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Résumé

L’apprentissage par transfert consiste à utiliser un jeu de tâches pour in-

fluencer l’apprentissage et améliorer les performances sur une autre tâche.

Cependant, ce paradigme d’apprentissage peut en réalité gêner les perfor-

mances si les tâches (sources et cibles) sont trop dissemblables. Un défi

pour l’apprentissage par transfert est donc de développer des approches

qui détectent et évitent le transfert négatif des connaissances utilisant très

peu d’informations sur la tâche cible. Un cas particulier de ce type d’appren-

tissage est l’adaptation de domaine. C’est une situation où les tâches

sources et cibles sont identiques mais dans des domaines différents. Dans

cette thèse, nous proposons des approches adaptatives basées sur la factori-

sation matricielle non-négative permettant ainsi de trouver une représen-

tation adéquate des données pour ce type d’apprentissage. En effet, une

représentation utile rend généralement la structure latente dans les données

explicite, et réduit souvent la dimensionnalité des données afin que d’autres

methods de calcul puissent être appliquées. Nos contributions dans cette

these s’articulent autour de deux dimensions complémentaires : théorique

et pratique.

Tout d’abord, nous avons proposé deux méthodes différentes pour résoudre

le problème de l’apprentissage par transfert non supervisé basé sur des

techniques de factorisation matricielle non-négative. La première méthode

utilise une procédure d’optimisation itérative qui vise à aligner les matrices

de noyaux calculées sur les bases des données provenant de deux tâches.

La seconde représente une approche linéaire qui tente de découvrir un

plongement pour les deux tâches minimisant la distance entre les distri-

butions de probabilité correspondantes, tout en préservant la propriété de

positivité.



Nous avons également proposé un cadre théorique basé sur les plonge-

ments Hilbert-Schmidt. Cela nous permet d’améliorer les résultats théori-

ques de l’adaptation au domaine, en introduisant une mesure de distance

naturelle et intuitive avec de fortes garanties de calcul pour son estima-

tion. Les résultats proposés combinent l’étanchéité des bornes de la théorie

d’apprentissage de Rademacher tout en assurant l’estimation efficace de

ses facteurs clés.

Les contributions théoriques et algorithmiques proposées ont été évaluées

sur un ensemble de données de référence dans le domaine avec des résultats

prometteurs.



Abstract

The ability of a human being to extrapolate previously gained knowledge

to other domains inspired a new family of methods in machine learning

called transfer learning. Transfer learning is often based on the assumption

that objects in both target and source domains share some common feature

and/or data space. If this assumption is false, most of transfer learning

algorithms are likely to fail. In this thesis we propose to investigate the

problem of transfer learning from both theoretical and applicational points

of view.

First, we present two different methods to solve the problem of unsuper-

vised transfer learning based on Non-negative matrix factorization tech-

niques. First one proceeds using an iterative optimization procedure that

aims at aligning the kernel matrices calculated based on the data from two

tasks. Second one represents a linear approach that aims at discovering

an embedding for two tasks that decreases the distance between the cor-

responding probability distributions while preserving the non-negativity

property.

We also introduce a theoretical framework based on the Hilbert-Schmidt

embeddings that allows us to improve the current state-of-the-art theo-

retical results on transfer learning by introducing a natural and intuitive

distance measure with strong computational guarantees for its estimation.

The proposed results combine the tightness of data-dependent bounds de-

rived from Rademacher learning theory while ensuring the efficient esti-

mation of its key factors.

Both theoretical contributions and the proposed methods were evaluated

on a benchmark computer vision data set with promising results. Finally,



we believe that the research direction chosen in this thesis may have fruit-

ful implications in the nearest future.
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Avant Propos

L’apprentissage par transfert est le processus par lequel un individu utilise un ap-

prentissage acquis dans une situation pour l’appliquer à une autre situation. Le transfert

est la capacité à utiliser nos expériences antérieures dans de nouveaux apprentissages.

Ce paradigme d’apprentissage par transfert, consiste donc à utiliser un jeu de tâches

pour influencer l’apprentissage et améliorer les performances sur une autre tâche.

Cependant, l’apprentissage par transfert peut en réalité gêner les performances si les

tâches sont trop dissemblables. Un défi pour l’apprentissage par transfert est donc

de développer des approches qui détectent et évitent le transfert négatif des connais-

sances utilisant très peu d’informations sur la tâche cible. Dans cette thèse nous nous

intéressons aussi à un cas particulier de l’apprentissage par transfert : l’adaptation de

domaine. C’est une situation où les tâches sources et cibles sont identiques mais dans

des domaines différents.

L’apprentissage par transfert implique deux problèmes corrélés, ayant comme but

l’utilisation de la connaissance acquise sur un jeu de tâches et améliorer les perfor-

mances pour une autre tâche liée. Particulièrement, l’apprentissage par transfert d’une

certaine tâche cible - la tâche sur laquelle les performances sont mesurées - est très

dépendant de l’apprentissage d’un ou des tâches auxiliaires. Par exemple, les athlètes

se servent de l’apprentissage par transfert quand ils pratiquent des activités auxiliaires

afin de s’améliorer dans leur activité principale plus compétitive.

L’apprentissage par transfert est un processus cognitif qui peut avoir des effets posi-

tifs ou négatifs sur les conduites à venir. Autrement dit : facilitation d’un apprentissage

en fonction d’un apprentissage antérieur. Il y a trois catégories typiques :

• Le transfert bilatéral : la capacité de faire avec une main ce qui a été appris avec

l’autre. Exemple : un jongleur qui apprend à jongler par la main gauche aura par

la suite plus de facilité à apprendre à jongler par la main droite.

• Apprendre à apprendre : d’une manière générale plus on apprend une tache d’un



même types plus vite on apprend, c’est ce qu’on retrouve dans la vie courante,

le premier jeu de vidéo facilitera les suivants.

• Le transfert négatif : en effet un premier apprentissage peut gêner le suivant, par

exemple si on a appris à taper sur un clavier d’ordinateur à deux doigts on aura

du mal par la suite à apprendre à taper avec les dix doigts.

Le défi clé de l’apprentissage par transfert est d’identifier quelle connaissance doit être

transférée et comment ?

Par ailleurs, un problème fondamental dans de nombreuses tâches en apprentissage

artificiel est de trouver une représentation adéquate des données. Une représentation

utile rend généralement la structure latente dans les données explicite, et réduit sou-

vent la dimensionnalité des données afin que d’autres méthodes de calcul puissent être

appliquées. La factorisation matricielle est une approche couramment utilisée pour la

compréhension de la structure latente de la matrice observée des données pour diverses

applications. Ces méthodes matricielles ont suscité récemment une attention croissante

en raison de leur élégance mathématique et les résultats empiriques encourageants pour

une variété d’applications. L’objectif de cette thèse, est donc de développer et d’étudier

des méthodes de factorisation matricielle pour trouver une représentation adéquate

des données dans le cadre de l’apprentissage par transfert et l’adaptation au domaine,

d’identifier quelle connaissance doit être transférée et comment ? et d’exhiber les

avantages et les inconvénients de ce paradigme d’apprentissage automatique avec des

illustrations sur des données réelles.

Cette thèse est organisée en cinq principaux chapitres encadrés par une introduction

et des conclusions et annexes. Le contenu de chaque chapitre est résumé ci-dessous :

Chapitre 2. Dans ce chapitre, nous introduisons les notions de base relatives à la

famille des méthodes d’apprentissage artificiel appelée la factorisation matricielle non-

négative (Non-negative Matrix Factorization: NMF). Nous décrivons les extensions et

modifications du modèle de base de la NMF et donnons une motivation pour leur appli-

cation éventuelle dans le contexte de la classification automatique (clustering). Nous

présentons également les règles de mise à jour multiplicatives pour chaque algorithme

NMF et nous montrons comment on peut prouver théoriquement qu’ils convergent

vers un optimum local. Enfin, nous donnons deux exemples complets qui démontrent

clairement la signification de chaque facteur découlant de la NMF sur deux ensembles



de données.

Chapitre 3. Dans ce chapitre, nous donnons d’abord une définition du problème

de l’apprentissage par transfert et expliquons comment nous classons les méthodes

d’apprentissage par transfert. Après la catégorisation proposée, nous décrivons les

méthodes d’état de l’art et les résultats théoriques qui ont été proposés par différents

chercheurs pour résoudre ce problème. Nous présentons également dans une sec-

tion distincte la description détaillée des méthodes d’apprentissage par transfert qui

se basent sur la NMF. Enfin, nous introduisons un ensemble de données que nous util-

isons pour l’évaluation des performances des approaches proposées dans les chapitres

suivants.

Chapitre 4. Dans ce chapitre, nous proposons une approche d’apprentissage par

transfert non supervisé qui minimise de manière itérative la distance entre les distri-

butions de probabilités source et cible en optimisant l’alignement des noyaux (Kernel

target alignment) calculés sur les jeux de données initiaux. Nous montrons que cette

procédure est adaptée à l’apprentissage par transfert en la rapportant à la maximisa-

tion du critère d’indépendance de Hilbert-Schmidt (HSIC) et de l’information mutuelle

quadratique (QMI). Nous évaluons notre méthode sur des ensembles de données réelles

de référence et montrons qu’elle peut surpasser certaines méthodes d’apprentissage par

transfert existantes.

Chapitre 5. Dans ce chapitre, nous présentons une nouvelle méthode pour l’adapta-

tion de domaine non supervisée qui vise à aligner deux domaines (distributions de

probabilities) en utilisant un ensemble commun de vecteurs de base dérivés de vecteurs

propres de chaque domaine. Nous utilisons des techniques de factorisation matricielle

non-négative pour générer un plongement non-négatif qui minimise la distance entre

les projections des données source et cible. Nous présentons une justification théorique

de notre approche en montrant la cohérence de la fonction de similarité définie en

utilisant la projection obtenue. Nous validons notre approche sur des ensembles de

données de référence et montrons qu’elle surpasse plusieurs méthodes d’adaptation de

domaine.

Chapitre 6. Dans ce chapitre, nous commenons avec une présentation des résultats

théoriques pour l’adaptation de domaine. Ces résultats théoriques comprennent les

bornes de généralisation de Vapnik-Chervonenkis et celles issues de la théorie de

l’apprentissage de Rademacher. Nous présentons des restrictions principales de deux



paradigmes et montrons comment on peut obtenir des bornes plus intéressantes en

utilisant les plongements de Hilbert-Schmidt. Les résultats présentés remplacent les

mesures de divergence proposées dans des travaux antérieurs par une distance naturelle

et intuitive appelée la distance maximale moyenne (Maximum mean discrepancy) qui

bénéficie de l’existence d’un estimateur en temps linéaire.

Chapitre 7. Dans ce chapitre, nous résumons les principaux résultats présentés

dans cette thèse. Nous discutons également les perspectives d’avenir possibles pour

chacune des contributions proposées, incluant des versions multi-sources des métho-

des d’apprentissage par transfert non supervisé des deux derniers chapitres et les tests

d’hypothèses statistiques pour les contributions théoriques.



Chapter 1

Introduction

Over the past two decades, the majority of research in the area of data mining was

concentrated around a task of supervised classification. A large number of techniques

has been developed to tackle this problem to be further applied successfully in many

real-world applications. What’s more, an extensive theoretical study was conducted

to prove theoretical guarantees of supervised learning and to show under which condi-

tions it succeeds. A pursuit for even more efficient supervised algorithms has finally led

to a human-like performance of Machine Learning in such tasks as automatic speech

recognition, image classification and natural language processing. Altogether, this al-

lowed machine learning to become a powerful tool for data analysis that, nowadays, is

widely integrated into our lives. For instance, most of the page-ranking algorithms use

extensively classification techniques in order to define the relevancy of a given page

based on its content, a link structure and a visiting score; web stores provide us with

a list of additional items that we would likely want to buy based on our preferences

and the overall customers history; finally, the automatic translation systems usually

proceed by using samples of translations to find the most relevant match.

In order to have a good performance, these models must be trained on huge amounts

of labeled data that represent adequately the underlying probability distribution. In

some cases, however, reliably labeled data cannot be collected. This issue has led to a

new branch of data mining that was called semi-supervised machine learning. In semi-

supervised algorithms, one tries to make use of a large amount of unlabeled data in

order to discover general patterns that are used further in combination with small num-

ber of labeled instances to build a robust classifier. The vast family of semi-supervised
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algorithms has found its application in image and text classification, areas where it is

relatively easy to automatically obtain a large amount of data but hard to label them.

Finally, semi-supervised learning mimics well how a human being learns, i.e., a small

number of direct instructions are further combined with a large number of unlabeled

observations.

However, the algorithms that correspond to both supervised and semi-supervised

learning work well only under a common assumption: the training and test data are

from the same feature space and the same distribution. When the distribution changes,

most statistical models must be rebuilt from new collected data that can be expensive

or even impossible for some applications. Therefore it became necessary to develop

approaches that reduce the need and the effort of collecting new labeling samples by

combining data from related areas to further use them in the learning procedures. This,

in its turn, gave rise to a new family of machine learning algorithms called transfer

learning. For example, applying a classifier trained on the images from Amazon on-

line merchants to web camera photos could be beneficial but only in case if the shift

between domains has been taken into account. Transfer learning involves two inter-

related problems, aiming at learning a robust classifier in source domain hoping that

it will perform well in the related target domain by reducing the discrepancy between

their distributions. Contrary to supervised and semi-supervised paradigms, transfer

learning reflects the reality as it shows what actually happens when a system trained

under perfect conditions on preprocessed data faces the real-world applications’ sam-

ple.

Typical example that illustrate the main idea of transfer learning and its difference

from traditional machine learning is sentiment classification. In general, the task of

sentiment classification consists in distinguishing between positive and negative re-

views based on the corresponding characteristic words. These characteristic words,

however, are usually domain dependent, i.e., for a positive review written for a book

we would expect to see words like “intriguing”, “outstanding” and “interesting” while

a positive review on a shoes brand would rather contain words like “comfortable”,

“cozy” and “soft”. Obviously, applying a classifier learned on book reviews directly

to shoes brand reviews will lead to a poor classification accuracy. In this case, transfer

learning algorithms can be used in order to match the corresponding terms from both

domains.
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Another important motivation for ongoing interest in transfer learning is its po-

tential to become a vital tool for building human-like Artificial Intelligence systems.

Contrary to traditional machine learning, transfer learning gives learning systems an

ability to generalize knowledge across different domains and thus, to assure the au-

tonomous behavior of a learning system in time. All these factors contribute to current

high research interest in transfer learning that is confirmed by numerous workshops

and dedicated tutorials at top machine learning venues.

Thesis structure

The rest of this thesis is organized into 7 chapters. The main contents of each chapter

are summarized below:

Chapter 2. In this chapter, we introduce basis notions related to the family of ma-

chine learning methods called Non-negative matrix factorization (NMF). We describe

the extensions and modifications of the simplest form of NMF and give a motivation

for their eventual application in context of clustering. We also present multiplicative

update rules for each NMF algorithm and show how one can prove theoretically that

they converge to a local optima. Finally, we give two comprehensive examples that

demonstrate clearly the meaning of each factor arising from NMF on both artificial

and real-world data sets.

Chapter 3. In this chapter, we first give a definition of the transfer learning prob-

lem and explain how we categorize the transfer learning methods. Following the pro-

posed categorization, we describe the state-of-the-art methods and theoretical results

that were proposed by machine learning scientists to tackle this problem. We also

present in a separate section the detailed description of the state-of-the-art transfer

learning methods that make use of NMF to perform the transfer of knowledge. Fi-

nally, we introduce a benchmark computer vision data set that we use for algorithm’s

performance evaluation further in this thesis.

Chapter 4. In this chapter, we propose a simple and intuitive unsupervised trans-

fer learning approach that minimizes iteratively the distance between source and target

task distributions by optimizing the kernel target alignment (KTA). We show that this

procedure is suitable for transfer learning by relating it to Hilbert-Schmidt Indepen-

dence Criterion (HSIC) and Quadratic Mutual Information (QMI) maximization. We
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run our method on benchmark computer vision data sets and show that it can outper-

form some state-of-the-art transfer learning methods.

Chapter 5. In this chapter, we present a new method for fully unsupervised do-

main adaptation that seeks to align two domains using a shared set of basis vectors

derived from eigenvectors of each domain. We use non-negative matrix factorization

(NMF) techniques to generate a non-negative embedding that minimizes the distance

between projections of source and target data. We present a theoretical justification for

our approach by showing the consistency of the similarity function defined using the

obtained embedding. We validate our approach on benchmark data sets and show that

it outperforms several state-of-the-art domain adaptation methods.

Chapter 6. In this chapter, we start with a description of theoretical results for a

special case of transfer learning called domain adaptation. These theoretical results in-

clude Vapnik-Chervonenkis generalization bounds and Rademacher complexity learn-

ing bounds. We outline two main restrictions of both paradigms and show how one

can combine data-dependent Rademacher bounds with the original ones using Hilbert-

Schmidt embeddings of probability functions. The proposed results replace the di-

vergence distances from the prior work on domain adaptation theory by a natural and

intuitive Maximum Mean Discrepancy (MMD) distance that enjoys the existence of a

linear time estimator for its quadratic empirical counterpart.

Chapter 7. In this chapter, we summarize the main results presented in this thesis.

We also discuss possible future perspectives for each of the proposed contributions.

They include multi-source versions of the unsupervised transfer learning methods from

last two chapters and statistical two-sample test for the third one.
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Chapter 2

Learning with Non-negative Matrix

Factorization
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2.1 Introduction

Clustering is a well-known machine learning technique used for unsupervised classi-

fication of patterns (observations, data items or feature vectors) into groups of similar

objects. The groups given by a clustering algorithm are called “clusters”, each cluster

consists of objects that are similar between themselves but different from objects in

other clusters. There are three main types of machine learning algorithms:

• supervised learning (when data is labeled in both training and test sets);

• semi-supervised learning (data is labeled only in small training test);

• unsupervised learning (no labeled data available).

Clustering is usually associated with unsupervised learning. Unsupervised learning

itself is extremely important setting of machine learning as it occurs in numerous real-

world applications. Main reasons that show why unsupervised learning can prove ben-

eficial are:

• labeling a set of objects manually can be hard or even impossible on large

amounts of data;

• it can be used to classify a huge amount of unlabeled data to further label it

manually;

• it can be used to find a set of variables that can be useful for further categoriza-

tion.

There exists numerous unsupervised learning methods that were applied in many con-

texts and by researchers in many disciplines. Typical applications of clustering are:

statistics [Arabie, 1996], pattern recognition [Duda et al., 2000], image segmentation

and computer vision [Jain et al., 1999], multivariate statistical estimation [Scott, 1992].

Clustering is also widely used for data compression in image processing, which is also

known as vector quantization [Gersho and Gray, 1991]. An exhaustive survey about

clustering methods can be found in [Han and Kamber, 2000].

There exist lots of well-known clustering algorithms, namely: k-means, mixture

models, hierarchical clustering, non-negative matrix factorization etc. Among all the
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methods used for clustering we will discuss the one called Non-negative matrix factor-

ization (NMF).

NMF is a group of algorithms that aims to factorize a given matrix into (usually)

two matrices where all matrices involved into factorization have no negative elements.

This non-negativity makes the resulting matrices easier to interpret. We consider one

of the matrices as a matrix containing the prototypes of a data set and the other one as

a data partition matrix. Since this optimization problem is not convex in general, it is

commonly approximated numerically.

In this chapter, we introduce basic notions related to NMF and describe some of

its extensions and modifications. We also present multiplicative update rules for each

NMF algorithm and show how one can prove theoretically that they converge to a

local optima. Finally, we give two comprehensive examples that demonstrate clearly

the meaning of each factor arising from NMF for both artificial and real-world data

sets.

2.2 Standard and Semi- NMF

A standard NMF [Lee and Seung, 1999] seeks the following decomposition:

X ≃ FGT , X ∈ Rm×n, F ∈ Rm×k, G ∈ Rn×k

X,F,G ≥ 0,

where

• X is an input data matrix;

• columns of F can be considered as basis vectors;

• columns of G are considered as cluster assignments for each data object;

• k is the desired number of clusters.

Standard NMF can be represented as a following optimization problem:

min
F,G≥0

∥
∥X − FGT

∥
∥
2

(·) ,
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where (·) is an arbitrary measure of divergence.

Multiplicative update rules that are usually used to solve NMF related problems

were first introduced in [Lee and Seung, 1999]. To ensure the non-negativity of the

resulting factors and keeping in mind that initial matrices are also non-negative, multi-

plicative update rules of NMF can be calculated using the following general approach:

Z = Z ⊛

[
∂J
∂X

]

−
[
∂J
∂Z

]

+

,

where Z represents all the variables involved in the cost function,
[
∂J
∂Z

]

+
stands for

positive part of gradient of the cost function J and
[
∂J
∂Z

]

− for negative part. This leads

to the following update rules:

F = F ⊛
XGT

FGGT
,

G = G⊛
F TX

F TFG
.

Here ⊛ and / stand for entrywise multiplication and division, respectively.

When the data matrix is unconstrained (i.e., it may have mixed signs), [Ding et al.,

2010b] introduced Semi-NMF - a factorization in which we restrict G to be non-

negative while placing no restriction on the signs of F . Multiplicative update rules

for Semi-NMF have the following form:

F = XG(GTG)−1,

G = G⊛

√

(XTF )+ +G(F TF )−

(XTF )− +G(F TF )+
,

where A+ = 1
2
(|A|+ A) and A− = 1

2
(|A| − A).

2.3 Convex NMF and Kernel NMF

We usually suppose that “good” features should have a low distortion w.r.t. the initial

data as in this case they are assumed to capture the general patterns of the underlying
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distribution. To this end, the Convex NMF (C-NMF) was proposed in [Ding et al.,

2010b]. To develop C-NMF , we consider the factorization of the following form:

X ≃ FGT = XWGT , X ∈ Rn×m,W ∈ Rm×k, G ∈ Rm×k

X,W,G ≥ 0,

where the column vectors of U lie within the column space of X:

F = XW.

In this formulation, the authors force basis vectors to represent linear combinations of

initial data points weighted based on the columns of W . At the same time, adding a

new factor in the NMF model increases the sparsity of the obtained solution.

The natural generalization of C-NMF is Kernel NMF (K-NMF) [Zhang and Chen,

2006]. To “kernelize” C-NMF, we consider a mapping φ which maps each vector xi to

a higher dimensional feature space, such that:

φ : X → φ(X) = (φ(x1), φ(x1), ..., φ(xn)) ∈ Rn×m.

We obtain the factorization of the following form:

φ(X) ≃ φ(X)WGT , φ(X) ∈ Rn×m,W ∈ Rm×k, G ∈ Rm×k.

Each kernel can be described by its Gram matrix. We call a Gram matrix of a given

kernel k some symmetric positive-semidefinite matrix K. Subsequently the kernel is

an inner-product function defined as:

K = φ(X)φ(X)T ,

φ(X)φ(X)T ≃ φ(X)φ(X)TWGT ,

φ(X) ∈ Rn×m,W ∈ Rm×k, G ∈ Rm×k.
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Finally, K-NMF is is defined as follows:

K ≃ KWGT , K ∈ Rn×n,W ∈ Rn×k, G ∈ Rn×k.

An important advantage of K-NMF compared to Standard NMF and C-NMF is that it

can deal not only with attribute-value data but also relational data that can be beneficial

if the clusters are well-separable in a nonlinear Hilbert space.

Multiplicative update rules for both C-NMF and K-NMF1 have the following form:

W = W ⊛

√

Y +G+ Y −WGTG

Y −G+ Y +WGTG
,

G = G⊛

√

Y +W +GW TY −W

Y −W +GW TY +W
,

where Y = XXT , Y + = 1
2
(|Y |+ Y ) and Y − = 1

2
(|Y | − Y ).

2.4 Uni- and Bi-Orthogonal NMF

Different kinds of constraints can be imposed on cluster’s properties in order to achieve

better clustering results. One of the most common constraints that is used for cluster-

ing is orthogonality of subspaces of clusters. Indeed, imposing orthogonality on the

subspaces of clusters means that we try to find clusters that are as different as possi-

ble. In our case, orthogonality constraints imposed on matrices obtained with NMF is

considered to be useful as it results in unique factorization and has a good clustering

interpretation.

The idea of Uni- and Bi-Orthogonal NMF was first described in [Ding et al., 2010b]

where it was claimed to increase the quality of clustering and provide an unique non-

negative matrix factorization (which is rare for this type of matrix factorizations). In

[Ding et al., 2010b], authors proposed a novel approach for solving NMF problem

with orthogonality constraints and showed that their update rules have a non-increasing

property even though there was no robust proof of convergence. In [Mirzal, 2010], au-

thors imposed orthogonality on matrices of Tri-NMF by adding supplementary terms

directly into the cost-function instead of solving it as a constrained optimization prob-

1Matrix X in case of K-NMF is replaced with a Gram matrix K.
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lem (that is the case for [Ding et al., 2010b]). Their approach has a robust convergence

proof and it is mainly inspired by [Lin, 2007] but with its further generalization for

matrices that have auxiliary constraints with mutually dependency between columns

and/or rows.

The Bi-Orthogonal NMF (BONMF) seeks the following decomposition:

X ≃ FSGT ,

X ∈ Rn×m, F ∈ Rn×k, S ∈ Rk×l, G ∈ Rm×l,

F TF = I,GTG = I,X, F, S,G ≥ 0.

The multiplicative update rules for matrices F , G and S have the following form:

F = F ⊛
XGST

FF TXGST
,

S = G⊛
F TXG

F TFSGTG
,

G = G⊛
XTFS

GGTXTFS
.

The Uni-Orthogonal NMF (UONMF) imposes orthogonality constraint on either columns

of F or rows of G. It is clear that this variation is just a special case of BONMF with

S = I .

The authors of Orthogonal NMF mentioned that the full orthogonality of matrices

F and G cannot be achieved using their algorithm because it uses an approximate so-

lution for non diagonal elements of the Lagrange multipliers matrix. So, their solution

of this optimization problem does not result in a set of fully orthonormalized vectors.

2.5 Symmetric NMF

The Symmetric NMF (Sym-NMF) [Ding and He, 2005] of the similarity matrix A is

formulated as following optimization problem:

A ≃ GGT , A ∈ Rn×n, G ∈ Rn×k
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where A is a similarity matrix calculated based on an arbitrary similarity measure, n

is a number of objects, k is the number of clusters requested. Compared to NMF,

Sym-NMF is more flexible in terms of choosing similarities for the data points. Any

similarity measure that well describes the inherent cluster structure can be chosen. In

fact, the formulation of NMF can be related to Sym-NMF when A = XTX . This

means that NMF implicitly chooses inner products as the similarity measure, which

might not be suitable to distinguish different clusters.

Multiplicative update rule for matrix G in Sym-NMF has the following form:

G = G⊛

(

0.5Jnk + 0.5
XG

GGTG

)

,

where Jnk is an all-ones matrix of size n× k.

2.6 Multilayer NMF

In order to improve performance of the NMF, especially for illconditioned and badly

scaled data and also to reduce risk of getting stuck in local minima of a cost function,

a simple hierarchical and multistage procedure to perform a sequential decomposition

of non-negative matrices was developed in [Cichocki and Zdunek, 2007].

In the first step, a basic decomposition

X ≃ F1G1

is performed using any available NMF algorithm. In the second stage, the results

obtained from the first stage are used to perform the similar decomposition:

G1 ≃ F2G2

using the same or different update rules, and so on. The decomposition takes into ac-

count only the components obtained at the previous step. The process can be repeated

arbitrary many times until some stopping criteria is satisfied. In each step, gradual

improvements of the performance are usually obtained. Thus, the Multilayer NMF
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(MNMF) is of the following form:

X ≃ F1F2...FLGL,

with the basis matrix defined as F = F1F2...FL where F1 ∈ Rn×k and {Fi}i=2...L ∈
Rk×k. Physically, this means that we build up a system that has many layers or cascade

connection of L mixing subsystems.

In Appendix A, we present our original contribution on Multilayer NMF.

2.7 Non-increasing property of update rules

Proving that the objective function of a given NMF problem under the proposed up-

date rules is non-increasing can be usually achieved by introducing an auxiliary func-

tion similar to Expectation-Maximization algorithm. We now give a definition of an

auxiliary function.

Definition 1. G(h, h′) is an auxiliary function of F (h) if the conditions

G(h, h′) ≥ F (h), G(h, h) = F (h)

are satisfied.

Auxiliary function is very useful as it allows to assure the non-increasing property

of the update rules based on the following lemma.

Lemma 2.1. If G is an auxiliary function, then F is non-increasing under the update

ht+1 = argmin
h
G(h;ht).

Proof of this lemma can be found in [Lee and Seung, 1999]. The graphical repre-

sentation of the concept of an auxiliary function is given in Figure 2.1.
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Figure 2.1: Graphical representation of Theorem 2.1 (Figure depicted from [Lee and

Seung, 1999]).

2.8 Examples

We will now show the results of NMF in two cases: first, we apply it to a randomly

generated data set; second, we use it for selected images from MNIST [LeCun and

Cortes, 2010] data set.

Example 1. Let us consider a 7× 5 matrix X:

X =











0.1394 0.8510 0.3727 0.4064 0.1499 0.5771 0.6410

1.4951 1.5249 1.8003 0.4375 0.5530 0.1808 0.5337

0.8679 0.4027 0.7757 1.5698 1.8955 1.9402 1.2940

0.3662 0.5031 0.3166 0.3039 0.3346 0.4824 0.5104

0.4071 0.7517 0.6138 1.9229 1.1510 1.9567 1.3429











where first three columns were generated based on a vector

(

0 1 0 0 0
)

and the last four based on a vector

(

0 0 1 0 1
)

.

by adding noise to them.
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Applying Standard NMF to X gives us the following matrices F and G:

F =
















0.2185 0.0546

0.2980 0.0518

0.2720 0.0576

0.0494 0.2158

0.0652 0.1783

0.0087 0.2633

0.0882 0.1785
















G =

(

1.3920 5.9936 0.8937 1.1800 0.7422

1.7456 0.5316 7.8521 1.6372 7.4038

)

It is clear that first three rows of matrix G have bigger values in first column and

the last four in the second one. It indicates that columns from 1 to 3 form one cluster

and the rest another one.

Now let us consider F . We can normalize matrix F to see clearly that vectors found

by Standard NMF are the basis vectors used to generate the corresponding clusters.

Example 2. Let us consider a 10 × 784 matrix X presented in Figure 2.2 which

has rescaled 28× 28 images of handwritten numbers 4 and 5 as its lines.

Figure 2.2: Images from MNIST data set

Applying Standard NMF to X gives us the following matrice G:
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G =
























0.2626 0.0001

0.1369 0.0946

0.4607 0.0001

0.0680 0.0689

0.0708 0.0931

0.0001 0.1539

0.0002 0.1481

0.0003 0.1428

0.0001 0.1315

0.0001 0.1670
























We can see that this time the accuracy of clustering decreased because of two images

of the number four that were misclassified. We can explain this by the fact that the

quality of those two images is quite low and NMF was not able to distinguish 4 from

5 even though the values in fourth and fifth lines are pretty close.

Matrix F represents two images that can be considered as the basis vectors of this

data set. Indeed, in Figure 2.3 we see two clear images of 4 and 5.

Figure 2.3: Basis vectors from matrix H

2.9 Conclusions

In this chapter, we presented a family of clustering methods based on NMF, the so-

lutions to their corresponding optimization problems, their advantages and inconve-
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niences. These algorithms enjoy local optima convergence which can be proved using

a general approach based on the notion of the auxiliary functions. From the examples

of NMF being applied to both artificial and real-world data sets, we can deduce the

following:

• NMF can be efficient for dictionary learning due to its capability of reducing the

dimensionality of the initial space while preserving the intrinsic nature of data;

• the presented methods give a vast choice of possibilities w.r.t. the eventual ap-

plications as they include linear, non-linear, hierarchical and spectral models;

• deriving multiplicative update rules is rather straightforward so as their imple-

mentation.
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Chapter 3

Transfer learning

22



3.1 Introduction

Transfer learning is a widely known technique that was generally inspired by the ability

of a human being to detect and to use previously gained knowledge in one area for

efficient learning in another. In general, the definition of transfer learning was given in

[Pan and Yang, 2010]1 as:

Definition 2. Given a source domain DS and a learning task TS , a target domain DT

and a target task TT , transfer learning aims to help improve the learning of the target

predictive function fT (·) in DT using knowledge gained from DS and TS , where DS 6=
DT or TS 6= TT .

In this definition the notion of a domain is given by a pair of objects D = {X, P (X)}
where X represents the feature space and P (X) stands for marginal distribution of

X = {x1, x2, ..., xn} ∈ X. For a given domain D = {X, P (X)}, the task is defined

as T = {Y, f(·)} where Y is a label space and f(·) is an objective predictive function

usually written as a conditional probability of labels with respect to data instances, i.e.,

f(x) = P (y|x). That being said, the condition DS 6= DT implies either XS 6= XT

or PS(X) 6= PT (X). The same thing for a task, TS 6= TT implies either YS 6= YT or

PS(Y |X) 6= PT (Y |X).

We follow the above mentioned survey and categorize transfer learning algorithms

on two different levels. On the first level, we define three groups of algorithms as

follows:

• supervised or inductive transfer learning (when labeled samples are available in

target domain but there can be no labeled instances in the source one);

• semi-supervised or transductive transfer learning (labeled samples are available

only for the source learning task);

• unsupervised transfer learning (no labeled data both in source and target learning

tasks).

Then for each of the defined groups, we categorize transfer learning methods based on

the way they proceed to perform the transfer of knowledge:

1In this section we follow the survey of [Pan and Yang, 2010] and complete it with recent contribu-

tions presented at top machine learning venues in last five years.
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• instance-transfer approaches (reweightning of relevant labeled data in source do-

main to further use it in the target domain);

• feature-representation-transfer approaches (learning a shared feature representa-

tion for both domains in order to find invariant components);

• parameter-transfer approaches (imposing shared parameters or priors on source

and target domain models to further induce a transferred target model influenced

by source model through the discovered parameters);

• relational-knowledge-transfer approaches (matching relational knowledge be-

tween source and target domains and further relaxing the i.i.d. assumption in

each domain).

Figure 3.1 presents an overview of major differences between presented settings of

transfer learning.

Figure 3.1: Different settings of transfer learning (Figure depicted from [Pan and Yang,

2010].)

We also note that tasks for both inductive and transductive settings include regres-

sion and classification (due to the presence of labels in source and/or target domains)

while unsupervised setting is concentrated around clustering and dimensionality re-

duction (as there are no labels available).
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3.2 Inductive transfer learning

We first give a definition of inductive transfer learning.

Definition 3. Given a source domain DS and a learning task TS , a target domain DT

and a target task TT , inductive transfer learning aims to help improve the learning of

the target predictive function fT (·) in DT using knowledge gained from DS and TS ,

where TS 6= TT .

This transfer learning setting always assumes that labeled data are necessarily avail-

able in the target domain as it is used to induce the target predictive function. On the

other hand, according to Figure 3.1, there are two possible variations of inductive trans-

fer learning that depend on the eventual absence/presence of labels in the source do-

main. The former case can be related to multi-task learning, while the latter is usually

related to self-taught learning.

3.2.1 Transferring knowledge of instances

The most straightforward and intuitive way for a transfer learning approach to proceed

is to use relevant instances from source domain directly in combination with target

learning samples.

One of the first methods that addressed this problem was presented in [Wu and

Dietterich, 2004] where the source domain auxiliary data was used in SVM framework

to improve the classification accuracy of the target data samples. This was achieved by

introducing an additional term to the cost function of SVM (in the form of a support

vector or of an additional constraint) that takes into account weighted nearest neighbors

corresponding to auxiliary data calculated with respect to the original data instances.

[Liao et al., 2005] proposed an active learning approach that adapts a classifier

learned on labeled source data to partly unlabeled auxiliary data in the context of lo-

gistic regression. Their approach proceeds by training a classifier on weighted pairs

of labeled instances where the corresponding weights represent the mismatch between

unlabeled and labeled data.

Another way to transfer instances is to look at the conditional distributions P (yT |xT )
and P (yT |xT ) of the corresponding domains [Jiang and Zhai, 2007]. The proposed

model maximizes the adapted log-likelihood of three different components: first one
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is a weighted combination of labeled source instances multiplied by two coefficients

that were estimated from the ratio of marginal distributions and from the mismatch

of conditional distributions, respectively; second one is a combination of labeled tar-

get instances; the third one is a set of unlabeled target coefficients weighted using a

bootstrap semi-supervised optimization.

Arguably, one of the most famous instance-based inductive transfer learning ap-

proaches is TrAdaBoost [Dai et al., 2007]. TrAdaBoost is basically inspired by a fa-

mous machine learning algorithm called AdaBoost [Freund and Schapire, 1996]. The

main idea of the proposed approach is to train a base classifier on weighted source and

target data in order to further evaluate its performance on target data only. The goal

then is to update weights of the source instances based on their impact on the learning

performance, i.e., decrease weights of missclassified instances to weaken their impact

on the classification error and vice versa. The iterative procedure presented in the orig-

inal work enjoys the existence of theoretical guarantees obtained for the generalization

error on the combined data set.

Finally, some of the most recent approaches proposed to tackle this problem in-

clude [Lim et al., 2011] and [Haase et al., 2014]. The method presented in [Lim et al.,

2011] makes use of the idea that examples from the same classes can be directly bor-

rowed if they are similar. The borrowing procedure is performed by optimizing a stan-

dard binary classification loss-function multiplied by weights that define how many

examples are borrowed. This cost function is further combined with a regularization

term corresponding to sparse group lasso criterion that forces borrowed examples to

be similar to the target data.

In [Haase et al., 2014] the authors used a convex combination of source and target

errors where the former was weighted based on the ratio of the corresponding marginal

distributions. This model is further used to obtain an orthonormal basis of the trans-

ferred Active Appearance Model. An interesting point that was implemented in this

approach was to weight the source samples according to their innovation, i.e., to choose

source samples that may provide information that is not covered by target data.
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3.2.2 Transferring knowledge of feature representations

With the current success of representation learning [Bengio et al., 2013], transfer learn-

ing methods based on feature-representations witness a growing attention among re-

searchers in machine learning community. In general, the main goal of a given feature-

representation transfer approach consists in discovering a new set of features that re-

duce the discrepancy between the underlying source and target distributions while

maintaining a low classification error over a set of tasks. Multiple strategies can be

used in order to learn a new feature representation in inductive setting depending on the

eventual absence or presence of labeled data in the source domain. If labeled data are

absent, one may use unsupervised techniques to learn a shared feature representation.

Otherwise, some well-known supervised methods based on the direct minimization of

the joint loss-function can be applied.

Supervised algorithms for joint feature learning. One of the first attempts to

construct shared features for different tasks was presented in [Jebara, 2004]. The

proposed framework suggest to learn a set of features shared among different tasks

and their corresponding discriminant functions by incorporating them into a SVM-like

model. The final decision rule of the proposed approach depends on a parameter that

allows to flow heterogeneously from learning all tasks separately to a single feature

selection configuration that achieves good classification performance for all models.

Another interesting idea that was used for supervised feature construction is to find

a linear mapping that projects data from all tasks to a shared low-dimensional represen-

tation [Argyriou et al., 2007]. The proposed approach minimizes a cost function that

represents a combined sum of empirical errors corresponding to different tasks plus

a regularization term over the coefficients. The goal of the optimization procedure is

to learn a shared low-dimensional embedding for all tasks and a sparse parameter’s

matrix simultaneously. The cost function of this method takes the following form:

argmin
U,A

∑

t∈{T,S}

nt∑

i=1

L
(
yti ,
〈
at, U

Txti
〉)

+ γ‖A‖22,1

s.t. U ∈ OD.

This optimization procedure tries to find an orthogonal matrix U and regression

parameters A(at is a parameter vector related to task t) that lead to a low classifica-
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tion error over all tasks. The regularization penalty represented as a mixed ℓ1,2 norm

ensures that the obtained solution will be sparse and that the common features will

be selected for a combination of tasks. Another paper from [Argyriou et al., 2008]

presented a similar approach that makes use of a spectral regularization framework to

discover a structural matrix of a set of tasks. The authors also pointed out some ideas on

the equivalence between kernel learning and the proposed regularization framework.

This connection was further fully developed in [Rückert and Kramer, 2008] where the

same kind of reasoning was used to generate kernels that generalize well on the known

source data sets to further use them on the new target one.

In [Lee et al., 2007] authors assumed that features across of all tasks have meta-

features that describe both the properties of the feature and its potential relationship to

the prediction problem. Their relevance is defined using hyperparameters (called meta-

priors). These meta-priors are further transferred across different tasks that allows to

improve the performance even in case if the tasks have non-overlapping features.

Some recent advances in feature-based transfer learning include [Zhong and Kwok,

2012] and [Guo and Xiao, 2012]. [Zhong and Kwok, 2012] addressed a common issue

of many multi-task learning algorithms that lies in the assumption about the close

relatedness of tasks. The proposed method discovers task relationships depending on

the interactions among tasks and defines different task clusters for different features

where the number of clusters may not be specified beforehand. Their cost function is

given as follows:

min
U,V

T∑

t=1

‖y(t) −X(t)(ut + vt)‖2 + λ1‖U‖clust + λ2‖U‖2F + λ3‖V ‖2F .

It basically consists of two terms: first one minimizes the empirical squared error over

the tasks and discovers two matrices U and V representing a shared and a distinct

part of a set of tasks; second one is a regularization terms over these matrices (where

‖U‖clust is the sum of pairwise differences for elements in each row of U ). Also, the

proposed method is theoretically sound as it relies on the convex optimization problem

with proven convergence guarantees.

In [Guo and Xiao, 2012] a similar idea was used in order to perform cross-language

text classification. The proposed framework minimizes a classification error of each
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classifier in each language while penalizing the distance between the subspace repre-

sentations of parallel documents. The authors, then, applied their method successfully

to a task of machine translation where documents in each language are translated into

parallel documents in the other language to create two independent views of the text

objects in different feature spaces.

Finally, an interesting theoretical study of inductive feature-based transfer learning

based on sparse coding was presented in [Maurer et al., 2013]. The main assump-

tion of this work is that the tasks parameters can be approximated by sparse linear

combinations of the atoms of a dictionary on a high or infinite dimensional Hilbert

space. The generalization bounds presented in this paper for both multi-task and trans-

fer learning settings, allowed authors to derive a new algorithm based on sparse coding

which achieves a considerably good results compared to other state-of-the-art methods

in both settings with an increasing number of tasks.

Unsupervised algorithms for joint feature learning. Almost all feature-based

transfer learning algorithms that construct features in an unsupervised manner were

inspired by a method presented in [Raina et al., 2007]. The framework proposed in

this paper is usually called Self-taught learning as it makes use of unlabeled data in

source task to extract an overcomplete dictionary of basis vectors that will be further

refined using available labeled instances. Formally, it is a two-stage algorithm that

works as follows: at first stage it learns basis vectors b = {b1, ..., bs} using unlabeled

data X
(u)
S :

min
a,b

∑

i

‖x(u)Si
−
∑

j

ajSi
bj‖22 + β‖aSi

‖1

s.t. ‖bj‖2 ≤ 1, ∀ j ∈ 1, ..., s

then it uses them to obtain a new representation of labeled instances X
(l)
T through the

following optimization procedure

â
(l)
Ti

= argmin
aTi

‖x(u)Ti
−
∑

j

ajTi
bj‖22 + β‖aTi

‖1.

Despite its superior performance on some benchmark data sets, it should be noted that

a strong assumption about the similar modality of labeled and unlabeled samples needs

to hold, otherwise the proposed method will most likely fail. Other methods that follow
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the above mentioned algorithm include but not limited to [Raina, 2008] and [Lee et al.,

2009].

One of the most recent results proposed for this paradigm was presented in [Wang

et al., 2013]. This paper tries to overcome an important flow of the original approach

in a very straightforward way by performing dictionary learning from both labeled

and unlabeled data simultaneously. The presented method was evaluated on famous

computer vision benchmarks and proved to be efficient when the size of the dictionary

was chosen appropriately.

3.2.3 Other inductive transfer learning methods

Two other types of inductive transfer learning algorithms are parameter-based and rela-

tional transfer learning. In the following paragraph we will only make a brief overview

of the above mentioned algorithms as they are out of the scope of this thesis.

Transferring knowledge of parameters. Parameter-based transfer learning meth-

ods usually assume that there exists a set of shared parameters or prior distribution of

hyperparameters for individual models that can be used in multi-task setting to improve

simultaneously the performance of both source and target tasks. This inductive trans-

fer learning setting is quite similar to feature-based and instance-based frameworks as

it essentially tries to use the obtained parameters to learn a new feature representation

or to reweight instances from source domain to further use them in combination with

target task data.

Arguably the most common way to transfer parameters is to use Gaussian Pro-

cesses (GP) with a shared prior over multiple tasks. First work on this matter, presented

in [Lawrence and Platt, 2004], considers learning parameters of a GP over multiple

tasks with the same GP prior. In [Schwaighofer et al., 2005] GP approach is combined

with hierarchical Bayesian framework. Finally, in [Bonilla et al., 2008] GP prior is

used to model inter-tasks dependencies using a free-form covariance matrix.

Recently, [Srivastava and Salakhutdinov, 2013] proposed a new interesting ap-

proach for parameter-based transfer learning that uses tree-based priors combined with

Deep Neural Networks (DNN). The proposed approach benefits from the discrimina-

tive power of DNN that leads to an improved classification performance when eval-

uated on benchmark data sets. Another interesting point of this this paper is that
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the proposed framework works not only on fixed predefined trees but also can gen-

erate meaningful trees itself. Finally, we note that this paper is a direct extension of

[Salakhutdinov et al., 2011a] and [Salakhutdinov et al., 2011b].

Another way to transfer parameters is to combine multiple models learned in source

domain in order to use them further on target task. In [Gao et al., 2008] the combined

model is defined through a weightning procedure where the corresponding weights are

defined based on the predictive power of a given model w.r.t. the target task. Similar

adaptive model-based approach was also presented in [Tommasi et al., 2010]. The

authors proposed a SVM-like model that is able to select and weight appropriately

prior knowledge coming from different tasks. Finally, the latter can be seen as an

extension of [Evgeniou and Pontil, 2004] where SVM parameters of source and target

tasks are assumed to be composed of a shared and a domain-specific parts. Then,

the authors proposed a regularization framework that learns both shared and domain-

specific parameters simultaneously.

Last point that we would like to discuss here is a theoretical analysis of parameter-

based transfer learning. PAC-Bayesian analysis of parameter-based transfer learning

in the lifelong learning setting was presented in [Pentina and Lampert, 2014]. Lifelong

learning, first introduced in [Baxter, 2000], is a new promising research direction in

machine learning that describes a situation where the goal is to transfer information to

tasks for which no data have been observed so far. Results presented in this paper show

that multitask risk is bounded by the empirical multitask risk plus two terms where the

first one captures the divergence between the hyperprior and the hyperposterior distri-

butions while the second one is a sum of divergences between i-th task hyperposterior

and the hyperprior. This result is further applied to show how one can derive efficient

algorithms for parameters transfer learning setting.

Transferring relational knowledge. The relational-knowledge transfer approach

is an inductive transfer learning paradigm that arises when transfer learning problem is

defined on relational domains and the corresponding data drawn from source and target

tasks are not independent and identically distributed (i.i.d.) and thus can be represented

by multiple relations.

First approach that applied transfer learning to relational domains was presented

in [Mihalkova et al., 2007]. The authors used Markov Logic Networks (MLNs) to de-

fine mappings between predicates of source and target domains in order to use them
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further to transfer clauses. Each clause has a corresponding weight that one needs

to adapt before transferring source MLN to target domain. As an example, we may

consider two domains where one represents individuals and their relationships in an

academic department while the other one models cinema industry based on Interna-

tional Movie Database (IMDB). Obviously, predicate mappings can be established as

directors play the same role as professors when related to actors and students, respec-

tively. The proposed two-stage algorithm is known as TAMAR. Its further extension to

single-entity-centered setting was presented in [Mihalkova and Mooney] where only

one instance in target domain is available.

Another interesting approach that proceeds in a similar manner was proposed in

[Van Haaren et al., 2015]. The difference, however, is that the proposed algorithm

TODTLER uses both first-order and second-order logic, i.e., transfers second-order

clauses from source domain to target domain by biasing learner in the latter towards

models containing previously discovered regularities in the former. Authors stated that

second-order clauses add depth to the proposed model and thus it falls into to the family

of deep learning approaches. TODTLER is an improved version of DTM algorithm

presented in [Davis and Domingos, 2009]. DTM is also based on second-order clauses

that are transferred to target domain in form of cliques. Then, the proposed algorithm

defines models involving these cliques and further tailors them based on the target

domain alone.

Other applications of relational-transfer include planning using Web search [Zhuo

and Yang, 2014] and automatic annotation [Jiang et al., 2015].

3.3 Transductive transfer learning

Term “transductive learning” [Arnold et al., 2007] in traditional machine learning usu-

ally describes a situation when all test data are required to be available during training

time and that the obtained classifier cannot be applied to future data. In transfer learn-

ing, however, it stands for a different, yet similar, concept. We first give a definition of

transductive transfer learning.

Definition 4. Given a source domain DS and a learning task TS , a target domain DT

and a target task TT , transductive transfer learning aims to improve the learning of
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the target predictive function fT (·) in DT using knowledge gained from DS and DT ,

where DS 6= DT and TS = TT . Furthermore, some unlabeled data in target domain

are available at training time.

In this definition, the equivalence of source and target tasks means that we can

adapt the predictive function learned in source domain to classify the unlabeled tar-

get domain data. As it can be seen from the previous section, the obtained predictive

function should take into account the distribution mismatch between source and target

data in order to be efficient. In this setting, two different assumptions are possible:

(1) the feature spaces of source and target domains are different, i.e. XS 6= XT ; (2)

feature spaces of both domain are the same while the marginal distributions are dif-

ferent, PS(X) 6= PT (X). These two cases are usually referred as domain adaptation

and sample selection bias, respectively. Domain Adaptation (DA) is a field associ-

ated with machine learning and transfer learning. This scenario arises when we aim

at learning from a source data distribution a well performing model on a different (but

related) target data distribution. For instance, one of the tasks of the common spam

filtering problem consists in adapting a model from one user (the source distribution)

to a new one who receives significantly different emails (the target distribution). Note

that, when more than one source distribution is available we talk about multi-source

domain adaptation.

In this section, we will briefly overview sample selection bias algorithms and give

a more profound overview of domain adaptation as it includes one of the contributions

of this thesis.

3.3.1 Transferring knowledge of instances

Most instance-based transfer learning algorithms in transductive setting transfer knowl-

edge by learning a model that minimizes the weighted empirical risk of source domain

in the following way:

θ∗ = argmin
θ∈Θ

∑

(x,y)∈DS

P (DT )

P (DS)
P (DS) l(x, y, θ) ≈ argmin

θ∈Θ

nS∑

i=1

PT (xTi
, yTi

)

PS(xSi
, ySi

)
l(xSi

, ySi
, θ)
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where empirical expected risk of target domain is approximated by the ratio of target

and source domains joint probability distributions multiplied by loss-function on la-

beled source instances. Furthermore, we can use the assumption about the equivalence

of conditional distributions P (YT |XT ) = P (YS|XS) to obtain
PT (xTi

,yTi )

PS(xSi
,ySi

)
=

P (xSi
)

P (xTi
)
.

Therefore, the major challenge of transductive transfer learning is to estimate this ratio

and to use the corresponding weights in combination with empirical risk minimization

of labeled source data. After that, the obtained model can be used directly on target

task.

Term “sample selection bias” was known for quite a long time in econometrics

while in machine learning it appeared first in [Zadrozny, 2004]. This paper formal-

ized the problem of sample selection bias in machine learning terms, analyzed both

empirically and theoretically how some classification techniques are affected by it and

presented a new approach for sample selection bias correction. The proposed approach

suggests using a costing procedure developed in a prior work [Zadrozny et al., 2003]

to weight each example by the selection ratio. Finally, the proposed paper presented

an approach that can be used to evaluate classification performance under sample se-

lection bias.

[Bickel et al., 2007] introduced a discriminative approach that defines weights

based on the probability that a given source domain sample will appear in the target do-

main distribution. These weights are learned by maximizing the posterior probability

distribution given all available data to be further used for reweightning.

Another idea proposed in [Huang et al., 2007] is to assign weights to source data by

matching the means of feature vectors between source and target data in a Reproducing

Kernel Hilbert Space (RKHS). The proposed optimization problem has the following

form:

min
β

1

2
βTKβ − κTβ

s.t. βi ∈ [0, B] and |
ns∑

i=1

βi − ns| ≤ nsǫ,

where the solution can be proved to have the following form βi =
P (xSi

)

P (xTi
)
. Theoretical

analysis for this estimator has been recently presented in [Yu and Szepesvri, 2012].

An important issue of this algorithm, however, is that it does not allow the selection of

kernel parameters through cross-validation. This problem was addressed in [Sugiyama
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et al., 2008] and a two-stage method based on Kullback-Leibler divergence minimiza-

tion was proposed.

Finally, the most exhaustive study on instance reweightning in transductive transfer

learning setting was presented in [Zhang et al., 2013]. This paper covers all three

possible scenarios that can occur depending on the assumptions made, namely: (1)

target shift when marginal distributions change but conditional distributions remain

the same; (2) conditional shift which is the opposite of target shift; (3) generalized

target shift which is combination of both target and conditional shifts. This paper uses

Hilbert-Schmidt embeddings for marginal as well as conditional probability functions

to propose algorithms for all three scenarios and provide theoretical guaranties for each

of them. We note that in [Sun et al., 2011] authors also attempted to take into account

both conditional and target shifts using a two-stage kernel-based method and that it can

be seen as a special case of methods presented in [Zhang et al., 2013].

Other recent examples of methods proposed for sample selection bias include [Liu

and Ziebart, 2014] and [Wen et al., 2014]. [Liu and Ziebart, 2014] defined robust

bias-aware classifier as a solution to a two-player game with minimax log-loss. Then,

authors proposed a parameter-based form solution that depends on
P (xSi

)

P (xTi
)

estimation

for importance sampling and compared both of them to source logistic regression.

The proposed robust bias-aware classifier in some cases achieves a significantly better

results than both source and reweighted target regressors.

In [Wen et al., 2014] authors related learning under marginal distributions shift

to model misspecification. They showed that reweightning sometimes is simply not

enough to adapt well in case if the underlying model was not chosen appropriately. The

proposed method robust covariate shift adjustment (RCSA) allows to check whether

reweightning procedure can be beneficial for a given model and, if it is the case, to find

relevant features.

Finally, a theoretical study on domain adaptation and sample selection bias al-

gorithms for regression was proposed in [Cortes and Mohri, 2014]. This paper pre-

sented new pointwise loss guarantees based on the discrepancy of the empirical source

and target distributions in a RKHS for the general class of kernel-based regularization

methods. Furthermore, authors derived algorithms that can be used on large-scale data

sets in high-dimensional space due to the existence of efficient solvers for Semidefinite

programming (SDP) problem that the original problem can be reduced to.

35



3.3.2 Transferring knowledge of feature representations

In transductive transfer learning, feature-representation transfer methods play an im-

portant role because of two reasons: (1) current success of representation learning

proved that learning “good” features is a key component in the success of machine

learning algorithms; (2) numerous unsupervised feature extracting techniques can be

used as a basis to find a shared representation of features that reduces the discrepancy

between source and target distributions. Last reason is of crucial importance as it al-

lows to design algorithms that are usually referred as unsupervised domain adaptation.

These algorithms do not rely on the presence of labeled data when it comes to learn-

ing a shared embedding but use it only to infer a predictive function in target aligned

source domain.

Furthermore, an increasing interest in transductive transfer learning setting resulted

in Unsupervised and Transfer Learning challenge (UTL) [Guyon et al., 2011] orga-

nized in 2010. Its main goal was to encourage scientists to learn “good” feature rep-

resentations for cross-domain transfer learning. Overall, UTL challenge attracted 76

participants from some of the best research institutions in machine learning commu-

nity and resulted in a vast number of new interesting approaches for feature-based

transductive transfer learning.

Following [Margolis, 2011] we categorize feature-based transductive transfer learn-

ing methods into two categories:

• distribution similarity approaches;

• latent feature learning approaches.

First family of methods is related to transfer learning approaches that aim to discover

a feature representation in which a distribution divergence measure is minimized by

explicitly penalizing or excluding distinct features from both domains. Second type

of feature-based approaches tries to find a latent feature space by using unsupervised

methods applied simultaneously to unlabeled source and target data.

Distribution similarity approaches. One of the first works that addressed this

problem was presented in [Aue and Gamon, 2005]. A simple approach for NLP task

proposed in this paper suggests that one may just train a classifier in source domain

based on features that are present in target domain while the absent features are simply
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ignored. The proposed method was applied to sentiment classification task and showed

a good performance in some cases but failed in others even when compared to “all

data” setting (when a classifier is learned on both source and target data sets with no

preprocessing). Another method that uses distinct feature elimination was described in

[Margolis et al., 2010]. Both approaches are rather straightforward and their degraded

performance in some cases can be explained by the loss of auxiliary knowledge in both

domains when distinct features are eliminated.

A more sophisticated approach to align source and target data based on divergence

minimization was presented in [Satpal and Sarawagi, 2007]. Authors proposed to pe-

nalize the distorted features across two domains in order to give more influence to

relevant correlated features. This procedure is combined with maximization of the

likelihood over source labeled data so that the cost function has the following form:

argmax
w

∑

i∈DS

∑

k

wkfk(xi, yi)−log(zw(xi))−λ
∑

k

|wk|γd(ES {fk(x, y)} ,ET {fk(x, y)}

where the goal is to learn a weight vector w for features fk(x, y). The solution to this

optimization problem involves two steps: (1) computing distances between feature

means to update weights wi; (2) fix the weights and update the feature means. A

similar idea was used in [Arnold et al., 2007] but based on maximum entropy method

[Berger et al., 1996]. The underlying idea is to learn a transformation function that

aligns features across domains and thus results in the equivalence of joint probability

distributions of features and labels in both domains. This method, however, is quite

similar to instance-based methods as it basically scales features based on the ratio of

the estimated source and target distributions.

As we could see in the previous section, Hilbert space embeddings can be very

efficient in feature-based algorithms as they provide a possibility to align features using

a nonlinear map from a rich Hilbert space. To this end, methods based on Maximum

Mean Discrepancy (MMD) minimization [Chen et al., 2009; Pan et al., 2008, 2009]

were proposed.

The approach in [Pan et al., 2008] is based on MMD minimization combined with

maximum variance unfolding (MVU) presented in [Weinberger et al., 2004]. The goal

of the latter is to find a kernel that corresponds to a low-dimensional manifold by

maximizing the variance subject to fixed distances between neighbors. This allows to
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obtain a kernel matrix that the authors used further with kernel PCA. The major issue

of this approach is that it requires solving a SDP that makes it inapplicable on large

data sets. In the follow-up work presented in [Pan et al., 2009] this issue has been

overcome by replacing the initial computationally costly SDP with an eigenvalue de-

composition. Contrary to approaches in [Pan et al., 2008] and [Pan et al., 2009] that

use nonlinear projections and does not require labeled data to find a shared embedding,

[Chen et al., 2009] introduced a method that learns an orthogonal linear projection to

align the sample means of source and target data. A learning procedure then consists in

direct minimization of the classification error over source domain samples using pro-

jected and original features. Main advantage of this approach comes from the linearity

of the projection as it does not rely on solving a SDP. This, however, makes it less

flexible as kernel functions provide a richer class of possible nonlinear feature maps.

Recently, a general framework for transductive feature-based transfer learning based

on MMD was proposed in [Long et al., 2014a]. The proposed framework introduces

two regularization terms that minimize the MMD distance between both marginal and

conditional distributions of source and target domains. Provided that no labeled data

are available in target domain, the authors used a classifier learned in source domain

to pseudo-label target domain samples hoping that the obtained centroids will be close

to the true class centroids. This framework was further incorporated into Regular-

ized Least-Squares (RLS) and Support Vector Machine’s cost functions to derive new

transductive transfer learning algorithms. An important advantage of this regulariza-

tion framework is that the corresponding cost function is convex and thus it enjoys a

convergence to a global optima. Finally, in [Si et al., 2010] a regularization term based

on the Bregman divergence between source and target distributions was introduced for

transfer subspace learning. The proposed method, however, does not take into account

the discrepancy between conditional distributions.

Latent feature learning approaches. Structural correspondence learning (SCL)

presented in [Blitzer et al., 2006] is probably the most referenced latent feature linear

projection approach. SCL is based on the semi-supervised technique called alternat-

ing structural minimization (ASO) introduced in [Ando and Zhang, 2005]. ASO makes

use of auxiliary unlabeled data to learn a “predictive structure” on the hypothesis space

across multiple tasks. To develop SCL, the authors’ idea was to learn the correspon-

dences between features that are distinct for source and target domains. The proposed
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method has three stages: (1) it defines a set of pivot features that appear with a high

frequency in both domains (in the follow-up work [Blitzer et al., 2007] it was replaced

with a constraint that obliges features to have high mutual information with the label

in source domain); (2) a linear classifier is then learned for each pivot feature based

on the weighted original features; (3) finally, SVD is applied to the matrix of learned

weights resulting in a reduced dimensional space formed by a prefixed number of top

singular vectors. Although, SCL remains one of the most efficient approaches in prac-

tice with successful applications in cross-language machine translation [Prettenhofer

and Stein, 2010] and speech classification [Margolis et al., 2010], entity recognition

[Ciaramita and Chapelle, 2010] and conversation summarization [Sandu et al., 2010],

choosing the optimal number of dimensions for SVD and weights to be used with a

final classifier can present a problem if no labeled target data are available.

Some recent approaches proposed for latent feature learning include [Grauman,

2012], [Gong et al., 2013a], [Fernando et al., 2013] and [Long et al., 2014b]. In [Grau-

man, 2012] a method called Geodesic Flow Kernel (GFK) was proposed. GFK con-

sists of three main steps: (1) first, it computes an optimal number of dimensions for

the subspace of the embedding; (2) second, it constructs a geodesic path; (3) finally, it

computes a geodesic kernel that is further used to learn a classifier with labeled data

in source domain. To choose the optimal dimensionality of the embedding authors

proposed a new subspace disagreement measure (SDM) that computes angles between

principal components of source and target data with respect to principal components

of the combined source and target data. A greedy strategy is then used to define the op-

timal number of aligned principal components. Geodesic flow kernel is then obtained

in a closed form as inner-product calculated on the projection of initial features. The

proposed projection function, in its turn, is a continuous function that parametrizes

how the source data smoothly changes to the target data. Surprisingly, authors stated

that if one calculates the geodesic kernel over all possible subspaces generated by the

projection function on the geodesic path (i.e., for all values of the projection function),

the obtained geodesic kernel will be invariant to all possible variations between source

and target domains.

In [Gong et al., 2013a] a different strategy was used. The central idea of the pro-

posed method is to define landmarks - labeled instances in source data that are more

likely to be distributed in the same way in target domain. These landmarks were de-
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fined by minimizing the MMD distance between source and target samples. After that,

they were used to build auxiliary tasks that bring source and target domains closer in

sense of Kullback-Leibler divergence. Finally, authors used these tasks as a basis to

learn discriminative domain-invariant features for target domain by solving Multiple

Kernel Learning (MKL) optimization problem. The proposed method has proved to be

efficient and to outperform GFK on some benchmark data sets.

A very simple, yet robust, approach was introduced in [Fernando et al., 2013]. A

key observation used in this paper was that one can simply align subspaces spanned by

the principal components of source and target data (denoted by XS and XT ) using the

following cost function:

F (M) = ‖XSM −XT‖2F = ‖XT
SXSM −XT

SXT‖2F = ‖M −XT
SXT‖2F

that leads to a solution M∗ = XT
SXT . This solution was further used to define two

key quantities, namely: the target aligned source coordinate system Xa = XSM
∗ =

XSX
T
SXT and a similarity measure

Sim(yS, yT ) = (ySXSM
∗)(yTXT )

T = ysXSX
T
SXTX

T
T y

T
T .

Authors presented a consistency theorem for the proposed similarity measure Sim(yS, yT )

that allowed them to find the optimal number of principal components to be chosen. A

strong advantage of the proposed algorithm is its computational efficiency when com-

pared to other kernel-based approaches as it basically involves only principal compo-

nents calculation and simple matrix manipulations.

Finally, in [Long et al., 2014b] a new method called Transfer Joint Matching (TJM)

was presented. The proposed method combines both instance reweightning, distribu-

tion divergence minimization and latent feature learning but as its primal goal is to find

a projection of features to a low-dimensional embedding, we describe it here. The cost

function of TJM consists of two terms: first term arises from the MMD minimization

between source and target projected kernel principal components while the second one

stands for regularization of the projection function over source and target data. The au-

thors suggested that its superior performance on benchmark data sets can be explained

by its capability to simultaneously match the feature distributions and reweight the
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source instances in a principled dimensionality reduction procedure.

From theoretical point of view, unsupervised domain adaptation was investigated

in [Ben-David et al., 2010a]. In the next chapter we will describe in detail the key

contributions of this paper.

3.4 Unsupervised transfer learning

Similarly to previous sections, we start with a definition of unsupervised transfer learn-

ing.

Definition 5. Given a source domain DS and a learning task TS , a target domain DT

and a target task TT , unsupervised transfer learning aims to improve the learning of the

target predictive function fT (·) in DT using knowledge gained from DS and TS , where

TS 6= TT and YS and YT are not observable.

To the best of our knowledge there are only a couple of algorithms that were pro-

posed to solve this problem: self-taught clustering (STC) presented in [Dai et al.,

2008a], transfer spectral clustering (TSC) [Jiang and Chung, 2012], Bregman multitask

clustering (BMC)[Zhang and Zhang, 2011] and [Tran and d’Avila Garcez, 2013].

The main assumption of STC is that two tasks share a latent feature space that

can be used as a “bridge” for transfer learning. The authors perform co-clustering on

source and target data simultaneously, while the two co-clusters share the same feature

set. The proposed method is based on mutual information maximization and its cost

function has the following form:

J(X̃T , X̃S, Z̃) = I(XT , Z)− I(X̃T , Z) + λ
[

I(XS, Z)− I(X̃S, Z)
]

,

where Z is a shared space of features, X̃T , X̃S and Z̃ denote clustering solutions for

XT , XS and Z.

TSC is a spectral method that makes use of both manifold information and co-

clustering to transfer the knowledge among domains. The corresponding optimization
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problem has the following form:

g(F (1), F (2), F (3)) = tr(F (1)TW
(1)
N F (1)) + tr(F (2)TW

(2)
N F (2))

+ tr(F (3)TX
(1)
N F (1)) + tr(F (3)TX

(2)
N F (2)).

where W
(i)
N stand for the normalized nearest neighbors matrices of two tasks, X

(i)
N for

normalized data from the corresponding domains and F
(i)
i=1..3 are the embeddings for

samples of the corresponding tasks and features, respectively.

Another approach that can be related to unsupervised transfer learning is [Zhang

and Zhang, 2011]. The proposed method, however, is an instance of multi-task clus-

tering rather then self-taught clustering. The optimization procedure presented in this

work simultaneously minimizes two terms: first represents the sum of Bregman diver-

gence between clusters and data of each task; second is a regularization term defined

as the Bregman divergence between all pairs of partitions. The motivation for this

cost function is two-fold - while the first term seeks a qualitative clustering for each

task separately, second term takes into account the relationships between clusters of

different tasks.

The most recent approach for unsupervised transfer learning was presented in [Tran

and d’Avila Garcez, 2013]. This work uses Restricted Boltzman Machines (RBMs)

to transfer subnetworks learned on source data set to the target domain. In order to

avoid transferring irrelevant features, authors rank them with respect to target data and

select only those features that have high weights. Experimental results presented in

this paper for image recognition data sets showed that its performance can be superior

when compared to a no-transfer sparse coding algorithm.

3.5 Transfer learning and NMF

In this section, we describe all transfer learning approaches that use, in one way or

another, NMF methods described in the previous chapter. The methods that satisfy this

criteria include [Ogino and Yoshida, 2011], [Long et al., 2012], [Markov and Matsui,

2012], [Chen and Zhang, 2013b], [Zhuang et al., 2013], [Yang et al., 2013] and [Wang

et al., 2014].

In [Ogino and Yoshida, 2011] Topic Graph based NMF for Transfer Learning
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(TNT) was introduced. The goal of this approach is to use learned feature vectors

in the source domain to construct a graph structure called topic graph. This graph is

utilized as a regularization term in the framework of NMF using the following cost

function:

J = ‖XT − UTVT‖2F + νtr(UTLSU
T
T ) + λtr(V T

T LTV
T
T ),

where XT is a target domain data, L{S,T} = D{S,T} − UT
{S,T}U{S,T} is a graph Lapla-

cian forXS orXT respectively and US is a matrix of basis vectors obtained by applying

NMF to the source data. TNT is based on the previous work on NMF presented in [Cai

et al., 2008] with the only difference that it adds one more regularization term preserv-

ing pairwise relation between two domains to the original cost function. The proposed

method was evaluated on 20NewsGroups data set and showed a superior performance

compared to baselines. Main weakness of this approach, however, lies in the assump-

tion that both US and UT span the same space and thus share the same features. A

modified version of TNT was presented in [Yang et al., 2013]. The proposed approach

differs from TNT only in the choice of the norm used for the regularization term - it

replaces Frobenius norm in the cost function with ℓ2,1 norm.

In [Long et al., 2012] authors proposed a method called Dual Transfer Learning

(DTL) that uses joint NMF framework to solve transductive transfer learning problem.

Given a set of samples {Xi}i=1..t with corresponding labels {Yi}i=1..t in source domain

and a set of unlabeled samples {Xi}i=t+1..n in target domain, the goal is to minimize

the following objective function:

L =
n∑

i=1

‖Xi − [U,Ui]HV
T
i ‖2,

s.t. U, Ui, H, Vi ≥ 0,

[U,Ui]
T

1 = 1, Vi1 = 1

where U represents common feature clusters for both domains, Ui represents domain-

specific features and H stands for associations between them. Authors claimed that

the proposed framework minimizes both marginal and conditional mismatch between

source and target distributions even though no experimental tests were conducted to

verify this. Similar to TNT, DTL was tested on 20NewsGroups and Reuters-21578 data
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sets on cross-domain transfer learning problems and proved to be more efficient than

other state-of-the-art NMF and co-clustering methods. In [Chen and Zhang, 2013b] an

extension of DTL called Topical Correspondence Learning (TCL) was presented. The

proposed method also tries to discover both domain-specific and common features by

enforcing the same associations on them in the following way:

L =
n∑

i=1

‖Xi − [αU, (1− α)Ui]HV
T
i ‖2,

s.t. U, Ui, H, Vi ≥ 0,

[U,Ui]
T

1 = 1, Vi1 = 1

where

H =
[

H H
]T

and the hyperparameter α ∈ [0; 1] determines the probability of choosing a common

or domain-specific term. This extension, however, is application-dependent as it was

designed for the purpose of text classification. A further extension of DTL includes

Triplex Transfer Learning (TTL) presented in [Zhuang et al., 2013]. TTL adds one

more feature matrix to the cost function that represents distinct concepts and imposes

unique association matrix for identical and alike concepts while association matrix for

distinct concepts remains domain-dependent. The proposed objective function is given

as follows:

L =
n∑

i=1

‖Xi −
[
U identical, Ualike

i , Udistinct
i

]
HV T

i ‖2,

where

H =
[

H identical Halike Hdistinct
i

]T

.

In [Markov and Matsui, 2012] a study of different self-taught learning algorithms

was presented. Authors compared STL from [Raina et al., 2007] to PCA and a NMF-

based STL approach that learns basis vectors using NMF instead of applying sparse

coding. The experimental results showed that both STL and NMF-based STL have

similar performance while PCA was far behind. Authors also pointed out that NMF

does not allow to control sparsity of the basis vectors (while sparse coding does) that

is, generally speaking, not true (for instance, NMF with sparseness constraints was
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presented in [Hoyer and Dayan, 2004]).

Finally, the most recent result on transfer learning that makes use of NMF was

presented in [Wang et al., 2014]. The cost function of the proposed method Domain

Transfer Nonnegative Matrix Factorization (DomTrans-NMF) consists of three main

terms: (1) first term is a simple NMF model applied to the combined source and target

data set X = XS

⋃
XT where |XS| = NS and |XT | = NT ; (2) second term corre-

sponds to MMD minimization of partition matrices of source and target domains; (3)

third term is a loss function of predicted labels w.r.t. the real ones. Overall, it leads to

the following optimization problem:

min
U,V,w,b

‖X − UV ‖2F + α‖V π‖22 + β

{
1

2
‖w‖22 + γ‖

[
(wTV + b1)− y

]
ι‖22
}

s.t. U, V ≥ 0,

where (w, b) are the parameters of a linear classifier h(v) = wTv + b, y is a vector

of labels, ι is an indicator if a given sample xi is labeled and πi =
1
NS

if xi belongs

to the source domain and − 1
NT

otherwise. DomTrans-NMF was further applied to the

data from Brain-Interface competition that contains Electroencephalography (EEG)

of 9 different persons classified into 4 different classes based on the motor imagery

tasks. These data were collected during two days and the experimental setup proposed

by the authors was to consider each day as a single domain. The results obtained

using DomTrans-NMF were comparable to a kernel-based domain adaptation method

presented in [Duan et al., 2012]. Overall, DomTrans-NMF was the first approach that

combined direct distance-minimization between the source and target distributions and

NMF.

3.6 Data sets

Some popular data sets used to evaluate transfer learning methods include: 20News-

group data set, Reuters data set, sentiment classification data set from [Blitzer et al.,

2007], Office[Saenko et al., 2010]/Caltech[Gopalan et al., 2011] etc.

Most of the results in this thesis are evaluated on the famous Office/Caltech data set

that has already became a benchmark for transfer learning algorithms. Office/Caltech
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contains the 10 overlapping categories between the Office dataset and Caltech256

dataset and consists of four domains:

• Amazon (A) - images from online merchants (958 images with 800 features from

10 classes);

• Webcam (W) - set of low-quality images by a web camera (295 images with 800

features from 10 classes);

• DSLR (D) - high-quality images by a digital SLR camera (157 images with 800

features from 10 classes);

• Caltech (C) - famous data set for object recognition (1123 images with 800 fea-

tures from 10 classes).

Figure 3.2 shows an example of keyboard and backpack images from Office/Caltech

data set.

Figure 3.2: Examples of keyboard and backpack images from Amazon, Caltech, DSLR

and Webcam data sets.

This set of domains leads to 12 domain adaptation problems, i.e., C→ A, C→ D,

C → W, ..., D → W. Office/Caltech data set uses 20 source examples per category if

source is Amazon, otherwise 8 examples per source and 3 labeled examples per target

category. Following the typical preprocessing steps, all images were transformed to

grayscale and resized to have the same size. K-means clustering was then applied to

SURF descriptors in order to generate a codebook of size 800 from a subset of Amazon

data set. Finally, all the features were standardized by z-score.
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3.7 Conclusions

In this chapter, we presented different transfer learning methods both in inductive,

transductive as well as unsupervised settings. We notice that transfer learning is a well-

studied technique with numerous real-world applications that include natural language

processing, text and image classification, automatic annotation, machine translation

etc.

From the above presented overview, we make the following conclusions:

• historically, first methods proposed to perform the transfer of knowledge were

based on instance reweightning; however, the situation has changed and nowa-

days representation-based algorithms become more and more common;

• inductive transfer learning has been studied extensively while the transductive

setting (especially what is referred to as domain adaptation) is now arguably the

most popular research direction among transfer learning scientists;

• unsupervised transfer learning is the less covered setting in transfer learning, so

far. This, in its turn, makes it a topic of an ongoing interest for further researches.

• works on NMF-based transfer learning approaches started to appear lately and

proved to be efficient in both inductive and transductive settings. The vast ma-

jority of the proposed methods, however, addressed the problem of text classifi-

cation by adapting Tri-NMF with shared and domain-specific components.
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Chapter 4

Kernel Alignment for Unsupervised

Transfer Learning
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4.1 Introduction

Transfer learning is considered to be useful only when both source and target domains

have some semantic relationships. In [Rosenstein and Dietterich, 2005] the authors

show that sometimes transfer learning can hurt performance if tasks are too dissimi-

lar. The proposed approach changes the variance of the hyperprior depending on the

similarity of parameters of source and target models and then computes a posterior

distributions using hierarchical Naive Bayes. The evaluations of this approach are pre-

sented in Figure 4.11. On the other hand, in [Mahmud and Ray, 2008] the authors

Figure 4.1: Transfer learning performance on data from a meeting acceptance task

used algorithmic information theory approach in order to perform supervised transfer

learning between two tasks that have a very tenuous connection. For instance, their

algorithm was successfully applied on Mushroom - German Credit data sets - two

domains that have nothing in common. Authors called this new setting of transfer

learning “universal transfer learning”.

1Figure depicted from Rosenstein and Dietterich [2005].
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Both of these works consider one of the biggest questions of transfer learning that

is “how to avoid the ”negative transfer”?” - situation where the performance on a target

task is decreased due to the use of irrelevant data. Indeed, all research on the negative

transfer identify this phenomena with a low level of correlation between tasks even

though there were no theoretical results proving this.

Contrary to domain adaptation theory where the classifier is expected to minimize

the combined error of both source and target tasks, we will try to improve the per-

formance in target task only. This idea was already applied in [Cao et al., 2010]. In

practice, it means that we do not want to minimize explicitly the distance between

distributions as in this case we fall into “transfer all” scheme where both tasks can be

considered as a single task. Instead, we study what is the optimal alignment between

two data sets that leads to an improved performance.

In this chapter, we propose a new unsupervised transfer learning algorithm based

on kernel target alignment maximization with application to computer vision problem.

To the best of our knowledge, kernel target alignment has never been applied in this

context and thus the proposed method presents a novel contribution.

The rest of this chapter is organized as follows: in section 2 we briefly introduce

basic notations and describe the approaches used later, in section 3 we introduce our

unsupervised transfer learning algorithm. We present theoretical analysis of our ap-

proach in section 4. In section 5 the proposed approach will be evaluated. Finally, we

will point out some ideas about the future extensions of our method in section 6.

4.2 Preliminary knowledge

In this section, we describe some basic notations and techniques that are used later. We

start by introducing the Kernel Target Alignment measure.

4.2.1 Kernel Alignment

Kernel Target Alignment (KTA) is a measure of similarity between two Gram matrices,

proposed in [Cristianini and Kandola, 2002] and defined as follows:

Â(K1, K2) =
〈K1, K2〉F

√
〈K1, K1〉F 〈K2, K2〉F

.
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Frobenius inner product is defined as:

〈K1, K2〉F =
m∑

i,j=1

k1(xi, xj)k2(xi, xj)

where k1 and k2 are two kernels, K1 and K2 are two corresponding Gram matrices.

As we can see, it essentially measures a cosine between two kernel matrices.

4.2.2 Clustering evaluation criteria

There are two classes of clustering evaluation metrics: internal and external clustering

evaluation indexes. Speaking about unsupervised clustering, we can only use internal

metrics because they are based on the information intrinsic to the data alone. Among

them, the most referenced in literature are the following ones: the Bayesian informa-

tion criteria, Calinski-Harabasz index, Davies-Bouldin index(DBI), Silhouette index,

Dunn index and NIVA index. To estimate the effectiveness of clustering we will use

one of the most effective (according to [Rendon et al., 2011]) clustering indexes, the

Davies-Bouldin index. This internal evaluation scheme is calculated as follows:

DBI =
1

k

k∑

i=1

max
j:i 6=j

(
d(xi) + d(xj)

d(xi, xj)

)

where k denotes the number of clusters, i and j are cluster labels, d(xi) and d(xj)

are distances to cluster centroids within clusters i and j, d(xi, xj) is a measure of

separation between clusters i and j. This index aims to identify sets of clusters that

are compact and well separated. Smaller value of DBI indicates a “better” clustering

solution.

4.3 Our approach

In this section, we describe our method for unsupervised transfer learning, we present

an optimization problem related to it and its complexity analysis.
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4.3.1 Motivation

The central idea that we will use to overcome the difference between weakly-related

tasks is mainly inspired by a very popular approach used in neuroscience called Repre-

sentation Similarity Analysis (RSA) [Kriegeskorte et al., 2008]. This method suggests

that a proper comparison between different activity patterns in human’s brain can be

encoded and further compared using dissimilarity matrices. For a given brain region,

authors interpret activity pattern associated with each experimental condition as a rep-

resentation. Then, they obtain a representational dissimilarity matrix by comparing

activity patterns with respect to all pairs of observations. This approach allows to re-

late activity patterns between different modalities of brain-activity measurement (e.g.,

fMRI and invasive or scalp electrophysiology), and between subjects and species. We

follow this approach by replacing the dissimilarity matrices of brain activity patterns

of different modalities by kernels defined on source and target task samples. Then, we

reduce the distance between two distributions by learning a new representation of data

for target task in a Reproducing Kernel Hilbert Space (RKHS). This new representa-

tion is further factorized using K-NMF in order to find weights of similarities in the

transformed instance space. Finally, we use these weights as a “bridge” for transfer

learning on the target task.

4.3.2 Kernel target alignment optimization

Let us consider two tasks TS and TT where the corresponding data samples are given

by matrices XS = {xs1 , xs2 , ..., xsn} ∈ Rm and XT = {xt1 , xt2 , ..., xtn} ∈ Rm. For

the sake of convenience, we will consider data sets XS and XT with the same number

of instances. This inconvenience can be overcome in two ways: by sub-sampling the

bigger data set or by using any kind of a bootstrap to increase the size of the smaller

data set.

We start by calculating Gram matrices KS and KT for both source and target tasks,

for example, using a Gaussian kernel function. Calculating Â(KS, KT ) gives us an idea

on how correlated the initial kernels are. Small value of Â(KS, KT ) means that transfer

learning will most likely fail as source and target task distributions are too different. In

order to find an intermediate kernel KST that plays the role of an embedding for both

tasks, we apply the kernel alignment optimization to the calculated kernelsKS ,KT that
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consists in maximizing unnormalized kernel alignment over αi:

max 〈KS, KST 〉F

KST =
k∑

n=1

αnKn(xti , xtj)

∀n, αn ≥ 0.

Normalization in the cost function is omitted compared to the original definition of

kernel alignment in section 2 due to the computational convenience as suggested in

[Neumann et al., 2005]. MatrixKST represents a linear combination of kernel matrices

Kn (any arbitrary set of kernel functions can be used) calculated based on XT . There

are several methods which can be used to solve this optimization problem. In our

work we use the one that was described in [Cristianini and Kandola, 2002]. The others

can be found in [Ramona and David, 2012] and in [Pothin and Richard, 2006]. The

proposed optimization problem can be rewritten in the following form:

max −αT (K + λI)α+ fTα

s.t. αn ≥ 0, ∀n = 1..k,

where K(i, j) = 〈Ki, Kj〉F and f(i) = 〈Ki, KS〉F . In its current form, the maximiza-

tion procedure presents a quadratic programming (QP) problem and can be solved

using any off-shelf QP solver. For each kernel KST obtained in the process of align-

ment optimization, we look for a set of vectors WST which arises from the K-NMF of

KST :

KST ≃ KSTWSTH
T
ST .

This matrix is of a particular interest as it represents the weights of similarities that

lead to a good reconstruction of KST in a nonlinear RKHS. Due to the alignment opti-

mization procedure, it naturally consists of adapted weights of an embedding between

two tasks. The information contained in WST can be used further with C-NMF for

the target task in order to find more efficient basis vectors that are weighted based on

a “good” nonlinear reconstruction of transformed instances. The criteria that we use

to evaluate if the obtained reconstruction is “good” or not is DBI. We recall that this
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index shows if the clusters are dense and well-separated.

More formally, we look for a matrix W ∗
ST that minimizes the DBI with respect to

target kernel KT :

W ∗
ST = argmin

WST

DBI(KT ).

We call this matrix the “bridge matrix”. Given that KST was calculated as a linear

combination of kernels of XT and was brought closer in sense of alignment to KS ,

WST naturally incorporate information about geometrical structure ofXS that can help

to find better basis vectors in XT .

4.3.3 Transfer process using the “bridge matrix”

Next step is to perform C-NMF of XT with the matrix of weights fixed to W ∗
ST . We

use C-NMF as it allows us to reinforce the impact of XT on the partition matrix HT .

XT ≃ XTW
∗
STH

T
T .

We call this factorization : the Bridge Convex NMF (BC-NMF). Finally, our approach

is summarized in Algorithm 1.

Algorithm 1: Bridge Convex NMF (BC-NMF)

input : XS - source domain data set, XT - target domain data set, r - number of

clusters, niter - number of iterations

output: HST∗ - partition matrix, W ∗
ST - ”bridge matrix”

Initialize KS , KT ;

KS ← kernel(XS, XS, σ);

KT ← kernel(XT , XT , σ);

Âinit ← Â(KS, KT );

for i← 1 to niter do

KST ← alignment optimization(KS, KT );

WST ← K −NMF (KST , r);

H∗
ST ← CNMF (XT ,W

∗
ST , r);
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4.3.4 Complexity

At each iteration of our algorithm, we perform a K-NMF which makes it quite time

consuming when the number of instances is large. On the other hand, it does not

depend on the number of features that makes its usage attractive for tasks from high-

dimensional spaces. The complexity of K-NMF is of order n3 + 2m(2n2k + nk2) +

mnk2 for a Gram matrix K ∈ Rn×n, where m is a number of iterations used for K-

NMF to converge (usually, m ≈ 100), k - is a desired number of clusters. Then, this

expressions should be multiplied by t - the number of iterations needed to optimize the

alignment between two kernels. Finally, we obtain the following order of complexity:

t(n3 + 2m(2n2k + nk2) +mnk2).

It should be noted that in real-life tasks the quantity of data in source domain is

often greater than in the target one. In order to decrease the computational effort of

BC-NMF we propose to proceed a data treatment in the parallel fashion. We split data

into several parts and obtain an optimal result for each of them. After that, we use any

arbitrary consensus approach (for example, Consensus NMF described in [Li et al.,

2007]) to calculate the final result which is close to all the partitions obtained.

4.4 Theoretical analysis

In this section, we present the relationships between KTA and two quantities com-

monly used in transfer learning and domain adaptation problems, namely: Hilbert

Schmidt Independence Criterion (HSIC) [Gretton et al., 2005] and Quadratic Mutual

Information(QMI).

4.4.1 Hilbert-Schmidt independence criterion

For readers’ convenience, we give the definitions of a mean map and its empirical

estimate from Chapter 6 here.

Definition 6. Let k : X × X → R be a kernel in the RKHS Hk and φ(x) = k(x, ·).
Then, the following mapping

µ[p] = Ex∼p[φ(x)]
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is called a mean map. Its empirical value is given by the following estimate:

µ[X] =
1

m

m∑

i=1

φ(xi),

where we X = {x1, ..., xm} is drawn i.i.d. from p.

If Ex[k(x, x)] < ∞ then µ[p] is an element of RKHS Hk. According to Moore-

Aronszajn theorem, the reproducing property of Hk allows us to rewrite every function

f ∈ Hk in the following form: 〈µ[p], f〉Hk
= Ex[f(x)]. We now give the definition of

HSIC.

Definition 7. Let k(x, x′) and l(y, y′) be bounded kernels with associated feature maps

φ : X→ F, ψ : Y→ G and let (x, y) and (x′, y′) be independent pairs drawn from the

joint distribution pxy. Then HSIC is defined as follows:

HSIC(pxy,F,G) = ‖Cxy‖2 = Ex,x′,y,y′ [k(x, x
′)l(y, y′)] + Ex,x′ [k(x, x′)]Ey,y′ [l(y, y

′)]

+ Ex,y [Ex′ [k(x, x′)]Ey′ [l(y, y
′)]] ,

where Cxy = Ex,y [(k(x, ·)− µ[p])⊗ (k(y, ·)− µ[q])] is cross-covariance operator.

Its biased estimate can be calculated from a finite sample using following equation:

ĤSIC =
1

m2
tr(KHLH),

where Kij = k(xi, xj), Lij = l(yi, yj) and H = I − 1
m
11

T is a centering matrix

projecting data to a space orthogonal to the vector 1.

From this we can see that KTA coincide with the biased estimate of HSIC when

centered kernels are used. It shows that KTA is a suitable choice for transfer learning

algorithms as its maximization increases iteratively the dependence between source

and target distributions. Furthermore, cross-covariance operator has already proved to

be efficient when applied in domain adaptation problem for target and conditional shift

correction [Zhang et al., 2013].
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4.4.2 Quadratic mutual information

Another important point is the equivalence between KTA and Information-Theoretic

Learning (ITL) estimators [Principe, 2010]. We define the inner-product between two

pdfs p and q as a bivariate function on the set of square intergrable probability density

functions:

V(p, q) =

∫

p(x)q(x)dx.

It is easy to show that V(p, q) is symmetric and non-negative definite and thus ac-

cording to Moore-Aronszajn theorem, there exists a unique RKHS Hv associated with

V(p, q). We further define Quadratic Mutual Information (QMI):

QMI(x, y) =

∫∫

(p(x, y)− p(x)p(y))2dxdy.

In order to establish a connection between KTA and QMI, we can use the equivalence

between Hv and Hk established in [Principe, 2010] through Parzen window estima-

tion [Parzen, 1962]. Parzen window estimator of given probability density functions

p(x),p(y) and p(x, y) is defined as follows:

p̂(x) =
1

m

m∑

i=1

kx(x− xi), p̂(y) =
1

m

m∑

i=1

ky(y − yi),

p̂(x, y) =
1

m

m∑

i=1

kx(x− xi)ky(y − yi).

This leads to the following result:

Q̂MI(x, y) = ‖p̂(x, y)− p̂(x)p̂(y)‖2 = 1

m2
tr(KHLH),

where kernel matrices K and L are calculated with respect to Parzen window kernels

used for estimation. Once again, we see that KTA with centered kernels is equal to

QMI estimation when the Gram matrices K and L are defined as inner-products of

Parzen window kernels.

We also note that STC [Dai et al., 2008a] presented in Chapter 3 is based on mu-

tual information maximization. The latter was used to perform co-clustering of target
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and auxiliary data with respect to a shared set of features. Another example where

mutual information was used for domain adaptation is [Gong et al., 2013b]. Thus, we

may conclude that the established relationships allow us to assume that KTA can be

effective when used for transfer learning.

4.5 Experimental results

In this section we evaluate our approach and analyze its behavior on Office/Caltech

data set.

4.5.1 Baselines and setting

We choose the following baselines to evaluate the performance of our approach:

• C-NMF on target data only;

• K-NMF using each kernel from the set of base kernels used for KTA maximiza-

tion (“Kernel alone”);

• Transfer Spectral Clustering (TSC);

• Bridge Convex-NMF (BC-NMF).

Using C-NMF we can directly factorize matrix XT as:

XT ≃ XTWTH
T
T

and consider matrix HT as an initial partition which could be obtained without taking

into account the knowledge from the source task. Accuracy obtained on this partition

gives us the “No transfer” value. This particular choice of the baseline can be explained

by the fact that our approach is, basically, C-NMF but with a weight matrixWT learned

using kernel alignment optimization. Thus, if we are able to increase the accuracy of

classification compared to this baseline it will be only due to the efficiency of our

approach.
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On the other hand, we also give the maximum value of accuracy achieved for a

set of kernels that we use in the optimization of KTA. We chose the following ker-

nel functions: (1) Gaussian kernels with bandwidth varying between 2−20 to 220 with

multiplicative step-size of 2; homogeneous polynomial kernels with the degree vary-

ing from 1 to 3. We call this “kernel alone” value as it presents the result of applying

K-NMF to a given kernel without taking into account the auxiliary knowledge. Source

task kernel was calculated using linear kernel.

Finally, we compare out method to TSC1 that according to the experimental results

presented in [Jiang and Chung, 2012] outperforms both STC and Bregman multitask

clustering (BMC). To define the number of nearest neighbors needed to construct the

source and target graphs in TSC, we perform cross-validation for k ∈ [5; 100] and

report the best achieved accuracy value. As suggested in the original paper, we set

λ = 3 and the step length t = 1.

The performance of chosen algorithms is evaluated following next criteria:

Accuracy =
|x : x ∈ D ∧ ŷ(x) = y(v)|

|x : x ∈ D| ,

where D is a data set, and y(x) is the truth label of x and ŷ(x) is the predicted label of

x.

4.5.2 Results

In Table 4.1 we can see the results of experimental tests of our approach for transfer be-

tween two different domains where bold and underlined numbers stand for the best and

second best results respectively. From the results, we can see that our algorithm BC-

NMF significantly outperforms TSC in 10 transfer learning scenarios. Furthermore,

in some cases TSC achieves lower accuracy values than the “kernel alone” setting.

This can be explained by the fact that clusters of the corresponding tasks are not well

separable in the initial feature space and thus a nonlinear projection of features to a

new RKHS can be beneficial. We also note that using a single kernel from the set of

base kernels does not lead to good performance when compared to BC-NMF, while

the learned combination of base kernels improves the overall classification accuracy

1We used Matlab implementation of TSC provided to us by the authors of the original paper.
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Table 4.1: Purity values on Office/Caltech data set obtained using BC-NMF

Domain pair C-NMF Kernel alone TSC BC-NMF

C→ A 33.24 40.34 43.32 64.88

C→W 46.78 56.00 52.54 60.69

C→ D 46.5 47.33 54.14 81.33

A→ C 24.89 35.33 46.03 59.29

A→W 46.78 56.00 53.22 60.69

A→ D 46.5 47.33 51.59 76.0

W→ C 24.89 35.33 62.71 58.97

W→ A 33.24 40.34 61.36 77.93

W→ D 46.5 47.33 59.66 76.0

D→ C 24.89 35.33 54.14 52.0

D→ A 33.24 40.34 54.78 78.0

D→W 46.78 56.00 55.59 70.0

considerably. Finally, comparing the obtained results with C-NMF applied to target

data only clearly shows that the improved performance is due to the transfer as the

only difference between BC-NMF and C-NMF lies in the learned weight matrix W .

In conclusion, we analyze two cases where TSC achieves better clustering results

than BC-NMF. We remark that in these two cases Caltech10 plays the role of the target

domain. We further notice that the overall performance of both C-NMF and “ker-

nel alone” approaches on Caltech10 is rather weak compared to their performance on

Amazon, DSLR and Webcam tasks. We recall that both C-NMF and K-NMF assume

that the basis vectors lie in the column space of their instance space while it is not nec-

essarily true. However, if the source task data set is large enough, our approach is still

able to improve the performance using the auxiliary knowledge (i.e., A → C) while

when it is not the case (i.e., W → C, D → C) BC-NMF may need a larger variety of

base kernels to learn a good weight matrix W or more instances from the source data

set.

Figure 4.2 presents the learning curves of BC-NMF on each task. We plotted the

red bar to indicate where the optimal weight matrix W was obtained. It can be noticed

that the proposed strategy to choose WST does not always lead to the best possible
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results but still performs reasonably well.
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(b) A→ D
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(c) A→W
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(d) C→ A
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(e) C→ D
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(f) C→W
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(g) D→ A
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(h) D→ C
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(i) D→W
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(j) W→ A
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(k) W→ C
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(l) W→ D

Figure 4.2: Algorithm performance on 12 transfer learning scenarios. Each line de-

scribes the learning curve of BC-NMF on the corresponding task’s pair while the red

bar shows where the optimal weight matrix WST was obtained based on DB index.
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4.6 Conclusions and future work

In this chapter, we presented a new method for unsupervised transfer learning. We use

kernel alignment optimization in order to minimize the distance between the distribu-

tions of source and target tasks. We apply K-NMF to the intermediate kernels obtained

during this procedure and look for a weight matrix that reconstructs well the similar-

ity based representation of data. Once this matrix is found, we use it in C-NMF on

the target task to obtain the final partition. Our approach was evaluated on benchmark

computer vision data sets and demonstrated a significant improvement when compared

to some state-of-art methods. We also showed how KTA maximization can be related

to HSIC and QMI optimization. The established relationships allow us to conclude

that the use of KTA for transfer learning is justified from both theoretical and practi-

cal points of view. One of the inconvenients of our approach is that it is quite time

consuming. Nevertheless, this issue can be overcome as discussed in section 3.

In future, we will extend our work in the multiple directions. First of all, we will

start by creating a multi-task version of our method. This can be done in the same

fashion but with the only difference: firstly, we search for an optimal Gram matrix for

each pair of tasks, then we will use the simultaneous non-negative matrix factorization

[Badea, 2008] to find the common “bridge matrix” that captures the knowledge from

all tasks. Multi-task version of our algorithm can be very important because it could

show us the participation of each task in overall improvement. Secondly, it would be

useful to derive bounds for classification error. This problem, however, is complicated

as there is no statistical theory that can be used in unsupervised setting in the same way

how it can be done for supervised and semi-supervised learning.
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Chapter 5

Non-negative Embedding for Fully

Unsupervised Domain Adaptation
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5.1 Introduction

In this chapter, we would like to present an approach that makes use of the fact that

some data are intrinsically non-negative and to show that preserving this non-negativity

can be beneficial for classification while learning new feature representations. Indeed,

it makes sense as the majority of transfer learning algorithms are usually applied to

image classification and object recognition data sets where data represented by color

frequencies are naturally non-negative. Our work is related to a couple of unsupervised

domain adaptation methods where the goal is to find an intermediate representation of

data of a source domain that can be used further in combination with a target domain. A

common approach to do that is to look for a new projection of data in the corresponding

space. To this end, the application of PCA was widely investigated and used in order

to find a common space where the divergence between marginal distributions of two

domains is minimized [Chen et al., 2009; Pan et al., 2009]. According to the theory of

domain adaptation, classification error of the target task is bounded by the divergence

between distributions of each domain so this idea is theoretically justified. Subspace

approaches were also widely used for domain adaptation and transfer learning in, for

example, [Fernando et al., 2013; Grauman, 2012].

Our approach differs from the above mentioned works in two principal ways. First

one is that we seek to find a non-negative embedding of basis vectors for two domains

so that we could benefit from the fact that some data is intrinsically non-negative. To

this end, our approach is similar to methods presented in [Chen and Zhang, 2013a;

Long et al., 2012; Zhuang et al., 2013]. The main difference, however, is that they use

NMF techniques for matching between objects of two domains and are usually applied

for text-classification via Tri-NMF. Our approach instead learns a shared dictionary

and its application is not limited to text classification. Second main difference is that

we do not assume that we have labels in source domain - we use a shared set of basis

vectors simultaneously with performing clustering of the target domain data. This

type of setting is usually called “self-taught clustering” [Dai et al., 2008b] and is an

instance of unsupervised transfer learning. In our work, we would like to show that

this paradigm can be used as a complementary for unsupervised domain adaptation

approaches.
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5.2 Unsupervised domain adaptation via non-negative

embedding

We assume that we have two sets of unlabeled data XS ∈ Rm×ns and XT ∈ Rm×nt

that correspond to source task data and target task data respectively. We denote their

marginal distributions by DS and DT. First step of our approach consists in retrieving

non-negative basis of each task by applying Projective NMF to XS and XT .

5.2.1 Projective NMF

Orthogonal Projective NMF (OPNMF) introduced in [Yang and Oja, 2010] minimizes

the following cost function:

min
U

J = ‖X − UUTX‖2F

s.t. UTU = I, U ≥ 0,

where

• X ∈ Rm×n is an input data matrix

• columns of U ∈ Rm×k can be considered as basis vectors

• k is the desired number of basis vectors

As shown in [Yang and Oja, 2010], Orthogonal Projective NMF solves PCA prob-

lem with non-negative constraints when Oja’s rule is applied during the optimization

procedure.

At first step we will apply OPNMF to matrices XS , XT and we will fix k = m:

XS ≃ USU
T
SXS, XS ∈ Rm×ns

+ , US ∈ Rm×d∗

+ ,

XT ≃ UTU
T
T XT , XT ∈ Rm×nt

+ , UT ∈ Rm×d∗

+ .

The resulting matrices US and UT are m non-negative eigenvectors of XS and XT . We

cannot use source eigenvectors for target task directly as we are interested in features

that are aligned with target task basis vectors. To choose them we will use subspace
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disagreement measure (SDM) presented in [Grauman, 2012] to define d∗ using non-

negative principal components.

To compute SDM, we combine the data sets into one data set XS+T and compute

its subspace US+T using OPNMF. Intuitively, if the two data sets are similar, then all

three subspaces should not be too far away from each other on the Grassmannian. The

SDM captures this notion and is defined in terms of the principal angles:

D(d) =
1

2
[sinαd + sin βd],

where αd denotes the d-th principal angle between the US and US+T and βd between

UT and US+T .

Then optimal number of basis vectors d is defined as follows:

d∗ = min{d|D(d) = 1}.

After applying this procedure to US we obtain a matrix USd∗
which we will used as an

aligned subspace to generate a non-negative embedding.

5.2.2 Non-negative embedding generation

Using the notations defined above let us consider the following cost function:

min June = ‖USd∗
− U∗H

T
S ‖2F + ‖UT − U∗H

T
T ‖2F + ‖XT − U∗H

T
∗ ‖2F

s.t. U∗, HS, HT , H∗ ≥ 0,

HT
SHS = I,HT

THT = I,HT
∗ H∗ = I.

Here first two terms share the same factor U∗ - a matrix of basis vectors that can be

seen as a shared subspace of USd∗
and UT . Third term is just a standard NMF applied

to matrix XT with prototype matrix fixed to U∗. Final result is given by matrix H∗.

Following the idea from [Fernando et al., 2013] we will now define a similarity

function based on the transition matrix between USd∗
and UT . We will further prove

that this function is consistent.

First, we observe that U∗ = UTHT . By plugging this expression into the first term
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we have USd∗
= UTHTH

T
S . It means that the transition matrix M∗ that aligns USd∗

with UT is defined as follows:

USd∗
= UTM∗.

Consequently, the similarity function for two elements xs ∈ XS and xt ∈ XT is given

by S(xs, xt) = xsUSd∗
M∗(xtUT )

T = xsU∗U
T
∗ x

T
t .

Now let us define C̃n to be the covariance matrix of a sample D of size n drawn

i.i.d. from a given distribution and C̃ its expected value over that distribution. Let kX+

be a non-negative rank of a matrix X , i.e. rank+(X) = kX+ . We will now present

two theorems that we will use further to prove the consistency theorem of similarity

function S.

Theorem 5.1. [Zwald and Blanchard, 2005] Let B be s.t. for any vector x, ‖x‖ ≤
B, let Xd

C̃
and Xd

C̃n
be the orthogonal projectors of the subspaces spanned by first

d eigenvectors of C̃ and C̃n. Let λ1 > λ2 > ... > λd > λd+1 ≥ 0 be the first d+1

eigenvalues of C̃ then for any n ≥ ( 4B
λd−λd+1

(

1 +
√

ln(1/δ)
2

)

)2

with probability at least

1− δ we have:

‖Xd
C̃
−Xd

C̃n
‖ ≤ 4B√

n(λd − λd+1)

(

1 +

√

ln(1/δ)

2

)

.

Theorem 5.2. [Moitra, 2012] For a given matrix X and δ > 0 there exists a nearly

optimal algorithm under the Exponential Time Hypothesis [Impagliazzo and Paturi,

2001] that returns factors Ũ and H̃ that are δ close to U and H where X = UH is a

non-negative matrix factorization of rank r where kX+ ≤ r.

Using these two theorems we will now prove the following lemma:

Lemma 5.3. Let B be s.t. for any vector x, ‖x‖ ≤ B, let Ud
C̃

and Ud
C̃n

be the or-

thogonal projectors of the subspaces spanned by first d eigenvectors of C̃ and C̃n.

Let H be a matrix arising from the non-negative matrix factorization of Ud
C̃n

. Let

λ1 > λ2 > ... > λd > λd+1 ≥ 0 be the first d+1 eigenvalues of C̃ then for any
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n ≥ ( 4B
λd−λd+1

(

1 +
√

ln(1/δ)
2

)

)2

with probability at least 1− δ we have:

‖Ud
C̃
H̃ − Ud

C̃n
H‖ ≤ δ

√
m+

√
d

4B√
n(λd − λd+1)

(

1 +

√

ln(1/δ)

2

)

.

Proof.

‖Ud
C̃
H̃ − Ud

C̃n
H‖ =

= ‖Ud
C̃
H̃ − Ud

C̃n
H + Ud

C̃n
H̃ − Ud

C̃n
H̃‖ =

≤ ‖Ud
C̃n
‖‖H̃ −H‖+ ‖H̃‖‖Ud

C̃
− Ud

C̃n
‖

≤ δ
√
m+

√
d

4B√
n(λd − λd+1)

(

1 +

√

ln(1/δ)

2

)

.

‖Ud
C̃n
‖ is bounded by

√
m as the eigenvectors are normalized, ‖H̃‖ is bounded by√

d due to the constraints in the cost function. Other two terms are bounded using

Theorem 1 and 2.

The theorem for the consistency of S(xs, xt) is stated as follows:

Theorem 5.4. Let Ud
Sn

and Um
Tn

be the d- and m- dimensional projection operators

built from the source and target samples of size nS and nT . Let Ud
S (resp. Um

T ) the

expected value of Ud
Sn

(resp. Um
Tn

) associated with d+1 (resp. m+1) eigenvalues λS1 >

λS2 > ... > λSd > λSd+1 ≥ 0 (resp. λT1 > λT2 > ... > λTm > λTm+1 ≥ 0). Let HS (resp.

HT ) be a non-negative matrix arising from the non-negative matrix factorization of Ud
S

(resp. Um
T ). Then with probability at least 1− δ we have:

‖Ud
SM

∗Um
T −Ud

Sn
M∗

nU
m
Tn
‖ ≤ δ(m

√
d+ d

√
d) +

4dB

(

1 +
√

ln(1/δ)
2

)

(
√
m+

√
d)

√
nS(λSd − λSd+1)

√
nT (λTm − λTm+1)

,

where M∗
n = HSH

′
T .
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Proof.

‖Ud
SM

∗Um
T − Ud

Sn
M∗

nU
m
Tn
‖ = ‖Ud

SH̃SH̃T
T
Um
T − Ud

Sn
HSH

T
T U

m
Tn

+ Ud
SH̃SH

T
T U

m
Tn
− Ud

SH̃SH
T
T U

m
Tn
‖
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√
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√
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√
nS(λSd − λSd+1)

√
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.

5.3 Multiplicative update rules

In order to derive the multiplicative update rules for our method, we use the approach

presented in Chapter 2.

5.3.1 Fully unsupervised non-negative embedding (UNE)

For the cost function from section 3

min June = ‖USd∗
− U∗H

T
S ‖2F + ‖UT − U∗H

T
T ‖2F + ‖XT − U∗H

T
∗ ‖2F

and taking into account orthonormalization and non-negativity constraints

U∗, HS, HT , H∗ ≥ 0

HT
SHS = I,HT

THT = I,HT
∗ H∗ = I
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we obtain the following update rules:

HT = HT ⊛
UT
∗ U

T
Sd∗

+HT

UT
∗ U∗HT +HTHT

THT

,

HS = HS ⊛
U∗U

T
T +HS

UT
∗ U∗HS +HSHT

SHS

,

U∗ = U∗ ⊛
UTH

T
T + USd∗

HT
S +XTH

T
∗

U∗HTHT
T + U∗HSHT

S + U∗H∗HT
∗
,

H∗ = H∗ ⊛
UT
∗ XT +H∗

UT
∗ U∗H∗ +H∗HT

∗ H∗
.

This optimization problem is not convex in all arguments thus presented update rules

usually converge to a local minima. The non-increasing property of these update rules

can be proved using an auxiliary function defined as follows: G(h, h′) is an auxiliary

function of F (h) if G(h, h′) ≥ F (h) and G(h, h) = F (h).

We do not give a proof here as it represents a typical result from NMF optimiza-

tion theory and is rather technical once the auxiliary function for a given optimization

problem was found.
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Finally, our approach is summarized in Algorithm 2.

Algorithm 2: Non-negative embedding generation for fully unsupervised do-

main adaptation

input : XS - source domain data set, XT - target domain data set, n - number of

clusters, niter - number of iterations

output: H∗ - partition matrix for XT , U∗ - non-negative embedding

Initialize US , UT , HS , HT , U∗, H∗;

US ← OPNMF (XS, n);

UT ← OPNMF (XT , n);

d∗ ← SDM(US, UT );

Ud∗

S ← US(1 : d∗, :);

for i← 1 to niter do

HT = HT ⊛
UT
∗
UT
Sd∗

+HT

UT
∗
U∗HT+HTHT

T
HT

;

HS = HS ⊛
U∗UT

T +HS

UT
∗
U∗HS+HSH

T
S
HS

;

U∗ = U∗ ⊛
UTHT

T +USd∗
HT

S +XTHT
∗

U∗HTHT
T
+U∗HSH

T
S
+U∗H∗HT

∗

;

H∗ = H∗ ⊛
UT
∗
XT+H∗

UT
∗
U∗H∗+H∗HT

∗
H∗

;

Sim(xs, xt)← xsU∗U
T
∗ xt;

5.4 Experimental results

In this section we will evaluate our approach and compare it to some currently pub-

lished state-of-art approaches using Office/Caltech data set1.

5.4.1 Baseline methods

Following a recently published paper on visual domain adaptation [Long et al., 2014b]

we will use the same baseline methods to evaluate our method, namely:

• 1-Nearest Neighbor classifier (NN);

1We note that z-score normalization can lead to negative values when applied to initial data sets

while we suppose that preserving non-negativity can be important for classification. Contrary to the

description in Chapter 3, we does not use the z-score normalization for our approach.
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• Principal component analysis (PCA);

• Joint feature selection and subspace learning (FSSL) [Gu et al., 2011];

• Transfer Component Analysis (TCA);

• Geodesic flow kernel (GFK);

• Transfer joint matching (TJM);

• Subspace alignment (SA).

The most common approach used to compare domain adaptation algorithms is to learn

a simple NN classifier using target aligned source representation with a small amount

of labels to further use it for classification of the unlabeled target task. For fully unsu-

pervised version of our approach (UNE) we do not use any labels at all.

We will use accuracy to evaluate the performance of chosen algorithms. It is de-

fined as:

Accuracy =
|x : x ∈ D ∧ ŷ(x) = y(v)|

|x : x ∈ D| ,

where D is a test data set, and y(x) is the truth label of x and ŷ(x) is the predicted label

of x.

5.4.2 Classification results

The classification accuracies obtained on Office/Caltech data set are presented in Ta-

ble 5.1. We can see that our fully unsupervised approach outperforms all other in 4

domain adaptation scenarios. It is particularly interesting to observe that it performs

exceptionally well when the source data set is big enough (A,C) and the target one is

small (W,D).

On the other hand, UNE fails to reach a good performance compared to other base-

lines for two scenarios when both source and target domains have a very small amount

of instances per class (W,D). It has been already observed before [Gong et al., 2013b]

that selecting landmarks requires a sufficient amount of data even in supervised setting.

When working in a fully unsupervised manner, learning a discriminant dictionary in

the absence of a sufficient number of data becomes barely possible. In this case, dis-

covering patterns in data requires at least some supervision. In all other scenarios, the
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Table 5.1: Purity values on Office/Caltech data set obtained using UNE

Domain pair NN PCA FSSL TCA GFK TJM SA UNE

C→ A 23.70 36.95 35.88 45.82 41.02 46.76 39.0 33.86

C→W 25.76 32.54 32.32 30.51 40.68 38.98 36.8 47.32

C→ D 25.48 38.22 37.53 35.67 38.85 44.59 39.6 48.15

A→ C 26.00 34.73 33.91 40.07 40.25 39.45 35.3 24.86

A→W 29.83 35.59 34.35 35.25 38.98 42.03 38.6 46.37

A→ D 25.48 27.39 26.37 34.39 36.31 45.22 37.6 50.19

W→ C 19.86 26.36 25.85 29.92 30.72 30.19 32.3 24.74

W→ A 22.96 29.35 29.53 28.81 29.75 29.96 37.4 33.88

W→ D 59.24 77.07 76.79 85.99 80.89 89.17 80.3 49.04

D→ C 26.27 29.65 27.89 32.06 30.28 31.43 32.4 24.15

D→ A 28.50 32.05 30.61 31.42 32.05 32.78 38.0 34.18

D→W 63.39 75.93 74.99 86.44 75.59 85.42 83.6 48.34

performance of the proposed approach is close to the best baseline. According to do-

main adaptation theory from Chapter 6, the distance between distributions has to be

minimized for domain adaptation algorithm to succeed. We plot the evolution of the

MMD distance between projected data from source and target task in Figure 5.1.
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Figure 5.1: MMD distance on 12 cross-domain visual adaptation scenarios where the

source task is A, C, D, W from left to right.

As we can see, our approach minimizes properly the distance between distributions.

This justifies its use from the theoretical point of view.

Finally, we can observe that our all three best approaches can be seen as a comple-
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mentary to each other as none of them totally outperforms the others.

5.5 Conclusions and future work

In this chapter, we presented a new approach for fully unsupervised domain adapta-

tion. We create a non-negative embedding as a shared feature’s space of two aligned

sets of non-negative basis vectors. This embedding is then used as a prototype matrix

for NMF clustering. The proposed approach is very simple, intuitive and easy to im-

plement. We evaluated our method on a famous visual domain adaptation benchmark

and observed that despite its simplicity it can outperform state-of-the-art methods in 4

different scenarios while being close to the best baseline in 6 others. We also presented

a consistency theorem of the similarity function built using the proposed non-negative

embedding.

To evaluate our approach from theoretical point of view, we prove a theorem that

relates the source and target domain errors using kernel embeddings of distributions

functions. We show that our approach agrees well with the theory and iteratively min-

imizes the distance between distributions. Furthermore, the latter can be estimated

efficiently using unbiased linear time estimator.

In future our approach can be extended in multiple directions. First of all, it would

be interesting to develop a multi-task version of our approach. This can be done by by

replacing the first term in cost function with a sum of factorizations that correspond to

different source domains. In this case, the question of how to weight this terms arises

as the distance between their distributions with respect to target domain distribution

may vary a lot.
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Chapter 6

Generalization Bounds for Domain

Adaptation using Hilbert-Schmidt

Embeddings
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6.1 Introduction

From a theoretical point of view, for the first time the domain adaptation problem was

investigated in [Ben-David et al., 2007]. The authors of this paper focus on the domain

adaptation problem following the uniform convergence theory and consider the 0-1

loss function in the setting of binary classification. They define the hypothesis and

empirical errors as risk functions to further derive bounds that relate them using the

A-divergence [Kifer et al., 2004]. [Ben-David et al., 2007] show that the key factors

that define the potential success of domain adaptation is the divergence between tasks’

distributions and the existence of the ideal joint hypothesis on both source and target

domains. We present the main results of this work along with the restrictions in Section

2. The analysis presented in the original paper was further extended in [Blitzer et al.,

2008] who give uniform convergence bounds for algorithms that minimize a convex

combination of source and target tasks’ errors 1.

In the follow-up work [Ben-David et al., 2010b], the impossibility theorems for do-

main adaptation problem based on 0-1 loss were proved and illustrated using a handful

of examples. The main domain adaptation assumptions studied in this paper are: (1)

the source and target distributions are close; (2) there exist a hypothesis with low error

on both of them; (3) the labeling function does not change between the training and

test data. They concluded that neither of the assumption combinations (1) and (3) nor

(2) and (3) suffice for successful domain adaptation.

Another important paper that focuses on domain adaptation theoretical guarantees

is [Mansour et al., 2009]. This paper extended the bounds of [Ben-David et al., 2010a]

to a broader class of convex loss functions and introduced new regularization-based

domain adaptation algorithms based on the discrepancy distance. Authors showed that

the proposed discrepancy distance can be estimated from finite samples and that it can

be used to derive data-dependent Rademacher complexity learning bounds. In [Cortes

and Mohri, 2014], the discrepancy distance was used to prove pointwise loss guaran-

tees for kernel-based regularization algorithms, including kernel ridge regression, sup-

port vector machines (SVMs), or support vector regression (SVR). These guarantees

were further used to design efficient empirical discrepancy minimization algorithms

1We will further refer only to the paper [Ben-David et al., 2010a] as it presents an extended and full

version of the preliminary results published in both [Ben-David et al., 2007] and [Blitzer et al., 2008].
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for large-scale problems that can be casted as a SDP problem.

Finally, a new family of generalization bounds based on the property of robust

algorithms was introduced in [Mansour and Schain, 2014]. The notion of “algorithmic

robustness” was first presented in [Xu and Mannor, 2010] in order to measure the

sensitivity of a given algorithm to changes in training data. This new approach for

generalization bounds was used to design new robust domain adaptation SVM-based

algorithms for classification and regression.

Multi-task learning is an another field of machine learning related to domain adap-

tation. The most exhaustive study on this subject is presented in [Crammer et al.,

2008]. The main difference of multi-task learning from domain adaptation is that it

assumes the same distribution over the sources and the presence of labeled data in the

target domain.

In this chapter, we propose new generalization bounds for domain adaptation from

the kernel methods perspective and point out some of their benefits by comparing them

with previous bounds. Our motivation is three-fold: (1) kernel methods allow to over-

come the divergence between two distributions by learning a feature map that projects

data to a shared latent space; (2) there is a natural distance that can be defined between

kernel embeddings of probability distributions that enjoys the existence of an efficient

estimator and is directly linked to the optimal transport problem; (3) kernel methods

applied in domain adaptation have already shown a significant success in many real-

world applications.

6.2 Related work

In this section we describe two main approaches to derive domain adaptation learning

bounds that are closely related to our work. These are:

• generalization bounds using H∆H distance from [Ben-David et al., 2010a];

• generalization bounds based on discrepancy distance from [Mansour et al., 2009].
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6.2.1 Domain adaptation based on H∆H distance

In [Ben-David et al., 2010a] the problem of domain adaptation is formalized as follows:

we define a domain as a pair consisting of a distribution D on inputs X and a labeling

function f : X → [0, 1], which can have a fractional (expected) value when labeling

occurs nondeterministically. Initially, we consider two domains, a source domain and

a target domain. We denote by 〈DS, fS〉 the source domain and 〈DT, fT 〉 the target

domain. A hypothesis is a function h : X→ {0, 1}.

Definition 8. The probability according to the distribution DS that a hypothesis h dis-

agrees with a labeling function f (which can also be a hypothesis) is defined as

ǫS(h, f) = Ex∼DS
[|h(x)− f(x)|].

We can see that the source error is an expectation of disagreement between source

and hypothesis labeling functions. The following theorem gives the bound that relates

the source and target tasks’ error functions.

Theorem 6.1. [Ben-David et al., 2010a] For a hypothesis h,

ǫT (h, fT ) ≤ ǫS(h, fS)+d1(DS,DT)+min{EDS
[|fS(x)−fT (x)|],EDT

[|fT (x)−fS(x)|]},

where d1(DS,DT) is a total variation distance between distributions DS and DT.

The authors then define the symmetric difference hypothesis space H∆H as a set

of hypotheses

g ∈ H∆H⇐⇒ g(x) = h(x)⊕ h′(x)

for some h, h′ ∈ H, where ⊕ stands for XOR operation.

The following theorem gives a bound on the target task error using the divergence

measure defined above.

Theorem 6.2. [Ben-David et al., 2010a] Let H be a hypothesis space of Vapnik-

Chervonenkis (VC) dimension d. If US, UT are unlabeled samples of size m′ each,

drawn independently from DS and DT respectively, then for any δ ∈ (0, 1) with prob-
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ability at least 1− δ (over the choice of samples), for every h ∈ H :

ǫT (h, fT ) ≤ ǫS(h, fS) +
1

2
d̂H∆H(US,UT ) + 4

√

2d log(2m′) + log(2
δ
)

m′ + λ,

where λ is the combined error of the ideal hypothesis h∗ that minimizes ǫS(h)+ ǫT (h).

In order to prove this theorem the authors used the fact that |ǫT (h, h′)−ǫS(h, h′)| ≤
1
2
dH∆H(DS,DT).

Last important result that we would like to cite here is a theorem that relates the

minimizer of the combined error defined as a convex combination of source and target

errors to the target task minimizer.

Theorem 6.3. [Ben-David et al., 2010a] Let H be a hypothesis space of VC dimension

d. If US , UT are unlabeled samples of size m′ each, drawn independently from DS and

DT respectively. Let S be a labeled sample of size m generated by drawing βm points

from DT (β ∈ [0, 1]) and (1 − β)m points from DS and labeling them according

to fS and fT , respectively. If ĥ ∈ H is the empirical minimizer of ǫ̂α(h) on S and

h∗T = min
h∈H

ǫT (h) then for any δ ∈ (0, 1), with probability at least 1−δ (over the choice

of samples),

ǫT (ĥ, fT ) ≤ ǫT (h
∗
T , fT ) + c1 + c2,

where

c1 = 4

√

α2

β
+

(1− α)2

1− β

√

2d log(2(m+ 1)) + 2 log(8
δ
)

m
,

c2 = 2(1− α)




1

2
dH∆H(US,UT ) + 4

√

2d log(2m′) + log(8
δ
)

m′ + λ



 .

6.2.2 Domain adaptation based on discrepancy distance

Similar to the previous subsection, we present the main results of [Mansour et al.,

2009]. We start with the definition of discrepancy distance.
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Definition 9. Let H be a set of function mapping X to Y and let L : Y ×Y → R+ de-

fine a loss function over Y . The discrepancy distance discL between two distributions

DS and DT over X is defined by

discL(DS,DT) = max
h,h′∈H

|EDS
[L(h′(x), h(x))]− EDT

[L(h′(x), h(x))]| ,

where Y is a label set.

We note that for the 0-1 classification loss, the discrepancy distance coincides with

H∆H divergence and suffers from the same computational restrictions as the latter.

Using this definition, the analogue of Theorem 6.2 can be proved.

Theorem 6.4. Assume that the loss function L is symmetric and obeys the triangle

inequality. Then, for any hypothesis h ∈ H the following holds

ǫT (h, fT ) ≤ ǫT (h
∗
T , fT ) + ǫS(h, h

∗
S) + discL(DS,DT) + ǫS(h

∗
T , h

∗
S),

where h∗S = min
h∈H

ǫS(h).

As pointed out by the authors, the proposed bound is not directly comparable to

Theorem 3, nevertheless, the comparison made in this paper showed they can be more

tight in some plausible scenarios. The important difference between two theorems lies

in the way how they estimate the corresponding distance. While Theorem 6.2 relies

on Sauer’s lemma to bound the true A-divergence by its empirical counterpart, discL

is estimated using the Rademacher classification bounds. We now give a corollary that

shows how the discrepancy distance can be estimated from finite samples.

Corollary 6.5. Let H be a hypothesis set bounded by some M for some loss function

Lq: Lq(h, h
′) ≤ M , for all h, h′ ∈ H . If US , UT are samples of size m and n drawn

independently from DS and DT respectively. Then, for any δ ∈ (0, 1), with probability

at least 1− δ (over the choice of samples),

discL(DS,DT) ≤ discL(US,UT)+4q
(

R̂m(H) + R̂n(H)
)

+3M





√

log(4
δ
)

2m
+

√

log(4
δ
)

2n



 ,

where R̂m(H) and R̂n(H) denote empirical Rademacher complexity of H over sam-

ples US and UT respectively.
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These theorems from were further used to provide guarantees for kernel-based reg-

ularization algorithms that allow to minimize the discrepancy distance.

6.2.3 Our contributions

From the results seen above, we can outline two main restrictions of domain adaptation

theory that were mentioned in [Ben-David et al., 2010a]:

• all key theorems in [Ben-David et al., 2010a] assume that the hypothesis space

is of VC dimension.

• there is no calculation guarantees for the estimation of the divergence in H∆H

space.

We now discuss more in detail each of these two statements. First one comes from the

fact that authors followed the Vapnik-Chervonenkis theory [Vapnik, 1995] and used

the Sauer’s lemma in order to bound the difference between true and empirical A-

divergence (Theorem 3.4, [Kifer et al., 2004]). Sauer’s lemma gives an upper bound

for growth function of a given hypothesis class H when the hypothesis space is of

Vapnik-Chervonenkis dimension. Our idea is to overcome this issue by bounding the

Rademacher complexity of the RKHS space directly using kernel embeddings of prob-

ability distributions without applying the Sauer’s lemma.

Second issue lies in the definition of the empirical estimate proposed in the original

work as minimizing the error for most reasonable hypothesis classes is an intractable

problem (Lemma 2, [Ben-David et al., 2010a]). One may want to have an efficient

estimate with a proved computational guarantees to calculate the divergence between

two distributions. We show how the empirical estimator of dH∆H can be replaced with

an unbiased empirical estimate of the maximum mean discrepancy (MMD) distance

that can be computed in quadratic time.

The results from [Mansour et al., 2009] overcome one of the limitations of [Ben-

David et al., 2010a] by extending the original theorems to a larger class of loss func-

tions, however, the problem of efficient estimation of the discrepancy distance re-

mained unaddressed. Furthermore, the results in both [Mansour et al., 2009] and

[Cortes and Mohri, 2014] do not present the generalization bounds for the case of
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combined error of source and target tasks similar to the ones proposed in [Ben-David

et al., 2010a].

Our work is similar to [Mansour et al., 2009] in that it also uses Rademacher com-

plexity learning bounds to estimate the distance from finite samples. On the other

hand, our work is similar to [Cortes and Mohri, 2014] in that it assumes that the hy-

pothesis space is a subset of a RKHS. While the scope of these two papers is to provide

guarantees for feature- and kernel-based regularization algorithms, our results aim at

proving the generalization bounds for domain adaptation that combines the advantages

of Rademacher based bounds and completes them by explicitly introducing a natural

distance which quadratic proxima can be estimated efficiently in linear time.

The rest of the chapter is organized as follows: in section 3, with present the op-

timal transportation problem, its dual and show how the functional derived from the

latter can be embedded into Hilbert space; in section 4, we introduce some basic no-

tations and properties related to kernel embeddings of distribution functions. Then,

we show how the error function can be written in terms of the inner-product of the

corresponding Hilbert space. In section 5, we present generalization bounds for the

source and target error functions. Section 6 evaluates our results on a benchmark com-

puter vision data set. Finally, we conclude with some ideas about the future research

directions in section 7.

6.3 Optimal transportation

In this section, we present the formalization of the Monge-Kantorovich optimization

problem. We further introduce its dual and rewrite it using a kernel formulation that

allows us to embed the optimization criterion into a tractable space.

6.3.1 Monge-Kantorovich problem

Following [Courty et al., 2014], we consider two domains Ω1 = Ω2 = Rd. Let P (Ωi)

be the set of all probability measures over Ωi. Let p = P (Ω1) and q = P (Ω2) be two

probability measures. Then an application T : Ω1 → Ω2 is said to be a transport if

T#p = q where

T#p(y) = p(T−1(y)) ∀y ∈ Ω2.
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and # is the image measure(or push-forward). The cost associated to this transport is

C(T ) =

∫

Ω1

c(x,T (x))dp(x),

where the cost function c : Ω1×Ω2 → R+ can be seen as the energy required to move

a mass p(x) from x to y. Altogether, this leads to a definition of the Monge optimal

transportation problem where the optimal transport T 0 is given as a solution of the

following problem:

T 0 = argmin
T

∫

Ω1

c(x,T (x))dp(x), s.t. T#p = q.

The graphical illustration of the Monge problem is presented in Figure 6.11.

Figure 6.1: Graphical representation of the optimal transportation problem

6.3.2 Dual problem

However, nonlinearity of the objective functional and a lack of convexity for its do-

main make Monge’s problem difficult to solve. Kantorovich in [Kantorovich, 1942]

addressed these issues by giving a relaxation of the original Monge optimal transporta-

tion problem using the notion of a probabilistic coupling γ defined as a joint probability

measure over Ω1 × Ω2. The Monge-Kantorovich problem reads as follows:

argmin
γ

∫

Ω1×Ω2

c(x,T (x))dγ(x,y), s.t. P Ω1#γ = p,P Ω2#γ = q,

1Figure depicted from Villani [2009].
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where P Ωi is the projection over Ωi. It admits a unique solution γ0 and allows to define

the Wasserstein distance between p and q as follows:

W (p, q) = inf
γ

∫

Ω1×Ω2

c(x,T (x))dγ(x,y), s.t. P Ω1#γ = p,P Ω2#γ = q.

Using the Kantorovich duality principle, one can prove the following theorem [Dudley,

2002]:

Theorem 6.6. Let p, q ∈ P1(Ωi) where Ωi is separable. Then the Wasserstein distance

can be expressed as follows:

W (p, q) = ‖p− q‖∗L = sup
‖f‖L≤1

∣
∣
∣
∣

∫

fd(p− q)

∣
∣
∣
∣
,

where

‖f‖L = sup
x6=y∈Ωi

|f(x)− f(y)|
d(x, y)

is the Liptschitz semi-norm for real-valued continuous f on Ωi and some metric d(·, ·)
on Ω1 × Ω2.

6.3.3 W (p, q) in RKHS

From this results, one cant see that this metric is restricted to the class of function

F = {f : ‖f‖L ≤ 1}. Following the ideas from [Gao and Galvao, 2014], one may

construct a Hilbert space where this class of function is embedded in a unit ball BHk

of a Hilbert space Hk with an associated kernel k, i.e.:

F = {f : ‖f‖L ≤ 1} = {f : ‖f‖Hk
≤ 1} = BHk

.

The following theorem defines a new distance WHk
.

Theorem 6.7. [Gao and Galvao, 2014] If the kernel k is square-root integrable w.r.t.

both p and q then

WHk
(p, q) =

∥
∥
∥
∥

∫

k(·, x)dp−
∫

k(·, x)dq
∥
∥
∥
∥
Hk

,
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where Hk induces kernel k ∈ BHk
.

Finally, an important result that relatesWHk
andW is given in the following Corol-

lary.

Corollary 6.8. If 0 ≤ k(xi, xj) ≤ K and d(x, y) = ‖k(·, x)− k(·, y)‖
Hk

then

WHk
≤ W ≤

√

W 2
Hk

+ 2K.

This result shows that WHk
is comparable with W in the probability metric space.

6.4 Domain adaptation model based on feature maps

In this section, we briefly introduce kernel embeddings of distribution functions and

show how Definition 8 can be restated when operating in a RKHS. We start with a

definition of a mean map and its empirical estimate.

Definition 10. Let k : X × X → R be a kernel in the RKHS Hk and φ(x) = k(x, ·).
Then, the following mapping

µ[PX ] = Ex[φ(x)]

is called a mean map. Its empirical value is given by the following estimate:

µ[X] =
1

m

m∑

i=1

φ(xi),

where we X = {x1, ..., xm} is drawn i.i.d. from PX .

If Ex[k(x, x)] < ∞ then µ[PX ] is an element of RKHS Hk. According to the

Moore-Aronszajn theorem, the reproducing property of Hk allows us to rewrite every

function f ∈ Hk in the following form: 〈µ[PX ], f〉 = Ex[f(x)].

We now give a definition of the maximum mean discrepancy (MMD) between two

distributions.
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Definition 11. Let F be a class of functions f : X → R and let p and q be two

probability Borel measures. Then we define dMMD(p,q) as:

dMMD(p,q) = sup
f∈F

[Ex∼p[f(x)]− Ey∼q[f(y)]].

This expression can be further simplified by observing that in RHKS every function

f can be written as f(x) = 〈φ(x), f〉Hk
. Finally, if ‖f‖Hk

≤ 11, we have:

dMMD(p,q) = ‖µx∼p[φ(x)]− µy∼q[φ(y)]‖Hk
.

At this point it becomes obvious that MMD distance coincidences with WHk
(p, q) de-

fined in the previous section. This fact is quite important as it shows that the usage of

MMD as a discrepancy measure between domains distribution functions for the gen-

eralization bounds is relevant as it appears naturally as a solution of the optimization

problem directly linked to the domain adaptation problem.

A typical approach used by the majority of domain adaptation algorithms is to try

to find a function that maps both tasks to a shared latent space where a classifier learned

on the source data is assumed to have a good performance when applied to the target

data.

We now assume that lh,f : x → l(h(x), f(x)) is a convex loss-function defined

∀h, f ∈ F. We further assume that l obeys the triangle inequality. Similar to Definition

1, we say that h(x) correspond to the hypothesis and f(x) to the true labeling functions,

respectively. Considering that h, f ∈ F, the loss function l is a non-linear mapping of

the RKHS Hk for the family of losses l(h(x), f(x)) = |h(x)− f(x)|q2. Using results

from [Saitoh, 1997], one may show that lh,f also belongs to the RKHS Hkq admitting

the reproducing kernel kq and that its norm obeys the following inequality:

||lh,f ||2Hkq
≤ ||h− f ||2qHk

.

This result gives us two important properties of lf,h that we use further:

1For the sake of convenience, we further consider only functions f ∈ F where F is a unit ball in

the RKHS Hk. Nevertheless, all the results presented in this paper can be easily generalized to the case

where ‖f‖Hk
≤ C.

2If h, f ∈ F then h− f ∈ F implying that l(h(x), f(x)) = |h(x)− f(x)|q is a nonlinear transform

for h− f ∈ F.
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• lh,f belongs to the RKHS that allows us to use the reproducing property;

• ||lh,f ||Hkq
is bounded.

Thus, the error function defined above can be also expressed in terms of the inner

product in the corresponding Hilbert space, i.e1:

ǫS(h, fS) = Ex∼DS
[l(h(x), fS(x))] = Ex∼DS

[〈φ(x), l〉H].

We define the target error in the same manner:

ǫT (h, fT ) = Ey∼DT
[l(h(y), fT (y))] = Ey∼DT

[〈φ(y), l〉H].

When the source and target error functions are defined with respect to h and fS,T , we

use the shorthand ǫS(h, fS) = ǫS(h) and ǫT (h, fT ) = ǫT (h). We also note that f and h

are not restricted to be binary-valued functions.

From practical point of view, we observe that numerous domain adaptation and

transfer learning approaches are based on MMD minimization [Chen et al., 2009; Geng

et al., 2011; Huang et al., 2006; Pan et al., 2008, 2009]. Furthermore, conditional

kernel embeddings were used for target and conditional shift correction [Zhang et al.,

2013] and vector-valued regression [Grünewälder et al., 2012]. Thus, the use of this

metric in domain adaptation theory is justified and appears to be natural.

6.5 Generalization bounds using MMD distance between

kernel embeddings

In this section, we introduce generalization bounds for the source and target error when

the divergence between tasks’ distributions is measured by the MMD distance. We

start with a lemma that relates the source and target error in terms of the introduced

discrepancy measure for an arbitrary pair of hypothesis. Then, we show how target

error can be bounded by the empirical estimate of the MMD plus the complexity term.

1For simplicity, we will further write H meaning Hkq and l meaning lf,h.
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6.5.1 A bound relating the source and target error

Using the definitions introduced before we can prove the following lemma.

Lemma 6.9. If ‖l‖H ≤ 1 then for every h, h′ the following holds:

ǫT (h, h
′) ≤ ǫS(h, h

′) + dMMD(DS,DT).

Proof.

ǫT (h, h
′) = ǫT (h, h

′) + ǫS(h, h
′)− ǫS(h, h

′)

= ǫS(h, h
′) + Ey∼DT

[〈φ(y), l〉H]− Ex∼DS
[〈φ(x), l〉H]

= ǫS(h, h
′) + 〈Ey∼DT

[φ(y)]− Ex∼DS
[φ(x)], l〉H

≤ ǫS(h, h
′) + dMMD(DS,DT).

In this proof, the second line is obtained using the definition of the source and target

errors while the last inequality is due to the fact that ‖l‖H ≤ 1. This lemma is similar

to Lemma 3 from [Ben-David et al., 2010a]. Using it and the result that relates the true

and the empirical MMD distance [Song, 2008], we can prove the following theorem.

Theorem 6.10. Let ‖l‖ ≤ 1 in a RKHS H, US and UT are two samples of size m

drawn i.i.d. from DS and DT respectively then with probability at least 1− δ for all h

the following holds:

ǫT (h) ≤ ǫS(h)+d̂MMD(US,UT)+
2

m
EDS

[√

tr(KS)
]

+
2

m
EDT

[√

tr(KT)
]

+2

√

log(2
δ
)

2m
+λ,

where d̂MMD(US,UT) is an empirical counterpart of dMMD(DS,DT), KS and KT are the

kernel matrices calculated on US and UT respectively and λ is the combined error of

the ideal hypothesis h∗ that minimizes the combined error of ǫS(h) + ǫT (h).
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Proof.

ǫT (h) ≤ ǫT (h
∗) + ǫT (h

∗, h)

≤ ǫT (h
∗) + ǫS(h, h

∗) + ǫT (h
∗, h)− ǫS(h, h

∗)

≤ ǫT (h
∗) + ǫS(h, h

∗) + dMMD(DS,DT)

≤ ǫT (h
∗) + ǫS(h) + ǫS(h

∗) + dMMD(DS,DT)

= ǫS(h) + dMMD(DS,DT) + λ

≤ ǫS(h) + d̂MMD(US,UT) +
2

m
EDS

[√

tr(KS)
]

+
2

m
EDT

[√

tr(KT)
]

+ 2

√

log(2
δ
)

2m
+ λ.

We can see that this theorem is similar to Theorem 6.2. The main difference,

however, is that the complexity term does not depend on the Vapnik-Chervonenkis

dimension. In our case, the loss function between two errors is bounded by the em-

pirical MMD between distributions and two terms that correspond to the empirical

Rademacher complexities of H w.r.t. the source and target samples. In both Theorem

3 and 11, λ plays the role of the combined error of the ideal hypothesis. Its presence

in the bound comes from the use of the triangle inequality for classification error.

This result is particularly useful as d̂MMD(US,UT) can be approximated by d̂2MMD(US,UT)

that, in its turn, can be calculated using the following equation:

d̂2MMD(US,UT)
=

1

m(m− 1)

∑

i 6=j

h((xi, xj), (yi, yj))

where for x ∈ US and y ∈ UT we have

h((xi, xj), (yi, yj)) =
1
m2

∑m
i,j=1 k(xi, xj)− 2

m2

∑m
i,j=1 k(xi, yj)+

1
m2

∑2
i,j=1 k(yi, yj).

The following lemma gives a computation guarantee for the unbiased estimator of

d̂2MMD(US,UT)
.

Lemma 6.11. Gretton et al. [2012]
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For m2 = m/2 the estimator

d̂2MMD(US,UT)
=

1

m2

m2∑

i=1

h((x2i−1, y2i−1)(x2i, y2i))

can be computed in linear time and it is an unbiased estimator of d2MMD(DS,DT)
.

We also note that the obtained bound can be further simplified if one uses, for

instance, Gaussian, exponential or Laplacian kernels to calculate matrices KS and KT.

In this case tr(KS) = tr(KT) = m.

Finally, it can be seen that the bound from Theorem 6.10 has the same terms as

Theorem 6.2 while the MMD distance is estimated as in Theorem 6.5.

6.5.2 A learning bound for combined error

In domain adaptation, one often wants to find a trade-off between minimizing the

source and target errors depending on the number of instances available in each do-

main and their mutual correlation. Let us assume that we possess βn labeled instances

drawn independently from DT and (1 − β)n labeled instances drawn independently

from DS. In this case, the empirical combined error is defined as a convex combina-

tion of errors on source and target training data

ǫ̂α(h) = αǫ̂T (h) + (1− α)ǫ̂S(h),

where α ∈ [0, 1].

The use of the combined error is motivated by the fact that if the number of in-

stances in target sample is small compared to the number of instances in source domain

(which is usually the case in domain adaptation), minimizing target error may not be

appropriate. Instead, one may want to find an appropriate value of α that ensures the

minimum of ǫ̂α(h) with respect to a given hypothesis h.

We now follow [Ben-David et al., 2010a] and prove a lemma that bounds the dif-

ference between target error ǫ̂T and weighted error ǫ̂α. Next, we use the concentration

results for MMD estimators to bound the difference between empirical and true com-

bined error functions.
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Lemma 6.12. With the assumptions from Lemma 1 the following holds:

|ǫα(h)− ǫT (h)| ≤ (1− α)(dMMD(DT ,DS) + λ).

Proof.

|ǫα(h)− ǫT (h)| = |αǫT (h) + (1− α)ǫS(h)− ǫT (h)|
= |(1− α)(ǫS(h)− ǫT (h))|
≤ (1− α)(dMMD(DT ,DS) + λ).

Here, the second line reads from the definition of the combined error while the

final result is obtained by adding and subtracting ǫS(h, h∗) and ǫT (h, h∗) and apply-

ing the triangle inequality the the resulting terms. This result shows that the level of

confidence, that we have in using the source data, defines the potential difference be-

tween the weighted combined error and the target error. This conclusion agrees with

the idea that when α → 1 the distance between distributions does not define the po-

tential success of the domain adaptation as we can not rely on source data to improve

performance in the target domain.

We now proceed to the concentration inequality for the true and empirical com-

bined error. The following lemma is a slight modification of Theorem 14 from [Gretton

et al., 2012].

Lemma 6.13. Let ‖l‖ ≤ 1 in a RKHS H. LetD be a sample of size n corresponding to

the combined error where βn points are drawn from DT and (1− β)n from DS. Then

with probability at least 1− δ for all h with 0 ≤ k(xi, xj) ≤ K the following holds:

P

{

|ǫ̂α(h)− ǫα(h)| > 2
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ ǫ

}

≤ exp







−ǫ2n
2K
(

(1−α)2

1−β
+ α2

β

)






.
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Proof. First, we use McDiarmid’s theorem in order to obtain the right side of the in-

equality by defining the maximum changes of magnitude when one of the sample vec-

tors has been changed. We first rewrite the difference between the empirical and true

combined error in the following way

|ǫ̂α(h)− ǫα(h)| = |αǫT (h)− (α− 1)ǫS(h)− αǫ̂T (h) + (α− 1)ǫ̂S(h)|

= |αEDT
(l)− (α− 1)EDT

(l)− α

nβ

βn
∑

i=1

l(h(xi), fS(xi))

+
(α− 1)

n(1− β)

n(1−β)
∑

i=1

l(h(yi), fT (yi))|

≤ sup
l∈F

|αEDT
(l)− (α− 1)EDS

(l)− α

nβ

nβ
∑

i=1

l(h(xi), fS(xi))

+
(α− 1)

n(1− β)

n(1−β)
∑

i=1

l(h(yi), fT (yi))|.

Changing either xi or yi in this expression changes its value by at most 2α
√
K

βn
and

2(1−α)
√
K

(1−β)n
, respectively. This gives us the denominator of the exponent

βn

(

2α
√
K

βn

)2

+ (1− β)n

(

2(1− α)
√
K

(1− β)n

)2

=
4K

n

(
α2

β
+

(1− α)2

(1− β)

)

.

Then, we bound the expectation of the difference between the true and empirical com-

bined errors by the sum of Rademacher averages over the samples. Denoting by X ′ an

i.i.d sample of size βn drawn independently of X (and likewise for Y ′), and using the

symmetrization technique we have

EX,Y sup
l∈H

|αEDT
(l)− (α− 1)EDS

(l)− α

nβ

nβ
∑

i=1

l(h(xi), fS(xi)) +
(α− 1)

n(1− β)

n(1−β)
∑

i=1

l(h(yi), fT (yi))|

≤ EX,Y sup
l∈H

|EX′

(

α

nβ

nβ
∑

i=1

l(h(x′i), fS(x
′
i))

)

− (α− 1)EY ′

(

(α− 1)

n(1− β)

nβ
∑

i=1

l(h(y′i), fT (y
′
i))

)
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− α

nβ

βn
∑

i=1

l(h(xi), fS(xi)) +
(α− 1)

n(1− β)

(1−β)n
∑

i=1

l(h(yi), fT (yi))|

≤ EX,X′,Y,Y ′ sup
l∈H

| α
nβ

βn
∑

i=1

σi(l(h(x
′
i), fS(x

′
i))− l(h(xi), fS(xi)))

+
1− α

n(1− β)

βn
∑

i=1

σi(l(h(y
′
i), fT (y

′
i))− l(h(yi), fT (yi)))|

≤ 2
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

.

Finally, the Rademacher averages, in their turn, are bounded using a theorem from

[Bartlett and Mendelson, 2003]. This gives us the desired result

P

{

|ǫ̂α(h)− ǫα(h)| > 2
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ ǫ

}

≤ exp







−ǫ2n
2K
(

(1−α)2

1−β
+ α2

β

)






.

We are now ready to prove the analogue of Theorem 6.3.

Theorem 6.14. Let ‖l‖ ≤ 1 in a RKHS H and let US and UT be two samples of size m

drawn i.i.d. from DS and DT respectively. Let D be a sample of size n corresponding

to the combined error where βn points are drawn from DT and (1 − β)n from DS. If

ĥ is the empirical minimizer of ǫ̂α(h) and h∗ = min
h
ǫT (h) then for any δ ∈ (0, 1) with

probability at least 1− δ (over the choice of samples),

ǫT (ĥ) ≤ ǫT (h
∗
T ) + c1 + 2(1− α)c2,

where

c1 = 2

√
√
√
√2K

(
(1−α)2

1−β
+ α2

β

)

log(2/δ)

n
+ 2

(√
α

β
+

√
1− α

1− β

)
√

K/n,
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c2 = d̂MMD(US,UT) +
2

m
EDS

[√

tr(KDS
)

]

+
2

m
EDT

[√

tr(KDT
)

]

+ 2

√

log(2
δ
)

2m
+ λ.

Proof.

ǫT (ĥ) ≤ ǫα(ĥ) + (1− α)(dMMD(DT ,DS) + λ)

≤ ǫ̂α(ĥ) +

√
√
√
√2K

(
(1−α)2

1−β
+ α2

β

)

log(2/δ)

n

+ 2
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ (1− α)(dMMD(DT ,DS) + λ)

≤ ǫ̂α(h
∗
T ) +

√
√
√
√2K

(
(1−α)2

1−β
+ α2

β

)

log(2/δ)

m

+ 2
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ (1− α)(dMMD(DT ,DS) + λ)

≤ ǫα(h
∗
T ) + 2

√
√
√
√2K

(
(1−α)2

1−β
+ α2

β

)

log(2/δ)

n

+ 4
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ (1− α)(dMMD(DT ,DS) + λ)

≤ ǫT (h
∗
T ) + 2

√
√
√
√2K

(
(1−α)2

1−β
+ α2

β

)

log(2/δ)

n

+ 4
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ 2(1− α)(dMMD(DT ,DS) + λ)

≤ ǫT (h
∗
T ) + 2

√
√
√
√2K

(
(1−α)2

1−β
+ α2

β

)

log(2/δ)

n
+ 4
√

K/n

(
α

nβ
√
β
+

(1− α)

n(1− β)
√
1− β

)

+ 2(1− α)(d̂MMD(UT ,US) +
2

m
EDS

[√

tr(KS)
]

+
2

m
EDT

[√

tr(KT)
]

+ 2

√

log(2
δ
)

2m
+ λ).

The proof follows the standard theory of uniform convergence for empirical risk

minimizers where lines 1 and 5 are obtained using Lemma 12, lines 2 and 4 are ob-

94



tained using Lemma 13, line 3 follows from the definition of ĥ and h∗T and line 6 is a

consequence of Theorem 6.10.

Several observations can be made from this theorem. First of all, the main quan-

tities that define the potential success of domain adaptation according to [Ben-David

et al., 2010a] (i.e., the distance between the distributions and the combined error of

the joint ideal hypothesis) are preserved in the bound. This is an important point that

indicates that two results are not contradictory or supplementary. Second, rewriting

the approximation of the bound as a function of α and omitting additive constants can

lead to a similar result as in Theorem 6.3. This observation may point out the existence

of a strong connection between them.

We examine below the relationships between the results from Section 2 and the

ones presented above.

6.5.3 Analysis of the bounds

As it was stated above, the main theoretical difference between the two types of bounds

is that VC-dimension appears in the original work and does not appear in ours. In

order to understand the difference between the proposed and original bounds, we need

to outdraw the classical scheme that is used to prove the concentration inequalities in

the learning theory. It usually consists of the following steps:

1. Using McDiarmid’s or Hoeffding inequality to obtain the concentration bound

of the form:

Pm{|ǫ(h)− ǫ̂(h)| > t} ≤ c1 exp{
−c2mt2
c3

},

where c1, c2, c3 are some constants.

2. Use sample symmetrization in order to bound the desired probability by the

probability of an event based on two samples:

Pm(Q) ≤ 2P 2m(R) ≤ 4ΠH(2m) exp{−c2mt
2

c3
},

where Q = {z ∈ Zm : |ǫ(h) − ǫ̂(h)| > t}, R = {(r, s) ∈ Zm × Zm : |ǫ(h) − ǫ̂(h)| >
t/2} and ΠH(2m) is a growth function.

3. Bound the growth function using Sauer’s lemma for a hypothesis space H of
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VC-dimension d:

ΠH(n) ≤ nd.

Proof of Theorem 6.2 follows this scheme when the bound for the empirical estima-

tor of the H∆H divergence is obtained. Authors used the fact that the VC-dimension

of H∆H is at most twice the VC-dimension of H and this, in combination with Sauer’s

lemma, gives the desired result. Theorem 6.3, in its turn, uses the same kind of reason-

ing to derive a bound for the difference between the true and empirical combined error

(Lemma 5, [Ben-David et al., 2010a]).

Theorem 6.10, however, was proved in a different manner. To obtain the bound

for the empirical MMD distance it uses the following estimate: for a RKHS H where

‖l‖H ≤ 1 for every l ∈ H, we have

Rm(H) ≤ 2

m
EX

√

k(xi, xj).

where Rm(H) = EXEσ

[

sup
f∈H
| 2
m

∑m
i=1 σif(xi)|

]

is the Rademacher average of space

H. This estimate introduces two terms to the bound of Theorem 6.10 that correspond

to the Rademacher average of the space H with respect to the distributions DS,DT.

Lemma 13 also uses this estimate to derive the bound for the true and empirical com-

bined error.

The strong connection between both results can be shown using the following ob-

servation: if we replace H with an arbitrary space F of binary-valued functions (e.g., 0-

1 loss functions) with finite VC-dimension dV C , it can be shown that Rm(F) ≤ c
√

dV C

m

for some constant c. In this case, the bounds recover the VC bounds of [Ben-David

et al., 2010a].

6.6 Experimental results

In this section, we evaluate the proposed bounds and compare them to the existing

results using Office/Caltech data set described in Chapter 3.

We analyze the results obtained in this chapter in two different settings. First, we

evaluate a computational efficiency of the empirical estimate of H∆H divergence1 and

1We recall that discrepancy distance from [Mansour et al., 2009] coincides with H∆H divergence
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compare it to the computational cost of MMD distance estimation. Then, we study

the behavior of both divergence measures when calculated during the optimization

procedure of one of the state-of-art domain adaptation approaches presented in [Shi

and Sha, 2012]. This particular choice of method can be explained by two reasons:

(1) we do not want to fall into a favorable setting by choosing an approach that uses

kernels to find a suitable projection of data; (2) it follows an iterative procedure so that

we can trace the evolution of both divergence measures and compare them to the real

classification error values.

6.6.1 Run-time performance comparison

dH∆H(US,UT ) is usually calculated by learning a linear classifier to discriminate be-

tween source and target samples pseudo-labeled with 0 and 1. To this end, we apply

Naive Bayes (NB), Linear Discriminant Analysis (LDA) and linear Support Vector

Machines (SVM) to learn a hypothesis that distinguishes between source and target

domains. MMD, in its turn, is calculated using an off-shelf routine provided in a tool-

box ITE [Szabó, 2014]. We vary the number of instances from Amazon and Caltech

domains by gradually increasing it from 50 to 950 with step equal to 50. The resulting

plot for four estimators is presented in Figure 6.2. We can see that NB-based estima-

tion of d̂H∆H is faster than LDA- and SVM-based estimations but still can not match

the performance of d̂MMD estimation. The results of computational cost obtained

on 12 domain adaptation problems from Office/Caltech data set are presented in Ta-

ble 6.1. We can see from the results that NB-, LDA- and SVM-based estimation of

d̂H∆H is much slower when compared to d̂MMD estimation calculated according to

Lemma 4.11.

6.6.2 Divergence analysis

The Information-Theoretical Learning of Discriminative Clusters (ITLDC) [Shi and

Sha, 2012] is a state-of-art domain adaptation method that proved to be efficient on

Office/Caltech data set. The main idea of this approach is to learn iteratively a linear

transformation matrix L that identifies an embedding where both source and target do-

in case of 0-1 loss.
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Figure 6.2: Running time as a function of samples’ size on A vs. C.

Table 6.1: Run-time for d̂H∆H and d̂MMD estimation on Office/Caltech data set.

Domain pair d̂H∆H(SVM) d̂H∆H(LDA) d̂H∆H(NB) d̂MMD

C→ A 5.517 0.7651 0.3709 0.0664

C→W 1.8156 0.4924 0.2508 0.0255

C→ D 1.4703 0.4745 0.2466 0.0177

A→ C 5.6698 0.6803 0.3728 0.0562

A→W 1.2914 0.4855 0.2241 0.0292

A→ D 0.8896 0.4747 0.2001 0.0185

W→ C 1.8157 0.4944 0.2523 0.0286

W→ A 1.2314 0.4588 0.2262 0.0269

W→ D 0.2436 0.4386 0.0881 0.0127

D→ C 1.5029 0.4752 0.2481 0.0205

D→ A 0.9539 0.4643 0.1992 0.0173

D→W 0.2459 0.4365 0.0888 0.0125

Average time 1.89 0.51 0.23 0.028
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mains are similarly distributed. Simultaneously, it optimizes the information-theoretic

metric that assumed to mimic the behavior of the missclafication error in the target

domain. Finally, when the resulting linear mapping is obtained, we project both source

and target data to a shared space using L. We apply this approach to Amazon ↔ Cal-

tech pair of tasks in both directions. Intuitively, we expect that the classification per-

formance in target domain may increase if the divergence between domains is properly

minimized. Otherwise, according to Theorem 6.2 and Theorem 6.10, the classification

accuracy in target domain will most likely decrease. In order to verify this, at each

iteration of ITLDC1 we learn a 1-NN classifier using projected source data and apply

it to a transformed target data. In Figures 6.3 and 6.4, we present d̂H∆H, d̂MMD and the

classification error values obtained using 1-NN classifier for for A → C (top row) and

C → A (bottom row) adaptation problems. The results for the rest of Office/Caltech

data set’s pairs can be found in Appendix B.
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Figure 6.3: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Ama-

zon/Caltech pair of tasks using ITLDC

Several observations follow from these figures. For A→ C adaptation problem, the

classification error decreases in the beginning and then slowly increases until the con-

vergence of the optimization procedure. At this point, we may expect the divergence

between two domains to have the same behavior. d̂H∆H fails to capture the initial in-

crease as it remains nearly constant in the beginning and then follows correctly the

shape of the classification error plot. On the other hand, the estimate of d̂MMD fol-

lows the behavior of the classification accuracy almost implicitly. It decreases when

the error increases and vice versa. Second example, when we swap the source and

target domains, shows that both d̂H∆H, d̂MMD capture well the general trend of the

1The obtained accuracy values may not coincide with the results from the original paper.
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Figure 6.4: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Cal-

tech/Amazon pair of tasks using ITLDC

classification accuracy. Both of them respond well to the changes in the behavior of

the classification error. It confirms that the proposed generalization bounds are similar

in shape to the true errors.

6.7 Conclusions and future work

The theory of learning from different domains, presented lately in [Ben-David et al.,

2010a], studies exhaustively the domain adaptation problem using the results from sta-

tistical learning theory. The generalization bounds proved in this work show explicitly

under which conditions a given domain adaptation approach is most likely to succeed.

In this chapter, we presented the generalization bounds for domain adaptation

based on the notion of kernel embeddings in a Reproducing Kernel Hilbert Space. The

idea underlying the proposed framework was particularly motivated by the fact that the

minimization of the distance between kernel embeddings of distribution functions has

already proved to be efficient and was exploited by numerous domain adaptation algo-

rithms. Even though the obtained generalization bounds are close to the original ones,

the latter does not assume that the hypothesis space is of VC-dimension. We showed

that the complexity terms arising in generalization inequalities can be bounded in terms

of the expectation over the trace of kernel matrix. We also presented the conditions un-

der which our bounds may recover the standard VC-theory results. From practical

point of view, the proposed formal estimator of H∆H is computationally intractable

problem while MMD enjoys the existence of a linear time unbiased estimator for its

quadratic counterpart. The empirical evaluations support the validity of the presented
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results and show their efficiency.

In future, our work can be continued in multiple directions. The most important of

them is to investigate a potential dependency between α and the divergence between

distributions by the means of a statistical test that would allow to define analytically

the weights of source and target error in the combined objective function. This can be

possibly done using the techniques from two-sample tests that minimize the probability

of the empirical distance between two samples falling below a given threshold. Indeed,

in domain adaptation problem, one essentially tries to minimize the Type II error that is

the probability of wrongly accepting that two distributions are equal when they are not.

Furthermore, the application of kernel two-sample tests may give rise to a new family

of domain adaptation algorithms that find a projection of source and target tasks’ data

to a RKHS with the associated kernel that minimizes the Type II error.

A somewhat different interesting future direction for this contribution may be to

make use of the proposed bounds in online learning setting where the relevance of

arriving samples to a given target data set should be estimated as quick as possible.

The same also holds for active learning setting. One may consider a situation where

the number of labeled samples in source domain is drastically small compared to the

number of data points in target domain. In such scenario, it can be more appropriate

to choose only those data points from traget task that can be labeled reliably using a

classifier trained on labeled source data sample. In both of the above mentioned cases,

the computational efficiency of MMD distance can play a crucial role when compared

to H∆H estimation.

Finally, the proposed results can be naturally extended to the multi-source frame-

work.
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Chapter 7

Conclusions and future perspectives

In this thesis we were working on two different subjects that are: Non-negative matrix

factorization and Transfer learning. The goal of the thesis is to adapt NMF to use it for

unsupervised transfer learning.

7.1 Conclusions

Regarding NMF, we proposed an approach that studies the behavior of Multilayer

NMF using Hoyer’s projection operator. The main idea introduced in this contribu-

tion is that the hierarchical factors arising from Multilayer NMF can be obtained using

the projections of the initial set of basis vectors with an appropriate level of sparsity.

While Multilayer NMF presents an efficient way of obtaining these factors, its compu-

tational cost remains quite high due to the multiple factorizations performed for each

layer. We showed that it can be reduced significantly if one replaces each new factor

with a sparse projection of the basis vectors of the previous layer. Furthermore, we

presented the theoretical analysis that explains the reasons why the proposed proce-

dure can be more suitable for preserving low distortion of the obtained basis vectors

with respect to the initial data. Finally, experimental results on several image data sets

confirmed the suggestions that were studied.

In the second part, we introduced two new approaches for unsupervised transfer

learning and a new view of the domain adaptation theory based on Hilbert-Schmidt

embeddings.

The domain adaptation theory presented in this thesis, closes the gap between the
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previous works on this subject by simultaneously achieving three goals: (1) it extends

the original work to a broader class of convex loss functions; (2) it eliminates VC

assumptions imposed on the hypothesis class and thus results in more data-dependent

bounds; (3) it explicitly introduces the MMD distance that enjoys the existence of an

efficient estimator. The experimental results presented in this contribution showed that

the proposed distance follows the behavior of the true classification error while it can

be computed almost ten times quicker than the best estimator for the H∆H divergence.

Even though there were prior works that assumed the hypothesis space to be a subset of

a RKHS, their goal was to derive generalization bounds for kernel-based regularization

algorithms while our contributions cover the original generalization bounds for both

simple and combined objective functions.

We also proposed a nonlinear approach for unsupervised transfer learning based

on kernel target alignment optimization. We used kernel alignment optimization in

order to minimize the distance between the distributions of source and target tasks.

We applied K-NMF to the intermediate kernels obtained during this procedure and

looked for a weight matrix that reconstructs well the similarity-based representation of

data. Once this matrix is found, we used it in C-NMF on the target task to obtain the

final partition. Our approach was evaluated on benchmark computer vision data sets

and demonstrated a significant improvement when compared to some state-of-the-art

unsupervised transfer learning methods. We also showed how KTA maximization can

be related to HSIC and QMI optimization. The established relationships allowed us to

conclude that the use of KTA for transfer learning is justified from both theoretical and

practical points of view.

Finally, we presented a linear approach that is based on the assumption that pre-

serving the non-negativity of the embedding for both source and target tasks can be

beneficial if the initial data are intrinsically non-negative. The presented approach

NNE consists of two stages: (1) first, NNE discovers non-negative principal compo-

nents that are further used to choose the basis vectors that are well-aligned between

the source and target tasks; (2) then, it finds a non-negative embedding that is used fur-

ther to obtain a partition of the target task through a simple and intuitive optimization

procedure. From the theoretical point of view, we showed that the similarity measure

calculated based on the obtained embedding is consistent and converges uniformly to

the true similarity function. We evaluated our approach on a famous Office/Caltech
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data and reported a comparable performance to the state-of-the-art domain adaptation

methods.

7.2 Future perspectives

Possible future perspectives of this thesis are many. The analysis of Multilayer NMF

with Hoyer’s operator can be improved by designing a new paradigm that relates spar-

sity to discriminative power of features and thus allows to provide an analytic solution

for the level of sparsity of each layer. With the current success of deep architectures,

another interesting direction is to apply the proposed analysis to Deep Neural Net-

works. This can possibly become an interesting alternative to dropout techniques.

The theoretical analysis presented in chapter 4 can be improved by the means of a

statistical test that would allow to define analytically the weights of source and target

error in the combined objective function. This can be possibly done using the tech-

niques from two-sample tests that minimize the probability of the empirical distance

between two samples falling below a given threshold. Indeed, in domain adaptation

problem, one essentially tries to minimize the Type II error that is the probability of

wrongly accepting that two distributions are equal when they are not. Furthermore,

the application of kernel two-sample tests may give rise to a new family of domain

adaptation algorithms that find a projection of source and target tasks’ data to a RKHS

with the associated kernel that minimizes the Type II error. A somewhat different in-

teresting future direction for this contribution is to make use of the proposed bounds in

online learning setting where the relevance of arriving samples to a given target data

set should be estimated as quickly as possible.

BC-NMF can be extended to work in the multi-task setting using an optimal shared

Gram matrix obtained for a set of kernels corresponding to different source domains.

As mentioned in Chapter 4, it can be done using the simultaneous NMF model. On

the other hand, one may also try to incorporate the consensus NMF[Li et al., 2007]

to the results obtained using the optimal Gram matrices of each source task. Another

important future direction for this approach is to propose a method that adjusts kernel

parameters in combination with weights adaptation. If found, the proposed algorithm

would be able to reduce significantly the computational cots of kernel alignment opti-

104



mization and the number of kernels used.

The proposed NNE approach can be extended to a multi-task version using the

weighted sum of terms corresponding to different tasks. In this case, we essentially

encounter the problem mentioned above - how to define the weights in the combined

objective function so that they minimize the overall classification error. This ques-

tion, however, remains unanswered as the theory of self-taught clustering has not been

developed so far due to the fact that one can not use typical approaches (e.g., VC

theory bounds and Rademacher complexity based bounds) relying on the presence of

labeled data. Nevertheless, unsupervised learning in general and unsupervised transfer

learning in particular become a topic of ongoing interest nowadays as supervised and

semi-supervised learning settings are widely covered in terms of theoretical guaran-

tees and arguably do not have much room for improvement in terms of classification

performance.

105



Appendix A

106



1 Introduction

In this Appendix we study the Multilayer NMF - a model that can be seen as a pre-

training step of Deep NMF model for learning hidden representations. We analyze the

factors obtained using Multilayer NMF and show that the process of building layers

can be seen as a repeated application of the Hoyer’s projection operator applied se-

quentially to the factor of the second layer. We also provide the sparsity analysis for

matrices obtained during the optimization procedure at each layer. We conclude that

the overall sparsity decreases with the increasing number of layers despite the general

assumption that Multilayer NMF is efficient due to the fact that it increases the sparsity

of learned factors.

1.1 Background and related works

There are two well-known issues that arise when one uses NMF:

• the decomposition obtained using simple NMF model is not unique and thus it

is numerically unstable;

• the simple NMF model with two factors is not deep enough to produce hierar-

chical features.

First problem can usually be solved in two ways: either by applying some kind of

initialization that transforms the initial data and further use it as an input of the NMF

model (for instance, see [Gillis, 2012]) or by adding a third factor in the NMF model

(so called Tri-NMF [Ding et al., 2010a]) that disables the possibility of obtaining an in-

finite number of decompositions for a given matrix by multiplying each of the resulting

factors by an arbitrary matrix on the right and its inverse on the left. The general study

about uniqueness of NMF can be found in [Donoho and Stodden, 2004]. Other re-

cent works discussing the necessary assumptions for NMF to be unique include [Theis

et al., 2005] and [Huang et al., 2013].

On the other hand, second problem can be tackled only by using new, more com-

plicated types of NMF that produce the hierarchy of factors. The following types of

NMF were proposed in order to deal with this issue: Convolutive NMF, Overlapping

NMF and Multilayer NMF [Cichocki et al., 2009].

107



Convolutive NMF is a natural generalization of NMF where the set of horizontally

shifted versions of the initial matrix is used in the optimization procedure. This par-

ticular type of NMF can prove to be very efficient when working with audio signals

whose frequencies vary in time. This model is, however, not hierarchical (it minimizes

the sum of decompositions corresponding to shifted matrices) and quite application-

dependent.

Overlapping NMF is pretty much the same as Convolutive NMF with the only

difference that we process vertically shifted versions of the primary matrix. Obviously,

it suffers from the same disadvantages.

In our work, we will consider the Multilayer NMF that was introduced in Chapter 2

as it deals with both issues of the simple NMF model. Considering current success of

deep and representation learning in real-world applications, this type of NMF is the

best candidate from the family of NMF methods that proved to learn hierarchical fea-

tures [Trigeorgis et al., 2014] and enjoys a good numerical stability with the increasing

number of layers.

Sparsity is an another key property of many machine learning algorithms. The

effect of reducing the number of components was first observed by neuroscientists who

were studying mammalian brain activity (see [Olshausen and Field, 2004]). There are

two key concepts related to sparsity: sparse activity and sparse connectivity [Thom and

Palm, 2013a]. The sparse activity means that only a small number of elements is active

at any time. The small connectivity reveals the same concept applied to connections

between elements. Both properties can be demonstrated using a simple NMF model

with two factors. If the prototypes matrix is sparse, we try to reconstruct a given object

by a reduced number of features. On the other hand, if partition matrix is sparse, we

assume that there is a small number of activations of prototypes for a given object.

As sparsity plays an important role in learning features, it is worth mentioning that

Multilayer NMF is considered to increase gradually the sparseness of obtained basis

matrices even though there was no empirical or theoretical study about this.

1.2 Our contributions

In our work we can highlight two main contributions:

• We studied the Multilayer NMF using Hoyer’s projection operator;
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• We analyzed the evolution of factors’ sparsity obtained at each layer.

The rest of this appendix is organized as follows: in section 2, we will briefly introduce

basic notations of Standard and Multilayer NMF, in section 3 we present our analysis

of Multilayer NMF using Hoyer’s projection operator. We will summarize the results

in section 4. Finally, we will conclude and point out some ideas about the future

extensions of our analysis in section 5.

2 Preliminary knowledge

In this section, we describe some basic notations and techniques that are used later. We

start by introducing the Deep NMF model.

2.1 Deep NMF

For the Deep NMF, we need to fine-tune the two factors in each layer, in order to reduce

the total reconstruction error of the model, by employing alternating minimization of

the following cost function:

CDeep(X,W,H) = 1
2
‖X −W1W2...WLHL‖2 =

= tr[XTX − 2XTW1W2...WLHL +HT
LW

T
LW

T
L−1...W

T
1 W1W2...WLHL].

Another approach used in Lyu and Wang [2013] proposes to optimize the whole se-

quence of factors in one single optimization procedure based on the solution to stochas-

tic matrix sandwich problem. It further uses the Dirichlet sparsity regularizer to rein-

force sparsity of the obtained matrices.

2.2 Hoyer’s normalized sparsity measure

In [Hoyer and Dayan, 2004] a new sparseness measure based on the ratio of ℓ1 and

ℓ2 norms was proposed in order to evaluate the sparseness of a given vector x. It is
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defined as follows:

s : Rn \ {0} → [0; 1], x→
√
n− ‖x‖1

‖x‖2√
n− 1

.

This sparseness measure satisfies all criteria of a relevant sparseness measure described

in [Hurley and Rickard, 2009]. s is scale-invariant and differentiable on its entire

domain [Thom and Palm, 2013a].

To exploit this sparseness measure, a sparseness-enhancing projection operator was

proposed in order to be used with projected gradient descent algorithms. For a given

degree of sparsity s∗, the operator finds the closest vector in the Euclidian sense that

has a desired level of sparsity s∗, given any arbitrary vector. More formally, Hoyer’s

projection operator is defined as follows:

SH(s1, s2) = {s ∈ Rn|‖s‖1 = s1, ‖s‖2 = s2}.

A variation of this operator when one wants to preserve nonnegativity is simply done

by searching for feasible solutions only in the positive orthant SH(s1, s2) ∩ Rn
≥0.

3 Analysis of Multilayer NMF

In this section we will study the Multilayer NMF using Hoyer’s projection operator.

We will use it in order to build a sequence of projected prototype matrices starting from

the second layer of Multilayer NMF. The main idea that we want to investigate here is

two-fold: (1) what happens at each layer of NMF in terms of features sparsity? and (2)

what lies underneath the hierarchical learning procedure, i.e. what is the relationships

between the features obtained at different layers? To answer these two questions, we

propose a very simple procedure that aims at finding the closest projection of a given

feature that has the same properties as a feature of the next level, given the previous

level’s set of features.

As it can be seen from the definition, this projection operator allows us to obtain a

projection of the initial vector x with the desired level of sparsity simply by manipu-
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lating with its ℓ1 and ℓ2 norms. Usually, however, we want the resulting vector to be

normalized. In this case, the value of ℓ2 norm can be set to 1 and the value of ℓ1 norm

can be easily derived from the above equation.

3.1 Proposed approach

In order to build a sequence of projected matrices, we start by performing first two

iterations of the Multilayer NMF:

X ≃ W1H1, H1 ≃ W2H2.

We cannot directly project first prototype matrix W1 because second factor W2 is sup-

posed to have a different size, i.e., W1 ∈ Rn×k, W2 ∈ Rk×k. After two iterations,

we obtain W3 by projecting W2 using Hoyer’s operator with the following parameters:

∀Wi ‖Wi‖1 = kWi
, ‖Wi‖2 = 1 where

kWi
=
√
m−

√
m− ‖Wi‖1

‖x‖2√
m− 1

(
√
m− 1).

More precisely, we fix the ℓ2 norm of all {Wi}i=2..L to 1 and we calculate the ℓ1

norm of the projection in terms of the sparsity of factors arising from Multilayer NMF.

Finally, the expression for our Projected Multilayer NMF (PMNMF) takes the fol-

lowing form:

Wpi = SH

(

. . .
︸︷︷︸

i−2

SH(SH(W2, kW2
, 1)

)

.

We can see directly that the proposed approach has to be more efficient than the Multi-

layer NMF as it does not need to perform NMF to obtain the factors of each layer. We

will further analyze its computational complexity in order to show that it is, indeed,

the case.
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The proposed algorithm is summarized in Algorithm 1.

Algorithm 3: Construction of a sequence of projected matrices

Data: X - initial data set, n - number of clusters, m - number of layers, nb -

number of features

Result: Wp - sequence of projected matrices

initialization;

[Wa H]← nmf(X,n);

for i← 1 to m do

[W Hn]← nmf(H,n);

Wa ← Wa ∗W ;

s← sparsity(Wa);

for k = 1..n do

kp ←
√
nb − (

√
nb)− 1) ∗ s;

Wp(k)← SH(W (:, k)/‖W (:, k)‖2, kp, 1);

3.2 Complexity analysis

We will now discuss more in detail the computational complexity of the Multilayer

NMF when compared to the Projective Multilayer NMF. As presented above, we will

consider the hierarchical system that consists of L layers. First, we note that the com-

putational complexity of the original optimization procedure with multiplicative update

rules for Standard NMF has the computational complexity O(tknm) for a given input

matrix X ∈ Rm×n where t denotes the number of iterations used to minimize the cost

function (usually, t ≈ 100). As first two iterations are the same for both approaches,

we obtain the following computational complexity O(tknm + tk2n). After that, the

Multilayer NMF builds the following (L − 1) factors in the same manner that leads

to the total computational complexity O(tknm+ Ltk2n). At this point, the Projective

Multilayer NMF deviates from the original approach and calculates all (L− 2) factors

left using Hoyer’s projection operator. When using an appropriate procedure, it can be

proved that the projection of a given vector x ∈ Rn can be calculated in linear time

and in constant space [Thom and Palm, 2013b]. Thus, the complexity of the proposed

approach is equal to O(tknm+ tk2n+ k2L).
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Comparing the complexities of each method, we can conclude by saying that the

proposed approach can be almost L times more efficient than the Multilayer NMF

when Standard NMF is applied to obtain the factors. Furthermore, we considered the

most optimistic scenario when Standard NMF is used at each layer which is usually not

the case as the latter gives less homogeneous clustering results when compared to other

variations of NMF with additional constraints on the factors. In this case, if Standard

NMF is replaced with three factor NMF (for instance, Convex NMF or Tri-NMF [Ding

et al., 2010a]) the computational complexity of Multilayer NMF will increase further.

3.3 Theoretical analysis

In general, it is hard to analyze NMF-based methods as the cost function that has to

be minimized is non-convex (it is actually multi-convex, i.e., convex in each of the

factors). Furthermore, there is no closed-form solution that allows to analyze analyt-

ically the properties of factors in terms of sparsity, orthogonality or their clustering

abilities. We can see, however, that different layers of Multifactor NMF have a differ-

ent meaning. First prototype matrix W1 represents a learned dictionary that captures

the essential coded information about the geometrical structure of the initial data. The

matrices {Wi}i = 2..L are destined to refine the initial prototype matrix in order to

make it more discriminant. To this end, we would like to try to find an answer to the

following question: “ under what conditions the initial coding obtained in W1 can be

preserved and refined using hidden layers?”

To answer this question, we will use the Johnson-Lindenstrauss lemma [Johnson

et al., 1984]. This lemma is formulated as follows:

Lemma. Let ǫ ∈ (0; 1
2
) be a real number, and X = {x1, x2, ..., xn} be a set of n in

space Rd. Let k be an integer with k ≥ Cǫ−2log(n), where C is a sufficiently large

constant. Then there exists a linear mapping f : Rm → Rk such that:

(1− ǫ)‖xi − xj‖2 ≤ ‖f(xi)− f(xj)‖2 ≤ (1 + ǫ)‖xi − xj‖2

for all i, j = 1, 2, ...., n.
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Multiple solutions were proposed to obtain the linear mapping that satisfies the JL

condition. The pioneer work [Johnson et al., 1984] builds transformation matrix by

choosing randomly a k-dimensional subspace of X with orthogonal columns and then

rescales it with respect to k and d. After that, [Indyk and Motwani, 1998] proved that

it is possible to replace a random k-dimensional subspace with k random Gaussian

vectors that are distributed iid. from N(0, 1). Finally, one of the most recent work

on this subject shows that the linear transform can be represented by a sparse matrix

where the level of sparsity can be defined beforehand [Ailon and Chazelle, 2006].

From a practical point of view, the linear mapping that reduces dimensionality of

the initial set of vectors and preserves the distance for an arbitrary pair of points has

found its application in numerous dimensionality reduction techniques. For instance,

solving the ǫ-approximate nearest neighbor problem that aims at finding the closest

Euclidian projection of a given vector x.

In this context, we can treat matrix W1 ∈ Rm×k arising from the first iteration of

Multilayer NMF as a linear transformation that reduces the dimensionality of X ∈
Rm×n to H1 ∈ Rm×n. If we assume that W1 fulfills the JL condition then we can

rewrite the latter as follows:

(1− ǫ)‖xi − xj‖2 ≤ ‖W1xi −W1xj‖2 ≤ (1 + ǫ)‖xi − xj‖2.

Indeed, we consider W as a good dictionary for clustering if the distortion between the

initial data and the features is low. In this case, the distances between the data points

are preserved and we can expect to have a good clustering performance when using

H1. If we further continue with Multilayer NMF, we obtain the following inequality

for the kth layer:

(1− ǫ)‖xi − xj‖2 ≤ ‖
k∏

l=1

Wlxi −
k∏

l=1

Wlxj‖2 ≤ (1 + ǫ)‖xi − xj‖2,

where
∏k

l=1Wl ∈ Rm×k is a transformation matrix for X and Hk.

In the case of Projective Multilayer NMF, Hoyer’s operator seeks to find a projec-
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tion of a given vector x on D where

D =
{
s ∈ Rd

≥0|‖s1‖2 = λ1, ‖s2‖2 = 1
}
.

We now rewrite the JL condition for Projective Multilayer NMF:

(1− ǫ)‖xi − xj‖2 ≤

‖W1W2

k∏

l=1

SH( . . .︸︷︷︸

l

W2)xi −W1W2

k∏

l=1

SH( . . .︸︷︷︸

l

W2)xj‖2

≤ (1 + ǫ)‖xi − xj‖2.

The standard NMF that is used to obtain the factors of each layer does not impose addi-

tional constraints on the factors. It means that multiplying the initial learned dictionary

W1 with the factors W2 to WL will most likely increase the length of the initial feature

vectors and thus increase the distortion between them and the initial data. Increasing

distortion, in its turn, may decrease the clustering performance. This observation can

also explain the fact that in both [Trigeorgis et al., 2014] and [Lyu and Wang, 2013]

the best results where obtained for multifactor decomposition with 2 hidden layers.

Contrary to Multilayer NMF, matrices {Wi}i=3..L obtained using Hoyer’s projec-

tion operator have the length of all their columns equal to one and the sparsity of the

factors can be defined by changing the values of ℓ1 norm. In our opinion, this prop-

erty can play a crucial role in building more complex models with a large number of

hidden layers that fine-tune the prototype matrices while maintaining a low distortion

with respect to the initial data.

4 Experimental results

In this section we will present the experimental results obtained using our approach for

some famous benchmark data sets used in face and image recognition.
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4.1 Data sets and evaluation criteria

We evaluate the proposed approach using some well-known image data sets such as:

• Yale data set (165 images of 15 individuals);

• ORL (400 images of 40 different individuals of size 32x32);

• MNIST (70000 images of handwritten digits of size 28x28):

• USPS (9298 images of 10 different digits of size 16x16);

• PIE (41368 images of 68 different individuals).

Figure A.1 shows example photos from Yale, ORL and PIE data sets.

Figure A.1: Samples from Yale, ORL and PIE data sets

We performed 10 fold cross-validation for each of them and evaluated the results

using purity [Rendon et al., 2011].

Purity is the standard measure of clustering quality in supervised setting. Given a

particular cluster Sr of size nr, the purity of this cluster is defined to be:

Pu(Sr) =
1

nr

max
i
ni
r.

Larger purity values indicate better clustering solutions.
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4.2 Analysis of Multilayer NMF using Projected Multilayer NMF

The analysis that we present consists of three main parts:

• we analyze purity values obtained at each level for both MNMF and PMNMF in

order to see if the obtained features lead to the same results;

• we compare projected factors to real factors of Multilayer NMF by calculating

the ℓ1 norm as ℓ2 norm is fixed to 1 for all projections. We recall that bigger ℓ1

values of factors stand for lower sparsity values;

• we present sparsity values for both sequences of matrices and show that it de-

creases from layer to layer.

The results for all five data sets are presented in Figure A.2-Figure A.6.

2 4 6 8 10
0.38

0.382

0.384

0.386

0.388

0.39

0.392

0.394

0.396

0.398

0.4

Number of layers

P
u
ri
ty

 v
a
lu

e
s

 

 

Purity with PMNMF features

Purity with MNMF features

2 4 6 8 10
0.3

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

0.39

0.4

Number of layers

S
p
a
rs

it
y
 v

a
lu

e
s

 

 

Sparsity of MNMF features

Sparsity of PNMF features

2 4 6 8 10
1.35

1.4

1.45

1.5

1.55

1.6

1.65
x 10

4

Number of layers

N
o
rm

 v
a
lu

e
s

 

 

l1−norm of PMNMF features

l1−norm of MNMF features

Figure A.2: Results on purity, sparsity and ℓ1 norm of features on Yale data set
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Figure A.3: Results on purity, sparsity and ℓ1 norm of features on ORL data set

These figures show that classification accuracy values obtained at each layer using

both Projected and Standard Multilayer NMF are almost identical. It means that our
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Figure A.4: Results on purity, sparsity and ℓ1 norm of features on PIE data set
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Figure A.5: Results on purity, sparsity and ℓ1 norm of features on USPS data set
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Figure A.6: Results on purity, sparsity and ℓ1 norm of features on MNIST data set
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approach works just as we intended, i.e., it follows the original approach and preserves

its clustering performance at each layer.

We can also see that sparsity decreases at each layer while ℓ1 norm is increasing.

In terms of ℓ1 norm, our approach is once again very close to the original Multilayer

NMF.

The results on sparsity and ℓ1 norm are rather surprising as it is common to justify

the improved performance of the Multilayer NMF by the fact that the sparsity of factors

is enhanced when one increases the number of layers. However, this result agrees well

with [Berkes et al., 2009] where the neural responses to natural moves in the primary

visual cortex of ferrets were studied. In contrast with prediction from a sparse coding

model, the main conclusion of this work is that the representation in the primary visual

cortex is not actively optimized to maximize sparseness. It seems logical that complex

models used by visual cortex can be simplified only to some degree of sparsity where

they remain discriminant. At this point, further sparsification of features can hurt the

performance of classification due to the fact that they won’t be able to capture the

differences between objects in their fullest.

5 Conclusions

In this appendix we analyzed Multilayer NMF using Hoyer’s projection operator. Our

main idea was to show that adding depth to NMF can be achieved by simply projecting

arising factors with a certain level of sparsity. This result can be seen as a variation of

pooling approaches that are widely used in Deep neural networks. We also observed

that for five chosen data sets sparsity decreases during the optimization procedure at

each layer. This result is rather surprising as it was common to suppose that enhanced

sparsity of prototypes makes Multilayer NMF more robust. Therefore, we conclude

that hierarchical feature learning in general can be seen as a sequential application of

projections as if one was using regularization imposed on obtained factors. From the-

oretical point of view, we used Johnson-Lindenstrauss lemma to show that the hidden

layers learned using Hoyer’s projection operator are more likely to produce a dictionary

that keeps the distortion low with respect to the initial data and has a good clustering

performance. Finally, the proposed approach is more computationally efficient than
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the original one even when the simplest form of NMF is used at each layer.

In the future our work can be extended in multiple directions. Learning hierarchical

structures are commonly used in lots of machine learning techniques. It means that

our approach can be further extended and tested on them in the same fashion as it

was done for NMF. For instance, one can use it for hierarchical feature learning in

most powerful machine learning techniques such as Deep Neural Networks. However,

determining the level of sparsity that ensures discriminative power of features and

avoids overfitting remains an open problem. Finally, another interesting direction is to

proceed in the same manner as the Deep NMF does - that is to add a global learning

step for all layers. In this case, one can expect to learn hierarchical features minimize

well the reconstruction error.
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In this appendix we present figures for the rest of Office/Caltech data set’s pairs

divergence measures comparison from Chapter 6. In general, we can observe that

MMD distance fails to follow the shape of the true target error in the following cases:

D,W → A,C. These scenarios represent a situation where the source tasks is small

compared to the target task while the main setting for the transfer learning is exactly

the opposite. On the other hand, d̂H∆H divergence does not follow the true error in

more than half of the cases (A→ D, C→ D, D→ A, D→ C, W→ A, W→ D).
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Figure B.1: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Ama-

zon/DSLR pair of tasks using ITLDC
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Figure B.2: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Ama-

zon/Webcam pair of tasks using ITLDC
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Figure B.3: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Cal-

tech/DSLR pair of tasks using ITLDC
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Figure B.4: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Cal-

tech/Webcam pair of tasks using ITLDC
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Figure B.5: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on

DSLR/Amazon pair of tasks using ITLDC
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Figure B.6: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on

DSLR/Caltech pair of tasks using ITLDC
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Figure B.7: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on

DSLR/Webcam pair of tasks using ITLDC
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Figure B.8: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Web-

cam/Amazon pair of tasks using ITLDC
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Figure B.9: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Web-

cam/Caltech pair of tasks using ITLDC
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Figure B.10: d̂MMD distance, 1-NN classification error and d̂H∆H divergence on Web-

cam/DSLR data set using ITLDC
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