figure 4.17. Results of the C LGR (c) and the Bresson et al.’s (b) models [41] on a
non-homogeneous image (a).

that the LGIF and the LCV model also use the global and local information in the energy

function. The code of the LGIF model is implemented by incorporating the well-known

global component of Chan-Vese model [33] in the LBF code [77] which is downloaded from

the page of the author [77], while the code of the LCV model is obtained by email, courtesy

of the authors [80].

We use the MATLAB r2008a to implement our algorithm. The program was run on a

Dell (OptiPlex 360), which has Intel Core 2 Duo E7500 @ 2.93GHz and 4GB RAM. Here,

unless otherwise specified, we use the following parameters τ = 0.1, θ = 0.01, αthres = 0.5

and λ = 1 for all the experiments in this section. The other parameters are reported in

Table 4.6.

Ability in dealing with the intensity in-homogeneity - Independence from
initialization - Accuracy

First, we demonstrate that the C LGR can deal with intensity in-homogeneity by com-

paring with the convex model of Bresson [41, 85]. In [85], Goldstein et al. show that the

convex model published in [41] can deal with intensity in-homogeneity. However, this is

not always true, depending on the content of the image. Figure 4.17 presents results of the

C LGR and the Bresson et al.’s models for a synthetic image where the intensities of both

object and background vary strongly. One may observe that the convex model of Bresson

et al. does not give the accurate result which is not the case of the C LGR model.

Then, we compare with the LGIF model on a synthetic homogeneous image. We will

show that that values of variables in our model behave better when minimizing the energy

function. This is shown via an example in Figure 4.18. At the point p in Figure 4.18b

and Figure 4.18c, the value of u1 of our model is 149.85, which is more consistent with the

intensity of the object (150) than the value f1 of the LGIF model (148.36). Likewise, the

value u2 of our model is 50.04, which matches more with the intensity of background (50)

than the value f2 of the LGIF model (51.76). Similar observations can be made for the

point p2 in Figure 4.18e and Figure 4.18f. Moreover, at the points p1 and p3, our model
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(a) (b) (c)

(d) (e) (f)

Figure 4.18. Experiment on a synthetic image of the LGIF and our C LGR models.
(a)(d) Original image and intitial contour. (b)(e) Results of the LGIF model. (c)(f)
Results of the C LGR model.

gives the accurate results while the LGIF model failed. Indeed, we can see in Figure 4.18f

that f = 0 for p1. As stated in Algorithm 4.2, it means that p1 is a pixel outside the

contour. Likewise, as f(p3) = 1, p3 is detected as pixel inside the contour. Figure 4.18

allows to show that the result of the LGIF model depends on the initial contour.

In Figure 4.19, we demonstrate the performance of our C LGR model for addressing

the intensity in-homogeneity by comparing with the LGIF and the LCV models for typical

images such as blood vessel X-ray and heart MR images. Obviously, our C LGR method

successfully achieves the segmentation of the interested objects for all tested cases while

the other models fail all of cases. We can find better results for these images by the LGIF

and the LCV models in their papers, or in the Figure 4.23. In fact, the initial contours

that we use in Figure 4.19 are not suitable to obtain the good results, because the energy

functions of these models are not convex, making the segmentation results dependent on

the initial contours.

In Figure 4.20, we compare our C LGR model with the LGIF and the LCV models on

four thorax CT images. We see that only results of our model are satisfactory which is

not the case of the results of the LGIF and the LCV models. Moreover, to demonstrate

the accuracy of our results, we also present validation results with real expert-segmented

thorax CT images. As can be seen in Figure 4.21, the interior boundaries of the thorax are

accurately extracted, as compared with the contour segmented by our expert. Furthermore,

we can quantitatively evaluate the accuracy of our results with a metric, namely, the Dice
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Figure 4.19. Comparison of our C LGR method with the LGIF and the LCV models
for a heart MR and two blood vessel X-ray images (sources http://www4.comp.polyu.

edu.hk/~cslzhang/RD/RD.htm and http://www.unc.edu/~liwa/). Column 1: Original
image and initial contour. Columns 2 - 4: Result of the C LGR, the LGIF and the LCV
models, respectively.

Table 4.4. DSC values for third column of Figure 4.21

row 1 row 2 row 3 row 4

left thorax 0.94 0.96 0.98 0.97
DSC

right thorax 0.97 0.99 0.99 0.96

Similarity Coefficient (DSC) [88], which is defined as

DSC =
2N(S1

∩
S2)

N(S1) +N(S2)
(4.79)

where S1 and S2 represent the obtained segmentation and the ground truth, respectively,

and N(·) indicates the numbers of pixels in the enclosed set. The closer the DSC value

is to 1, the better the segmentation is. Table 4.4 shows the DSC values of the C LGR

method. From this table, we can see that our results are very close to the ground truth

established by expert, since the DSC values C LGR are very close to 1.

To demonstrate the independence from the initial contour of our C LGR method, we

tested on blood vessel and hand X-ray images and a thorax CT image with some different

positions of initial contour. The results are shown in Figure 4.22. We can see that, on the

each image, the results with the different initial contours are very similar.

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www.unc.edu/~liwa/
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Figure 4.20. Comparison of our C LGR method with the LGIF and the LCV models
for thorax CT images (images courtesy of J.-M. Rocchisani, Avicenne-Medicine Nucleaire
Hospital, Bobigny, France). Column 1: original images and initial contour (red). Column
2: results of the C LGR method (yellow). Column 3: results of the LGIF model (yellow).
Column 4: results of the LCV model (yellow).

Table 4.5. Comparing CPU time (in second) and number of the iteration (NoI) between
our C LGR model with the LGIF and the LCV models in Figure 4.23.

Column 1 Column 2 Column 3

Time(s) NoI Time(s) NoI Time(s) NoI

The LGIF model 6.44 240 11.58 400 37.88 800

The LCV model 0.39 100 0.68 160 0.36 50

The C LGR model 2.26 8 2.31 9 2.17 10

Performance in computation time

The last comparison concerns the CPU time, as well as the number of iteration between

our model with the LGIF and the LCV models. Accordingly, we found the positions of

initial contour such that the results of these models are accurate. To find these positions,
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Figure 4.21. Comparison with the ground truth established by our expert for four thorax
CT images. Column 1: original images (images courtesy of J.-M. Rocchisani, Avicenne-
Medicine Nucleaire Hospital, Bobigny, France). Column 2: ground truth images on thorax
CT. Column 3: C LGR results.

we have based on the original papers of these models [79, 80] for the blood vessel X-ray

images. In Figure 4.23, the red lines are the initial contours and the yellow lines are the

final contours. The CPU time and the number of iteration of these results are shown in

Table 4.5. It is easy to see that our C LGR method not only is faster but also has less

number of iteration than the LGIF models. Moreover, we can see that, the CPU time of

the LCV model is faster than our model, but the number of iteration is more than our

model.

Finally, an interested point of the C LGR model is that it can apply to segment lesion

region in PET image as show in Figure 4.24 and Figure 4.25. The lesion region in PET

image has smooth boundary and the intensity of the image is very smooth and fuzzy. This

can be seen clearly in Figure 4.25 where we cannot distinguish object and background by



4.4. SECOND PROPOSED CONVEX MODEL: A CONVEX LOCAL AND GLOBAL
REGION-BASED GEODESIC ACTIVE CONTOUR FOR IMAGE SEGMENTATION
(C LGR) 111

Figure 4.22. Results of our C LGR method on blood and hand vessel X-ray and thorax
CT images with the different positions of initial contour. Red line: initial contour. Yellow
line: final contour.

Figure 4.23. Accurate results of the LGIF (column 1), the LCV (column 2) and our
C LGR methods (column 3) on blood vessel X-ray images (source http://www.unc.edu/

~liwa/). Red line: initial contour. Yellow line: final contour.

eyes. Therefore, the combination between the global and local components in the energy

function of C LGR helps in obtaining good result when segmenting PET image.

http://www.unc.edu/~liwa/
http://www.unc.edu/~liwa/
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Table 4.6. Parameters µ, λ2 and σ of the C LGR model in Section 4.4.5

Figure 4.19 4.20 4.24 4.25

row 1 row 2 row 3 all e f g h b

µ 1 1 1 1 1 1 1 1 1

λ2 1 0.1 0.1 0.1 0.01 0.1 0.1 0.01 0.1

σ 3 15 11 7 13 5 31 3 3

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.24. Results of C LGR for PET images (images courtesy of J.-M. Rocchisani,
Avicenne-Medicine Nucleaire Hospital, Bobigny, France).

4.4.6 Conclusion

The list of the main contribution of this paper is as follows:

1. We have developed a novel local and global region-based convex energy functional

C LGR with respect to the bounded level set function f used to determine the ac-

tive contour to efficiently deal with the Intensity In-homogeneity and make the model

independent with respect to initial contour, hence providing reliable results.

2. The combination of local intensity image information with the global intensity informa-

tion allows improving the robustness to noises and weak object boundaries compared

to the C LR.

3. The C LGR parameters λ, λ2, µ and σ have been studied and recommendations has

been provided as to the values that will provide high accuracy of boundary extraction
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(a) (b) (c)

(d) (e) (f)

Figure 4.25. Result of the C LGR model on a neck PET image: (a) Original image
(images courtesy of J.-M. Rocchisani, Avicenne-Medicine Nucleaire Hospital, Bobigny,
France), (b) Result of (a), (c) Ground truth in zoom, (d) Hight contrast of (a), (e) Hight
contrast of (b), (f) Hot-spot by threshold 40% max.

to non-homogeneous regions with/or without noise.

The advantages of our paper versus the other convex methods and active contours [35,

41, 79, 80] are as follows:

a) Higher accuracy of extraction of multiple non-homogeneous regions;

b) The obtained results are invariant with respect to the position of the initial curve which

is guaranteed by the convexity of the model;

c) Computationally fast numerical implementation.

d) From the application field point of view, the C LGR is successfully tested on medical

images such as the X-Ray, CT, MR and PET images, as well as synthetic and natural

images such as those used for skin lesion detetion.
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4.5 Third Proposed Convex Model: A Convex Local

and Global Fuzzy Gaussian Distribution Energy

Minimization of an Active Contour Model

(C LGFGD)

The two previously proposed convex models have proven their ability of dealing with IIH

and the robustness to noises as well as weak boundaries. However, a trade-off is required

for the performance of segmentation when dealing with simultaneous IIH and noises. In

this case, the performance of the model is reduced compared with the case when image is

only affected with IIH.

In order to improve the performance when dealing with simultaneous presence of IIH

and noises, we propose in this section, another convex region-based AC model which results

from the hybridization of a fuzzy clustering with the region-based AC model defined in the

Bayesian formulation.

In this fuzzy region-base AC model, fuzzy c-means clustering and region-based AC are

combined and defined in the Bayesian approach and provide the local and global region

information to attract the curve towards object boundaries. A length regularization term

imposes smoothness constraints on the geometry of the curve, providing accurate and

stable result in case of noises. The combination of the FCM and the AC model in the

Bayesian with full statistics can effectively improve the segmentation results especially in

case of simultaneous noises and IIH.

The Fuzzy clustering such as fuzzy c-means can account for uncertainty in medical

images (due to noises, limited resolution) by assigning a pixel to different classes (e.g.

adjacent tissues) with different memberships.

The Bayesian formulation is adopted in this work to fully account for statistical distri-

bution of the pixel intensity used in a region-based AC. As explained in the state-of-the-art

(Chapter 2), Brox and Cremer [43] have shown that, in the Bayesian approach, local region

statistics can model the piecewise smooth approximation of intensity within a region, for

the region-based approach of the Mu,ford-Shah model. By assuming piecewise smooth

variation of the intensity for IIH, Bayesian is a good framework to describe IIH and re-

gions. Here, regions are described by the statistical distribution of the pixel intensity. In

the present method, intensity is assumed to be the realization of an independent random

variable described by the Gaussian probability density function (pdf) with varying means

and standard deviation.

To effectively deal with the intensity in-homogeneity and the robustness to noise and

to weak edges, the region-based approach is defined with the local and global informa-

tion distributions. The local information is taken into account to tackle the intensity in-

homogeneity, while the global information is used to handle the objects whose boundaries
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are not well defined by the gradient.

Furthermore, in order to obtain accurate and stable result in case of noises, we need

to regularize the evolving curve by choosing appropriate length regularized term to obtain

the minimal distance while smoothing the curve. Unlike the two previous convex models

(C LR and C LGR) where the smoothness regularization constraint is the total variation

of the level set function restricted in [0,1], we adopt the total variation of the membership

function which is also a restricted function in [0, 1]. So, the membership function can be

considered as the pseudo level-set function. Hence, the regularization term is similar to

the one in the convex Chan-Vese model [35]. By this way, this regularization function is

convex with respect to this bounded level set function.

Hereafter, we will refer to our model as C LGFGD (convex local and global fuzzy

Gaussian distribution).

We will first describe the related works and then present our proposed convex model

along with the pseudo level set formulation, the convexity of the energy functional and the

numerical implementation as well as an illustration of the method through example for a

better understanding of the proposed method, and the computational complexity. Like the

previously proposed methods, we will report the study of the sensitivity of the parameters

of the method followed by the experimental results and comparison.

4.5.1 Related works

In the state-of-the-art, we have described existing on the problem of IIH. Here, we only

present some existing works related on the fuzzy approach combined with AC model as

well as works on the Bayesian approach. These works also inspired our proposed model.

Some interesting works combined the fuzzy clustering with the ACM to enhance ro-

bustness to noises, weak boundaries and initial condition [28, 47]. In [47], Krinidis et al.

hybridize the region-base active contour model with the fuzzy c-means and obtain an ef-

fective ACM based on fuzzy energy, called FEBAC, to segment objects whose boundaries

are very smooth and discontinuous. The fuzzy clustering methods provide robust data

clustering, while the region-based active contours are robust to noise, weak/blur edges and

initialization. However, this model cannot segment images with intensity in-homogeneity

by assuming that each region is homogeneous, as the Chan-Vese model does. In [28], fuzzy

clustering and level set methods are combined to improve the segmentation accuracy of the

brain tissues and robustness to noise. In this method, fuzzy clustering is first performed,

and the resulting fuzzy membership degree is used to generate the speed (in direction and

norm) of the Geometric/Geodesic Active contour [29] to guide the evolving curve, instead

of the edge detector function, avoiding hence the use of gradient information of the image

data.
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In the Bayesian approach, Wang et al. [83] proposed the local-Gaussian-distribution-

fitting (LGDF) energy model where statistical characteristics of local intensities are used

for more accuracy. This model is effective in dealing with IIH but not convex.

The main and common weakness of these methods is that they depend on the initial-

ization or the energy functional are not convex. Hence, the results are not always the same

with respect to the initialization.

4.5.2 Description of the C LGFGD model

Let us first recall some assumption in this model before presenting the model in details.

Assumption

In this model, intensity is assumed to be distributed by the Gaussian pdf with varying

means and standard deviation. In the Bayesian approach, our defined active contour

is derived from the energy functional including data terms and a regularization term to

account for the smoothness geometric constraints on the curve. Data terms are described

by the intensity mainly because the objective is to deal with the variation of intensity

due to IIH, which results from a local change of intensity. So, IIH can be handled by

taking into account local region information. To characterize the local region information,

a neighborhood for each pixel is used such as a Gaussian kernel window, and the region is

modelled as a piecewise-smooth approximation of intensity within the local window.

Model description

We search for a final segmentation as a smooth contour of minimal length which minimizes

the fidelity in terms of local (and global) intensity differences between the original image

intensity and the associated piecewise-smooth (piecewise-constant, respectively) approxi-

mation of the original image.

The proposed ACM is based on the minimization of a fuzzy and statistical energy

function, which finds the minimal length of curve, while creating a partition of image

data into two clusters which minimize the global and local differences in the distributions

(varying means and standard deviations) as follows:

F (M) = µ|C|+ λFG(MG) + (1− λ)FL(ML) (4.80)

whereM = (C, c1, c2, ϵ
2
1, ϵ

2
2, f1, f2, σ

2
1, σ

2
2, u),MG = (c1, c2, ϵ

2
1, ϵ

2
2, u) and ML = (f1, f2, σ

2
1, σ

2
2, u),

µ is a positive constant, |C| is the length of the contour C, 0 < λ < 1 is a constant to

control the influence of the global term FG and the local term FL, c1 (c2) and ϵ1 (ϵ2) are

respectively the global mean and standard deviation of the Gaussian intensity inside the

contour C (outside the contour, respectively), while f1 (f2) and σ1 (σ2) are respectively the
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local mean and standard deviation of the Gaussian intensity inside the contour C (outside

the contour, respectively).

The first term is the smoothness-regularization term. The last two terms are the local

and global energy functionals derived from the fuzzy c-means clustering where c is the

number of classes. Here, for dealing with IIH, we only consider two classes (c = 2): the

first class is the region inside the contour C and the second one is the region outside the

contour C.

Let us first describe the data terms. The global and local terms are defined from the

fuzzy clustering.

The global data term is defined as an objective function (in terms of global intensity

differences) to minimize with respect to the membership function ui(y) (i = 1, 2) and the

centroids defined by the pdf (mean ci and standard deviation ϵi):

FG(MG) =−
∫
Ω

log p(I(y), ϵ1)[u(y)]
mdy −

∫
Ω

log p(I(y), ϵ2)[1− u(y)]mdy (4.81)

where p(I(y), ϵi), i = 1, 2, is the Gaussian distribution of intensity at pixel location y:

p(I(y), ϵi) =
1√
2πϵi

exp

(
−
(
ci − I(y)

)2
2ϵ2i

)
(4.82)

while m > 1 is a weighting exponent, which determines the degree of fuzziness of the

resulting clustering, ui(y) is the membership value of pixel location y for class i such that∑c
i=1 ui(y) = 1. Then, in our case (c = 2), let us denote the membership value of pixel

location inside the contour (class 1) by u1(y) = u(y) ∈ [0, 1]. Therefore, the membership

value of pixel location outside the contour (class 2) is u2(y) = (1− u(y)) ∈ [0, 1].

As to the local data term, it is defined by the following objective function (in terms

of local intensity differences) to minimize with respect to the membership function ui(y)

(i = 1, 2) (i.e. u(y) and (1−u(y)) respectively) and the centroids defined by the pdf (mean

fi and standard deviation σi):

FL(ML) =−
∫
Ω

[ ∫
Ω

Kσ(x− y) log px(I(y), σ1)[u(y)]
mdx

]
dy

−
∫
Ω

[ ∫
Ω

Kσ(x− y) log px(I(y), σ2)[1− u(y)]mdx

]
dy (4.83)

where x is a pixel, Kσ is a Gaussian kernel with a standard deviation σ, px(I(y), σi),

i = 1, 2, is the Gaussian distribution with standard deviation σi of intensity within the

local window centered at y:

px(I(y), σi) =
1√
2πσi

exp

(
−
(
fi(x)− I(y)

)2
2σ2

i

)
(4.84)
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Regularization term

The regularisation term is the length term that allows for obtaining the minimal distance

while smoothing the curve. We adopt the total variation of the membership function

which is also a restricted function in [0, 1]. Here, like the bounded level set function in

the convex Chan-Vese model [35], the fuzzy membership function can be considered as

the pseudo level-set function since it is a bounded function in [0, 1]. Inspired from the

regularization term in the Convex Chan-Vese model, we use the total variation of the

membership function as regularization term for our model (see Section 4.5.3).

4.5.3 Pseudo level set formulation

In this section, we formulate the fuzzy energy function by using a pseudo level set for-

mulation based on the membership values of u as defined in [47]. The curve C in Ω

is represented by the pseudo zero level set of u such that C = {x∈ Ω : u(x) = 0.5},
inside(C) = {x∈ Ω : u(x) > 0.5}, outside(C) = {x∈ Ω : u(x) < 0.5}.

Now, we change the contour length |C| in (4.80) by the total variation of u as explained

above, TV (u) =
∫
Ω
|∇u|dx. This length term can be also interpreted as follows: when the

energy function (4.80) is minimized, the membership values u of all the pixels inside located

inside the contour C are approximately similar. Likewise, the pixels located outside the

contour have similar membership values. In the other hand, the membership values u of

the pixels inside the contour C are different from the membership values for the pixels

located outside the contour. Thus, |∇u| is really different from 0 on the contour C, while

it approximates 0 at other image pixels. Thus, the total variation of u allows to obtain the

length of the contour C. Besides, TV (u) also ensures to regularize the contour. So, the

energy function (4.80) is transformed as follows:

F (M) = µ

∫
Ω

|∇u|dx+ λFG(MG) + (1− λ)FL(ML) (4.85)

4.5.4 Convexity of the proposed energy functional

As for the C LR and the C LGR models, the first term in Equation (4.85) is convex

with respect to u. The convexity of FG and FL with respect to u is obtained by their

positive twice derivatives with respect to u. Then, because µ, λ and λ2 are positive, energy

functional (4.85) is convex with respect to u.

The convexity of F with respect to the other variables is also proved as their twice

derivatives with respect to these variable are positive.

The convexity with respect to each of variables allows us to find a global solution. So,

the minimizer of (4.85) can be found by minimizing separately each of variables when the

others are fixed.
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4.5.5 Numerical implementation

The energy function could be minimized by the gradient descent method derived from

the Euler-Lagrange equation which converges relatively slowly and need some conditions

for the numerical stability issues. However, for the C LGFGD model, we apply the fast

numerical scheme which is proposed by Song et al. [46] and developed by Krinidis et al. [47].

Instead of solving the Euler-Lagrange equation, this method calculates the energy directly

and verifies if the energy decreases when the intensity membership on the image changes.

Before presenting the algorithm to solve our model, we compute each variable fixing

the others. For the sake of simplicity, without losing the generality, Equation (4.85) has

been considered without the length term (µ = 0). There are two following steps:

Step 1: For fixed u, the minimization of the energy in Equation (4.85) with respect to

c1, c2, ϵ
2
1, ϵ

2
2, f1, f2, σ

2
1, σ

2
2 gives by calculus variation [63, 64]:

ci =

∫
Ω
I(y)[ai(y)]

mdy∫
Ω
[ai(y)]mdy

(4.86)

ϵ2i =

∫
Ω
(ci − I(y))2[ai(y)]

mdy∫
Ω
[ai(y)]mdy

(4.87)

fi(x) =

∫
Ω
Kσ(x− y)I(y)[ai(y)]

mdy∫
Ω
Kσ(x− y)[ai(y)]mdy

(4.88)

σ2
i (x) =

∫
Ω
Kσ(x− y)(fi(x)− I(y))2[ai(y)]

mdy∫
Ω
Kσ(x− y)[ai(y)]mdy

(4.89)

where i = 1, 2, a1(·) = u(·), a2(·) = 1− u(·).
Step 2: For fixed c1, c2, ϵ

2
1, ϵ

2
2, f1, f2, σ

2
1, σ

2
2, the minimization of the energy F with

respect to u, by calculus of variation, is computed as follows:

u(y) =
1

1 +

[
λ log p1(I(y), ϵ1) + (1− λ)

∫
Ω
Kσ(x− y) log p1,x(I(y), σ1)dx

λ log p2(I(y), ϵ2) + (1− λ)
∫
Ω
Kσ(x− y) log p2,x(I(y), σ2)dx

] 1
m−1

(4.90)

Now, given a point y0 in Ω, the intensity of point y0 is I(y0), and the corresponding

membership value of I(y0) is uy0 . Assume that the membership value of I(y0) changes to

the new value uny0 . Denote by ∆F the difference between the new and old energies, also

referred to as the rate of change of F . ∆F is calculated at the new and old degree of

membership of I(y0). Suppose that the changes in value of ϵ1, ϵ2, σ1 and σ2 at a point are

very small. Then ∆F is calculated as follows:

∆F = λ∆FG + (1− λ)∆FL (4.91)
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The changes in value of the global fuzzy energy ∆FG and the local fuzzy energy ∆FL are

calculated as follows (see Appendix C):

∆FG =− log
1√
2πϵ1

∆um +
s1∆um
s1 +∆um

(I(y0)− c1)
2

2ϵ21

− log
1√
2πϵ2

∆vm +
s2∆vm
s2 +∆vm

(I(y0)− c2)
2

2ϵ22
(4.92)

∆FL =−Kσ ∗
(
log

1√
2πσ1

)
(y0)∆um −Kσ ∗

(
log

1√
2πσ2

)
(y0)∆vm

+
∑
x∈Ω

s3(x)Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

(I(y0)− f1(x))
2

2σ2
1(x)

+
∑
x∈Ω

s4(x)Kσ(x− y0)∆vm
s4(x) +Kσ(x− y0)∆vm

(I(y0)− f2(x))
2

2σ2
2(x)

(4.93)

where s1 =
∑

y∈Ω[u(y)]
m, s2 =

∑
y∈Ω[1− u(y)]m, s3 = Kσ ∗ [u]m, s4 = Kσ ∗ [1− u]m,∆um =

[uny0 ]
m − [uy0 ]

m,∆vm = [1− uny0 ]
m − [1− uy0 ]

m.

If µ ̸= 0, then Equation (4.91) leads to:

∆F = µ∆l + λ∆FG + (1− λ)∆FL, (4.94)

where ∆l is the rate of change of the contour length.

Utilizing the change of the fuzzy energy function given by Equation (4.94) along with

Equations (4.92) and (4.93), we designed the algorithm given below to evolve an active

contour from its initial contour towards the boundaries of image objects:

1) Initial partition: setup u > 0.5 for the interior of the contour, and u < 0.5 for the

exterior.

2) For each iteration, the following sub-steps are performed:

(i) Compute c1, c2, ϵ1, ϵ2, f1, f2, σ1, σ2 by fixing u and using (4.86)-(4.89).

(ii) For each pixel y0 ∈ Ω, we are given uy0 as the membership value of I(y0) in

the previous iteration. The new membership value uny0 is calculated using (4.90)

where the fixed c1, c2, ϵ1, ϵ2, f1, f2, σ1, σ2 are calculated in the previous step. Then,

we use (4.92)-(4.94) to calculate the difference between the new and old energy

∆F at the pixel y0. If ∆F < 0, then we change uy0 with uny0 ; otherwise, we keep

the old value uy0 .

(iii) Repeat Step (ii) for all the pixels y0 ∈ Ω to obtain all new membership value uny0 .

Then, we compute the total energy F of the image.

Repeat Step 2 until the rate of change of F is slower than a threshold.
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(a) Initial contour (b) 2nd iteration (c) 5th iteration (d) 25th iteration

(e) Evolution of F

Figure 4.26. Illustration for the C LGFGD method on a real image of rices.

3) We use the following criterion: if u(x) > 0.5, then x is in the object. Otherwise, x is in

the background.

4.5.6 Illustration for the C LGFGD method

In this section, we illustrate the C LGFGD method on a real image of rices. We present the

evolution of the contour in Figures 4.26a - 4.26d where the initial contour is in red (dark

gray) and the evolving contours are in yellow (light gray) as well; the evolution of the energy

function F (Figure 4.26e). Figure 4.26e shows that our energy function converges to the

minimum at the 12nd iteration. However, we see that the contours at the 5th (Figure 4.26c)

and 25th (Figure 4.26d) iterations are visually similar. This can be explained with more

details on the values of u at two points p1 and p2 reported in each figure as follows: at

the 5th iteration, u(p1) = 0.5003, u(p2) = 0.4989. Since u(p1) > 0.5, pixel p1 is clustered

in the object. Since u(p2) < 0.5, pixel p2 is a clustered in the background. However,
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Table 4.7. Values of f1, f2, σ1, σ2 and u for the pixel p3 reported in Figure 4.26b-4.26c.

f1 f2 σ1 σ2 u

2nd iteration 63.5085 44.5250 2537.4 922.3 0.5003

5th iteration 51.1039 51.2402 1564.9 1579.1 0.4986

Table 4.8. Computational complexity of the C LGFGD model.

enlarged version
original image

by 2 by 4 by 8

size 65× 68 130× 136 260× 272 510× 544

CPU time (s) 1.44 5.52 23.05 92.13

the value of our energy function is not minimized at this iteration. Therefore, the values

of u must be changed. But, this change does not affect the fact that p1 and p2 are the

pixels of the object and background, respectively, as it can be seen in Figures 4.26c- 4.26d.

Moreover, Table 4.7 shows the evolution of the pixel p3, reported in Figures 4.26b-4.26c,

through the values of f1, f2, σ1, σ2, and u. At the 2nd iteration, as u(p3) = 0.5003 > 0.5,

pixel p3 is clustered in the object. At this iteration, we have at this iteration: f1 > f2,

σ1 < σ2. However, at the 5
th iteration, as u(p3) = 0.4986 < 0.5, pixel p3 is clustered in the

background, we also observe in Table 4.7 the changes in value of f1, f2, σ1 and σ2: f1 < f2
and σ1 > σ2.

4.5.7 Computational complexity

The computational complexity of the C LGFGD method is in the order of O(NxyG), where

NxyG = Nx.Ny.NGx .NGy , Nx and Ny are the column and row numbers of the considered

image, respectively; NGx and NGy are the column and row numbers of the Gaussian kernel

Kσ, respectively. To validate the above complexity, we test the C LGFGD method on an

image with size 65 × 68 (Figure 4.27a) and its zoom-in image with double size for each

dimension 130 × 136 (Figure 4.27b), using the same Gaussian kernel sizes (σ = 8). As it

can be observed in Figures 4.27a - 4.27b, the initial contours are at the same positions and

the corresponding results in respective Figures 4.27c - 4.27d. The CPU times to obtain

results in Figures 4.27c - 4.27d are 1.44 second and 5.52 second, respectively. We can see

that, since the size of Figure 4.27b is four times the size of Figure 4.27a, the CPU time

to obtain Figure 4.27d is approximately four times the CPU time to obtain Figure 4.27c.

Moreover, Table 4.8 shows the validation providing results with enlargement by 4 and 8.

All obtained results confirm the computational complexity determined above.
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(a) (b)

(c) (d)

Figure 4.27. (a) and (b) Images with sizes 65× 68 and 130× 136, resepectively. (c) and
(d) Segmentation results applying the C LGFGD on (a) and (b), respectively.

4.5.8 Sensibility of the parameters

The C LGFGD model is developed to handle intensity in-homogeneity by employing the

local intensity feature. To determine this feature, we use the Gaussian kernel with standard

deviation σ. For our practical application, a Gaussian window with size (4σ+1)× (4σ+1)

is applied. Therefore, the parameters chosen by the user to run the C LGFGD algorithm

are σ and λ (in Equation (4.85)). In addition, we will also study the sensibility of the

weighting exponent m, which determines the degree of fuzziness of the resulting clustering

in Equations (4.81) and (4.83). For the purpose of simplicity and without losing generality,

we assume µ = 1.

4.5.8.1 Parameter σ

In the C LGFGD method the intensity of a pixel is approximated by the average of the

intensities in the neighborhood inside and outside the evolving contour with a weight

determined by the Gaussian kernel Kσ. Figure 4.28 shows how the graph of the Gaussian

changes when σ varies. One may observe that if σ is small (blue line), Kσ(x− y) is large

for a pixel x close to y and its value is small for the pixel x far from y. This case is

sensitive to the local image information such as noise. On the contrary, if σ is large (red

line), the values of Kσ(x − y) at x and y are almost the same. Therefore if the size of
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Figure 4.28. Graph of Gaussian kernel.

(a) (b) (c) σ = 2 (d) σ = 7 (e) σ = 18

Figure 4.29. Test on a nonhomogeneous image with different values of σ: (a) Original
image, (b) Result of FEBAC, (c)-(e) Results of C LGFGD.

the Gaussian window is large enough to contain the whole considered image, the local

information approaches the global information.

Figure 4.29 shows how the accuracy of extraction varies with respect to σ. If σ is small

(Figure 4.29c) the used window for the kernel is small. Thus a lot of local information

is missed and artifacts are captured. If σ is large (Figure 4.29e, the local information

and global information ae nearly the same and the result is then similar to the one of the

FEBAC [47] (Figure 4.29b) which uses only global information. Note that λ = 0.01 and

m = 2 for all tests of the C LGFGD model in this figure.

4.5.8.2 Parameter λ

The parameter λ (in Equation (4.85)) controls the sensibility of the local and the global

terms. If λ is close to 1, the sensibility of the local term is weaker compared with the

global term. On the contrary, if λ is close to 0, the sensibility of the local term is stronger

compared with the global term. Therefore, if one works with images containing non-

homogeneous regions, the value of λ should be close to 0. Figure 4.30 validates the above

reasoning applying multiple values of λ. Note that we use σ = 9 and m = 2 for all the

results in Figure 4.30. One may observe that the most accurate results are obtained for λ

closer to 0.

As stated above when segmenting intensity in-homogeneity, we should chose λ closed to
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(a) λ = 0.0001 (b) λ = 0.1 (c) λ = 0.2 (d) λ = 0.9

Figure 4.30. Test on a nonhomogeneous images with different values of λ.

(a) Origin (b) SD = 30 (c) SD = 130 (d) SD = 160

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.31. Test on a synthetic image and its noisy versions with varying standard
deviation (SD).

0. This implies that the global information term is weakly weighted. On the other hand,

as we known, models using only the global information effectively deal with noise. So, in

case of noisy image with intensity in-homogeneity, if λ is selected close to 0 to handle IIH,

then sigma should be large to deal with the noise because the obtained result is similar

with the models using only global information as we stated in Section 4.5.8.2. In this case,

the run time is more expensive according to the computational complexity developed in

Section 4.5.7.

On the contrary, if we select λ closed to 1 and small value of σ, the global term

is more dominant than the local term. Therefore, the model is robust to noise. The

advantage to select small value of sigma in this case is that the run time is low. We

have tested the robustness of the method to noise with respect to sigma on a synthetic

image (see Figure 4.31). For all the results in Figure 4.31 we have used the same set of

parameters λ = 0.9, σ = 1 and m = 2. One may observe in Figure 4.31 that the C LGFGD

model gives accurate result for Gaussian noise with very higher standard deviation 130

(see Figure 4.31g). For image noise with standard deviation higher than 130, example 160

(Figure 4.31d), this is evident that the active contour detects false positive pixels.
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(a) m = 1.5 (b) m = 4 (c) m = 9

Figure 4.32. Test on a nonhomogeneous images with different values of m.

Table 4.9. The used parameters of the C LGFGD model in Section 4.5. Rx = row x.

Figure µ m σ λ

4.33 1 2 8 0.01

4.34 (R1) 1 2 17 0.1

4.34 (R2) 1 2 23 0.01

4.34 (R3) 1 2 15 0.1

4.35 (R1) 1 2 15 0.01

4.35 (R2) 1 2 15 0.1

4.36 (R1) 1 2 20 0.1

4.36 (R2) 1 2 20 0.1

4.37 (R1) 1 2 19 0.1

4.37 (R2) 1 2 25 0.01

4.37 (R3) 1 2 25 0.01

4.38 (R1-R4) 1 2 20 0.1

4.5.8.3 Parameter m

In what concern m in Equations (4.81) and (4.83), we have determined that the accuracy

of boundary detection decreases when m increases from 1 to infinity. The above reasoning

holds because u and 1 − u are in (0, 1). Consequently, if m is large enough, um and

(1 − u)m approach 0, and the local and global terms are close to 0 as well. Then, we are

left with the regularization term and receive a trivial solution u = constant (the gradient

∇u = 0 and the energy function is 0). To validate the theoretical derivation, experiments

are performed using the original images from Figure 4.29. The obtained results are shown

in Figure 4.32. We observe that the results are not accurate for large values of m, when

σ = 9 and λ = 0.01.
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(a) (b) (c)

Figure 4.33. Experiment on a non-homogeneous synthetic image: (a) Original image;
(b) Result of the FEBAC model; (c) Result of the C LGFGD model.

4.5.9 Experimental results and comparison

We present results of the C LGFGD model on a variety of synthetic and medical images,

namely PET, CT, X-Ray and MR images. A comparative evaluation has been performed to

demonstrate the advantages of our C LGFGD method over similar contemporary methods

such as the LGIF [79], the LCV [80] and the FEBAC [47]. The code of the LGIF model

is obtained by incorporating the global term in the code of the LBF [77] model, which is

obtained from the home page of the author [77]. The code of the LCV model is provided

by emails with the author of [80]. The code of the FEBAC model is implemented based on

the algorithm published in [47] and discussions with authors by email. To provide a fair

comparison, all the methods used same initial contour. The used parameters are shown in

Table 4.9.

We use the MATLAB r2008b to implement our algorithm on a computer with Intel

Core 2 Duo CPU 2.93GHz and 4GB RAM. The images used for the experiments vary in

size between 65× 68 and 452× 348.

Performance to deal with IIH

First, we demonstrate that the C LGFGD model can detect object with intensity in-

homogeneity by testing the model on a synthetic non-homogeneous image and comparing

with the FEBAC model as presented in Figure 4.33. Figure 4.33a shows an image where the

intensities of object and background are non-homogeneous. One can see in Figures 4.33b

that the final contour of the result obtained from the FEBAC model is not accurate. This

can be explained by the fact the fact that this model utilizes only the global intensities. On

the contrary, by taking into account the local intensities, the final contour of the C LGFGD

accurately stops at the boundary of object (Figure 4.33c).

Figure 4.34 compares the segmentation capabilities of the LGIF, the LCV and the newly

proposed C LGFGD method. Three X-ray images of blood vessels are used for the purpose

of comparison. All images are non-homogeneous. In this experiment, the results provided

from the LGIF (3rd column) and the C LGFGD (4th column) models are similar and good.
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Figure 4.34. Results obtained on three blood vessel X-ray images (source http://www.

unc.edu/~liwa/). From left to right columns: Original images with initial contours, results
of the LCV, the LGIF and the C LGFGD models, respectively.

For the LCV model (2rd column), the result of the top image is not accurate, while the

result of the middle image is similar to the results of the LGIF and the C LGFGD models.

The bottom image is sufficiently well segmented except the right corner part where the

contour is missed. Note that we can find the better results of the LCV model for these

X-Ray images in [80]. For a same image, different results of the LCV model are obtained

because the energy function of this model is not convex and the positions of the initial

contour in Figure 4.34 are not suitable to obtain the accurate results. The reason why the

LGIF, the LCV (depending on the initialization) and the C LGFGD models provide good

results on these non-homogeneous images is that these models utilize the local information

in the energy function. We can find in Figure 4.39 that the results of the C LGFGD model

for some other positions of the initial contour are the same, due to the convexity of the

associated energy functional.

Moreover, we compare the C LGFGD model with the LCV and the LGIF models using

two heart MR images. The results are illustrated in Figure 4.35 where one may observe

that the proposed C LGFGD model detects the object boundary in a more accurate fashion

than the LCV and the LGIF did. On the top images, the results of the LCV and the LGIF

models are good enough, but some contours are not correctly detected. On the bottom

row, the image is corrupted with non-homogeneous intensity, the result of LGIF model is

definitely incorrect, while the LCV contour cannot be stopped at the exact contour. This

is not the case for the C LGFGD model which stops the final contours at the boundaries

http://www.unc.edu/~liwa/
http://www.unc.edu/~liwa/
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Figure 4.35. Results obtained on two heart MR images (source http://www4.comp.

polyu.edu.hk/~cslzhang/RD/RD.htm). Column 1: Original images and initial contours.
Column 2: Results of the LCV model. Column 3: Results of the LGIF model. Column 4:
Results of the C LGFGD model.

Figure 4.36. Results on a thorax CT image and its noisy version. Top row: Original
images with initial contour (images courtesy of J.-M. Rocchisani, Avicenne-Medicine Nu-
cleaire Hospital, Bobigny, France). Bottom row: The corresponding segmentation results.

of objects.

Robustness to noise

Now, we present in Figure 4.36 the experiments on a noisy slice of CT image of 3mm

thickness (at top left), which contains the thorax at the level of the pulmonary arteries.

This image is acquired with standard reconstruction filter and exhibits low noise. Another

CT image (at top right) is of 2mm thickness, acquired at the same position with optimized

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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(a) Brain PET (b) Brain MR (c) Brain MR

(d) Result of (a) (e) Result of (b) (f) Result of (c)

Figure 4.37. Results of the C LGFGD method for some medical images (images courtesy
of J.-M. Rocchisani, Avicenne-Medicine Nucleaire Hospital, Bobigny, France).

reconstruction filter, and different values of the parameters for tomography re-construction.

This is hence a noisy image. The original images and the initial contours are shown in the

top row, while the segmented images are shown in the bottom. It is not difficult to see

that the results are very similar.

Accuracy

Figure 4.37 depicts multiple images with clinical importance. We present segmentation of

a brain PET image (Figure 4.37a) and two brain MR images (Figures 4.37b and 4.37c) to

underline the flexibility of our C LGFGD method. The obtained results (Figures 4.37d-

4.37f) are evaluated by our medical expert, as accurate in detecting the boundary. One

may notice on the brain MR image that sulci and gyri are well delineated.

Next, we present validation results with real expert-segmented thorax CT images and

heart MR image. As can be seen in Figure 4.38, the interior boundaries of the thorax

are accurately extracted, compared with the contour segmented by our expert. Moreover,

to quantitatively evaluate the accuracy of our results, we use Dice Similarity Coefficient

(DSC) [88], which is defined as:

DSC =
2N(S1 ∩ S2)

N(S1) +N(S2)
(4.95)

where S1 and S2 represent the obtained segmentation and the ground truth, respectively,

N(·) indicates the numbers of pixels in the enclosed set. The closer the DSC value is to
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Figure 4.38. Comparison with ground truth established by our expert on thorax CT
images and heart MR image (images courtesy of J.-M. Rocchisani, Avicenne-Medicine
Nucleaire Hospital, Bobigny, France). Column 1: Original image. Column 2: Ground
truth image. Column 3: Result of the C LGFGD method.

1, the better the segmentation is. Table 4.10 shows the DSC values of the C LGFGD

method. From this table, our results are very close to the ground truth established by

expert, since the DSC values C LGFGD are very close to 1.
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Table 4.10. DSC values for third column of Figure 4.38

Row 1 Row 2 Row 3 Row 4 Row 5 Row 6

left part 0.98 0.97 0.97 0.96 0.98 0.94
DSC

right part 0.96 0.98 0.97 0.98 0.99 0.98

(a)

(b)

(c)

(d)

Figure 4.39. Results of the C LGFGD model with the different initial contours.

Independence with respect to the initial contour

To validate the convexity of our model, we performed experiments using one synthetic

images, one heart MR images and two X-Ray blood vessel images. In every experiment,

we placed the initial contour on a different position with a varying contour size. In every

instance, the accuracy of segmentation is the same, which validates the independence of



4.5. THIRD PROPOSED CONVEX MODEL: A CONVEX LOCAL AND GLOBAL
FUZZY GAUSSIAN DISTRIBUTION ENERGY MINIMIZATION OF AN ACTIVE
CONTOUR MODEL (C LGFGD) 133

(a) For Figure 4.39a (b) For Figure 4.39b

(c) For Figure 4.39c (d) For Figure 4.39d

Figure 4.40. Corresponding energy with the positions of the initial contours in Fig-
ure 4.39.

the C LGFGD model with respect to the initial contour (see Figure 4.39). Moreover, we

show in Figure 4.40 the corresponding energy F versus iterations for each image. We can

see that the energy fittings in all of cases for each image converge to one value after some

iterations, this is the minimized value of the energy function.
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4.5.10 Conclusion

This section presents the C LGFGDmodel which is a novel convex and fuzzy energies-based

active contour model. By taking into account the local information with a distribution of

different means and variances, the proposed C LGFGD, is capable to efficiently segment

non-homogeneous regions. On the other hand, the fuzzy energy function is convex, which

makes the model invariant with respect to the initial position of the contour while giving

the same accuracy and repeatability. Furthermore, to minimize the energy function, we

calculates directly and verifies if the energy decreases when the intensity membership of

the intensity changes. By this way, it avoids the issues of the numerical stability constrains

as in the PDE method.

The list of the main contribution of the C LGFGD model consists of:

1. We have proposed a region-based AC model in the Bayesian approach that unifies

local and global to cope with IIH while providing accuracy and robustness to noise;

2. The Bayesian approach with complete statistical characteristics of local intensities is

combined with the Fuzzy clustering to deal with IIH while improving robustness to

noise;

3. We have proved that the energy functional is convex with respect to membership

function u which is the variable to determine the contour;

4. The fuzziness of the model is proven and its calculation complexity was experimen-

tally validated;

5. The C LGFGD parameters σ, λ,m have been studied and recommendations have

been derived about the values that will provide high accuracy of boundary extraction

and robustness to non-homogeneous regions with heavy noise.

The advantages of C LGFGD versus the other convex methods and level set active contours

are as follows:

a) ability of segmenting non-homogeneous regions while being independent of the initial

contour,

b) 100% of accuracy repeatability with respect to the initial position of the contour,

c) better accuracy performance in case of noise or weak boundaries, compared to the

C LR and the C LGR models,

d) from the application field point of view, the C LGFGD can be used for medical

images such as the X-Ray, CT, and MR images, as well as synthetic images.
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4.6 Comparison of the Proposed Models

In this section, we present a comparison of the proposed convex models, namely the C LR,

C LGR and C LGFGD, for

- dealing with IIH

- robustness to noise.

- accuracy

- computation time

We also compared the performance of these convex models with the non-convex model,

namely the R LGR, for the same criteria. The main difference of this model with the three

other ones is that this model is not convex. So the model depends on the initial contour.

First, let us recall briefly the proposed models

The R LGR model

This model is defined by:

E(ϕ) =

∫
Ω

(
I(x)− c1

)2
H(ϕ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−H(ϕ(x)))dx

+
λ

2

∫
Ω

(
I(x)− IL(x, ϕ)

)2
dx (4.96)

where ϕ is the level set function to determine the evolution contour with

IL(x, ϕ) = f1(x)H(ϕ(x)) + f2(x)(1−H(ϕ(x))) (4.97)

f1(x) =

∫
Ω
Kσ(x− y)I(y)H(ϕ(y))dy∫
Ω
Kσ(x− y)H(ϕ(y))dy

(4.98)

f2(x) =

∫
Ω
Kσ(x− y)I(y)(1−H(ϕ(y)))dy∫
Ω
Kσ(x− y)(1−H(ϕ(y)))dy

(4.99)

In Equations (4.97)-(4.99), Kσ and H are the constant window and the Heaviside function,

respectively.
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The C LR model

The C LR model is the first proposed convex model which is formulated as follows:

min
u1,u2
0≤f≤1

{
E(u1, u2, f) = µTVg(f) +

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx

}
(4.100)

where u is a bounded function in [0, 1] which is used to determine the evolving contour

and

TVg(f) =

∫
Ω

g(x)|∇f(x)|dx (4.101)

ein(x, u1) =

∫
Ω
Kσ(x− y)(I(x)− u1(y))

2dy∫
Ω
Kσ(x− y)dy

(4.102)

eout(x, u2) =

∫
Ω
Kσ(x− y)(I(x)− u2(y))

2dy∫
Ω
Kσ(x− y)dy

(4.103)

In Equations (4.101)-(4.103), g = 1
1+|∇I|2 (I is a given image) and Kσ are the edge function

and the Gaussian kernel with standard deviation σ.

The C LGR model

The C LGR model is the second proposed convex model which is formulated as follows:

min
u1,u2,c1,c2

0≤f≤1

{
E(u1, u2, c1, c2, f) = µ

∫
Ω

g(x)|∇f(x)|dx+ λEL(u1, u2, f) + λ2EG(c1, c2, f)

}
(4.104)

where u is a bounded function in [0, 1] which is used to determine the active contour, EL
and EG are the local and global terms, respectively:

EL =

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx (4.105)

EG =

∫
Ω

f(x)(I(x)− c1)
2dx+

∫
Ω

(1− f(x))(I(x)− c2)
2dx (4.106)

ein and eout in Equation (4.105) are determined by Equations (4.102) and (4.103) in the

C LR model.
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The C LGFGD model

The energy function of the C LGFGD model is as follows:

F (M) = µ

∫
Ω

|∇u|dx+ λFG(MG) + (1− λ)FL(ML) (4.107)

whereM = (c1, c2, ϵ
2
1, ϵ

2
2, f1, f2, σ

2
1, σ

2
2, u),MG = (c1, c2, ϵ

2
1, ϵ

2
2, u) and ML = (f1, f2, σ

2
1, σ

2
2, u).

F1 and F2 are the global and local terms:

FG(MG) =−
∫
Ω

log p(I(y), ϵ1)[u(y)]
mdy −

∫
Ω

log p(I(y), ϵ2)[1− u(y)]mdy (4.108)

FL(ML) =−
∫
Ω

[ ∫
Ω

Kσ(x− y) log px(I(y), σ1)[u(y)]
mdx

]
dy

−
∫
Ω

[ ∫
Ω

Kσ(x− y) log px(I(y), σ2)[1− u(y)]mdx

]
dy (4.109)

In FG and FL, Kσ is the Gaussian kernel with standard deviation σ while p and px are

Gaussian distributions:

p(I(y), ϵi) =
1√
2πϵi

exp

(
−
(
ci − I(y)

)2
2ϵ2i

)
(4.110)

px(I(y), σi) =
1√
2πσi

exp

(
−
(
fi(x)− I(y)

)2
2σ2

i

)
(4.111)

We will now present the results of the comparison.

4.6.1 Field of Application and Ability of the models in dealing
with intensity in-homogeneity

On the application point of view, Table 4.11 shows the ability of the proposed methods

for image types such as synthetic, X-ray, MR, CT, PET, Ultrasound and Skin lesion.

The synthesis obtained in this table is produced from the experiments on each method

in Chapter 3 and Chapter 4 as well as in Appendix E - Sensibility of the parameters

(for images with intensity in-homogeneity). In this case, we can see that the C LGR

model is the best because of the wide range of images modalities that passed successfully

IIH test. The second position in the ranking is the C LGFGD which can be applied to

all of these modalities except the PET images. The C LR and the R LGR models can

deal with the following types of images: non-homogeneous synthetic, X-ray, MR and skin

lesion/ultrasound. However, from the obtained results, we estimate that the quality of the

C LR is better than the quality of the R LGR. Note that for the ultrasound images, except

the R LGR model, we will develop the other models for this modality.



138 CHAPTER 4. CONVEX MODELS

4.6.2 CPU time

To compare the CPU time, we test the proposed models on a non-homogeneous synthetic

image, a X-ray image and a MR image. The experiments are performed on a computer

with core I7 2.8Ghz and 6Gb RAM. The accurate results of proposed models are shown

in Figures 4.41- 4.43 and the CPU time of each method is shown in Table 4.12. One may

observe that the obtained C LGR results are the smallest for all cases while the obtained

C LGFGD results are the largest for all cases. The CPU time of C LGFGD is larger than

the R LGR’s because in our program, we have to calculate an iteration for each pixel.

This is a drawback in our program. In the future, we will develop faster program. The

smallest CPU times of the C LGR and the C LR prove that the fast algorithm proposed

by Chambolle [45] is more effective compared with the PDE method (to solve the R LGR

model or the C LGFGD).

4.6.3 Accuracy by DSC value

Based on the ground truths provided by our experts, we compare the accuracy of the

proposed models for MR and CT images by calculating their DSC values [88]. We also

make the comparison on a synthetic image. The results on the accuracy of the proposed

model are presented in Figures 4.44- 4.46, while the DSC values and the corresponding

parameters are reported in Table 4.13.

Note that, we will compare all of the proposed methods on synthetic and MR images

while for CT image, we will only compare the C LGR and the C LGFGD models because

one can see from Table 4.11 that there are only the C LGR and the C LGFGD models can

apply successfully for segmenting CT images.

From Table 4.13 we can see that the C LGR and the C LGFGD give the most accu-

rate results. The results of R LGR and C LR are not better than the C LGR and the

C LGFGD, but they are also very good and the difference between them is very small.

Comparing between the DSC values of the CC LGR and the C LGFGD, one can see

that the obtained result by the C LGFGD is better than the C LGR. Accounting for the

CPU time, if we select the C LGFGD model to segment images, the obtained results are

very good but the CPU time is slow. Another effective selection is the C LGR model which

not only gives very good result but also is very fast.

4.6.4 Robustness to noise

In this section, for the purpose of comparison, we will use a homogeneous synthetic image

and a synthetic image with intensity in-homogeneity. To obtain noisy versions, we add

Gaussian noise with varying standard deviation.
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In what concern the homogeneous synthetic image, for the C LR model which uses only

the local information, we have to select large value of σ to change the local information

to the global information. For the R LGR, the C LGR and the C LGFGD models which

combine the local and global information, we can select small value of σ and small coef-

ficient of the local term to have dominant global term as explained in Sections 3.4, 4.4.4

and 4.5.8.2 which study the sensibility of the parameters of each model. The results of

the proposed models for the homogeneous synthetic image are shown in Figures 4.47- 4.50.

The maximum of the standard deviation, that the proposed models can deal with, is shown

in Table 4.14. The parameters for each model are also presented in Table 4.14. From Fig-

ures 4.47- 4.50 and Table 4.14, we found that the performance of R LGR is the best for

its ability to deal with noise standard deviation σ = 160. The second in the rankings is

the C LGFGD for dealing with standard deviation 140. The highest standard deviation of

noise that the C LGR and the C LR model can deal with, are 40 and 15, respectively.

In the case of the intensity in-homogeneity, we will still select large value of σ for the

C LR model. For the other proposed models, the selection is more difficult. We have

to select large coefficient of the local term compared with the coefficient of the global

term to deal with intensity in-homogeneity. Then, σ is selected so that it is not either

small nor large to deal with noise because if it is large, the local information becomes the

global information and the models fail to tackle intensity in-homogeneity. The results of

the proposed models for image with intensity in-homogeneity are shown in Figures 4.51-

4.54. The corresponding parameters are shown in Table 4.15. Once again, we see that the

R LGR is the best with maximum of standard deviation equal to 70, the second in the

ranking is the C LGFGD with maximum of standard deviation equal to 50, the C LGR

and the C LR are the next with maximum of standard deviation equal to 30 and 20.

4.6.5 Comparison of the C LGR and the C LGFGD
Robustness to noise

Especially, we focus to the C LGR and the C LGFGD models because of their best per-

formances in dealing with IIH and noise. In Figure 4.55, we compare the two models on a

heart MR image affected strongly by IIH. The purpose of these comparisons is to decide

which model has the best performance to deal with image affected by both IIH and noise.

One may observe that the two models give the accurate results for the original images.

However, when we add Gaussian noise with different standard deviations, the C LGFGD

model not only can tackle with higher standard deviation but also gives better results for

each standard deviation than the C LGR model . So, we can conclude that the C LGR

and the C LGFGD models give results of high accuracy when dealing with IIH without

noise. However, in the case of images affected by both IIH and noise, the C LGFGD model

gives better result than the C LGR model.
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4.6.6 Conclusion

In this Chapter, we have synthesized the proposed methods in this thesis, namely the

R LGR, C LR, C LGR and C LGFGD by comparisons on the CPU time, the DSC value,

ability for images to deal with intensity in-homogeneity and/or for dealing with noise.

The common advantage of the proposed models are to deal with intensity in-homogeneity.

Besides, each method has its advantage compared to the others:

- The R LGR model is best for dealing with noise;

- The C LR and the C LGR are the best for the CPU time, the CC LGR is also the best

for its ability to deal with intensity in-homogeneity, the accuracy of the C LGR when

comparing with the ground truth is also very good;

- The C LGFGD model gives the most accurate results compared with ground truth by

calculating the DSC value. In particular, the results of the C LGFGD model when

segmenting images proved that this model is the best to handle both IIH and noise.

However, the computation of this method is not as good as the C LGR;

- The C LGR is the best in its category of filed of applications, computation time.

So, depending on the objectives, we can recommend a suitable method to segment image.

The best parameters for the models can be seen in Table 4.16.

4.7 Conclusion

We have presented in this chapter three novel convex region-based active contour models,

namely C LR, C LGR and C LGFGD to effectively segment images with intensity in-

homogeneity while being independent of the initial contour. By defining convex energy

functions for these models, they are independent of the initial contour. Moreover, the

convexity of the energy function allows us to locate the initial contour at everywhere in

the image.The proposed models use local intensities with or without combining with global

intensities in the energy function to deal with intensity in-homogeneity in images. With the

global information in addition to the local information, the resulting model improves the

robustness to noise and weak contour. For each model, we have studied the sensibility of

the model parameters and provided recommendations about the values that will allow for

high accuracy of boundary extraction in case of IIH and robustness to non-homogeneous

regions with heavy noise (except for the first convex method). Furthermore, these models

are implemented using fats algorithms, hence suitable to treat large volume of image data

such as in medical applications.
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Table 4.11. The potential Applications of the proposed region-based active contour
models. +: good enough, ++: good, //: fail, *: to develop.

Model Synthetic X-ray MR CT PET Ultrasound Skin lesion

R LGR ++ + + // // + *

C LR ++ ++ + // // * ++

C LGR ++ ++ ++ ++ + * ++

C LGFGD ++ ++ ++ ++ // * +

The results, analyses and comparisons on synthetic and medical images with other

active contour methods show the performance of the proposed methods.

A synthesis of the three proposed convex models allow us conclude that the C LGR and

the C LGFGD have better performance. However, based on the Gaussian distribution of

intensity for all the modalities considered in our experiences, the C LGR and the C LGFGD

can handle IIH on different medical modalities such as the X-ray, MR and CT images.

However, the C LGR outperforms C LGFGD because this latter cannot correctly segment

PET image. On the other hand, the advantage of the PET over the C LGR is its great

ability to deal with IIH while being robust to severe noise.

Table 4.12. CPU time and parameters for Figures 4.41-4.43 (computer with core I7
2.8Ghz, ram 6G)

Figure Model CPU time σ µ λ λ2

R LGR 0.52 9 x 1000 x

Figure 4.41 C LR 0.11 5 1 x x

88× 53 C LGR 0.09 5 1 1 0.01

C LGFGD 3.08 7 1 0.01 x

R LGR 5.4 35 x 10 x

Figure 4.42 C LR 0.73 22 1 x x

103× 131 C LGR 0.39 7 1 1 0.1

C LGFGD 104.44 15 1 0.01 x

R LGR 0.41 7 x 10 x

Figure 4.43 C LR 0.38 13 0.1 x x

112× 129 C LGR 0.29 11 0.1 1 0.1

C LGFGD 58.71 15 1 0.01 x
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(a) Original image (b) R LGR (c) C LR (d) C LGR (e) C LGFGD

Figure 4.41. Result of the R LGR, the C LR, the C LGR and the C LGFGD models on
a nonhomogeneous image.

(a) Original image (b) R LGR (c) C LR (d) C LGR (e) C LGFGD

Figure 4.42. Result of the R LGR, the C LR, the C LGR and the C LGFGD models on
a X-ray image (source http://www.unc.edu/~liwa/).

(a) Original image (b) R LGR (c) C LR (d) C LGR (e) C LGFGD

Figure 4.43. Result of the R LGR, the C LR, the C LGR and the C LGFGD models on
a heart MR image (source http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm).

http://www.unc.edu/~liwa/
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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(a) Original image (b) Original image

(c) R LGR (d) C LR (e) C LGR (f) C LGFGD

Figure 4.44. Accurate results of the R LGR, the C LR, the C LGR and the C LGFGD
models on a nonhomogeneous image.

(a) Original image (b) Original image

(c) R LGR (d) C LR (e) C LGR (f) C LGFGD

Figure 4.45. Accurate results of the R LGR, the C LR, the C LGR and the C LGFGD
models on a heart MR image (source http://www4.comp.polyu.edu.hk/~cslzhang/RD/

RD.htm).

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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(a) Original image (b) Original image

(c) C LGR (d) C LGFGD

Figure 4.46. Accurate results of the C LGR and the C LGFGD models on a thorax
CT image (images courtesy of J.-M. Rocchisani, Avicenne-Medicine Nucleaire Hospital,
Bobigny, France).

Table 4.13. DSC values and parameters for Figures 4.44-4.46

Figure Model DSC (%) σ µ λ λ2

R LGR 98.51 9 x 1000 x

Figure 4.44 C LR 98.45 5 1 x x

(synthetic) C LGR 98.54 5 1 1 0.01

C LGFGD 98.54 7 1 0.01 x

R LGR 93.44 35 x 10 x

Figure 4.45 C LR 93.19 22 1 x x

(MR) C LGR 95.44 7 1 1 0.1

C LGFGD 96.29 15 1 0.01 x

R LGR x x x x x

Figure 4.46 C LR x x x x x

(CT) C LGR 95.24 11 0.1 1 0.1

C LGFGD 97.14 20 1 0.01 x
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(a) Original image (b) SD = 130 (c) SD = 160 (d) SD = 180

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.47. Results of the R LGR on a synthetic homogeneous image and its noisy
version with varying standard deviation (SD).

(a) Original image (b) SD = 10 (c) SD = 15 (d) SD = 20

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.48. Results of the C LR on a synthetic homogeneous image and its noisy version
with varying standard deviation (SD).
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(a) Original image (b) SD = 30 (c) SD = 40 (d) SD = 50

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.49. Results of the C LGR on a synthetic homogeneous image and its noisy
version with varying standard deviation (SD).

(a) Original image (b) SD = 130 (c) SD = 140 (d) SD = 160

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.50. Results of the C LGFGD on a synthetic homogeneous image and its noisy
version with varying standard deviation (SD).
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Table 4.14. Maximum of the standard deviations (that the proposed models can deal
with) and parameters for Figures 4.47-4.50.

Model Standard deviation σ µ λ λ2

R LGR 160 3 x 100 x

C LR 15 25 1 x x

C LGR 40 1 1 0.01 1

C LGFGD 140 1 1 0.99 x

Table 4.15. Maximum of the standard deviations (that the proposed models can deal
with) and parameters for Figures 4.51-4.54.

Model Standard deviation σ µ λ λ2

R LGR 70 3 x 10 x

C LR 20 25 1 x x

C LGR 30 1 1 1 1

C LGFGD 50 1 1 0.5 x
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(a) Original image (b) SD = 30 (c) SD = 70 (d) SD = 80

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.51. Results of the R LGR on a synthetic nonhomogeneous image and its noisy
version with varying standard deviation (SD).

(a) Original image (b) SD = 10 (c) SD = 20 (d) SD = 30

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.52. Results of the C LR on a synthetic nonhomogeneous image and its noisy
version with varying standard deviation (SD).
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(a) Original image (b) SD = 10 (c) SD = 30 (d) SD = 40

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.53. Results of the C LGR on a synthetic nonhomogeneous image and its noisy
version with varying standard deviation (SD).

(a) Original image (b) SD = 30 (c) SD = 50 (d) SD = 60

(e) Result of (a) (f) Result of (b) (g) Result of (c) (h) Result of (d)

Figure 4.54. Results of the C LGFGD on a synthetic nonhomogeneous image and its
noisy version with varying standard deviation (SD).
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(a) Original image (b) SD = 5 (c) SD = 10 (d) SD = 15

(e) Results of the C LGR model

(f) Results of the C LGFGD model

Figure 4.55. Results of the C LGR and the C LGFGD on a hear MR image (source
http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm) affected strongly IIH and its
noisy version with varying standard deviation (SD).

http://www4.comp.polyu.edu.hk/~cslzhang/RD/RD.htm
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Table 4.16. Suitable values of parameters for segmentating images when fixing µ = 1
and λ2 = 1. (* : subjective evaluation without ground truth from experts).

Model Type of image Parameter Value

- Homogeneous object and weak IIH of the background: 7 ≤ σ

- Weak IIH: 5 ≤ σ ≤15

Synthetic
σ

- Strong IIH of the object and weak IIH of the background: 29 ≤ σ ≤ 41

- Strong IIH: 40 ≤ σ ≤ 114

λ 1000 ≤ λ

σ 9 ≤ σ ≤ 15
R LGR X-ray∗

λ 9 ≤ λ

- Weak IIH of the object: 26 ≤ σ ≤ 30

MR
σ

- Strong IIH of the object: 59 ≤ σ

λ 60 ≤ λ

σ 5 ≤ σ ≤ 9
Ultrasound∗

λ 9 ≤ λ

- Homogeneous object and weak IIH of the background: 7 ≤ σ

- Weak IIH: 5 ≤ σ ≤ 10
Synthetic σ

- Strong IIH of the object and weak IIH of the background: 9 ≤ σ ≤ 17

C LR - Strong IIH: 17 ≤ σ ≤ 25

X-ray∗ σ 5 ≤ σ ≤ 20

- Weak IIH of the object: 7 ≤ σ ≤ 20
MR σ

- Strong IIH of the object: 7 ≤ σ

- Homogeneous object and weak IIH of the background: 7 ≤ σ

- Weak IIH: 5 ≤ σ ≤ 10
σ

- Strong IIH of the object and weak IIH of the background: 9 ≤ σ ≤ 17

- Strong IIH: 17 ≤ σ ≤ 21

- Homogeneous object and weak IIH background: 1000 ≤ λ

- Weak IIH: 1000 ≤ λ

C LGR
λ

- Strong IIH of the object and weak IIH of the background: 100 ≤ λ

- Strong IIH: 10000 ≤ λ

σ 11 ≤ σ ≤ 20
X-ray∗

λ 10 ≤ λ ≤ 20

- Weak IIH of the object: 7 ≤ σ ≤ 20

MR
σ

- Strong IIH of the object: 13 ≤ σ

λ 1000 ≤ λ

σ 12 ≤ σ
CT

λ 10 ≤ λ

- Homogeneous object and weak IIH of the background: 8 ≤ σ

σ - Weak IIH: 7 ≤ σ ≤ 10

- Strong IIH: 26 ≤ σ ≤ 30

Synthetic - Homogeneous object and weak IIH of the background: 0< λ < 1

λ - Weak IIH: 0 < λ ≤ 0.01

- Strong IIH: λ ≤ 0.1

C LGFGD σ 15 ≤ σ ≤ 27
X-ray∗

λ 0.001 ≤ λ ≤ 0.1

- Weak IIH of the object: 10 ≤ σ ≤ 13
σ

- Strong IIH of the object: 16 ≤ σ
MR

- Weak IIH of the object: 0 < λ ≤ 0.01
λ

- Strong IIH of the object: 0 < λ ≤ 0.1

σ 19 ≤ σ ≤22
CT

λ 0 < σ ≤ 0.01
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5.1 Introduction

In medical imaging, segmentation is necessary for detection of pathological regions such

as tumors or lesions [9, 27, 11]. With the newest imaging technologies and computer vi-

sion, segmentation can help improving the diagnostics, monitoring and staging of patients.

Despite the recent acquisition technologies and performances of reconstruction algorithms,

the quality of medical images can be affected by inherent noise or artifacts involving PET

(Positron Emission Tomography), MR (Magnetic Resonance) images as well as low dose

CT (Computed Tomography) images [89], making it difficult to distinguish the organ struc-

ture. This in turn makes the segmentation more difficult [90]. An important obstacle for

the effective segmentation is the intensity in-homogeneity, which is due to a typical phe-

nomenon known as shading artifact in medical images. It behaves as a relative variation

of the intensity in the object of interest.

This chapter presents applications

1. of the C LR model for dot extraction from skin lesion images;

2. of the C LGFGD model for extracting boundaries of lesion regions from skin lesion

images;

3. of the C LGR model for 3D CT images.

5.2 Dot Extraction from Skin Lesion Images

A computer automated interpretation of classic melanoma dots and globules could augment

the clinical visual diagnosis of melanoma, increase the probability of biopsy for suspicious

skin lesions, lead to earlier pathological diagnosis of melanomas, reduce the biopsy rates of

benign lesions, and assist in the screening of melanomas by lesser-experienced operators.

The computer automated interpretation of skin lesions could identify the classic melanoma

features of dots and globules of dark tissue superimposed over lighter colored tissue.

The method developed hereafter is designed for accurate boundary extraction of dots

typical of melanoma. The finding of dots is used to produce a numerical measurement

of the probability of the lesion being malignant. This probability is used to influence the

clinical dermatologist’s opinion: If the clinical visual opinion is a low probability and biopsy

would not be done or postponed, a high computer generated probability score could change

the clinical opinion and result in a biopsy being performed earlier, potentially leading to

an earlier diagnosis, treatment, and improved patient outcome.

This study uses skin lesion images [91] that have been biopsied and pathologically diag-

nosed as melanoma and images which are benign. For every image a boundary extraction

ground truth and clinical diagnosis of dots has been made.
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Skin lesion dots are features which play significant role for melanoma diagnosis. In the

clinical practice there are multiple procedures and rules, used by dermatologists, which

involve dots to classify a skin lesion as melanoma.

The ABCD rule (Asymmetry of the lesion, Boundary abrupt, Colors number, Dermo-

scopic Structures) [92] uses dots in the D component. At least three dots are necessary to

be observed in order to increase the likelihood of melanoma. The 7-points rule [93] applies

two criterions. The first one checks for atypical pigment network, blue-whitish veil, and

atypical vascular pattern. The second one is searching for irregular dots, irregular streaks,

irregular pigmentation, and regression structures.

The Menzies method [94] uses a set of negative features and a set of positive ones.

The negative category consists of: symmetry of pattern, presence of a single color. The

positive one contains: peripheral black dots, multiple brown dots, multiple blue/gray dots,

blue-white veil, radial streaming, scar-like depigmentation, multiple colors, and broadened

network. Hence, the dots are the part of the second set and a lesion is classified as melanoma

if none of the negative features is present and at least one of the positive features is found

in the skin lesion.

From the above rules, finding more than two dots in skin lesions increases the probability

of a melanoma diagnosis. Vertergaard et al. [95] found the sensitivity for melanoma

detection using the naked eye was 74% and dermoscopy, a non-invasive in vivo observation

using optical magnification, was 90%. This illustrates that automatic methods of melanoma

identification have the potential of increasing melanoma detection.

The automatic extraction of lesion’s boundary and features is a subject of interest

among the image processing and analysis society. In [96] a level set approach is applied

to extract the lesion’s boundary from noisy images. In [97] a gradient vector flow has

been employed to tackle this problem. The lesion boundary, the boundary of the different

lesion’s colored regions and the number of colors present in the lesion are extracted in [98]

by applying an active contour based on the geometric heat differential equation. But this

model was unsuccessful to determine the lesion’s dots from an image.

In [99] the authors present an approach capable of defining pigment networks by using

graphs. To do so the method “removes other round structures such as globules, dots, and

oil bubbles, based on their size and color” [99].

To the best of our knowledge there is no method in the literature capable of automatic

skin lesion dots extraction from images. One of the reasons is that dots can be difficult

to observe and missed by the clinician. It is also difficult to automatically extract the

boundary of lesion’s dots due to their size, location, ill-defined boundaries, background

color, and the fact that they are surrounded by other skin artifacts considered as noise:

other lesions structures, oil bubbles, other injuries.

This section utilizes the C LR model presented in Section 4.3.1 for automatic dots
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extraction from skin lesion images. Let us recall here the C LR model:

min
u1,u2
0≤f≤1

{
E(u1, u2, f) = µTVg(f) +

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx

}
(5.1)

where Ω ⊂ R+ is a bounded image domain, I : Ω → R+ is a given image on this domain, x is

a pixel in Ω, u1 (u2) is the smooth function that approximates local intensity inside (outside,

respectively) the contour, µ denotes a positive constant, f is a bounded level set function

in [0, 1], g is an edge detector function so that its value vanishes at object boundaries.

The energy function (5.1) contains three terms: the first one is the regularization term,

the second and third terms are the data fidelity ones. The regularization term TVg(f) is

defined as:

TVg(f) =

∫
Ω

g(x)|∇f(x)|dx. (5.2)

where g(x) = 1
1+|∇I(x)|2 .

The second and third term are the data fidelity terms. Here ein (eout) represents the

local differences in intensity between the average intensity u1 (u2, respectively) and the

image I. Theses data fidelity terms are computed within the local Gaussian Kσ:

ein(x, u1) =

∫
Ω
Kσ(x− y)(I(x)− u1(y))

2dy∫
Ω
Kσ(x− y)dy

(5.3)

eout(x, u2) =

∫
Ω
Kσ(x− y)(I(x)− u2(y))

2dy∫
Ω
Kσ(x− y)dy

(5.4)

where x and y are pixels, andKσ(u) =
1√
2πσ

exp
(
− |u|2

2σ2

)
, where σ is the standard deviation.

In this section, we test the C LR model on a set of skin lesion images with ground truth

about existence of dots provided by clinician. A second clinician defined the dots manually

as a ground truth for comparison. For verification purposes the ground truth definition of

dots was performed twice along with the automated results obtained by our method C LR.

Recall that our goal is to detect the dots in these images. Since the dots are small

distinct objects, we selected large values of µ (see Section 4.3.4) to detect as many objects

as possible at the finest level. To demonstrate the efficiency of the C LR model, we compare

our results with the ground truth of our expert, as well as with the results of smaller value

of µ.

In addition, comparisons with the convex model of Chan et al. [35] (convex Chan-Vese)

and the LBF model [77] are shown to emphasize that C LR performed more accurately

and consistently.

We use MATLAB r2008b to implement our algorithm on a computer with Intel Core

2 Duo CPU 2.93GHz and 4GB RAM. The images used for the experiments are in the
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(a) (b)

(c) µ = 1
2 .10

4 (d) µ = 1
3 .10

4 (e) µ = 1
5 .10

4 (f) µ = 1
5 .10

3

(g) µ = 1
2 .10

4 (h) µ = 1
3 .10

4 (i) µ = 1
5 .10

4 (j) µ = 1
5 .10

3

Figure 5.1. Test on a skin lesion image with different values of µ. (a) Original image.
(b) Ground truth marked with green dots. (c) (d) (e) (f) Results by the C LR model. (g)
(h) (i) (j) Results of the convex Chan-Vese model [35].

size 768 512. The parameter σ is chosen 3 for all experiments. The other parameters in

Algorithm 4.1 (Section 4.3.3) are selected as follows: θ = 0.1, τ = 0.1 and αthres =
1
2
. The

tested images are from Dr. Nikolay Metodiev Sirakov and Dr. Richard Selvaggi (Texas

A&M University Commerce in USA).

Figure 5.1 shows a comparison between C LR and the convex Chan-Vese model [35].

Both models used the same parameters as described in Section 4.3.4. An observation of

the results obtained in Figure 5.1 tells that when µ increases, the number of extracted non-

dots regions (False Positive - FP) increases as well. The most accurate result confirmed

by our physician was obtained for µ = 1
3
.104 (Figure 5.1d). To decrease the subjectivity,

the image has been considered three times on different dates. With µ = 1
3
.104, the dots

have been successfully extracted, while the convex Chan-Vese model [35] did not find any

dot. Comparing the results obtained by C LR with the ground truth, we can see that the

C LR model cannot detect all dots at the right part of the lesion regions (False Negative

- FN). The reason is that the intensities of the dots in these regions are very similar with

the neighboring pixels. However, the multiple dots extracted (51 true detected dots on
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(a) (b)

(c) µ = 104 (d) µ = 1
2 .10

4 (e) µ = 1
3 .10

4

(f) µLBF = 103 (g) µLBF = 1
2 .10

3 (h) µLBF = 1
3 .10

3

Figure 5.2. Test on a skin lesion image with different values of µ. (a) Original image.
(b) Ground truth in green. (c) (d) (e) Results of the C LR model. (f) (g) (h) Results of
the LBF model [77].

69 ground truth dots) are sufficient for a dermatologist to increase the probability for

melanoma using any of the clinical methods described in [92, 93, 94].

Figure 5.2 depicts a comparison between the C LR and the LBF models [77], which

utilizes local information as well. Both models used the same set of parameters with the

exception that λ for the LBF, µLBF , is 10 times larger than µ for C LR. The reason is

that for larger values, LBF misses almost all dots (large FN). Studying Figure 5.2 one

may observe that the number of false positive (FP-non dot regions) extracted by LBF

is significantly larger than the FP extracted by the C LR. In the same time the LBF is

detecting less true positive (TP-real dots) than the C LR does.

Figure 5.3 depicts an image with a few dots but sufficient to increase the likelihood

of melanoma. We have used again a very large value of µ = 1
4
.105 (Figure 5.3c) and

extracted 5 out of 7 dots in the image. But their influence on the likelihood for melanoma

is significant, because more than three dots are sufficient. Note that the detection of these
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(a) (b) (c) µ = 1
4 .10

5

Figure 5.3. Test on a skin lesion image. (a) Original image. (b) Ground truth: green
dots pointed by arrows. (c) Result of the C LR model: yellow dots pointed by arrows.

dots is very difficult for dermatologist, too.

(a) (b)

(c) µ = 1
25 .10

5 (d) µ = 1
5 .10

4 (e) µ = 103

Figure 5.4. Test on a skin lesion image with different values of µ. (a) Original image.
(b) Ground truth in green. (c) (d) (e) Results of the C LR model.

Another experiment is shown in Figure 5.4. In this figure, we show the original image

(Figure 5.4a), the ground truth (Figure 5.4b), and our results with a number of µ values

(Figure 5.4c-5.4e). The most accurate results was obtained with µ = 1
25
.105. In this

experiment, one may observe the limitations of the C LR method as in the two experiments

described above (Figures 5.1 and 5.3), where dots with low contrast are not detected.

In Figure 5.5, we show another experiment on a skin lesion image which has a large

number of dots. In this figure, the two most accurate and expert confirmed results are

shown in Figure 5.5c-5.5d. Figure 5.5b shows some of the dots missed by the C LR (FN)

and painted in red by our medical expert. The rules for melanoma diagnosis [92, 93, 94, 95]
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(a) (b)

(c) µ = 1
5 .10

4 (d) µ = 1
3 .10

4

Figure 5.5. Test on a skin lesion image with different values of µ. (a) Original image.
(b) In red are shown dots that the C LR model has missed. (c) (d) Results of the C LR
model.

state that the missed dots do not affect the diagnostic conclusion in this particular case.

The result with µ = 1
5
.104 (Figure 5.5c) concurs well by estimation of our physician.

Another useful result for a dermatologist is obtained with µ = 1
3
.104 (Figure 5.5d).

Figure 5.6 and Figure 5.7 show another accurate results obtained by the C LR method

on skin lesion images along with the ground truths of our physician. One may observe

that the C LR model gives results very close to the ground truth, but may detect some

FP points outside of the lesion regions (black circle (Figure 5.6f)). Although they are skin

dots, the dermatologist considers them as artifacts. To overcome this problem, the method

given in [98] may be applied to remove the outliers.

Further, six lesion images without dots are shown in Figure 5.8. We tested our C LR

method on these images with a large amount of µ values from 1 to 106. The obtained

results show that the C LR method did not detect any dots in the skin lesion regions.

These results were confirmed by our physician and the ground truth information. The

results demonstrate once again that the C LR model is suitable to segment the dots in

skin lesion images.

Finally, we know that a robust and meaningful evaluation metric is key to objectively

compare the results obtained using different algorithms. In this challenge we will evaluate

the C LR performance by finding the precision and recall measures of the method under

evaluation. In order to produce such measurements, the following notions will be defined:
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(a) (b) (c) (d)

(e) µ = 1
8 .10

5 (f) µ = 1
8 .10

6 (g) µ = 104 (h) µ = 104

Figure 5.6. Test on four skin lesion images. First row: Ground truths in green. Second
row: Results of the C LR model in yellow.

(a) (b) (c) (d)

(e) µ = 1
5 .10

4 (f) µ = 1
25 .10

5 (g) µ = 1
2 .10

4 (h) µ = 1
3 .10

4

Figure 5.7. Test on four skin lesion images. First row: Ground truths in green. Second
row: Results of the C LR model in yellow.

+ True positive (TP): Any location provided by the algorithm that is within an embo-

lus, or a distance lower than ϵ - a given small value - from the embolus. If there are

several detection locations assigned for the same embolus, only the detection with

the highest confidence score will be taken into account.

+ False positive (FP): Any location that is outside or at a distance greater than ϵ of
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(a) (b) (c)

(d) (e) (f)

Figure 5.8. Six images without dots.

(a) Gound true dots
(green)

(b) RCAC detected dots
(yellow and blue)

Figure 5.9. Illustration for TP (yellow), FP (blue) and FN (black circle).

any embolus.

+ False negative (FN): any embolus without any detection inside or closer than ϵ to it.

Figure 5.9 provides an illustration for TP, FP and FN on a portion of skin lesion region.

In this figure, Figure 5.9a presents the ground true dots marked by our experts while

Figure 5.9b shows the dots (in yellow and blue) detected by the C LR method. Compared

with the ground true dots, we observe that there are three C LR detected dots in yellow

which are true dots (TP = 3); there is one C LR detected dot in blue which is not true

dot (FP = 1); there is one C LR missed dot (FN = 1) which is marked by the black circle.
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The formulas to calculate precision and recall are as follows:

precision =
TP

TP + FP
(5.5)

recall =
TP

TP + FN
(5.6)

Note that in some lesion images no dots are present (Figure 5.8). In these cases if

the automated method does not detect any dot, then the result is 100% correct. But

Equations (5.5) and 5.6 will give precision = recall = 0 (numerically, these equations

will yield 0 if FP is different than 0), which does not represents the performance of the

method. Also, one has to take into account the fact that at least three dots are necessary

to be detected in order to increase the likelihood of melanoma. Thus, for lesion images

where no dots are present we suggest the following measurement for precision and recall:

- FP = 0 then precision = recall = 100%;

- FP = 1 then precision = recall = 70%;

- FP = 2 then precision = recall = 40%;

- FP > 2 then precision = recall = 0.

Other border cases appear if two or one dot is given as a ground truth. If 1 is given as

a ground truth and if the method detects no dot then FN = 1, which implies that TP =

0. Therefore Equations (5.5) and 5.6 will give a result zero, which shows a very big error.

On the other hand, this result does not affect the diagnosis. Thus, we suggest precision =

recall = 50%.

Similar reasoning applies if 2 dots are given as a ground truth and FN = 2. Follows

that TP = 0 and Equations (5.5) and 5.6 will give a result 0. Thus we suggest for this case

precision = recall = 30%.

If two dots are given as a ground truth and FN = 1, follows that the TP = 1 and

Equation (5.6) will give a recall of 50% while the value of Equation (5.5) will depend on

the FP detected by C LR.

For each of the above border cases three additional cases could be added with respect

to the number of FP (1, 2, more than 2). To generalize such amount of particular cases

a new statistical approach is necessary. Since this is a complex study which may involve

intervals of confidence. Such a study is a subject of development in the future.

On the other hand, for the images with ground truth of more than 3 dots, if the precision

is close to 1 (is close to 100%), there are only a few FP dots detected. If the recall is close

to 1 (is close to 100%), there are only a few true dots which are missed (FN). The precision

and recall for the images in this paper are reported in Table 5.1.
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Table 5.1. The precision and recall of the C LR

Fig. Precision (%) Recall (%)

5.3c 86 75

5.6e 69 69

5.6f 67 50

5.6g 58 73

5.6h 50 75

5.7e 100 67

5.7f 100 56

5.7g 83 71

5.7h 100 50

5.8(all) 100 100

In addition to the results shown in Figures 5.1 to 5.8 (19 images), experiments were

performed with 15 new skin lesion images. For each of these images a ground truth about

existence of dots is determined by a clinician and a second one independently marked the

dots manually for the comparison purposes with the C LR performance. Thus, for each of

the additional 15 skin lesion images, the precision and recall have been calculated using

Equations (5.5) and (5.6) and the border cases introduced above. Further, for the total

of 34 results obtained by the C LR, from 34 skin lesion images, average, min, max and

standard deviation were calculated for precision and recall. The results are presented in

Table 5.2.

Table 5.2. The precision and recall of the C LR

Precision (%) Recall (%)

average 74 73.7

min 11 13

max 100 100

standard deviation 30.3 27

Out of the 34 images, 9 are defined by ground truth without dots, 6 lesions contain 1

or 2 dots. The remaining 19 images contain 3 or more dots.

The min precision and recall calculated in Table 5.2 corresponds to a benign lesion

image where the ground truth determined 9 dots, the C LR defined TP = 1, FN = 8, FP
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= 7. The max of 100% comes from benign and malignant lesion image with less than 3

dots. One cancer lesion with a few dots provided 100% precision and 50% recall. Other

4 cancer images with multiple dots showed precision in the eighties and recall above the

average.

There are multiples images where more than twenty dots are present. The precision

and recall for these images is below the average. But even if the precision and recall are

below the average the obtained dots are well above three. Therefore they are sufficient to

increase the probability of melanoma.

We have proved the C LR model capable of detecting dots in skin lesion images. The

results of the C LR compared with the ground truths are promising. Using large value of

µ, the parameter controls the length of the contour such that the C LR model gives results

on extracting the dots as many as possible and sufficiently for a dermatologist to reach a

decision about the likelihood of melanoma. Note that presences of more than two dots, in

a lesion, are sufficient for a doctor to diagnose an increase of the likelihood of melanoma

[92, 93, 94], which will require biopsy.

However, a limitation of the C LR model is its difficulty to extract dots having low

contrast with the surrounding skin. The lowest recalls on the sample space of 34 images

are obtained from high number of FN. They come from missed dark dots on dark lesion,

as shown in Figures 5.6f and 5.6h (see also Table 5.1). Note that these dots are at risk for

being missed by the clinician, too. In the future, we will work to find ways to adapt the

C LR model so that the dots with low contrast can be detected as well.

Conclusion

We have applied the Convex local region-based to detect small objects such as dots in lesion

skill images. Due to the regularization term which combines gradient information on image

data with the total variation of the level set function, the detection of dots is enhanced

while maintaining smoothness of the curve. This results in accurate and reliable detection

of dots. This confirm the potential applicability of the method as computerized tool for

the detection and diagnosis of skin lesion. We can extend the method in the Bayesian

framework to benefit from the fully statistical distribution. For example, if the standard

deviation is taken into consideration, the detection may be improved with low contrast

5.3 Lesion Region Extraction from Skin Lesion

Images

This section will complete for the previous section to lesion region extraction but utilizing

the C LGFGD model. As the C LGFGD is designed with full local statistics, it is able to
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detect regions of different textures such as lesion region. We have applied the C LGFGD

model to skin lesion images to extract their boundaries. To perform a statistical evaluation

of C LGFGD, set of experiments were performed with 24 skin lesion images (which are

from Dr. Nikolay Metodiev Sirakov and Dr. Richard Selvaggi (Texas A&M University

Commerce in USA)). Figure 5.11 shows four of them. Except the lesion, these images are

often populated with other injuries, oil bubbles and hair which make the automatic lesion

boundary extraction very difficult task. A ground truth is provided for every image from

the collection. Three dermatologists were involved in the production of each ground truth

boundary. To assess the accuracy of C LGFGD, we calculate the DSC, the recall and the

precision values for each automatic extraction with respect to the ground truth for every

image.

Different from estimating dot extraction that the precision and recall are calculated

based on number of dots, to estimate region extraction, the precision and recall are calcu-

lated based on number of pixels of the regions:

recall =
N(S1 ∩ S2)

N(S2)
× 100% =

TP

TP + FN
(5.7)

precision =
N(S1 ∩ S2)

N(S1)
× 100% =

TP

TP + FP
(5.8)

where S1 and S2 represent the active contour segmentation and the ground truth, re-

spectively, N(·) indicates the numbers of pixels in the enclosed set. Now, denote by

TP = N(S1 ∩ S2) - true positive, FN = N(S2\S1) - false negative, FP = N(S1\S2) -

false positive and TN = N(Ω\S2) - true negative. One may observe in Figure 5.10 an

illustration for the above notions. From the above expressions we conclude that for:

+) high recall and high precision: the pixels in these kind of result are mostly in the

ground truth such that TP is large, while FN and FP are small,

+) high recall and low precision: most of the pixels in the result are also pixels in the

ground truth but there are also pixels which are not in the ground truth. Thus TP

and FP are large while FN is small,

+) low recall and high precision: there are only a few FP, but the FN are relatively large

with respect to TP,

+) low recall and low precision: both FP and FN are relatively large with respect to the

TP.

For the skin lesion images shown on Fig. 5.11, we have calculated the recall, the precision

and the DSC, and posted the values on Table 5.3. The same attributes were determined

for the collection of 24 skin lesion images and the calculated values are given on Table 5.4.
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Figure 5.10. An illustration for TP, FP, FN and TN. S2 is the region inside the red line,
S1 is the region inside the blue line.

Figure 5.11. First to third columns: original skin lesion image, gound truth and
C LGFGD result.

One may tell from there that the minimal precision is 95.73%, the max is 100% and the

average is 99.72%. Follows that most of the pixels in the results belong to the ground truth

and the number of the FP pixels detected by the active contour is very small. This fact

is confirmed in Figure 5.11. This is the reason for the relative large minimal DSC values
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Table 5.3. Recall, precision and DSC values for the third column of Figure 5.11

Row 1 Row 2 Row 3 Row 4

recall (%) 81.35 74.55 91.89 90.77

precision (%) 99.97 99.99 99.98 100

DSC (%) 91.50 85.42 95.77 95.16

Table 5.4. Min, max, average, standard deviation of the recall, precision and DSC values
of 24 skin lesion images.

min max average standard deviation

recall (%) 24.26 91.89 71.77 16.38

precision (%) 95.73 100 99.72 0.90

DSC (%) 39.05 95.77 82.23 12.83

in Table 5.4. The large minimal DSC suggests also a large difference between the FP and

FN. Since FP is small, FN is relatively large. The latter conclusion is confirmed also by

the relatively low recall average of 71.77%.

Another contribution of the present study is the calculation of the confidence intervals

into which fall the mean of the recall and the accuracy of image segmentation by the

C LGFGD. There are different approaches in the literature used to calculate the interval

of confidence for the mean of a large population using the mean and the standard deviation

of a sample space. The application of a particular formula depends on the size of the sample

space and the nature of the performed experiments: binomial or non-binomial trial.

The extraction of boundaries by the C LGFGD and the comparison with ground truth

boundaries constitutes a non-binomial trail. Also the number of the sample is 24, which is

considered as small. Therefore we assume a t−distribution and apply the following formula

to calculate intervals of confidence:

X̄ ± tα
2
,n−1

S√
n

(5.9)

In Equation (5.9), X̄ is the mean of the sample space, tα
2
,n−1 is determined from a table

on the base of α
2
which is a parameter that depends on the confidence percentile required.

(n − 1) is a degree of freedom. Further S is the standard deviation of the sample data,

while n gives the number of the elements in the sample.

Applying Equation (5.9), we have calculated that with 95% of confidence we may state

that the mean of the precision of boundary detection with the C LGFGD of a large popu-

lation of skin lesion images will belong to the interval [99.4, 100]. With 95% of confidence
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we may state that the mean of the DSC for a large set of images will belong to the in-

terval [76.82, 87.64], and the mean of the recall for a large set of images will belong to

[64.86, 78.68].

Conclusion

We have evaluated the performance of the proposed C LGFGD model for the extraction

of lesion region in skin images. The statistical quality measures indicate promising perfor-

mance of the method. As the C LGFGD is designed with full local statistics, it is able to

detect regions of different textures such as lesion region and the background of different

mean or variance, since the curve is guided by the difference in distribution. In the future,

we can improve the method with respect to the computation time. Note that, in the pre-

vious section, sometime we need extract the lesion region before applying the C LR model

to detect dots in the lesion region. Therefore, the C LGFGD model can be utilized as the

first step when detecting dots from skin lesion images.

5.4 3D Medical Images

Volume segmentation of medical images is an important part for diagnosis and analysis

of anatomical data. The 3D medical images obtained from the MRI, the CT or PET

technologies, offer high benefices for diagnosis, radiotherapy planning, surgical planning

and simulation. However, segmentation of 3D volume still faces challenges due to many

issues: large variability in organs and tissues, complex structures and variability in textures

of many adjacent tissues.

This is necessary to provide segmentation method suitable for medical images. Here-

after, we will present some results of the C LGR model for 3D medical images. They are

considered as beginning results for our perspectives for one or more applications such as

detection of lung, airways or lung nodule for cancer detection.

In this section, we adapt our algorithm for 2D images to segment 3D thorax and heart

CT images. The 3D images are obtained from our experts and from the databases [100].

Each image 3D is obtained from 154 to 260 slices. The thickness of slices varies between

1.5mm and 1.9mm. Note that, the slices of a 3D image have the same thickness, while the

thickness of two slices in two different 3D images may be different. The 2D dimension of

each slice vary between 250× 350 and 340× 460. As the thickness of slices, the slices of a

3D image have the same dimension, while the dimension of two slices in two different 3D

images can be different. Table 5.5 shows the information of the 3D CT images that we

present in this paper.

From our experts, we have two 3D thorax CT images. The obtained results are quite

good as proven by our expert. We present a result of the C LGR in Figure 5.12. We can
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(a)

(b) (c)

Figure 5.12. Experiment on a thorax 3D CT image. (a) Surface of a thorax. (b) and (c)
The inside of (a) with two different observations.

see the surface of the lung segmented by the C LGR model in Figure 5.12a. Moreover, we

show in Figures 5.12b-5.12c the inside of the lung with two different observations. One

can see the bronchi as well as the bronchial tree of the lung in the images. Further, in

Figure 5.13, we present a zoom-in a sub-part of the top left-lung presented in Figure 5.12b

and Figure 5.12c to see more clearly the bronchiole of the lung.

From the database [100], we obtain heart 3D images. The obtained results are very

promising. Hereafter, we report four segmentation results in Figure 5.14. From these

results and our experts, we can determine the ventricles, the atrium, the vena cava, the

pulmonary trunk, the coronary arteries and the aorta of the heart. However, these parts

are not distinguished by the different color in our results, because there are only two regions



5.5. CONCLUSION 171

(a) (b)

Figure 5.13. Zoom-in of Figure 5.12b (a) and Figure 5.12c (b).

(object and background) in our C LGFGD model. This is considered as a limitation of

the C LGFGD model, as well as most of other models assuming two regions in an image.

In Figure 5.15, we mark the heart anatomy in different colors (for Figure 5.14a). Our

perspective for this section is to be able to automatically mark the human anatomy in a

3D image.

Table 5.5. Information of 3D images in this section 5.4.

Number Thickness Dimension Resolution
Figure

of slices of a slice of a slice (mm3)

5.12a 130 1.5mm 257× 459 1.17× 1.17× 1.5

5.14a 321 1.5mm 333× 308 0.40× 0.40× 1.5

5.14b 286 1.5mm 361× 388 0.37× 0.37× 1.5

5.14c 209 1.5mm 357× 408 0.40× 0.40× 1.5

5.14d 255 1.5mm 368× 335 0.40× 0.40× 1.5

5.5 Conclusion

In this chapter, we have just presented three applications for medical and skin lesion

images: the first one is the application of the C LR model for dot extraction from skin

lesion images (Section 5.2); the second one is the application of the C LGFGD for extraction
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(a) (b)

(c) (d)

Figure 5.14. Experiment on four heart 3D CT images.

of boundaries of lesion regions from skin lesion images (Section 5.3) and the third one is the

application of the C LGR for the anatomy extraction in 3D medical images (Section 5.4).

The results and analyses for skin images show that the C LR model can be efficiently

applied for dot extraction, while the initial results for 3D medical images of the C LGR

model are very promising. As to the C LGFGD, this method provides promising results

to boundary extraction of skin legion. These results of the C LGR are encouraging to

continue to develop the this model on a specific application or for anatomy atlas.
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(a) Figure 5.14a (b)

Figure 5.15. Heart Anatomy of Figure 5.14a. (a) Figure 5.14a. (b) Marked image:
1. Right ventrice, 2. Left ventrice, 3. Right atrium, 4. Aorta, 5. Pulmonary trunk, 6.
Superior vena cava, 7. Inferior vana cava, 8. Right coronary artery, 9. Left coronary artery.
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This chapter provides a summary of the work presented and the conclusions drawn

from this work. It lists the contributions to knowledge already achieved in this research

and provides directions for future work.

6.1 Summary and Conclusion

In this thesis, one of major artifacts in medical images, namely intensity in-homogeneity

has been addressed by the novel proposed region-based active contour models to provide

accurate segmentation. For this purpose, we exploit the local intensity information to

design appropriate energy function. The local property is determined by a local window

and the local intensities are approximated on this window by assuming a piecewise-smooth

approximation of the image. Furthermore, image intensity is modelled by the Gaussian

distribution. In the three proposed convex models, regions are characterized by local and/or

global intensity means. In the last model, we consider the full Gaussian distribution with

the means and the standards deviations of local and global intensities.

In the other hand, the global region-based provides accurate results and robustness

to noises, weak edges and boundary gaps as well as varying initialization. Hence, the

combination of the global information with the local information allows for the benefice

175
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from the two approaches. It is also interesting to adaptively control the weight between

these two terms.

The associated energy functionals of these models also include a regularization term.

This term is important to maintain the evolving curve smooth. We have adopted the

regularization term of the convex Chan-Vese model [33], and that of the Bresson et al.’s

model [41]. The regularization term of Bresson et al.’ model is a hybridized GAC model

with he total variation of a bounded level set function. This allows more accurate segmen-

tation while maintaining smoothness of he contours.

Another problem of the image segmentation is the dependence of the initial contour.

This issue has been tackled with different solutions in this thesis. For this purpose and to

deal with IIH, we proposed firstly in Chapter 3 a non-convex model that uses the traditional

level set function ϕ and takes into account the local and global information in the energy

function. The experimental results show that this model not only can efficiently deal

with intensity in-homogeneity but also is very robust to noise and to the initial contour.

This model can apply for non-homogeneous synthetic, MR, X-ray and ultrasound images.

However, because the energy function of this model is not convex with respect to the level

set function ϕ which is used to determine the contour, the dependence of the initial contour

is not completely solved.

In Chapter 4, three novel convex models were proposed to solve the dependence of the

initial contour. In these models, the intensity local information is taken into account in

their energy functionals to tackle IIH in images.

1. The first proposed convex model, namely C LR, utilizes the bounded level set func-

tion instead of the conventional level set, as well as the regularization term to impose

smoothness constraints using the total variation of the bounded level set function with

the edge detector as in the Bresson’s et al. model [41]. As a consequence, the energy

function of the proposed models in this chapter is convex with respect to the bounded

level set function. This allow us to locate the initial contour everywhere in an image

and the results are the same providing reliability to the results. In the energy func-

tion, the C LR model only uses the local information. So, it can deal with intensity

in-homogeneity. As application, this model can be efficiently used for non-homogeneous

synthetic, MR, X-ray as well as to identify dots from skin lesion images.

2. The second proposed convex model, namely C LGR, is an extended version of the C LR

model by combining with the global information inspired from the convex Chan-Vese

model [33]. Therefore, the energy function of this model is also convex. Moreover,

the combination with global information allows this model to overcome problems of

noise or smooth boundary which often affect adversely medical images. This model is

successfully tested for non-homogeneous synthetic, MR, X-ray, CT and PET images.
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The ability for segmenting 3D images as presented in Chapter 5 can allow this model

to accurately identify and extract tumors in the lung such as nodules.

3. The third proposed model, namely C LGFGD, also combine local information and global

information to benefit from the advantages as the C LGR model: dealing with IIH and

robustness to noise or smooth boundary. Unlike the above two models, the C LGFGD

combines the Fuzzy c-means clustering and the statistical region-based approach defined

in the Bayesian framework to take advantage of the robustness of the two approaches

and the accuracy from the statistical approach. We suppose that intensity of each pixel

is distributed by the Gaussian pdf with varying variance and mean. This is not the case

of the C LR and the C LGR models: only mean varies. This implies that results of the

C LGFGDmodel are more accurate than results of the C LG and the C LGFGDmodels.

On the other hand, the C LGFGD model utilizes the fuzzy membership function which

is also a restricted function and considered as a pseudo level set function to cluster image

while imposing smoothness from the total variation of the membership function. This

allows the convexity of the energy function implied that the final contour is independent

from the initial position of the contour. This model gives more accurate segmentation

for non-homogeneous synthetic, MR, X-ray and CT images. Besides, the C LGFGD

model succeeds to extract lesion regions in skin lesion images with high confidence as

presented in Chapter 5. It is also used to help the C LR model in the case of erasing

artifact outlier the lesion regions which may be understood mistakenly as dots. It means

that there are two step to extract dots: the first one is to use the C LGFGD model to

extract a lesion region, then the C LR is utilized in the second step to identify dots in

the lesion region

We have proposed fast schemes for the implementation to solve the models in Chapter 4,

we used algorithms based on dual problems for the C LR and the C LGR. By this way, the

energy function is minimized in a cheaper computational way. For the model C LGFGD,

we directly calculate the energy function which allows to avoid conditions about stability

as PDE method.

Moreover, for each method, sensibility studies of the model parameters have been in-

vestigated, resulting in recommendation for the appropriate values of these parameters to

obtain good segmentation.

6.2 Perspectives

The aim of our research is to propose models which are suitable to automatic segmentation

(convex model) and for dealing with intensity in-homogeneity. So, in the future, we will
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develop the C LR, the C LGR and the C LGFGD models presented in this thesis for their

potential applications.

Apart from some promising results, the three proposed convex methods have still some

limitations which need to be improved. They are listed below:

1. The C LR model does not work for dots with low contrast.

2. The three convex models cannot distinguish multiple regions be cause we assume that

there are only two regions (object and background) in images. Especially in segmenting

3D medical image, this does not allow to distinguish automatically different parts of

body at the same time.

3. The CPU time of the C LGFGD model is slow calculating for each pixel in each iteration

step.

4. Another disadvantage is that the C LGFGD model cannot work for PET image. One

of the reasons is that we use the Gaussian distribution to describe global and local

intensities in the energy function, while the PET images are often corrupted by the

Poisson distribution.

So, in the future, we envisage to deal with the above inconvenience in their application

as follows:

1. We will adapt our models using a prior information, e.g. a priori of dots, to overcome

the drawback of low contrast of dots.

2. Second, we will extend the C LGR method to automatically discriminate multiple re-

gions.

3. Next, to overcome the problem about CPU time, we will find algorithms more rapid

and suitable to solve the C LGFGD model.

4. We plan to use suitable distribution which makes the C LGFGD model more effective

to apply for PET images. Another interesting aim for this model is to combine with

the belief function theory as the works published in [103] end extend our models to deal

with partial volume effect.

5. Lasly, the non-convex R LGR model gives very good result for segmentation of ultra-

sound image. This is interesting to have ground truth of this modality and to adapt

this model to convex model.
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Appendix: Euler-Lagrange Equation

In calculus of variations, the Euler Lagrange equation is a differential equation whose

solutions are the functions so that at this solution functional, another given functional

is stationary. This equation was developed by Swiss mathematician Leonhard Euler and

Italian mathematician Joseph Louis Lagrange in the 1750s.

Because a differentiable functional is stationary at its local maxima and minima, the

Euler Lagrange equation is useful for solving optimization problems where we need find a

function to minimize or to maximize another function.

A.1 Euler - Lagrange Equation for the Case of One

Variable and One Function

Theorem A.1. [101, 102] Let J : C2[a, b] → R be a functional of the form:

J(y) =

b∫
a

F (x, y, y′)dx (A.1)

where F has continuous derivatives of second order with respect to x, y and y′, and a < b.

Let

S = {y ∈ C2[a, b] : y(a) = ya, y(b) = yb}, (A.2)

where ya and yb are two given real numbers. If y ∈ S is an extremal for J , then y satisfies

the following Euler - Lagrange equation:

∂F

∂y
− d

dx

∂F

∂y′
= 0 (A.3)
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Remark A.1. The left side of Equation (A.3) is obtained by calculating the derivative of

J with respect to y. It means that:

∂J

∂y
=
∂F

∂y
− d

dx

∂F

∂y′
. (A.4)

A.2 Euler - Lagrange Equation for the Case of Two

Variables and One Function

Theorem A.2. [101, 102] The Euler - Lagrange equation for the functional

J(y) =

∫
Ω

F (x1, x2, y, y1, y2)dx (A.5)

where (x1, x2) ∈ Ω ⊂ R2, y = y(x1, x2), y1 =
∂y
∂x1
, y2 =

∂y
∂x2

, dx = dx1dx2, is as follows:

∂F

∂y
− ∂

∂x1

∂F

∂y1
− ∂

∂x2

∂F

∂y2
= 0 (A.6)

Remark A.2. The left side of Equation (A.6) is obtained by calculating the derivative of

J with respect to y. It means that:

∂J

∂y
=
∂F

∂y
− ∂

∂x1

∂F

∂y1
− ∂

∂x2

∂F

∂y2
. (A.7)

A.3 Application: Euler - Lagrange Equation of the

Chan-Vese Model

Recall the energy function of the Chan-Vese model:

ECV (c1, c2, ϕ) =

∫
Ω

(I(x)− c1)
2H(ϕ(x))dx

+

∫
Ω

(I(x)− c2)
2(1−H(ϕ(x)))dx+ µ

∫
Ω

|∇H(ϕ(x))|dx (A.8)

We will find ϕ for fixed c1 and c2 by using the Euler - Lagrange equation and the steepest

descent method. Note that

1. to use the Euler - Lagrange equation to find ϕ, the Heaviside function H has to been

approximated by a smooth version:

Hϵ(z) =
1

2

[
1 +

2

π
arctan

(
z

ϵ

)]
, z ∈ R (A.9)

where ϵ is small positive
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2. |∇Hϵ(ϕ)| = δϵ(ϕ)|∇ϕ| = δϵ(ϕ)
√(

∂ϕ
∂x1

)2
+
(
∂ϕ
∂x2

)2
, where

δϵ(z) = H ′
ϵ(z) =

1

2

ϵ

ϵ2 + z2
(A.10)

Then, Equation A.8 is rewritten as follows:

ECV (c1, c2, ϕ) =

∫
Ω

G(x1, x2, ϕ, ϕ1, ϕ2)dx (A.11)

where (x1, x2) = x, ϕ1 =
∂ϕ
∂x1

, ϕ2 =
∂ϕ
∂x2

, and

G(x1, x2, ϕ, ϕ1, ϕ2) =(I(x)− c1)
2Hϵ(ϕ(x)) + (I(x)− c2)

2(1−Hϵ(ϕ(x)))

+ µδϵ(ϕ(x))
√
ϕ2
1 + ϕ2

2 (A.12)

Then, the Euler - Lagrange equation for (A.11) has the following form:

∂G

∂ϕ
− ∂

∂x1

∂G

∂ϕ1

− ∂

∂x2

∂G

∂ϕ2

= 0 (A.13)

We calculate each term in the above equation.

For the first term in the left side of Equation (A.13):

∂G

∂ϕ
= (I − c1)

2δϵ(ϕ)− (I − c2)
2δϵ(ϕ) + µδ′ϵ(ϕ)

√
ϕ2
1 + ϕ2

2 (A.14)

In what concern the second term in the left side of Equation (A.13):

∂

∂x1

∂G

∂ϕ1

=
∂

∂x1

(
µδϵ(ϕ)

ϕ1√
ϕ2
1 + ϕ2

2

)
= µ

∂δϵ(ϕ)

∂x1

ϕ1√
ϕ2
1 + ϕ2

2

+ µδϵ(ϕ)
∂

∂x1

ϕ1√
ϕ2
1 + ϕ2

2

= µδ′ϵ(ϕ)
∂ϕ

∂x1

ϕ1√
ϕ2
1 + ϕ2

2

+ µδϵ(ϕ)
ϕ11ϕ

2
2 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3

= µδ′ϵ(ϕ)
ϕ2
1√

ϕ2
1 + ϕ2

2

+ µδϵ(ϕ)
ϕ11ϕ

2
2 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3
(A.15)

where ϕij =
∂2ϕ

∂xi∂xj
, i, j = 1, 2.

Analogously for the third term in the left side of Equation (A.13), we have:

∂

∂x2

∂G

∂ϕ2

= µδ′ϵ(ϕ)
ϕ2
2√

ϕ2
1 + ϕ2

2

+ µδϵ(ϕ)
ϕ22ϕ

2
1 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3
(A.16)
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So, Equation (A.13) becomes:

(I − c1)
2δϵ(ϕ)− (I − c2)

2δϵ(ϕ) + µδ′ϵ(ϕ)
√
ϕ2
1 + ϕ2

2

− µδ′ϵ(ϕ)
ϕ2
1√

ϕ2
1 + ϕ2

2

− µδϵ(ϕ)
ϕ11ϕ

2
2 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3

− µδ′ϵ(ϕ)
ϕ2
2√

ϕ2
1 + ϕ2

2

− µδϵ(ϕ)
ϕ22ϕ

2
1 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3
= 0 (A.17)

Note that

µδ′ϵ(ϕ)
ϕ2
1√

ϕ2
1 + ϕ2

2

+ µδ′ϵ(ϕ)
ϕ2
2√

ϕ2
1 + ϕ2

2

= µδ′ϵ(ϕ)
ϕ2
1 + ϕ2

2√
ϕ2
1 + ϕ2

2

= µδ′ϵ(ϕ)
√
ϕ2
1 + ϕ2

2 (A.18)

and

µδϵ(ϕ)
ϕ11ϕ

2
2 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3
+ µδϵ(ϕ)

ϕ22ϕ
2
1 − ϕ1ϕ2ϕ12√
(ϕ2

1 + ϕ2
2)

3
= µδϵ(ϕ)∇ ·

(
∇ϕ
|∇ϕ|

)
(A.19)

where ∇· is the divergence operator.

Therefore, the Euler - Lagrange equation of the Chan - Vese model is as follows:

(I − c1)
2δϵ(ϕ)− (I − c2)

2δϵ(ϕ)− µδϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
= 0 (A.20)

or

δϵ(ϕ)

[
(I − c1)

2 − (I − c2)
2 − µ∇ ·

(
∇ϕ
|∇ϕ|

)]
= 0 (A.21)

By Remark A.2, we also have:

∂ECV
∂ϕ

= δϵ(ϕ)

[
(I − c1)

2 − (I − c2)
2 − µ∇ ·

(
∇ϕ
|∇ϕ|

)]
(A.22)

Then, by steepest descent method, we have the following evolution equation of ϕ for fixed

c1 and c2:

∂ϕ

∂t
= −∂ECV

∂ϕ

= δϵ(ϕ)

[
µ∇ ·

(
∇ϕ
|∇ϕ|

)
− (I − c1)

2 + (I − c2)
2

]
(A.23)

The above Equation (A.23) is exactly the evolution equation (2.44) of the Chan-Vese model

that we presented in Chapter 2.
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Remark A.3. By the same way, we will obtain the others evolution equations presented

in this thesis:

1. Equation (2.60) for the model of Zhu

2. Equation (2.67) for the LBF model

3. Equation (2.71) for the LIF model

4. Equations (4.9)-(4.10) for the convex Chan-Vese model
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Appendix: Proof the Formulas in

Chapter 3

B.1 Proof of Theorem 3.1

Let us recall Theorem 3.1

Theorem 3.1. Let c1 and c2 be constants, ϕ ∈ L2(Ω)−the space of functions so that

the square of these functions are integrable on Ω. Consider the following functions:

EG
ϵ (ϕ) =

∫
Ω

(
I(x)− c1

)2
Hϵ(ϕ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−Hϵ(ϕ(x)))dx (B.1)

The derivative of EG
ϵ with respect to ϕ is as follows:

∂EG
ϵ

∂ϕ
= δϵ(ϕ)

[(
I − c1

)2 − (I − c2
)2]

(B.2)

Proof. Let ϕ, ψ ∈ L2(Ω), we have:

<
∂EG

ϵ

∂ϕ
, ψ >= lim

s→0

EG
ϵ (ϕ+ sψ)− EG

ϵ (ϕ)

s
(B.3)

where s ∈ R\{0} and < ·, · > is the scalar product in L2(Ω): < A,B >=
∫
Ω
A(x)B(x)dx

with A,B ∈ L2(Ω).

185
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We have

EG
ϵ (ϕ+ sψ)− EG

ϵ (ϕ)

s

=
1

s

[∫
Ω

(
I(x)− c1

)2
Hϵ(ϕ(x) + sψ(x))dx+

∫
Ω

(
I(x)− c2

)2
(1−Hϵ(ϕ(x) + sψ(x)))dx

−
∫
Ω

(
I(x)− c1

)2
Hϵ(ϕ(x))dx−

∫
Ω

(
I(x)− c2

)2
(1−Hϵ(ϕ(x)))dx

]

=

∫
Ω

(
I(x)− c1

)2Hϵ(ϕ(x) + sψ(x))−Hϵ(ϕ(x))

s
dx

−
∫
Ω

(
I(x)− c2

)2Hϵ(ϕ(x) + sψ(x))−Hϵ(ϕ(x))

s
dx (B.4)

Note that the derivative of Hϵ is δϵ (see Equation (2.44)) which leads to:

lim
s→0

Hϵ(ϕ(x) + sψ(x))−Hϵ(ϕ(x))

s
= δϵ(ϕ(x))ψ(x) (B.5)

Therefore, we obtain:

<
∂EG

ϵ

∂ϕ
, ψ > = lim

s→0

EG
ϵ (ϕ+ sψ)− EG

ϵ (ϕ)

s

=

∫
Ω

(
I(x)− c1

)2
δϵ(ϕ(x))ψ(x)dx−

∫
Ω

(
I(x)− c2

)2
δϵ(ϕ(x))ψ(x)dx

=

∫
Ω

[
δϵ(ϕ(x))

[(
I(x)− c1

)2 − (I(x)− c2
)2]]

ψ(x)dx (B.6)

which states the following equation:

∂EG
ϵ

∂ϕ
= δϵ(ϕ)

[(
I − c1

)2 − (I − c2
)2]

(B.7)

B.2 Proof of Theorem 3.2

Let us recall Theorem 3.2

Theorem 3.2. Let f1 and f2 be given functions determined on Ω, ϕ ∈ L2(Ω)−the

space of functions so that the square of these functions are integrable on Ω. Consider the
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following functions:

EL
ϵ (ϕ) =

µ

2

∫
Ω

(
I(x)− f1(x)Hϵ(ϕ(x))− f2(x)(1−Hϵ(ϕ(x)))

)2
dx (B.8)

The derivative of EL
ϵ with respect to ϕ is as follows:

∂EL
ϵ

∂ϕ
= −δϵ(ϕ)

[
µ
(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)(
f1 − f2

)]
(B.9)

Proof. Let ϕ, ψ ∈ L2(Ω), we have:

<
∂EL

ϵ

∂ϕ
, ψ >= lim

s→0

EL
ϵ (ϕ+ sψ)− EL

ϵ (ϕ)

s
(B.10)

where s ∈ R\{0} and < ·, · > is the scalar product in L2(Ω): < A,B >=
∫
Ω
A(x)B(x)dx

with A,B ∈ L2(Ω).

In the following integrals, we write the type
∫
Ω
Adx to replace

∫
Ω
A(x)dx. We have

EL
ϵ (ϕ+ sψ)− EL

ϵ (ϕ)

s

=
µ

2s

[∫
Ω

(
I − f1Hϵ(ϕ+ sψ)− f2(1−Hϵ(ϕ+ sψ))

)2
dx

−
∫
Ω

(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)2
dx

]

=
µ

2

∫
Ω

[(
− f1

Hϵ(ϕ+ sψ)−Hϵ(ϕ)

s
+ f2

Hϵ(ϕ+ sψ)−Hϵ(ϕ)

s

)
.

(

2I − f1
(
Hϵ(ϕ+ sψ)−Hϵ(ϕ)

)
− f2

(
2−Hϵ(ϕ+ sψ)−Hϵ(ϕ)

))]
dx (B.11)

Note that the derivative of Hϵ is δϵ (see Equation (2.44)) which leads to:

lim
s→0

Hϵ(ϕ+ sψ)−Hϵ(ϕ)

s
= δϵ(ϕ)ψ (B.12)
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Then, the limitation of two sides in Equation (B.11) when s→ 0 allows us to obtain

lim
s→0

EL
ϵ (ϕ+ sψ)− EL

ϵ (ϕ)

s

=
µ

2

∫
Ω

[(
− f1δϵ(ϕ)ψ + f2δϵ(ϕ)ψ

)
.

(
2I − 2f1Hϵ(ϕ)− 2f2(1−Hϵ(ϕ))

)]
dx

=

∫
Ω

[
− δϵ(ϕ)

[
µ
(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)(
f1 − f2

)]]
ψdx (B.13)

which states to obtain the derivative of EL
ϵ with respect to ϕ:

∂EL
ϵ

∂ϕ
= −δϵ(ϕ)

[
µ
(
I − f1Hϵ(ϕ)− f2(1−Hϵ(ϕ))

)(
f1 − f2

)]
(B.14)

B.3 Proof of Equation (3.23)

Equation (3.23) is as follows

∂L
∂ϕ

= −δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
where δϵ(z) = H ′

ϵ(z), z ∈ R, and L(ϕ) =
∫
Ω
|∇Hϵ(ϕ(x))|dx.

First, we formulate the following proposition:

Proposition B.1. Let Ω ⊂ R2 be a bounded domain. Let F : L2(Ω) → L2(Ω) be a

continuous function and N denote the exterior normal to the boundary ∂Ω. Then, we

have:

min
ϕ∈L2(Ω)

∫
Ω

F (ϕ(x))dx = min
ϕ∈L2(Ω)
∂ϕ
∂N

=0

∫
Ω

F (ϕ(x))dx (B.15)

Proof. In this proof, to reduce symbols, we replace F (ϕ(x)) and
∫
Ω
F (ϕ(x))dx by F (ϕ) and∫

Ω
F (ϕ), respectively.

Obviously, the set {ϕ ∈ L2(Ω) : ∂ϕ
∂N

= 0} is a subset of the set {ϕ ∈ L2(Ω)}. Thus, we
have the following inequality:

min
ϕ∈L2(Ω)

∂ϕ
∂N

∫
Ω

F (ϕ) ≥ min
ϕ∈L2(Ω)

∫
Ω

F (ϕ) (B.16)

Now, let ϵ be small positive, we approximate continuously ϕ ∈ L2(Ω) by a continuous

function ϕϵ ∈ L2(Ω) such that |ϕ− ϕϵ| ≤ ϵ. Figure B.1 illustrates this approximation: Ωϵ
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Figure B.1. Illustration for Ω and Ωϵ.

is a sub-region of Ω such that Ωϵ → Ω when ϵ → 0. We chose ϕϵ = ϕ on Ωϵ. On Ω\Ωϵ, ϕϵ
is chosen such that ϕϵ is continuous on Ω = Ω ∪ Ωϵ and

∂ϕϵ
∂N

= 0.

Then, because of the continuity of F , therefore ∀ϕ, there exists a sub-sequence ϕϵn ⊂ ϕϵ,

where n = 1, 2, 3, ... such that:

F (ϕ)− F (ϕϵn) ≥ − 1

n
, n = 1, 2, 3, ... (B.17)

Inequality (B.17) states the following inequality:

F (ϕ) = F (ϕϵn) + F (ϕ)− F (ϕϵn)

≥ F (ϕϵn)−
1

n
(B.18)

which implies that ∫
Ω

F (ϕ) ≥
∫
Ω

F (ϕϵn)−
1

n
|Ω| (B.19)

where |Ω| is the area of Ω. Obviously, we have
∫
Ω
F (ϕϵn) ≥ min{

∫
Ω
F (ϕϵn) : ϕϵn ∈ L2(Ω) :

∂ϕϵn
∂N

= 0}. This combines with above inequality, we obtain:∫
Ω

F (ϕ) ≥ min
ϕϵn∈L2(Ω)
∂ϕϵn
∂N

=0

∫
Ω

F (ϕϵn)−
1

n
|Ω|

= min
ϕ∈L2(Ω)
∂ϕ
∂N

=0

∫
Ω

F (ϕ)− 1

n
|Ω| (B.20)
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Inequality (B.20) holds for ∀ϕ ∈ L2(Ω). Thus, we have:

min
ϕ∈L2(Ω)

∫
Ω

F (ϕ) ≥ min
ϕ∈L2(Ω)
∂ϕ
∂N

=0

∫
Ω

F (ϕ)− 1

n
|Ω| (B.21)

Note that Ω is a bounded domain in R2. So, we have that |Ω| <∞ which implies that

limn→∞
1
n
|Ω| = 0. Now, we limit two side of Inequality (B.21) when n→ ∞ to obtain:

min
ϕ∈L2(Ω)

∫
Ω

F (ϕ) ≥ min
ϕ∈L2(Ω)
∂ϕ
∂N

=0

∫
Ω

F (ϕ) (B.22)

From Inequality (B.16) and Inequality (B.22), we obtain:

min
ϕ∈L2(Ω)

∫
Ω

F (ϕ) = min
ϕ∈L2(Ω)
∂ϕ
∂N

=0

∫
Ω

F (ϕ) (B.23)

Now, we describe the evolution equation of L(ϕ) when minimizing with respect to

ϕ ∈ L2(Ω), where N is the exterior nomal to the boundary ∂Ω. By Proposition B.1, we

can consider ∂ϕ
∂N

= 0

Let ϕ, ψ ∈ L2(Ω) : ∂ϕ
∂N

= ∂ψ
∂N

= 0, we have:

<
∂L
∂ϕ

, ψ >= lim
s→0

L(ϕ+ sψ)− L(ϕ)
s

(B.24)

where s ∈ R\{0} and < ·, · > is the scalar product in L2(Ω): < A,B >=
∫
Ω
A(x)B(x)dx

with A,B ∈ L2(Ω).

Recall the formula of L(ϕ):

L(ϕ) =
∫
Ω

|∇Hϵ(ϕ(x))|dx =

∫
Ω

δϵ(ϕ(x))|∇ϕ(x)|dx (B.25)

where δϵ(z) = H ′
ϵ(z), z ∈ R. Then, we develop:

L(ϕ+ sψ)− L(ϕ)
s

=

∫
Ω

δϵ(ϕ+ sψ)|∇(ϕ+ sψ)| − δϵ(ϕ)|∇ϕ|
s

=

∫
Ω

δϵ(ϕ+ sψ)|∇(ϕ+ sψ)| − δϵ(ϕ+ sψ)|∇ϕ|
s

+

∫
Ω

δϵ(ϕ+ sψ)|∇ϕ| − δϵ(ϕ)|∇ϕ|
s

(B.26)
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Consider

L1 =

∫
Ω

δϵ(ϕ+ sψ)|∇(ϕ+ sψ)| − δϵ(ϕ+ sψ)|∇ϕ|
s

, (B.27)

L2 =

∫
Ω

δϵ(ϕ+ sψ)|∇ϕ| − δϵ(ϕ)|∇ϕ|
s

(B.28)

We have:

L1 =

∫
Ω

δϵ(ϕ+ sψ)

s

(
|∇(ϕ+ sψ)| − |∇ϕ|

)
=

∫
Ω

δϵ(ϕ+ sψ)

s

(
∇ϕ+ s∇ψ

)2 − (∇ϕ)2
|∇(ϕ+ sψ)|+ |∇ϕ|

=

∫
Ω

δϵ(ϕ+ sψ)

|∇(ϕ+ sψ)|+ |∇ϕ|
2s∇ϕ∇ψ + s2

(
∇ψ
)2

s

=

∫
Ω

δϵ(ϕ+ sψ)

|∇(ϕ+ sψ)|+ |∇ϕ|
(
2∇ϕ∇ψ + s

(
∇ψ
)2)

(B.29)

which follows that:

lim
s→0

L1 =

∫
Ω

δϵ(ϕ)

2|∇ϕ|
2∇ϕ∇ψ

=

∫
Ω

δϵ(ϕ)
∇ϕ
|∇ϕ|

∇ψ (B.30)

Using the Green formula, we obtain:

∫
Ω

δϵ(ϕ)
∇ϕ
|∇ϕ|

∇ψ =

∫
∂Ω

δϵ(ϕ)
∇ϕ
|∇ϕ|

∇ψ ·N −
∫
Ω

∇ ·
(
δϵ(ϕ)

∇ϕ
|∇ϕ|

)
ψ (B.31)

Note that ∇ψ ·N = ∂ψ
∂N

= 0 which implies

∫
∂Ω

δϵ(ϕ)
∇ϕ
|∇ϕ|

∇ψ ·N =

∫
∂Ω

δϵ(ϕ)
∇ϕ
|∇ϕ|

∂ψ

∂N
= 0 (B.32)
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So, we have:

lim
s→0

L1 = −
∫
Ω

∇ ·
(
δϵ(ϕ)

∇ϕ
|∇ϕ|

)
ψ

= −
∫
Ω

∇(δϵ(ϕ))
∇ϕ
|∇ϕ|

ψ −
∫
Ω

δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
ψ

= −
∫
Ω

δ′ϵ(ϕ)∇ϕ
∇ϕ
|∇ϕ|

ψ −
∫
Ω

δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
ψ

= −
∫
Ω

δ′ϵ(ϕ)|∇ϕ|ψ −
∫
Ω

δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
ψ (B.33)

On the other hand,

L2 =

∫
Ω

δϵ(ϕ+ sψ)− δϵ(ϕ)

s
|∇ϕ| (B.34)

which follows that:

lim
s→0

L2 =

∫
Ω

δ′ϵ(ϕ)ψ|∇ϕ| (B.35)

Replace Equations (B.33) and (B.35) in Equation (B.24) we have

<
∂L
∂ϕ

, ψ > = lim
s→0

L(ϕ+ sψ)− L(ϕ)
s

= lim
s→0

L1 + lim
s→0

L2

= −
∫
Ω

δ′ϵ(ϕ)|∇ϕ|ψ −
∫
Ω

δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
ψ +

∫
Ω

δ′ϵ(ϕ)ψ|∇ϕ|

= −
∫
Ω

δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
ψ (B.36)

which states that
∂L
∂ϕ

= −δϵ(ϕ)∇ ·
(

∇ϕ
|∇ϕ|

)
(B.37)
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C
Appendix: Proof the Formulas in

Chapter 4

C.1 Proof of Formula (4.26)

Let us recall Formula (4.26) as follows:

∆F =
s1∆um
s1 +∆um

(
I0 − c1

)2
+

s2∆vm
s2 +∆vm

(
I0 − c2

)2

First, we have two global intensity values c1 and c2 as follows:

c1 =

∫
Ω
[u(x)]mI(x)dx∫
Ω
[u(x)]mdx

=

∑
x∈Ω[u(x)]

mI(x)∑
x∈Ω[u(x)]

m
(C.1)

c2 =

∫
Ω
[1− u(x)]mI(x)dx∫
Ω
[1− u(x)]mdx

=

∑
x∈Ω[1− u(x)]mI(x)∑
x∈Ω[1− u(x)]m

(C.2)

Now, consider a given point x0 ∈ Ω, the intensity value of point x0 is I0, and the

corresponding degree of membership for this point is ux0 . Suppose that we change the

degree of membership of point x0 to the new value unx0 . Consequently, the values of c1
and c2 will be changed to the new ones c̃1 and c̃2 respectively.

193
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The new value c̃1 is expressed as follows:

c̃1 =

∑
x∈Ω I0(x)[ũ(x)]

m∑
x∈Ω[ũ(x)]

m

=

∑
x∈Ω I0(x)[u(x)]

m + I0(u
m
nx0

− umx0)∑
x∈Ω[u(x)]

m + (umnx0 − umx0)

=

∑
x∈Ω I0(x)[u(x)]

m + I0∆um

s1 +∆um
(C.3)

where s1 =
∑

x∈Ω[u(x)]
m and ∆um = umnx0−u

m
x0
. From (C.1), we have

∑
x∈Ω I0(x)[u(x)]

m =

c1s1, so

c̃1 =
c1s1 + I0∆um
s1 +∆um

=
c1(s1 +∆um) + (−c1 + I0)∆um

s1 +∆um

= c1 +
−c1 + I0
s1 +∆um

∆um (C.4)

In the similar calculation, we can get the new value c̃2 as follows:

c̃2 = c2 +
−c2 + I0
s2 +∆vm

∆vm (C.5)

where s2 =
∑

x∈Ω[1− u(x)]m, and ∆vm = (1− unx0)
m − (1− ux0)

m.

We will calculate the energy value F̃ for the case µ = 0:

F̃ =

∫
Ω

[ũ(x)]m
(
I(x)− c̃1)

2dx+

∫
Ω

[1− ũ(x)]m
(
I(x)− c̃2)

2dx

=
∑
x∈Ω

[ũ(x)]m
(
I(x)− c̃1)

2

︸ ︷︷ ︸
F̃1

+
∑
x∈Ω

[1− ũ(x)]m
(
I(x)− c̃2)

2

︸ ︷︷ ︸
F̃2

(C.6)

We will separately examine F̃1 and F̃2 to formulate the result.

So,

F̃1 =
∑
x∈Ω

[ũ(x)]m
(
I(x)− c̃1)

2

=
∑
x∈Ω

[u(x)]m
(
I(x)− c̃1)

2 + ([unx0 ]
m − [ux0 ]

m)
(
I(x0)− c̃1)

2

=
∑
x∈Ω

[u(x)]m
(
I(x)− c̃1)

2

︸ ︷︷ ︸
F̃11

+∆um
(
I0 − c̃1)

2︸ ︷︷ ︸
F̃12

(C.7)
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We have

F̃11 =
∑
x∈Ω

[u(x)]m
(
I(x)− c̃1)

2

=
∑
x∈Ω

[u(x)]m
(
I(x)− c1 −

−c1 + I0
s1 +∆um

∆um)
2

=
∑
x∈Ω

[u(x)]m(I(x)− c1)
2 − 2

−c1 + I0
s1 +∆um

∆um
∑
x∈Ω

[u(x)]m(I(x)− c1)

+
( −c1 + I0
s1 +∆um

∆um
)2∑

x∈Ω

[u(x)]m︸ ︷︷ ︸
s1

(C.8)

We note that
∑

x∈Ω[u(x)]
m(I(x)− c1) = 0 according to (C.1). Therefore,

F̃11 =
∑
x∈Ω

[u(x)]m(I(x)− c1)
2 +

( −c1 + I0
s1 +∆um

∆um
)2
s1 (C.9)

Besides

F̃12 = ∆um
(
I0 − c̃1)

2

= ∆um
(
I0 − c1 −

−c1 + I0
s1 +∆um

)2
= ∆um

(
(I0 − c1)

s1
s1 +∆um

)2
(C.10)

So

F̃1 = F̃G1 + F̃12

=
∑
x∈Ω

[u(x)]m(I(x)− c1)
2

+
( −c1 + I0
s1 +∆um

∆um
)2
s1 +∆um

(
(I0 − c1)

s1
s1 +∆um

)2
= F1 +

( I0 − c1
s1 +∆um

)2
s1∆um

(
∆um + s1)

= FG +
s1∆um
s1 +∆um

(I0 − c1)
2 (C.11)

In a similar way for F̃2, we obtain:

F̃2 = F2 +
s2∆vm
s2 +∆vm

(I0 − c2)
2 (C.12)

where ∆vm = [1− unx0 ]
m − [1− ux0 ]

m, s2 =
∑

x∈Ω[1− u(x)]m.
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Combining (C.11) and (C.12), the new energy value F̃ is given by:

F̃ = F +
s1∆um
s1 +∆um

(I0 − c1)
2 +

s2∆vm
s2 +∆vm

(I0 − c2)
2 (C.13)

which implies that

∆F = F̃ − F =
s1∆um
s1 +∆um

(I0 − c1)
2 +

s2∆vm
s2 +∆vm

(I0 − c2)
2 (C.14)

Now, if µ ̸= 0, we complete the change of the contour length µ∆l into (C.14) and we

obtain:

∆F = µ∆l +
s1∆um
s1 +∆um

(I0 − c1)
2 +

s2∆vm
s2 +∆vm

(I0 − c2)
2 (C.15)

Formula (C.15) is exactly Formula (4.26). Therefore, we have the necessary proof. �

C.2 Proof of Formula (4.92)

Let us recall Formula (4.92) as follows:

∆FG =− log
1√
2πϵ1

∆um +
s1∆um
s1 +∆um

(I0 − c1)
2

2ϵ21

− log
1√
2πϵ2

∆vm +
s2∆vm
s2 +∆vm

(I0 − c2)
2

2ϵ22
(C.16)

First, we have two global intensity values c1 and c2 as follows:

c1 =

∫
Ω
I(x)[u(x)]mdx∫
Ω
[u(x)]mdx

=

∑
x∈Ω I(x)[u(x)]

m∑
x∈Ω[u(x)]

m
(C.17)

c2 =

∫
Ω
I(x)[1− u(x)]mdx∫
Ω
[1− u(x)]mdx

=

∑
x∈Ω I(x)[1− u(x)]m∑

x∈Ω[1− u(x)]m
(C.18)

Now, consider a given point x0 ∈ Ω, the intensity value of point x0 is I0, and the

corresponding degree of membership for this point is ux0 . Suppose that we change the

degree of membership of point x0 to the new value unx0 . Consequently, the values of c1
and c2 will be changed to the new ones c̃1 and c̃2 respectively. We assume that the values

of ϵ1 and ϵ2 are changed but remain small.

The new value c̃1 is expressed as follows:

c̃1 =

∑
x∈Ω I(x)[ũ(x)]

m∑
x∈Ω[ũ(x)]

m

=

∑
x∈Ω I(x)[u(x)]

m + I0(u
m
nx0

− umx0)∑
x∈Ω[u(x)]

m + (umnx0 − umx0)

=

∑
x∈Ω I(x)[u(x)]

m + I0∆um

s1 +∆um
(C.19)
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where s1 =
∑

x∈Ω[u(x)]
m and ∆um = umnx0−u

m
x0
. From (C.17), we have

∑
x∈Ω I(x)[u(x)]

m =

c1s1, so

c̃1 =
c1s1 + I0∆um
s1 +∆um

= c1 +
−c1 + I0
s1 +∆um

∆um (C.20)

In the similar calculation, we can get the new value c̃2 as follows:

c̃2 = c2 +
−c2 + I0
s2 +∆vm

∆vm (C.21)

where s2 =
∑

x∈Ω[1− u(x)]m, and ∆vm = (1− unx0)
m − (1− ux0)

m.

Now, we note that, with i = 1, 2:

log p(I(x), ϵi) = log

(
1√
2πϵi

exp

(
− (ci − I(x))2

2ϵ2i

))

= log
1√
2πϵi

− (ci − I(x))2

2ϵ2i
(C.22)

Then, we can rewrite the formulation of FG as follows:

FG = FG1 + FG2 (C.23)

where

FG1 =

∫
Ω

(
− log

1√
2πϵ1

+
(c1 − I(x))2

2ϵ21

)
[u(x)]mdx (C.24)

FG2 =

∫
Ω

(
− log

1√
2πϵ2

+
(c2 − I(x))2

2ϵ22

)
[1− u(x)]mdx (C.25)
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The new value F̃G1 can be calculated as follows:

F̃G1 =

∫
Ω

(
− log

1√
2πϵ1

+
(c̃1 − I(x))2

2ϵ21

)
[ũ(x)]mdx

=
∑
x∈Ω

(
− log

1√
2πϵ1

)
[ũ(x)]m +

∑
x∈Ω

((c̃1 − I(x))2

2ϵ21

)
[ũ(x)]m

=
∑
x∈Ω

(
− log

1√
2πϵ1

)
[u(x)]m − log

1√
2πϵ1

∆um

+
1

2ϵ21

∑
x∈Ω

(c1 +
−c1 + I0
s1 +∆um

∆um − I(x))2[ũ(x)]m

=
∑
x∈Ω

(
− log

1√
2πϵ1

)
[u(x)]m − log

1√
2πϵ1

∆um

+
1

2ϵ21

∑
x∈Ω

(c1 +
−c1 + I0
s1 +∆um

∆um − I(x))2[u(x)]m︸ ︷︷ ︸
F̃G12

+
1

2ϵ21
(c1 +

−c1 + I0
s1 +∆um

∆um − I0)
2∆um︸ ︷︷ ︸

F̃G13

(C.26)

We have

F̃G12 =
∑
x∈Ω

(c1 +
−c1 + I0
s1 +∆um

∆um − I(x))2[u(x)]m

=
∑
x∈Ω

(c1 − I(x))2[u(x)]m +
∑
x∈Ω

(
−c1 + I0
s1 +∆um

∆um

)2

[u(x)]m

+
∑
x∈Ω

2
−c1 + I0
s1 +∆um

∆um(c1 − I(x))[u(x)]m

=
∑
x∈Ω

(c1 − I(x))2[u(x)]m +
∑
x∈Ω

(
−c1 + I0
s1 +∆um

∆um

)2

[u(x)]m

+ 2
−c1 + I0
s1 +∆um

∆um
∑
x∈Ω

(c1 − I(x))[u(x)]m (C.27)

We note that
∑

x∈Ω(c1 − I(x))[u(x)]m = 0 according to Formula (C.17) in this file.
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Therefore,

F̃G12 =
∑
x∈Ω

(c1 − I(x))2[u(x)]m +
∑
x∈Ω

(
−c1 + I0
s1 +∆um

∆um

)2

[u(x)]m

=
∑
x∈Ω

(c1 − I(x))2[u(x)]m +

(
−c1 + I0
s1 +∆um

∆um

)2∑
x∈Ω

[u(x)]m

=
∑
x∈Ω

(c1 − I(x))2[u(x)]m +

(
−c1 + I0
s1 +∆um

∆um

)2

s1 (C.28)

Besides,

F̃G13 =
(
c1 +

−c1 + I0
s1 +∆um

∆um − I0
)2
∆um

=
( s1
s1 +∆um

(c1 − I0)
)2
∆um (C.29)

So

F̃G1 =
∑
x∈Ω

(
− log

1√
2πϵ1

)
[u(x)]m − log

1√
2πϵ1

∆um

+ F̃G2 + F̃G3

=
∑
x∈Ω

(
− log

1√
2πϵ1

)
[u(x)]m − log

1√
2πϵ1

∆um

+
∑
x∈Ω

(c1 − I(x))2[u(x)]m +

(
−c1 + I0
s1 +∆um

∆um

)2

s1

+
( s1
s1 +∆um

(c1 − I0)
)2
∆um

=
∑
x∈Ω

(
− log

1√
2πϵ1

)
[u(x)]m +

∑
x∈Ω

(c1 − I(x))2[u(x)]m

− log
1√
2πϵ1

∆um

+

(
−c1 + I0
s1 +∆um

∆um

)2

s1 +
( s1
s1 +∆um

(c1 − I0)
)2
∆um

=
∑
x∈Ω

(
− log

1√
2πϵ1

)
[u(x)]m +

∑
x∈Ω

(c1 − I(x))2[u(x)]m

− log
1√
2πϵ1

∆um +
s1∆um
s1 +∆um

(I0 − c1)
2

2ϵ21

=FG1 − log
1√
2πϵ1

∆um +
s1∆um
s1 +∆um

(I0 − c1)
2

2ϵ21
(C.30)



200 APPENDIX C. APPENDIX: PROOF THE FORMULAS IN CHAPTER ??

By the similar calculation, we have:

F̃G2 =FG2 − log
1√
2πϵ2

∆vm +
s2∆vm
s2 +∆vm

(I0 − c2)
2

2ϵ22
(C.31)

So

F̃G =F̃G1 + F̃G2

=FG1 + FG2 − log
1√
2πϵ1

∆um +
s1∆um
s1 +∆um

(I0 − c1)
2

2ϵ21

− log
1√
2πϵ2

∆vm +
s2∆vm
s2 +∆vm

(I0 − c2)
2

2ϵ22

=FG − log
1√
2πϵ1

∆um +
s1∆um
s1 +∆um

(I0 − c1)
2

2ϵ21

− log
1√
2πϵ2

∆vm +
s2∆vm
s2 +∆vm

(I0 − c2)
2

2ϵ22
(C.32)

From (C.32), we have the necessary proof. �

C.3 Proof of Formula (4.93)

Let us recall Formula (4.93) as follows:

∆FL =−Kσ ∗
(
log

1√
2πσ1

)
(y0)∆um −Kσ ∗

(
log

1√
2πσ2

)
(y0)∆vm

+
∑
x∈Ω

s3(x)Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

(I(y0)− f1(x))
2

2σ2
1(x)

+
∑
x∈Ω

s4(x)Kσ(x− y0)∆vm
s4(x) +Kσ(x− y0)∆vm

(I(y0)− f2(x))
2

2σ2
2(x)

First, we have two local intensity functions that approximate the intensity means of

the local regions around the point x as follows:

f1(x) =

∫
Ω
Kσ(x− y)I(y)[u(y)]mdy∫
Ω
Kσ(x− y)[u(y)]mdy

=

∑
y∈ΩKσ(x− y)I(y)[u(y)]m∑
y∈ΩKσ(x− y)[u(y)]m

=
[Kσ ∗ (Ium)](x)
[Kσ ∗ um](x)

(C.33)

f2(x) =

∫
Ω
Kσ(x− y)I(y)(1− [u(y)])mdy∫
Ω
Kσ(x− y)(1− [u(y)])mdy

=

∑
y∈ΩKσ(x− y)I(y)[1− u(y)]m∑
y∈ΩKσ(x− y)[1− u(y)]m

=
[Kσ ∗ (I(1− u)m)](x)

[Kσ ∗ (1− u)m](x)
(C.34)
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Consider a given point y0 ∈ Ω. The intensity value of point y0 is I0, and the corresponding

degree of membership for this point is uy0 . Suppose that we change the degree of mem-

bership of point y0 to the new value uny0 . Therefore, the values of f1(x) and f2(x) will be

changed to the new ones f̃1(x) and f̃2(x) respectively. We assume the values of σ1 and σ2
are changed but remain small.

The value of f̃1(x) is expressed as follows:

f̃1(x) =

∑
y∈ΩKσ(x− y)I(y)[ũ(y)]m∑
y∈ΩKσ(x− y)[ũ(y)]m

=

∑
y∈ΩKσ(x− y)I(y)[u(y)]m +Kσ(x− y0)(u

m
ny0
I0 − umy0I0)∑

y∈ΩKσ(x− y)[u(y)]m +Kσ(x− y0)(umny0 − umy0)

=
[Kσ ∗ (Ium)](x) +Kσ(x− y0)∆umI0

[Kσ ∗ um](x) +Kσ(x− y0)∆um
(C.35)

where ∆um = umny0 − umy0 .

From (C.33), and let s3(x) = [Kσ ∗ um](x), we have:

[Kσ ∗ (Ium)](x) = [Kσ ∗ um](x)f1(x) = s3(x)f1(x) (C.36)

Inserting (C.36) into (C.35), we obtain:

f̃1(x) =
s3(x)f(x) +Kσ(x− y0)∆umI0

s3(x) +Kσ(x− y0)∆um

= f1(x) +
Kσ(x− y0)∆um

s3(x) +Kσ(x− y0)∆um
(I0 − f1(x)) (C.37)

A similar calculation gives the new value f̃2(x) as follows:

f̃2(x) = f2(x) +
Kσ(x− y0)∆vm

s4(x) +Kσ(x− y0)∆vm
(I0 − f2(x)) (C.38)

where s4(x) = [Kσ ∗ (1− u)m](x), and ∆vm = (1− uny0)
m − (1− uy0)

m.

Now, we note that, with i = 1, 2:

log px(I(y), σi) = log

(
1√

2πσi(x)
exp

(
− (fi(x)− I(y))2

2σ2
i (x)

))

= log
1√

2πσi(x)
− (fi(x)− I(y))2

2σ2
i (x)

(C.39)

Then, we can rewrite the formulation of FL as follows:

FL = FL1 + FL2 (C.40)
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where

FL1 =

∫
Ω

∫
Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

+
(f1(x)− I(y))2

2σ2
1(x)

]
[u(y)]mdydx (C.41)

FL2 =

∫
Ω

∫
Ω

Kσ(x− y)

[
− log

1√
2πσ2(x)

+
(f2(x)− I(y))2

2σ2
2(x)

]
[1− u(y)]mdydx (C.42)

The new value F̃L1 can be calculated as follows:

F̃L1 =

∫
Ω

∫
Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

+
(f̃1(x)− I(y))2

2σ2
1(x)

]
[ũ(y)]mdydx

=

∫
Ω

∫
Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

]
[ũ(y)]mdydx

+

∫
Ω

∫
Ω

Kσ(x− y)
(f̃1(x)− I(y))2

2σ2
1(x)

[ũ(y)]mdydx

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

]
[ũ(y)]m

+
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f̃1(x)− I(y))2

2σ2
1(x)

[ũ(y)]m

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

]
[u(y)]m +

∑
x∈Ω

Kσ(x− y0)

[
− log

1√
2πσ1(x)

]
∆um

+
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f̃1(x)− I(y))2

2σ2
1(x)

[u(y)]m

+
∑
x∈Ω

Kσ(x− y0)
(f̃1(x)− I0)

2

2σ2
1(x)

∆um

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

]
[u(y)]m +

[
Kσ ∗

(
− log

1√
2πσ1

)]
(y0)∆um

+
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f̃1(x)− I(y))2

2σ2
1(x)

[u(y)]m︸ ︷︷ ︸
F̃L12

+
∑
x∈Ω

Kσ(x− y0)
(f̃1(x)− I0)

2

2σ2
1(x)

∆um︸ ︷︷ ︸
F̃213

(C.43)
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We have

F̃L12 =
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f̃1(x)− I(y))2

2σ2
1(x)

[u(y)]m

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

[
f1(x)− I(y) + Kσ(x−y0)∆um

s3(x)+Kσ(x−y0)∆um (I0 − f1(x))

]2
2σ2

1(x)
[u(y)]m

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f1(x)− I(y))2

2σ2
1(x)

[u(y)]m

+ 2
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

2σ2
1(x)

(f1(x)− I(y))
Kσ(x− y0)∆um

s3(x) +Kσ(x− y0)∆um
(I0 − f1(x))[u(y)]

m

+
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

2σ2
1(x)

[
Kσ(x− y0)∆um

s3(x) +Kσ(x− y0)∆um

]2
(I0 − f1(x))

2[u(y)]m

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f1(x)− I(y))2

2σ2
1(x)

[u(y)]m

+ 2
∑
x∈Ω

[
Kσ(x− y0)∆um

s3(x) +Kσ(x− y0)∆um

(I0 − f1(x))

2σ2
1(x)

∑
y∈Ω

Kσ(x− y)(f1(x)− I(y))[u(y)]m︸ ︷︷ ︸
tglocal

]

+
∑
x∈Ω

[[ Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

]2 (I0 − f1(x))
2

2σ2
1(x)

∑
y∈Ω

Kσ(x− y)[u(y)]m

]
(C.44)

We note that tglocal =
∑
y∈Ω

Kσ(x− y) (f1(x)−I(y))
2σ2

1(x)
[u(y)]m = 0 according to Formula (C.36).

Therefore,

F̃L12 =
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f1(x)− I(y))2

2σ2
1(x)

[u(y)]m

+
∑
x∈Ω

[[ Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

]2 (I0 − f1(x))
2

2σ2
1(x)

∑
y∈Ω

Kσ(x− y)[u(y)]m

]

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f1(x)− I(y))2

2σ2
1(x)

[u(y)]m

+
∑
x∈Ω

[ Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

]2 (I0 − f1(x))
2

2σ2
1(x)

s3(x) (C.45)
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Next,

F̃L13 =
∑
x∈Ω

Kσ(x− y0)
(f̃1(x)− I0)

2

2σ2
1(x)

∆um

=
∑
x∈Ω

Kσ(x− y0)

[
f1(x)− I0 +

Kσ(x−y0)∆um
s3(x)+Kσ(x−y0)∆um (I0 − f1(x))

]2
2σ2

1(x)
∆um

=
∑
x∈Ω

Kσ(x− y0)

2σ2
1(x)

[(
f1(x)− I0

)(
1− Kσ(x− y0)∆um

s3(x) +Kσ(x− y0)∆um

)]2
∆um

=
∑
x∈Ω

Kσ(x− y0)

2σ2
1(x)

(
f1(x)− I0

)2
s23(x)∆um(

s3(x) +Kσ(x− y0)∆um

)2 (C.46)

Then, inserting (C.45) and (C.46) into (C.43), we have:

F̃L1 =
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

]
[u(y)]m +

[
Kσ ∗

(
− log

1√
2πσ1

)]
(y0)∆um

+
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)
(f1(x)− I(y))2

2σ2
1(x)

[u(y)]m

+
∑
x∈Ω

[ Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

]2 (I0 − f1(x))
2

2σ2
1(x)

s3(x)

+
∑
x∈Ω

Kσ(x− y0)

2σ2
1(x)

(
f1(x)− I0

)2
s23(x)∆um(

s3(x) +Kσ(x− y0)∆um

)2

=
∑
x∈Ω

∑
y∈Ω

Kσ(x− y)

[
− log

1√
2πσ1(x)

+
(f1(x)− I(y))2

2σ2
1(x)

]
[u(y)]m

+
∑
x∈Ω

s3(x)Kσ(x− y0)∆um(
s3(x) +Kσ(x− y0)∆um

)2 (s3(x) +Kσ(x− y0)∆um)
(f1(x)− I0)

2

2σ2
1(x)

+

[
Kσ ∗

(
− log

1√
2πσ1

)]
(y0)∆um

= FL1 +

[
Kσ ∗

(
− log

1√
2πσ1

)]
(y0)∆um

+
∑
x∈Ω

s3(x)Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

(f1(x)− I0)
2

2σ2
1(x)

(C.47)
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By the similar calculation, we have:

F̃L2 = FL2 +

[
Kσ ∗

(
− log

1√
2πσ2

)]
(y0)∆vm

+
∑
x∈Ω

s4(x)Kσ(x− y0)∆vm
s4(x) +Kσ(x− y0)∆vm

(f2(x)− I0)
2

2σ2
2(x)

(C.48)

Then, we obtain:

F̃L = F̃L1 + F̃L2

= FL1 + FL2

+

[
Kσ ∗

(
− log

1√
2πσ1

)]
(y0)∆um +

[
Kσ ∗

(
− log

1√
2πσ2

)]
(y0)∆vm

+
∑
x∈Ω

s3(x)Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

(f1(x)− I0)
2

2σ2
1(x)

+
∑
x∈Ω

s4(x)Kσ(x− y0)∆vm
s4(x) +Kσ(x− y0)∆vm

(f2(x)− I0)
2

2σ2
2(x)

(C.49)

= FL −
(
Kσ ∗ log

1√
2πσ1

)
(y0)∆um −

(
Kσ ∗ log

1√
2πσ2

)
(y0)∆vm

+
∑
x∈Ω

s3(x)Kσ(x− y0)∆um
s3(x) +Kσ(x− y0)∆um

(f1(x)− I0)
2

2σ2
1(x)

+
∑
x∈Ω

s4(x)Kσ(x− y0)∆vm
s4(x) +Kσ(x− y0)∆vm

(f2(x)− I0)
2

2σ2
2(x)

(C.50)

From (C.50), we obtain the formula of ∆FL as presented in (4.93). �
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Appendix: Convexity of the Energy

Functional of the C LR Model

Recall the energy function of the C LR model:

min
u1,u2
0≤f≤1

{
E(u1, u2, f) = µTVg(f) +

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx

}
(D.1)

where µ is a positive constant and TVg(f) =
∫
Ω
g(x)|∇f(x)|dx

Convexity with respect to f

For fixed u1 and u2, Equation (D.1) is equivalent to the following problem:

min
0≤f≤1

{
E(f) = µTVg(f) +

∫
Ω

f(x)eCLRr (x, u1, u2)dx

}
(D.2)

where eCLRr (x, u1, u2) = ein(x, u1)− eout(x, u2), x ∈ Ω.

Energy functional (D.2) can be rewritten as follows:

E(f) =

∫
Ω

(G(f))(x)dx (D.3)

where

(G(f))(x) = µg(x)|∇f(x)|+ f(x)eCLRr (x, u1, u2) (D.4)
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APPENDIX D. APPENDIX: CONVEXITY OF THE ENERGY FUNCTIONAL OF

THE C LR MODEL

As the Euclidean norm |y|, y = (y1, y2) ∈ R2, is convex with respect to y. Therefore,

|∇f(x)| is also convex with respect to f . Besides, because µ and g are positive, and

because f(x)eCLRr (x, u1, u2) is an affine function with respect to f , then G(f) is convex

with respect to f . Consequently, E(f) is convex with respect to f .

Convexity with respect to u1 and to u2

In the energy functional from (D.2), only the data fidelity terms depend on u1 and u2.

Each term depends on either u1 or u2 and is twice differentiable with positive value with

respect to u1 or to u2.

In conclusion, the energy functional is convex with respect to each variable f , u1 and u2.
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Appendix: Sensibility of the

Parameters of the Proposed Models

This Appendix shows results of the proposed models in this thesis such as R LGR, C LR,

C LGR and C LGFGD on non-homogeneous, MRI, CT and PET images when the param-

eters in their energy functions vary. We limit this Appendix for the parameters influenced

to deal with intensity in-homogeneity: size of the local window and the coefficient of the

local term.

E.1 The R LGR Model

Recall the energy function of the R LGR model:

E(ϕ) =

∫
Ω

(
I(x)− IG(x, ϕ)

)2
dx+

λ

2

∫
Ω

(
I(x)− IL(x, ϕ)

)2
dx (E.1)

Parameters:

·) σ: the size of the local window,

·) λ: controls the influence of the local term compared with the global term.
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PROPOSED MODELS

(a) Original image (b) σ = 6 (c) σ = 15 (d) σ = 54

(e) Original image (f) σ = 6 (g) σ = 16 (h) σ = 54

(i) Original image (j) σ = 28 (k) σ = 42 (l) σ = 72

(m) Original image (n) σ = 39 (o) σ = 65 (p) σ = 115

Figure E.1. Results of the R LGR model on non-homogeneous synthetic images with
different values of σ (λ = 1000 for all tests).

(a) Original image (b) σ = 48 (c) σ = 60 (d) σ = 78

(e) Original image (f) σ = 13 (g) σ = 26 (h) σ = 29

Figure E.2. Results of the R LGR model on MR images with different values of σ
(λ = 100 for all tests).
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(a) Original image (b) λ = 100 (c) λ = 1000

(d) Original image (e) λ = 100 (f) λ = 1000

(g) Original image (h) λ = 100 (i) λ = 1000

(j) Original image (k) λ = 100 (l) λ = 1000

Figure E.3. Results of the R LGR model on non-homogeneous synthetic images with
different values of λ. Row 1: σ = 9, Row 2: σ = 8, Row 3: σ = 31, Row 4: σ = 40.

(a) Original image (b) λ = 1 (c) λ = 40 (d) λ = 50

(e) Original image (f) λ = 20 (g) λ = 60 (h) λ = 80

Figure E.4. Results of the R LGR model on MR images with different values of λ. Row
1: σ = 60, Row 2: σ = 27.
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PROPOSED MODELS

E.2 The C LR Model

Recall the energy function of the CLGRAC model:

min
u1,u2
0≤f≤1

{
E(u1, u2, f) = µTVg(f) +

∫
Ω

f(x)ein(x, u1)dx+

∫
Ω

(1− f(x))eout(x, u2)dx

}
(E.2)

Parameters:

·) σ: the size of the local window.

(a) Original image (b) σ = 2 (c) σ = 7 (d) σ = 13

(e) Original image (f) σ = 2 (g) σ = 8 (h) σ = 15

(i) Original image (j) σ = 9 (k) σ = 17 (l) σ = 21

(m) Original image (n) σ = 9 (o) σ = 20 (p) σ = 30

Figure E.5. Results of the C LR model on non-homogeneous synthetic images with
different values of σ (µ = 1 for all tests).
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(a) Original image (b) σ = 2 (c) σ = 15 (d) σ = 20

(e) Original image (f) σ = 2 (g) σ = 11 (h) σ = 25

Figure E.6. Results of the C LR model on MR images with different values of σ. Row 1:
µ = 10, Row 2: µ = 1.

E.3 The C LGR Model

Recall the energy function of the C LGR model:

min
u1,u2,c1,c2

0≤f≤1

E(u1, u2, c1, c2, f) = µ

∫
Ω

g(x)|∇f(x)|dx+ λEL(u1, u2, f) + λ2EG(c1, c2, f) (E.3)

Parameters:

·) σ: the size of the local window,

·) λ: controls the influence of the local term FL compared with the global term FG
(fixed λ2 = 1).

E.4 The C LGFGD Model

Recall the energy function of the C LGFGD model:

F (M) = µ

∫
Ω

|∇u|dx+ λFG(MG) + (1− λ)FL(ML) (E.4)

Parameters:

·) σ: the size of the local window,

·) λ: controls the influence of the local term FL compared with the global term FG.
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PROPOSED MODELS

(a) Original image (b) σ = 2 (c) σ = 7 (d) σ = 13

(e) Original image (f) σ = 2 (g) σ = 8 (h) σ = 15

(i) Original image (j) σ = 9 (k) σ = 17 (l) σ = 21

(m) Original image (n) σ = 9 (o) σ = 20 (p) σ = 30

Figure E.7. Results of the C LGR model on non-homogeneous synthetic images with
different values of σ (µ = 1 and λ = 10000 for all tests).

(a) Original image (b) σ = 2 (c) σ = 15 (d) σ = 20

(e) Original image (f) σ = 2 (g) σ = 11 (h) σ = 25

Figure E.8. Results of the C LGR model on MR images with different values of σ. Row
1: µ = 10, λ = 1000. Row 2: µ = 1, λ = 1000.
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(a) Original image (b) σ = 2 (c) σ = 11 (d) σ = 22

(e) Original image (f) σ = 2 (g) σ = 12 (h) σ = 22

(i) Original image (j) σ = 2 (k) σ = 12 (l) σ = 22

Figure E.9. Results of the C LGR model on CT images with different values of σ (µ = 1
and λ = 10 for all test).
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PROPOSED MODELS

(a) Original image (b) λ = 100 (c) λ = 1000

(d) Original image (e) λ = 100 (f) λ = 1000

(g) Original image (h) λ = 10 (i) λ = 100

(j) Original image (k) λ = 1000 (l) λ = 10000

Figure E.10. Results of the C LGR model on non-homogeneous synthetic images with
different values of λ. Row 1: σ = 5, µ = 1. Row 2: σ = 7, µ = 1. Row 3: σ = 9, µ = 1.
Row 4: σ = 17, µ = 1.

(a) Original image (b) λ = 1 (c) λ = 10

(d) Original image (e) λ = 10 (f) λ = 100

Figure E.11. Results of the C LGR model on MR images with different values of λ. Row
1: σ = 13, µ = 10. Row 2: σ = 8, µ = 1.
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(a) Original image (b) λ = 100 (c) λ = 1000

(d) Original image (e) λ = 10 (f) λ = 100

(g) Original image (h) λ = 1 (i) λ = 10

Figure E.12. Results of the C LGR model on CT images with different values of λ.
σ = 12 and µ = 1 for all test.

(a) Original image (b) σ = 6 (c) σ = 10 (d) σ = 17

(e) Original image (f) σ = 2 (g) σ = 10 (h) σ = 15

(i) Original image (j) σ = 9 (k) σ = 28 (l) σ = 32

Figure E.13. Results of the C LGFGD model on non-homogeneous synthetic images with
different values of σ. m = 2 and λ = 0.01 for all test.
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PROPOSED MODELS

(a) Original image (b) σ = 11 (c) σ = 16 (d) σ = 21

(e) Original image (f) σ = 2 (g) σ = 12 (h) σ = 16

Figure E.14. Results of the C LGFGD model on MR images with different values of σ.
m = 2 and λ = 0.0001 for all test.

(a) Original image (b) σ = 18 (c) σ = 21 (d) σ = 24

(e) Original image (f) σ = 17 (g) σ = 20 (h) σ = 23

(i) Original image (j) σ = 17 (k) σ = 20 (l) σ = 23

Figure E.15. Results of the C LGFGD model on CT images with different values of σ.
m = 2 and λ = 0.0001 for all test.
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(a) Original image (b) λ = 0.1 (c) λ = 0.2

(d) Original image (e) λ = 0.1 (f) λ = 0.9

(g) Original image (h) λ = 0.1 (i) λ = 0.2

Figure E.16. Results of the C LGFGD model on non-homogeneous synthetic images with
different values of λ. Row 1: σ = 9 and m = 2, Row 2: σ = 9 and m = 2. Row 3: σ = 27
and m = 2.

(a) Original image (b) λ = 0.1 (c) λ = 0.2

(d) Original image (e) λ = 0.01 (f) λ = 0.1

Figure E.17. Results of the C LGFGD model on MR images with different values of λ.
Row 1: σ = 17 and m = 2. Row 2: σ = 11 and m = 2
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PROPOSED MODELS

(a) Original image (b) λ = 0.01 (c) λ = 0.1

(d) Original image (e) λ = 0.01 (f) λ = 0.1

(g) Original image (h) λ = 0.1 (i) λ = 0.3

Figure E.18. Results of the C LGFGD model on CT images with different values of λ.
σ = 21 and m = 2 for all test.
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