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Abstract
Solving Strategic and Tactical Optimization Problems in City Logistics

Urban freight transport is a matter of increasing concern in the economic, commercial,

social and environmental operations of our cities, due to the constantly increasing growth

and urbanization of the civilization. An improved management of the traffic related to

the freight transport can have a positive impact in many respects: security, congestion

of the road network, noise and air pollution, costs. City Logistics studies the dynamic

management of urban freight transport in order to deliver distribution systems solutions

that may be suitable for both the community and freight carriers.

This thesis originates from the ANR Project MODUM, which proposes a freight dis-

tribution system based on a ring of Urban Distribution Centers (UDCs) located in the

outskirts of a city. In the first part, this system is studied from both a strategic and a

tactical point of view. The Multicommodity-Ring Location Routing Problem (MRLRP)

considers long-term decisions, i.e. the installation of the UDCs and the ring connection,

without disregarding more tactical aspects. The MRLRP has been tackled by three

solution methods, which proved effective on a large set of test instances.

In the second part of the thesis, the Vehicle Routing Problem with Intermediate Re-

plenishment Facilities (VRPIRF) is studied. The VRPIRF is a more tactical problem

that arises in City Logistics each time both the multi-trip and the multi-depot features,

i.e. the possibility for a vehicle to be reloaded at one of a set of facilities, are present.

Several exact algorithms, namely two of type Branch&Cut and two of type Branch&

Price, have been developed for this problem. Computational experiments on benchmark

instances taken from the literature have been conducted to assess their performance,

leading to very promising results.



Résumé
Optimisation Stratégique et Tactique en Logistique Urbaine

L’efficacité du transport des marchandises en ville est un sujet complexe, préoccupant

les autorités locales depuis de nombreuses années, et sur lequel de nombreuses travaux

de recherche ont vu le jour dans la dernière décennie. Les enjeux sont immenses, une

meilleure organisation du trafic devant permettre de limiter la congestion du réseau

urbain et la pollution atmosphérique ou sonore, ainsi que de d’augmenter la sécurité

routière, et minimiser les coûts liés au transport. La Logistique Urbaine vise à con-

cevoir des systèmes de distribution de marchandises en ville permettant d’acheminer les

flux dans les meilleurs conditions (économique et de gestion urbaine) à la fois pour la

communauté et les transporteurs.

Le contexte de cette thèse est offert par le projet ANR MODUM, qui propose un système

de distribution basé sur un anneau de Centres de Distribution Urbains (CDU) situés aux

alentours d’une ville. La première partie étude ce système d’un point de vue strategique

et tactique. Le Multicommodity-Ring Location Routing Problem (MRLRP) aborde

les decisions concernant l’installation et connexion en anneau des CDU, en considerant

d’une façon simplifiée les détails plus tactiques. Trois méthodes pour le MRLRP ont été

developpées et testées sur un jeu d’instances exhaustif, se révélant très efficaces.

La deuxième partie porte sur le Vehicle Routing Problem with Intermediate Replenish-

ment Facilities (VRPIRF), un problème plus tactique qui se produit dans un système

logistique lors que les véhicules peuvent se recharger auprès de l’un parmi un ensemble

de dépôts et ainsi effectuer plusieurs tournées au long d’une journée. Deux algorithm

de type Branch&Cut et deux de type Branch&Price ont été developpés et testées. Les

résultats obtenus sur des jeux d’instances tirés de la literature sont prometteurs.
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Introduction

Without doubt, freight transport is a key element of modern societies, as it ensures the

flow of goods from production to distribution points so as to make them available to

consumers. This is even more true for what concerns cities, where the gap between

production and demand of consumption goods is the highest.

The efficiency of freight transport relies on Logistics (more specifically Freight Transport

Logistics), defined as ...the planning, organisation, management, execution and control

of freight transport operations... that ...can increase the efficiency of individual modes

of transport and their combinations... and ...can help disconnect transport growth [...]

from the harmful external effects that it produces (emissions, accidents and congestion)

[Commission of the European Communities, 2006]. The concept of Logistics is special-

ized by that of City Logistics. This latter dates back to the first years 2000 and is defined

as ...the process for totally optimizing the logistics and transport activities by private

companies with support of advanced information systems in urban areas while consid-

ering the traffic environment, the traffic congestion and energy consumption, the traffic

safety and the energy savings within the framework of a market economy [Taniguchi

et al., 2001].

As to cities, we are witnessing to an increasing urbanization of the civilization. If we

consider the simultaneous growth of the global population, it is easy to understand how

the transportation of goods in urban areas is a delicate matter. It is not by chance that

in the last decade this concern has become more and more the object of the attention

of authorities, the investments of private companies, and the research of academia.

The achievement of an improved traffic management calls for the design of new models

of freight distribution network, i.e.:

I the conception of new forms of freight distribution;

I the analysis of the organizational, economic and environmental contexts in which such

forms should take place – and therefore their viability;

2



Introduction 3

I the investigation of how to obtain high-performing transportation systems while max-

imizing the benefits in the various concerned respects and for all the implied actors

(practitioners, community);

I the assessment of the system impact in economic, environmental and social terms.

Indeed, the stakes are considerable, as an improved management of the traffic related to

the freight transport can have a positive impact in terms of security, congestion of the

road network, noise and air pollution, costs – which are all sensitive subjects.

One of the most promising logistic strategies is represented by mutualized distribution

systems, in which shared stocking spaces are made available to the different private car-

riers, and the shipment operations to final customers are performed by a single -often

public- operator, in order to rationalize the usage of spaces, achieve higher load rates

and therefore reduce the travelled distance, the costs and the polluction factors. In this

sense, the usage of Urban Distribution Centers (UDCs) appears to be encouraging, as

one of their main purposes is precisely the mutualization of flows of merchandise. A UDC

is a bulk-breaking point similar to hubs in air transport, where goods can be received,

processed, consolidated and then forwarded to their destinations. UDCs are a suitable

solution both for the community, as they help rationalize the flows of merchandise on

the territory, but also for those carriers that do not have a benefit from solving last

kilometer issues with their own fleet.

To this day, the tentatives that have been conducted to verify the effectiveness of UDCs

are few, as installing UDCs requires a series of conditions, notably the presence of regu-

lation constraints to forbid the access to the city center. Moreover, these trials have had

controversial results, mainly due to economic reasons: big logistic operators normally

prefer to control their supply chain; further, the additional bulk-break stage introduced

by UDCs is not always compensated by the achieved transportation economies.

Nevertheless, the growing concern of the public opinion for the environment and the

question of sustainable development, along with the latest progresses made by the com-

munication technologies and the consequent dropping of their costs, make think that

the time is ready to deploy such a solution on an important scale.

Motivation of this PhD Thesis. The MODUM Project

This is the challenge taken up by the ANR (Agence Nationale de la Recherche) Project

MODUM (Mutualisation et Optimisation de la distribution Urbaine de Marchandises)

[Agence Nationale de la Recherche, 2010]. The purpose of MODUM is the study of

a freight distribution system for urban areas based on a ring of UDCs located in the

outskirts of a city, and the design and implementation of a Decision Support System
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(DSS) that would allow potentially interested subjects to consider the adoption of such

a system. This DSS is composed by a series of tools:

Ian optimization module for the design and sizing of the proposed system from both a

strategic and a tactical point of view;

Ianother optimization module to perform the operational planning of the freight trans-

port on a daily basis;

Ia simulation tool, based on the system configuration delivered by the optimization

stages, to stress it and assess its impact in the aforementioned respects.

The three stages are sequenced and all fed by real-life data collected by means of field

surveys. Moreover, in order to evaluate the impact of the proposed system, a programme

of enquiry activities (polls, interviews to experts of the involved domains) is also taken

into consideration. Finally, MODUM aims at yielding an analysis of functional, struc-

tural and organizational constraints that prevent a similar distribution system from

being deployed, and a guide of good practices.

The Project relies on a group of Academic partners with considerable expertise on

transports either from a socio-economic point of view or for what concerns the design

of optimization algorithms:

I the LIPN (Laboratoire d’Informatique Paris Nord) of the Université Paris 13 studies

the medium- and long-term problem of designing the logistic network;

I the EMSE (École Nationale Supérieure des Mines de Saint-Etienne) tackles the short-

term optimization problem of deploying the vehicles to ship the customers in a generic

workday;

I the Laboratoire Ville, Mobilité, Transport (LTMV) of the École des Ponts et Chaussées

undertakes the design and implementation of the simulation tool;

I the Laboratoire d’Economie des Transports (LET) of the Université Lyon 2 provides

the real-data coming from recent studies on the flows of goods in French cities to rep-

resent the demand profile of consumption goods of the citizens and shops of a city and

allow to depict the scenarios for the previous optimization steps. Moreover, the LET

takes in charge the analysis and the socio-economic assessment of the optimization

and simulation tools.

This thesis originates from the MODUM Project and the strategic and tactical study of

the freight transport system it proposes.
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Plan of the Thesis

The thesis is essentially structured in two parts.

Part I revolves around the Multicommodity-Ring Location Routing Problem (MRLRP),

i.e. the problem inspired by the strategic and tactical study of the City Logistics system

proposed by MODUM. After an introductory chapter on City Logistics, the MRLRP is

presented, along with three solution approaches and some computational results.

In Part II we concentrate on another problem arising in Freight Transport Logistics,

namely the Vehicle Routing Problem with Intermediate Replenishment Facilities (VR-

PIRF). The problem is formulated and then located in the literature of Combinatorial

Optimization, before being tackled by a series of exact approaches of type Branch&Cut

and Branch&Price.

Finally, we draw the conclusions of this work, and trace future perspectives.

Chapter 1: City Logistics

A brief introduction of City Logistics and how it is dealt with in the field of Combinatorial

Optimization is proposed. This will provide an introduction to the following chapters.

Chapter 2: The Multicommodity-Ring Location Routing Problem

The MRLRP is introduced, along with a formulation in the form of a Mixed-Integer

Linear Program (MILP), which implicitly gives rise to an exact approach that consists in

solving the MILP by Branch&Bound with a commercial solver. In order to find solutions

to large-sized instances of the problem, a matheuristic decomposition algorithm, named

GALW, is proposed. Moreover, a hybrid algorithm is defined to evaluate the quality

of GALW’s solutions when the size of the instances makes it impossible for the exact

algorithm to even produce one. Extensive computational sessions are conducted, and

the results discussed, to assess the performance of the three approaches.

Chapter 3: The Vehicle Routing Problem with Intermediate Replenishment

Facilities

The Vehicle Routing Problem with Intermediate Replenishment Facilities is first de-

scribed. Then, a brief review is given of the problems it descends from. Lastly, some of

the application papers that tackle real-life variants of the VRPIRF are presented.
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Chapter 4: Branch&Cut algorithms for the Vehicle Routing Problem with

Intermediate Replenishment Facilities

Since we are aware of only few works about exact methods for the VRPIRF (as high-

lighted by the survey of chapter 3), we try to define some. In this chapter, we focus on

compact MILP formulations for the problem and outline two Branch&Cut algorithm.

Computational results on the most used benchmark instances are presented, along with

a comparison with the solution obtained by some state-of-the-art heuristic algorithms

that are found in the literature.

Chapter 5: Branch&Price algorithms for the Vehicle Routing Problem with

Intermediate Replenishment Facilities

In the same spirit of trying to define effective exact approaches to tackle the VRPIRF,

in this chapter we concentrate on extended MILP formulations aiming at the design of

two Branch&Price algorithms, which are fully described. Computational sessions are

conducted on benchmark instances; the results are presented and compared with those

of the methods of chapter 4.

The work presented in this chapter is the result of the collaboration with Alberto Ceselli,

Dipartimento di Informatica, Università degli Studi di Milano.

Appendices

Appendices are devoted to other research works derived from those presented in the

above-cited chapters, to the presentation of some minor works which have been studied

in parallel to the two aforementioned main research streams, or to further details on

these latter.

If we suppose that the long-term decisions in the MRLRP concerning the structure of

the ring (UDC, links) have been taken, we obtain a tactical subproblem, called the

Multicommodity-Ring Vehicle Routing Problem (MRVRP), which is introduced in Ap-

pendix A. Since the MRVRP is simpler than the MRLRP, more sophisticated exact

methods can be designed to solve it to optimality. A MILP formulation for the MRVRP

and an exact solution strategy, namely a Branch&Price algorithm, are proposed.

Appendix B presents a work on the Machine Reassignment Problem which has been the

object of the Google ROADEF/EURO challenge 2011–2012. This work has been done

together with Daniel Chemla and Bernat Gacias.

Appendix C presents a work on some problems arising in Grid and Volunteer Cloud
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Computing about the optimization of Energy. This work is the result of the collab-

oration with Christophe Cérin and Yanik Ngoko, Laboratoire d’Informatique de Paris

Nord, Université de Paris 13, and Congfeng Jiang, Hangzhou Dianzi University.

Finally, Appendix D goes into further details of the instance generation process for the

computational experience of the methods for the MRLRP proposed in Chapter 2.
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Location Routing Problem
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Chapter 1

City Logistics

1.1 Introduction

The growth and urbanization of the civilization are constantly increasing phenomena.

World population passed from 5 to 6 billion persons between 1987 and 1999 and stood

at 6.5 billion in 2005, with a recorded average growth rate of 1.2% per year since the late

90’s [United Nations, 2005]. The trend is not expected to change, and it is projected

that world population will peak at 9.1 million individuals by 2050. Figures are even

more dramatic for what concerns urbanization. For instance, 2007 is estimated to have

been the first time in recorded history with a larger world-wide urban population than

the rural population; yet, the European population living in cities, which was by that

time the 72% [Commission of the European Communities, 2009b], is expected to reach

84% in 2050 [Commission of the European Communities, 2009a].

These are among the main reasons that make urban freight transport and goods distri-

bution a matter of increasing interest and concern in the economic, commercial, social

and environmental operations of our cities. This area of transport activity is growing

at a much higher rate than other ones, such as private vehicle travel or long distance

freight transport [Canberra Bureau of Transport Economics, 2001]: passenger traffic is

expected to stabilize in the next years, whereas there is no sign of the same trend for

urban freight activity [Gargett and Cosgrove, 2004]. At the same time, patterns and in-

tensity of freight movements themselves are having significant changes, as a consequence

of technological and societal change, the environmental impact of road-based transport

systems, the urban land use, the transport systems management policies, the distri-

bution practices based on low inventories and timely deliveries, the growth of specific

commerce segments, like e-business and home deliveries by mail order, that generate sig-

nificant volumes of personal deliveries. More and more trucks will be on urban roads in

9
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the next years, making the impact of urban freight traffic an even more delicate matter.

Indeed, the stakes are considerable, as an improved management of the traffic related to

the freight transport can have a positive impact in terms of security, congestion of the

road network, noise and air pollution [Patier, 2002] and -last but not least- costs. These

are all sensitive subjects.

The costs related to freight transport grow regularly. This is due to a number of factors:

cities expand with a strong growth rate from both the demographic and the territorial

point of views, and so do the distances travelled by means of transport [Aguilera, 2005];

the volumes of consumed goods, too, increase year by year; finally, energy and fuels

are often subject to cost increases. Costs, however, are not the only economic aspect

that would be impacted by a rationalization of freight transport: increased flexibility

and fluidity of traffic, reduction of delays, road network reliability are all betterment for

practitioners that could be achieved by suitable transport policies.

As for the environment, transportation has been the sector with the biggest growth rate

of greenhouse gas (GHG) emissions compared to 1990 [Commission of the European

Communities, 2009a]; 60% of the global oil consumption and 25% of energy consump-

tion are due to transportation [Rodrigue, 2013], and nowadays 25% of the CO2 emission

of the whole transport sector comes from urban transport [Commission of the European

Communities, 2011]. Noise pollution in cities is also important: 8.9% of cities of China

had a serious level of acoustic nuisance level in 2000 [Minister of the State Environmental

Protection Administration of China, 2007], while in Europe, about 65% of the popula-

tion is exposed to ambient sound at levels above 55 dBA, and about 17% to levels above

65 dBA [Chepesiuk, 2005]. Some recent analysis conducted in France are sufficient to

show that the improvement of freight distribution is more urgent than ever [Delâıtre,

2008, Gerardin et al., 2000]. Trucks represent 10% of urban transport but produce 40%

of noise and air pollution, while freight transport is estimated to represent the 45% of

the consumption of fossil fuel in a medium-term horizon [Commission of the European

Communities, 2007]. CO2 emissions have increased by +28% between 1990 and 2003

[Commission of the European Communities, 2003].

There are two other main aspects related to urban traffic and therefore to freight trans-

port in cities. The first one is road network security: for instance, road transport caused

39,000 deaths in EU in 2008 [Commission of the European Communities, 2009a]. More-

over, in 2013 it has been estimated [World Health Organization, 2005] that more than

1.2 million people die on the world’s road every year, and 27% of these are pedestrians

or cyclists.

The second is road network congestion: it is reported [Commission of the European

Communities, 2011] that more than 50% of the weight of goods in road transport are

moved over distances inferior to 50 km, and more than 75% over distances below 150

km. In the region of Paris, freight transport causes between 15 and 25% of the road
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surface occupation, 50% of consumed diesel, 60% of particles emission, 25% of GHG

emissions, 30.5 million tonnes per year of transported goods.

One of the essential difficulties in improving the management of freight transport is rep-

resented by the conflicting objectives of the community, on one side, and urban freight

operators, on the other. The former aim at collective utility objectives, e.g. controlling

traffic congestion, pursue sustainable development policies and enhancing the quality

of life, whereas the latter want to increase their economic benefit and the quality of

the services they offer to their customers. The City Logistics paradigm is one possible

approach to resolving this problem. City Logistics is the study of the dynamic manage-

ment and operations of urban freight transport and distribution systems. The aim is

to deliver win-win solution for both business and the community by ensuring optimal

productivity, reliability and customer service while reducing environmental impacts, air

pollution emissions, energy consumption and traffic congestion. Current research is be-

ing directed at building City Logistics systems models that aim at optimizing logistics

efficiency under congested urban traffic conditions.

Combinatorial Optimization is largely concerned, as the logistic problems that can arise

in the urban context are numerous, and the criteria that the different involved actors

may want to optimize are several. In these last decades, this has brought to the de-

velopment of a well-known Combinatorial Optimization stream, namely that of Vehicle

Routing Problems (VRP), from the definition of general theoretical problems to their

enrichment into more and more specific case-studies inspired by real-life situations.

In the remainder of this chapter, we will first go more in depth for what concerns City

Logistics (section 1.2). Then, section 1.3 will propose to the reader a few references of

decision-making problems related to City Logistics. Section 1.4 will introduce the City

Logistics system that represent the core of the MODUM Project, with a focus on the

parts of it that make up the core of Part I of this thesis. Finally, section 1.5 concludes

this chapter.

1.2 Urban Freight Transport: Types, Stakes, Trends

1.2.1 Types of Urban Freight Movements

Urban freight activities can have many variegated forms, such as waste collection, trans-

port of building materials, retail deliveries, courier services. All of these tasks are com-

mon to urban areas, but have different purposes and characteristics, require different

vehicles, concern different times of day and involve different patterns w.r.t. frequency

and spatial coverage. Hence, they need to be considered separately. A classification
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based on freight type and characteristics can therefore be adopted.

The study presented in [D’Este, 2000] divides urban freight movements into five main

market sectors, and can be summarized by table 1.1. These market sectors capture a

wide range of different cases for what concerns both vehicles and purposes:

market sector truck type commodity load type route trip type

courier
LCV

mixed
PTL

variable
very complex

(light commercial vehicle) (partial truckload) linked trips

specialist commodities large
specific

FTL
regular

simple trips
(e.g. container, bulk liquid) (rigid/articulated) (full truckload) (mostly)

general carrier
medium

mixed PTL or FTL variable
variable

(rigid) (simple/linked trips)

over-sized, large
specific FTL fixed

simple trips
hazardous (articulated)

external transport
large mixed or

FTL regular simple trips
(mostly articulated) specific

Table 1.1: General characteristics of market sectors in urban freight.

The courier and general carrier sectors are those covering most urban freight distribution

tasks. The same study also highlights the importance of the adoption of light commercial

vehicles (LCVs) for urban freight distribution, as they may represent the best response

to changing logistics, life styles and consumption patterns, e.g. to the increasing level

of home deliveries (mail order, e-commerce). Switching from larger vehicles to the less

polluting LCVs could also help reducing emissions, even though the lower emissions

per vehicle could be negatively compensated by the higher overall emissions due to the

increased number and usage of vehicles [Kockelman, 2000].

Another interesting classification is proposed in [Cattaruzza et al., 2013], where the name

Urban Goods Movements (UGMs) is used to denote freight transport movements. This

time, the focus is on the type of resulting delivery problems. Apart from non-commercial

minor flows, the authors identify two main classes of UGMs:

I inter-establishment movements (IEM), i.e. pick-up and delivery trips which are func-

tional to the economic activities of the urban district. They can be further divided

into:

I third party transport: haulage is performed by third-party professionals. As to the

load type, we distinguish full truckload (FTL) and partial truckload (PTL). FTL

strategies mainly concern hypermarket distribution, agriculture and urban industry,

whereas PTL occurs with the service of retailers and tertiary activities distribution.

The cases where FTL is used are in general modeled by the well-known Trans-

portation Problem (TP), introduced in [Hitchcock, 1941], while PTL schemes are in

general modeled as VRPs;

I sender’s own account: transport is performed directly by producers, craftsmen or

distribution companies without involving a transport carrier. Transportation is
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performed with a single vehicle in the case of small companies and can therefore

be modeled as a Traveling Salesman Problem (TSP), whereas in the case of large

companies, a fleet of vehicles is available and thus the modeling of transportation

gives rise to VRPs;

I receiver’s own account: haulage is accomplished directly by the receiver, as it is e.g.

for small retailers going to wholesalers. They can be modeled as pick-up TSPs.

IEM cause the 40 to 45% of traffic road occupancy (expressed in kilometers per equiv-

alent vehicle) and the 23% of park road occupancy (in hours per equivalent vehicle)

in urban extended areas, which rises to an important 62% in city centres. Among the

subcategories, third party transport and sender’s own account cover almost the en-

tirety of deliveries (76 and 23%, respectively), routes (58 and 40%) and total delivered

weight (64 and 33%).

Iend-consumer movements (ECM), i.e. those that allow the direct service of end con-

sumers. They are subdivided into two subcategories, according to the movement

direction:

I shopping trips: this concerns movement of private individuals from their houses

towards shopping points. In spite of forming most of the ECMs, shopping trips are

hard to optimize as they are related to end consumers behavior;

Ihome and proximity deliveries: they include all movements from retailers or distri-

bution points towards end consumers, like e.g. business-to-customer flows, parcel

delivery, proximity delivery and grocery home deliveries. LTL third-party transport

is often used, and VRP routes have to be optimized.

ECM have a traffic road occupancy rate of 45 to 55%, while park road occupancy is

67% in urban extended areas, but only 31% in city centres.

1.2.2 The Involved Stakeholders and the City Logistics Approach

The following four stakeholders can be identified as the main actors of urban freight

transport [Ehmke, 2012]. Each group has specific objectives and needs and tends to

behave in a different manner:

I freight carriers deliver goods to customers. They are expected to:

Iprovide high quality services (commercial and tertiary activities) to the customers;

I reduce the economic costs related to the last mile management;

I shippers send or receive goods to or from other companies or persons. They aim at

offering a service which is optimized in terms of costs and reliability of transport;
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I residents are the people who live, work, and shop in the city. They benefit from

efficient and reliable delivery, but suffer from nuisances resulting from urban freight

movements near their residential and retail areas. Residents and shippers are in turn

customers of city logistics service providers. They expect an economic and reliable

delivery service. Online retail applications are an example of direct interaction of

residents and city logistics providers.

Icity administrators attempt to enhance the economic development of the city. They

aim at

I reducing congestion in the most dense urban areas,

Idecreasing both noise levels and environmental nuisances due to GHG and other

atmospheric pollutants,

I increasing safety of road traffic, and

I revitalize the economic activity of the urban areas, particularly the town centers.

To this end, they consider urban transportation systems as a whole to resolve conflicts

between the other stakeholders.

A very delicate overall frame results from the interlaced relationships among these actors

and different conflicts within the freight transport system. The generation of freight

demand is from the shippers to the consumers, while city administrators set the overall

framework under which delivery tasks take place, e.g. they affect planning procedures

by setting complex restrictions for the realization of delivery tours, for example, certain

time slots that permit or forbid the entrance of freight vehicles in pedestrian areas.

Freight carriers then operate within that framework to satisfy consumer demands. It is

clear how public authorities want to pursue collective utility objective which can be in

conflict with the individual performance and the goals of private stakeholders. Even the

slightest change in one part may strongly affect such a fragile balance. For instance, a

freight carrier with poor efficiency in terms of load rate can impact on the service quality

of the overall system (augmented kilometers per equivalent vehicle, with negative effects

on noise, emissions and congestion) and hence increase the difficulties of management

for planners and regulators. In addition, this would reduce the satisfaction level of

consumers and also the reliability of firms and increase their operating costs. The

authors of a 1999 study of the environmental impacts of freight transport operations

in London [Browne and Allen, 1999] conclude that the economic and environmental

performance of urban freight transport is strongly influenced by the following dilemma:

policies aimed at improving community outcomes from freight transport operations may

often run counter to the improved operations of freight companies and their customers.

This statement also recaps the difficulties in finding adequate solutions. Given that some

combination of company initiatives and government policies is almost certainly required
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for the optimal development of urban freight systems, some form of reconciliation of this

dilemma is essential. One possible way forward is the City Logistics approach.

1.2.3 Main City Logistics Trends: Mutualization and Urban Distribu-

tion Centers

City Logistics has three main objectives:

1. reduce congestion and increase mobility of freight transportation services in urban

areas. More in detail, one would aim at reducing the number of freight vehicles, limit

their dimensions, improve the efficiency of freight movements and reduce the number

of empty trips;

2. contribute positively to the environment and to the sustainable development, mainly

by fulfilling the Kyoto objectives in terms of GHG emissions, reducing pollution and

noise, improving living conditions of city inhabitants;

3.preserve city center activities, mainly commercial, tourist and tertiary.

City Logistics arises from the awareness that to pursue such objectives, traffic and park-

ing restrictions to some given main road or time slots are no longer sufficient, as they

either have side effects on road congestion, or cause the displacement of shops in outer

zones of the city, with negative effects on the economy of the city center.

Starting from the 70’s to these days, many traffic surveys and data collection activities,

conducted mostly among public authorities and freight practitioners, have highlighted

that a common trend is that average load factors are typically very low, with a high

number of empty trips. This suggests that a change of perspective is necessary, i.e. to

consider the aforementioned stakeholders as the actors of an integrated, mutualized lo-

gistics system, where shippers and carriers, instead of acting and optimizing their urban

freight movements separately, are coordinated by a unique operator (which in most of

the cases is, or is related to, some public institution). In this model, shared stocking

spaces are made available to the former by the latter, which performs the shipment op-

erations to final customers with its own fleet in order to rationalize the usage of spaces,

achieve higher load rates and therefore reduce the travelled distance, the costs and the

polluction factors [Gonzalez-Feliu and Morana, 2010]. City Logistics solutions follow

this model and rely on the key concepts of consolidation (i.e. loading goods originating

from different carriers within the same vehicles) and coordination to achieve the desired

rationalization of freight movements. The report [Capgemini, 2008], the result of a study

conducted by a group of multinational companies, is a prominent example of proposal

of a mutualized system based on urban hubs. Reductions of 40% of the transport cost

per pallet, and of 25% of both the number of travelled kilometers and the emissions of
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CO2, are foreseen as effects of the adoption of the proposed system.

Other typical elements of City Logistics initiatives are the usage of low-level environmen-

tal impact vehicles that allow to accomplish environmental targets, and the adoption

of Intelligent Transport Systems (ITS), based e.g. on information technologies, cargo

tracking systems, traffic management centers.

Most of the City Logistics initiatives to date revolve around Urban Distribution Centers

(UDCs). Appeared for the first time in the years 1970 in Northern Europe countries and

rapidly adopted all over Western Europe, they are in most cases managed by the public

institutions. A UDC is a bulk-breaking point similar to hubs in air transport and is the

site where consolidation activities take place. Moreover, they often offer more advanced

functionality towards efficiency and coordination of the freight transport activity within

the urban zone, like e.g. intermodality. Long-haul trucks dock at a UDC to undergo

bulk-breaking operations; goods can then be processed, sorted, consolidated into smaller

vehicles that better fit last-mile shipments and then forwarded to their destinations, both

coming from, or going to, the city center [Agence de l’Environnement et de la Mâıtrise

de l’Energie, 2004]. UDCs are a suitable solution both for the community, as they help

rationalize the flows of merchandise on the territory, but also for those carriers that do

not have a benefit from solving last kilometer issues with their own fleet either because

they do not have sufficient volumes of goods to make it convenient, or because of strict

urban regulations.

1.2.4 Single- and Two-tiered City Logistics Systems

City Logistics projects are often based on a single-tier distribution system, in which

shipments are performed starting directly from the UDC after city vehicles have been

consolidated. Single-tier system projects have been adopted in Europe and Japan since

the early 90’s. Most of them concerned small- or medium-sized cities and involved one or

few UDCs and a restricted number of shippers and carriers. The City Logistik project

launched in Germany and Switzerland [Dietrich, 2001] was a private initiative based

on the idea of encouraging the formation of spontaneous groupings of private carriers.

The project was supposed to be profitable in the short-term due to mutualization, and

the public institutions acted mostly as a facilitator, i.e. by not imposing any particular

traffic rule, hence a very marginal role. However, the City Logistik projects have yielded

mild results, mostly due to the fact that extra-cost and delays caused by consolidation

operations are difficult to deal with when a short-term profitability is expected. A more

successful approach was adopted in the Netherlands [Visser et al., 1999], where the

involvement of public authorities was stronger. Shippers were given a limited number

of licenses and a series of operating rules (e.g. limits on load and number of vehicles)
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to enter the urban zone; on the other hand, longer delivery periods were permitted, and

the use of electric vehicles encouraged. This resulted in carriers initiating collaboration

activities to consolidate shipments, with a considerable reduction of the number of trips.

Other two single-tier, single-UDC distribution system examples are found in France

since the early 2000’s [Agence de l’Environnement et de la Mâıtrise de l’Energie, 2004].

In the case of La Rochelle, big trucks are forbidden in the city center. The UDC is

positioned nearby the city and exploited by a private city operator which is delegated

by public authorities to perform deliveries of consolidated freight of other carriers. These

latter can either be big transporters that serve the outer La Rochelle area and unload

goods for the city at the UDC, or smaller operators that can enter the city center but

prefer to exploit the public service to perform part of their shipments. The results of

the experience in La Rochelle are controversial: the chosen electric vehicles do not fit

the main typologies of merchandises to deliver, whereas more suitable thermic vehicles

have had a negative environmental impact. Moreover, in spite of a strong reduction

of noise pollution, urban congestion and road occupation grew considerably. The case

of Monaco has similar characteristics. The city is forbidden to heavy trucks which are

compelled to unload at the single UDC and let the public operator perform their last

mile shipments. The restrictions are mainly motivated by town planning reasons but

have indirect environmental effects. The Monaco system also has a pre-consolidation

platform, located about 30km away from the UDC, that allows to intercept beforehand

a part of the freight transported by big carriers: the link between the platform and

the UDC is assured by the public operator with high load rates. The success of the

Monaco case resides mainly in this link, and accounts for an average 38% reduction of

main polluants, and a decrease of noise pollution and congestion of, respectively, 40%

and 46%.

Such approaches are particularly suitable for small- to medium-sized cities, but fails

to fit large ones, particularly in cases when the city center exhibits a high density of

population and activities [Dablanc, 2007]. Two-tier systems have been proposed for such

cities to reduce the distance from the UDC, usually located in the city outskirts, and the

city center where the delivery tours begin. In a Two-tier City Logistics system, UDCs

form the first level of the system and are located on the outskirts of the urban zone,

while the second level of the system is constituted of satellites, typically existing parking

spaces, where goods coming from the UDCs are consolidated into vehicles adapted for

utilization in dense city zones. Two types of vehicles are involved in a two-tier City

Logistics system and both are supposed to be low-level environmental impact ones.

Urban-trucks are used to move freight from UDC to satellites. They normally have a

relatively small capacity. During a route, they may visit more than one satellite. City-

freighters are vehicles of even smaller capacity that can travel in narrow city street in

order to perform the required distribution activities. Of course, the two-level structure
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imposes more intense coordination (and often synchronization) efforts of the involved

facilities and vehicles without compromising timely delivery of loads to customers and

economically and environmentally efficient operations. After consolidation operations

at UDCs, each urban-truck receives a departure time and route and travels to one or

several satellites, and the same steps apply at satellites to city-freighters w.r.t. final

customers. Each of these latter performs a route to serve the designated customers,

and then travels to a satellite (or a depot) for its next cycle of operations. This also

contributes to diminish the number of empty vehicle-km. We recall here the two-tier

system cases of Amsterdam (project CityCargo [Metrolinx, 2012]) and Rome [Crainic

et al., 2004].

1.3 Some References in the Literature of Decisional Prob-

lems in City Logistics

The planning of a City Logistics system implies decision-making activities from a strate-

gic, a tactical, and an operational point of view.

IDecisions within the strategic level concern a large part of the organization. They

have a major financial impact and typically include the design of the transportation

system, the size and mix of freight vehicles, the type and mix of transportation services.

Consequent decision problems are weakly structured, but complex and of high risk and

uncertainty, and strongly affect decisional problems at subsequent levels;

I tactical decision-making copes with short or medium-term activities, for which the

planning is done once and is kept for a certain period. For example, postmen perform

each day the same trips, regardless of the quantities of mail to deliver, and therefore the

planning of a workday can be done once and be run for several days, i.e. for the whole

week long. Therefore, tactical decisions in City Logistics concern the efficient and

effective use of transportation infrastructure and the alignment of operations to fulfill

strategic guidelines. At this level, logistics service providers deal with the acquisition

and replacement of their equipment, medium-term driver-to-vehicle assignments, and

cost and performance analysis. Decisions made at the tactical level constrain the

activities of operational management level, and the quality of the achieved solutions

play a major role;

Idecisions of operational management concern short term, day-to-day operations. Op-

erational planning is characterized by a short planning horizon and decision problems

of detailed problem structure. Time dependence, synchronization, time windows, and

in general detailed real-life constraints, which are usually neglected at strategic and
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tactical level, are fully taken into account. Here, logistics service providers plan cur-

rent and next day activities and need to be able to anticipate future developments

such as congestion or expected transportation requests.

In the last four decades, Combinatorial Optimization has been hugely concerned by the

theoretical study of problems related to the three above-cited aspects of City Logistics,

and the development of algorithmic methods to tackle them. We now give a very short

insight to a small number of works, as we will delve into many families of such problems

in the following chapters of the thesis.

After identifying the main issues in the planning of freight transport systems, the au-

thors of [Crainic and Laporte, 1997] propose and survey a set of Operations Research

models accordingly. Since strategic decisions commonly revolve around the design of

the system, two families of problems are proposed as general tools: location models and

network design models, thus addressing the decision issues concerned with both the lo-

cation of facilities and the creation of links between them, before enlarging the scope of

their analysis to the strategic planning on wider geographical areas. When dealing with

tactical planning aspects, a distinction is made between long-haul multimodal trans-

port and city freight transport to retailers and final customers. These two types give

rise respectively to service network design problems and vehicle routing problems. For

the former case, a general network optimization model is yielded, which may represent a

large variety of real situations, provided that it undergoes a further definition depending

on the specific case, as the authors have done in other works concerning the French and

Canadian railway system. For the latter case, the general Capacitated Vehicle Routing

Problem (CVRP) is outlined, before yielding a two-index formulation and some general

guidelines on savings and tabu search heuristic algorithms. Finally, typical issues of

operational level are dealt with, most notably service scheduling, empty vehicle distri-

bution or repositioning, crew scheduling, before treating uncertainty and the Stochastic

VRP. For all of these subcases, a description is given, along with a review of existing

methods.

In [Taniguchi et al., 2003], a mathematical programming and simulation framework

is defined for the evaluation of a set of City Logistics measures: advanced informa-

tion systems, co-operative freight transport systems and load factor control. The au-

thors suppose to deal with an urban area where some freight carriers have introduced

Advanced Vehicle Routing and Scheduling (AVRS) procedures and established a co-

operative freight transport system. Moreover, the governing municipality perform con-

trols over the load factors of vehicles. Based on trends in Japan at the beginning

of the 2000’s, the authors incorporated designated pick-up/delivery times in the sys-

tem requirements. Therefore, they modeled the problem as a Vehicle Routing Problem

with Time Windows and Pickup and Delivery (VRPTWPD), for which a mathematical
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model is given and discussed. The AVRS couples a Genetic Algorithm (GA) to solve the

VRPTWPD with a Dynamic Simulation Model based on the macroscopic dynamic sim-

ulation BOX model introduced by [Fujii et al., 1994], which estimates the travel time of

each arc of the city network in which pick-ups and deliveries take place. In its basic con-

figuration, the AVRS considers a competitive context. The GA block yields VRPTWPD

solutions to serve the pick-up/delivery tasks of each company and feeds the BOX-based

simulator, which updates the travel times every 30 minutes. The VRPTWPD is then

solved again with the updated travel times. VRPTWPD can be considered to incorpo-

rate time dependent travel times. The system runs until a predefined stopping criterion

is satisfied. The AVRS system is run in three configurations on the real road network

of the city of Kobe, Japan, and fed with freight demand data resulting form some sur-

vey of good movements conducted in 1995. The three configurations are a) the basic

competitive configuration described before, b) the same, improved with the introduction

of co-operative freight transport policies, and c) still the basic configuration, enhanced

with load factor controls. The tests results are compared with the real-data of Kobe in

terms of total costs, total operation times and CO2 emissions, proving that each of the

considered City Logistics measures can have a favorable impact on each of these three

indicators.

Finally, [Crainic et al., 2009] is an example of work that aims at defining a new rich

type of VRP that incorporates a series of constraints inspired from real City Logistics

situations. The proposed problem, the Two-Echelon, Synchronized, Scheduled, Multi-

Depot, Multiple-Tour, Heterogeneous Vehicle Routing Problem with Time Windows

(2SS-MDMT-VRPTW), revolves around a two-tiered distribution system. Goods are

located at external zones (i.e. UDCs or other similar logistic platforms) and available

to serve customer demands. Each of the latter is defined by a customer, a quantity, a

required unload time and a service time window. Freight is transported by urban-trucks

to satellites, where it is unloaded and consolidated on city-freighters. The operational

model considers cross-dock transshipment and synchronization at satellites between ve-

hicles of the two types at specific meeting times. This, on one hand, allows for the

satellites to be existing urban spaces, e.g. parkings, but on the other hand it prevents

city-freighters to park and wait at satellites. In the latter case, city-freighters return to

so-called depots until a new duty is requested. Each urban-truck starts at an external

zone, visits one or more satellites to unload, then either exits the system or reaches

another external zone to wait for the next duty; a city-freighter starts from a depot,

visits the first satellite, performs a service trip to serve a set of customers and ends up

to a (possibly different) satellite, then either leaves for a new trip or goes to a depot if no

new duty is scheduled. The problem consists of determining the routing of each demand

from the external zone to the final customer, the dispatching of the vehicles of both

urban-truck and city-freighter fleets, the personnel deployment and the freight-delivery
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schedules, while respecting customers time windows, synchronization requirements, in

such a way to maximize economic and environmental efficiency and minimize the im-

pact on road congestion. The problem therefore exhibits both tactical decision-making

features and operational elements, in that a short-term planning is coped with, most

of the demands do not have a regular basis, and real-time control and adjustment of

operations are required. Moreover, the planning covers a set of T short time periods,

and travel times are considered to depend on the considered time period and are not

necessarily symmetric. A general modeling framework is yielded, along with a set of

variants derived from assumptions on the management of the urban-truck fleet. It is

noteworthy the modeling of a single-tier system, which can be seen as a particular case

of the general framework. A hierarchical decomposition approach is defined for the 2SS-

MDMT-VRPTW, that first determines the schedules for urban-trucks and first-level

demand distribution strategy, then finds the planning of city-freighters that fits first-

stage output, serves customers within their time windows and repositions city-freighters

to satellites or depots. A model for the first subproblem is derived from the general

case. As to the second stage, it gives rise to a new City Logistics problem, the Synchro-

nized, Scheduled, Multi-Depot, Multiple-Tour, Heterogeneous Vehicle Routing Problem

with Time Windows (SS-MDMT-VRPTW), for which a new formulation and a new

decomposition approach are proposed.

1.4 The MODUM Project and the proposed City Logistics

System

The ANR (Agence Nationale de la Recherche, the French National Agency for Re-

search) Project MODUM (Mutualisation et Optimisation de la distribution Urbaine de

Marchandises) [Agence Nationale de la Recherche, 2010] has its main purposes in the

proposal and study of a freight distribution system for urban areas based on a ring of

UDCs situated in the outskirts of a city. The proposed logistic architecture is composed

by three main elements:

I the Urban Distribution Centers to be located in the outskirts of the city;

I the links to connect the UDCs in a ring, to allow massive flows of goods among them

via a dedicated fleet of fast, non-polluting means of transport (trains, shuttles...);

Ia fleet of electric vans, or more generally small, low-level environmental impact vehi-

cles, to perform the shipment (delivery or pick-up) trips from the UDC to the final

customers or vice versa.
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Both the ring and the electric vans fleets are managed by a single operator, either public

or delegated by public authorities. The originality of a ring-of-UDC-based distribution

system resides in the possibility that the ring offers to make massive flows of goods

circulate around the city before being shipped starting from the most suitable UDC.

Long-haul trucks of private carriers come from the main motorways outside the city, i.e.

freight is considered to originate from one of a finite set of source points called gates.

Trucks then address to the nearest UDC and leave their freight there, where bulk-break

and consolidation on ring vehicles will take place. Goods are then sent to the different

destination UDCs by the ring fleet, which assure regular and fast deliveries, a high load

rate due to mutualization, and low emissions. In the destination UDC, a second bulk-

breaking and consolidation step takes place to prepare goods for the shipment. High

load rate and reduced pollution are the drivers of the service to final customers, which

is then performed with green vans according to the same mutualization principle. In

order to avoid empty trips and meet the environmental purposes of the system, service

trips can be opened, i.e. they are not compelled to go back to the UDC they started

from. Unlike many real-life City Logistics system proposed in the last decades [Crainic

et al., 2009], the proposed system addresses the reverse UGM from origins (i.e. pick-up

customers) within the city to destinations outside.

A self-service hiring system is also considered to meet the needs of small operators

who want to perform their deliveries autonomously. Therefore, such self-service system

addresses minor urban flows of goods. This additional service shares the same fleet of

electric vans that is used for shipment operations to final customers: vans are made

available to private transporters not only at UDCs, but also in Self-Service Parking Lots

(SPLs) located inside the city. Trips performed by private operators do not have to go

back to the starting SPL, either.

A rebalancing issue arises from the possibility of having open trips for both the service

trips and self-service trips. The distribution system presented by the MODUM project

is supposed to take charge of the repositioning activities which are necessary to the daily

availability of the fleet of green vans. The proposed system can be seen as a two-echelon,

single-tier distribution system, as goods go from gates to customers via an intermediate

echelon, i.e. the UDCs, but no satellite layer inside the city is considered.

1.4.1 Decision-making issues involved by the proposed system

From a decisional point of view, the freight distribution system proposed by MODUM

calls for the approach to different problems on three different levels, as it is the case for

many City Logistics projects: strategic, tactical and operational. The scenario of the

resulting problems is the urban area of a medium-sized city, of which we suppose to have
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a detailed description in terms of flows of merchandise.

On a strategic level, the decisions concern the position and the dimensioning of the UDC

and the ring links, given a demand distribution, i.e. a set of demands localized within

the city. The resulting optimization problem must determine the system configuration

that best fits such demand distribution.

On a tactical level, the flows to, from and among the chosen UDCs must be routed,

taking into account both their capacity and that of the ring links. The latter will

be expressed in terms of ring vehicles capacity per service frequency. Maximum load

and autonomy of the electric vans must also be considered, as well as the rebalancing

contraints - at least in a simplified form. Note that both the first two levels, i.e. the

strategic and the tactical problems, disregard the time dependency: the static case, with

fixed demands, is considered. Moreover, neither of the two takes into account the usage

of the self-service hiring system by private operators, which is estimated to represent a

small percentage of the overall freight movements and is hence neglected at this level of

detail.

Finally, at the operational level, the problem is the optimal deployment of the fleet

of electric vans to ship the final customers, considering nonaggregated demands, time

dependency, full operational constraints (including the rebalancing policy) and the self-

service hiring system.

1.4.2 A Focus on Strategic-Tactical Planning

The work presented in this thesis originates from the study of the problem arising when

considering the strategic and the tactical decision layers concerned by the requirements

of the MODUM project. This problem has been given the name of Multicommodity-Ring

Location Routing Problem (MRLRP), as it can be considered to belong to the family

of Location-Routing Problems (LRPs), one of the most known strategic problems in

Combinatorial Optimization. In addition to the strategic elements that are common

to most of the LRPs, the MRLRP features the requirement to connect the opened

depots via a ring, a network design aspect that considerably impacts the decision-making.

The multicommodity attribute refers to the fact that goods to deliver are supposed

to originate from different sources and are therefore considered to represent as many

commodities. In the MRLRP, some additional assumptions have been made w.r.t. the

strategic and tactical subproblems of MODUM: here we recap the main ones. For what

concerns the strategic side, the locations where UDCs can possibly be built are in finite

number, and each has associated fixed capacity and cost. This holds also for each

potential ring link. A bound is imposed on the maximum number of UDC that can

be opened. As to the tactical aspects, the size of fleet associated with each UDC is
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not given. Accordingly, the fleet repositioning policy is introduced in an implicit (and

somehow milder w.r.t. the operational problem) way, i.e. by characterizing each UDC

and SPL with fixed rebalancing bounds: the difference between the number of outgoing

and incoming open trips must be comprised between them.

1.5 Conclusions

In this chapter, the main concepts of City Logistics have been briefly reviewed. Stakes,

types of freight, and finally the main trends in building urban freight distribution sys-

tems, have been presented, with a focus on Urban Distribution Centers, the facility that

represents the core of the most promising City Logistics initiatives to date. Single- and

Two-tier UDC-based systems have been treated, along with some examples of project

that have been proposed in the last two decades. Moreover, a short examination of

the main decision-making issues has been presented, as well as some reference papers

among those that apply Combinatorial Optimization concepts to City Logistics. This

has offered us the possibility to exhaustively introduce the proposal of the ANR Project

MODUM, and in particular the MRLRP, a Location-Routing Problem inspired from it.

The following Chapter 2 presents the MRLRP in full detail, from the problem definition

to some proposed solution approaches.



Chapter 2

The Multicommodity-Ring

Location Routing Problem

2.1 Introduction

The last mile problem in freight transportation and distribution is a complex issue. Each

day, large amounts of merchandise are transported to and from the outside of the city via

long-haul vehicles, capable of carrying large quantities of freight, but often inappropriate

or forbidden for retail pick-up and delivery. In that case, transshipment is necessary to

reach the final customers. We address in this chapter a new city logistics problem called

the Multicommodity-Ring Location Routing Problem (MRLRP), based on publicly held

depots called Urban Distribution Centers (UDCs) that collect inbound and outbound

freight. The underlying logistics system combines cross-docking operations on the first

level, i.e. the long-haul transport side, and retail trips on the second level, i.e. the city

side. Each potential site on which to install a UDC has an associated installation cost

and capacity – which must be thought of as a short-term storage capacity,as it is the

case with cross-docking stations. Once chosen, the installed UDCs will act as starting

and ending points of service paths to final customers. Gates on the outskirts of the

city represent the sources of goods that must be delivered to city customers, and the

destinations of goods that must be collected from them. Therefore, they can be thought

of as located on the terminal points of the main roads via which freight can come or

go. Potential sites can be reached from gates via the existing road network, thus no

connection needs to be constructed between them. However, an upper bound is given

on the number of UDCs that a gate can make use of. In the city, there can be both

pick-up and delivery demands, each one being characterized by the quantity to pick up

or to deliver and the concerned gate, since goods must come from, or go to, a specific

25
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one. However, the pick-up and delivery duties must be routed separately. Furthermore,

a ring must be designed to connect the selected UDCs, so that the goods to deliver,

after being transported from their gate to a first UDC, can either leave it directly for

delivery or transit to a second UDC in the ring before being shipped (the former case is

called direct delivery or direct pick-up, or more generally direct shipment). In order to

minimize the empty trips and thus fulfill environmental purposes, retail trips are allowed

to be open, i.e. they are not compelled to end at the same UDC from which they started.

For the same reasons, the system makes use of low-level environmental impact vehicles

(i.e. electric vans), which therefore have a maximum trip length constraint, along with

a canonical load limit. In addition, a self-service van hiring system is available and its

stations, a set of Self-service Parking Lots (SPLs), can serve both as additional ending

points of open delivery paths and as additional starting points of open pick-up paths.

UDCs and SPLs consequently share the same fleet of vehicles. Finally, to simplify the

fleet repositioning at the end of the workday, fleet rebalancing constraints are imposed:

the balance of open paths concerning an SPL or a UDC (i.e. those ending at it minus

those leaving it) is requested to respect given upper and lower bounds. The aim is then

to determine:

1. a subset of UDCs to open and a ring (Hamiltonian circuit) to connect them;

2. the flows between gates and UDCs and the flows in the constructed ring;

3. the assignment of demands to UDCs, via delivery and pick-up service paths.

The objective function consists of minimizing the sum of the installation costs for both

selected UDCs and selected arcs on the ring, flow transportation costs and routing costs

(in the following we will distinguish between the expressions routing cost, which we will

use to refer to the fixed cost involved in moving from one point to another at second

level, and flow transportation cost, which will be used to refer to the per-unit cost of

carrying one unit of goods from one point to another at first level).

The MRLRP is NP-hard since it generalizes the classical CVRP (Capacitated Vehicle

Routing Problem), which we obtain in the special case with a single UDC of unlimited

capacity, no SPL, no pick-up demands, and in which the distance constraint on service

paths is relaxed. It belongs to the well-known family of Location-Routing Problems

(LRP), since it is guided by strategic location and network-design decisions (where to

install facilities and how to connect them), but without disregarding more operational

vehicle routing and fleet management aspects; the latter prevent suboptimization that

would result from the separation of the two aspects and avoid long-term decisions that

would penalize subsequent services on a daily basis. The nature of the problem impacts

on some of the requirements, which are weaker than they would be in a more operational

context. We consider a time-independent scenario: the time horizon is assumed to be a
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generic workday with neither decomposition of the day into time steps nor time-specific

constraints (e.g. time windows for service duties). Moreover, goods are characterized

only in terms of quantities; the demand units may be tons, m3, containers or pallets.

Finally, notice that even the fleet rebalancing constraints are more tactical than oper-

ational. Figure 2.1 displays the elements of an MRLRP instance along with a feasible

solution: gates, potential sites for UDCs, SPLs and customers, flows between gates and

UDCs, arcs connecting the opened UDCs and routes picking or delivering the goods to

customers.

In this chapter, we propose a new problem and a Mixed-Integer Linear Programming

formulation that makes use of route variables for the second-level routing part, edge

variables for the first-level flows, and binary variables for the location and network design

decisions. To solve this problem, an exact approach is proposed that is able to solve

instances with up to 40 pick-up/delivery demands, and some simple larger instances, i.e.

with up to 100 demands. To solve more complex larger instances, we propose GALW, a

matheuristic based on the decomposition of the original problem into four subproblems,

three of which are solved to optimality. Furthermore, a hybrid method is proposed and

tested, both to solve medium-sized instances and to prove the quality of the matheuristic

for the instances in which the exact algorithm fails. The last contribution, which in our

opinion is worth mentioning, is the generation of a benchmark set of MRLRP instances,

the parameters of which vary according to different criteria, thus offering a considerable

testbed.

The rest of this chapter is structured as follows. Section 2.2 gives an insight into the

existing literature on problems that are close to the MRLRP. Section 2.3 describes

the data and graphs that define an instance of the MRLRP. A MILP formulation is

given in section 2.4, while section 2.5 introduces different classes of valid inequalities

for improving the formulation. Section 2.6 describes the four-stage heuristic algorithm

GALW. In section 2.7, a set of instances is introduced, starting from LRP instances taken

from the recent literature and integrated with MRLRP specific features. Numerical

results are displayed and analysed for the three methods for small-sized instances, and

for the matheuristic and the hybrid approach for larger instances. Finally, section 2.8

concludes the chapter.

2.2 Positioning in the Literature

As we mentioned previously, the MRLRP is a deterministic, static problem that belongs

to the class of Location-Routing Problems (LRPs). Reference surveys on Location-

Routing problems can be found in [Laporte, 1988], [Laporte, 1989], [Min et al., 1998],
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Figure 2.1: An example of an MRLRP instance and a feasible solution. There are 5
gates, each associated with a commodity k (represented by a color); we have 7 candidate
sites u to install UDCs; 4 SPLs l; 15 delivery demands, shown as circled spots; and 12
pick-up demands. In the solution, the service paths used to satisfy the demands are
represented by a continuous stroke for delivery and a dashed stroke for pick-up. Note
that there are UDC–UDC closed paths, UDC–UDC open paths and finally UDC–SPL
paths: none of them exceeds the given length and load limits. All of the UDCs and
SPLs have a fleet balance between -1 and +1, with the exception of SPL l=4 with -2.
Five UDCs are chosen and connected in the ring; 3 gates make use of as many UDCs

as the maximum allowed number, which in this case is 2.

[Nagy and Salhi, 2007] and, more recently, [Prodhon and Prins, 2014].

The most investigated problem of this wide class is the Capacitated Location-Routing

Problem (CLRP). The CLRP is modelled with an undirected graph, in which the nodes

are a set of clients, each one with a demand, and a set of potential sites on which to

install facilities, each one with a depot cost and a capacity. Clients must be served by

an unlimited fleet of homogeneous vehicles of fixed capacity. A service route is asked to

return to the same depot from which it started, and its cost is given by the sum of the

costs of the visited edges. The objective is to minimize the sum of depot, vehicle and

routing costs.

One can find LRP variants with, for instance, bounds on the number of open depots [La-

porte and Nobert, 1981, Laporte et al., 1986], uncapacitated depots [Burke and Tuzun,

1999], mobile depots [Amaya et al., 2007, Del Pia and Filippi, 2006]; with a heterogeneous

fleet [Ambrosino and Scutellà, 2001]; with bounds on the route length [Berger et al., 2007,

Laporte and Nobert, 1981] or constraints on both route length and customer deadline

[Aksen and Altinkemer, 2008]; variants arising from the study of emergency situations
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[Rath and Gutjahr, 2014]; variants with possibility of round-trip and multi-trip routes

[Lin et al., 2002], open routes [Berger, 1997] or delivery and pick-up routes [Karaoglan

et al., 2012, Nagy and Salhi, 1998]; more complex variants with multi-period planning

[Prodhon and Prins, 2008] or inventory management [Guerrero et al., 2013, Liu and Lee,

2003].

Let us now introduce some extensions of the LRP that display some features in common

with MRLRP. In [Min, 1996], the author proposed the problem of installing consolida-

tion terminals and both suppliers and customers must be allocated. Similarly, in [Perl

and Daskin, 1985], the authors introduced a warehouse level to define the Warehouse

Location-Routing Problem (WLRP). In both [Min, 1996] and [Perl and Daskin, 1985],

the allocation of customers’ demands from the originating source to an intermediate

consolidation depot makes the interaction between strategic and operational levels even

tighter.

In [Singh, 1998], a problem called the LRP-HTSP was introduced: we only have de-

pots and clients as in the classical CLRP, but location decisions are also affected by the

construction of a ring to connect the chosen depots. Both the warehouse (or supplier)

level and the connection of chosen depots via a ring are integrated into the MRLRP,

which furthermore introduces flows in the selected ring in order to represent completely

the routing of goods from suppliers to final customers. This is made possible by the

integration of the two aspects.

The closest problem to the MRLRP may be the Many-to-Many LRP (MMLRP), in-

troduced in [Nagy and Salhi, 1998]. A list of n customers, the nodes of a complete

undirected graph, is given. Moreover, a list of pairs of customers (i, j), i, j ∈ 1 . . . n, is

known, each one associated with a quantity qij of a specific commodity that i wishes to

send to j. There are no special candidate sites for terminals; instead, each customer can

become a terminal (or hub) with a fixed cost. Once chosen, terminals can be connected

by means of direct routes in order to exchange goods, while service tours to other clients

result in mixed delivery/pick-up trips. We have two classes of vehicles, inter-hub and

service vehicles, both of which are homogeneous and have fixed usage costs and variable

transportation costs; the former are cheaper in terms of variable cost and the latter have

a capacity and a maximum trip length. Solving the MMLRP consists of choosing a set

of service routes and terminals so as to minimize the sum of the terminal fixed costs

and transportation costs. The authors outlined a heuristic two-level nested method, in

which both the terminal location and the service-level routing are approached heuris-

tically, with the former playing the master role and the latter the subproblem role, in

a hierarchical feedback framework. The MMLRP generalizes other problems than the

VRP with pick-up and delivery (VRP-PD) and LRP, like the Hub Location Problem and

the Many-to-Many Transportation Problem. Despite the strong similarities between the

MRLRP and the MMLRP, there is a strong difference concerning the network design
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aspect: in the MRLRP we must trace a Hamiltonian circuit between the selected facil-

ities, which has to be minimal w.r.t. the arc installation costs, while in the MMLRP

the chosen terminals are explicitly completely connected among them and no fixed cost

is present at the hub level. Moreover, there are substantial differences regarding the

service routes’ structure.

To conclude our brief analysis of the literature, note that the Two-Echelon LRP (2E-

LRP) also presents similarities to the MRLRP. It aims to create a three-level distribution

system in which the number and location of two levels of facilities have to be determined.

The name comes from the Two-Echelon VRP (2E-VRP), which is a two-level extension

of the common VRP in which deliveries are made from a central depot to customers via

intermediate depots called satellites and a set of both first- and second-level tours. The

2E-VRP will be briefly reviewed in section A.2. [Boccia et al., 2011] offered a complete

statement of 2E-LRP, along with a three-index, a two-index and a Set-Partitioning-based

MILP formulations, even though the first article concerning the 2E-LRP ever to appear

was, to the best of our knowledge, the one by [Boccia et al., 2010], which proposes

a metaheuristic approach. GRASP heuristics [Nguyen et al., 2012a] and multi-start

heuristics [Nguyen et al., 2012b] with path relinking, as well as genetic algorithms [Lin

and Lei, 2009] and Variable Neighborhood Search (VNS) algorithms [Schwengerer et al.,

2012], have been applied to the 2E-LRP, while [Contardo et al., 2012] presented valid

lower and upper bounds.

As for solving methods for Location-Routing Problems, let us cite first some previous

papers before more recent ones. In [Berger, 1997], Berger proposed a Branch&Price

algorithm for the Distance-Constrained LRP, using a Set-Partitioning-like formulation

in which binary variables are associated with every possible service route. [Berger et al.,

2007] developed Berger’s work to obtain an improved Branch&Price algorithm (see

[Nemhauser and Savelsbergh, 1996]) capable of solving to optimality instances with up

to 100 customer nodes and 10 candidate facilities. Both [Berger, 1997] and later [Berger

et al., 2007] introduced valid inequalities to reduce the number of constraints dramati-

cally and further strengthen the Linear Programming relaxation and the lower bound.

Improved column generation techniques based on Dantzig-Wolfe decomposition were

proposed for the LRP in [Akça et al., 2009]. An efficient Branch&Cut algorithm was

also proposed in [Belenguer et al., 2011]. [Baldacci et al., 2011b] provided a new exact

method with tight bounds for both the capacitated and the uncapacitated versions of

the LRP, again starting from a Set-Partitioning-based formulation of the problem. A set

of bounding procedures, based on dynamic programming and dual ascent methods, was

presented, in order to decompose the LRP into a small set of Multi-Capacitated Depot

VRPs (MCDVRPs). In a more recent work, [Contardo et al., 2014a] proposes a Branch

&Cut&Price algorithm. Both [Baldacci et al., 2011b] and [Contardo et al., 2014a] can

solve some instances with up to 200 customers and 10 to 14 depots.



Chapter 2. Multicommodity-Ring LRP 31

Many heuristic and metaheuristic methods have been developed for the CLRP and

several works can be found in the literature: clustering-based algorithms [Barreto et al.,

2007], heuristics based on solution construction and local search [Prins et al., 2006], Tabu

Search methods [Burke and Tuzun, 1999], Iterative Local Search techniques [Derbel

et al., 2010], VNS algorithms [Jarboui et al., 2013], and finally matheuristic approaches,

like [Prins et al., 2007], [Escobar et al., 2013] and more recently [Contardo et al., 2014b].

2.3 Graph Representation, Data and Notation

The MRLRP problem is defined on a complete mixed graph G = (V,E ∪ A), where

V = K ∪ U ∪ L ∪ P ∪ D. K is the set of gates, U is the set of locations in which a

UDC can be constructed and L is the set of SPLs. P and D are the sets of pick-up and

delivery demands, respectively. Each pick-up demand i ∈ P is defined by a quantity qi

to pick and a gate ki ∈ K to which this quantity goes. For a delivery demand i ∈ D,

the same notation holds with quantity qi delivered from gate ki. Each UDC u ∈ U

has a given installation fixed cost Fu and capacity Qu, which is occupied only by goods

that undergo cross-docking operations on u, as we will explain later. We will assume,

without loss of generality, that |U | > 3 and that the UDC capacities Qu and the overall

demand
∑

i∈P∪D qi guarantee that at least three UDCs must be opened. On the other

side, the number of UDCs to be built in the ring is bounded by a given number N ≥ 3,

for budget reasons. For conciseness purposes, we define the collection of UDC subsets

SU = {S ⊂ U : 3 ≤ |S| ≤ |U | − 3}. In the following, we identify each gate k ∈ K with a

different commodity. We note Pk = {i ∈ P : ki = k} the set of pick-up demands that go

to gate k ∈ K, and Dk = {i ∈ D : ki = k} the set of delivery demands that come from

gate k. Therefore, sets Pk form a partition of P , and the same applies to sets Dk w.r.t.

D.

The arc set A represents the first level and is defined as A = (K × U) ∪ (U ×K) ∪AU ,

where AU = {(u, v) : u, v ∈ U, u 6= v} is the arc set defined on U . Each arc (u, v) ∈ AU
has an associated per-flow-unit transportation cost cuv and capacity quv. Per-flow-unit

transportation costs cku and cuk are also associated with arcs (k, u) ∈ K × U and

(u, k) ∈ U × K, respectively. A gate can directly exchange goods with a maximum

number B of UDCs. The edge set E, the undirected part of graph G, represents the

second level; it is defined as E = Ep ∪ Ed, where Ep = (U ∪ L ∪ P ) × P is the set

of pick-up edges and Ed = (U ∪ L ∪ D) × D is the set of delivery edges. The cost

data associated with edges (i, j) ∈ E are routing costs cij , proportional to Euclidean

distances. The part of G that represents the first level is directed (arc set A) because

of the potentially asymmetric cost and capacity data and the possibility to model flows

between two connected UDCs in both directions. Nevertheless, given any two u, v ∈ U ,
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they are supposed to be connected either in both directions or not at all; that is why

we define arc subset A′U = {(u, v) : u, v ∈ U, u < v} and associate an installation cost

guv with each arc (u, v) ∈ A′U , i.e. the cost to connect u and v in both directions. In a

similar way, the B UDCs that a gate can be linked to must be the same for both delivery

and pick-up.

Each UDC or SPL h ∈ U ∪L has given bounds −δ−h and δ+
h to impose fleet rebalancing

constraints. The number of second-level vehicles at each UDC u ∈ U and each SPL

l ∈ L at the end of the day should be the same as at the beginning, with an allowed

deviation comprised in [−δ−h , δ
+
h ]. An unlimited fleet of homogeneous electrical vehicles

is available in each u ∈ U and each vehicle has a limited capacity q and length M .

In the following, the name route, with index r, refers to a second-level route that starts

at a UDC (or an SPL for pick-up), visits a set of demand nodes sequentially and ends

at a UDC (or at an SPL for delivery). When the starting and ending points are the

same, it is a classical back-to-depot route, otherwise we call it an inter-depot route.

We denote by Rr = (ir1 , . . . , ir|Rr |) the sequence of demands served by route r, and

by Er the subset of edges of Ep or Ed (depending on whether Rr ⊂ P or Rr ⊂ D)

that compose route r. For each route r we can compute its load q(r) =
∑

i∈Rr qi and

routing cost c(r) =
∑

(i,j)∈Er cij ; the former term can be further classified according to

the commodity by defining qk(r) =
∑

i∈Rr:
ki=k

qi. A feasible route is a route r such that

q(r) ≤ q and c(r) ≤ M . The set of all feasible routes is denoted by R, partitioned into

Rp and Rd according to pick-up and delivery. Ri denotes the set of all routes that serve

demand i ∈ P ∪D. We then define R+
h and R−h , h ∈ U ∪ L, as the sets of routes that

start and end at h, respectively; and finally R+d
u = R+

u ∩Rd and R−pu = R−u ∩Rp, the

sets of delivery and pick-up routes that start and end at u ∈ U , respectively.

2.4 A Mixed-Integer Linear Programming (MILP) Formu-

lation for the MRLRP

We propose to model the MRLRP with a Set-Partitioning-like formulation, which uses

variables associated with service paths, instead of two/three-index variables linked to

arcs and vehicles. The equivalence between models of the two families has been proved

for various problems of the VRP class, and notably for the CLRP in [Akça et al.,

2009]; moreover, Set-Partitioning-like formulations are in general more efficient, since

they provide stronger LP relaxations and lower bounds. In the case of the MRLRP,

the use of path variables rather than arc variables on the second level allows us to

express the relation between the first-level network and the second-level network better.

Furthermore, the previous works by [Berger, 1997] and [Berger et al., 2007], which
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we take advantage of, used such a formulation. This modelling choice would not be

affected if we removed the assumption that second-level routing costs are proportional

to Euclidean distances (i.e. symmetric and subject to triangular inequality), as the

impact of such a removal would be underlying in the definition of the collections of

routes.

2.4.1 Decision variables

We define four families of decision variables:

1.binary ring variables:

Iyu = 1 if a UDC is located at site u ∈ U , 0 otherwise (location variables)

Izuv = 1 if sites u and v are directly connected (in both directions) in the ring, 0

otherwise, for (u, v) ∈ A′U (connection variables)

2.binary service variables χku = 1 if gate k directly exchanges goods with UDC u, 0

otherwise

3.binary second-level routing variables xr = 1 if route r ∈ R is selected, 0 otherwise

4.first-level flow variables, which are all non-negative and continuous:

Iϕku = flow of goods transported from gate k to site u

Iϕuk = flow of goods collected from site u to gate k

Iϕdkuv = flow of delivery goods of commodity k through arc (u, v) ∈ AU (k-outflows)

Iϕpkuv = flow of pick-up goods of commodity k through arc (u, v) ∈ AU (k-inflows)

Iφku = maximum value between the quantity that comes directly from gate k to site

u and the quantity coming from gate k that leaves u for a delivery route

Iφuk = maximum value between the quantity that goes directly from site u to gate

k and the quantity going to gate k that arrives at u with a pick-up route

2.4.2 MILP formulation

The MILP model associated with the MRLRP is the following:

(MMRLRP )

min

(A)︷ ︸︸ ︷∑
u∈U

Fuyu +

(B)︷ ︸︸ ︷∑
(u,v)∈AU

guvzuv +

(C)︷ ︸︸ ︷∑
r∈R

c(r)xr +
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(D)︷ ︸︸ ︷∑
k∈K
u∈U

(ckuϕku+cukϕuk) +

E︷ ︸︸ ︷∑
(u,v)∈AU

k∈K

cuv(ϕ
pk
uv+ϕdkuv) (2.1)

s.t.
∑
u∈U

ϕku =
∑
i∈Dk

qi ∀k ∈ K (2.2)

∑
u∈U

ϕuk =
∑
i∈Pk

qi ∀k ∈ K (2.3)

ϕuk + ϕku ≤ χku
∑

i∈Pk∪Dk

qi ∀k ∈ K,u ∈ U (2.4)

χku ≤ yu ∀k ∈ K,u ∈ U (2.5)∑
u∈U

χku ≤ B ∀k ∈ K (2.6)

ϕku +
∑
v∈U
v 6=u

ϕdkvu =
∑
v∈U
v 6=u

ϕdkuv +
∑

r∈R+d
u

qk(r)xr ∀k ∈ K,u ∈ U (2.7)

∑
r∈R−p

u

qk(r)xr +
∑
v∈U
v 6=u

ϕpkvu =
∑
v∈U
v 6=u

ϕpkuv + ϕuk ∀k ∈ K,u ∈ U (2.8)

∑
r∈Ri

xr = 1 ∀i ∈ P ∪D (2.9)

xr ≤ yu ∀r ∈ R+
u ∪R−u , u ∈ U (2.10)

− δ−h ≤
∑
r∈R−h

xr −
∑
r∈R+

h

xr ≤ δ+h ∀h ∈ U ∪ L (2.11)

∑
v∈U
u<v

zuv +
∑
v∈U
v<u

zvu = 2yu ∀u ∈ U (2.12)

∑
u∈S
v/∈S
u<v

zuv +
∑
u/∈S
v∈S
u<v

zuv ≥ 2(yw + yw′ − 1) ∀S∈SU ,w∈S,w′∈U\S (2.13)

∑
k∈K

(ϕdkuv + ϕpkuv) ≤ quv zuv ∀(u, v) ∈ A′U (2.14)

∑
k∈K

(ϕdkvu + ϕpkvu) ≤ qvu zuv ∀(u, v) ∈ A′U (2.15)

∑
k∈K

(φku + φuk) ≤ Quyu ∀u ∈ U (2.16)

φku ≥ ϕku ∀k ∈ K,u ∈ U (2.17)

φku ≥
∑

r∈R+d
u

qk(r)xr ∀k ∈ K,u ∈ U (2.18)

φuk ≥ ϕuk ∀k ∈ K,u ∈ U (2.19)

φuk ≥
∑

r∈R−p
u

qk(r)xr ∀k ∈ K,u ∈ U (2.20)

∑
u∈U

yu ≤ N (2.21)

yu ∈ {0, 1} ∀u ∈ U

zuv ∈ {0, 1} ∀(u, v) ∈ A′U
χku ∈ {0, 1} ∀k ∈ K,u ∈ U
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xr ∈ {0, 1} ∀r ∈ R

ϕpkuv, ϕ
dk
uv ≥ 0 ∀k ∈ K, (u, v) ∈ AU

ϕku, ϕuk, φuk, φku ≥ 0 ∀k ∈ K,u ∈ U

The objective function minimizes the sum of the installation cost of selected UDCs

(A), the connection costs of the ring (B), the routing costs of the second-level delivery

and pick-up paths (C) and the transportation costs between gates and UDCs (D) and

between UDCs on the ring (E). Constraints (2.2) and (2.3) express that the flow that

leaves or goes to gate k is equal to the total quantity of demands coming from or going

to k, while constraints (2.4) force the flow of commodity k that enters or exits u to

be 0 if commodity k does not directly exchange goods with site u; (2.5) express the

straightforward relation between location and service variables, while (2.6) bounds to

B the number of UDCs with which a gate can send and receive some demand. Flow

conservation constraints (2.7) ensure that for every u ∈ U and k ∈ K, the total quantity

of commodity k that arrives at u either directly from k or through the ring (k-outflows)

is equal to the total quantity that leaves u to go to the ring (again k-outflows) or

leaves u for delivery service paths. The reverse holds for pick-up flows in constraints

(2.8). Constraints (2.9) assign each delivery or pick-up demand to exactly one route.

Constraints (2.10) assert that no route can start or end at a UDC if it is not chosen.

(2.11) are the fleet rebalancing constraints at every UDC and SPL. Relations (2.12)

and (2.13) concern the construction of a ring with the selected UDCs. The latter are

subtour elimination constraints adapted to the fact that the nodes to be connected are

not known a priori. Section 2.5.2 is devoted to this aspect. (2.14) and (2.15) are capacity

constraints on the arcs of the ring. Note that, given two UDCs u, v ∈ U and such that

u < v, all flows on both (u, v) and (v, u) depend on zuv.

Relations (2.16)–(2.20) are storage capacity constraints on UDCs, in the following sense.

Suppose that a delivery demand i ∈ D is transported from ki to a UDC u and then

shipped starting from UDC v. In order to model the cross-docking operations, i is

considered to occupy capacity on both u and v (whereas possible intermediate UDCs are

not concerned), unless a direct shipment takes place (i.e. v ≡ u), in which case a portion

qi, and not 2 qi, of Qu is occupied. This means that given k ∈ K, the occupation of u due

to demands in Dk is not the sum of ϕku and
∑

r∈R+d
u
qk(r)xr (i.e. the sum of demands of

Dk shipped from u), but the maximum of the two. Terms φku and φuk account for that,

respectively, for delivery ((2.17), (2.18)) and pick-up ((2.19), (2.20)); thus, the sum on

the left-hand side of (2.16) is an upper bound on the occupation of u. A consequence

of this modelling choice is that the condition
∑

i∈D∪P qi > max
u,v∈U,u 6=v

(Qu +Qv) is enough

to guarantee that at least three UDCs will be opened, since the left-hand-side term is

the minimum value of the overall occupation of UDC capacities, which occurs in the
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particular case of all direct shipments. Finally, (2.21) is the budget constraint on the

maximum number of UDCs that can be built.

2.5 Strengthening the model

In this paragraph, we add some constraints that are redundant for the initial formulation,

but useful for speeding up the resolution. Moreover, we show how to write the subtour

elimination constraints in a more effective way; finally, we add some valid inequalities

derived from the literature.

2.5.1 Logical inequalities

Constraints (2.10) and the objective function are enough to relate variables y and xr.

Nevertheless we add complementary constraints (2.22):

yu ≤
∑

r∈R+d
u

xr +
∑

r∈R−pu

xr ∀u ∈ U (2.22)

These constraints essentially assert that there must be delivery routes starting at u, or

pick-up routes ending at u, to justify the choice to open it. The reason for this is that,

e.g. for the delivery, the roles of the starting point and the endpoint of a delivery path

are strongly unbalanced: the latter simply acts like a parking point (i.e. if it is a UDC,

then its function does not differ from that of an SPL) and is affected only in terms of

rebalancing, while the former is essential for the delivery service and is affected also in

terms of capacity occupation. With (2.22), we explicitly forbid the opening of a UDC

only to perform parking functions. However, once we decide not to open it, then delivery

paths ending at it and pick-up paths starting from it are also forbidden by (2.10).

2.5.2 Subtour elimination inequalities

As mentioned before, constraints (2.12) and (2.13) are a variant of the usual Subtour

Elimination Constraints for the case when the nodes to be connected in the tour are not

known a priori. This is a substantial difference w.r.t. the standard STSP (Symmetric

Traveling Salesman Problem) and some other more specific variants, in which the nodes

to be visited are not known except for a subset of compulsory nodes (like in the Ori-

enteering Problem, see [Laporte, 1986] and [Fischetti et al., 1998], the Prize Collecting

TSP, see [Ausiello et al., 2007] for instance, or the Steiner TSP, see [Letchford et al.,
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2012]). Subtour Elimination Constraints (2.13) are taken from the literature on General-

ized Cut Constraints and on the Generalized Traveling Salesman Problem (GTSP); one

can refer, for example, to [Fischetti et al., 1997] to gain an insight into those subjects.

However, constraints (2.13) can be substituted in two different ways, as we explain in

the following.

2.5.2.1 First form

We add new variables ζu ∈ {0, 1} for every u ∈ U , and replace (2.13) with the following

families of constraints:

ζu ≤ yu ∀u ∈ U (2.23)∑
u∈U

ζu = 1 (2.24)

∑
u∈S
v∈S
u<v

zuv ≤
∑
u∈S

yu + 1− yw −
∑
u∈S

ζu ∀S ∈ SU , ∀w ∈ U\S (2.25)

By doing so, we dramatically reduce the overall number of constraints, since if we com-

pare (2.25) and (2.13), then for each subset S we have O(|U |) constraints instead of

O(|U |2). Both the equivalence between constraints (2.23)–(2.25) and relations (2.13)

and the proof of this equivalence are inspired by the GTSP and Generalized Cut Con-

straints theory and the aforementioned [Fischetti et al., 1997].

Lemma 2.1. The aggregate of constraints (2.12) and (2.23)–(2.25) allows us to avoid

subtours in the MRLRP case, i.e. when the nodes to be connected by the tour are not

known a priori.

Proof. Let S be an element of SU . Let us also suppose, without loss of generality, that∑
u∈U yu ≥ 3. We can distinguish four cases:

1. If
∑

u∈S yu = 0, from (2.23)-(2.25) we obtain
∑

u,v∈S:u<v zuv ≤ 0, i.e. no edge with

both endpoints in S is allowed.

2. If 0 <
∑

u∈S yu <
∑

u∈U yu and
∑

u∈S ζu = 1, then there exists w ∈ U\S : yw = 1,

and for such a w, constraint (2.25) becomes:

∑
u,v∈S
u<v

zuv ≤
∑
u∈S

yu − 1

so in this case subtours in S are indeed forbidden.
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3. If 0 <
∑

u∈S yu <
∑

u∈U yu and
∑

u∈S ζu = 0, then again there is a w ∈ U\S : yw = 1,

and for such a w, constraint (2.25) becomes:

∑
u,v∈S
u<v

zuv ≤
∑
u∈S

yu

which do not prevent having a subtour in S, but constraint (2.25) on U\S (which also

belongs to SU ) and for some w ∈ S : yw = 1 becomes:

∑
u,v∈U\S

zuv ≤
∑

u∈U\S

yu + 1− yw −
∑

u∈U\S

ζu =
∑

u∈U\S

yu − 1

this prevents subtours in U\S, and consequently in S.

4. If
∑

u∈S yu =
∑

u∈U yu (i.e.
∑

u∈U\S yu = 0), then yw = 0 for all w ∈ U\S which

implies
∑

u∈U ζu = 1. So for any w ∈ U\S the constraint becomes

∑
u,v∈S:u<v

zuv ≤
∑
u∈S

yu

Thus, subtours are allowed in S. A single subtour should be allowed in this case in S,

but not several. Indeed, it is not possible to have several subtours in S as if a subtour

spans a subset S′ ⊂ S, this subtour would be eliminated by constraint (2.25) for S′

instead of S. This completes the proof.

2.5.2.2 Second form

We add a fictitious UDC û. For ease of notation, let (∀u ∈ U) û < u. Then we define:

I the extended UDC set Û = U ∪ {û} and arc subset Â′U = A′U ∪ {(û, u) : u ∈ U}.
We will talk about actual UDCs and ring arcs, to distinguish them from û and the

arcs of Â′U\A′U ;

I ring variables zûu, u ∈ U for the new arcs, all associated with a cost 0;

I the cut-set D̂(S) = {(u, v) : u ∈ S, v ∈ Û\S}∪{(u, v) : u ∈ Û\S, v ∈ S} of set S ∈ SU .

Note that no S ∈ SU includes fictitious node û, hence:

(∀S ∈ SU ) {(û, u) : u ∈ S} ⊂ D̂(S).
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We can now replace (2.13) with the following families of constraints:

∑
u∈U

zûu = 2 (2.26)

yu ≥ zûu ∀u ∈ U (2.27)

zuv ≥ zûu + zûv − 1 ∀(u, v) ∈ A′U (2.28)∑
(u,v)∈D̂(S)

zuv ≥ 2yw ∀S ∈ SU ,∀w ∈ S (2.29)

Constraints (2.26) impose the connection of û with two UDC, which are then chosen (i.e.

the corresponding y variables are forced to 1, due to constraints (2.27)) and connected

between them (as a consequence of constraints (2.28)). Finally, constraints (2.29) are

Generalized Subtour Elimination Constraints (GSECs). As one can observe, the overall

number of constraints decreases significantly, as by comparing (2.29) and (2.13) we have

O(|U |) constraints instead of O(|U |2) for each S ∈ SU , as it was for relations (2.25) (see

section 2.5.2.1).

This second technique to substitute constraints (2.13) is based on a simple idea. Since

the main issue in preventing subtours is the lack of a subset of compulsory nodes, we add

one, i.e. û: this way, we can exploit the GSECs like it is done, for example, in [Fischetti

et al., 1998], in order to get a unique tour that visits û and the subset of chosen actual

UDCs of U . The requested actual ring, i.e. that makes use of arcs of A′U only, is then

obtained by shortcutting û with a chord that connects the two actual UDC u, v ∈ U s.t.

zûu = zûv = 1 (constraints (2.27), (2.28)). Note that the cost 0 associated with fictitious

arcs (û, u), u ∈ U , assures to obtain a least cost actual ring.

Since this technique actually relies on the Generalized Subtour Elimination Constraints,

the equivalence between (2.13) and the aggregate of constraints (2.26)–(2.29) does not

need to be proven.

2.5.3 Path inequalities

Following an idea of [Berger, 1997], which was later reused in [Berger et al., 2007], we

replace constraints (2.10) by the family of constraints:

∑
r∈Ri∩(R+

u ∪R−u ) xr ≤ yu ∀u ∈ U,∀i ∈ P ∪D (2.30)

These constraints are valid, since at most one route among those that start or end at u

can be selected to serve demand i. Moreover, family (2.10) has an exponential number

of constraints, while those of family (2.30) are in polynomial number. Most of all, the

above replacement makes the continuous relaxation of the MILP model stronger, thus

tightening the lower bound. In [Berger, 1997], the author applied this substitution to
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a Set-Partitioning-based formulation of LRP, proving the new constraints to be rank-1

Chvátal cuts.

2.6 A Matheuristic Algorithm

This section presents GALW, a matheuristic to solve large MRLRP instances.

The exact approach often fails to solve medium- to large-sized instances, due to the

huge number of possible routes; even when they can be solved, the computational times

can grow considerably, due to the fact that the numerous constraints belong to different

families (notably assignment, STSP and flow constraints), which are strongly intercon-

nected. The choice of what heuristic approach should be used to address an instance of

MRLRP is not immediate. The complexity, heterogeneity and interdependence of the

different components of the problem (location, network design, routing, flow) make the

definition of one or more neighborhoods of a MRLRP solution a difficult task; therefore,

a local search based technique would be quite hard to design.

This is the main reason that led us to choose a decomposition-based matheuristic ap-

proach. GALW is based on two ideas: to generate only a subset of routes and to

decompose the model into three phases. Each phase is devoted to one or more specific

aspects of the problem solved to optimality. The procedure to generate routes, which

is the only heuristic one, is a nearest neighbor algorithm conveniently modified to take

into account the load and trip length constraints of the second-level vehicles. The other

three phases consist of a MILP model for the generalized assignment problem, an STSP

and a multicommodity flow problem on a ring.

2.6.1 Route generator

Let R = (i1, . . . , i|R|) be a sequence of demands (as seen before in section 2.3), and

r(R) ∈ R the route (either an inter-depot route or a back-to-depot route) we obtain

when R is completed with a starting point that is the nearest to i1 and an ending point

that is the nearest to i|R|. The nearest starting and ending points of demand i may

differ, due to the role of SPLs, as previously discussed. We can say that R is a valid

sequence of demands if c(r(R)) ≤ M and q(r(R)) ≤ q, i.e. if r(R) is a feasible route.

Note that we can have many feasible routes, other than r(R), that descend from R. We

build a set R ⊂ R of routes by using a nearest neighborhood procedure. We denote by

Ri ⊂ Ri the set of routes serving demand i that we progressively build. The algorithm

ensures that R contains routes of different maximum lengths M t = βtM ≤ M , where

β < 1, t = 0 . . . t∗, since it would be hard to find solutions if all the routes had the same

maximum length M . The generation process is characterized by parameters β and τ ,
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0 < τ < β < 1; it begins with t = 0 and progressively increases t until βt < τ ; thus,

t∗ = blogβ τc. Each new route is initialized with a demand i, which is randomly chosen

among those with a number of newly generated (t-th iteration) visiting paths which is

less than the average over the set of demands. Then, the algorithm iteratively performs

the following two steps, until no more demands can be inserted without exceeding M t

or q:

1.Choose a demand i to add to the current sequence R by means of a nearest neighbor

rule that minimizes the function d(R, i) defined below;

2. Improve the updated R with a local search step, which consists of a sequence of 2-opt

moves on r(R) until no further improvement is possible.

The function to minimize is d(R, i) = pq
q(r)+qi

q +pM
min{c(r(i,i1..i|R|)),c(r(i1..i|R|,i))}

M +pω
|Ri|
ω ,

where the second term is the minimum between the costs to insert new demand i at

the beginning or at the end of R, and p = (pq, pM , pω) is a vector of weights. The only

difference from classical 2-opt techniques (see e.g. [Lin and Kernighan, 1973]) is that

in our case, a 2-opt move that changes, for instance, the first-visited demand could also

alter the nearest starting point of the route; similarly, this can be said for moves that

change the last-visited demand. This must be taken into account in the computation of

the saving of such moves. Figure 2.2 explains the difference between a move that does

not alter the extreme points of the current route (b) and what happens when such a move

is performed (c). The t-th iteration stage terminates when each demand i is covered by

at least ω routes, to guarantee that Ri contains a minimum number of routes. Since β,

ω and τ are constants, the complexity of the overall route generation algorithm turns

out to be O(n4). We use R as a good set of feasible routes in the following section.

i2 i3 i4 i5 e(i5)i1s(i1)

i2 i3 i4 i5 e(i5)i1s(i1)
(a)

(b)

(c)
i2 i3 i4 i5 e(i5)i1

s(i3)

s(i1)

Figure 2.2: Illustration of the principle of a 2-opt move in the local search step of
the route generation. We respectively note s(i) and e(i) as the nearest starting point
and nearest ending point for demand i. When the move does not change the first- and
last-visited demand, the saving is computed as usual, as in (b), in which it amounts to
ci2,i3 +ci4,i5−(ci2,i4 +ci3,i5). However, in a case like (c) in which the first-visited demand
changes, it may also be possible to alter the starting point (in the example s(i3) 6= s(i1)):
the saving will be cs(i1),i1 + ci3,i4 − (cs(i3),i3 + ci1,i4). Similar considerations apply when

we change the last-visited demand.
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2.6.2 MILP Assignment subproblem

The second stage of GALW deals with the decisions concerning routing, UDC activation,

and demand assignment. The two distribution levels are disjoint in the graph represen-

tation: the problem is solved as an assignment of demands both at the first level (from

gates to UDCs) and at the second level, while taking into account the UDCs’ capacities.

We neither have to build the ring nor have to route flows in it; however, if for instance

a delivery demand i ∈ Dk is brought from gate k to a UDC u and later delivered from

another UDC v, then we have either a direct shipment if u = v or an implicit use of the

external network, if not, and similarly for pick-up. We use a subset of the variables of

the MILP general model for the MRLRP (see section 2.4), namely: location variables

yu, u ∈ U , routing variables xr, where r ∈ R, service variables χku, (k, u) ∈ K × U and

a subset of flow variables: ϕku, ϕuk, φku and φuk, k ∈ K, u ∈ U . All these variables

have the same meaning and domain as in the general model, with the obvious exception

of the routing variables xr. The objective function is composed of terms (A), (C) and

(E) of that of the MILP general model. The constraints are a subset of those of the

general model, namely (2.2)–(2.6), (2.9), (2.11), (2.16)–(2.21), (2.22) and (2.30), along

with the bounds on the variables inherited from the MILP general model. The variables

and constraints removed are those concerning the ring and the flows in it. Since the

MILP model defined so far does not have the terms (B) and (D) of the initial model,

it could decide to open a subset of UDCs that later determine a ring that turns out to

be too expensive in terms of the fixed cost and flow transportation cost. It is therefore

necessary to estimate these costs a priori. To achieve this, first of all we find the solu-

tion to the STSP on any subset O ⊂ U of the UDCs such that 3 ≤ |O| ≤ N ; then, for

each u ∈ U and any o = 3. . . N , we determine the cost Fu,o = 1
2guvo + 1

2guwo , where vo

and wo are the nodes connected to u in the least costly ring of exactly o nodes among

those that include u. Note that cost function Fu,o can be fully determined a priori in a

preprocessing phase. Then, we add to the model a new set ξuo of binary variables, u ∈ U ,

o = 3 . . . N : ξuo = 1 means that u ∈ O and |O| = o. Finally, we introduce the following

constraints:

∑
v∈U\u

yv ≥
N∑
o=3

(o− 1)ξuo ∀u ∈ U (2.31)

∑
v∈U\u

yv ≤
N∑
o=3

(o− 1)ξuo +N(1− yu) ∀u ∈ U (2.32)

ξuo ∈ {0, 1} ∀u ∈ U, o ∈ {3..N}

and add to the objective function the term
∑

u∈U
∑N

o=3 Fu,oξ
u
o , which represents a lower

bound of the fixed installation cost of the ring. The impact of the flow transportation
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costs and ring arc capacities is tackled as follows. For each commodity k and UDC u,

terms (ϕku−
∑

r∈R
+d
u
qk(r)xr) and (

∑
r∈R

−p
u
qk(r)xr−ϕuk), when positive, represent the

quantities of goods that must leave u; this allows us to compute the total amount of

goods that u must send through the ring, for which we can both impose an upper bound

and compute a transportation cost lower bound to add to the objective function. This

is achieved by considering, respectively, the two arcs (u, v), (u,w) ∈ AU such that the

total capacity quv+quw is maximum and the two arcs (u, v′), (u,w′) ∈ AU that minimize

the per-flow-unit cost 1
2(cuv′ + cuw′).

2.6.3 Ring construction

Given the subset O ⊂ U of the chosen UDCs, the third stage of GALW consists of

finding the way to connect them in a ring with the minimum cost. The costs to consider

for this problem are guv, (u, v) ∈ A′U , u, v ∈ O, i.e. the costs to connect two UDCs u and

v in both directions. Thus, even if the original subgraph that connects UDCs is oriented,

the problem to solve is a Symmetric TSP (STSP), and is solved using CONCORDE,

the well-known computer code for the STSP ([Applegate et al., 2006]). In spite of being

NP-hard, this stage of GALW requires negligible solution times, due to the relatively

small number of UDCs. The flows on the resulting ring can circulate in two directions,

which in the following will be referred to as clockwise and counterclockwise for the sake

of simplicity.

2.6.4 Ring flows

Once we have solved the assignment subproblem and built the ring, we have to send

flows along it to accomplish indirect shipments. We have as many commodities as

twice the number of original commodities, i.e. 2|K|, since we distinguish between pick-

up and delivery flows. For each commodity k, and for both pick-up and delivery, we

have UDCs with available goods, i.e. the ones that received goods either from a gate

(case ϕku >
∑

r∈R
+d
u
qk(r)xr) or from pick-up services (case

∑
r∈R

−p
u
qk(r)xr > ϕuk);

those with a request for goods, because they have to send them either to a gate (case∑
r∈R

−p
u
qk(r)xr < ϕuk), or to delivery services (case ϕku <

∑
r∈R

+d
u
qk(r)xr); and those

that are not involved. In the following, we refer, for instance, to deliveries of commodity

k: let O+
dk ⊂ O be the subset of chosen UDCs with availability and O−dk ⊆ O\O+

dk be

the subset of those with a request. In addition, let O2
dk = {{u, v} : u ∈ O+

dk, v ∈ O
−
dk}

be the set of source–sink pairs {u, v}, and Φdk
uv be the flow we send from source u to

sink v, again for the delivery of commodity k. The total availability of sites u ∈ O+
dk

is equal to the total demand of sites v ∈ O−dk; goods must be sent from the former to
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the latter, in such a way that each u ∈ O+
dk completely consumes its availability and the

need of each v ∈ O−dk is fulfilled. This results in a series of straightforward flow balance

constraints on terms Φdk
uv (and, in general, for terms Φdk

uv and Φpk
uv of each k). Now, let

θ′{uv} and θ′′{uv} , respectively, be the clockwise path and the counterclockwise path from u

to v, u, v ∈ O, along the ring. Any flow we must send from u to v can be split and sent

partly clockwise and partly counterclockwise, i.e. along θ′{uv} or θ′′{uv} . This means that

any clockwise-oriented arc of the ring a must transport all of the flows (regardless of the

commodity) from u to v of any couple {u, v} such that a ∈ θ′{uv} ; the analogous situation

applies to counterclockwise-oriented arcs. The last stage of GALW consists of a ring

multiflow problem with multiple sources and sinks for each commodity: we solve it by

means of a another LP model, in which we impose the balance between availabilities

and requests due to pick-up and delivery of each commodity and decide how to split the

flows in such a way as to respect the arc capacities and minimize the flow costs. The

flow on each ring arc a is:

fa =
∑

k(ϕ
dk
a + ϕpka ) =

=



∑
k

( ∑
{u,v}∈O2

dk:

a∈θ′{uv}

(Φdk
uv)
′ +

∑
{u,v}∈O2

pk:

a∈θ′{uv}

(Φpk
uv)
′
)

, a clockwise-oriented

∑
k

( ∑
{u,v}∈O2

dk:

a∈θ′′{uv}

(Φdk
uv)
′′ +

∑
{u,v}∈O2

pk:

a∈θ′′{uv}

(Φpk
uv)
′′
)

, otherwise

(2.33)

where (Φdk
uv)
′ and (Φdk

uv)
′′ are the parts of Φdk

uv that we send clockwise and counterclock-

wise, respectively. Flows ϕdka and ϕpka are the same as the outflows and inflows of the

general model for the MRLRP: therefore, the constraints of the ring multiflow LP model

are simply the capacity constraints on the arcs a of the ring, which we derive from the

general model (see (2.14)–(2.15)), along with the aforementioned flow balance constraints

on variables Φdk
uv and Φpk

uv. The objective function reduces to term (D) of that of the

general model. Since we are dealing with a linear problem, this fourth stage of GALW

turns out to be polynomial. Figure 2.3 shows an example.

2.7 Computational results

In this section, we show the computational experiments that were conducted to evaluate

the three methods developed:
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u=4

u=2

u=1

k=4

l=2

l=1

l=4

l=3

k=3

u=7

u=5

Figure 2.3: A view of a solution to the ring multiflow stage. The assignment step
provides a selection of UDCs, determines service paths and UDC-gate flows; once the
ring has been built, the ring multiflow LP subproblem looks for the way to accomplish
indirect shipments with the minimum cost. In this example, the service paths and
UDC-gate flows are the same as in Figure 2.1. Similarly to what has been done for the
service paths, the ring flows due to delivery duties are denoted by continuous stroke
arrows, while dashed stroke arrows indicate flows intended to serve pick-up duties. Here

we have a close-up view regarding commodities k=3 and k=4.

I the exact method corresponds to the complete MILP model of Section 2.4 strengthened

with the valid inequalities proposed in Section 2.5. It will be referred to also as X

method;

I the heuristic method is the algorithm called GALW presented in section 5. The coded

algorithm has been improved with two implementation tricks in the MILP assignment

subproblem. When an instance contains b arcs (u, v) ∈ A′U with installation costs guv

considerably greater than the average, we slightly modify the objective function by

imposing to pay guv if both endpoints u and v are activated. The second one consists

of stopping CPLEX when the gap to optimality reaches a threshold α, then the first

S solutions are stored and the last two GALW stages are applied to the whole set.

Only the best global solution is saved.

I the hybrid method, which we will also refer to as Y method, consists of solving the

MILP model using R instead of R. This method is useful for checking the effectiveness

of the GALW route generator.

The instance generation process is briefly illustrated below. Then, the computational

results are reported and discussed. The exact algorithm and the assignment and ring

multiflow steps of GALW have been implemented using the CPLEX Callable Library of

the IBM ILOG CPLEX suite, version 12.5.
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2.7.1 Test instances

No previously generated instances can be found in the literature since to the best of our

knowledge the MRLRP is a new problem proposed here for the first time. Neither could

we take advantage of the WLRP instances proposed in [Perl and Daskin, 1985], since

they are a small number of very simple instances. Therefore, we derive a set of MRLRP

instances from a set of existing benchmark CLRP instances proposed by [Prins et al.,

2006], which we complete with additional MRLRP features.

In the following, a brief explanation of the instance generation strategy is presented: for

a detailed description, we refer the reader to Appendix D.2. The computational sessions

were conducted with the aim of:

1. establishing a relation between the hardness of an instance and its dimensional fea-

tures, notably the size of U , K, L, D and P ;

2. evaluating the degree to which GALW performances depend on the decomposition

process.

For this reason, we create not one but a collection of instances from each CLRP instance.

To pursue point 1, the instances in a collection are divided into five scenarios: the base

scenario or scenario 0, which features an initial size of sets U , K, L, D and P , and

four more scenarios in which, one at a time, each of the aforementioned sets is enlarged

with additional elements: thus, we have scenario 1 with additional demands in both

D and P , scenario 2 with additional UDCs in U , scenario 3 with additional gates

in K, and lastly scenario 4 with additional SPLs in L. By the way, each instance

verifies |D| = |P |. To address point 2, each scenario contains a set of four economic

instances that differ by the ring construction costs (high/low) and transportation costs

(high/low). In addition, for each scenario we also create what we call an ecological

instance. In an ecological instance, routing and flow transportation costs are replaced

by pollution indicators, whereas installation costs are null for both UDCs and ring arcs,

so as to evaluate, given a scenario, which system configuration has the highest degree of

environmental sustainability. Note that with such an assumption on installation costs,

the budget constraint has a greater importance. Economic types will be referred to with

the acronym of the corresponding cost structure: type L|L (low construction costs, low

transportation costs), type L|H (low/high costs), type H|L (high/low) and type H|H
(high/high costs); the ecological type will be referred to as type G (for green).

Table 2.1 maps benchmark CLRP instances and derived MRLRP collections, showing

for each collection the main features of its scenarios such as the minimal and maximum

values of |K|, |U |, |L| and |P | = |D|, along with the features that are common to

each scenario: the values of q, M and the number of clusters into which customers are
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grouped. As a reminder, in [Prins et al., 2006], the benchmark names follow the pattern

n-m-c[b], where n is the number of customers, m the number of depots and c the number

of clusters, while the final ’b’ indicates whether the capacity of the vehicle is 150 or 70.

Therefore, the number of clusters and the value of q are always the same as the original

benchmark. In each scenario, we always assume N = |U | for the economic instances,

benchmark collection #instances |K| |U | |L| |P |, |D| #clusters NG q M

20-5-1 galwc01 5×(4+1) 5,10 5,10 5,10 15,20 1 4,6 70 50
20-5-2 galwc02 5×(4+1) 5,10 5,10 5,10 15,20 2 4,6 70 50
20-5-1b galwc03 5×(4+1) 5,10 5,10 5,10 15,20 1 4,6 150 65
50-5-1 galwc06 5×(4+1) 5,10 5,10 5,10 25,40 1 4,6 70 60
50-5-3b galwc07 5×(4+1) 5,10 5,10 5,10 25,40 3 4,6 150 65
100-5-1 galwc08 5×(4+1) 5,10 5,10 10,15 50,80 1 4,6 70 50
100-5-3 galwc10 5×(4+1) 5,10 5,10 10,15 50,80 3 4,6 70 50
100-10-1 galwc11 5×(4+1) 5,10 10,15 10,15 50,80 1 6,10 70 50

Table 2.1: Correspondence between original CLRP benchmarks and the collections
of MRLRP instances.

i.e. we relax the budget constraint, whereas we keep it for the ecological instance by

imposing N < |U |. The column NG shows the minimal and maximum values of N

(according to |U |) for all of the ecological instances of the collection. Since each of the

8 collections accounts for 5 scenarios of 5 instances each, the complete instances set

amounts to 200 MRLRP instances.

2.7.2 Conducted tests

The tests were performed on a Pentium dual core 2.6 Ghz machine with 3.76Gb RAM.

The assignment GALW subproblem and the hybrid method were systematically imposed

a time limit of 3600s, whereas for the exact method the time limit was 3600s for small

instances, and 10800s for medium- and large-sized instances. Throughout the whole

test campaign, the values used for the GALW route generator parameters are β = 0.9,

τ = 0.4, pq = pM = pω = 1, while ω varies according to n in the original benchmark

CLRP and the law ω = 10 · d2 · log5 ne − 20. The parameters of the GALW assignment

subproblem are S = 3, b = 3, α = 2%.

The first part of our analysis follows the guidelines introduced in 2.7.1. First, we focus

on one economic cost structure, then we take all instances having this cost structure in

all scenarios of each collection. By doing so, we analyse how the dimensional aspects

of an instance affect the performances of the three methods, all the cost parameters

being the same. The chosen cost structure is that of type L|L. Further, we take the

base scenario of each collection and show the results for all of its economic instances,

in order to verify point 2 of section 2.7.1. Finally, we take the ecological instance in

all scenarios of each collection to perform an analysis based on environmental criteria.
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Tables 2.3, 2.4 and 2.5 present these results for small instances, tables 2.6, 2.7 and 2.8

concern medium-sized collections (galwc06, galwc07), whereas tables 2.10, 2.11 and 2.12

deal with large-sized (galwc08, galwc10, galwc11) collections. The complete results can

be found in Tables D.5 to D.7 in Appendix D.3.

Table 2.2 offers a key for each column of the aforementioned results’ tables.

notation description

Instance instance identifier, in the collection-scenario-type format

r routes generation CPU time (s)
t CPU preprocessing time for calculating STSP (s; GALW)
a CPU time for solving the MILP assignment problem (s; GALW)
T total CPU computational time, out of I/O and intermediate elaborations times (s)

%r gap at root (X method)
%z gap still to close, if the time limit has been exceeded
%X gap of GALW or the Y method with the optimal solution of the X method
%Y gap of GALW with respect to the Y method

#ps number of paths variables in the MILP models (exact, hybrid, GALW assignment problem)

Table 2.2: Key of the results’ tables.

2.7.3 Discussion on the results

One can observe that:

Features Exact(X) GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M %r r T/%z #ps %X t r a T #ps %Y %X T

galwc01-0-L|L 5 5 5 15 5 70 50 3.5 9.6 24.8 21503 2.1 0.0 0.4 2.9 3.6 3122 0.0 2.1 3.6
galwc01-1-L|L 5 5 5 20 5 70 50 3.3 14.0 48.7 37839 3.3 0.0 0.7 4.2 5.2 4033 0.1 3.2 4.8
galwc01-2-L|L 5 10 5 15 10 70 50 4.5 24.9 642.5 64737 6.2 1.1 0.4 28.5 29.2 8388 2.4 3.9 37.3
galwc01-3-L|L 10 5 5 15 5 70 50 4.7 9.6 16.8 21503 3.8 0.0 0.4 4.0 4.7 3068 2.5 1.4 2.3
galwc01-4-L|L 5 5 10 15 5 70 50 4.4 13.6 31.0 31503 2.5 0.0 0.4 4.2 5.0 4348 0.0 2.5 2.7

average 4.1 14.3 152.8 35417 3.6 0.2 0.5 8.8 9.5 4592 1.0 2.6 10.1

galwc02-0-L|L 5 5 5 15 5 70 50 5.7 3.0 8.0 14066 1.4 0.0 0.3 1.6 2.2 2319 0.0 1.4 1.6
galwc02-1-L|L 5 5 5 20 5 70 50 6.0 9.0 13.3 33616 0.9 0.0 0.6 2.4 3.4 3253 0.1 0.8 1.9
galwc02-2-L|L 5 10 5 15 10 70 50 5.0 7.6 59.7 39438 3.6 1.1 0.3 4.7 5.3 4707 0.1 3.5 7.5
galwc02-3-L|L 10 5 5 15 5 70 50 3.2 3.1 2.8 14066 0.3 0.0 0.3 2.1 2.7 2324 0.1 0.2 1.4
galwc02-4-L|L 5 5 10 15 5 70 50 6.3 5.2 8.0 23190 0.2 0.0 0.3 2.4 3.1 3478 0.0 0.2 2.0

average 5.2 5.6 18.4 24875 1.3 0.2 0.4 2.6 3.3 3216 0.1 1.2 2.9

galwc03-0-L|L 5 5 5 15 5 150 65 18.6 6.6 10.8 18761 2.1 0.0 0.5 1.9 2.7 2082 0.0 2.1 2.2
galwc03-1-L|L 5 5 5 20 5 150 65 16.0 51.3 113.8 68987 3.7 0.0 1.2 2.5 4.0 3513 1.5 2.2 3.8
galwc03-2-L|L 5 10 5 15 10 150 65 19.2 24.1 181.9 79140 0.6 2.0 0.6 26.2 27.1 8449 0.0 0.6 13.7
galwc03-3-L|L 10 5 5 15 5 150 65 18.6 6.7 11.3 18761 2.7 0.0 0.5 1.7 2.5 2085 0.0 2.7 1.8
galwc03-4-L|L 5 5 10 15 5 150 65 18.1 11.0 22.7 31590 1.9 0.0 0.5 2.4 3.2 3319 0.0 1.9 2.7

average 18.1 19.9 68.1 43448 2.2 0.4 0.7 6.9 7.9 3890 0.3 1.9 4.8

Table 2.3: Numerical results on small instances of type L|L.

IOn small-sized instances of Table 2.4, where all dimensional features are equal (sce-

nario 0) and only the cost structure varies, the GALW heuristic has a gap (%X ) to

the optimal solution found by the exact method which is in most of the cases between

2% and 7%. These gaps are obtained with much lower computational time (4 times

quicker on average), as expected, since the number of routes generated by GALW is

11% to 17% the number of routes found by X . Furthermore, those gaps are mostly due
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Features Exact(X) GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M %r r T/%z #ps %X t r a T #ps %Y %X T

galwc01-0-L|L 5 5 5 15 5 70 50 3.5 9.6 24.8 21503 2.1 0.0 0.4 2.9 3.6 3122 0.0 2.1 3.6
galwc01-0-L|H 5 5 5 15 5 70 50 5.0 9.5 30.8 21503 4.9 0.0 0.4 4.2 4.9 3121 0.6 4.3 4.9
galwc01-0-H|L 5 5 5 15 5 70 50 6.5 9.6 16.3 21503 6.2 0.0 0.4 3.0 3.7 2926 4.6 1.7 2.4
galwc01-0-H|H 5 5 5 15 5 70 50 9.6 9.6 15.4 21503 9.3 0.0 0.4 7.4 8.1 3021 5.8 3.7 2.9

average 6.2 9.6 21.8 5.6 0.0 0.4 4.4 5.1 3048 2.8 3.0 3.5

galwc02-0-L|L 5 5 5 15 5 70 50 5.7 3.0 8.0 14066 1.4 0.0 0.3 1.6 2.2 2319 0.0 1.4 1.6
galwc02-0-L|H 5 5 5 15 5 70 50 10.0 3.0 10.3 14066 5.9 0.0 0.3 2.3 3.0 2418 1.3 4.6 2.0
galwc02-0-H|L 5 5 5 15 5 70 50 5.8 3.0 9.5 14066 1.7 0.0 0.3 2.3 2.9 2352 0.0 1.7 1.9
galwc02-0-H|H 5 5 5 15 5 70 50 7.4 3.0 4.0 14066 4.7 0.0 0.3 2.4 3.1 2421 0.2 4.5 1.7

average 7.2 3.0 8.0 3.4 0.0 0.3 2.1 2.8 2378 0.4 3.0 1.8

galwc03-0-L|L 5 5 5 15 5 150 65 18.6 6.6 10.8 18761 2.1 0.0 0.5 1.9 2.7 2082 0.0 2.1 2.2
galwc03-0-L|H 5 5 5 15 5 150 65 16.6 6.6 23.6 18761 6.3 0.0 0.5 4.9 5.7 2099 1.5 4.8 2.5
galwc03-0-H|L 5 5 5 15 5 150 65 26.5 6.6 20.2 18761 6.6 0.0 0.5 1.9 2.7 2012 1.2 5.4 1.8
galwc03-0-H|H 5 5 5 15 5 150 65 25.3 6.6 23.5 18761 6.9 0.0 0.5 5.0 5.8 2129 2.4 4.6 2.2

average 21.8 6.6 19.5 5.5 0.0 0.5 3.4 4.2 2080 1.3 4.2 2.2

Table 2.4: Numerical results on instances of all types in scenario 0 of small-sized
collections.

Features Exact(X) GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M %r r T/%z #ps %X t r a T #ps %Y %X T

galwc01-0-G 5 5 5 15 4 70 50 1.1 10.1 8.2 21503 8.1 0.0 0.4 1.9 2.5 3072 2.4 5.8 2.8
galwc01-1-G 5 5 5 20 4 70 50 1.4 14.8 22.5 37839 6.3 0.0 0.7 3.0 3.9 4094 0.3 6.0 4.0
galwc01-2-G 5 10 5 15 6 70 50 1.8 26.1 86.6 64737 8.1 0.9 0.4 5.5 6.2 8242 2.5 5.8 41.5
galwc01-3-G 10 5 5 15 4 70 50 6.7 10.0 9.7 21503 6.1 0.0 0.4 2.1 2.9 3097 0.7 5.4 2.6
galwc01-4-G 5 5 10 15 4 70 50 0.7 14.2 9.2 31503 3.8 0.0 0.5 2.3 3.0 4284 0.5 3.3 2.2

average 2.3 15.0 27.3 35417 6.5 0.2 0.5 3.0 3.7 4558 1.3 5.3 10.6

galwc02-0-G 5 5 5 15 4 70 50 1.7 3.2 4.2 14066 8.5 0.0 0.3 1.5 2.1 2427 2.0 6.6 2.2
galwc02-1-G 5 5 5 20 4 70 50 1.4 9.6 13.1 33616 15.0 0.0 0.6 1.7 2.6 3243 1.0 14.1 2.7
galwc02-2-G 5 10 5 15 6 70 50 2.1 8.1 32.1 39438 8.3 0.9 0.3 3.2 3.8 4919 4.6 3.9 9.7
galwc02-3-G 10 5 5 15 4 70 50 1.8 3.3 5.2 14066 5.8 0.0 0.3 1.3 1.9 2303 1.3 4.6 1.6
galwc02-4-G 5 5 10 15 4 70 50 1.7 5.4 9.9 23190 6.4 0.0 0.3 1.9 2.5 3392 0.0 6.4 2.4

average 1.7 5.9 12.9 24875 8.8 0.2 0.4 1.9 2.6 3257 1.8 7.1 3.7

galwc03-0-G 5 5 5 15 4 150 65 1.6 6.9 3.6 18761 2.1 0.0 0.5 1.1 1.8 2124 0.0 2.1 1.4
galwc03-1-G 5 5 5 20 4 150 65 NS 54.2 NS 68987 −∞ 0.0 1.1 1.9 3.3 3388 0.0 −∞ 2.7
galwc03-2-G 5 10 5 15 6 150 65 2.6 25.1 56.2 79140 10.4 1.6 0.6 6.0 6.9 8834 6.1 4.6 17.2
galwc03-3-G 10 5 5 15 4 150 65 0.4 7.0 3.3 18761 2.6 0.0 0.5 1.1 2.0 2085 0.0 2.6 1.5
galwc03-4-G 5 5 10 15 4 150 65 0.5 11.8 5.2 31590 2.9 0.0 0.5 1.5 2.3 3111 0.5 2.4 1.9

average 1.3 21.0 17.1 43448 4.5 0.3 0.6 2.3 3.2 3908 1.3 2.9 4.9

Table 2.5: Numerical results on small instances of type G.

to the route generation phase, since the gap of GALW best solution to the one of Y

(%Y ) is less than 2% in most of the instances of the table. We can also notice that the

H|H cost structure is often the most difficult to solve, with gaps to optimality that can

vary by a factor 4 compared to other types of costs. Now, if we look at the impact of

dimensional features in Table 2.3, we remark that the number |U | of potential UDCs

to open seems to have a significant impact on the difficulty to solve the problem: in

scenario 2 instances (i.e. those in which only |U | has been increased), either the gap

to optimality of GALW or its computational time are much higher with respect to

instances with the same cost structure from other scenarios. Scenario 2 instances also

exhibit the highest computational time of the exact method X (from 5 to 20 times

longer). This is explained by the fact that for both X and GALW, the number of

routes generated directly depends on the number of UDCs. This is also the case for

the number of demands |D| = |P |, which increases the number of routes generated. It

is consistent to note that the number of gates |K| has a low impact as it only plays

a role on the first-level flows optimization but not on the route generation. On the
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other hand, an increased number of SPLs |L| has an impact on the number of paths

but not on the performances of the methods, as SPLs are only involved by routing and

fleet rebalancing aspects without any implication related to capacity or load issues.

Therefore, the dimensional features that directly impact the route generation and the

capacity/load issues are more critical than the others with respect to the tractability

of the methods. Finally, we can observe that for these small-sized instances, the hy-

brid method performs better on average than GALW as it obtains slightly better gaps

with reduced computational time. Nevertheless, the GALW heuristic remains robust

to find acceptable solutions in a short time.

On small-sized ecological instances (table 2.5), both GALW and Y exhibit a worse

behavior w.r.t. the economic instances. The final gap of both GALW and Y to the

optimal solution (%X ) is higher, and so it is for the gap of the former w.r.t. the latter.

This is certainly due to the particular cost structure of green instances: there are no

strategic costs, and even if the ratio between the flow transportation costs on the ring

and those between gates and UDCs is similar to the same ratio in L|L instances, the

relative weight of second level routing is from 1.3 to 5.6 times lower. This suggests

that X makes use of longer routes than those produced by the route generation step

in order to accomplish much lower flow transportation costs at first level. Both Y

and GALW pay the price of having only shorter paths, the latter being the most

penalized since it is unaware of the ring. However, ecological instances have draw-

backs for the X method too. The absence of major, strategic cost makes the root gap

higher, and even if the solving times are generally reasonable, solving a small-sized

green instance within a short time limit may become hard for X . This is the case for

instance galwc03-1-G, i.e. the one with the higher number of customers and thus the

strongest combinatorics in terms of demand sequences. This makes sense, since the

reduced routing costs force X to consider a wider range of routes, whereas Y and

GALW only have shorter ones. Therefore, the performances of both GALW and Y

remain valuable, both being able of always yielding a solution with overall reasonable

gap and with a computation time which is even shorter w.r.t. the economic instances.

Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T

galwc06-0-L|L 5 5 5 25 5 70 60 0.0 1.7 2.0 4.0 3180 3.0 3.9
galwc06-1-L|L 5 5 5 40 5 70 60 0.0 4.0 5.7 10.0 7376 2.0 8.3
galwc06-2-L|L 5 10 5 25 10 70 60 1.1 1.4 11.0 12.7 9428 1.4 33.2
galwc06-3-L|L 10 5 5 25 5 70 60 0.0 1.7 2.4 4.4 3155 1.1 4.1
galwc06-4-L|L 5 5 10 25 5 70 60 0.0 1.5 2.8 4.7 4448 0.6 4.2

average 0.2 2.1 4.8 7.2 5517 1.6 10.7

galwc07-0-L|L 5 5 5 25 5 150 65 0.0 2.6 6.0 8.9 4791 0.7 7.4
galwc07-1-L|L 5 5 5 40 5 150 65 0.0 7.7 18.2 26.2 10902 0.3 23.1
galwc07-2-L|L 5 10 5 25 10 150 65 1.2 2.6 22.7 25.7 13286 3.0 31.1
galwc07-3-L|L 10 5 5 25 5 150 65 0.0 2.6 5.8 8.7 4752 0.0 8.9
galwc07-4-L|L 5 5 10 25 5 150 65 0.0 2.6 7.7 10.6 6936 0.0 9.0

average 0.2 3.6 12.1 16.0 8133 0.8 15.9

Table 2.6: Numerical results of GALW and the hybrid method on medium size in-
stances of type L|L.
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Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T

galwc06-0-L|L 5 5 5 25 5 70 60 0.0 1.7 2.0 4.0 3180 3.0 3.9
galwc06-0-L|H 5 5 5 25 5 70 60 0.0 1.6 2.4 4.3 3107 8.7 5.5
galwc06-0-H|L 5 5 5 25 5 70 60 0.0 1.7 3.7 5.7 3135 0.1 4.0
galwc06-0-H|H 5 5 5 25 5 70 60 0.0 1.6 3.5 5.5 3092 2.5 5.5

average 0.0 1.6 2.9 4.9 3128 3.6 4.7

galwc07-0-L|L 5 5 5 25 5 150 65 0.0 2.6 6.0 8.9 4791 0.7 7.4
galwc07-0-L|H 5 5 5 25 5 150 65 0.0 2.7 7.3 10.3 4880 0.1 7.1
galwc07-0-H|L 5 5 5 25 5 150 65 0.0 2.6 8.1 11.0 4813 0.2 7.8
galwc07-0-H|H 5 5 5 25 5 150 65 0.0 2.6 8.0 10.9 4839 0.1 9.6

average 0.0 2.6 7.3 10.3 4831 0.3 8.0

Table 2.7: Numerical results of GALW and the hybrid method on all scenario 0
instances of medium-sized collections.

Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T

galwc06-0-G 5 5 5 25 4 70 60 0.0 1.7 2.7 4.7 3148 1.4 5.4
galwc06-1-G 5 5 5 40 4 70 60 0.0 4.1 7.6 12.0 7537 1.5 14.3
galwc06-2-G 5 10 5 25 6 70 60 1.5 1.4 8.5 10.2 9396 4.2 22.2
galwc06-3-G 10 5 5 25 4 70 60 0.0 1.6 1.8 3.7 3116 1.3 3.7
galwc06-4-G 5 5 10 25 4 70 60 0.0 1.5 2.7 4.4 4410 1.6 4.3

average 0.3 2.1 4.6 7.0 5521 2.0 10.0

galwc07-0-G 5 5 5 25 4 150 65 0.0 2.6 3.9 6.8 4714 1.3 7.3
galwc07-1-G 5 5 5 40 4 150 65 0.0 7.8 12.2 20.3 10733 0.9 19.2
galwc07-2-G 5 10 5 25 6 150 65 1.1 2.5 12.1 14.9 13666 1.5 38.8
galwc07-3-G 10 5 5 25 4 150 65 0.0 2.6 5.5 8.4 4731 0.0 10.3
galwc07-4-G 5 5 10 25 4 150 65 0.0 2.5 5.6 8.4 6975 0.5 7.5

average 0.2 3.6 7.9 11.7 8164 0.9 16.6

Table 2.8: Numerical results of GALW and the hybrid method on medium size in-
stances of type G.

IOn medium-sized instances of Tables 2.6, 2.7 and 2.8, we did not report results of

the exact method X . Indeed, the results of a preliminary analysis, which are illus-

trated by Table 2.9, suggested that when dealing with such instances, CPLEX can

possibly terminate the search without finding a feasible solution for X . This analysis

was conducted on a small sample of instances mainly taken from scenarios 0 and 2

of medium- and large-sized collections – except for instance galwc06-1-L|L. Only L|L
instances were considered in order to simplify the computation; yet we wanted to test

the X method for larger values of |U |. We could only compute the X value for just

a few of the instances of the sample. Indeed, due to the very large number of routes

generated by the exact method (hundreds of thousands of routes for medium-sized

instances, a few millions for large-sized instances), CPLEX was not even able to de-

termine the value of the root LP relaxation within the time limit for some of the

instances (i.e. those marked with NS in the table).

On the other hand, it can be observed that the gap of GALW vs X remains accept-

able for these larger instances where it can be computed (between 1% and 5% for all

instances but one). So one can reasonably expect a gap of the same order for the

large-sized instances where X gives no solution. For medium-sized instances of Tables

2.6, 2.7 and 2.8, as we just explained, we could only compare GALW with the hybrid

method. We observe that Y is still competitive, but now the gap between GALW and

Y is less than 3% for most of the instances in all the tables. Note that even if Y never
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Features Exact(X) GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M %r r T #ps %X t r a T #ps %Y %X T/%z

galwc06-1-L|L 5 5 5 40 5 70 60 0,1 75,8 252,5 219879 3,8 0,0 4,0 5,7 10,0 7376 2,0 1,8 8,3
galwc06-2-L|L 5 10 5 25 10 70 60 6,7 21,4 216,4 100049 3,8 1,1 1,4 11,0 12,7 9428 1,4 2,4 33,2

galwc07-0-L|L 5 5 5 25 5 150 65 NS 434,6 NS 457812 −∞ 0,0 2,6 6,0 8,9 4791 0,7 −∞ 7,4
galwc07-2-L|L 5 10 5 25 10 150 65 NS 1833,4 NS 1566535 −∞ 1,2 2,6 22,7 25,7 13286 3,0 −∞ 31,1

galwc08-0-L|L 5 5 10 50 5 70 50 2,2 30,3 430,1 111289 4,9 0,0 9,2 11,2 20,7 6350 0,5 4,4 20,1
galwc08-2-L|L 5 10 10 50 10 70 50 2,7 102,3 2864,2 387820 3,4 1,6 7,3 56,5 64,2 15019 0,0 3,4 69,8

galwc10-0-L|L 5 5 10 50 5 70 50 2,1 163,5 4979,7 352647 1,7 0,0 7,7 17,1 25,2 10814 0,0 1,7 18,0
galwc10-2-L|L 5 10 10 50 10 70 50 NS 8537,6 NS 885801 −∞ 1,4 6,8 242,9 250,1 26212 0,2 −∞ 281,1

galwc11-0-L|L 5 10 10 50 10 70 50 2,9 83,5 6837,2 295662 10,4 1,4 7,9 466,4 474,8 14835 2,0 8,5 2681,4
galwc11-2-L|L 5 15 10 50 15 70 50 NS 208,6 NS 535059 −∞ 69,7 8,1 612,8 621,3 27451 -18,6 −∞ (28,9%)

Table 2.9: Numerical results on a small sample of medium and big size instances.

requires more than 40s to end, GALW is much faster. Here again, in Tables 2.6 and

2.8, we observe that the critical dimensional parameters are the numbers of UDCs and

demands. This holds for both the L|L and the green instances. The number of routes

generated by GALW is twice to three times the one for small-sized instances, yet the

computational times remain low enough.

Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T/%z

galwc08-0-L|L 5 5 10 50 5 70 50 0.0 9.2 11.2 20.7 6350 0.5 20.1
galwc08-1-L|L 5 5 10 80 5 70 50 0.0 28.1 31.1 59.7 16593 0.7 271.0
galwc08-2-L|L 5 10 10 50 10 70 50 1.6 7.3 56.5 64.2 15019 0.0 69.8
galwc08-3-L|L 10 5 10 50 5 70 50 0.0 9.6 11.6 21.6 6412 0.1 16.9
galwc08-4-L|L 5 5 15 50 5 70 50 0.0 9.0 13.2 22.7 9334 0.5 21.0

average 0.3 12.6 24.7 37.8 10742 0.4 79.8

galwc10-0-L|L 5 5 10 50 5 70 50 0.0 7.7 17.1 25.2 10814 0.0 18.0
galwc10-1-L|L 5 5 10 80 5 70 50 0.0 24.0 106.7 131.2 28020 0.6 768.3
galwc10-2-L|L 5 10 10 50 10 70 50 1.4 6.8 242.9 250.1 26212 0.2 281.1
galwc10-3-L|L 10 5 10 50 5 70 50 0.0 8.2 31.0 39.7 10912 0.2 55.7
galwc10-4-L|L 5 5 15 50 5 70 50 0.0 7.8 19.5 27.7 13963 0.1 23.8

average 0.3 10.9 83.4 94.8 17984 0.2 229.4

galwc11-0-L|L 5 10 10 50 10 70 50 1.4 7.9 466.4 474.8 14835 2.0 2681.4
galwc11-1-L|L 5 10 10 80 10 70 50 1.1 21.6 476.7 499.0 36996 −∞ (+∞)
galwc11-2-L|L 5 15 10 50 15 70 50 69.7 8.1 612.8 621.3 27451 -18.6 (28.9%)
galwc11-3-L|L 10 10 10 50 10 70 50 1.1 8.3 834.0 842.8 14691 -0.1 (2.0%)
galwc11-4-L|L 5 10 15 50 10 70 50 1.2 7.6 391.6 399.7 19571 5.8 879.2

average 14.9 10.7 556.3 567.5 22709 -2.7 2690.2

Table 2.10: Numerical results of GALW and the hybrid method on big instances of
type L|L.

Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T/%z

galwc08-0-L|L 5 5 10 50 5 70 50 0.0 9.2 11.2 20.7 6350 0.5 20.1
galwc08-0-L|H 5 5 10 50 5 70 50 0.0 9.4 6.3 16.1 6424 1.3 19.6
galwc08-0-H|L 5 5 10 50 5 70 50 0.0 9.7 8.9 19.0 6386 6.1 15.2
galwc08-0-H|H 5 5 10 50 5 70 50 0.0 9.5 8.1 18.0 6373 1.8 20.8

average 0.0 9.4 8.6 18.4 6383 2.4 18.9

galwc10-0-L|L 5 5 10 50 5 70 50 0.0 7.7 17.1 25.2 10814 0.0 18.0
galwc10-0-L|H 5 5 10 50 5 70 50 0.0 7.8 16.0 24.1 10647 3.2 23.3
galwc10-0-H|L 5 5 10 50 5 70 50 0.0 7.7 26.5 34.6 10820 0.5 42.2
galwc10-0-H|H 5 5 10 50 5 70 50 0.0 7.9 15.2 23.5 11015 0.9 39.0

average 0.0 7.8 18.7 26.9 10824 1.2 30.6

galwc11-0-L|L 5 10 10 50 10 70 50 1.4 7.9 466.4 474.8 14835 2.0 2681.4
galwc11-0-L|H 5 10 10 50 10 70 50 1.8 8.0 514.2 522.7 14663 3.1 (0.6%)
galwc11-0-H|L 5 10 10 50 10 70 50 1.1 8.1 414.7 423.1 14671 2.6 3211.2
galwc11-0-H|H 5 10 10 50 10 70 50 1.1 8.0 548.9 557.3 14532 2.6 1628.3

average 1.4 8.0 486.1 494.5 14675 2.6 2780.2

Table 2.11: Numerical results of GALW and the hybrid method on all the instances
in scenario 0 of big-sized collections.
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Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T/%z

galwc08-0-G 5 5 10 50 4 70 50 0.0 9.4 5.8 15.6 6243 2.3 16.6
galwc08-1-G 5 5 10 80 4 70 50 0.0 27.3 22.1 49.9 16622 1.7 100.6
galwc08-2-G 5 10 10 50 6 70 50 1.0 7.0 24.6 32.0 14872 3.8 203.8
galwc08-3-G 10 5 10 50 4 70 50 0.0 9.4 6.8 16.5 6333 2.1 19.6
galwc08-4-G 5 5 15 50 4 70 50 0.0 9.1 10.0 19.5 9210 1.5 27.1

average 0.2 12.4 13.8 26.7 10656 2.3 73.5

galwc10-0-G 5 5 10 50 4 70 50 0.0 7.8 14.9 23.1 10807 1.4 36.9
galwc10-1-G 5 5 10 80 4 70 50 0.0 23.6 56.5 80.6 27978 2.8 115.7
galwc10-2-G 5 10 10 50 6 70 50 0.9 6.8 41.2 48.3 26042 1.5 340.4
galwc10-3-G 10 5 10 50 4 70 50 0.0 7.9 12.7 20.9 10645 0.6 24.9
galwc10-4-G 5 5 15 50 4 70 50 0.0 7.8 16.9 25.0 13290 2.0 36.6

average 0.2 10.8 28.4 39.6 17752 1.7 110.9

galwc11-0-G 5 10 10 50 6 70 50 1.4 7.9 90.3 98.7 14641 2.6 423.2
galwc11-1-G 5 10 10 80 6 70 50 0.9 22.4 66.5 89.4 37138 3.4 2983.0
galwc11-2-G 5 15 10 50 10 70 50 62.2 8.2 48.4 57.1 28059 3.0 (4.2%)
galwc11-3-G 10 10 10 50 6 70 50 0.9 7.8 52.1 60.4 14573 1.6 737.1
galwc11-4-G 5 10 15 50 6 70 50 1.7 7.8 72.2 80.5 19628 3.6 2058.4

average 13.4 10.8 65.9 77.2 22808 2.8 1960.4

Table 2.12: Numerical results of GALW and the hybrid method on big instances of
type G.

IOn large-sized instances of Tables 2.10, 2.11 and 2.12, we reach the limits of the hybrid

method Y . In most of the cases GALW finds solutions that have a gap between 1%

and 3% to the hybrid method, but in comparable or much shorter computational

times. For the largest instances, GALW finds solutions that are much better than

Y which reaches its time limit, or cannot even find a feasible solution. However

computational times of GALW are higher for the largest instances as the number of

routes generated can exceed 30000 for some of them. A comparison of tables 2.10 and

2.12 shows once more the impact of the ecologic cost structure: GALW is faster on

green instances, but its gap to Y is higher, due to the minor relative weight of routing

costs. Hence, the assignment subproblem is somehow simpler, but this leads GALW

to a worse global solution. However, even with green instances, for which the impact

of the decomposition in stages is more dramatic, the gap of GALW to Y is always

under 4%.

The above analysis on various sizes of instances consistently shows that the GALW

heuristic is a good compromise to find solutions with both reasonable quality and com-

putational time, compared to an enumerative method. The number of routes generated

can also be limited by an upper bound in order to control more efficiently computational

time for the largest instances. To finish the analysis, figure 2.4 shows how fastly the

number of route variables grows in function of M in the general MILP model, taking

two medium-sized instances as examples. Not surprisingly, the higher the length limit

on routes, the higher the number of ways to combine clients to make a route with a very

high growth rate of the number of paths in the figure.
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Figure 2.4: The relation between the number of routes and the maximum trip
length M .

2.8 Conclusions

In this chapter, a new strategic location NP-hard problem, the Multicommodity-Ring

Location Routing Problem (MRLRP), has been presented. The aim of this problem

is to approach an issue as challenging as the last mile problem and to study from a

strategic perspective a distribution system based on a ring of Urban Distribution Center

for cross-docking operations. The MRLRP is a rich and complex problem as it involves

a number of different, strongly interconnected decision layers (location, network design,

vehicle routing, flow transportation). We propose a MIP Set-Partitioning-like formula-

tion that could be solved efficiently by a Branch&Bound exact method for small-sized

instances only. Instead of an implicit enumeration method such as column generation,

given the high difficulty of the problem, we designed GALW, a four-stage decomposi-

tion matheuristic. GALW tackles the different decisional components of the MRLRP

sequentially and solves most of them to optimality. We also developed a hybrid method

which consists of running the exact method on the subset of routes generated by GALW.

A wide set of 200 MRLRP instances with various size parameters and cost structures

has been designed in order to outline an exhaustive computational experience: among

these, a green cost structure with no strategic cost and routing and transportation costs

expressed with pollution indicators has allowed to use the three methods to look for the

system configuration with the highest degree of environmental sustainability.

Both the exact and the hybrid methods have been used as landmarks to assess the

quality of the solutions provided by GALW: the conclusions hold regardless of whether

the cost criteria are economic or ecological. On small-sized instances, both GALW and
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the hybrid method have relatively low gaps compared to the exact method, with short

computation times. The hybrid method is slightly better than GALW for medium-

size instances, for which the exact method starts to fail finding feasible solutions. On

large-sized instances, GALW clearly offers the best overall compromise between solution

quality and computational time.

In a City Logistics context as the one we have been dealing with, a number of decision-

making problems, ranging from the strategic level (as is the case of the MRLRP) to more

tactical problems and operational, day-by-day planning, can arise. An example is given

by the Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF),

a more tactical problem that arises in City Logistics as well as in long distance transport.

In a tactical context, we consider the number and the size of the UDCs as given, while we

would like to have a feedback concerning the behavior of electrical vehicles. Therefore,

we consider the multi-trip feature, i.e. the possibility for a vehicle to be reloaded at

a facility in terms of both electric power and load. This feature arise frequently in

City Logistics, where routes typically are much shorter than the time horizon, e.g. the

workday. The multi-trip feature characterizes the VRPIRF, that represents the core of

Part II.
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3.1 Introduction

One of the most prominent families of Vehicle Routing Problems is that of Multi-Depot

VRPs. Such problems derive from one of the most natural extensions of CVRP, namely

the decentralization of the fleet of vehicles. This is also the case of another important

class of VRPs, the Multi-Trip VRPs, where a multiple use of vehicles is allowed. The

Vehicle Routing Problem with Intermediate Replenishment Facilities (VRPIRF) that we

are about to introduce can be considered to have elements of both classes and therefore

to belong to the intersection of them. Admittedly, this is the case also for the Multi-

Depot Vehicle Routing Problem with Inter-Depot Routes, of which the VRPIRF turns

out to be a particular case, as we will see later in a brief literature insight devoted to

all of the mentioned VRP classes.

The VRPIRF has a quite straightforward characterization. It is defined on a graph where

the node set consists of a central depot, n customers and f replenishment facilities. The

aim is to find a least cost set of routes that visits each client exactly once, the cost of

a route being the sum of the costs of the visited arcs. Each client has a demand and

can be served by one of the homogeneous, fixed capacity vehicles based at the depot.

Furthermore, vehicles can recharge at replenishment facilities so as to perform not one

but a sequence of routes called a rotation. However, the rotation of a vehicle must start

and end at the depot and its total duration (the sum of the travel, service and recharge

times associated with the visited arcs, clients, and depots, respectively) must not exceed

57
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a given shift length. Figures 3.1 and 3.2 show an example of VRPIRF instance and a

feasible solution for it.

Figure 3.1: A VRPIRF instance: the depot (red), the facilities (blue) and the customers.

Figure 3.2: A solution to the previous instance, with the rotations of the two vehicles.

The remainder of Part II is structured as follows:

The extensive review of the literature proposed in section 3.2 positions the VRPIRF in

the wide spectrum of the Vehicle Routing Problems, firstly investigating the problems

from which VRPIRF descends, then focusing on the efforts that have been made to

develop efficient approaches to VRPIRF itself and other problems which are similar or

related to it. Then, Chapters 4 and 5 will present a family of exact approaches that

have been designed to solve the VRPIRF: the former will introduce two algorithms of

type Branch&Cut, while the latter will propose two algorithms of type Branch&Price.



Chapter 3. VRP with Intermediate Replenishment Facilities 59

3.2 Literature Review

VRPIRF is the particular case of the Multiple Depot VRP with Inter-Depot routes

(MDVRPI) with only one depot. MDVRPI itself is a generalization of the Multi-Depot

VRP (MDVRP) in which each depot acts both as the base for the vehicles of its own

fleet, and as a facility for vehicles based at other depots. Hence, VRPIRF turns out

to belong to the family of Multi-Depot VRPs, one of the most investigated families

of VRPs, which is briefly dealt with in section 3.2.1. The multiple use of vehicles is

an element that VRPRIF has in common with the Multi-Trip VRP (MTVRP): section

3.2.2 covers the main reference works on the subject. Lastly, section 3.2.3 delves into

the works in the literature that concern the VRPIRF itself and the VRP variants which

are closer to it.

3.2.1 Multi-Depot VRP

The statement of MDVRP does not differ substantially from that of classical CVRP.

In the latter, a central depot with a fleet of homogeneous vehicles of finite capacity is

given, with the aim of determining a least cost set of routes that visit and deliver a set of

customers, each being characterized by a demand. The difference is that in the former

we have a set of depots, each one with its own fleet, and the decision of how to partition

the customers over the depots must be taken. Few exact algorithms are known for the

MDVRP: in [Arpin et al., 1984], the symmetric MDVRP is solved by a Branch&Bound

algorithm based on a compact formulation, solving instances with up to 50 customers

and 8 depots, while [Laporte et al., 1987] tackles asymmetric instances by transforming

the problem into a constrained assignment problem and then solving it by Branch&

Bound: the algorithm solves to optimality cases with 80 customers and 3 depots. More

recently, [Baldacci and Mingozzi, 2009] defines a unified framework for solving many

different VRPs, notably several variants of the Heterogeneous VRP (HVRP) and the

MDVRP. Following a consolidated exact methodology (used also, e.g., in [Baldacci et al.,

2008] and in [Mingozzi et al., 2013]), the authors present an exact solving approach based

on a Set Partitioning formulation and a series of bounding procedures used in sequence

in an additive fashion, in order to raise the dual bound. The problems are then solved

as MIP by using only the columns whose reduced cost is less than the optimality gap,

which can be exhaustively generated as the additive bounding nearly closes the gap.

Most of the approaches to MDVRP are heuristic. Among the first approaches we cite the

constructive algorithm of [Tillman and Cain, 1972], based on a generalized version of the

Clarke and Wright savings criterion that takes into account the multiple depots; that of

[Wren and Holliday, 1972], which generates different initial solutions based on geometric
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and least insertion criteria and later uses improvement procedures; and the approach

of [Gillett and Johnson, 1976], where customers are initially clustered, then a feasible

solution is obtained by solving CVRP subproblems, and the final phase tries to improve

the solution by reassignment of customers in the regions between two depots. More

recently, [Chao et al., 1993] proposes a multi-phase heuristic that first assigns customers

to the closest depot and solves separate CVRPs by a modified savings-based heuristic,

then swaps customers between routes in a local search phase that allows deteriorations

of the solution. Diversification is provided by reinitialization procedures. Results for

instances with up to 360 customer nodes and 9 depots are presented. Two of the most

relevant works of the last two decades are based on Tabu Search (TS), one of the most

effective and used heuristic strategies to explore the solution space of a combinatorial

problem. At each step, TS moves from a solution s to the best one of its neighborhood

N(s), allowing deteriorating moves to help moving out of local optima. Solutions are

characterized by attributes, and the attributes of recently visited solutions are declared

tabu and forbidden to avoid cycling. To avoid tabus being too restraining, they can

be overridden according to aspiration criteria, e.g. whenever a tabu solution improves

the incumbent. Intensification in promising regions or diversification to broaden the

search to less explored ones can be used; intermediate infeasible solutions can be al-

lowed. See [Gendreau and Potvin, 2003] for a comprehensive introduction to TS. The

authors of [Renaud et al., 1996] propose a heuristic that first builds an initial solution,

then improves it by means of TS. The former phase assigns each customer to its nearest

depot and solves VRP subproblems via an Improved Petal heuristic, while the second

relies on FIND, a TS-based procedure that alternates improvement, intensification and

diversification steps: these latter are all based on subroutines that exchange customers

belonging to the same route, or to two different routes, or three. Even in its fastest

version, i.e. the one that does not apply diversification, the algorithm outperforms that

of [Chao et al., 1993] in at least 19 out of 23 benchmark instances used in [Gillett and

Johnson, 1976] and [Chao et al., 1993]. The work presented in [Cordeau et al., 1995] is

been the most competitive for almost a decade. The authors propose a general MILP

model for the Periodic VRP (PVRP), proving that it is also suitable for the Periodic

TSP (PTSP) and the MDVRP. Then they present a unified TS-based algorithm that

solves the general problem. The method makes use of GENI, a 4-opt-based tour con-

struction heuristic, as a base for every insertion of a client in a route, or removal. To

build an initial solution, customers are assigned to the nearest depot and then progres-

sively inserted with GENI into routes according to a geometric or an arbitrary order.

In the TS phase, infeasible solutions are allowed and evaluated by adding penalty terms

in the objective function with parametric weights that can be changed to diversify the

search, and GENI is used again to perform customer relocations. An extensive sensi-

tivity analysis is conducted to conveniently tune the algorithm, which outperforms the
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TS heuristic of [Renaud et al., 1996] in 17 out of 23 of the aforementioned benchmark

instances. Besides, 10 new benchmark instances are defined. Later, the authors of

[Pisinger and Røpke, 2007] proposed a heuristic method to solve the Rich Pickup and

delivery Problem with Time Windows (RPDPTW). They show how five different VRPs,

among which are the CVRP, the VRP with Time Windows (VRPTW) and the MDVRP,

can be transformed into the RPDPTW, hence yielding a unified method. The proposed

algorithm is based on Adaptive Large Neighborhood Search (ALNS), a technique first

introduced in [Ropke and Pisinger, 2006]) that uses a set of large neighborhood opera-

tors, i.e. such that a move from a solution to a neighbor one can impact many problem

variables at a time. Large neighborhoods are divided into destroy and repair ones: they

are used alternatively to alter and fix the current solution, and chosen according to their

previously achieved performances. ALNS can use any local search tool, like simulated

annealing, TS or the introduction of noise in the objective function as diversification

tool. The ALNS heuristic of [Pisinger and Røpke, 2007] is tested on the 33 previously

used instances, obtaining 15 new best solutions and 16 ties over the remaining instances.

The last work that we mention is the Hybrid Genetic Algorithm of [Vidal et al., 2012].

Genetic Algorithms consider the solutions of a problem to be individuals of a popula-

tion. Hence, the search in the solution space is an evolutionary-based search driven by

operators typically performing parent selection, crossover, generation of new individuals,

selection and education of individuals, population management. We refer the reader to

[Holland, 1975] for the foundations of this algorithmic paradigm. The authors of [Vidal

et al., 2012] outline a unified approach for the PVRP, the MDVRP and the Multi-Depot

Periodic VRP (MDPVRP), while proposing new contributions as to the used evolution-

ary operators. On the MDVRP, the method proved very effective, improving or tying

the best known solutions delivered by the methods of [Cordeau et al., 1995] or [Pisinger

and Røpke, 2007] on the 33 benchmark instances with comparable execution times.

3.2.2 Multi-Trip VRP

The Multi-Trip VRP (MTVRP) is a tactical problem that extends the CVRP in that

vehicles are allowed to perform more than one service route, i.e. to be refilled each time

they come back to the depot and to start another route, under a maximum shift length

or maximum duration constraint over the set of routes that each vehicle performs. This

extension arises naturally when considering situations, like e.g. urban contexts, where

the available fleet to deliver or collect goods is made up of vehicles with tight limitation

in terms of size, load and/or autonomy, thus reducing the number of points (most often

customers) that can be visited within one same route. As a consequence we have trips
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much shorter than the time horizon and the requested size of the fleet grows consid-

erably, unless multiple trips are allowed for each vehicle. Of course, this calls for the

assignment of routes to vehicles, which is somehow implicit in the CVRP and becomes

nontrivial in the MTVRP. The MTVRP has therefore been widely studied over the last

decades. In the following, we review some of the most prominent works in the literature

of the most general version of the MTVRP, before briefly mentioning some important

variant.

The first work to address this problem is to the best of our knowledge [Fleischmann,

1990], which tackles the problem with the most natural decomposition approach, i.e.

by first generating a set of suitable service routes with a heuristic initial step, namely

a modified savings procedure, and then assigning routes to vehicles by means of a Bin

Packing Problem (BPP). In [Taillard et al., 1995], a heuristic algorithm for the MTVRP

is proposed, which relies on the TS algorithm for the VRP presented in [Taillard, 1993].

The latter is used to generate an initial pool of VRP solutions, whose routes are inserted

into a list. Routes are randomly chosen from the list according to the quality of the

solutions that use them, and their usage frequency, so as to generate new VRP solutions

in a second TS phase. The routes of the large set obtained so far are used to form

MTVRP solutions by means of a BPP heuristic. This paper offers an important set of

benchmark instances, derived from nine instances for the CVRP. For each of these latter,

different values of the fleet size m are used: the time horizon TH is given two different

values derived from the solution to the original CVRP instance obtained in [Rochat

and Taillard, 1995]. The overall set amounts to 104 MTVRP instances and stands as

the reference instance set for the MTVRP to date. The algorithm is run five times for

each instance, proving capable to obtain a feasible solution at each run in 74 cases. For

the instances for which no feasible solution has been found, the authors also describe

the best solution, i.e. the one with the lowest longest route ratio (LRR) w.r.t. to TH .

In [Petch and Salhi, 2003], a multi-phase heuristic approach is proposed which aims at

minimizing the maximum overtime. First, a pool of VRP solutions is created by repeat-

edly executing the parametrized savings algorithm proposed by Yellow [Yellow, 1970]

and, separately, a route population approach. Then, routes are assigned to vehicles by

means of a BPP heuristic. Finally, the obtained MTVRP solutions are improved using

local search based, among others, on 2-opt, 3-opt, and customer reallocation moves.

The same authors propose in [Salhi and Petch, 2007] an approach that combines genetic

procedures, client clusterization, the Clarke and Wright savings algorithm to solve some

VRP subproblems and again a BPP heuristic to pack routes.

The work [Brandão and Mercer, 1998] proposes TSMTVRP, a TS-based heuristic ap-

proach. An initial solution is provided by a starting heuristic that makes use of nearest

neighbor and insertion procedures. Then, the tabu search, which consists of two phases

applied in sequence, is applied. Phase 1 and phase 2 differ in that the former allows
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intermediate infeasible solutions. Therefore the objective functions of the two phases

are the same except for a penalizing term. In the search, insert and swap moves are

considered: in the former, the client extracted from one route can be reallocated either

in an existing route, or in another one generated by means of GENI. The computational

results are compared to those of [Taillard et al., 1995], obtaining a higher rate of in-

stances for which a feasible solution is found. On the instances where both algorithm

produce an infeasible solution, those provided by TSMTVRP are on average more costly

in time and routing cost, but have a lower LRR.

The heuristic approach described by the authors of [Olivera and Viera, 2007] relies on

the Adaptive Memory principle of [Rochat and Taillard, 1995]. A memory is initialized

with a set of randomly generated VRP solutions. Then, new solutions are built (con-

struction) by probabilistically selecting routes from the memory, i.e. by choosing them

randomly but with probability that depends on the quality of the solutions they ap-

pear in. A Tabu Search stage improves the constructed solution: intermediate infeasible

solutions are allowed and evaluated by a generalized objective function that penalizes

capacity and duration violations with dynamic weights. Customer swap and customer

reallocation neighborhoods are considered in the search. After each TS move, a MTVRP

solution is built by applying a Best Fit Decreasing (BPF) heuristic for the BPP and pos-

sibly corrected if the assignment of routes to vehicles violates the duration restriction.

Finally, the memory is updated with the routes of the new found solutions. Results over

the 104 instances of [Taillard et al., 1995] are reported, with a rate of feasible solutions

found that is higher than other previous works, namely [Taillard et al., 1995], [Petch

and Salhi, 2003] and [Brandão and Mercer, 1998], and a LRR on the unsolved instances

which is better than the same works.

The Memetic Algorithm of [Cattaruzza et al., 2014b] represents the state of the art for

what concerns heuristic algorithms for the MTVRP. A Memetic Algorithm (MA) is a

genetic algorithm that makes use of local search techniques to improve solutions. One

of the most important contributions of [Cattaruzza et al., 2014b] is exactly the defini-

tion of a problem-tailored local search operator, named Combined Local Search (CLS).

Its original feature is the choice to combine non-improving moves and reassignment of

routes to vehicles, as this can lead to an overall improvement of the solution. Chromo-

somes, i.e. the starting elements to generate an individual of the population of solutions,

are sequences of customer nodes without a start and an end point, like the giant tours

(i.e. large tours that visits all the customers) used e.g. in [Prins, 2004]. The same

paper also introduces the Split Procedure, which consists in optimally dividing a giant

tour in feasible routes. By adapting this procedure, the algorithm in [Cattaruzza et al.,

2014b] obtains MTVRP solutions from a giant tour deciding the split points and the

assignment of the obtained routes to vehicles. The quality of a chromosome is denoted

by the derived MTVRP solution which is the best w.r.t. a weighted function, called the
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fitness, that considers the cost, the time, the load, the overtime and the overload. After

the selection of parent solutions, new individuals are obtained by means of a crossover

operator. The education is a LS phase that relies on 10 different operators and consid-

ers also non-improving moves as said before. Computational experiments are conducted

on the 104 benchmark MTVRP instances subdivided in three groups: G1, i.e. the 42

solved to optimality by [Mingozzi et al., 2013] (which we will review in a short while),

G2, i.e. the other 56 for which a feasible solution exists, and G3, those for which no

solution exists to date. On each of the G1 instances, the algorithm is run 5 times, both

with and without using the CLS. Both variants always find the optimal solution within

the fifth run, with a higher rate of successful runs for the one that uses CLS. On G2

instances, the algorithm improves previously best known solutions (when existing) and

outperforms [Olivera and Viera, 2007] in the GAP measure of the solution quality, which

considers the solutions of the corresponding VRP instance as lower bound. Finally, a

remarkable result is achieved by finding a feasible solution for one of the G3 instances.

The only two papers that tackle the MTVRP with an exact method that we are aware

of are [Karaoglan and Koc, 2011] and [Mingozzi et al., 2013]. The first proposes a

two-index formulation that imposes capacity and subtour elimination constraints in a

Miller-Tucker-Zemlin form [Miller et al., 1960] and keeps track of the shift duration of

a vehicle by means of big-M-based constraints inspired from the VRPTW. A promi-

nent feature of the model is the use of particular arc variables to denote the return to

the depot of a vehicle before starting a new route. We will use a similar technique in

one of our approaches to the VRPIRF (see section 4.2.1). A Branch&Cut algorithm

is defined that introduces classical inequalities from the VRP literature. The authors

of [Karaoglan and Koc, 2011] build an initial solution with a heuristic that combines

a Modified Clarke and Wright Savings constructive algorithm (MCWS) and Simulated

Annealing, a well-known stochastic search technique. The obtained initial solution acts

as initial incumbent for the search in the Branch&Bound tree. The algorithm is tested

on 8 benchmark instances, on which the results are slightly better than [Olivera and

Viera, 2007]; further, the optimality of three previously best known solutions is shown.

More recently, [Mingozzi et al., 2013] has proposed an exact method that relies on two

Set-Partitioning-like formulations for the MTVRP. The first one uses binary variables

xkr associated to routes r ∈ R that denote whether a vehicle k performs a route r, R

being the set of all feasible routes. The second one uses binary variables yks which equal

to 1 if the schedule s ∈H is assigned to vehicle k: a schedule is a feasible arrangement

of a sequence of routes in a workday. The authors define a family of bounding proce-

dures to improve the lower bounds yielded by the LP relaxations of the two formulations

to obtain near-optimal dual bounds. This allows to generate restricted sets of routes

or schedules that contain any optimal MTVRP solution. In the process, the bounding

procedure are also enhanced by valid inequalities, either taken from the literature of
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the VRP or newly defined ones, namely the working time inequalities. The method is

tested on a subset of 52 of the 104 instances of [Taillard et al., 1995], explicitly avoiding,

among others, the cases that had been proven infeasible by previous works. The method

is fed with the previously best known solution as initial incumbent and is able to solve

to optimality 42 out of 52 cases.

To conclude our brief review, we cite some known variants of the MTVRP:

I the MTVRP with Time Windows (MTVRPTW), for which [Azi, 2010] provides a

series of both heuristic and exact approaches;

I the Heterogeneous Fleet MTVRP, for which [Prins, 2002] presents a two phase heuris-

tic;

I the Site-Dependent and Periodic MTVRP, tackled in [Alonso et al., 2008] by means

of a TS algorithm;

I the Multi-Zone MTVRP, a variant that arises in two-echelon systems studied in

[Nguyen et al., 2013];

I the MTVRPTW with Release Dates, studied in [Cattaruzza et al., 2014a] where ve-

hicles must wait the release date of the goods to be delivered, i.e. the arrival time of

goods at the starting depot of the delivery trip.

3.2.3 Vehicle Routing Problems with Facilities for Recharge and Refill

In the following, we first trace the evolution of the VRPIRF from the problems it orig-

inates from to the definition of section 3.1 and review some reference papers. Then, a

survey of similar problems, mostly derived from real-life applications, is presented.

3.2.3.1 Multi-Depot VRP with Inter-Depot Routes

As previously said, the VRPIRF descends from the MDVRPI, which generalizes the

MDVRP by allowing a vehicle to refill during its shift at a depot different from the one

at which the vehicle itself is based. The problem was proposed in [Crevier et al., 2007],

but the first work that we are aware of to have ever appeared on the subject is [Jordan,

1987]. In this work, the author introduces the problem of deciding whether a vehicle

of a multi-terminal delivery system should stop at other terminals to load goods and

deliver clients on its road back to the base terminal. The so-called Multiple Terminal

Backhauling Problem aims at reducing the empty truck-miles and is tackled with both a

heuristic based on a matching problem to solve large-scale instances, and a Lagrangian

relaxation-based method to compute a lower bound and thus prove the effectiveness

of the heuristic. A real-world case-study is presented, along with the results of the
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proposed methods. Differently from [Crevier et al., 2007], the work of [Kek et al., 2008]

deals with a distance-constrained version of the MDVRP and proposes a variant with

a so-called flexible assignment: not only a vehicle can replenish, but also terminate its

shift at any other depot different from the starting one, under a driving range constraint.

Hence, such flexible assignment is the main difference w.r.t. the MDVRPI, though

it is an essential one. MILP models are proposed for both variants and then used

to implement a Branch&Bound algorithm, which is then tested on a reduced set of

small-sized (up to 8 customers) instances. Another less recent work is [Bard et al.,

1998], where the VRP with Satellite Facilities (VRPSF) is defined. The authors had

previously undertaken the Inventory Routing Problem with Satellite Facilities (IRPSF).

The Inventory Routing Problem (IRP) (see the tutorial paper [Bertazzi and Speranza,

2012]) is a time-dependent version of CVRP, motivated by the so-called Vendor-Managed

Inventory (VMI) technique, where customers (in this context more often called retailers

or even VMI customers) must be delivered all along a time horizon to ensure that

none of them stocks out at any time, while minimizing the overall routing costs: the

IRPSF generalizes it by adding refill stations. In their previous works, the authors had

implemented a decomposition approach to the IRPSF, where three heuristic algorithms

were used to solve the VRPSF, i.e. the resulting routing subproblems. The VRPSF

consists in finding a least cost set of feasible rotations that deliver a set of customers

by means of the vehicles of an homogeneous fleet. A rotation is feasible if it is made

up of a continuous sequence of routes that starts and ends at the central depot within

a given shift duration, and no route exceeds the vehicle capacity. [Bard et al., 1998]

proposes a two-index formulation with commodity flow elements to impose the capacity

constraints, a big-M-based representation of the time resource consumption similar to

those used in VRPTWs, and no vehicle index. However, a maximum number of visits

to each facility is imposed, and replenishments are forbidden as long as the load on a

vehicle exceeds a lower threshold. A Branch&Cut algorithm is proposed, where subtour

elimination constraints and valid inequalities from the TSP (namely Lifted
−→
Dk and

←−
Dk

inequalities) are considered and separated by means of tailored heuristic procedures.

Results on randomly generated instances with up to 20 customers and 2 facilities are

presented.

In [Crevier et al., 2007], a MIP model is proposed that makes use of route variables

and enforces the connection of a rotation (i.e. the sequence of routes performed by

a vehicle) by means of degree and subtour elimination constraints. Then a heuristic

method based on such formulation is introduced. The problem is first decomposed into

subproblems to obtain a pool of both single-depot and inter-depot routes that are likely

to appear in a MDVRPI solution: the subproblems are an MDVRP, a VRP for each

depot, and a hybrid inter-depot VRP subproblem for each pair of depots. The VRPs

subproblems are generated assigning customers to depots according to geometric criteria,
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and similarly it is done for the inter-depot VRPs. These subproblems are solved a fixed

number of times with different customer domains in order to obtain different solutions.

All the subproblems are solved by means of a TS inspired to that of [Cordeau et al.,

1995] and to adaptive memory programming [Rochat and Taillard, 1995]. The pool of

routes returned by the solutions of the subproblems are combined to form a MDVRPI

solution by means of a set partitioning algorithm based on the MIP model. Then a

post-optimization phase tries to further improve this solution. A set of 22 benchmark

instances is proposed: 12 (named a1–l1) are newly generated ones, while the other 10

(named a2–j2) are adaptations of MDVRP instances from [Cordeau et al., 1995]. All

the instances exhibit the feature of having all the vehicles based at a central depot: the

other depots act as replenishment facilities only, as preliminary tests have shown that

inter-depot routes are more unlikely to be used when vehicles are based in two or more

depots.

The authors of [Tarantilis et al., 2008] incorporated this characteristic as a problem

feature rather than an instance feature and derived the VRPIRF as we have presented

it, giving it this name. They proposed a local search heuristic that combines TS and

Variable Neighborhood Search (VNS). VNS is one of the most known metaheuristic

approaches: the reader can refer to [Hansen and Mladenović, 2001] for a primer. A

basic VNS is based on a set of neighborhood structures Nk, k = 1,...,kM , which are

typically nested, i.e. Nk ⊂ Nk+1, k = 1,...,kM−1. Moreover, in a basic VNS a whatsoever

stopping condition (e.g. a CPU time or an iteration number limit) and an initial solution

x are needed. The neighborhood index k is set to 1, then the first operation is a shaking

move: a random solution x′ is chosen from the N1 neighborhood of x. A local search step

follows that applies a local search method L, up to a local optimum x′′: if x′′ is better

than the incumbent, set x ← x′′, otherwise k ← k + nk, with nk = 1, and then restart

from the shaking step. One possible local search is the Variable Neighborhood Descent,

which makes a combined use of the kM neighborhoods even in the local search step. The

procedure is metaheuristic in the sense that it offers a framework, whereas both the local

search method L and the neighborhood Nk may vary, as well as the other ingredients, like

e.g. the choice of the initial neighborhood, or the value of nk. In the case of [Tarantilis

et al., 2008], the initial solution is provided by a construction heuristic, based on cost

savings weighted with stochastic coefficients. First, rotations are built in order to visit

all the customers with the maximum shift length as only constraints; then, facilities are

inserted in order to break rotations into routes that respect the capacity bound. Finally,

if the maximum duration is violated by some rotation, customers are relocated into

another one or inserted into a new one. VNS is then fed with 5 neighborhoods based

either on the relocation of customers between two routes, or on the exchange of routes

between rotations. The local search method used by VNS is TS. The last step of the

algorithm is a Guided Local Search (GLS), a metaheuristic that consists of a controlled
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local search with penalization of undesired features of the current solution in order to

move out from local optima. The local search is based again on the aforementioned

neighborhood structures. The algorithm is compared with that of [Crevier et al., 2007]

on the a1–l1 instances, outperforming it in 11 out of 12 cases. Finally, the heuristic

is tested on 54 newly created instances whose features range from 50 to 175 customer

nodes, 2 to 7 replenishment facilities and 2 to 8 vehicles. The instances are named

according to a pattern that features the number of customers, of depots (central depot

and facilities) and of vehicles, e.g. the instance 50c5d2v has 50 customers, 4 facilities

and 2 vehicles.

More recently, [Muter et al., 2014] proposed what is to the best of our knowledge the

only exact approach to the MDVRPI so far. It is a sophisticated Branch&Price method

based on a Set Covering formulation with a binary variable for each possible rotation.

A ternary branching strategy is implemented, that branches on the number of used

rotations (i.e. vehicles) first, then on the assignment of customers to depots, and finally

on arcs. The authors proposed two pricing algorithms. The first one is an adaptation

of the multi-ESPPRC label algorithm of [Akça, 2010], which extends the well-known

algorithm for ESPPRC of [Feillet et al., 2004]. The most important contribution of

this work, however, is the second one, a two-level decomposition scheme to generate

rotations. In this latter, the Pricing Problem (PP) is set up as a problem with route

variables based on the MIP formulation proposed in [Crevier et al., 2007]. Then, due

to the huge number of route variables, a second formulation for the PP is given which

relies on a route graph, i.e. a graph with a node for each possible route. To generate

the nodes and arcs of this graph, a secondary pricing problem is formulated as an

ESPPRC on the original graph. Further, a third approach to the main PP is given

as a minimum circulation problem with additional constraints on the depot graph, a

dense multigraph with a node for each depot and an arc for each route connecting two

depots. To avoid solving the primary PP with a secondary Branch&Price, a two-phase

approach is proposed. In the first phase, a revisited ESPPRC on the original graph is

solved for each pair p and p′ ≤ p of depots. All the nondominated routes generated in

the first phase are used to construct the depot graph, so as to solve the primary PP as

an ESPPRC or an SPPRC. Preliminary tests show that the depot graph leads to better

results, therefore this approach is further improved, whereas the route graph approach

is disregarded. The improved two-phase depot graph-based algorithm outperforms the

one-level inspired by [Akça, 2010] and is therefore implemented as primary PP. The

overall Branch&Price framework has been tested with a reduced version of the a1-k1

and a2-j2 instances, with the first 25 or 40 customers only, with a time limit of 10 hours.

Most of the instances have been solved to optimality. The same instances have been

transformed into Multi-Depot Multi-Trip VRP (MDMTVRP) instances by forbidding

inter-depot routes and thus test the effectiveness of these latter.
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3.2.3.2 Similar problems

The number of practical routing applications in real-life industrial requiring the vehi-

cles to perform intermediate stops is rapidly growing. Intermediate stops are required

essentially to allow a vehicle to:

I replenish with goods to be delivered, or unload collected goods or waste;

I refuel, or recharge in the case of battery electric vehicles (BEV)

Therefore, a number of recent works is devoted to study new variants of VRP where such

features are consistently taken into account. Most of these works tackle the respective

problems proposing heuristic or metaheuristic approaches. Indeed, we are not aware of

other exact methods than the previously reviewed [Kek et al., 2008], [Bard et al., 1998]

and [Muter et al., 2014].

In [Prescott-Gagnon et al., 2010], a problem called the Oil delivery VRP (ODVRP) is

studied. It is inspired from a real-life application concerning a propane supplier which

must deliver both VMI (inventory) retailers and spot customers, which can at any time

make a request to be fulfilled within 48 hours. The real-life instances of this hybrid

inventory problem are very huge (up to 20 vehicles, 30000 customers, 50 visited cus-

tomers per day per vehicle and visit frequencies that can reach one visit every 40 days

in the winter), hence the real problem is intractable. Forecasting systems allow to esti-

mate which VMI customers have their stock level close to a lower safety threshold and

therefore to approximate the problem to a daily basis, with mandatory customers (VMI

and spot customers to be visited the next day) and optional customers. With the latter

is associated a coefficient that takes into account the profitability to serve them in ad-

vance. The ODVRP is the one-day problem of finding a set of routes to visit mandatory

and optional customers so as to minimize the total traveled distance minus the distance

savings to serve optional customers. Several other features, among which time windows,

heterogeneous vehicles and the possibility of vehicle refills, are taken into account. The

authors propose a TS heuristic and two Large Neighborhood Search (LNS) heuristic

that use, respectively, the TS and another CG-based local search tool to explore the

neighborhoods. Instances from the historical database of a partner real-life oil distribu-

tor were created with more than 4000 customers. One-day and one-week problems were

tackled, the latter in a rolling horizon fashion.

Both [Kim et al., 2006] and [Benjamin and Beasley, 2010] tackle the Waste-Collection

VRP with Time Windows, a variant of the VPRTW that arises in the collection of

commercial waste. While collecting waste at commercial shops, the vehicles (which are

homogeneous and their number is unlimited) can stop at given dump facilities for waste

disposal. Time windows are associated with commercial shops for the collection, with
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facilities for the disposal and with the vehicles for the ready time and the due return time

at the depot. Moreover, the driver’s shift has a limit w.r.t. the total amount of work and

must comprise a one-hour lunch break within a two-hours period. The first work aims

at minimizing the number of used vehicles and the total travel time, and at optimizing

the compactness of the routes and the balancing of the workload among the vehicles.

Since the datasets come from a real-life application context, two heuristic approaches are

proposed. The first one relies on a modified version of the Solomon’s insertion algorithm

for the VRPTW [Solomon, 1987], whereas the second one is a clustering-based algorithm

obtained from a variant of the K-means algorithm commonly used in data-mining. A

set of benchmark instances for the Waste-Collection VRP with Time Windows is also

proposed. The second work aims at minimizing the total distance traveled and proposes

a construction algorithm to generate an initial solution, which is then improved by two

local search procedures or one among three metaheuristics based on TS and VNS. The

methods are tested on the instances proposed in [Kim et al., 2006] and outperforms the

two heuristics presented there.

In [Erdoğan and Miller-Hooks, 2012], a problem named Green VRP (G-VRP) problem

is proposed. The work is motivated by the growing interest in the so-called Alternative

Fuel Vehicles (AFVs), both for obvious environmental purposes, and for economic rea-

sons, the use of such vehicles being more and more encouraged by regulations and tax

incentives. Challenges exist about the deployment of fleets of AFVs, due to both to the

lack of Alternative Fuel Stations (AFSs) and to the limited driving range of such vehi-

cles. Therefore, the authors develop some methods with the aim to deal with real-world

problems. A MILP model is presented based on an undirected graph whose node set

comprises a node for the depot, one for each customer, and one for each possible visit

to one of the AFSs, as in [Bard et al., 1998]. With each edge are associated a distance,

a travel cost and a travel time. The depot can act as a refueling point. The fleet is

limited to m homogeneous vehicles with a tank of limited capacity, which is completely

filled at every stop to a AFS or the depot. The vehicles are imposed a maximum shift

duration. In spite of the similarities with some previous works, [Erdoğan and Miller-

Hooks, 2012] is perhaps among the first to deal with both the possibility of a vehicle

to perform multiple trips and to extend its driving range. The authors propose two

heuristic approaches. The first is a MCWS that starts from one-customer tours with

the insertion of at most one AFS visit and progressively merge them according to a set

of savings-driven rules. The solution obtained may not meet the maximum number m

of allowed vehicles. The second is a Density-Based Clustering Algorithm (DBCA), i.e.

a cluster-first, route-second heuristic. First, a clustering of the nodes of an instance

is yielded for each value of two parameters of a geometric neighborhood measuring its

radius and density; then, for each of such clusterings, the MCWS heuristic is applied.

The best overall solution is saved. Again, the solution obtained this way may require a
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number m′ > m of vehicles. However, the authors claim that such a possibility can still

help the decision-maker to consider the possibility of a conversion to a fleet of m′ AFVs.

In both cases, a post-optimization phase based on customer relocation techniques allows

to further improve the produced solution. Four sets of 10 small-sized instances each were

randomly generated in order to be solved by both CPLEX and the proposed heuristics

to assess the performances of the latter. Finally, 12 instances based on real-life scenarios

were designed, five of which differ in the number of AFSs, and the other 7 in the number

of customers, the biggest one counting 492 customers. On real-life instances, the MCWS

heuristic has been run with and without the tank capacity constraint, to evaluate the

profitability of using AFVs.

The Electric VRP with Time Windows and Recharging Stations (E-VRPTW) is pro-

posed and investigated in [Schneider et al., 2012]. The motivation is given by the fact

that one of the most prominent issue of real-life BEV-based delivery systems, other

than the battery charge, is related to customer time windows. Vehicles are BEV and

recharging facilities are available to realign the battery charge level of the vehicles to its

capacity. The aim of the E-VRPTW is to minimize the number of used vehicles first,

and then the total distance traveled; however, in the proposed MILP model the objec-

tive function considers the total distance only. To solve the E-VRPTW, a metaheuristic

approach based on VNS and TS is presented. The initial solution is generated via a

constructive insertion algorithm that guarantees that all the time windows are fulfilled

and the capacity and battery capacity constraints are satisfied by all the routes but the

last. In the local search phases, a generalized cost function with penalties is used to

allow intermediate infeasible solutions. The procedures to compute the penalties as-

sure an efficient update of the cost function when evaluating neighborhoods move. The

neighborhoods of the shaking phase of the VNS are all based on the cyclic-exchange

operator [Thompson and Psaraftis, 1993]. The new optima at the end of the local

search are always accepted if they improve the incumbent, or accepted according to

probabilistic rules, otherwise. The local search phase is performed via TS, which makes

use of a family of neighborhood operators either taken from the literature or newly de-

signed. The computational evaluation relies on two sets of E-VRPTW instances derived

from benchmark VRPTW instances presented in [Solomon, 1987]. On the small-sized

instances of the first set, both a Branch&Bound computation with CPLEX and the pro-

posed VNS-TS metaheuristic are run to assess the performances of the latter. On the

larger ones, an analysis to evaluate the impact of the components of the metaheuristic

is conducted. Finally, performances on benchmark MDVRPI and G-VRP instances are

evaluated, finding several new best known solutions for both problems.

The recent work [Schneider et al., 2014] introduces the VRP with Intermediate Stops

(VRPIS), which generalizes many other similar problems in the literature in that all the

types of intermediate stops are taken into account: replenishment/unloading locations,
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refuel/recharge points and combined facilities. The VRPIS incorporates several details

to model the refill/unload/refuel/recharge operations in a way as realistic as possible.

The homogeneous vehicles are based at a central depot and feature a fixed usage cost, a

maximum shift length, a load limit and a fuel limit, the latter being expressed in terms

of travelable distance. Customers have a demand and a service time. Each facility j

has a fixed docking time tdj , i.e. the waiting time before operations can start, and two

functions Φf (fj) and Φl(jj) that respectively measure the time to refuel and reload-

/unload; combined facilities are further characterized by functions that link refuel time

and quantity to the load/unload process. Vehicles are supposed to be fully reloaded

and/or refueled at facilities, while facilities have an unlimited availability of fuel and/or

capacity to load/unload and can receive any vehicle, even if the total number of vis-

its to a facility has an upper bound for modeling purposes, as it was in [Bard et al.,

1998]. A MILP model is delivered, based on a graph that considers a node for each

customer and each different visit to a facility, in which with every arc are associated a

distance, a travel time and a cost. Other than common two-index arc variables xij , the

model features variables concerning arrival time, fuel level and load level for each vertex.

The objective is to minimize the sum of the total travel cost and the vehicles deploy-

ment cost. As a particular case of VRPIS, the Electric VRP with Recharging Facilities

(EVRPRF) is defined, where there are only recharging facilities and the recharge time

function is linear in the fuel level via an average recharge speed factor. The EVRPRF

can be considered as a particular case of the previously mentioned E-VRPTW where

customer time windows are disregarded. The authors of this challenging work propose

an Adaptive VNS (AVNS) algorithm to tackle the VRPIS. The paradigm of the VNS

which we have briefly recalled is followed. An initial solution is first determined by

means of a modified savings algorithm. During the VNS, the local search operator is

based on greedy algorithms: the new solution replaces the incumbent if an acceptance

criterion is satisfied. The attribute adaptive is justified by the shaking phase, which

is not completely randomized but partially guided: a subset of routes and nodes to be

involved in the shaking are chosen by means of problem-tailored criteria, while specific

neighborhood operator is selected according to historical performances. The algorithm

is tested on the 52 benchmark G-VRP instances of [Erdoğan and Miller-Hooks, 2012]

and the 76 benchmark VRPIRF instances [Crevier et al., 2007, Tarantilis et al., 2008] as

particular cases of VRPIS. On all the G-VRP instances, the AVNS clearly outperforms

the MCWS and DBCA algorithms, and improves the results of [Schneider et al., 2012]

by either finding new best known solution, or terminating faster in tied cases. On the

VRPIRF instances of [Crevier et al., 2007], the AVNS is highly competitive with the al-

gorithms proposed by [Crevier et al., 2007], [Tarantilis et al., 2008] and [Schneider et al.,

2012], but has a lower average execution time; on the VRPIRF instances of [Tarantilis

et al., 2008], the AVNS is competitive for what concerns the average execution time and
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able to find 15 new best known solutions, mostly among instances with 125 customers

or more.

The Periodic VRP with Intermediate Facilities (PVRP-IF) proposed in [Angelelli and

Speranza, 2002a] is another example of work where the possibility of stopping at in-

termediate facilities is taken into account. The paper is related to an extension of the

PVRP to a collection system where the depot only acts as the base of the vehicles,

while a set of intermediate facilities are distributed in the concerned area to allow the

vehicles to unload and continue for other collection tours until the end of the shift. The

presented TS approach is based on the heuristic algorithm of [Cordeau et al., 1995],

which at that time represented the start-of-the-art for PVRP. Tests are conducted on

benchmark PVRP instances, proving that the proposed technique is competitive with

that of [Cordeau et al., 1995]. Moreover, a set of 54 new instances for the PVRP-IF is

created. In the later work [Angelelli and Speranza, 2002b], the same authors showed how

the approach proposed in [Angelelli and Speranza, 2002a] can be used to model three

different collection systems and describe how the TS algorithm should be adapted to

the three cases. Finally, the results derived from two real-world case studies concerning

the waste collection in two areas of Northern Italy and Belgium are reported.

A real-life routing problem of wasted food collection is the motivation of the variant of

the PVRP proposed in [Coene et al., 2010], which is close to [Angelelli and Speranza,

2002a]. Other than the depot and the customers, a set of disposal facilities is considered,

some of which have a time window. Each customer features (a) a number of days over

the considered time horizon in which it must be visited, as typical in the PVRP, (b) an

average quantity to be collected, and (c) a service time. Vehicles are heterogeneous in

that they have different capacities, and cannot exceed given day shift length and weekly

number of driving hours. A four-index MILP formulation is proposed, along with three

decomposition approaches. The first two assign customers to days, first, and then solve a

VRP with problem-specific constraints using a construction-and-improvement heuristic

offered by a commercial solver. They differ in how they solve the scheduling phase: the

first one relies on a min-max covering technique that assigns a visit pattern to customers,

whereas the second one uses a clustering approach. The third algorithm inverts the hi-

erarchy and determines giant routes first, then decompose them into feasible routes by

assigning customers to days according to the clustering technique. The computational

tests are conducted on instances obtained from real data of a partner company, yielding

to a substantial improvement w.r.t. the routes previously deployed by the latter.

Both the multi-trip and the multi-depot features are present in the Synchronized, Sched-

uled, Multi-Depot, Multiple-Tour, Heterogeneous Vehicle Routing Problem with Time

Windows (SS-MDMT-VRPTW) and the Two-Echelon, Synchronized, Scheduled, Multi-

Depot, Multiple-Tour, Heterogeneous Vehicle Routing Problem with Time Windows

(2SS-MDMT-VRPTW) introduced in [Crainic et al., 2009] and arising in City Logistics,
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that have been briefly reviewed in section 1.3. The workday plan of a city-freighter con-

siders starting from a depot, loading freight at a satellite, performing a delivery trip to

serve a subset of customers, then either go back to a depot to wait for a new scheduled

duty, or meet a urban-truck to a satellite, undergo consolidation operations and start

another delivery trip. The two problems can therefore be considered to all purposes as

examples of rich VRPs with replenishment facilities.

In [Amaya et al., 2007], the Capacitated Arc-Routing Problem with Refill Points (CARP-

RP) is introduced. It is an extension of the Capacitated Arc-Routing Problem (CARP),

a well-known problem which differs from the CVRP in that quantities to deliver are

associated with edges (or arcs) instead of nodes. The CARP-RP, inspired from real-

life road network maintenance applications, considers two vehicles: the servicing (SV)

vehicle, which actually visits the compulsory arcs, and the refilling (RV) vehicle, both

based at a central depot. The purpose of the latter is to meet the servicing vehicle to

refill it: after each refill, though, the RV is compelled to return at the depot. CARP-RP

is formulated on a mixed graph with arcs and edges, both having a required subset of

elements which must be visited at least once. The objective is to find the route of the

SV and the circuits of the RV that serve the compulsory arcs and edges at minimum

overall cost while respecting the capacity of the SV. Note that the refill points too make

the object of decision. The authors propose a MIP formulation and a cutting-plane

algorithm. Tests have been conducted on randomly generated instances with arcs only,

and on instances obtained by adapting benchmark CARP instances. The instances con-

sidered up to 70 nodes and nearly 600 arcs.

The work [Salazar-Aguilar et al., 2013] proposes the Synchronized Arc and Node Rout-

ing Problem (SANRP), which extends the CARP-RP in that a fleet of SVs is considered

and the RV does not need to go back to the depot after a refill, as we suppose that the

RV has unlimited capacity. Therefore, many service routes are to be interlaced with the

only RV route. Again, the crossing (refill) point must be decided; moreover, the SV and

the RV routes must be synchronized so as to reduce the waiting time at the refill points.

The objective function consists in minimizing the duration of the longest SV route. The

authors propose an ALNS metaheuristic, defining three algorithms for the construction

of the initial solution, and seven destroy/repair operators for the improvement phase.

Sixty instances with 60-100 nodes and 200-350 arcs, and twenty larger instances with

200-400 nodes and 700-1500 arcs, were randomly generated, to test the proposed ALNS

and infer a large set of performance indicators, such as the overall computation time,

the effectiveness of the main algorithmic blocks, the impact of different considered re-

plenishment policies and the position of the depot.

In [Conrad and Figliozzi, 2011], the Recharging VRP (RVRP) is introduced. The moti-

vation comes from real-life applications in which BEVs are used for less-than-truckload

(LTL) deliveries in urban areas. It is an extension of the Distance Constrained VRP
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(DCVRP) where the vehicles are allowed to recharge at some customer locations incur-

ring in a time penalty. The authors further refine the problem definition by yielding a

three-index MILP formulation for the Capacitated RVRP with Time Windows (CRVRP-

TW) version, where the vehicle has both a battery and a load limit and the customers

have time windows. The objective function is hierarchical, aiming at the minimization

of the number of used vehicles first, and of the weighted sum of the traveled distance,

the service time and the vehicles recharging time, then. Thirty cases are derived from

the R101 instance of [Solomon, 1987] by randomly choosing 40 customers (out of 100)

and adding the driving range limit and the recharge time. Tests are made for both the

CRVRP-TW and the version without time windows (CRVRP) on such testbed: results

are given in terms of average number of used vehicles, traveled distance and number of

recharge. Moreover, a study is conducted to establish upper and lower bounds on the

solution of both the CRVRP and the CRVRP-TW.

Finally, the work [Hemmelmayr et al., 2013] proposes an heuristic approach for three

problems, namely: the Periodic VRP with Intermediate Facilities (PVRP-IF); a variant

of the PVRP-IF where vehicles are not compelled to be empty when they go back to

the depot – a feature inspired by a real-life application; and the VRPIRF - although the

authors claim to deal with the MDVRPI. In spite of not being the most recent work to

tackle the VRPIRF, [Hemmelmayr et al., 2013] is the last one of our review since the

presented results on the VRPIRF benchmark instances are the best that we are aware

of. A MIP model for the PVRP-IF is presented, based on the formulation for the PVRP

of [Cordeau et al., 1995]. The MDVRPI is then presented as a particular case of the

PVRP-IF with a single-day planning horizon: since the PVRP-IF has only one central

depot, such particular case is actually not the MDVRPI, but the VRPIRF instead. The

proposed solution method is a VNS. The initial solution is built by first randomly as-

signing customers to days (this step is not required for the VRPIRF), then running a

Clarke and Wright savings heuristic to solve a VRP under the maximum duration con-

straint, and finally inserting the intermediate facilities with an exact procedure based on

Dynamic Programming (DP). The used neighborhoods operators for the VRPIRF can

be of two type: move, i.e. the reallocation of a sequence of customers from a route to

another, or swap, i.e. two sequences of two routes are exchanged between them. Both

intra- and inter-rotation moves are considered, whereas this is not the case for intra-

route moves, for the sake of computation tractability. Moreover, a 2-opt*-based [Potvin

and Rousseau, 1995] operator is especially designed for the VRPIRF. The neighborhood

size is given by the maximum number of customers of the moved/swapped route seg-

ments. A set of local search tools, mainly based on 2-opt and 3-opt, are used alone or

combined; moreover, the aforementioned DP-based procedure to insert facilities in the

vehicles’ rotations is also used in the LS phase. For the real-life variant of the PVRP-IF,

however, this latter tool is replaced by a greedy heuristic. Neighborhood operators do
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not tolerate infeasible intermediate solutions, and neither does the LS phase. At the end

of the local search, the incumbent x is replaced by the new solution x′′ both in case of

improvement and of deterioration, the latter case according to a probability which de-

pends on f(x)−f(x′′), f being the objective function. A set of new benchmark instances

is proposed for the PVRP-IF. Curiously, this set is obtained by combining the features

of the PVRP instances of [Cordeau et al., 1995] and those of the MDVRPI instances of

[Crevier et al., 2007], as the sets of customers are the same for both datasets. On the

VRPIRF benchmark instances, the VNS of [Hemmelmayr et al., 2013] outperforms all

the other review methods and achieves remarkable results. When limited to 10 runs, the

algorithm ties or improves the previously best known solutions for 64 out of 76 instances,

with an average +0.32% gap over the remaining instances. Moreover, the best known

solution is improved or tied on 74 cases through sensitivity analysis.

3.3 Conclusions

This chapter has introduced the Vehicle Routing Problem with Intermediate Replenish-

ment Facilities, a tactical Vehicle Routing problem. An extensive review of the literature

of the VRPIRF, as well as of that of the VRPs it descends from, and the problems which

are most similar to it, has been later proposed. This review has clearly highlighted how

the VRPIRF arises in the context of real-world applications. Therefore, even if more

difficult variants have been widely studied, and numerous heuristic methods have been

developed to deal with large-scale instances, the literature is still scarce for what con-

cerns exact methods, even for the basic version. This motivates the work presented in

the remainder of Part II, which is devoted to the introduction of four exact approaches

to the VRPIRF.



Chapter 4

Branch&Cut algorithms for the

Vehicle Routing Problem with

Intermediate Replenishment

Facilities

4.1 A first Branch&Cut Algorithm based on a 3-index for-

mulation

In the first part of this chapter, we will introduce some basic notation for the VRPIRF

(section 4.1.1), a first MILP compact formulation (section 4.1.2), the Branch&Cut algo-

rithm based on it (4.1.3) and its computational evaluation (4.1.4). Section 4.2 will then

introduce a second Branch&Cut-based approach. Finally, section 4.3 will conclude the

chapter and draw future perspectives.

4.1.1 Notations

In its most frequent definition, VRPIRF is defined on an oriented graph G = (V,A)

where the node set V = {0,...,n+ f} consists of the customers’ set C = {0,...,n− 1}, the

depot, denoted by ∆ ≡ n, and the facilities’ set F = {n+ 1,...,n+ f}, while the arc set

is A = V × C ∪ C × V , i.e. the graph is complete except for links between ∆ and the

facilites, between the facilities – and of course loops. Each arc ij ∈ A has associated cost

dij and travel time τij , both of which are supposed to respect the triangle inequality.

The demand and the unload time of client i ∈ C are denoted by qi and τi. K = {1,...,nK}

77
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denotes the set of nK vehicles, whereas their load and duration limits are referred to as

Q and T . Recharge at facility p ∈ F requires a time τp, while the time to load a vehicle

at the central depot before the beginning of a rotation is τ∆. One can define extended

arc travel times as follows in order to include node service times:

(∀ij ∈ A) tij = 1
2 τi + τij + 1

2 τj

We assume that for each pair i, j ∈ C of customer it is possible to determine a facility

p ∈ F which is the most convenient to recharge in between i and j in terms of both cost

and (extended) travel time, i.e. such that the recharge cost dip + dpj and the recharge

time tip + tpj are minimum:

(∀i, j ∈ C, i 6= j) (∃p ∈ F ) (∀q ∈ F\{p}) dip + dpj ≤ diq + dqj ∧ tip + tpj ≤ tiq + tqj

This assumption is reasonable in most of the cases: for instance, it holds for most of the

VRPIRF instances in the literature. However, its removal could easily be dealt with.

It is useful, for the sake of conciseness, to introduce the following notations.

Given two sets of customers S1, S2 ⊆ C, let:

IS1 denote the node set C\S1

IS1 :S2 denote the oriented cut-set {ij ∈ A : i ∈ S1, j ∈ S2},

Iδ+(S1) and δ−(S1) represent the cut-sets (V \S1) :S1 and S1 : (V \S1),

IA(S1) denote S1 :S1, i.e. the arcs with both endpoints in S1,

In addition, we also define:

I i :S := {ij ∈ A : j ∈ S}, S : i := {ji ∈ A : j ∈ S}, δ−(i) := δ−({i}) and δ+(i) := δ+({i})
to denote some particular arc sets concerning node i ∈ V ,

IS(C) as the collection {S ⊂ C : 2 ≤ |S| ≤ |C| − 2} of subsets of customers,

Iκ(S) as the minimum number of routes needed to serve customers in S ⊆ C – the

solution of a Bin Packing Problem (BPP) instance on S, and r(S) =
⌈∑

i∈S qi
Q

⌉
a trivial

lower bound on κ(S).

4.1.2 The 3-Index Vehicle-Flow Formulation

A first approach for modelling VRPIRF relies on a three-index formulation. The decision

variables are:

Ibinary arc-flow variables xkij , with xkij = 1⇔ arc ij ∈ A is visited by vehicle k ∈ K;

Ibinary activity variables ykp , ykp = 1⇔ vehicle k recharges at least once at p ∈ F .
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Let notation xk(A′) denote the sum
∑

ij∈A′ x
k
ij for any A′ ⊆ A.

The first proposed MILP model for VRPIRF is the following:

(MBC)

min
∑
k∈K

∑
ij∈A

dijx
k
ij (4.1)

s.t.
∑
ij∈A

tijx
k
ij ≤ T ∀k ∈ K (4.2)

∑
k∈K

xk(δ+(i)) = 1 ∀i ∈ C (4.3)

xk(δ+(i)) = xk(δ−(i)) ∀i ∈ C, k ∈ K (4.4)

xk(∆ :C) ≤ 1 ∀k ∈ K (4.5)

xk(∆ :C) = xk(C :∆) ∀k ∈ K (4.6)

xk(p :C) = xk(C :p) ∀k ∈ K (4.7)∑
k∈K

xk(A(S)) ≤ |S| − κ(S) ∀S ∈ S(C) (4.8)

xkip ≤ ykp ∀i ∈ C, k ∈ K, p ∈ F (4.9)

xk(S :S) ≥ ykp ∀k ∈ K, p ∈ F, S ⊆ V \{p} (4.10)

xk(S :S) ≥ ykp ∀k ∈ K, p ∈ F, S ⊆ V \{p} (4.11)∑
k∈K

(xk(δ−(∆)) +
∑
p∈F

xk(δ−(p))) ≥ κ(C) ∀k ∈ K (4.12)

xk(δ+(i)) ≤ xk(C :∆) ∀i ∈ C, k ∈ K (4.13)

xkij ∈ {0, 1} ∀k ∈ K, ij ∈ A

ykp ∈ {0, 1} ∀k ∈ K, p ∈ F

Constraints (4.2) impose the shift length limit for each vehicle. Relations (4.3) and (4.4)

require each client to be visited exactly once by exactly one vehicle. Constraints (4.5)

and (4.6) state that a vehicle may not leave the depot, but if it is used, it must return at

it. Similarly to (4.6), (4.7) assert that each time a vehicle k enters a facility p, it must

leave it. Capacity inequalities (4.8) impose that no route violates the vehicle load limit.

Constraints (4.9)–(4.11) are needed to prevent connection issues. Indeed, constraints

(4.3)–(4.7) fail to ensure that routes performed by a vehicle k form a continuous se-

quence starting and ending at the depot: any solution with one vehicle performing one

or more routes that visit a subset F ′ ⊆ F of facilities, and such that no sequence of

routes connects the depot to any of the elements of F ′, is easily seen not to violate

(4.3)–(4.7). An example is given in Figure 4.1.

This instrinsic weakness is mainly due to the chosen support graph and the arc variables,

which do not contain route information. Activity variables and constraints (4.9)–(4.11)



Chapter 4. Branch&Cut algorithms for the VRPIRF 80

Figure 4.1: An example of non-connected solution of the previous instance. Two
vehicles are used, but the rotation of the first one (continuous stroke) is connected,

whereas that of the second one (dashed stroke) is not.

allow to overcome these problems. Each constraint (4.9) –which we call activity con-

straints– sets corresponding variable ykp to 1 whenever vehicle k performs some route

that ends up at facility p; if so, constraints (4.10)–(4.11) –which we call connectivity

constraints– guarantee that there is a path (possibly passing through other facilities)

from ∆ to p and another one from p to ∆.

Finally, constraints (4.12) and (4.13) are modeling tricks, as they aim at raising the lower

bound: the former express that there must be at least as many arcs leaving the depot

and the facilities (i.e., as many routes) as the solution of BPP on the whole customers’

set, whereas the latter force a vehicle to leave the depot whenever it serves a client.

Note that constraints (4.9) could be aggregated as
∑

i∈C x
k
ip ≤ Mykp , but they would

be much weaker due to their big-M form, also because M coefficient could not even

be tailored as we cannot know a priori the number of times vehicle k will recharge at

facility p – unless we explicitly bound such number, as it has been done in [Bard et al.,

1998].

Since (4.8), (4.10) and (4.11) are in exponential number, solving model MBC calls for

the design of a Branch&Cut algorithm in order to progressively separate and add them

to the model as lazy constraints (i.e. they are introduced only when they are found to

be violated), both at the root node and in the nodes of the Branch&Bound tree.

4.1.3 Separation and Branch&Cut Strategy

In this section we focus on the separation of constraints (4.8) and (4.10)–(4.11), before

giving some insights on the Branch&Cut algorithm.
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4.1.3.1 Separation of capacity inequalities

Constraints (4.8) are commonly found in algorithms to solve capacitated VRPs, like

for instance in the Branch&Cut algorithm designed in [Lysgaard et al., 2004]. In the

same paper, the authors coded CVRPSEP (see [Lysgaard, 2003]), a library of routines

to separate various families of valid cuts for symmetric CVRP. In order to use such

routines, a transformation of the support graph G used so far is needed. We call it

α-transformation and define it as follows.

Given a non-oriented support graph Gα = (Vα, Eα) with Vα = {∆}∪C, Eα = {ij | i, j ∈
Vα : i < j}, the generic solution x of MBC is transformed as:

(∀i, j ∈ C : i<j) xij |α =
∑
k∈K

xkij+xkji ; xi∆|α =
∑
k∈K

(
xki∆+xk∆i+

∑
p∈F

xkip+xkpi
)

(4.14)

i.e. α-transformation collapses the facilities and the depot in one node and changes

replenishments into trips to the depot and back. CVRPSEP routines are then fed with

the transformed solution x|α, the vector qi|i ∈ C of customer demands and the vehicle

capacity Q, returning one or more collection of subsets of C for which a violation occurs

w.r.t. the sought type of cut. For capacity inequalities, on each one of the identified

subsets we impose the corresponding capacity cuts, which must be formulated in one of

the following equivalent forms, according to which one is the sparsest:

x(δ(S)) ≥ 2κ(S) (4.15)

x(E(S)) ≤ |S| − κ(S) (4.16)

x(E(S)) + 1
2x(S :∆)− 1

2x(S :∆) ≤ |S| − κ(S) (4.17)

where δ(S), E(S), S :∆ replace δ+(S), δ−(S), A(S), S :∆, ∆ :S in the symmetric case.

(4.16) descends from (4.15) and from:

2x(E(S)) + x(δ(S)) = 2|S|

⇒ 2|S| − 2x(E(S)) = x(δ(S)) ≥ 2κ(S)

⇒ 2|S| − 2κ(S) ≥ 2x(E(S))

To find (4.17), consider identity 2x(E(C)) + x(δ(∆)) = 2|C|, then we have:

2
(
x(E(S)) + x(E(S)) + x(S :S)

)
+ x(S :∆) + x(S :∆) = 2|C|

⇒ x(E(S)) + x(E(S)) + x(S :S) + 1
2x(S :∆) + 1

2x(S :∆) = |C|

⇒ x(S :S) + x(S :∆) = |C| − x(E(S))− x(E(S))− 1
2x(S :∆) + 1

2x(S :∆)



Chapter 4. Branch&Cut algorithms for the VRPIRF 82

and since x(S :S) + x(S :∆) = x(δ(S)) and |S| = x(E(S)) + 1
2x(δ(S)) we obtain:

|S|+ |S| − x(E(S))− x(E(S))− 1
2x(S :∆) + 1

2x(S :∆)− x(δ(S)) = 0

⇒ |S| − x(E(S))− 1
2x(S :∆) + 1

2x(S :∆)− 1
2x(δ(S)) = 0

⇒ x(E(S)) + 1
2x(S :∆)− 1

2x(S :∆) = |S| − 1
2x(δ(S)) ≤ |S| − κ(S)

In order to use (4.15)–(4.17) in our framework, they need to be adapted to the directed

case, so as to obtain:

x(δ+(S)) = x(δ−(S)) ≥ κ(S) (4.18)

x(A(S)) ≤ |S| − κ(S) (4.19)

x(A(S)) + 1
2

(
x(∆ :S) + x(S :∆)− x(∆ :S)− x(S :∆)

)
≤ |S| − κ(S) (4.20)

(4.19) descends from (4.18) and identity |S| = x(A(S))+x(δ+(S)) = x(A(S))+x(δ−(S)).

To derive (4.20), expand identity x(A(C)) + 1
2x(δ+(∆)) + 1

2x(δ−(∆)) = |C| as:

x(A(S)) + x(A(S)) + x(S :S) + x(S :S) +

+1
2x(S :∆) + 1

2x(∆ :S) + 1
2x(S :∆) + 1

2x(∆ :S) = |S|+ |S|

and since |S| = x(A(S)) + x(δ+(S)) = x(A(S)) + x(S :S) + x(∆ :S) we have:

x(A(S)) + x(S :S)− 1
2x(∆ :S) + 1

2x(∆ :S) + 1
2x(S :∆) + 1

2x(S :∆) = |S|

⇒ x(A(S))− 1
2x(∆ :S) + 1

2x(∆ :S)− 1
2x(S :∆) + 1

2x(S :∆) =

= |S| − x(S :∆)− x(S :S) = |S| − x(δ−(S)) ≤ |S| − κ(S)

In practice, the sparsest form is always one of (4.19) and (4.20).

For each of the customers’ subset for which the capacity inequality (4.16) is found to

be violated, the CVRPSEP routines provide both the set itself and the right-hand side

of the cut which, for the sake of computational tractability, is |S| − r(S) instead of

|S| − κ(S); as a consequence, when we impose (4.19) and (4.20) in our Branch&Cut

algorithm, we do it in the form of rounded capacity inequalities (RCI), which are weaker

but still valid:

x(A(S)) ≤ |S| − r(S) (4.21)

x(A(S)) + 1
2

(
x(∆ :S) + x(S :∆)− x(∆ :S)− x(S :∆)

)
≤ |S| − r(S) (4.22)
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4.1.3.2 Separation of connectivity constraints

The separation of (4.10)–(4.11) simply calls for the solution of as many maxflow-mincut

problems as twice the number of activity variables ykp which have value greater than

0. If ykp > 0, i.e. if vehicle k has some activity at facility p, then two maxflow-mincut

problems are solved, with the current MBC solution as support graph, ∆ as source and

p as sink for the first, and the opposite for the second. If the maximum flow of the first

problem is under a given threshold parameter then the constraint (4.10) is imposed on

the corresponding mincut set, and similarly for (4.11) w.r.t. the second problem.

4.1.3.3 Branch&Cut Strategy

The Branch&Cut algorithm has been implemented using the CPLEX 12.5 framework

with the following Branch&Cut strategy:

Iat root node: given the current fractional solution, separate both RCI and cuts (4.10)–

(4.11); add each found violated constraint to the model if any, then reoptimize, oth-

erwise terminate root node computation

Iat a generic node of the Branch&Bound tree: after CPLEX has added its cuts, look

for violated RCIs; if any of them is found, add them to the model and let CPLEX re-

optimize. If the node solution is integer, before returning control to CPLEX, separate

cuts (4.10)–(4.11), and add to the model any violated one

4.1.4 Computational evaluation

Preliminar tests have been conducted to stress the effectiveness of the Branch&Cut

algorithm based on modelMBC . The instances used were those generated by the authors

of [Tarantilis et al., 2008], where instance features range from 50 to 175 customers, 2

to 7 facilities, 2 to 8 vehicles. Results were indeed very promising for the smallest (50

customers) instances, for which solutions very close to the best known reported in the

same article were found in reasonable computational times, in spite of poor quality lower

bounds: even if the optimality gap was sometimes hard to close, it seemed that such

algorithm could at least be used to fastly produce good upper bounds. Unfortunately,

this behavior dramatically deteriorated with the growth of instances’ size, and even 75

customers instances resulted to be nearly intractable.
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4.1.4.1 Connection Issues

Computational experience suggested that the wayMBC deals with connection problems,

in spite of being theoretically correct, is strongly ineffective. Indeed, when a fractional

solution is found to violate some (4.10) or (4.11) constraints and they are added, they

are easy to circumvent when reoptimizing. A very huge number of such constraints could

then be needed, but then the computation would suffer, whereas a desired feature of a

good Branch&Cut algorithm is to be able to separate and add as few and effective cuts

as possible. The aforementioned strategy, where connectivity cuts are separated and

added only in case of integer solution of a Branch&Cut node, tries to limit such massive

cuts’ generation, but with the drawback to allow fractional solutions to be nonconnected

and therefore to worsen the lower bound and slow down the convergence.

4.1.4.2 Vehicle-related Issues

The weakness of MBC , and especially of its lower bound, can certainly be also ascribed

to the symmetries of the problem due to the multiplicity of identical vehicles. Attempts

have been made to deal with this issue, for example trying to rewrite constraints (4.2)

in a symmetry-breaking form like (4.23):

∑
ij∈A

tijx
k
ij ≤


∑

ij∈A tijx
k+1
ij , k < nK

T , k = nK

(4.23)

Another weak point of the two models is the fact that fractional solutions can make a

fractional use of vehicles, and this is mainly due to the fact that constraints (4.5) are

loose. The way this can impact the effectiveness of the algorithm can be explained with

a simple reasoning. Suppose we have a VRPIRF instance I with T and Q both large

enough to allow to visit all the clients with a single route. The problem degenerates to a

TSP and its optimal solution x will certainly make use of only one vehicle k = 0 which

does not even need to stop at any of the facilities to recharge. Let T be the duration of

the only route of x, and z the cost of x. In a VRPIRF instance I
′
identical to I but with

T = b Tmc and m ∈ N,m ≥ 2, the optimal solution x′ will require at least m+ 1 vehicles

since the end of k-th vehicle’s rotation and the start of the shift of the (k + 1)-th will

require an extra length w.r.t. z. If such extra length is not negligible, the optimality

gap at the root node will be large, as the solution of the LP relaxation of the root node

problem will not have a value greater than z, i.e. the value of a fractional solution where:

(∀ij ∈ A : x0
ij = 1, ∀k) xkij

′
= 1

m+1
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i.e., each of the m+ 1 used vehicles retraces the same only route of x but at a fractional

value 1
m+1 . Again, attempts have been made to overcome this further weakness of the

model. For example, given a VRPIRF instance I that satisfies the assumption:

(∀i1j1, i2j2 ∈ A : i1j1 6= i2j2) di1j1 > di2j2 ⇒ ti1j1 > ti2j2 (4.24)

then given any two solutions x1, x2 of I, one could infer the following:

∑
k∈K

∑
ij∈A

dij((x
k
ij)1 − (xkij)2) > 0⇒

∑
k∈K

∑
ij∈A

tij((x
k
ij)1 − (xkij)2) > 0

i.e. if the cost of x1 is greater than that of x2, then the same applies for the sum of

the shift lengths over the set of all vehicles, no matter if x1 and x2 are fractional or

integer. Note that assumption (4.24) can be restrictive but is worth to be considered

since it holds for most of the VRPIRF instances that are found in the literature. If such

assumption holds, then given the solution x of a node n of the Branch&Bound tree of

modelMBC , it is not restrictive to say that any integer solution in the subtree with root

in n will make use of at least nK =
⌈

1
T

∑
k∈K

∑
ij∈A tijx

k
ij

⌉
vehicles. This is valid even

at the root node, and can be easily detected and imposed by changing constraints (4.5)

into equalities for a subset of nK vehicles, both for problem at node n and its offspring;

the vehicles must be the nK with higher indexes, to be compliant to (4.23).

All of these tricks have been implemented, yet they turned out to be ineffective.

4.2 A new Branch&Cut Algorithm with Replenishment

Arcs and Arrival Times

In this section we propose another Branch&Cut algorithm that relies on a new compact

MILP formulation for VRPIRF based on replenishment arcs (section 4.2.1) and arrival

times (section 4.2.2) which allows to overcome the weaknesses of modelMBC . The new

formulation is explained in section 4.2.3, while sections 4.2.4 and 4.2.5 introduce the

Branch&Cut algorithm and the computational results.

4.2.1 Replenishment Arcs

Replenishment arcs are a powerful modeling concept which has been used, as far as we

know, by just a few works in the literature. The paper we refer to is [Smith et al., 2012],

which makes use of such concept in a generalization of the Shortest Path Problem with

Resource Constraint (SPPRC) called the Weight Constrained Shortest Path Problem
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with Replenishment (WCSPP-R) to model activities that reset a cumulated amount of

a given resource. Another work that exploits a similar feature is the aforementioned

[Karaoglan and Koc, 2011] for a Branch&Cut algorithm for the MTVRP. In the context

of VRPIRF, a replenishment arc is a special arc, which we denote by ipj, that connects

two customer nodes i and j and which represent a stop at facility p to perform a recharge

operation in between the two customers. Therefore, replenishment arc ipj carries much

information at the same time, as its use means that:

I i is the last visited customer of its route, and j is the first of the following one;

I the two routes are performed by the same vehicle.

This has two fundamental consequences, both of which are well-shown in figure 4.2:

1. the information about the stop at facility p is embedded in the arc, so facility nodes

are no more needed;

2. rotations can be represented as a sequence of arcs –possibly of both type, base and

replenishment– where each node has indegree and outdegree equal to 1, with the

exception of the depot.

Figure 4.2: The same rotation with replenishment arcs (thicker and drawn in orange,
right image) and without.

The above point 2 is the most crucial, as it states that with replenishment arcs a rotation

becomes very similar to a common route in CVRP, the only difference being the fact

that the former is composed of both base and replenishment arcs.

A replenishment arc ipj has cost dipj = dip+dpj and extended travel time tipj = tip+ tpj .

Given two customer nodes i, j ∈ C and a facility p, ipj is said to be dominated if

there exists a facility q such that diqj ≤ dipj and tiqj ≤ tipj , otherwise ipj is said to

be nondominated. According to the assumptions of section 4.1.1, for each pair i, j ∈ C
there is only one replenishment arc that connects them which is nondominated. Roughly

speaking, for any two customer nodes there is a facility which is the most convenient

to recharge in between them in terms of both time and cost. Hence, we can discard

notation ipj, use notation ij for both base (ij ∈ A0) and replenishment (ij ∈ AP ) arcs
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and define:

(∀i, j ∈ C) fij = min
p∈P

dipj ; uij = min
p∈P

tipj

For ease of notation, we will reuse symbols V and A without ambiguity. Node set

V = {0,...,n} = C∪{∆} consists now only of the depot node and the customer nodes; we

have a facility set P = {1,...,f} rather than facility nodes, while the arc set A = A0∪AP
is now composed of the set A0 = V × C ∪ C × V of base arcs and the set AP of

nondominated replenishment arcs:

AP = {ipj : i, j ∈ C, i 6= j, p ∈ P, (@q ∈ P\{p}) diqj ≤ dipj ∧ tiqj ≤ tipj}

We extend some of the arc set symbols introduced before so as to distinguish between

sets made of only base arcs (subscript 0), and sets made of only replenishment arcs

(subscript P ). Given S1, S2 ⊆ C, let:

I (S1 :S2)0 denote the cut-set of only base arcs {ij ∈ A0 : i ∈ S1, j ∈ S2},

I (S1 :S2)P denote the cut-set of only replenishment arcs {ij ∈ AP : i ∈ S1, j ∈ S2},

Iδ+
0 (S1) := ((V \S1) :S1)0 and δ−0 (S1) := (S1 : (V \S1))0,

Iδ+
P(S1) := ((V \S1) :S1)P and δ−P(S1) := (S1 : (V \S1))P ,

IA0(S1) := (S1 :S1)0 and AP (S1) := (S1 :S1)P

while for what concerns a generic node i ∈ V we define:

I (i :S)0 := ({i} :S)0, (S : i)0 := (S :{i})0, δ+
0 (i) := δ+

0 ({i}), δ−0 (i) := δ−0 ({i})

I (i :S)P := ({i} :S)P , (S : i)P := (S :{i})P , δ+
P(i) := δ+

P({i}), δ−P(i) := δ−P({i}),

4.2.2 Arrival Times

In order to deal with the vehicle-related issues depicted in section 4.1.4.2, it would be

desirable to drop the vehicle index out of the decision variables. We observe that in

MBC such vehicle index is only needed to compute the total travel time of each k ∈ K
and thus impose the duration constraint. The recent literature on Asymmetric Distance-

Constrained VRP (or ADVRP) proposes an interesting technique to keep track, given

any partial path from the depot to a customer i, of the distance travelled so far. The

paper we refer to is [Almoustafa et al., 2013], even though its authors claim to have

taken the core idea from other works; we refer the reader to [Kara, 2011], among the
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others. Something similar has also been used by the authors of [Bard et al., 1998].

Such technique makes use of O(n2) variables zij associated to arcs and can be summa-

rized as follows. In a oriented graph G = (V,A), let xij , ij ∈ A be the usual binary

arc-flow variables and let xij = 1 if we go from node i to node j. Let also zij , ij ∈ A be

real nonnegative variables, with zij representing the distance travelled from the depot

to node j if its predecessor is node i, or 0 otherwise: its value is imposed by means of

the following equation:

∑
j∈V \{i}

zij =
∑

j∈V \{i}

zji +
∑

j∈V \{i}

tijxij (4.25)

The relation is easily seen to be recursive, therefore by adding a family of base-case

relations one can compute the distance travelled up to any node of a route; an additional

family of relations to treat return-to-depot cases allows to impose that the total route

distance does not exceed the given bound. Section 4.2.3 will define in detail these

relations and how they have been adapted to our case, and will illustrate with a small

example (figure 4.5) how they work.

This technique can be adapted to our case to handle arrival times at each node along

a route, i.e. the time the vehicle arrives at a node and –in case of a customer node–

before service starts. By imposing that no node arrival time exceeds T , the maximum

shift length can be enforced without needing to distinguish the vehicles.

It is interesting to note that one could also make use of techniques commonly used in

VRP with Time-Windows to express arrival times; however, the relations used in there

are nonlinear and often dealt with by means of big-M-based linearization, with the result

of weakening the LP relaxation of the model, whereas relations (4.25) are linear.

Figures 4.3 and 4.4 have been taken from some preliminary tests and aim at giving a

hint of the higher effectiveness of the two-index formulation w.r.t. the three-index one.

They depict two fractional solutions, both obtained during the root node processing of

the instance previously shown in figures 3.1, 3.2 and 4.1. The first one is delivered by the

MBC-based Branch&Cut algorithm, while the second one refers to a solution yielded by

a two-index-formulation-based Branch&Cut algorithm. In spite of being two different

solutions, their values are very close, allowing us to make a comparison between them.

It appears clearly that the first solution is much more scattered and prone to symmetry

issues: therefore, its solving is likely to either have a slower convergence to the optimal

fractional solution or deliver a worse lower bound.

Let us make one last observation. Not surprisingly, the use of relations (4.25) to enforce

the duration maximum length prevents subtours as a side-effect, as the arrival times

along a path can only be nondecreasing. Indeed, such relations represent a generalization

of some subtour elimination techniques used in the context of the Traveling Salesman
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Problem, the best-known being the one proposed by Miller, Tucker and Zemlin in [Miller

et al., 1960].
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Figure 4.3: A fractional solution delivered by the MBC-based Branch&Cut algo-
rithm during the root node processing of the previous instance. Bold arrows denote

replenishment arcs; different colors refer to different vehicles.
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Figure 4.4: Another fractional solution of the root node processing of the previous
instance. This time, the solution is yielded by a two-index-formulation-based Branch&

Cut algorithm.

4.2.3 A Two-Index Formulation

A new MILP model for VRPIRF, MBC
RA , is now proposed. Its decision variables are:

Ibinary base arc variables xij , ij ∈ A0, xij = 1⇔ node j follows node i in the same route;

Ibinary replenishment arc variables wij , ij ∈ AP , wij = 1 ⇔ vehicle recharges (at the

least cost facility) between clients i, j;

I real nonnegative arrival time variables zij , i ∈ V , j ∈ V \{i}, which represent the

arrival time at node j if its predecessor is node i.
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The aggregated notation x() introduced before is extended in the following sense:

Ix(A′) will denote the sum
∑

ij∈A′ xij whenever A′ ⊆ A0, and

Iw(A′) will denote the sum
∑

ij∈A′ wij whenever A′ ⊆ AP .

Model MBC
RA is:

(MBC
RA)

min
∑
ij∈A0

dijxij +
∑
ij∈AP

fijwij (4.26)

s.t. x(δ−0 (∆)) + w(AP ) ≥ κ(C) (4.27)

x(δ+0 (i)) + w(δ+P(i)) = x(δ−0 (i)) + w(δ−P(i)) ∀i ∈ C (4.28)

x(δ+0 (i)) + w(δ+P(i)) = 1 ∀i ∈ C (4.29)

x(δ−0 (∆)) ≤ nK (4.30)

x(δ+0 (∆)) = x(δ−0 (∆)) (4.31)

x(A0(S)) ≤ |S| − κ(S) ∀S ∈ S(C) (4.32)

z∆i = t∆ix∆i ∀i ∈ C (4.33)

zij ≥ (t∆i + tij)xij + (t∆i + uij)wij ∀i ∈ C, j ∈ C\{i} (4.34)

zij ≤ (T − tj∆)(xij + wij) ∀i ∈ C, j ∈ C\{i} (4.35)

zi∆ ≥ (t∆i + ti∆)xi∆ ∀i ∈ C (4.36)

zi∆ ≤ Txi∆ ∀i ∈ C (4.37)∑
j∈V \{i}

zij =
∑

j∈V \{i}

zji +
∑

j∈V \{i}

tijxij +
∑

j∈C\{i}

uijwij ∀i ∈ C (4.38)

xij ∈ {0, 1} ∀ij ∈ A0

wij ∈ {0, 1} ∀ij ∈ AP

zij ≥ 0 ∀i ∈ V, j ∈ V \{i}

The objective function (4.26) takes into account both base and replenishment arcs. The

contraints can be subdivided into three major families:

Idegree constraints:

I (4.27) enforces a lower bound on the number of required routes, similarly to (4.12);

I (4.28) and (4.29) impose to visit each client exactly once;

I (4.30) and (4.31) bound to nK the number of service rotations that can be performed

and force each performed rotation to leave and enter the depot exactly once;

Icapacity constraints:

(4.32) force each route to respect the vehicle load limit. Since capacity constraints
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are the only ones in exponential number, they form the core of the new Branch&Cut

algorithm: we will discuss them more in depth later;

Iarrival times constraints:

I (4.33) determine the arrival time at the first customer of each rotation;

I if customer j follows customer i on a route, (4.34) and (4.35) respectively impose

tailored lower and upper bounds on the variable zij ; otherwise, (4.35) sets zij to 0;

I (4.37) impose that for each arc that enters the depot, i.e. the last one of the rotation

of a vehicle, the arrival time must be less than, or equal to, T , while (4.36) set a

trivial lower bound on the same arrival time;

I (4.38) recursively impose the arrival times at intermediate customer nodes of a

rotation other than the first one, according to the principle briefly explained in

section 4.2.2.

Figure 4.5 can help the understanding of how (4.33)–(4.38) work. In this example,

Figure 4.5: An instance with f = 1 and n = 5 and a solution with only one rotation.

xij = wij = 0 for every ij ∈ A except for x∆0 = x01 = w12 = x23 = x34 = x4∆ = 1;

(4.35) sets every z variable to 0 with the exception of z∆0, z01, z12, z23, z34 and z4∆.

(4.33) imposes z∆0 = t∆0, whereas (4.38) for node i = 0 is:

∑
j∈V \{0}

z0j = z01 =
∑

j∈V \{0}

zj0 +
∑

j∈V \{0}

t0jx0j +
∑

j∈C\{0}

u0jw0j = z∆0 + t01

and similarly we get z12 = z01 +u12, z23 = z12 + t23, z34 = z23 + t34 and z4∆ = z34 + t4∆.

Since arrival time z4∆ is imposed the bound T by (4.37), the vehicle performing the

rotation is ensured to be back at the depot within the maximum shift length.

The small example above also shows how arrival times constraints are sufficient to enforce

the connection of the rotation of a vehicle. Suppose by contradiction to have a solution

with x∆0 = x04 = x4∆ = 1, w12 = x23 = x31 = 1: this would result in z12 = z31 + u12 =

z23 + t34 + u12 = z12 + t23 + t34 + u12, which is impossible unless t23 + t34 + u12 = 0.
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4.2.4 The new Branch&Cut Algorithm

In the following, we explain in detail how the separation capacity constraints (4.32) is

performed. Then, we introduce some families of valid inequalities which are used in

the separation procedure performed at each node of the Branch&Bound tree, and we

illustrate how they are separated. Lastly, we provide some insights on the separation

procedure itself and the overall Branch&Cut algorithm.

4.2.4.1 Separation of Capacity Constraints

Relations (4.32) are problem-defining constraints, i.e. they are all required to define

the solution space of VRPIRF. In other words, by removing a part or all of them, the

solution space of MBC
RA would contain solutions which do not match feasible VRPIRF

solutions, hence MBC
RA would not be a correct model of the problem.

However, to find an optimal solution of a VRPIRF instance it is generally not necessary

to add them all. The purpose of a separation algorithm is precisely to gradually detect

and add violated problem-defining constraints, until the feasibility of the currently best

found solution is proven – and thus so is its optimality. It is therefore a desirable fea-

ture of such an algorithm to be able to detect as few and effective cuts as possible at

each step, in order to allow a fast convergence while adding a least possible number of

constraints.

Such constraints are often referred to as lazy constraints, because even if they are nec-

essary to define the problem, they are added only when they are violated, in order to

cut off a current solution which is infeasible w.r.t. the definition of the problem; the

reason of this lazy insertion in the model is their number, which is exponential in the

problem instance size. Capacity inequalities (4.32) are separated in the same way as in

section 4.1.3.1. Since the support graph of the problem has considerably changed, the

transformation of a solution x of MBC
RA which is required to feed CVRPSEP routines

must be revised too. We call this new transformation β-transformation and define it as

follows.

Given a non-oriented support graph Gβ = (V,Eβ) with Eβ = {ij | i, j ∈ V : i < j}, the

generic solution x of MBC
RA is transformed as:

(∀i, j ∈ C : i < j) xij |β = xij + xji ; xi∆|β = xi∆ + x∆i +
∑

j∈C\{i}

(wij +wji) (4.39)

The specific CVRPSEP routine to separate capacity cuts is fed with the transformed

solution x|β and returns one or more subsets S ∈ S(C) for which the capacity constraint

is violated: for such a subset S we impose (4.32) in the form of RCI. For ease of language,

this separation procedure will be referred to in the following as β-separation.
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4.2.4.2 Separation of Connectivity Valid Inequalities

Along with problem-defining contraints, there are other families of contraints, most often

called valid inequalities, which are not required to define the solution space of VRPIRF,

as any integer solution which is compliant to the former (and to the other constraints in

the model) automatically satisfies the latter – which are then redundant. This is not the

case, however, for what concerns the LP relaxation of the problem, the solution space

of which can be considerably reduced by the addition to the model of such inequalities.

This is why, when solving the LP relaxation of a node of the Branch&Bound tree during

a Branch&Cut algorithm, it is very common to separate and add them in order to refine

the fractional solution of the node and tighten the lower bound.

This is the case of connectivity inequalities (4.40):

(∀S ∈ S(C)) x(A0(S)) + w(AP (S)) ≤ |S| − 1 (4.40)

They are a generalization of subtour elimination constraints (SECs) where both base

and replenishment arcs are taken into account, so as to exploit the previously recalled

structural similarity between a rotation expressed with replenishment arcs, and a CVRP

route.

In order to separate them, a further transformation of a solution of MBC
RA is required.

We call it γ-transformation and define it as follows. Given support oriented graph

Gγ = (V,A0), a solution x of MBC
RA is transformed as:

(∀i, j ∈ C : i 6= j) xij |γ = xij + wij ; xi∆|γ = xi∆ ; x∆i|γ = x∆i (4.41)

The separation of (4.40) calls for the separation of SECs on the transformed solution

x|γ . This is usually achieved with a maxflow algorithm, like for instance in [Fischetti

et al., 1997]. Given the transformed solution x|γ , a maximum flow problem on the

support graph Gγ is formulated where each arc ij has associated capacity xij |γ : for each

customer node i ∈ C, the determination of the maximum flow from ∆ to i yields the ∆−i
cut S ∈ S(C) such that i ∈ S and whose capacity x(δ+

0 (S))|γ is minimal. If such capacity

is less than 1, the connectivity constraint on S can be imposed. Therefore, by solving

|C| = n maxflow problems, one can find up to n (without taking into account identical

sets) of such sets S ∈ S(C). An alternative way to separate connectivity constraints

consists in using the CVRPSEP routine to separate capacity constraints and feeding

it with the transformed solution x|γ , a vector qi = 1|i∈C of unit customer demands

and a vehicle load limit Q = |C|. In spite of being less conventional, such method is

efficient and more homogeneous w.r.t. the β-separation procedure. We have adopted

and implemented this latter method. For brevity, in the following we will talk about
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γ-separation to denote it.

The imposition of the connectivity constraints on the sets S obtained this way can be

done either in the previously shown form (4.40) or in the equivalent one:

x(δ+
0 (S)) + w(δ+

P(S)) ≥ 1 (4.42)

depending on which one is the sparsest.

4.2.4.3 Separation of Homogeneous Multistar Inequalities

Multistar inequalities and partial multistar inequalities are well-known examples of valid

inequalities for CVRP. They were first introduced in [Araque et al., 1990] in the context

of a study on Symmetric Unit demand CVRP (CVRPUD): the report still offers a strong

introductory reference on the subject. Partial multistar inequalities have the form:

λx(E(N)) + x(E(C :S)) ≤ γ

where N ⊂ C, C ⊂ N and S ⊂ C\N are subsets of customer nodes respectively called

nucleus, connectors and satellites. A partial multistar is the subgraph E(N) ∪ E(C :

S). By setting parameters λ and γ according to |N |, |S| and |C|, in many cases it is

possible to cut fractional solutions that would otherwise respect capacity cuts. Similar

considerations apply to multistars, which can be considered as the particular case with

C ≡ N .

The authors of [Letchford et al., 2002] later generalized such inequalities to CVRP and

determined some homogeneous multistar and partial multistar inequalities, which follow

the same principle but take into account customer demands and the vehicle capacity.

The attribute homogeneous denotes the fact that the edges of E(C :S) have the same

coefficient regardless of the concerned customers, as it was in the original form for

CVRPUD. The same authors later embedded the separation of homogeneous multistar

and partial multistar inequalities in the Branch&Cut framework presented in [Lysgaard

et al., 2004]: the heuristic separation procedure used to detect violated inequalities is

again part of the CVRPSEP package.

We have used this routine in our Branch&Cut algorithm to cut and possibly improve

the fractional solution x of the generic Branch&Bound node; however, in order to do so,

the CVRPSEP procedure must be fed with the β-transformation x|β since it is tailored

for the Symmetric CVRP.
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4.2.4.4 Separation Policy and Branch&Cut Algorithm

The Branch&Cut algorithm is based on the separation policy outlined in Figure 4.6.

After solving the LP relaxation of the subproblem associated with the current node of

NodeSeparation(Tl, θβ, θγ , θµ)

argtype Tl: timeLim; θβ , θγ , θµ: threshold;

declare t: time; x, x|β , x|γ : solution; Sβ , Sγ , Sµ: setCollection; S: set;

1 startTime(t)

2 x ← LPoptimize(MBC
RA)

3 while(true)

4 x|β ← β-transformation(x)
5 Sβ ← Separate(x|β, θβ, 'B')
6 if(Sβ 6= ∅)
7 foreach(S in Sβ) addToModel(MBC

RA , capacityC(S))
8 x ← LPoptimize(MBC

RA)
9 if(t > Tl) exit else continue

10 if(x is integer feasible) exit

11 x|γ ← γ-transformation(x)
12 Sγ ← separate(x|γ , θγ , 'G')
13 if(Sγ 6= ∅)
14 foreach(S in Sγ) addToModel(MBC

RA , connectionC(S))
15 x ← LPoptimize(MBC

RA)
16 if(t > Tl) exit else continue

17 Sµ ← separate(x|β, θµ, 'M')
18 if(Sµ 6= ∅)
19 foreach(S in Sµ) addToModel(MBC

RA , hMultistarC(S))
20 x ← LPoptimize(MBC

RA)
21 if(t > Tl) exit else continue

22 exit

Separate(x, θ, type)

argtype x: solution; θ: threshold; type: char;

argcond type ∈ {'B', 'G', 'M'};
returns setCollection;

declare S: setCollection; S: set;

1 S ← ∅
2 if(type = 'B') perform β-separation on x
3 if(type = 'G') perform γ-separation on x
4 if(type = 'M') perform Homogeneous Multistar separation on x
5 foreach(set S whose constraint is violated by more than θ) S ← S ∪ {S}
6 return S

Figure 4.6: Separation policy performed at each node of the Branch&Bound tree.

the Branch&Bound tree, the algorithm iteratively performs a sequence of calls to the
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described separation procedures, each with an associated threshold violation value θ.

Following a classical general scheme, the separation procedures are invoked according

to a given order: whenever one of them finds one or more violated constraints, they are

added to the model and a new LP optimization is called. The algorithm updates the

relaxed solution of the node and jumps to the following iteration, seeking for further

violated constraints, unless the given time limit Tl has been exceeded. Note that the

time limit check only occurs at the end of the separation procedures. The node com-

putation terminates when either no more constraints can be added, or the integrality of

the current solution is proved. In the former case, the final lower bound of the node is

delivered, whereas in the latter a new valid solution has been found and the node will

not be branched on further.

As for the order of the procedure calls, first we separate capacity constraints (line 4). If

no violated constraint has been found, the integrality of the current solution is checked

(line 10). If the check succeeds, the computation can end. If it fails, we look for violated

connectivity valid inequalities first (line 11), and possibly violated homogeneous multi-

star valid inequalities (line 17), then. If none is found, the computation ends.

Figures 4.7 show some details of the procedure NodeSeparation. Subfigure (a) rep-

resents a nontransformed solution that violates the capacity constraint on set S: since

|S| = 8 and r(S) = 3, we add the RCI x(A0(S)) ≤ 5 to MBC
RA and we reoptimize. Sub-

figures (b) and (d) are possible cases of the nontransformed solution of the following

iteration: (b) does not violate any other constraint (as shown by its β-transformation

(c)), and since it is integer, the procedure NodeSeparation ends. On the contrary, (d)

violates the capacity constraint on S1 (as shown by (e)), which is then added.

The Branch&Cut algorithm itself consists of three phases:

1. root node separation, i.e. the procedure NodeSeparation at the root node;

2. root node refinements, i.e. the further processing performed by CPLEX by adding its

standard cuts, prior to branching on the root node;

3. the Branch&Bound tree search, during which the procedure NodeSeparation is

invoked by CPLEX at each node when no more standard cuts can be added and

without time limit.

4.2.5 Computational results

The Branch&Cut algorithm based on model MBC
RA and procedure NodeSeparation

has been implemented using the CPLEX Callable Library of the IBM ILOG CPLEX

suite, version 12.6. This section describes the results of the computational experiments

that have been conducted to assess its performances. The tests have been run on a Intel
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Figure 4.7: Different stages of the separation procedure on an example instance with
Q = 15; customer demands are shown in red circles. The original support graph is
represented by means of a diagram with black and thick blue arcs, which stand for base
and replenishment arcs, respectively. The graph representing the transformed solution

output of the β-transformation features black and blue edges.

Core i7-4770 3.4 Ghz machine with 7.76Gb RAM. A single-threaded computation has

been imposed.

The VRPIRF instances that have been used for the test sessions are the 22 instances a1–

l1 and a2–j2 presented in [Crevier et al., 2007], and the 54 instances 50c3d2v–175c8d8v

proposed in [Tarantilis et al., 2008]: they will be respectively referred to as CCL and

TZK instances, after the names of the authors, for brevity. In these instances, features

range from 48 to 288 customers, 2 to 7 replenishment facilities, and 2 to 8 vehicles.

The Branch&Cut algorithm has always been given the best known solution (which will

be referred to as BKS from now on) as term of comparison. As far as we are aware

of, the BKS is that of [Hemmelmayr et al., 2013] in 74 out of 76 cases, i.e. with the

exception of TZK instances 125c4d7v and 175c8d8v for which the best known result is

the one achieved by the AVNS of [Schneider et al., 2014]. In both cases, however, the

gap between the two solutions is less than 0.1%.

On small-sized instances, i.e. with 48 to 75 customer nodes, a complete computation

(phases 1-3, cf 4.2.4.4) has been performed, with a time limit of 3600 or 5400 seconds
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on both phase 1 (i.e. the root node separation) and the remainder of the computation.

The Branch&Bound search has been given the BKS as initial upper bound. Tables 4.2

and 4.4 show the results on small-sized TZK and CCL instances, respectively. No new

best solution has been found, hence only the BKS is reported. The initial gap is the

one between the BKS and the lower bound after phase 1, while the best gap is the one

at the end of the computation. The cases in which optimality is proved are highlighted.

The reader is referred to table 4.1 to have the names of the table columns explained.

On bigger instances, i.e. with 96 customer nodes or more, only phases 1 and 2 have been

conducted with an overall time limit of 3600 or 7200 seconds depending on whether the

instances have less than 200 customers, or more. Tables 4.3 and 4.5 provide a full de-

tail of these tests. Only the gap between the BKS and the root lower bound has been

evaluated on these instances. Nevertheless, such analysis still offers strong indicators on

the strength of the MILP formulation, even without exploring the Branch&Bound tree.

Moreover, to prove the quality of the NodeSeparation procedure, both the gap after

separation (phase 1) and that after CPLEX root refinements (phase 2) are reported,

respectively as initial and best gap. Whenever the root separation exceeded the overall

time limit (which is possible, see section 4.2.4.4), the root refinement is not performed

and the corresponding time, as well as the best gap, do not appear.

Finally, table 4.6 shows the effect of the valid inequalities. On a sample of instance

families, we have performed phase 1 computation after removing them from procedure

NodeSeparation, and we have compared the results to those obtained with the full

separation procedure. The same time limit 3600 seconds has been imposed.

notation description

instance instance name

T1 time limit(s) for phase 1 (small instances)
T23 time limit(s) for phases 2 & 3 (small instances)
T12 time limit(s) for phases 1 & 2 (big instances)

t1 computational time(s) for phase 1
t23 computational time(s) for phases 2 & 3 (small instances)
t2 computational time(s) for phase 2 (big instances)

BKS previously best known solution

%
1

initial gap after phase 1

%
23

best gap after phases 2 & 3 (small instances)

%
2

best gap after phase 2 (big instances)

%
1

initial gap after phase 1 without valid inequalities (table 4.6)

123 proof of optimality

Table 4.1: Key of the results’ tables.

The computational results are reported and discussed in the following.

Table 4.2 shows that with small-sized TZK instances the proposed Branch&Cut algo-

rithm is in general capable of very good gaps at the end of the root node computation:

in 12 instances out of 18, such gap is less than 8%, and it is not much greater in the
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instance n f nK T1 =T23 t1 t23 BKS %
1

%
23

50c3d2v 50 2 2 3600 4.51 42.44 2209.83 1.89 0.00
50c3d4v 50 2 4 3600 1.37 3600.12 2368.33 11.07 9.61
50c3d6v 50 2 6 3600 2.07 3600.01 2999.29 11.57 11.11
50c5d2v 50 4 2 3600 3.75 386.21 2608.25 2.18 0.00
50c5d4v 50 4 4 3600 2.01 3600.01 3086.58 8.27 6.98
50c5d6v 50 4 6 3600 1.97 3600.01 3548.88 12.44 9.90
50c7d2v 50 6 2 3600 5.78 437.26 3353.08 2.11 0.00
50c7d4v 50 6 4 3600 3.92 3600.01 3380.27 2.88 0.25
50c7d6v 50 6 6 3600 2.33 3600.01 4074.43 11.94 10.08

75c3d2v 75 2 2 5400 36.19 4101.01 2678.79 1.62 0.00
75c3d4v 75 2 4 5400 26.44 5400.31 2746.73 2.94 1.44
75c3d6v 75 2 6 5400 59.33 5400.04 3393.88 7.85 7.65
75c5d2v 75 4 2 5400 40.71 5400.28 3373.68 3.48 2.43
75c5d4v 75 4 4 5400 16.78 5400.25 3553.46 6.07 5.54
75c5d6v 75 4 6 5400 20.24 5400.06 4184.65 8.13 7.97
75c7d2v 75 6 2 5400 42.71 5400.01 3569.01 1.90 0.63
75c7d4v 75 6 4 5400 13.64 5400.22 3822.09 4.99 4.22
75c7d6v 75 6 6 5400 12.49 5400.10 4239.76 7.62 6.76

Table 4.2: Results on TZK instances with 50 to 75 customers.

other cases. Moreover, in 14 cases, the difference between the initial and the best gap,

which we refer to as the gap difference, is less than 2%, to remark that the contribution

of the root separation phase is important. Table 4.2 also shows that nK still impacts the

algorithm’s performances, as the gap grows with it. It is noteworthy to say that TZK

instances with equal n and f have the same customers, although they differ in maxi-

mum vehicle load and maximum shift duration: this makes the analysis of the impact

of nK possible. It is more difficult to determine whether there is a dependence on the

number of facilities, as instances with same n and different f have different datasets,

e.g. the client nodes of instances 50c3d2v, 50c5d2v and 50c7d2v are located differently.

In some cases, the gaps decrease as the number f of facilities grows, like e.g. with

instances 50c d4v, whereas in other cases the behaviour is more controversial, like e.g.

with instances 75c d2v or 75c d4v. Indeed, in the case of family 50c d4v, the decreasing

behaviour of the gaps seems more likely to be due to the progressive clusterization and

scattering of the customer nodes, as shown in figure 4.8. Analogously, figure 4.9 may

explain the irregular variations of the gaps in the family 75c d4v.

The dependence on nK is confirmed by table 4.3 which describes the tests on bigger TZK

instances, although there is a small number of exceptions. However, these latter could

also be caused by an inferior quality of the BKS. Still we have very good results, with

the root node gap under 10% in 31 out of 36 cases, and under 7% in 20 of them, which

are remarkable numbers if we consider that the root node time limit is not increased

with the growth of the instance size and thus a worsening of the gap would be largely

predictable. However, such good results could depend on the fact that TZK big-sized

instances generally have very scattered customer nodes, as shown with some examples
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Figure 4.8: TZK instances 50c d4v (f increases from top to bottom), along with their
BKS (black, orange) and the traces of the fractionary solutions (grey, light orange) at
the end of phase 1. For ease of visualization, arcs do not have arrowheads. Red nodes

are the facilities: the biggest one is the central depot.

by figures 4.10 and 4.11, resulting in a more simple decisional context from a combina-

torial point of view. Note that on the big-sized TZK instances where the phase 2, i.e.

the root refinement, is performed, the gap difference is always under 0.2%. However,

differently from small-sized instances, the gap difference between the two gaps is due to

the root refinement only.

Tables 4.4 and 4.5 show results on CCL small- and big-sized instances.
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Figure 4.9: BKS and traces of the fractionary solutions for the TZK instances 75c d4v
(top to bottom).

These results follow the same general trend for what concerns the growth of the size.

Note that CCL instances have all different customer nodesets, nevertheless we can still

infer a general dependence of the root node gaps on the number of vehicles nK . On

small-sized instances, the root node gap is rarely under 5% even with small instances,

but if we consider that we never have less than 4 vehicles, then the results are similar

to those on TZK instances.

If we compare a small CCL instance with a TZK instance with similar features, then

the gaps are better in the first case, which is surprising given that small CCL instance

generally have more dense customer nodesets. In this sense, figure 4.12 compares the
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instance n f nK T12 t1 t2 BKS %
1

%
2

100c3d3v 100 2 3 3600 170.76 34.84 3123.51 2.47 2.47
100c3d5v 100 2 5 3600 62.75 76.81 3548.44 13.58 13.58
100c3d7v 100 2 7 3600 372.76 2692.72 4235.30 9.40 9.32
100c5d3v 100 4 3 3600 244.81 84.93 4053.95 2.60 2.47
100c5d5v 100 4 5 3600 17.12 25.49 4413.16 9.36 9.23
100c5d7v 100 4 7 3600 84.26 49.56 5142.52 13.71 13.62
100c7d3v 100 6 3 3600 158.96 62.10 4207.79 5.41 5.41
100c7d5v 100 6 5 3600 54.55 54.67 4412.85 10.25 10.25
100c7d7v 100 6 7 3600 94.58 61.94 4869.65 10.46 10.46

125c4d3v 125 3 3 3600 465.86 158.00 3916.01 2.47 2.36
125c4d5v 125 3 5 3600 117.57 156.57 4308.44 9.36 9.36
125c4d7v 125 3 7 3600 289.77 162.71 4664.38 10.87 10.87
125c6d3v 125 5 3 3600 329.12 103.28 4063.25 2.55 2.55
125c6d5v 125 5 5 3600 791.67 1041.44 4760.46 6.25 6.15
125c6d7v 125 5 7 3600 265.55 148.37 5164.02 7.83 7.81
125c8d3v 125 7 3 3600 992.42 135.43 4534.14 3.97 3.97
125c8d5v 125 7 5 3600 1839.76 1765.75 4947.00 5.08 5.08
125c8d7v 125 7 7 3600 1184.34 2489.37 5334.91 6.94 6.94

150c4d3v 150 3 3 3600 2060.68 464.98 4049.47 2.09 2.09
150c4d5v 150 3 5 3600 1566.35 2933.70 4618.71 7.28 7.28
150c4d7v 150 3 7 3600 1311.58 3827.35 5118.40 9.82 9.82
150c6d3v 150 5 3 3600 940.12 138.51 4057.08 4.12 4.09
150c6d5v 150 5 5 3600 3620.32 4855.28 5.96
150c6d7v 150 5 7 3600 3798.86 5695.25 7.95
150c8d3v 150 7 3 3600 1749.28 247.99 4641.29 3.15 3.08
150c8d5v 150 7 5 3600 424.25 251.98 5065.10 6.41 6.41
150c8d7v 150 7 7 3600 444.10 327.18 5605.82 9.08 9.08

175c4d4v 175 3 4 3600 3652.25 4692.53 3.40
175c4d6v 175 3 6 3600 3458.49 142.12 4816.54 4.13 4.13
175c4d8v 175 3 8 3600 3664.08 5830.62 9.87
175c6d4v 175 5 4 3600 3813.19 5000.89 4.53
175c6d6v 175 5 6 3600 2685.38 1304.21 5291.62 5.38 5.38
175c6d8v 175 5 8 3600 2708.57 1089.71 6034.21 9.94 9.94
175c8d4v 175 7 4 3600 3731.42 5747.72 5.29
175c8d6v 175 7 6 3600 2836.71 961.12 5914.00 5.00 5.00
175c8d8v 175 7 8 3600 3764.96 6766.54 8.39

Table 4.3: Results on TZK instances with 100 to 175 customers.

instance n f nK T1 =T23 t1 t23 BKS %
1

%
23

a1 48 2 6 3600 5.77 3600.22 1179.79 7.70 6.91
d1 48 3 5 3600 7.93 3600.02 1059.42 7.67 6.44
a2 48 4 4 3600 0.76 3600.04 997.94 6.96 5.71

g1 72 4 5 5400 60.28 5400.02 1181.13 4.77 4.59
j1 72 5 4 5400 33.40 5400.08 1115.77 5.46 4.46
g2 72 6 4 5400 7.85 5400.06 1152.92 5.76 4.65

Table 4.4: Results on CCL instances with 48 to 72 customers.

CCL case a1 and the TZK case 50c3d6v, while 4.13 compares instances g1 and 75c5d4v.

Once more, the root separation procedure NodeSeparation can be given credit for

most of the final gap, as the gap difference is always less than 1.3%. This holds even

more for the big-sized CCL instances, where the improvement due to the root refinement

phase -the only responsible for the gap difference- is always under 0.5%. The results on
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Figure 4.10: BKS to the TZK instances 100c3d7v (top) and 125c4d5v.

Figure 4.11: BKS to the TZK instances 150c4d5v (top) and 175c4d6v.
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instance n f nK T12 t1 t2 BKS %
1

%
2

b1 96 2 4 3600 115.95 54.56 1217.07 3.38 3.37
e1 96 3 5 3600 59.40 25.51 1309.12 2.48 2.05
b2 96 4 4 3600 56.38 28.79 1291.18 3.88 3.87

h1 144 4 4 3600 1487.26 588.42 1545.50 4.26 4.25
k1 144 5 4 3600 622.59 187.87 1573.20 3.89 3.89
c2 144 4 4 3600 1016.70 195.45 1715.59 3.86 3.86
h2 144 6 4 3600 1160.07 133.82 1575.27 4.34 4.34

c1 192 2 5 3600 2755.35 871.72 1866.75 3.61 3.55
f1 192 3 4 3600 3543.95 61.81 1570.40 2.36 2.36
d2 192 4 3 3600 3808.18 1854.03 3.92

i1 216 4 4 7200 6090.99 1823.72 1922.17 2.85 2.85
l1 216 5 4 7200 7751.10 1863.27 3.23
i2 216 6 3 7200 7341.02 1919.73 3.89

e2 240 4 3 7200 7394.10 1916.67 4.43

f2 288 4 3 7200 7201.17 2230.30 7.28
j2 288 6 3 7200 8472.73 2247.68 3.13

Table 4.5: Results on CCL instances with 96 to 288 customers.

instances %
1

%
1

50c3d v 8.18 11.51
50c5d v 7.63 9.94
50c7d v 5.64 6.81

100c3d v 8.48 9.75
100c5d v 8.56 10.11
100c7d v 8.71 16.26

125c4d v 7.59 8.29
125c6d v 5.54 5.82
125c8d v 5.33 6.18

150c4d v 6.40 14.90
150c6d v 6.01 10.11
150c8d v 6.21 6.55

CCL with n=48 7.44 13.37
CCL with n=72 5.33 5.63

CCL with n=96 3.25 10.32
CCL with n=144 4.09 19.02

Table 4.6: Comparison (average values on some sample instance families) of the gap
after phase 1 with and without including the valid inequalities.

big-sized CCL instances are even better than those seen in table 4.3: the initial gap is

under 5% in 15 out of 16 cases. However, given this fact and considering that n grows

up to 288 (instances f2 and j2), one may conclude that bigger CCL instances are quite

easy ones. This is well-shown, for instance, by figure 4.14 for what concerns CCL case

j2: apart from a dense core, the outer zones appears to be easy to deal with from a

decisional point of view, and since their weight in terms of costs is considerable, they

strongly contribute to tighten the root gap.

Finally, table 4.6 well shows how the insertion of the valid inequalities in the separa-

tion procedure NodeSeparation is effective. As one can see, for some of the sample



Chapter 4. Branch&Cut algorithms for the VRPIRF 105

Figure 4.12: Comparison of the BKS to 50c3d6v (top) and a1.

Figure 4.13: Comparison of the BKS to 75c5d4v (top) and CCL instance g1.

instance family the gap worsens considerably.
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Figure 4.14: BKS to the CCL instance j2. The trace of the fractionary solution at
the end of phase 1 well shows how variables concerning the outer zones practically have

integer value even in the linear relaxation solution.

4.3 Conclusions and Perspectives

In this chapter, we have presented two Branch&Cut algorithms for the VRPIRF. How-

ever, the first one can be considered to all purposes preparatory to the second, which is

far more clever in two respects: i.e. the MILP model and the separation techniques and

strategy. The second one has shown an interesting behavior on most of the benchmark

instances taken from the literature, and therefore it can be considered very promising.

To improve the algorithm based onMBC
RA and NodeSeparation, two main ideas appear

to be viable. The first one consists in enhancing the separation procedure with other

cuts or valid inequalities taken from the literature. The second one is to study more

specific, problem-tailored cuts that take into account, for instance, the arrival times.

The latter stream could even lead to a more radical approach. Since many benchmark in-

stances in the literature are symmetric, one could consider to reformulate the VRPIRF

in a symmetric fashion. Arrival times imply the notion of predecessor and therefore

could no longer be used, but it would be probably easier to design ad-hoc inequalities

to prevent vehicle-related issues. Also, using the CVRPSEP routines would be more

effective, since they are designed for a symmetric context: the graph transformations to
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tackle this bias would not be required anymore, and their side-effects on the tightness

of the lower bound would probably be overcome.

Branch&Cut approaches represent only one of the possible types of exact methods to

deal with the VRPIRF – and in general with Combinatorial Optimization problems.

Branch&Price algorithms are another possible solving strategy. Since they rely on

extended MILP formulations, they often call for the design of a Column Generation

framework. In order to broaden our study of exact approaches to the VRPIRF, we also

designed and developped Branch&Price algorithms to solve it. They are presented and

discussed in the next Chapter.



Chapter 5

Branch&Price algorithms for the

Vehicle Routing Problem with

Intermediate Replenishment

Facilities

5.1 A Branch&Price Algorithm for the VRPIRF

In the first part of this chapter, we propose a third approach to VRPIRF, a Branch

&Price algorithm based on an extended formulation MBP which makes use of route

variables instead of arc-flow ones. Section 5.1.1 is devoted to the description of the

MILP model, while sections 5.1.2 and 5.1.3 go into the problem-specific details of the

new algorithm, and section 5.1.4 shows the computational assessment. Later, section

5.2 introduces a second Branch&Price approach. Finally, 5.3 draws the conclusions of

the chapter.

5.1.1 A Set-Partitioning Formulation

The support graph of modelMBP is the same seen in section 4.1.1: we reintroduce both

the facility nodes’ set, so as to have V = C ∪ {∆} ∪ F , and the index set K in order to

distinguish the vehicles. The arc set A = V × C ∪ C × V composed of base arcs only

is restored. In addition, we define the set R of all possible feasible (i.e. compliant to

load and duration limit) service routes and we characterize its generic element r ∈ R

by means of the following binary coefficients:

108
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Iair = 1⇔ r visits client i;

Ie′pr = 1⇔ r starts at facility p, e′′pr = 1⇔ r ends at facility p;

Ie′∆r = 1⇔ r starts at ∆, e′′∆r = 1⇔ r ends at ∆;

I b′sr = 1⇔ r has its endpoint in set s ⊆ V \{∆} and its starting point in V \s;

I b′′sr = 1⇔ r has its starting point in s ⊆ V \{∆} and its endpoint in V \s;

I bijr = 1⇔ r visits i and j in sequence, i.e. ij ∈ r

We can define the load, the cost and the duration of a route as follows:

qr =
∑
i∈C

air ·qi (5.1)

cr =
∑
ij∈A

bijr ·dij (5.2)

tr =
∑
ij∈A

bijr ·τij +
∑
i∈C

air ·τi + 1
2(e′∆r + e′′∆r )·τ∆ +

∑
p∈F

1
2(e′pr + e′′pr )·τp (5.3)

Note that (5.1) and (5.3) allow to define R as the set of all routes r s.t. qr ≤ Q and

tr≤T . The decision variables are:

Ibinary route variables xkr , r ∈ R, k ∈ K, xkr = 1⇔ route r is in solution and performed

by vehicle k;

Ibinary usage variables x̃k, k ∈ K, x̃k = 1⇔ vehicle k is used;

Ibinary activity variables ykp , k ∈ K, p ∈ F , defined like in 4.1.2.

Let us finally introduce symbol Sp = {s ⊆ C ∪ F : p ∈ s} to denote the collection of

subsets of nodes that contain the facility p but not the depot.

The first formulation of model MBP , which we denote by MBP ′, is:

(MBP ′)

min
∑
k∈K

∑
r∈R

crx
k
r

s.t.
∑
r∈R

∑
k∈K

air x
k
r = 1 ∀i ∈ C (5.4)

e′pr xkr ≤ ykp ∀k ∈ K, r ∈ R, p ∈ F (5.5)∑
r∈R

(e′pr − e′′pr ) xkr = 0 ∀k ∈ K, p ∈ F

∑
r∈R

tr x
k
r ≤ T x̃k ∀k ∈ K (5.6)

ykp ≤ x̃k ∀k ∈ K, p ∈ F∑
r∈R

e′∆r xkr = x̃k ∀k ∈ K



Chapter 5. Branch&Price algorithms for the VRPIRF 110

∑
r∈R

e′′∆r xkr = x̃k ∀k ∈ K

∑
r∈R

b′sr xkr ≥ ykp ∀k ∈ K, p ∈ F, s ∈ Sp∑
r∈R

b′′sr xkr ≥ ykp ∀k ∈ K, p ∈ F, s ∈ Sp

x̃k, xkr , y
k
p ∈ {0, 1} ∀k ∈ K, r ∈ R, p ∈ F

Some simple considerations can help improving the model before describing it into de-

tails. Constraints (5.5) are used to activate variable ykp when vehicle k performs some

route starting from p. As one can observe, they are in exponential number. In order to

reduce their number, we first replace each of such constraints with the following set:

(∀k ∈ K, r ∈ R, p ∈ F ) (∀i ∈ C) air e
′p
r xkr ≤ ykp

which holds if R contains only non-empty routes, i.e. if (∀r ∈ R) (∃i ∈ C) air = 1.

Then, by fixing i, k and p, we can replace the above constraints with their surrogates:

(∀k ∈ K, p ∈ F ) (∀i ∈ C)
∑
r∈R

air e
′p
r xkr ≤Mp y

k
p

where Mp must be large enough to be an upper bound on the left-hand side, i.e. theo-

retically Mp = O(|{r ∈ R : e′pr = 1}|). In order to define Mp, we first observe that due

to constraints (5.4) (which concern the visits to customers) we have

∑
r∈R

air e
′p
r xkr ≤

∑
r∈R

air x
k
r ≤ 1

so Mp = 1 and therefore

∑
r∈R

air e
′p
r xkr ≤ ykp

Secondly, we can relax constraints (5.4) in a set-covering fashion:

∑
r∈R

∑
k∈K

air x
k
r ≥ 1

In fact, assuming that the triangle inequality holds in the distance matrix, there always

exists an optimal solution where each client is visited by exactly one route. Finally, con-

straints (5.6), which enforce the maximum shift length, can be rewritten in a symmetry-

breaking fashion. In order to do so, we add real positive duration variables υk ∈ R+,
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k ∈ K and replace these constraints with:

∑
r∈R

tr x
k
r ≤ υk ∀k ∈ K

υk ≤ T x̃k ∀k ∈ K

x̃k ≤ x̃k+1 ∀k ∈ K\{nK}

υk ≤ υk+1 ∀k ∈ K\{nK}

Hence we obtain the model MBP , which follows:

(MBP )

min
∑
k∈K

∑
r∈R

crx
k
r (5.7)

s.t.
∑
r∈R

∑
k∈K

air x
k
r ≥ 1 ∀i ∈ C (5.8)

∑
r∈R

air e
′p
r xkr ≤ ykp ∀k ∈ K, p ∈ F, i ∈ C (5.9)

∑
r∈R

(e′pr − e′′pr ) xkr = 0 ∀k ∈ K, p ∈ F (5.10)

∑
r∈R

tr x
k
r ≤ υk ∀k ∈ K (5.11)

υk ≤ T x̃k ∀k ∈ K (5.12)

x̃k ≤ x̃k+1 ∀k ∈ K\{nK} (5.13)

υk ≤ υk+1 ∀k ∈ K\{nK} (5.14)

ykp ≤ x̃k ∀k ∈ K, p ∈ F (5.15)∑
r∈R

e′∆r xkr = x̃k ∀k ∈ K (5.16)

∑
r∈R

e′′∆r xkr = x̃k ∀k ∈ K (5.17)

∑
r∈R

b′sr xkr ≥ ykp ∀k ∈ K, p ∈ F, s ∈ Sp (5.18)

∑
r∈R

b′′sr xkr ≥ ykp ∀k ∈ K, p ∈ F, s ∈ Sp (5.19)

x̃k, xkr , y
k
p ∈ {0, 1} ∀k ∈ K, r ∈ R, p ∈ F

υk ≥ 0 ∀k ∈ K

Constraints (5.8) ensure that each client is visited by at least one service route. Relations

(5.9) activate variable ykp when vehicle k performs some route starting from p. Note

that in spite of the set-covering form of constraints (5.8), relations (5.9) still forbid a

client to be visited by two or more routes starting from the same facility. Constraints

(5.10) impose a balance between routes of k that start at p, and those ending at it.
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The maximum shift length constraint is imposed on every used vehicle by means of

constraints (5.11)–(5.14), which also force vehicles with higher indices to be used first

and be assigned to the longer rotations, in a symmetry-breaking spirit. If x̃k = 0,

i.e. vehicle k is not used, then the activity of k on facilities must be forbidden: this

is enforced by (5.15). Constraints (5.16) and (5.17) impose that either k is not used,

or it must leave and enter the depot exactly once. Finally, relations (5.18) and (5.19)

are connectivity constraints for vehicle k from depot to facility p: we call them fore-

and back-connectivity constraints, respectively. They state that if k has some activity

at p, there must be a continuous sequence of routes performed by k from ∆ to p, and

one back.

Fore- and back-connectivity constraints can be reformulated as follows:

∑
r∈R

(∑
i∈s
j /∈s

(bijr − bjir )
)
xkr ≥ ykp ∀k ∈ K, p ∈ F, s ∈ Sp

∑
r∈R

(∑
i∈s
j /∈s

(bjir − bijr )
)
xkr ≥ ykp ∀k ∈ K, p ∈ F, s ∈ Sp

as b′sr and b′′sr are easily seen to be equivalent to
∑

i∈s,j /∈s(b
ij
r −bjir ) and

∑
i∈s,j /∈s(b

ji
r −bijr ),

respectively. An even better rewriting of the connectivity constraints can be achieved

by redefining the collection Sp of subsets of nodes (along with its complement Sp) as

follows:

Sp = {s : s ⊆ F, p ∈ s} ; Sp = {s : s ⊂ F, p /∈ s} = P(F )\Sp (5.20)

i.e. by redefining Sp on the facility graph. This makes the number of connectivity con-

straints become much lower, as it is now O(|K||F ||P(F )|) instead of O(|K||F ||P(V )|).
This can have important consequences from an algorithmic point of view, since for

relatively small values of |K| and |F | one can consider to introduce the whole set of

connectivity constraints statically, instead of generating them dynamically.

Constraints (5.18) and (5.19) can also be written as follows:

∑
r∈R

b′sr xkr ≥ ykp ∀k ∈ K, s ⊆ F, p ∈ s δ′kps (5.21)

∑
r∈R

b′′sr xkr ≥ ykp ∀k ∈ K, s ⊆ F, p ∈ s δ′′kps (5.22)

This slight modification in the constraint indexing can help simplify the expression of

the reduced cost of the route variables, as it will be shown in the following.
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One last thing that is worth mentioning, we note that b′sr and b′′sr can be expressed as:

b′sr = (e′∆r +
∑
p/∈s

e′pr )(
∑
p∈s

e′′pr ) ; b′′sr = (
∑
p∈s

e′pr )(e′′∆r +
∑
p/∈s

e′′pr ) (5.23)

5.1.2 Outline of the Branch&Price Algorithm

In the following we present a solution approach based on the MILP model MBP .

This model is in the form of Gilmore and Gomory (see [Gilmore and Gomory, 1963]),

as it contains a class of integer variables, the route variables xkr ∈ R, whose number

|R| = O(|V |!) is exponential in the size of the problem instance. In these conditions, it

is hard even to find a solution to the LP relaxation of the integer problem – which is a

crucial point, since computing a lower bound for each node of the Branch&Bound tree

is required to decide whether it must be pruned or branched on. Column Generation

(CG) approaches are useful to compute the value of such LP relaxations.

5.1.2.1 Column Generation

The general Column Generation scheme to find the optimal solution to large-scale LP

problems consists of the following steps. Although the described procedure has a more

general validity, we explicitly refer to our case for the sake of simplicity:

1. initialize the problem with a small subset of route variables xr, r ∈ R ⊂ R, so as

to obtain the so-called Restricted Master Problem (RMP), to distinguish it from the

Master Problem (MP), i.e. the problem with the complete set of route variables. Set

R is commonly initialized with artificial variables, or trivial route variables (like e.g.

one-customer routes), or a set of routes variables determined heuristically;

2.find the optimal solution s? of the RMP. Let R?⊂R be the set of routes having xr > 0

in this solution. s? is feasible w.r.t. the MP (unless it makes use of some artificial

variables) as it is equivalent to picking the same routes R? over the whole set R and

setting xr = 0 for every r ∈ R\R?. The difference holds in that if we had the whole

route variable set R, the optimal solution of the RMP would also be globally optimal,

since no more negative reduced cost columns could be inserted in the current base,

whereas the fact that |R| < |R| (and, in general, |R| � |R|) implies that there might

be further negative reduced cost variables in R\R (we suppose to be dealing with a

minimization problem);

3. recover the current dual solution π? of the RMP that allows to compute the reduced

cost cr of route variables xr;
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4.determine the existence of possible negative reduced cost variables in R\R. This is

done implicitly by solving a secondary minimization problem, called the Slave Problem

or Subproblem since it is subordinate to the Master Problem. Each solution of the

Slave Problem corresponds to a route in R: the cost parameters of the problem are

chosen according to π? in such a way to assign each solution of the Slave Problem a

value which equals the reduced cost of the matching MP variable. The Slave Problem

is often referred to also as the Oracle or the Pricing Problem (which we will denote by

PP) for its specific function. The search of routes r ∈ R\R with cr < 0 is implicit in

the sense that if the optimal solution of the Slave Problem has nonnegative value, then

no such route exists, hence the optimality of the current (R)MP solution is proven and

the procedure can end. Otherwise, one or more MP negative reduced cost variables

exist.

5.decide how many and which of these variables are to be added to the restricted set

xr : r ∈ R, and repeat from point 2.

If the solution of the PP has a negative value, in most of the cases there are many

negative reduced cost variables in R\R, but not all of them are worth being added to

the RMP. Hence, point 5 actually requires the tuning of a variable selection strategy.

Column Generation represents one of the most investigated techniques of the last decades.

The reader can refer to excellent introductory works like [Vanderbeck and Wolsey, 2009],

[Lübbecke and Desrosiers, 2002] or [Feillet, 2010] to have an exhaustive insight to the

subject, or to [du Merle et al., 1997] to be introduced to some known CG issues, or

[Moungla et al., 2010] for an example of variable selection strategy.

A Column Generation tool to compute the lower bound at each node of the Branch&

Bound tree, along with a Branching policy to choose the fractional-value variables to

branch on in the same node, are the key elements of a Branch&Price exact algorithm

to solve large-scale MILP problems.

5.1.2.2 Reduced costs

The first step is to determine the reduced cost of route variables, before deciding how

to solve the PP. From the Linear Programming theory, we know that the reduced cost

cj of a variable xj is equal to cj − πTAj , where Aj and π are the j-th column of the

constraints matrix and the dual variables vector, respectively. Hence, the expression of

the reduced cost of variable xkr is given by the cost cr minus the sum, over all constraints,

of the dual variable associated with each constraint, weighted by the coefficient of xkr in

the constraint itself. Let us name the involved dual variables as follows:

Iαi ≥ 0 the variable associated with the constraint (5.8) related to i ∈ C,
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Iϕkpi ≤ 0 that associated with the constraint (5.9) related to k ∈ K, p ∈ F and i ∈ C,

Iθkp ≷ 0 the variables related constraint (5.10) of k ∈ K, p ∈ F ,

Iβk ≤ 0 that related to constraint (5.11) associated with vehicle k,

Iµ′k ≷ 0, µ′′k ≷ 0 the dual variables associated with constraints (5.16) (5.17) connected

to vehicle k, and finally

Iδ′kps ≥ 0, δ′′kps ≥ 0 those related to constraints (5.18), (5.19), k ∈ K, p ∈ F and i ∈ C.

The reduced cost of variable xkr is:

ckr = cr −
∑
i∈C

air ·(α?i +
∑
p∈F

e′pr ·ϕ?kpi)−
∑
p∈F

(e′pr − e′′pr )·θ?kp − tr ·β?k

− e′∆r ·µ′
?
k − e′′∆r ·µ′′

?
k −

∑
s⊆F

∑
p∈s

(b′sr ·δ′
?
kps + b′′sr ·δ′′

?
kps)

where (α?i , ϕ
?
kpi, θ

?
kp, β

?
k, γ

?
k , ς

′?
k , ς

′′?
k , σ?kp, µ

′?
k , µ

′′?
k , δ′?kps, δ

′′?
kps) is the dual solution

corresponding to the current solution of the RMP. The above expression of ckr makes

use of the indexing used in (5.21) and (5.22) instead of that of (5.18) and (5.19). It is

important to notice that since route variables are indexed by vehicle, we cannot avoid

to solve a distinct PP for each vehicle k ∈ K. The expression of ckr becomes:

ckr =
∑
ij∈A

bijr ·dij −
∑
i∈C

air ·(α?i +
∑
p∈F

e′pr ·ϕ?kpi)

−
(∑
ij∈A

bijr ·τij +
∑
i∈C

air ·τi +
∑
p∈F

1
2(e′pr + e′′pr )·τp

)
·β?k

− e′∆r ·µ′
?
k − e′′∆r ·µ′′

?
k −

∑
p∈F

(e′pr − e′′pr )·θ?kp

−
∑
s⊆F

∑
p∈s

(
(e′∆r +

∑
q /∈s

e′qr )(
∑
q∈s

e′′qr )·δ′?kps + (
∑
q∈s

e′qr )(e′′∆r +
∑
q /∈s

e′′qr )·δ′′?kps
)

=
∑
ij∈A

bijr ·(dij − τij ·β?k)−
∑
i∈C

air ·(α?i + τi ·β?k +
∑
p∈F

e′pr ·ϕ?kpi)

− e′∆r ·µ′
?
k − e′′∆r ·µ′′

?
k −

∑
p∈F

1
2(e′pr + e′′pr )·τp ·β?k −

∑
p∈F

(e′pr − e′′pr )·θ?kp

−
∑
s⊆F

∑
p∈s

((
e′∆r +

∑
q /∈s

e′qr
)(∑

q∈s
e′′qr
)
·δ′?kps +

(∑
q∈s

e′qr
)(
e′′∆r +

∑
q /∈s

e′′qr
)
·δ′′?kps

)

(5.24)

which can be seen as the cost of route r on a graph which is identical to the initial support

graph (see again 4.1.1) but with altered costs on arcs and additional costs on nodes: the

new costs depend on the dual variables associated with the constraints that involve route

variables, and can be seen as prizes or penalties according to their contribution to the

reduced cost ckr . More in detail, such a weight turns out to be a prize or a penalty
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depending on whether the insertion of r in the MP simplifies the satisfiability of the

constraints in which it is involved, or pushes them closer to their boundaries. Here are

some examples:

I term bijr ·(dij − τij ·β?k) is equivalent to setting a modified cost dij − τij ·β?k on arc ij;

I term α?i + τi ·β?k +
∑

p∈F e
′p
r ·ϕ?kpi is the weight assigned to client i;

Ievery term which is multiplied by e′pr or e′′pr must be added when p is the starting or

ending point of r, respectively. The same applies to terms with e′∆r and e′′∆r w.r.t. ∆.

The weight of a node, however, can be conveniently added to the weight of each of its

ingoing or outgoing arc, in order to have again a problem with costs on arcs only.

If we do so, solving the PP will amount to finding a shortest (i.e. with least ckr value)

route r on the modified support graph. Since the solution routes must respect both a

load and a maximum length constraint, this calls for solving an Elementary Shortest

Path Problem with Resource Constraints (ESPPRC). We will have a brief recall of

ESPPRC later in section 5.1.2.3.

As one can observe, the weight of client node i ∈ C in (5.24), −air·(α?i +τi·β?k +
∑

p∈F e
′p
r ·

ϕ?kpi), depends on the starting point of the route r, which must be imposed. As a

consequence, at each CG iteration we have to solve up to |K|(|F |+ 1) PPs, i.e. one per

vehicle and per starting facility/depot. On the other hand, the expression of ckr can be

simplified, as it depends on whether the starting point is ∆ or a facility g ∈ F .

In the first case, e′∆r = 1 and e′pr = 0 ∀p ∈ F , therefore we have:

ckr =
∑
ij∈A

bijr ·(dij − τij ·β?k)−
∑
i∈C

air ·(α?i + τi ·β?k)− µ′?k − e′′∆r ·µ′′
?

k

−
∑
p∈F

e′′pr ·(1
2 ·τp ·β

?
k − θ?kp)−

∑
s⊆F

∑
p∈s

δ′
?
kps ·

∑
q∈s

e′′qr

= − µ′?k +
∑
ij∈A

bijr ·(dij − τij ·β?k)−
∑
i∈C

air ·(α?i + τi ·β?k)− e′′∆r ·µ′′
?

k

−
∑
p∈F

e′′pr ·(1
2 ·τp ·β

?
k − θ?kp)−

∑
p∈F

e′′pr ·
∑
s∈Sp

∑
q∈s

δ′
?
kqs

(5.25)

To verify that
∑

s⊆F
∑

p∈s δ
′?
kps·
∑

q∈s e
′′q
r =

∑
p∈F e

′′p
r ·
∑

s∈Sp
∑

q∈s δ
′?
kqs, one can take any

s ⊆ F and p ∈ s and put a weight δ′?kps on each q ∈ s; then, the sum on each s ⊆ F and

p ∈ s leads to assign each p ∈ F the sum of all the δ′?kps of each s ⊆ F it belongs to:

∑
s⊆F
p∈s

δ′
?
kps·
∑
q∈s

e′′qr =
∑
s⊆F
p∈s
q∈s

δ′
?
kps·e′′qr =

∑
s⊆F
p,q∈s

δ′
?
kps·e′′qr =

∑
q∈F
s∈Sq

e′′qr ·
∑
p∈s

δ′
?
kps =

∑
q∈F

e′′qr ·
∑
s∈Sq
p∈s

δ′
?
kps

We can now construct the modified support graph G′ = (V ′, A′) for the PP:
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1. the node set V ′ = V ∪{∆′, N} includes a copy ∆′ of ∆ and a dummy arrival node N ;

2. the arc set A′ = A∪
⋃
i∈C
{(∆′, i)}∪

(
(∆,N)∪

⋃
p∈F
{(p,N)}

)
is enhanced with arcs from

∆′ to each client, and from each possible real arrival point to N ;

3. the weights on nodes are the following:

w?v =


−α?i − τi ·β?k (v ≡ i ∈ C)

−1
2 ·τp ·β

?
k + θ?kp −

∑
s∈Sp

∑
q∈s δ

′?
kqs (v ≡ p ∈ F )

−µ′′?k (v ≡ ∆)

4. the weights of the arcs ij ∈ A′ are:

w?ij =



d∆j − τ∆j ·β?k + 1
2 ·w

?
j − µ′

?
k (i ≡ ∆′)

dij − τij ·β?k + 1
2 ·(w

?
i + w?j ) (ij ∈ C × C)

dip − τip ·β?k + 1
2 ·w

?
i + w?p (i ∈ C, j ≡ p ∈ F )

di∆ − τi∆ ·β?k + 1
2 ·w

?
i + w?∆ (i ∈ C, j ≡ ∆)

0 (j ≡ N)

The PP is then solved as an ESPPRC on (V ′, A′) from ∆′ to N . For each possible

ending point v, the least reduced cost path from ∆′ to v is added to the RMP.

When the starting point is a facility g ∈ F , we have e′gr = 1 and (∀q ∈ F\{g}) e′qr =

e′∆r = 0, therefore:

ckr =
∑
ij∈A

bijr ·(dij − τij ·β?k)−
∑
i∈C

air ·(α?i + τi ·β?k + ϕ?kgi)− 1
2 ·τg ·β

?
k

−
∑
p∈F

e′′pr · 12 ·τp ·β
?
k − e′′∆r ·µ′′

?
k − θ?kg +

∑
p∈F

e′′pr ·θ?kp

−
∑
s⊆F :
g/∈s

∑
p∈s

((∑
q∈s

e′′qr
)
·δ′?kps

)
−
∑
s⊆F :
g∈s

∑
p∈s

((
e′′∆r +

∑
q /∈s

e′′qr
)
·δ′′?kps

)

= − (θ?kg + 1
2 ·τg ·β

?
k) +

∑
ij∈A

bijr ·(dij − τij ·β?k)−
∑
i∈C

air ·(α?i + τi ·β?k + ϕ?kgi)

− e′′∆r ·µ′′
?

k +
∑
p∈F

e′′pr ·(θ?kp − 1
2 ·τp ·β

?
k)

−
∑
s∈Sg

∑
p∈s

δ′
?
kps ·

(∑
q∈s

e′′qr
)
−
∑
s∈Sg

∑
p∈s

δ′′
?

kps ·
(
e′′∆r +

∑
q /∈s

e′′qr
)

(5.28)

The term −
∑

s∈Sg
∑

p∈s δ
′?
kps· (

∑
q∈s e

′′q
r ) can be rewritten according to what follows. If

one considers any s ∈ Sg, the term is equivalent to putting −
∑

p∈s δ
′?
kps on each element

q ∈ s, therefore a sum over Sg causes each q ∈ F\{g} to be charged of a term −
∑

p∈s δ
′?
kps
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for each s ∈ Sg : q ∈ s, i.e. ∀s ∈ Sg ∩ Sq.
In a similar way we can rewrite term −

∑
s∈Sg

∑
p∈s δ

′′?
kps· (e′′∆r +

∑
q /∈s e

′′q
r ): if one considers

any s ∈ Sg, the term is equivalent to putting −
∑

p∈s δ
′′?
kps on both ∆ and each q /∈ s,

therefore each q ∈ F\{g} is charged of a further term −
∑

p∈s δ
′′?
kps for each s ∈ Sg : q /∈ s,

i.e. ∀s ∈ Sg ∩ Sq. As a consequence we reformulate (5.28) as:

ckr = − (θ?kg + 1
2 ·τg ·β

?
k) +

∑
ij∈A

bijr ·(dij − τij ·β?k)−
∑
i∈C

air ·(α?i + τi ·β?k + ϕ?kgi)

− e′′∆r ·(µ′′
?

k +
∑
s∈Sg

∑
p∈s

δ′′
?

kps) + e′′gr ·(θ?kg − 1
2 ·τg ·β

?
k)

+
∑

q∈F\{g}

e′′qr ·
(
θ?kq − 1

2 ·τq ·β
?
k −

∑
s∈Sg∩Sq

∑
p∈s

δ′
?
kps −

∑
s∈Sg∩Sq

∑
p∈s

δ′′
?

kps

) (5.29)

The modified support graph G′ = (V ′, A′) to solve the PP is built as follows:

1. the node set V ′ = V ∪ {g′, N} includes a copy g′ of g and the dummy arrival node N ;

2. the arc set A′ = A∪
⋃
i∈C
{(g′, i)}∪

(
(∆,N)∪

⋃
p∈F
{(p,N)}

)
is enhanced with arcs from

g′ to each client and from each possible real arrival point to N ;

3. the weights on nodes are the following:

w?v =



−α?i − τi ·β?k − ϕ?kgi (v ≡ i ∈ C)

θ?kq − 1
2 ·τq ·β

?
k −
∑
s∈Sg
s∈Sq

∑
p∈s

δ′
?
kps −

∑
s∈Sg
s∈Sq

∑
p∈s

δ′′
?

kps (v ≡ q ∈ F\{g})

θ?kg − 1
2 ·τg ·β

?
k (v ≡ g)

−µ′′?k −
∑
s∈Sg

∑
p∈s

δ′′
?

kps (v ≡ ∆)

4. the weights of the arcs ij ∈ A′ are:

w?ij =



dgj − τgj ·β?k + 1
2 ·w

?
j − (θ?kg + 1

2 ·τg ·β
?
k) (i ≡ g′)

dij − τij ·β?k + 1
2 ·(w

?
i + w?j ) (ij ∈ C × C)

dip − τip ·β?k + 1
2 ·w

?
i + w?p (i ∈ C, j ≡ p ∈ F )

di∆ − τi∆ ·β?k + 1
2 ·w

?
i + w?∆ (i ∈ C, j ≡ ∆)

0 (j ≡ N)

This time, the PP is then solved as an ESPPRC on (V ′, A′) from g′ to N . Again, we

add to the RMP the least reduced cost path from g′ to each possible ending point.
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5.1.2.3 Solving the Pricing Problem as an ESPPRC

The ESPPRC on an oriented graph G = (V,A) consists in finding the shortest path from

a source node to a destination node while taking into account the consumption of a set

{1,...,T} of resources. With each resource t ∈ {1,...,T} are associated both a consumption

ctij for each arc ij and an interval [ati, b
t
i] of allowed values for the consumption level at

each node vi. Triangle inequality is assumed to hold for consumption terms ctij , as it

holds in the case of MRLRP (see 2.3). A path from the source node to the destination

node is feasible if the level of each resource fits the corresponding interval for each of the

visited nodes, or can be adapted to it. The time resource is the easiest to understand,

the interval and the consumption level being, respectively, a time window and an arrival

moment, which can be delayed up to the beginning of the window if needed.

In spite of being a generalization of the well-known Shortest Path Problem (SPP),

which is known to be solvable in polynomial time, the ESPPRC is NP-hard in the

strong sense (see [Dror, 1994]). The best-known (and probably the first to have ever

appeared) algorithm to solve ESPPRC on instances with positive or negative arc costs

–as is our case– is the one presented in [Feillet et al., 2004]. This algorithm extends

the one proposed in [Desrochers, 1988], which in turn is a generalization of the well-

known Bellman-Ford algorithm to solve the SPP on graphs with negative arc weights.

It implicitly enumerates all the possible paths from the source to each node vi and

associates a state, most often represented by means of a label l, with each of such paths,

in order to keep track of:

I the consumption vector Dl = (D1
l ,...,D

t
l ), with Dt

l the consumption of resource t on l;

I the cost C(Dl) of the path;

I the vector Ul = (U1
l ,...,U

n
l ) and the number ψl ∈ {1,...,n} of unreachable nodes,

n ≡ |V |. A node j is said to be unreachable for a label l associated with a path from

the source node to a node i when either it has already been visited by the path, or

it cannot be the next node in the path because at least one of the resource intervals

would be violated on j, i.e. (∃t ∈ {1,...,T}) Dt
l + ctij > btj . U

j
l = 1 denotes that j is

unreachable for label l.

The principle of the algorithm is simple and follows the general guidelines of Dynamic

Programming (DP): an empty label is put on source node p, corresponding to the empty

path. This label is then extended to each possible successor node i, generating a new

label associated with the new partial path from p to i, inserting it in a set Li of labels

of node i and marking it as nonextended. At each step, a nonextended label l is picked

from one of the nodes and extended towards each node which is reachable according

to the vector Ul. The new label is obtained by the extended one l by updating in a
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straightforward way its state variables Dl, C, Ul and ψl. As to l, it is kept in its list

and marked as extended. The algorithm terminates when there is no label left to extend

(i.e. (∀i) {l ∈ Li : l nonextended} = ∅), yielding all Pareto-optimal paths. The way

set Li is organized and the criteria to select the next label l to extend can deeply affect

the overall efficiency of the algorithm and must therefore be carefully chosen in order to

enhance it.

The aim of the unreachable nodes vector U is twofold: on one hand it ensures to generate

only elementary paths, while on the other hand it helps preventing combinatorial explo-

sion. To achieve this second purpose, the introduction of a dominance rule is needed.

Given two labels l, l′ of a same node i, l is said to dominate l′ if:

1. (∀t ∈ {1,...,T}) Dt
l ≤ Dt

l′ ;

2.C(Dl) ≤ C(Dl′);

3. (∀j ∈ V ) U jl ≤ U
j
l′ .

4. l 6= l′.

Condition 4 means that not only all of the state variables of l must be less or equal than

those of l′ (conditions 1-3), but at least one must be strictly less. Note that condition

3 implies ψl =
∑

i∈V U
i
l ≤ ψl′ =

∑
i∈V U

i
l′ : this explains the use of redundant label

variable ψl, which can help speed up the check of this dominance condition.

Dominated labels are discarded, since only nondominated partial paths can lead to

optimal solutions, as the authors of [Feillet et al., 2004] have shown.

The above dominance check can be relaxed by simplifying or removing some of the

conditions 1-3, for instance:

Iby removing condition 3, or

Iby replacing condition 3 with ψl ≤ ψl′

in order to further speed up the DP algorithm. However, the minor accuracy in the check

leads to dismiss labels which would not be dominated by a full check, i.e. to possibly

have subpaths of optimal paths discarded. Hence, relaxing the dominance rule results

in a heuristic DP-based algorithm for ESPPRC. In a Column Generation framework

where the PP is an ESPPRC, using such a relaxed dominance rule can prevent some

negative reduced cost variable to be found, ultimately leading to nonoptimal solutions

of the (R)MP.
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5.1.2.4 Branching Strategy

In order to completely define an exact algorithm, it is necessary to adapt the branching

policy to the CG framework, as the branching decisions cannot concern route variables.

To understand this, let r be a previously generated route s.t. 0 < xkr < 1 for a given k

in the fractional solution of a node n of the Branch&Bound tree. The condition xkr = 1

will cause no problem, whereas the imposition of xkr = 0 in a child node of n, say n′,

is likely to be uneffective: indeed, the reduced cost ckr of variable xkr will be negative in

the subproblem associated with n′ (since it was in the solution of n), and route r may

be generated and added again to the RMP by the corresponding PP. This point is a

sensitive issue. A common choice to deal with it consists in branching on edge variables:

in the case e.g. of a (fractional) solution of MBP , we transform it into an equivalent

solution of a corresponding two-index formulation, i.e. with edge variables xkij , and we

branch on these latter. Given the vector x? of the route variables in a solution ofMBP ,

the transformation is:

xkij
?

=
∑
r∈R

bijr ·xkr
?

An edge variable is suitable to be branched on if it has a fractional value, i.e. if 0 <

xkij
?
< 1. Section A.4.3 proposes an example of a plain branching rule on edge variables.

For what concerns the branching strategy in the MBP -based Branch&Price algorithm,

the following rules have been applied. For each branching decision, an explanation is

given of how the MILP and the PPs associated with the descendents of the current

Branch&Bound node are affected. The order in which the branching rules are explained

reproduces the priority among them:

1.branching on the number of used vehicles:

similarly to what is done in [Muter et al., 2014] when the LP relaxation of the node has

been solved to optimality with CG, we compute the term
∑

k∈K x̃
k: if it is fractional,

we impose:

I to use no more than nK = b
∑

k∈K x̃
kc vehicles in the left child. This is obtained by

setting x̃|K|−nK−1 = 0 and produces (∀k < |K| − nK − 1) x̃k = 0 due to (5.13);

I to use at least nK + 1 vehicles in the right child, by setting x̃|K|−nK−1 = 1, which

also produces (∀k > |K| − nK − 1) x̃k = 1.

Moreover, we force the right child to be solved first.

Another attempt that has been made was to have nK =
∑

k∈Kdx̃ke and to impose at

most nK − 1 vehicles used in the left child, and at least nK in the right child, but this

choice has not proved effective.

Constraints (5.16), (5.17), (5.15), (5.9) and (5.10) forbid to use any route variable
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associated with a vehicle k, or impose to use the vehicle, depending on whether x̃k = 0

or x̃k = 1. However, in the former case we must also prevent the Pricing phase to

generate routes of the vehicle in question. Since a different PP is run for each vehicle

and starting point (cf 5.1.2.2), this is done by simply not running the PPs related to

the vehicles we do not want to use;

2.branching on activity variables:

when branching on x̃k variables does not take place, we branch on y variables. To

choose the variable to branch on, we consider the least-index vehicle that has at least

one fractional activity variable, and we take the most fractional among those of such

vehicle.

Constraints (5.9) and (5.10) together prevent a vehicle k to use routes that end or

start at facility p ∈ F . However, if the branching decision is ykp = 0, in order to

prevent the Pricing module to generate such routes we:

Ido not run the PP related to k and with p as starting point;

I remove p as ending point from the PP graph in the PPs related to k and with a

starting point different from p.

On the other hand, the branching decision ykp = 1 does not affect the PPs, but requires

to change to 1 the left-hand side of the constraints (5.18) and (5.19) related to k and

p. Once this has been done, the dual variables associated with the same constraints

will lead the PPs to yield routes for vehicle k that visit facility p.

3.branching on arc variables: this branching rules requires to transform back a solution

of the LP relaxation ofMBP , i.e. with routes variables xkr , into an equivalent solution

for the three-index MILP modelMBC (cf 4.1.2), and then sum over the vehicles. Given

the vector x of the route variables in a solution of MBP , the transformation is:

xij =
∑
k∈K

∑
r∈R

bijr ·xkr

Once the solution x has been transformed this way, we select the customer node i

with the highest number of outgoing fractional arcs. Let ni be this number. In the

left child we impose the value 0 to:

I the aggregate variables xij associated with the dni2 e arcs of the set {ij ∈ δ−(i) :

xij > 0} with lowest j indices, and to

I those associated with the b |δ
−(i)|−ni

2 c arcs of the set {ij ∈ δ−(i) : xij = 0} with lowest

j indices,

whereas in the right child we impose the value 0 to the xij associated with all the

other arcs of δ−(i).

When an arc ij has its xij set to 0, then in every node of the offspring of the current
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Branch&Bound node we must:

I forbid every previously generated route, of no matter what vehicle, that traverses ij;

I remove the arc ij from the ESPPRC graph when running any of the PPs.

Section A.4.3 provides further details on how the ESPPRC graph should be modified

in order to take the branching decisions on xij variables into account.

5.1.3 A more in-depth view of the Dynamic Programming Algorithm

to solve the Pricing Problem

As said, the PP is solved as an ESPPRC by means of a Dynamic Programming algorithm.

An important design decision is how the label set Li of node i should be organized to

enhance the overall efficiency of the algorithm. In our case, Li is a list of labels sorted

by increasing reduced cost firstly, then by increasing load. This helps when the label l

associated with a new path from the source (be it the copy ∆′ of the depot or of one of

the facilities) to client i is created. A simple iteration through the whole list will allow

not only to determine whether l is dominated by other labels (either already extended

or not) of i, but, if this is not the case, to discard all the labels previously stored in

Li and dominated by l itself. The dominance check algorithm is shown in Figure 5.1.

An important parameter of function isLabelDominated is the dominance level, which

can be weak or strong. In the latter case, a full dominance check is performed, whereas

in the former case the condition 3 of the dominance check is replaced by the condition

on the ψl variables only, thus leading to a heuristic Pricing algorithm (cf 5.1.2.3). This

makes the resulting Column Generation algorithm more flexible: in the first iterations,

the PP is called with the weak dominance level, which allows a faster solving of the

subproblem; when no more negative reduced cost columns can be found, we switch to

the strong level to finish the computation of the LP relaxation of the current Branch&

Bound node.

Finally, a best reduced cost first rule is used to determine the next label to be extended:

the task is simplified by the aforementioned ordering of Li lists.

5.1.3.1 Completion bound

In order to further restrain the combinatorial explosion, a completion bound method

is used. When a new label is created, a lower bound on the cost to arrive to any of

the possible ending points is added to its reduced cost: if the result is nonnegative, the

label is discarded. The lower bound is given by a so-called q-path and is computed in a

preprocessing phase by means of Dynamic Programming. q-paths, which are based on a

state-space relaxation, have been widely used in the literature to compute dual bounds
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isLabelDominated(L, ?l, domLev)

argtype L: labelList; ?l: label; domLev: char;

argcond domLev ∈ {'w', 's'};
returns bool;

declare l: label;

1 l ← firstLabel(L)

2 while(l 6= null && l.rcost< ?l.rcost)

3 if(l.load≤ ?l.load && uSetDom(l.U, ?l.U, domLev) = 1) return true

4 l ← nextLabel(L, l)

5 while(l 6= null && l.rcost = ?l.rcost && l.load< ?l.load)

6 if(uSetDom(l.U, ?l.U, domLev) = 1) return true

7 l ← nextLabel(L, l)

8 while(l 6= null && l.rcost = ?l.rcost && l.load = ?l.load)

9 if(uSetDom(l.U, ?l.U, domLev) = 1) return true

10 if(uSetDom(l.U, ?l.U, domLev) = 2) l ← discardAndNextLabel(L, l)
11 else l ← nextLabel(L, l)

12 if(l= null) insertLast(L, ?l) else insertBefore(L, ?l, l)

13 while(l 6= null)

14 if(l.load≥ ?l.load && uSetDom(l.U, ?l.U, domLev) = 2)

15 l ← discardAndNextLabel(L, l)
16 else

17 l ← nextLabel(L, l)

18 return false

uSetDom(U1, U2, domLev)

argtype U1, U2: unreachableNodeVector; domLev: char;

argcond domLev ∈ {'w', 's'};
returns int;

1 if(domLev = 'w')
2 if(|U1| ≤ |U2|) return 1 else return 2

3 if(domLev = 's')
4 if(U1⊆U2) return 1 elif(U1⊃U2) return 2 else return 3

Figure 5.1: Dominance check on a newly generated label during the DP algorithm.

in the context of exact algorithms for the CVRP, like for instance in [Christofides et al.,

1981], which offers a detailed discussion on the subject.

A q-path for the CVRP is a least cost path (∆, i0,...,ik, i), not necessarily simple, from

the central depot to a customer i, with a given total load q(w) ∈ W = {q ≤ Q : (∃c ⊆
C)

∑
i∈c qi = q}. W is the ordered set of all possible load values for a vehicle, and

w ∈ {1,...,|W |}. Note that if customer demands are integer, then |W | ≤ Q and we

have no more than Q |C| q-paths to keep track of. Another possible implementation of

q-paths defines W = {1,...,n}, with n the maximum number of customers that can be

visited in the same route, and q(w) ≡ w the number of clients visited so far in the route.

We used the latter implementation, but we will refer to the former to explain how do
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q-paths work.

Let fw(i) denote the least cost q-path with load q(w) from the depot to customer i. Let

also dw(i) and ew(i) ∈ C\{i} respectively be the cost of fw(i) and the predecessor of i

along it. Moreover, let w′ ∈W,w′ < w the index s.t. q(w′) = q(w)− qi. We can write:

ew(i) = arg min
j∈C\{i}

(
dw′(j) + dji

)
dw(i)= dw′(ew(i)) + dew(i),i (5.32)

Equations (5.32), when applied recursively, would allow to define a q-path fw(i) for

each customer i and each (feasible) load value q(w), w ∈ W , even though the resulting

paths would presumably be not simple. However, the above expression of ew(i) can be

rewritten as in (5.33) in order to at least avoid q-paths with two-loops, i.e. with one

customer visited twice and only one other customer visited in between:

ew(i) = arg min
j∈C\{i}
ew′ (j)6=i

(dw′(j) + dji) (5.33)

On the other hand, the determination of fw(i) for each i ∈ C and w ∈ W becomes now

more subtle, as we are forced to keep track of both the best q-path that delivers q(w)

at i, and the best one among those with a different predecessor. Let us denote by φw(i)

such q-path, and by δw(i) and εw(i) the cost and the second-to-last customer of φw(i).

Moreover, let us define function gw(j, i) as:

gw(j, i) =

{
dw′(j) + dji , if ew′(j) 6= i

δw′(j) + dji , if ew′(j) = i

We can now give the recursive definition of functions dw(i), ew(i), δw(i) and εw(i):

dw(i) = min
j∈C\{i}

gw(j, i) ew(i)= arg min
j∈C\{i}

gw(j, i) (5.35)

δw(i) = min
j∈C\{i}
j 6=ew(i)

gw(j, i) εw(i)= arg min
j∈C\{i}
j 6=ew(i)

gw(j, i) (5.36)

The above functions can be computed recursively by initializing dw(i) = d∆i, ew(i) = ∆

for w ∈W : q(w) = qi; dw(i) = +∞ for any other w ∈W ; (∀w ∈W ) δw(i) = +∞.

The authors of [Christofides et al., 1981] make use of q-paths to build through-q-routes.

A through-q-route %w(i) is the least cost route with no two-loops that starts and comes

back at ∆, has a total load q(w) and visits i. Route %w(i) can be obtained by:

I taking all the couples w′, w′′ ∈W s.t q(w′) + q(w′′) = q(w) + qi;

I for each such couple, combining

Ifw′(i) and fw′′(i), if ew′(i) 6= ew′′(i), or
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Ifw′(i) and φw′′(i), if dw′(i) + δw′′(i) < dw′′(i) + δw′(i), or

Iφw′(i) and fw′′(i), otherwise

and choosing the overall least cost combination.

Through-q-routes suggest a way to compute a completion bound. Suppose we have

computed in a preprocessing phase the q-paths associated with each customer i and each

possible (feasible) load q(w), w ∈ W . Each such q-path will have a best starting point,

which is then implicit. Given a label l associated with a partial path, let i be its last

visited customer, and d and q its cost and load. A lower bound to the cost to complete

the path associated with l is given by the least cost q-path fw(i) s.t. q(w) ≤ Q− q+ qi.

Let:

w′ = arg min
w∈W :

q(w)≤Q−q+qi

dw(i)

if d + dw′(i) ≥ 0, label l can be discarded, as it will never result in a negative reduced

cost path.

The q-paths completion bound method is used only when the Pricing algorithm is in-

voked with a strong dominance level (see 5.1.3).

5.1.3.2 ng-paths

Another path relaxation which has been used to compute lower bounds in exact algo-

rithms for several VRPs is represented by ng-paths, which generalize q-paths in that

their definition, as we will see, allows to forbid n-loops, with n ≥ 2. They have been

introduced in [Baldacci et al., 2011a] in the context of an exact method to solve both

the CVRP and the VRP with Time Windows (VRPTW).

An ng-path is defined recursively as follows. Let us define a neighborhood Ni ⊆ C for

each customer i ∈ C. Moreover, given a path % starting from ∆ and not necessarily

simple, let:

I (%, 1),...,(%, σ(%)) index the customers it visits, i.e. % =
(
∆, i(%,1),...,i(%,σ(%)−1), i(%,σ(%))

)
;

IV (%) ⊆ C be the set of such customers: we have |V (%)|≤σ(%) as % may be not simple;

Iπ(%) =
(
∆, i(%,1),...,i(%,σ(%)−1)

)
denote the subpath of % up to its second-to-last cus-

tomer.

Besides, let Π(%) be the set of all the customers in % (with the exception of the last one,

i(%,σ(%))) that appear in the neighborhood of all the following customers:

Π(%) = {i(%,r) ∈ V (π(%)) : i(%,r) ∈
⋂σ(%)
s=r+1Ni(%,s)} (5.37)
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Note that Π(%) can contain only nodes in % – more precisely, in π(%).

A path % is said to be a ng-path if:

Iπ(%) is a ng-path and

I i(%,σ(%)) /∈ Π(π(%)).

Some important observations. It should be clear from the above definition that given

a ng-path %, Π(%) is the set of nodes that would make % lose its property when added

to it as next visited customer. It is therefore, in a sense, a set of forbidden nodes. An

even more important thing is the fact that since Π(%) ⊂ V (%), an elementary path is a

ng-path by definition.

It is easy from (5.37) to infer the expression of how to update Π(%) as long as % grows:

Π(%) =
(
Π(π(%)) ∪ {i(%,σ(%)−1)}

)
∩Ni(%,σ(%))

(5.38)

A small example can help understand how do ng-paths work. Let % =
(
∆, 1, 2, 3, 4, 1

)
:

we have V (%) = {1, 2, 3, 4}, σ(%) = 5 and π(%) =
(
∆, 1, 2, 3, 4

)
. Suppose that N1 =

{3, 4}, N2 = {1, 5}, N3 = {1, 4} and N4 = {2, 3}. We will have:

1 /∈ N2∩N3∩N4∩N1, 2 /∈ N3∩N4∩N1, 3 ∈ N4∩N1, 4 ∈ N1 ⇒ Π(π(%)) = {3, 4}

and since π(%) is a ng-path due to its elementariness, and 1 /∈ Π(π(%)), % is a ng-path.

The example also shows that although a simple path is always an ng-path, the opposite

is generally not true, unless (∀i ∈ C) Ni = C. However, it is easy to see that by

suitably choosing the node neighborhoods Ni, ng-paths offer a very good approximation

of elementariness. This can be accomplished even with very simple neighborhoods, like

e.g. defining Ni ≡ Nn
i , with Nn

i the set of the n nearest nodes to i, and n a convenient

compromise value.

We have used ng-paths precisely to exploit this feature. In the DP algorithm to solve the

ESPPRC, the state of a path % associated with a label l is given by the load q, the cost

d, and the full vector of unreachable nodes: this means that for each couple (q, d) we can

theoretically have O(2|C|) labels on a node. By replacing Ul with Π(%) ⊆ Ni(%,σ(%))
, the

same DP algorithm generates ng-paths, hence yielding Pareto-optimal ng-paths. The

combinatorics is significantly reduced, as for each couple (q, d) we now have no more than

2
|Ni(%,σ(%))

|
labels. Of course, the algorithm is prone to generate nonelementary ng-paths

and is therefore no more valid for the ESPPRC, but a fine tuning of the neighborhood

sets during its execution can hopefully make it converge to a set of optimal elementary

paths. Such tuning can be made with a little effort. Let us initialize the neighborhood
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sets as Ni = Nn
i , with n s.t. 2n is a small value, and suppose that a path with a t-loop:

% =
(
∆, i(%,1),...,i(%,s−1), i(%,s), i(%,s+1),...,i(%,s+t) ≡ i(%,s), i(%,s+t+1),...,i(%,σ(%))

)
has been generated and inserted in the set P of optimal ng-paths by the DP algorithm.

Once the loop
(
i(%,s), i(%,s+1),...,i(%,s+t−1), i(%,s)

)
has been detected, two possible options

are:

1)add i(%,s) to Ni(%,s+1)
,...,Ni(%,s+t−1)

, do the same for every loop in every nonelementary

path in P and launch again the DP algorithm;

2)end the PP and:

a) return the elementary paths in P ;

b)correct the nonelementary paths of P so as to make them simple, and return those

which still have a negative reduced cost. The correction can be done e.g. by shortcut-

ting loops: %→ %′ =
(
∆, i(%,1),...,i(%,s−1), i(%,s+1),...,i(%,s+t) ≡ i(%,s), i(%,s+t+1),...,i(%,σ(%))

)
.

We have chosen option 1): experimental sessions have shown that even when nonele-

mentary paths have been found, a few more iterations have been sufficient to converge

to a set of only elementary paths.

One could wonder whether this strategy leads to a heuristic PP, which actually is not

the case. Indeed, by using the neighborhood sets and ng-paths instead of the unreach-

able customers vector we are not relaxing the dominance check: we are performing a

full check on the paths of a state-space relaxation. Hence, the resulting paths in P are

not suboptimal: they are optimal w.r.t. a relaxed problem. Therefore, when the set P

is made of elementary paths only (possibly after correcting neighborhood and rerunning

the algorithm), we have the optimal solution of the ESPPRC.

5.1.4 Preliminary Computational Results

A session of preliminary tests has been conducted to assess the effectiveness of the

presented Branch&Price algorithm. The tests consist of a performance comparison

with the Branch&Cut algorithm based on model MBC
RA (see section 4.2) on a sample of

small-sized TZK and CCL instances. The two algorithms are requested to perform a

complete computation of the root node, i.e. to terminate just before branching on it.

The results are shown in table 5.1.

As one can see, the gap achieved by the Branch&Price is generally much worse of that

of the Branch&Cut, except for a few cases where it is comparable or slightly better.

Further, the time is in most of the cases much higher. For most of the instances with 72

or 75 customers (see tables 4.2 and 4.4 for the detail of instance features) it is impossible
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instance
MBP MBC

RA

tr %r tr %r

50c3d2v 182 4.87 9 1.65
50c3d4v 655 17.83 9 10.72
50c3d6v 386 39.40 14 11.32
50c5d2v 138 5.10 10 1.81
50c5d4v 146 16.39 12 7.61
50c5d6v 216 31.86 15 10.41
50c7d2v 36 3.48 15 1.92
50c7d4v 66 4.31 11 2.38
50c7d6v 111 24.25 15 11.08

75c3d2v +∞ 54 1.62
75c3d4v +∞ 50 2.84
75c3d6v +∞ 178 7.78
75c5d2v 866 1.45 64 3.39
75c5d4v +∞ 40 6.01
75c5d6v 708 13.10 58 8.13
75c7d2v +∞ 57 1.73
75c7d4v +∞ 36 4.88
75c7d6v +∞ 34 7.14

a1 55 7.07 41 7.59
d1 89 6.12 39 7.62
a2 1144 11.33 6 6.68

g1 916 4.83 136 4.76
j1 +∞ 57 5.40
g2 +∞ 30 5.26

Table 5.1: Comparison of the behavior of the MBP -based Branch&Price algorithm
to that of the Branch&Cut algorithm based on model MBC

RA . Both are requested to
perform a complete computation of the root node on a sample of small-sized instances,
under a 1200s time limit. The computation time (s) and the best achieved gap are

reported, unless the time limit is exceeded without finding a lower bound.

to even find a lower bound within the time limit of 1200s, which on the other hand is

always largely sufficient for the Branch&Cut algorithm to accomplish the task.

5.1.5 Issues of Model MBP

However, when looking at the Branch&Price results only, one can see a clear depen-

dence on the number nK of vehicles. This can partly explain the weakness of the lower

bound yielded by the continuous relaxation of the model MBP (and therefore the poor

performances of the Branch&Price algorithm) since this model still has a vehicle index

k – which is not the case for the model MBC
RA . By the way, this also implicitly suggests

that a removal of such vehicle index may help to improve the algorithm efficiency.

A further investigation allows to detect another important weakness of the modelMBP .

Suppose to have a small instance with n = 3 and f = 1 like the one shown in figure 5.2.

Further, suppose cost and time matrices to be symmetric, and Q ≥
∑

i∈C qi. The two

leftmost subfigures represents two solutions. In both of them, the routes are performed

by only one vehicle – otherwise they would not respect the connection requirements.
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Figure 5.2: Study of a small instance with n = 3 and f = 1. From the leftmost to
the rightmost subfigure we have: the integer optimal solution; a fractional solution that
uses three routes, each represented by a color; a difference graph, useful to calculate the
cost difference between the two solutions; finally, the same fractional solution expressed
in terms of base and replenishment arcs (cf 4.2.1). The fractional solution turns out
to be more convenient and feasible w.r.t. the linear relaxation of model MBP , whereas

the connectivity valid inequality of model MBC
RA upon set S = {0, 1, 2} would cut it.

Therefore we can suppose without loss of generality that nK = 1. This will also allow us

to show that the issue we are talking about is not vehicle-related. Let k = 0 denote the

only vehicle. The first subfigure represents the minimum cost integer solution of model

MBP , which we refer to as x, that makes use of only one route. The second-from-left

image represents a fractional solution, x?, which uses three routes, each with x0
r
?

= 0.5.

The fractional solution x? is feasible w.r.t. model MBP :

Ieach client is visited by a set of routes whose route variables sum up to 1 (constraints

(5.8));

I the collection Sp has only one element, i.e. s = {p}. For s we have
∑

r∈R b′sr x
0
r
?

= 0.5,

since there is only one route s.t. b′sr = 1 (in the example, the blue one). Since

|Sp| = |K| = |F | = 1, the family (5.18) has only one constraint, that on s, i.e.∑
r∈R b′sr x

0
r
? ≥ y0

p
?
, which holds: this is because the lower bound imposed on y0

p
?

by constraints (5.9) is exactly 0.5, as no route leaving p has x0
r
?
> 0.5. With a

similar reasoning on the only constraint (5.19), one concludes that x? is compliant to

connection requirements. This is a crucial point;

Ias to constraints (5.11) and (5.12), we can suppose without loss of generality that they

are satisfied by x?;

Ifinally, it is straightforward to see that x? also respects the other constraints, notably

(5.10) and (5.15)–(5.17).

Moreover, the third subfigure shows that the saving achieved by x? w.r.t. x is:

∑
r∈R

cr(x
0
r − x0

r
?
) = 0.5 (d∆0 + d12 + d2∆ − d0p − dp1 − d2p − dp2)
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hence, by suitably locating the customers, it is easy to make it greater than 0 and thus

x? more convenient that x. Therefore, when relaxing the integrality constraints, the

solving of modelMBP may yield a solution like x?, as it would be fully compliant to its

constraints.

On the other hand, a solution like x? would be cut by the separation procedure of

the MBC
RA -based Branch&Cut, and precisely by the separation of the connectivity valid

inequalities (4.40). This is shown by the rightmost subfigure, from which it is clear that

the inequality (4.40) on set S = {0, 1, 2} is violated:

x(A0(S)) + w(AP (S)) = 2.5 > 2 = |S| − 1

This is a major issue in the Branch&Price algorithm proposed so far. Connectivity

constraints (5.18) and (5.19), in spite of being sufficient for the integer problem, are

not as strong as constraints (4.40) when integrality is relaxed. Note that similar con-

siderations apply for the Branch&Cut algorithm: as it has been shown in table 4.6

(section 4.2.5), although relations (4.40) are not problem-defining (i.e. their insertion in

the modelMBC
RA is not necessary), removing them from the separation procedure Node-

Separation (section 4.2.4.4) considerably worsens the performances of the Branch&

Cut algorithm, which can become as bad as the performances of the Branch&Price

algorithm.

5.2 A new Branch&Price Algorithm for the VRPIRF

In this section we present another Branch&Price algorithm that relies on a new MILP

formulation for VRPIRF. The aim is to tackle symmetry issues by dropping out the

vehicle index, as it has been done to upgrade MBC to MBC
RA . The new formulation,

MBP
RA , will merge elements of theMBP model with some of theMBC

RA (see section 4.2.3),

notably replenishment arcs and arrival times that have been introduced precisely for

this purpose. The insertion in the model of these tools will hopefully help reducing the

connection issues shown in section 5.1.5. The new formulation is explained in section

5.2.1, while section 5.2.2 introduces the algorithm.

5.2.1 A new Set-Partitioning formulation without the vehicle index

A solution to overcome vehicle-related symmetry issues consists in using arrival times

and replenishment arcs as it has been done in the compact formulation MBC
RA . Arrival

times (cf 4.2.2) enable to measure the consumption of the time resource along a rotation:

the association between a vehicle and the routes it performs to compute its total service
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time can be disregarded, and the vehicle index k removed. Further, arrival times assure

the connection of a solution as a side-effect. However, in order to do so, a rotation must

be represented as a sequence of arcs in which each intermediate node must have indegree

and outdegree equal to 1. This need is made evident by figure 5.3.

(a)

(b)

Figure 5.3: Dropping the vehicle index is likely to considerably reduce the drawbacks
of model MBP . However, this imposes to change the way rotations are represented, in
order to be able to distinguish them and overcome the (possibly) multiple indegree and

outdegree of the facility nodes.

This representation change is precisely what replenishment arcs (4.2.1) allow to do.

The introduction of these two tools requires the support graph of model MBP
RA to merge

the support graph of model MBP with that of model MBC
RA :

I the node set is V = C ∪ {∆} ∪ F , i.e. the same of MBC (cf 4.1.1) and MBP ;
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I the arc set A = A′0 ∪AP , with A′0 = V × C ∪ C × V , incorporates both the arc set of

MBP and the replenishment arcs seen inMBC
RA . For ease of language, and to explicitly

refer to the features of model MBC
RA , both the name base arcs and the symbol A0 will

denote the arcs in {ij | i, j ∈ C ∪ {∆} : i 6= j} only. We will explain this shortly.

Moreover, three sets of variables must be added to represent the usage of base or replen-

ishment arcs and the measure of arrival times. Lastly, new constraints to link arc and

route variables are required.

5.2.1.1 Decision Variables

The overall set of decision variables of model MBP
RA is composed by:

Ibinary route variables xr, r ∈ R, xr = 1⇔ route r is in solution;

Ibinary activity variables yp, p ∈ F , yp = 1⇔ at least one recharge occurs at p ∈ F ;

Ibinary base arc variables xij , ij∈A0,xij =1⇔ node j follows node i in the same route;

Ibinary replenishment arc variables wij , ij ∈ AP , wij = 1 ⇔ a replenishment (at the

most convenient facility) takes place in between customers i and j;

I real nonnegative arrival time variables zij , i ∈ V , j ∈ V \{i}, the arrival time at node

j if its predecessor is i (i.e. if xij + wij = 1)

As one can see, no arc variable is explicitly associated with arcs in A′0\A0 = C×F∪F×C,

i.e. with arcs connecting customer nodes and facility nodes. Of course, they are in the

graph and are necessary to form a route that has a recharge either at the beginning or

at the end; moreover, they are needed when computing the cost cr =
∑

ij∈A′0
bijr ·dij of

a route, and essential in the graph of the PP. Nevertheless, to use the symbol A0 and

the phrase base arcs in the same sense of section 4.2, they are not a part of set A0. The

example of figure 5.4 depicts the different components of A.

5.2.1.2 The MILP Formulation

The modelMBP
RA is given in the following. Once again, dual variables have been written

alongside the constraint concerning route variables xr as they will be useful later to

determine their reduced costs.

(MBP
RA)

min
∑
r∈R

crxr (5.39)
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s.t.
∑
r∈R

air e
′p
r xr ≤ yp ∀p ∈ F, i ∈ C ϕpi (5.40)

∑
r∈R

(e′pr − e′′pr ) xr = 0 ∀p ∈ F θp (5.41)

∑
r∈R

(e′∆r − e′′∆r ) xr = 0 θ∆ (5.42)

∑
r∈R

e′∆r xr ≤ nK ξ (5.43)

∑
r∈R

bijr xr = xij ∀ij ∈ A0 ηij (5.44)

∑
ji∈A0

xji +
∑
ji∈AP

wji =
∑
ij∈A0

xij +
∑
ij∈AP

wij ∀i ∈ C (5.45)

∑
ji∈A0

xji +
∑
ji∈AP

wji = 1 ∀i ∈ C (5.46)

z∆i = t∆ix∆i ∀i ∈ C (5.47)

(t∆i + tij)xij + (t∆i + uij)wij ≤ zij ∀i ∈ C, j ∈ C\{i} (5.48)

zij ≤ (T − tj∆)(xij + wij) ∀i ∈ C, j ∈ C\{i} (5.49)

(t∆i + ti∆)xi∆ ≤ zi∆ ∀i ∈ C (5.50)

zi∆ ≤ Txi∆ ∀i ∈ C (5.51)∑
j∈V
j 6=i

zij =
∑
j∈V
j 6=i

zji +
∑
j∈V
j 6=i

tijxij +
∑
j∈C
j 6=i

uijwij ∀i ∈ C (5.52)

∑
r∈R

b′sr xr ≥ yp ∀s ⊆ F, p ∈ s δ′ps (5.53)

∑
r∈R

b′′sr xr ≥ yp ∀s ⊆ F, p ∈ s δ′′ps (5.54)

xr ∈ {0, 1} ∀r ∈ R

yp ∈ {0, 1} ∀p ∈ F

xij ∈ {0, 1} ∀ij ∈ A0

wij ∈ {0, 1} ∀ij ∈ AP

zij ≥ 0 ∀i ∈ V, j ∈ V \{i}

Relations (5.41) impose a null balance of routes starting and arriving at facility p ∈ F .

The same does constraint (5.42) w.r.t. ∆, while (5.43) bounds the number of routes

leaving ∆ to the number of vehicles, nK .

Constraints (5.44) link route variables and base arcs, while (5.45) assert that each cus-

tomer node must have equal indegree and outdegree: combined with (5.46), this amounts

to have exactly one incoming arc and one outgoing arc, be they base or replenishment

arcs. The main purpose of (5.45) is certainly to concatenate routes of a rotation by

means of replenishment arcs, since when a route r is chosen, i.e. xr = 1, constraints

(5.44) set to 1 all the xij variables related to the base arcs of r. Therefore, the nodes

associated with the last customer before a replenishment, and the first one after, can
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only have their arc flow satisfied by replenishment arcs, as no base arc is associated with

facilities. This is shown by figure 5.4.

Figure 5.4: A possible way to concatenate the routes of figure 5.3 (b) by means of
replenishment arcs in order to obtain a solution equivalent to 5.3 (a). Base arcs are
drawn in black; replenishment arcs are thicker and drawn in orange; lastly, dashed grey

arcs represents the elements of A′0\A0 = C × F ∪ F × C.

Constraints (5.47)-(5.52) are identical to (4.33)-(4.38): they determine the arrival times

along a rotation in order to enforce the maximum shift length. As a recall, uij is the

extended travel time associated with the replenishment arc wij . Therefore, (5.47)–(5.52)

replace (5.11)–(5.12).

Finally, constraints (5.40) are activity detection constraints to support connectivity con-

straints (5.53) and (5.54). Therefore, the whole of (5.40), (5.53) and (5.54) have the

same meaning of (5.9), (5.18) and (5.19). However, the former are weaker than the lat-

ter, as variable yp detects whether there is some activity at facility p, regardless of the

involved vehicles. Analogously, terms
∑

r∈R b′sr xr and
∑

r∈R b′′sr xr account for all the

routes that either have the starting point in {∆}∪F\s, s ⊆ F and the endpoint in s, or

viceversa, no matter which rotation they belong to. Moreover, (5.40) and (5.53)–(5.54)

are unnecessary, as connection is assured by (5.47)-(5.52). We keep them in the model

as they can hopefully help to raise the lower bound.

One could wonder why the constraint related to the service of customers has been im-

posed by means of (5.46) instead of a relation of the form of (5.8). The reason is that

the second option would have raised issues in the representation of rotations in the case

of single-client routes, as shown in figure 5.5. Single-client routes are the only case of

route with no base arcs: without constraints (5.46), in such case relations (5.45) do not

allow a correct modelization of rotations. Consider for instance customer 2 in the figure.

If constraints (5.46) were not in the model, relation (5.45) for customer 2 would have
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Figure 5.5: If the service to a customer node was imposed by assuring that at least
one route visits it, rotations with single-client routes would look like this. Base arcs are
drawn in black, while grey dashed arcs are the elements of A′0\A0. Dashed, light orange
arcs represent the correct way to concatenate the routes by means of replenishment arcs,
whereas blue/orange ones are the replenishment arcs that would be improperly used

instead.

both sides null for cost reasons. At the same time, customer 1 would need an outgoing

replenishment arc, and customer 3 an incoming one: this would produce the modeliza-

tion error w13 = 1, and therefore the erroneous representation of the left subfigure.

An interesting last observation can be made by comparing models MBP
RA and MBC

RA .

Suppose to remove unnecessary constraints (5.40), (5.53) and (5.54) from MBP
RA , and

(4.27) from MBC
RA . It is easy to see that:

Iconstraints (5.45)–(5.46) are identical to (4.28)–(4.29);

I the same can be said for relations (5.47)–(5.52) w.r.t. (4.33)–(4.38);

Iconstraints (5.42)–(5.43), concerning the degree of ∆, are equivalent to (4.30)–(4.31).

As a consequence, model MBP
RA can be considered as a Dantzig-Wolfe Decomposition

(DWD) of model MBC
RA . DWD is a widely used technique to deal with Linear Prob-

lems (LPs) such as min{cTx | Ax ≥ b,x ≥ 0}. It consists of dividing the constraints

Ax ≥ b of the original LP in two subfamilies A′x ≥ b′ and A′′x ≥ b′′. This de-

fines two subproblems, commonly called master problem and subproblem, each associ-

ated with a polyhedron that includes all of its solutions. Let us consider the problem

min{cTx | A′x ≥ b′,x ≥ 0} as the master problem. As it is stated by the Minkowski-

Weyl theorem, each point enclosed by a polyhedron can be expressed as a convex com-

bination of its extreme points, plus a nonnegative combination of its extreme rays.

Therefore, by taking e.g. the polyhedron H ′′ = {cTx | A′′x ≥ b′′,x ≥ 0} defined by the

subproblem, one can reformulate the original LP as:

min{cTx | A′x ≥ b′,x =
∑
p∈P ′′

λpx
′′
p +

∑
r∈R′′

λrx
′′
r ,
∑
p∈P ′′

λp = 1,λ ≥ 0}

where x′′p, p ∈ P ′′ and x′′r , r ∈ R′′ are the sets of extreme points and rays of H ′′, and

the relations x =
∑

p∈P ′′ λpx
′′
p +

∑
r∈R′′ λrx

′′
r ,
∑

p∈P ′′ λp = 1 allow to link the original
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variables x to the subproblem variables.

DWD is intimately related to Column Generation (CG) as most of the times the ex-

treme points of the subproblem’s polyhedron are progressively determined by CG. We

refer the reader to well-known works as [Barnhart et al., 1996, Vanderbeck and Savels-

bergh, 2006], and again to [du Merle et al., 1997, Feillet, 2010, Lübbecke and Desrosiers,

2002, Vanderbeck and Wolsey, 2009], to have an exhaustive view on these subjects.

When applied to Mixed-Integer Linear Program, DWD can be used to compute the Lin-

ear Relaxation of the integer problem, although it does not yield a tighter bound, unless

a partial convexification is performed. This latter consists in including the integrality

constraint in the subproblem. In this case, the linear relaxation of the original problem

is reformulated as:

min{cTx | A′x ≥ b′,x ∈ conv({x ≥ 0 | A′′x ≥ b′′})}

This can help considerably when tackling huge Mixed-Integer Problems, provided that

the integer subproblem has not the integrality property and is nevertheless easily solv-

able.

Figure 5.6: When including the integrality contraint in the subproblem, the feasible
region is actually restrained and it is possible to achieve tighter bounds.

In our case, the subproblem of MBC
RA consists of the capacity inequality (4.32) only. By

solving it as an ESPPRC with Dynamic Programming, we convexify it.

Relations allows to link (5.44) route variables and base arc variables. However, in order

for the models MBC
RA and MBP

RA to be equivalent, relations (5.41) are necessary. The

reason for this is subtle. Relations (5.45) and (5.46) state that each client will have

indegree and outdegree equal to 1, but (5.44) assert that a base arc variable will be

activated only for route arcs that do not concern a facility. Hence, in model MBP
RA , the

last customer of every route that ends at a facility and the first of each route that starts

at a facility will need a replenishment arc to satisfy its arc flow (5.45). At this point,

relations (5.41) are essential to make a proper use of replenishment arcs in modelMBP
RA .

Indeed, in MBC
RA , the use of a replenishment arc wij = 1 implies by definition that the
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same vehicle visits customer i, then replenishes at facility p, then visits j, p being the

most convenient facility (cf 4.2.1). On the contrary, in model MBP
RA this is not implicit

and the omission of (5.41) could cause an improper use of replenishment arcs, as shown

in the leftmost case of figure 5.7. In theory this can also take place with (5.41), i.e.

when the null balance of incoming and outgoing routes of each facility is imposed, as in

the rightmost case of the same figure. However, this is unlikely to happen due to the

costs and the triangular inequality.

Figure 5.7: Constraints (5.41) are essential to the correctness of model MBP
RA , as if

we discard them, the need to fulfill the arc flow at each client can lead to an improper
use of replenishment arcs variables. In the case on the left, the facility visited after
node 6 and the one visited before node 7 are not the same, therefore w67 = 1 repre-
sents a modelization error. The imposition of a null balance of incoming and outgoing
routes of each facility (center and right case), along with the costs and the triangular
inequality, allows to overcome this. The correct values of the w variables according
to the chosen routes are those in the center figure: the saving w.r.t. the rightmost
figure, i.e. f36 + f52 + f14− (f12 + f34 + f56) =

∑
ij∈{36,52,14}min(dip + dpj , diq + dqj)−∑

ij∈{12,34,56}min(dip+dpj , diq +dqj) = d3p+dp4− (d3q +dq4) > 0, will lead the model
to do the right choice.

5.2.2 The new Branch&Price Algorithm

The general guidelines of the new Branch&Price algorithm based onMBP
RA are the same

of the one presented in section 5.1.2. A Column Generation-based framework is con-

sidered, where the PP consists of an ESPPRC to determine new negative reduced cost

route variables. The ESPPRC is solved by means of a DP algorithm inspired by the one

presented in [Feillet et al., 2004] and enhanced with ng-paths and a q-paths-based com-

pletion bound method to restrain the combinatorial explosion. Then, the exploration of

the Branch&Bound tree is guided by problem-tailored branching rules. In the following,

we present the determination of the reduced costs of route variables xr and the setting

of the PP, in section 5.2.2.1, while section 5.2.2.2 is devoted to the branching rules that

have been designed to generate the child nodes of the generic Branch&Bound node.
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5.2.2.1 Reduced Costs

The reduced cost of variable xr is:

cr = cr −
∑
i∈C

∑
p∈F

air ·e′pr ·ϕ?pi −
∑
p∈F

(e′pr − e′′pr )·θ?p − (e′∆r − e′′∆r )·θ?∆ − e′∆r ·ξ?

−
∑
s⊆F

∑
p∈s

(b′sr ·δ′
?
ps + b′′sr ·δ′′

?
ps )−

∑
ij∈A0

bijr ·η?ij

where ϕ?pi ≤ 0, θ?p ≷ 0, θ?∆ ≷ 0, ξ? ≤ 0, η?ij ≷ 0, δ′?ps ≥ 0, δ′′?ps ≥ 0 are the values in the

current dual solution (i.e. corresponding to the current solution of the RMP) of the dual

variables associated with the constraints involving xr.

The above expression can be rewritten as:

cr =
∑
ij∈A0

bijr ·(dij − η?ij) +
∑
ij∈A′0\A0

bijr ·dij −
∑
i∈C

∑
p∈F

air ·e′pr ·ϕ?pi

−
∑
p∈F

(e′pr − e′′pr )·θ?p − (e′∆r − e′′∆r )·θ?∆ − e′∆r ·ξ?

−
∑
s⊆F

∑
p∈s

(
(e′∆r +

∑
q /∈s

e′qr )(
∑
q∈s

e′′qr )·δ′?ps + (
∑
q∈s

e′qr )(e′′∆r +
∑
q /∈s

e′′qr )·δ′′?ps
) (5.55)

Again, the weight of customer node i ∈ C, −
∑

p∈F a
i
r ·e
′p
r ·ϕ?pi, requires to know, i.e. to

impose, the starting point in the PP. Reduced cost cr can therefore be simplified, and

its expression depends on whether the starting point is ∆ or a facility g ∈ F .

In the former case we have e′∆r = 1 and e′pr = 0 ∀p ∈ F ⇒ (∀p ∈ F, i ∈ C) bpir = 0; hence,

(5.55) becomes:

cr =
∑
ij∈A0

bijr ·(dij − η?ij) +
∑
i∈C

∑
p∈F

bipr ·dip

+
∑
p∈F

e′′pr ·θ?p − (1− e′′∆r )·θ?∆ − ξ? −
∑
s⊆F

∑
p∈s

δ′
?
ps ·
∑
q∈s

e′′qr

where
∑

s⊆F
∑

p∈s δ
′?
ps ·
∑

q∈s e
′′q
r =

∑
p∈F e

′′p
r ·
∑

s∈Sp
∑

q∈s δ
′?
qs (cf (5.25)).

Terms
∑

p∈F e
′′p
r ·θ?p − (1− e′′∆r )·θ?∆ mean a weight −θ?∆ on ∆ as starting point, θ?∆ on ∆

as ending point and θ?p on p ∈ F as ending point. Therefore one can put 0 on ∆ as both

starting and ending point, and θ?p − θ?∆ on each p ∈ F and write:

cr = − ξ? +
∑
ij∈A0

bijr ·(dij − η?ij) +
∑
i∈C

∑
p∈F

bipr ·dip

+
∑
p∈F

e′′pr ·(θ?p − θ?∆)−
∑
p∈F

e′′pr ·
∑
s∈Sp

∑
q∈s

δ′
?
qs

(5.56)

The modified support graph G′ = (V ′, A′) for the PP is:
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1. the node set V ′ = V ∪{∆′, N} has a copy of the depot, ∆′, and a dummy end node N ;

2. the arc set A′ = A′0∪
⋃
i∈C
{(∆′, i)}∪

(
(∆,N)∪

⋃
p∈F
{(p,N)}

)
comprises A′0 and additional

arcs from ∆′ to each client, and from each possible real ending point to N ;

3. the weights on nodes are the following:

w?v =


0 (v ≡ i ∈ C)

θ?p − θ?∆ −
∑

s∈Sp
∑

q∈s δ
′?
qs (v ≡ p ∈ F )

0 (v ≡ ∆)

4. the weights of the arcs ij ∈ A′ are:

w?ij =



d∆j − η?∆j + 1
2 ·w

?
j − ξ? (i ≡ ∆′)

dij − η?ij + 1
2 ·(w

?
i + w?j ) (ij ∈ C × C)

dip + 1
2 ·w

?
i + w?p (i ∈ C, j ≡ p ∈ F )

di∆ − η?i∆ + 1
2 ·w

?
i + w?∆ (i ∈ C, j ≡ ∆)

0 (j ≡ N)

The PP is solved as an ESPPRC on (V ′, A′) from ∆′ to N . One possible strategy consists

in taking for each possible real ending point v ∈ F ∪ {∆}, the least reduced cost path

from the start to v, and adding it to the RMP.

When the starting point of the PP is a facility g ∈ F , we have e′gr = 1 and e′∆r = 0;

moreover, (∀p ∈ F\{g}) e′pr = 0⇒ (∀p ∈ F\{g}, i ∈ C) bpir = 0. Hence cr is:

cr =
∑
ij∈A0

bijr ·(dij − η?ij) +
∑
i∈C

(bgir ·dgi +
∑
p∈F

bipr ·dip)−
∑
i∈C

air ·ϕ?gi

− (1− e′′gr )·θ?g +
∑
q∈F\{g}

e′′qr ·θ?q + e′′∆r ·θ?∆

−
∑
s⊆F :
g/∈s

∑
p∈s

(
(
∑
q∈s

e′′qr )·δ′?ps
)
−
∑
s⊆F :
g∈s

∑
p∈s

(
(e′′∆r +

∑
q /∈s

e′′qr )·δ′′?ps
)

where s ⊆ F : g ∈ s and s ⊆ F : g /∈ s imply s ∈ Sg and s ∈ Sg, respectively, and θ

weights can be corrected as before, so as to obtain:

cr =
∑
ij∈A0

bijr ·(dij − η?ij) +
∑
i∈C

(bgir ·dgi +
∑
p∈F

bipr ·dip)−
∑
i∈C

air ·ϕ?gi

+
∑

q∈F\{g}

e′′qr ·(θ?q − θ?g ) + e′′∆r ·(θ?∆ − θ?g )

−
∑
s∈Sg

∑
p∈s

δ′
?
ps ·
∑
q∈s

e′′qr −
∑
s∈Sg

∑
p∈s

δ′′
?

ps ·(e′′∆r +
∑
q /∈s

e′′qr )
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The last term can be developed as follows (similarly to (5.29)):

−
∑
s∈Sg

∑
p∈s

δ′
?
ps ·
∑
q∈s

e′′qr −
∑
s∈Sg

∑
p∈s

δ′′
?

ps ·(e′′∆r +
∑
q /∈s

e′′qr )

= − e′′∆r
∑
s∈Sg

∑
p∈s

δ′′
?

ps +
∑

q∈F\{g}

e′′qr

(
−
∑
s/∈Sg
s∈Sq

∑
p∈s

δ′
?
ps −

∑
s∈Sg
s/∈Sq

∑
p∈s

δ′′
?

ps

)

so as to have:

cr =
∑
ij∈A0

bijr ·(dij − η?ij) +
∑
i∈C

(bgir ·dgi +
∑
p∈F

bipr ·dip)−
∑
i∈C

air ·ϕ?gi

+ e′′∆r ·(θ?∆ − θ?g −
∑
s∈Sg

∑
p∈s

δ′′
?

ps )

+
∑

q∈F\{g}

e′′qr ·(θ?q − θ?g −
∑
s/∈Sg
s∈Sq

∑
p∈s

δ′
?
ps −

∑
s∈Sg
s/∈Sq

∑
p∈s

δ′′
?

ps )

(5.59)

The modified support graph G′ = (V ′, A′) to solve the PP is built as follows:

1. the node set V ′ = V ∪ {g′, N} includes a copy g′ of g and the dummy arrival node N ;

2. the arc set A′ = A′0 ∪
⋃
i∈C
{(g′, i)} ∪

(
(∆,N) ∪

⋃
p∈F
{(p,N)}

)
is basically A′0 enhanced

with arcs from g′ to each client and from each possible real arrival point to N ;

3. the weights on the nodes are the following:

w?v =



−ϕ?gi (v ≡ i ∈ C)

θ?q − θ?g −
∑
s/∈Sg
s∈Sq

∑
p∈s

δ′
?
ps −

∑
s∈Sg
s/∈Sq

∑
p∈s

δ′′
?

ps (v ≡ q ∈ F\{g})

0 (v ≡ g)

θ?∆ − θ?g −
∑
s∈Sg

∑
p∈s

δ′′
?

ps (v ≡ ∆)

4. the weights of the arcs ij ∈ A′ are:

w?ij =



dgj + 1
2 ·w

?
j (i ≡ g′)

dij − η?ij + 1
2 ·(w

?
i + w?j ) (ij ∈ C × C)

dip + 1
2 ·w

?
i + w?p (i ∈ C, j ≡ p ∈ F )

di∆ − η?i∆ + 1
2 ·w

?
i + w?∆ (i ∈ C, j ≡ ∆)

0 (j ≡ N)

The PP is solved as an ESPPRC on (V ′, A′) from g′ to N . Again, for each possible real

ending point v ∈ F ∪ {∆}, one possible strategy is to add the least reduced cost path

from g′ to v to the RMP.
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5.2.2.2 Branching Rules

As to the branching rules to adopt in our CG-based framework, they can only concern

base arc variables xij , ij ∈ A0, or replenishment arc variables wij , ij ∈ AP . Indeed,

route variables xr cannot be branched on, as it has been explained in section A.4.3.

Nor we can branch on activity variables yp, p ∈ F , as they appear only in redundant

constraints (5.40), (5.53) and (5.54) and therefore do not have any actual decisional

value.

On the other hand, branching on arc variables requires no transformation, since the

link between route and arc variables is now explicit in the MILP model. The chosen

branching rule is inherited from the first proposed Branch&Price algorithm for VRPIRF

and consists in branching on the outgoing arcs of the customer node with the highest

number of fractional outgoing arcs. The rule could be applied on both the base and

the replenishment arcs. Moreover, the priority to the former or to the latter arc sets

is a parameter of the Branch&Price algorithm that may be tuned by computational

experience so as to find the most effective ordering.

The propagation of branching decisions on xij variables to the PP follows the general

scheme given in A.4.3, whereas the branching decisions on wij variables have no effect

on the PP as replenishment arcs do not appear in the graph of the PP.

5.3 Conclusions and Perspectives

In this chapter, two solution methods of type Branch&Price have been proposed for the

VRPIRF. The aim was to improve the results achieved with the Branch&Cut algorithm

presented in chapter 4.

The first relies on MBP , a Set-Partitioning based MILP formulation of the problem,

with an index to distinguish the vehicles and thus enforce the maximum shift length

constraint. This gives rise to a Branch&Price algorithm where the subproblem is solved

as an ESPPRC using techniques such as ng-paths and a q-path-based completion bound

to accelerate the convergence of the Column Generation performed at each node of the

Branch&Bound tree. The algorithm has been fully implemented: however, preliminary

results have shown that it behavior is far worse than that of the MBC
RA -based Branch&

Cut algorithm. Further analysis allow to detect that in spite of adopting a more pow-

erful algorithmic approach as Branch&Price, the method issues originate from some

weaknesses of model MBP .

In order to deal with them, a new MILP model, MBP
RA , has been designed that merges

elements of both models MBC
RA and MBP , in order to remove the vehicle index as it had

been done when upgrading model MBC to MBC
RA . A new Branch&Price algorithm has
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been designed, from the reduced costs of the new route variables to the definition of new

branching rules.

The implementation and test of this latter algorithm, however, are left as next develop-

ment steps. We believe that the integration of the strong points of model MBC
RA , which

have give rise a successful Branch&Cut method, into a Branch&Price framework, may

deliver even better results.

Apart from this latter task, the perspectives of future work comprise also further de-

velopments of the first proposed Branch&Price algorithm. Ad-hoc valid inequalities

may be designed to deal with the issues discussed in section 5.1.5 and tighten the lower

bound. This would yield a Branch&Cut&Price algorithm which appears to be a promis-

ing work.
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This thesis originates from the ANR Project MODUM and the City Logistics system it

proposes. City Logistics (cf Chapter 1) takes care of studying the dynamic management

and operations of urban freight transport, with the aim of delivering distribution sys-

tems design solutions that may be suitable for both practitioners and the community,

which typically have conflicting objectives. The stakes are considerable, as an improved

management of the traffic related to the freight transport can have a positive impact in

terms of security, noise and air pollution, congestion of the road network and costs. The

achievement of an improved traffic management calls for the design of new models of

integrated freight distribution networks, the study of the viability of such systems, the

investigation of how to maximize the benefits for all the implied actors, and finally the

evaluation of the system impact. Combinatorial Optimization is largely concerned, as

the logistic problems that can arise in the urban context are numerous, and the criteria

that the different involved actors may want to optimize are several.

The purpose of the MODUM project is the study of a freight distribution system for

urban areas based on a ring of Urban Distribution Centers(UDCs) located in the out-

skirts of a city, and the design and implementation of a series of tools that would allow

potentially interested subjects to consider the adoption of such a system. Among the

different decision layers involved by the study of the proposed distribution system, the

strategic level is the one that the first part of this PhD thesis is mostly concerned with.

The study of Combinatorial Optimization techniques to tackle the Location and Network

design long-term decisions of the MODUM City Logistics system has given rise to the

Multicommodity-Ring Location Routing Problem (MRLRP) studied in Chapter 2. In

this problem, strategic decisions concerning the location and connection of a set of UDCs

must be taken. A set of demands to be served is known. Goods to be delivered arrive

to a first UDC from gates, are possibly transported along the ring, and finally shipped;

the reverse process occurs for pick-up. No time dependence is considered. Goods are

characterized by a quantity, a customer and a gate: the attribute multicommodity refers

solely to the different gates. Retail shipments are performed by electric vans with both

maximum route length and maximum load limits: the fleet is shared among UDC and
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SPL, the latter having parking functions only. Service routes can be open, hence a rebal-

ancing policy is imposed to simplify repositioning. The aim is to determine the subset of

UDCs to open and the ring connections among them, and to ship every demand from its

source to its destination, in such a way to minimize the overall installation, routing and

flow transportation costs, while respecting UDC and ring arc capacities. The MRLRP is

a rich and complex problem as it involves a number of different, strongly interconnected

decision layers (location, network design, vehicle routing, flow transportation). A MILP

Set-Partitioning formulation that makes use of route variables is proposed which can be

solved efficiently by a Branch&Bound exact method for small-sized instances only.

Given the high difficulty of the problem, we designed GALW, a four-stage decomposi-

tion matheuristic. GALW tackles the different decisional components of the MRLRP

sequentially and solves most of them to optimality. First, a set of near-optimal routes

is heuristically generated. Then, an assignment subproblem is solved so as to determine

the first and last UDC of each demand. A Symmetric TSP is then solved to link the

chosen UDC, and finally a ring multiflow problem with multiple sources and sinks for

each commodity is solved to find the optimal ring flows. GALW performances were as-

sessed by means of an exact algorithm (a Branch&Bound algorithm based on the MILP

formulation and solved by a commercial solver) and a hybrid method to evaluate the

impact of the route generation. Among the other contributions, a new way to formu-

late Generalized Subtour Elimination Constraints when none of the nodes is mandatory

has been presented. An exhaustive set of 200 instances has been created for this new

problem. Instances vary both in terms of dimensional features (notably, the number of

UDCs and demands) and in terms of strategic costs to allow a more effective evaluation

of the three methods. Further, a set of ecological instances, i.e. with pollution indicators

instead of economic costs, allow to determine the system configuration with the highest

degree of environmental sustainability.

As to future work, on a short- to medium-term horizon, it could be interesting to enrich

GALW with some feedback mechanism and hence further improve its performances. An-

other short-term development could be the design of a heuristic solver for the assignment

subproblem, which is the most time-consuming. This could lead to a dramatic reduction

of the total computational time of GALW and to an overall better ratio between solution

quality and computational time.

The Multicommodity-Ring Vehicle Routing Problem (MRVRP) presented in Appendix

A is a more tactical problem based on the same distribution system and can be considered

to all purposes as one of the main future work perspectives in the same stream. For this

problem, an exact algorithm is more likely to be considered. Therefore, after defining

a new, more tailored Set-Partitioning formulation, a Branch&Price solution approach

is proposed, where the Pricing Problem (PP) is solved as an Elementary Shortest Path
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Problem with Resource Constraints (ESPPRC). Its implementation and test represent

one of the most forthcoming development tasks after the thesis.

The MODUM ring-of-UDC-based urban freight distribution system can give rise to

several other variants of strategic and/or tactical problems. For example, one could

consider the intermediate problem in which the ring is somehow defined (because e.g.

the city is already surrounded by a motorway that can be reused) but the UDC are to

be located. Such problem would stand somehow in the middle between MRLRP and

MRVRP as it features location decision but not network design elements, and would

probably require to design a new matheuristic.

The second part of this thesis tackles the Vehicle Routing Problem with Intermediate

Replenishment Facilities (VRPIRF). The VRPIRF features a central depot, n customers

and f replenishment facilities. The aim is to find a least cost set of routes that visits each

client exactly once, the cost of a route being the sum of the costs of the visited arcs. Each

client has a demand and can be served by one of the homogeneous, fixed capacity vehicles

based at the depot. Furthermore, vehicles can recharge at replenishment facilities so as

to perform not one but a sequence of routes called a rotation. However, the rotation

of a vehicle must start and end at the depot and its total duration (the sum of the

travel, service and recharge times associated with the visited arcs, clients, and depots,

respectively) must not exceed a given shift length.

The study of this problem is suggested by some more operational decision issues thay may

occur in a City Logistics context like the one of the MODUM project. More specifically,

the VRPIRF arises when both the Multi-Depot and the Multi-Trip requirements are

present, i.e. there is more than one facility that can act as a starting point for shipment

trips, and vehicles can perform more than one trip a day. Therefore, the exhaustive

literature review on the VRPIRF proposed in Chapter 3 starts from the Multi-Depot

VRP (MDVRP) and the Multi-Trip VRP (MTVRP), before presenting several research

work inspired by numerous real-life applications in which the most prominent VRPIRF

features are found. Most of these works result in heuristic approaches, also motivated by

the complexity of the case studies. We mostly focused on the design of exact approaches

to the VRPIRF, as –to the best of our knowledge– there exist only a few works that

have investigated this path.

Chapter 4 revolves around two algorithms of type Branch&Cut, based on compact

MILP formulations of the problem. The first one is based on a classical three-index

formulation where vehicles are explicitly identified by means of a vehicle index and is

capable to solve small-sized instances. In order to deal with bigger instances, a second

Branch&Cut algorithm has been designed which is far more clever in two respects:

the MILP model and the separation techniques and strategy. The MILP model on

which the second algorithm is based, MBC
RA , incorporates two powerful modeling tools:
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replenishment arcs and arrival times. Together, they allow to drop the vehicle index

thanks to a substantial change in the representation of a rotation. Both have been

previously used in the literature: the former for the MTVRP and a variant of the

ESPPRC, the latter for the Asymmetric Distance-Constrained VRP. However, to the

best of our knowledge, both of them are applied for the first time to the VRPIRF. The

separation policy of the second Branch&Cut is simple, as the only classical capacity and

subtour elimination constraints are separated. Yet, it proves effective, as the algorithm

has shown an interesting behavior on most of the 76 benchmark instances taken from the

literature, proving capable of achieving root gaps under 10% in 71 cases, and under 5%

in 36 cases within reasonable time limits. It can therefore be considered very promising.

To improve the algorithm based on MBC
RA and the separation policy two main ideas

appear to be viable. The first one consists in enhancing the separation procedure with

other cuts or valid inequalities taken from the literature. The second one is to study

more specific, problem-tailored cuts that take into account, for instance, the arrival

times. Since many benchmark instances in the literature are symmetric, one could even

consider to reformulate the VRPIRF in a symmetric fashion. The design of ad-hoc

inequalities to prevent some problem issues would be probably easier then.

In order to broaden our study of exact approaches to the VRPIRF and to improve

the results achieved with the Branch&Cut algorithms, two Branch&Price approaches

are also designed for the same problem. They are introduced in Chapter 5. We rely

on Set-Partitioning MILP formulations with route variables, as in recent years exact

algorithms based on such formulations have proven to be the most effective ones for many

Vehicle Routing Problems. The MILP model for the first Branch&Price algorithm,

MBP , uses a vehicle index in order to enforce the maximum shift length constraint,

and has ad-hoc connectivity constraints to assure rotations to be connected. These

latter constraints are formulated on a facility graph so as to considerably reduce their

number. This allows to generate them statically instead of adding them dynamically.

The PP is solved as an ESPPRC by Dynamic Programming, which is enhanced with two

very effective techniques such as ng-paths and a q-path-based completion bound. This

allows to restrain combinatorial explosion and accelerate the convergence of the Column

Generation performed at each node of the Branch&Bound tree. Although the method

is very promising, the preliminary computational results have been worse than those of

theMBC
RA -based Branch&Cut algorithm. Further analysis have shown a weakness in the

connectivity constraints ofMBP that loosens the lower bound. Ad-hoc valid inequalities

may be designed to deal with these issues. This would yield a Branch&Cut&Price

algorithm which appears to be a very promising work.

The study of a second Branch&Price algorithm, which is based on a new extended MILP

formulation,MBP
RA , is also undertook. MBP

RA aims at tackling some issues of its predecessor
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by removing the vehicle index and merging MBP with replenishment arcs and arrival

times of MBC
RA as it has been done with the MBC

RA -based Branch&Cut method. A new

Branch&Price algorithm is designed, from the reduced costs of the new route variables

to the definition of new branching rules. However, the implementation and numerical

assessment for this latter Branch&Price algorithm are left as a perspective for future

work on a short-term horizon. We believe that this last approach is the most promising,

as it integrates the strong points of modelMBC
RA , which have give rise a successful Branch

&Cut method, into a Branch&Price framework.

During this PhD thesis, other minor research works have been conducted. More specif-

ically, they deal with some problems related to the assignment of computer tasks to

machines. Therefore, they have been interesting opportunities to cope with Combina-

torial Optimization applications in a rather different domain than the main one of the

thesis.

Appendix B tackles the Machine Reassignment Problem which has been the object of

the Google ROADEF/EURO Challenge 2011–2012. An initial allocation of processes to

machines is given, and another one must be found that minimizes a global movement cost

while respecting a series of machine resource constraints and dependency/compatibil-

ity constraints among processes. A hybrid method based on local search, MILP driven

search and superprocesses is developed to deal with the small- to big-sized instances

proposed for the Challenge.

Appendix C presents a work on some problems arising in Grid and Volunteer Cloud

Computing about the optimization of Energy. Tasks must be allocated according to

the capacity and availability of the machines. The allocation must cover a given time

horizon and minimize the overall sum of base, overhead and transfer energy.

To conclude, we briefly outline what in our opinion are the most interesting longer-term

perspectives.

The intractability of the MRLRP with medium- and large-sized instances naturally led

to the development of a heuristic approach. As it has been seen in the parts of the

thesis dedicated to the review of Vehicle and Location Routing Problems (see sections

2.2, A.2, 3.2), heuristic approaches to Combinatorial problems often rely on local search

techniques (Tabu Search (TS), Variable Neighborhood Search (VNS), Adaptive Variable

Neighborhood Search (AVNS), Adaptive Large Neighborhood Search (ALNS)). However,

it appeared extremely difficult to tackle the MRLRP by means of such techniques, as

the multi-layered decision structure and the presence of both integer and continuous

variables make it difficult to define suitable neighborhood structures. This opens some

perspectives of investigation about the suitability of local search methods for rich, large-

scale, multi-layered problems and whether it should be preferrable to adopt matheuristic
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decomposition approaches that tackle the different decision layers in sequence and solve

each to optimality.

The work on the VRPIRF has left several development tasks to be accomplished shortly

after the end of this thesis work, but also some interesting, more general open research

paths that will be investigated on a longer-term horizon.

The second Branch&Cut algorithm, as well as the first Branch&Price one, require the

study of problem-tailored valid inequalities in order to improve the results achieved so

far. This encourages an in-depth study of valid inequalities as a general modeling and

algorithmic tool on a medium-term basis.

The same work also suggests another longer-term research path. According to what

has been achieved by the most prominent exact methods of the recent literature on

Vehicle Routing Problems, the first Branch&Price algorithm was expected to yield the

best results. Surprisingly enough, the best results that we have obtained so far on the

benchmark VRPIRF instances have been attained by what appeared to be the weakest

method, i.e. a Branch&Cut algorithm based on a compact formulation. The reason

resides in the major strength of compact MILP model MBC
RA w.r.t. the extended MILP

model MBP . Although we believe that the implementation and computational assess-

ment of the MBP
RA-based Branch&Price algorithm will provide more problem-specific

insights, this consideration lead us, in a more general sense, to further investigate the

trade-off between formulation and method as the key factor to deliver the most effective

exact approach.



Appendix A

The Multicommodity-Ring

Vehicle Routing Problem

A.1 Introduction

The MRLRP, which has been extensively presented in chapter 2, is a problem with a

high degree of difficulty, due to its several decision levels and the deep relations between

them. Therefore, in spite of being a strategic problem, where operational details are

either aggregated or simplified, the MRLRP can hardly be solved, unless the instances

being dealt with are small-sized, or the chosen approach is heuristic.

However, a family of related problems can be derived from the MRLRP when consid-

ering only a part of the decisions involved by the discussed urban distribution system.

The Multicommodity-Ring Vehicle Routing Problem (MRVRP) that we present in this

chapter is the problem obtained when the UDCs have already been built and connected

in a ring. Hence, the analysis is no more concerned by strategic decisions and the re-

lated costs. The scenario remains the same in every other respect, though. Goods to

be delivered arrive to a first UDC from gates, are possibly transported along the ring,

and finally shipped; the reverse process occurs for pick-up. No time dependence is con-

sidered. Goods are characterized by a quantity, a customer and a gate: once more, the

attribute multicommodity refers solely to the different gates. Retail shipments are per-

formed by electric vans with both maximum route length and maximum load limits: the

fleet is shared among UDC and SPL, the latter having parking functions only. Service

routes can be open, hence a rebalancing policy is imposed to simplify repositioning. The

objective is to ship every demand, be it a delivery or a pick-up one, from its source to

its destination, in such a way to minimize the overall routing and flow transportation
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costs, while respecting UDC and ring arc capacities.

The purpose of this chapter is to tackle a derived problem of MRLRP, the MRVRP,

with the aim to define the guidelines of an exact method for it. The rest of the chap-

ter is therefore structured as follows. Section A.2 gives some more literature insights

for what concerns problems that are more related to the MRVRP. Section A.3 defines

additional notations and a MILP model for the MRVRP. Section A.4 outlines a Column-

Generation-based approach to the MRVRP and a Branch&Price algorithm derived from

it. Finally, section A.5 draws the conclusions of the chapter.

A.2 Positioning in the Literature

The MRVRP can be considered to belong to the family of the Multi-level VRPs. Differ-

ently from canonical VRPs, where the vehicles that visit the final customers start from

a central depot, in Multi-level VRPs goods are dispatched to intermediate depots before

reaching their final destination. The motivation to study such more complex distribu-

tion systems comes mainly from real-world traffic restrictions that prevent big trucks to

enter the city center. This imposes transshipment or cross-docking operations outside

the urban area, in order to load smaller vehicles to perform shipments to retailers.

The most studied problem is the Two-Echelon Vehicle Routing Problem (2E-VRP), in

which goods are initially stored at a central warehouse, from where they are delivered

to secondary-level logistic platforms or satellites, which we will refer to as UDCs (i.e.

Urban Distribution Center) as we have done in chapter 2. After being consolidated in

second-level vehicles, products can finally be shipped to customers. Split delivery are

forbidden at second-level, but allowed at first-level, therefore a UDC can receive the

merchandise it has to deliver from many first-level vehicles. UDCs have a capacity that

bounds the first-level deliveries. Second-level vehicles can only perform one service route

and must return at the depot from where they started. In more general versions, other

features can be taken into account, like e.g.:

Imore than one warehouse;

I the possibility to deliver customers via first-level vehicles, to represent situations in

which the restrictions about the circulation of big trucks are weaker;

I second level vehicles can perform more than one service trip (multi-trip feature) which

can have different endpoints;

I time dependent travel times;

Icustomer time windows;
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I synchronization between first- and second-level, whereas in the classical 2E-VRP the

only interaction is the capacity of the UDCs.

Several heuristic approaches to the 2E-VRP can be found in the literature. In [Crainic

et al., 2008], a set of two-phase heuristics are proposed. The second-level subproblem is

solved as a Multi-Depot VRP (MDVRP), or alternatively as a set of small VRPs after

a clustering of the customers in order to assign them to UDCs. Then, the first level

subproblem is solved as a common CVRP. In the second phase, a series of heuristics are

used to improve the solution. In [Crainic et al., 2011b], the problem is approached in a

similar way. A greedy initial clustering heuristic is used to decompose the problem in as

many CVRPs as the number of UDCs plus one, i.e. the first-level problem. Then, a local

search step changes the customer-UDC assignment so as to improve the solution. Finally,

a multi-start phase is applied for a given number of iterations: the current best solution

is perturbed according to savings-inspired criteria, yielding either an infeasible solution,

which is then repaired, or a feasible one. In the latter case, if the quality is promising, the

solution in further improved by means of the customer-UDC assignment improvement

LS tool. To mention other heuristic algorithms, we refer the reader for instance to the

GRASP with path-relinking of [Crainic et al., 2011a] or the ALNS proposed in [Cordeau

et al., 2011]. The literature of exact method is more scarce. Among the most recent

works, the exact algorithm presented in [Baldacci et al., 2013] decomposes the 2E-VRP

into a set of MDVRP with additional constraints. Valid lower bounds are provided which

allow to restrict the search. The algorithm achieves the best computational results to

date. We also mention the Branch&Cut approach of [Jepsen et al., 2013], the flow model

and valid inequalities for the 2E-VRP presented in [Gonzalez-Feliu et al., 2008], and the

study on valid inequalities for the 2E-VRP of [Masoero et al., 2009]. Finally, we refer the

reader to [Gonzalez-Feliu, 2011] for a recent survey on two-level distribution systems.

A.3 A Mixed-Integer Linear Programming (MILP) formu-

lation for the MRVRP

Compared to MRLRP, the MRVRP is a more tactical problem where location and

network aspects are known a priori. Therefore, the MILP model that we propose for the

MRVRP will keep only some of the elements of the one that has been presented for the

MRLRP (see section 2.4).
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A.3.1 Additional Notation

Most of the notations defined for the MRLRP will be used again in the following descrip-

tion of MRVRP and with the same meaning. Hence, we refer the reader to section 2.3 or

to appendix D.1 and restrict ourselves to highlight the differences and the new notations.

The node set U = {u1,...,u|U |}, represents now a set of existing UDCs instead of a set

of potential locations. Each u ∈ U is therefore characterized by its capacity Qu only.

Moreover, for ease of notation, we index the UDCs according to their order along the

ring. We introduce the symbols s(u) and p(u), u ∈ U , to denote, respectively, the suc-

cessor of u, i.e. the UDC that follows u in the sense of the increasing UDC indices, and

the predecessor of u, i.e. the UDC v ∈ U s.t. s(v) = u. The oriented subgraph (U,AU )

is no longer complete, as now AU contains only 2|U | existing ring arcs:

AU =
⋃
u∈U
{(u, p(u)), (u, s(u))}

Finally, we introduce some binary coefficients to characterize a service route r ∈ R:

Idr = 1⇔ r ∈ Rd, i.e. r is a delivery route, dr = 0⇔ r ∈ Rp, i.e. r is a pick-up route;

Iair = 1⇔ i ∈ Rr, defined for i ∈ D and dr = 1, or i ∈ P and dr = 0;

Ie+hr = 1⇔ r starts at h ∈ U ∪ L (i.e. h UDC or SPL), not defined for h ∈ L if dr = 1;

Ie−hr = 1⇔ r ends at h ∈ U ∪ L, not defined for h ∈ L if dr = 0;

I bijr = 1⇔ (i, j) ∈ Er, defined for (i, j)∈Ed and dr=1, or (i, j)∈Ep and dr=0.

A.3.2 Decision variables

The decision variables of the MRVRP are a subset of those of the MRLRP. We discard

ring variables, which are related to strategic decisions, and keep the other three families

of variables, which we recall here briefly:

1.binary service variables χku = 1 if gate k exchanges goods with UDC u, 0 otherwise;

2.binary second level routing variables xr = 1 if route r ∈ R is selected, 0 otherwise;

3.first level flow variables, which are all nonnegative and continuous:

Iϕku = flow from gate k to site u (k-outflow);

Iϕuk = flow from site u to gate k (k-inflow);

Iϕdkuv = k-outflow on the ring arc (u, v) ∈ AU ;

Iϕpkuv = k-inflow on the ring arc (u, v) ∈ AU ;

Iφku = upper bound on the capacity occupied at u ∈ U due to deliveries of k ∈ K;
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Iφuk = upper bound on the capacity occupied at u ∈ U due to pick-ups of k ∈ K.

As a reminder, k-outflows and k-inflows are flows of commodity k for, respectively,

delivery and pick-up purposes. They are identified by the d and p superscripts.

A.3.3 MILP formulation

The proposed model for the MRVRP is:

(MMRVRP )

min
∑
r∈R

c(r)xr+
∑
k∈K
u∈U

(ckuϕku + cukϕuk)+
∑
(u,v)∈AU

k∈K

cuv(ϕ
pk
uv+ϕdkuv) (A.1)

s.t.
∑
u∈U

ϕku =
∑
i∈Dk

qi ∀k ∈ K (A.2)

∑
u∈U

ϕuk =
∑
i∈Pk

qi ∀k ∈ K (A.3)

ϕuk + ϕku ≤ χku
∑

i∈Pk∪Dk

qi ∀k ∈ K,u ∈ U (A.4)

∑
u∈U

χku ≤ B ∀k ∈ K (A.5)

ϕku + ϕdkp(u)u+ ϕdks(u)u= ϕdkup(u)+ ϕdkus(u)+
∑
r∈R

dre
+u
r qk(r)xr ∀k ∈ K,u ∈ U (A.6)

∑
r∈R

(1−dr)e
−u
r qk(r)xr+ϕpkp(u)u+ϕ

pk
s(u)u=ϕpkup(u)+ϕ

pk
us(u)+ϕuk ∀k ∈ K,u ∈ U (A.7)

∑
r∈R

airxr = 1 ∀i ∈ P ∪D (A.8)

− δ−h ≤
∑
r∈R

(e
−h
r − e

+h
r )xr ≤ δ+h ∀h ∈ U ∪ L (A.9)

∑
k∈K

(ϕdkuv + ϕpkuv) ≤ quv ∀(u, v) ∈ AU (A.10)

∑
k∈K

(φku + φuk) ≤ Qu ∀u ∈ U (A.11)

φku ≥ ϕku ∀k ∈ K,u ∈ U (A.12)

φku ≥
∑
r∈R

dre
+u
r qk(r)xr ∀k ∈ K,u ∈ U (A.13)

φuk ≥ ϕuk ∀k ∈ K,u ∈ U (A.14)

φuk ≥
∑
r∈R

(1− dr)e
−u
r qk(r)xr ∀k ∈ K,u ∈ U (A.15)

χku ∈ {0, 1} ∀k ∈ K,u ∈ U

xr ∈ {0, 1} ∀r ∈ R

ϕku, ϕuk, φku, φuk ≥ 0 ∀k ∈ K,u ∈ U

ϕdkuv, ϕ
pk
uv ≥ 0 ∀k ∈ K, (u, v) ∈ AU
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The objective function (A.1) takes into account the routing costs and the costs to trans-

port flows of goods between gates and UDC and along the ring. Constraints (A.2) and

(A.3) ensure that for each k ∈ K the total k-outflow and k-inflow sum up to the overall

delivery and pick-up demands in which k is involved. However, the flows that k ex-

changes with each u ∈ U is null if χku = 0, as imposed by (A.4), and the number of

UDCs a gate k can address is bounded to B by (A.5). Constraints (A.6) and (A.7) are

flow balance equations on each u ∈ U and for the k-inflows and k-outflows of each com-

modity. Relations (A.8) assure that each demand is served by exactly one route r ∈ R.

Constraints (A.9) are needed for rebalancing purposes. Constraints (A.10) impose the

capacity bound of ring arcs, and the same do relations (A.11)–(A.15) w.r.t. the capacity

of UDCs, as it has been explained in section 2.4.2.

A.4 Column Generation-based approaches for the MRVRP

In this section we present two solution approaches based on the MILP model MMRVRP .

MMRVRP , like MBP (see 5.1.2), is a model that contains a class of integer variables, the

route variables xr ∈ R, whose number |R| = O(|P |! + |D|!) is exponential in the size

of the problem instance. Once more, the most suitable approach is based on Column

Generation (CG). In the following, we outline the basic components of our CG scheme.

A.4.1 Reduced costs

The first step is to determine the reduced cost of route variables, before deciding how

to solve the PP. The reduced cost of xr is:

cr = c(r)−
∑
k∈K
u∈U

(
dr ·e

+u
r ·qk(r)·αd

?
ku + (1− dr)·e

−u
r ·qk(r)·αp

?
ku

)
−
∑

i∈P∪D
air ·β?i −

∑
h∈U∪L

(e
−h
r − e

+h
r )(θ′

?
h + θ′′

?
h )

−
∑
k∈K
u∈U

(
dr ·e

+u
r ·qk(r)·γd

?
ku + (1− dr)·e

−u
r ·qk(r)·γp

?
ku

)

where β?i , γd
?
ku, γp?ku, αd

?
ku, αp?ku, θ′?h and θ′′?h , are the values of the dual variables associated

with the current solution of the Restricted Master Problem (RMP, see section 5.1.2.1)

and, respectively, to constraints (A.8), (A.13), (A.15), (A.6), (A.7) and the two families
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of inequalities of (A.9). The expression of cr can be rewritten as:

cr =
∑

(i,j)∈E

bijr ·cij −
∑

i∈P∪D
air ·β?i

− dr
(∑
k∈K
u∈U

(αd
?
ku + γd

?
ku)·qk(r)·e

+u
r

)
− (1− dr)

(∑
k∈K
u∈U

(αp?ku + γp?ku)·qk(r)·e
−u
r

)
−

∑
h∈U∪L

(e
−h
r − e

+h
r )(θ′

?
h + θ′′

?
h )

(A.16)

The above expression can be seen as the cost of route r on a graph which is identical to

the initial support graph but with additional weights on nodes. These weights depend

on the dual variables associated with the constraints in which r is involved, and can be

seen as prizes or penalties according to their contribution to the reduced cost cr. Here

are some examples:

I term air ·β?i means that a weight β?i must be put on client i ∈ P ∪D;

I term
∑

k∈K
u∈U

(αd
?
ku + γd

?
ku)·qk(r) is multiplied by dr ·e+ur and must therefore be taken into

account only in case r is a delivery route that starts from u;

Ia term θ′?h + θ′′?h must be added when h ∈ U ∪ L is the starting point of r (i.e. when

e
+h
r = 1), and inversely a term −(θ′?h + θ′′?h ) must be added when h is the ending point

of r (i.e. e
−h
r = 1). Note that one between this two terms will be a prize and the

other a penalty, according to which one between θ′?h ≥ 0 and θ′′?h ≤ 0 has the greatest

absolute value.

The weight of a node, however, can be conveniently added to the weight cij of each of

its ingoing or outgoing arc, in order to have again a problem with costs on arcs only.

Therefore, solving the PP calls for finding a route r with least cr value. Since the solution

routes must respect a load constraint, this amounts to solving an Elementary Shortest

Path Problem with Resource Constraints (ESPPRC) on the aforementioned modified

support graph.

As one can observe, some parts of relation (A.16) depend on the terminal points of route

r, i.e. the solution of the PP. Let us denote by h1 and h2 the starting and ending point

of r. Since both of them can be either a UDC or a SPL, but not both a SPL, we can

distinguish four cases:

1.h1 ≡ u ∈ U, h2 ≡ l ∈ L: r can only be a delivery route (see section 2.1). Therefore,

the only clients it can visit are delivery clients, and we consider a delivery subgraph
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where pick-up clients and edges are discarded. The reduced cost becomes:

cr
d =

∑
(i,j)∈Ed

bijr ·cij−
∑
k∈K

(αd
?
ku+γd

?
ku)·qk(r)−

∑
i∈D

β?i ·air+(θ′
?
u +θ′′

?
u )−(θ′

?
l +θ′′

?
l ) (A.17)

Since qk(r) is the sum of demands of clients of k visited by r, term
∑

k∈K(αd
?
ku + γd

?
ku)·

qk(r) is equivalent to putting on each customer node i ∈ D of the delivery subgraph

a weight equal to −(αd
?
kiu + γd

?
kiu) · qi − β?i , ki being the gate of which i is client.

Terms (θ′?u +θ′′?u ) and −(θ′?l +θ′′?l ) must be put respectively on u and l, but since these

are the designated starting and ending point, they turn out to be constant terms of

the PP;

2.h1 ≡ l ∈ L, h2 ≡ u ∈ U : analogously, r can only be a pick-up route. We can consider

a pick-up subgraph and the reduced cost becomes:

cr
p =

∑
(i,j)∈Ep

bijr ·cij−
∑
k∈K

(αp?ku+γp?ku)·qk(r)−
∑
i∈P

β?i ·air+(θ′
?
l +θ′′

?
l )−(θ′

?
u +θ′′

?
u ) (A.18)

This time the weight to add to each customer node of the pick-up subgraph is (αp?kiu +

γp?kiu)·qi − β?i , while the constant of the PP is θ′?l + θ′′?l − θ′
?
u − θ′′

?
u ;

3.h1 ≡ u ∈ U, h2 ≡ v ∈ U , r delivery route (r ∈ Rd): the expression of the reduced cost

is similar to (A.17), the only difference being the constant term:

cr
d =

∑
(i,j)∈Ed

bijr · cij −
∑
k∈K

(αd
?
ku + γd

?
ku)·qk(r)−

∑
i∈D

β?i ·air + (θ′
?
u + θ′′

?
u )− (θ′

?
v + θ′′

?
v )

4.h1 ≡ v ∈ U, h2 ≡ u ∈ U , r pick-up route (r ∈ Rp): the reduced cost expression is

similar to (A.18), with a different constant term:

cr
p =

∑
(i,j)∈Ep

bijr · cij −
∑
k∈K

(αp?ku + γp?ku)·qk(r)−
∑
i∈P

β?i ·air + (θ′
?
v + θ′′

?
v )− (θ′

?
u + θ′′

?
u )

A comparison of the above cases 1 and 3 shows that, whenever the route r to be built is

a delivery one, the only dependence from the ending point h2 is in the term −(θ′?h2
+θ′′?h2

).

This reflects a structural property of the problem: the ending point of a delivery route

is only affected in terms of rebalancing (constraints (A.9)), as it has been explained in

section 2.5.1. Therefore cases 1 and 3 can be unified, and analogous conclusions can be

drawn by comparing cases 2 and 4.

However, the dependence of the reduced cost cr
d of a delivery route from its starting UDC

cannot be disregarded, and imposes to solve |U | delivery PPs, i.e. one per UDC, when

seeking for negative reduced cost delivery routes. Similarly, to determine the existence

of pick-up routes with cr
p < 0, we have to solve |U | pick-up PPs. As a consequence, at
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each CG iteration we have to solve 2|U | PPs.

The modified non-oriented support graph Gdu for the delivery PP with u ∈ U as starting

point is defined as follows:

1. the node set U ∪ L ∪D ∪ {û, 0} includes a copy û of u and a dummy arrival node 0;

2. the edge set Edu =
⋃
i∈D
{(û, i)} ∪Ed ∪

⋃
h∈U∪L

{(h, 0)} is enhanced with arcs from û to each

delivery client, and from each possible real arrival point to 0;

3. the weights to put on nodes are the following:

w?v =


−(αd

?
kiu + γd

?
kiu) · qi − β?i (v ≡ i ∈ D) (A.19a)

−θ′?h − θ′′
?

h (v ≡ h ∈ U ∪ L) (A.19b)

θ′
?
u + θ′′

?
u (v ≡ û) (A.19c)

This is equivalent to put the following weights on the arcs (i, j) ∈ Edu:

w?ij =



cuj + w?û + 1
2 ·w

?
j (i ≡ û, j ∈ D) (A.20a)

cij + 1
2 ·w

?
i + 1

2 ·w
?
j (i, j ∈ D) (A.20b)

cih + 1
2 ·w

?
i + w?h (i ∈ D, h ∈ U ∪ L) (A.20c)

0 (j ≡ 0) (A.20d)

The PP is then solved as an ESPPRC on Gdu from û to 0. For each possible ending point

h ∈ U ∪ L, the least reduced cost path from û to h (provided that it has cr
d < 0), or a

subset of negative reduced cost paths, is added to the RMP.

The pick-up PP is approached in a slightly different manner. Solution routes are sought

for backward, i.e. from the fixed endpoint u towards the possible start points in U∪L, in

order to possibly generate a path for each possible starting point. The modified support

graph Gpu is constructed as follows:

1. the node set U ∪ L ∪ P ∪ {û, 0} includes a dummy starting node 0 and a copy û of u;

2. the edge set Epu =
⋃

h∈U∪L
{(0, h)}∪Ep∪

⋃
i∈P
{(i, û)} is enhanced with arcs from 0 to each

possible real starting point, and from each pick-up client to û;

3. the weights on nodes are the following:

w?v =


−(αp?kiu + γp?kiu) · qi − β?i (v ≡ i ∈ P ) (A.21a)

θ′
?
h + θ′′

?
h (v ≡ h ∈ U ∪ L) (A.21b)

−θ′?u − θ′′
?

u (v ≡ û) (A.21c)
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again, this is equivalent to put the following weights on the arcs (i, j) ∈ Epu:

w?ij =



0 (i ≡ 0) (A.22a)

chi + w?h + 1
2 ·w

?
i (i ∈ D, h ∈ U ∪ L) (A.22b)

cij + 1
2 ·w

?
i + 1

2 ·w
?
j (i, j ∈ D) (A.22c)

ciu + 1
2 ·w

?
i + w?û (i ∈ P , j ≡ û) (A.22d)

The PP is solved backward as an ESPPRC on Gpu from û to 0. Again, the most negative

reduced cost path, or a subset of negative reduced cost paths, is added to the RMP for

each possible starting point.

Hence, at each CG iteration we add up to 2|U |(|U |+ |L|) new route variables to the MP.

A.4.2 A Column Generation-based heuristic algorithm

The CG-based procedure LPcgLowerBound in figure A.1 computes the optimal value

of the LP relaxation of modelM with a starting set R0 of columns (route variables). M
is the model associated with a node of the Branch&Bound tree of a MRVRP instance, i.e.

the initial model possibly enhanced with the constraints due to the branching decisions.

As pointed out before, the specific variable selection strategy of LPcgLowerBound

chooses both a delivery and a pick-up negative reduced cost route for any possible pair

of starting and ending points, and can be refined. LPcgLowerBound can be used, for

example, to solve the root node of the Branch&Bound tree. In this case,M is the initial

MMRVRP model, while R0 is an initial set of dummy routes, which must be provided in

order to avoid the infeasibility of the LP optimization (line 3). A reasonable choice is

given by the set of all feasible one-customer routes:

RDR =
⋃
u∈U

h∈U∪L

( ⋃
i∈D
{r ∈ Rd:Er = {(u, i), (i, h)}} ∪

⋃
i∈P
{r ∈ Rp:Er = {(h, i), (i, u)}}

)
(A.23)

This gives rise to the CG-based heuristic algorithm cgHeur (figure A.1). Basically, it

consists of feeding model MMRVRP with the column set RDR ∪R, R being the columns

returned by LPcgLowerBound(MMRVRP , RDR). Column Generation is performed

at the root node only, and the MILP is solved via Branch&Bound, regardless of the

implementation of any particular branching policy.
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LPcgLowerBound(M, R0)

argtype M: MILPmodel; R0: routeSet;

returns MRVRPfractSol; routeSet;

declare x: MRVRPfractSol; R, R?: routeSet; rh: route; u,h: node; π: dualvarVector; n: int;

1 R ← R0

2 while(true)

3 x ← LPoptimizeRMP(M, R)
4 π ← retrieveDuals()

5 n ← |R|
6 foreach(u ∈ U)
7 Gdu ← deliverySubgraph(π, u)

8 R? ← solveESPPRC(Gdu)
9 foreach(h ∈ U ∪ L)

10 rh ← arg minr∈R?:e+hr =1 cr
d

11 if(crh < 0)R ← R ∪ {rh}
12 Gpu ← pickupSubgraph(π, u)

13 R? ← solveESPPRC(Gpu)
14 foreach(h ∈ U ∪ L)
15 rh ← arg minr∈R?:e−hr =1 cr

p

16 if(crh < 0)R ← R ∪ {rh}
17 if(|R| = n) break

18 return (x, R)

cgHeur()

returns MRVRPintSol;

declare x: MRVRPintSol; R: routeSet; xf : MRVRPfractSol;

1 (xf , R) ← LPcgLowerBound(MMRVRP , RDR)

2 R ← R ∪ RDR

3 x ← MILPoptimize(MMRVRP , R)
4 return x

Figure A.1: A CG-based procedure to compute the optimal value of the LP relax-
ation of a node of the MRVRP Branch&Bound tree with a given initial set of column

variables, and a heuristic algorithm based on it.

A.4.3 Towards a Branch&Price Algorithm. Branching Strategy

The algorithm cgHeur is clearly heuristic. Indeed, running a plain Branch&Bound

on a subset of routes cannot yield an optimal solution, unless it is proved that such

subset contains the routes of the optimal solution. That is the case, for example, of

a family of approaches to the CVRP that can be found in the literature, like the one

in [Baldacci et al., 2011a]. The authors apply a series of bounding procedures in order

to raise the dual bound and reduce the optimality gap w.r.t. a previously determined

feasible solution. Then, the exhaustive generation of the set Rg of all the routes whose
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reduced cost is less than the optimality gap assures that Rg contains all the routes of

any optimal solution. In general, the set RDR∪R does not have this property; moreover,

not only the provided solution is not optimal, but it can be arbitrarily bad. One can

expect the nontrivial routes R returned by LPcgLowerBound(RDR) be enough to

generate at least a feasible solution, but unfortunately this is not always the case. This

is the reason to start with an initial set RDR that does not contain artificial variables

but proper routes.

In order to define an exact algorithm, it is necessary to:

1. run the CG procedure LPcgLowerBound at each Branch&Bound node, so as to

compute the corresponding lower bound. M will be the current subproblem while R0

will contain all the routes generated in the ancestor nodes;

2. adapt the branching policy to the CG framework, as the branching decision cannot

concern route variables, as said in section 5.1.2.4. To this end, a branching policy

based on edge variables (see again 5.1.2.4) is adopted.

An edge variable x?ij is defined as follows:

x?ij =
∑
r∈R

bijr ·x?r

where coefficient bijr is equal to 1 if route r passes through edge ij (cf section A.3.1). Such

a variable is suitable to be branched on if it has a fractional value, i.e. if 0 < x?ij < 1.

This gives rise to two branches, one with xij = 0, the other with xij = 1, and to as many

child nodes of the current Branch&Bound tree node n. Suppose to call these latter n0

and n1, respectively. Branching decisions on edge variables can be propagated to the

descending nodes of the Branch&Bound tree in an effective way as follows. For the sake

of simplicity, we suppose that ij ∈ Ed, but a similar reasoning can be applied to pick-up:

1. the imposition of xij = 0 can be achieved by removing the edge ij from the graph of

the delivery PPs. As a consequence, the PPs in the CG of the child node n0 will not

be able to generate routes r traversing edge ij, hence we will have x?ij = 0 for n0. The

same will hold for its offspring. If for algorithmic efficiency reasons we keep the routes

generated in n and its ancestor nodes in the variable set of the MP, we will also need

to impose xr = 0 for each of such routes s.t. bijr = 1;

2.on the contrary, the imposition of xij = 1 can be accomplished by removing from the

graph of the delivery PPs all the edges of the subset:

{il, lj : l ∈ D\{i, j}} ⊂ Ed
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The effect of this removal is that the PPs in the CG of n1 and its descendants will

generate routes r that either visit i and j in sequence (i.e. bijr = 1), or neither of them

(i.e. air + ajr = 0, air being 1 if r visits i, cf section A.3.1). At each CG iteration,

the MP constraints (A.8) related to i and j can only be satisfied with routes having

bijr = 1. This is well shown in figure A.2. Therefore we will have:

∑
r∈R

airxr =
∑
r∈R

ajrxr = 1 =
∑
r∈R

bijr ·x?r = x?ij

i.e. the solution to which CG converges, although generally fractional, cannot have

x?ij < 1. Seen from another perspective, as long as the RMP solution has x?ij < 1 it

is not feasible and the use of artificial variables is required to satisfy the contraints

(A.8); further negative reduced costs exist hence, and edge ij will be associated with

an important prize, which makes the subsequent generation of routes traversing ij

likely. Again, if for algorithmic efficiency reasons we keep the routes generated in n

and its ancestor nodes in the variable set of the MP, we will need to impose xr = 0

for each of such routes that visit only one between i and j, i.e. such that air + ajr = 1.

Figure A.2: A branching decisions of type xij = 1 (x78 = 1 in the example) on a
node of the Branch&Bound tree is propagated to its offspring by removing from the
graph of the PPs the other outgoing arcs of i and incoming arcs of j. Constraints (A.8)
for both i and j can only be satisfied by routes traversing arc ij, therefore the CG will
necessarily converge to a solution with x?ij = 1, provided that all the columns associated

with routes r s.t. air + ajr = 1 are removed from the MP.

A.5 Conclusions and Perspectives

This appendix has introduced the Multicommodity-Ring Vehicle Routing Problem, a

tactical Vehicle Routing problem that descends from the MRLRP. Unlike the MRLRP,

the MRVRP is more likely to be solvable by exact methods. Therefore we discussed

the guidelines of a possible Branch&Price algorithm. Numerical experiments for the

MRVRP are left as a perspective for future work.
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Challenge ROADEF/EURO 2012:

Machine Assignment Problem

B.1 Introduction

More and more information is available on the web. To help users finding the piece of in-

formation they need, several web search engines were created. The competition between

them is tough as users want both accurate and quick results. A wide field of study con-

cerns the design of algorithms able of promptly providing relevant results to users. The

quickness of engines based on these methods relies on their design, but also on the avail-

ability of resources to assign them to. This need for huge amounts of resources – such as

CPU or RAM – leads to the construction of computer clusters; but then, finding a good

assignment of all the tasks to the different available machines is a key factor to improve

the overall efficiency. Finding an optimal assignment in such a context is the subject

of the challenge proposed by Google for the 2011-2012 ROADEF/EURO Challenge. Its

whole description can be found in [Société française de Recherche Opérationnelle et Aide

à la Décision (ROADEF), 2011].

An instance of the proposed problem is made up by a set of processes, each one with

specific resources consumption profiles. A set of machine is given with their resources

capacities. An initial feasible assignment is provided. Processes can be moved from their

initial assignment to a different machine leading to a new cost for the solution. However

these moves must respect numerous hard constraints. Some constraints can be indepen-

dently checked such as capacity constraints, but others link all the processes together in

case of dependency between processes or restrictions due to potential conflicts. The new

processes assignment must minimize a given cost function, which depends on machines
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load, resources usage balance and process displacement costs.

In the following, we briefly describe the method used to solve the problem. Section B.2

presents the MILP program that was used to model the problem; Section B.3 describes

the method used; Section B.4 gives the results obtained on the two sets of instances that

were released by the organizers.

B.2 The model

In this section, we give a MILP program which models the problem. The notations

that are used are the same as those introduced in [Société française de Recherche

Opérationnelle et Aide à la Décision (ROADEF), 2011]. Otherwise they are introduced

in the following subsections. The model is then given in two parts: first the objective

function that is composed by five different costs; then the constraints. The constraints

are of two kinds: those given by the problem and others logical constraints.

B.2.1 Parameters

• nm = |M|: number of machines

• ns: number of processes per service s ∈ S

• nl: number of machines per location l ∈ L

B.2.2 Variables

• xpm: binary variable indicating if process p ∈ P is assigned to machine m ∈M

• ysl: binary variable indicating if service s ∈ S is present at location l ∈ L

• zrm: integer variable measuring the excess of the safety capacity of resource r ∈ R
at machine m ∈M

• tbm: integer variable computing the result of the balance cost b ∈ B at machine

m ∈M

• smcV ar: integer variable measuring the service move cost
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B.2.3 Objective function

totalCost =
∑
r∈R

weightloadCost(r) · (
∑

m∈M
zrm)

+
∑
b∈B

weightbalanceCost(b) · (
∑

m∈M
tbm)

+
∑
p∈P

∑
m∈M

x0
mp · (1− xmp) · PMC(p) · weightprocessMoveCost

+ smcV ar · weightserviceMoveCost

+
∑
p∈P

∑
(m1,m2)∈M2,m1 6=m2

MMC(m1,m2)x0
m1pxm2p · weightmachineMoveCost

B.2.4 Constraints

∑
p∈P

xpmR(p, r) ≤ C(m, r) ∀m ∈M, r ∈ R (i)∑
p∈s

xpm ≤ 1 ∀m ∈M, s ∈ S (ii)∑
l∈L

ysl ≥ spreadMin(s) ∀s ∈ S (iiia)

ysl ≥

∑
p∈s,m∈l

xpm

min{nm,ns,nl} ∀s ∈ S, l ∈ L (iiib)

ysl ≤
∑

p∈s,m∈l
xpm ∀s ∈ S, l ∈ L (iiic)

ysl ∈ {0, 1} ∀s ∈ S, l ∈ L (iiid)∑
pa∈sa

∑
m∈n

xpam − nsa
∑
pb∈sb

∑
m∈n

xpbm ≤ 0 ∀n ∈ N , pa ∈ sa

sa dep. on sb (iv)∑
p∈P

(x0
pm + (1− x0

pm) · xpm) ·R(p, r) ≤ C(m, r) ∀m ∈M, r ∈ R (v)

Constraints (i) ensure the respect of the capacity constraints. Constraints (ii) assure

that there is no two processes of the same service at the same machine. Constraints

(iiia) to (iiid) assure the respect of the spread constraints. Constraints (iv) stand for

the dependency constraints. Constraints (v) ensure the transient usage constraints.

Additional logical constraints have to be added:

zrm ≥ 0 ∀r ∈ R,m ∈M
zrm ≥

∑
p∈P

xpm ·R(p, r)− SC(m, r) ∀r ∈ R,m ∈M

tbm ≥ 0 ∀b ∈ B,∈M

tbm ≥ target ·

((
C(m, r1)− C(m, r2)

)
−
( ∑
p∈P

xpm · (R(p, r1)−R(p, r2))
))

∀b ∈ B,m ∈M

smcV ar ≥ 0

smcV ar ≥
∑

m∈M,p∈s
x0
mp · (1− xmp) ∀s ∈ S
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B.3 The method

The former model is an exact model. However it is not tractable to run it within the time

limit imposed by the challenge, even on the small instances. To obtain good solutions,

three different methods are used. The third method is designed to cope with the B

instances, which size exceeds 5000 processes.

B.3.1 The local search

The local search is based on two simple moves: shift and swap. Both moves browse

all processes and/or machines. For the B instances, only a randomly chosen subset

of processes or machines are browsed because of their size. Note here that because of

transient usage constraints, some processes cannot be assigned to some machines.

With the shift move, we try to move each process p ∈ P to another machine m ∈M,m 6=
M(p), where M(p) is its current assignment. If this move improves the objective function

cost and is valid, it is kept in memory. Once all the machines are tested, the best move

for the process is kept in a stack of promising moves. The size of the stack is limited by

a value Nbshift keeping only the best processes to move sorted in a decreasing order of

the gain in the cost function.

With the swap move, we try to swap a process p ∈ P with another process p′ ∈ P such

that M(p′) 6= M(p). If this move improves the objective function cost and is valid, then

it is kept in memory. Here also once all the processes p′ are tested, the best swap for p

is kept in a stack of promising moves. The size of the stack is limited by a value Nbswap

keeping only the best processes to swap, sorted again in a decreasing order of the gain

in the cost function.

In both cases, once all the promising moves are found, we build a solution with all these

moves sequentially realized. We start from the first one of the stack. Then, following

their position in the stack, the others are tried. For each move in the stack, if the new

solution is still valid and improves the solution, the move is then performed.

B.3.2 The MILP driven search on increasing solution space

The solution obtained by the local search is then used to provide a warm start to the

MILP model to further improve the cost of the new process assignment. However, since

solving the exact model would be too time consuming, only a small model is built. To

each machine is associated the sum of its balance cost and its load cost. Then only

the 2m machines having the lowest and the greatest costs are selected. The processes

that are assigned to them can be moved, while the others are frozen at their current
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machine. If time enables, the solver is run several times increasing m and the size of the

model. Between two calls to this method, the former local searches are performed for

10 iterations on the solution obtained.

B.3.3 The Super Process: aggregating processes

Although the former method enables to deal with the A1 and A2 instances, the B in-

stances size does not allow to consider all the processes while calling the model. For that

purpose, processes are aggregated to form super processes. These structures are then

used in the MILP program rewritten to use super process instead of process as variables.

This reduces the number of variables and so the new MILP program can be solved.

These super processes have for resource consumption the sum of the resource consump-

tions of the processes it represents, and gather several services. The combination of

services enables to solve some of the dependency constraints. The creation of these su-

per process changes from a call to another, in order to enable diversity. The number of

processes in a super process is between 1 and 20, depending on the size of the instances.

There are created by taking into account the repartition of the process services in the

current solution. When a super process is moved from a machine to another, all the

processes it represents are moved.

B.4 The results

Here we give the results. The machine used has a Pentium(R) Dual-Core E5500 2.80GHz

with 3.8Go RAM on Debian version 64 version 7. The parameters Nbshift is set to 50

and Nbswap to the number of processes. The initial local search is run for 100 seconds,

then the MILP driven search is called, possibly several times. When the remaining time

is less than 60 seconds before the end, the local search is run starting from the best

solution encountered.



Appendix 2. Challenge ROADEF 169

instance initial solution final solution deviation (%) CPU time (s)

a1 1 49528750 44306501 89.4561 0.12
a1 2 1061649570 780581762 73.5254 489.32
a1 3 583662270 583006017 99.8876 421.25
a1 4 632499600 274364352 43.3778 516.01
a1 5 782189690 727578309 93.0181 510.24

a2 1 391189190 4168765 1.0657 525.90
a2 2 1876768120 895761559 47.7289 526.38
a2 3 2272487840 1399146389 61.5689 492.88
a2 4 3223516130 1773997601 55.0330 530.36
a2 5 787355300 529941864 67.3066 554.12

b1 7644173180 3554115209 46.4944 543.72
b2 5181493830 1019623424 19.6782 554.68
b3 6336834660 172170487 2.7170 512.84
b4 9209576380 4677870607 50.7935 467.04
b5 12426813010 931854930 7.4987 522.15
b6 12749861240 9525873556 74.7174 517.03
b7 37946901700 14990130791 39.5029 488.07
b8 14068207250 1215576946 8.6406 508.28
b9 23234641520 15885583344 68.3703 514.53
b10 42220868760 18099987199 42.8698 470.32

Table B.1: Results on the released instances.



Appendix C

Energy-aware Service

Provisioning in Volunteers Clouds

C.1 Introduction

SlapOS [Smets-Solanes et al., 2011] is an open source Cloud Operating system which

was inspired by recent research in Grid Computing [Cérin and Fedak, 2012] and in par-

ticular by BonjourGrid [Abbes et al., 2008, 2009], a meta Desktop Grid middleware for

the coordination of multiple instances of Desktop Grid middleware. figure C.1 shows the

current architecture. SlapOS is based on two types of nodes: SlapOS Nodes and SlapOS

Master. SlapOS is an hybrid cloud in the sense that each of its nodes can be dedicated

(Data center in figure C.1) or dynamically provisioned from volunteers (Home cloud in

figure C.1). The Master’s role is to install applications and run processes on SlapOS

nodes. It acts as a central directory of all SlapOS Nodes, knowing where each SlapOS

Node is located and which software can be installed on each node. The role of SlapOS

Master is to allocate processes to SlapOS Nodes. In comparison to the traditional cloud

view, SlapOS innovates in considering the possibility to build data centers-like with ded-

icated and volunteer nodes. The usage of volunteers node in the cloud data-center is

particularly interesting for the storage of Big-Data or when dealing with massive com-

putations. Successful projects like BOINC [Anderson, 2004] already demonstrated this

last point; indeed, as we have volunteers, we can increase the computational power of

the cloud. This solution is also interesting for improving the cloud elasticity at lower

price. Indeed, it might be cheaper for the cloud owners, to negotiate the subscription

of volunteer nodes, instead of buying new machines. Finally, this solution is also ad-

vantageous for energy saving since it promotes resources sharing. The SlapOS system

aims at providing a platform as a service (PAAS). One of its core activity is to keep

170



Appendix 3. Energy-aware Service Provisioning in Volunteers Clouds 171

available applications to its customers. In this paper, we are interested in optimizing

the energy efficiency of this service provisioning system. Our optimization is based on

the following scenario. Initially, we assume a finite set of requests; each referring to an

application that must be accessed by a customer during a period of time. We want to

deploy and maintain active the necessary applications such as to minimize the consumed

energy while: (1) avoiding the overloading of physical machines and (2) easing the fault-

tolerance by avoiding multiple deployments of a given application on a same machine.

One challenge in this scenario is the potential unavailability of volunteer machines. In-

deed, in comparison to dedicated machines, the clouds owners have few control on their

availabilities. Therefore, the deployment must take into account potential migrations

that can cause the unavailabilty of volunteers machines. We propose a complete solution

(modeling, problem formulation and analysis, algorithms and experimental evaluations),

for optimizing the described scenario. The organization of our contributions is as follows.

In section C.2, we explain the main application of our work. In section C.3 we define

the computational problems related to the minimization of energy consumption in our

service provisioning scenario. We also provide a theoretical proof of the NP-hardness.

In section C.4, we provide an Integer Programming model for service provisioning in vol-

unteer clouds. In section C.5, we propose two heuristics for the resolution of our service

provisioning problem. The first heuristic proposes to subdivide the problem in short

periods on which we apply the integer linear programming model. The second heuristic

is also based on the subdivision of the general problem. However, subproblems here are

solved with a greedy algorithm. In section C.6 we conduct extensive experiments under

different configurations. The first series of experiments are about a comparaison between

the ILP solutions and the heuristics issued from the greedy schema. The second series

of experiments analyse our heuristics for finding the best implementation. Section C.7 is

about related works. Section C.8 concludes the paper. We would like to assert that the

paper is about modeling first and not about experiments on a real system. However, we

estimate that our modeling is a good compromise between the parameters we consider

impacting the phenomenon and the realism of current cloud technologies. For instance,

our parameter settings consider the SlapOS cloud system running in production at Paris

131.

C.2 Application of our work

SlapOS is a PAAS whose data-center combines various types of execution supports (desk-

top, smartphones, tablets etc.). This diversity is very interesting in the perspective of

1https://slapos.cloud.univ-paris13.fr
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Figure C.1: The SlapOS Architecture.

increasing the cloud computational power from volunteer subscriptions(what is impor-

tant for managing big data). In practice however, there are many challenges to address

in the management of such a node diversity. For example, the SlapOS team ported

the system on a Nexus S mobile phone and under Android 4.0.4. A Wordpress (which

contains an Apache server) was also deployed on the Nexus and the operating system

was a ’chrooted’ Debian. The standby processor option (Wave Lock) was disabled and

Wifi was enabled (Wifi Lock). A script was coded for writing the date in a file every 5

minutes. They measured the battery life when Wordpress was running and when it was

not running. The script was running in these two cases.

On this simple deployment, the SlapOS team noticed a battery life of 22 hours without

Wordpress and 12 hours with Wordpress running. They also noticed that starting a

new Wordpress instance took few seconds with Android. The main conclusions of these

experiments were the followings: a) SlapOS applications may reduce drastically the

battery life. This high penalty might not motivate volunteers to keep their nodes in

SlapOS clouds b) the penalty in restarting an application when needed is not prohibitive.

In another words, we could imagine at large scale to use volunteers nodes (Tablets,

Smartphones, PCs) for hosting Web applications under the condition that we know how

to optimize the energy consumption.

We consider this paper as a first stage for improving the SlapOS provisioning system

in this direction. In its actual version, SlapOS implements the following behavior. For

joining a SlapOS cloud, any new volunteer must first register its machine to a SlapOS

master node by declaring various parameters such as the memory space, disk space,

CPU type, location of the machine. . . Then, the volunteer can choose from the catalog of

SlapOS applications some that he accepts to install on his machine. Finally, the volunteer

can let his machine opened for other users (the machine is registered as public) or not.

For any user, SlapOS maintains a list of executable applications. These applications

are those that the user accepted to install or those that are located on machines nodes

registered as public.
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In the optimization scenario that we consider, we assume that, the SlapOS provisioning

system has a list of requests for applications. Each request refers to an application that

the system must maintain available to a client during a period of time. An applica-

tion can be referenced in multiple requests. For servicing the requests, the provisioning

system can use either dedicated or volunteer nodes (those that support the requested

applications). The objective is to build a plan for deploying and run instances of appli-

cations such as to minimize the energy consumption.

Since our research focuses on a green scheduler for large scale systems such as Clouds, the

volume of information exchanged between nodes is potentially big. Frequent decisions

will generate ”Big-Data” volume oriented problems. Infrequent decisions may generate

inaccuracies. This paper is about foundations to deal with scheduling generating large

amount of bytes (for instance during the migration steps), software and tools to manage

the complexity of building green data centres under environmental perspectives and

sustainable development. The next section deals with the formal description of this

problem.

C.3 Problem Description

We propose in this part two modeling approaches for optimizing the provisioning of

requests in volunteer clouds. As we will see, such provisioning gives rise to two compu-

tational problems which are formally different.

Let us introduce first some general context notations and assumptions which are common

to both modeling approaches and both problems. We assume that the plan to build must

deploy a set N = {1, ..., n} of applications on a set M = {1, ...,m} of both dedicated and

volunteer machines. For each application j, kj instances are required. Each machine i

has a capacity qi, i.e. the maximal number of application instances that can be deployed

on it at the same time. The plan must ensure that the applications are available to

requesters during a time horizon [0, T ]. At each instant t in the time horizon, the run

of any application j ∈ N on a machine i ∈ M will cause a power consumption equal

to Pji(t). As a consequence, the energy consumption for deploying and running the

application j on the machine i all through the time horizon will be
∫ T

0 Pji(t)dt. For the

sake of simplicity, we will assume that variations in the power consumption during the

runtimes of any application are negligible, i.e. Pji(t) ' Pji, with Pji a constant value.

Since some machines are volunteers, there may be short intervals of time [ta, tb] ⊂ [0, T ]

in which some of them are unavailable. In order to properly model this, we assume

that the time horizon is discretized in T
∆ periods of size ∆, which will referred to by
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Figure C.2: The SlapOS Architecture.

means of index τ ∈ T = {1, ..., T∆}. We also define index set T0 = T ∪ {0}. Moreover,

in each period, a deterministic information related to the availability of any machine is

given, in the form of a matrix B. More precisely, element Bτ
i states whether or not i is

available during the interval τ ≡ [(τ − 1)·∆, τ ·∆[. Let us observe that B can be taken

as a bit matrix. This notion was considered in past work in volunteer computing for

describing the machine availability [Iglesias et al., 2012]. Practically, we can obtain a

good approximation of this matrix in negotiating the availabilities with the volunteers

of the system, during the machine registration in the cloud. For the sake of conciseness,

in the following we will often make use of vector notation as we have implicitly done for

B:

B = (Bτ
i )|τ∈Ti∈M

C.3.1 First modeling approach

In the first proposed modeling approach, the energy consumption is approximated by

the sum of two terms. The first is the energy consumed in periods. During period τ ,

given an application j and a machine i, this energy can be computed as follows:

Bτ
i

∫ τ ·∆

(τ−1)·∆
Pji(t)dt = Bτ

i ·Pji ·∆ = Bτ
i ·Ecji

where Ecji = Pji ·∆ is the energy consumption of an application j when running for a

period on a machine i. The second term is the energy consumed in transfers: at any

time, given an application j to transfer from h to i, this energy is equal to Cjhi.

The aim is to determine a plan that ensures at each period τ that the requested number

of instances for each application are deployed; the plan must also minimize the total



Appendix 3. Energy-aware Service Provisioning in Volunteers Clouds 175

energy consumed in periods and transfers; finally, it must respect the three constraints

of Table C.1.

C1 Applications must be deployed on available machines;
C2 The kj instances of application j ∈ N must be assigned to kj

distinct machines;
C3 On any machine i ∈M , we cannot have more than qi applications.

Table C.1: Constraints of the outlined problems

Constraints C1 are straightforward. Relations C3 ensure that the machine will not be

overloaded; in other work, such constraints are often defined under the notion of power

capping [Georgiou et al., 2014]. Finally, constraints C2 ensure that the applications on

a same machine are distinct. This is important for fault tolerance reasons, since given

an application j, the greater is the number of machines its kj instances are deployed to,

the higher will be the fault tolerance degree of application j.

Symbol Description

[0, T ], ∆ Time horizon and duration of periods
T
∆ , τ ∈ T =
{1, ..., T∆}

Number, index and set of periods

n, j ∈ N = {1..n} Number, index and set of applications

k = (kj)|j∈N Vector of number of required instances of each
application

m, i ∈M = {1..m} Number, index and set of machines

q = (qi)|i∈M Machine capacity vector

B = (Bτ
i )|τ∈Ti∈M Machine availability matrix

Ec = (Ecji)|
j∈N
i∈M Energy consumption matrix

C = (Cjhi)|j∈Ni,h∈M Transfer Energy matrix

Table C.2: Summary of input data of the outlined problems

The aim defined so far –the minimization of the overall energy consumption– can be

further defined according to whether we adopt the provisioning system viewpoint or

the volunteer viewpoint. In the former case, the consumed energy is the sum of energy

consumed in periods and transfers for all machines. We will refer to this problem as

the MinSum-Plan Provisioning Problem on Volunteer Clouds (PPPVCMinSum ). In

the latter case, the energy consumed by the whole system is not necessarily important.

What is critical is the one consumed by the volunteer’s machine. The objective function

consists then in minimizing the maximal sum of consumed energy (in transfers and

period) that involves any machine. We will refer to this problem as the MinMax-Plan

Provisioning Problem on Volunteer Clouds (PPPVCMinMax ).

We provide an example that illustrates how we compute the objective function in each

one of the two problems.
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We assume a case where kj = 1 copy for each one of the n applications, and we consider

m = 4 machines, which capacities are respectively q1 = q2 = n, q3 = q4 = n
2 ; the

availability matrix B is defined in Table C.3, which shows that machines 3 and 4 are

always available, whereas machines 1 and 2 are alternatively available.

(τ mod 2) Bτ
1 Bτ

2 Bτ
3 Bτ

4

0 1 0 1 1
1 0 1 1 1

Table C.3: Availability matrix in the example

We assume that for each j ∈ N , the energy consumed in periods are Ecj1 = Ecj2 = E
n

and Ecj3 = Ecj4 = 2E
n , whereas the energy consumed in migrations Cjhi are supposed to

be equal to C regardless of j, i and h, E and C being constant terms. A possible plan

solution in this setting consists of alternatively putting the instances on the machines 1

and 2 according to their availability. In this case, the objective value for PPPVCMinSum

is equal to |T |E+(|T |−1)nC. For PPPVCMinMax , the objective value for this solution

will be d |T |2 e·E+(|T |−1)nC. In this case, for the computation of the energy consumed

in periods, we take into account the fact that the machines 1 and 2 are available at

most in d |T |2 e periods. Between any period, both machines are involved in the transfer;

hence the total transfer costs. Let us observe that the solution that we considered is not

necessarily optimal for our problems. For PPPVCMinSum , if (|T | − 1)nC > |T |E, the

best solution consists of using only the machines m = 3 and m = 4, which will lead to

a total energy consumption equal to 2 |T |E.

This example shows that the two problems differ. It also shows how both the energy in

periods and the energy in transfers, and the ratio between the two can play a role in

determining the optimal solution.

C.3.2 Second modeling approach

On many points, the first modeling approach is objectionable. Indeed, we focus only on

two types of inputs for energy consumption: the one resulting from applications run in a

period and the one resulting from transfers. In practice, it might be important to include

other separate costs like the energy induced by the action of deploying an application on

a node. The definition of the total energy consumed by a set of applications in a period

is also criticizable in the first modeling. We will overcome such issues with the second

modeling approach.

According to the assumptions we have made so far, given j, j′ ∈ N and i ∈M , the power

consumption for running j on i is equal to constant Pji at each t ∈ [0, T ], therefore

the execution of both j and j′ on i causes a power consumption Pji + Pj′i. However,
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this formula does not take into account the shared or mutual power consumption due

to the fact that the applications are run simultaneously on the same machine. More

precisely, on each machine we must dissociate the base power consumption due to system

operations from that induced by the running applications.

In order to take into account this further level of detail in the description of energy

consumption, we introduce for each machine i and application j, two quantities: a base

energy Ebi due to the processing of systems operations, and an overhead energy E+

ji

induced by the run of applications that we deployed on i. As a consequence, given a

machine i and the subset N τ ⊂ N , |N τ | ≤ qi of applications that have been deployed

on it at period τ , the energy consumed on i in the same period is:

Ebi +
∑
j∈Nτ

E+

ji

The energy input dataset is now composed of E = (Eb,E+ ,C). Therefore, one obtains

a generalization of the first modeling approach, which is the specific case with Eb = 0.

We can consequently reformulate both PPPVCMinSum and PPPVCMinMax according

to this new modeling approach.

Below, we will analyze the hardness of the computational problems.

C.3.3 Problem analysis

Since the first modeling approach turns out to be a particular case of the second one,

we refer in the following analysis to the former, as every finding on its hardness can be

extended to the latter.

Theorem C.1. PPPVCMinSum is NP-hard in the first modeling approach.

Proof. Proof In a previous work [Cérin et al., 2013], we have demonstrated the NP-

hardness of PPPVCMinSum by showing that a particular case of it can be reduced in

polynomial time to the axial three-index minimization assignment problem (A3IAP-

Min), which is known to be NP-hard (see for instance [Karp, 1972], [Ausiello et al.,

1999]).

Corollary C.2. Unless P = NP , PPPVCMinSum is inapproximable in the first model-

ing.

This is because no polynomial time algorithm can achieve a constant performance ratio

for A3IAP-Min unless P = NP (see [Ausiello et al., 1999]).
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Theorem C.3. In the first modeling approach, PPPVCMinMax is strongly NP-hard

Proof. Proof We obtain the proof by a reduction to a special case of the 3-Partition

problem; that is NP-hard in the strong sense. An instance of this problem is given by

a set S of 3k elements such that for each u ∈ S, we have an associated positive integer

s(u). We also have
∑

u∈S s(u) = k ·T and for each u, we have T/4 < s(u) < T/3. The

problem consists in finding k disjoints subsets S1, . . . , Sk of 3 elements each such that

the sum of the values of elements in each Si is equal to T and
⋃k
i=1 Si = S.

We can solve this instance from the following PPPVCMinMax instance. We assume

3k applications to deploy on k machines in one period of time. The capacity of each

machine i is qi = 3 and all machines are available. For any application j, we have kj = 1.

We associate each application j with a distinct positive integer u ∈ S. Let us capture

such associations with the formula f(u) = j. Finally, we set the energy consumed per

period to Ef(u)i = s(u),∀i. We then solve this PPPVCMinMax instance. Let Z be the

makespan returned by this solution (the maximal energy consumption per machine). If

Z = T then we state that the partition has a solution S1, . . . Sk where

Si = {u : f(u) = j and u is deployed on the machine i} (C.1)

Otherwise, we state that there is no solution to the partition problem.

It is obvious to notice that given the relation
∑

u∈S s(u) = kT , the smallest possible

makespan of the associated PPPVCMinMax instance is T ; and in this case, the energy

consumed per machine is exactly T . More, if there is a solution to the PPPVCMinMax

instance, then it will set exactly three distinct applications per machine. This is because

we have a total of 3k applications and qi = 3. Consequently, the relation(C.1) of the Sis

ensures that any solution to the PPPVCMinMax for which the makespan is T is a solution

to the partition problem. In the same way, from any solution to the partition problem,

we can easily build a solution to the related PPPVCMinMax instance. It suffices to set

on each machine i the applications f(u). Since it is straightforward that the reduction

can be done in polynomial time, we have the proof.

Since the second modeling is a generalization of the first one, these NP-hardness results

can be extended to it. It might however be interesting to see if the generalizations

introduced by the second modeling make the problem harder. For this, let us consider

the specific cases where the overhead induced by applications are all null (∀i, j E+
ji = 0).

We have the following result.

Theorem C.4. In the second modeling, PPPVCMinSum is NP-hard even with a null

overhead for applications.
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Proof. Proof In [Cérin et al., 2013], it is shown that a specific case of this problem can

be reduced to the minimum knapsack problem.

Consequently, the second modeling approach introduces computational challenges in

the resolution. Thus, we will focus on the resolution of PPPVCMinSum formulated in

compliance with the second modeling approach.

C.4 An Integer Linear Programming model for PPPVCMinSum

The first method to tackle PPPVCMinSum is by means of Integer Linear Programming

(ILP), which gives rise to an exact method. Exact methods guarantee to find an optimal

solution, in our case a minimum energy deployment, since the whole set of feasible plans

is taken into account. However, exact methods can be computationally heavy when

dealing with medium- to big-sized problem instances. For such instances, we will design

and make use of heuristic algorithms.

Our ILP model is based on the following decision variables:

Ibinary allocation variables xτji, τ ∈ T , j ∈ N , i ∈ M , where xτji is equal to 1 if and

only if one copy of application j is allocated on machine i at period τ ;

Ibinary usage variables yτi , τ ∈ T , i ∈M , which state whether or not machine i is used

during period τ ;

Ibinary migration variables vτjhi, τ ∈ T \{1}, j ∈ N , h, i ∈M , with vτjhi equal to 1 if a

copy of application j is deployed on machine h in period τ −1 and on machine i in the

following period τ . In other words, vτjhi = 1 implies a migration cost Cjhi at period τ .

Movement variables are obviously not defined for τ = 1.

Note that since at most one instance of each application can run on one machine (for

the aforementioned fault tolerance reasons), binary allocation variables xτji are sufficient

to describe allocation decisions.

We can therefore express our objective function as:

z PPPVC
MinSum =

∑
i∈M
τ∈T

Ebi y
τ
i +

∑
j∈N
i∈M
τ∈T

E+

ji x
τ
ji +

∑
j∈N
h,i∈M
τ∈T

Cjhi v
τ
jhi. (C.2)

z PPPVC
MinSum accounts for three energy consumption terms: base energy, overhead energy and

transfers’ energy, in the order they appear in (C.2). This latter could be rewritten as
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follows:

z PPPVC
MinSum =

∑
i∈M
τ∈T

(
Ebi y

τ
i +

∑
j∈N

(
E+

ji x
τ
ji +

∑
h∈M

Cjhi v
τ
jhi

))
(C.3)

so as to remark that energy consumption can be subdivided according to machines and

periods, and that given a period τ ∈ T and a machine i ∈ M , the energy consumption

can again be divided into base, overhead and transfers’ energy.

As a consequence, the ILP model is:

(MPPPVC
MinSum)

min z PPPVC
MinSum (C.4)

s.t. yτi ≤ Bτ
i ∀ i ∈M, τ ∈ T (C.5)

xτji ≤ yτi ∀ j ∈ N, i ∈M, τ ∈ T (C.6)∑
j∈N x

τ
ji ≤ qi yτi ∀ i ∈M, τ ∈ T (C.7)∑

i∈M xτji = kj ∀ j ∈ N, τ ∈ T (C.8)∑
h∈M vτjhi ≤ xτji ∀ j ∈ N, i ∈M, τ ∈ T \ {1} (C.9)∑
i∈M vτjhi ≤ x

τ−1
jh ∀ j ∈ N, h ∈M, τ ∈ T \ {1} (C.10)∑

i∈M vτjhi ≤ 1− xτjh ∀ j ∈ N, h ∈M, τ ∈ T \ {1} (C.11)∑
h∈M vτjhi ≤ 1− xτ−1

ji ∀ j ∈ N, i ∈M, τ ∈ T \ {1} (C.12)∑
i∈M vτjhi ≥ x

τ−1
jh − x

τ
jh ∀ j ∈ N, h ∈M, τ ∈ T \ {1} (C.13)

yτi ∈ {0, 1} ∀ i ∈M, τ ∈ T (C.14)

xτji ∈ {0, 1} ∀ j ∈ N, i ∈M, τ ∈ T (C.15)

vτjhi ∈ {0, 1} ∀ j ∈ N, i, h ∈M, τ ∈ T \ {1}(C.16)

Relation (C.4) asserts that we seek for the minimal value of z PPPVC
MinSum in the space of

all feasible assignments of instances to machines all along the time horizon. Relations

(C.5)–(C.13) define, in the form of constraints on the decision variables, such space of

feasible (i.e., that meet the criteria) assignments. Finally, (C.14)-(C.16) state the binary

nature of all of the variables.

Relations (C.5) impose that a machine cannot be used in periods of unavailability;

relations (C.6) assert that if machine i is not used, then no application instance can

be deployed on it, as xτji ≤ yτi forbids to have yτi = 0 and xτji = 1. Condition (C.7)

imposes that in case machine i is available and used at τ , then at most qi instances

can be allocated on it: infact yτi = 1 ⇒
∑

j∈N x
τ
ji ≤ qi. Constraints (C.8) guarantee

the requested number kj of copies of each application j at each τ , on no matter which
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machines.

Constraints (C.9)–(C.13), along with the expression of z PPPVC
MinSum , make v variables actually

account for instances transfers. In fact, given machines h and i and a period τ , if

xτ−1
jh = 1 and xτjh = 0, then one among variables vτjhi, i ∈ M \ {h} must be set to

1: this is stated by constraints (C.13), and the ILP solver will choose the proper one

according to the energy cost drivers of objective function z PPPVC
MinSum . Relations (C.9) and

(C.10) avoid any variable vτjhi to be improperly set to one if application j has neither

been deployed on machine h at period τ − 1, nor on machine i at period τ . In fact, for

instance for (C.9), we have:

xτji = 0⇒
∑

h∈M\{i} v
τ
jhi = 0⇒ (∀h ∈M \ {i}) vτjhi = 0 whereas

xτji = 1⇒
∑

h∈M\{i} v
τ
jhi ≤ 1

i.e. in the second case at most one of the vτjhi can be set to 1. Relations (C.10) behave

in a similar way. Constraints (C.11) and (C.12) are more subtle and used to avoid im-

proper migration accounting when an application copy remains on one same machine

on two consecutive time periods. Roughly speaking, if xτ−1
ji = xτji = 1, i.e. a copy of j

is deployed on machine i at period τ − 1 and does not migrate at period τ , then each

migration variable vτjih (from i towards any other h) and vτjhi (from any h towards i) is

prevented to take value 1.

Note that all along the model application migrations are taken into account and paid

for starting from period τ = 2.

One last observation concerning the model: constraints (C.5)–(C.8), along with all con-

cerned xτji and yτi variables, can be removed in a preprocessing phase for all i, τ such that

Bτ
i = 0, since B is entirely known a priori; the same holds for constraints (C.9)–(C.13)

and variables vτjhi for all i, h and τ > 1 such that Bτ−1
h = 0 or Bτ

i = 0. Here we have

shown the whole of them again for explanation purposes only.

As said, the described mathematical model MPPPVC
MinSum gives rise to an ILP-based algo-

rithm, which in its most generic form is called a Branch&Bound algorithm. We briefly

recall how does such an algorithm work, in order to focus on some concepts that have

driven the computational experience described later in section C.6.

The search in the solution space of a ILP minimization problem can be computationally

heavy due to the integrality constraint, but so it is not for its LP relaxation, i.e. the

mathematical problem we obtain by relaxing such contraints, because the solution space

of the latter can be efficiently explored by means of the well-known simplex algorithm.

However, the value of the optimal solution of the relaxed problem is a lower bound (LB)

on that of the optimal solution of the original problem, since the solution space of the

former is enlarged with respect to that of the latter due to the integrality constraint
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relaxation. This is a key concept: even if a ILP minimization problem is difficult to

solve, it is normally easy to get a lower estimate on the value of its optimal solution.

The Branch&Bound is a strategy to implicitly enumerate all of the solutions of an

ILP minimization problem which makes use of this concept. During this search, each

new improving integer solution is saved as the best found one and represents an upper

bound(UB) on the value of the optimal solution. As the search goes on, UB and LB

are progressively refined: the value of the best found integer solution decreases, while

the value of the lower estimate LB grows. The search is stopped when the so-called gap

g = UB−LB
UB , i.e. the relative distance between UB and LB, converges to a value lower

than a given threshold g. The higher is the value of g, the less will be both the accuracy

of the solution and the time to stop the search, and viceversa.

However, such time depends also on the quality of the lower bound LB: if such lower

bound is loose, i.e. the difference between the optimal solution of the integer problem

and that of its LP relaxation is considerable, then so will be the initial gap and the

time to reach the g < g condition; on the other hand, a tight lower bound will ease the

convergence, as the gap will be small from the very beginning of the search.

C.5 Heuristic Approaches to PPPVCMinSum

Structurally speaking, PPPVCMinSum consists in a sequence of two-dimensional as-

signment problems which span a time horizon and are interconnected between them;

since two-dimensional assignment problems are known to be polynomially –thus easily–

solvable, the aspect that make the degree of complexity of PPPVCMinSum rise is time

dependence and the relations between decisions concerning different time periods. The

proof comes from some preliminary tests: in spite of the relatively reduced complexity of

the time dependencies (they only link couples of consecutive deployments), as the num-

ber |T | of periods grows –the other problem dimensions staying the same– the problem

becomes from computationally light, to difficult, to nearly intractable.

An approach to deal with the hardness of PPPVCMinSum instances with a wide time

horizon is to subdivide the overall problem in more tractable subproblems and then

obtain a global solution to the former by assembling the solutions of the latter ones. In

the following, we present two heuristic algorithms: a more classic rolling horizon algo-

rithm, and a second one based on Consecutive Execution Blocks. In spite of approaching

the problem in two somehow complementary fashions, both follow the aforementioned

solution strategy.



Appendix 3. Energy-aware Service Provisioning in Volunteers Clouds 183

C.5.1 A Rolling Horizon Algorithm

Rolling Horizon techniques are commonly used when dealing with either uncertainty over

data or long-term planification/scheduling problems. PPPVCMinSum is easily seen to

belong to the latter class of problems, which are inherently time-dependent and charac-

terized by strong interdependencies between different time steps, thus extremely difficult

to solve to optimality when dealing with a long time horizon. The literature of Combina-

torial Optimization offers many examples of rolling horizon frameworks (see e.g. [Rakke

et al., 2011] and [Jaillet et al., 2002]).

A rolling horizon approach to tackle such problems typically consists in defining a se-

quence of subproblems by shifting a rolling time window all along the long-term time

horizon which is therefore covered by the time horizons of the subproblems. The latter

are then easily solved (due to their shorter time horizon) and their solutions interlaced,

in order to obtain a global solution to the overall planning problem.

Obviously, not only this is a heuristic approach, but it calls for:

• a good compromise in the subdivision in subproblems: they must be small enough

to be easily solvable, yet the original problem must not be split in too many

subproblem, to avoid that the growth of the computation time overcompensates

the benefit of the computational ease, and the solution reconstruction process

becomes too time-consuming;

• a way to efficiently take into account the dependencies between the subproblems.

This is the most delicate aspect, as it requires to find a way to embed in each

subproblem Jh the knowledge of the deployment decisions taken in the previously

solved subproblems J0, ..., Jh−1, and that of the machine availability in the time

periods covered by the following ones.

To tackle the first aspect, a common solution is to have each subproblem span an identical

number of time periods, which is experimentally tuned. As for the second aspect, a

possible solution is to:

• make the time horizon of consecutive subproblems overlap;

• incorporate in the objective function of a subproblem a term derived from the

knowledge of the availability of the machines in the forthcoming time periods.

We refer to figure C.3 for a small example: the overall problem has a time horizon of

8 periods (T = {1, ..., 8}), whereas that of subproblems has a width of 3 periods (with

the exception of the last one): subproblem 1 spans over periods τ = 1, 2, 3 (red box),
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subproblem 2 over periods τ = 3, 4, 5 (blue box), and so on. Subproblem 1 can decide

the deployment at τ = 3 while considering the migration costs that such decisions will

entail, as it is aware of the machine availability at τ = 4 (and in general for each τ ∈ T ).

In a complementary way, subproblem 2 can use the deployment at τ = 2 provided by

subproblem 1 as initial condition.

In the following, we introduce and discuss in greater depth the proposed rolling horizon

algorithm. In order to do so, let us first introduce some extensions to model MPPPVC
MinSum

and additional notations.

C.5.1.1 Initial Conditions

First, we extend the definition of migration variables vτjhi to time period τ = 1:

vτjhi ∈ {0, 1} ∀ j ∈ N, i, h ∈M, τ ∈ T (C.17)

Then we extend to period τ = 1 constraints (C.9)–(C.13) as follows:

∑
h∈M v1

jhi ≤ x1
ji ∀ j ∈ N, i ∈M (C.18)∑

i∈M v1
jhi ≤ Xjh ∀ j ∈ N, h ∈M (C.19)∑

i∈M v1
jhi ≤ 1− x1

jh ∀ j ∈ N, h ∈M (C.20)∑
h∈M v1

jhi ≤ 1−Xji ∀ j ∈ N, i ∈M (C.21)∑
i∈M v1

jhi ≥ Xjh − x1
jh ∀ j ∈ N, h ∈M (C.22)

We will denote asMPPPVC
MinSum the model we get fromMPPPVC

MinSum by replacing (C.16) by (C.17)

and adding (C.18)–(C.22). Term X = (Xji)|j∈Ni∈M is an input of the problem and repre-

sents its initial conditions: a preliminar deployment of the application on the machines,

prior to the beginning of the time horizon, that determines the transfer costs at period

τ = 1. Note that by imposing (∀j ∈ N, i ∈ M) Xji = 0 we state the absence of any

particular initial conditions, since this makes transfer costs at period τ = 1 be equal to

0 (see (C.19)). Hence, model MPPPVC
MinSum generalizes MPPPVC

MinSum .

For conciseness we will denote with X = 0 the absence of initial conditions to impose.

Finally, note that constraints (C.18)–(C.22) would also allow to impose circularity con-

ditions to treat cases in which the availability of machines is periodic with periodicity

|T |·∆ = T ; we do not enter into further details, as this would go beyond the purposes

of this paper.
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C.5.1.2 Further notation

We define some additional notation that we will use in the remainder of the document.

Let:

IJ = (TJ , NJ ,MJ ,BJ ,kJ ,qJ ,EJ ,XJ) denote an instance (i.e. a particular case) of

PPPVCMinSum , and TJ , ...,XJ the elements which define it. In the following, for an

abuse of language we will often refer to a PPPVCMinSum instance as to a problem to

simplify some explanatory parts;

IFJ denote the set of all feasible solutions of J ;

Is ≡ (x,y,v) ∈ FJ denote a feasible solution and x, y, v its allocation, usage and

migration components; in particular, let symbol xτ ′ = (xτji)|τ=τ ′
j∈N,i∈M represent the

component of x at period τ ′ ∈ T ;

IzJ denote the standard objective function defined in (C.2) with the energy coefficients

EJ .

C.5.1.3 Description of the Algorithm

Let APPPVC
MinSum(J , z) be an algorithm capable of finding a solution sz for the PPPVCMinSum

instance J which is optimal with respect to a generic objective function z. Obviously,

running APPPVC
MinSum(J , zJ) is sufficient to find the optimal solution of PPPVCMinSum but in

most cases the size of MJ , NJ , TJ make the problem unmanageable, even if theoretically

tractable.

To solve PPPVCMinSum for such hard instances, we design a heuristic algorithm H PPPVC
MinSum

which makes use of APPPVC
MinSum to solve more tractable subproblems and obtain good solu-

tions in a rolling horizon fashion. The input parameters of H PPPVC
MinSum are:

I the instance J = (TJ , NJ ,MJ ,BJ ,kJ ,qJ ,EJ ,0) to solve;

Ia rolling window width w;

Ia step width u;

Ia evaluation function width b;

We make the hypothesis that no initial conditions are given.

The basic idea is simple: we solve as many subproblems as necessary to cover the entire

horizon TJ : then a global solution to J is obtained by assembling the partial solutions

of subproblems. H PPPVC
MinSum starts by solving subproblem:

J0 = (T0, NJ ,MJ ,B0,kJ ,qJ ,EJ ,0); T0 = {0, ..., w − 1}; B0 = (Bτ
i )|τ∈T0i∈M



Appendix 3. Energy-aware Service Provisioning in Volunteers Clouds 186

which is basically the restriction of J to the window of the first w periods of TJ and the

associated submatrix of B.

Problem J0 is solved by calling APPPVC
MinSum(J0, zJ+L0) so as to get the solution s = (x,y,v).

L0 is called evaluation function: it is used to get a lower estimate of the transfer costs

in the b periods following the time window T0, i.e. w ≤ τ < w+ b, due to the allocation

decisions taken at τ = w − 1. L0 allows APPPVC
MinSumto have a minimal awareness of the

impact of such decisions. This is to exploit the fact that B is completely known a priori.

We will explain shortly how does L0 work.

Then the rolling time window is shifted forward of u periods so as to define the time

horizon of subproblem J1 = (T1, NJ ,MJ ,B1,kJ ,qJ ,EJ ,X1) where:

T1 = {u, ..., u+ w − 1}; B1 = (Bτ
i )|τ∈T1i∈M ; X1 = xu−1

J1 is solved by calling APPPVC
MinSum(J1, zJ + L1). Figure C.3 explains precisely this phase

with an example and can help understanding some key concepts.

Problem J1 can be imposed initial conditions X1, as the solution of J0, s, provides a

deployment xu−1 for the period immediately before the time window T1. The most

interesting aspect is that since u < w, time windows T0 and T1 are partially overlapped,

therefore the deployment xu−1 is not the last one which is output byAPPPVC
MinSum(J0, zJ+L0).

On the contrary, APPPVC
MinSum(J0, zJ +L0) decided such assignment while being aware of the

availability of machines for the remaining periods of T0, i.e. u ≤ τ < w.

In the example of figure C.3, w = 3, u = 2, and b = 1. When solving J0, APPPVC
MinSum(J0,

zJ +L0) provides a deployment (xτ )|τ∈{1,2,3}: the initial condition for subproblem J1 is

x2. Such deployment has been determined while knowing the availability of machines at

τ = 3 and a lower estimate L0 of how the allocation decisions at τ = 3 would impact on

the energy transfer costs in period τ = 4. Therefore, x2 can be considered to be a good

initial condition for J1, whereas if we had u = w, the initial condition of J1 would be the

deployment x3, which APPPVC
MinSum(J0, zJ +L0) has decided with no knowledge of machines

availability in the following time periods – except for the lower estimate provided by L0.

The example in figure C.3 can also help explaining the evaluation function L0. When

solving J0 we restrict the time horizon to T0 = {1, 2, 3}; however, since we have a

complete knowledge of the B matrix, we know that if x3
j2 = 1, i.e. we allocate a copy of

some application j on machine i = 2 at τ = 3, we will have to move it in the next time

period, since B4
2 = 0. In such a case, the minimal transfer energy cost for application j

will be:

min
i∈M :B4

i =1
Cj2i
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The expression of L0 takes into account all the applications that we allocate on machines

that are available at τ = 3 but not at τ = 4:

L0 =
∑
j∈N

∑
h∈M :
B3
h=1

B4
h=0

(
min
i∈M :
B4
i =1

Cjhi

)
x3
jh

The extension to the other subproblems and, in general, to the case b > 1 is quite

straightforward: we omit it for conciseness. It can be easily seen that, in spite of the

fact that choosing a large value for b may seem advantageous, such a choice would not

pay off; indeed, the significance of the evaluation function decreases as b grows.

H PPPVC
MinSum goes on by iteratively shifting the rolling time windows and solving all the

subproblems. The number of subproblems to solve is p = 1 + d |TJ |−wu e; the width

of the time horizon of the last subproblem, Tp−1, may be less than w. The overall

solution to problem J is built starting from the partial deployments obtained separately

when solving the subproblems; for the overlapping time periods τ ∈ Tp−1 ∩ Tp, 1 ≤
p < p, H PPPVC

MinSum considers the deployment provided by the solution of Jp, i.e. the last

run subproblem between the two. One last detail, the evaluation function for the last

subproblem, Lp−1, is equal to 0.

A brief recap on figure C.3 can help fix the main elements of H PPPVC
MinSum . In the example

we have:

Ip = 4, i.e. four subproblems J0, ..., J3;

I subproblem J0 is associated with time window {1, 2, 3}, has no initial conditions (X0 =

0), and it is solved by running APPPVC
MinSum(J0, zJ +L0): evaluation function L0 considers

the availability of machines at τ = 3. H PPPVC
MinSum saves partial deployments x1 and x2;

I subproblem J1 has time window T1 = {3, 4, 5}, initial condition is X1 = x2 and

evaluation function L1 is based on (Bτ
i )|τ=6

i∈M ; H PPPVC
MinSum saves partial deployments x3

and x4;

I subproblem J2 spans over time window {5, 6, 7}, has initial condition X2 = x4 and a

evaluation function L2 based on (Bτ
i )|τ=8

i∈M ; H PPPVC
MinSum saves deployments x5 and x6;

Ifinally, subproblem J3 is associated with time window {7, 8} and has initial condition

X3 = x6, while L3 = 0; H PPPVC
MinSum saves partial deployments x7 and x8.

C.5.2 Greedy schema

The rolling horizon heuristic is like a divide-and-conquer algorithm that decomposes the

entire time period in small time horizons in which we have a PPPVCMinSum instance,

solved by linear programming. The advantage in doing so is that the runtimes of the
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︸ ︷︷ ︸
T0={1,2,3}

T1={3,4,5}︷ ︸︸ ︷ τ = 8τ = 1

i = 0

i = 5

Figure C.3: An example of H PPPVC
MinSum running on a small instance J with a set of 6

machines and a time horizon of 8 periods. The figure shows the availability matrix B
and the rolling time window at iteration p = 1 (blue box). The rolling time window has
width w = 3, while the step width is u = 2 and the bound width is b = 1. Subproblem J0
(red box) has already been solved and the deployment x1 at period τ = 2 (red column)
can act as initial condition for subproblem J1. At the same time, the knowledge of the
availability matrix at period τ = 6 (green column) allows to compute, when solving J1,

a lower estimate of transfer costs due to allocation decisions at period τ = 5.

linear program can be reduced in considering a set of small time horizons instead of

the entire time period. This approach however has a drawback: one needs to state

in input how we decompose the entire time period. In this part, we will introduce a

greedy heuristic where this parameter is not required. Instead of the decomposition in

problem instances, proposed in the rolling horizon heuristic, the greedy heuristic views

the solution of PPPVCMinSum as a set of consecutive execution blocks. Below, we define

this notion.

C.5.2.1 Definitions

Definition C.5. (Consecutive execution block). We define a consecutive execution

block as a tuple Ceb = (τ,M ′, N ′, D,A′). Here τ ∈ T , M ′ ⊆M , N ′ ⊆ N , A′ ⊆M ′×N ′

and D = (d0, . . . , d|M ′|) is such that di ∈ {1, . . . |T |}.

A consecutive execution block Ceb = (τ,M ′, N ′, D,A′) describes a deployment of ap-

plications on machines, starting from a period (τ). In the definition, M ′ and N ′ define

the subset of applications and machines assigned in the block. A′ is a set of assignment

couples. If (x, y) ∈ A′ then an instance of the application x is deployed on the machine

y during dy times units.

Each Ceb can be captured by a two dimensional cut stating the machines that it uses,

their capacities and their availabilities. As illustration, we consider in figure C.4, five

machines and seven applications. We used the gray color to state that a machine is

not available. In the first block of this figure (Ceb1), five applications are deployed on



Appendix 3. Energy-aware Service Provisioning in Volunteers Clouds 189

a1, a2
a3, a4, a5

a6, a7

a1, a2
a3, a4, a5

a1, a2
a3, a4, a5

a6, a7

a6, a7Ceb1

Ceb2 Ceb3

Machines
Capacities

Time

Figure C.4: Ceb illustration on 4 machines

machines 2 and two are deployed on machine 3. In the second Ceb, the deployment

on machines 2 are not changed. But the applications a6 and a7 are now deployed on

machine 4. This also implies that between Ceb1 and Ceb2, these applications have been

migrated.

One interest in this representation is that it suggests that we might need multiple Cebs

for solving PPPVCMinSum . For instance, Ceb1 is not sufficient for solving the problem.

This is because it cannot ensure that all application instances will be deployed in all

time units. We consider the following definition.

Definition C.6. (Valid, ordered Ceb list). Given a list of Cebs: (τ1,M1, N1, D1, A1), . . . (τl,Ml, Nl, Dl, Al),

we will say that it is valid if: (1) according to the definition of the Ais and the one of B,

there is no assignment made at a period on an unavailable machine; (2) at each period

and for each machine, the number of assigned applications does not exceed its capacity.

The list is ordered if τ1 < · · · < τl.

Such a list can be a potential solution to the resolution of PPPVCMinSum . The validity

is important for respecting the constraints of the problem. The ordering ensures that the

Cebs are set one after another. However, these conditions are not sufficient for obtaining

a solution to the problem. We consider below other definitions.

Definition C.7. (Ending point of a Ceb list). Given an ordered list of Cebs: (τ1,M1, N1, D1, A1), . . . (τl,Ml, Nl, Dl, Al),

we define its ending point as the first period τ ′ ≥ τl where according to the assignments

A1, . . . , Al, we have for a given application j less than kj copies assigned at the period

τ ′.

For instance in figure C.4, the ending point of Ceb1, Ceb2 corresponds to the period at

which a1 must be migrated from the machine 2 to machine 1.
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The ending point of the ordered list L = Ceb1, . . . Cebl will be denoted by α(Cebl) or

α(L). We will also refer to this point as the ending period of Cebl. One can notice that

if α(L) < |T |, then L does not solve PPPVCMinSum .

Definition C.8. (Adjacent Ceb). Let us consider a valid and ordered Ceb list: Ceb1, . . . Cebl−1, Cebl.

We will say that Cebl−1 and Cebl are adjacent if the following conditions are met: (1)

τl = α(Cebl−1) + 1 ; (2) Al is defined by reassigning the applications x such that

(x, y) ∈ Al−1 and y is not available at the period τl.

For solving PPPVCMinSum , we must consider adjacents Cebs for ensuring that all

application instances are always assigned. In figure C.4, it is straightforward to notice

that Ceb1 and Ceb2 are adjacent. Indeed, Ceb2 reassigns the applications a6, a7 that

must me moved at the ending point of Ceb1.

Now, solving the allocation problem with Cebs is based on the following fact.

Fact C.9. Any solution for the allocation problem can be formulated as a valid and

ordered list of adjacent (and valid) Cebs L = Ceb1, Ceb2, . . . , Cebl such that: (1) All

application instances are deployed in Ceb1; (2) α(L) = |T |

This fact is at the core of greedy search scheme. Based on it, our idea for solving

the allocation problem is to greedily construct the Ceb list that will respect these two

conditions. The process works as follows.

At the beginning, we have an empty Ceb list. We choose an initial Ceb (τ = 0) in which

all application copies are deployed. The initial Ceb is chosen such as to minimize the

total energy consumption. Then, the Ceb is put in the list and we compute the ending

point e. If e = |T |, the scheme is stopped; otherwise, one chooses an adjacent Ceb

and adds it such as to have an ordered list. With the second Ceb put in the list, one

computes the ending point e of the resulting Ceb list and compares it with |T |. If the

two values differ, we repeat the process by choosing another adjacent Ceb; otherwise,

we stop the scheme execution. The pseudo-code of the described process is given in

Algorithm C.5.

The proposed greedy search scheme occurs through multiple choices of adjacent Cebs.

For a complete algorithm description, we must detail the choice of adjacent Cebs. This

is addressed in the following subsection.

C.5.2.2 Choosing a valid Ceb

From the results of the section C.3.3, we can easily notice that given Cebl, the choice of

Cebl+1 for the minimization of the PPPVCMinSum objective function is NP-hard. For
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GreedySearch()

1 Choose a valid block, Ceb0 = (0,M0, N0, D0, A0) s.t.

(∀j)
(∑

x∈M
(x,j)∈A0

1

)
= kj

2 Add Ceb0 to CebList
3 e = α(CebList)
4 l = 1
5 while(e < |T |)
6 Choose a valid ceb Cebl that is adjacent to Cebl−1

7 Add Cebl to CebList
8 e = α(CebList)
9 l = l + 1

10 return CebList

Figure C.5: Greedy Search for building a provisioning plan.

easing this computation, one can use randomization. The idea is to randomly pick ma-

chines and deploy on applications instances while respecting the capacities constraints.

Doing so however, we are completely unaware of the combinatory in the minimization

of the energy consumption. In this part, we propose to reduce the search space in the

Cebl+1 by introducing a search principle.

Principle C.10. (Move When Forced (MWF)). In the construction of Cebs, between

two periods e and e + 1, we move an application copy from the machine on which it is

deployed iff the machine is no more available at the period e+ 1.

The idea in MWF is to avoid avoid migrations when it is possible. This choice is

motivated by the fact that any migration increase the energetic cost of the deployment

plan.

a1, a2
a3, a4, a5

a6, a7

a1, a2
a3, a4, a5

a1, a2
a3, a4, a5

a6, a7

a6, a7Ceb1

Ceb2 Ceb3

Figure C.6: Example of assignment that does not follow the MWF principle.

In figure C.6, we give an example of assignment that does not respect the MWF prin-

ciple. The violation of the principle is due to the fact that in Ceb3, the applications
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a1, a2, a3, a4, a5 are migrated whereas the machine 2 is always available. For respecting

the principle, these applications must be kept in the machine 2 in Ceb3.

We cannot guarantee that the optimal solution is always constrained within the MWF

principle. Moreover, it is obvious to notice that PPPVCMinSum remains NP-hard even

with MWF; indeed, the proofs of section C.3.3 still hold. Despite these drawbacks, let

us observe that the principle reduces the search space of Cebs in Algorithm C.5. Indeed,

it states to only consider Cebs that are such that the deployment of applications on

machines does not change from their starting to their ending period. In Algorithm C.5,

this suggests that for building Cebl+1 from Cebl, we can only focus on the how we re-

deploy (at the period α(Cebl) + 1), the applications that must be moved at the period

α(Cebl). In what follows, we will show how to build Cebs in Algorithm C.5 according

to the MWF principle.

C.5.3 Energy aware algorithms for CEB design

A simple solution for building Cebs consists in using randomization. Doing so, we do

not take into account the minimization of the energy consumption in Ceb design. This

will be the case in the solution that we propose. In this solution, we distinguish about

two design cases in Algorithm C.5. The first case is the design of the initial Ceb Ceb1.

The second case is the design of an intermediate (or final) Ceb. Here, we assume that

after building a Ceb list Ceb1, . . . , Cebl, we are looking for an adjacent Ceb Cebl+1. In

this part, we propose a solution for both of these cases. We start with the intermediate

case.

C.5.3.1 Building an intermediate Ceb: local objective function

Given Ceb1, . . . , Cebl, we want to build Cebl+1. The first computational challenge here is

to decide on the local energetic costs that we must minimize when building Cebl+1. For

this we observe that from Cebl to Cebl+1: (1) some applications might be transferred; (2)

we might not have the same deployment of applications on machines; (3) some machines

that were not used in Cebl might be used. From these observations, we can conclude

that Cebl+1 must be built such as to minimize the sum of : the energy consumed

by applications in Cebl+1, the energy required for transferring applications between

Cebl and Cebl+1 and the new base energy to account in Cebl+1. When considering

the objective function of PPPVCMinSum , we can notice that this choice proposes to

minimize its local value between Cebl and Cebl+1.
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The minimization of the local value of the objective function is not always a good choice.

Indeed, this choice suggests to favor the Cebs whose ending period are short because

the shorter is the ending period of a Ceb, the smaller we can expect that its energy

consumption will be. Doing so however, the Algorithm C.5 will tend to use multiple

Cebs for building the complete Ceb list in which all application are deployed until the

final period t. However, the presence of multiple Cebs suggest that we make many

transfers and therefore consume more energy. In figure C.7, we provide an illustration.

Let us suppose that the energy consumed by an application on a machine is equal to

1 unit. Let us also assume that the transfer costs and the base energy are all equal to

one unit. While the local minimization of Cebs propose to have the complete Ceb list

Ceb1, Ceb2, Ceb3, the best solution consists of choosing the list Ceb1, Ceb2′ .

a1, a2
a3, a4, a5

a1, a2
a3, a4, a5

a1, a2, a3

a1, a2
a3, a4, a5

a4, a5

Ceb1

Ceb2

Ceb2′

Ceb3

Figure C.7: Example with 4 machines, 5 applications and 2 possible list of Cebs as
solution.

The previous observation leads us to conclude that in the choice of Cebl+1 from Cebl, we

must take into account both: the energy consumption and the time in which machines

will be available. More precisely, given a Ceb at a period α(Cebl)+1, let us assume that

its machine i will be available during di time units; let us also assume that the local

value of the energy consumed on it is Si; this includes: the sum of energy consumed by

applications deployed on it, the sum of energy for making transfers on it and eventually

a base energy if i was not used in Cebl. Then, we propose to choose choose Cebl+1 if

the value
∑
i∈M

Zi
di

is minimal among all other valid and adjacent Cebs.

We will refer to
∑
i∈M

Zi
di

as the mean energy consumed in a time unit when choosing

Cebl+1. We propose to consider this objective function in the sequel. In the next, we

will formulate a computational process for building Cebs according to it.



Appendix 3. Energy-aware Service Provisioning in Volunteers Clouds 194

C.5.3.2 Building an intermediate Ceb: a greedy approach

Let us re-consider the local solution Ceb1, . . . , Cebl. Following the MWF principle, we

can simply compute the subset of applications instances that must be migrated at the

period α(Cebl) + 1. The construction of Cebl+1 will then be based on this subset. For

each application j that is concerned by a migration, we propose first to compute the set

M(j) of machines where the instances to migrate are located on. We also compute the set

Ma(j) of machines where the instances of j can be migrated to while respecting (1) the

constraint of not assigning the same application twice on a machine; (2) the constraint

of not exceeding machine capacity. The problem for the construction of Cebl+1 is to

migrate for all applications j, the instances that are located on M(j) on the subset of

machines Ma(j) such as to minimize the mean energy per time unit.

For tackling this local problem let us observe that we can adapt our prior ILP modelling.

However, this is not necessarily a good option regarding the runtimes since the local

problem is NP-hard. Indeed the NP-hardness proof of PPPVCMinSum proposed in

[Cérin et al., 2013] can be applied here. For easing the construction, we propose a greedy

algorithm. Its main idea consists of considering separately the resolution of the problem

for the instances related to an application. This means that we subdivide our local

problem (migration of instances in M(j), for all j) into a successive set of sub-problems,

each related to a unique application. The simplification that this greedy approach

brings is that since the number of instances of a given application is smaller than the

total number of instances of all applications, it is easier to solve each sub-problem than

to solve the local problem.

In subdiving the local problem, we obtain a computational process with two stages

for the construction of Cebl+1. In the first, we order at the period α(Cebl) + 1 the

applications that are concerned by a migration. Then, according to this order, we

successively migrate the instances of a given application.

The challenge in the greedy approach is to find a good basis for deciding on the ordering

of applications. In the next, we will introduce some metrics for this purpose.

Definition C.11. (Minimal induced energy). Given the Ceb list Ceb1, . . . , Cebl, the

energy induced by the migration of the application j from the machine u to the machine

v at the period α(Cebl) + 1 is

Ei(j, u, v) = (Ebv + E+

jv).dv + Cjuv;

Here, we assume that starting from the period α(Cebl) + 1, the machine v is available

during dv time units.
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Ei captures the minimal energetic cost that must be taken into account for a migration,

according to the MWF principle.

Definition C.12. (Minimal expected energy). Given the Ceb list Ceb1, . . . , Cebl, we

define the energy expected for the move of the application j as

E[j] =
∑

u∈M(j)

∑
v∈Ma(j)

Ei(j, u, v)

|Ma(j)|

E[j] is a sum of the mean induced costs per application instances. For its computation,

we consider all possible moves of an application instance.

We propose to base the ordering of applications in the greedy approach on the minimal

energy expected: the applications whose minimal expected energy is greater must be

prioritized over those whose expected energy are smaller. The motivation behind this

choice is to give more possibilities for the deployment of applications whose migration

costs are a priori big.

For illustrating this motivation, let us assume that we decide to migrate first the in-

stances of an application j1 and then the ones of j2. As we migrate the instances of j1,

the machines are more loaded and we can reach a situation where for some of the them,

the maximal capacity is reached. This means that if at the beginning of the migrations

of j1, Ma(j2) was the set of possible machines on which the instances of j2 could have

been deployed, at the end of the migrations of j1, one must perhaps consider a subset of

this initial set. Now, if the minimal expected energy of j1 was greater than the one of

j2, it will be a good choice to consider j1 primarily in order to have more opportunities

in the minimization of the energetic cost issued from the deployment of this application.

With the description of the metric used for ordering, we can now refine the description of

our computational process for the construction of Cebl+1. The process has two stages.

In the first stage it performs three main tasks: (1) computation at the period τ =

α(Cebl)+1 of the instances and applications concerned by a migration; (2) computation

at the period τ of the values of Ei and E; (1) sorting of applications by expected energy

consumption (the sorting gives priority to higher values of E). The output ordering of

applications j1, . . . , jv that is produced will be used in the second stage for building

Cebl+1.

After this ordering stage, we complete the computation of Cebl+1 within an iterative

stage. In each iteration, we move the instances of an application. More precisely, let us

assume that from the first stage, we obtained the ordering j1, . . . , jv. At each iteration

λ ∈ {1, . . . , v}, we move the instances of jλ. We repeat the iterations until moving all

applications.
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For refining the description of our greedy approach, we must now state how we proceed

for deciding on the migration of the instances of a given application. This will be

addressed in what follows.

C.5.3.3 Building an intermediate Ceb: general algorithm

Let us assume that we must migrate the instances of the application jλ. For deciding

about the actions to perform our idea is to modelize the problem as an assignment

problem that can be solved by a classical assignment method as the Hungarian algorithm.

For this, we propose first to compute the set Ma(jλ) of potential machines on which the

migrations can be performed. For each machine in i ∈ Ma(jλ), we then compute the

maximal time mt(i) during which it will be available without interruption, starting from

the period τ . Finally with each possible assignment of instance (x, y) ∈M(jλ)×Ma(j
λ),

we associate the mean energy consumed in a time unit P [(x, y)] =
Ei(jλ, x, y)

mt(y)
. Given

these costs, we propose to choose for the migrations of jλ the assignment function r that

will lead to the minimization of

P (jλ) =
∑

x∈M(jλ)

∑
y∈Ma(jλ)

P [(x, y)].r[(x, y)]

Here r[(x, y)] is a boolean quantity set to 1 if the copy located on machine x is moved

to y. r also ensures that instances are moved towards distinct machines.

It is obvious to notice that the computation of r can be done in polynomial time in

using the Hungarian method. In our formulation we considered the energy efficiency

cost for being coherent with the analysis made in Section C.5.3.1. Alternatively, one

can consider at this stage the local value of the objective function, also described in this

section.

Now that we have a solution for migrating the instances of an application, we can

summarize our general computational process for the choice of Cebl+1. This is done in

Algorithm C.8. When combined to Algorithm C.5, the Algorithm C.8 states how we can

build all the intermediate and and final Ceb. What misses for a complete description

of Algorithm C.5 is how we design the first Ceb, Ceb1. This point is addressed in the

sequel.
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C.5.3.4 Building an initial Ceb

As stated in the beginning of Section C.5.3, we can distinguish between two types of

Cebs: intermediate and initial ones. Below, we showed how to compute intermediate

Cebs; let us now focus on the design of the initial one (Ceb1).

For the design of the initial Ceb, we propose to adapt the computational process of the

intermediate phase to the specificities of the initial Ceb: (1) the base energy must be

counted for any used machine; (2) we assume that all application instances must be

migrated, however, the transfer costs for the migrations are all null. One can notice

that it is easy to adapt Algorithm C.8 for including these two considerations.

C.5.4 Variants of the energy aware algorithm

In Algorithm C.8, we subdivided the migration of a set of instances into various assigment

problem, each related to the migration of a set of instances related to a given application.

These latter problems are then solved by the Hungarian method. Let us however observe

that these subdivisions will produce an approximated solution of the initial migration

problem. Indeed, one can observe that since the Hungarian method is polynomial, the

resolution of our set of sub-problems can be done in polynomial time while our initial

problem is NP-hard. The key in our approximation is in the optimization of the base

energy consumption. Indeed, the decision to migrate instances towards a free machine

on which there is no instance has an impact on the total base energy consumption

of the migration problem. In the migration problem, these decisions must be done in

considering all instances. With our subdivision, each subset of instances related to an

application will decide independently on the free machines that will be used.

One interest of Algorithm C.8 is that we can formulate some variants from it. Let us refer

to the proposed algorithm as Ceb max[ME] (the “max” suffix here is for the ordering

in the second stage and [ME] refers to the local objective function: Mean Energy per

time unit). An idea for a variant is to reconsider the sorting of the applications in the

first phase. Thus, we can formulate Ceb rand[ME] where the applications are initially

sorted in a randomized way or Ceb min[ME] where initially, applications are sorted in

considering the one that consume the minimal expected energy first. Another possible

formulation is that in the choice of Cebs, instead of minimizing the energy consumed

in a time unit, one can consider only the local energy consumption as formulated in

Section C.5.3.1. With this, we can have three other heuristics for the local choice of

Cebs: Ceb max[LO], Ceb rand[LO] and Ceb min[LO].
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We end here the description of heuristics approaches for the resolution of PPPVCMinSum

At this stage, let us observe that our integer linear model and heuristics can easily

adapted to the resolution of PPPVCMinMax . For the integer linear programming, it

suffices to express the objective function as the the maximum (instead of the sum) of

energy consumed on machines. Our heuristics occur through the subdivision of the

service provisioning problem into subproblems. For an adaptation to PPPVCMinMax

, one can simply change the objective function in the subproblems for capturing the

maximal energy consumed in a machine. In the next section, we present an experimental

evaluation of the solutions proposed in this study.

EnergyChoiceAdjCEB(C)

argtype C: cebOrderedList;

argcond C = {c1,...,cl+1};
1 Compute (from CebList) the list J of applications concerned by a move
2 //First Stage: ordering
3 foreach(j ∈ J)
4 Compute M(j) and Ma(j)
5 foreach(j ∈ J)
6 foreach(u ∈M(j)) foreach(v ∈Ma(j))
7 Compute Ei(j, u, v)
8 Compute E[j]
9 τl = α(CebList) + 1

10 Nl = J
11 Sort the applications in J on the E[j]s and get the order j1, . . . , jv

12 //Second Stage: iterative migrations
13 λ = 1
14 while(λ < v)
15 Update Ma(j

λ)
16 Associate with each couple (x, y) ∈M(jλ)×Ma(j

λ) the cost

P [(x, y)] = Ei(jλ,x,y)
mt(y)

17 Compute (by the Hungarian algorithm) the assignment function
r : M(jλ)×Ma(jλ) −→ {0, 1} that minimizes
P (jλ) =

∑
x∈M(jλ)

∑
y∈Ma(jλ) P [(x, y)].r[(x, y)]

18 foreach((x, y) ∈M(jλ)×Ma(j
λ))

19 if(r[(x, y)] = 1)
20 state that in Cebl+1, an instance of x will be assigned to the machine

y for the time duration mt(y)
21 λ = λ+ 1
22 return Cebl+1

Figure C.8: Energy aware choice of adjacent CEBs.
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C.6 Experiments

We did several experiments with the ILP modeling and the heuristics proposed in this

study. We have three main purposes in the experiments. The first was to compare the

quality of the solutions by the proposed heuristics with the results of the ILP-based

algorithm. The second objective was to determine which one among the heuristics offers

the best compromise between solution quality and computational time.

The last objective was to understand the differences in the behavior of heuristics. We

will discuss on these points in this section. We organize our presentation in two general

parts. In the first, we describe the instances used for the validation. Then, we present

the outputs of our algorithms.

C.6.1 Instances

We generated a set of 120 problem instances. Each instance was issued from a config-

uration that defines: a number of applications, a number of machines, the time period,

bounds on instances numbers and capacities of machines and the probability of avail-

ability of a machine. We considered in our experiments 8 configurations summarized in

Table C.4.

Configuration N M |T | qmin qmax kmin kmax av.

#1 30 50 5 3 7 3 4 85%
#2 30 50 10 3 7 3 4 85%
#3 60 100 10 3 7 3 5 85%
#4 90 150 12 3 7 3 5 85%
#5 100 150 12 3 6 4 5 80%
#6 120 180 16 3 7 3 5 85%
#7 130 170 16 3 7 4 5 80%
#8 100 180 16 3 7 3 4 80%

Table C.4: Description of configurations

Let us observe that in most experimental studies related to clouds2, the mean availability

observed in data centers is close to 99%. Here, we chose a lower rate for taking into

account the presence of volunteer machines. We set the time period for building a plan

between 5h and 16h. Somehow, these bounds suggest that we can efficiently predict the

availability matrix of the machines data centers between 5 and 16 hours. Let us observe

that prior work in volunteer computing showed that this is reasonable [Kondo et al.,

2008].

2International Working Group on Cloud Computing Resiliency: http://iwgcr.org/
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From each of our 8 configurations, we generated 15 problem instances. In each instance,

the machine availability matrix B has been generated according to the aforementioned

mean availability parameter; the values of kj , j ∈ N were randomly chosen between kmin

and kmax, and the same was done for qi, i ∈ M with respect to qmin and qmax. The

process to generate the energy consumption coefficients of matrices Eb, E+ and C is

described below.

C.6.1.1 Energy consumption of an instance

The generation of the energy consumption per instance was done in three stages. The

first stage consisted of generating an instance network i.e an organization of the machines

within a communication network. In it, there are two types of communication between

two machines: local communication (done with switches and without crossing a router)

and global communication (include at least one router). We set the diameter of the

network to 3; this means that there is at most 3 routers between two machines that

communicate. The decision to put 0, 1, 2 or 3 routers were based on randomness and

some rules. Firstly, we randomly ranged the machines in groups. Given a total of

m machines, we created approximately 8 log(m) groups. The machines within a group

were connected directly with a switch (without routers). Then, we associated each group

with a router that serves as its frontal for external communication. Finally, we randomly

connected the routers such as to ensure that there is at most one intermediate router

that join two groups.

m1,m2
m3, . . .

m6,m7
m8, . . .m4,m5

Figure C.9: Example of instance network

An illustration of an instance network is provided in figure C.9. Here m1,m2 and m3

are machines of a group. They are connected with a switch. m1 and m4 are connected

throughout two routers; m1 and m7 are connected throughout three routers.

After the generation of an instance network, the next stage consisted of associating

energy values with the nodes of the network. Given an instance network, we randomly

associated Ethernet cards, machines and routers of the network with random power

consumption costs chosen from predefined data sets. Ethernet cards power consumption
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are the ones defined in [Chiaravalloti et al., 2011]. For routers and machines power

consumption, we used open data available for Cisco routers3 machines4.

The third stage in the generation of the energy consumption values consisted of inferring

the values from the built setting. Assuming that the power consumption loaded for a

machine i (in the network) was Pi, we set its base energy to Pi.∆t where ∆t = 1h.

The overhead energy per instances were set as a fraction between 1 and 10% of the

base energy. Finally, we generated the energy required for transferring applications with

the Ecofen model [Orgerie et al., 2011]. This model provides analytical formula for

estimating the energy consumption in communication that include routers and switches.

We considered that it will take between 1 and 5 minutes to transfer an application

between two machines. For the sake of reproducibility, the set of instances that we used

in our experiments are obained based on he source code available online5.

Now that we described our instances, in the next, we will present the obtained results.

C.6.2 Solutions of ILP and the rolling horizon heuristic

The ILP-based algorithm has been run on small instances only, i.e. on instances gener-

ated starting from configurations #1 and #2: for the instances that descends from the

other configurations, the determination of an exact solution is too heavy and leads to a

failure in the computation due lack of memory. Table C.5 represents the results of both

the ILP-based algorithm (referred to as X) and the rolling horizon heuristic algorithm

H PPPVC
MinSum (referred to as H). The columns represent:

• the name of the instance,

• the value sX of the optimal solution of X and the time tX to compute it,

• the initial value LBr of the lower bound, i.e. the value of the LP relaxation of the

problem,

• the gap % sX
LBr

between the optimal solution and the initial value of LB,

• the value sH of the solution of H and the time tH to compute it,

• the gap % sH
sX

between the solution of H w.r.t that of X, and finally

• the gap % sH
LBr

between the solution of H and the initial lower bound.

3See the appendix of the document http://lib.tkk.fi/Dipl/2012/urn100676.pdf
4http://www.complang.tuwien.ac.at/anton/computer-power-consumption.html
5http://lipn.univ-paris13.fr/˜cerin/software/testing.tar.gz
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For the solving of X, the threshold gap value has been set at g = 1%, and a time limit

of one hour has been imposed. The parameters of the heuristic algorithm H PPPVC
MinSum for

this instances have been chosen as follows: w = 3, u = 2, and b = 1; moreover, each

subproblem has been given a time limit of 1200s. One can observe that:

instance sX tX LBr % sX
LBr

sH tH % sH
sX

% sH
LBr

1-01 896178 1706.65 886523.68 1.09 897893 940.42 0.19 1.27
1-02 749447 95.21 743430.57 0.81 749078 214.96 -0.05 0.75
1-03 484018 3600.49 477810.84 1.30 485485 1320.33 0.30 1.58
1-04 890179 646.50 881405.95 1.00 896414 1380.31 0.70 1.67
1-05 733593 3600.12 725200.57 1.16 741660 2403.13 1.09 2.22
1-06 480074 1559.00 474445.97 1.19 480803 1340.64 0.15 1.32
1-07 938582 3600.18 922422.66 1.75 941028 2401.50 0.26 1.98
1-08 783543 3600.18 770983.08 1.63 783121 1384.12 -0.05 1.55
1-09 508302 2534.18 501912.58 1.27 509250 955.34 0.19 1.44
1-10 904051 961.40 896409.03 0.85 910785 1659.95 0.74 1.58
1-11 763952 160.25 757793.63 0.81 766483 1455.96 0.33 1.13
1-12 496902 3600.48 489802.02 1.45 499273 2404.44 0.47 1.90
1-13 867297 3600.46 857147.00 1.18 869760 1766.79 0.28 1.45
1-14 724622 3482.39 718524.32 0.85 727534 1919.81 0.40 1.24
1-15 476746 3600.13 467670.59 1.94 477874 2402.90 0.24 2.14

2-01 2251226 3600.23 1849607.52 21.71 1869367 3761.36 -20.43 1.06
2-02 1557018 3602.21 1510761.18 3.06 1526500 3862.64 -2.00 1.03
2-03 1015663 3601.71 996176.87 1.96 1008419 2003.98 -0.72 1.21
2-04 1993220 3600.27 1927008.78 3.44 1954332 3849.41 -1.99 1.40
2-05 1602416 3602.15 1517633.35 5.59 1542040 4105.45 -3.92 1.58
2-06 1048699 3600.21 1016848.45 3.13 1034999 3934.96 -1.32 1.75
2-07 1846205 3600.19 1806873.22 2.18 1825439 2893.27 -1.14 1.02
2-08 1456212 3600.26 1379380.74 5.57 1407554 4919.36 -3.46 2.00
2-09 947427 3600.18 931224.08 1.74 946520 3052.72 -0.10 1.62
2-10 1826786 3601.27 1784687.28 2.36 1821341 5767.03 -0.30 2.01
2-11 1496544 3600.18 1455984.85 2.79 1479731 4973.55 -1.14 1.60
2-12 989479 3600.30 965759.58 2.46 982771 5809.80 -0.68 1.73
2-13 1874976 3600.17 1825726.16 2.70 1851715 4900.19 -1.26 1.40
2-14 1464040 3601.97 1430398.41 2.35 1452263 2929.57 -0.81 1.51
2-15 992173 3600.21 965201.11 2.79 982205 2247.02 -1.01 1.73

Table C.5: Results of the ILP-based algorithm and the H PPPVC
MinSum heuristic on instances

of configurations #1 and #2.

• the initial value of the LB is in general very good, as the optimal solution of the

exact algorithm X is always near to it;

• the heuristic algorithm H PPPVC
MinSum can provide good solutions, as the gap w.r.t the

lower bound is in most of the cases less than 2% (column % sH
LBr

);

• for more complicated instances, H PPPVC
MinSum is not only faster that X, but is sometimes

capable of yielding an better solution (instances with % sH
sX

< 0).

The first of the three observation is particularly important, as it states the the quality

of the lower bound offered by the LP relaxation of model MPPPVC
MinSum is high. As a con-

sequence, even when it is not possible to compute an exact solution of an instance, the
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solutions yielded by the heuristic solutions can be compared to the LB. That is what we

will for what concerns the instances generated from configurations #3 to #8.

Table C.6 show the results of rolling horizon heuristic algorithm H PPPVC
MinSum (again referred

to as H). The columns after the name of the instance represent:

• the time tLBr to compute the initial value of LB, and the lower bound itself, LBr,

• the value sH of the solution of H and the time tH to compute it,

• the gap % sH
LBr

between the solution of H and the initial lower bound.

The parameters of the heuristic algorithm H PPPVC
MinSum for this instances have been chosen

as before: w = 3, u = 2, and b = 1, and a time limit of 1200s for each subproblem. The

instance tLBr LBr sH tH % sH
LBr

3-01 1831.4 4167901.71 4227538 19662.12 1.41
3-02 1828.4 3305405.45 3357322 11333.72 1.55
3-03 1827.7 2147851.28 2232913 10175.91 3.81
3-04 1819.4 4973040.46 5053814 21214.64 1.60
3-05 1819.3 4085212.73 4155926 20497.15 1.70
3-06 1823.3 2577570.73 2621794 11971.45 1.69
3-07 1840.9 3971590.40 4035897 19439.77 1.59
3-08 1838.1 3290266.23 3338863 15481.89 1.46
3-09 1832.3 2142820.77 2213897 3754.47 3.21
3-10 1836.4 4400374.44 4468776 20096.71 1.53
3-11 1833.5 3545883.71 3600244 20972.15 1.51
3-12 1834.5 2263383.64 2312729 10754.07 2.13
3-13 1812.4 4191775.06 4249681 17828.55 1.36
3-14 1824.8 3288416.41 3338704 21354.51 1.51
3-15 1825.6 2186498.70 2218960 10994.75 1.46

Table C.6: Results of the H PPPVC
MinSum algorithm on instances of configurations #3.

computation of the initial LB has been imposed a time limit of 1800s. The results of

H PPPVC
MinSum are somehow contradictory: on one hand, they are very good for what concern

the energetic cost, which is likely to be very close to that of the optimal solution. On

the other hand, their determination is time-consuming.

C.6.3 Solutions of the greedy algorithms

In this part, we considered the greedy algorithms of Section C.5.4. In the case of

Ceb rand[Z], we ran the heuristics 30 times and keep the mean runtime and the mean

energy consumption issued from the generated plans. Z here can refer either to [LO] (the

objective function applied locally) or [ME] (the mean energy per unit of time applied

locally).
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Firstly, we compared the results of the greedy algporithms with the ILP. For this, we

considered the 30 instances of configurations #1 and #2. In figure C.10, we depict the

ratio between the energy consumption of the plan computed by the greedy algorithms

versus the one computed by the ILP. As one can notice, the

 0.95

 1

 1.05

 1.1

 1.15

 1.2

 1.25

 1.3

 1.35

 1.4

 0  5  10  15  20  25  30

 R
at

io
 E

ne
rg

y 
of

 g
re

ed
y 

pl
an

s 
ve

rs
ys

 IL
P

Instances

Ceb_max[ME]
Ceb_rand[ME]
Ceb_min[ME]
Ceb_max[LO]
Ceb_rand[LO]
Ceb_rand[LO]

Figure C.10: Ratio of the energy plan of the greedy algorithms versus the one of the
ILP

For the ILP model, we used the CPLEX solver with the configuration of the previous

section. One can remark from these results that the solutions of the plan of the greedy

algorithms where at most 1.4 times more energy-consuming than the one of the ILP. We

even have situations where the plans generated by the greedy algorithms were better.

But, this is due to the fact that we do not run the ILP until getting the optimal solution.

In addition to these results, let us observe that while the ILP-based solutions were

sometimes found after one hour, the greedy algorithms solved each of the 30 instances

in less than one second.

These experiments were only done on instances of the configuration #1 and #2. We

also tried to compare the ILP and the greedy algorithms on other configurations. But,

in many cases, it was not possible to obtain a solution or even a lower bound to the

ILP model due to a lack of memory. Based on these elements, our conclusion is that

the greedy algorithms can produce good solutions for the problem in a real-time setting.

Moreover, they are more scalable when dealing with large instances of the problem.

The goal of our next investigation in the experiments was to state whether or not the

greedy algorithms are all equivalent. On this point, our first result is that whatever

objective function, the max ordering (or the heuristics Ceb max[Z]) is the best in-

stantiation of the general scheme of the greedy algorithms. In figure C.11, we depict

the differences between the energy consumed in the plan computed by Ceb rand[Z],

Ceb min[Z] and the one computed by Ceb max[Z]. Given an instance, let us denote
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by E max, E rand and E min, the consumption produced by Ceb max[Z], Ceb rand[Z]

and Ceb min[Z]. The points in the figures represent the differences log(E rand−E max)

and log(E min−E max) if these values are computable; − log(−E rand+E max) and

− log(−E min+ E max) otherwise. The results show that in more than 90% of cases,

the best plan between the greedy heuristics comes from Ceb max[Z]. Therefore, the max

ordering dominates the others. In these results, we used the logarithmic of differences

for the sake of presentation. Let us oberve that with a logarithmic of difference equal

to 8, we have a difference in 108 in energy consumption.
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Figure C.11: Logarithmic differences of the energy consumption with Ceb max[Z]

For understanding more the differences between the variants of our energy-aware algo-

rithm, we also measured in the experiments the total transfer energy built issued from

the solution of each heuristics. We then compared them in order to see if the good

results of Ceb max[Z] were due to the fact that it built plans with a lower consumption

in transfers. The ratio between the transfer energy of Ceb rand[Z], Ceb min[Z] versus
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the one of Ceb max[Z] are depicted in figure C.12. We cannot ensure from this figure

that the domination of Ceb max[Z] comes from the minimization of the transfer energy.

As suggested by the variability in transfers, the base energy and the consumption of

applications on machines are also important in the performance of Ceb max[Z].
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Figure C.12: Ratio of transfer energy with Ceb max[Z]

At this stage we know that the Ceb max[Z] heuristics dominate the other. But depending

on the objective function (Z), what is the best heuristic? In figure C.13, we depict

the ratio between the objective functions of heuristics issued from [LO] (the objective

function applied locally) and [ME] (the mean energy per unit of time applied locally).

The results clearly demonstrate the superiority of [ME] heuristics as predicted in our

prior discussion (See Section C.5.3.1). We also investigated on the impact of the transfers

in these differences. In Figure C.14, we computed the prior ratios only on the transfer

energy produced by the heuristics. The results clearly show that the transfer costs with

[LO] are higher than with [ME]. This again confirms the analysis made in Section C.5.3.1.
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Figure C.13: Ratio of the energy plan of [LO] versus those of [ME]

Indeed, in the choices of Cebs, [ME] heuristics consider the period in which machines

will be available. This helps for reducing the situations in which applications will be

deployed on machines that are available only for a short period of times (what is not

opttimized in [LO] heuristics).
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Figure C.14: Ratio of the transfer energy plan of [LO] versus those of [ME]

Finally, we also measured the runtimes of the greedy algorithms. Onn each instance,

we observed few differences (less than one second). Moreover, the maximal runtime for

processing and instance was equal to 15 seconds. With such a bound, the algorithms

can be used in practice within a cloud scheduler.

Summarizing, our experiments globally brings three conclusions. The first is that the ILP

model and the rolling heuristic can only be used on very short problem instances. Our

experiments also gave insights on the sizes of the instances for which these approaches are

irrelevant. Our second conclusion is that the greedy heuristics offer a good compromise

(quality, runtimes). This means that for the green scheduler that we pursue in our study,
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these heuristics are suitable. Finally, Ceb max[ME] has the best behavior between the

heuristics. This result was also expected from our analysis of the greedy algorithms.

C.7 Related work

The context of our work is related to volunteer computing and Desktop Grid Computing

[Cérin and Fedak, 2012]. Desktop Grids (DG) have been successfully used for solving

scientific applications at low cost. DGs middleware such as Condor [Butt et al., 2006],

BOINC [Anderson, 2004], XtremWeb [Fedak et al., 2001], OurGrid [Andrade et al., 2003]

provide researchers a wide range of high throughput computing systems by utilizing idle

resources. However, we did not find in this context a work that aims at optimizing the

energy consumption in a setting similar to the one considered in this paper.

In [Berl et al., 2010] authors introduce a synthesis of the usage of methods and technolo-

gies used for energy-efficient operation of computer hardware and network infrastruc-

ture. They consider the ICT field in general and they focus on energy-aware scheduling

in multiprocessor and grid systems, on the power minimization in clusters of servers,

on the power minimization in wireless and wired networks. Clouds are not specifically

considered in their work.

In [Beloglazov and Buyya, 2010] authors propose an efficient resource power management

policy for virtualized Cloud data centers. The objective is to continuously consolidate

virtual machines. They show that the dynamic reallocation of virtual machines brings

substantial energy savings. They propose four criteria for migrating the virtual ma-

chines. Authors do not discuss about the quality of the solution and they recognize

that despite the fact that they use heuristics, the algorithms provide good experimental

results. We believe that our solution can be extended for consolidating virtual machines

in a volunteer context.

In [Beloglazov and Buyya, 2012] Beloglazov and Buyya propose online algorithms for

virtual machines placement with guaranty of performance. They conduct competitive

analysis and prove competitive ratios of optimal online deterministic algorithms for

a single virtual machine migration and dynamic virtual consolidation problems. An

interesting future work is to extend this result to volunteers clouds contexts.

Beaumont, Eyraud-Dubois and Larchevêque consider in [Beaumont et al., 2013] the

problems of reliable service allocation in clouds. Among the different papers introduced

in this section, it is a paper that cover similar problems than ours. They consider first

that mapping virtual machines having heterogeneous computing demands onto physical
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machines having heterogeneous capacities can be modeled as a multi-dimensional bin-

packing problem. They assume that each virtual machine comes with its failure rate

(i.e. the probability that the machine will fail during the next time period). But they do

not consider that services should be duplicated on different machines to derive a robust

solution.

In [Young et al., 2013] authors study the problem of energy-constrained dynamic allo-

cation of tasks to a heterogeneous cluster computing environment. The fundamental

difference of this work with our work is that we consider a multi-period task execution

while they focus on a single one.

In [Barrondo et al., 2012] authors address knowledge-free Bag-of-tasks non preemptive

scheduling problem on heterogeneous grids, where scheduling decisions are free from

information of resources and application characteristics. They analyze the energy con-

sumption of job allocation strategies based on variations of the replication threshold.

We can view this work as studying the completion time of a job from which they derive

the energy consumption. More precisely, they investigate the energetic performance of

classical scheduling strategies according to the makespan metric. None of the analyzed

algorithms is similar to what we propose. Our particularity is to propose an energy-

aware scheduling algorithm which is not, in our cloud context, makespan-oriented. In

[Borgetto et al., 2012] authors study the problem of energy-aware resource allocation for

hosting long-term services or on-demand compute jobs in clusters. They do not capture

the possibility of copies but they have a constraint on the RAM available on each node.

The objectives and constraints lead to greedy algorithms. This work is similar to our

work but the main differences are that for each job, allocated to a machine, we must

have to decide the fraction of CPU to use and we need also for an estimate of the RAM

consumption of the job. The fraction of CPU is for studying a form of heterogeneity but

it does not include all the cases that can be derived from our heterogeneous modeling.

We do not model the commonly-used Dynamic Voltage and Frequency Scaling (DVFS)

power management technique [Le Sueur and Heiser, 2010, Weiser et al., 1994] as it is now

available on most processors including processors for smartphones and tablets. DVFS

is able to reduce the power consumption of a CMOS integrated circuit, by scaling the

frequency at which it operates, and when the load varies dynamically.

In [Cérin et al., 2013], authors propose models for optimizing the run of applications in

our volunteer context. In the first model, they assume that they have a finite number

of homogeneous volunteers nodes on which the applications can be run. Homogeneous

volunteers means that the computing nodes used in the cloud platform have the same

specification. This implies for instance that each node can run the same maximal number

of applications and that each machine is assumed to have similar (or identical) power
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consumption characteristics. The paper also considered heterogeneous machines. We

propose in this paper a more general view of the problem compared to this work. In

particular, the problem studied in [Cérin et al., 2013] is a variant of PPPVCMinSum

restricted to one period (|T | = 1). Because, we are interested in a more general problem,

the ILP modeling and the heuristics proposed in this paper also differ from the one that

are described in [Cérin et al., 2013]. Finally, in comparison to this work, we covered

a larger set of examples in terms of variations of the availability matrix, capacity of

machines, number of instances and energy consumptions costs.

C.8 Conclusion

In this paper, we studied the optimization of the energy consumed in the provisioning

of services within a volunteer cloud. We provide a complete solution that includes:

a modeling of the service provisioning problem, an analysis of its hardness, various

resolution approaches and their experimental analysis. Our study showed that we can

find good algorithms for the optimization of our service provisioning in real time settings.

For future work, our first objective is to implement the proposed algorithms in the

SlapOS system. One main challenge for such an implementation will be the efficient

implementation of service migrations. For this we can use the work of [Courteaud et al.,

2012] related to SlapOS. We also plan to include a learning system, for computing the key

parameters (base energy, overhead etc.) that are required in our model. Such a learning

must be based on a monitoring system that collects data throughout the provisioning of

applications. For this, we intend to modify the run of our applications in order to include

code for energy measurement. The benchmark codes of Green Graph 500 6 can serve

here as reference. Finally, let us observe that network communications also consumes

lots of energy. For instance, the cellular connectivity is one of the biggest contributors of

energy consumption in a smartphone [Carroll and Heiser, 2010]. We do believe that our

model must be affined for taking into account possible interactions between the users

and the cloud in the service provisioning.

6http://green.graph500.org/code.php
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MRLRP Appendix

D.1 Complete Symbol Table

In the following we recall all the symbols used in the paper, specifying for each one the

meaning and the section the symbol has been introduced in.

Symbols are divided in sections D.1.1 to D.1.3 according to which part of the paper they refer to.
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D.1.1 General notation

symbol meaning introduced in

G, V , E, A graph and its node, edge and arc sets section 2.3

k ∈ K set of gates

u ∈ U set of UDCs

SU collection of subsets of U for subtour elimination constraints

l ∈ L set of SPLs

i ∈ P set of pick-up demands

i ∈ D set of delivery demands

Pk, Dk partitions of P and D according to the gate of each demand

(u, v) ∈ AU set of ring arcs (first level)

A′U set pairs of UDC, on which ring installation costs are defined

Ep, Ed pick-up and delivery (second level) edge sets

qi quantity of goods associated to demand i

ki gate associated to demand i

Fu fixed cost of UDC u

Qu capacity of UDC u

quv capacity of ring arc (u, v)

N maximum number of UDC that can be opened (budget constraint)

B maximum number of UDC a gate can be linked to

cuv per-flow-unit transportation cost of ring arc (u, v)

cuk, cku per-flow-unit transportation costs between gate k and UDC u

cij routing cost on edge (i, j) ∈ E
guv ring installation cost, to connect UDC u and v in both directions

−δ−h , δ+
h fleet rebalancing bounds for generic route terminal point h ∈ U ∪ L

q maximum load of second level vehicle

M maximum trip length of second level vehicle

r ∈ R set of second level service routes

Rr sequence of demands associated to route r

Er set of edges associated to route r

q(r) total load of route r

c(r) total routing cost of route r

qk(r) load of route r according to the gate of the demands it serves

Rp, Rd sets of pick-up and delivery routes

Ri routes that visit demand i

R+
h routes that start at UDC (or SPL) h

R−h routes that end at UDC (or SPL) h

R+d
u delivery routes that start at UDC u ∈ U

R−pu pick-up routes that end at UDC u ∈ U

Table D.1: All the general symbols.
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D.1.2 Decision variables of MILP formulation for MRLRP

symbol meaning introduced in

yu installation of UDC u section 2.4.1

zuv connection of UDC u and v in both direction

χku choice of linking gate k to UDC u

xr choice of service route r

ϕku flow of goods from gate k to UDC u

ϕuk flow of goods from UDC u to gate k

ϕdkuv flow of delivery goods of commodity k through ring arc (u, v) (outflows)

ϕpkuv flow of pick-up goods of commodity k through ring arc (u, v) (inflows)

φku maximum between ϕku and the quantity of commodity k that leaves u for delivery

φuk maximum between ϕuk and the quantity of commodity k that arrives at u from pick-up

ζu variables to strengthen subtour elimination constraints (first form) section 2.5.2.1

û fictitious UDC to strengthen subtour elimination constraints (second form) section 2.5.2.2

Û extended set of UDCs

Â′U extended set of ring arcs

D̂(S) cut-set of UDC collection S ∈ SU w.r.t. the extended set of ring arcs

zûu connection of fictitious UDC û and actual UDC u

Table D.2: Symbols linked to MILP formulation for MRLRP.

D.1.3 GALW specific notation

symbol meaning introduced in

R generic sequence of demands section 2.6.1

r(R) minimum cost route that descends from sequence R

symbols specific to GALW route generator

R output subset of service routes section 2.6.1

Ri routes of R that visit demand i

β reduction of maximum length of generated routes between two iterations

τ threshold to stop iterations of route generation

d(R, i) nearest neighbor function

(pq , pM , pω) vector of weights in function d(R, i)

ω minimum number of routes per demand at each iteration

symbols specific to GALW assignment subproblem

O subset of chosen UDC section 2.6.2

Fu,o lower bound on ring construction costs

ξuo additional decision variables

b number of arcs to be possibly added in the objective function section 2.7

S number of solutions to which the following stages of GALW are applied

symbols specific to GALW ring multiflow subproblem

O+
dk subset of opened UDC with availability of commodity k for delivery section 2.6.4

O−dk subset of opened UDC with request of commodity k for delivery

O2
dk set of delivery source-sink pairs (delivery of commodity k)

Φdkuv ,Φpkuv flow from source u to sink v (delivery, pick-up of commodity k)

θ′{uv} ,θ′′{uv} clockwise and counterclockwise paths between opened UDCs u and v

(Φdkuv)′, (Φdmuv )′′ clockwise and counterclockwise parts of Φdkuv

Table D.3: Specific symbols concerning GALW matheuristic.
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D.2 Generation of MRLRP instances from benchmark CLRP

ones

As previously recalled, in [Prins et al., 2006], the benchmark names follow the pattern n-

m-c[b], with n being the number of customers, m the number of depots and c the number

of clusters into which customers are grouped; the final ’b’ denotes q = 150, otherwise q =

70. The demands of the n customers are integer and are uniformly distributed in [11,20],

while the depot capacities ensure at least 2 depots are opened. As in the original paper,

the second-level route costs are obtained starting from Euclidean distances multiplied

by 100 and rounded up to the nearest integer. MRLRP features have been added as

follows. We will denote as i = irnd(ia, ib) the function to pick a random value out of a

range of integers.

D.2.1 Pollution indicators

To estimate the pollution indicators of the ecological instance of a scenario, we sup-

posed to deal with real vehicles so as to consider realistic values. For the second level,

we considered vehicles with a useful load of 1 T and a pollution amount of 5 grCO2/km

(grammes of CO2 per km). For the first level, we supposed that gates-UDCs and UDC-

UDC transportation are performed by vehicles with a pollution emission of respectively

60 and 7.5 grCO2/T · km (grCO2 per tonne per km): the latter value is lower as we

suppose that ring transportation is performed with less polluting vehicles, like for in-

stance trains, and that they are fully loaded, unlike long-haul trucks going from gates

to UDCs. The value of all parameters has been chosen according to the report [Boulter

and Barlow, 2005]. The useful load of second level vehicles suggested us a reference con-

version factor Q−1 from tonnes to load unit of our problem; note that conversion from

km to length units is not necessary, since it would simply scale every cost parameter

of the problem by the same factor. Therefore, the environmental cost of a second level

service path is obtained by multiplying its length by a factor of 5 grCO2 per length unit,

whereas for first level, given a gate k and two UDCs u and v, environmental costs cku,

cuk, cuv and cvu are expressed in grCO2 per load unit per length unit, and are obtained

by multiplying constants 60 Q−1 and 7.5 Q−1 by the respective distances.

D.2.2 UDCs and demands

UDCs and demands are generated from the original benchmark: nevertheless, some

processing is needed to adapt the original benchmark graph to the MRLRP features.
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D.2.2.1 Location of points

UDC are initially located according to the depot points of the original benchmark in-

stance and given the same capacities and fixed costs. Then, to create the city context

that is peculiar to the MRLRP, we need the UDCs to be located in such a way as to

surround all, or at least the great majority, of the customers, i.e. the demands’ loca-

tions. To achieve this, we first take the convex hullH0 of depot and customer points in the

original benchmark; then, we eventually exchange some depot and clients locations,in

order to have all the depots located on vertices of H0; finally, we shift the depots along

the perimeter ofH0 to maximize the area of the convex polygon given by the depots only.

D.2.2.2 Demand sets

In most of the instances, the original CLRP customers give rise directly to the MRLRP

demands D and P : the former are randomly inserted into the latter in such a way as

to have |D| = |P |. However, an augmentation of the demands w.r.t. the initial (CLRP)

ones may be necessary. To achieve this, we generate a second demand for some of the

existing points in the graph – instead of generating new points. The second demand

has quantity q = irnd(11, 20), i.e. like those in the original benchmark, and may be of

the same type (delivery, pick-up) or not. However, new demands are generated in such

a way as to preserve |D| = |P |. Since the overall demand is greater than that of the

original CLRP instance, which we denote by Qtot, we increase the capacity of each UDC

by a factor
∑
i∈D∪P qi
Qtot

and finally round it up; then, we do the same for the fixed costs, to

preserve the cost/capacity ratio, and for the Euclidean distance multiplier (whose initial

value is 100) for the same reason.

D.2.2.3 Additional UDCs

We generate possible additional UDCs (as required for scenario 2 of each collection)

in the ring between H0 and the polygon that is similar to H0, has the same centroid

and an area that is 85% of that of H0. By doing so, the newly generated points are

in the peripheral region of the city. The capacity of the new UDCs is generated as

irnd(d0.8 ·QavgU e, bQ
avg
U c), Q

avg
U being the average capacity of the initial UDCs, whereas

the fixed cost is obtained by multiplying the capacity by the average cost/capacity ratio

of the initial UDCs.
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D.2.2.4 Tightness of the UDC capacities and minimal number of UDCs

needed

Once the UDCs and demands have been obtained in this way, we need to ensure that

max
u,v∈U,u6=v

(Qu+Qv) <
∑

i∈D∪P qi ≤
1
fq

∑
u∈U Qu. The left inequality ensures that at least

three UDCs will be needed, whereas the right one prevents an instance from being too

tight, as fq ·
∑

i∈D∪P qi is an estimation of the total occupation of the UDC capacity due

to the demand allocation on both the first and the second level; as for fq, its value must

be comprised in [1, 2], with fq = 1 and fq = 2 representing the two extreme cases of,

respectively, all direct and all indirect shipments; we always choose fq = 2. If necessary,

we alternate two steps as long as required for both the above inequalities to be verified:

a) we iteratively increment each demand by 1 load unit until the left inequality is verified;

b) we iteratively increment by 1 the capacity of each UDC but the greatest one, without

exceeding it, until the right inequality is satisfied.

D.2.3 Gates and SPLs

Table D.4 shows how many gates and SPLs have been generated, according to the values

of n and m in the original CLRP benchmark instance. The value between parentheses

n m |K| |L|

20 5 5(10) 5(10)
50 5 5(10) 5(10)
100 5 5(10) 10(15)
100 10 5(10) 10(15)

Table D.4: Number of gates and SPL in the generated MRLRP instances.

is the maximum value, i.e. the one in the corresponding scenario of a collection that

considers an augmented number of gates or SPLs. To locate both gates and SPLs, we

take the convex hull H0 and we enlarge it by an extension factor f > 1 to obtain the

polygon H(f) according to the extension principle shown in figure D.1; nH0 , pH0 and

AH0 are the number of vertices, the perimeter and the area of H0, respectively. Then,

the SPL positions are randomly generated inside H(1.1) in such a way as to have a

distance greater than or equal to 0.3
pH0
nH0

from any UDCs and any other SPLs, while the

gates’ positions are randomly generated in the ring between H(1.2) and H(1.6) in such

a way as to be uniformly distributed all around H0.
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Figure D.1: Polygon H(f) obtained by extension of the convex polygon H0 according
to the extension factor f > 1: height h is chosen so to have

∑
i ai = h · pH0

equal to
(f − 1) ·AH0 .

D.2.4 Second-level vehicles’ features

For q the value of the original benchmark instance is taken, whereas for M we choose

M = 50 when q = 70, and M = 65 when q = 150, except for collection galwc06, in

which q = 70 and M = 60.

D.2.5 Budget constraint and maximum number of UDCs a gate can

address

The budget constraint is always relaxed for economic instances by fixing N = |U |, as it

has already been said in 2.7.1, whereas for green instances we impose N = 4, 6 or 10

depending on whether |U | = 5, 10 or 15. The constant B has always been given the

value 2.

D.2.6 Demands and their assignment to gates

We randomly choose 2|K| demands in D∪P to assure that each gate is assigned at least

two demands: the remaining |D| + |P | − 2|K| are randomly assigned. When a second

demand needs to be generated for a customer point in the graph, and has the same type

as the first one, it is guaranteed not to be associated with the same gate as the first one.
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D.2.7 First-level arcs’ features

The flow transportation costs cku and cuk are both obtained by multiplying the distance

between gate k and UDC u by c?PU = 2.5, whereas for cuv, u, v ∈ U , we multiply the

distance between u and v by c?ring = 0.5; both constants c?PU and c?ring are costs per

length unit and per load unit. Regarding ring construction costs, we suppose that there

is a subset U? ⊂ U of UDCs which are more expensive to connect in the ring: UDCs

in U? are picked randomly, and |U?| = 1 or |U?| = 2, depending on whether the base

scenario has |U | = 5 or |U | = 10. Cost guv, u, v ∈ U, u < v is obtained by multiplying

the distance between u and v by the cost per length unit g?uv, with g?uv = 50 if neither of

u and v is in U?, or g?uv = irnd(50, 100) otherwise. If needed, the ring construction costs

generated in this way are adjusted to guarantee that the triangular inequality is always

verified. Finally, capacity quv, u, v ∈ U , is obtained:

quv = max

(
Qu,

(
1
2 · irnd(d0.8 ·Que, b1.1 ·Quc) + 1

2 · irnd(d0.8 ·
∑

i∈D∪P
qie, b1.1 ·

∑
i∈D∪P

qic)
))

Costs cuv and guv described so far represent the low levels of ring transportation and

installation costs, i.e. the ones of economic instance of type L|L; for the high level of

both types of costs, we multiply the corresponding low-level cost by 5.

D.2.8 Fleet balance bounds

For each u ∈ U , we estimate the number of vehicles needed as

νu = d
∑

i∈D∪P
qi ·

Qu∑
v∈U

Qv

|U |
N

1

q
e+ 1

to take into account both the budget constraint and the capacity q of second-level

vehicles; then, we randomly choose both δ−u and δ+
u as irnd(0, bνu2 c); if bνu2 c = 0, we

randomly choose {δ−u , δ+
u } in {{1, 0}, {0, 1}, {1, 1}}. For each SPL l, we randomly choose

both δ−l and δ+
l as irnd(0,max

u∈U
bνu2 c); if max

u∈U
bνu2 c = 0, we randomly choose also {δ−l , δ

+
l }

in {{1, 0}, {0, 1}, {1, 1}}.
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D.3 Complete Results

In the following the reader will find all the results of the experimental sessions described

in section 2.7.2.

Features Exact(X) GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M %r r T/%z #ps %X t r a T #ps %Y %X T

galwc01-0-L|L 5 5 5 15 5 70 50 3.5 9.6 24.8 21503 2.1 0.0 0.4 2.9 3.6 3122 0.0 2.1 3.6
galwc01-0-L|H 5 5 5 15 5 70 50 5.0 9.5 30.8 21503 4.9 0.0 0.4 4.2 4.9 3121 0.6 4.3 4.9
galwc01-0-H|L 5 5 5 15 5 70 50 6.5 9.6 16.3 21503 6.2 0.0 0.4 3.0 3.7 2926 4.6 1.7 2.4
galwc01-0-H|H 5 5 5 15 5 70 50 9.6 9.6 15.4 21503 9.3 0.0 0.4 7.4 8.1 3021 5.8 3.7 2.9
galwc01-1-L|L 5 5 5 20 5 70 50 3.3 14.0 48.7 37839 3.3 0.0 0.7 4.2 5.2 4033 0.1 3.2 4.8
galwc01-1-L|H 5 5 5 20 5 70 50 5.9 14.2 169.9 37839 4.8 0.0 0.7 8.9 9.8 4039 0.5 4.3 9.4
galwc01-1-H|L 5 5 5 20 5 70 50 7.2 14.1 80.7 37839 2.8 0.0 0.7 4.3 5.3 4140 0.0 2.8 5.0
galwc01-1-H|H 5 5 5 20 5 70 50 10.3 14.0 109.7 37839 5.0 0.0 0.7 3.8 4.8 4223 1.3 3.7 6.1
galwc01-2-L|L 5 10 5 15 10 70 50 4.5 24.9 642.5 64737 6.2 1.1 0.4 28.5 29.2 8388 2.4 3.9 37.3
galwc01-2-L|H 5 10 5 15 10 70 50 7.4 25.4 442.0 64737 5.1 1.1 0.4 31.0 31.7 8489 0.5 4.7 39.8
galwc01-2-H|L 5 10 5 15 10 70 50 9.0 25.4 320.5 64737 5.0 1.1 0.4 39.4 40.1 8630 0.3 4.7 33.6
galwc01-2-H|H 5 10 5 15 10 70 50 12.3 25.2 419.1 64737 8.3 1.3 0.4 64.2 65.0 8665 3.8 4.7 30.7
galwc01-3-L|L 10 5 5 15 5 70 50 4.7 9.6 16.8 21503 3.8 0.0 0.4 4.0 4.7 3068 2.5 1.4 2.3
galwc01-3-L|H 10 5 5 15 5 70 50 7.6 9.5 24.9 21503 3.8 0.0 0.4 2.8 3.5 3025 2.4 1.5 3.6
galwc01-3-H|L 10 5 5 15 5 70 50 8.3 9.6 10.2 21503 4.8 0.0 0.4 2.8 3.6 3067 3.7 1.1 1.8
galwc01-3-H|H 10 5 5 15 5 70 50 12.2 9.6 20.3 21503 5.9 0.0 0.4 3.5 4.2 3143 4.7 1.2 2.5
galwc01-4-L|L 5 5 10 15 5 70 50 4.4 13.6 31.0 31503 2.5 0.0 0.4 4.2 5.0 4348 0.0 2.5 2.7
galwc01-4-L|H 5 5 10 15 5 70 50 8.6 13.7 69.8 31503 4.6 0.0 0.4 6.0 6.7 4309 0.9 3.7 3.6
galwc01-4-H|L 5 5 10 15 5 70 50 8.9 13.7 29.3 31503 4.0 0.0 0.4 5.8 6.5 4313 2.2 1.9 2.7
galwc01-4-H|H 5 5 10 15 5 70 50 13.0 14.1 53.4 31503 5.8 0.0 0.4 5.1 5.8 4158 2.4 3.5 3.2

galwc01-0-G 5 5 5 15 4 70 50 1.1 10.1 8.2 21503 8.1 0.0 0.4 1.9 2.5 3072 2.4 5.8 2.8
galwc01-1-G 5 5 5 20 4 70 50 1.4 14.8 22.5 37839 6.3 0.0 0.7 3.0 3.9 4094 0.3 6.0 4.0
galwc01-2-G 5 10 5 15 6 70 50 1.8 26.1 86.6 64737 8.1 0.9 0.4 5.5 6.2 8242 2.5 5.8 41.5
galwc01-3-G 10 5 5 15 4 70 50 6.7 10.0 9.7 21503 6.1 0.0 0.4 2.1 2.9 3097 0.7 5.4 2.6
galwc01-4-G 5 5 10 15 4 70 50 0.7 14.2 9.2 31503 3.8 0.0 0.5 2.3 3.0 4284 0.5 3.3 2.2

galwc02-0-L|L 5 5 5 15 5 70 50 5.7 3.0 8.0 14066 1.4 0.0 0.3 1.6 2.2 2319 0.0 1.4 1.6
galwc02-0-L|H 5 5 5 15 5 70 50 10.0 3.0 10.3 14066 5.9 0.0 0.3 2.3 3.0 2418 1.3 4.6 2.0
galwc02-0-H|L 5 5 5 15 5 70 50 5.8 3.0 9.5 14066 1.7 0.0 0.3 2.3 2.9 2352 0.0 1.7 1.9
galwc02-0-H|H 5 5 5 15 5 70 50 7.4 3.0 4.0 14066 4.7 0.0 0.3 2.4 3.1 2421 0.2 4.5 1.7
galwc02-1-L|L 5 5 5 20 5 70 50 6.0 9.0 13.3 33616 0.9 0.0 0.6 2.4 3.4 3253 0.1 0.8 1.9
galwc02-1-L|H 5 5 5 20 5 70 50 10.4 9.2 189.8 33616 2.5 0.0 0.7 2.4 3.4 3303 1.2 1.3 3.2
galwc02-1-H|L 5 5 5 20 5 70 50 7.0 9.1 32.8 33616 3.1 0.0 0.7 2.2 3.2 3209 0.0 3.1 2.8
galwc02-1-H|H 5 5 5 20 5 70 50 9.0 9.1 430.5 33616 3.1 0.0 0.6 2.9 3.8 3195 0.5 2.6 3.9
galwc02-2-L|L 5 10 5 15 10 70 50 5.0 7.6 59.7 39438 3.6 1.1 0.3 4.7 5.3 4707 0.1 3.5 7.5
galwc02-2-L|H 5 10 5 15 10 70 50 8.7 7.7 78.7 39438 4.0 1.7 0.3 4.2 4.8 4667 2.5 1.5 11.0
galwc02-2-H|L 5 10 5 15 10 70 50 10.9 7.6 61.5 39438 0.2 1.1 0.3 5.5 6.1 4676 0.0 0.2 5.7
galwc02-2-H|H 5 10 5 15 10 70 50 14.6 7.6 80.8 39438 6.4 2.1 0.3 4.3 4.9 5012 2.8 3.8 17.7
galwc02-3-L|L 10 5 5 15 5 70 50 3.2 3.1 2.8 14066 0.3 0.0 0.3 2.1 2.7 2324 0.1 0.2 1.4
galwc02-3-L|H 10 5 5 15 5 70 50 9.6 3.1 8.7 14066 2.3 0.0 0.3 1.9 2.6 2347 2.1 0.2 1.7
galwc02-3-H|L 10 5 5 15 5 70 50 3.2 3.0 4.2 14066 1.8 0.0 0.3 2.3 3.0 2440 0.2 1.6 1.6
galwc02-3-H|H 10 5 5 15 5 70 50 7.7 3.0 4.8 14066 2.7 0.0 0.3 2.5 3.1 2322 1.1 1.6 1.9
galwc02-4-L|L 5 5 10 15 5 70 50 6.3 5.2 8.0 23190 0.2 0.0 0.3 2.4 3.1 3478 0.0 0.2 2.0
galwc02-4-L|H 5 5 10 15 5 70 50 12.3 5.2 18.0 23190 3.2 0.0 0.3 2.2 2.8 3419 1.0 2.3 2.1
galwc02-4-H|L 5 5 10 15 5 70 50 6.1 5.2 6.4 23190 1.6 0.0 0.3 3.6 4.3 3547 0.0 1.6 2.5
galwc02-4-H|H 5 5 10 15 5 70 50 7.9 5.2 12.6 23190 4.6 0.0 0.3 2.5 3.2 3375 0.4 4.2 2.6

galwc02-0-G 5 5 5 15 4 70 50 1.7 3.2 4.2 14066 8.5 0.0 0.3 1.5 2.1 2427 2.0 6.6 2.2
galwc02-1-G 5 5 5 20 4 70 50 1.4 9.6 13.1 33616 15.0 0.0 0.6 1.7 2.6 3243 1.0 14.1 2.7
galwc02-2-G 5 10 5 15 6 70 50 2.1 8.1 32.1 39438 8.3 0.9 0.3 3.2 3.8 4919 4.6 3.9 9.7
galwc02-3-G 10 5 5 15 4 70 50 1.8 3.3 5.2 14066 5.8 0.0 0.3 1.3 1.9 2303 1.3 4.6 1.6
galwc02-4-G 5 5 10 15 4 70 50 1.7 5.4 9.9 23190 6.4 0.0 0.3 1.9 2.5 3392 0.0 6.4 2.4

galwc03-0-L|L 5 5 5 15 5 150 65 18.6 6.6 10.8 18761 2.1 0.0 0.5 1.9 2.7 2082 0.0 2.1 2.2
galwc03-0-L|H 5 5 5 15 5 150 65 16.6 6.6 23.6 18761 6.3 0.0 0.5 4.9 5.7 2099 1.5 4.8 2.5
galwc03-0-H|L 5 5 5 15 5 150 65 26.5 6.6 20.2 18761 6.6 0.0 0.5 1.9 2.7 2012 1.2 5.4 1.8
galwc03-0-H|H 5 5 5 15 5 150 65 25.3 6.6 23.5 18761 6.9 0.0 0.5 5.0 5.8 2129 2.4 4.6 2.2
galwc03-1-L|L 5 5 5 20 5 150 65 16.0 51.3 113.8 68987 3.7 0.0 1.2 2.5 4.0 3513 1.5 2.2 3.8
galwc03-1-L|H 5 5 5 20 5 150 65 18.3 51.8 149.9 68987 7.4 0.0 1.1 9.2 10.6 3488 3.4 4.1 4.1
galwc03-1-H|L 5 5 5 20 5 150 65 23.9 51.8 131.6 68987 2.8 0.0 1.2 2.8 4.3 3476 0.0 2.8 3.7
galwc03-1-H|H 5 5 5 20 5 150 65 25.6 51.2 230.1 68987 7.0 0.0 1.1 4.2 5.6 3399 4.2 3.0 3.5
galwc03-2-L|L 5 10 5 15 10 150 65 19.2 24.1 181.9 79140 0.6 2.0 0.6 26.2 27.1 8449 0.0 0.6 13.7
galwc03-2-L|H 5 10 5 15 10 150 65 18.7 24.2 117.6 79140 0.8 1.1 0.6 25.7 26.6 8550 0.1 0.7 11.4
galwc03-2-H|L 5 10 5 15 10 150 65 20.9 24.2 151.1 79140 0.6 1.1 0.6 33.6 34.5 7849 0.0 0.6 11.5
galwc03-2-H|H 5 10 5 15 10 150 65 23.2 24.3 130.8 79140 5.6 1.7 0.6 39.6 40.5 8348 5.0 0.6 13.2
galwc03-3-L|L 10 5 5 15 5 150 65 18.6 6.7 11.3 18761 2.7 0.0 0.5 1.7 2.5 2085 0.0 2.7 1.8
galwc03-3-L|H 10 5 5 15 5 150 65 13.3 6.7 16.3 18761 4.3 0.0 0.5 1.9 2.7 2127 1.9 2.4 2.5
galwc03-3-H|L 10 5 5 15 5 150 65 24.1 6.6 14.2 18761 6.0 0.0 0.5 4.1 5.0 2183 3.9 2.3 1.9
galwc03-3-H|H 10 5 5 15 5 150 65 22.6 6.7 16.0 18761 4.5 0.0 0.5 3.7 4.5 2084 1.9 2.7 2.5
galwc03-4-L|L 5 5 10 15 5 150 65 18.1 11.0 22.7 31590 1.9 0.0 0.5 2.4 3.2 3319 0.0 1.9 2.7
galwc03-4-L|H 5 5 10 15 5 150 65 16.3 11.0 20.0 31590 3.9 0.0 0.5 6.2 7.0 3223 0.9 3.0 3.1
galwc03-4-H|L 5 5 10 15 5 150 65 26.7 11.0 29.4 31590 4.0 0.0 0.5 6.4 7.2 3287 1.4 2.7 2.3
galwc03-4-H|H 5 5 10 15 5 150 65 28.1 11.2 32.7 31590 3.6 0.0 0.5 9.5 10.3 3237 2.5 1.1 3.1

galwc03-0-G 5 5 5 15 4 150 65 1.6 6.9 3.6 18761 2.1 0.0 0.5 1.1 1.8 2124 0.0 2.1 1.4
galwc03-1-G 5 5 5 20 4 150 65 NS 54.2 NS 68987 −∞ 0.0 1.1 1.9 3.3 3388 0.0 −∞ 2.7
galwc03-2-G 5 10 5 15 6 150 65 2.6 25.1 56.2 79140 10.4 1.6 0.6 6.0 6.9 8834 6.1 4.6 17.2
galwc03-3-G 10 5 5 15 4 150 65 0.4 7.0 3.3 18761 2.6 0.0 0.5 1.1 2.0 2085 0.0 2.6 1.5
galwc03-4-G 5 5 10 15 4 150 65 0.5 11.8 5.2 31590 2.9 0.0 0.5 1.5 2.3 3111 0.5 2.4 1.9

Table D.5: Result of the three methods on all the instances of collections galwc01,
galwc02 and galwc03.
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Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T

galwc06-0-L|L 5 5 5 25 5 70 60 0.0 1.7 2.0 4.0 3180 3.0 3.9
galwc06-0-L|H 5 5 5 25 5 70 60 0.0 1.6 2.4 4.3 3107 8.7 5.5
galwc06-0-H|L 5 5 5 25 5 70 60 0.0 1.7 3.7 5.7 3135 0.1 4.0
galwc06-0-H|H 5 5 5 25 5 70 60 0.0 1.6 3.5 5.5 3092 2.5 5.5
galwc06-1-L|L 5 5 5 40 5 70 60 0.0 4.0 5.7 10.0 7376 2.0 8.3
galwc06-1-L|H 5 5 5 40 5 70 60 0.0 4.0 9.2 13.6 7395 6.4 12.5
galwc06-1-H|L 5 5 5 40 5 70 60 0.0 4.0 12.3 16.7 7558 3.4 13.1
galwc06-1-H|H 5 5 5 40 5 70 60 0.0 4.4 11.7 16.4 7580 1.1 15.4
galwc06-2-L|L 5 10 5 25 10 70 60 1.1 1.4 11.0 12.7 9428 1.4 33.2
galwc06-2-L|H 5 10 5 25 10 70 60 1.2 1.4 15.3 17.0 9679 4.6 29.0
galwc06-2-H|L 5 10 5 25 10 70 60 1.1 1.4 17.0 18.7 9389 0.2 33.7
galwc06-2-H|H 5 10 5 25 10 70 60 1.3 1.4 26.6 28.3 9359 4.7 24.3
galwc06-3-L|L 10 5 5 25 5 70 60 0.0 1.7 2.4 4.4 3155 1.1 4.1
galwc06-3-L|H 10 5 5 25 5 70 60 0.0 1.6 3.3 5.3 3134 8.6 5.7
galwc06-3-H|L 10 5 5 25 5 70 60 0.0 1.6 4.3 6.3 3111 0.0 4.2
galwc06-3-H|H 10 5 5 25 5 70 60 0.0 1.6 5.7 7.7 3165 1.6 5.7
galwc06-4-L|L 5 5 10 25 5 70 60 0.0 1.5 2.8 4.7 4448 0.6 4.2
galwc06-4-L|H 5 5 10 25 5 70 60 0.0 1.4 3.2 4.9 4260 8.0 6.1
galwc06-4-H|L 5 5 10 25 5 70 60 0.0 1.4 4.2 5.9 4401 0.0 3.7
galwc06-4-H|H 5 5 10 25 5 70 60 0.0 1.4 4.1 5.8 4472 1.1 5.0

galwc06-0-G 5 5 5 25 4 70 60 0.0 1.7 2.7 4.7 3148 1.4 5.4
galwc06-1-G 5 5 5 40 4 70 60 0.0 4.1 7.6 12.0 7537 1.5 14.3
galwc06-2-G 5 10 5 25 6 70 60 1.5 1.4 8.5 10.2 9396 4.2 22.2
galwc06-3-G 10 5 5 25 4 70 60 0.0 1.6 1.8 3.7 3116 1.3 3.7
galwc06-4-G 5 5 10 25 4 70 60 0.0 1.5 2.7 4.4 4410 1.6 4.3

galwc07-0-L|L 5 5 5 25 5 150 65 0.0 2.6 6.0 8.9 4791 0.7 7.4
galwc07-0-L|H 5 5 5 25 5 150 65 0.0 2.7 7.3 10.3 4880 0.1 7.1
galwc07-0-H|L 5 5 5 25 5 150 65 0.0 2.6 8.1 11.0 4813 0.2 7.8
galwc07-0-H|H 5 5 5 25 5 150 65 0.0 2.6 8.0 10.9 4839 0.1 9.6
galwc07-1-L|L 5 5 5 40 5 150 65 0.0 7.7 18.2 26.2 10902 0.3 23.1
galwc07-1-L|H 5 5 5 40 5 150 65 0.0 7.8 14.7 22.8 10769 0.7 27.3
galwc07-1-H|L 5 5 5 40 5 150 65 0.0 7.6 16.9 24.8 10658 0.2 18.8
galwc07-1-H|H 5 5 5 40 5 150 65 0.0 8.2 23.8 32.2 10861 1.5 31.7
galwc07-2-L|L 5 10 5 25 10 150 65 1.2 2.6 22.7 25.7 13286 3.0 31.1
galwc07-2-L|H 5 10 5 25 10 150 65 1.1 2.6 15.1 18.1 13426 2.1 21.6
galwc07-2-H|L 5 10 5 25 10 150 65 2.0 2.6 23.6 26.5 13463 3.8 64.0
galwc07-2-H|H 5 10 5 25 10 150 65 1.1 2.7 29.0 32.0 13753 4.1 37.8
galwc07-3-L|L 10 5 5 25 5 150 65 0.0 2.6 5.8 8.7 4752 0.0 8.9
galwc07-3-L|H 10 5 5 25 5 150 65 0.0 2.7 6.6 9.6 4886 1.8 10.6
galwc07-3-H|L 10 5 5 25 5 150 65 0.0 2.6 7.5 10.4 5037 0.0 9.0
galwc07-3-H|H 10 5 5 25 5 150 65 0.0 2.6 8.0 10.9 4861 2.1 12.4
galwc07-4-L|L 5 5 10 25 5 150 65 0.0 2.6 7.7 10.6 6936 0.0 9.0
galwc07-4-L|H 5 5 10 25 5 150 65 0.0 2.6 16.0 18.9 7048 3.1 11.5
galwc07-4-H|L 5 5 10 25 5 150 65 0.0 2.6 19.9 22.9 7175 0.4 9.9
galwc07-4-H|H 5 5 10 25 5 150 65 0.0 2.6 13.6 16.6 7354 4.1 9.7

galwc07-0-G 5 5 5 25 4 150 65 0.0 2.6 3.9 6.8 4714 1.3 7.3
galwc07-1-G 5 5 5 40 4 150 65 0.0 7.8 12.2 20.3 10733 0.9 19.2
galwc07-2-G 5 10 5 25 6 150 65 1.1 2.5 12.1 14.9 13666 1.5 38.8
galwc07-3-G 10 5 5 25 4 150 65 0.0 2.6 5.5 8.4 4731 0.0 10.3
galwc07-4-G 5 5 10 25 4 150 65 0.0 2.5 5.6 8.4 6975 0.5 7.5

Table D.6: Result of GALW and the hybrid method on all the instances of collections
galwc06 and galwc07.
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Features GALW Hybrid(Y)
Instance |K| |U| |L| |D| N q M t r a T #ps %Y T/%z

galwc08-0-L|L 5 5 10 50 5 70 50 0.0 9.2 11.2 20.7 6350 0.5 20.1
galwc08-0-L|H 5 5 10 50 5 70 50 0.0 9.4 6.3 16.1 6424 1.3 19.6
galwc08-0-H|L 5 5 10 50 5 70 50 0.0 9.7 8.9 19.0 6386 6.1 15.2
galwc08-0-H|H 5 5 10 50 5 70 50 0.0 9.5 8.1 18.0 6373 1.8 20.8
galwc08-1-L|L 5 5 10 80 5 70 50 0.0 28.1 31.1 59.7 16593 0.7 271.0
galwc08-1-L|H 5 5 10 80 5 70 50 0.0 26.6 29.6 56.8 16697 1.8 89.3
galwc08-1-H|L 5 5 10 80 5 70 50 0.0 27.1 28.9 56.6 16500 5.2 249.7
galwc08-1-H|H 5 5 10 80 5 70 50 0.0 27.1 76.2 103.8 16611 1.2 109.1
galwc08-2-L|L 5 10 10 50 10 70 50 1.6 7.3 56.5 64.2 15019 0.0 69.8
galwc08-2-L|H 5 10 10 50 10 70 50 1.1 7.0 43.0 50.4 14599 0.5 159.7
galwc08-2-H|L 5 10 10 50 10 70 50 1.9 7.1 104.6 112.1 14973 1.9 168.4
galwc08-2-H|H 5 10 10 50 10 70 50 1.1 7.2 54.4 62.0 14959 1.4 137.4
galwc08-3-L|L 10 5 10 50 5 70 50 0.0 9.6 11.6 21.6 6412 0.1 16.9
galwc08-3-L|H 10 5 10 50 5 70 50 0.0 9.8 11.3 21.5 6386 1.0 20.1
galwc08-3-H|L 10 5 10 50 5 70 50 0.0 10.2 11.4 22.0 6355 5.7 19.5
galwc08-3-H|H 10 5 10 50 5 70 50 0.0 9.2 6.7 16.4 6296 0.8 17.3
galwc08-4-L|L 5 5 15 50 5 70 50 0.0 9.0 13.2 22.7 9334 0.5 21.0
galwc08-4-L|H 5 5 15 50 5 70 50 0.0 9.3 13.7 23.4 9225 1.8 36.8
galwc08-4-H|L 5 5 15 50 5 70 50 0.0 8.8 14.1 23.4 9261 3.7 22.1
galwc08-4-H|H 5 5 15 50 5 70 50 0.0 9.0 22.3 31.7 9416 0.7 31.6

galwc08-0-G 5 5 10 50 4 70 50 0.0 9.4 5.8 15.6 6243 2.3 16.6
galwc08-1-G 5 5 10 80 4 70 50 0.0 27.3 22.1 49.9 16622 1.7 100.6
galwc08-2-G 5 10 10 50 6 70 50 1.0 7.0 24.6 32.0 14872 3.8 203.8
galwc08-3-G 10 5 10 50 4 70 50 0.0 9.4 6.8 16.5 6333 2.1 19.6
galwc08-4-G 5 5 15 50 4 70 50 0.0 9.1 10.0 19.5 9210 1.5 27.1

galwc10-0-L|L 5 5 10 50 5 70 50 0.0 7.7 17.1 25.2 10814 0.0 18.0
galwc10-0-L|H 5 5 10 50 5 70 50 0.0 7.8 16.0 24.1 10647 3.2 23.3
galwc10-0-H|L 5 5 10 50 5 70 50 0.0 7.7 26.5 34.6 10820 0.5 42.2
galwc10-0-H|H 5 5 10 50 5 70 50 0.0 7.9 15.2 23.5 11015 0.9 39.0
galwc10-1-L|L 5 5 10 80 5 70 50 0.0 24.0 106.7 131.2 28020 0.6 768.3
galwc10-1-L|H 5 5 10 80 5 70 50 0.0 23.9 262.9 287.2 27891 2.3 170.9
galwc10-1-H|L 5 5 10 80 5 70 50 0.0 25.9 71.7 98.1 28246 1.3 771.6
galwc10-1-H|H 5 5 10 80 5 70 50 0.0 25.4 64.3 90.3 28832 3.0 400.2
galwc10-2-L|L 5 10 10 50 10 70 50 1.4 6.8 242.9 250.1 26212 0.2 281.1
galwc10-2-L|H 5 10 10 50 10 70 50 1.1 7.0 261.3 268.7 25931 3.4 161.5
galwc10-2-H|L 5 10 10 50 10 70 50 1.5 6.6 463.3 470.2 26003 0.4 294.0
galwc10-2-H|H 5 10 10 50 10 70 50 1.5 6.7 837.9 845.0 25450 2.7 583.1
galwc10-3-L|L 10 5 10 50 5 70 50 0.0 8.2 31.0 39.7 10912 0.2 55.7
galwc10-3-L|H 10 5 10 50 5 70 50 0.0 7.9 17.1 25.5 11028 1.5 36.2
galwc10-3-H|L 10 5 10 50 5 70 50 0.0 7.7 19.1 27.2 10952 0.0 26.1
galwc10-3-H|H 10 5 10 50 5 70 50 0.0 7.8 15.8 24.0 10813 1.2 32.9
galwc10-4-L|L 5 5 15 50 5 70 50 0.0 7.8 19.5 27.7 13963 0.1 23.8
galwc10-4-L|H 5 5 15 50 5 70 50 0.0 7.6 34.6 42.6 13762 2.5 48.1
galwc10-4-H|L 5 5 15 50 5 70 50 0.0 7.6 20.0 28.0 13641 0.0 34.0
galwc10-4-H|H 5 5 15 50 5 70 50 0.0 7.9 56.7 65.0 14032 1.2 30.4

galwc10-0-G 5 5 10 50 4 70 50 0.0 7.8 14.9 23.1 10807 1.4 36.9
galwc10-1-G 5 5 10 80 4 70 50 0.0 23.6 56.5 80.6 27978 2.8 115.7
galwc10-2-G 5 10 10 50 6 70 50 0.9 6.8 41.2 48.3 26042 1.5 340.4
galwc10-3-G 10 5 10 50 4 70 50 0.0 7.9 12.7 20.9 10645 0.6 24.9
galwc10-4-G 5 5 15 50 4 70 50 0.0 7.8 16.9 25.0 13290 2.0 36.6

galwc11-0-L|L 5 10 10 50 10 70 50 1.4 7.9 466.4 474.8 14835 2.0 2681.4
galwc11-0-L|H 5 10 10 50 10 70 50 1.8 8.0 514.2 522.7 14663 3.1 (0.6%)
galwc11-0-H|L 5 10 10 50 10 70 50 1.1 8.1 414.7 423.1 14671 2.6 3211.2
galwc11-0-H|H 5 10 10 50 10 70 50 1.1 8.0 548.9 557.3 14532 2.6 1628.3
galwc11-1-L|L 5 10 10 80 10 70 50 1.1 21.6 476.7 499.0 36996 −∞ (+∞)
galwc11-1-L|H 5 10 10 80 10 70 50 1.1 22.3 (3.5%) 3636.1 36457 -8.0 (15.8%)
galwc11-1-H|L 5 10 10 80 10 70 50 1.4 21.7 (3.8%) 3635.5 36861 -4.3 (11.4%)
galwc11-1-H|H 5 10 10 80 10 70 50 1.6 22.7 (6.0%) 3651.0 37080 -8.3 (15.3%)
galwc11-2-L|L 5 15 10 50 15 70 50 69.7 8.1 612.8 621.3 27451 -18.6 (28.9%)
galwc11-2-L|H 5 15 10 50 15 70 50 70.2 8.3 1563.2 1571.9 27986 −∞ (+∞)
galwc11-2-H|L 5 15 10 50 15 70 50 68.7 8.2 2482.2 2490.9 27455 −∞ (+∞)
galwc11-2-H|H 5 15 10 50 15 70 50 68.4 8.3 3335.4 3344.2 27629 −∞ (+∞)
galwc11-3-L|L 10 10 10 50 10 70 50 1.1 8.3 834.0 842.8 14691 -0.1 (2.0%)
galwc11-3-L|H 10 10 10 50 10 70 50 1.1 8.0 236.5 245.0 14532 22.9 (3.6%)
galwc11-3-H|L 10 10 10 50 10 70 50 1.3 8.0 679.2 687.6 14513 2.7 (2.9%)
galwc11-3-H|H 10 10 10 50 10 70 50 1.1 8.0 474.8 483.4 14495 22.0 (6.7%)
galwc11-4-L|L 5 10 15 50 10 70 50 1.2 7.6 391.6 399.7 19571 5.8 879.2
galwc11-4-L|H 5 10 15 50 10 70 50 1.1 8.0 1240.5 1248.9 19519 0.9 (6.0%)
galwc11-4-H|L 5 10 15 50 10 70 50 1.1 7.5 381.2 389.2 20048 5.8 1705.0
galwc11-4-H|H 5 10 15 50 10 70 50 1.1 7.5 310.6 318.5 19612 4.1 (0.4%)

galwc11-0-G 5 10 10 50 6 70 50 1.4 7.9 90.3 98.7 14641 2.6 423.2
galwc11-1-G 5 10 10 80 6 70 50 0.9 22.4 66.5 89.4 37138 3.4 2983.0
galwc11-2-G 5 15 10 50 10 70 50 62.2 8.2 48.4 57.1 28059 3.0 (4.2%)
galwc11-3-G 10 10 10 50 6 70 50 0.9 7.8 52.1 60.4 14573 1.6 737.1
galwc11-4-G 5 10 15 50 6 70 50 1.7 7.8 72.2 80.5 19628 3.6 2058.4

Table D.7: Result of GALW and the hybrid method on all the instances of collections
galwc08, galwc10 and galwc11.
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