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Villetaneuse

September 2014







1C
h
a
p
te

r

Introduction

Major advances in combinatorics during the last decades rely upon the study of algebraic
structures associated to various combinatorial objects. Hopf algebra based on partitions,
graphs, permutations and tableaux can be listed here. These objects are endowed with a
product and a coproduct that encode certain combinatorial properties. Studying these alge-
braic structures, we obtain new insights on the combinatorics and, conversely, combinatorial
properties allow us to better understand the algebra behind it. Hopf algebras based on trees
are known nowadays.

A first type of combinatorial Hopf algebra (CHA) structure is constructed using the selec-
tion/quotient principle. This simply means that the comultiplication is of the form

∆(S) =
∑

A⊆S
+ Conditions

S[A]⊗ S/A, (1.1)

where S[A] is a substructure of S and S/A is the corresponding quotient. We call these
structures CHAs of type I.

Examples of such Hopf algebras are the Connes-Kreimer Hopf algebra of Feynman graphs,
underlying the combinatorics of perturbative renormalization in quantum field theory [CK00]
or in non-commutative Moyal quantum field theory [TK13], [TVT08] (the interested reader
may also refer to [Tan10b], [Tan12] for some short reviews on these algebras). For the sake of
completeness, let us also mention that similar Hopf algebraic structures have been proposed
[Mar03], [Tan10a] for quantum gravity spin-foam models.

A second type of combinatorial Hopf algebra structure relies on the selection/complement
principle. This means that the comultiplication is of the form:

∆(S) =
∑

A⊆S
+ Conditions

S[A]⊗ [S − A]. (1.2)

Examples of such Hopf algebras are the (commutative and noncommutative) polynomial Hopf
algebras and the Loday-Ronco Hopf algebra of planar binary trees [LR98] or the Hopf algebra
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of matrix quasi-symmetric functions MQSym, the Hopf algebra of free quasi-symmetric
function [MR95], [GKL+95], [DKKT97] and [DHT02]. We call these structures CHAs of
type II.

In this thesis, we first define a non-commutative, non-cocommutative CHA of type I on
packed words (see Chapter 3). Moreover, we implement a non-commutative, non-cocommutative
CHA of type I on certain type of labelled graphs (that we call totally assigned graphs) - see
Chapter 5.

On the other hand, matroid theory was first formalized in 1935 by Whitney [Whi35] who
introduced the notion as an attempt to study the properties of vector spaces in an abstract
manner. A matroid is an abstraction of the notion of linear independence in a vector space.
Matroids arise naturally in combinatorial optimization and can be used as a framework for
approaching a considerable variety of combinatorial problems. An important and active re-
search direction in matroid theory involves the numerous links between matroids and graphs.
In [Tut79], Tutte said “If a theorem about graphs can be expressed in terms of edges and
circuits only it probably exemplifies a more general theorem about matroid”. The devel-
opment of matroids as a tool to be applied to graphs was mostly fostered in the area of
combinatorics. Another very active and rich part of matroid theory centers on the Tutte
polynomial, its properties and evaluations throughout combinatorics.

The Tutte polynomial [Tut54] is a well known invariant of graphs and matroids, important
in combinatorics, knot theory and combinatorial physics. Two properties of the Tutte poly-
nomial of graphs are of particular interest: the contraction-deletion rule and the duality.
Thus, the Tutte polynomial plays an important role in the field of statistical physics where
it appears as the partition function of the q−state Potts models ZG(q, v) (see [Sok05]). In
fact, if G is a graph on n-vertices then

T = (x− 1)(y − 1)ZG

and so the partition function of the q−state Potts model is simply the Tutte polynomial
expressed in different variables.
These contraction and deletion operations are natural reductions for many network mod-
els arising from a wide range of problems at the heart of computer science, engineering,
optimization, physics.
The Tutte polynomial can be evaluated at particular points (x, y) to give numerical graphical
invariants, including the number of spanning trees, the number of forests, the number of
connected spanning subgraphs and many more.
A Tutte-Grothendick invariant of matroids is a function F from (finite) matroids to a domain
of scalars, which satisfies the multiplicative and invariances laws

F (M1 ⊕M2) = F (M1)F (M2), (1.3)

F (M) = F (M/e) + F (M\e), (1.4)

if e is neither loop nor coloop of M (see Definition 2.2.17 and respective 2.2.18), and
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F (M1) = F (M2), (1.5)

if M1 and M2 are two isomorphic matroids (see Definition 2.2.10).
We refer the reader to [Bol98, Oxl92, Tut84, Wel93, Whi86, Whi92] for background on
graphs, matroids and the Tutte polynomial.

Finally, let us mention here that the matroid Hopf algebra introduced in [Sch94] is a Hopf
algebra that may be associated to any family of matroids that is closed under formation of
minors and direct sums. This Hopf algebra has as basis the set of isomorphism classes of
matroids belonging to the given family, with product induced by the direct sum operation,
and coproduct of a matroid is of type (1.1). This Hopf algebra was also briefly considered
in connection with the characteristic and Tutte polynomials of matroids in [KRS99] and
[Kun04].

In Chapter 4 below, we investigate the characters of this matroid Hopf algebra and we give
a new proof of the universality property of the Tutte polynomial.
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In this chapter we present some general notions of Hopf algebras and matroid theory that
will be useful in the following chapters.

2.1 Hopf algebras

In this section, we introduce the axioms of algebra, coalgebra, bialgebra and Hopf algebra.
The classical references on this subject are [Abe80, Swe69]. The notion of algebras over a
commutative ring A will be recalled. An algebra over A is defined by giving an A-module
morphism which is called its structure map. Coalgebras are naturally in a dual relationship
with algebras.

Definition 2.1.1. Let k be a commutative ring. A k-module A is called a k-associative
algebra with unit (k-AAU) or, for short, a k-algebra if the following diagrams commute.
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A⊗k A⊗k A A⊗k A

A⊗k A A

Id⊗m

m⊗ Id m

m .

A⊗k Ak ⊗k A A⊗ k

A

η ⊗ Id Id⊗ η

Id Id
m

.

The commutation of these diagrams is equivalent to the following compositional equations.
If we identify A⊗k k and k ⊗k A with A, if the following equations holds, then A is called
an k-algebra.

m ◦ (Id⊗m) = m ◦ (m⊗ Id), m ◦ (Id⊗ η) = m ◦ (η ⊗ Id) = IdA. (2.1)

m is said to be the multiplication map of A, η the unit map of A.

Definition 2.1.2. Let A, B be k-algebras. The linear mapping ϕ : A → B is a ring mor-
phism as well as a k-module morphism, then we call ϕ a k-algebra morphism.

Proposition 2.1.3. Let (A, mA, ηA), (B, mB, ηB) be k-algebras. The k-module morphism
ϕ : A → B is a k-algebra morphism if and only if the following diagrams commute.

A⊗k A B ⊗k B

A B

ϕ⊗ ϕ

mA mB

ϕ
.

k A

B

ηA

ηB ϕ

.
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In other words, it is necessary and sufficient that

mB ◦ (ϕ⊗ ϕ) = ϕ ◦mA, ϕ ◦ ηA = ηB. (2.2)

The map τ denotes the k-module isomorphism A⊗ B → B ⊗A defined by a⊗ b 7→ b⊗ a.

Definition 2.1.4. The algebra A is commutative if and only if mA ◦ τ = mA.

The map τ23 denotes the isomorphism A ⊗ B ⊗ C ⊗ D → A ⊗ C ⊗ B ⊗ D defined by
a⊗ b⊗ c⊗ d 7→ a⊗ c⊗ b⊗ d.

Proposition 2.1.5. Let (A, mA, ηA) and (B, mB, ηB) be two k-algebras. The k-module A⊗k

B is an algebra with the following multiplication map and unit map given by

mA⊗B := (mA ⊗mB) ◦ τ23, (2.3)

ηA⊗B := ηA ⊗ ηB. (2.4)

Proof. One can directly check that mA⊗B and ηA⊗B satisfy conditions (2.1). �

We define a k-coalgebra dually to a k-algebra [Bou06a].

Definition 2.1.6. A coalgebra over a commutative ring k is a vector space C over k together
with k-linear maps ∆ : C → C ⊗k C and ǫ : C → k such that
1. (IdC ⊗∆) ◦∆ = (∆⊗ IdC) ◦∆
2. (IdC ⊗ ǫ) ◦∆ = IdC = (ǫ⊗ IdC) ◦∆.
We call ∆ the coproduct and ǫ the counit.

Equivalently, the following diagrams commute.

C C ⊗ C

C ⊗ C C ⊗ C ⊗ C

∆

∆ ∆⊗ Id

Id⊗∆ .

C

C ⊗ C C ⊗ kk ⊗ C

∆ ∼=∼=

Id⊗ ǫǫ⊗ Id

.
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In the first diagram we identify C ⊗ (C ⊗C) with (C ⊗C)⊗C, which are naturally isomorphic
modules. Similarly, in the second diagram the naturally isomorphic spaces C, C⊗k and k⊗C
are identified.
The first diagram is the dual of the one expressing the associativity of algebra multiplication
(called the coassociativity of the comultiplication); the second diagram is the dual of the one
expressing the existence of a multiplicative identity.

Sweedler’s notations: A coproduct is a sum of tensors. For simplifying various types of
operations, we use the following notations. Given a k-coalgebra (C, ∆, ǫ) and x ∈ C, we can
write

∆(x) =
∑

(1)(2)

x(1) ⊗ x(2). (2.5)

For k-linear maps f , g from C to C or k, we write

(f ⊗ g) ◦∆(x) =
∑

(1)(2)

f(x(1))⊗ g(x(2)). (2.6)

The coassociative law can be rewritten as follows.

∑

(1)(2)


∑

x(1)

(
x(1)

)(1) ⊗
(
x(1)

)(2)


⊗ x(2) =

∑

(1)(2)

x(1) ⊗

∑

x(2)

(
x(2)

)(1) ⊗
(
x(2)

)(2)




:=
∑

(1)(2)(3)

x(1) ⊗ x(2) ⊗ x(3). (2.7)

In general, we define

∆(1) = ∆, ∆(n) = (∆⊗ Id⊗(n−1)) ◦ (∆⊗ Id⊗(n−2)) ◦ · · · ◦∆, (n > 1). (2.8)

For all x ∈ C, we have
∆(n)(x) =

∑

(1)...(n+1)

x(1) ⊗ · · · ⊗ x(n+1). (2.9)

The counitary property may be expressed as following: for all x ∈ C
∑

(1)(2)

ǫ(x(1))x(2) =
∑

(1)(2)

x(1)ǫ(x(2)) = x. (2.10)

Example 2.1.7. Consider the polynomial ring k[X]. It has as unit the monomial 1. It is
easy to see that k[X] is a commutative algebra.
This becomes a coalgebra if we define

∆(Xn) =
n∑

k=0

(
n
k

)
Xk ⊗Xn−k

and

ǫ(Xn) =





1 if n = 0

0 if n > 0

for all n ≥ 0. Now k[X] is both a unital associative algebra and a coalgebra, and the two
structures are compatible.
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Definition 2.1.8. A coalgebra (C, ∆, ǫ) is called cocommutative if τ ◦∆ = ∆.

Example 2.1.9. Let A be an alphabet. Let k 〈A〉 be the non-commutative polynomials in the
variables A. The multiplication is the usual concatenation of words. The unit is the empty
word. The shuffle coproduct is given by

∆(w) =
∑

I+J=[1...|w|]

w[I]⊗ w[J ], (2.11)

and the counit is given by

ǫ(w) =





1 if w = 1A∗

0 otherwise.
(2.12)

Definition 2.1.10. Let C and D be two coalgebras and φ : C → D be a linear map. The
map φ is called a coalgebra morphism if

∆D ◦ φ = (φ⊗ φ) ◦∆C ;

C

C ⊗ C

D

D ⊗D

∆C

φ

φ⊗ φ

∆D

and ǫD ◦ φ = ǫC

C

D

k

φ

ǫC

ǫD

.

Proposition 2.1.11. Let C, D be two coalgebras. Then C ⊗ D is a coalgebra with the co-
product given by

∆C⊗D := τ23 ◦ (∆C ⊗∆D). (2.13)

The counit is given by

ǫC ⊗ ǫD : x⊗ y 7−→ ǫC(x)ǫD(y), (2.14)

for all x ∈ C and y ∈ D.



10 CHAPTER 2. BACKGROUND AND GENERAL RESULTS

Proof. One must check that for all x ∈ C and y ∈ D,

(∆C⊗D ⊗ IdC⊗D) ◦∆C⊗D(x⊗ y) = (IdC⊗D ⊗∆C⊗D) ◦∆C⊗D(x⊗ y). (2.15)

Using Sweedler’s notation, one has

∆C(x) =
∑

(1)(2)

x(1) ⊗ x(2). (2.16)

∆D(y) =
∑

(3)(4)

y(3) ⊗ y(4). (2.17)

Then, the left-hand-side (LHS) of Equation (2.15) can be rewritten as follows.

(∆C⊗D ⊗ IdC⊗D) ◦∆C⊗D(x⊗ y) = (∆C⊗D ⊗ IdC⊗D) ◦ (IdC ⊗ τ23 ⊗ IdD) ◦ (∆C ⊗∆D)(x⊗ y)

= (∆C⊗D ⊗ IdC⊗D) ◦ (IdC ⊗ τ23 ⊗ IdD) ◦ (∆C(x)⊗∆D(y))

= (∆C⊗D ⊗ IdC⊗D) ◦ (IdC ⊗ τ23 ⊗ IdD)◦

 ∑

(1)(2)

x(1) ⊗ x(2) ⊗
∑

(3)(4)

y(3) ⊗ y(4)




= (∆C⊗D ⊗ IdC⊗D)


 ∑

(1)(2)(3)(4)

x(1) ⊗ y(3) ⊗ x(2) ⊗ y(4)




=
∑

(1)(2)(3)(4)

∆C⊗D(x(1) ⊗ y(3))⊗ x(2) ⊗ y(4)

=
∑

(1)(2)(3)(4)


 ∑

x(1),y(3)

(
x(1)

)(1) ⊗
(
y(3)

)(1) ⊗
(
x(1)

)(2) ⊗
(
y(3)

)(2)




⊗ x(2) ⊗ y(4)

=
∑

(1)(2)(3)

x(1) ⊗ y(1) ⊗ x(2) ⊗ y(2) ⊗ x(3) ⊗ y(3). (2.18)

On the other hand, the right-hand-side (RHS) of Equation (2.15) can be rewritten as follows.

(IdC⊗D ⊗∆C⊗D) ◦∆C⊗D(x⊗ y) =
∑

(1)(2)(3)

x(1) ⊗ y(1) ⊗ x(2) ⊗ y(2) ⊗ x(3) ⊗ y(3). (2.19)

From two Equations (2.18) and (2.19), one gets the coassociativity of ∆C⊗D.
For x ∈ C and y ∈ D, one has

(ǫC ⊗ ǫD ⊗ IdC⊗D) ◦∆C⊗D(x⊗ y) = (ǫC ⊗ ǫD ⊗ IdC⊗D)(
∑

(1)(2)(3)(4)

x(1) ⊗ y(3) ⊗ x(2) ⊗ y(4))

=
∑

(1)(2)(3)(4)

ǫC(x
(1))⊗ ǫD(y(3))⊗ x(2) ⊗ y(4)

=
∑

(1)(2)(3)(4)

ǫC(x
(1))x(2) ⊗ ǫD(y(3))y(4)

=


 ∑

(1)(2)

ǫC(x
(1))x(2)


⊗


 ∑

(3)(4)

ǫD(y(3))y(4)




= x⊗ y. (2.20)
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Similarly, one has
(IdC⊗D ⊗ ǫC ⊗ ǫD) ◦∆C⊗D(x⊗ y) = x⊗ y. (2.21)

Then, the unitary property holds. One can get the conclusion. �

A bialgebra is both an algebra and a coalgebra with some compatibility between these two
structures.

Theorem 2.1.12. Let H be a space with an algebra structure (H, m, η) and a coalgebra
structure (H, ∆, ǫ). The following are equivalent:

(i) ∆ and ǫ are algebra morphisms.

(ii) m and η are coalgebra morphisms.

(iii) For all x, y ∈ H:

∆(xy) =
∑

x

∑

y

x(1)y(2) ⊗ x(2)y(2), ∆(1) = 1⊗ 1, (2.22)

ǫ(xy) = ǫ(x)ǫ(y), ǫ(1H) = 1k. (2.23)

Proof. (i) ⇔ (ii). The conditions under which ∆ is a k-algebra morphism are

(1) ∆ ◦m = (m⊗m) ◦ τ23 ◦ (∆⊗∆),

(2) ∆ ◦ η = η ⊗ η,

and the condition under which ǫ is a k-algebra morphism are

(3) ǫ ◦m = ǫ⊗ ǫ,

(4) ǫ ◦ η = 1k.

On the other hand, m is a k-coalgebra morphism if it satisfies conditions (1), (3); η is a
k-coalgebra morphism if it satisfies conditions (2), (4). This allows to conclude that (i) ⇔
(ii).
(i) ⇔ (iii) is clear from the definition. �

Definition 2.1.13 ([Abe80]). A bialgebra is a 4-tuple (H, m, η, ∆, ǫ) which satisfies one of
the equivalent conditions of Theorem 2.1.12.

Definition 2.1.14. Let H and H ′ be two bialgebras and φ : H → H ′. We call φ a bialgebra
morphism if φ is an algebra morphism and a coalgebra morphism.

Definition 2.1.15. (Convolution) Let C = (C, ∆, ǫ) be a coalgebra and A = (A, m, η) be an
algebra. If f, g ∈ Hom(C,A),

f ∗ g := m ◦ (f ⊗ g) ◦∆,

i.e, for all x ∈ C, one has
(f ∗ g)(x) :=

∑

x

f(x(1))g(x(2)). (2.24)

This product is called convolution.
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Proposition 2.1.16. The vector space Hom(C,A) endowed with the convolution product is
an algebra where the unit is given by

e(x) := η ◦ ǫ(x) = ǫ(x)1A. (2.25)

Proof. Let f , g and h be in Hom(C,A). For x ∈ C, one has

(f ∗ g) ∗ h(x) =
∑

x

(f ∗ g)(x(1))h(x(2))

=
∑

x

f(
(
x(1)

)(1)
)gf(

(
x(1)

)(2)
)h(x(2)) =

∑

x

f(x(1))g(x(2))h(x(3)). (2.26)

Similarly, one has
f ∗ (g ∗ h) =

∑

x

f(x(1))g(x(2))h(x(3)). (2.27)

Then, one has
(f ∗ g) ∗ h = f ∗ (g ∗ h). (2.28)

In the other hand, for f ∈ Hom(C,A), x ∈ C, one has

e ∗ f(x) =
∑

x

e(x(1))f(x(2)) =
∑

x

ǫ(x(1))f(x(2)) =
∑

x

f(ǫ(x(1))x(2))

= f

(
∑

x

ǫ(x(1))x(2)

)
= f(x). (2.29)

Similarly, f ∗ e = f .
Thus, one gets the conclusion. �

Example 2.1.17. Let H be a bialgebra. We can then take A = H and C = H. Then
Hom(H, H) is equipped with a product ∗, the unit is x −→ ǫ(x)1H .

Definition 2.1.18. Let H be a bialgebra. H is called a Hopf algebra if IdH has an inverse
in the algebra (Hom(H, H), ∗). The unique inverse of IdH (if it exists) is called the antipode
of H and is noted S.

Example 2.1.19. Let (k[x],×, 1) be the polynomial algebra (one variable). We define the
morphism ∆⊙ : k[x] ←→ k[x] ⊗ k[x] by ∆⊙(x) = x ⊗ xand ǫ(x) = 1. One can check that
(k[x],×, 1, ∆⊙, ǫ) is a bialgebra which admits no antipode.

Theorem 2.1.20. The following properties hold for the antipode S of k-Hopf algebra H.

(i) S(gh) = S(h)S(g), for all g, h ∈ H.

(ii) S(1H) = 1H , i.e. S ◦ η = η.

(iii) ǫ ◦ S = ǫ.

(iv) τ ◦ (S ⊗ S) ◦∆ = ∆ ◦ S.

(v) If H is commutative or cocommutative, then S2 = IdH .
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Proof. (i) From Proposition 2.1.11, H ⊗ H, ∆H⊗H , ǫH⊗H) is a coalgebra. Then, Hom(H ⊗
H, H) is an algebra where the convolution product, denoted ⋆, is given as following. For f ,
g ∈ Hom(H ⊗H, H) and x, y ∈ H , one has

f ⋆ g(x⊗ y) = m ◦ (f ⊗ g) ◦∆H⊗H(x⊗ y) =
∑

x,y

f(x(1) ⊗ y(1))g(x(2) ⊗ y(2)). (2.30)

The unit e is given by

e(x⊗ y) = ǫ(x)ǫ(y)1H . (2.31)

Note that m and S◦m are in Hom(H⊗H, H). Now if (S◦m)⋆m = η◦ǫ = m⋆(m◦(S⊗S)◦τ)
holds, then it implies (i) S ◦m = m ◦ (S ⊗ S) ◦ τ .

(S ◦m) ⋆ m(g ⊗ h) =
∑

g,h

S(g(1)h(1))g(2)h(2) =
∑

gh

S((gh)(1))(gh)(2)

= (S ∗ IdH)(gh) = ǫ(gh)1H = ǫ(g)ǫ(h)1H

= e(g ⊗ h). (2.32)

In the other hand, one has

m ⋆ (m ◦ (S ⊗ S) ◦ τ)(g ⊗ h) =
∑

g,h

g(1)h(1)S(h(2))S(g(2))

=
∑

g

g(1)

(
∑

h

h(1)S(h(2))

)
S(g(2)) = ǫ(h)

∑

g

g(1)S(g(2))

= ǫ(g)ǫ(h)1H = e(g ⊗ h). (2.33)

(ii) From the fact that ǫ(1H) = 1k and ∆(1H) = 1H ⊗ 1H ,one has

S(1H) = S(1H)1H = S ∗ IdH(1H) = η ◦ ǫ(1H) = 1H . (2.34)

(iii) One has

ǫ(h) = ǫ(ǫ(h)1H) = ǫ ◦ η ◦ ǫ(h)

= ǫ

(
∑

h

h(1)S(h(2))

)
=
∑

h

ǫ(h(1))ǫ(S(h(2)))

= ǫ(S(h)1H)

= ǫ(S(x)). (2.35)

(iv) From Proposition 2.1.5, H ⊗ H is an algebra; Then, (Hom(H, H ⊗ H), mH⊗H , ηH⊗H)
is an algebra where the convolution product, denote ⋆1, is given as following. For f , g ∈
Hom(H, H ⊗H) and x ∈ H , one has

f ⋆1 g(x) = mH⊗H ◦ (f ⊗ g) ◦∆(x). (2.36)
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Using Proposition 2.1.12, one has ∆ ◦m = (m⊗m) ◦ τ23 ◦ (∆⊗∆). Thus, for h ∈ H ,

(∆ ◦ S) ⋆1 ∆(h) = mH⊗H ◦ (∆ ◦ S ⊗∆) ◦∆(h)

= (m⊗m) ◦ τ23 ◦ (∆⊗∆) ◦ (S ⊗ Id) ◦∆(h)

= ∆ ◦m ◦ (S ⊗ Id) ◦∆(h)

= ∆(S ∗ Id)(h)

= ∆(ǫ(h)1H)

= ǫ(h)1H ⊗ 1H

= e1(h). (2.37)

Thus, ∆ ◦ S ⋆1 ∆ = e1.
In the other hand, for h ∈ H , one has

∆ ⋆1 (τ ◦ (S ⊗ S) ◦∆)(h) =
∑

h

h(1)S(h(4))⊗ h(2)S(h(3))

=
∑

x

h(1)S(h(3))⊗ ǫ(h(2))1H

=
∑

x

h(1)S(h(3))ǫ(h(2))⊗ 1H

=
∑

x

h(1)S(h(2))⊗ 1H

= ǫ(h)1H ⊗ 1H

= e1(h). (2.38)

Then, ∆ ⋆1 (τ ◦ (S ⊗ S) ◦∆) = e1.
Using the associativity of ⋆1, one has

∆ ◦ S = (∆ ◦ S) ⋆1 (∆ ⋆1 (τ ◦ (S ⊗ S) ◦∆))

= ((∆ ◦ S) ⋆1 ∆) ⋆1 (τ ◦ (S ⊗ S) ◦∆)

= τ ◦ (S ⊗ S) ◦∆. (2.39)

(v) If H is commutative, then one has

S2 ∗ S(x) =
∑

x

S2(x(1))S(x(2)) = S

(
∑

x

x(2)S(x(1))

)
= S

(
∑

x

S(x(1))x(2))

)

= S(η ◦ ǫ(x)) = η ◦ ǫ(x). (2.40)

If H is cocommutative, then one has

S2 ∗ S(x) =
∑

x

S2(x(2))S(x(1)) = S

(
∑

x

x(1)S(x(2))

)
= S(η ◦ ǫ(x)) = η ◦ ǫ(x). (2.41)

Thus, one has S2 ∗ S = e. It implies that S2 is inverse of S, i.e S2 = IdH . �

Remark 2.1.21. It exists a Hopf algebra where the antipode map S is not bijective ([Tak71]).
Let Mm(k) be the m×m matrix algebra over k, then the duality C = Mm(k)∗ is a coalgebra.
Let H(Mm(k)∗) be a Hopf algebra generated by the coalgebra C. Following Theorem 11 in
[Tak71], with m > 1, the antipode of H(Mm(k)∗) is not bijective.
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Because H = H+ ⊕ k.1H , one has

∆(x) = a(1⊗ 1) + b⊗ 1 + 1⊗ c +
∑

x(i)∈H+

x(1) ⊗ x(2). (2.42)

Using the property of the counit, one gets

∆(x) = x⊗ 1 + 1⊗ x− ǫ(x)1⊗ 1 +
∑

(1)(2)

x(1) ⊗ x(2) (2.43)

We will note ∆+ the last sum.
∆+ = (I+ ⊗ I+) ◦∆, (2.44)

where I+ is a projector to H0 = k1H .

Proposition 2.1.22. Let H be a bialgebra. Then the following are equivalent

i) H admits an antipode;

ii) There exists S : H −→ H such that

S(1H) = 1H; (2.45)

S(x) = −x−
∑

x(i)∈H+

S(x(1))x(2) for all x ∈ H+. (2.46)

Proof. (i)⇒ (ii) H admits an antipode S. From Theorem 2.1.20 (ii), one has S(1H) = 1H .
For x ∈ H+, one has

ǫ(x)1H = S ∗ IdH(x) = m ◦ (S ⊗ IdH)

(
∑

x

x(1) ⊗ x(2)

)

= S(1)x + S(x)1H +
∑

x(i)∈H+

S(x(1))x(2). (2.47)

Thus, one has
S(x) = −x−

∑

x(i)∈H+

S(x(1))x(2). (2.48)

(ii)⇒ (i) For x = λ1H , one has

S ∗ IdH(x) = λS(1H)IdH(1H) = λ1H = e(x). (2.49)

Thus, one has, in this case IdH ∗ S(x) = e(x).
For x ∈ H+, one has ∆+(x) =

∑
x(i)∈H+ x(1) ⊗ x(2). Then, one has

S ∗ IdH(x) = S(x)1H + S(1H)x +
∑

x(i)∈H+

S(x(1))x(2) = S(x) + x +
∑

x(i)∈H+

S(x(1))x(2)

= 0 = e(x). (2.50)

One gets the conclusion. �
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Remark 2.1.23. (i) When ∆+ is nilpotent, formula (2.46) gives a recursive computation of
S. This means that the successive replacement of S(x) (left hand side of (2.46) by its value
(right hand side of (2.46)) comes to an end (i.e. this algorithm converges).)
(ii) When ∆+ is not nilpotent, formula (2.46) is exact (as shows the proof) but it does
not need to be convergent. For example, let x ∈ H be a group-like element, then one has
x− 1 ∈ H+.

∆+(x− 1) = (x− 1)⊗ (x− 1). (2.51)

Then, Equation (2.46) reads, in this case,

S(x− 1) = −(x− 1)− S(x− 1)(x− 1),

S(x)− 1 = −x + 1− xS(x) + S(x) + x− 1,

xS(x) = 1.

Definition 2.1.24. Let H be a Hopf algebra and I a subspace of H.

1. I is called a Hopf subalgebra of H if I is a subbialgebra and S(I) ⊆ I.

2. I is called a Hopf ideal of H if it is a biideal and S(I) ⊆ I.

Definition 2.1.25. Let H and H ′ be two Hopf algebras. The map φ : H → H ′ is called a
Hopf algebra morphism if φ is a bialgebra morphism and if φ ◦ SH = SH′ ◦ φ.

Proposition 2.1.26. Let H1, H2 be two Hopf algebras. If φ : H1 → H2 is a bialgebra
morphism, then one has

φ ◦ S1 = S2 ◦ φ. (2.52)

Proof. Let us prove that φ ◦ S1 is the inverse of φ. For x ∈ H1, one has

φ ◦ S1 ∗ φ(x) = m2 ◦ (φ ◦ S1 ⊗ φ) ◦∆1(x)
= m2 ◦ (φ⊗ φ) ◦ (S1 ⊗ Id1) ◦∆1(x)
= φ ◦m1 ◦ (S1 ⊗ Id1) ◦∆1(x)
= φ ◦ η1 ◦ ǫ1(x)
= η2 ◦ ǫ1(x)
= e(x). (2.53)

Similarly, one has φ ∗ φ ◦ S1 = e. Thus, φ ◦ S1 is the inverse of φ.
Let now us prove that φ ◦ S2 is the inverse of φ. Indeed, for x ∈ H1, one has

S2 ◦ φ ∗ φ(x) = m2 ◦ (S2 ◦ φ⊗ φ) ◦∆1(x)
= m2 ◦ (S2 ⊗ Id2) ◦ (φ⊗ φ) ◦∆1(x)
= m2 ◦ (S2 ⊗ Id2) ◦∆2 ◦ φ(x)
= ǫ2(φ(x))1H2

= ǫ1(x)1H2

= e(x). (2.54)

In the same way, one has that φ ∗ S2 ◦ φ = e.
Thus, one gets the conclusion. �
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Definition 2.1.27. Let H a Hopf algebra. Let x ∈ H.

1. x is called a group-like element if x 6= 0, ∆(x) = x⊗ x and ǫ(x) = 1.

2. x is called a primitive element if ∆(x) = x⊗ 1 + 1⊗ x.

The set of group-like elements of H is denoted G(H) and the subspace of primitive elements
of H is denoted P (H).

Remark 2.1.28. If x is a group-like element, then S(x) = x−1. If x is a primitive element,
then S(x) = −x.

Let us mention that in most of the studied cases, the spaces have finite graded dimensions.
Thus, in order to prove the Hopf algebra structures, it sufficies to show the compatibility of
the product and the coproduct.

Proposition 2.1.29. Let (H, m, 1, ∆, ǫ) be a N-graded bialgebra such that H0 = k1H. Then
H is a Hopf algebra.

Let us recall the definition of codendriform bialgebras [Agu04, Lod01, LR02, Foi07].

Definition 2.1.30. A dendriform algebra is a family (A,≺,≻) such that:
1. A is a k-vector space and:

≺:





A⊗A −→ A

a⊗ b −→ a ≺ b,
|≻:





A⊗ A −→ A

a⊗ b −→ a ≻ b.

2. For all a, b, c ∈ A:

(a ≺ b) ≺ c = a ≺ (b ≺ c + b ≻ c), (2.55)

(a ≻ b) ≺ c = a ≻ (b ≺ c), (2.56)

(a ≺ b + a ≻ b) ≻ c = a ≻ (b ≻ c). (2.57)

Definition 2.1.31. A dendriform coalgebra is a family (C, ∆≺, ∆≻) such that:
1. C is a k-vector space and:

∆≺ :





C −→ C ⊗ C

a −→ ∆≺(a) = a′≺ ⊗ a′′≺,
|∆≻ :





C −→ C ⊗ C

a −→ ∆≻(a) = a′≻ ⊗ a′′≻.

2. For all a ∈ C:

(∆≺ ⊗ Id) ◦∆≺(a) = (Id⊗∆≺ + Id⊗∆≻) ◦∆≺(a), (2.58)

(∆≻ ⊗ Id) ◦∆≻(a) = (Id⊗∆≺) ◦∆≻(a), (2.59)

(∆≺ ⊗ Id + ∆≻ ⊗ Id) ◦∆≻(a) = (Id⊗∆≻) ◦∆≻(a). (2.60)
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Definition 2.1.32. A codendriform bialgebra is a family (A, m, ∆≺, ∆≻) such that:

1. (A, ∆≺, ∆≻) is a dendriform coalgebra.

2. (A, m) is an associative (non unitary) algebra.

3. The following compatibilities are satisfied: for all a, b ∈ A,

∆̃(a ≺ b) = a′b′ ⊗ a′′ ≺ b′′ + a′ ⊗ a′′ ≺ b + a′b⊗ a′′ + b′ ⊗ a ≺ b′′ + b⊗ a,(2.61)

∆̃(a ≻ b) = a′b′ ⊗ a′′ ≻ b′′ + a′ ⊗ a′′ ≻ b + ab′ ⊗ b′′ + b′ ⊗ a ≻ b′′ + a⊗ b. (2.62)

2.2 Matroids and the Tutte polynomial for matroids

In this section we briefly recall some matroid theory notions. We give the definition of
matroids, of the associated Tutte polynomial as well as some further properties which will
be useful to prove the results of Chapter 4. Finally, the Hopf algebra of isomorphic classes
of matroids is given.

2.2.1 Matroid theory

In this subsection we recall the definition and some properties of the Tutte polynomial for
matroids as well as of the matroid Hopf algebra defined in [Sch94].

Let us first define a graph in the following way:

Definition 2.2.1. A graph Γ is defined as a set of vertices V and of edges E together with
an incidence relation between them.

After the book [Oxl92], one gives the following definitions:

Definition 2.2.2. A matroid M is a pair (E, I) consisting of a finite set E and a collection
of subsets of E satisfying the following set of axioms:

(I1) I is non-empty.

(I2) Every subset of every member of I is also in I.

(I3) If X and Y are in I and |X| = |Y | + 1, then there is at least an element x in X \ Y
such that Y ∪ {x} is in I.

M is called a matroid on E. The set E above is called the ground set of the matroid M .
The members of I are called independent sets of the matroid M . A subset of E which is
not in I is called dependent.

Proposition 2.2.3 (Proposition 1.1.1 of [Oxl92]). Let E be the set of column labels of
an m × n matrix A over a field F , and let I be the set of subsets X of E for which the
multiset1 of columns labelled by X is linearly independent in the vector space V (m, F ). Then
(E, I) is a matroid.

1In general, taking a set of labels give a multiset, but here (in the case of independent) there is no
multiplicity.
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This matroid is called the vector matroid.

Example 2.2.4. Let A be a matrix




1 2 3 4 5 6

1 1 0 0 1 0
1 1 1 0 0 0
0 0 1 1 0 0
0 0 0 1 1 0




over field R. The ground set is given by E = {1, 2, 3, 4, 5, 6} and the collection of subset I
consists of all subsets of E−{6} with at most three elements except for any subset containing
{1, 2}. In details, one has I = {∅, {1}, {2}, {3}, {4}, {5}, {1, 3}, {1, 4}, {1, 5}, {2, 3}, {2, 4},
{2, 5}, {3, 4}, {3, 5}, {4, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}, {2, 3, 4}, {2, 3, 5}, {2, 4, 5}, {3, 4, 5}}.

Let E be an n−element set and let I be the collection of subsets of E with at most r elements,
0 ≤ r ≤ n. One can check that (E, I) is a matroid; it is called the uniform matroid Ur,n.
If the ground set is an empty set, there is one matroid, namely U0,0. This matroid, denoted
by 1, is called the empty matroid.

A forest of graph is a subgraph without cycles [Ber73].

Definition 2.2.5. Let G be a graph. Let E be the set of edges of graph G and I be the set
of forests of G. Then (E, I) is a matroid. This matroid is called the cycle matroid of G.
It is denoted by M(G).

Note that not every matroid is a graphic matroid. All matroids on the ground set which
contains three or less elements, are graphic (see Table 2.1). The smallest example of a
non-graphic matroid is the uniform matroid U2,4.

Remark 2.2.6. The matroids representations of two different graphs might be the same. For
example, for the graphs G and H in Figure 2.1a and Figure 2.1b respectively, M(G) = M(H).

A cycle matroid of G is has the ground set E(G) = {1, 2, 3, 4, 5, 6} and the set I consists of
all subsets of E(G)\{6} with at most three elements except for any subset containing {1, 2}.

Definition 2.2.7. The maximal independent sets of a matroid is called a base or a basis.
The minimal dependent sets of a matroid are called circuits.

Example 2.2.8. (i) The bases of the cycle matroid M(G) of the graph G in Figure 2.1a are
all subsets of E(G)\{6} with at most three elements except for any subset containing {1, 2}.
(ii) The bases of the uniform matroid Uk,n are all k-element subsets of the ground set.

Let M = (E, I) be a matroid and let B = {B} be the collection of bases of M .

A spanning tree of a graph on n vertices is a subset of n− 1 edges that form a tree [Ber73].
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Number of elements A corresponding graph non-isomorphic matroids

0 (∅, {∅})

1 ({1}, {∅})
1 ({1}, {∅, {1}})

2 ({1, 2}, {∅})

2 ({1, 2}, {∅, {1}})
2 ({1, 2}, {∅, {1}, {2}})
2 ({1, 2}, {∅, {1}, {2}, {1, 2}})

3 ({1, 2, 3}, {∅})

3 ({1, 2, 3}, {∅, {1}})

3 ({1, 2, 3}, {∅, {1}, {2}})

3 ({1, 2, 3}, {∅, {1}, {2}, {1, 2}})
3 ({1, 2, 3}, {∅, {1}, {2}, {3}})
3 ({1, 2, 3},

{∅, {1}, {2}, {3}, {1, 2}, {1, 3}})

3 ({1, 2, 3},
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}})

3 ({1, 2, 3},
{∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3},
{1, 2, 3}})

Table 2.1: The matroids with ground set of cardinal at most 3.
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(a) The graph G.

1
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4
5

6

(b) The graph H.

Figure 2.1: Two different graphs have the same representation matroid.

Example 2.2.9. Let G be a connected graph. The collection of bases of a graphic matroid
M(G) is the set of spanning trees.

Definition 2.2.10. Two matroids M1 and M2 are said isomorphic (written M1
∼= M2),

if there is a bijection φ from E(M1) to E(M2) such that, for all X ⊆ E(M1), φ(X) is
independent in M2 if and only if X is independent in M1.

A matroid that is isomorphic to the cycle matroid of graph is called graphic.
A matroid M that is isomorphic to a vector matroid of a matrix D over a field F is said to
be representable over F or F -representable for M . In fact, every graphic matroid is
representable over every field.

Remark 2.2.11. If one takes n = 1, there are only two matroids, namely U0,1 and U1,1 and
both of these matroids are graphic matroids. The graphs of these two matroids correspond
to the graphs with one edge of Fig.2.2 and Fig. 2.3. In the first case, the edge is a loop

Figure 2.2: The graph corresponding to the matroid U0,1.

Figure 2.3: The graph corresponding to the matroid U1,1.

(in graph theoretical terminology) or a tadpole (in quantum field theory (QFT) language).



22 CHAPTER 2. BACKGROUND AND GENERAL RESULTS

In the second case, the edge represents a bridge (in graph theoretical terminology) or a 1-
particle-reducible line (in QFT terminology) - the number of connected components of the
graphs increases by 1 if one deletes the respective edge.

Theorem 2.2.12 (Theorem 2.1.1 in [Oxl92]). Let M be a matroid and B⋆(M) be {E(M)\
B : B ∈ B(M)}. Then B⋆(M) is the set of bases of a matroid on E(M), denoted M∗.

The matroid in the last theorem, whose ground set is E(M) and whose set of bases is B⋆(M),
is called the dual of M and denoted by M⋆. Thus, B(M⋆) = B⋆(M). One has (M⋆)⋆ = M .
The bases of M⋆ are called cobases of M .

Example 2.2.13. Consider the uniform matroid Uk,n. Its bases are all of the k-element
subsets of E. Hence all bases of its dual are all the (n − k)-element subsets of E. One has
U⋆

k,n = Un−k,n.

Example 2.2.14. Table 2.2 gives the dual of all matroids in Table 2.1.

Definition 2.2.15. Let M = (E, I) be a matroid. The rank r(A) of A ⊂ E is given by the
following formula:

r(A) := max{|B| s.t. B ∈ I, B ⊂ A} . (2.63)

Definition 2.2.16. Let M = (E, I) be a matroid with a ground set E. For a subset A ⊂ E,
the nullity function is given by

n(A) := |A| − r(A). (2.64)

Definition 2.2.17. Let M = (E, I) be a matroid. The element e ∈ E is a loop iff {e} is a
circuit.

Definition 2.2.18. Let M = (E, I) be a matroid. The element e ∈ E is a coloop iff, for
any basis B, e ∈ B .

Let us remark that e is a loop iff e is a coloop in M∗.
Note that in a graphic matroid, a loop is an edge which is a loop in the graph-theoretic sense,
while a coloop is an edge which is a bridge or isthmus in the graph (see again Figures 2.2
and 2.3).
Let M be a matroid (E, I) and T be a subset of E. Let I|T be the set {I ⊆ T s. t. I ∈ I}.
One can then check that the pair (T, I|T ) is a matroid, which is denoted by M |T and is
called the restriction of M to T .
Let us now define two more basic operations on matroids. Let I ′ = {I ⊆ E − T s.t. I ∈ I}.
One can check that (E−T, I ′) is a matroid. We denote this matroid by M\T - the deletion of
T from M . The contraction of T from M , M/T , is given by the formula: M/T = (M⋆\T )⋆.

Example 2.2.19. Let M be a cycle matroid of graph G in Figure 2.1a. Let T = {1, 3}.
One then has

M\T = ({2, 4, 5, 6}, {∅, {2}, {4}, {5}, {2, 4}, {2, 5}, {4, 5}, {2, 4, 5}})
M/T = ({2, 4, 5, 6}, {∅, {4}, {5}}).
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Matroids Dual matroids A corresponding graph

(∅, {∅}) (∅, {∅})
({1}, {∅}) ({1}, {∅, {1}})
({1}, {∅, {1}}) ({1}, {∅})

({1, 2}, {∅}) ({1, 2},
{∅, {1}, {2}, {1, 2}})

({1, 2}, {∅, {1}}) ({1, 2}, {∅, {2}})
({1, 2}, {∅, {1}, {2}}) ({1, 2}, {∅, {1}, {2}})
({1, 2},
{∅, {1}, {2}, {1, 2}})

({1, 2}, {∅})

({1, 2, 3}, {∅}) ({1, 2, 3},
{∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}})

({1, 2, 3}, {∅, {1}}) ({1, 2, 3}, {∅, {2}, {3},
{2, 3}})

({1, 2, 3}, {∅, {1}, {2}}) ({1, 2, 3},
{∅, {1}, {2}, {3},
{1, 3}, {2, 3}})

({1, 2, 3},
{∅, {1}, {2}, {1, 2}})

({1, 2, 3}, {∅, {3}})

({1, 2, 3},
{∅, {1}, {2}, {3}})

({1, 2, 3},
{∅, {1}, {2}, {3},
{1, 2}, {1, 3}, {2, 3}})

({1, 2, 3},
{∅, {1}, {2}, {3}

({1, 2, 3}, {∅, {2}, {3}})

{1, 2}, {1, 3}})
({1, 2, 3},
{∅, {1}, {2}, {3})

({1, 2, 3},
{∅, {1}, {2}, {3}})

{1, 2}, {1, 3}, {2, 3}}
({1, 2, 3},
{∅, {1}, {2}, {3}

({1, 2, 3}, {∅})

{1, 2}, {1, 3}, {2, 3}, {1, 2, 3}})

Table 2.2: Dual matroids with ground set of cardinal at most 3.
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Let us give the following definition:

Definition 2.2.20. Let M1 and M2 be the matroids (E1, I1) and (E2, I2) where E1 and E2

are disjoint. Let

M1 ⊕M2 := (E1 ∪ E2, {I1 ∪ I2 s.t. I1 ∈ I1, I2 ∈ I2}) .

Then M1 ⊕M2 is a matroid. This matroid is called the direct sum of M1 and M2.

A matroid N is a minor of the matroid M if it is obtained from M by any combination of
restrictions and contractions. We further call a family of matroids to be minor-closed if it
closed under formation of minors and direct sums.

Example 2.2.21 (Corollary 3.2.2). Every minor of a graphic matroid is graphic.

Let us also recall the following results:

Lemma 2.2.22 (). Let M be a matroid (E, I) and T be a subset of E. One has:

M |T = M\E−T . (2.65)

Proof. It is easy to see that E(M\E−T ) = T = E(M |T ).
Moreover, from the definition, the collection of independent subsets of M\E−T is given by

I(M\E−T ) = {I ⊂ E − (E − T ) s.t. I ∈ I} = {I ⊂ T s.t. I ∈ I} = I(M |T ).

One then gets the conclusion. �

Let us recall some basic results (see [Oxl92]).

Lemma 2.2.23 (Corollary 3.1.25 [Oxl92]). If e is either a coloop or a loop of a matroid
M = (E, I), then M/e = M\e.

Lemma 2.2.24 (Proposition 3.1.6 [Oxl92]). Let M = (E, I) be a matroid and T ⊆ E,
then, for all X ⊆ E − T ,

rM/T (X) = rM(X ∪ T )− rM(T ) . (2.66)

Let us now define the Tutte polynomial for matroids [Tut54]:

Definition 2.2.25. Let M = (E, I) be a matroid. The Tutte polynomial is given by the
following formula:

TM(x, y) :=
∑

A⊆E

(x− 1)r(E)−r(A)(y − 1)n(A). (2.67)

Example 2.2.26. 1) Let Uk,n be a uniform matroid, 0 ≤ k ≤ n. The Tutte polynomial
of this matroid is given by the following formula:

TUk,n
(x, y) =

k∑

i=0

(
n

i

)
(x− 1)k−i +

n∑

i=k+1

(
n

i

)
(y − 1)i−k. (2.68)
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2) Let M be a cycle matroid of graph G in Figure 2.1a. One has

TM (x, y) = (x− 1)3 + 5(x− 1)2 + (x− 1)3(y − 1) + 9(x− 1) + 6(x− 1)2(y − 1)
+7 + 12(x− 1)(y − 1) + (x− 1)2(y − 1)2 + 12(y − 1) + 3(x− 1)(y − 1)2

+6(y − 1)2 + (y − 1)3

= x3y + x2y + xy + xy2 + x2y2 + y2 + y3. (2.69)

Let us recall, from [BO92] that

TM(x, y) = TM⋆(y, x). (2.70)

Proposition 2.2.27 (Lemma 6.2.1 of [BO92]). The Tutte polynomial is a Tutte-Grothendieck
invariant (1.3) - (1.5) for the class of all matroids. This means that

(i) TM (x, y) = TM ′(x, y) where M ∼= M ′;

(ii) TM (x, y) = TM/e
(x, y) + TM\e(x, y) if e is neither a loop nor coloop;

(iii) TM (x, y) = TM |e(x, y)TM\e(x, y) if e is either a loop or a coloop.

The Tutte polynomial for matroids also satisfies a multiplicative law.

Proposition 2.2.28 (Proposition 6.2.5 of [BO92]). Let the two matroids M1 = (E1, I1)
and M2 = (E2, I2), where E1 and E2 are disjoint. One has

TM1⊕M2(x, y) = TM1(x, y)TM2(x, y). (2.71)

2.2.2 Matroid Hopf algebra

The matroid-minor Hopf algebra, introduced in [Sch94], has as canonical basis the set
of all isomorphism classes of matroids. This Hopf algebra is briefly considered in connection
with the characteristic and Tutte polynomials of matroids in [KRS99] and [Kun04].
Let us denote by M a minor-closed family of matroids. We further note by M̃ the set of
isomorphic classes of matroids belonging to M. As already mentioned in [Sch94], direct
sums induce a product on M̃. Let k(M̃) finally denote the monoid algebra of M̃ over some
commutative ring k with unit.
In [Sch94], as a particularization of a more general construction of incidence Hopf algebras,
the following result was proved:

Proposition 2.2.29 (Proposition 2.1 of [CS05]). If M is a minor-closed family of ma-
troids then k(M̃) is a coalgebra, with coproduct ∆ and counit ǫ determined by

∆(M) :=
∑

A⊆E

M |A⊗M/A (2.72)

and respectively by ǫ(M) =





1, if E = ∅,
0 otherwise ,

for all M = (E, I) ∈ M. If, furthermore,

the family M is closed under formation of direct sums, then k(M̃) is a Hopf algebra, with
product induced by direct sum.
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We refer to this Hopf algebra as to the matroid Hopf algebra. We follow [CS05] and, by a
slight abuse of notation, we denote in the same way a matroid and its isomorphic class, since
the distinction will be clear from the context (as it is already in Proposition 2.2.29).
We denote the unit of this Hopf algebra by 1 (the empty matroid, or U0,0).

Example 2.2.30. (Example 2.4 of [CS05]) The class U of all uniform matroids is minor-
closed, and the coproduct of the matroids Uk,n is given by:

∆(Uk,n) =
k∑

i=0

(
n

i

)
Ui,i ⊗ Uk−i,n−i +

n∑

i=k+1

(
n

i

)
Uk,i ⊗ U0,n−i, ∀k, n.

2.3 Structure of cocommutative Hopf algebra

The results presented in this section follow [DMT+].
In order to extend Schützenberger’s factorization to general perturbations, the combinatorial
aspects of the Hopf algebra of a deformed shuffle product is developed systematically in a
parallel way with those of the shuffle product, with an emphasis on the Lie elements as
studied by Ree. In particular, we will give an effective construction of pair of bases in
duality.
Many algebras of functions [DDMS11] and many special sums [MJOP00, MJOP01] are gov-
erned by shuffle products, their perturbations (adding a “superposition term” [DTPK10]) or
deformations [TU96].

In order to better understand the mechanisms of these products, we wish here to examine,
with full generality the products which are defined by a recursion of the type

au ⋆ bv = a (u ⋆ bv) + b (au ⋆ v) + φ(a, b) u ⋆ v , (2.73)

the empty word being the neutral of this new product.

Moreover, we present a version of the Cartier-Quillen-Milnor and Moore (CQMM in the
sequel) without any use of the Poincaré-Birkhoff-Witt (PBW) construction. We are obliged
to restate the CQMM theorem without supposing any basis because we aim at “varying the
scalars” in forthcoming papers (germs of functions, arithmetic functions, etc.) and, in order
to do this at ease, we must cope safely with cases where torsion (non-zero annihilators) may
appear (and then, one cannot have any basis). See (counter) examples in the subsection
2.3.3.

2.3.1 General results on summability and duality

2.3.1.1 Total algebras and duality

Series and infinite sums
We here recall the results used to handle infinite sums in the sequel. The underlying topology
is that of the pointwise convergence (the target being endowed with the discrete topology).
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In the sequel, we will need to construct spaces of functions on different monoids (mainly direct
products of free monoids). We set, once for all the general construction of the corresponding
convolution algebra.

Let A be a unitary commutative ring and M a monoid. Let us denote AM the set2 of all
(graphs of) mappings3 M → A. This set is endowed with its classical structure of module.
In order to extend the product defined in A[M ] (the algebra of the monoid M), it is essential
that, in the sums

f ∗ g =
∑

m∈M

( ∑

uv=m

f(u)g(v)
)

m (2.74)

the inner sums
∑

uv=m f(u)g(v) make sense. For that, we suppose that the monoid M fulfills
condition “D” (i.e. M is of finite decomposition type [Bou06a] Ch III.10). Formally, we say
that M satisfies condition “D” iff, for all m ∈M , the set

{(u, v) ∈ M ×M s.t. uv = m} (2.75)

is finite. In this case, Equation (2.74) endows AM with the structure of an associative algebra
with unit (AAU). This algebra is traditionally called the total algebra of M (see [Bou06a]
Ch III.10)4. Here, it will be denoted, with an unambiguous abuse of denotation, by A 〈〈M〉〉.
The pairing

A 〈〈M〉〉 ⊗A[M ] −→ A (2.76)

defined by5

〈f | g〉 :=
∑

m∈M

f(m)g(m) (2.77)

allows to consider the total algebra as the dual of the module A[M ] i.e., through this pairing

A 〈〈M〉〉 ≃ (A[M ])∗ .

One says that a family (fi)i∈I of A 〈〈M〉〉 is summable [BR88] iff, for every m ∈ M , the
mapping i 7→ 〈fi | m〉 is finitely supported. In this case, the sum

∑
i∈I fi is exactly the

mapping m 7−→ ∑
i∈I 〈fi | m〉 so that, one has by definition

〈
∑

i∈I

fi | m
〉

=
∑

i∈I

〈fi | m〉 . (2.78)

Finally, let us remark that the set M1 ⊗M2 = {u ⊗ v}(u,v)∈M1×M2 is a (monoidal) basis of
A[M1]⊗A[M2] and M1⊗M2 is a monoid (in the product algebra A[M1]⊗A[M2]) isomorphic
to the direct product M1 ×M2.

2In general Y X is the set of all (total) mappings X → Y [Bou06d] Ch 2.5.2.
3According to [Bou06d], Y X is the set of all ”graphs” of Γ ⊂ X × Y which are functional in X such that

dom(Γ) = X .
4Actually, the algebra of commutative (resp. noncommutative) series on an alphabet X is the total

algebra of the free commutative (resp. free) monoid on X
5Here A[M ] is identified with the submodule of finitely supported functions M → A.
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Summable families in Hom spaces.
In fact, A 〈〈M〉〉 ≃ (A[M ])∗ = Hom(A[M ], A) and the notion of summability developed
above can be seen as a particular case of that of a family of endomorphisms fi ∈ Hom(V, W )
for which Hom(V, W ) appears as a complete space6.

The definition extends that of a summable family of series (2.78).

Definition 2.3.1. i) A family (fi)i∈I of elements in Hom(V, W ) is said to be summable iff
for all x ∈ V , the map i 7→ fi(x) has finite support. As a quantized criterium it reads

(∀x ∈ V )(∃F ⊂ I, F finite)(∀i /∈ F )(fi(x) = 0). (2.79)

ii) If the family (fi)i∈I ∈ Hom(V, W )I fulfils the condition (2.79) above, its sum is given by

(
∑

i∈I

fi)(x) :=
∑

i∈I

fi(x). (2.80)

It is an easy exercise to show that the mapping V → W defined by the equation (2.80) is in
fact in Hom(V, W ).

Remark 2.3.2. (i) As the limiting process is defined by linear conditions, if a family (fi)i∈I

is summable, so is
(aifi)i∈I (2.81)

for an arbitrary family of coefficients (ai)i∈I ∈ AI .
(ii) With V = A[M ] and W = A, one has Hom(V, W ) ∼= A 〈〈M〉〉 and it is easy to check that
with Definition 2.3.1 one recovers the previous notion of summability of Equation (2.80).

This tool will be used in subsection 2.3.2 to give an analytic presentation of the theorem of
CQMM in the case when V = W = B is a bialgebra.

The most interesting feature of this operation is the interchange of sums. Let us state it
formally as a proposition.

Proposition 2.3.3. Let (fi)i∈I be a family of elements in Hom(V, W ) and (Ij)j∈J be a par-
tition of I ([Bou06d] ch II §4 no 7 Def. 6), then, the following statements are equivalent
i) (fi)i∈I is summable
ii) for all j ∈ J , (fi)i∈Ij

is summable and the family (
∑

i∈Ij
fi)j∈J is summable.

In these conditions, one has ∑

i∈I

fi =
∑

j∈J

(
∑

i∈Ij

fi). (2.82)

We derive at once from this the following practical criterium for double sums.

Corollary 2.3.4. Let (fα,β)(α,β)∈X×Y be a doubly indexed summable family in Hom(V, W ),
then, for fixed α (resp. β) the “row-families” (fα,β)β∈Y (resp. the “column-families” (fα,β)α∈X)
are summable and their sums are summable. Moreover

∑

(α,β)∈X×Y

fα,β =
∑

α∈X

∑

β∈Y

fα,β =
∑

β∈Y

∑

α∈X

fα,β . (2.83)

6Complete is in the sense of [Bou06b] Ch3 §1 no 1. Every summable (infinite sum) has a limit.
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2.3.1.2 Substitutions

Let A be an AAU and f ∈ A. For every polynomial P ∈ A 〈z〉 (= A[z∗]), one can compute
P (f) by

P (f) =
∑

n≥0

〈P | Xn〉 fn . (2.84)

One checks at once that P 7→ P (f) is a morphism7 of AAU’s between A 〈X〉 and A.
Moreover, this morphism is compatible with the substitutions as one checks easily that,
for Q ∈ A[X]

P (Q)(f) = P (Q(f)) (2.85)

(it suffices to check that P 7→ P (Q)(f) and P 7→ P (Q(f)) are two morphisms which coincide
on P = X).
In order to substitute within series, one needs some limiting process. The framework of A =
Hom(V, W ) and summable families will be here sufficient (see subsection 2.3.1.1). We suppose
that (V, δV , ǫV ) is a co-AAU and that (W, µW , 1W ) is an AAU. Then (Hom(V, W ), ∗, e) is an
AAU (with e = 1W ◦ ǫV ). A series S ∈ A[[X]] and f ∈ Hom(V, W ) being given, we say that
f ∈ Dom(S) iff the family (〈S | Xn〉 f ∗n)n≥0 is summable8. We have the following properties

Proposition 2.3.5. Let S and T be two series in A[[X]]. If f ∈ Dom(S) ∩ Dom(T ) and
α ∈ A, one has

(αS)(f) = αS(f) ; (S + T )(f) = S(f) + T (f) (2.86)

and
(TS)(f) = T (f) ∗ S(f) . (2.87)

If ((f)∗n)n≥0 is summable and S(0) = 0 then

f ∈ Dom(S) ∩Dom(T (S)) ; S(f) ∈ Dom(T ) (2.88)

and
T (S)(f) = T (S(f)). (2.89)

Proof. Let us first prove (2.87). As f ∈ Dom(S) ∩Dom(T ), the families (〈S | Xn〉 f ∗n)n≥0

and (〈T | Xm〉 f ∗m)m≥0 are summable, then so is

(〈T | Xm〉 f ∗m ∗ 〈S | Xn〉 f ∗n)n,m≥0 (2.90)

as, for every x ∈ V , δV (x) =
∑N

i=1 x
(1)
i ⊗ x

(2)
i and for every i ∈ I,

suppw.r.t. m(〈T | Xm〉 f ∗m(x
(1)
i )) ; suppw.r.t. n(〈S | Xn〉 f ∗n(x

(2)
i ))

are finite9. Then outside of the Cartesian product of the (finite) union of these supports, the
product

(〈T | Xm〉 f ∗m ∗ 〈S | Xn〉 f ∗n)(x) = µW ((〈T | Xm〉 f ∗m ⊗ 〈S | Xn〉 f ∗n)(δV (x))) (2.91)

7In case A is a geometric space, this morphism is called “evaluation at f” and corresponds to a Dirac
measure.

8Where f∗n denotes straightforwardly the n-th power of f w.r.t. the convolution product.
9Let (Xi,j,k,...,m) be a multiindexed family. The suppw.r.t. k is the support of mapping k −→ Xi,j,k,...,m.
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is zero. Hence the summability.
Now

T (f) ∗ S(f) =

(
∞∑

m=0

〈T | Xm〉 f ∗m
)
∗
(
∞∑

n=0

(〈S | Xn〉 f ∗n
)

=
∞∑

m=0

∞∑

n=0

〈T | Xm〉 〈S | Xn〉 f ∗(n+m)

=
∞∑

s=0

(
∞∑

n+m=s

〈T | Xm〉 〈S | Xn〉
)

f ∗s

=
∞∑

s=0

(〈TS | Xs〉)f ∗s = (TS)(f). (2.92)

We now prove the statements (2.88) and (2.89). If ((f)∗n)n≥0 is summable then f belongs to
all domains (i.e. is universally substitutable) by virtue of (2.81). For all x ∈ V , there exists
Nx ∈ N such that

n > Nx =⇒ (f)∗n(x) = 0 .

Now, for S such that S(0) = 0, one has S =
∑∞

n=1 〈S | Xn〉Xn and then

Sk =
∞∑

n=k

〈
Sk | Xn

〉
Xn.

Now, in view of (2.87), one has

S(f)∗n(x) = Sn(f)(x) =
∞∑

m=n

〈Sn | Xm〉 (f)∗m(x) (2.93)

which is zero for n > Nx. Hence the summability of (S(f)∗n)n≥0 which implies that S(f) ∈
Dom(T ). The family (〈T | Xn〉 〈Sn | Xm〉 (f)∗m)(n,m)∈N2 is summable because, if x ∈ V and
if n or m is greater than Nx then

〈T | Xn〉 〈Sn | Xm〉 (f)∗m(x) = 0. (2.94)

Thus T (S(f)) is the sum

T (S(f)) =
∞∑

n=0

〈T | Xn〉S(f)∗n

=
∞∑

n=0

〈T | Xn〉
∞∑

m=n

〈Sn | Xm〉 (f)∗m

=
∞∑

n=0

∞∑

m=0

〈T | Xn〉 〈Sn | Xm〉 (f)∗m

=
∞∑

m=0

(
∞∑

n=0

〈T | Xn〉 〈Sn | Xm〉
)

(f)∗m

=
∞∑

m=0

〈T (S) | Xm〉 (f)∗m = T (S)(f). (2.95)

�



2.3. STRUCTURE OF COCOMMUTATIVE HOPF ALGEBRA 31

In the free case (i.e. V = W are the bialgebra (A 〈X〉 , conc, 1X∗ , ∆
⊔⊔

, ǫ)), one has a very
useful representation of the convolution algebra Hom(V, W ) through images of the diagonal
series. This representation will provide us with the key lemma 2.3.10. Let

DX :=
∑

w∈X∗

w ⊗ w. (2.96)

be the diagonal series attached to X.

Proposition 2.3.6. Let A be a commutative unitary ring and X an alphabet. Then

i) For every f ∈ End(A 〈X〉), the family (u ⊗ f(u))u∈X∗ is summable in A 〈〈X∗ ⊗X∗〉〉
and its sum is ∑

v,w∈X∗

〈f(v) | w〉 v ⊗ w, (2.97)

where 〈|〉 is the pairing given by (∀u, v ∈ X∗)(〈u | v〉 = δu,v).

ii) The map
f 7→ ρ(f) :=

∑

u∈X∗

u⊗ f(u) (2.98)

is faithful representation from (End(A 〈X〉), ∗) to (A 〈〈X∗ ⊗X∗〉〉 , ⊔⊔ ⊗conc). In par-
ticular, for f ∈ End(A 〈X〉) and P ∈ A[z], one has

ρ(P (f)) = P (ρ(f)). (2.99)

iii) If f(1X∗) = 0 and S ∈ A[[z]] is a series, then (ρ(f)n)n≥0 is summable in (A 〈〈X∗ ⊗X∗〉〉,
⊔⊔ ⊗conc) and

ρ(S(f)) = S(ρ(f)). (2.100)

Proof. i) One easily checks that for every v⊗w ∈ X∗⊗X∗, the mapping 〈u⊗ f(u) | v ⊗ w〉⊗2

is finitely supported. Hence the family (u⊗ f(u))u∈X∗ is summable. One has

∑

u∈X∗

u⊗ f(u) =
∑

v,w∈X∗

∑

u∈X∗

〈u⊗ f(u) | v ⊗ w〉⊗2 v ⊗ w

=
∑

v,w∈X∗

〈v ⊗ f(v) | v ⊗ w〉⊗2 v ⊗ w

=
∑

v,w∈X∗

〈f(v) | w〉 v ⊗ w. (2.101)

ii) Let us prove that ρ is a representation

ρ(f)(⊔⊔ ⊗conc)ρ(g) =
∑

u,v∈X∗

(u⊗ f(u)(⊔⊔ ⊗conc)(v ⊗ g(v))

=
∑

u,v∈X∗

(u ⊔⊔ v ⊗ (conc(f(u)⊗ g(v))))

=
∑

u,v∈X∗

∑

w∈X∗

(〈u ⊔⊔ v | w〉w ⊗ conc(f(u)g(v))
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=
∑

w∈X∗

w ⊗

 ∑

u,v∈X∗

(〈u ⊔⊔ v | w〉 conc(f(u)g(v))




=
∑

w∈X∗

w ⊗

 ∑

u,v∈X∗

(〈u⊗ v | ∆(w)〉 conc(f(u)g(v))




=
∑

w∈X∗

w ⊗ (conc(f ⊗ g)∆(w)) =
∑

w∈X∗

w ⊗ (f ∗ g(w)). (2.102)

Moreover, this representation is faithful because ρ(f) = 0 then f = 0.
iii) It is easy to check. �

2.3.2 Theorem of Cartier-Quillen-Milnor-Moore (analytic form)

2.3.2.1 General properties of bialgebras

From now on, we suppose that A is a unitary commutative Q-algebra (i.e. Q ⊂ A).
The aim of CQMM theorem is to provide necessary and sufficient conditions for a bialgebra
B to be an enveloping algebra, we will discuss this condition in detail in the sequel.

Let (B, µ, 1B, ∆, ǫ) be a (general) A-bialgebra. From Theorem 2.1.3 in [Abe80], one can
always consider the Lie algebra of primitive elements Prim(B). Let U(Prim(B)) be the
universal enveloping A-algebra of Prim(B). By universal property, there exists an algebra
morphism iB,U from U(Prim(B)) to B which fix all primitive elements of B.

iB,U : U(Prim(B))→ B .

Then, A = iB,U(U(Prim(B))) is the subalgebra generated by the primitive elements.
Let iA,P be a natural map from Prim(B) to A.
Let iB,P be a canonical map from Prim(B) to B. One then has a factorization iB,P = iA,P ◦iB,A.
Let iU ,P be a natural map from a Lie algebra Prim(B) into its enveloping algebra U(Prim(B)).
As the image of iB,U is a subspace of A, there is a unique factorization iB,U = iB,A ◦ iA,U .

Prim(B) A B

U(Prim(B))

iA,P

iU ,P

iB,A

iA,U

iB,U

Figure 2.4: The sub-algebra A generated by primitive elements.

Remark 2.3.7. The mapping iB,A is into but iB,A ⊗ iB,A may not be so.
This is the case for B = (Q[ǫ][x], ., 1Q[ǫ][x], ∆, c) where (Q[ǫ][x], ., 1B) is the usual polynomial
algebra with coefficients in the algebra of dual numbers Q[ǫ] (with ǫ2 = 0) and

∆(x) = x⊗ 1 + 1⊗ x + ǫx⊗ x, c(x) = 0

(see details and proofs below, in section 2.3.3).
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In general, one has (only) ∆(A) ⊂ Im(iB,A⊗iB,A), this can be simply seen from the following
combinatorial argument.
For any list of primitive elements L = [g1, g2, · · · , gn] and I = {i1 < i2 < .. < ik} ⊂
{1, 2, .., n}, put L[I] = gi1gi1 · · · gik

, the product of the sublist.

One has

∆(g1g2 · · · gn) = ∆(L[1, 2, .., n]) =
∑

I+J={1,2,..,n}

L[I]⊗ L[J ] . (2.103)

From (2.103) one gets also that iB,U is a morphism of bialgebras. If for any reason, there
exists a lifting10 of ∆◦iB,A as a comultiplication of A, then iB,U is into (see the statement and
the proof below). Formula (2.103) proves that we have the maps (save the – hypothetical –
dotted one) in Figure 2.5.

G ⊂ Prim(B) is any generating set of the AAU A. Let P ∈ A〈G〉, one has

sG(P ) =
∑

w∈G∗

〈P | w〉sG(w). (2.104)

A 〈G〉 A

A 〈G〉 ⊗ A 〈G〉 A ⊗ A

sG

∆
⊔⊔

∆A

sG ⊗ sG

Figure 2.5: The unique lifting ∆A (when it exists).

We emphasize the fact that, in the diagram above, G must be understood set-theoretically
(i.e. with no relation between the elements11).
In fact, one has the following proposition

Proposition 2.3.8. Let B be a bialgebra over a (commutative) Q-algebra A, the notations
being those of figures 2.4 and 2.5, then the following statements are equivalent

i) For a generating set G ⊂ Prim(B), ker(sG) ⊂ ker((sG ⊗ sG) ◦∆
⊔⊔

).

ii) For any generating set G ⊂ Prim(B), ker(sG) ⊂ ker((sG ⊗ sG) ◦∆
⊔⊔

).

iii) iB,U is into.

Proof. i) =⇒ iii) In order to prove this, we need to construct the arrows σ, τ which are a
decomposition of a section12 of iB,U .

10This means that a true comultiplication A −→ A⊗A such that ∆ ◦ iB,A = (iB,A ⊗ iB,A) ◦∆A.
11We will see, below and in paragraph 2.3.3 how it is crucial to consider that [λx] and λ[x] are not

necessarily equal, when λx ∈ G (for clarity, [y] ∈ A 〈G〉 is the image of y ∈ G).
12Let s be a surjective map X −→ Y . σ is a section of s iff σ ◦ s = IdY .
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Prim(B) A B

U(Prim(B)) T(Prim(B))

iA,P

iU ,P

iB,A

σ
iB,U

τ

Figure 2.6: The sub-bialgebra A generated by primitive elements.

Let us remark that, when Prim(B) is free as an A-module, the proof of this fact is a conse-
quence of the PBW theorem13. But, here, we will construct the section in the general case
using projectors which are now classical for the free case but which still can be computed
analytically [Reu93] as they lie in Q[[X]] and still converge in A.
(Injectivity of iB,U , construction of the section τ ◦ σ)
As A is the subalgebra of B generated by Prim(B), one has Im(iB,U) = A.
Let I be the identity from B to B. One has I = I+ + e, where e is a unit of convolution
product on Hom(B,B).
Remark that all series

∑
n≥0 an(I+)∗n are summable on A (not in general on B for example

in case B contains non-trivial group-like elements).

We define

π1,A := log∗(I) =
∑

n≥1

(−1)n−1

n
(I+)∗n (2.105)

and remark that, in view of Proposition (2.3.6), in the case when B = A 〈X〉 one has A = B
and, with S(X) = log(1 + X)

∑

w∈X∗

w ⊗ π1,A(w) = ρ(log(I)) = ρ(S(I+)) = S(ρ(I+)) =

S(
∑

w∈X∗

w 6=1X∗

w ⊗ w) = S(DX − 1X∗ ⊗ 1X∗) = log(DX). (2.106)

We first prove that π1,A is a projector A → Prim(B). The key point is that ∆A (the
restriction of the comultiplication to A) is a morphism of bialgebras 14 A → A ⊗ A. We
first prove that ∆A “commutes” with the convolution. This is a consequence of the following
property

Lemma 2.3.9. Let fi ∈ End(Bi), be such that ϕf1 = f2ϕ.
i) Then, if P ∈ A[z], one has

ϕP (f1) = P (f2)ϕ . (2.107)

ii) If the series
∑

n≥0(I
+
(i))
∗n, i = 1, 2 are summable and, if f1(1) = 0 (which implies f2(1) =

0) and S ∈ A[[z]], the families (〈S | Xn〉 f ∗ni )n∈N are summable, we denote by S(fi) their

13See [Bou06c] Ch2 §1 no 6 th 1 for a field of characteristic zero and §1 Ex. 10 for the free case (over a
ring A with Q ⊂ A).

14In fact it is the case for any cocommutative bialgebra, be it generated by its primitive elements or not.
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B1 B2

B1 B2

ϕ

f1

ϕ

f2

Figure 2.7: Intertwining with a morphism of bialgebras (the functions of fi below will be
computed with the respective convolution products).

sums (note that this definition is coherent with the previous ones when S is a polynomial).
One has, for the convolution product,

ϕS(f1) = S(f2)ϕ . (2.108)

Proof. The only delicate part is (ii). First, one remarks that, if ϕ is a morphism of bialgebras,
one has

(ϕ⊗ ϕ) ◦∆+
1 = ∆+

2 ◦ ϕ (2.109)

then, the image by ϕ of an element of order less than N (i.e. such that ∆
+(N)
1 (x) = 0) is of

order less than N . Let now S be a univariate series S =
∑∞

k=0 akzk. For every element x of
order less than N and fi ∈ End(Bi), i = 1, 2, one has

S(f)(x) =
∞∑

k=0

akf ∗k(x) =
∞∑

k=0

akµ(k−1) ◦ f⊗k ◦∆(k−1)(x)

=
∞∑

k=0

akµ(k−1) ◦ (f⊗k) ◦ (I+⊗k
) ◦∆(k−1)(x)

=
N∑

k=0

akµ(k−1) ◦ (f⊗k) ◦∆
(k−1)
+ (x) . (2.110)

Since the sum is finite, we use (i) to show that ϕ ◦ S(f1) = S(f2) ◦ ϕ. �

Thanks to Lemma 2.3.9, we can now prove that π1,A is a projector A → Prim(B).
In case B is cocommutative, the comultiplication ∆ is a morphism of bialgebras. Using
Lemma 2.3.9 (ii), one has

∆ ◦ log∗(I) = log∗(I ⊗ I) ◦∆. (2.111)

But

log∗(I ⊗ I) = log∗((I ⊗ e) ∗ (e⊗ I))
= log∗(I ⊗ e) + log∗(e⊗ I)
= log∗(I)⊗ e + e⊗ log∗(I). (2.112)

Then
∆(log∗(I)) = (log∗(I)⊗ e + e⊗ log∗(I)) ◦∆ (2.113)

which implies that log∗(I)(B) ⊂ Prim(B). To finish the proof that π1 is a projector onto
Prim(B), it suffices to remark that, for x ∈ Prim(B) and n ≥ 2, (I+)∗n(x) = 0 then

log∗(I)(x) = I+(x) = x . (2.114)
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Now, we consider

IA = exp∗(log∗(IA)) =
∑

n≥0

1

n!
π∗n1,A , (2.115)

where π1,A = log∗(IA).
Let us prove that the summands of (2.115) form a resolution of unity.
Note that, in any Q−algebra, for (Pi)i∈I being a family of elements, the space generated by
{P n

i }i∈I is exactly the space generated by the symmetrized products.
First, one defines A[n] as the linear span of the powers {P n}P∈Prim(B) or, equivalently, of the
symmetrized products

1

n!

∑

σ∈Sn

Pσ(1)Pσ(2) · · ·Pσ(n) . (2.116)

It is obvious that Im((π1,A)∗n) ⊂ A[n] (since π1,A is a projector onto P rim(B)). We remark
that

π∗n1,A = µ
(n−1)
B π⊗n

1,A∆(n−1) = µ
(n−1)
B π⊗n

1,AI+⊗n
∆(n−1) = µ

(n−1)
B π⊗n

1,A∆
(n−1)
+ (2.117)

as π1,AI+ = π1,A. Now, let P ∈ Prim(A). We compute π∗n1,A(P m). Indeed, if m < n, one has

π∗n1,A(P m) = µn−1
B ∆n−1

+ (P m) = 0 . (2.118)

If n = m, one has, from Equation (2.103)

∆n−1
+ (P n) = n!P⊗n (2.119)

and hence π∗n1,A is the identity on A[n]. If m > n, the nullity of π∗n1,A(P m) is a consequence of
the following lemma.

Lemma 2.3.10. Let B be a bialgebra and P a primitive element of B. Then
i) The series log∗(I) is summable on each power P m.
ii) log∗(I)(P m) = 0 for m > 2.

Proof. i) As ∆∗N+ (P m) = 0 for N > m, one has I+∗N(P m) = 0 for these values.
ii) Let a be a letter, the morphism of AAU ϕP : A[a]→ B, defined by

ϕP (a) = P (2.120)

is, in fact, a morphism of bialgebras.
One denotes that π1,[A[a]] = log(IA[a]).
One checks easily that π1,[A[a]](a

m) = 0 for m > 2 which is a consequence of the general
equality (see (2.106)) ∑

w∈X∗

(w ⊗ π1(w)) = log(
∑

w∈X∗

w ⊗ w) (2.121)

because, for Y = {a} (and then A 〈X〉 = A[a]) one has

log(
∑

w∈X∗

w ⊗ w) = log(
∑

n≥0

an ⊗ an) =
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A[a] B

A[a] B

ϕP

I+
A[a]

ϕP

I+
B

Figure 2.8: Intertwining with one primitive element.

log(
∑

n≥0

1

n!
(a⊗ a)(⊔⊔ ⊗conc) n) = log(exp(a⊗ a)) = a⊗ a. (2.122)

This proves that π∗n1,A(A[m]) = 0 for m 6= n and hence the summands of the sum

IA = exp∗(log∗(IA)) =
∑

n≥0

1

n!
π∗n1,A . (2.123)

are pairwise orthogonal projectors with Im(π∗n1,A) = A[n] and then

A = ⊕n≥0A[n] . (2.124)

This decomposition enables to construct σ by

σ(P n) =
1

n!
∆

(n−1)
+ (P n) ∈ Tn(Prim(B)) (2.125)

for n ≥ 1 and, one sets σ(1B) = 1T (Prim(B).
It is easy to check that iB,U ◦ τ ◦ σ = IA as A is (linearly) generated by the powers

(P m)P∈Prim(B),m≥0. �

End of the proof of proposition 2.3.8

iii) =⇒ ii) If iB,U is into, then iA,U is one-to-one and one gets a comultiplication

∆A : A → A⊗A

such that, for any list of primitive elements L = [g1, g2, · · · gn] (the denotations are the same
as previously)

∆A(g1g2 · · · gn) = ∆(L[{1, 2, .., n}]) =
∑

I+J={1,2,..,n}

L[I]⊗A L[J ] (2.126)

but, this time, the tensor product ⊗A is understood as being in A⊗A. This guarantees that
the diagram Fig. 2.5 commutes for any G.
ii) =⇒ i) Obvious. �
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2.3.2.2 The theorem from the point of view of summability

From now on, the morphism iB,U is supposed into.
The bialgebra B being supposed cocommutative, we discuss the equivalent conditions under
which we are in the presence of an enveloping algebra i.e.

B ∼=A−bialg U(Prim(B)) (2.127)

from the point of view of the convergence of the series log∗(I)15. These conditions are known
as the theorem of CQMM.

Theorem 2.3.11. [Bou06c] Let B be a A-cocommutative bialgebra (A is a Q-AAU) and A,
as above, the subalgebra generated by Prim(B). Then, the following conditions are equivalent.

i) B admits an increasing filtration

B0 = A.1B ⊂ B1 ⊂ · · · ⊂ Bn ⊂ Bn+1 · · ·

compatible with the structures of algebra (i.e. for all p, q ∈ N, one has BpBq ⊂ Bp+q)
and coalgebra :

∀n ∈ N, ∆(Bn) ⊂
∑

p+q=n

Bp ⊗ Bq.

ii) ((Id+)∗n)n∈N is summable in End(B).

iii) B = A.

Proof. We prove
(ii) =⇒ (iii) =⇒ (i) =⇒ (ii). (2.129)

(ii) =⇒ (iii)
The image of iB,U it is the subalgebra generated by the primitive elements. Let us prove
that, when ((Id+)∗n)n∈N is summable, one has Im(iB,U) = B. The series log(1+z) is without
constant term so, in virtue of (2.89) and the summability of ((Id+)∗n)n∈N, one has

exp(log(e + Id+)) = exp(log(1 + z))(Id+) = 1End(B) + Id+ = e + Id+ = I. (2.130)

Set π1 = log(e + Id+).
To end this part, let us compute, for x ∈ B

x = exp(π1)(x) = (
∑

n≥0

1

n!
π∗n1 )(x) = (

N∑

n=0

1

n!
µ(n−1)π⊗n

1 )∆(n−1)(x) (2.131)

15In a A-bialgebra, one can always consider the series of endomorphisms

∑

n≥1

(−1)n−1

n
(I+)∗n . (2.128)

The family ( (−1)n−1

n
(I+)∗n)n≥0 is summable iff ((I+)∗n)n≥0 is (use (2.81)).
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where N is the first order for which ∆+(n−1)(x) = 0 (as π1 ◦ Id+ = π1). This proves that B
is generated by its primitive elements.
The implications (iii) =⇒ (i) is obvious.
(i) =⇒ (ii)
As B is a graded bialgebra, one then has that ∆+ is a locally nilpotent. It implies (ii). �

Remark 2.3.12. i) The equivalence (i) ⇐⇒ (iii) is the classical CQMM theorem (see
[Bou06c]). The equivalence with (ii) could be called the “Convolutional CQMM theorem”.
The combinatorial aspects of this last one will be the subject of a forthcoming paper.
ii) When Prim(B) is free, we have B ∼=k−bialg U(Prim(B)) and B is an enveloping algebra.
iii) The (counter) example is the following with A = k[x] (k is a field of characteristic zero).
Let Y be an alphabet and A 〈Y 〉 be the usual free algebra (the space of non-commutative
polynomials over Y ) and ǫ, the “constant term” linear form. Let conc be the concatenation
and ∆ the dual law of the shuffle product (supra).
Then the bialgebra (A 〈Y 〉 , conc, 1Y ∗ , ∆, ǫ) is a Hopf algebra (it is the enveloping algebra of
the Lie polynomials). Let A+ 〈Y 〉 = ker(ǫ) and, for N ≥ 2 JN = xN .A+ 〈Y 〉 then, JN is a
Hopf ideal and Prim(A 〈Y 〉 /(JN)) is never free (no basis).

2.3.3 Examples and counterexamples

2.3.3.1 Lamperti product

Let Y be a totally ordered alphabet and A, a unitary ring. The free monoid and free algebra,
over Y , are denoted respectively by Y ∗ and A〈Y 〉. The neutral of Y ∗ (and then of A 〈Y 〉) is
denoted by 1Y ∗ .

Definition 2.3.13 (The Lamperti product ([Lam65, Fli74])). Let f and g be words.
The Lamperti product of f and g is given by

fLα,β,γ g :=
∑

αn1βn2γn3f1g1h1f2g2h2 . . . fkgkhk, (2.132)

where f = f1h1f2h2 . . . fkhk, g = g1h1g2h2 . . . gkhk, n1 =| f1 . . . fk |, n2 =| g1 . . . gk |, n3 =|
h1 . . . hk |, fi, gi, hi are factors.

Let w = f1g1h1f2g2h2 . . . fkgkhk, then, one can rephrase (2.132) in terms of subwords as

fLα,β,γ g =
∑

w∈Y ∗

I+J+K=[1...|w|]
w[I+K]=f
w[J+K]=g

α|I|β |J |γ|K|w. (2.133)

Example 2.3.14. Let a, b and c be three distinct letters in Y . One has

aLα,β,γ b = αβ(ab + ba). (2.134)

Moreover, one has

abLα,β,γ c = α2β(abc + acb + cab), (2.135)

(2.136)
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Remark 2.3.15. The Lamperti product Lα,β,γ is not associative in general. Indeed, one can
check

(aLα,β,γ b)Lα,β,γ c = αβ(ab + ba)Lα,β,γ c
= αβ[α2β(abc + acb + cab) + α2β(bac + bca + cba)]
= α3β2(abc + acb + cab + bac + bca + cba), (2.137)

whereas

aLα,β,γ (bLα,β,γ c) = aLα,β,γ [αβ(bc + cb)]
= αβ[αβ2(abc + bac + bca) + αβ2(acb + cab + cba)]
= α2β3(abc + bac + bca + acb + cab + cba). (2.138)

Then, one can see that the Lamperti product is associative if α = β ∈ {0, 1}. This condition
is sufficient [Luq99, DFLL01].
Let us give some cases where the Lamperti product is associative (see Table 2.3).

α β γ Nature of Lα,β,γ

0 0 0 0
0 0 1 Hadamard product
1 1 0 Shuffle product
1 1 1 Infiltration
1 1 q q-infiltration
0 0 q q-Hadamard

Table 2.3: The cases of coefficients α, β and γ in which the Lamperti product is associative.

From (2.133), one has

〈fLα,β,γ g | w〉 =
∑

I+J+K=[1...|w|]

α|I|β |J |γ|K| 〈f | w[I + K]〉 〈g | w[J + K]〉 . (2.139)

So, the coproduct dual of the Lamperti product (2.132) can be given as follows.

∑

f,g

〈fLα,β,γ g | w〉 f ⊗ g =
∑

I+J+K=[1...|w|]

α|I|β |J |γ|K|w[I + K]⊗w[J + K] := ∆L(w). (2.140)

We will prove that it is sufficient to know it on the letters.

Proposition 2.3.16. ∆L is morphism A〈X〉 → A〈X〉 ⊗ A〈X〉.

Proof. Let us start with a letter x of Y ∗. One has

∆L(x) = αx⊗ 1Y ∗︸ ︷︷ ︸
I={1},J=K=∅

+ β1Y ∗ ⊗ x︸ ︷︷ ︸
J={1},I=K=∅

+ γx⊗ x︸ ︷︷ ︸
K={1},I=J=∅

. (2.141)
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Let w be a word in Y ∗. One has

∆L(w) =
∑

I+J+K=[1...|w|]

α|I|β |J |γ|K|w[I + K]⊗ w[J + K]

=
∑

I+J+K=[1...|w|]
1∈I

α|I|β |J |γ|K|w[I + K]⊗ w[J + K]

+
∑

I+J+K=[1...|w|]
1∈J

α|I|β |J |γ|K|w[I + K]⊗ w[J + K]

+
∑

I+J+K=[1...|w|]
1∈K

α|I|β |J |γ|K|w[I + K]⊗ w[J + K]

=
∑

I′+J+K=[2...|w|]

α|I
′|+1β |J |γ|K|w[1]w[I ′ + K]⊗ w[J + K]

+
∑

I+J ′+K=[2...|w|]

α|I|β |J
′|+1γ|K|w[I + K]⊗ w[1]w[J ′ + K]

+
∑

I+J+K ′=[2...|w|]

α|I|β |J |γ|K|w[1]w[I + K ′]⊗ w[1]w[J + K ′]

= α(w[1]⊗ 1)conc
⊗2

∑

I′+J+K=[2...|w|]

α|I
′|β |J |γ|K|w[I ′ + K]⊗ w[J + K]

+β(1⊗ w[1])conc
⊗2

∑

I+J ′+K=[2...|w|]

α|I|β |J
′|γ|K|w[I + K]⊗ w[J ′ + K]

+γ(w[1]⊗ w[1])conc
⊗2

∑

I+J+K ′=[2...|w|]

α|I|β |J |γ|K
′|w[I ′ + K ′]⊗ w[J + K ′]

= [α(w[1]⊗ 1Y ∗) + β(1Y ∗ ⊗ w[1]) + γ(w[1]⊗ w[1])] conc
⊗2∆L(w[2 . . . |w|])

= ∆L(w[1])conc
⊗2∆L(w[2 . . . |w|]). (2.142)

From this, one can get the conclusion. �

From this proof, one can get the recursion of this product (letter-by-letter) as follows.

∆L(w) =





αw ⊗ 1Y ∗ + β1Y ∗ ⊗ w + γw ⊗ w if w is a letter;

∆L(w[1])conc
⊗2∆L(u) if w ∈ Y ∗ and w = w[1]u.

(2.143)

Proposition 2.3.17. The dual product of ∆L is Lα,β,γ. This product is given by the recursive
formula. Let u be a word in Y ∗. Let u and v be two words in Y ∗, a and b two letters in Y ,
one has





uLα,β,γ1Y ∗ = 1Y ∗Lα,β,γu = u,

auLα,β,γbv = αa(uLα,β,γbv) + βb(auLα,β,γv) + γδa,ba(uLα,β,γv).
(2.144)

Proof. One has

auLα,β,γbv =
∑

w∈Y ∗

〈auLα,β,γbv | w〉w

=
∑

w∈Y ∗

〈au⊗ bv | ∆L(w)〉w
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= 〈au⊗ bv | ∆L(1Y ∗)〉+
∑

w∈Y +

〈au⊗ bv | ∆L(w)〉w

=
∑

x∈Y
w′∈Y ∗

〈au⊗ bv | ∆L(xw′)〉xw′

=
∑

x∈Y
w′∈Y ∗

〈au⊗ bv | ∆L(x)∆L(w′)〉xw′

=
∑

x∈Y
w′∈Y ∗

〈au⊗ bv | (αx⊗ 1Y ∗ + β1Y ∗ ⊗ x + γx⊗ x)∆L(w′)〉xw′

=
∑

x=a
w′∈Y ∗

〈au⊗ bv | α(a⊗ 1Y ∗)∆L(w′)〉aw′

+
∑

x=b
w′∈Y ∗

〈au⊗ bv | β(1Y ∗ ⊗ a)∆L(w′)〉bw′

+δa,b

∑

x=a
w′∈Y ∗

〈au⊗ bv | γ(a⊗ a)∆L(w′)〉aw′

= αa(uLα,β,γbv) + βb(auLα,β,γv) + γδa,b(uLα,β,γv). (2.145)

Thus, one gets the conclusion. �

From Proposition 2.3.17, one gets the recursive formula of the Lamperti product.

Remark 2.3.18. As ∆L is a morphism, we can isolate the place “|w|” instead of the place
“1”. Doing this we get the equivalent recursion.





uLα,β,γ1Y ∗ = 1Y ∗Lα,β,γu = u,

uaLα,β,γvb = α(uLα,β,γbv)a + β(auLα,β,γv)b + γδa,b(uLα,β,γv)a,
(2.146)

with Lα,β,γ as it appears in [Lot97] for infiltration (α = β = γ = 1) and in [Fli74] for the
shuffle16 (α = β = 1, γ = 0).

Let us discuss about the coassociativity of the Lamperti coproduct.

Lemma 2.3.19. Let A be an algebra and ∆ : A → A ⊗ A is a morphism. Let G be a
generating subset of A. G satisfies

(∀g ∈ G)((∆⊗ Id) ◦∆(g) = (Id⊗∆) ◦∆(g)), (2.147)

iff ∆ is coassociative.

A A⊗A

A⊗A A⊗A⊗A

∆

∆ I ⊗∆

∆⊗ I

16This is called Hurwitz product.
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From Proposition 2.3.16 and Lemma 2.3.19, it is sufficient to check that ∆L is coassociative
on letters. Let x be a letter in Y . One has

(∆L ⊗ I) ◦∆L(x) = α2x⊗ 1Y ∗ ⊗ 1Y ∗ + αβ1Y ∗ ⊗ x⊗ 1Y ∗ + αγx⊗ x⊗ 1Y ∗

+β1Y ∗ ⊗ 1Y ∗ ⊗ x + αγx⊗ 1Y ∗ ⊗ x + βγ1Y ∗ ⊗ x⊗ x + γ2x⊗ x⊗ x. (2.148)

(I ⊗∆L) ◦∆L(x) = αx⊗ 1Y ∗ ⊗ 1Y ∗ + αβ1Y ∗ ⊗ x⊗ 1Y ∗ + β21Y ∗ ⊗ 1Y ∗ ⊗ x
+βγ1Y ∗ ⊗ x⊗ x + αγx⊗ x⊗ 1Y ∗ + βγx⊗ 1Y ∗ ⊗ x + γ2x⊗ x⊗ x. (2.149)

From Equation (2.148) and (2.149), if ∆L is coassociative on letter, then one gets





α2 = α,

β2 = β,

αγ = βγ.

(2.150)

Proposition 2.3.20. ∆L is coassociative if and only if

1) α = β ∈ {0, 1};

2) α ∈ {0, 1}, β = 1− α and γ = 0.

Proof. From (2.150), it implies that there are 4 cases for the coassociativity of ∆L.

1) α = β = 0, γ = q arbitrary. The Lamperti product has the formula

∆L0(x) = qx⊗ x. (2.151)

This is the q-Hadamard product.

2) α = β = 1, γ = q arbitrary. The Lamperti product has the formula

∆L1(x) = x⊗ 1 + 1⊗ x + qx⊗ x. (2.152)

This is the q-infiltration product.

3) α = 0, β = 1, γ = 0. The Lamperti product has the formula

∆L0,1,0(x) = 1⊗ x. (2.153)

4) α = 1, β = 0, γ = 0. The Lamperti product has the formula

∆L1,0,0(x) = x⊗ 1. (2.154)

�



44 CHAPTER 2. BACKGROUND AND GENERAL RESULTS

2.3.3.2 φ-deformation shuffle

Let Y = {yi}i∈I be still a totally ordered alphabet and A〈Y 〉 be equipped with the φ-deformed
stuffle defined by [EM12].

i) for any w ∈ Y ∗, 1Y ∗ φw = w φ1Y ∗ = w,

ii) for any yi, yj ∈ Y and u, v ∈ Y ∗,

yiu φyjv = yj(yiu φv) + yi(u φyjv) + φ(yi, yj)u φv, (2.155)

where φ is an arbitrary mapping

φ : Y × Y −→ AY,

where AY is the free A-module on Y .

Definition 2.3.21. Let

φ : Y × Y −→ AY

be defined by its structure constants

(yi, yj) 7−→ φ(yi, yj) =
∑

k∈I

γk
i,j yk.

Proposition 2.3.22. The recursion (2.155) defines a unique mapping

φ : Y ∗ × Y ∗ −→ A〈Y 〉.

Proof. Let us denote (Y ∗ × Y ∗)≤n the set of words (u, v) ∈ Y ∗ × Y ∗ such that |u|+ |v| ≤ n.
We construct a sequence of mappings

φ≤n : (Y ∗ × Y ∗)≤n −→ A〈Y 〉.

which satisfy the recursion of (2.155). For n = 0, we have only a pre-image and φ≤0(1Y ∗) =
1Y ∗ ⊗ 1Y ∗ . Suppose φ≤n already constructed and let
(u, v) ∈ (Y ∗ × Y ∗)≤n+1 \ (Y ∗ × Y ∗)≤n, i.e. |u|+ |v| = n + 1.
One has three cases : u = 1Y ∗ , v = 1Y ∗ and (u, v) ∈ Y + × Y +. For the first two, one uses
the initialization of the recursion, thus

φ≤n+1(w, 1Y ∗) = φ≤n+1(1Y ∗ , w) = w .

For the last case, write u = yiu
′, v = yjv

′ and use, to get

φ≤n+1(yiu
′, yjv

′) = yi φ≤n(u′, yjv
′) + yj φ≤n(yiu

′, v′) + yi+j φ≤n(u′, v′)

this proves the existence of the sequence ( φ≤n)n≥0. Every φ≤n+1 extends the preceding
so there is a mapping

φ : Y ∗ × Y ∗ −→ A〈Y 〉.
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which extends all the φ≤n+1 (the graph of which is the union of the graphs of the φ≤n).
This proves the existence. For unicity, just remark that, if there were two mappings φ, ′

φ,
the fact that they must fulfil the recursion (2.155) implies that φ = ′

φ. �

We still denote by φ and φ the linear extension of φ and φ to AY ⊗AY and A〈Y 〉⊗A〈Y 〉
respectively.
Then φ is a law of algebra (with 1Y ∗ as unit) on A〈Y 〉.

Lemma 2.3.23. Let ∆ be the morphism A〈Y 〉 → A〈〈Y ∗ ⊗ Y ∗〉〉 defined on the letters by

∆(ys) = ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γs
n,m yn ⊗ ym . (2.156)

Then

i) for all w ∈ Y + we have

∆(w) = w ⊗ 1 + 1⊗ w +
∑

u,v∈Y +

〈∆(w) | u⊗ v〉 u⊗ v (2.157)

ii) for all u, v, w ∈ Y ∗, one has

〈u φv | w〉 = 〈u⊗ v | ∆(w)〉⊗ 2 . (2.158)

Proof.

i) By recurrence on |w|. If w = ys is of length one, it is obvious from the definition. If
w = ysw

′, we have, from the fact that ∆ is a morphism

∆(w) =

(
ys ⊗ 1 + 1⊗ w +

∑

i,j∈I

γs
i,jyi ⊗ yj

)

(
w′ ⊗ 1 + 1⊗ w′ +

∑

u,v∈Y +

〈u⊗ v | ∆(w′)〉
)

(2.159)

the development of which proves that ∆(w) is of the desired form.

ii) Let S(u, v) :=
∑

w∈Y ∗〈u⊗ v | ∆(w)〉w. It is easy to check (and left to the reader) that,
for all u ∈ Y ∗, S(u, 1) = S(1, u) = u. Let us now prove that, for all yi, yj ∈ Y and
u, v ∈ Y ∗

S(yiu, yjv) = yiS(u, yjv) + yjS(yiu, v) + φ(yi, yj)S(u, v) . (2.160)

Indeed, noticing that ∆(1) = 1⊗ 1, one has

S(yiu, yjv) =
∑

w∈Y ∗

〈yiu⊗ yjv | ∆(w)〉w =
∑

w∈Y +

〈yiu⊗ yjv | ∆(w)〉w

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | ∆(ysw
′)〉 ysw

′

=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv |
(

ys ⊗ 1 + 1⊗ ys +
∑

n,m∈I

γs
n,m yn ⊗ ym

)
∆(w′)〉 ysw

′
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=
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv(ys ⊗ 1)∆(w′)〉 ysw
′

+
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (1⊗ ys)∆(w′)〉 ysw
′

+
∑

ys∈Y, w′∈Y ∗

〈yiu⊗ yjv | (
∑

n,m∈I

γs
n,m yn ⊗ ym)∆(w′)〉 ysw

′

=
∑

w′∈Y ∗

〈u⊗ yjv | ∆(w′)〉 yiw
′ +

∑

w′∈Y ∗

〈yiu⊗ v | ∆(w′)〉 yjw
′

+
∑

ys∈Y, w′∈Y ∗

〈u⊗ v | γs
i,j∆(w′)〉 ysw

′

= yi

∑

w′∈Y ∗

〈u⊗ yjv | ∆(w′)〉w′ + yj

∑

w′∈Y ∗

〈yiu⊗ v | ∆(w′)〉w′

+
∑

ys∈Y

γs
i,j ys

∑

w′∈Y ∗

〈u⊗ v | ∆(w′)〉w′

= yiS(u, yjv) + yjS(yiu, v) + φ(yi, yj)S(u, v) (2.161)

then the computation of S shows that, for all u, v ∈ Y ∗, S(u, v) = u φv as S is
bilinear, so S = φ.

�

Theorem 2.3.24. i) The law φ is commutative if and only if the extension

φ : AY ⊗AY −→ AY

is so.

ii) The law φ is associative if and only if the extension

φ : AY ⊗AY −→ AY

is so.

iii) Let γz
x,y := 〈φ(x, y)|z〉 be the structure constants of φ (w.r.t. the basis Y ), then φ is

dualizable17 if and only if (γz
x,y)x,y,z∈X has the following decomposition property18

(∀z ∈ X)(#{(x, y) ∈ X2|γz
x,y 6= 0} < +∞) . (2.162)

Proof. (i) First, let us suppose φ commutative and consider T , the twist, i.e. the operator
in A〈〈Y ∗ ⊗ Y ∗〉〉 defined by

〈T (S) | u⊗ v〉 = 〈S | v ⊗ u〉 . (2.163)

It is an easy check to prove that T is a morphism of algebras. If φ is commutative, then so
is the following diagram.

17In this context, it means that φ admits a dual comultiplication that is ∆ : k〈Y 〉 −→ k〈Y 〉⊗k〈Y 〉 such
that for all P , Q, R ∈ k〈Y 〉,

〈∆(P ) | Q⊗R〉 = 〈P | Q φR〉.

18One can prove that, in case Y is a semigroup, the associated φ fulfils (2.162) iff Y fulfils “condition D”
of Bourbaki (see [Bou06a])
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Y A〈〈Y ∗ ⊗ Y ∗〉〉

A〈〈Y ∗ ⊗ Y ∗〉〉

∆
φ

∆
φ

T

and, then, the two morphisms ∆
φ

and T ◦∆
φ

coincide on the generators Y of the algebra
A〈Y 〉 and hence over A〈Y 〉 itself. Now for all u, v, w ∈ Y ∗, one has

〈v φu | w〉 = 〈v ⊗ u | ∆
φ
(w)〉 = 〈u⊗ v | T ◦∆

φ
(w)〉

= 〈u⊗ v | ∆
φ
(w)〉 = 〈u φv | w〉 (2.164)

which proves that v φu=u φv. Conversely, if φ is commutative, one has, for i, j ∈ I

φ(yj, yi) = yj φyi−(yj ⊔⊔ yi)=yi φyj−(yi ⊔⊔ yj)=φ(yi,yj) . (2.165)

(ii) Likewise, if φ is associative, let us define the operators

∆
φ
⊗ I : A〈〈Y ∗ ⊗ Y ∗〉〉 → A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉 (2.166)

by

〈∆
φ
⊗ I(S) | u⊗ v ⊗ w〉 = 〈S | (u φv)⊗w〉 (2.167)

and, similarly,

I ⊗∆
φ

: A〈〈Y ∗ ⊗ Y ∗〉〉 → A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉 (2.168)

by

〈I ⊗∆
φ
(S) | u⊗ v ⊗ w〉 = 〈S | u⊗ (v φw)〉 (2.169)

it is easy to check by direct calculation that they are well defined morphisms and that the
following diagram

Y A〈〈Y ∗ ⊗ Y ∗〉〉

A〈〈Y ∗ ⊗ Y ∗〉〉 A〈〈Y ∗ ⊗ Y ∗ ⊗ Y ∗〉〉

∆
φ

∆
φ

∆
φ
⊗ I

I ⊗∆
φ

is commutative. This proves that the two composite morphisms

∆
φ
⊗ I ◦∆

φ

and

I ⊗∆
φ
◦∆

φ
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coincide on Y and then on A〈Y 〉. Now, for u, v, w, t ∈ Y ∗, one has

〈(u φv) φw | t〉 = 〈(u φv)⊗w | ∆
φ
(t)〉

= 〈u⊗ v ⊗ w | (∆
φ
⊗ I)∆

φ
(t)〉

= 〈u⊗ v ⊗ w | (I ⊗∆
φ
)∆

φ
(t)〉

= 〈u⊗ (v φw) | ∆
φ
(t)〉 = 〈u φ(v φw) | t〉

which proves the associativity of the law φ. Conversely, if φ is associative, the direct
expansion of the right hand side of

0 = (yi φyj) φyk−yi φ(yj φyk) (2.170)

proves the associativity of φ.
iii) We suppose that (γz

x,y)x,y,z∈X satisfies (2.162). In this case ∆
φ

takes its values in
A〈Y 〉⊗A〈Y 〉 so its dual, the law φ is dualizable19. Conversely, if Im(∆

φ
) ⊂ A〈Y 〉⊗A〈Y 〉,

one has, for every s ∈ I

∑

n,m∈I

γs
n,m yn ⊗ ym = ∆(ys)− (ys ⊗ 1 + 1⊗ ys) ∈ A〈Y 〉 ⊗A〈Y 〉

which proves the claim. �

From now on, we suppose that φ : AY ⊗AY −→ AY is an associative and commu-
tative law (of algebra) on AY .

Theorem 2.3.25. Let A be a Q-algebra. Then if φ is dualizable 20, let ∆
φ

: A〈Y 〉 −→
A〈Y 〉 ⊗ A〈Y 〉 denote its dual comultiplication, then

a) Bφ = (A〈Y 〉, conc, 1Y ∗ , ∆
φ
, ε) is a bialgebra.

b) If A is a Q-algebra then, the following conditions are equivalent

i) Bφ is an enveloping bialgebra

ii) the algebra AX admits an increasing filtration
(

(AY )n

)

n∈N

(AY )0 = {0} ⊂ (AY )1 ⊂ · · · ⊂ (AY )n ⊂ (AY )n+1 ⊂ · · ·

compatible with both the multiplication and the comultiplication ∆
φ

i.e.

(AY )p(AY )q ⊂ (AY )p+q

∆
φ
((AY )n) ⊂

∑

p+q=n

(AY )p ⊗ (AY )q .

19In this context, it means that φ admits a dual comultiplication that is ∆ : k〈Y 〉 −→ k〈Y 〉⊗ k〈Y 〉 such
that for all P, Q, R ∈ k〈Y 〉, 〈∆(P ) | Q⊗R〉 = 〈P | Q φR〉.

20For the pairing defined by
(∀x, y ∈ Y )(〈x | y〉 = δx,y) .
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iii) Bφ is isomorphic to (A〈Y 〉, conc, 1Y ∗ , ∆
⊔⊔

, ǫ) as a bialgebra.

iv) I+ is ⋆-nilpotent.

Proof. We only prove the following implication (the other ones are easy)
iv) =⇒ iii) It suffices to prove that the morphism Φ given on each letter by Φ(y) = π1(y) is
an isomorphism

Φ : Bφ −→ (A〈Y 〉, conc, 1Y ∗ , ∆
⊔⊔

, ǫ) . (2.171)

As I+ is ⋆-nilpotent, the sum

I =
∑

k≥0

1

k!
π∗k1,Bφ

(2.172)

is in fact finitely supported and can be rewritten As I+ is ⋆-nilpotent, the sum

I =
N∑

k≥0

1

k!
π∗k1,Bφ

= e + π1,Bφ
+

N∑

k≥2

1

k!
π∗k1,Bφ

(2.173)

for N ≥ 2 large enough and e = π∗01,Bφ
= 1Bφ

◦ ǫ. As φ is associative and dualizable, let

γy1y2···yk
y be the structure constants of ∆k−1

φ
restricted to AY , or equivalently, for all y ∈ Y

∆k−1
φ
(y) =

∑

y1y2···yk∈Y

γy1y2···yk
y y1 ⊗ y2 ⊗ · · · ⊗ yk (2.174)

then using a rearrangement of the star-log of the diagonal series, in virtue of (2.173) and
using e(y) = 0, we get, for y ∈ Y

y = π1,Bφ
(y) +

N∑

k≥2

1

k!

∑

y1y2···yk∈Y

γy1y2···yk
y π1,Bφ

(y1)π1,Bφ
(y2) · · ·π1,Bφ

(yk) (2.175)

This proves that the morphism (of AAU) given by Φ(y) = π1,Bφ
(y1) is onto. The fact that it

is into derives from the following lemma

Lemma 2.3.26. Let Φ be a morphism A〈X〉 → A〈X〉 such that Φ(x) ≡ x mod 2; explicitly

Φ(x) = x +
∑

|w|≥2

〈Φ(x) | w〉w (2.176)

then, Φ is into.

Proof. (of lemma 2.3.26) One has, for all w ∈ X∗, Φ(w) = w +
∑
|u|>|w|〈Φ(w) | u〉 u.

Then Φ can be written Φ = Id + Φ+, continued by (uniform) continuity as a morphism
Φ : A〈〈X〉〉 → A〈〈X〉〉, space in which the series

∑

k≥0

(−1)k(Φ+)◦k (2.177)

converges and sums up to Φ−1 ∈ Aut(A〈〈X〉〉) which proves the injectivity of Φ. �

Now Theorem 2.3.25 is completely proved. �
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Remark 2.3.27. i) Theorem 2.3.25 a) holds for general (dualizable, coassociative) φ be it
commutative of not.
ii) It can happen that there is no antipode (and then, I+ cannot be ⋆-nilpotent) as the fol-
lowing example shows.
Let Y = {y0, y1} and φ(yi, yj) = y(i+j mod 2), then

∆(y0) = y0 ⊗ 1 + 1⊗ y0 + y0 ⊗ y0 + y1 ⊗ y1

∆(y1) = y1 ⊗ 1 + 1⊗ y1 + y0 ⊗ y1 + y1 ⊗ y0 (2.178)

then, from Equations 2.178, one derives that 1 + y0 + y1 is group-like. As this element has
no inverse in K〈Y 〉. Thus, the bialgebra Bφ cannot be a Hopf algebra.
iii) When I+ is nilpotent, the antipode exists and is computed by

a
φ

= (I)∗−1 = (e + I+)∗−1 =
∑

n≥0

(−1)k(I+)∗k (2.179)

(see section (2.3.2)).
iv) In QFT, the antipode of a vector h ∈ B is computed by

S(1) = 1, S(h) = −h +
∑

(1)(2)

S(h(1))h(2) (2.180)

and by using the fact that S is an anti-morphism. This formula is used in contexts where
I+ is ⋆-nilpotent (although the concerned bialgebras are often not cocommutative). Here, one
can prove this recursion from (2.179).
v) (on lemma 2.3.26) Such a morphism (with Φ(x) ≡ x mod 2) can be seen as “tangent to
identity”, it is automatically into (as proves the lemma), but - by no means - onto, as shows
the example of Φ(x) = x + x2 with X = x (just notice that, with Φ−1 ∈ A〈〈X〉〉, computation
( (2.177)) shows that Φ−1(x) /∈ A〈X〉).

We have depicted the framework which is common to different kinds of shuffles. For all these,
provided that I+ be ∗-nilpotent, the bialgebra

(A〈Y 〉, conc, 1Y ∗ , ∆
φ
, ε)

is isomorphic to

(A〈Y 〉, conc, 1Y ∗ , ∆
⊔⊔

, ε)

and the straightening algorithm is simply the morphism which sends each ys ∈ Y to π1(ys) =
log(I)(ys) (this bialgebra is then a Hopf algebra). In other cases, such as the infiltration given
by

∆(ys) = ys ⊗ 1 + 1⊗ ys + ys ⊗ ys

group-like elements without inverse may appear (and therefore no Hopf structure can be
hoped).
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2.3.3.3 Miscellaneous examples

First example
The coproduct is given on the generators as follows

∆q(ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys + q


 ∑

i+j=s

yi ⊗ yj


 . (2.181)

It is easy to check that Bq = (A 〈Y 〉 , conc, 1Y ∗ , ∆q, ǫ) is a bialgebra.
One has that I+ is ⋆-nilpotent. Then, from Lemma 1, one gets

Prim(Bq) = Im(π1(Bq)). (2.182)

Now, we prove that Bq is generated by its primitive elements.
Let y′s = π1(ys). One then has

ys =
∑

k≥1

qk−1

k!

∑

s1+···+sk=s

y′s1
. . . y′sk

. (2.183)

For example, one has some first primitive elements of Bq:

y1 (2.184)

y2 −
q

2
y1y1 (2.185)

y3 −
q

2
(y1y2 + y2y1) +

q2

3
y1y1y1 (2.186)

y4 −
q

2
(y1y3 + y2y2 + y3y1) +

q2

3
(y1y1y2 + y1y2y1 + y2y1y1)−

1

4
q4y1y1y1y1 (2.187)

. . .

Using Lemma 2, π1 = log∗(I) is a projector. In the case above, iB,U is into. From Proposition
2.3.8, this implies that Bq is isomorphic to the algebra of the primitive of Bq.
Second example
The coproduct is given on the generators as follows, with χ(yi, yj) = qij .

∆χ
q (ys) = ys ⊗ 1Y ∗ + 1Y ∗ ⊗ ys +

∑

i+j=s

qijyi ⊗ yj. (2.188)

In the same manner, one has that Bχ
q = (A 〈Y 〉 , conc, 1Y ∗ , ∆χ

q , ǫ) is a bialgebra. Moreover,
Bχ

q is generated by its primitive elements.
Let y′s = π1(ys). One then has

ys =
∑

k≥1

1

k!

∑

s1+···+sk=s

q
∏k

j=1
sj y′s1

. . . y′s1
. (2.189)

For example, one has some first primitive elements of Bχ
q :
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y1 (2.190)

y2 −
q

2
y1y1 (2.191)

y3 −
q2

2
(y1y2 + y2y1) +

q2

3
y1y1y1 (2.192)

y4 −
1

2
(q3y1y3 + q4y2y2 + q3y3y1) +

1

3
(q5y1y1y2 + q5y1y2y1 + q4y2y1y1)

− 1

4
q5y1y1y1y1 (2.193)

. . .

Using Lemma 2, π1 = log∗(I) is a projector. In the cases above, jB,U is into. From Proposition
2.3.8, this implies that Bχ

q is isomorphic to the algebra of primitive of Bχ
q .

2.3.3.4 Counterexamples

It has been said that, with B = (Q[ǫ][x], ., 1Q[ǫ][x], ∆, c) (notations as above), iB,U is not into.
Let us show this statement.
The q-infiltration coproduct [DFLL01] ∆q is defined on the free algebra K 〈X〉 (K is a unitary
ring), by its values on the letters

∆q(x) = x⊗ 1 + 1⊗ x + q(x⊗ x) (2.194)

where q ∈ K. One can show easily that, for a word w ∈ X∗,

∆q(w) =
∑

I∪J=[1..|w|]

q|I∩J |w[I]⊗ w[J ] (2.195)

with, as above (for I = {i1 < i2 < .. < ik} ⊂ {1, 2, .., n} and w = a1a2 · · ·an), w[I] =
ai1ai2 · · ·aik

.
Then, with K = Q[ǫ], q = ǫ, X = {x}, one has (as a direct application of Equation (2.195))

∆ǫ(x
n) =

n∑

k=0

(
n
k

)
xk ⊗ xn−k + ǫ

n∑

k=1

k

(
n
k

)
xk ⊗ xn−k+1 . (2.196)

This proves that, here, the space of primitive elements is a submodule of K.x and solving
∆ǫ(λx) = (λx) ⊗ 1 + 1⊗ (λx), one finds λ = λ1ǫ. Together with ǫ x ∈ Prim(B) this proves
that Prim(B) is of Q-dimension one (in fact equal to Q.(ǫ x)). Now, the consideration of
the morphism of Lie algebras Prim(B)→ K[x]/(ǫK[x]) which sends ǫ x to x proves that, in
U(Prim(B)), we have (ǫ x)(ǫ x) 6= 0 and iB,U cannot be into.

For a graded counterexample21, one can see that, with K = Q[ǫ], X = {x, y, z}, B = K 〈X〉
and

∆(x) = x⊗ 1 + 1⊗ x + ǫ (y ⊗ z), ∆(y) = y ⊗ 1 + 1⊗ y, ∆(z) = z ⊗ 1 + 1⊗ z (2.197)

the same phenomenon occurs (for the gradation, one takes
deg(y) = deg(z) = 1, deg(x) = 2).

21This example is due to Darij Grinberg.
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The results presented in this chapter follow [DHNT13b] (see also [DHNT13a] for an extended
abstract).

3.1 Algebra structure

3.1.1 Definitions

Let X be an infinite totally ordered alphabet {xi}i≥0 and X∗ be the set of words with letters
in the alphabet X.
A word w of length n = |w| is a mapping i 7→ w[i] from [1..|w|] to X. For a letter x ∈ X,
the partial degree |w|x is the number of times the letter x occurs in the word w, i.e.

|w|x :=
|w|∑

j=1

δw[j],x. (3.1)

For a word w ∈ X∗, one defines the alphabet Alph(w) as the set of its letters, while IAlph(w)
is the set of indices in Alph(w):

Alph(w) := {x ∈ X s.t. |w|x 6= 0} ; IAlph(w) := {i ∈ N s.t. |w|xi
6= 0}. (3.2)
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The upper bound sup(w) is the supremum of IAlph(w), i. e.

sup(w) := supN(IAlph(w)). (3.3)

Note that sup(1X∗) = 0.

Let us define the substitution operators. Let w = xi1 . . . xim
and φ : IAlph(w) −→ N, with

φ(0) = 0. We set:
Sφ(xi1 . . . xim

) := xφ(i1) . . . xφ(im). (3.4)

Let us define the pack operator of a word w. Let {j1, . . . , jk} = IAlph(w) \ {0} with j1 <
j2 < · · · < jk and define φw as

φw(i) :=





m if i = jm

0 if i = 0
. (3.5)

The corresponding packed word, denoted by pack(w), is Sφw
(w). A word w ∈ X∗ is said to

be packed if w = pack(w).

Example 3.1.1. 1) Let w = x1x1x5x0x4. One then has pack(w) = x1x1x3x0x2.
2) Let w = x1x6x2x4. One then has pack(w) = x1x4x2x3.

Remark 3.1.2. The presence of the letter x0 dramatically influences the picture since one
has an infinite number of distinct packed words of weight m (the weight is, here, the sum of
the indices), which are obtained by inserting multiple copies of the letter x0.

Example 3.1.3. The packed words of weight 2 are of the form: xk1
0 x1xk2

0 x1x
k3
0 , with k1, k2, k3 ≥

0. This set is x∗0x1x
∗
0x1x∗0.

The operator pack : X∗ −→ X∗ is idempotent (pack ◦ pack = pack). It defines, by linear
extension, a projector. The image, pack(X∗), is the set of packed words.

Let u, v be two words; one defines the shifted concatenation ∗ by

u ∗ v := uTsup(u)(v), (3.6)

where, for t ∈ N, Tt(w) denotes the “vertical shift by t”, i.e., the image of w by Sφ for
φ(n) = n + t if n > 0 and φ(0) = 0 (in general, all letters can be reindexed except x0).
It is straightforward to check that, in case the words are packed, the result of a shifted
concatenation is a packed word.

Definition 3.1.4. Let k be a field. One defines a vector space H = spank(pack(X∗)). One
can endow this space with a product (on the words) given by

µ : H⊗H −→ H,
u⊗ v 7−→ u ∗ v. (3.7)

Remark 3.1.5. The product above is similar to the shifted concatenation for permutations
(see [DHT02]). Moreover, if u, v are two words in X∗, then sup(u ∗ v) = sup(u) + sup(v).
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Proposition 3.1.6. The triplet (H, µ, 1X∗) is an AAU.

Proof. Let u, v, w be three words in H. One then has:

(u ∗ v) ∗ w = (uTsup(u)(v))Tsup(u∗v)(w) = u(Tsup(u)(v)(Tsup(u)+sup(v))(w))

= uTsup(u)(vTsup(v)(w)) = u ∗ (v ∗ w). (3.8)

Thus, µ is associative. On the other hand, for all u ∈ pack(X∗), one has:

u ∗ 1X∗ = uTsup(u)(1X∗) = u1X∗ = u ,

and
1X∗ ∗ u = (1X∗)Tsup(1X∗ )(u) = (1X∗)u = u .

Now remark that pack(1X∗) = 1X∗ . This is clear from the fact that 1X∗ = 1H. One concludes
that (H, µ, 1X∗) is an AAU. �

We call this algebra WMat.

Remark 3.1.7. (i) The product (3.7) is non-commutative. For example: x1 ∗x1x1 6= x1x1 ∗
x1.
(ii) (k 〈X〉 , µ, 1X∗) is also an AAU. Moreover, H is a subalgebra of k 〈X〉.

Let w = xk1 . . . xkn
be a word and I ⊆ [1 . . . n]. A sub-word w[I] is defined as xki1

. . . xkil
,

where ij ∈ I and i1 < · · · < iℓ.

Proposition 3.1.8. (i) Let u and v be two words such that, for xi ∈ Alph(u) and xj ∈ Alph,
i < j or j = 0. One has

pack(uv) = pack(u) ∗ pack(v). (3.9)

(ii) Let w be a word. For t ≥ 0, one has

pack(Tt(w)) = pack(w). (3.10)

(iii) A map pack : k 〈X〉 −→ H is a AAU morphism.

Proof.
(i) Let v := xj1 · · ·xjk

and IAlph(v)\{0} = {s1 < · · · < sm}. Since ji > sup(u) when ji 6= 0,
then

pack(uv) = pack(u)xj′

1
· · ·xj′

k
, where





xj′

i
= x0 if ji = 0,

xj′

i
= xℓ+sup(pack(u)) if ji = sℓ.

(3.11)

One then has

pack(uv) = pack(u)Tsup(pack(u))(pack(v)) = pack(u) ∗ pack(v). (3.12)

(ii) It is easy to see this.
(iii) From (i), it follows that pack(u ∗ v) = pack(u) ∗ pack(v) for two words u, v. �
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3.1.2 WMat is a free algebra

As our context is that of Hopf algebras, the expression ”free algebra” stands for ”free k-
associative unital algebra”. It is known that it is the algebra of noncommutative polynomials
k〈Z〉 over some alphabet Z. By construction, one has k〈Z〉 = k[Z∗], where Z∗ is the free
monoid of alphabet Z [Lot97].
WMat is, by construction, the algebra of the monoid pack(X∗). In order to check to check
that WMat is a free algebra, it is sufficient to show that pack(X∗) is a free monoid on
its irreducible words, which is shown below. In the following diagram, a free monoid is
a pair (F (X), jX) where F (X) is a monoid, jX : X → F (X) is a mapping such that for
all M ∈ Mon and all f : X → M there exists a unique fX ∈ Hom(F (X), M) such that
f = fx ◦ jX .

Set Monoids

X M

F (X)

f

jX

fX

Figure 3.1: The universal process of a free algebra.

Here we give an “internal” characterization of free monoids in terms of irreducible elements.

Definition 3.1.9 ([DTPK10]). Let (M, ∗) be a monoid. A element p ∈ M is called an
irreducible if and only if it cannot be written in the form p = q ∗ r, where q, r 6= 1M .

The following lemma is standard

Lemma 3.1.10 ([DTPK10]). Let (M, ∗) be a monoid Z = irr(M) its set of irreducibles,
jM : Z →֒ M the canonical inclusion mapping and µM : Z∗ → M the morphism deduced
from jM by the universal process (Figure 3.1). Then M is a free monoid iff µM is one-to-one
or, equivalently, all m ∈ M can be decomposed uniquely as a product of irreducibles.

For the monoid pack(X∗), we will speak of irreducible words and denote by Irr(pack(X∗))
the set of its irreducible elements.

Example 3.1.11. The word x1x1x1 is an irreducible word. The word x1x1x2 is a reducible
word because it can be written as x1x1x2 = x1x1 ∗ x1.

Proposition 3.1.12. If w is a packed word, then w can be written uniquely as w = v1 ∗ v2 ∗
· · · ∗ vn, where vi are non-trivial irreducible words, 1 ≤ i ≤ n.
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Proof. The ith position of word w is called an admissible cut if sup(w[1 . . . i]) = inf(w[i +
1 . . . |w|])− 1 or sup(w[i + 1 . . . |w|]) = 0, where inf(w) is the infimum of IAlph(w).
Since the length of word is finite, we may write w = v1 ∗ v2 ∗ · · · ∗ vn, with n maximal and
vi non-trivial, 1 ≤ i ≤ n.
We assume that one word can be written in two ways

w = v1 ∗ v2 ∗ · · · ∗ vn (3.13)

and

w = v′1 ∗ v′2 ∗ · · · ∗ v′m. (3.14)

Denoting by k the first index such that vk 6= v′k, without loss of generality we may sup-
pose that |vk| < |v′k|. From Equation (3.13), the kth position is an admissible cut of w.
From Equation (3.14), the kth position is not an admissible cut of w. Thus, we obtain a
contradiction. Hence, we have n = m and vi = v′i for all 1 ≤ i ≤ n. �

This proves that pack(X∗) is free on its irreducibles. Let us emphasize that pack(X∗) is
isomorphic to (Irr(pack(X∗)))∗ and thus WMat to k〈Irr(pack(X∗))〉.

3.2 Bialgebra structure

Let us give the definition of the coproduct and prove that the coassociativity property holds.

Definition 3.2.1. Let A ⊂ X, one defines w/A := SφA
(w) with φA(i) =





i if xi 6∈ A,

0 if xi ∈ A
.

Let u be a word. One defines w/u :=w /Alph(u).

Definition 3.2.2. The coproduct of H is given by

∆(w) :=
∑

I+J=[1...|w|]

pack(w[I])⊗ pack(w[J ]/w[I]), ∀w ∈ H, (3.15)

where this sum runs over all partitions of [1 . . . |w|] divided into two blocks, I ∪J = [1 . . . |w|]
and I ∩ J = ∅.

Example 3.2.3. One has:

∆(x1x2x1) = x1x2x1 ⊗ 1X∗ + x1 ⊗ x1x0 + x1 ⊗ x2
1 + x1 ⊗ x0x1 + x1x2 ⊗ x0 + x2

1 ⊗ x1

+ x2x1 ⊗ x0 + 1X∗ ⊗ x1x2x1. (3.16)

Let us now prove the coassociativity. Let I = [i1, . . . , in].Let α be a mapping:

α : I −→ [1 . . . n],

is 7−→ s. (3.17)
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Lemma 3.2.4 (Transitivity of selection). Let w ∈ X∗ be a word, I be a subset of [1 . . . |w|]
and I1 ⊂ [1 . . . |I|]. One then has

pack(w[I])[I1] = Sφw[I]
(w[I ′1]), (3.18)

where I ′1 is α−1(I1) and φw[I] is the packing map of w[I] that is given in (3.5) .

Proof. Using the definition of packing map φw[I], one can directly check that equation (3.18)
holds. �

Example 3.2.5. Let w = x1x4x3x7x6x0. Let I = {1, 3, 4, 6} and I1 = {1, 3}. One has
I ′1 = {1, 4}. One has pack(w[I])[I1] = x1x3. On other hand, one has w[I ′1] = x1x7 and
Sφw[I]

(w[I ′1]) = x1x3.

Lemma 3.2.6. Let w ∈ X∗ be a word and φ be a strictly increasing map from IAlph(w) to
N. One then has:

1)
pack(Sφ(w)) = pack(w). (3.19)

2)
Sφ(w1/w2) = Sφ(w1)/Sφ(w2). (3.20)

Proof.
1) One has

pack(Sφ(w)) = Sφw
(Sφ(w)) = Sφw◦φ(w),

where φw is the packing map which is given in (3.5). Note that both φ and φw are strictly
increasing maps. Let I = IAlph(w) = {j1, j2, . . . , jk}, j1 < j2 < · · · < jk, the image set
φ(I) = {j′i, j′i = φ(ji), i = 1 · · · k} one has j′1 < j′2 < · · · < j′k. From the definition of φw, one
has: φw(j′i) = i = φw(ji). This leads to:

Sφw◦φ(w) = Sφw
(w) = pack(w). (3.21)

2) Let X = Alph(w2) and Y = Alph(Sφ(w1)).
Let us rewrite the two sides of equation (3.20), the LHS and the RHS:

LHS = Sφ(SφX
(w1)) = Sφ◦φX

(w1), (3.22)

RHS = SφY
(Sφ(w1)) = SφY ◦φ(w1). (3.23)

With xi ∈ Alph(w1), one has two cases:

1. If xi ∈ X, then φX(i) = 0 and φ ◦ φX(i) = 0 because φ is a strictly increasing map.

On the other hand, φ(i) ∈ Y and this implies φY ◦ φ(i) = φY (φ(i)) = 0.
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2. If xi 6∈ X, then φX(i) = i and φ ◦ φX(i) = φ(i).

On the other hand, because φ is a strictly increasing map, then φ(i) 6∈ Y , and φY ◦φ(i) =
φ(i).

One thus has φ ◦ φX(i) = φY ◦ φ(i). Using this result and the two equations above (3.22)
and (3.23), one concludes the proof. �

Lemma 3.2.7 (Transitivity of quotients). Let w be a word in H, and I, J, K be three
disjoint subsets of {1 . . . |w|}. One then has:

(w[K]/w[I])/(w[J ]/w[I]) = w[K]/w[I + J ]. (3.24)

Proof.
Using Lemma 3.2.6, one has:

(w[K]/w[I])/(w[J ]/w[I]) = SφI
(w[K])/SφI

(w[K]) = SφI
(w[K]/w[J ]) = SφI

(SφJ
(w[K]))

= SφI◦φJ
(w[K]) = w[K]/w[I + J ]. (3.25)

�

Proposition 3.2.8. The vector space H endowed with the coproduct (3.15) is a coassociative
coalgebra with counit (c-AAU). The co-unit is given by:

ǫ(w) :=





1 if w = 1H,

0 otherwise.

Proof.
Let us first prove the coassociativity of the coproduct (3.15), namely

(∆⊗ Id) ◦∆(w) = (Id⊗∆) ◦∆(w). (3.26)

The LHS of the coassociativity condition (3.26) can be written:

(∆⊗ Id) ◦∆(w) =
∑

I+J=[1...|w|]


 ∑

I1+I2=[1...|I|]

pack(pack(w[I])[I1])⊗ pack(pack(w[I][I2])/pack(w[I][I1]))




⊗ pack(w[J ]/w[I]) =
∑

I+J=[1...|w|]


 ∑

I′

1+I′

2=I

pack(Sφ(w[I ′1]))⊗ pack(Sφ(w[I′

2])/Sφ(w[I′

1]))




⊗ pack(w[J ]/w[I]) =
∑

I′

1+I′

2+J=[1...|w|]

pack(w[I ′1])⊗ pack(w[I2]/w[I′

1])⊗ pack(w[J ]/w[I1+I2]).

(3.27)

The RHS of the coassociativity condition (3.26) can be written as:
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(Id⊗∆) ◦∆(w) =
∑

I+J=[1...|w|]

pack(w[I])⊗

 ∑

J1+J2=[1...|J |]

pack(pack(w[J ]/w[I]))[J1])

⊗pack(pack(w[J]/w[I])[J2]/pack(w[J]/w[I])[J1]))
)

=
∑

I+J=[1...|w|]

pack(w[I])⊗

 ∑

J ′

1+J ′

2=J

pack(w[J ′

1]/w[I])

⊗pack(Sφ(
w[J′

2]/w[I]/w[J ′

1]/w[I]
))
)

=
∑

I+J=[1...|w|]

pack(w[I])⊗

 ∑

J ′

1+J ′

2=J

pack(w[J ′

1]/w[I])

⊗pack(w[J ′

2]/w[I+J′

1
]
)
)

=
∑

I+J ′

1+J ′

2=[1...|w|]

pack(w[I])⊗ pack(w[J ′

1]/w[I])⊗ pack(w[J ′

2]/w[I+J′

1
]
).

(3.28)

Using the equations (3.27) and (3.28), one concludes that the coproduct (3.15) is coassocia-
tive.

Let us now prove the following

(ǫ⊗ Id) ◦∆(w) = (Id⊗ ǫ) ◦∆(w), (3.29)

for all word w ∈ H.

Let us rewrite the LHS and the RHS of the equation (3.29):

LHS = (ǫ⊗ Id)


 ∑

I+J=[1...|w|]

pack(w[I])⊗ pack(w[J ]/w[I])




=
∑

I+J=[1...|w|]

ǫ(pack(w[I]))⊗ pack(w[J ]/w[I]) = 1H ⊗ pack(w) = pack(w). (3.30)

RHS = (Id⊗ ǫ)


 ∑

I+J=[1...|w|]

pack(w[I])⊗ pack(w[J ]/w[I])




=
∑

I+J=[1...|w|]

pack(w[I])⊗ ǫ(pack(w[J ]/w[I])) = pack(w)⊗ 1H = pack(w). (3.31)

One thus concludes that (H, ∆, ǫ) is a c-AAU. �

Remark 3.2.9. This coalgebra is not cocommutative. For example, one has

T12 ◦∆(x2
1) = T12(x2

1 ⊗ 1H + 2x1 ⊗ x0 + 1H ⊗ x2
1)

= x2
1 ⊗ 1H + 2x0 ⊗ x1 + 1H ⊗ x2

1 6= ∆(x2
1),

where the operator T12 is given by T12(u⊗ v) = v ⊗ u.
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Lemma 3.2.10. Let u, v be two words. Let I1 +J1 = [1 . . . |u|] and I2 +J2 = [|u|+1 . . . |u|+
|v|]. One then has

pack(u∗v[J1+J2]/u∗v[I1+I2]) = pack(u[J1]/u[I1]) ∗ pack(v[J ′

2]/v[I′

2]), (3.32)

where I ′2 is the set {k − |u|, k ∈ I2} and J ′2 is the set {k − |u|, k ∈ J2}.

Proof. One has:

pack(u∗v[J1+J2]/u∗v[I1+I2]) = pack(SφI1+I2
(u ∗ v[J1 + J2])) = pack(SφI1+I2

(uTsup(u)(v)[J1 + J2]))

=pack(SφI1
+φI2

(u[J1]Tsup(u)(v)[J2])) = pack(SφI1
SφI2

(u[J1]Tsup(u)(v[J ′2])))

=pack(SφI1
(u[J1])SφI2

(Tsup(u)(v[J ′2]))) = pack(u[J1]/u[I1])Tsup(u[J1]/u[I1])
pack(SφI′

2

(v[J ′2]))

=pack((u[J1]/u[I1]) ∗ pack(u[J ′

2]/u[I′

2]). (3.33)

�

Proposition 3.2.11. Let u, v be two words in H. One has:

∆(u ∗ v) = ∆(u) ∗⊗2 ∆(v), (3.34)

where ∗⊗2 := (∗ ⊗ ∗) ◦ τ23.

Proof.
One has:

∆(u ∗ v) =
∑

I1+I2=I
J1+J2=J

I1,J1⊂[1...|u|]
I2,J2⊂[|u|+1...|u|+|v|]

(pack(u ∗ v[I1 + I2]))⊗
(
pack((u∗v[J1+J2]/(u∗v[I1+I2])

)

=
∑

I1+J1=[1...|u|]
I′

2+J ′

2=[1...|v|]

(
pack(u[I1])⊗ pack(u[J1]/u[I1])

)
∗
(
pack(v[I2])⊗ pack(u[J ′

2]/u[I′

2])
)

=


 ∑

I1+J1=[1...|u|]

pack(u[I1])⊗ pack(u[J1]/u[I1])


 ∗


 ∑

I′

2+J ′

2=[1...|v|]

pack(v[I2])⊗ pack(u[J ′

2]/u[I′

2])




=∆(u) ∗⊗2 ∆(v). (3.35)

�

It is easy to check that H is graded by the word’s length.
Using Proposition 2.1.22, the antipode map is given by the recursion:

S(1H) = 1H

S(w) = −w −
∑

I+J=[1...|w|],I,J 6=∅

S(pack(w[I])) ∗ pack(w[J ]/w[I]), ∀w 6= 1H. (3.36)

One easily now concludes:
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Theorem 3.2.12. The triplet (H, ∆, ∗) is a Hopf algebra.

Proof. The conclusion follows from the above results. �

Let us end this subsection by mentioning that we have checked the coassociativity of the
WMat coproduct (3.15) with Maple (see Appendix A).
The coassociativity of a similar coproduct, on commutative alphabets, has been also tested
in a analogous way with Maple (see Appendix B).

Remark 3.2.13. Note that H is a free associative CHA in the sense of Loday and Ronco
[LR10]. A CHA is a free (or cofree) Hopf algebra which is free (or cofree) and equipped
with a given isomorphism to the free algebra over the indecomposables (respective the cofree
coalgebra over the primitives).

3.3 The Hilbert series of the Hopf algebra Wmat

In this section, we compute the number of packed words with length n and supremum k.
It is the same as the number of cyclically ordered partitions of an n-element set. Using
the formula of Stirling numbers of the second kind (see [Com74]), one can get the explicit
formula for the number of packed words with length n, number which we denote by dn.

Definition 3.3.1. The Stirling numbers of the second kind count the number of set partitions
of an n-element set into precisely k non-void parts. The Stirling numbers, denoted by S(n, k)
are given by the following recursive relations:

1. S(n, n) = 1(n ≥ 0),

2. S(n, 0) = 0(n > 0),

3. S(n + 1, k) = S(n, k − 1) + kS(n, k), for 0 < k ≤ n.

One can define a word without x0 by its positions, this means that if a word w = xi1xi2 . . . xin

has length n and alphabet IAlph(w) = {1, 2, . . . , k}, then this word can be determined from
the list [S1, S2, . . . , Sk], where Si is the set of positions of xi in the word w, with 1 ≤ i ≤ k.
It is straightforward to check that (Si)0≤i≤k is a partition of [1 . . . n].
The set of packed words with length n and supremum k splits into two subsets: “pure”
packed words (which have no x0 in their alphabet), denote pack+

n,s(X) and packed words

which have x0 in their alphabet, denote pack0
n,k(X). It is clear that:

d(n, k) = #pack+
n,k(X) + #pack0

n,k(X). (3.37)

Let us now compute the cardinal of these two sets pack+
n,k(X) and pack0

n,k(X).

Consider a word w ∈ pack+
n,k(X), then IAlph(w) = {1, 2, . . . , k}. This word is determined

by [S1, S2, . . . , Sk], in which Si is a set of positions of xi, for 1 ≤ i ≤ k. One can see that:

1. Si 6= ∅, ∀i ∈ [1, k];
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2. ⊔1≤i≤kSi = {1, 2, . . . , n}.
Note that 1-2 hold even with w = 1H. Thus, one has the cardinal of packed words with
length n and supremum k:

d+(n, k) = #pack+
n,k(X) = S(n, k)k!. (3.38)

Similarly, a word w ∈ pack0
n,k(X) can be determined by [S0, S1, S2, . . . , Sk] where Si is the

set of positions of xi, for all 0 ≤ i ≤ k. After computation, one has:

d0(n, k) = #pack0
n,k(X) = S(n, k + 1)(k + 1)!. (3.39)

From the two equations above, one can get the number of packed words with length n and
supremum k:

d(n, k) = d+(n, k) + d0(n, k) = S(n, k)k! + S(n, k + 1)(k + 1)! = S(n + 1, k + 1)k!. (3.40)

From this formula, using Maple, one can get some values of d(n, k). We give in the Table
3.1 the first values.

k
0 1 2 3 4 5 6 7 8

n

0 1 0 0 0 0 0 0 0 0
1 1 1 0 0 0 0 0 0 0
2 1 3 2 0 0 0 0 0 0
3 1 7 12 6 0 0 0 0 0
4 1 15 50 60 24 0 0 0 0
5 1 31 180 390 360 120 0 0 0
6 1 63 602 2100 3360 2520 720 0 0
7 1 127 1932 10206 25200 31920 20160 5040 0
8 1 255 6050 46620 166824 317520 332640 181440 40320

Table 3.1: Values of d(n, k) given by the explicit formula (3.40) and computed with Maple.

Note that the values of Table 3.1 correspond to those of the triangular array A028246 of
Sloane [Slo]. The exponential generating function is given in [Slo] by the formula −log(1−
y(ex − 1)).

Remark 3.3.2. Formulas (3.38) and (3.39) imply that the packed words of length n and
supremum k without, and respectively with, x0 are in bijection with the ordered partitions
of [n] in k parts and respectively in k + 1 parts. Therefore, formula (3.40) implies that the
set of packed words of length n with supremum k is in bijection with the circularly ordered
partitions of n + 1 elements in k + 1 parts.

The formula for the number of packed words of length n, dn (n ≥ 1), is then given by

dn =
n∑

k=0

d(n, k) =
n∑

k=0

S(n + 1, k + 1)k!. (3.41)
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n 0 1 2 3 4 5 6 7 8 9 10
dn 1 2 6 26 150 1082 9366 94586 1091670 14174522 204495126

Table 3.2: Some value of dn by the formula (3.41).

Using again Maple, one can get the values listed in Table 3.2.
The number of packed words is the sequence A000629 of Sloane [Slo], where it is also men-
tioned that this sequence corresponds to the ordered Bell numbers sequence times two (except
for the 0th order term).
The ordinary and exponential generating function of our sequence are also given in [Slo].
The ordinary one is given by the formula:

∑
n≥0

2nn!xn∏n

k=0
(1+kx)

. The exponential one is given by:
ex

2−ex . Let us give the proof of this.

Firstly, recall that the exponential generating function of the ordered Bell numbers (see, for
example, page 109 of Philippe Flajolet’s book [FS08]) is:

1

2− ex
=
∑

n≥0

n∑

k=0

S(n, k)k!
xn

n!
. (3.42)

By deriving both side of equation (3.42) with respect to x , one obtains:

ex

2− ex
=
∑

n≥1

n∑

k=1

S(n, k)k!
xn−1

(n− 1)!
. (3.43)

From equations (3.41) and (3.43), one gets the exponential generating function of our se-
quence:

ex

2− ex
=
∑

n≥0

n∑

k=0

S(n + 1, k + 1)k!
xn

n!
=
∑

n≥0

dn
xn

n!
. (3.44)

Let us now investigate the combinatorics of irreducible packed words.
Firstly, we notice that one still has an infinity of irreducible packed words of weight m, which
are again obtained by adding multiple copies of the letter x0.

Example 3.3.3. The word x1xk
0x1xk

0x1 (with k an arbitrary integer) is an irreducible packed
word of weight 3.

Let us denote by in the number of irreducible packed words of length n. Then one has:

in =
∑

j1+···+jk=n
jl 6=0

(−1)k+1dj1 . . . djk
. (3.45)

Using Maple, one can get the values of in, which we give in Table 3.3 below. Note that this
sequence does not appear in Sloane’s On-Line Encyclopedia of Integer Sequences [Slo].
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n 0 1 2 3 4 5 6 7 8 9 10
in 1 2 2 10 66 538 5170 59906 704226 9671930 145992338

Table 3.3: Ten first values of the number of irreducible packed words.
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The results presented in this chapter follow [DHNKT13a] (see also [DHNKT13b] for an
extended abstract).

4.1 Quantum field theory, the renormalization group

Since our proof of the universality of the matroid Tutte polynomial is based on an equation
analogue to the QFT renormalization group equation, let us first introduce this equation.

A QFT model (for a general introduction to QFT see for example the books [ZJ02] or
[KSF01]) is defined by means of a functional integral of the exponential of an action S
which, from a mathematical point of view, is a functional of the fields of the model.

For the Φ4 scalar model - the simplest QFT model - there is only one type of field, which we
denote by Φ(x). From a mathematical point of view, for an Euclidean QFT scalar model,
one has Φ : RD → K, where D is usually taken equal to 4 (the dimension of the space) and
K ∈ {R,C} (real, respectively complex fields).
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The principal aim of QFT in the functional integral formulation is to define and compute
expectation values of observables of the type

〈O〉 =

∫
DΦO[Φ] exp(−S[Φ])
∫

DΦ exp(−S[Φ])
. (4.1)

In this setting, an observable is a functional of the fields, a simple example being a product of
n fields evaluated at different space-times points, leading to the n-point correlation functions

G(x1, . . . , xn) =

∫
DΦΦ(x1) · · ·Φ(xn) exp(−S[Φ])

∫
DΦ exp(−S[Φ])

. (4.2)

This functional integral is usually defined in perturbation theory by separating the quadratic
part of the action which is used to define a Gaussian measure on the space of fields. Then,
non quadratic terms are treated as a perturbation and the functional integral is expand over
Feynman graphs.
The quantities computed in QFT are generally divergent. One thus has to consider a real,
positive, cut-off Λ - the flowing parameter. In the Wilsonian approach to renormalization,
the functional integral is performed in a step by step procedure by successive integrations
over fields with decreasing momenta. Let us denote by Φ̃(p) the Fourier transform of Φ(x),
define the Wilsonian effective action as

SΛ[Φ] =
∫

[DΦ′] exp
{
−
∫

R2D

1

2
dDpdDq Φ̃′(p)C−1

Λ,Λ0
(p, q)Φ̃′(q) + S0[Φ + Φ′]

}
. (4.3)

The quadratic part is written using the covariance

CΛ,Λ0(p, q) = δ(p− q)
∫ 1

Λ

1
Λ0

dαe−αp2

. (4.4)

where δ is the 4−dimension function which is given as δ(p− q) =





1 if p = q,

0 otherwise.

It involves an ultraviolet cut-off Λ0 and a floating infrared cut-off Λ. Its role is to enforce
the integration over fields with momenta between Λ and Λ0 for the fluctuating field Φ′.
The effective action obeys the renormalization group equation (see [Pol84])

Λ
∂SΛ

∂Λ
=
∫

R2D

1

2
dDpdDqΛ

∂CΛ,Λ0

∂Λ

(
δ2S

δΦ̃(p)δΦ̃(q)
− δS

δΦ̃(p)

δS

δΦ̃(q)

)
, (4.5)

where Φ̃ represents the Fourier transform of the function Φ. The first term in the RHS of the
equation above corresponds to the derivation of a propagator associated to a bridge in the
respective Feynman graph. The second term corresponds to an edge which is not a bridge
and is part of some circuit in the graph. This is diagrammatically represented in Fig. 4.1.

This equation can then be used to prove perturbative renormalizability in QFT. In our
context, it is useful to notice that a perturbative solution to this equation generates a sum
over all connected graphs. To this aim, it is not necessary to include all the field theoretical
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Figure 4.1: Diagrammatic representation of the flow equation.

structure. Instead, we consider φ ∈ R as a single real variable so that the functional integral
defining the effective action (4.3) reduces to a perturbed Gaussian integral

St(φ) = log
∫

R

dφ′√
2π

exp
{
− 1

2t
φ′2 + S0(φ + φ′)

}
. (4.6)

S0 is a formal power series in φ and extra variables λn

S0(φ) =
∑

n

λn

n!
φn. (4.7)

Performing the Gaussian integration over φ, the effective action turns out to be a sum over
all connected graphs. The weight λΓ(t) of a graph Γ in this expansion obeys the differential
equation

dλΓ

dt
=

∑

e edge of Γ
Γ−e connected

λΓ−e +
∑

e edge of Γ
Γ−e disconnected

λΓ′λΓ′′ (4.8)

where Γ − e is the graph obtained by removing an edge in Γ and Γ′ and Γ” are the two
connected components of Γ− e when it is disconnected.

Let us also stress here, that an equation of this type is also used to prove a result of E. M.
Wright which expresses the generating function of connected graphs under certain conditions
(fixed excess). To get this generating functional (see, for example, Proposition II.6 in the
book [FS08]), one needs to consider contributions of two types of edges (first contribution
when the edge is a bridge and a second one when not - see again Fig. 4.1).

In the sequel, we generalize such an equation to matroids using a Hopf algebra formulation.
This generalization is made possible by the fact that equation (4.8) above has two types
of terms. These terms correspond to removing an edge firstly by leaving the graph con-
nected and secondly by increasing the number of connected components of the graph. These
two types of terms correspond to the terms containing δloop and respectively δcoloop in the
differential equations (4.37) and (4.43) (see section 4.4).

4.2 Matroid Hopf algebra characters

In this section we define two infinitesimal characters which are then exponentiated in an
appropriate way such that a Hopf algebra character is obtained.

Let us first recall the following definitions:



70 CHAPTER 4. RECIPE THEOREM FOR THE MATROID TUTTE POLYNOMIAL

Definition 4.2.1. LetM be a minor-closed family of matroids and let f, g be two mappings
in Hom(k(M̃), k(M̃)). The convolution product of f and g is given by the following formula

f ∗ g = m ◦ (f ⊗ g) ◦∆, (4.9)

where we have denoted by m the multiplication law, given here by the matroid direct sum.

Definition 4.2.2. A matroid Hopf algebra character f is an algebra morphism from the
matroid Hopf algebra into a fixed commutative ring K. This means that one has:

f(M1 ⊕M2) = f(M1)f(M2), f(1) = 1K. (4.10)

Definition 4.2.3. A matroid Hopf algebra infinitesimal character g is a linear morphism
from the matroid Hopf algebra into a fixed commutative ring K, such that

g(M1 ⊕M2) = g(M1)ǫ(M2) + ǫ(M1)g(M2). (4.11)

Since we work in a Hopf algebra where the non-trivial part of the coproduct is nilpotent, we
can also define an exponential map by the following expression

exp∗(δ) := ǫ + δ +
1

2
δ ∗ δ + . . . =

∑

k≥0

1

k!
δ∗k (4.12)

where δ is an infinitesimal character.

Lemma 4.2.4. If δ is an infinitesimal character, then exp⋆(δ) is a character

Proof. One can use induction to prove that

δ∗k(xy) =
k∑

i=0

(
k

i

)
δ∗i(x)δ∗(k−i)(y) (4.13)

One then has

exp∗(δ)(x) exp∗(δ)(y) =


∑

i≥0

1

i!
δ∗i(x)




∑

j≥0

1

j!
δ∗j(j)


 =

∑

k≥0

∑

i+j=k

1

i!j!
δ∗i(x)δ∗j(y)

=
∑

k≥0

1

k!
δ∗k(xy) = exp∗(δ)(xy). (4.14)

�

As already stated above (see Remark 2.2.11), there are only two matroids with unit cardinal
ground set, U0,1 and U1,1. We now define two maps δloop and δcoloop.

δloop(M) :=





1K if M = U0,1,

0K otherwise .
(4.15)
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δcoloop(M) :=





1K if M = U1,1,

0K otherwise .
(4.16)

One can directly check that these maps are infinitesimal characters of the matroid Hopf
algebra defined in Proposition 2.2.29.

We now define the following map:

αx,y,s(M) := exp∗s{δcoloop + (y − 1)δloop} ∗ exp∗s{(x− 1)δcoloop + δloop}(M). (4.17)

Example 4.2.5. One has

α(x, y, s, U2,4) = (exp∗s{δtree + (y − 1)δloop} ∗ exp∗s{(x− 1)δtree + δloop}) (U2,4)
= (exp∗s{δtree + (y − 1)δloop} ⊗ exp∗s{(x− 1)δtree + δloop}) (∆(U2,4))
= (exp∗s{δtree + (y − 1)δloop} ⊗ exp∗s{(x− 1)δtree + δloop}) (1⊗ U2,4

+4U1,1 ⊗ U1,3 + 6U2,2 ⊗ U0,2 + 4U2,3 ⊗ U0,1 + U2,4 ⊗ 1)
= s4(x− 1)2 + 4s4(x− 1) + 6s4 + 4s4(y − 1) + s4(y − 1)2

= s4[x2 + y2 + 2x + 2y]. (4.18)

One then has:

Proposition 4.2.6. The map (4.17) is a character.

Proof. The proof can be done by a direct check. On a more general basis, this is a consequence
of the fact that δloop and δcoloop are infinitesimal characters and the space of infinitesimal
characters is a vector space; thus s{δcoloop + (y − 1)δloop} and s{(x − 1)δcoloop + δloop} are
infinitesimal characters.

Using Lemma 4.2.4 and since the convolution of two characters is a character, one gets that
α is a character. �

4.3 Proof of a Tutte polynomial convolution formula

Let M = (E, I) be a matroid. One then has the following result:

Lemma 4.3.1. One has:

exp∗{aδcoloop + bδloop}(M) = ar(M)bn(M). (4.19)

Proof. Using the definition (4.12), the LHS of the identity (4.19) above reads:

(
∞∑

k=0

(aδcoloop + bδloop)∗k

k!

)
(M). (4.20)
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All the terms in the sum above vanish, except the one for whom k is equal to |E|. Using the
definition (4.9) of the convolution product, this term writes

1

k!




k∑

i=0

ak−ibi
∑

i1+···+in=k−i
j1+···+jm=i

δ
⊗(i1)
coloop ⊗ δ

⊗(j1)
loop ⊗ · · · ⊗ δ

⊗(in)
coloop ⊗ δ

⊗(jm)
loop





∑

(i)

M (1) ⊗ · · · ⊗M (k)


 , (4.21)

where we have used the notation ∆(k−1)(M) =
∑

(i) M (1) ⊗ · · · ⊗M (k). Using the definitions
(4.15) and respectively (4.16) of the infinitesimal characters δloop and respectively δcoloop,
implies that the submatroids M (j) (j = 1, . . . , k) are equal to U0,1 or U1,1.
Using the definition of the rank and of the nullity of a matroid, the number of δcoloop and δloop

appearing in Equation (4.21) equal to the rank and the nullity of the matroid M , respectively.
One then gets that

exp∗{aδcoloop + bδloop}(M) =
1

|E|!a
r(M)bn(M)




∑

i1+···+in=r(M)
j1+···+jm=n(M)

δ
⊗(i1)
coloop ⊗ δ

⊗(j1)
loop ⊗ . . .

⊗δ
⊗(in)
coloop ⊗ δ

⊗(jm)
loop

)

∑

(i)

M (1) ⊗ · · · ⊗M (|E|)


 . (4.22)

It is easy to check that

∑

i1+···+in=r(M)
j1+···+jm=n(M)

δ
⊗(i1)
coloop ⊗ δ

⊗(j1)
loop ⊗ · · · ⊗ δ

⊗(in)
coloop ⊗ δ

⊗(jm)
loop


∑

(i)

M (1) ⊗ · · · ⊗M (|E|)


 =

(
|E|

r(M)

)
.

(4.23)
From Equations (4.22) and (4.23), one gets the conclusion. �

Example 4.3.2. Let us illustrate Lemma 4.3.1 for the uniform matroid Uk,n. One has
r(Uk,n) = k and n(Un,k) = n− k. We now use the definitions (4.15) and respectively (4.16)
of δloop and respectively δcoloop to work out the LHS of identity (4.19). One has:

exp∗{aδcoloop + bδloop}(Uk,n) =
1

n!
akbn−kδ⊗k

coloop ⊗ δ
⊗(n−k)
loop

((
n

n− 1

)
. . .

(
2

1

)
U⊗k

1,1 ⊗ U
⊗(n−k)
0,1

)

= akbn−k. (4.24)

Working out the definition formula (4.17) of the character α, one gets the following equivalent
expression:

αx,y,s(M) = exp∗ (s(δcoloop + (y − 1)δloop)) ∗ exp∗ (s(−δcoloop + δloop))

∗exp∗ (s(δcoloop − δloop)) ∗ exp∗ (s((x− 1)δcoloop + δloop)) . (4.25)

One then has:
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Proposition 4.3.3. The character α is related to the Tutte polynomial for matroids by the
following identity:

αx,y,s(M) = s|E|TM(x, y). (4.26)

Proof. Using the definition (4.9) of the convolution product in the definition (4.17) of the
character α, one has the following identity:

αx,y,s(M) =
∑

A⊆E

exp∗s{δcoloop + (y − 1)δloop}(M |A) exp∗s{(x− 1)δcoloop + δloop}(M/A).

(4.27)

We can now apply Lemma 4.3.1 on each of the two terms in the RHS of equation (4.27)
above. One has

αx,y,s(M) =
∑

A⊆E

sr(M |A) (s(y − 1))n(M |A) (s(x− 1))r(M/A) sn(M/A)

=
∑

A⊆E

sr(M |A)+n(M |A)+r(M/A)+n(M/A)(x− 1)r(M/A)(y − 1)n(M |A)

=
∑

A⊆E

s|E|(x− 1)r(M)−r(A)(y − 1)n(A)

= s|E|TM(x, y). (4.28)

�

Example 4.3.4. Let Uk,n be a uniform matroid, 0 ≤ k ≤ n. One has

α(x, y, s, Uk,n) =
k∑

i=0

(
n

i

)
sn(x− 1)k−i +

n∑

i=k+1

(
n

i

)
sn(y − 1)i−k = snTUk,n

(x, y). (4.29)

Using (2.70) and Proposition 4.3.3, one has the following consequence:

Corollary 4.3.5. One has:

αx,y,s(M) = αy,x,s(M
⋆). (4.30)

Proposition 4.3.3 allows to give a different proof of a matroid Tutte polynomial convolution
identity, shown in [KRS99] and in [EL98]. One has:

Corollary 4.3.6. (Theorem 1 of [KRS99]) The Tutte polynomial satisfies:

TM(x, y) =
∑

A⊂E

TM |A(0, y)TM/A(x, 0). (4.31)

Proof. Taking s = 1, this is as a direct consequence of identity (4.25), and of Proposition
4.3.3. �



74 CHAPTER 4. RECIPE THEOREM FOR THE MATROID TUTTE POLYNOMIAL

4.4 The recipe theorem

Let us define a map ϕa,b : k(M̃)→ k(M̃),

M 7−→ pr(M)qn(M)M, (4.32)

where p and q are scalars belonging to the ring k∗ (the group of invertible elements of k).

Lemma 4.4.1. The map ϕp,q is a bialgebra automorphism.

Proof. One can directly check that the map ϕp,q is an algebra automorphism. Let us now
check that this map is also a coalgebra automorphism. Using Lemma 2.2.22 and Lemma
2.2.24,

r(M |T ) + r(M/T ) = r(M). (4.33)

Thus, using the definitions of the map ϕp,q and of the matroid coproduct, one has:

∆ ◦ ϕp,q(M) =
∑

T⊆E

(pr(M |T )qn(M |T )M |T )⊗ (pr(M/T )qn(M/T )M/T ). (4.34)

Using again the definition of the map ϕp,q leads to

∆ ◦ ϕp,q(M) = (ϕp,q ⊗ ϕp,q) ◦∆(M), (4.35)

which concludes the proof. �

Let us now define:
[f, g]∗ := f ∗ g − g ∗ f. (4.36)

Using the definition (4.17) of the Hopf algebra character α, one can directly prove the
following result:

Proposition 4.4.2. The character α is the solution of the differential equation:

dα

ds
= xα ∗ δcoloop + yδloop ∗ α + [δcoloop, α]∗ − [δloop, α]∗ . (4.37)

It is the fact that the matroid Tutte polynomial is a solution of the differential equation
(4.37) that will be used now to prove the universality of the matroid Tutte polynomial.
In order to do that, we take a four-variable matroid polynomial QM (x, y, a, b) satisfying a
multiplicative law

QM1⊕M2(x, y, a, b) = QM1(x, y, a, b)QM2(x, y, a, b), ∀M1, M2 matroids (4.38)

and which has the following properties:

• if e is a coloop, then
QM(x, y, a, b) = xQM\e(x, y, a, b) , (4.39)

• if e is a loop, then
QM(x, y, a, b) = yQM/e(x, y, a, b) (4.40)
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• if e is neither a loop nor coloop, then

QM(x, y, a, b) = aQM\e(x, y, a, b) + bQM/e(x, y, a, b). (4.41)

Remark 4.4.3. Note that, when one deals with the same problem in the case of graphs, a
supplementary multiplicative condition for the case of one-vertex joint of two graphs (i. e.
identifying a vertex of the first graph and a vertex of the second graph into a single vertex of
the resulting graph) is required (see, for example, [EMM11] or [Sok05]).

We now define the map:

β(x, y, a, b, s, M) := s|E|QM (x, y, a, b). (4.42)

One then directly checks (using the definition (4.42) above and the multiplicative property
of the polynomial Q) that this map is again a matroid Hopf algebra character.

Proposition 4.4.4. The character (4.42) satisfies the following differential equation:

dβ

ds
(M) = (xβ ∗ δcoloop + yδloop ∗ β + b[δcoloop, β]∗ − a[δloop, β]∗) (M). (4.43)

Proof. Applying the definition (4.9) of the convolution product, the RHS of equation (4.43)
above writes

(x− b)
∑

A⊆E

β(M |A)δcoloop(M/A) + (y − a)
∑

A⊆E

δloop(M |A)β(M/A)

+ b
∑

A⊆E

δcoloop(M |A)β(M/A) + a
∑

A⊆E

β(M |A)δloop(M/A). (4.44)

Using the definitions (4.15) and respectively (4.16) of the infinitesimal characters δloop and
respectively δcoloop, constraints the sums on the subsets A above. The RHS of (4.43) becomes:

(x− b)
∑

A,M/A=U1,1
β(M |A) + (y − a)

∑
A,M |A=U0,1

β(M/A)

+b
∑

A,M |A=U1,1
β(M/A) + a

∑
A,M/A=U0,1

β(M |A). (4.45)

We now apply the definition of the Hopf algebra character β; one obtains:

s|E|−1[(x− b)
∑

A,M/A=U1,1
Q(x, y, a, b, M |A) + (y − a)

∑
A,M |A=U0,1

QM/A
(x, y, a, b)

+b
∑

A,M |A=U1,1
QM/A

(x, y, a, b) + a
∑

A,M/A=U0,1
QM |A(x, y, a, b)]. (4.46)

We can now directly analyze the four particular cases M/A = U1,1, M/A = U0,1, M |A = U1,1

and M |A = U0,1:

• If M/A = U1,1, we can denote the ground set of M/A by {e}. Note that e is a coloop.
From Lemma 2.2.22, one has M |A = M\E−A = M\e. One then has QM (x, y, a, b) =
xQM |A(x, y, a, b).

• If M |A = U0,1, then A = {e} and e is a loop of M . Thus, one has QM (x, y, a, b) =
yQM/A

(x, y, a, b)
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• If M |A = U1,1, then A = {e}. One has to distinguish between two subcases:

– e is a coloop of M . Then, by Lemma 2.2.23, M/e = M\e. Thus, one has
QM(x, y, a, b) = xQM |A(x, y, a, b).

– e is neither a loop nor coloop of M .

• If M/A = U0,1, one can denote the ground set of M/A by {e}. There are again two
subcases to be considered:

– e is a loop of M , one has that M |A = M\(E−A) = M\{e} = M/e. Then one has
QM(x, y, a, b) = yQM |A(x, y, a, b).

– e is a nonseparating point of M , then one has M |A = M\(E−A) = M\{e}
We now insert all of this in equation (4.46); this leads to three types of sums over some
element e of the ground set E, e being a loop, a coloop or a nonseparating point:

s|E|−1[
∑

e∈E:e is a coloop

QM(x, y, a, b) +
∑

e∈E:e is a loop

QM(x, y, a, b) +
∑

e∈E:e is a regular element

QM(x, y, a, b)]

(4.47)

This rewrites as

|E|s|E|−1QM(x, y, a, b) =
dβ

ds
(M), (4.48)

which completes the proof. �

We can now state the main result of this paper, the recipe theorem specifying how to
recover the general matroid polynomial QM as an evaluation of the Tutte polynomial TM :

Theorem 4.4.5. If one has a four-variable matroid polynomial QM(x, y, a, b) satisfying the
multiplicative law (4.38) and the conditions (4.39), (4.40) and (4.41), then one has:

QM(x, y, a, b) = an(M)br(M)TM(
x

b
,
y

a
). (4.49)

Proof. The proof is a direct consequence of Propositions 4.3.3, 4.4.2 and 4.4.4 and of Lemma
4.4.1. This comes from the fact that one can apply the automorphism ϕa,b defined in (4.32)
to the differential equation (4.43). One then obtains the differential equation (4.37) with
modified parameters x/b and y/a. Finally, the solution of this differential equation is (triv-
ially) related to the matroid Tutte polynomial TM (see Proposition 4.3.3) and this concludes
the proof. �

As already announced above, this is a new proof of the universality property of the Tutte
polynomial for matroids (the interested reader may refer for example to T. Brylawski and J.
Oxley’s article [BO92]).

Let us end this section by stating that all the results obtained in this paper naturally hold
for graphs (instead of matroids), since graphs are a particular class of matroids (the graphic
matroids, see subsection 2.2). We have thus given here the proofs of the graph results
conjectured in [KM11].



5C
h
a
p
te

r

A combinatorial non-commutative Hopf
algebra of graphs

Contents
5.1 Why discrete scales? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Non-commutative graph algebra structure . . . . . . . . . . . . . . . . . . 79

5.3 Hopf algebra structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.4 Quadri-coalgebra structure . . . . . . . . . . . . . . . . . . . . . . . . . . 89

The results presented in this Chapter follow [DFHN+].

5.1 Why discrete scales?

As already announced above, the idea of decorating the edges of a graph with discrete
scales comes from quantum field theory, or more precisely from the multi-scale analysis
technique used in perturbative and in constructive renormalization (see Vincent Rivasseau’s
book [Riv91]).
In quantum field theory each edge of a graph is associated to a propagator C = 1/H (which,
in elementary particle physics represents a particle). Introducing discrete scales comes to a
“slicing” of the propagator

C =
∫ ∞

0
e−αHdα ,

∞∑

i=0

Ci (5.1)

Ca =
∫ M−2(a−1)

M−2a
e−αHdα , C0 =

∫ ∞

1
e−αHdα. (5.2)

When some discrete integer a is associated to a given edge, this means that the propagator
assigned to this edge lies within a given energy scale. One thus introduces more information
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(replacing graphs by “assigned graphs”) which yields in turn some refinement of the analysis,
as we will explain here.

When integrating over the energy scales of the internal propagators in a Feynman graph in
quantum field theory, one obtains the Feynman integral associated to the respective graphs.
Usually, these integrals are divergent. This is when renormalization comes in, subtracting
(when possible) the divergent parts of these Feynman integrals, in a self-consistent way (see
again Vincent Rivasseau’s book [Riv91] or any other textbook on renormalization). Never-
theless, these divergences only appear for high energies (the so-called ultraviolet regime)1,
which corresponds, within the multi-scale formalism, to the case when all the integer scales
associated to the internal edges are higher then the edges associated to the external edges
(see again Vincent Rivasseau’s book [Riv91] for details).

When dealing with this divergence subtraction (the subtraction of the so-called “countert-
erms”), an important “technical” complication is given by the issue of “overlapping diver-
gences”, which is given by overlapping subgraphs which lead, independently, to divergences.
This problem is solved in an elegant way within the multi-scale analysis, where all subgraphs
leading to divergences are either disjoint or nested.

Let us also emphasize that the multi-scale renormalization technique splits the counterterms
into two categories: “useful” and “useless” counterterms (the useful ones being the ones
corresponding to subgraphs where all the integer scales associated to the internal edges
are higher then the edges associated to the external edges). This refining is not possible
without the scale decoration of edges; furthermore, it also solves another major problem of
renormalization, the so-called “renormalon problem” (which is an issue when one wants to
sum over the contribution of each term in perturbation theory).

This versatile technique of multi-scale analysis was successfully applied for scalar quantum
field theory renormalization (see again [Riv91]), the condensed matter case [BG90], [FT90],
[Riv12], renormalization of scalar quantum field theory on the non-commutative Moyal space
(see [GMRT09], [GMRVT06], [GRVT06], [VFR06] and [VT07]) and recently to the renor-
malization of quantum gravity tensor models [GR13],[COR].

The combinatorics of the multi-scale renormalization was encoded in a Hopf algebraic frame-
work in [KRT]. As already announced above, the Hopf algebraic setting of [KRT] is com-
mutative, and the assigned graphs designed there can have equal scale integers for several
edges of the same graph.

In this chapter, we allow graphs with self-loops (i. e. edges which have both ends hooked to
the same vertex) and multi-edges. However, graphs made of a single vertex and empty edge
set are not allowed.

Let us also mention that a commutative and a non-commutative CHA of graphs of type II,
were defined in [Sch94].

1Divergences for low energies (the infrared regime) can also appear in quantum field theory, but one can
deal with this type of divergences in a different way. This lies outside the purpose of this section.
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5.2 Non-commutative graph algebra structure

In this section we define the space of totally assigned graphs (TAG) and a non-commutative
algebra structure on this space.

Definition 5.2.1. A totally ordered scale assignment µ for a graph Γ is a total order
on the set E(Γ) of edges of Γ.

It will be convenient to visualize the total order µ by choosing a compatible labelling, i.e.
an injective increasing map from

(
E(Γ), µ

)
into N∗ = {1, 2, 3, . . .}. There is of course an

infinite number of possible labellings. The unique such map with values in {1, . . . , |E(Γ)]}
will be called the standard labelling associated with µ.

Example 5.2.2. An example of a totally ordered scale assignment with nonstandard labelling
is given in Fig. 5.1.

1

2

13

5

6

118

27

4

Figure 5.1: A graph with a totally ordered scale assignment.

Definition 5.2.3. A totally assigned graph (TAG) is a pair (Γ, µ) formed by a graph Γ
(not necessarily connected), together with a totally ordered scale assignment µ.

Consider now a field K of characteristic 0, and let H be the K- vector space freely spanned
by TAGs. The product m on H is given by:

m
(
(Γ1, µ), (Γ2, ν)

)
:= (Γ1, µ) · (Γ2, ν) := (Γ1 ⊔ Γ2, µ ⊔ ν), (5.3)

where Γ1 ⊔ Γ2 is the disjoint union of the two graphs, and where µ ⊔ ν is the ordinal sum
order, i.e. the unique total order on E(Γ1) ⊔ E(Γ2) which coincides with µ (resp. ν) on Γ1

(resp. Γ2), and such that e1 < e2 for any e1 ∈ Γ1 and e2 ∈ Γ2. Although the disjoint union
of graphs is commutative, the product is not because the total orders µ ⊔ ν and ν ⊔ µ are
different (see also Remark 5.2.7 below). Associativity is however obvious. The empty TAG
is the empty graph, denoted by 1H.

Example 5.2.4. Let (Γ1, µ1) and (Γ2, µ2) be the two graphs in Fig. 5.2.
One has

m
(
(Γ1, µ1), (Γ2, µ2)

)
=

1

3

2

4

6

75

.
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1

3

2

4

(a) The TAG (Γ1, µ1).

2

31

(b) The TAG (Γ2, µ2).

Figure 5.2: Two examples of TAGs.

Let G = (Γ, µ) be a non-empty TAG. The set E(Γ) of its edges is endowed with the total
order µ. Say that G is decomposable if it can be split into two non-empty components
G1 = (Γ1, µ1) and G2 = (Γ2, µ2) such that:

1. µi is the restriction of the total order µ to E(Γi), i = 1, 2.

2. For any e1 ∈ E(Γ1) and e2 ∈ E(Γ2) we have e1 < e2.

3. The two components are disconnected, i.e. no edge of Γ1 hook to any edge of Γ2.

In that case we obviously have G = G1 · G2 for the product just defined above. Otherwise
the TAG G is called indecomposable.

Summing up:

Proposition 5.2.5. (H, m, 1H) is a free associative unitary algebra.

Proof. The freeness of the algebra remains to be proved. Let Ind denote the set of indecom-
posables TAGs.
Iterating this decomposition process, we clearly can obtain any TAG G as a finite product
of indecomposable TAGs:

G1 · · ·Gk

with Gj = (Γj, µj), j = 1, . . . , k, and where µj is the total order µ restricted to E(Γj). The
set E(Γk) is the smallest terminal segment of E(Γ) such that no edge in it hook to other edges
in E(Γ). Hence the last component Gk is uniquely defined, and the whole decomposition as
well by iterating this argument.
One then has that H is isomorphic to K〈Ind〉.
Hence, the set of TAGs endowed with the product defined above is the free monoid generated
by the indecomposable TAGs, which proves Proposition 5.2.5. �

Remark 5.2.6. An indecomposable TAG is not necessarily connected (see Fig. 5.3).

Remark 5.2.7. The standard labelling of the product (Γ1, µ1)·(Γ2, µ2) is obtained by keeping
the standard labelling for E(Γ1) and shifting the standard labelling of E(Γ2) by |E(Γ1)|.

Let us end this section by the following example illustrating the non-commutativity of our
product:



5.3. HOPF ALGEBRA STRUCTURE 81

1

2

6
57

Figure 5.3: A non connected indecomposable TAG.

Example 5.2.8. One has

m




1

3

2

4

,

1

2

34

5

6


 =

1

3

2

4

5

6

78

9

10

(5.4)

and

m




1

2

34

5

6

,
1

3

2

4


 =

1

2

34

5

6

7

9

8

10

. (5.5)

5.3 Hopf algebra structure

Let us first give the following definitions:

Definition 5.3.1. A subgraph γ of a graph Γ is the graph formed by a given subset of edges
e of the set of edges of the graph Γ together with the vertices that the edges of e hook to in Γ.

Let us notice that a subgraph is not necessary connected nor spanning.

Definition 5.3.2. A totally assigned subgraph (γ, ν) of a given TAG (Γ, µ) is a subgraph
γ of Γin the sense of Definition 5.3.1, together with the total order ν on E(γ) induced by µ.
The shrinking (Γ, µ)/(γ, ν) of a given TAG (Γ, µ) by a totally assigned subgraph (γ, ν) is
defined as follows: the cograph Γ/γ is obtained by shrinking each connected component of γ
on a point (i.e. to shrink a subgraph means to erase erase its edges and identify its vertices),
and the totally ordered scale assignment µ/ν of the cograph Γ/γ is given by restricting the
total order µ on the edges of the cograph, i.e. the edges of Γ which are not internal to γ.
The TAG (Γ/γ, µ/ν) is called a totally assigned cograph.

Example 5.3.3. 1) Let us give an example, see Figure 5.5 of the shrinking of a totally
assigned subgraph.
2) Let us give another example, see Figure 5.7 of the shrinking of a totally assigned subgraph.

Let us now define the coproduct ∆ : H −→ H⊗H as

∆
(
(Γ, µ)

)
:=

∑

∅⊆(γ,ν)⊆(Γ,µ)

(γ, ν)⊗ (Γ/γ, µ/ν) (5.6)

for any TAG (Γ, µ).
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2 3 5

4

11

13

8

(a) The TAG (Γ, µ).

3

13

8

(b) The totally assigned subgraph (γ, ν).

Figure 5.4: An example of a totally assigned subgraph.

2 3 5
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13

8

/
3

13
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=
2 5

4

11

13

8

Figure 5.5: The cograph (Γ/γ, µ/ν) is obtained by shrinking of (γ, ν), in Fig. 5.4b ”inside”
(Γ, µ), Fig. 5.4a.

1

2

34

5

6

(a) The TAG (Γ1, µ1).

3

5

(b) The totally assigned subgraph (γ1, ν1).

Figure 5.6: An example of a totally assigned subgraph.

1
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34
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/ 3

5

=

1

2

4

6

Figure 5.7: The cograph (Γ1/γ1, µ1/ν1) is obtained by shrinking of (γ1, ν1), in Fig. 5.4b
”inside” of (Γ1, µ1), Fig. 5.4a.

Example 5.3.4. 1) Let (Γ1, µ1) be the TAG in Fig. 5.2a.

One has the coproduct:
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∆(Γ1, µ1) = (Γ1, µ1)⊗ 1H + 1H ⊗ (Γ1, µ1) + 2 1

2

31

⊗ + 1

3

21

⊗

+ 1

1

23

⊗ + 2

1

2

1

2

⊗ + 4
1 2

1

2

⊗

+ 1

2

3

1

⊗ + 2 2

1

3

1

⊗ + 3

1

2

1

⊗ .

(5.7)

2) Let (Γ2, µ2) be the TAG given in Figure 5.2b.

∆((Γ2, µ2)) = (Γ2, µ2)⊗ 1H + 1H ⊗ (Γ2, µ2) + 2
1 ⊗

1

2

+

1

⊗ 21

+

2

1

⊗
1

+

1

2

⊗
1

+
21 ⊗

1

.

Lemma 5.3.5. Let (Γ, µ) be a TAG in H. Let (γ, ν) and (δ, ν ′) be two totally assigned
subgraphs such that (δ, ν ′) ⊆ (γ, ν) ⊆ (Γ, µ). Then, one has

(Γ/γ, µ/ν) =
(
(Γ/δ)/(γ/δ), (µ/ν ′)/(ν/ν′)

)
. (5.8)

Proof. Since, δ ⊆ γ ⊆ Γ, then one has γ/δ ⊆ Γ/δ. One has Γ/γ = (Γ/δ)/(γ/δ). Moreover,
the total order ν (resp. ν ′) is induced by restriction of µ (resp. ν or µ) to the set of edges of
δ. Then µ/ν = (µ/ν ′)/(ν/ν′), which concludes the proof.

�

Proposition 5.3.6. The coproduct defined in (5.6) is coassociative.
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Proof. Let (Γ, µ) ∈ H. Then, one has:

(∆⊗ Id) ◦∆
(
(Γ, µ)

)
= (∆⊗ Id)


 ∑

(γ,ν)⊂(Γ,µ)

(γ, ν)⊗ (Γ/γ, µ/ν)




=
∑

(γ,ν)⊂(Γ,µ)


 ∑

(γ′,ν′)⊂(γ,ν)

(γ′, ν ′)⊗ (γ/γ′, ν/ν′)


⊗ (Γ/γ, µ/ν)

=
∑

(γ,ν)⊂(Γ,µ)
(γ′,ν′)⊂(γ,ν)

(γ′, ν ′)⊗ (γ/γ′, ν/ν′)⊗ (Γ/γ, µ/ν). (5.9)

and

(Id⊗∆) ◦∆((Γ, µ)) = (Id⊗∆)


 ∑

(γ,ν))⊂(Γ,µ)

(γ, ν)⊗ (Γ/γ, µ/ν)




=
∑

(γ,ν)⊂(Γ,µ)

(γ, ν)⊗

 ∑

(γ′,ν′)⊂(Γ/γ,µ/ν)

(γ′, ν ′)⊗
(
(Γ/γ)/γ′, (µ/ν)/ν′

)

 . (5.10)

There is a one-to-one correspondence between the assigned subgraphs (γ′, ν ′) ⊆ (Γ/γ, µ/ν)
and the assigned subgraphs (γ1, ν1) ⊆ (Γ, µ) such that (γ, ν) ⊆ (γ1, ν1). Indeed, starting
from an assigned subgraph (γ1, ν1) ⊆ (Γ, µ) such that (γ, ν) ⊆ (γ1, ν1), we find an assigned
subgraph (γ′, ν ′) ⊆ (Γ/γ, µ/ν) by restricting the total order ν1 to the edges of γ1 which are
not internal to γ, and the inverse operation consists in extending the total order ν ′ to all
edges of γ1 in the unique way compatible with the total order µ on E(Γ).

Applying Lemma 5.3.5, one has
(
(Γ/γ)/γ′, (µ/ν)/ν′

)
= (Γ/γ1, µ/ν1). Equation (5.10) can

then be rewritten as follows:

(Id⊗∆) ◦∆
(
(Γ, µ)

)

=
∑

(γ1,ν1)⊂(Γ,µ)
(γ,ν)⊂(γ1,ν1)

(γ, ν)⊗ (γ1/γ, ν1/ν)⊗ (Γ/γ1, µ/ν1). (5.11)

Using equations (5.9) and (5.11), one concludes the proof. �

Furthermore, we define the counit ǫ : H −→ K by

ǫ
(
(Γ, µ)

)
:=





1 if (Γ, µ) = 1H;

0 otherwise.
(5.12)

Theorem 5.3.7. The triple (H, ∆, ǫ) is a coassociative coalgebra with counit.

Proof. Let us show that ǫ is a counit of the coalgebra. For any TAG (Γ, µ), one has

(ǫ⊗ Id) ◦∆
(
(Γ, µ)

)
= ǫ

(
(Γ, µ)

)
1 + ǫ(1H)(Γ, µ) +

∑

(γ,ν)((Γ,µ)

ǫ(γ, ν)(Γ/γ, µ/ν) = (Γ, µ).
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Analogously, one has: (Id⊗ ǫ) ◦∆
(
(Γ, µ)

)
= (Γ, µ). One thus concludes that the maps Id,

(ǫ⊗ Id) ◦∆ and (Id⊗ ǫ) ◦∆ coincide on TAGs, thus proving that ǫ is a counit of ∆. Using
now Proposition 5.3.6, one concludes the proof. �

Example 5.3.8. Let us illustrate the coassociativity of our coproduct on the example of the
standard labeled TAG of Fig. 5.8. When acting with the coproduct on this standard labeled

6
8

9

11

2

1 3

710

124

5

13

Figure 5.8: A standard labeled TAG.

TAG, one gets the term of Fig. 5.9, which is one of the terms appearing in the sum. Another

⊗5
7

8

10 1 2

69

113

4

12

1

Figure 5.9: One of the terms obtained by acting with the coproduct on the standard labeled
TAG of Fig 5.8.

type of term is the one of Fig. 5.10 (which again adds up to the rest of the coproduct terms).
Acting now on these terms with (∆ ⊗ Id) and respectively with (Id ⊗∆) leads to the same

⊗2
6

7

9

2

1 3

58

104

1

3

Figure 5.10: Another terms obtained by acting with the coproduct on the standard labeled
TAG of Fig 5.8.

term represented in Fig. 5.11 with standard labelling. Let us also emphasize that this term
cannot be obtained from other terms of ∆ because of the diagrammatic difference of the
various disconnected components of the graphs.

Example 5.3.9. Let us illustrate the coassociativity of our coproduct on the example of the
standard labeled TAG of Fig. 5.12.
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⊗ ⊗2
5

6

8

1

1 2

47

93

1

3

Figure 5.11: The resulting in the LHS and RHS of the coassociativity identity.

1 6

2

5

4

3

Figure 5.12: A standard labeled TAG.

1 2

1 4

3 2

⊗3

Figure 5.13: One of the terms obtained by acting with the coproduct on the standard labeled
TAG of Fig 5.8.

1 2

1 4

3 2

⊗3

Figure 5.14: Another terms obtained by acting with the coproduct on the standard labeled
TAG of Fig 5.12.

When acting with the coproduct on this standard labeled TAG, one gets the term of Fig. 5.13,
which is one of the terms appearing in the sum. Another type of term is the one of Fig. 5.14
(which again adds up to the rest of the coproduct terms). Acting now on these terms with
(∆⊗ Id) and respectively with (Id⊗∆) leads to the same term represented in Fig. 5.15 with
standard labelling.

1 2 1 2 1 2⊗ ⊗3

Figure 5.15: The resulting in the LHS and RHS of the coassociativity identity.

Let us also emphasize that this term cannot be obtained from other terms of ∆ because of the
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diagrammatic difference of the various disconnected components of the graphs.

One has:

Proposition 5.3.10. Let (Γ1, µ1) and (Γ2, µ2) be two TAGs in H. One has

∆
(

m
(
(Γ1, µ1), (Γ2, µ2)

))
= m⊗2 ◦ τ23

(
∆(Γ1, µ1), ∆(Γ2, µ2)

)
(5.13)

where τ23 is the flip of the two middle factors in H⊗4.

Proof. One has

∆
(

m
(
(Γ1, µ1), (Γ2, µ2)

))
= ∆(Γ1 ⊔ Γ2, µ1 ⊔ µ2) (5.14)

=
∑

∅⊆(γ,ν)⊆(Γ1⊔Γ2,µ1⊔µ2)

(γ, ν)⊗
(
(Γ1 ⊔ Γ2)/γ, (µ1 ⊔ µ2)/ν

)

=
∑

(γ1,ν1)⊆(Γ1,µ1)
(γ2,ν2)⊆(Γ2,µ2)

(γ1 ⊔ γ2, ν1 ⊔ ν2)⊗ (Γ1/γ1 ⊔ Γ2/γ2, µ1/ν1 ⊔ µ2/ν2)

= m⊗2 ◦ τ23(∆(Γ1, µ1), ∆(Γ2, µ2)). (5.15)

�

Example 5.3.11. Let (Γ1, µ1) and (Γ2, µ2) be the graph in Fig. 5.16.

1

3

2

(a) A TAG (Γ1, µ1).

1

2

(b) A TAG (Γ2, µ2).

Figure 5.16: Two TAGs.
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One has:

∆(m((Γ1, µ1)⊗ (Γ2, µ2))) = (Γ1 ⊔ Γ2, µ1 ⊔ µ2)⊗ 1H + 1H ⊗ (Γ1 ⊔ Γ2, µ1 ⊔ µ2)

+ 3
1

1

2

3

4

⊗ + 2
1

41

2

3

⊗ + 3
1

2

⊗
1

2

3

+ 6
1 2

1

2

3

⊗ +
1

2

2

1

3

⊗ +
1

2

2

1

3

⊗

+ 6
1

2

3

1 2

⊗ + 2
2

3

1

1 2

⊗

+
1

3

2 4

1

⊗ +
1

3

3

4

1

⊗ . (5.16)

One has:

Theorem 5.3.12. (H, m, 1H, ∆, ǫ) is a bialgebra.

Proof. Using Proposition 5.3.10, it follows that ∆ is a morphism of algebras. Moreover, it
is easy to check that the counit ǫ is also a morphism of algebras. One thus concludes the
proof. �

For all n ∈ N, one calls H(n) the vector space generated by the TAGs with n edges. Then
one has H =

⊕
n∈NH(n). Moreover, one has:

1. For all m, n ∈ N, H(m)H(n) ⊆ H(m + n).

2. For all n ∈ N, ∆
(
H(n)

)
⊆ ∑i+j=nH(i)⊗H(j).

One thus concludes that H is a graded bialgebra. Note that H is connected.
We can now state the main result of this section:

Theorem 5.3.13. The bialgebra (H, m, 1H, ∆, ǫ) is a Hopf algebra.

Proof. The bialgebra (H, m, 1H, ∆, ǫ) is connected and graded. The conclusion follows. The
antipode S : H −→ H verifies S(1H) = 1H, and is given on a non-empty TAG (Γ, µ) by one
of the two following recursive formulas:

S(Γ, µ) = −(Γ, µ)−
∑

∅((γ,ν)((Γ,µ)

S(γ, ν) · (Γ/γ, µ/ν) (5.17)

= −(Γ, µ)−
∑

∅((γ,ν)((Γ,µ)

(γ, ν) · S(Γ/γ, µ/ν). (5.18)
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�

Note that if one considers now the core Hopf algebra Hc of graphs (without any edge scale
decoration [Kre10, KM11]), one has:

Proposition 5.3.14. The map π from H to Hc defined on the TAGs by π
(
(Γ, µ)

)
= Γ is a

Hopf algebra morphism.

Proof. This statement directly follows from the definitions. �

A further non-commutative Hopf algebra of TAGs can be defined when considering only
graphs of a given quantum field theoretical model and defining the coproduct as the appro-
priate sum on the class of superficially divergent graphs (see for example [KRT], where such
a Hopf algebra was defined, in a commutative setting).

5.4 Quadri-coalgebra structure

A quadri-algebra ([AL04]) is a family (A,տ,ւ,ց,ր), such that A is a vector space, and
տ, ւ, ց, ր are four products on A, satisfying nine axioms below. Putting ←=տ + ւ,
→=ր + ց, ↑=տ + ր, ↓=ւ + ց, and ⋆ =տ + ւ + ց + ր=← + →=↑ + ↓, these
axioms imply that (A, ↑, ↓) and (A,←,→) are dendriform algebras ([Lod01, LR98]), and ⋆
is an associative (non unitary) product.

(xտ y)տ z = xտ (y ⋆ z), (xր y)տ z = xր (y ← z), (x ↑ y)ր z = xր (y → z)
(xւ y)տ z = xւ (y ↑ z), (xց y)տ z = xց (y տ z), (x ↓ y)ր z = xց (y ր z)
(x← y)ւ z = xւ (y ↓ z), (x→ y)ւ z = xց (y ւ z), (x ⋆ y)ց z = xց (y ց z).

Dually, a quadri-coalgebra is a family (C, ∆տ, ∆ւ, ∆ց, ∆ր), where C is a vector space, ∆տ,
∆ւ, ∆ց, ∆ր : C −→ C ⊗ C, such that:

(∆տ ⊗ Id) ◦∆տ = (Id⊗∆⋆) ◦∆տ, (∆ր ⊗ Id) ◦∆տ = (Id⊗∆←) ◦∆ր,
(∆↑ ⊗ Id) ◦∆ր = (Id⊗∆→) ◦∆ր, (∆ւ ⊗ Id) ◦∆տ = (Id⊗∆↑) ◦∆ւ,

(∆ց ⊗ Id) ◦∆տ = (Id⊗∆տ) ◦∆ց, (∆↓ ⊗ Id) ◦∆ր = (Id⊗∆ր) ◦∆ց,
(∆← ⊗ Id) ◦∆ւ = (Id⊗∆↓) ◦∆ւ, (∆→ ⊗ Id) ◦∆ւ = (Id⊗∆ւ) ◦∆ց,
(∆⋆ ⊗ Id) ◦∆ց = (Id⊗∆ց) ◦∆ց,

where ∆← = ∆տ + ∆ւ, ∆→ = ∆ց + ∆ր, ∆↑ = ∆տ + ∆ր, ∆↓ = ∆ւ + ∆ց and ∆⋆ =
∆տ + ∆ւ + ∆ց + ∆ր. This implies that (C, ∆←, ∆→) and (C, ∆↑, ∆↓) are dendriform
coalgebras; moreover, ∆⋆ is coassociative (non counitary): it is called the coassociative
coproduct induced by the quadri-coalgebra structure.

Definition 5.4.1. 1. Let H+ be the augmentation ideal of H. It is given a coassociative,
non counitary coprodut ∆⋆ defined for all nonempty TAG (Γ, µ) by:

∆⋆

(
(Γ, µ)

)
= ∆

(
(Γ, µ)

)
− (Γ, µ)⊗ 1− 1⊗ (Γ, µ) =

∑

∅((γ,ν)((Γ,µ)

(γ, ν)⊗ (Γ/γ, µ/ν),
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2. Let (Γ, µ) be a nonempty TAG. We denote by a(Γ, µ) the smallest edge of (Γ, µ) and
b(Γ, µ) the greatest edge of (Γ, µ) for the scale assignment µ.

Proposition 5.4.2. We define four coproducts on H+ by:

∆տ
(
(G, µ)

)
:=

∑

∅((γ,ν)((Γ,µ),
a(G)∈γ,b(G)∈γ

(γ, ν)⊗ (Γ/γ, µ/ν),

∆ւ
(
(G, µ)

)
:=

∑

∅((γ,ν)((Γ,µ),
a(G)∈γ,b(G)/∈γ

(γ, ν)⊗ (Γ/γ, µ/ν),

∆ց
(
(G, µ

)
) :=

∑

∅((γ,ν)((Γ,µ),
a(G)/∈γ,b(G)/∈γ

(γ, ν)⊗ (Γ/γ, µ/ν),

∆ր
(
(G, µ)

)
:=

∑

∅((γ,ν)((Γ,µ),
a(G)/∈γ,b(G)∈γ

(γ, ν)⊗ (Γ/γ, µ/ν).

Then (H+, ∆տ, ∆ւ, ∆ց, ∆ր) is a quadri-coalgebra, and the induced coassociative coproduct
is ∆⋆. Moreover, for all x, y ∈ H+:

∆տ(xy) = xy′↑ ⊗ y′′↑ + x′←y ⊗ x′′← + x′←y′↑ ⊗ x′′←y′′↑
∆ւ(xy) = x⊗ y + x′← ⊗ x′′←y + xy′↓ ⊗ y′′↓ + x′←y′↓ ⊗ x′′←y′′↓
∆ց(xy) = x′→ ⊗ x′′→y + y′↓ ⊗ xy′′↓ + x′→y′↓ ⊗ x′′→y′′↓
∆ր(xy) = y ⊗ x + y′↑ ⊗ xy′′↑ + x′→y ⊗ x′′→ + x′→y′↓ ⊗ x′′→y′′↓ ,

where ∆←(x) = x′← ⊗ x′′←, ∆→(x) = x′→ ⊗ x′′→, ∆↑(y) = y′↑ ⊗ y′′↑ , and ∆↓(y) = y′↓ ⊗ y′′↓ .

Proof. Obviously, ∆տ + ∆ւ + ∆ց + ∆ր = ∆⋆. Let (G, µ) be a nonempty TAG. We write,
using the coassociativity of ∆⋆:

(∆⋆ ⊗ Id) ◦∆⋆

(
(Γ, µ)

)
= (Id⊗∆⋆) ◦∆⋆

(
(Γ, µ)

)

=
∑

∅((γ′,ν′)((γ,ν)((Γ,µ)

(γ′, ν ′)⊗ (γ/γ′, ν/ν′)⊗ (Γ/γ, µ/ν).

Then each relation defining quadri-coalgebras corresponds to the terms in this sum such
that:

a ∈ γ′, b ∈ γ′, a ∈ γ/γ′, b ∈ γ′,
a ∈ Γ/γ, b ∈ γ′, a ∈ γ′, b ∈ γ/γ′,

a ∈ γ/γ′, b ∈ γ/γ′, a ∈ Γ/γ, b ∈ γ/γ′,
a ∈ γ′, b ∈ Γ/γ, a ∈ γ/γ′, b ∈ Γ/γ,

a ∈ Γ/γ, b ∈ Γ/γ.

Let x, y be nonempty TAGs. By definition of the product, a(xy) = a(x) and b(xy) = b(y).
Let ∅ ( (γ, ν) ( xy. We put (γx, νx) = x ∩ (γ, ν) and (γy, νy) = y ∩ (γ, ν). Then (γ, ν) =
(γx, νx)(γy, νy) and xy/(γ, ν) = x/(γx, νx)y/(γy, νy). If a(x, y) ∈ γ, b(xy) /∈ γ, then a(x) ∈ γx

and a(y) /∈ γy. Four cases are possible:
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• x = γ. This gives the term x⊗ y.

• γ ( x. This gives the term x′← ⊗ x′′←y.

• x ( γ. This gives the term xy′↓ ⊗ y′′↓ .

• γx, γy 6= ∅ and γx ( x, γy ( y. This gives the term x′←y′↓ ⊗ x′′←y′′↓ .

This proves the compatibility between ∆ւ and the product. The three other compatibilities
are proved in the same way. �

Summing, we obtain the following compatibilities:

∆←(xy) = x⊗ y + xy′ ⊗ y′′ + x′←y ⊗ x′′← + x′← ⊗ x′′←y + x′←y′ ⊗ x′′←y′′

∆→(xy) = y ⊗ x + y′ ⊗ xy′′ + x′→ ⊗ x′′→y + x′→y ⊗ x′′→ + x′→y′ ⊗ x′′→y′′

∆↑(xy) = y ⊗ x + x′y ⊗ x′′ + xy′↑ ⊗ y′′↑ + y′↑ ⊗ xy′′↑ + x′y′↑ ⊗ x′′y′′↑
∆↓(xy) = x⊗ y + x′ ⊗ x′′y + xy′↓ ⊗ y′′↓ + y′↓ ⊗ xy′′↓ + x′y′↓ ⊗ x′′y′′↓ .

Hence:

Corollary 5.4.3. (H+, mop, ∆←, ∆→) and (H+, m, ∆↑, ∆↓) are codendriform Hopf algebras.
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Concluding remarks

In this dissertation we focus on the study of Hopf algebras of type I, namely the selec-
tion/quotient one. These Hopf algebra are graded and non-cocommutative and sometimes,
even non-commutative.

In Chapter 2, we recall all the algebraic structures which are used in the following chapters.
The commutative Hopf algebra structure is studied at the end of chapter. We give the
analytic form of CQMM theorem as well as its applications to the φ-deformed shuffle.

In Chapter 3, the main result is the study of a new Hopf algebra on packed words. Our Hopf
algebra is free and non-cocommutative. The number of packed words is twice of the ordered
Bell number. We can thus investigate the ordinary generating function of packed words as
well as the Hilbert series of WMat.

In Chapter 4, the main result is obtained from using a quantum field theory renormalization-
group-like equation to prove the universality of the Tutte polynomial for matroids. This
equation derived from the study of appropriate characters of the Hopf algebra of isomorphic
classes of matroids.

In Chapter 5, we define a CHA of totally assigned graphs. This Hopf algebra is free, non-
commutative and non-cocommutative.

Let us now mention a few concrete perspectives for future work. One question that has
not been settled is the cofreeness of WMat. Another perspective is to find an explicit
polynomial realization of WMat (if any). This appears as particularly interesting because
polynomial realizations of Hopf algebras substantially simplify the coproduct coassociativity
proof [Thi12].
An example of polynomial realizations for the Hopf algebra of trees [CK98] was given in
[FNT10]. The same question can also be asked in the case of the Hopf algebra of totally
assigned graphs. Another interesting question is whether these Hopf algebra are self-dual.

The work of Connes and Kreimer [CK00] explores and settles the Hopf algebraic formulation
of renormalization for general perturbative quantum field theory. The work of Broadhurst
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and Kreimer ( see [BK99] and references within) develops many computational aspects. They
show how to use the coproduct structure of the Hopf algebra to use Hochschild cohomology
to resum the perturbative series appearing in quantum field theory.

On the other hand, generalizing graphs to matroids suggests a hierarchy of difficulty. As
announced in Chapter 2, one knows that not every matroid is a graphic matroid.
An interesting subject for the future seems to us to be the study the cohomology theory for
the matroid Hopf algebra [Sch94]. The task is to translate from the language of graph theory
to the language of matroid theory the results of [Kre06] or [TK13].
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Maple codes for WMat

To test our results with Maple, we implement a random word in the following way. To each
word we associate a certain monomial which encodes, using a given alphabet the position of
any letter and its value. We associate the monomial whose powers correspond to the values
of the letters and its indices correspond to the positions of the respective letters.

x2x2x3x1 −→ a2
1a2

2a
3
2a4. (A.1)

One has to keep in mind that the letter x0 can also be present in the words, which is encoded
with a supplementary word length variable. This information is encoded with the help of a
supplementary variable, associated to the length of the word.
We now implement the generator of random words. It takes as an input: first the length of
the word; second, the maximum value of the powers to be generated; third is the alphabet
the word will be using.

randmon := proc(l,h,a) local i,mon; mon:=1 : for i to l do mon:=mon *

cat(a,i)ˆ(rand(0..h)()) od: mon*cat(q,a)ˆl end;

We thus obtained a Maple function which takes as arguments the length of the word and
the maximal power and returns a random word (by random generation of numbers between
1 and the maximal power).
Using this idea we can then implement, in Maple, packed words (obtained with a Maple
function taking as an argument a general word).
The argument of the function packword is a word; the function then returns the corresponding
packed word.

pack_J := proc (J, k)

local x, res;

res := 1;

for x in J while x <> k do res := res+1 end do;

res

end proc



96 APPENDIX A. MAPLE CODES FOR WMAT

packword := proc (m)

local res, i, j, m1, res1;

res := m;

j := 1;

m1 := min(op(‘minus‘({op(m)}, {0})));

res1 := [0];

while j < max(op(m)) do

for i to nops(res) do

if op(i, res) = m1 then res := subs(op(i, res) = j, res)

end if

end do;

j := j+1;

res1 := [op(res1), m1];

m1 := min(op(‘minus‘({op(m)}, {op(res1)})))

end do;

res

end proc

Now, we implement the product, namely the shifted concatenation Equation (3.6).
The following function takes as input: two words; the alphabet of the first word. This
function shifts the second word by the maximum index of the first word and converts it into
the first word’s alphabet.

shift2nd := proc (m1, m2, a)

local res, mon, x, i;

mon := 1;

if m1 = 1 or m1 = q0 then

mon := mon*m2

else

if m2 = q0 or m2 = 1 then

mon := mon*q0

else

for x in ‘minus‘(indets(m2), {cat(q, a)}) do mon := mon*x

end do;

res := m2*monˆmmax(m1, a);

subs({seq(cat(a, i) = cat(a, i+degree(m1, cat(q, a))), i =

1 .. degree(m2, cat(q, a)))}, res)

end if

end if

end proc

We then can implement the product of two monomials, i.e. two words, with unit coefficients.

prod := proc (m1, m2, a, b)

if m1 = q0 or m2 = q0 then

m1*m2/q0

else
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sort(m1*shift2nd(m1, m2, a))

end if

end proc

We then implement the product of two monomials with non-unit coefficients.

mprod := proc (m1, m2, a)

if type(op(1, m1), integer) and type(op(1, m2), integer) then

op(1, m1)*op(1, m2)*prod(m1/op(1, m1), m2/op(1, m2), a)

elif type(op(1, m2), integer) then

op(1, m2)*prod(m1, m2/op(1, m2), a)

elif type(op(1, m1), integer) then

op(1, m1)*prod(m1/op(1, m1), m2, a)

else

prod(m1, m2, a)

end if

end proc

In order to implement the coproduct, one must first define the quotient function.

quot := proc (m, A, a)

local i, res;

res := m;

for i to degree(m, cat(q, a)) do

if ‘in‘(degree(m, cat(a, i)), A) then

res := res*cat(a, i)ˆ(-degree(m, cat(a, i)))

end if

end do;

res

end proc

The following function represents the implementation of the coproduct; the input is a word
in the alphabet a and the output is in the alphabet b (the LHS term of the coproduct) and
in the alphabet c (the RHS term of the coproduct).

coprod := proc (m, a, b, c)

local i, j, A, S, C, res;

res := 0;

A := {seq(i, i = 1 .. degree(m, cat(q, a)))};

if m = cat(q, 0) then

res := res+cat(q, 0)*cat(q, 0)

else

for S in allsubset(A) do

C := ‘minus‘(A, S);

res := res+packword(subsword(m, S, a), a,

b)*packword(quot(subsword(m, C, a), {seq(degree(m,

cat(a, i)), ‘in‘(i, S))}, a), a, c)

end do
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end if;

res

end proc

We now implement the LHS and the RHS of the coproduct formula. For this purpose, one
needs to refine the above function by considering two distinct alphabets to ”build up” the
words, such that one can easily separate - as function of the different alphabets - the LHS
from the RHS.

We now define a function separator which gives us the part of the word written in one given
alphabet; this allows us to separate the LHS and the RHS of the coproduct terms.

seperator := proc (m, a)

local i, res;

res := 1;

for i to degree(m, cat(q, a)) do

res := res*cat(a, i)ˆdegree(m, cat(a, i))

end do;

res*cat(q, a)ˆdegree(m, cat(q, a))

end proc

We now check the coassociativity. We define LHS = (∆⊗ Id)◦∆ and RHS = (Id⊗∆)◦∆.

LHS := proc (m, a, b, c)

local res, A, S, C;

res := 0;

A := {seq(i, i = 1 .. degree(m, qa))};

for S in allsubset(A) do

C := ‘minus‘(A, S);

res := res+coprod(packword(subsword(m, S, a), a, b), b, a,

b)*packword(quot(subsword(m, C, a), {seq(degree(m, cat(a, i)),

‘in‘(i, S))}, a), a, c)

end do;

res

end proc

RHS := proc (m, a, b, c)

local res, A, S, C;

res := 0;

A := {seq(i, i = 1 .. degree(m, qa))};

for S in allsubset(A) do

C := ‘minus‘(A, S);

res := res+packword(subsword(m, S, a), a,

a)*coprod(packword(quot(subsword(m, C, a), {seq(degree(m,

cat(a, i)), ‘in‘(i, S))}, a), a, b), b, b, c)

end do;

res

end proc
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Finally, using all of the above, we check the coassociativity condition for random words up
to length 10, with maximal power 10.

st := time(); T := randmon(10, 10, a); simplify(LHS(T, a, b, c)-RHS(T, a, b,

c)); time()-st;

Figure A.1: The result of the test of the coassociativity for random word T with length 10
with maximal power 10.
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BC
h
a
p
te

r

Maple codes for WMat on commutative
alphabet

Let us check the coassociativity of coproduct of packed words on commutative alphabet. For
example, one has

x2x1x3x1 = x2
1x2x3. (B.1)

The vector space spanning on these packed words is endowed with the similar product and
coproduct with WMat.

To test the coassociativity of the coproduct with Maple, we implement a random word in
the following way. Each word is associated to a list.

Let us implement the function which generates the random words. It takes as an input: first
the length of word, second the maximum value of the alphabet of words.

randword := proc(l,h)

Generate(list(posint(range=h),l)):

end proc

The argument of the function packword is the random list. It returns the corresponding
packed list.

packword:= proc(m)

local res,i,j,m1,res1:

res := m;

j := 1;

m1 := min(op({op(m)} minus {0}));

res1 := [0];

while j < max(op(m)) do

for i from 1 to nops(res) do

if op(i,res) = m1 then res:=subs(op(i,res) = j,res) fi:

od:

j := j+1:
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res1 := [op(res1),m1]:

m1 := min(op({op(m)} minus {op(res1)})):

od:

res

end proc

We now implement the product, namely shifted concatenation. The function takes as input:
two lists. This function shifts the second list by the maximum of the first list and returns
the list that results from concatenating two list.

prod := proc(m1,m2):

local i,res:

res := m1;

for i from 1 to nops(m2) do

if op(i,m2) = 0 then

res := [op(res),op(i,m2)]

else

res := [op(res),op(i,m2) + max(op(m1))]

fi:

od:

res:

end proc

We now implement the quotient function. The input of the quotient function are a list and
a set A. It transforms the values of list at position ith as following: if i ∈ A then the values
becomes 0 and otherwise.

quotient := proc(m,A)

local res,i,j:

res := m:

for i in A do

for j from 1 to nops(m) do

if op(j,m) = i then res := subs(op(j,m)=0,res): fi:

od:

od:

res:

end proc

We can then implement the coproduct.

coprod := proc(m)

local res,i,A:

A := NULL:

res := 0;

for i from 1 to nops(m) do

A := A,i:

od:

for i in allsubsets({A}) do
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res := res +

sort(packword(subsword(m,i)))*packword(quotient(subsword(m,{A}

minus i), subsword(m,i))):

od:

sort(res):

end proc

We now implement the LHS and the RHS of the coproduct formula.

LHS := proc(m)

local res,A,i:

res :=0:

sort(m):

A := NULL:

for i to nops(m) do A := A,i od:

for i in allsubsets({A}) do

res := res +

sort(coprod(subsword(m,i)))*packword(quotient(subsword(m,{A}

minus i), subsword(m,i)))

od:

sort(res):

end proc

RHS := proc(m)

local res,A,i:

res :=0:

sort(m):

A := NULL:

for i to nops(m) do A := A,i od:

for i in allsubsets({A}) do

res := res + sort(packword(subsword(m,i)))*coprod(subsword(m, {A}

minus i))

od:

sort(res):

end proc
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Séminaire Lotharingien Combinatoire, 65, 2012.
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Algèbres de Hopf combinatoire basées sur la règle de sélection/quotient

Résume

Dans cette thèse, nous nous concentrons sur l’étude des algèbres de Hopf de type I, à savoir de
type sélection/quotient.
Nous présentons une structure d’algèbre de Hopf sur l’espace vectoriel engendré par de les mots
tassés avec coproduit sélection/quotient. C’est un algèbre libre sur ses mots irreducible. Nous
montrons que la serie de Hilbert de cette algèbre de Hopf.
Nous donnons une nouvelle preuve de l’universalité du polynôme de Tutte pour les matröıdes.
Cette preuve utilise des caractères appropriés de l’algèbre de Hopf des matröıdes introduite par
Schmitt (1994). Nous montrons que ces caractères sont des solutions des équations différentielles
du même type que les équations différentielles utilisées pour décrire le flux du groupe de renor-
malisation en théorie quantique de champs. Cette approche nous permet aussi de démontrer,
d’une manière différente, une formule de convolution du polynôme de Tutte des matröıdes,
formule publiée par Kook, Reiner et Stanton (1999) et par Etienne et Las Vergnas (1998).
Dans la dernière partie, nous définissons une algèbre de Hopf non-commutative de graphes. La
non-commutativité du produit est obtenue grâce à des étiquettes entières distinctes associées
aux arrêtes du graphe. Cette idée est inspirée de certaines techniques analytiques utilisées
en renormalisation en théories quantiques des champs. Nous définissons ensuite une struc-
ture d’algèbre de Hopf, avec un coproduit basé sur une règle de type sélection/quotient, et
nous demontrons la coassociativité de ce coproduit. Nous analysons finalement la structure de
quadri-cogèbre et les structures codendriformes associées.

Mots-clefs : Combinatoire algébrique, Algèbre de Hopf, Graphes, Matröıds, Polynôme de
Tutte

Combinatorial Hopf algebras based on the selection/quotient rule

Abstract

In this thesis, we focus on the study of Hopf algebras of type I, namely the selection/quotient.
We study the new Hopf algebra structure on the vector space spanned by packed words. We
show that this algebra is free on its irreducible packed words. We also compute the Hilbert
series of this Hopf algebra.
We provide a new way to obtain the universality of the Tutte polynomial for matroids. This
proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt
(1994). We show that these Hopf algebra characters are solutions of some differential equations
which are of the same type as the differential equations used to describe the renormalization
group flow in quantum field theory. This approach allows us to also prove, in a different way, a
matroid Tutte polynomial convolution formula published by Kook, Reiner and Stanton (1999)
and by Etienne and Las Vergnas (1998).
We define a non-commutative Hopf algebra of graphs. The non-commutativity of the product
is obtained thanks to some discrete labels associated to the graph edges. This idea is inspired
from certain analytic techniques used in quantum field theory renormalization. We then define
a Hopf algebra structure, with a coproduct based on a selection/quotient rule, and prove the
coassociativity of this coproduct. We analyze the associated quadri-coalgebra and codendrifrom
structures.

Keywords: Algebraic combinatorics, Hopf algebra, Graphs, Matroids, Tutte polynomial
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