
UNIVERSITÉ PARIS 13, SORBONNE PARIS CITÉ

ÉCOLE DOCTORALE GALILÉ

THÈSE
Présentée par

Hanen Ochi

pour obtenir le grade de

Docteur d’université

SPÉCIALITÉ : Informatique

Abstraction and Modular
Verification of Inter-Enterprise

Business Processes

Membre du jury :

Directeur de thèse :
Kais Klai LIPN, Université Paris 13

Rapporteurs :
Daniela Grigori LAMSADE, Université Paris Dauphine
Farouk Toumani LIMOS, Université Blaise Pascale

Examinateurs :
Walid Gaaloul SAMOVAR, TELECOM SudParis
Carine Souveyet CRI, Université Paris 1
Laure Petrucci LIPN, Université Paris 13
Pascal Poizat LIP6, Université Paris 10

2

Abstract:
Today’s corporations often must operate across organizational boundaries. Phenomena

such as electronic commerce, extended enterprises, and the Internet stimulate cooperation
between organizations. We propose a bottom-up approach to check the correct interaction
between business processes distributed over a number of organizations. The whole
system’s model being unavailable, an up-down analysis approach is simply not feasible.
We consider two correctness criteria of Inter-Enterprise Business Processes (IEBP)
composed by two (or more) business processes communicating either synchronously or
asynchronously and sharing resources: a generic one expressed with the well known
soundness property (and some of its variants), and a specific one expressed with any
linear time temporal logic formula. Each part of the whole organization exposes its
abstract model, represented by a Symbolic Observation Graph (SOG), in order to allow
the collaboration with possible partners. We revisited and adapted the SOG in order to
reduce the verification of the entire composite model to the verification of the composition
of the SOG-based abstractions. We implemented our verification algorithms, aiming at
checking both specific and generic properties using SOGs, and compared our approach to
some well known verification tools. The experimental results are encouraging in terms of
both the construction time and the size of the abstraction’s size. This strengthen our
belief that the SOGs are suitable to abstract and to compose business processes especially
when these are loosely coupled.

Keywords: Inter-Enterprise Business Processes, Symbolic Observation Graph, Sound-
ness, LTL, Abstraction, Formal Verification.

Résumé :

De nos jours, les entreprises sont de plus en plus étendues et faisant collaborer plusieurs
organisations pour la réalisation composée d’un objectif global. Des phénomènes tels que le
commerce électronique et l’Internet stimulent en effet la coopération entre les organisations,
donnant lieu a des processus métier inter-entreprises. Dans cette thèse de doctorat, nous
proposons une approche ascendante pour vérifier l’interaction correcte entre des processus
répartis sur un certain nombre d’organisations. Le modèle du système global étant
indisponible, une approche d’analyse descendante est tout simplement impossible. Nous
considérons deux critères de correction des processus métier inter-entreprises composés
de deux (ou plusieurs) processus métier qui communiquent de manière synchrone et/ou
asynchrone et/ou partageant des ressources. Le premier critère est générique et est exprimé
par la propriété de soundness (robustesse), et certaines de ses variantes. Le deuxième
critére est spécifique et peut être exprimé avec n’importe quelle formule de la logique
temporelle linéaire. Chaque composante du processus global rend publique un modèle
abstrait, représenté par un graphe appelé Graphe d’Observation Symbolique (GOS),
permettant à la fois de présever la confidentialité du processus local, la vérification de sa
correction et de celle du processus global par composition de GOSs. Nous avons revisité
et adapté le GOS afin de réduire la vérification du modèle composite à la vérification de
la composition des abstractions des ses composants (leurs GOSs).

Nous avons implémenté notre approche de vérification, basée sur le GOS, aussi bien
pour les propriétés génériques que pour les propriétés spécifiques (LTL), et nous avons
comparé les résultats obtenus avec ceux d’outils connus dans le domaine. Les résultats
obtenus sont encourageants au vu du temps d’exécution et de l’espace mémoire consommés
par notre technique. Ceci renforce notre conviction que le GOS est une structure appropriée
pour l’abstraction et la vérification de processus métiers, en particulier lorsque ceux-ci
sont faiblement couplés.

Mots clés: Processus Metier Inter-entreprises, Graphe d’Observation Symbolique,
Soundness, LTL, Abstraction, Vérification formelle.

2

Acknowledgments

I would never have been able to finish my dissertation without the guidance of my
committee members, help from friends, and support from my family and husband.

First and foremost, I would like to express my sincere gratitude to my advisor Kais
KLAI for his continuous support, his patience, motivation, and his immense knowledge. I
also thank him for the many insights about formal methods I learnt from him and even for
the sleepless nights we were working together before deadlines. His guidance helped me
during PhD and during the manuscript writing phase as well. I could not have imagined
having a better advisor and mentor for my Ph.D.

I sincerely thank the reviewers and the jury members: Prof. Daniela Grigori and Prof.
Farouk Toumani for accepting reviewing this manuscript and for their comments on my
work; and Prof. Walid Gaaloul, Prof. Carine Souveyet, Prof. Laure Petrucci and Prof.
Pascal Poizat for the time they have kindly employed for me.

My sincere thanks also goes to all the members of Laboratoire d’Informatique Paris
Nord (LIPN), who provided me the opportunity to join their group as research engineer
first and as Ph.D student later, and who gave me access to the laboratory and research
facilities. Without their precious support it would not be possible to conduct this research.

Many people from LIPN contributed to making these last years a wonderful experience.
I was very lucky to count on many friends to make these years enriching and worth
remembering. They know who they are, and I want to specially thank all of them. Here
it goes an incomplete list: Aicha, Amine, Ehab, Hanan, Ines, Issam, Leila, Naim, Nouha,
Manisha, Moufida, Sarah, Mohamed, Paolo, Rakia, Zayd. Thanks for opening your hearts
and letting me be part of your lives.

I would like to express my warmest appreciation to all my family, specially my dear
mother Rebha for supporting me spiritually with all her best wishes throughout this thesis
and during all my life in general. I particularly thank also my brother, my sisters and all
my husband’s family for being a constant source of encouragement, inspiration, and love
all across this period.

My love and gratitude goes first to my husband Tahar for all the uncountably many
ways in which he supported me during these years. He was always there cheering me up
and stood by me through the good and the bad times. Second to my daughter Lina for
remembering me every day how wonderful life is.

Last but not the least, I would like to dedicate this work to my father Ridha OCHI
who passed away recently. I owe a great deal to him: I will always be thankful and grateful
to him for showing me that the key to life is accepting challenges. I feel that he is looking
at this work from the Heaven.

i

ii

Contents

1 General Overview 1
1.1 Scientific Context and issues . 1
1.2 Objectives and Contributions . 5
1.3 Organization of the Thesis . 7

2 Preliminaries 9
2.1 Introduction . 9
2.2 Formal Models for BPs . 10

2.2.1 WorkFlow-nets . 11
2.2.2 Open WorkFlow net . 12
2.2.3 Resource-Constraint Workflow Nets 14
2.2.4 Resource-Constraint open WorkFlow Nets 14

2.3 Composition of RCoWF-nets . 16
2.4 Representation of the Reachable Configurations 16

2.4.1 Labeled transition Systems . 17
2.4.2 Kriple Structure . 17
2.4.3 Labeled Kriple Structure . 18
2.4.4 Binary Decision Diagrams . 18
2.4.5 The Event- and State-based SOGs 20

2.5 Behavioral Properties of IEBP . 22
2.5.1 Soundness Properties . 23
2.5.2 Linear Temporal Logic propreties 24

2.6 Conclusion . 25

3 Related Work 27
3.1 Introduction . 27
3.2 Formal Verification Approaches . 28

3.2.1 Theorem Proving . 28
3.2.2 Model Checking Approaches . 29

3.3 Related BP Verification Approaches . 30
3.4 Related IEBP Verification Approaches . 31
3.5 Conclusion . 35

4 Using SOGs for flat verification 37
4.1 Introduction . 37
4.2 Using SOGs for Hybrid LTL . 38

4.2.1 Revisiting SOG for Hybrid LTL 39
4.2.2 SOG-based Hybrid LTL Verification Approach 44

4.3 Using SOGs for Checking Generic Properties 50
4.3.1 Soundness . 51
4.3.2 Relaxed, Weak and Easy soundness 61

4.4 Conclusion . 62

iii

5 Using SOGs for Modular verification 63
5.1 Introduction . 63
5.2 Composition of SOGs . 64

5.2.1 The observed behavior . 64
5.2.2 Synchronous composition of SOGs 68
5.2.3 Composition of RCoWF-nets’ SOGs 74

5.3 Modular verification . 81
5.3.1 LTL-based Properties . 81
5.3.2 Checking Soundness Properties 83
5.3.3 Soundness . 83
5.3.4 Relaxed, Weak and Easy Soundness 86

5.4 Conclusion . 88

6 Implementation and Experimental Results 89
6.1 Introduction . 89
6.2 Verification of Soundness Properties . 91
6.3 Verification of LTL Property . 95

6.3.1 Implementation . 95
6.3.2 Experimental results . 95

6.4 Conclusion . 102

7 General Conclusion and Perspectives 103
7.1 Summary . 103
7.2 Future Work . 105

iv

List of Figures

2.1 An example of Petri Net . 11
2.2 An example of an WF-Net . 12
2.3 An example of an oWF-net . 13
2.4 An example of RCWF-Net . 14
2.5 an example of RCoWF-net . 15
2.6 example of a BDD . 20
2.7 An LTS and its SOG . 21
2.8 A Kripke structure and its SOG . 22

4.1 An LKS and its SOG . 41
4.2 A SOG and its corresponding ESOG . 46
4.3 Terminal cycles preventing the detection of the option to complete requirement 51
4.4 examples of BDDs . 58
4.5 Illustration of two examples of Algorithm 4’s execution 59

5.1 The WF-nets of of a trip reservation and a costumer 69
5.2 Two SOGs of the running example models 71
5.3 the SOG synchronized product . 73
5.4 Two RCoWF-nets sharing resources and communicating asynchronously . 75
5.5 SOGs of the running example . 76
5.6 Interface graph of the medium net . 78
5.7 The synchronous product of the SOGs of the RCoWF-nets example . . . 80

6.1 Schema of our approach . 90
6.2 Illustration of our Model Checker . 96
6.3 Sharing resources in an emergency medical care service 97

v

vi

List of Tables

6.1 Experimental results: modular SOG . 93
6.2 Experimental results: non-modular . 94
6.3 Model checking of an unsatisfied formula (G(t7 =⇒ F t9)) 98
6.4 Model checking of a satisfied formula (G(t7 =⇒ F (t9 ∨ t12 ∨ leave)) . . 98
6.5 Experimental results: Reservation Trip . 101
6.6 Experimental results: Producer-Consumer 101

vii

viii

Chapter 1

General Overview

Contents

1.1 Scientific Context and issues . 1

1.2 Objectives and Contributions 5

1.3 Organization of the Thesis . 7

1.1 Scientific Context and issues

Competitive pressures are forcing organizations to increasingly integrate and automate

their business operations such as order processing, procurement, claims processing, ad-

ministrative procedures and the like. These operations, called business processes (BPs),

are typically of long duration. BPs are governed by complex business rules and may

involve coordination across many manual and automated tasks while requiring the access

to several different databases and the invocation of several application systems (e.g ERP

systems). Business process (BP) [31, 32, 56] is then defined as a specific ordering of work

activities across time and space, with a beginning and an end, and clearly defined inputs

and outputs. Defining such business processes and orchestrating their execution within

organizations is ensured by the middleware system called business process management

system (BPM for short or business process manager). During the three last decades, there

has been a lot of work in developing middleware for integrating and automating enterprise

business processes. Notable examples of BPM systems are SAP, Baan, PeopleSoft, Oracle,

and JD Edward. Many people consider Business Process Management (BPM) to be the

“next step” after the workflow wave of the nineties. Therefore, we use workflow terminology

to define BPM. In [5], the author consider that the Workflow Management (WFM) is a

sub-part of BPM. It seems that the main difference is that the cycle diagnostic phase

BPM is not supported by WFM. The Workflow Management Coalition (WfMC) defines

workflow as: “The automation of a business process, in whole or part, during which

documents, information or tasks are passed from one participant to another for action,

according to a set of procedural rules.”[134]. A Workflow Management System (WFMS)

is defined as: “A system that defines, creates and manages the execution of workflows

through the use of software, running on one or more workflow engines, which is able to

1

interpret the process definition, interact with workflow participants and, where required,

invoke the use of IT tools and applications.” [134]. Note that both definitions emphasize

the focus on enactment, i.e., the use of software to support the execution of operational

processes. In the last few years, many researchers and practitioners started to realize that

the traditional focus on enactment is too restrictive. As a result new terms like BPM have

been coined. BPM is widely viewed as an established discipline for building, maintaining

and evolving large enterprise systems on the basis of business process models [9].

The importance of BP design is reflected by the fact that BPs are a main constituent

of many enterprise architecture frameworks, such as the Architecture of Integrated

Information Systems [112], or Business Engineering [52]. In this context, business process

modeling is considered as an integral part of enterprise modeling that provides a conceptual

basis for the specification of all business procedures. It can be quite complex (a typical

business process may consist of up to 100 tasks). It aids the coordination and integration

of distributed resources, tasks, and individuals, the effective management of all of which is

critical to sustaining organizational capabilities. Moreover, coordinating the entire process

correctly and efficiently places severe demands on the organization’s IT infrastructure.

Many known issues can be derived from the choice of the modeling languages such as the

compromise between the power of expressiveness of the modeling language and its analysis

complexity. Some languages offer a rich syntax for expressing the most of activities and

their relationships in the process model, while others provide more generic modeling

constructions ensuring efficient analysis at design time.

In the literature, many existing variety of BP modeling languages was used to specify

BP requirements, in order to support automated process verification, validation, simulation

and process automation(e.g. such the Business Process Modeling Notation, BPMN [97],

the Unified Modeling Language, UML [17, 96] or the Petri nets [105]). We believe that

the use of a formal language for the BP specification is the only sure way to guarantee

that alternative interpretations are ruled out. Such a formal language has an additional

advantage which is the suitability to a formal verification of the process correctness. It is

well known that performing such a verification on the specification rather than on the

implementation of a BP can reduce significantly the cost of the detection/correction of

undesirable behavior.

In this work, we adopt the Petri net formalism since it has the advantage of being

powerful enough to both express and analyze successfully BPs. Indeed, Petri-nets offer

the advantage of graphical appeal coupled with a rigorous formalism that has found

tremendous use in modeling systems and processes that exhibit asynchronism, concurrency,

and determinism [95, 34]. Intuitively, any process can be understood to be a collection

of events, the conditions that enable these events to occur, and the conditions that are

2

satisfied following the completion of these events. A Petri net ideally mirrors this intuition,

and explicitly separates the conditions, and the events involved in a process, and models

state changes involved therein, through a simulated movement of tokens.

Using such a formal language allows for formal verification of the BP correction.

However, the correction of a BP is a relative notion since it depends on the types of

the properties we are interested in. These can be either generic or specific. Generic

properties depend on neither the specification language nor the business domain, and

express ”good” features any kind of system should have (e.g each activity in the process

can occur at least in one execution, the process can never reach a state where no task

can be performed, etc). However, specific properties are described in terms of precise

elements (states, tasks, events, etc.) of the specification language and thus require a

certain expertise regarding the business domain. For instance, in a flight reservation

process, one could be interested in checking that any client request will eventually (in the

future) be followed by a response. The verification of both generic and specific properties

has already been studied for other kinds (and specially critical) systems such as discret

event, concurrent and distributed systems. They have been defined and checked formally

using (e.g.) the model checking approach [107, 50, 25]. The deadlock-freeness is an

example of generic properties expressing the absence of a state from which no action is

possible, while temporal logics (e.g. LTL [86], CTL [26]) can be used to express specific

properties.

Model checking is a fully automatic technique where the possible execution paths

that the system could follow are explored exhaustively, and the compliance with the

specification, for each of them, is checked. If the search terminates without finding any

error, model checking establishes a formal argument proving that the system is correct with

respect to the specification. If not, an execution path that falsifies the specification (called

a counter example) is shown to the user, which is often highly valuable to fix the problem.

Although the ability to supply such a counter example (in case the property is violated)

and the fact that it is a fully automatic represent the strength of the model checking

approach, its main weakness is the well known combinatory explosion of the system’s state

space. This problem refers to the computational difficulty of performing the analysis of the

system behavior automatically, and is one of the main obstacles hindering the adoption

of model checking in practice. The main source of the combinatory explosion problem

is concurrency i.e. different actions of the system can be executed in any possible order.

Concurrency is intrinsic to modular systems i.e. systems involving several components,

where the size of the whole state space grows exponentially with respect to the number of

components.

In the context of business processes, although many organizations still focus on the

3

design and implementation of their internal activities, an increasing number of companies

are targeting the integration between enterprises, or so-called inter-enterprise business

processes (IEBP). Successful companies must operate in a network with other organizations

to leverage their strength and to compensate for their weakness. Typically, there are n

business partners which are involved in one ’global’ IEBP. Each of the partners has its own

’local’ business process (designed separately) which is private, i.e., each component has no

knowledge about the local process of the partners. However, mutual interdependencies

are created and managed to drive additional value and to ensure high performance of the

organization as a whole.

From formal point of view, the IEBP have mainly been studied through two related

hot topics: abstraction and composition.

• Abstraction: Information about each enterprise has to be exposed (public view)

for potential partners in order to select and compose different business processes

automatically. However, organizations usually want to hide the trade secrets of their

services (private view) but, at the same time, must publish enough information

about their workflow in order to find compatible partners. Thus, the challenge

is to find an abstraction that both hides the internal behavior of components in

order to respect the privacy of every concerned organisation, and, at the same

time, exposes enough information to allow for a possible collaboration. Having

the formal verification of BPs in mind, the public view of a BP must be of two

purposes: it should allow to check the desired properties locally and without the

need of an exhaustive research in the original state space graph, and, it should

be sufficient to check the desired properties of the composition i.e. Verifying the

composition of the models’ abstractions is equivalent to the verification of the

original composite model. The question, what is the more suitable abstraction of

a process will represent its public view, has been dealt with in the literature since

many years (e.g. [21, 82, 92, 49, 91]).

• Composition consists of all activities that are required to combine and link existing

workflow or BP fragments and other components to create new processes. With the

need to frequently adapt (or restructure) BPs in a dynamic market, agile processes

and (semi-)automatic process composition would be useful. When each component

of an IEBP ignores the detailed description of its partners, their abstractions should

be sufficient to decide about the correctness of the whole process. Indeed, the

correct behavior of each process (analyzed independently) does not guarantee the

correction of the behavior of the process obtained by composition (ie, most of the

”good properties” are not preserved by composition). Automating and optimizing

4

this composition and the verification tasks is of high interest in research communities

(eg. [98, 60, 80, 51, 36]).

In this work, we are particularly interested in the Symbolic Observation Graph (SOG

for short) which is a formalism that tackled both the abstraction and the composition of

BPs. Originally [55, 75], the SOG has been defined as a hybrid structure abstracting the

state graph of a system, and has been used for model checking linear time properties. It

is a graph whose construction is guided by the set of atomic propositions occurring in

the formula to be checked (called observed atomic propositions). The nodes of a SOG

are sets of states encoded symbolically (using BDDs [19]) and its edges are represented

explicitly. It supports on-the fly model-checking and is equivalent to the reachability

graph of the system with respect to linear time properties. In [76] [77], the authors have

extended the SOG approach to IEBPs. By observing the collaborative activities/actions

(those allowing the communication between partners) only, the SOG of a component can

abstract/hide its internal behavior. It has been also proved that the deadlock freeness

property can be checked on the composition of the SOGs (each abstracting a component

of the IEBP) instead of the composition of the original state space graphs. Thus, the SOG

has been presented as a BP abstraction that preserves the privacy of each partner and

that allows the analysis of the behavior of the whole process (w.r.t. the deadlock freeness

property [76, 77, 70]). Moreover, the fact that the size of the SOG is (in general) inversely

proportional to the number of observed atomic propositions (here the collaborative actions)

makes the SOG-based approach suitable to abstract and to check efficiently loosely coupled

IEBPs.

The results presented in [76] [77] have been the starting point of this thesis and the

basis of the related achievements.

1.2 Objectives and Contributions

Since the SOG-based approach for the abstraction and the verification of IEBPs dealt

with the deadlock freeness property only, the main objective of this thesis was to extend

this approach to other behavioral properties. In particular, we have considered a well

known generic property of BPs : the soundness property [124], and specific properties

expressed with the LTL (Linear Temporal Logic) logic.

• The soundness property guarantees the absence of livelocks, deadlocks and other

anomalies that can be formulated without domain knowledge. Roughly speaking, it

requires that every task of a business process model can actually occur and that it

is always possible to reach a legal final state. Various variants of soundness notions

5

that weaken or strengthen the original definition exist in the literature (see [123]

for a detailed description). In this work, we focused on three of them: First, the

notion of relaxed soundness, introduced in [33], ensures that each activity should

occur in at least one ”good” execution path (a path leading from the initial to

the final state of the BP). Second, weak soundness [88] allows for dead transitions

(any transition that is never fired) as long as a final marking is reachable from any

state. Finally, easy soundness [129] requires only that the final state is reachable

from the initial state. It is obvious that soundness implies both relaxed and weak

soundness which are incomparable and both imply easy soundness. Our work has

consisted, for the soundness property and for its three variants, in revisiting the

SOG-based approach to check these properties from both local (non modular) and

modular perspectives. Thus, we have first extended these generic properties on a

system represented by its SOG. Then, we proposed dedicated algorithms allowing to

reduce the verification of these properties on the original state space graph to the

verification on the corresponding SOG. Finally, in order to allow the verification of

an IEBP by considering the composition of its constituent’s SOGs only (the whole

state space graph is unavailable anyway), we adapted the structure of the SOG by

enriching its nodes by necessary and sufficient (locally computed) information [72].

• The second issue in our work was to check specific properties, especially those

expressed with the LTL logic, on IEBPs [73, 72]. Depending on the type of the

elements (atomic propositions) one uses to write an LTL formula, the LTL logic can

follows either a state-based or an event-based semantics. A state-based LTL formula

uses only atomic propositions representing state properties while an event-based

formula uses only atomic propositions corresponding to events (actions) occurring

in the system. Although, these two formalisms are interchangeable (an event can

be encoded as a change in state variables, and likewise one can equip a state

with different events to reflect different values of its internal variables), converting

from one representation to the other is not trivial and often leads to a significant

enlargement of the state space (due to the size of the formula). Knowing that

the SOG dealt, in a non modular context, with event- and state-based semantics

in [55] and [75] respectively, our goal was to extend this approach to deal with a

mixed logic (namely hybrid LTL) where states and events can conjointly occur in

an LTL formula. Also, we considered the verification of hybrid LTL properties on

IEBPs from both local and modular point of views. In this way, the verification of a

component (resp. the whole IEBP), w.r.t. an LTL formula, can be reduced to the

verification of the corresponding SOG (resp. the composition of the component’s

SOGs).

6

Beside our interest in enlarging the class of properties one can check on IEBPs formally,

we were interested in enlarging the class of IEBPs models that can be handled by our

approaches. In particular, we focused on the way the different components of an IEBP

communicate with each other. In the literature, three kinds of communication between

the component of a modular system have been considered separately: synchronous

communication, asynchronous communication and sharing of resources. Our contribution

in this work has been to propose a generic model allowing to take into account all of these

communication modes, while preserving the applicability of our SOG-based verification

approaches [72].

Finally, we have applied our approaches to an other field where abstraction and

composition are two primordial issues: the Web services composition [69, 78, 71, 74]. A

web service can be viewed as a control structure describing its behavior according to an

interface to communicate asynchronously and sharing resources with other services in order

to reach a final state. A composite web service is a service that consists of the coordination

of several conceptually autonomous but interface compatible services. For automatically

composing Web services in a correct manner, information about their behaviors (an

abstract model) has to be published in a repository. This abstract model must be sufficient

to decide whether two, or more, services are compatible without including any additional

information that can be used to disclose the privacy of these services. Although it is not

easy to specify how this coordination should behave, we have focused in our work on

semantic compatibility between web services. We have then defined different compatibility

criteria (based on generic and/or specific properties of the composite service) and have

proposed a SOG-based abstract model for each participant service to be published in

the repository. Of course, the compatibility between two Web services is checked by

considering their SOGs only.

Most of the contributions in this manuscript have been published in international

conferences or journals [70, 69, 71, 78, 74, 73, 72].

1.3 Organization of the Thesis

This report is organized as follows: The next chapter (Chapter 2) introduces the formal

foundations and the general concepts used in all the rest of the manuscript. It defines also

the formal models used to represent inter-enterprise business processes. The third chapter

(Chapter 3) introduces a state of the art dealing with formal modeling and verification of

IEBPs. The abstraction of business processes and the local verification approach based on

symbolic representations graphs are detailed in the fourth chapter (Chapter 4) . In this

chapter, we define the different soundness variants on SOGs and revisit the SOG structure

7

in order to allow the verification of hybrid LTL formulae. The fifth chapter (Chapter 5) is

dedicated to the extension of our verification approaches to the modular context of IEBPs.

The question is what is the necessary and sufficient information (computed locally) to

allow the verification of the whole process based on the composition of the SOGs of its

constituents. In Chapter 6 , the implementation of our approaches and the obtained

experimental results are presented. Finally, the general conclusion of the thesis and the

perspectives are the issue of the last Chapter (Chapter 7) .

8

Chapter 2

Preliminaries

Contents

2.1 Introduction . 9

2.2 Formal Models for BPs . 10

2.2.1 WorkFlow-nets . 11

2.2.2 Open WorkFlow net . 12

2.2.3 Resource-Constraint Workflow Nets 14

2.2.4 Resource-Constraint open WorkFlow Nets 14

2.3 Composition of RCoWF-nets 16

2.4 Representation of the Reachable Configurations 16

2.4.1 Labeled transition Systems . 17

2.4.2 Kriple Structure . 17

2.4.3 Labeled Kriple Structure . 18

2.4.4 Binary Decision Diagrams . 18

2.4.5 The Event- and State-based SOGs 20

2.5 Behavioral Properties of IEBP 22

2.5.1 Soundness Properties . 23

2.5.2 Linear Temporal Logic propreties 24

2.6 Conclusion . 25

2.1 Introduction

The need for formal methods and software tools for describing and analyzing business

processes is widely recognized. In this chapter, we present some formal models allowing

to specify BPs and their composition (IEBP). Then, the formalisms describing the

corresponding behavior are presented and, finally, the properties (generic and specific) we

are interested in are defined formally.

9

2.2 Formal Models for BPs

Although our approach is not dependent of a particular modeling formalism (as long as the

behavior can be described formally), we choose to illustrate it through some sub-classes

of Petri nets [105]. Petri nets are a well known formalism used for modeling real-time

systems. They have the advantage of being powerful enough to both express and analyze

such systems and have been successfully used in the BPs domain during the recent decades.

Although, in practice, the behavior of BPs is described using standard languages such

as BPEL4WS or BPMN, several approaches allow to map these models to Petri nets

(e.g. [59, 81]). Thus, our approach is relevant for a very broad class of modeling languages.

Before we introduce the sub-classes of Petri nets that are used to model BPs and their

composition, let us first recall the syntax and semantics of Petri nets.

Syntax of Petri nets

Definition 1 A Petri net (Place-Transition net) N = 〈P, T, F,W 〉 consists of:

• P is a finite set of places and T a finite set of transitions with (P ∪ T) 6= ∅ and

P ∩ T = ∅,

• F ⊆ (P × T) ∪ (T × P) is a flow relation representing the arcs between places and

transitions,

• W : F → IN+ is a mapping that assigns a positive weight to any arc.

A place p is called an input (resp. output) place of a transition t iff there exists an arc from p

to t (resp. from t to p). Each node x ∈ P ∪T of the net has a pre-set and a post-set defined

respectively as follows: •x = {y ∈ P ∪ T | (y, x) ∈ F}, and x• = {y ∈ P ∪ T | (x, y) ∈ F}.

A source (resp. sink) place p is a place having •p = ∅ (resp. p• = ∅). An incidence matrix

C can be associated with the net s.t. ∀(p, t) ∈ P × T : C(p, t) = W (t, p)−W (p, t).

Semantics of Petri nets

A marking (representing a state of the net) is a distribution of tokens over places. A

marking of a Petri net N is a function m : P → IN. The initial marking of N is denoted

by m0. The pair (N,M0) is called a Petri net system. Figure 2.1 illustrates an example

of Petri net with an initial marking where two places (p0 and p4) contain a token. A

transition t is said to be enabled (or fireable) by a marking m (denoted by m t
−→) iff

∀p ∈ •t, W (p, t) ≤ m(p). When a transition t is fireable from a marking m, its firing

(denoted by m t
−→m′) leads to a new marking m′ s.t. ∀p ∈ P : m′(p) = m(p)+C(p, t). By

extension, given a finite sequence of transition σ, m σ
−→ and m σ

−→m′ denote the fireability

and the firing, respectively, of σ starting from a marking m. Fireable sequences are called

runs of the corresponding marked Petri net. The language of finite runs of a marked

10

p0

p1

p2

p3

p4

t0

t1

t2

2

t3

2

Figure 2.1: An example of Petri Net

Petri nets (N,m0) is the (possibly infinite) set of fireable sequences of transitions i.e.

L∗(〈N,m0〉) = {σ ∈ T
∗ |m0

σ
−→}. The language of infinite runs is defined similarly and

denoted by Lω. Given a set of markings S, Enable(S) = {t | ∃m ∈ S; m t
−→} is the set

of transitions enabled by elements of S. Given a Petri net N and a marking m, the set of

markings reachable from m is denoted by R(N,m). The reachability graph of a marked

Petri net (N,m0), denoted by G(N,m0), is the graph where the set of nodes is equal to

R(N,m0) and where an arc from m to m′, labeled with t, exists iff m t
−→m′. The set of

markings that are reachable from a marking m, by firing transitions of a subset T ′ only is

denoted by Sat(m,T ′). By extension, given a set of markings S and a set of transitions

T ′, Sat(S, T ′) =
⋃

m∈S Sat(m,T
′). For a marking m, m 6→ denotes the fact that m is a

dead marking, i.e., Enable({m}) = ∅.

From modeling point of view, several perspectives of a BP can be taken into account

in its specification. One can only represent the control flow of the process, describing the

different activities of the BP to be executed in some order leading from the initial state

to the final state. Thus, the communication of the BP with its environment is ignored.

In addition to this control flow perspective, one can be interested in the composition

of several BPs communicating synchronously or asynchronously and/or the resources

that are shared between the different participants. In the following, we introduce the

corresponding models incrementally.

2.2.1 WorkFlow-nets

A BP can be viewed as a control structure describing its behavior in order to reach a final

state (i.e. a state representing a proper termination) while abstracting from resources

11

and from behavior related to the interface. A particular Petri net, called Work-Flow net

(WF-net) [124], is often used for modeling the control-flow dimension of a BP.

Definition 2 A workflow net (WF-net for short) is defined by a tuple N = 〈P, T, F,W 〉

where:

• 〈P, T, F,W 〉 is a Petri net;

• N has two special places i and o such that:

– i is a source place (•i = ∅),

– o is a sink place (o• = ∅).

• each place (resp. transition) belogns to a path from i to o.

Transitions in a WF-net correspond to activities and places represent pre-conditions for

activities. A WF-net describing a workflow process satisfies two requirements. First, a

WF- net is associated to an initial marking mi (resp. a final marking mo) where only the

place i (resp. o) is marked. Without loss of generality, in the following we consider only

one initial state and only one final state. mi corresponds to a case which needs to be

handled, mo corresponds to a case which has been handled. Secondly, in a WF-net there

are no dangling tasks and/or conditions. Every task (transition) and condition (place)

should contribute to the processing of cases. Therefore, every transition t (place p) should

be located on a path from the initial place i to the final place o.

i p1 p2 o

t1

t2

t3

t4

Figure 2.2: An example of an WF-Net

Figure 2.2 illustrates an example of the WF-net.

2.2.2 Open WorkFlow net

A liberal version of WF-nets, called Open WF-nets (oWF-nets) [93] has been introduced

in order to allow asynchronous communication between different WF-nets. An oWF-

net consists in a WF-net enriched with communication places, used for asynchronous

communication. Each communication place models a channel to send (resp. receive)

messages to (resp. from) another oWF-net. More precisely, each input place (i.e. with

12

empty pre-set) corresponds to an input port of the interface (used for receiving messages

from a distinguished channel) whereas an output place (i.e. empty post-set) corresponds

to an output port of the interface (used for sending messages via a distinguished channel).

Definition 3 An open workflow net (oWF-net for short) is defined by a tuple N =

〈P, T, Fp ∪ Fc,W, I, O〉 where:

• I (resp. O) is a set of input (resp. output) places (I ∪O represents the set of interface

places) satisfying:

– (I ∪O) ∩ P = ∅

– ∀p ∈ I : •p = ∅ (input interfaces places)

– ∀p ∈ O : p• = ∅ (output interface places)

• Fc ⊆ (I × T) ∪ (T ×O) is a flow relation representing the arcs between interface places

and transitions,

• W : (Fp ∪ Fc)→ IN+ is a mapping that assigns a positive weight to any arc.

• 〈P, T, Fp,W|Fp
〉 is a WF-net;

The subnet obtained by removing from an oWF-net N the interface places and their

linked arcs is called the inner net of N and denoted by N∗.

i

p1

p2 p3

p4

p5

p6

p7

o

b1

b2

b3

t1

t2

t3

t4

t5
t6

t7

Figure 2.3: An example of an oWF-net

An example of oWF-net, where there are two input places (b1 and b2) and an output

place b3, is given in Figure 2.3.

13

2.2.3 Resource-Constraint Workflow Nets

Resource constrained workflow nets (RCW-nets) [133] was introduced to take into account

resources available during the handling of tasks within the organization. Resources are

claimed and released during the execution, and the task of the designer is often seen as

producing a model that uses resources in the most efficient way.

Definition 4 (RCWF-net) a resource-constrained workflow net (RCWF-net) is defined

by a tuple N = 〈P, T, Fp ∪ Fr,W,R〉 where:

• R is the set of resource places such that R ∩ P = ∅;

• Fr ⊆ (R × T) ∪ (T ×R) is a flow relation representing the arcs between resource places

and transitions,

• W : (Fp ∪ Fr)→ IN+ is a mapping that assigns a positive weight to any arc.

• 〈P, T, Fp,W|Fp
〉 is a WF-net;

Given an RCWF-net N , the subnet obtained by removing from N the resource places

and their linked arcs is called the inner net of N and denoted by N∗.

p0 p1 p3 p4

r1

r2

t1

t2

t3

t4

Figure 2.4: An example of RCWF-Net

Figure 2.4 gives an example of RCWF-net where two resource places (r1, r2) are used.

Excluding resources or interface from the model can lead to wrong verification results.

In the next section, we define a model that represent both of these two perspectives.

2.2.4 Resource-Constraint open WorkFlow Nets

Combining the two previous formalisms leads to a resource constrained open workflow net

(RCoWF-net) [72] that allows both asynchronous communication and sharing of resources

between different workflows.

14

p0

p1

p2

p3

p4

p5

p6

p7p8

r1

r2

b1

b2

b3

b4

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

Figure 2.5: an example of RCoWF-net

Definition 5 A RCoWF-net is a tuple N = 〈P, T, Fp ∪ Fr ∪ Fc,W, I, O,R〉 where:

• 〈P, T, Fp ∪ Fc,W|Fp∪Fc
, I, O〉 is a oWF-net;

• 〈P, T, Fp ∪ Fr,W|Fp∪Fr
, R〉 is a RCWF-net;

Without loss of generality, we assume that resources are durable i.e., they can neither

be created nor destroyed, they are claimed when needed and then released.

It is clear that an RCoWF-net without interface places is an RCWF-net, and an

RCoWF-net without resource places is an oWF-net. Given an RCoWF-net N , the subnet

obtained by removing from N both the resource and the interface places and the linked

arcs is called the inner net of N (denoted by N∗).

15

2.3 Composition of RCoWF-nets

From modeling point of view, an IEBP can be described as a recursive composition of

RCoWF-nets corresponding to the components’ BP. Composing two RCoWF-nets is

modeled by merging their respective shared constituents which are the equally labeled

(input/output interface and shared resource places). Two RCoWF-nets are said to be

interface compatible when only input interface places (resp. resource places) of the one

overlap with output interface places (resp. resource places) of the other. In the following,

the composition of two RCoWF-nets N1 and N2 is denoted by N1 ⊕N2.

Definition 6 (Composition of RCoWF-nets)

Let Nj = 〈Pj, Tj, Fj = Fpj ∪ Frj ∪ Fcj,Wj, Ij, Oj, Rj〉, for j ∈ {1, 2}, be two interface

compatible RCoWF-nets. Let ij and oj, for j ∈ {1, 2}, be the source and the sink places

of Nj respectively. Their composition N1 ⊕ N2 = 〈P, T, Fp ∪ Fr ∪ Fc,W, I, O,R〉 is the

RCoWF-net defined as follows:

• P = P1 ∪ P2 ∪ {i, o}, T = T1 ∪ T2 ∪ {tstart, tend}, R = R1 ∪R2,

• Fp = Fp1 ∪Fp2 ∪ {(i, tstart), (tstart, i1), (tstart, i2), (o1, tend), (o2, tend), (tend, o)}, Fr = Fr1 ∪

Fr2, Fc = Fc1 ∪ Fc2,

• W = (F1 ∪ F2)→ IN+ s.t. W (f) =







Wj(f) if (f ∈ Fj), for j ∈ {1, 2}

1 if (f ∈ Fp \ (Fp1 ∪ Fp2))

• I = (I1 ∪ I2) \ (O1 ∪O2), O = (O1 ∪O2) \ (I1 ∪ I2),

Note that, in the above definition, two new places (i and o) and two new transitions

(tstart and tend) have been added to the composition in order to respect the RCoWF-net

structure. In particular, the fact that there is one input and one output places in the net.

The RCoWF-net composition is commutative and associative i.e. for interface compati-

ble RCoWF-nets N1, N2 and N3: N1⊕N2 = N2⊕N1 and (N1⊕N2)⊕N3 = N1⊕(N2⊕N3).

2.4 Representation of the Reachable Configurations

More than the models used to specify BPs (or IEBP), we are interested in the behavioral

properties of processes. We hence present in this section the different possible formalisms

allowing to represent such behavior. Depending on desired properties, one formalism

could be more suitable than an other. We distinguish three different formalisms: Labeled

Transition Systems (LTS), which are suitable for even-based reasoning, Kripke Structures

(KS), which are suitable for a state-based reasoning, and Labeled Kripke Structures (LKS)

16

which allow both reasonings. All of these structures are derived from transition systems

that are usually used to represent the potential behavior of discrete systems. Nevertheless,

since we analyze BP which distinguish a particular state recognized as final (e.g. mo for

WF-nets), in the following, a final state, called sf , is added to each of these formalisms.

Moreover, since the work presented in this thesis is based on the SOG abstraction model,

we recall, in this section, the event- and state-based versions the SOG. The nodes of a

SOG being a encoded with BDDs, we also recall how this symbolic structure is used to

represent a set of states.

2.4.1 Labeled transition Systems

An LTS is a graph where the nodes represent the possible reachable states of a system

(starting from some initial state), and edges represent state transitions. A focus is here

done on the actions labeling the edges while the states are not necessarily detailed. One

can also identify one or more states as final. For instance, the LTS associated with a

Petri net is the corresponding reachability marking graph.

Definition 7 (Labeled transition System) A Labeled transition System is a 5-tuple

〈Γ,Act ,→, si, sf〉 where:

• Γ is a finite set of states ;

• Act is a finite set of actions;

• →⊆ Γ× Act × Γ is a transition relation ;

• si ∈ Γ is the initial state;

• sf ∈ Γ is the final state.

We restrain the set of states Γ to those that are reachable from the initial state. Moreover,

we assume that the final state is terminal (has no successors). Hence, a final state is a

legal dead state.

2.4.2 Kriple Structure

KS is a variation of the transition system where there is a focus on the states’ properties

w.r.t. to a predefined set of atomic propositions. A labeling function maps each node of a

KS to a set of atomic propositions that hold in the corresponding state. For a given Petri

net, the reachability marking graph can be seen as a KS when each reachable state is

labeled with the truth values of some atomic propositions (e.g. is the markings of some

places p1 . . . pn are equal to some values v1 . . . vn?).

17

Definition 8 (Kripke structure) Let AP be a finite set of atomic propositions. A

Kripke structure over AP is a 5-tuple 〈Γ,L,→, s0, sf〉 where:

• Γ is a finite set of states ;

• L : Γ→ 2AP is a labeling (or interpretation) function;

• →⊆ Γ× Γ is a transition relation ;

• s0 ∈ Γ is the initial state.

• sf ∈ Γ is the final state.

2.4.3 Labeled Kriple Structure

Given a reachable state of the model, one can be interested in the (state-based) atomic

propositions labeling the state (given by the labeling function L) and in the events that

can occur starting from this state (which are the labels of the outgoing arcs). A mix of

the two previous models, called Labeled Kripke Structure, can then be used to represent

the behavior of the system.

Definition 9 (Labeled Kripke structure) Let AP be a finite set of atomic proposi-

tions and let Act be a set of actions. A Labeled Kripke structure over AP is a 6-tuple

〈Γ,Act ,L,→, s0, sf〉 where:

• 〈Γ,Act ,→, s0, sf〉 is an LTS

• 〈Γ,L,→, s0, sf〉 is a KS

2.4.4 Binary Decision Diagrams

A binary decision diagram (BDD) is a data structure that is used usually to represent

a Boolean function. It can be considered as a compressed representation of sets or

relations. Unlike other compressed representations, operations are performed directly on

the compressed representation, i.e. without decompression.

Definition 10 (Binary Decision Diagram) A Binary Decision Diagram (BDD) is a

rooted, directed acyclic graph with :

• one or two terminal nodes of out-degree zero labeled false or true, and

• a set of variable nodes u of out-degree two. The two outgoing edges are given by two

functions low(u) and high(u).

18

• A variable var(u) is associated with each variable node.

Definition 11 (Ordered BDD) A BDD is Ordered (OBDD), if on all paths through

the graph, the variables respect a given linear order x1 < x2 < · · · < xn.

Definition 12 (Reduced OBDD) An OBDD is Reduced (ROBDD) if :

• (Uniqueness) no two distinct nodes u and v have the same variable name and low-

and high-successor (i.e (var(u) = var(v)∧ low(u) = low(v)∧high(u) = high(v))⇒

u = v)

• (Non-redundant tests) no variable node u has identical low- and high-successors,

(i.e. low(u) 6= high(u)).

For instance, for safe Petri nets (where every place is marked with at most one token),

one can consider a marking as a Boolean vector in the form of S = {0, 1}m for m ≥ 1. A

set of markings can be represented with a BDD by using a Boolean characteristic function.

Let S be the set of all possible markings, and let R ⊆ S be a subset of markings, then,

the characteristic function fR is defined as follows: fR : S −→ {0, 1}, and,

fR(s) =







1, if s ∈ R

0, otherwise

Let us consider, as example, a safe Petri net containing four places i, p1, p2, o, and

let R be the set of markings where only one place is marked. The truth table of the

corresponding characteristic function is as follows:

i p1 p2 o fR

1 0 0 0 1

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1

.. .. 0

In order to construct the BDD graph associated with this example, we define V =

{i, p1, p2, o} as the set of totally ordered variables (e.g., i < p1 < p2 < o). Figure 2.6

illustrates such a BDD. It is actually an ROBDD, since there are no isomorphic sub-graphs

and no redundant nodes. Dotted (resp. solid) outgoing arc of a node u represents the

successor low(u) (resp. high(u). A path leading to a true leaf corresponds to a marking

in R.

19

i

p1 p1

p2 p2

o o

false

true

Figure 2.6: example of a BDD

2.4.5 The Event- and State-based SOGs

The Symbolic Observation Graph (SOG) has been introduced as an abstraction of the

a LTS (resp. KS) that preserves the event-based (resp. state-based) LTL properties in

[55] (resp. [75]). It is an explicit graph where nodes are sets of states (called aggregates)

encoded symbolically using BDDs. It is guided by the set of atomic propositions that occur

in the LTL formula to be checked. These are called observed atomic propositions while the

others are unobserved. The main difference between the event- and the state-based versions

is the aggregation criterium: In the first (observed atomic proposition corresponds to some

actions of the system), an aggregate contains states that are connected by unobserved

actions. In the second (observed atomic propositions are boolean state-based ones), an

aggregate regroups states with the same truth values of the observed atomic propositions.

An aggregate is called final, and denoted af , if it contains a final state of the corresponding

model. In the following, we present the definition of an aggregate in both SOG’s versions

(the complete definition of the event-SOG and the state-SOG can be found in [77] and

[75] respectively).

Definition 13 (Event-based aggregate) Let T = 〈Γ,Act ,→, si, sf〉 be an LTS with

Act = Obs ∪ UnObs. An aggregate is a tuple a = 〈S, d, l, f〉 defined as follows:

1. S is a non-empty subset of Γ satisfying Sat(S,UnObs) = S;

2. d ∈ {true, false}; d = true iff ∃s ∈ S | s 6→;

3. l ∈ {true, false}; l = true iff S contains an unobserved cycle (involving unobserved

actions only);

4. f ∈ {true, false}; f = true iff sf ∈ S.

20

s0

s1

s2

s3

s4

s5

s6

s7

τ

a
a

τ

b

b

τ

τ b

b

τ

(a) Example of LTS

s0

s1

a0

s2

s3

a1

s4

s5

a3

s6

s7

a2

a

a b

b

(b) A corresponding SOG: Obs = {a, b}

Figure 2.7: An LTS and its SOG

Figure 2.7 illustrates an example of LTS (Figure 2.7(a)) and a corresponding SOG

(Figure 2.7(b)). The set of observed actions contains two elements {a, b} while τ represents

any unobserved action. The presented SOG consists of 4 aggregates {a0, a1, a2, a3} and 4

edges. Aggregates a1 and a3 contain circuits but no dead states, whereas a2 contains two

dead states but no circuit. Notice that states of the LTS are partitioned into aggregates

which is not necessary the case in general (i.e. a single state may belong to two different

aggregates). Moreover, one can merge a1 and a3 within a single aggregate leading to a

deterministic SOG.

Definition 14 (State-based aggregate) Let K = 〈Γ,L,→, s0, sf〉 be a KS over an

atomic proposition set AP. An aggregate a of K is a tuple 〈S, d, l, f〉 where:

1. S is a non empty subset of Γ satisfying ∀s, s′ ∈ a,L(s) = L(s′).

2. d ∈ {true, false}; d = true iff ∃s ∈ S | s 6→;

3. l ∈ {true, false}; l = true iff S contains a cycle;

4. f ∈ {true, false}; f = true iff sf ∈ S.

The labeling function L : Γ→ 2AP is then extended to aggregates as follows:

L(a) = L(s) iff s ∈ S.

Example:

21

Figure 2.8 illustrates an example of KS (Figure 2.8(a)) and a corresponding SOG

(Figure 2.8(b)). The set of atomic propositions contains two elements {a, b} and each state

of the KS is labeled with the values of these propositions. The presented SOG consists

of 5 aggregates {a0, a1, a2, a3, a4} and 6 edges. Aggregates a1 and a2 contain circuits but

no dead states, whereas a3 and a4 have each a dead state but no circuit. Each aggregate

a is indexed with a triplet (d, l, L(a)). Symbols d and l are interpreted similarly to the

event-state based. Again, in this case, the states of the KS are partitioned into aggregates

but this is not necessary the case in general. Also, one can merge a3 and a4 within a

single aggregate and still respect the original definition of a SOG.

s0

a.b

s1a.b

s2

a.b

s3

a.b

s4

a.b

s5a.b

s6 a.b

s7 a.b

(a) Example of Kripke structure

s0

s1

a0

d.l.a.b

s2

s3

a1

d.l.a.b

s4

s5

a2

d.l.a.b

s6

a3

d.l.a.b

s7

a4

d.l.a.b

(b) A corresponding SOG: AP = {a, b}

Figure 2.8: A Kripke structure and its SOG

2.5 Behavioral Properties of IEBP

We are interested in the analysis of the behavior of BPs from both the local and the global

(after composition) point of views. In particular, we consider two kinds of properties: a

domain independent property called soundness [124] (as well as some of its variants), and

specific properties expressed with Linear Temporal Logic (LTL).

22

2.5.1 Soundness Properties

The soundness property can be regarded as a minimal correctness criterion for interacting

BPs and it guarantees the absence of several types of anomalies in a process model. It

can be formulated, on a WF-net, without domain knowledge and requires the following

conditions: (1) option to complete: from any reachable marking, it is possible to reach

the final marking, (2) proper completion: no reachable marking is strictly greater than a

final marking. It means that It should not be possible that the workflow definition signals

termination of a case while there is still work in progress for that case, and (3) no dead

transitions : each transition is fireable at some reachable marking. It means that for every

task, there should be an execution of the workflow process definition that executes it.

If we assume an appropriate notion of fairness, then the requirements of the soundness

property implies that a final state is eventually reached from an initial state. If we require

termination without such an assumption, all models allowing loops in their execution

sequences would be unsound, which is clearly undesirable.

In addition to the original definition of soundness, we consider the following variants

of this property. Relaxed soundness [33] allows for potential deadlocks and livelocks,

however, each transition should occur in at least one ”good” execution path. Weak

soundness [88] allows for dead transitions as long as a final marking is reachable from any

state. Finally, easy soundness [129] requires that a final marking is reachable from the

initial marking. It is obvious that soundness implies both relaxed and weak soundness

which are incomparable and that each other soundness notion implies easy soundness.

Definition 15 Let N = 〈P, T, Fp ∪ Fr ∪ Fc,W, I, O,R〉 be a marked RCoWF-net. Let

m0 be its initial marking and mf its final marking. N is said to be :

• sound iff the following requirements are satisfied:

– option to complete: ∀m ∈ R(N∗,m0), mf ∈ R(N
∗,m);

– proper completion: ∀m ∈ R(N∗,m0), m ≥ mf =⇒ m = mf ;

– no dead transitions: ∀t ∈ T, ∃m ∈ R(N∗,m0) s.t. m
t
−→.

• relaxed sound iff: ∀t ∈ T, ∃m,m′ ∈ R(N∗,m0), m
t
−→m′ ∧mf ∈ R(N

∗,m′).

• weak sound iff: ∀m ∈ R(N∗,m0) s.t. mf ∈ R(N
∗,m);

• easy sound iff: mf ∈ R(N
∗,m0).

23

2.5.2 Linear Temporal Logic propreties

LTL is an extension of the propositional logic which allows reasoning over infinite sequences

of states. LTL is widely used for the verification concurrent systems with respect to a

large class of properties (e.g.f safety, liveness, ... etc.). Here, we recall the syntax and

the semantics of the state-based LTL logic (the event-based logic can be deduced by

considering that the atomic propositions appearing in an LTL formula are actions of the

system). In consequence, we chose to represent the semantics (behavior) of a BP models

(e.g., RCoWF-nets) by an KS .

Syntax of LTL

Definition 16 Given a set of atomic propositions AP, an LTL formula is defined induc-

tively using the standard boolean operators, and the temporal operators X (next) and U

(until) as follows:

• each member of AP is a formula,

• if φ and ψ are LTL formulae, so are ¬φ, φ ∨ ψ, Xφ and φUψ.

Other temporal operators such as F (futur) and G (globally) can be derived as follows:

Fφ = true ∪ φ and Gφ = ¬F¬φ.

Semantics of LTL

Checking an LTL formula over a formal model of a system (e.g. Petri net) is performed by

analyzing its KS . An interpretation of an LTL formula is an infinite run w = x0x1x2 . . . ,

assigning to each state a set of atomic propositions that are satisfied within that state.

We write wi for the suffix of w starting from xi and p ∈ xi, for p ∈ AP , when p is satisfied

by xi. The LTL semantics is then defined inductively as follows:

• w |= p iff p ∈ x0,

• w |= φ ∨ ψ iff w |= φ or w |= ψ,

• w |= ¬φ iff not w |= φ,

• w |= Xφ iff w1 |= φ, and

• w |= φUψ iff ∃i ≥ 0, s.t., wi |= ψ and ∀0 ≤ j < i, wj |= φ.

A KS K satisfies an LTL formula φ, denoted by K |= φ, iff φ is satisfied by any infinite

run of K.

24

Model Checking of LTL formulae

The standard automata-theoretic approach [136] to model checking LTL properties is

based on the use of Büchi automata [20]. Given a LTL property φ and a formal model of

the system (e.g., KS), the automata-theoretic approach for LTL model checking is based

on converting the negation of the property (¬φ) in a Büchi automaton, composing the

automaton and the model, and finally checking the emptiness of the synchronized product

[135]. The system satisfies φ iff the synchronized product accepts no words (i.e. iff its

language is empty). The last step is the crucial stage of the verification process due to

the state space explosion problem.

LTL model checking necessitates to capture special runs of the underlying KS called

maximal paths. A maximal path is either a finite run leading to a dead state, or an

infinite run.

Definition 17 (maximal paths) Let K be LKS and let π = s0
a1−→s1

a2−→· · · an−→sn be a

path of T . Then, π is said to be a maximal path if one of the two following properties

holds:

• sn 6→,

• ∃0 ≤ m ≤ n s.t. sm
am+1

−→ · · · an−→sn is a circuit.

Since LTL is interpreted on infinite paths, a usual solution in automata theoretic

approach to check LTL formulae on a KS is to add a self loop on its dead states.

2.6 Conclusion

This Chapter introduced the theoretical basis of the work presented in this manuscript.

We supplied formal description of both the structure and the behavior of a BP. We also

defined the two types of properties which will be checked formally on BPs and IEBPs as

it will be described in Chapters 4 and 5 respectively.

25

26

Chapter 3

Related Work

Contents

3.1 Introduction . 27

3.2 Formal Verification Approaches 28

3.2.1 Theorem Proving . 28

3.2.2 Model Checking Approaches 29

3.3 Related BP Verification Approaches 30

3.4 Related IEBP Verification Approaches 31

3.5 Conclusion . 35

3.1 Introduction

In this thesis, we are interested in the formal verification of inter-enterprise business

processes (IEBP for short) from local and global point of views. Although, formal verifi-

cation approaches have been widely developed, since three decades, independently from a

target domain, we believe in domain-specific research approach. Indeed, designing domain-

specific verification approaches may be more effective than general purpose verification

techniques. Specific domains could have particular requirements/constraints and even

specific properties that make existing monolithic verification approaches inappropriate

or even inapplicable. On one hand, doing so could allow to take benefit from the own

characteristics of the domain’s applications, leading to a better efficiency. On the other

hand, domain-specific approaches could bring new ideas to improve the verification in the

general case. This would ideally create a virtuous circle where general and specific-domain

verification approaches enrich each other.

In the following, we first recall the principle of the two main formal verification

approaches, namely theorem proving and model checking, before discussing related work

on formal verification of BPs and IEBP respectively.

27

3.2 Formal Verification Approaches

Formal verification is the act of proving or disproving the correctness of intended algorithms

underlying a system with respect to a certain formal specification or property, using formal

methods of mathematics. It can be helpful in proving the correctness of systems such as:

cryptographic protocols, combinational circuits, digital circuits with internal memory, and

software expressed as source code. Formal verification encompasses a number of methods

for proving correctness. Two well-established ones are theorem proving [16, 12, 99] and

model checking [107, 50, 25].

3.2.1 Theorem Proving

In theorem proving, a number of proof obligations are generated from the specification and

the implementation. These are formal statements whose validity entails the correctness

of the system. Assisted by the theorem prover, the user constructs the proof of each

obligation, either interactively or in a highly automated way, depending on the capabilities

of the method used. A shortcoming of theorem proving is that it often requires substantial

interaction of the user. The system that needs to be analyzed is mathematically modeled

in an appropriate logic and the properties of interest are verified using computer based

formal tools. The use of formal logics as a modeling medium makes theorem proving a very

flexible verification technique as it is possible to formally verify any system that can be

described mathematically. The core of theorem provers usually consists of some well-known

axioms and primitive inference rules. Soundness is enssured as every new theorem must be

created from these basic axioms and primitive inference rules or any other already proved

theorems or inference rules. The verification effort of a theorem in a theorem prover

varies from trivial to complex depending on the underlying logic. For instance, first-order

logic [48] is restricted to propositional calculus and terms (constants, function names

and free variables) and is semi-decidable. A number of sound and complete first-order

logic automated reasoners are available that enable completely automated proofs. More

expressive logics, such as higher-order logic [18], can be used to model a wider range of

problems than first-order logic, but theorem proving cannot be fully automated for these

logics and thus involves user interaction to guide the proof tools. The main advantage of

theorem provers is their ability to be used in the case of infinite systems. However, they

have the disadvantage of not being completely automatic. Indeed, proof assistants require

a user with a strong expertise in the underlying system to ”give” the path leading to the

solution of the system. This problem is the most important obstacle impeding a wider

industry adoption. The theorem proving is mainly used for the verification of hardware

system [30]. For example, Method B [6] was used to test the critical components of the

28

automatic train operating system for METEOR (for the Line 14 of the Paris metro) [10].

3.2.2 Model Checking Approaches

Model checking [41, 27, 107, 25] is a powerful and widespread technique for the verification

of concurrent systems. Given a (generally finite-state) formal description of the system to

be analyzed and a number of properties, often expressed as formulas of temporal logic,

that are expected to be satisfied by the system, the model checker either confirms that

the properties hold or reports that they are violated. In the latter case, it provides a

counterexample: a witness run that shows that the property is violated. Such a run gives a

valuable feedback and points to design errors. At the core of model checking are algorithms

that implement state space traversals. The reachable state space is traversed to find error

states that violate safety properties, or to find cyclic paths on which no progress is made

as counterexamples for liveness properties. In particular, given a Linear-time Temporal

Logic (LTL) property and a formal model of the system (e.g., Kripke structure), the

automata-theoretic approach for LTL model checking is based on converting the negation

of the property in a Buchi automaton (or tableau), composing the automaton and the

model, and finally checking the emptiness of the synchronized product [135]. The last step

is the crucial stage of the verification process due to the state space explosion problem (the

number of reachable states of a concurrent system grows exponentially with the number of

its components) which is the main hindrance for wider application of the model checking

technique. Due to the state space explosion problem, it may just take too much time to

explore all the reachable states and typically also too much space. During the last three

decades, numerous techniques have been proposed to cope with the state space explosion

problem in order to get a manageable state space and to improve scalability of model

checking. These techniques can roughly be classified in two large families: explicit and

symbolic approaches.

Explicit model checking approaches explore an explicit representation of the product

graph. A common optimization builds the graph on-the-fly as required by the emptiness

check algorithm: the construction stops as soon as a counterexample is found (e.g., [28,

58, 29]). Partial order reduction (e.g., [13, 120]) is a reduction technique exploiting

independence of some transitions in the system to discard unnecessary parts of the system

state space. Another source of optimization is to take advantage of stuttering equivalence

between paths in the Kripke structure when verifying a stuttering-invariant property [44]:

this is done either by ignoring some paths in the Kripke structure [65], or by representing

the property using a testing automaton [57].

Symbolic model checking approaches tackles the state space explosion problem by

representing the product automaton symbolically, usually by means of decision diagrams

29

(a concise way to represent large sets or relations, e.g., BDDs [19]). Various symbolic

algorithms exist to verify LTL using fixepoint computations (see [47, 118] for comparisons

and [66] for more details). As-is, these approaches do not mix well with partial order,

stuttering invariant reductions and on-the-fly emptiness checks.

However explicit and symbolic approaches are not exclusive, some combinations have

already been studied [14, 55, 115, 75], to get the best of both worlds. They are referred to

as hybrid approaches and consist in replacing the KS by an explicit graph where each node

contains sets of states of the KS, that is an abstraction of the KS preserving properties

of the original KS. The SOG-based technique, which is the core of this thesis work is an

example of such approaches.

3.3 Related BP Verification Approaches

The verification process has matured to a level where it can be used in practice (techniques

that assumes today’s modeling languages not only simplified process models without the

more advanced constructs). By performing this verification at design time, it is possible

to identify potential problems, and if so, the model can be modified before it is used

for execution. As some systems (e.g., workflow, BP systems) rely on process models for

execution of work, careful analysis of process models at design time can greatly improve

the reliability of such systems.

Since the mid nineties, many researchers have been working on workflow/business

process verification techniques. In the literature we can find different directions regarding

the verification and validation of a BP. At the beginning, most of the works focused

on rather simple languages, e.g., AND/XOR-graphs which are even less expressive than

classical Petri nets. Then, the use of Petri nets in workflow verification have been

studied [3, 124, 139, 128, 111, 114, 127]. Formal methods used for verifying BP was

proposed based on π-calculus [83] or Petri Nets in [125], while other techniques for

showing consistency of BPs written in Business Process Execution Language for Web

Services (BPEL4WS) [64] was based on Model-Checking (MC) [35].

Various properties are considered when we deal with the correctness of business

processes. In [3, 124] the foundational notions of WF-nets and soundness are introduced.

In [4], the author describes how structural properties of a workflow net can be used to

detect the soundness property. In [140], the authors present new verification techniques

that can be used to assess the correctness of real-life models. The proposed approach

relies on using formal methods to determine the correctness of business processes (with

cancellation and OR-joins) with respect to four studied properties namely, soundness, weak

soundness, irreductible cancellation regions, and immutable OR-joins. Another related

30

work is presented in [128] as an extension of the results given in [130] (where it is proved

that soundness is undecidable for WF-nets with reset arcs). Different notions of soundness

are investigated (not only classical soundness but eight variants) and authors consider also

WF-nets with inhibitor arcs. Another alternative approach for deciding relaxed soundness

property using invariants is presented in [137]. For other authors [37, 141, 138], it was

necessary to suggest some reduction rules for Petri nets and for various subclasses of Petri

nets in order to improve the analysis and the verification of processes.

The problem of verification while considering advanced relative and absolute temporal

constraints is studied in [22]. Firstly, a set of rules are proposed to prevent the designer

to specify some faulty temporal combinations of absolute temporal constraints, early on,

before the execution step. Second, a mapping step whose aim is to map timed business

processes into timed automata is proposed in oder to capture relative temporal constraints.

Finally, using the defined formal model, the proposed model checking-based verification

approach aims to validate business processes against their temporal constraints. In the

same context, exploiting results achieved in the field of temporal logics and runtime

verification, a runtime verification of flexible, constraint-based process models formalized

in terms of LTL on finite traces was introduced in [85]. The focus here was on violations

arising from interference of multiple constraints. A conflicting set provides a minimal set of

constraints with no continuation where all constraints can be satisfied. In [84], the authors

investigated automata-based techniques for the runtime verification of LTL-based process

models. In particular, they proposed colored automata to provide intuitive diagnostics

for singular constraints and ways to continue verification even after a violation has taken

place. Intuitively, a colored automaton is a finite state automaton built for the whole set

of constraints composing a process model, where each state contains specific information

(colors) indicating the state of individual constraints. Both of these two approaches have

been implemented in the context of the Declare system [104] and ProM2 [132]

The nature of today’s global competitive market has given rise to increased organiza-

tional cooperation in form of strategic alliances where organizations no longer compete

in isolation, but as value chains. Globalization and increased market pressures lead

organizations to enter into strategic partnerships with the overall goal of achieving a

competitive advantage. In the next section, we give a brief overview of some works in the

context of the verification of IEBP.

3.4 Related IEBP Verification Approaches

The importance of external collaboration is increasing since companies are redefining their

vertical architectures [62], i.e. their scope and boundaries. Composition consists of all

31

activities that are required to combine and the link existing workflow or BP fragments

and other components to create new processes called IEBPs. Depending on the current

environment where the composition of BP takes place, one can refer to IEBP or service

composition. In the following, we present some existing works which studied both of IEBP

and service composition since the composition of IEBP is closely related to the selection

and the composition of services topic.

With a growing number of external business relationships, business processes need to be

more closely aligned across organizational boundaries. Hence, business process modeling

and design have to be enhanced and extended to cover these requirements in order to

facilitate the analysis process of data flow dependencies between BPs. The question, how

can partner BPs be coordinated? has attracted already the attention of many researchers:

Existing approaches can be classified into three categories: manual, partly automated, or

fully automated. Approaches in the manual category assume that a user manually designs

a process composition, including the binding to concrete services. In this category we find

languages like BPEL [64] and JOpera [100] and concrete composition prototypes [143].

In semi-automatic approaches [43], the user must provide a composition skeleton which

defines the process logic. This skeleton is then instantiated automatically by searching for

atomic processes that match each of the processes specified in the skeleton. The focus

of these approaches lies on automatically finding substitute BPs for a specified process.

Fully automatic approaches (e.g. [11, 109, 39]) mostly come from the field of AI or formal

reasoning. These approaches require that processes are specified formally with pre- and

post-conditions. This puts a considerable burden on the shoulders of processes designers,

since the most specification formalism (e.g. WSDL [23]) do not require that level of detail

and hence need to be annotated with the additional pre- and post-conditions.

Many researchers have been interested in the area of IEBP composition [98, 60].

The main goal is to ensure that the process obtained by composition has the desired

behavior. The need for an efficient design has been highlighted and underpinned by a

large number of case studies on companies that have successfully reshaped their business

relationships [24, 117, 42]. When each component of an IEBP ignores the detailed

description of its partners, their abstractions should be sufficient to decide about the

correctness of the whole process. Indeed, the correct behavior of each process (analyzed

independently) does not guarantee the correction of the behavior of the process obtained

by composition. Automating and optimizing this composition and the verification tasks

is of high interest in research communities (eg. [98, 60, 80, 51, 36]). The question, what

is the more suitable abstraction of a process will represent its public view, has been

dealt with in the literature since many years (e.g. [21, 82, 92, 49, 91]). For instance, the

public-to-private approach [122] consists of three steps. Firstly, the organizations involved

32

agree on a common and sound public workflow, which serves as a contract between these

organizations. Secondly, each task of the public workflow is mapped into one of the

domains (i.e., organization). Each domain is responsible of a part of the public workflow,

referred to as its public part. Thirdly, each domain can now make use of its autonomy to

create a private workflow. To satisfy the correctness of the overall inter-organizational

workflow, however, each domain may only choose a private workflow which is a subclass

of its public part [131]. The public-to-private approach allows to the local processes to

be decoupled as much as possible and to have some degree of understanding about the

nature of the interaction between the processes of the different business partners. The

main disadvantage of this approach is the confidentiality that prevents a complete view

of local workflow. For instance, to check the deadlock property, one needs the model of

the global workflow. This model however is often not available for inter-organizational

workflow since organizations are not willing to disclose their workflows [67](for privacy

reasons).

The advances of Internet technology have an increasing effect on the way we do

business in the current knowledge- and network-based economy. As a result, one of the

key challenges for current businesses is how to effectively and efficiently integrate inter-

and intra-enterprise applications. By using the Internet as the primary platform for

communication, interoperability, and integration, information systems are playing an

increasingly important role in providing businesses competitive advantages [144]. In recent

years, technologies used for describing processes, have begun to have a profound effect on

the way e-business applications are developed and the way in which sophisticated processes

are designed, implemented, and managed. Several approaches investigated the issue of

IEBP as composite services in general, and the Web services composition in particular.

For instance, a technique for modeling multiple web services interactions between BPEL

processes is discussed in [142] using an extension of Petri net models called composition

net (C-net). The authors analyze the model through structural properties instead of

the reachability state space in order to check compatibility: the compatibility is ensured

when the composite net contains a non empty minimal siphon. They impose constraints

on the model to prevent it from reaching incompatible cases by using a corresponding

policy based on appending additional information to channels. Then, these channels are

transformed back to a BPEL description so that a new compatible web service is obtained.

An other approach [38] based on mediation aided composition has been widely adopted

when dealing with incompatibilities of services. In this work, given two services modeled

by oWF-net, the authors propose to compose them using Mediation Transitions (MTs).

They serve as information channel specifying the transferring relation of messages between

different services. Then composition compatibility is verified by automatically constructing

33

and analyzing the modular reachability graph (MRG) of the composition which is an

abstraction of the original state graph. Even if the performance of this approach is notable

compared to classical ones, MRG is represented explicitly. Another related approach has

been introduced in [126]. In this work, the authors present a technique based on the

Operating Guideline [93] for automatically checking accordance between a private view

and a public view associated to each service involved in the overall process (composition

of partners). A multiparty contract is specified in order to define the rules of engagement

of each partner without describing its internal behavior. It can be seen as the composition

of the public views from all partners. Based on the resulting contract, all participants

implement their private view on the global process in such a way that it agrees with the

contract. Then, checking accordance guarantees that the process is deadlock-free and that

it will always terminate properly.

In [54], the authors propose an approach for services retrieval based on behavioral

specification. The idea consists in reducing the problem of service behavioral matching

to a graph matching problem and then adapting existing algorithms for this purpose.

The complexity of a graph matchmaking algorithm used is O(m2 ∗ n2) in the best case

and O(mn ∗ n) in the worst case where m is the number of nodes of the request graph

and n is the number of nodes of the advertised graph [54]. It is obvious that this

approach is not suitable for workflow matching and composition when the number of

advertised abstractions increases. Another approach for workflow matchmaking was

proposed in [87, 90, 89]. It assumes that two workflows match if they are equivalent.

To reach this end, the author introduces the notions of communication graph c-graph

and usability graph u-graph. If the u-graph of a workflow is isomorphic to the c-graph

of another workflow, then the two workflows will be considered equivalent. However,

the complexity of c-graph construction is exponential [87] in terms of the number of

nodes. Moreover, it is well known that the subgraph isomorphism detection problem is

NP-complete (see for example [110]).

Among works that used LTL logics to express correction properties, we distinguish

two classes of approaches: Those whose tackle the issue of runtime verification and

monitoring based on observed behavior rather than the modeled behavior, and those

which start the analysis and the verification from the specification of the service. We can

refer to the survey paper [8] for an overview of existing approaches. Many authors on

software engineering and service oriented computing were interested to the declarative

logic based language to define a service. For instance, in some recent works [85, 84], the

authors propose to use dynamic language based on LTL (called ”ConDec” [103, 102]

and ”DecSerFlow” [101, 103] for describing the constraints of service. They specify what

should be done instead of specifying how it should be done by leaving more flexibility

34

to users. This approach can be applied in the context of process mining since the goal

is to check conformance. Based on a variety of events which is logged, authors check

whether a service follow the specification or not. Since LTL is likely to be difficult to use

directly by the end user, authors suggest a ”Declare” tool [104] which offer a graphical

notation for common patterns of temporal constraints which are compiled to LTL later.

The idea is to investigate automata-based techniques for the verification process. The

authors of [104] of use colored automata as a finite state automaton built for the whole

set of constraints composing a different services, and this to provide intuitive diagnostics

for singular constraints and ways to continue verification even after a violation has taken

place. Classical approaches was used to translate a specification expressed in LTL into

Buchi automaton accepting all infinite execution traces satisfying the formula [50], and

the verification algorithm is similar to model checking. The work in [49] is related to our

work in the sense that the analysis starts from service models. Authors present a tool for

analyzing interactions of composite services specified in BPEL language and communicate

through asynchronous messages. The approach use SPIN Model checker [61] as a finite

state verification tool. For this, BPEL specifications are translated to the verification

language of SPIN after a mapping to an intermediate representation called ”Guarded

Automata”. Since SPIN can only achieve partial verification (by fixing the size of input

queues), the authors, based on the concept of synchronizability, show that a large class of

composite services can be completely using SPIN.

In [116], the authors present various composition alternatives and their ability to

preserve an example of generic property: the relaxed soundness [33]. The aim of this work

was to analyze a list of significant composition techniques in terms of WF-nets and to

prove that the composition of relaxed sound models is again relaxed sound. Since relaxed

sound models might have deadlocks, using these composition techniques does not preserve

the deadlock-freeness property. In order to verify this property one has to explore the

composed model, even though the component models are deadlock-free.

3.5 Conclusion

After a brief description of the main two formal verification approaches, we discussed

in this Chapter, some work of the literature dealing with BPs. The need of formal

methods to design and analyze BPs is reflected in numerous research papers in the domain.

This need is naturally extended to IEBPs where several independent BPs collaborate in

order to accomplish a global goal. Arises then the problem of preserving both privacy of

each component and its ”nice” properties. The work presented in this phD thesis goes

on step forward in this topic using the hybrid SOG-based approach and answering the

35

double challenge of preserving privacy of each component of and IEBP, and allowing the

verification of the whole process in a modular way.

36

Chapter 4

Using SOGs for flat verification

Contents

4.1 Introduction . 37

4.2 Using SOGs for Hybrid LTL 38

4.2.1 Revisiting SOG for Hybrid LTL 39

4.2.2 SOG-based Hybrid LTL Verification Approach 44

4.3 Using SOGs for Checking Generic Properties 50

4.3.1 Soundness . 51

4.3.2 Relaxed, Weak and Easy soundness 61

4.4 Conclusion . 62

4.1 Introduction

The SOG is used during this work in order to represent each component of an IEBP

allowing its abstraction (preserving the privacy) and the verification of the whole process.

However, before analyzing the suitability of the SOG for the verification of the complete

IEBP (the object of the next Chapter), it is necessary to study this structure from a local

point of view: How the SOG can be used/adapted in order to check behavioral properties

of each component locally? This Chapter introduces our first two contributions in this

issue: (1) Adapting the SOG to allow the verification of hybrid LTL (where formulae

can involve state- and event-based atomic propositions conjointly), and (2), proposing

dedicated algorithms, using the SOG, for the verification of generic properties such as

the soundness property and three of its variants (weak, relaxed and easy soundness). In

the first contribution, the aggregation criterium of the SOG is presented as a mix of

the aggregation criteria of the event and the state SOGs versions, while, in the second,

new attributes are added to each aggregate in order to accomplish the verification of the

soundness properties. Finally, for both contributions, and along this manuscript, the

collaborative activities/actions (those allowing the interaction of a component with its

37

partners through both communication buffers and ressources) are observed while internal

activities/actions are unobserved.

In this manuscript, the SOG will be defined on a behavior-based formalism (e.g.

LTS , KS or LKS) and not on the model used to specify it, we will consider in the

following that such a formalism is associated with an underlying RCoWF-net model.

Given a RCoWF-net N = 〈P, T, F,W, I, R,O〉, the interface transitions are then defined

by Int = {t ∈ T | (•t ∪ t•) ∩ (I ∪ O ∪ R) 6= ∅}. Depending on the property we are

interested in, the SOG is built over a particular set of observed elements, namely Obs:

In case of generic properties, it is based on the set of interface transitions Obs = Int . In

case of (hybrid) LTL \X property, the observed elements contains Int in addition to the

elements occurring in the formula to be checked. The unobserved transitions are defined

by UnObs = T \Obs .

4.2 Using SOGs for Hybrid LTL

In this section, we propose to adapt the SOG in order to abstract RCoWF-nets’ behavior

while preserving LTL formulae that involve a mix of state-based (the marking of some

places) and event-based (transitions) atomic propositions. In consequence, we chose to

represent the behavior of a BP model (e.g., RCoWF-nets) by an LKS over a set of atomic

propositions AP and a set of actions Act . The main differences between the syntax and

the semantics of hybrid LTL and the state-based LTL (see the Preliminaries Chapter) are

the following:

• Syntax : any element of AP ∪ Act is a formula.

• Semantics: Each state of an infinite run w = x0x1x2 . . . is assigned with a set of

atomic propositions and a set of actions that are satisfied within that state. An

action is said to be satisfied within a state if it occurs from this state. In our

case (interleaving model of concurrency), where a single action can occur at a time,

at most one transition can be assigned to a state of a run. For example, for a

given marked Petri net, the run (m(p1) = 1 ∧ t1).(m(p2) = 1 ∧ t2) . . . is a run

where, in the initial state, the marking of the place p1 is equal to 1, and where the

transition t1 occurred leading to a marking where p2 contains a token and where the

transition t2 occurred. We write wi for the suffix of w starting from xi and p ∈ xi,

for p ∈ AP ∪ Act , when p is satisfied by xi.

38

4.2.1 Revisiting SOG for Hybrid LTL

The adaption of the SOG to hybrid LTL leads to a new aggregation criterium (see the

following definition): (1) states belonging to a same aggregate must have the same truth

values of the state-based atomic propositions, and (2), the occurrence of an event-based

atomic proposition from a state of an aggregate must lead to an other aggregate.

Definition 18 Let K = 〈Γ,Act ,L,→, s0, sf〉 be an LKS over a set of atomic propositions

AP and let Obs ⊆ Act be a set of observed actions of S. An aggregate a of K w.r.t. Obs

is a triplet 〈S, d, l, f〉 satisfying:

• S ⊆ Γ where:

– ∀s, s′ ∈ S, L(s) = L(s′);

– ∀s ∈ S, (∃(s′, u) ∈ Γ× (Act \Obs) | L(s′) = L(s) ∧ s u
−→s′)⇔ s′ ∈ S;

– ∀s ∈ S, (∃(s′, o) ∈ Γ× Obs | s o
−→s′) ∧ (6 ∃(s′′, u) ∈ S × (Act \ Obs) | L(s′′) =

L(s′) ∧ s′′ u
−→s′)⇔ s′ 6∈ S.

• d ∈ {true, false}; d = true iff S contains a dead state.

• l ∈ {true, false}; l = true iff S contains an unobserved cycle (i.e., with unobserved

transitions).

• f ∈ {true, false}; f = true iff S contains a final state (i.e. sf ∈ S).

In addition to the original d, l and f attributes of an aggregate, the above definition first

states that two states belonging to a same aggregate have necessarily the same label. It

then specifies the states that must belong to an aggregate (the aggregation criterium) and

those that must be excluded: (1) For any state s in the aggregate, any state s′, having the

same truth values of the atomic propositions and being reachable from s by the occurrence

of an unobserved action, belongs necessarily to the same aggregate. (2) For any state s in

the aggregate, any state s′ which is reachable from s by the occurrence of an observed

action is necessarily not a member of the same aggregate (even if it has the same label as

s), unless the aggregation criterium includes it in the aggregate through an other state s′′

of the aggregate.

Before defining the SOG, let us introduce the following operations:

• SATAP (S): returns the set of markings that are reachable from any marking in

S, by a sequence of unobserved transitions and which have the same value of the

atomic propositions as S, and is defined as follows:

SATAP (S) = {s′′ ∈ Γ | ∃s ∈ S, ∃σ ∈ UnObs∗, s σ
−→s′′ ∧ ∀s′ ∈

Γ, ∀β prefix of σ, s β
−→s′ ⇒ L(s) = L(s′)}.

39

• Out(a, t): returns, for an aggregate a and a transition t, the set of states outside of

a that are reachable from some state in a by firing t, and is defined as follows:

Out(a, t)

{

if t ∈ Obs {s′ ∈ Γ | ∃s ∈ a.S, s t
−→s′}

if t ∈ UnObs {s′ ∈ Γ | ∃s ∈ a.S, s t
−→s′ ∧ L(s) 6= L(s′)}

• Outτ (a): returns, for an aggregate a, the set of states whose label is different from

the label of any state of a, and which is reachable from some state in a by firing

unobserved actions, and is defined as follows:

Outτ (a) =
⋃

t∈UnObs
Out(a, t).

• PartAP (S): returns, for a set of states S, the set of subsets of S that define the

smallest partition of S according to the labeling function L, and is defined as follows:

PartAP : 2Γ −→ 22
Γ

PartAP (S) = {S1, S2, ..., Sn} ⇔ S =
⋃n

i=1 Si ∧ ∀i ∈ {1..n}, ∀s, s
′ ∈ Si, L(s) =

L(s′) ∧ ∀s ∈ Si, ∀s
′ ∈ Sj, j 6= i, L(s) 6= L(s′).

Definition 19 Let K = 〈Γ,Act ,L,→, s0, sf〉 be an LKS over a set of atomic propositions

AP and let Obs ⊆ Act be a set of observed actions of K. The SOG associated with K,

over AP and Obs, is an LKS G = 〈A,Obs ∪ {τ},L′,→′, a0,Ω〉 where:

1. A is a non empty finite set of aggregates satisfying :

• ∀a ∈ A, ∀t ∈ Obs , ∀oi ∈ Part(Out(a, t)), ∃a
′ ∈ A s.t. a′ = SATAP (oi)

• ∀a ∈ A, ∀oi ∈ Part(Outτ (a)), ∃a
′ ∈ A s.t. a′ = SATAP (oi)

2. L′ : A→ 2AP is a labeling (or interpretation) function s.t. L′(a) = L(s) for s ∈ a.S;

3. →⊆ A× Act × A is the transition relation where:

• ((a, t, a′) ∈→′)⇔ ((t ∈ Obs) ∧ (∃oi ∈ Part(Out(a, t)) s.t. SATAP (oi) = a′)

• ((a, τ, a′) ∈→′)⇔ (∃oi ∈ Part(Outτ (a)) s.t. SATAP (oi) = a′)

4. a0 is the initial aggregate s.t. s0 ∈ a.S.

5. Ω = {a ∈ A | sf ∈ a.S}.

The finite set of aggregates A of a SOG is defined in a complet manner so that the

necessary aggregates are represented. The labeling function associated with a SOG gives

to any aggregate the same label as its states. Point (3) defines the transitions relation: (1)

there exists an arc, labeled with an observed transition t (resp. τ), from a to a′ iff a′ is

obtained by saturation (using SATAP) on a set of equally labeled reached states (Out(a, t)

40

(resp. Outτ (a))) by the firing of t (resp. any unobserved transition) from a.S. The last

two points of Definition 19 characterize the initial aggregate (which contains the initial

state of the LKS) and the set of final aggregates (i.e. any aggregate containing the final

state) respectively.

s0

a.b

s1a.b

s2

a.b

s3

a.b

s4

a.b

s5
a.b

s6 a.b

s7
a.b

τ

o1

τ
o2

τ

τ

τ

o1

τ

τ

(a) Example of labeled Kripke structure

s0

s4

a0

a.b

s2

s3

a1

a.b

s6

s7

a2

a.b

s1

a3

a.b

s5

a4

a.b

τ

τ τ

τ τ

o1

o1

τ

τ

o2

(b) A corresponding SOG: AP = {a, b}
andObs = {o1, o2}

Figure 4.1: An LKS and its SOG

Figure 4.1 illustrates an example of LKS (Figure 4.1(a)) over AP = {a, b} and a

corresponding SOG (Figure 4.1(b)) over Obs = {o1, o2} (τ represents any unobserved

action). The presented SOG consists of 5 aggregates {a0, a1, a2, a3, a4} and 5 edges. The

initial aggregate a0 is obtained by adding any state reachable from the initial state s0 of

the LKS , by unobserved sequences of actions only, and labeled similarly to s0. Doing so,

the initial aggregate contains s4 but not s1, neither s5 which are labeled differently from s0

(although reachable from s0 by unobserved actions). State s2, which is reachable from s0

by an observed action (o1), is immediately excluded from a0 and belongs to a1. The same

holds for s6 which is reachable from s4 by o1 and belongs to the aggregate a2. s3 (resp. s7)

is added to a1 (resp. a2) since it is reachable from s2 (resp. s6) by an unobserved action

and since it is labeled similarly. Note that one can merge a1 and a2 because they have

the same label. This is not the case for aggregates a3 and a4 which have different labels,

although both are reachable from the same aggregate a0 by the same action τ . None of

the aggregates of the obtained SOG contain a dead state while a1 and a2 contains cycles

(livelock) and a4 is the unique final aggregate (it contains the final state s5).

41

According to Definition 19, and similarly to the event- and the state-based SOGs, the

SOG associated with an LKS is hence not unique. It can also be non deterministic since,

for instance, an aggregate can have several successors with τ .

Algorithm 1 Building SOG with depth-first traversal

Require: an LKS 〈Γ, Act, L,→, s0, sf〉
Ensure: Compute a SOG 〈A, Act, L′,→′, a0,Ω〉
1: Aggregate a, a’;
2: stack st;
3: Set of states S’;
4: Set of actions Es, E

′
s;

5: a0 = NewAgg(s0, Es);
6: →′= ∅;
7: Es = Es ∪ fireableObs(a0)
8: st.push(〈a0, Es〉)
9: while (st 6= ∅) do
10: 〈a, Es〉 = st.top()
11: if Es 6= ∅ then
12: t = Es.next()
13: S ′ = Img(a.S, t)
14: a′ = NewAgg(S ′, E ′

s)
15: if (a′ is encountered for the first time) then
16: E ′

s = E ′
S ∪ fireableObs(a

′)
17: st.push(a′, E ′

s)
18: else
19: free a′

20: Let a′ be the already existing aggregate
21: end if
22: →′=→′ ∪{a t

−→a′}
23: else
24: A = A ∪ a′

25: st.pop()
26: end if
27: end while

Algorithm 1 builds a SOG 〈A, Act, L′,→′, a0,Ω〉 associated with an LKS

〈Γ, Act, L,→, s0, sf〉. Three functions are used in this algorithm:

• The NewAgg() function requires a set of states S and a set of transitions Es. S

represents the input states of a new aggregate on which the aggregation criterium

(see Definition 18) is applied. This allows to complete the aggregate with states that

are reachable from S, with unobserved actions, while being labeled similarly to S.

During this step, the function stores in Es the set of unobserved actions that lead

to states having a different label from S. These will be treated by Algorithm 1 to

42

Algorithm 2 Compute an aggregate

1: NewAgg(Set of states S, Set of events Es)
2: Set of states From, To, Select;
3: From = S;
4: Es = ∅;
5: repeat
6: for t ∈ UnObs do
7: To = Img(From, t)
8: Select = To ∩ L(S)
9: if To 6= Select then
10: Es = Es ∪ {t}
11: end if
12: from = Select \ S
13: S = S ∪ Select
14: end for
15: until From == ∅
16: return (ComputeAttr(S))

build the successor aggregates. NewAgg() function allows also to compute (through

ComputeAttr() function) the other attributes of an aggregate i.e., d, l and f .

• The fireableObs() function computes, for an aggregate a, the set of observed actions

that are enabled by (some of) its states.

• The Img() function allows to compute the immediate successors of a set of states

by the firing of a given transition. The obtained states represent the input states of

the new successor aggregate and will be then processed by NewAgg() to achieve its

construction.

Algorithm 1 processes through a depth first traversal manner in order to build the SOG. It

contains two main steps: The first (lines 5−8) initializes the SOG components and a stack

(where elements are couples of aggregates, associated with the set of enabled transitions).

The initial aggregate is obtained (line 5) by a call to the NewAgg() function in order to

build an aggregate from the initial state s0 of the LKS. The transition relation is initially

empty (line 6). In order to process the successors of the initial aggregate, the set of enabled

transitions is completed with the observed ones (the unobserved enabled transitions are

already stored in Es by function NewAgg()) through function fireableObs() (line 7).

Finally (line 8), the initial aggregate and the corresponding enabled transitions are pushed

in the stack st (line 9).

The second step of Algorithm 1 is the main loop (line9 − 27) where each iteration

consists in picking (line 10) and processing an item (a, Es) of the stack st. For each

enabled transition in Es (line 12), the immediate (state) successors are computed by

43

the Img() function (line 13). The successor aggregate is then completed by NewAgg()

function (line 14). If the generated aggregate has not been encountered (line 15− 17), the

SOG is updated with a new arc (line 22). Then, the set of enabled observed transition of

the new aggregate is computed and a new couple is pushed into the stack to be processed

in the next iteration. Otherwise (the successor aggregate has been already encountered),

only the transition relation of the SOG is updated with a new arc (line 22).

The Newagg() function is illustrated by Algorithm 2. It is a direct application of

the aggregation criterium of Definition 18: Starting from a set of states S, all the states

that are reachable from S, with unobserved actions, while being labeled similarly to S,

are added to the aggregate. For any enabled unobserved transition, the set of successors

are filtered basing on the label of S, denoted by L(S) (line 8). Notice that we abusively

consider L(S) as a set of states (all those satisfying the label of S) since this can be done

immediately by using the BDD structure. If an unobserved transition leads to some states

with a different label (line 9), these must be excluded from the current aggregate (line 11)

and the transition must be fired outside the aggregate. Thus, the Newagg() function puts

such transitions in the Es set (line 10). Finally (line 16), the call to the ComputeAttr()

function computes the d, l and f attributes of an aggregate following Definition 18.

4.2.2 SOG-based Hybrid LTL Verification Approach

Using SOGs, one can deal with LTL properties that do not involve the next operator

(X). Indeed, the aggregation criterium hides the immediate successors of states. However,

we can use a special next operator whose interpretation would be the observed next (not

necessarily the immediate successor). The equivalence between checking a given LTL \X

formula on the new adapted SOG and checking it on the original LKS is ensured by the

preservation of maximal paths (finite paths leading to a dead/final state and infinite paths).

This corresponds to the CFFD semantics [65], which is exactly the weakest equivalence

preserving next time-less linear temporal logic. The maximal paths of the original model

are preserved by the SOG and characterized as follows:

Definition 20 (maximal paths of a SOG) Let G be a SOG and π =

a0
t1−→a1

t2−→· · · tn−→an be a path of G. Then π is said to be a maximal path iff

one (at least) of the four following properties holds:

• an.d = true,

• an.l = true,

• an.f = true,

44

• ∃0 ≤ m ≤ n s.t. am
tm+1

−→· · · tn−→an is a circuit.

While the deadlock and the final attributes allow to detect finite maximal paths

respectively, the livelock attribute allows to detect infinite runs involving infinitely often

unobserved transitions. Notice that, on the contrary to the original definition of the

SOG, such runs can be visible outside aggregates (e.g. an infinite unobserved run that

continuously change the label of the traversed aggregates). However, as originally, the

infinite runs involving infinitely often observed transitions are directly visible on the SOG

structure. Since the SOG is finite, infinite runs can be expressed as runs ending into a

circuit.

For sake of efficiency, the detection of dead states and cycles inside an aggregate

are performed using symbolic operations (BDD-based set’s operations) only. Thus, the

symbolic observation graph preserves the validity of formulae written in classical Manna-

Pnueli linear time logic [86] (LTL) from which the “next operator” has been removed

(because of the abstraction of the immediate successors) (see for instance [106, 53]).

Since LTL is interpreted on infinite paths, the usual solution in automata theoretic

approaches to check LTL formulae on a Kripke structure is to convert each of its finite

paths to an infinite one by adding a loop on its dead states. Following the same approach,

we define the extended symbolic observation graph (ESOG) as a transformation of the

SOG allowing to capture all the maximal paths under the form of infinite runs. For

this, we transform each finite maximal path (i.e. those ending into an aggregate with

deadlock/livelock/terminal state) into infinite ones.

Definition 21 (Extended SOG) Let 〈A′,Obs ∪ {τ},L′,→′, a′0,Ω
′〉 be a SOG over a set

of observed actions Obs and a set of state-based atomic propositions AP. The associated

ESOG is a an LKS 〈A,Obs ∪ {τ},L,→, a0,Ω〉 where:

1. A = A′ ∪ {v ∈ 2AP | ∃a ∈ A′, L′(a) = v ∧ (a.d = true ∨ a.l = true ∨ a.f = true)}

2. Act = Act ′ ∪ {true, dead, live, term}

3. L : A→ 2AP is a labeling (or interpretation) function s.t. ∀a ∈ A′,L(a) = L′(a) and

∀v ∈ A \ A′, L(v) = v ;

4. →⊆ A× Act × A is the transition relation satisfying:

(a) →′⊆→

(b) ∀a ∈ A′

• a.d = true⇒ (a, dead,L(a)) ∈→)

• a.l = true⇒ (a, live,L(a)) ∈→)

45

• a.f = true⇒ (a, term,L(a)) ∈→)

(c) ∀v ∈ A \ A′, (v, true, v) ∈→

5. a0 = a′0

6. Ω = {a ∈ A \ A′ | ∃a′ ∈ A ∧ (a′, term, a) ∈→}

The ESOG is obtained from a SOG by adding three actions dead, live and term

representing deadlock, livelock and termination respectively. Each aggregate having one

of these three features is connected, with the appropriate label, to a new aggregate having

the same label (which is also its name). Each added aggregate has a self loop labeled with

true. Moreover, the initial aggregate of the ESOG is the same as the SOG. Finally, the

set of final aggregates contains any aggregate having a predecessor by the term action.

s0

s4

a0

a.b

s2

s3

a1

a.b

s6

s7

a2

a.b

s1

a3

a.b

s5

a4

a.b

τ

τ τ

τ τ

o1

o1

τ

τ

o2

(a) A SOG: AP = {a, b} andObs =
{o1, o2}

s0

s4

a0

a.b

a.b

a.b

s2

s3

a1

a.b

s6

s7

a2

a.b

s1

a3

a.b

s5

a4

a.b

τ

τ τ

τ τ

o1

o1

τ

τ

o2

true

live

live

term

(b) A corresponding ESOG

Figure 4.2: A SOG and its corresponding ESOG

The extended SOG of Figure 4.2(b) is the obtained from the SOG of Figure 4.2(a).

Since a1 contains a livelock, a new aggregate having the same label as a1 and called a.b

(which is the label of a1 as well). This new aggregate is a successor of a1, by the live

transition and has a self loop labeled with true. Aggregates a2 and a4 are concerned by

the same reasoning since a2 contains a livelock and a4 contains a final state. However, the

fact that both aggregates have the same label as a1 implies that the added aggregate a.b

is used as a successor of a2 and a4 by transitions live and term respectively.

46

Thus, the ESOG allows to explicitly represent the infinite executions and can be

submitted to any existing LTL model checker. Moreover, it allows to write LTL formulae

involving three new actions (live, dead and term) expressing, deadlock, livelock and

termination respectively.

In the following, the SOG and the ESOG denote the same graph when it comes to

check LTL formulae.

In conclusion, the following result establishes that an LKS satisfies an LTL formula

iff the corresponding ESOG does. Moreover, once built, a SOG over a set of atomic

propositions AP and a set of observed transitions Obs can be reused to check any LTL\X

formula involving a subset of AP ∪Obs .

Theorem 4.2.1 Let K be an LKS and let G be the corresponding SOG over the set of the

observed transitions Obs and over a set of atomic propositions AP. Let ϕ be an LTL \X

formula on a subset of Obs ∪ AP. Then, K |= ϕ⇔ G |= ϕ

To prove Theorem 4.2.1, we will prove that the SOG G preserves the maximal paths

of the corresponding LKS K. We recall that maximal paths are any path π satisfying

one of the following requirements:

1. π = s0
t1−→s1

t2−→· · · tn−→sn such that mn is a dead/final state

2. π = s0
t1−→· · · tl−→sl

tl+1

−→· · · tn−→sn such that sl
tl+1

−→· · · tn−→sn is a circuit.

Before giving the proof of the preservation of maximal paths, let us present tow lemmas

about the correspondence between paths of K and those of G.

Lemma 4.2.2 Let π = s1
t2−→s2

t3−→· · · tn−→sn be a path of K and a1 be an aggregate

of G such that s1 ∈ a1. Then, there exists a path a1
t′
2−→a2

t′
3−→· · ·

t′
l−→al of G and a

strictly increasing sequence of integers i1 = 1 < i2 < · · · < il+1 = n + 1 satisfying

{sik , sik+1, · · · , sik+1−1} ⊆ ak.S for all 1 ≤ k ≤ l.

Proof 1 We proceed by induction on the length of π. If n = 1, knowing that s1 ∈ a1.S

concludes the proof. Let n > 1 and assume that a1
t′
2−→a2

t′
3−→· · ·

t′
l−→al and i1, · · · , il+1

correspond to the terms of the lemma for the path s1
t2−→s2

t3−→· · · tn−1

−→sn−1. Then, sn−1 ∈

al.S. Let us distinguish two cases.

(i) If sn ∈ al.S then the path a1
t′
2−→a2

t′
3−→· · ·

t′
l−→al and the same sequence used for the

path s1
t2−→s2

t3−→· · · tn−1

−→sn−1 (i.e. i1, · · · , il+1), except il+1 = n which is replaced by n+ 1,

satisfy the proposition.

(ii) If sn 6∈ al.S then, since sn−1
tn−→sn, tn is either an observed transition, or the

truth values of the state atomic propositions in sn−1 and in sn are different. In this

case, by construction of the SOG, there exists an aggregate al+1 such that al
tn−→al+1 and

47

sn ∈ al+1. As a consequence, the path a1
t′
2−→a2

t′
3−→· · · tl−→al

t′
l
=tn
−→al+1 and the sequence

i1, · · · , il, il+1, il+1 + 1 (where a new element il+2 = il+1 + 1) satisfy the proposition.

The next lemma shows that the converse also holds.

Lemma 4.2.3 Let π = a1
t2−→a2

t3−→· · · tn−→an be a path of G. Then, there exists a path

s1
t2−→(s2

∗
−→a2s

′
2)

t3−→· · · tn−→(sn
∗
−→ans

′
n) of N satisfying s1 ∈ a1.S and sn ∈ an.S.

Proof 2 We consider π in reverse order and proceed by induction on its length. If n = 1,

it is sufficient to choose a state s1 ∈ a1.S.

If n = 2, we have to distinguish two cases.

• If a1 6= a2 then, by construction of the SOG, there exists a state s1 ∈ a1.S and a

state s2 ∈ a2.S such that s1
t2−→s2. This path verifies the proposition.

• If a1 = a2, then there exists a circuit σ of a1. Let s2 ∈ σ (i.e. the set of states

involved in σ). The path s2
∗
−→a1m2 (where all the traversed states belong to a1)

satisfies the proposition.

Let n > 2 and assume that s′2
t3−→· · · tn−→sn corresponds to the terms of the lemma for the

path a2
t3−→· · · tn−→an. We know that s′2 ∈ a2.S. Here, four cases have to be considered.

We denote by Out(a) = {s ∈ a.S | ∃t ∈ Act , ∃s′ 6∈ a.S, s t
−→s′}

1. If a1 6= a2 ∧ s
′
2 ∈ Out(a2) then, by construction of the SOG, we know that there

exists a state s2 ∈ a2.S such that s2
∗
−→a2s

′
2 and a state s1 ∈ Out(a1) such that

s1
t2−→s2. The path s1 → (s2

∗
−→a2s

′
2)

t3−→· · · tn−→sn verifies the proposition.

2. If a1 = a2∧s
′
2 ∈ Out(a2) then, by construction of the SOG, we know that a1 contains

a circuit σ. Let s1, s2 ∈ σ such that s1
t2−→s2. Since s

′
2 ∈ Out(a1) then s

′
2 is reachable

from s2 in a1. In consequence, the path s1
t2−→(s2

∗
−→a2s

′
2)

t3−→· · · tn−→sn satisfies the

proposition.

3. a1 6= a2∧ s
′
2 ∈ Out(a2) then (a2

t3−→a2). Thus, there exists a circuit σ of a2 reachable

from some state s2 ∈ a2.S. Moreover, there exists s1 ∈ Out(a1) such that s1
t2−→s2.

Let c ∈ σ. Let us distinguish the two following subcases:

(a) If there exists i > 2 such that s′i ∈ ai and s′iOut(ai) then, let j be the

smallest such an i. Then, s′j is reachable in aj from c. Hence, the path

s1
t2−→s2

∗
−→a2c(

+
−→a2c)

j−1 ∗
−→ajs

′
j · · ·

tn−→sn verifies the proposition.

(b) If for all i > 2, s′i 6∈ Out(ai) then the path s1
t3−→s2

∗
−→a2c(

+
−→a2c)

n−1 satisfies

the proposition.

48

4. a1 = a2 ∧ s
′
2 6∈ Out(a2) then, by construction of the SOG, we know that a1 contains

a circuit σ. We also know that s′2 ∈ σ by construction. Let s1 ∈ σ such that s1
t2−→s′2.

Then the path s1
t2−→(s′2

∗
−→a2s

′
2)→ · · · → bn satisfies the proposition.

We are now in position to study the correspondence between maximal paths.

Lemma 4.2.4 Let π = s0
t1−→· · · tn−→sn be a maximal path of K. Then, there exists a

maximal path π′ = a0
t′
1−→· · ·

t′
l−→al of G such that there exists a sequence of integers

i0 = 0 < i1 < · · · < il+1 = n+ 1 satisfying {sik , sik+1, · · · , sik+1−1} ⊆ ak ∀ 0 ≤ k ≤ l.

Proof 3 If sn is a dead/finale state then knowing that s0 ∈ a0.S and using Lemma 4.2.2,

we can construct a path π′ = a0
t′
1−→a1 · · ·

t′
l−→al and the associated integer sequence

corresponding to π. Because the last visited state of π belongs to al, the dead/final

attribute of al is necessarily equal to true and π′ is then a maximal path of the SOG. Now,

if sn is not a dead/final state then, one can decompose π as follows: π = π1π2 s.t. π1 =

s0
t1−→s1 → · · · tn−1

−→sn−1 and π2 = sn
tn+1

−→sn+1
tn+2

−→· · ·
tn+k
−→sn+k (where π2 is a circuit). Once

again, applying Lemma 4.2.2 from a0, one can construct a path π′
1 = a0

t′
1−→a1

t′
2−→· · · ao

corresponding to π1. The corresponding path of π′
2 can be also constructed applying the

same lemma. However, this path must be constructed from ao if sn ∈ ao.S or from a

successor of ao containing sn otherwise. Let π′
2 = ab1

t′
b1+1

−→ab1+1 → · · · ae1 be this path.

Then, let us distinguish the following four cases: We denote by In(a, a′) = {s′ ∈ a′ \ a |

∃s ∈ a.S, s→ s′}.

1. if π′
2 is reduced to a single aggregate a then π2 ⊆ a and, because π2 is a circuit of K,

the livelock attribute of a is true. Then, the path π′
1π

′
2 is maximal in G.

2. else if ae1
t′
b1−→ab1 ∧ sn ∈ In(ae1 , ab1) then π

′
2 is a circuit of G and π′

1π
′
2 is a maximal

path of G satisfying the proposition.

3. else if sn ∈ ae1 (i.e ab1 = ae1) then the path ab1+1 → · · · ae2 is a circuit of G and

π′
1

t′
b1−→ab1

t′
b1+1

−→ab1+1 → · · · ae2 is a maximal path of G satisfying the proposition.

4. else, by construction of the SOG, there exists a successor of ae1 containing sn.

Applying again Lemma 4.2.2 from this aggregate, we can construct a new path in

G corresponding to π2. Let ab2
t′
b2+1

−→ab2+1 → · · · ae2 be this path. If we can deduce a

circuit of G from this path applying one of the three above points, this concludes the

proof. Otherwise, it is also possible to construct a circuit of G by linking ae2 to ab1

similarly to the point 2 and 3 above and deduce a circuit. If this is not the case,

we can construct a new path corresponding to π2 starting from a successor of ae2.

Because the number of aggregates in G is finite, a circuit will be obtained.

49

Notice that for all the above cases, a sequence of integers can be easily constructed from

the ones produced by Lemma 4.2.2.

Lemma 4.2.5 Let π′ = a0
t1−→· · · tn−→an be a maximal path of G. Then, there exists a

maximal path π = (s0
∗
−→a0s

′
0)

t1−→· · · tn−→(sn
∗
−→ans

′
n) of K.

Proof 4 Let π′ be a maximal path reaching an aggregate an such that an.d = true∨an.f =

true ∨ an.l (either the dead/final or the livelock attribute is true). First, let us notice that

the proof is trivial if the path π′ is reduced to a single aggregate because dead/final state

(resp. a state of a circuit of a0) is necessarily reachable from s0.

Otherwise, using Lemma 4.2.3, there exists a path π = e0
t1−→(s1

∗
−→a1s

′
1)

t2−→· · · tn−→sn

of K satisfying s′0 ∈ a0.S and sn ∈ an.S. If s′0 ∈ Out(a0), we have s0
∗
−→a0s

′
0 since a0 is

obtained by saturation from {s0}. Otherwise, s′0 belongs to a circuit of a0 and there exists

in G an arc from a0 to itself. This circuit can then be chosen to be reachable from s0

during the construction of π. Finally, there exists a state s′n ∈ an.S such that sn
∗
−→ans

′
n,

where s′n is a dead/final state (if an.d = true ∨ an.f = true) or a state of a circuit of an

(if an.l = true), because an is obtained by saturation from In(an−1, an). Thus, the path

(s0
∗
−→a0s

′
0)

t1−→(s1
∗
−→a1s

′
1)

t2−→· · · tn−→(sn
∗
−→ans

′
n) satisfies the lemma.

Now, if neither an.d (resp. a.f = true) nor an.l is true, then by construction of

the SOG, π′ = a0
t1−→· · · tl−→al

tl+1

−→· · · tn−→an with al
tl+1

−→· · · tn−→an a circuit of G. We

distinguish two cases:

1. If ∀l ≤ i ≤ n, ai = al. Using Lemma 4.2.3, we can construct a path of K, namely

π = e0
t1−→(s1

∗
−→a1s

′
1)

t2−→· · · tl−→bl corresponding to a0
t1−→· · · tl−→al such that e0 is

chosen to be reachable from s0 (similarly to the above case). Because al
tl−→al, al

contains a circuit and sl can be chosen such that this circuit is reachable from sl.

This leads to the construction of a maximal path of K.

2. Otherwise, l can be chosen such that al 6= an and an → am. From this decomposition

of π′, Lemma 4.2.3 can construct a maximal path of K satisfying the current lemma.

4.3 Using SOGs for Checking Generic Properties

In this section we will show how checking generic properties on the original models can

be reduced to the verification on their abstractions (SOGs). We are interested in the

soundness property and three of its variants (weak, relaxed and easy soundness). Since

the soundness properties have been defined on WF-nets, we use Petri net based models to

illustrate the adaptation of the SOG structure to the verification of these properties.

50

We recall that in this section, the SOG is based on the observation of the set of interface

transitions (Obs = Int). In this case the set of atomic propositions AP is the empty set

and the SOG according to Definition 19 coincides with the event-based SOG [55].

We first establish that the current attributes of an aggregate of a SOG (i.e. dead,

live and final) are not sufficient to check the soundness properties. Then, we give the

necessary and sufficient information to be added to the aggregates in order to make it

possible. Finally, we design dedicated verification algorithms based on the SOG graph.

4.3.1 Soundness

Given an aggregate a of a SOG, the l attribute, determining the presence/absence of a

cycle inside a is completely useless regarding the soundness property since it does not allow

to distinguish a terminal cycle from a non terminal one. Indeed, the presence of a terminal

cycle that does not cross a final state violate the option to complete requirement of the

soundness property, while a non terminal cycle can lead to a final state, and hence satisfy

this requirement. In addition, the d attribute, determining the presence/absence of a dead

state inside an aggregate, is not sufficient to allow one to check the same requirement. In

fact, if the presence of a dead state implies the violation of the requirement, the absence

of a dead state does not imply necessarily its satisfaction.

p0

f p′1

p′2

o1 u1

u2 u2

A0

A1

o1

(a) Unobserved terminal cycle

p0

p1 p′1

p2 p′2

p3

p4

p′3

p′4

f1

u1 u′1

o1 u′2

u2

o2

o3

u3

o1

o2 o3

A0

A1

o1

A2

o2 o3

(b) Observed terminal cycle

Figure 4.3: Terminal cycles preventing the detection of the option to complete requirement

Figure 4.3 illustrates two examples of terminal cycles where the system is deadlock

free but the option to complete requirement is violated. The first one is illustrated by

an unobserved terminal cycle (see Figure 4.3(a)) inside aggregate A0 which is not a final

aggregate (we consider that only the marking with a token in the place f is final). The

51

second example illustrates an observed terminal cycle (see Figure 4.3(b)) crossing the two

aggregate A1 and A2. Although A2 is a final aggregate (since it contains the marking

where f1 is marked), there exists a cycle (crossing the marking p′4 and p′3, belonging to A3

and A2 respectively) from which it is not possible to reach the final marking f1.

Notice that using our model checker presented in the previous Section, and under a

fairness assumption, one can check the option to complete requirement by checking the

following LTL formula φ = G F term on the SOG. It expresses that, for any execution of

the process, the term action occurs eventually in the future. We present in the following

an other algorithmic solution in case the fairness property is not satisfied.

Regarding the no dead transitions requirement of the soundness property, it is clear

that the firing of unobserved transitions is not detectable once the SOG is built. One

should memorize, during the SOG construction, which unobserved transitions have not

been fired. Finally, the proper completion condition requires to pick each state (a marking

within an aggregate) individually and to compare it to the final state. It is clear that

such a naive way of checking this condition would lead to bad performances and one must

design a dedicated fully symbolic algorithm.

In order to solve these problems, we consider two new predicates of an aggregate:

Mf (a) which is the set of markings, in a, from which the final making is reachable, and

Et(a) which contains the transitions that are enabled by (some) markings of a. At the

end of this section, we supply a fully symbolic algorithm allowing to check the proper

completion requirement. Such an algorithm exploits the BDD structure and avoids to

pick each marking of an aggregate separately.

Definition 22 Let G = 〈A,Obs ∪ {τ},L,→, a0,Ω〉 be a SOG corresponding to a marked

RCoWF-net (N,m0). The Mf and Et predicates are defined as follows:

• Mf : A −→ 2R(N,m0)

Mf (a) = {m ∈ a.S | mf ∈ R(N,m)};

• Et : A −→ 2Act

Et(a.S) = {t ∈ Act | ∃m ∈ a.S : m t
−→}.

As for the proper completion condition, the computing of these two new attributes is

accomplished in a pure symbolic way. While the computing of Et(a) for a given aggregate

a is fairly trivial, the computing ofMf (a) is not. In the following, we discuss the algorithm

allowing this computing.

Mf Computing Algorithm

Given an aggregate a, the computing of the corresponding Mf necessitates to explore the

future of the markings of a (by observed and unobserved transitions) and check whether

52

the final marking belongs to this future. One can compute this information by exploring

the SOG once built. However, we chose to do it on-the-fly, during the construction of the

SOG in order to be able to stop the construction as soon as the Mf of some aggregate is

proved to be empty. Indeed, if such an aggregate exists, the option to complete condition

of the soundness property is violated. Algorithm 3 updates Algorithm 1 (allowing to

build a SOG) while emphasizing on the instructions related to the computing of Mf

(underlined instructions). We are concerned with the computing of Mf at two points

of the construction algorithm: when a new aggregate is encountered for the first time,

and when the current aggregate is processed entirely (popped from the stack and stored

in the SOG). First, when a new final aggregate a′ is encountered for the first time (line

15− 16), we add to the corresponding Mf (which is empty) the set of states in a′ from

which the final state is reachable (by unobserved transitions). This is done by using the

SaturatePre() function (line 17). Next, once the processing of the current aggregate a

(the construction of its future and the computing of the corresponding Mf is definitely

done) is finished (lines 29− 33), two cases are considered: If the Mf(a) is empty, then

we are sure that none of the states of a allows to reach the final state. In this case, the

option to complete requirement is not satisfied (and so is the soundness property), and, if

desired, the construction of the SOG can be stopped.

Otherwise, the Mf of the immediate predecessor aggregate, if any, (which is in the

top of the stack) is updated using the Mf of the current one. This is ensured by the

UpdateMf () function. This function requires a source and a destination aggregates, src

and tg respectively, and updates the Mf(src) using the Mf(tg). If t is the transition

labeling the edge from src to tg, this function starts by getting the states of src enabling

t (these will be added to Mf (src)), and complete Mf (src) by a call to the SaturatePre()

function.

Notice finally that we assume that Mf(a) is initialized by the empty set (this could

be done by the NewAgg() function) and stored as an attribute of each aggregate of the

SOG.

53

Algorithm 3 Compute Mf while the construction of the SOG

Require: an LKS 〈Γ, Act, L,→, s0, sf〉

Ensure: Compute a SOG 〈A, Act, L′,→′, a0,Ω〉

1: Aggregate a, a’;

2: stack st;

3: Set of states S’;

4: Set of actions Es, E
′
s;

5: a0 = NewAgg(s0, Es);

6: →′= ∅;

7: Es = Es ∪ fireableObs(a0)

8: st.push(〈a0, Es〉)

9: while (st 6= ∅) do

10: 〈a, Es〉 = st.top()

11: if Es 6= ∅ then

12: t = Es.next()

13: S ′ = Img(a.S, t)

14: a′ = NewAgg(S ′, E ′
s)

15: if (a′ is encountered for the first time) then

16: if (mf ∈ a
′.S) then

17: a′.Mf = SaturatePre({mf}, a
′)

18: end if

19: E ′
s = E ′

s ∪ fireableObs(a
′)

20: st.push(a′, E ′
s)

21: else

22: free a′

23: Let a′ be the already existing aggregate

24: end if

25: →′=→′ ∪{a t
−→a′}

26: else

27: A = A ∪ a

28: st.pop()

29: if (a.Mf = ∅) then

30: return false //Option to complete violated / may stop the SOG construction

31: else

32: UpdateMf (st.top.first(), a) //only if st.top() exists i.e. a 6= a0

33: end if

34: end if

35: end while

54

BDD-based Algorithm for Proper Completion

To deal with the proper completion requirement, we implement a recursive algorithm

(Algorithm 4) based on a parallel exploration of the BDDs Ba and Bf representing the

states of an aggregate a and the final marking mf respectively. For sake of simplicity,

we consider safe Petri nets (i.e. the marking of any place is at most equal to 1). In this

case each BDD variable corresponds to a place of the Petri net, and a path π in the BDD

leading to the true (resp. false) node represents a marking m which (resp. does not)

belongs to the underlying set of states. In the following, we abusively denote by π the

corresponding marking and by πi the marking of the place pi number i in π.

The first call starts from the root of Ba and Bf BDDs and the exploration aims at

finding a marking in Ba which is greater than the final marking in Bf as soon as possible.

Thus, for each call of the algorithm, A (resp. F) designates the current node in Ba (resp.

Bf) through a current path πa (resp. πf) in the same BDD. In a call number i, we have

πaj ≥ πfj , for any 0 ≤ j ≤ i− 1 (this has been ensured by the previous calls i− 11).

The current task (of the call i) is then to check the sub-marking πi . . . πn (assuming that

there are n places in the Petri net). Moreover, the fact that mf is unique, there is a unique

path in Bf leading to the leaf true node, which is not necessarily the case of Ba. This

has the consequence that when the current node in Bf is a leaf node, then the current

node in Ba is necessarily of the same kind (a leaf). Notice that in Algorithm 4, if we are

not sure that the current path in Ba leads to true, we are sure that the current one in Bf

does. The current BDD nodes A and F are compared through the following cases:

• A 6= F : three cases are considered:

– A = true (line 2): This means that the current path in Ba is a marking

belonging to the aggregate a. This means that F corresponds necessarily to

some variable/place pi and that the marking represented by the current path,

completed by m(pj) = 1, for any i ≤ j ≤ n, is a marking in a. Lines 3− 9 aim

at finding, starting from place pi, some unmarked place in mf . If such a place

exists, then we are sure that a contains a marking which is strictly greater than

mf and the algorithm returns sup. Else, the algorithm returns equal which

means that the places pj, for i ≤ j ≤ n are also marked in mf .

– A = false (lines 11− 12): This means that the current path in Ba does not

correspond to a marking in the aggregate a. The algorithm returns false.

– A = vi and F = vj, with i 6= j: In this case, we are sure that j < i (because

mf is unique), and the algorithm looks whether there exists a variable pk (for

k = j . . . i − 1) which is unmarked in mf (lines 14 − 21). If this is the case,

55

then the current path in Ba is strictly greater than the corresponding path in

Bf (and the variable strict is set to true at line 16). Otherwise these places

pj . . . pi−1 are marked in mf , and the variable strict is not set to true. At the

end of the loop, A and F are equal and both refer to the same BDD variable.

• A = F : If A = true and F = true, the Algorithm returns equal without executing

the body of the loop line 3. The case A = false and F = false is not possible since

the current path in Bf is necessarily a path leading to true. Finally, if A = F and

both correspond to a place pi, a recursive call is performed to pursue the parallel

exploration of Ba and Bf . Let (da, df) ∈ {low, high} × {low, high} be the current

exploration starting from the node pi in both A and F . For instance, (high, low)

corresponds to a traversal in the right subgraph of A in parallel with a traversal of

the left subgraph of F . Let us consider the two following cases:

– When a (high, low) traversal is finished with the result that the sub vector

(pi+1, . . . , pn) in Ba is greater or equal to the corresponding vector in Bf , then

the algorithm ends after finding a marking in a which is strictly greater than mf

(lines 23− 25). Otherwise, the current explored path in Ba does not correspond

to a marking in a (lines 27− 28), and one should explore another path in Ba,

which is (low, low) (line 34).

– When a (high, high) (resp. (low, low)) traversal is required, we are sure that

the marking of the places p0 . . . pi is greater or equal to the corresponding

vector in Bf . If such a traversal leads to the result that (pi . . . pn) in Ba is

strictly greater than the corresponding vector in Bf , then the algorithm ends

by finding a marking in a strictly greater than the final marking (lines 35− 36).

If the result is that (pi . . . pn) in Ba is equal, then the final result depends on

the value of the strict variable. If this is equal to true, then the algorithm

returns sup (lines 35− 36), else it returns equal (line 38).

56

Algorithm 4 StrictGreater : Comparison of markings

Require: BddA,Bddmf

Ensure: false, sup, equal

1: bool strict = false

2: if A = true then

3: while mf 6= True do

4: if low(mf) 6= False then

5: return sup

6: end if

7: mf = high(mf)

8: end while

9: return equal

10: end if

11: if A = False then

12: return false

13: end if

14: while var(mf) 6= var(A) do

15: if low(mf) 6= False then

16: strict = true

17: mf = low(mf)

18: else

19: mf = high(mf)

20: end if

21: end while

22: if low(mf)! = False then

23: resRec = StrictGreater(high(A), low(mf))

24: if resRec = sup ∨ resRec = equal then

25: return sup

26: else

27: Arec = low(A)

28: mfrec = low(mf)

29: end if

30: else

31: Arec = high(A)

32: mfrec = high(mf)

33: end if

34: resRec = StrictGreater(Arec,mfrec)

35: if resRec = sup ∨ (resRec = equal ∧ strict) then

36: return sup

37: else

38: return resRec

39: end if

57

Finally, if the traversal call (from the variable p) returns false, then the path is

not concluent and the algorithm returns false to try an other path in Ba and

Bf (line 38).

To conclude, the proper completion requirement is violated iff the Algorithm 4 returns sup.

Let us illustrate the execution of Algorithm 4 on the BDDs of Figure 4.4. We assume a

1 : p1

2 : p2 3 : p2
4 : p3

true

false

(a) The BDD representing of the
set of markings {p1, p2, p2p3}

1 : p1

2 : p2 3 : p2

4 : p35 : p3

true

false

(b) The BDD representing of the set
of markings {p1, p2, p3}

1 : p1

2 : p2

3 : p3

false

true

(c) The BDD representing the
marking p3

Figure 4.4: examples of BDDs

Petri net with three places p1, p2 and p3, and a final marking mf where only p3 is marked.

The corresponding BDD is presented in Figure 4.4(c). In Figure 4.4(a) and Figure 4.4(b),

we consider the BDDs of two aggregates containing the sets of markings {p1, p2, p2p3},

{p1, p2, p3} respectively. It is clear that the first aggregate contains a marking (p2p3) which

is strictly greater than mf while the second does not. The processing of these two examples

is illustrated by Figure 4.5(a) and Figure 4.5(b) respectively. The processing starts by the

lefthand first call StrictGreater(A,F) (SG(1,1) in the Figure), where A and F represent

the roots of the aggregate and the final marking BDDs respectively. A left-to-right arrow

from SG(A,F) to SG(A′, F ′), where (A′, F) ∈ {low(A), high(A)} × {low(F), high(F)}

58

(a)

(b)

Figure 4.5: Illustration of two examples of Algorithm 4’s execution

corresponds to a call executed by SG(A,F). A return (right-to-left) arrow from SG(A′, F ′)

to SG(A,F) represents the result of the corresponding call.

• The processing of the first example is illustrated by Figure 4.5(a). In the first call

(SG(1, 1)), and since lowF (1) 6= false (line 22), a first recursive call (call1) with

highA(1) and lowF (1) is done (line 23) leading to the execution of SG(3, 2). The

last call processes similarly, leading to the call (call2) leading to the execution of

SG(true, 3). This call being done with a true leaf node in A, the body of the loop in

59

lines 3− 8 is executed once reaching the true leaf node of F . Thus, the SG(true, 3)

returns equal (line 9, return1) to SG(3, 2) which returns sup (lines 24−25, return2)

(proving the existence, in the aggregate, of a marking strictly greater than mf).

• The processing of the second example is illustrated by Figure 4.5(b). The execu-

tion starts similarly to the previous example until call2 executed by SG(3, 2) to

SG(false, 3). Since A = false (lines 11−12), SG(false, 3) returns false (return1).

Coming back to SG(3, 2) (lines 27− 28) where a new call to SG(4, 3) is performed

(line 34, call3). In SG(4, 3), since lowF (3) = false (line 22), a call to SG(false, true)

is done (line 34, call4) which returns false (lines 11−12, return2) to SG(4, 3) which

forwards this result (line 38, return3) to SG(3, 2). SG(3, 2), in his turn, returns the

same result to SG(1, 1) (line 38, return4). Coming back to the first call SG(1, 1)

(lines 27− 28), a final call to SG(2, 2) (line 23, call5) is performed. This call will

perform two calls to SG(4, 3) (line 23, call6) and to SG(5, 3) (line 34, call8) which

return false and equal respectively. This result is returned successively to the

first call SG(1, 1), which returns the same result. Thus, there is no marking in the

aggregate which is strictly greater than mf .

Soundness On SOGs

Now we can completely characterize the soundness property using the SOGs.

Definition 23 Let G = 〈A,Obs ∪ {τ},→, a0,Ω
′〉 be a SOG associated with an RCoWF-

net N . Then, G is sound iff the following requirements are satisfied:

• option to complete:
⋃

a∈AMf (a) =
⋃

a∈A a.S.

• no dead transitions :
⋃

a∈AEt(a.S) = T .

• proper completion: ∀a ∈ A Algorithm 4 applied to (a.S,mf) does not return sup.

First, the option to complete requirement insures that a final marking is reachable

starting from any reachable marking. After the construction of the SOG, and the compute

of the Mf predicate for each aggregate (see Algorithm 3), this requirement is satisfied

if the union of the sets a.Mf , ∀a ∈ A, is equal to the set of reachable markings of the

system. The option to complete requirement is violated as soon as there is an aggregate a

such that Mf (a) = ∅.

Second, the no dead transition requirement is checked after the construction of the

SOG: Using the set of enabled transitions Et of an aggregate, which is computed on the

fly, one can check if all the transitions have been fired or not (by comparing the union of

Et with the set of transitions T).

60

Finally, the proper completion requirement is checked during the construction of the

SOG by applying the Algorithm 4. This property is violated only if the Algorithm return

sup.

Theorem 4.3.1 Let N be an RCoWF-net, and let G be its corresponding SOG. Then, N

is sound iff G is sound.

4.3.2 Relaxed, Weak and Easy soundness

First the Relaxed soundness is a variant of soundness property which requires that each

transition should occur in at least one ”good” execution path that leads to a final marking.

With the classical definition of SOG, one problem can arise when a terminal cycle (or

dead state) belongs to an aggregate a : assume that such an aggregate leads to a final

aggregate. Moreover, it could exist an unobserved transition t which is enabled only

by a marking m inside this aggregate leading to the terminal cycle (or the dead state).

However, if we suppose that m do not belong to another aggregate a′ 6= a, we can not

assert whether this unobserved transition occurs somewhere else in a ”good” execution

or not. For instance, in Figure 4.3(a), the unobserved action u2, which is enabled by a

marking in A0, do not belong to any path leading to the final marking (where only the

place f is marked). Therefore, to resolve this problem, we define a new predicate, denoted

Tf(a), which represents the set of transitions (observed or not), involved in any correct

execution (ending at a final marking), starting from some special states inside a. This

set of marking in a.S, from which some final making is reachable, is represented by the

attribute Mf previously added to the aggregate.

Definition 24 Let G = 〈A,Obs ∪ {τ},L,→, a0,Ω〉 be a SOG corresponding to a marked

RCoWF-net (N,m0). The Tf predicate is defined as follows:

• Tf : A −→ 2T

Tf(a) = {t ∈ UnObs | Succ(Mf(a), t) ∩Mf(a) 6= ∅} ∪ Enable(Mf(a)) ∩ Obs where

Succ(S, t) = {s′ | ∃s ∈ S : s t
−→s′} the set of states reachable from any state of S by

the firing of t.

Second, in some cases, it has to be guaranteed that the termination of a workflow

occurs eventually. As long as a final marking is reachable from any state, any possible

deadlock is allowed. That is we called weak soundness variant. Finally, the easy soundness

is less exigent. It represent the case in which we accept that there exists at least only

a final marking reachable from the initial state, so that we have at least one ”good”

execution of the workflow. For checking these two variants, the definition is based on the

attribute Mf (already defined in the previous section).

61

We note that, for all three variants of the soundness properties, we will not detail the

corresponding algorithm since we consider that they are too trivial properties.

Theorem 4.3.2 Let G = 〈A,Obs ∪ {τ},→, a0,Ω
′〉 be a SOG associated with an RCoWF-

net N

• N is relaxed sound iff
⋃

a∈A Tf (a) = T .

• N is weak sound iff
⋃

a∈AMf (a) =
⋃

a∈A a.S

• N is easy sound iff
⋃

a∈AMf (a) 6= ∅

4.4 Conclusion

Checking properties (insure a correct behavior) on the original models of inter-entreprise

business processes can be reduced to the check on their abstractions (SOGs). In this

chapter we had revisited the SOG structure to insure that it contains sufficient and

necessary information to check the properties. We have interested in specific properties

that can be expressed in temporal logic (LTL), and generic properties such as soundness

properties (with most variants). In the next Chapter, we will adapt the SOG abstraction in

order to show how we can analyze the composition of workflows using their corresponding

SOGs.

62

Chapter 5

Using SOGs for Modular verification

Contents

5.1 Introduction . 63

5.2 Composition of SOGs . 64

5.2.1 The observed behavior . 64

5.2.2 Synchronous composition of SOGs 68

5.2.3 Composition of RCoWF-nets’ SOGs 74

5.3 Modular verification . 81

5.3.1 LTL-based Properties . 81

5.3.2 Checking Soundness Properties 83

5.3.3 Soundness . 83

5.3.4 Relaxed, Weak and Easy Soundness 86

5.4 Conclusion . 88

5.1 Introduction

In this Chapter, we will define how we compose two (ore more) business processes (each

ignoring internal details about the other), and how we check generic and/or specific

properties which are satisfied by each component locally. It is well known that correction

properties like deadlock-freeness, soundness and LTL formulae are not preserved by

composition. This is mainly due to the interaction between components which can lead

to interlocks. An interlock is a ”global” dead state where the whole process is locked, and

it can arise even if the different constituents of the process are separately deadlock free.

For instance, an interlock occurs when two processes send a request to each others, and

each of them is waiting for a response from the other.

63

5.2 Composition of SOGs

Given two RCoWF-nets N1 and N2 that have been analyzed locally and proved to be

correct (w.r.t. soundness notions or w.r.t. some LTL formulae), our goal is to reduce the

verification of their original composition (which is not available anyway) to the verification

of the composition of the corresponding SOGs G1 and G2, namely G1 ⊕ G2. Such an

approach presents several advantages: First, the verification of the composition takes into

account the local verification process. We only focus on the common activities between

the processes to be composed. The main task at this stage is to check whether, due to

the composition, the nice properties that have been checked locally are violated after

composition. Second, such an approach allows to reduce the state space explosion due

to the composition. Finally, by abstracting a business process with a SOG, we hide the

local behavior of the process which would represent internal organization and private

information. This allows to respect the privacy feature of the enterprise and to avoid to

expose irrelevant or sensitive information.

The main difficulty of our approach is to adapt the SOGs so that they contain the

necessary and sufficient information making the composition of SOGs representative of the

composition of the corresponding models (w.r.t. the desired properties). In particular, one

must detect interlocks which represent an important behavior in the decision procedure

of both soundness and LTL formulae. To reach this goal, a new attribute, called the

observed behavior of an aggregate a, and denoted by λ(a), will be added to the aggregates

of a SOG. We are interested in the observed behavior of each state s belonging to an

aggregate : (1) could s lead to the firing of some observed transitions in the future? (2)

could s lead to a final state or a dead state in the future?

5.2.1 The observed behavior

The observed behavior of each state s inside an aggregate contains a set of observed

transitions: It contains all the observed transitions that can be fired in the future of s

via (a possibly empty) sequence of unobserved transitions. The observed behavior of an

aggregate is then defined as the set of the observed behaviors of its states (i.e. a set of

sets of observed transitions). In order to distinguish dead states from final states, a new

virtual observed transition, called term, is considered s.t. it belongs to the observed

behavior of any state from which a final state is reachable via (a possibly empty) sequence

of unobserved transitions.

Definition 25 Let N = 〈P, T, Fp ∪ Fr ∪ Fc,W, I, O,R〉 be an RCoWF-net. Let

m0 and mf be the corresponding initial and the final markings and let G =

〈A,Obs ∪ {τ},L,→, a0,Ω〉 be a corresponding SOG over the set of observed transitions

64

Obs and a set of atomic propositions AP. The observed behavior is progressively defined

by :

1. λN : R(N∗,m0)→ 2Obs∪{τ}

• ∀t ∈ Obs, t ∈ λN (m)⇔ ∃m′ ∈ R(N∗,m) s.t. m σ
−→m′ t

−→ where σ ∈ UnObs∗,

• term ∈ λN (m) ⇔ ∃t1 . . . tn ∈ UnObs s.t. m t1−→m1 . . .mn
tn−→mf and L(m) =

L(mi) = L(mf), for i = 1 . . . n.

• τ ∈ λN (m) ⇔ ∃t1 . . . tn ∈ UnObs s.t. m t1−→m1 . . .mn−1
tn−→mn and L(m) =

L(mi) for i = 1 . . . n− 1 and L(m) 6= L(mn).

2. λN : 2(R(N∗,m0)) → 22
Obs∪τ

λN (S) = {λN (m) | m ∈ S}

3. λmin : 2R(N∗,m0) → 22
Obs∪{τ}

λmin(S) = {X ∈ λN (S) |6 ∃Y ∈ λN (S) : (Y ⊂ X) ∧ (Y ∩ {term, τ} = X ∩

{term, τ})}

4. λ : A→ 22
Obs∪{τ}

λ(a) = λmin(a.S)

Informally, for each marking m in R(N∗,m0), the observed behavior of m, λN (m),

represents the set of observed actions, possibly completed with τ and/or term. An

observed action t belongs to λN (m) when it is possible to fire t from m, possibly via

a sequence of unobserved actions while traversing equally labeled states. τ belongs to

λN (m) when the firing of some unobserved transition t′ from m, possibly via a sequence

of unobserved actions (traversing equally labeled states), leads to a marking m′ labeled

differently from m. term is a member of λN (m) iff the final marking is reachable from

m using an unobserved sequence of actions σ (traversing equally labeled states). The

observed behavior λN associated with a set of markings S contains the observed behavior

of the markings of S. Actually, in order to detect interlocks (see next subsection), it is not

necessary to keep in the observed behavior λ any set X if there exists a subset Y ⊂ X

in λ while Y contains the same information regarding τ and term. Thus, the observed

behavior mapping λmin applied to a set of markings S is defined as the set of minimal

subsets (w.r.t. the set inclusion relation) of λN (S) preserving τ and term. Finally, the

observed behavior λ(a) associated with an aggregate a is the observed behavior λmin

applied to the corresponding set of states a.S.

65

Algorithm 5 Computing the Observed Behavior

Require: Agregate a, Obs, UnObs, F inal state mf

Ensure: λ(a)
1: Map < Set of actions, Set of states > R
2: if mf ∈ a.S then
3: insert ({term}, P reIm(mf , a.S,UnObs)) inR
4: end if
5: for u ∈ UnObs do
6: S ∪ PreIm(Out(a, u), a.S, {u})
7: end for
8: if(S 6= ∅) then insert ({τ}, S) in R endif
9: for o ∈ Obs do
10: if Enable(a.S, o) 6= ∅ then
11: insert ({o}, Enable(a.S, o)) in R
12: end if
13: end for
14: RN = ∅
15: while RN 6= R do
16: RN = R
17: for (O, S) ∈ RN , (O

′, S ′) ∈ RN do
18: if (S ∩ S ′) 6= ∅ then
19: Sold ← S; S ← S \ S ′; S ′

old ← S ′; S ′ ← S ′ \ S
20: if(S == ∅) then remove (O, S) from RN endif
21: if(S ′ == ∅) then remove (O′, S ′) from RN endif
22: if (S == ∅) ∧ (S ′ == ∅) then
23: add (O ∪O′, Sold) in RN

24: else
25: if (O ∩ {τ, term}) 6= (O′ ∩ {τ, term}) then
26: add (O ∪O′, Sold ∩ S

′
old) in RN

27: end if
28: end if
29: end if
30: end for
31: end while
32: λ(a)← Set of keys of R; Set of statesE ← ∅
33: for t ∈ (Obs ∪ UnObs) do
34: E ← E ∪ EnableMarking(S, {t})
35: end for
36: if (E 6= S)∨((PreIm∗(EnableMarking(a.S,Obs)∪{mf}, a.S,UnObs) 6= a.S)) then
37: λ(a)← λ(a) ∪ {∅}
38: end if

From now on, a state (marking) m is said to be dead if and only if its observed behavior

is the empty set. This generalizes the original definition of a dead state since a terminal

cycle (a cycle from which no observed action is enabled in the future) is considered as a

66

deadlock as well. The d attribute of the originally defined aggregate (Definition 18) is

then no more useful since a dead state can be detected locally when its observed behavior

is ∅. The same holds for the f attribute of an aggregate a (stating that the final marking

belongs to a), since, in this case, the term element belongs to some set in λ(a). Thus,

in the remaining part of this Chapter, the d and the f attributes of an aggregate a are

replaced by λ(a).

A direct implementation of the observed behavior of a given set of states (following

Definition 25) implies to consider each state belonging to the set separately. This would

considerably decrease the efficiency of the approach. In fact, each aggregate is encoded

with a BDD and all the operations manipulating the aggregates should be based on set

operations. Therefore, we have implemented an algorithm (Algorithm 5) for the computing

of the observed behavior that is exclusively based on set operations applied to the states

of a given aggregate.

The input of Algorithm 5 are an aggregate a, the set of observed transitions Obs , the

set of unobserved transitions UnObs and the final state mf . It computes the observed

behavior associated with the aggregate a (i.e., λ(a)). We use a map (called R) whose

elements are couples of sets of transitions and sets of states (line 1). Each element (O, S)

eventually satisfies the following: each state of S enables only the transitions of O. This

map is progressively updated so that, at the end of the algorithm, the set of its keys (the

first element of the couples) forms the observed behavior of the aggregate a (line 38). The

first step of the algorithm (lines 2− 4) consists in: (1) checking whether the final state

belongs to a.S, (2) if it is the case creating a new couple ({term}, S) where S is the set

of the immediate predecessors, in a.S, of the final state by firing unobserved actions. The

latter task is performed by using the PreIm() function. The second step of the algorithm

(lines 5 − 8) allows to fill the map R with couples of the form ({τ}, S), where S is the

non empty set of immediate predecessors of the output states of a (i.e. which have a

successor outside of a by firing unobserved actions). After that, (lines 9− 13) the map R

is filled with couples of the form ({o}, S) where o is an observed action and S the subset

of states of a enabling o. Once the map R is filled, it is analyzed in the forth part of

the algorithm (lines 15− 31). For any two couples (O, S) and (O′, S ′) in R, we consider

only the case where (S ∩ S ′) 6= ∅. Indeed, in this case, elements in (S ∩ S ′) enable any

transition of (O∪O′), and (O, S) must be updated by (O, S \ (S ∩S ′)), which is done line

19. If S ⊆ S ′, then S \ (S ∩ S ′) is empty and the couple (O, S) must be removed (lines

20). We do the same for (O′, S ′) (lines 19 and 21). The question then is to detect when

one must add the new couple (O ∪O′, S ∩ S ′) in R. It is done in two cases: when S = S ′

(lines 22− 23), and, according to Definition 25, when (O ∩ {τ, term}) 6= (O′ ∩ {τ, term})

(lines 25− 26). Finally, the analysis of the elements of R finish when no more update is

67

possible (the use of RN).

The final part of the algorithm (lines 33− 38) allows to decide whether the empty set

must be added to λ(a) or not. It actually should be added in two cases: When there is a

deadlock state or when there is a terminal loop inside a. The dead state is detected (lines

38−41) when the set of states that enable at least one transition is different from a.S. The

terminal loop is detected when, starting from the set of states enabling observed actions

and from the final state, there exists states in a that are not reachable by unobserved

actions. We use iteratively use PreIm() in order to detect such set of states (line 36).

Starting from several processes which communicate synchronously, asynchronously

or by sharing resources within an IEBP, we show, in the following, how to compose the

corresponding SOGs so that the obtained graph satisfies the property to be checked if

and only if the whole IEBP satisfies it. Our solution to tackle this problem is based on

a synchronized product between several SOGs. Thus, in the next part of this section,

we first deal with a synchronous communication before the general case which possibly

combine the other kinds of communication.

5.2.2 Synchronous composition of SOGs

A synchronous composition between two processes of an IEBP, sharing a subset of actions,

involves, for each shared action, a ”rendez-vous” between the two processes. The whole

process can perform such an action only if both processes are separately able to execute

it. In terms of Petri nets, it is about two models sharing a subset of transitions and the

whole model is obtained by merging these transitions. To illustrate the problem of the non

preservation of properties by synchronous composition, let us consider two RCoWF-nets

of two business processes (taken from [87]) modeling the trip reservation and a possible

costumer (see Figure 5.1). The set of input/output places and the set of resource places

being both empty, the obtained model is then a WF-net. It shows the planning of a trip

by a travel agency collaborating with a customer. Figure 5.1(a) illustrates the WF-net

associated with the trip reservation’s process while Figure 5.1(b) illustrates the one of the

consumer.

Figure 5.1(a) illustrates the WF-net associated with the trip reservation’s process that

includes the reservation of a flight and booking of a room. When a request is received

(getinit), the credit card information is checked (checkcc). The information can be not valid

(t1) then the request is rejected (ccreject). Otherwise, a room and a flight are searched

(flightre and hotelres). If no room is available (t3) or no flight is available (t5) then

the request is rejected (tripreject). If there are a room and flight available then the trip

is booked. But, there are two possible behaviors starting from this point: Either, the

schedule is ready to be sent to the customer immediately (for example, a similar schedule

68

p0

p1

p2

p3 p4

p5 p6

p7

p8

p9 p10 p11 p12

p13
p14

p15 p16

p19 p20

p18

p17

p21

getinit

checkcc

t1 t2

ccreject

confirmrec
flightre hotelres

t3 t4 t5 t6

t7
t8

t9 t10

tripreject

buildtrip1 buildtrip2

scheduletrip
billcc

accept

accept scheduletrip

(a) WF-net of trip reservation

p′0

p′1

p′2

p′3

getinit

ccreject

tripreject

accept

scheduletrip

(b) WF-net of customer

Figure 5.1: The WF-nets of of a trip reservation and a costumer

has been sent to another customer) or not. In the first case, it is sent (scheduletrip) before

charging the bank account of the consumer (billcc) and an acceptation is sent to the

consumer (accept). Otherwise, the acceptation is sent to the customer before the schedule

69

(which can be prepared in parallel with the bill preparation).

Figure 5.1(b) illustrates the WF-net associated with a customer’s process. First,

the customer selects a trip program that he is interested in and provides the needed

information for the reservation including the credit card information (getinit). Then, three

cases can occur: (1) The request can be rejected when the credit card information are

not valid (ccreject), (2) the request can be rejected when there are no available rooms or

flights (tripreject), and (3) the can be accepted (accept) and the information about the

trip is given (scheduletrip).

The first WF-net contains a big proportion of unboserved actions (17/24), while, in

the second, all actions are observed. The two processes can collaborate by merging related

transitions (the dashed transitions) to form an IEBP.

These two WF-nets are sound. LTL can be used to express one or several specific

properties to guarantee some required behaviors of each WF-net. For instance, on the

customer side, the two following properties can be of interest: φ1 = G(getinit =⇒

F (accept∨reject)) and φ2 = G(accept =⇒ F scheduletrip). φ1 means that each time the

customer sends a trip request (via transition getinit), he/she will eventually receive either

a positive (by transition accept) or a negative (by transition reject) answer. φ2 means

that each received positive answer is followed eventually by a description of the required

trip. Both formulae are satisfied by the customer and the trip reservation processes when

checked locally. In this example, the formulae are expressed using interface transitions

only, but one can imagine other examples where local atomic propositions/transitions are

involved in the desired formula.

Figure 5.2 shows the two SOGs associated with the WF-nets of Figure 5.1. Figure 5.2(a)

illustrates the SOG of the reservation trip model while Figure 5.2(b) shows the SOG of the

customer model. Here, the reject transition (either as a member of the observed behavior

or as a label of an edge) stands for both transitions tripreject and ccreject. We note that

none of the aggregates of both SOGs contains a deadlock (∅ is not a member of λ(a) for

any aggregate a), and each SOG has only one terminal aggregate, A4 and A′
3 respectively

(the term action belongs to some elements of their observed behavior). It is clear, through

this example, that bigger is the number of observed transitions, smaller is the size of

the obtained SOG. When all the transitions are observed, the SOG is isomorphic to the

reachability graph.

Before defining the composition of two SOGs (the synchronized product), we first show

how the attributes of an aggregate a, resulting from the composition of two aggregates a1

and a2, are deduced from the (locally computed) attributes of a1 and a2. The aggregate

product between n aggregates for n > 2 can be constructed by iterative multiplication.

Definition 26 (aggregate product)

70

A0

λ : {{getinit}

A4

λ : {{term}}

A2λ : {{accept}}

accept

A3 λ : {{scheduletrip}}

scheduletrip

A1

λ : {{reject}{accept}{scheduletrip}} getinit

scheduletrip

ccreject

tripreject

accept

(a) A SOG of trip reservation

A′
0λ : {{getinit}}

A′
3

λ : {{term}}

A′
2

λ : {{scheduletrip}}scheduletrip

A′
1

λ : {{reject}{accept}} getinit

accept

ccrejecttripreject

(b) A SOG of customer

Figure 5.2: Two SOGs of the running example models

Let Gi, for i = 1, 2, be two SOGs associated with two WF-nets. Let ai = 〈Si, li, λi〉 be

two aggregates of two associated SOGs. The product aggregate a = 〈S, l, λ〉, denoted by

a1 ⊕ a2, is defined as follows:

• S = S1 × S2;

• l = l1 ∨ l2

• λ = {(x ∩ y) ∪ (x ∩ ((Obs1 ∪ {τ}) \ Obs2)) ∪ (y ∩ ((Obs2 ∪ {τ}) \ Obs1)) | ∀x ∈

λ1, ∀y ∈ λ2}.

Although the set of states of a product aggregate a1 ⊕ a2 is defined as the product of the

sets of states of a1 and a2, S1 and S2 have not to be stored explicitly. Once the SOG

is built, it will not play any role in the composition process. Then, a1 ⊕ a2 contains a

loop if and only if a1 or a2 contains a loop. Moreover, as for a local aggregate (before

composition), the d and the f attributes are omitted since they can be deduced from λ.

There is a deadlock in a1⊕a2 if and only if the empty set belongs to λ(a1⊕a2) and a1⊕a2

is a final aggregate if and only if there exists an element X ∈ λ(a1 ⊕ a2) containing the

71

term action. Since the elements of λ(a1⊕ a2) are obtained by conjonction of the elements

of λ(a1) and λ(a2), we have the following properties: (1) The local deadlocks are preserved,

(2) the interlocks are detected as soon as there exists a subset X ⊆ a1.S and a subset

Y ⊆ a2.S such that λN (X) ∩ λN (Y) = ∅. Notice that, in this case, any other subset X ′

of a1.S such that λN (X ′) ⊂ λN (X) ∧ (λN (X ′) ∩ {τ, term} = λN (X) ∩ {τ, term}) allows

to detect the interlock as well (λN (X
′) ∩ λN (Y) = ∅). Thus, there is no need to keep

both λN (X) and λN (X ′) in λ(a1), which justifies the use of λmin to define the observed

behavior of an aggregate (see Definition 25). Finally, (3) a1⊕ a2 is a terminal aggregate if

and only if a1 and a2 are both terminal (term is a shared action).

Intuitively, the observed behavior of the composition of two aggregates allows the

following: (1) An observed action is possible from a state s = (s1, s2) in a1 ⊕ a2 if it is

observed in G1 and G2 and is possible from both states s1 and s2, or it is observed only in

G1 (resp. G2) and is possible from s1 (resp. s2). (2) A τ action is possible from a state

s = (s1, s2) in a1 ⊕ a2 if there is an unobserved action which is possible from s1 or from

s2). This is the natural behavior starting from a state of a synchronized product graph.

The composition of two SOGs is similar to the classical synchronized product between

two graphs, except the fact that nodes are aggregates (carrying additional information)

instead of single states. Moreover, although the atomic proposition sets are disjoint in a

synchronous composition, the following definition allows for non disjoint sets. The label

associated with a1 ⊕ a2 is then obtained by the conjunction of the labels of a1 and a2

completed by the own atomic propositions of each component. Finally, we notice that the

τ action is not considered as a synchronization action i.e. when it is possible from a1 (resp.

a2) leading to a′1 (resp. a′2), the product aggregate a1 ⊕ a2 should have two successors by

τ : a′1 ⊕ a2 and a1 ⊕ a′2.

Definition 27 (SOG synchronized product)

Let Gi = 〈Ai,Obs i ∪ {τ},L,→i, a0i ,Ωi〉, i = 1, 2, be two SOGs over two sets of atomic

propositions AP1 and AP2. The synchronized product of G1 and G2, denoted by G1 ⊕ G2

is a SOG 〈A,Obs ∪ {τ},L,→, a0,Ω〉 over AP1 ∪ AP2 where:

1. A = A1 ×A2;

2. Obs = Obs1 ∪Obs2;

3. L : A → 2(AP1∪AP2) is the labeling function s.t. L(a1 ⊕ a2) = (L1(a1) \ AP2) ∪

(L2(a2) \ AP1) ∪ (L1(a1) ∩ L2(a2));

4. → is the transition relation, defined by:

∀(a1, a2) ∈ A : (a1, a2)
o
−→(a′1, a

′
2)⇔

72











a1
o
−→1a

′
1 ∧ a2

o
−→2a

′
2 if o ∈ Obs1 ∩Obs2

a1
o
−→1a

′
1 ∧ a2 = a′2 if o ∈ ((Obs1 ∪ {τ}) \Obs2)

a1 = a′1 ∧ a2
o
−→2a

′
2 if o ∈ ((Obs2 ∪ {τ}) \Obs1)

5. a0 = a01 × a02;

6. Ω = Ω1 × Ω2.

The set of aggregates A is reduced to the states that are reachable from the initial

aggregate. i.e., A = {(a1, a2) ∈ A1 × A2 | ∃σ ∈ Obs∗ : (a01 , a02)
σ
−→(a1, a2)}. Again,

building a synchronized product of n SOGs can be done by iterative multiplication.

A0A
′
0

λ : {{getinit}}

A3A
′
2λ : {{scheduletrip}} A3A

′
3 λ : {{term}}

scheduletrip

A1A
′
1

λ : {∅ {accept} {reject}}
getinit

accept reject

Figure 5.3: the SOG synchronized product

Figure 5.3 illustrates the SOG obtained by composing the SOGs of Figure 5.1. Again,

the reject transition stands for both transitions tripreject and ccreject. We note that

the composed SOG contains a dead aggregate A1A
′
1 (since, for instance, {accept} ∩

{scheduletrip} = ∅) although A1 and A′
1 are deadlock-free. In fact, in the trip reservation

process, transitions scheduletrip and accept can be executed in any order. If the process

decides to first execute transition scheduletrip, then the composite process gets in deadlock.

Concerning formulae φ1 and φ2 presented previously, we can see that φ1 is not satisfied

by the composition while φ2 is. Indeed, the deadlock state could prevent the occurrence

of accept and/or reject transitions, while it has no effect on φ2 since it occurs after the

execution of the accept transition.

The following theorem establishes that the synchronized product of two SOGs is a

SOG.

Theorem 5.2.1 Let Ni, for i ∈ {1, 2}, be two WF-nets. Let Gi be a SOG associated with

Ni with respect to the set of observed actions Obsi. Then G1⊕G2 is a SOG of the N1⊕N2

with respect to Obs1 ∪Obs2.

Proof 5 The proof of Theorem 5.2.1 is trivial since each aggregate (resp. edge) of G1⊕G2

can be matched with an aggregate (resp. edge) of the SOG of N1 ⊕N2 w.r.t. Obs1 ∪Obs2,

namely G⊕, and vice-versa.

73

• Let a = 〈S, l, λ〉 be an aggregate of N1 ⊕ N2. Let us prove that a ∈ G⊕ iff there

exists an aggregate a′ = 〈S ′, l′, λ′〉 in G1 ⊕ G2 such that a marking m ∈ S iff

〈mN1
,mN2

〉 ∈ S ′, where mNi
, for i ∈ {1, 2}, is the projection of m on the places of

Ni.

Let a0 be the initial aggregate of G⊕, we prove that there exists a sequence of

transitions σ ∈ (Obs1 ∪Obs2)
∗ such that a0

σ
−→a iff the sequence σ is also enabled

by the initial aggregate a′0 of G1⊕G2 leading to the required aggregate a′. We proceed

by induction on the length of σ:

1. | σ |= 0. Then, a = a0 and a′ = a′0 and the previous relation between a and a′

is clearly satisfied.

2. Assume the property is satisfied for any sequence of length n, and let σ =

t1 . . . tn+1 be an n+ 1 length sequence leading, from a0, to an aggregate an+1.

Let an and a′n be the aggregates reachable in G⊕ and G1 ⊕ G2, respectively, by

the firing of the prefix σ = t1 . . . tn. Then, since tn+1 is fireable from an, it

is clearly enabled by a′n leading to an aggregate a′n+1 satisfying the required

condition on its constituant markings (the opposite holds as well).

• The second part of the proof requires that there exists an edge (a1, t, a2) in G⊕ iff

(a′1, t, a
′
2) is an edge in G1⊕G2. Considering the previous proof of the relation between

the marking constituting a1 and a′1 (resp. a2 and a′2), the existence of such an edge

is trivial.

5.2.3 Composition of RCoWF-nets’ SOGs

In this section, we consider a communication between BPs that involves exchanging

messages and sharing of ressources. Thus, we consider that each component of an

IEBP is modeled with an RCoWF-net. The whole IEBP model is obtained by merging

the respective shared constituents of the local models, which are the equally labeled

(input/output interface places and shared resource places). Given a component Ni of the

whole process, the set of atomic propositions AP i involves places of the RCoWF-net and

can be written as AP i = APLi ∪APBRi, where APLi is the subset of atomic propositions

that involve local places only, while APBRi is the subset of atomic propositions that

involve interface places (i.e. input/output and resources places).

During this section, we will use the examples of Figure 5.4 in order to illustrate our

approach. There are two RCoWF-nets , N1 and N2, sharing two resources, r1 and r2, and

communicating asynchronously via four buffers (b1, b2, b3 and b4). Figure 5.4(a) depicts

the model of N1 whose behavior is as follows: t0 initiates the workflow, where the resource

74

p0

p1

p2

p3

p4

p5

p6

p7p8

r1

r2

b1

b2

b3

b4

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

(a) a RCoWF-net N1

p0

p1

p2

p3

p4

p5

p6

p7p8

r2

r1

b3

b4

b1

b2

t0

t1

t2

t3

t4

t5

t6

t7

t8

t9

(b) a RCoWF-net N2

Figure 5.4: Two RCoWF-nets sharing resources and communicating asynchronously

r1 is required before asking for the second resource r2. When r1 is owned by N1, three

behaviors are possible: r2 is available and the workflow can hold it, use the two resources

and finally release them and finish. The second case is that r2 is not available (it is hold

by N2), and N1 sends a request in b1 asking N2 to release r2. If N2 accepts the request,

a token in b2 is present and r2 is released so that N1 can finish. The third behavior is

when there is a pending message at buffer b3 asking N1 to release the resource r1 in order

to unlock N2. If N1 accepts, then it will release the resource and returns to state p0 in

order to restart. N2 has a similar behavior except that it asks for the resource r2 before

r1, it sends his request in b3 (and waits for the answer from b4) and receives requests in b1

(and send his answer in b2). Note that the RCoWF-nets of Figure 5.4 are both locally

sound (hence relaxed, weak and easy sound). One can also be interested, for instance, in

a temporal property ensuring the safe use of the resources: A property of N1 (reps. N2)

such as ”when r2 (resp. r1) is owned, it will eventually be released” can be expressed by

the following LTL formula: ϕ1 = G (t3 =⇒ F t5). It is clear that this property is locally

satisfied by both processes N1 and N2. One can also be interested in checking that, when

the N1 (resp. N2) process is waiting for the resource r1 (resp. r2), then it will eventually

hold it. This property can be expressed by the LTL formula ϕ2 = G (p1 =⇒ F t1) which

involves both state and event-based atomic propositions. This property is also satisfied

75

locally.

Figure 5.5 shows the SOGs associated with the two RCoWF-nets of Figure 5.4. For sake

of clarity, the observed behaviors of the aggregates are given separately in Figure 5.5(c).

a0

a1

t1

a2
t8

t9

a3

t6

a4
t7

t6

t8

a5
t3

t3

a6
t5

(a) SOG of N1

a′0

a′1

t1

a′2
t8

t9

a′3

t6

a′4t7

t6

t8

a′5
t3

t3

a′6
t5

(b) SOG of N2

Aggregates λ

a0, a
′
0 {{t1}}

a1, a
′
1 {{t6 t8}}

a2, a
′
2 {{t9}}

a3, a
′
3 {{t7}}

a4, a
′
4 {{t8 t6}}

a5, a
′
5 {{t5}}

a6, a
′
6 {{term}}

(c) λ of each aggregate

Figure 5.5: SOGs of the running example

In order to take into account the asynchronous composition and the sharing of resources

between N1 and N2, we define a medium net N12 as an RCoWF-net representing the

interaction between N1 and N2.

Definition 28 (The medium net) Let Ni = 〈Pi, Ti, Fpi ∪ Fri ∪ Fci ,Wi, Ii, Oi, Ri〉, for

i = 1, 2, be two interface compatible RCoWF-nets and let m0i and mfi be the corresponding

initial and final markings respectively. The medium net related to N1 and N2, denoted

by N12 = 〈P12, T12, F12,W12〉, is the WF-net associated with the initial and final markings

m012 and mf12 as follows :

• P12 = (I1 ∩O2) ∪ (O1 ∩ I2) ∪ (R1 ∩R2)

• T12 = {t ∈ Ti;
•t•∩ ((Ii∩Oj)∪ (Oi∩ Ij)∪ (Ri∩Rj)) 6= ∅} for i, j ∈ {1, 2} and i 6= j

• F12 = (Fp1 ∪ Fr1 ∪ Fc1)|(P12×T12)∪(T12×P12) ∪ (Fp2 ∪ Fr2 ∪ Fc2)|(P12×T12)∪(T12×P12)

• W12 : F12 → IN+ s.t. W12(f) = Wi(f)⇔ f ∈ (Fpi ∪ Fri ∪ Fci)

• m012 is the initial marking where only resources places of R1 ∩R2 are marked as in

the initial markings m01 and m02

76

• mf12 = {m012}

The transitions of N12 are the input/output transitions and those that are linked to

the resource places of N1 and N2, while its places are the input/output and resource

places. The connection between places and transitions of the medium net is inherited

from N1 and N2. Its initial and final states can be obtained by projection of those of

the involved components, i.e. N1 and N2, on its places. It is clear that, when the set of

input/output places is not empty, the set of reachable markings of the medium net is

infinite. However, if we assume that the composite net N1 ⊕ N2 is bounded, then the

corresponding reachability graph is finite. If the bound of an interface place is n then this

place can be in n+1 different states at most. Under such an assumption and knowing the

bound of each place of the medium net, one can build a reachability graph that covers all

the possible behaviors related to the interface places in N1 ⊕N2. The obtained graph is

called Interface graph and defined in the following as a SOG.

Definition 29 Consider two RCoWF-nets N1 and N2 and their medium net N12. For

each place pi (for i = 1 . . .m) of N12, let ni be the bound of pi in N1 ⊕ N2. Then, the

Interface graph is an LKS G12 = 〈Γ12, T12,L12,→12,m012 ,mf12〉 over the set of atomic

propositions AP12 = APBR1 ∪ APBR2 s.t.:

1. Γ12 ⊆ IN|P12|

2. L12 : Γ12 → 2AP12 is the labeling function s.t. L(s) contains the set of atomic propositions

that are satisfied by s ;

3. →12⊆ Γ12×T12×Γ12 is a transition relation such that: (m, t,m′) ∈→⇔ ((m t
−→m′)∧(m′ ≤

〈n1, . . . , nm〉))

4. m0 is the initial marking where only resources places are marked.

5. mf = m0 is the final marking

The above definition constructs a reachability graph where each marking represents a

possible configuration of the interface places (input/output and ressource places) of N1

and N2. The labeling function defines, for each state s, the set of atomic propositions

(of AP12) that are satisfied. The transition relation allows the evolution of the interface

places’ states in the following manner: A successor of a given marking m is a marking

reachable from m and where the number of tokens in each place does not exceed its

defined bound. Moreover, the initial marking (which is the final marking as well) is the

state where only the resource places are marked.

By observing all the transitions of the medium net, this graph can be seen as a SOG

where: the aggregates are singletons (each reachable marking is an aggregate) and the

77

0

1

2

3

4

5

6

7

Figure 5.6: Interface graph of the medium net

observed behavior of each aggregate is also a singleton (the set of transitions appearing on

the outgoing arcs of the corresponding marking). The final marking/aggregate will have

{{term}} as observed behavior. Finally, the l attribute of any aggregate of this SOG is

equal to false.

Regarding the example of Figure 5.4, the SOG associated with the medium net contains

at most 32 aggregates since there are 6 one bounded interface places. Figure 5.6 illustrates

an example of medium net’s SOG containing three interface places (namely p1, p2 and

p3). The binary representation of each state number gives the state of these interface

places. For instance, state number 5 stands for 101, i.e., only the interface place p2 is not

marked. Unlike the SOGs associated with N1 and N2, the SOG of the medium net is not

supposed to be built a priori. Thus, the bounds of the places of N12 have not to be known

in advance, as long as the composed net N1 ⊕N2 is bound.

In the following, the SOG of the medium net will be computed on-the-fly during the

composition of G1 and G2. The composition of G1 and G2, denoted by G1 ⊕ G2 is then

defined as the synchronized product between three SOGs corresponding to N1, N12 and

N2 respectively. As long as a medium net N12 between two RCoWF-nets N1 and N2 is

concerned, G1 ⊕ G2 states for G1 ⊕ G12 ⊕ G2. Hence, one can iteratively use Definition 27

and Definition 26 in order to obtain G1⊕G2 and the corresponding aggregates respectively.

However, since we know in advance that G1 and G2 use disjoint sets of transitions (each

shares some transitions with the medium net’s SOG only), the definitions of the aggregate

product and of the synchronization of three SOGs is simplified in the following.

Before we define the composition of SOGs, it is important to first show how, using the

local attributes of three aggregates a1, a2 and a12 of G1, G2 and G12 respectively, one can

compute the attributes of the aggregate resulting from their composition.

Definition 30 (The product aggregate) Let Gi, for i = 1, 2, be two SOGs associated

with two RCoWF-nets and let G12 be the SOG associated with their medium net. Let

a1, a2 and a12 be three aggregates of these SOGs respectively. The product aggregate

78

a = (a1, a12, a2) is defined by:

1. a.S = a1.S × a12.S × a2.S;

2. a.l = a1.l ∨ a2.l;

3. λ(a) = {((x∩y)∪(x∩((Obs1∪{τ})\Obs12)))∪((y∩z)∪(z∩((Obs2∪{τ})\Obs12))) |

x ∈ λ(a1), y ∈ λ(a12) and z ∈ λ(a2)};

Note that the l attribute depends only on the corresponding value in a1 and a2 since,

by definition, a12 is a singleton (thus a12.l = false). Finally, Obs i ∩ Obs12, for i = 1, 2,

is not empty (because N1 and N2 are interface compatible) but Obs i is not necessarily

a subset of Obs12, and that Obs1 ∩ Obs2 = {term}. When we compose a1 and a2, if a1

(resp. a2) can progress in G1 (resp. G2) by using local observed transitions (i.e., transitions

in Obs1 \Obs12 (resp. Obs2 \Obs12)), the product aggregate a should be able to do the

same. If this is not the case, then a has to have the same behavior as a1 (resp. a2) and

a12 conjointly.

Definition 31 (Composition of oWF-nets’ SOGs) Let Gi =

〈Ai,Obs i ∪ {τ},Li,→i, a0i,Ωi〉, i = 1, 2 be two SOGs corresponding to two oWF-

nets N1 and N2 over AP1 = APL1 ∪ APBr1 and AP2 = APL2 ∪ APBr2 respectively. Let

G12 = 〈A12,Obs12,→12, a012,Ω12〉 be the interface graph of the medium net N12 over AP12.

The composition of G1 and G2, namely G1 ⊕ G2 = 〈A,Obs ∪ {τ},L,→, a0,Ω〉 is defined as

follows:

1. A ⊆ A1 ×A12 ×A2;

2. Obs = Obs1 ∪Obs2;

3. L : A→ 2(AP1∪AP12∪AP2) is the labeling function s.t. L(a1⊕a12⊕a2) = L1(a1)|APL1
∪

L2(a2)|APL2
∪ L12(a12)

4. → is the transition relation, defined by:

∀(a1, a12, a2) ∈ A, ∀(a
′
1, a

′
12, a

′
2) ∈ A, (a1, a12, a2)

o
−→(a′1, a

′
12, a

′
2)⇔























a1
o
−→1a

′
1 ∧ a12

o
−→12a

′
12 ∧ a

′
2 = a2 if o ∈ (Obs1 ∩Obs12)

a′1 = a1 ∧ a12
o
−→12a

′
12 ∧ a2

o
−→2a

′
2 if o ∈ (Obs2 ∩Obs12)

a1
o
−→1a

′
1 ∧ a

′
12 = a12 ∧ a

′
2 = a2 if o ∈ (Obs1 ∪ {τ} \Obs12)

a′1 = a1 ∧ a
′
12 = a12 ∧ a2

o
−→2a

′
2 if o ∈ (Obs2 ∪ {τ} \Obs12)

5. a0 = (a01, a012, a02);

6. Ω = Ω1 × Ω12 × Ω2.

79

The composition of the three SOGs G1, G12 and G2 can be obtained by applying

Definition 31. Here, the composition of the corresponding RCoWF-nets has been reduced

to a synchronous composition involving the medium net. The evolution in G1 ⊕ G2 can

stand for a local evolution to G1 (resp. G2) by using point 3 (resp. 4) of the transition

relation in Definition 27, or a simultaneous evolution in G1 (resp. G2) and G12 by using

point 1 (resp. 2).

〈a0, 3, a
′
0〉

〈a1, 2, a
′
0〉

tN1

1

〈a0, 1, a
′
1〉

tN2

1

〈a3, 6, a
′
0〉

tN1

6

〈a1, 0, a
′
1〉

tN2

1 tN1

1

〈a0, 17, a
′
3〉

tN2

6

〈a3, 4, a
′
1〉

tN1

6

〈a1, 16, a
′
3〉

tN2

6

〈a3, 0, a
′
2〉

tN2

8

〈a3, 36, a
′
3〉

tN2

6 tN1

6

〈a2, 0, a
′
3〉

tN1

8

〈a3, 10, a
′
2〉

tN2

9

〈a4, 2, a
′
0〉

tN1

7

〈a5, 0, a
′
0〉

tN1

3

〈a6, 3, a
′
0〉

tN1

5

〈a0, 33, a
′
3〉

tN1

9

〈a0, 32, a
′
4〉

tN2

7

〈a0, 0, a
′
5〉

tN2

3

〈a0, 3, a
′
6〉

tN2

5

Figure 5.7: The synchronous product of the SOGs of the RCoWF-nets example

We note that the synchronized product G1⊕G2 of the two SOGs G1 and G2 (illustrated

in Figure 5.5) contains 34 aggregates and 52 arcs. For this example, we do not observe

only 6 transitions (from 18 transitions) but the size of G1 ⊕ G2 represent the half size of

the reachability graph of the whole system N1 ⊕N2 composed by models in Figure 5.4,

which contains 60 states and 92 arcs. Because of lack of space, only a part of G1 ⊕ G2

is given in Figure 5.7. Each aggregate of the composition is a triplet 〈a, n, a′〉 where a

and a′ are two aggregates corresponding to N1 and N2 respectively, and n is the number

corresponding to the binary representation of the marking of the interface places (in this

order: (b4, b3, b2, b1, r2, r1). The Figure illustrates some interesting behavior: One can see,

for instance through the tN1

1 .tN1

6 .tN2

1 .tN2

6 sequence, that the synchronized product ends in

80

a deadlock aggregate (λ(〈a3, 36, a
′
3〉) = {∅}). Note finally that the λ attributes of the

product aggregates are omitted in this Figure for sake of clarity.

Using the medium net, the computing of a product aggregate’s attributes (Definition 30)

and the composition of two RCoWF-nets’ SOGs (Definition 31), we obtain the following

result. It states that the composition of two SOGs corresponding to two RCWF-nets

is isomorphic to the SOG of their original composition when observing each transition

connected to an interface place (buffer or resource). The proof of this theorem is identical to

the proof of Theorem 5.2.1 since the asynchronous composition between two RCoWF-nets

is here reduced to the synchronous composition of three nets.

Theorem 5.2.2 Let N1 and N2 be two RCoWF-nets and let G1 and G2 be the correspond-

ing SOGs respectively. Then, G1 ⊕ G2 is a SOG of N1 ⊕N2 with respect to Obs1 ∪Obs2.

5.3 Modular verification

We follow a bottom-up approach where each component of an IEBP is designed and

analyzed independently from the others. Using the composition of SOGs defined in the

previous section, we deal in this section with the verification of specific and/or generic

properties of IEBPs. A SOG related to an RCoWF-net is built over a set of observed

elements. In case we are interested in generic properties (e.g. soundness), this set

contains the interface transitions only. However, when we are interested in some (hybrid)

LTL \X formula, the SOG is built over the interface transitions and the elements (atomic

propositions and transitions) occurring in the formula.

5.3.1 LTL-based Properties

Given two RCoWF-nets N1 and N2 and a (hybrid) local LTL \X formula ϕ1 (resp. ϕ2)

to be checked on N1 (resp. N2), our goal is to check whether ϕ1 (resp. ϕ2) is satisfied

by N1 ⊕N2 by analyzing the SOGs of N1 and N2 only. Let G ′
1 (resp. G ′

2) be a SOG of

N1 (resp. N2) where the set of atomic propositions are those occurring in ϕ1 (resp. ϕ2)

and where the set of observed transitions contains any transition occurring in ϕ1 (resp.

ϕ2) or belonging to the interface. Using the approach described in the previous Chapter,

one can check whether ϕ1 (resp. ϕ2) is satisfied by N1 (resp. N2). However this does

not guarantee that ϕ1 (resp. ϕ2) is satisfied by N1 ⊕N2. Based on Theorem 4.2.1 and

Theorem 5.2.2, the verification of ϕ1 (resp. ϕ2) on the whole net can be achieved on

G ′
1⊕G2 (resp. G1⊕G

′
2), where G2 (resp. G1) is a SOG of N2 (resp. N1) over the set of the

interface transitions only.

81

Notice that the SOG G ′
i (for i = 1 . . . 2) coincides with Gi in two cases: (1) when the

formula ϕi involves observed transitions only, and (2) when ϕi = true (i.e. when there is

no formula ϕi to be checked on Ni).

Theorem 5.3.1 Let N1 and N2 be two RCoWF-nets, let G1 and G2 be two corresponding

SOGs over the interface transitions Int. Let ϕ1 (resp. ϕ2) be an LTL\X involving a set

of atomic propositions AP1 (resp. AP2) and a set of transitions Obs1 (resp. Obs2). Let

(for i ∈ {1, 2}) G ′
i a SOG of Ni over Obs i ∪ AP i ∪ Int. Then,

• G ′
1 ⊕ G2 |= ϕ1 and G1 ⊕ G

′
2 |= ϕ2 ⇔ G ′

1 ⊕ G
′
2 |= ϕ1 ∧ ϕ2

Proof 6 The proof is obvious because of the following:

• ⇒ Given an RCoWF-net N and an LTL \X formula ϕ involving the set of atomic

propositions AP and the set of observed transitions Obs the SOG of N over AP ′

and Obs ′, for some AP ⊆ AP ′ and some Obs ⊆ Obs ′ can be used to check ϕ instead

of the SOG built over AP ∪Obs, while leading to an equivalent result. Indeed such

a SOG will probably be bigger (since some aggregate might be splitting due to the

observation of additional elements) but it contains all the behavior that are necessary

to check ϕ. Thus, the fact that G ′
1⊕G2 satisfies ϕ1 and the fact that G1⊕G

′
2 satisfies

ϕ2 imply that G ′
1 ⊕ G

′
2 satisfies both ϕ1 and ϕ2.

• ⇐ Given an RCoWF-net N and an LTL \X formula ϕ involving the set of atomic

propositions AP and the set of observed transitions Obs, the SOG of N over AP

and Obs can be reused to check any formula involving a subset of AP and a subset of

Obs (see Theorem 4.2.1), while giving the same result. Thus, the fact that G ′
1 ⊕ G

′
2

is built over Obs1 ∪ AP1 ∪ Obs2 ∪ AP2 ∪ Int, it can be used for checking ϕ1 on

G ′
1 ⊕ G2 and for the checking of ϕ2 on G1 ⊕ G

′
2. Indeed Obs1 ∪AP1 ∪ Int (which is

used to build G ′
1) and Obs2 ∪AP2 ∪ Int (which is used to build G ′

2) are respectively

subsets of Obs1 ∪ AP1 ∪Obs2 ∪ AP2 ∪ Int.

The following corollary is then obtained from the previous theorem and involves the

composite model N1 ⊕N2.

Corollary 1 Let N1 and N2 be two RCoWF-nets, let G1 and G2 be two corresponding

SOGs over the interface transitions Int. Let ϕ1 (resp. ϕ2) be an LTL\X involving a set

of atomic propositions AP1 (resp. AP2) and a set of transitions Obs1 (resp. Obs2). Let

(for i ∈ {1, 2}) G ′
i a SOG of Ni over Obs i ∪ AP i ∪ Int. Then,

• G ′
1 ⊕ G2 |= ϕ1 and G1 ⊕ G

′
2 |= ϕ2 ⇔ N1 ⊕N2 |= ϕ1 ∧ ϕ2

82

Coming back to the example of Figure 5.4, one can see that both formulae ϕ1 =

G (t3 =⇒ F t5) and ϕ2 = G (p1 =⇒ F t1) are preserved by composition. However,

the formula ϕ3 = G (t1 =⇒ F t5) is violated after composition (but locally satisfied by

both processes N1 and N2). In fact, we have an interlock resulting from the firing of the

sequence t1.t6 in N1 followed by the firing of the sequence t1.t6 in N2 (N1 holds r1 and

waits for r2 and N2 holds r2 and waits for r1).

Now that we showed how to check LTL formulae using the composition of SOGs, we

consecrate the rest of this section to the soundness properties.

5.3.2 Checking Soundness Properties

Soundness is not preserved by composition. For instance, the RCoWF-nets of Figure 5.4

are both locally sound while their composition is not. In fact, the firing of the sequence

t1.t6 in N1 followed by the firing of the sequence t1.t6 in N2 lead to deadlock state. In

this section, we will show why the aggregates of a SOG (see Definition 18 of the previous

Chapter) must be enriched with new attributes in order to allow the verification of

soundness properties using the synchronized product of two (or more) SOGs. From a

local point of view, the synchronized product constraints the behavior of a component

by taking into account the behavior of its environment. The goal of the remaining part

of this section is to measure the consequence of such constraints on the properties that

have been proved satisfied locally to each component. Note that, for checking soundness

properties, the SOGs of each component of the IEBP is built over the set of the interface

transitions only.

5.3.3 Soundness

Based on the current attributes of a SOG’s aggregate (see Definition 18), which are the

observed behavior λ and the loop attribute l (the set of states belonging to the aggregate

are not stored), we note the following: (1) The l attribute is no more useful (only terminal

loops, which are covered by the observed behavior, are important regarding to soundness),

and (2) the observed behavior is sufficient to check the option to complete requirement

but it is not sufficient to check the no dead transitions reuirement. In fact, the locally

reachable aggregates of an RCoWF-net are not necessarily reachable after composition.

In this case, we are not able to state whether any unobserved transition, which is enabled

by a marking of such an aggregate, is enabled elsewhere (within an other aggregate).

Thus, the set Et(a) (containing the set of enabled transitions in any state inside an

aggregate a and defined in Definition 22) has to be kept as an attribute of each aggregate

for the composition. We do not consider that publishing this set represents a violation

83

of the privacy of the underlying process since it could consist of obsolete names which

are not necessarily the real names of the transitions. As for the observed behavior (see

Definition 26), the value of this attribute for a product aggregate a = (a1, a12, a2) can be

deduced as follows:

Definition 32 Let Gi, for i = 1, 2, be two SOGs and let G12 be the SOG associated

with the medium net. Let a1, a2 and a12 be three aggregates of these SOGs respectively.

The product aggregate a = (a1, a12, a2) is defined by a = 〈λ,Enable〉: where Et(a) =
⋃

i=1...2(Et(ai) \ (Obs i ∩Obs12)) ∪ (Et(ai) ∩ Et(a12))

Using the Et attribute and given a local transition t in N1 (for instance) one can

check whether it remains enabled (by some product aggregate) after composition or not.

Indeed, t is proved to be not dead in the SOG composition as soon as it belongs to the Et

attribute of some product aggregate. If this condition is satisfied by all the transitions,

then the no dead transition requirement is preserved by the composition.

Using the observed behavior λ(a) and the set of enabled transitions Et(a) as sole

attributes of an aggregate a of a SOG, we are able to completely characterize the soundness

of the composition of two SOGs. The option to complete requirement is guaranteed as long

as there is no interlock and each product aggregate leads to a final aggregate. Note that, as

for the non modular approach (the previous Chapter), and under the fairness assumption,

one can use our modular LTL model checker in order to check this requirement, expressed

by an LTL formula. It is satisfied as soon as the LTL formula φ = G F term is verified by

the G1 ⊕ G2 (term being shared by components). Note finally that the proper completion

requirement is directly preserved by composition.

Definition 33 Let N1 ⊕ N2 be a composite RCoWF-net. Let Gi = 〈Ai, a0i,→i,Fi〉

(i = 1, 2) be two SOGs corresponding to N1 and N2 and let G1 ⊕ G2 = 〈A, a0,→,F〉 be

their composition

• if G1 and G2 are both sound then G1 ⊕ G2 is sound iff:

– ∀a ∈ A, ∅ 6∈ a.λ ∧ ∃af ∈ F | af ∈ R(a).

–
⋃

a∈AEt(S) =
⋃

i=1...2

⋃

ai∈Ai
Et(ai).

Then, the equivalence between checking the soundness property of a composite RCoWF-

net N1 ⊕N2 and checking soundness of a composite SOG G1 ⊕ G2 is established in the

following theorem.

Theorem 5.3.2 Let N1 and N2 be two RCoWF- nets and let N1⊕N2 be the correspond-

ing composite RCoWF-net. Let G1 and G2 be two SOGs corresponding to N1 and N2

respectively.

84

• if N1 and N2 are both sound, then N1 ⊕N2 is sound ⇔ G1 ⊕ G2 is sound,

Proof 7 ⇒ Assume that N1 ⊕N2 is sound.

1. Let a be an aggregate of G1 ⊕ G2 and let us suppose that ∅ ∈ a.λ. This means

that there exists a dead marking m ∈ a.S. Since G1 ⊕ G2 is a SOG of N1 ⊕ N2

(Theorem 5.2.2) the marking m is reachable in N1 ⊕N2 as well, which would mean

that N1 ⊕N2 is not deadlock free which is contrary to the hypothesis. Thus G1 ⊕ G2

is deadlock free.

2. Let a be an aggregate of G1⊕G2 and let m be a marking in a.S, since N1⊕N2 is sound

then there exist a sequence σ leading from m to a final marking mf = m1⊕m12⊕m2

where m1, m12 and m2 are the projections of mf on the places of N1, N12 and N2

respectively. Using Theorem 5.2.2, σ|Obs1∪Obs2 is enabled by a and its firing leads

to an aggregate af s.t. mf ∈ af .S. Now using the proper completion property of

N1 ⊕N2 m12 is the zero vector which the final marking of N12. Thus there exists a

path from the aggregate a to a final aggregate af of G1 ⊕ G2.

3. Obvious using Theorem 5.2.2 and Lemma 4.2.2 (see previous Chapter). Indeed, the

first guarantees that G1 ⊕ G2 is a SOG of N1 ⊕ N2 while the second ensures that

each path in reachability graph of N1 ⊕N2 corresponds to a path in G1 ⊕ G2. Thus,

for any transition t in N1 ⊕N2, for any reachable state st enabling t (N1 ⊕N2 is

sound) one can find a corresponding path leading to an aggregate at containing st

where t (observed or not) is necessarily enabled.

⇐: Assume that G1 ⊕ G2 satisfies the three requirements of Theorem 15.

1. option to complete

Let m be a marking of N1 ⊕N2. Assume that there is no path leading from m to

a final marking. This would mean that either m is a dead state (i.e. λ(m) = ∅),

or λ(m) 6= ∅ and m belongs to a terminal strongly connected component C. In the

first case, Theorem 5.2.2 ensures that there exists an aggregate a in G1 ⊕ G2 s.t.

m ∈ a.S. This would mean that ∅ ∈ λ(a) which is contrary to the hypothesis. In the

second case, Theorem 5.2.2 ensures that there exists a terminal strongly connected

component C whose aggregate cover the set of markings involved in C. However, by

hypothesis, for each aggregate, especially those of C there exists a path in G1 ⊕ G2

leading to a final aggregate. Thus, the option to complete requirement is satisfied by

N1 ⊕N2.

2. proper completion

Assume this requirement is not satisfied by N1 ⊕N2. Then there exists a marking

85

m = m1 ⊕ m12 ⊕ m2, where m1, m12 and m2 are the projections of m on places

of N1, N12 and N2 respectively, and there exists a final marking mf s.t. m > mf .

Let mf1, mf12, and mf2 be the projections of mf on the places of N1, N12 and N2

respectively. Since Ni (for i ∈ {1, 2}) is sound, and since that mi is reachable in

Ni (obvious because Ni is a subnet obtained by removing its interface places, the

transitions and the places of Nj, for j 6= i∧j ∈ {1, 2}), then mi = mfi. Assume then

that m12 > mf12. This would mean that there is still some tokens in the interface

places while N1 and N2 are in their final marking already. Let a be the aggregate

of G1 ⊕ G2 s.t. m ∈ a.S, and let af be the final aggregate reachable from a. Note

that the final markings of N1 and N2 are terminal and note also that each final

marking belonging to af has no token in each interface place (interface place). Thus,

the only way to reach a final marking from m is to consume the tokens present in

the interface places. By doing so, the marking of some place in N1 or N2 will be

incremented which is not possible since these markings are sound (satisfy the proper

completion requirement).

3. no dead transitions

Let t be a transition in N1 ⊕N2.

• if t ∈ Obs1 ∪Obs2

Since there exists an aggregate a in G1 ⊕ G2 enabling t and by using The-

orem 5.2.2, one can deduce that there exists a marking m ∈ a.S which is

reachable in N1 ⊕N2 and thus enabling t.

• if t 6∈ Obs1 ∪Obs2

Assume that t is a local transition of, for instance, N1. Since local transitions,

especially t, remain enabled after composition, there exists an aggregate a =

(a1, a12, a2) and there exists a marking m = m1 ⊕m12 ⊕m2 in a.S, where m1,

m12 and m2 are the projections of m on places of N1, N12 and N2 respectively,

s.t. m1
t
−→. Theorem 5.2.2 ensures that m is also reachable in N1 ⊕N2. Since

t is local to N1, it is also enabled by m.

5.3.4 Relaxed, Weak and Easy Soundness

Let us start by weak and easy soundness since the observed behavior of an aggregate of

the SOG’s synchronized product is sufficient to reduce the verification of these properties

to the analysis of this product. In fact, the weak soundness is satisfied when there is no

interlock and when each aggregate allows to reach a final aggregate. The easy soundness is

satisfied as soon as a final aggregate is reached from the initial aggregate. The verification

86

of the relaxed soundness is however more complex. Indeed, let N1 and N2 be two local

processes whose SOGs are G1 and G2 respectively, as soon as a local aggregate ai (for

i = 1 . . . 2) is proved to be reachable in Gi but not reachable in G1 ⊕ G2, one is no longer

able to decide whether a local transition enabled by a state in ai still belongs, in the

G1 ⊕ G2, to a path leading to the final state. Implicitly, the value of the Tf predicate

of the predecessor aggregates of ai are no longer trustable and must be updated during

the composition process. However, the computing of the new value of Tf is done by the

corresponding process which has the knowledge of the underlying model. Thus, in the

following, we first define how to update this attribute, then how to use it in order to

deduce the corresponding value of a product aggregate, and finally we characterize the

relaxed soundness property (and the weak and easy soundness) on the SOG’s composition.

Definition 34 Let G1 ⊕G2 be the synchronized product between two SOGs G1 and G2

associated with two RCoWF-nets N1 and N2 respectively. Let a1⊕a2 be a product aggregate

of G1 ⊕ G2. Let Esync(ai) = (Et(ai) ∩ UnObs i) ∪ (Et(ai) ∩ Et(aj)) for j 6= i be the set

of transitions that are enabled by ai locally and still be enabled after composition. When

Esync(ai) 6= Et(ai), the Mf (ai) and Tf (ai) must be updated as follows:

• Mf(ai) =
⋃

t∈Esync(ai)
SaturatePre(Pred(Mf(Succ(ai.S, t)), t), ai) where

Pred(S, t) = {s | ∃s′ ∈ S : s t
−→s′} the set of states leading to any state of

S by the firing of t;

• Tf(ai) = {t ∈ UnObs i | Succ(Mf(ai), t) ∩Mf(ai) 6= ∅}
⋃

ti∈Esync(ai)\UnObs{ti, | ∃a ∈

AggSucc(ai, ti) s.t. Mf (a) 6= ∅} where AggSucc(a, t) = {a′ ∈ A | a t
−→a′} the set of

aggregates reachable from a by the firing of t.

Note that the SaturatePre(S, a) has been used in Algorithm 3 and allows to saturate

from the set of states S within the aggregate a by firing unobserved transitions only.

Thus, the set Tf (a) has to be kept as an attribute of each aggregate for the composition,

and it is updated on-the-fly, during the composition of SOGs. As for the Et attribute (see

previous subsection), we do not consider that publishing this set represents a violation of

the privacy of the underlying process since it could consist of obsolete names which are

not necessarily the real names of the transitions. The Tf attribute of a product aggregate

a1⊕a2 is then deduced from the Tf (a1) and Tf (a2) (possibly updated on-the-fly) as follows:

Tf(a1 ⊕ a2) = Tf(a1) ∪ Tf(a2). Now that we showed how the relaxed, the weak and the

easy soundness properties can be analyzed on the SOG’s synchronized product, we define,

in the following, these properties directly on the SOG product.

Definition 35 Let Ni , for i = 1, 2, be two RCoWF-nets. Let Gi = 〈Ai, a0i,→i,Ωi〉be the

SOG corresponding to Ni.

87

• if G1 and G2 are relaxed sound, then G1 ⊕ G2 is relaxed sound iff
⋃

a∈A Tf(a) =
⋃

i=1...2

⋃

ai∈Ai
Tf (ai).

• if G1 and G2 are weak sound then G1⊕G2 is weak sound iff ∀a ∈ A, ∅ 6∈ a.λ∧ ∃af ∈

Ω | af ∈ R(a).

• G1 ⊕ G2 is easy sound iff Ω 6= ∅.

Let us consider the example of Figure 5.4 where N1 and N2 are both sound locally.

The general and the weak soundness are both violated after composition. This is due to

the interlock which is visible in the SOG’s synchronized product of Figure 5.7 (aggregate

〈a3, 36, a
′
3〉). However, the relaxed and the easy soundness are preserved by composition

in spite of the existence of the interlock.

Then, the equivalence between checking all the three variants of soundness property

of a composite RCoWF-net N1 ⊕N2 and checking them on the composite SOG G1 ⊕ G2

is established in the following theorem. Its proof is direct if we take into account

Theorem 5.2.2, the way of computing the attributes (λ and Tf) of a product aggregate

and Defintion 35.

Theorem 5.3.3 Let N1 and N2 be two RCoWF- nets. Let G1 and G2 be two SOGs

corresponding to N1 and N2.

• if N1 and N2 are relaxed sound then N1 ⊕N2 is relaxed sound ⇔ G1 ⊕G2 is relaxed

sound.

• if N1 and N2 are weak sound then N1⊕N2 is weak sound ⇔ G1⊕G2 is weak sound.

• if N1 and N2 are easy sound then N1 ⊕N2 is easy sound ⇔ G1 ⊕ G2 is easy sound.

5.4 Conclusion

We addressed in this Chapter the problem of abstracting and checking the correctness of

IEBP modularly. First, we showed that, depending on the properties to be checked, and

depending on the collaboration nature (synchronous/asynchronous/sharing resources),

a revisited SOG is defined. Such a SOG still continue to be suitable to preserve the

privacy of each component, while containing the sufficient and the necessary information

to allow the verification of the whole IEBP. Our bottom-up approach has been presented

for specific properties expressed with the LTL logic and for soundness properties.

88

Chapter 6

Implementation and Experimental

Results

Contents

6.1 Introduction . 89

6.2 Verification of Soundness Properties 91

6.3 Verification of LTL Property 95

6.3.1 Implementation . 95

6.3.2 Experimental results . 95

6.4 Conclusion . 102

6.1 Introduction

In Chapter 4 and Chapter 5, we presented SOG-based approaches and algorithms for

the abstraction and the verification of business processes from both local and global

point of views respectively. The modular approach is illustrated by Figure 6.1 (left hand

side). The implementation of the corresponding tools, written in c++, follow the same

bottom up scheme. In a top-down approach, the whole BP model is available and a

SOG-based verification can be processed using the right hand side of Figure 6.1. The

input of this approach is the whole RCoWF-net (composed by two RCoWF-nets) from

which the SOG can be built, even without computing first the corresponding reachability

graph, and analyzed equivalently. Since, in our approach, the whole model is not available,

each component is supplied separately from the others. In our implementation, we can

either supply the RCoWF-net of each component or the corresponding SOGs. The

RCoWFnets can be represented in different format languages (e.g. PROD [2], PNML [15],

or GrML [7]). We note that we do not provide any graphical user interface for painting a

Petri net. However, several graphical Petri net modeling tools are able to export/import

files that can be read by our tool or translated into one of the supported formats. Once

parsed and proved to be correct syntactically, these inputs are processed leading to the

89

synchronized product of the corresponding SOGs. This SOGs product is built on the

fly and over the appropriate set of observed elements depending on the property to be

checked. If we are interested in soundness properties, then the SOGs are built over

the interface transitions only. Otherwise (for LTL properties), the appropriate atomic

propositions and transitions are observed in addition to the interface transitions. In order

to increase the efficiency of our approach, each aggregate is encoded with a BDD and all

the operations manipulating the aggregates are based on sets operations. For that, we use

an existing Binary Decision Diagram library, named buddy [1], which offers highly efficient

vectorized BDD operations, dynamic variable reordering, automated garbage collection,

and a C++ interface with automatic reference counting. In our tool, we handle all kinds

of communication (synchronous, asynchronous and sharing of resources) and the number

and/or types of the inputs change accordingly. Once the property is checked and the

analysis is finished, our tool reports some important results of the analysis (e.g. the SOG

construction time) and allows for a textual description of the whole explored SOG. Notice

that although our modular tool can be used for the local verification, we still use the non

modular version of the tool when we deal with the local verification until we adapt the

modular one for this particular case.

RCoWF −net N1 RCoWF−net N2 N1⊕ N2

State space graph
of N1

State space graph
of N2

State space graph
of N1⊕ N2

SOG of N1 SOG of N2 SOG of N1⊕N2

SOG1⊕SOG2

Generic / specific
property verification

Generic / specific
property verification

Figure 6.1: Schema of our approach

In the following we first describe our implementation for checking soundness properties

and then we detail the LTL model checking implementation. For both kinds of properties,

we discuss some preliminary experimental results compared to those obtained by related

tools. Since the compared tools are not modular i.e. take as input the whole model, and in

order to have a fair comparaison, we give our experimental results following both modular

90

and non modular approaches. The first are given to show the feasibility and the efficiency

of our modular approach.

6.2 Verification of Soundness Properties

We conducted some preliminary experimentations. To the best to our knowledge, there is

no available tool allowing the checking of the different variants of soundness presented

in this work. Thus, we compare our results to two well known tools with respect to the

general soundness property. The first tool is LoLA [113], which is a Petri net model

checker which decides about numerous properties for a given Petri net. The second tool

is Woflan [121, 122], which verifies the correctness of the soundness property by using

structural Petri nets reductions.

Table 6.2 and Table 6.1 provide the obtained experimental results for our tool and the

Woflan and LoLA ones. In Table 6.1, the following modular case studies are considered:

• Two versions of a model of Subcontractor composed with Contractor model (C+CS)

taken from [68];

• An example of reservation in travel agency (Res);

• An example of reservation of trips (ResTrip) in Figure 5.1 of Chapter 5,

• A workflow (interOrg) taken from [122] that involves four business partners: a

customer, a producer and two suppliers;

• A route planning service (Planning) that acts as mediator and a customer’s service

taken from [89];

• The electronic bookstore (BookStor) which is a contract between the customer, the

bookstore, the publisher, and the shipper taken from [131];

• The example (Registra) of a contract organizing the registration process for a

passport or an ID card taken from [126].

Table 6.1 illustrates the size of the considered oWF-net models (in terms of number of

places and transitions) as well as the size of their reachability state graphs RG (in terms

of number of nodes (S) and arcs (E)). To check soundness, LoLA performs with two runs

(represented by two rows in the LoLA column): the first run checks for local deadlock

states, and the second run checks for lack of synchronization. Since LoLA is a behavioral

approach (based on the traversal of the state space), it uses several state-space reduction

techniques to make the state space inspection feasible. Concerning the Woflan tool, it

91

poses syntactic restrictions on the Petri nets it can analyze. Especially, it imposes that

each net must have a unique initial place and a unique terminal place (workflow net).

Woflan is based on a structural approach which explores a reduced state space resulting

from prior application of structural reduction rules. Note that as for our approach, both

tools performs on-the-fly (the checking process is stopped as soon as the soundness is

proved to be false). When the model does not satisfy the soundness property only the

size of the built part of the graph is given. In addition to the size of the SOG of the

original composite service, Table 6.1 gives the size of the SOG obtained by composition.

We note that the modular SOG is equivalent to the non-modular one in terms of size (see

Theorem 5.2.1 and Theorem 5.2.2). In Table 6.2, other case studies are considered. The

corresponding models are not modular (that is why there is no column for modular SOGs)

and can be found at the IBM WebSphere Business Modeler tool [46]. These models are

taken from different domains (financial services, automotive, telecommunications). Except

for the modular SOG, this table contains the same information as Table 6.1.

All the three approaches perform similarly fast, but the SOG is always (at least for the

tested examples) smaller than the LoLA’s and Woflan’s graphs and this is regardless the

satisfaction or not of the soundness property (column Sound = T). Both the non-modular

SOGs and the modular SOGs are smaller than those of LoLA and Woflan.

92

Model Modular SOG Non Modular SOG LoLA Woflan
Nom Sound Places Trans Obs S E T(s) Obs S E T(s) S E T(s) S T(s)

C+SC1 F 25 16 4/4 9 8 <1 8 9 8 <1 22 26 <1 18 <1
1 0 <1

C+SC2 V 28 23 4/4 11 12 <1 8 11 12 <1 23 25 <1 21 <1
23 25 <1

Res V 28 33 8/8 17 17 <1 16 17 17 <1 19 21 <1 19 <1
15 17 <1

ResTrip F 19 21 4/4 10 12 <1 8 10 12 <1 24 27 <1 16 <1
1 0 <1

interOrg T 39 26 5/9/2/2 18 26 <1 18 18 26 <1 16 15 <1 28 <1
58 59 <1

Planning T 21 13 2/2/4 10 9 <1 8 10 9 <1 10 10 <1 28 <1
19 21 <1

Bookstore T 47 31 6/9/5/6 39 53 <1 26 39 53 <1 48 70 <1 41 <1
30 32 <1

Registra T 24 18 8/8/2 17 18 <1 18 17 18 <1 17 18 <1 21 <1
17 18 <1

Table 6.1: Experimental results: modular SOG

93

Model RG SOG LoLA Woflan
Nom Sound Places Trans S E Obs S E T(s) S E T(s) S T(s)
b1.1 F 37 26 147 331 5 6 6 <1 25 26 <1 30 <1

3 2 <1
b2.1 F 67 56 70 60 22 8 7 <1 18 17 <1 11 <1

1 0 <1
a.1 T 33 19 20 19 3 4 3 <1 19 18 <1 22 <1

19 18 <1
a.2 T 21 15 15 15 9 9 9 <1 17 16 <1 32 <1

13 12 <1
a.3 T 35 19 19 19 9 9 9 <1 18 18 <1 19 <1

12 12 < 1
b1.2 T 32 19 492 1869 3 4 3 <1 19 18 <1 24 <1

4 3 <1
b2.2 T 28 18 34 27 8 13 16 <1 32 32 <1 53 <1

48 49 <1
b3.1 F 100 64 345 656 31 31 30 10 109 109 30 192 <1

34 34 30

Table 6.2: Experimental results: non-modular

94

6.3 Verification of LTL Property

6.3.1 Implementation

Our implementation regarding the verification of LTL formulae on IEBPs is based on

the automata theoretic approach to LTL model checking (see Figure 6.2). The inputs

are an LTL formula ϕ and the description of the IEBP given through its different

components’ RCoWF-nets N1 . . . Nn (the different corresponding SOGs can be given

alternatively). The model checking problem is reduced to an on-the-fly emptiness check

processed on the synchronized product of the Büchi automaton A¬ϕ corresponding to the

negation of the formula, and the automaton ASOG of the SOGs product (checking whether

L(A¬ϕ ⊕ ASOG) = ∅ or not). The later is directly obtained by the synchronization of the

components’ SOGs. Using our approach (Chapter 5), we implemented the different steps

of the right hand side part of Figure 6.2. If the emptiness check returns true, then the

formula is proved to be satisfied by the IEBP. Otherwise, a counterexample (a possible

run that violate ϕ) is supplied to the user. The left hand side part is realized using

Spot [40]: an object-oriented model checking library written in C++ which offer a set

of building blocks to experiment with and to develop a model checker program. Spot

proposes different algorithms for both the translation of an LTL formula into an Büchi

automaton and the emptiness check problem.

The implemented tool offers several options to the user via the a command-line

interface.

• −aALGO: this option lets the user choose the emptiness check algorithm ALGO to

be applied

• −c: this option displays the number of states and edges of the reachability graph

• −e: this option displays a sequence (if any) of the net satisfying the formula (implies

-f or -F)

• −g: this option displays the SOG graph.

6.3.2 Experimental results

In order to experiment our modular LTL model checker, we consider here three

parametrized examples. In the first the parameter represents the number of resources

initially available while, in the two next examples, the parameter represents the num-

ber of collaborating components. As the obtained results for these three examples are

homogenous, we give a common interpretation at the end of this section.

95

Figure 6.2: Illustration of our Model Checker

Emergency Service Example

Figure 6.3 illustrates the RCoWF-net model of an emergency care service (our design

follows the textual description given in [119]). In the first model (Figure 6.3(a)), the

injured people will be taken to emergency rooms for immediate treatment. Resources

to be modeled include physicians, nurses, and examining rooms, as well as the resource

consumers, the patients. When a patient first arrives at emergency room (transition t1),

he/she proceeds to check in. Then, the receptionist checks the resources and number

of current patients to determine a waiting time. If the waiting time is bigger than a

certain value, then the newly arrived patient would not be admitted into the emergency

room (transition leave). The responsable of the service can decide to ask for more

resources by firing transition t12. Otherwise, the patient would check into the emergency

room and be given paperwork to fill out (transition t3). After the patient completes the

96

p0

p1

p2

p3 p4

p5

p6

p7

p8

p9

p10

p11

ndr1

nn r2

nr r3np r4 cr4

p13

b0

p16p14

b1

b2 b3

p15

t1

t2 leave

npt3

t4

t5

t6

t7

t8

t9

t10

t11

npnp

t12t13

t14 t15

(a) Emergency medical care service

p0

p1 p2

p3

p4 p5

b1

b2

b0

b3

nrr3 nd r1

p6

t1 t2

t3 t4

t5 t6

t7 t8

t9 t10

t11

(b) Resources provider

Figure 6.3: Sharing resources in an emergency medical care service

paperwork, he/she would wait to be treated (transition t4) and an available nurse would

start processing the paperwork (transition t5). When the nurse completes the process

(transition t6) and there is an examining room available for the patient, then the patient

would enter the room (transition t7). When a physician becomes available, he/she would

start examining the patient in the examining room (transition t8). After the completion of

the treatment (transition t9), the patient proceeds to check (transition t10) out and leave

(transition t11) the emergency room. When there is no client waiting, the responsable of

the service can decide to contact the resources provider, depicted in Firgue 6.3(b), (by

firing transition t13) to offer a resource (a room or a doctor) in case other services need

it. The resource provider, shares with the any service of the hospital (in particular the

workflow of Figure 6.3(a)) the rooms and physicians resources (r3 and r1 respectively),

and communicates with it asynchronously via buffers b0 and b1. A message in b0 is an

authorization from the emergency service to the provider to use its resources and to give

them to an other service which needs it.

The choice of the number of initially available resources (the initial marking) allows to

make the size of the state space larger and check how our implementation behaves against

complex systems. To the best of our knowledge, there is no existing tool allowing to

97

Model Modular SOG Non Modular SOG LoLA
N RG States Time(s) States Time(s) States Time(s)

(1,1,1,1) 2844 73 3 7 1 17 1
(5,3,4,2) 73200 20 3 9 3 38 1
(2,2,3,3) 157816 48 8 13 3 49 1
(2,2,1,4) 850928 119 3 24 2 58 1
(4,3,2,4) 1.06101 e+6 15 2 24 4 62 1

Table 6.3: Model checking of an unsatisfied formula (G(t7 =⇒ F t9))

Model Modular SOG Non Modular SOG LoLA
N RG States Time(s) States Time(s) States Time(s)

(1,1,1,1) 2844 706 3 10 3 1422 1
(5,3,4,2) 73200 93 5 1697 7 9150 1
(2,2,3,3) 157816 3840 20 14 3 39454 1
(2,2,1,4) 850928 8090 26 37 3 106366 1
(4,3,2,4) 1.06101 e+6 53975 300 122 14 132626 1

Table 6.4: Model checking of a satisfied formula (G(t7 =⇒ F (t9 ∨ t12 ∨ leave))

check LTL properties modularly (as we do), in the sense that the knowledge of the whole

model is necessary to use the existing LTL model checkers. Thus, in order to validate

our approach and to show that our results are comparable in terms of performances to

existing tools, we give the results obtained in both modular and non modular ways. As

for the soundness property, we compare our prototype’s results to LoLA tool.

We check two LTL properties on our model: the first one, expressed with the LTL

formula is G(t7 =⇒ F t9) expresses that each time resource r3 is hold, then it will be

eventually released in the future. This first formula is not satisfied. In fact, for instance

for the case where the initial marking of each resource place is 1, the firing of the infinite

run t12.t
1
7.(t

1
12.t

2
2.t

2
4.t

1
15)

ω (where t1i is the transition ti of the left hand side model, and t2i is

the transition ti of the right hand side model) does not satisfy the formula. The second

LTL formula is G(t7 =⇒ F (t9 ∨ t12 ∨ leave) and expresses that the firing of t7 is always

followed in the future by either the firing of t9, or the firing of t12 or the firing of leave.

This formula is satisfied by our model. However, since LoLA allows to check state-based

LTL formulae, these two event-based LTL formulae are not expressible with this logic.

The checked formulae with LoLA are obtained by replacing each involved transition by

the set of its output places. This way is possible here because of the simplicity of the

model, but is not obvious in general.

Table 6.3 and Table 6.4 present the results we obtained when checking these two

LTL formulae respectively. Each table contains four multi-columns: the first one gives

98

information about the parameterized model i.e., the initial marking of the resources

places (r1, r2, r3, r4) and the number of reachable markings. Then, three approaches are

compared: first the modular approach where we consider three modules (the two to be

composed and the interface medium) and we build and compose their SOGs. In this case,

there are 15 observed transitions in total. The second part processes the model checking

of the formula on the SOG of the composite model. In this case, only the transitions

occurring in the formula are observed (2 transitions and 4 transitions respectively). The

last part of each table gives the results obtained with LoLA tool. For each verification

line, we compare the number of states that are visited during the verification, and the

verification time. Note, that, in the second table, this number corresponds to the size of

the whole synchronized product between the reachability graph and the Büchi automaton

of (the negation of) the formula.

Producer/Consumer and Reservation Trip Example

Here, we consider two parameterized models representing the reservation trip example

(Figure 5.1 of Chapter 5) and a well known toy model representing the producer consumer.

The obtained results are presented in Table 6.5 and Table 6.6 respectively. Each table is

divided into two sections: the first one concerns the experimental results for a satisfied

formula and the second one concerns a non satisfied formula. In Table 6.5 (resp. Table 6.6)

the number of customer collaborating with the reservation trip model (resp. the number

of consumers communicated with the producer) is given in the first column. Increasing

the value of this parameter implies a bigger size for both the model and the formula to

be checked. Indeed, the chosen formula involves all the added components. These tables

contain the same information as those presented previously for the soundness property.

Interpretation of the experimental results

Comparing to LoLA, The obtained results for the LTL model checking process show

that the SOG is always smaller than LoLA’s graph and this is regardless the satisfaction

or not of the LTL property. However, our approach consumes more time than LoLA

in both modular and non modular approach. In addition to the fact that LoLA uses

several reduction techniques, this can be explained by the following: It is possible that a

marking belongs to different aggregates which can lead to compute some sets of states

several times. Moreover, in the case of the modular approach, the fact that the number of

observed transitions is greater than the one used in the non modular approach, leads to a

bigger number of aggregates, and hence bigger consumption of time. We can improve, the

consumption of time of the modular construction by taking as inputs the SOGs (a priori

99

computed) of the components to be composed. In addition, we recall that a global model

checker such as LoLA is simply unusable in our context since the whole model is supposed

to be unavailable. Finally, the advantage of our approach is that we handle hybrid LTL

properties which is, to the best of our knowledge, not allowed by the existing verification

tools (including LoLA).

100

Model Modular SOG Non Modular SOG LoLA
N Places Trans RG EG Obs States Time(s) Obs States Time(s) States Edges Time(s)

RT 1 29 30 43 74 12 19 3 4 6 2 34 137 1
RT 2 43 33 780 895 24 341 3 8 54 3 820 7415 1
RT 3 53 54 11419 8833 36 4495 21 12 531 12 11419 176439 1
RT 4 63 66 163393 79533 48 50569 282 16 5195 100 137015 3201710 4
RT 5 73 78 1.4938 e6 679581 60 507931 5h2m 20 31244 210 1237490 40804030 85

RT 1 29 30 43 76 12 19 2 2 8 2 22 22 1
RT 2 43 33 780 937 24 99 3 4 10 2 198 272 1
RT 3 53 54 11419 9355 36 762 6 6 24 2 2373 4261 1
RT 4 63 66 163393 84799 48 6242 52 8 106 4 26558 57644 1
RT 5 73 78 1.4938 e6 727663 60 50660 698 10 694 124 220973 555332 1

Table 6.5: Experimental results: Reservation Trip

Model Modular SOG Non Modular SOG LoLA
N Places Trans RG EG Obs States Time(s) Obs States Time(s) States Edges Time(s)

PR 1 31 25 123 241 10 29 2 5 7 2 123 879 1
PR 2 47 40 1440 2495 20 194 3 9 61 3 1440 15090 1
PR 3 62 54 12772 21166 30 435 3 13 610 3 12772 183901 1
PR 4 77 68 101232 163886 40 2038 13 17 6155 43 101232 1993552 6
PR 5 92 82 754480 e6 1203874 50 9553 77 21 64194 151 754480 18101399 58

PR 1 31 25 123 241 10 24 2 2 7 2 23 22 1
PR 2 47 40 1440 2495 20 119 2 4 15 2 44 43 1
PR 3 62 54 12772 21166 30 617 4 6 45 2 65 64 1
PR 4 77 68 101232 163886 40 3114 9 8 179 7 86 85 1
PR 5 92 82 754480 e6 1203874 50 5924 45 10 15 3 107 106 1

Table 6.6: Experimental results: Producer-Consumer

101

6.4 Conclusion

We presented in this Chapter our implemented SOG-based approach dedicated to the

abstraction and the verification of IEBPs. All necessary algorithms detailed in Chapter 4

and Chapter 5 have been implemented. Regarding to both soundness properties and LTL

formulae, the preliminary experimentations show that our approach outperform both

LoLA and Woflan tool in terms of size of the explored graph. However, for LTL properties,

although our implemented tool consumes more time, it have the advantage of dealing

with the hybrid LTL properties unlike the other tools. Moreover, we aim to confront our

approach to some realistic domains in order we will be able to confirm its efficiency. on

specific domains.

102

Chapter 7

General Conclusion and Perspectives

Contents

7.1 Summary . 103

7.2 Future Work . 105

7.1 Summary

Formal verification is hot research topic since three decades. It is performed at design time

and ensures the correction of a system’s model with respect to some desired properties. It

is highly recommended in critical fields (Transport, Hardware, Communication protocols,

...) where a bug in the system can lead to disasters. Nowadays, the formal verification is

however increasingly widespread and used in several other domains (Business processes,

Web services, ...). In this thesis, we deal with formal verification, and especially model

checking, in the context of IEBPs. We are indeed convinced that developing such

approaches for a specific domain can be highly useful from two points of view: First, one

can take into account the specific properties/constraints of the target domain in order

to design new efficient approaches. Second, domain-specific approaches could bring new

ideas to improve the verification in the general case. This would ideally create a virtuous

circle where general and specific-domain verification approaches enrich each other.

An IEBP can be seen as the composition of severals independent business processes,

defined as a flow of related activities that together create a customer value. Collaboration

between companies are considered necessary in a business environment, where each

company focuses on its competitive advantage, performs only those functions, for which it

has expert skills. The different involved companies must operate in a network in order to

complement their offering through partners and suppliers, and hence to leverage (resp.

compensate) their strength (resp. weakness). Typically, there are n business partners

which are involved in one ’global’ IEBP. Each of the partners has its own ’local’ business

process (designed separately) which is private, i.e., each component has no knowledge

about the local process of the partners. The whole IEBP model being unavailable, the

sole possible approach to check its correction is necessarily a bottom-up one i.e. the

103

IEBP model is obtained by composing the individual components’ models. However, this

is not possible because each component wants to hide the trade secrets of its service

(private view) for privacy reasons. Such a bottom-up approach should be then built on an

appropriate public view (instead of the private view) of each component allowing both

the respect of the privacy constraint and the verification of the whole IEBP. The question

how to formalize such a public view (abstract model) and how to use it to check the

correctness of an IEBP is the core of the work presented in this thesis.

The abstract model we propose in this work is based on the Symbolic Observation

Graphs (SOG). Originally [55, 75], the SOG has been defined as a hybrid structure

abstracting the state graph of a system, and has been used for model checking linear time

properties. We propose to represent each component of the IEBP by a SOG such that

only the behavior regarding the interface (the collaborative activities) of each component

is public. This is ensured by hiding the local behavior (the execution of the local/non

collaborative activities) inside the nodes (aggregates) of the SOG. The correction criterium

of the IEBP is dealt with in this work regarding two kinds of properties: generic and

specific properties. As generic properties, we studied the well known soundness property

and some of its variants. Specific properties, however, were defined here as LTL logic

formulae expressed over concrete elements of the BP model. For both kinds of properties,

the contributions of this thesis were to revisit the SOG structure in order to reach the

following goals: (1) reduce the complexity of the verification process locally to each

component by using the corresponding public view (the SOG) instead of the original

explicit state space, and (2) reduce the verification of the whole IEBP (whose model is not

available) to the analysis of the composition of its components’ SOGs. The main difficulty

of the second goal is the non preservation of the considered correctness properties by

composition. Indeed, the fact that each component is correct does not guarantee that

the composite model is correct. We established which are the sufficient and necessary

information, to be computed (locally) and added to the aggregates of a SOG, allowing a

modular SOG-based verification.

Another important contribution is the extension of our approach to deal with hybrid

LTL logic (where a formula could involve both state- and event-based atomic propositions).

The semantics of this extended logic allows to mix the state-based and the even-based

semantics which are interchangeable (an event can be encoded as a change in state

variables, and likewise one can equip a state with different events to reflect different values

of its internal variables). However, it is not fairly trivial to switch from one representation

to the other, and it can lead to a significant state space enlargement because of the size

of the translated formula.

Finally, our goal to make general and domain-specific verification enrich each other is

104

somehow reached. Indeed, our modular verification approach can be used in any other

domain and especially for loosely coupled concurrent systems.

Our approach for checking the correctness of IEBP w.r.t. soundness and LTL formulae,

for both local and global point of views, has been implemented within a prototype and has

been validated through examples from different business domains. The obtained results

are encouraging and open several improvement issues. A part of the prototype is already

integrated in the CosyVerif (http ://www.CosyVerif.org) and we are currently studying

the integration of the whole implementation.

7.2 Future Work

There are several open issues of the work presented in this thesis. From technical point of

view, our implementation needs to be revisited in order to achieve the following objectives:

First, we plan to integrate the different functionalities of our tool in order to have a unique

framework allowing to check the correctness of an IEBP process, and where the user

can choose, according to his desire, the appropriate module. In this unique framework,

we would like to generalize the possibility to give, as input, either the RCoWF-nets

of the different IEBP components, or the corresponding SOGs which have been built

independently. We think that this feature will lead to a significant improvement of the

consumed time during the construction and the verification of the SOGs synchronized

product. This task will facilitate the confrontation of our approach to realistic applications,

thing we could not do during the thesis (although we tried to have significant examples in

terms of models and behavior). Second, several orthogonal reduction techniques could be

envisaged in order to improve the performances of our approach (in terms of memory and

time consumption) such as partial order reduction (e.g., [13, 120]), or distributed/parallel

model checking (following for instance the approaches presented in [45, 79]. In the

first perspective, the independence between the observed transitions of the SOG can

be exploited in order to avoid to build the synchronized product entirely. The second

perspective allows to distribute the construction and the verification tasks on several

machines/cores.

Now, from theoretical point of view, our approach can be extended in two directions:

The first direction is related to the application domain and consists in adapting our

approach regarding a new domain with specific requirements/constraints. Although it

is not detailed in this manuscript, we already applied our approach in order to check

compatibility between Web services and hence to check the correctness of composite

services ([69, 78, 71, 74]). We are currently studying ([73]) the extension of our approach

to processes in a Cloud environment where several challenging specific properties have

105

to be studied. First, our verification modular approach can help in managing Cloud

resources that are shared by different Cloud service-based BPs, by checking, at design

time, some fairness LTL properties on the resources. Second, we plan to study two specific

Cloud properties, namely elasticity and multi-tenancy. Elasticity in the Cloud ensures

the provisioning of necessary and sufficient resources in such a way that a Cloud process

continues running smoothly even when the number of its uses scales up or down, thereby

avoiding under-utilization and over-utilization of resources. The multi-tenancy can be

defined at different levels (resources, process instances, process, ...) and expresses the fact

that different Cloud processes share some features.

The second direction we plan to investigate in the future concerns the models we

use to specify the underlying processes. A same bottom-up approach can be designed

for enriched (extended) Petri nets. For instance, on can consider the extension of the

approach to Colored Petri nets [63](e.g. when the desired properties require to distinguish

the identity of the process instances) or to Timed/Temporal Petri nets [94, 108] (when

the process and the properties involves time explicitly).

106

Bibliography

[1] Buddy: A bdd package. http://buddy.sourceforge.net/manual/main.html.

[2] Prod 3.4.01 an advanced tool for efficient reachability analysis. http://www.tcs.

hut.fi/Software/prod/.

[3] Wil M. P. van der Aalst. Verification of workflow nets. In Proceedings of the 18th

International Conference on Application and Theory of Petri Nets, ICATPN ’97,

pages 407–426, London, UK, UK, 1997. Springer-Verlag.

[4] Wil M. P. van der Aalst. Workflow verification: Finding control-flow errors using

petri-net-based techniques. In Business Process Management, Models, Techniques,

and Empirical Studies, pages 161–183, London, UK, UK, 2000. Springer-Verlag.

[5] Wil M. P. van der Aalst, Jörg Desel, and Andreas Oberweis, editors. Business

Process Management, Models, Techniques, and Empirical Studies, London, UK, UK,

2000. Springer-Verlag.

[6] Jean-Raymond Abrial, Matthew K. O. Lee, David Neilson, P. N. Scharbach, and

Ib Holm Sørensen. The b-method. In VDM ’91 - Formal Software Development,

4th International Symposium of VDM Europe, Noordwijkerhout, The Netherlands,

October 21-25, 1991, Proceedings, Volume 2: Tutorials, pages 398–405, 1991.

[7] etienne Andre, Benoit Barbot, Clement Démoulins, LomMessan Hillah, Francis

Hulin-Hubard, Fabrice Kordon, Alban Linard, and Laure Petrucci. A modular

approach for reusing formalisms in verification tools of concurrent systems. In

Lindsay Groves and Jing Sun, editors, Formal Methods and Software Engineering,

volume 8144 of Lecture Notes in Computer Science, pages 199–214. Springer Berlin

Heidelberg, 2013.

[8] Andreas Bauer, Martin Leucker, and Christian Schallhart. Comparing ltl semantics

for runtime verification. J. Log. and Comput., 20(3):651–674, June 2010.

[9] Jörg Becker, Martin Kugeler, and Michael Rosemann, editors. Process management:

a guide for the design of business processes. 2003.

[10] Patrick Behm, Paul Benoit, Alain Faivre, and Jean-Marc Meynadier. Meteor: A

successful application of b in a large project. In JeannetteM. Wing, Jim Woodcock,

and Jim Davies, editors, FM99, Formal Methods, volume 1708 of Lecture Notes in

Computer Science, pages 369–387. Springer Berlin Heidelberg, 1999.

107

[11] Daniela Berardi, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini,

and MASSIMO MECELLA. Automatic service composition based on behavioral

descriptions. INTERNATIONAL JOURNAL OF COOPERATIVE INFORMATION

SYSTEMS, 14:2005, 2005.

[12] Yves Bertot, Pierre Casteran, Gerard (informaticien) Huet, and Christine Paulin-

Mohring. Interactive theorem proving and program development : Coq’Art : the

calculus of inductive constructions. Texts in theoretical computer science. Springer,

Berlin, New York, 2004. Donnees complementaires http://coq.inria.fr.

[13] Girish Bhat and Doron Peled. Adding partial orders to linear temporal logic.

Fundam. Inf., 36(1):1–21, January 1998.

[14] Armin Biere, Edmund M. Clarke, and Yunshan Zhu. Multiple state and single

state tableaux for combining local and global model checking. In IN CORRECT

SYSTEM DESIGN, pages 163–179. Springer, 1999.

[15] Jonathan Billington, Søren Christensen, Kees Van Hee, Ekkart Kindler, Olaf Kum-

mer, Laure Petrucci, Reinier Post, Christian Stehno, and Michael Weber. The petri

net markup language: Concepts, technology, and tools. In Proceedings of the 24th

International Conference on Applications and Theory of Petri Nets, ICATPN’03,

pages 483–505, Berlin, Heidelberg, 2003. Springer-Verlag.

[16] Graham Birtwistle and P. A. Subrahmanyam, editors. Current Trends in Hardware

Verification and Automated Theorem Proving. Springer-Verlag New York, Inc., New

York, NY, USA, 1989.

[17] Grady Booch, James Rumbaugh, and Ivar Jacobson. Unified Modeling Language

User Guide, The (2Nd Edition) (Addison-Wesley Object Technology Series). Addison-

Wesley Professional, 2005.

[18] C. E. Brown. Automated Reasoning in Higher-order Logic: Set Comprehension and

Extensionality in Church’s Type Theory. College Publications, 2007.

[19] Randal E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293–318, 1992.

[20] J. Richard Büchi. On a decision method in restricted second order arithmetic. In

Logic, Methodology and Philosophy of Science (Proc. 1960 Internat. Congr .), pages

1–11. Stanford Univ. Press, Stanford, Calif., 1962.

108

[21] Tevfik Bultan, Jianwen Su, and Xiang Fu. Analyzing conversations of web services.

IEEE Internet Computing, 10(1):18–25, 2006.

[22] S. Cheikhrouhou, S. Kallel, and M. Jmaiel. Toward a verification of time-centric

business process models. In WETICE Conference (WETICE), 2014 IEEE 23rd

International, pages 326–331, June 2014.

[23] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web services

description language (WSDL) 1.1. W3c note, March 2001.

[24] Theodore H. Clark and Donna B. Stoddard. Interorganizational business process

redesign: Merging technological and process innovation. J. Manage. Inf. Syst.,

13(2):9–28, September 1996.

[25] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic verification of finite-state

concurrent systems using temporal logic specifications. ACM Trans. Program. Lang.

Syst., 8(2):244–263, April 1986.

[26] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching-time temporal logic. In Logic of Programs, Workshop,

pages 52–71, London, UK, UK, 1982. Springer-Verlag.

[27] Edmund M. Clarke and E. Allen Emerson. Design and synthesis of synchronization

skeletons using branching time temporal logic. In 25 Years of Model Checking, pages

196–215, 2008.

[28] C. Courcoubetis, M. Vardi, P. Wolper, and M. Yannakakis. Memory-efficient

algorithms for the verification of temporal properties. Form. Methods Syst. Des.,

1(2-3):275–288, October 1992.

[29] Jean-Michel Couvreur. On-the-fly verification of linear temporal logic. In JeannetteM.

Wing, Jim Woodcock, and Jim Davies, editors, FM: Formal Methods, volume 1708

of Lecture Notes in Computer Science, pages 253–271. Springer Berlin Heidelberg,

1999.

[30] D. Cyrluk, S. Rajan, N. Shankar, , and M.K. Srivas. Effective theorem proving for

hardware verification. In Theorem Provers in Circuit Design (TPCD ’94), volume

901 of Lecture Notes in Computer Science, pages 203–222, Bad Herrenalb, Germany,

sep 1994. Springer-Verlag.

[31] Thomas H. Davenport. Process Innovation: Reengineering Work Through Informa-

tion Technology. Harvard Business School Press, Boston, MA, USA, 1993.

109

[32] Thomas H. Davenport and James E. Short. The new industrial engineering: In-

formation technology and business process redesign. Sloan Management Review,

31(4):11–27, 1990.

[33] Juliane Dehnert and Peter Rittgen. Relaxed soundness of business processes. In

International Conference on Advanced Information Systems Engineering, volume

2068 of LNCS, pages 157–170. Springer-Verlag, 2001.

[34] Jörg Desel and Javier Esparza. Free Choice Petri Nets. Cambridge University Press,

New York, NY, USA, 1995.

[35] Gregorio Diaz, Juan-José Pardo, Maŕıa-Emilia Cambronero, Valent́ın Valero, and Fer-

nando Cuartero. Automatic translation of ws-cdl choreographies to timed automata.

In Proceedings of the 2005 International Conference on European Performance

Engineering, and Web Services and Formal Methods, International Conference on

Formal Techniques for Computer Systems and Business Processes, pages 230–242,

Berlin, Heidelberg, 2005. Springer-Verlag.

[36] Andries Van Dijk. Contracting workflow and protocol patterns. In in Proc. of

Business Process Management Int. Conf, pages 152–167. Springer, 2003.

[37] B. F. Van Dongen and H. M. W. Verbeek. Verification of epcs: Using reduction

rules and petri nets. In Proceedings of the 17th Conference on Advanced Information

Systems Engineering (CAiSE05), volume 3520 of Lecture Notes in Computer Science,

pages 372–386. Springer, 2005.

[38] Yanhua Du, Xitong Li, and PengCheng Xiong. A petri net approach to mediation-

aided composition of web services. IEEE T. Automation Science and Engineering,

9(2), 2012.

[39] Ziyang Duan, Arthur Bernstein, Philip Lewis, and Shiyong Lu. A model for

abstract process specification, verification and composition. In Proceedings of the

2Nd International Conference on Service Oriented Computing, ICSOC ’04, pages

232–241, New York, NY, USA, 2004. ACM.

[40] Alexandre Duret-Lutz and Denis Poitrenaud. Spot: an extensible model checking

library using transition-based generalized büchi automata. In IN PROC. OF

MASCOTS’04, pages 76–83. IEEE Computer Society.

[41] E. Allen Emerson and Edmund M. Clarke. Characterizing correctness properties

of parallel programs using fixpoints. In Proceedings of the 7th Colloquium on

110

Automata, Languages and Programming, pages 169–181, London, UK, UK, 1980.

Springer-Verlag.

[42] Robert Engel, WilM.P. van der Aalst, Marco Zapletal, Christian Pichler, and

Hannes Werthner. Mining inter-organizational business process models from edi

messages: A case study from the automotive sector. In Advanced Information

Systems Engineering, volume 7328 of Lecture Notes in Computer Science, pages

222–237. Springer Berlin Heidelberg, 2012.

[43] Rik Eshuis, Paul W. P. J. Grefen, and Sven Till. Structured service composition. In

Business Process Management, 4th International Conference, BPM 2006, Vienna,

Austria, September 5-7, 2006, Proceedings, pages 97–112, 2006.

[44] Kousha Etessami. Stutter-invariant languages, omega-automata, and temporal logic.

In Proceedings of the 11th International Conference on Computer Aided Verification,

CAV ’99, pages 236–248, London, UK, UK, 1999. Springer-Verlag.

[45] Sami Evangelista, Lars Michael Kristensen, and Laure Petrucci. Multi-threaded

explicit state space exploration with state reconstruction. In Automated Technology

for Verification and Analysis - 11th International Symposium, ATVA 2013, Hanoi,

Vietnam, October 15-18, 2013. Proceedings, pages 208–223, 2013.

[46] Dirk Fahland, Cédric Favre, Jana Koehler, Niels Lohmann, Hagen Völzer, and

Karsten Wolf. Analysis on demand: Instantaneous soundness checking of industrial

business process models. Data Knowl. Eng., pages 448–466, 2011.

[47] Kathi Fisler, Ranan Fraer, Gila Kamhi, Moshe Y. Vardi, and Zijiang Yang. Is there

a best symbolic cycle-detection algorithm? In Proceedings of the 7th International

Conference on Tools and Algorithms for the Construction and Analysis of Systems,

TACAS 2001, pages 420–434, London, UK, UK, 2001. Springer-Verlag.

[48] Melvin Fitting. First-order Logic and Automated Theorem Proving (2Nd Ed.).

Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.

[49] Xiang Fu, Tevfik Bultan, and Jianwen Su. Analysis of interacting bpel web services.

In Proceedings of the 13th International Conference on World Wide Web, WWW

’04, pages 621–630, 2004.

[50] Rob Gerth, Doron Peled, Moshe Y. Vardi, R. Gerth, Den Dolech Eindhoven, D. Peled,

M. Y. Vardi, and Pierre Wolper. Simple on-the-fly automatic verification of linear

temporal logic. In In Protocol Specification Testing and Verification, pages 3–18.

Chapman Hall, 1995.

111

[51] Yolanda Gil. Workflow composition: Semantic representations for flexible automa-

tion, 2006.

[52] Bernard C. Glasson, Igor Hawryszkiewycz, Alan Underwood, and Ron Weber,

editors. Business Process Re-Engineering: Information Systems Opportunities

and Challenges, Proceedings of the IFIP TC8 Open Conference on Business Re-

engineering: Information Systems Opportunities and Challenges, Queensland Gold

Cost, Australia, 8-11 May, 1994, volume A-54 of IFIP Transactions. Elsevier, 1994.

[53] Ursula Goltz, Ruurd Kuiper, and Wojciech Penczek. Propositional temporal logics

and equivalences. In W.R. Cleaveland, editor, CONCUR ’92, volume 630 of Lecture

Notes in Computer Science, pages 222–236. Springer Berlin Heidelberg, 1992.

[54] Daniela Grigori, Juan Carlos Corrales, and Mokrane Bouzeghoub. Behavioral

matchmaking for service retrieval: Application to conversation protocols. Inf. Syst.,

33(7-8):681–698, November 2008.

[55] Serge Haddad, Jean-Michel Ilié, and Kais Klai. Design and evaluation of a symbolic

and abstraction-based model checker. In ATVA’04, LNCS. 196–210, Springer-Verlag,

2004.

[56] Michael Hammer and James Champy. Reengineering the corporation: A manifesto

for business revolution. Business Horizons, 36(5):90–91, 1993.

[57] Henri Hansen, Wojciech Penczek, and Antti Valmari. Stuttering-insensitive automata

for on-the-fly detection of livelock properties. Electronic Notes in Theoretical

Computer Science, 66(2):178 – 193, 2002. FMICS’02, 7th International {ERCIM}

Workshop in Formal Methods for Industrial Critical Systems (ICALP 2002 Satellite

Workshop).

[58] Thomas A. Henzinger, Orna Kupferman, and Moshe Y. Vardi. A space-efficient

on-the-fly algorithm for real-time model checking. In CONCUR, volume 1119 of

Lecture Notes in Computer Science, pages 514–529. Springer, 1996.

[59] Sebastian Hinz, Karsten Schmidt, and Christian Stahl. Transforming bpel to petri

nets. In BPM’05, vol 3649 of LNCS. Springer-Verlag, 2005.

[60] Yigal Hoffner, Heiko Ludwig, Ceki Gülcü, and Paul W. P. J. Grefen. An architecture

for cross-organizational business processes. In Second International Workshop on

Advance Issues of E-Commerce and Web-Based Information Systems (WECWIS

2000), Milpitas, California, USA, June 8-9, 2000, pages 2–11, 2000.

112

[61] Gerard Holzmann. Spin model checker, the: primer and reference manual. Addison-

Wesley Professional, first edition, 2003.

[62] Michael G. Jacobides and Stephan Billinger. Designing the boundaries of the

firm: From “make, buy, or ally” to the dynamic benefits of vertical architecture.

Organization Science, 17(2):249–261, 2006.

[63] Kurt Jensen. Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical

Use, Vol. 2. Springer-Verlag, London, UK, UK, 1995.

[64] Matjaz B. Juric. Business Process Execution Language for Web Services BPEL and

BPEL4WS 2Nd Edition. Packt Publishing, 2006.

[65] Roope Kaivola and Antti Valmari. The weakest compositional semantic equivalence

preserving nexttime-less linear temporal logic. In Third International Conference on

Concurrency Theory, CONCUR ’92, pages 207–221, London, UK, 1992. Springer-

Verlag.

[66] Yonit Kesten, Amir Pnueli, and Li on Raviv. Algorithmic verification of linear

temporal logic specifications. In Proc. 25th Int. Colloq. Aut. Lang. Prog., volume

1443 of Lect. Notes in Comp. Sci, pages 1–16. Springer-Verlag, 1998.

[67] Ekkart Kindler, Axel Martens, and Wolfgang Reisig. Inter-operability of workflow

applications: Local criteria for global soundness, 2000.

[68] Kais Klai and Jörg Desel. Checking soundness of business processes compositionally

using symbolic observation graphs. In FMOODS/FORTE, volume 7273 of Lecture

Notes in Computer Science, pages 67–83. Springer, 2012.

[69] Kais Klai and Hanen Ochi. Checking compatibility of web services using sogs. In

2012 IEEE 19th International Conference on Web Services (ICWS), Honolulu, HI,

USA, June 24-29, 2012, pages 670–671, 2012.

[70] Kais Klai and Hanen Ochi. Modular verification of inter-enterprise business processes.

In eKNOW, pages 155–161, 2012.

[71] Kais Klai and Hanen Ochi. Checking compatibility of web services behaviorally. In

FSEN, pages 267–282, 2013.

[72] Kais Klai and Hanen Ochi. A bottom-up approach to check the correctness of

interorganisational workflows. In To appear in TASE, 2015.

113

[73] Kais Klai and Hanen Ochi. LTL model cheking of service-based business processes

in the cloud. In 39th Annual Computer Software and Applications Conference,

COMPSAC Workshops 2015, Taichung, Taiwan, July 1-5, 2015, pages 398–403,

2015.

[74] Kais Klai, Hanen Ochi, and Samir Tata. Formal abstraction and compatibility

checking of web services. In ICWS, pages 163–170, 2013.

[75] Kais Klai and Denis Poitrenaud. MC-SOG: An LTL model checker based on symbolic

observation graphs. In Petri Nets, 2008.

[76] Kais Klai, Samir Tata, and Jörg Desel. Symbolic abstraction and deadlock-freeness

verification of inter-enterprise processes. In BPM’09 of LNCS, pages 294–309, 2009.

[77] Kais Klai, Samir Tata, and Jörg Desel. Symbolic abstraction and deadlock-freeness

verification of inter-enterprise processes. Data Knowl. Eng., 70(5):467–482, 2011.

[78] Kais Klai, Samir Tata, and Hanen Ochi. Generic and specific compatibility criteria

for web service composition: Formal abstraction and modular verification approach1.

Int. J. Web Service Res., 9(4):45–68, 2012.

[79] Alfons Laarman, Mads Chr. Olesen, Andreas Engelbredt Dalsgaard, Kim Guldstrand

Larsen, and Jaco van de Pol. Multi-core emptiness checking of timed büchi automata

using inclusion abstraction. In Proceedings of the 25th International Conference

on Computer Aided Verification, CAV’13, pages 968–983, Berlin, Heidelberg, 2013.

Springer-Verlag.

[80] Florian Lautenbacher and Bernhard Bauer. A survey on workflow annotation &

composition approaches. In Martin Hepp, Knut Hinkelmann, Dimitris Karagiannis,

Rdiger Klein, and Nenad Stojanovic, editors, SBPM, volume 251 of CEUR Workshop

Proceedings. CEUR-WS.org, 2007.

[81] Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing

interacting bpel processes. In BPM’06, LNCS, pages 17–32. Springer-Verlag, 2006.

[82] Niels Lohmann, Peter Massuthe, Christian Stahl, and Daniela Weinberg. Analyzing

interacting WS-BPEL processes using flexible model generation. Data Knowl. Eng.,

64(1):38–54, 2008.

[83] Shuailiang Ma, Li Zhang, and Jimei He. Towards formalization and verification

of unified business process model based on pi calculus. In Software Engineering

114

Research, Management and Applications, 2008. SERA ’08. Sixth International

Conference on, pages 93–101, Aug 2008.

[84] Fabrizio Maria Maggi, Marco Montali, Michael Westergaard, and Wil M. P. Van

Der Aalst. Monitoring business constraints with linear temporal logic: an approach

based on colored automata. In BPM’11, pages 132–147. Springer-Verlag.

[85] Fabrizio Maria Maggi, Michael Westergaard, Marco Montali, and Wil M. P. van der

Aalst. Runtime verification of ltl-based declarative process models. In RV’11, pages

131–146. Springer-Verlag, 2012.

[86] Zohar Manna and Amir Pnueli. The Temporal Logic of Reactive and Concurrent

Systems. Springer-Verlag New York, Inc., New York, NY, USA, 1992.

[87] A. Martens. Usability of web services. In ICWISEW, pages 182–190. IEEE Computer

Society, 2003.

[88] Axel Martens. On compatibility of web services. Petri Net Newsletter, Special Interest

Groups on Petri Nets and Related Systems Models, Gesellschaft fur Informatik e.V.,

65, 2003.

[89] Axel Martens. Analyzing web service based business processes. In Proceedings of the

8th International Conference, Held As Part of the Joint European Conference on

Theory and Practice of Software Conference on Fundamental Approaches to Software

Engineering, FASE’05, pages 19–33, Berlin, Heidelberg, 2005. Springer-Verlag.

[90] Axel Martens. Simulation and equivalence between bpel process models. In In Proc.

of Intl. Conference DASD’05, 2005.

[91] Axel Martens, S. Moser, A. Gerhardt, and K. Funk. Analyzing compatibility of

bpel processes. In AICT/ICIW, page 147. IEEE Computer Society, 2006.

[92] Axel Martens and Simon Moser. Diagnosing SCA components using wombat. In

Business Process Management, 4th International Conference, BPM 2006, Vienna,

Austria, September 5-7, 2006, Proceedings, pages 378–388, 2006.

[93] Peter Massuthe, Wolfgang Reisig, and Karsten Schmidt. An operating guideline

approach to the soa. Annals Of Mathematics, Computing and Teleinformatics,

1:35–43, 2005.

[94] Philip M. Merlin and David J. Farber. Recoverability of modular systems. Operating

Systems Review, 9(3):51–56, 1975.

115

[95] T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.

[96] OMG. OMG Unified Modeling Language (OMG UML), Superstructure, Version

2.4.1, August 2011.

[97] Object Management Group (OMG). Business process model and notation (bpmn)

version 2.0. Standard, Object Management Group (OMG), jan 2011.

[98] Victor Pankratius and Wolffried Stucky. A formal foundation for workflow composi-

tion, workflow view definition, and workflow normalization based on petri nets. In

Conceptual Modelling 2005, Second Asia-Pacific Conference on Conceptual Mod-

elling (APCCM2005), Newcastle, NSW, Australia, January/February 2005, pages

79–88, 2005.

[99] Lawrence C. Paulson. Isabelle : a generic theorem prover. Lecture notes in computer

science. Springer-Verlag, Berlin, New York, 1994.

[100] Cesare Pautasso and Gustavo Alonso. The jopera visual composition language. J.

Vis. Lang. Comput., 16(1-2):119–152, February 2005.

[101] M. Pesic. Decserflow: Towards a truly declarative service flow language. In

International Conference on Web Services and Formal Methods, volume 4184 of

Lecture Notes in Computer Science. Springer-Verlag, 2006.

[102] M. Pesic, M. H. Schonenberg, and N. Sidorova. Constraint-based workflow models:

Change made easy. In In CoopIS, 2007.

[103] M. Pesic and W. M. P. van der Aalst. A declarative approach for flexible business

processes management. In Business Process Management Workshops, BPM’06,

pages 169–180, Berlin, Heidelberg, 2006. Springer-Verlag.

[104] Maja Pesic, Helen M. Schonenberg, and Wil Van Der Aalst. Declare demo: A

constraint-based workflow management system.

[105] C. A. Petri. Concepts of net theory. In MFCS’73. Mathematical Institute of the

Slovak Academy of Sciences, 1973.

[106] Antti Puhakka and Antti Valmari. Weakest-congruence results for livelock-preserving

equivalences. In JosC.M. Baeten and Sjouke Mauw, editors, CONCUR’99 Concur-

rency Theory, volume 1664 of Lecture Notes in Computer Science, pages 510–524.

Springer Berlin Heidelberg, 1999.

116

[107] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent

systems in cesar. In Proceedings of the 5th Colloquium on International Symposium

on Programming, pages 337–351, London, UK, UK, 1982. Springer-Verlag.

[108] C. Ramchandani. Analysis of asynchronous concurrent systems by timed petri nets.

Technical report, Cambridge, MA, USA, 1974.

[109] Jinghai Rao and Xiaomeng Su. A survey of automated web service composition

methods. In Proceedings of the First International Conference on Semantic Web Ser-

vices and Web Process Composition, SWSWPC’04, pages 43–54, Berlin, Heidelberg,

2005. Springer-Verlag.

[110] Ronald Read and Derek Corneil. The graph isomorphism disease. In Graph Theory,

pages 339–363, 1977.

[111] Andreas Rogge-Solti, Ronny Mans, Wil M. P. van der Aalst, and Mathias Weske. Re-

pairing event logs using timed process models. In On the Move to Meaningful Internet

Systems: OTM 2013 Workshops - Confederated International Workshops: OTM

Academy, OTM Industry Case Studies Program, ACM, EI2N, ISDE, META4eS,

ORM, SeDeS, SINCOM, SMS, and SOMOCO 2013, Graz, Austria, September 9 -

13, 2013, Proceedings, pages 705–708, 2013.

[112] August-Wilhelm W. Scheer. Aris-Business Process Frameworks. Springer-Verlag

New York, Inc., Secaucus, NJ, USA, 2nd edition, 1998.

[113] Karsten Schmidt. Lola: a low level analyser. In Proceedings of the 21st international

conference on Application and theory of petri nets, ICATPN’00, pages 465–474.

Springer-Verlag, 2000.

[114] Dennis M. M. Schunselaar, Eric Verbeek, Wil M. P. van der Aalst, and Hajo A.

Reijers. A framework for efficiently deciding language inclusion for sound unlabelled

wf-nets. In Joint Proceedings of the International Workshop on Petri Nets and

Software Engineering (PNSE’13) and the International Workshop on Modeling and

Business Environments (ModBE’13), Milano, Italy, June 24 - 25, 2013, pages

135–154, 2013.

[115] Roberto Sebastiani, Stefano Tonetta, and Moshe Y. Vardi. Symbolic systems,

explicit properties: on hybrid approches for ltl symbolic model checking. In In Proc.

of CAV’05, volume 3576 of LNCS, pages 350–363. Springer, 2005.

[116] Juliane Siegeris and Armin Zimmermann. Workflow model compositions preserving

relaxed soundness. In Proceedings of the 4th International Conference on Business

117

Process Management, BPM’06, pages 177–192, Berlin, Heidelberg, 2006. Springer-

Verlag.

[117] Robert Singer. Business process management in small- and medium-sized enterprises:

An empirical study. In Proceedings of the 7th International Conference on Subject-

Oriented Business Process Management, S-BPM ONE ’15, pages 9:1–9:8, New York,

NY, USA, 2015. ACM.

[118] Fabio Somenzi, Kavita Ravi, and Roderick Bloem. Analysis of symbolic scc hull

algorithms. In Proceedings of the 4th International Conference on Formal Methods

in Computer-Aided Design, FMCAD ’02, pages 88–105, London, UK, UK, 2002.

Springer-Verlag.

[119] William Tepfenhart, Jiacun Wang, Daniela Rosca, and Anni Tsai. Resource-

constrained and decision support workflow modeling. International Journal of

Intelligent Control And Systems, 12(1):15–23, 2007.

[120] Antti Valmari. A stubborn attack on state explosion. In Proceedings of the 2Nd

International Workshop on Computer Aided Verification, CAV ’90, pages 156–165,

London, UK, UK, 1991. Springer-Verlag.

[121] W. M. P. van der Aalst. Woflan: a petri-net-based workflow analyzer. Syst. Anal.

Model. Simul., 35(3), May 1999.

[122] Wil van der Aalst. Loosely coupled interorganizational workflows: Modeling and

analyzing workflows crossing organizational boundaries. Inf. Manage., 37(2):67–75,

March 2000.

[123] Wil van der Aalst, Kees van Hee, Arthur ter Hofstede, Natalia Sidorova, H.M.W.

Verbeek, Marc Voorhoeve, and MoeWynn. Soundness of workflow nets: classification,

decidability, and analysis. Formal Aspects of Computing: applicable formal methods,

23(3), 2010.

[124] Wil M. P. van der Aalst. The application of petri nets to workflow management.

Journal of Circuits, Systems, and Computers, 8(1):21–66, 1998.

[125] Wil M. P. van der Aalst. Making work flow: On the application of petri nets to

business process management. In Applications and Theory of Petri Nets 2002, 23rd

International Conference, ICATPN 2002, Adelaide, Australia, June 24-30, 2002,

Proceedings, pages 1–22, 2002.

118

[126] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian Stahl, and

Karsten Wolf. Multiparty contracts: Agreeing and implementing interorganizational

processes. Comput. J., 53(1):90–106, 2010.

[127] Wil M. P. van der Aalst, Christian Stahl, and Michael Westergaard. Strategies

for modeling complex processes using colored petri nets. T. Petri Nets and Other

Models of Concurrency, 7:6–55, 2013.

[128] Wil M. P. van der Aalst, Kees M. van Hee, Arthur H. M. ter Hofstede, Natalia

Sidorova, H. M. W. Verbeek, Marc Voorhoeve, and Moe Thandar Wynn. Soundness

of workflow nets: classification, decidability, and analysis. Formal Asp. Comput.,

23(3):333–363, 2011.

[129] Wil M. P. van der Aalst, Kees M. van Hee, and Robert A. van der Toorn. Component-

based software architectures: a framework based on inheritance of behavior. Sci.

Comput. Program., 42(2-3):129–171, 2002.

[130] WilM.P. van der Aalst, KeesM. van Hee, ArthurH.M. ter Hofstede, Natalia Sidorova,

H.M.W. Verbeek, Marc Voorhoeve, and MoeT. Wynn. Soundness of workflow nets

with reset arcs. In Transactions on Petri Nets and Other Models of Concurrency III,

volume 5800 of Lecture Notes in Computer Science, pages 50–70. Springer Berlin

Heidelberg, 2009.

[131] WilM.P. van der Aalst and Mathias Weske. The p2p approach to interorganizational

workflows. In KlausR. Dittrich, Andreas Geppert, and MoiraC. Norrie, editors, Ad-

vanced Information Systems Engineering, volume 2068 of Lecture Notes in Computer

Science, pages 140–156. Springer Berlin Heidelberg, 2001.

[132] B. F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters,

and W. M. P. van der Aalst. The prom framework: A new era in process mining

tool support. In Proceedings of the 26th International Conference on Applications

and Theory of Petri Nets, ICATPN’05, pages 444–454, Berlin, Heidelberg, 2005.

Springer-Verlag.

[133] Kees M. van Hee, Natalia Sidorova, and Marc Voorhoeve. Resource-constrained

workflow nets. Fundam. Inform., 71(2-3):243–257, 2006.

[134] Wil vanderAalst and Kees vanHee. Workflow Management: Models, Methods, and

Systems. MIT Press, Cambridge, MA, USA, 2004.

[135] Moshe Y. Vardi. An automata-theoretic approach to linear temporal logic. In Banff

Higher Order Workshop, pages 238–266, 1995.

119

[136] Moshe Y. Vardi and Pierre Wolper. An automata-theoretic approach to automatic

program verification (preliminary report). In LICS, pages 332–344, 1986.

[137] H. M. W. Verbeek, Wil M. P. van der Aalst, and Arthur H. M. ter Hofstede. Verifying

workflows with cancellation regions and or-joins: An approach based on relaxed

soundness and invariants. Comput. J., 50(3):294–314, 2007.

[138] H. M. W. Verbeek, Moe Thandar Wynn, Wil M. P. van der Aalst, and Arthur

H. M. ter Hofstede. Reduction rules for reset/inhibitor nets. J. Comput. Syst. Sci.,

76(2):125–143, 2010.

[139] H.M.W. Verbeek, T. Basten, and W.M.P. van der Aalst. Diagnosing workflow

processes using woflan. THE COMPUTER JOURNAL, 44:2001, 1999.

[140] Moe Thandar Wynn, H. M. W. Verbeek, Wil M. P. van der Aalst, Arthur H. M.

ter Hofstede, and David Edmond. Business process verification - finally a reality!

Business Proc. Manag. Journal, 15(1):74–92, 2009.

[141] Moe Thandar Wynn, H. M. W. (Eric) Verbeek, Wil M. P. van der Aalst, Arthur

H. M. ter Hofstede, and David Edmond. Reduction rules for YAWL workflows with

cancellation regions and or-joins. Information & Software Technology, 51(6):1010–

1020, 2009.

[142] PengCheng Xiong, Yushun Fan, and MengChu Zhou. A petri net approach to

analysis and composition of web services. IEEE Transactions on Systems, Man,

and Cybernetics, Part A, pages 376–387, 2010.

[143] Jian Yang and Mike P. Papazoglou. Service components for managing the life-cycle

of service compositions. Inf. Syst., 29(2):97–125, April 2004.

[144] Dongsong Zhang. Web services composition for process management in e-business.

Journal of Computer Information Systems XLV, pages 83–91, 2004.

120

