
PARIS NORD UNIVERSITY - SORBONNE PARIS CITÉ
Laboratoire d’Informatique de Paris 13, CNRS UMR 7030,

École Doctorale Galilée

PHD THESIS
to obtain the title of

PhD of Science of Université Paris 13
Specialty: Informatique

Khanh Dung TRAN

Rigorous and formal approaches for
modelling and designing service

systems

Thesis Director
Prof. Christine CHOPPY

Defended on September 20, 2013

JURY

Reviewers:
Prof. Nicole Levy - CNAM, Paris, France
Prof. Pascal Poizat - Université Paris Ouest

Nanterre la Défense, France

Examinators:
Prof. Christophe Fouquere - LIPN, Université Paris Nord, France

Adviser:
Prof. Gianna Reggio - DIBRIS, Università di Genova, Italy

Director:
Prof. Christine Choppy - LIPN, Université Paris Nord, France

Acknowledgements

Above all, I would like to express my deepest gratitude to my thesis director Chris-
tine CHOPPY, who never accepts me less than my best efforts. I would like to
thank for her guidance in last three years, not only in my studying but also in my
daily life. I owe a great debt of gratitude for her help and support.

I would like to express my deep and sincere thanks to my adviser Gianna REG-
GIO, who has not only served as my adviser but also has encouraged and challenged
me through my studies. Thanks so much for her support, patience, as well as pro-
fessional knowledge and ideas.

I wish to express my warm thanks to reviewers Nicole LEVY, Pascal POIZAT,
and Chair of the jury Christophe FOUQUERE for their time spent on reading my
thesis and remarks made.

I would like to thank to the whole administrative board at LIPN for their support,
especially Laure PETRUCCI - Head of LIPN, Christophe FOUQUERE - Head of
LIPN in my first year, and Brigitte GUEVENEUX - Secretary of LIPN, also Michael
FORTIER and Mamadou SOW for their technical support.

My sincere thanks are due to all my friends in Paris 13, who share with me
PhD life and help me a lot: Phuong, Loc, Trung, Nghia, Quang, Nguyen, Binh, Le,
Trang, Tung-Dung, Nga-Hoan, Phong, Hoan-Ly, Khue, Cuong, Bao, Cuc, and due
to all members of LIPN, for their warm and friendly atmosphere.

Last, but by no means least, I want to thank my parents Tam and Du for being
my inspiration and motivation to become a PhD student in France. Thanks to my
brothers: Minh and Duy, my nephews and nieces: Hien, Ngoc, Mai, and Phuong
Nghi for being by my side despite the geographic distance between us. And I could
not express how much I am grateful to my husband Duc, for his love, his measureless
support, as well as for his belief in me.

i

Abstract

rigorous and formal approaches for modelling and designing
service systems

Abstract: The emergence of Service Oriented Architecture (SOA) allows ap-
plication functionalities to be provided and consumed as sets of services, and
enables a community, an organization or a system of systems to work together
more cohesively using services without getting overly coupled. SOA has been
associated with a variety of approaches and technologies and became a solution
for building service oriented systems.
In this thesis, we focus on proposing precise (exactly or sharply defined or stated)
methods for modelling and designing service oriented systems with the UML, as
well as with formal specification notations to have both advantages of practical
visual notations.
For implementing SOA successfully, our first effort is to define a mechanism
for defining and modelling a business and its business processes, then we have
developed a formal method for modelling SOA services and service systems not
only visually but also formally and precisely.
In terms of designing service systems (i.e., how is a service system defined for
realizing the business processes), we proposed a method which follows the Model
Driven Architecture approach and results in transforming models in designing a
high-quality service systems for particular enterprises. Our method is based on
model transformation, in which some transformation patterns should be defined
in order to transform a business model into a design model of a service system.
In result, we have developed two precise methods for modelling service systems
(one based on a standard widespread not formal notation (UML), and the other
based on a formal notation (Casl4Soa)); a precise method for modelling a busi-
ness and its processes; a precise method for placing a system on a business model ;
a set of transformation patterns to transform a business model with placement
to a design model of a service system (with assuming that some services already
available).
Besides, we introduce a mechanism to verify the realization of a business on a
designed service system.
Key words: SOA, Service-oriented system, Business process, Design pattern,
MDA, UML, SoaML, Casl-Mdl, Casl4Soa

iii

iv ABSTRACT

RESUME

approches rigoureuses et formelles pour la modellisation et
la specification des systemes orientes service

Résumé: L’émergence de l’architecture orienté services (SOA) permet que les
fonctionnalités d’une application soient fournies et consommées comme des en-
sembles de services, et qu’une organisation ou un système de systèmes travaille de
manière cohérente. SOA est associée à une variété d’approches et de technologies
et est une solution pour construire des systèmes de services.
Nous proposons une nouvelle méthode pour la modélisation et la conception de
systèmes orientés services avec UML, ainsi qu’avec les notations de spécification
formelle et visuelles pratiques.
Pour l’implémentation, notre premier effort consiste à définir un mécanisme pour
la définition et la modélisation d’un système et de ses processus, puis nous
développons une méthode formelle pour modéliser les services SOA et les sys-
tèmes de manière non seulement visuelle mais aussi formelle.
Pour la conception, nous présentons une méthode qui respecte l’architecture
dirigée par les modèles et aboutit à transformer les modèles pour concevoir un
système de services de haute qualité. Notre méthode est basée sur le modèle de
transformation, dans laquelle des modèles de transformation sont définis pour
transformer un modèle d’activité en un modèle de conception d’un système de
services.
En conclusion, nous avons proposé: deux méthodes pour modéliser les systèmes
de services (l’une est basée sur une notation non formelle (UML), l’autre sur une
notation formelle (Casl4Soa)); une méthode pour modéliser d’un système et de
ses processus; une méthode pour placer un système dans un modèle d’activité;
un ensemble de modèles pour transformer un modèle de système en un modèle
de spécification d’un système de services.
Mots-clés: SOA, Systèmes orientés service, Processus de systèmes, Patron de
conception, MDA, UML, SoaML, Casl-Mdl, Casl4Soa

Contents

Acknowledgements i

Abstract iii

Contents v

1 Introduction 1
1.1 Statement of problem . 2
1.2 Contributions . 4
1.3 Thesis layout . 6

2 State of Art 9
2.1 Understanding SOA (Service Oriented Architecture) 10
2.2 Extended UML for SOA . 21
2.3 Formal modelling for SOA . 27
2.4 Methods for developing service-oriented systems 31

3 Case Studies 39
3.1 Dealer Network . 40
3.2 Office Service system . 42

4 A View on Services and Service Systems 43

5 Business Modelling 47
5.1 Business and business process . 48
5.2 A precise method for business modelling 50
5.3 How to model a business . 57
5.4 Modelling the Dealer Business . 58

6 PreciseSoa: a precise method for modelling service systems using
UML 65
6.1 PreciseSoa . 66

v

6.2 Modelling Dealer Networking System following PreciseSoa 79
6.3 Office System Model Model following PreciseSoa 87

7 Design Model of Service system in Casl4Soa 95
7.1 Overview of Casl4Soa . 96
7.2 Casl4Soa Constructive Service System Model 97
7.3 Casl4Soa property oriented model 103
7.4 How to develop a Casl4Soa model 104
7.5 Dealer Network Model in Casl4Soa 113
7.6 Casl4Soa Model of Office System 121
7.7 Tool support . 130

8 Service System Design 135
8.1 Transformation patterns . 137
8.2 Place the System phase . 139
8.3 Eliminate Useless Parts phase . 143
8.4 Simplify Tasks phase . 147
8.5 Operationalize Tasks phase . 149
8.6 Introduce Services phase . 153
8.7 Applying design method to case study Dealer Network 169
8.8 Validation of designed system . 175

9 Comparison and evaluation of the methods 181

10 Conclusion and future work 187

A Appendix 191
A.1 UML . 191
A.2 OCL - Constraints for UML . 209
A.3 CASL-MDL . 212
A.4 Profile . 218

List of Figures 219

List of Tables 223

Bibliography 225

C
h

a
p

t
e

r

1
Introduction

Contents
1.1 Statement of problem . 2

1.2 Contributions . 4

1.3 Thesis layout . 6

1

2 CHAPTER 1. INTRODUCTION

1.1 Statement of problem

The emergence of Service Oriented Architecture (SOA, c.f., Sect. 2.1) has enabled
business functionalities to be invoked over a remote network, and thus requires
specific methods to develop service-oriented systems.

Up to now, SOA has been associated with a variety of approaches and tech-
nologies and became a solution for building systems that are easily modified. SOA
allows application functionalities to be provided and consumed as sets of services,
and enables a community, an organization or a system of systems to work together
more cohesively using services without getting overly coupled.

The traditional development methods, related techniques, and notations have
been found inadequate to support the development of service oriented systems, so
this has motivated our work on development methods for SOA based system. More-
over, developing service systems is a difficult task, and methods can help SOA
developers avoid common errors.

For the modelling of services for the design of service systems (i.e., how are
services defined), several proposals using the UML notation [25] and formal semi-
visual notations have been developed. However, we found that several currently
available modelling notations have a typical problematic aspect, i.e., the lack of a
formal semantics if not of a well-defined syntax. We recall here a statement of Object
Management Group1 (OMG) that “Good SOA services cannot be achieved by simply
exposing legacy applications and data directly. Rather, they need to be transformed
to support enterprise semantics”.

It is needed to have a precise modelling notation with a formal semantics playing
a role in specification, analysis, and even checking the quality of models. At a precise
level, the specification of services and service systems shall be effective in supporting
their evolution to maintain service systems for future change. This problem urges
us to develop a formal method for modelling a service system not only visually but
also formally and precisely.

In terms of designing service systems (i.e., how is a service system defined for
realizing the business processes), the experience of solving the wide business and
architectural issues still stands at an early stage. Moreover, there is an important
aspect in the implementation of SOA, that is: we cannot link our business processes
to our service models without following the MDA modeling standards, i.e., Model
Driven Architecture2. MDA standards offer the capability to design a complete SOA

1http://www.omg.org/
2MDA - “The Architecture Of Choice For A Changing World”,

http://www.omg.org/mda/index.htm

1.1. STATEMENT OF PROBLEM 3

solution through models, and minimize the effort invested in specific technologies or
protocols. Those aspects motivate the need for a method which follows the MDA
approach and then results in transforming models in designing a high-quality service
systems for particular enterprises.

Hence, the relevant work of this thesis is devoted to develop modelling and
designing methods for SOA services and service systems.

The starting point is an informal description of a business, then the developers
have to build a design model of the service system before developing the applications
for this service system. We use the concept of business to denote the activities
performed within an enterprise (i.e., organization, formally or informally established,
that performs specific activities for some specific goals).

For implementing SOA successfully, first of all, we should have in hand a precise
model of the business and its processes to be supported. Thus, our first aim is to
define a mechanism for defining and modelling a business and its business processes.
In fact, there are a lot of business analysts studying the way companies work and
defining business processes with simple flow charts, such as, BPMN 2.0 [24]. We
are also comfortable with visualizing business processes in a flow-chart format, but
moreover, they should be modelled in a precise way that does not to lead the readers
to the confusion.

For building modelling methods, we have used both the UML and a Casl4Soa,
a Casl-Mdl [9] based notation. The UML offers a very large set of constructs to
build the diagrams, such as activity diagrams, class diagrams, and use case diagrams,
etc. and we can take advantage of its numerous features and supporting tools, and
also define our own methods. For the formal description of semantics of services,
we choose Casl-Mdl that is a visual formal notation derived by Casl-Ltl. Casl-

Ltl is a textual formal specification language based on a first-order many-sorted
branching time temporal logic. It is an extension for dynamic system of Casl that
resulted from a unification effort of the algebraic specification community.

We have followed the MDA to propose a method for building the service system
to support a business. Thus, this method should be based on model transformation,
in which some transformation patterns should be defined in order to transform
a business model into a design model of a service system (illustrated visually in
Fig. 1.1).

As a part of the development of a service system to support a business, it is
necessary to have mechanism for placing a service system being built to support a
business on its model. This work helps us in deciding which part of that business
will be automatized by the service system. The placement work should be a starting

4 CHAPTER 1. INTRODUCTION

phase in our design method.

Figure 1.1: Transformation patterns filling the gap between the Business Model of
a business and the Design Model of a service system supporting this business

In the early stage of this thesis, we chose SoaML [27] as a based-modelling
language to develop our modelling method and this method seems different from
our proposed modelling method based on Casl4Soa [8]. However, in our working
progress, we investigate that we are able to use UML2.0 to define our own modelling
method, and we can unify our proposed modelling method based on Casl4Soa with
this one in a common view of a SOA service system. Thus, we finally built a unique
conceptual model of service system for both the two proposed modelling methods,
one using UML 2.0, instead of SoaML, and one using Casl4Soa.

1.2 Contributions

We focus on proposing a precise3 method for modelling and designing service ori-
ented systems with the UML, as well as with formal specification notations to have
both advantages of practical visual notations.

Fig. 1.2 gives an overview of our proposed approach to service system devel-
opment. The first point is building the model of the business, thus we have built
a precise UML-based modelling method supporting for this work. This first stage
results in a Business Model. In the next step, we deal with deciding which part of
the business will be automatized by the service system through the Business Model.
This work should be done before building the design model of a service system sup-
porting this business. Hence, we also define a precise method for placing a system
over a business, i.e., over a Business Model. The Business Model with Placement
marked is the input of the next stage, i.e., transforming the Business Model to a
Design Model of a Service System. For this stage, we propose a set of patterns
to drive the transformation of this Business Model with Placement until obtaining
a Design model of a Service system. Then the designed Service system should be
validated with respect to the selected business part defined in the placement stage.

3Precise: exactly or sharply defined or stated (Merrian-Webster Dictionary)

1.2. CONTRIBUTIONS 5

Figure 1.2: Proposed approach to service system development

The last stage is the implementation of the service system, in which the models may
be transformed into execution languages, description languages, or other technique
fragments by a transformer in a Model Driven Environment built for SOA. However,
we do not consider this stage at our work, it will be subject of future work.

In every proposed method in this thesis, for presenting the models of a business
and a service system, we use a UML profile, defined by a set of stereotypes, and
we explicitly define the form of the models by means of a metamodel and a set of
well-formedness rules.

In total, the following precise methods for modelling and a set of transformation
patterns for designing a service system are proposed, they are:

6 CHAPTER 1. INTRODUCTION

1. Two precise methods for modelling service systems, one based on a standard
widespread not formal notation (UML), and the other based on a formal no-
tation (Casl4Soa). The applications of these methods are illustrated by two
case studies.

2. A precise method for modelling a business and its processes

3. A precise method for placing a system on a business model

4. A set of transformation patterns to transform a business model with placement
to a design model of a service system (with assuming that some services already
available).

Those precise methods includes a set of well-formedness constraints on the mod-
els investigated to guide the development of good quality models and avoid frequent
mistakes. Detailed guidelines for applying those methods are defined to help the
developers

Besides that, we introduce a mechanism to verify the realization of a business
on a designed service system.

1.3 Thesis layout

The thesis is organized in 11 chapters, and their contents are summarized as follow-
ing:

Chapter 1 (this chapter) introduces the motivations of doing this thesis, and its
structure.

Chapter 2 presents related works and recent works of other colleges and IT orga-
nizations in our subjects of interest, i.e, SOA, modelling and designing service
systems.

Chapter 3 provides the description of two case studies, i.e., the Dealer Network
case study that was adopted from OMG Adopted Specification of SoaML [27],
and the services provided by the set of software tools composing a Office-like
suite. We will illustrate the use of our proposed methods in this thesis by the
application of them to such systems.

Chapter 4 presents our view on services and service systems, in which we introduce
our conceptual model of a service-oriented system, that is the basis of the work
in the following chapters.

1.3. THESIS LAYOUT 7

Chapter 5 gives a general introduction to business and business processes, and
describes the precise business modelling method that we propose.

Chapter 6 introduces a method to model service systems using a profile of the
UML, called PreciseSOA. PreciseSOA method has been inspired by SoaML
[27].

Chapter 7 presents our extension of Casl-Mdl models (that offers a visual syntax
to a subset of the Casl-Ltl [45] formal textual specifications) to develop
Casl4Soa as a formal visual notation used to model service systems formally
and effectively.

Chapter 8 presents a method for designing a service system being built to support
a business that follows the MDA. The method provides also a set of transfor-
mation patterns to help the developer works.

Chapter 9 discusses difference and the relationship between the two notations,
i.e., the UML profile PreciseSOA and the formal visual notation Casl4Soa,
essentially the level of precision (and thus the expressiveness) both at the level
of constructs and at the semantics level, and the evaluation of the application
of those approaches on the case studies.

Chapter 10 concludes and presents our future work.

All the diagrams included in the thesis have been created by using the community
edition of the tool Visual Paradigm (available on [44]).

C
h

a
p

t
e

r

2
State of Art

Contents
2.1 Understanding SOA (Service Oriented Architecture) 10

2.1.1 Views of SOA . 15

2.1.2 SOA vs Web Service and Object Oriented Model 20

2.2 Extended UML for SOA . 21

2.3 Formal modelling for SOA . 27

2.4 Methods for developing service-oriented systems 31

9

10 CHAPTER 2. STATE OF ART

Let us present here the related works and the recent works of other colleges
and IT organizations in our subjects of interest, i.e, SOA, modelling and designing
service systems. First of all, we collect the definitions about SOA from various
organizations, and present our own view of SOA and its concepts. Then we take a
closer look on how the extended UML and formal specification languages used for
modelling visually and formally the concepts of a SOA system in existing works.
After that, we introduce some methods for designing service systems that their
proposed techniques and design phases give us the inspiration to develop our method.

2.1 Understanding SOA (Service Oriented
Architecture)

Several IT organizations (OMG, W3C, IBM, . . .) have been writing about SOA
[14, 28, 42] with different meaning according to their own definitions.

The World Wide Web Consortium (W3C) refers to SOA as “A set of compo-
nents which can be invoked, and whose interface descriptions can be published and
discovered ” [30].

The Object Management Group1 (OMG) considers that SOA is “An architectural
paradigm for defining people, organizations and systems provide and use services to
achieve results” [27].

IBM defines SOA as the following: “SOA is a business-driven IT approach that
supports integrating a business as linked, repeatable business tasks, or service” [33].

Anyway there will not be an exhaustive definition because of the specific audi-
ences that they address.

So what is SOA finally? Is it an approach, a paradigm, a strategy or a framework?
For us, we thoroughly follow the understanding of IBM [13] about SOA that:

“SOA presents an approach for building distributed systems that deliver application
functionality as services to either end-user applications or other services”. SOA ap-
proach strongly reinforces well-established, general software architecture principles,
such as information hiding, modularization, and separation of concerns.

Let us take a first look at a SOA by Fig. 2.1 where the elements might be
observed in it are shown [13]. The SOA is divided into two halves, with the left half
addressing the functional aspects and the right half addressing the quality of service
aspects. These elements are briefly described as follows:

• Transport is the mechanism used to move service requests from the service con-
sumer to the service provider, and service responses from the service provider

1http://www.omg.org/

2.1. UNDERSTANDING SOA (SERVICE ORIENTED ARCHITECTURE) 11

Figure 2.1: Elements of a service-oriented architecture

to the service consumer.

• Service Communication Protocol is an agreed mechanism that the service
provider and the service consumer use to communicate what is being requested
and what is being returned.

• Service Description is an agreed schema for describing what the service is,
how it should be invoked, and what data is required to invoke the service
successfully.

• Service describes an actual service that is made available for use.

• Business Process is a collection of services, invoked in a particular sequence
with a particular set of rules, to meet a business requirement.

• Service Registry is a repository of service and data descriptions which may
be used by service providers to publish their services, and service consumers
to discover or find available services. The service registry may provide other
functions to services that require a centralized repository.

• Policy is a set of conditions or rules under which a service provider makes
the service available to consumers. There are aspects of policy which are
functional, and aspects which relate to quality of service; therefore the policy
function is in both functional and quality of service areas.

12 CHAPTER 2. STATE OF ART

• Security is the set of rules that might be applied to the identification, autho-
rization, and access control of service consumers invoking services.

• Transaction is the set of attributes that might be applied to a group of services
to deliver a consistent result. For example, if a group of three services are to be
used to complete a business function, all must complete or none must complete.

• Management is the set of attributes that might be applied to managing the
services provided or consumed.

Service in the context of SOA

The important concept in SOA is “service”, i.e., IT services that are distinguished
from general business services. There are many definitions for the concept of “ser-
vice” in context of IT, such as:

• A component capable of performing a task that is described using WSDL (Web
Service Definition Language) [50].

• A vehicle by which a consumer’s requirement is satisfied according to a nego-
tiated contract [50].

• A logical representation of a repeatable business activity that has a specified
outcome [29].

• A service is defined as the delivery of value to another party, enabled by one
or more capabilities [27].

• A module that can be invoked, that is assigned to a specific function and that
offers a well defined interface [37], etc.

The definition of service that we consider is given in [27]: “A service is value
delivered to another through a well-defined interface and available to a community.
A service results in work provided to one by another ”. This leads us to realize
two key roles in SOA: the service provider who publishes a service description and
provides the implementation for the service and the service consumer who can use
the service directly or can find the service description in a service registry and invoke
the service.

We have an agreement on all aspects used to characterize a service in [16] as
following:

• Defined : services are defined in terms of what they do (e.g., the process(es)
they perform), the interfaces used to communicate with the services (e.g., how

2.1. UNDERSTANDING SOA (SERVICE ORIENTED ARCHITECTURE) 13

to invoke the service to perform the process), the data passed to and returned
from the services, and how the service is managed;

• Implemented : the service has to be implemented in software in such a way
that: it can respond to requests to perform its function, it can perform the
requested process, and it may return or disseminate results;

• Deployed : the service must be made available for use by others;

• Managed : the deployed service implementation is under the control of some
management authority to insure that the service is available and operates as
defined, and to provide the necessary underlying IT infrastructure to manage
the operation of the service;

• Reusable: by providing defined, discrete functionality, independent of how it
is used, a service can be used (or reused) at any point in the overall business
process where the functionality is needed;

• Communicating: a service is accessed by sending it a request, e.g., from a IT
system or from another service. Results are communicated to those that use
the service;

• Abstracting : services (through their operations) define only what process the
service provides and how to communicate with it. How the service is imple-
mented to provide the defined functionality is not defined;

• Composable: a service may be combined with other services to implement the
overall business process.

Also an agreement on the additional implementation and operation specific char-
acteristics of a service, they are:

• Granularity : the complexity of the business process provided by the service
may range in scale. The service may define a small process (or many small
processes) where each request performs a simple operation and many requests
are needed to complete a business process i.e. fine grained or the service may
provide a substantial process that maps directly to a business-level step i.e.
coarse grained;

• Coupling : while services need to interact to solve business problems, a ser-
vice may be defined to be independent of any other service and can function
without the knowledge of how other services work, or it may have explicit

14 CHAPTER 2. STATE OF ART

knowledge about not only what other services are available, but how they
perform their operations. Services that are not dependent on other services
are loosely coupled, while those that require other services are (more) tightly
coupled;

• Autonomy : what a service requires to perform its operations is local knowl-
edge only to the service. Autonomy is closely related to both coupling and
abstraction;

• State: to fulfil a request, the operational service may need to know about
historic use and invocation of the service i.e. to access data about the “state”
of the business operation maintained by the service itself. The service may
require no information about state i.e. stateless, or it may require knowledge
of prior operations, i.e., stateful;

• Discoverability : service definitions may be made available so that existing
services can be found, enabling reuse and composition. Discoverability is in-
dependent of the service itself, but part of the overall environment in which
the service is defined and managed.

Finally, whatever definitions proposed for a service, eventually they must be fully
described such that a service consumer can search, bind and invoke them. And all
kinds of services must be designed to be reused in different contexts of applications.

Characteristics of SOA system

To create a system called SOA-based, one needs techniques for the analysis, design
and realization of services, such that this system has the following aspects:

• Loosely coupled : client of a service is essentially independent of the service.
The way a client (which can be another service) communicates with the service
does not depend on the implementation of the service.

• Reuse: beyond what is described in the service contract, services hide logic
from the outside world, the logic is divided into services with the intention of
promoting reuse.

• Composition: enables to share modules between applications and inter-application
interchanges.

• Uncoupling : in order to reduce the coupling between modules, the coupling
towards the platform and infrastructure, the coupling between the client of a
service and a specific implementation of this service.

2.1. UNDERSTANDING SOA (SERVICE ORIENTED ARCHITECTURE) 15

• Permanence: supporting current and future technologies.

• Flexibility : since every application lives, has a precise life cycle, can be enriched
with new modules and has to answer new business needs.

• Openness and interoperability : in order to share modules between platforms
and environments.

• Distribution: the ability of a service consumer to invoke a service regardless
of its actual location in the network so that modules can be remotely accessed
and so that they can be centralized.

According to [50] in Microsoft Developer Network (MSDN) library [40], there
are three important architectural perspectives for SOA as following:

• The Application Architecture, where the consumers are focused on, is the busi-
ness facing solution which consumes services from one or more providers and
integrates them into the business processes.

• The Service Architecture provides a bridge between the implementations and
the consuming applications, creating a logical view of sets of services which are
available for use, invoked by a common interface and management architecture.

• The Component Architecture, where the provider is focused on, describes the
various environments supporting the implemented applications, the business
objects and their implementations.

2.1.1 Views of SOA

OMG’s view of SOA

“SOA is an architectural approach that seeks to align business processes with the
services protocols and the underlying software components and legacy applications
that implement them.”

This is an official definition of SOA that the OMG states. The OMG highly
recommends to understand clearly the model of the business processes to develop a
SOA supporting them successfully. We should understand how to model business
processes, services, and components and how to tie all the models together in a
consistent manner.

In one specification2, the OMG adopted a Fig.2.2 from an article on BPM and
SOA [48] to annotate an organization of SOA environment.

2http://www.omg.org/attachments/pdf/OMG-and-the-SOA.pdf

16 CHAPTER 2. STATE OF ART

Figure 2.2: An organization of SOA environment

The SOA environment is divided into four general layer as following:

• Business Process: describes business processes made up of a sequence of busi-
ness activities,

• Business Services: defines business services capable of automating specific busi-
ness process activities,

• Components: defines software components and orchestrations that allow the
business services to link to and call enterprise-level shared resources as needed
,

• Operational Resources: illustrates applications, packages and databases that
might be called upon by the various components.

At the top level, Business Process, OMG has adopted the Business Process
Modelling Notation (BPMN) [24] that is working on Business Process Definition
Metamodel (BPDM). At the Business Service level, the OMG has defined the Unified
Modelling Language (UML) version 2.0 [25]. At the Component and Operational
levels, the OMG has developed a variety of different standards, e.g., BPDM has all
the information needed to generate Business Process Execution Language (BPEL)
[34] code.

2.1. UNDERSTANDING SOA (SERVICE ORIENTED ARCHITECTURE) 17

The OMG declares that good SOA services should be transformed to support
enterprise semantics and should not be achieved by simply exposing legacy applica-
tions and data directly. The OMG has the responsibility in creating the common
semantic modelling system made up of specific modelling standards and a common
approach to cross-model communication - the Model Driven Architecture (MDA)
[22].

2.1.1.1 IBM technicians’ view of SOA

The elements of SOA:
The authors in [36] adapted this set of elements for SOA from Three Architec-

tural Perspectives given in [50].

Figure 2.3: The elements of SOA

Fig. 2.3 shows the elements of SOA from the perspective of applications. Busi-
ness processes are supported by user interface applications and service applications.
A step in a business process is either manual or supported by a user interface ap-
plication. User interface applications implement a lot of micro work flow, and they
also consume services that implement business functionality.

In the service choreography layer, composite services are defined by means of
a choreography language, such as BPEL. The choreography of composite services
defines their flow and composition from elemental services. The choreography layer
should be supported by a choreography tool that allows graphical specification.

The elemental services, used by the service choreography layer and also by user
interface applications, are implemented by service applications. In turn, the service
implementations might call other services, often from other service applications.

18 CHAPTER 2. STATE OF ART

The layers of SOA:
Ali Arsanjani, Chief Architect, SOA and Web services center of Excellent, IBM

build an architectural template for a SOA in [2].

Figure 2.4: The layers of SOA

Fig.2.4 depicts a representation of this type of architecture. For each of these
layers, we must make design and architectural decisions.

The operational systems layer consists of existing custom built applications, and
called legacy systems.

The enterprise components layer consists of enterprise components that are re-
sponsible for realizing functionality and maintaining the Quality of Service (QoS)
of the exposed services. These special components are a managed, governed set of
enterprise assets that are funded at the enterprise or the business unit level.

The services layer consists of the services that the business chooses to fund and
expose. They can be discovered or be statically bound and then invoked, or possibly,
choreographed into a composite service. This service exposure layer also provides
for the mechanism to take enterprise scale components, business unit specific com-
ponents, and in some cases, project-specific components, and externalizes a subset
of their interfaces in the form of service descriptions.

The business process composition or choreography layer defines the compositions
and choreography of services exposed in layer 3. Services are bundled into a flow
through orchestration or choreography, and thus act together as a single application.
These applications support specific use cases and business processes.

The access or presentation layer is usually out of scope for discussions around
a SOA, but the author depict it here because there is an increasing convergence of
standards and other technologies, that seek to leverage Web services at the appli-
cation interface or presentation level. We can think of it as a future layer that you
need to take into account for future solutions.

2.1. UNDERSTANDING SOA (SERVICE ORIENTED ARCHITECTURE) 19

The integration enables the integration of services through the introduction of a
reliable set of capabilities, such as intelligent routing, protocol mediation, and other
transformation mechanisms. Web Services Description Language (WSDL) specifies
a binding, which implies a location where the service is provided.

The QoS provides the capabilities required to monitor, manage, and maintain
QoS such as security, performance, and availability.

2.1.1.2 Our view of SOA

In our view, SOA is an IT architecture for building business applications as a set of
components that are considered as service providers and consumers. SOA is one of
the architecture framework used to define and build IT systems as a compositions of
services. SOA provides a set of specific characteristics identifying how the services
are defined, and how they interact. The most common enablement technology used
to implement SOA is Web Service. Web Services is a realization of the SOA model
for building an IT systems using a particular technology platform.

SOA is an architecture that is able to respond to future changes. Up to now,
SOA has been associated with a variety of approaches and technologies to become a
solution to build a system for change. The policies and frameworks of SOA provide
the ability to enable application functionality to be provided and consumed as sets
of services, and the ability to enable a community, organization or system of systems
to work together more cohesively using services without getting overly coupled.

A service oriented system (service system, in short) consists of a set of partic-
ipants providing and consuming services. A participant may provide or consume
several services, whereas a service establishes a connection exactly between two par-
ticipants: the provider and the consumer. A participant may be also structured in
terms of services to be able to be fulfill the contracts corresponding to the provided
and consumed services.

A participant may use internal services (i.e., local service) or external services
(or both) to provide a service in a services architecture. Thus, there are two kinds
of participant: one is monolithic participant that may only use external services
and does not consist of any subparticipant, and the other is structured participant
that may have subparticipants and use internal services. The structured partici-
pants may be further described by an internal services architecture. A participant
services architecture (called as participant architecture for short) used to specify
the architecture for a participant would consist of a number of other participants
interacting through service contracts. The participant architecture illustrates how
realizing participants and external collaborators work together.

20 CHAPTER 2. STATE OF ART

We consider a service system as a special kind of participant that does not provide
or consume any service, but it includes inner participants consuming and providing
local services. For an image, assuming that a port, i.e., a UML notation, is used
to model an interaction point of a participant, in which a participant consumes or
provides a service, then a participant may have any number of ports corresponding
to a number of its providing and consuming services, hence a service system is a
participant having no port. It is a our typical conceptual point of our view for a
SOA system, it governs all our issues in this thesis.

In our opinion, a service is a functionality unit in a service oriented system, used
to support a/some business process(es) of a business (i.e., organization performs
specific activities for some specific goals). A service is a set of operations that are
encapsulated together by means of the capabilities of a participant.

A service is provided by a participant acting as the provider and used by a
participant acting as the consumer. Those participants provide and consume several
services to fulfill a purpose. The specification of a service includes: the roles each
participant plays in the service such as provider or consumer ; the interfaces provided
and used by each participant; the messages exchanged between the participants while
enacting the service; the choreography of the interactions between the participants.

Differently from various opinions, we consider that a service is an atomic compo-
nent of a service system. In other words, there is no conception of composite service
(i.e., service contains service) in our work. Also, a service must provide a specific
capability and can be used in combination to support the needs of the business.

2.1.2 SOA vs Web Service and Object Oriented Model

Web Services are the set of protocols by which services can be published, discov-
ered and used in a technology neutral, standard form [50]. Web Services are not a
mandatory component of a SOA but Web Services propose one technical solution
to implement SOA. SOA is much wider, as SOA services can be realized as Web
services however all Web services are not equal to SOA services. Web services in-
frastructures allow for changing the service provider at runtime without affecting
the consumers.

In Object Oriented Model (OOP), there are dependencies between the presenta-
tion layer and the business objects. Here is a three tier typical architecture with an
object model according to [37]:

The client code must interact with the object model of the business layer, which
increases the coupling and requires an important amount of calls between those

2.2. EXTENDED UML FOR SOA 21

Figure 2.5: Three Tier Typical Architecture

layers. Such an amount of methods invocations between layers is a problem when
business objects are located on a remote machine. The amount of business objects
that the presentation layer has to manipulate reduces the independence between the
layers and makes it difficult to learn how to use the business layer.

In SOA, a new abstraction called “Service” layer is introduced. Here is a service
oriented architecture that would rely on the business objects:

Figure 2.6: A Service Oriented Architecture Perspective

The Presentation layer uses the services to access the business objects. Business
objects are located in class libraries that the services load into memory, since the
service layer and the business layer are now located in the same process. Services
give an abstraction of the object model and only expose a reduced set of features,
which reduces the interchanges between layers.

2.2 Extended UML for SOA

The UML (Unified Modelling Language) [25] is a well-known language for mod-
elling software system with support ranging from requirement modelling to struc-
tural overviews of a system, and down to behavioural specification of individual

22 CHAPTER 2. STATE OF ART

component [38]. However, the UML has been built within object-oriented environ-
ment, thus there is also a fact that, UML needs to be extended with specific elements
which are geared towards expressing the new concepts of SOA systems. The UML-
based modelling approach is by now widely adopted by both industry and research
in modelling and designing SOA systems.

OMG is an international and open membership organization which has respon-
sibility in setting the standard and profile for a wide range of technologies. And
the UML is the core modelling standard notation of OMG. They has built UML
version 2.0 [25, 26] that suits well for representing SOA concepts such as services,
interfaces, participants, protocols, choreography, and communications. OMG also
develop a standard, called SoaML 3 (Service oriented architecture Modeling Lan-
guage), as a UML profile for modelling services and service oriented architecture
(specification adopted in May 2012 [27]) for SOA systems.

Taking the advantage of UML 2.0, , a service-oriented profile, namely Uml4Soa,
is devised in [35] as an extension of the UML 2.0. The Uml4Soa profile has been de-
veloped within the Sensoria project4. Uml4Soa profile defines a domain-specific
language for service-oriented systems. Uml4Soa includes a set of service-specific
model elements to ease the modelling activity of SOA. Uml4Soa diagrams enjoy
formal analysis support through the Sensoria Development Environment (SDE)
[39] and integrated tools. Uml4Soa complements the SoaML profile that focuses on
the structural aspects of SOA systems and can be used in combination with other
UML profiles, such as the MARTE profile5, which has been used for performance
analysis within the scope of the Sensoria project.

In the following, let us take a closer look on how the extended UML used for
modelling concepts of a SOA system in those UML profiles.

SoaML provides the capability to model a service oriented architecture at the
enterprise and system levels. SoaML models can be used to implement SOA so-
lutions on popular SOA technology standards such as Web Services and Business
Process Execution suites. Many UML tools have been extended to provide spe-
cific services modelling capabilities based on SoaML. With MDA tools, the services
and service components defined in SoaML can be part of “source code” for service
implementations.

In SoaML, a service is defined by a contract (defined by a UML collaboration
use), a interface (defined by UML class) and a choreography (defined by UML se-
quence diagram). A service contract specifies an agreement between the involved

3Version 1.0.1 - http://www.omg.org/spec/SoaML/1.0.1/PDF/
4http://www.sensoria-ist.eu/
5http://www.omgmarte.org/

2.2. EXTENDED UML FOR SOA 23

participants on how the service is provided and consumed. A service interface define
the roles of the participants through the interfaces, the messages data of the ser-
vice, and an associated choreography illustrating the order of messages within this
service.

For each service, there will be one providing participant type and one consuming
participant type. A participant is of type service provider if it offers a service and is
of type service consumer if it uses a service. The UML mechanism of the Ports are
used to indicate the points of interaction through which participants interacts with
each others to enact services. There are two kinds of port that a participant may
have, one is stereotyped by �Service� known as a service port where a service is
provided by this participant, one is stereotyped by �Request� where a participant
makes a request for service from other participant. A port typed by a service
interface.

In SoaML, a service architecture presents how a system of participants provides
and uses services to achieve business value. It consists of a set of services and a set
of participants that work together by providing and consuming services for business
goals. It is is defined by a UML collaboration with stereotype�Service Architecture�.
A service is provided and consumed by two participants, this associated relationship
is represented by a collaboration use of the service contract. There may be several
collaboration uses of the different service contracts in a service architecture, and each
of them involves a different set of roles and connectors. Inside a service architecture,
a participant is displayed as a UML part (a solid rectangle) that contains the role of
participant and the type of this role. The two participants, who play the providing
and consuming roles in a service, will be defined in the service contract of this
service. The participant model is characterized by the set of modelled participants.

Now we move to Uml4Soa. The Uml4Soa, current version 3.0, the UML
profile is defined for specifying behavioural aspects of service-oriented architectures
on a high level of abstraction. In particular, it focuses on service orchestrations, i.e.
compositions of services, by means of an orchestration workflow. An orchestration,
in turn, is another service to be used externally, or in other orchestrations. UML 2.0
activity diagrams are selected as the base for modelling such workflows, and UML
2.0 state machines for modelling their externally visible behaviour with regard to
a certain partner. The author extends both notations by SOA specific stereotypes,
thereby enabling developers to model SOA orchestrations in a high-level fashion.
The extension is minimal, i.e. existing UML 2.0 elements are used wherever possible,
only extending the UML 2.0 where is required additional semantics, or if it adds to
the overall clarity of the diagrams.

24 CHAPTER 2. STATE OF ART

Uml4Soa provides a notation that allows for intuitive and expressive specifica-
tions of service-oriented system, where some of elements provide shortcuts for service
patterns. Based on the Sensoria Ontology [19], a set of MOF (Meta Object Facil-
ity) metamodels of service-oriented concepts is built to specify SOA. They present
UML meta-classes which are directly related to the SOA concepts. They are meta-
model presenting model elements for structural and behavioural aspects, and for
business goals, policies and non-functional properties of SOA systems. For instance,
Fig.2.7 shows the metamodel including model elements to support the specification
of structural aspects of services.

In those metamodels, they represent existing classes from the UML metamodel
with a yellow background, while the new Uml4Soa classes have a white background.

Figure 2.7: Uml4Soa metamodel: package Structure

For each element of a metamodel, a stereotype is defined establishing an exten-
sion relationship to an appropriate UML meta-class. Besides, a set of rules which
must be followed to create Uml4Soa models are defined.

Several relationships in the model are defined, e.g., “an orchestrated component
may contain several services implemented as ports”, “each service may contain a
required and a provided interface”, etc.

For specifying behavioural aspects of SOA systems, another Uml4Soa meta-
model (see Fig.2.8), provides model elements supporting this work. The metamodel
is presented in two parts: service orchestration along with compensation activities;
and the service protocol and requirements for SOA. Service orchestration is the
process of combining existing services together to form a new service to be used
like any other service. To allow modelling of such compositions in UML, specific
service-aware elements are added to be used in activity diagrams.

2.2. EXTENDED UML FOR SOA 25

Figure 2.8: Uml4Soa metamodel: package Behaviour - Orchestration

At service level, the behaviour of the port providing services to or requiring ser-
vices from other parties is specified using an UML state machine. The requirements
are mainly given by the transformations to be defined to follow a model-driven
approach.

The UML extension for modelling non-functional parameters of services is also
described. The semantic basis for this extension is defined in the Sensoria On-
tology while the style of the UML metamodel and the refinement of the concepts
is inspired by the UML Profile for Modelling Quality of Service and Fault Toler-
ance Characteristics and Mechanisms. Uml4Soa is a UML implementation of the
Sensoria Ontology, View Non-functional properties of services, refined to meet the
needs of service development. The style and elements of the UML metamodel is
guided by the OMG specification UML Profile for Modelling Quality of Service and
Fault Tolerance Characteristics and Mechanisms.

In this extension, they focused on the QoS parameters that refers to any kind of
runtime attribute which can be measured. Using a SLA-driven approach, the profile
is built to support contracts between provider and requester parties. They consider
that the profile must be specified by means of stereotypes and their relationships
to the classes of the UML metamodel in order to be able to use the elements of
the Uml4Soa metamodel in UML 2.0 CASE tools. They define a stereotype for all
non-abstract classes of the metamodel defined.

26 CHAPTER 2. STATE OF ART

For modelling the structural specification with UML extension, they present
stereotype OrchestratedComponent indicating that the component is the result of the
orchestration of service, stereotypes for specifying services, i.e. Service, ServiceIn-

terface, and ServiceDescription, the stereotypes for distinguishing different types of
communication paths, i.e. Permanent, Temporary, and the more service specific On-

TheFly.
With Business Policies, the main point to be addressed remains the representa-

tion of the tasks, such as their behaviour in relation to policies. UML provides two
Actions, to model the invocation of a behaviour in an activity model: CallOperation-

Action and CallBehaviorAction.
They need also a framework to complete the profile and obtain a modelling

environment. The StPowla profile (described in later section) is used to deal with
tasks, as elements of the workflows.

Besides introducing two general attributes of the StPowla task type (such as
automation and actor) the framework accounts for their standard behaviour. The
task types used in the workflow will inherit this behaviour, but they can redefine its
signature, to take care of the arguments and results of the specific requested service.

They consider that the UML profile for service-oriented systems is enriched with
constructs for modelling non-functional properties of services: stereotypes for the
requester and provider specification and for the characteristics and dimensions of
these characteristics.

An overview of the architecture, which is represented as a UML 2.0 Deploy-
ment Diagram is depicted. The model shows the distribution of the components
within the different physical devices of the vehicle. The two Uml4Soa stereotypes,
�temporary� and �on the fly�, visualize temporary and on-the-fly communication
paths. The �permanent� is not visualized in order to avoid an overloaded diagram.
The Orchestrator is an architectural element that is in charge to achieve a goal by
means of composition of services.

To keep the diagram understandable, they do not cover all possible aspects, the
aim was to show how different aspects such as the performance, the secure com-
munication, the availability... can be incorporated using Sensoria profile. Some
example attributes are also listed to illustrate the detailed definition of NFDimen-
sions, however, the list is not intended to be exhaustive.

To their knowledge, there is no much work on the use of UML in relation with
policies. Like they do, UML is used to provide the context for the use of policies,
rather than to express them. They think that they will be able to provide comments
and suggestions for the UPMS approach, which is performed within the scope of an

2.3. FORMAL MODELLING FOR SOA 27

OMG standard process. They really have the experience using the Uml4Soa profile
in modelling the architectural and behavioural aspects of the On Road Assistance
scenarios of the automotive case study and the experience done so far with the
StPowla profile and framework. At last, they suggest to do some more work in two
directions: more extensive modelling of case studies to straighten the details, and
experimentation with UML design tools that fully support the profiling mechanism.

There are also model transformation tools available for converting Uml4Soa

diagrams to BPEL/WSDL, JAVA, and JOLIE (Java Orchestration Language Inter-
preter Engine) [41]. This issue is described isolation in the Sensoria Model Driven
Approach (SDA) [51].

2.3 Formal modelling for SOA

One of our major purposes is to develop a method for modelling services and service
systems not only visually but also formally. In this section, let us introduce some
interested works of other collages in this field, modelling and specifying services
formally.

The two authors in the group developing Uml4Soa [19], Nora Koch and Philip
Mayer, have coordinated with other collages in equipping Uml4Soa with formal
analysis called Architectural Design Rewriting (ADR) in [5]. ADR enables formal
analysis of the UML specification.

There is a “inadequate-formal” approach (said by us) for modelling services using
a natural policy language, APPEL [47], is introduced in StPowla [21]. They develop
a workflow based approach to business process modelling that integrates a simple
graphical notation and APPEL, to provide the necessary adaptation to the varied
expectations of the various business stakeholders, and the SOA, and to assemble and
orchestrate available services in the business process. StPowla combines policies and
work flows that adds to each of the concepts being used on their own, since it permits
to capture the essential requirements of a business process by workflow notation,
and at the same time to express the inevitable requirements variability by policies
in a descriptive way, at a similar level of abstraction. In StPowla, a task has a type
and attributes. These are used to refer to the state of the execution of the workflow,
and characterise properties of individual tasks or of the whole workflow. Besides, a
task may have input and output values, it is carried out by at least one service, and
that the choice of the services may be specified by policies associated to the task.
The policies can express their choices by inspecting and/or using both the attributes
and the input values. Let us show an example for a task with its policy made of the

28 CHAPTER 2. STATE OF ART

modelling language given in StPowla:
appliesTo makeCoffee when taskEntry([])

do req(glassOfWater, [], [Cost = 0])

andthen

req(main, [], [])

A typical formal approach that we consider is developed in [7]. The authors
has extended the REsource Model for Embedded Systems (Remes [49]) to formally
describe the services. They focus on describing the behaviours of a service and
checking the service correctness. The service behaviour should be described formally
in such a way that their impact on QoS attributes can be exposed. They enriched
the REMES with some specific information about service, i.e., service type, service
capacity, time-to-serve, service status, and pre/postconditions on inputs, and output
of the services.

The pre/postconditions are built in the Guarded Command Language (GCL)
(defined in Dijstra’s guarded command language [11]).

These conditions are exploited to describe the service behaviours and employed
to check service correctness. For us, we understand that the service correctness here
is the correctness of service compositions.

In Remes, a service is modelled by an atomic mode (do not contain submode(s))
or composite mode (contain submode(s)), called Remes service. The extended at-
tributes of a service are exposed at the interface of mode, here they are:

- service type: specifies the type of given service (e.g., web service, database
service, network service, etc.);

- service capacity: specifies the maximum number of messages handled per time
units;

- time-to-serve: specifies the worst-case time needed to respond and serve a given
request;

- service status: specifies the current status of service (i.e., passive, idle, and
active);

- service precondition: is a predicate (Pre) conditioning the start of a Remes service
execution;

- and service postcondition: is a predicate (Post) must hold at the end of a Remes

service execution.
The formal specification of a service they proposed is a Hoare triple, {p}Service{q},

where Service is described in the GCL, p is the mode‘s precondition, and q is the
postcondition.

Being aware that the services need to synchronize their behaviours, they propose

2.3. FORMAL MODELLING FOR SOA 29

a special kind of Remes models as a synchronization mechanism, i.e., AND mode
and OR mode. If two services need to synchronize some actions, the respective edges
will be decorated with channel variables, e.g., out x and in x. It means that the
respective edges are taken simultaneously in both service, one writes variables that
the other is reading. The question that we consider here is: How is the situation if
two service need to synchronize more than two actions in a time point?

The authors extended Remes to model a service, and they define the Hierarchical
Language for Dynamic Service Composition (HDCL) to check the correctness of
service compositions. The HDCL is used in addressing the dynamic aspects of the
services, it allows creating new services, adding, and deleting services from lists.

They introduce a Hoare-triple in the GCL to describe the Remes composite
mode service, then the correctness will be checked by using the strongest post
condition semantics. This is a formal way that they investigate for ensuring the
correctness of the composition.

A set of Remes interface operations is defined by pre/postcondition specification,
they are: Create service, Delete service, Create service list, Delete service list, Add service to

a list, Remove service from the list, Replace service in the list, and Insert service at specific

position. Let us introduce here two typical examples of them:

• Create service: create service_name

[pre]: service_name = NULL

create : Type x N x x “passive” x (
∑
→ bool) x (

∑
→ bool) → service_name

post : service_name 6= NULL

• Add service to a list: add service_name, s_list

[pre] : service_name /∈ s_list

add: s_list → s_list

post : service_name ∈ s_list

where
∑

is the set of service states, i.e., the current collection of variable val-
ues, they are service type Type, service capacity N, time-to-serve N, service status
“passive”, the precondition

∑
→ bool, and the postcondition

∑
→ bool.

Then, a hierarchical language supporting dynamic Remes service composition
(HDCL) is defined to provide means for connecting Remes services. This language
facilitates modelling of nested sequential, parallel or synchronized services, it allows
an theoretically infinite degree of nesting.

30 CHAPTER 2. STATE OF ART

The Sensoria Reference Modelling Language (SRML) [18] is a service modeling
framework that relies on UML state machines to model service behavior, which
could help to spread its use among researchers. The benefit of the approach comes
with the mechanism that supports the formal analysis formal analysis of functional
and timing properties via model-checking; however, the analysis of extra-functional
properties, other than timing, is not addressed.

The SRML language provides a number of semantic modelling primitives for
service-oriented systems that are independent of the languages and platforms in
which services are programmed and executed. In SRML, the orchestration of services
is expressed in terms of a number of internal and external parties that are connected
to each other through interaction protocols and jointly execute a business process.
The configuration of this business process may change at run time as the discovery
of required services is triggered. An example for service representation in SRML is
shown in Fig.2.9.

Figure 2.9: A SRML service representation

A formal computation and coordination model offers a layer of abstraction for
capturing, orchestrating and analyzing properties of the conversational protocols
that characterize service-oriented interactions. The properties of required and pro-
vided services are specified in temporal logic and can be analyzed over orchestra-
tions defined in terms of state transition systems using the model checker UMC6

that works over UML state machines. Time-related properties of services can be

6http://fmt.isti.cnr.it/umc/V4.1/umc.html

2.4. METHODS FOR DEVELOPING SERVICE-ORIENTED SYSTEMS 31

analyzed using the Markovian process algebra PEPA (developed at the University
of Edinburgh).

An algebraic operational semantics supports the run-time discovery, selection and
binding mechanisms of the language and offers a business reflective model of dynamic
(re)configuration. SLA (Service Level Agreements) constraints and the associated
ranking and selection mechanisms are formalized over the c-semiring approach to
constraint optimization. The extensions of use-case and message-sequence diagrams
provide support for a number of methodological aspects of engineering business
services and activities.

2.4 Methods for developing service-oriented
systems

In recent eras, the methods for analysis and design information systems have evolved
through various generations, including structured programing, process orientation,
object orientation methods. The emergence of SOA that enables the capabilities
of businesses to be invoked over a distributed network, has given unprecedented
key concepts, such as services, components and flows. The traditional development
methods, related techniques, and notations have been found inadequate to support
the development of service-oriented systems, so this has motivated work on devel-
opment methods for SOA based systems.

Some interesting techniques are proposed in a method named Service-Oriented
Modeling and Architecture (Soma) developed in IBM for designing and building
SOA-based solutions [1]. The structure of the method enables one to effectively
analysis, design, implement, and deploy SOA projects as part of a fractal model of
software development. The Soma method incorporates the key aspects of overall
SOA solution design and delivery.

In Soma, a prioritization of the service model is conducted and based on a
service-dependency diagram and takes into account the risk factors involved in the
IT aspects of the architecture. A subset of services is prioritized for the next im-
plementation release in which technical feasibility is planned for, measured, and
exercised within a proof-of-concept prototype.

Soma is composed of capability patterns representing techniques applied in the
method. Many of these capability patterns are executed in all phases in Soma with
different degrees of elaboration and precision.

The Soma method includes the seven major phases shown in Fig. 2.10
Those phases in Soma are not linear, they are fractal phases applied in a risk-

32 CHAPTER 2. STATE OF ART

Figure 2.10: Soma phases - a fractal model of software development

driven, iterative, and incremental approach using a nuance peculiar to the SOA life
cycle. The life cycle of an SOA project uses a fractal approach that is a combination
of two key principles. The first principle of fractal software development is the
application of method tasks to self-similar scope: that is, tasks are done in a similar
way in larger or smaller boundary scopes (whether enterprise-wide, line-of-business,
or single project initiatives). The second principle of fractal software development
is successive iteration. The concepts of iterative and incremental development life
cycles have existed for a long time. They focus on prioritization and mitigation of
risk factors in order to ensure the product quality of the solution.

For all phases in Soma, a set of techniques is executed. Those techniques are
harvested from the experiences working with hundreds of projects of the authors.

The first phase of Soma is Business modelling and transformation. In this phase,
the business is modelled, stimulated and optimized by defining business architecture
and business models. This phase is not strictly required but highly recommended
because a focal area for transformation identified may drive the using the set of the
Soma phases.

We see that the most interesting techniques are proposed in the second and the
third phase of Soma, they are Identification and Specification.

The Identification phase focuses on identifying candidate services and creating a
service portfolio of services that support the business processes and business goals.
There are three main complementary service identification techniques: Goal service
modelling (GSM), Domain decomposition and Existing assets analysis.

GSM maintains the alignment of services with business goals. A generalized
statement of business goals will be decomposed into subgoals that must be met in
order for the high level goals to be met. To provide an objective basis for evaluating
the goals, the Key performance indicators (KPIs) is identified. GSM combines the

2.4. METHODS FOR DEVELOPING SERVICE-ORIENTED SYSTEMS 33

top-down and bottom-up approaches.
The Domain decomposition phase focuses on top-down analysis of business do-

mains and business process modeling to identify not only services but also the com-
ponents and flows. Both static view and dynamic view of the business are analyzed.
A static view is harvested by partitioning the business domain into coarse-grained
functional areas. The key elements are business functions, and business entities. A
dynamic view is reflected by decomposing the business processes. Thus, the business
processes are identified and modelled, and a process hierarchy is developed for busi-
ness domain. Those processes, subprocesses and process activities will be considered
as candidate services.

The Existing asset analysis uses a bottom-up approach to take a look at the
existing assets (i.e, applications) in order to identify good candidates for service
exposure and to leverage existing resources. The focus is on existing assets that play
a role in business processes and functions. A coarse-grained mapping of business
processes to the portfolio of existing application will be performed.

In the Identification phase, Service refactoring and rationalization is also an
important technique. This activity consists of three parts: refactoring of services,
the Service Litmus Tests (SLTs), and rationalization. The services are refactored in
such a way that lower-level services (in the service hierarchy) are grouped together
under a higher-level service, then the SLTs are applied to the set of candidate services
to yield a set of exposed services. Rationalization consists of a review of the service
model with business stakeholders to verify the continued relevance of the services.

We may consider the Specification phase in Soma as a design phase. In this
phase, the information models are specified and further analysis of existing assets
are performed. The conceptual data model is elaborated into a logical data model
to populate the attributes to be implemented, and the service message models which
include input, output and error messages are designed. The Service specification is
the core technique of this phase, it focuses on elaborating the detailed design of the
services. Service operations that are invoked to execute a business function will be
designated and identified in the service hierarchy. The result of this task is a service
context diagram, this diagram depicts the ecosystem of a group of related service
consumers and service providers.

Besides the service specification task, there are two tasks, i.e Subsystem analysis
and Component specification which should be executed. The major output of the
Subsystem analysis is a Subsystem dependency diagram that shows the dependencies
of all subsystems and their interfaces. The output of the Component specification
is the enterprise component pattern to represent the inner structure of components.

34 CHAPTER 2. STATE OF ART

For the three remaining phases, i.e Realization, Implementation and Deploy-
ment, no specific techniques are proposed, however the authors recommend some
key elements and guidance to achieve the tasks.

“SOA Principles of Service Design” by Thomas Erl [15] is an encyclopedia of
service design principles needed to build SOA solutions. In the early phase of de-
scribing services, it is useful to use a common template or a form to collect similar
meta-data from all the services. This book represents a service profile. Such a pro-
file can be created early on during the analysis phase, and it is updated later when
the service goes through various changes. The author give out the detail explaining
what the profile might contain.

The author suggests standardizing the following vocabularies, also offering a
good set of terms to start with:

• Service-Oriented Computing Terms

• Service Classification Terms

• Design Principle and Characteristic Types, Categories, Labels

• Design Principle Application Levels

• Service Profile Keywords

A list of organizational roles, with clear specifications for each one, creates a
better picture of what everybody is supposed to do and how they relate to each
other. The author presents a set of roles associated with service-oriented design
principles, such as: Service Analyst, Service Architect, Service Custodian, Schema
Custodian, etc,.

The author gives a description of each role mentioning the principles associated
with it. For example, the Service Analyst role is associated with Service Reusability,
Service Autonomy, Service Discoverability.

We pay attention to two main parts, i.e., fundamentals, and design principles.
The fundamentals focus on describing what Service Oriented, Service-oriented Com-
puting are, and give us an understanding about Design Principles in these fields. The
second part provides typical design principles in SOA, they are: Service Contracts,
Service Coupling, Service Abstraction, Service Reusability, Service Autonomy, Ser-
vice Stateless, Service Dicoverability, Service Composibility. We recommend that we
should be aware of those principles when we choose SOA to develop service-oriented
applications. Because of space reason, we refer you to this book for throughout
descriptions of those principles .

2.4. METHODS FOR DEVELOPING SERVICE-ORIENTED SYSTEMS 35

We are also interested in design patterns from the book “SOA Design Patterns”
of Thomas Erl [17]. Thomas Erl provides service architects with a broad palette of
reusable service patterns that describe service capabilities that can cut across many
SOA applications. Service architects taking advantage of these patterns will save a
great deal of time describing and assembling services to deliver the real world effects
they need to meet their organizations specific business objectives. These patterns
enable easily communicated, reusable, and effective solutions, allowing us to more
rapidly design and build out the large, complicated and interoperable enterprise
SOA into which our IT environments are evolving.

In particular, chapter 10 presents three Inventory Governance Patterns, they are:
Canonical Expression, Meta-data Centralization, and Canonical Versioning. When
first designing a service inventory, there are steps that can be taken to ensure that
the eventual effort and impact of having to govern the inventory is reduced. The set
of patterns supply some fundamental design-time solutions specifically with the in-
ventory’s post-implementation evolution in mind. Canonical Expression refines the
service contract in support of increased discovering ability, which goes hand-in-hand
with Meta-data Centralization, a pattern that essentially establishes a service reg-
istry for the discovery of service contracts. These patterns are further complemented
by Canonical Versioning, which requires the use of a consistent, inventory-wide ver-
sioning strategy.

We pay our attention to chapter 16 which presents Service Governance Patterns,
comprising a number of 8 patterns: Compatible Change and Version Identification
deal with service versioning (focused on the versioning of service contracts); Termi-
nation Notification addresses the final phase of a service, it is retirement; Service
Refactoring explains how to deal with changing service contracts; Service Decompo-
sition; Proxy Capability, and Decomposed Capability include techniques needed to
express coarse-grained services through multiple fine-grained ones; Distributed Ca-
pability helps increasing service scalability through processing deferral. The most
fundamental pattern in this chapter is Service Refactoring, which leverages a loosely
(and ideally decoupled) contract to allow the underlying logic and implementation
to be upgraded and improved. The trio of Service Decomposition, Decomposed Capa-
bility, and Proxy Capability establish techniques that allow coarser-grained services
to be physically partitioned into multiple fine-grained services that can help further
improve composition performance. Distributed Capability provides a specialized,
refactoring-related design solution to help increase service scalability via internally
distributed processing deferral.

In term of implementation SOA systems, a development life cycle methodology

36 CHAPTER 2. STATE OF ART

for web services is proposed in Service-Oriented Design and Development Methodol-
ogy by Prof. M.P. Papazoglou and Prof. W.V.D. Heuvel [43]. Their methodology is
partly based on other related development models, such as Rational Unified Process
(RUP) [10], Component-based Development [32], and Business Process Modelling
[31]. Fig.2.11 depicts their methodology concentrating on the levels of the web
services development life cycle hierarchy. It is based on an iterative and incremen-
tal process that includes several main phases concentrating on business processes
and services, i.e., Planning, Analysis, Service Design (including: Service Design
Concerns, Specifying Services, Specifying Business Process), Service Construction,
Service Test, Service Provisioning, Service Development, Service Execution, and
Service Monitoring.

Figure 2.11: Phases of the service-oriented design and development methodology

We recommend two phases of interest, they are: Analysis phase, and Service
Design phase. We evaluate that Service Design is the fundamental phase of this
methodology.

During the Analysis phase, the requirements of a new system are investigated.
This includes reviewing business goals and objectives that drive the development
of business processes. This phase also examines the existing services portfolio at
the size of service provider to understand which policies and processes are already
in place and which need to be introduced and implemented. The Analysis phase

2.4. METHODS FOR DEVELOPING SERVICE-ORIENTED SYSTEMS 37

comprises four main activities: process identification, process scoping, business gap
analysis, and process realization. In process identification, the authors suggest to
apply the design principles of coupling and cohesion for identifying the functional-
ities that should be included in a business process and the functionalities that is
best incorporated into other business processes. In process scoping, they define that
the scope of a business process is an aggregation of aspects that include where the
process starts and ends, the typical users of the process, the inputs and outputs that
the users expect, the external entities and providers that the process is expected to
interface with, and the different types of events that start an instance of the process.
Gap analysis starts with comparing candidate service functionalities with available
software service implementations that may be assembled within the enclosures of
a newly conceived business process. There are various options for process realiza-
tion analysis that emphasizes the separation of specification from implementation
that allows Web services to be realized in different ways, e.g., top-down or meet-in-
the-middle development. The process realization results in a business architecture
represented by business processes and the set of normalized business functions ex-
tracted from the analysis of these processes.

The Service Design phase is based on a twin-track development approach that
provides two production lines: one to produce services (possibly out of pre-existing
components), and another to compose services out of reusable service constellations.
This calls for a business process model that forces developers to determine how
services combine and interact jointly to produce higher level services. The Service
Design Concerns include managing service granularity, designing for service reuse,
and designing for service composability7.

The Service Specification comprises a set of three specification elements, they
are: Structural specification that defines the service types, messages, port types
and operations, Behavioural specification that entails the effects and side effects
of service operations and the semantics of input and output messages, and Policy
specification that denotes policy assertions and constraints on the service. During
Service Design phase, service interfaces that were identified during the analysis phase
are specified based on service coupling and cohesion criteria as well as on the basis
of the Service Design Concerns.

In Specifying Business Process, the business processes are described in the ab-
stract. This step comprises four separate tasks, one deriving the process structure,
one linking it to business roles, which reflect responsibilities of the trading part-
ners, and one specifying non-functional characteristics of business processes. The

7Composability is a system design principle that deals with the inter-relationships of compo-
nents - Wikipedia

38 CHAPTER 2. STATE OF ART

first task is to one choosing the type of service composition. The choice is between
orchestration versus choreography. If a choice for orchestration is made three tasks
follow to orchestrate a process. These are defined using the web services BPEL [34].

C
h

a
p

t
e

r

3
Case Studies

Contents
3.1 Dealer Network . 40

3.1.1 Business Dealer Network 40

3.1.2 DealerNetwork Service system 41

3.2 Office Service system . 42

39

40 CHAPTER 3. CASE STUDIES

We will illustrate the use of proposed methods in this thesis by applying to some
case studies. The created models of those case studies are also used to compare and
evaluate the methods.

3.1 Dealer Network

The Dealer Network case study that was taken from OMG Adopted Specification of
SoaML [27]. The Dealer Network is a business community including three primary
parties: the dealers, the manufacturers and the shippers. They are independent
parties but they want to work together. Moreover, they have their own business
processes and do not want to change their existing systems. A service oriented
architecture is required to be designed to enable this business environment.

3.1.1 Business Dealer Network

In the business Dealer Network, a manufacturer sells some products, a dealer buys
some products from a manufacturer, and a shipper delivers some packages to a
dealer. The goals of this business are to keep those entities working together conve-
niently and to satisfy the needs of them as soon as possible. For the dealers, they
can buy things with best price and receive the products fast. For the manufacturer,
they can sell the products to the buyers at the wished prices and fast. For the
shipper, they can have shipping orders as many as possible and fast.

There are two relevant processes in this business.

Process Buying goods

We define a process, named Buying goods, that will be performed by the entities in
business Dealer Network as following:

A dealer wants to buy a product from a manufacturer. He may ask for the price
of the product. He will send an order to the manufacturer to buy the product.
When the manufacturer receives the order, he will check the product availability.

If the product is available, the order will be accepted, otherwise, the order will
be rejected.

The dealer will pay for the order. Once the order is paid, the manufacturer will
send a confirmation to the buyer, and will ask a shipper to deliver the product to
the dealer.

If the order is not paid, the manufacturer will cancel the order.
When the shipper receives a shipping order from the manufacturer, he will inform

the manufacturer of the date for picking up the shipment. Once the shipment is

3.1. DEALER NETWORK 41

delivered to the dealer, the shipper will send a confirmation to the manufacturer.
Variants: The manufacturer may send shipping order to some shippers. The

shippers will inform of the price and expected delivery date. The manufacturer may
choose one of shippers and send him a request for delivering the product.

Process Handling reputation information

The goals of the process Handling reputation information are to define and handle the
reputation information of some parties in Dealer Network in order to minimize the
risk in the transactions of the business. The various parties may express their
satisfaction on the services and the products provided by other parties with whom
they interact.

For instance, a dealer may express his satisfaction on a product, on a manufac-
turer, and on the quality of the service of a shipper.

Based on the reputation of the shippers, the manufacturers may choose a good
one to deliver their products to the dealers. Based on the reputation of the manu-
facturers and the products, the dealers may buy good products and meet less risk.

The reputation of the manufacturers and the shippers is managed by an Author-
ity. This Authority can receive the evaluation of those parties from the dealers, then
make available the information to the community.

3.1.2 DealerNetwork Service system

Dealer Network service system has to be developed to automate the business Dealer
Network described above.

There are three services to be built: Place Order, Get Ship Status and Request
Shipping.

The dealers use service Place Order to make an order for the product that they
want to buy from the manufacturers. The service supplies the dealers with the quote
of the product and issues a confirmation when the order is accepted. If the order is
confirmed, the dealer will receive further information about the order, such as the
waybill number to track the shipment information.

The manufacturers use service Request Shipping to have the products relative
to an order delivered to the dealer by a shipper. The delivery schedule is produced
by the shipper. The shipper informs the manufacturers of the package picking date
and the delivery date. Then,the manufacturer will receive the delivery confirmation
when the dealer receives the products.

The dealers use the Get Ship Status service to get the information about the
status of the shipment for the products they ordered (identified by the waybill

42 CHAPTER 3. CASE STUDIES

number that he received from the manufacturer).

3.2 Office Service system

Office System is a Microsoft Office-like system. There are various components in
Microsoft Office system, but we consider only some of them. Our case study includes
a set of components supporting office works such as printing, checking spelling and
grammar of a given language and publishing a web page. We name application a
(not better specified) component using them. There are the following services to
build: Print, Check French, Check English, Check Italian and Publish on Web.

Service Printing provides the application means to require the printing of a
document, this service can communicate the result of the request such as no paper,
document is not in A4 format or document printed. If the paper is not in A4, then
the service will receive a request to reduce the page or to cancel the printing from
the user.

Three services allow to check the spelling and the grammar of a text written in
specific language: English, French or Italian. A service of this kind will refuse to do
the check, if the text is not in the language it is able to handle. The result of the
checking will be the list of the found errors.

Service Publish on Web allows to publish web pages on the Internet. The web
page must be in HTML format to be published. The service will refuse to publish a
page not written in correct HTML format. Them if the provided URL is correct and
the corresponding Web server is available, then the service will publish the page,
otherwise it will informs of the problems the service user.

We chose the services provided by the set of software tools composing a Office-like
suite because they are simple but complete enough to show many of the modeling
concepts and extensions defined in PreciseSOA (see Sect. 6), also in Casl4Soa (see
Sect. 7).

C
h

a
p

t
e

r

4
A View on Services and Service

Systems

In this chapter we briefly present our view on services and service systems, that will
be the basis of the work in the following chapters.

Figure 4.1: Service Systems Conceptual Model

Fig. 4.1 presents our conceptual view of services and service systems by means
of a UML model.

We classify the participants into two kinds, structured participants and mono-
lithic participant. A structured participant may include some inner participants
(subparticipants), whereas this is not possible for a monolithic participant, but it
can be still structured for example in terms of components.

43

44 CHAPTER 4. A VIEW ON SERVICES AND SERVICE SYSTEMS

A participant is characterized by a number of ports (where a port represents an
interaction point where a participant consumes or provides a service), a number of
services, those that it provides or uses at some of its ports. A structured participant
is characterized also by the set of its subparticipants. A monolithic participant
should be associated with a description of its behaviour. A service system is then a
structured participant neither offering nor requiring services (and thus without any
port), so a service system is a special case of a participant.

The service architecture presents how the subparticipants of a participant P
provides and uses their services to allow P to provide its services, using obviously
the services required by P.

A service is characterized by service contract, a service interface and a service
semantics.

The service interface provides the static information needed to interact with the
service. A service interface is conceptually seen as a set of in and out messages,
were each message is characterized by a name and a list of typed parameters; the in
messages are used to require the service functionalities to the service provider and
the out messages to answer to such requests.

The service contract focuses on the protocol between the provider and the con-
sumer of the service. The service contract specifies conceptually which are the
allowed interaction between who requires the service and who provides it, and it
may be represented by a labelled transition tree where the transitions are labelled
by messages. All the complete paths (i.e., going from the root till a final node) on
such tree should start with a transition labelled by a in message. Reaching a final
node on such tree means that the service has terminated its activities started as a
reaction to the reception of a request from a consumer.

The semantics tries to define which are the functionalities offered by the service.
We assume that a service is able to act over a portion of the real world, that we
name the realm of the service, and that it may modify such realm as the result
to having received an in message form a service user, and that its answers to who
uses the service (out messages) depend on the current status of the realm. Thus, the
semantics of a service consists of a description of the realm, and of a refinement of the
labelled transition tree representing the contract where the transition are equipped
with conditions on the realm, and with the description of possible modifications of
the realm itself.

Given a service interface SI, we denote by S̃I the conjugate of SI. The messages
of S̃I are those of SI but after having changed the input kind in output kind and
vice versa on each message.

45

A participant is a service provider if it offers a service and it is a service con-
sumer if it uses a service. A participant may provide and consume any number of
services. It means that the same participant may be “provider” of some services and
a “consumer” of others.

A port must be typed by a service interface.
A service architecture defines which are the possible roles for subparticipants and

how the pairs of ports of such (roles for) participants are connected (obviously only
if typed by a pair of conjugate service interfaces) to offer and use services, defining
also which are the handled services.

The conceptual schema presented in Fig. 4.1 could be the starting point to pro-
duce an informal model of a service system, that we name conceptual level model.
It will consists of the lists of participants, ports and services, and of informal pre-
sentation of the services constituents (interface, contract and semantics) by means
of list of messages and labelled transition trees, of the service architectures (by a
graphs whose nodes are labelled by participant roles and whose arcs are labelled by
service names), and of the behaviour of the monolithic participants.

This kind of informal model will be the starting point to prepare a model of the
service system using the UML or the algebraic specification language Casl4Soa.

Fig. 4.2 and 4.3 present by means of two UML activities the guidelines for helping
the modeller to produce a conceptual level model of a service system.

46 CHAPTER 4. A VIEW ON SERVICES AND SERVICE SYSTEMS

Figure 4.2: How to produce a conceptual level model of a participant

Figure 4.3: How to produce a conceptual level model of a service

C
h

a
p

t
e

r

5
Business Modelling

Contents
5.1 Business and business process . 48

5.2 A precise method for business modelling 50

5.3 How to model a business . 57

5.4 Modelling the Dealer Business 58

47

48 CHAPTER 5. BUSINESS MODELLING

This fifth chapter aims to give a general introduction to business and business
process, and give the description of the precise business modelling method that we
propose. In later chapters, we will introduce our approaches to the modelling and
the designing of a service system being built to support a business and its processes.
As in other cases in the thesis, for presenting the models of a business, we use a
UML profile, defined by a set of stereotypes, and we explicitly define the form of the
models by means of a metamodel and a set of well-formedness rules. The content
of this chapter is based on [3].

5.1 Business and business process

There are several definitions of business and business process. Each definition is
useful in a specific context, none is agreed in the software industry. We give here
some definitions of the meaning of the business and business process.

Definitions given by Wikipedia1:
“A business (also known as enterprise or firm) is an organization involved in

the trade of goods, services, or both to consumers. Businesses are predominant in
capitalist economies, where most of them are privately owned and administered to
earn profit to increase the wealth of their owners.”

“A business process is a collection of related, structured activities or tasks
that produce a specific service or product (serve a particular goal) for a particular
customer or customers. It often can be visualized with a flowchart as a sequence of
activities with interleaving decision points or with a process matrix as a sequence
of activities with relevance rules based on the data in the process.”

Definitions given in Business Dictionary2:
A business is “an organization or economic system where goods and services

are exchanged for one another or for money. Every business requires some form of
investment and enough customers to whom its output can be sold on a consistent
basis in order to make a profit. Businesses can be privately owned, not-for-profit or
state-owned.”

A business process is “a series of logically related activities or tasks (such as
planning, production, or sales) performed together to produce a defined set of re-
sults.”

1http://en.wikipedia.org/wiki/Business
2http://www.businessdictionary.com/

5.1. BUSINESS AND BUSINESS PROCESS 49

In a specification by OMG, i.e., Business Motivation Model version 1.1 ([23],
section 7.3.9, page 15), they define what are business processes:

Business processes realize courses of action. Courses of action are undertaken
to ensure that the enterprise makes progress towards one or more of its goals. They
provide processing steps, sequences (including cycles branches and synchronization),
structure (decomposition and reuse), interactions, and connections to events that
trigger the processes.

We use the concept of “business process” to denote the activities performed within
an “business” for some specific goals. The term business is used in a general mean-
ing, it is dedicated to companies, organizations, etc. We consider an enterprise as
whatever organization, formally or informally established, that performs specific ac-
tivities for specific goals (not only monetary profit goal). Here are some samples
of enterprise: companies, banks, universities, government agencies, and non profit
associations.

In our opinion, a business process has a well defined goal and consists of a set
of activities joined to realize that goal. The goal is the reason the enterprise does
this work, it should be defined in terms of satisfying the business needs. A business
process will typically produce one or more outputs of value to the business, either
for internal use or to satisfy external requirements. An output may be a physical
object, a transformation of raw resources into a new arrangement or an overall
business result such as completing a customer order. An output of one business
process may feed into another process, either as a requested item or a trigger to
initiate new activities.

In a business there is a number of entities which perform the activities or are han-
dled by the activities, that we will call business entities. The business entities may
be human beings, existing softwares and hardwares, and physical/logical elements.
For example, in a bank, the business entities are the clerks, the bank accounts,
and the ATM machines, etc. The activities that the business entities perform are
considered as business tasks.

Our first aim is to define a mechanism for defining and modelling a business and
its business processes. In fact, there are a lot of business analysts studying the way
companies work and defining business processes with simple flow charts, such as,
BPMN 2.0 [24]. We are also comfortable with visualizing business processes in a
flow-chart format, but moreover, they should be modelled in a precise way that does
not lead the readers to the confusion.

Our purpose is to transfer a given description of the business to a model by
means of the UML notation. Using the UML, we can take advantage of its numer-

50 CHAPTER 5. BUSINESS MODELLING

ous features and supporting tools, and also define our own methods for modelling.
The UML offers a very large set of diagrams, e.g., activity diagrams, class diagrams,
and use case diagrams, and a large set of constructs to build such diagrams. UML
is a very large notation, the subset used in this theses has been reported in Ap-
pendix A.1, together some additional well-formedeness rules on models that help to
avoid common errors and to produce “precise” models.

5.2 A precise method for business modelling

The main ingredients of a business are the entities taking part in the business itself
(business entities) and the processes that they perform to reach some goals of the
business (business processes).

We classify the business entities into three types:

• business workers that are human entities performing activities in some business
process (e.g., a clerk, a buyer, an agency),

• business objects that are logic and physical things being handled in some busi-
ness processes (e.g., an account, an invoice, packages, goods),

• and systems that are existing software or hardware systems involved in some
business process (e.g., ATM machine, Paypal, DBMSs).

Figure 5.1: Business Model Metamodel

The metamodel in Fig. 5.1 shows the overall structure of a business model,
whereas the well-formed constraints are given in Table 5.1. A business model (de-
noted by BMOD) is organized in four views, where each view shows a relevant aspect

5.2. A PRECISE METHOD FOR BUSINESS MODELLING 51

of the business. They are: the Goal View, the Static View, the Task View, and the
Business Process View.

A business is motivated by the need to reach some goals, and all its business
processess must be motivated by those goals. The goals of the business are described
in the Goal View of the BMOD. The Goal view will lead the business activities and
the determination of the business processes. The Static View describes the types of
all the entities that participate in the business and all the data they handle. The
Task View defines all the basic tasks of the business. The Business Process View
presents all business processes that define how the business is made by means of the
Business Process Overview Diagram. The Business Process View includes a number
of Business Process Models. Each Business Process Model presents a process of the
business. It is motivated by some goals, is represented by one Behaviour View, and
includes the list of the entities taking part in it; there may be some conditions of
kind invariant, pre and post about the entities of the processes.

Goal View

Figure 5.2: A generic Goal View

The Goal View is a UML use case diagram (described in Appendix A.1.5), in
which, the use cases present the goals of the business and are stereotyped by�goal�
(see an example in Fig. 5.2). Each goal has a name that describes the full meaning
of this goal.

The goals of a business may be described at different levels, i.e., from high to
low of the generalization level. There may be many goals for a business at the top
level, and the others are subgoals needed to be satisfied to reach the main goals.
A subgoal may belong to a number of other (sub)goals. The dependence is the
only relationship among the goals, and it must be stereotyped by �and� or �or�.
While a goal G depends on a number of goals Gi (i = 1, . . . , n), if it is necessary to

52 CHAPTER 5. BUSINESS MODELLING

get all the subgoals Gi (i = 1, . . . , n) for getting G, the dependencies between the
goal G and its subgoals Gi are stereotyped by �and�; if it is sufficient to get at
least one among Gi (i = 1, . . . , n) for getting G, the dependencies between the goal
G and its subgoals Gi are stereotyped by �or�.

Static View

Figure 5.3: A generic Static View

The Static View is a UML class diagram that defines the types (i.e., the classes)
of all the business entities belonging to the business and their relationships (see
an example in Fig. 5.3). The business entities classes are further classified by the
stereotypes �worker� (human entities performing the autonomous actions of the
business), �system� (existing software/hardware systems taking part in the busi-
ness), and �object� (things over which the business actions are performed).

The data used by the business processes (called process data) are defined by
datatypes in the Static View. The datatypes used to define the entity classes are
also included in the Static View.

So the Static view includes the classes typing all business entities, and all the
needed datatypes. The behaviour and the details of the classes present in the Static
View may be defined using the various features of the UML, such as constraints,
methods and state machines.

Task View

The Task View is a UML class diagram (described in Appendix A.1.4) including
various classes modelling the basic tasks of the business processes and any other
classes needed to describe them. An example of a Task View is shown in Fig. 5.4.

A type of basic tasks in the Task View is represented by a class stereotyped by
�task�, called task class, (e.g., Task1 in Fig 5.4).

5.2. A PRECISE METHOD FOR BUSINESS MODELLING 53

A task class must be connected by means of associations with the classes typing
the business entities taking part in such task. An association between a task class
and another class may be named, e.g., name1 in Fig. 5.4, and it may have the
association end (presented in Appendix A.1.4.1) typed by the entity class named,
e.g., id2 in Fig. 5.4. The association names or the association end names will allow
to refer to the entities taking part in the task; for example given T an instance of
the task class Task2 in Fig. 5.4, T.id will denote the entity of class BW2 taking part
in T.

If a task generates a new business entity, the association between the task class
and the class of the created entity must be stereotyped by �out�.

A task class may have any number of attributes typed by datatypes; they rep-
resent the data handled by the task. If a task generates a value, then the attribute
representing it must be stereotyped by �out� (e.g., Task2 in Fig. 5.4 will generate
a new string).

A task class may be characterized by means of pre/post/invariant constraints
concerning the entities taking part in such tasks and handled the data. Each of these
constraints will be expressed using the OCL (presented in Appendix A.2). Moreover,
the behaviour of the task may be detailed by means of an activity diagram.

Business Process Overview Diagram

The Business Process Overview Diagram, presenting an overall view of all processes
of the business, is a UML use case diagram, in which a use case stereotyped by
�process� represents a business process, an actor represents a role for business
entities of a given type (e.g., Y:ClassY in Fig. 5.5). The use cases have the names
of the business processes (e.g., BP1 in Fig. 5.5). The actors have the names of the
roles of the entities taking part in the processes, Name:ClassName, where Name is the
name of the role, and ClassName is the name the class typing that role. A role for
human entities is represented by a stick man (e.g., X:ClassX in Fig. 5.5), a role for

Figure 5.4: A generic Task View

54 CHAPTER 5. BUSINESS MODELLING

Figure 5.5: A generic Business Process Overview Diagram

systems is represented by a parallelogram (e.g., S:ClassS in Fig. 5.5), and a role for
business objects is represented by a rectangle (e.g., O:ClassO in Fig. 5.5).

Note: For the readability of the Business Process Overview Diagram, the the
roles typed by classes stereotyped by �object� may be hidden.

Business Process Model

A Business Process Model has the name of a business process. A business process
must be motivated by at least one of the goals of the business, therefore the names of
the goals that motivate that business process are used to fill attribute the motivatedBy

in the metamodel (see Fig. 5.1). There is a specific number of entities taking part
in a business process, and they are typed by the classes defined in the Static View
stereotyped either by �worker� or �system�, or �object�. There may be some
process data in a process, and they will be typed by datatypes defined in the Static
View or by primitive types.

The behaviour of those entities in the process (and thus the behavioural aspects
of the whole process) are presented by means of an activity diagram (described in
Appendix A.1.8) in the Behaviour View of a business process model. The list of the
typed roles for the entities taking part in the modelled process should be written
explicitly and attached to the activity diagram by means of a UML note. If there
are some process data in that process, they will be also listed in that note.

An action node in the behaviour view corresponds to a basic task, and it is
labelled by an instance of this task class.

We will use the following notation to represent instances of task classes.
Let TC be a task class that has n roles for business entities:

R1:CE1, . . . , Rn:CEn (CE1, . . . , CEn are classes defined in the Static View),
and m attributes typed by datatypes:

P1:DT1, . . . , Pn:DTm (DT1, . . . , DTm are either defined in the Static View or are

5.2. A PRECISE METHOD FOR BUSINESS MODELLING 55

primitive types),
then

TC<R1 ←E1, . . .Rn ←En, P1 ←V1, . . . , Pm ←Vm>

is the instance of TC where the various roles are played by E1, . . . , En and the
used data are V1, . . . , Vm. Whenever there are neither two roles typed by the same
class nor two parameters with the same type, it is possible to drop the role names
and the parameters name and the attached arrows, and write within the angular
parenthesisonly the entities and the values instantiating the task.

The instances of a task class will be used to label the action nodes of the be-
haviour views of this business processes.

To improve the readability of the business model:

• The Static View can be shown together with the Task View (i.e., the elements
of the two views are shown together in a unique class diagram);

• For each process, we can add some diagrams that are fragments of the Static
View and the Task View to show only classes relative to this process, where
some classes, some relationships, and some details of classes, e.g attributes,
are hidden.

Goal View
– A dependency relationship between the goals must be stereo-
typed by either �and� or �or�
– All use cases must be stereotyped by �goal�
– A goal cannot be decomposed both using�and� and�or�
– There is no cycle built using the dependency relationships

Static View
– All classes should be stereotyped either by �system�,
�worker�, or �object�
– If a class is stereotyped by �X�, and it is specialized by
another class, the latter should be stereotyped by �X�

Task View
– All classes should be stereotyped either by �system�,
�worker�, �object�, or �task�
– A task class must have at least one association with one of
the business entity classes
– Only the attributes of a task class, and the entities asso-
ciated with the task class by means of the associations may
appear in the pre/post/invariant constraints of that task class

56 CHAPTER 5. BUSINESS MODELLING

– Neither an attribute stereotyped by �out� nor an entity
role reachable by navigation with an association stereotyped
by �out� may appear in a precondition expression
– There is no association between two task classes in a Task
View

Business Process
Overview Diagram

– A process must have a relationship with at least an entity
– There is no relationship between entities
– All types of business entities involved in a process must be
linked to this process.

Business Process
Model

– The motivatedBy attribute must not empty and must be
made of goal names
– The list of entities taking part in a process must be presented
in the Behaviour View by a note
– The actions of the Behaviour View must be labelled with
instances of task classes
– The conditions of decision nodes must be built of process
data

Table 5.1: Business model: Well-formedness constraints

5.3. HOW TO MODEL A BUSINESS 57

• The name of a goal should have the form of a short sentence, and should start
with a verb (such as “allow”, “avoid”, “prevent”, . . .)

• The names of the roles of the entities of a process are written in capital letters

Table 5.2: Naming convention for business models

5.3 How to model a business

Figure 5.6: How to produce a business model

We present a set of steps to model a business by the activity diagram in Fig. 5.6
The modelling of a business is not a sequential progress, there are some interleaved
steps, and parallel steps. The main point of the progress is the refining the flow of
tasks in a business process. The method leads us start from definition of business
goals and the identification of business processes motivated by those goals. As a

58 CHAPTER 5. BUSINESS MODELLING

result, all the views of the business will be described by means of diagrams following
the indication of Sect. 5.2.

First of all, we have to define the goals of the business and the relationships
between them the goals to produce the Goal View. Next, we will define the business
processes that are motivated by those goals. We will not build the Business Process
Overview, the Static View and the Task View of the business directly, and in fact,
it is not possible. We will start at some initial draft of those views, and of the
activity diagrams presenting the behaviour of the business processes. Completing
the activity diagrams corresponding to the behaviour view of the business process
models, the other parts of the business model will be updated and finally completely
defined.

Steps in creating initial drafts of activity diagram to illustrate the
behaviour of a process

- Describe the process informally in natural language;
- Sketch an informal activity diagram to illustrate the flow of basic actions in

this process (the action nodes are labelled by natural language);
- Define the entities taking part in this process. Create an initial list of entities;
- Define the logic entities that are handled by the process. Create an initial list

of business objects;
- Define the tasks that the entities perform to reach the specific goals. Create

an initial list of tasks;

Parallel steps in updating existing parts of the business model

- Refine the Behaviour View of each business process model. Define the con-
straints of the entities taking part in the tasks in the business processes by OCL
expressions.

- Add new entities, new tasks, and any needed class and datatype to Static View
and Task View.

- Add new business processes.

5.4 Modelling the Dealer Business

We illustrate the application of the business modelling method by modelling the
Dealer Business.

5.4. MODELLING THE DEALER BUSINESS 59

Dealer Business model: Goal View

Fig. 5.7 shows the Goal View that describes the goals of the Dealer Business (cf. Sect. 3).
There is a main goal, and it is decomposed in three subgoals by the �and� rela-
tionship.

Figure 5.7: Dealer Business Model: Goal View

Dealer Business model: Business Process Overview Diagram

Fig. 5.8 shows the Business Process Overview Diagram of Dealer Business. There
are two processes, one is Handling reputation information and the other is Buying goods

(described informally in Sect. 3). Notice that for the moment we do not model the
business process Handling reputation information. The model of business process Buying
goods is presented in next few paragraphs.

There are four types of entities taking part in process Buying goods: Payment,
Dealer, Manufacturer, and Shipper, where Payment is an existing application providing
authorization to payments by credit cards, and the others are human entities.

Dealer Business model: Static View

The class diagram in Fig. 5.9 is the Static View of the model of Dealer Business.
The human business workers, i.e., Dealer, Manufacturer and Shipper, are represented
by classes stereotyped by �worker�, and the existing payment applications are
typed by the class Payment with stereotype �system�. Those four types of entities
perform the basic tasks in the processes over three types of business objects, precisely
Order, ShippingRequest, and Invoice, which are represented by classes with stereotype
�object�. The relationships among them are modelled by the associations between
the corresponding classes.

60 CHAPTER 5. BUSINESS MODELLING

Figure 5.8: Dealer Business Model: Business Process Overview Diagram

Figure 5.9: Dealer Network Business Model: Static View

Dealer Business model: Task View

All the basic tasks in the Buying goods process are modelled by means of classes with
stereotype �task�, they are presented together with the related business workers
and business objects in Fig. 5.10, where the relationships between business workers
and business objects are omitted. This class diagram is the Task View of the model
of Dealer. The constraints on the tasks in the Task View are described by the OCL
expressions. Some informal descriptions of the basic tasks are added, see Fig. 5.11.

Dealer Business model: Buying goods process model

5.4. MODELLING THE DEALER BUSINESS 61

ApproveQuote: Dealer approves the price of the product. The task returns a boolean value
CancelOrder: Manufacturer cancels an order and inform the Dealer
CheckAvailability: Manufacturer checks if the ordered products are available. The task returns a boolean
value
ConfirmDelivery: Shipper informs Manufacturer that the ordered products have been delivered
ConfirmOrder: Manufacturer confirms an order to the Dealer
InformPickUp: Shipper informs Manufacturer of the date to pick up the ordered products
PayInvoice: Dealer pays pays an invoice using the Payment system
PlaceOrder: Dealer places an order to Manufacturer. The task returns an order
RequestShipping: Manufacturer sends a request to Shipper for asking a delivery. The task returns a
shipping request
RequestQuote: Dealer asks to Manufacturer the price of a product . The task returns a price
SendInvoice: Manufacturer creates and sends an invoice of an order to Dealer ValidateOrder: Manufacturer
validates an order checking whether it has been paid within 24 hours after the invoice was sent
context RequestQuote post: quote>0
context ApproveQuote pre: quote>0
context PlaceOrder pre: quantity>0 and quote>0
post:

order.status = created and order.price = price and
order.prd = product and order.quantity = quantity

context SendInvoice post:
invoice.orderID = order.orderID and
invoice.total = order.quantity* order.price and invoice.paid = false

context PayInvoice pre: invoice.order.status = unpaid
context ValidateOrder post: order.status = invoice.paid
context ConfirmOrder

pre: order.status = paid
post: order.status = confirmed

context CancelOrder post: order.status = cancelled
context RequestShipping

pre: order.status = confirmed
post: shippingRequest.orderID = order.orderID

context ConfirmDelivery pre: shippingRequest.delivered = true

Figure 5.10: Buying goods Process Model: Task View

62 CHAPTER 5. BUSINESS MODELLING

Figure 5.11: Buying goods Process Model: Behaviour View

5.4. MODELLING THE DEALER BUSINESS 63

The activity diagram in Fig. 5.11 gives a description of the behaviour of the
business process Buying goods. There are four roles for entities, i.e., DEALER, MAN,
SHIPPER, and PAY of corresponding types: Dealer, Manufacturer, Shipper, and Payment.
Those entities are reported by the note attached in the activity diagram. The tasks
they perform are represented by action nodes, and the set of control flows between
actions node is the flow of tasks in this process. The variables (e.g., the answer
ANS) are declared as containers for data values. Since there are no tasks with two
roles/two parameters with the same type, we used the short form for writing the
task instantiations.

Conclusion: At the beginning of this chapter, we gave the definitions of a busi-
ness and a business process in our opinion. For modelling them, we have proposed a
method, in which a UML profile is defined and equipped with a set of well-formedness
rules. These well-formedness rules keeps the users at applying the method precisely
in order to produce precise models. We also build the guideline for the application,
and visualized them by an activity diagram illustrating the steps required to be
done. Finally, the application of the method is illustrated by a typical case study.

C
h

a
p

t
e

r

6
PreciseSoa: a precise method for
modelling service systems using

UML

Contents
6.1 PreciseSoa . 66

6.1.1 Service Model . 69

6.1.2 Participant Model . 71

6.1.3 Service Architecture . 72

6.1.4 How to produce a PreciseSoa model 74

6.2 Modelling Dealer Networking System following PreciseSoa 79

6.2.1 Service Architecture and Configurations 79

6.2.2 Service Models . 80

6.2.3 Participant View . 85

6.3 Office System Model Model following PreciseSoa 87

6.3.1 Service Architecture and Configurations 87

6.3.2 Service Models . 87

6.3.3 Participant View . 92

65

66
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

We propose a method to model service systems using the UML, called PreciseSoa.
PreciseSoa has been inspired by SoaML (Service oriented architecture Modeling Lan-
guage, c.f., Sect. 2.2). SoaML is the standard OMG profile to architect and model
SOA solutions, adopted in May 2012 [27].

6.1 PreciseSoa

We present the structure of the PreciseSoa service system models by means of a meta-
model shown in Fig. 6.1, whereas the well-formed constraints are given in Table 6.1.

Figure 6.1: Service System model: metamodel

PreciseSoa provides two different kind of models for structured and monolithic
participants; both offer the possibility to model the services required and provided
by a participant, whereas for the structured participants it is possible to define the
subparticipants and how they are organized into a service architecture, and for the
monolithic participants instead it is possible to define their behaviour.

Recall that a service system is a structured participant neither offering neither
consuming services (and thus without ports). Thus, we consider that a service
system model is a special case of a participant model. A participant model includes
a number of service models, one for each of the services that the participant consumes
and provides. A structured participant model includes also some participant models
(one for each kind of its subparticpants) and a service architecture. The behaviour
of a monolithic participant may be depicted by an UML activity diagram.

The service architecture presents how the subparticipants of a particpant P in-
teract among them using the services they provide and use, in the meantime they
allow P to provide its services and obviously they use the services P uses.

6.1. PRECISESOA 67

A service model describe a service; the service interface define the messages
together with the associate message data needed to use the service, distinguished in
in and out, the service contract illustrates the allowed sequences of messages that
can be received sent by the service itself, and the semantics the effect of the in
messages on the service realm and how the realm itself influence the out messages.

In the case of a structured participant the models of its subparticipants are also
part of its model.

Service Model
Service Interface
–A service interface Diagram consists of three interfaces (a
service interface without operation, stereotyped by �Service

Interface�, the other two interfaces can have the operations)
and any number of data types (possibly none).
–A service interface uses and realizes two interfaces (one is
the type of the role of service consumer and another is the
type of the role of service provider).
–All operations of the service interfaces should have “data type
argument”. If a data type is not in kind of the primitive type,
it must be defined.
–The identify attributes in MessageType should have specific
data types.
Service Contract
–The collaboration part of a service contract should be

- named as the service itself,
- have exactly two parts connected by a UML connector,

one stereotyped by �use� and the other by �provide�, and
such parts must be typed by the interfaces realized or used
by the service interface.
–A sequence diagram representing the behaviour part of a
contract should have exactly two lifelines corresponding to
the two parts in the collaboration.
–All messages in the behaviour sequence diagrams should be
built by operations of the used and provided interfaces, and
all these interface operations should appear at least in one of
the behaviour sequence diagrams.

68
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

–All interface operations appearing as the messages of the
sequence diagrams should be shown in full forms with their
parameters.
Service Semantics

Participant
Model

–All services of a participant must have different names.
–All sub participant models must have different names.
– The interfaces realized and used by a participant must be
attached at its ports.
–A port must be typed by a service interface.

Service Archi-
tecture

–All services and participants should appear in the corre-
sponding parts of the model.
–Each service has to conform to a service Model.
–Each service is bound to two participants by bindings of the
corresponding collaboration use.
–The bindings between parts and collaboration uses must be
labelled by the nouns of the roles.
–A structured participant has at least one port to interact
with other participants in a service architecture.
–The ports that are connected must be typed by the same
service interfaces.
Architecture Configuration

-Each collaboration use is an instance of a service in
the service architecture.

-Each instance is an instance of a participant in the
service architecture.

-A collaboration use is bound to exactly two participant
instances.

Table 6.1: PreciseSoa model: Well-formedness constraints

6.1. PRECISESOA 69

– The names of the roles of the participants should be written in lower case.
– The names of the roles of the participants should be ending with “er”.
– The names of the services and interfaces should be written in the case where each
new word begins with a capital letter.

– The names of the operations of an interface should be written in mixed case
starting with lower case. When there are more than two words in the name, use
underscores to separate them.

– The parameters of an operation should be written in upper case.

– The names of data types must be nouns and written in the mixed case where
each new word begins with a capital letter.

– The attributes of the data types should be written in mixed case starting with
lower case.

Table 6.2: Naming convention for PreciseSoa models

6.1.1 Service Model

A service model consists of a name, a service interface, a service contract, and
a service semantics. As stated in Chapter 4 a service interface present the in/
out messages that the service exchanges, a service contract specifies an agreement
between who offers and who consume the service on how it is provided and consumed,
and the semantics says what are the effects of the received messages on the realm
of the service and what will be returned.

A service interface is defined by a class stereotyped �Service Interface� and
named as the service itself. It should realize and use respectively two UML interfaces,
defining the in and the out messages by means of operations. The operations of
the interfaces correspond to the messages exchanged between the service and the
participants using and providing it. The operations may have (in) parameters that
must be typed by message types, but cannot have a return type. A message type is
a UML datatype stereotyped by �Message Type�. The attributes of a message type
must be typed either by primitive type, or datatypes, or other message types. The
definition of the needed message types should be given together with the the two
interfaces, thus in Fig. 6.1 a service interface consists of a class diagram, that will
include a class stereotyped by �Service Interface�, the two interfaces and all needed
message types.

Fig. 6.2 shows a generic service interface. The class stereotyped by �Service

Interface� should realize the provided interface (represented by the UML realiza-

70
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

tion symbol: the dashed arrow with closed head) and use the required interface
(represented by the UML dependency: the dashed arrow with open head).

Figure 6.2: A generic service interface

A conjugate service interface is suggested as a mechanism to connect the con-
suming participant and the providing participant. Each service interface has one
conjugate service interface that is named by the name of the corresponding service
interface starting with “ ∼ ”; and it is defined transforming the in messages into
out messages, and similarly the out messages into in messages, i.e., the realized
interfaces becomes the used one and vice versa.

A service contract consists of a UML collaboration stereotyped by �Service

Contract� and named as the service, and by a behaviour represented by a set of
UML sequence diagrams. The collaboration has exactly two parts corresponding to
the roles the service provider and the consumer, and the sequence diagrams have
exactly two lifelines (one for the service provider roles and one for the service user
role).

Fig. 6.3 shows a generic service contract. The dashed oval is the icon of the
collaboration, whereas the inside boxes represent the collaboration parts and are
used to model the roles of who provides and of who consumes the service (the
stereotypes �use� and �provide� allow to distinguish the two roles). The parts
are typed by interfaces. The sequence diagrams present all possible stories of the
provider using the service showing which messages and in which order the provider
and the consumer exchange in each story.

Thus, in Fig. 6.3, Prov1 is the role for provider and the Provider_Interface is the
interface that it implements to play that role, whereas Cons1 is the role for consumer
and Consumer_Interface is the interface that it implements to play that role in Serv.
The two parts are connected by a UML connector, to emphasize that they will
communicate. Serv is quite simple, and so after receiving an integer number will
return the same number increased by 3, thus a unique sequence diagram is enough
to model its contract.

The service semantics should be defined by modelling how the received messages
will result in modifications of the service realm and how the current status of the

6.1. PRECISESOA 71

Figure 6.3: A generic service Contract

realm influences the messages sent out by the service provider. In PreciseSoa we
model the service semantics by introducing a class Service_Realm realizing the
provided interface, its attributes will define the current status of the service realm.
Then the sequence diagrams, i.e., the behaviour part of the service contract, should
be refined by adding action specifications to modify the realm status and further
guards to influence the choice of which messages to send out and which values they
are carrying.

6.1.2 Participant Model

In PreciseSoa the participants of a service system may of different kinds and each
kind is described by a specific participant model.

A participant model introduce a class stereotyped �Participant�, that will be
used to type the specific participants (instances) of that kind, and that we will
name participant class.

A participant is a service provider if it offers a service and is a service consumer
if it uses a service. A participant may provide and consume any number of ser-
vices. It means that the same participant may be “provider” of some services and
a “consumer” of other. The UML mechanism of the ports is used to indicate the
points of interaction through which participants interactwith each others to enact
services, and the needed ports are added to the participant class. There are two
kinds of port that a participant class may have, one is stereotyped by �Service�
known as a service port where a service is provided by participant of this type, one
is stereotyped by �Request� where a participant makes a request for service from
other participants. A port is then typed by a service interface. A service port has
the type of the relevant service interface and the request port has the type of the
conjugate service interface.

72
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

Figure 6.4: A generic participant view

All the models of the subparticipants of a structured participant are collect in a
participant view.

Fig. 6.4 presents a generic participant view including two participant classes, The
instances of the participant class PartX are the provider of Serv and thus the class
has a �Service� port, typed by the conjugate service interface of Serv, denoted
by ∼Serv. Participant class PartY types the consumers of this service and has a
�Request� port. The port of PartX provides the Provider_Interface interface and
requires the Consumer_Interface interface of Serv, and vice versa for PartY. These
ports are the points for engaging two participants PartX and PartY to enact Serv.

6.1.3 Service Architecture

A service architecture is defined by a UML collaboration with stereotype �Service

Architecture�, as shown in Fig. 6.5, and by a set of architecure configurations. A
service architecture consists of a set of services and a set of (roles for) participants
that work together by providing and consuming services for some business goals.

A service is provided and consumed by two participants, and we use the wording
“the service is used” or “service usage” to indicate it, this associated relationship is
represented by a collaboration use of the collaboration part of the service contract
(such as S1:Serv). There may be several usages of the same or of different services in
a service architecture, and each of them involves a possible different set of roles (and
of the related connectors). The name of a service in a collaboration use is structured
of S: Serv, where S is optional (as in our example in Fig. 6.10) and can be a short
name for service Serv, or be the same as Serv (Serv: Serv for example) as in SoaML
examples (c.f, [27]), and Serv is the name of the service, suggesting its purpose. This
structure abides the name of a UML collaboration element.

A participant role in the service architecture is displayed as a UML part (a solid
rectangle) that contains the role name and the participant class typing the role,
i.e., X : PartX, where X is the role name and PartX is the type of this role. The
two participants, who play the providing and consuming roles in a service, will be
defined in the contract of this service. The roles that the two participants play in a

6.1. PRECISESOA 73

service usage, i.e., who is provider and who is the consumer, are represented by the
labels on the dashed line connecting the parts and the collaboration use.

Fig. 6.5 shows a generic service architecture for a service system, i.e., a structured
participant without any port, and thus unable to interact with the outside by means
of service calls.

Figure 6.5: A generic service architecture for a service system

In case of a structured participant P offering and using services in the service
architectures there will be also special parts, denoted by dashed boxes, representing
the roles of the those using or providing services to P.

The service architecture of a generic structured participant is illustrated in
Fig. 6.6. In this service architecture, the roles of other participants are demon-
strated by the roles with dashed outlines (i.e., X : Part X), whereas the roles played
by subparticipants within structured participant are normal roles.

Figure 6.6: A generic service architecture for a structured participant

An architecture configuration shows a snapshot of the architecture at a specific
point in time. A configuration is presented by a UML object diagram. It includes a
set of participant instances and the services that they offer and use at that particular
time. Each service is is represented by a use of the collaboration part of the definition
of its contract. The links among them are bindings of the collaboration.

74
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

A structured participant class, say PC, should be a UML structured class having
as subclasses the participant classes typing its subparticipants; all these classes
will have their respective ports. There will connectors between the ports of the
subparticipant classes and between the ports of the subparticipant classes and the
ports of PC. The class in Fig. 6.7 is a generic structured participant class.

Figure 6.7: A generic structured participant

Monolithic participant Behaviour
A UML activity diagram used to model the behaviour of a monolithic participant

consist of one initial state, sending actions, accepting actions and one final state.
The sending actions are the operations of required interfaces of the services that
it consumes, the accepting actions are the operations of provided interfaces of the
services it provides.

6.1.4 How to produce a PreciseSoa model

Following the indications of Chapter 4 (see Fig. 4.2, 4.3), we present a set of steps to
produce a PreciseSoa model of a service system being built by the activity diagram in
Fig. 6.8. The method leads us to start from participants identification to the service
architecture modelling. The list of participants should be indentified first, then the
service that each participant consumes or offers will be defined, in result, a list of
service names is identified, called SL. The contracts and interfaces of those services
will be modelled by notations presented in Sect. 6.1.1.

For modelling a service S, let take a look at the actions of the activity named
Model S in Fig. 6.9).

Model service S

6.1. PRECISESOA 75

Figure 6.8: How to develop a PreciseSoa model

Model the interface of S

• Identify the messages that consumer and provider exchanges when enact-
ing S, and the relative message data.

76
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

Figure 6.9: How to develop a service model

• Use classes with stereotype �Interface� to model: 1. required interface:
includes the operations, i.e. out messages, that S consumer will receive,
and 2. provided interface includes the operations, i.e., in messages, that
S provider will receive.

• Use an empty class with stereotype �Service Interface� to model S inter-
face. Connect the service interface to required interface by a dependence
with stereotype �use� and to provided interface by a realization with
stereotype �provide�.

• Define all the message types by classes with stereotype �Message Type�.

Model the contract of S

• Identify the roles of provider and consumer in S.

• Use collaboration with stereotype �Service Contract� to model the con-
tract of S. Name the collaboration by the name of S itself.

• Type the role of provider by an interface type (called provided interface,
this is the interface that the provider will require on a port to provide S).
Model the provider role by a part stereotyped by �provide�.

• Type the role of consumer by an interface type (called required inter-
face, this is the interface that the consumer will implement on a port to
consume S). Model the consumer role by a part stereotyped by �use�.

• Use a sequence diagram having two life lines representing two roles of S
provider and S consumer to illustrate the order of the messages exchanged
between them using the messages between two life lines. Specify the

6.1. PRECISESOA 77

conditions for the occur of the messages to define the guard of combinators
if any.

Model the semantics of S

• Identify the S realm, how the realm influence the answers of S, how the
messages sent to S influence the realm, and how the realm involves.

• Refine the sequence diagrams, i.e., the part of S contract, by adding
action specifications and further guards to modify the realms status and
to influence the choice of which messages to send out and to define the
values carried.

For modelling a participant P, let us describe the actions of the activity named
Model P in the activity diagram (see Fig. 6.8) as following:

Model participant P

If P is structured participant, then:

• Use UML structured class with stereotype �Participant�, named P, to
model participant P.

• Identify all subparticipants of P, model each of them by a subclass without
stereotype and named by the name of this subparticipant, put them inside
�Participant� structured class P.

• Identify the ports of each subparticipant, in which it consumes and pro-
vides local services, typed them by the interfaces of those local services.

• Connect each pair of ports of two subparticipants by a connector for
representing their cooperation in the enacting a local service.

• For a service that P provides/consumes, define a port of �Participant�
structured class P, connect it to the port of the corresponding sub-
participant which provide/consume this service, stereotype this port by
�Service�/�Request� and type it by the interface of this service.

If P is monolithic participant, then:

• Use UML class with stereotype �Participant�, named P, to model par-
ticipant P.

78
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

• Identify the ports of P, in which it consumes and provides services, typed
them by the interfaces of those services, stereotype ports by �Service�
if P provides services, and by �Request� if P consumes them.

• For service S that P provides, use a lollipop of the corresponding�Service�
port (i.e, port typed by S interface) for representing the provided interface
of S and a cup for representing the required interface of S.

• For service S that P consumes, use a lollipop of the corresponding�Request�
port (i.e, port typed by S interface) for representing the required interface
of S and a cup for representing the provided interface of S.

• Use a UML activity diagram to illustrate the behaviour of P if necessary.

After we have in hand a set of modelled participant types and a set modelled
services, define how participant types and services are combined to consume
and provide services, then model the service architecture of the service system.

Model the service architecture

• Use collaboration with stereotype �Service Architecture� to model the
service architecture of the service system.

• Identify all participant types, i.e, consumers and providers of services in
the service system.

• Model each participant type by a part, put inside �Service Architecture�
collaboration.

• Identify all services that the participants consume and provides.

• Model each service by a collaboration use, put inside�Service Architecture�
collaboration.

• Bind each service, i.e., a collaboration use, with exact two participants,
i.e., two parts representing one consuming and another providing it, the
connectors are labelled by the roles of those two participants played in
this service (seller for example).

6.2. MODELLING DEALER NETWORKING SYSTEM FOLLOWING
PRECISESOA 79

6.2 Modelling Dealer Networking System
following PreciseSoa

In this section we present the model of the service system Dealer Networking System

following PreciseSoa.

6.2.1 Service Architecture and Configurations

Figure 6.10: Dealer Networking System Service Architecture

The service architecture of the Dealer Networking System is shown in Fig. 6.10
and in 6.11 (where an architecture configuration is shown). The Dealer Networking

System architecture depicts a community of participants providing and consuming
services for realizing the aims of the Dealer Network. There are three roles for
the participants in this architecture: dealer, shipper and mfc typed respectively by
the participant classes Dealer, Shipper and Manufacturer, they are involved in three
services: “Place Order”, “Get Ship Status” and “Request Shipping”. dealer plays the
role buyer (i.e., consumer) and mfc plays the role seller (i.e., provider) in service Place
Order. Instead, dealer plays role of the enquirer in service Get Ship Status whose
provider is the shipper. mfc plays the role of provider in service Place Order, but in
service Request Shipping, it plays a role as a consumer - orderer precisely. To take
part in the services, each participant class will have some service ports, as shown in
Fig. 6.19, corresponding to the service they participate in.

Fig. 6.10 illustrates the possible roles for participants in the high level view of
how they work together in the Dealer Networking System. The three services and the
participants appearing in this diagram will be described by service and participant
models in the following sections. Fig. 6.11 shows instead a possible configuration of
this architecture, where several participants of several types play various roles using

80
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

and providing services; notice how at the same time several participants may use
some service, offered by the same or by different other participants.

Figure 6.11: A Dealer Networking System Architecture Configuration

6.2.2 Service Models

6.2.2.1 Service Place Order

Fig. 6.12 shows the interface of the service Place Order. It realizes and uses re-
spectively the interfaces: OrderPlacer and OrderTaker, which define the operations
that provider and consumer implement to play their own roles. The type of the
provider role: OrderTaker is the interface including the operations whose calls the
provider seller will receive when enacting the service. The type of the consumer
role: OrderPlacer is the interface including the operations whose calls the buyer will
receive (correspondingly sent by the provider). We define two possible cases for an
order: confirmed or cancelled that may be the values of attribute status typed by the
enumeration type ConfirmationType. Moreover, if the order is accepted, the buyer
will receive further information about the order represented by other attributes of
the datatype OrderStatus, they are the providerID of the order, the deliveryDate of the
shipment, and the wBN of the shipment. The identification of the buyer is defined
by the attribute customerID in the definition of datatypes QuoteRequest and Order.

Fig. 6.13 presents the Place Order contract. The collaboration states that the
role for the participant using the service is named buyer and is typed by the interface

6.2. MODELLING DEALER NETWORKING SYSTEM FOLLOWING
PRECISESOA 81

OrderPlacer, whereas the role for the participant offering the service is named seller

and is typed by interface OrderTaker. Those parts are bound to fulfill service Place
Order following its contract. The sequence diagrams describe how to use use the
service, i.e., which messages to send and which may be the possible answers. The
buyer may either send a quote request or place an order, and the two sequence
diagrams model these two cases.

Fig. 6.14 finally shows the Place Order semantics. The realm of the service is
characterized by the amount of product in stock, so the PlaceOrder_Realm class has
an attribute modelling the stock amount stock: int. The modified sequence diagram
for the case of placing an order shows that the order is confirmed only whenever
the ordered quantity is in stock, otherwise is cancelled, and after an order has been
accepted the stock is reduced by the ordered amount.

Figure 6.12: Place Order service Interface

82
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

Figure 6.13: Place Order service contract

Figure 6.14: Place Order semantics

6.2. MODELLING DEALER NETWORKING SYSTEM FOLLOWING
PRECISESOA 83

6.2.2.2 Service Request Shipping

Service Request Shipping provides the capability to send a shipping request to a
shipper in order to deliver goods to a customer for a filled order. Fig. 6.15 shows
the interface of the Request Shipping service. The provided interfaced contains a
unique operation (request_Shipping(Request)), i.e., the service has a unique in mes-
sage, that will be used to request a shipping (contain the information of the order,
i.e., this is waybill number, and the sender and receiver’s address); whereas the
required interface contain two operations, i.e., package_PickUp(PickUpInfo) and con-

firm_Delivery(Confirmation), corresponding to two out messages to communicate the
info on the pick up (pickup date and an estimated delivery date) and to confirm
the delivery (containing the delivery date). Some obvious conditions relate the es-
timated delivery date, the expected delivery date, the pick up date and the request
date can be seen in several message types of Request Shipping interface.

Fig. 6.16 shows the Request Shipping contract. In the sequence diagram to ensure
that the package pickup message is sent to corresponding shipping request, we re-
quire that the parameters R and PUInfo in satisfy the condition R.wBN = PUInfo.wBN,
similarly for R and conf.

Figure 6.15: Request Shipping service Interface

We do not give the semantics of the service Request Shipping since to know
exactly why the shipper propose a date for the pick up or another one is of no
interest for the service user.

6.2.2.3 Service Get Ship Status

The interface and the contract of the service Get Ship Status are shown in Fig. 6.17
and 6.18; similarly to the the service Request Shipping we do not give its semantics.

84
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

Figure 6.16: Request Shipping service contract

Figure 6.17: Get Ship Status service Interface

The collaboration in 6.18 binds the two parts representing the consumer and
provider of service Get Ship Status. The consumer plays a role as a enquirer that is
typed by interface Enquirer (defined in Get Ship Status interface in Fig. 6.17). Enquirer
includes an operation to receive the status of the shipment, i.e., shipment_Status(ShipmentStatus).
In OMG specification of SoaML [27], this consumer is not required to provide any
operations, hence service Get Ship Status is a simple service that has a simple ser-
vice interface. But in our precise approach, the interface of the consumer can be an
“empty class” or it has one operation as we built (e.g., Enquirer in Fig. 6.17). The
empty compartment means that there are no operations, therefore "empty class" is
an interface without operations in the reality.

The type of the provider role responder is ShipperStatus interface that contains
one operation get_ShipmentStatus(W:WaybillNumber) called by the consumer to enact

6.2. MODELLING DEALER NETWORKING SYSTEM FOLLOWING
PRECISESOA 85

this service. If we could not find any suitable names for the roles, we may let them
have the same names as the interface themselves (shipperStatus : ShipperStatus for
example). The purpose of the service is resulting shipment status for the enquirer.
The status of the shipment will be contained in the message type ShipmentStatus (see
Fig. 6.17). The order of messages that service Get Ship Status receives and sends
out is illustrated by the sequence diagram built in Fig. 6.18.

Figure 6.18: Get Ship Status service contract

6.2.3 Participant View

All the kinds of participants that provide and consume services in the Dealer Net-

working System are presented by participant view show in Fig. 6.19 by just giving
their participant classes (here we do not further model these participants, since we
not even define if they are structured or monolithic). There are three kinds of par-
ticipant: Dealer, Manufacturer, and Shipper. Each participant (type) has service ports
and request ports for the services they provide and consume that are stereotyped by
�Service� and �Request�. Manufacturer participant is a service provider for service
Place Order, so it has a �Service� port typed by service interface Place Order to
offer the service through this port. Manufacturer itself is a service consumer of ser-
vice Request Shipping, then it has a �Request� port typed by conjugate ∼ Request

Shipping service interface to consume the service.

86
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

Figure 6.19: Dealer Networking System participant view

6.3. OFFICE SYSTEM MODEL MODEL FOLLOWING PRECISESOA 87

6.3 Office System Model Model following
PreciseSoa

In this section we model the Office System described in Chapter 3 following the
PreciseSoa method introduced in Sect. 6.

6.3.1 Service Architecture and Configurations

The service architecture shown in Fig. 6.20 presents the set of services and the par-
ticipants that provide and consume those services for Office System. There are six
roles for participants: Office Component, Printing Center, Language Centers for
three languages (italian, French, and English), and Web Publisher. In this archi-
tecture, Office Component plays the consumer role to the services: Print, Check
French, Check English, Check Italian, and Publish on Web.

Figure 6.20: Office System architecture

6.3.2 Service Models

6.3.2.1 Service Print

The purpose of the Print service is to allow to print documents.
Fig. 6.22 shows the interface of Print. Fig. 6.23 depicts the printing service

contract where the two parts OfficeComponent and Printer are the consumer and the
provider respectively. In the part stereotyped by �provide�, the role of provider
Printer is named as printer (as labeled on the connector as shown in Fig. 6.20) is bound
to its type that is Print interface. This Print interface contains three operations to

88
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

Figure 6.21: As Office System Architecture Configuration

enact the service, as shown in Fig. 6.22. The role of participant OfficeComponent is
named as consumer for all services, and in this service, the type of consumer role
is Writer, which is an interface that contains three operations corresponding to the
three cases: printed if the document printed successfully, notA4 if the page is not in
A4 format and noPaper if the printer is out of paper.

The service interface is used to type the ports of these two participants shown
in Fig. 6.29. The messages exchanging between parts to offer and use that service
is represented by the sequence diagram in Fig. 6.22.

Figure 6.22: Print service interface

6.3.2.2 Check Italian service

There are three services that supply capabilities to check the spelling and the gram-
mar of a text written in one of three specific languages: English, French and Italian
(as described in Chapter 3). Here we give the model of the service Check Italian
considering the Italian language, the models of Check French and Check English are
similar.

6.3. OFFICE SYSTEM MODEL MODEL FOLLOWING PRECISESOA 89

Figure 6.23: Print service contract

Figure 6.24: Print service semantics

The interface of Check Italian is given in Fig. 6.25. The provided interface
Checker comprises two operations, i.e., check_Spelling(Text) and check_Grammar(Text),

90
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

they are two types of in message that this service can receive, one for spelling check-
ing requirement, and the other for grammar checking requirement. The required
interface Editor comprises three possible out messages that service may respond to
those in messages, i.e., spelling_Errors(SpellErrors) if the service found any spelling
error in Text, grammar_Errors(GrammErrors) if the service found any gramma error in
Text, and wrong_Language() if Text is not written in three predefined languages.

There is a contract that if service Check Italian receive message check_Spelling(Text),
it may return only one of two messages: spelling_Errors(SpellErrors) or wrong_Language(),
or only one message wrong_Language(), it cannot send out message grammar_Errors(GrammErrors).
Meanwhile, if service Check Italian receive message grammar_Errors(GrammErrors), it
may return one of two or both of two messages: spelling_Errors(SpellErrors) and gram-

mar_Errors(GrammErrors), or only one message wrong_Language(). With only model of
Check Italian interface, we cannot see this aspect, it will be illustrated in contract
of this service.

The contract of service Check Italian, see Fig. 6.26, represents two roles, in
which checker is the role of provider Italian Language Center, and consumer is the role
of consumer OfficeComponent. The type of provider role is Checker interface that
the provider will require on a port to provide this service. Whereas, the type of
consumer role is Editor interface containing the operations that he may receive when
enacting service. The messages stereotyped by �Message Type� are sent from the
consumer to the provider in order to request a language checking service. In case,
the consumer only requires to check the spelling, the provider will require Checker

interface to return a list of spelling errors if any, or a message to note that the text is
not in the set of languages, i.e., the operations spelling_Errors(SE: Spelling Errors) and
wrong_Language(). Otherwise, if the consumer requires to check the grammar, the
provider may return a list of spelling errors if any, and/or a list of grammar errors
(if there is), or a message wrong language, i.e., the operations grammar_Errors(GE:

Grammar Errors) and wrong_Language(). We model two sequence diagrams for this
service contract behaviour to illustrates those two possible results, see Fig. 6.26.

We do not give the semantics view, since this service does not depends on a
realm: we assume that the correctness of the spelling and of a language do not
depend on any changeable aspects of the real world, and moreover this service does
not modify anything.

6.3.2.3 Service Publish on Web

The consumers use the Publish on Web service to publish web pages on the In-
ternet. There are two preconditions for the service: the URL is correct and the

6.3. OFFICE SYSTEM MODEL MODEL FOLLOWING PRECISESOA 91

Figure 6.25: Check Italian service interface

Figure 6.26: Check Italian service contract

corresponding server is available.
Fig. 6.27 shows the interface of service Publish on Web. The role for the partici-

pant using the service is named consumer and the role for the participant offering the
service is named publisher, as shown in Fig. 6.20. In the collaboration in Fig. 6.28,
they appear again in two parts of the service contract and are bound to their types,
i.e Web Editor interface and Publisher interface respectively, as shown in Fig. 6.27.
The operations that are sent from the publisher to the editor can be: wrongURL() if
the URL is wrong, notHTML() if the page is not written in HTML, serverNotAvailable()
if the server requested is not available at this moment, and published() if the pages
are published such that the editor will have his page published as a web page on the
Internet. Fig. 6.28 illustrates the behaviour for this service contract.

Two variant cases should be concerned to this service. The first case is that

92
CHAPTER 6. PRECISESOA: A PRECISE METHOD FOR MODELLING

SERVICE SYSTEMS USING UML

the page is not written in HTML, the service will not only send an alert but also
convert it to HTML format. The second case is that the URL is not correct, then
the consumer will be required to supply another one with any number of times. We
consider those cases as internal interactions of the service, and we wish to propose
a mechanism to model them, particularly in Casl4Soa profile (cf. Chapter 7).

Figure 6.27: Publish on Web service interface

Figure 6.28: Publish on Web service contract

6.3.3 Participant View

There are six kinds of participants that provide and consume services in Office Sys-
tem. They are represented by the classes stereotyped by �Participant� in the par-
ticipant view in Fig. 6.29 and named: Italian Center, English Center, French Center,

6.3. OFFICE SYSTEM MODEL MODEL FOLLOWING PRECISESOA 93

Printing Center, Office Component, and Web Publisher. Those participants realize
their interfaces by service ports and request ports that are stereotyped by�Service�
and �Request�. The participant typed Office Component is the unique consumer
and does not play any provider role in the system, since all its ports are stereo-
typed by �Request� and typed by the conjugate service interfaces of the providers
for corresponding services. For the participants that are of kind of providers, their
ports are stereotyped by �Service� and typed by the service interface of the service
itself. The participant typed Printing Center is provider for Print service, its port is
stereotyped by �Service� and typed by the service interface Print Service. Those
participants realize their interfaces to offer the service through their service ports.

Figure 6.29: Office System Participant View

Conclusion: In this chapter, we have presented our proposed PreciseSoa pro-
file, i.e., a UML profile, and a method designed over SOA paradigm presented in
Chapter 4 to model service systems using this profile. We described the structure
of the PreciseSoa service system models and investigated the well-formed constraints
on these models. A set of steps to produce a PreciseSoa model of a service system
is presented, moreover the use of this modelling method is illustrated by the ap-
plication on Dealer Networking System and Office System case studies (presented in
Chapter 3).

C
h

a
p

t
e

r

7
Design Model of Service system

in Casl4Soa

«««< .mine

Contents
7.1 Overview of Casl4Soa . 96

7.2 Casl4Soa Constructive Service System Model 97

7.2.1 Service Model . 100

7.2.2 Participant model . 102

7.3 Casl4Soa property oriented model 103

7.4 How to develop a Casl4Soa model 104

7.5 Dealer Network Model in Casl4Soa 113

7.5.1 Dealer Network Model in Casl4Soa: constructive style 113

7.5.2 Dealer Network Model in Casl4Soa: property-oriented
style . 119

7.6 Casl4Soa Model of Office System 121

7.6.1 Casl4Soa constructive model of Office System 122

7.6.2 Property-oriented Casl4Soa Model of Office System . . 128

7.7 Tool support . 130

7.7.1 Requirements - What we need from a tool? 130

7.7.2 Existing Tools - What we can do with existing tools? . . 130

7.7.3 Solution for Casl4Soa tool 132

95

96 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

In this chapter, we present our extension of Casl-Mdl models that offers a
visual syntax to a subset of the Casl-Ltl [45] formal textual specifications to de-
velop Casl4Soa as a formal visual notation used to model service systems not only
visually but also formally and effectively.

7.1 Overview of Casl4Soa

Based on Casl-Ltl (an extension for dynamic systems of the algebraic specification
language Casl, see [45]), Casl-Mdl [9] has been developed as a non objected-
oriented visual formal notation. Casl-Mdl offers a visual syntax to a subset of
the Casl-Ltl formal textual specifications, precisely each Casl-Mdl model can
be translated into a Casl-Ltl specification.

In Casl-Mdl we have a type diagram introducing the datatypes and the dy-
namic types, which are types of dynamic systems, that allow to model datatypes
and either simple or structured dynamic systems.

A dynamic system is seen as a labelled transition system, where the labels are
“elementary interactions” corresponding to the interactions of the system with its
context. Then, the behaviour of data and dynamic types is defined either following a
property-oriented style using logical formulas (of a first-order many sorted branching
time with edge-formulas logic) or constructively defining the operation behaviour by
conditional rules and the system behaviour by interaction machines.

At the visual level the constructs of Casl-Mdl have been defined reusing the
visual constructs of the UML, thus we can use the UML editing tools to produce
the Casl-Mdl models.

Casl4Soa [8] (Common Algebraic Specification Language for Service Oriented
Architecture) has been developed as a profile of Casl-Mdl with the aim to provide
an effective notation to model SOA systems. The profiling mechanism used for
defining Casl4Soa is similar to the profiling mechanism of the UML, and it was
inspired by it. Thus we use stereotyped Casl-Mdl constructs (Appendix A.3) to
define the new Casl4Soa constructs. Moreover, each Casl4Soa model corresponds
to a Casl-Mdl model, that in turn corresponds to a Casl-Ltl specification (see
Fig. 7.1), which has a well-defined formal semantics, thus also Casl4Soa has a
well-defined formal semantics.

Casl4Soa has been designed over SOA paradigm presented in Chapter 4, and
here we will use all the terminology defined in such chapter.

There are two kinds of Casl4Soa service models, constructive and property-
oriented. In a constructive model, the behavioural aspects of the services and of

7.2. CASL4SOA CONSTRUCTIVE SERVICE SYSTEM MODEL 97

Figure 7.1: Relationships among Casl4Soa, Casl-Mdl, and Casl-Ltl

the participants are expressed by means of the interaction machines (see Appendix
A.3.4), whereas in a property oriented model, such aspects are expressed by means
of first-order temporal logic formula (see Appendix A.3.5).

In Casl4Soa, dynamic system denotes any kind of dynamic entities, i.e., entities
with dynamic behaviours without making further distinctions, and are formally
considered as labelled transition systems, that we briefly summarize below.

A labelled transition system is a triple (State,Label,→), where →⊆ State ×
Label× State is the transition relation.

A dynamic system is thus modelled by a transition tree determined by a labelled
transition system and an initial state s0 ∈ State. A dynamic type corresponds to the
state of a labelled transition system, thus its values correspond to dynamic systems.

The labels of the transitions of a dynamic system are named interactions and are
descriptions of the information flowing in or out the system during the transitions,
thus they truly correspond to interactions of the system with the external world.
The states of simple systems are characterized by a set of typed attributes (precisely
the states of the associated labelled transition system).

We use dynamic types to model services and participants.

7.2 Casl4Soa Constructive Service System Model

The form of the Casl4Soa constructive participant models is shown in Fig. 7.2
by means of a metamodel, whereas Table 7.1 shows the constraints defining the
well-formed models.

A service system, as said in Chapter 4, is a particular structured participant
neither offering nor using services, and thus without any service point. Thus a
Casl4Soa constructive service system model is a special case of a participant model
for a participant without any port, thus neither offering nor using services.

A participant model consists of the definition of a participant type by means
of a type diagram including the definition of a dynamic type, and of the models
of the provided and used services. The dynamic type defining the participant may
be either simple (for the case of the monolithic participants) or structured (for the

98 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

Figure 7.2: Casl4Soa constructive model: metamodel

structured participants), in this case the structured dynamic type definition will
allow to represent its service architecture. The model of a structured participant
will include also the models of a set of participant types, its subparticipants, and the
models of the local services, i.e., the service used by its subparticipants to interact
among them.

A service system, as said in Chapter 4, is a particular participant neither offering
nor using services, and thus without any service point. Thus a Casl4Soa construc-
tive service system model is a special case of a participant model for a participant
without any port, thus neither offering nor using services.

The Casl-Mdl dynamic type modelling a participant will be stereotyped by
�Participant�, whereas in the case of service system the stereotype�ServiceSystem�
will be used.

7.2. CASL4SOA CONSTRUCTIVE SERVICE SYSTEM MODEL 99

Participant
Model

– All services have different names.
– All subparticipants have different names.
– A subparticipant must have at least a port to offer or use
at least one service.
– Connectors between two ports of two different participants
must be labelled by the name of a service that those partici-
pants offer and use.
– Many different connectors may leave or enter the same port
of a participant but all of them must be labelled with the
same service.
– The services used to label the connectors must be already
presented in the model.

Service Model
– All the parameters of the interactions of a service interface
must be typed by datatypes.
– A service interface must have at least one input elementary
interaction.
– If a service is named SN, then the simple system appearing
in the contract should be named SN_Contract and the one
appearing in the semantic should be named by SN_Semantics.
– There is only one initial state in the interaction machine
representing service behaviour.

Table 7.1: Casl4Soa constructive model: Well-formedness constraints

100 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

Naming Convention

–In the names of the services and interfaces, each word should begin with a
capital letter (e.g., Place Order, OrderTaker).

–In the names of the interactions, word should be written in mixed case
starting with lower case. When there are more than two words in the name,
use underscores to separate them (e.g., ?_place_Order).

–The parameters of an interaction should be in upper case (e.g., QR).

–Names of datatypes must be nouns, and each word of the names should
begin with a capital letter (e.g., OrderStatus).

–The attributes of datatypes should be written in mixed case starting with
lower case (e.g., orderDate).

Table 7.2: Naming convention for Casl4Soa models

7.2.1 Service Model

The structure of the service model is shown as a part of Casl4Soa Construc-
tive Model in Fig. 7.2 (together with Participant Model which is described in
Sec.7.2.2), and the associated well-formedness constraints are reported in Table 7.1.
A Casl4Soa constructive service model consists of the service name, a service in-
terface, a contract and a semantics. As stated in Chapter 4, a service interface
provides the static information needed to interact with the service, the service con-
tract focuses on the protocol between the provider and the consumer of the service,
and the semantics allows to understand the functionalities provided by the service
to its users.

A service interface is an interface for a dynamic system, visually represented by a
box with the stereotype indication�Service Interface� (see a generic service interface
shown in Fig. 7.3), it is named as the service itself and it defines the elementary
interactions needed to use the service, distinguished in input and output interactions
by a naming convention ?_yyyy (input) and !_xxxx (output). The input elementary
interactions model the requests sent to the service, whereas the output ones model
the answers that the service sent out to the user. They are characterized by a name
and a possible empty list of parameters.

7.2. CASL4SOA CONSTRUCTIVE SERVICE SYSTEM MODEL 101

Figure 7.3: A generic service interface

A service contract in constructive style is represented by a simple dynamic system
stereotyped by �simpleSystem� (see a generic simple system shown in Fig. 7.4) and
an associated interaction machine (see Fig.7.5), in which the behaviour of the service
is modelled as seen at the service point where it is provided.

Figure 7.4: A generic simple dynamic system

The simple system should extend the one used for modelling the interface but
without adding any new interaction, thus it will exactly the same elementary inter-
actions as the service interface, whereas it may have some new attributes, which are
needed to abstractly model the relationships between the in and out messages. The
interaction machine modelling a service contract should follow a specific pattern to
mimic the informal conceptual description of a service contract proposed in Chap-
ter 4 to illustrate the fact that: the service may receive initially possible requests,
then it will answer in many different ways (even going in a final state), after that
the service is ready to receive other requests, then answer them. A visual generic
schematic example of an interaction machine is given in Fig.7.5, and for further
description, see Appendix A.3.4).

The realm of a service is the part of the real world affected and known by the
service itself. The semantics of a service describes the effects of the requests received
by the service itself (in messages) on its realm, and how the realm status determines
the answers sent out by the service itself (out messages). The semantics of a service
in constructive style is given by a simple dynamic system extending the one used
for the service contract (again without adding new interactions), and the behaviour
of this system is modelled as usual by means of an interaction machine.

102 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

Figure 7.5: A generic schematic example of an interaction machine

7.2.2 Participant model

A participant type is expressed as a Casl-Mdl dynamic type (see Appendix A.3.3)
stereotyped by �Participant� (see generic participant shown in Fig. 7.6), the ports
of which are characterized by service interfaces to indicate that a participant of that
type provides or consumes a service. The ports are used to structure the elementary
interactions of a dynamic system and to define the cooperation inside the structured
dynamic systems.

If a participant is offering a service S, the port where S is offered is typed by
the interface of S, whereas if it is using a service S’ throughout a port, then such
port is typed by the conjugate of the interface of S’. Recall that the conjugate of
an interface I is denoted by ∼I, and the elementary interactions of ∼I are those of
I where the input and output types are swapped.

The participant type and all the needed datatypes are collected in a type dia-
gram.

In case of a monolithic participant, a generic model is given in Fig.7.6, its behav-
ior should be expressed by means of an interaction machine (a generic interaction
machine is given in Fig.7.5).

In case of a structured participant, the corresponding Casl-Mdl dynamic type
will be a structured dynamic type (see Fig.7.7), and its definition will allow to
express the service architecture of the participant itself.

As described in Chapter 4 a service system is a special case of structured partici-
pant without any port, and we will use the stereotype�ServiceSystem� (see Fig.7.8)

7.3. CASL4SOA PROPERTY ORIENTED MODEL 103

Figure 7.6: A generic participant

Figure 7.7: A generic structured participant

instead of �Participant� for denoting the corresponding Casl-Mdl structured dy-
namic type.

Figure 7.8: A generic service system

7.3 Casl4Soa property oriented model

The structure of the Casl4Soa property oriented models is shown in Fig. 7.9. The
form of these models is similar to the one of the constructive models shown in
Fig. 7.2, but now the behaviour of the dynamic systems is modelled by means of a

104 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

set of logical formulas, instead of an interaction machine. The constraints defining
the well-formed models are the same as the constructive models, shown in Table 7.1.

Figure 7.9: Casl4Soa property oriented model: metamodel

A service contract in property-oriented style is represented by a dynamic type
whose behaviour is specified by a set of constraints on the type itself, i.e., by a set of
temporal formulas described in Appendix A.3.5. Similarly the semantics of a service
in property-oriented style is given by a simple dynamic system extending the one
used for the service contract, and the behaviour of this system is modelled again by
means of a set of constraints.

A generic example of a formula is presented as following:
[in_any_case] [sometimes | always] [path_form] ⇒ [eventually | always | next

][path_form]
The formulas comprise first-order logic combinators, together with temporal com-

binators (for a path formula) to address whether a property is satisfied in states of
a path from a given state. The form of formulas should conform to a grammar
structure defined in Appendix A.3.5.

7.4 How to develop a Casl4Soa model

Following the indications of Chapter 4 (see Fig. 4.1 and 4.2), we give first a con-
ceptual model of the service system of interest, and then model all the parts using
Casl4Soa; all the steps are summarized in Fig. 7.10.

Recall that a service system is a particular structured participant neither offering
nor using services, we assume that the service system being built is the first con-

7.4. HOW TO DEVELOP A CASL4SOA MODEL 105

Figure 7.10: How to develop a Casl4Soa model

sidered structured participant of type P (see activity named Model participant
type P in Fig. 7.10), then it may include a number of monolithic participants and
structured participants, and a number of services.

Identifying the services that the subparticipants of P provide and consume is the
first steps.

To model a service S in Casl4Soa, all the steps are shown in the actions of
the activity named Model service S in Fig. 7.10. Those actions are described in
details as following:

Give the simple dynamic type representing the interface of S
What to do
Define set of input and output interactions for a simple dynamic system repre-

senting interface of S. The interactions are either of kind input or output. Define
datatypes needed to type the elements of interface.

What is supposed to be clear before building interface of S

• The specific requests that service S will receive from the users.

106 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

• The specific responses that service S may send to the users for corresponding
requests.

The composition of S interface

• Name of S interface

• The elementary interactions of kind input and output.

Building steps

1. Use Casl-Mdl simple dynamic type with stereotype �serviceInterface� to
define S interface.

2. Name S interface by the name of S itself (suggesting the purpose of the service)

3. Build input interactions based on the requests to service S, give them names
(starting with convention ?_) and define the necessary parameters.

4. Build output interactions based on the requests to service S, give them names
(starting with convention !_) and define the necessary parameters.

5. Use construct Datatype to define the elements of S interface if they are not of
primitive type.

Note:

• The name of a input interaction should contain and start with a verb.

• The input interactions should be listed before the corresponding output inter-
actions.

Give the simple dynamic type representing the contract of S
What to do
Extend the simple dynamic type that represents the interface of S, add attributes

if needed to represent the session state.
What is supposed to be clear before building the contract of S

• The interface of S.

• The attributes needed to model the activities of S providers and to express
the realm of the service.

The composition of S contract in terms of a simple dynamic type

• Name of S contract (named with extension _Contract).

7.4. HOW TO DEVELOP A CASL4SOA MODEL 107

• Some attributes determining the internal states of the dynamic system repre-
senting S contract, and the elementary interactions as defined in S interface.

Building steps

1. Use Casl-Mdl simple dynamic type with stereotype �simpleSystem� to de-
fine S contract.

2. Name the simple dynamic system by S name with extension _Contract, and
insert the elementary interactions that are predefined in the interface of S.

3. Insert attributes representing the session state and type them by datatypes/primitive
types.

Give the interaction machine of S contract
What to do
Build interaction machine of S contract.
What is supposed to be clear before building an interaction machine of S contract

• The possible states of the simple system when S receives a specific request and
when S issues the responses.

• The possible activities in the interactions of S.

• The conditions for the occurrence of each interaction, i.e the guards of the arc.

• The parameters exchange between the interactions of S.

The pattern of an interaction machine of S contract

• An initial state.

• The notes representing the possible interaction states of simple dynamic system
representing S.

• The arcs representing the possible transitions of simple dynamic system rep-
resenting S, labelled by an interaction occurrence, a guard and an effect in
the form of interact-occur [guard], where interaction-occur may be an input
interaction and an output interaction that are defined in S interface.

• A number of final states according to a number of possible ends of S behaviors.

Building steps

1. Start the graph with an initial state

108 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

2. Build the arc for the first input interaction.

3. Define and name the next states of the simple dynamic system representing S
when S receives the requests or processes the responses.

4. Define the attributes of the data of the input interaction and their possible
values to build the boolean expressions for the guards of the following transi-
tions.

5. Corresponding to the specific guards, build the next arcs for the following
transitions.

6. Mark the points where the behaviours end in final states.

Note:

• An interaction machine may have any number of final states.

• Whenever there is an arc with a condition there should be also the arc with
opposite condition.

• If no condition is satisfied for an elementary interaction, the matching inter-
action will never be matched.

Give the simple dynamic type representing the realm of S
Model interaction machine of a semantics
What is supposed to be clear before building an interaction machine in a seman-

tics

• The service contract

• The domain of the value of the simple dynamic system attributes.

• The effect of the activities of the simple dynamic system.

The pattern of an interaction machine in a semantics

• An initial state.

• The notes represent the possible interaction states of the system.

• The arcs represent the possible transitions of the system, labelled by an inter-
action occurrence, a guard and an effect in the form of interact-occur [guard]
/ effect, where interaction-occur may be a input interaction and a output in-
teraction that are defined in the provided service interface, the [guard] is the

7.4. HOW TO DEVELOP A CASL4SOA MODEL 109

boolean expression built over the simple dynamic system attributes, and the
effect is the action over those attributes.

• Final states (also none).

Building steps an interaction machine in a semantics
On the basis of the provided interaction machine of the service contract,

1. Create the arcs to define the initial value for the simple dynamic system at-
tributes if any.

2. Supplement the possible value of the attributes of the simple dynamic system
to create the guard for the transitions.

3. Define the effect of the interactions over the simple dynamic system attributes
to create the effect for the transitions if any.

Note:

• The main difference between the service contract and the semantics is the
presence of the values of the Simple system attributes in the effect of the
transitions.

Model participant P
A-Model monolithic participant P
What to do
Define the monolithic participant P and identify the services that P provides and

consumes
Building steps

• Use Casl-Mdl simple dynamic type with stereotype �Participant� to define
P, name this simple system with the name of P.

• Create a port with a lollipop for each service that P provides, name this port
by the service name.

• Create a port with a cup for each service that P consumes, name this port by
the service name starting with conjunction ∼.

B-Model structured participant P
What to do
Identify all subparticipants of P and the local services that they provides and

consumes.
Building steps

110 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

• Use a structured system (i.e., Casl-Mdl structured dynamic type) with
stereotype�Participant� to define P, name this structured system by the name
of P.

• Use a subsystem to define each subparticipant. Insert them into the structured
system P.

• For each subparticipant, create a port for a service that it offers or uses.

• Connect the pair of participants involved in a service by a connector labelled
by the name the service.

• Create a port for participant P for a service that it provides (a port hav-
ing a lollipop) or consumes (a port having a cup). Connect this port to the
corresponding port of subparticipant which provides or consumes this service.

Model structured participant P as service architecture of the service
system

A service architecture is represented by a Casl-Mdl structured system of a
number of subsystems.

What is supposed to be clear before building a service architecture:

• All the participant types of the service system.

• All the services of the system.

The composition of the service architecture
A structured system stereotyped �serviceArchitecture� includes:

• The participant types are represented by subsystems, on which the ports are
the points they offer or use the service.

• The connectors between the participants.

Building steps for a service architecture:

• Use a structured system (i.e., Casl-Mdl structured dynamic type) with
stereotype �Service Architecture� to define P, name this structured system
by the name of service system.

• Use a subsystem to define each subparticipant. Insert them into the structured
system P.

• For each subparticipant, create a port for a service that it offers or uses.

7.4. HOW TO DEVELOP A CASL4SOA MODEL 111

• Connect the pair of participants involved in a service by a connector labelled
by the name the service.

Note:

• The connector leaves and ends at the ports of the participants.

• The interactions occurring among the participants are in terms of services.

Model service S in property oriented style
A-Build the contract of service S in property oriented style
The contract of S in property oriented style characterized by formulas expresses

all possible occurrences of the interactions in the particular conditions.
What is supposed to be clear before building the contract of service S in property

oriented style

• The protocols to be followed by the providers and the consumers of the service,
what they guarantee to each other and what they expect in terms of dynamic
behaviour.

• What will happen when the service receives a specific request.

• What conditions match each interaction and how they match with each other,
such as what conditions for a request to be accepted, or what conditions for a
response be implemented.

• The attributes of the data in a request sent to the service by the consumers,
what is true or not.

• The relationships between the interactions (the order, the dependency and the
priority)

The composition of S contract in property oriented style

• A set of formulas expresses all possible cases of the occurrence of the in-
teractions defined in the provided service interface according to the specific
matching conditions.

Building steps

1. Define the context of the transition of the Simple system to select the quan-
tifications on paths and quantification on states if any.

112 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

2. Define the possible values of the parameters and the attributes of the data
of the specific input interaction, combine them with this input interaction to
build the premise of the formulas.

3. Based on the relationships between the conditions and the interactions, be-
tween the input interactions and the output interactions, use the logic com-
binators and given quantifications to build the conclusion of the formula,
such that each formula may expresses all possible interactions of the system
corresponding to each specific premise part.

B-Model the semantics of service S in property oriented style
The semantics of S in property oriented style not only expresses all possible

occurrences of the interactions in the particular conditions but also the possible
internal transitions associating with the effect of the transitions if any.

What is supposed to be clear before building the semantics of S in property ori-
ented style

• What contributes the answer of the service.

• What is examined, controlled, affected by the service itself.

• The provided attributes of the simple system that can determine its internal
states, the internal actions over those attributes.

• The effect of the request sent to the service itself.

• The effect of the response to the service itself.

The content of S semantics in property oriented style

• A set of formulas expresses all possible cases of the occurrence of the interac-
tions defined in the provided service interface according to the specific match-
ing conditions; express the internal states of the simple system and the internal
actions over the simple system attributes associating with such interactions.

Building steps

1. On the basic of the premise parts of the provided formulas in the service
contract in property oriented style, combine them with the possible properties
of the attributes of the simple system to create premise parts for the formulas.

2. Corresponding to the premise parts, create the the conclusion parts of the
formula for the occurrences of the interactions and supplement the effect of
the transitions if any.

7.5. DEALER NETWORK MODEL IN CASL4SOA 113

3. Create necessary formulas to define the conditions for the simple system at-
tributes to guarantee the realization of the transitions.

Note: The effect of the transition is usually attached with the corresponding
interaction by logic combinator AND.

7.5 Dealer Network Model in Casl4Soa

In this section, we model the Dealer Network using Casl4Soa, first following the
constructive style and later following the property-oriented one. The description of
Dealer Network case study has been given in Sect. 3.1.2.

The Dealer Network is a service system, and thus is a special structured par-
ticipant without ports for offering and consuming services. The Dealer Network
Casl4Soa model, in both styles, is thus a special case of participant model consist-
ing of:

• the definition of a dynamic type stereotyped by �ServiceSystem� correspond-
ing to the Dealer Network and named DealerNetwork, by means of a type dia-
gram including such type; DealerNetwork is a Casl-Mdl structured dynamic
type (thus the definition of this type will also express the service architecture
of the Dealer Network);

• the models of the local services, that are Place Order, Get Ship Status, and Request

Shipping;

• the models of (the types of) its subparticipants, that are Dealer, Manufacturer,
and Shipper.

7.5.1 Dealer Network Model in Casl4Soa: constructive
style

7.5.1.1 DealerNetwork type

DealerNetwork, the dynamic type for the service system corresponding to the Dealer
Network, is shown in Fig. 7.11 by a box (the dynamic type icon of Casl-Mdl)
stereotyped by �ServiceSystem� to express that it is a service system. Recall that
in Casl4Soa, we denote the participants of a service system (as well as the sub-
participants of a generic structured participant) by subsystems in the structured
system stereotyped by �ServiceSystem� (stereotyped by �Participant�). Each sub-
system (depicted by a box) represents a role for (sub)participants of a specific type
(the type name is depicted in the box after the colon). Moreover, the fact that

114 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

Figure 7.11: DealerNetwork type

a (sub)participant interact with another (sub)participant by means of a service is
shown by a dashed arrow going from the port of who uses the service towards the
port of who provides it. Thus Fig. 7.11 shows also the service architecture of Dealer
Network in Casl4Soa. We can see that there are several participants of three
different types Dealer, Manufacturer, and Shipper. Each participant has a number of
ports to indicate that it provides or consumes various services. For example, the
participants typed by Shipper have two ports for the two services that they provide,
they are Get Ship Status and Request Shipping. The dashed arrows entering in the
Shipper ports are labelled by the names of the services that it provides.

7.5.1.2 Local Service Models

Service Place Order

Figure 7.12: Place Order Service: interface

Service Interface The interface of service Place Order, shown in Fig. 7.12, is
a type diagram that contains a dynamic type named Place Order with stereotype

7.5. DEALER NETWORK MODEL IN CASL4SOA 115

�serviceInterface� modelling the the service interface itself, and the definitions of
the datatypes needed to type the parameters of its interactions.

The interface of service Place Order consists of four interactions: ?_request_Quote

and ?_place_Order of kind input, and !_quote and !_order_Status of kind output. The
service can receive the quote request from the buyers by interaction ?_request_Quote

with a parameter typed by the datatype QuoteRequest, then the service may respond
with the quote contained in a parameter typed by datatype Quote of the output
interaction !_quote. When the service receives the request to place an order from
the buyer by the interaction ?_place_Order, it will respond with a confirmation by
the interaction !_order_Status to communicate the status of the order. An order
may be confirmed or cancelled, and the attribute status of the datatype OrderStatus

typed by the enumeration type ConfirmationType contain this information. Moreover,
if the order is confirmed, the buyer will receives further information about the order
contained in the other attributes of OrderStatus, they are the providerID of the order,
the delivery date of the shipment, and the wBN (waybill number) of the shipment. The
identification of the buyer is defined by the attribute customerID in the definition of
datatype QuoteRequest and Order.

Figure 7.13: Place Order service: contract (constructive style)

Service Contract The contract of service Place Order is represented by the simple
dynamic system PlaceOrder_Contract and the interaction machine shown in Fig. 7.13;
this dynamic system has the same interactions of the one modelling the service inter-
face, and all of them will appear on transitions between of this interaction machine.
The interaction machine expresses that the service may receive two requests: the
quote request and the order placement from the consumers, through the two transi-
tions leaving the state Ready labelled respectively by ?_request_Quote(qr:QuoteRequest)

and ?_place_Order(O). The attribute cQr of the simple dynamic system allows to

116 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

store the value of the parameter quote request QR; similarly, the attribute cO stores
the order O. Those values are used in the transition guards to determine the cases
when the interactions may happen. For instance, to guarantee that the quote of each
quote request will correspond to such request, the guard for the output interaction
!_quote(Q) should be [Q.QuoteRequest=cQr].

Figure 7.14: Place Order service: semantics (constructive style)

Semantic View The semantics of service Place Order is modelled by the simple dy-
namic system PlaceOrder_Semantics and the interaction machine shown in Fig. 7.14.
In this example, the interaction machine of the semantics has a similar shape to
the one of the service contract (see Fig. 7.13), however it takes also into account
the information about the realm. In this case, the quantity of product in stock is
this information, thus we introduce attribute stock in system PlaceOrder_Semantics.
The interaction machine in Fig. 7.14 models that, if the ordered quantity is greater
than the product quantity in stock, the order will be cancelled; otherwise the order
will be confirmed, and the product quantity in stock will be reduced by the ordered
quantity.

7.5. DEALER NETWORK MODEL IN CASL4SOA 117

Service Request Shipping

Fig. 7.15 shows the interface of the service Request Shipping. The service provides a
means to require a shipping request by ?_request_Shipping(R:Request) and it can re-
spond the two possible results, one for package packing and another for confirmation
of delivery, in !_package_PickUp(PP:PackagePickUp)

and !_delivery_Confirmation(DC:Confirmation).

Figure 7.15: Request Shipping service: interface

Figure 7.16: Request Shipping service: contract (constructive style)

118 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

Service Get Ship Status

Fig. 7.17 shows the interface of the service Get Ship Status. The service provides a
means to require the status of a shipment by message ?_get_ShipmentStatus(W:WaybillNumber)

and it can respond the result in !_shipmentStatus(SS:ShipmentStatus).

Figure 7.17: Get Ship Status service: interface

Figure 7.18: Get Ship Status service: contract (constructive style)

The semantics is not very interesting and we do not describe the realm of the
service, since that should include all the situations of the ships and of the sea and
of the harbors, etc., so we should not present it.

7.5. DEALER NETWORK MODEL IN CASL4SOA 119

7.5.1.3 Participant models

The models of the three types of participants of Dealer Network (Dealer, Manufacturer,
and Shipper) are shown in Fig. 7.19, to be more precise in such figure we show only
the three type diagrams defining the three corresponding dynamic types stereotyped
by �Participant�, while for simplicity we do not duplicate the models of the services
that they offer and use, since they have been already presented in the part about
the local services of Dealer Network. We do not add any other information on these
three participants, since we do not know anything other on them (e.g., if they are
monolithic or structured, and what is their behaviour). Casl4Soa allows also these
kind of specifications

Figure 7.19: Dealer Network service system: participant models

7.5.2 Dealer Network Model in Casl4Soa:
property-oriented style

The Casl4Soa Dealer Network model made following the property-oriented style
has the same structure of the constructive one presented in subsection 7.5.1, the
only different parts are the definitions of the contracts of the three services (Place
Order, Get Ship Status and Request Shipping) and of the semantics of Place Order. In
this case they are defined by means of sets of constraints, i.e., set of temporal logic
formulas. We present these contracts and this semantics in Fig. 7.20, 7.22, 7.23, and
7.21 respectively.

Fig. 7.20 presents the contract of service Place Order in property oriented style.
The first formula expresses that whenever (in_any_case) the service receives a quote
request, it will always (always) respond with a corresponding quote. The second
formula expresses that whenever the service receives an order request, it will al-
ways respond with a corresponding order status which includes the order status

120 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

in_any_case always
?_request_Quote(QR) ⇒
∃Q:Quote • (Q.quoteRequest=QR ∧ eventually !_quote(Q))

in_any_case always
?_place_Order(O) ⇒
∃OS:OrderStatus • (OS.orderID=O.orderID ∧eventually !_order_Status(OS))

Figure 7.20: Place Order service: contract (property-oriented style)

in_any_case always
?_request_Quote(QR) ⇒ ∃ Q:Quote • (Q.quoteRequest=QR ∧ eventually !_quote(Q))

in_any_case always
(?_place_Order(O) ∧ O.quantity≤ stock) ⇒
∃ OS:OrderStatus • (OS.orderID=O.orderID ∧ OS.status=confirmed ∧

eventually (!_order_Status(OS) ∧ stock=stock@pre-O.quantity))

in_any_case always
?_place_Order(O) ∧ O.quantity>stock ⇒
∃ OS:OrderStatus • (OS.orderID=O.orderID ∧ OS.status=cancelled ∧

eventually !_order_Status(OS))

in_any_case always
∃ K:int • (K+ stock≥ 0 ∧ eventually stock = stock@pre +K)

Figure 7.21: Place Order service: semantics (property-oriented style)

that may be either confirmed or cancelled. The correspondence is guaranteed by
Q.quoteRequest=QR.

In the property-oriented style, the semantics of service Place Order is represented
by a set of formulas (see Fig. 7.21). The first formula is the same as the first one in
the service contract (see Fig. 7.20), because the quotation does not depend on the
service realm. The second formula expresses that if the ordered quantity is less than
or equal to stock, then the order will be confirmed, and an order status with attribute
status equal to confirmed will be sent to the buyer; stock=stock@pre-O.quantity expresses
that the stock will be reduced. Otherwise, as expressed by the third formula, if the
ordered quantity is greater than stock, the order will be cancelled, and an order status
with attribute status equal to cancelled will be sent to the buyer. The last formula
states that the stock can always be modified adding or removing goods.

Fig. 7.23 shows the contract in property style of service Get Ship Status. It con-
tains formula expressing that whenever the service receives a request for status of a

7.6. CASL4SOA MODEL OF OFFICE SYSTEM 121

in_any_case always
?_request_Shipping(R) ⇒

(eventually ∃ PP:PackagePickUp •

(PP.wBN=R.wBN ∧
PP.estimatedDeliveryDate ≤ R.expectedDeliveryDate ∧
!_package_PickUp(PP))
∧
eventually ∃ DC:DeliveryConfirmation •

(DC.wBN=R.wBN ∧
DC.deliveryDate ≥ PP.pickupDate ∧ !_confirm_Delivery(DC))

)

Figure 7.22: Request Shipping service: contract (property oriented style)

in_any_case always
?_get_ShipmentStatus(W) ⇒

eventually ∃ SS:ShipmentStatus • (SS.wBN=W ∧ !_shipment_Status(SS))

Figure 7.23: Get Ship Status service: contract (property oriented style)

shipment, it will respond the information that exists.

7.6 Casl4Soa Model of Office System

In this section, we model the Office System using Casl4Soa, first following the
constructive style and later following the property-oriented one. The description of
the Office System case study has been given in Sect. 3.2.

The Office System is a service system, and thus is a special structured participant
without ports for offering and consuming services. The Office System Casl4Soa

model, in both styles, is thus a participant model consisting of:

• the definition of a dynamic type stereotyped by �ServiceSystem� correspond-
ing to the Office System and named Office System, by means of a type diagram
including such type; Office System is a special case of a Casl-Mdl structured
dynamic type (thus the definition of this type will also express the service
architecture of the Office System);

• the models of the local services, that are Print, Check Italian, Check French,
Check English and Publish on Web;

• the models of (the types of) its subparticipants, that are PrintingCenter, English-
Center, ItalianCenter, FrenchCenter, WebPublisher, and OfficeComponent.

122 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

7.6.1 Casl4Soa constructive model of Office System

7.6.1.1 Office System

Figure 7.24: Office System: service architecture

The type Office System is defined by the type diagram shown in Fig. 7.24. It
is a structured system that is made participants of six different types providing
and consuming five different services. The definition of the Office System type gives
also the architecture of the service system Office System, showing which (roles for)
participants of the various types use which services provided by which other (roles
of) participant types. The fact that a participant uses a service provided by another
one is shown by means of a dashed arrow going from the user to the provider and
labelled by the name of the service. For example, we can see that OfficeComponent

uses the Print service provided by the PrintingCenter, also it is clear that in this
service system the participants typed by OfficeComponent uses the services provided
by the participants of all the other types, and that the latter do not interact among
them.

7.6.1.2 Local Service Model

Figure 7.25: Print service interface

Service Print The interface of service Print is shown in Fig. 7.25. Notice that also
the datatypes defining the parameters of the in and out messages are defined in this

7.6. CASL4SOA MODEL OF OFFICE SYSTEM 123

type diagram, for example Document defines the printable documents; it contains an
operation pages and a predicate isA4 returning respectively the number of pages of
the document and the indication if the size of its pages is equal to A4.

Fig. 7.26 presents the contract of the service Print by means of a simple system
and of an associated interaction machine. The interaction of this simple system are
exactly the interactions appearing in the interface of the service define din Fig. 7.25,
which correspond to the messages received and sent by the service; all of them
appear at least on a transition of the interaction machine.

Figure 7.26: Print service contract (constructive style)

The realm of the service Print is described by the paper quantity available,
modelled by the attribute paper in the simple system Print_Semantics in Fig. 7.27.

The semantics of the service Print shown in Fig. 7.27 is defined by means of
a simple dynamic type and an associated interaction machine. We can see now
that the reason for getting the message !_noPaper; moreover, if we get the message
!_noA4 we know that there is however enough paper to print the document (we can
have a different service that after having received the message reduce may inform
you that there is not enough paper to print). Moreover, we also know that each
time a document is printed, the paper quantity will be decreased exactly by the
number of its pages, and this is modelled by the effect / paper = paper - pages(cDoc)

of the corresponding transition (again a different service may consume an extra page

124 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

printing a forefront with the information on the data and the time of the printing).

Figure 7.27: Print service semantics (constructive style)

Services Check Italian Here we consider only the service Check Italian, the
models of Check French and of Check English are similar.

Figure 7.28: Check Italian interface

Fig. 7.28 shows the interfaces of service Check Italian. The service offers two
types of checking: the spelling and the grammar checking, that may be required by
using the two input interactions of the service: ?_check_spelling and ?_check_Grammar.
The content and the structure of the text is defined by the datatype Text, the spelling
and grammar errors by the datatypes SpellErrors, and GrammErrors. The language of
a text is detected by the operation whichLanguage of Text. The return value of this
operation can be one of the three values: English, French and Italian, which are
listed in the enumeration type Language.

In the service contract in Fig. 7.29, there are five final states illustrating the five
results provided by service Check Italian in all possible cases. Before to check the

7.6. CASL4SOA MODEL OF OFFICE SYSTEM 125

Figure 7.29: Check Italian contract (Constructive Style)

spelling or the grammar, the service will check if the submitted text is written in
Italian. If not, the service will send the message !_wrongLanguage. If the service
finds some errors in the text, it will return the list of the found errors. If there is
no error, this list will be empty. If there are spelling errors in a text required to
be grammar checked, the service will return the spelling errors. It means that the
service performs the grammar check if only if there are no spelling errors in the text.

We do not give the semantics of service Check Italian, since this service does not
depend on a realm: we assume that the correctness of the spelling and of a language
does not depend on any changeable aspects of the real world, and moreover this
service does not modify anything. If it is relevant to precisely specify how the
spelling and grammar checks are made, it is possible to enrich the definition of the
datatype Text by operation definitions or by constraints.

Service Publish on Web Fig. 7.30 presents the interface of the service Publish
on Web, whereas its contract is shown in Fig. 7.31. When a page published on the
web, then the following conditions are satisfied: the page is in HTML format, the
URL that the user provides is correct and its server is available at this time. In order

126 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

Figure 7.30: Publish on Web service interface

to check whether the page is written in HTML and the provided URL is correct or
not, two operations isHTML(P) and isWFF(U) are defined in the datatypes Page and
URL respectively.

If the page is not in HTML, the service will communicate !_notHTML(), whereas if
it is in HTML but the URL is ill-formed the service will send another error message.
Finally, if both the document is in HTML and the URL is correct, the service may
still send the error message about the server of the URL being not available.

Figure 7.31: Publish on Web service: contract (constructive style)

The semantic view of service Publish on Web concerns the availability of the
Web servers, and thus this is its realm, and it is modelled by the datatype Web The
operations up and down modify the web status making a server available and not
available respectively, whereas the predicate on checks if a server associated with a
url is available.

7.6.1.3 Participants

Six participant types of Office System are collected in the type diagram in Fig.7.33.
They are represented by six �Participant� classes having ports typed by interfaces

7.6. CASL4SOA MODEL OF OFFICE SYSTEM 127

Figure 7.32: Publish on Web service semantics (constructive style)

of the services they provide and consume. �Participant� Office Component is the
participant type which only consumes services, thus all its ports are typed interfaces
shown by the “cup” notation. Meanwhile, other participant types are providing
participants which their ports are typed interfaces shown by the “lollipop” notation,
for instance, �Participant� Printer Center has got the port Print representing for
service Print that it provides.

Figure 7.33: Office System participants models

128 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

7.6.2 Property-oriented Casl4Soa Model of Office System

In this section, we model Office System using Casl4Soa in a property-oriented way,
giving only the contracts and the semantics of the different services, since all the
other parts are the same as in the constructive mode in Sect. 7.6.1.

in_any_case always
(isA4(D) ∧ pages(D) ≤ paper ∧ ?_print(D)) ⇒

eventually (!_printed() ∧
(paper = N ⇒ next paper = N-pages(D))

in_any_case always
(not isA4(D) ∧ pages(D) ≤ paper and ?_print(D)) ⇒

eventually (!_noA4() ∧
eventually ((?_reduce()∧ (paper = N ⇒ next paper=N-pages(D)))

∨ ?_cancel()))
in_any_case always

(pages(D) > paper ∧ ?_print(D)) ⇒ eventually !_noPaper()
in_any_case always

∃ X.X>0 ⇒ eventually paper=paper+X

Figure 7.34: Print service: semantics (property oriented style)

The semantics in property oriented style of service Print is characterized by for-
mulas that are more precise than those in the contract. They describe not only
the possible transitions of the system but also what justifies the answer, what is
true or not, and the effects of the requests. For example, in Fig. 7.34, the second
formula expresses that whenever the service receives printing request ?_print(D),
meanwhile the paper is not in A4 format not isA4(D) and the printer has enough
paper (pages(D) ≤ paper), it will communicate that the paper is not in A4 !_noA4()

and either cancel the printing ?_cancel() or receive the page reducing from the user
?_reduce(). If the user reduces the pages, the effect of this interaction is that pa-

per will be decreased paper = N - pages(D). The last formula is defined in order to
guarantee that the printer always will be refilled with paper.

The semantic view of service Publish on Web concerns the availability of the Web
server. The datatype Web built in Fig. 7.32 can be also regarded as the Internet in
general. The operation up(W,P) that returns the Web type expresses the available
status of the Web server, otherwise the operation down(W,P) expresses an unavailable
status. It is important to note that these statuses are temporal for an actual Web
server at specific moment. Later on we shall use those operations to define the
semantics in property oriented style for this service in Fig. 7.37.

Fig. 7.37 defines the properties of the Web server in two formulas that express
the conditions for the Web server to be available. The Web server is available if and

7.6. CASL4SOA MODEL OF OFFICE SYSTEM 129

in_any_case always
?_check_Spelling(T) ∧ whichLanguage(T)<>Italian ⇒

eventually !_wrongLanguage()
in_any_case always

?_check_Spelling(T) ∧ whichLanguage(T)=Italian ⇒
eventually !_spelling_Errors(checkSpelling(T))

in_any_case always
?_check_Grammar(T) ∧ whichLanguage(T)<>Italian ⇒

eventually !_wrongLanguage()

in_any_case always
?_check_Grammar(T) ∧ whichLanguage(T)=Italian ∧ none(checkSpelling(T)) ⇒

eventually !_grammar_Errors(checkGrammar(T))

in_any_case always
?_check_Grammar(T) ∧ whichLanguage(T)=Italian ∧ not none(checkSpelling(T)) ⇒

eventually !_spelling_Errors(checkSpelling(T))

Figure 7.35: Check Italian: contract (property oriented style)

in_any_case always
(isHTML(P) ∧ isWFF(U) ∧ ?_webPublish(P,U)) ⇒

eventually (!_published() ∨ !_serverNotAvailable())
in_any_case always

(not isHTML(P) ∧ ?_webPublish(P,U)) ⇒
eventually (!_notHTML())

in_any_case always
(isHTML(P) ∧ not isWFF(U) ?_webPublish(P,U)) ⇒

eventually (!_wrongURL())

Figure 7.36: Publish on Web service: contract (property oriented style)

on(up(W,U),U)
U 6= U’ ⇒

on(up(W,U),U’)⇔ on(W,U’)
not on(down(W,U),U)
U 6=U’ ⇒

on(down(W,U),U’)⇔ on(W,U’)

Figure 7.37: Publish on Web service: semantics (property oriented style)

only if it will turn back to the status up after it was in status down before, while
the URL can be different. It means that if the Web server is available, it will not
maintain the down status for ever. Therefore at last the page will be published in

130 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

this case.

7.7 Tool support

7.7.1 Requirements - What we need from a tool?

There are model elements in the graphic diagrams in Casl4Soa that full respect of
the UML2 standard, they are:

1. Interface: illustrated by means of UML class diagram

2. Contract in Constructive Style: illustrated by means of UML State machine
diagram

3. Semantic in Constructive Style: illustrated by means of UML State machine
diagram

4. Participant Model: illustrated by means of UML Component diagram

The Casl4Soa profile declares the stereotypes below:

• �Service Interface�

• �simpleSystem�

• �Participant�

The tool supporting Casl4Soa is required to have capabilities followings:

• Create Casl4Soa Profile, in which, defining new stereotypes of Casl4Soa.

• Provide graphic diagram editors particularly supporting UML2, in which, it
is possible to define new names of diagrams according to Casl4Soa

• Provide a text-based editor for the View in Property Oriented style as inspired
by Casl4Soa.

• Export created diagrams into images.

7.7.2 Existing Tools - What we can do with existing tools?

Here, we do not consider commercial tools, instead we focus on free and open
source tools. There are various UML tools supporting our aims, however for non-
commercial versions, they all have some limitations. We find that there are two

7.7. TOOL SUPPORT 131

tools that are stable and nearly fully support the Casl4Soa profile. They are
Visual Paradigm and Papyrus.

Visual Paradigm Community Edition (free version 8.3) Visual Paradigm
is a UML design tool and UML CASE tool designed to aid software development. It
has a good working environment, which facilitates viewing and manipulation of the
modeling project. This is not an open source tool but there is free version. Link:
http://www.visual-paradigm.com/

Figure 7.38: Visual Paradigm version 8.3

Usefulness:

• Agility and flexibility in building graphic diagrams.

• Supply powerful customization mechanism, so we can define new name for the
diagrams, define new stereotypes that we propose.

• We can use Visual Paradigm to create our five graphic diagrams.

Limit:

• Cannot creating Profile.

• Cannot export diagrams to images.

132 CHAPTER 7. DESIGN MODEL OF SERVICE SYSTEM IN CASL4SOA

• No support for text-based editor for the View in Property Oriented style as
inspired by Casl4Soa.

Papyrus UML (version 1.12.3, stand-alone) Papyrus is a dedicated tool for
modelling within UML2. This open source tool is based on the Eclipse environment
and is licensed under the EPL (Eclipse Public License). Link: http://www.papyrusuml.org/

Figure 7.39: Papyrus UML version 1.12.3

Usefulness:

• We can create Casl4Soa profile.

• We can build our five graphic diagrams.

• Support for exporting diagrams to images (extra plugin needed).

Limit:

• We cannot name the diagrams as we would need to.

• No support for text-based editor for the View in Property Oriented style as
inspired by Casl4Soa.

7.7.3 Solution for Casl4Soa tool

The advantage of existing tools are that they offer various possibilities for model-
based development and customization mechanism, however it seems that we cannot

7.7. TOOL SUPPORT 133

create a Casl4Soa project with only one of them. The “Open source” is a possible
solution for us. To satisfy above requirements, we can integrate and extend the
Eclipse plug-in Papyrus to build precise supporting environment for Casl4Soa.
Where we can:

• Create Casl4Soa Profile

• Build seven diagrams of Casl4Soa metamodel

• Export created diagrams into images.

Conclusion: The work presented in this chapter is the development of a mod-
elling method using formal notations called Casl4Soa (based on Casl-Ltl [45])
and Casl-Mdl [9]). This method is also designed over the SOA paradigm pre-
sented in Chapter 4. The form of the Casl4Soa models is presented together with
the constraints defining the well-formed models. Besides giving the guidelines for
building the models following this method, the use of this modelling method is also
illustrated by the application on Dealer Network and Office System case studies
(presented in Chapter 3).

C
h

a
p

t
e

r

8
Service System Design

Contents
8.1 Transformation patterns . 137

8.2 Place the System phase . 139

8.2.1 Placement Models . 139

8.2.2 How to Place the System 142

8.3 Eliminate Useless Parts phase . 143

8.4 Simplify Tasks phase . 147

8.5 Operationalize Tasks phase . 149

8.6 Introduce Services phase . 153

8.7 Applying design method to case study Dealer Network 169

8.7.1 Applying Place the System 169

8.7.2 Applying Eliminate Useless Parts 171

8.7.3 Applying Simplify Tasks 174

8.7.4 Applying Introduce Services phase 175

8.8 Validation of designed system . 175

8.8.1 Dealer Network business processes 176

135

136 CHAPTER 8. SERVICE SYSTEM DESIGN

This chapter presents a method for designing a service system being built to
support a business. This method follows the Model Driven approach [51, 22]. The
starting points are a business model (defined in Chapter 5), and the description
of some existing services (modelled using the UML following the PreciseSoa method
presented in Chapter 6), and the target is a UML model of the design of a service
system, again modelled following the indications of PreciseSoa.

The method is organized in five phases that are summarized in Fig. 8.1, starting
with Place the System, followed by four transformation phases, i.e., Eliminate Useless

Parts, Simplify Tasks, Operationalize Tasks, and Introduce Services, in order to transform
a business model into the model of a design of a service system. A set of transfor-
mation patterns is provided to support those four transformation phases. To help
the developer works, a common template is defined in Sect. 8.1 to describe all the
transformation patterns.

The first phase, Place the System, presented in Sect. 8.2, requires to place the
service system being built over the modelled business.

In phase Eliminate Useless Parts (Sect. 8.3) the parts of the model not covered by
the placement will be eliminated.

In phase Simplify Tasks (Sect. 8.4), the tasks will be decomposed into smaller
tasks. After this phase, the tasks are suitable to become operation calls to business
entities (objects of entity classes).

In phase Operationalize Tasks (Sect. 8.5), the tasks will be transformed into the
operation calls of the business entities.

In phase Introduce Services (Sect. 8.6), the entities of the business are transformed
into participants of the service system, several new services are introduced, and the
behaviour of the various participants will be defined in terms of service calls.

Since it follows the Model Driven approach, our design method will show how to
transform the model of the business till to reach the model of the designed service
system.

The resulting service system design model will include also some extra parts to
show how the various processes of the business have been realized.

The various phases of the transformation activity cannot be fully automatized,
since the designer has to make many choices during the transformation.

We recall that, here, the term “entity” is used for describing entities taking
part in a business. However, in a service system, we use the term “participant” to
denote the entities taking part in several services having the roles as service providers
and service consumers. Thus, the entities of a business will be transformed into
participants of a service system.

8.1. TRANSFORMATION PATTERNS 137

Figure 8.1: Service System Design Method Phases

The application of our design method is shown in Sect. 8.7, in which we applied
some phases on the model of Dealer Business (adopted in Sect. 5.4).

Finally, to validate a designed service system, in Sect. 8.8, we propose a mecha-
nism using UML activity diagram to model the realization of business processes in
that system.

8.1 Transformation patterns

Our design method provides a set of transformation patterns to support the four
phases, i.e., Eliminate Useless Parts, Simplify Tasks, Operationalize Tasks, and Introduce

Services. These transformation patterns are about transforming UML models having
particular forms and built using particular profiles. The transformation patterns
have been inspired by the well-known design patterns1.

A common template is built to describe all transformation patterns, and it is
given here as following:

Transformation pattern: Name
Motivation: motivate the pattern
Description: informal description of the transformation provided by the pattern
Subjects: list of the parts of the model subjects of the transformation
Preconditions: conditions of the pattern subjects that they must be satisfied
before to apply the pattern
What to do: schematic description of the transformation
Example: an illustrative example of application of the pattern

A transformation pattern describe a transformation on UML models; precisely,
each transformation pattern describes how to transform an intermediate model into
another intermediate model.

We call intermediate models all the various models produced during the various
steps of the application of our method, they are of a kind of hybrid between the

1http://en.wikipedia.org/wiki/Software_design_pattern

138 CHAPTER 8. SERVICE SYSTEM DESIGN

business models and the service system models, using the profiles used in both these
kinds of models and having the views part of both these two kinds of models.

The patterns will help the transformation, but obviously some steps may be done
also without using a pattern. Indeed, there may be some modifications that can be
done without using the patterns, for instance, changing the name or the definition
of some datatypes, transforming two parameters of an operation in one, etc.

The transforming of a model refers to the work of adding, modifying, and elimi-
nating some parts of this model. We may have to add some new parts to the model,
to modify others, and to eliminate some other parts. Thus, for denoting the adding
and the deleting of elements in a model, we use the mathematical symbols, i.e., +
and -; e.g., ClassDiag + C denotes adding a class Cto the class diagram ClassDiag. We
assume that these operations have the following properties:

A+A = A, it means that there is no duplication of the same elements in the result
of the operation, and

(A-B)+B = A

(A+B = B+A

For illustrating of the transformation of a model defined by a pattern (in the
section What to do), we sketch the state of this model before and after the trans-
formation as following:

Model before ⇒ Model after
For illustrating of the replacement of an element by another element in a model,

we denote such replacement as following:
M[e’/e]

where M denotes a model, e denotes an element that is replaced, and e’ denotes the
new element that replaces e in M.

Lest us give here an example of a transformation pattern that is described fol-
lowing this defined template:

Transformation pattern: Eliminating unused class
Motivation: To eliminate a class not used in any part of the model and outside
the placement.
Description: An unused class is eliminated, and any association that will result
pending after the class elimination is also eliminated from the model.
Subjects:
C, a class in the Static View
Ass, the set of the associations having Cas one of their ends
Preconditions:

8.2. PLACE THE SYSTEM PHASE 139

Cis an unused class
What to do:

SV SV - C - Ass
TV TV - C - Ass
BPOD ⇒ BPOD

BPM

BPMs BPMs
Example: An example of application of this pattern is given in Sect. 8.3

8.2 Place the System phase

In this section, we present the Place the System phase (the first phase in our design
method). We denote the system placement using a closed line on some selected
views of the business model (cf. Chapter 5) in order to enclose every elements that
the service system will support. The closed line is considered as a boundary of the
service system marked on the business model. We give also some constraints on
how to place an element outside/inside/crossing the closed line, and also on how to
reflect the placement of an element to those related with it. The result of the Place

the System phase is a Placement Model.
We present now in Sect. 8.2.1 in a detailed way the form of a placement model,

and then in Sect. 8.2.2 we give some guidelines to drive the placement activity.

8.2.1 Placement Models

A placement model has the form of a Business Model (as introduced in Chapter 5)
where the parts of the business that will be supported by the Service System to
build (shortly SSys) are marked. Precisely the markings are:

• one closed line over the Business Process Overview Diagram,

• one closed line over the Static View,

• one swimlane named as the placed system (called the system swimlane) on
each activity diagram presenting the Behaviour View of a business process,

• and one closed line over the Task View.

Placement on Business Process Overview Diagram In the Business Pro-
cess Overview Diagram (BPOD) there are two icons, they represent the business

140 CHAPTER 8. SERVICE SYSTEM DESIGN

processes and the participants. During the placement the developer has to de-
cide which processes will be supported/partly supported/unsupported by the SSys.
The placement on the BPOD is marked by means of a closed line. The icon of
a supported/partly supported/unsupported business process will be placed inside/
crossing/outside the closed line.

A participant icon is placed inside or outside but not crossing the closed line.
A participant is placed inside the closed line if it takes part in supported or partly
supported business processes and its activities are supported by the SSys, otherwise
it is placed outside the closed line. The decisions about which business process to
support will drive the decisions about which of the other parts of the business to
support.

Placement on Static View We recall that there are three types of participants
represented by UML classes in the Static View (cf. Sect. 5.2), they are the business
workers, the systems and the business objects. A business worker class and a system
class are placed inside/outside the closed line in the Static View if all/none of their
activities are executed by the SSys. A business object class is placed inside/outside
if it is handled/not handled by the SSys.

Placement on Behaviour View of business processes A swimlane will be
used in a Behaviour View of a business process to show that this business process
is supported/partly supported by the SSys. If a business process is supported/
partly supported by the SSys, then all/part of elements in the activity diagram of
its Behaviour View are placed inside the system swimlane. The fork nodes and the
join nodes are the elements that may be placed inside/outside/crossing the system
swimlane. The decision nodes and the merge nodes are placed either inside or outside
but not crossing the system swimlane. An action will be placed inside/outside the
system swimlane if it is/is not executed by the SSys.

Placement on Task View The elements of a Task View may be placed inside/
outside the closed line over it. A task class will be placed inside/outside the closed
line if it is/is not executed by the SSys (i.e., the task is inside the system swimlane
of a business process supported by the SSys). In the Task View, besides the task
classes, there are some elements previously modelled in the Static View, they are
kept in the same positions with respect to the closed lines in both views.

Table 8.1 shows the well-formedness constraints on the placement models.

8.2. PLACE THE SYSTEM PHASE 141

– There is no element crossing the closed lines in the Static View and the Task View.
– There is no action node, decision node, or merge node crossing the system swimlane
in a Behaviour View.
– At least one action node is placed inside or crossing the border of the system
swimlane, except for the unsupported business processes.
– If a decision node is inside the system swimlane, then all leaving arcs and the reached
nodes are placed inside the system swimlane.
– A merge node of a corresponding decision node is placed accordingly to what was
done with that decision node.
– A join node of a corresponding fork node is placed accordingly to what was done
with that fork node.
– If a business process is supported, then:

* all parts of its activity diagram must be inside the system swimlane,
* all classes/datatypes typing its participants must be inside the closed line in

the Static View,
* all task classes typing its tasks must be inside the closed line in the Task

View.
– If a business process is partly supported, then:

* at least one action node must be outside and at least one action node inside
the system swimlane,

* all classes/datatypes typing its participants that are enclosed by the system
swimlane must be inside the closed line in the Static View,

* all task classes typing its tasks inside the system swimlane must be inside the
closed line in the Task View.
– If a class/datatype is inside the closed line in the Static View, then:

* all classes and datatypes typing its attributes and all classes connected with
it by the associations must be enclosed by the closed line in the Static View,

* it must be inside the closed line in the Task View if it presents in the Task
View.
– If a task class is inside the closed line in the Task View, then:

* all classes related on it by associations and all classes/datatypes typing its
attributes must be inside the closed line in the Task View,

* corresponding action node must be inside the system swimlane.

Table 8.1: Placement model: Well-formedness constraints

142 CHAPTER 8. SERVICE SYSTEM DESIGN

Figure 8.2: Flow of steps in the placement on a Business Model

8.2.2 How to Place the System

We present by the activity diagram in Fig. 8.2 how to proceed to perform the Place

the System.
- Spent to discuss
The first activity of the diagram shows that the placement starts at the BPOD,

a closed on the BPOD in such a way that it encloses all processes supported by SSys,
crosses all processes partly supported by the SSys, encloses the participants taking
part in those processes (i.e., enclose all participants involved in a supported process,
and enclose some (at least one) participant involved in a partly supported process).

The next placement is made over the Static View. In the Static View, a closed

8.3. ELIMINATE USELESS PARTS PHASE 143

line is placed in such a way that it encloses all classes typing participants taking
part in the supported processes (that are enclosed by the closed line in the BPOD),
and encloses any element with which a participant class has an association.

The placement is made for the classes in the Task View is described in the fifth
activity of the diagram.

The last two activities of the diagram is to verify the enclosing of related elements
of a supported element. Those activities includes following steps:

- Enclose any participant class, on which a supported task class in the Task View
is related, in the closed line in the Task View .

- Enclose the participant classes (which are supported in the Static View) in the
closed line in the Task View if they are in the Task View.

- Enclose any class (that types an attribute of a supported task class inside in
the Task View) in the closed line in the Static View.

8.3 Eliminate Useless Parts phase

The aim of this phase is to eliminate all useless “parts” from a placement model;
obviously the useless parts are those that are not interested by the placed system.

The term “part” may refer to: an element in a diagram (e.g., a class), and to a
diagram (e.g., Static View) in the model. A part is considered useless if only if:

– it is outside the placement marking,
– and it is not used to define or to type any other part,
– and it has no association with any other class if it is a class, it has no reference

to any other part if it is a datatype, and any change on it does not impact other
part if it is a diagram.

The list of the patterns of this phase is shown in Table 8.2, and the template
used to describe them has been presented in Sect. 8.1.

Eliminate Useless Parts phase patterns
1 Eliminating unsupported business process
2 Eliminating useless placement marking on BPOD
3 Eliminating useless placement marking on Static View
4 Eliminating useless placement marking on Task View
5 Eliminating unused class

Table 8.2: Patterns for Eliminate Useless Parts

In this phase the developer has to handle models whose form has been defined in
Fig. 5.1 (c.f., Sect. 5.2), thus made of one Static View, one Task View, one Business

144 CHAPTER 8. SERVICE SYSTEM DESIGN

Process Overview Diagram, and a number of Business Process Models. Such models
may be schematically denoted as follows:

SV

TV

BPOD

BPMs

where the Static View is denoted by SV, the Task View is denoted by TV, the
Business Process Overview Diagram is denoted by BPOD, and BPMs denotes the set
of the business process models.

Transformation pattern: Eliminating unsupported business process
Motivation: The business processes not supported by the SSys are useless, and
thus may be eliminated by the model
Description: An unsupported business process is eliminated from the model
Subjects:
– BP, a business process in the BPOD

– BPM, the Business Process Model of BP

– E1, . . . , En, the entities associated only with BPin the BPOD

Preconditions:
BPis outside the placement in BPOD

What to do:
SV SV

TV ⇒ TV

BPOD BPOD - BP - E1 - . . . - En

BPMs BPMs - BPM
Example:

⇒

8.3. ELIMINATE USELESS PARTS PHASE 145

The BPOD in the example above (on the left of ‘⇒’) is derived from the model
of business Meal Delivery, which has three business processes: Provide Menu, Order a
Meal, and Deliver Meal. The closed line in this BPOD represent the placement of Meal

Ordering System on this business, and this service system does not support process
Deliver Meal. Hence, after the application of this pattern (see the BPOD on the right
of ‘⇒’), process Deliver Meal is eliminated, and the entity DELR that is associated
only with this process is eliminated as well.

Transformation pattern: Eliminating useless placement marking on BPOD
Motivation: To eliminate the placement marking, i.e., the closed line representing
the placement of a service system in the BPOD, which has all elements inside it
Description:

A useless placement marking is eliminated from the BPOD.
Subjects:
BPOD

Preconditions:
All business processes are inside this closed line.
What to do:

SV SV

TV TV

BPOD ⇒ BPOD - closed line
BPMs BPMs

Example:

⇒

146 CHAPTER 8. SERVICE SYSTEM DESIGN

The closed line in BPOD above represent the placement of Meal Ordering System

on business Meal Deliver. Two processes of this business are all supported by system
Meal Ordering System, hence they are all inside the closed line. The closed line here
is useless, hence it is eliminated from the model, see the BPOD in the right of ⇒.

Transformation pattern: Eliminating useless placement marking on Static View
Motivation: To eliminate the placement marking, i.e., the closed line representing
the placement of a service system in the Static View, which has all elements inside
it

The content of this pattern is similar to the pattern Eliminating useless placement
marking on BPOD, in which the objective part is the closed line in SV that all classes
are inside it.

Transformation pattern: Eliminating useless placement marking on Task View
Motivation: To eliminate the placement marking, i.e., the closed line representing
the placement of a service system in the Task View, which has all elements inside it

The content of this pattern is similar to the pattern Eliminating useless placement
marking on BPOD, in which the objective part is the closed line in TV that all classes
and task classes are inside it.

Transformation pattern: Eliminating unused class
Motivation: To eliminate a class not used in any part of the model and outside
the placement.
Description: An unused class is eliminated, and any association that will result
pending after the class elimination is also eliminated from the model.
Subjects:

8.4. SIMPLIFY TASKS PHASE 147

C, a class in the Static View
Assbe the set of the associations having Cas one of their ends
Preconditions:
Cis an unused class
What to do:

SV SV - C - Ass
TV TV - C - Ass
BPOD ⇒ BPOD

BPMs BPMs
Example:

The class Deliver is unused in the Static View, in the Task View, in any Business
process model, and in the BPOD of the model of the Meal Delivery business. It is
eliminated from the Static View, the association between this class with another
class is eliminated as well.

⇒

8.4 Simplify Tasks phase

The list of the patterns supporting this phase (only one) is shown in Table 8.3. The
template used to describe these transformation pattern has been defined in Sect. 8.1.

The Simplify Tasks phase transforms a business model into another business model,

148 CHAPTER 8. SERVICE SYSTEM DESIGN

Simplify Tasks phase patterns
1 Decomposing task

Table 8.3: Patterns for Simplify Tasks

thus also the patterns used in this phase transforms a business model into a business
model, that may be schematically presented as follows:

SV

TV

BPOD

BPMs

where the Static View is denoted by SV, the Task View is denoted by TV, the
Business Process Overview Diagram is denoted by BPOD, and BPMs denotes the set
of the business process models.

Transformation pattern: Decomposing task
Motivation: The tasks must be decomposed into smaller tasks till they have a
granularity corresponding to call a service functionality
Description: The behaviour of a task is realized by combining other (smaller)
tasks, thus it must be eliminated from the model replacing each of its instances by
such combination, moreover its class will be eliminated from the Task View
Subjects:
– TC, a task class whose participants and parameters are P1, . . . , Pn

– TVF, a task view fragment (introducing the new smaller tasks needed to realize
the behaviour of TC)
– ADF(X1, . . . , Xn), an activity diagram fragment describing how the behaviour of
TC<P1←X1, . . . , Pn←Xn> will be realized by using the new tasks
Preconditions:
ADF(X1, . . . , Xn) is an activity diagram fragment including an initial node, a number
of action nodes that are instances of task classes, and a finale node. X1, . . . , Xnare
all free variables appearing in ADF.
What to do:

SV SV

TV (TV - TC) + TVF

BPOD ⇒ BPOD

BPMs BPMs[ADF(E1, . . . , En) / TC<P1←E1, . . . , Pn←En>]

Example: The task class Registration is decomposed into a composition of three
task classes RequestRegistration, SubscribeRegistration, ConfirmRegistration. An instance

8.5. OPERATIONALIZE TASKS PHASE 149

of such class, e.g., Registration<CUST, ECOM, CINFO> is transformed into activity
diagram AVF(CUST, ECOM, CINFO).

The subjects are:
-�task� class Registration (shown as a part in the Static View in the first picture

below)
- A fragment of the Task View includes three �task� classes RequestRegistration,

SubscribeRegistration, and ConfirmRegistration (shown in the second picture below)
- Activity diagram ADF(CUST, ECOM, CINFO) describes how the behaviour

of Registration<CUST, ECOM, CINFO> is realized by using three new tasks (shown in
the third picture)

⇒

ADF(CUST, ECOM, CINFO) is shown in the following picture:

8.5 Operationalize Tasks phase

The aim of this phase is to transform the decomposed tasks into operation calls to
a business entity (later, they will become operations in the interface of a service).
There are two types of decomposed tasks, i.e., binary task and unary task, having

150 CHAPTER 8. SERVICE SYSTEM DESIGN

two and one business entities taking part in it, respectively. The list of the patterns
of this phase is shown in Table 8.4, and they are presented following the template
defined in Sect. 8.1.

Operationalize Tasks phase patterns
1 Operationalizing binary task
2 Operationalizing unary task
3 Eliminating empty task view

Table 8.4: Patterns for Operationalize Tasks

The Operationalize Tasks phase transforms a business model into another business
model, thus also the patterns used in this phase transform a business model into a
business model, that may be schematically presented as follows:

SV

TV

BPOD

BPMs

where the Static View is denoted by SV, the Task View is denoted by TV, the
Business Process Overview Diagram is denoted by BPOD, and BPMs denotes the set
of the business process models.

Transformation pattern: Operationalizing binary task
Motivation: To transform the instances of a binary task, i.e., a task that has
exactly two entities taking part in it, into operation calls to business entities that
may be later transformed into calls to functionalities of services.
Description: Any instance of the binary task becomes an operation call of an
entity class, that will be added in that entity class, and the task class is eliminated
from the task view
Subjects:
– TCB, a task class that has exactly two parameters typed by entity classes, P1: CE1

and P2: CE2, and n attributes typed by datatypes P’1: DT1, . . . , P’n: DTn(n ≥ 0)
– opTCB(CE2, DT1, . . . , DTn), an operation
Preconditions:
What to do:
SV + CE1 + CE2 SV + (CE1 + opTCB(CE2, DT1, . . . , DTn)) + CE2

TV TV - TCB
BPOD ⇒ BPOD

BPMs BPMs[E1.opTCB(E2,E’1, . . . , E’n) /
TCB<P1←E1, P2←E2, P’1←E’1, . . . , P’n←E’n>]

8.5. OPERATIONALIZE TASKS PHASE 151

Example:
The subjects are:
- Binary �task� class OrderMeal

- Operation orderMeal<Restaurant, Menu, int>

- An instance of task class OrderMeal in the Behaviour View, e.g., OrderMeal<CUST,

REST, MENU, coupon>

- Operation call CUST.orderMeal<REST, MENU, coupon>

The operationalizing binary task class OrderMeal is shown in the following pic-
tures. It is transformed into operation orderMeal(Restaurant,Menu,int) of �worker�
class Customer. The transformation results in adding operation orderMeal<Restaurant,

Menu, int> to �worker� class Customer, in which, the attributes of task class Order-

Meal are transformed into parameters of this operation, and participant Restaurant

taking part in task OrderMeal is indicated by the parameter Restaurant in this oper-
ation.

Task OrderMeal<CUST, REST, MENU, coupon> is transformed into the operation
call CUST.orderMeal<REST, MENU, coupon>.

⇒

Transformation pattern: Operationalizing unary task
Motivation: To transform the instances of a unary task, i.e., a task that has exactly
one entity taking part in it, into operation calls to a business entity that may be
later transformed into internal activities of the business entity.

152 CHAPTER 8. SERVICE SYSTEM DESIGN

Description: The instances of a unary task become operation calls, that will be
added in that entity class, and the task class is eliminated from the task view
Subjects:
– TCU, a task class that only one parameter typed by an entity class, P: CE, and n

attributes typed by datatypes P1: DT1, . . . , Pn: DTn(n ≥ 0)
– opTCU(DT1, . . . , DTn) be an operation
Preconditions:
What to do:

SV + CE SV + (CE + opTCU(DT1, . . . , DTn))
TV TV - TCU
BPOD ⇒ BPOD

BPMs BPMs[E.opTCU(E1, . . . , En) / TCU<E, E1, . . . , En>]
Example:

The subjects are:
- Unary �task� class ProvideDeliveryRange

- An instance of ProvideDeliveryRange, e.g., ProvideDeliveryRange<DRANGE, now>

- Operation call SHIPPER.provideDeliveryRange<DRANGE,now>

Operationalizing the unary task class ProvideDeliveryRange is shown in the follow-
ing pictures. The transformation results in adding operation provideDeliveryRange(DeliveryRange,

Date) to �worker� class Shipper. In a Behaviour View, the transformation results
in transforming task ProvideDeliveryRange<DRANGE, now> into operation call SHIP-
PER.provideDeliveryRange<DRANGE,now>.

⇒

Transformation pattern: Eliminating empty task view
Motivation: To eliminate an empty task view (i.e., having no elements inside) from
the model
Description:

The empty Task View is eliminated from the model

8.6. INTRODUCE SERVICES PHASE 153

Subjects:
TV, the Task View of the model
Preconditions:
TV does not include any class
What to do:

SV SV

TV

BPOD BPOD

BPMs ⇒ BPMs

8.6 Introduce Services phase

The aim of this phase is to expose and define the participants and the services of the
designed service system. The participants are derived from the business entities in
such a way that a large part of the operations of these entities are transformed into
service calls. The services are exposed from a set of operations between particular
business entities. The list of the patterns of this phase is shown in Table 8.5.
The template for describing those transformation patterns has been presented in
Sect. 8.1.

Introduce Services phase patterns
1 Introducing empty service architecture
2 Transforming a system class into a participant
3 Transforming an object class into a datatype
4 Transforming a unique object into a participant
5 Transforming an object class with several instances into a participant
6 Transforming a worker class into a participant
7 Combining two participants
8 Splitting a participant into two or more participants
9 Making a participant to provide a new service
10 Adding a participant providing already available services
11 Eliminating an empty Static View

Table 8.5: Patterns in Introduce Services

The Introduce Services phase transforms a model into another model, till such
model is a service system model. The models produced during this phase will be
built using both the profile for the business models (see Chapter 5) and for the
service system models (see Chapter 6) and will have the views required by both

154 CHAPTER 8. SERVICE SYSTEM DESIGN

kinds of models. Thus a model transformed in this phase will have the following
form:

SV

BPOD

BPMs

SA

SMs

PMs

where the Static View is denoted by SV, the Task View is denoted by TV, the
Business Process Overview Diagram is denoted by BPOD, BPMs denotes the set of
the business process models that will be at the end reduced to activity diagrams
showing how the various processes have been realized in the service system, the
Service Architecture is denoted by SA, the Service Models are denoted by SMs, and
the Participant Models are denoted by PMs.

Transformation pattern: Introducing empty service architecture
Motivation: A service system model must include a service architecture, so initially
an empty one will be inserted in the model
Description: An empty service architecture is added to the model.
Preconditions:
There is no service architecture in the model.
What to do:
SV SV

EmptySa, a service architecture named as the system without any
role for participants (and thus without any indication of service usage)

BPOD ⇒ BPOD

BPMs BPMs

SMs SMs

PMs PMs

Transformation pattern: Transforming a system class into a participant
Motivation: A system has to be wrapped to be introduced in a service system,
this pattern introduces that wrapper
Description: A participant is added to model the wrapper of the system class2,
it will have the same operations as the system class; reference to the system class

2A system class is a class stereotyped by �system�

8.6. INTRODUCE SERVICES PHASE 155

in the model will be replaced by a reference to the wrapper class
Subjects:

, a system class appearing in SV

Preconditions:
What to do:

SV SV -
SA SA plus a part modelling a role for participants typed by SCWrapp

BPOD ⇒ BPOD where each occurrence of SC has been replaced by SCWrapp

BPMs BPMs where each occurrence of SC has been replaced by SCWrapp

SMs SMs

PMs PMs +
Example:

The subject is:
- �system� class Payper

156 CHAPTER 8. SERVICE SYSTEM DESIGN

⇒

Making Order Service Model
E-Business System Participant Model

8.6. INTRODUCE SERVICES PHASE 157

Making Order Service Model

E-Business System Participant Model +

Transformation pattern: Transforming an object class into a datatype
Motivation: Whenever an object class3 has all the characteristics of the datatypes,
e.g., all its operations are queries and no direct check for equality is ever made using
the “=” combinator, it should be transformed into a datatype (this will help the
transition to the service paradigm, since the service message parameters must be
datatypes).4

Description: The object class is replaced by a datatype definition having the same
name, same attributes and same operations and the same associated constraints and
method definitions.
Subjects:

3A class stereotyped by �object�
4Sometimes in a business model they have been considered business objects because they had

a relevant role in the business.

158 CHAPTER 8. SERVICE SYSTEM DESIGN

, an object class
Preconditions:
OBJ is essentially a datatype, i.e., all its operations are queries, and no equality
check for elements typed by OBJ (exp = exp’, with exp and exp’ having type OBJ)
appears in the model
What to do:

SV + SV +
SA SA

BPOD ⇒ BPOD

BPMs BPMs

SMs SMs

PMs PMs

Transformation pattern: Transforming a unique object into a participant
Motivation: To handle the unique instance of an object class we introduce a par-
ticipant that will provide a service (some services) to access to such instance
Description: The object class OBJ and its unique instance will be transformed
into a participant class, a role with multiplicity one typed by OBJ will be added to
the service architecture,
Subjects:

, an object class with a unique instance denoted by the static operation
theOBJ (that is defined is following the singleton design pattern)
Preconditions:
There exists at most one instance typed by OBJ in the model, and thus a non-static
operation of OBJ has neither a parameter typed by OBJ nor the return type equal
to OBJ

What to do:

8.6. INTRODUCE SERVICES PHASE 159

SV + SV

SA SA plus a part modelling a role for a participant typed by OBJ

BPOD ⇒ BPOD

BPMs BPMs where each occurrence of OBJ is replaced by theOBJ

SMs SMs

PMs PMs +
Example:

The case of an object class modelling the regulation of an organization, which
may be changed at any time, but where only the last version should be recorded, and
the date of the last change together with the name of anyone has ever contributed
to the document must be recorded too.

Transformation pattern: Transforming an object class with several instances into a
participant
Motivation: To handle many business objects of a given type we should introduce
a participant that will then provide a service (some services) to handle and to store
them.
Description: The object class OBJ will be transformed into a standard class having
an extra attribute containing an indentifier, and a new participant model OBJ-s will
be added to the (able to store and handle all the instances of OBJ referring to them
them using their identitifers), a part with multiplicity one typed by OBJ-s will be
added to the service architecture, all operations calls on objects typed by OBJ will
be replaced by calls to the unique participant typed by OBJ-s having as an extra
parameter the identifier of such objects.
Subjects:

, an object class where make is the constructor operation for
creating new instances of the class

160 CHAPTER 8. SERVICE SYSTEM DESIGN

Preconditions:
There exists several different instances typed by OBJ in the business model
What to do:

SV +
SA

BPOD ⇒
BPMs

SMs

PMs

SVwhere each call of an operation of OBJ e.op(e1, . . . , en) is replaced
by theOBJs.op’(e,e1, . . . , en)

SMs

PMs +
where given a type T, T’ denotes T if T is different from OBJ,
otherwise it denotes OBJ-ID;
the operations op1’, . . . , opN’ are defined as follows
os.op’(oid,e1, . . . , eN) = op(get(oid,os),e1, . . . , eN);
os.make(e1, . . . , eN) =

newI = newId(os); os.objs = os.objs.append(make(newId(os),e1, . . . , eN); return newI

SA plus a part modelling a role for participants typed by OBJs

BPOD

BPMs where each call of an operation of OBJe.op(e1, . . . , en) is
replaced by theOBJs.op’(e,e1, . . . , en), and OBJ has been replaced by OBJ-ID

Example: The case of an object class modelling the orders in an e-commerce
business

8.6. INTRODUCE SERVICES PHASE 161

Transformation pattern: Transforming a worker class into a participant
Motivation: For each business worker we should introduce a participant in the
service system allowing s(he) to use the services provided by the other participants
to perform hers/his activities; this participant should provide a GUI for allowing
the worker to request the various services
Description:

The worker class is replaced by a participant, whose internal architecture is
made by the worker as human-being, and a software subsystem interacting with
she/him by means of a GUI and at the same time using the services offered by other
participants
Subjects:

, a worker class
Preconditions:
The operations in own-ops are all operations of the class WC that are called only by
the elements of the class WC itself, and do not have any argument nor the result
typed by an entity class
What to do:

SV + SV where each occurrence of WC is replaced by WCSyss

SA SA plus a part modelling a role for a participant typed by WCSyss

BPOD ⇒ BPOD

BPMs BPMs where each occurrence of WC as argument of an operation
in pub-ops() is replaced by WCSyss

SMs SMs

PMs PMs +

Transformation pattern: Combining two participants
Motivation: To rearrange logically the service system, two participants may be

162 CHAPTER 8. SERVICE SYSTEM DESIGN

combined together to become a unique one
Description:
A new participant (model) is introduced, it will offer and consume all the services
offered and consumed by the two combined participant (model)s; its behaviour will
be the parallel composition of the behaviours of the two combined participants
Subjects:

xxx the name of the combination of P1 and P2
Preconditions:
No service is offered by P1 and consumed by P2 or offered by P2 and consumed by
P1

xxx is different both from P1 and P2

What to do:

8.6. INTRODUCE SERVICES PHASE 163

SV

SA

BPOD ⇒
BPMs

SMs

PMs +

164 CHAPTER 8. SERVICE SYSTEM DESIGN

SV

SA where the parts typed by P1 and P2 are merged in a unique part typed by xxx

BPOD where each occurrence of P1 and of p2 is replaced by xxx

BPMs where each occurrence of P1 and of p2 is replaced by xxx

SMs

PMs +

Transformation pattern: Splitting a participant into two or more participants
Motivation: To rearrange logically the service system, a participant may be split
into two or more participants.
Description: Some new participants (participant models), X1. . . Xn (n ≥ 2), are
introduced to replace a participant P (participant model P) in the model.

The services offered and consumed by participant Pwill be consumed and pro-
vided by participants in the set of participants X1. . . Xn (n ≥ 2), in such a way that
a service is consumed or offered by an unique partcicipant.

The composition of the behaviours of the new participants will be the behaviour
of participant P.
Subjects:

8.6. INTRODUCE SERVICES PHASE 165

X1. . . Xn are participants split from P.
Names of consumed and provided services of each participant in X1. . . Xn.

Preconditions:
No service is offered or consumed both by Xi and by Xk (i 6= k, 1 6 i ≤ n, 1 6 k ≤
n).
X1. . . Xn are different from each other and different from P.

All services consumed and provided by Pare consumed and provided fully by set
of new participants X1. . . Xn.
What to do:
SV

SA

BPOD ⇒
BPMs

SMs

PMs +

166 CHAPTER 8. SERVICE SYSTEM DESIGN

SV

SA where the part typed by P are split into n parts typed by X1 . . . Xn in such a way that
part Xi (i = 1 . . . n) is bounded to service(s) that participant Xi consumes and provides
BPOD where each occurrence of P is replaced by X1 . . . Xn

BPMs where each occurrence of P is replaced by a participant in set of X1 . . . Xn

SMs

PMs - P +

Transformation pattern: Making a participant to provide a new service
Motivation: A service of the system being built must be provided by a participant.
Thus, for introducing a new service, a participant will be indicated as a service
provider.
Description: A new service is introduced, and a participant is indicated to provide
this service.
Subjects:

- P, a participant (model) having a service port in PMs

- S, a service (model). Let pI be the provider interface of service S, and cI be the
consumer interface of service S
Preconditions:

S is different from the names of all the existing services in the model
What to do:

8.6. INTRODUCE SERVICES PHASE 167

SV

SA

BPOD ⇒
BPMs

SMs

PMs +

SV

SA + a collaboration use representing S that is bounded to the part typed by P

BPOD

BPMs

SMs + S

PMs +

Transformation pattern: Adding a participant providing already available services
Motivation: Already available service(s) may be incorporated in the system. After
it is modelled following PreciseSoa method (see 6), a participant must be added to
provide it.
Description: A participant has service ports for providing available services is
added to the model.
Subjects:
– S1. . . Sn, n services (service models) in SMs. Let pIi be provider interface of service
Si (i=1. . . n), and cIi be consumer interface of service Si (i=1. . . n).

- , a participant class to be added.
Preconditions:

168 CHAPTER 8. SERVICE SYSTEM DESIGN

P is different from the names of other participants of the system.
What to do:
SV

SA

BPOD ⇒
BPMs

SMs

PMs

SV + any related class needed to define P

SA + a part typed by P and is bounded to S
BPOD

BPMs

SMs

PMs +

Transformation pattern: Eliminating an empty Static View
Motivation: To eliminate an empty Static View from the model.
Description: An empty Static View is deleted from the model
Subjects:
SV, the static view in the model
Preconditions:
SV is an empty class diagram.
What to do:
SV

SA SA

BPOD ⇒ BPOD

BPMs BPMs

SMs SMs

PMs PMs
In the following sections, we will present the applications of various design phases

defined above on a case study, in particular, we will design Dealer Networking System

supporting Dealer Business.

8.7. APPLYING DESIGN METHOD TO CASE STUDY DEALER NETWORK169

8.7 Applying design method to case study Dealer
Network

We use the model of the Dealer Business (adopted in Sect. 5.4) to show an example
of application of our design method.

TO DO: Change ’SOAS’ in the figures to ’Dealer Networking System’.

8.7.1 Applying Place the System

Placement on the Business Process Overview Diagram

The diagram in Fig. 8.3 illustrates the placement over the Business Process Overview
Diagram of the model of Dealer Business. Business process Buying goods is placed
crossing the closed line because it is partly supported by the Dealer Networking System

(the system being built to support Dealer Business).
The payment in this process is executed by means of an existing application

represented by participant PAY of type Payment. The participants, e.g., SHIPPER,
DEALER, and MANUFACTURE are placed inside the closed line because they take
part in Buying goods process and their activities are executed by the Dealer Networking

System. Process Handling reputation information is placed outside the closed line because
the Dealer Networking System does not support this process.

Figure 8.3: Placement Dealer Networking System on Business Process Overview Dia-
gram of business model Dealer Network

Placement on the Static View

The placement on the Static View of the model of Dealer Business is presented by
the diagram in Fig. 8.4. There are two classes placed outside the closed line, i.e.,
class Invoice because the invoice generated in process Buying goods is not created

170 CHAPTER 8. SERVICE SYSTEM DESIGN

by the Dealer Networking System, and class Payment because it represents an existing
application that is not built in the Dealer Networking System.

Figure 8.4: Placement Dealer Networking System on Static View of business model
Dealer Network

Placement on the Behaviour View of Buying goods process

The activity diagram including a swimlane named Dealer Networking System in Fig. 8.5
is the placement on the behaviour view of process Buying goods, one of processes of
business Dealer Network. All the activities placed inside the swimlane are executed
by the Dealer Networking System.

There are two activities placed outside of the service system swimlane, i.e., Send-
Invoice and PayInvoice that are supposed to be performed by an existing payment
application, not by the Dealer Networking System.

8.7. APPLYING DESIGN METHOD TO CASE STUDY DEALER NETWORK171

Figure 8.5: Placement on Behaviour View of process Buying goods in business model
Dealer Network

Placement on the Task View

After the placement over the BPOD, the Static View, and the behaviour views of
business processes, we make the placement on the Task View. In Fig. 8.6, we can
see that two classes outside the closed line the Static View (cf. Fig. 8.4) and two
tasks outside the system swimlane in the behaviour view of Buying goods process (cf.
Fig. 8.5) are placed again outside the closed line in the Task View. It means that
those classes are not supported by the Dealer Networking System.

8.7.2 Applying Eliminate Useless Parts

In this section, we present the execution of the phase Eliminate Useless Parts, and
apply some the relative patterns.

Fig. 8.7 shows the BPOD of the model of Dealer Business model with placement

172 CHAPTER 8. SERVICE SYSTEM DESIGN

Figure 8.6: Placement Dealer Networking System on the Task View of business model
Dealer Network

marking (see Fig. 8.3) after applying the patterns Eliminating unsupported business
process, in which the process Handling reputation information and the business entity
Authority are eliminated from the model. Process Handling reputation information is
placed crossing the closed line of the placement, thus we can not apply the pattern
Eliminating useless placement marking on BPOD, so the placement marking is not
eliminated.

Figure 8.7: Dealer Business model BPOD transformed 1

Fig. 8.8 shows the Static View of the model of the Dealer Business with place-

8.7. APPLYING DESIGN METHOD TO CASE STUDY DEALER NETWORK173

ment marking (see Fig. 8.4) after applying the patterns Eliminating useless placement
marking on Static View and Eliminating unused class, in which three classes Invoice,
Payment, and Authority are eliminated, their associations are also eliminated from the
model.

Figure 8.8: Dealer Business model: Static View transformed

Fig. 8.9 shows the BPOD of the Dealer Business model after applying the pat-
terns Eliminating unused class on the Static View (see Fig. 8.8), in which the entity
PAY: Payment is eliminated from the model.

Figure 8.9: Dealer Business model: BPOD transformed 2

Fig. 8.10 shows the Task View of the model of Dealer Business with placement
marking (see Fig. 8.6) after applying the patterns Eliminating useless placement mark-
ing on Task View, and Eliminating unused class, in which some task classes and entity
classes that are not enclosed by the service system are eliminated from the model,
i.e., PayInvoice, Payment, SendInvoice, and Invoice.

174 CHAPTER 8. SERVICE SYSTEM DESIGN

Figure 8.10: Dealer Business model: Task View transformed

8.7.3 Applying Simplify Tasks

Before the application:
The task class RequestQuote in the Task View of a business, its instance is

Quote=RequestQuote<DEALER, MAN, PROD> in a behaviour view of a business
process model.

After the application:
The task Quote=RequestQuote<DEALER, MAN, PROD> is decomposed into

two tasks RequestQuote<DEALER, MAN, PROD> and Quote<MAN, DEALER,
PROD, QUOTE>, in which, the first participant appear in each task is required to
do this task.

Figure 8.11: Decomposing a task in the Business Process Model of process Buying
goods

8.8. VALIDATION OF DESIGNED SYSTEM 175

8.7.4 Applying Introduce Services phase

Application of pattern Introducing empty service architecture
The current model includes Dealer Business System Placement Model and an

empty Service Architecture illustrated in Fig. 8.12.

Figure 8.12: Introducing empty service architecture of Dealer Network System

8.8 Validation of designed system

Modelling realization of a business process in a service architecture is a quality
validation of this service architecture.

There are two contexts for validating the realization of a business process on
a designed service system: a service system context and a structured participant
context.

Business process realization in “service system context” The services ar-
chitecture of a service system may have one or more associated business processes
models.

There are two cases in modelling a business process: modelling a “generic” busi-
ness process attached to a services architecture, and modelling a “concrete” business
process attached to a configuration of a service system.

A business process B in service system context will be modelled by an activity
diagram defined as follows:

176 CHAPTER 8. SERVICE SYSTEM DESIGN

• A swimlane is used for any participant taking part in the business process.

If B is a “generic” business process attached to a service architecture, the swim-
lanes are used for the roles of the participants. The swimlane of a participant
is named in form: r:P, where r is the role typed by P, and P is a participant
type;

If B is a “concrete” business process attached to a configuration, the swimlanes
are used for the instances of the participants. The instances correspond to the
ones in the configuration. The swimlane of participant P is named in form:
P:Ptype, where P is a participant in the configuration and typed by Ptype.

• All activities that a participant realizes should be put in its swimlane. The ac-
tivities of a participant P should be named in the following form: q::Serv.operation(parameter)

where if P is consumer of service Serv then q is a participant that provides ser-
vice Serv, and operation is an operation of the provided interface of service Serv.
This operation corresponds to the call from P to q; if P is provider of service
Serv then q is a participant that consumes service Serv, and operation is an
operation of the required interface of service Serv. This operation is sent from
P to q.

• The condition expressions of decision nodes are built on operation parameters.

Constraints: The flow of the activities in the activity diagram relative to a service
must be coherent with its service contract.

Business process realization in “participant context” A structured partici-
pant having inner participants and using internal services may be accompanied by
one or more business processes to specify how this participant provide services.

The business process model of such structured participant may be the same as
before but with extra swimlanes for the inner participants. Those extra swimlanes
are used to group the activities of inner participants that are coherent with service
contracts of the participant architecture.

8.8.1 Dealer Network business processes

The activity diagram in Fig. 8.13 illustrates a business process on the models of
Dealer Network designed in Sect. 6.2 following precise SoaML method. In this
business process, dealer d uses service Place Order to request the quote of the product
he wants to buy from two manufacturers m1 and m2. He will place an order for
this product from the manufacturer who offers a better price. In the case that

8.8. VALIDATION OF DESIGNED SYSTEM 177

the price of quote Q1 from manufacturer m1 is lower than or equal to the price
of quote Q2 from manufacturer m2, he might place an order to manufacturer m1

by using service Place Order. In turn, he could place an order to manufacturer
m2. The behaviours of dealer d are the actions belonging to his swimlane, i.e,
m1::PlaceOrder.request_Quote(QR) or m2::PlaceOrder.place_Order(O). The first decision
node depicts the point where the dealer can choose the best price for the product
offered by different manufacturers. The actions of manufacturer m1 after he receives
a place order request are sending confirmation to the dealer and sending shipping
request to the shipper that he chooses if the order is confirmed. If the order is not
confirmed, the process will come to an end. The shipper s1 is chosen by manufacturer
m1, whereas the shipper of manufacturer m2 is s3. The shippers s1 and s3 will send
the confirmations to the corresponding manufacturer for a fulfilled order when the
shipment delivered. Their actions are illustrated on their swimlanes. In result, a
complete process for the case that a dealer can buy and receive a product with the
best price is depicted from the initiate state of the diagram to the final states coming
out of the actions of the shippers.

178 CHAPTER 8. SERVICE SYSTEM DESIGN

8.8. VALIDATION OF DESIGNED SYSTEM 179

F
ig
ur
e
8.
13

:
D
ea
le
r
N
et
w
or
k
B
u
si
n
es
s
P
ro
ce
ss

1

180 CHAPTER 8. SERVICE SYSTEM DESIGN

Conclusion

We have introduced a method for designing a service system. It includes five phases,
starting from placement phase to a set of four transformation phases in order to
transform a business model into the model of a design of a service system.

In Place the System phase, we denote the placement using a closed line on some
selected views of the business model in order to enclose every elements that the
service system will support. The closed line is considered as a boundary of service
system marked on the business model. We provides the rules and the constraints
on how to place an element outside/inside/crossing the closed line and also on how
to reflect the placement to other elements relating with this element. Following the
guidelines describing how to do the placement, the user can adopt a set of steps
to build a placement model for a modelled business in particular, and this is also
the input of the later phases in general. The next four phases are considered as
transformation phases, they are Eliminate Useless Parts, Simplify Tasks, Operationalize

Tasks, and Introduce Services. The result of the application of each transformation
pattern is an intermediate model . The intermediate models are UML models built
using both the profile for modelling a business (see Sect. 5.2) and the profile for
modelling the design of a service system (see Chapter 6).

We have illustrated our design method by modelling the Dealer Business.

C
h

a
p

t
e

r

9
Comparison and evaluation of

the methods

We spend this chapter to make a comparison between two our proposed approaches
for modelling a service oriented system, i.e., PreciseSOA (c.f., Chapter 6) and
Casl4Soa (c.f., Chapter 7), and to distinguish our works to other related works in
the same field of interest.

The difference between the two approaches, PreciseSOA and Casl4Soa, is es-
sentially the level of precision (and thus the expressiveness) both at the level of
constructs and at the semantic level. Table 9.1 summarizes their main differences.

For example, the presence of a service semantic view in the Casl4Soa service
model allows to express the meaning/effect of the functionalities offered by the
modelled service. Casl4Soa provides the possibility to produce property-oriented
style models, that may be more abstract than the constructive ones, but where all
the nuances of the contract and the semantic view of a service may be expressed
using temporal logic formulas.

The difference entailed by the object orientation (in UML-based, while Casl4Soa

is not O-O) shows in the service interface modelling. First of all, the exchange
of messages with a service is expressed in UML-based by operation calls whereas
Casl4Soa uses pairs of matching elementary interactions. According to our precise
approach, a service interface in UML-based is composed of the provided and used
interfaces,1 that belong to the provider and the consumer of the service, respectively:
the provided interface offers the operations to be called by a service consumer, and

1which are UML interfaces

181

182 CHAPTER 9. COMPARISON AND EVALUATION OF THE METHODS

the used interface those to be called by the service provider.

183

C
a
sl

4S
o
a

P
re
ci
se
S
O
A

ob
je
ct

or
ie
nt
ed

no
ye
s

vi
su
al

ye
s

ye
s

se
m
an

ti
cs

fo
rm

al
se
m
an

ti
cs

vi
a
tr
an

sl
at
io
ns

in
to

C
a
sl

Lt
l

as
fo
r
th
e
U
M
L
(i
nf
or
m
al
)

da
ta
ty
pe

s
us
er

de
fin

ed
w
it
h
at
tr
ib
ut
es

or
ge
ne
ra
to
rs

us
er

de
fin

ed
w
it
h
at
tr
ib
ut
es

dy
na

m
ic

el
em

en
ts

dy
na

m
ic

sy
st
em

s
ba

se
d
on

la
be

lle
d
tr
an

si
ti
on

sy
st
em

s
ob

je
ct
s
an

d
ac
ti
ve

ob
je
ct
s

co
m
m
un

ic
at
io
n
m
ec
ha

ni
sm

s
si
m
ul
ta
ne
ou

sl
y
ex
ec
ut
io
n
of

pa
ir
s
of

ob
je
ct
-o
ri
en
te
d
m
es
sa
ge
s

m
at
ch
in
g
el
em

en
ta
ry

in
te
ra
ct
io
ns

(i
.e
.,
op

er
at
io
n
ca
lls
)

ty
pe

s
of

dy
na

m
ic

el
em

en
ts

dy
na

m
ic

ty
pe

s:
el
em

en
ta
ry

in
te
ra
ct
io
ns
,

O
-O

cl
as
se
s:

op
er
at
io
ns
,a

tt
ri
bu

te
s

at
tr
ib
ut
es

or
ge
ne
ra
to
rs

in
te
rf
ac
es

fo
r
dy

na
m
ic

ty
pe

s
se
t
of

el
em

en
ta
ry

in
te
ra
ct
io
ns

(p
ro
vi
de
d
or

re
qu

ir
ed
)
se
t
of

op
er
at
io
ns

co
ns
tr
uc
ti
ve

de
fin

it
io
n

in
te
ra
ct
io
n
m
ac
hi
ne
s
(r
ea
ct
iv
e,

st
at
e
m
ac
hi
ne
s

of
th
e
be

ha
vi
ou

r
au

to
no

m
ou

s
an

d
pr
oa

ct
iv
e
be

ha
vi
ou

r)
(r
ea
ct
iv
e
be

ha
vi
ou

r
on

ly
)

lo
gi
cs

m
an

y
so
rt
ed

fir
st
-o
rd
er

br
an

ch
in
g
ti
m
e
te
m
po

ra
l

m
an

y
so
rt
ed

fir
st
-o
rd
er

L1
)
bu

t
lo
gi
c
w
it
h
ed
ge

fo
rm

ul
as

(L
2)

(q
ua

nt
ifi
ca
ti
on

s
on

ly
ov
er

fin
it
e
se
ts

co
ns
tr
ai
nt
s

lo
gi
ca
lp

ro
pe

rt
ie
s
us
in
g
L2

in
va
ri
an

ts
an

d
pr
e/
po

st
co
nd

it
io
ns

fo
r
op

er
at
io
ns

us
in
g
L1

st
ru
ct
ur
ed

dy
na

m
ic

el
em

en
ts

de
fin

ed
by

co
m
m
un

ic
at
io
n
st
ru
ct
ur
e
of

su
bs
ys
te
m
s

de
fin

ed
by

st
ru
ct
ur
ed

cl
as
se
s

in
te
rm

s
of

co
nn

ec
to
rs

an
d
co
lla

bo
ra
ti
on

s
be

ha
vi
ou

r
of

st
ru
ct
ur
ed

-
lo
gi
ca
lp

ro
pe

rt
ie
s

se
qu

en
ce

di
ag

ra
m

dy
na

m
ic

el
em

en
ts

-
in
te
ra
ct
io
n
di
ag

ra
m
s

to
ol
s

re
us
e
of

U
M
L
to
ol
s

U
M
L
to
ol
s

fo
rm

al
an

al
ys
is

po
ss
ib
le

vi
a
th
e
co
rr
es
po

nd
in
g

C
a
sl

Lt
l

on
ly

fo
r
ti
ny

su
bs
et
s
an

d
sp
ec
ifi
ca
ti
on

s
bu

t
no

t
vi
ab

le
fo
r
no

n
to
y
ca
se
s

ve
ry

m
ic
ro

ex
am

pl
es

m
od

el
qu

al
ity

pa
rt
ly

gu
ar
an

te
ed

by
th
e
no

ta
ti
on

pa
rt
ly

gu
ar
an

te
ed

by
ou

r
pr
ec
is
e
ap

pr
oa

ch

Ta
bl
e
9.
1:

Se
rv
ic
e
m
od

el
lin

g:
co
m
pa

ri
so
n
of

C
a
sl

4S
o
a
an

d
P
re
ci
se
SO

A
no

ta
ti
on

s

184 CHAPTER 9. COMPARISON AND EVALUATION OF THE METHODS

The two methods are also quite different in modelling the service contract. The
collaboration used to illustrate the contract in UML-based just depicts the role
types of the service provider and consumer whereas in Casl4Soa the roles of the
service provider and of the service consumer are implicit. In Casl4Soa, the service
contract is precisely modelled by means of an interaction machine that define all the
possible traces of message exchanges between the service provider and the service
consumer.

Differently, in UML-based the service contract is modelled by means of sample
traces, represented by sequence diagrams.

For both notations, models may be developed using UML editors supporting
the use of profiles. For instance, the diagrams in this thesis are made with Visual
Paradigm UML Editor.2

The big difference, between the notations used in the two approaches is that
Casl4Soa is based on proprietary concepts and constructs coming from the al-
gebraic specification languages, better well-known in the academy, whereas UML-
based is based on object-oriented concepts and the UML constructs, widespread in
the industry.

If in Casl4Soa we model also how the realm changes dynamically along the
time, while now in UML we do not consider these aspects. For example, it is
not modelled using PreciseSOA the fact that the quantity in stock of a product may
decrease/increase freely (c.f., service Place Order in Sect. 6.2.2.1), while this features
is modelled in the Casl4Soa version (c.f., service Place Order in Sect. 7.5.1.2).

In our opinion, both approaches, with their specific characteristics, are useful
in proposing a precise framework for service modelling. Indeed, when someone has
to decide which method to use to model a service, one should balance the wanted
formality and expressiveness, and the context in which the models will be produced
and read.

In terms of modelling services for the design of SOA systems, several proposals
using UML have been developed, e.g, UML4SOA developed in Sensoria project [38,
35, 20]. The idea for introducing a semantic view of a service, not present in other
approaches, was prompted by an interesting report of the Sensoria project [4].

SRML a formal semi-visual notation proposed in the Sensoria project [19, 52]
(c.f., Section2.3). SRML [18] is based on a different view about SOA requiring e.g.,
to distinguish the interactions among modules (components) into business protocols,
layer protocols and interactions protocols, whereas in Casl4Soa and in UML-based
there is a unique type (the contract between who offer a service a who uses it).

2www.visual-paradigm.com

185

In [53], the definition of SOA is extended and a lightweight formal framework for
capturing SOA main components is proposed, based on a critical assessment of exist-
ing design formalization techniques in object and component-oriented programming
domains.

The precision and the formal semantic models in our Casl4Soa do more than
editing the models, they are constructed with the same goal of other formal ap-
proaches in specification, analysis, and even checking the syntax of models. A
formal approach given in [7, 6] (c.f., Section 2.3) uses priced-timed automata and
address the formal verification of functional, timing and resourcewise correctness.

At last, the protocol of the services that is specified at precise level of our models
shall be effective in refactoring services to maintain service systems for future change.
This makes agility, one of the most important capabilities of SOA-based system, to
be taken in to account.

The quality and the correctness of the proposed approaches is evaluated by the
application on case-studies presented in the thesis. However, we need to extend the
case-studies using their variants to verify the compatible of our approaches.

C
h

a
p

t
e

r

10
Conclusion and future work

Conclusion

The goal of the research presented in this thesis is to develop precise methods for
the modeling and the designing of services and service systems.

First of all, we introduce our view on services and service oriented systems (c.f.,
Service Systems Conceptual Model in Chapter 4). This view is the basis of our
work in the building proposed methods. Particularly in our view, a service system
is considered as a special case of a participant, it is a structured participant neither
offering nor requiring services. Under this view, we have the agility in the modelling
and designing of complicated service systems.

At the first aim, in Chapter 5, we have defined a method for defining and mod-
elling a business and its processes in such a precise way to avoid any misunderstand-
ing and unclear point, to help the readers. This method use the UML notation, also
a specific profile of the UML. A set of guidelines helping the users of our method
are provided. We have then applied the method to model a case study, the dealer
network business.

The following aims, that are to model and to design a service system being built
to support a modelled business, are obtained in later chapters.

For modelling a service system, we have used the UML notation and extended
Casl-Mdl to propose two different profiles, called PreciseSOA and Casl4Soa.
While PreciseSOA applies to a more widespread notation and Casl4Soa to a formal
one, both has been designed to be used when following the SOA paradigm, and are
in accord with our view on services and service systems presented in Chapter 4.
The choice of using one or the other can be made given the context in which the

187

188 CHAPTER 10. CONCLUSION AND FUTURE WORK

models are to be developed and used. PreciseSOA method has been inspired by
SoaML, a standard OMG profile to architect and model SOA solutions. For this
method, we provided a metamodel defining the structure of the service model, named
UML Service System model, equipped with well-formedness constraints so as to
guide the use of the notations. This leads us to select a subset of UML constructs,
which relieves the modellers from the work of choosing which one to model the
concepts of a service system, i.e., participant, service contract, service interface,
service architecture. Casl4Soa has been developed as a profile of Casl-Mdl, in
which, we used stereotyped Casl-Mdl constructs summarized in Appendix A.3
to define the new Casl4Soa constructs. We proposed two kinds of Casl4Soa

service models, constructive and property-oriented. In a constructive model, the
behavioural aspects of the services and of the participants are expressed by means
of the interaction machines, whereas in a property oriented model, such aspects are
expressed by means of first-order temporal logic formula. We have illustrated the
application of those two modelling methods on two case-study.

For design a service system being built to support a business, in Chapter 8, we
presented a method following the Model Driven Approach. The method provides a
set of transformation patterns to transform a model of the business where the system
to be developed has been placed, i.e., the parts of the business to be supported have
been marked (see Sect. 8.2) into a service system design model that will include
also some extra parts to show how the various processes of the business have been
realized. To help the designer activities, we provided many transformation patterns,
covering the most frequent cases, inspired by the well-known design patterns1. The
transformation activity is organized in five phases, see Fig. 8.1, and cannot be fully
automatized, since the designer has to make many choices during the transformation.
The first phase, presented in Sect. 8.2, require to place the service system being
built over the modelled business. We denoted the placement using a closed line as
a boundary of service system marked on the business model. We have proposed the
rules and the constraints on how to place an element outside/inside/crossing the
closed line and also on how to reflect the placement to other elements relating with
this element. The second phase Elimination of useless parts (Sect. 8.3) is used to
eliminate the parts of the model not covered by the placement. In the third phase
Task simplification (Sect. 8.4), the tasks will be decomposed into smaller tasks. In
the fourth phase Task operationalization (Sect. 8.5), the tasks will be transformed
into the operation calls of the business entities. And in the last phase Introducing
services (Sect. 8.6), the entities of the business are replaced by the participants of

1http://en.wikipedia.org/wiki/Software_design_pattern

189

the service system and several new services are introduced. We have illustrated
our design method on several small examples (attached in the description of each
pattern), and a case-study.

Finally, to validate the quality a designed service system, in Sect. 8.8, we propose
a mechanism using UML activity diagram to model the realization of a business
process in the architecture of this service system.

Future work

We have identified several possible directions that our research could follow in the
future. The current approach has been validated by the application on case studies,
however it is needed to verify and investigate more well-formedness constraints in
each methods.

In the future, we plan to investigate possibility for implementing a service system
by defining transformations from the design model of a service system into a running
system coded using WSDL and BPEL and existing services.

Our plan is to provide a tool suitable not only for modelling but also checking
correctness of the constraints on the elements by OCL. We may take the advantage of
existing tools that allow to define OCL constraints and verify them on the models,
such as Papyrus of Eclipse2. We intend to use some frameworks from Eclipse,
i.e., EMF3 and GFM4 to develop a stand alone environment for supporting our
proposed approach to SOA system development ranging from modelling business to
transforming it into design model of a service system. Furthermore, this tool should
support model-driven engineering by being integrated with existing technologies.

2http://www.eclipse.org/papyrus/
3http://www.eclipse.org/modeling/emf/
4http://www.eclipse.org/modeling/gmp/

A
p

p
e

n
d

ix A
Appendix

A.1 UML

A.1.1 Classifier

Classifier is an abstract metaclass which describes set of instances having common
features. A feature declares a structural or behavioral characteristic of instances of
classifiers.

For instance, classifier are classes, interfaces, enumerations, associations, datatypes.

A.1.2 Interface

Interface provides an entry point that consumers use to access the functionality
exposed by the application. Each software service has an associated interface that
it presents to the consumers.

In the UML, interfaces (see “Interface” Appendix A.1.4) are model elements that
define sets of operations that other model elements, such as classes, or components
must implement.

Difference between interface and class (see “Class” in Appendix A.1.4): An in-
terface includes only operations.

A.1.3 Datatype

A datatype is a type that its instances are identified only by their value. A datatype
may contain attributes to support the modeling of structured data types.

191

192 APPENDIX A. APPENDIX

Notation: A datatype is denoted using the rectangle symbol with/without key-
word �datatype� or �Datatype�, the rectangle contains the name of the datatype,
and may contain a number or also none of attributes.

Constraints:
A datatype must have a name.
There is no association (c.f. Appendix A.1.4) towards or from a datatype.

A.1.3.1 Primitive Type

A primitive type is a datatype which represents atomic data values, i.e. values
having no parts or structure.

Standard UML primitive types include: Boolean, Integer, String, Float, and Real.

A.1.3.2 Enumeration

An enumeration is a datatype whose values are enumerated in the model as user-
defined enumeration literals.

Notation: An enumeration is shown using a rectangle with the keyword�enum�
or �enumeration�. The rectangle has three compartments: upper compartment is
used to place the name of the enumeration, a compartment listing the attributes for
the enumeration is placed below the name compartment, the compartment placed
below the attribute compartment is used to list the operations for the enumeration.

A.1.4 Class Diagram

Description A class diagram is a type of static structure diagram. It represents
static aspect of a system by showing the its classes (their attributes and op-
erations), interfaces, associations and generalizations.

Elements

Class A class is a definition of objects that share given structural or behavioral
characteristics. A class comprises a name, a number of attributes, and a
number of operations.

Notation: A class is shown as a rectangle containing class name and op-
tionally with compartments separated by horizontal lines. The rectangle
may have three compartments: upper compartment is used to place the
name of the class and optionally with a stereotype, a compartment list-
ing the attributes of the class is placed below the name compartment,
the compartment placed below the attribute compartment is used to list
the operations of the class or other members of the class.

A.1. UML 193

Attribute An attribute is a typed value attached to each instance of a
class.

Operation An operation is a function that can be performed by in-
stances of a class. An operation may have return type in case it
returns a value.

Interface An interface is a classifier that declares of a set of coherent public
features and obligations. An interface specifies a contract. Any instance
of a classifier that realizes the interface must fulfill that contract and thus
provides services described by contract.

Notation: An interface is using a rectangle symbol with the keyword
�interface� preceding the name. The rectangle has two compartments:
upper compartment is used to place the name of the interface, a com-
partment listing the operations for the interface is placed below the name
compartment.

Provided interface Interfaces realized by a classifier are its provided
interfaces, and represent the obligations that instances of that classi-
fier have to their clients. They describe the services that the instances
of that classifier offer to their clients.
Notation: Interface participating in the interface realization depen-
dency is shown as a lollipop (i.e., a ball or a circle), labeled with the
name of the interface and attached by a solid line to the classifier
that realizes this interface.

Required interface Required interface specifies services that a classifier
needs in order to perform its function and fulfill its own obligations to
its clients. It is specified by a usage dependency between the classifier
and the corresponding interface.
Notation: The usage dependency from a classifier to an interface
is shown by representing the interface by a cup (i.e., a half-circle),
labeled with the name of the interface, attached by a solid line to the
classifier that requires this interface.

194 APPENDIX A. APPENDIX

Example Figure below shows the notation for port p, it is a port on the
Engine class. The provided interface of port p is powertrain, and the
required interface of port p is power.

Relationships among instances

Association An association is a relationship between the members of
two classes.
Notation: An association is drawn as a solid line between two classes.

Association name An association may have a name. The name
can be left empty.

Association end An association has two ends. Each end is the
name a role, and is used to refer to the associated object (further
described in A.1.4.1).

Aggregation (Shared association) An aggregation is an associ-
ation represents a shared ownership relationship. A aggregation
is a “weak” form of aggregation when part instance is indepen-
dent of the composite in such a way that: the same (shared)
part could be included in several composites, and if composite is
deleted, shared parts may still exist.
Notation: An aggregation is shown as binary association dec-
orated with a hollow diamond as a terminal adornment at the
aggregate end of the association line.

Composition An association represents a whole-part relationship.
A composition is a “strong” form of aggregation when part in-

A.1. UML 195

stance is independent of the composite in such a way that: part
could be included in at most one composite (whole) at a time,
and if a composite (whole) is deleted, all of its composite parts
are “normally” deleted with it.
Notation: Composite aggregation is depicted as a binary asso-
ciation decorated with a filled black diamond at the aggregate
(whole) end.

Relationships among classes

Generalization The specific class inherits part of its definition from the
general class.
Notation: A generalization is shown as a line with a hollow triangle
as an arrowhead between the symbols representing the involved clas-
sifiers. The arrowhead points to the symbol representing the general
classifier.

Realization A realization is a specialized abstraction relationship be-
tween two sets of model elements, one representing a specification
(the supplier) and the other represents an implementation of the lat-
ter (the client).
Notation: A generalization is shown as a line with a hollow triangle
as an arrowhead between the symbols representing the involved clas-
sifiers. The arrowhead points to the symbol representing the general
classifier.

Dependency A dependency is a relationship that signifies that a single or a

196 APPENDIX A. APPENDIX

set of model elements requires other model elements for their specifica-
tion or implementation. This means that the complete semantics of the
depending elements is either semantically or structurally dependent on
the definition of the supplier element(s).

Notation: A dependency is shown as a dashed arrow pointing from the
client (dependent) at the tail to the supplier (provider) at the arrowhead.
The arrow may be labeled with an optional stereotype and an optional
name. The definition or implementation of the dependent classifier might
change if the classifier at the arrowhead end is changed.

Multiplicity Multiplicity is a definition of cardinality, i.e., number of ele-
ments, of some collection of elements by providing an inclusive interval
of non-negative integers to specify the allowable number of instances of
described element. Multiplicity is used to indicates how many of the
objects at this end can be linked to each object at the other.

Multiplicity interval has some lower bound and (possibly infinite) upper
bound. Lower and upper bounds could be natural constants or constant
expressions evaluated to natural (non negative) number. Upper bound
could be also specified as asterisk ’*’ which denotes unlimited number
of elements. Upper bound must be greater than or equal to the lower
bound.

Some typical examples of multiplicity: 0. . . 0/0: Collection must be empty;
0. . . 1: No instances or one instance; 1. . . 1/1: Exactly one instance;
0. . . */*: Zero or more instances; 1. . . *: At least one instance; m. . . n:
At least m but no more than n instances

A.1. UML 197

Example

Constraints

A class must have a name.
The classes must have different names.
An aggregation cannot involve more than two classes.

A.1.4.1 Association end

An association end identifies the entity type on one end of an association and the
number of entity type instances that can exist at that end of an association. Associa-
tion ends are defined as part of an association; an association must have exactly two
association ends. Navigation properties allow for navigation from one association
end to the other.

Figure A.1: Assocation end example

198 APPENDIX A. APPENDIX

Figure A.2: Generic association end

Association end could be owned either by end classifier, or association itself.
Association ends of associations with more than two ends must be owned by the
association.

A.1.4.2 Distinguish parameters of kind in, out, and inout

The parameter is of kind in when it must be set to a value before calling the
operation. We use in parameter to pass values to an operation. Inside the operation,
it will acts like a constant and cannot be assigned a value.

The parameter is kind out when it does not need to be set before calling the
operation and it often contains the result. We use out parameter to return values
to the caller. Inside the operation, an out parameter acts like a variable. We can
change its value, and reference the value after assigning it. We must pass a variable,
not a constant or an expression to an out parameter.

The parameter is kind of inout when it must be set to a value before calling the
operation, but once the execution of the parameter is completed, the same parameter
will be holding the last updated valued of it. We use an inout parameter to pass
initial values to an operation and returns updated values to the caller. It can be
assigned a value and its value can be read.

A.1.5 Use case Diagram

Description A use case diagram is used to visualize high level functions or require-
ments of a system, i.e., what a system is supposed to do (but not how to do).
A use case diagram contains primarily actors and use cases. Actors are enti-
ties that interact with the system, while use cases are a means for capturing
the requirements of a system. A use case diagram is a specialization of Class
Diagram such that the classifiers shown are restricted to being either Actors
or Use Cases.

Elements

A.1. UML 199

Actor An actor models a type of role played by an entity, e.g., a user or any
other system, that interacts with the system.

An actor is external to the system.

In a use case diagram, an actor icon may represent roles played by human
users, external hardware, or other systems.

Notation: An actor is represented by “stick man” icon with the name of
the actor below the icon.

Use Case A use case is the specification of a set of actions performed by a
system, which result in value for one or more actors of the system.

A use case is a kind of behaviored classifier that represents a declaration
of an offered behavior.

In a use case diagram, a use case icon represent the actions performed by
one or more actors in the pursuit of a particular goal.

Notation: A use case is shown as an ellipse containing the name of the
use case. An optional stereotype keyword may be placed above the name.

Association An association indicates that an actor takes part in this use
case.

Notation: An association relationship between an actor and a use case is
shown by a solid line, i.e., a binary arrow.

Dependency relationship A dependency indicates that the design of the
source depends on the design of the target.

Notation: An dependency relationship between use cases is shown by a
dashed arrow. The arrow may be labeled with an optional stereotype
keyword.

Example The use case diagram below (derived from [25]) shows a set of use cases
used by four actors, i.e., Customer, Saleperson, Shipping Clerk, and Supervisor, of
a system, i.e., Telephone Catalog, that is optionally represented by a rectangle.

200 APPENDIX A. APPENDIX

Constraints

An actor must have a name.
An actor can only have associations to use cases.
A use case must have a name.
A use case cannot have a association to any other use case.
A use case cannot include use cases that directly or indirectly include it.
An association between an actor and a use case must be binary.

A.1.6 Object Diagram

Description An object diagram shows a view of the structure of the system at
some point in time. It acts as a test case for the class diagram. An object
diagram consists of objects in some states and the links among them (a link
is an instance of an association in a class diagram).

Elements

Object

An object is an instance of a class. It is represented by a rectangle. An
object has a name and the values of the attributes of the corresponding
class that need to be captured. A name of an object is underlined and
in the form of “X:Y”, where X is name of the object and Y is name of
the corresponding class. The name of the object is optional. It is not
mandatory to give a value to all the attributes.

A.1. UML 201

Relationships among instances

See “Relationships among instances” form Appendix A.1.4.

Example

Figure A.3: Class Diagram Example Figure A.4: Object Diagram Example

Constraints
Each object is corresponding to an instance of a class in a class diagram.
Each link is corresponding to an instance of an association in a class diagram.
The value of attribute of object must have the type required for such attribute
in corresponding class.
The numbers of instances are not limited.

A.1.7 Sequence Diagram

Description A Sequence Diagram models the collaboration of objects based on a
time sequence. It shows how the objects interact with others in a particular
scenario of a use case.

Elements

Lifeline A lifeline represents an individual participant in the interaction.

Notation:

Message A message defines a particular communication between Lifelines of
an Interaction.

202 APPENDIX A. APPENDIX

Notation:

Self Message A self message is a kind of message that represents the invo-
cation of message of the same lifeline.

Notation:

Alternative Combined Fragment An alternative combined fragment rep-
resents a choice of behavior. At most one of the operands will be chosen.

Notation:

Loop Combined Fragment A loop combined fragment represents a loop.
The loop operand will be repeated a number of times.

Notation:

Example

The sequence diagram in the example below describes the sequence of messages
that are exchanged between two participants: Writer and Printer.

A.1. UML 203

Constraints A lifeline must have a name.

If the message is an operation call having a return value, e.g., oper(): TypeT,
then the message must have the form of x=oper(), in which x is a variable of
type TypeT.

A.1.8 Activity Diagram

Description An activity diagram is a connected oriented graph made of activity
nodes and activity edges (connecting a pair of activity nodes). The dynamics
of an activity diagram is then defined in terms of control tokens flowing in and
out of the activity nodes moving along the activity edges. There are different
kinds of activity nodes and edges. Set of constructs to build the activity
diagram representing the behaviour of a business process presented in [46] is
recalled below, together with some rules needed to be conformed when one
creates an activity diagram.

Elements

Initial node

An initial node is a control node at which flow starts when the activity
is invoked. An activity may have more than one initial node.

Notation:

Final nodes

An activity may have more than one activity final node. The first one
reached stops all flows in the activity.

Notation:

Action nodes

An action node describe what will be done in the process modelled by
the activity diagram, they may be denoted using either the UML actions
(more or less the usual statements of an object oriented programming
language) or with a name (just an identifier).

Notation: Action is shown as a round-cornered rectangle with action
name in the center.

204 APPENDIX A. APPENDIX

Activity An activity specifies the coordination of executions of subordinate
behaviors that are modeled as activity nodes connected by activity edges.
An activity may include flow of control constructs (e.g., decision, merge
nodes, etc.,).

Notation: Activity is shown as a round-cornered rectangle with activity
name in the upper left corner and nodes and edges of the activity inside
the border.

Object nodes

An object node is an activity node that indicates an instance of a par-
ticular classifier, possibly in a particular state, may be available at a
particular point in the activity.

Notation:

Control flow edges

A control flow edge connects two nodes and depicts the flowing of a control
token from the first to the latter. The action nodes may have any number
of ingoing and outgoing control flow edges, whereas the initial nodes may
have only outgoing edges and the final nodes only ingoing edges.

Notation:

Object flow edges An object flow edge is an edge that can have objects or
data passing along it.

Notation:

Decision nodes

A.1. UML 205

A decision node accepts tokens on an incoming edge and presents them to
multiple outgoing edges. Which of the edges is actually traversed depends
on the evaluation of the guards on the outgoing edges.

Notation:

Merge node

A join node is a control node that synchronizes multiple flows. A join
node has multiple incoming edges and one outgoing edge.

Notation:

Fork nodes

A fork node is a control node that splits a flow into multiple concurrent
flows. A fork node has one incoming edge and multiple outgoing edges.

Notation:

Join nodes

A join node is a control node that synchronizes multiple flows. A join
node has multiple incoming edges and one outgoing edge.

Notation:

Time and accept events

If the occurrence is a time event occurrence, the result value contains the
time at which the occurrence transpired. Such an action is informally
called a wait time action.

Time and accept events may be used in the activity diagrams to model
business process where some tasks are activated by the reaching of some
specific time or by the receiving of some messages (i.e., operation calls).
The events may be seen as nodes with exactly one outgoing edge and
either one or zero ingoing edge. The time event (represented by the

206 APPENDIX A. APPENDIX

hourglass symbol) may be seen as a special activity that will deliver a
control token on the outgoing edge at the time annotating it, whereas
an accept event will do the same after receiving the message annotating
it. The events without ingoing edge are assumed to be always active and
can deliver the token many times, whereas those with the ingoing edge
are activated upon the receiving of the control token (and will be able to
deliver at most one token).

Notation:

Activity partition (Swimlane) An activity partition is a kind of activity
group for identifying actions that have some characteristic in common.
Partitions divide the nodes and edges to constrain and show a view of
the contained nodes.

Notation: Activity partition may be indicated with two, usually parallel
lines, either horizontal or vertical, and a name labeling the partition in a
box at one end. Any activity nodes and edges placed between these lines
are considered to be contained within the partition.

Example

Figure below shows an example of business flow activity of Order processing.

Constraints

A.1. UML 207

An activity diagram has one and only one initial node, and any number, also
none, of final nodes.
A join node must have exactly one outgoing edge and at least two ingoing
edges, when there will be a token arriving on all of the ingoing edges, only one
token will be displaced on the outgoing edge.
A fork node must have exactly one ingoing edge and at least two outgoing
edges; a token arriving by the ingoing edge will be displaced on all the outgo-
ing edges.
A decision node must have exactly one ingoing edge and at least two outgoing
edges, each of them labelled by a guard (a condition) without side effects; a
token arriving by the ingoing edge will be displaced on only one outgoing edge
with the true guard. The special guard “else” is a shortcut for the conjunc-
tion of the negations of the guards of the other edges, thus it will be selected
whenever all the other guards are false. A merge node must have exactly one
outgoing edge and at least two ingoing edges; a token arriving by any of the
ingoing edges will be displaced on the unique outgoing edge. A merge node
and a decision node can be combined at the visual level by allowing them to
share the same node symbol. The guard of the decision node must be defined.

A.1.9 Composite Structure Diagram

Description Composite structure diagram visualizes the internal structure of a
class or collaboration. Its primary purpose is to explain how a system works.

Elements

Connector A connector specifies a link that enables communication between
two or more instances. This link may be an instance of an association.

Notation: A connector is shown as a solid line.

Collaboration A collaboration defines a set of cooperating entities to be
played by instances (its roles), as well as a set of connectors that define
communication paths between the participating instances. The cooper-
ating entities are the properties of the collaboration.

A collaboration describes a structure of collaborating elements (roles),
each performing a specialized function, which collectively accomplish
some desired functionality.

Notation: A collaboration is shown as a dashed ellipse icon containing
the name of the collaboration. The internal structure of a collaboration

208 APPENDIX A. APPENDIX

as comprised by roles and connectors may be shown in a compartment
within the dashed ellipse icon.

Collaboration Use A collaboration use represents the application of the pat-
tern described by a collaboration to a specific situation involving specific
classes or instances playing the roles of the collaboration.

Notation: A collaboration use is shown by a dashed ellipse containing
the name of the occurrence, a colon, and the name of the collaboration
type. For every role binding, there is a dashed line from the ellipse to the
client element, and the dashed line is labeled on the consumer end with
the name of the provider element.

Part A part represents a set of instances that are owned by a containing
classifier instance.

Notation: A part is shown as a rectangle containing the name of the
instance.

Port A port is a property of a classifier that specifies a distinct interaction
point between that classifier and its environment or between the classifier,
i.e., its behavior, and its internal parts. Ports are connected to properties
of the classifier by connectors through which requests can be made to
invoke the behavioral features of a classifier. A Port may specify the
services a classifier provides (offers) to its environment as well as the
services that a classifier expects (requires) of its environment.

Notation: A port of a classifier is shown as a small square symbol. The
name of the port is placed near the square symbol. A provided interface
may be shown using the “lollipop” notation (i.e., a ball) attached to the
port. A required interface may be shown by the “cup” notation (i.e., a

A.2. OCL - CONSTRAINTS FOR UML 209

half-circle) attached to the port.

Example

BrokeredSale is a collaboration among three roles, a producer, a broker, and a
consumer. It consists of two occurrences of the Sale collaboration, i.e., whole-
sale: Sale and retail:Sale, indicated by the two dashed ellipses. The occurrence
wholesale indicates a Sale in which the producer is the seller and the broker
is the buyer. The occurrence retail indicates a Sale in which the broker is the
seller and the consumer is the buyer.

Constraints

There are exact two parts binding with a collaboration use.

The required interfaces of a port must be provided by elements to which the
port is connected.

When a port is destroyed, all connectors attached to this port will be destroyed
also.

A.2 OCL - Constraints for UML

The OCL (Object Constraint Language) [12] is a declarative language for describing
rules that apply to UML [25]. OCL is a formal specification language extension to

210 APPENDIX A. APPENDIX

UML, and is used with any Meta Object Facility1 (MOF) or meta-model. It is
a precise text language providing constraint and object query expressions on any
MOF model or meta-model that can not be expressed by diagrammatic notation.

In OCL 2.0, the definition has been extended to include general object query
language definitions. OCL language statements are constructed in four parts:

1. a context that defines the limited situation in which the statement is valid

2. a property that represents some characteristics of the context

3. an operation that manipulates or qualifies a property, and

4. keywords that are used to specify conditional expressions.

OCL supplements UML by providing expressions that have neither the ambigu-
ities of natural language nor the inherent difficulty of using complex mathematics.
It is used to express additional constraints on UML models that are very difficult
to express by the graphical means provided by UML. OCL is based on first-order
predicate logic but it uses a syntax similar to programming languages and closely
related to the syntax of UML.

Various open-source OCL tools has been developed. These can be integrated
into UML CASE tools to support precise specification of UML models beyond the
pure specification of OCL expressions as strings.

OCL offers a Smalltalk-based “block” syntax for convenient definition of some
kinds of functions and directly, but it does not provide corresponding type rules for
this syntax.

With OCL syntax, any function f(a,b):c can be described as an object with a single
method eval(a, b): c. For example: Collection(T):: select (T → Boolean): Collection(T)

means “select takes a block parameter that maps each element to a Boolean; select
returns another collection of T ”.

Most collection functions on Collection(T) use blocks that are Predicate(T) to do
selection, Comparator(T) to do sorting, and Converter(T, T1) to do a general mapping
from the collection elements. Collection(T) has associated functions, such as: c→size,
c→exists(x | P), c→forAll(x | P), c→select(x | P), c→reject(x | P), c→collect(x | E).

Collection types include sequences (ordered), bags (not ordered), and sets (no
duplicates, not ordered). Each of them has its own expression and associated func-
tions, such as: Seq(T) with s→prepend (e), Bag(T) with b→intersection (c), and
Set(T) with s→intersection(c).

1http://www.omg.org/mof/

A.2. OCL - CONSTRAINTS FOR UML 211

In addition, OCL includes the expressions for some data types and associated
operations such as Boolean with and, or, if b then e1 else e2 endif...; and String
with s.substring(l, u), Real with <, >, >=, <=, r. max(r2), and Integer with i
mod i2.

In OCL, “→” symbol means “do not move through a level of indirection”. For
example: joe.cars.size means “collecting the size of each of Joe’s car into the result”,
otherwise joe.cars → size means “just give the size of the set of Joe’s cars”.

It would be more consistent to have the “.” operator have the same meaning for
collections and non-collection types and to use “→” to apply to each element in the
collection.

List of OCL tools:

• Dresden OCL for Eclipse that supports OCL2.2
http://sourceforge.net/projects/dresden-ocl/

• Eclipse MDT/OCL
http://www.eclipse.org/modeling/mdt/downloads/?project=ocl

• Incremental OCL
http://www.lsi.upc.edu/~jcabot/research/IncrementalOCL

• HOL-OCL - An Interactive Proof Environment for OCL
http://www.brucker.ch/projects/hol-ocl/

• OCL editor with libraries
http://squam.info/?p=142

• OSLO - Open Source Library for OCL
http://oslo-project.berlios.de

• OCLE
http://lci.cs.ubbcluj.ro/ocle/index.htm

List of UML and MDE tools that provide OCL support by different manner and
power (parsing, static checking, evaluation, code generation, etc.):

• ArgoUML (Open Source)
http://argouml.tigris.org/

• Borland Together
http://www.borland.com/us/products/together/index.html

http://sourceforge.net/projects/dresden-ocl/
http://www.eclipse.org/modeling/mdt/downloads/?project=ocl
http://www.lsi.upc.edu/~jcabot/research/IncrementalOCL
http://www.brucker.ch/projects/hol-ocl/
http://squam.info/?p=142
http://oslo-project.berlios.de
http://lci.cs.ubbcluj.ro/ocle/index.htm
http://argouml.tigris.org/
http://www.borland.com/us/products/together/index.html

212 APPENDIX A. APPENDIX

• Eclipse Model Development Tools (MDT)
http://www.eclipse.org/modeling/mdt/?project=ocl

• ECO for Visual Studio by CapableObjects
http://www.capableobjects.com/ProductsServices_ECO.aspx

• Enterprise Architect by Sparx Systems
http://www.sparxsystems.com.au/

• Magic Draw UML by NoMagic
http://www.magicdraw.com/

• Papyrus UML (Open Source)
http://www.papyrusuml.org/scripts/home/publigen/content/templates/

show.asp?P=114&L=EN&ITEMID=16

• TOPCASED (Open Source)
http://www.topcased.org/

A.3 CASL-MDL

A.3.1 Type in CASL-MDL

A type may be either predefined type or an entity type which deïňĄnes a
datatype or a dynamic type. The structure of Type is given in Fig.A.5 by
means of a metamodel.

Figure A.5: Structure of Type (metamodel)

A.3.2 Datatype

A construct Datatype is used to declare new datatypes, a Datatype metamodel
is presented in Fig.A.6.

http://www.eclipse.org/modeling/mdt/?project=ocl
http://www.capableobjects.com/ProductsServices_ECO.aspx
http://www.sparxsystems.com.au/
http://www.magicdraw.com/
http://www.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=114&L=EN&ITEMID=16
http://www.papyrusuml.org/scripts/home/publigen/content/templates/show.asp?P=114&L=EN&ITEMID=16
http://www.topcased.org/

A.3. CASL-MDL 213

Figure A.6: Datatype structure (metamodel)

The datatypes may have predicates which must have at least an argument
typed as the datatype itself, and operations that have a return type.

The structure of a datatype may be defined in two different ways, using either
generators or attributes.

In case of defining the datatype values in terms of generators (see visual
schematic example given in Fig.A.7): the datatype values are denoted using
generators (marked by �gen�). The arguments of the generators (marked
by �pred�) may be typed using the predefined types and the user defined
datatypes and dynamic types present in the same TypeDiagram (see Sec.A.5).

Figure A.7: Schematic datatype with generators

In case of defining the datatype values in terms of attributes (see visual
schematic example given in Fig.A.8): it is similarly to the UML, an attribute
attr: T of a datatype D corresponds to a Casl operation oper.attr: D → T.
There is a standard generator named as the type itself having as many argu-
ments as the attributes, but it is introduced when deïňĄning the datype by
an appropriate definition.

Constraint:

The datatype used to define any notion must be defined if they are not of
primitive type.

214 APPENDIX A. APPENDIX

Figure A.8: Schematic datatype with attributes

A.3.3 Dynamic Type (type of dynamic system)

A dynamic systems represent any kind of dynamic entities, i.e., entities with
a dynamic behaviour without making further distinctions (such as reactive,
proactive, autonomous, passive behaviour, inner decomposition in subsys-
tems), and are formally considered as labelled transition systems.

A labelled transition system (lts) is a triple (State, Label, →), where State
denotes the set of states, Label is the set of transition label, and → ⊆ State
× Label × State is the transition relation. A triple (s,l,s’) ∈→ is said to be a
transition.

A dynamic system is modelled by a transition tree determined by an lts(State,
Label, →) and an initial state s0 ∈ State.

A.3.3.1 Simple Dynamic Type (type of simple system)

The simple dynamic systems do not have dynamic subsystems, and the in-
teractions of the simple systems are either of kind sending or receiving (with
a naming convention !_xx and ?_yy, for sending and receiving interactions
resp.) and are characterized by a name and a possibly empty list of typed pa-
rameters. These simple interactions correspond to basic acts of either sending
out or of receiving something, where the something is defined by the argu-
ments.

The visual notation for the simple dynamic types is presented in Fig.A.9.

A send act will be matched by a receive act of another simple system and
vice versa, and obviously the matching pairs of interactions !_xx(v1. . . vn)
and ?_xx(v1. . . vn). The states of simple systems are characterized by a set
of typed attributes (precisely the states of the associated labelled transition
system), similarly to the case of datatypes with attributes (and, as for each
attribute, there is the corresponding operation). A dynamic type DT has

A.3. CASL-MDL 215

Figure A.9: A schematic Simple Dynamic Type

also an extra implicit attribute attr.id: ident_DT containing the identity of the
specific considered instance; the identity values are not further detailed.

A.3.3.2 Structured Dynamic Type (type of structured system)

A structured system is characterized by its parts, or subsystems (that are in
turn other simple or structured dynamic systems), and has its own elementary
interactions and name.

Figure A.10: A schematic Structured Dynamic Type

Fig.A.10 presents the visual syntax by the schematic structured dynamic type;
its parts are depicted by the dashed boxes (in this case all of them have
multiplicity one); DType1, DType2 . . .DTypeN are dynamic types (i.e., types
corresponding to dynamic systems, simple or structured, defined in the same
model) and P1, P2 . . .PN are the optional names of the parts. A structured
dynamic type has a predefined predicate isPart checking if it has a part having
a given identity.

A.3.4 Interaction Machine

An interaction machine associated with a simple dynamic type is an oriented
graph, whose nodes represent the states and whose arcs represent the possible
transitions of the system. Fig. shows the structures of the interaction machine.

216 APPENDIX A. APPENDIX

The states are considered as interaction states corresponding to the possible
stages of the activity modelled by the machine. The transitions are decorated
by an interaction occurrence, a guard, and an effect. A guard is a boolean
expression built over the attributes of the simple dynamic type and an effect
is an action over those attributes and the free variables, if any. The form of
the effect must be restricted to a sequence of assignments to the attributes.
The transition is specified as following forms:

Figure A.11: Form of a transition in Casl4Soa

The interaction-occur may have the following forms: “ !_inter(e1 . . . en)”, where
!_inter is an elementary interaction and ei are ground expressions built over
the attributes, or “?_inter(X1 . . . Xn)”, where ?_inter is an elementary in-
teraction and Xi are variables. A transition without interaction occurrence
corresponds to some internal activity.

Constraints:

An interaction machine has only one initial state, while it may have any num-
ber , also none, of final states.

The name of the state in a interaction machine should be unique.

No transition may enter in the initial state an no transition may leave a final
state.

At least a transition must leave a non final state.

A.3.5 Formula

Formula is a subset of Casl-Ltl formulas together with an extension to take
interactions into account. The grammar of the formula with logic combi-
nators is defined in Fig. A.12, where Vi are variable identifiers, InterName
and AttrName are names of interactions and attributes respectively, and Exp
are expressions denoting values. The logic combinators used in formulas are
those of the first-order logic, together with temporal combinators (for a path
formula) to address whether a property is satisfied in states of a path from

A.3. CASL-MDL 217

a given state (eventually, always, next), and temporal combinators to state
whether a path formula is satisfied in at least one (sometimes) or all paths
from a state (in_any_case).

Form ::= Data_Atom | q Form | Form ⇒ Form |
Form ∨ Form | Form ∧ Form |
∀Vi .Form | ∃Vi .Form |
in_any_case Path_Form |
sometimes Path_Form

Path_Form ::= Interact_Atom | Static_Atom|
q Path_Form |Path_Form ∨ Path_Form |
Path_Form ∧ Path_Form |
Path_Form ⇒ Path_Form |
∀Vi .Path_Form | ∃Vi .Path_Form |
eventually Path_Form |
always Path_Form | next Path_Form

Interact_Atom ::= InterName(Exp, ...,Exp)
Static_Atom ::= AttrName = Exp

Figure A.12: Grammar of formulas

218 APPENDIX A. APPENDIX

A.4 Profile

A profile in UML (Unified Modeling Language) provides a generic extension mech-
anism for customizing UML models for particular models for particular domains.
Extension mechanisms allow refining standard semantics in strictly additive man-
ner, so they can not contradict standard semantics.

Profiles are defined using stereotypes, tag definitions, and constraints that are
applied to specific model elements (such as classes, attributes, operations, etc.).

A profile is a collection of such extensions that customize UML for a particular
domain.

Note: It is not possible to define a standalone profile without its reference meta-
model.

Stereotype

A stereotype is one type of extensibility mechanisms in the UML. They allow de-
signers to extend the vocabulary of UML in order to create new model elements
derived from existing ones, but that have specific properties that are suitable for a
particular domain.

Metamodel

A metamodel is a special kind of model that specifies the abstract syntax of a
modeling language. It can be understood as the representation of the class of
all models expressed in that language. A model is a simplified representation of a
certain reality. A model conforms to a language whose abstract syntax is represented
by a metamodel. A metamodel is commonly represented by means of a UML class
diagram (c.f., Appendix A.1.4)

List of Figures

1.1 Transformation patterns filling the gap between the Business Model of a
business and the Design Model of a service system supporting this business 4

1.2 Proposed approach to service system development 5

2.1 Elements of a service-oriented architecture 11
2.2 An organization of SOA environment . 16
2.3 The elements of SOA . 17
2.4 The layers of SOA . 18
2.5 Three Tier Typical Architecture . 21
2.6 A Service Oriented Architecture Perspective 21
2.7 Uml4Soa metamodel: package Structure 24
2.8 Uml4Soa metamodel: package Behaviour - Orchestration 25
2.9 A SRML service representation . 30
2.10 Soma phases - a fractal model of software development 32
2.11 Phases of the service-oriented design and development methodology . . . 36

4.1 Service Systems Conceptual Model . 43
4.2 How to produce a conceptual level model of a participant 46
4.3 How to produce a conceptual level model of a service 46

5.1 Business Model Metamodel . 50
5.2 A generic Goal View . 51
5.3 A generic Static View . 52
5.4 A generic Task View . 53
5.5 A generic Business Process Overview Diagram 54
5.6 How to produce a business model . 57
5.7 Dealer Business Model: Goal View . 59
5.8 Dealer Business Model: Business Process Overview Diagram 60
5.9 Dealer Network Business Model: Static View 60
5.10 Buying goods Process Model: Task View 61
5.11 Buying goods Process Model: Behaviour View 62

219

220 List of Figures

6.1 Service System model: metamodel . 66
6.2 A generic service interface . 70
6.3 A generic service Contract . 71
6.4 A generic participant view . 72
6.5 A generic service architecture for a service system 73
6.6 A generic service architecture for a structured participant 73
6.7 A generic structured participant . 74
6.8 How to develop a PreciseSoa model . 75
6.9 How to develop a service model . 76
6.10 Dealer Networking System Service Architecture 79
6.11 A Dealer Networking System Architecture Configuration 80
6.12 Place Order service Interface . 81
6.13 Place Order service contract . 82
6.14 Place Order semantics . 82
6.15 Request Shipping service Interface . 83
6.16 Request Shipping service contract . 84
6.17 Get Ship Status service Interface . 84
6.18 Get Ship Status service contract . 85
6.19 Dealer Networking System participant view 86
6.20 Office System architecture . 87
6.21 As Office System Architecture Configuration 88
6.22 Print service interface . 88
6.23 Print service contract . 89
6.24 Print service semantics . 89
6.25 Check Italian service interface . 91
6.26 Check Italian service contract . 91
6.27 Publish on Web service interface . 92
6.28 Publish on Web service contract . 92
6.29 Office System Participant View . 93

7.1 Relationships among Casl4Soa, Casl-Mdl, and Casl-Ltl 97
7.2 Casl4Soa constructive model: metamodel 98
7.3 A generic service interface . 101
7.4 A generic simple dynamic system . 101
7.5 A generic schematic example of an interaction machine 102
7.6 A generic participant . 103
7.7 A generic structured participant . 103
7.8 A generic service system . 103

List of Figures 221

7.9 Casl4Soa property oriented model: metamodel 104
7.10 How to develop a Casl4Soa model . 105
7.11 DealerNetwork type . 114
7.12 Place Order Service: interface . 114
7.13 Place Order service: contract (constructive style) 115
7.14 Place Order service: semantics (constructive style) 116
7.15 Request Shipping service: interface . 117
7.16 Request Shipping service: contract (constructive style) 117
7.17 Get Ship Status service: interface . 118
7.18 Get Ship Status service: contract (constructive style) 118
7.19 Dealer Network service system: participant models 119
7.20 Place Order service: contract (property-oriented style) 120
7.21 Place Order service: semantics (property-oriented style) 120
7.22 Request Shipping service: contract (property oriented style) 121
7.23 Get Ship Status service: contract (property oriented style) 121
7.24 Office System: service architecture 122
7.25 Print service interface . 122
7.26 Print service contract (constructive style) 123
7.27 Print service semantics (constructive style) 124
7.28 Check Italian interface . 124
7.29 Check Italian contract (Constructive Style) 125
7.30 Publish on Web service interface . 126
7.31 Publish on Web service: contract (constructive style) 126
7.32 Publish on Web service semantics (constructive style) 127
7.33 Office System participants models . 127
7.34 Print service: semantics (property oriented style) 128
7.35 Check Italian: contract (property oriented style) 129
7.36 Publish on Web service: contract (property oriented style) 129
7.37 Publish on Web service: semantics (property oriented style) 129
7.38 Visual Paradigm version 8.3 . 131
7.39 Papyrus UML version 1.12.3 . 132

8.1 Service System Design Method Phases 137
8.2 Flow of steps in the placement on a Business Model 142
8.3 Placement Dealer Networking System on Business Process Overview Dia-

gram of business model Dealer Network 169
8.4 Placement Dealer Networking System on Static View of business model

Dealer Network . 170

222 List of Figures

8.5 Placement on Behaviour View of process Buying goods in business model
Dealer Network . 171

8.6 Placement Dealer Networking System on the Task View of business model
Dealer Network . 172

8.7 Dealer Business model BPOD transformed 1 172
8.8 Dealer Business model: Static View transformed 173
8.9 Dealer Business model: BPOD transformed 2 173
8.10 Dealer Business model: Task View transformed 174
8.11 Decomposing a task in the Business Process Model of process Buying

goods . 174
8.12 Introducing empty service architecture of Dealer Network System 175
8.13 Dealer Network Business Process 1 179

A.1 Assocation end example . 197
A.2 Generic association end . 198
A.3 Class Diagram Example . 201
A.4 Object Diagram Example . 201
A.5 Structure of Type (metamodel) . 212
A.6 Datatype structure (metamodel) . 213
A.7 Schematic datatype with generators . 213
A.8 Schematic datatype with attributes . 214
A.9 A schematic Simple Dynamic Type . 215
A.10 A schematic Structured Dynamic Type 215
A.11 Form of a transition in Casl4Soa 216
A.12 Grammar of formulas . 217

List of Tables

5.1 Business model: Well-formedness constraints 56
5.2 Naming convention for business models 57

6.1 PreciseSoa model: Well-formedness constraints 68
6.2 Naming convention for PreciseSoa models 69

7.1 Casl4Soa constructive model: Well-formedness constraints 99
7.2 Naming convention for Casl4Soa models 100

8.1 Placement model: Well-formedness constraints 141
8.2 Patterns for Eliminate Useless Parts . 143
8.3 Patterns for Simplify Tasks . 148
8.4 Patterns for Operationalize Tasks . 150
8.5 Patterns in Introduce Services . 153

9.1 Service modelling: comparison of Casl4Soa and PreciseSOA notations . 183

223

Bibliography

[1] Arsanjani A., Ghosh S., Allam A., Abdollah T., Gariapathy S., and Holley
K. SOMA: a method for developing service-oriented solutions. IBM Syst. J.,
47(3):377–396, 2008.

[2] Ali Arsanjani. Service oriented modeling and architecture. 09 Nov 2004.

[3] Egidio Astesiano, Gianna Reggio, and Filippo Ricca. Modeling business within
a uml-based rigorous software development approach. In Pierpaolo Degano,
Rocco De Nicola, and José Meseguer, editors, Concurrency, Graphs and Models,
Essays Dedicated to Ugo Montanari on the Occasion of His 65th Birthday,
volume 5065 of Lecture Notes in Computer Science, pages 261–277. Springer,
2008.

[4] L. Bocchi, A. Fantechi, L. Gonczy, and Nora. Sensoria ontology. Technical
Report D1.1a, Sensoria, 2006.

[5] Roberto Bruni, Matthias Hölzl, Nora Koch, Alberto Lluch Lafuente, Philip
Mayer, Ugo Montanari, Andreas Schroeder, and Martin Wirsing. A service-
oriented uml profile with formal support. In Proceedings of the 7th Interna-
tional Joint Conference on Service-Oriented Computing, ICSOC-ServiceWave
’09, pages 455–469, Berlin, Heidelberg, 2009. Springer-Verlag.

[6] Aida Causevic. Formal approaches to service-oriented design: From behavioral
modeling to service analysis. Licentiate thesis, June 2011.

[7] Aida Causevic, Cristina Seceleanu, and Paul Pettersson. Modeling and rea-
soning about service behaviors and their compositions. In Proc. of 4th Int.
Symposium On Leveraging Applications of Formal Methods, Verification and
Validation (ISOLA 2010), LNCS 6416, pages 82–96. Springer, 2010.

[8] Christine Choppy and Gianna Reggio. Service modelling with Casl4Soa: A
well-founded approach - part 1 (service in isolation). In Proc. Annual ACM
Symposium on Applied Computing, pages 2444–2451, 2010. Studied pages 19-
28.

225

226 BIBLIOGRAPHY

[9] Christine Choppy and Gianna Reggio. CASL-MDL, modelling dynamic sys-
tem with a formal foundation and a UML-like notation. In Recent Trends in
Algebraic Development Techniques, Selected papers, LNCS 7137, pages 76–97.
Springer Verlag, 2012.

[10] Rational Software Corporation. Rational unified process: Best practices for
software development teams. Technical report, November 2001.

[11] Dijkstra and Edsger W. Guarded commands, nondeterminacy and formal
derivation of programs. Commun. ACM, 18(8):453–457, August 1975.

[12] Desmond Francis D’Souza and Alan Cameron Wills. Objects, Components and
Frameworks with UML. Addison Wesley Longman, 1999. Studied pages 689-
696.

[13] Mark Endrei, Jenny Ang, Ali Arsanjani, Sook Chua, Philippe Comte, Pal Krog-
dahl, Min Luo, and Tony Newling. Patterns: Service-Oriented Architecture and
Web Services. April 2004.

[14] Thomas Erl. Service oriented architecture. http://serviceorientation.com/
index.php/serviceorientation/index.

[15] Thomas Erl. SOA Principles of Service Design. The Prentice Hall Service-
Oriented Computing Series from Thomas Erl, 2007.

[16] Thomas Erl. SOA Principles of Service Design (The Prentice Hall Service-
Oriented Computing Series from Thomas Erl). Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 2007.

[17] Thomas Erl. SOA Design Patterns. Prentice Hall PTR, Upper Saddle River,
NJ, USA, 1st edition, 2009.

[18] José Luiz Fiadeiro, Antónia Lopes, Laura Bocchi, and João Abreu. The sensoria
reference modelling language. In Results of the SENSORIA Project, LNCS 6582,
pages 61–114. Springer, 2011.

[19] Software Engineering for Service-Oriented Overlay Computers. D1.4a: Uml for
service-oriented systems. http://www.pst.ifi.lmu.de/projekte/Sensoria/
del_24/D1.4.a.pdf, 2009.

[20] Howard Foster, László Gönczy, Nora Koch, Philip Mayer, Carlo Montangero,
and Dániel Varró. UML extensions for service-oriented systems. In Results of
the SENSORIA Project, LNCS 6582, pages 35–60. Springer, 2011.

http://serviceorientation.com/index.php/serviceorientation/index
http://serviceorientation.com/index.php/serviceorientation/index
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/D1.4.a.pdf
http://www.pst.ifi.lmu.de/projekte/Sensoria/del_24/D1.4.a.pdf

BIBLIOGRAPHY 227

[21] S. Gorton, C. Montangero, S. Reiff-Marganiec, and L. Semini. Service-oriented
computing - icsoc 2007 workshops. chapter StPowla: SOA, Policies and Work-
flows, pages 351–362. Springer-Verlag, Berlin, Heidelberg, 2009.

[22] Object Management Group. Model driven architecture. http://www.omg.org/
mda/index.htm.

[23] Object Management Group. Business motivation model. http://www.omg.

org/spec/BMM/1.1/PDF/, November 2008.

[24] Object Management Group. Business process model and notation (BPMN) 2.0.
http://www.omg.org/spec/BPMN/2.0/, January 2011.

[25] Object Management Group. Unified Modeling Language: Superstructure, ver-
sion 2.0, August 2005.

[26] Object Management Group. Unified Modeling Language: Infrastructure, ver-
sion 2.0, March 2006.

[27] Object Management Group. Service oriented architecture Modeling Language
(SoaML) - Specification for the UML Profile and Metamodel for Services
(UPMS), May 2012.

[28] Open Group. Service oriented architecture. http://www3.opengroup.org/

subjectareas/soa.

[29] Open Group. What is soa. http://www.opengroup.org/soa/source-book/

soa/soa.htm.

[30] W3C Working Group. Web services glossary. http://www.w3.org/TR/

ws-gloss/, February 2004.

[31] Paul Harmon. Second generation business process methodologies. May 2003.

[32] Peter Herzum and Olivier Sims. Business component factory : a comprehensive
overview of component-based development for the enterprise. J. Wiley & Sons,
New York, 2000.

[33] IBM. Service oriented architecture glossary. http://www-01.ibm.com/

software/solutions/soa/glossary/index.html.

[34] IBM. Business process execution language for web services - version
1.1. http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/

ws-bpel/ws-bpel.pdf, May 2003.

http://www.omg.org/mda/index.htm
http://www.omg.org/mda/index.htm
http://www.omg.org/spec/BMM/1.1/PDF/
http://www.omg.org/spec/BMM/1.1/PDF/
http://www.omg.org/spec/BPMN/2.0/
http://www3.opengroup.org/subjectareas/soa
http://www3.opengroup.org/subjectareas/soa
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.opengroup.org/soa/source-book/soa/soa.htm
http://www.w3.org/TR/ws-gloss/
http://www.w3.org/TR/ws-gloss/
http://www-01.ibm.com/software/solutions/soa/glossary/index.html
http://www-01.ibm.com/software/solutions/soa/glossary/index.html
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-bpel/ws-bpel.pdf

228 BIBLIOGRAPHY

[35] Nora Koch, Philip Mayer, Andreas Shroeder, and Alexander Knapp.
The UML4SOA profile. Technical report, Ludwig-Maximilians-Universität
München, 2010.

[36] Pal Krogdahl, Gottfried Luef, and Christoph Steindl. Service-oriented agility:
Methods for successful service oriented architecture (SOA) development, part
1: Basics of SOA and agile methods. 26 Jul 2005.

[37] Fabrice Marguerie. Getting a little closer to soa. http://madgeek.com/

Articles/SOA/EN/SOA-Softly.html.

[38] Philip Mayer, Nora Koch, and Andreas Schroeder. The UML4SOA profile.
Technical report, Ludwig-Maximilians-Universitaet Muenchen, July 2009.

[39] Philip Mayer and István Ráth. The sensoria development environment. link.
springer.com/chapter/10.1007%2F978-3-642-20401-2_30.

[40] Microsoft. Microsoft developer network library. http://msdn.microsoft.com/
library/default.aspx.

[41] Fabrizio Montesi, Claudio Guidi, Roberto Lucchi, and Gianluigi Zavattaro.
Jolie: a java orchestration language interpreter engine. Electron. Notes Theor.
Comput. Sci., 181:19–33, 2007.

[42] OASIS. Reference model for service oriented architecture 1.0. https://www.

oasis-open.org/committees/download.php/19679/.

[43] Michael P. Papazoglou andWillem Jan Van Den Heuvel. Service oriented design
and development methodology. Int. J. Web Eng. Technol., 2(4):412–442, July
2006.

[44] Visual Paradigm. Visual paradigm for uml 10.1 community edition. http:

//www.visual-paradigm.com/download/vpuml.jsp?edition=ce.

[45] Gianna Reggio, Christine Choppy, and E.Astesiano. CASL-LTL: A CASL ex-
tension for dynamic reactive systems version 1.0 - summary. In Technical Report
DISI-TR-03-36, DISI-Universita di Genova, Italia, 2003.

[46] Gianna Reggio, Maurizio Leotta, Filippo Ricca, and Egidio Astesiano. Chosing
the right style for modelling the business process with the UML: Complete
version. Technical Report DISI-TR-12-02, 2012. DISI-University of Genova-
Italy.

http://madgeek.com/Articles/SOA/EN/SOA-Softly.html
http://madgeek.com/Articles/SOA/EN/SOA-Softly.html
link.springer.com/chapter/10.1007%2F978-3-642-20401-2_30
link.springer.com/chapter/10.1007%2F978-3-642-20401-2_30
http://msdn.microsoft.com/library/default.aspx
http://msdn.microsoft.com/library/default.aspx
https://www.oasis-open.org/committees/download.php/19679/
https://www.oasis-open.org/committees/download.php/19679/
http://www.visual-paradigm.com/download/vpuml.jsp?edition=ce
http://www.visual-paradigm.com/download/vpuml.jsp?edition=ce

[47] S. Reiff-Marganiec, L. Blair, K.J. Turner, University of Stirling. Department of
Computing Science, and Mathematics. APPEL: The ACCENT Project Pol-
icy Environment/language. Technical report (University of Stirling. Dept. of
Computing Science and Mathematics). Department of Computing Science and
Mathematics, University of Stirling, 2005.

[48] Mike Rosen. Where does one end and the other begin. Jan 2006.

[49] Cristina Seceleanu, Aneta Vulgarakis, and Paul Pettersson. REMES: A resource
model for embedded systems. In In Proc. of the 14th IEEE International Con-
ference on Engineering of Complex Computer Systems (ICECCS 2009). IEEE
Computer Society, June 2009.

[50] David Sprott and Lawrence Wilkes. Understanding service oriented architec-
ture. January 2004.

[51] Martin Wirsing, Matthias Hoelzl, Nora Koch, Philip Mayer, and Andreas
Schroeder. Service Engineering: The Sensoria Model Driven Approach. In
Proceedings of Software Engineering Research, Management and Applications
(SERA 2008), Prague, Czech Republic, 2008. IEEE Computer Society.

[52] Martin Wirsing and Matthias M. Hölzl, editors. Rigorous Software Engineering
for Service-Oriented Systems - Results of the SENSORIA Project on Software
Engineering for Service-Oriented Computing. LNCS 6582. Springer, 2011.

[53] Aliaksei Yanchuk, Alexander Ivanyukovich, and Maurizio Marchese. A
lightweight formal framework for service-oriented applications design. In IC-
SOC, pages 545–551, 2005.

	Acknowledgements
	Abstract
	Contents
	Introduction
	Statement of problem
	Contributions
	Thesis layout

	State of Art
	Understanding SOA (Service Oriented Architecture)
	Extended UML for SOA
	Formal modelling for SOA
	Methods for developing service-oriented systems

	Case Studies
	Dealer Network
	Office Service system

	A View on Services and Service Systems
	Business Modelling
	Business and business process
	A precise method for business modelling
	How to model a business
	Modelling the Dealer Business

	PreciseSoa: a precise method for modelling service systems using UML
	PreciseSoa
	Modelling Dealer Networking System following PreciseSoa
	Office System Model Model following PreciseSoa

	Design Model of Service system in Casl4Soa
	Overview of Casl4Soa
	Casl4Soa Constructive Service System Model
	Casl4Soa property oriented model
	How to develop a Casl4Soa model
	Dealer Network Model in Casl4Soa
	Casl4Soa Model of Office System
	Tool support

	Service System Design
	Transformation patterns
	Place the System phase
	Eliminate Useless Parts phase
	Simplify Tasks phase
	Operationalize Tasks phase
	Introduce Services phase
	Applying design method to case study Dealer Network
	Validation of designed system

	Comparison and evaluation of the methods
	Conclusion and future work
	Appendix
	UML
	OCL - Constraints for UML
	CASL-MDL
	Profile

	List of Figures
	List of Tables
	Bibliography

