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Medical imaging is the technique and process that are used to view the human

body. It has been playing a key role in medicine for diagnosis, therapy planning

and treatment follow-ups. The in�uence and impact of digital images on modern

society is important, and image processing is now a critical component in science

and technology. The rapid progress in computerized medical image reconstruction,

and the associated developments in analysis methods and computer-aided diagnosis,

has propelled medical imaging into one of the most important sub-�elds in scienti�c

imaging [Dou09]. With the widespread use of imaging in medicine, the quality of

medical images becomes an important issue.

The arrival of digital medical imaging technologies such as Computerized Tomog-

raphy (CT), Single Photon Emission Computed Tomography (SPECT) , Positron

Emission Tomography (PET), Magnetic Resonance Imaging (MRI), Ultrasound

(US) imaging, has revolutionized modern medicine. Despite advances in technology

of acquisition and performance of reconstruction algorithms, the quality of med-

ical images is often a�ected by the limitations of resolution, contrast, noise and

artifacts during the acquisition, transmission, and processing of image data. This



6 Chapter 0. Introduction

makes it more di�cult to analyze or extract useful information and hence, the qual-

ity of pathological diagnosis and treatment can be seriously a�ected. Therefore,

to achieve the best possible diagnoses, lessen the chance of misdiagnoses and inap-

propriate treatment, it is necessary to adopt e�ective image processing methods to

obtain images of higher quality and reliability. That is also the motivation for this

thesis.

The quality of medical images depends on �ve principle characteristics as follows

[Spr95]:

1. Contrast sensitivity

2. Blurring and visibility of detail

3. Artifacts

4. Visual noise

5. Spatial resolution.

Many techniques have been addressed these characteristics in order to improve the

image quality of medical imaging. These techniques can be broadly divided to two:

during acquisition and after acquisition. The former includes special processing

modules embedded in the image acquisition systems to enhance the quality and also

the information content in the generated images. The latter refers to digital image

processing techniques used for the acquired images. In the scope of this thesis, we

focus on the problems of denoising and spatial resolution enhancement of digital

medical images after acquisition.

Before presenting the objectives and contributions of this work, let us brie�y

describe about the medical imaging modalities.

0.1 Medical imaging modalities

An imaging modality is an imaging system which uses a particular technique to

detect a certain physical signal arising from a patient and produce images. Many

medical imaging modalities have been proposed, some of them use ionizing radiation,

and others use non-ionizing. Ionizing radiation is a form of radiation that has

su�cient energy to ionize atoms and molecules within the body. In medical imaging,

ionizing radiation consists of X-rays and γ-rays, both of which need to be used

prudently to avoid causing harmful side-e�ects on the human body. Non-ionizing

radiation, such as high-frequency sound (ultrasound) and radio frequency waves, on

the other hand, does not have the potential to damage directly on the body and the

risks associated with its use are considered to be very low [Dou09].
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Figure 1: The wavelength and photon energy ranges of the electromagnetic waves

including the visible light, ultraviolet light, soft X-rays, hard X-rays, and γ-rays.

(source : http://en.wikipedia.org/wiki/X-ray)

In this section we concisely describe about the imaging modalities from X-ray,

γ-rays and non-ionizing radiation. For more detailed study, let us mention [Spr95,

Jan06, Dou09].

0.1.1 Images from X-rays

X-rays is a form of electromagnetic radiation with a wavelength shorter than ul-

traviolet rays, but longer than γ-rays, in the range of 0.01 to 10 nanometers, cor-

responding to photon energies from 100 eV to 100 keV (1eV = 1.6 × 10−19 J) (see

Figure 1).

Since it was discovered by Wilhelm Conrad Rontgen in the last decade of the

19th century, X-rays imaging has been widely used in clinical diagnosis. Medical

images from X-rays include projection radiography, �uoroscopy, mammography, and

CT. These modalities all work on the same basic principle: an X-ray beam is passed

through the body where a portion of the X-rays are either absorbed or scattered by

the internal structures, and the remaining X-ray pattern is transmitted to a detector

for recording or further processing by a computer. In general, objects with higher

density (such as bones and calcium deposits) absorb more X-rays than objects with

lesser density. Thus, these objects leave a di�erent image on the detector. Spe-

cially trained or experienced physicians can read these images to diagnose medical

conditions or injuries.

0.1.1.1 X-ray Projection Radiography (X-PR)

The X-ray projection radiography is the historically oldest medical imaging modal-

ity. This is also the simplest modality compared with the others modalities. Its

principle is transparent with ability of providing directly the images without any

reconstruction, as illustrated in Figure 2. The image is formed of intensity values

of the X-rays modi�ed after passing through the imaged object, e.g., a part of the

http://en.wikipedia.org/wiki/X-ray
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Figure 2: Principle of X-ray projection imaging.

Figure 3: Typical X-ray images (source: http://radiopaedia.org).

patient's body. Typical examples of X-ray images are shown in Figure 3.

X-ray projection radiography is used in many types of examinations and proce-

dures. Some examples include the possibilities to �nd orthopedic damage, tumors,

pneumonias, foreign objects, etc.

0.1.1.2 Fluoroscopy (FC)

Fluoroscopy is a X-rays-based imaging technique, where images of moving body

parts and internal structures of a patient can be seen in real-time. It was invented

by Thomas Edison in 1896. Fluoroscopy is used mostly for studies that require

observation of dynamic body functions.

During a �uoroscopy procedure, an X-ray beam is passed through the body. The

image is transmitted to a monitor so that the body part and its motion can be seen

http://radiopaedia.org
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(a) (b)

Figure 4: (a) Fluoroscopy with image ampli�er, (b) a typical �uoroscopy image.

in detail (see Figure 4).

0.1.1.3 Mammography (MG)

Mammography is a type of medical imaging that uses low-energy X-rays to create

images of the internal structures of the breasts. These images, called mammograms,

are used to �nd early signs of breast cancer in women such as a dense mass or

clusters of calcium (microcalci�cations).

X-ray images of the breast can be captured on �lm or stored directly onto a

computer:

• Screen-�lm mammography where X-rays are beamed through the breast to a

cassette containing a screen and �lm that must be developed.

• Full �eld digital mammography where X-rays are beamed through the breast

to an image receptor. A scanner converts the information to a digital picture

which is sent to a digital monitor and/or a printer.

Figure 5 shows a digital mammography system and a typical mammography image.

0.1.1.4 Computed Tomography (CT)

Computed tomography scanning, also called computerized axial tomography scan-

ning, is a medical imaging technique that uses X-rays to create cross-sectional im-

ages or "slices" of the body. These cross-sectional images are used for a variety of

diagnostic and therapeutic purposes. It became the historically �rst tomographic

modality entirely based on digital reconstruction of images.
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(a) (b)

Figure 5: (a) A digital mammography system (source http://www.medicalexpo.

com/), (b) a typical mamography image.

The formation of a CT image includes three phases: scanning phase, recon-

struction phase and digital-to analog conversion phase (see Figure 6). The scanning

phase produces data, but not an image. The reconstruction phase processes the ac-

quired data and forms a digital image while the visible and displayed analog image

is produced by the digital-to analog conversion phase.

Figure 6: The formation of a CT image (source http://www.sprawls.org/

resources/).

In the scanning phase, a fan-shaped X-ray beam is scanned around the body. The

amount of X-radiation penetrating the body along each individual ray (pathway)

through the body is measured by the detectors that intercept the X-ray beam after it

http://www.medicalexpo.com/
http://www.medicalexpo.com/
http://www.sprawls.org/resources/
http://www.sprawls.org/resources/
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Figure 7: Illustration of the scanning phase (source http://www.sprawls.org/

resources/).

passes through the body. The data recorded by the detectors are stored in computer

memory for later image reconstruction. Figure 7 illustrates the scanning phase of a

slice, where one view represents the projection of the fan-shaped X-ray beam from

one speci�c position of X-ray tube focal spot. A complete scan is performed by

rotating the X-ray tube completely around the body and projecting many views.

The complete data set produced from a complete scan contains su�cient information

for the reconstruction of a slice image.

0.1.2 Images from γ-rays

Nuclear imaging (or γ imaging) is a branch of medical imaging that uses the γ-rays

emitted from radioactive isotopes attached to pharmaceutical tracers to represent

distribution of radionuclides inside the patient's body. These radio-labeled phar-

maceutical tracers are ingested or injected into the body where they are circulated

and/or metabolized. The γ-rays which they emit during radioactive decay pass out

of the body are measured by detectors (gamma cameras) placed around the patient,

and produce images which show the functional or metabolic activity in the relevant

organs. The nuclear imaging is utilized to diagnose and determine the severity of

or treat a variety of diseases, including many types of cancers, heart disease, gas-

trointestinal, endocrine, neurological disorders and other abnormalities within the

body.

There are three basic imaging modalities in nuclear medicine: the planar scintig-

raphy (or planar γ-imaging), the single-photon emission computed tomography

(SPECT), and the positron emission tomography (PET).

http://www.sprawls.org/resources/
http://www.sprawls.org/resources/
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0.1.2.1 Planar scintigraphy

In planar γ-imaging, a single gamma camera, or a dual-head gamma camera to

simultaneously take anterior and posterior images, is used to detect the emitted

γ-rays. Unlike in radiography, γ-rays are emitted in all directions and pass through

the body. Thus, in order to locate the source of the γ-rays, a collimator is placed

between the patient and the detector. The collimator is a slab of lead with a

geometric array of holes in it (see Figure 8(b)). It only allows γ-photons incident

on it almost perpendicularly to pass through; photons from other directions are

absorbed by the lead. Thus, only a very small portion of the γ-photons have the

direction enabling passage through the collimator. These photons is consequently

detected by the gamma detector.

(a) (b) (c)

Figure 8: (a) Schematic diagram for obtaining a planar nuclear medicine image,

using a gamma camera. (b) A typical collimator. (c) An example of a planar

scintigraphy, (left, anterior; right, posterior) (source: [Dou09]).

The gamma detector consists of a scintillation crystal to convert the γ-rays

into low-energy photons (usually in the visible range). The most commonly used

scintillation crystal is sodium iodide, doped with thallium, NaI (Tl). These lower-

energy photons are subsequently collected by photomultiplier tubes (PMTs). The

purpose of the photomultiplier tubes is to convert the light into the electrical signal

and ampli�es the signal. From the position and outputs of the photomultiplier tubes,

the position and the energy of the original γ-photon interaction can be calculated

and then used to form an image of the distribution of radioactivity. A schematic
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(a) (b)

Figure 9: (a) A dual head system (source: http://www.medgadget.com/). (b)

Several SPECT images of brain (source: [MS03]).

diagram for obtaining a planar nuclear medicine image, using a gamma camera, is

illustrated in Figure 8(a). Figure 8(c) shows an example of a planar scintigraphy.

0.1.2.2 SPECT imaging

In single-photon emission computed tomography, SPECT, a rotating gamma camera

(single or multiple-head) is used to detect the emitted γ-rays from multiple angles,

which are used to reconstruct cross-sectional images. The acquired data is then used

to reconstruct cross-sectional or three dimensional images.

The advantage of SPECT over planar scintigraphy is that while planar scintig-

raphy displays a single view of radiotracer distribution in patients (thyroid, ven-

tilation/perfusion, or whole-body bone images), SPECT can display slice (2-

dimensional) or volume (3-dimensional) images of radiotracer distribution. SPECT

scanning is mainly used to �nd out how well an organ is functioning by looking at

the supply of blood to its tissues. SPECT scanning is particularly useful for assess-

ing the function of the brain, heart, liver, and lungs. We show in Figure 9 a typical

SPECT system and several SPECT images of brain.

0.1.2.3 PET imaging

Positron emission tomography, PET, is a highly specialized imaging technique which

enables the visualization of metabolic processes in the body based on detecting

γ-rays emitted when certain tracer compounds labeled with positron-emitting ra-

dionuclides are injected into the subject of the study. PET imaging is often used to

illustrate physiological function (e.g. perfusion, metabolism). It gives information

about the chemical activity of tissues or organs. It can also be used to assess blood

�ow.

http://www.medgadget.com/


14 Chapter 0. Introduction

Figure 10: Photon-pair emission in a positron-decay radionuclide and its detection.

The tracer compound used in PET imaging is created by incorporating a small,

positron-emitting radioisotope with a short half-life (such as carbon-11, 11C (20.3

min), nitrogen-13, 13N (9.97 min), oxygen-15, 15O (2.03 min), and �uorine-18, 18F

(109.8 min)) into a metabolically active molecule (such as glucose, water or am-

monia). Such labeled compounds are known as radiotracers. When a positron is

emitted within a patient, it travels up to several millimeters while losing its kinetic

energy. The positron �nally meets with an electron, which leads to annihilation,

producing two high-energy (511-keV) photons (γ-rays) traveling from the annihi-

lation site in opposite directions. The patient is surrounded by multiple rings of

gamma photon detectors, so that no detector rotation is required (see Figure 10).

In a PET camera, when an incident photon hits on a detector, it generates

a timed pulse. These pulses are then combined in coincidence circuitry, and if

the pulses fall within a short time-window (around 2-20 nanoseconds), they are

deemed to be coincident. Thus, a pair of photons is supposed to be a product of

an annihilation event, if their pulses are coincident. Two coincidence γ-photons

represent a straight line, and the original positron-emitting radiopharmaceutical

must be somewhere along that line. In this way, positional information is gained

from the detected radiation without the need for a physical collimator.

A typical PET system is illustrated in Figure 11(a). PET images (Figure 11(b))

have less noise and better spatial resolution than planar scintigraphy and SPECT

images [Dou09]. Currently, PET scans are most commonly used to detect cancer,

heart problems (such as coronary artery disease and damage to the heart following a

heart attack), brain disorders (including brain tumors, memory disorders, seizures)

and other central nervous system disorders.
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(a)

(b)

Figure 11: (a) An example of PET scans system. (b) A realistic heart phantom

imaged along three axes by SPECT with 99mTc (top row) and PET with 18F-

�uorodeoxyglucose (bottom row) (source: [Dou09]).

0.1.3 Medical images obtained with non-ionizing radiation

This section describes two medical imaging modalities obtained with non-ionizing

radiation: Ultrasound Imaging and Magnetic Resonance Imaging.

0.1.3.1 Ultrasound Imaging

Ultrasound imaging (sonography) uses high-frequency (around 2-20 MHz) sound

waves to view soft tissues such as muscles and internal organs.

In an ultrasound exam, a hand-held transducer is placed in direct contact with

the patient's body. The transducer performs several functions as follows. The �rst

function is to sends out the ultrasound pulses when electrical pulses are applied to

it. When a beam of ultrasound pulses is passed into a body, most of the ultrasound

energy is absorbed and the beam is attenuated. Some of the pulses will be re�ected

by internal body structures and send echoes back to the surface where they are
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Figure 12: The basic ultrasound imaging process (source: http://www.sprawls.

org/ppmi2/USPRO/)

picked up by the transducer and converted back into electrical pulses that are then

processed by the system and formed into an image. The image is based on the

frequency and strength (amplitude) of the returning sound signal and the time it

takes to return from the patient to the transducer. Therefore, the ultrasound image

is a display showing the location of re�ecting structures or echo sites within the

body. The location of a re�ecting structure (interface) in the horizontal direction is

determined by the position of the beam. In the depth direction, it is determined by

the time required for the pulse to travel to the re�ecting site and for the echo pulse

to return. The basic ultrasound imaging process is illustrated in Figure 12.

There are three modes of ultrasound imaging including: (1) b-mode (the most

common mode) - the basic two-dimensional intensity mode, (2) m-mode - to as-

sess moving body parts (e.g. cardiac movements), and (3) Colour mode - pseudo

colouring based on the detected cell motion using Doppler analysis.

Main advantages of Ultrasound imaging are (a) non-radiation, (b) inexpensive,

(c) excellent for cyst, foreign bodies and obstetric imaging, and (d) real time imaging

[WBO08]. However, Ultrasound image contains more noise content than any other

imaging modality, especially speckle noise.

0.1.3.2 Magnetic Resonance Imaging

Magnetic resonance imaging (MRI) is a non-ionizing medical imaging technique that

uses strong magnetic �elds (around 1-2 tesla (T)) and radiofrequency (200MHz-2

GHz) electromagnetic radiation to produce cross-sectional images of organs and

internal structures in the body.

http://www.sprawls.org/ppmi2/USPRO/
http://www.sprawls.org/ppmi2/USPRO/
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In most MRI devices, the strong magnetic �elds around a patient's body are

created by superconducting magnets, in which electric current is passed through

coils of superconducting wire whose electrical resistance is virtually zero. Human

body is made up of atoms. Thus, when the atoms in the body are exposed to a

strong magnetic �eld, they line up parallel to each other. Radio waves are sent from

a transmitter then brie�y knock the atoms out of alignment. As they realign, the

atoms emit tiny signals, which are received by receiver in the machine, and these

signals are used to produce digital images of the area of interest.

MRI provides good contrast between the di�erent soft tissues of the body, which

makes it especially useful in imaging the brain, muscles, the heart, and cancers com-

pared with other medical imaging techniques such as X-ray radiography, Ultrasound,

and CT.

0.2 Objectives

The motivation of this thesis is to deal with the problem of image quality for medi-

cal imaging. As mentioned above, there are many di�erent factors which a�ect the

quality of medical images in which especially noise and spatial resolution are impor-

tant factors. On the one hand, low-resolution reduces the level of detail discernible

in image, e.g. structures of smaller size than the image resolution would not be

detected, or smaller objects that are adjacent to one another would not be di�er-

entiated. On the other hand, noise which is the major limiting factor of medical

image quality, may a�ect adversely the contrast and the visibility of details which

could be of vital information, thus compromising the accuracy and the reliability of

pathological diagnosis or surgery purposes.

In the scope of this thesis, we focus on denoising and enhancing spatial resolution

which can help improving the image quality and accuracy of useful information and

hence the diagnosis.

Generally, denoising allows reducing or removing noise in an image, restoring

actual information, and helping the medical experts to reliably distinguish useful

information. However, due to spatial resolution of the acquisition system, certain

details or features which could be of crucial information and interest the experts,

would not be discriminated by denoising. Enhancing spatial resolution is then an

alternative solution to improve the resolution, i.e. to detect and discriminate the

smallest possible details that can be seen. Super-resolution is general technique to

alleviate this problem. Until now, existing super-resolution methods o�er promising

performances, but these methods can not e�ectively deal with noisy images. The

challenge is also to incorporate denoising and super-resolution in the same framework
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o�ering the possibility to improve spatial resolution with the best quality as possible.

The objective of this work is to investigate e�ective methods for denoising and

super-resolution in order to improve the quality and the spatial resolution of medical

images. Furthemore, we are motivated by the challenge to integrate denoising and

super-resolution in the same framework.

The problem of image denoising and the problem of image super-resolution can

be described in the following subsections.

0.2.1 Image Denoising Problem

Noise is the unwanted, random �uctuations in the pixel values of an image, re-

sult in the degradation of the image quality [Dou09] (as can be seen in Figure 13).

Denoising is thus an important application of image processing to improve the qual-

(a) CT image of abdomen (b) MRI image of breast (c) US image of high-grade

breast cancer

Figure 13: Noisy images, source (http://rad.usuhs.edu)

ity of image. To propose an e�ective denoising method which would be consistent

with medical image data, understanding the characteristics of noise is important.

In the following part, we brie�y present the characteristics of noise on the medical

imaging modalities.

0.2.1.1 Noise properties in medical imaging

In a digital imaging system, there are two principal sources of noise that are pho-

ton noise (also known as quantum noise), which arises from the discrete nature of

electromagnetic radiation and its interactions with matter, and electronic noise in

detectors or ampli�ers. In addition, the process of digitization is also a cause for

adding noise (quantization noise) to an image. Quantum noise usually obeys the

Poisson distribution law, and electronic noise is almost Gaussian. In fact, the noise

produced within an imaging system is a combination of several noise sources, and

it may not be possible to identify them clearly.

http://rad.usuhs.edu)
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In medical X-ray and γ-ray imaging systems, the image is constructed based on

the number of photons detected per unit time. Thus, the image has a spatial and

temporal randomness. The quantum noise is a fundamental and unavoidable noise

source in medical imaging. In a good medical imaging system, quantum noise is

the dominant source of random �uctuation [Dou09]. Due to the fact that quantum

noise is characterized by Poisson statistics, Poisson noise can be found in all types of

images formed with X-rays or γ-rays. However, in the case of low-dose CT images,

the noise distribution has an approximated Gaussian functional, instead of usually

assumed Poisson distribution [LS92, LLHL02].

In magnetic resonance imaging, the signal is measured through a quadrature

detector that gives the real and the imaginary signals. The noise in each signal is

assumed to have a Gaussian distribution with standard deviation σ. The real (R)

and the imaginary (Im) images are reconstructed from the acquired data by the

complex Fourier transform. Because the Fourier transform is a linear and orthogonal

transform, it will preserve the Gaussian characteristics of the noise. However, the

�nal magnitude image is formed by calculating the magnitude (
√
R2 + Im2), pixel

by pixel, from the real and the imaginary images. This is a nonlinear mapping and

therefore the noise distribution is no longer Gaussian, it is known as the Rician noise

[GP95].

In medical ultrasound imaging, the image quality is often degraded by an inher-

ent imaging artifact called speckle noise. This degradation is unavoidable interfer-

ence e�ects, which will be caused by scattering of the ultrasound beam from tissue

inhomogeneities [AT79]. An example of ultrasound image corrupted by speckle noise

is shown in Figure 13(c).

0.2.1.2 Image denoising

Denoising is an essential step to improve the image quality. It is also a required

pre-processing step in many applications in image processing and pattern recogni-

tion, from simple image segmentation tasks to higher-level computer vision ones as

tracking and object detection. Therefore, estimating an image that is degraded by

noise has been of high interest to a wide community of researchers.

Basically, the goal of image denoising is to e�ectively remove noise, while retain-

ing important features such as edges and �ne details as much as possible. In the

domain of image denoising, a lot of e�ective methods have been proposed such as

the total variation-based methods, sparcifying transform-based methods or non-local

means-based methods. However, most of the state-of-the-art methods are designed

for removing Gaussian white noise, while as mentioned above, noise in medical image

is often very complex. Moreover, unlike conventional denoising methods, medical
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image denoising needs to satisfy some following conditions:

1. It has to be consistent with the type of noise in the image.

2. It should e�ectively denoise while preserving edges, as well as small structures

as much as possible, because subtle details may reveal critical pathological

information.

Although many denoising methods have been proposed, satisfying the two conditions

above is still a hard challenge. Therefore, studying e�ective denoising methods

adapted to each speci�c type of medical imaging remains one of the challenges in

the study of medical imaging.

0.2.2 Super-Resolution Problem

Essentially, image resolution is the ability to di�erentiate small objects. Precisely,

it refers to the size of the smallest detail that can be distinguished in an image. In

medical imaging, image resolution is limited by several factors such as hardware,

time limitations and so forth, leading to a degradation of image quality. In many

cases, the acquired images have to be upsampled to match to a speci�c resolution.

In such cases, image interpolation techniques such as B-spline interpolation, cubic

interpolation have been traditionally applied. However, the resulting images of-

ten su�er from blurring especially in edges. Moreover, the classical interpolation

methods are often not e�ective in the case of image being a�ected by noise.

Super-Resolution (SR) methods are known as more e�ective methods to enhance

image resolution. The term super-resolution is used for naming any technique that

exploits the knowledge contained in one or several low-resolution (LR) images to

produce an image that has a higher spatial resolution than that of the original

images. Up to now, a large number of SR approaches have been developed. Broadly,

these methods may be divided into two main groups: multi-image super-resolution

and single-image super-resolution.

1. Multi-image SR methods usually use information extracted from a few LR

images of the same scene. The �rst and most important step of these methods

is motion estimation, or registration between LR images. Precision of the

estimation is crucial for the success of the whole method. Most of the multi-

image SR methods assume that shifts are exactly known. Such assumption is

only feasible when considering a static scene. Indeed, in medical imaging, it

is not easy to estimate accurately the motion between LR images, because it

may involve not only horizontal and vertical shifts, but also rotation angles

and possibly other complex movements.
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2. In the second group, also known as example-based image SR techniques or

single-image SR, a high resolution (HR) image is estimated from only one

LR image, with the help of one or more example images. This approach is

very popular in recent years. The advantage of the single-image SR methods

is that they do not require LR images taken from the same scene as well as

registration. Nevertheless, the limitation of this approach is that it can be

e�ective only if the example images are similar to the image to be enhanced.

We are interested in the example-based SR techniques of the second group. This

is mainly due to two reasons:

• First, this approach does not require motion estimation.

• Second, the example-based approach is a learning approach which requires

having examples from data. This is possible in medical imaging, because many

images of di�erent modalities are available. Good quality medical images can

be used as examples and for training.

We aim at proposing novel and e�ective example-based SR solutions which should

be consistent with medical imaging.

0.3 Our Contributions

This thesis introduces some e�ective methods for denoising and super-resolution of

medical images. Our proposed methods in this work are based on the interesting

observation that lots of images are taken from the same type of subject at similar

locations, and many of them can be considered as standard images (high quality or

acceptably and proven as noiseless images or passed a preprocessing step) by experts.

These images can be referred to as examples. Note that these images can be taken

on di�erent patients. Therefore, it will be very helpful if we could use a collection

of such standard images for improving spatial resolution as well as removing noise

on other images. In the proposed methods, we assume that with a given input

image, there exists a set of standard images acquired at nearly the same location.

These images will be used as prior information in the proposed models, making

them consistent with medical images. By this way, we can also take the bene�ts

o�ered by the redundancy of information, i.e., the repetition of local structures of

images that tends to recur many times inside the images taken at nearby location

in the human body. For our models, we adopt learning approach to take account

for the available standard images also referred to as examples, in a convenient way

and take advantages of this approach. Our proposed models are all dictated by
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Table 1: The applications of the proposed denoising methods

Method
Type of medical imaging

CT X-PR FC MG PET/SPECT MRI US

KRRD Y es Y es

kNND Y es Y es Y es Y es Y es

SWMGD Y es∗

example-based and learning approach. So, in this thesis, we propose three example-

based methods for denoising and two example-based methods for super-resolution

with the ability of dealing e�ciently with noisy images.

Our contributions related to denoising and super-resolution are summarized in

the next section.

0.3.1 Denoising Methods

To cope with noise, we propose three novel learning-based methods:

1. Kernel Ridge Regression-based Denoising method (KRRD)

2. k -Nearest Neighbor-based Denoising method (kNND)

3. A Sparse Weight Model for Gaussian Denoising (SWMGD).

The details of these methods are described in Chapter 2. Based on statistics of

noise distributions on medical imaging modalities, the applications of the proposed

denoising methods can be summarized as in Table 1. Note that in Table 1 we use

notation Y es∗ for SWMGD to indicate that it is a good method for CT image

denoising compared with the other two methods.

In the following, we present the main idea of the proposed methods.

0.3.1.1 The �rst method (KRRD)

We have proposed a new approach for reducing Gaussian noise and Rician noise

in medical images, based on the kernel ridge regression. In the proposed method,

denoising is performed pixel-wise, and consists of two independent phases: training

phase and denoising phase.

Training phase: The training phase is performed in the three steps as follows:

1. A training set is established from the database of standard images for a

given noise (type of noise and noise level).
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2. A robust classi�cation of the training set is performed to obtain di�erent

groups according to some image features, namely region homogeneity,

texture/edge zones and luminance.

3. A nonlinear regression function is determined for each training group.

The training phase can be realized o�-line. The result of this phase is a set of

the trained regression functions. These functions learn the relationships from

the examples of the training set.

Denoising phase: In this phase, the denoising of an input noisy image is performed

based on the regression functions trained in the training phase. This method

can be consistent with the Gaussian noise or Rician noise.

0.3.1.2 The second method (kNND)

We introduce another learning-based solution for the problem of denoising in medical

images. This method is proposed to overcome some limitations of the �rst method.

In particular, this method avoids using simulated noise in the training phase as in

the �rst method. Hence, the training set of this method is constructed by another

way compared with the �rst method. Unlike the �rst method where learning of the

regression functions is performed o�-line through the training phase, in this method

the learning the regression function and denoising for a given input are performed

in parallel based on the k nearest neighbors (with respect to the input) among the

training examples. A new model for determining the regression function is also

proposed. Denoising by this method is e�cient for Gaussian noise or Poisson noise.

0.3.1.3 The third method (SWMGD)

This is a denoising solution via sparse representation. This method is designed for

removing Gaussian noise, e.g. for CT images. As in two previous methods, we use in

this method a database of good image patches selected from a given set of standard

images. Here, denoising is performed patch-wise with the help of the constructed

database. Our main idea is that the desired noise-free patch can be represented

as a sparse positive linear combination of the example patches in the database.

To realize this idea, we establish an optimization problem such that its solution is

a sparse solution in which most of the non-zero coe�cients of the solution vector

corresponds to the patches in the database which can be considered as the good

candidates for the denoised output. In this method we use the assumption that

on each image patch, noise can be locally approximated by Gaussian distribution.

Note that, the noise levels of di�erent patches may be di�erent. Thus, one of the
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advantages of this method is that it can e�ectively deal with the case of images

corrupted by an additive noise where noise level can be unstable.

0.3.2 Single-Image Super-Resolution Methods

The single-image super-resolution approach, also referred to as example-based super-

resolution, is very popular in recent years by its e�ectiveness. Example-based meth-

ods perform super-resolution on each image patch with the help of database of

high-resolution and low-resolution patch pairs. Many methods have been proposed

in the literature, the di�erence between them often comes from the example database

construction and the super-resolution model on patch.

In this thesis, we focus on studying this approach for improving medical im-

age resolution. We propose two example-based methods for single-image super-

resolution. In our methods, the database is constructed such that it can be e�ec-

tively utilized even if the low-resolution image is a noisy one. The proposed methods

can be applied to noiseless images or noisy images. We assume that noise can be

approximated as having a Gaussian distribution such as CT images or high intensity

MRI images.

0.3.2.1 The �rst SR method (SPOCH)

This is a geometric method, where the projection of a point onto the convex hull of

a �nite set of points in high dimension space is �rst applied to the problem of single

image super-resolution. The method can be considered as a k-nearest neighbor-

based approach. As in the other k-nearest neighbor-based methods, to perform

super-resolution for a given input low-resolution patch, a subset of k best candi-

dates for the desired output patch is searched from the database of high-resolution

patches. In particular, we proposed a statistical criterion for the similarity in the

k-nearest neighbor search. Then, the output HR patch is estimated from these k

best candidates. However, unlike the other methods, in our proposed method, the

image patches are regarded as points in a high dimensional vector space. To esti-

mate the output, we assume that the high-resolution point lies on the convex hull of

the k candidate points and closest to the input point. Consequently, the projection

of a "coarse" HR the input point onto the convex hull of the HR candidate points

is de�ned or estimated as the true HR output.

Although the experimental results have demonstrated the performance of the

proposed method over some other state-of-the-art methods, the proposed method is

highly dependent on the similarity of the input LR image with the example images.

Another drawback is that it often requires a large database of HR and LR patch
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pairs. Moreover, this method is often limited by the choice of k and the quality

of the nearest neighbors. Due to blurring, down-sampling, and noisy data, it is

very di�cult to propose an ideal metric for measuring the similarity between image

patches.

0.3.2.2 The second SR method (SROW)

The second method has been proposed to overcome some of restrictions in the �rst

method. We proposed a positive sparse representation model for perform super res-

olution on image patch. Especially, by adapting the SWMGD denoising model (the

third denoising model in subsection 0.3.1.3) in the SR framework, this model pro-

vides very e�ciently super-resolution solution for noisy images. Thus, this method

is very useful in the case of noise present in the low-resolution image. The results

of the proposed method for medical images are very promising, demonstrating the

ability of the method for the potential bene�t of diagnosis.

0.4 Thesis organization

The thesis is organized as follows:

Chapter 1: This chapter presents some recent state-of-the-art denoising methods

on spatial domain and their applications in medical image denoising.

Chapter 2: This chapter introduces the proposed methods for medical image de-

noising. First, we describe the denoising method using the kernel regression

techniques, where we present, in details, how to construct a denoising ma-

chine through learning the regression from a training set. Then, we present

the second method where denoising is performed through learning on k-nearest

neighbors. Finally, the denoising method by sparse weight model is presented.

The proposed methods are evaluated using several objective and subjective

comparative tests with respect to some state-of-the-art methods. We also give

in this chapter a comparative study of the three proposed denoising methods.

Chapter 3: This chapter �rst describes an overview of the single-image image su-

per resolution approaches. The proposed methods are then presented and

compared with some other methods with both objective and subjective eval-

uations.

Chapter 4: This chapter provides a summary of the work presented in the previous

chapters, the contributions to knowledge already achieved in this research, and

directions for future work.



26 Chapter 0. Introduction

0.5 Publications

Journal Paper:

1. D. H. Trinh, M. Luong, F. Dibos, J. M. Rocchisani, C. D. Pham, H. D.

Pham, "An Optimal Weight Method for CT Image Denoising," Journal of

Electronic Science and Technology, Vol. 10, Issue: 2, pp.124�129, 2012.

International Conference Papers:

1. D. H. Trinh, M. Luong, F. Dibos, C. D. Pham, J. M. Rocchisani, H. D.

Pham, "An Optimal Weight Model for Single Image Super-Resolution," Inter-

national Conference on Digital Image Computing: Techniques and Applica-

tions (DICTA-2012), pp. 1�8, Fremantle, Australia, 2012.

2. D. H. Trinh, M. Luong, C. D. Pham, F. Dibos, H. D. Pham, J. M. Roc-

chisani, "Image Resolution Enhancement by Projection Onto Convex Hull,"

the 12th IEEE International Symposium on Signal Processing and Informa-

tion Technology (ISSPIT-2012), Ho Chi Minh City, Vietnam, December 2012.

3. D. H. Trinh, M. Luong, J. M. Rocchisani, C. D. Pham, F. Dibos, "Adaptive

Medical Image Denoising using Support Vector Regression," the 14th Interna-

tional Conference on Computer Analysis of Images and Pattern(CAIP-2011),

Part I, LNCS 2011, Springer-Verlag Berlin, Volume 6854/2011, pp. 494�502,

2011.

4. D. H. Trinh, M. Luong, J. M. Rocchisani, C. D. Pham, F. Dibos, "Medical

Image Denoising using Kernel Ridge Regression," the 18th IEEE International

Conference on Image Processing (ICIP-2011), pp. 1597�1600, Brussels, Bel-

guim, 2011.

5. D. H. Trinh, M. Luong, J. M. Rocchisani, C. D. Pham, F. Dibos, L. T.

Nguyen, "MR Image Denoising using Non-linear Regression and Fuzzy C-

means Clustering," IEEE International Conference on Advanced Technologies

for Communications (ATC-2011), pp. 256�259, Vietnam, 2011.



Chapter 1

Survey of image denoising

approaches

Contents

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

1.2 Image De�nition . . . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3 Image noise models . . . . . . . . . . . . . . . . . . . . . . . . 29

1.3.1 Additive Gaussian noise . . . . . . . . . . . . . . . . . . . . . 30

1.3.2 Poisson noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

1.3.3 Rician noise . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

1.3.4 Speckle noise . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

1.4 Image quality metrices . . . . . . . . . . . . . . . . . . . . . . 34

1.4.1 MSE - Mean Square Error . . . . . . . . . . . . . . . . . . . . 34

1.4.2 SSIM-Structural SIMilarity . . . . . . . . . . . . . . . . . . . 35

1.5 The state-of-the-art image denoising approaches . . . . . . . 36

1.5.1 Total Variation . . . . . . . . . . . . . . . . . . . . . . . . . . 37

1.5.2 Non-local means based methods . . . . . . . . . . . . . . . . 47

1.5.3 Data-adaptive Kernel Regression for Image Denoising . . . . 58

1.5.4 Image Denoising Via Learned Dictionaries and Sparse repre-

sentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

1.5.5 Block matching and 3D collaborative �ltering . . . . . . . . . 67

1.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

1.1 Introduction

Today, with the widespread use of imaging in medicine, in particular for pathologic

diagnosis and survey, the quality of medical images becomes an important issue. To

achieve the best possible diagnosis it is important that medical images be sharp,

and free of noise and artifacts. While the technologies for acquiring medical images
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continue to improve, resulting in images of higher and higher resolution and quality,

noise remains an issue for many medical images. Generally, medical images often

get complex types of noise introduced by various acquisitions, transmission, storage,

display devices. Denoising is a crucial task as noise may lead to improper diagnosis.

Therefore, removing noise remains one of the major challenges in medical imaging.

Given a noisy version f of the free-noise image u corrupted by noise n, the image

denoising problem is to recover u from its noisy version f . To this end, many solu-

tions have been proposed such as [LFB94, PM90, ROF92, BCM06, EA06, TFM07,

DFKE07, DD12]. The denoising solutions derive from various disciplines such as

linear and nonlinear �ltering, spectral and multiresolution analysis, probability the-

ory, statistics, partial di�erential equations. These methods rely on some explicit

or implicit assumptions about the true image in order to separate it from noise

component. In medical imaging, edges, textures and subtle details could very well

reveal crucial information about the patients. Therefore, denoising without a�ecting

the image details is always of high interest topic in the medical image processing

domain.

The classical �lters such as the mean �lter, the median �lter, the Gaussian

�lter [LFB94], etc. are only e�ective for homogeneous regions. Even though

these methods are often simple and easy to apply, their e�ectiveness is limited

since these often lead to blur or over-smoothing in high frequency regions such

as edges and textures. In order to overcome this drawback, many edge pre-

serving �lters have been proposed. The anisotropic di�usion �lter [PM90] at-

tempts to preserve edges by convolving the image in the orthogonal direction

of the local gradient. Although straight edges can be well preserved, curved

edges or features are usually degraded [BCM06]. In the last decade, many state-

of-the-art denoising approaches have been proposed including such as the To-

tal Variation-based methods [ROF92, BKP10, KBPS11], the Non-local means-

based �lters [BCM05, BCM06], the Data-adaptive Kernel Regression-based meth-

ods [TFM07], the Sparse Representation-based methods [EA06, AEB06, DlZS11],

the Block matching with 3D �ltering (BM3D) [DFKE07], and many of them have

been proven to be e�ective in reducing some common types of noise (e.g. Gaussian

noise, Poisson noise, Rician noise, speckle noise) in medical images.

The purpose of this chapter is to brie�y describe some recent advances in the

image denoising domain and the applicability of them for reducing noise of med-

ical images. First of all, we give in Section 1.2 the basic de�nition of continuous

and discrete images that will be used in the sequel of this thesis. Then, several

common noise models which are found in medical images are presented in Sec-

tion 1.3. Section 1.4 presents some common image quality metrics used to evaluate
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the performance of image processing methods. Some recent state-of-the-art image

denoising approaches are presented in Section 1.5. Finally, the conclusion is given

in Section 1.6.

1.2 Image De�nition

We start by expressing a mathematical representation of an image in a discrete and

continuous setting.

De�nition 1.2.1 (Continuous Image [[Mod04], Def. 3.1])

Let Ω ⊂ Rd, d ∈ N, be the image spatial domain. A function u : Ω → R is called a

d-dimensional image if the following conditions are ful�lled,

(1) u has a compact support, if Ω is not bounded,

(2) 0 ≤ u(x) <∞ for all x ∈ Ω,

(3)
∫

Ω u(x)dx <∞.

This representation of images is an elegant way to deliver a simple basis for

the analysis and construction of mathematical methods. It is actually only an

idealization, which cannot be realized on any computer and does not correspond to

the reality of applications. Therefore, we are also interested in digital image.

De�nition 1.2.2 (Discrete Image)

Let h > 0 and n1, n2, . . . , nd ∈ N. A grid matrix u ∈ Rn1×n2×...×nd is called a

d-dimensional image if the following conditions are satis�ed,

(1) 0 ≤ u(i1, i2, . . . , id) <∞, (i1, i2, . . . , id) ∈ Ω = {1, . . . , n1} × . . .× {1, . . . , nd},
(2)

∑n1
i1=1 . . .

∑nd
id=1 u(i1, i2, . . . , id) <∞.

Here, u(i1, i2, . . . , id) ∈ R describes the intensity values of a digital image at the

nodal points xi1,i2,...,id = (i1h, i2h, . . . , idh) of the pixel grid x = (xi1,i2,...,id), the

parameter h controls the resolution of the image. In Figure1.1, h controls the

horizontal and vertical distance of the pixel xi1,i2,...,id .

In the following, we list some common models of random noise found in medical

images, including the additive Gaussian noise, the Poisson noise, the Rician noise

and the Speckle noise.

1.3 Image noise models

Let us denote by f : Ω → R the observed image (noisy image) and u the ground

truth image (noise-free image). As f is corrupted by random noise, each pixel value
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Figure 1.1: Pixel grid with nodes in the case of 2D-image

f(x) of f is the realization of a random variable Fx. We will denote by F = (Fx)

the random vector consisting of independent random variables Fx and pF (·) the

probability density function (PDF) of F . Usually, it is assumed that the random

variables Fx are statistically pairwise independent and identically distributed. Then,

the conditional probability density function, pF (f |u), can be written as

pF (f |u) =
∏
x∈Ω

pFx(f(x)|u(x)). (1.1)

where pFx is the PDF of Fx.

1.3.1 Additive Gaussian noise

A random variable F is said to have a Gaussian distribution if its PDF is

pF (x) =
1

σ
√

2π
e−

1
2(x−µσ )

2

, (1.2)

where the parameters µ and σ2 are the mean (or expectation) and the variance,

respectively. The normal or Gaussian distribution of F is usually represented by,

F ∼ N (µ, σ2).

An image corrupted by Gaussian noise is often modeled as

f = u + n, (1.3)

with n(x) ∼ N (0, σ2) is noise component. Then, the conditional PDF (1.1) for

Gaussian noise is

pF (f |u) =
∏
x∈Ω

pFx(f(x)|u(x)) = e
−
∫
Ω

(
ln(σ
√

2π)+ 1
2σ2 (f(x)−u(x))2

)
dx
. (1.4)
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In medical imaging, noise may come from di�erent sources such as image ac-

quisition, transmission, storage, display devices, etc. According to the central

limit theorem which states that the sum of many random variables with various

probability density functions results in a variable with a Gaussian PDF. There-

fore, Gaussian noise can be found in most of medical images, especially in CT

images [LS92, LLHL02] and sometimes in high intensity MRI [Now99].

1.3.2 Poisson noise

Noise in the image f is assumed to have a Poisson distribution if for each pixel x ∈ Ω

we have

pFx(f(x)|u(x)) =
e−u(x)u(x)f(x)

f(x)!
. (1.5)

Thus,

pF (f |u) =
∏
x∈Ω

e−u(x)u(x)f(x)

f(x)!
. (1.6)

Furthermore, the expectation value of the Poisson variable f(x) is u(x) and equal

to its variance

E{f(x)|u(x)} = Var{f(x)|u(x)} = u(x). (1.7)

In medical imaging, the Poisson noise arises in systems involving counting pro-

cedures such as in standard X-ray projection radiography [GBG04], Fluoroscopy,

Mammography, PET/SPECT [VSK85, OF97].

Poisson noise component can be formally de�ned as

η(x) = f(x)− E{f(x)|u(x)}. (1.8)

It is easy to see that E{η(x)|u(x)} = 0 and Var{η(x)|u(x)} = Var{f(x)|u(x)} =

u(x). Since the noise variance depends on the true intensity value, Poisson noise is

signal dependent. We will show that it is possible to transform the Poisson process

in a standard normal process.

1.3.2.1 Variance stabilizing transformation

Due to the data-dependence of the noise variance, the Poisson denoising thus be-

comes more di�cult. One of the most popular solutions is to use a variance stabi-

lizing transformation. We introduce here the Anscombe transformation [Ans48]:

T (z) = 2

√
z +

3

8
. (1.9)
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Applying the Anscombe transformation to the noisy image f gives a new image

whose noise is asymptotically additive standard normal. Thus, one can use a Gaus-

sian denoising method to the transformed image T (f); the �nal estimate is then ob-

tained by applying an inverse Anscombe transformation to the denoised data. In the

following subsection we will present some inverse transformation of the Anscombe

transformation.

1.3.2.2 Unbiased inverse transformations

Assume that D is the denoised version of T (f). Then, D can be considered as an

estimate of E{T (f)|u}. In order to obtain the desired estimate of u, we need to

apply an inverse transformation of T to D.

The direct algebraic inverse of T in (1.9), denoted as VA, is

VA(D) = T −1(D) =

(
D

2

)2

− 3

8
. (1.10)

Due to the nonlinearity of T , we generally have

E{T (f)|u} 6= T (E{f |u}). (1.11)

Thus,

T −1(E{T (f)|u}) 6= E{f |u}. (1.12)

⇒ T −1(D) 6= u. (1.13)

Therefore, VA(D) is a biased estimator of u.

Another inverse transformation that provides asymptotic unbiasedness for large

counts is [Ans48]

VB(D) =

(
D

2

)2

− 1

8
. (1.14)

However, applying this transformation to low-count data leads to a biased esti-

mate [MF11]. Thus, there is a need for an exact unbiased inverse of T .
In [MF11], Makitalo and Foi have de�ned that the exact unbiased inverse of the

Anscombe transformation T is an inverse transformation VC that maps the values

E{T (f)|u} to the desired values E{f |u}

VC : E{T (f)|u} 7−→ E{f |u}. (1.15)

Since E{f |u} = u for any given u, the problem of �nding the inverse VC reduces to

computing the values E{T (f)|u}. In the discrete case, E{T (f)|u} is computed as

E{T (f)|u} =

+∞∑
f=0

T pF (f |u) = 2

+∞∑
f=0

(
ufe−u

f !
.

√
f +

3

8

)
. (1.16)
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In practice, to implement the exact unbiased inverse VC , equation (1.16) is com-

puted for a limited set of values u. Thereby, for arbitrary values of u, VC is deter-

mined by using linear interpolation on these computed values. For large values of

u, VC is approximated by VB.

1.3.3 Rician noise

In probability theory, the probability density of a random variable F that has a Rice

distribution is

pX(x|v, σ) =
x

σ2
e−

x2+v2

2σ2 I0

(xv
σ2

)
(1.17)

where x, v, σ > 0, I0(·) is the modi�ed Bessel function of the �rst kind of order zero,

I0(t) =
∞∑
k=0

(t/2)2k

(k!)2
. (1.18)

If R ∼ N (v cos θ, σ2) and Im ∼ N (v sin θ, σ2) are statistically independent normal

random variables for any θ ∈ R, then X =
√
R2 + Im2 has a Rician distribution

and is denoted by X ∼ Rice(v, σ).

As it is shown in [GP95], Rician noise was found in MRI images. In magnetic

resonance imaging, the signal is measured through a quadrature detector that gives

the real and the imaginary signals. The noise in each signal is assumed to have a

Gaussian distribution with standard deviation σ. The real (R) and the imaginary

(Im) images are reconstructed from the acquired data by the complex Fourier trans-

form. Because the Fourier transform is a linear and orthogonal transform, it will

preserve the Gaussian characteristics of the noise. However, the �nal magnitude

image is formed by calculating the magnitude (
√
R2 + Im2), pixel by pixel, from

the real and the imaginary images. This is a nonlinear mapping and therefore the

noise distribution is no longer Gaussian, it is known as the Rician noise.

If the image f is a version corrupted by Rician noise from the clean image u,

then

pFx(f(x)|u(x)) =
f(x)

σ2
e−

f(x)2+u(x)2

2σ2 I0

(
u(x)f(x)

σ2

)
. (1.19)

Therefore,

pF (f |u) =
∏
x∈Ω

pFx(f(x)|u(x)) = e
−
∫
x∈Ω

[
f(x)2+u(x)2

2σ2 −ln I0
(

u(x)f(x)

σ2

)
−ln

f(x)

σ2

]
. (1.20)

where σ denotes the standard deviation of the Gaussian noise in the real image R

and the imaginary image Im.

Notice that the Rice distribution tends to have a Rayleigh distribution

p(f) =
f

σ2
e−

f2

2σ2 , (1.21)
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when the signal-to-noise ratio (SNR) goes to zero (i.e., when u
σ → 0) and approaches

a Gaussian distribution at high SNR (i.e., when f
σ →∞) [GP95]. It means that the

Rician noise distribution is well approximated by a Gaussian in bright (high SNR)

regions while a Rayleigh distribution is more appropriate in dark (low SNR) regions.

1.3.4 Speckle noise

Speckle noise is often found in Ultrasound imaging. As pointed out in [TSP88],

when the scatterers density (the number of scatter per resolution cell) was more

than 10, this speckle noise followed a Rayleigh distribution. The density function

of the Rayleigh distribution with parameter σ > 0 is given by

p(x) =
x

σ2
e−

x2

2σ2 . (1.22)

However, as the original signal is usually pre-processed (e.g. �ltered and compressed)

to improve its visualization, this pre-processing modi�es the distribution of the orig-

inal signal. In [LMA89, TSP88, SS08], the authors show that the speckle noise in

the displayed images no longer follows the Rayleigh distribution. One of the most

successful model is the Loupas et al.'s model in [LMA89], where it is derived exper-

imentally that a displayed ultrasonic image f can be modeled as being corrupted

with a signal-dependent noise such that

f = u +
√
un (1.23)

where n ∼ N (0, σ2) is a Gaussian noise. Thus, we obtain

pF (f |u) = e
−
∫
x∈Ω

(
ln(σ
√

2π)+ 1
2σ2

(f(x)−u(x))2

u(x)

)
dx
. (1.24)

1.4 Image quality metrices

Typically, the performance of the image processing methods is often evaluated in

both objective measures and subjective quality assessment protocols. The objective

measure is determined through the image quality metrics. In the following, we

present two full reference image quality metrics which are used in this thesis.

1.4.1 MSE - Mean Square Error

The mean square error (MSE) metric is one of the most popular and widely used

�delity measure today. This is mainly due to its simplicity, the low computation
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time and because it can be easily integrated into an optimization process such as

the minimization of a cost function or a mathematical model. It is given by:

MSE =
1

MN

W∑
x=1

H∑
y=1

Ir((x, y)− I(x, y))2, (1.25)

where Ir(x, y) and I(x, y) are the reference and the image to be evaluated, respec-

tively. W and H represent the width and height of the image, respectively. From

this de�nition, di�erent variants have been proposed. The signal to noise ratio

(SNR) and peak signal to noise ratio (PSNR) are the most used:

SNR = 10 log10

∑W
x=1

∑H
y=1(Ir(x, y))2

MSE
, (1.26)

PSNR = 10 log10

R2

MSE
(1.27)

wherein R is the maximum �uctuation in the original image. The peak value R

is set equal to 255 for images coded on 8 bits per pixel. The PSNR measures the

intensity di�erence between two images. However, it is well-known that it can fail

to describe the subjective quality of the image. Since there is no universal accepted

image distortion measure, the PSNR is still widely used.

1.4.2 SSIM-Structural SIMilarity

To overcome the weakness of PSNR which is pixelwise, some authors have focused

their research into quality metrics based on an analysis of local structures of the

image content. Among the most popular and widely used metrics, we consider the

SSIM (Structural SIMilarity) proposed by Wang et al. [WBSS04]. This metric is

based on the assumption that the human visual system is more sensitive to structural

information. The local structural attributes of the image are described by luminance,

contrast and structure. Luminance, contrast, and structure are measured separately.

Given two vectorized images (or image blocks) x = {xk, k = 1, 2, . . . , N} and
y = {yk, k = 1, 2, . . . , N} to be compared, the luminance term is estimated as the

mean of each image

µx =
1

N

N∑
k=1

xk, (1.28)

the contrast term is estimated using standard deviation de�ned as

σx =

√√√√ 1

N − 1

N∑
k=1

(xk − µx)2, (1.29)



36 Chapter 1. Survey of image denoising approaches

and the structure term is estimated from the image vector x by subtraction of the

mean µx and normalizing by the standard deviation σx

sx =
x− µx
σx

. (1.30)

Then, the measurements µx, µy, σx, σy, sx, sy are combined using a luminance com-

parison function l(x,y), a contrast comparison function c(x,y), and a structure

comparison function s(x,y) to give a composite measure of structural similarity:

SSIM = l(x,y)α · c(x,y)β · s(x,y)γ , (1.31)

where α, β, γ are positive constants used to weight each comparison function, the

comparison functions are computed as:

l(x,y) =
2µxµy + C1

µ2
x + µ2

y + C1
(1.32)

c(x,y) =
2σxσy + C2

σ2
x + σ2

y + C2
(1.33)

s(x,y) =
σxyσy + C3

σxσy + C3
(1.34)

In this thesis, we follow the example in [WBSS04] by setting α = β = γ = 1,

and C3 = C2/2 to get the speci�c SSIM quality metric

SSIM =
(2µxµy + C1)(2σxyσy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
, (1.35)

where C1 = (L · K1)2, C2 = (L · K2)2 with L is the dynamic range, K1 = 0.01

and K2 = 0.03 are two constants determined by the authors to avoid instability in

homogeneous regions. The advantage of this metric is that no human visual system

model is explicitly employed, but its performance is considerably better than PSNR.

SSIM results vary from 0 to 1 where high value indicates high image quality. The

Matlab implementation of SSIM is downloadable from https://ece.uwaterloo.

ca/~z70wang/research/ssim/.

1.5 The state-of-the-art image denoising approaches

The objective of image denoising is to recover the original image u from the noisy ver-

sion f . Many e�ective denoising methods have been proposed and can be classi�ed

into two main categories: transform domain methods and spatial domain ones. In

this section we only focus on state-of-the-art image denoising approaches in the spa-

tial domain including the total variation-based methods, the non-local means-based

methods, the data-adaptive kernel regression-based methods, the sparse dictionary-

based methods, and the block matching 3D-based methods. In the scope of this

work, we consider only 2D grayscale images.

https://ece.uwaterloo.ca/~z70wang/research/ssim/
https://ece.uwaterloo.ca/~z70wang/research/ssim/
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1.5.1 Total Variation

First, we present some basic de�nition of the Total Variation (TV) and the TV-based

denoising problem. Then, we present the TV-based denoising problems applied for

Gaussian, Poisson, Rician and Speckle noises respectively. Finally, we present a new

concept of the TV, namely the Total Generalized Variation (TGV) [BKP10].

De�nition 1.5.1 (see for instance [Giu84])

Let Ω be a bounded open subset of R2. Given an image u ∈ L1(Ω), the total variation

u in Ω is de�ned as

TV (u) = sup
{∫

Ω
u(x)divv(x)dx

∣∣∣ v ∈ C1(Ω,R2), |v(x)| ≤ 1∀ x ∈ Ω

}
, (1.36)

where C1(Ω,R2) is the set of continuously di�erentiable vector functions on Ω.

The space of functions of bounded variation is de�ned by

BV (Ω) = {u ∈ L1(Ω) : TV (u) <∞}, (1.37)

where L1(Ω) is the space of integrable functions on Ω.

If u has a gradient ∇u ∈ L1(Ω), then∫
Ω
udivvdx = −

∫
Ω
∇u · vdx.

Thus,

TV (u) =

∫
Ω
‖∇u(x)‖dx, (1.38)

here ∇u = (u1, u2) denotes the gradient of u and ‖y‖ =
√
y2

1 + y2
2 for every y =

(y1, y2) ∈ R2.

1.5.1.1 Total Variation-based denoising

Denoising is an ill-posed problem. A good prior is necessary to obtain reasonable

solutions. This prior is formulated as a regularization term in an ennery function

to be minimized. Among regularizations, the total variation of a function is a

popular one due to its capacity of reconstruction with discontinuity (e.g. sharp

edges) preserving.

In variational framework, we start by the maximum a posteriori probability

(MAP) model for estimating u from f :

û = arg max
u

pF (u|f). (1.39)
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Applying Bayes's theorem we obtain

max
u

pF (u|f)⇔ max
u

pF (f |u)pF (u) (1.40)

⇔ min
u

(− ln pF (f |u)− ln pF (u)). (1.41)

In (1.41), the �rst term, − ln pF (f |u), describes the degradation process from u

to f . Thus, it depends on the model of noise in the image. The second term in (1.41),

− ln pF (u), is called the prior on u. The choice of prior will play an important role

in restoring a satisfactory image.

In the context of image reconstruction, it was �rst proposed by Rudin, Osher and

Fatemi in [ROF92] to consider the Total Variation (TV) as regularization functional

for the prior,

− ln pF (u) = TV (u) =

∫
Ω
‖∇u(x)‖dx. (1.42)

The denoising problem (1.41), accordingly, becomes

min
u

∫
Ω
‖∇u(x)‖dx+ λF(u, f), (1.43)

where, λ is is a positive constant which controls the trade-o� between two terms.

F(u, f) is called �delity term which satis�es

min
u
F(u, f) = −min

u
ln pF (f |u). (1.44)

From (1.43) and the probability densities given in Section 1.3, we obtain the TV-

based denoising models that will be described in the next subsections.

1.5.1.1.1 TV-based Gaussian denoising

From (1.4), we have

− ln pF (f |u) =

∫
x∈Ω

(
ln(σ
√

2π) +
1

2σ2
(f(x)− u(x))2

)
dx. (1.45)

⇒ F(u, f) =

∫
x∈Ω

(f(x)− u(x))2dx. (1.46)

Therefore, the TV model for Gaussian denoising is

min
u

∫
Ω
‖∇u(x)‖dx+ λ

∫
Ω

(u(x)− f(x))2dx. (1.47)

A lot of authors have studied the total minimization problem (1.47) and di�erent

approaches have been proposed, the readers may see for instance [ROF92, DK00,

Cha04, CDV10].

Figure 1.2 and Figure 1.3 present some experimental results on a synthetic im-

age and a CT image of pelvis, respectively. In particular, model (1.47) is solved
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(a) Gaussian noise (b) Noise-free image

(c) Anisotropic di�usion �lter

(ADF) [PM90]

(d) TV denoising [DK00]

Figure 1.2: Experiment on a synthetic image: (a) image corrupted by Gaussian

noise σ = 30, (b) noise-free image, (c) Denoised image using Anisotropic Di�usion

Filter (ADF) [PM90], (d) Denoised image using TV [DK00].

by the algorithm of Dibos and Koep�er [DK00]. Compared with the Anisotropic

Di�usion Filter (ADF), in these �gures TV gives better results. TV e�ectively de-

noises by smoothing �at regions while well preserving edges. However, we can see

the staircasing e�ect in regions with gradual image variations.

1.5.1.1.2 TV-based Poisson denoising

From (1.6), we have

− ln pF (f |u) =

∫
Ω

(u(x)− f(x) lnu(x) + ln(f(x)!)) dx (1.48)

⇒ F(u, f) =

∫
x∈Ω

(u(x)− f(x) lnu(x))dx. (1.49)

Therefore, the TV model for Poisson denoising is

min
u

∫
Ω
‖∇u(x)‖dx+ λ

∫
Ω

(u(x)− f(x) ln(u(x)))dx. (1.50)
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(a) Gaussian noise σ = 30 (b) Noise-free image

(c) ADF [PM90] (d) TV [DK00]

Figure 1.3: Experiment on a CT image of Pelvis: (a) noisy image corrupted by

Gaussian noise σ = 25, (b) original image (source: http://radiopaedia.org/), (c)

result of the Anisotropic Di�usion Filter (ADF) [PM90], (d) result of TV [DK00].

This model can be found in [LCA07, SBMB09]. The performance of the model is

illustrated in the Figure 1.4 and Figure 1.5. Although noise is e�ectively removed,

we can still see the appearance of staircasing e�ects in the denoised images.

1.5.1.1.3 TV-based Rician denoising

From (1.20), we have

− ln pF (f |u) =

∫
x∈Ω

(
f2(x) + u2(x)

2σ2
− ln I0

(
u(x)f(x)

σ2

)
− ln

f(x)

σ2

)
dx. (1.51)

⇒ F(u, f) =

∫
x∈Ω

(
u2(x)

2σ2
− ln I0

(
u(x)f(x)

σ2

))
dx. (1.52)

Then, we obtain the TV-based Rician denoising model that can be found in [MGS11,

GTV11]:

min
u

∫
Ω
‖∇u(x)‖dx+ λ

∫
x∈Ω

(
u2(x)

2σ2
− ln I0

(
u(x)f(x)

σ2

))
dx, (1.53)

Figure 1.6 describes an example for Rician denoising on a synthetic image by using

the TV-based method of Getreuer et al. in [GTV11]. Figure 1.7 shows experimen-

tal results of the method performed on a MRI image of pelvis. As can be seen

http://radiopaedia.org/
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(a) Poisson noise (b) Denoised image by

[LCA07]

(c) Noise-free image

Figure 1.4: Poisson denoising results with TV [LCA07]: (a) noisy image, (b) de-

noised image, (c) noise-free image.

(a) Poisson noise (b) Denoised image by [LCA07] (c) Noise-free image

Figure 1.5: Poisson denoising results on a PET image by TV method [LCA07]:

(a) noisy image, (b) denoised image, (c) noise-free image. Image courtesy of Dr.

Jean-Marie Rocchisani (Avicenne University Hospital, Bobigny, France).
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from Figure 1.7(b), the denoised result is very well, although some details are also

oversmoothed. However, �gure 1.6(b) shows that in the case of image with a grad-

ual variation of contrast and brightness, the denoised image appears �at intensity

regions and new contours.

(a) Rician noise (b) Denoised image by

[GTV11]

(c) Noise-free image

Figure 1.6: Rician denoising results with TV regularization on the synthetic image:

(a) noisy image, (b) denoised image by [GTV11] and (c) noise-free image.

(a) Rician noise (b) TV [GTV11] (c) Noise-free image

Figure 1.7: Rician denoising results on a MRI image of knee with TV regularization:

(a) noisy image, (b) TV-based denoise method [GTV11], (c) Original image (source:

http://www.mr-tip.com/serv1.php).

1.5.1.1.4 TV-based Speckle denoising

From (1.24), we have

− ln pF (f |u) =

∫
x∈Ω

(
ln(σ
√

2π) +
1

2σ2

(f(x)− u(x))2

u(x)

)
dx (1.54)

⇒ F(u, f) =

∫
x∈Ω

(f(x)− u(x))2

u(x)
dx. (1.55)

http://www.mr-tip.com/serv1.php
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Therefore, the TV model for Speckle denoising is

min
u>0

∫
Ω
‖∇u(x)‖dx+ λ

∫
Ω

(f(x)− u(x))2

u(x)
dx. (1.56)

Note that in this case the image is assumed strictly positive.

This model can be found in [KKWV05, ZY11]. The performance of the TV-

based method for speckle denoising is illustrated in Figure 1.8 and Figure 1.9. We

can see in Figure 1.9(b) the performance of the TV in removing speckle noise on an

ultrasound image of the parotid gland.

(a) Speckle noise (b) Denoised image by TV

[ZY11]

(c) Noise-free image

Figure 1.8: Speckle denoising result with TV on the synthetic image: (a) noisy

image, (b) denoised image by [ZY11], (c) Original image.

(a) Speckle noise (b) Denoised image by TV [ZY11]

Figure 1.9: Speckle denoising results on an ultrasound image of the parotid gland

with TV [ZY11]: (a) noisy image (source: https://sites.google.com/site/

pierrickcoupe/), (b) denoised image.

1.5.1.1.5 Remarks

As it can be seen, the TV-based denoising methods provides excellent results

https://sites.google.com/site/pierrickcoupe/
https://sites.google.com/site/pierrickcoupe/
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in edge preservation and smoothing of �at regions. However, it su�ers from a well-

known staircasing e�ect in regions with gradual image variations as can be seen in the

experiments with the synthetic image. These artifacts have been observed by several

authors, e.g., [Wei98, CMM00, CP04].To overcome this limitation, many methods

focus on introducing higher order derivatives into the regularization term, such as

in Chambolle and Lions [CL97], and in Chan et al. [CMM00], reducing e�ectively

the staircase e�ect. However, as shown in [BV11], staircasing e�ect may still occur,

usually in the neighborhood of edges. Recently, a new concept of total vatiation,

namely the Total Generalized Variation (TGV) has been introduced in [BKP10] by

Bredies, Kunisch and Pock, which is a generalization of the TV theory. It is shown

that the application of TGV in image denoising is superior than the conventional

TV-based methods. It not only is equivalent to TV in terms of edge preservation

and noise removal but also eliminates the staircasing e�ect.

1.5.1.2 Total Generalized Variation

In the case of 2D image, the TGV is de�ned as follows:

De�nition 1.5.2 ([BKP10])

Let Ω be a bounded open subset of R2. The TGV of order k for u ∈ L1(Ω) is de�ned

as

TGVkα(u) = sup

{∫
Ω
u(x)divkv(x)dx

∣∣∣ v ∈ Ck(Ω,Symk(R2)),

‖divlv‖∞ 6 αl, l = 0, . . . , k − 1

}
(1.57)

where α = (α0, α1, . . . , αk−1) > 0 are �xed parameters, Ckc (Ω,Symk(R2)) is the

vector space of k-times continuously di�erentiable Symk(R2)-valued mappings on Ω,

and Symk(R2) denotes the space of symmetric tensors of order k with arguments in

R2

Symk(R2) =

ξ : R2 × . . .× R2︸ ︷︷ ︸
k-times

−→ R
∣∣∣ ξ k-linear and symmetric

 .

As shown in [BKP10], the case k = 1, Sym1(R2) = R2 [BKP10] and thus

TGV1
α(u) = α0sup

{∫
Ω
u(x)divv(x)dx

∣∣∣ v ∈ C1(Ω,R2), ‖v‖∞ ≤ 1

}
= α0TV (u). (1.58)

This is the reason why TGV can be seen as a generalization of the total variation.
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The case k = 2, Sym2(R2) = S2×2, i.e. the space of symmetric matrices [BKP10].

Then, the value

TGV2
α(u) = sup

{∫
Ω
u(x)div2v(x)dx

∣∣∣ v ∈ C2(Ω, S2×2),

‖v‖∞ ≤ α0, ‖divv‖∞ ≤ α1

}
(1.59)

is called the total generalized variation of second order, where divv and div2v are

de�ned by

(divv)i =

2∑
j=1

∂vij
∂xj

, (div2v)i =

2∑
j=1

∂2vij
∂x2

j

+ 2
∑
j<i

∂vij
∂xi∂xj

.

As it is proven in [BV11], if Ω ∈ Rd is a bounded domain, u ∈ L1(Ω) then

TGV2
α(u) = min

ϑ
α1

∫
Ω
‖∇u− ϑ‖dx+ α0

∫
Ω
‖E(ϑ)‖dx, (1.60)

where ϑ ∈ L1(Ω,R2) such that the distributional symmetrized derivative E(v) =
1
2(∇v +∇vT ) is a measure.

By replacing TV(u) in (1.43) by TGV2
α(u), we obtain the TGV2-based denoising

model:

min
u

TGV2
α(u) +

λ

2
F(u, f). (1.61)

Therefore, we can obtain the TGV-based denoising model for each type of noise by

using the corresponding �delity term F(u, f) (see (1.46), (1.49), (1.52), (1.55)).

To see the e�ectiveness of the TGV, we show some experiments for Gaussian

denoising using TGV2
α regularization with the parameters α1 = 1 and α0 = 2.

Figure 1.10 describes a comparison between TV-based Gaussian denoising method

and TGV-based Gaussian denoising method on the synthetic image. It easy to

see that unlike the TV's result (Figure 1.10(c)), the denoising result using TGV2
α

(Figure 1.10(d)), leads to an absence of the staircasing e�ect. Another experiment

is shown in Figure 1.11, where a CT image of pelvis corrupted by Gaussian noise

with standard deviation σ = 25 is denoised by both the TV and TGV methods. We

can see that the image produced by the TGV (Figure 1.11(d)) looks smoother than

the one produced by the TV (Figure 1.11(c)).

Figure 1.12 shows the results performed on a MRI image of pelvis. As can

be seen, although noise is very e�ectively removed, both the TV and TGV-based

denoising methods over-smooth many small details.

Unlike the TV (1.38) which only takes the �rst derivative into account, TGV2
α(u)

proposes a way of balancing between the �rst and second derivative as can be seen

from (1.60). Intuitively, for a given image u, minimizing (1.60) requires that near
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(a) Noisy image, σ = 30 (b) Noise-free image

(c) TV denoising [DK00] (d) TGV2
α denoising [BV11]

Figure 1.10: Gaussian denoising results on the synthetic image with TV model

and TGV2
α model: (a) image corrupted by Gaussian noise with the standard

deviationσ = 30, (b) noise-free image, (c) denoised image by the TV [DK00] and

(d) denoised image by the TGV2
α [BV11]

edges (∇2u will be considerably larger than ∇u, it is bene�cial for the minimization

of (1.60) to choose locally v = 0), TGV2
α behaves like the TV model, while in

homogeneous regions (second derivative ∇2u is locally small and so, it is bene�cial

for the minimization of (1.60) to choose locally v = ∇u), TGV2
α may takes more

the second derivative into account. That is why this method leads to an absence of

the staircasing e�ect which is often observed in TV regularization [KBPS11].

1.5.1.3 Conclusion

Although the TV and TGV can e�ectively reduce noise as well as well preserve edges,

the small details and textures are often removed. On the other hand, an advantage

of this variational approach is that it can determine exactly the contours of the
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(a) Noisy image (b) Noise-free image [DK00]

(c) TV denoising (d) TGV2
α denoising [BV11]

Figure 1.11: Experiment on a CT image of pelvis: (a) noisy image corrupted by

Gaussian noise σ = 25, (b) Original image (source: http://radiopaedia.org/),

(c) Denoising using TV [DK00], (d) Denoising using TGV2
α [BV11].

subjects, so it may be used as a pre-processing step for segmentation to determine

position or size of the interesting subjects. It is suited for applications that do

not require photo-realistic images. Concerning the TGV, some of its applications

for MRI imaging can be found in [KBPS11]. However, till now there only exists

algorithm for solving the problem of Gaussian denoising by TGV-based model. The

problem of �nding e�ective algorithms for solving the other noise models is one of

our future works.

1.5.2 Non-local means based methods

In this section, we present the non-local means (NLM) method proposed in [BCM05,

BCM06] by Buades et al. and some of its applications for the reduction of common

types of noise in medical images.

NLM method is based on the observation that patches in an image tend to

redundantly recur many times inside the image. The method replaces the noisy

value by a weighted average of all the pixels of the image. The weight of a pixel is

computed based on the similarity between the image patch around it and the image

http://radiopaedia.org/
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(a) Gaussian noise (b) Denoised image by TV [CDV10]

(c) Denoised image by TGV [KBPS11] (d) Noise-free image

Figure 1.12: Denoising results on a MRI image of pelvis with TV and TGV reg-

ularization. (a) Image with Gaussian noise (σ = 20), (b) Denoised image by

TV [CDV10], (c) Denoised image by TGV [KBPS11], (d) Original image (source:

http://www.mr-tip.com/).

patch around the reference pixel. The method is a well-known denoising one due to

its simplicity and e�ectiveness. A comprehensive review can be found in [BCM06].

In the next subsections, we will present its applications for denoising images with

respect to di�erent types of noise. Let us begin with NLM for Gaussian noise.

1.5.2.1 Non-local means for Gaussian noise

Let us consider a discrete noisy image, f = {f(i) = u(i) +n(i), i ∈ Ω} (see (1.3)), in
which n is additive white Gaussian noise with zero-means and standard deviation

σ. The NLM �lter is written,

û(i) =
1

Wi

∑
j∈Ωi

w(i, j)f(j), (1.62)

http://www.mr-tip.com/
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Figure 1.13: Two dimensional illustration of the NLM �lter. The restored value at

pixel i is the weighted average of all intensity values of pixels j in the search region

Ωi. The weights w(i, j) are based on the similarity of the image patches f(Ni) and

f(Nj).

where Ωi is called search region with respect to the pixel i,Wi =
∑

j∈Ωi
w(i, j) is the

normalizing factor, and w(i, j) is the weight assigned to value f(j) for restoring the

pixel i. More precisely, the weight evaluates the similarity between the intensities

f(Ni) and f(Nj) of the patches Ni and Nj centered on pixels i and j respectively

(see Figure 1.13). The weight w(i, j) is computed as follows:

w(i, j) = exp
−d(f(Ni), f(Nj))

2h2
= exp

−‖f(Ni)− f(Nj)‖22,a
2h2

. (1.63)

where ‖.‖22,a is the Gaussian-weighted Euclidean distance. This distance is the tra-

ditional `2-norm convolved with a Gaussian kernel of standard deviation a. Here,

h acts as a �ltering parameter controlling the decay of the exponential function, it

depends on the standard deviation σ of the noise. Choosing a very small value of

h leads to results identical to the noisy input, while very large h gives an overly-

smoothed image. A solution for selecting the optimal value of h can be found

in [VK09] where Ville and Kocher use Stein's unbiased risk estimate (SURE) [Ste81]

to monitor the mean squared error of the NLM algorithm.

The e�ectiveness of the NLM can be seen in Figure 1.14 as an example. We can

see that the NLM method is very e�ective with Gaussian noise and well preserves

edges. As proven in [BCM06], the NLM outperforms the TV-based method. This

can be seen in Figure 1.15 and Figure 1.16. However, some small details can also

be lost.

Many solutions have been proposed to improve the NLM method, such as

[KB06, LWC+08, KBC07]. The applications in medical image denoising have
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(a) Gaussian noise (b) NLM [BCM06] (c) Noise-free image

Figure 1.14: Denoising results of the NLM method on a synthetic image with white

Gaussian noise, σ = 25: (a) Noisy image, (b) NLM's result, (c) Noise-free image

been largely exploited for reducing Rician noise in MRI images [MCCL+08,

MCMB+10, WDPC+08, TK10], Poisson noise [DTD10], speckle noise in ultrasound

images [CHKB09]. Unlike the Gaussian noise, the di�erent types of noise such as

Rician, Poisson and Speckle noises are image-dependent. Thus, this poses a greater

challenge for denoising problem. In the following subsections, we brie�y describe

how to adapt the NLM to these types of noise.

1.5.2.2 Non-local means for Poisson noise

In medical imaging, the Poisson noise is often found in X-ray projection imaging,

Fluoroscopy, Mammography, PET/SPECT, and Fluorescence Confocal Microscopy.

The observation model with Poisson noise can be written as follows:

f(x) = P(u(x)) (1.64)

where P is a general noise distortion function which is dominated by Poisson noise,

it means

p(f(x)|u(x)) =
u(x)f(x)e−u(x)

f(x)!
. (1.65)

Unlike Gaussian noise, Poisson noise is intensity dependent, which makes the

separation of image from noise very di�cult. To reduce Poisson noise, the Anscombe

root transformation [Ans48]:

T (f(x)) = 2

√
f(x) +

3

8
(1.66)

is usually used to convert approximately Poisson noise into Gaussian noise. Thus,

the noise can be removed by applying a conventional method designed for additive

Gaussian noise. Finally, an inverse transformation is applied to the denoised image
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(a) Gaussian noise (b) Noise-free image

(c) TV [CDV10] (d) TGV [KBPS11] (e) NLM [BCM06]

Figure 1.15: Denoising results of the NLM method on a MRI image of Pelvis: (a)

Image corrupted by white Gaussian noise with σ = 20, (b) Original image (source:

http://www.mr-tip.com/), (c) Denoised image by TV [CDV10], (d) Denoised im-

age by TGV [KBPS11], (e) Denoised image by NLM [BCM06].

to obtain the �nal estimate û (see Subsection 1.3.2). An experiment on the synthetic

image is illustrated in Figure 1.17.

Another method, Deledalle et al. in [DTD10] have directly adapted the NLM to

Poisson noise by using a pre-�ltered image f̂ of the noisy image f and re�ning the

weights w(i, j) in (1.63). Denote (f (1)(Ni), . . . , f
(k)(Ni), . . . , f

(P )(Ni))
T the vector-

ized image patch f(Ni), where P is the number of pixels in each patch. The NLM

�lter for Poisson noise is de�ned as in (1.62) with the weights rede�ned as

w(i, j) = exp

(
−Fi,j

α
− Gi,j

β

)
, (1.67)

where F and G are similarity terms respectively to compare noisy image and pre-

�ltered image with

Fi,j =
P∑
k=1

log
f (k)(Ni)

f (k)(Ni)f (k)(Nj)
f (k)(Nj)[

f (k)(Ni)+f (k)(Nj)
2

]f (k)(Ni)+f (k)(Nj)
(1.68)

http://www.mr-tip.com/
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(a) Gaussian noise (b) Noise-free image

(c) TV [CDV10] (d) TGV [KBPS11] (e) NLM [BCM06]

Figure 1.16: Denoising results of the NLM method on a pelvis CT image: (a) Image

corrupted by white Gaussian noise with σ = 20, (b) original image (source: http:

//radiopaedia.org/), (c) Results of TV [CDV10], (d) Result of TGV [KBPS11],

and (e) Result of NLM [BCM06].

Gi,j =

P∑
k=1

(f̂ (k)(Ni)− f̂ (k)(Nj)) log
f̂ (k)(Ni)

f̂ (k)(Nj)
. (1.69)

In [DTD10], the parameters α and β are automatically determined based on the

minimization of the Poisson unbiased risk estimator (PURE). We refer the reader

to [DTD10] for additional detailed explanations. The e�ectiveness of this method

can be seen in two experiments shown in Figure 1.18 and Figure 1.19.

1.5.2.3 Non-local means for Rician noise

Normally, the MRI image f = {f(k), k ∈ Ω} is reconstructed by computing the

inverse discrete Fourier transform of the measured signal components from real and

imaginary channels [Now99] denoted by fRe and fIm, respectively,

f = |fRe + ifIm|, (1.70)

where fRe = u cos θ + n1 and fIm = u sin θ + n2 are raw data which are corrupted

by Gaussian noise n1 = {n1(k), k ∈ Ω} and n2 = {n2(k), k ∈ Ω} respectively,

n1 ∼ N (0, σ2), n2 ∼ N (0, σ2), also u = {u(k), k ∈ Ω} is a true MRI image

intensity and θ is a phase of real and imaginary channels, and i is the imaginary

unit (i2 = −1). From (1.70) we have

f =
√
f2
Re + f2

Im =
√

(u cos θ + n1)2 + (u sin θ + n2)2. (1.71)

http://radiopaedia.org/
http://radiopaedia.org/
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(a) Poisson noise (b) NLM using the Anscombe

transformation

(c) Noise-free image

Figure 1.17: Poisson denoising experiment on the synthetic image. (a) Image

corrupted by Poisson noise, (b) Denoised image by the NLM method using the

Anscombe transformation, (c) Noise-free image.

Thus, noise in f is often assumed to be Rician noise (see Section 1.3). Unlike

Gaussian noise, Rician noise is not additive and its mean is signal-dependent. So,

the NLM algorithm can not e�ectively remove Rician noise if it is applied directly.

We present here the method of Manjon et al. [MCCL+08] that relies on the

second order moment of Rician noise. Let us consider the estimated image value

û2(k) by the NLM method. With the same notations as in subsection 1.5.2.1 for

Wk and w, we have

û2(k) =
1

Wk

∑
i∈Ωk

w(k, i)f2(i) ≈ E(f2)

=
1

Wk

∑
i∈Ωk

w(k, i)[(u(i) cos θ + n1(i))2 + (u(i) sin θ + n2(i))2]

=
1

Wk

∑
i∈Ωk

w(k, i)u2(i) + 2 cos θ
∑
i∈Ωk

w(k, i)u(i)n1(i) +

+2 sin θ
∑
i∈Ωk

u(i)w(k, i)n2(i) +
∑
i∈Ωk

w(k, i)n2
1(i) +

∑
i∈Ωk

w(k, i)n2
2(i)


≈ E(u2) + 2akE(n1) cos θ + 2akE(n2) sin θ + E(n2

1) + E(n2
2)

= E(u2) + E(n2
1) + E(n2

2) = E(u2) + 2σ2, (1.72)

where ak =

∑
i∈Ωk

u(i)w(k,i)

Wk
. Thus, E(f2) ≈ E(u2)+2σ2. According to this results, in

the squared magnitude image, the noise bias is 2σ2 and no longer signal-dependent.

Thus, it seems natural to restore u(k) as:

û(k) =

√
1

Wk

∑
j∈Ωk

w(k, j)f2(j)− 2σ2. (1.73)
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(a) Poisson noise (b) Denoised image by

[DTD10]

(c) Noise-free image

Figure 1.18: Poisson denoising experiment on the synthetic image. (a) Image cor-

rupted by Poisson noise, (b) Denoised image by the NLM method for Poisson

noise [DTD10], (c) Noise-free image.

(a) Poisson noise (b) Denoised image by

[DTD10]

(c) Noise-free image

Figure 1.19: Poisson denoising experiment on a PET image of chest with NLM. (a)

Image corrupted by Poisson noise, (b) Denoised image by the NLMmethod [DTD10],

(c) Noise-free image. Image courtesy of Dr. Jean-Marie Rocchisani (Avicenne Uni-

versity Hospital, Bobigny, France)

By that way, we obtain the unbiased non-local means (UNLM) method in

[MCCL+08] for Rician noise.

Figure 1.20 shows an experimental result of Rician denoising on the synthetic

image by UNLM [MCCL+08]. Another example is shown in Figure 1.21. In this

example, the UNLM performs Rician denoising on a Coronal MRI image of a knee.

As can be seen in Figure 1.21(c), the intensity in the denoised image by conventional

NLM algorithm [BCM06] seems to have changed compared with the original image.

This is not the case for the result by the UNLM [MCCL+08]. It is clear to see that,

compared with the results in Figure 1.21, the result in Figure 1.21(d) is closer to

the ground truth image.
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(a) Rician noise (b) Result of

UNLM [MCCL+08]

(c) Noise-free image

Figure 1.20: Rician denoising result on the synthetic image with UNLM. (a) Image

corrupted by Rician noise with σ = 25, (b) Denoised image by the UNLM method

in [MCCL+08], (c) Noise-free image.

1.5.2.4 Non-local means for Speckle noise

In ultrasound imaging, the image quality is often a�ected by Speckle noise. This

noise is known to be tissue-dependent and is not easy to model. So, unlike the

conventional denoising methods, ultrasound imaging requires speci�c �lters. Here,

we present brie�y the Nonlocal means-based speckle �lter proposed in [CHKB09]

by Coupé et al.. In [CHKB09], the image with speckle noise is modeled as

f(x) = u(x) + us(x)n(x) (1.74)

where u(x) is the original image, f(x) : Ω → R is the observed image, n(x) ∼
N (0, σ2) is a zero-mean Gaussian noise, the factor s depends on ultrasound devices

and additional processing related to image formation. The authors use a Bayesian

formation of the NLM �lter proposed in [KBC07], where the nonlocal means expres-

sion (1.62) is generalized as (see [KBC07] for more details)

û(i) =

∑
j∈Ωi

p(f(Ni)|f(Nj))f(j)∑
j∈Ωi

p(f(Ni)|f(Nj))
(1.75)

where p(f(Ni)|f(Nj)) denotes the probability density function (pdf) of f(Ni) condi-

tionally to f(Nj). In order to adapt this formulation to speckle denoise, the authors

assumed that, at each pixel,

f(x)|u(x) ∼ N (u(x),u(x)2sσ2). (1.76)

This yields

p(f(x)|u(x)) ∝ exp−(f(x)− u(x))2

2u(x)2sσ2
(1.77)
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(a) Noise-free image (b) Rician noise

(c) NLM [BCM06] (d) UNLM [MCCL+08]

Figure 1.21: Example of NLM algorithms under Rician noise. (a) Coronal MRI

image of a knee (noise-free image) (source: http://www.mr-tip.com/serv1.php),

(b) Noisy image, (c) Result of the normal NLM method in [BCM06], (d) Result of

the UNLM method in [MCCL+08].

where p(f(x)|u(x)) denotes the pdf of f(x) conditionally to u(x). Thus,

p(f(Ni)|f(Nj)) =

P∏
k=1

p(f (k)(Ni)|f (k)(Nj)) ∝ exp−
P∑
k=1

(f (k)(Ni)− f (k)(Nj))
2

2(f (k)(Nj))2sσ2
,

(1.78)

where P is the number of pixel in each image block. Accordingly, the distance

d(f(Ni), f(Nj)) in (1.63) is substituted by

dP (f(Ni), f(Nj)) =
P∑
p=1

(f (p)(Ni)− f (p)(Nj))
2

(f (p)(Nj))2s
. (1.79)

The speckle denoising method is therefore implemented by a block-wise approach

which consists of three main steps:

i) Divide the volume Ω into blocks Ni centered at pixel i with overlap supports,

i.e, Ω = ∪iNi.

http://www.mr-tip.com/serv1.php
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ii) Each block Ni is restored as follows:

û(Ni) =

∑
j∈Ωi

w(Ni, Nj)f(Nj)∑
j∈Ωi

w(Ni, Nj)
, (1.80)

with f(Nj) = (f (1)(Nj), . . . , f
(P )(Ni))

T is a vectorized image patch, the weights

w(Ni, Nj) are computed as

w(Ni, Nj) = exp−dP (f(Ni), f(Nj))

2h2
= exp−

P∑
k=1

(f (k)(Ni)− f (k)(Nj))
2

2h2(f (p)(Nj))2s

(1.81)

iii) Restore the pixel intensities from the restored blocks by averaging in overlap

regions to get the �nal image.

(a) Speckle noise (b) NLM by [CHKB09] (c) Noise-free image

Figure 1.22: Speckle denoising experiment on a synthetic image: (a) Noisy mage,

(b) Denoised image by the NLM method in [CHKB09], (c) Noise-free image.

An example for speckle denoising is shown in Figure 1.22. In this experiment, the

noisy image is generated by using the model (1.74) with s = 2. We can see the

performance of the NLM method for speckle noise [CHKB09] in the Figure 1.22(b).

Furthermore, Fig 1.23 illustrates a speckle denoising experiment on an ultrasound

image of a parotid gland. Visually, the result of the NLM-based method (Fig-

ure 1.23(c)) seems to have better contrast compared with the result of the TV

method [ZY11] (Figure 1.23(b)).

1.5.2.5 Conclusion

We have presented through this sub-section the Non-local means approach and its

application for removing some common types of noise in medical image. As shown

above, the NLM method has been adapted to most of types of noise. The denoising

results produced by the NLM-based methods are often more e�ective than that the

TV-based methods. Even so, some of small details can also be lost.
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(a) Speckle noise (b) TV by [ZY11] (c) NLM by [CHKB09]

Figure 1.23: Speckle denoising experiment on an ultrasound image of the

parotid gland: (a) Noisy mage (source: https://sites.google.com/site/

pierrickcoupe/), (b) Denoised image by the TV method in [ZY11], (c) Denoised

image by the NLM method in [CHKB09].

1.5.3 Data-adaptive Kernel Regression for Image Denoising

In this section, we give descriptions of another patch-based denoising method,

namely the "Data-adaptive Kernel Regression" method of Takeda et al. [TFM07].

In particular, the method has beeb proven to be e�ective in removing Gaussian

noise.

Let us recall the problem of denoising additive Gaussian noise in 2-D image:

Given a noisy image f corrupted by additive white Gaussian noise η, we need to

estimate the noise-free image u from f (f = u+ η). The main idea in [TFM07] is to

pose the denoising problem in a kernel regression framework. The authors consider

the noisy image f as a set of M samples {fi}Mi=1 in 2-D, with the assumption

fi = u(xi) + ηi, xi = [x1i, x2i]
T , (1.82)

where fi is a noisy sample at xi (the value of i -th pixel in f), ηi is the independent

and identically distributed zero-mean noise. In regression framework, u(·) is consid-
ered as the regression function corresponding to the set of samples {fi}Mi=1. Thus,

denoising in f leads to estimating the regression function u(·).
Notice that the form of u(·) may remain unspeci�ed. Thus, in order to estimate

the value of u(·) at any point x, the authors relied on a generic local expansion of

the function about a sampling point xi. Speci�cally, if the function is locally smooth

to some order N and x is near the sample at xi, we have the N -th order Taylor

series

u(xi) ≈ u(x) + {∇u(x)}T (xi − x) +
1

2!
(xi − x)T {Hu(x)}(xi − x) + . . .

= u(x) + {∇u(x)}T (xi − x) +
1

2
vechT {Hu(x)}vech

{
(xi − x)(xi − x)T

}
+ . . .

(1.83)

https://sites.google.com/site/pierrickcoupe/
https://sites.google.com/site/pierrickcoupe/
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where ∇ and H respectively are the gradient and Hessian operators, and vech(·) is
the vectorization operator which lexicographically orders the lower-triangular por-

tion of a symmetric matrix, e.g.,

vech

([
a b

b c

])
= [a b c]T

vech


a b c

b d e

c e f


 = [a b c d e f ]T . (1.84)

Equation (1.83) can be written as the form

u(xi) ≈ β0 + βT1 (xi − x) + βT2 vech
{

(xi − x)(xi − x)T
}

+ . . . (1.85)

where β0 is u(x), which is the desired pixel value, and the vectors β1 and β2 are

β1 = ∇u(x) =

[
∂u(x)

∂x1

∣∣∣
x=xi

∂u(x)

∂x2

∣∣∣
x=xi

]T
, (1.86)

β2 =
1

2
vech{Hu(x)} =

1

2

[
∂2u(x)

∂x2
1

∣∣∣
x=xi

2
∂2u(x)

∂x1∂x2

∣∣∣
x=xi

∂2u(x)

∂x2
2

∣∣∣
x=xi

]T
.(1.87)

To estimate the parameters βn, n = 0, . . . , N , a subset of samples {fi}Pi=1 in a

neighborhood (window) of x is considered. These parameters are computed from

the following optimization problem:

min
{βn}Nn=1

P∑
i=1

[
fi − β0 − βT1 (xi − x)− βT2 vech

{
(xi − x)(xi − x)T

}
− . . .

]2 ·
·Kadapt(xi − x, fi − f),

(1.88)

where N is the regression order (N = 2 typically), and Kadapt(xi − x, fi − f) is the

data-adaptive kernel function. In [TFM07], Takeda et al. proposed steering kernel

functions taken the form

Kadapt(xi − x, fi − f) = KHi(xi − x) (1.89)

with

KHi(z) =
1

det(Hi)
K(Hi

−1z) (1.90)

where Hi is the data-dependent full 2 × 2 matrix which is called steering matrix,

det(Hi) is the determinant of Hi and K is the 2-D realization of a kernel function

such as the Gaussian kernel

K(t) =
1

2π
exp

(
− tT t

2

)
. (1.91)
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In [TFM07], Hi is de�ned as

Hi = hiC
− 1

2
i (1.92)

with Cis are (symmetric) covariance matrices based on di�erences in the local gray-

values. With such steering matrices, for instance, if we use a Gaussian kernel, the

steering kernel is represented as

KHi(xi − x) =

√
det(Ci)

2πh2
i

exp

{
−(xi − x)TCi(xi − x)

2h2
i

}
. (1.93)

The matrices Cis are computed based on local orientation estimate [FM02]. More

speci�cally, Ci has the form

Ci = γiUθiΛiU
T
θi
, (1.94)

where

Uθi =

[
cos θi sin θi

− sin θi cos θi

]
, Λi =

[
ρi 0

0 ρ−1
i .

]
(1.95)

Here, Uθi is a rotation matrix and Λi is the elongation matrix.

As we can see, the steering matrix Hi contains four parameters hi, γi, ρi and

θi. The �rst one is the global smoothing parameter controlling the smoothness

of an entire resulting image. The remaining parameters respectively are the scaling

(γi), elongation (ρi), and orientation angle (θ) parameters which capture local image

structures. Figure 1.24 schematically describes how the parameters in Ci a�ects the

spreading of kernels. First, the elongation matrix Λi elongates the circular kernel,

Figure 1.24: Schematic representation illustrating the e�ects of the steering matrix

and its component (Ci = γiUθiΛiU
T
θi
) on the size and shape of the regression kernel

[TFM07].

and its semi-minor axis and semi-major axis are given by ρi. Second, the elongated

kernel is rotated by the rotation matrix Uθi . Finally, the kernel is scaled by the

scaling parameter γi.

The scaling, elongation, and rotation parameters in the covariance matrices

{Ci}Pi=1 are estimated by applying singular value decomposition (SVD) to a collec-

tion of estimated gradient vectors in a neighborhood around every sampling position
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of interest. More speci�cally, to estimate the parameters of Ci, the gradient values

of a neighborhood of ` samples around the position xi is �rst grouped into a matrix

Gi of size `× 2,

Gi =


...

...
∂u(xj)
∂x1j

∂u(xj)
∂x2j

...
...

 . (1.96)

Then, Gi is decomposed using the SVD as

Gi = UiSiV
T
i , (1.97)

whereUi is a `×2 matrix with orthonormal columns (UT
i Ui = I), whileVi is a 2×2

orthonormal matrix, and Si is a 2×2 diagonal matrix with the singular values s1, s2

on the diagonal. Note that the singular vector corresponding to the smallest non-

zero singular value of Gi represents the dominant orientation of the local gradient

�eld. Thus, the second column of Vi, v2 = [υ1, υ2]T , gives the dominant orientation

angle θi:

θi = arctan

(
υ1

υ2

)
. (1.98)

The elongation parameter ρi is selected corresponding to the energy of the dominant

gradient direction

ρi =
s1 + ε

s2 + ε
, (1.99)

where ε > 0 is a regularization parameter for the kernel elongation, which restricts

the ratio from becoming degenerate. Finally, the scaling parameter γi is de�ned by

γi =

√
s1s2 + ζ

`
(1.100)

where ζ is again a regularization parameter which keeps γi from becoming zero.

Due to the estimated steering matrices Hi of the method are data dependent,

and thus sensitive to the noise in the input image. In order to further enhance

the performance of the method, an iterative procedure is performed. First, the

input noisy data is used to create the initial estimate of the output image. In the

next iteration, the (less noisy) outcome of the previous step is used to recalculate

a more reliable estimate of the gradient, and this process continues for a few more

iterations. This iterative procedure was named iterative steering kernel regression

(ISKR). Matlab code of the method available at: http://users.soe.ucsc.edu/

~milanfar/research/kernel-regression.html.

To demonstrate the performance of the ISKR method, we carry out a test on two

images, a synthetic image (Figure 1.25(l)) and a CT image of pelvis (Figure 1.26(b)).

Here, we choose the regression order N = 2. The noisy images are generated by

http://users.soe.ucsc.edu/~milanfar/research/kernel-regression.html
http://users.soe.ucsc.edu/~milanfar/research/kernel-regression.html
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(a) Noisy image (b) ISKR, 1 iteration (c) ISKR, 3 iterations (d) ISKR, 5 iterations

(e) ISKR, 7 iterations (f) ISKR, 9 iterations (g) ISKR, 11 itera-

tions

(h) ISKR, 13 itera-

tions

(i) ISKR, 15 iterations (j) ISKR, 17 iterations (k) ISKR, 19 itera-

tions

(l) Original image

Figure 1.25: Experimental results of ISKR [TFM07] on a synthetic image corrupted

by Gaussian noise with standard deviation of σ = 25. From left to right, from top

to bottom: (a) noisy image, (b)-(k) the results of the algorithm after 1, 3, 5, . . . , 19

iterations, and the test image (noise-free).

adding white Gaussian noise to the test images. For the synthetic image, we per-

form a test with noise level σ = 25. Figure 1.25 reports the results of the ISKR

after 1, 3, 5, . . . , 19 iterations. As can be seen, the number of iterations chosen has

a signi�cant e�ect on denoising. With low number of iterations, denoised result is

not enough e�ective, and ISKR also introduces unreliable textures in homogeneous

zones (see Figure 1.25(d)). With a high number of iterations, although noise in ho-

mogeneous zones is very-well removed, the estimated image would be over-smoothed

at some edges (see Figure 1.25(k)).

Figure 1.26 shows the denoised results by the ISKR, the TGV [KBPS11] and

the NLM [BCM06] on a pelvis CT image with noise level of σ = 20. Visually, the

ISKR method of Takeda et al. gives better denoised result than the other methods
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(a) Noisy image (b) Test image

(c) Denoised image by

TGV [KBPS11]

(d) Denoised image by

NLM [BCM06]

(e) Denoised image by

ISKR [TFM07]

Figure 1.26: Gaussian denoising experiment on a CT image of pelvis: (a) Noisy mage

(σ = 20), (b) original image (source: http://radiopaedia.org/), (c) denoised

image by TGV [KBPS11], (d) denoised image by NLM [BCM06], and (e) denoised

image by ISKR [TFM07].

but oversmooths some details.

Above we have presented the main content of the ISKR method [TFM07] and

demonstrate the performance of the method though some experiments with additive

Gaussian noise. The experimental results shown that this method is very good for

Gaussian denoising. Even so, up to now, this method has not yet been extended for

the other types of noise.

1.5.4 Image Denoising Via Learned Dictionaries and Sparse rep-
resentation

Image denoising via learned dictionaries and sparse representation was �rst intro-

duced in [EA06] by Elad and Aharon. Here, noise is assumed to be zero-mean

white and homogeneous Gaussian additive noise as in (1.3). Sparse representation

approach is studied extensively in recent years and it is also known as one of the

most e�ective denoising methods. Before going into more details, we recall some

basis notations.

The `p-norm of vector x is ‖x‖p = (
∑

i |xi|p)1/p , and ‖x‖0 = limp→0 ‖x‖pp is the
`0 pseudo-norm, i.e. the number of nonzero components. An atom is an elementary

signal-representing template. A dictionary Φ = [φ1, φ2, . . . , φL] de�nes a n × L

matrix whose columns are unit `2-norm atoms φi ∈ Rn. When the dictionary has

http://radiopaedia.org/
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more columns than rows, it is called overcomplete or redundant. A vector x ∈ Rn

has a sparse representation over the dictionary Φ if x = Φα with a small ‖α‖0
(‖α‖0 � n). This means that x can be represented as a linear combination of few

atoms from the dictionary Φ.

Mathematically, the problem of �nding the sparse representation of x over Φ is

αx = arg min
α

‖α‖p subject to ‖x− Φα‖ ≤ ε, (1.101)

where ‖α‖p is the penalty quantifying sparsity (p is often satisfy 0 ≤ p ≤ 1), and ε

is a small constant balancing the sparsity and the approximation error. In practice,

one needs to de�ne how deep is the required sparsity, such as ‖α‖p ≤ L with L is a

scalar controlling the sparsity.

Problem (1.101) is not easy to solve in general. In the case of p = 0, a greedy

algorithm such as Orthogonal Matching Pursuit [PRK93] is usually used to obtain a

approximate solution. In the case of p = 1, the problem (1.101) is convex and can be

e�ectively solved with the Least Angle Regression (LARS) algorithm [EHJT04] or

the Iterative-Shrinkage algorithm [DDD04, CDS01]. We point the interested reader

to the book of Elad [Ela10] for more details.

In the denoising problem, x is not available to code and what we have is the

observed version of it y. Suppose that x is corrupted by additive white Gaussian

noise,

y = x+ η, (1.102)

where η ∼ N (0, σ2). In order to restore x from y, y is �rst sparsely coded over Φ

by solving the following sparse decomposition problem:

αy = arg min
α

‖α‖p subject to ‖y − Φα‖2 ≤ τ. (1.103)

where threshold τ depends on ε and σ. Lagrange multipliers o�er an equivalent

formulation

αy = arg min
α

λ‖α‖p +
1

2
‖y − Φα‖2, (1.104)

where the parameter λ balances sparsity of the solution and �delity of the approx-

imation to y. Denote x̂ the denoised version of x. In order to x̂ can be close to

the true image x, αy is expected to be very close to αx in (1.101). Therefore, the

desired image can be computed as x̂ = Φαy.

Now we come back to our problem of denoising in the image f under sparsity

prior. In this approach, an image with size
√
N ×

√
N is divided to M overlapping

blocks (patches) fi of size
√
n × √n (n � N) and denoising is then performed

blockwise. These blocks are often taken overlap for two reason: �rst, to avoid

blockiness and second for a better denoising process. Accordingly, the problem can
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be classi�ed into two main phases: training phase and denoising phase. The �rst

phase is to determine an optimal overcomplete dictionary Φ adapted for the noisy

image f . In the second one, denoising is performed based on sparse coding each

image patch of f over the dictionary Φ. The principal content of these phases can

be brie�y represented as follows:

Training phase: The dictionary Φ = [φ1, φ2, . . . , φL] ∈ Rn×L is learned from the

following optimization problem

min
Φ∈C,{αi}Mi=1

M∑
i=1

‖αi‖p subject to ‖fi − Φαi‖22 ≤ τ, 1 ≤ i ≤M, (1.105)

where C is the family of matrices in Rn×K with unit `2-norm columns. In

practice, the sparsity constraint ‖α‖p ≤ L is usually used, and the problem of

jointly optimizing the dictionary Φ and the representation coe�cient matrix

of representation vectors αi, α = [α1, α2, . . . , αM ], is formulated as

Φ, {α̂i}Mi=1 = arg min
Φ∈C,{αi}Mi=1

M∑
i=1

‖fi − Φαi‖22 subject to ‖αi‖p ≤ L, 1 ≤ i ≤M.

(1.106)

The problem (1.106) is a joint optimization problem of Φ and α, and it can be

e�ectively solved by approximation algorithms such as the method of optimal

directions (MOD) [EAH00] or K-SVD [AEB06] (see [Ela10] for more details).

Denoising phase: Suppose that we have obtained all α̂i and updated dictionary

Φ. Then, the �nal denoised image û is the solution of the following problem

û = arg min
x

λ‖f − x‖22 +
∑
i

‖Φα̂i −Rix‖22, (1.107)

where Ri is the operator that extracts a patch xi at location i of x. This is a

simple quadratic problem that has a closed-form solution of the form

û =

(
λI +

∑
i

RT
i Ri

)−1(
λf +

∑
i

RT
i Φα̂i

)
, (1.108)

where RT
i is the transpose of matrix Ri.

To illustrate the performance of the K-SVD method with the additive white

Gaussian noise, a subjective comparison with the NLM method [BCM06] and the

ISKR method [TFM07] is shown in Figure 1.27 and Figure 1.28. Figure 1.27 shows

the experimental results on a synthetic image with noise level σ = 25. Figure 1.28

shows the results on a CT image of pelvis with noise level σ = 20. As it can be seen,
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(a) Noisy image (b) Noise-free image

(c) NLM [BCM06] (d) ISKR [TFM07] (e) K-SVD [EA06]

Figure 1.27: Gaussian denoising experiment on a synthetic image: (a) Noisy mage

(σ = 25), (b) Noise-free image, (c) Result of the NLM method in [BCM06], (d) Re-

sult of the ISKR method in [TFM07], and (e) Result of the K-SVD method [EA06].

the K-SVD method outperforms the NLM method [BCM06] and the ISKR method

[TFM07] in both experiments. In the denoised results by K-SVD (Figure 1.27(e)

and Figure 1.28(e)), noise is e�ectively removed while preserving better the edges

and the small details compared with the other methods.

1.5.4.1 Conclusion

Till now, many advances of the sparse representation-based method have been pro-

posed such as [MBP+09, DlZS11]. However, most of them focus on improving the

performance of the method by modifying the original model or �nding a new algo-

rithm for the model with the assumption that the image is corrupted by Gaussian

white noise. To deal with the other types of noise such as Poisson, Rician or Speckle

noise, �nding a corresponding denoising model via sparse representation is still an

open problem.
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(a) Noisy image (b) Noise-free image

(c) NLM [BCM06] (d) ISKR [TFM07] (e) K-SVD [EA06]

Figure 1.28: Gaussian denoising experiment on a CT image of pelvis: (a) Noisy

image (σ = 20), (b) Noise-free image (source: http://radiopaedia.org/), (c) De-

noised image by NLM [BCM06], (d) Denoised image by ISKR [TFM07], (e) Denoised

image by K-SVD [EA06].

1.5.5 Block matching and 3D collaborative �ltering

The transform-domain based approach is a very popular ones in signal denoising.

It is based on assumption that in the transform domain, the true signal can be well

approximated by a linear combination of few basis elements (sparse representation).

That means most of the energy of the input image concentrates in a few high-

magnitude coe�cients. Hence, by keeping only a number of these high-magnitude

coe�cients (leading to the shrinkage) while discarding the rest of the transform

coe�cients which are mainly due to noise, the true signal can be e�ectively recovered.

Thus, the e�ectiveness of the denoising depends on the sparsity of the true signal, i.e.

the true signal can be better separated from the noise when its energy is compactly

represented in the transform domain. However, the sparsity of the representation

depends on both the transform and the true signal's properties [DFKE07]. In the

case of 2D-signal, 2D transforms cannot always achieve good sparsity for all kinds

of images due to their huge varieties, and so the noise reduction is limited. To

overcome this limitation, Dabov et al. in [DFKE07] introduced a novel strategy

named Block Matching 3D �lter (BM3D) designed for normally distributed noise

removal in 2D image. Up to now, it can be considered as one of the best methods

in image denoising. The main idea is to stack similar 2D image fragments (e.g.

blocks) together in 3-D arrays, and then performs denoising through transform-

http://radiopaedia.org/
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domain shrinkage of the 3-D arrays. The basic operating principle behind the success

of the BM3D is the fact that the similarity between the grouped blocks leads to a

high correlation of the 3D arrays in all three dimensions, implying that the 3D

transformation can reach a highly sparse representation of the true signal, allowing

hence separation of the noise by shrinkage.

Figure 1.29: Block Matching

1.5.5.1 BM3D �lter for Gaussian noise

Let us consider the case where the input noisy image f is assumed to be corrupted

by an additive white Gaussian noise n with variance σ2 and zero mean,

f(x) = u(x) + n(x), x ∈ Ω.

To apply the BM3D, the noisy image f is divided into �xed size squared blocks BxR
denominated as �reference blocks�, where xR is the coordinate of the top-left corner

of the block. The algorithm consists of two main steps including a basic estimate

and a �nal one which are described brie�y as follows:

1. Basic estimate

The purpose of this step is to �nd a coarse estimate ubasic for u. Finding

ubasic is performed in three sub-steps as follows:

• Grouping by block matching: For each block BxR in the noisy image, ap-

ply the Block Matching (BM) technique is applied to �nd similar blocks

which are stacked to form a 3D array, i.e. a group. Block-matching allows

�nding image blocks similar to a given reference one (see Figure 1.29).

This is performed by pairwise comparing the similarity between the refer-

ence block BxR and candidate blocks Bx based on a measure of similarity

d(BxR , Bx) between the blocks. In order to reduce mismatch due to the

noise, the authors proposed a new measure of similarity using a coarse

pre�ltering. This pre�ltering is realized by applying a normalized 2D
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linear transform to all blocks and then hard-thresholding. The measure

d(BxR , Bx) is de�ned as

d(BxR , Bx) =
‖Υ′(T ht2D(BxR))−Υ′(T ht2D(Bx))‖22

(Nht)2
, (1.109)

where Υ′ is the hard-thresholding operator, T ht2D is the normalized 2D

linear transform and Nht is the number of pixels in a row of the block

and ht stands for hard-thresholding. The result of the BM operation is

the set

ShtxR = {x ∈ Ω : d(BxR , Bx) ≤ τhtmatch} (1.110)

of coordinates of all blocks τhtmatch-similar to the reference one, with

τhtmatch is a preset threshold.

After obtaining ShtxR , the matched noisy blocks are stacked to form a

group, i.e. a 3D array BShtxR
of size Nht × Nht × |ShtxR |, where |ShtxR |

denotes the cardinality of ShtxR .

• Collaborative hard thresolding: A transform domain-based collaborative

�ltering of the high correlation group BShtxR
is then realized to attenu-

ate the noise by hard-thresholding of the transform coe�cients in 3D

transform domain, yielding a 3D array of blockwise estimates:

Ûht
ShtxR

= T ht3D
−1
(

Υ
(
T ht3D

(
BShtxR

)))
, (1.111)

where T ht3D (its inverse transform T ht3D
−1
) is a normalized 3D linear trans-

form, Υ is a hard-threshold operator. The array Ûht
ShtxR

includes |ShtxR |
estimates of true image blocks stacked which are denoted by Ûht,xRx with

x ∈ ShtxR , where xR indicates the reference block. We obtain the group of

these estimates,

Ûht
ShtxR

= {Ûht,xRx : x ∈ ShtxR}. (1.112)

• Aggregation by weighted average: This step constructs the basic estimate,

denoted by ûbasic, of the true-image by repositioning the estimated blocks

to their original positions, then performing weighted averaging to take

into account multiple blocks overlap. Accordingly, for each xR ∈ Ω the

group of estimated blocks Ûht,xR
ShtxR

is assigned the weight

whtxR =

{
1

σ2N
xR
har

, if NxR
har ≥ 1

1, otherwise
(1.113)
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whereNxR
har is the number of non-zero coe�cients in the transform domain

after hard-thresholding. The global basic estimate f̂ basic is constructed

by

ûbasic(x) =

∑
xR∈Ω

∑
xi∈ShtxR

whtxRÛ
ht,xR
xi (x)∑

xR∈Ω

∑
xi∈ShtxR

whtxRχxi(x)
, ∀x ∈ Ω (1.114)

with χxi : Ω→ {0, 1} is the characteristic function of the square support
of a block located at xi ∈ Ω, and the estimates Ûht,xRxi are zero-padded

outside of their support.

(a) Noisy image (b) TGV [KBPS11]

(PSNR=39.02, SSIM=0.973)

(c) NLM [BCM06]

(PSNR=41.09, SSIM=0.823)

(d) Noise-free image (e) K-SVD [EA06]

(PSNR=41.37, SSIM=0.959)

(f) BM3D [DFKE07]

(PSNR=40.77, SSIM=0.952)

Figure 1.30: Gaussian denoising experiment on a synthetic image: (a) Noisy mage

(σ = 25), (b) TGV's result [KBPS11], (c) NLM's result [BCM06], (d) Noise-free

image, (e) K-SVD's result [EA06], and (f) BM3D's [DFKE07].

2. Final estimate

Given the basic estimate of the true image obtained in Step 1, the denoising

can be improved in Step 2 by performing stacking within this basic estimate

and collaborative empirical Wiener �ltering. In Step 2, each sub-step is a

modi�ed version of the ones in the Step 1, as follows
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• Grouping by block matching: BM is here applied to the basic estimate

ûbasic in order to obtain higher accuracy. Since the noise in ûbasic is signif-

icantly reduced, the d-distance in (1.109) is replaced with the normalized

squared `2-distance.Therefore, the result of BM is

SwiexR
=

x ∈ Ω :

∥∥∥B̂basic
xR

− B̂basic
x

∥∥∥2

2

(Nwie)2
≤ τwiematch

 (1.115)

where B̂basic
xR

and B̂basic
x are the reference block and the compared one,

respectively, in ûbasic, and Nwie is the width of the blocks and wie

stands for Wiener �ltering. Then, the sets {B̂basic
x ∈ ûbasic : x ∈ SwiexR

}
and {Bx ∈ f : x ∈ SwiexR

} are grouped to 3D forms yielding B̂basic
SwiexR

and

BSwiexR
.

• Collaborative Wiener �ltering: By applying a 3D transforms T wie3D to

both 3D arrays, the empirical Wiener shrinkage coe�cients from the en-

ergy of the 3-D transform coe�cients of the group B̂basic
SwiexR

can be expressed

as

WSwiexR
=

∣∣∣T wie3D

(
B̂basic
SwiexR

)∣∣∣2∣∣∣∣T wie3D

(
B̂basic
SwiexR

)∣∣∣∣2 + σ2

. (1.116)

Then, the collaborative Wiener �ltering of BSwiexR
is realized (in transform

domain) by performing element-by-element multiplication the Wiener

shrinkage coe�cients with the 3D transform coe�cients of the noisy

group BSwiexR
. Afterwards, the 3D transform of the noisy image blocks

gives the �nal image blocks.

Ûwie
SwiexR

= T wie3D
−1
(
WSwiexR

T wie3D

(
BSwiexR

))
(1.117)

This 3D group comprises of the block-wise estimates Ûwie,xRx . Hence,

Ûwie,xR
SwiexR

= {Ûwie,xRx : x ∈ SwiexR
}.

• Aggregation by weighted average: The global �nal estimate ûfinal is com-

puted by (1.114), where the weight whtxR is replaced by

wwiexR
= σ−2

∥∥∥WSwiexR

∥∥∥−2

2
, (1.118)

and ûbasic, Ûht,xRxi , ShtxR are replaced by ûfinal, Ûwie,xRxi , SwiexR
, respec-

tively.
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Here, we show the Gaussian denoising results performed on a synthetic image

and a pelvis CT image by di�erent methods including the TGV [KBPS11], the

NLM [BCM06], the K-SVD [EA06] and the BM3D [DFKE07]. Visually, in the case

of the synthetic image Figure 1.30, the TGV method gives the best results. Regard-

ing the experimental results with CT image in Figure 1.31, the BM3D outperforms

the rest both objectively and subjectively. In Figure 1.31(g), we can see that the

result of the BM3D method not only e�ectively removes noise but also very well

preserves the image details.

(a) Noisy image (b) Noise-free image

(c) TGV [KBPS11]

(PSNR=32.49, SSIM=0.843)

(d) NLM [BCM06]

(PSNR=34.02, SSIM=0.722)

(e) ISKR [TFM07]

(PSNR= 33.34, SSIM=0.856)

(f) K-SVD [EA06]

(PSNR=33.79, SSIM=0.872)

(g) BM3D [DFKE07]

(PSNR=34.15, SSIM=0.887)

Figure 1.31: Gaussian denoising experiment on a CT image of pelvis: (a) noisy mage

(σ = 25), (b) noise-free image (source: http://radiopaedia.org/), (c) TGV's

result [KBPS11], (d) NLM's result [BCM06], (e) ISKR's result [TFM07], (f) K-

SVD's result [EA06], and (g) BM3D's result [DFKE07].

http://radiopaedia.org/
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1.5.5.2 BM3D �lter for other noise models

Some applications of this method for removing noise in medical images have been

proposed such as BM3D for Poisson removing [MF11], BM3D for Rician denoising

in MRI images [Foi11] (see http://www.cs.tut.fi/~foi/GCF-BM3D/).

The application of the BM3D �lter for removing the other type of signal-

dependent noise is often performed in three steps. First, the noise variance is stabi-

lized by applying a variance-stabilizing transformation T to the noisy image. This

produces an image whose noise is asymptotically additive Gaussian noise. Second,

the noise in the transformed image is removed using a conventional denoising algo-

rithm for additive noise. Third, an inverse transformation of T is applied to the

denoised image, obtaining the estimate of the �nal image of interest.

Figure 1.32 shows an experiment on the synthetic image of the Poisson denoising

method of Makitalo and Foi [MF11]. In this method, the authors used the Anscombe

transformation and its exact unbiased inverse (see Subsection 1.3.2). As a compar-

ison, the result of the TV-based method for Poisson noise [LCA07] has staircasing

artifact, while the NLM-based method [DTD10] very e�ectively denoises but seems

to have artifacts near edges. As for the BM3D �lter [MF11] is not only e�ective

in removing noise but also very good in preserving edges and without introducing

artifacts. Similar observation can be seen in Figure 1.33.

1.5.5.3 Conclusion

As presented above, the BM3D �lter is very e�ective in image denoising. Moreover,

it also well preserves the image details such as edges and textures. The extensions

of the BM3D for the signal-dependent noise as Poisson noise [DTD10] and Rician

noise [Foi11] are performed based on the variance-stabilizing transformation and

its inverse. The construction of a direct strategy for the signal-dependent noises

without using variance-stabilizing solution is still an open problem. Similarly, the

adaptation of BM3D to Speckle noise is also still unresolved.

1.6 Summary

In this chapter, we brie�y presented a survey of the state-of-the-art image denoising

approaches including the TV-based methods, the NLM-based methods, the Data-

adaptive Kernel Regression-based method, the Sparse representation-based methods

and the BM3D �lter-based methods. For a better understanding, di�erent common

noise models are �rst described followed by the description of two quality metrics

used for the performance evaluation of the denoising methods. We have then inves-

http://www.cs.tut.fi/~foi/GCF-BM3D/
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tigated our e�ort on leading state-of-the-art denoising methods. In particular, we

have also presented some recent advances of these methods for removing di�erent

common types of noise found in medical images such as Gaussian noise, Rician noise,

Poisson noise, and Speckle noise. These methods, however, are designed for dealing

with a particular type of noise. Furthermore, this study shows that Gaussian noise

can be handled e�ectively, and it is still a high challenge to deal with other types

of noise. This motivates our research on approaches that can deal with as large as

posible types of noise.

Among this state-of-the-art study, we also observed that example-based ap-

proach, while it has been well developing for super-resolution with very promising

result, it not enough investigated for denoising. This would be interesting to develop

learning and example-based approaches denoising and see in what extend these ap-

proaches can be applied for di�erent types of noise in medical images. This will be

presented in the next chapter.

In which, we also present some recent advances of the approaches for removing

some common types of noise found in medical images. As it can be seen, in these

approaches, noise component is directly removed from noisy image. While many

methods to general images are signi�cant, the special nature of medical images still

requires speci�c solutions.

In the next chapter, we will introduce three example-based denoising methods.

Unlike the above methods, in the proposed methods, denoising is performed indi-

rectly based on learning from a given database of standard images. In the �rst

method, we propose to apply the kernel ridge regression for denoising of medical

image corrupted by Gaussian noise and Rician noise. In the second method, we

introduce another example-based learning method for reducing Gaussian noise and

Poisson noise which often appear on medical imaging modalities using ionizing radi-

ation. In the third method, an optimization model for denoising on image corrupted

by Gaussian noise is proposed. In this method, denoising is performed patch-wise

based on �nding the sparse positive linear representation of the noisy patch over

the database of noise-free patches. The proposed methods are competitive with the

existing state-of-the-art denoising approaches.
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(a) Noisy image (b) TV [LCA07]

(PSNR=41.09, SSIM=0.943)

(c) TV's residual

(d) Noisy image (e) NLM [DTD10]

(PSNR=42.14, SSIM=0.983)

(f) NLM's residual

(g) Noisy image (h) BM3D[MF11]

(PSNR=46.42, SSIM=0.981)

(i) BM3D's residual

(j) Noisy image (k) Noise-free image (l) Poisson noise

Figure 1.32: Poisson denoising results of the TV-based method [LCA07], the NLM-

based method [DTD10] and the BM3D method [MF11] on a synthetic image.
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(a) Noisy image (b) TV [LCA07]

(PSNR=37.49, SSIM=0.951)

(c) TV's residual

(d) Noisy image (e) NLM [DTD10]

(PSNR=40.19, SSIM=0.965)

(f) NLM's residual

(g) Noisy image (h) BM3D [MF11]

(PSNR=42.22, SSIM=0.977)

(i) BM3D's residual

(j) Noisy image (k) Noise-free image (l) Poisson noise

Figure 1.33: Poisson denoising results of the TV-based method [LCA07], the NLM-

based method [DTD10] on a PET image of chest and the BM3D method [MF11].

Image courtesy of Dr. Jean-Marie Rocchisani (Avicenne University Hospital, Bo-

bigny, France).
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2.1 Introduction

In the previous chapter we have presented some main approaches in the image de-

noising domain including the total variation-based approach, the non-local means-

based approach, the sparse representation-based approach, the Data-adaptive Ker-

nel Regression-based approach, and the block-matching 3D approach. Beside, we

also presented these approaches that have been adapted to medical images. In this

chapter, we present another denoising approach based on example and learning for

medical image denoising and introduce our contributions within this approach.

Medical images are often a�ected by random noise, resulting in a loss in image

quality and a reduction of the visibility of image features especially in low con-

trast regions. Such e�ects can thereby compromise the accuracy and the reliability

of pathological diagnosis or surgery purposes. Thus, denoising is one of the ma-

jor challenges in medical imaging. As an example, noise in CT imaging can be

decreased by increasing the X-ray dose. However, the disadvantage of increasing

radiation dose is that high X-Ray doses may be harmful to patients. As shown

in [LHLL01, YLL+09], low radiation imaging is often associated with a number of

quality-degrading artifacts, the most prominent of them being noise. Therefore, if

noise can be removed by a robust image denoising technique, lower radiation scans

become possible and thus bringing less damage to the patient. Regarding the speci�c

nature of medical images, denoising is not an easy task, and the di�culty is almost

to preserve subtle details. Hence, denoising of medical images requires speci�c treat-

ment. Among various directions explored in studying this problem, learning-based

methods although have not been well developed, seem to be a promising direction

for investigating the problem of medical image denoising.

In medical imaging, we observe the interesting fact that many images are taken

from the same type of subject at approximately the same location, and some of them

can be considered as standard images (high quality or proven as noise-free images

by experts or passed a preprocessing step). Thus, it would be really useful if we

can use such standard images as examples to denoise another noisy image. Based

on this observation, we propose in this chapter three example and learning-based

denoising approaches to e�ectively remove noises in medical images.

Unlike the denoising approaches presented in chapter 1 where noise compo-

nent is directly removed from noisy image, in our proposed methods, denoising

is performed indirectly through learning from a training set constructed from

a given set of standard images. This is the main di�erence between the pro-

posed methods and the methods presented in the previous chapter. The idea

of using noise-free images for denoising have been proposed before such as in
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[LSM07, Li09, vGM06, XM11, MHFZ11]. The denoising methods based on using

the noise-free images are often called the example-based denoising methods. Li et

al. in [LSM07, Li09] proposed a denoising method using support vector regression.

In this method, the authors formulate image denoising as a regression problem and

use support vector regression in solving the problem, where the regression function

is determined from a given set of noise-free images. Although the results are still

far from satisfactory, the idea is interesting. In [vGM06], [XM11] and [MHFZ11]

present the example-based methods for denoising in low-dose CT images. In these

methods, to denoise a noisy low-dose CT image, a high-dose CT image (noiseless

images) at the same location is required. This high-dose CT image is used as a

reference image in the denoising process.

In this chapter, we introduce three example-based learning methods for denoising

some common types of noise in medical images. The �rst one, namely KRRD, is

an improved method based on the idea in [LSM07, Li09]. This method is based on

learning of a high data . This proposed method can be used to reduce Gaussian noise

and Rician noise. The second method, namely kNND, is proposed to outperform the

�rst method and designed to reduce Gaussian noise and Poisson noise. The third

method denoted by SWMGD is proposed to e�ectively remove Gaussian noise. In

this method, denoising is realized patch-wise via a sparse weight model. All the

proposed methods use the assumption that with a given noisy image, there exists

a set of standard images taken from the same type of subject at similar locations.

The details the proposed methods are presented in the next sections.

This chapter is organized as follows: Section 2.2 introduces the �rst proposed

method, followed by the second method in section 2.3. The third method is presented

in section 2.4. Section 2.5 presents a comparison of the three proposed methods.

Finally, the conclusion is given in section 2.6.

2.2 The �rst proposed method: Kernel Ridge

Regression-based Denoising (KRRD)

2.2.1 Introduction

We propose an example-based learning method using kernel ridge regression for

denoising. So, we refer this method as KRRD which stands for Kernel Ridge

Regression-based Denoising. This method is performed pixel-wise with the help

a training data set established from a given set of standard images.

Let us start with the main idea of the machine learning approach. Suppose that

we are given ` independent observations {(x1, y1), . . . , (x`, y`)} (called training set),
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each of observation consists of a pair: a vector xi ∈ Rd (called feature vector) and

the associated target value yi ∈ R given to us by a trusted source. It implies that

we have a discrete function from A = {xi}`i=1 to B = {yi}`i=1:

y : A −→ B (2.1)

xi 7→ yi.

The function y describes the relationship between the feature vector and its target

value in the training set. The main idea of the machine learning approach is to learn

this function by �nding a function f : Rd → R such that f |A ≈ y. From there, with

a new feature vector x, we can estimate its target value ŷ = f(x).

In [LSM07, Li09], Li proposed a method using support vector regression for

denoising in natural image and text document image. This method consists of two

independent phases: training phase and denoising phase.

• The purpose of the training phase is to construct a training set from a given

set of standard images and then training a regression function which will be

used to denoise in the denoising phase. In the training phase, the �rst step is

to generate a training set {(xi, yi)} where xi is a patch centered at poisition i

in a noisy image and yi is the true value of pixel at i in the associated noise-free

image. For this purpose, the noise component is simulated and then added

to the standard images to generate the corresponding noisy images. Finally,

once the training set is obtained, the regression mapping f is estimated by

using support vector regression function.

• In the denoising phase, denoising is performed pixel-wise by using the regres-

sion function trained in the training phase.

Although the idea is very interesting, the weakness of this method is that normally

a very large training set is required to ensure its e�ectiveness. Thus, it not easy

to obtain a good enough estimate for the regression function. Moreover, it would

require a large amounts of memory and long computation time. That is why the

results of this method are still far from satisfactory.

Unlike natural image, in medical imaging, the images may be given from di�erent

patients, and there exists the repetition of local structures between images taken at

nearby location, due to the similarity in the physical and biological structures of the

human body. Thus, from a set of standard images we can construct a good training

set for the training phase. Moreover, unlike the existing methods [LSM07, Li09],

the problem of determining the regression function from the large training set can

be solved by classifying it into many smaller subset.
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In this section, we propose an example-based learning solution for denoising

Gaussian noise and Rician noise in medical images. The proposed solution also

consists of two independent phases: training phase and denoising phase. In the

training phase, we �rst perform classifying the training set into subsets according

to some image features, namely homogeneous zones, edges/textures zones and lu-

minance. For each of subsets, a regression function is then determined. In general,

the training set is not linearly distributed. Thus, a conventional linear regression is

not su�cient. In such cases, a nonlinear regression function is often required for a

better estimation. Here, we use the kernel regression technique namely Kernel Ridge

Regression (KRR). In the denoising phase, the KRR functions trained in the train-

ing phase are then used for denoising selectively, according to the feature of pixel

in noisy images. Experimental results show that our method not only e�ectively

removes noise but also well preserves subtle details.

Before going into the details of the proposed method in section 2.2.3, let us recall

the basics of the kernel ridge regression. Then, we present the proposed method as

well as the denoising machine model for medical images.

2.2.2 Kernel Ridge Regression

Assume that we are given a training set {(x1, y1), . . . , (x`, y`)} with xi ∈ Rd and

yi ∈ R. The goal of the regression problem is to estimate a function f which

minimizes some measure of discrepancy between the estimation ŷi = f(xi) and the

observation value yi. Kernel ridge regression is a well-known statistical technique

to solve non linear regression. Its basic idea relies on a mapping φ(x) to map the

training data set into a feature space F and then �nd in F a linear regression

function according to the new training data set {(φ(x1), y1), . . . , (φ(x`), y`)}. The

linear regression function in F will then correspond to a nonlinear regression function

in the original input space. Before giving further details, let us begin by recalling

the basic concept of kernels.

2.2.2.1 The concept of kernels

Let X and F be two Euclidean spaces. A kernel is de�ned as a function K : X×X 7→
R, such that there exist a mapping φ : X 7→ F , where the following inner-product

relation holds

K(x1,x2) = 〈φ(x1), φ(x2)〉F , (2.2)

where 〈·, ·〉F denotes the inner-product in F which is often referred to as the feature

space. The literature on kernel methods usually refers to the space F as a Hilbert
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space. However, in this thesis we only work on Euclidean spaces with classical dot

product (scalar product).

The question that arises now is, which functions correspond to a dot product

in some feature space. The answer is given by Mercer's condition (Vapnik 1995

[Vap95]). For a function to constitute a valid kernel, Mercer's condition must

be ful�lled, which most importantly states that the kernel function K must be

symmetric and positive de�nite.

• Mercer's condition (see [Vap95], [Bur98])

For a given symmetric function K : X ×X 7→ R, there exists a mapping φ and

an expansion

K(x,y) =
∑
i

〈φ(x)i, φ(y)i〉 (2.3)

if only if, for any g(x) such that∫
g(x)2dx is �nite (2.4)

then ∫
K(x,y)g(x)g(y)dxdx ≥ 0. (2.5)

Mercer's condition tells us whether or not a prospective kernel is actually a dot

product in some space, but it does not tell us how to construct φ or even what F
is. However, we can explicitly construct the mapping for some kernels, e.g. with

the polynomial kernel (2.6), the corresponding space F is a Euclidean space of

dimension
(
d+p−1
p

)
, where d = dim(X ) [Bur98]. In the following, we list some of the

most commonly used kernels:

- Homogeneous polynomial kernels:

K(xi,xj) = (〈xi,xj〉)p, p ∈ N (2.6)

- Inhomogeneous polynomial kernels:

K(xi,xj) = (〈xi,xj〉+ c)p, (2.7)

where p ∈ N, c ≥ 0.

- Sigmoid kernels:

K(xi,xj) = tanh(a〈xi,xj〉 − r) (2.8)
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- Radial Basis Function (RBF) kernels (or Gaussian kernels):

K(xi,xj) = exp

(
−‖xi − xj‖2

2h2

)
(2.9)

2.2.2.2 Kernel Ridge Regression

We present here the ridge regression algorithm in dual variables that was introduced

by Saunders et al. in [SGV98].

Suppose that the training set {(xi, yi)}`i=1 was mapped into the feature space F
by a mapping φ. The problem is to �nd a linear regression function y = 〈w, φ(x)〉F in

the feature space F with the new training set {(φ(xi), yi)}`i=1. The ridge regression

model solves the following optimization problem:

min
w

[∑̀
i=1

(yi − 〈w, φ(xi)〉F )2 + λ‖w‖2
]

(2.10)

where λ is a �xed positive number used as regularization parameter to control the

trade-o� between the bias and the variance of the estimate.

To solve this problem, we start with re-expressing (2.10) as the form:

min
w,ξ

λ‖w‖2 +
∑̀
i=1

ξ2
i (2.11)

subject to yi − 〈w, φ(xi)〉F = ξi, i = 1, 2, . . . , `.

This gives Lagrangian:

LP ≡ λ‖w‖2 +
∑̀
i=1

ξ2
i +

∑̀
i=1

αi(yi − 〈w, φ(xi)〉F − ξi), (2.12)

where αi, i = 1, 2, . . . , ` are Lagrange multipliers. Then, we can replace the con-

strained optimization problem (2.11) by the problem of �nding the saddle point

of the Lagrange function LP . It follows from the saddle point condition that the

partial derivatives of LP with respect to the primal variables w, ξi have to vanish

for optimality.

∂wLP = 2λw −
∑̀
i=1

αiφ(xi) = 0 (2.13)

∂ξiLP = 2ξi − αi = 0, ∀i = 1, 2, . . . , `. (2.14)

Substituting (2.13) and (2.14) into (2.12) yields the dual optimization problem:

max
α=(α1,...,α`)

LD = − 1

4λ

∑̀
i,j=1

αiαj〈φ(xi), φ(xj)〉F −
1

4

∑̀
i=1

α2
i +

∑̀
i=1

yiαi. (2.15)
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Denoting K as the `× ` matrix of scalar products

Kij = 〈φ(xi), φ(xj)〉F , (2.16)

and y = (y1, . . . , y`)
T , problem (2.15) can be rewritten as

min
α

1

4λ
αTKα+

1

4
‖α‖2 − 〈y, α〉. (2.17)

Di�erentiating (2.17) in α, we have

1

2λ
Kα+

1

2
α− y = 0. (2.18)

Therefore, we obtain the optimal α:

α = 2λ(K + λI)−1y, (2.19)

where I is the identity matrix.

From (2.13) and (2.19), we obtain then the prediction function y(x) given by

the ridge regression procedure on the new unde�ned example x as

y(x) = 〈w, φ(x)〉F =

〈
1

2λ

∑̀
i=1

αiφ(xi), φ(x)

〉
F

=
1

2λ

∑̀
i=1

αi〈φ(xi), φ(x)〉F

=
1

2λ
〈α, κ〉 = yT (K + λI)−1κ (2.20)

where κ = (〈φ(x1), φ(x)〉F , . . . , 〈φ(x`), φ(x)〉F )T .

As it can be seen, the prediction function y(x) only depends on the data through

scalar products in F , i.e. on the function of the form 〈φ(xi), φ(xj)〉F . Therefore,

the kernel trick can be used in this case. It means that if there is a kernel function

K such that K(xi,xj) = 〈φ(xi), φ(xj)〉F , the regression function can be rewritten as

follows:

y(x) = a1K(x1,x) + a2K(x2,x) + . . .+ a`K(x`,x) (2.21)

where (a1, a2, . . . , a`) = yT (K + λI)−1. Here, we can also see that, the direct

mapping φ(x) is not used. Hence, it is not necessary to explicitly obtain φ(x) as

long as we can access the kernel function.

2.2.3 The proposed KRRD method

In this section, we present our proposed denoising method. Suppose that X is a

noisy image that needs to be denoised and {Ak} is a set of the standard images

that are taken at nearly the same location as X. There are three main phase: noise

estimation phase, training phase and denoising phase.
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set Fσ of KRR functions
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Training

Phase II:
Restoration

2

Figure 2.1: Overview of the denoising method using Kernel Ridge Regression (KRR).

• The aim of the noise estimation phase is to estimate the noise component from

the input noisy image.

• In the training phase, a training set is �rst constructed from the given standard

images. This training set is then classi�ed into some training subsets before

determining the regression functions for each of them.

• In the denoising phase, the regression functions which are trained in the train-

ing phase will be used to estimate the output image (denoised image).

An overview of the proposed method is illustrated in Figure 2.1. In remaining of

the method, we consider σ ≈ σ̂, where σ is preset noise level used in the trainning

phase and σ̂ is the noise level estimated from the noisy image X.

In the following, we will describe in more details each phase.

2.2.3.1 Noise estimation

To obtain an e�ective denoising solution for X, it is important to determine the

type of noise and the level of the noise in the image. In fact, it is not possible

to determine precisely the nature of noise. However, it is possible to estimate its

statistical properties such as the mean value, the variance or the probability density

function. Normally, the type of the noise often depends on the type of image.
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For example, if X is CT an image then noise in X is often Gaussian noise. If X

is a MRI image then noise in X is often Rician noise. Regarding the problem

of noise estimation, there are many e�ective methods that have been proposed

[LFSK06, SdDA+98, CMG+10, RPJS10, LHLC12]. In the scope of this work, we

directly use the available methods to implement estimating the noise level in X

such as the method of Rajan et al. [RPJS10] which is used to estimate the standard

deviation of Rician noise, the method of Muresan and Parks [MP03] which is used

to estimate the standard deviation of the Gaussian noise.

2.2.3.2 Training phase

The aim of the training phase is to construct a set of regression functions which

exploit the relationship between noisy image and noise-free image. To this end,

the training phase is realized in three steps: Training set generation, training set

classi�cation and determine regression functions.

2.2.3.2.1 Training set generation

In order to construct the training set Gσ = {(xi, yi)} from a given set of standard

images {Ak} and a given noise level σ, a set of corresponding noisy images {Bk} is
�rst generated. Here, Bk is obtained from Ak by simulating the noise component

in the noisy image X. In general, we can establish the training set for di�erent

given noise levels σ. As speci�ed above, we use σ = σ̂, where σ̂ is the noise level

estimated from the input noisy image. Then, for each pixel i of the noisy image Bk,

a pair (xi, yi) is determined, where xi ∈ Rn is the vector corresponding to a square

patch of �xed size
√
n × √n and centered at pixel i of Bk, while yi is the value of

pixel i of the corresponding standard image Ak. From such the set of all couples of

observation (xi, yi) we obtain the training set G (see Figure 2.2).

2.2.3.2.2 Training set classi�cation

Let us denote by ` the number of observation examples in the training set. Nor-

mally, the number of observation examples ` is often very large. Moreover, due to

the random distribution of the samples in the training set, it is not easy to achieve

an e�ective regression function that is a good �t for all the training examples. In

addition, it is di�cult to obtain a regression function for a large training set. Con-

sidering the kernel ridge regression for instance, the matrix (K + λI) in equation

(2.21) is a non-sparse matrix and of size ` × `, it is thus not easy to compute its

inverse with large `. To perform the training step in an easier way, the training set

needs to be classi�ed into smaller groups. In this work, classifying the training set

is realized in two steps as follows:
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Standard Image Image after adding noise
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Gσ = {(xi, yi) , i = 1, 2, 3, . . . , `}

2

Figure 2.2: Illustration of the training set generation Gσ = {(xi, yi)}. Standard

original image (left) and its noised version (right). xi corresponds to a patch centered

at pixel i in noisy image, yi is the value of pixel i in the standard image

• First, for each of patch xi in the training set, we de�ne an associated charac-

teristic vector vi.

• Then, the training set Gσ = {(xi, yi)}`i=1 is classi�ed according to the

classi�cation of corresponding set of characteristic vectors {vi}`i=1. Conse-

quently, each training group contains observations such that their correspond-

ing patches have some similar features.

Let us �rst de�ne the characteristic vector.

Determination of characteristic vector: There are many ways to de�ne a char-

acteristic vector for a given image patch xi. In the proposed method, the

characteristic vector vi is simply de�ned as a two dimensional vector that can

express some image features of xi such as homogeneous zone, texture/edge

zone and luminance. In other words, we can characterize a patch xi by its

intensity and whether it is situated in a homogeneous zone or a texture/edge

zone. More speci�cally, the average of pixel values in the patch is used to quan-

tify its luminance. This is the �rst component of vi. In the other hand, as

shown in [FM02], by applying the Single Value Decomposition (SVD) method

to the gradient �eld of xi, we can quantify its edgeness. Indeed, for a homo-

geneous region, there is no dominant direction and all eigenvalues are small.

For an oriented edge/texture region, there is a dominant direction and the



88 Chapter 2. The proposed methods for image denoising

corresponding eigenvalue is signi�cantly larger than the others. Therefore,

the second component of the characteristic vector vi is determined as follows.

First, we group gradient values of the patch xi into matrix D of size n× 2

D =
[
Ox(1)TOx(2)T . . .Ox(n)T

]T
, (2.22)

where Ox(j) =
[
∂x(j)
∂x

∂x(j)
∂y

]T
is the gradient of x at pixel j. Then, SVD of

the matrix D is computed via the following formula:

D = USV T , (2.23)

where U is an n × n orthogonal matrix, S is a diagonal matrix with ele-

ments λ1, λ2 which are called singular values and always in decreasing order

λ1 ≥ λ2 ≥ 0, V is an 2×2 orthogonal matrix which describes the dominant ori-

entation of the gradient �eld. We use λi1−λi2 to de�ne the second component

of vi.

In summary, for each of patch xi in the training set we de�ne a characteristic

vector

vi = (µi, λ
i
1 − λi2) ∈ R2 (2.24)

with λi1, λ
i
2 are singular values and µi is the mean of pixel values in xi. The use

of characteristic vectors vi for classifying the zones of an image is simulated

in Figure 2.3.

(a) Noisy image (b) λ1 − λ2 (c) (µ, λ1 − λ2)

Figure 2.3: Classi�cation simulation based on using characteristic vectors v =

(µ, λ1 − λ2).

Classi�cation of the characteristic vectors: This step concerns the classi�ca-

tion of the training set into K groups (2 ≤ K ≤ `). It can be done by

classifying the set of characteristic vectors Ωσ = {vi, i = 1, . . . , `} into K

clusters {Ωc,σ}Kc=1. For an e�ective classi�cation, some well-known clustering
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techniques such as the K-means clustering or the fuzzy K-means clustering

[Bez81] can be used.

• K-means clustering:

The K-means clustering aims to partition the characteristic set Ωσ into

K (2 ≤ K < `) clusters {Ω1,σ,Ω2,σ, . . . ,ΩK,σ} while minimizing the

following optimization problem:

min
{Ωc,σ},{νc}

K∑
c=1

∑
vi∈Ωc,σ

‖vi − νc‖2, (2.25)

where νc is the mean of elements in cluster Ωc,σ. An example of the

K-means clustering algorithm is illustrated in Figure 2.4.

Figure 2.4: Demo of K-means clustering in case of K = 2.

• Fuzzy K-Means clustering:

Unlike the K-means clustering, fuzzy K-means algorithm perform parti-

tion Ωσ into K clusters by solving the following optimization problem:

min
U,ν

J(U, ν) =
K∑
c=1

∑̀
i=1

u2
ci‖vi − νc‖2, (2.26)

with the condition

uci ∈ [0, 1] 1 ≤ c ≤ K; 1 ≤ i ≤ `,
K∑
c=1

uci = 1,∀i, and
∑̀
i=1

uci > 0 ∀c.

(2.27)

In (2.26), ν = (ν1, ν2, . . . , νK)T ∈ RK2, νc ∈ R2 is the prototype for

cluster Ωc,σ and U = [uci] ∈ RK` represents a non-degenerate fuzzy
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K-partition of Ωσ. When the solution U, ν of the problem (2.26) with

condition (2.27) is obtained, classifying Ωσ is determined as

vi ∈ Ωc,σ if uci = max{uki, k = 1, . . . ,K}. (2.28)

It is easy to see that in the case where the fuzzy coe�cients uci = 1∀c, i, the
fuzzy K-means problem (2.26) becomes the K-means clustering. Thus, fuzzy

K-means clustering can be considered as a soft version of K-means, where

each data point has a fuzzy degree of belonging to each cluster.

Classi�cation of the training set: Suppose that the set of characteristic vectors

Ωσ have been classi�ed into K clusters. Then, classifying the training set Gσ
into K groups {Gc,σ}Kc=1 is determined as

(xi, yi) ∈ Gc,σ ⇔ vi ∈ Ωc,σ. (2.29)

2.2.3.2.3 Regression functions

After performing classi�cation, we obtain the training set Gσ = G1,σ∪G2,σ∪ . . .∪
GK,σ, where each group Gk,σ has a characteristic vector νk ∈ R2. Consequently, the

regression functions f1, f2, . . . , fK according to the groups G1,σ, G2,σ, . . . , GK,σ are

determined, respectively. These regression function will be used in the denoising

phase. It is worth noting that the training phase can be performed o�-line.

2.2.3.3 Denoising phase

In this phase, denoising an input image X is realized pixel-wise by using the trained

regression functions in the previous phase. There are four steps in this phase:

• Step 1: For each of pixel i in X, consider image patch of size
√
n × √n

and centered at i an then order lexicographically as vector x in Rn (as in

section 2.2.3.2.1).

• Step 2: Compute the characteristic vector v = (µx, λ1,x − λ2,x) ∈ R2 of x.

• Step 3: Determine which the regression function to be used for estimating the

true value of pixel i. The function fk is selected if

k = min
c
{‖v − νc‖2, c = 1, . . . ,K}, (2.30)

where νc is the characteristic vector of the group Gc,σ (νc is determined

from (2.26)).

• Step 4: True value of pixel i is estimated as

X̂(i) = fk(x). (2.31)
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From (2.21), we see that the KRR function fk in (2.31) has the form

fk(x) =
∑
j

wjK(xj ,x). (2.32)

In the proposed method, the Gaussian kernel K(xj ,x) = exp(−‖xj − x‖2)/(2h2) is

chosen, where h is the decay parameter. The estimate of each pixel in the noisy

image only depends on the training group, which includes patches that have some

characteristics as the patch de�ned for the pixel under consideration. The Gaussian

function can be seen as a measurement of similarity between two image patches.

Therefore, in equation (2.32), K(xj ,x) may be viewed as weights. Where, the more

xj is similar to x, the higher is the weight. This shows the adaptiveness of the

proposed method.

2.2.4 Denoising machine model

As presented above, the denoising using the regression functions learned from a given

training set is a very promising solution. Thereby, we can construct an automatic

denoising machine model for medical images.

2.2.4.1 Machine

The denoising machine is designed with many stacks, each of them is designed for

one type of image. Moreover, each stack includes many sub-stacks. Each sub-stack

is designed to image denoising at a certain location in the body such as brain, neck,

knee, etc. For each sub-stack, there are several options corresponding to di�erent

levels of the noise. Each option has many regression functions trained from the

given standard images as presented above.

2.2.4.2 Principle of Operation of the Machine

Let X be the image to be denoised. Then, the machine performs the following steps:

1. Determine the type of the image X (CT, MRI) and the position in the body

of X.

2. Estimate noise on X: The distribution of the noise may be determined ac-

cording to the opinion of experts or some statistical properties of noise found

on the types of medical image (see Section 1.3). Then, noise level on X can

be estimated.

3. Select the suitable option based on the type of image, the position in the

body of X as well as the estimated noise level. Then, the machine performs

denoising based on the regression functions of the selected option.
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2.2.5 Performance evaluation

In this section, we provide some tests of the proposed KRRD method and com-

parisons to some other state-of-the-art denoising methods with experiments on CT

images and MRI images (with two noise models, namely Gaussian noise and Ri-

cian noise, respectively). Two image quality metrics namely the PSNR and the

SSIM [WBSS04] (see Section 1.4) are used to compare objectively the performance

of the methods.

We �rst start with parameter settings. Then, we present the experiments of

denoising Gaussian noise in CT images followed by the experiments of removing

Rician noise in MRI images.

2.2.5.1 Parameter settings

The parameters of the method are the number of clusters K, the ridge regression

parameter λ in (2.10), the patch size, the decay parameter h of the kernel function.

The choices of their value are described in what follows:

1. Parameter K:

This is a di�cult problem because it is not easy to propose an optimal criteria

for choosing K. In the proposed method, K is determined based on the

histogram of the standard images used to establish the training set. More

precisely, K is automatically determined in the three following steps:

• Step 1: Merge the standard images into one larger image and then

compute its histogram, his(n). The histogram his(n) is considered as a

function of n, where n ∈ [0, 1, . . . , 255] for images coded on 8 bits per

pixel.

• Step 2: Use a �lter to smooth the function his(n). Let us denote by

hissmooth = Filter(h) the smoothed histogram function. In practice, we

use the mean �lter for smoothing the histogram function.

• Step 3: Determine number of extreme points of the discrete function

hissmooth(n). Here, the point (n, hissmooth(n)) is consider as an extreme

point if the following criteria is satis�ed:(
hissmooth(n)− hissmooth(n− 1)

)(
hissmooth(n)− hissmooth(n+ 1)

)
> 0.

(2.33)

Assume that the number of extreme points of hissmooth(n) is N . Then, the

number of subsets K is set to N + 1 .
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(a) (b) (c)

(d) (e)

Figure 2.5: Original images used to create test noisy images: (a) CT of thorax, (b)

CT of head, (c) CT of neck, (d) CT of pelvis, and (e) CT of chest. Image courtesy

of Dr. Jean-Marie Rocchisani (Avicenne University Hospital, Bobigny, France).

2. The other parameters:

In all experiment, the ridge parameter λ in (2.10) is set to 0.01, the size of the

patch is set to 5 × 5. We use the Gaussian kernel K(xi,xj) = exp−‖xi−xj‖
2

2h2

where h is set to σ̂ (the standard deviation of noise estimated from the input

noisy image).

In the following subsections, we report some experiments on CT images with

Gaussian noise and MRI images with Rician noise.

2.2.5.2 Denoising Gaussian noise on CT image

The experimental tests are carried out on �ve CT images of thorax, head, neck,

pelvis, and chest (see Figure 2.5). For each test image, a training set is established

using two standard images (not necessarily identical to the test image). In Fig-

ure 2.6, only one standard image is illustrated for each example to better see that

the standard image is di�erent from the test image. In these experiments, a test

images is obtained from an original and high quality (noise-free) image by adding an

additive, independent Gaussian noise with three standard deviation values: σ = 10,

20 and 30. The standard deviation of Gaussian noise in test images, σ̂, is estimated

by using method in [MP03]. In the training phase, we use σ = 10, 20 and 30 instead
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(a) (b) (c)

(d) (e)

Figure 2.6: Standard CT images used to establish the training sets. Image courtesy

of Dr. Jean-Marie Rocchisani (Avicenne University Hospital, Bobigny, France).

of estimated noise level σ̂. Indeed, we can see in Tables 2.1 and 2.2 that σ and σ̂

are very close to each other.

The performance of our KRRD method is compared with the state-of-the-

art methods for denoising of images corrupted by Gaussian noise, namely the

TGV [BKP10], the NLM [BCM06], the ISKR [TFM07], the K-SVD [EA06], and

the BM3D [DFKE07]. The objective results are reported in Table 2.1 and Ta-

ble 2.2. The best quality indices are represented in bold characters. As can be seen,

the PSNR and SSIM indices of the proposed method (KRRD) are higher than that

of the TGV and NLM. The quality indices of the BM3D method are the best in

most cases. Compared with the K-SVD, the K-SVD has more better PSNR results

than the KRRD. However, for SSIM, the KRRD has three best SSIM indices and

an equivalent performance with the K-SVD.

Figure 2.7 shows the results of di�erent methods on the CT image of thorax

(Fig. 2.5(a)). We can see that the results of the ISKR, TGV, NLM, K-SVD and

BM3D denoise very e�ectively. However, certain subtle details are lost compared

to our method where noise is e�ectively removed in the smooth region while better

preserving edges around the object contours. Moreover, residual images of CT

images are also shown to illustrate the out-performance of our denoising method, as

our residual image is close to the Gaussian noise and contains nearly no structural
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Table 2.1: PSNR comparison of Gaussian denoising methods on CT images

Test

image
σ σ̂

PSNR

Image denoising algorithms

TGV NLM ISKR K-SVD BM3D KRRD

(a)

10 9 29.44 31.17 31.15 32.29 32.73 32.08

20 21 27.32 27.37 26.86 27.78 28.30 27.43

30 31 24.34 25.55 24.81 25.49 25.92 25.61

(b)

10 12 34.18 34.33 34.96 35.54 36.13 35.22

20 20 30.37 31.25 30.94 31.82 32.38 31.90

30 31 27.89 28.57 28.40 29.32 30.12 29.19

(c)

10 10 34.02 34.99 35.52 36.21 36.58 35.87

20 19 30.19 31.32 31.45 31.94 32.62 31.61

30 31 27.85 28.63 28.88 29.49 30.27 29.78

(d)

10 12 31.27 31.37 32.11 32.48 32.95 32.14

20 21 27.94 28.37 27.98 28.73 29.19 28.68

30 31 25.28 26.02 25.65 26.83 27.12 27.01

(e)

10 10 32.09 32.49 33.05 33.09 33.40 33.28

20 18 28.76 29.51 29.29 29.58 29.82 29.60

30 31 26.54 27.20 27.03 27.56 27.82 27.50
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Table 2.2: SSIM comparision of Gaussian denoising methods on CT images

Test

image
σ σ̂

SSIM

Image denoising algorithms

ISKR TGV NLM K-SVD BM3D KRRD

(a)

10 9 0.894 0.911 0.908 0.917 0.940 0.911

20 21 0.826 0.831 0.829 0.834 0.877 0.873

30 31 0.766 0.788 0.769 0.802 0.820 0.809

(b)

10 12 0.934 0.924 0.927 0.940 0.961 0.930

20 20 0.882 0.843 0.847 0.893 0.924 0.854

30 31 0.833 0.823 0.784 0.847 0.888 0.801

(c)

10 10 0.945 0.928 0.926 0.950 0.971 0.938

20 19 0.875 0.829 0.812 0.879 0.923 0.825

30 31 0.831 0.788 0.731 0.819 0.869 0.791

(d)

10 12 0.936 0.929 0.931 0.940 0.946 0.929

20 21 0.880 0.874 0.867 0.892 0.899 0.877

30 31 0.828 0.811 0.791 0.849 0.859 0.852

(e)

10 10 0.921 0.914 0.925 0.930 0.935 0.946

20 18 0.867 0.884 0.846 0.864 0.877 0.883

30 31 0.816 0.789 0.769 0.816 0.827 0.828
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element.

2.2.5.3 Denoising Rician noise on MRI image

The proposed algorithm is also implemented and tested on various MRI images. Its

performance is compared with three state-of-the-art denoising methods designed for

Rician noise including the TV-based method1 of Getreuer et al.[GTV11], the wavelet

based method2 of Pizurica et al. [PPLA03] namely VWNF, and the unbiased non-

local means (UNLM) method3 of Manjón et al. [MCCL+08]. Here, four examples

of original MRI images are shown in Figure 2.8. For each test image, a training

set is established by using two standard images of three same category. However,

for the sake of clarity, Figure 2.9 only shows one of those standard images for each

example. A test noisy image used in these experiments is obtained by adding Ri-

cian on an original high quality (noise-free) image. More precisely, two independent

Gaussian noises with zero-mean and standard deviation σ (σ = 20 and 30 in these

experiments) are added to the real and imaginary part of image data, respectively.

Table 2.3: PSNR Comparison of Rician Denoising methods on MRI
Test

Im-

age

σ σ̂

PSNR

Image denoising algorithms

WL TV UNLM KRRD

(a)
20 20 19.14 19.71 21.99 22.35

30 31 18.09 16.28 19.01 20.82

(b)
20 22 18.95 22.61 20.49 23.26

30 29 17.71 16.65 19.30 20.90

(c)
20 20 18.64 20.54 18.32 22.05

30 31 17.31 18.32 17.49 18.15

(d)
20 18 17.45 17.35 19.04 19.73

30 29 16.43 14.13 16.22 18.86

The quality results are reported in Tables 2.3 and 2.4. The results of denoised

images are reported in Figure 2.10, Figure 2.11 and Figure 2.12, for visual compar-

ison. Figure 2.11 illustrates zoom-in images of a desired region of interest (DROI)

in Figure 2.10. Residual image de�ned as the di�erence between a noisy image

and the denoised image is also reported. As can be seen, residual image of our

method contains nearly no structure or texture while other methods and especially
1Matlab program available at http://www.getreuer.info/home/tvreg
2Matlab program can be downloaded via http://telin.ugent.be/~sanja/Sanja_files/

WaveletDEN.htm
3Matlab program available at http://personales.upv.es/jmanjon/

http://www.getreuer.info/home/tvreg
http://telin.ugent.be/~sanja/Sanja_files/WaveletDEN.htm
http://telin.ugent.be/~sanja/Sanja_files/WaveletDEN.htm
http://personales.upv.es/jmanjon/
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(a) Original image (b) Noisy image

(c) TGV (d) NLM (e) ISKR

(f) Residual of TGV (g) Residual of NLM (h) Residual of ISKR

(i) K-SVD (j) BM3D (k) KRRD

(l) Residual of K-SVD (m) Residual of BM3D (n) Residual of KRRD

Figure 2.7: Results of a CT image of thorax (Fig. 2.5(a)): (a) Original image, (b)

Noisy image with σ = 30, (c) TGV [BKP10], (d) NLM [BCM06], (e) ISKR [TFM07];

(f), (g) and (h) are the residual image of the TGV and NLM and ISKR, respectively;

(i) K-SVD [EA06], (j) BM3D [DFKE07], (k) KRRD, and (h), (m), (n) are the

residual image of the K-SVD, BM3D and KRRD, respectively.
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(a) (b) (c) (d)

Figure 2.8: Original MRI images used to generate the test noisy images (source:

http://www.mr-tip.com/serv1.php).

(a) (b) (c) (d)

Figure 2.9: Standard images used for training.

Table 2.4: SSIM Comparison of Rician Denoising methods on MRI
Test

Im-

age

σ σ̂

SSIM

Image denoising algorithms

WL TV UNLM KRRD

(a)
20 20 0.8193 0.8333 0.8907 0.9072

30 31 0.7700 0.7499 0.8356 0.8756

(b)
20 22 0.8443 0.9095 0.8991 0.9265

30 29 0.7944 0.7967 0.8704 0.8828

(c)
20 20 0.8253 0.8653 0.8448 0.9229

30 31 0.7748 0.8210 0.8059 0.8406

(d)
20 18 0.8171 0.8265 0.8855 0.8906

30 29 0.7645 0.7535 0.8278 0.8571

http://www.mr-tip.com/serv1.php
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(a) Noisy image (b) VWNF (c) TV

(d) UNLM (e) KRRD (f) Original image

(g) (h) (i)

(j) (k) Rician noise

Figure 2.10: Visual quality comparison of MRI image (Figure 2.8(c)) from various

denoised images. (a) MRI image of the pelvis corrupted by Rician noise with stan-

dard deviation (σ = 20). From (b) to (e): denoised images by the VWNF [PPLA03],

TV [GTV11], UNLM [MCCL+08] and KRRD methods, respectively. (f) is original

image. From (g) to (k): residual images of (b), (c), (d) and (e), respectively. (k)

Noise component in the noisy image, determined by subtracting the noisy image

from the original image.
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the UNLM contain many structure or edges that have been unfortunately removed

by these denoising methods. Figure 2.10 clearly shows that the results of VWNF

and UNLM are very blurred, while the TV-based method [GTV11] is less blurred

and preserve well details and edges as to the KRRD. We can see that our proposed

KRRD method e�ectively removes Rician noise while better preserving the subtle

details and the textures. In terms of �delity, as shown in Table 2.3 and Table 2.4,

the proposed method yields signi�cant PSNR and SSIM gap over the other methods.

This con�rms the visual observations.

(a) Original image (b) VWNF (c) TV

(d) UNLM (e) KRRD (f)

Figure 2.11: Comparison of denoised (zoomed-in) MRI images by various methods in

Figure 2.10: (a) Original image with DROI; (b)-(e) results of the VWNF [PPLA03],

TV [GTV11], UNLM [MCCL+08] and KRRD methods, respectively; (f) zoomed in

portion of the image (a).

2.2.6 Conclusion

We have proposed a novel denoising method namely KRRD for CT and MRI images

using the kernel ridge regression. This is an example-based learning method, where

denoising is performed by using the regression functions trained from a given set

of standard images. Experimental results demonstrated the performances of the

proposed method over some well known techniques in denoising in MRI images. For

Gaussian noise, although the PSNR and SSIM results of the KRRD are inferior
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(a) Noisy image (b) Original image (c) Rician noise

(d) VWNF (e) TV (f) UNLM (g) KRRD

(h) Residual of VWNF (i) Residual of TV (j) Residual of UNLM (k) Residual of KRRD

Figure 2.12: Comparison of various methods for MRI image of the knee (sagittal

view). The �rst row shows the test noisy image (σ = 20), the original image, and the

Rician noise component in the noisy image, respectively. The second row contains

the results of VWNF [PPLA03], TV [GTV11], UNLM [MCCL+08] and our KRRD

method. The third row shows the residual images (di�erence between the noisy

image and the denoised one) corresponding to the denoised images in the second

row. The residual image illustrates the noise component that was removed by a

denoising method.



2.3. The second proposed method: k-nearest neighbor-based Denoising
(kNND) 103

than the BM3D or ever equivalent with the K-SVD, our visual results outperform

those of these methods. Denoising machine model based on learning from a given

database seems to be a promising solution for denoising of medical images. With

an e�ective training set, we believe that this model may be quite useful. Although

we achieved some initial success with the proposed solution, there are still some

drawbacks which need to be improved such as:

• Noise simulation in the training phase: The training set is constructed based

on simulating noise from the input noisy image. However, it is in fact di�cult

to simulate exactly the noise component in a given noisy image. Thus, the

training set need to be established more e�ective.

• Parameters of the method: It is di�cult to obtain the optimal value for the

parameters of the method such as the regression parameter λ, the number K

of the subset of the training set needs to be classi�ed, the kernel parameter

h. We have observed that in practice, for denoising medical images, optimal

settings for parameters vary per application, and even per image and within

images. This is due to the complexity and variability of shapes, structures

and the quality of medical images.

• In the case where the input vector lies on the boundary of the clusters, the

use of only one regression function as in (2.30) may not enough e�ective.

• Run-time: Although the training phase can be performed o�-line, computa-

tional time of the algorithm is also expensive.

2.3 The second proposed method: k-nearest neighbor-

based Denoising (kNND)

2.3.1 Introduction

In the previous section, we have presented an example-based learning solution for

denoising medical images corrupted by Gaussian noise and Rician noise. This section

introduces another example-based learning solution for the problem of denoising

Gaussian noise and Poisson noise which often appear on medical imaging modalities

using ionizing radiation. In the proposed method, denoising is performed pixel-

wise with the help a training data set constructed from a given set of standard

images. Unlike the �rst method where learning via regression function is performed

o�-line through the training phase, in this method learning by regression function

and denoising for a given input are performed online using the k-nearest neighbors

among the training examples.
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Many e�ective denoising methods based on using the regression function of k-

nearest neighbors have been proposed such as in [BCM06, CHKB09, vGM06, XM11].

In these approaches, the non-parametric regression techniques are often used. To

determine the regression value f(x) for an input x, the non-parametric regression

techniques use a subset {(xj , yj)}kj=1 of a set of training examples {(xi, yi), i ∈ Ω},
in which {xj}kj=1 is the set of k nearest neighbors of x. Nadaraya [Nad64] and

Watson [Wat64] proposed to estimate f(x) as a locally weighted average

f(x) =

∑k
j=1 yj exp

−‖x−xj‖2
2h2∑k

j=1 exp
−‖x−xj‖2

2h2

. (2.34)

The form of the Nadaraya-Watson estimator gives us an relationship with the non-

local means (NLM) method [BCM06] presented in chapter 1 (see section 1.5.2).

Indeed, from a noisy image X = {X(i), i ∈ Ω} we can generate the corresponding

sample dataset {(xi, yi), i ∈ Ω} as follows:

• xi is the vectorized image patch centered at pixel i of X.

• yi is assigned by the value of pixel i in the noisy image X, that is

yi = X(i). (2.35)

Then, it is easy to see that the value f(xi) of the Nadaraya-Watson regression

function (2.34) exactly equals to û(i) in (1.62) with the weights determined by (1.63)

of the NLM method [BCM06]. The success of the NLM method proves the potential

application of the k-nearest neighbor-based approach in image denoising.

According to the point of view of machine learning theory, a regression function

can be considered as a machine whose task is to learn the mapping xi 7→ yi from the

training data set. Thus, the regression function highly depends on the reliability

of the training data set and the regression model to be used. However, we can see

that the training data set of the NLM method is directly established from the noisy

image. Thus, it a�ects the reliability of the training data set. This is a motivation

for us to propose another method where the training set is constructed more reliably.

In [XM11] Xu et al. proposed a method namely RNLM (Reference-based Non-

Local Means) for denoising low-dose CT image. This method modi�ed the Non-local

means method [BCM06]. Unlike the NLMmethod where the set of training examples

is established directly from the input noisy image X (low-dose image), the training

set {(xi, yi)} in the RNLM method is constructed from a given set of artifacts-free

reference (standard) CT images and their converted images which contain similar

artifact types and distribution than the image X. In the training set, xi is an image

patch in at position i in a converted image and yi is the value of pixel i in the
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corresponding standard image. It is shown that the RNLM method outperforms

the NLM method. However, we can see that generating the converted images which

contain similar artifact types and distribution than the input noisy image from the

standard images is a di�cult problem.

We can see that in the k-nearest neighbor-based methods, there are three main

points that need to be considered:

1. How to establish a training set that is reliable and consistent with a speci�c

problem?

2. What are the criteria for �nding the k-nearest neighbors?

3. What is the suitable regression model to use?

In [vGM06], Ginneken and Mendrik proposed to use k-Nearest Neighbor Regres-

sion (kNNR) for denoising noise on low-dose CT images. In this method:

• The training set is constructed by using the standard CT images An (high

dose images which have very little noise). For each high dose scan An, a corre-

sponding low dose data Bn is simulated by adding physically realistic noise to

the raw CT scanner data before reconstruction. Then, the noisy image Bn is

�ltered by di�erent �lters F1,F2, . . . ,Fd such as the standard noise reduction

�lters (Gausian �lter, median �lter, anisotropic di�ussion �lter, etc.). Denoted

by C(1)
n , C

(2)
n , . . . , C

(d)
n the �ltering results,

C(t)
n = Ft(Bn), ∀t = 1, 2, . . . , d. (2.36)

The training set {(xi, yi)} is established,

xi =
(
Bn(i), C(1)

n (i), C(2)
n (i), . . . , C

(d)
j (i)

)
and yi = An(i), (2.37)

where i is the pixel index i-th of the images An, Bn, C
(1)
n , C

(2)
n , . . . , C

(d)
n .

• The Euclidean distance metric was used to �nd the k-nearest neighbors.

• Denoising is performed by using the k-NNR technique. More speci�cally, for

a noisy image X to be denoised, the �rst step is to �lter X by the �lters

F1,F2, . . . ,Fd. Then, to denoise each pixel p of X, compute its corresponding

feature vector xp = (X(p),F1(X)(p),F2(X)(p), . . . ,Fd(X)(p)) and the set Ωi

of the k nearest neighbors of xp are computed. Finally, the denoised pixel

value is the average output yi of these neighbors.
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In fact, this method combines the outputs of di�erent standard noise reduction algo-

rithms using supervised technique. It was shown that the performance of standard

noise reduction technique can be improved through the use of this technique. How-

ever, this technique requires prohibitive amounts of computation time and memory

[vGM06].

In the subsection 2.3.2, we will present in details our example-based de-

noising method. This method can overcome some limitations of the previous

example-learning-based methods such as the KRRD method, the methods in

[LSM07, Li09, vGM06]. For instance, in constructing the training set we avoid

simulating noise as in the previous methods. We also propose an e�ective criterion

based on the statistical property of noise in the input noisy image for �nding the

k-nearest neighbors. The performance of the proposed method demonstrates that

it is competitive with other well-known methods.

2.3.2 The proposed kNND method

The k-nearest neighbors-based denoising (kNND) is an example-based learning

method which is performed pixel-wise, always with the help of a set of standard

images. Suppose that X is a noisy image that needs to be denoised, Y is the

ground-truth of X, and there exists a set of standard images taken at nearly the

same location (which can be considered as high quality or noise-free images) as the

noisy image X. By considering an image as an arranged set of pixels, the images

X and Y can be respectively presented as {xp}Np=1 and {yp}Np=1, where N is the

number of pixels in the images, xp is the value of the pixel p in X and yp is the

value of the corresponding pixel p in Y. The purpose of the denoising problem is

to estimate yp from xp for all p = 1, 2, . . . , N with the help of the standard images.

The proposed method is performed in two phases: the generation of the training

set and the denoising phase.

• In the �rst phase, instead of using examples from simulated noises as proposed

in the �rst method (KRRD), we only use examples from standard images

to generate a training set Ω. The training set include the couples (ui, yi) ∈
Rn×R, where ui is the vector corresponding to an image patch of size

√
n×√n

(n is an odd square number) in the standard image and yi is the value of the

center pixel of the vectorized patch ui. Here, the image vectorized patches ui
in the training set are randomly extracted from the standard images. So, we

do not have to perform simulating noise in constructing the training set Ω.

• In the second phase, for each pixel to denoise, we �rst search for its nearest

neighbors in the standards patches of the training set, and then we use these
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patches to learn relationships between them and their associated true values

in the training set. The main idea of the second phase can be summarized as

follows: for denoising each pixel p in the input noisy image X

1. A patch of size
√
n×√n and centered at p is �rst extracted and vectorized.

This vector is denoted by xp ∈ Rn .

2. Find a subset Ωp of k nearest neighbors of the input xp from the training

set.

3. Determine a regression function fΩp on Ωp.

4. Perform denoising for the pixel p by using the trained regression function

fΩp .

More details on the steps are presented in the following subsections.

2.3.2.1 Nearest Neighbors Search

In this work, the k nearest neighbors of xp is found in two steps:

1. The �rst step: we use a fast algorithm namely k -NN (k -Nearest Neighbors)

which is based on kd-trees structure [FBF77] and priority search [AMN+94]

to �nd the set of K elements which have the shortest Euclidean distance to

xp. Let us denote this set by Ωp. The C++ code source of this algorithm

is available in [MA06]. A Matlab wrapper provided by Dahua Lin can be

downloaded via this link http://people.csail.mit.edu/dhlin/softwares.

html.

2. The second step: from the set Ωp we select a subset of k (k < K) elements by

using a criterion based on the statistical properties of the noise in the noisy

patch xp.

Here, we present the criteria for searching the k nearest neighbors for two cases

depending on whether: 1-the noise in patch xp is an additive white Gaussian noise;

2-the noise in patch xp is a Poisson noise.

• Case of Gaussian noise:

Suppose that

xp = yp + ηp, (2.38)

where yp is the noise-free patch, ηp is the noise component assumed to be

additive white Gaussian noise, ηp ∼ N (0, σ2
p). Here, an element ui in the set

http://people.csail.mit.edu/dhlin/softwares.html
http://people.csail.mit.edu/dhlin/softwares.html
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Ωp is called the nearest neighbor of xp if it is as similar as possible to yp. To

determine the k nearest neighbors, let us consider equation (2.38). We have,

xp − yp = ηp ∼ N (0, σ2
p). (2.39)

Thus, ui ≈ yp if

xp − ui ∼ N (0, σ2
p). (2.40)

It can be inferred that, {
E(xp − ui) ' 0

Var(xp − ui)− σ2
p ' 0.

Therefore, ∣∣E(xp − ui)
∣∣+
∣∣Var(xp − ui)− σ2

p

∣∣ ' 0. (2.41)

So, determining the subset of the k nearest neighbors of xp from the set Ωp is

performed as follows: �rst, for each of element ui in Ωp (i = 1, 2, . . . ,K), we

de�ne a 2-dimension vector ϑi such that

ϑi =
(
E(xp − ui),Var(xp − ui)− σ2

p

)
. (2.42)

Let us refer to ϑi as the characteristic vector of ui with respect to xp. The

characteristic vector ϑi allows us to evaluate the statistical property of noise

in the residual patch. Finally, we select from Ωp k elements ui that have the

smallest ‖ϑi‖1. These k elements determine the set of k nearest neighbors

Ωp = {ui, yi}ki=1.

• Case of Poisson noise:

Suppose that noise in the patch xp has the Poisson distribution. In this

case, the k nearest neighbors search is realized in two steps: �rst, we use

the Anscombe root transformation [Ans48] (see section 1.3.2) to convert ap-

proximately Poisson noise into standard Gaussian noise. Then, we apply the

criterion for Gaussian noise as in (2.41) to determine the set of the k nearest

neighbors of xp.

In the �rst step, the Anscombe transformation, T (z) = 2
√
z + 3

8 , is applied

on xp and on the patches ui (i = 1, 2, . . . ,K) of the set Ωp. Then, noise in

the transformed patch denoted by xTp ,

xTp = T (xp) (2.43)

is asymptotically additive standard normal, N (0, 1). Denote by Ω
T
p the set of

the transformed example patches, we have

Ω
T
p = T (Ωp) =

{
uTi = T (ui)

}K
i=1

. (2.44)
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In the second step, we de�ne for each uTi in Ω
T
p a characteristic vector ϑi as

in equation (2.42),

ϑi =
(
E(xTp − uTi ),Var(xTp − uTi )− 1

)
. (2.45)

Finally, Ωp = {ui, yi}ki=1 is determined in which {ui}ki=1 is a subset of Ωp such

that the corresponding characteristic vectors, ϑi, have the smallest `1-norm.

In the next subsection, we will present the regression model learned from the

Ωp.

2.3.2.2 Regression model trained with the set of the k nearest neighbors

Suppose that for a given input xp we obtain a corresponding training subset Ωp =

{ui, yi}ki=1. Now, the problem is to determine a regression function fΩp on Ωp.

From the KRRD method (see section 2.2.2.2), we can extract some the following

observations.

• As shown in (2.32), the KRR has the form:

f(x) =
∑
i

aiK(ui,x), (2.46)

where K(ui,x) is the kernel function, and ai are the regression coe�cients

determined according to the corresponding regression model. Note that, there

are no any constraints on these coe�cients.

• Normally, the regression function f(x) is used to estimate noise-free pixel

value. Thus, f(x) is often a nonnegative value. On the other hand, in the

KRRD method, we used the Gaussian kernel

K(ui,x) = exp−‖ui − x‖22
2h2

(2.47)

where h is the decay parameter. Note that with Gaussian kernel, we have

K(ui,x) > 0,∀ui,x. Thus, we can assume that ai ≥ 0,∀i = 1, 2, . . . , k.

Therefore, we propose to �nd the regression function fΩp in the form

fΩp(x) =
∑
i

aiK(ui,x), (2.48)

where the vector of the regression coe�cients, a = (a1, a2, . . . , ak)
T , is a nonnegative

sparse vector which determines the solution of the following optimization problem:

a = arg min
a≥0

1

2

k∑
i=1

(f(ui)− yi)2 + λ‖a‖1. (2.49)
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By setting U = (Uij)k×k as the k × k matrix, where Uij = K(ui,uj). Problem

(2.49) can be rewritten as

a = arg min
a≥0

1

2
‖Ua− v‖22 + λ‖a‖1. (2.50)

⇔ a = arg min
a≥0

1

2
aTAa + bTa, (2.51)

where, v = (y1, y2, . . . , yk)
T , b = (λ1−UTv) in which 1 denotes an appropriately

sized vector of ones, and A = UTU. In this case, A is a positive de�nite matrix.

As it can be seen, (2.51) is a Nonnegative Quadratic Programming (NPQ) which

can be e�ectively solved by many algorithms (see [PPM+09]). To solve this prob-

lem, we use in this work the multiplicative updates algorithm proposed by Sha et al.

in [SSL02]. This is a quite e�ective algorithm and has been used to solve interest-

ing problems such as support vector machines [SSL02]. The updates from [SSL02]

for the NQP are summarized as follows (see [SSL02] for details on derivation and

convergence):

Algorithm 1 Multiplicative Updates Algorithm for NQP [SSL02]
Input: a = a0 > 0

Updating:

a←− a

[
−b +

√
b.∗b + 4(A+a).∗(A−a)

2A+a

]
. (2.52)

Output: a∗ = a

In the algorithm, A+ and A− are the nonnegative matrices de�ned by:

A+
ij =

{
Aij if Aij > 0

0 otherwise,
and A−ij =

{
|Aij | if Aij < 0

0 otherwise.
(2.53)

In (2.52), the operator .∗ represents element-wise multiplication. Division and square

root are also element-wise.

Suppose that we obtained the regression function fΩp . We can see that the

function fΩp expresses the relationship between ui and yi in Ωp, in which ui is a

vector of a standard patch. Thus, to obtain an e�ective estimate fΩp(x) for an input

x, x should be pre-processed. Therefore, we propose to perform denoising of the

pixel p in two following steps. The �rst step is to �nd a coarse estimate of the input

xp by averaging the k nearest neighbors:

x̄p =
1

k

k∑
i=1

ui. (2.54)

Then, the true value of the pixel p is estimated by, Y(p) = fΩp(x̄p).
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(a) CT scan of chest (b) CT scan of lung

(c) CT scan of thorax (d) CT scan of pelvis

Figure 2.13: Original images: (a) CT scan of chest, (b) CT scan of lung, (c) CT

scan of thorax, (d) CT scan of pelvis. (source:http://radiopaedia.org/cases/

(a) (b)

(c) (d)

Figure 2.14: Standard images used to establish the training set. (source: http:

//radiopaedia.org/cases/)

http://radiopaedia.org/cases/
http://radiopaedia.org/cases/
http://radiopaedia.org/cases/
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2.3.3 Performance evaluation of the kNND method

In this subsection, we present two experiments for denoising Gaussian noise and

Poisson noise.

2.3.3.1 Performance evaluation with Gaussian noise

The experimental tests are performed using four original CT images: CT scans of

chest, of lung, of thorax, and of pelvis (see Figure 2.13). These images contain

di�erent types of features: texture, sharp edges and smooth regions. They are

used to create the noisy images by adding a white Gaussian noise with di�erent

standard deviation values: σ = 10, 20 and 30. The proposed method (kNND) is

compared with the methods: Total Generalized Variation (TGV) [BKP10], Non-

local means (NLM) [BCM05], ISKR [TFM07], K-SVD [EA06], BM3D [DFKE07],

and RNLM [XM11]. For the example-based methods RNLM and kNND, we use

another image taken at nearly the same location to the test image for establishing

the training data set. These standard images are shown in Figure 2.14. In our

experiments, the size of the training data set is of 20000 observations, the regression

parameter λ in (2.49) is set to 1, and the parameter K in subsection 2.3.2.1 is set

to 5k. We will discus on value of parameter k in the experiments.

To objectively evaluate the results, we use two �delity measures, PSNR and

SSIM [WBSS04], as described in section 1.4. The best results of eight methods

are reported in tables from Table 2.5 to Table 2.8. As can be seen, our kNND

method yields signi�cant PSNR and SSIM gains over the TGV method [BKP10],

the NLM method [BCM06], the ISKR method [TFM07] and the RNLM method

[XM11]. Compared to the K-SVD, the quality indices of the kNND are higher in

the cases of σ = 20 and 30. However, for some cases of slight noise (CT scan of

lung), the SSIM index of the K-SVD method are sometimes higher than those of

the proposed method. It can also be seen that the BM3D method has higher PSNR

and SSIM compared with the kNND method in the case of low noise (level σ = 10)

except for the PSNR in CT scan of lung (Table 2.6). In contrast, the quality indices

of the kNND method are nearly the best for noise levels σ = 20 and σ = 30. In

general, the proposed method obtains better quality indices in case of heavy noise.

For subjective evaluation, we show in Figures 2.15, 2.16 and 2.17 the denoising

results of three images: Thorax, Chest and Pelvis respectively, with three noise lev-

els: σ = 10, 20 and 30. As it can be seen in Figure 2.15, in the case of slight noise

(σ = 10), the performance of the proposed method is competitive with the methods

NLM, RNLM, K-SVD and BM3D. For the cases of strong noise, Figure 2.16 and



2.3. The second proposed method: k-nearest neighbor-based Denoising
(kNND) 113

Table 2.5: Objective comparison for the CT scan of chest (Figure 2.13(a))

Quality σ
Image denoising algorithms

TGV

[BKP10]

NLM

[BCM06]

ISKR

[TFM07]

K-

SVD

[EA06]

BM3D

[DFKE07]

RNLM

[XM11]

kNND

PSNR
10 32.37 33.16 34.02 34.42 34.83 32.84 34.57

20 29.22 29.83 29.92 30.27 30.96 29.89 31.15

30 27.21 27.41 27.56 27.97 28.87 27.83 29.08

SSIM

10 0.895 0.920 0.922 0.930 0.946 0.907 0.932

20 0.816 0.822 0.853 0.857 0.854 0.841 0.874

30 0.779 0.769 0.791 0.776 0.819 0.752 0.820

Table 2.6: Objective comparison for the CT scan of lung (Figure 2.13(b))

Quality σ
Image denoising algorithms

TGV

[BKP10]

NLM

[BCM06]

ISKR

[TFM07]

K-

SVD

[EA06]

BM3D

[DFKE07]

RNLM

[XM11]

kNND

PSNR

10 29.23 31.18 32.06 32.66 33.05 31.24 33.38

20 27.04 28.28 28.02 28.86 29.19 27.63 29.43

30 25.30 26.24 25.67 26.61 27.05 26.62 27.88

SSIM

10 0.855 0.907 0.910 0.918 0.926 0.878 0.915

20 0.806 0.818 0.839 0.876 0.861 0.820 0.870

30 0.749 0.734 0.777 0.792 0.808 0.795 0.812
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Table 2.7: Objective comparison for the CT scan of thorax (Figure 2.13(c))

Quality σ
Image denoising algorithms

TGV

[BKP10]

NLM

[BCM06]

ISKR

[TFM07]

K-

SVD

[EA06]

BM3D

[DFKE07]

RNLM

[XM11]

kNND

PSNR

10 31.51 33.53 34.24 34.42 35.29 33.61 34.50

20 28.66 30.41 30.20 30.79 31.64 29.94 32.10

30 26.42 27.94 27.78 28.38 29.40 28.14 30.22

SSIM

10 0.907 0.921 0.902 0.933 0.949 0.919 0.924

20 0.856 0.849 0.864 0.882 0.903 0.852 0.917

30 0.789 0.767 0.815 0.826 0.856 0.843 0.876

Table 2.8: Objective comparison for the CT scan of pelvis (Figure 2.13(d))

Quality σ
Image denoising algorithms

TGV

[BKP10]

NLM

[BCM06]

ISKR

[TFM07]

K-

SVD

[EA06]

BM3D

[DFKE07]

RNLM

[XM11]

kNND

PSNR

10 31.38 33.39 33.79 33.94 34.45 30.96 34.31

20 28.68 30.16 29.96 30.06 30.84 28.57 31.20

30 26.64 27.75 27.52 28.10 28.74 27.39 29.00

SSIM

10 0.915 0.935 0.933 0.940 0.945 0.928 0.937

20 0.872 0.866 0.888 0.895 0.904 0.892 0.904

30 0.824 0.788 0.847 0.851 0.870 0.874 0.880

Figure 2.17 show that the kNND method visually outperforms the other methods. In

particular, observation of zoom-in parts of a desired region of interest in Figure 2.16

shows that the image details in the denoised image by our kNND method are pre-

served better than the other methods. For the TGV method and the ISKR method,

many details and edges have been smoothed out, especially in texture regions and

along the edges.

In the next subsections, we will analyze the in�uences of the parameters in this

method including:

• The decay parameter h of the kernel function

• The patch size

• The number of the nearest neighbors, k.

In order to objectively evaluate the impact of these parameters, we report results
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(a) Noisy image (b) TGV [BKP10] (c) NLM [BCM05]

(d) ISKR [TFM07] (e) K-SVD [EA06] (f) BM3D [DFKE07]

(g) RNLM [XM11] (h) kNND (i) Original image

Figure 2.15: Results of CT image of thorax for σ = 10.

of two quality measures namely PSNR and SSIM. Recall that high value of PSNR,

SSIM indicates high image quality.

2.3.3.1.1 E�ects of patch size and decay parameter of the kernel func-

tion

In order to validate the e�ects of the patch size and the decay parameter for denois-

ing, we conduct some experiments on two CT images, chest image (Figure 2.13(a))

and pelvis image (Figure 2.13(d)), with di�erent patch sizes of 3 × 3, 5 × 5, 7 × 7,

9× 9, and 11× 11. The decay parameter is often dependent on standard deviation

level σ of the noise. Thus, we consider h in the form h = nhσ. Here, we consider

three noise levels σ = 10, 20 and 30, the decay parameter is tested with several val-

ues nh = [2 : 2 : 100] (here we use Matlab notation which means that nh takes the

values from 2 to 100 with step 2). The experimental results are shown in Figure 2.18

and Figure 2.19.

As it can be seen, the general and increasing form of these curves indicates that

good results can be obtained for su�ciently large value of nh for any patch size. Let

us denote by nht a threshold value of nh for which the quality result is optimum.



116 Chapter 2. The proposed methods for image denoising

(a) Noisy image

(b) TGV [BKP10] (c) NLM [BCM05]

(d) ISKR [TFM07] (e) K-SVD [EA06]

(f) BM3D [DFKE07] (g) RNLM [XM11]

(h) kNND (i) Original image

Figure 2.16: Results of CT image of chest for σ = 20.



2.3. The second proposed method: k-nearest neighbor-based Denoising
(kNND) 117

(a) Noisy image

(b) TGV [BKP10] (c) NLM [BCM05]

(d) ISKR [TFM07] (e) K-SVD [EA06]

(f) BM3D [DFKE07] (g) RNLM [XM11]

(h) kNND (i) Original image

Figure 2.17: Results of CT image of pelvis for σ = 30.
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(a) PSNR, σ = 10 (b) SSIM, σ = 10

(c) PSNR, σ = 20 (d) SSIM, σ = 20

(e) PSNR, σ = 30 (f) SSIM, σ = 30

Figure 2.18: Objective image quality measures with respect to di�erent patch sizes

and di�erent values of the decay parameter, h = nhσ. PSNR and SSIM curves as

the functions of parameter nh. Experiment is performed on the CT image of chest

in Figure 2.13(a).
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(a) PSNR, σ = 10 (b) SSIM, σ = 10

(c) PSNR, σ = 20 (d) SSIM, σ = 20

(e) PSNR, σ = 30 (f) SSIM, σ = 30

Figure 2.19: Objective image quality measures with respect to di�erent patch sizes

and di�erent values of the decay parameter, h = nhσ. PSNR and SSIM curves as

the functions of parameter nh. Experiment is performed on the CT image of pelvis

in Figure 2.13(d).
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As can be seen, the threshold value nht varies with patch size. For example, a small

patch size 3×3 should have a threshold value nht around 15 for small noise (σ = 10)

while this value decreases for stronger noise levels. Regarding patch size, we observe

that the stronger the noise, the larger patch size should be chosen to obtain good

quality measures. For example, the quality measures are the best for 3 × 3 patch

size with σ = 10. Likely, for 5× 5 patch size, the best quality indices are obtained

with σ = 20. As for the 7 × 7 patch size, the best quality results correspond to

σ = 30.

Visually, we present in Figure 2.20 the denoising results of the Pelvis image from

di�erent patch sizes. We can see that if the patch size is too large, some �ne details

cannot be properly recovered, and the denoising result will be smooth. Alternatively,

the noise is not e�ciently eliminated if the size of image patch is too small.

2.3.3.1.2 E�ects of number of the nearest neighbors, k

For the proposed denoising approach, an important issue is the choice of the

number of the nearest neighbors k. In our work, we test the impact of several values

k =[1, 4, 7, 10, 14, 18, 22, 26, 30, 40, 50, 70, 100, 140, 200] on the quality measures,

and analyse the evolution of PSNR and SSIM in function of k. We carry out a

test on the images in Figure 2.13 for three noise levels σ = 10, 20 and 30. In our

experiments, we use patch size 3 × 3 for σ = 10, 5 × 5 for σ = 20 and 7 × 7 for

σ = 30, the decay parameter h is set to 50σ. These values are chosen from the

observation of the above study to expect having good results. As it can be seen in

Figure 2.21 and 2.22, the choice of k depends on the image and the noise level in the

image. Generally, there is a range of values of k providing good quality indices. This

"optimal" range of k is obtained from 4 to 15 for PSNR metric. However, for SSIM

metric, these "optimal" values of k decrease with the noise level. For instance, the

best SSIM of the Pelvis image is obtained for large range of k varying from k = 50

to 70 for small noise level (σ = 10), whereas this range narrows around k = 5 to 10

for higher noise levels (σ = 20 and 30).

2.3.3.2 Performance evaluation with Poisson noise

In this section we illustrate the performance of the proposed method for Poisson

denoising through some experiments on synthetic and real data. The proposed

method are compared with three denoising methods which were speci�cally designed

for Poisson noise, including the Total Variation (TV) method in [LCA07], the Non-

local Means (NLM) method in [DTD10] and the Block-Matching 3D �lter in [MF11].

The parameters of the kNND methods are set as follows: the regression parameter

λ = 1, the number of nearest neighbors k = 7, the parameter K in subsection 2.3.2.1
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(a) Noisy image (b) 3× 3

(c) 5× 5 (d) 7× 7

(e) 9× 9 (f) 11× 11

(g) 13× 13 (h) Original image

Figure 2.20: Comparison of denoising results on CT image of pelvis for σ = 10 with

di�erent patch sizes. (a) Noisy image, (b) 3 × 3 result, (c) 5 × 5 result, (d) 7 × 7

result, (e) 9× 9 result, (f) 11× 11 result, (g) 13× 13 result, and (h) original image
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(a) σ = 10

(b) σ = 20

(c) σ = 30

Figure 2.21: E�ects of the number of the nearest neighbors k using the PSNR

measure. Experiment is performed on the images in Figure 2.13 with three noise

level σ = 10, 20 and 30.
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(a) σ = 10

(b) σ = 20

(c) σ = 30

Figure 2.22: E�ects of the number of the nearest neighbors k using the SSIM mea-

sure. Experiment is performed on images in Figure 2.13 with three noise level

σ = 10, 20 and 30.
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(a) Original image (b) Standard image

Figure 2.23: The images are used in the experiment with synthetic image: (a)

original image and (b) standard image.

is set to 5k, and the patch size is set to 7× 7.

First, we report the experiment results on a synthetic image of size 200 × 200

pixels, in a gray scale ranging from 0 to 255 (Figure 2.23(a)). In our method, we

use another image in Figure 2.23(b), to construct the training data set of 30000

observations.

The original image in Figure 2.23 is corrupted by Poisson noise, providing a

noisy image (Figure 2.24(a)). This corrupted image is then denoised by di�erent

denoising methods. The best results of the methods are presented in Figure 2.24.

Objectively, the kNND method outperforms the TV [LCA07], NLM [DTD10] and

BM3D [MF11]. As it can be seen in Figure 2.24(e), our kNND method e�ectively

removes noise while excellently preserving the sharpness of image edges and corners.

Another experiment is realized on a PET image of chest (Figure 2.25(a)). This

image is used as a test original image, meaning that it is corrupted by Poisson noise

and then the Poisson denoising methods are applied to remove noise. Finally, the de-

noised results are compared with the original test image to evaluate the performance

of the methods. In this experiment, we use another PET image taken at nearly the

same location with the test image to construct the training data set for the kNND

method (Figure 2.25(b)). The experimental results are shown in Figure 2.26. As it

can be seen, the PSNR and SSIM of the denoised image by the kNND are consid-

erably higher than of the images denoised by the TV in [LCA07] and the NLM in

[DTD10], and slightly higher than those of the denoised image by BM3D in [MF11].

For subjective comparison, we can see the staircasing artifacts in the denoised

image by the TV in [LCA07] (Figure 2.26(b)). It seems that there is no signi�cant

di�erence between the results of the three methods NLM, BM3D and kNND. To

clearly see the di�erence in the results of these methods, Figure 2.27 respectively

shows the residual images (de�ned as the di�erence between the noisy image and
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(a) Noisy image (b) TV [LCA07]

(PSNR=38.74, SSIM=0.943)

(c) NLM [DTD10]

(PSNR=42.32, SSIM=0.983)

(d) BM3D [MF11]

(PSNR=43.51, SSIM=0.981)

(e) kNND

(PSNR=43.70, SSIM=0.985)

(f) Noise-free image

Figure 2.24: Experimental results on the synthetic image (Figure 2.23(a)) with

Poisson noise: (a) noisy image, (b) denoised result by the TV method in [LCA07],

(c) denoised result by the NLM method in [DTD10], (d) denoised result by the

BM3D method in[MF11], (e) denoised result by the proposed kNND, and (f) original

image (high quality).

the denoised image) of the TV [LCA07], NLM [DTD10] and BM3D [MF11]. These

residual images are compared to the Poisson noise component in the noisy image

in Figure 2.27(e). As can be seen, the residual image of the proposed kNND (Fig-

ure 2.27(d)) looks more similar to the Poisson noise image (Figure 2.27(e)) than of

the other methods. This con�rms the performance of the proposed method.

2.3.4 Conclusion

We presented in this section another learning-based method for denoising Gaussian

and Poisson noise in medical image. This method is developed from the machine

learning-based denoising method namely the KRRD proposed method in Section 2.2.

Like the KRRD, the kNND method provides novel contribution in denoising ap-

proach for �nding a regression function on a training set from a given set of standard

images. However, unlike the KRRD method where the denoising phase is performed
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(a) Original image (b) Standard image

Figure 2.25: Images used in the experiment with a PET image of abdomen: (a)

test original image and (b) standard image used to construct the training data

set. Image courtesy of Dr. Jean-Marie Rocchisani (Avicenne University Hospital,

Bobigny, France).

using the �xed regression functions trained o�-line from the training phase, this

second method performs the construction of regression function and denoising are

performed simultaneously. Another contribution of the kNND method is to avoid

using simulated noise in the construction of the training set. Experimental results

carried out on CT, PET, and synthetic images demonstrated the performances of

the proposed method over leading state-of-the-art techniques. We believe that with

an e�ective training set, this technique may be quite useful and very promising.

2.4 The third proposed method: A Sparse Weight Model

for Gaussian Denoising (SWMGD)

2.4.1 Introduction

In CT imaging, pixel noise can be decreased by increasing the X-ray dose. The

disadvantage of increasing radiation dose is that high X-Ray doses may be harmful

to patients. Thus, one of the challenges is to obtain a high quality image from a

low-dose scan, which brings less damage to the patient. However, low radiation

imaging is often associated with a number of quality-degrading artifacts, the most

prominent of them being noise. Noise obscures diagnostically-valuable details; and

if it can be removed by a robust image denoising technique, lower radiation scans

become possible.

In this section, we focus on the problem of removing noise in low-dose CT images.

It has been proven that the noise was often found to have a Gaussian distribution

[LLHL02]. In fact, noise distribution in the CT image is usually unknown and noise

variance in CT images is spatially changing (see Figure 2.28). Therefore, reducing
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(a) Noisy image (b) TV [LCA07]

(PSNR=33.72, SSIM=0.940)

(c) NLM [DTD10]

(PSNR=35.24, SSIM=0.961)

(d) BM3D [MF11]

(PSNR=37.27, SSIM=0.974)

(e) kNND

(PSNR=37.98, SSIM=0.976)

(f) Original test image

Figure 2.26: Comparison of the Poisson denoising methods on a PET image of

abdomen: (a) noisy image, (b) denoised image by the TV method in [LCA07], (c)

denoised image by the NLM method in [DTD10], (d) denoised image by the BM3D

in [MF11], (e) denoised image by the kNND method, and (f) the original test image

(considered as noise-free image).

noise in reconstructed image becomes more di�cult. In such cases, the denoising

methods which are based on the assumption of independent identically distributed

additive noise might not be e�cient enough. These methods may adversely a�ect

regions that have no noise or very slight noise and where there may be no need to

denoise. In the proposed method, we assume that noise in low-dose CT image has

locally Gaussian distribution. Thus, by considering that a noisy image is an arranged

set of small patches, we can suppose that noise on each patch is an additive Gaussian

noise with stable variance. Based on these assumptions, we can perform denoising

on each patch. Note that noise level of di�erent patches may be di�erent.

Similar to the previously proposed methods, namely the KRRD and the kNND,

we also make use of the standard images for denoising. However, unlike the previous

method where the standard images are used to establish the training set of the

observation examples {(xi yi)}, in this second method the standard images are used

to generate a database of image patches. This database of the standard image
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(a) Residual image of

TV [LCA07]

(b) Residual image of

NLM [DTD10]

(c) Residual image of

BM3D [MF11]

(d) Residual image of kNND (e) Poisson noise

Figure 2.27: Comparison of the denoising methods on residual images: (a) residual

image of TV [LCA07], (b) residual image of NLM [DTD10] and (c) residual image

of BM3D [MF11], (d) residual image of kNDD, and (e) the Poisson noise component

(de�ned as the di�erence between the noisy image and the test image) in the noisy

image (Figure 2.26(a)).

patches is then directly used for patch-denoising.

To provide some motivation for our idea, we �rst consider the image given in

Figure 2.29(a). In this image, we select two arbitrary 7 × 7 patches in the image.

Then, for each patch, we �nd the 99 other patches in the image which are most simi-

lar to the given patch, the measure of similarity being the Euclidean distance. Then,

we obtain 100 similar patches for each of two groups. Though the dimensionality of

each patch is 49 (49 pixels in each patch), for each group of patches, 98% of the total

variance4 is contained in the top 15 eigenvectors (see Figure 2.29(b)). This indicates

that the group of similar patches lies approximately on a 15-dimensional subspace.

Therefore, a given patch can be sparsely represented by the similar patches.

Now, tackle again the problem of denoising a noisy image patch with the help

of a given database of standard patches. From the above observation, a simple

4The total variance of a data set is equal to the trace of the covariance matrix
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(a) CT image (b) Noise

Figure 2.28: Real noise in a CT image.

(a) (b)

Figure 2.29: Distribution of the similar image patches

solution would be based on searching in the database, k-nearest neighbors of the

noisy patch. However, this strategy highly depends on the parameter k for which

it is not easy to �nd an optimal value. To overcome this limitation, we try to �nd

a sparse positive linear representation of the noisy patch from standard patches.

In this representation, the coe�cients highly depend on the measure of similarity

between patches. This idea is realized by formulating a constrained optimization

formulation in which the similarity between patches is considered. Here, the measure

of similarity between patches plays an important role in the behaviour of penaty

function to enforce sparsity. In the remaining of this section, we refer to the method

as SWMGD which stands for a Sparse Weight Model for Gaussian Denoising.

The contribution of this method is two �elds. First, it is formulated as a sparse

representation model where penalty function expressed in terms of dissimilarity mea-

sure is used to enforce sparsity, and the dissimilarity measure is proposed based on

statistical properties of Gaussian noise for a better result. Second, the standard

images are used as prior for the sparsity constraint in the optimization problem.
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Unlike conventional sparse representation technique, this example-based method is

designed to learn the prior from standard images without construction of a dictio-

nary. The proposed method is detailed in the next section.

2.4.2 The proposed method

In this section, we present a sparse weight model for Gaussian denoising with the

help of given set of standard image patches. Let Ω = {uk ∈ Rn, k ∈ I} denote the
database of vectorized standard image patches, where I is the index set. Assume

that Y is a noisy image that needs to be denoised. Our aim is to estimate the true

image, denoted by X, from Y with the help of the database Ω. To this end, we

consider Y as a set of small overlapping patches

Y = {yi = RiY, i = 1, . . . , N} (2.55)

where yi ∈ Rn represent the vectorized
√
n×√n patch centered at location i, while

Ri is a linear operator that extracts the patch at i. Overlap is often taken for

these patches for two reasons: to avoid blockiness artifacts by averaging results and

to take account for redundancy of estimates in denoising process. The proposed

method is performed patch-wise with two main steps as follows.

• Step 1. Patch denoising:

For each noisy patch yi, estimate the corresponding noise-free patch xi of X.

This is realized based on determining the best sparse positive representation

of yi over the database Ω via an optimization problem where a measure of

similarity between patches is used as penalization function to enforce sparsity.

• Step 2. Aggregation:

Construct the �nal estimate X̂ for X using the result obtained from the �rst

step.

The following subsections present these steps in details.

2.4.2.1 Step 1: Patch Denoising

Consider a noisy patch yi in which the noise component ηi has normal distribution,

ηi ∼ N (0, σ2
i ) (mean 0 and standard deviation σi)

yi = xi + ηi. (2.56)

Thanks to the repetition of local structures of images, we can believe that there

exists a subset of similar patches (in Ω) which can be considered as the candidates
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for each noise-free patch xi. Such patches will play an important role in �nding an

estimate x̂i of xi from yi. In this work, xi is assumed to be a weighted sum of the

patches uk in Ω,

xi =
∑
k∈I

αkuk, αk ≥ 0, ∀k ∈ I, (2.57)

where αk, with k ∈ I are the representation coe�cients.

Indeed, to avoid the in�uence of non-candidate patches, it is better to involve

only patches which are the good candidates for xi in the estimation of x̂i. Then,

xi can be seen as a sparse positive linear combination of the elements in Ω where

most of zero coe�cients αk correspond to the elements uk which are not good

candidates for xi. That is why we try to estimate xi based on a sparse positive linear

representation over Ω with the weights αk depending on the similarity between uk

and yi. Under these conditions, denoising a patch yi implies solving the following

sparse decomposition problem:

α∗ = arg min
α≥0

‖α‖0 +
∑
k∈I

Φi (d(uk,yi))αk (2.58)

subject to
∥∥yi −∑

k∈I
αkuk

∥∥2

2
≤ εσ2

i ,

where ‖α‖0 stands for the `0-norm which counts the non-zero entries in α, ε is a

positive constant, σ is the standard deviation of the noise on the patch yi, Φi : R→
R is a non-negative increasing function, and d : Rn×Rn → R is a patch-dissimilarity

measure. A high value of d, hence of Φ, forces the sparsity constraint.

In (2.58), the `0-norm assures that the solution α∗ is a sparse one. In the second

term, Φi (d(uk,yi)) may be viewed as the penalty coe�cients in the sense that if the

value of Φi (d(uk,yi)) is suitably large, the term Φi (d(uk,yi))αk will be penalized a

heavy cost if αk is large. Thus, in the cases where uk and yi are very dissimilar (i.e.

Φi (d(uk,yi)) is large), objective function in (2.58) can be minimized with weight

αk often very small or null. Therefore, for the sparse solution α∗ of (2.58), the non-

zero components often correspond to the small penalty coe�cients. The constraint

in (2.58) implies that the denoised patch x̂i,

x̂i =
∑
k∈I

α∗kuk (2.59)

has to consistent with the noisy input yi. Therefore, the estimate x̂i of a desired

patch xi can be determined optimally from several standard candidate patches uk ∈
Ω.

Normally, to measure the dissimilarity among the image patches, Euclidean dis-

tance is one of the most popular dissimilarity measure. However, in the case of
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patches a�ected by noise this distance may not be e�ective enough. To obtain a

better dissimilarity measure, we propose a novel dissimilarity criterion. For this, let

us consider the residual patch, yi − uk. Since uk in Ω is considered as noise-free

while yi is assumed to be corrupted by Gaussian white noise ηi ∼ N (0, σ2
i ) (see

(2.56)), the patch uk is similar to yi if (yi − uk) ∼ N (0, σ2
i ). Then, we have{

E(yi − uk) ' 0

Var(yi − uk)− σ2
i ' 0.

Therefore,

ai,k =
∣∣E(yi − uk)

∣∣+
∣∣Var(yi − uk)− σ2

i

∣∣ ' 0. (2.60)

The parameter ai,k allows us to evaluate the statistical property of noise in the

residual patch. So, in this work, the dissimilarity measure is de�ned by

d(yi,uk) = ‖yi − uk‖22 + ai,k. (2.61)

It is easy to see that the objective in (2.58) is not a convex function, since `0-

norm is not a true norm. This problem is too complex to solve in general. To

avoid the above problem we replace `0-norm by `1-norm, and problem (2.58) is then

convex and can be rewritten as:

α∗ = argmin
α≥0

‖α‖1 +
∑
k∈I

Φi (d(yi,uk))αk (2.62)

subject to
∥∥yi −∑

k∈I
αkuk

∥∥2

2
≤ εσ2

i .

Lagrange multipliers o�er an equivalent formulation

α∗ = argmin
α≥0

1

2

∥∥yi −∑
k∈I

αkuk
∥∥2

2
+ λ

∑
k∈I

(
1 + Φi (d(yi,uk))

)
αk, (2.63)

where the positive parameter λ balances sparsity of the solution and �delity of the

approximation to yi.

Let us denote S(yi) = {k ∈ I : α∗k > 0} as the support set of yi. As analyzed

above, S(yi) involves uk where the dissimilarity d(yi,uk) is not large. Thus, with

a suitable value of the threshold ri, exists a subset Ii of I,

Ii = {j ∈ I : d(yi,uk) ≤ ri}, (2.64)

such that

S(yi) ⊆ Ii. (2.65)

Thus, to save computing time, problem (2.63) should be considered on the subset

Ii,

α∗ = argmin
α≥0

1

2

∥∥yi −∑
k∈Ii

αkuk
∥∥2

2
+ λ

∑
k∈Ii

(
1 + Φi (d(yi,uk))

)
αk (2.66)
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(a) (b) (c)

Figure 2.30: Test (noise-free) images for (a) CT of Chest, (b) CT of Pelvis, and (c)

CT of Abdomen (source: http://radiopaedia.org/)

(a) (b) (c)

Figure 2.31: Standard images are used to construct the database of example patches

(source: http://radiopaedia.org/).

It is easily to see that problem (2.66) can be rewritten as:

α∗ = argmin
α≥0

1

2

∥∥yi −Uiα
∥∥2

2
+ λwT

i α

= argmin
α≥0

1

2
αT (Ui

TUi)α+
(
λwi −Ui

Tyi
)T
α (2.67)

where Ui is the matrix whose columns are the vectors uk, wi is the vector formed

by concatenating all the numbers
(
1 + Φi (d(yi,uk))

)
, with k ∈ Ii. We can see that

(2.67) is a Nonnegative Quadratic Programming (NQP), which can be e�ortlessly

solved by the multiplicative updates algorithm [SSL02] (see Subsection 2.3.2.2).

2.4.2.2 Step 2: Aggregation

Once the estimation x̂i of xi from yi for all i = 1, 2, 3, . . . , N are obtained, the �nal

denoised image X̂ is then determined from the set {x̂i, i = 1, 2, 3, . . . , N}. We put

x̂i in their proper locations and perform averaging in overlap regions to get the �nal

image, enforcing then the consistency between neighboring patches. Indeed, since

adjacent patches with overlap are often similar and provide redundant estimates,

averaging in the overlap regions yields rather satisfactory result.

http://radiopaedia.org/
http://radiopaedia.org/
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Table 2.9: PSNR comparison of denoised images

Image
σ

PSNR (dB)

Image denoising algorithms

TGV NLM ISKR K-

SVD

BM3D RNLM SWMGD

(a)

10 32.37 33.16 34.02 34.42 34.83 32.84 34.68

20 29.22 29.83 29.92 30.27 30.96 29.89 31.80

30 27.21 27.41 27.56 27.97 28.87 27.83 29.32

(b)

10 31.38 33.39 33.79 33.94 34.45 30.96 34.38

20 28.68 30.16 29.96 30.06 30.84 28.57 31.27

30 26.64 27.75 27.52 28.10 28.74 27.39 29.10

(c)

10 33.24 33.87 34.44 34.79 35.21 33.38 35.72

20 29.33 30.26 30.57 30.81 33.52 29.61 34.01

30 27.56 27.98 28.11 28.61 29.37 27.28 31.35

2.4.3 Performance evaluation

We have carried out several experimental results of the proposed method in the

two cases: images with simulated noise and real noisy images. Furthermore, the

proposed method is compared with some well-known denoising methods, including

the ISKR method [TFM07], the TGV method [BKP10], the NLM method [BCM06],

the K-SVD method [EA06], the BM3D method [DFKE07] and the RNLM method

[XM11].

In our experiments, the noisy images are generated by adding Gaussian noise to

the corresponding test noise-free image (Figure 2.30). The experiments are done on

three test image, with σ = 10, 20 and 30. The database of 100000 standard patches

is established from three standard images (images of nearly the same location as the

test image) in Figure 2.31.

For objective evaluation, we use two image quality metrics, namely PSNR and

SSIM. As can be seen from table 2.9 and table 2.10, the quality indices of our method

(SWMGD) are higher than those of the ISKR, the TGV, the NLM, and the RNLM.

Compared with K-SVD and BM3D, in some case of σ = 10, the quality indices

of SWMGD are lower. However, SWMGD obtains the better quality indices than

those of the K-SVD and the BM3D for high noise level, σ = 20, 30. Moreover, these

quality indices are the best for strong noise levels.

For subjective comparison, we show in Figure 2.32 the experimental results for

CT image of chest (Fig. 2.30(a)) corrupted by Gaussian noise with the noise stan-

dard deviation σ = 20. Also, Figure 2.33 illustrates zoom-in images of a Desired
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Table 2.10: SSIM comparison of denoised images

Image σ

SSIM

Image denoising algorithms

TGV NLM ISKR K-

SVD

BM3D RNLM SWMGD

(a)

10 0.895 0.914 0.922 0.930 0.946 0.907 0.942

20 0.816 0.807 0.853 0.857 0.854 0.841 0.884

30 0.743 0.711 0.791 0.776 0.819 0.752 0.830

(b)

10 0.915 0.935 0.933 0.940 0.945 0.928 0.937

20 0.872 0.866 0.888 0.895 0.904 0.892 0.908

30 0.824 0.788 0.847 0.851 0.870 0.874 0.888

(c)

10 0.914 0.919 0.933 0.935 0.945 0.936 0.945

20 0.835 0.831 0.874 0.863 0.880 0.882 0.898

30 0.743 0.748 0.816 0.794 0.821 0.790 0.859

Region Of Interest (DROI) in Figure 2.32(b)-2.32(i), respectively. Visually, our

SWMGD method e�ectively removes noise while better preserving the image struc-

tures compared to the other methods.

The proposed method is also performed on CT image with real noise. Figure 2.34

shows the experimental results on a noisy low-dose CT image of abdomen. As can be

seen, the input low-dose image, Figure 2.34(a), is strongly corrupted by tomographic

noise. The noise is assumed to have Gaussian distribution, with the standard de-

viation is estimated by the method in [MP03] σ̂ = 27. The proposed SWMGD

method is compared to the TGV [BKP10], the NLM [BCM06], the ISKR [TFM07],

the K-SVD [EA06], the BM3D [DFKE07] methods, and the example-based learn-

ing methods including the RNLM [XM11], the �rst proposed method KRRD, the

second proposed kNDD method. For example-based learning methods, we use a

standard image, Figure 2.34(b), to establish the training set for the KRRD and

kNND method, and the database of standard patches for the SWMGD method. We

use 7 × 7 patch size for the methods NLM, K-SVD, BM3D, and RNLM, kNND,

and SWMGD. For the KRRD method, we use patch size in this case is 5 × 5. De-

noised images by the methods are illustrated in Figure 2.34(c)-2.34(k). We can

see in Figure 2.34(h)-2.34(k), the denoised results by the example-based denoising

methods (RNLM, KRRD, kNND and SWMGD) look better than the results of the

non-example-based methods (the TGV, NLM, ISKR, K-SVD and BM3D methods).

The results of the methods TGV, NLM, ISKR, K-SVD and BM3D are blurred,

e.g. bones in white. Compared to the results of the RNLM and the kNND, the

results of SWMGD is less smoothed. Obviously, the SWMGD method better de-
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(a) Noisy image (b) Denoised image by

ISKR [TFM07]

(c) Denoised image by

TGV [BKP10]

(d) Denoised image by

NLM [BCM05]

(e) Denoised image by

RNLM [XM11]

(f) Denoised image by K-

SVD [EA06]

(g) Denoised image by

BM3D [DFKE07]

(h) Denoised image by

SWMGD

(i) Original image

Figure 2.32: Results of the CT image of Chest in Figure 2.30(a): (a) Noisy image

with Gaussian noise (σ = 20) in which the yellow square illustrates a desired region

of interest, (b) result of ISKR [TFM07], (c) result of TGV [BKP10], (d) result of

NLM [BCM05], (e) result of RNLM [XM11], (f) result of K-SVD [EA06], (g) result

of BM3D [DFKE07], (h) result of SWMGD, and (i) original test image.

noises compared with the KRRD method. As it can be seen in Figure 2.34(k), by

e�ectively denoising while slightly enhancing contrast, the result has its quality im-

proved, although the denoised image by the SWMGD method has less contrast than

the standard image (Figure 2.34(b)) due to the poor contrast of the noisy image.

In the following, we present the e�ects of the patch size and regularization pa-

rameter in the proposed algorithm.

2.4.3.1 E�ects of the patch size

Since SWMGD perform patch-wise denoising, the patch size thus is an important

parameter of the algorithm. To see the impact of patch size, we test the proposed
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(a) ISKR [TFM07] (b) TGV [BKP10] (c) NLM [BCM05] (d) RNLM [XM11]

(e) K-SVD [EA06] (f) BM3D [DFKE07] (g) SWMGD (h) Original image

Figure 2.33: The zoom-in images of DROI in the denoised images in Figure 2.32.

(a)-(g) are the DROI in the denoised results by the methods: ISKR [TFM07],

TGV [BKP10], NLM [BCM05], RNLM [XM11], K-SVD [EA06], BM3D [DFKE07],

and our SWMGD method, respectively. (h) The zoom-in image of DROI of the

original image (Fig. 2.30(a)).

method on three images of Figure 2.30 with di�erent patch size 3× 3, 5× 5, 7× 7,

9 × 9, 11 × 11. The objective quality results in three cases of noise level, σ = 10,

20 and 30 are reported in Figure 2.35, 2.36 and 2.37, respectively. As it can be

seen in those �gures, the curves evolve with nearly the same form, with a maximum

value of indices. The stronger the noise level, the larger size should be chosen to

obtain the best quality indices. As it can be seen in Figure 2.35, with noise level

σ = 10. The indices PSNR of the chest CT image (image (a)) and the pelvis CT

image (image (b)) are the best with the patch size of 3. However, it is not valid

for the case of abdomen CT image (image (c)) where the highest value of PSNR

is obtained with patch size 5 × 5. With SSIM metric, we can see that in all three

cases of images, the best results are obtained at the patch size 5 × 5. Figure 2.36

shows experimental results with σ = 20. Visually, the objective quality metrics of

the images CT of chest and CT of pelvis increase when the patch size increases from

3 × 3 to 5 × 5 then reduce from 5 × 5 to 11 × 11. For the abdomen image, the

best result is obtained at the patch size 7 × 7. In the case of noise level σ = 30,

Figure 2.37 shows that with 7 × 7 patch size the highest quality are obtained for

the chest image and the pelvis image while the best result for abdomen image is

obtained with 9× 9 patch size.
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(a) Noisy image (b) Standard image

(c) TGV [BKP10] (d) NLM [BCM06] (e) ISKR [TFM07]

(f) K-SVD [EA06] (g) BM3D [DFKE07] (h) RNLM [XM11]

(i) KRRD (j) kNND (k) SWMGD

Figure 2.34: Experimental results on CT image of abdomen with real noise.

(a) Noisy image, (b) Standard image, from (c) to (h): Denoised images by the

TGV [BKP10], the NLM [BCM06], the ISKR [TFM07], the K-SVD [EA06], the

BM3D [DFKE07], and the RNLM [XM11], respectively. From (i) to (k): Denoised

images by the three proposed methods KRRD, kNND, and SWMGD, respectively.

Image courtesy of Dr. Jean-Marie Rocchisani (Avicenne University Hospital, Bo-

bigny, France).
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(a) PSNR (b) SSIM

Figure 2.35: Objective image quality measures with respect to the patch sizes for

σ = 10.

(a) PSNR (b) SSIM

Figure 2.36: Objective image quality measures with respect to the patch sizes for

σ = 20.

(a) PSNR (b) SSIM

Figure 2.37: Objective image quality measures with respect to the patch sizes for

σ = 30.
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To visually see the in�uence of the patch size, we show in Figure 2.38 the denoised

images of the abdomen image (Figure 2.30(c)) corrupted by Gaussian noise with

standard deviation σ = 20. It is observed that the result obtained from 7× 7 patch

(a) Noisy image (b) 3× 3 (c) 5× 5

(d) 7× 7 (e) 9× 9 (f) 11× 11

Figure 2.38: Comparison of denoising results on the Abdomen image (Figure 2.30(c))

corrupted by Gaussian noise with standard deviation σ = 20 with di�erent patch

sizes. From left to right, from top to bottom: (a) Noisy image, (b) 3× 3 result, (c)

5× 5 result, (d) 7× 7 result, (e) 9× 9 result, and (f) 11× 11 result, respectively.

size in Figure 2.38(d) is the best. Obviously, with a small patch size (e.g., 3 × 3),

the noise is not e�ectively removed. In contrast, with a larger patch size (e.g.,

11× 11), noise is very well removed but the result is oversmoothed. Therefore, the

choice of patch size depends on noise level. We can conclude that the patch size is

proportional to the noise level.

2.4.3.2 Impact of regularization parameter λ

In this subsection, we analyze the in�uence of the parameter λ in equation (2.67).

For this purpose, we perform experiments on three images of Figure 2.30 with three

noise levels σ = 10, 20 and 30. In all experiments, we choose the patch size 5 × 5

for noise levels σ = 10 and 20, and 7 × 7 for noise level σ = 30. The parameter λ

is tested with several values λ = [0 0.001 0.01 0.1 1 10 30 50 70 90 110 150 200 300

400]. The evolution of PSNR and SSIM versus λ is analyzed.

The PSNR and SSIM curves are illustrated respectively in Figure 2.39 and Fig-

ure 2.40. As it can be seen in Figure 2.39 and Figure 2.40, the PSNR, and SSIM

curves increase when λ increases in some �rst steps (around from 0 to 10), and
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(a) CT image of Chest

(b) CT image of Pelvis

(c) CT image of Abdomen

Figure 2.39: PSNR curves as a function of parameter λ.
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(a) CT image of Chest

(b) CT image of Pelvis

(c) CT image of Abdomen

Figure 2.40: SSIM curves as a function of parameter λ.
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then noticeably reduce when λ increases from 10 to 400. The optimal range of λ is

usually found from 1 to 10. Figure 2.40

2.4.4 Conclusion

In this section, a novel example-based method has been proposed. The method is

based on �nding a sparse positive linear representation of the input noisy image

patch over a database of standard image patches. The proposed method can ef-

fectively remove instable noise. Furthermore, the proposed method o�ers a simple

formulation from the denoising problem within the sparse representation framework

into a common nonnegative quadratic programming problem. The experimental re-

sults have demonstrated the e�ectiveness of the method on medical images. In the

future works, we are going to study optimal solutions for establishing the database.

Moreover, we will extend this model to other types of noise such as Poisson noise,

Rician noise, Speckle noise.

2.5 Comparison of the proposed methods

In this section we present a comparison of the proposed methods for denoising

Gaussian noise. First of all, let us outline the di�erence on the algorithms of the

three methods KRRD, kNND and SWMGD. Considering the algorithms of the �rst

method (KRRD) and the second method (kNND), the kNND has some improve-

ments compared to the KRRD as follows:

1. Unlike the KRRD, the training set of the kNND method is constructed directly

from the standard images. Thus, it avoids the problem of noise simulation as

in the KRRD method.

2. By using the k-nearest neighbors we avoid the problem of �nding the number

of subsets need to be classi�ed from the training set.

3. By using a small set Ωk of the k nearest neighbors (see Section 2.3.2.1), the

determining the regression function on Ωk becomes easier.

4. In the denoising phase, for an input patch its output value is computed using

the regression function which is determined from a subset of the k nearest

neighbors of the input. Therefore, the second method overcomes the limitation

when the noisy input lies on boundary of the groups as in the �rst method

(see in subsection 2.2.6).

As it has been shown, kNND highly depends on the choice of parameter k. In order

to reduce the in�uence of this parameter, the third method has been proposed.
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Table 2.11: The types of noise and the proposed denoising methods

Method
Type of noise

Gaussian Poisson Rician Speckle

KRRD Yes Yes

kNND Yes Yes

SWMGD Yes

Unlike the two �rst methods which try to �nd the nonlinear relationship between

the examples in the training set, the third method (SWMGD) performs denoising

based on a linear relationship between image patches. The sparse weight model

in the SWMGD method allows the algorithm to be independent of the number of

nearest neighbors.

On the application point of view, the KRRD method can reduce Gaussian noise

and Rician noise, the kNND method is consistent with Gaussian noise and Poisson

noise, while the SWMGD is designed for reducing Gaussian noise on CT images.

This is summarized in Table 2.11. As it can be seen, all the proposed methods can

remove Gaussian noise. So, we need to compare the performance of the three meth-

ods on CT images corrupted by Gaussian noise by carrying out some experiments.

As in the experiments of the SWMGD method, we use the images in Figure 2.30

as the test noise-free images, and the images in Figure 2.31 are used as the standard

images. Three cases are considered when the test image is corrupted by additive

Gaussian noise with zero-mean and standard deviation σ = 10, 20 and 30. The qual-

ity metrics PSNR and SSIM are used to evaluate the performance of the denoising

method. The experimental results are reported in Figures 2.41, 2.42 and 2.43. As

it can be observed in all the PSNR and SSIM curves, the SWMGD has the best

result, followed by the kNND then by the KRRD. This con�rms that the SWMGD

method outperforms the kNND and the kNND methods in reducing Gaussian noise

from CT image.

From the above comparison and the characteristics of noise found in the types of

medical imaging, e.g. the Gaussian noise usually appears in Computed Tomography

(CT) [LS92, LLHL02] and sometimes in high intensity MRI [BZ03], the Poisson noise

in systems involving counting procedures like X-ray Projection Radiography (X-PR),

Fluoroscopy (FC), Mammography (MG), PET/SPECT [VSK85, OF97], the Rician

noise in MRI images [GP95], the speckle noise in Ultrasound (US) imaging. Thus,

the �eld of applications of the proposed methods for medical image denoising can be

summarized in Table 2.12. Here, we use notation Y es∗ for SWMGD to indicate that

it is a good method for CT image denoising compared with the other two methods.
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(a) (b)

Figure 2.41: Objective comparison of the methods KRRD, kNND and SWMGD on

the CT image of chest (Figure 2.30(a)): (a) PSNR curves, (b) SSIM curves.

(a) (b)

Figure 2.42: Objective comparison of the methods KRRD, kNND and SWMGD on

the CT image of pelvis (Figure 2.30(b)): (a) PSNR curves, (b) SSIM curves.

2.6 Conclusion

We have presented in this chapter three learning-based denoising methods. The

main idea of the proposed methods is to use a given set of standard images as prior

for denoising. The �rst method namely KRRD is a machine-learning-based approach

designed for removing Gaussian noise and Rician noise, where we try to construct

an automatic denoising machine model for medical images using the kernel ridge

regression technique. The denoising machine is a set of many di�erent regression

functions which are trained from a training set constructed from the given standard

images. Each of them corresponds to a type of noise with a certain noise level around

a certain position in the body. Then, denoising can be performed using the functions

of the machine. The noisy image is the input, while its output is the denoised

image. This method not only e�ectively removes noise but also well preserves small

details. The second method namely kNND is a k-nearest neighbor-based one which
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(a) (b)

Figure 2.43: Objective comparison of the methods KRRD, kNND and SWMGD on

the CT image of pelvis (Figure 2.30(c)): (a) PSNR curves, (b) SSIM curves.

Table 2.12: The applications of the proposed methods

Method
Type of medical imaging

CT X-PR FC MG PET/SPECT MRI US

KRRD Y es Y es

kNND Y es Y es Y es Y es Y es

SWMGD Y es∗

is developed from the �rst method. However, unlike the previous method where

training phase and denoising phase are performed independently (training phase is

perform o�-line), in this method they are realized in parallel. Moreover, we have also

developed a novel model for determining the regression function. The experimental

results have demonstrated the e�ectiveness of this method for removing Gaussian

noise and Poisson noise. On the other hand, this method highly depends on the

parameter k that is not easy to �nd its optimal value. To overcome this limitation,

the SWMGD method has been proposed. Denoising in this method is performed via

a nonnegative sparse representation model. This method is very consistent images

corrupted by Gaussian noise such as CT images. The experimental results shown

the performance of the proposed methods. In particular, the SWMGD outperforms

the other denoising methods in denoising Gaussian noise in CT images.

In the future works, we will improve the proposed methods in order to reduce the

dependency between the example images and the input noisy image (images taken

at di�erent locations and various characteristics). We will also extend the proposed

methods to the other types of noise such as speckle noise and mixed noise.



Chapter 3

Medical Image Super-Resolution

by Example-based Methods

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

3.1.1 Multi-images super-resolution . . . . . . . . . . . . . . . . . . 148

3.1.2 Single-image super-resolution (Example-based super-resolution) 149

3.1.3 Our choice . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

3.2 Survey of example-learning-based super-resolution methods 151

3.2.1 Markov random �eld based super-resolution . . . . . . . . . . 153

3.2.2 Super-resolution via Neighbor Embedding (NE) . . . . . . . . 158

3.2.3 Super-resolution via sparse representation . . . . . . . . . . . 161

3.2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

3.3 The Proposed Super-Resolution Methods . . . . . . . . . . . 167

3.3.1 The �rst proposed method: Super-resolution by Projection

Onto Convex Hull (SPOCH) . . . . . . . . . . . . . . . . . . 168

3.3.2 The second proposed method: Super-Resolution by Optimal

Weight model (SROW) . . . . . . . . . . . . . . . . . . . . . 178

3.4 Comparison of two proposed SR methods . . . . . . . . . . . 189

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

3.1 Introduction

In this chapter, we propose two novel Super-Resolution (SR) methods, namely

the Super-Resolution by Projection onto Convex Hull (SPOCH) and the Super-

Resolution by Optimal Weights (SROW). These methods are based on examples

using a given set of standard images, as in the denoising framework in the previous

chapter. These methods are designed for enhancing spatial resolution of medical

images [TLR+12a], [TLR+12b].
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In medical imaging, image resolution is often limited by a number of factors

such as hardware of the imaging system, time constraints, and so forth. A high

quality and enhanced resolution imagery is quite useful to improve the clinical di-

agnosis [RCL+04, MCB+10, GEW10]. Resolution enhancement methods tradition-

ally involve interpolations techniques that have occupied an important role from

image generation through post-processing and visualization. In medical imaging,

the interpolation methods have found widespread applications in medical imag-

ing [LGS99]. However, the main drawback of these methods is their ine�ciency

when the given low-resolution (LR) image is corrupted by noise. Furthermore,

these methods may also introduce blurring e�ect, ringing artifacts, as well as alias-

ing e�ect along edges [PPK03]. Thus, e�orts have been devoted to develop new

techniques. In particular, super-resolution methods which are known as e�ective

techniques for improving image resolution.

Super-resolution (SR) image reconstruction is the problem of generating a high-

resolution (HR) image from one or more LR images. Generally, SR designates

methods that exploit the information contained in the LR images to produce an

image with a higher spatial resolution than that of the original LR images. Up

to now, a large number of SR approaches have been developed. A good overview

of the resolution enhancement methods can be found in [PPK03, Ouw06, LGS99,

FREM04a]. Broadly, these methods can be divided into two main categories: multi-

image super-resolution methods and single-image super-resolution ones.

3.1.1 Multi-images super-resolution

Multi-images methods perform super-resolution by using information extracted from

a few LR images of the same scene [IP91, TKG95, HBBW98, EF99, TH99, ABHY00,

FREM04b, SLZZ04]. The classic model of multi-images super-resolution in the spa-

tial domain assumes that a sequence of K low-resolution images represent di�erent

snapshots of the same scene. The real scene to be estimated is represented by

a vectorized single high-resolution reference image X (of size N2 × 1). Each LR

frame, Y1,Y2, . . . ,YK , is a noisy, downsampled version of the reference image that

is subjected to various imaging conditions such as optical, sensor and atmospheric

blur, motion e�ects, and geometric warping. The size of each LR frame is M2 × 1,

M < N . The LR observations are related with the HR scene X by

Yk = DkHkFkX + Vk, k = 1, 2, . . . ,K, (3.1)

where Fk is the N2×N2 matrix encoding the motion information for the k-th frame,

Hk (size-N2 × N2) models the blurring e�ects, Dk is the down-sampling operator

of size M2 ×N2, and Vk (M2 × 1) is the noise term. These linear equations can be
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rearranged into a large linear system
Y1

Y2

...

YK

 =


D1H1F1

D2H2F2

...

DKHKFK

X + V (3.2)

or equivalently

Y = FX + V . (3.3)

Most of the existing methods recover the HR image X based on the assumption

that the matrices Dk, Hk, Fk, Vk are exactly known. A typical solution for super-

resolution from an image sequence involves three sub-tasks: registration, fusion and

deblurring (see Figure 3.1). The �rst and most important task of these methods is

Figure 3.1: A three-step algorithm for super-resolution of an image sequence: image

registration, image fusion and image deblurring.

motion estimation, or registration between LR images because the precision of the

estimation is crucial for the success of the whole method [PPK03]. However, such

assumption is only feasible when considering a static scene. In general, it is not easy

to estimate accurately the motion between LR images, because it may involve not

only horizontal and vertical shifts, but also rotation angles, etc.

In practical applications, the linear system (3.2) is typically ill-posed. Further-

more, in real imaging systems, the matrices Dk, Hk, Fk, Vk are unknown and need

to be estimated, leaving the problem even more ill-conditioned. As a result, the

performance of the multi-image-based SR methods is not ready for practical appli-

cations.

3.1.2 Single-image super-resolution (Example-based super-
resolution)

The single image SR methods, also known as example-learning-based methods,

have been successful in recent years. The focus of single-image super resolution

is to estimate a high-resolution (HR) image with just a single low-resolution im-

age. These methods recover missing high frequency details based on learning the
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mapping between low and high-resolution image patches from a given database.

Many methods have been proposed for learning with demonstrated promising re-

sults [FJP02, CYX04, NN07, SSXS08, TLBL10, YHY10, KK08, YWHM08, GBI09,

YWHM10, ZEP10].

In the example-learning-based SR methods, an image is considered as a set of

image patches and SR is performed on each patch. Some of proposed methods are

based on the nearest neighbors search (e.g. [FJP02, CYX04, KK08]). Basically,

each patch of the LR image is compared to the LR patches stored in the database.

The HR patches corresponding to the nearest LR patches are then used to estimate

the output via many approaches. In [FP00, FJP02], Freeman et al. used a Markov

network to probabilistically model relationships between HR and paired LR patches,

and between neighboring HR patches, and an approximate solution is proposed using

the belief propagation. In [CYX04], Chang et al. proposed to determine the HR

patch by a linear combination of the nearest neighbors such that it is closest to the

input LR patch. Then, the output HR patch is de�ned by replacing LR patches with

the associated HR patches in the linear combination. In [KK08], Kim et al. exploited

the relationship between patch pairs based on �nding a regression function. Despite

the success of the nearest neighbor-based methods, the drawback of these methods

is that they highly depend on the number of the nearest neighbors. More recently,

some methods based on learning the sparse association between image patches have

been proposed [YWHM08, YWHM10, ZEP10, YWL+12, Ela10] and o�er promising

performance. In these approaches, LR (HR) patches can be sparsely represented by

the atoms of a dictionary DL (DH respectively) which is learned from the database

of low and high-resolution image patch pairs. Then, super-resolution is performed

based on the assumption that the sparse-representation coe�cients for representing

the LR patch by DL are the same as those for representing the HR patch by DH .

Unlike the K-nearest neighbor-based methods, the advantage of this method is that

it is independent of K and needs not compute the similarity between image patches

is not computed. These methods o�er promising performances. However, the main

drawback of these methods is related to learning the dictionary from the database

which is often time-consuming. Another di�culty is the questionable performance

of these methods when dealing with noisy images.

Conventionally, the database of low and high-resolution patch pairs for example-

learning-based methods is often established from extrinsic large dataset (e.g.

[FJP02, CYX04, KK08, YWHM08, YWHM10, Ela10]). Some novel single image

SR methods have been proposed where the database can be extracted directly from

the input LR image, particularly when it is considered as a noise-free image (e.g.

[GBI09], [YHY10]). In [GBI09], Glasner et al. proposed a SR method that exploits
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the patch redundancy among in-scale and cross-scale images in an image pyramid to

enforce constraints for reconstructing the unknown HR image [YHY10]. However,

the challenge remains when the LR input image is noisy.

The advantage of the single-image SR methods is that they do not require LR

images of the same scene as well as registration. However, the main limitation of

these methods is that their e�ectiveness highly depends on the supporting database.

3.1.3 Our choice

In medical imaging, it is di�cult to obtain a sequence of images represent di�erent

snapshots of the same scene. On the other hand, we observe the interesting fact that

lots of images are taken from the same type of subject or anatomical structures at

nearly the same location, and many of them can be considered by experts as standard

(high quality or proven as noise-free by experts) images. Therefore, we can use these

available standard images as examples to establish the database. That is why we

follow the example-learning-based approach to design our methods for improving

spatial resolution of medical images.

The rest of this chapter is organized as follows. In section 3.2, an overview

of example-based super-resolution approach is presented. We notably focus on

the nearest neighbor-based SR methods [FP00, FJP02, CYX04] and the sparse-

coding SR methods [YWHM08, YWHM10, ZEP10]. Afterward, two novel example-

learning-based methods for single image super-resolution ([TLR+12a],[TLR+12b])

are proposed and presented in section 3.3.

3.2 Survey of example-learning-based super-resolution

methods

Let us recall the problem of example-learning-based super-resolution. Given a LR

image Y and a set of example images (high quality images) {Ah}, �nd a HR version

X of Y with magni�cation factor s. The LR observation Y is related with the HR

one X by

Y = DsHX + V, (3.4)

where, H is a blur operator, Ds is a decimation operator with factor s, and V is the

additive noise component.

In example-learning-based SR methods, a common assumption is that a HR im-

age consists of three frequency layers, speci�cally the high frequency layer (denoted

as h), the middle frequency layer (denoted as m), and the low frequency layer (de-

noted as l) [WZG10] (an illustration is shown in Figure 3.2). It is also assumed that
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the LR image is obtained from the original HR version by discarding the high fre-

quency components. Thus, the super-resolution goal of this approach is to estimate

missing high-frequency detail that is not present in the original LR image. To this

end, the example-learning-based approach solves the SR problem by maximizing

the conditional probability of h, given mand l, Pr(h|m, l) for any input LR image.

In addition, the high frequency component h is independent of l, hence it is only

required to maximize Pr(h|m).

(a) HR image (b) h layer (c) m layer (d) l layer

(e) co-occurrent patches

Figure 3.2: Image co-occurrence patterns.

A typical example-learning-based SR method consists of two main phases: the

database construction phase and the Super-resolution reconstruction phase.

• Database construction: From the example images, a database of patch

pairs (Pm,Ph) = {(umi , uhi ), i ∈ I} (I is the index set) are extracted from

the middle frequency layer m and the corresponding high frequency layer h,

respectively. Both umi and uhi are the vectors corresponding to the square

image patches, umi ∈ Rd1 and uhi ∈ Rd2 .

• Super-resolution reconstruction: For a LR input image Y, N middle fre-

quency patches are extracted in a similar way as in the database construction

phase, and denoted as {ymi , i = 1, 2, . . . , N}. The missing high frequency com-

ponents {yhi , i = 1, 2, . . . , N} are then estimated with the help of the patch

pairs in the training data (Pm,Ph). The �nal HR image is computed from

the estimated high frequency components.

Let us now describe some principal methods of the example-learning-based SR ap-

proach. Let us start with the Markov random �eld-based SR, then, the K-nearest
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neighbor-based SR methods (SR via Neighbor Embedding), followed by the SR

method via sparse representation.

3.2.1 Markov random �eld based super-resolution

In this subsection we present in details the method proposed by Freeman et

al. [FP00, FJP02] (cited more than 850 times since 2000), namely the Markov

Network-based method (MN). We begin with the database construction phase, fol-

lowed by the SR reconstruction phase.

3.2.1.1 Database construction phase

The database of high and low-resolution patch pairs is constructed from a given

set of the example HR image Ah. Before generating the patch pairs, these training

images are pre-processed through some steps:

1. Perform blurring and subsampling of the HR example image Ah to create

the corresponding low-resolution image Al (Al = DsHAh), where Ds is the

dow-sampling operator and H models the blurring e�ects.

2. After creating the low-resolution image, an initial analytic interpolation Q,

such as cubic spline, is applied to the low-resolution image Al. This step

generates an image Bl of the same size as Ah, Bl = Q(Al). Bl is called the

upsampled low-resolution image.

3. A low-pass �lter is applied to the upsampled low-resolution image Bl. The

output of the low-pass �lter is called the low-band, al. The image am = Bl−al
is called the mid-frequency band. The di�erence between the upsampled low-

resolution image, Bl, and the original image, Ah, is the high-frequency band,

ah (ah = Ah −Bl).

4. The authors assumed that the relationship of the mid-frequency band, am, to

the high-frequency band, ah, data is independent of the local contrast level.

So, the contrast of the mid- and high-band is normalized in the following way:

âm =
am

std(am) + ε
(3.5)

âh =
ah

std(am) + ε
(3.6)

where std(·) is a standard deviation operator, and ε is a small value added to

avoid the denominator becoming zero at very low contrasts.



154
Chapter 3. Medical Image Super-Resolution by Example-based

Methods

The training database (Pm,Ph) stores the vectorized patch pairs (umi , u
h
i ) in

which umi , u
h
i correspond to the patches at pixel i of âm and âh, respectively. The

processing steps for the database construction phase are illustrated in Figure 3.3.

(a) LR image (Al)

(b) Initial interpolation (Bl) (c) HR image (Ah)

(d) Band-pass �ltered and contrast nor-

malized version (âm)

(e) High-pass �ltered version (ah)

Figure 3.3: The processing steps for database construction phase. From a LR image,

(a), and its corresopnding HR source, (c). The LR image (a) is interpolated to the

size of the original image (c), (b) is the interpolated image. (d) Band-pass �ltered

and contrast normalized version of (b). (e) High-pass �ltered version of (c). In

the training set, corresponding pairs of patches from (d) and contrast normalized

version of (e) are stored.

3.2.1.2 Super-resolution reconstruction phase

For a given LR image Y (see (3.4)), estimating the corresponding HR image X is

performed in tree steps as follows:

• Step 1. Pre-processing: The LR input Y is �rst pre-processed exactly as in

the database construction phase. First, Y is expanded to have the same size
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as the desired HR image X using the interpolation algorithm Q, this image is

denoted by Yup,

Yup = Q(Y). (3.7)

Next, the interpolated image is passed through a bandpass �lter and a con-

trast normalization step, resulting in a mid-frequency image with the contrast

normalized. Denote by ym the pre-processed image, ym is considered as the

middle frequency layer of X.

The main aim of the super-resolution reconstruction phase is to estimate the

missing high-frequency layer xh ofX from ym with the help of the training data

(Pm,Ph). Here, the high-frequency layer xh is found based on maximizing the

prior probability Pr(xh|ym).

• Step 2. Super-resolution on patch: By considering ym as a set of overlapping

patches {ymi }Ni=1, the problem of estimating the high-frequency layer xh be-

comes the problem of estimating the set of the corresponding high-frequency

patches {xhi }Ni=1 of xh.

For an input patch ymi , a naive solution for estimating the corresponding patch

yhi is to �nd in the database the best candidate (only one candidate) for xhi .

To this end, a nearest neighbor (1-NN) of ymi in the database Pm is �rst found,

µmi = arg min
umk ∈Pm

d (ymi , u
m
k ) , (3.8)

where d (ymi , u
m
k ) is a criterion for determining the nearest neighbor such as

d (ymi , u
m
k ) = ‖ymi −umk ‖22. Then, with the co-occurrence prior, the correspond-

ing patch µhi ∈ Ph is considered as the best estimation of xhi , which is used as

the missing xhi for reconstruction. This is a simple and straightforward solu-

tion. However, the performance of this 1-NN solution heavily depends on the

example images as well as the criteria for determining the nearest neighbor.

Moreover, this simple solution will produce disturbing artifacts due to noise

and the ill-posed nature of super-resolution [ED07].

To improve the robustness of 1-NN strategy, Freeman et al. [FP00, FJP02]

proposed to use the Markov Network (MN) to model the relationships between

neighboring patches as well as patches from di�erent frequency layers (see

Figure 3.4). More speci�cally, the Markov network model is used to select

the best high-resolution patch found by K-nearest neighbors that has best

compatibility with adjacent patches. The network is drawn as nodes connected

by lines, which indicate statistical dependencies (see Figure 3.4). In this model,

one node of the Markov network is assigned to each image patch. For this
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Figure 3.4: Markov network model for super-resolution problem. The low-resolution

patches at each node yi are the observed input. The high-resolution patch at each

node xi is the quantity we want to estimate. Lines in the graph indicate statistical

dependencies between nodes.

Markov network, the joint probability has the factorized form [FP00],

Pr(xh|ym) =
1

Z

∏
(i,j)∈E

ψ(xhi , x
h
j )
∏
i

φ(xhi , y
m
i ), (3.9)

where Z is a normalization constant such that the probabilities sum to one, E

is the set of edges in the Markov network denoted by the neighboring nodes,

xhi and xhj , ψ and φ are potential functions. In [FP00], these functions are

referred to as compatibility functions which are learned from training data.

The main idea of the Markov network model of Freeman et al.'s [FP00] is to

estimate high-frequency patches {xhi }Ni=1 by determining a subset of N high-

frequency patches {µhi ∈ Ph}Ni=1 of Ph such that

{µhi }Ni=1 = arg max
{uhi }Ni=1⊂Ph

∏
(i,j)∈E

ψ(uhi , u
h
j )
∏
i

φ(uhi , y
m
i ). (3.10)

In this method, the compatibility function, ψ(uhi , u
h
j ) is computed by

ψ(uhi , u
h
j ) = exp−

‖Oij(uhi )−Oji(uhj )‖22
2β2

1

(3.11)

where β1 is a positive parameter, Oij is an operator which extracts a vector

consisting of the pixels of patch uhi in the overlap region between patches

uhi and uhj (see Figure 3.5). On the other hand, the authors assumed that

an example patch uhi is compatible with an observed image patch ymi if its
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Figure 3.5: The patch-patch compatibility function is computed from the sum of

squared pixel di�erences in the overlap region.

associating patch umi ∈ Pm, matches ymi . Thereby, the function φ(uhi , y
m
i ) is

speci�ed by

φ(uhi , y
m
i ) = exp−‖y

m
i − umi ‖22

2β2
2

, (3.12)

where β2 is a positive constant.

We can see that (3.10) minimizes the following objective function for the whole

network

{µhi }Ni=1 = arg min
{uhi }Ni=1∈Ph

∑
i

‖ymi − umi ‖22 + λ
∑

j:(i,j)∈E

‖Oij(uhi )−Oji(uhj )‖2
 ,

(3.13)

where (i, j) denotes an edge in the set E of edges in the Markov network.

By comparing with equation (3.8), it can be seen that (3.13) obtains a MAP

(Maximum A Priori) estimation of µhi . Hence the result can be more robust.

As shown in [WZG10], exact inference of (3.10) is computationally intractable.

In [FP00], the authors proposed to �nd one feasible solution in two steps which

can be summarized as follows. For each of input patches ymi (i = 1, 2, . . . , N),

K-nearest neighbors {umk }Kk=1 of ymi are �rst selected from the training data

Pm. The set of K corresponding high-frequency patch Ωi = {uhk}Kk=1 ∈ Ph

are used as the set of candidates for estimating xhi at the hidden node of the

Markov network. Then, the estimates {µhi }Ni=1 of the desired patches {xhi }Ni=1

are determined by,

{µhi }Ni=1 = arg min
{uhi }Ni=1∈Ph, uhi ∈Ωi

∑
i

‖ymi − umi ‖22 + λ
∑

j:(i,j)∈E

‖Oij(uhi )−Oji(uhj )‖2
 .

(3.14)

In [FP00], the approximate solution of this problem is found by using a fast,

iterative algorithm called belief propagation (see [FP00] for more details). The

estimated patches µhi are then used as the �nal xhi for reconstruction.
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• Step 3. Reconstruction of the entire HR image: After step 2, we obtain an es-

timate x̂h for the high-frequency layer xh of X. The estimated high frequency

image x̂h is then applied to the inverse of the contrast normalization that we

used in the pre-processing step. The result is added to the interpolated image

Yup to obtain the �nal estimate of the desired HR image X.

Figure 3.6 shows an experiment of the Freeman et al.'s SR method. In this

experiment, the LR image (Figure 3.6(b)) is generated from the original image,

Figure 3.6(f). Indeed, the original image is blurred by a low-pass �lter which is a

7 × 7 pixel Gaussian �lter, normalized to have unit sum, of standard deviation 1

pixel. Then, the result is subsampled by a factor of four in each dimension, to obtain

the observed low-resolution. As can be seen, the SR result of the MN-based method

(Figure 3.6(e)) is better than that of the 1-NN method (Figure 3.6(d)). However,

the processed image generates some artifacts.

3.2.2 Super-resolution via Neighbor Embedding (NE)

The MN-based method of Freeman et al. [FP00] proves that using K-NN candidates

provide more the robustness than the 1-NN approach. However, instead of selecting

one of the candidates from Ωi = {uhk}Kk=1 as winner for each of desired patch xhi
(see (3.13)), an alternative is to �nd xhi as the form

xhi =
K∑
k=1

wku
h
k (3.15)

which is a weighted combination of the K candidates. Here, {wk} can be learned

using manifold learning techniques. For instance, the Neighbor Embedding (NE) al-

gorithm of Chang et al. in [CYX04] adopted the locally linear embedding algorithm

to estimate xhi .

The NE-based method performs in two independent processes to synthesize HR

image patches. In the �rst process, for each LR input ymi , K nearest neighbors

{umk }Kk=1 were selected from the training data using the Euclidean distance, and

thus having K candidates {uhk}Kk=1 for the desired output xhi . In the second process,

the optimal xhi weights are obtained by solving a constrained least-squares problem,

{w∗k} = arg min
{wk}

∥∥∥∥∥ymi −
K∑
k=1

wku
m
k

∥∥∥∥∥
2

2

, subject to
K∑
k=1

wi = 1. (3.16)

The learned weights by (3.16) is then applied to estimate xhi by

x̂hi =

K∑
k=1

w∗ku
h
k . (3.17)
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(a) Standard image (b) LR image

(c) Bicubic interpolation (d) 1-NN method

(e) Freeman et al.'s method (f) Original image

Figure 3.6: An experiment of the method of Freeman et al. on a CT image of

abdomen with the magni�cation factor of 4. (a) is a training image used to construct

the database (Pm,Ph), (b) Input LR image, of resolution 135 × 90 (shown with

nearest neighbor interpolation), (c) Bicubic interpolation, (d) 1-NN method, (e)

Method of Freeman et al., (f) Original image.
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Similar to the Freeman et al.'s method above, in the NE method [CYX04], both

the LR and the HR patches are represented by feature vectors. However, in the

NE method, the feature vectors are de�ned in another way. More speci�cally, the

training data (Pm,Ph) is constructed as follows.

1. The example HR images {Ah} are blurred and subsampled to create the cor-

responding low-resolution images {Al} (Al = DsHAh).

2. For each of training image pairs (Al,Ah), a set of LR and HR patch pairs

{(pli,phi )} is �rst extracted. Here, pli is a d1 × d1 patch in Al and phi is the

corresponding d2×d2 patch in Ah, where d2 = sd1 with s is the magni�cation

factor between the LR inputY and the desired HR imageX (see (3.4)). Then,

a corresponding feature vector pair (umi , u
h
i ) is de�ned on each pair (pli,p

h
i ) .

Here, umi is de�ned from the LR patch pli by using the �rst-order and second-

order gradients of the luminance. It means that we obtain four features for

each pixel in pli, and thus umi is a 4d2
1 vector which is the concatenation of the

features for all pixels within the patch pli. For the HR patch phi , the feature

vector uhi is de�ned by

uhi = phi − E(phi ), (3.18)

where E(phi ) is the mean luminance value of the pixels in phi .

3. The training database (Pm,Ph) stores the feature vector pairs (umi , u
h
i ) de�ned

from the example HR images.

Now, the NE algorithm for estimating HR imageX can be summarized as follows:

1. The LR input Y is separated into N overlapping n1×n1 patches pli. The aim

is to estimate the N corresponding HR patches phi in X.

2. For each pli, de�ne its feature vector, y
m
i , in the same way as the vector umk in

the database Pm.

3. Estimate the feature vector xhi of phi by (3.17) and (3.16).

4. The HR patch phi is estimated by

p̂hi = x̂hi + E(pli) (3.19)

5. When all HR patches are estimated, the patches p̂hi are put in their proper

locations and averaging in overlap regions is performed to get the �nal HR

image.
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To date, the NE-based method has been cited more than 350 times thanks to its

e�ciency and simplicity. Many variant improvements over the NE-based SR method

have been proposed [CZ06, CZPH09, FY07]. For example, Chan and Zhang [CZ06]

utilized histogram matching to choose more reasonable training images. Considering

the importance of both edges and neighborhood size for reconstruction, Chan et al.

[CZPH09] elaborated on edge detection and feature selection to mitigate the adverse

e�ect of the representation of LR patches. However, this solution highly depends on

edges detection as well as neighborhood size selection. In [FY07], a primitive prior

is introduced to establish a re�ned training database. In addition, residual errors

related to the reconstructed image patches were estimated to o�set the information

lost in the local averaging process.

In general, the performance of the NE-embedding methods are limited by the

parameter K and the quality of the K candidates. Fixing K for each low resolution

patch may result in over�tting or under�tting. On the other hand, the gradient

informations are used to de�ne the feature vectors umi and ymi which represent geo-

metric structure of the image patches. Unfortunately, this is one of the reasons why

the NE method are often less e�ective in the case LR image is a noisy one. Indeed,

gradient of a noise-free image and its noisy version is very di�erent. Thus, there

exists a signi�cant di�erence between the feature vectors of the training database

umi and the feature vector of the noisy patch ymi . Consequently, this a�ects the

quality of K searched nearest neighbors and hence the quality of the output image.

3.2.3 Super-resolution via sparse representation

As explained in the previous section, the use of a few candidate patches limits the

performance of example-based SR method. The NE method is a promising idea

except that it carries out two independent processes to synthesize high-resolution

(HR) image patches: Searching for K candidates from the database, and estimating

the best combinations of theK candidates. Hence, a better idea is to address the two

phases simultaneously. This idea have been realized very successful in the sparse-

coding (SC)-based methods [YWHM08, YWHM10, YWL+12, WZG10, ZEP10].

The goal of sparse coding is to represent an input vector approximately as a

weighted linear combination of a small number of basis vectors called basis atoms.

Suppose that the matrix D ∈ Rd×M (d < M) is an over-complete dictionary, in

which each column vector is a d−dimension atom. Given a vector y ∈ Rd, its sparse
representation can be seen as �nding a sparse solution α = [α1, . . . , αM ]T ∈ RM of

the following optimization problem:

min
α
‖α‖p subject to ‖y −Dα‖22 ≤ ε2, (3.20)
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where ‖α‖p is `p−norm (p is often satisfy 0 ≤ p ≤ 1), that is ‖α‖p = (
∑

i |αi|)
1
p with

p > 0, and ‖α‖0 = limp→0 ‖α‖pp is the `0 pseudo-norm which counts the non-zero

entries in α.

The dictionary needs to be learned from training data. Given a training data

{yi, i = 1, . . . , N}, the problem of learning a dictionary for sparse-coding is to solve

the following optimization problem:

min
D,{αi}Ni=1

N∑
i=1

‖yi −Dαi‖22 + λ‖αi‖p, s.t. ‖D(:, k)‖2 ≤ 1, ∀k = 1, . . . ,M, (3.21)

where λ is a parameter controlling the sparsity penalty and representation �delity,

and D(:, k) denotes kth column of D.

The e�ectiveness of the sparse representation-based methods for image denoising

was presented in section 1.5.4. In this section, we present the principal content of the

single image SR approach via sparse representation [YWHM08, WZG10, YWHM10,

ZEP10, YWL+12].

The SR algorithm via sparse representation is often performed in two phases:

training phase and SR phase.

• Training phase: This phase includes the following steps:

1. Database Construction: Similar to the example-based method described

above, a database (Pm,Ph) = {(umi , uhi )} is �rst constructed from the

example HR images {Ah}. Each of these patch-pairs undergoes a pre-

processing stage that removes the low-frequencies from uhi and extracts

features from umi .

2. Dictionary Training: From the database of example vector pairs,

(Pm,Ph), a coupled dictionary pair Dm and Dh is trained such that

the sparse representation of umi ∈ Pm in terms of Dm is the same as that

of uhi ∈ Ph in terms of Dh.

The above training phase is done o�-line, producing the two dictionaries, Dm

and Dh, to be used in the super-resolution reconstruction.

• Super-resolution phase: Given a test LR imageY to be super-resolved, we �rst

extract pre-processed patches ymi from each location i, and then sparse-code

it using the trained dictionary Dm. The found representation αi is then used

to recover the high-resolution patch by multiplying it with Dh, xhi ≈ Dhα
i.

We will describe all the above process is more details.
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3.2.3.1 Training Phase

The training phase starts by constructing database (Pm,Ph) from the example HR

images {Ah}. These training images are �rst pre-processed through some steps:

1. Each of these images is blurred and down-scaled by a factor s to create the

corresponding low-resolution image Al (Al = DsHAh).

2. The LR images {Al} are then scaled up back to the original size by using an in-
terpolation algorithm Q, resulting in the set {Bl} (Bl = Q(Al) = QDsHAh).

3. A pre-processing is applied on the high-resolution images to remove their low-

frequencies. This is done by computing the di�erence images ah = Ah − Bl

(exactly as in the Markov network-based method [FP00]). As for the pre-

processing of the low-resolution images, these are �ltered using K high-pass

�lters fk, k = 1, 2, . . . ,K, in order to extract local features that correspond

to their high-frequency content. Thus, each LR image Bl leads to a set of

K �ltered images, fk ⊗ Bl, for k = 1, 2, . . . ,K (⊗ stands for a convolution).

For instance, the �rst-order and second-order gradients of the luminance used

in [YWHM08, YWHM10, ZEP10], mean that four high-pass �lters used to

extract the derivatives are:

f1 = [−1, 1], f2 = fT1 ,

f3 = [1,−2, 1], f4 = fT3 ,

where the superscript "T" means transpose.

After the two pre-processing steps described above, the database (Pm,Ph) =

{(umi , uhi ), i ∈ I} is ready to be established. Considering only locations i ∈ I,
uhi ∈ Rd is a vectorized patch of size

√
d×
√
d pixels from the high-frequency image

ah. To establish the associating vector umi , the corresponding patches are �rst

extracted from the same locations in the K �ltered images fk ⊗ Bl and using the

same size
√
d ×
√
d. Then, the K vectors corresponding to K such patches are

merged into one vector umi (umi of length dK).

In [YWHM08], [WZG10], the training sets Pm and Ph are directly used as

two dictionaries. In the later versions [YWHM10], [YWL+12] and [ZEP10], this

approach is further extended by learning a coupled dictionary (Dm,Dh) instead

of using the training sets, allowing the algorithm to be much more e�cient. The

dictionary pair Dm, Dh are trained such that the sparse representation of umi in

terms of Dm is the same as that of uhi in terms of Dh.

The dictionary-learning is started by training the dictionary Dm from the set of

LR training patches Pm = {umi , i ∈ I} using the sparse-coding model (3.21). As
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a side product of this training, we obtain the sparse representation vector αi that

corresponds to the training patch umi . After constructing Dm, the HR dictionary

construction Dh is proceeded. Speci�cally, Dh is de�ned by solving the following

problem

Dh = arg max
Dh

∑
i∈I
‖uhi −Dhα

i‖22. (3.22)

3.2.3.2 Super-resolution Phase

We are given a test low-resolution image Y = DsHX + V to be magni�ed. The

high-frequency larger xh that is represented as the set of
√
d×
√
d patches {xhi }Ni=1

of X is estimated by the following steps:

1. The LR image Y is scaled up by a factor of s using the interpolation algorithm

Q, resulting with Yup.

2. The image Yup is then �ltered by using the same K high-pass �lters which

were used for feature extraction in the training, and obtain {fk ⊗Yup}Kk=1.

3. To estimate HR patch xhi at location i, �rst, extract from each image fk⊗Yup

a patch of size
√
d×
√
d at the same location i, resulting in a set of K patches

which de�ne the features of the input LR patch. These K patches are to be

concatenated to form a patch vector ymi .

4. The sparse representation vectors αi of ymi in terms of Dm is found by solving

the sparse-coding problem:

αi = arg min
α

‖ymi −Dmα‖22 + λ‖α‖p. (3.23)

5. Once αi is obtained, the corresponding output can be reconstructed as x̂hi =

Dhα
i.

6. The high-frequency layer xh is constructed by putting x̂hi to their proper lo-

cation and averaging in overlap regions.

Finally, the HR estimate of X is obtained by adding xh to Yup,

X̂ = Yup + xh. (3.24)

Figure 3.7 shows the SR results of di�erent methods which are performed on

a CT image of abdomen with the magni�cation factor of s = 4, for subjective

comparison. As can be seen, the SC-based method [YWL+12] (Figure 3.7(e)) gives

the better result compared with the others.
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(a) Standard image (b) LR image

(c) MN-based method [FP00] (d) NE-based method [CYX04]

(e) SC-based method [YWL+12] (f) Original image

Figure 3.7: Comparison of SR results on CT image of abdomen with the mag-

ni�cation factor of s = 4 by di�erent methods. (a) Example HR image used to

construct the database (Pm,Ph), (b) Input LR image of resolution 135×90 (shown

with nearest neighbor interpolation), (c) MN-based method [FP00], (d) NE-based

method [CYX04], (e) SC-based method [YWL+12], (f) Original image. Image cour-

tesy of Dr. Jean-Marie Rocchisani (Avicenne University Hospital, Bobigny, France).
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3.2.4 Conclusion

We have presented through this section a review of example-learning-based super-

resolution methods. Here, we only present three principal methods including the

Markov Network-based (MN) method of Freeman et al. [FP00, FJP02] (this is also

the �rst example-based SR method proposed), the Neighbor Embedding-based (MN)

method [CYX04], and the Sparse-coding-based methods [YWHM08, YWHM10,

ZEP10, YWL+12]. The MN-based method determines the output HR patch by

selecting only one winner from the K HR candidates such that the pixel di�erence

in overlapped regions is minimized. Thus, this method is often unstable, due to

over- or under-�tting. With inappropriate examples, the processed image gener-

ates many artifacts [WZG10]. The NE-based method estimates the HR patch as

an a�ne combination of the K HR candidates. Thus, compared to the MN-based

method, the artifacts of the NE-based method may be reduced. However, using a

�xed number K of neighbors for reconstruction often results in blurring e�ects (see

Figure 3.7(d)). Compared to the NE-based method with �xed K neighbors, SC-

based methods adaptively chooses the fewest necessary supports for reconstruction,

avoiding hence over�tting.

As shown in [YWHM10], most example-learning-based super-resolution algo-

rithms assume that the input images are clean and free of noise, an assumption

which is likely to be violated in real applications such as medical imaging. To deal

with noisy data, previous algorithms usually divide the recovery process into two

disjoint steps: �rst denoising and then super-resolution. However, the results of

such a strategy depend on the speci�c denoising technique, and any artifacts during

denoising on the low-resolution image will be kept or even magni�ed in the latter

super-resolution process. In [YWHM10], it is shown that the SC-based methods

can be applied with noisy data. However, logically, we can see that the NE-based

and SC-based methods use the �rst- and second-order derivatives as the feature for

the low-resolution patch. This is not an e�ective way to process with noisy images,

due to existence of signi�cant di�erence between derivative of noisy-free image and

derivative of noisy image.

Motivated by this challenge to deal with super-resolution for noisy image, we

introduce in the following section two novel example-learning-based methods for

single-image super-resolution with the help of given standard images. The �rst

method is a geometric one published in [TLR+12a] where we use the projection of

a point onto the convex hull of a �nite set of points in high-dimension vector space

to perform super-resolution on image patches. In the second method [TLR+12b],

super-resolution on image patches is performed by using a nonnegative sparse rep-

resentation model. Both of two methods may be applied e�ectively for noise-free
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images as well as for noisy images.

3.3 The Proposed Super-Resolution Methods

In this section, we will present our two example-learning based SR methods:

the Super-resolution by Projection onto Convex Hull (SPOCH) and the Super-

Resolution by Optimal Weight model (SROW). Let us begin by recalling the image

degradation model (3.4). Assume that we are given a LR image Y, that is generated

from a HR image X by the model

Y = DsHX + V,

where H is the blur operator, Ds is the decimation operator with factor s, and V

is the additive noise component. Our aim is to estimate the unknown HR image X

from Y with the help of a given set standard image images {Ah}.
Similar to the other example-learning-based SR methods, here, each image can

be represented as an arranged set of overlapping patches, and then super-resolution

is performed on each patch. The LR image Y will be represented as a set of N

overlapping image patches, that is

Y = {yli, i = 1, 2, . . . , N}. (3.25)

Here, yli is a
√
m×√m image patch, N is the number of patches generated from the

image Y. N depends on the patch size and the sliding distance between adjacent

patches. Similarly, the high-resolution image X can be also represented as a set of

the same number N of paired HR patches {xhi , i = 1, 2, . . . , N}. The size of xhi is

set to be
√
n ×√n where

√
n = s

√
m. The LR patch and the HR patch is related

by

yli = DsHx
h
i + ηi, (3.26)

where ηi is the noise in the ith patch. For the sake of simplicity, we assume that

ηi ∼ N (0, σ2
i ) (3.27)

is Gaussian, white, zero-mean, and i.i.d., with variance σ2
i . Thus, we can consider

yli as a LR version of the HR patches xli. In the remaining of this chapter, image

patches are rearranged as vectors, for example, xhi ∈ Rn and yli ∈ Rm.
In order to estimate X, the proposed algorithms are also performed into two

phases: database construction phase and super-resolution reconstruction phase.

• In the �rst phase, a database of HR and LR patch pairs (Pm,Ph) =

{(umi , uhi ), i ∈ I} is constructed from a given set of the standard images which

are taken at nearly the same locations as the LR image Y.



168
Chapter 3. Medical Image Super-Resolution by Example-based

Methods

• The super-resolution reconstruction phase consists of the HR patch recon-

struction and the reconstruction of the entire HR image.

In order to obtain a good database, the selection of these example images should be

such that they would contain a variety of intensities as well as shapes and very little

noise. Since the standard images and the LR image are often taken from nearby

locations and thanks to the repetition of local structures of images, small image

patches tend to recur many times inside these images. Thereby, we can believe that

for a given LR image patch in Y, a rich amount of similar patches can be extracted

from the database. This property is very important in the success of the proposed

methods

3.3.1 The �rst proposed method: Super-resolution by Projection
Onto Convex Hull (SPOCH)

The �rst proposed method is a geometric method, where the projection of a point

onto the convex hull of a �nite set of points is for the �rst time applied to the problem

of image super-resolution [TLR+12a]. The method can be considered as a K-nearest

neighbor-based approach. Similar to the other K-nearest neighbor-based methods

([FP00, CYX04]), SR perform for a given input LR patch consist of extracting a

subset of K best HR candidates in the database for the estimation of the output

HR patch. However, unlike the other methods, in our proposed method, the image

patches are regarded as points in a high dimensional vector space. To estimate the

output for a given input LR point, we assume that the HR point lies on the convex

hull of the K candidate points and is closest to the input point. Consequently, the

projection of the input point onto the convex hull of the candidate points is the HR

output point.

Before going into more details of the proposed method, we recall in Sec-

tion 3.3.1.1 the concept of convex hull of a �nite set of points and a geometric

algorithm for �nding the projection of a point onto convex hull. The application

of the Projection Onto Convex Hull (POCH) to image SR will be presented in

Section 3.3.1.2

3.3.1.1 Convex Hull and Projection Onto Convex Hull (POCH)

Let Ω = {xi, i ∈ I} be a �nite set of points in Rn, where I is a set of indices. The

convex hull of Ω, denoted by conv(Ω), is the smallest convex set containing Ω. It

consists exactly of all convex combinations of elements of Ω, that is:

conv(Ω) = {
∑
i∈I

αixi | xi ∈ Ω, αi ≥ 0,
∑
i∈I

αi = 1}. (3.28)
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In Rn, the projection of a point y onto the convex hull of a �nite set of points

Ω, denoted by projconv(Ω)(y), is a point on conv(Ω) and the closest to y,

projconv(Ω)(y) = argmin
x∈conv(Ω)

‖y − x‖2. (3.29)

To �nd the projection p = projconv(Ω)(y), we propose to adapt in this work

a fast iterative geometric algorithm, namely the Schlesinger-Kozinec algorithm,

introduced in [FH03] by Franc and Hlavá£. This algorithm was introduced by the

authors for �nding optimal separating hyperplane between two linearly separable

sets. The algorithm is de�ned as follows.

Schlesinger-Kozinec algorithm for POCH[FH03]

Input: y, Ω = {xi, i ∈ I}, and the precision ε.

1. Initialization: Set p to any point xi ∈ Ω.

2. Stopping condition: Find xt ∈ Ω such that xt = argmin
xi∈Ω

m(xi), where

m(xi) =
〈xi − y,p− y〉
‖p− y‖2

. (3.30)

If the ε-optimality condition

‖y − p‖2 −m(xt) < ε (3.31)

holds then p de�nes the ε-solution, projconv(Ω)(y) = p.

Otherwise, go to Step 3.

3. Adaptation: Compute the new value of vector p as

pnew = (1− β)p + βxt, (3.32)

where

β = arg min
β∈(0,1]

‖y − ((1− β)p + βxt) ‖2. (3.33)

Continue with Step 2.

The Schlesinger-Kozinec algorithm begins iterations from an arbitrary point x ∈
conv(Ω). For instance it can start from any point xi ∈ Ω. In Step 2, m(xi) is the the

algebraic distance from xi to hyperplane (H) : 〈x−y,p−y〉 = 0 ((H) goes through

point y, and p − y is its normal vector). xt is a point in Ω, that has the shortest

algebraic distance to (H). If point p satis�es condition (3.31) then p de�nes the

ε-solution, and projconv(Ω)(y) = p. Otherwise p is adapted so that its new value
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pnew is closest point to y and lies on the abscissa between the old p and the point

xt. The number β determines how much we must move from p towards the point

xt to de�ne the new value the pnew. As proposed in [FH03], the solution of the

task (3.33), β, is explicitly computed as

β = min

{
1,
〈xt − p, y − p〉
‖xt − p‖22

}
. (3.34)

The adaptation rule (3.32) ensures that the vector p remains in the convex hull

conv(Ω) and the distance ‖y − p‖2 monotonically decreases. Iteration is performed

until the ε-optimality criterion is satis�ed, and we obtain projconv(Ω)(y) = p.

3.3.1.2 The proposed SPOCH method

Similar to the other example-learning-based SR methods, here, each image can be

represented as a set of overlapping patches, and then super-resolution is performed

on each patch. In order to estimate X, the proposed algorithm is also performed

into two phases: database construction phase and super-resolution reconstruction

phase.

In the �rst phase, a database of HR and LR patch pairs (Pl,Ph) = {(uli, uhi ), i ∈
I} is constructed from the example standard images. In the super-resolution phase,

the estimation of the HR image X is performed via three steps as follows:

1. Search for HR candidate patches: For each LR input patch yli (at position i

of image Y), �nd in the database Pl a subset of K LR patches Ωl
i = {ulk}Kk=1

which are the most similar to the input yli. Then, the set of the corresponding

HR patches Ωh
i = {uhk}Kk=1 are used to estimate the HR output xhi .

In this step, to determine the nearest set Ωl
i, we propose to use a new criteria

to measure the similarity between image patches by combining the Euclidian

distance with a statistical criterion. Using this criterion the reliability of the

set of HR candidate patches Ωh
i is improved.

2. Super-resolution by POCH: Using the POCH algorithm (see Section 3.3.1.1),

the desired HR patch is estimated from the LR patch yli and the HR candidate

patches uhi .

3. Reconstruction of the entire HR image: The desired HR image X is recon-

structed using the estimated HR patches.

These phases are detailed in the next subsections.
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3.3.1.2.1 Database Construction

In this work the database (Pl,Ph) is constructed in the steps as follows:

1. The example HR images Ah are sub-sampled to generate the corresponding

LR images Al,

Al = DsHAh. (3.35)

2. For each training image pair (Al,Ah), a set of high- and low-resolution patch

pairs is generated, that is {(uli, uhi ), i ∈ Ik}, where

uli = DsHu
h
i . (3.36)

The training database (Pl,Ph) = {(uli, uhi ), i ∈ I} is the union of such sets.

Note that uli ∈ Rm and uhi ∈ Rn are the vectorized noise-free patches, uhi is

regarded as a HR patch and ali is the corresponding LR version.

Unlike the other methods, where the vector pairs (uli, u
h
i ) present the features of the

image patches, we use directly the luminance values of the pixels in the image patch

to de�ne the database.

3.3.1.2.2 Super-resolution phase

This phase is realized as follows:

1. Search for candidate HR patches:

For a given LR input patch yli, we need to search in the database of HR patches

Ph a subset Ωh
i of K best candidates for xhi . In order to do that, we �rst �nd

in Pl a subset of K0 LR patches ulk which are the nearest to yli in terms of

Euclidean distance (that means ‖ulk − yli‖2 closest to 0), using the k -NN tree

algorithm proposed by Friedman et al. [FBF77]. Then, we re�ne this search by

using another criterion established from the statistical properties on residual

image, to keep only K (K < K0) candidates among the K0 candidates.

Speci�cally, since yli = DsHx
h
i + ηi, we have yli −DsHx

h
i = ηi. Therefore, a

HR patch uhk in the database Ph is considered as the best candidate for xhi
(i.e. uhk ' xhi ) if

yli −DsHu
h
k ' yli −DsHx

h
i = ηi. (3.37)

Since the noise component ηi is supposed to be Gaussian noise, ηi ∼ N (0, σ2
i )

(see (3.27)). Thus,

yli − ulk ' N (0, σ2
i ). (3.38)

⇒ E(yli − ulk) ' 0, and Var(yli − ulk) ' σ2
i (3.39)

⇒ dk = |E(yli − ulk)|+ |Var(yli − ulk)− σ2
i | ' 0. (3.40)
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Criteria (3.40) represents in some extent the statistical similarity criteria using

the di�erence image yli − ulk.
Therefore, from the set of K0 the nearest neighbors of yli, we choose K (K <

K0) elements which have dk closest to 0. Denote this set by Ωl
i = {ulk}Kk=1,

the set of K HR candidates for the output xhi is de�ned as

Ωh
i = {uhk |ulk ∈ Ωl

i}. (3.41)

We will present the estimation of xhi from Ωh
i and yli in what follows.

2. Image patch super-resolution by POCH:

Suppose that for each given input LR patch yli, a set Ωh
i of K candidate

HR patches has been found from the database. In order to obtain a good

estimation x̂hi of xhi , a fundamental constraint is that x̂hi should be consistent

with the input yli. This can be expressed by minimizing the distance

‖DsHx̂
h
i − yli‖. (3.42)

Moreover, x̂hi should be similar to the HR candidates uhi in Ωh
i . Accordingly,

we can �nd x̂hi as a weighted mean of the HR candidates uhk :

x̂hi =

K∑
k=1

αku
h
k , (3.43)

where uhk ∈ Ωh
i , the coe�cients αk satisfy the condition: αk ≥ 0, ∀k and∑K

k=1 αk = 1.

Denote by y∗i a patch obtained by interpolating yli with the factor s (here,

we use the nearest interpolation), resulting in y∗i which has the same size as

HR patches uhk . Intuitively, from (3.43) we can see that the estimated HR

patch x̂hi ∈ conv(Ωh
i ) and x̂hi is closest to y

∗
i . Therefore, we propose to use the

projection of y∗i onto the convex hull of the candidate set Ωh
i as the estimation

for xhi :

x̂hi = proj
conv(Ωhi )(y

∗
i ). (3.44)

This is done by applying the POCH algorithm in Section 3.3.1.1

3. Reconstruction of the entire HR image:

For each LR patch yli as input, our aim is to �nd the closest estimation of

xhi . Suppose that x̂hi is an estimation of xhi . The �nal HR image X̂ can be

reconstructed from {x̂hi }Ni=1. Then, we put the estimated HR patches x̂hi in

their proper locations and perform averaging in overlap regions to get the
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image X̂. This allows enforcing then the consistency between neighboring

patches.

If the LR image Yl is not corrupted by noise, i.e. Y = DsHX, we can get

better results of reconstruction using the back-projection technique. For that,

the �nal HR image is determined by

Xfinal = argmin
X
‖X− X̂h‖22 s.t. DsHX = Y. (3.45)

The back-projection method [IS93] is used to solve this problem. The update

equation for this iterative algorithm is

Xt+1 = Xt + ((Y −DsHXt) ↑s) ∗ p, (3.46)

where Xt is the estimate of the HR image at the t-th iteration, ↑s denotes

up-scaling by factor s, p is a back-projection �lter. Here we use the symmetric

Gaussian �lter of size 5 with standard deviation 1.

3.3.1.3 Performance evaluation

To demonstrate the robustness of the proposed SPOCH method, we compare it

with the bicubic interpolation and two other nearest neighbors-based methods: the

Markov Network-based method (MN) of Freeman et al. [FJP02]1 and the Neighbor

Embedding-based method (NE) of Chang et al. [CYX04]2. In order to obtain an

objective comparison, we use two quality metrics: the PSNR and the SSIM. The

experiments are performed on both noise-free images and noisy images. The example

databases of the methods MN and NE are established with the same standard images

used for our SPOCH method.

For the SPOCH method, in all experiments, super-resolution is performed with

magni�cation factor of s = 2. For larger magni�cation factors, it can be performed

multiple times. Default size of the HR and LR patches are 7× 7 (n = 49) and 4× 4

(m = 16), respectively. The HR patches are randomly extracted from the standard

images to build the database. The parameter K0 is set to 100. We set the number

of nearest neighbors K to 10 for all of our experiments.

Here, we report some experimental results on �ve test images including three

CT images of size 540 × 360 and two MRI images of size 400 × 400 (as illustrated

in Figure 3.8). For each of the test images, we use another image taken at nearly

the same location as the LR image to establish the database of 50000 HR and LR

patch pairs. The standard images are presented in Figure 3.9. The test images are
1Matlab code: http://research.microsoft.com/en-us/um/people/celiu/
2Matlab code: http://www.jdl.ac.cn/user/hchang/publication.htm

http://research.microsoft.com/en-us/um/people/celiu/
http://www.jdl.ac.cn/user/hchang/publication.htm
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(a) (b) (c)

(d) (e)

Figure 3.8: Test HR images: (a) CT image of abdomen (source: http://

radiopaedia.org/), (b) CT image of lung (source: http://radiopaedia.org/),

(c) CT image of thorax (source: http://radiopaedia.org/), (d) MRI of an-

kle (source: http://www.cedars-sinai.edu/), (e) MRI of knee (source: http:

//healthcare.siemens.com/).

blurred by a 7× 7 Gaussian �lter with standard deviation 1 and downsampled by a

decimation factor of s, and then added with Gaussian white noise of standard devi-

ation σ to produce the corresponding LR images. The experiments are performed

with magni�cation factor s = 4 and with three levels of noise σ = 0, 5 and 10.

The objective results of experiments are reported in Table 3.1. As can be seen, our

method yields signi�cant PSNR and SSIM gains over the other methods, especially

in the cases of σ = 5 and σ = 10 (LR images are corrupted by noise).

For subjective comparison, we show in Figure 3.10 the super-resolution results

obtained by the bicubic interpolation method, the MN method [FJP02], the NE

method [CYX04] and the proposed method on the knee MRI image (Figure 3.8(e)).

In this �gure, the input LR image is a noisy image (σ = 10) of size 100× 100. We

can observe that some methods are seriously a�ected when the image to enhance

is noisy, such as the interpolation method (see Figure 3.10(b)) and the NE-based

method of Chang et al [CYX04] (see Figure 3.10(c)). As to the MN-based method

http://radiopaedia.org/
http://radiopaedia.org/
http://radiopaedia.org/
http://radiopaedia.org/
http://www.cedars-sinai.edu/
http://healthcare.siemens.com/
http://healthcare.siemens.com/
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(a) (b) (c)

(d) (e)

Figure 3.9: Standard images used to construct the database: (a) CT image of ab-

domen (source: http://radiopaedia.org/), (b) CT image of lung (source: http:

//radiopaedia.org/), (c) CT image of thorax (source: http://radiopaedia.

org/), (d) MRI of ankle (source: http://www.westbrookopenmri.com/), (e) MRI

of knee (source: http://healthcare.siemens.com/).

of Freeman et al. [FJP02] and the proposed SPOCH method, both of them give the

best results (see Figure 3.10(d) and Figure 3.10(e)), with sharp edges while noise

is e�ectively removed. However, our method's result is closer to the original test

image with textures and details are more preserved than the MN-based method.

We also present in Figure 3.11 the results of a CT image of lung (size 200×200)

with magni�cation factor s = 4. This experiment has a potential application of

pulmonary micro-nodules (small white nodules). In fact, their presence indicates a

potential risk of cancer and an early detection is crucial for patients. In this experi-

ence, we directly use this input image as example standard image to construct the

database for all methods MN, NE and SPOCH. We only show here the results of a

desired region of interest in the LR image (see Figure 3.11(b)-3.11(f)). As it can be

seen, the bicubic interpolation results in a blurred image (see Figure 3.11(c)). The

MN-based method of Freeman et al. [FJP02] produces sharper image than the other

methods. However, this makes the result image somewhat "non-photorealistic" near

http://radiopaedia.org/
http://radiopaedia.org/
http://radiopaedia.org/
http://radiopaedia.org/
http://radiopaedia.org/
http://www.westbrookopenmri.com/
http://healthcare.siemens.com/
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(a) Low-resolution image (b) Bicubic

(c) NE [CYX04] (d) MN [FJP02]

(e) SPOCH (f) Original image

Figure 3.10: Super-resolution results on a knee MRI image with magni�cation factor

of 4. (a) input 100× 100 LR image with standard deviation of noise σ = 10 (shown

with nearest neighbor interpolation), (b) bicubic interpolation (PSNR = 31.19, SSIM

= 0.560), (c) NE [CYX04] (PSNR = 31.27, SSIM = 0.572), (d) MN [FJP02] (PSNR

= 32.41, SSIM = 0.661), (e) SPOCH (PSNR = 32.49, SSIM = 0.706), and (f)

ground truth image.
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Table 3.1: PSNR and SSIM Comparison

Image σ
PSNR SSIM

Bicubic MN NE SPOCH Bicubic MN NE SPOCH

(a)

0 33.88 33.70 34.42 34.32 0.844 0.829 0.880 0.882

5 33.24 33.69 32.53 34.10 0.780 0.824 0.780 0.862

10 32.00 33.63 31.68 34.04 0.682 0.814 0.728 0.860

(b)

0 32.45 32.59 33.07 33.13 0.715 0.732 0.736 0.738

5 31.87 32.27 31.91 32.35 0.672 0.729 0.683 0.735

10 30.77 32.18 31.00 32.31 0.581 0.723 0.621 0.734

(c)

0 34.20 34.40 35.02 34.98 0.850 0.850 0.876 0.873

5 33.22 34.28 32.38 34.32 0.752 0.838 0.773 0.859

10 32.50 34.14 32.52 34.30 0.649 0.820 0.709 0.850

(d)

0 32.21 32.18 32.29 32.50 0.712 0.695 0.721 0.747

5 31.64 32.13 31.77 32.42 0.644 0.686 0.647 0.741

10 31.35 32.08 31.44 32.40 0.563 0.675 0.578 0.737

(e)

0 32.62 32.52 32.73 32.91 0.690 0.671 0.699 0.718

5 32.23 32.43 32.21 32.79 0.641 0.665 0.646 0.708

10 31.19 32.41 31.27 32.49 0.560 0.661 0.572 0.706

the edges, and it seems to introduce many unwanted details (see Figure 3.11(d)).

The result generated by the NE [CYX04] in Figure 3.11(e) is slightly blurred and de-

tails are less enhanced. In contrast, it is interesting to see that our method provides

enhanced contrast while noise is well removed (see it is obvious that Figure 3.11(f)).

Visually, SPOCH well preserves subtle details while reducing noise. Moreover, we

can clearly see the presence of many micro-nodules with sharper form when com-

pared to the bicubic interpolation method and the NE method.

3.3.1.4 Conclusion

In this section, we have proposed a geometric solution for single image super-

resolution by using the projection onto convex hull of a �nite set of points in

high-dimension vector space. The proposed method is a K-nearest neighbor-based

approach. The main di�erence between the proposed SPOCH method and the NE-

based method is that while the proposed method estimate HR patch by �nding a

convex combination of the K nearest neighbors (HR candidate patches), the NE-

based method [CYX04] �nds an a�ne combination of these candidates. Moreover,

we used pixel values as features to represent each patch (both LR and HR), while

the NE-based method uses a gradient-based representation for LR patches.
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(a) LR image (b) NN interpolation (c) Bicubic interpolation

(d) MN [FJP02] (e) NE [CYX04] (f) SPOCH

Figure 3.11: Super-resolution results on a CT image of lung with magni�cation

factor of 4. (a) LR image of size 200×200 with a windowed region of interest. (b)-(f)

Super-resolution results of the region of interest obtained by the Nearest Neighbor

(NN) interpolation, bicubic interpolation, Freeman et al.'s method [FJP02], Chang

et al.'s method [CYX04], and SPOCH, respectively. Image courtesy of Dr. Jean-

Marie Rocchisani (Avicenne University Hospital, Bobigny, France)

Although the experimental results have demonstrated the performance of the

proposed method over some other state-of-the-art methods, the proposed method

has some limitations. First, its e�ectiveness is highly dependent on the similarity

between the input LR image and the example standard images. Second, it often

requires a large database of HR and LR patch pairs. So, the computational time

of the proposed method is still expensive. It takes around 4 minutes per 255× 255

image, with magni�cation factor of 2 and a database of 70000 patch pairs (the

program is implemented using Matlab and runs on PC of 3.06 GHz, 4GB RAM).

As perspectives, these issues will be considered in the future.

3.3.2 The second proposed method: Super-Resolution by Optimal
Weight model (SROW)

As presented above, the K-nearest neighbor-based methods are often limited by the

choice ofK and the quality of the nearest neighbors. Due to blurring, downsampling,

and noisy data, it is very di�cult to propose an ideal metric for measuring the
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similarity between image patches. The sparse coding (SC)-based SR methods (see

subsection 3.2.3) proposed to perform SR via sparse representation. By that way,

these methods can avoid the problem of �nding the nearest neighbors. Unlike the

K-nearest neighbor-based methods, in the conventional sparse representation model

such as in (3.20) each patch is coded individually without considering other patches,

e.g. the similarity between image patches is not considered. Although these methods

o�er promising performances, learning the dictionary from the database is often

time-consuming. Another di�culty is the debatable performance of these methods

when dealing with noisy images.

In this section, we introduce an optimal weight model for single image super-

resolution. This method is an extension of the sparse weight model for Gaussian

denoising (SWMGD) presented in Section 2.4. Hence, the advantage of this model is

an integrated framework of super-resolution and denoising, providing us both super-

resolved and denoised solutions. This model is very suitable for medical images.

Indeed, medical images are a�ected not only by limited spatial resolution but also

by noise, making the structures or objects of interest indistinguishable. This method

can improve the detection by enhancing the spatial resolution while removing noise.

The basic idea is to �nd a non-negative sparse representation of the input yli over the

training database Pl = {ulj , j ∈ I}, in which the non-zero representation coe�cients

can be assigned to the example patches ulj which are congruent to yli. By that way,

we can take the advantages of both SC-based methods and K-nearest neighbors-

based methods. Our method is referred to as SROW (Super-Resolution by Optimal

Weight model).

Without loss of generality, the images in this work are assumed to be positive.

Before going into the details of the proposed method, we start our presentation with

the database construction phase.

3.3.2.1 Database construction

In this method, the example database of high- and low-resolution patch pairs,

(Pl,Ph), is simply constructed as follows:

• Step 1: A set of high- and low-resolution patch pairs {(uli, uhi ) ∈ Rm×Rn, i ∈
I} is established from the example standard images Ah by the same way as in

the SPOCH method above (see section 3.3.1.2.1). We can directly use this set

as the example database. However, the database are then highly dependent

on luminous intensity of the example standard images. To overcome this

disadvantage we propose to use a database of scaled patches as in the next

step.
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• Step 2: The patch pairs (uli, u
h
i ) above are scaled before being saved to

database,

(Pl,Ph) =

{(
uli
‖uli‖2

,
uhi
‖uli‖2

)
, i ∈ I

}
, (3.47)

Simply, we denote below the training set as

(Pl,Ph) =
{

(uli, u
h
i ) ∈ Rm × Rn, i ∈ I

}
, (3.48)

in which ‖uli‖2 = 1 and DsHu
h
i = uli for all i ∈ I. We can consider the set Pl

and Ph as the matrices in Rm×card(I) and Rn×card(I), respectively.

Note that by this construction way, we can write Pl = DsHPh.

Compared with the SPOCH method, by scaling the vectors in the training

database we can establish the database (Pl,Ph) from the example standard im-

ages Ah with luminance intensity di�erent from the LR input image Y. Hence, this

database is more robust to luminance intensity.

3.3.2.2 Super-Resolution by Optimal Weight model

In this subsection, we will present in details the proposed model for denoising and

super-resolution.

Let us consider a LR patch yli = DsHx
h
i + ηi as in (3.26), with the noise compo-

nent ηi ∼ N (0, σ2
i ). The problem is to �nd an estimate of the HR patch xhi , denoted

by x̂hi , from yli with the help of the database (Pl,Ph). Thanks to the repetition

of local structures of images, we can believe that there exists a subset of patches

uhk ∈ Ph which have similar structures as these of xhi . Such patches will play an

important role in determining the estimate x̂hi .

In this work, it is assumed that xhi ∈ Rn can be represented as a sparse non-

negative linear combination of the HR patches in Ph,

xhi =
∑
k∈I

αku
h
k , (3.49)

where vector of representation coe�cients αi = (α1, α2, . . . , αk, . . .)
T ≥ 0. Note that

unlike the previous SC-based methods ([YWHM08, YWHM10, YWL+12, WZG10,

ZEP10]), in (3.49) we use non-negative constraint on the coe�cients αk. This can

be explained by considering two sides of equation (3.49). Due to the fact that the

vectors xhi and uhk are de�ned from the pixel values of image patches, they are then

positive vectors. Thus, in the equation xhi = Phα
i, both xhi and Ph are positive.

This is why we can require the non-negative constraint on αi.
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Now, consider the corresponding LR patch yhi of xhi . Since it is assumed that

xhi = Phα
i, multiplication of this equation by DsH gives

DsHx
h
i = DsHPhα

i = Plα
i. (3.50)

Exploiting the relation between the LR and the HR patches yli = DsHx
h
i + ηi, we

obtain

Plα
i = yli − ηi, (3.51)

implying that

yli −Plα
i = ηi. (3.52)

Thus,

‖yli −Plα
i‖2 ≤ ξi, (3.53)

where ξi is related to the noise power σi of ηi.

As it can be seen, the LR patch yli can be represented by the same sparse vector

αi over the database of HR patches Pl, with a controlled error ξi. This implies that

for a given LR patch yli, the estimate of the corresponding HR patch xhi is performed

as follows. First, we determine sparse representation vector, αi, of yli with respect

to the database of LR patches Pl. Then, xhi can be recovered by simply multiplying

this representation by the database Ph, x̂hi = Phα
i. This is the core idea behind

the proposed method.

Our aim is to �nd the patches uhk which are similar to xhi and then to use

them for the estimation of xhi . Therefore, we try to force coe�cient vector αi =

(α1, α2, . . . , αk, . . .)
T such that most of its zero components, αk, correspond to the

elements uhk which are dissimilar to xhi . To this end, we formulate the problem of

�nding the vector αi as a following sparse decomposition problem:

αi = argmin
α≥0

‖α‖0 +
∑
k∈I

wikαk (3.54)

subject to
∥∥yli −∑

k∈I
αku

l
k

∥∥2

2
≤ εσ2

i ,

where ε is a given positive number, the constants wik > 0 depend on the dissimilarity

between xhi and uhk . We want to force small αk for high dissimilarity wik, i.e. for

weak similarity between xhi and u
h
k . However, due to the fact that the HR patch xhi

is not available, the dissimilarity between xhi and uhk is evaluated through their LR

versions yli and u
l
k.

In (3.54), the `0-norm assures that the solution αi is a sparse one. In the second

term, wik may be viewed as a penalty coe�cient on the variable αk in the sense

that if the value of wik is suitably large, the term wikαk will be penalized a heavy
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cost if αk is large. Thus, in the cases where ulk and yli are very dissimilar (i.e. wik
is large), objective function in (3.54) can be minimized with αk often very small

or null. Therefore, in the sparse solution αi of (3.54), the non-zero components

often correspond to the small penalty coe�cients. The constraint in (3.54) implies

that the output HR patch x̂hi =
∑

k∈I αku
h
k has to be consistent with the input

yli. Therefore, x̂hi can be determined optimally from several example HR patches

uhk ∈ Ph which have similar in structure with the desired patch xhi . By that way, it

can avoid the in�uence of the inconsistent patches in the determining the estimate

x̂hi .

In this work, the penalty coe�cients wik is de�ned as the form

wik = Φi(d(yli, u
l
k)), (3.55)

where d : Rm × Rm → R+ is a criteria evaluating the dissimilarity between yli and

ulk, Φ : R → R+ is a non-negative increasing function. The value of the function

d(yli, u
l
k) express the dissimilarity in structure between yli and ulk. So, a smaller

dissimilarity value implies higher similarity. Normally, to measure the extent of

dissimilarity among the image patches, one of the most popular dissimilarity criteria

is the Euclidian distance. However, in this case yli is a vector de�ned from the pixel

values of the ith patch of the input LR image Y while ulk is a normalized example

vector in the database. Moreover, yli is also corrupted by noise ηi. Thus, using the

Euclidian distance may not be e�ective enough. To obtain a better dissimilarity

criteria, let us consider the relationship of yli and u
l
k.

We start with de�nition of congruence of image patches.

De�nition 3.3.1 Two image patches x1 and x2 are congruent if there exists a non-

zero constant µ ∈ R, with x1 = µx2.

As mentioned above, yli is assumed to be corrupted by Gaussian white noise ηi ∼
N (0, σ2

i ), y
l
i = DsHx

h
i + ηi (see (3.26)). Thus, the patch ulk is ideally similar to yli

if ulk is congruent to DsHx
h
i . That means there exists a constant µik > 0 such that

yli = µiku
l
k + ηi. (3.56)

Since the assumption that the noise component ηi ∼ N (0, σ2
i ), we have the mean of

ηi, E(ηi) ≈ 0. Therefore, the constant µik can be approximately computed as:

E(yli) = µikE(ulk) + E(ηi)︸ ︷︷ ︸
≈0

=⇒ µik =
E(yli)

E(ulk)
. (3.57)

From equation (3.56), we have (yli − µikulk) ∼ N (0, σ2
i ). It can be inferred that,{

E(yli − µikulk) ' 0

Var(yli − µikulk)− σ2
i ' 0.
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Therefore,

ai,k =
∣∣E(yli − µikulk)

∣∣+
∣∣Var(yli − µikulk)− σ2

i

∣∣ ' 0. (3.58)

The parameter ai,k allows us to evaluate the statistical property of noise in the

residual patch. So, in this work, the dissimilarity criteria is de�ned by

d(yli, u
l
k) = ‖yli − µikulk‖22 + ai,k, (3.59)

where µik is de�ned by (3.57).

In this work, the function Φi(·) in (3.55) is de�ned by

Φi(t) =

{
et if t > ρi

t if t ≤ ρi,
(3.60)

where ρi is a positive threshold corresponding to yli. As can be seen, the function

Φi(t) strongly increases when t > ρi. This makes the penalty coe�cients correspond-

ing to the example patches to have d(yli, u
l
k) > ρi, and so these penalty coe�cients

will be very high. Note that in the ideal case, µikulk = DsHx
h
i , we have,

d(yli, u
l
k) ≈ mσ2

i , (3.61)

where m is the number of elements in vector yli (y
l
i ∈ Rm). Therefore, for d(yli, u

l
k) ≤

mσ2
i we can believe that u

l
k is congruent with DsHx

h
i , and thus u

h
k is congruent with

the desired HR patch xhi . Then, the threshold ρi in (3.60) is set to mσ2
i .

It is easy to see that the objective in (3.54) is not a convex function, since `0-

norm is not a true norm. This problem is too complex to solve in general. To

avoid the above problem we replace `0-norm by `1-norm, and problem (3.54) is then

convex and can be rewritten as:

αi = argmin
α≥0

‖α‖1 +
∑
k∈I

wikαk (3.62)

subject to
∥∥yli −∑

k∈I
αku

l
k

∥∥2

2
≤ εσ2

i

⇔ αi = argmin
α≥0

∑
k∈I

(1 + wik)αk (3.63)

subject to
∥∥yli −∑

k∈I
αku

l
k

∥∥2

2
≤ εσ2

i .

Lagrange multipliers allow an equivalent formulation

αi = argmin
α≥0

1

2

∥∥yli −∑
k∈I

αku
l
k

∥∥2

2
+ λ

∑
k∈I

(1 + wik)αk, (3.64)
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where the parameter λ balances sparsity of the solution and �delity of the approxi-

mation to yli.

Let us denote S(yli) = {k ∈ I : αik > 0} as the support set of yli. As analyzed

above, S(yli) involves ulk where d(yli, u
l
k) is not very large. Thus, with a suitable

value of the threshold ri, there exists a subset Ii = {j ∈ I : d(yli, u
l
j) ≤ ri} of I such

that

S(yli) ⊆ Ii. (3.65)

Thus, to save computing time, problem (3.64) should be considered on the subset

Ii,
⇒ αi = arg min

α≥0

1

2

∥∥yli −∑
k∈Ii

αku
l
k

∥∥2

2
+ λ

∑
k∈Ii

(1 + wik)αk. (3.66)

It is easily to see that problem (3.66) can be rewritten as:

αi = arg min
α≥0

1

2

∥∥yli −Uiα
∥∥2

2
+ λwT

i α

= arg min
α≥0

1

2
αT (Ui

TUi)α+
(
λwi −Ui

Tyli

)T
α (3.67)

where Ui is the matrix whose columns are the vectors ulk, wi is the vector formed

by concatenating all the penalty coe�cients wik, here k ∈ Ii. We can see that (3.67)

is a nonnegative quadratic programming, which can be solved, speci�cally by the

multiplicative updates algorithm proposed by Sha et al. in [SSL02] as presented in

subsection 2.3.2.2.

When αi is obtained, the desired HR patch x̂hi can be estimated as

x̂hi =
∑
k∈Ii

αiku
h
k . (3.68)

Likely, we can obtain a denoised version, denoted by ŷli, of y
l
i

ŷli = Uiα
i =

∑
k∈Ii

αkku
l
k. (3.69)

In the next section, we will present how to construct the entire HR image using

the estimated HR patches x̂hi , and the denoised patches ŷli.

3.3.2.3 Reconstruction of the entire HR image

We �rst put all the estimated HR patches x̂hi in the proper locations in the HR grid.

A coarse estimate of X, X̂coarse, is then computed by an average in overlapping

regions. In the same way, we obtain a denoised image, denoted by Ydenoise, of Y

by replacing the noisy patches yli by the denoised ŷli, and then take the average in

overlapping regions.
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Similarly to [YWHM08], we determine the �nal HR image X̂final as the mini-

mizer of the following problem:

min
X
‖X− X̂coarse‖22 subject to ‖DsHX−Ydenoise‖. (3.70)

The back-projection algorithm [IS93] is used to solve this problem:

Xt+1 = Xt + ((Ydenoise −DsHXt) ↑s) ∗ p, (3.71)

where Xt is the estimate of the HR image at the t-th iteration, ↑s denotes up-scaling
by factor s, p is a symmetric Gaussian �lter. Here, we use the symmetric Gaussian

�lter of size 5 with standard deviation 1. Note that in the case where the input LR

image Y can be considered as a noise-free image, Ydenoise in (3.70) and (3.71) is

replaced by Y.

(a) (b)

Figure 3.12: Objective comparison on the CT image of abdomen with the noise

levels: σ = 0, 5 and 10.

(a) (b)

Figure 3.13: Objective comparison on the CT image of lung with the noise levels:

σ = 0, 5 and 10.
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(a) (b)

Figure 3.14: Objective comparison on the CT image of trorax with the noise levels:

σ = 0, 5 and 10.

(a) (b)

Figure 3.15: Objective comparison on the CT image of ankle with the noise levels:

σ = 0, 5 and 10.

(a) (b)

Figure 3.16: Objective comparison on the CT image of knee with the noise levels:

σ = 0, 5 and 10.
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3.3.2.4 Performance evalution

For medical images, the ability to detect anomalies or object of interest may be

limited not only by limitations in spatial resolution but also by the presence of noise.

Thus, we present here some experiments performed on both images with noise-free

and noisy images. The proposed method (called SROW) is compared with the

bicubic interpolation, the Markov-network-based SR method (MN) of Freeman et al.

[FJP02], the neighbor embedding-based SR method (NE) of Chang et al.[CYX04],

and the Sparse codding-based SR method (ScSR) [YWHM10] 3.

The experimental tests are performed on �ve 8-bit images shown in Figure 3.8:

CT of abdomen, CT of lung, CT of thorax, MRI of ankle, and MRI of knee with

magni�cation factor s = 4. The training databases of all the methods are estab-

lished with the same set of �ve standard images as illustrated in Figure 3.9. In all

experiments, the LR image is created from the corresponding test image in three

steps: �rst, the test image is blurred by a 7× 7 Gaussian �lter with standard devia-

tion 1, then downsampling by a decimation factor of s is performed, and �nally the

Gaussian white noise with standard deviation σ is added into the decimated image.

For the proposed SROW method, super-resolution is realized two times with mag-

ni�cation factor 2. The database includes 150000 patch pairs extracted randomly

form the standard images. Default size of the HR patches is 7× 7. The parameter

λ in equation (3.67) is set to 1.

For objective comparison, we use the PSNR and SSIM to evaluate the per-

formance of the methods. The best results of the methods are reported through

Figure 3.12 to 3.16. As it can be seen, for σ = 0, the NE and ScSR methods obtain

high quality indices and sometimes higher values than those of the proposed method.

However, the quality measures of the SROW method are signi�cantly higher than

those of the other methods, in the cases of noise for σ = 5 and σ = 10. This con�rms

the outperformance of the proposed method in the cases of noisy images.

For a subjective evaluation, Figure 3.19 and Figure 3.17 show the SR results

with magni�cation s = 4 of the di�erent methods for the CT image of thorax (Fig-

ure 3.8(b)) and the MRI image of ankle (Figure 3.8(d)), respectively. In these ex-

periments, the LR images are corrupted by white Gaussian white noise with σ = 10.

Visually, the bicubic interpolation's result (Figure 3.17(b)) is blurred while the re-

sults of the NE method of Chang et al. [CYX04] (Figure 3.19(c) and Figure 3.17(d) )

and the ScSR method of Yang et al. [YWHM10] (Figure 3.19(d) and Figure 3.17(e))

are smoothed, many small details are lost. The results of the MN method of Free-

man et al. [FJP02] looks better compared to the NE and the ScSR methods. As

3Matlab code available at http://www.ifp.illinois.edu/~jyang29/index.html

http://www.ifp.illinois.edu/~jyang29/index.html
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(a) LR image (b) Bicubic

(c) MN [FJP02] (d) NE [CYX04]

(e) ScSR [YWHM10] (f) SROW (g) Test image

Figure 3.17: Results on the CT image of thorax (Figure 3.8(b)) with magni�cation

factor of 4. (a) LR image (size 135× 90) corrupted by Gaussian noise with σ = 10

(shown with nearest neighbor interpolation); (b) bicubic interpolation (PSNR =

30.77, SSIM = 0.581), (c) Freeman et al.'s method (PSNR = 32.18, SSIM = 0.723);

(d) Chang et al.'s method (PSNR = 31.00, SSIM = 0.621); (e) Yang et al.'s method

(PSNR = 31.36, SSIM = 0.664); (f) the proposed SROW method (PSNR = 32.63,

SSIM = 0.757); (g) Original test image.

it can be seen in Figure 3.17(f), the proposed SROW method sometimes introduces

jaggy artifacts along the major edges. However, the proposed SROW method gives

the best results in cases of noise by e�ectively reducing noise and well preserving

small details (see Figure 3.19(e) and Figure 3.17(f)). To see more clearly, we can

observe in Figure 3.18, the super-resolution results in a Desired Region Of Interest

(DROI) of the LR image (the yellow rectangle in Figure 3.18(a)).

3.3.2.5 Conclussion

In this section, we have proposed a very competitive example-based SR model ca-

pable of enhancing resolution and denoising in the same framework. The method
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(a) LR image (b) NN interpolation (c) Bicubic (d) MN [FJP02]

(e) NE [CYX04] (f) ScSR [YWHM10] (g) SROW (h) Original

Figure 3.18: The images of DROI in the super-resolution results in Figure 3.17. (a)

is the LR image in which the yellow rectangle illustrates a desired region of interest.

(b)-(g) present the DROI up-scaled with magni�cation of 4 by the Nearest Neighbor

(NN) interpolation, the bicubic interpolation, the MN-based method of Freeman et

al. [FJP02], the NE-based method of Chang et al. [CYX04], the SC-based method

of Yang et al. [YWHM10], and the proposed SROWmethod, respectively. (h) shows

the DROI in the original test image.

is based on �nding a sparse positive linear representation of the HR patches in the

database constructed from given standard images. The experimental results have

demonstrated the e�ectiveness of our method over some leading state-of-the-art SR

methods. It is very useful in the case when the low-resolution image is corrupted

by noise. The results of the SROW method for medical images are very promising,

demonstrating the ability of the method for the potential bene�t of diagnosis. In

the future works, we will study the construction of the training database of example

patch pairs optimally from the given standard images.

3.4 Comparison of two proposed SR methods

In previous sections the proposed methods have been compared with the other

methods. In this section, we propose a comparison of the SPOCH method and the

SROW method.

To this end, we report the experimental results of the two methods performed

on �ve test images of Figure 3.8. The experiments are performed, on both noise-

free image and noisy image, with magni�cation factor s = 4. The LR images are

tested with Gaussian noise with standard deviations σ = 0, 5 and 10. The objective

comparison between SPOCH and SROW using the PSNR and SSIM metrics are
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illustrated through Figures 3.20, 3.21 and 3.22. We can see that the SROW

method achieves noticeable quality gains over the SPOCH method in most cases.

This con�rms the outperformance of the SROW method.

3.5 Summary

In this chapter, we have presented an overview of the example-based super-resolution

approach and introduced two novel example-based learning SR methods which per-

form SR and denoising e�ectively. The �rst proposed method, namely SPOCH,

is a geometric solution for single image super-resolution. In this method, super-

resolution is realized based on using the projection onto convex hull of a �nite set

of points in high-dimension vector space. The second method, namely SROW, we

propose an optimal weight model for single image super-resolution, which integrates

SR and denoising in the same framework. Through extensive experimental tests,

we have shown the outperformance of the proposed methods compared with some

state-of-the-art methods. The proposed SR approaches gives promising potential to

be integrated in imaging technologies.
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(a) LR image (b) MN [FJP02]

(c) NE [CYX04] (d) ScSR [YWHM10]

(e) SROW (f) Test image

Figure 3.19: Results on the MRI image of ankle (Figure 3.8(d)) with magni�cation

factor of 4. (a) LR image (size 100× 100) corrupted by Gaussian noise with σ = 10

(shown with nearest neighbor interpolation); (b) Freeman et al.'s method (PSNR =

32.08, SSIM = 0.675); (c) Chang et al.'s method (PSNR = 31.44, SSIM = 0.578);

(d) Yang et al.'s method (PSNR = 31.39, SSIM = 0.618); (e) the proposed SROW

method (PSNR = 32.61, SSIM = 0.754); (f) Original test image.
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(a) PSNR

(b) SSIM

Figure 3.20: Objective comparison of the SPOCH method and the SROW method

in the case of noise levels σ = 0: (a) PSNR comparison, (b) SSIM comparison.



3.5. Summary 193

(a) PSNR

(b) SSIM

Figure 3.21: Objective comparison of the SPOCH method and the SROW method

in the case of noise levels σ = 5: (a) PSNR comparison, (b) SSIM comparison.
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(a) PSNR

(b) SSIM

Figure 3.22: Objective comparison of the SPOCH method and the SROW method

in the case of noise levels σ = 10: (a) PSNR comparison, (b) SSIM comparison.
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This chapter provides a summary of the work presented and the conclusions

drawn from this work. It lists the contributions to knowledge already achieved in

this research and provides directions for future work.

4.1 Summary and conclusions

In this thesis, we have investigated some issues related to quality improvement in

medical imaging. Speci�cally, we have focused on two important factors a�ecting

the image quality including noise and resolution. Several example-learning-based

methods have been developed for denoising and resolution enhancement of medical

images. The proposed methods are based on the observation that a lot of medical

images are taken from the same type of subjects at similar locations, and many of

them can be considered as standard images (high quality or acceptably and proven

as noiseless images or passed a preprocessing step) by experts.

Chapter 1 gives a short overview of some common noise models found in

medical images and some recent state-of-the-art approaches in the image denois-

ing domain as well as their applications for medical image denoising. The ap-

proaches that have been addressed in this chapter include the Total Variation

[ROF92, BKP10, KBPS11], the Non-local means [BCM05, BCM06], the Data-

adaptive Kernel Regression [TFM07], the Sparse Representation [EA06, AEB06],

and the Block matching with 3D (BM3D) [DFKE07].

Chapter 2 provides three novel example-learning-based denoising solutions. In

the proposed methods, denoising is performed with the help of a given set of standard

images (example images) taken at nearly the same location with the image that needs

to be denoised.
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• The �rst method is constructed based on the machine learning theory. It

consists of two independent phases: training phase performs training the re-

gression functions from a training set established from the standard images,

and denoising phase performs denoising using the regression functions trained

from the training phase. This method is proposed to reduce Gaussian noise

and Rician noise. Thus, it can be used to reduce noise on some types of

medical imaging such as CT, MRI.

• The second method is a k-nearest neighbor-based one designed for Gaussian

noise and Poisson noise. In this method, a non-negative non-linear regression

model has been proposed and used for denoising. This method can be con-

sistent with imaging systems involving counting procedures like Fluorescence

Confocal Microscopy, X-ray Projection Radiography, Fluoroscopy, Mammog-

raphy, CT, PET and SPECT.

• The third method is designed for Gaussian denoising in low-dose CT images.

In this method, the standard images are used to construct a database of ex-

ample patches, and denoising is performed patch-wise with the help of such

database. In order to denoise on image patches, we introduced a positive

sparse weighted model. This model may be applied to images where the noise

is supposed to be additive white Gaussian on each patch.

The obtained results are promising and show the e�ectiveness of the proposed meth-

ods.

In Chapter 3, the problem of resolution enhancement has been addressed.

The approach of single-image super-resolution methods has been considered in

our work. First, we have presented in this chapter the main content of some

typical methods in this approach including the Markov-Network-based method of

Freeman et al. [FJP02], the Neighbor Embedding-based method of Chang et al.

[CYX04], and the super-resolution method via sparse representation of Yang et

al. [YWHM08, YWL+12]. Our contributions were presented through two super-

resolution solutions. The �rst one is a geometric solution where we proposed to

apply projection onto convex hull of a �nite set of points in high-dimension vector

space for single image super-resolution. In the second one, super-resolution is per-

formed via a novel model based on sparse positive linear representation. In partic-

ular, this model incorporates denoising and super-resolution in the same framework

o�ering the possibility to improve spatial resolution while improving the quality

of the image. The experimental tests on both synthetic and medical images have

shown that the proposed solutions can e�ectively enhance resolution for noiseless as

well as noisy images.
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4.2 Future directions

Apart from some promising results, the proposed methods have still some limitations

which need to be improved. They are listed below:

1. The proposed methods in this thesis highly depend on the set of standard

images used to construct the training set, since the training set could be in-

deed dominated by standard images. In the general case, a larger data set

of standard images is necessary to construct a good training set. Thus, it is

often required a large amount of memory.

2. In the case of denoising problem, the �rst method using kernel ridge regression

has many parameters and thus it is not easy to determine the optimal values

for these parameters.

3. In the case of super-resolution, the proposed methods sometime introduce

jaggy artifacts along the major edges. This may be due to the algorithms

which have no any condition for suppressing such artifacts .

As perspectives, some issues will be considered in the future. We can list some

important tasks as follows:

1. The �rst one is to construct a standard data set for medical images in such

a way to reduce the dependence of the proposed methods on the example

standard images. It is desirable for example that the test image could be of

any characteristic and taken at any location.

2. The second one is to reduce the computational time of the methods. To this

end, one of feasible solutions is to use Graphic Processing Unit (GPU).

3. The next one is how to extend the denoising solutions for di�erent types of

noise such as speckle noise and mixed noise.

4. In the SPOCH method, by considering each image patch as a point in high-

dimension space and using projection onto convex hull, we have proposed a

geometric solution for image super-resolution. Thus, some techniques of the

computational geometry may be very useful to solve certain problems of image

processing. This is a promising approach and deserves attention.

5. Finally, in the proposed super-resolution methods we have used the assumption

that low-resolution image is a�ected by additive white Gaussian noise. Thus,

an interesting perspective to extend these methods to other types of noise.
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NE-based method of Chang et al. [CYX04], the SC-based method of

Yang et al. [YWHM10], and the proposed SROW method, respec-

tively. (h) shows the DROI in the original test image. . . . . . . . . 189
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