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Abstract

Image inpainting technique has emerged as one of the efficient solutions for restoring

degraded images and even video and 3D visual contents. It is essential for restoration

and conservation of archeological objects. Indeed, during the excavation of historic sites,

many valuable artifacts such as statues, buildings, wall paintings, etc., have been unearthed

and recovered. Unfortunately, most of them have been damaged or fractured in ancient

times. With the aim to learn from these objects, digital techniques are used to restore

them using some a priori knowledge provided by archeologists and artists. This helps

to reconstruct, preserve and maintain these valuable artistic works. Recently, advances

of computer technology and image acquisition systems made possible the transition from

traditional manual retouching methods to digital techniques. It has opened up a very new

and interesting research field within image processing, namely digital image inpainting.

In this thesis, our work aims at analyzing and reviewing the state-of-the-art methods for

image inpainting. Three groups of inpainting methods are identified. The advantages and

drawbacks of each approach are analyzed using objective and subjective criteria. Based on

this review, a new approach of image inpainting is introduced and compared to literature.

The proposed method provides good performance in terms of quality and computation

efficiency. Another contribution lies in the proposal of a new quality metric dedicated

to image inpainting. To the best of our knowledge the inpainted images are very often

evaluated subjectively or by means of some objective metrics far from being adapted to

the peculiarities of image inpainting criteria. The last contribution of this work is a less

investigated problem related to inpainting detection. This is motivated by the fact that,

due to extensive research and rapid growth of technology, the output quality of inpainting

algorithms became more than ever realistic and sophisticated. The inpainted regions are

hard to detect by viewers, even for experts. As a result, these inpainted images could

be used for different purposes, including digital tampering. Therefore, the last topic of

the work is devoted to inpainting detection, also seen as an inverse problem of inpainting.

Although, many papers have been introduced for forgery detection, there is almost no study

about image inpainting forgery. Accordingly, a novel approach for inpainting detection is

introduced based on the knowledge gathered in the previous steps of the thesis. Finally, the

performance of proposed solutions is carefully evaluated with regards to human judgment

as well as in comparison with the existing methods though a series of experimental studies.
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Résumé

La technique d’inpainting (retouche d’images) est considérée comme l’une des solutions

efficaces pour la restauration dimages dégradées et, même la vidéo ou les contenus 3D

stéréoscopiques. Il s’agit d’un outil essentiel pour la restauration et la conservation des

objets archéologiques. En effet, lors de fouilles de sites historiques, de nombreux objets

de valeur tels que des statues, des bâtiments, des peintures murales, etc., sont découverts

et récupérés. Malheureusement, la plupart d’entre eux se retrouvent endommagés ou frac-

turés. Dans l’optique d’apprendre de ces objets, les techniques numériques sont utilisées

pour les restaurer en utilisant des connaissances a priori fournies par les archéologues et

les artistes. Cela permet de reconstruire, préserver et maintenir ces oeuvres artistiques de

grande valeur. En effet, les progrès des technologies et des systèmes d’acquisition d’images

ont permis la transition des méthodes traditionnelles de retouche manuelle vers des tech-

niques numériques, ouvrant un nouveau domaine de recherche appelé inpainting d’images.

Dans cette thèse, notre travail visait à analyser et examiner les méthodes de la littérature

des techniques d’inpainting d’images qui se décomposent en trois groupes. Les avantages

et les inconvénients de chaque approche sont analysés finement en utilisant des critères

objectifs et subjectifs. Sur la base de cette étude, une nouvelle approche d’inpainting

d’images est proposée et confrontée à la littérature. Elle offre de bonnes performances

en termes de qualité de rendu et d’efficacité calculatoire. Une autre contribution réside

dans la proposition d’une nouvelle métrique de qualité dédiée à l’évaluation des techniques

d’inpainting. Au regard de l’état de l’art dans le domaine, les images ayant subi des re-

touches par inpainting sont très souvent évaluées subjectivement ou au moyen de quelques

mesures objectives loin d’être adaptées aux particularités de cette technique. La métrique

proposée offre à la fois de bonnes performances et une adaptabilité au domaine. La dernière

contribution de ce travail est un problème moins étudié et lié à la détection d’inpainting.

Ceci est motivé par les efforts importants de recherche sur la thématique ainsi que le

développement rapide de la technologie. La conséquence est que la qualité des retouches

par inpainting est devenue plus réaliste et sophistiquée que jamais. Les régions retouchées

sont alors difficiles à détecter par les utilisateurs, même les experts. Ainsi, ces images

pourraient être utilisées à différentes fins, légales comme illégales. Malgré l’importance du

sujet, très peu de travaux l’ont adressés à cause de sa complexité. C’est sur cette base

qu’une nouvelle approche pour la détection d’inpainting est proposée dans cette thèse, en
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exploitant les connaissances acquises lors des étapes précédentes. Enfin, la performance

des solutions proposées est soigneusement évaluée à travers plusieurs expérimentations, et

ce au regard du jugement humain ainsi qu’en comparaison avec les méthodes existantes.
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1
Introduction

“All truths are easy to understand once they are discovered.

The point is to discover them.”

1



Chapter 1. Introduction
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1.1 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Thesis objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Problem statement

Pompeii and Herculaneum were once thriving towns in the Bay of Naples. Both towns have

rich histories influenced by Greeks, Oscans, Etruscans, Samnites and finally the Romans.

However, they were destroyed during an eruption of the volcano Mount Vesuvius in 79 AD.

The volcano erupted and covered completely the town and its inhabitants in many tons of

pumice and volcanic ash.

The discovery of Pompeii is of great importance for our modern-day understanding of

the ancient Roman-Italic world - partly because the more public and monumental ruins

left behind by Imperial Rome have often been misleading. The excavations at Pompeii

and Herculaneum offer an intact vision of daily life in a Roman society in all its aspects.

During the excavation, many valuable artifacts such as statues, buildings, wall paint-

ings, etc., have been unearthed and recovered. Unfortunately, most of them have been

damaged or fractured in ancient times. On way to preserve and maintain these valuable

artistic works, they should be digitalized and restored by the art restoration artists, who

could bring them back to the original or to close-to-original state.

In fact, it is impossible or unnecessary to restore these paintings to the original version

because they are unique and there are no written documents to study. Thus, the main

task of artists is filling in existent gaps in the paintings with visually pleasing content. On

the other hand, it can be said that almost as old as art itself is the practice of making

modifications to paintings, in such a way that if an observer would look at the modified

work, without knowing the original one, he could not be able to perceive any alteration.

This restoration is traditionally carried out by experts, such as museum art restorers, and it

is commonly known as retouching or inpainting. Its desired outcome is to make a damaged

artwork more discernible, while restoring its unity.
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1.1. Problem statement

Figure 1.1. Some wall paintings in Villa of the Mysteries, Pompeii.

Progress in computer technology has changed conventional archaeology and its ex-

hibition. Advances of technology made possible the transition from traditional manual

retouching methods to digital techniques. It has opened up a very new and interesting

research in the field of image processing, digital image inpainting.

Figure 1.2. Painting restoration work in the museum.
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Chapter 1. Introduction

Researcher working on different applications of inpainting have adopted different names

though their own individual characteristics: “error concealment” in telecommunications;

“image disocclusion” or “image interpolation” in image processing.

The objectives of inpainting are numerous. They have been employed in various appli-

cations such as medical and astronomical imaging, film restoration, image and video coding

and many others [1–3]. Meanwhile, in computer science, much research similar to the in-

painting problem has also been carried out in the context of image replacement, image

interpolation, error concealment, digital restoration of ancient paintings for conservation

purposes, disocclusion in vision research [4, 5].

To illustrate the use of inpainting restoration in typical applications, an example of

restoration is shown in Figure 1.3. In this figure, the original images with defects such as

cracks and scratches are shown in Figure 1.3-a,c and the corresponding outputs are shown

in Figure 1.3-b,d. The inpainting process is implemented in two different ways but with a

common goal, i.e., an undetectable modification by viewers.

1.2 Thesis objectives

Firstly, our work aims to analysis and review state-of-the-art methods for inpainting prob-

lem. All three groups of inpainting are reviewed to analysis their advantages and dis-

advantages. Based on this background, a new proposal of inpainting is introduced with

high-quality results and high performance computation.

In order to validate the performance of the proposed inpainting method, a compar-

ison with existent approaches is implemented. Nevertheless, at our best knowledge the

inpainted images are very often evaluated subjectively or by using some objective metrics

not well adapted to the specificities of image inpainting criteria. In addition, subjective

experiments are time consuming, complex and unpredictable due to some uncontrolled

human factors such as fatigue, visual discomfort, background, etc. Thus, the second goal

of our work is to propose an objective Image Inpainting Quality Assessment (IIQA) met-

ric. The performance of the proposed metric is carefully assessed with regards to human

judgement as well as comparison with some traditional image quality index and existing

inpainting quality metrics.

Due to the extensive research and rapid technology advancements, the output quality of

inpainting algorithms has become more realistic and sophisticated. The inpainted regions

4



1.2. Thesis objectives

(a) (b)

(c) (d)

Figure 1.3. Examples of image restoration. (a), (c) The damaged image; (b) Manually
restored image; (d) Automatically restored image using an inpainting algorithm.

are hard to detect by viewers, even for experts. As a result, the inpainted images could

be used for many different purposes, including digital tampering. Therefore, the last

objective in our work is devoted to inpainting detection, an inverse problem of inpainting.

Although, many papers have been introduced for forgery detection, there is almost no study

about image inpainting forgery. Consequently, a novel approach for inpainting detection

is necessary and valuable in verifying the authenticity of the original image. The purpose

of our work is then to introduce an efficient and reliable inpainting detection method.

5



Chapter 1. Introduction

1.3 Thesis contributions

Many inpainting algorithms have been reviewed and analysed in this thesis. It could be

considered as the foundation for our work. Two other trends have been exploited such

as inpainting quality assessment and inpainting forgery detection. For each issue, we have

specific contribution for solving the corresponding problems. In summary, the significant

contributions are summarized below:

• Inpainting problem: A novel framework for inpainting has been introduced. How-

ever, it has some limitations due to computational complexity and time running.

Some solutions are proposed to improve the performance of the proposed algorithm.

• Inpainting quality: Once the inpainted images are obtained, the most common

method for evaluating the quality is observing and scoring by human viewers. In

this dissertation, we present a new metric to estimate objectively the quality of the

restored images.

• Inpainting detection: A new model is developed to detect whether a given image

is edited by inpainting algorithms or not. The idea is to consider inpainting as

a tampering process. This contribution is necessary and valuable in verifying the

authenticity of the original image.

As a result, the ideas developed in this thesis have been published in international

conferences and journal. Below is the list of publications:

1. T. T. Dang, M. C. Larabi, A. Beghdadi, “Multi-resolution patch and window-based

priority for digital image inpainting problem”, 3rd International Conference on Image

Processing Theory, Tools and Applications (IPTA2012), pp. 280-284, 2012, Istabul,

Turkey.

2. T. T. Dang, A. Beghdadi, M. C. Larabi, “Archaeological image inpainting”, the 4th

European Workshop on Visual Information Processing (EUVIP2013), 2013, Paris,

France.

3. T. T. Dang, A. Beghdadi, M. C. Larabi, “Inpainted image quality assessment”, the

4th European Workshop on Visual Information Processing (EUVIP2013), pp. 76-81,

2013, Paris, France.

6



1.4. Thesis outline

4. T. T. Dang, A. Beghdadi, M. C. Larabi, “Perceptual quality assessment for color

image inpainting”, IEEE International Conference on Image Processing (ICIP2013),

2013, Melbourne, Australia.

5. T. T. Dang, A. Beghdadi, M. C. Larabi, “Perceptual evaluation of digital image

completion quality”, 21st European Signal Processing Conference (EUSIPCO2013),

2013, Marrakech, Morocco.

6. T. T. Dang, A. Beghdadi, M. C. Larabi, “Visual coherence metric for evaluation of

color image restoration”, the Colour and Visual Computing Symposium (CVCS2013),

pp. 1-6, 2013, Gjvik, Norway.

7. T. T. Dang, A. Beghdadi, M. C. Larabi, “A hierarchical approach for high-quality

and fast image completion”, The Fifth International Conference on Knowledge and

Systems Engineering (KSE2013), pp. 11-21, 2013, Hanoi, Vietnam.

8. T. T. Dang, A. Beghdadi, M. C. Larabi, “A perceptual image completion approach

based on a hierarchical optimization scheme”, Signal Processing, Volume 103, pp.

127-141, October 2014.

1.4 Thesis outline

This report consists of six chapters. After the introductory chapter, four main chapters

corresponding to our contributions are presented. The last chapter is devoted to conclusion

and perspectives. The content of the chapters is briefly summarized below:

• Chapter 2 introduces the state-of-the-art inpainting algorithms. Starting from the

one of the earliest work until the present one, a series of inpainting algorithms has

been summarized to provide for reader a basic look on digital image inpainting meth-

ods that have been developed during the last decade.

• Chapter 3 discusses relevant work on inpainting and introduces our proposal for

this problem. First, a novel framework of image completion is introduced using

multi-resolution representation of the image. Second, an improvement is proposed to

enhance the algorithm performance. A series of experimental studies is carried out

in order to evaluate and compare our approach with the existing methods.

7
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• Chapter 4 presents a new methodology for evaluating perceptual inpainting quality.

Some image quality assessment metrics which can be applied for inpainting in some

cases are investigated. A few existing inpainting quality metrics are analysed in

details. From this analysis, some novel metrics for inpainting quality are proposed.

A subjective study is then launched to evaluate the proposed metrics in comparison

with both the traditional image quality assessment metrics and existing inpainting

quality metrics.

• Chapter 5 is related to a new trend of inpainting problem, inpainting forgery de-

tection. Although, many current forgery detection techniques have been introduced,

they cannot apply to detect inpainting forgery because of the fundamental differ-

ence between them. Based on the analysis of the current inpainting algorithms in

conjunction with the survey of principles of existing forgery detection techniques, a

novel forgery detection method is proposed for inpainting forgery in this chapter.

The performance of the proposed detection method is evaluated both subjectively

and objectively on a series of experiments.

• Chapter 6 summarizes the results of the current research and points out several

lines of future work.

The list of tables, list of figures and bibliography are given at last.
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2
Overview of Digital Image Inpainting

“To know that we know what we know, and to know that we do

not know what we do not know, that is true knowledge.”

9
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Contents
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2.2.2 PDE based inpainting method . . . . . . . . . . . . . . . . . . . 16

2.2.3 Total variation based inpainting method . . . . . . . . . . . . . 18

2.2.4 Vector-valued image regularization with PDEs . . . . . . . . . . 19

2.2.5 DCT induced wavelet regularization for inpainting . . . . . . . 20

2.3 Texture-oriented methods . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Greedy strategy . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.3.2 Global optimization strategy . . . . . . . . . . . . . . . . . . . . 29

2.4 Hybrid inpainting methods . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 Beyond single image inpainting . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

This chapter aims to provide an introduction of inpainting problem as well as a classi-

fication for image inpainting techniques. In addition, a brief description for each method

is also presented to help the readers have an overview of the current inpainting methods.

2.1 State-of-the-art

Image inpainting has become an active research topic in image processing field. It is not

only art of modifying image but also a powerful technique for automatically restoring

or removing undesired objects in an undetectable form to an observer not familiar with

the original image and is as ancient as art itself. This work refers to the traditional

practice of expert and professional artists in museums to restore manually the old pictures

or paintings. The problem is extremely difficult and high time cost because they had to

complete smoothly the damaged image as well as preserve the global content based on their

skills and experiences. Digital image inpainting attempts to mimic the basic techniques

10



2.1. State-of-the-art

of this process automatically. Since it does not refer to the original image and it is too

hard to define mathematically “global content” term of image, the objective of digital

image inapainting is only restoring the damage image so that it still looks natural, i.e., the

restored parts are not easily detectable by viewers.

In the parlance of digital inpainting, the missing region is often referred to as blotch or

scratch in the case of small or thin size regions; and referred to as hole or gap in case of

large size regions. Very often, the blotch or hole of image is provided by the user in the

form of binary mask or can be obtained by semi-automatic means.

Besides, the nomenclature is classified by this criterion. Namely, the removing blotch

or scratch is called as inpainting but the filling in hole or gap is considered as image

completion. The terminology of “inpainting” was invented by Bertalmı́o et al. [6] who

were the first group to develop inpainting models with the motivation coming from the

professional artists. This approach is suitable to remove blotches or scratches. When it is

developed to filling in holes or gaps, it is called as image completion.

Despite the significant differences between the existent techniques, an image inpainting

model is often composed of two stages:

1. identify the damaged regions (inpainting regions).

2. fill in the inpainting regions based on the known information in the same image.

Up to now, there has been no way or model to detect automatically the inpainting

regions because of a lack of objective criteria or measures to identify and quantify the level

of degradation. There are a few special applications in which the inpainting regions can be

detected semi-automatically, for example blotch detection of old video. However, accuracy

and performance of detection are still much debate. For the sake of simplicity, they are

marked manually in form of binary mask by users. The digital inpainting focuses on the

second stage in order to perform automatically the restoration using the input parameters.

The digital image completion consists of mathematically modeling and performing the

restoration under constraints of local smoothness preservation, but without taking into

account the global semantic of image or artistic expertise.
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Chapter 2. Overview of Digital Image Inpainting

Overview of inpainting methods

Digital image inpainting is considered as an ill-posed inverse problem which has no well-

defined unique solution [7]. To solve the problem, only input image including the known

and unknown parts is given and the requirement of output in terms of quality is that the

recovered region looks natural to the human eye.

Nowadays, computer technology facilitates a rapid development of digital inpainting

techniques. There have been numerous and very different automatic inpainting algorithms

in recent years. In general, most of them are categorized into three main groups as listed

below [7, 8]:

• Geometry-oriented methods

• Texture-oriented methods

• Hybrid inpainting methods

Basically, an overall assessment of existing methods is considered as an importance

for next proposals in our research. In this chapter, some typical inpainting methods as

shown in Table 2.1 will be introduced and analysed in the next section in order to build a

foundation for our next research.

In Table 2.1 the first column, Year, indicates the year of the publication followed by

Authors ’ names. Type column indicates the category to which the algorithm belongs. The

last column H-type, short for ‘hole type’, determines the size of hole or damaged region for

which the algorithm is more adapted. A detailed definition of the size of the hole will be

given in the next section.

Notations

Before proceeding with a review of the inpainting methods , a note must be made on the

notation that will be used. The image input is denoted by character I. The inpainting

domain in the image is defined by the omega symbol, Ω, while δΩ stands for its boundary.

The source region, representing the area not covered by the mask, or the area complemen-

tary to the gap, will be denoted by Φ (Φ = I −Ω). This notation was first used in [6] and
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Table 2.1. Some typical inpainting methods.

Year Authors Group H-type

1985 Ogden et al. [9] Geometry Small

2000 Bertalmı́o et al. [6, 10] Geometry Small

2001 Chan and Shen [5] Geometry Small

2002 Esedoglu and Shen [11] Geometry Small

2006 Tschumperlé [12] Geometry Small

2013 Li et al. [13] Geometry Small

1999 Efros and Leung [14] Texture Large

2001 Efros and Freeman [15] Texture Large

2001 Ashikhmin [16] Texture Large

2004 Criminisi et al. [17] Texture Large

2005 Cheng et al. [18] Texture Large

2005 Sun et al. [19] Texture Large

2006 Wu and Ruan [20] Texture Large

2012 Zhang and Lin [21] Texture Large

2008 Mairal et al. [22] Texture Small

2009 Mobahi et al. [23] Texture Small

2006 Komodakis et al. [24] Texture Large

2013 Le Meur et al. [25] Texture Large

2007 Wexler et al. [26] Texture Large

2009 Pritch et al. [27] Texture Large

2013 Liu and Caselles [28] Texture Large

2003 Bertalmı́o et al. [29] Hybrid Small

2009 Bugeau and Bertalmı́o [30] Hybrid Small

2013 Sairam et al. [31] Hybrid Small

2007 Hays and Efros [32] Multi-source images Large

2009 Whyte et al. [33] Multi-source images Large
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Chapter 2. Overview of Digital Image Inpainting

Figure 2.1. Inpainting problem.

adopted by the following works (see Figure 2.1). A window centred at pixel p is denoted

as a patch, Ψp.

The distinction of the inpainting region

The area of the damaged region plays an important role in analysing and designing the

recovery methods. In addition, it is also the key criterion for classification of inpainting

methods. Nevertheless, we agree with the fact that the notion of large missing regions used

in the inpainting community is not a well/quantitatively defined criterion. For the small

inpainting regions, such as scratches and blotches of reduced size, is not a challenging issue.

In contrast, in the case of large regions, it is uneasy to guarantee the spatial coherence and

object continuity during the inpainting process.

The percentage of missing pixels cannot be the only criterion because an image may

contain some thin scratches across the image. In that case the scratch could not be con-

sidered as large.

We can say that a missing region is large if it contains completely a square patch whose

size length is greater than r pixels. In our experiments r is set to 5. It is worth noticing

that this parameter does not depend on the image size but directly related to the inpainting

approach. For example a size of 3 × 3 does not necessitate any sophisticated inpainting

approach. A simple interpolation would work. A typical size of 5× 5 represents the most

adequate choice for the used inpainting approach. A large missing region, Ω, can be defined

mathematically as follows:
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2.2. Geometry-oriented methods

Ω is a large inpainting region⇔ {∃p ∈ Ω : Ψp ∩ Ω ≡ Ψp} (2.1)

(a) (b)

Figure 2.2. An illustration of inpainting region classification based on the equation 2.1;
(a) a small inpainting region; (b)a large inpainting region.

2.2 Geometry-oriented methods

The first group of inpainting approaches discussed here is geometry-oriented methods. In

this group, the image is modelled as a function of smoothness and the restoration is solved

by interpolating the geometric information within the adjacent regions into the target

region. Several methods of this group have been proposed [5, 6, 12, 34]. Generally, partial

differential equation (PDE) based methods are the most studied ones.

2.2.1 Linear interpolation for inpainting

An early interpolation method is introduced by Ogden et al. [9] based on a pyramidal

representation of the input image. Starting from an initial image, a Gaussian filtering is

applied to generate a pyramid representation with iterated convolution and subsampling.

The inpainting process starts at lowest resolution where the unknown region is shrunk to

only one pixel and filled in by extrapolation. Continuing this process, the higher levels

can be completed by successive linear interpolations using the pyramid operators such as

downsampling and upsampling.
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The experimental results show that this approach could produce reasonable output in

some simple occlusion situations. The result is so natural looking that the flaw would not

be detected except by close examination.

2.2.2 PDE based inpainting method

In context of image processing, the terminology inpainting has been coined first by Bertalmı́o

et al. in [6]. This approach is inspired from real painting restoration in the museums. The

underlying idea of this algorithm is to propagate the geometric and photometric infor-

mation arriving at the boundary of the occluded area, δΩ, into the area Ω itself. The

inpainting information is updated iteratively until a steady state is attained using the

following equation:

In+1(i, j) = In(i, j) + ∆tInt (i, j) (2.2)

where In+1 is the restored image at the iteration (n + 1)th and ∆t is a user-defined

value and called as the rate of change and Int is the improvement of the image In. The

multiplication of the latter two terms gives the improvement observed in image In+1 as

compared to the previous version of the image, In. To preserve both the propagation

information and direction, the improvement is defined by the following equation:

Int (i, j) =
−−→
δLn(i, j)

−→
Nn(i, j) (2.3)

where
−−→
δLn(i, j) represents a measure of the change in the propagated information at

iteration n and
−→
Nn = ∇⊥.In. Here, the gradient vector at iteration n, noted ∇In, is called

isophote direction and ∇⊥.In defines the orthogonal direction of gradient.

As mention before, this algorithm tries to complete the damaged area with a smooth

propagation from source region, thus selecting smoothness estimator is very important.

In [6], authors proposed the use of a simple discrete implementation of the Laplacian for

propagation: Ln(i, j) = Inxx + Inyy. The subscripts in the latter equation represent second

derivatives. The main idea behind the calculation of the isophote direction is mainly based

on obtaining the gradient vector at pixel location (i, j). The discretized gradient vector,

∇In, gives the direction of largest spatial change, while its 90 degrees rotation is the

direction of smallest spatial change, so the vector ∇⊥In gives the isophote direction.
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(a) (b)

(c) (d)

Figure 2.3. An illustration for approaches of Bertalmı́o et al.. (a) An overimposed text
image; (b) The corresponding masked image; The removed text images using approaches
in (c) [6] and (d) [10].

In subsequent works, Bertalmı́o et al. [10] has introduced an improvement of the

previous work by using the classical fluid dynamics and Navier-Stokes equations (describing

the motion of fluid substances). The authors established a connection between inpainting

problem and fluid dynamics theory. In this context, the image intensity is equivalent

to the fluid’s stream, whereas the level lines in the image define the stream lines of the

flow. Furthermore, the isophote direction is an equivalent of the fluid’s velocity, while

the smoothness of the image is comparable, in fluid dynamics terms, to the curl of the

fluid’s velocity, called vorticity. Following this approach, inpainting resumes to solving a

vorticity transport equation, instead of the transport equation given in (2.3). Although

the anisotropic diffusion equation is not the exact counterpart of the viscous diffusion term

used in the Navier-Stokes model for incompressible and Newtonian flows, yet a lot of the

numerical knowledge on fluid mechanics seem to be adaptable to design stable and efficient
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schemes for inpainting. For more detailed specification on the implementation, the reader

is referred to [10]. Some outputs of these approaches are shown in Figure 2.3. In the first

approach, the climb rate ∆t is set to 0.05, and the inpainting steps is set to 20.

2.2.3 Total variation based inpainting method

Another perspective on this group is proposed by Chan and Shen in [5, 35], where a de-

noising/inpainting first-order model based on the joint minimization of a quadratic fidelity

term outside Ω and a total variation criterion in Ω is proposed. In this approach, the

inpainting problem is considered as the minimization problem as following:

u∗ = argminu(

∫
I

|∇u|dx+
λ

2

∫
Φ

|u− u0|2dx) (2.4)

where u(x) is the intensity of the grey level at point x and λ is a Lagrange multiplier.

The first term in equation (2.4) is known as the regularising term or regulariser. The

minimization of this term is responsible for the filling-in process inside the inpainting

domain. The second term of the energy function is a measure of fidelity. This is non-

negative and has the property that it is zero when u(x) = u0(x) for every x ∈ Φ. Since we

desire the value of u to be close to u0, we would like to keep value of the fidelity term as

small as possible. In [35], the fidelity term is chosen to be square of the L2 norm of u− u0

because this is convex and differentiable.

The existence of solutions to this problem follows easily from the properties of functions

of bounded variation. As for the implementation, a Gauss-Jacobi iteration scheme for the

linear system associated to an approximation of the Euler-Lagrange equation by finite

differences is applied to calculate the critical points of the energy function. The advantage

of total variation over harmonic inpainting is that it is able to preserve discontinuities

inside the inpainting area. More details could be found in [35].

In the framework of total variation in [11], Esedoglu and Shen introduced an improved

model, combining the celebrated Mumford-Shah segmentation model for images and the

Euler’s elastica model for curves. The elastica model is used instead of the fidelity term.

The energy function is modified as follows:

u∗ = argminu(

∫
Γ

(α + βκ2)ds+
λ

2

∫
I\Γ
|∇|2dx) (2.5)
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Two numerical implementations to the minimization of such criterion are discussed fully

in [11]. The first one is based on level set approach where Γ is considered as the zero-level

set of a sequence of smooth functions, and the explicit derivation using finite differences

of the Euler-Lagrange equations associated with the criterion. The second implementation

addressed by Esedoglu and Shen is a Γ−convergence approach based on a result originally

conjectured by De Giorgi [36] and recently proved by Schatzle [37]. A comparison of

efficiency between the two approaches is illustrated in Figure 2.4. In both cases, the final

system of discrete equations is of order four, facing again difficult issues of convergence

and stability.

(a) (b)

(c) (d)

Figure 2.4. An illustration of comparison between elastica and total variation inpainting.
In the case of large aspect ratios, the TV inpainting model fails to comply to the Connec-
tivity Principle. (a) original image; (b) inpainting domain; the output when using (c) total
variation and (d) elastica inpaintings

2.2.4 Vector-valued image regularization with PDEs

In [12], Tschumperlé et al. introduced an efficient second-order anisotropic diffusion model

for multi-valued image regularization and inpainting. The regularization of an image is the

process through which specific image is simplified in such a way that interesting features

are preserved and unimportant data is removed. Given a RN -valued image, I, with the
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damaged region, Ω, and starting from an initial rough inpainting obtained by straightfor-

ward advection of boundary values, the pixels in the inpainting area are iteratively updated

according to a finite difference approximation of the equation:

∂Ii
∂t

= trace(∇2Ii) (2.6)

Here, T is the tensor field defined as:

T =
1

(1 + λ+ + λ−)p1
θ−θ−T +

1

(1 + λ+ + λ−)p2
θ+θ+T (2.7)

with 0 < p1 � p2, and λ−, λ+, θ−, θ+ are the eigenvalues and eigenvetors, respectively,

of the smoothed structure tensor field, Gσ:

Gσ = Gσ ∗
n∑
i=1

 (
∂Ii
∂x

)2 (
∂Ii
∂x

) (
∂Ii
∂y

)
(
∂Ii
∂x

) (
∂Ii
∂y

) (
∂Ii
∂y

)2

 (2.8)

where σ depends on the noise scale. Based on image regularization, this method suc-

cessfully fills in the gap by diffusing the boundary pixels until completion of the missing

areas, in a structure preserving way. The main drawback of this problem is the introduction

of blur effect which results in unsharp edges inherent to PDE-based methods. Thus, it can

be inferred that this technique will fail in reproducing textured region, but will successfully

fill in small and narrow scratches.

2.2.5 DCT induced wavelet regularization for inpainting

With the advent of sparse representation and compressed sensing, sparse priors have also

been considered for solving the inpainting problem. In [13], Li et al. assumed the input

image is sparse in a given basis, discrete cosine transform (DCT) where the known and

unknown parts of the image share the same sparse representation. The inpainting problem

is solved based on an optimization model whose objective function is a smoothed `1 norm

of the coefficient of the underlying image under a given redundant system generated from

the DCT matrix of second type [38]. Then, the DCT-Haar wavelet system is used as a

filter and yields a redundant system.

The inpainting model, in this case, is formulated as an optimization problem in which

the variational objective function has a regularization term formed by a sparse represen-

tation of the underlying image. Let fo the original image to be defined on the domain

20



2.3. Texture-oriented methods

Ω = 1, 2, ..., n and a non-empty proper subset D of Ω be given. The observed image g is

modeled as

g[k] =

fo[k] k ∈ Ω\D

h[k] k ∈ \D
(2.9)

where h[k] with k ∈ D could represent any types of degradations to the original image.

Then, the inpainting problem with a redendant system, W , generated from the DCT-II is

as follows:

min
f,d

{
1

2
||Wf − d||22 + ||Γd||1 : PDf = PDg

}
(2.10)

where Γ is a diagonal matrix with non-negative diagonal components and d is an aux-

iliary vector. PD denotes the n × n diagonal matrix whose k-th diagonal entry is 1 if

k ∈ Ω\D and 0 if k ∈ D.

The solution is obtained based on an adaptive algorithm with some input parameters.

Some experimental results could be found in [13] show that the proposed approach is suit-

able for inpainting problems such as impulsive noise removal and filling missing information

over regions with small sizes.

2.3 Texture-oriented methods

The second class of inpainting algorithms corresponds to texture-oriented (or exemplar-

based) methods. These approaches stem from the texture synthesis techniques where

texture is modeled through probability distribution of the pixel brightness values. The

exemplar-based algorithms tend to be less computationally efficient than interpolation and

they also overcome the problems associated with interpolation. In fact, the actual pixel

values of the known regions are used instead of average values as in the interpolation. The

blurring effect is generally removed completely. In addition, several of these algorithms

favor edges when choosing pixels to replace, this helps in preserving the edges within the

missing regions and make it continuous in the output.

This group could be further subdivided into two sub-groups: greedy strategy and global

optimization strategy. In the former group, the authors in [14] proposed a pixel by pixel

completion based on the matching patch comparison. An extension of this version was
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presented in [15] where textures were synthesized patch by patch. However, these ap-

proaches are too slow or the input image contains only pure textures. Some sophisticated

methods have been introduced such as fragment-based [39], user guidance based [40], prob-

abilistic graphical model based [24, 41], different priorities of filling [17, 18, 20, 21], etc.

Notwithstanding, these approaches suffer from problems such as local optimization, patch

section, etc. In the later one, the inpainting problem is considered as a global optimization

problem and it can be solved by optimizing discrete Markov Random Fields, as in belief

propagation (BP) [24, 41] and graph cuts [27, 42] or minimizing the coherence measure as

in [26]. Nevertheless, the global optimization strategies are often more computationally

expensive and its complexity is too high. Compared with the first class, the approaches

in the second class achieve impressive results in recovering the large damaged regions but

the output results may be distorted when the number of patches is insufficient.

2.3.1 Greedy strategy

2.3.1.1 From texture synthesis to patch-based inpainting

One of the early works in this group is introduced by Efros and Leung [14, 15]. The initial

goal of this approach was intended for texture synthesis and it results in good outputs in

some cases of inpainting. The main idea is to fill-in the unknown pixel with known pixels

based on their known neighborhood. The hole is completed recursively, inwards from the

inpainting boundary. Start with an unknown pixel p ∈ δΩ, a known pixel, q ∈ Φ is used to

fill-in pixel p if the neighborhood Ψq of q is the most similar one to the neighborhood Ψp

of p. The similarity is considered to only known pixels in both Ψp and Ψq and is defined

using the sum of squared differences (SSD) as follows:

d(Ψp,Ψq) =
∑
i

∑
j

||Ψp(i, j)−Ψq(i, j)||2 (2.11)

This process is repeated randomly for every unknown pixel in the inpainting boundary

until no pixel is found, so it is also known as onion peel. The main shortcoming of this

algorithm is its computational time. In fact, this approach is quite slow since it works on

pixel by pixel basis. In addition, since the filling order is random, it may fail to smooth

boundaries of some objects. The patch size defined as a global parameter in original

paper may make the output slip into wrong part or get locked onto one place and produce
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verbatim copies. In fact, this approach produces poor results for image perspective because

it was intended to synthesize frontal textures but not inpainting problem. Figure 2.5 gives

an overview of the algorithm principle. The pixel in red patch will be filled-in by one of

centers of candidate patches (blue patches).

Figure 2.5. Overview of Efros’ algorithm

Many ideas have been proposed to improve the computational time of synthesis such

as to reduce the search space, organize the image patches in tree structure or trim the

dimensionality of the patches with techniques like Principal Component Analysis (PCA) or

using randomized approaches. A remarkable contribution is introduced by Ashikhmin [16]

based on the correlation between unknown pixels and its neighbors to generate the shifted

candidates for searching. Instead of searching on the whole image, only some candidates

of the neighbors of p in the source region are considered. The speed-up achieved with this

simple technique is considerable, and also there is a very positive effect regarding the visual

quality of the output. Figure 2.6 illustrates the main idea of this approach.

2.3.1.2 Exemplar-based inpainting

From the limitation of Efros’ work [14], Criminisi et al. [17] improved on this work with two

remarks. Firstly, the filling order is changed from the original “onion peel” into a priority

scheme where unknown pixels at boundary of a hole have higher priority than one on flat
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Figure 2.6. An illustration of Ahikhmin’s texture synthesis method [16]. The candidate
patches are considered based on the correlation between unknown pixel and its neighbors.

regions. Thus, the completion is able to correctly inpaint straight object boundaries which

could have otherwise ended up disconnected with the original formulation. Secondly, the

filling process is implemented by copying entire patches (or exemplars) instead of single

pixels, so this method is considerably faster. The algorithm is briefly described as the

following steps:

1. Initialization: Identify the target region, Ω, and its boundary, δΩ. If there is no pixel

on the boundary, i.e., δΩ = ∅, the algorithm is terminated.

2. Priority estimation: Compute the priority, P (p), for all pixels on boundary, p ∈ Ω.

Select randomly a pixel p with the highest priority and define its patch, Ψp.

3. Patch match: Find the patch Ψq that is most similar to Ψp, with mean squared error

of the known pixels and select randomly one if there are more than two patches.

4. Inpaint : Fill the missing information in patch Ψp by copying the corresponding pixels

from patch Ψq.

5. Update: Update the status information and return to the step 1 for next iteration.

As an example, Figure 2.7 gives an illustration of the steps in Ciminisi ’s approach.

Figure 2.7-a shows a highest priority pixel p, belonging patch Ψp, represented as a square
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surrounding it and lying on the gap’s boundary contour δΩ. After finding the pixel need

to be filled with highest priority, the similar patches in the source region Φ is searched.

Figure 2.7-b shows a candidate for filling in the patch determined by the pixel p and the

inpaint step is exemplified in Figure 2.7-c.

(a) (b) (c)

Figure 2.7. A visualisation of the exemplar-based inpainting process. (a) Estimate the
priority; (b) Search the best similar patch; (c) Perform inpainting.

The most important contribution in Criminisi ’s work is designing the filling priority

P (p) for each pixel in the hole boundary. In the original paper, the priority is built based on

the isophote direction as in [6] and the known information of the current patch. Equation

(2.12) expresses the priority measure.

P (p) = C(p)D(p) (2.12)

Here, C(p) and D(p) are called confidence and data terms, respectively and are defined

by:

C(p) =

∑
q∈Ψp∩Φ C(q)

|Ψp|
; D(p) =

|∇I⊥p .np|
α

(2.13)

where |Ψp| denotes the area of Ψp and α is a normalization factor (e.g., α = 255 for a

typical grey-level image), and np is a unit vector orthogonal to the front δΩ at the pixel

p. Figure 2.8 shows a result using Criminisi ’s approach [17]. Two maps of confidence and

data terms in inpainting process are shown in Figure 2.9.

It is worth noticing that the patch-based methods using priority has proven to be effi-

cient in solving inpainting problem with large damaged region in image. Many extensions
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(a) (b) (c)

Figure 2.8. An output of Criminisi’s approach [17]. (a) The original image; (b) The mask
image; (c) The inpainted image.

have been published to improve the quality as well as performance of the algorithm. In

the work of Wu et al. [20], the priority is built based on cross-isophotes. In [21], authors

defined the priority based on an analysis of color distribution. In other way, Cheng et al.

[18] recombined the priority using a regularizing factor. They observed that the confidence

term drops rapidly to zero as the filling process proceeds, which makes the computed pri-

ority values indistinguishable, and in turn, the results in incorrect filling orders. Thus the

priority function is modified to an additive rather than multiplicative forms. For more

detailed specifications on the analysis, the reader is referred to [18].

While most image inpainting methods attempt to be fully automatic (aside from the

manual setting of some parameters), they are user-assisted methods that provide remark-

able results with just a little input from user. One of the known methods in this group has

been introduced by Sun et al. [40]. The user must specify curves in the unknown region

before inpainting. The curves will guide the recovery process. Firstly, patch synthesis

is performed along these curves inside the image hole. Then, structure propagation will

restore the rest. Figure 2.10 shows some interesting results of this approach. As can be

seen, two different outputs are obtained using two different user-defined curves.
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(a) (b)

Figure 2.9. The maps of confidence and data terms in Criminisi’s priority. (a) Confidence
map; and (b) Data map.

2.3.1.3 Data-driven inpainting

Following the success of patch-based methods, it becomes clear that the patches of an

image provide a good resource to image editing. Most previous methods are strongly

model-driven and have little adaption data. Rather than building mathematical models

from scratch, the input image is considered as a dictionary of patches which can be used

to express other parts of the image. This idea has been successfully applied to other areas

of image processing, e.g. denoising and segmentation [22, 43, 44].

Following this idea, Mairal et al. [22] developed a framework using dictionaries of

patches to restore the unknown region. The input image is broken into a set of patches

with size n =
√
n ×
√
n, called dictionary D, and they are vectorized into columns of D,

represented by a matrix of size n× k (k is number of patches extracted from input image).

If α ∈ Rk is a vector of coefficients, then Dα represents the patch obtained by linear

combination of the column of D. Given an image v, the purpose is to find a dictionary D̂,
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(a) (b)

(c) (d)

(e) (f)

Figure 2.10. The curve-based outputs using Sun’s method [40]. (a) The original image;
(b) The mask image; two different curves are pre-defined in (c) and (d); (e) and (f) two
corresponding outputs.

an image û and coefficients’ vector α̂ which minimize the energy:

{α̂, D̂, û} = arg min
α,D,u

λ||v − u||2 +
∑
ij

µij||αij||0

+
∑
ij

||Dαij −Ψiju||2 (2.14)
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In this equation, Ψiju denotes the patch of u and µij are positive weights. The inpainting

problem can be considered as a case of non-homogeneous noise. Each pixel to be inpainted

is defined by a coefficient βij = 0 in the mask image. Then, the inpainting problem is

expressed as follows:

{α̂, D̂, û} = arg min
α,D,u

λ||β ⊗ (v − u)||2 +
∑
ij

µij||αij||0

+
∑
ij

||(Ψijβ)⊗ (Dαij −Ψiju)||2 (2.15)

With suitable adaptation, this model has been applied to inpainting problem of rela-

tively small gaps.

In [23], Mobahi et al. extended this approach with the degenerate Gaussian assumption

which results in more accurate and robust completion. The hole is filled-in using novel

patches synthesize from a limited dictionary of real patches. The novel patches are linear

combination of the real patches in the original image. Thus, even if no patch in the

dictionary matches a given missing region, it is still possible to fill in the region with an

appropriate linear interpolation of patches. To avoid problem of over fitting, the novel

patch has sparse representation. To find more detailed implementation of this approach,

the reader can refer to [23].

2.3.2 Global optimization strategy

Exemplar-based methods have proven their effectiveness to image completion. But, in this

case, a major drawback of related approaches stems from their greedy fashion of filling

image, which can often lead to visual inconsistencies. In order to avoid the occurrence of

visually inconsistent results, some other methods are preferred. A more global approach

where the problem is formulated in a way that a deterministic EM-like optimization scheme

has to be used for image completion [26, 45] or discrete global optimization via Belief Prop-

agation (BP) optimization [24, 46] or graph-cuts algorithm [27, 28, 47] is considered. In

general, the global optimization strategies often provide better results than greedy strate-

gies, but they have main shortcomings of computational complexity and time running.
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2.3.2.1 Space-time video completion

In [26], Wexler et al. considered the completion as a global optimization and the inpainting

problem is extended to the restoration of video sequence. To allow for a uniform treatment

of dynamic and static information, the video sequence is treated as space-time volumes,

i.e., each pixel (x, y) in frame t will be regarded as a space-time point p(x, y, t) and each

patch Ψp is defined as a fixed-size window around p both in space and in time. The main

idea of this approach is preserving the global visual coherence. A video S has global visual

coherence with some other video D if every local space-time in S can be found somewhere

in the video D. In other words, a video S can be restored with small windows in D.

Let S be an input sequence with a hole H ⊆ S. The inpainting problem is to complete

H such that the result video S∗ will have as much global visual coherence with the rest

of the input sequence, T = S \H. Mathematically, this could be formulated as searching

procedure for the sequence S∗ maximizes the following objective function:

Coherence(S∗|T ) =
∑
p∈S∗

max
q∈T

sim(Ψp,Ψq) (2.16)

where p, q run over all space-time points in their respective sequences, and Ψp,Ψq de-

note small space-time patches centered at p, q, respectively; sim is a local similarity mea-

sure between two space-time patches and defined through distance between two patches,

d(Ψp,Ψq), as follows:

sim(Ψp,Ψq) = e
−d(Ψp,Ψq)

2∗σ (2.17)

The choice of σ parameter is important as it controls the smoothness of the induced

error surface. Very often, the sum of square differences (SSD) of color information is widely

used for image completion but it does not suffice in this case. The main reason for this is

that the human visual system is very sensitive to motion. Maintaining motion continuity

is more important than finding the exact spatial pattern match within an image of the

video. Therefore, the motion information must be included in the similarity measurement.

Indeed, each space-time point is extended into 5D representation (R,G,B, αu, αv) (α = 5

as in the original paper). Two added components, u = Yt/Yx and v = Yt/Yy, represent

the instantaneous motion in the x and y directions, respectively. Here, Yx, Yy, Yt are the

spatial and temporal derivatives of gray level at each space-time point (x, y, t).
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The solution of equation (2.16) is obtained based on an iterative scheme using the

Mean-Shift algorithm [48]. A pseudo-code of this approach is described particularly in

[26].

To further enforce global consistency and to speed up convergence, the iterative process

is performed in multiple scales using spatio-temporal pyramids. Each pyramid level con-

tains half the resolution in the spatial and in the temporal dimensions. The optimization

starts at the coarsest pyramid level and the solution is propagated to finer levels for further

refinement.

2.3.2.2 Belief propagation for image completion

Markov Random Field (MRF) models provide a robust and unified framework for early

vision problems such as stereo and image restoration. Inference algorithms based on belief

propagation (BP) have been found to yield accurate results. These methods are good both

in the sense that the local minima they find are minima over “large neighborhoods”, and

in the sense that they produce highly accurate results in practice.

The general framework of this approach considers the inpainting problem in a global

optimization framework where the optimal function is obtained by minimizing an energy

function. Developing this idea, Komodakis et al. [24] has developed a novel optimization

scheme to complete image based on belief propagation algorithm. Given an input image I

as well as a target region T and source region S (S = I−T ). The goal of inpainting problem

is to fill in T in a visually plausible way by simply copying patches from S. The inpainting

problem is turned into a discrete optimization problem and is modeled as discrete MRF.

A set of labels L of the MRF consists of all patches from the source region S. Each label

represents a patch, while each node ni is a lattice point whose patch intersects the target

region. The edges E of the MRF will make up a 4-neighborhood system on that lattice.

Based on this information, the inpainting problem becomes a labeling problem in which

find a set of labels l̂i ∈ L for each node ni so that the total energy E(l̂i) of the MRF is

minimized:

E(l̂i) =
N∑
i

Vi(l̂i) +
∑

(i,j)∈E

Vi,j(l̂i, l̂j) (2.18)

The single node potential Vi(l), called label cost hereafter, for placing patch l over node

ni, encodes how well that patch agrees with the source region around ni and equal the sum
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of squared differences (SSD) like equation (2.19).

Vi(l) =
∑
p∈Ψni

M(ni + p)(I(ni + p)− I(l + p))2 (2.19)

where M is a binary mask. In a similar fashion, the pairwise potential Vij(li, lj), due to

placing patches li, lj over neighbors ni, nj, measures how well these patches agree at the

resulting region of overlap and is again given by the SSD over that region.

To minimize the energy function, belief propagation algorithm is applied [49]. However,

the main drawback of this approach is computational cost of belief propagation. Therefore,

two major improvements over standard belief propagation are introduced such as “dynamic

label pruning” and “priority-based message scheduling”. Together, they bring a dramatic

reduction in the overall computational cost of BP which would otherwise be intolerable

due to the huge number of existing labels. The detailed scheme of “Priority-BP” algorithm

for image completion is presented in [24].

A different setting has been proposed by Le Meur et al. [25]. Authors have applied

Belief Propagation algorithm more effectively to restore the damaged region. The main

novelty of proposed method is the combination of multiple inpainted version of input image.

Figure 2.11 illustrates the main concept underlying of the proposed algorithm.

Figure 2.11. The framework of Le Meur’s approach.

First, a non-parametric patch sampling methods used to fill in missing regions. The

inpainting algorithm is preferably applied on a coarse version of the input picture. Re-

garding priority for filling order, two data terms have been used: tensor-based [50] and
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sparsity-based [51]. For texture synthesis, a similarity measurement as in [46] is used

under a coherence constraint in [26].

Second, the output is enhanced the resolution and the subjective quality of the inpainted

areas. The high-resolution is recovered using a single-image super-resolution approach. To

combine multiple inpainted images, a Loopy Belief Propagation is applied with the same

energy function as equation 2.19. Experimental results on a wide variety of images have

demonstrated the effectiveness of the proposed methods.

2.3.2.3 Graph cuts for image completion

(a) (b) (c) (d) e

Figure 2.12. How to apply graph cuts for computer vision. (a) a given image; (b) nodes
of graph; (c) edges of graph (n-link); (d) nodes with t-link and n-link; (e) a cut of graph.

As applied in the field of computer vision, graph cuts can be employed to efficiently

solve a wide variety of low-level computer vision problems such as image smoothing, the

stereo correspondence problem, and many other computer vision problems that can be

formulated in terms of energy minimization.

In [27, 42], Pritch et al. considered and solved the inpainting problem in a different form

of graph cuts. The main idea of inpainting problem is to copy pixels from the known region

into the unknown regions. Thus, it is stated as a graph labeling problem which defines a

relationship between them. Based on this observation, a shift-map, sm(x, y) = (Ox,Oy),

is defined mathematically for the relationship and the output O(x, y) can be derived from

the input pixel I(x+Ox, y+Oy). Then, the optimal shift-map sm minimizes the following

energy function:

E(sm) = α
∑
p∈I

Ed(sm(p)) +
∑

(p,q)∈N

Es(sm(p), sm(q)) (2.20)
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where α is a user defined weight balancing the two terms. The energy function has

two terms such as data term Ed which indicates constraints such as the change in image

size, object rearrangement, or a possible saliency map, etc., while the smoothness term,

Es minimizing the new discontinuities in the output image caused by discontinuities in the

shift-map. They are defined by following equations:

Ed(sm(p)) =

0 (pi +∇i, pj +∇j) ∈ Ω

∞ (pi +∇i, pj +∇j) ∈ Ω̄
(2.21)

Es(sm(p), sm(q)) =

0 sm(p) = sm(q)

δI(sm(p)) + βδ∇I(sm(p)) otherwise
(2.22)

where I and ∇I are the magnitude and gradient. δI and δ∇I denote their differences.

Parameter β is a weight to combine these two terms. After defining a global objective

function and its constraints, the graph-cuts algorithm [52, 53] is applied to solve it. How-

ever, finding the optimal graph labeling can be computationally infeasible, due to the very

large number of nodes and labels. To overcome this limitation, a hierarchical approach is

designed to reduce the memory and computational requirements of graph-cuts algorithm as

in [26]. Although the hierarchical approach is not guaranteed to give the global optimum,

the results are very good as can be seen in the examples (Figure 2.13).

The proposed approach may have unexpected bias, and their visual quality is very

often unsatisfactory. In [28], authors improve the data term by comparing the patches Ψp

and Ψp+sm(p) for the pixels near boundary ∂Ω. The patches are compared only using their

known pixels. This term ensures the continuity of the reconstruction on the boundary.

Ed(sm(p)) =
∑
p∈∂Ω

D(Ψp,Ψp+sm(p)) (2.23)

where D(Ψp,Ψp+sm(p)) measures the similarity between two patches based on the Eu-

clidean distance. To further enforce global consistency and to speed up convergence, a

multiscale Gaussian pyramid is integrated to solve the energy function. Moreover, the

use of a feature vector representation allows to compensate the loss information at low

resolution levels. A series of experimental results and comparisons with existing inpainting

methods show a good performance of the proposed algorithm.
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2.3. Texture-oriented methods

Figure 2.13. Inpainting based on the shift-map optimization [52]. From top to bottom:
original image, black pixels need to be removed, and output.

An extension of this approach has been developed for video inpainting in [47]. A 3D

offset, spatio-temporal displacement sm(x, y, t), including temporal component is replaced

for 2D offset. For further study, please refer to [47].
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2.4 Hybrid inpainting methods

In general speaking, both texture synthesis and diffusion have their own advantages and

drawbacks for image inpainting. Most inpainting methods in the first group presented so far

perform well in case of small or thin damaged regions. However, they are unable to restore

texture properly, and they introduce blur artifacts on large inpainting regions. Whereas,

most inpainting methods in the second group are not able to handle sparse inpainting

domains where no valid squared patch can be found that does not reduce to a point.

Indeed, natural images are composed of structures and textures. Structures refer to

edges or contours and textures are image regions with homogeneous patterns or feature

statistics. This is why pure texture synthesis techniques cannot be efficiently applied to

missing regions/objects with composite textures and structures. To overcome the weakness

of these methods, there have been several attempts to explicitly combine texture-based and

geometry-based methods for completing the damaged regions, called hybrid methods.

The work of Bertamı́o et al. [29] used an additive decomposition of the image to be

inpainted into a geometric component that contains all edges information, and a texture

component. Then, the geometric image is interpolated with the method proposed in [6],

while the texture image is restored using the method introduced by Efros and Leung [14].

The final image is obtained by addition of the restored texture and geometric components.

In a few situations where the additive decomposition makes sense, this approach does

indeed improve the result and extends the applications domain of inpainting. A basic

framework of such an approach is shown in Figure 2.14.

Figure 2.14. Basic scheme of the method in [29]. The input image is decomposed into the
structure and texture images. These two images are reconstructed via inpainting [6] and
texture synthesis [14]. The output is obtained by adding back two reconstructed images.
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In [30], Bugeau et al. introduced a different combination of two kinds of inpainting

methods. The original image is first inpainted with the anisotropic smoothing method

from Tschumperlé [12] before decomposing into two parts: a structure and a texture image

using the texture-structure image decomposition in [54]. Because the diffusion algorithm

is unable to restore the texture parts, the texture image is then reconstructed using the

algorithm in [17]. For each pixel in the damaged regions, a texture synthesis is carried

out if that pixel does not belong to a strong structure. On the other hand with diffusion

method, we should keep the current intensity values on the important structures and only

apply texture synthesis on the other pixels. The notion of strong structure depends on the

force of the gradient which can be characterized by the tensor of structure eigenvalues as

equation (2.24).

λ+(p)− λ−(p) < β (2.24)

where β is a threshold equal to mean:

β =

∑
q∈Φ λ

+(p)− λ−(p)

|Ω|
(2.25)

Finally, the restored image is obtained by adding back the restored texture image into

the diffused image.

Authors in [31] introduced a different process of unifying the geometric and exemplar

approaches for image inpainting based on graph regularization. The advantages of using

graph is that they can model well the interactions between data. The local or non-local

regularization can be derived by the way the connections are made in the graph. Moreover,

a novel data term for filling-order has been proposed based on the gradient of the current

pixel as follows:

D(p) = |∇I(p)|+ log(1 + |∇I(p)|) (2.26)

where ∇I(p) is the gradient of the image at pixel p. The detailed unification algorithm

and illustrations are given in [31]. Unlike other works, the decision regarding exemplar

or diffusion is made dynamically at each pixel based on texture information. Gabor filter

responses at different orientations and scales are applied to automatically decide if diffusion

or exemplar method to be used in the course of inpainting.
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2.5 Beyond single image inpainting

All the methods mentioned above involve just a single image. On the other hand, the

missing information is filled in based on the known information from the image itself.

Since the development of internet as well as the image retrieval techniques, searching a set

of images similar to query image becomes easier. In this case, inpainting a single image

using information from several images could be a valuable direction.

An idea of using large regions of other images for image completion was explored by

Hays and Efros [32] who performed inpainting of a single image using information from a

database with several millions of photographs. They used the gist scene descriptor [55, 56]

which has been shown to perform well at grouping semantically similar scenes (eg. city,

tall buildings, office, fields, forest, beach) and for place recognition to reduce the search

space from two million to two hundred images, those images from the database which are

semantically closer to the image the user wants to inpaint. Using template matching, they

align the two hundred best matching scenes to the local image around the region to inpaint.

Then, they composite into the target image each matching scene into the target using seam

finding and image blending.

Whyte et al. [33] tackled the inpainting problem using images of the same scene re-

trieved from Internet using viewpoint-invariant image search. Only top 30 search results

are used for completing the original image. The retrieved images are registered to the query

image with multiple homographs allowing registration of multiple scene planes or images

taken from the same viewpoint. Each registered image is applied to propose a solution,

by combining it into the target region using Poisson blending, to minimize the effect of

differences in lighting. In the final step, a MRF formulation allows the multiple proposals

to be combined into a single result, selecting reliable regions of different proposals and con-

cealing the boundaries between regions. Figure 2.15 shows an example of Whyte’s system

based on OxfordBuildings Database.

The common shortcoming of these methods is that it relies on managing and operating

a huge image database. When the algorithm fails, it can be due to a lack of good scene

matches (if the target image is atypical), or because of semantic violations (e.g. failure to

recognize people hence copying only part of them), or in the case of uniformly textured

backgrounds (where this algorithm might not find the precise same texture in another

picture of the database).

38



2.6. Conclusion

Figure 2.15. An example query (left image) and the first 9 results returned by the
viewpoint invariant image search engine.

2.6 Conclusion

In this chapter, an overview of current inpainting algorithms is presented. Starting from

the earliest work until the present, a series of inpainting algorithms has been summarized

to provide for reader a basic look of digital image inpainting developed during the last

decade.

While many PDE/variational methods have been developed and considered as the first

group of inpainting techniques, the experimental results indicated that most methods in

the first group were particularly effective for the synthesis of long, thin regions. Since these

methods focused on maintaining the structure of the inpainting area, they are less suitable

for synthesize semantic textures or structures. First, the interpolation tends to produce

a blurring effect on missing spots in the image. For scratches and thin markings, the

blurring can produce a very acceptable output image. Second, the interpolation does not

distinguish the structures and edges in the image. Namely, if a missing region intersects

an edge in the image, typically the output will not connect the edge through the missing
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region and this can lead to very noticeable defects in the output image.

The second group is texture-oriented methods inspired from texture synthesis tech-

niques. These methods tend to be less computationally efficient than interpolation and

overcome the problem associated with interpolation. Since the actual pixel values of the

known regions are used instead of average as in interpolation, the blurring effect is gen-

erally removed completely. This group could be further subdivided into two sub-groups:

greedy strategy and global optimization strategy. The greedy strategy have acceptable

computation time and take into account human perception features (priority is designed

based on the salient structures considered as important for human perception), but they

show some common problems such as local optimization, patch priority, patch selections,

etc. Whereas, global optimization strategies often provide better results. Nevertheless,

they are computationally expensive. This is mainly due to the fact that time complexity

increases linearly both with the number of source pixels and unknown pixels.

Some other methods are categorized as the third group, hybrid methods which combine

texture-based and geometry-based methods in order to complete properly the damaged

regions. The original image is decomposed into two parts: a texture image and a geometry

image. Each part is restored using methods in the corresponding group. The final result

is reconstructed by adding back two restored parts. In a few situations where the additive

decomposition makes sense, this approach does indeed improve result and extends the

applications domain of inpainting.

Recently, beyond single image inpainting, a novel direction of inpainting problem has

been introduced that is inpainting a single image using information from several similar

images instead of that image itself. These approaches also have drawbacks of managing and

operating a huge image database. Indeed, the completion is meaningful if it is performed

blindly, i.e. without reference to original images or other images.

Although hundreds of publications have been introduced during the last decade, there

is still room for developing other approaches to overcome the limitation of the existing

methods as well as obtain better outputs. One promising direction for improving them

is use of perceptual models which can result in more plausible outputs. In summary, we

believe that perceptual-based approaches are more potential and promising.
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A Hierarchical Approach for

High-Quality Fast Image Completion

“Nothing takes place in the world whose meaning is not that of

some maximum or minimum.”
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Image completion in the case of images with large missing regions is a very challeng-

ing problem. As summarized in the Chapter 2, several solutions have been developed to

tackle this problem. In this chapter, we introduce a novel framework based on hierarchical

representation which deals effectively with the case of filling in large missing areas. The

following sections describe in detail the main stages of the proposed method. The perfor-

mance of proposed methods is evaluated and discussed based on a series of experimental

results.

3.1 A hierarchical approach for image completion

The exemplar-based methods consist of two key steps: the determination of filling order and

the selection of the best matching patch. The crucial part of this model is the filling priority

which is designed to preserve linear structure. The isophote-driven priority proposed in [17]

generates pleasant outputs in many cases, but it still has many drawbacks. Many modified
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versions have been developed [18, 20, 21]. However, the regions with high isophote strength,

which may be certain high frequency components such as noise and complex textures, are

not equivalent to the structural features e.g. edges, contours, etc.; therefore, it may lead

to undesired results.

The second part in this model is patch selection. By using only the best match sample,

the method runs the risk of choosing a sample that is corrupted, or not a perfect match.

Therefore, choosing the suitable patch for piecing also significantly affects to the inpainting

quality of an image with redundant content where several samples could be combined to

form a more robust estimate of the missing information. Some techniques [19, 57] have

been introduced to improve for patch selection, but there still remain some issues such as

introduction of blur artifacts because of interpolation or missing correct information for

filling in a region when it is located far away from that region.

Our framework is designed to overcome the limitations of the current exemplar-based

methods in both these steps. The proposed technique is inspired by the observation that

the human visual system is sensitive to salient structures which are stable and repetitive

at different scales. In other words, one can still see the main structural features when

the resolution of the image is reduced to a given factor. Therefore, a hierarchical image

inpainting scheme is developed in order to control and preserve salient features during the

completion process. This scheme allows restoring the missing regions in a visually plausible

way.

3.1.1 Algorithm overview

The proposed approach is composed of two main successive operations based on a greedy

strategy. Firstly, a single resolution is restored as in the framework [17]. At low resolution

the inpainting is less sensitive to local singularities and noise effect, but it may be affected

by blur artifacts due to the reduction operation. Thus, in order to classify more logically

image components, a novel priority definition is introduced. Secondly, the damaged region

on the higher resolution image is completed by exploiting spatial information contained

in the lower resolution image provided at previous step. At higher resolution, multi-

resolution patches are the best way to preserve the main features in the restoration process.

By applying window-based priority, the decision is more suitable to maintain the high

frequency components in a visually plausible way. By estimating patches at different
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scales, the selected patch would be more consistent and faithful to the source patch than

one in a single resolution. Furthermore, it is much less computationally demanding than

when processing the original full resolution, and hence it copes well with the problem of

large region inpainting.

At the beginning of the proposed algorithm, a Gaussian pyramid is constructed from

the image to be inpainted. This step consists of low-pass filtering and downsampling

images of the preceding level of the pyramid. According to the above idea, a set of images

{G0, G1, ..., GN} with various levels of details is generated, where G0 = I is the input

or original image [58]. The number of pyramid levels is linked to the original size of

the image and the smallest allowed resolution. The minimum size should be adjusted

according to the width and height of the original image. In our experiments, to avoid

missing relevant details, the following condition is used: min(width(GN);height(GN)) ≥
32. The inpainting regions are also reduced level by level. Then, an exemplar-based method

for image completion with some modifications is applied at each level. An iterative process

is completed gradually from the lowest resolution, GN , to the highest resolution, G0. The

algorithm is fully described in Algorithm 3.1. Although different criteria for stopping the

process can be used depending on application, we opted for a fixed number of iterations.

All the results shown in our thesis were computed with only 2 or 3 iterations.

Algorithm 3.1. The proposed framework.

G0 = I;
{G1, G2, ..., GN} = buildPyramid(G0);
Complete GN with the scheme in [17] using window-based priority in section 3.1.2.1;
while (stop=false) do

for detail level i = N − 1 downto 0 do
Complete Gi with the scheme in [17] using using multi-resolution patch in
section 3.1.2.2 and the window-based priority in section 3.1.2.1;

end
{G1, G2, ..., GN} = buildPyramid(G0);

end
Output = G0;
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3.1.2 Inpainting the lowest resolution image

In order to integrate some low-level features of the HVS and simulate its hierarchical

perceptual properties, an exemplar-based method is applied to the lowest resolution image,

GN . In the proposed scheme, an extension of [17] is developed to complete the coarse

resolution. Generally, there are two main steps in this scheme: i) determination of the

filling order and ii) selection of the best matching patch. Both steps are analyzed in details

in the succeeding two subsections.

3.1.2.1 Window-based priority for filling order

Naturally, the exemplar-based algorithm is a greedy strategy, an acceptable computation

load; however, it suffers from the common problems of the greedy algorithms, in which the

filling order (namely priority) is very critical. An appropriate definition of the priority is

essential since the decision, taken with it, is irreversible in the following stages. Other-

wise, errors may accumulate continuously because no improvement is achieved on previous

stages. Many formulations have been proposed for priority selection [17, 18, 20, 21]. In

this work, we would like to introduce a new priority, called window-based priority, which

is considered as more robust and efficient than others.

Classically, a priority, P (p), is composed of two terms: i) confidence term and ii) data

term [17]:

P (p) = C(p)D(p) (3.1)

In [18], the authors discovered that the confidence term in [17] decreased exponentially

and proposed an additive form of priority which used weights to maintain a balance between

the confidence term and the data term.

RP (p) = α((1− ω)C(p) + ω) + βD(p) (3.2)

where ω ∈ [0, 1] is the regularizing factor for controlling the curve smoothness (in

experiment, ω is often set to 0.7), the value range of C(p) is regularized to [ω, 1], and α, β

are positive parameters with α + β = 1.

Here, we concentrate on the analysis of the data term which distinguishes the structures

from the textures. The confidence term is not mentioned here since it does not provide

any additional improvement. A data term with a high value indicates the presence of a
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structure or contour, while a low value introduces the presence of texture or flat region. In

[17, 20], authors introduced a pixel-based data term, D(p), depending proportionally on

the isophote direction or gradient of the known region. Thus, if the gradient at pixel p is

large, the priority will be high. By the way of explanation, when the gradient values of the

texture components are greater than those of the structure components or when the regions

are affected by noise, the isophote-driven priority method may violate the requirement of

an appropriate priority rule and yields bad results. To overcome this difficulty, a patch-

based data term is introduced as in [21, 51]. This solves to some extent the problem but

at the cost of an increased running time and complexity.

Reasonably, the data term should be estimated from all neighborhood pixels in an

exemplar centered on the current pixel, because the human vision is good at seeing the

group of adjacent pixels rather than single pixel. Our first improvement focuses on a better

definition of data term based on the local changes of pixel intensities in each window, Wp,

centered at pixel p(x, y) with shifted windows in different directions. The local change of

intensity at each pixel p(x, y) is characterized by the following second-moment matrix or

structure tensor [59]:

M(p) =
∑
Wp

GWp(x, y)

( ∂I∂x)2 ∂I
∂x

∂I
∂y

∂I
∂x

∂I
∂y

(
∂I
∂y

)2

 (3.3)

where GWp is a Gaussian window function. This structure tensor is a 2× 2 symmetric

and semi-positive matrix which captures the intensity structure of the local neighborhood.

The 2D structure tensor and its eigenvalues, λ1 ≥ λ2 ≥ 0, summarize the distribution of

the gradient within the defined window. The two corresponding eigenvectors represent two

orthogonal directions along the local maximum and minimum variation of image intensities.

Whereas, the eigenvalues measure the effective variations (strength of contours) of image

intensities along these vectors. Consequently, our data term is defined as follows:

D(p) =
λ1

λ2 + ε
(3.4)

where ε is a very small positive value introduced to ensure computation stability (in

our experiment, ε = 10−10). This data term is related not only to geometric features, such

as contours or edges but also texture features. There are three cases to be considered for

each window as those defined by Beaudet [60] and illustrated in Figure 3.1:
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• If the data term is much greater than one i.e. one eigenvalue is high (λ1 is high) and

the other is low (λ2 is low), the local shifts in one direction cause little change and

significant change in the orthogonal direction; the window contains strong edges;

• If the data term is close to one, i.e λ1 is approximate to λ2, there are two possible

cases:

– If both eigenvalues are high, the shift in any direction will result in a significant

change. This indicates a texture or complex structure.

– If both eigenvalues are small, the shift in any direction will cause a little change.

The patch is of approximately constant intensity (flat region).

Figure 3.1. Classification of patches via eigenvalues

Because both confidence and data terms are evaluated by contribution of all pixels

in a window, our priority is called a window-based priority [61]. With this priority, the

patches are classified in a more robust way and the computation time is acceptable. Table

3.1 illustrates some numerical values corresponding to subimages in Figure 3.2. In our

opinion, the contours should be preserved, thus the priority of pixels on the contour should

47



Chapter 3. A Hierarchical Approach for High-Quality Fast Image Completion

be higher than others. Obviously, the values in Table 3.1 demonstrate that our priority is

more reasonable than the ones proposed in [17] and [20].

(a) (b) (c)

Figure 3.2. The window-based priority of different regions. (a) Flat region; (b) Texture
region; (c) Edge or contour.

Table 3.1. Priority of the different regions.

Patch Priority in [17] Priority in [20]
Proposed Priority

(λ1, λ2)
Flat region

0.001 3.269
0

(Fig. 3.2-a) (0, 0 )
Texture region

0.032 3.916
1.374

(Fig. 3.2-b) (0.067, 0.049 )
Edge or contour

0.024 3.130
4.059

(Fig. 3.2-c) (0.025, 0.006 )

3.1.2.2 Patch selection

The second step of the proposed algorithm consists in finding the suitable patch for the

filling process. The similarity measurement, computed based on all known pixels in the

patch, should be consistent with human perception. When using only color information,

it is insufficient to propagate accurate linear structures into the target region and leads to

uncontrolled and incoherent increase. This is mainly due to the fact that the perceptual

color appearance depends not only on the color of the observed patch but also on the

surrounding and the context in which the patch is perceived. Consequently, to solve this

problem, a similarity measure which takes into account the difference in colors and gradients

is proposed below:
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d(Ψp,Ψq) =
∑
i

(θ(I ip − I iq)2 + (1− θ)(∇I ip −∇I iq)2) (3.5)

where Ip and Iq are the corresponding RGB vectors in patches Ψp, Ψq; ∇Ip and ∇Iq
represent the image gradient vectors; θ is a user defined weight balancing the two terms,

here we set θ = 2/3 in the experiment. The image gradient is added as an additional

weight to maintain the color intensity variation from the known region to unknown region.

The target patch with the minimal distance to the source one, Ψp, is the one that should

be selected. It is given by:

Ψp̂ = arg min
Ψq∈Φ

{d(Ψp,Ψq)} (3.6)

As noticed in [19], a major problem of local neighborhood search is its tendency to

get stuck at a particular place in the same image and to produce verbatim copying. This

may also generate blocking artifacts around the inpainted regions. In order to address

this problem, we propose an improvement for the patch selection step. The idea is based

on the fact that patches in the neighborhood in the input image should remain neighbors

in the output image. First, K most similar patches obtained by the local neighborhood

search patches are used as candidates. Second, for each patch, Ψp, a standard deviation

describing the variability of neighboring source patches is formulated as follows:

V (Ψp) =
∑

E∈{R,G,B}

√∑
(E(Ψp)− Ē(ΨN(p)))2

|N(p)|
(3.7)

where N(p) is the neighborhood centered at p, E(Ψp) is the variance of pixel values at

the neighboring patch Ψp in each of the RGB channels, and Ē(Ψp) is the mean variance of

|N(p)| neighboring patches in RGB channels. The size of N(p) is a global parameter that

should be chosen larger than the patch size. Consequently, the chosen patch must satisfy

the following equation:

Ψp̂ = arg min
Ψq∈Φ

{|V (Ψp)− V (Ψq)|} (3.8)

In order to illustrate the effect of patch selection, an interesting example is illustrated

in Figure 3.3, a completion of the Kanizsa triangle. One can notice that unsuitable patch

selection, as shown in Subfigure 3.3-b, may lead to unexpected results or artifacts (see
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subfigure 3.3-c). On the contrary, an appropriate selection, as shown in Subfigure 3.3-e,

produces satisfactory results (see Subfigure 3.3-f). Finally, the missing pixels are copied

from the corresponding pixels in the selected patch.

(a) (b) (c)

(d) (e) (f)

Figure 3.3. A restoration of the Kanizsa triangle using inappropriate and appropriate
patch selection. (a) & (d) image to be inpainted; (b) & (e) a patch selection respectively
with and without improvement; (c) & (f) Final results.

Figure 3.4 illustrates priority of pixels on the boundary of inpainting regions where the

red color refers to highest value and the blue color refers to lowest one. One can notice

that higher values can be observed on contours as explained previously.

(a) Original image (b) Mask image (c) Our priority

Figure 3.4. Illustration of the proposed priority focusing on edge preservation.
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Figure 3.5 illustrates the performance of the proposed method on various low-resolution

images. These images are downsampled versions of the original ones (the down sampling

factor is set to 4 in both directions). Four inpainting methods, namely Criminisi et al.

[17], Wu et al. [20], Zhang et al. [21] and Cheng et al. [18], belonging to the second group

of approaches, are implemented with the same patch size for a fair comparison. Visual

inspection of the results given in Figure 3.5 shows that the proposed approach achieves

good results in most cases compared to the others.

(a) (b) (c) (d) (e) (f)

Figure 3.5. Completion of low resolution images. (a) image to be inpainted. Output
when using priority adopted by (b) Criminisi et al. [17]; (c) Wu and Ruan [20]; (d) Zhang
and Lin [21]; (e) Cheng et al. [18] and (f) our proposal.
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3.1.3 Multi-resolution patch for higher resolution image

completion

The second advantage of our method is the use of a multi-resolution patch-based scheme

on the image pyramid [58]. A multi-resolution patch, Ψp, consists of two consecutive

scales: one at the current level l, Ψl
p, and one at its parent level l + 1, Ψl+1

p . Figure 3.6

illustrates an example of multi-resolution patch Ψp, that contains various single resolution

patches with different sizes. The sizes of patches are global parameters and denoted as

{(w1×w1); (w2×w2)}, where the former is for current level and the later is for the higher

level. w1 is often greater than w2 because of the image resolution. In our work, we set

w1 = 2w2 because the ratio between two consecutive images in the pyramid representation

is 2. Consequently, the similarity between two multi-resolution patches at higher resolution

is measured by the sum of the squared distance of all known pixels in both adjacent levels

and is reformulated as follows:

d(Ψp,Ψq) = d1(Ψl
p,Ψ

l
q) + d2(Ψl+1

p ,Ψl+1
q ) (3.9)

where d1, d2 are similarity of the known pixels in the current and higher level, respec-

tively; they are computed by Equation (3.5) within the corresponding patches.

Figure 3.6. A multi-resolution patch composed of pixels on different scales
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Figure 3.6 exhibits an example of multi-resolution patch which is being applied for image

completion using multi-resolution representation. All pixels of multi-resolution patch at

higher level l + 1 have been restored completely, while a part of current level l marked by

white is needed to be restored. This example shows a relationship between the restoration

of the current and higher level patches.

3.1.4 Experimental results

The proposed image completion framework was tested on a series of different natural images

and the results are presented in this section. To compare the effectiveness of our algorithm

and to do it in an equal footing, we apply our technique on both data provided by [17]

and other real images. The performance is compared with the existing exemplar-based

methods in terms of the inpainting quality.

In most experiments, all of the algorithms are implemented in the same programming

framework, C/C++ language and Matlab. The parameters are fixed at constant values

for all tested methods so as to avoid any bias in the comparison. Specifically, the patch

sizes are set to {(9× 9); (5× 5)} for our approach and (9 × 9) for other exemplar-based

methods. The size of window priority is set to (7× 7). The missing regions are marked by

the green color (R=0, G=255, B=0).

Table 3.2. Tested inpainting algorithms

Year Authors Group H-type

2004 Criminisi et al. [17] Texture Large

2005 Cheng et al. [18] Texture Large

2006 Wu and Ruan [20] Texture Large

2011 Zhang and Lin [21] Texture Large

Since our proposal belongs to the second group, we selected the methods corresponding

to the approaches of Criminisi et al. [17], Wu et al. [20], Zhang et al. [21] and Cheng et

al. [18] for a fair comparison. Table 3.2 lists the details of inpainting techniques used in

this section.
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Table 3.3. Selected testing images

Image Name Size Hole size Type

boat 300× 225 10.73% natural

horse 300× 225 9.29% natural

wall 256× 256 14.8% natural

angle 300× 252 5.83% archaeological

affresco 726× 373 3.43% archaeological

In some applications, the visual quality of the outputs is the most important consid-

eration. Therefore, in this work, we concentrate on only evaluating and comparing the

outputs in terms of the visual quality. Five images, including three natural images and

two real archaeological images (listed in Table 3.3), were presented to validate our algo-

rithm in comparison with other approaches. The damage areas occupy 10.73%, 9.29%,

14.8%, 5.83% and 3.43% of the whole image, respectively. Although areas of holes account

for small percentage of the area, they are still considered as large areas with respect to our

definition in the section 1 of chapter 2.

The visual results in Figures 3.7, 3.8 and 3.9 confirm the effectiveness of our algorithm in

compare with existing methods in case of natural images, while the visual results in Figures

3.10 and 3.11 give an outstanding quality of our algorithm in case of archaeological images.

As we can observe from these figures, our method produces a better visual quality

than the other methods. We should mention that for performance evaluation, we use

only subjective criteria, i.e., visual appearance of the output because there is no efficient

numerical estimation for outputs of inpainting methods.

54



3.1. A hierarchical approach for image completion

(a) (b)

(c) (d)

(e) (f)

Figure 3.7. Visual comparison of ‘boat’ image across all five algorithms: (a) The image
to be inpainted; The ouputs using approach of (b) Criminisi et al. [17]; (c) Wu and Ruan
[20]; (d) Zhang and Lin [21]; (e) Cheng et al. [18]; and (f) our proposal.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.8. Visual comparison of ‘horse’ image across all five algorithms: (a) The image
to be inpainted; The ouputs using approach of (b) Criminisi et al. [17]; (c) Wu and Ruan
[20]; (d) Zhang and Lin [21]; (e) Cheng et al. [18]; and (f) our proposal.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.9. Visual comparison of ‘wall’ image across all five algorithms: (a) The image
to be inpainted; The ouputs using approach of (b) Criminisi et al. [17]; (c) Wu and Ruan
[20]; (d) Zhang and Lin [21]; (e) Cheng et al. [18]; and (f) our proposal.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10. Visual comparison of ‘angle’ image across all five algorithms: (a) The image
to be inpainted; The ouputs using approach of (b) Criminisi et al. [17]; (c) Wu and Ruan
[20]; (d) Zhang and Lin [21]; (e) Cheng et al. [18]; and (f) our proposal.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.11. Visual comparison of ‘affresco’ image across all five algorithms: (a) The
image to be inpainted; The ouputs using approach of (b) Criminisi et al. [17]; (c) Wu and
Ruan [20]; (d) Zhang and Lin [21]; (e) Cheng et al. [18]; and (f) our proposal.
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3.2 A hybrid approach for high-quality fast image

completion

In previous section, a greedy strategy has been introduced in conjunction with a hierarchical

representation for image completion. This strategy is applied not only for the lowest

resolution but also for higher resolution. The greedy strategies generally have computation

time better than the global optimization strategies. In addition, they take into account the

human vision features because the priority is designed based on the salient structures which

are sensitive to human vision system. However, they suffer from the common problems

of greedy algorithms, such as, local optimization, patch selection, patch search, etc. The

global optimization strategies often have better results but they are more computationally

expensive than the greedy ones because the time complexity increases linearly with the

number of labels and the number of unknown pixels. In practice, image completion is

often applied with user interaction and needs quick feedback.

In this section, we would like to propose a novel improvement of previous framework

for high-quality and fast image completion by combining a greedy strategy and a global

optimization strategy based on a pyramidal representation of the image. There are some

reasons when applying the greedy strategy for lower resolution image.

• Firstly, the human visual system is sensitive to salient structures that are stable

and persistent through different scales. In other words, the most relevant structural

information of an image remains visible and attractive at different levels of resolution.

Therefore, this observation is exploited when performing image inpainting.

• Secondly, at low resolution the inpainting would be less sensitive to local singularities

and noise effect.

• Finally, it is much less computationally demanding than when processing the original

full resolution image and it copes with the problem of large regions inpainting.

The second operation consists of restoring the damaged region on the original high

resolution image by exploiting spatial information contained in the lowest resolution image

provided at the first step. At higher resolution, the inpainting problem is modelled as an

optimal graph labeling where an offset-map represents the selected label for each unknown

pixel. The offset map is initialized from an interpolation of lower resolution and refined for
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current resolution by optimizing an energy function using multi-label graph cut technique

[52, 53]. Because each unknown pixel in the damaged region could originate from any pixel

in the source region, the global optimization strategies can be computationally unfeasible.

Some existing global optimization methods consider possible assignment fairly but this

does not fit the human perception criteria. In term of inpainting quality, fair assignments

may lead to unexpected bias for optimization. In terms of speed, a huge label set requires

high computational load.

A hybrid approach combining the greedy and global optimization strategies is the best

solution to enhance not only inpainting quality but also computational time. A full de-

scription of our combination is given in the Algorithm 3.2 [62].

Algorithm 3.2. The improved framework.

G0 = I;
{G1, G2, ..., GN} = buildPyramid(G0);
Complete GN with the scheme in [17] using window-based priority in section 3.1.2.1;
omN = generateShiftMap(GN) ;
for detail level i = N − 1 downto 0 do

omi = interpolate(SMi+1) ;
omi = optimize(omi, Gi) ;

end
G0 = restore(om0, G0);
Output = G0 ;

The main improvement of this algorithm is using an offset-map, omi, at higher levels

(i > 0) instead of using directly the pyramidal images. At the lowest resolution, the

image is completed by the same strategy as mentioned in previous section, an exemplar-

based strategy. Then, a relationship map between the damaged pixels and source pixels,

called offset-map, is generated as an initial guess map for next stage. In this situation,

the inpainting problem is considered as an optimal graph labeling where the offset-map

represents the selected label for each unknown pixel. This offset-map is then interpolated

and refined for higher resolution image gradually to obtain the latest one which is the best

solution for inpainting problem at original resolution. Because only a few labels relative to

the initial guess are considered based on the optimized map instead of all possible labels,

this implementation is much faster than the previous framework in which patch searching

is performed on the whole image; furthermore, the quality of inpainted image will be
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significantly improved by a global optimization algorithm.

(a) (b)

(c) (d)

Figure 3.12. The operators in global optimization algorithm. (a) An original image; (b)
An offset; (c) Data term; (d) Smoothness term.

62



3.2. A hybrid approach for high-quality fast image completion

3.2.1 Offset operator

The nature of inpainting is filling in the hole by the known pixels. In other words, the

intensities of unknown pixels are copied from the known pixels. This formed naturally a

relationship between the unknown pixels, p(xp, yp) ∈ Ω, and known pixels, q(xq, yq) ∈ Φ.

And this relation is characterized by an offset-map which determines a shift from known

pixel to unknown pixel for each coordinate in the image (see Figure 3.12-a). The map can

be formulated by equation (3.10):

om(p) =

{
(4x,4y) p ∈ Ω

(0, 0) otherwise
(3.10)

Then the output pixel O(p) will be derived from the input pixel I(p+ om(p)). Because

the objective of inpainting is to restore the damaged regions so that it still looks natural,

the offset-map must be determined to satisfy this criteria. Authors of [27] proposed a

solution to evaluate the offset-map by designing energy function and optimizing it. The

energy function is defined as follows:

EM = α
∑
p∈Ω

Ed(om(p)) + (1− α)
∑

(p,q)∈NB

Es(om(p), om(q)) (3.11)

where Ed is the data term related to external constraints and Es is a smoothness term

defined over a set of neighboring pixels, NB. The parameter α is a user defined weighting

factor, which is set to α = 0.5 in our case to balance the two terms. Thereafter, EM is used

to minimize the energy related to both data and smoothness terms. Several optimization

approaches have been proposed in the literature. In our method an optimization scheme

based on graph cuts technique [52, 53], known for its computational advantages, is used.

3.2.2 Data term

The data term, Ed, linked to external constraints, measures how appropriate is a label or

an offset. During the completion process, for each pixel in the target region, an offset is

assigned to the pixel in the known regions. This offset is used in the computation of the

data term to avoid including pixels from the missing regions. On the other hand, the data

term dictates that no pixels in the hole are used in the output image. The detail of data

term is given by equation (3.12):
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Ed(om(p)) =

{
∞ (x+4x, y +4y) ∈ Ω

0 otherwise
(3.12)

In some cases, the specific pixels in the input image can be forced to appear or disappear

in the output image by setting Ed. For example, we can use saliency map to weigh the

data term. Therefore, a pixel with a high saliency value will be kept; whereas, a pixel with

a low saliency value is removed. Figure 3.12-c illustrates visually how to adapt the value

of the data term.

3.2.3 Smoothness term

The second component of the energy function is the smoothness term representing the

discontinuity between two neighboring pixels p(xp, yp) and q(xq, yq). In [42], the authors

proposed an effective formula, expressed in equation (3.12), for smoothness term taking

into account both color differences and gradient differences between corresponding spatial

neighbors in the output and input image to create a coherent stitching.

Es(om(p), om(q)) =

{
0 om(p) = om(q)

βδM(om(p)) + γδG(om(p)) otherwise
(3.13)

where β and γ are weighting factors balancing these two terms, and are set to β =

1, γ = 2 in our experiment. The terms δM and δG denote the differences of magnitude

and gradient, respectively. They are defined as follows:

δM(om(p)) = ||I(np′)− I(q′)||+ ||I(nq′)− I(p′)|| (3.14)

δG(om(p)) = ||∇I(np′)−∇I(q′)||+ ||∇I(nq′)−∇I(p′)|| (3.15)

where I and ∇I are the magnitude and gradient at these locations, p′ = p + om(p)

and q′ = q + om(q) are locations which are used to fill for pixels p and q, respectively, and

np′ and nq′ are two 4-connected neighbors of p′ and q′, respectively. Figure 3.12-d depicts

an intuitive way for evaluating the smoothness term. The main idea is based on the fact

that if a pixel is used for filling, then its neighbors should be also filled as neighbors in the

inpainted regions. Moreover, the difference between filled pixels and their neighbors in the

target region and known region should be as small as possible.
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Figure 3.13 illustrates an example of the offset map at the original resolution image

after optimization by the graph-cuts algorithm. Each offset is the 2-D coordinates including

horizontal and vertical relationships. The output generated by two corresponding offset

maps is shown in Figure 3.13-b.

(a) (b)

(c) (d)

Figure 3.13. Illustration of the offset values for a commonly used image. (a) Image to be
inpainted; (b) A corresponding output; (c) Horizontal offset map; and (d) Vertical offset
map.
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3.2.4 Offset-map interpolation

A full offset map is first inferred from a completion at the lowest level of the pyramidal

representation of the input image. Then, it is interpolated to higher resolutions using the

nearest neighbor algorithm, and the offset-map values are upscaled by simply doubling each

value to match the image at higher resolution.

In the higher level, only small shifts relative to the initial guess are examined. This

means that only some neighbors of its parent is considered instead of all possible labels. In

our implementation, the relative shift for each coordinate varies in range [−a, a], so it takes

(2a + 1)2 labels for both direction. It is important to note that the data and smoothness

terms are always computed with respect to the actual shifts and not to the labels.

(a) (b)

Figure 3.14. Interpolation of Offset-map. (a) Image gaussian pyramid; (b) Interpolation
between two adjacent levels.

Figure 3.14-a illustrates an example of the Gaussian pyramidal decomposition and the

associated reconstruction scheme (Figure 3.14-b).

3.2.5 Experimental results

The efficiency of our improvement is illustrated through the experimental results. This

section evaluates the results of our approach and compares it with the state-of-the-art

methods. A series of natural images is selected for testing. The parameters of the algorithm

are kept constant throughout the experiments.
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3.2.5.1 Comparative study

Firstly, we would like to evaluate the performance of our proposal based on a comparison

with some state-of-the-art methods belonging to the same category of inpainting method.

Four methods listed in Table 3.2 are selected for this evaluation. Four input images,

commonly used for inpainting evaluation, of size 200× 200 respectively yokoya, kidstatue,

cameraman and student are chosen for the experiments, see Table 3.4.

Table 3.4. Selected testing images

Image Name Size Hole size Type

yokoya 200× 200 6.53% natural

kidstatue 200× 200 19.86% natural

cameraman 200× 200 12.78% natural

student 200× 200 7.8% natural

The obtained results, shown in Figure 3.15, demonstrate the efficiency of our method

in terms of visual quality compared to the state-of-the-art.

3.2.5.2 Comparison with unoptimized version

Secondly, a comparison with unoptimized version has been performed in order to confirm

the quality of our results. Our method is developed based on a previous idea presented

in [61] but with the use of a multi-resolution patch matching instead of an offset-map

optimization, called here unoptimized version.

Results obtained with the latter are compared to those of the proposed approach (see

Figure 3.16). It is clearly shown that our method (Figure 3.16-c) is slightly better than the

method proposed in [61]. However, the performance in term of computational complexity

of our proposal is rather better than the unoptimized approach. This issue is discussed in

more details in the next section.
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-a-

-b-

-c-

-d-

-e-

-f-
yokoya kidstatue cameraman student

Figure 3.15. Inpainting results for four commonly used images: a) the original images;
results when using method of b) Criminisi et al. [17]; c) Wu and Ruan [20]; d) Zhang and
Lin [21]; e) Cheng et al. [18]; and f) Our proposal.68
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(a) (b) (c)

Figure 3.16. A comparison between our proposal and the unoptimized version described
in [61]. (a) Image to be inpainted; Inpainting results using (b) unoptimized version and
(c) our proposal.
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3.2.6 Performance evaluation

The visual quality of the results obtained with the proposed approach has been discussed

in the previous sections. In the following we focus on the performance evaluation in terms

of computational efficiency. For the sake of completeness and clarity the performance of

the method is evaluated at each stage at the global level. The benefits gained at each stage

are demonstrated through the obtained results.

3.2.6.1 Local performance evaluation

In the following, the greedy strategy using window-based priority and path-match search

procedure is analyzed in order to estimate the contribution of each stage in our algorithm.

The global optimization strategy adopted in the proposed method is also analyzed to

confirm the outstanding performance in comparison with other approaches.

Table 3.5. Time performance of each stage in percentage (%).

Image ID

The lowest resolution, G3 Higher resolutions

priority patch
total G2 G1 G0

calculation selection

yokoya 0.06 0.44 0.60 1.98 6.46 66.50

cameramen 0.41 0.80 1.22 2.85 19.99 43.33

kidstatus 0.20 0.78 0.99 5.02 9.57 57.12

student 0.05 0.44 0.49 5.69 17.45 59.31

bungee 0.38 1.04 1.42 4.65 15.57 55.42

angle 0.03 0.37 0.41 3.17 8.02 66.91

silenus 0.19 0.77 0.96 3.75 7.07 73.48

boat 0.09 0.99 1.09 1.30 19.01 59.82

seaman 0.24 1.43 1.68 4.75 24.68 44.90

AVG 0.18 0.78 0.98 3.68 14.20 58.53

The performance analysis of the proposed method at the different stages, expressed in

percentage, is given in Table 3.5 for a set of nine images and illustrated visually in the chart
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Figure 3.17. Analysis of local performance of our method.

of Figure 3.14. In this case, the level of pyramid is set to 4 (depending on the size of input

image). The greedy strategy is applied at the lowest version which has the smallest size.

Thus, the time complexity for this strategy is very low. There are two main sub-stages in

this strategy: window-based priority and patch match search. From Figure 3.17, it is clearly

shown that these steps account for a very small portion of the whole process (average time

about 0.18% for window-based priority, 0.78% for patch-match searching and 1% for entire

completion of the lowest resolution).

It is worth noting that the execution time is mainly due to global optimization at higher

resolutions. The higher resolution levels are the most time-consuming as shown in Figure

3.17. The average time of global optimization strategy for the levels G2; G1; G0 grows non-

linearly and corresponds to 3.68%, 14.2% and 58.53%, respectively. The greedy strategy

takes less than 1% of the whole execution time, whereas the global optimization consumes

nearly 76.4%. This analysis shows that combining the greedy strategy with the global

optimization algorithm not only guarantees the perceptual quality of the inpainted image

but also improves the computational performance of the whole process. Furthermore, the

use of hierarchical representation also significantly reduces the execution time.

In order to evaluate the visual quality of each stage, two original images in Figure 3.18

are selected as input and the corresponding outputs of each stage in our algorithm are

displayed immediately below. The lowest resolution G3 (see Figure 3.18-b) is completed
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by a greedy strategy based on some characteristics of the human visual system in order to

preserve the perceptual continuity of the structures. This feature is kept and refined for

higher resolution in G2, G1, and G0 using a global optimization strategy, namely graph-cut

algorithm.

Figure 3.18. An example of outputs for each stage in our algorithm.
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3.2.6.2 Global performance evaluation

To increase the reliability of our framework, we analyzed the global performance of the

method and compare with other approaches. The performance is evaluated and compared

with two groups of methods: methods of the second group and methods belonging to

greedy and global optimization strategies. For the sake of fair comparison, all source codes

of the compared methods have been written in C/C++ language and implemented on the

same PC with an Intel Core i5 2.8GHz CPU and 4GB RAM.

Firstly, a number of approaches from the second group are chosen for evaluating the

performance of our method as in Table 3.2 using four images of size 200 × 200 pixels,

shown in Figure 3.15. The computation time obtained for the considered methods is given

in Table 3.6 in seconds. Here, the bold values show the best performance respects to

running time.

Table 3.6. Computational time (in seconds) in comparison with the state-of-the-art
methods of the second group

Image yokoya kidstatue cameraman student

Hole size 6.53% 19.86% 12.78% 7.8%

Criminisi et al. [17] 3.22 10.09 5.75 4.74

Wu and Ruan [20] 3.64 10.29 6.05 5.98

Cheng et al. [18] 3.58 11.60 6.91 5.64

Zhang and Lin [21] 38.38 251.74 111.84 59.52

Our proposal 3.71 4.53 3.29 3.84

Secondly, the comparison is extended to other inpainting methods corresponding to

algorithms proposed by Criminisi et al. [17] representing greedy strategy; Dang et al. [61]

for the unoptimized approach; and Pritch et al. [27] for global optimization strategy.

Figure 3.19 illustrates the results obtained with the proposed approach in comparison

to the others. Figure 3.19-a gives images to be inpainted where inpainting areas cover

respectively 12.6%, 5.83%, 7.74%, 10.73% and 14.87% of the whole image. As it can be
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seen from these results, the proposed method outperforms the other considered methods.

Indeed, our results look more natural and more coherent than those of other approaches.

Moreover, the values in Table 3.7 depicting the computational time in seconds for the

selected methods show an outstanding performance of our approach in comparison with

the others.

Table 3.7. Computational time (in second) in comparison with both greedy and global
optimization strategies.

Image bungee angle silenus boat seaman pumpkin

Size 206× 308 300× 252 256× 480 300× 225 300× 218 473× 332

Hole size 12.6% 5.83% 7.74% 10.73% 14.87% 5.1%

Criminisi et al. [17] 16.30 8.20 38.29 24.54 27.31 28.98

Dang et al. [27] 15.92 16.36 63.18 50.18 55.16 54.57

Pritch et al. [61] 35.39 13.24 57.68 21.18 15.50 37.35

Our proposal 3.32 5.81 7.53 7.25 5.97 6.31

3.3 Conclusion

In this chapter, a novel framework of image completion is introduced using multi-resolution

image representation. The multi-resolution patch ensures the texture and geometric struc-

ture with the fixed size patches instead of using different patches or dynamic size patches.

The chosen patches are more consistent and adaptive. A common problem to most

exemplar-based methods is the effect of priority. In currently presented version, a window-

based priority which classifies patches in a more suitable way and leads to the pleasant

results is introduced. In addition, patch selection step is improved by using a combination

of color and gradient channel instead of using only color channels as other methods.

Although the current proposal results in acceptable outputs, it still has a low perfor-

mance because of patch searching. An improvement for computational time performance

in our framework is also introduced which combines a greedy strategy and a global opti-
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(a) (b) (c) (d) (e)

Figure 3.19. Performance evaluation. (a) Image to be inpainted; Outputs when using
methods of (b) Criminisi et al. [17]; (c) Pritch et al. [61]; (d) Dang et al. [27]; and (e) our
proposal.
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mization strategy, called hybrid approach. This approach is not guaranteed to give the

global optimum, but the results are very good as can be seen in the examples and the

computational time is acceptable for real applications.

Comparison with some new and old methods of the second group is carried out. A

series of images including natural and real archaeological images was used for testing.

The experimental results show that our approach not only produces better quality output

images but also implements much faster than current methods.

For future research, a perceptual patch similarity that is more stable and effective and

a numerical estimation for quality of the restored color images will be investigated, and an

extension of our framework to use multiple source images will be developed. In addition,

a video completion is being studying.
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Inpainted Image Quality Assessment

“I have found a very great number of exceedingly beautiful the-

orems.”
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4.1. What is inpainting quality?

4.1 What is inpainting quality?

Image inpainting has been become a very active field of research in many real world applica-

tions such as digital cinema, computational photography, archaeological image restoration

and archival documents restoration [8]. A large amount of research has gone into the de-

velopment of new inpainting algorithms. However, much less effort has been devoted to

the development of objective image quality metrics dedicated to inpainting purpose.

Alternatively, image quality assessment (IQA) plays a prominent role for many ap-

plications, including video streaming monitoring, medical imaging and lossy compression

control among others. IQA in its broad sense refers to the problem of evaluating the level

of perceptual quality of an image. Many interesting methods for predicting the image

quality have been proposed in the literature [63–69]. In general, the subjective evaluation

is still the most reliable solution, but it could not be used in real-time applications and are

tedious and time consuming.

It is worth noticing that the objectives of IQA in the case of image inpainting problem

are substantially different from the classical image quality evaluation problem. Indeed,

in the case of inpainting problem, the intent is to evaluate the quality of the restored

image. It is also worth understanding that inpainting could be considered as a special

image restoration problem in its broad sense. In both problems, inpainting and classical

image restoration, the existing IQA metrics could not be directly applied because of the

specific needs. For example, in the case of image inpainting the recovered region is totally

different from the original one.

The main objective of image inpainting aims at restoring the missing parts or replacing

some parts of the image in a visually plausible way, i.e. make it difficult for Human Vision

System (HVS) to detect that the image has been modified. Hence, the intent of Image

Inpainting Quality Assessment (IIQA) metric is then to evaluate the visual quality of the

inpainted regions in terms of spatial coherence with the other parts of the image and human

attention.

Very often, the results of image inpainting are evaluated subjectively or by using some

objective metrics not well adapted to the specificities of their criteria. However, the subjec-

tive evaluation experiments are time consuming, complex and unpredictable due to some

uncontrolled human factors such as fatigue, visual discomfort, knowledge, etc.

This chapter will discuss methods, listed in Table 4.1, that have been extensively used
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for the evaluation of inpainting quality, as well as more recently proposed methods having

the same goal. An overview of general image quality metrics that could be applied for

inpainting quality evaluation is given in more details in the next section.

Table 4.1. The selected IQA and IIQA metrics.

Year Authors Name Type Reference

- - MSE and PSNR IQA Full

1993 Daly [64] VDP IQA Full

2004 Wang et al. [65] SSIM IQA Full

2006 Bonnier et al. [68] SSIMIPT IQA Full

2006 Sheikh et al. [66] VIF IQA Full

2007 Chandler and Hemami [69] VSNR IQA Full

2008 Wang et al. [70] PWIIQ IIQA Full

2009 Ardis and Singhal [71] ASVS and DN IIQA No

2010 Mahalingam and Cheung [72] GDin and GDout IIQA No

2012 Oncu et al. [73] BorSal and StructBorSal IIQA Full

4.2 Overview of image quality assessment

As mentioned earlier, objective metrics for image quality assessment provide a replacement

for the resource-intensive perceptual experiments. It was proven that in the field of in-

painting, the focus of research has not been put on the development of objective metrics,

but on the development and improvement of inpainting methods. Thus, in the remainder

of this section a number of objective metrics that have been more extensively used for

general image quality evaluation will be discussed. These metrics will be further applied
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4.2. Overview of image quality assessment

in some situations of inpainting in order to determine whether they can provide similar, or

better results than inpainting-specific objective metrics.

4.2.1 MSE and PSNR

Perhaps the simplest and oldest objective image quality measure is the Mean Square Error

(MSE) and its extension, the Peak Signal to Noise Ratio (PSNR). Unfortunately, they have

been still widely used due to the fact that they are easy to implement thus convenient to

use for optimization purposes [63].

Assume that x = {xi|i = 1, 2, ..., n} is an “original image” which has perfect quality,

and that y = {yi|i = 1, 2, ..., n} is a “distorted image” whose quality is being evaluated.

Where n is the number of image samples (pixels) and xi and yi are the intensities of the

i-th samples in images x and y, respectively. Note that this indexing arrangement does

not account for the spatial positions of, or relationships between pixels, but rather, orders

them as a one-dimensional (1-D) vector.

Since the MSE can be defined exactly using this 1-D representation, it is apparent that

the MSE does not make use of any positional information in the image, which might be

valuable in measuring image quality. Therefore, the MSE is defined as equation (4.1).

MSE =
1

n

n∑
i=1

(xi − yi)2 (4.1)

The PSNR computes the peak signal to noise ratio between two images and gives a

value in decibels as a result. The higher the value obtained for PSNR, the better the

quality of the reproduction. First step in computing the PSNR is to obtain the MSE value

for the two images. Then, the PSNR is calculated as:

PSNR = 10log10
L2

MSE
(4.2)

In equation (4.2), the parameter L is the dynamic range of allowable image pixel intensi-

ties. For images that have allocation of 8bits/pixel of gray-level, L = 255. Alternately, the

MSE and PSNR were computed for color images by converting the images to the YCbCr

or HSL color space, which separates the intensity (luma) channel from the color channels.

This choice was made because the human eye is more sensitive to intensity information.

Taken this into consideration, the MSE and PSNR are calculated on the Y or H channel

[63].
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(a) Original uncompressed image (b) Q = 90, PSNR = 45.53dB

(c) Q=30, PSNR = 36.81dB (d) Q=10, PSNR = 31.45dB

Figure 4.1. An example of PSNR values for jpeg compressed images at various quality
levels.

Figure 4.1 lists some PSNR values corresponding the compressed images at various

quality levels (Q = 90, 30, 10). Although, it has been proven that these two metrics do

not correlate well with perceived image quality, these measures are easy to compute and

extensively used throughout the literature of image processing, communication, and many

other signal processing fields.

4.2.2 VDP

A visible difference predictor (VDP) is an algorithm for the assessment of image fidelity

which was proposed by Scott Daly in [64], and which aims at quantifying the visual fidelity

of distorted images. The VDP model interprets early vision behaviour, from retinal contrast

sensitivity to spatial masking and pooling for decision stage. A use of the VDP consists of
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three main stages such as components for calibration of the input image, a human visual

system (HVS) model, and a method for displaying the HVS predictions of the visible

differences.

Figure 4.2. Block diagram of the Visible Differences Predictor.

The key element of the VDP is the human visual system model shown in Figure 4.2. It

concentrates on the lower-order processing of the visual system such as the optics, retina,

lateral geniculate nucleus, and striate cortex. The HVS model consists of a number of

processes that limit visual sensitivity. Three main sensitivity variations are accounted for,

namely, as a function of light level, spatial frequency, and signal content. Sensitivity, S, is

defined as the inverse of the contrast required to produce a threshold response:

S =
1

CT
(4.3)

where CT is generally referred to as simply the minimum contrast value for which the

stimuli starts to be visible. The contrast is defined by:

C =
Lmax − Lmean

Lmean
(4.4)

where Lmax and Lmean refer to the maximum and mean luminance of the waveform. The

variations in sensitivity as a function of light level are simulated by amplitude nonlinearity.

Each input luminance Lij is transformed by a simplified version of the retinal response to

an “amplitude nonlinearity” value Rij defined as:

Rij =
Lij

Lij + (c1Lij)b
(4.5)
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where the constants c1 = 12.6 and b = 0.63 apply when luminance is expressed in

cd/m2. For this model, the adaptation level for an image pixel is solely determined from

that pixel.

The variation as a function of spatial frequency is modeled by the contrast sensitivity

function (CSF), implemented as a filtering process. A Fast Fourier transform is applied to

the value Rij. The resulting magnitudes fuv(Rij) are filtered by a CSF which is a function

of the image size in degrees and light adaptation level Lm.

The variation in sensitivity due to signal content is referred to as masking. Masking

effects are modeled by the detection mechanism, which is the most complicated element

of the VDP. It consists of four sub-components: image channel decomposition, spatial

masking, psychometric function, and probability summation. During the image channeling

stage, the input image is fanned out from one channel to 31 channels or bands. Each

channel is associated with one cortex filter which consists of a radial filter (dom, difference

of mesa filter) and an orientation filter (fan filter). The total number of radial filters is

six resulting in five frequency bands and one base band for a typical image of standard

size. Each of these bands except for the base band is further fanned out into six channels

of different orientation. Thus, five frequency bands times six orientations per bands plus

one base band results in 31 channels.

The VDP is a relative metric because it does not describe an absolute metric of image

quality but instead address the problem of describing the visibility of differences between

two images. As a result of the approach taken, the VDP can be used for all types of

image distortions including blur, noise, banding, blocking, etc.; but the reference image is

required.

4.2.3 SSIM and SSIMIPT

The SSIM shorting for Structural SIMilarity metric was introduced by Wang et al. [65] to

overcome the limitation of traditional metrics such as MSE or PSMR while keeping the

measure relatively simple in comparison with other fully HVS-based metrics. This is a full

reference metric where the measuring of image quality based on an initial uncompressed or

distortion-free image as reference. The SSIM is designed to improve on traditional methods

like MSE and PSNR which have proven to be inconsistent with human eye perception.

The principal idea underlying the structural similarity approach is that the Human
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Visual System (HVS) is highly adapted to extract structural information from visual scenes,

and therefore, a measurement of structural similarity (or distortion) should provide a good

approximation to perceptual image quality [65]. The SSIM algorithm separates the task of

image similarity measurement into three comparisons: luminance, contrast, and structure.

The overall SSIM metric for the whole image can be computed as the mean of local

values using sliding window approach. In [63, 65], an 11× 11 circular-symmetric Gaussian

window, w = {wi|i = 1, 2, ..., n}, with standard deviation of 1.5 samples, is used as a

weighting function and normalized to unit sum (
∑n

i=1wi = 1). And the local comparison

is then calculated within the local window.

First, the local luminance of each signal (from image patches taken from the same

locations in x and y, respectively) is estimated by the mean intensity:

µx =
n∑
i=1

wixi (4.6)

The local luminance comparison function, l(x, y), is then constructed as a function of

µx and µy :

l(x, y) =
2µxµy + C1

µ2
x + µ2

y + C1

(4.7)

where the constant C1 is included to avoid instability for homogeneous or flat regions

and set to C1 = (K1L)2. L is the dynamic range of the pixel values (L = 255 for 8

bits/pixel gray level) and K1 � 1 is a small positive constant.

Second, the local standard deviation (the square root of variance) is used as an estimate

of the signal contrast. An unbiased estimate in discrete form is given by:

σx =

(
n∑
i=1

wi(xi − µx)2

) 1
2

(4.8)

The local contrast comparison, c(x, y), is then designed as a function of σx and σy :

c(x, y) =
2σxσy + C2

σ2
x + σ2

y + C2

(4.9)

where C2 = (K2L)2 and K2 � 1 are constants to prevent the possible division by zero.

Third, the signal is normalized by its own mean and standard deviation. The structure

comparison s(x, y) is then conducted on the resulting normalized signals. Notice that the
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correlation between (x−µx)/σx and (y−µy)/σy is equivalent to the correlation coefficient

between x and y. Thus, we define the structure comparison function as follows:

s(x, y) =
2σxy + C3

σx + σy + C3

(4.10)

In a discrete implementation, σxy can be estimated as:

σxy =
n∑
i=1

wi(xi − µx)(yi − µy) (4.11)

Finally, three comparisons of equations (4.7), (4.9), (4.10) are combined into the overall

SSIM Index between x and y:

S(x, y) = [l(x, y)]α[c(x, y)]β[s(x, y)]γ (4.12)

where α, β, γ are positive parameters that adjust the relative importance of the three

components. To simplify the expression and reduce the number of parameters, we set

α = β = γ = 1 and C3 = C2/2. This results in a specific form of the SSIM index as in [65]:

S(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4.13)

By applying such a sliding window approach across the image, an SSIM Index map

is obtained. Finally, the SSIM Index map is combined into a single measurement that

encapsulates the overall quality of the image:

MSSIM(X, Y ) =
1

m

m∑
j=1

SSIM(xj, yj) (4.14)

where X and Y are the reference and the distorted images, respectively; xj and yj are

the image contents at the j-th local window; and m is the number of local windows of the

image. A system diagram of the proposed quality assessment system is shown in Figure

4.3. Signals x and y denote local windows for which the similarity measure is computed.

The SSIMIPT metric was introduced by Bonnier et al. in [68] and represents the color

version of the Structural Similarity Index (SSIM). According to Bonnier et al., the SSIM

index works with luminance only. Thus, it is adapted to color images by applying the

SSIM index on each channel of the image in color space IPT [74] as follows:
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Figure 4.3. SSIM flowchart for a local window

SSIM(X, Y )IPT = SSIM(X, Y )I .SSIM(X, Y )P .SSIM(X, Y )T (4.15)

Figure 4.4. Global flowchart for SSIMIPT metric.

4.2.4 VIF

Sheikh et al. [66] have adopted a new paradigm for image quality assessment, the visual

information fidelity (VIF) paradigm which is an information theoretic framework based on
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Natural Scene Statistics (NSS) modeling in concert with an image degradation model and

an HVS model.

Figure 4.5. Mutual information between C and E quantifies the information that the brain
could ideally exact from the reference signal, whereas the mutual information between C
and F quantifies the corresponding information that could be extracted from the distorted
signal.

It is known that when images are filtered using oriented band-pass filters (eg. a wavelet

transform), the distribution of resulting (marginal) coefficients are highly peaked around

zeros and possess heavy tails. Such statistical descriptions of natural scenes are labeled as

NSS and it has been an active area of research. The VIF scheme utilizes the Gaussian scale

mixture (GSM) model for wavelet NSS [75]. First, it performs a scale-space-orientation

wavelet decomposition using steerable pyramid [76] and models each sub-band in the source

as:

C = S.U (4.16)

where S is a random field of scalars and U is a Gaussian vector random field. The GSM

model has been shown to capture key statistical features of natural images. The distortion

model describes how the statistics of an image are distributed by a generic distortion

operator. The distortion model chosen for VIF provides important functionality while

being mathematically tractable and computationally simple. It is a signal attenuation and

additive noise model in the wavelet domain:

D = GC + V (4.17)

where G is a deterministic scalar gain field and V is a stationary additive Gaussian

noise random field. This model captures important, and complementary, distortion types:

blur, additive noise, and global or local contrast changes.
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The VIF then assumes that the distorted and source images pass through the human

visual system and the HVS uncertainty is modeled as visual noise: N and N ′ for the source

and distorted image respectively; where N and N ′ are zero-mean uncorrelated multivariate

Gaussians with the same dimensionality:

E = C +N (reference image) (4.18)

F = D +N ′ (test image) (4.19)

where E and F denote the visual signal at the output of the HVS model from the

reference and the test images in one sub-band, respectively from which the brain extracts

cognitive information (see Figure 4.3). With the source, distortion, and HVS models as

described above, the VIF criterion is then evaluated as follows:

V IF =

∑
j∈allsubband I(Cj;F j|sj)∑
j∈allsubband I(Cj;Ej|sj)

(4.20)

where I(X;Y |Z) is the conditional mutual information between X and Y , conditioned

on Z; sj is a realization of Sj for a particular image and the index j runs through all the

sub bands in the decomposed image.

Moreover, the VIF is extended to video quality assessment [77]. The authors justified

the use of VIF for video by first motivating the GSM model for the spatio-temporal natural

scene statistics. The model for video VIF is then essentially the same as that for VIF with

the exception being the application of the model to the spatio-temporal domain as opposed

to the spatial domain.

4.2.5 VSNR

The VSNR denotes a wavelet-based Visual Signal-to-Noise Ratio [69]. The VSNR aims to

evaluate the effect of supra-threshold distortion by using parameters for the HVS model

derived from experiments where the stimulus was an actual image as against sinusoidal

gratings or Gabor patches. The metric takes into consideration low level as well as mid-

level features of the HVS. The low level properties such as contrast sensitivity and visual

masking are employed in the wavelet domain and compared to the detection threshold.

The VSNR first computes a difference image from the reference and distorted images.

This difference image is then subjected to a discrete wavelet transform. Within each
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subband, the VSNR then computes the visibility of distortions, by comparing the contrast

of the distortion to the detection threshold and then computes the root-mean-squared

(RMS) contrast of the error signal (dpc):

dpc =
1

µL(I)

(
1

N

N∑
i=1

[L(Ei + µI)− µL(E+µI)]
2

) 1
2

(4.21)

where µI = (1/N)
∑N

i=1 Ii and µL(I) = (1/N)
∑N

i=1 L(Ii) denote the average pixel value

and average luminance of I, respectively; and µL(E+µI) = (1/N)
∑N

i=1 L(Ei + µI) denotes

the average luminance of the mean-offset distortions E + µI .

Finally, using a strategy inspired from what is termed as global precedence in the HVS,

VSNR computes a global precedence preserving contrast (dgp).

dgp =

(
M∑
m=1

[C∗(Efm)− C(Efm)]2

) 1
2

(4.22)

where C(Efm) denotes the actual contrast of the distortions within the band centered at

fm and C∗(Efm) is global-precedence preserving contrast. For more detailed specifications

of these equations, the reader can be referred to [69].

According to the above, the final VSNR metric, in decibels, corresponding to two images

is given by a combination of perceived contrast of the distortions dpc and discontinuity of

global precedence, dgp as following:

V SNR = 10log10

(
C2(I)

αdpc + (1− α)dgp√
2

)
(4.23)

where C(I) = σL(I)/µL(I) denotes the root mean square contrast of the original I; and

parameter α ∈ [0, 1] determines the relative contribution of each distance.

4.3 Overview of inpainting quality assessment

Early inpainting algorithms have been specifically designed for filling in small missing or

damaged regions in digital images and later in vintage films. Their main objective was,

at that time, to reconstruct the image such that the result would appear to be as close

to the original (undamaged) image as possible. Consequently, many researchers evaluated

the quality of the images inpainted with their newly proposed method by employing simple
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objective metrics, such as MSE, PSNR, etc. or more complex metrics such as SSIM, VIF,

VSNR, etc. [72].

As the domain of digital image inpainting spread, to include applications that require a

larger area to be inpainted, the objective of the inpainting process also changed, from trying

to achieve high fidelity with the original, not degraded, image, to making the inpainted area

as visually pleasing as possible. In other words, the modifications brought to the original

image through inpainting should not be discernible by human observers. Given this new

objective of inpainting, it becomes obvious that evaluation methods previously used (i.e.

MSE, PSNR, SSIM) could no longer provide a good assessment of the inpainting quality.

Thus, new inpainting evaluation methods that would take into account the subjective

nature of the human visual system were required.

At present, a few interesting works on objective IIQA have been published recently

[70–73]. These metrics will be described briefly in the next sub-section and applied to

inpainted images in comparison with our proposal in order to evaluate the performance of

image inpainting quality.

4.3.1 PWIIQ

Authors of [70] proposed a full-reference assessment for image inpainting quality based on

parameter weight. This work was inspired from three observations:

1. Blur produced during inpainting.

2. Non-continuity of edge/margin structure.

3. Mottle appears in the monotone texture color region.

Taking into consideration these factors, a special definition of image evaluation index

inspired from the SSIM metric [65], Q, on inpainting result is given by:

Q = [L(x, y)]α[C(x, y)]β[G(x, y)]γ (4.24)

where L, C, G stand for variance of image luminance, definition and gradient similarity;

and α, β, γ are positive constants to adjust the important degree of each term. This metric

has the same form as SSIM index but it is modified to apply for inpainting quality.

First, the luminance function, L(x, y), is derived from [65] and defined as follows:
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L(x, y) =

∑M
j=1 l(xj, yj)

M
(4.25)

where M is the number of patches in the original image; and l(x, y) is the local lumi-

nance comparison which is defined by equation (4.7).

Second, the definition function, C(x, y), is computed by estimating high-frequency pa-

rameter in the FFT result of the two images:

C(x, y) =

∑m−1
i=0

∑n−1
j=0 |FFTy(i, j)| − |FFTy(0, 0)|∑m−1

i=0

∑n−1
j=0 |FFTx(i, j)| − |FFTx(0, 0)|

(4.26)

where FFT (i, j) stands for all frequency parameter of the original image, and FFT (0, 0)

is the average gray value of image, that is the DC component, so the gap of the two is the

high-frequency parameter of image. The larger the gap is, the more the high-frequency

parameters are. This means that the corresponding image is clearer. Compare the high-

frequency parameters of being tested image with original one, if the two are nearer, and

then the being tested image is clearer and the image quality is better.

Third, the gradient similarity, G(x, y), is regarded as the similarity between the main

structure information in two images and calculated by equation (4.27):

G(x, y) =
2
∑m−1

i=0

∑n−1
j=0 Gx(i, j)Gy(i, j) + C2∑m−1

i=0

∑n−1
j=0 [Gx(i, j)]2 +

∑m−1
i=0

∑n−1
j=0 [Gy(i, j)]2 + C2

(4.27)

where Gx(i, j) and Gy(i, j) are respectively the gradient range of x and y of the original

image at the coordinates (i, j). C2 is a positive number close to zero, which is brought in

to avoid the case that denominator equates zero.

This metric is designed based on parameter weight through analyzing the reason for

subjective distortion feeling after image inpainting. In practical applications of image

inpainting algorithms, mostly there is no standard image as a reference, so how to deal

with inpainting evaluation about non-reference image will be still a big challenge. Figure

4.6 shows some values of PWIIQ index in some cases of inpainting.

4.3.2 ASVS and DN

Two types of observable artifacting in an inpainted image, referred to as in-region and

out-region, are defined in [71]. These types of artifacts are evaluated by the variation

92



4.3. Overview of inpainting quality assessment

(a) (b) Q=0.8852

(c) Q=0.9657 (d)Q=0.9919

Figure 4.6. An evaluation of PWIIQ index for inpainting algorithms; (a) the original
image with the white hole; The results of (b) Total variation model; (c) Criminisi et al.
[17] and (d) Chen et al. [78].

of the saliency map before and after inpainting corresponding to two criteria: average

squared visual salience (ASVS) and degree of noticeability (DN). The saliency maps used

for computing the metric values are generated by using version 3.1 of the iLab Neuromorphic

Vision Toolkit (iNVT), at 1:16 discretization of scale-4 (noiseless) expected visual cortex

stimulation with 0.1 ms observation cutoff, 4 orientation channels, 3 center scales (2 to 4)

and 2 center-surround channels (3, 4). An example of saliency map is shown in Figure 4.7.

The lighter region shows more attention.

The first metric, ASVS, is a no-reference measure and it determines if inpainted pixels

are relatively noticeable as compared to the remainder of the scene:

ASV S =

∑
Ω[S ′(p)]2

|Ω|
(4.28)

where S ′(p) is the pre-saccadic saliency map value (a non-negative upper-bounded

number), as computed by a computational human attention model, that corresponds to

post-inpainting pixel p in the set of inpainted pixels Ω. As in the equation (4.28), the
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(a) (b)

Figure 4.7. An example of saliency map is used for approach in [71]. The saliency map
(b) of the original image (a) is generated by iNVT tool.

ASVS metric takes into account only the inpainted area. Thus, this metric considers

for in-region artifacting which occurs when the pixels in the inpainted region draw more

attention than they are suppose to. As noted in [71] the in-region artifacting is related to

distinct coloration or structure, created after inpainting, that cannot be observed anywhere

else in the image. Consequently, this newly introduced color or structure will result in high

saliency values, and thus higher ASVS score.

Another class of artifacting specific to inpainting applications is represented by the out-

region artifacting. As its name suggests, this class encompasses cases where the inpainting

process modifies the flow of attention outside the inpainting region. The latter usually

happens when an inpainting algorithm cannot successfully continue a locally repeating color

or structure, from outside the gap, inside it. The discontinuation thus introduced indirectly

draws the attention towards the inpainted area, by decreasing the flow of attention drawn

by otherwise salient areas and increasing the attention in the neighbourhood area of the

inpainting domain.

In order to account for out-region artifacting, Ardis et al. [71] proposed another metric,

namely the Degree of Noticeability (DN), which takes into consideration both classes of

artifacting, being calculated as:

DN =
|Ω|

|Ω|+ |Φ|
IN-REGION(I) +

|Φ|
|Ω|+ |Φ|

OUT-REGION(I) (4.29)

where IN-REGION(I) = ASV S and OUT-REGION can be computed by using the
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following equation:

OUT-REGION =
1

|Φ|
∑
p∈Φ

[S ′(p)− S(p)]2 (4.30)

where S ′(p) and S(p) are the saliency map values corresponding to a pixel p belonging to

the inpainting domain before and after inpainting, respectively. As the authors’ suggestion,

higher scores for ASV S andDN can be interpreted as an indicator of highly visible artifacts

and thus a poor inpainting performance.

Although these metrics are correlated well to subjective scores, they needed to be

confirmed by further experiments because in the current experiment, only five observers

are considered.

4.3.3 GDin and GDout

Other two saliency-based metrics have been proposed by Mahalingam [72], resembling

the approach presented earlier by Ardis et al. Authors have defined a normalized gaze

density measure in the saliency map corresponding to the inpainted and original images

and introduced two metrics, GDin and GDout. These metrics show that if there is any

change in the saliency maps corresponding to the inpainted and original image, this change

is related to the perceptual quality of the inpainting.

By comparing the gaze density within and outside the hole region of images inpainted

by both the techniques, the perceptual image inpainting quality can be quantitatively

analyzed. The gaze density of an image inside and outside the hole is given in equation

(4.31) as following:

GDin =
∑
p∈Ω

S ′(p) and GDout =
∑
p∈Φ

S ′(p) (4.31)

where S ′(p) is the saliency map corresponding to the inpainted image corresponding

to pixel p. In order to be able to compare the values provided by these metrics on an

equal footing with reference to the unmodified image, the gaze density is normalized as

the following equations:

GDin =
GDin

GDunmod
in

and GDout =
GDout

GDunmod
out

(4.32)
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where GDunmod
in and GDunmod

out are gaze density measures of original image before in-

painting and calculated similarly to equation (4.31) by replacing S ′(p) with S(p), where S

is the saliency map of the original, unmodified image.

In the original work, the saliency maps were obtained from the eye-tracking experiments

[79] based on the gaze density and the gaze pattern is recorded by the faceLAB eye tracker.

Unfortunately, this way has the same disadvantages as the subjective evaluation methods.

However, since inpainting evaluation methods that are fully automatic are preferred to

those that imply the participation of human observers. Thus, for the sake of similarity,

in our experiment, the saliency maps were calculated with the SaliencyToolbox in iNVT

toolkit [73]. This toolbox is more compact, easier to understand and experiment with.

4.3.4 BorSal and StructBorSal

The metrics introduced in previous section concentrated on considering the variation of

saliency regions inside and outside the gap, respectively. A. I. Oncu et al in [73] showed

that the saliency map values corresponding to a border region around the hole should

be able to accurately capture the saliency change of attention flow, without the need of

examining the saliency map of the whole image. The novelty here consists of considering

only one border region around the gap that contains information from both the inpainting

domain and its complementary area. Consequently, one full-reference metric, denoted by

Border Saliency (BorSal), has been proposed and computed as a normalized gaze density

measure, similar to the GDin and GDout metrics in [79]:

BorSal =

∑
p∈Border S

′(p)∑
p∈Border S(p)

(4.33)

where S ′ and S are the saliency maps of the inpainted and reference image, respectively

and p is a pixel in the region corresponding to the Border region. In order to take into

account information of both inside and outside the gap, the Border region is extended three

pixels inside and outside. In other words, the size of the border region was chosen to be

equal to six pixels and was obtained by applying morphological operations (i.e. erosion,

dilation) to the inpainting domain.

Using the already defined BorSal metric, a second inpainting quality measure is pro-

posed, by combining the BorSal metric with the SSIMIPT measure introduced by [68].

The later takes into account structural information in the whole image and thus can in-
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dicate the presence of artifacting due to poor structure reconstruction, while the BorSal

metric accounts for changes in the flow of attention, post inpainting. The new metric will

be denoted by StructBorSal and its value calculated for the entire image by adding up

the value obtained according to equation (4.34) to evaluate color images:

StructBorSal = BorSal + SSIMIPT (4.34)

4.4 Visual coherence metric for inpainting quality

In some cases, the traditional IQA metrics can be extended and applied for inpainting.

However, these metrics are suitable only in case of thin or small damaged regions. Fur-

thermore, they are full-reference metrics. It means that it is impractical to apply for

inpainting, especially, in case of large inpainting region where the original image (reference

image) might not be available or the inpainted region is total different from the original

one.

For the mentioned IIQA, most of these metrics are based on the HVS features di-

rectly, the saliency map. However, they do ignore an important constraint of inpainting

problem related to type of artifacts that have a great influence on the quality prediction.

Namely, they do not take into consideration the global visual appearance of the image that

significantly affects the restoration quality.

Through the analysis of image inpainting results, we found that two main aspects need

to be considered in image inpainting quality assessment. First, the completion is blindly

performed without any cue from the original content of images, that is, the restored regions

depend on only the rest of the image. Therefore, the new generated pixels should be

consistent with the existing ones. This refers to perceptual coherence of inpainted regions

that determines the new undesired visual artifacts. Second, the structures or contours often

attract more the human gaze than other parts; hence more weight should be associated to

these salient features.

In this thesis, a saliency map, representing an approximation of the human attention,

is used as the weighting map for the evaluation. As a result, an efficient quality index for

IIQA taking into account the mentioned factors is proposed. It is shown that it is possible

to predict reasonably the inpainting image quality in many cases.
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In the following, some notations used in previous chapters are recalled for completeness.

The whole image domain, I, is composed of two disjoint regions: the inpainting region, Ω,

and the known region, Φ (Φ = I − Ω). The basic unit of synthesis at pixel p is a patch,

Ψp, centered at pixel p. The inpainted image quality index, Q, is defined through equation

(4.35).

Q =

∑
ΩC(p)αS(p)β

|Ω|
(4.35)

where C(p), S(p) represent respectively the coherence and structure terms. The two

positive parameters α and β are used to adjust the important degree of each part. In our

implementation, we set α = β = 1 for simplicity and reduce the number of parameters. The

impact of these parameters will be further discussed in next stage. Figure 4.8 demonstrates

a scheme in order to calculate the proposed index.

4.4.1 The coherence term

An inpainted region, Ω, has a global visual coherence with the rest of the image, Φ, if every

new generated pixel is consistent with existing ones in terms of a structural measure. On

the other hand, a local patch, Ψp, should be similar to the one within Φ. The coherence

term for each pixel p(x, y) (p ∈ Ω) is then defined as follows:

C(p) = max{SIM(Ψp,Ψq), ∀Ψq ∈ Φ} (4.36)

where Ψp and Ψq denote small patches around p and q, respectively. SIM is an objective

function to evaluate the similarity between two patches that measures a appropriateness

degree of an inpainted pixel (p) based on existing pixels (Ψq) and its neighbors in Ψp.

A good objective function needs to agree perceptually with a human observer. The

MSE or PSNR are used widely for patch similarity but they are insufficient to provide

the desired results. The main reason for this is that they do not take into account the

human visual features.

In [65], a new similarity function based on the structural information of patches was

proposed. The structural similarity is defined as follows [80]:

SIM(Ψp,Ψq) =
(2µpµq + C1)(2σpq + C2)

(µ2
p + µ2

q + C1)(σ2
p + σ2

q + C2)
(4.37)
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Figure 4.8. An overview scheme of local quality map.
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where µp, σp and µq, σq denote the mean intensity and standard deviation set of patches

Ψp and Ψq, respectively, while σpq denotes their cross correlation. C1 and C2 are small

positive constant values to avoid instability problem when the denominator is close to

zero.

This definition is very easy to understand and takes into account the HVS features but

it works with luminance only, while most of image in our context includes color informa-

tion. Although, human eyes are more sensitive to structure than color of an image, color

information also could influence human beings judgments and it is important for HVS in

quality evaluating. From this observation, we exploit the idea developed in [67] where a

similarity combining structure and color information is introduced in order to compute the

coherence between patches. The detail of similarity function is then defined as follows [81]:

SIM(Ψp,Ψq) = (1− θ)SS(Ψp,Ψq) + θHS(Ψp,Ψq) (4.38)

where θ is a positive constant within the range [0, 1] defining the relative importance

between structure similarity (SS) and hue similarity (HS), corresponding to color informa-

tion. The structure and hue similarity indexes are defined by equations (4.39) and (4.40),

respectively:

SS(Ψp,Ψq) =
(σpq + C1)

(σp + σq + C1)
(4.39)

HS(Ψp,Ψq) =
(2λpλq + C2)

(λ2
p + λ2

q + C2)
(4.40)

where (λp, σp) and (λq, σq) denote the mean hue and standard deviation set of patches

Ψp and Ψq, respectively. C1 and C2 are small positive constant values to avoid computation

instability in very dark or homogeneous regions.

Figure 4.9 illustrates the spatial coherence notion used in the design of the IIQA. Note

that the output shown in Figure 4.9-c is more spatially coherent to that of Figure 4.9-

b. Indeed, some pixels in inpainted regions (the red patches) do not look coherent with

the original patterns. In other terms, there are no similar patches in the source region.

The blue dashed patch representing a restored pixel is more reasonable than the red ones

because it is similar to a blue solid patch in the known region.
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(a) (b) (c)

Figure 4.9. An example of corherence term. (a) An image to be inpainted with green
mask; The output using algorithm of (b) Criminisi et al. [17] is less coherent than those
of Dang’s algorithm in (c) [61].

4.4.2 The structure term

The second term affecting image inpainting quality is the structure factor. Given an image,

human observer would pay more attention to perceptually relevant regions, which usually

correspond to contours and details, but less attention to the rest of the image. Thus, the

contours and other relevant structures in the inpainted regions attract more human gaze

than the other components. For that reason, we may identify the structure term using the

information provided by a saliency map as follows:

S(p) =
SL(p)

maxI{SL}
∀p ∈ Ω (4.41)

where SL is the saliency map of the inpainted image. Several computational models

have been proposed to simulate human’s visual attention [82–84]. However, the high com-

putational cost and variable parameters are still the weaknesses of these models. Authors

of [85] proposed a simple and efficient method based on the idea that objects attracting the

gaze of an observer should have characteristics that go beyond the average behavior of the

image. A simple formulation of the aforementioned saliency map, SM , can be expressed

by equation (4.42):

SL = ||Iµ − IG|| (4.42)

where Iµ and IG are the arithmetic mean pixel value and the Gaussian blurred version of

the original image, respectively. The operation is performed in the CIEL∗a∗b∗ color space.
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Figure 4.10 illustrates an example of coherence and structure maps by pseudo-colored mask

images where the red refers to higher value and the blue refers to lower value.

(a) (b)

(c) (d)

Figure 4.10. Local quality map. (a) The original image; (b) An inpainted image using
Komodakis’ approach [24]; The corresponding (c) coherence and (d) structure maps.
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4.5 Psychophysical experiment for subjective quality

assessment

Quality assessment dedicated to inpainting is rather a new field and the result of such

a technique is often subject to critical evaluation from the end-user including the global

homogeneity of the content and the coherence of added/suppressed regions. Therefore, the

performance of a given metric, whatever its scheme is, should be assessed with regards to

human judgment. However, to the best of our knowledge, there is no exhaustive inpainting

database gathering state of-the-art methods and their associated subjective scores for a

significant set of images. Based on this observation and for the sake of proposing an

objective metric for the evaluation of digital image completion quality, a psychophysical

experiment was performed as part of the work for this thesis and with the goal of subjective

quality assessment of the inpainting results. Moreover, the subjective evaluation is of

great significance for the current work, as the data thus obtained will be used further on

for validating objective methods of quality assessment. The latter provide the means to

ensure the correlation of the metrics with perceived quality. This section will discuss the

experimental setup and the obtained psychophysical results.

4.5.1 Test setup

The experiment was setup in an uncontrolled environment, as a web-based experiment

because of some reasons as follows:

• It is easy to acquire a large number of participants for achieving high statistical power

making it thus possible to draw meaningful conclusions from the experiment.

• It is feasible to carry out the experiment around the clock and reach different cate-

gories of participants such as experts in image quality, professional restorers, naive

observers, etc.

• The difference between results obtained from controlled and uncontrolled experiments

is negligible. Thus, the scores recording in this experiment are reliable.

For image database, a set of ten input images were encoded into PNG format in two

cases: small and large inpainted regions. In the former case, three images and five different
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inpainting algorithms are used. For the latter case, seven images are divided into two sub-

categories: greedy strategy or global optimization strategy. Figure 4.11 shows a snapshot

of the used images. The damaged regions are marked by green or red color. The detailed

specification of these images is given in Table 4.2. As mentioned in Chapter 1, the hole

size is not able to used as the criterion for classifying the damaged regions. In this thesis,

all damaged images were classified by the definition (equation 2.1).

Table 4.2. The parameters of images considered for inpainting algorithm evaluation.

Image Name Resolution Size Hole size H-type

soldier 96 142× 179 4.52% Small

square 72 422× 295 1.98% Small

church 72 300× 200 3.6% Small

boat 96 300× 225 10.73% Large

seaman 96 300× 218 14.87% Large

horse 96 300× 225 14.47% Large

bungee 72 206× 308 12.60% Large

lady 72 375× 500 11.55% Large

house 72 400× 265 21.21% Large

pumpkin 96 372× 332 5.1% Large

To try and cover all inpainting methods would be infeasible. Thus, this thesis looks at

only a selection of algorithms that take different approaches in their shared goal of filling in

missing parts of an image. In case of small inpainted regions, five inpainting algorithms have
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(a) solider (b) square (c) church

(d) boat (e) seaman (f) horse

(g) lady (h) house (i) pumpkin

Figure 4.11. Sets of images used for the subjective evaluation. Images (a), (b), (c) are
used in the small inpainted regions; In the case of the large inpainted region, images are
divided into two sub-group such as images (d), (e), (f) for greedy strategy; and images (g),
(h), (i) for gloabl optimization strategy.

105



Chapter 4. Inpainted Image Quality Assessment

been selected for evaluation. For the large inpainted regions, eight inpaintig algorithms

including both greedy and global optimization strategies are applied for restoring. All

algorithms were programmed with C/C++ programming language and implemented on

the same computer with an Intel Core i5, 2.80 GHz CPU and 4GB RAM. The Table 4.3

lists these algorithms, where the Year of publication, Authors ’ name are provide in first

two columns; Type column indicates the category the algorithm belongs to, depending on

the approach it takes; and H-type, as mentioned before, shorts for ’Hole type’ determining

for which type algorithm provides the best results.

Table 4.3. The selected inpainting algirthms.

Year Authors Type H-type

2000 Bertamı́o et al. [29] PDE Small

2005 Tschumperlé et al. [12] PDE Small

2009 Bugeau et al. [86] Hybrid Small

2006 Wu et al. [20] Exemplar Large

2004 Criminisi et al. [17] Exemplar Large

2011 Zhang et al. [21] Exemplar Large

2012 Dang et al. [61] Exemplar Large

2013 Dang et al. [62] Exemplar Large

2007 Komodakis et al. [41] Global optimization Large

2007 Wexler et al. [26] Global optimization Large

2009 Pritch et al. [27] Global optimization Large

A panel of forty-five observers, having a normal acuity and no color blindness, partic-

ipated to the subjective experiment. The observers were given clear instructions, focused

on the overall quality rating of the inpainted images. Accordingly, before commencing the
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experiment the observers were informed and trained on the system on a set of test images,

as follows:

• One image that corresponds to the original state of a damaged painting, with visible

artifacts.

• A series of result images corresponding to the restored versions of the same image

after repairing the artifacts.

Figure 4.12. An example of images presented during the experiment.

Figure 4.12 shows an example of such a test group presented during the experiment.

The top-left image shows the degraded image and the remaining images are the restored

versions. The instructions also stated that this positioning between the original and re-

stored images will be kept as such, throughout the entire experiment. In order to score

for the test images, participants were asked to select a score in the combo box below each

restored image. Scores were given on discrete scale ranging from 1 - Unacceptable to 5 -

Perfect in the combo box and are described as in Table 4.4
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Table 4.4. Mean opinion score (MOS).

Score Quality Impairment

1 Unacceptable Too many artifacts and very annoying to viewers.

2 Bad Many artifacts are easy to detect.

3 Acceptable Some artifacts but not affecting image interpretation.

4 Good A few artifacts but difficult to detect.

5 Perfect Almost no artifact.

Observers were allowed to change their vote within a same series of images until vali-

dation. This has been done to account for the unavailability of a real original image and

availability of different versions of results. The inpainted images were randomly presented

and shown without including the name of inpainting methods to avoid any bias or influence.

4.5.2 Evaluation methodology

The experimental method for the subjective quality assessment was chosen to be the Mean

Opinion Score (MOS) [87]. This method was initially designed for audio quality evaluation,

but it has been widely used for image quality evaluation. Historically, and implied by the

word Opinion in its name, MOS was a subjective measurement whose values are scored

from observers as they perceived it. Participants were presented with a group of inpainted

images at a time. Given inpainted images, the participants were asked to judge the overall

IQ of the inpainted image using the ITU-R five point quality scale, labelled with the

adjectives [87] as previous section. In order to be able to analyse the subjective data

obtained, each of the five adjectives in the descriptive quality scale had an equivalent

numerical value. Accordingly, Unacceptable corresponded to a 1 score and Perfect to a 5

score. Once the score values are obtained from observers, the MOS associated Confidence

Interval (CI) is then computed thanks to the following equation giving the average opinion

of the observers regarding the submitted question.
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ujk =

∑
i ui,j,k
S.N

(4.43)

where ujk is the mean score of the observer i for the inpainting method j and image

k; N represents the number of observer; S is the dynamic range of the scores (S = 5) in

order to normalize the MOS value in range [0, 1].

In order to evaluate as well as possible the reliability of the results, a confidence interval

is associated to the MOS. It is commonly adopted that the 95% confidence interval is

enough. This interval is designed as:

[ujk − δjk, ujk + δjk] (4.44)

where

δjkr = 1.95
σjk√
N

(4.45)

The standard deviation, σjk, is defined as:

σjk =

√√√√ N∑
i=1

(ujk − uijk)2

N − 1
(4.46)

The second part of this study refers to the evaluation of objective quality assessment

methods. For this set of test images, the scores given by quality metrics are calculated for

each image, and compared with the subjective scores given by observers to the same image.

Consequently, the performance of the metrics is quantified by the correlation between these

two scores. Correlation analysis shows the degree by which the objective values can be

predicted, or be explained, by the subjective values. Higher correlation values indicate

higher performance of the metrics.

There have been several tools on the correlation analysis in literature. In our research,

two standard correlation measures as in the framework of the VQEG group [88] have been

used: Pearson’s correlation coefficient (PCC) and Spearman rank order correlation (SCC).

1. Pearson’s correlation coefficient [89]: Pearsons correlation coefficient is used for data

on the interval or ratio scales, and is based on the concept of covariance. The product-

moment statistic is given by:
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PCC =

∑n
i (Xi −X)(Yi − Y )√∑n

i (Xi −X)2

√∑n
i (Yi − Y )2

(4.47)

where PCC ∈ [−1, 1], n denote the number of samples inX and Y which are variables

associated with subjective and objective results, respectively.

2. Spearman rank order correlation [89]: The Spearman rank correlation coefficient (or

Spearman’s rho), is used with ordinal data and is based on ranked scores. The

SCC is the nonparametric analog to PCC is defined as the PCC between the ranked

variables. Accordingly, the process for Spearman’s correlation first requires ranking

the X and Y scores. The analysis is then performed on the ranks of the scores, and not

the scores themselves. The paired ranks are then subtracted to get the differences,

di = Xi−Yi, which are then squared to eliminate the minus sign. If there is a strong

relationship between X and Y then paired values should have similar ranks. The test

statistic is given by:

SCC = 1− 6
∑n

i d
2
i

n(n2 − 1)
(4.48)

Following the methodology above, the performance of the considered metrics is evalu-

ated over the entire image database.

4.5.3 Psychophysical results

A total of forty-five observers participated in the psychophysical experiment for inpaint-

ing quality rating. Before proceeding with the interpretation of the obtained results and

data analysis, in ITU-R 500-10 standard [90] a procedure for screening the observers is

recommended. The results analysis is able to eliminate from the final calculation either a

particular score or an observer. This rejection allows to correct influences induced by the

observer’s behavior, or bad choice of test images. The most obstructing effect is incoher-

ence of the answers provided by an observer, which characterizes the non-reproductibility

of a measurement. These average values are function of two variables: the presentations

and the observers. Then, we check if this distribution is normal by using the β2 test, where

β2 is the kurtosis coefficient, i.e. the ratio between the fourth-order moment and the square

of the second-order moment, is given by:
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β2jk =
1
N

∑N
i=1(ujk − uijk)4(

1
N

∑N
i=1(ujk − uijk)2

)2 (4.49)

If β2jk is between 2 and 4, we can consider that the distribution is normal. In order, to

compute Pi and Qi values that will allow to take the final decision regarding the outliers,

the observations uijk for each observer i, each degradation j, and each image k, is compared

thanks to a combination of the MOS and the associated standard deviation. The different

steps of the algorithm are summarized below, while the reader is referred to [90] for more

details:

Algorithm 4.1. Algorithm for outliers rejection.

foreach observer i do
if (2 ≤ β2jk ≤ 4) then

/* Normal distribution */

if (uijk ≥ ujk + 2σjk) then
Pi = Pi + 1;

end
if (uijk ≤ ujk − 2σjk) then

Qi = Qi + 1;
end

end

if (uijk ≥ ujk +
√

20σjk) then
Pi = Pi + 1;

end

if (uijk ≤ ujk −
√

20σjk) then
Qi = Qi + 1;

end
/* Finally, we can carry out the following eliminatory test */

if (Pi+Qi
JK

> 0.05 and Pi−Qi
Pi+Qi

< 0.3 ) then
Eliminate scores of observer i;

end

end

where J is the total number of degradations and K is the total number of images.

Consequently, from a total of 38, results of 11 participants were rejected and only 27

considered for further evaluation. A demographic distribution of the observers is shown in

Figure 4.13, while the Figure 4.14 shows the charts of MOS calculated from the raw data.
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Figure 4.13. A subjective judgment based on the web-based experiment.

(a)

(b) (c)

Figure 4.14. Mean Opinion Score for (a) small inpainted regions; and the large inpainted
regions completed with (b) greedy strategy or (c) global optimization strategy.
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From the Figure 4.14, it is clearly possible to conclude about the visual performance

of restored results. The MOSs obtained from this study are of a high importance since it

will allow to study the performance of the proposed inpainting quality metric thanks to

the evaluation of the precision and accuracy of the predicted scores with regards to human

judgement.

4.6 Experimental results and discussion

Following the methodology presented in previous section, the performance of a set of quality

metrics will be considered in this section. The set includes seven general image quality

metrics in section 4.2 and seven inpainting quality metrics in section 4.3 and our proposed

metrics in section 4.4.

Based on raw perceptual data, the Mean Opinion Score (MOS) is calculated for each

image in the database. For each image and each metric, an objective score will be cal-

culated, describing the quality of the reproduction. Then, the Pearson product-moment

(PCC) [89] coefficient and Spearman’s rank correlation coefficient (SCC) [89] between MOS

and the objective scores are calculated in order to evaluate the performance of the metrics

considered.

In order to achieve a fair evaluation of the metrics, the investigation of their performance

was carried out in two cases: small inpainted regions and large inpainted regions.

4.6.1 Case 1: Small inpainted regions

Early inpainting algorithms have been tried to simulate the work of the restoration in the

museums. Thus, the main function of the inpainting algorithms is to restore the small or

thin damaged regions and to make the input image as close to the original image as possible.

Many publications have been introduced in this context. In this thesis, three images have

been used (see Table 4.2) and restored by five approaches described in [6], [12], [86], [17]

and [61]. Fifteen results were then obtained and used to evaluate the objective metrics.

In an attempt to compare with full-reference image quality metrics and existing in-

painting quality metrics, the selected images are used as the ground-truth and the small

or thin artifacts are added as the pseudo-inpainted regions for restoring. With the original

goal of inpainting algorithms to bring the original degraded image to a state that is as close
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as possible to the state of the final restored image, the inpainting results will be compared

with the reference image and evaluated using the metrics in previous sections. Figure 4.15

illustrates one of the obtained results using these algorithms and the pseudo-inpainted

regions marking with green color occupy 4.52% of the total image.

Seven image quality metrics and five inpainting quality metrics have been applied and

calculated in order to compare with our proposals. The corresponding PCC metrics and

SCC metrics are calculated and presented in Table 4.5 and illustrated by Figure 4.16.

Where Q1 and Q2 are two proposed metrics for gray and color level versions, respectively.

The first metric Q1 uses the coherence term with similarity measurement in equation (4.37),

while the second metric Q2 applies the similarity measurement in equation (4.38).

From these metrics, it could be found that in some cases, the PCC and SCC values of

PWIIQ metrics, for example, are higher than the proposed metrics. This is caused by the

fact that in these case, the PWIIQ metrics is a full-reference metric which could use both

distorted and reference images for evaluation. Moreover, the interpolation-based inpainting

methods sometimes work better than exemplar-based inpainting methods in case of small

or thin degraded area. Whereas, our metrics are no-reference metrics which cannot work

well without valid patches.

However, the obtained results indicate that most of the considered metrics have low

PCC as well as low SCC. Thus, it can be concluded that, for the considered image

database, they can not accurately predict perceived image quality. It could be noticed

that ASV S, DN , GDin and GDout metrics determine the presence of inpainting artifacts,

that is, they intend to produce lower values for better results. As we can see, our indexes

is the most consistent with MOS values and produces the highest mean value for both

PCC and SCC measures.

4.6.2 Case 2: Large inpainted regions

The main challenging case of inpainting quality assessment is the one corresponding to

large inpainted regions. Because many published methods achieve impressive results in

recovering the large damaged regions, there is no successful metric in order to evaluate the

obtained results. Thus, it is really meaningful and valuable if it can assess quality of a

large restored region. This section will investigate the performance of selected metrics in

the case of large inpainted regions.
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(a) (b)

(c) (d) (e)

(f) (g)

Figure 4.15. The inpainting results (image 2). (a) The original image; (b) A pseudo-
inpainted image; The outputs when using the methods of (c) Bertamı́o et al. [6]; (d)
Tschumperlé [12]; (e) Bugeau et al. [86]; (f) Criminisi et al. [17] and (g) Dang et al. [61].
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(a)

(b)

Figure 4.16. Performance of the quality metrics in case of small inpainted region. (a)
Pearson correlations (PCC); (b) Spearman correlations (SCC).

As mentioned in previous sections, we can divide the inpainting methods in this case

into two sub-groups such as greedy strategies and global optimization strategies. In our

experiments, we selected the methods in [17], [21], [20], [61] and [91] for greedy strategies

and [26], [24] and [27] for global optimization strategies.

For test images, four images are used as inputs in case of greedy strategy and three

images are selected as inputs in the other case (see Table 4.2). Figures 4.17 and 4.18 give

an example of restoration in each case. Consequently, twenty restored images are used to

evaluate in case of greedy strategy and nine other restored images are used to evaluate in
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Table 4.5. The PCC and SCC indexes in case of small inpainting regions.

PCC SCC

Image ID 1 2 3 1 2 3

MSE 0.1949 -0.5413 -0.6301 0.50 -0.65 -0.50

PSNR -0.1733 0.5508 0.5385 -0.50 0.35 0.50

V DP -0.8640 -0.6179 -0.4814 -0.60 -0.65 0.10

MSSIM 0.4745 0.5836 0.1360 0.70 0.05 -0.25

MSSIMIPT -0.5557 0.5540 -0.9838 -0.50 0.05 -0.90

V IF -0.0998 0.6222 0.2167 -0.35 0.35 0.50

V SNR -0.1678 0.7706 -0.9416 -0.30 0.55 -0.90

PWIIQ 0.9220 -0.0918 0.9830 0.70 0.25 0.90

ASV S 0.8614 0.9235 0.3103 0.60 0.85 0.50

DN 0.9157 0.8046 0.6971 0.85 0.80 0.70

GDin -0.2531 -0.3058 0.8066 -0.60 -0.60 0.70

GDout 0.4999 -0.3718 0.4900 0.60 -0.70 0.70

Q1 0.9747 0.7025 0.8355 1.00 0.65 0.70

Q2 0.9632 0.7884 0.7178 1.00 0.85 0.70

case of global optimization strategy for IIQA evaluation.

Since the inpainting regions are large and the main objective of these methods is to

restore the damaged images in a visually plausible way without refering to an original

image, the full-reference metrics, such as MSE, PSNR, MSSIM , V IF , V DP , etc. could

not be applied. Therefore, four indexes, ASV S and DN , GDin and GDout are used in this
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(a) (b)

(c) (d)

(e) (f)

Figure 4.17. The inpainting results for greedy strategies. (a). Image to be inpainted;
The outputs when using the approaches of (b) Criminisi et al. [17]; (c) Wu and Ruan[21];
(d) Zhang and Lin [20]; (e) Dang et al. [61] and (f) Dang et al. [91].

case. In the original work, the saliency maps used to calculate for the two metrics GDin

and GDout were recorded using the Seeing Machines faceLAB eye tracker. However, since

inpainting evaluation methods that are fully automatic are preferred to those that imply

the participation of human observers. Thus, for the sake of similarity, in our experiment,

the saliency maps were computed with the SaliencyToolbox in iNVT toolkit [73]. Similarly,

two other metrics, ASV S and DN , were also computed using the saliency maps obtained
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(a) (b)

(c) (d)

Figure 4.18. The inpainting results for global optimization strategies. (a) Image to be
inpainted; The outputs when using the approaches of (b) Wexler et al. [26]; (c) Komodakis
[24] and (d) Pritch et al. [27].
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Table 4.6. The PCC and SCC indexes for greedy strategies.

PCC SCC

Image ID 4 5 6 7 4 5 6 7

ASV S 0.1946 -0.4651 -0.7154 0.7891 0.1 -0.8 0.8 -0.55

DN 0.6870 -0.4790 -0.8379 0.8793 -0.9 -0.9 0.9 -0.65

GDin -0.6571 0.7918 -0.9132 0.3815 0.5 0.4 0.9 -0.25

GDout 0.0111 -0.9129 0.3777 -0.4756 0 -0.4 -0.1 0.65

Q1 0.6339 0.6250 0.7516 0.7185 0.7 0.6 0.9 0.65

Q2 0.7807 0.4999 0.1497 0.5429 1 0.6 0.6 0.65

Table 4.7. The PCC and SCC indexes for global optimization strategies.

PCC SCC

Image ID 8 9 10 8 9 10

ASV S 0.7135 0.7135 0.4242 -0.5 -1 -0.5

DN 0.9073 0.9921 -0.9885 -1 -1 1

GDin -0.7203 0.9954 0.9989 -1 -1 -1

GDout 0.2970 -0.8869 -0.8638 -1 0.5 0.5

Q1 0.5140 0.8446 0.9894 0.5 1 1

Q2 0.4941 0.8515 0.9989 1 1 1

from this toolkit. The output results are also subjectively evaluated and MOS are available

for studying the performance of the considered metrics.

The PCC and SCC values given in Tables 4.6 and 4.7 clearly confirm the efficiency
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(a)

(b)

Figure 4.19. Performance of the quality metrics in case of large inpainted region for
greedy strategy. (a) Pearson correlations (PCC); (b) Spearman correlations (SCC).

of the proposed index in quantifying the quality of inpainting results. To illustrate more

intuitively, they are represented by charts in Figures 4.19 and 4.20. Indeed, the mean values

of the proposed indexes are highest. This indicates that our index appears promising for

inpainting quality assessment.

4.7 Conclusion

In this section, a novel approach for inpainted image quality evaluation has been proposed.

It is shown that the traditional image quality index could not be used for evaluating the

inpainting results. By taking into account the specificities and objectives of image com-
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(a)

(b)

Figure 4.20. Performance of the quality metrics in case of large inpainted region for
global optimization strategy. (a) Pearson correlations (PCC); (b) Spearman correlations
(SCC).

pletion problem and some characteristics of the humane visual system, such as perceptual

saliency, two efficient metrics could be derived, the gray and color level versions.

An overview of existing image quality metrics and inpainting quality metrics has been

discussed and compared with our proposals in some cases.

Eleven different digital inpainting algorithms were qualitatively evaluated by conduct-

ing a psychophysical experiment and a set of ten natural images were chosen in order to

generate an inpainting database for evaluation. To avoid ranking bias, the inpainting al-

gorithms were divided into two cases: the small and large damaged regions. The tested

images were also classified into corresponding groups.

The proposed image inpainting quality indexes not only correlate with subjective eval-

uation but also could be applied to most of image inpainting approaches because they are
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no-reference inpainting quality metrics. The performed experimental results and compar-

ison with some current metrics confirm the efficiency of the proposed indexes respect to

both the Pearson’s correlation, PCC, and the Spearman rank order correlation, SCC,

coefficients.

Future work will include an expanded psychophysical experiment that will consider

more recently natural images and current inpainting algorithms in order to reconfirm the

efficiency of our proposals. An extensive research should be conducted with the aim of

developing an IIQA metric for video or sequence images.
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Inpainting Forgery Detection

“It is not the strongest of the species that survives, nor the most

intelligent that survives. It is the one that is the most adaptable

to change.”
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5.1 Why could inpainting be considered as forgery

tool?

Today’s technology allows users to manipulate digital media in ways that were simply

impossible a decade ago. Tomorrow’s technology will almost certainly allows us to ma-

nipulate digital media in ways that today seem unimaginable. These media are prone to

several sources of accidental or intentional degradations. And as this technology continues

to evolve, it will become increasingly important for the science of digital forensics to try

to keep pace. As a result, there is a rapid increase of the digitally manipulated forgeries

in mainstream media, on the Internet, especially on social network. Therefore, developing

techniques to verify the integrity and the authenticity of the digital images became very

important, especially considering the images presented as evidence in a court of law, as

news items, as a part of a medical record or as a financial document, etc.

An image can become a forgery based on the context in which it is used. For instance,

an image altered for fun or someone who has taken a bad photo, but has been altered to

improve its appearance cannot be considered a forgery even though it has been altered

from its original capture. In contrast, it is a forgery image if an altered image is used to
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create non-existing situations threatens to diminish the credibility and value of images or

videos presented as evidence in court independently of the fact.

An example of a digital forgery is shown in Figure 5.1. As in the figure, the sub-figure

5.1-a is considered as forgery because they are illustrated in a newspaper in order to distort

the truth [92]. Some objects was rescaled and duplicated to paste on the original images

and create an illusion of an out-of-focus background. Two other images in Figure 5.1-b

have been edited for fun. Surely, they are not tampering.

(a) (b)

Figure 5.1. An example of very realistic-looking forgeries. The image in (a) is forgery
because of illustration in a newspaper [92]; but two edited photos of a wedding album in
(b) are not forgery.

Naturally, digital image forensics technology is a new research and it can be divided into

active evidence and passive-blind evidence based on whether the additional information is
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embedded into digital images in advance or not. Alternatively, active evidence is mainly

about digital watermark which has been proposed as a mean for fragile authentication,

content authentication, detection of tampering, etc. While this approach can provide

useful information about the image integrity and its processing history, the watermark has

some drawbacks:

• The watermark must be inserted at the time of recoding before the tampering occurs.

• The watermark can be fragile and it is easy to be destroyed by an image processing

operator such as compressing, rescaling, etc.

• The watermark cannot detect accurately areas where the image has been manipulated.

• The watermark cannot distinguish whether a manipulation is innocent, such as JPEG

compression, sharpening from those which are malicious such as adding or removing

parts of an image.

On the contrary, passive techniques for image forensics should operate in the absence of

any watermark or signature. These techniques work on only the assumption that although

digital forgeries may leave no visual clues that indicate tampering, they may alter the

underlying statistics of an image. The set of image forensic tools can be roughly divided

into five groups [93]:

1. Pixel-based methods that detect statistical anomalies introduced at the pixel level.

2. Format-based methods that leverage the statistical correlations introduced by a spe-

cific lossy compression.

3. Camera-based methods that exploit artifacts introduced by the camera lens, sensor,

or on-chip processing.

4. Physically-based methods that explicitly model and detect anomalies in the three

dimensional interaction between physical objects, light and the camera.

5. Geometric-based methods that make measurements of objects in the world and their

positions relative to the camera.
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Early tampering using powerful image processing tools such as Photoshop or Freehand,

is not too big challenge for humans. However, the development of sophisticated algorithms

in image processing field, such as image inpainting, which do not leave any obvious clues

after manipulating image, make it relatively difficult to detect with human vision. Thus,

image tampering detection is one of the primary objectives in image forensics.

In this chapter, we are considering a specific type of image forgery using inpainting

algorithm to modify the context of image, namely inpainting detection. Since the main

goal of inpainting is to remove or restore a part of the image based on the remaining parts

of the same image such that the restored regions are undetectable by viewers, developing

techniques to verify the integrity and the authenticity of the digital images became very

important. Especially when the inpainting algorithms is more sophisticated and tampered

images do not reveal any visual artifacts or anomalies, the detection algorithm can still work

well based on the difference of underlying statistics between these images and the original

one. To restore the large damaged regions, the main operation is copying and pasting

pixels’ intensity values from the known sources into the unknown regions. In principal, the

inpainting detection is synonymous with copy-move forgery detection. However, there is a

little difference between these two problems:

• The copy-move forgery techniques are used to detect the clone area using image

processing tools. While the damaged regions in inpainting problem are restored from

many distinguishing patches in the known source. These patches may not belong to

the same area. Thus, the duplicated regions may not exist (for example, inpainting

in previous section).

• The forged region decision has been made based on the amount of shift, the distance

between the original and copied regions. However, the duplicated regions may not

exist in inpainted image. Thus, it is impossible to confirm an inpainted image based

on a shift counter as in copy-move detection.

• In some applications, the objective of inpainting algorithm is to remove or replace an

object which may include the feature points with a homogeneous background which

may not include any feature point. Thus, using image feature matching to detect the

duplication region is not able to apply for inpainting detection in this sense.
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(a) (b)

Figure 5.2. The difference between inpainting and copy-move problems. (a) inpainted
region is copied from many different sources; while (b) a forged region is copied from
another isoform.

Figure 3.13 illustrates an example of inpainting result in which the inpainted region is

filled in by many distinguish small regions. Figure 5.2 indicates the differences between

these two problems. In this context, the existing copy-move detection techniques often fail

to detect the inpainting regions.

5.2 Overview of forgery

To cover and summarize all forgery techniques would be hard and complex. Thus, this

section only focuses on related forgery techniques that can be referred to compare and

evaluate the performance of our proposal for inpainting detection purpose. Because we

are interested in only large restored regions using inpainting algorithm with processing

operations similar to copy-move methods, a brief evaluation of popular copy-move forgery

detections will be considered in this section and listed in Table 5.1. As described before,

the columns Year and Authors present the year of the publication and the name of the

authors, respectively. The Type indicates the category of the algorithm. The two remaining

columns describe for the used feature. Where F-type, short for ‘Feature type’, shows the

kind of feature extracted from image or block, and the corresponding number of dimensions

is given in column F-length, stand for ‘Feature length’. The symbol ‘-’ is used when the
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number of dimension is undefined or not mentioned in the publication.

Table 5.1. The selected methods for copy-move forgery detection.

Year Authors Type F-type F-length

2003 Fridrich et al. [94] Frequency DCT 256

2009 Bayram et al. [95] Frequency FMT 45

2010 Bashar et al. [96] Frequency DWT 256

2004 Popescu et al. [97] Dimensionality reduction PCA 32

2008 Kang et al. [98] Dimensionality reduction SVD -

2010 Bashar et al. [96] Dimensionality reduction KPCA 192

2007 Mahdian et al. [99] Moments BLUR 24

2009 Wang et al. [100] Moments HU 4

2010 Ryu et al. [101] Moments ZERNIKE 12

2006 Luo et al. [102] Intensity LUO 7

2011 Bravo-Solorio et al. [103] Intensity BRAVO 4

2010 Lin et al. [104] Intensity LIN 9

2009 Wang et al. [105] Intensity CIRCLE 4

2008 Huang et al. [106] Keypoint SIFT 128

2010 Pan et al. [107] Keypoint SIFT 128

2011 Amerini et al. [108] Keypoint SIFT 128

2010 Bo et al. [109] Keypoint SURF 64

2011 Shivakumar et al. [110] Keypoint SURF 64
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Although, a large number of copy-move detection algorithms have been published, most

techniques follow a common scheme as shown in Figure 5.3. According to this scheme, the

first step is pre-processing in which some operations are performed to normalize the input

image. For instance, most methods require a grayscale image as input rather than color

image. Thus, the color channels must be first merged to convert into gray level. Due

to differences in the computational cost as well as the detected details, two processing

alternatives such as block-based methods and keypoint-based methods [111] are used to

extract the feature vectors. The matching step is to define the similarity between two

feature descriptors which is interpreted as a cue for duplicated regions. Filtering schemes

have been proposed to reduce the probability of false matches. Different distance criteria

were also formulated in order to filter out weak matches. For example, most authors

proposed the Euclidean distance between matched feature vectors. Bravo-Solorio and

Nani [103] proposed the correlation coefficient as a similarity criterion. Lastly, the post-

processing is only used to preserve matches that exhibit a common behavior. Consider a

set of matches belonging to a copied region, they are expected to be spatially close to each

other in both the source and the target blocks. Moreover, matches that originate from the

same copy-move action should exhibit similar amounts of translation, scaling and rotation.

Figure 5.3. Common processing pipeline for the copy-move detection.
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5.2.1 Block-based approaches

The key characteristic of the methods of this group is dividing the input image into over-

lapping blocks. The feature vector of each block is then extracted and used as input for

block matching. The feature length depends on each extraction algorithm. Figure 5.4

shows a common illustration of the methods in this group.

There are many criteria to classify the methods of this group into sub-groups. For block

matching, there are two sub-groups: exact match and fuzzy match. The difference between

them is that the vector of block feature is identical or similar. Exact match only finds out

exactly the same as the copy of image block and its robustness is limited. The fuzzy match

is used more widely because of more practical value. For block feature extraction, most

methods can be classified into four sub-groups:

• moment-based methods.

• dimensionality reduction-based methods.

• intensity-based methods.

• frequency domain-based methods.

Figure 5.4. A common illustration of block-based approaches.

A notable constraint in this group is that the block size must be considerably smaller

than the duplicated region to be detected. In this section, thirteen block-based methods

covering all four groups are investigated.

133



Chapter 5. Inpainting Forgery Detection

5.2.1.1 Frequency-based methods

Methods in this group concentrate on transforming the pixel values within a block into

spatial frequency space in order to extract and preserve high or low frequency features. In

this group, there are three typical approaches based on Discrete Cosine Transform (DCT)

[94], Discrete Wavelet Transform (DWT) [96] and Fourier-Mellin Transform (FMT) [95].

Figure 5.5. Basis functions of the Discrete Cosine Transformation with corresponding
coefficients.

As one of the earliest methods, Fridrich et al. [94] have proposed a simple and efficient

algorithm to detect the duplicated region using block matching strategy. To avoid the

influence of noise and compression, 256 DCT coefficients are used as features instead of

the original pixel values. In addition, an extension of DCT for block size 16× 16 is devel-

oped to prevent too many false matches instead of simply using the standard quantization

matrix of JPEG (8× 8 as in Figure 5.5). A detailed extension of the quantization matrix

is given in [94]. All feature vectors are then lexicographically sorted to reduce computa-

tional complexity. Finally, the forgery decision is made based on a 2D shift counter which

accumulates the frequencies of relative distance of matching blocks.

The second frequency-based approach recalled in this section has been proposed by
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Bashar et al. [96]. Since natural images might have discontinuity effects due to existence

of various man-made structures, the traditional Fourier Transform (FT) or Short Time

Fourier Transform (STFT) is not well suited. In this scenario, the authors indicated that

a Wavelet Transform is more suitable to the effective local analysis of the image. A DWT

using Haar-Wavelets is performed to convert the blocks in a natural image into DWT co-

efficients. These coefficients are then arranged into a vector according to decreasing local

variances. Moreover, authors also introduced another transform to reduce the dimensional-

ity of feature using Kernel Principal Component Analysis (KPCA), a variant of traditional

PCA. Accordingly, the feature vector is reduced up to 192 dimensions. Although KPCA

is computationally more expensive than the linear PCA, it extracts more useful features.

Some results of this approach can be found in [101].

The last frequency-based approach has been introduced by Bayram et al. [95]. The

authors recommended the use of the FMT for generating feature vectors. Essentially,

these features would not be only robust to lossy JPEG compression, blurring, or noise

addition, but also known to be scaling and translation invariant but sensitive to rotation.

Furthermore, the counting boom filters are used, instead of lexicographic sorting, to reduce

the detection time. Some outputs of this approach are available in [95].

5.2.1.2 Dimensionality reduction-based methods

The main idea of the methods in this group is to reduce the number of dimensionality of

feature vector which can significantly affect the performance of similar block search. Here,

we recall three typical techniques for converting and reducing the number of correlated di-

mensionality, such as Principal Component Analysis (PCA), Singular Value Decomposition

(SVD) and Kernel Principal Component Analysis (KPCA).

In [97], Popescu et al. proposed to perform PCA to derive an alternative representation

of the blocks instead of quantized DCT coefficients. For this purpose, a new linear basis

was obtained by finding the eigenvectors of the covariance matrix and the projection of each

block onto these basis vectors with higher eigenvalues was used as new representation to

reduce dimensionality. In their paper, the method was shown to be robust to compression

up to JPEG quality level 50 and to additive noise with SNR 36dB and 29dB, but not to

re-sampling (scaling, rotation).

Kang et al. [98] computed the singular values of a reduced rank approximation (SVD).

In the proposed passive techniques, SVD served to produce algebraic and geometric in-
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(a) (b) (c)

Figure 5.6. An illustration of PCA dimensionality reduction. (a) A data set given as
3-dimensional points; (b) The three orthogonal Principal Components (PCs) for the data,
ordered by variance; (c) The projection of the data set into the first two PCs, discarding
the third one.

variant and feature vectors. Experimental results demonstrate the validity of the proposed

approach to tampered images undergone some attacks like Gaussian blur filtering, Gaussian

white noise contamination and lossy JPEG compression.

The third technique for reduction of dimensionality has been proposed by Bashar et

al. [101] as mentioned in previous subsection. In their work, an extension of traditional

PCA, called Kernel Principal Component Analysis (KPCA) which achieves non-linear di-

mensionality reduction through the use of kernels, is applied to reduce the dimensionality

of feature. A performance evaluation of this approach is described in more details in [101].

5.2.1.3 Moment-based methods

In general, moments describe numeric quantities at some distance from a reference point

or axis. In image processing, computer vision and related fields, an image moment is a

certain particular weighted average (moment) of the image pixels’ intensities, or a function

of such moments, usually chosen to have some attractive property or interpretation. In

this context, three kinds of image moments, such as blur moment [99], Hu moment [100]

and Zernike moment [101], have been proposed.

The first moment-based method was proposed by Mahdian and Saic [99] where blur

moment invariants are developed as block feature. Here, each block is represented by blur

invariants which are function of central moments. 24 blur invariant components up to the
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Figure 5.7. A set of complex Zernike polynomials.

seventh order are extracted to create a 24D-feature vector. The detailed implementation

of this invariant extraction is found in [99]. For color images, moment invariants of each

block in each channel are computed separately, resulting in a 72D-feature vector. To

reduce the dimension, a PCA is applied and the number of dimensionality is cut down to

9D. In addition, the KD-tree representation is constructed for searching nearest neighbors

to improve the efficiency of finding neighboring blocks.

Following the same idea, Wang et al. [100] used first four Hu moments as features

instead of blur invariants. The Hu moments are invariant with respect to scale, position,

and orientation. The efficiency of this approach lies in the use of a Gaussian pyramid

representation to reduce the dimension of input image as well as reduce the total number

of blocks to narrow block-matching searching space. The Hu moment is applied to the

fixed sized overlapping blocks of low-frequency image. Finally, similar eigenvectors are

matched using a certain threshold value and some mathematical morphology operations

are performed to locate the tampered parts.

The last method of this group has been recently proposed by Ryu et al. [101] in which

Zernike moments are used as features to detect the duplicated regions. Of various types

of moments defined in the literature, Zernike moments have been proven to be superior

to the others in terms of insensitivity to image noise, information content, and ability to
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provide faithful image representation. In particular, the magnitude of Zernike moments is

algebraically invariant against rotation. So this method can detect a forged region even

though it is rotated. Each block is represented by a feature vector of 12 Zernike moments.

For more details of the algorithm, the reader could refer to [101].

5.2.1.4 Intensity-based methods

The last group of detection techniques presented in this thesis is intensity-based approach

where the feature vectors are computed directly from the pixels’ intensities instead of

transforming into other orthogonal projections. Four detection techniques are considered.

The first detection technique was proposed by Luo et al. [102]. For each block, seven

characteristic features are calculated including three average components of the red, green

and blue channels and four other directional information components of blocks. To cal-

culate the last four features, the block is divided into 2 equal parts in 4 directions as

Figure 5.8 and these components are computed on Y channel. The detailed implemen-

tation can be found in [102]. These characteristics features do not change significantly

after some common processing operations such as Gaussian noise, Gaussian bluring, JPEG

compression.

Figure 5.8. Four directions for calculation of the last four features in Luo’s approach
[102].

The second technique in this group was introduced by Bravo-Solorio et al. [103]. The

authors considered the entropy of a block as a discriminating feature. Four color-dependent

features are calculated considering only the pixels within a disc of diameter q, which just

fits inside block. The first three features are independently computed as the average of the

red, green and blue components of the pixels in the disc as in Luo’s approach [102], but the

fourth feature is computed as the entropy of the luminance channel. The algorithm uses

colour-dependent feature vectors to reduce the number of comparisons in the search stage.

While 1D descriptors, invariant to reflection and rotation, are used to perform an efficient
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search in terms of memory usage. To reduce the number of false matches, the correlation

coefficient between two features is used instead of Euclidean as other methods.

The third approach was recommended by Lin et al. [104]. The 9-dimensional feature

vectors are extracted based on the average gray-scale intensities of a block and its sub-

blocks. Firstly, each block is divided into four equal-sized sub-blocks (Figure ??). Then,

the first dimension is calculated from the average intensity of whole block. The next four

dimensions denote the ratios of the average intensities of four sub-blocks to the first di-

mension. The last four dimensions stand for the differences of the average intensities of

the four sub-blocks from the first dimension. Finally, all components of feature vector are

normalized to integers ranging in [0, 255]. Although these 9 entities contain duplicated

information, they together possess higher capability of resistance against some modifica-

tions, such as JPEG compression and Gaussian noise. There is a slight difference with

the Popescu’s approach in sorting feature vectors. Because elements of feature vectors are

integers, it is possible to use the efficient radix sort algorithm to perform lexicographical

sorting over those vectors.

Figure 5.9. A block is divided into four equal-size sub-blosks in Lin feature [104].

Finally, Wang et al. [105] used the mean intensities of circles with different radii around

the block center as circle features. Instead of breaking the input block into four sub-blocks

as Lin’s method [104], authors broke the input block into four concentric circles (Figure

5.10). The mean of image pixel values in each circle region is adopted as feature. To narrow

the search space and the total number of blocks, the input image is reduced in dimension

by Gaussian pyramid decomposition.

5.2.2 Keypoint-based approaches

Unlike block-based algorithms in which the image is divided into overlapping blocks,

keypoint-based methods rely on the identification and selection of high-entropy image re-

gions. Nowadays, local visual features (e.g. SIFT, SURF) have been widely used for image
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Figure 5.10. A block is divided into four concentric circles in Wang feature [105].

retrieval and object recognition, their robustness to several geometrical transformations

(such as rotation, scaling, bluring) occlusions and clutter. More recently, these kinds of

features have been also attempted to apply in the digital forensics domain. Figure 5.11

show a common chart to illustrate for the methods in this case.

Figure 5.11. A common illustration of keypoint-based approaches.

In this context, each keypoint is characterized by a feature vector that consists of a set of

image statistics collected at the local neighborhood of the corresponding keypoint. Conse-

quently, fewer feature vectors are estimated, resulting in reduced computational complexity

of feature matching and post-processing. Two different kinds of keypoints are examined

such as Scale Invariant Feature Transform (SIFT) [106–108] and Speeded Up Robust Fea-

tures (SUFT) [109, 110]. A drawback of keypoint methods is that copied regions exhibit

little structure or contain the homogeneous regions, it may happen that the region is

completely missed.

5.2.2.1 SIFT-based methods

SIFT feature shorting for Scale Invariant Feature Transform has been proposed by D. G.

Lowe [112]. This feature is invariant to image scale, rotation and originally developed

for object recognition. In fact, SIFT features are also a good solution for duplicated

regions detection because of their robust performance and relatively low computational
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costs. There are four main steps of computation to generate the SIFT features: i) Scale-

space extrema detection; ii) Keypoint localization; iii) Orientation assignment ; iv) Keypoint

descriptor generation. The detailed specification and source code can be found in [112].

At each keypoint, a 128 dimensional feature vector is generated from the histograms

of local gradients in its neighborhood. To ensure the invariance of the obtained feature

vector to rotation and scaling, the size of the neighborhood is determined by the dominant

scale of the keypoint, and all gradients within are aligned with the keypoint’s dominant

orientation. Furthermore, the obtained histograms are normalized to unit length, which

renders the feature vector invariant to local illumination changes.

In order to identify possible cloned areas, the detected SIFT keypoints are then tenta-

tively matched based on their feature vector using the best-bin-first algorithm [106, 107]

or agglomerative hierarchical clustering [108]. To handle rotation and scaling, Pan and

Lyu [107] proposed to use RANSAC; while Amerini et al. [108] applied a scheme to clus-

ter the locations of detected features before using RANSAC to estimate the geometric

transformation between the original area and its copy-moved verions.

5.2.2.2 SURF-based methods

The second kind of keypoint is used for detection of duplicated regions is SUFT feature.

SUFT feature known as Speeded Up Robust Feature has been recently published by Bay et

al. [113]. Keypoints are found by using a so called Fast-Hessian Detector that is based on

an approximation of the Hessian matrix for a given image point. The responses to Haar

wavelets are used for orientation assignment, before the keypoint descriptor is formed from

the wavelet responses in a certain surrounding of the keypoint. There are three main

stages of computation used to generate the SIFT features: i) Integral image; ii) Hessian

matrix-based interest point ; iii) Interest point descriptors. The detailed specification can

be referred to [113].

In contrast to SIFT feature, which approximates Laplacian of Gaussian (LoG) with

Difference of Gaussians (DoG), SURF feature approximates second order Gaussian deriva-

tives with box filters. Moreover, only 64 dimensions are used, reducing the time for feature

computation and matching, and increasing simultaneously the robustness. The extracted

SURF keypoints are then matched using divide and conquer algorithm [109] or KD-tree

structure [110].
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Besides achieving promising performance in detecting sophisticated forgeries with du-

plicated regions, the keypoint-based methods may have a limitation for some cases. One

example is shown as the Figure 5.12 where an obvious duplicated square cannot be detected

by this kind of method. The reason is the SIFT or SURF algorithms cannot find reliable

keypoints in regions with little visual structures. Similarly, as smaller regions have fewer

keypoints, they are also hard to detect.

(a) (b) (c)

Figure 5.12. An illustration of failed detection results using keypoint-based approach. (a)
the original image; (b) a forgery image using duplicated region; (c) the keypoint-detected
image.

Another case of false detection is illustrated in the Figure 5.13 where the input images

have intrinsically identical areas that cannot be differentiated from intentionally inserted

duplicated regions. Thus, as the future work, these methods could be improved by in-

corporating other features or histograms of oriented gradients, or combining with other

detection schemes based on intrinsic signal statistics/patterns to provide strong cues when

image keypoints and features are insufficient.

5.3 A proposal for inpainting detection

In this work, we focus on detecting a specific type of digital image forgery, namely image

inpainting. The intent of this operation is to modify the content of an image in the most

visually plausible way. This yields to what we call inpainting forgery. This technique

is more sophisticated and complex than copy-move forgery because the source of copied

information could be non-continuous. This means that an object may be filled by a set

of multiple small parts located at different places in the same image and not a single
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(a) (b)

Figure 5.13. An illustration of false detection results using keypoint-based method. The
images are known untampered but are detected to have duplicated regions

continuous region. Therefore, inpainting forgery is more difficult to detect than copy-

move forgery as it can be seen on Figure 5.14 where state-of-the-art copy-move detection

algorithms would fail.

To verify the capacity of the copy-move detection techniques for inpainting forgery,

a series experiments have been carried out on a set of inpainted images. Most of copy-

move detection techniques introduced in Section 5.2 have been applied. In this work, we

developed the framework in [111] for this purpose. Figure 5.15 and 5.16 show an example

of the results for our experiment. No detection has been found in the Figure 5.15. Figure

5.16-b detected a small copy-move part but it is uncompleted. This is certain because the

forged region has been filled from many small and distinct parts. Surely, it cannot detect

the forged region completely.

According to our observation, all outputs either cannot detect the forgery region or

make a false detection. This confirms firmly that the copy-move detection methods is not

suitable for detecting inpainting forgery. A different framework should be considered and

developed for this special case.

In fact, to the best of our knowledge there is almost no study about image inpainting
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(a) (b) (c)

Figure 5.14. An example of an inpainting forgery. (a) The original image; an inpainted
image using (b) Wu’s approach [20] and (c) Zhang’s approach [21].

forgery. Thus, the purpose of our work is to introduce an efficient and reliable inpainting

detection method. The proposed method is designed based on the common principle used

by exemplar-based inpainting algorithms. It aims at detecting whether the input image

has been edited following the aforementioned principle or not. The performance of the

proposed method is evaluated on a set of various natural images. We also report its

robustness with regards to different inpainting techniques.

As mentioned in Chapter 1, several approaches of image inpainting have been proposed

in the literature. Most of them could be categorized into two types based on the purpose [8].

The first category is geometry-oriented approaches in which the missing regions are filled

by diffusing the information from the known region into the missing one. These methods

are suitable for filling narrow or small area like scratches but are less efficient for large

area. The second category is the texture-oriented approaches. Inspired by texture synthesis

methods, these methods produce an impressive output in recovering large damaged regions.

they could be further subdivided into two subgroups: exemplar-based completion methods

[17, 18, 20, 21, 57] and pixel-based completion methods [26, 27, 40].

In this study, we subscribe to the exemplar-based completion methods since it is more

suited for large regions restoration or hiding a whole object. In inpainting methods, the
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(a) (b) (c)

(d) (e) (f)

Figure 5.15. The detection using the copy-move forgery detection for inpainting forgery.
The results when using the methods of (a) Fridrich et al. [94]; (b) Ryu et al. [101]; (c)
Mahdian et al. [99]; (d) Wang et al. [100]; (e) Amerini et al. [108] and (f) Shivakumar et
al. [110].

missing information is restored based on the most similar patches under a pre-defined pri-

ority. In this sense, the inpainting is similar to a copy-paste operation regarding the notion

of patches. Nevertheless, as described previously, in copy-paste approaches a continuous

region is duplicated and pasted into the missing one instead of having small patches coming

from different parts as in the case of inpainting methods. This is why copy-move detection

cannot be applied for inpainted images.

Following this observation and by analyzing principles of image inpainting algorithms in

the second group, we introduce a novel approach to detect inpainted regions. The proposed

algorithm can be summarized through three main steps as described below. Let consider

a window centered at pixel p denoted as a patch Ψp. The patch size, three thresholds θ1,

θ2 and θ3 are global parameters for the proposed algorithm.

1. Patch matching : Since most of the patch-based inpainting algorithms rely on

patch similarity analysis, the first step in our detection scheme is searching all pairs of

similar patches (Ψp,Ψi) in the input image to detect the suspicious regions. A list of pair
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(a) (b) (c)

(d) (e) (f)

Figure 5.16. The detection using the copy-move forgery detection for inpainting forgery.
The results when using the methods of (a) Fridrich et al. [94]; (b) Ryu et al. [101]; (c)
Luo et al. [102]; (d) Bravo et al. [103]; (e) Amerini et al. [108] and (f) Shivakumar et al.
[110].

of patches satisfying the three following criteria, formalized by equation (5.1), is built and

considered as potential candidates.

∃i∈IΨp ' Ψi ⇔ (Sim(Ψp,Ψi) < θ1)

∧(Dist(Ψp,Ψi) < θ2)

∧(Card(Ψp ∩Ψi) > θ3)

(5.1)

• The similarity between two patches, Sim(Ψp,Ψi), should be less than a threshold,

θ1. This threshold is used in order to reduce the probability of false matches while

preserving suitable matches.

• The distance between two similar patches, Dist(Ψp,Ψi), should be greater than a

threshold, θ2. This criterion is applied to preclude nearby patches or identical patches.

• The number of the same pixels in two patches, Card(Ψp ∩ Ψi), should be greater

than a threshold, θ3. This constraint is introduced to ensure that at least θ3 pixels

are copied between two patches.
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A selection of values for these parameters is given in the next chapter depending on

the patch size. A further discussion of parameter influence is being studied and will be

published in the future.

Besides, another big challenge in this step is related to minimizing the computational

cost. It could take hours or even days to search similar patches satisfying equation (5.1) by

brute force procedure. This is infeasible and impractical. In our algorithm, we used a very

effective algorithm, the kd -tree [114], to get approximate nearest neighbors. Typically, the

Euclidean distance is used as a similarity measure as in the inpainting methods [17, 20, 21].

In prior work [111], it has been shown that the use of kd -tree matching leads, in general,

to better results than lexicographic sorting as in [94, 97].

2. Mask generation : A binary mask, in which pixels belonging to candidate patches

are labelled as ”1” and the others as ”0”, is generated for detecting inpainted regions. This

mask is a collection of connected regions composed of pixels labelled ”1” on a background

of pixels labelled ”0”. In our experiment, we assume that only one region has been restored

in the input image. In such a way, we evaluated only the largest connected area. Logically,

this region is characterized by its centroid. The centroid of the largest connected region,

as a result, is located based on position of all pixels belonging to this region.

3. Patch filtering : A filtering scheme is applied to reduce the false detected patches.

Indeed, for each couple of matches, one of the two patches is an original and the other is

the inpainted version that should be marked as forged patch. The filtering is implemented

for all matches based on their distance to the calculated centroid. The patch closer to

the centroid is kept and the remaining patch is discarded. The morphological operation,

such as opening, could be applied to connect nearby regions. Finally, the largest connected

region is considered as the latest output.

The detail scheme of our method is shown in Figure 5.17. As a result, an example for

each step is illustrated in Figure 5.18. More experimental results will be presented in the

next section.
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Figure 5.17. The detail scheme of our method.

5.4 Experimental results

In order to evaluate the performance of the proposed inpainting detection algorithm, a

series of experiments are carried out and discussed in this section. The performance eval-

uation is considered comprehensively in two directions:

• many different inpainting algorithms for one image.

• one inpainting algorithm for many different images.

In addition, the ground truth images are used in comparison with the detection outputs.

In consequent, the obtained results confirm our proposal for inpainting detection with visual

inspection and objective measurements. The detailed discussion is given as below.
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(a) (b)

(c) (d)

Figure 5.18. An example for each step in our algorithm. (a) original image using Crim-
inisi’s method [17]; (b) inpainted image; (c) and (d) mask images before and after filtering
patches.

5.4.1 Test for inpainting forgery

We implemented the proposed detection algorithm using C language and tested on a set of

natural images with various contents. The output of the algorithm is a binary mask where

white pixels correspond to detected inpainted regions and black pixels are non-inpainted

areas. Green patch is added to identify the centroid of the inpainted region. In order to

evaluate the visual performance of our detection, an experimental scheme is applied and

described as follows.

First, an original image is used as ground truth with a binary mask image identifying

an area need to be inpainted. An inpainting method is applied to the latter to generate

an inpainted image. Finally, the inpainted image is used as input for our detection scheme

to generate the detection mask. Figure 5.19 shows some results for our detection with the

inpainting method in [18].

The parameters of our algorithm have been tuned as follows: patch size l = 5 and

thresholds θ1 = 0.1; θ2 = l/2 and θ3 = l2/3. It can be easily noticed that the proposed
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approach achieves good results by localizing quite precisely the inpainted object. The

results yield to a direct conclusion about the presence of forgery or not.

(a) (b) (c)

Figure 5.19. Inpainting detection results of our proposal for a set of inpainted images.
(a) original images; (b) inpainted images using Criminisi’s method [17]; (c) detected masks.

In order to evaluate the robustness of our method, we applied three different inpainting

methods [17, 20, 21] to modify the original images. This leads to a set of inpainted images

for the same input image. Figure 5.20 depicts an example for one original image (a),

inpainted images using respectively methods described in [17], [20] and [21] (b) and the

obtained detection masks (c). Again, the proposed approach allows detecting the presence

of inpainting forgery even with the use of different inpainting techniques.

5.4.2 Performance evaluation

In order to quantify the efficiency of our inpainting forgery detection, we used objective

measures namely Precision, Recall and F1 often used for information retrieval performance
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(a) (b) (c)

Figure 5.20. Inpainting detection results of our proposal for a set of inpainted images.
(a) original images; (b) inpainted images using Criminisi’s method[17], Wu’s method [20]
and Zhang’s method [21] (top to bottom) ; (c) detected masks.

evaluation [115].

Precision and Recall correspond to exactness and completeness of the results. In our

perspective, the Precision is applied to estimate the probability that a detected region is

correct. This probability is defined as follows:

P =
|II ∩ ID|
|ID|

× 100% (5.2)

where II and ID denote the inpainted region and detected region, respectively. The

operator |Ω| counts the number of pixels in the region, Ω. Alternatively, Recall is used to

measure the probability that a corrected region is detected. It is defined as follows:
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R =
|II ∩ ID|
|II |

× 100% (5.3)

However, there is a trade-off between Precision and Recall. Greater Precision might

decrease Recall and vice versa. To consider both Precision and Recall together, the F1

measure, the harmonic-mean of Precision and Recall is proposed and calculated as given

in equation (5.4).

F1 =
2PR

P +R
(5.4)

We tested the proposed method to fifteen images. The corresponding Precision, Recall

and F1 measurements are presented in Table 5.2 and visually shown in Figure 5.20. Where,

the first column shows identification of input images with the corresponding sizes in the

next column, labelled with Size. Column IA defines the size of original inpainted area

respecting to percentage of the whole input image. The columns of P , R and F1 indicate

the values of corresponding metrics. The average rates of Precision, Recall and F1 are

78.68%, 84.49% and 80.73%, respectively. These values are nearly the same and relatively

high. This shows that the detected region is not only correct but also quite complete. On

the other hand, the obtained output demonstrates the important ability of the proposed

method to detect inpainting forgery in the digital images. It thus confirms that our proposal

is efficient for inpainting forgery detection.

Figure 5.21. A chart of performance respect to detection rates.

Our implementation used C language based on Visual Studio platform. On a machine

with an Intel Core i5 Duo 2.8GHz and 4GB memory, the average time to detect is about
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Table 5.2. Detection rates for inpainting forgery.

Image ID Size (px) IA (%) P (%) R (%) F1 (%)

1 300× 255 10.73 87.0401 86.85 86.94

2 300× 255 10.73 90.80 98.47 94.48

3 300× 255 10.73 92.28 98.77 95.41

4 206× 308 12.60 78.02 76.93 77.47

5 206× 308 12.60 75.90 85.58 80.45

6 206× 308 12.60 79.10 65.09 74.87

7 300× 255 14.47 82.51 91.93 86.97

8 300× 255 14.47 83.80 80.08 81.90

9 300× 255 14.47 92.34 77.80 84.45

10 300× 218 14.87 58.11 84.14 68.74

11 300× 218 14.87 57.50 80.49 67.08

12 300× 218 14.87 50.71 82.79 62.89

13 480× 320 12.97 96.59 98.52 97.55

14 481× 321 12.56 58.91 91.43 71.66

15 480× 320 17.19 96.57 68.43 80.10

Average 78.68 84.49 80.73
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40 milliseconds. The computational time is not the same for images with the same size. It

is dependent on each image’s characteristics and especially on the thresholds. Please note

that the computational time of an image containing large uniform or very similar areas

is higher. This is caused by the fact that the most time consumption is associated with

the analysis of patch similarities and neighborhoods. Logically, having a high number of

similar blocks causes expensive computation. The hierarchical structure, kd -tree, allows

us to make efficient range queries in multidimensional data. Consequently, the proposed

algorithm has a low computational cost in most cases. The chart 5.22 shows the time

consumption in milisecond (ms) for the set of test images.

Figure 5.22. A chart of performance respect to computational time.

5.5 Summary and conclusion

In this chapter, a notation of digital forgery was introduced. Within this field, copy-move

forgery detection is probably the most actively investigated subtopic and has a particularly

close connection with our problem, digital inpainting forgery. The overview of common

copy-move forgery detection has been summarized and the main difference between these

two problems, copy-move and inpainting forgery detections, has been indicated. Generally,

the inpainting forgery detection is more difficult and sophisticated.

In this study we addressed the problem of inpainting forgery detection by proposing a

novel approach relying on the behavior of most known inpainting algorithms. Therefore,

based on the analysis of many exemplar-based inpainting methods, we have predicted the
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inpainted regions by similar patches and located it by the centroid connected component.

Experimental results supported that the proposed method was appropriate to identify and

localize the inpainted region with high accuracy even though the image could be modified

by many different inpainting methods.

Although having achieved promising performance in detecting inpainted region, our

method still contains limitation in some images. One example is shown as the top image

in Figure 5.16 where the unexpected matches have been detected in the homogeneous or

flat regions. This is because there are always similar patches in these kinds of region with

any thresholds. Thus, it could be considered as an important future work to improve

the detection performance for such case. In addition, our method is suitable to detect for

exemplar-based inpainting methods but not for pixel-based inpainiting methods. A further

study should be conducted to deal with such cases.
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6.1 Conclusion

The goal of the current research was to develop a framework for digital image inpainting.

Two related trends are exploited such as inpainting quality assessment and inpainting

forgery detection. The main contributions of the thesis are related to these two trends.

A specific concept of inpainting problem and the related definitions was formulated in

Chapter 2. Besides, a detailed classification of existing digital image inpainting algorithms

was provided. Accordingly, most of current inpainting methods can be classified into three

main groups. However, because of extensive researches, it is impossible to have a common

criteria for classification. Thus, there are some inpainting methods that are not included

in the above groups such as multi-source image completion.

A novel framework of the second group has been proposed in Chapter 3 based on a

hierarchical representation. Additionally, a window-based priority which classifies patches

in a more suitable way has been also introduced and combined with the multi-resolution

patch in order to ensure for more pleasant results. A comparison with all three groups of

inpainting methods has been carried out with a set of natural and real archaeological im-

ages. The experimental results show that the proposed approach outperforms the methods

of the state-of-the-art in regard to visual quality.

However, the proposed method suffers from some limitation mainly on computational

performance side. Although, this framework produces the acceptable results in most case,

it is time consuming. This is mainly due to the patch searching process. Thus, an im-

provement has been proposed. An offset map defining the relationship between the known

pixels and unknown pixels is used instead of the multi-resolution patch for completing

higher level resolution. A global optimization strategy based on graph-cut algorithm has

been introduced in order to optimize the offset map by considering only some neighbors
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instead of an exhaustive search. The computational time of implementation has been sig-

nificantly reduced. Many comparisons and analysis have been performed and discussed.

They demonstrated impressive results in term of both visual quality and computational

time.

Chapter 4 is devoted to the evaluation of inpainted images. Very often, the results of

image inpainting are evaluated subjectively or by using some objective metrics not well

adapted to the specificities of their criteria. However, the subjective evaluation experiments

are time consuming, complex and unpredictable due to some uncontrolled human factors

such as fatigue, visual discomfort, knowledge, etc. In this chapter, a series of traditional

image quality assessment and a few existing inpainting quality assessment metrics have

been investigated. Since the existing IQA metrics could not be directly applied because

the specificities and goals of both image quality, in its broad sense, and image inpainting are

different. Therefore, an inpainted image quality assessment is very meaningful in this case.

This is the main content of this chapter. A novel approach for objective Image Inpainting

Quality Assessment has been designed. The proposed metric is composed of two terms:

coherence term which evaluates the consistency between the restored regions and source

regions; and structure term which attracts the viewer attention. Two versions for gray-

level and color image have been developed. The psychophysical experiments have been run

to confirm the performance of our metrics. The obtained results showed that none of the

considered metrics correlated well with perceived overall inpainting quality. However, the

scores obtained from our proposal indicate a better performance when compared to some

of the other existent inpainting-specific quality metrics.

The last contribution was presented in Chapter 5. In this chapter, we first defined

our problem and introduced some differences with the existing forgeries. An overview of

current forgery detection has been reported and many results when using existing forgery

detection to detect inpainted images were shown. The demonstration pointed out an

inefficiency of this approach. Many experimental results supported that the proposed

methods is appropriate to identify and localize the inpainted region with high accuracy

even though the image could be modified with many different inpainting algorithms.

In conclusion, the current research has analysed, developed and evaluated objective

methods for inpainting problem. This dissertation built a complete picture of inpainting

problem along with the corresponding contributions to fully address each part. A series of

experimental results and comparison with existing approaches coming from literature are
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performed. They all confirmed the outstanding results for our proposals.

6.2 Future works

In the course of the research carried out for this thesis a number of possible directions for

further research have been identified. Relating to different parts of this thesis, they can be

divided into three separate issues.

For inpainting algorithm, despite the extensive research carried out in the field of digital

image inpainting, there is still room for improvements. In the current algorithms, the

patch selection is an essential step to complete the image. A perceptual patch similarity

that is more stable and effective should be carefully considered. An extension of our

framework could be developed for multiple source images or videos. Experimenting with

high resolution images should also be considered for further research. The main issue when

dealing with high resolution images as input for inpainting algorithms is to a significant

increase of running time (up to several hours). However, most of the existent algorithms

were not designed for high resolution images. Thus, developing new algorithms, able to

inpaint high resolution images would potentially increase the quality of the inpainting.

But, guaranteeing high inpainting quality would be a challenging issue.

For inpainting quality assessment, regarding the evaluation of inpainting quality, further

work should be focused on finding a metric that does not depend on a reference image and

that correlates better with perceived quality. Conducting a psychophysical experiment

that considers more natural images and current inpainting algorithms, as well as quality

metrics, could also significantly contribute to a better understanding of the deficiencies

of current inpainting quality metrics. Identifying these deficiencies would make space for

further improvements.

For inpainting forgery detection, although having achieved promising performance in

detecting inpainted region, the detection technique could be improved further. Some pa-

rameters could be considered as threshold to reduce the unexpected matching patches in the

special regions such as homogeneous or flat. Moreover, the proposed detection can apply

only for inpainted images which had been edited by exemplar-based inpainting algorithms

but not for pixel-based inpainting methods or interpolation-based methods. Therefore,

some further studies could be developed with these directions. Finally, a forgery detection

for inpainting video is also a potential and considerable direction of research.
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