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Résumé

Dans cette thése nous appliquons le calcul de Malliavin afin d’obtenir la propriété de normalité
asymptotique locale (LAN) & partir d’observations discrétes de certains processus de diffusion
uniformément elliptique avec sauts. Dans le Chapitre 2 nous révisons la preuve de la propriété de
normalité mixte asymptotique locale (LAMN) pour des processus de diffusion avec sauts a partir
d’observations continues, et comme conséquence nous obtenons la propriété LAN en supposant
Pergodicité du processus. Dans le Chapitre 3 nous établissons la propriété LAN pour un processus
de Lévy simple dont les paramétres de dérive et de diffusion ainsi que l'intensité sont inconnus.
Dans le Chapitre 4, a I'aide du calcul de Malliavin et des estimées de densité de transition, nous
démontrons que la propriété LAN est vérifiée pour un processus de diffusion & sauts dont le
coefficient de dérive dépends d’un paramétre inconnu. Finalement, dans la méme direction nous
obtenons dans le Chapitre 5 la propriété LAN pour un processus de diffusion & sauts ou les deux
paramétres inconnus interviennent dans les coefficients de dérive et de diffusion.

Mots-clés: Calcul de Malliavin; Estimateur asymptotiquement efficace; Estimation paramé-
trique; Normalité asymptotique locale; Normalité mixte asymptotique locale; Processus de
Lévy ; Processus de diffusion avec sauts

Abstract

In this thesis we apply the Malliavin calculus in order to obtain the local asymptotic
normality (LAN) property from discrete observations for certain uniformly elliptic diffusion pro-
cesses with jumps. In Chapter 2 we review the proof of the local asymptotic mixed normality
(LAMN) property for diffusion processes with jumps from continuous observations, and as a con-
sequence, we derive the LAN property when supposing the ergodicity of the process. In Chapter
3 we establish the LAN property for a simple Lévy process whose drift and diffusion parameters
as well as its intensity are unknown. In Chapter 4, using techniques of the Malliavin calculus
and the estimates of the transition density, we prove that the LAN property is satisfied for a
jump-diffusion process whose drift coefficient depends on an unknown parameter. Finally, in the
same direction we obtain in Chapter 5 the LAN property for a jump-diffusion process where two
unknown parameters determine the drift and diffusion coefficients of the jump-diffusion process.

Keywords: Malliavin calculus ; Asymptotically efficient estimator ; Parametric estimation ; Local

asymptotic normality ; Local asymptotic mixed normality ; Lévy process ; Diffusion process with
jumps
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Chapitre 1

Introduction

This thesis is concerned with the application of the Malliavin calculus to the study of the
local asymptotic normality (LAN) property from discrete observations for a class of uniformly
elliptic diffusion processes with jumps. We will also go over the proof of the local asymptotic
mixed normality (LAMN) property from continuous observations for jump-diffusion processes.
The importance of such property in parametric estimation is characterized by the convolution
theorem allowing us to define the asymptotically efficient estimators, and the minimax theorem
giving the lower bound for the asymptotic variance of estimators.

The aim of this introduction is to recall several concepts on asymptotic statistical inference,
to provide some motivation for the study of such property, to give the main results contained in
the thesis, and to explain in detail the main techniques used to obtain such results.

1.1 Some basics on parametric statistical inference

Consider an R™-valued random vector X" = (Xi,...,X,) defined on a probability space
(Q, F,P), whose structure will be described later, such that the probability law of X™ depends
on a parameter § = (61,...,0;) € ©, where the parameter space © is an open subset of RF.
We are interested in the case where X" corresponds to the discrete observations of a stochastic
process X% = (X?);> defined on (2, F,P) and adapted to a filtration (F;);>0, which satisfies a
stochastic differential equation with jumps having a Brownian component. We then denote by P?
the probability law of X? on the Skohorod space (D(R,R), B(R,,R)), where D(R,R) denotes
the space of cadlag functions from R to R, and B(R;,R) its associated Borel o-algebra, and

0 £(P?
by E? and E the expectation with respect to P? and P, respectively. Let L and (—>) denote

the convergence in P?-probability and in P?-law, respectively. Similarly, L, and Lg) denote the
convergence in P-probability and in P-law, respectively.

Let X™ be the sample space containing all the possible values of X", and B(X") the Bo-
rel o-algebra of observable events. Let (PY)pcg be the family of probability laws defined on
(X", B(X™)), and induced by X™ : Q@ — X" C R". The triplet (D(Ry,R), B(X"), (P?)gco) is cal-
led a parametric statistical model, which we denote by (P?)gce. The parametric statistical model
(D(R,,R), B(R.,R), (P?)gco) is defined similarly, which we denote by (P?)gco. We denote by
EY the expectation with respect to PY.

Our objective is to estimate the parameter # on the basis of the observations X". For this,
let us introduce the following concepts.

A statistic is any measurable function 7" : X — R™, which does not depend on . Moreover,
any statistic T': X" — © is called an estimator of the parameter 6 € ©.

The bias of an estimator T(X™) is defined as by(T(X™)) = E?[T(X™)] — 0. An estimator
T(X™) of 0 is said to be unbiased if by(T(X™)) = 0. The asymptotic bias of an estimator T'(X™)
is defined as lim,,_,oc bg(T'(X™)). Moreover, if lim,_,~ bp(T'(X™)) = 0, the estimator T'(X") is
said to be asymptotically unbiased.
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The definition of the Fisher information matrix depends on the notion of the score function
which plays a central role in parametric statistical inference. In order for this notion to be well-
defined, it is necessary to impose certain conditions on the Radon-Nikodym density p,(z;6),
x € X" of PY with respect to a dominating measure j,,. We shall utilize the following definition.

Definition 1.1.1. The parametric statistical model (P%)gco is regular if
i) There exists a o-finite positive measure pu, on (X", B(X™)) such that for all 0 € O, the pro-
bability measures PfZ are absolutely continuous with respect to p,, and the Radon-Nikodym
density
dp?

E(ﬂf)

pn(z;0) =
s continuous on © for pn-almost all x € X".

ii) The function \/pn(x;0) is differentiable in 6 in L*(uy,) for all 6 € ©.
iii) The L%(uy)-derivative of \/pn(z;0) is continuous in L*(py).

Note that the regularity of the parametric statistical model (P?)gce is defined similarly.

Definition 1.1.2. Let (P?)gco be a regular parametric statistical model. The likelihood function
and log-likelihood function based on X™ are defined as random functions of 0 as follows

L,(0) =pp(X™;0), and £,(0) =logp,(X";0).
The score function is given by the gradient Vgl,(0) = Vglogp,(X™;6).

Let us now give some consequences of this regularity condition (see Lemmas 7.1 and 7.2 of
[28) Chapter I]).

Lemma 1.1.1. Let (P%)sco be a regular parametric statistical model.
1. The Fisher information matriz of the model, defined as

1(6) = B, [Volu(0)Vola(6)T| = Ef, [Vologpa(X"50) V9 log p(X"56)T]

exists and is continuous on ©.

2. Let T : X™ — R™ be a statistic such that EC[|T(X™)|?] is bounded in a neighborhood of
0 € ©. Then, the function EY[T(X™)] is continuously differentiable in this neighborhood,
and

VoS T(X)] = Vo [ T@pn(w: Oadn) = [ () Vopa (s ().

n n

Taking T(X™) = 1 in 2., we obtain that EY[Vy£,,(8)] = 0. Therefore, I,,(9) = Var? (Vgl,,(0)).
Furthermore, if the second order derivative V24, (0) exists, then I, () = —E%[V2£,(0)].
Let (P?)gco be a regular parametric statistical model, and let v be the measure on the space

(D(R4,R), B(R4,R)) from Definition such that for all § € ©,

dp?

p(z;0) = —(2).

The likelihood function and log-likelihood function based on X are defined as random functions
of 8 as follows

L(9) =p(X;0), and {((0) =logp(X;0).

The score function is given by the gradient Vgl(0) = Vylogp(X;0). The Fisher information
matrix of this model is defined as

1(6) = B [Vol(8)V,l(6)T| = E” [V log p(X; 6)Vglog p(X:6)7

- / Vg log p(w; )V, log p(w; 0) Tp(w; 0)(da).
D(R4,R)
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We are now interested in using the Malliavin calculus in order to write the score function as
a conditional expectation involving the Skorohod integral (see |13, Theorem 3.3] for £ = 1). We
refer to Nualart [57] for a detailed exposition of the classical Malliavin calculus on the Wiener
space. We now recall briefly the Malliavin calculus for Lévy processes developed by Leédn et al.
in [50] and Petrou in [6I], which will be applied in the thesis.

In all what follows, the observed process is defined by X? = (Xf )t>0, which is driven by a
Brownian motion B and a compensated Poisson random measure N.In Chapters 3-5, to avoid
confusion with the observed process X?, we introduce an independent copy of X?, denoted by
Y% which is driven by a Brownian motion W and a compensated Poisson random measure M,
where the Malliavin calculus with respect to W will be applied. Therefore, Y? can be considered
as the theoretical process.

Definition 1.1.3. Let us define a Brownian motion B = (B:)i>0 on the canonical probabi-
lity space (QF, F1,P1) with its natural filtration {F}}i>0, a Poisson random measure N (dt,dz)
on the canonical probability space (%, F2,P2) with intensity measure v(dz)dt and its natural
filtration {F?}i>0, another Brownian motion W = (W;)i>0 on the canonical probability space
(Q3, F3,P3) with its natural filtration {F}}1>0, and another Poisson random measure M (dt, dz)
on the canonical probability space (24, F* P4) with intensity measure w(dz)dt and its natural
filtration {F}}i>0. Then, (Q,F,P) is defined as the canonical product probability space, where
Q=0xPxPBx0, F=FloF2eF3aF!, P=PoP?eP?eP?, and F; = FIQFQF@F}!.
Therefore on this space the canonical process represents (B, N, W, M) which are therefore mu-
tually independent.

We denote byQ Q! x 92, F=Fl@F, P= P1®P2 Fi= Flo F2 and Q= Q3 x Q4
F= ]:3 ®F?, P = P3@P4, ]:t FPoFt We denote by E, E and E the expectation with respect
to P, P and P respectively. Observe that 2 = Q x Q F=F® .7-' P=P® P, F = .7-} ® Fi,
and E = E ® E.

On the filtered probability space (€2, F,{Ft}ieo,7], P), consider a two-dimensional centered

square integrable Lévy process Z = (Z1, Z%) = (Zt)tejo,r) given by

z} —O‘lBt—l-/ / N(dt,dz) — v(dz)dt),
Ro

7?2 = oW, —l—/ / M(dt,dz) — m(dz)dt) ,
Ro

where 01,09 > 0 are constant, Ry := R\ {0}. The _compensated Poisson random measures are
denoted by N(dt,dz) := N(dt,dz) — v(dz)dt, and M(dt dz) := M(dt,dz) — n(dz)dt. Here, the
intensity measures satisfy that fRO(l A2?)v(dz) < oo and fRO(l A|z|?)m(dz) < co. Remark that
the filtration {7 };c(o,7) is the same as the one generated by the Lévy process Z. The main idea
of Leon et al. in [50] is to represent random variables on (€2, F,P) via iterated integrals, from
which a Mallivin calculus can be defined as in the Gaussian setting in Nualart [57].

To simplify the exposition, we introduce the following unified notation for the Brownian
motions and the Poisson random measures

U1 = U2 = [O,T], and U3 = U4 = [O,T] X Ro,

dQ1(") = dB.,dQs(-) = dW., and Qs(-,%) = N(-, ), Qu(-, %) = M(-, %),
d(Q1). =d{(Qs). =d-, and d(Qs3). =d- xdv(x),d(Q4). = d- xdm (),

and for the variables ¢, € [0,T] and z € Ry,

Y/ tk‘ ,6 = 172’
U, =
(tk,z) ,EZ 3,4.
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Set S, = {1,2,3,4}". For (j1,...,Jn) € Sy, define an expanded simplex of the form
Gjl,-.-,jn = {(U{I, C. ,UZL") € H?:l Uji <t < <ty < T} .

We next define the iterated integral of the form
T (g ) = /G Gt (W15 ud) Qi (dud') -+~ @y, (duly),

where gj, .j, is a deterministic function in L2(Gj, . j.) = L*(Gj, . jn, @ 1d(Q;,)).

Theorem 1.1.1. For every random variable F € L*(Q, Fr,P), there exists a unique sequence of
deterministic functions {gj,. i, 120, (j1,---,7n) € Sn, where g;, . ;. € L*(Gj, . j.) such that

o0
Fl+Y . > I3 6.);
n=1 (jl7"'7jﬂ)€sn
and we have the isometry
e . .
||F\|%2(P) —EF? + Z Z |,J7(lg1,---,an)(gjl,,,.,jn)II%Q(Gh
n=1 (j17"'7jn)esn

Using this chaotic representation property, the directional derivatives can be defined with
respect to Brownian motion and Poisson random measure. For this, denote

k j Je=1 gk, Jk+1 in ) ) . ..
Gy, . Jn(t) {<u11’ cees Uy 7ukk7uk+1 s UN) € Gy ik 1 kg 1renin
0<t1<---<tk_1<t<tk+1<---<tn<T},

where 4 means that we omit the u element.

Definition 1.1.4. Let gj, _j, € L*(Gj,...;,) and € € {1,2,3,4}. Then
14 TR n yeesdi—15JisJi+15--3In V4
Die)Jr(le’ J g]17 7]71 Z 1{jz Z}J (1.:-sfi=1 J Jitteenin) <gj1,4..,jn(. LU, )1G’Z jn(t)>

is called the derivative of J}le""’jn)(gjhm,jn) in the (-th direction.

Definition 1.1.5. Let DY be the space of the random variables in L?(Q2) that are differentiable
in the £-th direction, then

DY = {F €LXQ),F=EF|+) >  JI7" g, 5)

n=1 (jh a.jn)esn

Z Z Zl{h E}/ ‘931, g (oo u, )’

n=1(j1,....jn)ESn =1 Lyeeoon

2(Qe) (uf) < oo}.

Definition 1.1.6. Let F € DY), Then the derivative in the (-th direction is defined as

F Z Z l{Jz K}J U J“ ) (gj1,...,jn(' .- 7UZ )1G1 (t)) .

Tl Jn
n= 1(]17 7]71)65 i=1
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On the space D) N D@ the directional derivatives (D(l),D(Q)) with respect to the 2-
dimensional Brownian motion (B, W) are equivalent to the classical Malliavin derivative on
the Wiener space.

Moreover, the properties like the chain rule, the integration by parts formula, the Skorohod
integral and duality relation of the directional derivatives (D), D(®)) are preserved as for the
classical Malliavin calculus.

Notice that the solution Y? to a stochastic differential equation with jumps driven by the
Brownian motion W and the compensated Poisson random measure M can be differentiable
with respect to W and M (see [61]). In Chapters 3-5, we are only concerned with the Malliavin
derivative in the 2-th direction, i.e., with respect to W, and let us denote D = D@, D12 = D2
and H = L?([0, T, R).

Definition 1.1.7. The divergence operator § (called the Skorohod integral) is the adjoint of the
directional derivative D. That is, § is an unbounded operator from L*([0,T] x Q,R) to L*(Q)
such that

(i) The domain of 6, Dom §, is the set of random variables u € L*([0,T] x £, R) such that

[E[(DF,u)y ]l < cullFll g2
for all F € DY2, where ¢, is some positive constant depending on w.
(ii) If u € Dom & then 6(u) is the element of L?(2) characterized by the following duality

relation

E[Fé(u)] = E[(DF,u)y],
for any F € DV2.

Similarly, X? can be differentiable with respect to B and N. Let Dom 6 denote the domain

of the Skorohod integral oM the adjoint operator of the Malliavin derivative D with respect
to B, in L*([0,T] x Q,R).

Proposition 1.1.1. Let (P Joco be a reqular parametric statistical model. Assume that the
random variables X; € DU for alli € {1,...,n}, and let U = (U',...,U*) be a k-dimensional
stochastic process satzsfymg that U7 € Dom 5(1), for all j € {1,...,k} such that for all i €

{1,...,n},
<D(1)XZ-,U> = VX, (1.1)
H

where V@Xi = (891Xi, AP ,89kXi), and
M)y, _({pWx. ! 1)y, ok
<D Xl,U>H (<D Xl,U>H,...,<D Xl,U>H)
T T
</ DS)X,-Ul(t)dt,...,/ Dgl)XiUk(t)dt)
0 0

Moreover, assume that for any 0 € O, there is a neighborhood of 6 where |VoX;| < G with
E[G] < co. Then for all 6 € O,

Vologpn(:6) = E [§0(U)|X" = 2],

for almost all z € X" and for all € ©, where we denote 5V (U) := (6M(UY),...,sM(UF)).

Proof. Let ¢ be a Cp°(R™) function with compact support. Then, hypothesis (1.1)), the chain rule
and the duality relation of the Malliavin calculus imply that

VoE [ ZE (X" Vo Xi] ZE[ (X <D<1>Xi,U>H}

(o),
—E [@(X”)é(l)(U)} .
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On the other hand, by Lemma [I1.1.1]

VoE [p(X™)] = / () Vopn (z; 0)u(dx) = E [p(X™) Vg log pn(X";0)]

n

Thus, the result follows. O

As a consequence, the Fisher information matrix and the Cramér-Rao lower bound can be
obtained without requiring the explicit expression of the density p,(-;60) (see Proposition m
below). Observe that by Proposition m

1,(6) = Var (E [5<1>(U)|X"D :

Let us now give the classical Cramér-Rao’s inequality (see Theorem 7.3 of |28, Chapter I|).

Proposition 1.1.2. Let (Pz)geg be a regular parametric statistical model, and T be a statistic
such that ES[|T(X™)|?] is bounded in a neighborhood of 0 € ©. Assume that I,,(0) is invertible
for all @ € ©. Let g(0) = EY [T(X™)]. Then g is continuously differentiable in this neighborhood,
and

Vary, (T(X™)) > Vag(0)1,(6) " Vag(6)".

In this case, Vg(0)1,(0)"1Veg(0)T is called the Cramér-Rao lower bound for estimating g(0).
In particular, if T(X™) is an unbiased estimator of 0, then

Var? (T(X™)) > I,(0) L.
In this case, I,(0)~" is called the Cramér-Rao lower bound for estimating 6.

We remark that if (Pe)ge@ is a regular parametric statistical model, then the Cramér-Rao
lower bound for an unbiased estimator T'(X?) of # holds with I(6)~1.
The Cramér-Rao lower bound suggests the following definition.

Definition 1.1.8. Suppose that (Pg)ee@ is a reqular parametric statistical model. An unbiased
estimator T'(X™) of 0 is called efficient if its covariance matriz achieves the Cramér-Rao lower
bound. That is,

Var? (T(X™)) = L,(0) .

Moreover, suppose that the parametric statistical model (P?)gce is reqular. An estimator T(X™)
of 0 is called asymptotically efficient in the Cramér-Rao sense if it is asymptotically normal, and
its covariance matrix achieves asymptotically the Cramér-Rao lower bound. That is, there exists
a k x k non-random diagonal matriz ¢, (0) whose entries are strictly positive and tend to zero
as n — 0o such that as n — oo,

21 (0) (T(x™) — 0) ") v (0, 1(0) ), (1.2)

where N'(0, 1(0)™1) denotes a centered R¥-valued Gaussian random variable with covariance ma-
triz 1(0) ™1, and ¢, 1(0) is the rate of convergence of 1(0)~L. Here, 1(0) is the Fisher information
matriz of the model (P?)gpco.

Example 1.1.1. Consider the following diffusion process X? = (Xf)te[()’l}
dX? =b(,t)dt + dB;,

where X§ = wo, 6 € © C R, and b(0,-) is a continuously differentiable function on L?(0,1).
Let (P%)gco be the law of the continuous observation X? on the canonical space (C[0,1],B[0,1]),
where C|0, 1] denotes the space of continuous functions from [0,1] to R, and B[0, 1] its associated
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Borel o-algebra. Let v be the probability law of (vo + Bi)iejon) on (C[0,1],B[0,1]). Then by
Girsanov’s Theorem,

—— =exp b(0,t)dX; — = [ b°(0,t)dt y = p(X",0).
dv 0 2

0

It can be checked that the parametric statistical model (P?)gce is reqular (see Example 7.3 of
[28, Chapter 1]). Moreover, the Fisher information matriz is given by

1(0) = /0 " (Bub(0. )2 dt.

An estimator T'(X™) of the parameter @ is said to be consistent if it converges in P?-probability
to 6 as n — oo. When comparing two consistent estimators of the parameter 6, it is natural to
compare their rates of convergence and the asymptotic variances of their respective asymptotic
distributions, which are in general the normal distribution or mixed normal distribution.

Definition 1.1.9. A sequence of estimators (T(X™))n>1 of the parameter 0 is called asympto-
tically mized normal if for any 6 € O, there exists a k X k non-random diagonal matriz o, (0)
whose entries are strictly positive and tend to zero as n — oo, and a k X k positive definite
random matriz T'(0), such that as n — oo,

o1 (0) (T(x™) — 0) ") 1 (o) 12N (0, 1),

where N'(0, I1,) denotes a centered RF-valued Gaussian random variable independent of T'(6) with
identity covariance matriz Ij,.
When the matriz I'(0) is deterministic, the sequence (T(X"™))n>1 is asymptotically normal.

When the estimators are asymptotically mixed normal, another important issue is whether
these estimators are asymptotically efficient in the sense that they achieve a minimal asymptotic
variance. We have given in Definition the notion of asymptotic efficiency of the estimators
in terms of deterministic Cramér-Rao lower bound. Another approach to define the asymptotic
efficiency of the estimators is to study the lower bound for asymptotic variances of the estimators
via a convolution theorem. This problem is related to a fundamental concept in asymptotic
theory of statistics called the local asymptotic normality (LAN) property, which was introduced
by Le Cam [48], developed by Hajek [26] 27] and extended by Jeganathan [34], [35] to the local
asymptotic mixed normality (LAMN) property. We refer to the monographs by Ibragimov and
Has'minskii [28], Kutoyants [47], Le Cam and Lo Yang [49], Van Der Vaart [73] for more detailed
expositions of this topic.

Note that solving the issue on the regularity of a parametric statistical model and on the
asymptotic mixed normality of the estimators is an interesting topic. However, the purpose of
this thesis is to focus on addressing the problem of asymptotic efficiency of the estimators in
the latter sense, and more precisely, studying the LAN property for a class of diffusion processes
with jumps.

Definition 1.1.10. The score function is said to be asymptotically mized normal if for any
0 € ©, there exists a k x k non-random diagonal matriz ¢, (0) whose entries are strictly positive
and tend to zero as n — 00, and a k X k positive definite random matriz T'(0), such that as
n — 0o,

on(0)Voln(0) "5 T(O)V2N (0, 11) (1.3)

where T'(0) and N(0, I};) are independent. In this case, the matriz T'(0) is called the asymptotic
Fisher information matriz of the model. When the matriz T'(6) is deterministic, we say that the
score function is asymptotically normal.
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Definition 1.1.11. The sequence (P?)gce is said to have the LAMN property if for any 6 € ©
and uw € R*, as n — oo,

deL‘f‘@n (O)u (

ay £(PY) 1
log — gpr— (X") uTD(O)' 2N (0, 1) = SuTT(0)u, (1.4)

where N(0, I), v, 1(0), and T(0) are as in . In this case, we say that the LAMN property
holds with rate of convergence 0, 1(0) and asymptotic Fisher information matriz T'(0). When the
matriz I'(0) is deterministic, the LAN property holds.

Observe that (1.4) is equivalent to

dP791+(’On (O)u

log (X™) =4, (0 + on(O)u) — £,(0)

dp, (1.5)
T (0) Vil (8) — %uTF(H)u +opa(1),

where ¢, (0)Vgln(8) converges in P?-law to T'(8)Y/2N (0, I},) as n — oo.
Two fundamental consequences of the LAMN property are the conditional convolution theo-
rem and the minimax theorem.

Definition 1.1.12. A sequence of estimators (T'(X"™))n>1 of the parameter 0 is called regular at
9 if for any u € R*, as n — oo,

o1 (0) (T(X™) — (0 + n(0)u) “T 5" v (),

for some R¥-valued random variable V (), independent of u.

Note that taking uw = 0, this implies that as n — oo,

o 1(0) (T(x™) — 0) ") v (0).

The conditional convolution theorem says that when the LAMN property holds, then the
asymptotic distribution of any regular sequence of estimators of the parameter 6 is characterized
by a conditional convolution between a Gaussian law and some others laws. More precisely,

Theorem 1.1.2 (Conditional convolution theorem). [34, Corollary 1| Suppose that the sequence
(P%)gco satisfies the LAMN property at a point 0. Let (T(X™))n>1 be a regular sequence of
estimators of the parameter 0. Then the law of V(6) conditionally on T'(0) is a convolution
between the Gaussian law N'(0,T'(0)1) and some other law Gy on R¥, that is,

LV(O)T(0)) =N (0,T(0)") * Gr()-
Hence, the random variable V() can be written as a sum of two independent random variables
V() = TO) N0, L) + R

where R is a random variable with distribution Gr (), independent of N (0, Ii). This implies that,
under the conditions of Theorem [1.1.2] as n — oo,

ol 0) (T(x™) — 0) ) T(6) V2N (0, I1) + R.

This theorem suggests the notion of asymptotically efficient estimators in terms of minimal
asymptotic variance, when R = 0. That is,
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Definition 1.1.13. Assume that the sequence (Pz)geg satisfies the LAMN property at a point
0. A sequence of estimators (T(X"))n>1 of the parameter 6 is called asymptotically efficient at 6
in the sense of Hajek-Le Cam convolution theorem if as n — 0o,

L(P%)

o (0) (T(X™) = ) == T(0) /2N (0, L),

where T'(6) and N (0, It) are independent.

In particular, when T'(6) is deterministic, a sequence of estimators which is asymptotically
efficient in the sense of Hajek-Le Cam convolution theorem achieves asymptotically the Cramér-
Rao lower bound in for the estimation variance, that is, I'(6) = 1(6).

Moreover, as a consequence of the LAMN property, an asymptotic lower bound for risk
functions of estimators can be obtained via minimax theorem. More precisely,

Theorem 1.1.3 (Minimax theorem). [34, Proposition 2| Suppose that the sequence (P%)sco
satisfies the LAMN property at a point 6 € ©. Let (T'(X"))n>1 be a sequence of estimators of
the parameter 6 and [ : R¥ — [0, +00) be a loss function of the form 1(0) = 0,1(z) = I(|z|) and
lzl) < ilyl) if |2 < [yl. Then

liminf B? [1 (0,1 (0) (T(X™) — 0))] > E [z (r(e)—l/w(o, Ik)ﬂ .
n—oo

In particular, when we take the quadratic loss function I(u) = |u|?, the above inequality gives
an asymptotic lower bound for the covariance matrix of any sequence of unbiased estimators,
which is given by T'(6) 1.

As indicated above, we are concerned with a discrete observation X" = (Xo, Xa,,, ..., XnA,)
at equidistant times t;, = kA, k € {0,...,n} of a stochastic process X? = (X?);>¢ defined on
(Q, F,P). Here n is the observation frequency, and A,, is the corresponding time step size.

When the time step size is A,, = A, where A is a positive constant independent of n, the
scheme of observation is called low frequency observation. When A,, — 0 as n — oo, it is called
high frequency observation.

On the other hand, the case of high frequency observation can be divided into two cases
depending on t, = nA,. That is, when nA,, is finite and fixed, we have a discrete observation
X™ on a finite fixed interval. When nA,, — oo as n — oo, we have a discrete observation X™ on
an increasing interval.

The parametric estimation for discrete observations at high frequency has been developed
by, for instance, Florens-Zmirou and Dacunha-Castelle [15], Florens-Zmirou [I9], Donhal [17],
Yoshida [76], Genon-Catalot and Jacod [21], 22], Kessler [40], Gobet [24, 25] for continuous
diffusion processes, and by Ait-Sahalia and Jacod [T}, 2], Shimizu and Yoshida [69], Shimizu [67],
Ogihara and Yoshida [59], Masuda [55], Kawai [38], Kawai and Masuda [39], Clément, Delattre
and Gloter [10], [11] for jump-diffusion processes.

In the other direction, the statistical inference for stochastic processes with continuous-time
observations has been widely developed during the last forty years. Several important contri-
bution on this subject can be found in the books and articles of Basawa and Prakasa Rao [0]
for stochastic processes, Basawa and Scott 7] for non-ergodic models, Kutoyants [44] 46}, 47] for
diffusion processes, Sgrensen [71] for diffusions with jumps, Barndorff-Nielsen and Sgrensen [5]
for stochastic processes, and Prakasa Rao [63] for semimartingales.

1.2 Motivation and model setting

In practice, the observations are rather discrete than continuous. The case of discrete-time
observations is an interesting subject which has been extensively studied in recent years. However,
most of obtained results in the literature are related to the continuous diffusion processes. For
the Ornstein-Uhlenbeck process, which possesses an explicit Gaussian law, it has been shown
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that the LAN and LAMN properties hold true in the ergodic and non-ergodic case, respectively
(see [13], [30] and [68]). The LAMN property for one-dimensional diffusion processes was studied
by Donhal in [17], where the proof is derived by expanding the transition density with respect to
the time and the parameters up to an appropriate order. Later, Genon-Catalot and Jacod [22]
showed that the LAMN property can be obtained for a class of diffusion processes by assuming
some specific estimates on the transition densities and their derivatives.

Recently, techniques of Malliavin calculus have proved to be a powerful tool for the stochastic
analysis of the log-likelihood ratio, which, to our knowledge, was initiated by Gobet in [24].
Concretely, he obtained in this paper the LAMN property from discrete observations at high
frequency on the interval [0, 1] for multidimensional elliptic diffusion (X! )tefo,1) defined by

t t
sz:n—l—/ b(e,s,Xf)ds+/ S8, s, X%)dB,,
0 0

which generalizes the preceding result obtained by Donhal [17]. For this purpose, the integration
by parts formula of the Malliavin calculus on the Gaussian space is applied in order to derive
an expansion of the log-likelihood ratio in terms of a sum of conditional expectations involving
Skorohod integrals. On the other hand, the upper and lower Gaussian type bounds of the transi-
tion density are essentially employed in the analysis of the convergence of the sum of conditional
expectations appearing in this expansion. Following the same approach as in [24], the LAN pro-
perty was next established in [25] from discrete observations at high frequency on an increasing

interval for multidimensional ergodic diffusions (X" # )t>0 defined by

t t
X0 =+ [ bas, XeNds+ [ S(5.5,X2%)dB.
0 0

Later on, in the same direction Gobet and Gloter [23] showed that the LAMN property is satisfied
for integrated diffusions.

In the presence of the jump component, several special cases have been studied. Precisely, the
LAN property is established for some Lévy processes whose transition density can be expressed
in an explict form, for instance, stable processes and normal inverse Gaussian Lévy processes
(see [75, 39]). In addition, Ait-Sahalia and Jacod in [I] established the LAN property for a class
of Lévy processes. Recently, Kawai in [38] deals with the particular case of the ergodic Ornstein-
Uhlenbeck (O-U) process with jumps whose solution and its respective transition density can be
written in semi-explicit form. This implies that a Taylor expansion of the log-density with respect
to the parameters can be obtained, therefore reducing the proof to the proof of a classical central
limit theorem with independent increments and a residual term. This residual term depends
strongly on estimates of the first and second derivatives of the logarithm of the density of the O-U
process which are dealt with using the integration by parts formula of Malliavin calculus based
on the Brownian motion. However, [38] studies only the case where the unknown parameters
determine the drift and diffusion coefficients, but where the jump component does not depend
on the parameter.

More recently, using tools of Malliavin calculus as in [24], Clément et al. [10] have established
the LAMN property for a stochastic process with jumps (Xt)\)te[O,l] driven by a compound Poisson
process

t t K
X} = +/ b(s,XsA)der/ a(s, X2)dWs + > (X3, M) L,
0 0 k=1

where the parameter A = (A1,..., A\g) € R determines the jump amplitudes, the jump times

are given by 0 < T} < -+ < Tx < 1 and the number of jumps K on [0,1] is deterministic.
Moreover, using the Malliavin calculus for jump processes developed by Bichteler, Gravereaux

and Jacod [9], Clément and Gloter [I1] prove that the LAMN property holds true for the process
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solution (X7 )tefo,1) defined by
t
X! = +/ b(X?,0)ds + Ly,
0

where (Lt)te[o,l] is a pure jump Lévy process whose Lévy measure an a-stable Lévy measure near
zero with a € (1,2).

However, it can be seen that the validity of the LAN property for general stochastic differential
equations with jumps having a Brownian component has never been addressed in the literature.
One of the reasons could be that the behaviour of the transition density changes strongly due to
the presence of jumps in this context. In fact, one expects that the upper bound for the density of
such stochastic differential equations with jumps will be controlled by the exponential behaviour
of the jump process and that the lower bound will be controlled by the Gaussian behaviour of
the Wiener process. For instance, consider a one-dimensional Lévy process (X});>0 starting from

x € R defined by
Ny

X =z+Bi+) Y, (1.6)
i=1
where B = (By);>0 is a standard Brownian motion, N = (IV;);>0 is a Poisson process with
intensity A > 0 independent of B, and (Y;)i>o are i.i.d. random variables independent of B and
N with probability density ¥. Here, p(2) is the Lévy density of the Lévy process. When ¢ is
Gaussian, it can be shown that there exist constants Cq,¢1, C, ¢ > 0 such that for 0 < ¢ <1 and
|y — x| sufficiently large, the upper and lower bounds of the density p(t,z,y) of X satisfy

_ C _
Cre Mexp <—cl|y —z[y/|In y " i D <p(t,z,y) < %exp (—c]y —z[y/|In ly— =] ) , (L.7)
and when ¢ is exponential,
Cre Me—erly—=l < p(t,z,y) < gefc‘y*:""‘. (1.8)
- TVt

This shows that the upper and lower bounds of the density are of different characteristic making
impossible to implement the argument in Gobet [25].

To resolve the open issue which aims to extend the result obtained by Gobet [25] in the
one-dimensional setting, this thesis will deal with independently but connectedly three different
cases of jump-diffusion processes by following the Malliavin calculus approach developed by
Gobet [24], 25]. In fact in order to be able to determine the strategy and the structure in the
study of more general cases, it is essential to first well understand, on the one hand how this
Malliavin calculus approach works, and on the other hand how the Gaussian-type estimate for
the transition density conditioned on the jump structure is derived and employed for a simple
Lévy process defined by

XD = 3o+ 0t + 0B, + Ny — At, (1.9)

where B = (Bi)¢>0 is a standard Brownian motion, N = (IV;)¢>0 is a Poisson process with
intensity A > 0 independent of B, and the parameters 6, o, and A are unknown.
We next generalise the aforementioned model by considering the following non-linear case

dX? = (0, X)) dt + o(X0)dB, + / o(XP,2) (N(dt,dz) — v(dz)dt), (1.10)
Ro

where N (dt, dz) is a Poisson random measure associated with a centered pure-jump Lévy process
Z = (Zt)1>0 independent of B, with intensity measure v(dz)dt, and finite Lévy measure A\ =
fRo v(dz) < co. Here, 0 is unknown parameter to be estimated.
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Moreover, in the same direction we finally study the following non-linear case

dX?? = b0, XPYdt + o (8, XPP)dB, + / 2 (N(dt,dz) — v(dz)dt) (1.11)
Ro

where N Ldt, dz)\is a Poisson random measure associated with a compensated compound Poisson
process Z = (Z;)t>0 independent of B, with intensity measure v(dz)dt. The random variable
that describes the jump sizes of 7 takes discrete values. Here, 6 and 8 are unknown parameters
to be estimated.

1.3 Goal of the thesis and its main results

The goal of this thesis is to define situations where the jump process will not "deform" the
Gaussian nature of the statistical experiment. As commented before, this cannot be achieved by
simply obtaining upper and lower bounds of the transition density. Instead, we will condition
on the jump structure and use large deviation results that will guarantee that the Gaussian
nature of the statistical experiment will remain unchanged. Clearly, this is just a first effort
towards a much more general problem where one may have that the Lévy nature of the statistical
experiment remains unchanged by the Wiener noise. Even more difficult is to determine the
boundary situations. We leave as future research the study of this open problem.

In this thesis we deal with some uniformly elliptic diffusion processes with jumps and study
the LAN property from discrete observations of their solution processes. For our objective, we
think it is essential to first understand the proof of this property in the continuously observed
case. As a result, excluding this introductory chapter, this thesis consists of four self-contained
chapters each of which deals with a different jump-diffusion process. Note that the following
chapters are independent of each other and the utilized notations are provided inside every
chapter. The global bibliography is given at the end of this thesis.

We will next describe the content of each of the chapters in detail.

1.3.1 LAMN property for continuous observations of jump-diffusion pro-
cesses

In Chapter 2, we consider a d-dimensional process X? = (X¢)e>0 solution to the following
stochastic differential equation with jumps

dX: = a(0, X¢)dt + o(X¢)dB: + /Rd c(0, Xi—, 2)(p(dt,dz) — vg(dz)dt), (1.12)

where R? = R%\ {0}, the unknown parameter # belongs to an open subset © of R¥, k> 1, B =
(Bt)t>0 is a d-dimensional standard Brownian motion, and p(dt, dz) is a Poisson random measure
on R, x R& independent of B with intensity measure vp(dz)dt = f(0, z)dzdt. Here, vy(dz) is a
Lévy measure on R such that ng(l Alz)?)vp(dz) < oo, for all § € ©, and f: O x R? - R, is a

Borel function strictly positive on R¢ with f(6,0) = 0.

We give sufficient conditions and follow Luschgy’s [52] proof in order to derive the LAMN
property (Theorem when the process is observed continuously in a time interval [0, 7] as
T — +00. We give a Girsanov’s theorem and apply the Central Limit theorem for multivariate
martingales developed by Crimaldi and Pratelli [I4]. Recall that Luschgy’s paper shows the
LAMN property for general semimartingales using the Girsanov’s theorem for semimartingales
obtained in Jacod and Shiryaev [33], and the Central Limit theorem for martingales established by
Serensen [71] and Feigin [I8]. Here we rewrite the proof of these results without using this abstract
semimartingale theory but integral equations with respect to random measures associated with
the jumps of the process. Moreover, as a consequence of Theorem [2.2.4] we derive the LAN

property in the ergodic case (Theorem [2.4.2)).
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1.3.2 LAN property for a simple Lévy process

The focus of Chapter 3 is on a simple Lévy process X%o* = (Xte ’U’A)tzo in R defined by
XPON = 20 4+ 60t + 0B, + Ny — A, (1.13)

where B = (By);>0 is a standard Brownian motion, N = (N;);>0 is a Poisson process with
intensity A > 0 independent of B. The parameters (6,0,\) € © x ¥ x A are unknown and O, %
and A are closed intervals of R, R} and R’ . In finance this is called the Merton jump-diffusion
(MJD) model. The MJD model is one of the first beyond Black-Scholes model in the sense that
it tries to capture the negative skewness and excess kurtosis of the log stock price density.

The aim of this chapter is to prove the LAN property under high-frequency observation
condition of X%?* (Theorem . For this, Malliavin calculus and Girsanov’s theorem are
applied in order to write the log-likelihood ratio in terms of sums of conditional expectations, for
which a central limit theorem for triangular arrays can be applied. The techniques used to obtain
this result will be discussed in detail in the next subsection, and note that they can be generalized
to the case of stochastic differential equations with finite number of jumps and random jump size
(Chapters 4-5). With the help of a large deviation principle by conditioning on the number of
jumps, our main contribution here is that we find a closed form expression for the corresponding
large deviation estimate (Lemma , thereby allowing us to control the jump components in
the negligible contribution of the limit (Lemmas(3.3.1} [3.3.2| and [3.3.3)).

Since we are dealing with a simple Lévy process with finite jumps, the explicit expression of
the density could be used in order to derive the LAN property, as for e.g. in [2]. However, the
main purpose of this chapter is to understand and present the methodology for this simple case,
which will be next used to prove the LAN property in the non-linear cases where the density
function cannot be explicitly written.

1.3.3 LAN property for a jump-diffusion process : drift parameter

In Chapter 4 we address the validity of the LAN property for a jump-diffusion process X¢ =
(X?)i>0 solution to

dX? =00, XP)dt + o(X0)dB; + / o(XP_,2) (N(dt,dz) — v(dz)dt), (1.14)
Ro

where X§ = zg € R, Ry := R\ {0}, B = (B)¢>0 is a standard Brownian motion, and N(dt, dz) is
a Poisson random measure in (R4 x R, B(R4 x Ry)) associated with a centered pure-jump Lévy
process 7= (Zt)tzo independent of B, with intensity measure v(dz)dt, and finite Lévy measure
A= fRo v(dz) < co. The unknown parameter 6 belongs to © which is a closed interval of R.

Supposing that the process is observed discretely at high frequency, we then give a set of
sufficient conditions (A1)-(A8) (see page 66) on the regularity of the coefficients, the ergodicity
and the behaviour of the Lévy measure in order to obtain the LAN property for X? (Theorem
4.1.1). The proof of this result is essentially based on the Malliavin calculus, the Girsanov’s
theorem and the large deviation principle developed from the aforementioned case.

Notice that the condition on the jump coefficient ¢ in (A1) and (A3) is needed in order to
control the behaviour of the jump amplitudes of X?, which can be seen in the discussion in the
proof of Lemma [1.2.8

Several examples of ergodic diffusion processes with jumps are given in [53], [54], and [67].
Moreover, results on ergodicity and exponential ergodicity for diffusion processes with jumps
have been established by Masuda in [53, 54]. In addition, Kulik in [43] provides a set of sufficient
conditions for the exponential ergodicity of diffusion processes with jumps without Gaussian part
and gives some examples. More recently, Qiao in [64] has addressed the exponential ergodicity
for stochastic differential equations with jumps and non-Lipschitz coefficients. However, in these
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papers ergodicity and exponentially ergodicity are understood in the sense of [56], which are
both stronger than the ergodicity in the sense (A6).

Note that condition (A7) involving the behaviour of the jumps is imposed to ensure that
the jump component is "dominated" over by the Gaussian component. Indeed this condition
expresses the fact that the small and large jumps do not interfere with the Gaussian behaviour of
the transition density. Therefore, the main behaviour in the contribution is given by the Gaussian
and drift components of the equation. As a consequence, the asymptotic Fisher information is
identical to the one for ergodic diffusion processes without jumps obtained by Gobet [25].

Hypothesis (A7) is a sufficient condition that implies that the probability that the jump
amplitudes of Z is bounded below by p1AY and above by paA;,” on an interval [0, ,] converges
to 0 as n — oo (see the computations of page 82). This allows to use this event (see Remark
and page 80), and this is the main trick for the proof of the LAN property. Hypothesis
(A7) restricts the jump component of the process to have small and large jumps that decay
exponentially. For example, a Gaussian amplitude of jumps, with an exponential decay for small
jumps. In order to get rid of this hypothesis maybe a convergence argument could be used.

Finally, in order to include the case of unbounded drift coefficient, the squared exponential
moment condition (A8) is needed. Recall that the problem of the boundedness of the squared
exponential moment (A8) already appeared in the proof of the LAN property for continuous
ergodic diffusion processes (see [25, Proposition 1.1]). In the case of jump-diffusion processes,
Masuda gives sufficient conditions on the infinitesimal generator in order to obtain the bounded-
ness of the moments of certain class of unbounded functions (see [53, Theorem 2.2|). Moreover,
he establishes in [54, Theorem 1.2] the boundedness of the exponential moments for a class of
jump-diffusion processes with finite jump intensity. It is possible that a similar result should be
available for hypothesis (A8). We will not discuss this part here in general. For example, (A8)
is satisfied for the Ornstein-Uhlenbeck process under certain condition on the Lévy measure.

In Chapter 3 we estimate the drift and diffusion parameters and the jump intensity of a
simple Lévy process. Therefore, Theorem is a non-linear extension of the result in Chapter
3 when the unknown parameter is in the drift coefficient.

However, we also remark that condition (A7) is not optimal and the condition on the small
jumps could be weakened. Indeed, using a convergence argument around the small jumps, a
condition \,v/A, — 0 as n — oo may be needed, where

An = / v(dz).
{AL<|z|<pAn "}

This is done in our work in progress where the Lévy measure is assumed to be infinite.

1.3.4 LAN property for a jump-diffusion process : drift and diffusion para-
meters

In Chapter 5 we consider the process X7 = (Xf’ﬁ)tzo solution to

dX?? = b0, XPYdt + o (8, XPP)dB, + / 2 (N(dt,dz) — v(dz)dt) , (1.15)
Ro

where Xg’ﬁ =129 € R, B = (B})t>0 is a standard Brownian motion, and N (dt, dz) is a Poisson
random measure in (Ry x Ro, B(R4 x Ry)) associated with a compensated compound Poisson
process Z = (Zt)tzo independent of B, with intensity measure v(dz)dt. Assume that the random
variable that describes the jump sizes of 7 takes discrete values. The unknown parameters (6, 3)
belong to © x ¥ which is an open rectangle of R2.

Supposing that the process is observed discretely at high frequency, we then give a set of
sufficient conditions (A1)-(A8) (see pages 96 and 97) on the regularity of the coefficients, the
ergodicity, the behaviour of the Lévy measure and the identification of jumps in order to obtain
the LAN property for X% (Theorem. Generally, the proof of this result is essentially based
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on the Malliavin calculus, the Girsanov’s theorem and the large deviation principle developed
from the aforementioned case.

The fact that the jump sizes of Z take discrete values and the drift coefficient is bounded
is restrictive. Indeed this is just a first step towards treating a much more general parametric
model. As explained before, all the problematic of this thesis concerns the argument in the article
of Gobet [25] which is based on the fact that the transition densities satisfy the Gaussian type
upper and lower bounds. Initially, we had the tendency to believe that "good" upper and lower
estimates of the density should essentially solve the problem. Therefore, we started this thesis by
studying the type behaviour of the upper and lower bounds of the transition densities for some
jump-diffusion processes, for instance . The obtained estimates and show that
Gobet’s argument cannot be implemented. However, the trick of this chapter is to re-employ the
"argument of Gaussian-type estimate" which enables to solve the problem as in Gobet [25]. For
this, we are restricting ourselves to assuming that the jump sizes of 7 take discrete values in
order to obtain the Gaussian-type estimate for the conditioned transition density (see Lemma
5.2.5)).

We recall that Gobet in [25] deals with the multidimensional ergodic diffusion processes whose
diffusion coefficient is assumed to be uniformly strictly elliptic and whose drift coefficient can
be bounded or unbounded. The ergodicity result in the case of bounded drift coefficient was
addressed in Proposition 5.1 of this article. In this chapter, we are first interested in studying
the case of uniformly elliptic diffusion coefficient and bounded drift coefficient expressed by
hypothesis (A2). Let us also mention that the result on ergodicity and exponential ergodicity
for this class of diffusion processes with jumps was established by Masuda in [54, Theorem 1.2].

Notice that hypotheses (A5) and (A6) are the same as (A6) and (A7) in Chapter 4, which
were explained in Chapter 4.

As in Chapter 4, in order to deal with the parameter 6 in the drift coefficient, we condition
on the number of jumps occured in each time interval [t,tr11]. As a consequence, the large
deviation estimate (Lemma is obtained. Here, in order to deal with the parameter 5 in
the Brownian component, we will condition on all the possible jump sizes which are assumed
to be a countable set A. Therefore, hypotheses (A7) and (A8) on the behaviour of jumps are
added in order to obtain a large deviation principle (Lemma for the parameter in the
Brownian coefficient. In fact, the first condition in (A7) is related to the identification of jumps,
that is, any two sums of jumps on a small interval for different w € § are either equal or their
difference is lower bounded by a value depending on A,. This is used in the computations in
pages 117 and 118. Furthermore, the second condition in (A7) is used in order to condition on
the sum of jumps. Finally, hypothesis (A8) on the jump distributions is needed in order for the
expression in Remark to be finite, which ensures the convergence to zero of the negligible
contributions. This is because the proof is based on the conditioning on the number of jumps
and on the amplitudes of jumps.

Our contribution here is to derive an expression for the derivatives of the log-likelihood
function conditioned on the number and the amplitudes of jumps in terms of a conditional
expectation by adapting Gobet’s Malliavin calculus approach (Lemma [5.2.7)).

In Chapter 3 we estimate the drift and diffusion parameters and the jump intensity of a
simple Lévy process. Therefore, Theorem [5.1.1]is a non-linear extension of the result in Chapter
3 when the unknown parameters are in the drift and diffusion coeflicients.

There are two extensions of the results of this chapter that we should think about in our future
research. The first one is to consider an unbounded drift coefficient and to add a non-linear jump
coefficient in front of the compound Poisson process (as in equation ), and the second one
is to consider a more general jump size distribution. The main ideas used in this chapter should
be enough in order to deal with these two extensions, but of course the computations would be
much more difficult, and conditions (A6)-(A8) need to be adjusted. This is the reason why we
have restricted ourselves to these two particular cases, but we do not think that it is a restriction
of our methodology.
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The remainder of this introductory chapter is devoted to explaining the common techniques
used to solve Chapters 3-5.

1.4 Main techniques

Although Chapters 3-5 seem to be different, they are all connected in the sense that the
same techniques are used to solve them. We set out here briefly our strategy of the proof whose
structure remains the same for each chapter and can be divided into three main steps as described
below.

1.4.1 Malliavin calculus approach

The goal of this subsection is to present an adaptation of Gobet’s Malliavin calculus approach
to our setting. The first step of the proof proceeds with the decomposition of the log-likelihood
ratio in terms of sums of transition densities due to the Markov property (see 7 )
As in Gobet [24], with the help of the uniformly elliptic condition on the diffusion coefficient,
we can apply the integration by parts formula of the Malliavin calculus on the Wiener space
induced by the Brownian motion on each observation interval in order that the derivatives of
the log-likelihood function with respect to the parameters are expressed in terms of a conditio-
nal expectation involving Skorohod intergrals (Propositions [3.2.1] 4.2.1| and [5.2.1]). For this, an
independent copy of the observed process needs to be introduced. Using tools of Malliavin cal-
culus, these Skorohod intergrals are decomposed into two parts (Lemmas 4.2.1} [5.2.1] and [5.2.2)),
where the conditional expectation of the first part can be easily computed, which gives the main
contributions in the limit of the convergence of the log-likelihood ratio. More precisely, the main
behaviour here will be determined by the Gaussian and drift components of the equation. On
the other hand, the second part whose conditional expectation cannot be easily computed will
have no contribution in the limit, which causes difficulties in the control of the convergence that
we will explain in the next subsection. Consequently, the expansion of the log-likelihood ratio is
separated into the main and negligible contributions.

Moreover, adapting Gobet’s Malliavin calculus approach can be further expressed by Lemma
[5.2.7| where we derive an expression for the derivatives of the log-likelihood function conditioned
on the number and the amplitudes of jumps in terms of a conditional expectation involving
Skorohod intergrals.

1.4.2 Large deviation principle and Girsanov’s theorem

The aim of this subsection is to present how to deal with negligible contributions of the log-
likelihood ratio. This is a crucial and technical part of the thesis. For this, we need two general
results on convergence in probability for triangular arrays of random variables in order to prove
the convergence of a sum of triangular arrays. For each n € N, consider a sequence of random
variables (Zi)r>1 defined on the filtered probability space (2, F, (F;)i>0,P), and we assume
that they are Fy,  -measurable, for all k.

Lemma 1.4.1. |21 Lemma 9| Assume that as n — oo,

n—1 n—1
) S EZiaFy] 250, and (i) S E[Z2,F.] 0.
k=0 k=0

Then as n — 00, ZZ;(l) Zim, N
Lemma 1.4.2. |31, Lemma 4.1] Assume that as n — oo,

n—1

P
> B ZiallF) — 0. (1.16)
k=0
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_ p
Then as n — 00, Zzzé Ziy — 0.

We note that dealing with the negligible contributions in the presence of jumps is different
from that in the continuous diffusion case. The point is that in Gobet [24] 25] the upper and
lower Gaussian type bounds of the transition density are essentially used in order to control the
negligible contribution in the limit. However, in the presence of jumps, we cannot expect to find
such good Gaussian type estimates of the transition density due to the mixture of exponential
tails coming from the jump process together with the Gaussian tails of the Brownian motion. As
a result, a problem arises in dealing with the jump-diffusion processes.

In order to overcome this problem when treating the jump components in the negligible
contributions (Lemmas [3.3.1} [3.3.2} |3.3.3} |4.3.5] |5.3.5| and of Lemma [5.3.8), one needs to
condition on the number of jumps or on the sum of jumps within the conditional expectation
which expresses the transition density and outside it. When these two conditionings relate to
different jumps or different sum of the jumps one may use a large deviation principle in the
estimate. When they are equal one uses the complementary set in order to apply the large
deviation principle. The main term can be handled directly. Within all these arguments the
Gaussian type upper and lower bounds of the density conditioned on the jumps are again strongly
used.

On the other hand, in order to obtain the expected large deviation estimates (see Lemmas
13.2.6} [4.2.8] |5.2.14] and [5.2.15)), the condition on the behaviour of the jumps ensuring that the
jump component is dominated over by the Gaussian component is needed. In fact this condition
expresses the fact that the small and large jumps do not interfere with the Gaussian behaviour of
the transition density (see (A7) in Chapter 4 and (A6) in Chapter 5), which is again employed
in Lemmas4.3.1} [5.3.1|and [5.3.6] Moreover, in Chapter 5 condition (A7) on the behaviour of the
sum of jumps on a small interval is needed. This condition, on the one hand, allows us to condition
on the sum of jumps on each interval. On the other hand, it is related to the identification of
jumps, that is, any two sums of jumps on a small interval for different w € Q are either equal
or their difference is lower bounded by a value depending on A,,, from which the large deviation
estimate Lemma [5.2.15] can be obtained.

Moreover, in Chapter 5 another difficulty comes from the fact that when applying Lemmas
and the expectations outside and inside are under two different probability measures.
More precisely, the conditional expectation inside needs to be computed under P8 (@) whereas
the convergence is considered with respect to P05 = Pn.S() Ty this end, when the two cor-
responding diffusion parameters are different, we need to condition on the number of jumps and
on the amplitudes of jumps in order that the change of measure can be done via the transition
density conditioned on the jumps (Lemma. As a consequence, the upper and lower Gaus-
sian type bounds of the transition density conditioned on the jumps in Lemma [5.2.5] are again
strongly used. In this case, condition (A8) on the jump distributions is needed. On the other
hand when two diffusion parameters are the same, which means that only the drift parameters
are different, the Girsanov’s theorem can be applied (see Lemmas |3.2.2] [4.2.4) and [5.2.11]). Note
that the technical Lemmas [£.2.5] and [5.2.12] are given in order to measure the deviations of the
Girsanov change of measure when the drift parameter changes.

Moreover, in Proposition [3:2.2] of Chapter 3, the derivative of the log-likelihood w.r.t. the
intensity parameter A is expressed in terms of a conditional expectation with the help of the
Girsanov’s theorem.

1.4.3 Central limit theorem for triangular arrays

To conclude the LAN property, the last step consists in dealing with the main contributions
of the log-likelihood ratio. For this, it suffices to apply the central limit theorem for triangular
arrays of random variables as indicated just below. For each n € N, consider a sequence of
random variables ((xn)r>1 defined on the filtered probability space (€2, F, (F¢)i>0,P), and we
assume that they are J3, -measurable, for all k.
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Lemma 1.4.3. [31 Lemma 4.3 Assume that there exist real numbers M and V > 0 such that
as n — oo,

—_

n—1
S BlGalFul M, Y (B[GF] — (BlGalF))?) = V. and
k=0 =0

n—1

STE IR 0.

k=0

3

o

_ L(P . . . .
Then as n — o0, ZZ:(I) Cn (—Q N + M, where N is a centered Gaussian random variable with
variance V.

Generally, the mean M and the variance V' can be obtained directly in the case of simple Lévy
process or by applying a discrete time ergodic theorem (Lemmas 5.2.16) in the non-linear
cases. As a result, the ergodicity condition is needed in Chapters 4-5.



Chapitre 2

LAMN property for continuous
observations of diffusion processes with
jumps

In this chapter we consider a diffusion process with jumps whose drift and jump coefficient
depend on an unknown parameter. We follow Luschgy’s [52] proof of the local asymptotic mixed
normality (LAMN) property when the process is observed continuously in a time interval [0, 7]
as T'— 400, and derive, as a consequence, the local asymptotic normality (LAN) property in
the ergodic case. However, we give a Girsanov’s theorem and apply the Central Limit theorem
for multivariate martingales developed by Crimaldi and Pratelli [14]. Luschgy’s paper shows the
LAMN property for general semimartingales using the Girsanov’s theorem for semimartingales
obtained in Jacod and Shiryaev [33], and the Central Limit theorem for martingales established by
Serensen [71] and Feigin [I8]. Here we rewrite the proof of these results without using this abstract
semimartingale theory but integral equations with respect to random measures associated with
the jumps of the process.

2.1 Introduction

On a complete probability space (2, F, P), we consider a d-dimensional process X? = (X;);>0
solution to the following stochastic differential equation with jumps

dX; = a(f, Xy)dt + o(Xy)dB; + /]Rd c(0,Xi—, z) (p(dt,dz) — vy(dz)dt) , (2.1)

where the initial condition X is a random variable with finite second moment, R4 = R\ {0}, the
unknown parameter 6 belongs to an open subset © of R, for some integer k > 1, B = (Bt)t>0
is a d-dimensional standard Brownian motion, and p(dt,dz) is a Poisson random measure on
R, x R¢, independent of B with intensity measure vp(dz)dt = f(6,z)dzdt. Here, vg(dz) is a Lévy
measure on R¢ such that ng(l A|z*)ve(dz) < oo, for all § € ©, and f : © x R? — R, is a Borel
function strictly positive on R¢ with f(6,0) = 0.

The coefficients a = (a;) and ¢ = (¢;) are R%valued Borel functions on © x R% and @ x RY x R,
respectively, and o = (0;;) is a d x d invertible Borel matrix on R,

We let {F;}i>0 denote the natural filtration generated by the Brownian motion and the
Poisson random measure. By definition, the solution to equation is a cadlag and {F;}-
adapted d-dimensional stochastic process X¢ = (X¢)t>0 defined on the filtered probability space
(Q, F,{Ft}t>0,P) such that

X = Xo +/0 a(0, Xs)ds —i—/ﬂ o(Xs)dBs —i—/o /Rd c(0,Xs—,2) (p(ds,dz) — vp(dz)ds) . (2.2)

19
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For any 6 € ©, we denote by Py the probability measure induced by the solution X? of
on the canonical space (D(R%), B(R%)), where D(R?) denotes the space of cadlag functions from
R? to RY, and B(RY) its associated Borel g-algebra. Moreover, for any T' > 0, we let PGT denote
the probability measure generated by the process X7 = {X;,0 < t < T} solving equation
under the parameter 6 on the measurable space (D0, T, B[0, T]). Therefore, P} is the restriction
of Py to Fr. For any 6 € ©, we denote by Egy the expectation with respect to the probability law

Py, and Poy and 'CE))) denote the convergence in Py-probability and in Py-law, respectively.

In this chapter, we are interested in the statistical inference for § € © on the basis of
continuous-time observations of the process X7 in the time interval [0,T], as T tends to +oo.
Let us start by recalling the concepts on asymptotic statistical inference that we are interested
in for our continuously observed parametric model.

We define the log-likelihood function of the family of probability measures (Pg)geg as

T
{7 (0) = log @,
dpT
where P7 is a probability measure on (D[0, T}, B0, T)), if it exists, satisfying that PT is absolutely
continuous with respect to IST, forall 7> 0 and 6 € ©.

The score function, when it exists, is given by the gradient Vgl (6). We say that the score
function is asymptotically mixed normal if, for any 8 € O, there exists a k x k& non-random
diagonal matrix ¢ (0) whose entries are strictly positive and tend to zero as T — oo, and a k x k
positive definite random matrix I'(f), such that as T' — oo,

or(0)Volr(0) "8 T(0) 2N (0, 1), (2.3)

where N(0, I;) denotes a centered RF-valued Gaussian random variable independent of T'(6)
with identity covariance matrix Ij. In this case, the matrix I'(#) is called the asymptotic Fisher
information matrix of the model. When the matrix I'(#) is deterministic, we say that the score
function is asymptotically normal.

The family of probability measures (P9T)9€@ is said to have the LAMN property if for any
0 cOanduecRF as T — oo,

dPT
log %;””‘ “C L TrO) 2N (0, 1)) — %uTr(e)u, (2.4)
0

where N (0, I), @}1(0), and I'() are as in . In this case, we say that the LAMN property
holds with rate of convergence (7. (f) and asymptotic Fisher information matrix I'(#). When
the matrix I'(#) is deterministic, we say that the LAN property holds.

Observe that is equivalent to

dpT
log L;(G)u =Ly (0 + or(0)u) — Lr(0)
dPy (2.5)

— WTor(8) Vol (6) — %uTF(H)u +op, (1),

where o7 (0)Volr(#) converges in Py-law to I'(6)/2N(0,1;) as T — .

The aim of this chapter is to revise sufficient conditions in order to have the asymptotic
mixed normality of the score function and the LAMN property for our diffusion model with
jumps . This problem was addressed by Luschgy for semimartingales in [52] by using the
Girsanov’s theorem for semimartingales established by Jacod and Shiryaev (see [33] Theorem
I11.3.24 and I11.5.19]), and the Central Limit theorem for multivariate martingales proved by S¢-
rensen (see |71, Theorem A.1]), as an extension of the Central Limit theorem for one-dimensional
martingales [I8, Theorem 2| by Feigin. We remark that the stochastic process with jumps is
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a semimartingale. Therefore, Luschgy’s theorem applies and one can derive sufficient conditions
on the coefficients in order to have the LAMN property. The aim of this chapter is to present
a proof of the LAMN property for the solution X of by following the proof of Luschgy
but applying the Central Limit theorem for multivariate martingales developed by Crimaldi and
Pratelli [14] without using the fact that we have a semimartingale, but using the integral equation
. We then deduce the LAN property with an explicit asymptotic Fisher information matrix
in the case where the process X? is ergodic. To obtain the desired results, the first step consists
in transforming equation into a new stochastic differential equation with jumps driven by a
random measure associated with the jumps of X?. Notice that this approach was also employed
by Sgrensen in [71]. One of the motivations of writing this chapter is that we are investigating in
further chapters the LAMN property for the stochastic differential equations with jumps ([2.1)
with discrete observations in a time interval [0,7] as T'— oo, which has never been addressed
in the literature. For this, we think it is essential to first understand the proof of this property
in the continuously observed case but without using the asbtract semimartingale theory, but
integral equations with respect to random measures.

This chapter is organized as follows. In Section 2, we provide sufficient conditions and prove
the asymptotic mixed normality of the score function as well as the LAMN property for the
stochastic differential equation with jumps . For this purpose, we recall the Central Limit
theorem for multivariate martingales developed by Crimaldi and Pratelli [14]. Furthermore, stu-
dying the LAMN property from continuous observations is based on the Girsanov’s theorem for
equivalent probability measures. Therefore, we will give this fundamental result in Section 3. The
proof of the LAN property in the ergodic case as a consequence of the LAMN property is given in
Section 4. Finally, Section 5 deals with the pure linear birth process and the Ornstein-Uhlenbeck
processes with jumps where the LAMN and LAN properties are satisfied and the maximum
likelihood estimator is asymptotically efficient in some particular cases.

2.2 LAMN property for jump-diffusion processes

The aim of this section is to give sufficient conditions in order to have the asymptotic mixed
normality of the score function and the LAMN property for our stochastic differential equation
with jumps . To this purpose, let us first recall the result on the existence and uniqueness
of the solution to our integral equation ([2.2) , that is,

Xt:X0+/0ta(0,X)ds+/ ,)dB, +/ /Rd c(0, Xs_, 2) (p(ds, dz) — ve(dz)ds).

Consider the following Lipschitz continuity and linear growth conditions on the coefficients.

(A1) For any 0 € O, there exist a constant L > 0 and a function ( : Rg — R, satisfying that
fRd 2)vp(dz) < oo, such that for any z,y € R 2z € RE,

a(0,x) — a(0,y)| + |o(z) —o(y)| < Llz —yl, |a(0,z)] < L(1 + |z]),
c(0,2,2) = c(0,y,2)] < C(2)|lz —yl, |e(0,2,2)] < ((2)(1 + |=]).

Theorem 2.2.1. [35, Theorem II1.2.32] Under condition (A1), there exists a unique cadlag
and adapted process X9 = (X¢)e>0 solution to equation on the filtered probability space
(Q, F,{Fi}t>0,P). Moreover, for any fized p > 0 and T > 0, there exists a constant Cpr > 0
such that for all ty € (0,T] and t € [to, T,

E | sup X, = Xgl"| < Cpr(t = t0)5ME (14 |X; )72
to<s<t
Let us now proceed as in [71] to transform our equation (2.1)) into a new stochastic differential
equation with jumps driven by a new random measure associated with the jumps of X? via a
change of variables. To simplify the exposition we assume that Im(c) = R?.
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For each (0,7) € © x R? fixed, we assume that the mapping 2 € R¢ — y = (0, x,2) € RY
has a continuous differentiable inverse y € R + 2z = ¢71(0,2,y) € R with Jacobian matrix
J(0,x,y) such that det(J(Q,m,y)) #0, for all y € R4

Set W(0,z,y) = f(0,c (0, z,y))|det(J(0,x,))|. Suppose that for any (0,z) € © x RY,
fRd c(0,x, z)|vg(dz) < 4o00. Then by [33, Proposition I1.1.28], equation (2.1]) can be rewritten as

follows
dX; = b(@, Xt)dt + O'(Xt)dBt + / yN(dt, dy), (26)
RE

where the function b: © x R* — R? is given by
0.2 = alt.z) — [ cl6.2,2(dz) = ab.) ~ [ ymo(e.dy),
R .

and N (dt, dy) is the random measure on R4 x Rg associated with the jumps of X with predictable
compensator pg(Xy—,dy)dt = ¥(0, Xy, y)dydt, defined by

N(wsdt, dy) =Y 1{ax, (w)20}0(s,AX. (@) (At dY),
s>0

(see [33, Proposition I1.1.16]), where J, denotes the Dirac measure at point a. By [33, Theorem
I1.1.8], the predictable compensator pg(X;—,dy)dt is the unique predictable random measure

satisfying that
E[ / w<t,y>N<dt,dy>]=E | [ ot dye|.
o JRrd 0o JRE

for every nonnegative predictable function 9 (¢,y) on  x Ry x R

In order to obtain the asymptotic mixed normality of the score function and the LAMN
property, we assume that there exists a k x k non-random diagonal matrix ¢7(#) whose diagonal
entries ¢; 7(6) are strictly positive and tend to zero as T' — oo, and such that the following
conditions hold.

(A2) For any 0,60y € ©, and T > 0,

T
I@(/‘b—%ngmeQ—M&XQH%h<m>:l7fm 0=10,00.
0

(A3) For any 0,60y € ©, and T > 0,

(0o, Xi—,y)
1)yl B0, X, y)dydt 1
</ /Rd < HXt 7y) Y (’ ¢ 73/) yat < oo )
V(o X y)
1 (0, X, y)dyd _1
</ /Rd HXt ’y) ( y )¢ ,y) Y < 0 ,

and
(B0, Xi—,y) 2 ~
. L —1) 90, X, ,y)dydt <o | =1, for 6€{0,60p}.
//R< (0, Xr—y) ) (6 X 9)dy 6,60}

(A4) The functions a(f, x) and ¥(6, z,y) are differentiable with respect to #, and the functions
U (0, x,y) and Vy¥ (0, z,y) are continuous in 6.
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Under conditions (A1)-(A3), by Girsanov’s Theorem [2.3.1} the log-likelihood function is
given by
dPT
Py,

{7 (0) = log

T 1 T
- / o1 (X)) (b(6, X,) — (6o, X)) - dBs — / 0 (X2) (b8, X1) — b(Bo, X2) [2dt

eXt 7y eXt 7y)
N(dt, dy) -1 Xi_, dy)dt
/ /Rd U (0o, Xi—,y) 2 / /]Rd( (0o, Xi—,y) oo (K= dy)dt,

for any 0y € ©.
Therefore, by hypothesis (A4), the score function is given by

T
Volr(0) = /0 o N (Xy)Veb(0, Xy) - (dBr — o1 (Xy) (b(0, Xi) — b(60, X1)))

T (2.7)
+ / ) Voln (¥(0, Xi—,y)) (N(dt,dy) — pe(Xi—, dy)dt) .
o Jrd
Now, by the Girsanov’s Theorem, the process W = (W;,0 <t < T') defined as
¢
Wi= B [ o (X,) (46, X.) ~ b6, X.) ds
0
is an (F3,0 <t < T')-Brownian motion under Py. Therefore, under Py,
T
Volr(6) = / o~ (X,)Vgb(6, X,) - dB;
0
T
[ T (06 X ) (Nt dy) — pia(Xi s d)t)
o Jrd
which is a R¥-valued Py-local martingale whose quadratic variation is given by
T
[Vol(0)lr =/ (Vob(8, X)) (071 (X)) "o~ (Xe) V(8 X¢)dt
0
(2.8)

T
+/ (Voln (U(0, X;—, ) Veln ((0, X,_,y)) N(dt,dy).
0 JRd

(A5) As T — oo,

Eg | sup |or(0)Veln(¥(0, X;—,AXy))|| — 0,

0<t<T

where AX; = X; — Xy denotes the jump size of X; at time .

(A6) There exists a k x k symmetric positive definite random matrix I'(#) such that as ' — oo,

o1 (0) [Vol(0)] 7 or(0) ~2 T(0),

uniformly in 6 € ©.

(A7) For all u € R¥ as T — oo,

/T 071 (Xe) (b(0 + pr(B)u, X;) — b(0, X¢) — Vb(6), Xt)‘PT(Q)U)‘z dt =% 0,
0

uniformly in 6 € ©.
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(A8) For all u € R* as T — oo,

2
/ / ( V(O + or@)u, Xiy) 1—u"or(0)Veln (\I/(H,Xt_,y))) (0, Xi—, y)dydt =40,
Rd 9 Xt 7y)

uniformly in 6 € ©.

We next recall a general result on central limit theorem for multivariate martingales developed
by Crimaldi and Pratelli [14, Theorem 2.2|, which will be important in the sequel. Several versions
of the central limit theorem for multivariate martingales were given in the literature. Recall that
a central limit theorem for multivariate martingales with a diagonal normalized matrix was
established by Sgrensen in |71, Theorem A.1], as an extension of the central limit theorem for
one-dimensional martingales [18, Theorem 2| by Feigin. Later on, by applying again [I8, Theorem
2|, Kiichler and Sgrensen in [42) Theorem 2.1] established a central limit theorem for multivariate
martingales with a full normalized matrix, as an extended version of [71, Theorem A.1]. More
recently, Crimaldi and Pratelli in [14, Theorem 2.2] have presented a new general version of [42]
Theorem 2.1] by eliminating some superfluous hypotheses and replacing the weaker assumptions,
whose proof is based on a multidimensional version [I4, Prop.3.1] of a convergence result for
martingale difference triangular arrays proved in [51].

Theorem 2.2.2. [TJ, Theorem 2.2] Let M = (M;)¢>0 be a cadlag and {F;}-adapted k-dimensional
martingale defined on the filtered probability space (2, F,{Fi} >0, P), with quadratic variation
matriz [M]. Let (¢t)e>0 be a family of k x k-matrices. Suppose that the following conditions hold
as t — oo,

(1) || = 0, where |- | denotes the sum of the absolute values of the entries of the matriz.
(ii) E[SUpogsgt |t AM|] — 0.

(iii) There exists a k X k positive definite random matriz U such that oM ]y 2.

Then o My £ UYV2N(0,1;) ast — oo, where N'(0, I) is a centered R*-valued Gaussian random

variable independent of U.

Remark 2.2.1. The convergence statement of the previous theorem is established for the stable
convergence, which is stronger than the convergence in law.

We first state the asymptotic mixed normality of the score function.

Theorem 2.2.3. Assume conditions (A1)-(A6). Then, the score function is asymptotically
mized normal uniformly for all 8 € © with asymptotic Fisher information matriz T'(0). That is,
as T — oo,
L(Pg) 1/2
er(0)Volr(0) — T'(0)/“N(0,1x),
uniformly in @ € O, where N'(0,1}) is a centered RF-valued Gaussian random variable inde-
pendent of '(0).

Proof. Observe that for any ¢ € [0, 7],
AVgét(e) == Vth(e) - Vgﬁt,(ﬂ) == VQ In (\IJ(H, Xt,, AXt)) l{AXﬁﬁO}'

Then, from the fact that |7 (0)] — 0 as T'— oo and hypotheses (A5)-(A6), the conditions of
Theorem are satisfied for the local martingale Vgl (6). Thus, the result follows. O

We next state the LAMN property for the jump-diffusion process solution to (2.1) on the
time interval [0, 7.
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Theorem 2.2.4. Assume conditions (A1)-(A8). Then, the LAMN property holds uniformly for
all 6 € © with rate of convergence go;l(ﬂ) and asymptotic Fisher information matriz I'(0). That
is, for allu € R¥, as T — oo,

T
log - Orer@u £(Pg) T(0)2N (0, I) — 2uTT(0)u
dP¥ ’ 2 ’

uniformly in @ € ©, where N(0,1;,) is a centered RF-valued Gaussian random variable inde-
pendent of T'(6).

Remark 2.2.2. We observe that conditions (A6), (AT) and (A8) are the same as conditions
(L), (D.1) and (D.3) of Luschgy [52], respectively. Furthermore, notice here that condition
(A5) is weaker than (J.1) of Luschgy [52], and condition (R) of Luschgy [52] is not needed.
This is because we are applying the central limit theorem for multivariate martingales generalized
by Crimaldi and Pratelli [1], Theorem 2.2] as mentioned above.

Proof. Fix u € RF and 6 € ©, and apply Girsanov’s Theorem with 0y = 0 + @7(0)u, to get

that
T

dPe

where the continuous part L7 and the discontinuous part L% are respectively given by

log LT + LT?

T T
= [ o) (0060 X0) = (6. X0)) By = 5 [ 17 (X0) (b0, X0) = 006, X0) Pt

907Xt ay / / QOaXt 7y)
L4 = N(dt, dy) X, dy)dt.
/ /Rd U0, X ,y) y) R¢ (0, X ,y) (Xt dy)

Adding and substracting the vector Vyb(6, X¢)pr(0)u in the continuous part L%, and adding
and substracting the terms uT o7 (0)VoIn (¥(0, X;—,y)) and 5 (uTo7r(0)Veln (¥ (6, X, y)))2 in
the discontinuous part L%, we obtain the following expansion of the log-likelihood ratio

dPT

= uTor(6)Volr(6) — 3uTor(0) Vel(O)ly w1 (O
0

log

T
+ /0 LX) (b6, X2) — b6, X,) — Vob(8, X, )or(0)u) - dBs

1

T
-3 / o1 (X2) (00, X1) — b(6, X2) — Vb(8, Xo)r(8)ur) [2dt
0

T
/ uTior(0) (Vob(0, Xe) T (071 (Xe) To ™ (Xe) (b(60, Xe) — (6, X1) = Vb(8, Xo)or(8)u) dt
/ /Rd < 9007;5;15 7yy)> 1_ UTSOT(Q)VG In (\11(97 Xt77 y))) (N(dt, dy) - /‘9(th7 dy)dt)

/ /Rd < 090))(? :5)) ((9;” ;é“”yy)) Y14 % (uTer(0)Von (\I’(G,Xt,y)))2> N(dt, dy),

where the Pg-local martingale Vylp(6) is the term that contributes to the limit. In fact, using
Theorem and hypothesis (A6), we get that as T'— oo,

WMo (6)Vatr(6) — Sur(6) [ValO)ly or(@u “T8 uTT6) 2N, 1) ~ SuTT(O)u

We next treat the negligible contributions. By hypothesis (A7), the quadratic variation of
the local martingale

T
/0 o Xy (b(60, Xi) — b(8, X;) — Vgb(0, X;)or(0)u) - dB;
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tends to zero in Py-probability as T' — oo uniformly in 8 € ©. Thus, so does the local martingale.
Using the Cauchy-Schwarz inequality and hypotheses (A6) and (A7), we get that as T' — oo,

T
/0 w or(0) (Vob(0, X)) (61 (X)) "o~ H(Xy) (b(Bo, X:) — b(6, X;) — Bpb(0, X3) o7 (0)u) dt

1/2

< < /0 ' |o_1(Xt)V9b(0,Xt)wT(G)uPdt)

T 1/2
x ( / o~ (X¢) (b(Bo, X¢) — b(0, Xt) — Vb(0, X¢)pr(0)u) |2dt) Po 0.
0

By hypothesis (A8), the quadratic characteristic of the local martingale

(6o, Xi—,y)
[ (Rt 1T er(6)Sm (900, X100 ) (¥l ) (K )

tends to zero in Py-probability as T' — oo uniformly in 8 € ©. Thus, so does the local martingale.
Finally, appealing to Lemma below, we conclude the desired proof. O

Lemma 2.2.1. Assume that the function V(0,z,y) is differentiable with respect to 6 and that
hypotheses (A1), (A5), (A6), and (A8) hold. Then, as T — oo,

/ /Rd < 090))(? :5)) ((990: £t7,$) Tl % (uTcpT(e)ve In (\IJ(G,Xt_,y)))2) N(dt, dy)

tends to zero in Pg-probability uniformly in 6 € ©.

Proof. Consider the function f(y —1) =In(y) — (y — 1) + 3(y — 1)? defined for all y > 0. Then,
for all z,

Iny) —y+ 1+ 2a> = fly— 1) — 2 (5 —1)° — ).

Therefore,
/ /Rd ( 090;3 ,’;/)) \Il((g;;if;’)) +1+ % <UT<PT(9)V9 In (\If(e,Xt_,y)))2> N (dt, dy)
/ /Rd ( 090;(? ,’yy)) )N(dt,dy)
- / /w{( 990;((; 7’5)) 1>2 - (uTcpT(e)ve In (qz(e,Xt,y)))2}N(dt,dy).

Now, from [33, Proposition I1.1.14], for any T > 0,
R ]

90,Xt ,y) 2
=Ey [/ /]Rd ( B0, X, .y) -1 —uT(PT(Q)Vg In (\I/(H,Xt_,y))> NG(Xt—,dy)dt] )

907Xt 7y) T 2
d( w0, X, 1) —1—u' or(0)Veln (¥(0, X;—,y)) | N(dt,dy)

W (6o, Xi— 2
Therefore, the process fOT ng (M —1—uTpr(0)Veln(¥ (6, X;_, y))) N(dt,dy) is
y At—»

dominated in the sense of Lenglart by its compensator process

U (6, Xi—, i
/ / ( 0, Xt—,Y) 1 —uTQOT(9>v01n(\IJ(67Xt_7y))) po(Xe—, dy)dt,
Rd 6 Xt 7y)
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for any 7' > 0. Thus, by Lenglart’s inequality [33, Lemma 1.3.30 a)|, we have that for all 7" > 0
and e, > 0,
6)

(I

X 2
=% +P9 / / 2l eee8) —1—u"or(0)Veln (U(0, Xi—,y)) | po(Xi—,dy)dt >n |,
]Rd HXt 7y)

2
1 dTer ()Y m(\v(e,xt_,y))) N(dt,dy)| >

907Xt 7y)
d

R§ HXt 73/)

which, by hypothesis (A8), implies that for all u € R¥, as T — oo,

(6o, Xi—,y) 2 Py
[ ] (oot -1 eromom . X)) Ny o, 20

uniformly in 6 € ©. Thus, from hypothesis (A6) and the equality a? — b = (a — b)? + 2b(a — b),
we conclude that for all u € R*, as T — oo,

/ /Rd {< 990’;(? 7’5; 1)2 - (UT(PT(Q)VQ In (‘I/(H,Xt—ay))>2} N(dt,dy) 2% 0, (2.10)

uniformly in 6 € ©.

We next show that for every € > 0, as T — o0,

[ (Gas=y - 1>1{W

N(dt, dy) 2% 0, (2.11)
\11(07Xt—7y) >6}

uniformly in 6 € ©.
For all a > 0,

[ L7 (Sx ) 1>1{W
\P(97Xt—7y)
/ /Rd {‘ 007Xt 7y) 1>

V0, Xi—,y)

}N(dt, dy)| > a

}N(dt, dy) > 1

Therefore, in order to prove ([2.11)), it suffices to show that for every € > 0, as T — oo,

/ /Rd {‘ (00, Xi—, y) s

N(dt, dy) =% 0, (2.12)
V(0, X, y) }
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uniformly in 6 € ©. For this, we write

e ([t

N(dt,dy)
T(0, X,—,y) }

T
< A /Rd 1{|uTng(9)V9 ln(\II(Q,Xt,,y))|>%}N(dt, dy)

o Lo ([

—uT N B
v (0, Xi—,y) ~1=uler (@) Ve n(¥(9,X:—y))

€
>3

} N(dt, dy)

4
2

T
T
€ A /Rd <U (,DT(Q)V@ ln( (0 Xt ay))) 1{‘UT@T G)Vgln(\ll(e Xe—,y) ’> }N(dt dy)

t3 / L (o=t 1 - e uio. xe))

K

Now observe that hypothesis (A5) implies that as T'— oo,

(007 Xt ay)

0, X,y 1—uTeor(6)Vo In(¥(6,X,— y))

€
>3

}N(dt, dy).

P
sup ’uTng(e)Ve In(¥ (0, X,_, AXt))) Liaxiz0) -5 0,
0<I<T

which is equivalent to for every € > 0, as T' — oo,

T 9 b
/0 /Rd (UTSDT(G)VH In (\Ij(ey Xt—7 y))) 1{”!LT<,0T(9)V9 ln(\I/(G,Xt_,y))|>e}N(dt7 dy) — 0
0

Here we have used the fact that for 0 < a < €2,

T 2
{/(; /Rd (UTQOT(Q)VO hl (‘P(Q,th,y))) 1{|UT§DT(9)V3 ln(\Il(G,Xt,,y))’>e}N(dt7 dy) > a}
0

= { sup ‘UT¢T(9)V9 ln(\IJ(G,Xt_,AXt))‘ Liax,+0y > e} .
o<t<T

This, together with . gives ([2 , and hence

Now, since |f( )| < 20z if |x\ < 1 we have for every 0 < e < 1
007Xt ’y)
-1)1 N(dt,d
RY ( (0, Xi—,y) \II(gU’Xt—’y)_l < (d dy)
\Ij(97Xt—7y) -
907Xt 7y) s
—-1] 1 N(dt,d
RY Q Xi_ 7y) \I/(eo,Xt,,y)il - ( ) y)
\11(97Xt77y) a

< 2¢

907 Xt ) y) ) 2 ‘
—1) N(dt,dy)|.
/ /Rd ( 9 Xt 7y) ( y)
Thus, from hypothesis (A6) and (| , we conclude that for every e > 0, as T" — o0,
/ [ (o) Y,
]Rd 9 Xt ,y) \II(HOathay)
\I}(ev Xt—u y)
uniformly in # € ©, which finishes the desired proof. O

—1|<e

}N(dt, dy) 2% 0,
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We end this section with an important consequence of the LAMN property, which is the
conditional convolution theorem.

First, recall that a family of estimators (éT)TZQ of the parameter 6 is called regular at 6 if
for any u € R¥, as T — oo,

o7 (0) (1 — 0+ r(op) 5 v g,

for some R¥-valued random variable V' (6), independent of .
Note that taking v = 0, this implies that as T" — oo,

27 (0) (br—0) Y v ().

The conditional convolution theorem says that when the LAMN property holds, then the
asymptotic distribution of any regular family of estimators of the parameter 8 is characterized
by a conditional convolution between a Gaussian law and some others laws. More precisely,

Theorem 2.2.5 (Conditional convolution theorem). [28, Theorem 9.1] Suppose that the family
of probability measures (Pg)(;e@ satisfies the LAMN property at a point 6. Let (éT)TZO be a
reqular family of estimators of the parameter 6. Then the law of V (0) conditionally on I'(0) is a
convolution between N (0, F(G)*l) and some other law Grg) on RE, that is,

LV (O)T(0) =N (0,T(0)~") * Gre),

where Grg) is the limiting distribution law under Py of the difference

71 (0) (0r = 0) = T(O) ™ er(O)Volr(0),
as T — oo, that is,
Gy =V(0) =N (0,T(0)7").
The proof of this theorem uses the change of measure 6y = 0+ @7 (0)u, which from the LAMN
property can be written as
Py,

Z
dPT

Eg, [Z) = Eg =Ey [ZEUTWT(H)VGZT(@*%UTSOT(9)[V95(9)}T<PT(9)U+0P9(1)

I

for some random variable Z.
Moreover, the proof shows that the random variable V(6) can be written as a sum of two
independent random variables

V() 2 T(0)" V2N (0, I),) + R,

where R is a random variable with distribution Gpg). This implies that, under the conditions of
Theorem [2.2.5] as T" — oo,

27(0) (br —0) 20 1 (9)-120/(0, I1,) + R.

This theorem suggests the notion of asymptotically efficient estimators, when R = 0. That
is, a family of estimators (07)r>¢ of the parameter 6 is called asymptotically efficient at 6 if as
T — oo,

~ L(P
271(0) (br —0) Y 0(0) 2N (0, 1),

where I'(6) and N (0, I) are independent.
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2.3 Girsanov’s Theorem

This section is devoted to recall Girsanov’s theorem for the diffusion process with jumps
(2-1), which is needed in the proof of Theorem [2.2.4] Recall that in [71], Sgrensen deals with
a more general diffusion process with jumps where the dimension of the space on which the
jumps of the Poisson random measure are defined can be different from that of the process.
The author gives sufficient conditions for the equivalence of all probability measures and then
derives a complicated expression of the Radon-Nikodym derivative (see [71, Theorem 2.1]). The
author applies Girsanov’s theorem for semimartingales proved by Jacod and Mémin (see [32]
Theorem 4.2 and 4.5(b)]). These results are based on the uniqueness of the representation of
semimartingales in terms of their local characteristics, and the uniqueness of the solution to
the martingale problem associated to this semimartingale. Recall that the diffusion process with
jumps X solving is a semimartingale, and a weak solution to is a solution to the
martingale problem associated to X?. Furthermore, the set of all weak solutions to is the
set of all solutions to the martingale problem on the canonical space associated to X?. In our
context, the proof of Girsanov’s theorem below can be based on the uniqueness of the weak
solution to equation .

Finally, Jacod and Shiryaev in [33, Theorem II1.3.24 and III.5.19| extend Girsanov’s Jacod
and Mémin theorem to the multidimensional case. We also refer to [36], [37], [29], [66] for the Gir-
sanov’s theorem for semimartingales, multivariate point processes and discontinuous independent
increments processes.

Theorem 2.3.1 (Girsanov’s theorem). Assume conditions (A1)-(A3). Then for all 0,6y € O,
the probability measures Pg and Pg:) are equivalent. Furthermore, their Radon-Nikodym derivative
s given by

dPg;
dPT
—9 g b(0y, X:) — b(0, X,)) - dB L[t (X)) (b(0y, Xi) — b(0, X})) |2d
—exp{/ o (X¢) (b(6o, X¢) — b(0, X3)) - t—z/l (X¢) (b(0o, Xt) — b(0, X3)) |“dt

907Xt 7y / / 607Xt 7y)
N (dt, dy) Xy, dy)dt ;.
/ /]Rd (0, Xi—,y) v) R¢ W (0, Xi—,y) 1) polXe-sdu)
2.4 LAN property for ergodic diffusion processes with jumps
In this section, we seek sufficient conditions in order for the LAN property to hold when the

diffusion process with jumps X9 (2.1 is ergodic, as a consequence of Theorem m
Let X? = (X;);>0 be the solution to equation (2:1)), that is,

Xt:X0+/0ta(9,X)ds+/ ,)dB, +/ /Rd (0, Xo_, 2) (p(ds, dz) — ve(dz)ds) .

Recall that we have rewritten this equation as

X; = X0+/b9X)ds+/ ,)dB, —I—//ythdy
Rd

where b(0, X;) = a(6, X;) — ng ypg(Xi—,dy), and N(dt,dy) is a jump measure on Ry x R? with
predictable compensator ug(X¢—,dy)dt = ¥(0, X;_, y)dydt.

As is well-known, X% is a homogeneous Markov process (see [3, Theorem 6.4.6]). Let us
introduce the ergodic assumption.



2.4. LAN property for ergodic diffusion processes with jumps 31

(C1) The process X 9 is ergodic in the sense that there exists a unique probability measure
mp(dz) such that as T' — oo,

LT 0 Py
T g(Xy)dt — | g(x)me(dx),
0 R4

for any mg-integrable function g.

Several examples of ergodic diffusion processes with jumps are given in [53], [54], and [67].
Moreover, results on ergodicity and exponential ergodicity of diffusion processes with jumps
have been established by Masuda in [53, 54]. In addition, Kulik in [43] provides a set of sufficient
conditions for the exponential ergodicity of diffusion processes with jumps without Gaussian part
and gives some examples. More recently, Qiao in [64] has addressed the exponential ergodicity
for stochastic differential equations with jumps and non-Lipschitz coefficients. However, in these
papers ergodicity and exponentially ergodicity are understood in the sense of [56], which both
are stronger than the ergodicity in the sense (C1).

We next show that if a process satisfies the additional Lindeberg condition (A9), then the
quadratic characteristic and quadratic variation of the score function are asymptotically equiva-
lent at rate ¢p(6).

A9) For all e >0 and u € R¥, as T — oo,
(

T 2 P
/0 /Rd (UT@T(Q)VQ In (\11(9, th, y))) 1{‘UTSOT(9)V9 ln(‘I/(97Xt7,y))|>6}\Il(0’ th, y)dydt —6> 0,
0

uniformly in 6 € ©.

Lemma 2.4.1. Assume conditions (A1)-(A4) and (A9). Then, condition (AB6) is equivalent
to the fact that there exists a k X k symmetric positive definite random matriz I'(0) such that as
T — oo,

o1(0) (Vol(0)) o1 (0) 22 T(6), (2.13)

uniformly in 0 € ©, where (Vgl(0)), is the quadratic characteristic of the score function, that
18,

T
(Vol(0))y = /O (Vob(6, X)) T (0= (X)) To™ (X0) Vob(6, X,)dt
T
4 / / (Voln (U(0, Xo— ) Vo ln (U(6, X, ) U(0, X, y)dydt.
0 JRY

Next, observe that the ergodicity assumption implies the convergence of the quadratic cha-

racteristic of the score function at rate %

Lemma 2.4.2. Assume conditions (A1)-(A4) and (C1). Then, as T — oo,
1 Py
7 (Vel(0))r — I'(0), (2.14)
uniformly in 0 € ©, where
o) :/ (Vob(0,2))" (07 () To ™ (x)Vb(6, z)mp(dz)
Rd
+ / Voln W (0, z,y) (Voln U(0,z,y))" U(0,z,y)dyme(dz).
R JRY

Therefore, we have the following immediate consequence of Theorem [2.2.3]
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Theorem 2.4.1. Suppose that conditions (A1)-(A5), (A9), and (C1) are satisfied with or(0)
the diagonal matrix with entries equal to ﬁ Then the score function is asymptotically normal

uniformly for all 0 € © with asymptotic Fisher information matriz T'(0). That is, as T — oo,

L(Pg)

vz (0) “C9 N (0,1(0)).

VT

uniformly in 6 € ©, where N'(0,T(0)) is a centered R¥-valued Gaussian random variable with
covariance matriz I'(6) .

We next derive the LAN property. For this, we need the following additional assumptions.
(C2) For all u € R¥, as T — oo,
2 1
mo(dz) = o 7/

/Rd o (x) (b <0 + % :c> — b6, ) — VM(Q&;)\}%)

uniformly in 6 € ©.

C3) For all u € R as T — oo,
(

0+ =, z,y) T 2 .
o o _L n x x Toldxr) =0 =
/Rd /Rd< T6.2.9) 1 \/TVQI (w(o, ,y))> (0, z,y)dyme(dz) <T>

uniformly in 6 € ©.
We next state the main result of this section.

Theorem 2.4.2. Suppose that conditions (A1)-(A5), (A9), and (C1)-(C3) are fulfilled with
o1 (0) the diagonal matriz with entries equal to N Then the LAN property holds for all 6 € ©

with rate of convergence T and asymptotic Fisher information matriz T'(0). That is, for all
ueRF, as T — oo,

T
dPf, ciry

1
7 u' N (0,T(0)) — §uTF(9)u.

log
Proof. By ergodicity, as T — oo,

/

2

( 0+ 77 X,) — b(0, X;) — Vb(0, XQ\F)

/Rd ( +%,x)—b(0,x) vwm\f)

which, together with (C2) gives (AT).
Again by ergodicity, as T — oo,

6 7Xt—7y) 1 2
\/T T
1 T Vo In (P 6,}( — W G,X_, dydt
/ /Rd ( 0 Xt_,y) \/—U 0 ( ( t y)) ( t y) Y

2
/Rd /Rd ( o xT,y) +Y) —1— \}TUTVO ln(\I/(Q,x,y))) (0, x,y)dyme(dz),

which, together with (C3) gives (A8).
Then, the desired LAN property follows from Lemma and Theorem [2.2.4 O

As a consequence of the LAN property, an asymptotic lower bound for the variance of any
family of unbiased estimators can be obtained. More precisely,
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Theorem 2.4.3 (Minimax theorem). [28, Theorem 12.1] Suppose that the family of probability
measures (P})oco satisfies the LAN property at a point 0. Let (éT)Tzo be a family of estimators
of the parameter @ and | : R¥ — [0, +00) be a loss function of the form 1(0) = 0,1(x) = I(|z|) and
U(lz]) < Ulyl) if [=] < |y|. Then

Lim lim inf S Eg [z (w;l(e) (éT — 0’))} > Eg[1(2)],

where L(Z) = N(0,T(0)71).

In particular, when we take the quadratic loss function I(u) = |u|?, the above inequality gives
an asymptotic lower bound for the covariance matrix of any family of unbiased estimators, which
is given by T'(9) 1.

2.5 Examples

Under conditions (A1)-(A6), a family of estimators (87)7>o of 6 satisfying

7' (0) (Br = 0) = o7 (0) Val(O)]7' Volr(0) + on, (1),

is asymptotically efficient at . Furthermore, assuming the additional conditions (A7)-(AS8), this
family (f7)7>0 is regular at 6.

As a consequence, by Lemma [2.4.1} under conditions (A1)-(A5), (A9) and (2.13), a family
of estimators (67)7>0 of 6 satisfying

27 (0) (6r = 0) = &7 (6) (Vol(0)) " Volr(9) + op, (1),

is asymptotically efficient at 6. Furthermore, assuming the additional conditions (A7)-(A8), this
family (67)7r>0 is regular at 6.
We next present examples of the LAMN and LAN properties, both taken from [52].

2.5.1 Example 1

Recall that a pure birth process is a counting process (X¢)i>0 = (N¢)e>0 with predictable
intensity (6, N;—) = ON;_, where Ny = 1 and the birth rate § € © = (0,00). The integral
fg N,_ds is the total time lived in the population before time ¢.

Observe that in this simple example, the process X; is already written in the form ,
there is no dy-dependence, and thus the first condition in (A3) is not needed. The other two
conditions in (A3) and (A4) are trivially satisfied.

By , the score function based on the continuous observation {INV,0 < ¢ < T'} is given by

T B T
Vol (0) = / %T‘I’(dNt—eNt_dt): NT9 L / Ny_dt.
0 0

It can be checked that the score function is a Pp-martingale, and its quadratic variation and
quadratic characteristic are respectively given by

Np—1

1 T
S ad (Val®)r = /0 Ny_d.

[Vol(0)] =
It can be easily checked that as T" — oo,
0% T Vol (0)]; = e T (Np — 1) 25 W,

where W is a random variable with exponential distribution with parameter 1.
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This shows that hypothesis (A6) holds with pr(0) = e and asymptotic Fisher informa-
tion I'(#) = W. Finally, hypotheses (A5) and (A8) hold trivially. Thus, by Theorem this
process satisfies the LAMN property.

On the other hand, the maximum likelihood estimator (MLE) of 6 is given by

) Ny —1
T= -
f(;‘FNs,ds

Therefore,

%eQTT (07— 0) = o7 (0) (Vt(0)7" Vot (6).

Observe that as T — 00,
02T (Vol(6) e T / N,_ds 2%

thus, the quadratic characterlstlc and quadratic variation of the score function are asymptotically
equivalent at rate fe™ £l . Hence, (A9) is not needed.
Then, 07 is a family of regular and asymptotically efficient estimators for all 6 € ©.

2.5.2 Example 2

Recall that Jacod [30] and Dietz [16] studied the LAN and LAMN property for Ornstein-
Uhlenbeck processes without jumps. In this subsection we consider the Ornstein-Uhlenbeck pro-
cesses with jumps, a particular case of equation ([2.2), defined by

¢ ¢
X, =Xo+ 061 / Xsds+ oB; + / / yN (ds, dy), (2.15)
0 0 JRo

where X is a random variable with finite second moment, o > 0, 6 = (63, ... ,05_1) € (:),
0 = (01,02) € © =R x O, where O is an open subset of R¥~1, for some integer k > 1, N(ds, dy)
is a Poisson random measure on Ry x Ry with intensity measure pg, (dy)dt = f(02,y)dydt, where
f:© xR — Ry is a Borel function such that [, [y|>f(62,y)dy < oo and f(62,0) = 0, for all

05 € ©. We also assume that f € C! with respect to 5.
Assume the following conditions on the Lévy density f.
(H1) For any 63,0, € O,

[ (D =)o) sty + [ (FEED 1) si6nma

y)
o (s - 1)2f<92,y)dy < 0.

(H2) Forany 62 €0, p>2andi € {1,....k — 1}, [ ‘895 In (f(@g,y))‘pf(ﬁg,y)dy < 0.

(H3) For any 6, € O, fRO(V92 In (f(02,9))) "V, In (f(02,v)) f(62,y)dy is positive definite.

(H4) For all u € R¥1 as T — oo,

2

f(02 + %,y) 1 1
/Ro T fny) ﬁuTveg In (f(02,))| f(02,y)dy = o (T)

uniformly in 0y € o.
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Let us now consider the following cases :
Case 1 : 0 > 0, ; = 0. Assuming (H1) (which implies (A3)), the score function and its
quadratic characteristic are respectively given by

T
Vo lr(6:) = /0 [ 00 (£(02,) (V (. ) = o (d))

(Vo l(62))p = T / (Vo 10 (£ (02, 9))) Vi, In (F (02, 1) 10, (dy).

Ro
Taking ¢7(62) as the (k—1) x (k—1) diagonal matrix with entries equal to ﬁ, then observe
that

Eg | sup |or(02)Ve, In(F (02, AX)), <—ZE9 sup ‘aeé ln(f(eg,AXt))‘]
0<t<T 0<t<T
= » .
< — E Opi | 0y, AX
< g3, (20| o mero s
S 1D 1
< S| E 8y; In(f (62, AX,))
\/Tizl 0<t<T ’
1 k—1 » %
= Eg Opi In(f(02,y N(dt,d
3 [/ [ Jow i@ iar.an) )

2

I
x-»—-

-1

- (L

=1

9g; In(f (02, y))‘ f(02, y)dy> °

which, by hypothesis (H2), tends to zero as T' — oo. Hence, condition (A5) is satisfied.
Condition (A9) is satisfied for all # € © since for all € > 0 and u € R¥1 as T — oo,

2
/R (uTV92 In (f(927y))> Lo, n((02.9)) [ >evT} S (02, y)dy = o(1),
0
uniformly in 0y € O. On the other hand, for all T' > 0,

1 ~
7 (Vo,(02))7 = /R (Vo In (f(62,9)))" Vo, In (£(82,)) o, (dy) =: T(62),
0

which is independent of T". Thus, by Lemma hypothesis (A6) holds. Moreover, it is easy
to see that (AT) holds true. Finally, hypothesis (H4) implies (A8).

As a consequence of Theorem [2.2.4] under conditions (H1)-(H4), the LAN property is sa-
tisfied with rate of convergence v/T and asymptotic Fisher information matrix I‘(Qg)

In particular, when X is a one-dimensional Poisson process with intensity A(6), the LAN

7 2

property holds with rate of convergence v/T and asymptotic Fisher information re) = %.

Case 2 : 0 > 0, 0; > 0. Assuming (H1), the score function is given by

T
ww):(o Lap, [ [ VeQIH(f(Gz,y))(N(dt,dy)—uez(dy)dt)>,

o
and its quadratic variation and quadratic characteristic are respectively given by
1
[T x2dt 0

Vot @)y = [ o2 |
B 0 T fo (Vo b (F(82 ) Vi, I (£(62.)) N(dt.dy)

1
(Vol(0))p = <02 Jo Xidt v ) :
0 T f]RO (vez In (f(927 y)))TVGQ In (f(927 y)) o, (dy)
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Taking the diagonal entries of the k x k diagonal matrix ¢7(6) as ¢; 7(6) = ﬁ fori=2,..., k.

Suppose that py := fRo yug, (dy) < oo and py 1= fRo Y21, (dy) < oo, for all 6 € ©.
By It6’s formula, the unique solution to equation ([2.15)) is given by

t t t
X, ="' X+ p; / =) g + 0/ N t=)qB, + / / M (t=5)y (N (ds, dy) — g, (dy)ds) .
0 0 0 JRo

Now, consider the martingale

e—elt

Mt =e eltXt XO +

=0 / “954B, + / /R O N(ds,dy) — g, (dy)ds) .

Observe that { My, Fi}>o0 is a zero-mean square integrable martingale since for all ¢ > 0,

—201t 1 6—291t -1 0.2 + 02
Eo[M2] = —02& _ < < 0.
9[ t] g 201 291 P2 = 201 o0

Hence, applying the martingale convergence theorem, M; converges almost surely as t — oo to
the random variable

MOO—U/ ~0sgB, +/ / N(ds,dy) — pe,(dy)ds) .
0 Ro

Thus, e~ %* X, converges almost surely to Xg + % + Mo, as t — oo, which implies that 6_261tth
converges almost surely to (X + % + My,)? as t — oo. Using the integral version of the Toeplitz
lemma, we get that as t — oo,

Jo X2ds s, 2
o 5@ as (e  PUL g
[ e215ds g 01 o 7

which yields that as ¢ — oo

2
—201t X2 X, M )
/ 2, ( ot t )

Hence, taking ¢1,7(0) = =T that is, pr(f) = diag(e T, %""’%)’ together with
(H3), condition (A6) is satisfied with

1

r) = | 20%0; (o + 6+ Mo )2 0

0 ()

Assuming additionally conditions (H2) and (H4) and applying Theorem the LAMN
property holds with ¢7(6) = diag(e="T, %, e %) and asymptotic Fisher information matrix
r(0).

Case 3 : 0 > 0, 0, < 0. Recall that if

/ log |y|pa, (dy) < oo, (2.16)
ly|>2

for all 05 € é, X is ergodic with a unique invariant probability measure mg(dx) which can be
calculated explicitly (see [65, Theorem 17.5 and Corollary 17.9] and [53], Theorem 2.6]). Therefore,

by ergodicity, as T — oo,
LT 2,5, Po 2
= X{dt — | z°mp(dx).
T Jo R
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In this case X; converges almost surely as ¢ — oo to the random variable

91 RO

Again, by ergodicity, as 1" — oo,
1 T
T/o XZdt 2% By [X2)] .

By Ité’s formula,
t ¢
X2 =eMX3 4 2p / =) X yds + 20 / )X dB, + (02 + pa) / 2 =2) s
0

0 0
t
+ / / (2691“‘5)st + eQel(t‘s)yQ) (N(ds, dy) — po,(dy)ds) ,
Ro
together with Eq[X;] = e/ (E[Xo] + + 4+) — g+, shows that
2 2
Bo[X7] = EIX3] + 201 (EIXo] + 1) e+ 220 (1 (1-emt) = T2 (1 et
01 01 26,
Therefore,
: 207 0%+ po
27 _ 2] 21
B 2] = i o ] = - Z
which concludes that ) )
2p 0%+ p2
2 1
rém(dr) = — — .
/R (dw) 0? 264

As a consequence, assuming conditions (H1)-(H4) and applying Theorem the LAN

property is satisfied with rate of convergence v/T and asymptotic Fisher information matrix

1 207 >+ po
— = 0
re) = 62 20, _
0 I'(62)
Next, we are going to study the asymptotic properties of the MLE of the parameter 6 for the
parametric model (2.15)) in the case that o > 0 and 61 # 0. In particular, we show that the MLE

of 1 is asymptotically efficient. R
Note that the MLE 07 = (61,7, 02,7) of 0 satisfies

T
Vatr@) = ([ Ztam [ [ G (70.0) (¥t a) - )i ) = 0.....0)

First observe that the MLE éLT of the drift parameter 61 satisfies the following equation

1 (7 e
_ / X;dB; = 2/ X <dXt — 01 X;dt — / yN(dt, dy)) =0,
g Jo o 0 Ro

which yields that under Py,
Jo XedXy — [ [, XeyN (dt, dy)
1,7 — T = 91 +
Jo XPdt
Xo+ g + Mo )2. Then, as T — oo,

O‘fOTXtdBt
S x2dt

When 6; > 0, set I' 1(0) := 20291(
. ~0T [T X,dBy cp

0T (G, —gy) = 28 Jo AP LPY B gy 1200 1y

e ( 1,T 1) 6_2‘91Tf0TXt2dt — 1,1( ) ( ) )
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When 6; < 0, we assume (2.16) and set I'; ;(0) := #(29%% - %;2”). Then, as T'— oo,
1

. oL [T X,dB,
ﬁ (617T - 91) = ﬁ;— E(—I%Q N (0,1“1,1(9)_1) :
T Jo Xidt

Consequently, we conclude that the MLE éLT of 61 is asymptotically efficient for all 6; # 0.
Next, notice that the MLE GAZT of 05 satisfies the following equation

T
/0 [0 (B2, )) (Nt dy) — o, (dy)) =0, (2.17)

which states that the solution égj depends on the Lévy density f. We shall consider here the
following two particular cases.

When (f(f flRo yN (ds, dy))e>0 is a Poisson process (N¢)i>0 with intensity 02 > 0. In this case,
the solution to equation is given by

A N
02”1" — TT

By the Central Limit theorem, as T" — o0,
. N P
VT (b7 — 02) =T (TT - 92) PO £ (0, 05)
Thus, in this case, as T" — oo, the MLE O satisfies

o' (0) (0 —0) TH 10N (0,1),

with
ro) - ("7 1),

which implies that 67 is asymptotically efficient. Moreover, Or is regular since for all § € Rq x é,
7' (0) (Br = 0) = ©7'(0) (Vol(0))1" Volr(0).

We next consider the case where the Lévy density f(f2,y) takes the form ie_y/ “1(0,00) (%)
a

with A, > 0 and #y = (\,«). In this case, solving equation (2.17)), we find that the MLE
05 T = ()\T, ar) is given by

T
N . Jo Jr, yN(dt, dy)
and ar = )

Ap = =L
=" Ny

where N, is a Poisson process with intensity A. From the Central Limit theorem, we have that
as T — oo,

VT (3= 2) 209 A7 (0, 0).

Moreover, applying Theorem we obtain that as T — oo,

T Oé2
Vtar-a) =y [ [ (= )N dy) = ) it) Y (o, A) |
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Hence, we conclude that as T' — oo,

21 (60) (9 —0) “2Y T(0) 2N (0, 1),

with
I'1(0) 0 0
I'(6) = o 3+ 0],
0o 0 X

which implies that Op is asymptotically efficient. Moreover, Op is regular since for all § € Rg x é,

A~

7' (0) (Br = 0) = 07 (0) (Vol(0))1" Volr(0) + op, (1),
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Chapitre 3

LAN property for a simple Lévy process

In this chapter, we consider a simple Lévy process given by a Brownian motion and a compen-
sated Poisson process, whose drift and diffusion parameters as well as its intensity are unknown.
Supposing that the process is observed discretely at high frequency we derive the local asympto-
tic normality (LAN) property. In order to obtain this result, Malliavin calculus and Girsanov’s
theorem are applied in order to write the log-likelihood ratio in terms of sums of conditional
expectations, for which a central limit theorem for triangular arrays can be applied.

3.1 Introduction and main result

On a complete probability space (Q*, F» P?) defined in Definition we consider the
following stochastic process X% = (Xf’g’/\)tzo in R defined by

XPON = 20 4+ 60t + 0B, + Ny — A, (3.1)

where B = (By);>0 is a standard Brownian motion, N = (NN;);>0 is a Poisson process with
intensity A > 0 independent of B, and we denote by (]Tf{\)tzo the compensated Poisson process
N} := Ny — M. The parameters (6,0,)) € © x £ x A are unknown and ©,% and A are closed
1ntervals of R,R% and RY, where R} = Ry \ {0}. Let {]—"A}t>0 denote the natural filtration

generated by B and N. Note that {.Ft }4>0 is also the natural filtration generated by X%* for
all (0,0,)) € © x ¥ x A. We denote by P%?* the probability law induced by the F*-adapted

9 oA
cadlag stochastic process X7 and by E??* the expectation with respect to P%*. Let i

L po.oA
and (—> ) denote the convergence in -probability and in P%%*-law, respectively.

Recall that (Q2, 72, P?) is the canonical probability space associated with the Poisson process
N with intensity A. Therefore, we denote by (Q2*, F2A P2) instead of (Q2, F2, P2). The struc-
ture of the probability space is then given by O = Q1 x Q2A Q)‘ 03 x QA .7-")‘ Flo F22,
Fr=FeF P = PloP?A PN = P3@P* and ) = mxm FA = P®P, P> = PP
We denote by E*, E)‘ E* the expectation with respect to P?, P and P)‘ respectively.

For fixed (09, 09, )\0) € ©x X x A, we consider the probablhty space (2, F,P), where = Qo
F = 7, P = PY. Let us denote E = E*, P = P = P! @ P2%_and P = P = P3 g P4,
Consider an equidistant discrete obbervatlon of the process X%:70:20 which is denoted by X" =
(Xtg, Xtyy- - Xy, ), where ty, = kA, for k € {0,...,n}, and A, < 1. We assume that the
high-frequency observation condition holds. That is,

PG,U,)\

nA, — oo, and A, —0, asn— oco. (3.2)
Given the process (XQ’U’ )t>0, we denote by p(-; (0,0, )) the density of the random vector

(tho’a’)‘, Xfl’a”\, . ,Xff’)‘) In particular, p(-; (6p, 00, Ao)) denotes the density of the observation
X", For (u,v,w) € R3, set 0, := 0 + L,O'n =00 + v An = Ao + v

VA, N nA,,’
41
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The aim of this chapter is to prove the following LAN property.

Theorem 3.1.1. Assume condition (3.2]). Then, the LAN property holds for the likelihood at
(60,00, No) with rate of convergence (v/nlAn, v/n,v/nAy,) and asymptotic Fisher information ma-
triz T'(0y, 00, Ao). That is, for all z = (u,v,w) € R3, as n — oo,

log b (Xn§ (97“ On, An)) E(PGO’_{’Q’)‘O) ZTN

1
0,T(6y, 50, Ao)) — =2 "T(6y, 50, \o ),
2 (X7 (00,00, %)) (0,T(00, 00, Ao)) 5 (6o, 0, Ao)

where N'(0,T(6p, 09, Ao)) is a centered R®-valued Gaussian vector with covariance matriz

1 1 0 -1
T'(60, 00, o) = o 0 2 002
-1 0 1+%

Remark 3.1.1. The LAN property remains valid for the simple Lévy process driven by a Brow-
nian motion and a Poisson process N = (N¢)¢>0 with intensity A > 0, i.e, Xta’a’)‘ = xo+0t+oB;+
N, fort > 0, with the same rates of convergence. However, the asymptotic Fisher information
matriz changes in this case where there is no correlation between two components involving the
parameters 6 and A. Here, we use the compensated Poisson process because we will try to deal
with the infinite Lévy measure for more general cases.

Recall that Gobet in [25] deals with the multidimensional continuous elliptic diffusions. Some
extensions of Gobet’s work with the presence of jumps are given for e.g. in [10], [23], and [3§].
In the present chapter, we estimate the drift and diffusion parameters and the jump intensity
at the same time. One way to proceed in order to prove Theorem [3.1.1] would be to use explicit
expression for the density. However, the main motivation for this chapter is to show some of the
important properties and arguments in order to prove the LAN property in the non-linear case
whose proof is non-trivial.

In fact, the LAN property is a local central limit theorem which is robust to local changes
in the values of the parameters to be estimated. The first problem in proving such a result for
a combination of drift, Brownian motion and jump process is the fact that the density function
cannot be explicitly written. This problem is aggravated in the case of stochastic equations driven
by these processes due to the respective non-linear coefficients.

In order to overcome this problem in the general case, one needs such estimates of the
derivatives of the log-density. This is quite a difficult problem, which in the Ornstein-Uhlenbeck
case 38| is solved due to semi-explicit form and the integration by parts formula with respect to
the Brownian motion.

In the present chapter, we present four important Lemmas (Lemmas [3.2.3) [3.2.4] [3.2.5[ and
of independent interest which will be the key elements in dealing with the non-linear case.
We have preferred to present them in this simpler form as in the general case further arguments
need to be added.

We point out that in most cases one cannot expect to find good estimates of the derivatives of
the logarithm of the density of X due to the mixture of exponential tails coming from the jump
process together with the Gaussian tails of the Brownian motion. In fact, one cannot expect to
have upper and lower bounds for the log-density belonging to the same class as in the general
arguments of [24] and [25]. Our argument which that will be applicable to the general non-linear
case is as follows.

One needs to condition on the number of jumps within the conditional expectation which
expresses the transition density and outside it. When these two conditionings relate to different
jumps one may use a large deviation principle in the estimate. When they are equal one uses
the complementary set in order to apply the large deviation principle. The main term can be
handled directly. Within all these arguments the Gaussian type upper and lower bounds of the
density conditioned on the jumps are again strongly used.
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In fact, the lemmas mentioned previously, deal with this idea. Therefore the semi-explicit
Taylor expansion in [3§] is replaced by a large deviation analysis within two expectations under
contiguous probability measures. This idea seems to have many other uses in the set-up of
stochastic differential equations driven by a Brownian motion and a jump process. We remark
here that a plain Ito6-Taylor expansion would not solve the problem as higher moments of the
Poisson process do not become smaller as the expansion order increases.

A related idea to the one presented here appears in [I0], where the case of a compound
Poisson process is treated. As we will show in forthcoming chapters, the present idea seems to
be important in order to obtain many properties for models where one considers a continuous
diffusion perturbed by a jump process.

In Section [3:2] we present the integration by parts formulas to be used with respect to the
Brownian motion and the Poisson process. We also give our main lemmas to be used for the
proof. The proof of the main result is given in Section We close with conclusion and further
remarks towards the proof in the general non-linear case.

As usual, constants will be denoted by C' or ¢ and they will always be independent of time
and A, but may depend on bounds for the set ® x ¥ x A. They may change of value from one
line to the next.

3.2 Preliminaries

In this Section we introduce the preliminary results needed for the proof of Theorem In
order to deal with the likelihood ratio in Theorem [3.1.1] we will use the following decomposition

P(Xn;(0n7‘7nv/\N>) (X",(Hn,an, n))+logP(Xn§(9n7007)\n))
p (X™; (60,00, Mo)) p (X" (On, 00, An)) P (X" (0, 00, Ao))
p(X™ ,(Hn,ao,)\o))
p (X" (60,00, X0))

log log

(3.3)

+ log

For each of the above terms we will use a mean value theorem on the parameter space and
then analyze each term, which will lead to the derivative of the density function. To analyze
this derivative, we will use as in Gobet [24] the integration by parts formula of the Malliavin
calculus on each interval [tg,tx41] in order to obtain the following expressions for the derivatives
of the log-likelihood function w.r.t. # and o. For this reason, we introduce an extra probabilistic
representation of the process X?@*. That is, consider the flow Y%7 (s, z) = (Yf’”’k(s, x),t >s),
x € R on the time interval [s, 0c0) and with initial condition Yse’a)‘(s, x) = x satisfying

}/ta,a,/\(87$) :ZE+9(75*5)+O'(Wt*Ws)+]/\Zt)\7MS>\’ (34)

where W = (W})¢>0 is a Brownian motion, M = (M;):>¢ is a Poisson process with intensity A
independent of W, and we denote by (M;);>¢ the compensated Poisson process M} := M; — \t.
In particular, we write Yf’”’A = Y;e’a”\(O, xg), for all t > 0. That is,

VoA = 20 4 0t + oWy + M} (3.5)

0:0A(t — s, 2,) the transition density of Y;H’U’A at y conditioned

For any t > s, we denote by p
on YSG’U’A = x. Here, we consider the Malliavin calculus on the Wiener space induced by the
Brownian motion W, and we denote by D and § the Malliavin derivative and the Skorohod
integral with respect to W on each interval [tx, tx+1], respectively (see the Definition and
the discussion following it).

For all A € F*, let us denote P27 (4) = ]:]’\[1A|Yti’g”\ = 2]. We denote by EZ7 the
expectation with respect to ﬁﬁ"’“. That is, for all F-measurable random variable Z , we have
that Ey7*[Z] = BN Z|Y,) " = a].
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Proposition 3.2.1. [2], Proposition 4.1] For all § € R,0,A € RY, and k € {0,...,n — 1},

0,0,

Ogp 1=gon b
pe,cr,)\ (An’ -7;7 y) = ;Exvgv [Wtk+1 - Wtk‘ }/tkfl fr y] s

ajpéha,)\ 1 s ) . .

])9’707)\ (An,%y) = EEx’U» |:(Wtk+1 — Wtk) ‘}/;/k+1 e yi| — ;

Proof. Let f be a continuously differentiable function with compact support. The chain rule
of the Malliavin calculus implies that f/(Ytif{)\(tka x)) = Dt(f(}/;zf;A(tk, x)))Uf’a’/\(tk, x), for all
(0,0,\) € © x X x A and t € [tg,tgs1], where

0,0\ 1
U= (tg,z) = —5—.
o) DY M by, )

tkt1

Then, using the integration by parts formula of the Malliavin calculus on the interval [tg, tx11],
we get that

O |F OV )| = B [ (70 0 )00V (1, )|

Lt k lkt+1
1o~ [ [fen 0,01 0,0\
15 /t PPN (b, 2) Y2 (1 )
LSty

tet1

- B / m(f(i@ifﬁ(tk,x)))Uf’“(zek,x)@Mifﬁ(tk,z)dt]
LJ g

1 ~ -

Lttt te+1

PO ) (90Y 7 b U 1, 2) )|

Note that here §(V)) = 6(V1y, ;.. ,)(-)) for any V € Dom §. On the other hand,

OB | F(V7 (. 2)) ) = /Rf@)aepe’“(mwvy)d%
and

B S OR )8 (00507 (e, 2) U (1, ) )

tkt1 k+1

tr41 trt1

— B [ FY2oMNs (agy(”"*(tk, 2) U (4, ac)) ‘n‘l’;’avA - :17}

let1

— /R OB [0 (907 (0 ) UMt ) ) V072 = 9, Y07 = ] 7N (A, )y,

which concludes that

aep&cr,)\

1 ~
e (Bway) = 3B [5 (9007 0, )0 b)) Y70 = 0,00 = ]

tet1 tet1
n

It can be checked that

1 1
aGYO,O',)\(tk’x) — Any and Uf,ﬂ,)\(tk’x) — = gl[tk7tk+1](t).

tet1 DtYB’U’A(tk, ﬂf)

lk41
Therefore,

A

771 (Wtk+1 - Wtk) )

Tt

J (39Y9’U’A(tk7$)U9’U’A(tk7$)) =

which shows the first equality.



3.2. Preliminaries 45

Similarly,
0" L & 0,0\ b0 0,0\ y 0o
S () = 3B 3 (007 00, VP 0 ) [V = 0 Y7 = 0]
where
DoY) Tty 1) = Wiy, — W,
Then,

o, o o, 1
5 (8 Y£+1>\(t 'r)Ue’ ’A(tkvr)) a Y;fiJrl)\(tk’x)é (O-l[tk?t/vi'l](.))

tk+1 1
0,0,\
_/t DS (8 Yik_'_ (tk,:ﬂ)) gl[tk’tk+1](3)d8

K
1 JANS
5 Wy — Wtk)2 T

from where the second expression follows. O

We next recall Girsanov’s theorem on each interval [ty, txy1].

Lemma 3.2.1. Forall 0,0, € R,\,\j,0 € R} andk € {0,...,n—1}, define a measure Qel’)‘l’e Ao
by

0 () 04— () 2
QUAOAT (1) = B 1A€779 B=O2) (B — By )+3 (FAERA) A - (Nyy Ny, ) log 2 +(A-A1)An

Y

for all A € F*. Then Qil”\l’e”\’a is a probability measure and under Qzl’)‘l’e”\’a, the process

BtQ’c = B;+ Hl%’\_’\l)(t —tx) is a Brownian motion, and Ny is a Poisson process with intensity
A1, for all t € [ty tii1].

Lemma 3.2.2. Forall0,0; € R,\, 1,0 € R} and k € {0,...,n—1}, define a measure Qel’h’e Ao
by

() () 2
@Z“M’@’A’G(A) _ B lAefM(Wtk+l—Wtk)+§(M) An—(Myyyy — My, ) log 2 +(A=21)An

)
for all A € F*. Then @glg\l,e,)\,o s a probability measure and under @Z“)‘l’e’)"g, the process
WtQk =W, + M(t — t) is a Brownian motion, and M; is a Poisson process with

intensity A1, for all t € [tg, tpi1]-

As a consequence, we have the following expression for the derivative of the log-likelihood
w.r.t. A

Proposition 3.2.2. For all § € R,o,A € R* | and k € {0,...,n — 1},

a)\pa,a)\
pe,a,)\

tet1

o A

_ W, W, M — M)
(A, z,y) = ES7* [— iSRS i

0,0,\
Y;Ic+1 o y] ’
Proof. Let f be a continuously differentiable bounded function. Girsanov’s theorem yields

7 (322 0) s |

A [f (Yf”(tk x)>] — M
K ’ OX1,0N,
+1 ko 1 (o3
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Taking the derivative with respect to A in both hand sides of this equality and using Lemma

3:2.2] we get that
=\ 0,0,\ RO\ 6,0, diS)\
01 0z -5 1 ) |
k

~ Wier = Wi A=A M} — M} P>

_ A 0,0,A tet1 tk 1 tey1 tr

= E 1 f (nkle 1 (tk7 ZE)) (_ o - 0_2 An + )\ d@z,)\l,e,)\,lf
" W, W M~ M

=B |f (K:if{k(tk,:c)) (— ety e ) |

On the other hand,

OB F (Y7 o)) | = [ £on® (A2 )y,

R
and
=\ 0,0\ Wtk+1 - Wtk ]/\Z)I\c-&-l - M)z\c
BN £ (Y ) | - =
= 0,0\ Wtk+1 - Wtk ]\Z)I\wrl - Z/—\Z/t)]\i) 0,0\
= E f (nkJrl ) — pu + )\ }/tk =X
[ w.. —w, M} —M

- [ 1w [— ey eV = v = | N Ay,

Therefore, the desired result follows. O

The next four lemmas are the main technical core of the chapter. It explains the argument
given at the end of the Introduction. B

Consider the events jmk = {Ny., — Ny, = m} and Jp = {My, , — M,
m >0 and k € {0,...,n —1}.

. = m}, for all

Lemma 3.2.3. Forallf e R,o,\ € R, k€{0,....,n—1}, and m > 0,

—(y—r—m—(0-X)An)?/(207 An) AAR)™

~ ~ e
Peaa—y)‘ (J k‘Y070'7)‘ — y) = — .
! TR e Yo e—(y—z—i—(0-X)A,)> /(%M,ﬂw
6,0,
(4)
conditioned on Y% =  and M, — M, = i. That is,

6,0,

Proof. For all i > 0 and t > s, we denote by ¢,V (t — s, z,y) the transition density of Y,

6,0,

1 _ y—z—i—(0-N)(t=s))®
) '

t—s,x,Yy) = ————e¢ 202 (t—s)
( 'v) 2no%(t — )

By the convolution formula for the sum of independent random variables, we obtain
0o ,
0.0 At—s) AL = 5))°
Pe’g’)‘(t —8,T,y) = ZCI@-)U (t—s,z,y)e M S)*-
i=0 ’

Then, using Bayes’ formula, we get that

0)0—7>\ ~0,0’,)\ T
Do (T 0,01 o q(m) (AT“ €, y)P$ (Jm,k)
P Im kY, =y =

x ) pG,U,A(Am z, y)

tkt1

Hence, the desired result follows. O
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For all j,p > 0 and k € {0, ...,n — 1}, we introduce the random variable

0,0\
SJ _IA EX(: |:(Mtk+17Mtk)p1j;k

Lemma 3.2.4. For all§ e R,o, A€ R’ ,j,p>0 and k € {0,...,n — 1},

. 2 m
—(00(Btyyy =Bty )+i—m+(0o—0—Xo+X)An )" /(202A,) (AAn)

Sp —1- E;S:O:m;ﬁj mpe m! (3 6)
J Tk s e—(ao(BtkH—Btk)+j—z’+(90—9—)\0+)\)An)2/(202An) (Ag'yl)i )
1= 2.

Proof. Observe that JNJCIC = LJ;’T?:O:m;ﬁj{Mtk+1 — My, = m}. Thus, appealing to Lemma and
equation (3.1)), we get

[o.¢]
P __ A pNG,U)\ - 9,0’,)\ J—
5j = 1J Z m Eth [1Jm,k Yoo = Xten
m=0:m#j
2 2
- — X, —m—(6— AAR)™
L, Z;.;:O:m# mPe (Xty 1 =Xt —m—(0-N)An)"/ (20 An)%
. ZQOO 67(th+1 — X *if(ef’\)An)Q/(%zAn) 4()\A-|n)i
1= 2!
g mpe—(o0(Bey i, — By, )+i—m+(0—0-Xo+A\)An)?/(202A,) (AA,L')’”
— ]‘:f m=0:m#j . . m! 7
3.k S ef(ao(BtkHthk)+j7i+(00797)\0+)\)An) /(262A,) (AA,)?
1=0 il
which concludes the desired result. O

We next fix o € (0, %), and split Sf in two separate terms as follows
P _ gp P —.gP P
Sj = Sj 1{|Btk+1thk|§A%} + Sj 1{|Btk+1thk|>A%} — Sl,j + S2,j

Furthermore, we write Spj Sflj + S 25 and ng Sglj + S 2.j» Where SP 1, and S 1
contain the terms Zm<], and SfQ and 5’2 9,; contain the terms Yom m>j I 1}

We have the following estlmates

Lemma 3.2.5. Assume that |0y — 0| < \/riTn and |A\g — \/T’ for some constant C > 0.
Then for allc € R%,5,p >0, k € {0,...,n — 1}, and for n large enough,
_G=-m)? )\A )m
Sty < il I (37)
m<j
- o (AAR)*
SPay <15 € a7 PG +J)PT", (3.8)
>0
Sglj < ]p]‘/\ {|Btk+1—Btk|>A b (39)
) ()\An)e
8225 <17, M1, ~Byl>a9) Z(f Hi+ )P (3.10)
£=0

where (3.9) and (3.10) hold for all n > 1.

Proof. By lower bounding the denominator by the term ¢ = j, we obtain that

5oy e (o0 (Boy =B =t Oo=0-200)8,)° (20 00) A2

SP
11 S B, By 1<any] J; P ,
k1 Ttk ok e—(ao(BtM_l—Btk)-i—(eo—&—/\o—&-)\)An) /(2J2An)(>\?'n)ﬂ
m2 2 m m
Zmp <2]a2Ane %(JO(B%H_B%)"'(QO 0=Ao+A)A )()‘A ) '
{|Btk+1thk|<A } J k )\A m!
m<]
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Conditionally on the event {|By, , — By, | < Aj} and choosing n large enough, we have that

VA, j—m

<

n .

Uo(Bthrl — Btk) + (90 —0— )X —|—>\)An < O'A% +C

for some positive constant C'. Thus, (3.7) holds true.
Now, observing that the function ¢~ (00(Buyyy =By )Hi=m+(Bo=0-20+X)An)?/(20° An)
w.r.t. m, we can upper bound each term by the term m = j + 1 in the sum

lower bounding again the denominator by the term ¢ = j, it follows that

is decreasing

m>j- Moreover,

67(0'0 (Bthrl 7Btk )71+(90797)\0+/\)An)2/(20’2An)

Sp - < 1 a ]."‘
12 = (B, ,—Bi <A : 5
J {IBt) =Bt I<AR} Jj K 6_(60(3%4—1_Btk)+(00_9_)‘0+)‘)A") /(202A,)

jlim — j)!
<3 e (m!J)

m>j

(1—200(B Bty )—2(80—0—Xo+N)A = )Z
. o m2a, 0\ Ptpqr =Pty )= 2P0 =00 Z
—1{|Btk+1_Btk|§A%}1 e 20 e—i‘]
/=1

where we have used the fact that W <1.
Conditionally on the event {|By,,, — By, | < Aj} and choosing n large enough, we get that

VA, _ 1
\/HZ

o) (Btk+1 —Btk)+(90—9—)\0—|—)\)A <00Aa+0

for some positive constant C', from where we deduce .

Inequality follows easily bounding m? by jP. Thus, it remains to show , which
follows similarly as in but choosing the term ¢ = j + 1 to lower bound the denominator,
which yields

(AAR)™
;mP m!

—(00(Bt, .. —Bt, )—14+(0—0—Ao+N) An ) > /(202 A
e ("0( tht1 tk) (6o 0+A) )/(‘7 )Em>]

Shy <1 _ arl+
2,25 = HUBup =By [>A53 7 o~ (00(Bty .y —Bry )= 1+(00—0-X0+N)An)* /(202 An) (AAR)IF1

(J+1)!
> , (AAL)E (G + 1)!
_ - p
= Yy, By >a017, KZ(E I (L+j+1)
=0
S . (A,
S 1{|Btk+1_Btk|>A%}1:fj,k Z(f + J =+ 1)p gl ’
=0
where we have used the fact that (ée!fﬁll))!! <1 O

For all p > 0 and k € {0, ...,n — 1}, set
90'/\ 90’)\
ZJPE[ th [IJC

60)\ ZE [ g(z:A |:(Mtk+1 - Mtk)p

tet1

YG,U,A = th+1:| ‘th:| s

lkt1

L 7 = X, %)

Lemma 3.2.6. Assume that |0y — 0| < \/iTn and | Ao — Al < \/—, for some constant C' > 0.
Then, for all o € ¥, p > 0, and n large enough, there exist constants C1,Ce > 0 such that for
any a € (0,3), k€ {0,...,n — 1},

M90A+M290)\<Cle CzAl 2a'
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Proof. We can write

o
0,0, .
My ZJPE (571X, ] =) _i"E [5(1),1,1' + o+ 820, + Sg,z,j)th] :
=0 j=0

Set ay, := 20%A, log(AoA™!) and appeal to (3.7)) to get that

D FE[StilXa] <3 _5E |15, 55
j=0 7=0

o don, (M0An) ! Gm)? (AA)
Z P o= roA A > e it -

m<j

'm) m
)‘ )‘O)A Z Z j e 4]0'2An (>;f)> efAAn ()\fr:")

m=0 j=m+1

oo oo (j—m—ako) Qa)\om-&-ag\o m
e()\—)\O)A" : : Z jpe_ 402Ap e 102An 6_)\An (AAR)
m!
m=0j=m+1

e}

fe'e) (zfmfak )2 2a>\0m+a§\ m
< e()\—)\O)An / - 402An0 40'2An 0 e_)‘An (AAn)

zPe dz e
+1 m!

m=0""™

\/m-
AR DI (g mZ/ (wv/2075, 4 m -+ ax, Ve~ du
\/m

2a/\0m+axo m
S v GG

1 — Q)
< C(I) B — C cAn
- ( V202A, ) °

for some constants ¢, C' > 0, where ®(-) denotes the distribution function of the standard normal
distribution and we have used the fact that % =202 log(AoA7Y).
On the other hand, using (3.8)),

m)!

— 0 Sl A 1
> B[, l] < Y CRR Y 1y ] < oo

j=0 >0 o j=0

for some constants ¢, C' > 0.
Moreover, using the independence between N and B and (3.9)), we get

wfseo(-35)

00 00
. 0 .
ZJPE [52,1,]"th} < ZJPE |:1j\j,k1{|Btk+1iBtk|>A%}
=0 =0

1
< Ce ™,

for some constants ¢, C' > 0.

Finally, (3.10]) yields

1
thi| < Ce CA?l’L72OC7

Z] E SQ2J|th - PE [1Ak1{‘Btk+1thk‘>A%}

j=0 =0 j=0

for some constants ¢, C' > 0. This shows the estimate for Mﬁ’g’k.
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We next treat Mg @A Observe that

[e.e]
0 A
= LB [S0] = L[5 S+ o, ]
j=0

90>\

Proceeding as for the term M ,"", we conclude the desired result. O

The next technical lemma will be used several times in the sequel.

Lemma 3.2.7. For allw € R, and k € {0,...,n — 1},

E [Egg,oo,xw) []\“ﬂ@ YAl

t); trt1

y0n00 D) _ thﬂ} ‘th} _ A,

t
k+1 nl\,

where A\(€) := Xo + and ¢ € [0, 1].

lw
vnA,
Proof. Using Lemma [3.2.1] we have
B [Ean,ao,xe) [JW(@ 0
Xt

tkt1 123

YOmUO’AM) = th#} ‘th:|

tkt1
th]

—~ — —ut+Llw u+€w) A LwAp
=g} [(MW) — M/\(Z)) e avian Btip1 —Buy)— +(Noyyy =Ney ) log 5+ 2R ’th]

_ O | (0 T dP
—E [(Mtk+l - My, ) dQ\@n,/\(Z)ﬁo,Ao,oo
k

Ok trt1 tg
— — —utbw (—uttw)? LwAp
—E [MtAk(@) _ MtAk(é)] EMO [eaﬂTH(BtkﬂBtk) 20Zn T (Nt =Ny, log Wﬁm]
+1
fw
- Ana

where the second expectation equals 1 and @k = @Zn,)\(ﬁ),eov\o,fm. Here we have used the inde-

pendence between My, — My, , Ny, — Ny, By, — By, , and Xy, . Thus, the result follows. [

3.3 Proof of Theorem [3.1.1]

In this section, the proof of Theorem [3.1.1] will be divided into several steps. Recall the
decomposition in . Then we begin deriving a stochastic expansion of the log-likelihood ratio
using Propositions[3:2.T]and [3:2:2] The second step is devoted to treat the negligible contributions
of this expansion. Finally, the last step concludes the LAN property by applying the central limit
theorem for triangular arrays.

3.3.1 Expansion of the log-likelihood ratio

¢ Y4
For € € [0,1], set 8(¢) = On(l,u) := 6o + niznvg(@ = on(l,v) == oo + 7%7A(€) =
J4
An(l,w) == Ao+ \/ann Then, from the Markov property and Proposition |3.2.1}
n—1
P (X" (0,00, \0)) pPno00
1 = 1 —_— An’ X ,X
o8 p (Xn, (00, 00, )\0)) P 08 p@o,ao,)\o ( ty tk+1)
“ L 500,000
- u Ogp
N l;) nA, /0 pf(0).70.%0 (AthkthkH) dl
n—1 U 1 1 =6(0) A 9([) N
B k=0 \/ma()/o Eth’ o |:Wtk+1 Wtk tpa1 07 = th+1] dl.
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Equation (3.5)) yields that

00 Wiy = W) = Y0700 =y 000 — g, — (M

A
tea1 k tpt1 Mtko) ) (311)
which gives

P (X™; (0,00, X))

n—1
1 H
ng(Xn;(QO,O.()’)\O kzzjofkn"i‘ kn
where
u 1 ul\,,
= — B — B, ) — ,
ék,n \/nTnUg <00 ( tet1 tk) 2\/nT)
) U 1 ~\ ~A (Z) 00, A A 0(£),00,A
Hign := \/rEUT% <Ntk(:-1 - Ntko _/0 Xty o |:Mt1£‘rl tko Y;5k+1 o= th“} de ).

Again the Markov property and Proposition [3:2.1] give

n. n—1 1 9n70(5)7>\n
(X 7(0n70n7)‘n)) v / 80-])
1 =N — [ (A, Xy, Xty ) dE
og p (X" (0,00, \n)) k:z%) n Jo pen,a(ﬁ))\n ( ty, tk+1)
n—1
~9n70’(£) On,o (£ - 1
f/ < 0)A, th [(Wtk+1 Wtk ’Ytkﬂ _th+1:| —J(&> dr.

Then, using (3.11)) with (0,,0(¢), A,) instead of (8(£), 00, Ao), we get that

b (Xn7 (GTH On,s )\n))

n—1
lo = n+ Mkn),
gp(Xna(enaUOa)‘n)) kz:(:)(nk’ k7 )
where
) | o2 9 JANS
moi= 7 (ot (B = 800" = 5
v (11 1 S ~30) 2 S S
Mk,n = n/o Ana(£>3{ (QOAn + Ntk(:—l — Ntk()) + 209 (Btk+1 — Btk) (90An + Ntk(l-l Ntk())

—~ 2
An
tet1 Mtk )

Ei?tv:(g) JAn, |: (0 A + MAn

+20(0) (Wi, = Way) (6280 + DY, = D)

lkt1

Yen,U(Z),/\n = th+1:| }dﬁ

Finally, using the Markov property and Proposition [3.2.2

p(Xn7(9n7007 w a)\p n100,A
o8 s o) kZO Nl S eI (B X )

1 O A
- 3 w ! F0n,00,\(£) _Wtk+1 - W, + Mtk+1 B Mtk Yenﬂo,)\(f) - X dr
a NG o A(0) tht1 = Pkt )

Now, from (3.11)) with (6, 09, A(¢)) instead of (8(£), 00, Ag), we deduce that

n—1
p(X”;(ng, An))
lo = n— Rin),
® (X7 (On 0, V) kzzo(ﬁ ki = Rn)
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where
w 1 wA, ul,
n = - B B
B Vnh, o2 ("0 e = Bu) + 5 e m)
O _ o
n:a ) tk 1 143 On,00,A(6)
th " W Y;kJrl ’ = Xy | A6, (3.12)

tet+1

w =0y,00,A(£
Ry = N cr / <Ntk+1 AVt EXz oA |:Mtk+1 — My,

Yﬁn,oo,)\(@) _ th+1:|) de.

Therefore, we have obtained the following expansion of the log-likelihood ratio

—_

p(Xn§(9n70m>‘n)) -
lo
s p (X7 (00,00, X0))

(5kn+nkn+6kn+Hkn+Mkn Rk,n)v
k=0

where, as we will see in the next subsections, the random variables & ., Mk n, Bk,n are the terms

that contribute to the limit in Theorem and Hy, ,, M}, ,, and Ry, are the negligible contri-
butions.

3.3.2 Negligible contributions

Pf:90,*0

Lemma 3.3.1. Assume condition (3.2). Then, asn — 0o, Y ,_ OHkn — 0.

Proof. Since the Hj,, are ftk+1 -measurable it suffices to show that conditions (i) and (ii) of
Lemma, - hold for the sequence (Hy,)i>1 under the measure pfo.o0,A0,

First, using the fact that E[Nt),‘:ir1 - N’\O\th] =0, and Lemma we get that

n—1 R n—1
> B |:Hk7n‘ftk:| => B ]
k=0 k=0
U 1 L 0(¢),00,M0 Ao 170 |1-0(€),00,)0
ST B [, = A Y = X[ e
™70 k=0
u 1 l 1 Ao T o d?AO
T vVniA, 073 ;;)/0 E@k [(Mtk“ - M ) dQ9(f) »A0,00,A0,00 X | de
1 n—1 . 22 2
[, ) B
n Y0 —g 0
where Q) = Q\Z(Z),Aoﬁo,)\o,oo Thus, using the independence between My, — My, , By, ., — By,
and Xy, , together with E5 [M{;O ) M)‘O] = E[MtAkO ) Mé‘c‘)] = 0, we conclude that the term (i)

of Lemma [1.4.1] is actually equal to 0 for alln > 1.
We next show that (ii) of Lemma_ 1.4.1) holds. By Cauchy-Schwarz’s and Jensen’s inequalities,
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together with Lemma [3.2.6, for all « € (0, ) and j1~ =j—Jjlj , we get that
Ik

Z Efo:70:20 [le n’ftk]
k=0

w1 ! ~0(0),00,1

2
Y;zifl),a(),)\O — th+1:|) ‘th] v

k=0
n—1 U2 1 1

) o A 061/0
[e] 2

X ZE ljj,k <] — E%flzaao,ko [(]\4thrl — Mtk) (1‘7]1C + 1J;k) Y;i(fi,oo,)xo — thH]) ’th] dl
=0

_ L2 2 [ 17000020 Me(z) 000 g

_kZ:OnAnaé/o ( 1,2 * )

2 1
u- - =)
e Cony =% )

IN
Q

1
n

for some constants C7,Cs > 0. This concludes the desired result. O

. n—1 P%:°0:*0
Lemma 3.3.2. Assume condition (3.2). Then, asn — 00, > .\ —g Ry, — 0.

Proof. Since the Ry, are ]/-:tkﬂ—measurable, it suffices to show that conditions (i) and (ii) of
Lemma under the measure P%:70:% hold true for the sequence (Ry ,)k>1. We start showing
(i). Using the fact that B[N, — Ny, [Xy,] = AoAn, and My, — My, = M) = M) 4 M(0)A,,
together with Lemma [3.2.7] we get that

n—1 R n—1
Z Ef0.90.0 [ka‘}-tk} Z E Rk n|th
k=0 k=0

n—1 1
B w ~01,00,2\(0) On,00,A(€)
~ 2 (ot B [, -0 = X ) a

(MoAn — AoAy) de

:%mz/
=0.

Hence, we conclude that the term (i) of Lemma is actually equal to 0 for all n > 1.

Next, we show condition Lemma [1.4.1{(ii). Proceeding as in Lemma for all a € (0, 3),
we have that

n—1

00,00, 2 T
S e o{Rk,nmk}
k=0

_ 1 )
T:0n,00,A(¢ On,00,\¢
< Z / [(Ntk+1 - Ntk - EXt:O @ |:Mtk+1 - Mtk YtkHUO © = th+1:|> ‘th] dar
k= O
n— 1 2 1
2
< [ (O ) a
k=0 "= 90 JO
2 __ 1
< Clwfe cyal—2a
n

for some constants C7,Cs > 0. Thus, the result follows. O
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P@O,o'o,)\o

Lemma 3.3.3. Assume condition (3.2)). Then, as n — oo, Zz;é My r,

Proof. Since the My ,, are ]/-:tkﬂ—measurable, it suffices to show that conditions (i) and (ii) of
Lemma under the measure P?0:70:% hold for the sequence (My, n)k>1. We start proving (i).
We have

~\
tei1 Ntko)
=2(00 — Xo)An (Xt — Xi,) — (B0 — A0)* A2 — (Nyy, — Ny, )?
+ Q(th-+l - th)(Ntk+1 - Ntk) - 2(90 - )‘O)An(Ntk+1 - Ntk)v

trt1

~ 2
(902 + N, = M)+ 200 (Buyoy — Bry) (B02n + Ny

and
T )’ T T
(0n 2+ My, = M) 4 20(0) (Whyy — W) (00 + DI, — D)
£),An On,0(£),An
— 2 (}/tk-'—l ( ) _ }/;k ( ) ) (enAn —|— Mtk+1 - Mtk - AnAn)

— (OnAy + My, — My, — ApAp)2

This implies that

n—1 n—1 v 1 1
E9070—07)‘0 |:M T i| — / —_— T Ty — T Ty —T: dg,
> oo | F, i ) ng(g)g( 1+ 1o — T3+ Ty — T5)
k=0 k=0
where
w = 2
T = 2\/7A nB [ X — X | Xy, ] = 200\/nTA
—(0o — Mo)2A2Z + (0, — M\n)?A2 + 2)\0MA2
0n, n,0(£),
T3 =E [(Ntkﬂ - Ntk)z - EXt:( A |:(Mtk+1 Mtk ‘Y;‘/Hf( th+1} th} )
T, = 9F [(thﬂ ~X,,) (Ntk+1 _N, Een,a(e) An [th ~ M, nii’f(@’A" _ Xt’““D ’th} 7

>y »\n Z 1\
T5 = 280 (6 = M)E [Ny, — Ny — B N [ My, = My [y O = x|, ]
Clearly,
Co
T1 +Ty)dl| < Cy nt—
Sl VEir g
for some constants C'l, C’g > 0.
Moreover,
> 0,0 (£),\ On,o(£),\
-2 n 2 n,0
e 30 (2 9 (i 1) 2 = ]

_ en,o'(f),)\n en,o'(e))\n
- M1,2 - M2,2 ’

which, together with Lemma [3.2.6] implies that, for all a € (0, %),

n—1 1
v 1 v 6,0 (€),An 6,0 (€),An
—Tsdl| = — — M7 — MG ) de
kzo vnlo A, a( i £ m NVNTE ( 1,2 22 )

VN - ——=s
S C'1 e C28n )

n

for some constants C7,Co > 0.
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In order to treat 75, we proceed as for the term T3 to get that, for all « € (0, %),

n—1
n
<C\/> 021 2a

An

1
1
— —T5dl
;) Vo An ow) ’
for some constants C7,Co > 0.

Using Cauchy-Schwarz’s and Jensen’s inequalities, and proceeding as in Lemma toge-
ther with Lemma , we get that, for all a € (0, %),

=2 1
T4d€
\F/ A, o( Z < v/nl, Jo o)
R0 () 2 V2
( |: Ntk+1 - k _E ¢, " |:Mtk+1 _Mtk Y;ikjjl th+1}) ’th:|> dt
RSN

0,0 (0) An 0,0 (O)An ) /2
<X Jnm, o OP R Vi B

<O ﬂe_ chi—Qa
T VA, ’

for some constants C7,Cy > 0. Consequently, condition (i) of Lemma_ 1.4.1{ holds. We next show
(ii). Applying Holder’s inequality, and the same decomposition as for T3, we get that

n—1 R
Sk (a2, ]

k=0
-1
< 1)2 n 1 1 E H . ’E"Jﬁnp'(é),)\n i Y9”70—(€)7>\n _x 2 X p
= ’)’LA,,Q,L =0 0 0'(6)6 60 )\D th ’Vly)\n tk+1 — tk+1 tr
2 n-l 1
v 2
= (Vi + Vo) de,
naz ko/o (00
where
Vi = - E |1 H, E9n70(f),)\n 1~ E[ Y9n,a(f),)\n - X 2 X
L= Z Tik 0,20 — Xy, Jip T0nAn | Tt = A | »
7=0
V _ = E 1~ Eenva(g)y)\n 1~ ﬁ Yen,o(f),)\n _X 2 X
2= Z Jj,k th J;,k On,An tri1 - tei1 te | »
7=0
and

~ 2 ~
Hpq z, - (QOA + Nt)]\c(iLl - Nti?) + 209 (Btkﬂ - Btk) (00A" + N’i\cgrl B Nt/}eo) :
On,0(£),Ap, On,0(£),An,
nAn T 2 <Y;fk+f( ) - Y;fk 70 ) (gnAn + Mtk+1 - Mtk - )‘nAn)

— (00 Ay + My, — My, — A2
Using equation ({3.1]) and Jensen’s inequality, adding and substracting one term, we get

ZE[IA { n—|—]—)\0A ) + 209 (Btk+1_Btk) (HOAn —|—]—)\0An)

. (w—u)A, .
- <(9nAn +J - )\nAn)2 +2 (JO(Btk+1 - Btk) + W (enAn + ] — )\nAn)

2
g e

k

2(Vii+Via),
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where

V1,1 = Z E |:1j]k{ (90An +5 - AoAn)z + 209 (Bt]€+1 — Btk) (QoAn +5 - AoAn)
=0

- <(9nAn i AnAR)? 42 (ag(BtkH —By,)+ (w_“)A”> (O, + 5 — )\nAn)> }Q)th} ,

Vi,
mU(f)
V12_ 5 E|: [1(7]%

O (£) An
Y ( ) = th+1:|
X <(9nAn +J— AnAn)2 +2 (UO(Btk+1 - Btk) +

tet1

(w‘n\/%&b) (Ol +j — )\nAn)>2 ‘th} .

Basic computations yield that

2 n—1

Z/l Loyl <€
nA%kO o o(£)s i

Now, we treat Vio. In order to deal with the terms that contain the increments of the
Brownian motion, we multiply those increments by 1{|Btk+1*Btk|§A%} + 1{|Btk+1*Btk|>A%}’ for
a € (0, %) Then, for the terms involving LBy, ,, ~Bi|>A5} We bound the conditional expectation
by one, use the independence between B and N, and Cauchy-Schwarz inequality, to ultimately
conclude that these terms can be bounded by

1/2

1
Cil, (E [(Btk-H - Btk)4’th])1/4 (P (|Btk+1 - Btk’ > Ag‘th)) < ClA%Le Coln %

On the other hand, the term involving 1{|Btk,+1*Btk|§A%} can be bounded by Mle:(‘)’a(g)’)‘"

The other terms that do not involve the increment of the Brownian motion can be bounded by
Mf;;’a(e)”\" for p € {0,...,4}. Thus, using Lemma |3.2.6{ we obtain that, for all « € (0, %),

2 n—1
1 7(1
niZ Z/ oy et < Cigge a0

P00,00,>\0
for some constants Cy,Cy > 0. Thus, Vi  — 0 as n — oo.

Applying Jensen’s inequality and equation (3.1]), we obtain that

oo
=0n,0(0),An
<) Bl By [ Hj A,

Yama(e)’)\n = th+1] ’thj

tr41

o

n,O’ 4 A [7 977,70' {4 7A’n

Yefy, 3RO [ O < [

7=0 L m=0:m##j

- ~00.0(0) A 0,0 (0) An
- Z E[ Z Eth ’ { Tk Y;fk+1 O = th+1:| ((‘gnAn +m — )\nAn)Q

7=0 m=0:m##j

w) A\, 2
+ 2 (00(Btk+l Btk) —m + (\/nT)> (QnAn +m — AnAn)> ’th:| .

Observe that V5 can be upper bounded by a sum of the terms Mf;’a(g)’)‘", for p € {0,1,2} and

Mg;‘)’g(e)’A", for p € {0,...,4}. Then, from Lemma [3.2.6, we get that, for all « € (0, %),

1
v 1 ﬁ
Wzk_o/o SV S Crgge T

for some constants C7,Cs > 0. This concludes the desired result. O
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3.3.3 Main contribution : LAN property

Proof. Applylng Lemma-to Ckyn = Ekyn 1k +Brn, we need to consider Ef0:90,40 [(En+1kn+
Brn)" ].Ftk] for r = 1,2 and 4 but this conditional expectation equals E[(§k 5 + Mkn + Bin )" | Fte -
Therefore, it sufﬁces to show that as n — oo :

i
L

- . 2
~ P9 ;005 A U

E 5k,n|ftk 2 _ﬁ7 (313)
— - - g9
k=0
n—1 ~ _ 2

~ P9 L0 A v 2
STE el Fo| T ~5 T (3.14)
_ - - g9
k=0
= =~ 7 P%-90:*0 w? (Tg uw
>_E = (1 + ) + 5, (3.15)
P J 204 Ao a5
— [ 12 ] [ = 2\ Ppb.o0.r0 u?
Y B F | - (E &c,n\ftkD S (3.16)
k=0 ) : - 90
n—1
[ =] [ = 2\ pfo.o0,r0 2

> <E Ml For | — (E nk7n|ftk]) ) DI 22 (3.17)
k=0 . . y 99
nt M ~ r ~ 2 P9 L0\ w2 0'2
Z (E Bl%,n“rtk - (E /Bk,n ftk:|> ) u> ’ 3 (1 + O) , (318)
— L . L of Ao
k=0
= [ = ] I = P%0:90:X0
> (B [gentnl o | = B (6l B ] B [meal ] ) 75570, (3.19)
k=0 ) ) )
— [ = =~ = Pf0:90:20  UW
Z (E fk,n/@k,n —-E gk n|ftk} |:/Bk n ]) — 2 (320)
k=0 - %0
- [ = [ = =~ P?%:90:20
> (B [menBenlPu] =B [mealFo] B [BealZa]) 7550, (3:21)
k=0 ) . )
n-l M 4 ~ P90,0‘0,>\0
Y EGalFu| — 0, (3.22)
k=0 B .
= 4 15 | PP%:2020
Y EmialF| — 0, (3.23)
k=0 .
= 4 5= ] PY:90:20

E 1 Bin — (3.24)
k=0 B

The validity of (3.13)), (3.16)), (3.22), (3.14), and (3.19)) is easily checked by using moment
properties of the Brownian motion and the definitions of & ,, and 7 .

Proof of (3.17)). First, we observe that

n—1 o n—1

> (B [mZ]) =52

k=0 k=0

([ =5

for some constant C' > 0.
On the other hand, since E[(B;,,, — By, )?|Fi,] = A, and E[(Bt,, — B, )*| Fi,] = 302, we
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deduce that as n — o0,

n—1 , = 02 n—1 O'g 4~ 1 A, 2
ZE |:77k‘,n|ftk:| = TLA { </ dﬂ) E |:(Btk+1 - Btk) |’Ftk:| + (/0 o(0) d€>
" k=0

k=0
! 2
— n o) B 9 =
2 [} e [ s [ - )17 |

— 2

=,
o)

which completes the proof of (3.17]).
Proof of (3.23)). It is easy to see that

n—1

> B [t alF <

k=0

31Q

for some constant C' > 0.

Proof of (3.15)). Using (3.12) in page 50 and Lemma we get that as n — oo,
i, ~ w?  uw
S [l ] = - 4
k=0

2
20§ on

Gn,a AW | A T
+Z i, / B[ |2 - B

tht1

Yen’a()’)\(z) = th+1] ‘thj it

w2 UW w 1 w
:_%fa%‘kz:om/o N0 vk,
poniew? w v

20 g o2 2\
which concludes .

Proof of l) First, Lemma yields that as n — oo,

2

n—1 n—1
z@@m@ig(;%gg

w T ~0n.00M0) | TN TN
* o, B R -

P90’0'07>‘O
—

2
o o

tr41

Next, we write

n—1
ZE [/Blzm,‘]:tk] = Sn,l + Sn,? - 2571,37
k=0
where
— 21 wA ul, \ 2
Sy = ~E (B B n )X
1 kZ:O 61 [(JO tet1 — tk) + 2\/@ M) 123
n—1 1 2
L T30n,00,A(8) | 77 (0) Y20 On,00,A(0)
Sn2 = Z A E (/0 /\ 7 tho |:Mtk+1 — Mtk Ytk+10 = th+1:| dﬁ) ‘th] ,
k=0 n
. od  ut )

1
—E B B ) + —
— 08 [<UO Bes ™ tk) 2vnA,, Vnl\,
1

Hn,o PYOREY2Y0) TA0)
<, st [ -

tet+1

Yen,oo)\(g) _ th+1} df’th:|-
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Using moment properties of Brownian motion, we get that as n — oo,

P9:90:20 w2

Sn,l — 3"

)

Since MM — a0 — My, ., — My, — M)Ay, we write Sy 2 = Sp21—2Sn22 +w?A,,, where

trt1 ty

n—1 2 1
o w 1 ~0,,00A0) B
M“%mﬂ@w@% M =M

n—1 o 1
L w 1 =6n,00,A(£) On,00,A(€) _
s kzzon/o O [Ex Mayy = Muy V700 = X | [ X0 | .

tr4+1
. P%:70:%0 .
Observe that Lemma |3.2.7| yields S, 22 — 0 as n — co. Moreover, adding and substrac-

ting the term Ny, ., — Ny, , we write Sp21 = Sn21,1 + Sn2,1,2 — 25,,2,1,3, where

tkt+1

2
yomooAl) Xml d€> ‘th] 7

n—1 ) 1 2
w 1
Spaiqi= E (N — Ny )de ‘X,
n—1 w2
Sn212 = Z A
k=0 n
! 1 g o o 2
x E / o Ny = Ny = B2 O N0y, — My |vm O = x| ) de ’th :
0o A0) k
n-1 9 1
w 1
Sh, = —F — (N, — Ny, ) dV
,2,1,3 kzzo nAn |:/0 )\(E) ( tre41 tk)
1 ~ 00,00, A€ 0,00, (£

Proceeding as in the proof of Lemma one can easily show that S,212 and S, 213

converge to zero in P%0-0_probability as n — co. Moreover, since E[(Ny,,, — Ny, )% Xy, ] =
MoA, 4 (AoAR)?, we deduce that as n — oo,

P%:%0,*0 w?

Sn211 —
Ao

which implies that as n — oo,

P%0,90:%0 w?

SH,Q —_— .
Ao

00,00\
Next, we show that n — oo, Sy 3 PR, Using Lemma [3.2.7] it suffices to show that as

n — 00,

n—1 9 1
w® 1 1
Sn31 = kzo nAnUo/O (D)

00,00,\
Yo7 = Xml] ’an we

tet1

=0r,00,A(0) | 77 2\
x E |:(Btk+l _Btk) EthO (0) [M O _Mtk()

tet1
Using the independence between B and N, we have that

S e i [y
n,3,1 = = nl, oo 0 /\(Z) tk+1 123

=0n,00,\(¢
X (Ntk+1 — Ntk — EthO ) |:Mtk+1 _ Mtk

tet1

Yen’go’)\(é) = th+1]> ‘th] at
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Now, using Cauchy-Schwarz inequality, we get that

n-l 2 1
w 1 1

Sn,, S /
1Szl ,;On\mao 0 O

Tabn,00,A(¢
X (E[ (Ntk+1 — Ny, — EXt:O v [Mtk+1 — My,

9 1/2
Ve =, ) ’kaD B

which converges to zero in P%:70-20_probability as n — oo by proceeding as in Lemma
Consequently, the proof of (3.18) is now completed.
Proof of (3.24). Applying Jensen’s inequality, we get that

5 F, S : A ul, \*
S ] <58 g (- 8 2 ]
=0 |: k} n2A20.8 k+1 k 2\/@ \/m ‘ N
97170' )\f YV A\l 4
+8Z 2A2/ [ o ()|:<Mtk(+3_Mtk())

which converges to zero in P?:70:%0_probability as n — oo, since E[(By, , — By, )*| Xy, ] = 3A2
and for n large enough,

‘E [E?,UOJ(Z) [(Mme) B ]@w))“

tg tet1

tht1

Y7o = th} ‘Xt’“} “

tet1

Yoo NO) _ thﬂ} ’th} ‘ < CA,,

for some constant C' > 0, by using the same arguments as in the proof of Lemma
Proof of (3.20)). Using again Lemma we get that as n — oo,

n—1 9 n—1 2
~ ~ U w uw
EE[ wlFi B [BenlZo| = =55 D ( = oo + 2
gk’ | b ﬁk’ | b 20811 Py 20(2)71 + Jgn
om0 A [ TG TN |y On,00,ME)
\/W/ [ tho [th — MOy e = thﬂ] ‘th} dﬁ)

P%:90:*0
—

Moreover, basic computations yield that as n — oo,

n—1 2

=~ uw u-w
S E [GnfinlFu | = 5 + 1oy (w = 20)
k=0

of dnog

n—1 2 1
urwlAy, 1 ~0n,0070) | T T |1 00,00, 2(0)
_Z QJgnAnm 0 A(f)E [Eth I e D = Xt ’Xt’“ de
uw 1 00,00 M0) | TN TN |5 0,00\
nA 0 / )\ [ By, — Btk) EX oA |:Mtk(+i - Mtk( ) Ytk+1 O — th+1:| ‘th} de,
P90 70, A0 uw
ag ’

where we have used again Lemma [3.2.7 and proceeded as for the term S, 31.
Similarly, we can show (3.21)) and the proof of Theorem is now completed. O]

3.4 Conclusion and Final Comments

As we explained in the Introduction, the argument given here can be extended to more general
cases with further arguments. We try to explain here in few words the strategy in the general
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case. In fact, Lemma can be generalized to the case of stochastic differential equations with
finite number of jumps and random jump size. Looking at the structure of the definition of Sf
just before Lemma one can see that the structure belongs to a large deviation principle for
the process X. In fact, Sf describes a conditional expectation under Jﬁk while the observation

process satisfies j]k The corresponding large deviation estimates are obtained in Lemmas [3.2.5
and Finally one has to take limits in the above argument to obtain the aforementioned
result for general jump driving processes.

3.5 Maximum likelihood estimator

By the Markov property, the log-likelihood function based on X" can be written as follows

0,60, 00, M) = log p(X™; (6o, 00, No))

n—1
(3.25)
- Z logPOD’UO’AO (A, Xy, th+1)'
k=0

The maximum likelihood estimator (gn, On, Xn) of (0o, 00, o) is defined as the solution to the
system of equations

0gln (00,00, A0) =0
Oln (00,00, \0) =0 (3.26)
Oxln(0o, 00, Ao) = 0.

Theorem 3.5.1. Assume condition (3.2)). Then, the maximum likelihood estimators (én, On, Xn)
of (0o, 00, Xo) are consistent and asymptotically efficient. That is, as n — 0o,

~ o~ PGO’UO’/\O
(QTL)O-TL’)‘H) — (907007)‘0)a

and

(V8@ = 00), /(G — 00), V1B G = 20)) S5 N (0,060, 70, 00) )

where N'(0,T(6g, 09, o) ') is a centered R3-valued Gaussian vector with covariance matriz

X+ 0 X
2

(00,00, X0) " = 0 20
A0 0 X

Proof. Using (13.25) and Propositions|3.2.1{ and [3.2.2] (3.26) is equivalent to

n—1 1 100,00, 0 00,00,A0 __ _
k=0 ;OEX% Wtk+1 - Wtk Ytk._,_l - th+1 =0
n—1 1 100,00, 0 2 1y,00,00,M0 _ 1\ _
k=0 (UOAn EX% (Wtk—H - Wtk) Y;S;C_H - th+1 “ o0 ) — 0
A7N  _ Asro
Zn_l Eeo,ao,ko _Wtk+1 - Wtk + Mtk+1 Mtk Yﬂo,UoJ\o - X =0
k=0 th 00 )\O tk+1 tk+1 °

Using (3.11]) with (6, 09, \o) instead of (0(¢), g, Ag) and taking the conditional expectation,
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we obtain that

n—1
é\n =0y + nA, 2 (00 Bt,€+1 Btk) Néﬁ_l Nt);ﬂo)
~ 1 A ~00,00,\ 00,00,\
+An — nA, ] E)?;ko’ ’ |:Mtk+1 — My, Ytk(llo’ ' = th+1] )
0_2 n—1 - - ~ 2
8721 - nAOn ;) (Btk+1 Btk A { (HOAn + Né\ﬁ&-l o Nt)l\co) T 200 (Btk+1 - Btk)

x (B0dn + Ny2 = N0 ) = Eﬁg:m [ (02 + DY

tet1

o~ 2
A
- ML)

+ 200 (Wiy,, = Way) (802, + MY

tot+1

AT
- MY)

00,00,A0 __
}/tk+1 - th+1 ’

9()70'0,)\()
Y, th+1]

trt1

60,00, 0
TLA Z EXt I:Mtk+1 Mtk

An =
1 n—1 00,00, 0
oonln, Ek:o Eth |:Wtk+1 - Wtk

tei1

Y9070'01>\0 — th+1:| + 1

Next, using the fact that as n — oo,

n—1

1 ~\ ~1.\ P?:70:20
— Z <o—0 (Bus — Bu) + Ny, — Npo) 7287,
n

90700)\0 00,00, 0 P90-20:20
A th [Mtkﬂ — M Y;fk+1 th*-l} 0
1 n—1 0 N
2 P%.90:X0
nA E (Btk+1 - Btk) 7 ]-’
" k=0

00,00,A0 _
Y;k_,_l - th+1

TLA ZEHOVUOAO |:Wtk+1 - Wtk

and, by proceeding as for the term Mj, ,,,

~ 2 ~
N { (GOAn + Nt);;O ) Nt)l\co) + 209 (Btk+1 — Btk) (00An + Nt)l\co ) N{ZO)
n
~ —~ 2
0 ) 7A A A
— B { (02 + DEY,, — DEY)

+ 20’0 (Wtk+1 — Wtk) (HoAn + M)\O ]’\\42;0)

tet1

00,00,M0 __ Pf:0:%0
Y, th+1]} — 0,

Tt

we conclude that as n — oo,

Pb:00, 0

(O, Gns M) - == (00,00, Ao)-

On the other hand, we can write

VA, (6, — 6y) = ZCkn1+ZRkn1,

2 _0?) ZCan-l-ZRan,
VA, (A, — Xo) = ZCM:& ZRkn?n
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where
G = = (00 (Buy = Bu) + 20, = ).
e ({38
Gins = g (Vi = N2,

and

—1
N 1 =000
Rimt = /by [ An — N OER M, — M,
nAn =

00,00,A0 __
Y;kﬂ - th+1]> )

i
L

~ 2 ~ ~
A A A
tk+1 - Ntk()) + 200 (Btk+1 - Btk) (90An —'I_ Ntko+1 - Ntk0>

AT
=0 { (90An N

— Blgro [ (602, + DL

tet+1

—_~— 2
A
- MY)

+ 200 (Wi, — Wi,) (HoAn Yy

lkt1

i)

60,00,A0 __
}/;k’-kl - th+1:| }7

1 & ~00,00,\
Rk,n,S = m kzzo (Ntk+1 - Ntk - E)(();ko ¢ [Mtku - Mtk

00,00, 0 __
Y;fkﬂ - thH])

1 =000
s LB M =
k=0

tht1

00,00,A0 __
Y, = th_H]

1 n—1 100,00, 0
Zk:o Eth |:Wtk+1 - Wtk

oonlAny

00,00, 0 __
Y, = thﬂ]

tr4+1
X

1 n—1 NGQ,O’Q,)\O _
OonAn Zkzo Eth |:Wtk+1 Wtk tk+1

YQO,UO,)\O _ th+1:| +1

Notice that the random variables (j 1, Ckn,2, Ck,n,3 are the terms that contribute to the limit
in Theorem On the other hand, it can be checked that the random variables Ry, 1, Rk .2
and Ry, 3 are the negligible terms. Then, applying the central limit theorem for triangular arrays,
we obtain that as n — oo,

~ R ~ L P00,00,>\0
(VBB — 00), V(2 — 08), v/nBn (B = Xo) ) “T22 N (0, 1(600, 00, X0))

where
Ao + O'g 0 X
1(90,0‘0,)\0) = 0 20’8 0
Ao 0 X

00,00\
This, together with the fact that 7, PR 0o as n — 0o, yields

(\/nAn(an —00), /(G — 00), /1B (o — )\0)) P70 €7 (0,T(Bo, 00 M) )

which finishes the proof of Theorem [3.5.1] O
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Chapitre 4

LAN property for a jump-diffusion
process : drift parameter

In this chapter, we consider an ergodic diffusion process with jumps driven by a Brownian
motion and a Poisson random measure associated with a centered pure-jump Lévy process with
finite Lévy measure, whose drift coefficient depends on an unknown parameter. Supposing that
the process is observed discretely at high frequency, we derive the local asymptotic normality
(LAN) property. In order to obtain this result, Malliavin calculus and Girsanov’s theorem are
applied in order to write the log-likelihood ratio in terms of sums of conditional expectations,
for which a central limit theorem for triangular arrays can be applied.

4.1 Introduction and main result

On a complete probability space (2, F, P) defined in Definition we consider the process
X% = (Xf);>0 solution to the following stochastic differential equation with jumps

dX? =b(60, X))dt + o(X)dB; + / o(XP, 2) (N(dt,dz) — v(dz)dt), (4.1)
Ro

where X§ = zg € R, Ry := R\ {0}, B = (B;)i>0 is a standard Brownian motion, and N(dt, dz) is

a Poisson random measure in (R; x Rg, B(R4 x Rp)) independent of B, with intensity measure

v(dz)dt, and finite Lévy measure A = fR v(dz) < oco. The compensated Poisson random measure

is denoted by N(dt,dz) := N(dt,dz) — V(dz)dt Let 7= (Zt)tzo be a centered pure-jump Lévy
process associated with N (dt, dz), i.c., Z, = fo Jr, 2(N(ds, dz) —v(dz)ds), for t > 0. Let {Ft}>0

denote the natural filtration generated by B and N The unknown parameter 6 belongs to ©
which is a closed interval of R. The coefficients b: © xR — R,0: R — R and ¢ : R xRg — R are
measurable functions satistying condition (A1) below under which equation (4.1)) has a unique
.7-} adapted cadlag solution X?. We denote by P? the probability law induced by X 9 and by E?
L(P%)

the expectation with respect to P?. Let —> and = denote the convergence in P?-probability
and in P?-law, respectively.

Recall that the structure of the probability space is given by O =0!x% QQ Q 03 X Q4
F=F'oFr F=FoF ,P=P'@P,P=PaP" and0=0xQ, F=F@F,P=PaP.
We denote by E, E E the expectation with respect to P, P and P respectively.

For fixed #y € © and n > 1, we consider a discrete observation scheme at equidistant
times tp = kA, k € {0,...,n} of the diffusion process X%, which is denoted by X" =
(Xtg, Xty s -y X4, ), where A, < 1. We assume that the sequence of time-step sizes A,, satis-
fies the high-frequency observation condition

nA, —» oo, and A, —0, asn— oc.

We consider the following hypotheses on equation (4.1)).
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66 Chapitre 4. LAN property for a jump-diffusion process : drift parameter

(A1) For any 6 € O, there exists a constant C' > 0 such that for all z,y € R, z, 21, 22 € Ry,

b(6, ) — b
(@, 2) — ey, 2)| < Clz —yllz|, |c(z,2)] < C(1+ |z[)|2],
le(x, 21) — e(x, 29)] < C(1+ |x]) |21 — 22|

b(0,y)| + lo(x) —o(y)| < Cle —yl, [b(0,2)] < C(1+|x]),

(A2) There exists a constant ¢ > 1 such that for all z € R,

1
- <lo(z)| <ec.
c

(A3) For all (z,z) € R x Ry, c(x,z) # 0, and ¢(x,0) = 0. Moreover, there exists a constant
C > 0 such that for all z € Ry,
inf > .
inf |e(z, 2)| 2 Clz]
(A4) The functions b, o and c are of class C' w.r.t. § and z. Each partial derivative 9pb,

Oyb, 0p0 and O,c is of class C! w.r.t. z. Moreover, there exist positive constants C, g, €, 7,
independent of (6,601,602, 2,y,2) € ©3 x R? x Rq such that

(a) [0:0(0, )| + |0po(z)| 4+ |Ope(x, 2)| < C;

(b) |h(-,x)] < C(1+ |x|9) for h(-,x) = agb(ﬁ,x),ﬁgb(e,:n),8§7Qb(0,x) or Oga(x);
(c) [0ob(01, ) — Opb(02, x)| < C[01 — 2| (1 + |2|?) ;

(d) [9b(0,2) — 0pb(6,y)| < Clz —yl;

(e) |0%c(x, 2)| < Clz| (1 + |z|) and |1 4 dpc(z, 2)| > n.

(A5) For any p > 2, fRo |z[Pr(dz) < oo

(A6) The process X% is ergodic in the sense that there exists a unique probability measure
7, (dx) such that as T' — oo,

/ (X0 dt—>/ ) 7a, (dz),

for any my,-integrable function g : R — R.

(A7) There exist constants € > 0, ¢ > 1, p1,p2 >0 and 0 < v,vy < % such that as n — oo,

\/7? <nAn (/ v(dz) +/ u(dz))) — 0.
An {l2[>p2277} {|z|[<p1AL}

(A8) There exist constants ng > 1 and C' > 0 such that

sup max E

o2 ]
n>ng k€{0,...,n}

< 00,

where 7 is as in (AT).

Remark 4.1.1. In the case where the jump coefficient ¢ is lower bounded, then (A8) implies
that [ e“?’u(dz) < oo for some C > 0, which in particular implies (A5).
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A detailed explanation on the hypotheses is given in the subsection of the introductory
chapter.

Conditions (A1)-(A2) imply that the law of the discrete observation (X, X7 ,..., X! )
of the process (X!);>0 has a density in R"*! that we denote by p(-;6). In particular, p(-;6p)
denotes the density of the random vector X™. The main result of this chapter is the following
LAN property.

Theorem 4.1.1. Assume conditions (A1)-(A8). Then, the LAN property holds for the likelihood
at Oy with rate of convergence \/nA,, and asymptotic Fisher information T'(6p). That is, for all
u € R, as n — oo,

P(X";60,) % ?

) u

where 0, = 0y + =, and N(0,T'(0y)) is a centered Gaussian random variable with variance

o) - [ (W}zwm

Remark 4.1.2. In the case where the drift coefficient is bounded, condition (A8) is not needed.

Remark 4.1.3. We remark that T'(0y) is identical to the asymptotic Fisher information for
ergodic diffusion processes without jumps (see [25, Theorem 4.1]). This is due to the fact that
the jump component is dominated over by the Gaussian component, which will be seen in the

discussion of the subsection [{.3.1]

Example 4.1.1. 1) Consider the Ornstein-Uhlenbeck process with jumps defined as

t t _
Xf =x0— 0/ ngs +oB; + / / zN (ds,dz),
0 0 JRy

where § > 0, 0 € Ry and the Lévy measure satisfies (A5), (AT), and is finite. Then X% is ergodic
in the sense of (A6), and the invariant probability measure mg(dz) can be calculated explicitly
(see [65, Theorem 17.5 and Corollary 17.9] and [53, Theorem 2.6]). In particular,

INC) ::/R:Zm(dx) = % <1+ 012/1&0 Z2V(dz)) .

In addition, assume that there exists a constant C' > 0 such that fRo eCZQZ/(dz) < 00. Then, the
infinitesimal generator of D& satisfies that AeC7? < —01609”2 + ¢o, for some constants c1,co > 0.
Then, by [53, Theorem 2.2/, condition (A8) is satisfied.

As a consequence of Theorem the LAN property holds with rate of convergence v/nA,
and asymptotic Fisher information T'(0p).

2) Consider the process

¢
Xf:x0+9t+o'Bt+// zN (ds,dz),
0 JRo

where € R and 0 € Ry, and the Lévy measure is finite. Under conditions (A5) and (AT)-
(A8), the LAN property holds with rate of convergence v/nA,, and asymptotic Fisher information
['(6y) = # In this case condition (AG6) fails.

3) Assume that v(dz) has compact support on {c < |z| < C}, for some constants ¢,C > 0.
In this case, condition (A'T) holds.



68 Chapitre 4. LAN property for a jump-diffusion process : drift parameter

4) Assume that v(dz) = p(2)1{,>11dz, where ¢ is the standard Gaussian density. Then, for
n sufficiently large,

1

q
\/Zl (nAn (/ v(dz) +/ I/(dz)))
AL {121>p2077} {121<p1 A}

1
q —
= \/7? nAn/ v(dz) ] < cqf (nAy, ) —eafn”!
A (2[>p2A77) A

n

which tends to zero asm — oo for alle >0, ¢ > 1, p1,p2 >0 and 0 < v,y < %, and thus (AT)
holds.

As usual, constants will be denoted by C' or ¢ and they will always be independent of time
and A, but may depend on bounds for the set @. They may change of value from one line to
the next.

4.2 Preliminaries

In this section we introduce some preliminary results needed for the proof of Theorem [4.1.1

We start as in Gobet [24] applying the integration by parts formula of the Malliavin calculus
on the Wiener space to analyze the log-likelihood function. In order to avoid confusion with
the observed process X?, we introduce an extra probabilistic representation of X? where the
Malliavin calculus will be applied. That is, consider the flow Y9(s,z) = (Y(s,z),t > s), z € R
on the time interval [s, 00) and with initial condition Y (s, z) = x satisfying

Y (s,z) =z + /t b8, Y (s, z))du + /t o (Y0 (s,z))dW,

' 6 —v(dz)du

where W = (W})¢>0 is a Brownian motion, M (dt, dz) is a Poisson random measure with intensity

(4.2)

measure v(dz)dt associated with a centered pure-jump Lévy process 7 = (Z)tzo independent
of W, and we denote by M (dt,dz) := M (dt,dz) — v(dz)dt the compensated Poisson random
measure. In particular, we write Yte = Ytg (0,x0), for all t > 0. That is,

v? :x0+/0t b(b, Ye)du—i—/ NdW, +/ /R M (du,dz) — v(dz)du). (4.3)

Here, we consider the Malliavin calculus on the Wiener space induced by the Brownian
motion W, and we denote by D and ¢ the Malliavin derivative and the Skorohod integral with
respect to W on each interval [tg,ty 1], respectively (see the Definition and the discussion
following it). For all A € F, let us denote PQ(A) = E[lA\Yti = z]. We denote by Ef the
expectation with respect to Pg. That is, for all F-measurable random variable V', we have that
EJ[V] = E[V[Y = a].

Under conditions (A1)-(A4), for any ¢ > s the law of Y}? conditioned on Y = x admits a
positive transition density p?(t — s, z,y), which is differentiable w.r.t. 8. As a consequence of [24],
Proposition 4.1|, we have the following expression for the derivative of the log-likelihood function
w.r.t. 6 in terms of a conditional expectation, although one can also follow the same steps as in
the proof of Proposition [3.2.1

Proposition 4.2.1. Assume conditions (A1)-(A4). Then for all k € {0,....n—1} and 0 € O,

7 3= B 00 i, ]
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where UY (ty,, x) = (DthiH(tk,:L'))* =
[tr, the1], and the processes (9pY, (ty, x),
solutions to linear equations

(0:Y | (th, ) 7L 0YY (t, )0~ (V1 (tr, ) for all t €
t € [te,tr1]) and (0:YP (tg,x),t € [th,try1]) denote the

t
Y (ty, ) = / <89b(0,Y89(tk,x))+(9:61)(9,Yse(tk,w))(?ng(tk,x)> ds

lk

0uo (VO (0 2))05Y? (b )W + / [ 0,07 (t1,2), 20002 t,2) M (s ),

173

t
Y (tyox) =1+ | 0.0(0,Y2 (ty, )0, Y2 (ty, x)ds + 80( O (t, 2)) 0 YE (ty, 2)dW

tr ti
t o~
+ / Duc(YE (th,2), 2)0uY P (1, ) M (ds, ).
Ro

We have the following decomposition of the Skorohod integral appearing in the conditional
expectation of Proposition [4.2.1]

Lemma 4.2.1. Under conditions (A1)-(A4), for all € © and k € {0,...,n — 1},

6 (D0, (s @)U (8, 2) ) = Dob(0, Y1 )0 (V1) (Ve

tkt+1

— Y- b0, YA,
0.k 0.k 0.k 0.k 0.k 0.k

where
Rak; L /tk+l D 89}/;%-4-1 (tk,x) (tk) ) dS
o tr aY;Z-H(tk’x) (Ye(tk’ )) 7
Rﬁ,k A /tk+l 89b(97}/36(tk’x))d8 /tk+1 aﬂch (tkv‘r) N aafxfti (tk’x) dW.
2 t DY (ty, x) th o(Y(ty,x))  o(YE(t,x)) v
Ak /tkﬂ Opb(8, Y (tx, ) _ Ogb(0, Yy (b)) | /tk“ OaYi, (tr, @)
s th 0, Y (ty, x) 0, Y7 (ty, x) b oV (te,m) 7
trt
ROF - = A, 09b(0, Vo 2(Y)) /t (b0, 72) —b(0,Y2)) ds,
k
trt
RYY - = 2,00b(0, Y )o2(Y,) /t (0' Y —o(vf )) AW,
0.k ktk“
Ry s = 8,000,200 [ [ o2 o) (s, ),
k 0
and

aHY;ZJrl trt1 agb 9 Ye tk, )) 0
DS(é vy -/ ( 0 0ty ayp 0¥ o)

T tk+1

DY (ty., )
2 Y@ St ) )
+ 05 90(0,Y), (tk, x))iagcyue(tk, ) du

Proof. By Itd’s formula,

. / 0ub(0, Y (1, 7)) — (a0 (VY (11, )))”
- 0. Y (ty, x) b

8 o Ye (tk, x), ))
/tk /]RO 14 0pe(YY (ty, x )) tk, (dz>d8

a Yo (t
tr RQ +8 C tk: )) 8IEY6 tk‘?

s

" a0 (VY (th, 7))

d —
’ 8$}/;9(tk7x)

_— dWS
0xY (ty, )
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which implies that

80}/;1“1 tk’x) /tlﬁ_1 89()(9 Y (tka ))ds
t

(
tk+1(t1€’ x) a Y (tk’ )
Then, using the product rule [57, (1.48)], we obtain that

o ) b1 9gb(0, Y (ty, ) /tkﬂ 0,Y0(ty,, )
(tr, @ " 8, Y (ty, x) b o(YO(ty, )

_/tkHD Op tk+1( ks ) 3xYZ"(tk,:E) ds.
" 0.Y0  (tg,x) ) o(YE(ty, )

trt1

k

6 (00Y,, (ths ) W,

8 YY (ty,
We next add and substract the term M
o (Yy, ()
9pb(8,Y (ty.x))

92Y/) (tk: )

in the second integral above, and next we add

and substract the term in the first one. This, together the fact that Ytz (tg,x) =

Yf

k

=z, yields
_ 0, 0, 0,
5 (a,,y;iﬂ (t, 2) U (ty, m)) — An0pb(0, Y )o (YY) (Wi, — Wi, ) + RO® + RO® 4+ RO®. (4.4

On the other hand, by equation (4.3)) we have that

trt+1
Wy =W = o 070) (¥, =i =038 = [ (b0.52) 000,32 ) s

[ oty o) aw - [ [ [ vt s 2)).

123

which concludes the desired result. O

We will use the following estimates for the solution to (4.2)).

Lemma 4.2.2. Assume conditions (A1) and (A5).
(i) For anyp > 2 and 6 € ©, there exists a constant Cp, > 0 such that for all k € {0,...,n—1}
and t € [tk, tk+1],

p P
BV () = Y ()| |V (1) = 2] < Cplt = a3 (14 [ ).

(ii) For any function g : © x R — R with polynomial growth in x uniformly in 0 € ©, there
exist constants C,q > 0 such that for all k € {0,...,n — 1} and t € [tx, tx+1],

B [|9(0. ¥t 2)| [V (b1, 2) = 2] < C (1 +lal?)..

Moreover, all these statements remain valid for X°.

Under conditions (A1), (A2) and (A4), for any k € {0,...,n — 1} and ¢ > {j, the random
variables Y (ty, x), .Y (tr, x), (0. Y, (t, x)) "' and 9pY,? (t1, ) belong to D2 (see [61, Theorem
3]).

Assuming conditions (A1)-(A5) and using Gronwall’s inequality, one can easily check that
for any € © and p > 2, there exist constants Cp, g > 0 such that for all £k € {0,...,n — 1} and
te [tkatk+1]7

p 1 0 -
t (tka 33‘))‘ + ’axne(tk’l,))‘li ‘Y;fk(tka 33‘) - l‘]
+ sup E HDsYte(tk,x))p ‘}Qz(tk,x) = l’} <(Cp, and
SE[tk,tk+1]
0 Ply-0 _ q
sup B || Dy (0,0t 0)) | [V ) = 2] < €, (14 ).

Se[tk,tk+1}
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As a consequence, we have the following estimates, which follow easily from (4.4), Lemma m
and properties of the moments of the Brownian motion.

Lemma 4.2.3. Under conditions (A1)-(A5), for any 6 € © and p > 2, there exist constants
Cp,q > 0 such that for all k € {0,...,n — 1},

B[RY" + RY* + RS — REF|VE () = 2] =0, (4.5)
p 3p+1
B[|RYF + R* + RE* — BE* V0 (th0) = 2] < CoAn7 (1+1al), (4.6)
0 0 P9 ¥
B {16 (90, (o 20 (14 0) )| [ () = 2] < G (14 [a]?). (4.7)

We next recall Girsanov’s theorem on each interval [ty, txy1].

Lemma 4.2.4. Under conditions (A1) and (A2), for all 0,0, € ©, and k € {0, ...,n—1}, define
a measure

bht1 BO.X1) =001, X)) yp 4 1 ftk+1 (b(e,xw—bwl,xw)zdt

Qi =E [lAe woo o exy Pty ey ,
~ ~ ~ A91 6
for all A € F. Then Qzl’e s a probability measure and under le’ the process By L = B, +

ftk+1 b(H,Xt)—b(Gl,Xt)

te o (X1) dt is a Brownian motion, for all t € [ty tr11].

Lemma 4.2.5. Assume conditions (A1), (A2), and (A4)(b). Let 0,01 € © such that |0 —6;| <

\/nci, for some constant C > 0. Then there exist constants C,q > 0 such that for any random

variable V, and k € {0, ...,n — 1},
< g (et [ (e [vepe]) e

1% (fg - 1> ‘ka]
Q"

where Eg,, denotes the expectation under the probability measure po defined as

E_ 0,0

k

dﬁa ftk+1 b(o, Xt)( b()91 Xe) 4B, — a2 tk+1 (b(9vXtd)(;?t(t>91vXt))2dt
dQ617
for all o € [0, 1].
Proof. Observe that
dp Lt (0, Xy) — b(61, X b(0, X;) — b(61, X dp~
AH—lz// (6, X1) — bl6n, t><dBt—a(’ ) — b6, t)dt) ——da.
dQ t o(Xt) o(Xy) dQ
Consider the process W = (W) e[y, 1,,) defined by

(0, X,) — b0y, X4
Wt::Bt—a/ (0, Xs) — b(01, Xs)
ti U(XS)

By Girsanov’s theorem, W is a Brownian motion under pe.
Then, using Girsanov’s theorem, Cauchy-Schwarz inequality, and hypotheses (A2), (A4)(b),
together with Lemmam (ii), we get that

(i)

E

Elsa [V /t:k-H b(a,th&lzgeo,Xt)th’ka} do
1 1/2 1 (0, Xy) — b(0o, X¢) |7 V2

g/o (Ef,a [Vz‘kaD (Efm [/t : : ‘kaD da

< g (o) [ (e [vee]) e

U(Xt)
for some constants C, g > 0. Thus, the result follows. O

01,0
Q.

dW;
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For any ¢ > s and ¢ > 0, we denote by q?i) (t—s,z,y) the transition density of Y;e conditioned
on Y? =z and M; — M, = i, where M; = M([0,¢] x R). That is,

p(t—s,2,y) Zq (t—s,z,y)e - A=) (4.8)

7!

From [25, Proposition 1.2], for any # € © there exist constants ¢,C' > 1 such that for all
0<t<1,and z,y € R,

_y—n)?

1 _c(yﬂc)2 etz 0 2
e t e < tx,y) < —e ot e, 4.9
o7 <dyltry) < (4.9)
For any t > s and 7 > 1, we denote by q(ei) (t —s,x,y;a1,...,a;) the transition density of

Y conditioned on Y! = x, M; — M, = i and A/N\[S’t] = {ai,...,a;}, where K[s,t] are the jump
amplitudes of Z on the interval [s, ], i.e, A/N\[S?t] ={AZy;s<u<th
Lemma 4.2.6. Under conditions (A1)-(A4), for all § € © and n large enough, there exist
constants C1,Cq,Cs > 0 such that for all a,z,y € R,

1 _(—z—c(z,a)?

e C3bn

VA,
Proof. Using the Chapman-Kolmogorov equation in terms of transition density and the fact that

the distribution of the jump time conditioned on My, ., — My, = 1 is a uniform distribution on
[tk, trt1], together with (4.9)), we get that

Q(el)(An, z,y; a) < CleczAn(zer(lﬂQ)aQ)

tet+1
qa)(Amﬂ?,y; a) = A / / oy (t = tr @, 2) g (tryr — 1,2 + (2, a), y)dzdt

tot1 (z=o)? _(=z=c(z.a))®
/ e T e(t— tk)e (t—tk)xQL(z c(tk_,_l*t) eC(tk+1—t)(Z+C(Z,a))2dZdt’
R

t—tr Vi —1

for some constants ¢, C' > 1.
We next use the change of variables u := ¢(z) := z + ¢(z,a) — © — ¢(z,a). Observe that
¢(x) = 0. Moreover, from hypotheses (A4)(a) and (e),

n < |¢'(2)] =1+ d:c(z,0)| < B,

for some constants 3,17 > 0. Therefore, the mapping z — ¢(z) admits an inverse function ¢~
Thus, for any u € R, there exists £ € (0,u) or £ € (u,0) such that

1

Wl

5 Sl - Ol = S S

lul
g
which yields

( 71(”)_5971(0))2 1 7(y7ufzfc(z,a))2
c(t—tg) [t C(tk+1*t)

tet1
O (A, z,y;a
Q(l)( ny Ly Y, ) /]R \/ﬁ \/m
« €€ c(t—ty)x? e (tk+1—t)(u+r+c(a:,a))2dudt
te+1 u? 1 _ (y—u—x—c(z,0))?
< — / e Cﬂz(t—tk) - ¢ c(tp41—1)
= A N = Vi — €

o2eltii1—tu® Lehna® 2eAn (a+e(@,)? g, o

We next use the fact that

g IR w0 _a-2sal?
o By 2ttt - AZ(t—ty) <o Bty
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to get that for n large enough, there exists C' > 0 such that

0 eHcAna® JcA b _(=c?p2a%)u?
401y (Bn, T, y30) < 0T 00 (m / e cB2(i—ty)
R\ e (¢ — 1)
252A2 k
_ymu—z—c(z,a))?
X 76 “Uet1=t dudt
Vi —t

(y—z—c(z,a))?

52
c ﬁ(t—tk)thk_'_l—t)
e <1*62B2A" dt.

tet1 1

2
(2 \/Jw(t—tk)qttkﬂ—t)

50Anx2 4cAn02(:p a) < ¢
Ay,

Next, observe that for n large enough there exist constants g1, 82 > 0 such that

62

Ap<—F
Prén <97 126272

(t—tr) + tpr1 — t < BalAp,

from where we deduce that

2 2 1 _(w-e—e(@a)?
q?l)(Anvxv% a) < Cedohnt ghelnc™(za) __—__ o An .

VA
Finally, hypothesis (A1) implies the desired result. O
Consider the events fzk = {Nt,,, — N, =i} and jlk = {My, ., — My, =i}, fori=0,1and
k € {0,...,n — 1}, where Ny = N([0,t] x R). We denote by K[S ¢ the jump amplitudes of Z on
the interval [s, ], i.e, Ajg g := {AZy;s < u < t}, and by p(dz) = ( %) the jump size distribution
i

of Z. As in Lemma we have the following expressions for the conditional expectations in

terms of the transition densities.

Lemma 4.2.7. Under conditions (A1)-(A4), for all k € {0,....,n — 1} and 6 € O,

tet+1
EAeeO{ljk< th[ Jlk/ / Yt, M (ds,dz)

2
Ytzﬂ = th+1:| ) ‘th]

) (4.10)
/ fRo Q(l) A, Xy, ysa)e (X, a) p(da)e™ ARnAA, 0 (A, X ) “MAn g
— s ) € Y
R pa(An, tha y) Q(O) tk Y Y
th+1 0 2
Ae .00 </ / th, dS dZ)E I:lj'()’k Y;k+1 = th+1]) ‘th
4.11
/ / o AMth’y) Yy (An, X Je AN (Xy, , a)dyp(da) o
q n yysa)e "AQpC ,a)ayplaa),
RO An;thvy) (1) tk tk
an
let1 0
’\9 ,00 |: (/ / th, dS dz)E |:1<71,k i/vtk+1 - th+1:|
tet1 2
B, [ Jlk/ / Vi )M (s, d2) Vi, = Xt’““]) ‘th] (4.12)

pe(Ana thv y)
X q?l) (An, X1y, 3 Z)efAA” AALdyp(dz).

_ 2
_/ /(fRo Cth,Z _C(th7a))Q(l)(Anathuy;a)u(da)e AA”AA?I)
Ro
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Proof. Using Bayes’ formula, we get that

te+1
th |: Jlk/ / }/tk’ dS dZ)

YtkH th+1:|
Eg(tk |: ( tk7A[tk,tk+1]) Jl,k:| ngtk (Jl,k>
N pe(An7th7th+1)

_ f]RO Q(el)(An’ thvthH ) a)c (th-’a) N(da)e_AAnAAn
pe(A’na th ) th+1)

v topr X1 }

This, together with Bayes’ formula again, implies that
tet1
EQZ"’O [ Jo ( X, [ 7, k/ / tk’ M (ds,dz)|Y;
_ ~9.60 (A
= W )
which implies (4.10)). Similarly,
et =0 0 ’
Egoo ( / / e(X,., 2)N(ds, d=)E%, [150* e —Xml]) X,

0 “AAL N\ 2
—~ 2 q(O)(Am th7th+1)€ "
= E@zygo lt/]\l,k (C (th’ A[tmt}ﬁ—l})) < ) ‘th

pe(Anathaxthrl
0 Y 2
q(0) (B Xy Xy y Je e )
_/ E- 5% ( po(An7thath+1) )Jl,kaA[tk,tk+1} = {a}, Xy, | ¢*(Xy,,a)

2
tk+1 th+1:| ) ‘th:|

) E fRo Am tha th+1a )C (tha a) M(da)ei)\An AA, ‘j\ be
QZ&O (Ana th ) th+1) R

X @2790 (K[tk tk+1] € da, ‘j\l,k‘th)

Q(O) ny tha y) ~AAn 2 0 A )
/ / (1) (An, Xoy, y;a)e” "2 AR (Xy, , a)dyp(da),
RO n7 th 9 y)

which shows (4.11]). The proof of (4.12)) follows along the same lines and is therefore omitted. [

By abuse of notation, consider the events jg k= {Nt,C T
2}. Set I = {p1AY < |a| < p2 A"} and A, = [ v(
from hypothesis (A7). For i = 0,1, 2, set

tet1
M; = Ego00 [1 7 < / / (X4, 2)N(ds, dz)
k ik tr I
=0 bt 0 0 ?
~ B, [/t /Ic(Ytk,z)M(ds,dz) Y, = thﬂ} > ’th].
k

Recall that for the simple Lévy process (3.1)), we used a large deviation principle by condi-
tioning on the number of jumps within the conditional expectation in order to obtain the large

deviation estimates (see Lemma [3.2.6)). For the non-linear model (4.1f), now we will obtain the
parallel of Lemma [3.2.6] in our case.

L > 2 and Jog = {My,,, — Mt >

k
where p1,p2 > 0and 0 < v,y < 5 are




4.2. Preliminaries 75

Lemma 4.2.8. Under conditions (A1)-(A5), for any 6 € © and n large enough, there exist
constants C,Cy,Cy > 0, such that for all o € (v, %), Qg € (i, %), and k € {0,...,n — 1},

1—2 a—
MY < OB (14X, ) (/\nAf/z + A7~ Coal 1) , (4.13)
1—2 _1_ (aVag)—
MY < CeCA TN (141X, ) (AnAfﬂ AL Coan 1) , (4.14)
ME < CAAY2( 4+ X, 2). (4.15)

In particular, (4.15) holds for all n > 1.

Proof. We start showing (4.13). Multiplying the random variable inside the conditional expec-
tation of M by (1J~Ok +1; +1j k), we get that M¢ < Q(M&l + M&Q), where for ¢ =1, 2,

~ tkt1 2
et (8 [ [t - ]
k

By (4.10), we have that

2
f[ q91 (Ana Xt > Ys CL)C (Xt ) a) /’L(da)ei)\nAn )‘nAn _
Mg,y = /]R ( - k k Aoy (D Xy y)e M 2ndy.

p0<A’n7 th ) y)

We next divide the integral in Mg,1 into the subdomains {y : |y— X, | > A%} and {y : |[y— X4, | <
A2}, where a € (v, 3), and call each integral ]\4097171 and M&L?' Therefore, the estimation of MOGJ
will be divided into two parts. One will use large deviation for the continuous process in the first
part. The other will use the fact that the jump parts are significantly bigger than the continuous
parts. This fact will be obtained under condition (A3).

We start bounding Mg,l,l' By (4.8),
(% 0 . LAY
P (A, Xy, y) > /q(l)(An,th,y,a),u(da)e Ay (4.16)
I

Then, using the fact that by (A1), on I, [¢(Xy,,a)| < CA,7 (14| Xy, |) for some constant C' > 0,
and (4.9), we get that

Mg,l,l S CA;?Y (1 + |th|2) / Q(eo) (Ana thvy)dy
{|y7th|>A%}

1 =xy)?

cAnp

An X2
e

< CAP (1+ (X, %) / i dy

e
{ly—Xe,, |>A8} VA

< CA;Q’)/ (1 + |th|2) €CAnXt2k e—ClA%CVfl’

for some constants C,C; > 0 and ¢ > 1. We next treat M3,1,2~ Observe that (4.8) yields

2
(p"(An,th,y)> 2q?o)(An,th,y)e_A"A”/Iq?l)(An,th,y; a)p(da)e A A Ay (417)
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Therefore, using hypothesis (A1) and Lemma we get that for n large enough

Mg,1,2 < CAJY (1+ \th\2) e B\ A, /q?l)(An,th, y;a)u(da)dy

{ly—Xz, |1<ag}

1—2+ 92 1 _(U th_c(xtk a))
< OAD (14X, [2) P28~ X / / ——e GsBn dyp(da)
n ( k ) {|y th|<A“} /An
CplA

- Coln 27X m o
< CAHQPY (1 + ’th.|2) e’? / { / ’ dwl{c(th,a)ZCplA%}

+00
_w?
+ /M e dwl{c(xtk,a)g_cplAg}}M(da)
VC3bn
1-24 v
< CA;ZW (1 + ’th|2) 602An tke COAQ 17

for some constants C,Cy, Cy,C5 > 0, where we have applied Fubini’s theorem, the change of
variables w = y_Xt’“_—c(th’a), and the fact that by (A3), on I, |¢(Xy,,a)| > Cla] > Cp1 A}, for

VCO3Ap
some constant C' > 0, together with e=*»?» )\, A, < \. This shows that for n large enough and

@€ (v,3),

1—2y @
My < AL (14X, ) D18 X e Coni™ (4.18)

)

for some constants C, Cy, C7 > 0.
In order to treat Mg’z, observe that by Jensen and Cauchy-Schwarz inequalities, and hypo-

theses (A1) and (A5), it holds that

tet1
</ / tw M(ds,dz) > ’ = Xy,
This shows (4.13)).

We next show (4.14). As for the term M, we have that M{ < 2(M{, + M{,), where

tot1
M, =E A990|: (/t / (X, 2)N(ds, dz)
k
te+1 2
ka [ J1k/tk / tk’ ds dz) tk+1 th+1]) ‘th:|7
2

tet1
0
M1,2 = EQZ’GO ll‘i,k < Xty |: Jzk/ / }/tk’ ds d’z) Y;’ﬁl th+l:|> )th] '

We start bounding Mﬁl. Adding and substracting the term

trt1 .
/ /1 c(th,z)N(ds,dz)Eg(tk [1 5 Ye = thﬂ]
tr ’

inside the square, we get that Mf,1 < 2(M1971’1 + Mle’m), where

tet+1
Mf,l,l = E@Zﬁo |:1u71,k </t /IC(th,, Z)N(ds, dz)
k

(7 . 2
_ /7; /IC(th, Z)N(dS,dZ)Eg(tk |:1jl,k }/tiJrl = th+1:| > ‘th:| y
k

tet1 ~
0 0 0
My, = E@z,eo [lfm (/t /C(th, z)N(ds, dz)Eth [1{7171c Ytk+1 = thﬂ}
k

tet1 2
th [ Jlk/ / tk’ M (ds, dz)|Y, tk+1 thﬂ]) ‘th}

M, <B < ONAY? (14 X4, )?)
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Observe that M111 (M1110+M1112) Where fori:0,27

trt1 ~
Mlzlvlvl — E GGO [1:]\1,16 </tk /Ic(th,Z)N(dS, dZ)EGth |:1:fz,k

y (4.11)),

2

nathyy) ~Anln 7

1,1,1,0 / / (J?D (An, X4y, y5a)e AnLBn AnAnC2(thu a)dyu(da).
’I’L7 th ) y)

2
}/;ti+l = th+1:|> ’th] .

Again we divide the dy integral into the subdomains {y : |[y— X, | > A%} and {y : |[y— Xy, | <
A2}, where a € (v,31), and call the terms M1971,1,0,1 and M19,1,170,2~ In the same way the term
Mgl,l was treated, we use (4.17) and hypothesis (A1), we obtain that

MYy 01 < OAP (1+ ’th’Q)Aly Xoy [>A }q(eo)(A”’th’y)dy
k
< OGP (L4 [Xy, [?) e Nk emCran™™
for some constants C,C] > 0 and ¢ > 1. Next, yields
P’ (Ans Xy y) > 4oy (An, Xy y)e o, (4.19)

Then, as for the term Mg,1,2’ using hypothesis (A1) and Lemma we get that for n large
enough

{ly th|<An}

2 2 v—
S CAT—LZ’)/ (1 + |th| )CCQAn 'Ythe—CoA% 1’

for some constants C, Cy, Co > 0. Therefore, the term Mﬁl’m satisfies |D
As for the term M&Q, we have that M19,171,2 < C’)\nAim(l + | X3, |?) for some constant C' > 0.

Therefore, the term Mﬁl’l satisfies 1)
We next treat Mle’m. Using li we have that
- 2
_ / / f[ (C(tha Z) - C(tha CL)) Q(Gl) (Anv th7y; a)lu’(da)e Anlin A’VlAn
rJr P (An, Xt,, )

X qly (A, Xy, y; 2)e 20N Andyp(dz).

We next fix ag and ¢ such that % <e<ay< %, and consider the set
EF={ael:|c(Xy,2) —c(X,a) <AE, forall ze I},
We next split the integral inside the square of M19,1,2 over the sets 1px and 1 grye and call both
terms M19,1,2,1 and M19717272. First, (4.16) and Lemma yield that
Mf,1,2,1 < CGMA"AnA}L+25// y(Bn, Xy, 5 2)dyp(dz) < Chy AltTZEe 1 (4.20)

for some constants C,Cy > 0.
Next, we treat M16,1,2,2 by dividing the domain of the dy integral into the subdomains I7 :=
{y:|ly— Xy, —c(Xy,,2)| > A%} and I == {y : |y — X, —c( Xy, 2)| < A%}, and call both terms
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M1971,2,2,1 and Mf,172,2,2' Then, using hypothesis (A1), together with (4.16)) and Lemma , we
get that

y L4y

M{ 1251 < CAZ (14 X4, %) e A"A"Anﬁn//l Q(91)(An,th,y; z)dyp(dz)
1

(=X —e(Xyy )

Gl dyp(dz)

1 2y

< COAY (14X, 2) 92

11

2a 1
< CA;LQ’\/ (1 + |th‘ ) 602An tk e*C@An 0~ :

for some constants C, Cy, Co, C5 > 0.

Next, (4.8]) yields
2
(pg(Ana th ) y)) > pe(Am th ) y) /IQ(GU (Anv th » Ys a)lu’(da)ei)\nAnAnAn-

Then, using hypothesis (A1) and Lemma [4.2.6] we obtain that

M0, < CALY (1+ Xy, ] ) e AN A,

Lt b ikl

0 —AnA
q(l)(An,th,y;z)e nBn )\ A,
X 1 cqe A, Xy, y;a)u(da dyu(dz

(y*Xt —e(Xy va))2
< CA 2y (1 + |X ‘ CQA // /1(Ek)c 4’“CSA—” k ,u(da)
I

Q(Hl)(Aantkaya ) An n)‘nAn

X dyu(dz
pe(ATh tha y) y'u( )

2
1 _(h+c(th,z)—c(Xt ,a))
< OAZY (14X, [2) 227 /// L(ghye —m=e TN
{|h|<AO‘0} VA,
An,th,h—i-th-i-C(th, )7 ) o n)‘nAn

pe(ATH tha h + th + C(tha Z))

q(91)(

X dhp(da)p(dz),

for some constants C,Cy,C3 > 0, where we have used the change of variable h =y — X;, —
(X, 2).

Since |h| < A2 and |c(Xy, , 2) — (X4, a)| > AZ on (EX)¢, for n large enough there exists a
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constant Cy € (0, 1) such that |h + c(Xy,, 2) — c¢(Xy,, a)| > C4AS. Then, we deduce that

C2A2671

1l o, _Ci8n 12+ o
MY 099 < CA,® " (1+|X ?)e Caln X,

// Any tha h + th + C(tha )7 ) —)\nAnAnAn
|h‘<Aa0} (An7th7h+th +C(th,2))

dhu(dz)

2 A2e—1
CiAn

_1_ _ 1-2
= AT (L], P) AN

0 A
q Aant 7:'-/;2)6 " n)‘nAn
// 0 . dyp(dz)
(y—Xu, —e(Xu, 2)| SAZO} P (An, Xi, )

2251

1-2
< OAFTe AT (1 X, ) AT

f] q(gl) (Ang th,y; Z)/,L(dz)e*/\nAn)\nAn
X : dy
=Xy [SAR0+OA (1+1X1, D) (B, X0, )
1 9yta, —Clar! R
_CA e C3 (1_|_|th| )6 b 2
1y, k!
+ CA,? 376 C3 (1 + |th‘3) eC2A” vthk

CQA%efl

_1_ _ta 1-2
< OATTeT T (14 |X [F) 3TN

where we have used the change of variable y := h + X3, + ¢(Xy,, 2), the linear growth condition

on ¢, together with (4.16)).
Therefore, we have shown that for n large enough and g € (e, %),

1—-2 2 2an0—1
ML, <CA, i (1 + | Xt ) 1A T XG o= Cong™

s Ly&y ’

for some constants C, Cy, C7 > 0, which together with (4.20)) gives

C A71172’YX2 7173"/ _ 2009—1
M}, < Ce (141X, ) ()‘"A}LJr26 A e > '

Finally, as for the term Mo 9, We obtain that MfQ + M < O A3/2(1 + | X, |?), which

concludes the proof of (4.14] and - O

Finally, we recall a discrete ergodic theorem.

Lemma 4.2.9. [40, Lemma 8| Assume conditions (A1) and (A6). Consider a differentiable
function g : R — R, whose derivatives have polynomial growth in . Then, as n — oo,

n—1
1 PO
=3 " g(Xe,) — | gla)mg,(dx).
"o R

4.3 Proof of Theorem 4.1.1]

In this section, the proof of Theorem [L.1.T]will be divided into several steps. We begin deriving
a stochastic expansion of the log-likelihood ratio using Proposition [£.2.1] and Lemma [£.:2.1] The
second step is devoted to treat the negligible contributions of this expansion. Finally, the last
step concludes the LAN property by applying the central limit theorem for triangular arrays.
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4.3.1 Expansion of the log-likelihood ratio
By the Markov property and Proposition [£.2.1]

n n—1 (7]
p(X"™;0,) pin
log —/——————2 = E log — (A, Xi,, X
%5 p(X7;60) — o8 peo( te> Xty

n—1 1 0(¢)
u Ogp

1
j : u (¢ (¢
- W IEﬁéi [5 (8 Ytkiz(tk’ )UG( )(tk’Xt’“ ) ‘ tk+1 = Xty | db;
k=0 "

where 0(¢) := 0,,(¢,u) := 0y + \/%.
We next consider the stopping time
= inf {s >0:|AZ| < p1AY or |AZ| > ,OQA,;’Y} , (4.21)
and B B
= inf {s >0:|AZs| < p1Ay or |AZg| > pgAT_ﬂ} , (4.22)

where p1,p2 > 0and 0 < v,y < % are from hypothesis (A7).

Observe that on the event {7 > nA,}, all the jumps of Z in the interval [0, nA,] are in the
interval [p1AY, p2A;”]. Hence, for all w € {7 > nA,}, X7 satisfies

Xf:xo+/0tb(9,X§)ds+/ (X%)dB, +/ / N(ds,dz) — v(dz)ds), (4.23)

for all t € [0,nA,], where recall that I = {z € Ry : p1AY < |z| < p2A,”7}. A similar statement
is true for Y.

Then, multiplying by 1z>,a,} + 1{7<pa,} inside and 1z a1 + 1{7<pa,} outside the
conditional expectation above, we get that

p(X";0,) u / 1,0 3.0
1 g Z 72 777 ) de
8 (Xn;eo) nA3 ko k"+ ’fm) :

k=0

where

Zl@

o(
kn_E

0 [5 (a Y)Y (b, X )UO (14, X,,) ) ( v = thﬂ} 1rcnan).
)

9
Zg:ﬁ ( [(5 (8 Y;:k( z(tkath)U (¢ )(tkvth)> tks_z th+1} 1{T>nA }s

9
Yol = th} LEsna,y-

Zl?:f; = Ex(t) [5 (8 v )(tkvth)Ue(Z)(tkath)> | FEEN

tet+1

We will later see that the terms concerning Z and Z2 ¢ are negligible (Lemma 4.3.1). The

main contribution in the asymptotics will be glven by Z ’Z, which expresses the fact that the
small and large jumps do not interfere w1th the Gaussian behaviour of the transition density. In
fact to see this, applying Lemma 4.2.1{ to Zk’n, and using equation (4.1] . for the term Xy, — X

coming from the term Y;i(ﬁ — Yti(e)
log-likehood ratio

log ng,njL / A% Z/ {Zle +Zk:

" (Z“ +Z5€ +Z6€) E)é) [1{T>Mn}

k

in Lemma |4.2.1] we obtain the following expansion of the

you
tkif Xt,vﬂ} 1zsna,y

n Ee(z) [<R9(£),k _ RZ(Z),k _ Rg(f)ﬁk) 1zona,y "

Yt,ﬁz = thﬂ} 1{?>nAn}}df,
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where

\/RT/ 8ebO'2 Xt))(tk) (O'(th) (Btk+1 - Btk) + (b(607 th) o b(@(f), th)) An)

XEG()[

gk,n

9
tk(+1) th+1i| 1{T>nA }d€

tet+1
Z = 2,00(0(0), X1, )0 2(X0,) / (b(@o,Xg’O) _ b(Qo,th)) ds,

tg

2t = aon016). %)57*0x) [ (o2 —o<th>) 4B,

6,0 _2 tk+1 0,
28 = 8,00b(6(0), X1, )0 (X, / / (X% )N (ds, d2),
RO _ Rf( L RZ( ok R3( R5 .

In the next subsections we will show that ¢ ,, is the only term that contributes to the limit

in Theorem and all the others are negligible contributions. Therefore again, the main
behaviour is given by the Gaussian and drift components of the equation (4.1)).

4.3.2 Negligible contributions

Lemma 4.3.1. Under conditions (A1)-(A5) and (A7), as n — oo,

\/WZ/ (zit+ z2%) ae =,

k=0

Proof. It suffices to show that condition (|1.16|) of Lemma|1.4.2 holds for each sequence (Z. i.4 n)k>1
under the measure P%.

First, applying Holder’s and Jensen’s inequalities, Girsanov’s theorem, Lemma [.2.5] and
(4.7)), we obtain that for some constants C, gy > 0,

vl H/l 1,6 ‘ }
E Z ae) | F,
nA%;) 0 k. ’ b
ERSWe 0(0) o) 5
< rg 2, (B[R o (nif vt x0) [ itf = xi ] ]
% (P (7 < nln|Xy, )7 d
|ul = [ (o) 9(0) p dP
< /0 Bgnoa |[8 (907 (01, X0 )00 01, X2,)) | P x,
1
p P 5 1
+Egoonan [5(891@k(+f(tk,xtk)yo()(tk, th))] \thD (P (7 < nAn|X,,))5 de
C]u\ n—1 .
S (14X, %) (P (F < nA, | Xy,)) 7,
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where p,q > 1 and % + % = 1. On the other hand,

P(7 > nA,|Xy,) = P(Vs € [0,nA,], p1AY < |AZ| < paA7|Xy,)
= P(Vs € [0, kA, pA, < |AZ| < poAY[Xy,)

X ZP({VS € [kAmnAn]v plAzer < |AZ\S| < pQA;L’Y} N {NnAn - NkAn = ]})
=0

> _ J ~ )
VE

_ f/\n(nfk)An(lfP(plAﬁ§|zA\|§p2Afﬂ))’

where A is a random variable with distribution 5. Therefore, we obtain that

CAJ

IUIE[

n:()

1
/ Z;;ﬁde’ ‘}}k}
0
-1

n —~ _ 1
< | X, [ ) (1 - e*AnW’ﬂ)An(1*P(mA%SIA\Sp2An”))> a
k=0

B

|
—

n

Q

~ _ 1
< (1= e (1=P(mar<tisman)) ) ¢ SN (1, ).

0

5

Then, using the fact that 1 —e™™ < z, for all x > 0, and that A\, < A, we get that

R 1
(1 B e—)\nnAn(l—P(mA%SIA\SmAW))) ?

< (s, (1-P (may <A < pﬁ?)))‘l’

< co{ (P (12 p22,7)) "+ (wnop (a2 (1))}
1 1

=y (nAn/ y(dz)) q + <nAn/ V(dz)) '
{lz[>p2A,7} {lzI<p1AL}

Therefore, by (A7) we conclude that ((1.16]) holds true, and by Lemma as n — oo,

1,4 PO
MZ/ Dyt =

k=0

Next, as for the term Zk’n, applying Girsanov’s theorem, Lemma 5 and ( , we obtain
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that for some constants C, gy > 0,

tkii th+1} ‘th]

dp
Egporen [‘5 (00732 (15, X0 )UP Ot X0,) ) | 120y ( - 1) )th]

th] ) dt

§¢%§/OE[ ! 6 (@rren )00t X0} 1
[ul

o
+Egr0.0 H5 ((%Yth(tk, X )UO (1, th)> ‘ 17<na,)

Q=

<N (14X, |) (P (F < nA,l X))

)

where we have used Holder’s inequality with p > 1 and ¢ > 1 conjugate. On the other hand,

P(7 > nAn| Xy, ) = P(F > nA,) = P(Vs € [0,nA,], piAY <|AZ| < paAS7)

= ZP({VS € [0,nAn], pA; < ‘AZS| < 287 0 {Mpa,, — Mo = j})

j=0

= AnnA,)? o s
= > BBl by < [ < a7

.:0 .

o AnnAn (1-P(p1 AL <[A<p2A77))

)

where A is a random variable with distribution %+ Therefore, we obtain that

e/

X 1
<= (14X, [") (1 _ e—/\nnAn(l_p(plAzg‘A‘SPQA;,Y))) !

1

1

q q
< ¢ nAn/ v(dz) | + nAn/ v(dz) |u] Z (1+ X, |7).
{lz|>p22,7} {lzI<p Ay}

Therefore, by (A7) we conclude that ((1.16)) holds true, and by Lemma [1.4.2) as n — oo,

2,0 PO
MZ/ Zualt =

Thus, the result follows.

Lemma 4.3.2. Under conditions (A1)-(A5) and (A7), as n — oo,

i
L

1
u ~0 9
/0 ( : [Re( )kl{ >nln} tk(+1) th+1i| 1{T>NA }dﬁ 0'

o~
<”:
3
E
Sw
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Proof. Using the fact that 1iz-,n,) = 1= 17<pa,y and Lizapa,) = 1 — 1z<pa,), it suffices to
show that as n — oo,

i
L

' yoO _
> \/W / _R<> v, = Xt,m] rena,pdt 250, (4.24)
n—1

[ 6(0).k 06 _ P
Zﬁ/ DR 20 = thH] ae 25 o, (4.25)
k=0 n
n—1

0(0),k pfo
\/W/ OF Y = Xy, | ae =50, (4.26)

k=0

The convergences ) and - are treated similarly as for the terms Z kn and Z”
To treat (4.26), it sufﬁces to show that conditions (i) and (ii) of Lemma 1 hold under the
measure P%. We start showing (i). Applying Girsanov’s theorem, Lemma 4 ., and .
with p = 2, we get that

o) | poe =
S [ o ot -
n—1 1 3
|ul 8(0).k dp
< _ N
- Pt m 0 EQZ“) % R d@z@),@o 1 ‘th de
ClulAY* L
< BN, 0,
k=0

for some constants C,q > 0. Observe that (4.6) and (4.7) remain valid under the measure po
defined in Lemma This shows Lemma i). Similarly, applying Jensen’s inequality,
Girsanov’s theorem, Lemma . and ( with p € {2,4}, we obtain that

</01 ()[Re() tk(ﬁ thﬂ} dﬁ) ‘ftk]

S 2 2 4P
u R 0(0),k ‘ ~ 0(¢),k aer ’
< Z nA%/O {EQz(z),eo [(R ) th] + EQZ(z),eO (R ) dQG(ﬁ)ﬂo 1| | Xz, dv
k=0 &
C 2A31/4 n—1
> +]Xy ]9,
k=0
which concludes the desired result. O
Lemma 4.3.3. Under conditions (A1)-(A2), (A4)-(A5) and (A7), as n — oo,
n—1
u 5, 0(0) 0
2 uath K = X mna gt 0

Proof. Using the fact that 1;zo,n,3 = 1 — 1z<pa,y and Lizopa,) = 1= 1z<pa,), it suffices to
show that as n — oo,

6( ) P
\/W V) = X | Tpenandt 50, (a2m)
L7200 P
Z;?J ’VLEXt tk+3 th+1] dg — 07 (428)

n 1
/ Zptde == (4.29)
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The convergences and (4.28)) are treated similarly as for the terms Zy! 1L n and Z;” 2 Z . We next
treat ( - Clearly, for all n > 1

i nA3/ [Z,f;ﬁﬁtk} 0 =0,

k=0
and by Lemma [4.2.2(1),
n—1 2 1 2 n—1
u 5.4 =~ A
S e | ([ zta) || < S22 S e,
k=0 ™ 0 k=0
for some constants C, g > 0. Thus, Lemma [1.4.1] concludes the desired result. O

Lemma 4.3.4. Assume conditions (A1)-(A2), (A4)-(A5) and (AT). Then as n — oo,

,_.

n

9
tk(+3 th+1:| 1{T>nA }

L0
OM Zrintx,

=0 0
EX(tZ |:R4() 1{T>nAn}

D 1{T>nan}>d5 2.

Proof. Using the fact that 1;z,n,) = 1= 1{7<pa,) and Lizpn,) = 1 — 1iz<pa,), it suffices to
show that as n — oo,

7zt 5000 v _

\/W k,n Xt 1{T>7"LAn} tor th+1} 1{7—<nA }df —) 0, (430)
ZALR00) 100 P

\/W Zyon xt Y = thﬂ} al — 0, (4.31)

9( ) P
\/W/ th R4 Y = thﬂ] 1z<pnydl — 0, (4.32)
P

\/m th R4 tk+1 th-s—l] dt — 0, (4.33)
4 é =0(¢) P%

M / - B[RO = X ]) e S0 (4:34)

The convergences ([4.30)), (4.31)), (4.32)) and (4.33]) are treated similarly as for the terms Z,i’fl
and Zifl We next treat (4.34). By the mean value theorem,

Z.Z:l:fz - Ea(z [ 9(3 ‘Ye(f) th+1:| = Mk,n,l + Mk:,n,27

k1
where
Cul\,, Opb(0(0), Xy )/15’“+1 < luw 0 luw )
Mypq:=— k Opb(6 , X)) — 0pb(0 X ds,
kn,1 WA, 02X, . yb(0o + i ) — Ogb(0p + ——= AL t)

My : = AHWW( / . (b(ew),xf") ~b(0(0). X)) ds

Y UQ(th) tr
- tkt+1
0(¢
- E)((t,z |:/t (b(@(@), Y;’g(é)) - b( ) ‘ tk+1 th+1:| )7
k

for some w € (0,1).
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Using Lemma [£.2.2[i), we get that

1
/ M;m,law’
0

for some constants C, g > 0. Therefore, by Lemma [[.4.2] we conclude that as n — oo,

~ C’u2\/
.Ftk} < Z (14X, 19,

]

—_

n—

1
u PY0
Mk, JCM — 0
P \/nA%/o "

We next show that as n — oo,

—_

n—

1
u Pt
Mk, 7QCM —0
P \/nA%/o "

Using Girsanov’s theorem, and Lemmas [4.2.5 and [4.2.2](i), we obtain that

39() X)

nA

> s, Bl o -
et dP
o(¢ 6(¢)
x {/tk E@i(&ﬁo [(b(9(€)7){s( )) - b(g(f)vth )) (AZ(Q’GO - 1) ‘th] ds

dQ
tet1 dP
B 00y _ 000 g [P
E e [/tk (b0(0), v2O) —b0(0), Y7, ))ds<d@ZWO 1) \th] }dé’
C Ann—l
< 23 1 ),
k=0

for some constants C, ¢ > 0, which shows Lemma |1.4.1{i).
Finally, proceeding as in the proof of Lemma we get that condition (ii) of Lemma
holds. Thus, the result follows. O

Lemma 4.3.5. Assume conditions (A1)-(A2), (A4)-(A5) and (AT). Then as n — oo,

y o _

tk+1

th+1] 1{T>nA }

i nA3/ < %Ee()[

[

tk+1

9( ) th+1] 1{T>nA })dé —) 0.

Proof. Using the fact that 1;z,n,) = 1= 17<pa,y and Lizopa,y = 1= 1z<pa,), it suffices to
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show that as n — oo,

\/W ]gfl %f 1{T>nAn} tiiz thﬂ} Liz<na, 1 dl L) (4.35)
W 2 B | oY) = Xi,.] e P, (4.36)
\/m / ~§<f,i A ti(ﬁ thﬂ] 1izcna,ydl P o, (4.37)
\/W/ th R6 tiiz th+1] dl P—go> 0, (4.38)

Ogb(0(£), X4,.) (/tk+1/ ;
X2, ds dz 4.39
kzo Vni, / th tr ) ( )
tet+1 ,
e) [/ / Y9 )M(ds, dz) ‘ tk+1 thﬂ] >dg Poo. (4.40)

The convergences - are treated similarly as for the terms Z and Z,ffl We next
treat (4.40)). By Girsanov’s theorem

(%] 0 to+1 ~
[/ / (X% )N (ds, d2) [/ / M(ds, dz ‘Y; th+1] ‘]—}k]
ty

tot1 dP
- _EA o), / / ds dz)— X
on [ g

:0’

where we have used the independence between ft ML e 59_(6), 2)M (ds, dz) and T together

k

with the fact that Eée(e),eo i Jr ey, 0(6) M (ds,dz)] = 0. This shows that the term (i) of
Lemma is actuallgl equal to 0 for all n 2 1.

We next show that condition (ii) of Lemma holds. Cauchy-Schwarz inequality gives

n

L 2 trt+1
nA, ‘
0 k
- tr4+1 2
- By [ / / YOO )M (ds, dz) ’Yt thﬂ] >d€>

el
I

F, ] < 3(D1+ Dy + D3),
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where

u? e 1/1 Apb(0(0), X¢,) \
D =

nAn 0 th

[(/ttk+1 i X“’0 — (X4, 2 )) N(ds,dz:))2 )th] de,

. tht1 __ 2
X E [Eiéf,i [( / / (e, 2) = ey 2)) M (ds, dz>)
k
2 n-l .1 t
u 3eb(0(0), Xz,) ) K /k+1 /

D5 = k (X, 2)N(ds,dz

’ nliy e /0 ( UQ(th) 175 t )

tkt+1
/ C(Y;tz(ﬁ) z)M (ds, dz) tz(ez th+1:|) ‘th]dﬁ

k

Using Burkhoélder’s inequality, the Lipschitz property of ¢ and Lemma [4.2.2(i), together with
hypotheses (A1)-(A2) and (A4)-(A5), we get that for some constants C,q > 0,

(¢
Y;kg_z = th+1] ’th] df,

CUQA,L”_I
D < 14+ 11X [9).
LS Y (LK)

Moreover, using Girsanov’s theorem, Burkhélder’s inequality, Lemmas [4.2.5) and [4.2.2(1),
together with hypotheses (A1)-(A2) and (A4)-(A5), we obtain that for some constants C, ¢ >

0,
u? Apb(0(£), X1,) \* B bt yOO VO A T (ds. d 2 x
’I’ZA 0-2 Xt @:(@’90 " ; (C( s— 7Z) - C( tr 7Z)> ( S, Z) ‘ t

te41 — 2 dﬁ
o) _\ _ 6(¢)
E@i(@)ﬂo [</tk /I (C(Yts— ’Z) c(}/tk ,Z)) M(dsv dZ)) <dQ0(€) 0 > ‘th] }df
u2 n—1
<C < > o Z 1+ X, 9)

=0

Again, Girsanov’s theorem yields D3 = D31 + D32, where

2n1

1 2 t
. 9pb(0(€), X+,) /’““/
D3y = WA / < 2(X,.) E@Z(@,eo ; Ic(th,z)N(ds,dz)
b 2( 4P
6’(f y o0 _
([ o x| (e
k
2 n—1 t
o Deb(0(£), X1,) \ 2 /Hl/
D32 = WA kzo/o <02(th) Eézm,eo \ Ic(th,z)N(ds,dz)
tri 2
o0 [ / / (7O, 2)M(ds, d2) |0 = thH]) ‘th]dé.
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Observe that ’D3’1| < 2(D3,1’1 + D3,172), where
9 n—1 1 2
u 9b(6(€), X,)
D = Lk
ST A, Z/o ( o2(Xy,)
b1 dP
(Xy, 2)N(ds,dz) ) | —o 1 ‘X
[ o) () ]
. W = / Fpb(0(0), X1,)\”
312 °= nA 02 (Xt,)

DA o M (ds, dz)|Y,
th . tk 7
k

de,

EAe

dl.

EAe(z) 0o

D311 <

Applying Lemma Jensen’s inequality and (A1), (A5), we obtain that

D3’1’2<nAan (1 + [X¢, )

tkt+1

4 1/2
y 0O _ th+1] ‘th]> dv

for some constants C, g > 0.
Next, hypotheses (A2) and (A4)(b) yield that

Cn2 =2 1 that
Djo < A kzo (14| X¢, |1 / Eéz(a,eo K/tk /Ic(th,z)N(ds,dz)

tet1 2
"’6 £) 9 £) 4
By { / / "0 )M (ds, dz) Y, = Xt‘““D ‘th]dﬁ

l41
for some constants C,q > 0.
Multiplying the random variable inside the expectation by ( To j +1 7 k) and ap-
11 ’
4> 5

plying Lemma we get that for any o € (v, 1) and ag € (3,

Cuy? n—1 1
Z (1 + | X, )/ (a5 + 2+ 217
0

D32 < WA,
—3_3y _ o A2@vag)-1 u? n-l coAL=27 X2
<O MV AL+ A2 e CoAn — 3 (] Xy |7 e T
n
k=0

for some constants cg, Cp, C, ¢ > 0. By hypothesis (A8), D3 2 converges to zero in PY%_probability
O

as n — 0o. The desired proof is now finished.
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4.3.3 Main contributions : LAN property
Proof. We write é.k n = fk n,1 — gk,n,? - Ek,n,Sa where

‘ / Apb(0(0), X1,
kn,l = ,TA (th)
/ Opb(6(£), X4,)
gkn2
\/TLA (th)
X EQ( : |:1{T>HA }
¢ / Opb(6(£), X4,.)
ki3 = \/TLA O'2 th)

X EX(t) |:1{T<HA }

(U(th) (Btk+1 - Btk) + (b(6o, th:) = b(6(0), th)) An) de,

( th (Btk+1 - Btk) + (b(007 th) - 6(9(6)7 th)) An)

tk+1 th+1] 1{?§nAn}d€7

( th (Btk+1 - Btk) + (b(007 th) - 6(9(6)7 th)) An)

thH] de.

tk+1

First, proceeding as for the terms Z and Z £ , we get that as n — oo,

n—1 -
Z (é-k,n,Q + £k7n,3) — 0.
k=0

Next, applying Lemmal|l.4.3{to & .1, We need to consider Efo[er }"t for r = 1,2 and 4 but
k,n,1 k

this conditional expectation equals E[¢; 1|.7-'tk}. Therefore, it suffices to show that as n — oo :

i
L

E [ék,n,llftk] L —ff(ﬁo), (4.41)
k=0
5™ (B st - (B[ B])") 25 ), wn
k=0
S (€l 7] S50, (4.43)
k=0

where

(o) - | <89ljffg‘”>)2mo<dx>-

Proof of (4.41)). Since E[By, ,, — Btk]]/-:tk] =0, we get that

:\ﬁ

a?( th N N

n—
u2

T
k=

89[)(90,th)> Cm

n—1 9 n—1 8 b X luw

S E [genlFu| = - Z/ ’ tk)a pb(0o + —e, Xy, )l
1
0 ( J(th)

where v € (0,1), Hy = Y724 Hy.p, and

agb 9b(8(0), X1,) uv >
— b(6 X b(6o, X dal
= [ OEOS) (au + —e x,) — 00, X, ) .

21’L 1
,06b(00. X1,)
/ D70 ) (9pb(B(£), Xy, ) — Ogb(B0, Xy,)) dX.

0'2 Xt

Using hypotheses (A2) and (A4)(b), (c), we have that for some constants C,¢€,q > 0,

S [l ] < SIS
E Hk:,n ]:;tk < T A e o 1+ th q ,
k=0 (Vnln)e ni=
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(2]
which, by Lemma [1.4.2] implies that H; PR 0asn — oo Thus, so does Hy by using the same
argument. On the other hand, applying Lemma [£:2.9] we obtain that as n — oo,

—Z (89b o, X1,) ) P T (6o), (4.44)

(X+,)
which gives (4.41]).
Proof of (4.42)). First, from the previous computations, we have that
n—1 2
0pb(0(0), X4,) luw )
n ]: 0———F20b(0y + —=, X3, )dl
> (8 feuni7] O(/ e Loun(en + = X
Cut 2
< ng (1+|th‘ )7
k=0

for some constants C,q > 0, which converges to zero in P%-probability as n — oo.
Next, using properties of the moments of the Brownian motion, we can write

n—1 9 n—1

~ U Opb(0y, X,
ZE {ég,n,l‘Ftk} = nz< ? g(t )tk)> + H3 + Hy + Hs,
=0 k=0 k

where

2u® = b0, Xi) [ Opb(B(0), Xo,) — Dgb(6o, X, )
Hy =" e,
n k=0 U(th) 0 U(th)
o < / Oub(6(¢). Xs,) — Dgb(6o, X1,) CM)?
n k=0 0 (th) ’

-1

2

k=

As for the term Hj, using hypotheses (A2) and (A4)(b), (c), we get that Hs, Hy, H5 converge

to zero in P%-probability as n — co. Moreover, using again (4.44), we conclude (4.42)).
Proof of (4.43]). Basic computation yields

n—1 4 n—1

Cu
> P (il Fu] < =5 D @+ 1x,09,
k=0
for some constants C, ¢ > 0. The proof of Theorem is now completed. O

4.4 Maximum likelihood estimator for Ornstein-Uhlenbeck pro-
cess with jumps

Consider the Ornstein-Uhlenbeck process with jumps defined in Example 1)
t t ~
X =ao— 9/ X%s +oB, +/ / 2N (ds,dz), (4.45)
0 0 JRo

where 6 > 0, 0 € Ry and the Lévy measure satisfies (A5), (A7), and is finite. Assume that
there exists a constant C' > 0 such that fRo eCZQI/(dz) < 00
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By the Markov property, the log-likelihood function based on X™ can be written as follows

n—1

ln(00) =logp(X";00) = > logp™(An, Xy, Xy, ). (4.46)
k=0

The maximum likelihood estimator 5,1 of 0y is defined as the solution to the likelihood equation
O0pln(0p) = 0.

Theorem 4.4.1. Assume conditions (A5) and (AT). Then, the mazimum likelihood estimators
0, of By are consistent and asymptotically efficient. That is, as n — oo,

9, 2% 0,,
and
0
Vs, 6, — 00) "5 N (0,1(80)71) |
where

T(60) = 22 <1+012 /R Oz2u(dz)>.

Proof. Using (4.46) and Proposition the likelihood equation is equivalent to

Z*E(’o [ (89}/;5k+1(tk7th)U (tr, Xt,) ) ‘Y}kﬂ thﬂ} =0, (4.47)

where

t t ¢ —~
Y (s, ) :x—G/ Yf(s,x)du—i—a/ qu—{—/ / zM (ds,dz),
s s s JRg

t t N
VY =z —9/ Yidu + oW, +/ / M (ds, dz).
0 0 JRo
From Lemma [£.2.T]

0 (39Ytk+1(tk,th)UGO(tk,th)> - —A, Y90 —2 (Yeo

tet1

eta)
00,k 9o, 00,k 00,k 00,k '
+ Rl() + R20 + R30 _ R40 _ RGO ,

where
trt1 Y, tg, X
Rfo’k _ _0_1/ D, tk+1( tk) ameO(tkath)d&
tr 15) Y;k_’_l(tk;th)

te41 Y@o tr. X trt1
Rgo’k = —o'l/ Se(k’tk)ds/ (8951/390 (tk)th) - 896}/;&%) (tka th)) dWs,
tr ax}/S O(tka th) tg

0,
Rgo,k R 70_—1 /tk+1 }/:900 (tk'a th) o }/tko (tk7th) ds /tk+1 ax}/teo (tk,‘ Xt )dWs
: 3 k )
tg axyvfo (tka th) am}/;zo (tkv th) L *

tkt+1
ROF ;= A Y0026, / (v~ ) ds,

tet1
RPF = -, Y0672 / / 2M(ds, dz).
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Plugging (4.48)) into (4.47)), taking the conditional expectation, and using equation (4.45)), we
obtain that

yo

ZZ;(l) (_th (th+1 th) + N EQO [R?)’ + Reo, + R907 R90, Rgo’ tha1 th+1})

0, = -
An ZZZO thk
anlA k 0 th (Btk+1 Btk) +S51+52—53
= 90 + 1 n—1 X2 R
k=0 i,
where
1 n—1
=0 %o, 9. 00,k |16
S1= 57 2 FX, [Rlo + R+ RYE|YE —th} ’
" k=0
I Bt 9 =) Pt 0 9
Sy = X (X9°—X°>d ~ B, / (Y90 Y0>d‘Y0 =X :
2 O'QTlAn kZ_O 123 Kk S " S\Yy tott

tk+1 ~9 tk+1
X N(ds,dz) — E%, M (ds, dz) ) - X .
= o ([ [ ¥anan -8, [ [ st 3. )

Using the ergodicity property and applying Lemma we obtain that as n — oo,

0_2 ZX2 P 1 (6y), (4.49)

0
On the other hand, it can be checked that under conditions (A5) and (A7), S1, S2, S3 2o
as n — 0o. Moreover, applying Lemma |1.4.1] we get that as n — oo,

1 n—1 0
— S X, (Biyy, — Be,) — 0.
k=0

~ P90
Therefore, we have shown that 6,, — 0y as n — oc.
Next, we can write

—— LSl X, (Bi., — Bi) + Vb, (S1+ S ~ 53
n ovnlAn, k=0 ik tkt+1 tx 1 2 3
Vi, (B, — ) = —7VmA 5 IX2

o2n

Then, using Lemma |1.4.3| and (4.49]), we obtain that as n — oo,

n—1

1
o o Y P = B

£(P%)

This, together with (4.49) and the fact that under conditions (A5) and (A7) as n — oo,

v/ niA\, (Sl + Sy — 53) H 0

concludes that n — oo,

~ 0
Vil (B — 00) 5 N (0,7(06)7Y).
The proof of Theorem is now completed. O
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Chapitre 5

LAN property for a jump-diffusion
process : drift and diffusion parameters

In this chapter, we consider an ergodic diffusion process with jumps driven by a Brownian
motion and a Poisson random measure associated with a compensated compound Poisson process,
whose drift and diffusion coefficients depend on unknown parameters. Supposing that the process
is observed discretely at high frequency, we derive the local asymptotic normality (LAN) property.
In order to obtain this result, Malliavin calculus and Girsanov’s theorem are applied in order to
write the log-likelihood ratio in terms of sums of conditional expectations, for which a central
limit theorem for triangular arrays can be applied.

5.1 Introduction and main result

On a complete probability space (€2, F, P) defined in Definition we consider the process
X0 = (Xf # )t>0 solution to the following stochastic differential equation with jumps

dx}? =v(0, X)P)dt + o (8, X{P)dB, +/ z(N(dt, dz) — v(dz)dt) (5.1)
Ro

where Xg’ﬁ =0 € R, Rp := R\ {0}, B = (Bt)>0 is a standard Brownian motion, and N (dt, dz)
is a Poisson random measure in (R4 x Rg, B(R4 x Rg)) independent of B, with intensity measure
v(dz)dt, and finite Lévy measure A = fR (dz) < oo. The compensated Poisson random measure

is denoted by N(dt,dz) := N(dt,dz) — l/(dz)dt Let Z = (Zt)t>0 be a compensated compound
Poisson process associated with N (dt, dz), i.e., Z; = fo Jr, #(N(ds, dz) —v(dz)ds), for t > 0. The
random variable A that describes the jump sizes of 7 takes values in A = {a;,1 € N}, a; € Ry,
(gz) = > 72 Pa;0a,;(dz), where 0 < po; < 1, and ) 7, ps, = 1.
Let {F:}+>0 denote the natural filtration generated by B and N. The unknown parameters
(0, 3) belong to © x ¥ which is an open rectangle of R%. The coefficients b : © x R — R and
o : 3 xR — R are measurable functions satisfying condition (A1) below under which equation
. ) has a unique Fy-adapted cadlag solution X%#. We denote by Peﬁ the probability law
(P(’ 2)

and has distribution u(dz) =

induced by X% and by E?? the expectation with respect to P%#. Let —) and denote
the convergence in P%#-probability and in P?#-law, respectively.

Recall that the structure of the probability space is given by Q= 0! x 92 Q=0 X 04
F=F'or, F=FoF ,P=P'@P,LP=P@Pand0=0xQ, F=F®F,P=PaP.
We denote by E, E E the expectation with respect to P, P and P respectively.

For fixed (6p, By) € © x ¥ and n > 1, we consider a discrete observation scheme at equidistant
times tp = kA,, k € {0,...,n} of the diffusion process X %P0 which is denoted by X" =

(Xtg, Xty s -y Xt,, ), where A, < 1. We assume that the sequence of time-step sizes A,, satisfies

95
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the high-frequency observation condition
nA, +o0o, and A, —0, asn— oc.

We consider the following hypotheses on equation (/5.1)).
(A1) For any (0,0) € © x X, there exists a constant C' > 0 such that for all z,y € R,

b(0,2) = b(0,y)| +|o(B,z) — o (B,y)| < Clo —yl.

(A2) For any (0,3) € © x 3, there exist constants C' > 0 and ¢ > 1 such that for all z € R,

b(0,2)| < C, and

~<lo(Ba)l <c

(A3) The functions b and o are of class C' w.r.t. 6, 3, and z. Each partial derivative 9gb,
Oyb, 00 and 0,0 is of class C! w.r.t. z. Moreover, there exist positive constants C, g, €, 7,
independent of (6,601,602, 8, B1, B2, z,y) € ©3 x £3 x R? such that

2) 10,b(6, )| + .08, 2)] < C;
b) |h(-,x)] < C (14 |z|9) for h = db, O2b, 627‘9b, dpo, %0 or 85,605

T

(

(

(C) ](%b(&l,x) — 8@()(92, l‘)‘ S C|91 — 02’6 (1 + |l"q) ;
(d) |90 (b1, %) — Opo(B2,2)| < C[B1 — Ba|* (1 + |2]7) ;

(€) [99b(0,x) — 0pb(0, y)| + |00 (5, x) — Opo (B, y)| < Clz —yl.

(A4) For any p > 2, [p [2[Pv(dz) < 0.

(A5) The process X%:% is ergodic in the sense that there exists a unique probability measure
6,5, (dx) such that as T — oo,

1" 00,50 pfo.fo
T g(Xt ’ )dt ? g(m)ﬂ%ﬁo (dx)v
0 R

for any g, g,-integrable function g : R — R.

(A6) There exist constants € > 0, ¢ > 1, p1,p2 >0 and 0 < v,y < % such that as n — oo,

\/73 <nAn (/ v(dz) +/ V(dz)>> — 0.
Af {212p2A77} {121<m Ay}

(A7) For any w,w’ € Q, there exist constants C' > 0 and ng > 1 such that for all n > ng and

ke{0,...,n—1},
=0, or
> OAY,

where v is as in (A6) and L; = fot fRo zN(ds, dz) is defined to be the sum of the jumps of
Z on the interval [0, ).
Furthermore, for all (6,5) € © x £, ¢ > 1 and p € {2,4},

S (P (Bues — B =r%0)) <o,

reA

1
Z (P <Etk+1 — Etk = T‘th>> ! < 00,

reA

‘(Etlﬁ»l - Etk) (w) — <Etk+1 - Etk) (W/)

where we denote A := {Zgzl a;,a; € A, j € N}
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(A8) For any ¢ > 1,

Zpi < .

a;EA

A detailed explanation on the hypotheses is given in the subsection [1.3.4] of the introductory
chapter.

Conditions (A1)-(A2) imply that the law of the discrete observation (X, X7, ..., X7)
of the process (Xt@’ﬁ)tz(] has a density in R"! that we denote by p(-; (6, 3)). In particular,
p(+; (0o, Bo)) denotes the density of the random vector X™. The main result of this chapter is the

following LAN property.

Theorem 5.1.1. Assume conditions (A1)-(A8). Then, the LAN property holds for the likelihood
at (6o, Bo) € © x X with rate of convergence (v/nlAn,/n) and asymptotic Fisher information
matriz T(0o, Bo). That is, for all w = (u,v) € R?, as n — oo,

p(X"; (On, Bn)) £(P0Fo) L
log PN On)) ER0) T A (0. T(60, Bo)) — =w T, Bo)w
gp(X”;(l%,ﬁo)) (0, (6o, Bo)) 5 (6o, Bo)
where 6, = 0y + ﬁ, Bn = Bo + ﬁ, and N(0,T(0g, Bo)) is a centered R?-valued Gaussian

random variable with covariance matriz

deb(y, )\
(U(ﬁo,&;) ) 71'90,,30(6137) 0

F(00a BO) =

Remark 5.1.1. Observe that as seen in Remark [[.1.3, we obtain the same asymptotic Fisher
information as in the continuous case (see [25, Theorem 4.1]).

Remark 5.1.2. Assume condition (A8). Then for allq>1, p>0 andn > 1,
00 1
CPAA,)™\ 4
DS (pal pm<,>) < o0,
m!
m=1 (a1,....am)EA
where C > 1 is the constant in , since

o 1w foran,)i b L
SOY (ppW) { 1} S pd i,
€A ’

m=1 (a1, ...am) =1 (m!)a (a1, )EA

Q=

3

{(cpmn)%}m A\

q
Pa;

oo
m=1 (m')E a;EA

1 "
{ (CPAA,)« ZaiGA Pa; }

(ml)a

A

||
EINgE

Example 5.1.1. 1) Consider the process

t ~
Xf =x9+ 60t + BB + / / zN(ds, dz),
0 JRo
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where 0 € R, 5 € Ry, and the Lévy measure is finite and satifies (A4), (A6) and (A8). Assume
further condition (A7). Then, the LAN property holds with rate of convergence (v/nlA,,+/n) and
asymptotic Fisher information matriz

I'(6o, Bo) = 51(2) <é g) ~

In this case condition (A5) fails.
2) Assume that there exist constants ¢,C > 0 such that ¢ < |a;| < C, for alli € {1,...,00}.
In this case, condition (A6) holds.

3) Assume that A has distribution Yoy 2175z(dz) Then, for n sufficiently large

1

q
‘/’E<nAn </ y(dz)+/ y(dz))) — Ve, L
AL {121>p2A77} {121<pm A} AL 2

{i:i2p2A7 7}

1
q

1
< X? <3A2nAn2—%2An”> T 0,
n

foralle >0,q>1, p1,p2>0and 0 < v,y < %, and thus, condition (A6) holds.
In this case, condition (A8) holds since for all ¢ > 1,

oo

Z 1i < 0.

i—1 24

4) Suppose that Et has the form Et = ZZN;l Yi, where N = (N¢)¢>0 is a Poisson process
with intensity A > 0, and (Y;);en is a sequence of independent and identically distributed positive
random variables, independent of N, with distribution p(dz) satisfying condition (A8). For any
ke {0,...,n—1}, let g = P(Ny,,, — Ny, = j), for j € {0,...,00} and for all m > 0 set
b = P(Npypy — Ny, >m) = Z;C:)m-s-l 95-

Observe that for all m > 0 and n sufficiently large,

o - AAn)! m o) AAL)E
bt _ Sgomsa€ A (AW YR G 1
b = 0o A, (AAR)I = Pp— AR < )\An < 5
m Zj:m+1 e "T ()\An) Zizo Grm+1)!

Assume that there exists a constant ¢ > 0 such that

o
/ e“u(dz) < 2.
0
Then by [74, Theorem 1], for any k € {0,...,n =1}, r > 0 and n sufficiently large,
P (Ethrl - Etk > ’I”‘th) <2 (1 — e_)\An) e < 26_07»’

which implies that the second statement of condition (A7) holds.

As usual, constants will be denoted by C' or ¢ and they will always be independent of time
and A, but may depend on bounds for the set ®. They may change of value from one line to
the next.

5.2 Preliminaries

In this section we introduce some preliminary results needed for the proof of Theorem [5.1.1]
We start as in Gobet [24] applying the integration by parts formula of the Malliavin calculus
on the Wiener space to analyze the log-likelihood function. In order to avoid confusion with
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the observed process X?#, we introduce an extra probabilistic representation of X?# where the
Malliavin calculus will be applied. That is, consider the flow Y% (s, 2) = (Yf”g(s,x),t > s),
z € R on the time interval [s,00) and with initial condition Y{" (s, ) = x satisfying

t t
Y (s, x) :x+/ b0, Y (s, :c))du+/ o(B, Y (s,2))dW,

/ /RO M (du, dz) — v(dz)du) ,

where W = (W})>0 is a Brownian motion, M (dt, dz) is a Poisson random measure with intensity

(5.2)

measure v(dz)dt associated with a centered pure-jump Lévy process Z = (Zﬁ)tzo independent
of W, and we denote by M (dt,dz) := M (dt,dz) — v(dz)dt the compensated Poisson random
measure. In particular, we write Ye’ﬁ = YQ’B(O, xp), for all t > 0. That is,

t
Y0P =gt [ 00,50+ / o(8, Y0 )W, + / | 2w i) - vldyn). - 63)
0 Ro

Here, we consider the Malliavin calculus on the Wiener space induced by the Brownian
motion W, and we denote by D and § the Malliavin derivative and the Skorohod integral with
respect to W on each interval [tg, tx41], respectively (see the Definition and the discussion
following it). For all A € F, let us denote Peﬂ(A) = ]?3[1,4|Yti’5 = z]. We denote by ES” the
expectation with respect to Pm’ﬂ . That is, for all F-measurable random variable V', we have that
ES°[V] = E[V|Y,)? = a].

Under conditions (A1)-(A3), for any ¢ > s the law of Yte”B conditioned on Y2¥ = 2 admits a
positive transition density p??(t—s, z, y), which is differentiable w.r.t. § and 3. As a consequence
of [24, Proposition 4.1], we have the following expression for the derivatives of the log-likelihood
function w.r.t. € and 3 in terms of a conditional expectation.

Proposition 5.2.1. Assume conditions (A1)-(A3). Then for all k € {0,....,n— 1} and (0,5) €
O x X,

dop”’ 1 ~ 0
o (o) = B (6 (000 e )0 () [V, = 0]
Oﬁpoﬁ

s o) = B2 [3 (0290, 00,20 0)) [ 122, =]

where U (tg,z) = (DY) (tr, )™t = (0.Y)7 (tr, 2)) 1 0:Y,P (th, )01 (V)P (th, ) for all

t € [ty tiyr], and the processes (9gY, " (ty,x),t € [ty,tpsa)), (9 (t, ).t € [ty tia]), and
((9;6Yt9’ﬁ(tk,:c),t € [tk, tk+1]) denote the solutions to linear equations

t
00" () = / (96(60, Y27 (81, 2)) + Dub(60, Y1 (81, 2)) 00V P (11, 2) ) dis

tr

t
000 (B, Y (tr, 2))0gYEP (i, )dWs,

tr

t
Y (tr, ) = | 0.b(0, YOP (81, )0 YD (ty, ) ds

ty

t
+ / (850(6, Ysaﬁ(tkv .I)) + aﬂ?o’(ﬁ? Yfﬂ(tk’ l’))ang’ﬁ(tk, l’)) dWs,

tg

t
OYP (b, x) =14 [ 0,b(0, YOP (4, 2))0, VP (4, ) ds

tg

t
0,0 (8, YIP (ty, )0, Y8 (b, ) dW.

ty
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We have the following decompositions of the Skorohod integral appearing in the conditional
expectations of Proposition

Lemma 5.2.1. Under conditions (A1)-(A3), for all (0,5) € © x ¥ and k € {0,...,n — 1},

6 (00Y3) 7, (s ) U P (11, 2) ) = Bngb(0, Y1 )2 (8,Y:07) (Yl = Vi P = b(0,Y;27) )

tr4+1 ti

0,8 0,8 0,8 0,8 0,8 0,8

RO . — /tk“ D, <8oytifl( ,CE)) 0: Y (g, ) <
1 == ) 7
b 0, Y7 (t,7) ) o(B, Y27 (1, )

po [0 UOY )yt (0N ) 0¥y, (b, )
Ry ::/ 7 ds/ - 7 dw.,
th 0. Ys’ (tk,x) th (57 (tk7 )) O’(,B,thk’ (tkax))

ROB /t 0b(0, Y (tr ) Dob0, V5" (1 2))\ /t Y (o w)
’ t 0.V (ty, ) 0:Y,P (ty, ) w08 Y P (tra)

97
(b6, Y) = b(0,Y;2%) ) ds,

tet1
RYP = £ 00b(0, Y )0 2(8, Y1) /

tk

tet+1
ROP s = A, 00b(0, V)0 2(8, V") / (o(8.Y2%) — 0(8.¥27)) aw,

trt1
RYY - = D0gb(0, Y, 72(8,Y7) / / =M (ds, dz),

OnY, , tpa1 0,8
D, W :/ : <_89b(9’3/§ Ue:2)) 1y (0,2 (11, 2))
0,Y,” (tk,l’) s (axyu’ (tkax))Q

tet+1

DY’
’ O Yy’ (tk,SL’)

Proof. By It6’s formula,

S

2
i 1 /taxbw,ﬁﬁ(tk,x)) (2208 Y2 ()
0. () Ju 0. 1y, v)

t 6.8
_/ 8w0—(573/; (tkax))dvvs7
tr OZYS ’ (tk,x)

which implies that

ds.

w _ / 0b(6, Y2 (1, )
0.V (b)) Ju Y LB (4., x)

Then, using the product rule [57, (1.48)], we obtain that

tk+1 9pb 07}/89,5 e, T tht1 amne,ﬁ t,
5(69 tk+1(tk,$)U9”B(tka$)) —/ bl 0.5 (b ))ds/ 6[3( k@) dW,
e 0¥ (M, 2) wo o(B. Y (1, x))

—/tkHD <89Ytk731(tk’x)> aYe’ﬁ(tk,x) s
b 0.V (ty, ) ) o(B, Y (ty,x))

tet+1
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0oV (th )
U(/B:Y'ti;ﬁ (tk 7x))
90b(0.Y,,” (tr.))

0y, (1)

We next add and substract the term in the second integral above, and next

we add and substract the term in the first one. This, together the fact that

0 0, .
Ytk’ﬁ(tk,x) = Ytkﬁ =z, yields

(agytkﬂ (te, 2) U2 (1, x)) = D 9pb(0, Y00 N (B, YP) (Why,, — We) + RYP + Ry + RSP,
(5.4)
On the other hand, by equation (5.3 we have that

tet+1 tg

tet1
Wiy = Wi, = 0 10 (Y22, = 10 = 0030 = [ (b00.v2%) 6.0 s

ty
tet1 0 tkt1
_/ <0’(/B7Y'8975) — U(/B?}/;k’ﬁ)> AWy — / ZM ds dz))
tk Ro
which concludes the desired result. O

Lemma 5.2.2. Under conditions (A1)-(A3), for all (§,5) € © x X and k € {0,...,n — 1},

650

dgo 0 0 0 ,
5 (95¥ (U (1,2)) = 22 (5,5,2%) (V22 —v?) " = L5, 709,

350

2
+HY? + B+ HYP + HYP 4+ B - 25 (B, Yi’ﬁ){ <H8976+H997B +H1)

#2008 Y Wiy, Wi (7 4 13+ 157 |

where
108 . _ _/t’c+1 310(5,5%9’5(%93))850(5,Ysa’ﬁ(tk,iﬂ))ds /tk“ 0. YL (ty,, )
3 A Sy
tr 8I}/TS0’B (tka I) tr U(/Bv }/59”8 (tkv .’IT))
b1 8, YL (ty,, )
Hjﬁ;:_/ HYP + HyP) 22
tk ( ) U(B)sze’ﬂ(tlﬁx))
9’

708 . _ / 1 (950 (8, Y  (ty,x)) 90 (8, Y5 (th, 7)) o /fkﬂ Y (1, 2) w
° t 0:YP (b, ) 0:Y, (g, ) w08 Y (tg,2))
05 [ 950(B, Y1 (b, ) w0, Y (tye) Yy (thea)

H6 . — 0 ,8 dWs 0 B - 0 18 dWS?

12 6&71/;,; (tlmx) tk 0—(67}{97 (tk, ) 0(67}/;5,; (tk,.%'))
tt1 [ 9g0(B Ye’ﬁ(t x)) Ogo(B Ye’ﬁ(t x)) bt
07 y £ S k> B vt k> 07 —— ’
Hﬂ::—/ ( pol %o, - e s, Hsﬁ._/ b(0, Y27 )ds,
tk U(BaYS (tka )) (ﬁ }/;fk (tk’ )) tk
trt1 tet1
Hgﬁ::/ <a(5,yjﬂ) (8, Y”)) aw,, H = / / 2M(ds, dz),
173

and

B / D [ 2208V (b, )50 (8, Vi (b, 2) |
1 — s 0.8 U,
s 0z Yu" (ty, )

trpt1 YUQ’B t
Hgﬁ — / D, aﬁo_(ﬁ’eﬂ ( kax)) AW,
s 81*Yu7 (tk,x)
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where

5 (a a@ga(ﬁ, 08 (ty, x ))) _ 9:0930 (8, Y (ty, )
’ 0, Y. (ty,, ) (0aYi" (ty,, x))>

Dy(0,YP (ty,, )

DY.2P (ty,, x)

N (agaaﬁa(ﬁ,Yfﬂ(tk,@Ha 70% 58, Y 11.2))) Uiz K

)

8,30—(/8aYU0’5) 850(67 (tlﬁ )) 0,8 2 B Dsyllfoﬂ(tkwx)
p, (&0 tu ) ) Dy(0,Y 0B (1, o2 YO8 (4, .
<8xY£ﬁ<tk,m>) @Y e Ot ) Gt BT 0 e,

Proof. By It6’s formula,

0, YGB( tk, ) B th 8$1@9’B(tk,x)

th+1

05V, (b, 7) tir 9,0 (B, Y (th, ) 050 (B, Y (14, ) it 9go (8, YO (ty, 2))
= ds + 55 dW.
73 a.IYS ’ (tlm HZ')

Then, using again the product rule [57, (1.48)], we obtain that

tk+1 8 8 , t , tk+1 a , }/Se,ﬁ t ’
0 (agY;kH(tk,x)Ua’ﬁ(tk,fC)) - _/ : 50(55 ( " ))ds +/ 2ot 0.8 L x))dWs
Ly azYS P (tg, ) ty Y3 (ty, )

e 9P (tgw) [ 950 (B,Y () [ (90 (8, Y ()

x 05 AW 05 + Dy e AW,
wo o(B, Y (t, x)) b 0,5 " (ty, ) s 0xYu™" (1, z)
_/tkHD 0p0(8, Y22 (ty, 1)) 050 (B, YEP (11, ) du} 8, Y24 (1., z) 5

. 0, Y0P (1), x) (8, Y (b, 7))

0, ,Ye’ﬁ th,
%(t(lﬂ;)) in the second integral above, the term
x kT

M in the third one, and the term M
(/87 (tkv )) (/87 (tka ))

fact that Ytk”g(tk, x) = Ytz”g =z, yields

We next add and substract the term

in the last one. This, together the

Jgo 9 Ogo
3 (0 a0 0s0) ) = T2 B (Wi = W)” = S2 Y008
+HYP + HY? + HYP + HYP + H?ﬁ.
On the other hand, by equation (/5.3)) we have that
g 08y (o8 yos [0 0,8
Wtk+1 Wy =0 (ﬁthk ) Y;tk_H Ytk - \ b(97Ys’ )ds
k
tht1 trt1
_/ (g(@}ij’) - U(ﬁ’}QZ’B)) dWs — / zM ds dz))
tr Ro
which concludes the desired result. 0

We will use the following estimates for the solution to ((5.2)).

Lemma 5.2.3. Assume conditions (A1) and (A4).
(i) For any p > 2 and (0,5) € © x X, there exists a constant C, > 0 such that for all
ke {0,...n—1} and t € [tk,tk+1],

BV (@) = Y ()| [V (b 0) = 2] < Gyt = 30 (14 [al)?
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(ii) For any function g : © x ¥ x R — R with polynomial growth in x uniformly in (0,5) €
O x X, there exist constants C,q > 0 such that for all k € {0,....,n — 1} and t € [tg, tx11],

E Hg(e,ﬁ,yfﬁ(tk,x))) VP (1, 2) = 2| < C (14 [2]9) .

Moreover, all these statements remain valid for X8,

Under conditions (A1)-(A3), for any k € {0,...,n — 1} and ¢ > t;, the random variables
VP (tr, ), 0.Y P (th, 1), (8:Y P (th )Y, 0pY P (th, @) and 85Y, " (1, ) belong to DL2 (see
[61, Theorem 3]).

Assuming conditions (A1)-(A4) and using Gronwall’s inequality, one can easily check that
for any (0, 5) € © x ¥ and p > 2, there exist constants C), ¢ > 0 such that for all k € {0,...,n—1}
and t € [tk,tk+1],

P
E teﬂ(tkax))‘ + ‘ ‘ tkv —SC
+ sup EHDSYf’ﬁ(tk,x)‘ ‘Y ’ﬂ(tk, )—:c} <Cp, and
SE[tk,tIH_l]
swp B [0, (0.5 () [ |V  th0) = 2] < Gy (14 Jo).
Se[tk,tk+1}

As a consequence, we have the following estimates, which follow easily from (5.4)), (5.5)), Lemma
and properties of the moments of the Brownian motion.

Lemma 5.2.4. Under conditions (A1)-(A4), for any (0,5) € © x ¥ and p > 2, there ewist
constants Cy,q > 0 such that for all k € {0,...,n — 1},

E R16+R65+R95 RYP|y, %k, )—x} —0, (5.6)
E R’® + R)P + ROP - "/3‘ By, x) = x} < C AT (14 |2]9), (5.7)
E (|6 (00¥27, (e, )0 11, )) | \Y; "t w) = 2] < CAF (14 [0 (5.8)
E[H? + 5 + YO + HOP 4 HOP yyeﬁtk,x)zx]zo, (5.9)
E_H95+H95+H05+H95+H96’ Bty @ )_x}gopAT%(lﬂxw), (5.10)
E :5(8g)@k+1(tk,x)U9’5(tk,m)>’ Y& (4, )_:c} < CpAP (1 + |2]9). (5.11)

For any t > s and j > 0, we denote by q(ej")g (t—s, x,y) the transition density of Ytg’ﬁ conditioned
on YP = 2 and M; — M, = j, where M; = M (]0,t] x R). That is,

. .
0, At—s) (At —5))
PPt —s,2y) = g (t—s,a,y)e N T (5.12)
J=0 '
From [24] Proposition 5.1|, for any (6,3) € © x X there exist constants ¢, C' > 1 such that
forall0 <t <1, and z,y € R,

< g ta,y) < —ew (5.13)

For any ¢t > s and 7 > 1, we denote by q; f(t — s,,Y;a1,...,a;) the transition density
of Ytgﬁ conditioned on Y2# = 2, M, — M, = j and K[S,t] = {a1,...,a;}, where K[Sﬂ are the



104 Chapitre 5. LAN property for a jump-diffusion process : drift and diffusion parameters

Jump amplitudes of Z on the interval [s, ], i.e, A[s 7= {AZu, s < u < t}. Consider the events
= {Nyyy — Ny, = j} and ij = {Mtk+1 — M,;, = j}, for 5 > 0 and k € {0,...,n — 1},

Where N, = N([O,t] x R). We denote by A[s,t} the jump amplitudes of Z on the interval s, t],
ie, K[s,t] = {A?u;s < u < t}, and by {@7k,a1,...,aj}~:: {Ntk+1 — Ny, =3Fn {K[tkatk+1] =
tar, . a5ty {djk, a1, a5} = { My, — My, = 5} 0 {Ap, ) = {a1,. .., a;}}, forany j > 1
and a1,...,a; € Ry.

In what follows, by abuse of notation we will let Aj,(w) = a1 in the case that Mi(w) —
M(w) = 1, similarly for A.
Lemma 5.2.5. Under conditions (A1)-(A3), for all (6,8) € © x X, j > 1, z,y € R and
ai,...,a; € Ry,
Cj+1 _ (y—z—a)?

cAn 5.14
N e CT)

1 _wea®
CTTAL < ()B(Anvx ysay,...,a J)S

——e¢
Cit1 /A, =
where a = a1 + -+ + a; and C, c are the constants in ((5.13)).

Proof. Using (5.13) and the Chapman-Kolmogorov equation in terms of transition density re-
peatedly, we get that

(A /tkﬂ/ / / / )
q n7x y7a 7"'7 q tk,:'l:?'z
0 : \ ) o !

X q((’)’?(SQ S81,21 + aq, 2’2) q( 0) (tk—i-l S5y %25 + aj, y)dzl s dzjdsl o de

trt1 52 _ (z1—2)? C _ (z3—z1—ap)?
. 76 elsi—tg) ——— ¢  clsa—s1)
ty tE RI VS1 — tk \/ﬁ
2
(y %3 “J)

X e X 76 Wht17%5) dzy - dzjdsy - - - ds;

V tk+1 - Sj

2
te+1 52 C]+1 y z— al—---—aj)
— / / / / cAn dSl "'de,
173 ty

which concludes the upper bound of (| - ) using the fact that

te+1 S2
L -
tr tr
Similarly,

%.5(A ) > / e / / " L et
q.: T,oY;Q1, ..., 05 . s1—t)
(]) ny &y s ’ @ " b R C /781 — tk

2
1 70(227z17a1)2 C(yizjiaj)

e Frw—re N, 76 175 dzy - - dzjdsy - - ds;

>< e —
C\/SQ—Sl C\/thrl_Sj

2

bt 52 1 _ (rmemar—may)”
.. - An veids:
/ / /tk CitL/A,, Ane dsy - - dsj,

which concludes the lower bound of (5.14]), and finishes the desired proof. O
Lemma 5.2.6. Assume conditions (A1)-(A3). Then for any (0,3),(0,3) € © x %, and p > 1
close to 1, there exists a constant Co > 0 such that for all aq,...,a; € R, k € {0,...,n—1}, and
J=1,
5 P
4) 0.8 0.8 6.8 _
E l{fj,k,al,...,aj} 0 (An,th ’th+1’ 1y-ee)0yj) th =z
% (5.15)
< CoCPP NG+ o p, e AN (KAL)
= J )

j!
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where C' is as in (5.14]), and

é7
(

E |1 1
Je 0,
0,k q(

(A, X2 X022 ) | |X0P = 2| < Co. (5.16)

te g4

Moreover, all these statements remain valid for Y%7,

Proof. Applying the upper and lower bound of ([5.14)) to q?’.)g

and q?j’.)ﬁ , respectively, together with

the independence between N and /A\, we get that for all p > 1,

0,8 p
45) 0,8 10,8 0,8
BT ara) | og (B Xels Kiisanag) | X5 =2
q;
aa, AA)T [ g 9, _
= Pa; =" Paj€ ]' (])B(Anawvy;alv"'7aj)pQ(j§3(An7xay;a17"')aj)l pdy
ML) [ 1 (v )*
. —z—aj—--—aj
< oD, L an, M / (BN )L
— pal paj ]' - \/TTL y

If we choose p € (1, c2 1) then —2 + (p — 1)c < 0, and the integral above is finite and equal to
Cy. This concludes . The proof of (5.16]) can be done similarly by using ([5.13)). O

As in [24], Proposition 4.1], we have the following expression for the derivatives of the log-
likelihood function conditioned on the number and the amplitudes of jumps w.r.t. 8 and 8 in
terms of a conditional expectation.

Lemma 5.2.7. Assume conditions (A1)-(A3). Then for all (6,8) € © x X, k €{0,...,n — 1},
j>1 z,yeR, anday,...,a; € Ry,

1 ~
0.3 (An7 T,y;at,... 7aj) = EE276 |:5 (aey;fifl (tlm x)UGWB(tk: J,')) ‘Y;fifl Y, J],ka at, .- .- 7aj:| ’
n

1 ~
08 (ATM‘T Y; a1+ ]) AiEf;ﬁ |:5 (aﬁnkJA (tk7x)U075(tk7 ) ‘}/;fk+1 = ya‘]] k A1y .- 7aji| )
. n

I = 0 0 5
55 (Bn2,Y) = ELEg’ﬂ [5 ((%Ytkﬁ (tk,ﬂf)Ue’ﬁ(tk,fﬁ)) ‘Ytkﬁ =y, Jmk} ,

aﬁq 0 1 ~ 0, ~
—gg (Bawy) = 3L [8 (95Y0) (e )U* 1)) [ Y21, = o]

90)
where the process U8 = (Uf’ﬁ,t € [tw trr]) is defined in Proposition |5.2.1|

Proof. Let f be a continuously differentiable function with compact support. The chain rule
of the Malliavin calculus implies that fl(Y;fzﬁ (tg,x)) = D,g(f(Y;kf1 (tk, )))Uf’ﬁ(tk,x), for all
(0,8) € ©® x ¥ and t € [tg, tg+1], where

1

U (tho ) = ——55——
Dt}/;jk+1 (tk7 )

Then, using the integration by parts formula of the Malliavin calculus on the interval [ty, tx11]
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and the independence between W, A and M , we get that

- 0, - 0, 0,
OB 17 a SO )| =B [15 0 o SO0 ()07 (b, )|

= [ et 0p 0.8
=x b 1{‘7j,k7‘117---7aj} /tk f (nk;l(tk’x))aﬁﬁk;l(tk’x)dt]

Ap
1~ [ [t 0.8 0,8 0.8
= —A E ) Dt(f()/;k+1(tk,x>))Ut (tk’x)aey;fk-q-l(tk’x)l{jjk,al,...,aj}dt
n LSt ’
1 T
= 15, ara FOGD ()6 (00YE00 (b, ) U (14, 2) )|

On the other hand,

~ 0,
OpE [1{@,k,a1,...,aj}f(nkf1 (tx, x))]
_ A,
= /Rf(y)agq?]’)ﬁ(An, r,y;ay, ... 7aj)pa1 o 'paje )\An(j')dy’

and
B 17 an S OGD (e 20)8 (80707, (b )0 (14, 2) )|
=B (107 FOWES (90Y07 (6, )0 (11, 2) ) |V = 2]
= /Rf(y)ﬁ [5 (69Y0’B (tk,x)Ue’B(tk,m)) Y;z’fl = y,Yt‘Z’ﬁ =, jj,k,al, - ,aj}

Tet1
6 _ (A\A J
><q(j)ﬁ(ATHx)y;ala'"7aj)pal'”paje AAnj'n)dy

This shows the first equality. The proof of the other equalities follow along the same lines and

are omitted. O

As in |25 Proposition 1.2], we have the following estimates.

Lemma 5.2.8. Assume conditions (A1)-(A4). Then for any (6,8),(0,8) € © x X, p > 1,
and p1 > 1 close to 1, there exist constants Co,q > 0 such that for all k € {0,....,n — 1},

ai,...,a; € Ro, and j > 1,

D,y !
() 9_,_ 9_7_ . 0_7_ —
E 1{@,k,a1,-..,aj} B,Zi (An,thB,thfl,al,...,aj) ‘thﬁ =z
1)
X 1
D ) AA, ) 1
< CyA2 <C(2zzn—1)(a+1)]0a1 . .paje—mn(j'n)> (1+|z]),
p
a/gqe’ﬁ - . -
( ) 9, 97 . 07 —
E 1{33’]6@17”.7%_} 075 (A”’thﬁathfl’al""’a’j) ‘thﬁ =2
0)
. 1
; AAL)T\ P
< O <C(2p11)(3+1)pa1 . 'paje)‘A"(j,n)> (14 |z]9),
where C is as in (5.14)), and
r P
69(]0(’)5 i3 33 52 P
0.3 90, 9, £

B 1jo,k 0,(5) (A"’thﬁ’thfl) ‘thﬁ =z| <CoAq (1+ ’w‘q>’

i %)

r p

9p4(5) 0.3 0.3 6.3

Bl qe,(ﬁ) (An7Xt]:8’th7Jﬁrl) ‘th’ﬁ =z| <Co(L+|z[?).

L (0)
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Proof. Applying Lemma [5.2.7] and Jensen’s inequality, for any j > 1 and p > 1, we obtain that

(4) 0,83 0,8 6,8 _ _ ~
B 1{@,1@,@17---7%} q(91,)3 (An th ’th+1’ Lyeeen @y ‘th =z =E |:1{Jj,k7‘117---7aj}
J
1~ 9 0.8 _ x0 ey
X <AE2;B {(5 (8@Ytk’fl (tk,x)Ug’B(tk,a:)) ‘}/tk = tkﬁl,J k7a1,...,a]}> ‘th’ﬁ =z

1 9
< £/E95H5(85Ytk+l(tk, DU (1, )‘ ‘Ytkf g, ]k,al,...,aj]

3 A (AA,
><Q(e’-/)B(An,x,y;al,---,aj)pal”‘p“je /\An(ﬂ)dy
1 p ?
3 ) 0,8 19,8 ;
FE B ‘5 <8B}/;k+1(tk,x)U B(tij)>) {ij,al) 7(1]} 9 (A }/tk 7}/;}“,_1’ ..70/])
4

Then, applying Holder’s inequality w1th —|— — =1, together with Lemma [5.2.6| and (5.11)),
we get that if p; is close to 1,

8 q 75 p
0) 0.8 10,8 6,8
{17 oo | o (A X070 X0 51, aj) ’th —
9)
1 /=~ 0 PP27\ 7
e (52 [ (0722 0% 0,2) )
3 SN\
=0, 1) 9,8 0,8 .
B 1T gy | o B Y5 Vs a))
it
. L
. J
< Oy <C(21>1—1)(J+1)pa1 . 'paje_)‘A"()\A.,n)> " (14 |z]9),
J]:

for some constants Cp,q > 0. This concludes the second inequality. The proof of the other
inequalities follow along the same lines and are omitted. O

Lemma 5.2.9. Assume conditions (A1)-(A4). Then for any q1,q2,q3 > 1 conjugate, qs close
to 1, and p1 > 1 close to 1, there exist constants Cy,q > 0 such that for any random variable Y,
ke{0,..,n—1}, a1,...,a; € Ry, and j > 1,

00,80
9(5) O, B0)  -0n,B(0) 0n,B(¢)
BAYL5 ooy | o (o X020, X050, a) -1 }th —

(4)
< <o E ||y |o|x/?0 " CP1Vas)(i+1) s (AAL) na T . .
< 0 (B [ivimxie @ =] ) ( S V5

where C' is as in (5.14]), and

00,80
© 0B(0) 3 On,B(0) 0 B(0) _
E|Yi, qen,ﬁw)(A Xm0 xRy )th =

(0)

< 3% (E [|Y|q1\Xf;W) = :c])qll (14 ][,

where B(€) 1= By + )

1].
N and ¢ € [0, 1]
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Proof. Observe that we can write

00,580 60,60 00,8(£) 00,8(£) On,B(€)
45 0n,B(0) 5 0n,B(0). 4G  —95) TG )
gy’ g (B X Kyl 0g) — 1= a(y’

J J

1 9 90 50-!—@ 90,5 +f 1 9 90+%,5(f) 90+\/— B(£)
\f eoﬁo#jﬁ q9 B(L) Vi, Jo o o+ A= 50 q 6:,8() :
() Q(j) ()
q Q) Bo q(90 5o

Ap, X PO X000 ay).

Here, to simplify the exposition, let us write qg(] 5 = qgn ﬂ(@( thon

() @)
This implies that

Go,ﬁo
- _ On,B(0) _
E Yl{ijk,al,...,aj} Qnyﬁ(é ‘X =T S Sl + SQ?
where
[ 90,50+<;ﬁ 90750+€\/“ﬁ
si= L Mg v, il 1) | X0 = | |
! vn Jo {Jjksa1,0a5} 00,50+ 61n,B(¢ tk ’
L Q(j) q(])
lul ! 39(1? v (00)+J£ﬁ()
_ _ j 0n,8(0) _
52 = Vi, Jo E Yl{J]’,k,ah--na'} 0o+~ B(¢) q(Gn)ﬁ(f) ‘Xt’“ z| | dh.
9@ "~ " j

First, we treat S7. Using Holder’s inequality with ¢1,q2,93 > 1 conjugate, together with
Lemmas and we get that if g3 is close to 1, for any p; > 1 close to 1,

_ ol l AN -
0,.8(0) _ 1N\ 845 0,8(0) _
S < [\Y\ql\X wD BN ) " losor Xy =2
L ()
90750+% a3 %
~ 1) 0n,B(0) _
X E 1{Jj,k7a1a~~'7aj} 9”1/8( ) th -t dh
45
1
v s aa, AA)
< 00%( [|Y|q1]X B¢ C2r1—1)(G+1) Pay - Daye A, 7
. q
% (C(Qqs—l)(ﬁl)pal. —*An( ) > (14 |x|7),

for some constants Cy, g > 0.
Similarly,
1

Sy < C()\’ZL» (E [’Y’ql‘Xf:’B(@ _ x]) a1 <C<2p11)(]+1)pa1 B ‘paje’\A”(j')> P1a2

!
: AAR)T
5 <C(2‘13_1)(]+1)pa1 . .paje—AAn(j!)> ’ (1+|z|).

This concludes the first inequality. The second one can be done similarly. Thus, the result follows.

O
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Lemma 5.2.10. Assume conditions (A1)-(A3), and let f be any bounded function. Then for
any k € {0,....,n—1}, and (0,5) € © X &,

90,50 1
0, B(¢ 0 0n,8(0) ~0n,B(¢ On,B(¢
B /(X IX] = B | F g, ei,2< 3 (B, X0 X O X P = X,
90 J
q(90)50
+Z Z E f(th+1 )I{JJ ky@1 .- ,a]} gnﬁ(g) (AnaX th+1 7ala---7a’j) th
7= (at,...a;)€A )
Proof. Observe that
E [f(thH)’th] =E {1% (th+1 ‘th} + Z Z E |:1{:]\j’k’a1’m,a]-}f(th+1)’th:|
Jj=1 (0‘17 -a )
= [ T X ey
_ AA
+Z Z /f 90,60 An,th,y,ab---,aj)pal"'Paje A, ( - ) dy
Jj=1(a1,...,a;)€A J:
q90750
0 On,B(¢ n
= f(y) © o )(An,th,y) AL dy
R On,B(€) ( )
90y
00,80
q j n — (AATL)
+Z Z Rf(y) Ei)ﬁ()Q(j)ﬁ()(ATHth?y;al)"'?aj)pcq"‘paje AL ]' d )
Jj=1(a1,...,aj;)€A (])
which concludes the desired result. O

We next recall Girsanov’s theorem on each interval [ty, txy1].

Lemma 5.2.11. Under conditions (A1) and (A2), for all0,0, € ©, B € X, and k € {0,...,n —
1}, define a measure

~ ~ U1 b(0,X1)=b(01,X¢) kel (D(0,X)—b(01,X¢)
szﬁ:E 1e Ay [ (MR ) de)

~601,0,8

for all A € F. Then Qel’eﬁ is a probability measure and under Qal’eﬁ the process BQ’C =

B + ftk“ %@dt is a Brownian motion, for all t € [ty, tx+1].

Lemma 5.2.12. Assume conditions (A1), (A2), and (A3)(b). Let 0,0, € © and € ¥ such

that |0 — 01| < \/T’ for some constant C' > 0. Then there exist constants C,q > 0 such that

for any random variable V', and k € {0,...,n — 1},

v (- )W] © (o) [ oo )

where Eg,, denotes the expectation under the probability measure po defined as

E -0, .0,
Qo

Da thr1 b(0,X1)—b(01,Xs) 2 plpgn (b(0,X4)—b(01,Xy)
dfa B e G5 maniE o (Mo 2y X0 ) g,
dQ 1,0,8

)

for all a € [0, 1].

= Xy,
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Proof. Observe that

X,) — X po
b(0, Xy) — b(61, X¢) > ae

e (9, X,) — b6y, X) <
’ dB; — =
/ /tk o(B, Xt) e o(B, Xt) dQ"”

dQelﬂ B

Consider the process W = (W) e[y, 1)) defined by

_ tb(0, Xs) — b6, X)
Wt = BtO[/ a‘(ﬁ7Xs) ds.

tg

By Girsanov’s theorem, W is a Brownian motion under P¢.
Then, using Girsanov’s theorem, Cauchy-Schwarz inequality, and hypotheses (A2), (A3)(b)

together with Lemma [4.2.2] (ii), we get that
E 6,08

e b(8, X,) — b(0o, Xo)
0,3 ) 0, At 6,8
& v( 577~ )‘X ] /EA [V/t th‘th]da

o(B, X)
< [ G [])” (|

9 1/2
‘Xff]) da
<< (1 N ,Xz;ﬁ‘q) /01 (Eﬁa [VQ)XZ,BDW da,

k

tha1 (0, X,) — (0o, X¢)
/t 0(67 Xt) th

J— ﬁ
for some constants C, g > 0. Thus, the result follows. O
Lemma 5.2.13. Under conditions (A1)-(A3), for all k € {0,....,n—1} and 0 € O,

150,50 et yOBo _ ’
E oo [1%( W [ % / / M (ds, dz)| Y% = thﬂ]) ‘th]
0 _ 5.17
-/ Jop o (B X piaop(ane 2o\ (5:.17)
U pPPo (A, Xy, y) RUI v
l41 05 0.5 2
EAe 60,580 (/ / zN(ds,dz)E t}? |:1j0,k Y;k:rf = thﬂ}) ‘th
7 5o (A, Xo L y)e— o 2 (5.18)
/ / m (A, Xy ys a)e M AN @l dyp(da)
RO 060 An7th7y> (1) ’ B ’
and
tet1
0, 0
EAMOBO[ Jlk(/ / 2N (ds,dz)E 5}3 [1]1‘ Yoo = thﬂ]
Tt 2
D, yop
thf [ J1k/ / 2M (ds, dz) tk+f th+1]) )th} 10
5.19

vﬂ (A, Xy, , y; a)p(da)e 2 AA,,

- / et
Ro 9750 (Am thv y)

(1) (An;thayv ) )\An)\Andyu(dz)
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Proof. Using Bayes’ formula, we get that

~0.60 tk+1
Eth 1jlk/ / zM (ds,dz)

tet1 —
0 ~
2 et ] )

eﬁo(AantkathJrl)
Joo @l (A Xiys Xy 13 @)ap(da)e  AnAA
Ro Q(l) ny At s Al a)apiaa)e n
p97BO(An5thvth+1)

v 0,80 __ th+1:|

This, together with Bayes’ formula again, implies that

50,50 Kax 9,60 ?
(8 . [ s i)

fRo 060 An,th,thH;a)a,u(da)e_/m")\An

= Q" (Ton| X, ) B o X
Qk O,k‘ 2% Qz’eovﬁo 9’50(An’thath+1) 0,ks Atg | »

which implies (5.17)). Similarly,

bt 6.0 0,80 _ i
E@Z’GO’BO 1(71,k </t /]R zN(ds,dZ)E)étk |:1]0k }/tk+1 th+1:|> ‘th
k 0

2
0, ZAA,
a0 (A, Xy, Xy e 2

= A2 (0)
= Eéiﬂo,ﬁo 1J1,kA[tk,tk+1] p0Bo (An, th,thH) ’th
0, _ 2
/ E o) (B Xy Xy Je ) {a}, X, | a?
- %0 k> =10y, a
Ro e pfho (Anp, thathJrl) b [th th41] b
6,6 ~ ~
X Qk, 050 (A[tkvtk+1] € dav Jl,k‘th>
2
ny Mo y) 9,50 AA N
/Ro / ”BO An» tha ) q( ) (An’ th’y’ a)e )\A”a dy:u’(da)a

which shows ((5.18]). The proof of ([5.19)) follows along the same lines and is therefore omitted. [J

By abuse of notation in this subsection relating to the term Mf”B ° below, consider the events
J2 k = {Ntk+1 — > 2} and Jgk = {Mtk+1 Mtk > 2} Set I = {CL S A plAU < |a] < pQA_’Y}
and A\, = f[ da Where p1,p2>0and 0 < v,y < 2 are from hypothesis (A6). For i =0, 1,2,

set
0.5 trt1
Mi,OZEAanBO[ (/ / N(ds,dz)
tr
tkt1 2
950 [/ / M (ds, dz) tiﬁf th+1:| > ‘th:|

Recall that for the simple Lévy process (3.1)), we used a large deviation principle by condi-
tioning on the number of jumps. For the non-linear model ({5.1]), we will obtain the parallel of
Lemma [3.2.6/in our case.
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Lemma 5.2.14. Under conditions (A1)- (A4) for any 0 € © and n large enough, there exist
constants C,Cy > 0, such that for all o € (v, 3), ag € (1,1), and k € {0,...,n — 1},

MPP < € (AAY2 + A;Qvefcoﬁi‘”’l) , (5.20)
(aVag)—

MPP < ¢ ()\ A2 4 A2 Conn e 1) , (5.21)

MEP < O, A3, (5.22)

In particular, (5.22) holds for all n > 1.

Proof. We start showing (/5.20]). Multiplying the random variable inside the conditional expec-
tation of Mg’ﬁo by (1501C +1; + 1£k), we get that M, bho < 2(M9ﬂ0 + Mgzﬂo), where for
i=1,2, ’ ’ ’

tht1
Mgfo = E@Z’Go’ﬁo lljo’k ( E% 5 [ /t /ZM (ds,dz)
k

By (5.17)), we have that

2
0
Y;tkf? th+1:|> ‘th] :

f[ qeiﬁo (An7 Xt » Y5 a)a/,t(d(J,)e*)‘nAn )‘nAn
Mg&ﬁo = /]R 1) k q(e,?o (Ana th,y)e_A”A"dy,

p@,ﬁo (Ana th ) y)

We next divide the integral in Mg 150 into the subdomains {y : [y—X¢, | > A%} and {y : l[y—X3, | <
Aa} where o € (v, 1), and call each integral Mg1 1 and Mgf%. We start bounding Mgf(i. By

v

peﬂo (A?% tha y) Z /[ Q(eifo (A’fba th 9 y? a)u(da)e—)\nAn )‘TLA?? (523)

Then, using (5.13)), we get that

it <o |

q(eéﬁo (Ana th ) y)dy
{|y7th |>A%}

)
)2

<CA;Y / L~ gy < OA-Zre-Cont
S e can Y = e n s
" Jy-x>ag) VAR !

for some constants C',Cp > 0 and ¢ > 1. We next treat M 16 %. Observe that - yields

(PQ’EO(An,XWy)) > g5 (An, Xy y)e o / 40 (An, Xoy g5 @) p(da)e ™A A, A, (5.24)

Therefore, using Lemma [5.2.5] we get that for n large enough

{ly—x |<Aa}/1q(0i§30(A"’thay§ a)p(da)dy
Tt =50

con [ | L O (e
n e cAn a
B {\y th|<Aa} \% An v

n aTAYH 400
_ VelAn 2 o2
SCAnQ’Y/{/ —w dwl{azplA%}+/Aa+plAv e W dwl{agplA%}},u(da)
VeclAn

0,8 —29 ,—AnAy
Mo,l,% < CA e A\,

2v—1
< CA;Z-Y@_COATL

i
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for some constants C,Cy > 0 and ¢ > 1, where we have applied Fubini’s theorem, the change

of variables w = %, and the fact that on I, |a| > p1AY, together with e™ 2 )\, A, < \.

This shows that for n large enough and for a € (v, %),
My < CAZe oA (5.25)

for some constants C, Cy > 0.
In order to treat Mg QB 0. observe that by Jensen and Cauchy-Schwarz inequalities, and hypo-

thesis (A4), it holds that
tkt+1 0,
(/ /szsdz)’Yﬁo Xt
This shows ((5.20)).
We next show |i As for the term Mg’ﬁo, we have that MY < 2(]\4167’150 + Mffo), where

0,50 l41
Ml:l :Eézﬁo,ﬁo 1j\1,k /t /IZN(dS,dZ)
k
6,60 et 0,80 _ ?
— B 1 /t /[ 2M(ds, d2)|Y2P = Xy, ’th ,
k
M}y =E (8 [ [ [ aras,an |y — x 2 X
12 = @2’60’50 J1k X | 72k t IZ (ds, dz) tht1 — et e | -

Adding and substracting the term ftt’““ J; 2N (ds dz)ﬁi{if [ljl k]Ye o th+1] inside the

Mgy <E|1 < CAA32,

ther1

square to start bounding M ’fo, we get that Me Bo < 2(Mff% + Mff%), where

0,8 tht1
Ml 101 - E@Zv"oﬁo |:1jlk </t /]ZN(dS, dz)
k
2
_ tet+1 zN(dS dZ)EG,ﬁo [1~ |Y9 Bo X } ‘X
tr I ’ Xey [T Tterr T e te |

te+1
0, 1518 0,
lez% = E@Z,GO,BO [lfm (/ /zN(ds,dz)EXiS |:1jlk|}/tk‘flo = thﬂ}

50,50 et 060 _ ?
th |: Jlk/ / dS dZ tk7+1 th+1:|> ‘th:|

Observe that Mffol < 2(Mff°170 + Mﬁ’ffig), where for i =0, 2,

tet1 2
97 ~97 97
M = Bgo.t0.50 [1% (/t /IZN(ds,dz)EXf: [1% v = thﬂ]) (th] :
k

By (5.18),
2
—AnA
QO Anathay) nen _
19501 // © q(f‘)(An,th,y;a)e Al )\ Apaldyp(da).
n7th)y)

Again we divide the dy integral into the subdomains {y:ly—Xs, | > A%} and {y : ]y Xy, | <
A%}, where a € (v, 3), and call the terms M1 11,01 and My ’131 02 As for the term M 131, using

(5.24), we obtain that

0 2
M1,501,01 <CA;, 7/

0 _ _ 2a—1
Q(él)BO (ATM th ) y)dy S CAn 2’Y6 Coln )
{ly=Xu, I>A8}
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for some constants C,Cy > 0. Next, (5.12)) yields

pe,ﬁo (Ana th 5 y) > q‘(g(fo (An, tha y)e_)\nAn . (526)

Then, as for the term M 16 %, using Lemma we get that for n large enough

Mffgw < CA, W= AnlBn N A, // q?l"fo(Athk,y; a)dyp(da)
{|y X’fk|<A&}

2v—1
< CA e ot

i

for some constants C, Cy > 0. Therefore, the term My 9,50 10 satisfies |D
As for the term Mg 260, we have that Mflﬁ(b < C)\nAn/ for some constant C' > 0. Therefore,

the term Mffﬂ satisfies 1D

We next treat Mflﬁ 9. Using li we have that

2

Me,ﬁo // f[ Z = CL Anthkay’ ) (da)e_A"A")\nAn
b b (An7th)y)

0 _
X G (A, Xy 3 2)e A N Adyp(d2).
We next fix ag and e such that 3 <e < ag < %, and consider the set

EF={ael:|z—a|<AS forall zel}.

We next split the integral inside the square of Mlel'g %, over the sets 1 gk and 1(geye and call both
terms M f% , and Mf1 5.0- First, and Lemma yield that

My | < CemPnin, ALF2 /I /R 40 (A X,y 2)dyp(dz) < CARALT, (5.27)

for some constant C' > 0.

Next, we treat Mff %72 by dividing the domain of the dy integral into the subdomains I :=
{y:ly—Xy, —2| > A%} and I :={y : |y — Xy, — 2| < A0}, and call both terms Mff%z,l and
Mflﬁ 592 Then, using and Lemma we get that

MYy o) < CAZZeMAmN A, // “(An, Xy, y; 2)dyp(dz)
X —2)2
< CA 2y . CtAkn dyﬂ(dZ) < CA Q’Y _COA2 o 1>
[1

for some constants C,Cy > 0 and ¢ > 1.

Next, (5.12)) yields

2
(p"% (A, Xy, 1)) 2pG’BO(An,th,y)/IQ?ifO(An,th,y; a)p(da)e 2 A Ay
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Then, using Lemma [5.2.5] we obtain that

M52 < CATe AN,

40 (Bny Xy g3 2)e 20N A,

1 ¢ naX IR d d d
A T o R
2 AnA
1 _m Q(l) (Anath7y7 ) An n)\nAn
§0An27///1 kye e An p(da dyp(dz
1), J1 B /A, (da) plBo (A, Xy, y) dz)
e [ 1]
= n k\c can
1 Jgnzazey PR,

0,80 —AnA

QN (An, Xiy b+ Xy, + 25 2)e7 20 A A,

= N dhp(da)u(dz),

p@,ﬁo (Ana tha h + th + Z, Z))

for some constants C' > 0 and ¢ > 1, where we have used the change of variable h :=y — X}, —z.
Since |h| < A% and |z —a| > AZ on (E¥)¢, for n large enough there exists a constant
Ci € (0,1) such that |h + z — a| > C1AZ,. Then, we deduce that
p 0,60 (Am tha h + th + Z)

B C%AQE 1 / /
{|h|<Agn0
AnAn)\nAn

CA—%—?‘/ _ClAgf_l// Q(l) (An,th,y;Z)e’
= e c
! I {|y_th_Z|§AgO} O’BO(AThthay)

B0 (A, Xy b+ Xy, + 23 2)e B0\ AL

My, < CALT e dhp(dz)

dyp(dz)

<CA 5—27 1ok 1/ f[q(l) (An’thvya ) (dZ)C_A”A”)\nAndy
n
{ly— th|<AaO+p2A_’y} p9760(An7th7y)
_1_ ciaZe-t 1_ c2aze—t
— OA, T 0~ —  on T e T
<OA, 2 cpa!
n ¢ )

where we have used the change of variable y := h + X;, + 2, and (5.23]).
Therefore, we have shown that for n large enough and «q € (e, %),

950 2 37 —C AZao 1
M1122<C’A )

for some constants C,Cy > 0, which together with 1} gives

Finally, as for the term Mg 50, we obtain that MG bo 4 Me Po < o An/ , which concludes

the proof of (5.21) and - O
For all k € {0,...,n—1} and p € {2,4}, set A\k,r = {Etk“ — Etk =r}, A\zr = {Etk“ — Etk #
r}, Ap,r = {Ltk+1 — Ly, =}, Azﬂ_ ={L,, — Ly, #r}, where Ly = fg fRo zM (ds,dz) and

=2 |1y, B 1

On,B(4
Y;fk+1 Y= Xt’““} )Xt’“] ’

reA
tet1
Gn L
ZE |: th() |: </ /ZM dS dz ) ‘Y;fk_H th+1:| ‘th:| ’
reA b

where A := {Zgzl aj,a; € I,j € N}
As in Lemma [3.2.6] we obtain the following large deviation estimates for the non-linear model

B-1).
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Lemma 5.2.15. Under conditions (A1)-(A4) and (AT)-(AS), for n large enough, there exist
constants Cy, Cy > 0, such that for all a € (v, %), and k € {0,...,n — 1},

M n:ﬁ(‘e) + M H»B( ) < C’le_COAgla_l.

Proof. We start bounding Mf;’ﬂ(é). For this, we fix a € (U, ), and write Me””g(é) M1 Ao 4

M 19 ’;g @ , Where

,p,1

tet+1

0n,B(6) _ On,B(2) On,B(L) _
My ZTPE [ {‘ft’““ (8,X5)dBs >Aa} AkrEka [IAZ Y - Xt’““} ‘th] ’

reA

tr4+1

Mo = ZTPE[ {(ft’““ (8,Xs)dBs <Aa} AkrEka [ Az Y _Xt‘““} ‘Xt’“]'

reA

Applying Cauchy-Schwarz and the exponential martingale inequalities, together with (A2),
(A4), we get that

MOBO < e N( X
1,p,1 {‘ftk+1 (8,X.)dBs|> A0 } /tk /z ds,dz) ‘ b
tri1 5 tet1 2p %
< <P </ o(8, X,)dBs| > A >> E (/ /zN(ds,dz)) ‘th
tr tk I
A%afl
2A e 42

since the quadratic variation of the continuous martingale |, t’““ o(B, Xs)dBs is upper bounded
by c2A,,, where the constant c is as in (A2).
Next, applying Holder’s and Jensen’s inequalities with q1, g2 conjugate, we get that

M0 < S0 (P (A, ) ) (BE5O) (529
reA

where

Gn,ﬂ( 0, B(£)
H <Aa} AkrEth [1A°

On,B(£
thk_'.l ) = th+1] ’th:| .

“E 1) s

3 P ~ S o~ — DY : 1
Since 1 = 1y, + PP Z(al,...,aj)el L7 parmay} and set a := a1 + -+ + a;, we can write

0n,B8(8) _ 170n,8(£) On,B(£)
Hk,r - Hk,r,l + Hk,r,? ) where

0n,8(0) _ ~ T0n,B(¢) n,B(6) _
Hk,’r‘,l =E |:1{‘ftk+1 o(8,Xs)dBs SA%}lJO’kl{Tzo}Eth |: AC ’}/thrl th-‘rl] ‘th:| ’

kﬁﬂ’g Z Z E[ {|fE" o(8.x0)dB.

B o ]

SA% } 1{jj,k7a1,...,aj} 1{7’:@}
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We first treat ngjf(z). Using Bayes’s formula, (5.12)), (5.13)) and Lemma

1~ EfBO [ ’Yten,ﬁ(ﬁ thﬂ]

Jo,k Xty k+1

@2

.2.5) we get that

=0n,8(€)
Jok Z Z Eth [ (T ks215e- ,zm}l{ﬁéo}‘ytkﬂ th+1}

m= 1(Z17 *y m
On,B “AnAy AnAn)™
=1 Zm:l Z(zu m)el Um) ¢ )<A”7th’th+1;Zl""72771)1{27’50}])31 v+ Dz € An s %
Jo,k penﬂ(f) (A, Xt thH)
On,B - AnApn)™
2im=1 2 (erzm)el Yo OB Xy X520, 2m) L ooy - Do n Lu2p)
Je 0n,B(¢ _ Anlp)?
0,k Zfio a B( )(An7th7th+1)e AnAn%

On,B(¢ “AnAp QnAn)™
<1 Yol Z(zl,...,zm)él D) ( )(Am Xtys Xty13 2150 Zm) LotV Py -+ - Dy © AnAy, ( = )
- en) {4 —

o q(O)B( )(Athk’thﬂ)e Andn
(X¢ —X¢, —2)2

m—+1 _ k41 "%k 77 — )\nAn m
. S Z(zl, el C\‘ﬁ Bn 1i.20yPz - Dzp€ An Ay, ( m!)
= "ok Xty —Xty)? ’

1 eicTe*)\nAn

CVAL
for some constants C' > 0 and ¢ > 1, where z := 21 4+ - -+ + z,,,, and we have lower bounded the
denominator by the term ¢ = 0.
Conditioning on | [ b1 (B, Xs)dBs| < A% and JO k, using equation (/5.1] . the boundedness
of b and the fact that | 7 > C'AY for some constant C' > 0, together with ¢ > 1, we have that for
n sufficiently large,

_ 2 2 o Al=7y)2 a, Al—7y
_ (Xt =Xty —2) (th+1 Xtp) (67l) (COAn+An+An A) 12 |Z\(COAn+An+An )\) e
e cAn An <e c An cAn cAnp

IN

c A%a—l_ﬁ —CyAY
<1 A (I 2A7) (1{‘ |[<C2AS} + 1{‘z|>CQAO‘})

oa— C o— v % v— v a
< eclai 1 (E_JA HCAY—CyA )1{| <Consy + € CALTHCOAY-CaAY )1{| \>02Aa}) (5.29)

2a—1 Cy vta—1 C% 20—1
< eClAn (eCCAn +7An
vta—1 2u—1 atv—1
S 6_03An + e_C4An S CSe_CGAn

for some constants Cy, ..., Cg > 0.
On the other hand,

- A"
Z Z C"pyy .. .pzmef)‘”Ang < 0, (5.30)
m=1(z1,...,zm )€l

which concludes that Hg"”f(e) < Ci e~ CoART™ , for some constants Cy, C7 > 0.
Next, applying Holder’s and Jensen’s 1nequaht1es with p1, p2 conjugate, we get that

L 1
k?g < Z Z <P (Jik,al, e aj) ‘th> Pl (Hz;g(ﬁ)) P2

J=1(a1,....a;)€l

1
I S R N

|
7j=1 (a1, ,a])EI J:
where
envﬁ( — an(E) 677«7B(€) J—
Hk,ri% = [ {‘ftk+1 (B.X+)dBs <Aa} (T} j - a}E {1145 Ytk+1 —th+1} ’th} .
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Using Bayes’s formula, (5.12)), (5.13)) and Lemma [5.2.5| m we get that

0n,8(£) n,B (L _ B0 n,B(€
Eth { ‘}/tk+1 th+1] = EX [1~ 1{11750}’}/;5%1 th+1}
=0n,B00) [1 B _
+ Z Z Eth [I{mek,zh..,zm}l{a?éz} Y;5k+1 th+1]
m=1 (z1,...,2m)EI
On,B(L _
. Q(O)ﬁ( )(An,th7th+1)1{a7§0}€ AnBin
0n,B(¢ _ AnAg)?
Z?io Q(i) g )(Am tha th+1)e Anln %
On, Ay AnAp)™
n Zm 12217 2 ( 58()(Anthkvth+1§Zly--'7Zm)1{a7éz}pz1‘--pzm Ann { my)

0n,8(¢ _ Anlp)t
Z?SO 9() . )(Am th’th+l)e AnAn%

On,B(¢
Q( ) ()(AantkaXt/ﬁLl)l{a;ﬁO}e Anln

0,8
Q(J) ¢ )(An7 th)Xt;H_l;ala s

Zmzl 2(21,...,zm
+

;@j)Pay - -
0n,8 .
cl q(m) ( )(An, tha th+1a 21

-Pa €

Zm) L {atz} Dz - -

“AnA, AnlAn)
r|

J:
e—AnB Onn)

‘Pz m!

0n,B(0) . - Anlin)?
Q(j) (Ana thvth+17a’ a’j)pal «++Da;€ AnAn%
Kty g =Xey,)
C_ o~ A, —AnA
< VAL ¢ Hozope T
= o(X¢ — X4, —a)? 1
;e—% e—Anlyn Anln)l
Ci+tL/A,, Pay -+ Pa; 7t
(X¢ — Xt 7z)2
Cm+l — k+lc k —)\ ( n n)
+ Zm 12:2'17 2 EI \/7 B 1{a7éz}pzl <+ Pz © m!

Xty =Xty —a)2

— AnAp)I
An pal”_paj@ /\nAn(”.i'")

72

;6
CitlV/AL,

for some constants C' > 0 and ¢ > 1, where z := 21 + - -+ + z,, and we have lower bounded the

“AnAn AnlAn)
aaj)pm -+ Dq;c ( 71 ) .

Conditioning on j;:“ (B, Xs)dBs| < A% and {ijk,al, ...,a;j}, using equation ({.1f), the
boundedness of b and the fact that |a| > CA} for some constant C > 0, we get that, by
proceeding as in ([5.29), for n sufficiently large,

denominator by the term q(”)’ﬁ( )(An, KXty Xtyypr3 015 - -

N2
CoAn+AQ+AL "f)\)

< eyl

_ at+v—1
S 056 CeAn

— Xy 70,)2

k

1—
2\a|(COAn+A%+An TA) (a2

_ 2
Ky =X +C(th+1 B
cAn cAn

[ cAn Anp

)

for some constants Cx, Cg > 0.

Similarly, using the same above arguments, together with the fact that by hypothesis (A7),
la—z| > CAY for some constant C' > 0, we get that, by proceeding as in ([5.29)), for n sufficiently
large,

N2
(thHth,;Z)Q (Xgg g =Xty —a) (COAnJrA?;-s-A}l 7,\) \a z\(COAn+Aa+A1 ”A) la—z|?
6_ cAn +e An S e<c_z) An cAn cAn
_ at+v—1
< 056 Coln s

for some constants Cs, C’6 > 0.
Then using again (5.30)), we conclude that H, 9”’6 O < ¢y Citle—CoAn™™"
with hypothesis (A8), 1mphes that

, which, together

0, 800 _ (AnAn)/ o oy L
n - nAn j - A% v
Hk7r7§( ) S Z Z (pal T pa]e ’ n]'”) <Ol C]Jrle CO ) "
Jj=1(a1,...,a;)€el '
7CQA%+U71
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for some constants ¢, co > 0. Therefore, we have shown that
9n7 Y/ _ atv—1
Hym PO < Crem AT (5.31)

for some constants Cy, C; > 0, which, together with hypothesis (A7) and ( - ), yields that
Cog Aatv—1

Mlz;,ﬁ( ) <Ce ®w°" . Thus, we have obtained that

MO < et (5.32)

for some constants Cy, C7 > 0.

We next bound M;’;’B(@. As for the term Mf;‘)’ﬁ( )| we write M, "”8( ) = Mg;;’f(é) Mg’;:ﬂ( ),

where

'nﬂ
My pa ZE[ {| 15 o(8,x0) B >A5}

trt+1
Gn B 971718
X ]_A\kTEth |: </th /ZM dS dZ > ‘thlﬂ—l th+1:| )th:|>

n,ﬁ
JJ 2 Z Eth |: {‘ftt:+l a(8,Xs)dBs

reA

Bt Kak B(e
X 1A\krEXt7k |: </tk / dS dZ > ‘Ythr’l th+1:| ’th:|

First, applying the exponential martingale, Cauchy-Schwarz and Jensen’s inequalities, we get
that

<ag}

My SE{l{!ﬁkH (8. X005 [>a5)

08¢ s ZM ds, dz) ’Y w80 _ x, ‘Xt
th b tht1 k+1 k
< <P <

[ oo, xam, )) (T

ti
< \/ﬁe 4c (Tk,p) s

> AY

N =

where the constant ¢ is as in (A2) and

te+1
~9n, nsB(£)
Thp = E[ 0 [(/t / M(ds dz) oo th] ‘th] .
k

Using Lemmal|5.2.10/and Hoélder’s inequality with ¢1, g2 conjugate, together with (A4), (A8),
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we get that

97ﬁ
trt+1 q
Tp =B | B [(/ /ZM (ds, dz) > ‘Ytkﬂ = Xos ] 1fo,kqen,5(£) X 7 = Xy,

(0)

> tht1
n y/@ n 75(8) n 7/8(£)
+y> E[Exk [(/ / M (ds dz) ‘Yt,m X'l ]
5=1 (ay,...,a; )€l b

95

4 0n,B(0) _
Xl{ K01y ,aJ}QOmﬁ ‘X = X,

(4)

1 q2
tkt+1 2pq1 q1 qe’ﬁ
0,8(0) _ (©) 61,8(0) _
< (E (/t /IzM(ds,dz)> Y, _thD E |17, e ‘th = X,
k

+Z > (E (/t:k+1/IzM(ds,dz)>2pql 1

a1
On,B(0) _
Yl-fk - th
] 1 a17 7a
1
0,8 92 q2

q(5) nsB(€
x [ E 1{@7k,a1,..-,aj} W ’X th

()

RS Ca, AT\ B
< Cnﬁgl 1 +}§£: j{: ((7(QQ X]+’)pal...paje >

7
=1 (a1,...a;)€A J

< 00.

A2a71
We then deduce that Mg’;”[f( ) < Ce 42 | for some constants C > 0 and ¢ > 1.
Next, applying Holder’s and Jensen’s 1nequahtles with ¢, g2 conjugate, together with (5.31))
and (AT), we get that

1
M3 < 37 (P (sl X)) <E {1{“:'““0(5)( )dB
i k o !

reA

tet1
XEG"B [ (/ /szsdz>
173

<30 (P (e X)) (Hi) ™ ()

reA
atv—1
< CreC0n

<ag}lan,

1

0n,B(¢ @
s ) — th+1:| ’th:|>

)

for some constants Cy, C7 > 0. This shows that ng;”g ©) satisfies (5.32), thus the result follows.
O

Finally, we recall a discrete time ergodic theorem.

Lemma 5.2.16. [40, Lemma 8| Assume conditions (A1) and (A5). Consider a differentiable
function g : R — R, whose derivatives have polynomial growth in x. Then, as n — oo,

1 n—1

P90 Bo
=Y 9(Xu) = | gla)me 5 (da).
n R

k=0
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5.3 Proof of Theorem [5.1.1]

In this section, the proof of Theorem 1]will be divided into beveral steps. We begin deriving
a stochastic expansion of the log—hkehhood ratlo using Proposition[5.2.1]and Lemmas[5.2.1],[5.2.2]
The second step is devoted to treat the negligible contributions of thls expansion. Finally, the
last step concludes the LAN property by applying the central limit theorem for triangular arrays.
5.3.1 Expansion of the log-likelihood ratio

In order to deal with the log-likelihood ratio in Theorem [5.1.1} we will use the following
decomposition

p(X™; (O, Bn)) p(X"; (0n, Bo))
( (00750)) ( (007B0))

For ¢ € [0,1], set 8(¢) := 0, (L, u) := Oy +
the Markov property and Proposition [5.2.1

log (X7 (00, Bo)) Zlog 0 N (A"’ththH)
1

u agpe(z) 60
= Z nA /Oy e) ﬂo th7th+l)d£

_ U 0(4),8 a(0),
5 [ B s )
k=

0
We next consider the stopping time

p(X™; (0n, Bn))

log P(X7: (O, o))’

= log + log (5.33)

B == Br(l,v) == By + E—v Then, from

\/W Vn

= Xy, | de.

= inf {s >0 |AZ] < p A or |AZ| > pgATZV}, (5.34)

and
= inf {s >0: |AZ| < pI AL or |AZ| > pgA;V} , (5.35)

where p1,p2 > 0 and 0 < v,v < % are from hypothesis (A6).

Observe that on the event {7 > nA,}, all the jumps of Z in the interval [0,nA,] are in the
interval [p1AY, paA;”]. Hence, for all w € {7 > nA,}, X%P satisfies

t
Xf’ﬁzxo—i—/ b(e,Xfﬂ)der/ o(8, X2#)dB, +/ / N(ds,dz) — v(dz)ds),  (5.36)
0

for all ¢ € [0,nA,], where recall that [ = {z € A: p1AY < |2| < paA, "} A similar statement is
true for Y8,

Then, multiplying by 1z ,a,1 + 1{7<na,} inside and 1z A1 + 17<pn,) outside the
conditional expectation above, we get that

p(X™; (0, Bo)) 1,0 3,6
1 E Z Z Z0 ) df
% p(X7; (60, o) «/nAf; / ion T Bt ’“”) ’

where

Z]ifl _ E@(f) Bo |:6 (a Y, 0(0), 50(t X )Ue(f)ﬁO(tk,X ) ‘Y;kJrl th+1:| 1{/7\§nAn}7

tkt1
£),8
tk(+1 ' = thﬂ} 1izsna,ys

B
Y = th+1} L#>nany-

726~ EO(WO 16 (900 (1, X JUPOP (14, X1, ) ) 1

tet1

Zd, —Ef’“) % (6 (0¥ (1, X JUPO B0 1, X)) 142

k+1
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We will later see that the terms concerning Z and 22 * are negligible (Lemma [5. . The

main contribution in the asymptotics will be glven by z3 ’n, which expresses the fact that the
small and large jumps do not interfere with the Gaussian behaviour of the transition density. In
fact to see this, applying Lemma|5.2.1|to Z,z”f;, and using equation (5.1)) for the term Xy, — Xy,

(Z) Po _ Yti(e % in Lemma [5.2.1 we obtain the following expansion of

coming from the term Y, '
the log-likelihood ratio

p(X™; (0n, Bo))
198 (X7 (60, o) Zg’“” N/Agz/

k=0
4.0 5,0 6,£ 6(6) B
+ <Zk,n + 2+ 24 ) Xi, ’ [

1,0 2,0
{Zk,n + Zk,n

0(£),5
Y = X | Lronany

tk+3 ,Bo th+1:| 1{?>nAn}}d£7

where
w1 opb(B(0), Xy,) B -
gk,n = \/TE/O 2(607 th) (0(607 th) (Btk+1 Btk) + (b('90> th) b(@(f), th)) An)

tkiz = th} 1zsnn,yde,

2 Bt 0
= AnBpb(0(0), X1, )o~2(Bo, X1, / (b(HO,XSOﬁO) _ b(@o,th)) ds,

tg

trt+1
7y = Dndb(0(0), Xo,)o > (B0, X1,) / (B0, X2%) = o0, Xs,) ) dB.

tr
6,0 9 tht1 _
28 = N, 9b(6(0), X )0 (B, Xy / / N (ds, d2),
tr Ro
RO — Rf(z)ﬁo + Rg(e)ﬁo + ng),ﬁo _ Rg(e),ﬁo_

Again the Markov property and Proposition [5.2.1] give

n n—1
p (X" (On, Bn)) o penﬁn

lo =
(X7 (O, B)) = P

(Ana th 9 Xt]H_l)

=3[R 5 (058 MO 1, X, U 11, X0, ) [V O = X,

tet1 tet1

Then, multiplying by 1(z5,a,} + 1{7<na,} inside and 1z A} + 1{7<pa,} outside the
conditional expectation above, we get that

P (X" (s Br)) (gt st
'8 (X (B, o)) M%A e+ Qs+ QL)

where

Qllcfz - Ean’ﬁ( ) [5 (3 Yenﬁ( )(tk:aXt )Uenﬁ( )(tkvth ) ‘Yth,E th+1} 1{?§nAn},

tet1 k+1

4 n,B (¢ ", n, n,B(L _
iyn = EXtﬁ( : [5 ((9 Y;fk+1ﬁ( )(tk’th)Ue At )<tk7th)> tk+1ﬁ( )= th+1] 1{?>nAn}7
Qzﬁ _ E n,ﬁ( ) [5 (8 }/tkif( )(tk,th)U0n7B(£)(tk7th)> tk;j»’iB( ) = th+1] 1{?>nAn}'
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Similarly, the terms concerning Q}{i and Q2’ are neghglble (Lemma , whereas the main
contribution in the asymptotics will be determined by Qk In fact, applying Lemma |5.2.2| to

Qk ,,» and using equation ({5.1] . for the term Xy, ., — X3, coming from the term YG”"B( ) an,ﬁ(e)
in Lemma [5.2.2] we obtain the following expansion of the log-likelihood ratio

P (X (B, )
o8 X () Z”’“” mz/ (Qk7 + Qi)

’ k=0

n—1
v ~0n,ﬂ( ) | £76n,8(£) On:B(6) _ ~
n—1 1
v 850 2
+ 2 \/TK%/O 3 (B(0), Xt,,) { ( (Hu1 + Hiz + Hi3)" 4 20(Bo, X¢,) (Bty,, — By)
~0n$ 9.
X (H11+H12+H13)>Ext “ [ t,CJf() :th+1] lzsna,y

~0n,8(¢ 0,8 0,8 0n,8(6)\ 2 0,3
_ th(){((HS 8O 4 gondO | g 6()) 20 (8(6), YO (W — W)

0n,B(¢ O, B0 O, B0
X <H8 Gt Hg gt Hyg o )> >1{?>nan}

}/tkj—lﬂ( )= th+1:| 1{?>nAn}}d€’
where

15) O' 9 Ogo
Nk = \/W/ < 5 th)02(BO’th) (Bthrl _Btk) -2

0n,B(L 07176 4
< Bl © [ PO th] Lirona,ydf,

(3(6).X;,) A, )

trt1 lk41
= [0 x0Ms, = [ (o X0P) o0, X0)) dB,

ty
tkt+1
/ /zN (ds,dz),
173

Therefore, we have obtained the followmg expansion of the log—hkelihood ratio

1
(X" (0ns Bn)) ¥ / { 1,0 40 5.0 6.0
10—: n Zh 4 72 +(Z’+Z’+Z’>
g p(Xn; (90’ 50 z; g’“” Tk, n \/T% kZO k,n k,n k,n k,n k,n
~0(0),3 0(0) .
X EX(tZ ’ [1{F>nAn} Y;kiz ‘= th+1] 1{?>nAn}

N Ee@) B [( RO _ RO _ Rg“)’ﬁ‘)) LFona,)

0(0),
y 0% thﬂ] 1{?>Mn}}dz

01,50 _
Yl = X | 1ponsny ) df

n,ﬁ() s
il e

k=0

0 a
\/W/ IB th){<(H11+H12+H13)2+20'(507th) (Bt — Bu)

yfn:B(0)

=0, (¢
x (Hi1 + Hig + His) )Extf( ) [1{~ Yo o= th“} Lizsna,)

~ 2

Xy,

< (HPPO 4 B0 4 i 000 >1{T>Mn}

- Wy,)

tet1

Gn,ﬁ Y4
i ) _ thﬂ} 1{?>nAn}}d€.
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In the next subsections we will show that &, and 7y, are the terms that contribute to the
limit in Theorem [5.1.1] and all the others are negligible contributions. Therefore again, the main
behaviour is given by the Gaussian and drift components of the equation ([5.1]).

5.3.2 Negligible contributions

To simplify the exposition, let us denote Ulo’ﬁ(tk, z) = 0pYy, 6.8 " (ks z)U%P (ty, 2) and Uy ’B(tk, x) =
GthkH (tk, w)Ue’ﬁ (tk, l‘)
Lemma 5.3.1. Under conditions (A1)-(A4) and (A6), as n — oo,

nA3Z/ Z,ifl—i—Z )d@P”Oo

Proof. 1t suffices to show that condition (1.16]) of Lemma|1.4.2| holds for each sequence (Z,i’i) k>1

under the measure P%:5,
First, applying Holder’s and Jensen’s inequalities, Girsanov’s theorem, Lemma [5.2.12] and
(5.8), we obtain that for some constants C, gy > 0,

\/&nz H/ Z,iﬁdﬁ’ ’ftk} MZ/ (P (7 < nA,|Xy, )

k k=0

< [ 0(£),80 H6< 05y, X, )’ ’Y%i(flﬁo th+1] ‘XWD;‘M

n ‘5< 0(0), Bo(tk,th)> ‘p (ClQ@(if)%ﬁo > ’th]

z/ (g
k

1
p P N 1
+ EA@(Dﬂoﬁo H(S (Uf(@’ﬁo(tkath))‘ ’th} ) (P (T < nAy|Xy,))a dl

\UI

ey Z 1+ | X4, |) (P (F < nAn| X4, )7

where p,¢ > 1 and 2 5+ 5 = 1. On the other hand,
P(7 > nA,|Xy;,) = P(Vs € [0,nA,], ;mAL < |AZ| < poA;7|Xy,)
= P(Vs € [0,kA,], mAL < |AZ| < paa;7|Xy,)

S P((Vs € [An A, gAY < [AZi] € AT} A {Noa, — Nea, = 7))
j=0 (5.37)

e _ J — )
<3 erma a2 = BB 5 nw < 1R < ppasyi
7!

“An(n—k)An(1-P(p1AL<[R|<p2A57))
Y

where A is a random variable with distribution 5. Therefore, we obtain that

1
ruwgz H / z;f;dz’ \ftk}

nk

ff Z (1 + | Xy, ) ( B—Anm—k)An(l—P(mAzsﬁgpgArﬂ))f
k=

|
—

Q

~ B 1 n
< (1 e (P(mar<fi=man7)) ) ¥ SN (1, )

0

5
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Then, using the fact that 1 —e™® < z, for all x > 0, and that A, < A, we get that

Q=

(1 _ 6—AnnAn(1—P(p1Ang|Sp2Am)))
< (na, (1-P (may < Al < pQA;”)))é

<e {()\nAnP (‘K’ > p2An7))}1 + ()\nAnP (PlAz > |/A\|)) }

1
q q
=¢q (nAn/ I/(dz)> + (nAn/ u(dz))
{|2|>p2Ay 7} {lz[<p1 AL}

Therefore, by (A6) we conclude that (1.16]) holds true, and by Lemma [1.4.2] as n — oo

1, 050
MZ/ Bt ™=

Next, as for the term Z,i’fl, applying Girsanov’s theorem, Lemma [5.2.12] and ([5.8)), we obtain
that for some constants C, gy > 0,

Q=

n—1 1
|u| 2,0 =
“G 2B Zina |7,
n k=0
n—1 .1

<=5 Z/ E{ 0405 Ha <U19(€)ﬁ0(tk,th)>‘ L[y2os =th+1} ‘th} "
: M / ( o (00 %)) [ 1<ns (Cf"fﬁ’ﬁ_l) ‘X““]

Qk
01900 H ( o0 60 (tr, X1, )’ 1i7<na, }‘th} )dﬂ

< f%‘ 5_3 (141X ") (P (7 < nul X))

’\9(4) 00,80

where we have used Hélder’s inequality with p > 1 and ¢ > 1 conjugate. On the other hand

P(7 > nAu| Xy, ) = P(F > nA,) = P(Vs € [0,nA,], p1AY < |AZ| < paAS7)

=Y P({Vs € [0,nA.], A} < |AZ| < p2A "} N {Mya, — Mo = j})
7=0

_Z nna, (AnnAg)?

T PleAn < A < pal;)

_ e—AnnAn(1—P(p1A;g|A|§p2A;V))7

where A is a random variable with distribution %

5+ Therefore, we obtain that

n—1

|ul ! 2,0 =
TexT LB ||, Zendt bz
nAj — 0

3
—

£

<

R

k=0

~ N 1
(141X, [) (1 e hmon (=Pl isihizeman)))

< ¢q (nAn/ I/(dZ)) + (nAn/ V(dz)>
{lz|2p22,7} {lzI<p1 Ay}

Q=
—

|u’ S q0
T (L ]X ).
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Therefore, by (A6) we conclude that ((1.16]) holds true, and by Lemma as n — oo,

2,4
\/@2/ z2tar 25

k=0

Thus, the result follows. O

Lemma 5.3.2. Under conditions (A1)-(A4) and (A6), as n — oo,

¢ PY-Po
() th+1} 1{T>nA }dﬁ — 0.

tk+1

VnA3 th

Proof. Using the fact that 1;zo,n,3 = 1 — 1z<pa ) and Lizopa,y = 1= 1z<pa,), it suffices to
show that as n — oo,

i DAY R" ), 501{~
k=0

n 1
~9(@ Bo [ pO(€),Boq 0(£),8 P%;80
RO = Xy, |1 AP0, (5.38)
3 th {T>nA thy1 tk+1:| {T<nAn}

2 > st |
n—1 1 )

u 7=0(0), o), PY-5o
Z \/7W 0 EX(t’z RO tkiz o= th+1} dt"— 0, (5.39)
k=0 n -
n—1 1 i -

U £0(0).B0 -RG(E)ﬁo i(ﬁ ,Bo thﬂ} a2t (5.40)

The convergences ([5.38)) and ( are treated similarly as for the terms Z ko ‘ and 22 ‘. To
treat ([5.40)), it suffices to show that condltlons (i) and (ii) of Lemma hold under the measure
P%:5 We start showing (i). Applying Girsanov’s theorem, Lemma 5 2 12 and . with
p = 2, we get that

5 el s

dP
RG(Z):BO < _ 1) X, ]
A0(£),60,8 k
ko() 0,80 ‘

0(0),
0% =] [2]

al

E@Z(a,eo,@o

for some constants C,q > 0. Observe that (5.7) and (5.8) remain valid under ﬁa, the measure

defined in Lemma [5.2.12} This shows Lemma (i). Similarly, applying Jensen’s inequality,
Girsanov’s theorem, Lemma |5.2.12{ and (5.7) with p € {2,4}, we obtain that
~1

n w2 1 ~0(0).5 oo oo )
kzo HA%E [</0 EXt’“ 0 [R o Yo b= th+1] d£> ’]:tk

n—1

U

Z nA { 8(1’) 00,80 [(Re 50) ’th:|

=0
2 dP
0(£),8 _ak
<R O> (d@i(f)ﬁoﬁo 1) ‘th]
—1

(MA”
Z + |th )
k=0

+ |E5000).00.50

Q

bat

which concludes the desired result. O
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Lemma 5.3.3. Under conditions (A1)-(A4) and (A6), as n — oo,

— 5L 00,6
Z nA3/ Ziintix,, O[I{B"A"}

k=0

00,8
Y, 6(0),60 th+1:| 1{T>nA }dﬁ PL;) 0.

trt1

Proof. Using the fact that 1;z,n,) = 1 — 1iz<pa,y and Lizopa,) = 1 — 1iz<pa,), it suffices to
show that as n — oo,

1
U 5, 5, P%:Po
E Z"dl 0
i VAR /0 ;
Clearly, for all n > 1,
n—1 1

and by Lemma [5.2.3(1),
n—1 2 1 2 n—1
u 5.4 =~ A
S e | ([ gpta) |7 | < S22 S e,
k=0 " 0 k=0
for some constant C, ¢ > 0. Thus, Lemma [1.4.1] concludes the desired result. O

Lemma 5.3.4. Assume conditions (A1)-(A4) and (A6). Then as n — oo,

n—1
Z4L 00,5 6(0),80
TZAS / ( kTLEth ’ |:1{F>TLA7L} Ytk+1 = thc+1:| 1{’/7'\>7’LA7L}
k:O
Ea(@),ﬁo [R ), 501 ( ),B _x 1 g0 P P50 0
Xy, {T>nAn} tk+1 trt1 {T>nAn} .

Proof. Using the fact that 1iz,n,) = 1= 1{7<pa,) and 1izopn, ) = 1 — 1i7<pn,), it suffices to
show that as n — oo,

B0 (RO

0(0),8 P%.Po0
w0 = Xy, |) de 5 o

NG

By the mean value theorem,

4.0 _ 70(0),00 | po(£),5
Zk),?’b - Eth ’ |:R4 ’

oL
Y. (£),Bo — th+1] = Mkz,n,l + Mk,n,%

tkt1
where
lulN, Ogb(0(0), Xy,) /tkﬂ ( Luw 0.3 Luw )
My, :=— 9pb(0 , X080y _ 99b(6 X)) ds,
kon,1 i o2(Bo Xo) s, hb(0o + A ) — Opb(00 + ——= A i)
9pb(0(£), X+ )(/t’““ 0
Mo = Ay—m— 2k b(6(£), X%0:P0) — b(6(0), Xy, ) ) ds
2 L (@, x®) — 500, X))

70(£),8
g [

for some w € (0,1).
Using Lemma [5.2.3|(i), we get that

1
/ Mk7n71d€’
0

b1 (¢
/ (b(Q(ﬁ), YSG(E)’BO) - 6(9(8), Y;,k( )760 ) ‘Ytkﬂ th“} >7
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] 1)
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for some constants C, g > 0. Therefore, by Lemma [1.4.2] we conclude that as n — oo,

P50
— 0.

n—1 u 1
—_— My, . 1dl
> 7t
We next show that as n — oo,

,B
My o0l proRo .

> sl

Using Girsanov’s theorem, and Lemmas [5.2.12| and [5.2.3|(i), we obtain that

n—1

1 ~
3 \/7% /0 B [ Mynal i, | de| =

Z / Dpb(0(0), X4,)
=0 prrd \/nA o( 50,th)

teta dP
0(0),
x { / E goce.to [(bw(z),X,?WO) —b(o(0), X)) (C@Wﬁ - 1) \th] ds
k

bt dP
P 0(0),80Y _ 6(£),B0 o=
EQZ(E)VGO,BO [\/tk (b(9(€), Y:s 0) b(@(@), Y;k )) ds (déz(@,goﬁo 1) ‘th] }dﬁ‘

n—1

ClulA,
< 2N~ (04 3,1,
k=0

for some constants C, ¢ > 0, which shows Lemma [1.4.11).
Next, proceeding as in the proof of Lemma to show that condition (i) of Lemma [1.4.1]
holds. Thus, the result follows. O

Lemma 5.3.5. Assume conditions (A1)-(A4) and (A6). Then as n — oo,

n—1 1
u 6,e~9(/z),50[ -

0
0(¢),5 0(¢),8
E)((tz 0 |:R6() 01{T>nAn}

B
YD = X | Lponany

0(0), P%:50
Y;kiz o th+1} 1{T>nA }>d£ — 0

Proof. Using the fact that 1z ,A,1 =1 — 1ip<pa,) and Lizon,0 = 1= 1z<pn,), it suffices to
show that as n — oo,

Z / aeb th (/tk+1/ dS dZ
k=0 \/nA 0-2 BU?th ti

50 [/ /ZM (ds, dz) 9(5) = tk+1:| >d€ Pﬂo o
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tk+1
First, by Girsanov’s theorem,

tret1 ~ ~ tht1 AT F
E {/ /zN(ds,dz) - E%fi’ﬁo [/ /ZM(dSvdz)‘Kfi(ﬂﬁO - XtHl] ‘]:tk]
ti b
i1 d
= —EAew) 0080 /tk /ZM (ds, dz ( ),00,80 Kk

— 0,
where we have used the independence between ff:“ I; zM (ds,dz) and dég&l)% together with
k

the fact that EQG(Z),GOﬁO [ftt:ﬂ f; zﬁ(ds,dz)] = 0. This shows that the term (i) of Lemma [1.4.1
k
is actually equal to O for all n > 1.
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We next show that condition (ii) of Lemma holds. Cauchy-Schwarz inequality and
Girsanov’s theorem give

n—1 2 thi1
v E[(/ 89b Xt’“ </ /zN (ds,dz)
nA 0 507th tr

0

F000,5 bt 0(0),5 2
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Dy = ning/o (W) O K/t:kH/ZN (ds, d2)
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£0(0),80 y 0050 _
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Using Lemma [5.2.12| and hypotheses (A2)-(A4), we get that for some constants C,q > 0,

£
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]?tk] < D; + D,

de,

.

X |E ~000),00,
Qk() 0:80

u
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n
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Applying Lemma Jensen’s inequality and (A2), (A4), we obtain that
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D39 < ———Fx 1+ [ X, 7
512 < nA"\/ﬁkZO( + [ X, |7)

1/ [ tri1 4
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for some constants C, g > 0.
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Next, hypotheses (A2) and (A3)(b) yield that

trt1
LHXMq/‘fwww4(/ / N(ds,dz)
123

trt1 2
0(6), 6(¢),
- EX(Z Ao [ /t /1 =M (ds, dz)| 0% = th+1] ) )th}df
k

" k=

for some constants C,q > 0.

Multiplying the random variable inside the expectation by (1 g T 1 7.t 1 7, k) and ap-
plying Lemma 5.2.14] we get that for any a € (v, 3) and ag € (1, 3),

Cul "= 1 1
Doz CES ) [ (MIO% 4 2O 4 2O a
" k=0

_3 _ 2(aVag)—1 u
C<M/&H- Y~ CoAnveo >n (14X |9,

for some constants Cy, C' > 0. Thus, Dy converges to zero in P%-%0_probability as n — co. The
desired proof is now finished. O

Lemma 5.3.6. Under conditions (A1)-(A4), and (A6),(A8), as n — oo,

n—1

1
v 1,0 2,0 P50
VnAZ t/ (th%—Q&”>d£__ﬁ 0

N2 =0 /0

Proof. It suffices to show that (L.16) holds for each sequence (Q;fn)pl under the measure P%-%,

Flrst as for the term Z*¢ ke applying Holder’s and Jensen’s inequalities repeatedly, Lemmas|5.2.10
and ((5.11} -, together with (A8), we obtain that for any p, ¢ > 1 conjugate, g1, g2 conjugate,
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with g9 close to 1, there exist constants Cy, gg > 0 such that

v ~
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9(0) 0, 3(¢
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R j (e
3 B ey | | X0 =
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e ) }zg
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<o0 Z (14 |X¢, |%) (P (F < nlAn|Xy,))

[
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A, (AAR)! > 2
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< Cy (nAn </ v(dz) —|—/ >> Z + [ X, |?),
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where we have used ([5.37)), and the inequality 1 —e™® < z valid for all x > 0. Then by hypothesis
(A6), we conclude that (1.16|) holds true, and by Lemma [1.4.2] as n — oo,

1,0 P“)OBO
T o )y ™

The term Qi’fl is treated similarly. Thus, the result follows.

Q=

Lemma 5.3.7. Under conditions (A1)-(A4) and (A6), as n — oo,

— ~0n ‘ ) 0.3 P950
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Xty
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Proof. Using the fact that 1iz-,n,) = 1= 17<pa,y and Lizapa,) = 1 — 1z<pa,), it suffices to
show that as n — oo,

n—l 1 -

v T0n,B(L n 9717 P%,80

\/W/O B0 [0 o [ymo th] Lpenadt 250, (5.41)

k=0 n -
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k=0 n
U 0080 [0 | OmBE Po0-60

— | B [ 2O = X, e 250 (5.43)
k=0 n

The covergences (5.41)) and (5.42)) are treated similarly as for the terms Qk and sz To
treat ([5.43]), it suffices to show that conditions (i) and (11) of Lemma Thold under the measure
Pgo’ﬁo We start showing (i). Using Lemma [5.2.10} , Lemma Jensen s inequality, and

, we get that
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1

1
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< A2q1 1+§ : 2 : <C(p1Vq3)(]+l)pa1“'paje AnAn( j' ) )
J 1 (a17 ) J)

0, 2

0

x 2N (141X
nk: +‘tk

By (AS8), this converges to zero in P%-%_probability as n — oo, which shows Lemma m ().

Next, applying Jensen’s and Hélder’s inequalities with ¢1, g2 conjugate, g2 close to 1, together
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with Lemmas [5.2.10} [5.2.6 and (5.10)), we get that
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By hypothesis (A8), this converges to zero in P%-%0_probability as n — co. Thus, the result

follows.

Lemma 5.3.8. Under conditions (A1)-(A4) and (A6)-(A8), as n — oo,

0 0'
\/W/ 5 0), Xt,) { ( (Huy + Hio + Hiz)* +20(50, X4,) (Bi,.., — B,

00,80
X (Hy1 + Hyp + Hy3) )Extf( ) [ tk+1 “ thﬂ} 1zsna,)

O, 0,8 0n,B(¢ 0,8(0) ) 2 0n,B(¢
Exf()[((ﬂg 5O 4 1O L POV 2o (5(0), Y 00) (W, — W)

On,B(£L On,B(£L On,B(¢
(PO 4 B L gl 6()))1{MA}

Proof. Using the fact that 1{?>nAn} =1-
show that as n — oo,

0 0
m/ ﬂ th) { (Hll + Hyo + I{13)2 + 20(/807th) (Btk+1 - Btk)
n

= 2
x (Hu + Hig + Hiz) — Eggtf(w [ (Hgnﬁ(é) + HOO Hlegm)) L 90(B(0), YOO

) tk

Y@naﬁ(e) — th+1:| }dﬁ P 0> /BO

tet1

x (Wtk+1 Wtk) ( Gnﬂ( ) + Hen’ﬁ( ) + Hfgﬁ(é))

0,8 Po-fo
Ytk+1 “ = th+1:| 1{T>"A }}CM
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I~
~

S|

O

1{?§nAn} and 1{?>nAn} =1- 1{7—§nAn}v it suffices to

bt
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For this, we split the term inside the conditional expectation as

2
(B0 0+ O 200 Y0 (W, W)

" ( HOPO 4 gonBO | Hfg,ﬁ(@) — KO0 L om0,

where
tet1 2 L1 2
FOnBE) . ( / b(emysen,ﬁ(e))ds> N ( / o (B(0), Y5O dWS)
ti th
0,,8(¢ 2 tkt1
B (0<B(£)’ }ftk o ))(Wtk-H B Wtk)) + 2/t b(eny Ysgnﬂ(g))ds
k
tht1 thet1 N
g (/ U(B(@J@""’M)d&*/ / zM(ds,dz)),
2 tr I
and

tet1 trt1
FonBO) . — (/ /ZM (ds,dz) ) +2/ /zM (ds,dz) / a(B(0), Y BEOYaw,.
tk tk

Similarly,

(Hi1 + Hia + Hiz)* + 20(Bo, Xz, (Biy., — By,) (Hui + Hig + Hig) = K%Fo 4 pbofo,

where

00,53 bt 00,3 ? bt 00,3 2 2
Kobo . — (/ b(6, X% 0)ds> + </ o(Bo, X% O)st> — (0(Bo, X0,)(Bry.,, — Br,))

ty tg
tea1 tr+1 trt1 ~

+2/ b(8y, X%P0)ds </ o(Bo, X20P0)d B +/ /zN(ds,dz)> ,
tr tL tr 1

and

thi1 tei1 lk+1
o ([ ] o1 [ [

Therefore, it suffices to show that as n — oo,

60,8
0),Xy,) (Keo,ﬁo _ E n,ﬁ(e) [Kemﬁ e)’Yk,:lﬁ(z thﬂ]) FTRSEN

/ 850
\/nA2

(5.44)

00,8
0, X,) (Fovo — B0 [0y i = x,, ]} ae ™5 o,

/ 350
\/nA2

(5.45)

We first show (5.44]), by proving that conditions (i) and (ii) of Lemma hold under the
measure P%-%0_ We start showing (i). Applying Lemma [5.2.10|to the conditional expectation, we
get that

tk+1

B[ Kfor — BP0 (KOO iSO = x| || = 810+ 8,
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where
q(ao)ﬂo
mﬁ(f) 0n,B(¢ n,B(¢ 0n,B0) | 1 0 nsB(L
Si = —E |EY [K ‘th = X" }1(]% yre0 1 ’X — X,
9(0)
7500,800) [ 1-6,,8(0) |5 0,80 _ +0n,8(£)
_Z Z E[EX% [K ()‘Y;k+1 =X }
] 1 (11, Y )
00,50
q(J n,B (L
1{fj,k,a1,~-~,a;‘} n,/o’ ‘X th] ’

512 — E [KGOyﬁO‘th} _ E |:K0"76(Z H}/tzmﬂ ) — thi| .

Applying Lemma and Jensen’s inequality, we conclude that

Co <
0), X3,) S1del| < A2q1 - Z(H\thyq)

k=0

5/30’
\ /nA2 /

1

1
oo . Ay ) Y\ ez Tas
% 1+Z Z <C(p1Vq3)(]+1)pa1_”paje)\nAn( : ) >P1qz a3

|
7=1 (al,...,aj)el J

By hypothesis (A8), this converges to zero in P%-%0_probability as n — oc.
On the other hand, observe that

tri1 s
Eth |:K00’/30‘thi| = 2/ / E [5(90,Xfo’ﬁo)b(ﬁo,Xzo’ﬁo)\th} duds
tr tr

tet1 0
+/ E [02(50,)(50750) — aQ(ﬁO,th)|th} ds

ty

tea1 -
_|_2/ E [wa?Xgo,,@o) (/ o(Bo, X90750 dB, +/ /ZN(du, dz)> ‘th] ds
tr tg

tk+1 S
—2 / / E [b(&o,Xfo’ﬁo)b(eo,Xzo’ﬂo)}th] duds
th th

trt1 0
+/ E [02(50,)(30750) — aQ(ﬁo,th)|th} ds

tg

trt1 s
+2 / E [b(@o,Xfo’ﬁO) <X§0ﬁo - Xy, — / b(HO,Xzo’BO)du> |th} ds
ti ty
tri1 lkt1
_ / E [02(50,)(207%) — 02(B, th)\th} ds + 2/ E [b(GO,Xfo’ﬁo) (X, — Xy,) \th} ds,
tk tg

which implies that S = S21 + 253 2, where

Tt
Sa1 = / ) (E 7280, XL070) = 02 (B, X1, Xo,
ti
_E 0'2(/6(6),Y89n“3(6)) _ 0'2(,8(5) Y On,B(£) ‘Y 0n,B(€) _ th] >d8,
1

[
Syo — /:“ (E
_ [b(

0,,, Y InB0)) (szen,ﬁ(z) _ Yan e)) v yonB) _ th} )ds.

6o, XJ%) (XSO’BO - th> }th]
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By the mean value theorem, there exists € (0, 1) such that Sy = S211 — S2,1,2, where
et 2 00,8 2
So2.1,1 =/ (E {U (Bo, X070) — o (50,th)‘th]
173

— B |02, PO = 6By, i M) v PO = x| )ds,

v [ter1 for _ g 0n,B(0)
So1p =2~ ) L yinBO0) _ 5 = POy PO = X, | ds.
2,1,2 Vi [0 50 (Bo + f ) — 0930 (fo + Nk ’ ty ty | @S
Using hypotheses (A1), (A3)(e) and Lemma we get that for some constants C,q > 0,
860' nfl
JW 0), X,,) So,1,2dt| < l;) + X, |9)
Next, using Lemma [5.2.10] we have that
tey1
0n,B(¢
Sa11 _/ { {( (Bo, Xen,ﬁ(ﬂ) (13 X B( ))) 1J0k
ty
q(eo)ﬁo
0 On,B(¢ s On,B(0) _
On,B(€) (s a tk’th . )’Xg 5(6)) -1 ‘th 7o - th:|
(0)
+ Z Z |:< (/60 Xﬁn:ﬁ(z)) — 0 (/80’ n,ﬁ(@))
j:1 ((11,...,0,j)6]
(90),50
J O0n:B(E) 5 0n,B(0). , On:B(E) _
X 1{(’]}7167041 77777 aj} qe’ﬂnﬁ(z)( tka—X XS ,8( ),(J,l,,,.’a]) —]_ “Xt th:| }ds7
()

where in this case we denote {ij,k, at,...,a;} ={Ns— Ny, = j} N {K[tk,s] ={ai,...,a;}}.
Applying Lemmas and (A1) to conclude that for some constants Cp,q > 0,

n—1
850' CO
\/W/ 0), Xy, ) Wopadl] < A =2 - ;(1+|th\‘1)
(Anlp)\ 7152 * 35
. nlp p192 43
iy % (C(mg)(m)pal...paje—AnAn : > ,

] 1 (a17 1Y )

which, by hypothesis (A8), converges to zero in Pf.fo_probability as n — oo.
We next treat S2. By the mean value theorem, there exists » € (0,1) such that Spo =
S221 — 5222, where

tk+1
Sa21 = / (E [b(eo’Xf(”Bo) <X§°’ﬁ° - th> \th]
127

— B [b(0, Y2 0) (VPO SO [yinfO th})ds,

IS _ u
2,2,2 - m
and 0(r) = 6y +

tet1
/ E [a@b(g(,r),y'jnﬁ(@) (}/SQn,B(Z) o }/tinﬂ(g)) ‘Y;Znﬂ(g) _ th} ds7
i

for the term S5 1,1, we conclude that as n — oo,

ur
VnlAy

00,8
0),X¢,) Sp1dl =57 0.

/ 850
\/nA2
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We next add and substract the term 891)(9(7"),}/;?;"’6 (g)) and use equation (5.3 to get that

5222 = 52221 + 52222, where

th+1
S2221 = \/:T/ E[<agb(9(r),129"’w)) 0pb(0(r), tkn’ﬁ(ﬁ)»
n Ji

y (Ysé)mﬁ(é) _ymBe )‘Yen,ﬁ 0 _ th]ds’

S =
2,2,2,2 \/T

Therefore, using (A3)(e) and Lemma we get that for some constants C,q > 0,

n—1
VA, Z

th) 52 2 Qdf < C + |th )
k=0

/ 8ga
\/m i R
which concludes that as n — oo,

\B
0), X, Sadt 725 0.

850
\/ nA2 /o

This finishes the proof of Lemma (i).

trt1
dpb(0(r), X, ) / / y Y B0y i) th} duds.
ty th

Next, applying Jensen’s and Holder’s inequalities with ¢, g2 conjugate, with ¢o close to 1,
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together with Lemmas [5.2.10 we get that

L dg0 ~0,,8(¢ On,B(¢ P
(/0 % (B(0), Xt,,) (KQO”BO - Extf( : [Kgnﬁ(z)‘}/tkf( = th+1D d€> ’]:tk

2 -
<« [ E |:(K90’BO> ’th:| +E [E%f(@ |:<K9n,ﬁ Z)) ‘Yt;;:lﬁ th+1] ‘th:|> dl
- 2 175 2 2
= 522 /O <f§> (B(0), X, {E [(K%,ﬁo) |th}

6,0
VBB {(Ke M)> ‘Y Xﬂn,ﬁ(é] 90) ‘ X000 _

tk+1 tht1 JO k Hn,ﬁ

tet1

e el () - Xen,m)}
=1 (a1,....a;)el "

q90 B0

0,8
{J] k@505 9n,5(z ’th th]df}
)

<y ,fA [ (2 0.x0 {eatas i

1 q90760 a2 é
L1 00,800 a1 (0) On.B(E) _
Y;fk - th]) E 1j0,k- On,B(¢) th = X,
%0

1
p

3y (B[

60,60 '\ 42 2
<« [E|1,- Ay ‘X Bl _ x v
{Jj,kvalv-"vaj} qe’nnB(g) b
(4)

< A% Co X Z(1+ 1 X, |9)
k=0

; Ay )0 22
x |1 +Z Z <C'(2qzl)(J+1)pa1 . .paje*AnAni( : ) )q2 ,

|
.] 1(CL1, -»a ) j

By hypothesis (A8), this converges to zero in P%#_probability as n — oco. This finishes the

proof of (|5.44)).

Now it remains to treat (5.45)). Using equation (5.1]), it suffices to show that as n — oo,

n—

1 1 t 2
v Ogo k+1
2 / 53 (B(0), Xz,) ( </ /zN(ds,dz))
k:o nA g t
~ let1 ,
97176(3 [(/ /ZM dS dZ ) ‘}/t TL75 th+1] )dﬁ PMO 0’
173

(5.46)
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and

850 ), X ) (X X M N (ds.d
\/W tk)( tpe1 tk) " IZ (37 Z)

(2 00,8
Bl o0 U /zM (ds, dz) ‘Y;Z A thﬂ} )dEP 0.5
123

First, we treat (5.46) by showing that conditions (i) and (ii) of Lemma hold under the
measure P%:% We start showing (i). Recall that the events Ay ,, Ay, and AZ,T are introduced

just before Lemma [5.2.15] Using 1. =1—15; , we have that
Ak,r Ak,r

tra1 th+1 ~
</ /zN(ds,dz)) gg Al (/ /zM (ds,dz) > ‘Ytz”’?“ = Xty ‘thk
tr 1 " ty i
tet1
_ZE[ A <</ /zN(ds,dz)>
" tr I

let1
=0n,8(0) 0.0 ;
~Ey [(1% +15 ) </t /zM (ds, dz) ) i thH] >‘]:tk:|
k

0,,8(¢ 0n,8(¢
= M1,2 “ - M2,2 ( ),

(5.47)

which, together with Lemma [5.2.15| and hypotheses (A2), (A3)(b), implies that for any a €

(Ua %)7
tht1
/c%a ), Xy,) [(/ /szst>
\/W t
let1 T
_ o0 [ /t / M(ds, dz) > [y th+1] ‘ftk}df‘
k
St
kZ \/7/
2a0— 1
S ;Z(H!thm’
n k=0

850

On,B(L On,B(£
0, X0) (MI570 4 3570 ar

for some constants C, Cy, g > 0. This shows Lemmam (1).
Next, Jensen’s inequality gives

(" fwsan) s [( [ foanaa) P =] 12
:g [ Akr<</t:k+1/zN (ds dz)

() ,3 2 ~
(s, +1x ) (/t / M(ds, d2) > [yt = x,,., > ‘]—}k]
k

0"7/8€ 67L7ﬁ£
<2 (™9 + a5y

which, together with Lemma [5.2.15| and hypotheses (A2), (A3)(b), implies that for any « €
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n—1 2

- tet+1
> EK/ aﬂ" ), Xe,) ((/ /szsdz>
HAQ 0 k t
k=0 n k
tk+1 2 N
Ry A0 [( / / M(ds dz> [y Xt,m] >d€> ‘]—}k]
tk

Z 202 B8O en 5( ) Gn 6(8)
< 7() ’ |

for some constants C, Cy, q > 0. This finishes the proof of (5.46]).
Finally, using Cauchy-Schwarz inequality and Lemma (1), and proceeding as for (5.46)),
O

we conclude ([5.47)). Thus, the desired result follows.
5.3.3 Main contributions : LAN property

Proof. Using the fact that 1z5,a,3 = 1 — Liz<pa,y and 1zopa,3 = 1 — Liz<pa,), We write
Ekn = Skt — Ekn,2 — Ekn,3, Where

9b(0(0), X,)
Skl = M/ (B0, X1, (0(Bo, X1,,) (Biyy — Br,) + (b(00, Xt,) — b(0(£), Xy,.)) An) dE,

b = e [ PO (5503, (Br, — B) + 0000, X0,) = BO0. X)) )

X EX( ) [1{T>n n}

y 0060 _ thﬂ] Lir<nanyde,

tk+1

§kn,3 = \/:Tn/ 891)2 (o, X ’XtS“) (0(Bos Xt) (Bieyy — Bry,) + (b(0o, X4,,) — b(0(0), X4,.)) Ap)

=0 4
X EX( 7 [1{7' <nAp} ( »Fo = k+1i| de.

tk+1

Similarly, we write ng n = k.n,1 — Mk,n,2 — Mk,n,3, Where

v L/ 950 Ogo
Mol = — / 25 (B(0), X4,) 0*(Bo, Xu,) (Buy, — Bu,)” — == (B(0), X3, An) dt,
\/HA% 0 g g
v 1 Ogo 9 2 Ogo
Nkn2 = 3 (ﬁ(ﬂ),th) g (BOvth) (Btk+1 - Btk) - T (/8(5)7th) Ap
VnA2 Jo \ 0 o
=0n,8(0)
B (L [V = X Lyt
v L /950 9  Ogo
Mk,n,3 = Jnaz Jo ((73 (B(0), Xt,.) 0*(Bos Xt,.) (Beyys — By,)” — % (B(£), Xz,) An)
50, B(¢ ns
< B [Lrcnan [V 20 = Xiy, | e

Proceeding as for the terms Z,i’f1 and Z,f’f;, we get that as n — oo,

i
L

PY-5o
(k2 +E&kmns) — 0
0

B
Il
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Proceeding as for the terms and Qk , we get that as n — oo,
n—1 60,50
(M2 + Men3) —> 0
k=0

141

Next, applying Lemma to Cen = &km,1 + Nion,1, it suffices to show that as n — oo,

];)E (€011 ] P _frb(eo, B).

:Z_:E el ] P25 0, (00, o),

?é@q Ao = (B [senalB])°) P o o)
5 (5 bali] - (8 o ])7) 725 o,
§§([@nwmﬂﬂJ—EkmﬂﬁJEhmﬂﬁJ)%@ov
;:jE (€t 1 B ] =50,

-

~ P@O Bo
E [7713,7171‘]:%} — 0,

iy
=)

where

(5.48)

(5.49)

(5.50)

(5.51)

(5.52)

(5.53)

(5.54)

Fb(eo,ﬁg)—/R<Wm>27r90,50(dx), and Fg(eo,ﬁo)—2/]1{(8'80(5()’11))2@0,60(6@)-

o(Bo, x) o(Bo, x)

Proof of (5.48). Using E[By, ,, — By, |]/-:tk] = 0, and the mean value theorem, we get

i, 2” . ,eb(0(0), X fur
0 tk) ur
= — ———— b0y + ——, Xy, )dl
/ ﬂo,th) Ry et
:;P"<%ww&wf_ﬂ_ﬂ
2n £~ a(Bo, Xt,,) ’

for some r € (0,1), Ty = ZZ;é Then, and

L dab6(0), X bur
/ (/] 6 tk) (aeb(go 4+ — th) aeb(GO,th)> (Ma
05

th) NV
o n—1
u Opb(00, X,
7= L 020000 Xe) g n000). X, ) — Bpb(0o, X )) L.
2 ”;ZO/ OO ) Qub(0(0). 1) — 2ub(0. X,)

Using hypotheses (A2) and (A3)(b), (c), we have that for some constants C, ¢, q > 0,

n—1 n—1
> C|U’E+2’7"|E 1
Y E(TinllFo| € === D (14X |9,
= | | < Tnm n e
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09,6
which, by Lemma [1.4.2] implies that T} P20 as n — . Thus, so does T, by using the same
argument. On the other hand, applying Lemma [5.2.16] we obtain that as n — oo,

89[) 0y, th ) PQO 30
— 0o, 5.95
Z( e (b ), (5.55)
which gives (5.48)).
Proof of (5.50)). First, from the previous computations, we have that
n—1 2
), Xt,) Lur
E |&kn 22 Db (6 Xy, )dl
k0< [fk, 71|}—tk 0< 507th) "0 %) Mt RS VnA,’ ) >

n—1

Cu?

N2 Z (141X %)
k=0

for some constants C, g > 0.
Next, using properties of the moments of the Brownian motion, we can write

n—1 o n—1

~ U Opb(6o, X
E E|:€’%,Tl71|ftk:| = E < eﬁoth))> + T3 + Ty + T5,
k=0 —0 0y Nty

where

2u” X Bb(0o, Xo,) [ 06b(O(0), Xi,) — b0, Xo)
T —_ k ) k P k dﬁ
’ n k=0 0-(607th) /0 0—(1307th) ’
u2 = (1 pb(8(0), Xy, ) — Opb(Bo, X1,) , \°
Ty = — ) k ) k dg
! n k=0 <A O-(IBO)th) ) ’
WA, S [ oeb(6(0), X, 2
T5 = n Z(/O M(b(HO,th)—b(e(ﬁ),th))cw) .

k=0

As for the term 77, using hypotheses (A2) and (A3)(b), (c), we get that T3, Ty, T5 converge to
zero in P%-Ao_probability as n — co. Moreover, using again (5.55)), we conclude ([5.50)).

Proof of (5.53]). Basic computation yields that

n—1 Cu4n
SE[ehalF] < S5 S A+ X0,

k=0 k=0
for some constants C,q > 0.

Proof of (5.49). Again, using properties of the moments of the Brownian motion and the
mean value theorem, we have

v
k=0 2n ke /307th)

n—1 2o n—1
~ 2 0po(Bo, X
> B |l P = -5 <5 : ““)) — Ty —Tr — Ty,
0
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where, for some r € (0,1),

in

/ %7 (3(4), X, o (60 + 2" th>(aﬁa<ﬁo+€

\/’ \/’ th) 8,30(ﬁ0,th)> dﬁ,

lor

L Z %7 (5(0), th)<(ﬁo+ o

, Xty) — (507th)> 030 (Bo, Xy, )dl,

Z/ (8/80- ’th) o af; (/BO,th)) U(/B07th)aﬁo-(/60’th)d£‘

As for the term T1, using (A2) and (A3)(b), (d), together with Lemma we conclude
that Ty, Tv, Ty converge to zero in P%50_probability as n — co. Again, applying Lemma |5.2.16]
we obtain that as n — oo,

X 2 0,50
*Z <8B Uﬁf‘);(tt;)) T (60, ), (5.56)

which gives (5.49)).

Proof of (5.51]). First, from the previous computations, we have that

nzl ( [nmﬂﬁtk}f S (/016650 (B(0), Xo,) 0030 (B + 2 th)cw)Q

2 3
= " k=0 g \F
Covt
< ?Z(l + ’th|q)v
k=0

for some constants C,q > 0. N N
Next, using the fact that E[(By,,, — By, )?|F.] = Ay and E[(By,,, — By, )| F,] = 3A2, we
can write

n—1 2 n—1
~ 20% < (930 (Bo, X v?
E [771% 1| Fe } = (k Sk
kzo M, k n it (ﬁOath Z n
where for some constants C, g > 0,

o n—1 2n1

fZE[wanftk}_ IZ (41X, 19,

which, together with Lemma [1.4.2{ and (5.56)), concludes (5.51)).

Proof of (5.52)). Using properties of the moments of the Brownian motion, we get that

n—1 —
> (B [&enaminaFie | = B [&enal B B [menal B ] )| < Z (L+ X5, ],
k=0 k=0

for some constants C, g > 0.

Proof of (5.54)). Basic computation yields that

n—1 R O n—1
S B [ntailFu] € =5 Y+ X009,
k=0 k=0

for some constants C, g > 0. The proof of Theorem [5.1.1]is now completed. OJ
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