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bon fonctionnement et je vous en remercie. Je voudrais remercier ici en particulier
Solen, Maryse, et Carole de l’administration; Fabrice, Haniffe et Germaine, de l’atelier
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de la vie de la recherche...).
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Introduction

Degenerate gases

Following Bose’s seminal work on the statistics of photons [1], Einstein predicted that
below a certain temperature a system of bosons cross a phase transition [2]. Below this
critical temperature, bosons behave as non-interacting particles which may accumulate
in the ground state of the system. In honour of their work, this is called a Bose-Einstein
Condensate (BEC). The size of this quantum object can be arbitrarily large without
adding to the complexity of the problem because the BEC behaves as one quantum
object. This is particularly appealing since it enables the exploration of the quantum
world with a macroscopic object. Despite how appealing a BEC is, its production
remained elusive for 70 years. Intensive laser developments and cooling techniques
[3, 4, 5] paved the way for the first production of a BEC in 1995 with Rubidium atoms,
closely followed by the condensation of Sodium atoms and Lithium atoms [6, 7, 8].

This opened up the very active field of quantum gases. Since, many other atomic
species have been Bose condensed with each atomic species having its own specificity.
Potassium and Cesium were cooled to degeneracy [9, 10]. These species have broad and
easily accessible Feshbach resonances, enabling tunable control of contact interactions
[11, 12, 13]. Soliton behaviour as well as exotic three particle states called Effimov
states were observed with such atoms [14, 15]. Atoms with non-negligible dipole-dipole
interactions have been condensed. First Chromium [16], then Lanthanides of Dyspro-
sium [17] and Erbium [18]. Two valence electron atoms (alkaline-earth atoms), such
as Calcium or Strontium have also been cooled to degeneracy [19, 20]. Ytterbium
has been cooled [21] and with Strontium it is particularly interesting since these ele-
ments have very narrow optical transitions (”clock” transitions) which enable precise
measurements and also they display an appealing universal SU(N) behaviour.

Physicists were also preoccupied in studying fermionic degenerate gases. The de-
generacy of a Fermi gas is not characterized by a macroscopic occupation of the ground
state. Pauli principle forbids two fermions to be in the same quantum state. Despite
its interest, a degenerate Fermi gas was produced only some time after the first de-
generate Bose gas [22]. This is associated with the difficulty in thermalizing polarized
fermions, owing to Pauli principle. Since then, many fermionic degenerate gases have
been produced, and the study of the Fermi gas became a very intense field of research
at the beginning of the year 2000’s.



VI Introduction

Contact Interactions

Interactions are not necessary in order to explain Bose-Einstein Condensation (which is
intrinsically due to Bose statistics). Nevertheless they are of fundamental importance
in the physics of Bose Einstein condensates. The main interaction in most BEC exper-
iments is the Van der Waals interaction. The Van der Waals potential is short-ranged
and isotropic (VV dW ∝ 1/r6). At very short distance, the interaction potential is com-
plex and an exact description of the interaction often makes calculations challenging if
not unfeasible. In cold atoms, the real potential is accounted for by a pseudo potential,
which takes the form:

V (r) =
4π~2

m
aSδ(r) (1)

for a pair of atoms in molecular spin state S, where δ(r) is the Dirac’s delta-function
(thus branding these interactions as contact interactions), ~ = h/2π with h Planck’s
constant, m the atom mass, and aS the scattering length associated with the molecular
potential of spin S. Interactions are so basically important that they fix the size of the
BEC and give it a parabolic shape (in a trap and in the Thomas-Fermi regime [23]).
The molecular potential through which atoms interact thus depends on the spin state
of each colliding atom. This is because contact interactions depend on the spin state
of the pair of colliding atoms through the molecular potential specific to the spin of
the pair, S (i.e. aS depends on S).

Chromium

The first experiment on BECs only dealt with one spin state. Despite how interesting
that is, physicists also turned their attention to producing BEC in several internal spin
states [24, 25]. This is often referred to as spinor BECs. Despite the large number of
atoms and molecules produced in the cold regime, not all are well suited for the study
of spinor physics. In this thesis, we will be particularly interested in spinor physics.

Chromium, with its large spin s=3, is particularly well suited for this. It has 7 spin
states which can all be trapped equally in optical dipole traps. In the optical dipole trap
atoms of different spin states may interact through contact interactions. Due to the
large number of spin states, there are several possible molecular channels aS for atoms
to interact through. This leads already to very rich physics. For example, the ground
state of the system, which is the state of lowest energy, results from a competition of
the different interaction energies associated to different molecular potentials.

Besides contact interactions, other interactions may take place. In the case of
Chromium, its six valence electrons yield a relatively strong magnetic dipole moment
µ = 6 µB with µB Bohr’s magneton. The dipole-dipole interaction potential between
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two atoms of magnetic moment ~µi = gsµB~si separated by ~r is:

VDDI(~r) =
µ0(gsµB)

2

4πr5

(

r2~s1.~s2 − 3(~s1.~r)(~s2.~r)

)

(2)

with gs the Landé factor, and µ0 the vacuum permeability. This interaction differs
substantially from contact interactions since it is long range and anisotropic. This
allows for atoms to collide even though they are not close together. Dipole-dipole
collisions, as contact collisions do, have spin exchange collision channels (where the
total spin is conserved) but also dipolar relaxation channels. In a dipolar relaxation
process, the spin projection is not conserved, it is the total angular momenta of the
pair of atoms which is conserved. Spin (meant here as longitudinal magnetization) is
not a good quantum number.

There are only a few quantum gas experiments with non-negligible dipole-dipole
interactions, and they have recently attracted a lot of interest, with many experiments
around the world being built. Our focus is two-fold: (i) the impact of dipole interactions
on the magnetic properties of a BEC of atoms with large spin and (ii) observe spin
dynamics due to dipolar interactions. A Chromium gas is particularly well suited. It
has a long lifetime in a conservative trap which allows for study of its thermodynamic
quantities. Chromium can also successfully be loaded in a lattice. There, atoms in
different sites can be coupled and lead to spin dynamics.

The recent production of Dy and Er ultracold gases [17, 18], with larger dipolar
interactions and tunable interactions [26, 27], may hamper the edge Chromium once
had. The Dysprosium and Erbium experiments have produced quantum droplets [28,
29]. Contact interactions are tuned to small negative values, then dipolar interactions
and quantum flucutations stabilize the gas [30]. The hydrodynamic properties of this
system promise to be fascinating.

Other systems than a Chromium BEC, such as Rydberg atoms or polar molecules
have been produced and display large dipole-dipole interactions [31]. Polar molecules
display a large electric dipole interaction and lead to strong dipolar effects. However,
polar molecules are yet to be put in the degenerate regime due to bad collisions during
the cooling process (even though there are experiments close to degeneracy [32, 33]).
It is the same collisions which prevent polar molecules from being stable in the bulk
long enough for any thermodynamic purpose. However, polar molecules have been
successfully loaded in an optical lattices [34]. The low filling factor achieved is com-
pensated by the large interactions they display. Rydberg atoms consist of atoms with
one of their electrons in a highly excited state. The higher the excited state, the
stronger the interaction but the shorter the lifetime of the Rydberg state. The recently
demonstrated control in preparing experiments with larger and larger Rydberg atoms
provides exciting venues for the field of quantum mechanics [35, 36].
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This thesis

I started my PhD in October 2013 in the Dipolar Quantum Gas group at the University
Paris XIII under the supervision of B. Laburthe-Tolra and L. Vernac. Most of the work
and results performed by the group during my three years at the Laboratoire Physique
des Lasers are summed up in the following. I decided to present our work in three
parts.

Part One

Part I describes the experimental setup I used throughout my PhD.
In chapter 1 I present the experimental setup which produces a Chromium BEC.

Due to the fact that Chromium does not have a closed cooling transition and owing
to large light assisted inelastic collisions, it was particularly challenging to produce
a Chromium BEC. Here I will describe the apparatus and tools developed by my
predecessors to produce a BEC, but also the modifications which took place during my
PhD.

In chapter 2, I present the experimental work performed at the start of my PhD
where we set up a new laser system specifically dedicated to the fermionic isotope of
Chromium: 53Cr. I present the different spectral lines used for cooling and trapping
atoms in a Magneto-Optical-Trap. Finally I present our strategy to load a maximum
fermionic Chromium atom number in a conservative trap where evaporative cooling
may take place.

Part Two

Part II is dedicated to thermodynamic properties of a Chromium gas and we will be
particularly interested in collisions, thermalization processes, and in the role of spin
degrees of freedom.

The chapter 3 will act as an introduction to materials used in this part. We will
discuss the study of interactions and of thermalization of the internal and external
degrees of freedom due to contact and dipole-dipole collisions. We will distinguish
two types of collisions: coherent and incoherent collisions. Both processes involve
the internal and external degrees of freedom and may lead to spin dynamics. It is
therefore crucial to be able to pinpoint to the origin of spin dynamics. We will illustrate
coherent and incoherent spin dynamics with two experimental results. The experiment
of coherent spin dynamics was not performed during my PhD, this result was observed
during Aurelie de Paz’s thesis [37]. However, I studied the agreement of the observed
spin oscillation with our understanding of coherent spin collisions. We then discuss
an experiment performed during my PhD. Here we prepare approximatively half of
the atoms in ms = −3 and half in ms = +3. We observe spin dynamics due to
contact interaction. We established a theoretical model based on incoherent collisions
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to account for our data with one free parameter: a0 the scattering length associated
with the molecular potential S=0. The model which best fits the data yields a0. This
value was unknown at the time. We find a0 = 13.5+15

−10aB. This measurement has deep
consequences for the ground state properties of a Chromium gas: the ground state is
then predicted to be cyclic.

In chapter 4, we present results of the co-evaporation of a Bose-Fermi gas to degen-
eracy which led to the production of a Chromium Fermi sea of approximatively 1000
atoms at T/TF ∼ 0.66. Evaporation relies on efficient thermalization of the mechanical
degree of freedom. We analyze the thermalization process during evaporation and are
able to estimate the favourable value of the scattering length associated to collisions
between bosons and fermions. We measure aBF = 80± 10aB with aB the Bohr radius.

In chapter 5, I discuss the main part of my thesis where we focus on the thermody-
namics of a Bose gas with a spin degree of freedom. We start by introducing the basic
thermodynamic properties of an ideal Bose gas with a spin degree of freedom which
displays 3 phases. Phase A corresponds to a thermal gas in each Zeeman component;
Phase B to a BEC only in ms = −3; Phase C to a BEC in all spin states. This
will help us understand the motivation of the two experiments I present next. In the
first experiment, we start with a Chromium gas in phase A. We rapidly cool the gas
in order to enter Phase C. We observe that it is difficult to produce a BEC in spin
excited states. We find that the dynamics of Bose-Einstein condensation is affected
by spin-changing collisions arising from relatively strong spin-dependent interactions.
Thermalization of the spin degrees of freedom is influenced by the occurrence of BEC,
and in turn influences which multi-component BECs can be produced. In the second
experiment, we take advantage of our understanding of the phase diagram of large spin
atoms to implement a new cooling mechanism. The cooling mechanism takes place in
phase B. There, a Chromium BEC can only be in ms = −3 (it forms in only one spin
state). Atoms in other spin states are necessarily thermal atoms. Then the magnetic
field is lowered and we let the mechanical degree of freedom reach equilibrium with
the spin degree of freedom (through dipolar collisions) by populating thermal spin ex-
cited states, and subsequently removing them. We end up with a polarized BEC, with
increased BEC fraction provided the initial BEC fraction is large enough. We also
propose how this cooling mechanism may be achieved with non-dipolar atoms, such as
Rubidium or Sodium, and discuss the limits and efficiency of the process.

Part Three

In Part III, we will be interested in understanding the conditions of appearance of
quantum magnetism.

The chapter 6 will serve as an introduction to this part. We first explain what
we mean by classical and quantum magnetism. Classical magnetism dynamics will be
characterized by the absence of correlations between particles, and dynamics will be
governed by mean field equations. Deviation from these mean field predictions will be
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a signature of the breakdown of the ”no correlations” hypothesis, crucial for any mean
field approximation. We will specifically be interested in how quantum magnetism
mediated by dipolar interactions (our main originality) may arise in a Chromium gas.

In chapter 7, we present an experiment where a chromium BEC is loaded in a
double-well trap. Atoms of each well are prepared in opposite spin states. No spin
dynamics is observed. The atoms’ spin states of each well remain in their initial states.
This is in agreement with the classical result of two magnets in opposite directions
in a large external magnetic field. Absence of dynamics is due to a competition be-
tween Ising and exchange terms in the Hamiltonian, which helps in understanding the
quantum to classical crossover observed as the number of atoms in each well is large.

In chapter 8, we present two spin dynamics experiments driven by contact and
dipolar interactions which differ by the spin excitation preparation. Both experiments
are performed in the bulk and at large lattice depth in a 3D Mott regime. In the
first experiment, a majority of atoms are prepared in ms = −2. We observe that for
a shallow lattice depth, dynamics is well accounted for by a mean field equation. In
the large lattice depth regime, dynamics scales with a beyond mean field theory. In
the second experiment, the spin excitation is prepared via a radio-frequency pulse. We
present preliminary results and try to assess how the presence of a lattice (or not) or the
spin preparation may affect the appearance of quantum magnetism due to dipole-dipole
interactions.



Part I

Experimental setup
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The Boson machine

In this chapter, I will introduce the experimental system I was handed at the start of my
thesis. I will briefly describe the methods that my predecessors developed to routinely
produce Chromium Bose Einstein Condensates and describe the new tools implemented
throughout my thesis. A reader who desires to deepen his understanding of the different
experimental techniques should refer to [38].

1.1 Specificity of Cr

Chromium is not an alkali unlike most atoms in Bose Einstein Condensation (BEC)
experiments. It is situated on the 6th column of the periodic table and therefore has
more than one valence electron. Actually, the electronic structure of Chromium in state
|7S3 > is an exception to the standard filling rules: the 3d subshell is half filled and
there is only one electron in the 4s subshell (its electronic structure can be written as
[Ar]3d54s1). Chromium therefore has 6 aligned valence electrons in its ground state,
its total electronic spin is s = 3, and its permanent magnetic moment in |7S3 > is
|~µ| = gsµBs = 6µB (with µB Bohr’s magneton and gs ≈ 2 the Lande factor of |7S3 >).

Naturally occurring Chromium is composed of four stable isotopes with relatively
high natural abundance (Table 1.1): three bosons (50Cr, 52Cr, 54Cr) and one fermion
(53Cr). This property gives us the flexibility to study the physics associated to bosonic
statistics with 52Cr, fermionic statistics with 53Cr, or even both together.

Isotope 50Cr 52Cr 53Cr 54Cr
Abundance 4.35% 83.79% 9.50% 2.36%
Nuclear Spin I = 0 I = 0 I = 3/2 I = 0
Statistics Boson Boson Fermion Boson

Table 1.1: The naturally abundant Chromium isotopes.

The bosonic isotopes have no nuclear spin and therefore do not have a hyperfine
structure. The fermionic isotope, on the other hand, has a hyperfine structure. At the
early stages of the experiment, the team produced a simultaneous 52Cr-53Cr Magneto-
Optical-Trap [39]. They then focused their attention on the bosonic isotope, where
they optimized the accumulation of atoms in a magnetic trap and then in an Optical
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Dipole Trap [40, 41, 42], and achieved BEC in 2007 [43]. In the following, I will explain
the different processes involved in the production of 52Cr BEC.

The relevant electronic levels involved in cooling and trapping 52Cr are shown
Fig.1.1. The |7S3 > → |7P4 > transition is used to cool and trap the atoms in a
Magneto Optical Trap. The properties of this transition are given in Table 1.2. The
cooling transition is not a closed transition: atoms in |7P4 > can naturally leak to-
wards metastable |5D > states. These transition should be forbidden since they do not
conserve spin (see Table 1.3 for the relative transition rates from |7P4 >). However,
they are not completely forbidden due to spin-orbit coupling [44].

We refer to |5D > or |5S2 > states as metastable because their energy level is
higher than the energy of the ground state, but they are not coupled to any lower
energy level. They therefore have a long lifetime, greater than the optical trap lifetime
[45]. Accumulating atoms in metastable states in the Optical Dipole Trap actually
turns out to be favourable because atoms in state |7S3 > can suffer from light assisted
inelastic collisions at a high rate which leads to large losses [46, 47]. In metastable
states, atoms are protected from these collisions.

Vacuum wavelength λ=2π
k
= 425.553nm

7P4 linewidth Γ=2π× 5 MHz

Saturation Intensity Isat =
πhcΓ
3λ3 = 8.52 mW.cm−2

Doppler Temperature TD = ~Γ
2kB

= 124µK

Recoil Temperature Trec =
~
2k2

mkB
= 1.02µK

Recoil Velocity vrec =
~k
m
= 1.8 cm.s−1

Table 1.2: Relevant properties of Chromium for laser cooling.

To perform an efficient loading of atoms in metastable states, it is more advan-
tageous to excite atoms towards the electronic state |7P3 >. The |7S3 > → |7P3 >
transition, which we call the depumping transition, allows accumulation of atoms in
|5D > states at a much better rate than through |7P4 > (Table 1.3), and, also, has the
advantage of allowing fast accumulation in |5S2 >. This state is more favourable for
accumulation since it has better collisional properties and a bigger light shift compared
to the |5D > states [43]. This J → J transition will be used as well to polarize atoms
in the Zeeman ground state ms = −3 before evaporation (s=3 for Cr).

|7S3 > |5S2 > |5D4 > |5D3 >
|7P4 > 3.15×107 Forbidden 127 42
|7P3 > 3.07×107 2.9×104 6×103 Unknown

Table 1.3: Transition probabilities (in s−1) between metastable or ground state and
excited states |7P3 > or |7P4 > [48].
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Figure 1.1: 52Cr Electronic Structure. The |7S3 > → |7P4 > transition is used to cool
and trap atoms in a MOT. From |7P4 > there is a leak towards |5D > states. We use
light resonant on |7S3 > → |7P3 > to force a leak towards state |5S2 >. Atoms can
accumulate in metastable states |5D > and |5S2 > where they are protected from light
assisted collisions (see text).
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Figure 1.2: Vaccum system. View from above.

1.2 Vacuum system

The experimental system, shown in Fig.1.2, has two vacuum chambers. One chamber
contains the atomic source and is called the oven chamber. The other one is where
the Bose Einstein Condensate is produced and all the experiments take place, it is
referred to as the science chamber. Because the vacuum quality at the oven chamber
is insufficient compared to what is needed for the science chamber, a 25 cm long, 9
mm diameter tube between the two chambers ensures vacuum isolation in the ultralow
pressure regime.

The oven chamber is pumped by a turbo pump of pumping speed 250 L/s, and
prepumped by a dry scroll pump of 110L/min. We measure the pressure in the oven
chamber by a Bayard-Alpert ionization gauge. Typical pressure in the oven chamber
is 1.10−9 mbar at 1500 ◦C and 5.10−10 mbar at 1000 ◦C.

The pressure in the science chamber is also measured by a Bayard-Alpert ionization
gauge and maintained at 5.10−11 mbar due to a 150L/s ion pump. If ever the ion pump
is not sufficient in maintaining such a low pressure, there is a Titanium sublimation
pump (which we used typically once every 6 months) which lowers the pressure inside
the science chamber from 8.10−11 mbar to 4.10−11 mbar.

A security system is set up in order to protect the vacuum in the science chamber
and the turbo pump. A gate is installed between the two chambers and is set to close
if the pressure in either the science chamber or the oven chamber becomes too high. A
gate was also set up between the turbo pump and the oven and is set to close if ever
the pressure inside the oven chamber increases over a set value.
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1.3 Oven

Chromium possesses a very low saturated vapor pressure at room temperature. There-
fore temperatures in the 1400 ◦C range are needed in order to create a sufficient atomic
flux for a cold atom experiment. The oven consists of tungsten W filaments which
heat a crucible made of W1 , in which there is an inset in Zircon2 containing a 20 g
Chromium bar. The inset is an empty cylinder of external diameter Φext= 12.5 mm
and internal diameter Φint = 8 mm, 6.4 cm long, and is open on one side in order to
be able to place the Chromium bar within. The Chromium bar is 6 cm long, and has
a 7.5 mm diameter. The opening of the inset is partly covered by a Zircone lid with
a hole of Φ = 4 mm diameter. The lid is glued3 to the inset. The temperature of the
oven is measured by a thermocouple. The DC current which feeds the W filaments and
heats the oven is governed by a controller through a PID loop and has an impedance
of Z = 0.5 Ω at 1500 ◦C.

We measure the pressure in the oven chamber correctly with the Bayard-Alpert
ionization gauge. However, there is a relatively large inaccuracy in the temperature
measurement of the chromium bar (≈ 100 ◦C). For our experiment, the critical pa-
rameter is the flux of Chromium atoms at the exit of the oven. Since the atomic flux
is a function of the temperature at the exit of the Chromium bar, we adapt the tem-
perature in order to have an appropriate Cr flux. Therefore we measure the flux of Cr
atoms at the exit of the oven nozzle. To do so we measure the absorption signal of the
atoms by sending polarized σ+ light while scanning the frequencies around the |7S3 >
→ |7P4 > transition. We know that we need a typical absorption of at least 1% in order
to produce a BEC in optimal fashion. Therefore we adjust the temperature read by the
programmable controller in order to obtain a sufficient atomic flux. Fig.1.3 illustrates
this experiment performed on the 31/07/2014. Typically we work at 1450 ◦C in order
to have at least 1% absorption, which was no longer the case on that date. In the latter
stage of my thesis, the oven was first raised to 1490 ◦C to reach 1.5% absorption (result
of the 31/07/2014 absorption measurement), and then gradually to 1600 ◦C where no
absorption could be seen and very small BECs were produced. The oven was changed
at the end of my experimental work in the laboratory. This Chromium bar had a
lifetime of 6 years. There was less than 1g of Chromium left in the oven out of the
initial 20 g and it took 3 weeks before the experiment was up and running again.

1Made in China, distributed by Neyco.
2Zirconium Dioxyde. Made by Keratec.
3904 Zirconia, Cotronics. TMax=2200 ◦C
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Figure 1.3: Absorption measurement of the atomic flux at the exit of the oven in
function of the temperature performed on the 31/07/2014. Here we can see that we
need a temperature read by the controller of at least 1490 ◦C in order to have an atomic
flux of at least 1%.

1.4 From the oven to a BEC

Cooling beams

To produce a sufficient amount of cooling light at 425.553 nm, the team decided on
frequency doubling a Titanium Sapphire laser Ti:Sa14. We pump the Ti:Sa1 with 15
Watts of a Verdi laser V18 and are able to produce 1.5 Watts of laser light at 851.105
nm. We then frequency double the light at 851.105 nm with a doubling cavity5 and
produce 300 mW of 425.553 nm light. We pre-stabilize the frequency of Ti:Sa1 by
locking it to a Fabry Pérot (FP) reference cavity. The doubling cavity is then locked
using a Hänsch-Couillaud locking scheme [38, 49] in order to always be resonant with
the Ti:Sa1 laser. We finally lock the FP cavity via saturation absorption using a
chromium hollow cathode6. The laser beam is then separated into four beams which
all go through different beam shaping and/or frequency shifts depending on the differ-
ent task needed: Zeeman Slower (ZS), the Magneto Optical Trap (MOT), Transverse
Cooling (TC), imaging.

4In order to avoid confusion with another Ti:sapph laser that I will describe later, we will refer to
this Ti:sapph (which is entirely dedicated to producing a BEC) as Ti:Sa1

5Cavity brand TechnoScan
6Cathode brand: Cathodeon. Model: 3QQKY/Cr
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Zeeman Slower

At the exit of the oven, atoms have a mean velocity of about 1000 m·s−1. We slow
atoms with a speed v < vc = 600 m·s−1 with a Zeeman Slower. We use for the ZS 100
mW of σ+ light at 425.553 nm detuned from the |7S3 > → |7P4 > by 450 MHz in the
red of the transition. Light is coupled to the atoms using an in-vacuum mirror (see
Fig.1.4). The magnetic field used in order to compensate for the Doppler shift along
the ZS is provided by three sets of coils with independent DC current sources.

The third set of coils is at a distance of approximatively 10 cm from the atoms
and produces a field of typically 1 G. This produces a magnetic gradient on the atoms
(estimated in the order of 0.3 G·cm−1 along the ZS axis).

During my thesis, we installed an electronic switch in the DC current source of this
coil. During the MOT stage of the experiment, the ZS is needed and the switch is on.
As soon as the loading of the 1D Far Off Resonance Trap is completed, we turn off the
switch so that evaporation can proceed with no magnetic gradient.

Transverse Cooling

In order to increase the flux of atoms that will be slowed down by the ZS and then
captured by the MOT, a horizontal and vertical transverse cooling scheme is imple-
mented at the exit of the oven nozzle. These beams collimate the atomic flux in order
to increase the number of atoms which exit the oven aperture and enter the MOT
capture zone.

We use for transverse cooling 20 mW of light at 425.553 nm, at the same frequency
as the MOT beams. In order to optimize the detuning between the electronic transition
and the light frequency, two pairs of compensation coils were added and the magnetic
field applied is approximatively 5 G.

MOT

At the exit of the ZS, atoms are captured in a MOT. The magnetic field is produced by
two coils set in a anti-Helmholtz configuration placed on each side of the experimental
chamber (Fig. 1.4). These coils are capable of delivering magnetic field gradients at the
MOT position of ≈ 18 G·cm−1 in the vertical direction (and therefore ≈ 9 G·cm−1 in
the horizontal plane). The optical trap is formed by two retro-reflected beams detuned
by 12 MHz (≈ 2.5 Γ) in the red from the |7S3 > → |7P4 > transition. One beam is
a retro-reflected vertical beam, it ensures vertical trapping. The other beam follows
a retro-reflected butterfly configuration and ensures trapping in the horizontal plane
(see Fig. 1.4).

A Cr MOT is a lot smaller than alkali MOTs due to its large light assisted inelastic
collisions rate. An atom in |7S3 > can collide with an atom which has been promoted to
|7P4 > by light, the atom pair is then lost. For Chromium, the associated rate param-
eter is measured to be (6.25± 0.9± 1.9)× 10−10cm3·s−1 at a detuning of -10 MHz and



10 1 The Boson machine

Figure 1.4: Sketch of the experimental chamber (Top view). The MOT, Zeeman Slower,
and IR beams are explicitly shown.

a total laser intensity of 116 mW·cm−2 [50]. This is typically two orders of magnitude
worse than for alkalis. As a result, a typical Cr MOT contains approximatively 1.106

atoms and has a radius of ≈ 100 µm. The temperature of the MOT is given by the
Doppler Temperature (and was confirmed by a cloud expansion measurement) which
for the case of Chromium is TDoppler =

~Γ
2kB

=120µK [50].

Accumulation in a 1D Far Off Resonance Trap

Chromium was successfully condensed by the Stuttgart group after accumulating atoms
in a magnetic trap and transferring them in an Optical Dipole Trap [16]. Our team
chose to try and accumulate directly in a 1D Far Off Resonance Trap (FORT) made
of one IR beam. For typical MOT systems, loading a 1D FORT from a MOT leads to
inefficient loading. For Chromium, however, this statement is not true. A chromium
MOT is smaller than typical MOTs due to (i) large light assisted collisions and (ii) less
efficient multiple photon scattering due to blue cooling light (which typically reduces
the MOT density and is ∝ σ2 ∝ λ4 [51]). It has a size of typically 100 µm, which
is similar to the dimensions of realistic 1D FORTs. In order to perform evaporation
in the best possible conditions, we need as many atoms in the conservative trap as
possible. In the following I will describe the beam which produces the 1D FORT and
the different steps we use in order to accumulate as many atoms as possible in the 1D
FORT.
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IR beam

At the very beginning of my thesis, we changed the IR laser system producing the
1D FORT in which atoms are accumulated. Before, a Ytterbium doped fibre laser at
1075 nm of 50 W laser power7 was used. The beam goes through an Acousto Optic
Modulator (AOM). We send to the AOM a Radio Frequency (RF) signal at 80 MHz
of controllable power which enables us to control the IR power seen by the atoms.
The beam was then retro-reflected onto the atoms so that the laser power seen by the
atoms was doubled. We were unsatisfied with the stability of this trap, the biggest
instability coming from the retro-reflected beam. A new laser was bought: a 100 W,
1075 nm Ytterbium fibre laser from IPG8. It has sufficient power so that we could
stop retro-reflecting the beam. We also removed the optical isolator at the exit of
the laser since we were worried by thermal effects induced by the optical isolator and
we are now less concerned by retro-reflected light coming back into the fibre (which
would damage the laser). These changes resulted in a considerably different laser beam
mode. To optimize the mode volume of the trap we first changed the focusing lens.
We then modulated the RF frequency of the AOM in order to fine tune the volume
capture. The modulation is fast enough (ωmod >> ωTrap) that the atoms see a time
averaged potential where we are able to tune the anisotropy of the trap by changing
the amplitude of the frequency modulation: the horizontal waist is effectively enlarged
while the vertical waist is unchanged.

After loading the dipole trap, we found that evaporative cooling was very ineffi-
cient. This was attributed to amplitude noise in the analog control of the Voltage
Control Oscillator, presumably introducing heating due to parametric excitation [52].
In Fig.1.5a we show the spectrum when the driver of the AOM is fed by its internal
current source. A very clean spectrum is observed. Fig.1.5b shows the spectrum ob-
tained with our cleanest external current source: the Delta Elektronica source. With
such a source, evaporation gave better results but it was still not as good as with the
internal source. If we look closely at Fig.1.5a and Fig.1.5b, we see that the spectrum of
the Delta has a background noise of -28 dBm. We therefore installed a low pass filter
with cut frequency fc = 70 Hz. This attenuated the background noise by 20 dBm as
shown Fig.1.5c and we were able to condense our chromium gas with an internal or
external current source in the same manner. We then added a modulation to the DC
signal provided by the Delta source with a Mini-Circuits summator9. We found that a
frequency modulation at 100 kHz and amplitude 90 mVp−p optimized the production
of our BEC. Later during my PhD, we realized that the time average potential was
such that we had two parallel traps (see Fig.1.6) during the loading: the modulation
is such that the beam actually spends more time on the edges than in the center. This
results in a deeper trap on the edges than in the center. We have not studied this

7model YLR-50-LP by IPG
8model YLR-100-LP-AC by IPG
9reference ZFBT-4RG2W+
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in detail. We find that thermal atoms can go from ”one” tube to the other, they are
connected. At lower temperatures, only one trap populates and efficiently loads the
dimple in which evaporation takes place. To optimize our modulation process in the
future, we could modulate the power of RF signal sent to the AOM in such a way to
increase the potential depth between the two tubes. This would result in a trap with
just one tube which would be a more preferable situation.

We then measured the trapping frequencies of this new time averaged IR trap at
the end of the evaporation ramp. To do so, we modulated the trapping light amplitude
at a frequency ω by modulating at a frequency ω the intensity of the RF signal sent to
the AOM controlling the IR beam. When this frequency matches twice the trapping
frequency of the trap the modulation heats the atoms in the trap [53]. We measured
trapping frequencies of ωx,y,z = 2π(520± 12, 615± 15, 395± 12) Hz (Fig.1.7) which is
similar to before the IR laser was changed.

Accumulating metastable atoms

One severe limitation to accumulating atoms in the electronic ground state is that these
atoms suffer from a large light assisted inelastic collision rate due to the presence of
the MOT beams during the loading process. To circumvent this limitation, the group
decided to accumulate atoms in the 1D FORT in other states, which would be dark
states (for |7S3 > → |7P4 > light) and wouldn’t suffer from light assisted collisions.

Chromium has no closed cooling transition (Fig.1.1). Atoms can leak out of the
|7S3 > → |7P4 > transition towards metastable |5D > states where they are no longer
sensitive to the |7S3 > → |7P4 > light. We can therefore accumulate atoms in the 1D
FORT in |5D > states. Although this enhanced the number of atoms [41] it is not
sufficient to reach BEC.

By shining light on the |7S3 > → |7P3 > during the MOT, we create an extra leak
in the cooling transition towards the metastable |5S2 > state. Accumulating atoms
in this state is more favorable than in |5D > states because it has better collisional
properties (a |5D > state is less stable than a |5S > state) and the light shift on |5S2 >
is estimated to be twice the one of the |5D > states [43]. Therefore through |5S2 > we
can accumulate more atoms and for longer. The optimisation of the accumulation of
metastable atoms is studied in detail in [54].

Dark Spot

To help the accumulation process we use a dark spot technique [55]. On the light path
of the repumping transition we place a wire. We then image the wire on the atoms.
This results in a dark spot at the position of the MOT. We then overlap the dark spot
with the 1D FORT. Only metastable atoms that are in the MOT region but not in the
1D FORT will be sensitive to this light. Thus metastable atoms which are not in the
1D FORT (because they had too much energy for example) will re-enter the cooling
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a)

b)

c)

Figure 1.5: Spectrum analysis of the RF produced by the VCO driving the IR AOM
for different controlling voltage sources. a) The spectrum using the internal source. b)
Spectrum using our cleanest external source: a Delta Elektronica generator. c) Spec-
trum using the Delta Elektronica generator filtered with a low pass filter, attenuating
the background noise.
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Figure 1.6: a) In Situ absorption image of the 1D FORT. b) Integrated line profile.
Both a) and b) illustrate the ”two parallel” traps mentioned in the text.

Figure 1.7: Trapping frequency measurement. We modulate the trapping light power
for 200 ms at a frequency ω. This modulation induces heating when ω matches twice
the trapping frequencies [52].
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cycle and have a greater chance of being accumulated in the 1D FORT. For an optimal
Dark Spot alignment, this technique enhances the 1D FORT loading by 20%.

Radio Frequency sweeps to cancel out the ms dependence of our loading
scheme

Accumulation is performed in a 1D Far Off Resonance Trap. Unfortunately, only
metastable atoms with ms > 0 will be trapped in this configuration because of the
magnetic field applied during the MOT: metastable atoms with ms < 0, which are
high field seekers, are expelled by the magnetic force along the propagation axis of the
1D FORT. We use fast linear radio-frequency sweeps to flip the spins of atoms at a fast
rate. This averages out the magnetic forces and optimizes the accumulation in an 1D
FORT from a MOT. The potential experienced by a metastable atom in any Zeeman
sub-level is solely the 1D FORT, thus this procedure allows for trapping all magnetic
sublevels [42]. This technique does not affect the properties of the MOT since the
optical pumping rate is much greater than the sweeping rate. Cancelling the magnetic
forces increases the number of atoms loaded in the 1D FORT by a factor of up to two.

Repumping dark states

Once the 1D FORT is loaded with metastable atoms, we turn off all light relevant for
the MOT (ZS, MOT, and TC beams). Atoms can now safely be transferred to |7S3 >.
We apply repumper beams for 200 ms between each metastable state and state |7P3 >
(see Table 1.3 for typical transition probabilities). We typically load 1-2 × 106 atoms
in the 1D FORT at 120 µK.

Polarization

After the repumping process, atoms are in the electronic ground state |7S3 > and are
distributed over all the Zeeman states. We then optically pump atoms in the Zeeman
ground state. We apply with the 427.6 nm laser a retro-reflected σ− pulse on the
J-J |7S3 > → |7P3 > transition for 5 µs in the presence of a 2.3 G magnetic field.
Atoms are pumped in the lowest energy state |7S3,ms = −3 > and can no longer suffer
from losses associated to dipolar relaxation collisions. These collisions transfer internal
magnetic energy into kinetic energy and would heat up a system which we intend to
cool [56]. We are now ready to proceed to cooling atoms to degeneracy through the
efficient forced evaporation process.

”Making and Probing a BEC” [57]

Evaporation ramp

Once the atoms have been pumped to the Zeeman ground state, we rotate a wave plate
in front of a Polarizing Beam Splitter (PBS) which is on the optical path of the IR
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Figure 1.8: Sketch of the voltage ramp sent to the AOM of the IR beam in order to
efficiently load Cr atoms in the ODT, load the dimple, evaporate, and reach BEC.

trapping beam. This results in a transfer of the IR light from the horizontal beam to
the vertical beam and creates a dimple. As the dimple is loaded, we reduce the IR
power in order to produce forced evaporation of the atoms. The most energetic atoms
escape the trap as the trap depth is lowered, and the atomic sample can rethermalize
at a lower temperature [58, 59]. We show the experimental ramp Fig.1.8.

Control system

All the operations performed during an experimental run are controlled by a Labview
program. This program has been optimised over the years. The program defines
the output of two analog cards and one digital card. The different cards are kept in
synchronisation by the internal clock of the digital card of frequency 20 MHz. This
allows a good synchronisation for over a minute (an experimental sequence is typically
30 s) and can program times as short as 1 µs. The digital card also defines temporal
steps of variable length. At each temporal step, TTL signals are adapted to the desired
output and command different instruments (AOM, shutters,power supplies,...). The
analog cards are able to generate signals between -10 and 10 V which can be modified
discontinuously, or continuously by programming a linear ramp. We show in Fig.1.9
some of the experimental ramps that the control system executes in order to produce
a BEC.

The image taken at the end of the experimental ramp is sent, via another Labview
program, to a commercial analysis program IgorPro. It is from such images that we
are able to extract most of the different physical properties we are interested in.
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Figure 1.9: Cartoon depicting the experimental sequence.

Imaging system

We have at our disposal an absorption imaging system which is shown Fig.1.10 and is
described in detail in [60]. It images the gas along the vertical y axis onto a pixelFly
camera. This camera is a 12 bit 1392×1024 pixels with a quantum efficiency of 50%
at 425 nm. The actual size of a pixel is 6.5 µm. Our imaging system comprises a × 3
telescope meaning that the size of a pixel on our image is 2.2 µm. The resolution ∆x
of our system is fixed by the aperture D and the distance f of the atoms from the first
lens (L1):

∆x =
1.22λf

D
. (1.1)

An upper limit to the experimental resolution of this imaging system was set by
performing a Point Spread Function like measurement. We fit the intensity distribution
of two BECs in situ, separated by a distance a, by the sum of the two gaussian functions.
We may extract from this procedure an effective aperture for our imaging system,
from which we extract the estimate of our experimental resolution. We obtained an
experimental resolution in the order of the diffraction limit: ∆x ≈ 2µm.

Atom calibration

In our experiment we estimate the number of atoms of an experimental sequence from
an image formed by two pulses of resonant light at weak light intensity (I << Isat). In
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Figure 1.10: Scheme of the imaging system (Top view).

this regime, we can evaluate the number of atoms through Beer-Lamberts law:

dI = nσIdz (1.2)

where dI is the absolute variation of the light intensity I while crossing an atomic
sample of thickness dz, density n, and cross section σ. The atom number can be
assessed through the normalisation condition

∫∞
−∞ n(x, y, z)dxdydz = N .

For a thermal gas, the density distribution follows a Boltzmann distribution. There-
fore we fit the integrated atomic distribution by

nc(x, y) = nc0e
−( x2

w2
x
+ y2

w2
y
)

(1.3)

with nc0 the integrated peak density, and wi the 1/e size of the gas in direction i. In a
3D harmonic trap the size, the size of the thermal cloud along direction i is

wi,0 =

√

2kBT

mω2
i

(1.4)

with m the atomic mass, T the temperature, and ωi the trapping frequency along
direction i. When all trapping potentials are removed, the thermal gas will expand
following

wi(t) =

√

w2
i,0 +

2kBT

m
t2 (1.5)
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where t corresponds to the time of free expansion of the gas between the moment
trapping potentials were turned off and the imaging pulse (commonly referred to as
Time Of Flight TOF). The size of the thermal gas thus gives access to the temperature
T .

A Bose Einstein Condensate on the other hand follows a bi-modal distribution at
T 6= 0. In a 3D harmonic trap, when the interaction energy is greater than the kinetic
energy, the distribution of condensed atoms follows the Thomas Fermi distribution and
at T=0 we have:

n(x, y, z) = n0

(
1− x2

R2
x

− y2

R2
y

− z2

R2
z

)
(1.6)

with n0 = µ
g
the peak atomic density, µ the chemical potential of the gas, g the

interaction strength, and Ri =
√

2µ
mω2

i
is the Thomas Fermi radius of the condensate

in direction i [61]. Once the trapping potentials have been switched off, the expansion
of condensed atoms follow the scaling laws established in [62]. Non-condensed atoms
approximately follow the Boltzmann distribution as described above. The temperature
of the gas can be extracted through the width of the distribution of non-condensed
atoms or by the condensate fraction as will be discussed in chapter 5.

1.5 A new imaging system

We have implemented two different Stern-Gerlach procedures which enable us to sep-
arate the different spin states before imaging them.

One Stern-Gerlach method consists in turning off the vertical trapping light beam,
and letting the gas expand in an optical horizontal trap with a small magnetic gradient
of approximatively 0.25 G·cm−1 along the tube, which spatially separates the different
Zeeman states. We apply a small gradient such that the magnetic field experienced by
all the atoms is small enough, so that all are almost equally resonant with the absorption
imaging process. This results in an accurate measurement of the atomic distribution
in different spin states. Our imaging axis and the horizontal trap in which the atoms
propagate have a slight angle between them (of≈ 7 ◦). Combined with the fact we apply
a small magnetic gradient, a 50 µm separation between two adjacent spin states (which
is sufficiently large so that we can differentiate the different clouds) takes typically 40
ms. This long expansion time renders impossible a time of flight measurement at
the end of spin separation since the atomic density becomes too weak. This imaging
technique was used for the experiments presented in chapter 3 and chapter 7.

A new imaging system along the vertical y axis was conceived during my thesis. It
was installed vertically so that we have a new imaging axis. It is also orthogonal to
the direction of the 1D FORT, and combined with a high resolution imaging and a low
noise camera it could allow for measurements of spin textures (in the spirit of [63] for
example). Also the spin separation axis and the new imaging axis are orthogonal. This
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means the spatial separation of the different spin states can be achieved quickly (access
to momentum distribution) and we developed tools in order to accurately measure
spin population of each state. This imaging technique was used for the experiments
presented in chapter 5 and chapter 8.

1.5.1 New imaging set up

Fig.1.11, shows the experimental setup of the new imaging system. The absorption
light beam impinges the bottom and top glass cell with a slight angle of 7 ◦. The
optical system that follows is a one to one telescope followed by a 7.5 magnification
telescope. The first telescope is a ”relay system” and translates the image by 4f . The
resolution of the optical imaging system is defined by the diffraction limit of the first
lens L110. The diffraction limit of an aperture of diameter D at a distance l of a point
object is

∆x = 1.22× λl

D
. (1.7)

In our optical system the mirror M1, which collects the coherent forward field of the
atomic sample and sends it to the optical system, is smaller in one spatial direction.
The diameter of the first lens is D=50.8 mm and it is at the focal distance f=200 mm
of the atoms. The collecting mirror is at approximatively 100 mm from the atoms and
has a diameter of d=25.4 mm. The effective size of the mirror in the z direction is
d × cos(45 ◦). The resolution of our optical system is necessarily different along these
two orthogonal directions. The diffraction limit is 2 µm along the x direction and is 3
µm along the z direction (eq.(1.7)).

The mirror cannot be placed any closer to the atomic gas (because of the presence
of the MOT coils) and cannot be any larger. Along the vertical axis there are many
trapping beams: the vertical MOT beam (λ =425 nm), optical lattice beams (λ =532
nm), and the vertical optical dipole trap (λ =1075 nm). A bigger mirror would block
one of these beams.

The second telescope is composed of a divergent lens L3 of focal length -20 mm and
a convergent lens L4 of focal length 150 mm. The magnification of this telescope is 7.5
and was chosen so that the smallest resolved object would match the pixel size of the
camera.

The camera used for the imaging system is an Andor camera11. It has high sen-
sitivity for light at 425 nm, with a quantum efficiency of approximatively 0.9 due to
back illumination [64]. It can be cooled down to −100 ◦C, which is critical for reducing
the dark current detection limit. It has 512×512 pixels of 16 by 16 µm size. It is a
single photon sensitive camera which has an electron multiplier feature with very little
electronic noise. The electron multiplier feature is particularly relevant in the case of

10when no aberrations are considered
11Andor Ixon ultra 3
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Figure 1.11: Setup of the new optical imaging system (adapted from [37]).

fluorescence imaging. The photon signal and dark current can be multiplied, but the
electronic noise is not. Therefore this process may lead to a substantial gain in signal
to noise ratio. This is not the case for absorption imaging: the electron multiplier stage
increases in the same manner the atomic signal and the noise of the image. Therefore
the signal to noise ratio is not modified.

The Fast kinetics mode enables fast temporal resolution and relies on fast frame
transfer of the image. The sensor of the camera can be divided in N parts. One of the
parts is exposed to the light pulse for the image while the other N − 1 are protected
from any photons (so that stored parts are not perturbed by any background photons).
The imaged part is then transferred to be stored while another part is exposed for the
image and so on until all the N parts have been imaged. Each image is therefore
decomposed in N images of 512

N
×512 pixels. We found that dividing the camera in

2 parts is optimal for our 2 pulse absorption imaging protocol: one part is dedicated
to the light pulse when atoms are present and the second part for the background
light pulse. In our absorption imaging process, the information contained in the image
part of the sensor is transferred to the storage part at a speed of 1.7 µs per line. The
time between two light pulses can therefore be as short as 1.7 × 256= 435.2 µs and
in practice is 600 µs. This short time reduces the delay between the absorption image
and the reference image, which lowers the amount of fringes (see below).



22 1 The Boson machine

1.5.2 Stern-Gerlach analysis

To image both momentum and spin distribution simultaneously we developed a Stern-
Gerlach analysis like imaging protocol. We turn off all trapping lights and let the gas
expand for a 6 ms Time Of Flight (TOF). During this TOF, we pulse a magnetic field
gradient along the Zeeman direction. In order to apply this gradient as fast as possible,
15 ms before turning off all trapping lights we send the maximum voltage command to
the MOT coils while their switch is off. The integrated error associated to the current
control of the power supply is saturated at the moment when we turn the switch on.
This results in obtaining a large current pulse in a faster manner than without this
”trick”. The value of this gradient evolves during the TOF due to induction in the
coils and eddy currents. From the separation of the spin states we can estimate an
average value of the magnetic gradient of approximatively 3.5 G·cm−1 present during
the TOF.

In an absorption imaging process, two light pulses are needed. The first light pulse
is produced with atoms present and is called the absorption image. The second light
pulse is produced with no atoms present, it serves as a reference image for the intensity
and we shall refer to this image as the reference image. The image from which we
analyze our data results from the division of these images. It is crucial that no atoms
are present in the reference image since it would underestimate the number of atoms.
At first, we noticed that atoms appeared in the reference image. This is because when
the Andor camera is in ”Fast Kinetics mode” the time between the two light pulse (≈
0.7 ms) is so short that atoms are still present during the second light pulse. In order
to remove all atoms after the absorption light pulse, we shine the 427 nm beam along
the x axis while blocking the retro-reflection to efficiently push the atoms away.

We show in Fig.1.12 an example of an image obtained with this procedure. The
color code is such that in red we have the signal corresponding to the highest absorption
and in green the lowest one. On the integrated signal, we may distinguish 7 atomic
clouds along the left to right diagonal. The leftmost atomic cloud corresponds to the
ms = −3 cloud and the one on the far right the ms = +3 cloud.

Imaging calibration

Atoms in different spin states are not imaged with the same efficiency. At non zero
magnetic field, even though spin states of the same electronic state are equally separated
in energy (52Cr has no magnetic quadratic Zeeman shift), the transitions between the
electronic ground state and the excited states are ms dependent. This is due to the
difference in Landé factor in different electronic states (g7S3

= 2 and g7P4
= 7/4 ). The

imaging pulse can only be resonant for a given ms, the other spin states are therefore
imaged with off resonant light. Moreover, a different Clebsch-Gordan coefficient is
associated to each transition. Even though the absorption pulse is designed to optically
pump atoms towards ms = −3 during the imaging pulse, we find that in practice we
do not measure as well atoms in ms 6= −3: the imaging pulse is not long enough
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Figure 1.12: a) Absorption image of the atomic sample after the new Stern-Gerlach
separation method after having applied a π/2 RF pulse to a BEC in ms=-3. The color
code is such that in red we have the signal corresponding to the most absorption and
in green the least. Our image clearly shows 5 distinct atomic clouds along the left
to right diagonal. b) Doubly integrated optical density along the red line of a). The
position of the differentms states are indicated. The integrated lineprofile enables us to
distinguish another two (small) atomic clouds. The leftmost atomic cloud corresponds
to the ms = −3 cloud and the one on the far right the ms = +3 cloud.
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(τpulse < τopt.pump.), because in practice longer imaging pulses results in heating and
less signal to noise.

When the absolute population of each spin state is crucial (e.g. in the experiments
of the second part of chapter 8), we attribute correcting coefficients to each spin states
in order to determine correctly the atom number of each spin states. The procedure
used to determine these coefficients is presented in section 8.4.

1.5.3 Image analysis: fringe removal

In addition to photon shot noise, dark current noise and electronic readout noise,
absorption images suffer from fringes. These fringes arise from the fact that small
vibrations of optical elements give rise to fluctuating fringe patterns between the ab-
sorption and reference images, resulting in imperfect cancellation between the intensity
pattern of the first light pulse with the second light pulse. These fringes can be greatly
reduced thanks to a fringe removal analysis developed in [65].

In a typical set of measurements, one has many absorption images and many refer-
ence images. The basic idea of the fringe removal analysis is that the intensity profile of
the reference image is not necessarily the intensity profile which matches best the one
of its corresponding absorption image. For each absorption image, the algorithm finds
the associated optimal reference image, which is a linear combination of all reference
images of the given set. To find the weight ck of each reference image k in the opti-
mal reference image, the algorithm finds the set of ck that minimizes the least square
difference between the absorption image and the optimal reference image.

This technique reduces the noise in fringes dramatically for a set of a few reference
images. In principle, the more reference images N , the better the optimal image one
achieves but the longer calculation time is needed. In practice, a set of data with 50
images gets rid of the fringes and is not too time consuming. This technique also has
the benefit of reducing dark current, electronic, and photon noise by a factor

√
2 at

best (for N →∞ and if all images are weighted the same). For example, let us consider
photon noise. To each image i there is an associated shot noise σi:

σi ∝
√
n (1.8)

with n the number of photons on an image. The shot noise associated to the optimal
reference image σopt is the average of the shot noise of all reference images:

σopt =
N∑

k=1

σk
N
∝ 1√

N
. (1.9)

For large N , σopt → 0. However, the shot noise associated to the absorption image
remains.

We show in Fig.1.13 an example of absorption image obtained via this procedure
employing 100 images. Underneath each image, is the same integrated line profile of
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Figure 1.13: Top: Images of the atomic sample with and without the fringe removal
algorithm. Bottom: Integrated signal along the red line (same position for both images)
where no atoms are present. The image without this algorithm has up to a factor of 6
more noise.

the image. As one can see, the algorithm is efficient in removing the fringes. Moreover,
the average mean standard deviation for the ”optimal” images is typically 20% smaller
than without the algorithm.
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C H A P T E R 2

Loading an Optical Dipole Trap with 53Cr

atoms: a first step towards producing a

Chromium Fermi sea

In this chapter, I will describe the experimental setup we implemented in order to load
as many 53Cr atoms in a 1D FORT as possible. We followed the same strategy as
for the boson: we load atoms directly in a 1D FORT from a 53Cr MOT implemented
by a new laser scheme, used metastable states in order to protect the atoms from light
assisted inelastic collisions, repumped them in their electronic ground state and optically
pumped atoms in the lowest Zeeman state so that the sample is ready for evaporation.

2.1 Introduction

Ultracold fermionic gases with long range interactions are an appealing system since
for cold polarized Fermi gases the long range interaction is the leading interaction term.
In 2006, the team produced a simultaneous MOT of bosonic and fermionic chromium
atoms [39]. The fermionic setup has since then been put aside in order to progress on
the bosonic sample. The main reason is that it is a real technical challenge to produce
large samples of ultracold chromium atoms and a new laser system was needed.

In 2012, the first degenerate atomic dipolar Fermi gas was produced with Dy atoms
[66], followed by a degenerate dipolar gas of Er [67] and the production of cold molecules
with strong electric dipole moment [32]. In the following, we shall describe the new
laser system dedicated to producing a 53Cr MOT and the route we used to perform an
efficient loading of 53Cr atoms in an 1D FORT.

To produce a 53Cr Fermi sea, we need to accumulate the largest amount of 53Cr
in the 1D FORT. To achieve that, we followed the route used in a previous work
where the loading of a 52Cr gas in an 1D FORT was optimized [54]. The optimization
process relies on direct loading of the 1D FORT with atoms in metastable states. These
atoms are produced by optical leaks from a MOT. The corresponding fermionic setup
is implemented in order to be independent of the bosonic setup.

In the following, we will describe in detail the optimization of the fermion MOT.
Then we analyze the loading of metastable fermionic atoms in the 1D FORT, presenting
in particular our measurement of new spectral lines of 53Cr. Finally we describe the
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optimal experimental sequence for producing a chromium Fermi sea.

2.2 Producing a 53Cr MOT

2.2.1 Laser system

In 2006, the team produced a simultaneous MOT of bosonic and fermionic chromium
atoms [39]. In the setup, they used the same laser to produce cooling light for the
boson and for the fermion. From there on, the team cooled to degeneracy the boson
[43] and to do so, all laser power was devoted to cool the boson. We therefore set up
a whole new laser system specifically dedicated to the cooling of the fermion (Fig.2.1)
so that the setup of the boson could remain unchanged.

Fig.2.2 shows the energy level diagram for 53Cr. We use the |7S3 > → |7P4 >
(λ =425.553 nm) transition to decelerate 53Cr atoms in a Zeeman Slower (ZS) and to
cool and trap them in a MOT.

The Ti:Sapphire laser

At the time when the laser system was purchased, there were no commercial diode
systems available at the correct wavelength and with sufficient laser power in order to
perform cold atom experiments. To meet our needs, the team followed the same path
as for the boson, that is frequency doubling a Titanium Sapphire laser. We pump a
Ti:Sa1 with 15 W of a Verdi laser V18 and are able to produce 3.5 W of laser light
at 851 nm (this yields a 22% conversion efficiency). We stabilize the frequency of
Ti:Sa2 by locking it to an ultrastable Fabry Pérot reference cavity which is described
in detail in [68, 54]. The stability of this cavity allows frequency locking with an
accuracy and stability better than 1 MHz. We use a Pound Drever Hall [69] technique
to lock Ti:Sa2. The laser beam goes through an Electro Optic Modulator (see Fig.
2.1) which implements two sidebands to the carrier frequency which are reflected from
the ultrastable cavity into a photodiode. The absolute frequency of the laser Ti:Sa2
is measured by beating Ti:Sa2 with Ti:Sa1 on a fast photodiode. We lock the Ti:Sa2
laser 112 MHz to the red of the Ti:Sa1 laser.

The doubling cavity

The Ti:Sa2 laser frequency is then doubled with an efficiency of 20% in a doubling
cavity MBD produced by Coherent. We then have at our disposal 800 mW of 425.5
nm light which we separate in four beams. The beams are then shaped and shifted in
frequency (with lenses and AOMs) depending on the needs and then coupled to the

1called Ti:Sa2 from now on to avoid any confusion with Ti:Sa1 which is dedicated to the Boson



2
.2

P
rodu

cin
g
a

5
3C

r
M
O
T

29

    Multimode ✁ bre

Towards lambda-metre

   Monomode ✁ bre

Towards ultra-stable

 Fabry-Perot cavity

F
igu

re
2.1:

S
ch
em

e
of
th
e
ferm

ion
ic
tab

le.



30
2 Loading an Optical Dipole Trap with 53Cr atoms: a first step towards producing a

Chromium Fermi sea

Figure 2.2: Atomic Structure of 53Cr. In blue we show the transitions necessary to
produce a fermionic MOT (cooling and trapping beam, R1 and R2) and the Depumper
beam. In dashed red lines we illustrate the main decay lines from the excited states to
metastable dark states. In red the transitions to repump atoms back in |7S3 >.
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main optical table through monomode polarizing maintaining fibers2(see Fig. 2.1).

2.2.2 Zeeman Slower

As discussed earlier for the boson, the fermionic atoms emitted by the oven are decel-
erated by a ZS. At the exit of the oven, the populations of the fermionic isotope are
equally distributed into the 28 Zeeman sublevels of the four hyperfine ground states.
Only atoms in the |F = 9/2,mF = 9/2 > Zeeman sublevel will be slowed down in the
ZS.

The ZS is optimised for the bosonic |7S3, J = 3,mJ = 3 >→ |7P4, J = 4,mJ =
4 > transition, and therefore the magnetic field profile should also be optimal for the
fermion transition |7S3, F = 9/2,mF = 9/2 >→ |7P4, F = 11/2,mF = 11/2 >. Indeed,
the energy difference between |7P4, F = 11/2,mF = 11/2 > and |7S3, F = 9/2,mF =
9/2 > is exactly the same than for |7P4, J = 4,mJ = 4 > and |7S3, J = 3,mJ = 3 >.
The reason for that is that these are Zeeman states that are pure eigenstates of the
system (these stretched states are eigenstates to the hyperfine Hamiltonian and to the
Zeeman Hamiltonian).

Therefore we just need to add to our setup a σ+ beam3 on the |7S3, F = 9/2,mF =
9/2 >→ |7P4, F = 11/2,mF = 11/2 > transition in order to slow fermionic atoms
which were in |7S3, F = 9/2,mF = 9/2 >. We find that 200 mW of light red-detuned
by 453 MHz from resonance optimizes the fermionic ZS (as for the bosonic transition,
see Table 2.2).

Along the Zeeman slower, there is a value of the magnetic field (B=25G) which
makes the two atomic transitions |7S3, F = 9/2,mF = 9/2 >→ |7P4, F = 9/2,mF =
7/2 > and |7S3, F = 9/2,mF = 9/2 >→ |7P4, F = 11/2,mF = 11/2 > degenerate
[39, 50]. A slight σ− component in the Zeeman slower beam is sufficient to accumulate
atoms in the state |7S3, F = 7/2 > as shown in Fig. 2.3. These atoms will no longer be
sensitive to the cooling beam and will be lost. The frequency of the repumper needed
is very close to the 52Cr ZS beam frequency and we will use that beam to repump the
atoms back into the cooling transition.

To slow efficiently the atomic flux of 53Cr we will use a 53Cr ZS beam and the 52Cr
ZS beam acting as a repumper.

2.2.3 Transverse Cooling

To increase the atomic flux which reaches the MOT capture region we implemented
horizontal and vertical transverse cooling beams as for the bosonic setup. Their role

2Schäfter+Kirchhoff PMC-E-460Si-4.0 (transmission efficiency of typically 75%) and Thorlabs 973-
579-7227FTO30 transmission efficiency of typically 60%

3Actually, the magnetic field profiles crosses B=0 along the ZS. The ZS is first σ+ and then σ−. To
simplify the discussion, I consider that the laser light is σ+ along the ZS but the discussion remains
correct.
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Figure 2.3: 53Cr Zeeman slower mechanism for the magnetic field which makes the
two atomic transitions |7S3, F = 9/2,mF = 9/2 >→ |7P4, F = 9/2,mF = 7/2 >
and |7S3, F = 9/2,mF = 9/2 >→ |7P4, F = 11/2,mF = 11/2 > degenerate. A
small σ− component in the ZS beam can accumulate atoms in F=7/2 where they will
no longer be resonant with the ZS beam. These atoms can be repumped back into
|F = 9/2,mF = 9/2 > using the ZS 52 beam (grey arrows). Image taken from [50].

is to collimate the atomic beam and increase the number of atoms which reach the
MOT capture region. Contrarily to the bosonic case, the beams for the MOT and
transverse cooling are independent and optimization of their frequencies and power
was performed. We found that 100 mW of light red-detuned by 6 MHz from resonance
optimizes the TC process at the B field used to optimize the 52Cr MOT in the transverse
cooling setup. For the same reason as for the fermionic MOT (which I describe in the
next section), a repumper is needed and the bosonic transverse cooling beam is used
to perform that task.

2.2.4 The MOT

The main difference in atomic structure between the bosonic and fermionic isotope
comes from the fact that the fermionic isotope has a non zero nuclear spin (I = 3/2)
which leads to a hyperfine structure, see Fig.2.2. This hyperfine structure introduces
an extra ”leak” in the cooling cycle compared to the boson. Indeed, there is a non-
zero probability that an atom in |7S3, F = 9/2 > will absorb a photon of the cooling
light and be promoted to |7P4, F = 9/2 >. From there on the atom can decay to
|7S3, F = 7/2 > and exit the cooling cycle. We repump these atoms back into the
cooling transition by applying a laser, called Repumper 1 (R1), on the |7S3, F = 7/2 >
→ |7P4, F = 9/2 > transition. Atoms can no longer accumulate in |7S3, F = 7/2 >,
and can only accumulate in |7S3, F = 9/2 > or |7S3, F = 5/2 >. We can then again
use a repumper beam to prevent atoms from accumulating in |7S3, F = 5/2 >, this
time the beam (Repumper 2) is resonant with the |7S3, F = 5/2 > → |7P4, F = 7/2 >
transition. The presence of the R1 beam for a MOT is essential: without it we do
not have a MOT. The R2 beam increases the number of atoms by 20%. We did
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not implement a third repumper beam on the |7S3, F = 3/2 > → |7P4, F = 5/2 >
transition, since we believe its contribution should be marginal given that the effect of
R2 is modest.

The frequency of the R1 beam is very close to the frequency for the 52Cr MOT
frequency, therefore we use the same laser beam for the 52Cr MOT and for the R1 of
the 53Cr MOT. R2 is not very close to any of the pre-existing beams and is obtained
with a set of AOMs (Fig. 2.1). The R1 repumper beams are overlapped to the fermionic
MOT beam, and are eventually separated in 6 beams. The fact that the R1 beams
are overlapped with the MOT beams helps produce an optimum MOT. Indeed, a
configuration with only one vertical beam for R1 pushes the MOT and a retro-reflection
of this vertical beam produces only a small MOT. Our interpretation is that overlapping
R1 with the MOT beams is optimum for two reasons: (i) the intensity of R1 is large4

and a MOT configuration ensures a mechanical balance and (ii) because R1 contributes
to cooling due to the small hyperfine structure of |7P4 >.

2.2.5 MOT characteristics

To monitor and optimize the MOT parameters, we use fluorescent imaging with our
Pixelfly camera. The camera counts the number of photons received during its integra-
tion time τint. To observe the MOT continuously, we use a commercial program called
”CamWare” which enables a false color representation of the fluorescence.

The number of atoms N in the MOT is related to the number of photons Nph

received by the camera through the scattering rate RScat. The scattering rate gives the
number of photons scattered in all directions by an atom under radiation:

RScat(Ω, δ) =
Γ

2

C2 Ω2

2

C2 Ω2

2
+ Γ2

4
+ δ2

(2.1)

where Γ is the width of the excited state, δ is the detuning between the frequency of the

MOT laser beams and the atomic resonance, Ω = Γ
√

I
ISat

is the Rabi frequency, and

C2 is the averaged squared Clebsch Gordan coefficient over all the Zeeman sublevels
of the ground state for a given light polarization.

The number of photons received by the camera is not directly proportional to the
number of atoms in the MOT. At constant N , the photon number can increase just by
reducing |δ| or increasing Ω. We fixed the resonance frequency to be the frequency of
the absorption pulse which maximizes the optical denisty of the MOT.

We then optimized the number of atoms in the MOT to 1.2 × 105. This number
is slightly lower than the one obtained in 2006 (see Table 2.1), but the fraction of
N52Cr/N53Cr is similar which makes us confident that we have optimized the MOT and
the global Chromium flux is just lower. It also must be considered that at the time

4because it is also the 52Cr MOT beam
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of the double MOT experiment [39] it was the number of atoms in the MOT which
was optimized, whereas now it is the number of boson atoms loaded in the 1D FORT
which is optimized. This suggests that the number of bosons N52Cr in the MOT could
be larger and therefore we would have closer N52Cr/N53Cr values to the historical value.
For comparison I list the number of atoms in the MOT of the different isotopes for the
different years:

2006 2013
N52Cr (4± 0.4 )×106 (1.2± 0.2 )×106
N53Cr (2± 0.2 )×105 (1.2± 0.2 )×105

N52Cr/N53Cr 20 ±4 10 ±2

Table 2.1: Comparison of the number of atoms in the MOT of different species with
the time when the team first produced a double MOT

2.2.6 Optimal trapping laser parameters

We indicate in Table 2.2 the parameters of the blue laser beams we use to produce the
fermionic MOT: maximal intensity, waist, and detuning from the 53Cr atomic resonance
|F = 9/2 > → |F = 11/2 > at zero magnetic field. These values correspond to an
optimization of the number of atoms loaded in the 1D FORT (see below), based on the
following procedure. The sizes of the bosonic beams were optimized for the production
of the BEC, we optically shaped their fermionic counterparts to reach the same size.
The size of R2 has been optimized. The repartition of power between the three bosonic
beams (MOT, ZS and TC) is the one optimizing BEC production. The repartition of
power between the four fermionic beams (MOT, ZS, TC and R2) has been optimized
to maximize the 1D FORT loading. As for the frequencies, all of them have been
optimized for fermionic loading except the one of ZS 52, which provides best BEC
production.

2.2.7 Overlapping fermionic beams on the bosonic beams

There are, to my knowledge, three standard ways to perfectly overlap two beams
together: with a dichroic mirror, a 50/50 plate, or with a Polarization Beam Splitter.
A dichroic mirror works when the wavelength of the different beams are different. A
50/50 plate works when you are ready to lose half of your optical power. A PBS is a
good way of overlapping beams when the polarization of the beam is not an important
issue.

Here we want to align the fermion beam on the boson beam. They have almost the
same frequency and a dichroic mirror is out of the question.
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Beam δ I0(mW·cm−2) w (mm)
MOT 53 -12 MHz 189 4.5-5.2

R1 MOT 53 -324 MHz 140 4.2-4.5
R2 MOT 53 -530 MHz 23 3.8-4.1

ZS 53 -453 MHz 430 Not collimated
ZS 52 -766 MHZ 180 Not collimated
TC53 -6 MHz 80 2.8-14
TC52 -324 MHz 16 2.8-14

Table 2.2: Summary of the different beams, with their waist w, peak intensity I0
(defined as I0 =

2P
πw2 with P the beam power) and detuning δ from the 53Cr atomic

resonance at zero magnetic field, leading to the best fermionic 1D FORT loading.

For the ZS and transverse cooling, the polarization of the beam is crucial, therefore
a PBS wouldn’t work. A 50/50 plate would make us lose power for the boson and the
fermion and we can’t spare to lose any optical power. The solution used here was to
align the fermionic beams with a slight angle compared to the boson beam.

The MOT beam is recombined with the bosonic beam on a 50/50 mirror. There
was already a 50/50 mirror on the bosonic MOT path to separate the beam in two: one
for the horizontal plane and one for the vertical plane. We therefore recombined the
fermion beam with the boson beam on the 50/50 mirror. Finally, as the polarization
of the R2 beam is not relevant we therefore recombined this beam with the fermionic
MOT beam on a PBS.

2.2.8 Need of light protected reservoirs

Our experiment produces independently a 52Cr MOT of a few 106 atoms at approxi-
matively 120 µK (≈ TDoppler) and a 53Cr MOT of 1.2×105 atoms presumably at the
same temperature. The typical number of atoms trapped in both MOTs is quite small
compared to other species (such as Rb or Na where MOTs can have up to 1010 atoms
see for example [70]), due to large light assisted collisions between atoms in the ground
state and atoms promoted to an excited state by light [50]. The light assisted colli-
sion rates are estimated at 6×10−10cm3·s−1 for the boson and 5×10−9cm3·s−1 for the
fermion [50] which is typically one to two orders of magnitude worse than for alkalis.

Direct accumulation of atoms in the ground state |7S3 > from a MOT into a conser-
vative trap where evaporation could be performed is inefficient and leads to typically
1×104 fermions loaded in the 1D FORT. This is due to light assisted collisions. We use
dark metastable states as reservoirs where atoms can be accumulated in the 1D FORT.
Atoms in metastable states are not sensitive to the MOT light and are protected from
light-assisted inelastic collisions. After the loading of the 1D FORT with metastable
atoms is complete, repumping to the electronic ground state |7S3 > defines the starting
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point for evaporation.
In addition to the light force from the 1D FORT, atoms in metastable states are

sensitive to magnetic forces created by the MOT gradients. As described in [42],
cancellation of these forces by use of fast radio frequency sweeps allows to significantly
increase the number of atoms loaded in the 1D FORT. This technique provides the same
benefit in the fermionic case, typically a factor two in the number of atoms loaded in
the 1D FORT.

The next section describes our study of the loading of the 1D FORT with 53Cr
atoms.

2.3 Loading metastable 53Cr atoms in the 1D FORT

To produce a BEC, the use of |5D > metastable dark states as a reservoir was not
sufficient. A large inelastic collisions rate between atoms in |5D > of the order

β
(52)
5D−5D = 3.5 × 10−11cm3·s−1 [54] prevents from accumulating enough atoms to reach
degeneracy with evaporation cooling. The solution was to use another metastable state
as a reservoir, |5S2 >, more favorable for accumulation. Atoms can be accumulated in
|5S2 > through leaking from the excited state |7P3 >. This was a real breakthrough in
increasing the atomic number since the inelastic collision rate is smaller than in |5D >:

β
(52)
5S−5S = 1.6 × 10−11cm3·s−1. In addition, the light shift for this state is larger than
for the |5D > states for the wavelength of the 1D FORT which results in a deeper trap
[43]. Using accumulation in state |5S2 > allows us to load about 106 bosonic atoms in
the 1D FORT, where evaporation can be performed and BECs of a few 104 atoms are
produced.

To reach fermionic degeneracy with sympathetic evaporative cooling, we first have
to accumulate as many 53Cr atoms as possible in the same 1D FORT where 52Cr atoms
were successfully loaded. For that we followed the same strategy as for the boson, that
is to accumulate metastable dark states in the 1D FORT, and then repump them into
the ground state. In this section we first describe the repumping laser systems that
we use. We then present our measurement of the frequencies of the different 53Cr
repumping lines of interest, which were unknown.

2.3.1 Repumping lines of metastable states of 53Cr

Repumping of the different metastable states is performed through the excited state
|7P3 > (see Fig.2.2). We use three different red laser diodes, with an extended cavity
scheme using a grating to ensure selective retro-reflection, and a monomode regime.
The wavelengths are respectively 663.183 nm, 653.973 nm, and 633.183 nm for repump-
ing the bosonic |5D4 >, |5D3 > and |5S2 > states.

From the |7P3 > state, population of the |5D2 > state is possible, but the study in
[54] showed that repumping this state does not lead to better loading of the 1D FORT
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with 52Cr. We therefore assumed that the gain would be marginal as well with 53Cr
and we did not study repumping from this state.

The first step to optimize the 1D FORT loading was to find the repumping lines
of 53Cr atoms. The transition frequencies for repumping the atoms from metastable
states to the ground state are isotope-dependent because of the hyperfine structure
of 53Cr, and isotopic shifts. The isotopic shift is the difference in frequency for a
given transition between the two isotopes assuming a zero hyperfine splitting. For the
fermionic isotope, the value of the isotopic shift is deduced from the shift between the
bosonic and fermionic transition and the HF splitting of the fermionic isotope.

Frequency stabilization of the three laser diodes is obtained by locking on a Fabry
Pérot (FP) cavity. For the 663 and 633 nm laser diodes, we use the FP cavity on which
Ti:Sa1 is locked: once this cavity is locked using saturation absorption, it defines an
absolute reference. For the 654 nm diode, we use the FP on which Ti:Sa2 is locked.
For all diodes, we use an AOM in a double-pass scheme, which provides a frequency
shift as large as the free spectral range of the locking cavities, to set the frequency of
the repumper beams at resonance of the bosonic lines.

For each transition, we split the boson repumping beam into two separate beams,
and shifted in frequency one of those beams by a set of AOMs to probe the fermionic
repumping transition. The two beams are then recombined and aligned on the atoms.
In the following section we present our measurement of the frequency transitions for
53Cr between the different metastable states and the excited |7P3 >. The measurement
of the frequency difference between a given bosonic and fermionic transition is directly
given by the AOMs frequency shifts ∆f . We can then calculate the isotopic shift
associated to each transition (see below).

Repumping |5D > states

In Fig.2.4 (Fig.2.5) we show the optical system we used to produce beams for the
|5D3, F = 9/2 > (|5D4, F = 11/2 >)→ |7P3, F = 9/2 > transition.

From the MOT, 53Cr atoms naturally leak towards |5D3, F = 9/2 >, |5D4, F =
11/2 > and |5D4, F = 9/2 >, and can accumulate in the 1D FORT. Therefore, atoms
of the 1D FORT are mainly in states |5D3 > or |5D4 >. We then turn off all cooling
lights and shine a repumper on the |5D3, F = 9/2 > (or |5D4, F = 11/2 >)→ |7P3, F =
9/2 > transition to repump atoms in the electronic ground state |7S3, F = 9/2 >, and
we measure the atomic number by absorption imaging on that state. The frequency
which maximizes the atomic number is deduced to be the frequency which is resonant
for the given transition. The result of this experiment for the |5D3, F = 9/2 > →
|7P3, F = 9/2 > transition can be seen in Fig.2.6.

Atoms can leak from |7P4, F = 11/2 > towards |5D4, F = 11/2 > and |5D4, F =
9/2 >. We indeed measured two resonances in the case of |5D4 > and we attributed
the resonance which gave the maximum atomic number to be the |5D4, F = 11/2 >→
|7P3, F = 11/2 >. The frequency difference of 250 MHz which we found between the
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Figure 2.4: Optical setup for the |5D3, F = 9/2 > → |7P3, F = 9/2 > transition. The
fermionic frequency is shifted by 1244 ± 10 MHz.

Figure 2.5: Optical setup for the |5D4, F = 11/2 > → |7P3, F = 9/2 > transition. The
fermionic frequency is shifted by 1102 ± 10 MHz.



2.3 Loading metastable 53Cr atoms in the 1D FORT 39

Figure 2.6: Optimisation of the |5D3, F = 9/2 > → |7P3, F = 9/2 > transition. Full
line is a Lorentzian fit to the data. The width of this resonance is larger than the
expected width of |7P3 >. We attribute this to the saturation of the transition due to
a long repumper pulse which leads to a broadening of the resonance.

two experimental transitions is in good agreement with the energy splitting between
|5D4, F = 11/2 > and |5D4, F = 9/2 > which can be found in [71].

We measured a frequency difference ∆f of 1244±10 MHz (1102±10 MHz) between
the boson and fermion frequency for the |5D3, F = 9/2 > (|5D4, F = 11/2 >)→
|7P3, F = 9/2 > transition. The hyperfine structure of |7P3 > can be calculated from
[72], and the ones for |5D4 > and |5D3 > are obtained from [71]. The hyperfine
spectrum is shown in Fig.2.7. From the available data and our measurements, we can
deduce the isotopic shifts for each transition.

Isotopic shift calculation

In the following, I describe how we extracted the different isotopic shifts of interest.
Table 2.3 summarizes up spectroscopic measurements between hyperfine states of

different fine levels.
For an isotopic shift measurement, the level considered is a virtual level defined

as the barycenter of the hyperfine levels [74]. Let us call x the frequency difference
between the barycenter and the hyperfine level with the highest F . The barycenter of
|5D4 >, for example, can be explicitly calculated:

11

2
× 2× x +

9

2
× 2× (x+ 224.827) +

7

2
× 2× (x+ 224.827 + 234.593)

+
5

2
× 2× (x+ 224.827 + 234.593 + 213.970) = 0 (2.2)

→ x = −276.8 MHz. (2.3)

The values of x for each fine level are summarized in Table 2.4.
For the excited fine level of the transition considered here (i.e. |7P3 >), spectroscopic

data [72] provide the values of the magnetic dipole moment interaction (A) and of
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Fine level Investigated transition F → F Transition frequency νexp (MHz)
5D4 11/2 - 9/2 224.827

9/2 - 7/2 234.593
7/2 - 5/2 213.970

5D3 9/2 - 7/2 148.900
7/2 - 5/2 130.339
5/2 - 3/2 100.881

5S2 7/2 - 5/2 608.375
5/2 - 3/2 434.547
3/2 - 1/2 260.727

Table 2.3: Zero field RF transition frequencies between hyperfine states for different
fine levels. Data extracted from [71, 73].

Fine level x
|5D4 > -276.777
|5D3 > -156.683
|5S2 > -521.462

Table 2.4: Values of x, the distance between the barycenter of the hyperfine levels and
the hyperfine level with the highest F .

the electric quadrupole moment interaction (B) coefficients: A = −1.5 ± 2 MHz and
B = −2±5

1 MHz.

The distance between the virtual transition considered for the isotopic shift and the
level with highest F is given by:

∆E =
1

2
AK + hB

3/2K(K + 1)− 2I(I + 1)J(J + 1)

2I(2I − 1)2J(2J − 1)
(2.4)

where K = F (F +1)− I(I+1)−J(J +1) and A and B are two coefficients accounting
for the hyperfine interaction. For |7P3, F = 9/2 > we calculate ∆E=6.25 ± MHz.

Then the isotopic shift (IS) is simply given by:

IS = ∆F − x−∆E. (2.5)

We therefore deduce from all these data an isotopic shift of 1095±28 MHz (833±28
MHz) for the 5D3(

5D4) → 7P3 transition.

The different frequencies and isotopic shifts related to metastable states are sum-
marized in Table 2.5 and Fig. 2.7.
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53Cr Transition 52Cr Transition Freq Shift Isotopic shift
5D4F=11/2 → 7P3 F=9/2

5D4 → 7P3 1242± 10 MHz 819 ±28 MHz
5D3F=9/2 → 7P3 F=9/2

5D3 → 7P3 1088 ± 10 MHz 670 ±28 MHz
5S2F=7/2 → 7P3F=9/2

5S2 → 7P3 -685 ± 35 MHz -155 ±53 MHz

Table 2.5: Values of the frequency shift between the two repumping beams and deduced
isotopic shifts for each metastable states
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Figure 2.7: Hyperfine splitting of the fermionic metastable states of interest.

Accumulating and repumping |5S2 >

Atoms of the MOT do not naturally leak towards |5S2 > because the excited state is
a |7P4 > state Fig.2.2. In order to accumulate atoms in |5S2, F = 7/2 >, we transfer
atoms in |7P3, F = 9/2 > where they can decay to |5S2, F = 7/2 >; they also decay in
|5D > states but the transition rate for |7P3 >→ |5S2 > is expected to be significantly
larger than the one for |7P3 > → |5D > [44]. We call the beam exciting the |7S3 > →
|7P3 > transition at 427.6 nm the Depumper since it depumps atoms from |7S3 > to
|5D2 >. However, being a J → J , the transition will also serve for optical pumping
purposes (see subsection 2.3.3). For the boson, both tasks are performed by the same
beam. Due to the hyperfine structure of the fermionic isotope, a beam for each task
is necessary (see below). Fig.2.8 shows the optical table dedicated to the 427 nm
laser. The laser beam is first split into two: one is used for the boson, the other one
is dedicated to the fermion. The fermionic beam is then split into two, one beam
serves for depumping atoms in |5S2, F = 7/2 > and the other beam optically pumps
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Figure 2.8: Optical setup for the 427 nm laser. It provides depumper and polarization
beams for both isotopes.

|7S3, F = 9/2 > atoms into |7S3, F = 9/2,mF = −9/2 >.
We produce a 53Cr MOT, and shine |7S3, F = 9/2 > → |7P3, F = 9/2 > light on

the MOT. The resonance frequency of this transition was optimized by minimizing the
MOT fluorescence: the more resonant the transition, the more atoms will be promoted
to |7P3 > and exit the MOT fluorescence cycle (see Fig.2.9). We measured a frequency
difference of 382±5 MHz between the bosonic |7S3 >→ |7P3 > and fermionic |7S3, F =
9/2 >→ |7P3, F = 9/2 > transitions. The corresponding isotopic shift is deduced from
the hyperfine structure of |7S3 > [75] and |7P3 > [72] (see Fig.2.7), and is equal to 18±23
MHz. This value is in good agreement with a previous study [76].

We have also measured the |5S2, F = 7/2 > → |7P3, F = 9/2 > transition. We
produce a 53Cr MOT in presence of the Depumper beam. Atoms in states |5S2, F =
7/2 > are thus loaded in the 1D FORT. We then turn off all cooling lights and shine a
repumper beam on the |5S2, F = 7/2 >→ |7P3, F = 9/2 > transition to repump atoms
in the electronic ground state |7S3, F = 9/2 > (see Fig.2.10). We finally measure the
number of repumped atoms by absorption imaging. The frequency which maximizes
the atomic number is assumed to be the frequency which is resonant with the transition.
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Figure 2.9: Optimization of the |7S3, F = 9/2 > → |7P3, F = 9/2 > transition. The
laser frequency for which the MOT is the most depleted is considered the resonant
frequency.

Figure 2.10: Optical setup for the |5S2, F = 7/2 > → |7P3, F = 9/2 > transition. The
fermionic frequency is shifted by 685 ± 35 MHz.
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Figure 2.11: Optimisation of the |5S2, F = 7/2 > → |7P3, F = 9/2 > transition. Full
line is a Lorentzian fit of width 55 ± 9 MHz. The width of this resonance is larger
than the expected linewidth for |7P3 >. Again, we attribute this broadening to the
saturation of the transition due to a long repumper pulse.

The result of this experiment is shown Fig.2.11.
We measured a frequency difference of -685±35 MHz between the bosonic |5S2 >

→ |7P3 > and fermionic |5S2, F = 7/2 > → |7P3, F = 9/2 > transitions. From the
hyperfine structure of |5S2 > given in [73] (and summarized Table 2.3 ), we deduce an
isotopic shift of -155±53 MHz.

We observe another signal from repumping 53Cr in |5S2 >, shifted in frequency
by 610 MHz, which is compatible with the frequency difference expected between the
|5S2, F = 7/2 >→ |7P3, F = 9/2 > and |5S2, F = 5/2 >→ |7P3, F = 7/2 > transitions
see Table 2.3 and [72, 73]. It is very likely that the |5S2, F = 5/2 > state is populated
too by the Depumper beam, as the hyperfine structure of the excited state |7P3 > is
very small. Indeed, coupling of the ground state |7S3, F = 9/2 > with the excited state
|7P3, F = 7/2 > leads to leakage towards |5S2, F = 5/2 >. The signal ratio of the two
repumping signals in |5S2 > is about 10% so we decided not to repump both hyperfine
levels.

2.3.2 Optimal loading sequence of the 1D FORT

Depumper beams

The bosonic and fermionic depumper beams, resonant on the 427.6nm |7S3 >→ |7P3 >
transition, are produced from a doubling cavity using a LBO crystal, pumped by
a monomode diode laser. They create a leak towards |5S2 > metastable states as
discussed above. The boson and fermion depumper beams have the same 1/e2 waist of
1.5mm, and are retroreflected (see below). Their optimal power, equal to 100 (140) µW
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for the bosonic (fermionic) beams, results from a compromise: the higher this power
the larger the depumping rate towards the favourable |5S2 > state, but the smaller the
MOT atom number [54].

Repumping configuration

Let us recall the repumping configuration which optimizes the BEC production: while
atoms in |5D3 > states are continuously repumped in the MOT, atoms are free to
accumulate in |5D4 > and |5S2 > states in the 1D FORT. Nevertheless we use a dark-
spot repumping scheme from these two states in order to maintain atoms not captured
in the 1D FORT in the MOT trapping transition.

We found that the same pattern optimizes as well the accumulation of fermionic
atoms in the 1D FORT. Due to power limitations for the diodes repumping |5D4 > and
|5S2 > states, a global optimization had to be found to balance power between bosonic
and fermionic transitions, and between repumper and dark spots beams. Table 2.6
summarizes the power of the different repumper beams.

Transition Isotope Type5 Power
5D3F=9/2 → 7P3 F=9/2

53Cr Repumper 1mW
5D3 → 7P3

52Cr Repumper 2mW
5D4F=11/2 → 7P3 F=9/2

53Cr Repumper 70 µW
5D4F=11/2 → 7P3 F=9/2

53Cr Dark Spot 130 µW
5D4 → 7P3

52Cr Repumper 225 µW
5D4 → 7P3

52Cr Dark Spot 225 µW
5S2F=7/2 → 7P3 F=9/2

53Cr Repumper 50 µW
5S2F=7/2 → 7P3 F=9/2

53Cr Dark Spot 90 µW
5S2 → 7P3

52Cr Repumper 65 µW
5S2 → 7P3

52Cr Dark Spot 45 µW

Table 2.6: Power of the different beams addressing metastable atoms.

2.3.3 Polarization of the 53Cr atoms

Once repumped |7S3, F = 9/2 >, atoms are distributed in all Zeeman sub-levels. Po-
larizing atoms in the absolute Zeeman ground state (|7S3,ms = −3 > and |7S3, F =
9/2,mF = −9/2 > for the boson and fermion respectively) is necessary to prevent
dipolar relaxation collisions [56]. If the atomic sample is not well polarized before the
evaporation ramp, dipolar relaxation induces heating which prevents from reaching
degeneracy. Polarization is performed through optical pumping with the J→J transi-
tion of the depumper beam. A high quality for the optical pumping is required: the

5I recall here the difference between what I call the Dark Spot beam and the repumper beam. The
Dark Spot beam is continuously on during the MOT and repumps atoms not loaded in the ODT. The
repumper beam is on once the MOT process and the loading of the ODT is over, it repumps atoms
of the ODT into the electronic ground state.
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alignment between the σ− lasers and the magnetic field is critical at a few degrees. Fur-
thermore, a carefully aligned intensity-equilibrated retro-reflected scheme is required
in order to limit the diffusion in momentum space [74].

For the boson, we use a short 5 µs pulse of the depumper beam. For the fermion,
we find that using a resonant depumper pulse does not allow to suppress heating. Rate
equation calculation shows that indeed a resonant polarizing beam also populates the
|7S3, F = 7/2 > hyperfine level, and no more than 2/3 of the atoms can be accumulated
in |7S3, F = 9/2,mF = −9/2 >. This is due to the small energy shifts between
hyperfine levels of |7P3 > (a few MHz).

In order to perform an efficient fermionic polarization, we split the fermionic depumper
beam into two (see Fig 2.8). One is left resonant and used during the 1D FORT load-
ing as the depumper beam, while the other one is frequency shifted to the red of the
transition by 180 MHz, and used for polarization. For the polarization stage, we use
a power of 25 µW and a pulse time of 200 ms. Then rate equation calculations show
that more than 98% of the atoms can be accumulated in |7S3, F = 9/2,mF = −9/2 >.

To check the quality of the polarization of the atoms, we measured the lifetime in
the 1D FORT with and without a polarization pulse. The experimental protocol is
the following. We load 53Cr metastable atoms in an 1D FORT, repump them in their
electronic ground state and shine, or not, the polarization beam for 500 ms. We then
measure the number of atoms by absorption imaging after a time twait. The result
of this experiment is shown Fig.2.12. The light absorption cross section of atoms not
in the lowest Zeeman state is smaller than the one for polarized atoms because the
imaging beam polarization is σ−. However at short times we measure as many atoms
with and without the polarizing beam. We interpret this result by the fact that our
imaging pulse is long enough that the gas is polarized by the imaging beam. For longer
times twait, there are more atoms left in the 1D FORT when the sample is initially
polarized. Our interpretation is that here atom losses come from collisions with the
background gas. A fit to the data yields a 1/e time of 15 s, compatible with the
lifetime for polarized bosons. On the other hand, the non-polarized sample suffers
also from 2 body collisions which results in losses but also cooling. It is clear from
this experiment how important the polarization process is since after 20 s in the ODT
there is approximatively a factor of 2 difference in atom number and an experimental
run that produces BEC lasts typically 15 s.

2.3.4 Final steps before Fermi sea production

The loading of the 1D FORT from the MOTs is achieved respectively in 1000 ms for
53Cr and 100 ms for 52Cr.

Once the 1D FORT is loaded, the repumping from metastable states towards the
electronic |7S3, F = 9/2 > ground state is performed in 200 ms. However, when the
power of the repumper beams has to be shared between the bosons and the fermions (as
discussed below bosons and fermions will be loaded in the same 1D FORT) the optimal
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Figure 2.12: Number of atoms as a function of twait with an unpolarized sample (filled
circles) or with a polarized sample (empty circles). The non-polarized sample has
a reduced lifetime compared to the polarized case, which we interpret as a result of
dipolar relaxation.

Figure 2.13: Loading of the 1D FORT with only fermionic atoms: number of atoms in
the 1D FORT as a function of the loading time.
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repumping time is 500 ms. This shows that more power in the repumper beams would
be interesting in order to efficiently pump both isotopes into the electronic ground state
|7S3 >.

Evaporation strategy

Fermi statistics leads to vanishing s-wave collisions due to Van der Waals interactions at
low temperatures for polarized fermions. Therefore, evaporative cooling to degeneracy,
which requires efficient thermalization, has been achieved either with a mixture of two
fermionic spin states [22] for which s-wave collisions are allowed, or for a Bose-Fermi
mixture [77, 78]. We are able to load (1.0 ± 0.2) × 105 polarized atoms at 120 µK
in a 1D FORT where evaporation can be performed. This is very unfavourable for
a scenario involving only 53Cr atoms. This is why we chose to perform sympathetic
cooling with the bosonic 52Cr.

With dipolar species, low temperature collisions become possible even for identical
fermions. This very peculiar effect due to the long range character of DDIs was first
observed with Dy [66], and was used to produce the Er Fermi sea in a very efficient
way [67]. However, for Cr the dipolar elastic cross section is 20 times smaller than for
Er, as it scales with d4m2 (d being the permanent magnetic dipole, and m the mass).
In addition, we only manage to trap in a conservative trap about 30 times less atoms
than in [67]. Therefore evaporative cooling to degeneracy involving identical fermions
thermalizing through DDI is unfeasible.

As noticed in [39], the ZS 53 beam strongly reduces the number of atoms in the
bosonic MOT, presumably because the detuning (-150 MHz) of this intense beam
with the bosonic transition is not large enough to prevent mechanical effects on 52Cr
atoms. We have therefore to implement a sequential scheme, with first production of
the fermionic MOT in order to load the 1D FORT with 53Cr MOT atoms, and second
production of the bosonic MOT in order to load the same 1D FORT with 52Cr atoms.
Then evaporative cooling can be performed. Evaporation of the fermionic isotope and
achievement of the first Fermi sea of 53Cr will be described in detail in chapter 4.
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C H A P T E R 3

Cold collisions and thermalization processes

of external and internal degrees of freedom

A fundamental question in many-body physics is how closed quantum systems reach
equilibrium. This question has been addressed with cold atoms in many topics such as
thermalization at low dimension [79, 80], prethermalization [81], or for specific phase
transitions (e.g. for Anderson localization [82]). A particularly interesting question
is how microscopic properties, i.e. collisions between atoms, are responsible for the
macroscopic properties of the gas (such as temperature and magnetization). In the
following we will discuss briefly about collisions between atoms, focusing on collisions
due to Van der Waals interactions and collisions due to dipole-dipole interactions. We
will then study how thermalization is achieved for both the mechanical and spin degrees
of freedom. We then apply our understanding to deduce from spin dynamics the first
measurement of the scattering length a0 of the S = 0 molecular potential of Chromium:
a0 = 13.5+15

−10aB.

3.1 Cold collisions

The interaction between two particles at large distances r is dominated by the Van
der Waals potential which at low temperature is isotropic and proportional to r−6.
The effective potential range r0 is defined by the distance at which the Van der Waals
potential balances the kinetic energy:

~
2

2mrr20
=

C6

r60

→ r0 =

(
2mrC6

~2

)1/4

(3.1)

with mr the reduced mass of the pair of colliding atoms, ~ = h/(2π) with h Planck’s
constant, and C6 the Van der Waals coefficient. For Chromium we have C6=733 ±70
Eh a6B with aB the Bohr radius and Eh=4.359744× 10−18J is a Hartree [83]. r0 is
then approximatively 5 nm. This potential range is of the same order as the scattering
length away from a Feshbach resonance [84].

On the other hand, the atomic densities n of quantum gases are in the range of
n = 1020 at·m−3. Therefore the average distance between two particles is typically
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d = n−1/3 ≈ 100 nm. Away from a Feshbach resonance, d >> r0 and we can safely
consider that collisions take place only between pairs of atoms.

3.1.1 Contact collisions

a) Scattering length

We define a contact collision as a collision due to an interatomic potential V (r) which
decreases sufficiently fast as a function of interatomic distance r. In scattering theory,
a contact collision is described by the phase shift of an incoming plane wave by a scat-
tering potential. The cross section of a collision between two spinless distinguishable
atoms can be shown to be [85]:

σ =
4π

k2

∞∑

l=0

(2l + 1) sin2 δl(k) (3.2)

with l the orbital quantum number of the atom pair, k the relative wave vector, and
δl(k) the phase shift acquired by the incoming particle of orbital momentum l during
the collisional process.

Atoms with orbital momentum l feel a centrifugal barrier potential ~
2l(l+1)
mrr2

. The
Van der Waals potential and the centrifugal potential lead to a barrier height that is

El =
2
3
~
2l(l+1)
mrb2

where b is the distance to the top of the centrifugal barrier preventing
atoms with energy smaller than El from colliding. In our experiment for l=1,

b(l = 1) =

(
3C6mr

~2l(l + 1)

)1/4

=

(
3

2l(l + 1)

)1/4

r0 = 4.5± 0.2 nm

→ El=1 = (1.7± 0.1)× 10−27 ± J

and El=1 =
3

2
kBT → T = 820± 40 µK. (3.3)

For l > 0, El is greater than the temperature of our gas at all times (at the start of
the experiment T = 120 µK and is typically ≤1 µK for the experiments presented in
this thesis). In the following we shall therefore only consider s-wave collisions (l = 0)
between pair of atoms.

δ0(k), the phase shift acquired for an s-wave collision, is defined as [85]:

−a = lim
k→0

δ0(k)

k
(3.4)

with a the scattering length. Therefore in the limit of low energies (k → 0), the cross
section takes the following simple form:

σ = 4πa2 (3.5)
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For symmetry reasons, polarized fermions (bosons) cannot collide through l = 0 (l = 1)
collisions. Therefore the cross section associated with low energy colliding fermions is
0. This comment is not valid for fermions in different spin states since two fermions
of different spin states can collide through an s-wave collision channel. For identical
bosons, a factor 2 must be added in eq.(3.5) to account for their indistinguishability
[85].

b) Effective potential

The real form of the potential between two atoms is complicated and not well known.
This motivated the use of a pseudo potential with a simple mathematical form which
must keep the characteristics of the Van der Waals interactions: isotropic and short-
range1 character (∝ 1/r6). Interactions between atoms are strong but only occur when
atoms are close together. This is rare in the case of dilute gases. To avoid having to deal
with the real form of the potential in order to describe a collision between two atoms,
the concept of effective interaction was introduced [86]. This effective interaction must
take into account the physical properties of the real Van der Waals interaction. As
described above, the collision of a pair of particles with small total energy in the center
of mass frame is dominated by the s-wave contribution to the wave function. To first
order in the interaction potential, one can then derive the following expression for the
scattering length [85]:

a =
mr

2π~2

∫ ∞

0

d3r U(r) (3.6)

with U(r) the real interaction potential which often has a complicated form. Eq.(3.6)
is difficult to compute and is never used in practice. Since we are interested in the
value of a and are not concerned by the real form of U(r), we will therefore replace
the real potential by an effective potential Ueff which we can compute and gives the
same scattering length in the Bprn approximation (eq.(3.6)). The simplest effective
potential respecting the physical properties of the Van der Waals interaction is:

Ueff (~r − ~r ′) = gδ(~r − ~r ′) (3.7)

where g = 2π~2a/mr is the interaction strength and δ(~r ) denotes the Dirac delta
function.

c) Spin dependent collisions

In this thesis, we will be particularly interested in collisions involving atoms in different
Zeeman sublevels. We adapt eq.(3.7) in order to take into account this possibility. In

1The distinction between short-range and long-range interactions depends on the dimensionality of
the system D. Formally, a potential is defined to be short-ranged if it decreases with distance faster
than 1/rD.
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the treatment elaborated above, it was convenient to treat the collision in the center
of mass frame as center of mass motion R is not modified by the collision. We found
that the interaction through a molecular potential can be completely characterized by
the scattering length a. When dealing with internal spin degrees of freedom we use
the spin molecular basis which is particularly appropriate in order to describe a spin
collision since it is the total spin of the colliding atoms which is conserved for isotropic
interactions. S therefore plays a similar role to R in our analogy. The spin projection
of the atom, as the relative motion of colliding atoms r, can however evolve.

Let us consider two atoms of spin s with spin projection m and m′ along the
quantization axis. This pair of atoms can be written as |s,m; s,m′ >A in the atomic
basis and |S,MS >M in the molecular basis, with MS = m + m′ and 0 ≤ S ≤ 2s.
A collision between two atoms in different spin states can happen through different
molecular channels. Each molecular channel has its own scattering length. We define
aS as the scattering length associated to atoms colliding through the molecular channel
S.

The total wavefunction describing the collision has a spatial part and a spin part.
The spatial wavefunction associated to an s-wave collision is symmetric. For bosons
(fermions), the total wavefunction is symmetric (antisymmetric) and therefore the spin
wavefunction must be symmetric (antisymmetric). For even S states, the spin wave-
function of bosons (fermions) is symmetric (antisymmetric) under the exchange of the
spin of two atoms. For odd S states, it is the contrary: the spin wavefunction of bosons
(fermions) is antisymmetric (symmetric) under the exchange of the spin of two atoms.
To respect the global symmetry of the particles, only molecular channels with even S
must therefore be considered both for bosons and for fermions. To illustrate this, let
us consider the stretched states of 2 bosonic and 2 fermionic atoms. The stretch state
of two bosons of spin s=1 is:

|s = 1,ms = 1; s = 1,ms = 1 >A= |S = 2,MS = 2 >M . (3.8)

This ket is an even S state and is symmetric. Similarly, for fermions with spin s=3/2
we have:

|s = 3/2,ms = 3/2; s = 3/2,ms = 3/2 >A= |S = 3,mS = 3 >M . (3.9)

This ket is an odd S state and is symmetric. The effective pseudo potential taking into
account spin states can then be written:

Ueff (r − r′) = δ(r − r′)
2s∑

S=0

gSPS

= δ(r − r′)
2s∑

S=0

gS|S,MS >< S,MS| (3.10)
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with the sum holding for even S only, gS = 2π~2aS/mr is the strength of the interaction
for atoms colliding through the molecular potential S, and PS is the operator which
projects the atomic spin of the pair of atoms onto the molecular basis.

This interaction is invariant under rotations in coordinate space. This implies that
this collisional process conserves orbital angular momentum and the total electronic
spin angular momentum. Therefore L, ML, S and MS are conserved quantities during
a collision where L is the total angular momentum of projection ML. However, the
spin projection of an individual atom can change (for example by flipping one spin up
and the other one down). These collisions are called contact spin exchange collisions.

For 52Cr with s = 3, there are four scattering channels. Three of them were
measured previously (a6 = 102.5± 0.4 aB, a4 = 64± 4 aB, a2 = −7± 20 aB [83, 87]).
The last scattering length, a0, was measured during my PhD studies and is the focus
of the last part of this chapter.

3.1.2 Dipole-dipole collisions

One important feature of Chromium resides in its relatively strong magnetic dipole
moment µ = 6 µB with µB Bohr’s magneton. Each atom can be seen as a magnet
which creates a B field acting on the other dipoles. The dipole-dipole interaction
(DDI) potential between two atoms of magnetic moment ~µi = gLandéµB~si separated by
~r is:

VDDI(~r) =
µ0(gLandéµB)

2

4πr5

(

r2~s1.~s2 − 3(~s1.~r)(~s2.~r)

)

(3.11)

with µ0 the vacuum permeability and gLandé the Landé factor. The DDI operator is
given by:

V̂DDI =
µ0(gLandéµB)

2

4πr5

(

r2 ~̂S1. ~̂S2 − 3( ~̂S1.~̂r)( ~̂S2.~̂r)

)

. (3.12)

with ~̂S the spin operator and ~̂r the position operator. This expression is invariant under
simultaneous rotations in coordinate space and electronic spin space. It is not invariant
under separate rotations. It is the total angular momentum J which is conserved in a
dipole-dipole collision.

The DDI is anisotropic (it depends on ~si.~r and can be attractive or repulsive see
Fig.3.1), and long-range2 (∝ 1/r3). Following pioneering experiments in the group
of T.Pfau which demonstrated how a dipolar BEC elongates along the axis of the
dipoles to minimize energy [88], early experiments in the group have highlighted the
anisotropic character of the DDI by measuring the dependence of collective excitations
[89] and the speed of sound [90] upon different magnetic field orientations. The long
range character of DDI has been observed through the interaction between atoms,

2for a 3D system. In 2D and 1D, DDI is considered as a short-range potential.
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Attractive Repulsive

Figure 3.1: Sketch illustrating the anisotropy of Dipole Dipole Interactions. Two
dipoles in a head to tail configuration attract each other where as two dipoles side by
side repel each other.

molecules, or Rydberg atoms in different lattice sites [31, 34, 91]. The strength of this
interaction is proportional to ~µ2. Therefore, for s = 3 chromium, this interaction is 36
times stronger than for s = 1/2 alkalis. The relative strength of the DDI compared to
contact interaction is given by the factor ǫDD which, in a spherical trap, is equal to

ǫDD =
4π

3

s2d2

gS
=
2π

3

s2d2mr

π~2aS
(3.13)

with d2 = µ0(gLandéµB)2

4π
; ǫDD > 1 corresponds to the limit at which a dipolar BEC

collapses under the effect of the attractive part of the DDI. In this limit, the repulsive
contact interaction is too weak to stabilize the BEC [92]. For Chromium, ǫDD ≈ 0.16 far
away from a Feshbach resonance. This value can take any desired value by tuning the
scattering length aS accross a Feshbach resonance. Experiments in the Stuttgart group
studied the collapse of a BEC of Chromium as a function of ǫDD and trap geometry
[93, 94]. Recently, Dy and Er with larger dipole moment (respectively ~µ= 10 µB and
~µ= 7 µB) and larger mass have been cooled to degeneracy [17, 18, 66, 67].

Developing eq.(3.12) yields:

V̂DDI(~r) =
d2

r3
(1

2
(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+) + Ŝ1zŜ2z

)

− 3
d2

r5

(

Ŝ1zŜ2z ẑ
2

+ (Ŝ1zŜ2−
ẑr̂+
2

+ Ŝ1−Ŝ2z
r̂+ẑ

2
) + c.c.

+ Ŝ1+Ŝ2+

r̂2−
4
+ c.c.

+ (Ŝ1+Ŝ2−
r̂−r̂+
4

+ c.c)

)

(3.14)
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where Ŝ± = Ŝx ± iŜy are the spin raising/lowering operators, r̂± = x̂± iŷ, and x̂, ŷ, ẑ
are normalized coordinates.

Let us consider an external magnetic field ~B aligned along ẑ. We can distinguish 3
different types of collisions due to dipolar interactions.

• Terms involving Ŝ1zŜ2z are collisions where each atom conserves its spin and are
often called Ising terms. These collisions are elastic and long range. The Ising
terms are multiplied by (1− 3ẑ2) due to the interaction anisotropy, which leads
to a deformation of the BEC. This phenomenon called magnetostriction has been
observed for Chromium [95, 96].

• Long range dipolar spin exchange collisions (Ŝ1+Ŝ2−+Ŝ1−Ŝ2+). These collisions
do not conserve the spin of an individual atom but only the longitudinal magne-
tization. These collisions have been observed with Chromium atoms loaded in an
optical lattice prepared out of spin equilibrium [91]. Again, the exchange terms
are multiplied by (1− 3ẑ2). In Part III, we will be particularly interested in spin
exchange processes due to these terms.

• Finally, there are collisions for which the magnetization is not conserved, for
example Ŝ1−Ŝ2−. They have drastic consequences for the properties of a BEC
since they free magnetization [87, 97, 98, 99]. These collisions will be essential
in the cooling mechanism using the spin degrees of freedom which we demonstrate
in chapter 5. This property is specific to dipolar collisions, since contact collisions
conserve the total electronic spin and thus conserve magnetization. This change
in magnetization is necessarily accompanied with a change in orbital angular
momentum, which is given by terms involving r̂− or r̂+, as the total orbital
momentum J is a good quantum number. This spin-orbit coupling is particularly
appealing. In particular, dipole-induced spin relaxation may lead to a transfer
of spin into angular momentum. This process could lead to a rotation of the
ensemble and would be similar to the well-known Einstein-de Haas effect [100,
101, 102].

Dipolar cross section

In the following section, I will give the results of the cross sections associated to the
possible dipolar collision channels which were established in [103].

Let us consider two atoms in spin state ms = +3. There exists three different
dipolar collision channels:

|ms = +3,ms = +3 > → |ms = +3,ms = +3 >

|ms = +3,ms = +3 > → 1√
2
(|ms = +3,ms = +2 > +|ms = +2,ms = +3 >)

|ms = +3,ms = +3 > → |ms = +2,ms = +2 > .
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The first channel conserves magnetization whereas the two others do not. When magne-
tization is not conserved, the pair of atoms gains a kinetic energy of ∆Ei = igLandéµBB
with B the magnetic field, and i is a number equal to the change in magnetization after
the collision. The cross sections associated to the different dipolar collisional channels
in the framework of the first-order Born approximation are [87]:

σ
(0)
dip =

16π

45
s4
(
µ0(gLandéµB)

2m

4π~2

)2

h(1) (3.15)

σ
(1)
dip =

8π

15
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(
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2m
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h(kf/ki)
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ki
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σ
(2)
dip =

8π

15
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µ0(gLandéµB)
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h(kf/ki)
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with s = 3 the spin of a Chromium atom, µ0 the vacuum permeability, µB the Bohr
magneton, gLandé the Landé factor, ki and kf are the moduli of the initial and final
wave vectors. The final wavevector kf is not the same depending on the considered
collisional channel. h(x) is a monotone function defined for x ∈ [1,+∞[ by:

h(x) =

{

1− 1
2
ǫ if x = 1

1 + ǫ
(
− 1

2
− 3

8
(1−x2)2

x(1+x2)
loge

(1−x)2

(1+x)2

)
if x > 1

where ǫ = 1 for bosons and ǫ = −1 for fermions.

3.2 Thermalization processes

In this thesis we will be interested in the thermalization of the spin degrees of freedom
and the mechanical degrees of freedom which can be treated using the same formalism.
To thermalize a degree of freedom, different states must be coupled to each other
and there has to be irreversible energy redistribution processes. Irreversible energy
redistribution in a closed system is in practice provided by coupling an initial state
to a large number of output channels. This coupling is ensured by collisions. In
the following we shall distinguish two types of collisions: one which does not lead to
thermalization of any degrees of freedom which we label as ”coherent collision” and
one which ensures thermalization and that we call ”incoherent collision”.

The following discussion applies to the case of a thermal gas. A BEC can be
immersed in the thermal gas, which alters the density of the gas which enters in ther-
malization processes.

3.2.1 Thermalization of a polarized gas

Let us first consider the case of a polarized gas and discuss how the mechanical degrees
of freedom may be thermalized.
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a) Coherent collisions

We denote a collision to be coherent if it is a forward scattering process where the
incoming waves of momenta ~k1 and ~k2 scatter in the same direction: (~k1,~k2) = (~k′1,

~k′2)

with ~k′i the outgoing wavevector of particle i (see Fig.3.2). There exists only one output
channel which conserves the momenta of both particles. No energy exchange takes
place, therefore there is no energy redistribution, and thermalization cannot happen.
Coherent collisions do not thermalize the gas.

k1

k2

k1

k2

k1

k2

k1
’

k2
’

a)

b)

Figure 3.2: Sketch illustrating coherent and incoherent collisions. a) Coherent colli-

sions: the incoming waves of momenta ~k1 and ~k2 scatter in the same direction: (~k1,~k2) =

(~k′1,
~k′2). These collisions are reversible, they do not redistribute energy and do not ther-

malize the mechanical degrees of freedom. b) Incoherent collisions: the incoming states

are coupled to many possible momentum states (represented here by a cone):(~k1,~k2) 6=
(~k′1,

~k′2). Incoherent collisions are irreversible, redistribute energy between particles and
thermalize the mechanical degrees of freedom. Here in the sketch we did not account
for the symmetrization of the problem.

Although forward scattering collisions do not redistribute energy between colliding
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particles, the phase shift acquired due to collisions with a medium of density n modifies
the energy of the particles. This gives rise to the the mean field interaction shift E =
4π~2

m
naS=ngS with gS = 4π~2

m
aS the interaction strength. Such a formula is given by

the Bogoliubov dispersion relation at high momenta [23]: an excitation over a BEC, in
the limit k → ∞, has an energy ǫ(k) = ~

2k2

2m
+ ngS with n the BEC density.

We introduce for these coherent processes a frequency Γcoh such as:

Γcoh =
1

h

4π~2

m
naS (3.18)

Therefore we interpret contact interactions as a result of contact coherent collisions in
the weakly interacting limit na3S << 1.

b) Incoherent collisions

When the collision couples the incoming states to many possible momentum states
(~k1,~k2) 6= (~k′1,

~k′2), even though each collision is reversible by themselves, many collisions
which do not evolve in phase take place, irreversible energy redistribution is then
ensured. These collisions are branded as incoherent. The coupling between different
states is then set by the Fermi Golden rule and yields the collision rate Γinc = nσv
with σ the atomic cross section and v the relative mean velocity of the pair of colliding
atoms. For pure s-wave collisions of undistinguishable bosons in the low energy limit
we have σ = 8πa2S. For a dilute Boltzmann gas, it has been shown that typically
three collisions are sufficient to randomize velocities and ensure thermalization of the
mechanical degree of freedom [104].

c) Comparison of the collisional rates

Both collisional processes take place in any gas but on timescales set by different
parameters. In order to evaluate which collisional process dominates, one needs to
compare

Γcoh =
1

h

4π~2

m
naS (3.19)

and Γinc = nσv. (3.20)

Both collisional processes cannot be measured in the same way. Indeed forward scatter-
ing results in a phase shift and may be probed by e.g. an interferometric set up [105].
On the other hand, incoherent processes can be probed by measuring thermalization
of the velocity distribution [106].

Physical insight can be gained by dividing equations eq.(3.19) and eq.(3.20). If one
looks at the ratio between coherent and incoherent rate, one obtains:

Γcoh

Γinc

∼ λdB
aS

(3.21)
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with λdB =
√

2π~2

mkBT
the de Broglie wavelength and kB is the Boltzman constant. A

wavepacket remains coherent for a long time when its size (λdB) is large compared to
the scatterer (aS). In the extreme case of the BEC, where λdB → ∞, we have Γcoh

Γinc

→∞: there are interactions among particles, but ”no collisions”.
This ratio, can be recast using eq.(3.4) and yields:

Γcoh

Γinc

=
2π

16

1

δ0(k)
. (3.22)

Γcoh >> Γinc means that very little phase shift is acquired during a collision. Many
collisions may take place and evolve in phase, which is consistent with the fact that
coherence is conserved. In the opposite limit when Γcoh << Γinc, a collision induces a
large phase shift. Many collisions take place but they do not evolve in phase, and the
coherence of the sample is destroyed.

We have now gained insight into the meaning of the thermodynamics of a ”non
interacting BEC”. Here it is assumed that collisions take place and are fast enough
for thermal equilibrium to be reached: Γinc is large enough to ensure thermalization.
However, interactions are weak enough that they do not modify the thermodynamics:
hΓcoh is small.

3.2.2 Thermalization of an unpolarized gas

The discussion in subsection 3.2.1 may sound tautological. Indeed, forward scattering,
leading to a mean field interaction, does not lead to a change in momentum. It is
therefore obvious that it does not lead to thermalization of momentum states. We now
extend this discussion to the case of an unpolarized gas. We will follow the same line
of thought, and show that one can have both coherent and incoherent spin dynamics
[107, 108, 109].

a) Coherent collisions

In the coherent case, we discussed that a forward collision through a molecular potential
with spin S introduces a phase shift linked to the mean field energy E = 4π~2

m
naS. Now

we consider a collision where the pair of atoms is in a superposition of molecular states
|S > and |S ′ >. We can write the spin part of the incoming wave as:

|ψin >= α|S,m > +β|S ′,m > (3.23)

with α and β complex numbers satisfying |α|2 + |β|2 = 1. After the collision, the
outgoing wavefunction takes the form:

|ψout(t) >= αeigSnt/~|S > +βeigS′nt/~|S ′ > (3.24)

with t the interaction time. The phase associated with each molecular state undergoes
a phase shift proportional to the interaction strength of the corresponding molecular
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potential. Thus, a pair of atoms in a linear superposition of two molecular states will
undergo beating which will result in spin dynamics. The rate associated with coherent
spin dynamics results from a difference in scattering lengths ∆a between different spin
molecular potentials:

ΓSpin
coh ∼ 1

h

4π~2

m
n∆a (3.25)

More precisely, using eq.(3.10) the rate of a (ms = i, ms = j) → (ms = k, ms = l)
coherent spin collision channel of an atom of spin s is:

ΓSpin
coh = Γk,l

i,j =
1

h

4π~2

m
n

×
2s∑

S=0,even

aS < s, i; s, j|S,MS = i+ j >< S,MS = k + l|s, i; s, j >(3.26)

where the sum holds for even S values. For example, the rate associated with the
forward collision (ms = 0, ms = 0) → (ms = 1, ms = −1) of an s=1 atom is:

Γ−1,1
0,0 =

1

h

4π~2

m
n× 1

3
(a2 − a0). (3.27)

b) Incoherent collisions

In the incoherent case, we calculate the cross section associated to a spin changing
collision by applying scattering theory to two atoms in different spin states interacting
through Ueff (eq.(3.10))[85]. The idea of the calculation is to evaluate, within Born
approximation, the probability to change momentum and spin. Although the number
of spin states is reduced, the number of available momentum states is large and energy
redistribution is possible. The cross section associated with the collision (m1,m2) →
(m′

1,m
′
2) of spin s atoms is [85]:

σ(m1,m2)→(m′
1,m

′
2)

= σSpin

= 4π|
S=2s∑

S=0,even

γ(m1,m2)cS,MS ;m1,m2c
∗
S,MS ;m

′
1,m

′
2
aS|2 (3.28)

with cS,mS ;m1,m2 the Clebsch-Gordan coefficient associated between an atom pair |s,m1; s,m2 >A

and a molecule |S,MS >M . γ(m1,m2) is a symmetrization factor which ensures the nor-
malization of the spin part of the incoming wavefunction. For m1 = m2 we have γ =
1, and for m1 6= m2 we have γ =

√
2. The cross section associated with spin dynamics

results from the sum squared of the different possible scattering lengths weighted by
the appropriate Clebsch-Gordan coefficients. The rate associated with incoherent spin
dynamics is thus:

ΓSpin
inc = nσSpinv. (3.29)
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For example, the rate associated with an incoherent (ms = 0, ms = 0) → (ms = 1,
ms = −1) collision of an s=1 atom is:

Γ−1,1
0,0 = nv × 4π

(
a2 − a0

3

)2

. (3.30)

Both coherent and incoherent collisional processes change the population in a spin
state (as shown by the sketch Fig.3.3) and can be measured by monitoring the popu-
lation of each spin state. In section 3.3, to illustrate these two different processes we
shall describe two experimental results obtained in the laboratory.

c) When do we have which process?

Again, to assert which process dominates, one compares:

ΓSpin
coh =

1

h

4π~2

m
n∆a (3.31)

and ΓSpin
inc = nσSpinv. (3.32)

If ΓSpin
coh > ΓSpin

inc , we may observe spin oscillations before thermalization. The damp-
ing rate of the oscillations will then be of the order of ΓSpin

inc . However, there exists
additional damping processes which occur on different timescales than the one set by
the thermalization of the spin degrees of freedom. For example Γinc, which ensures
thermalization of the mechanical degrees of freedom, may damp coherent spin oscil-
lations on a faster timescale [108]. A very important point to consider when dealing
with spin dynamics is that incoherent scattering is not the only possibility to provide
dissipation in the spin sector: environment inhomogeneities such as fluctuations of
the magnetic field or residual magnetic gradients may introduce inhomogeneous phase
shifts (an additional position and spin state dependent phase shift) which will decohere
the sample.

3.3 Experimental realization of coherent and inco-

herent spin dynamics

In the following, to illustrate our discussion we shall present two different experiments
performed in our laboratory for which coherent and incoherent spin dynamics were
observed.

3.3.1 Coherent process

To illustrate an experiment with coherent collisions, I will briefly present an experiment
performed during Aurélie de Paz’s thesis [37].
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Figure 3.3: Sketch illustrating coherent and incoherent collisions when including the
spin degrees of freedom. a) Spin changing coherent collisions: two atoms in spin state
ms = 0 may change spin state after a coherent collision. These collisions are reversible
and do not lead to thermalization b) Spin changing incoherent collisions: two atoms in
spin state ms = 0 may change spin state after an incoherent collision. These collisions,
by themselves, are reverisble but they are many and they do not evolve in phase and
are thus irreverisble. These collisions lead to the thermalization of the spin degrees of
freedom. Here in the sketch we did not account for the symmetrization of the problem.

In this experiment, a BEC of spin polarized ms = −3 atoms is loaded into a
3D lattice to produce a Mott state [110] with on average 2 atoms per site. These
atoms are then excited to ms = −2 and we measure spin dynamics (see chapter 8 or
[37, 91] for more experimental details). The evolution of the fractional populations in
ms = −3,−2,−1, 0 are shown Fig.3.4. They observe damped coherent oscillations for
each spin state. The dynamics is interpreted as spin changing collisions due to contact
interactions in doubly occupied sites.

Assuming a perfect preparation of an initial state of two atoms per lattice site of
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Figure 3.4: Evolution of the fractional populations in ms = −3,−2,−1, 0 as a function
of time after spin preparation in an excited spin state through a coherent Raman
process. Error bars show statistical uncertainties. Full lines are fits to the data.
We observe coherent spin oscillations. The dynamics is interpreted as driven by spin
changing collisions due to contact interactions in doubly occupied sites of an optical
lattice. Image adapted from [91].
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spin s = 3 in spin state ms = −2, in the molecular basis we can write:

|Ψ(t = 0) >= α|S = 6,MS = −4 >M +β|S = 4,MS = −4 >M (3.33)

with α =
√

6
11

and β = −
√

5
11

the appropriate Clebsch-Gordan coefficients. The

interaction part of the Hamiltonian Ĥint will drive the evolution of the system and
after a time t at the beginning of the evolution we have

|Ψ(t) > = eiĤintt/~|Ψ(t = 0) >

= αeig6t/~|S = 6,ms = −4 >M +βeig4t/~|S = 4,ms = −4 >M (3.34)

because |S = 6,ms = −4 >M and |S = 4,ms = −4 >M are eigenstates of Ĥint with
respective eigenvalues g6 and g4. The population in ms = −2, Π−2(t), is:

Π−2(t) = | < ms = −2,ms = −2|Ψ(t) > |2

=
61

121
+

60

121
cos(φ(t)) (3.35)

with φ(t) = (g6−g4)t
~

. The population evolution in ms = −2 can thus be seen as a
beating set by the difference in interaction energies between molecular potentials.

The theoretical period of this oscillation, which can be extracted from the exper-
imental details given in [91], is T= h

g6−g4
= (280±30) µs. This is in good agreement

with the experimentally measured oscillation period (320±50) µs.

3.3.2 Incoherent process: determination of a0

In this section, I will describe an experiment performed during my PhD in which we
measured spin dynamics resulting from incoherent collisions between atoms in different
spin states. The analysis of our data provides the first measurement of the scattering
length of the S=0 molecular potential of Chromium. I will purposely omit experimental
preparation details in order to concentrate on collisional processes. The experimental
preparation is an extension of the experimental preparation detailed in chapter 7, and
can also be found in [37, 111].

Experimental situation

We load 104 chromium atoms in spin state ms = −3 in a double well trap. Each
well contains half of the atoms. We selectively prepare the atoms of one well in spin
state ms = +3. The double well trap is then removed (for more experimental details
on spin preparation or the double well trap see chapter 7. However the double well
trap is no longer of use and one should not need to focus on the preparation of the
initial conditions to understand the message of this section). The initial condition is
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the following: we have 104 thermal atoms at T=(1.2± 0.1) µK in an ODT of trapping
frequencies νx,y,z = (520, 615, 400) Hz. At t = 0, the initial fractional populations are:

N−3

NTot

= 0.40± 0.08

N−2

NTot

= 0.08± 0.02

N−1

NTot

= 0.02± 0.01

N0

NTot

= 0.00± 0.01

N+1

NTot

= 0.02± 0.01

N+2

NTot

= 0.08± 0.02

N+3

NTot

= 0.40± 0.08.

We let the system evolve for a time t, turn off the ODT and then spatially separate
the different spin components with a Stern-Gerlach technique to measure the number
of atoms in each spin state.

Even though spin states with opposite spin projections should have the same atom
number due to the way we prepare the sample, we find a reduced signal for atoms with
ms > 0 due to our imaging procedure. Even though a spin dependent coefficient can
be introduced to account properly for the number of atoms in each spin state, our best
signal to noise ratio is obtained for spin states with ms ≤ 0 and we focus our analysis
only on these spin states.

We show in Fig.3.5 the evolution of the fractional populations for ms = −2,−1, 0.
We observe an increase of thems = −2,−1, 0 populations with no spin oscillations. The
observed spin dynamics is, to within our signal to noise ratio, at constant magnetization
for the first 200 ms.

Incoherent dynamics

We first estimate the timescale associate with coherent and incoherent spin dynamics:

1

n
ΓSpin
Coh ∼ 3× 10−17m3 · s−1 (3.36)

1

n
ΓSpin
inc ∼ 3× 10−18m3 · s−1 (3.37)

with n the density, ∆a = a6 − a4 = 2.1 nm (a6 and a4 are the scattering lengths

associated to the molecular potentials S=6 and S=4), and v = 4
√

kBT
πm

= 3.1 cm·s−1

at T= 1.2 µK.
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Figure 3.5: Evolution of the fractional populations in ms = −2,−1, 0 as a function of
time after spin preparation (see chapter 7 for more details on the spin preparation).
Error bars show statistical uncertainties. Full lines are guides for the eye.
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We find ΓSpin
Coh ≥ ΓSpin

inc , however we do not observe any coherent spin oscillations
in Fig.3.5. This is due to the fact that the different spin states are initially in an
incoherent mixture. The time tmerge between spin preparation and the moment the
two gases are merged is long: tmerge ≈ 20 ms. Assuming a thermal distribution for the
ms = +3 gas, the peak density is:

n0
+3 = N+3

(
mω̄2

2kBT

)3/2

(3.38)

= 3.5× 1018 m−3 (3.39)

with N+3 the number of ms = +3 atoms, ω̄=(ωxωyωz)
1/3 the mean trapping frequency,

and kB is Boltzmann’s constant. The timescale τ for an incoherent collision between
ms = +3 atoms is estimated to be:

τ =
2
√
2

n0
+38πa

2
6v

≈ 30 ms

∼ tmerge. (3.40)

The ms= +3 cloud has therefore lost its coherence by the time the traps are merged
and we do not observe any spin oscillations.

Moreover, the magnetic field at each trap position is different, which leads to a
relative phase between the ms = −3 atoms and ms = +3 atoms. Due to fluctuations
in magnetic field between experimental realizations, the relative phase between the spin
components fluctuates. Most likely, within the mean field picture [112], spin dynamics
are highly sensitive to the relative phase between spin components. Because the relative
phase is not well defined, coherent oscillations may not be sustained.

Fixed magnetization

We interpret that magnetization is constant by the fact that dipolar magnetization
changing collisions do not intervene in the observed dynamics. Indeed the Zeeman
splitting is much larger than the thermal energy (as B = 50 mG and T= 1.2 µK, we
have EZeeman = h× 140 kHz and EThermal = h× 25 kHz) therefore dipolar ”promotion”
events where thermal kinetic energy is transferred into magnetic energy (such as the
collisions involved in demagnetization cooling in [113]) which would lead to production
of ms = −2 atoms can safely be ruled out.

Also, the cross section associated to a dipolar relaxation collision, e.g. (ms =
+3,ms = +3) → (ms = +3,ms = +2) at B=50 mG and T=1.2 µK, is [87]:

σ
(1)
dip ∼ 1.5× 10−17m2 (3.41)
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where we used eq.(3.16). The timescale τ associated with a dipolar relaxation event is
of the order of:

τ ∼ 2
√
2

n0
+3σ

(1)
dipv

∼ 1.7 s (3.42)

for v = 4
√

kBT
πm

= 3.1 cm.s−1. τ is much larger than the experiment timescales, therefore

dipolar magnetization changing collisions can be safely omitted to understand the
dynamics for the experimental times considered.

The observed spin dynamics therefore results from spin exchange interactions, which
can be triggered either by dipolar interactions or by spin dependent contact interac-
tions.

Analysis of ms = −2 population: exclusion of dipolar dynamics

As a first study, in order to deduce the relevant timescales of dynamics, we focused on
the time evolution of ms = −2 population. Since only the ms = −3 and ms = +3 spin
states are macroscopically occupied, in this first model we assume that the production
of an ms = −2 atom is set by the timescale of the spin conserving (-3,+3)→ (-2,+2)
collisions which consists of a dipolar term and a contact term:

dn−2(t)

dt
= σ(−3,+3)→(−2,+2)vn−3(t)n+3(t) (3.43)

with σ(−3,+3)→(−2,+2) the collision cross section associated to a (-3,+3)→ (-2,+2) event,

v = 4
√

kBT
πm

the average atomic relative velocity, and ni the density of atoms in

state ms = i. Assuming a Gaussian distribution for the density of state ni(r) =

n0
i e

− 1
2
mω̄2r2/(kBT ) and that ni(t)=n−i(t), integrating eq.(3.43) over space yields

dN−2(t)

dt
=

σ(−3,+3)→(−2,+2)v

2
√
2

n0
+3N−3(t) (3.44)

with Ni the number of atoms and n
0
i the peak density of ms = i atoms. In this model,

the time constant τ for the time evolution of the ms = −2 is given by:

1

τ
=
σ(−3,+3)→(−2,+2)v

2
√
2

n0
+3. (3.45)

A linear fit to the data based on the first 50 ms dynamics yields an experimental
cross section of σexp = (1.25 ± 0.5 ± 0.4) × 10−17m2 where we indicate successively
statistical and systematic errors.
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The cross section for spin exchange interactions due to dipolar interactions is esti-
mated (see eq.(3.15) or [87]) to be:

σ
(0)
dip ≈ 3× 10−18 m2. (3.46)

The associated timescale for spin dynamics given our experimental parameters is τ ∼
7 s: such a cross section is insufficient to account for the observed spin dynamics. We
therefore attribute spin exchange dynamics due to spin-dependent contact interactions.
To account for the spin dynamics, we shall consider only spin exchange interactions
mediated by contact interactions.

A first estimate of a0 extracted from the main collisional channels

In our experiment, ms=-3 and ms=+3 are the most populated spin states and it is
collisions between atoms of these two spin states which will mostly drive the dynamics.

There are three collision channels for a (-3,+3) collision: (-3,+3)→ (-2,+2), (-
3,+3)→ (-1,+1), (-3,+3)→ (0,0). From eq.(3.28), we can extract the contact scattering
cross section for each of these channels within the Born approximation:

σ(−3,+3)→(−2,+2) = 8π(
1

77
a6 +

3

11
a4 −

2

7
a0)

2, (3.47)

σ(−3,+3)→(−1,+1) = 8π(
5

154
a6 +

6

154
a4 −

5

14
a2 +

2

7
a0)

2, (3.48)

σ(−3,+3)→(0,0) = 16π(
5

231
a6 −

9

77
a4 −

5

21
a2 −

1

7
a0)

2.

For chromium, all scattering lengths are now well established except for a0 [87, 83].
Therefore we can extract from our simulations the value of a0 which fits best the
experimental data shown Fig.3.5.

As a first analysis, we plotted σ(−3,+3)→(−2,+2) as a function of a0 (red line in Fig.3.6).
Due to the parabolic dependence of this collisional cross section upon a0, there are
two values of a0 which match with the experimentally measured cross section σexp =
(1.25 ± 0.5 ± 0.4) × 10−17 m2 deduced from the evolution of the ms = −2 population
(red shaded area in Fig.3.6).

The time evolution of the ms = −1 and ms = 0 populations are similar (Fig.3.5),
and a linear fit to the first 50 ms gives σ(−3,+3)→(−1,+1) ≈ σ(−3,+3)→(0,0) ≈ σ(−3,+3)→(−2,+2).
As seen from Fig.3.6, only values of a0 close to 0 lead to comparable rates for the three
dynamics. We infer from our experimental data that a0 = 12±15

10 aB which is obtained
from the three main collisional channels at play.

Model with all possible collision channels

Since our initial experimental conditions shows non-negligible fraction of atoms in other
spin states than ms = ±3, we established a more refined model in order to compare
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Figure 3.6: Cross sections for processes (i)σ(−3,+3)→(−2,+2) (full line, red), (ii)
σ(−3,+3)→(−1,+1) (dashed, green), and (iii) σ(−3,+3)→(0,0) (dotted, blue) as a function
of a0 . Red shaded area corresponds to the experimental outcome.

experimental data and numerical simulations. In our numerical simulation, we consider
that the evolution of the fractional population in a given spin state m is solely governed
by spin changing contact collisions:

dnm

dt
= v

∑

m1,m2

σ(m1,m2)→(m,m′)nm1nm2 − σ(m,m′)→(m1,m2)nmnm′ , (3.49)

with v the mean relative velocity, nm the density of spin state m, and m′ fixed by
m′ = m1 +m2 −m in order to conserve the spin during the collision.

Using our initial experimental parameters, we simulated eq.(3.49) for different val-
ues of a0 and compared them to the experimental data. The value of a0 which best fits
the data was then determined via a χ2 test (see chapter 9 for more information).

Determination of a0

Independant fits for each spin population of the experimental data for population dy-
namics during the first 50 ms inms = -2,-1,0 leads to a0 = 13+15

−10aB, 13.5
+10.5
−13.5aB, 1.5

+7.5
−9.5aB,

respectively with error bars denoting a 68.3% statistical confidence level. These values
are all compatible with each other. As absolute population measurements in ms = 0
may be underestimated due to a less efficient absorption process, we believe that there
is a slight bias for the corresponding inferred value of a0 towards the negative side.
Therefore, we rely on the data for ms = -2 to make our final estimate (the spin state
which we measure best). We therefore have a0 = 13.5+15

−10aB.
This scattering length is small, and most likely positive. As we shall see in chapter 5,

this value of a0 has an important consequences for the spinor ground state properties
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of a Chromium BEC at very low magnetic field since it means the ground state of
Chromium is expected to be cyclic [100].

3.4 Conclusions

In this chapter, we established the different collisional processes which can take place
in our gas. We distinguished two types of collisions: coherent collisions and incoher-
ent collisions. Incoherent collisions ensure thermalization of the different degrees of
freedom. For a gas with a spin degree of freedom, these collisions lead to spin dynam-
ics due to differences in the scattering lengths of different molecular potentials. An
analysis of such spin dynamics led to the first measurement of a0 for Chromium, the
scattering length of the S=0 molecular potential. Coherent collisions on the other hand
do not thermalize any degrees of freedom. They introduce phase shifts, which can also
produce spin dynamics.

In the next chapter, we will present experimental results of the co-evaporation
of 52Cr and 53Cr which led to the production of a 53Cr Fermi sea. We analyze the
thermalization of the mechanical degrees of freedom during evaporation and are able
to extract the inter-isotope scattering length.

Then in chapter 5, we derive the thermodynamic properties of a Bose gas with
a spin degrees of freedom and present two experiments. In the first experiment we
explore an intriguing between spin dynamics and Bose condensation dynamics as a
thermal multi-spin component gas is rapidly cooled across the Bose Einstein phase
transition. In the second experiment, we take advantage of the thermalization of the
spin degrees of freedom with temperature at low magnetic field in order to perform a
spin selective cooling experiment.
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A 53Cr Fermi sea

In this chapter, we present experimental results of the co-evaporation of 52Cr and 53Cr.
We produce a fermionic gas 53Cr at temperatures below the degeneracy temperature: a
53Cr Fermi sea. We analyze the thermalization processes of the mechanical degrees of
freedom during evaporation and are able to extract the inter-isotope scattering length
aBF=80 ± 10 aB.

4.1 Introduction

The first degenerate Fermi gas was realized with 40K [22], and was produced signifi-
cantly after the first degenerate Bose gases [6, 7] despite the similarities in cooling tech-
niques employed to produce them. The success of producing Bose Einstein Condensate
came from the very efficient evaporative cooling techniques. Evaporative cooling relies
on removing the most energetic atoms, and letting the atomic ensemble thermalize
at a lower temperature. One of the main difficulties in cooling polarized fermions to
degeneracy is the incapability of polarized fermionic atoms to collide (and therefore
thermalize) through s-wave contact interactions at low energy, rendering evaporative
cooling to degeneracy of polarized fermions colliding through short wave potentials
impossible. To circumvent this problem and cool fermionic atoms to degeneracy, two
major strategies are employed. The fermionic ensemble can be prepared in two distinct
spin states. This enables s-wave collisions. Then thermalization processes between
atoms of different internal states are possible and evaporating fermions is no longer
inefficient. This strategy is commonly used and has produced degenerate Fermi gases
of e.g. 40K [22] and 6Li [114]. Another strategy is to evaporate together a mixture
of bosons and fermions. This technique is called sympathetic cooling. Here, fermions
collide with bosons and thermalize. This also is a commonly used technique and has
allowed to produce Bose-Fermi mixtures of 40K-87Rb, 6Li-7Li,6Li-23Na [78, 115]

Early experiments studied the thermodynamic properties resulting from Fermi
statistics [77]. Attention was then brought to creating Fermi systems with tunable in-
teractions. This was achieved by preparing a degenerate Fermi gas in two internal states
and then tuning the interaction with a magnetic field close to a Feshbach resonance
[13]. Strongly interacting Fermi gases were observed and studied [116, 117, 118, 119].
Ultracold molecules were then produced from a cold Fermi gas [120, 121, 122, 123] and
successfully condensed [124, 125, 126]. The BEC-BCS crossover was experimentally
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achieved [127, 128], and evidence of superfluidity in a strongly interacting Fermi gas
demonstrated [129].

Fermi gases have also been loaded in optical lattices, a Mott insulator state was
prepared [130], and have even been observed with a Quantum gas microscope [131].
The recent production of new cold gases of species with SU(N) symmetry (such as Sr
or Yb [132, 133]) will allow for the exploration of exotic magnetism [134, 135].

Although this is a very active area of research, only a few ultracold Fermi gases with
long range interactions have been cooled to degeneracy. Such systems are extremely
appealing since long-range interaction are the leading interaction terms for the polar-
ized case. Cold molecules with a strong electric dipole moment have been produced
[32, 136], along with degenerate dipolar Fermi gases of Dysprosium [66] and Erbium
[67]. With dipolar species, low temperature collisions become possible even for identi-
cal fermions. The long range potential leads to an elastic cross section independent of
energy, where antisymmetric orbitals contribute to the total cross section even at zero
temperature.

This very peculiar consequence of DDIs, first observed with Dy [66], was used to
produce an Er Fermi sea [67]. However for Cr the dipolar elastic cross section is ≃ 20
times smaller than for Er, as it scales as d4m2 (d being the permanent magnetic dipole,
and m the mass). In addition we only manage to trap in a conservative trap about
30 times less atoms than in [67] and at considerably low phase space density, which
renders direct evaporative cooling of spin polarized 53Cr atoms very challenging, if not
unfeasible. This is why we chose to perform sympathetic cooling of 53Cr fermions with
the bosonic 52Cr.

4.2 Thermodynamic properties of a gas of fermions

4.2.1 An ideal polarized Fermi gas

a) General description of a Fermi gas based on [137]

Polarized fermions cannot occupy the same quantum mechanical state. This is in stark
contrast with polarized bosons. The distribution of spinless fermions follows the Fermi-
Dirac distribution. The probability that a fermion, at thermal equilibrium with a large
reservoir at temperature T and chemical potential µ, has an energy ǫ is:

fµ(ǫ, T ) =
1

e
ǫ−µ
kBT + 1

. (4.1)

A gas of N fermions at zero temperature, will have each energy level filled by an
atom up until the Fermi energy, which is the energy of the N th atom. The Fermi
energy, which is the relevant energy scale when dealing with a fermionic gas, can be
determined and has the following explicit form in a 3D harmonic trap:

Ef = ~ω̄(6N)1/3 (4.2)
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with ω̄ the mean trapping frequency. To this energy scale, we can associate the Fermi
temperature Tf through Ef = kBTf . A gas of fermionic atoms is considered degenerate
when the temperature T of the gas is smaller than Tf (T < Tf ) and is considered
completely degenerate in the ideal limit when T = 0.

The chemical potential µ of a gas is the energy one needs to give to the system,
at constant temperature and entropy, in order to add a particle and for the system to
keep it and remain at thermal equilibrium:

µ =
∂F

∂N

∣
∣
∣
∣
S,T

(4.3)

with F the free energy.
For a Fermi gas at a temperature T , there is no analytical expression for the chem-

ical potential (since it involves computing Dirac integrals) but we can compute µ(T )
numerically as shown Fig.4.1 for a 3D harmonic trap. For T=0, one retrieves the fact
that µ(T = 0) = Ef . The physical picture being that to add a new particle to a com-
pletely degenerate gas, the energy of the particle must be equal to the Fermi energy
(since all lower energy states are occupied). µ(T ) then decreases for increasing T/Tf
and cancels for T/Tf ≈ 0.55.

T/T
f

μ/E
F
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Figure 4.1: Chemical potential of a Fermi gas as a function of T/Tf .

b) Extracting experimental quantities

In our experiment, we perform absorption images of our gas in order to extract physical
quantities. In the following, we will discuss how we measure the temperature of our
Fermi gas and its size.

Temperature measurement

To extract thermodynamic quantities such as temperature, we acquire absorption im-
ages after turning off the trapping potential and letting the gas ballistically expand. If
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the size of the gas after expansion is much larger than the initial size of the Fermi gas,
the atomic distribution after expansion reflects the initial in trap momentum distribu-
tion [23].

The momentum distribution of a fermionic gas in an isotropic 3D harmonic trap is
[138]:

nFD(p) = −
1

(2π)3/2~3

(
kBT

mω̄2

)3/2

g3/2(−e
µ

kBT e
− p2

2mkBT ) (4.4)

with ω̄ the mean geometric trapping frequency, T the temperature of the gas, and
gn the polylogarithmic function of order n defined as gn(z) =

∑

k>0 z
k/kn. In the

high temperature limit, this expression is equivalent to the expression obtained with a
classical gas:

nCl(p) =
N

(2π)3/2(mkBT )3
e
− p2

2mkBT . (4.5)

with N the total atom number.
In the experiment, we measure the doubly integrated signal ndd. We calculate the

exact doubly integrated distribution expected for a gas at temperature T/Tf=0.50
(eq.(4.4)), and we fit this distribution by the doubly integrated classical distribution
(eq.(4.5)). The fit yields T/Tf=0.525, overestimating the real temperature by 5%. The
result of this procedure is shown Fig.4.2a.

In our experiment, we obtain temperatures as low as T = 0.6Tf . In this regime,
fitting temperatures with the classical distribution or the exact distribution leads to
differences in measured temperatures less than 5%. In the following, we will therefore
use eq.(4.5) in order to determine the temperature of our gas.

Size measurement

To determine the characteristics of our Fermi gas, we measured the size of the gas
in situ. From Fermi-Dirac statistics, the distribution of a Fermi gas in an isotropic
harmonic trap at temperature T is:

n(r) = −(mkBT )
3/2

(2π)3/2~3
g3/2

(
− e

µ
kBT e

− mω̄2

2kBT
r2))

(4.6)

with ω̄ the mean geometric trapping frequency, and gn the polylogarithmic function
of order n (gn(z) =

∑

k>0 z
k/kn). In the high temperature limit, this expression is

equivalent to the expression obtained for a classical gas:

nCl(r) = N

(
mω̄2

2πkBT

)

e
−( mω̄2

2kBT
r2)

(4.7)

with N the atom number. Using Mathematica, we calculate the doubly integrated
distribution expected with Fermi-Dirac statistics (eq.(4.6)) at T/Tf = 0.6 and 1000
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Figure 4.2: a) In red dots, doubly integrated momentum distribution of a gas at tem-
perature T/Tf= 0.50 using Fermi-Dirac statistics. In blue, a gaussian fit to the points.
In this regime, the fit yields the same temperature with an error less than 5%. b) In
red, doubly integrated density distribution of a gas of 1000 atoms at a temperature
T/Tf= 0.60 using Fermi-Dirac statistics. In blue, a gaussian fit to the points. The fit
yields the same gas size with an error less than 5%.

atoms, and fit the calculated points with the doubly integrated classical distribution.
The width of the classical fit matches the width of our gas down to the percent level.
The result of this procedure is shown Fig.4.2b. We will therefore use eq.(4.7) in order
to extract the size of our gas.

4.2.2 The Bose-Fermi mixture of 52Cr and 53Cr in metastable
states

As mentioned at the end of subsection 2.3.4, the ZS 53 beam strongly reduces the
number of atoms in the bosonic MOT. As we chose to cool 53Cr atoms employing
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Figure 4.3: Evolution of bosonic and fermionic atom number as a function of the
bosonic loading time ∆t (see text). We load fermionic atoms in metastable states in a
1D FORT. We then turn off all fermionic lights. We then make a bosonic MOT and
load the same 1D FORT with bosonic atoms for ∆t. We measure the evolution of the
fermionic atom number (red triangles) and bosonic atoms (blue diamonds). We also
measure the fermionic atom number as a function of ∆t when no bosonic atoms are
present (black diamonds). The presence of bosonic atoms leads to extra fermionic losses
which we attribute to inelastic collisions between metastable bosons and fermions.

the most abundant 52Cr cloud as a coolant, it is important to store as many bosons
as possible in the 1D FORT. We therefore implement a sequential scheme: we first
produce a fermionic MOT and load a 1D FORT with 53Cr metastable atoms for 800
ms (accumulated from a MOT, see subsection 2.3.4). We then turn off all fermionic
lights (MOT, ZS, TC, R2), make a bosonic MOT and accumulate 52Cr MOT atoms in
the dipole trap.

In Fig.4.3 we show the evolution of the number of bosons (blue diamonds) and
fermions (red triangles) as a function of the loading time ∆t of boson atoms in the 1D
FORT. We also show the number of fermions as a function of ∆t but without making
a bosonic MOT (black diamonds). Clearly, the presence of both isotopes in the 1D
FORT trap leads to extra fermionic losses. We attribute these losses to inter-isotope
inelastic collisions. In order to extract properly the inter-isotope contribution in the
loss processes, we first analyse the losses when no bosons are present (black diamonds
in Fig.4.3), then the loading of the bosons (blue diamonds), and finally we focus on
the losses when both isotopes are present (red triangles).
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Metastable fermion-fermion collisions

When no bosons are present, fermionic losses result from collisions with background
atoms and from collisions between unpolarized metastable fermions. The evolution of
fermionic density is:

dnF

dt
= −βF−Fn

2
F − γnF (4.8)

with nF (r, t) the fermionic density profile, βF−F the two-body metastable inelastic
collision rate and γ the one-body background collision rate estimated1 at γ = 0.1 s−1.
Assuming a thermal gaussian density profile for nF , eq.(4.8) can be integrated over
space yielding:

dNF

dt
= − βF−F

2
√
2

( mω2

2πkBT

)3/2

︸ ︷︷ ︸

β̃F−F

N2
F − γNF (4.9)

where NF denotes the fermionic atom number, ω the mean trapping frequency, and T
the temperature of the gas. The solution of eq.(4.9) is:

NF (t) =
−N0,Fγ

β̃F−FN0 − (γ + β̃F−FN0)eγt
. (4.10)

with N0,F the initial number of fermionic atoms. A fit to the first 100 ms of the data
yields β̃F−F= 8.4 × 10−5 s−1, from which we could deduce βF−F as long as we know
the trapping frequencies and temperature. However, we did not measure the trapping
frequencies of the 1D FORT trap at the time. Since our trap actually consists of two
”parallel traps” (see Fig.1.6), it is difficult to estimate them a posteriori. We therefore
will only compare the fermion-fermion inelastic rate to the boson-fermion one.

Boson loading

The evolution of the bosonic atom number is considered not to be affected by the
presence of the fermionic isotope since we are rapidly in a situation where NB >> NF .
The evolution of the boson atom number is then given by the loading of the 1D FORT
which we fit with:

NB(t) = NB,max(1− e−t/τ ). (4.11)

We obtain NB,max = (6.45± 0.6)× 105 atoms and a loading time τ = 73± 7ms. These
values show that the loading was not performed in an optimal situation because in the
”normal” situation we have NB,max=1.2 × 106 and τ ≈ 60 ms. In these conditions, a
100 ms loading time gives approximatively 1 × 106 atoms in the optical dipole trap.

1We measured the same one-body loss rate for the bosonic isotope.
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Metastable boson-fermion collisions

When bosons are loaded in the 1D FORT, an extra loss mechanism for the fermions
is introduced. We attribute these fermionic losses to two-body metastable inelastic
collisions between fermions and bosons in metastable states. The evolution of the
fermionic density is thus given by:

dnF

dt
= −βB−FnBnF − βF−Fn

2
F − γnF (4.12)

with βB−F the two-body boson-fermion metastable inelastic collision rate and nB(r, t)
the bosonic density. Assuming that both isotopes share the same temperature, the
evolution of the fermionic atom number is then:

dNF

dt
= − βB−F

(m52−53
r ω2

2πkBT

)3/2

︸ ︷︷ ︸

β̃B−F

NBNF −
βF−F

2
√
2

( mω2

2πkBT

)3/2

︸ ︷︷ ︸

β̃F−F

N2
F − γNF (4.13)

with m52−53
r the Bose-Fermi reduced mass and NB(t) the bosonic atom number. There

is no analytical solution to eq.(4.13). However, Mathematica can solve this differential
equation numerically. A fit of the first 100 ms (see Fig.4.4) gives βB−F = (0.29±0.04)×
βF−F . This collision parameter is smaller than the Fermi-Fermi collision parameter.
However in practice, due to large differences in atom number between fermions and
bosons boson-fermion collisions are as detrimental as fermion-fermion collisions.

The starting point for evaporative cooling is therefore a trade-off. When ∆t in-
creases, NB increases, but NF decreases. We fix the loading time to be the shortest
possible (leading to lower initial bosonic numbers before evaporation) but still allowing
the production of BECs of (1.0±0.1)× 104 atoms. Experimentally this corresponds
to ∆t =90 ms. In these conditions, we obtain the following optimal mixture before
evaporation: NF = (3.0± 0.5)× 104 and NB = (1.0± 0.1)× 106. This corresponds to
the situation where we have the minimum number of 52Cr atoms required in order to
produce a BEC with as many 53Cr atoms as possible.

4.3 Evaporation of a Bose-Fermi mixture of 52Cr

and 53Cr

4.3.1 A 53Cr Fermi sea

a) Evaporation

Once atoms are optically pumped to their absolute ground state (|s = 3,ms = −3 >
and |F = 9/2,mF = −9/2 >, respectively), the crossed dipole trap is implemented by
transferring 80% of the IR power to the vertical beam in 9 s. The total IR power is
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Figure 4.4: Evolution of the fermionic atom number as a function of the bosonic loading
time (same evolution as the red triangles in Fig.4.3). The fit corresponds to the solution
of eq.(4.13) with β̃B−F = (0.29± 0.04)× β̃F−F

Figure 4.5: Time evolution of 52Cr temperature (TB) and atom number of both isotopes
during evaporation. The crossed dipole trap is fully loaded at t=7 s. The evaporation
ends at t=12 s. Inset: in-situ absorption image of a degenerate fermionic 53Cr cloud
of 103 atoms, with corresponding integrated optical depth.

then reduced to 1 W (starting from P= 40 W at t=4 s in Fig.4.5) in 8 s. We actually
use the same form for the evaporation ramp as shown in Fig.1.8.

Throughout the evaporation ramp, we monitor for each isotope the atom number
and cloud size through an absorption imaging process after a time of flight expansion
tTOF . The experimental determined temperatures are obtained by fitting the momen-
tum distributions imaged after a ballisitc expansion by a bimodal distribution for 52Cr
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(see section 1.4), and by a Boltzmann distribution2 for 53Cr.

Fig.4.5 shows the evolution of the boson temperature TB and atom numbers for
both isotopes. Thermalization between the two isotopes is relatively good during the
whole evaporation process as shown by Fig.4.6. Consequently, the boson-fermion cross
section σBF has to be relatively large. On the other hand, thermalization is not perfect:
the fermion temperature TF is measured to be about 20% higher than TB during the
whole evaporation ramp (Fig.4.6). We thus infer that σBF is smaller than the bosonic
cross section σBB. At the end of the ramp, a 52Cr BEC is obtained with typically
(1.0±0.1) × 104 atoms at TB = (180± 20)nK, while NF ranges between 500 and 1000
with TF = (220± 20)nK.

b) Evidence for the achievement of a Fermi sea

In order to characterize the fermionic gas at the end of evaporation, we need to compare
the fermion temperature TF to the Fermi temperature Tf .

At the end of evaporation, the power of the IR laser is rapidly ramped up (to 5
W) to obtain a tighter trap and freeze evaporation. We measured through parametric
excitations the following trapping frequencies: ωx,y,z = 2π×(430,510,350)Hz (with 5%
uncertainty for each axis).

With these values, we calculate the associated Fermi temperatures (using eq.(4.2)):

Tmax
f = 370± 20 nK for 1000 atoms

Tmin
f = 294± 16 nK for 500 atoms

with the uncertainties resulting from the trapping frequency measurement.

We therefore obtain TF/Tf = 0.66 ± 0.08 and a Chromium Fermi sea of NF =
500− 1000 atoms (see inset of Fig 4.5).

c) Fermi sea characteristics

We measure the in situ size of the fermion ensemble: Ry = (6.3 ± 0.6)µm and Rz =
(6.7± 0.7)µm using a gaussian fit. This is not perfectly compatible with the expected

size of our gas, where we expect a theoretical size R
(th)
y = (4.5 ± 0.2)µm and R

(th)
z =

(6.6 ± 0.3)µm. We attribute this to the difficulty of in situ measurements: the probe
affects the distribution (e.g by heating the sample) and the resolution of the imaging
system broadens the measurement. Moreover, interactions with the Bose gas deform
the Fermi gas.

The theoretical peak density n0 of a gas of 1000 atoms at T/Tf = 0.6 is on the
order of n0 ∼ 5× 1018 at·m−3.

2as discussed in subsection 4.2.1, for T/Tf > 0.6 it is expected that fitting the Fermi-Dirac distri-
bution by the Boltzmann statistics leads to the same value of temperature within 5% at maximum.
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Figure 4.6: Comparison between the behaviour of the two isotopes during evaporation.
Left: Atom numbers showing the smaller losses for fermions. The (red) curve is the
prediction from eq.(4.30), the straight (blue) line assumes constant ratio between atom
numbers. Right: Temperature of the fermionic isotope as a function of the bosonic iso-
tope. High temperature represent the start of the evaporation ramp, low temperatures
the end of the ramp. The temperature of the fermion remains about 20% higher than
that of the boson during the whole sequence. The straight (blue) line corresponds to
identical temperatures.

d) Getting rid of bosons

To have a pure Fermi gas, we need to get rid of the bosons without affecting the
fermions. One must be careful when the two species are isotopes as they experience
approximatively the same trapping potential and their optical transitions are very
close. To get rid of the bosons, we adopted the strategy of performing a light pulse
resonant with the bosonic isotope. During a resonant absorption pulse of tpulse = 70
µs at I/Isat = 0.08, the number of photons absorbed by bosonic atoms N b

ph is:

N b
ph = RScat × tpulse ≈ 50 (4.14)

with RScat given in eq.(2.1). This pulse is non retro-reflected, therefore the expected
heating ∆T is of the order of

∆T ∼ (N b
ph)

2ERec/kB ∼ 5 mK

where ERec is the recoil energy. This energy scale is much greater than the trap depth
which is estimated to be in the µK regime at the end of evaporation. We do not expect
any bosonic atoms to remain in the trap after such a pulse.

We produced a Fermi sea, and applied or not the bosonic resonant pulse. We
observed that without the pulse we had temperatures of 210 ± 20 nK. When the pulse
was applied we measured temperatures of 260 ± 20 nK. The temperature of the Fermi
gas is increased by about 10 % of the Fermi temperature when we apply a resonant
bosonic pulse.
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We do not attribute this heating to the fact that fermions absorbed photons during
the bosonic resonant pulse. Indeed, the bosonic resonant light is detuned 305 MHz
away from the fermionic resonance (see Table 2.2). We estimate that the number of
photons absorbed by fermionic atoms during a resonant light pulse on the bosonic
transition is N f

ph ∝ 10−3. The heating induced is smaller than 1 nK. This is negligible
when compared to the temperature of the gas and cannot explain the increase in
temperature.

We attribute the heating of the fermion due to fermion-boson collisions as the
bosons escape the trap. In principle the energy of a bosonic atom is so large (∆T ∼
5 mK) that most of the collision should lead to fermionic losses. Most likely, a small
number of collisions produce hot fermionic atoms which remain trapped and heat the
sample.

In conclusion, we have developed a method to get rid of bosons. However, this
protocol induces a heating of the order of 10% of T/Tf . We attribute this heating to
boson-fermion collisions as the bosons are expelled from the trap.

4.3.2 Evaporation analysis

a) Efficiency

For approximatively the same gain in temperature, there are less evaporative losses
for 53Cr atoms than for 52Cr atoms (Fig.4.6). This results in very efficient evaporative
cooling of the fermion.

The initial peak fermionic phase space density PSDini is n0λ
3
T with n0 the peak

atomic density and λT the deBroglie wavelength. At the start of evaporation, we can
safely assume a gaussian atomic distribution and PSDini reads:

PSDini = N

(
~ω̄

kBT

)3

. (4.15)

with ω̄ the geometrical averaged trapping frequency. Again, having not estimated the
initial trapping frequencies it is difficult to be quantitative. However, the initial phase
space density for a bosonic gas of about 1×106 atoms was evaluated to be 5×10−7 when
BEC was first obtained in the group [43]. We believe that the initial phase space density
of the boson is not drastically different now, therefore we estimate that the initial phase
space density of a fermionic gas with 3× 104 atoms is PSDini ∼ 1.5× 10−8.

At the end of evaporation a degenerate gas is produced so PSDfin ≈ 1. This gain
in phase space is of the same order of magnitude than that of the boson. However, this
gain is achieved by losing a factor of 30 in fermionic atom number, compared to a factor
100 for the bosonic atom number. Therefore, although only 3 × 104 53Cr atoms are
loaded in the optical dipole trap at 120 µK before evaporation, degenerate Fermi gases
of up to 103 atoms can be produced. The evaporation efficiency γ, which is defined as:

γ = −d logPSD
d logN

(4.16)
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is therefore 3 times larger for the fermion than for the boson and is equal to ≈ 4.5 even
though each isotope sees the same optical potential. Typical reported evaporation
efficiencies lie between 2.5 and 3.5 [58]. Our co-evaporation scheme is therefore very
efficient in cooling the fermionic isotope if we only consider fermionic losses. However,
if we consider the total atomic losses (i.e. fermionic and bosonic losses) in the definition
of the evaporation efficiency, then the evaporation of the fermion is as efficient of the
boson evaporation.

b) Determination of aBF

In the following section, we analyze our evaporation scheme and outline the decisive
role played by the numerical value of the inter-isotope scattering length aBF in order to
ensure thermalization of the fermionic gas. For that we develop the following theoretical
model based on the scaling laws for evaporation first introduced in [139]. These scaling
laws reproduce the evolution obtained with a rather more complex analysis based on
the Boltzmann equation [59]. Moreover, the scaling laws were shown to be accurate
even for small atom number [140].

For quantitative predictions, these scalings suffer from an exponential dependence
on η = U/kBT , where U is the trap depth which is experimentally difficult to calibrate.
The main idea of our theoretical analysis is to greatly reduce this sensitivity on η by
performing differential measurements.

α) Assumptions

In our model, the main assumption is that polarized 53Cr atoms only collide with 52Cr
atoms.

This assumption is first motivated by the fact that the centrifugal barrier for the
p−wave collisional channel is of the order of 800 µK (see eq.(3.3)), much larger than
the initial temperature of the cloud. As a consequence, collisions between polarized
fermions can be safely neglected.

As shown in Fig.4.5, thermalization between both isotopes is good, meaning that the
inter-isotope scattering length aBF should be comparable to the boson-boson scattering
length aBB = 103±4aB with aB the Bohr radius. Hence the contact inter-isotope cross
section σBF is expected to be of the order of

σBF ∼ 4πa2BB

∼ 10−16m2. (4.17)

The expected scattering cross-section between identical fermions due to DDIs is esti-
mated to be (see eq.(3.15)):

σ
(0)
dip ≈ 1.0× 10−17 m2. (4.18)
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This is much smaller than the estimated cross-section for boson-fermion collision σBF

and we shall consider that fermions only collide with the more abundant 52Cr atoms,
through contact interactions. Due to large differences in atom numbers, we can also
assume that evaporative losses of bosons comes solely from collisions between bosons.

Furthermore, in order to appreciate the importance of bosons during evaporation
we can compare the rate of dipolar fermion-fermion collisions τDDI to contact boson-
fermion collisions τContact . The collision rate τ scales as

τ =
1

niσv
(4.19)

with v the relative velocity of the colliding atoms, ni the atomic density of the isotope
i, and σ is the contact or dipole-dipole cross section. For fermion-fermion collisions,
n is simply nF . For boson-fermion collisions, n is the bosonic density nB. Due to
the large difference in atom number, the fermionic density is roughly 30 times lower
than the bosonic density. This leads to a large difference in timescales associated with
a collision due to dipole-dipole interaction between fermions or contact interaction
between bosons and fermions:

τDDI ≈ 300× τContact. (4.20)

The rate associated with dipolar fermion-fermion collisions is negligible compared to
Bose-Fermi contact collisions. The presence of bosons during the evaporation is crucial
in order to assure efficient cooling and thermalization.

β) A differential measurement

One major difficulty in applying this model to quantitatively describe evaporation is
that the rate of evaporation depends exponentially on η and is given for η > 4 by [141]:

f(η) ≈ 2
√
2[e−η(2η − 6) + e−2η(η2 + 4η + 6)])]

1− e−2η(2η2 + 2η + 1)
. (4.21)

Fig.4.7 shows a plot of eq.(4.21). It is usually difficult to precisely measure the trap
depth in an experiment (e.g. due to uncertainties in estimating waists of laser beams
in situ). However, the trap depth is almost identical for the two isotopes (the isotopic
shifts are much smaller than the detunings of the IR laser for all optical transitions). In
our analysis, we therefore strongly reduce the sensitivity to the trap depth by comparing
the rate of evaporation of fermions to that of bosons.

γ) Evaporation rate equations

During evaporation, both the number of bosons and fermions diminish. This is due to
(i) one-body losses with the background gas and (ii) evaporation losses due to collisions
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Figure 4.7: Plot of loge f(η) for η ∈ [4,15] (eq.(4.21)). As explained in the text cali-
brating f(η) correctly is crucial due to its exponential dependence on η.

with bosons. Given these assumptions, the evolution of the number of bosons and
fermions read:

dNB

dt
= −σBBnBV̄BBf(ηB)NB − γNB (4.22)

dNF

dt
= −σBFnBV̄BFf(ηF )NF − γNF (4.23)

where Ni is the atom number, ni the average density, and i = B,F stands for boson
or fermion; V̄ij = (8kB(miTj +mjTi)/πmimj)

1/2 is the mean of the relative velocity
for particle i and j, γ is the one-body loss coefficient, independently measured to be
γ = 0.1 s−1. η is the ratio between the trap depth U and the thermal energy kBT
(η = U

kBT
), and f(η) is the average evaporation fraction for the trapped ensemble

(discussed in more detail below). For a large η very few atoms are evaporated and f(η)
is close to 0 whereas it is the contrary for small η. The first term of eq.(4.22) accounts
for evaporation losses due to collisions with bosons, and the second term represents
background losses.

In thermal equilibrium, the kinetic energy and the potential energy in a 3D har-
monic trap with N atoms are Ekin = Epot =

3
2
NkBT . The total energy E is thus given

by:

E = Ekin + Epot

= 3NkBT

Since the total atom number changes during evaporation, the total energy of the system
varies accordingly. Its evolution reads:

d(3NBTB)

dt
= −σBBnBV̄BBf(ηB)(ηB + 1)NBTB − 3γNBTB (4.24)

d(3NFTF )

dt
= −σBFnBV̄BFf(ηF )(ηF + 1)NFTF − 3γNFTF (4.25)



90 4 A 53Cr Fermi sea

The second term in eq.(4.24) and eq.(4.25) accounts for the energy removed from the
sample once an atom has collided with the background gas. This atom has a typical
energy equal to the mean atom energy 3kBT . The first term accounts for the energy
carried away by an evaporated atom, where (ηi + 1)kBNiTi corresponds to the energy
per evaporated particle of isotope i [142].

Dividing eq.(4.22) (eq.(4.23)) by the boson (fermion) atom number one obtains:

d logeNB

dt
+ γ = −σBBnBV̄BBf(ηB) (4.26)

d logeNF

dt
+ γ = −σBFnBV̄BFf(ηF ) (4.27)

and dividing eq.(4.26) and eq.(4.27) together gives the following differential equation:

d loge NB

dt
+ γ

d loge NF

dt
+ γ

=
σBBnBV̄BBf(ηB)

σBFnBV̄BFf(ηF )
. (4.28)

To solve eq.(4.28), we first of all consider that V̄BB/V̄BF is time independent. This
is a good approximation, since the ratio depends on time only if the temperatures of
each isotope evolve independently. As shown in Fig.4.6, the fermionic temperature is
always 20 % higher than the bosonic temperature but the temperature evolution seems
similar. If we assume TF = 1.2 TB, we obtain:

V̄BB

V̄BF

=

√
2mF

mB + 1.2mF

(4.29)

≈ 0.96

where mF (mB) is the mass of fermionic (bosonic) isotope. If we also assume that ηi
is constant in time (this assumption is justified a posteriori by the measurement of ηB
see Fig.4.8 ), we can now integrate eq.(4.28) which gives for any values of t1 and t2:

loge

(
NB(t2)
NB(t1)

)

+ γ(t2 − t1)

loge

(
NF (t2)
NF (t1)

)

+ γ(t2 − t1)
=
σBB

σBF

× V̄BB

V̄BF

× f(ηB)

f(ηF )
. (4.30)

As seen from eq.(4.30), the sensitivity to trap depth is not completely suppressed
by the relative measurement, because the temperatures of both clouds are slightly
different, leading to values of ηB and ηF differing by up to 20 %. We therefore first
estimate the value of ηB by comparing the measured loss rate of bosons and the cooling
rate. From eq.(4.22) we obtain the following equation for nB:

nB = −
d loge NB

dt
+ γ

σBBVBBf(ηB)
. (4.31)
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Figure 4.8: Experimental value of ηB as a function of t2. The value of ηB is computed
using eq.(4.33) and the experimental points are the same ones as for Fig.4.5. We find
that ηB is approximatively constant during evaporation and obtain a mean value of
ηB = 6.1± 0.5.

Developing the left hand side of eq.(4.24) and eq.(4.25), dividing each side by NBTB
and substituting nB using eq.(4.31) gives the following equation with ηB the only
unknown parameter:

loge

(
TB(t2)

TB(t1)

)

=
2− ηB
3

[

loge

(
NB(t1)

NB(t2)

)

− γ(t2 − t1)

]

. (4.32)

We therefore obtain:

ηB = −3 loge(
TB(t2)

TB(t1)
)× [loge

(
NB(t1)

NB(t2)

)

− γ(t2 − t1)]
−1 + 2. (4.33)

The analysis of our data using eq.(4.33) leads to Fig.4.8 for t1 = 0 and t2 spanning
over all evaporation times.

We find that ηB is approximatively constant throughout evaporation. This justi-
fies a posteriori the assumption we made on ηi in order to establish eq.(4.30). Our
experimental estimate is ηB = 6.1± 0.5. Using TF =(1.2±0.1) TB, we find:

f(ηB)

f(ηF )
= 2.4± 0.3. (4.34)

δ) Determination of |aBF |
We can now use our experimental data of Fig.4.5, and estimate from eq.(4.30) the value
for the cross-section σBF . We can use different sections of the whole evaporation ramp
to measure the ratio σBF/σBB as shown in Fig.4.9. In practice, we span the times t1 and
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Figure 4.9: Experimental measurements of the ratio of the boson-boson and inter-
isotope cross sections obtained using eq.(4.30), with t1 = 10 s (see text). The error bars
show the systematic uncertainty associated with ηB,F , which dominates over statistical
uncertainties (for clarity, only one error bar is shown).

t2 over the range of experimental times. Experimental values of σBF/σBB all lie in the
interval 0.31±0.05 regardless of the choice of t1 and t2. This indicates that σBF/σBB is
insensitive to temperature within signal-to-noise. This is in good agreement with the
assumption that atoms collide mostly through s−wave and short-range interactions,
and with theoretical predictions [143].

An outcome of this analysis is the first measurement of the boson-fermion scattering
length |aBF | when both atoms are in the stretched state of lowest energy. Indeed,
σBF = 4πa2BF describes collisions between (distinguishable) bosons and fermions, while
the value of the boson-boson scattering length which sets the cross section between
undistinguishable bosons σBB = 8πa2BB has been measured to be aBB = 102.5± 0.4 aB
[87]. We are therefore able to provide an experimental value of |aBF |:

σBF

σBB

=
4πa2BF

8πa2BB

= 0.31± 0.05

→ |aBF | = (80± 10)aB (4.35)

ǫ) Mass scaling analysis

In principle, our analysis does not give insight on the sign of aBF . Nevertheless, in the
following we present a mass scaling analysis [144] applied to the case of Chromium.
The good agreement of the theory with our measured value and to the scattering length
value associated to collisions between 50Cr atoms allows us to conclude on quite solid
grounds that aBF > 0.

Gribakin and Flambaun established a simple analytic formula for the scattering
length a in an atomic collision [84]:

a(Φ) = ā[1− tan(
π

n− 2
) tan(Φ− π

2(n− 2)
)]. (4.36)
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Here, ā is the mean scattering length determined by the asymptotic behavior of the
potential U(r) ∼ −Cn/r

n with n= 6 for atom-atom scattering, and Φ is the semi-
classical phase acquired during a collision. The expression of the mean scattering
length is [84]:

ā = cos(
π

n− 2
)

(
√

2m
(i,j)
r Cn

~(n− 2)

)2/(n−2)Γ(n−3
n−2

)

Γ(n−1
n−2

)
(4.37)

where Γ are the Euler functions and m
(i,j)
r is the reduced mass associated with an

isotope i and an isotope j (mi,j
r =

m(i)×m(j)

m(i)+m(j) ).
Φ can be determined through the knowledge of the form of the real potential U(r):

Φ =

∫ ∞

0

√

−2m(i,j)
r U(r)dr. (4.38)

However, eq.(4.38) is not easy to compute because U(r) are often complicated and
unknown functions. We determine Φ using another method. The semi-classical phase
shift is related to the number of vibrational levels with zero orbital angular momentum
Ns through [84]:

Ns =

[
Φ

π
− n− 1

2(n− 2)

]

+ 1 (4.39)

where
[
·
]
is the integer part. For Cr2, Ns is measured to be 29 [145]. We then

determined an interval for the semi-classical phase: Φ ∈[89.9;93.1] rad.
Using eq.(4.36) and eq.(4.38), we may set Φ52−52 (the semi-classical phase acquired

during a 52Cr-52Cr collision) to give the experimentally measured aBB = 102.5 aB [87]
and verifies Φ ∈[89.9;93.1] rad. We find Φ52−52=90.76 rad. Finally, we performed
a mass scaling operation and obtained the semi-classical phase shift for a 53Cr-52Cr
collision Φ53−52:

Φ53−52 =

√

m53,52
r

m52,52
r

Φ52−52 ≈ 90.995 rad. (4.40)

We can calculate a(Φ53−52) through eq.(4.36). We find a mass scaled inter-isotope
scattering length aBF (Φ53−52) ≈ 68 aB. This value is at the limit of our error bars. A
similar protocol was applied for a 50Cr-50Cr collision. In Fig.4.9 we report the measured
value of aBB = 102.5 aB for 52Cr [87], the less well known value for 50Cr [83], as well
as our newly measured value for aBF = 80(±10) aB. In both cases, the measured
scattering length is larger than the theoretical predictions based on mass scaling. The
good agreement with predictions based on mass-scaling [84, 144] indicates that aBF > 0.

In our model, we did not consider Bose-Fermi dipolar collisions. Therefore in our
experimental value of a aBF there is a slight contribution of dipolar collisions. A full
investigation is however necessary in order to account properly for dipolar collisions.
Here we just suggest that there is a slight bias of the measured scattering lengths
towards larger values, due to dipolar collisions.
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Figure 4.10: Scattering lengths of Cr as a function of the semi-classical phase. The
solid line is the predicted scattering length using mass scaling of semi-classical phase
(see text). The points represent experimental values of aBB for 52Cr [87], for 50Cr, as
well as our newly measured value for aBF = 80(±10) aB. The good agreement with
predictions based on mass-scaling [84, 144] indicates that aBF > 0.

ζ) Analysis conclusion

Our calculations therefore confirm that σBF < σBB. As evaporation is optimized to be
achieved as fast as possible for the boson, it is not surprising that the Fermi cloud lags
slightly behind in terms of temperature. This analysis shows that our strategy to cool
fermions is efficient because (i) σBF is sufficiently large to (almost) ensure inter-isotope
thermal equilibrium; (ii) σBF is small enough to reduce evaporative losses of fermions,
which leads to a gradual increase in the ratio of the number of fermions to the number
of bosons as evaporation proceeds (see Fig.4.6). This ratio increase is essential for the
positive outcome of our experiment. If we had aBF = aBB, the ratio between isotope
atom number would remain constant and we would have about 300 fermionic atoms
at the end of evaporation at TF = (220 ± 20) nK. In these conditions, the Fermi
temperature is 250 nK and we would have T/Tf ≈ 1. If aBF > aBB, there would be
no fermions left at the end of the evaporation sequence.

In other experiments where the fermionic isotope is cooled sympathetically with the
boson, the inter-isotope cross-section is tuned using a Feshbach resonance to a value
slightly smaller than the boson-boson cross section in order to optimize evaporation
(as for example in [146]).

4.4 Conclusion and perspectives

In conclusion, we have produced a 53Cr degenerate Fermi gas at TF/Tf = 0.66± 0.08,
with up to 103 atoms, together with a BEC of 104 52Cr atoms by co-evaporating a
Bose-Fermi mixture. The Fermi sea is produced in an efficient way due to a favourable
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value of the inter-isotope cross-section σBF . It is worth pointing out that for most
sympathetic cooling experiments, where evaporated atoms are mostly bosons, the size
of the bosonic gas is reduced faster than the size of the fermionic gas. Cooling can then
cease to be efficient because thermalization relies on a good spatial overlap between
the two gases. We should not suffer from this loss in efficiency since we evaporate
bosons and fermions in almost the same manner and we should always have a good
overlap. Moreover, since aBF < aBB and our number of fermions is small enough, the
entire fermion distribution resides like a fermionic ”core” within the Bose cloud (i.e.
no phase separation) [147]; smaller temperatures could then be obtained if evaporation
could proceed. Our procedure to produce 53Cr Fermi seas seems optimized and it will
be difficult to load more fermionic atoms in the 1D FORT in order to have larger and
colder Fermi gases. Since the production of the degenerate Fermi gas is closely linked
to the production of BEC, one route would be to produce BEC in a more efficient
way. For example, we could implement a sub-doppler cooling scheme in gray optical
molasses in order to start evaporation at lower temperatures [148].

This boson-fermion degenerate mixture might have peculiar properties, due to the
strong imbalance in atom numbers. Fermions will experience a mean field potential
Eint = gBFnB(~r) from the interaction with bosonic atoms of density distribution nB(~r).
gBF is the boson-fermion coupling constant:

gBF =
2π~2

mr

aBF (4.41)

with mBF
r the interisotope reduced mass. In our experiment, we estimate Eint ≈0.15

Ef for nB in the order of 1020 at.m−3; the spatial mode of the Fermi sea should be
deformed by repulsive interaction with the BEC. This effect should be amplified close
to an inter-isotope Feshbach resonance, which are predicted to be large (> 40 Gauss)
and at fields of a few 100 Gauss (experimentally achievable) [143].

We tried to reveal the dipolar nature of the Cr Fermi sea by studying Pauli param-
agnetism at low magnetic field [137]. Quantum statistics is expected to lead to a very
different picture than that obtained for 52Cr. For the boson, as long as the magnetic
field is different from zero, a 52Cr BEC is polarized at equilibrium: only the ms = −3
spin component is occupied. Here DDI prevents the other spin states from condens-
ing [97]. For the fermion, at zero magnetic field all spin states are equally populated.
When the magnetic energy difference between two Zeeman states is lower than the
Fermi energy, atoms with an energy larger than this magnetic energy difference will
populate spin excited states through dipolar collisions(in order to minimize total en-
ergy). This would be very exciting because it would be a way of measuring the Fermi
energy directly and to observe an effect due to Fermi-Dirac statistics. Moreover the
physics involved in this experiment is non trivial since it is dictated by the compe-
tition between magnetic energy and the Fermi energy. Contact interactions between
fermions of different spin states may even play a role. This experiment would be an
exploration of the phase diagram of a degenerate dipolar Fermi gas. However, we did
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Figure 4.11: Fermi-Dirac (blue) and Boltzmann (orange) distribution for a gas at
a temperature T = 0.55 Tf (slightly lower than our experimental temprature) as a
function of E/h. When the magnetic field is reduced, it is energetically favourable for
fermions with energy larger than the Zeeman energy to change spin state. In order
to observe this effect due to the quantum nature of the gas, one must apply external
magnetic fields as low as 2 kHz.

not proceed with this experiment because at TF/Tf = 0.6, the Fermi-Dirac distribution
and the Boltzmann distribution differ very little (see Fig.4.11). The distributions differ
substantially for E/h ≤ 2 kHz. This requires that in order to observe a substantial
difference between the depolarization expected from a thermal gas or a degenerate
gas, we need to control the magnetic energy to the kHz regime which is experimentally
challenging. Depolarization due to Boltzmann statistics takes place when the magnetic
energy is of the same order as the thermal energy (which depends on the temperature).
Depolarization due to Fermi-Dirac statistics takes place when the magnetic energy is
of the same order as the Fermi Energy. In our experiment, the Fermi energy and the
thermal energy are of the same order. To perform this experiment and observe a clear
signature of quantum statistics, lower temperatures (in the T/Tf ∼ 0.2 regime) are
necessary.

In a 3D optical lattice, 53Cr should provide a good platform to study non-equilibrium
dynamics, even at relatively high T/Tf . Indeed at low B-field, the XYZ Hamiltonian
could be realized [149]. Moreover, due to the quadratic Zeeman shift, the spacing in
energy between different spin states is non-degenerate and it would be possible to pre-
pare many different initial, well defined, spin states. This is not the case for the boson
where the spacing in energy between different spin states is the same and limits the
initial preparation. In an experiment with the boson presented in chapter 8, by intro-
ducing an optical quadratic shift, approximately 80% of the atoms in ms = −3 were
successfully transferred in ms = −2. For the fermion, with a simple Radio-Frequency
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Figure 4.12: Scheme of the experimental procedure to selectively measure a given spin
state. In this example, there are two spin states in the electronic ground state. In
order to image the ”green” spin state, we must first transfer the atoms in the ”red”
spin state to an other hyperfine state and then apply the imaging pulse.

(RF) pulse, it would be possible to promote approximately 100 % of the atoms in
|F = 9/2,mF = −9/2 > towards |F = 9/2,mF = −7/2 >. From there on, the dynam-
ics from this out-of-spin equilibrium situation should be very intriguing and different
from the bosonic case. Here magnetism and transport are coupled due to the Pauli
principle (which implies that atoms cannot be in the same site with the same spin
state): the tunneling of an atom to a neighbouring occupied site depends on the spin
state of the atom pair. If the atoms are in the same spin state, the Pauli principle
inhibits this tunneling process.

To perform such an experiment, due to our low atom number we need to be able
to measure atoms of a given spin state in situ. We are not actually capable of such a
procedure. However this could be performed with an RF field. With a well calibrated
RF pulse, the desired spin state can be transferred into another hyperfine state which is
not resonant with the imaging beam. For imaging a given spin state we could use the
following scheme summarized in Fig.4.12: after performing an experiment involving
several spin states, one could transfer all atoms of the ”unwanted” spin state through a
RF pulse to the |7S3, F = 7/2 > hyperfine state. Then one can shine the imaging beam
on the |7S3, F = 9/2,mF = −9/2 > → |7P4, F = 11/2,mF = −11/2 > transition and
image only atoms in the spin state not perturbed by the RF pulse. A RF antenna has
been installed and characterized recently as part as Lucas Gabardos’ master’s project
[150], and loading fermions in a lattice promises to be an exciting avenue for the group.
However, for the remainder of my thesis, we did not perform any more experiments
with the fermionic isotope. We focused our attention solely on the bosonic isotope. In
the following I will present experiments where we were interested in the thermodynamic
properties of a Bose gas with a spin degree of freedom.
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Cooling a spinor Bose gas

In this chapter I first recall general results for the thermodynamic properties of a Bose
gas with a spin degree of freedom. I then present two experiments. In the first experi-
ment, we rapidly cool a thermal multi-spin component gas across the phase transition
for Bose Einstein Condensation. We then study the interplay between internal and
external degrees of freedom in order to define which spin state may condense. In the
second experiment, we cool a polarized BEC using the spin degree of freedom to store
and remove entropy from the BEC.

5.1 Introduction

There is a wide selection of atoms and molecules which have been produced in the
ultracold regime. These particles are characterized by both their internal and exter-
nal degrees of freedom. The first BEC experiments were performed with gases in one
internal state and are referred to as scalar BECs. Very soon after, BECs in different
internal states were produced and are referred to as spinor BECs. The interplay be-
tween the external and internal degrees of freedom in the multi-component systems
leads to physics out of reach for scalar BECs. Not all cold gases can be easily adapted
to study spinor physics. In order to study the physics of different internal states, the
lifetime of each internal state has to be long compared to thermalization processes and
the experiment time. Furthermore, the confinement potential must be the same for all
the internal states.

Our Chromium gas is particularly well suited for the study of spinor physics. Its
relatively large electronic spin s=3 yields the possibility of having a gas in the electronic
ground state in 2s+1 different internal spin states. The lifetime of atoms in spin
excited states are limited by dipole-dipole relaxation processes which were intensively
studied and they can be negligible for sufficiently fast experiments [87]. As for Van
der Waals interactions, there are 4 different collision scattering lengths which have the
peculiarity of being very different, which lead to intriguing collision dynamics as shown
in chapter 3. Here the internal degree of freedom is the projection of the electronic
spin (i.e. associated to a Zeeman state). In addition, the confinement potential cannot
be a magnetic trap because they are spin dependent. We therefore will use an optical
dipole trap.

In this chapter we will first discuss general thermodynamic properties of a Bose
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gas with an internal spin degree of freedom. We will then present two experimental
results. We first study the interplay between internal and external degrees of freedom
of a Bose gas across the BEC transition. We then discuss how we can cool a polarized
BEC by storing entropy in spin excited states which are then removed from the trap,
thus cooling the sample.

5.2 Thermodynamic properties of a spinor Bose gas

5.2.1 An ideal polarized Bose gas

a) Bose distribution

The quantum statistical description of a non interacting Bose gas is a common subject
well described in many books (see for example [137]). The thermodynamic properties
of bosons may be derived from the Bose Einstein distribution. Consider a system of
N bosons at thermal equilibrium at a temperature T , the Bose Einstein distribution
quantifies the average number of atoms n̄i in state i of energy Ei:

n̄i(µ, T ) =
1

e(Ei−µ)/kBT − 1
(5.1)

with µ the chemical potential of the gas. The total atom number satisfies
∑

i ni = N .
For a given temperature and atom number, µ is fixed with eq.((5.1)).

In state i, the average occupation necessarily verifies n̄i > 0. This imposes µ ≤ E0

≤ Ei where E0 is the lowest energy level. For the case of an ideal gas we set the energy
scale so that E0=0.

b) Saturation of the thermal gas and critical temperature for BEC

For a fixed value of temperature T , the function describing the number of atoms in
excited states (

∑

i 6=0 n̄i = NT ) increases with µ and reaches a maximum NT,Max for
µ = E0 = 0. There is an upper limit, for a given temperature, to the number of atoms
in excited states. A thermal gas cannot have more than NT,Max atoms. In contrast,
there is no upper limit to the number of atoms in the lowest energy level. If a particle
is added to a gas with N = NT,Max atoms in excited states, it will necessarily occupy
the lowest energy level i = 0 (since the number of excited atoms is already maximum).
A macroscopic occupation of this state takes place if more particles are added. The
macroscopic occupation of the lowest energy state of the system is called Bose Einstein
Condensation. When a BEC is present, the chemical potential is µ=0, meaning that
it does not cost any energy to add a particle to the BEC.

In literature, the situation when NT = NT,Max is referred to as saturation of the
thermal distribution. For a given T , the thermal gas is not saturated if NT,Max >
N ≈ NT and a macroscopic occupation of state i =0 cannot take place. On the
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other hand, for a given T where NT,Max < N , the thermal gas is saturated and µ =
E0=0. There will be NT = NT,Max particles occupying excited states and N −NT,Max

particles occupying the ground state. The critical situation NT,Max = N corresponds
to NT,Max = NT (T = TC , µ = E0) where TC is the critical temperature. In the case
of N non interacting bosons in a 3D harmonic trap (which in practice will apply to
most of the experiments presented in this manuscript), the critical temperature has
the following form:

kBTC = ~ω̄
( N

ζ(3)

)1/3
(5.2)

where ζ(s) =
∑∞

i=1
1
is
is the Riemann Zeta function, and ω̄ = (ωxωyωz)

1/3 is the
geometrical average trapping frequency. In the experiments presented in this thesis,
we cross the phase transition for TC ∼ 400 nK with typically N = 104 atoms and
ω̄ = 2× π 330 Hz. For temperatures below TC in a 3D harmonic trap, the condensate
fraction f of N non interacting bosons evolves in the following way with temperature
[23]:

f =
n̄0

N
= 1−

(
T

TC

)3

. (5.3)

c) BEC and phase space density

Another description of BEC is through the concept of phase space density. In a de
Broglie picture, an atom can be seen as a wave of wavelength the thermal de Broglie

wavelength λdB =
√

2π~2

mkBT
where m is the mass of the atom and kB is the Boltzman

constant. The lower the temperature the longer λdB. When atoms are cooled to
a temperature for which λdB is comparable to the inter-atomic distance, the atomic
waves overlap. At this temperature, the atoms undergo the BEC phase transition. The
temperature Tc of this phase transition in a 3D harmonic trap is obtained from solving:

nλ3dB = ζ(3) ≈ 1.202. (5.4)

where n is the atomic density. By developing this expression, one retrieves eq.(5.2).
This ratio can be seen as the ratio between the particle density and the number of
significantly occupied states per unit volume. If this ratio is large, this means that there
are lot of particles for a small number of available states. The number of accessible
states is proportional to 1/nλ3dB. Assuming equiprobability of each accessible state,
nλ3dB represents the probability of occupying one of these states (the ground state for
example). When a BEC forms, nλ3dB ∼ 1 and only one state becomes accessible, the
ground state of the trap.
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d) Critical entropy for BEC

It is interesting to recast the phenomenon of BEC in terms of the existence of a critical
entropy Σc. The entropy per particle Σ/N of a mono-atomic classical gas of N particles
at T > TC is:

Σ

NkB
=

3

2
− log(nλ3dB). (5.5)

This classical expression for entropy is called the Sackur-Tetrode equation [137]. Even
though this is a classical expression, we can already notice that a different behaviour
of entropy takes place depending on the relative sign of log(nλ3dB). Entropy has two
regimes: it can be larger or smaller than 3/2.

For an ideal gas of N particles in a box, the entropy Σ of a gas at T < TC is
inversely proportional to the phase space density [137]:

Σ

N
=
5

2
kB

1

nλ3dB
g5/2(1) (5.6)

where gn(1) is the polylogarithmic functions defined as gn(z) =
∑

k>0 z
k/kn. From

eq.(5.6), we see that Σ =0 at T=0, in agreement with the third law of thermodynamics.
This means that the condensed phase has no entropy. At any finite temperature, the
total entropy is entirely due to particles in excited states. The fraction of particles in
excited states (or thermal fraction) is fth =

NT

N
= ( T

TC
)3. For T < TC , we can write the

entropy for a 3D harmonic trap in the following way [23]:

Σ

N
= 4× g4(1)

g3(1)
kB

(
T

TC

)3

(5.7)

= 4× g4(1)

g3(1)
kB

︸ ︷︷ ︸

Σc

fth

= Σcfth

≃ 3.6kBfth

with Σc homogeneous to an entropy and that we shall now identify as the critical
entropy. At T < TC , each thermal atom carries an entropy equal to ΣC . A gas with
entropy Σ < NΣc has necessarily a condensed phase. On the other hand, a gas with
Σ > NΣc has no condensed phase. It is interesting to realize that Σc has a universal
character since it depends only on the dimensionality of the gas, and is independent of
temperature or trapping parameters such as the trapping frequency ω. In that sense,
entropy is the correct figure of merit in order to characterize a gas.

5.2.2 An ideal multicomponent Bose gas

The existence of an internal spin degree of freedom modifies the thermodynamic prop-
erties of a Bose gas. We shall call Ni the population in spin state ms = i and NTot the
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total atom number. For a gas of spin s we have:

NTot =
s∑

i=−s

Ni. (5.8)

We denote as ni
0 and N

i
th the number of condensed and thermal atoms in spin state i:

Ni = ni
0 +N i

th. (5.9)

The magnetisationM of the gas is related to how the different spin states are occu-
pied. The relative magnetization of the BEC and of the thermal gas read respectively:

MBEC =
s∑

i=−s

ini
0

nTot
0

Mth =
s∑

i=−s

iN i
th

NTot
th

(5.10)

with nTot
0 the total number of condensed atoms and NTot

th the total number of thermal
atoms (nTot

0 =
∑s

i=−s n
i
0 and N

Tot
th =

∑s
i=−sN

i
th). We can then define the total relative

gas magnetization as:

M =
s∑

i=−s

iNi

NTot

. (5.11)

The interaction between the spin and the magnetic field gives rise generally to a
Zeeman energy term which comprises a linear term and a quadratic term. For an atom
of spin s and quadratic shift qB in a magnetic field B, the Zeeman energy term writes:

EZ(ms) = msgLandéµBB + qBm
2
sB

2 (5.12)

with gLandé the Landé factor and µB the Bohr magneton. The quadratic Zeeman shift
arises from the interaction between the nuclear spin and the electronic spin. Thus
atoms with no nuclear spin, such as 52Cr, do not have a magnetic quadratic Zeeman
effect. However, an optical quadratic effect can be induced by the optical trapping
potential. This optical quadratic term can be particularly large for Chromium1 due
to its specific fine structure [151]. The strongest contribution term of the AC Stark
shift is scalar and for large detunings is the well known light shift term responsible
for optical dipole traps [152]. The following contributions to the optical potential are
tensorial. For large magnetic fields, we may consider only the diagonal contributions
which are of the form qLSm

2
s. In the following we will write the quadratic contribution

to the energy as qm2
s which can be either of magnetic or optical origin.

1For the experiments presented in this chapter with Chromium, we estimate that qLS ∼ 10 Hz and
will not play a significant role.
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The scalar Bose distribution (i.e. bosons with just one spin state eq.(5.1)) for non-
condensed atoms can be generalized to include different Zeeman states in the following
way:

Nms
th =

∑

i 6=0

1

eβ(Ei+Ez(ms)−µ) − 1
(5.13)

with Ei+Ez(ms) the energy of a particle in excited state i, which depends on the spin
state ms with E(ms) = msgLandéµBB + qm2

s.
In the following, we shall discuss the general thermodynamic properties of an ideal

spinor gas depending on the existence of the quadratic term2 q and the fact that total
magnetization M is constant or not. In the next section we will discuss how the
presence of interactions modify the ideal picture presented below. For each situation,
it is important to pinpoint the constraints on the system. Each constraint will be fixed
via a Lagrange multiplier (as was the case for µ which is related to the constraint on
the total atom number). When magnetization is fixed the Lagrange multiplier will be
identified as a magnetic chemical potential. We then may derive properties for each
spin component at thermodynamic equilibrium.

The reader must not be confused about neglecting interactions but still discussing
thermodynamic equilibrium properties. Based on the discussion in chapter 3, we are
considering the case Γinc > Γcoh, for which collisions occur on a timescale much faster
than that required for interaction energy terms to play a significant role.

a) Fixed magnetization

The constraint of fixed magnetization can be taken into account by setting a Lagrange
multiplier. This Lagrange multiplier sets the magnetization and fixes an effective mag-
netic field Beff which gives to the atoms an effective Zeeman energy [153]:

EMag
i = igLandéµBBeff (5.14)

so that µi = µ− EMag
i . (5.15)

In the following, we will discuss the behaviour of an ideal multi-spin component
gas of spin s = 1, with fixed magnetization at spin equilibrium3. Here the only spin
changing process are associated to (ms=0,ms=0) ←→ (ms=+1,ms=-1). The Zeeman
energy does not intervene when dealing with magnetization collisions and we may omit
the Zeeman energy when at fixed magnetization.

We will now discuss which are the different processes which will define which spin
state may condense, when no quadratic shift is present and then with a quadratic shift.

2Even if q can be negative, we will only discuss q ≥ 0 which leads to a larger qualitative difference
than q < 0

3In order to simplify the discussion we do not explicitly discuss the example of a s = 3 gas, which
has the same general behaviour in the ideal case than the s = 1 gas.
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α) No quadratic shift (q=0)

Let us consider the case with no quadratic shift and a negative magnetization. The
energy necessary to add a particle in state ms = 0 is µ0 the chemical potential of spin
state ms = 0. The energy necessary to add a particle in state ms = −1 is the chemical
potential µ−1, and differs from µ0 by the effective Zeeman energy:

µ−1 = µ0 + gLandéµBBeff . (5.16)

In the same manner to add a particle in state ms = +1, one needs the energy:

µ+1 = µ0 − gLandéµBBeff . (5.17)

In general for a spin s we have:

µi = µ−s − (i+ s)gLandéµBBeff (5.18)

for i ∈ [−s, s]. As the gas is cooled the internal chemical potential of each spin state
will grow and µ−s will reach 0 first for a critical temperature (referred to as TC1). Thus
a BEC in ms = −s forms. As the gas is cooled further, the chemical potential of the
second-to-lowest spin state will reach zero (Beff is free to evolve in order to fix the total
magnetization) for a second critical temperature (referred to as TC2). Eq.(5.18) then
imposes that all chemical potential must be zero (Beff is equal to zero): all other spin
states condense simultaneously [153]. There are two phase transitions, even if 2s + 1
spin states are present.

In the case M = 0 at thermal equilibrium, all spin states are equally occupied. It
costs the same energy for a particle to be in any spin state, Beff = 0 and each spin
state has the same chemical potential. In that case, as the gas is cooled the chemical
potential of each spin state will reach zero simultaneously and there will be a BEC in
each spin state (the two phase transitions coincide).

β) Quadratic shift q>0

Most atoms, and in particular alkali atoms, have a nuclear spin, and therefore a non
zero magnetic quadratic shift (q 6=0). It is interesting to study how the introduction of
the quadratic shift changes the result above. When the nuclear spin Î is different from
0, it is convenient to work in the total angular momentum basis F̂ defined as:

F̂ = Î + Ĵ (5.19)

where Ĵ is total electron angular momentum.
Let’s discuss the example of a spin F=1 gas, with fixed magnetization. The presence

of the quadratic energy changes the equality eq.(5.18). The energy to add a particle
in spin state mF = 0 is µ0. The energy necessary to add a particle in state mF = −1
is equal to the energy to add a particle in mF = 0 minus the effective Zeeman and
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Figure 5.1: Sketch illustrating the energy scale for a spin s = 1 atoms, at fixed magne-
tization which introduces an effective magnetic field Beff (see text), for a) no quadratic
shift, b) a non zero quadratic shift.

quadratic energy difference between the two. We may then write the chemical potential
of each spin state:

µ0 = µ0

µ−1 = µ0 + gLandéµBBeff − q

µ+1 = µ0 − gLandéµBBeff − q. (5.20)

To make predictions on which states may condense, we will distinguish two scenarios
depending on the relative values of gLandéµBBeff and q.

In a first scenario, let us consider the case where the most populated thermal state
is mF = −1: set by q ≤ gLandéµBBeff . Here, it is mF = −1 which has the largest
chemical potential, then mF = 0 (see eq.(5.20)). As the gas is cooled the internal
chemical potential of each spin state will grow and µ−1 will reach 0 first for a critical
temperature TC1. Thus a BEC in mF = −1 forms. Reducing the temperature further,
there will be a second critical temperature TC2 where µ0 = 0 and themF = 0 component
will condense. As soon as µ0 = 0, eq.(5.20) imposes:

µ+1 = −2q < 0. (5.21)

The chemical potential of spin state mF = +1 will never reach zero (we considered
q > 0), therefore a BEC will not form in mF=+1 even if cooling proceeds.
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In a second scenario, let us consider the most populated thermal state to bemF = 0:
set by q ≥ gLandéµBBeff . Here, it is mF = 0 which has the largest chemical potential,
then mF = −1 (see eq.(5.20)). As the gas is cooled the internal chemical potential of
each spin state will grow and µ0 will reach 0 first for a critical temperature TC1. Thus
a BEC in mF = 0 forms. Reducing the temperature further, there will be a second
critical temperature TC2 where µ−1 = 0 and the mF = -1 component will condense. As
soon as µ−1 = 0, eq.(5.20) imposes:

µ+1 = −2q < 0. (5.22)

A BEC will not form in mF=+1: µ+1 will never reach zero even if cooling proceeds.
If we had considered the case M > 0, we find the same results under the exchange

of mF = −1 with mF = +1.
This result differs substantially from the case q=0, there underneath the second

critical temperature all spin components condensed simultaneously. For q 6= 0 not all
spin components will condense and depending on the relative values of gLandéµBBeff

and q it is not the same spin state which will condense first.

b) Free magnetization

We now consider the case where magnetization is not conserved. As illustrated in
subsection 3.1.2, Dipole Dipole collisions have collisional channels which allow the
magnetization of the gas to vary. There is no effective magnetic field which fixes
magnetization, which is instead fixed by the real external magnetic field B and the
temperature T of the gas.

α) No quadratic shift (q=0)

Let us first consider the case q = 0 for an s = 1 atom. Here magnetic energy consists
only of the linear Zeeman term. The energy to add a particle in state ms = 0 is simply
µ0. The energy necessary to add a particle in state ms = −1 is the chemical potential
µ−1, and differs from µ0 by the Zeeman energy. We have for each spin state:

µ0 = µ0

µ−1 = µ0 − gLandéµBB

µ+1 = µ0 + gLandéµBB (5.23)

where B is the external magnetic field. For a spin s, we therefore have:

µi = µ−s − (i+ s)gLandéµBB (5.24)

for i ∈ [−s, s].
If the external magnetic field is exactly zero, the chemical potentials of each spin

states are equal. As the gas is cooled, all chemical potentials will increase in the same
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Figure 5.2: Sketch illustrating the energy scale for a spin s=1 atoms, at free magne-
tization, for a) no quadratic shift, b) a non zero quadratic shift. It is the same as for
Fig.5.2 except that here B is the external magnetic field and not an effective magnetic
field (see text).

manner and reach zero simultaneously: a BEC will form simultaneously in all spin
states.

In experiments, B is always finite and imposes that µ−s is the highest chemical
potential. As the gas is cooled, µ−s will reach zero at a certain temperature and
ms = −s will condense. However eq.(5.24) reveals that for a finite B, the other
chemical potentials will never reach zero: there is no second phase transition. The
BEC remains polarized.

β) Quadratic shift q>0

Let us now consider the case q 6= 0. We must now take into account the quadratic
energy term. Even though Chromium has no magnetic quadratic Zeeman energy, it is
sensitive to the optical quadratic effect induced by the optical dipole trap. Again, µ0

is the energy to put a particle in spin state ms = 0. We may then write the chemical
potentials associated to all spin states:

µ0 = µ0

µ−1 = µ0 + gLandéµBB − q

µ+1 = µ0 − gLandéµBB − q. (5.25)
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To make predictions on which states may condense, we will distinguish two scenarios
depending on the relative values of gLandéµBB and q.

In a first scenario, let us consider the case where the most populated thermal state
is ms = −1. We then have q < gLandéµBB. Here, it is ms = −1 which has the largest
chemical potential, then ms = 0 (see eq.(5.25)). As the gas is cooled the internal
chemical potential of each spin state will grow and µ−1 will reach 0 first for a critical
temperature. Thus a BEC in ms = −1 forms. However eq.(5.25) reveals that for a
finite B, the other chemical potentials will never reach zero: there is no second phase
transition. For a spin s gas, we have the same behaviour except that it is in spin state
ms = −s that the BEC forms.

In a second scenario, let us consider the case where the most populated thermal
state is ms = 0. We then have q > gµBB. Here, it is ms = 0 which has the largest
chemical potential, then ms = −1 (see eq.(5.25)). As the gas is cooled the internal
chemical potential of each spin state will grow and µ0 will reach 0 first for a critical
temperature. Thus a BEC in ms = 0 forms. For a finite B, the other chemical
potentials will never reach zero: there is no second phase transition. For a spin s gas,
we have the same behaviour.

In the case of free magnetization, only one spin state may condense. The presence
of q may however alter which spin state condenses.

5.2.3 Ground state in presence of interactions

The ideal picture presented above is modified by the inclusion of interactions between
atoms. When dealing with interactions, one can distinguish two parts: one spin de-
pendent and one spin independent. In the following we shall focus only on the spin
dependent interactions and on how the ideal picture is modified.

a) Fixed magnetization

The mean field ground state spinor wave function of an F=1 with fixed magnetization
gas is found by minimizing the free energy [154]:

K =

∫

d3rn[V +
c0n

2
+
c2n

2
< ~F >2 + < Hq > −p̃ < Fz >] (5.26)

where the kinetic energy was neglected here, V is the trapping potential, n is the
density, < ~F >=< ξ|~F |ξ > where ~F is the angular momentum per atom and ξ is the
spinor part of the wavefunction, and < ξ|Hq|ξ > is the quadratic Zeeman energy in
an external magnetic field. p̃ is a Lagrange multiplier which accounts for conservation
of magnetization (p̃ = gLandéµBBeff ). The mean field energy in eq.(5.26) consists of
a spin independent part proportional to c0 and a spin dependent part proportional to
c2 < ~F >2 with c2 =

4π~2

m
a2−a0

3
. The ground state of a spinor gas will minimize K for a

given p̃, < Hq > and c2. The minimization of eq.(5.26) will drastically depend on the
sign of c2.
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α) Anti-ferromagnetic interactions a2 > a0

Let us discuss the results for a mean field ground state at T = 0 in the case q = 0
and a2 > a0 > 0. If a2 > a0, collisions through the S = 0 molecular potential will
be energetically favourable (because they lead to less repulsion) which corresponds
to anti-ferromagnetic interactions. In zero magnetic field, the condensate lowers its
energy by minimizing its average spin, i.e. by making | < ~F > | = 0. This can be
achieved for a spinor ξ = (0, 1, 0). All spinors obtained by a rotation of ξ minimize also
eq.(5.26). ξ corresponds to a degenerate set of spinors, the polar states, corresponding

to all possible rotations of the hyperfine state |mF >= 0: ξ = U(α, β, τ)





0
1
0



 with

U(α, β, τ) = e−iFxαe−iFyβe−iFzτ where (α, β, τ) are the Euler angles [154].
Let us now discuss the cooling of a thermal gas at non zero magnetic field. For

M < 0, below the first critical temperature a condensate will appear in the most
populated state, namely mF = −1 as in the ideal case. Below the second critical
temperature, a condensate will also appear in mF = +1. The mF = 0 condensate
component never shows up in the limit a0 + 2a2 >> a2 − a0. This is a different result
from the ideal Bose system where all three components appear at lower T [153].

The presence of a quadratic shift q changes this picture since it tends to advantage
the condensation of mF = 0 spin component. The phase diagram here is dependent on
q and the magnetization of the gas [155, 156, 157].

β) Ferromagnetic interactions a0 > a2

If a2 < a0, collisions through the S = 2 molecular potential will be energetically
favoured which corresponds to ferromagnetic interactions. Even in the case of zero
field, the condensate lowers its energy by maximizing its average spin, by making
| < ~F > |=1 [154].

Within the assumption that all spin states share the same spatial wave function
(this approximation is called the Single Mode Approximation), below the first critical
temperature a condensate will appear in the most populated state namely mF = −1.
Below the second critical temperature, the condensate will form in state |mF = −1 >θ,
which is mF = −1 in the basis associated to any angle θ fixed in order to have the
right magnetization. It is also proposed that below the second critical temperature a
phase separation could take place between the existing mF = −1 condensate and the
”new” mF = +1 condensate [153] and maybe then lead to triple condensation [158].

b) Free magnetization: the case of Cr

Due to its large spin, Chromium features non negligible dipole-dipole interactions which
free the magnetization, no magnetic quadratic Zeeman effect, and 4 different scattering
lengths. This leads to a very rich phase diagram. Santos and Pfau [100] (as well as
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Ho and Diener [159]) studied the phase diagram for Cr shown Fig.5.3. The different
regions show the possible phases, depending on the B-field (represented by p̃ in their
study) and on the g0/g6 ratio (unknown at the time). In addition to the ferromagnetic
and polar phases also predicted for spin 1 atoms, new phases such as the cyclic phase
are predicted. A large variety of cyclic phases are predicted, each with different spin
components which may condensed (indices represented in Fig.5.3) and with a specific
phase relations between the condensed spin components (see also [155]). We will discuss

B
C

Figure 5.3: Chromium phase diagram adapted from [100]. It gives the ground state for
a spinorial Cr BEC, depending on the value of a0 (unknown at the time the diagram
was performed) and the magnetic field relative to contact interaction through the S=6
molecular potential p̃/g6. The white solid line corresponds to the value deduced from
our experimental measurement of a0 in chapter 3. Here p̃ = gLandéµBB.

in the following that depending on the relative value of the Zeeman energy compared
to spin dependent energy terms, two different behaviours are obtained.

We define a critical magnetic field BC for which the Zeeman energy is equal to
the spin dependent contact energy. For Chromium, the critical magnetic field has a
complicated expression and involves a linear combination of several scattering lengths
(namely a6, a4,and a2) [160]. Typical experimental values lead to Bc ≈ 200 µG and it
is challenging to achieve lower experimental magnetic fields.

α) High magnetic field (B >> BC)

At high magnetic field (i.e B >> BC), the ground state is a ferromagnetic state
(Fig.5.3). Therefore below a critical temperature the lowest Zeeman energy state con-
denses, and no other spin state will condense. The BEC is polarized. Atoms in excited
spin states are necessarily thermal atoms and a second phase transition is avoided.
This result is similar to what would be expected from Bose thermodynamics at free
magnetization section 5.2.2b)α).
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β) Low magnetic field (B << BC)

Now let us consider the case of an experiment performed at low magnetic fields (i.e B
< Bc).

After the first phase transition, we have a BEC in ms = -3. However, the ground
state is no longer a ferromagnetic state (Fig.5.3) and the gas has no reason to remain
polarized. If cooling is continued, below a second critical temperature the gas enters a
spinorial phase where different spin states condense. With our newly measured value
of a0 = 13.5 ± 11aB, we have g0/g6 ≈ 0.13 ± 0.1: the ground state is expected to be
Cyclic.

c) Previous experimental study of the chromium phase diagram

The phase diagram with free magnetization has been studied with Chromium by our
group before my thesis work and the explored phase diagram will help us illustrate
the different phenomena [97]. The phase diagram of a spin s=3 gas is shown Fig.(5.4).
There are 3 distinct phases. Phase A corresponds to a thermal gas in each Zeeman
component; Phase B to a BEC only in ms = −3; Phase C to a BEC in all spin states4.

The vertical line corresponds to an exploration of the phase diagram at very low
magnetic field. In that case for high enough temperature the magnetizationM remains
close to zero. At high temperature, we have a thermal gas in each Zeeman component.
As the temperature is reduced, the chemical potential of the lowest Zeeman state
reaches 0 at a first critical temperature: a BEC is formed in ms = −3. As the
temperature is further lowered, below a second critical temperature we enter phase
C where all other spin components condense simultaneously [99]. This double phase
transition was not clearly observed in the experiment (and could be investigated in
future studies) however a multi-spin component BEC was produced.

The second line corresponds to the case of B > BC . At high temperature, phase
A is obtained with a thermal gas in each Zeeman component. As the temperature is
reduced, a BEC is formed in ms = −3 as the first critical temperature is crossed. The
gas then spontaneously polarizes itself. And even if cooling proceeds, the second phase
transition is avoided and phase C is avoided [97].

d) Experimental study performed in this thesis

In the following we will present two experiments motivated by our understanding of
the thermodynamic properties of a Chromium gas.

As mentioned above, it is experimentally difficult to enter phase C of the phase
diagram since it requires working with B < Bc. One route we will explore in the
next chapter is to prepare a multi-spin component gas with magnetization M > -3 in

4In this chaper, we will abusively call this transitory state with a BEC in all spin states as a phase
even though it is not a stable phase. For Chromium, we expect the ground state stable phase at T = 0
to be cyclic.
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Figure 5.4: Phase Diagram of a Spin 3 gas. The solid lines delimitate the 3 phases
predicted for a non interacting gas of bosons. Phase A: thermal gas in each Zeeman
component. Phase B: BEC only inms = −3. Phase C: BEC in all Zeeman components.
The histograms represent typical experimental population distributions. The vertical
gray line corresponds to an experiment performed with B < BC . In that case, in
practice, the magnetization M is always close to zero. The other gray line corresponds
to the case with B > BC , then magnetization is free. Image adapted from [97]

phase A with B > Bc, and reduce the temperature quickly compared to magnetization
dynamics. The goal is to determine whether it is possible to enter phase C, and
therefore to obtain a metastable spinorial BEC.

In section 5.4, we will take advantage of the fact that at B > BC , BEC occurs only
in ms = −3: any atom in a spin state ms 6=-3 is necessarily a thermal atom (whereas
atoms in ms =-3 can be thermal or condensed atoms). Thermal atoms carry all the
entropy of the gas. We therefore implemented a trap loss mechanism specific to ms 6=-3
atoms in order to remove efficiently entropy from the gas and thus purify the ms = −3
BEC.



114 5 Cooling a spinor Bose gas

5.3 Shock cooling a multi-component gas

In the following section, we present a joint experimental and theoretical effort to un-
derstand the spin dynamics resulting from a rapid quench across the Bose Einstein
transition of a multi spin component gas.

5.3.1 Motivation

This work studies the dynamics of BEC in presence of a spin degree of freedom, and
it is closely related to early research on the dynamics of BEC for a polarized gas.
After the first Bose-Einstein condensates were obtained, Miesner et al. investigated
how the BEC nucleates [161]. They measured in real time the formation of the BEC
as the temperature was reduced across the phase transition. They found that the
formation of the condensate is a Bose stimulated process. More recently, in a quasi-
two-dimensional box trap experiments performing a temperature quench below the
superfluid transition investigated the dynamics of spontaneous symmetry breaking and
revealed the production of long-lived topological defects [162, 163]. The number of
topological defects created as a function of the quench parameters is predicted to
follow universal laws.

This work extends the dynamical studies of Bose-Einstein condensation to the case
of a multi-component Bose gas, in order to establish the mechanisms to reach both
superfluid and magnetic orders. We present an experiment aiming to study the out-
of-equilibrium properties of a spin 3 gas and determine if a multicomponent BEC can
be produced. To do so, we prepare a thermal multi-spin component gas at a given
magnetization and rapidly cool the gas across TC at a magnetic field B > BC . At fixed
magnetization, a spinor BEC should be produced. At free magnetization, the BEC
is polarized (phase B). If the cooling is performed fast compared to magnetization
dynamics, the experiment could show how the gas may relax from phase C to phase B
due to dipole-dipole interactions (see Fig.5.4).

We find that the dynamics of Bose-Einstein condensation is affected by spin-changing
collisions arising from relatively strong spin-dependent interactions. Thermalization of
the spin degrees of freedom is influenced by the occurrence of BEC, and in turns influ-
ences which multi-component BECs can be produced. In practice, phase C is barely
reached. This is not due to dipole-dipole interactions (as was the case in [97]) but to
spin exchange mechanisms and a lack of spin thermalization.

5.3.2 Experimental protocol for a multi-component gas with
M=-2.50±0.25

a) Preparation of a thermal multi-spin component gas

Our experiment starts with a thermal gas of 1.5 × 104 52Cr atoms in an ODT, at
T = 1.1 × Tc = (440 ± 20)nK. The trapping frequencies are νix,y,z=(288,335,410) Hz.
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The thermal gas is initially polarized in the Zeeman lowest energy state ms = −3.
The initial magnetisation is M=-3. To prepare a mixture of thermal gases in different
spin states, we adiabatically reduce the magnetic field B to a small value such that
the Zeeman energy is of the same order as the thermal kinetic energy of the gas. The
magnetic field is calibrated by Radio-Frequency spectroscopy. Experimentally the field
is reduced to Bexp= 1.5 ± 0.3 mG. Depolarization of the cloud is spontaneously driven
by magnetization-changing collisions associated to dipole-dipole interactions as shown
in Fig.5.5 [97, 113]. The initial peak density is n0 ∼ 1019 at.m−3 and we estimate the

Figure 5.5: Sketch illustrating spin preparation. Image adapted from [113]. We prepare
a thermal gas in ms = −3 at high magnetic field (gLandéµBB >> kBT ). The magnetic
field is then reduced so that gLandéµBB ∼ kBT . ms > −3 atoms are spontaneously
produced by magnetization-changing collisions associated to dipole-dipole interactions.
In the figure, the final step where atoms of each spin state rethermalize.

timescale τdip associated to dipole-dipole collisions to be:

τdip ∼ 1

n0σdipv

∼ 1 s (5.27)

Once B = Bexp, we wait for 1.5 s for dipole-dipole collisions to take place in order
to obtain a gas at spin equilibrium. Magnetization is a function of the applied ex-
ternal magnetic field and temperature. Using eq.(5.10) and eq.(5.13), we can express
M(B, T ):

M(B, T ) =
1

Ntot

s∑

i=−s

i×N i
th(B, T ) (5.28)

with N i
th the number of thermal atoms in spin state i and Ntot =

∑s
i=−sN

i
th the total

atom number. At a magnetic field of B = 1.5 mG, we expect a magnetization of M =
-1.6. This is far from our experimentally measured magnetization ofM = −2.50±0.25.
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We ascribe such a difference to an underestimation of the atom number in spin states
ms > -3 and that spin was not completely thermalized. We know that our imaging
process is only perfectly resonant for ms =-3. When we performed this experiment,
we did not calibrate the efficiency of our measurement of higher excited spin states.
Therefore we do not know how to count efficiently the number of atoms in spin excited
states. We focused our analysis on the populations in ms = -3, ms = -2 and ms =
-1. In a later experiment (discussed in chapter 8), the absorption coefficient for each
spin state was measured. This coefficient was very close to 1 for ms = -2 and typically
1.4 for ms = -1. Therefore our measurement of the absolute population in ms= -1 is
probably underestimate by 40 %, however the population in ms=-2 is well accounted
for. In the following, our analysis will focus on spin states ms = −3 and ms = −2,
for which no corrective absorption coefficients are needed. The initial (uncorrected)
measured populations are:

N−3 = 7000± 700

N−2 = 5000± 500

N−1 = 2000± 200.

The initial population in states ms > −1 are negligible.

b) Shock cooling and measurement

We then quickly and adiabatically reduce the trap depth to the final trap frequencies
νfx,y,z=(166,195,235) Hz. In a normal evaporation sequence, this would correspond to
the ”end of evaporation” see Fig.1.8. The trap depth is reduced by applying a linear
ramp to the voltage control of the trapping laser AOM. Due to the AOM transfer
function, the trapping frequency ramp is not perfectly linear. However, for our exper-
imental parameters, there are barely any differences between a linear ramp and the
actual ramp. In the following we shall therefore consider the ramp as linear.

The laser intensity is reduced so that the trapping frequencies go from νi to νf

in a time tS, resulting in fast forced evaporative cooling of all Zeeman states. In
the following, we will refer to this evaporation ramp as ”shock cooling” (see Fig.5.6)
because (i) in a normal evaporation sequence there is 2 s between the two values of
trapping frequencies νi and νf , whereas here we will be dealing with shorter times, and
(ii) because the cooling process is non adiabatic with respect to magnetization physics
as long as the experiment time t ≤ τdip.

After a time t (which can be smaller than tS), we turn off the dipole trap and
study spin dynamics and condensation by measuring both the spin and momentum
distributions after a 6 ms Time Of Flight (TOF). The different spin components are
separated via a magnetic field gradient pulse present during the TOF (as explained
in subsection 1.5.2). As an example, we show in Fig.5.7 the total atom number as a
function of time for a shock cooling time tS = 500 ms. The final total atom number
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Figure 5.6: Experimental sequence showing the reduction of the ODT intensity in a
duration tS. An absorption image is taken after a time t (which can be smaller than
tS) and Stern-Gerlach separation.

(∼ 5000) is about twice lower than one would expect with a ”classic” evaporation
sequence.

ts

Figure 5.7: Total atom number as a function of time for a shock cooling time tS =
500 ms. Dashed (red) vertical line highlights the end of the shock cooling evaporation
ramp. The final total atom number (∼ 5000) is about twice lower than one would
expect with an optimal evaporation sequence of 2 s.

5.3.3 Results

a) A BEC in ms = -3

We performed three shock-cooling experiments with different tS in order to evaluate the
impact of the speed of the shock cooling procedure on the external degrees of freedom
of the gas (see Fig.5.8). After a time t (which can be smaller than tS), the ms = −3 gas
reaches the same condensed fraction for tS equal to 250 ms, 500 ms, and 1 s. We infer
that the external mechanical degrees of freedom (characterized by the temperature)
reach the same equilibrium for the three shock cooling experiments.

Fig.5.9 shows a typical absorption picture taken at t = tS for tS = 500 ms. It
reveals a BEC in ms = −3, and a thermal gas in spin excited states. We extract the
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Figure 5.8: Evolution of the BEC fraction in ms = −3 for three shock-cooling times
tS as a function of time t. At the end of the shock cooling procedure, the external
degrees of freedom of the gas reach about the same thermal equilibrium for the three
shock-cooling times, as the final BEC fraction is about the same. Lines are guide to
the eyes.

number of thermal and condensed atoms of a given spin state through bi-modal fits
accounting for Bose statistics: a Thomas-Fermi fit accounts for condensed atoms and
a gaussian fit for thermal atoms. We plot in Fig.5.10 the thermal atom numbers as
well as the condensate fractions in ms = (−3,−2) as a function of time t for a shock
cooling time tS = 500 ms. We found similar results for tS = 250 ms and tS = 1 s. For
tS > 1 s (= τdip), the gas should spontaneously polarizes itself in ms= -3 as in [97] due
to dipolar non conserving magnetization collisions.

m =-3s

O
p
ti

ca
l 

D
ep

th

Figure 5.9: Typical absorption picture taken at t = tS = 500 ms with the corresponding
optical density along the axis of the Stern-Gerlach. We can see a BEC in ms = -3 and
thermal gases in spin excited states.
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Figure 5.10: Experiment for a shock cooling time tS = 500 ms. a) Number of thermal
atoms in ms = −3 (black diamonds) and ms = −2 (red circles) as a function of time
t. As soon as cooling starts, ms = −3 and ms = −2 share the same thermal atom
number. b) Condensate fraction in ms = −3 (black) and ms = −2 (red) as a function
of time. A large BEC in mS = −3 is obtained but condensation in ms = −2 remains
small. The shaded region highlights the moment when cooling takes place.

b) A saturated ms= -2 thermal gas

The gray area in Fig.5.10 highlights a relatively long cooling time during which the
ms = −3 and ms = −2 gases hold the same number of thermal atoms, and during
which there is a BEC in the lowest state ms = −3 but only a small one in ms = −2.
The presence of a BEC in spin state ms =-3 signals that the thermal ms= -3 gas
is saturated. The ms = −2 and ms = −3 thermal atoms have the same measured
mechanical temperature (within our 5% experimental uncertainty) and experience the
same optical trapping potential. If dealing with ideal gases, this is enough evidence
to claim that the ms = -2 gas is also saturated. The inclusion of interactions slightly
modifies this discussion since repulsive interactions between the BEC and the thermal
gas reduces the density of the thermal gas and affects saturation condition (see [164]
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for an experimental study of the effect of interactions on saturation). However, both
the ms = −2 and ms = −3 thermal atoms interact exclusively through the S=6
molecular potential with the existing ms = −3 BEC. Therefore we can assess that the
ms = −2 cloud is saturated even taking into account interactions, and should condense
for further cooling.

However, BEC does not occur in this state until t ≤ 700 ms. Only for t ≈ 700 ms
do we distinguish a small BEC also in ms = −2. The error bars are then large because
it is difficult to differentiate between a BEC and a thermal cloud due to small number
of remaining atoms. This experimentally demonstrates that a BEC in ms = −2 hardly
forms, although the ms = −2 thermal gas is saturated and cooling proceeds.

5.3.4 Interpretation

a) Initial incoherent dynamics

The first point to clarify is whether the spin dynamics is set by coherent or incoherent
collisions. The initial preparation of the thermal gas reaches spin equilibrium through
incoherent collisions. The thermal gas is then in an incoherent mixture of spin states
and, initially, the dynamics will be set by incoherent processes. For an incoherent
mixture the spin dynamics rate Γinc is set by the density of the cloud through Γinc =
nσv with n the atomic density, v the average relative atomic velocity and σk,l

i,j the cross
section of the spin changing collision (i, j) → (k, l) (see eq.(3.28)) associated a priori
to contact or dipole dipole collisions.

b) Fixed magnetization

Magnetization is constant, within our signal to noise ratio, over the experimental times
(see Fig.5.11). We therefore may consider only magnetization conserving dynamics
which in principle can result either from dipole-dipole interaction or contact interaction.

However, the timescale associated to dipolar collisions (eq.(5.27)) is larger than
that of shock cooling dynamics and can be neglected5. Spin dynamics is therefore
entirely controlled by spin exchange interactions at constant magnetization, driven by
spin dependent contact interactions. The spin dynamic rate Γinc = nσv is extremely
sensitive to the presence of a BEC (which enhances n). Therefore, the emergence of a
BEC in a spin-excited state should trigger faster spin dynamics.

c) Emergence of coherent dynamics

Once a small BEC in ms = -2 is formed, coherent processes are possible. Therefore,
in addition to energy redistribution through spin-exchange processes, the formation of
BEC also triggers coherent spin oscillations due to forward scattering. The typical rate

5it is actually the whole point of the experiment to cool the gas on a faster timescale than the
timescale associated with dipole-dipole interactions
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Figure 5.11: Magnetization as a function of time t for a shock cooling time tS =
500 ms. The measured initial magnetization, set by the temperature of the gas and
the external magnetic field, is 2.5 ± 0.25. Magnetization is roughly conserved during
the experiment. We therefore may consider only magnetization conserving dynamics
resulting mostly from contact interaction.

of a (ms = i,ms = j) → (ms = k,ms = l) coherent spin collision channel of an atom of
spin s is:

Γk,l
i,j =

1

h

4π~2

m
n

×
2s∑

S=0,even

aS < s, i; s, j|S,mS = i+ j >< S,mS = k + l|s, k; s, l > (5.29)

where the sum holds for even S, and spin projection is conserved (i+ j=k + l).

d) Timescales of the main collisional processes

α) Thermal gas timescales

The full rate equation for each spin state would be similar to eq.(3.49). In the follow-
ing, to grasp the timescales at play we will only consider the main collisional chan-
nels. For an ms = -2 gas, the main collisional channels are (−2,−2) → (−1,−3) and
(−2,−2) → (−2,−2). The first process accounts for spin exchange collisions. Both
ensure thermalization of spin state ms= -2.

Spin exchange rate from ms = −2
The main rate equation for spin exchange in ms= -2 reads:

dn−2

dt
= −σ−3,−1

−2,−2vn
2
−2(t). (5.30)

For a thermal distribution, integrating eq.(5.31) over space yields:

dN−2

dt
= −

nTherm
0,ms=−2(t)

2
√
2

σ−3,−1
−2,−2vN−2(t) (5.31)
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where nTherm
0,ms=−2(t) = N−2(t)(

mω̄2(t)
kBT

)3/2. The initial peak density in ms = −2, assuming
a thermal distribution and N−2= 5000 atoms, is nTherm

0,ms=−2(0) = 7.7 ×1018 at·m−3.

The rate of the dominant spin exchange term is thus:

Γinc,1 =
nTherm
0,ms=−2σ

−3,−1
−2,−2v

2
√
2

(5.32)

∼ 2 s−1.

for a thermal gas at T = TC= 400 nK, with relative velocity v = 4
√

kBT
πm

= 1.8 cm·s−1,

and σ−3,−1
−2,−2= 8π 15

121
(a6 − a4)

2 = 3.4× 10−17 m2. Therefore a typical timescale of a few
seconds is thus necessary in order to reach spin equilibrium.

Mechanical thermalization rate of ms = −2

The rate of the dominant thermalization rate of the mechanical degrees of freedom of
an ms= -2 gas is

Γinc,2 =
nTherm
0,ms=−2σ

−2,−2
−2,−2v

2
√
2

(5.33)

∼ 20 s−1

with σ−2,−2
−2,−2 = 8π 1

121
(6a6 + 5a4)

2 = 4.76× 10−16 m2.

Γinc,2 >> Γinc,1 insures that the mechanical degrees of freedom thermalize faster
than the spin degree of freedom. Therefore without other collisional processes a small
ms=- 2 BEC can in principle be formed faster than it is depleted by spin exchange
mechanisms.

Mechanical thermalization rate of ms = −3

The dominant thermalization rate of the mechanical degrees of freedom of ms= -3 is
associated to σ−3,−3

−3,−3 = 8πa26= 7.39 ×10−16 m2, and has a rate Γinc,3 ∼ 40 s−1. We
find that Γinc,3 ∼ Γinc,2. Since the thermalization rate of ms = −3 is large enough to
produce a BEC in ms = −3, the thermalization rate of ms = -2 should be large enough
to produce a BEC also.

β) BEC timescales

In the Thomas-Fermi approximation [23], a BEC has an inverted parabola distribution.
This is very different from the thermal gaussian distribution and leads to a different
expression for the average atomic density.
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Incoherent spin exchange rate

For a Thomas Fermi distribution, integrating eq.(5.31) over space yields:

dN−2

dt
= − 152/5

14π

( mω̄

~

√
1
11
(6a6 + 5a4)

)6/5
N

2/5
−2

︸ ︷︷ ︸

nBEC
0,ms=−2

σ−3,−1
−2,−2vN−2(t). (5.34)

Once thems=- 2 BEC is formed, it takes only 120 condensed atoms in order to have
the same averaged atomic density than 5000 thermal atoms at T = TC (then nBEC

0,ms=−2

≈ nTherm
0,ms=−2). However, for a BEC of 100 atoms the Thomas-Fermi approximation

is at the limit of being valid (RTF ∼ aHO where aHO is the length of the harmonic

oscillator). For 500 atoms in the condensate, we have Γ
(BEC)
inc,1 ≈ 7 s−1 which is of the

same order as the the thermalization rate Γinc,2. Therefore the mechanical degrees of
freedom and spin exchange process from ms = −2 take place on similar timescales
(mechanical thermalization is still three times faster).

Coherent spin exchange rate

Once a ms=- 2 BEC is formed, two ms = -2 atoms can undergo a forward scattering
event. The rate associated to a coherent (−2,−2)→ (−1,−3) is:

Γcoh = Γ−3,−1
−2,−2 =

1

h

4π~2

m
nBEC
0,ms=−2

√
30

11
(a6 − a4). (5.35)

For 500 atoms in the condensate, we obtain Γ−3,−1
−2,−2 ≈ 60 s−1. The rate of coherent

spin exchange, for this condensed atom number, becomes three times larger than the
mechanical thermalization rate (eq.(5.33)).

e) Our scenario

Our scenario is the following and is summed up in the sketch Fig.5.12. We rapidly
cool thermal gases in different spin states. The rate associated to thermalization of
the external degrees of freedom is here larger than any spin exchange rate. Almost
no spin exchange takes place initially, and a BEC in ms = -2 can form. However, as
soon as the BEC is formed, spin exchange processes (such as (−2,−2) → (−1,−3))
are of the same order as thermalization processes and take place, preventing formation
of a large ms = −2 BEC. Since the ms = −3 gas is saturated, any ”new” atom in
ms=-3 will directly be added to the existing condensate. In ms=-1 the thermal gas is
not saturated, and any added atom in that state, originating from a BEC or not, will
become a thermal atom.

Thus spin exchange collisions deplete the ms= -2 BEC as fast as it is created and a
multi-component BEC cannot be sustained due to fast spin dynamics emptying ms=
-2 and to the lack of saturation of the ms=-1 thermal gas.
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Figure 5.12: Sketch illustrating our interpretation. Before shock cooling, we have
thermal distribution in each spin states. As shock cooling proceeds, a BEC in ms= -3
is formed. Even though the thermal ms = -2 is saturated, a BEC cannot be sustained
in this state because fast spin-exchange processes (−2,−2) → (−1,−3) deplete the
BEC as soon as it is produced.

5.3.5 Numerical simulations

a) Classical Field Approximation

The Gross Pitaevskii equation (GPE) describes well the properties of the condensate
at zero temperature. However, the dynamics of a Bose gas at non-zero temperature
remains a challenge from the theoretical point of view. One successful approach re-
lies on two-gas models [165]. In these models, one assumes that the system at finite
temperatures consists of two distinct components: the condensate and the thermal
cloud.

To simulate data relative to our non zero temperature experiment, we started a col-
laboration with Mariusz Gajda from Warsaw and Miroslaw Brewczyk from Bialystok.
They use the Classical Field Approximation (CFA) in order to numerically simulate
data for T 6= 0. In this approximation, the bosonic field operator is replaced by a
classical field. The classical field describes the condensate in dynamical equilibrium
with the thermal cloud. According to CFA, the GPE determines the evolution of the
classical field which is a complex function carrying the information on both the con-
densed and thermal atoms [166, 167, 168] (this model is thus intrinsically different to
the two-gas models). Once the time evolution is obtained, the condensate is defined as
the dominant term in the spectral decomposition of the time-averaged single particle
density matrix associated to the classical field.

In Fig.5.13, we illustrate this process. Once the evolution of the classical field is
performed, a time averaged single particle density matrix is constructed. If there is a
dominant term in the spectral decomposition of the density matrix it is defined as the
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condensate. Here the population of different spin states is plotted as a function of the
mode number. We read that, for this experimental sequence, there is a BEC in ms=
-3 of ∼ 2500 atoms and a thermal gas with typically 100 atoms per mode. No BEC is
obtained in ms= -2 or ms= -1.
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Figure 5.13: Illustration of the classical field approximation. Here, a classical field is
associated to each spin state. Once the evolution of the classical field is performed,
a time averaged single particle density matrix is constructed. If there is a dominant
term in the spectral decomposition of the density matrix it is defined as the condensate.
Here the population of different spin states is plotted as a function of the mode. We
read that, for this experimental sequence, there is a BEC in ms= -3 of ∼ 2500 atoms
and thermal gas with typically 100 atoms per mode and no BEC in ms= -2 or ms= -1.

b) Simulation of the experiment

The initial classical field corresponds to about 13.103 of 52Cr atoms at equilibrium at the
critical temperature of about 400 nK and with the experimental Zeeman distribution.
To describe such a sample, M. Brewczyk and M. Gajda followed the prescription given
in Ref.[168].

Evaporative cooling is mimicked by adding a purely imaginary potential to the
GPE simulations at the edge of the numerical grid which discretizes space. This purely
imaginary potential accounts for evaporation and acts as a cut off: it defines a boundary
for removing atoms from the system. Simulations use the same trap geometry as the one
in the experiment, and more specifically the same time-dependent trap frequencies. The
temperature of the system is very sensitive to the choice of the cut-off for evaporation.
The value of the cut-off was fixed empirically in order to match best the experimental
sequence (i.e. atom number evolution in time).
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Numerical simulations were performed with and without including dipole-dipole
interactions. The simulations show that dipole-dipole interactions play a negligible
role (as expected), except when the magnetic field is well below 1 mG where they then
play an important role for the spinor phase (and therefore well below the experimental
situation).

The simulations of M.Gajda and M.Brewczyk confirm the absence of a significant
condensate in ms = −2 and the formation of a large BEC in ms =-3 (see Fig.5.14).
Their simulations also show that the ms = −3 and ms = -2 thermal gases hold the
same atom number and temperature. Thus, as in the experiment, ms= -2 is a saturated
thermal gas.
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Figure 5.14: Numerical Simulation. Evolution in time of the condensate fraction of
ms = −3 and ms = −2 for different values of a4 after a cooling duration time tS= 500
ms and a final temperature of T = 120 nK. The data in blue diamonds corresponds
to the BEC fraction in ms = −3 where as the data in red circles is ms = −2. Filled
markers correspond to simulations where a4 was set to its true value i.e. a4 = 64aB
where aB is the Bohr radius. Empty circles correspond to simulations where a4 was
set equal to a6. The impact of the value of a6 − a4 on the dynamics is striking since
by setting this value to 0, a macroscopic BEC in ms = −2 is enabled.

c) Simulation with a4 = a6

To evaluate the impact of spin-exchange processes on the dynamics of condensation,
they reproduced these simulations with a modified value of a4 such that a4 = a6. In this
case, all the rates associated to spin-exchange processes (−2,−2) → (−1,−3) vanish
(Γinc,1 and Γ

−3,−1
−2,−2 scale respectively as (a6−a4)2 and (a6−a4) ). As shown in Fig.5.14,

a large BEC then forms in the spin excited state ms = −2. At T = 0, we expect
the same condensate fraction in each spin state (all atoms are condensed). The lower
condensate fraction of the ms = −2 compared to ms = −3 is interpreted as being due
to the initial spin distribution: the ms = −2 condenses for a lower temperature than
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ms = −3 and the condensate fraction of ms = −2 is ”behind in time” compared to the
condensed fraction of ms = −3.

These simulations confirm the crucial role of spin-dependent interactions in order
to understand the dynamics of BEC.

5.3.6 Thermodynamics interpretation

Let us recall the accepted scenario for the thermodynamics of non-interacting multi-
component Bose gases at low temperature, fixed magnetization, and no quadratic Zee-
man effect (see [153] or subsection 5.2.2). In this picture, a ferromagnetic BEC, polar-
ized in the most populated state (mmin

s = −3 in our case), forms below a first critical
temperature. Due to the absence of a quadratic Zeeman effect, the chemical potentials
of all spin states are linearly spaced

µi − µ−s = −b(i+ s) ∀ i ∈ [−s, s]. (5.36)

As a consequence, once a second component ms saturates (i.e. µms = 0) b = 0 is
required, and all the other thermal spin states saturate simultaneously. In our situation,
both the experiment and the numerical simulation indicate that the external degrees
of freedom have reached equilibrium after shock cooling.

We observe the production of a BEC in the most populated lowest energy state
below a critical temperature. This temperature is obtained shortly after shock cooling
starts (see Fig.5.10 for tS = 500 ms). However, as shock cooling proceeds and lower
temperatures are obtained, although the thermal clouds of the lowest two spin compo-
nents are saturated, the other thermal clouds (ms > −2) are not saturated. This is in
contradiction with the basic prediction of the Bose thermodynamics of large spin atoms
with no interaction, which shows that the spin degrees of freedom in our experiment
remain out of thermal equilibrium.

This lack of thermal equilibrium in the spin degree of freedom results from the fact
that spin exchange processes for the thermal gas are slow in regards of condensation
dynamics. In the experiment, we cannot wait for spin thermal equilibrium due to
incoherent collisions to take place since magnetization changing collisions take place
on a similar timescale. Indeed the timescale associated to spin thermalization is of the
order of several 1/Γinc,1 (eq.(5.33), similar to τdip.

Besides, if exchange rates in the thermal gas were larger or equal than thermaliza-
tion rates, collisions at fixed magnetization would lead complex dynamics where at the
end all spin states could saturate simultaneously.

In our experimental conditions, non-saturated spin-excited states thus act as a
reservoir into which population may be dumped, thus preventing BEC but in the
stretched state, the only one which is collisionally stable. Indeed, let us consider a
(−2,−2)→ (−1,−3) process between two condensed atoms. Since the thermal gas in
ms = -1 is not saturated, the condensed atom produce in ms = −1 will de-condense
and occupy an excited state. However, since a BEC is present in ms = -3, the atoms
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produced in ms = −3 will be added to the existing condensate. It is only when all spin
states are saturated that a multi-component BEC can be sustained.

5.3.7 Experiment for a gas with M = −2.00± 0.25

To deepen our understanding of the combined effects of Bose-Einstein condensation
and spin dynamics, we performed a second series of shock cooling experiments, this
time with a lower gas magnetization M = −2.00± 0.25.

a) State preparation

In this set of experiments the initial spin distribution is prepared by applying a Radio-
Frequency pulse (the effect of a RF pulse on a BEC is explained in detail in section 8.4.1.
Here we performed a 2π/7 RF pulse.) to a ms = −3 thermal gas of 1.8 × 104 atoms at
T= 1.1 TC and letting the different spin components decohere. The initial fractional
population in ms = −3, −2, −1 and 0 states are:

N−3

NTot

= 0.31± 0.03

N−2

NTot

= 0.40± 0.04

N−1

NTot

= 0.21± 0.02

N0

NTot

= 0.06± 0.01.

The initial population in states ms > 0 are negligible. We did not rely on magneti-
zation changing collisions for the spin preparation as in the first experiments for two
reasons. First, lower magnetization requires lower experimental magnetic fields, with
associated technical difficulties. Second, depolarization via a small RF pulse allows for
a more balanced population between spin populations in ms = -3, -2, -1. When depo-
larization is obtained via magnetization changing collisions, equal population in each
state requires gLandéµBB/kBT → 0 which is experimentally difficult and also results
in 7 spin states, each with low population. Here with a RF pulse, we can reach an
interesting situation where saturation may be reached more or less simultaneously for
3 spin states.

b) Experiment

After the RF pulse, we then perform a shock cooling ramp between the initial and
final trap frequencies νi and νf . For shock cooling times similar to the one in the
first experiment (tS = 250 ms, 500 ms, 1 s), we do not observe any condensed fraction
in any spin state. However for shock cooling times tS ≤ 100 ms, we observe the
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production of small condensates in all three lowest energy states (a typical absorption
picture of the multi-component condensates is shown in Fig 5.15). In Fig.5.16 we show
magnetization and total atom number as a function of time for tS = 50 ms. We observe
that magnetization is constant, and that the total atom number is significantly reduced
after approximatively 30 ms of the 50 ms shock cooling ramp.
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Figure 5.15: Typical absorption picture taken at t = tS = 50 ms with the corresponding
optical density along the axis of the Stern-Gerlach for an initial magnetizationM = −2.
We can see very small condensates in ms= -3, -2, and -1.

We define the total condensate fraction of the gas as the total number of condensed
atoms over the total atom number (i.e.

∑s
i=−s ni/NTot with ni the condensate fraction

in spin state i). We plot in Fig.5.17 the total condensate fraction of the gas at t = tS
as a function of tS.

c) Interpretation

Since the effect of the shock cooling ramp on atom number lags (this can be seen by
the delay in decrease of atom number Fig.5.16), it takes several tens of ms before any
dynamics takes place. Assuming a thermal atom distribution, the initial peak density
is n0 ∼ 1019 at.m−3. The timescale τinc associated with an incoherent (−3,−3) →
(−3,−3) collision at a temperature T = 1.1× Tc is:

τinc =
2
√
2

n0σ
(−3,−3)
(−3,−3)v

∼ 25 ms (5.37)

with v the relative velocity. In practice, along with the presence of magnetic gradients
(which dephase the different spin components), τinc is short enough to ensure that all
the different spin components have decohered (see section 3.2).
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Figure 5.16: a) Magnetization as a function of time for a shock cooling time tS = 50
ms. Spin preparation is performed by a RF pulse. The experimental magnetization is
2.0 ± 0.25. b) Total atom number as a function of time for a shock cooling time tS
= 50 ms. The total atom number is significantly reduced after approximatively 30 ms
of the 50 ms shock cooling ramp. Dashed (red) vertical line highlights the end of the
shock cooling evaporation ramp.

We observe that the average magnetization is roughly conserved during the timescale
of the experiment (Fig.5.16).

We interpret the observation of multi-component BECs by the fact that shock
cooling is now performed on a similar timescale as the rate of exchange processes.
Each component is cooled very fast. Spin dynamics is slow enough that a spinor BEC
is first produced in ms = −3,−2,−1. However, spin excited states with ms ≥ 0 are
not saturated so that spin dynamics then tends to populate the non saturated states
and empty the condensates. The condensates are thus only metastable. Spin-dynamics
has again a very profound influence on the dynamics of condensation.

d) Magnetization fluctuations

An important observation regarding the multi-component condensates which are ob-
tained is that their magnetization shows strong fluctuations. From shot to shot, we see
that the condensed fraction in a given spin state fluctuates. We measure fluctuations
of the magnetization of the condensate fraction at the end of a shock cooling experi-
ment with tS= 50 ms about twice larger than fluctuations of the magnetization of the
thermal gas (Fig.5.18). Unfortunately, due to our relatively low signal to noise ratio a
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Figure 5.17: Total condensate fraction of the multi spin component gas (i.e.
∑s

i=−s ni/NTot) at t = tS ms as a function of time tS. We observe small short lived
multi-component condensates only in the 3 lowest energy states. The line is a guide to
the eye.

full experimental investigation of magnetization fluctuations has not been performed.
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Figure 5.18: Magnetization of the condensate fraction as a function of the magneti-
zation of the thermal gas at the end of a shock cooling experiment with tS= 50 ms.
The gray straight solid line (of unity slope, crossing the origin) is given for reference.
Although the data is noisy, the general trend suggest that the error bars along the ver-
tical direction are about twice larger than the error bars along the horizontal direction.
This suggests that magnetization fluctuations of the BEC are larger than fluctuations
of the thermal gas.

To give a first insight into why shock cooling might lead to magnetization fluctua-
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tions in the BEC phase, we first write the mean-field equations of the spin dynamics
for the multi component BECs. For pedagogical reasons, since we are not interested in
solving this problem but to illustrate the different contributions of the different terms,
we will only write terms which involve the three lowest spin states:

i~Ψ̇−3 = g−3,−1;−2,−2Ψ
∗
−1Ψ−2Ψ−2 +

3∑

j=1

g−3,−j;−3,−j(Ψ
∗
−jΨ−j)Ψ−3

i~Ψ̇−2 = 2g−3,−1;−2,−2Ψ
∗
−2Ψ−3Ψ−1 +

3∑

j=1

g−2,−j;−2,−j(Ψ
∗
−jΨ−j)Ψ−2

i~Ψ̇−1 = g−3,−1;−2,−2Ψ
∗
−3Ψ−2Ψ−2 +

3∑

j=1

g−1,−j;−1,−j(Ψ
∗
−jΨ−j)Ψ−1 (5.38)

where Ψi =
√
nii
eiφ is the classical field associated to spin state i with phase φi and pop-

ulation ni, and gi,j,k,l is the interaction strength associated to a coherent (ms=i,ms=j)
→ (ms=k,ms=l) collision. The first term describes spin exchange collision, whereas the
second term represents collisions where the spin of each atom is conserved but affects
the phase φi of Ψi. The key point in eq.(5.38) is that spin dynamics depends on the
phases of the different spin components.

Our interpretation for magnetization fluctuations is that Bose-condensation of the
different spin-excited states introduce a spontaneous symmetry breaking as the phase
of each condensate (in a givenms) is built up randomly. Phase fluctuations lead to fluc-
tuations in spin dynamics (eq.(5.38)) [112], and therefore in the magnetic state which
is eventually obtained. Since spin dynamics may lead to populations in non saturated
states, spin dynamics at constant total magnetization may lead to a modification of
the magnetization of the BEC. Therefore fluctuations in spin dynamics may lead to
BEC magnetization fluctuations.

Numerical simulation

M.Gajda and M.Brewczyk performed numerical simulations to test this scenario. As
the CFA does not provide a direct way to provide symmetry breaking at the BEC
transition, they applied a random relative phase to the wave-functions describing the
thermal atoms in different spin components before condensation. This provides an
empirical way to simulate symmetry breaking. They performed a series of numerical
simulations for different sets of relative phases between the Zeeman components. They
then obtained small condensates with fluctuating magnetization. Furthermore, we also
observe that spin and condensation dynamics are also significantly modified by the
applied random phases. Due to large computational time for each run, a systematic
study of BEC magnetization as a function of initial phases has not yet been performed
and remains to be thoroughly investigated. However, while the magnetization fluc-
tuations obtained in the numerical simulations are typically three times smaller than
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the experimental measurements, these preliminary results support the scenario that
the combined effect of spontaneous symmetry breaking and spin dynamics lead to the
observed spin fluctuations.

5.3.8 Conclusion and perspectives

We performed fast cooling across the BEC transition starting with a multi-component
spin thermal gas. We were expecting to obtain multi-BEC components and then ob-
serve how the system polarizes itself towards its ferromagnetic ground state. Actually,
in the first set of experiments we found that even though the first thermal spin excited
state was saturated, the other spin components were not, and a BEC inms = -2 was dif-
ficult to form due to a strong interplay between Bose condensation and spin dynamics.
In a second series of experiments, we started with larger populations in the first spin
excited states and produced small short-lived BECs which decay due to spin changing
collisions. Our experiments show that even though the mechanical degree of freedom
is thermalized, it is difficult to thermalize the spin degrees of freedom. This effect has
to be taken into account for large spin systems (such as Dy [17] and Er [18] which have
17 and 13 spin states respectively), where all spin states must be fully saturated for a
stable multi-component BEC to be produced at thermal equilibrium. Finally, we point
out that when a multi component BEC is dynamically produced, spontaneous symme-
try breaking leads to independent phases within the BEC components which triggers
spin fluctuations. Although these experiments only focused on the collisional aspect
of the interplay between spin dynamics and condensation, we believe that the subject
could be further explored. Law, Pu, and Bigelow showed that anti-ferromagnetic cou-
pling leads to a unique ground-state which has super-Poissonian fluctuations in the
population of each spin state [169]. It would be interesting to deepen the study of
fluctuations in the experiments. A larger atomic sample could also allow saturation for
all spin states. Then we would have an experiment where the condensation of a given
spin state would result from an interplay between superfluid order and magnetic order.
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5.4 Removing entropy of a polarized BEC through

spin filtering

In the following section we propose a cooling mechanism where the spin degree of free-
dom is used to store and remove entropy from a polarized BEC. We develop a non
interacting model which accounts well for the data and suggests that this cooling mech-
anism should work for non dipolar species as well.

5.4.1 Introduction

Current cooling limitations

Evaporation has proven to be a very efficient way of cooling atomic gases. When
the temperature T of the gas is greater than the interaction energy gSn (with n the
density and gS the interaction strength), most of the energy carried by an atom is
thermal. Therefore removing the most energetic atoms results in an efficient cooling
of the sample. When kBT < µ, the cooling efficiency reduces owing to the fact that
the chemical potential accounts for a non negligible part of the energy carried away
by each evaporated atom. This reduction in efficiency of evaporation was recently
observed [170]. They showed that evaporation still continues despite the reduction of
efficiency, and extremely low entropies of Σ/N ∼ 10−3kB were produced. This reported
value of entropy represents a huge leap since, for comparison, reported entropies for a
500 pK BEC are Σ/N ∼ 1.5kB [171].

Why a new cooling mechanism?

In a lattice, when the internal degree of freedom is included in the thermodynamic
picture, such as spin, a critical value of entropy ΣMag exists below which quantum
magnetic ordering and magnetic correlations become accessible. For example, an atom
of spin s pinned to a lattice site can be in 2s + 1 spin states. The entropy per atom
associated to accessible independent magnetic states is

ΣMag = kB log(2s+ 1). (5.39)

If the sample has an entropy lower than ΣMag, it is necessarily in a correlated magnetic
regime where exotic quantum phases are expected. Despite impressively cold temper-
atures achieved (sometimes ranging in the pK regime [171]), only recent experiments
have been able to observe short range magnetic correlations in optical lattices with
fermions [172, 173, 174].

The hope to study magnetic correlations of atoms in optical lattices, and the pos-
sible connections to exotic superconductivity are major motivations to obtain systems
with lower entropies than currently available [175]. It is therefore important to find
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new ways to remove entropy in degenerate quantum Bose or Fermi gases loaded in
optical lattices [176, 177].

Most cooling techniques involve only the mechanical degrees of freedom. It is likely
that the difficulty to reach low spin entropy is associated to the fact that most cooling
schemes are spin insensitive. This motivates the need to implement a cooling mech-
anism which directly involves the spin degrees of freedom. Here, we propose to use
the spin degrees of freedom to efficiently store and remove entropy from a polarized
Bose-condensed gases to reach temperatures below the current limitations set by evap-
orative cooling. This experimental campaign was performed before the extremely low
entropies reported in [170]. Our cooling mechanism is expected to lead to even lower
entropies, if ever even lower entropies turned out to be necessary.

Principle of the experiment

Our cooling mechanism takes advantage of the thermodynamic properties of spinor
gases. As discussed earlier, the non interacting phase diagram for a large spin and
barely any quadratic shift, like in Chromium, predicts three phases. Phase A corre-
sponds to a thermal gas in each spin component. Under a first critical temperature, we
enter phase B: a BEC forms in the lowest Zeeman energy state. Population of other
spin states are necessarily thermal. Under a second critical phase transition, all spin
states condense simultaneously (phase C). When magnetization is free, such is the case
for Chromium, the second phase transition is avoided as long as the magnetic field B
is greater than a critical magnetic field BC , which is predicted in the 100 µG regime
with the given experimental parameters.

Our cooling mechanism takes place in phase B. There, we induce a selective loss
specific to atoms in ms 6= -3. These atoms are necessarily thermal and an efficient gain
in condensed fraction and therefore a reduction of entropy is possible, even at large
trap depths.

5.4.2 Experimental protocol

a) Initial starting point: a BEC in ms =-3

Our experiments starts with preparing a 52Cr BEC in the absolute ground state ms =
−3 with an initial condensate fraction fi of typically 1 − 2 × 104 atoms. The initial
condensate fraction is set by varying the final value of the IR power of the evaporation
ramp, thus defining an initial thermal population and an initial number of condensed
atoms. See Step 1 of Fig.5.19.

b) Preparing atoms in ms 6=-3

The magnetic field, which is initially Bi=40 mG, is then lowered in 50 ms to a final
value Bf , low enough to trigger depolarization of the thermal gas (gµBBf ≃ kBT ). See
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Figure 5.19: Sketch of the experimental procedure. Step 1: Produce a BEC inms = −3
at high B field (i.e. gµBBf >> kBT ). Step 2: Lower the magnetic field so that
gµBBf ≃ kBT . Dipolar collisions between thermal atoms spontaneously take place
and populate spin excited states. Step 3: Get rid of atoms in spin excited states.

Step 2 of Fig.5.19 but high enough that a BEC may form only in ms = −3 (we remain
in phase B). For T = 400 nK, gLandéµBB = kBT leads to a B field of approximatively
3 mG.

We then let the cloud evolve at Bf for twait=150 ms. This timescale is long enough
for inelastic dipolar collisions to ensure depolarization. Indeed, the typical peak density
associated to a thermal gas of 2× 104 atoms at T = 250 nK with a mean geometrical
trap frequency ω̄ = 2 × π 250 Hz is n0 ∼ 2 × 1019 at·m−3. The typical rate for these
collisions for a magnetic field in the 1 mG range is 15 s−1 and it takes several dipolar
collisions to thermalize the spin degrees of freedom (see [87] or eq.(3.16)).

Bf is calibrated by use of RF spectroscopy, and it can be controlled to the 100 µG
level (see [178] for magnetic field stabilization).

c) Removing atoms in ms 6=-3

We then proceed to remove atoms in spin excited states (see Step 3 of Fig.5.19). This
spin filtering procedure consists of i) raising the magnetic field to 30 mG (this ensures
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that we go away from the low magnetic field region in a controlled way so that we do
not cross Bc); ii) changing the trap in order to spill out atoms with ms > −3. For that
we reduce the trap depth and add a vertical B field gradient (of about 1 G·cm−1) as
illustrated by the sketch Fig.5.20. During this experimental sequence only ms = −3
atoms remain trapped while ms > −3 atoms are lost. ms > −3 atoms fall out of the
trap because optical and magnetic forces are insufficient to compensate gravity. In
Fig.5.21, we illustrate the form of the potential at the point of minimum IR power
(see Fig.5.20) along the vertical direction for 3 different spin states, and a magnetic
gradient of 0.8 G·cm−1. We can see that under these conditions, ms = −3 atoms can
still be trapped, whereas ms > -3 are expelled from the trap.

Multi-spin
component gas

IR Power

m =-3 gass

t =10ms

2t

17ms

40ms

Gradient
Voltage Command

Figure 5.20: Sketch of the experimental filtering procedure. We apply a magnetic
field gradient along the vertical direction. We then reduce the trap depth up to a
certain value where optical and magnetic forces are insufficient to compensate gravity
for ms > −3 atoms. We then recover the initial optical trap, remove the magnetic field
gradient and recover the initial trapping conditions. The 40 ms time between applying
the magnetic gradient and the beginning of the reduction of the IR intensity is set by
the induction time of the coils. This times typically sets the timescale for spin filtering.
The IR ramp time of 10 ms is the shortest possible allowed by the voltage control of
the AOM and in practice is long enough to allowing for spin filtering.

We checked that no evaporation is induced by the filtering procedure. We per-
formed a spin filtering protocol without depolarization (i.e. an experiment performed
at gLandéµBBf >> kBT see Fig.5.22). We measure a 5% difference in condensed frac-
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Figure 5.21: Illustration of the form of the potential along the vertical direction at the
point of minimum IR power (see Fig.5.20) for 3 different spin states, and a magnetic
gradient. The trap depth in these conditions is estimated to be 1.4 µK and the IR beam
waist is estimated to be 50 µm. The gradient creates (in the calculation taken to be 0.8
G·cm−1) a force maximally opposite to gravity for ms = −3 atoms. We can see that
under these conditions, ms = −3 atoms are still be trapped (full blue curve), whereas
ms > -3 are expelled from the trap (for clarity reasons, an energy offset between the
potentials is introduced and we only represent ms = −2 and ms = −1 in dashed
magenta and dotted gold respectively).

tion (within our signal to noise ratio) for a procedure performed at relatively high initial
temperature, which we expect to be sensitive to any extra evaporation. In addition,
we measured through Stern-Gerlach analysis that indeed the losses induced by the new
trap are almost total for ms > −3.

The spin filtering is performed rapidly, as fast as possible actually (in 60 ms),
to ensure that no dipolar relaxation occurs. This would correspond to typically one
dipolar collision with the timescale calculated above. However, 60 ms is the total
amount of time to raise the magnetic field, apply magnetic gradients, and lower the trap
confinement. The whole process decreases density and separates in situ the different
Zeeman components. As a consequence it is difficult to assess precisely the time for
dipolar relaxation. Experimentally, we observe no heating of the BEC which would
be a consequence of dipolar relaxation. Finally, we recover the initial (purely) optical
trap at Bi, and measure the new BEC fraction.
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Figure 5.22: Measured T/TC for a BEC in ms = −3 with the spin filtering method
(abscise 0) or without (abscise 1). We measure the same temperature within our
experimental error bars. We conclude that our spin filtering protocol does not introduce
any extra cooling or heating. Any cooling observed will thus be attributed to our
cooling mechanism.

d) The thermodynamic operations

Fig.5.23 shows a sketch of the experiment in the (M,T ) diagram and qualitatively de-
scribes the thermodynamic operations of our cooling mechanism. Fig.5.23a represents
our initial conditions. We have a BEC in ms= -3 and all the thermal atoms are in
ms=-3. We then lower the magnetic field to a value of the magnetic field Bf . Bf

is low enough that sufficient thermal atoms may change spin states, but high enough
so that Bf > Bc and that phase C is avoided. The gas is cooled and magnetization
increases (see Fig.5.23b). Atoms in ms > -3 are then selectively removed. The total
atom number is lowered, thus the critical temperature for condensation is lowered also.
This process can result in a gain of condensate fraction (Fig.5.23c).

5.4.3 The experimental results

We performed the cooling mechanism for different values of the magnetic field Bf and
for different initial condensate fractions. As mentioned above, the initial condensate
fraction is set by varying the final value of the IR power of the evaporation ramp
resulting in different trap frequencies parameters.

a) Measuring condensate fractions

To accurately measure BEC fractions is not an easy task, especially for high BEC
fractions due to small thermal component. Here, we release the atoms from the trap
by switching off the IR trap and take an absorption picture after a time of flight of 5
ms. The difficulty of accurately measuring condensate fractions resides in the fact that
temperature sets both the width of the gaussian describing thermal atoms and the BEC
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Figure 5.23: Sketch of our cooling mechanism represented on the phase diagram of a
spin 3 atom. a) Representation of our initial conditions. We have a BEC in ms= -3
and all the thermal atoms are in ms=-3. b) We then lower the magnetic field to a
value of the magnetic field Bf low enough that sufficient thermal atoms may change
spin states, but high enough so that Bf > Bc and that phase C is avoided. c) Atoms
in ms > -3 are then selectively removed. The total atom number is lowered, thus the
critical temperature for condensation is lowered also, thus the vertical scale is modified.
The dashed line represents the ”old” critical temperature. This process can result in a
gain of condensate fraction provided the ”new” T/Tc is lower than the initial one.
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fraction. We perform a two-stage analysis of the images. A first fit is used to measure
the total number of atoms, and with the knowledge of the trapping frequencies we can
deduce the critical temperature Tc (eq.(5.2)). A second bi-modal fit is then performed
where the temperature is a free parameter and the total atom number and critical
temperature are fixed by the first fit (a Thomas-Fermi profile fits the condensate and a
gaussian fits the thermal atom distribution). This procedure was optimized in order to
ensure good measurements of thermal fractions down to ten percent, or BEC fraction
up to 90%.

b) Proof of principle

We first performed a proof of principle experiment, where we did not filter the thermal
excited spin states and checked if the BEC fraction becomes larger or not in the ms =
−3 component after a Stern-Gerlach separation.

The experiment starts with a thermal gas in ms= -3 at Bi. We then cool the gas
and produce a BEC in ms= -3. The initial condensed fraction is:

fi = 1−
(
Ti
Tc,i

)3

. (5.40)

We then lower the field to Bf= 1 mG. After a time twait, we turn off the dipole
trap and measure both the spin and momentum distributions after a 5 ms TOF. The
different spin components are separated via a magnetic field gradient pulse of approx-
imatively 3.5 G·cm−1 present during the TOF (as explained in subsection 1.5.2). We
define (Tf/Tc,f ) as the temperature of the gas divided by the critical temperature which
is calculated by considering only the number of atoms in ms= -3:

Tc,f =

(
N−3,f

Ntot,i

)1/3

(5.41)

This is not the real critical temperature of the gas, since it does not consider the
total final atom number, but would be if the ms > −3 atoms were removed.

In Fig 5.24, we show (Tf/Tc,f ) as a function of (Ti/Tc,i) for Bf= 1 mG. The black
curve represents (Tf/Tc,f ) = (Ti/Tc,i). We find that our cooling mechanism produces
a BEC polarized in the lowest energy state with an increased condensate fraction,
provided the initial thermal fraction is low enough: this marginally demonstrates that
our cooling mechanism works, however error bars remain large due to magnetic field
fluctuations.

c) Spin filtering a polarized BEC

We now use the whole experimental protocol to filter the excited spin states. The
experiment starts with a thermal gas in ms= -3 at Bi. We cool the gas and produce
a BEC in ms= -3. The initial condensed fraction is fi. We then lower the field to Bf .
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Figure 5.24: Proof of principle for purification of a 52Cr BEC. After depolarization
occurring at a B field of Bf=1 mG, we measure the final condensate fraction in ms=-3
and hence the effective final reduced temperature (red squares), as a function of the
initial reduced temperature. Error bars show statistical uncertainties. The (red) solid
line is the result of our model. The (black) straight solid line (of unity slope, crossing
the origin) is a reference (i.e. no cooling). Data follows the general trend given by the
model. However experimental error bars are large due to magnetic field fluctuations.

After a time twait, we perform the spin filtering protocol which is sketched Fig.5.20.
At the end of the filtering process, we turn off the IR trap and let the gas expand
for a TOF of 5 ms, after which we perform an absorption pulse imaging sequence. In
Fig.5.25 we show the final condensate fraction, f2, as a function of Bf for different
initial condensate fraction fi. In full lines we show the result of our non-interacting
model (see subsection 5.4.5).

When Bf is large, we find f2 = fi: the cooling protocol has no effect on the con-
densed fraction. For the smallest initial condensate fractions fi, f2 gets smaller than
fi at the lowest Bf . On the other hand, when fi is large enough, f2 gets significantly
larger than fi. There also seems to be an intermediate regime where f2 first increases
as Bf is lowered, and then decreases. These features are present in the non-interacting
model we established (see subsection 5.4.5).

d) First interpretation

Our experiments shows that increased condensed fractions can be observed after our
cooling process as long as the initial condensate fraction is large enough.

To gain insight on the physics at stake, we plot in Fig.5.26a the number of thermal
and condensed atoms, as a function of Bf for a relatively high initial condensate fraction
fi. Fig.5.26b shows the measured final condensed fraction f2 for an other set of data
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Figure 5.25: Experimental results for spin spilling with an s = 3 52Cr BEC, for different
initial BEC fractions fi (represented by different colours). For each initial BEC fraction,
the BEC fraction after spilling (i.e. f2) is plotted as a function of Bf . When Bf is
large, we find f2 = fi: the cooling protocol has no effect on the condensed fraction.
For the smallest initial condensate fractions fi, f2 gets smaller than fi at the lowest
Bf . On the other hand, when fi is large enough, f2 gets significantly larger than fi.
Full coloured lines are predictions of our non-interacting model (see subsection 5.4.5).
Dashed blue lines seperate, based on our non-interacting model, three regions where
different behaviours may be observed depending on the initial condensed fraction.

but shows the same behaviour and helps illustrate the discussion.

For large values of Bf we measure f2 = fi: the procedure has no effect on the
condensed fraction, which makes sense since for large Bf all thermal atoms stay in
ms = −3. For small values of Bf , we measure a reduction in the number of thermal
atoms and condensed atoms. For this particular value of fi, the losses result in an
increase of the condensate fraction. We interpret this behaviour as the consequence of
the competition between three effects. (i) As population in spin-excited states is purely
thermal, spin filtering leads to purification of the BEC. The number of thermal atoms is
reduced therefore the condensed fractions has increased. (ii) As the thermal gas inms=-
3 depolarizes and populates spin excited states, the number of thermal atoms in ms=-3
decreases. The BEC must ”melt” to maintain saturation of the thermal ms = −3 gas.
(iii) As BEC atoms have zero energy [23], this cools the thermal gas which can then be
saturated at a lower temperature, as already observed in [179] and [180]. Competition
between these effects can lead to an increase in condensate fraction, provided the initial
BEC atom number is large enough. However, if the initial condensed fraction is too
small, depolarization can lead to a complete melting of the BEC in order to re-saturate
the thermal gas. In the case shown here, the initial condensate fraction is large enough
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Figure 5.26: Experimental results for spin spilling with an s = 3 52Cr BEC. a) Number
of atoms after spin spilling: in the BEC (top), in the thermal component (bottom).
Lines are guide to the eye. b) Final condensate fraction as a function of Bf , for an
initial BEC fraction of fi =0.67±0.05. The solid line for the condensed fraction results
from our theoretical model (see subsection 5.4.5).

so that spilling results in an increase of the condensate fraction.

5.4.4 Applicability to non dipolar gases

We have shown that our experimental protocol can result in an increased condensate
fraction. In our experiment, population in spin excited states is provided by dipolar
collisions. However, there are only two criteria necessary for our cooling mechanism:
(i) a BEC in only one spin state and (ii) thermalization of the spin degree of freedom
in order to populate spin excited states. Therefore our cooling scheme should work for
non dipolar gases with contact spin changing collisions.

For example let us consider a spinor s=1 BEC of Rb or Na which have a non
zero quadratic shift and for which only magnetization conserving collisions are al-
lowed. Spin-changing collisions associated with the difference in scattering lengths in
the molecular potentials S = 0 and S = 2 redistribute population between ms = 0
and ms = ±1 at constant magnetization. As explained in section 5.2.2, the positive
quadratic Zeeman effect provides an energy shift qm2

s between a pair of atoms in the
ms = 0 state and a pair of atoms in states ms = ±1, which favors BEC in ms = 0,
and it ”costs” 2q for two atoms in mF = 0 to perform a spin changing collision. The
quadratic Zeeman energy can be reduced so that q ∼ kBT , then contact spin changing
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collisions ensure populations in spin excited states with thermal atoms6.
The process is completely analogous to the dipolar case: instead of having (−3,−3)→

(−2,−2) collisions and be sensitive to the linear Zeeman energy, here (0, 0)→ (−1,+1)
collisions ensure population of the excited spin states and the energy scale is set by the
quadratic Zeeman energy.

5.4.5 Theoretical model

We elaborated a simple non interacting model to compare our results and estimate
the efficiency of the mechanism. When magnetization is free (case of dipolar particles)
the magnetic energy includes the linear Zeeman effect, whereas when magnetization is
fixed (as for example for Rb and Na atoms), the linear Zeeman effect is gauged out and
the magnetic energy only includes the quadratic Zeeman effect q. In both cases, we
denote the lowest energy spin state mmin

s (mmin
s = −3 for Cr with free magnetization,

mmin
s = 0 for Rb or Na at fixed zero magnetization).

a) Model principle

Let us here briefly introduce the main steps for our model. The initial state considered
is a BEC in mmin

s , with all the thermal atoms in mmin
s , at an initial temperature of

T = Ti and magnetic field Bi. We then consider a virtual state after the magnetic field
was reduced diabatically to a value Bf , but before thermalization of the spin degrees
of freedom occurred. The transformation is diabatic with respect to the spin degrees
of freedom: depolarization has not yet taken place. Therefore we have still a BEC in
mmin

s with all the thermal atoms in mmin
s at a temperature Ti but now the external

magnetic field is Bf . We then compute the equilibrium state assuming thermodynamic
equilibrium is reached through a transformation with total energy and atom number
conserved (no dissipation process). The gas now occupies different spin states and is
at a temperature Tf . We may then remove atoms in excited spin states and compute
the new condensate fraction.

b) Initial state: a BEC in mmin
s

We consider a polarized BEC at a finite temperature Ti in the lowest energy spin state
mmin

s . We set the initial magnetic energy to zero. We assume that a BEC is only
present in state mmin

s , so that µmmin
s

= 0. The initial condensed fraction fi in a 3D
harmonic trap is:

fi =
n0,i

Ntot,i

= 1−
(
Ti
Tc,i

)3

(5.42)

6The linear Zeeman effect plays no role in the case of a fixed magnetization since the initial linear
Zeeman energy is equal to the final linear Zeeman energy.
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with Ntot,i the initial total atom number and n0,i the initial condensed atom number
and Tc,i the initial critical temperature for condensation given by

kBTc,i = ~ω

(
Ntot

ζ(3)

)1/3

. (5.43)

The initial number of thermal atoms is thus N
(mmin

s )
th,i = Ntot,i − n0,i.

The initial energy of the gas in a 3D harmonic trap with a BEC present is thus:

Ei =

ETrap,i
︷ ︸︸ ︷

Ekin,i + Epot,i (5.44)

= 3kBTig4(e
−βǫ

0,mmin
s )

(
kBTi
~ω

)3

= 3
ζ(4)

ζ(3)
N

mmin
s

th,i kBTi (5.45)

with ETrap the sum of kinetic and potential energy, gn the polylogarithm function of
order n, ζ(n) the Riemann function (ζ(n) = gn(1)), ω the geometric average of the
angular trapping frequencies and β = 1/kBTi. ǫk,ms is the single-particle energy of
the trap harmonic oscillator state k, thus ǫ0,mmin

s
= 3~ω/2, and we make the usual

assumption that βǫ0,mmin
s

<< 1.

c) Depolarization

The magnetic field is set to a value Bf to allow depolarization. To compute the equilib-
rium state after depolarization, we assume thermodynamic equilibrium at temperature
Tf , conservation of the total atom number, and of total energy (no dissipation).

The spin composition in the final state will be entirely characterized by the thermal
atom number in spin state i, N i

th,f , and the final condensate atom number in mmin
s n0,f .

We also define Nth,f as the total thermal atom number in the final state:

Nth,f =
+s∑

i=−s

N i
th,f . (5.46)

Premise

As long as we have a BEC in mmin
s in the final state, the number of thermal atoms in

mmin
s in the final state is proportional to the temperature to the power three, as the

trap is a 3D harmonic trap:

N
mmin

s
th,f = AT 3

f (5.47)

with A a constant which depends on the trap and on the total atom number Ntot,i.
This equation is valid for all values of the magnetic field Bf . In particular, it has to
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be true for the case where Bf is infinite in which case we recover the initial state. All
the thermal atoms are then in mmin

s so that:

N
mmin

s
th,f = Nth,f (5.48)

Nth,f = N
mmin

s
th,i (5.49)

Tf = Ti. (5.50)

Therefore at the limit of condensation, Tf = Tc,i and N
mmin

s
th,f = Ntot,i so that A =

Ntot,i/T
3
c,i, and we obtain:

N
mmin

s
th =

Ntot,i

T 3
c,i

T 3
f (5.51)

At high magnetic field all atoms are in mmin
s , there is no depolarization, and the

critical temperature does not change.
Now let us use eq.(5.51) to discuss the case Bf = 0. In that case, the thermal

populations in each spin state are equal:

N
mmin

s
th =

1

2s+ 1
Nth,Tot. (5.52)

At the limit of condensation, we define Tf = Tc,f , with Tc,f the final critical temperature
for condensation. Using the fact that at Tc,f , Nth,tot = Ntot,i, eqs.(5.51) and (5.52) give:

Tc,f (B = 0) = Tc,i ×
(

1

(2s+ 1)

)1/3

, (5.53)

which is the critical temperature at B=0 and corresponds for example to the critical
temperature at M = 0 of Fig.5.4.

Atom conservation

We assume a BEC in mmin
s and conservation of the inital total atom number NTot,i.

Eq.(5.51) allows us to relate the thermal atom number in mmin
s after depolarization,

N
mmin

s
th,f , to the temperature Tf after depolarization:
In the thermodynamic limit, the thermal population in each spin state reads:

Nms
th,f =

∑

k

fk,ms(0) ≈ g3
(
e−βǫ0,ms

)
(
kBTf
~ω

)3

(5.54)

where ǫ0,ms = 3~ω/2 + (ms −mmin
s )gLandéµBB in the case of a linear spin. Assuming

again that all condensed atoms are in mmin
s , additional atoms are then condensed in

state mmin
s :

n0,f = NTot −
∑

ms

Nms
th,f . (5.55)

where n0,f is the number of condensed atoms after depolarization.
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Energy conservation

The energy after depolarization is:

Ef = ETrap,f + EMag,f

=
∑

ms

(
3kBTg4(e

−βǫ0,ms )

(
kBTf
~ω

)3

+Nms
th,fǫ0,ms

)
. (5.56)

EMag,f is the gain in magnetic energy acquired by thermal atoms having changed spin
state.

Final condensed fractions

The final temperature Tf and BEC atom number n0,f are thus derived and can be
compared to initial values Ti and n0,i. Any atom in spin-excited state ms 6= mmin

s can
be removed (by means of magnetic field gradients, micro-wave transitions, and/or a
resonant push laser beam). After depolarization, we define

f1 =
n0,f

NTot,i

(5.57)

the BEC fraction relative to the total number of atoms, and

f2 =
n0,f

(n0,f +N
(mmin

s )
th,f )

=
n0,f

NTot,f

(5.58)

the BEC fraction relative to atoms in state mmin
s with NTot,f the final total atom

number (i.e. after spin filtering).
These two condensed fractions correspond respectively to not filtering and spin

filtering the spin excited states. In the following we will evaluate f1 and f2 to discuss
the physics at play, first for Bf=0 and then Bf 6=0.

d) The case of Bf=0

Let us first discuss the case Bf=0 (although unfeasible experimentally, it will help in
understanding the physical processes involved). After depolarization for Bf=0 , the
thermal populations in each spin state are equal:

N i
th,f = N j

th,f =
1

(2s+ 1)
Nth,f ∀ (i, j) ∈ [−s, s]. (5.59)

Eq.(5.51) gives:

Nth,f

Ntot,i

= (2s+ 1)

(
Tf
Tc,i

)3

. (5.60)
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Ei is given eq.(5.45). We now compute Ef (eq.(5.56)), the energy after depolarization.
There is no magnetic energy term, for Bf = 0. We find:

Ef = (2s+ 1)× 3
ζ(4)

ζ(3)
NTotkBTc,i

( Tf
Tc,i

)4
(same thermal population in each state)

Ef = 3
ζ(4)

ζ(3)
Nth,fkBTf (using eq.(5.60)). (5.61)

Conservation of energy imposes that:

Ei = Ef

N
(mmin

s )
th,i Ti = Nth,fTf . (5.62)

Using eq.(5.62), we have:

Nth,f

Ntot,i

Tf
Tc,i

=
N

mmin
s

th,i

Ntot,i

Ti
Tc,i

= (1− fi)(1− fi)
1/3

= (1− fi)
4/3. (5.63)

Eq.(5.60) yields

Nth,f

Ntot,i

Tf
Tc,i

= (2s+ 1)
( Tf
Tc,i

)4

= (2s+ 1)(
1− f1
2s+ 1

)4/3 (5.64)

as 1− f1 = Nth,f/Ntot,i by definition.
Using eqs.(5.64) and (5.63) we may express the condensate fraction f1 without

filtering the spin excited states:

f1 = 1− (1− fi)(2s+ 1)1/4. (5.65)

We may also express the condensate fraction f2 when spin filtering is performed:

f2 =
n0,f

n0,f +N
(mmin

s )
th,f

=
n0,f/Ntot,i

n0,f/Ntot,i +
Nth,f

2s+1
/Ntot,i

=
f1

f1 +
1−f1
2s+1

= (2s+ 1)
1− (1− fi)(2s+ 1)1/4

(2s+ 1)− 2s(2s+ 1)1/4(1− fi)
. (5.66)

We plot in Fig.5.27 f1 and f2 as a function of fi for s=3.
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Figure 5.27: f1 (purple dashed) and f2 (gold dotted) for Bf=0 and fi (blue line) as
a function of fi for s=3. When spin filtering is not performed, the final condensed
fraction after depolarization is lower than before depolarization, i.e. f1 ≤ fi. If fi
≤ 0.385, we no longer have a condensate after depolarization. When spin filtering is
performed (f2, golden line) we have f2 ≥ fi as long as fi ≥ 0.449. See text for more
information.

Interpretation for f1

Eq.(5.65) imposes that f1 ≤ fi: when spin filtering is not performed, the final condensed
fraction after depolarization is lower than before depolarization. Our interpretation is
that, when depolarization occurs, the thermal gas in mmin

s is no longer saturated. The
BEC then melts to re-saturate the thermal gas. The total number of thermal atoms
increases during this process, and the number of condensed fraction is lowered. Thus
the condensed fraction can only be lowered.

If fi < 1- (2s+1)−1/4 (for s=3, this imposes that fi ≥ 1- 7−1/4 ≈ 0.385 ), we have
negative values for f1. A negative condensate fraction has no physical significance and
our model therefore has no meaning in that case. For fi < 1- (2s+1)−1/4, depolariza-
tion melts completely the BEC fraction. The initial BEC fraction is too weak that
the number of thermal atoms which changed spin state is larger than the number of
condensed atoms to re-saturate the thermal gas. This sets a lower limit to fi for our
cooling mechanism to work, and for the model to have a meaning.
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Figure 5.28: Gain in condensate fraction when spilling is performed (f2-fi) as a function
of initial condensate fraction fi for s=3. At best, the condensate fraction can be
increased by 0.19 for fi = 0.63.

Interpretation for f2

f2 ≥ 0 as long as fi ≥ 1- (2s+1)−1/4. This is the same criteria than for f1: if the initial
condensate fraction is too weak, the BEC will completely melt.

We also have f2 ≥ fi as long as fi ≥ (1 + 2s − (1 + 2s)3/4)/(2s). For s=3 this
leads to fi ≥ 0.449. Filtering spin excited states after depolarization results in a gain
in condensate fraction, provided a large enough fi.

These results are summed up in Fig.5.27 for s=3. We also show Fig.5.28 the gain
in condensate fraction when spilling is performed f2-fi as a function of fi. At best, the
condensate fraction can be increased by 0.19 for fi = 0.63.

Melting cools

Let us now look at how temperature is affected during the cooling mechanism.

Eq.(5.63) can be expressed as (2s+1)(
Tf

Tc,i
)4 = ( Ti

Tc,i
)4. As long as the final condensate

fraction is positive, we have the following temperature relation:

Tf
Ti

= (2s+ 1)−1/4 ≈ 0.61 for s = 3. (5.67)

When the BEC melts to saturate the thermal gas, the number of condensed atoms
lowers, however the thermalization of BEC atoms (at T=0) with the thermal atoms
(at T= Ti) lead to a cooling of the gas (Tf = (2s + 1)−1/4Ti < Ti) which can then
saturate at a lower temperature.
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e) The case of Bf 6= 0

Let us now consider the case Bf 6= 0, and once again assume that a BEC is only
formed in mmin

s . In the following we will consider the case of a linear Zeeman energy.
We start with a gas polarized in mmin

s =-s, with initial condensed fraction fi =
n0,i

Ntot,i
.

The magnetic field is then lowered to Bf > 0.
The chemical potential of spin state ms =-s is 0 because we start with a BEC in

that state. The chemical potential of each spin state is simply:

µi = −b(i+ s) ∀ i ∈ [−s, s]. (5.68)

Population in each spin state

The population in spin state i relative to the one in spin state mmin
s is (see eq.(5.13)

adapted to the case of a 3D harmonic trap):

N
(i)
th,f

N
(mmin

s )
th,f

=
g3(e

−(i+s)y)

ζ(3)
(5.69)

with y =
gLandéµBBf

kBTf
, gLandé the Landé factor and µB Bohr’s magneton.

The total thermal atom number can be evaluated with eq.(5.51):

NTot
th,f =

s∑

i=−s

N
(i)
th,f = NTot,i

T 3
f

T 3
c,i

∑s
i=−s g3(e

−(i+s)y)

ζ(3)

= NTot,i

T 3
f

T 3
c,i

S(y)

ζ(3)
(5.70)

where we define S(y)=
∑s

i=−s g3(e
−(i+s)y).

Energy of each spin state

We now proceed to compute the energy associated to each spin state. Each spin state
has a different chemical potential.

The trap energy and magnetic energy of each spin state can be expressed as:

E
(Tot)
Trap,f = 3N

(Tot)
th,f kBTf

STrap(y)

S(y)
(5.71)

E
(Tot)
Mag,f = kBTf

Nth,f

S(y)
ySMag(y) (5.72)

where STrap(y) =
∑+s

i=−s g4(e
−(i+s)y) and SMag(y) =

∑+s
i=−s(i + s)g3(e

−(i+s)y). Energy
conservation leads to:

ζ(4)Nth,iTi = ζ(3)N
(Tot)
th,f Tf

STrap(y) +
y
3
SMag(y)

S(y)
. (5.73)
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Final condensed fractions

Eq.(5.70) and eq.(5.73) lead to:
(
Tf
Tc,i

)4

(STrap(y) +
y

3
SMag(y)) = (1− fi)

4/3 (5.74)

This defines an implicit equation for
Tf

Tc,i
, with y =

gLandéµBBf

kBTc,i
(
Tf

Tc,i
)−1. This equation

can be solved numerically for a given value of fi and
gLandéµBBf

kBTc,i
. We can then deduce

the values of the condensed fraction without spin filtering or with spin filtering using
eq.(5.70):

f1 = 1− S(y)

ζ(3)

(
Tf
Tc,i

)3

(5.75)

f2 =
n0,f

n0,f +N
(mmin

s )
th,f

=
n0,f/NTot

n0,f/NTot +N
(mmin

s )
th,f /NTot

=
f1

f1 + (
Tf

Tc,i
)3
. (5.76)

We plot in Fig.5.29 f1 and f2 as a function of Bf for different values of the initial
condensed fraction in the case of s=3.

Interpretation for f1

Let us first discuss the case of f1, the condensed fraction when spin filtering is not
performed.

The same general behaviour is observed no matter fi. We see Fig.5.29 that f1 starts
by increasing as the magnetic field is reduced. f1 then decreases and becomes smaller
than fi. The lowest value of f1 is obtained for Bf=0.

For high enough B field, depolarization of the thermal gas leads to an increase of the
condensed fraction. This effect is associated with demagnetization cooling, a process
previously demonstrated in the thermal regime where kinetic energy is transformed into
magnetic energy as an atom occupies a spin excited state, and then is pumped back to
the ground state [113]. When the experiment is performed at non-zero magnetic field,
demagnetization of thermal ms = −3 atoms is accompanied by cooling, as the process
is endoenergetic. Therefore cooling associated with the transfer between magnetic and
kinetic energy can lead to an increase in the BEC atom number even without spin
filtering : n0,f > n0,i, and hence f1 > fi, as shown in Fig.5.29a). However, this effect is
small compared to the three major effects described above.

Interpretation for f2

Let us now discuss the case of f2, the condensed fraction when spin filtering is performed
for the case s=3.
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Figure 5.29: f1 (in purple short dash-dotted line) and f2 (gold, long dash-dotted line)
as a function of Bf for s=3 and initial condensed fractions a) fi =0.4, b) fi =0.6,and
c) fi =0.8 (blue full line). We also indicate values of f1(B = 0) and f2(B = 0) for each
initial condensed fraction. The same general behaviour is observed for f1 no matter fi.
For f2 there is three regimes depending on the value of fi: fi < 0.449, 0.449 < fi <
0.63, and fi > 0.63.
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The situation is a little bit more complex and we define three regimes depending
on the value of fi, the initial condensed fraction.

If fi > 0.63 , f2 constantly increases as Bf is lowered. The maximum value for f2
is obtained for Bf=0.

If fi < 0.449, f2 first increases as the magnetic field is lowered and a maximum
value is obtained for a magnetic field Bf > 0, and then decreases and becomes smaller
than fi. The minimum value is obtained for Bf = 0.

If 0.449 < fi < 0.63, f2 first increases as the magnetic field is lowered. Then a
maximum value for a magnetic field Bf > 0 is obtained. Finally f2 decreases but
always remains larger than fi no matter Bf .

We plot in Fig.5.29 f2 as a function of Bf for each regime. We also indicate these
regimes on our experimental data Fig.5.25.

Comparison with data

We superimpose to our data shown in Fig.5.25 and Fig.5.26 the prediction of our non-
interacting theoretical model. Our model, with no free fitting parameter, accounts
well for the experimental results, even if the experimental error bars are quite large.
We thus are confident that it grasps the main physical processes at stake and we will
rely on it for accounting for the cooling efficiency of our protocol and the limits of the
cooling mechanism.

Cooling efficiency

To assess the efficiency of this cooling procedure we consider the reduction of entropy
after one cooling cycle. Below Tc, all entropy is contained in the thermal fraction, and
each thermal atom has a temperature-independent entropy of approximatively 3.6 kB
(see eq.(5.7)). As a consequence, selectively removing thermal atoms is an excellent
way to remove entropy. With Σi the mean entropy per atom before depolarization,
and Σf the mean entropy per atom after spin filtering. We have:

Σf

Σi

=
Nth,f

Nth,i

=
1− f2
1− fi

. (5.77)

This expression is minimal for Bf=0 and fi → 1, and reaches 1
(2s+1)3/4

. In Fig.5.30
Σf

Σi

is shown for different values of Bf , as a function of Ti, in the case of Cr with s = 3.
Σf

Σi
remains significantly smaller than 1 even at very low Ti, provided a low enough Bf

field: a reduction of entropy by a factor of at least two is obtained until kBTi ≃ gµBBf .
Then, a lower Bf must be reached so that cooling may continue.

As T approaches 0, the thermal fraction gets smaller and smaller. Therefore spilling
affects less and less atoms. However, the gain in entropy remains good, provided a low
enough Bf . As a consequence, the efficiency of our spin cooling mechanism, defined as
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Figure 5.30: Theoretical results for the s=3 52Cr BEC. Ratio of final (after spin pu-
rification) and initial mean entropy per atom as a function of initial temperature, for
Bf=0.3 mG (dashed) and Bf=0.1 mG (solid). The horizontal dotted line corresponds
to the maximal gain, reached at Bf → 0 and Ti → 0 (given by eq.(5.66)). The vertical
lines indicate the qualitative limit for cooling, set by gµBBf ≃ kBT . The dots (black)
correspond to experimental data taken at Bf = 0.2 ± 0.1 mG, including statistical
uncertainties.

the gain in phase space compared to the number of lost atoms, diverges as T → 0:

log(
nλ3

f

nλ3
i
)

log
NTot,f

NTot,i

=
log

Σf

Σi

log
NTot,f

NTot,i

→
︸︷︷︸

T→0

∞ (5.78)

because
NTot,f

NTot,i
→ 1 while

Σf

Σi
→ 1

(2s+1)3/4
(< 1) if Bf → 0.

The evolution of the efficiency of our cooling mechanism as a function of temper-
ature is opposite to the one for evaporation. Evaporation is very efficient at high
temperatures (where most of the energy carried away has a thermal origin), and in the
quantum regime is not as efficient (where the chemical potential accounts for a non neg-
ligible part of the energy carried away by each evaporated atom). In contrast, the spin
cooling mechanism discussed here is inefficient at high temperatures, and extremely
efficient at low temperatures.

f) Limitations

Cooling limits

There are two limits in our cooling mechanism, one experimental and the other fun-
damental. (i) The control of the magnetic field experimentally sets a limit to the
experiment. (ii) The value of the magnetic field below which the BEC is no longer in
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one spin state. Indeed, our cooling mechanism assumes a BEC polarized in a well de-
fined Zeeman state, which in general depends on conditions set by interactions between
the atoms.

In the experiment reported here with Chromium which has a predicted cyclic ground
state, a magnetic field larger than 100 µG is necessary in order to have a polarized
BEC only in ms =-3. This sets a limit of our cooling mechanism down to 30 nK.

For alkalis, we recall that a polar state is necessary to apply our mechanism for
these non dipolar species. For Rubidium the ground state is ferromagnetic for a zero
quadratic shift. At typical densities of 1014 at·cm−3, a quadratic energy shift of typically
10 Hz, provided by a magnetic field of 380 mG, is necessary to ensure that the BEC
is polar. Temperatures of the order of 500 pK could be obtained with such magnetic
fields (kBT = h× 10 Hz).

For Sodium, spin dependent interactions favor a polar ms = 0 BEC. This is the
most favorable scenario. Na, with a quadratic effect of 280 Hz/G2, could achieve
temperatures in the 100 pK range with B fields below ≃ 100 mG. In this extreme
regime, thermal population of spin-excited states is possible as long as kBT > q. This
limit ensures that the mesoscopic polar BECs does not suffer from spin fluctuations,
so that the BEC is in a well defined spin state [181, 182]. If q > kBT/N with N
the condensed atom number, spin fluctuations are a mesoscopic effect and the ground
state cannot be considered polar anymore so that our cooling mechanism would not
be efficient in this regime. This sets a practical limit to cooling in the pK range for
sodium.

Inclusion of interactions

The effect of interactions was taken into account by including in ǫk,ms the effect of spin-
dependent contact interactions within the Bogoliubov approximation. Calculations
were performed by P. Pedri. They show that interactions between particles lead to a
stronger reduction in entropy at low temperature, due to a larger density of states in
spin excited states.

Since the inclusions of interactions changes only quantitatively the non interacting
picture, and not qualitatively, I will not discuss here these calculations. If one wants
to deepen his understanding, please refer to Annexe 10.

Cooling with magnons

In parallel to this work, Olf et al. performed a similar cooling experiment [170]. In
their experiment, they produce a polarized BEC of 87Rb in state |F = 1,mF = −1 >.
They then perform a radio-frequency pulse and populate spin state |F = 1,mF = 0 >.
Immediately after the RF pulse, the population in spin state |F = 1,mF = 0 > has
the same characteristics as the initially polarized degenerate Bose gas (namely it has
the same condensed fraction). Thermalization leads for spin state |F = 1,mF = 0 >
to a decrease in the number of condensed atoms (with zero energy) and an increase of
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the number of thermal atoms (with typical energy kBT ). Thus the condensed fraction
in |F = 1,mF = 0 > is lowered. The entire thermalization process takes place at
constant energy. Therefore the increase in energy of the |F = 1,mF = 0 > component
is accompanied by a lowering in energy of |F = 1,mF = −1 >, and an increase of its
condensate fraction.

This cooling mechanism bears strong similarities with the one presented in this
chapter, it has however differences. Our loss mechanism is specific to thermal atoms.
Here, the demagnetization process uses radio-frequency pulses, and therefore does not
allow one to engineer a loss specific to non-condensed atoms. However, a cooling cycle
with an RF-pulse does not take as much time as the one we propose here and does
not need a precise control of magnetic field. It is relatively easy to perform several
cooling cycles with a RF pulse. In our case, due to technical difficulties in controlling
the magnetic fields, we were unable to perform spin cooling twice in an experiment.

An optimized spin cooling protocol would achieve spin filtering continuously: as
atoms occupy spin excited states they are straight away lost. If performed with high
enough initial condensate fraction, this could rapidly lead to very pure condensates.

Therefore, although our cooling mechanism is more efficient and has promising
prospects, their process is more adapted to multiple cooling cycles and has already
demonstrated its efficiency.

Measuring very cold samples

As very pure condensates are obtained, measuring small thermal fractions is a challenge.
It is then advantageous to use the spin degree of freedom for thermometry, as explored
in [97, 170]. At thermal equilibrium, atoms in different spin states share the same
temperature. Preliminary results indicate that thermalization remains efficient even
for very low temperatures [170]. Measuring the temperature or the number of thermal
atoms in spin-excited states offers a background-free measurement, contrarily to the
case of a bi-modal distribution when a BEC is present.

5.4.6 Conclusion and perspectives

In conclusion, we investigated an efficient cooling mechanism using the spin degree of
freedom. It is based on redistribution of entropy among the spin states. Thermal atoms
flow from the spin state where the BEC is present (ms= -3 for Chromium) towards
excited spin states. The BEC then melts in order to maintain saturation of the ms= -3
thermal gas. This melting leads to a cooling of the thermal gas since condensed atoms
are at T = 0 K. The thermal gas can then be saturated at a lower temperature.

In addition, cooling by spin filtering can be repeated an arbitrary number of times.
Since each cycle leads to typically a factor of two reduction in mean entropy per
atom, we foresee that this scheme could indeed be a way to reach new regimes of
deep degeneracy.
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Finally, one of the interesting pending questions is whether this scheme will help to
remove entropy for BECs loaded in optical lattices. Indeed, even though low entropies
are reached in the bulk, higher entropies are obtained in the lattice. It is accepted
that most of the entropy lies in the superfluid shells surrounding the Mott plateaux
characteristic of the typical wedding cake distribution [183]. If our cooling mechanism
could be extended to be performed in the lattice, it could efficiently remove entropy
and help the system in reaching low spin entropies.

Summary of Part II

In this part of my thesis, I focused my attention on thermodynamics questions. We first
established how the mechanical and spin degrees of freedom can thermalize. We then
analysed the co-evaporation of the fermionic isotope and extracted the scattering length
of the Bose-Fermi scattering length. We then presented two experiments involving a
Bose gas with a spin degree of freedom. We investigated the different dynamics for
thermalization of the spin degrees of freedom and the mechanical degrees of freedom as
a multi-spin component gas was cooled across the phase transition of BEC. Finally, we
proposed and demonstrated a new cooling mechanism where the spin degree of freedom
was used to store and remove entropy from a polarized BEC.

In the following part, we will focus our attention on spin dynamics. We will perform
two experiments where the goal is to observe spin dynamics, due to dipole-dipole
interactions, after our system is prepared out of spin equilibrium.
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Part III

From classical to quantum
magnetism using dipolar particles
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Classical and quantum magnetism

In this chapter, we will first show that a classical behaviour comes when correlations
can be neglected. We then present how cold atoms are a platform to study quantum
magnetism and establish how dipolar interactions may provide an interesting tool to in-
vestigate quantum magnetism. In chapter 7 and chapter 8 we present two experiments
where atoms, prepared in spin excited states, interact via both contact and dipolar in-
teractions. We hope to observe signatures of quantum correlations from the subsequent
spin dynamics. We shall focus our attention primarily on dynamics due to dipolar
interactions, the main originality of our system.

6.1 Classical magnetism of spins in a magnetic field

In the following we will establish the dynamics of N spins interacting in a magnetic
field. Although we will talk about the spin of an atom, which has a quantum origin, the
dynamics will be well described by particles which do not exhibit any spin correlations
and are accounted for by classical equations (as a dipole would be).

6.1.1 One spin

Let us consider the magnetic moment of an atom due to electronic origin. For a spin
s, electron charge qe = −q, and electron mass me:

~µ = −gLandé
q~

2me
︸︷︷︸

µB

1

~
~s (6.1)

with gLandé ≈ 2 the Landé factor and µB is the Bohr magneton. We can define the
gyromagnetic factor γ such as γ = gLandéµB/~.

If the atom is subject to an external homogeneous magnetic field ~Bext, the equation
of motion reads [184]:

d~s

dt
= −γ~s× ~Bext. (6.2)

The spin will precess at the Larmor frequency Ω = γBext which is independent of
the length of the spin. Therefore, the precession rate at high magnetic fields of the
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electronic spin of Chromium atoms or Rubidium atoms (which have different electronic
spin) will be the same.

The potential energy associated to the interaction between a spin and the magnetic
field is given by

E = −γ~s. ~Bext (6.3)

and the associated Hamiltonian is simply:

Ĥ = −γ ~̂S. ~Bext (6.4)

6.1.2 Two spins

Let us consider two classical spins of magnetic moment ~µi in a magnetic field ~Bext. The
evolution of each spin is simply:

d~µ1

dt
= ~µ1 × ( ~Bext + ~B(~µ2))

d~µ2

dt
= ~µ2 × ( ~Bext + ~B(~µ1)) (6.5)

where ~B(~µi) represents the field created by ~µj and felt by ~µi. The field created at a
position ~r′ by a dipole ~µ at a position ~r takes the following form:

~B(~r, ~r′) =
µ0

4π

( |~r − ~r′|2~µ− 3(~µ.(~r − ~r′))(~r − ~r′)
|~r − ~r′|5

)

. (6.6)

This function has the same expression under the permutation of ~r with ~r′ if ~µ = ~µ′ which
is the case if the dipoles are aligned by the external magnetic field. Each dipole therefore
experiences exactly the same magnetic field and will evolve in the same manner. The
two dipoles will therefore precess in synchronization and the total spin of the system
will be conserved in time.

For an inhomogeneous system, for example two dipoles with different moments, each
dipole will precess at different frequencies and the total spin might not be conserved
even for a classical system.

6.1.3 N spins: mean field dynamics

We now extend the reasoning to N spins and adopt a quantum formalism. The Heisen-
berg evolution of the spin operator associated to one given spin reads:

d < Ŝ >

dt
=

i

~
< [Ĥ, Ŝ] >

= < γŜ × ( ~Bext +
∑

i

~̂
Bi) > (6.7)
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with
~̂
Bi the field created by dipole i.

If one neglects correlations in eq.(6.7), the average of the product is then equal to
the product of the averages, then the equation of motion reads:

d < Ŝ >

dt
≈ γ < Ŝ > ×( ~Bext +

∑

i

< B̂i >). (6.8)

Each dipole will precess around a magnetic field given by the sum of the external
magnetic field with the one created by all the other dipoles. We recover a classical pre-
cession equation. This shows that spin dynamics is classical provided correlations are
neglected. In the specific case of a BEC, neglecting correlations allows to approximate
the BEC wavefunction as a product wavefunction and to retrieve the Gross Pitaevskii
equation [23]. One must not be shocked at identifying the GPE to a classical equation
since with the GPE we retrieve the classical Euler equations of hydrodynamics for a
fluid.

6.2 Quantum correlations

Why should we go beyond this mean field approximation? Correlated states are at the
heart of quantum mechanics and to overlook correlations is equivalent to overlooking
some of the most fascinating aspects of quantum mechanics (e.g. entanglement cannot
be understood in a classical way). Over the last decade, both theoreticians and exper-
imentalists have been providing huge efforts towards creating and detecting N -body
correlated systems.

The main approach of our work is to load atoms in an optical lattice and create a
system which will evolve following a Hamiltonian under which correlated states may
arise.

6.2.1 Cold atoms in optical lattices

Cold atom experiments offer a clean and controllable environment. Atoms can be
loaded in an optical periodic potential. The depth of a lattice site, the tunneling
between sites, the dimensionality, and the even disorder can be controlled [110].

Bosonic atoms in a lattice exhibit two distinct regimes separated by a quantum
phase transition: the superfluid and the Mott regime. This phase transition was ob-
served in 2001 in Munich [185] and is considered as the birth of the study of strongly
correlated states of matter using cold atoms in optical lattices.

In the superfluid regime, the interaction strength U between particles occupying
the same site is too weak compared to the atomic kinetic energy (”J” term) to keep
atoms in a given site. Each atom is delocalized over the system and the gas has a global
coherent phase. In the Mott phase, U/J is large enough that each atom is pinned to a
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given site (because it costs too much energy to have two atoms in the same site) and
the gas loses its global phase coherence.

The Hamiltonian associated to cold bosonic atoms loaded in an optical potential is
very similar to the Bose-Hubbard Hamiltonian of condensed matter [110]:

ĤBH = −J
∑

<i,j>

â†i âj +
1

2
U

∑

i

â†i â
†
i âiâi +

∑

i

(Vi − µ)â†i âi. (6.9)

with âi (â
†
i ) the bosonic annihilator (creator) operator applied to site i, and J represents

the hopping of an atom between neighbouring sites. The main difference with the Bose-
Hubbard Hamiltonian of condensed matter is in the third term where the energy offset
between neighbouring sites due to a slowly varying external trapping potential V (x) is
taken into account.

6.2.2 Quantum magnetism

We have not yet addressed the question of how the spin of the atoms organize them-
selves. Do spins prefer aligning themselves with their neighbour or would they rather
anti-align themselves? What are the magnetic properties of Mott insulator systems?
How do interacting spin systems evolve? These are the questions that the field of
quantum magnetism attempts to answer to and in this part of my thesis we will focus
on bringing answer elements to the last of these questions.

Condensed matter systems

Let us first see how magnetism arises in condensed matter systems and consider a 1D
chain of N fermions of spin s = 1/2 which models the behaviour of electrons in a 1D
cristal. For a finite on site interaction U between fermions of different spin states, two
fermions can temporarily be in the same site after one atom undergoes a tunneling
event. There are then two possibilities: (i) the same atom can sucessively tunnel
back, thus leaving the system unchanged, or (ii) the ”other atom” can tunnel. This
is depicted in Fig.6.1. This latter double tunneling event (called super-exchange) is
equivalent to a spin flip of the atom pair. The rate associated to a super-exchange
event is J2

U
and the spin flip is associated to S−

i S
+
i+1 + h.c. operators. The double

tunneling event which does not result in any spin exchange is equivalent to an Ising
term. Thus the total Hamiltonian of the system is equivalent to:

Ĥ =
∑

i

+
2J2

U

(
Ŝ−
i Ŝ

+
i+1 + Ŝ+

i Ŝ
−
i+1

)
+
4J2

U
Ŝz
i Ŝ

z
i+1 (6.10)

which can be cast under the form of the Heisenberg hamiltonian of magnetism:

Ĥ = Jex
∑

i

~̂Si. ~̂Si+1 (6.11)
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J

U

J

Figure 6.1: Cartoon illustrating a spin flip process mediated by super-exchange inter-
actions. The atom in the left site can tunnel to its neighbouring site. Then the other
atom has the possibility to tunnel to left site. This double tunneling process, called
super-exchange, is equivalent to a spin flip process. Image adapted from [186].

with Jex =
4J2

U
(see [186] for an exact derivation using perturbation theory). The super-

exchange process is equivalent to an effective spin-spin interaction. Thus magnetism
arises without any magnetic interaction. This super-exchange mechanism is at the
origin of magnetism in insulators. There are two cases to consider: Jex >0 and Jex <
0. For Jex < 0, the interaction energy of two spins favors them to be parallel. This
corresponds to the ferromagnetic case. For Jex > 0, two spins would rather be in an
antiparallel configuration. This corresponds to the anti-ferromagnetic case.

Cold atoms systems

In cold atom experiments with different spin states, super-exchange mechanisms also
take place. Thus a cold atom experiment can properly engineer the Heisenberg Hamil-
tonian. This is very appealing system to study magnetism with effective spin systems,
with Bosons or Fermions.

Numerical exploration of Fermi-Hubbard model is more complicated than for the
Bose-Hubbard one, and ground state properties for fermions other than for half-filling
(i.e. for an s = 1/2, this corresponds to the situation with one atom per site) are
still not well known. One possibility explored in cold atomic systems, is to prepare
fermions in a lattice and investigate the properties of the Fermi-Hubbard model. The
goal of these studies is to understand the behaviour of electrons in solids. The Graal
would be an explanation of high Tc superconductors. Even though no complete theory
of high-temperature superconductivity exists, it is suggested (see [187] for example)
that the Fermi-Hubbard model may contain its essential ingredients. For an unpo-
larized Fermi gas, J and U are both positive which implies that the ground state is
an anti-ferromagnetic singlet state [188]. This anti-ferromagnetic order is predicted at
temperatures lower than the Néel temperature T < TN for half-filling (which is the
condensed matter equivalent of no doping). Properties away from half-filling remain
unknown. Fig.6.2 shows a sketch of the phase diagram of a high-temperature supercon-
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J
Figure 6.2: Sketch of the phase diagram of a high-temperature superconductor taken
from [190]. At zero doping and low temperatures, they exhibit anti-ferromagnetic
order. As hole doping is introduced, their anti-ferromagnetism disappears in favour of
a superconducting state with high critical temperature.

ductor. However, it is difficult with a cold atom experiment to reach as low entropies
Σ as in condensed matter systems. Indeed, the Fermi temperature TF of a typical solid
is ∼ 10000 K [189]. A condensed matter system at liquid Nitrogen temperature is al-
ready at T/TF < 0.01 (Σ ∝ T/TF ). To my knowledge, the lowest entropy systems with
cold atomic Fermi gases are at best T

TF
=0.05. However, some experiments have started

exploring this anti-ferromagnetic regime by cleverly redistributing entropy within the
system and have observed anti-ferromagnetic correlations [172, 173]. From there on,
the goal is to reach lower entropies deep in the anti-ferromagnetic regime. Then the
filling can be tuned to see if the Hubbard model contains the essential ingredients in
order to enter the superconducting phase. Hence the importance of working on new
cooling method such as the one described in chapter 5.

The Bose-Hubbard model has been intensively studied numerically and most of the
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ground state properties are known. However, out of equilibrium properties are not yet
well understood and it is one of the main interests in loading bosons in a lattice and it
is the interest of the experiments I will present in the following chapters.

6.2.3 Quantum magnetism with a dipolar system

As mentioned above, the effective spin-spin interactions (called super-exchange inter-
actions) give rise to the Heisenberg Hamiltonian. However, it is possible to study
magnetism with a ”real” spin-spin interaction between particles. One approach is to
study interactions between polar molecules. Their induced electric dipole moment be-
ing large, spin exchange processes between polar molecules loaded in a lattice have been
observed [34]. Despite the challenge of producing cold molecules, it is an appealing sys-
tem since one may tailor the relative contribution of the Ising and spin exchange term
of the Hamiltonian. Here in Villetaneuse, we explored Quantum Magnetism driven by
magnetic dipole-dipole interactions between Chromium atoms.

Effective dipolar Hamiltonian

Dipole-dipole interactions create an interaction between lattice sites nearly independent
of the lattice depth. I recall the form of the dipole-dipole Hamiltonian:

Ĥdip =
d2

r3
(1

2
(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+) + Ŝ1zŜ2z

)

− 3
d2

r5

(

Ŝ1zŜ2zz
2

+ (Ŝ1zŜ2−
zr+
2

+ Ŝ1−Ŝ2z
r+z

2
) + c.c.

+ (Ŝ1+Ŝ2+

r2−
4
+ c.c.)

+ (Ŝ1+Ŝ2−
r−r+
4

+ c.c)

)

(6.12)

where d2=µ0/4π(gLandéµB)
2 (µ0 being the magnetic permeability of vacuum, gLandé the

Landé factor, and µB the Bohr magneton) and r is the distance between atoms.
The Hamiltonian has two different types of collisions: collisions which conserve mag-

netization and collisions which do not. Keeping in eq.(6.12) collisions which conserves
transverse magnetization, the dipolar Hamiltonian then has the following form:

Ĥeff
dip =

∑

i,j

d2

|ri − rj|3
(

Ŝz
i Ŝ

z
j −

1

4

(
Ŝ−
i Ŝ

+
j + Ŝ+

i Ŝ
−
j

)
)

[1− 3ẑ2] (6.13)

This Hamiltonian is known as the secular dipolar Hamiltonian in the context of Nuclear
Magnetic Resonance [191]. It shares strong similarities with the Heisenberg Hamilto-
nian: they have the same operators but with different relative coefficients.
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The Heisenberg Hamiltonian describes an effective isotropic spin-spin interaction
between spin 1/2 fermions. Here, the effective dipolar Hamiltonian describes a long
range anisotropic spin-spin interactions between particles. Therefore each atom inter-
acts with all the other atoms. Can magnetism arise in our situation? Also, the ratio
of the coefficients in front of the spin operators are different (we would have +1/2
instead of -1/4). This difference breaks the rotational symmetry of the spin part of the
Hamiltonian. The spin dynamics in a lattice observed in chapter 8 will be attributed
to this ratio difference. Particles may also have a larger spin than 1/2, this leads to
spin exchange dynamics where the population in a given spin state may evolve in time
(whereas no population dynamics takes place for s = 1/2).

Also, large spin atoms have several scattering lengths associated to different molec-
ular potential which, as discussed in chapter 5, leads to contact spin dynamics.

Turning off magnetization changing collisions

Despite the long range character of dipolar interactions, dipolar relaxation is a local
process at the scale of the lattice [87]. The inter-particle distance R

(j)
RD at which a

dipolar relaxation collision takes place is:

R
(j)
RD =

16~

3π
√

m(j × gLandéµBB)
(6.14)

where j denotes which dipolar relaxation canal was used (see subsection 3.1.2). In the
experiments presented in chapter 8, we perform experiments in a lattice with a spacing
RLat = λ/2 = 266 nm. The typical magnetic fields for each experiment is 10 mG and

360 mG. This corresponds to R
(1)
RD(B = 10 mG)= 140 nm and R

(1)
RD(B = 360 mG)=

23 nm.
In the first set of experiment of chapter 8, intrasite magnetization changing collision

are suppressed by setting the magnetic field to a low value such that the magnetic
energy released during a magnetization changing collisions is smaller than the first band
excitation. In an optical lattice, dipolar intrasite magnetization changing collisions
are a resonant process which can be suppressed [192]. In this experiment we have

B = 10 mG, leading to R
(1)
RD(B = 10 mG) < RLat: intersite magnetization changing

collision might not be completely negligible. However the experimental magnetization
is constant over the experimental timescales indicating that intersite dipolar collisions
occur on a longer timescale and can in practice be neglected.

In the second set of experiments of chapter 8, the experiments were performed at
high magnetic field (typically 360 mG). Here, we have RRD << RLat: dipolar relaxation
in a lattice may only occur between particles in the same lattice site. The magnetic
energy released during an intrasite magnetization changing collision is transferred into
kinetic energy. If the kinetic energy is much larger than the trap depth, the pair of
colliding atoms are lost. Therefore, atoms remaining in the trap have only experienced
magnetization conserving collisions and have evolved through Ĥeff

dip . Losses can be
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accounted for in the model independently with a spin dependent loss term. However,
one must be careful when omitting dipolar relaxation events in the manner announced
above since a pair of ms = −3 atoms do not have any dipolar relaxation channels.
Magnetization will then not be exactly conserved during the experiment due to the
fact that ms = −3 atoms are not lost, while atoms in other spin states suffer losses.

6.2.4 Quantum magnetism approach in our laboratory

We are interested in observing quantum correlations created by dipole dipole collisions.
However, spin exchange contact collisions also take place and create correlated states.

In a first set of experiments (see chapter 7), we will load our Chromium BEC in a
double well trap. Each well will be composed of atoms in a stretched spin state, with
the spin of atoms in one well being in the opposite spin state of atoms in the other well,
thus forming two giant dipoles of spin Ns interacting via Dipole Dipole interactions.
The question we address in this part, is whether the magnetic field created by a dipole
of large spin Ns may develop quantum correlations. We will be interested in looking
for violations of the mean field rate equation for precession (eq.(6.8)).

In a second set of experiments (see chapter 8), atoms are prepared in an out-of-
equilibrium spin state and evolve under Heff

dip but also due to contact spin exchange
collisions. These experiments are performed in a lattice with a variable depth, going
continuously from the superfluid regime to the Mott regime. We want to understand if
quantum correlations can develop in a system of bosons (with larger spin) interacting
through a real spin-spin interaction (i.e. Dipole Dipole interaction). The spin excitation
will be performed from two different techniques: (ii) with a tensor light shift which
allows preparation of atoms in spin excited statems = -2 or (ii) with a Radio Frequency
pulse tilting the spin of the atoms. We measure the evolution of population of each
spin state as a function of time (a feature not possible for a s=1/2 system since there
the population in a given spin state is constant in time at constant magnetization).
We study if quantum correlations can take place for such a system, and if there are
any conditions for there appearances.
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Classical magnetism with large ensembles of

atoms

In this chapter, we present the experimental details in order to prepare a double well
trap for our Chromium BEC. We load atoms in the double well trap and prepare the
atoms of one well in the spin state ms= +3 and leave the atoms of the other well in
ms= -3. We have thus prepared two giant spins interacting via DDI. We find that
these giant spins behave as two classical magnets and in practice we observe no spin
dynamics (which we interpret as metastability).

7.1 Introduction

In this chapter we will discuss the implementation of a new trap (referred to as double
well trap) in which we will load two BECs (of N atoms each) where each well can be
seen as a macroscopic object of spin S = Ns, with s the spin of an atom.

In the present experiment, atoms are initially prepared in both wells in opposite
stretched spin states. If we consider atoms of one of the wells, two atoms locally interact
only through the S = 6 molecular potential, and no local contact spin-exchange is
possible (see chapter 3 or [193]). Therefore if the two wells are fully separated no spin
dynamics associated with contact interactions is possible.

Our new trap thus enables us to create a purely dipolar system of two giant spins
of 2N atoms, each interacting only via dipole-dipole interactions.

7.2 A double well trap for spin dynamics

7.2.1 Optical setup

To build a double well trap, we use an interference pattern resulting from the interfer-
ence of two light beams produced by the Verdi1 laser. In order to have a BEC loaded
in just two wells, the size of the BEC must be of the same order as the fringe spacing.
We measure the trapping frequencies of the IR ODT to be

ωx,y,z = 2π(520± 12, 615± 15, 395± 12)Hz (7.1)

1 The same Verdi laser which pumps the Ti:Sa1
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We deduce the following Thomas Fermi Radii (Rx,y,z =
√

2µ
mω2

x,y,z
) for a Chromium

BEC of 104 atoms:

Rx,y,z = (2.5, 2.1, 3.3)µm. (7.2)

The fringe spacing induced by one retro-reflected lattice beams is i = λ/2 ≈ 260 nm.
Since 2Rx,y,z ∼ 20 × i, loading the BEC with one retro-reflected lattice beam would
result in the loading of about 20 wells. We cannot use a lattice beam in order to
produce a double well trap and we therefore set up a new optical path shown Fig.7.1.
We chose to produce the interference pattern from two beams which are separated
spatially by a distance d before being focused by a lens. The lens we use (which
belongs to the PixelFly imaging system) is positioned so that its focal plane matches
the BEC position. The two trapping beams will then overlap at the focal plane and
produce an interference pattern along ~y as shown on the sketch Fig 7.2. The interfringe
spacing is:

i =
λ

2 sin θ
2

. (7.3)

The optical path we use (shown Fig.7.1 and Fig.7.2) imposes that the focal length
of the last lens before the atoms is f = 200 mm. To satisfy i ∼ 2 × Ry ∼ 4.2 µm, we
need θ ≈ 0.12 rad and

tan
θ

2
=

d

2f

→ d = 2.5 cm. (7.4)

To prepare such an optical setup, an incoming beam, coupled through a polarization
maintaining fibre, is split into two parallel beams spatially separated by 10 mm, using a
non-polarizing lateral displacement beam splitter. The beam’s waist is then 1.1 mm and
their power can be varied up to 1.5 W simultaneously. A 2.5 magnification telescope
increases their separation to the desired value of 2.5 cm. These beams then propagate
through a dichroic mirror (with 90% transmission for light at 532 nm) and then focus
on the BEC thanks to the achromatic doublet of focal length 200 mm used for imagery.
One advantage of this setup is that apart from the optical path in the beam splitter,
both beams go through the same optics. This allows for common-mode rejection of
the phase noise. Therefore, we only need to pay attention to phase noise induced by
the beam splitter. It was estimated that a variation of 1 K in the temperature of the
crystal of the lateral beam splitter can induce a phase variation of 2.14 rad between
the two beams [194]. We therefore stabilized the beam splitter in temperature and
obtained a fluctuation of 22 mK over an hour [37, 194].
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y

BEC

f=20 cm

f=12.5 cm

f=-5 cm

Camera

Figure 7.1: Scheme of the optical setup producing a double well trap. An incoming
beam goes through an AOM which allows for control of the beams power, is coupled in
a fibre, then it is split in two beams using a non-polarizing lateral displacement beam
splitter. It is further separated by a 2.5 telescope to reach the separation required,
goes through a mirror which reflects 425 nm light, and is then focused on the atomic
plane by the first lens of the imaging setup described in section 1.4. Image adapted
from [37].

7.2.2 Trap characterization

Loading the double well trap

The double well trap is aligned to form on the position of the BEC in the IR trap.
Once the BEC is produced, we ramp the power of the double well trapping beams to
1.5 W in 100 ms. This time is chosen in order to be as short as possible, but still long
enough that the loading is adiabatic. In Fig.7.3 we show a false color in situ image
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Figure 7.2: Sketch illustrating the interference pattern formed by two co-propagating
beams with an angle θ. Image adapted from [37].

after having ramped up the power of the double well trap, this confirms that we load
two distinct wells.

y

Figure 7.3: In situ absorption image of a the BEC loaded in the double well trap.
Only two intensity maxima are observed which we interpret as that only two wells are
effectively loaded. However there is an unbalance in their population.

Another way to confirm that we indeed load the BEC in two distinct wells is through
the observation of matter wave interferences. Once the atoms are loaded in the double
well trap, we turn off all trapping lights, let the gas expand for a time of flight of 5 ms
and take an absorption image. We observe an atomic distribution with fringes (Fig.7.4).
We interpret these fringes as the result of the interference between two coherent gases
and we conclude that the double well was successfully loaded. As for optical interference
setups, an unbalance in the intensity of the sources lead to a reduction in the contrast
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of the interference pattern. A similar phenomenon takes place here: the fluctuations
in the loading of the double well trap lead to a fluctuation of the observed contrast.
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Figure 7.4: a) Absorption image after a BEC is loaded in a double well trap and ex-
panded for a 5 ms TOF. The image shows a matter wave interference pattern revealing
that the double well is indeed loaded. b) Integration along y of the absorption image,
showing the interference pattern.

Trapping frequencies

We measure the trapping frequencies (by means of parametric excitation) of our double
well trap to be ωx,y,z = 2π(1090 ± 70, 5630 ± 650, 1390 ± 100)Hz for a total 532 nm
light power of 1.5 W. For a given well loaded with 5000 atoms, we deduce a Thomas-
Fermi of Rx,y,z = (2.5, 0.5, 1.9) µm. For 5000 atoms in a well, we calculate the critical
temperature to be Tc= 1.6 µK.

Potential barrier

From the trapping frequencies we can estimate the height V0 of the barrier between the
two wells. The sinusoidal potential V (y) can be approximated as a harmonic potential
around a minimum of the potential since the potential barrier is much greater than the
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temperature T of the gas (V0 >> kBT ). We can then extract V0:

V (y) = V0 sin
2 2π

y

2∆

≈ V0
(
π
y

∆

)2

≈ 1

2
mω2

yy
2

→ V0
kB
≈ 1

kB

mω2
y∆

2

2π2
≈ 6 µK for ∆ = 4µm (7.5)

with ∆ the interfringe spacing.

Trap stability

We noticed fluctuations in the loading of the double wells. To characterize the origin
of these fluctuations, we produced a BEC in the IR ODT and pulsed the double-well
trapping lights at the same time we pulsed the imaging light. An interference pattern is
visible. It arises from the interference pattern created by the two beams of the double
well trap. Atoms which were on a maximum of intensity of the interference pattern
will be shifted off resonance due to the very large light shift of the |7P4 > state. This
large light shift is due to the vicinity of a transition frequency from |7P4 > with the
Verdi light. They will not be sensitive to the imaging light, contrarily to atoms on
a minimum of intensity. For each image, we fit the doubly integrated atomic density
along x and z by the following function:

I(y) = I0 sin(ky + φ)e−
(y−y0)

2

w2 . (7.6)

Here we approximate the BEC spatial distribution by a Gaussian, y0 (w) relates to the
position of the center (the 1/e size of the BEC), k is the spatial frequency associated
to the fringe spacing and φ a phase. Fluctuations of the BECs position will result in a
fluctuation of y0 whereas fluctuations of the relative phase between the two interfering
trapping beams will result in fluctuations of φ. The result of this experiment for 45 in
situ images is shown Fig.7.5. The stability of the position of the fringes is extremely
good, the standard deviation of the fringe position is 100 nm: the phase between the
interfering beams is well defined. From a fit to the Optical Density (inset Fig.7.5) we
can also deduce an experimental value of the interfringe. We measure i= (3.9±0.2)
µm, close to the desired value of 4.2 µm. The stability of the position of the BEC
is poor. The standard deviation of the BEC position is 1 µm. Since the fluctuations
of the BECs position are of the same order as its size and as the fringe spacing, we
understand why the loading of the trap is not reproducible (i.e. the number of atoms
trapped in each of the two wells)2.

2After writing the manuscript, it was pointed out that a non-adiabatic loading may also explain
instabilities.
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Figure 7.5: Double well trap stability. The top curve shows (red triangles) the doubly
integrated optical depth revealing the density distribution. The (blue) full line is a fit
using a Gaussian modulated by a sinusoidal function. From the fitted phase of the
sinusoidal function, we derive a histogram of the position of the central dark fringe,
which is stable to 100 nm. From the center of the Gaussian, we derive histograms of
the position of the atomic distribution, which reveals that standard deviation of the
BEC position is 1 µm (same order as its size).

We interpret the fluctuation of the BEC position resulting from a fluctuation of the
pointing of the IR laser beam from one experiment to another. In order to increase
the stability of the experiment one would need to reduce the pointing fluctuation (for
example with the implementation of a pointing lock on the IR beam).

7.2.3 Spin preparation

Evaporation in the IR ODT produces a BEC in the lowest Zeeman state ms = −3. We
have successfully loaded the BEC in the double well trap and thus have two atomic
ensembles in spin state ms = −3. We are interested in spin dynamics triggered by DDI
between atoms of different wells. To do so we prepare atoms of one of the wells in an
excited spin state, ms = +3, with a Radio-Frequency sweep. A sketch of the initial
state is shown Fig.7.6.
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Figure 7.6: Sketch of the initial state of the experiment. Image adapted from [37].

A magnetic gradient along y

We are able to prepare atoms in ms = +3 by Rapid Adiabatic Passage. To be able to
prepare atoms of only one well in an excited spin state with this method, each atomic
ensemble needs to experience a different magnetic field. This is achieved by applying
a magnetic gradient along the direction of the wells (i.e. along ~y).

At the start of the experiment, the magnetic field at the BEC position is gsµBB/h =200
kHz. The magnetic field is mainly along the y direction. We then apply a magnetic
gradient of gµBb/h=2.5 kHz·µm−1 with the MOT coils. This results in a difference in
magnetic field resonance of approximatively 10 kHz between two wells separated by
∆= 4.0 µm.

Radio-Frequency sweep

After the magnetic field gradient is applied, we perform an RF sweep, whose amplitude
follows a Gaussian temporal profile. Such pulse shaping (similar to the Blackman
window commonly used in atom interferometry [195]) is necessary in order to avoid the
fast frequency components associated with instantaneous turn-on and turn-off of the
RF field, which in practice are sufficient to spoil the selectivity of the RF sweep. With a
5 ms RF sweep, whose span and peak Rabi frequency are 30 and 1.5 kHz, respectively,
we successfully flip the atomic spins selectively in one well, leaving unchanged the
spin of the atoms in the other well. We estimate the efficiency of the sweep to be
approximatively 90 %.
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Turning off the magnetic gradient

No intersite spin exchange dynamics can take place until the magnetic gradients is
turned off. Indeed as long as the magnetic resonance between the two wells are different,
exchange mediated by DDI is then an off resonance process [91]. There is also no intra
site dynamics since atoms colliding through contact interaction are in the stretch state
|s = 3,ms = +3 > or |s = 3,ms = −3 > from which no spin exchange processes may
take place. Thus this system is a purely dipolar system of two giant spins.

Monitoring the spin distribution of each well

To measure the evolution of the different spin populations, we turn off the vertical
trapping beam and use a Stern-Gerlach procedure to separate the different spin states
along the horizontal trapping beam. We apply a magnetic field gradient of 0.25 G·cm−1

with the MOT coils along x. We perform an absorption image using the PixelFly cam-
era (see section 1.4) along the x direction. The details of this procedure are explained
in detail in [37] and briefly in section 1.5.

We show in Fig.7.7 an absorption image taken right after spin preparation (for
t = 0). Atoms on the left correspond to negative ms states, whereas atoms on the right
correspond to positive ms states. The signal asymmetry is due to different efficiencies
in the absorption imaging of the different ms states. The experimental ramps are
summarized in Fig.7.8.

m =  -3 -2 -1 0 1  2  3
S

Figure 7.7: A Stern-Gerlach image taken after an RF-sweep which only addressed the
atoms in one of the wells. The atoms at the left of the picture are atoms unaltered by
the RF. They were at the left-well position, and they remained in ms = −3. Atoms
at the right of the picture have been affected by the RF, because they are in the right
well. The RF sweep has promoted them to ms = +3. We measure populations in spin
states ms 6= ±3. Atoms in ms = +2 are attributed to atoms in the right well having
experienced a dipolar relaxation process. Atoms in ms = −2 are attributed to contact
collisions between ms = −3 atoms from the left well with atoms in ms = +2 originally
in the right well who suffered a dipolar relaxation and crossed the potential barrier
(about 20% of the atoms of the right well have enough energy to cross the barrier).

The Stern-Gerlach image shown in Fig.7.7 was taken after an RF-sweep intended
to only address the atoms in one of the wells. Our interpretation of this image is the
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Figure 7.8: Once a BEC is produced at the end of evaporation in the ODT, we load
the double well trap in 100 ms. We then apply a magnetic gradient so that the Zeeman
energy of each well differs and apply an RF sweep to promote atoms in one well to
|s = 3,ms = +3 >. We then turn off the magnetic gradient. Once the magnetic
gradient is off, spin exchange processes can take place during t ms. We then image the
number of atoms in each spin state through a Stern-Gerlach imaging process. Image
adapted from [37].

following. The atoms on the left of the image are atoms unaltered by the RF. They
were at the left-well position, and they remained in ms = −3. Atoms at the right of
the picture have been affected by the RF (they are in spin state ms 6= - 3), because
they are in the right well. The RF sweep has promoted them to ms = +3.

Following the system preparation, contact spin mixing mechanisms do not take
place, however dipolar spin mixing mechanisms can eventually populate all spin states.
For a dipolar collision, the spin projection of an atom can change at most by ∆ms

= 1. Therefore, for short time evolution, positive ms states originate from the well
where the spin flip was efficient (the right well), while negative ms states originate
from the left well. As long as the population in ms = 0 remains negligible, this Stern-
Gerlach measurement will therefore allow us to study the spin dynamics of each well
separately. In the case the population in ms = 0 is no longer negligible (not the case in
the experiment), a site-selective Stern-Gerlach detection would be necessary in order
to access the spin distribution of each well.

Spin preparation instabilities

As discussed above, our experiment suffers from loading instabilities (resulting from
pointing instabilities of the IR beam) which introduce a fluctuating imbalance in popu-
lation between the two wells. To suppress this instability, we proceeded to a post selec-
tion of the data. We only considered data where measured total magnetization (with no
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correcting coefficients for spin states in ms > −3) verified the criteria M = −0.5± 0.5.
This post selection analysis is justified by the fact that magnetization is conserved
during the dynamics. We therefore are confident to have found a scheme which enables
us to prepare two atomic ensembles of approximatively the same population in two
different wells in two opposite spin states, and that we can monitor the spin dynamics
resulting from this preparation.

It is worth noticing that after such spin preparation we can remove the green light
responsible of the double well trap. This results in a mixture of ms = −3 and ms =
+3 atoms in the IR ODT. The dynamics of such a system, dominated by contact
interactions, was studied in chapter 3.

7.3 Spin dynamics

7.3.1 Metastability with respect to inter-site spin-exchange

We first discuss the spontaneous evolution of the spin distribution after the right atoms
are promoted to the ms = +3 state, and the magnetic field gradient is switched off.

Initial spin dynamics in a fully separated double-well trap is purely dipolar, be-
cause atoms are locally in a stretched state (see section 7.1). For an initial state
|N : L,−3;N : R, 3〉 (corresponding to N atoms in the left well in state ms = −3 and
N atoms in the right well in state ms = 3), two spin relaxation channels are possible
corresponding to dipolar relaxation between atoms in the right well and dipolar spin
exchange between atoms in the left and right well.

Initial fast dipolar relaxation

Let us first discuss dipolar relaxation induced by collisions between ms = +3 atoms
inside the right well. We do observe such phenomena (Fig.7.9 see circled area of density
profile for t= 1 ms).

The density of the atoms in a well of the double-well trap is relatively high. We
have a peak atomic density nBEC

0 = 1.41 1021 m−3 in a well for 5000 atoms. At the
magnetic fields of the experiment (gsµBB/h =200 kHz), this yields a sub-ms dipolar
relaxation collision time:

τDR =
2
√
2

nBEC
0 σ

(1)
dipv

≈ 0.8 ms. (7.7)

Dipolar relaxation is so fast that we cannot resolve its dynamics. Because the energy
released in a dipolar relaxation event (approximatively 3 µK using gsµBB ≈ kBT ) is
smaller than the trap depth, atoms remain in the right well after dipolar relaxation.
The inelastic process thus results in a rapid increase of the temperature of the right
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Figure 7.9: Spin dynamics in the double-well trap. Lower left panel: Absorption image
after the Stern-Gerlach separation demonstrating the spin preparation with opposite
polarization in the two wells. Top left panel: density profiles for increasing hold time
before release and Stern-Gerlach analysis showing the evolution of the spin composition.
Right Panel: Magnetization is almost constant in both wells.

cloud. The initial magnetization in the right well is approximatively 2.5 (Fig.7.9).
We can therefore estimate that the released magnetic energy in the right well for a
magnetic field of gµBB/h = 200 kHz is of the order of

∆E ∼ 0.5× 200 kHz (7.8)

from which we can extract an increase of temperature of

∆T ∼ 1.7 µK. (7.9)

We measure the temperature of the cloud 1 ms after spin preparation to be 3 µK (see
absorption image Fig.7.10), about twice larger than what our calculation gives.

The initial fast dipolar relaxation and temperature increase leads to a fast decrease
of the gas density. We estimate the density at T=3 µK to be:

n0 = N

(
mω̄2

kBT

)3/2

(7.10)

= 6.5× 1019 m−3 (7.11)

with ω̄ = (ωxωyωz)
1/3 the geometrical average trapping frequency. The timescale asso-

ciated to dipolar relaxation is then on the order of 5 s−1 (eq.(7.7) but with a different
value for density): dipolar relaxation practically stops after 1 ms. As shown in Fig.7.9,
the total magnetization (right magnetization and left magnetization) then barely de-
creases for times up to 200 ms.
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mmmmmd mmmmmdBefore spin preparation After spin preparation

Figure 7.10: Absorption image of the gas before and after spin preparation. We measure
a) a temperature of ≈ 400 nK before the RF-pulse (T < Tc)and b) a temperature of
3 µK after the RF-pulse (T > Tc). We attribute the heating to very fast dipolar
relaxation collisions between atoms in ms=+3.

Metastability with respect to dipolar spin exchange processes

The second process which can occur is dipolar spin-exchange between the right and
the left atoms. The magnetic field generated by a single spin s at a position ~r from
the spin location is:

~B(~̂s, ~̂r) =
µ0γ

4π

3~̂r (~̂r · ~̂s)− ~̂s r̂2
r̂5

(7.12)

with γ = gsµB/~ the gyromagnetic factor. The dipolar field BD is in the 30 µG
regime. The external magnetic field Bext = 50 mG, is much larger than the dipolar
field. Classical physics then predicts than the spin evolution is a precession around the
external magnetic field. As the spins are initially aligned with the external magnetic
field therefore classical physics predicts no dynamics.

In quantum mechanics spin-exchange processes mediated by dipolar interactions
are possible. Let us compute the strength of the dipolar spin exchange term which
couples |L : S,−S;R : S,+S > (atoms in the left well in state |S,−S > and atoms in
the right well in state |S,+S >) to |L : S,−S + 1;R : S,+S − 1 > and call this spin
exchange rate Γexc. We have:

~Γexc = sN
µ0

4π

(gsµB)
2

∆3
. (7.13)

For 2N=104 Chromium atoms separated by ∆ = 4.2µm, we find Γexc = 2π×10 Hz, with
an estimated 30% uncertainty, due to the fluctuations on N (20%), and the accuracy for
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the measurement of ∆ (5%). This rate defines a full inversion time (corresponding to
the state |N : L, 3;N : R,−3〉) equal to 140 ms. As shown in Fig.7.9, we do not observe
significant spin-exchange on this time scale: after the initial fast dipolar relaxation, the
populations remain almost frozen in their spin states. We do not observe spin dynamics
although t > 1/Γexc.

We show in the following why the timescale for a full spin inversion (|L : S,−S;R :
S,+S >→ |L : S,+S;R : S,−S >) is much larger than 1/Γexc as N (and therefore S)
is large. The metastability of the spin distribution results from a competition between
exchange interactions and Ising interactions.

7.3.2 Interpretation of spin-exchange suppression

Model for dipolar dynamics between two wells

As explained above, the double well system can be described by two interacting giant
spins. We therefore developed a theory to account for the dynamics observed, where
the spins of the left well interact only with the spins of the right well (and vice-versa)
through dipolar interactions. Within the Heisenberg picture the equation of motion
(for left well spins) reads:

d

dt
~̂sL,i = γ~̂sL,i ×

(

~B0 +
∑

j

~B(~̂sR,j, ~̂ri,j)

)

(7.14)

with γ = gsµB/~ the gyromagnetic factor, and analogously for the spins of the right
well. The magnetic field generated by a single spin at a position ~r from the spin location
is given eq.(7.12).

We define the total spin of the left well as:

~̂SL =
∑

i

~̂sL,i (7.15)

and analogously for the right well (SL = SR = Ns). We obtain two simple equations
of the following form:

d

dt
~̂SL = γ ~̂SL ×

(

B0~uz + ~B( ~̂SR, ~∆)
)

(7.16)

~∆ being the relative position of the two wells (〈~ri,j〉 ≃ ~∆ as ∆ > σ with σ the width
of the atomic cloud).

The second term of eq.(7.16) can lead to time evolutions for the z components of the

total spins,
〈

ŜL,R z

〉

. We do not consider magnetization changing collisions (such as

dipolar relaxation) in our theoretical framework thus the dipolar Hamiltonian reduces
to a form similar to Heff

dip :

Ĥeff
dip =−2

µ0γ
2

4π∆3

(

Ŝz
LŜ

z
R−

1

4

(

Ŝ+
L Ŝ

−
R+Ŝ

−
L Ŝ

+
R

))

. (7.17)
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The case s=1/2

Let us consider the case of a spin 1/2 system where each well is prepared in opposite
spin states. We will consider only magnetization conserving collision (as for the exper-
iment), thus the Hamiltonian of the system reduces to Ĥeff

d . There are four different
configurations to consider:

|L,+1/2;R,−1/2 >, |L,−1/2;R,+1/2 >, |L,+1/2;R,+1/2 >, |L,−1/2;R,−1/2 >
︸ ︷︷ ︸

eigenstates

The two last states are eigenstates of Ĥeff
d and will not drive any dynamics. Let us

write Ĥeff
d in the |L,+1/2;R,−1/2 >, |L,−1/2;R,+1/2 > basis. We find:

Ĥeff
dip = 2

µ0γ
2

4πd3
~
21

4

(
1 1
1 1

)

.

The diagonal terms are the same and the coupling terms are different from zero.
This means that it is possible to have a complete transfer [74] from |L,+1/2;R,−1/2 >
to |L,−1/2;R,+1/2 > through dipolar interactions. We show this result Fig.7.11,
where the magnetization in the left well will oscillate from -1/2 to 1/2 at a rate of Γexc

(and in the right well from +1/2 to −1/2).

The case s=1

Let us now discuss the case of s=1 corresponding to two spins 1/2 particles in each well.
There are now (2s + 1)2 = 9 different possible configurations. Only 3 configurations
are not eigenstates of Ĥeff

d :

|L,+1;R,−1 >, |L, 0;R, 0 >, |L,−1;R,+1 > . (7.18)

In this basis, Ĥeff
d reads

Ĥeff
dip = −2µ0γ

2

4πd3
~
2





−1 1/2 0
1/2 0 1/2
0 1/2 −1



 .

The diagonal terms are no longer equal. We can infer that dipolar interaction has
”more difficulty” to transfer atoms from |L,+1;R,−1 > to |L,−1;R,+1 >. Indeed,
the coupling between |L,+1;R,−1 > and |L, 0;R, 0 > is non resonant [74], the same
can be said between |L, 0;R, 0 > and |L,+1;R,−1 >. Therefore, the transfer from
|L,+1;R,−1 > to |L,−1;R,+1 > is not as efficient as in the s=1/2 case. This longer
transfer time can be seen Fig.7.11.
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Towards larger s

As s is increased with increasing numbers N of spins 1/2 particles in each well, the
coupling between intermediate states (i.e. |L,+ms;R,−ms > to |L,ms − 1;R,−ms +
1 > for an initial preparation |L,+s;R,−s >) is progressively less efficient. Therefore
the oscillation between the extreme spin state is damped, and the exchange process
takes longer and longer times (as shown Fig.7.11). As N is increased, there are more
and more intermediate states, each state being non resonantly coupled to the next due
to the (diagonal) Ising terms which are not equal. Dynamics is inhibited for large spins.

Eq.(7.16) readily shows that the many-body evolution of 2N spins in two traps can
be reduced to the two-body evolution of two giant spins. It can be numerically solved,
and the time evolution of the left magnetization as a function of N is shown in Fig.7.11
for the case where the external magnetic field dominates the dipolar field created by
the atoms of the right well, in which case eqs.(7.16) and (7.17) give identical results
(this condition applies to our experiment as typical values of the external field is 50 mG
and the dipolar field BD is 30 µG). The results in Fig.7.11 show that spin-exchange
due to dipole-dipole interactions between the two wells is strongly inhibited when N ,
and therefore the magnitude of the total spin in each well increases, which is consistent
with our experimental observation (no spin dynamics).

Figure 7.11: Magnetization dynamics in one well for increasing number of particles.
Here we consider spin 1/2 particles; the increasing number of atoms per well create an
increasing local total spin Smax (from 1/2 for one atom per well, to 12 for 24 particles
per well). Magnetization per atom in a given well is plotted as a function of time.
Increasing spin results in almost frozen spin dynamics, therefore reaching a classical
behavior.

A closer look at the quantum model shows that the spin dynamics of N spins in
fact does not completely vanish at short times. We numerically observe spin-exchange
collisions, where two atoms undergo the transition |L,+s;R,−s >→ |L,+s−1;R,−s+
1 >, within a timescale 1/Γexc. However, these collisions do not proliferate, and the
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spins remain roughly locked at their initial positions for extremely long times. The
reason why massive spin-exchange cannot occur is that the Ising term Ŝz

LŜ
z
R of eq.(7.17)

creates an energy barrier that cannot be overcome for large spins, the exchange terms
Ŝ+
L Ŝ

−
R+ Ŝ

−
L Ŝ

+
R being too small. As the size of the total spin increases, the rate for a full

spin-exchange process decreases. We therefore observe in the numerical simulations a
crossover between quantum magnetism and classical magnetism as N , and therefore s,
is increased.

A classical interpretation

Our experimental data is also well accounted for by a classical theory of two localized
interacting magnets of opposite magnetization in a large external magnetic field. In
this case, magnetization dynamics is also completely frozen. Indeed, provided intersite
spin correlations are neglected such that

d < ~S >

dt
=< ~S × ( ~B +

∑

j

~Bj) >≈< ~S > ×( ~B+ <
∑

j

~Bj >), (7.19)

eq.(7.16) reduces to the simple equation of precession of classical magnets (similarly to
what was discussed in chapter 6. Within this classical approximation the orientations
of two classical magnetic moments of opposite directions, each almost parallel to the
magnetic field, are locked. This results from dynamical stability of a system which
is otherwise energetically unstable. Our experimental observations can therefore be
understood within this simple classical magnetism framework.

In our classical model, the length of the spin does not intervene, therefore no matter
the length of the spin we do not expect any spin dynamics. For large spins, the quantum
model also predicts inhibited spin dynamics. However, as the spin is decreased, the
quantum simulation predicts spin dynamics. Thus this experiment provides an example
in which increasing the length of a spin drives the system from quantum to classical.

7.4 Conclusion and outlook

We have experimentally studied a chromium BEC loaded into a double-well trap. The
well separation was sufficient to enable a spin preparation with opposite spin polariza-
tions of the two atomic subsystems. We find that this spin configuration is metastable,
with a lifetime greatly exceeding the timescale associated with dipole-dipole interac-
tions between clouds. This stability arises because dipolar spin exchange interactions
lead to populations of states which are non resonantly coupled to the initial state due
to Ising interactions. The spin dynamics is classically suppressed by the interplay be-
tween exchange and Ising interactions. This classical behaviour arises due to the very
large effective spin realized within each well. In our situation, an increased spin length
leads to reduced spin fluctuations and a classical behaviour.
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Out-of-equilibrium spin dynamics mediated

by contact and dipolar interactions

In this chapter we will discuss two experiments where we observed spin dynamics.
The main difference between the experiments resides in the spin preparation. The
experiments were performed both in the bulk in the superfluid regime and in an optical
lattice deep in the Mott regime. We will compare our data with theoretical mean field
and beyond mean field models. We will to understand how the different regimes and
spin excitations may impact on the creation of quantum correlations or not. These
experiments are preliminary results that we started during my PhD, and S. Lepoutre
and L. Gabardos continued working on while I was writing this manuscript.

8.1 Introduction

In this chapter we will discuss two experiments where we observed out of equilibrium
spin exchange dynamics. The trap and spin preparation are different than those de-
scribed in chapter 7. Here atoms will be trapped in a single well trap or in a 3D
optical lattice. I will start by presenting how we produce the trapping potentials, their
features, and the experimental procedures employed in the experiments. Then, I will
discuss the spin dynamics we observed after atoms are promoted to ms= -2. The spin
dynamics that follows this initial spin preparation was studied as a function of the
lattice depth V0. The data acquisition and the experiment were performed before the
start of my thesis. Here, I will briefly describe the data and present our interpretation
for the observed dynamics which involves a combination of short-range and long-range
interactions. For low lattice depths, when the gas is in the superfluid regime, we ob-
serve that the spin dynamics is well described by an inhomogeneous mean-field theory.
With the help of P.Pedri, I also developed a code simulating the evolution of the initial
state through the Gross-Pitaevskii equation using the Single Mode Approximation.
This approximation fails to reproduce our data which shows that an inhomogeneous
mean field theory is necessary in order to describe our data. Deep in the Mott regime,
mean field theory fails to properly describe our data. We find that the inclusion of be-
yond mean-field effects at the perturbative level is sufficient to provide a quantitative
description of the data.

In the last part of this chapter, I will describe another set of spin dynamics exper-
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iments which the team started at the end of my PhD studies, in the bulk and deep in
the Mott regime. The spin excitation here is performed by a spin rotation induced by a
Radio-Frequency pulse. Based on theory predictions obtained in collaboration with the
group of A.M. Rey from JILA, we expect that such a procedure followed by spin-spin
interaction could lead to quantum correlations for large rotations (i.e. ∼ π/2). Here
I’ll present preliminary results. In the bulk, our data shows spin dynamics sensitive
to the direction of the magnetic field which can be cancelled for a ”magic angle”, in
agreement with a mean field theory. In the lattice, the evolution of different spin states
is compatible with a beyond mean field theory. We are currently investigating what
are the correct theoretical approaches which match best our data.

8.2 Setting up optical lattices

I will start by presenting how we produce a 3D optical lattice and the different exper-
imental techniques performed when operating with lattices.

8.2.1 Optical lattices

A retro-reflected laser beam propagating along the, e.g., y direction of wavelength λ
produces a periodic stationary wave of period λ/2. Like for most optical traps, the
laser beam needs to be focused on the atoms in order to be intense enough to trap
them [152]. As long as the trapping beam is homogeneous over the size of the atomic
sample, the intensity profile experienced by the atoms is:

I(y) ∝ I0,y sin
2(ky + φ) (8.1)

with I0,y the beam intensity, k = 2π/λ, and φ a phase. The associated lattice trap
frequency can be much larger than in for a non retro-reflected scheme. When the
trapping frequency along ~y of the optical potential is greater than the thermal kinetic
energy or the interaction energy of the gas (~ω >> kBT , gn), the motion of the atoms
in that direction is frozen. We refer to such a trap as 2D systems since its motion is
free in 2 dimensions. If two retro-reflected beams are applied in two orthogonal spatial
directions, the atomic motion is frozen in two directions and we refer to these gases
as 1D systems. When a periodic potential is applied in all three spatial directions,
the motion of the atoms is frozen in all directions. Atoms will be regularly spatially
separated from one another thus mimicking a perfect crystal structure. In this thesis
we will only deal with a 3D lattice system.

8.2.2 Experimental setup

Our optical system which produces the 3D optical lattice is illustrated in Fig.8.1. We
use 3 W of a laser Verdi V18 beam (λ = 532 nm) and separate it in two paths by a
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Polarization Beam Splitter. One path is dedicated to the confinement in the vertical
direction, the other path for the horizontal confinement. We dedicate 1 W of light for
the vertical path, and 2 W for the horizontal path.

The vertical beam passes through an AOM1 and is injected in a polarization main-
taining optical fibre2. The beam is collimated with a 1.4 mm waist at the output of the
fibre and passes through a PBS which defines the beam polarization. It is then focused
on the atoms with an f1 = 300 mm lens L1. The waist of the beam at the atom position
is 40 µm. We place a second lens L2 of focal length f2 = 400 mm at f2 from the atoms,
and a mirror at 0 ◦ at f2 from this second lens. This ensures that the reflected beam
and the incoming beam will have their focal point at the same position, and that they
have the same beam mode3. This retro-reflected beam assures the confinement in the
vertical direction. The intensity profile in this direction is given eq.(8.1).

I(y) = I0,y|eiky + e−iky|2
= 4I0,y cos

2(ky). (8.2)

The horizontal beam passes through an AOM4. The difference in frequency shifts
between the horizontal and vertical beams (of 190 MHz) is large enough that atoms do
not feel the mechanical effect from the beatnote. The horizontal beam is then separated
in two beams with equal power for each path. Each horizontal beam is injected in an
optical fibre5. Only one of the two beams is retro-reflected (let us call this beam H1),
the other beam (H2) will intersect with the retro-reflected beam at an angle of 45 ◦ (see
Fig.8.2). The H1 beam is collimated and has a 1 mm waist at the output of the optical
fibre and passes through a PBS which defines the beam polarization. It is then focused
on the atoms with an f = 250 mm lens. The size of the beam at the atom position is 40
µm. A relay system with an f = 250 mm lens retro-reflects the beam. The H2 beam is
collimated at the output of the fibre with an f = 15.4 mm lens and a waist of 1.4 mm.
The beam passes through a PBS and is focused on the atoms with an f = 300 mm
lens. The size of the beam at the atom position is 40 µm. The horizontal confinement
is produced by the interference of 3 non orthogonal beams with the same polarization
and frequency. The potential in the horizontal plane will have the following form:

I(x, z) = |E1(e
ikx + e−ikx) + E2e

ik(x+z√
2
)|2 (8.3)

with Ei the amplitude of the electric field of the beam on path Hi. The horizontal
basis (~x, ~z) (Fig.8.2) is not the appropriate one to account for the trapping potential.

1Model: MT80-A1.5VIS from Opto-electronic; coupling efficiency: 80%, frequency shifted by +80
MHz

2Model: Thorlabs TS0821227PMS460-HP, cut with an angle; coupling efficiency: 70%
3this is often referred to as a ”relay system”
4Model: MT110-A1.5VIS from Opto-electronic; coupling efficiency: 80%, frequency shifted by -110

MHz
5Model: Thorlabs TS0821227PMS460-HP, cut with an angle; coupling efficiency: 70%
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Figure 8.1: Sketch of the setup. 3 W of Verdi light are used for the optical lattices. The
beam is split in two, 1 W for the vertical confinement and 2W for the horizontal confine-
ment. The vertical and horizontal beam go through an Acousto-Optic-Modulator with
different frequency shifts. Then they are injected into optical fibres. Image adapted
from [37].
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Side view:
Vertical Lattice

Top view:
Horizontal Lattice

Figure 8.2: Sketch of the lattice setup. The horizontal lattice is produced by the
interference of 3 non orthogonal beams. One of the beams is retro-reflected. The third
beam intersects these two beams with an angle of 45 ◦. The vertical lattice is produced
by the retro-reflection of a beam aligned close to the vertical direction (there is a 7 ◦

angle between the beam and the vertical axis). Image adapted from [37].

The vectors (~x’, ~z’) constructed by rotation of 22.5 ◦ (i.e π/8 rad) around ~y yield the
following intensity profile:

I(x′, z′) = 2E2
1 + E2

2

+ E2
1 cos

(

2k(z′ sin
π

8
+ x′ cos

π

8
)

)

+ E1E2 cos

(

2kz′ sin
π

8

)

(8.4)

+ E1E2 cos

(

2kx′ cos
π

8

)

.

The periodicity of the potential is of λ
2 cos π

8
∼ λ

2
along x′ and λ

2 sin π
8
along y′.

The alignment of each beam is a two step process. We first align the incoming
beam on the atoms, the retro-reflected beam being blocked (so that we can focus only
on the incident beam). To align the incoming beam on the atoms we produce a BEC
or a thermal gas in the crossed optical dipole trap, turn off the ODT and let the gas
expand for typically 1.5 ms. We then pulse the trapping vertical/horizontal light and
at the same moment we image the atoms while using the vertical/horizontal imaging
system. Due to the large light shift of the |7P4 > state when the beam is aligned on the
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gas, atoms absorb less light of the resonant imaging beam. Once the alignment process
is complete, one must position the lens of the incoming beam so that its focal point
matches the BEC position. This can be done by minimising the size of the atomic
cloud affected by the light shift. When this is achieved, we may pass to step two: align
the retro-reflected beam. To do so, we inject the reflected beam back into the fibre.
Light will then take the same optical path but backwards, and to quantify the retro
reflected beam coupling in the fiber we can measure the power of the beam reflected by
the entrance PBS of the isolator. A benchmark measurement for the retro reflection is
a 100 mW reflected by the second PBS of the isolator (i.e. closest to the Verdi head)
for 1 W at the input of each optical fibre (see Fig.8.1).

Lattice depth calibration

To extract the trapping characteristics of our lattice beams we proceed to measure the
barrier height of each lattice beam. As explained in detail in [196], by pulsing the
retro-reflected light beam on the BEC for a short time before letting the gas expand
(for the case of the non retro-reflected horizontal beam, we pulse the two incoming
horizontal beams), the light pulse transfers quantized momenta to the gas and couples
plane wave states separated by momenta 2~k. Evaluating the transfer of populations to
different momenta orders enables us to characterize the optical depth of the potential.

The result of this procedure on the vertical direction can be seen Fig.8.3. From
the relative population of atoms with momenta k = 0,±2~k,±4~k and a numerical
calculation estimating the relative populations as a function of light pulse time (a
similar protocol as in [197]), we extract from these data V0 = 25 Er for each pair of
interfering beams. At maximum power and alignment, we achieve V0 = 30 Er with Er

the recoil energy. The recoil energy is defined as Er=
~
2k2

2m
≈ h × 13 kHz, where k is

the wavevector associated to the lattice light. It corresponds to the energy increase
associated to the emission of a photon.

8.2.3 Trapping parameters

Trapping frequencies

It is straightforward to extract the trapping frequency in the vertical direction from the
depth of a lattice site since the confinement is produced by one retro-reflected beam:

ωy =
1

~

√

4V0Er

≈ 2π × 135 kHz for V0 = 25 Er. (8.5)

In the horizontal direction it is not as straightforward extracting the trapping fre-
quencies from the potential depth. Here we rely on an experimental measurement.
From a parametric excitation experiment we obtain ωx′ ≈ 175 kHz, ωz′ ≈ 55 kHz for
V0 = 21 Er.
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Figure 8.3: Calibration of the Horizontal Lattice Depth using the Kapitza-Dirac
method. a) Absorption image and optical density of the diffraction pattern associ-
ated to the retro-reflected horizontal beam (H1). b) Absorption image and optical
density of the diffraction pattern associated to the intersection of the two incoming
horizontal beams. In both cases, we shine a light pulse tpulse = 2 µs on the atoms,
then let them expand and imaged using an absorption process. Atoms are successfully
transferred to states of momenta |n~k >.
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Figure 8.4: Evolution of the population of the three first diffraction orders (black:
±p = 0, red: p = ±2~k, green:p = 4~k) calculated for a lattice depth V0 = 25Er as a
function of the lattice pulse time.

Interaction and tunneling energy

In the limit V0 >> Er, Wannier function wi(xi) are an appropriate basis to describe
an atom localized in a lattice site [110].

The tunneling element J between a lattice i with a lattice site j can be estimated
by calculating the overlap of the Wannier functions between sites i and j [110]:

J =

∫

d3xw(x− xi)
∗[− ~

2

2m
∆+ V (x)]w(x− xj)

=
4√
π
Er

(V0
Er

)3/4
e−2
√

V0/Er (8.6)

where V (x) is the optical lattice potential. 4J is the energy width of the lowest band.
The tunneling time τ is then:

τ =
h

4J
(8.7)

≈ 15 ms for V0 = 25 Er along the x or y direction

≈ 100 ms for V0 = 25 Er along the z direction.

In the same manner, one can compute the interaction energy term between two
atoms in the same lattice site:

U =
4π~2

m
aS

∫

d3x|w(x)|4

≈
√

8

π
kaSEr

(V0
Er

)3/4
(8.8)

≈ h× 5.6 kHz for V0 = 25 Er and Er =
~
2

2m
(kxkykz)

2/3
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It is interesting to realize from eq.(8.6) and eq.(8.8), that increasing the lattice depth
reduces exponentially the tunneling time and increases (almost linearly) the interaction
strength.

In the following we will be interested in quantum magnetism, and as discussed ear-
lier in chapter 6, it is the super-exchange interaction which sets the relevant dynamics
timescales. At the deepest lattice configuration, the super-exchange timescale is:

τex =
h

Jex

=
hU

4J2

∼ 20 s. (8.9)

In the deep lattice regime, super-exchange interaction does not play any role on the
experimental timescales we shall study.

Atom distribution

In the Mott phase, the atomic distribution is determined by the competition between
onsite interaction and external potential energy. In the no hopping limit, J/U → 0,
the Bose Hubbard Hamiltonian reduces to the sum of single site Hamiltonian:

H =
N∑

i=1

Hi (8.10)

Hi = Uni(ni − 1) + (Vi − µ)ni. (8.11)

The ground state is obtained by minimizing Hi with respect to the site occupation for
a given µ− Vi. It can be shown [198] that:

n− 1 <
Vi − µ

U
< n (8.12)

minimizes Hi for a site occupation of n bosons per site. The trapping potential is a
slowly varying potential, therefore the numerator varies locally following µ − V (r) =
µ− 1

2
mω2r2 [85] with µ the chemical potential at the center of the trap and ω the trap

frequencies, this means that at the center of the trap there are nmax bosons per site. As
(µ− V (r))/U decreases as we get further away from the trap center, we will be in the
situation where nmax−2 < (µ−V (r))/U < nmax−1 and there will be nmax−1 bosons
per site. And so on until the occupation per site reaches 0. Such atomic distribution
is often referred to as a wedding cake distribution.

It is difficult to be quantitative on the exact distribution we expect since it depends
on the exact form of the potential, and precise waist calibrations are difficult. In a
crude model, we may estimate the maximum number of atoms in order to have only
singly occupied sites NMax

singly. Consider an isotropic lattice filled only with one atom per
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site, and if an extra atom could be added it would be the first doubly occupied site. It
costs the interaction energy U to create a doubly occupied site. Therefore we have:

1

2
mω2R2

1 = U (8.13)

with ω the trapping frequency associated to the slowly varying potential, and R1 the
spatial extension of the isotropic gas. The maximum number of singly occupied sites
can be deduced from:

4

3
π

R3
1

λ
2
λ
2

λ
2 sin(π/8)

= NMax
singly. (8.14)

We can estimate from a depth of 75 Er and a laser waist of 50 µm, that the trapping
frequency along the lattice beam is ωLat ∼ 2π200 Hz. The mean trapping frequency of
the IR is ωIR ∼ 2π × 300 Hz, thus the frequency of the total slowly varying potential
is of the order:

ω =
√

ω2
IR + ω2

Lat

= 2π × 360 Hz. (8.15)

We then deduce R1 = 4.1 µm, so that NMax
singly ∼ 6000 atoms. In the experiment (with

typically 1 to 2 104 atoms loaded in the lattice), we do not expect to have only singly
occupied sites.

This model may be extended to the case of doubly occupied sites. This time we
must consider the gas to be in the situation where an extra atom would result in a
triply occupied site. Let us call R′

1 the radius for singly occupied sites and R′
2 for

doubly occupied sites. At the edge of the trap we have:

1

2
mω2R′2

1 = 3U

U +
1

2
mω2R′2

2 = 3U. (8.16)

The maximum atom number NMax
double for which we can have at most 2 atoms per site is:

NMax
double =

4

3
π
(R′3

1 −R′3
2 )

(λ
2
)3 1

sin(π/8)

+
4

3
π

(
R′

2
λ
2

)3
1

sin(π/8)
× 2 (8.17)

∼ 35000. (8.18)

with R′
1 = 7.1 µm and R′

2 = 5.8 µm. In the experiment we therefore expect to have
doubly occupied sites and singly occupied sites.

To determine the percentage of atoms occupying doubly occupied sites, we per-
formed the following experiment: we load 104 atoms in the lattice in spin statems = −3
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Figure 8.5: Measurement of the number of doubly occupied sites. We load atoms in
the lattice in spin state ms = −3. We perform an π RF pulse in order to promote
atoms to ms = +3. We then measure the number of atoms as a function of the time.
We observe a decrease in atom number until a plateau is hit. We interpret the losses
due to dipolar relaxation between atoms in the same site. We therefore estimate that
40% of the atoms occupy singly occupied sites.

deep in the Mott regime at a lattice depth of V0 = 3× 25 Er. We then perform a ra-
dio frequency pulse in order to transfer atoms from ms = −3 to ms = +3. We then
image the atom number as a function of time (see Fig.8.5). We observe a decrease in
atom number until a plateau is hit. We interpret the losses due to dipolar relaxation
between atoms in the same site. As explained in section 6.2.3, dipolar relaxation is a
local process which can only take place between atoms in the same lattice site. The
kinetic energy released during the experiment is large enough that atoms are expelled
from the trap. From this experiment, we conclude that about 40% of the atoms occupy
singly occupied sites.

8.2.4 Lattice loading

We are interested in transferring atoms from an ODT to the fundamental band of the
lattice. We will perform this transfer adiabatically. The definition of the adiabatic
theorem is the following: ”A physical system remains in its instantaneous eigenstate
if a given perturbation is acting on it slowly enough and if there is a gap between the
eigenvalue and the rest of the Hamiltonian’s spectrum ” [199]. Mathematically this
writes:

dV0
dt

<<
1

h
∆E2 (8.19)
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where ∆E is the difference in energy between the eigenvalue of the system’s eigenstate
with the closest eigenvalue of another eigenstate, and dV0

dt
is the perturbation variation,

which in our case is the trapping potential variation. There are three relevant energy
scales to keep in mind while loading a lattice which we will discuss in the following.

For a lattice experiment, we want to load atoms in the lowest band and we do
not want to promote any atom in excited bands. Here the relevant energy scale is
the energy difference between the fundamental and the first excited bands ∆E. When
loading a BEC (whose spread in momenta ∆p0 → 0 for large atom number) in a lattice
as soon as V0 > 0 we have at all times during the loading ∆E > 4Er [196] which
imposes a loading time τ verifying:

τ >
h

4× Er

(8.20)

> 20 µs.

In practice, band excitation is not a problem in our experiment where the loading time
is in the ms regime. In order to perform a band mapping experiment where Bloch
states are mapped onto momentum states, we must lower the lattice slower than such
a timescale [200].

When loading atoms in a lattice, we need to give atoms enough time to organize
themselves following the Mott distribution. If the lattice was suddenly switched on,
there would be an excess of multiply occupied sites due to the fact that atoms were
not able to rearrange themselves in the trap [185, 201]. The timescale associated to
this adiabacity criterion is 1/U. As one enters the Mott regime, the lattice must be
”organized”. In our experiment, the superfluid to Mott transition was observed at
V0 = 15 Er [37]. To perform an adiabatic loading of the lattice we will need to verify:

τ >> 1/U

>> 100 µs. (8.21)

The third energy scale is associated to global oscillation of atoms in the trap. The
energy scale here is the trapping frequency of the optical trap. The initial trapping
frequency of the ODT ωtrap ranges in the 300 Hz regime. The associated timescale is:

τtrap =
1

~ωtrap

→ τ >> τTrap ∼ 3 ms. (8.22)

This is the dominant timescale for our lattice loading procedure. Experimentally, we
perform a linear ramp of 30 ms to load the atoms. This time is optimized by performing
the shortest loading-unloading sequence allowing to recover a BEC with no discernable
excitations.
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8.2.5 ”Delta Kick cooling”

In the experiments we discuss in the following, the typical timescale for spin dynamics
is the ms. This is a small timescale compared to an adiabatic unloading of the lattice
(which takes approximatively 30 ms). Therefore performing an adiabatic unloading of
the lattice is not an option (despite the benefit of recovering a BEC and more dense
signals).

Suddenly switching off all trapping lights at the end of the experimental sequence
and let the gas expand enables a measurement of the initial momentum distribution.
Indeed, if the size of the gas after TOF is much larger than the initial size of the gas, the
density distribution after TOF is directly mapped to the initial momentum distribution,
which is nothing else than the Fourier transform of the density distribution. When
atoms are loaded in an optical lattice in the Mott regime, the wavefunction describing
a particle in a lattice site is a Wannier function [110]. Deep in the Mott regime, the
Wannier function is close to a gaussian (the ground statewavefunction associated to a
particle in a harmonic trap is a gaussian). The Fourier transform of a gaussian is a
gaussian. The width of the momentum distribution of each spin population is much
larger than in the BEC case, so that we should wait longer times for spatially separating
spin states. A longer TOF results in a less favorable signal to noise ratio. In practice,
we can not perform such an experimental procedure since we then hardly detect any
atomic signal.

To correct for this drawback, we first perform an unloading of the lattice in 100
µs. This time was chosen short enough compared to the spin dynamics timescale, but
long enough to narrow the imaged momentum distribution thanks to better adiabatic
following of the cloud, at least at the start of the unloading ramp. We then perform
a focus of the momentum distribution along the Stern-Gerlach axis, inspired by the
delta kick cooling technique [202]. This technique relies on free expansion of the gas
and a subsequent application of a pulsed potential (referred to as kick) which ”freezes”
the momentum distribution. If the initial gas can be assumed to be a point object,
and the kick can be as short and as powerful as possible, the momentum distribution
can be efficiently frozen. In practice, the initial condition for expansion is far from a
point object and we cannot perform a very powerful kick: we did not achieve freez-
ing of the momentum distribution. However, we manage to significantly squeeze the
momentum distribution along the Stern and Gerlach separation direction with the fol-
lowing sequence: after a time t1 of free expansion we turn on the IR trap (at the same
power as before the free expansion) for a time t2 which applies a force to the atoms.
Experimentally, we find t1 = t2 = 0.7 ms gives an optimal signal to noise ratio. The
experimental ramp and an absorption image with such a technique is shown Fig.8.6.
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Figure 8.6: a) Experimental ramp in order to perform a delta kick cooling like absorp-
tion measurement. b) Absorption images with the corresponding integrated optical
density in (a.u.) demonstrating the importance of the delta kick cooling protocol. For
all images atoms were loaded in a lattice. For the first image we all atoms are in
ms = −3 and we did not perform the shock cooling protocol. For the second image,
we performed a π/2 RF pulse (the spin distribution is given in Table8.1) but no delta
kick cooling protocol. We do not resolve different spin states. On the third image we
performed a π/2 RF pulse and a delta kick cooling protocol. We are able to resolve
the different spin states.
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8.3 Spin dynamics from ms = -2 as a function of

lattice depth

I will start by briefly presenting an experiment performed during Aurélie de Paz’s thesis
[37]. In this experiment, atoms were loaded in the lattice and prepared in an out of
equilibrium spin state. The observed spin dynamics is interpreted as resulting from
contact, dipole dipole and super-exchange interactions. The data is well accounted for
by an inhomogeneous mean field theory at low lattice depth and by a beyond mean
field theory at large lattice depth.

8.3.1 Experimental protocol and data

The experimental protocol is described in detail in [37]. It consists in using a tensor
light shift to prepare a majority of atoms in ms = -2. Then spin dynamics is monitored
as a function of lattice depth V0. We measure, after a variable hold time t, the spin
populations by means of a Stern-Gerlach procedure. A typical evolution for V0 =16
Er is shown Fig.8.7. Only the ms = -3, -2, -1 and 0 spin components are significantly
populated as the system evolves, and they display a rather complex behaviour as a
function of time (see Fig.8.7).

In order to simplify the discussion, we focus our attention onto the observable given
by the ratio n−3/n−2 of ms = -3 and ms = −2 populations, since they are the most
populated components. Experimentally, we find two distinct regimes depending on the
value of the lattice depth. We plot in Fig.8.8a the typical results corresponding to the
two extreme lattice depths (25 Er and 3 Er), showing quite different spin dynamics. In
the Mott phase at short times we observe (< 0.5 ms, see the inset) a strongly damped
oscillation, and then at longer times a second oscillation. In the superfluid phase the
spin dynamics is better described by an exponential. All these features are present in
the data from 3 Er to 25 Er (see [37, 203]). Fig.8.8b shows the measured frequency
associated to the observed fast (black points) and slow oscillations (red triangles).

8.3.2 Physical interpretation at low lattice depth

a) Model

At low lattice depth the gas is in the superfluid phase and we will use the Gross
Pitaevskii equation. This is a mean field description of the gas where the total
wavefunction can be written as the product of N independent wavefunctions with
a mean field interaction. Ψ0(r, t) is the expectation value of the boson field operator
< Ψ̂(r, t) >. In the case of an internal degree of freedom such as the spin, Ψ0(r, t) is a
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Figure 8.7: Measurement of the spin components as a function of time for V0 = 16Er.
Lines are guide to the eye.

complex vector, each component associated to a spin state. For s=3 we have:

Ψ0(r, t) =













α−3(r, t)
α−2(r, t)
α−1(r, t)
α0(r, t)
α+1(r, t)
α+2(r, t)
α+3(r, t)













.

The exact form of the Gross-Pitaevskii equation depends on the spin of the atoms,
and can be found in [155] . For a spin f = 1 atom it writes:

i~
∂αm

∂t
=

[−~2∇2

2M
+ Utrap(r)− pm+ qm2

]

αm (8.23)

+ c0nαm + c2

1∑

m′=−1

F.fm,m′αm′ + cdd

1∑

m′=−1

bm.fm,m′αm′

where c0 and c2 are respectively the spin independent and spin-dependent contact
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Figure 8.8: a) Time evolution of observable n−3/n−2 for two extreme lattice depths
(27 Er and 3 Er) corresponding respectively to the Mott regime and the superfluid
regime. At large lattice depths, we observe at short times a strongly damped oscillation
and then at longer times a second oscillation. For the low lattice depths the spin
dynamics can be described by an exponential. Lines are guides for the eye resulting
from fits. b) Frequency of fast (black points) and slow (red triangles) oscillations. The
black solid line corresponds to spin-exchange frequency associated to intrasite contact
interactions in doubly occupied sites, while the black open circles correspond to a
numerical simulation of Gross-Pitaevskii equation. The red curve is a guide to the eye
for the spin-exchange frequency associated to intersite dipolar interactions between
doubly occupied sites. The blue dot-dashed line shows the prediction in the Mott
regime (see text). The frequency of super-exchange process is given by the green solid
line. Error bars in frequency and amplitude result from the statistical uncertainty in
the fits.



208 8 Out-of-equilibrium spin dynamics mediated by contact and dipolar interactions

interactions, dipolar interactions are described by the term proportional to cdd, M is
the mass, and Utrap is the external trapping potential. F is the spin expectation value:
F =

∑

m,m′ α∗
mfm,m′αm′ . p accounts for the linear Zeeman effect (which can be set

by the magnetic field when magnetization is free or by a Lagrange multiplier when
magnetization is fixed) and q is the quadratic Zeeman effect. b is the effective dipole
field defined by

bν =

∫

dr′
∑

νν′

Qν,ν′(r − r′)Fν′(r
′) (8.24)

where

Qν,ν′(r) =
δν,ν′ − 3rνrν′

r3
. (8.25)

As explicitly shown in eq.(8.23), the last two terms (which are interaction terms) are
responsible for the coupling of different αi(r, t). For example, within the Single Mode
Approximation (i.e. assuming that all spin states share the same spatial dependence
and only spin components vary in time), the evolution due to contact interaction for a
spin 1 gas with p = q = 0 is (here, we only explicit spin mixing terms):

i~α̇−1 = c2[(|α−1|2 + |α0|2 − |α+1|2)α−1 + α2
0α

∗
+1]

i~α̇0 = c2[(|α−1|2 + |α+1|2)α0 + 2α−1α+1α
∗
0]

i~α̇+1 = c2[(|α+1|2 + |α0|2 − |α−1|2)α+1 + α2
0α

∗
−1].

These terms are often called spin-mixing terms, and have already been observed in
experiments [112, 204].

b) Results

P.Pedri’s simulation of eq.(8.23) for a spin 3, where the spatial dependence of the
wavefunction was explicitly taken, show that spin dynamics is roughly twice faster
when dipole-dipole interactions are not included in the simulations. This illustrates
the importance of dipole dipole interactions in the dynamics in the superfluid regime,
even though dipole dipole interactions are much weaker than contact interactions.

With P.Pedri, we developed a mean field model using the Single Mode Approxima-
tion. The spatial dependence was included by spatially averaging the contribution of
each energy term. We find that this approximation fails to account for the dynamics.
We show the results of the simulations with and without including dipole-dipole inter-
actions Fig.8.9. Within the SMA the contribution of dipole-dipole interaction is weak:
due to the anisotropy of dipole dipole interaction it almost vanishes when taking the
spatial average. This is very different to the inhomogeneous simulations.

In P.Pedri’s simulation, as shown by Fig.8.10, we can see that spin dynamics are
inhomogeneous. This inhomogeneous mean field description reproduces well the ex-
ponential trend of the data. This agreement implies that interactions do not create
quantum correlations between particles.
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Figure 8.9: Results of numerical simulations of the Gross-Pitaevskii equation using the
Single Mode Approximation with no lattice on. Evolution of n−3/n−2 as a function of
time with DDI (red) and without including DDI in the simulation (black). In these
simulations, the contribution of DDI is too weak to account for the dynamics.

ddddd

Figure 8.10: Results of numerical simulations of the Gross-Pitaevskii equation without
using the Single Mode Approximation with a lattice depth of V0 = 7Er (simulation
performed by P.Pedri). The graph shows a cut of the density of the atoms in ms = -2
state along a horizontal plane. Clearly, spin dynamics is not homogeneous.
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Figure 8.11: Scheme illustrating the different physical process. a) Intrasite Spin dy-
namics associated to contact interaction in a doubly occupied site. b) Intersite Spin
dynamics associated to DDI between doubly occupied sites.

8.3.3 Physical interpretation at large lattice depth

At large lattice depths, where the strength of interactions have grown, the system is not
superfluid anymore. Spin dynamics in this regime cannot be described by the Gross-
Pitaevskii equation (i.e. a mean field theory) and one has to develop a theory with
correlations to account for the data. We focus on the frequencies of the two oscillations
observed in the Mott phase (see Fig.8.8b).

We interpret the higher frequency as a result of the intrasite spin-exchange dynamics
(| − 2,−2 >→ 1√

2
(| − 3,−1 > +| − 1,−3 >) arising from spin-dependent contact

interactions in doubly occupied sites (see Fig.8.11a). The observed frequency of 3.6±0.4
kHz is in good agreement with the theoretical frequency 4π~

2
√
2m
(a6− a4)n0 estimated at

3.1± 0.5 kHz (see subsection 3.2.2). Here, n0 is the peak density in a doubly occupied
lattice site and is estimated to be n0 ≈ 6.3× 1020 at.m−3, m the atom mass; a6 and a4
are the scattering lengths of the S = 6 and S = 4 molecular channels, respectively.

The lower frequency is associated to DDI between doubly occupied sites of different
lattice sites. This process is described in detail in [203] and schematically represented
in Fig.8.11b. The contribution of DDI to the Hamiltonian is Ĥeff

dip (see eq.(6.13)).
We calculated the time evolution of the population N−2 in the state ms = −2 using
perturbation theory in the Heisenberg picture. The many-body Hamiltonian takes into
account the interaction of one doubly occupied lattice site i with all its neighbors j by
a pairwise DDI. Using a Taylor expansion, the expression of the population in ms =
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-2 reads:

N−2(t) =
∞∑

n=0

Mnt
n (8.26)

The first non vanishing moment is M2 and describes spin dynamics up to second
order of perturbation theory. Explicitly we have [37, 203]:

M2 = −
1

~2

∑

j 6=i

V
(4,4)↔(3,5)
dd (ri − rj)

2. (8.27)

where V
(4,4)↔(3,5)
dd (ri − rj) is the dipolar spin-exchange matrix element < S = 6,mS =

4;S = 6,mS = 4|V̂dd|S = 6,mS = 3;S = 6,mS = 5 > between sites i and j. For

two nearest neighbours we compute V
(4,4)↔(3,5)
dd (λ/2) ≈ h× 100 Hz. From M2, we can

extract an estimate of the spin oscillation frequency:

cos2(πνt) ≈ 1−M2t
2

→ ν =
1

π

√

M2

≈ 200 Hz. (8.28)

The frequency extracted is about twice smaller than the observed spin oscillation
frequency of about 400 Hz. This perturbative approach was applied up to fourth order
to the case of an assembly of doubly occupied sites in a state |S = 6,MS = −4 >. The
result of this calculation increases the frequency by a factor of 2 and therefore shows
good agreement with the observed frequencies obtained deep in the Mott regime.

The interpretation of eq.(8.26) and eq.(8.27) to the case of singly occupied sites
is that an initial many body state Ψini = | − 2,−2, ...,−2 > (where the spin state of
each atom in each lattice site is explicitly written down) is coupled through dipolar
interaction to the following many body state:

Ψfin =
1

√
∑

i<j V
(2,2)↔(3,1)
dd (ri − rj)2

(8.29)

×
∑

i<j

V
(2,2)↔(3,1)
dd (ri − rj)| − 2, ...,−2, i : −1,−2, ...,−2, j : −3,−2, ...,−2 >

where | − 2, ...,−2, i : −1,−2, ...,−2, j : −3,−2, ...,−2 > describes a state where all
lattice site are in spin state ms = −2 except sites i and j which are respectively in spin
states ms = −1 and ms = −3. The rate of coupling between Ψini and Ψfin is given
by eq.(8.28). This many-body physical picture clearly indicates that the initial state
is coupled to a state which shows quantum correlations.

From the good agreement in timescales between our model and the experiments we
suggest that we have quantum correlations in our system.
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8.3.4 Conclusion

Our study described in these paragraphs indicate that beyond mean field effects (i.e.
quantum correlations) only occur in deep lattices. For weak lattices, we find that the
GP equation is able to quantitatively reproduce our data. This dynamics results from
a combined effect of contact and dipolar interaction, and my contribution was to show
that the inhomogeneity of the gas needs to be taken into account in order to understand
the interplay between local and non local forces.

It is in fact not obvious that beyond mean field effects cannot occur without a
lattice (see for example [205]). Inspired by a proposal from A.M Rey, we therefore
decided to modify the way we excite the spins by rotating them. Indeed, as we will
now see, it is predicted that such a procedure followed by spin-spin interaction could
lead to significant quantum correlations and therefore beyond mean field effects, even
without a lattice.
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8.4 Spin dynamics following a rotation of the spins

Following a proposal from A.M. Rey of JILA we decided to investigate spin dynamics
due to dipole-dipole interactions after a rotation of all individual spins. Let us first
compare the effective dipole-dipole Hamiltonian Ĥeff

dip to the Heisenberg Hamiltonian:

ĤHei =
∑

i

~̂Si. ~̂Si+1 (8.30)

=
∑

i

Ŝi,x.Ŝi+1,x + Ŝi,y.Ŝi+1,y + Ŝi,z.Ŝi+1,z

The Heisenberg Hamiltonian is invariant by rotation (in literature this is called SO(3)
symmetry). Therefore if an eigenstate of the Heisenberg Hamiltonian is rotated, it
remains an eigenstate and no dynamics is expected. After spin rotation all the spins

are pointing in the same direction ( ~̂Si = ~̂Si+1 = ~̂S). Since the Heisenberg Hamiltonian

commutes with ~̂S2, < ~̂S2 > is a conserved quantity when the evolution of a system is
governed by the Heisenberg Hamiltonian.

Let us now introduce the following Hamiltonian:

∆Ĥ =
3

2
Ŝ1zŜ2z. (8.31)

We may now write the spin part of the effective dipolar Hamiltonian in the following
way:

Ĥeff
dip = −1

2
ĤHei +∆Ĥ

= −1
2
ĤHei +

3

2
Ŝ1zŜ2z. (8.32)

Ĥeff
dip is invariant by rotation around z but not around another coordinate axis. There-

fore if an eigenstate of Ĥeff
dip is rotated around an other axis than z (around x for

example), we expect dynamics.
In the following I shall present experiments where we observed spin dynamics after

a rotation induced by a RF pulse. Fig.8.12 is a cartoon illustrating the principle of

our experiment. Moreover, Ĥeff
dip does not commute with ~̂S2 (this can be seen from

eq.(8.32)). < ~̂S2 > is therefore not a conserved quantity under the evolution of dipolar
interactions.

The experiments were performed in the superfluid and in the Mott regime. In
the first case, the dynamics is compared to a mean field theory. In the lattice where
interactions are stronger, we expect quantum correlations to form and mean field theory
to break down, so that we compare our results both with a mean field and a beyond
mean field theory. More precisely, A.M. Rey predicts that for θ = π

2
the dynamics

should create quantum correlations and that for θ ∼ 0 dynamics should be accounted
for by a classical mean field theory [206, 207].
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Figure 8.12: Cartoon representing a Bloch Sphere in order to describe the experiment.
At the start of the experiment the collective spin of the gas is aligned with the external
magnetic field. We then tilt the spin by an angle θ (in the cartoon, θ = π/2). The
spin precesses around the magnetic field and spin dynamics occur due to interactions
between atoms. In particular, the total spin can be reduced in which case projection
along z will lead to different output with time.

8.4.1 Initial spin state preparation

The initial out of equilibrium spin state is produced by a RF pulse. In the following I
shall recall general results of a spin in a static field submitted to a RF excitation and
show how it applies for spin 3 Chromium.

A spin in a RF field

Let us consider an atom of spin s in a static magnetic field ~B0 = B0~ez of Larmor
frequency ω0. The coupling between the spin and the magnetic field is γ~s. ~B0 with
γ the gyromagnetic factor. An antenna can produce an oscillatory magnetic field
~B1(t) = 2~

γ
Ω1 cos(ωt)~u with ~u a unit vector representing the direction of the field

created by the antenna. In the following, for the sake of simplicity we will consider
that the field created by the antenna is along the direction ~u = ~ex. The Hamiltonian
of a spin Ŝ in such a field takes the form:

Ĥ = γ ~̂S. ~B0 + γ ~̂S. ~B1

= γB0Ŝz + γB1 cos(ωt)Ŝx (8.33)

This time dependant problem is equivalent to solving an effective Hamiltonian Ĥeff

in the rotating frame around ~z at frequency ω. In this frame, applying the rotating
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wave approximation (in practice valid for Ω1 << ω), it can be shown [184] that:

Ĥeff = (ω0 − ω)Ŝz + Ω1Ŝx. (8.34)

with ω0 = γB0/~ the Larmor frequency and Ω1 = γB1/~ the Rabi frequency. In the
experiments performed in this chapter, we will typically have B0 ≈ 357 mG and a
Larmor frequency of ω0 ≈ 1 MHz

The evolution of the wavefunction is given by the evolution operator:

|ψ(t) >= eiĤeff t/~|ψ(t = 0) > . (8.35)

The probability of finding the spin of the atom in one of the stretched states (i.e. for
s=3 |ms = −3 >z or |ms = +3 >z) oscillates at a period 2π/Ω where Ω =

√

Ω2
1 + δ2

with δ = ω0 − ω the detuning between the Larmor frequency and RF frequency, Ω is
defined as the generalized Rabi frequency.

Starting with |ψ(t = 0) > = |ms = −3 >z this leads to a Rabi Oscillation at a
frequency Ω. We show in Fig.8.13 the magnetization of the gas as a function of the RF
pulse duration. The RF power is tuned so that the magnetization of the gas oscillates
at Ω= 2π× 25 kHz. Magnetization oscillates between the two extreme values -3 and
+3, demonstrating a resonant RF excitation (δ = 0) .
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Figure 8.13: Magnetization along z of the gas as a function of the Rabi pulse for a
resonant excitation (the Rabi oscillation starts at M ≈ 0 because the smallest pulse
time here corresponds to a pulse close to π/2). Solid line is the result of a sinusoidal
fit.

Table 8.1 shows the spin composition of the gas, initially polarized in ms= -3, after
different RF pulse times performed at resonance (δ = 0).

D.C. magnetic field fluctuations lead to fluctuations of the Larmor frequency and
therefore of δ. If the fluctuations in δ are comparable to Ω1, from shot to shot we
can have Rabi oscillations at different frequencies. This destroys the reproducibility
of the RF pulse. We therefore lock the magnetic field (see [178] for magnetic field
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N−3/NTot N−2/NTot N−1/NTot N0/NTot N+1/NTot N+2/NTot N+3/NTot

t=0 1.0 0 0 0 0 0 0
t = tπ/8 0.792 0.188 0.019 0.001 0 0 0
t = tπ/4 0.387 0.398 0.171 0.039 0.005 0 0
t = t0.7π 0.148 0.332 0.312 0.156 0.044 0.007 0
t = tπ/2 0.016 0.094 0.234 0.313 0.234 0.094 0.016
t = tπ 0 0 0 0 0 0 1.0

Table 8.1: Theoretical Relative populations in different spin states depending on the
duration of the RF pulse and for δ = 0

stabilization). Once the magnetic field is locked, we estimate δ ≤ 1 kHz. With Ω1

= 25 kHz, we produce RF pulses with Rabi frequency Ω = 2π× 25 ± 0.02 kHz.
However, other source of noise may contribute: noise in RF amplifier, jitter in the time
sequences,... In total, we estimate experimentally the absolute calibration of the RF
pulse to be in the 10 % level, but the pulse can be reproduced with accuracy at the
percent level.

The frequency of the RF field must be well defined in frequency in order to perform
a well calibrated RF pulse. Since the RF field is turned on for a certain window of time,
there will necessarily be a frequency broadening of the RF frequency. The condition
for a well defined Rabi frequency is ω >> Ω1, then the RF field may oscillate many
times before the end of the RF pulse and limits the broadening in frequency.

Imaging calibration

For the experiment performed in this section, we will compare our data with numer-
ical simulations for each spin state. It is therefore crucial to evaluate correctly the
absolute atom number in each spin state. For each data taking we attribute correcting
coefficients to each spin states. These coefficients are found by performing calibrated
RF pulses. With the knowledge of the total atom number and the relative populations
expected for each Rabi pulse we can deduce the imaging coefficients of the different
spin states. For example, with a Rabi pulse tπ we deduce the coefficient associated
to ms = +3, with tπ/2 we deduce the coefficients of ms = 0 , 1, and -1, t±π/4 yields
the coefficient of ms = ∓ 2 (see Table 8.1). Let λi be the coefficient for spin state i.
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Typical coefficient values are:












λ−3 = 1
λ−2 = 1.1
λ−1 = 1.4
λ0 = 2.2
λ+1 = 4.3
λ+2 = 5.4
λ+3 = 6













.

8.4.2 Spin dynamics in the bulk

The experiment

We prepare a BEC in ms = −3 and apply a magnetic field of 1 MHz along the z
direction. The trap frequencies are νx,y,z = (166,395,235) Hz. The peak atomic density
for N = 104 atoms is n0 = 1.1 × 1020 at·m−3.

We then perform a resonant RF pulse achieving rotation of individual spins with
a Rabi angle ranging from π

8
up to π

2
. We then let the system evolve for a time t

and measure the relative populations in each spin state after a Stern and Gerlach
separation.

In the following I will call z the axis corresponding to the direction of the magnetic
field, that we changed between experiments.

Experimental results

In Fig.8.14 we show the total atom number NTot after a
π
2
RF pulse as a function of

time. We also show the magnetization M of the gas (M =
∑

i
iNi

NTot
) for RF pulses

ranging from π
8
to π

2
. The total atom number decreases rapidly in time. This feature

can be seen for all RF pulses. We will therefore normalize the population of each spin
state by the total atom number. Magnetization remains roughly constant throughout
the experiment.

In Fig.8.15 we show the evolution of the relative spin populations for different RF
pulses. Each color corresponds to a different spin state. For the smallest RF tilt,
barely any spin dynamics takes place (Fig.8.15a). However, when the tilt is increased
(Fig.8.15b and c), we observe increasing spin dynamics.

Losses and conserved magnetization interpretation

We attribute the losses to dipolar relaxation. A pair of atoms in a spin excited states
can collide through DDI and transfer their magnetic energy into kinetic energy. This
process releases 1 or 2 MHz magnetic energy into kinetic energy for the pair of colliding
atoms (depending on the collisional channel, see subsection 3.1.2). We estimate the
depth of our optical potential to be of the order of 20 kHz which is much smaller than
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Figure 8.14: a) Total atom number for a π
2
pulse and b) Magnetization as a function of

t for different RF pulses. We attribute the losses to dipolar relaxation collisions: the
magnetic energy released during the collision is large enough that the pair of atoms
escape from the trap. This argument is supported by the fact that magnetization
remains roughly constant during the experiment.
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Figure 8.15: Evolution of the relative populations in each spin state as a function of
time for different RF pulses: a) π

8
RF pulse, b) π

4
RF pulse, and c) π

2
RF pulse. Each

color corresponds to a different spin state. For clarity, we only show the plots for ms

≤ 0. Spin dynamics is observed for the larger RF pulses.
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the kinetic energy gained by a non magnetization conserving collision. Therefore atoms
remaining in the trap have only experienced magnetization conserving collisions. This
scenario is confirmed by the fact that magnetization is almost constant during the
experiment (see Fig.8.14).

To interpret our data we therefore normalize the atom number in a spin state
by the total atom number and consider only magnetization conserving terms in the
Hamiltonian. The dipolar Hamiltonian then reads:

Ĥeff
dip = Ŝ1zŜ2z −

1

4
(Ŝ1+Ŝ2− + Ŝ1−Ŝ2+). (8.36)

Classical dynamics

As introduced earlier in section 6.1, N classical spins precess around the axis defined
by the sum of the external magnetic field and the field created by all the dipoles.
Experimentally for a trapped system, the local field seen by one atom (created by all
the other dipoles) depends on space due to the spatial inhomogeneity of the atomic
sample. This leads to a inhomogeneous precession. However, locally spins remain
aligned. Therefore, no spin dynamics is expected and we must go beyond this classical
interpretation in order to account for the dynamics.

Contact dynamics

A RF pulse tilts the spin of the gas by an angle θ around the axis defined by the RF
field (which we refer to as ~x in the following). This results in a rotation of the initial
state |ψ0 >= |s = 3,ms = −3 >z:

|ψ(t = 0) > = |s = 3,ms = −3 >θ . (8.37)

In the molecular basis, after the RF pulse a pair of atoms are in state |S = 6,MS =
−6 >θ. This state is an eigenstate of the molecular potential a6 no matter θ. Contact
dynamics therefore does not trigger any extra spin dynamics after the RF pulse.

Dipolar dynamics

The case of dipolar interactions is different. |s = 3,ms = −3; s = 3,ms = −3 >z is
an eigenstate of Ĥeff

dip , however |s = 3,ms = −3; s = 3,ms = −3 >θ is not. Therefore
after the RF pulse atoms are coupled to each other through dipole-dipole interactions
and we can therefore expect the prepared state to evolve.

More precisely, let us perform a change of basis associated to a rotation around ~x
axis by an angle θ. The vectors of the new basis (~ux′ , ~uy′ , ~uz′) can be expressed as a
function of the old basis (~ux, ~uy, ~uz):

~ux = ~ux′

~uy = cos θ~uy′ − sin θ~uz′

~uz = sin θ~uy′ + cos θ~uz′ (8.38)
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We can then express the spin operators of the new basis:

Ŝx = Ŝx′

Ŝy = cos θŜy′ − sin θŜz′

Ŝz = sin θŜy′ + cos θŜz′ (8.39)

and deduce the expressions of the spin rising and lowering operators of the new basis:

Ŝ+′ = Ŝx′ + iŜy′

Ŝ−′ = Ŝx′ − iŜy′ (8.40)

We may now express the effective dipolar Hamiltonian Ĥeff
dip′ after a rotation θ

around the ~x axis:

Ĥeff
dip′ = Ŝ1z′Ŝ2z′

[
cos2 θ − 1

2
sin2 θ

]
+ (Ŝ1+′Ŝ2−′ + Ŝ1−′Ŝ2+′)

[1

8
− 3

8
cos2 θ

]

+ Ŝ1z′(Ŝ2+′ + Ŝ2−′)
[cos θ

2
+
1

2

sin θ cos θ

2

]

+ Ŝ2z′(Ŝ1+′ + Ŝ1−′)
[cos θ

2
+
1

2

sin θ cos θ

2

]

+ Ŝ1−′Ŝ2−′
[3

8
− 3

8
cos2 θ

]

+ Ŝ1+′Ŝ2+′
[3

8
− 3

8
cos2 θ

]
(8.41)

Performing second quantization and applying a mean field approximation, we can
compute the evolution of the different spin states under the influence of Ĥeff

dip′ . The
evolution is given by the dipolar term of the GPE. If we focus on the evolution of spin
state |ms = −2 >θ due to collisions between |ms = −3 >θ atoms we have:

i~
dα

(θ)
−2

dt
∝ (

3

8
− 3

8
cos2 θ)α

∗(θ)
−2 α

(θ)
−3α

(θ)
−3 +

C(θ)
︷ ︸︸ ︷

(
3

8
sin 2θ)α

∗(θ)
−3 α

(θ)
−3α

(θ)
−3. (8.42)

No matter the angle imprinted by the RF pulse, the initial state is the stretched state
|ms = −3 >θ, therefore α

(θ)
−2(t = 0)= 0. Only the last term in eq.(8.42) does not

involve α
(θ)
−2 and will drive the initial dynamics by producing an initial population in

|ms = −2 >θ
6 which will then allow for contributions of the other terms in eq.(8.42).

For the specific case of a π/2 RF pulse, the coefficient C(θ = π
2
) vanishes. No seed in

|ms = −2 >θ is produced and mean field theory predicts no dynamics. This seed could

6commonly called ”seed”
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be produced by quantum fluctuations and/or beyond mean field effects. However, the
seed which could trigger dynamics for the π/2 RF pulse (Fig.8.15c) has a less appealing
origin. The initial population in |ms = −2 >θ could be actually produced by another
term in the Hamiltonian, the quadratic light shift term. In addition, the presence of a
residual magnetic gradient has to be taken into account. We are currently investigating
the impact of a quadratic term and magnetic field gradient on the dynamics.

After investigating a number of magnetic field directions (presumably associated
to different values of the quadratic shift q) we found a direction of the magnetic field
with no observed spin dynamics (see Fig.8.16). We checked that no magnetic gradient
is present (by comparing the ballistic expansion of an ms = −3 gas after turning off
trapping potentials to the one of ms = +3). The absence of any dynamics testifies that
the quadratic shift is then small. Therefore, to the best of our knowledge at the time
of this writing we make the following statement: when no quadratic term is present
nor any magnetic gradient we find no dynamics.
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Figure 8.16: Evolution of the relative populations in each spin state as a function of
time for a π

2
RF pulse for a different magnetic field direction than for Fig.8.15. We do

not observe any magnetic gradient. The absence of any dynamics, in agreement with
a mean field theory with no quadratic light shift term, indicates that q is then small.

Purely dipolar dynamics?

For the magnetic field direction where we do not observe any magnetic gradient and
inferred a small value of q, we do not expect any dynamics due to contact interactions.
Atoms interact through the S=6 molecular potential. And as discussed above, for the
specific case of π

2
pulse, we do not expect any dipolar dynamics. However, for any other

angle of RF pulse, we expect the initial dynamics to be exclusively due to dipole-dipole
interactions.
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We performed a π
4
pulse experiment for the magnetic field direction where the

magnetic gradient is small and q is inferred to be small. The result of this experiment
is shown Fig.8.17. We can see ”large” spin dynamics. The full lines are mean field
simulations performed by K.Kechadi and P.Pedri, which agree well with the data for
short times.
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Figure 8.17: Evolution of the relative populations in each spin state as a function of
time for a π

4
RF pulse with the magnetic field along the direction which cancelled

dynamics for the π
2
RF pulse . The full lines are mean field simulations (performed

by K. Kechadi and P. Pedri) where q = 0 is assumed. Simulations confirm that initial
dynamics are purely dipolar.

This dynamics is in principle triggered by dipole-dipole collisions. As discussed
above, simulations performed for π

4
pulse with qz = 0 Hz and without any dipolar in-

teractions show no dynamics. After the initial dipolar dynamics, then contact collisions
may play a role. This is being investigated by Kaci Kechadi. For the moment, the
general trend is well described by mean field Gross Pitaevskii equations.

In the following section we will perform similar experiments but in a strongly in-
teracting regime by loading atoms in an optical lattice.

8.4.3 Spin dynamics in the lattice

In the previous section, we saw that no spin dynamics occurs after a RF pulse provided
there are no magnetic field gradients nor quadratic light shift. In a lattice, we should
have the advantage of not being sensitive to contact interactions in singly occupied
sites. Also, eq.(8.42) illustrates the importance of a seed in |ms = −2 >y (i.e. for a π/2
pulse). In the BEC case Bose stimulation helps defining a most populated mode and
strengthens mean field approximations. In the lattice case, number occupation is close
to 1 and Bose stimulation has a less important role, which helps quantum fluctuations
drive the dynamics. We will therefore load atoms in the lattice and reproduce the same
experiment. The lattice characteristics were presented in section 8.2.
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The experimental protocol is the following: we prepare a BEC in |ms = −3 >z and
load atoms in an optical lattice in the Mott regime with a lattice depth of V0 = 25
Er along each axis. In this regime, our atomic distribution follows the wedding cake
distribution with a core of doubly occupied site surrounded by a shell of singly occupied
sites. Typically 60% of our atoms are in doubly occupied sites. We apply a magnetic
field of gsµBB/h =1 MHz along the z direction. We then perform a resonant RF pulse
implementing spin rotations from π

8
up to π

2
. We then let the system evolve for a time

t, and then measure the relative populations in each spin state with a Stern-Gerlach
sequence.

Results

In Fig.8.18 we show the total atom number NTot as a function of time along with the
magnetization of the gas after different RF pulses. The total number of atoms decreases
in time with two distinct regimes7. For the π/2 experiment shown here, the total atom
number is strongly reduced within the first 5 ms by more than 50%. At larger times
such fast losses cease, and the total atom number undergoes a much slower decrease.
The magnetization of the gas is slightly lowered for increasing times. We observe that
the larger the RF pulse the more magnetization decreases in time.

Fig.8.19 shows the spin dynamics resulting from this experiment for different RF
pulses. For small RF pulses, we hardly observe any dynamics. As we increase the RF
pulses, the trend of the evolution of population in different spin states is more and
more evolution with larger amplitudes.

8.4.4 Interpretation

After the RF pulse, doubly occupied sites are in |S = 6,mS = −6 >θ and singly
occupied sites are in |s = 3,ms = −3 >θ.

Losses interpretation

Again, we attribute losses to dipolar relaxation collisions. The depth of the optical
potential is estimated to be V0 = 3× 25 Er ∼ h × 0.975 MHz. This indicates that
a pair of atoms which undergo a dipolar relaxation event will leave the trap and will
result in losses as can be seen in the experiment (see Fig.8.18) as the magnetic field is
gsµBB/h = 1 MHz (future experiments should raise the magnetic field to increase the
validity of our statement). However, contrarily to the case in the bulk, the total atom
number stops diminishing after approximatively 5 ms. We interpret this as the moment
when the system does not contain any doubly occupied sites anymore. Despite the fact
that DDI are long-range, dipolar relaxation at gsµBB/h = 1 MHz are short-ranged as

7These two regimes are observed for all RF pulses. Here, for clarity, we show only the result of the
π/2 experiment.



8.4 Spin dynamics following a rotation of the spins 225

8000

7000

6000

5000

4000

3000

252015105

Time t (ms)

T
o
ta

l A
to

m
 N

u
n
m

b
e
r

a)

-2.5

-2.0

-1.5

-1.0

-0.5

0.0

M
a

g
n

e
ti
s
a

ti
o

n

252015105

Time t (ms)

/2π

0.35 π

/4π

0.3 /2π

b)

Figure 8.18: a) Total atom number for a π
2
pulse and b) magnetization as a function

of t for different RF Pulse. We attribute the losses to dipolar relaxation collision in
doubly occupied sites: the magnetic energy released during the collision is large enough
that the pair of atoms escape from the trap. This argument is supported by the fact
that magnetization remains constant and losses are suppressed after t ≈ 5 ms.
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Figure 8.19: Evolution of the relative populations in each spin state as a function of
time for different RF pulses and a lattice depth of V0 = 25 Er. From top to bottom
the RF pulses are a) π/8, b) π/4, c) π/3, d) π/2. For clarity, we only show the plots
for ms ≤ 0. For each spin rotation, we observe spin dynamics.
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discussed in section 6.2.3. At such magnetic fields, the typical inter-particle distance
RRD at which a dipolar relaxation collision occurs is RRD = 23 nm, which is much
smaller than the distance between two lattice sites. A dipolar collision event can only
take place between atoms in the same lattice site. Thus only doubly occupied sites
may suffer from dipolar relaxation collisions. When all the doubly occupied sites have
experienced a dipolar relaxation collision, the total number of atoms ceases to decrease.
Thus, there are two distinct regimes. For times shorter than 5 ms we interpret our
dynamics as resulting from doubly and singly occupied sites, whereas for t > 5 ms
dynamics results from interactions between singly occupied sites.

In our model, we will again neglect magnetization changing collisions, which is
justified by the fact that magnetization is roughly constant during the experiment.
Nevertheless, as the losses are spin dependent, their influence cannot be neglected in
the first 5 ms. Therefore this model is well suited to account for the dynamics only
after the first 5 ms.

Doubly occupied sites dynamics

The dynamics of doubly occupied sites can, a priori, arise both from contact and
dipole-dipole interaction.

Similarly as in the bulk, contact interactions cannot trigger any spin dynamics.
After the RF pulse, the doubly occupied site is in spin state |S = 6,mS = −6 >θ which
is an eigenstate of the molecular potential a6. However, dipole dipole interactions
and the quadratic Zeeman effect will couple |S = 6,mS = −6 >θ to other molecular
states which triggers spin exchange due to contact interactions. The dynamics due to
doubly occupied sites is somehow complicated. However, as discussed above, doubly
occupied sites suffer from dipolar relaxation collisions and will rapidly be lost. This
simplifies the analysis of our data in the sense that when the total atom number
hits the plateau (t ≥ 5 ms), we are only left with singly occupied sitess which do not
experience any spin exchange due to contact interactions. Fig.8.20 illustrates these two
experimental regimes: Fig.8.20a represents the beginning of the experiment where we
have a doubly occupied core surrounded by singly occupied sites; Fig.8.20b corresponds
to the experiment after 5 ms where atoms in doubly occupied sites have been lost.

Singly occupied sites dynamics

Singly occupied sitess cannot interact via contact interactions. Their dynamics will
result from dipole dipole interaction. DDI will drive intersite spin dynamics and may
create quantum correlations through collisions. For example, we can have

|s = 3,ms = 0; s = 3,ms = 0 >z → 1√
2
(|s = 3,ms = 1; s = 3,ms = −1 >z

+ |s = 3,ms = −1; s = 3,ms = 1 >z) (8.43)

collisions, which is a correlated state.
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a) b)

Figure 8.20: Fig.a represents the beginning of the experiment where we have a doubly
occupied core surrounded by singly occupied sites; Fig.b corresponds to the experiment
after 5 ms where atoms in doubly occupied sites have been lost.

Tunneling dynamics

At V0 = 25 Er, the tunneling time is estimated to be approximatively 15 ms (eq.(8.7)).
However as discussed in chapter 6, it is the super-exchange energy which sets the
timescale for dynamics in the Mott regime. The super-exchange timescale exceeds one
second: we may safely assume that over the experimental time there are no super-
exchange events.

8.4.5 Theoretical model

The theoretical model I will briefly discuss here was developed by our collaborators
A.M. Rey, J. Schachenmayer, and B. Zhu from JILA. Since dynamics induced by doubly
occupied sites is complex, they focused their analysis on the dynamics produced solely
by singly occupied sites (i.e. for t > 5 ms). They considered an initial state different
than our experimental initial state, but which gives the same spin distribution as in
the experiment at t = 5 ms.

They used the Truncated Wigner Approximation (TWA) in order to simulate dy-
namics [208]. The idea of the method is to generate an ensemble of classical fields
which give the initial spin with its flucutations. For each initial configuration, the
mean field dynamics is then calculated. The values obtained for spin populations re-
sult from averaging over different runs. In this approximation, all the ”quantumness”
lies in the initial state. There is a priori no justification in using this approximation.
However, our collaborators checked that this model gives similar results than exact
diagonalization of a plaquette of 3 × 2 spin 3 atoms. Moreover, the dynamics being
performed by mean field equations, it is considerably less time consuming than exact
diagonalization. With this method, simulations with a few 102 atoms can be performed
(5 × 5 × 5 plaquette).

As in the bulk case, the only free parameter are the values of the quadratic light
shift and magnetic gradient. In particular, they are investigating the impact of these
effects on the observed dynamics. The analysis is still at an early stage. More analysis
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and data taking will be necessary to discriminate whether our data agrees best with
the beyond mean field TWA model or the mean field GP model.

8.4.6 Prospects

Spin dynamics accross the Mott to superfluid transition

Once qz can be cancelled, it will be interesting to study spin dynamics triggered by
a RF pulse across the Mott to superfluid transition. Similarly to what was done in
section 8.3, it would then be interesting to see if we observe or not a similar mean field/
beyond mean field transition by taking data at intermediate lattice depths.

A particularly appealing configuration would be to perform a large RF pulse (∼
π/2) with the atoms loaded in an intermediate lattice depth regime. In this regime, it
would be interesting to see if quantum correlations may arise due to contact, dipolar
and super-exchange interactions.

It has been stressed above that for a homogeneous system classical dynamics is
characterized by the fact that the total spin S is constant. A change in S may there-
fore characterize the departure from classical magnetism. Close to the Mott transition,
changing the total S of a pair of atoms costs ∆ = J2/US−J2/US−2 with US the interac-
tion strength for particles interacting through the molecular potential S. This process
is allowed for ∆ < Vdd. One may then expect an interplay between super-exchange and
dipolar interactions close to the Mott transition. It would be also very interesting to
perform experiments in this regime because there are no available theoretical models.

Tuning the strength of dipolar interactions

As mentioned in subsection 3.1.2, the spatial part of the dipolar Hamiltonian is pro-
portional to (1− 3ẑ2), with ẑ the normalized axis between the magnetic field and the
dipoles. Due to the anisotropy of the lattice, the importance of the dipolar interaction
could be tuned by changing the direction of the magnetic field.

Getting rid of doubly occupied sites

As mentioned above, the initial dynamics in presence of doubly occupied sites is com-
plicated for simulations. The team is now performing an experiment with no doubly
occupied sites. This is achieved by performing a π pulse once the atoms are loaded
in the lattice. Then only doubly occupied sites are lost through dipolar relaxation
processes. Then another RF pulse is performed to rotate the spin and observe spin
dynamics due to singly occupied sites only.
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8.4.7 Conclusion

Establishing quantum correlations in an atomic ensemble is not trivial. Here we mea-
sured spin dynamics in a BEC following a spin rotation. These dynamics can be
accounted for by a mean field calculation. A possible interpretation is that interac-
tions in the bulk are too weak to create any correlations and thus mean field theory
prevails. We then loaded atoms in the lattice in order to selectively increase the role of
dipolar interactions. We measured spin dynamics. Preliminary comparison with theory
indicate that we have a (weakly) correlated system, although we are still investigating
the impact of magnetic field gradients and quadratic light shits on the dynamics.

To go further in our measurements, we could measure population fluctuations in
each spin state (for example < n2

−3 > - < n−3 >
2). Combined with measurements of

spin populations in a different basis, we could perhaps violate an inequality serving
as an entanglement witness. However, finding the appropriate entanglement witness
for our system is not trivial and is the subject of a collaboration with P.Millman and
T.Coudreau of University Paris 7.

Another possibility would be to measure the total spin of the gas. Indeed the length
of the transverse spin S⊥ should be reduced due to beyond mean field effects [209]:

S⊥(t) =
︸︷︷︸

t→0

S⊥(t = 0)

(

1− t2( ∆B2
︸︷︷︸

Variance of mean field

+
1

N

∑

V 2
ij

︸ ︷︷ ︸

Beyond mean field effects

)

)

. (8.44)

S⊥(t) could be measured by performing a π
2
pulse at the end of the experimental

sequence, just before the imaging process and varying the phase of the two relative π/2
pulses. However this measurement needs a very good calibration of the detectivity of
each spin state.
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Let us summarize the main results of this thesis.

• Production of a 53Cr Fermi sea: we optimized the loading of fermionic atoms
in an Optical Dipole Trap and then performed combined evaporation with the
boson. This produces a 53Cr Fermi sea at T/TF = 0.66 ± 0.08 with up to 103

atoms. Analysis of the evaporation sequence enabled us to extract the value of
the inter-isotope scattering length aBF = 80± 10aB.

• Study of the competition between Bose Einstein Condensate and spin dynamics:
we prepared a thermal multi-spin component gas and rapidly cooled the gas
across the Bose Einstein phase transition. We observe that BEC in spin excited
states are difficult to produce because the increase in density due to condensation
triggers fast spin exchange dynamics which deplete the condensates because not
all spin states have a saturated thermal gas.

• Demonstration of a new cooling mechanism using the spin degrees of freedom to
store and remove entropy from a ferromagnetic BEC. Although the temperatures
obtained in our experiment are not record breaking, the reduction of entropy
is significant and the gain in phase space density in principle diverges for low
temperatures. We propose that this experiment could be applied to non dipolar
species where extremely low entropies could be obtained. It is relatively hu-
moristic to think that this experiment was thought for and demonstrated with
Chromium, but Chromium actually seems to be one of the species where our cool-
ing mechanism is the most limited in temperature and the hardest to perform in
the laboratory.

• Preparation of atoms in a double well trap, atoms of each well prepared in op-
posite spin states. The experimental system can be described by two giant spins
interacting via dipole-dipole interactions. We found that these giant spins be-
have as two classical magnets and in practice we observe no spin dynamics. We
took advantage of such a spin preparation, and merged the two wells of the trap.
We elaborated a model to account for the observed spin dynamics. We deduced
the scattering length a0 = 13.5 ±15

10 aB with aB the Bohr radius. The value of
the scattering length has profound significance for the ground state properties of
Chromium, which is then expected to be cyclic. It will be interesting to see if
this phase at low magnetic field can be obtained.
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• Spin dynamics with and without lattice due to dipole-dipole and contact inter-
actions. The goal is to understand and try to observe how quantum correlations
may appear in our system.

Let us now outline a few possibilities for future research on the experiment.
The production of a dipolar Fermi sea will provide a new tool for the team to study

magnetism. Due to the relatively high temperature of the gas, bulk effects due to
Fermi-Dirac statistics are out of reach. However in a lattice, the relevant energy scale
is not the Fermi energy but the recoil energy. We should then be able to succesfully load
atoms in the lowest energy band. Dipolar fermions in a lattice will be an exciting avenue
to explore out-of-equilibrium effects associated to spin dynamics. Then, phenomena
where transport and magnetism are coupled could be observed.

We performed an experiment where a thermal multi-spin component gas was rapidly
cooled across the Bose Einstein Condensation phase transition in presence of interac-
tions. We understood the physical processes at stake in order to produce a BEC in
several spin states. This work could stimulate further theoretical and experimental
studies concerning the condensation of atoms with a spin degree of freedom, in partic-
ular to better understand the observed magnetization fluctuations and how they may
relate to symmetry breaking.

Finally, at the end of my PhD we performed out of spin equilibrium experiments in a
single well trap or in a 3D optical lattice. The spin excitations is performed by rotating
the spin with use of a radio frequency pulse. We present here preliminary results. We
are currently investigating what are the correct theoretical approaches which match
best our data. The possibility that entanglement may spread in our lattice system is
exciting, and this question (along with how we could reveal entanglement) is expected
to be one of the central subjects in Lucas Gabardos’ thesis.

This concludes my thesis, which is just one more chapter in the Chromium story
and I await the next chapter with excitement!
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The χ2 test

The χ2 test gives a criterion for verifying, on probabilistic grounds, the consistency of
a theoretical hypothesis with a set of experimental data. In this annexes, we present
how we applied the χ2 test to extract the experimental value of the scattering length
through the S=0 molecular potential a0

We simulate dynamics using eq.(3.49) for different values of a0. For each value of
a0 we have a certain χ

2, which for the moment can be considered as a merit function
and compares how likely the model describes the data. We consider the optimal value
of a0 as the one minimising χ

2.
In our experiment, we consider that fluctuations follow a normal distribution.

Therefore, the probability that an experimentally measured value x̄i of uncertainty
wi at a time ti is at a distance x̄i − xi of the theoretical value xi given by the model
follows:

P (xi) =
1

√

2πw2
i

exp[−(x̄i − xi)
2

2w2
i

]. (9.1)

For N independent abscissa points, the combined probability is:

PTot =
N∏

i=1

P (xi) (9.2)

The model which best fits the data will be the one with the closest values of x̄i and xi,
and will therefore maximize PTot. This is equivalent to minimizing:

χ̃2 =
χ2

N
=

1

N

N∑

i=1

(x̄i − xi)
2

2w2
i

. (9.3)

In our analysis, χ̃2 is a function of a0. The minimum of this function, χ̃2
min, corre-

sponds to the value of a0 for which the simulation and the experimental data are the
closest, therefore the most probable value of a0 according to our model.

Now that the optimal value of a0 is found, we make a theoretical hypothesis that the
value of a0 which minimizes χ

2 is the ”real” value of a0 set by nature. The theoretical
value of each experimental point yi can be determined. The experimental values ȳi can
now be thought of as random variables distributed around yi. As a consequence, χ̃

2 is
also a random variable. The probability distribution of χ̃2 is well known in statistical
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theory ([210] or [211]) and it evaluates the probability of obtaining χ̃2 values larger or
smaller than the value actually obtained by the experiment. It can be shown, that the
χ̃2 distribution for one fitting parameter is the same distribution as that of the square
of a single normal distribution. One finds that statisically a value of χ̃2 smaller than
χ̃2
min+1 happens 68.3 percent of the time. A value of χ̃2 smaller than χ̃2

min+4 happens
95 percent of the time. This fixes the statistical uncertainties on a0.

To conclude, the optimal value of a0 will be given by χ̃
2(a0)=χ

2
min, and the statistical

uncertainties ∆a0 by χ̃
2(a0 ±∆a0)=χ̃

2
min± 1 for a 68.3% confidence level.
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Spin filtering a BEC: inclusion of

interactions

In the thesis, we developp a non interacting model to describe the data. The following
annexes describes the model when interactions are included. Having not participated
to this model, the following is extracted from the Supplementary Material associated
to the Spin Filtering paper.

In the main text we have developed our theoretical treatment based on the thermo-
dynamics of non-interacting bosons, which provides good agreement with our experi-
mental data with 52Cr. However the temperatures that we have been able to study are
limited to 0.5 times the critical temperature. One might wonder whether our cooling
scheme remains as efficient as predicted by our non-interacting model at extremely low
temperatures.

In this Supplemental Material we use Bogoliuobov theory, and show that interac-
tions between atoms do not deteriorate our cooling scheme, but in fact make it more
efficient.

We consider a spin 1 BEC in a polar state, and calculate the reduction in entropy
that can be achieved with one cooling cycle, when taking into account the interactions.
We assume an homogeneous gas trapped in a volume V ; while this hypothesis leads to
considerable simplifications for calculations compared to the trapped gas case, it does
allow an estimate of the effects of interactions at low temperatures.

10.1 Description of the calculations

As the BEC is polar, there is only Bose Einstein condensation in the absolute ground
state ms = 0 [155]. In the initial state, the initial temperature Ti is low enough that
there is a condensed fraction. The quadratic effect qi is large enough to ensure that
there are only thermal excitations in ms = 0. In the final state the quadratic effect is
lowered, and qf ensures thermal population of the excited spin states ms = ±1. The
filtering process is then performed in order to selectively get rid of atoms in ms = ±1.
We first determine the final temperature Tf , assuming energy conservation. Then the
entropy per atom after spin filtering is compared to the initial entropy per atom.
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10.1.1 Energies

Explicit formula for the Bogoliubov energy excitation spectra of a polar spin 1 Bose
gas are given in reference [155]. An important result is that the mode correspond-
ing to ms = 0 is decoupled from the other two modes which are degenerate and
correspond to quasiparticles containing ms = ±1 excitations. Energy spectra are
E0(k) =

√

ǫk(ǫk + 2c0n) and E±1,q(k) =
√

(ǫk + q)(ǫk + q + 2c1n), with ǫk = ~
2k2/2m,

c0 =
4π~2

3m
(a0 + 2a2), c1 =

4π~2

3m
(a2 − a0), m the mass of one atom, and q the quadratic

effect.
To calculate the initial and final energies, we use the Bose statistics applied to

Bogoliubov excitations, in presence of a macroscopically populated Bose-Einstein con-
densate:

Ei

V
=

∫ ∞

0

4πk2
E0(k)

eβiE0(k) − 1
dk (10.1)

Ef

V
=

∫ ∞

0

4πk2
(

E0(k)

eβfE0(k) − 1
+

2E±1,qf (k)

eβfE±1,qf − 1

)

dk

(10.2)

with βi,f equal to respectively (kBTi,f )
−1. As the ground state energy does not change,

Tf is given by the condition Ei = Ef . We numerically find Tf for given values of the
initial density ni, initial temperature Ti, and final quadratic effect qf .

10.1.2 Number of Excitations

In order to perform number counting following spin filtering, we calculate the density
of particles in ms = ±1:

n±1,f =

∫ ∞

0

4πk2dk

(2π)3

(

|vk|2 +
|uk|2 + |vk|2
eβfE±1,q(k) − 1

)

(10.3)

with uk and vk the Bogoliubov coefficients given in [155].

10.1.3 Entropies

Both for the initial configuration, and the final one following the filtering of spin excited
atoms, there are only atoms inms = 0. Therefore in both cases the entropy comes from
excitations in ms = 0. The entropies per atom si,f are evaluated with the formula:

si,f
kB

=

∫ ∞

0

4πk2dk

(2π)3ni,f

(
xi,f

exi,f − 1
− log

(
1− e−xi,f

)
)

(10.4)
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with xi,f = βi,fE0,q(k), and nf = ni − 2n±1,f .

10.2 Results

We assume an initial density ni = 1020 m−3. The interaction parameters are the ones
of sodium, a2 = 52 aBohr and a2 − a0 = 2.5 aBohr [204]. The non-interacting critical
temperature Tci =

2π~2

mkB
( ni

g3/2
)2/3 is equal to 1.5 µK. A temperature of 1 nK corresponds

to 7× 10−4Tc0, and to 1.4× 10−2 nic0.

The ratio of entropies per atom
sf
si
is plotted in Fig.10.1 as a function of the initial

temperature in unit of the critical temperature without interactions, for a value of
qf = 0.01 nc0. This value allows one to reach temperatures below 1 nK. As Bogoliubov
calculations are only valid for large enough BEC fractions, we consider only low enough
initial temperatures.

Fig.10.1 shows the results of our calculations taking into account interactions, and
are compared to the results obtained with no interactions. For the latter, the maximal
entropy reduction efficiency obtained for q → 0 and Ti → 0 is equal to 3−3/5. Our
results show that interactions increase the efficiency for the entropy reduction after
one cycle.

The limit at q → 0 and Ti → 0 for the interacting case, which corresponds to the
best reduction in entropy, can be derived analytically:

(
sf
si

)

min

=

(

2

(
c0
c1

)3/2

+ 1

)−3/4

(10.5)

when neglecting the quantum depletion in ms = ±1.
For Na the numerical value for this optimal ratio is very low (5.7 × 10−3). It is

due to the small difference between a0 and a2. Physically this much smaller limit than
the non-interacting case can be interpreted easily. When q → 0, both the excitation
spectra of ms = 0 and ms = ±1 become phonon-like as k → 0, but with very different
linear slopes: they are proportional respectively to c

1/2
0 and c

1/2
1 . Therefore thermal

population of excitations with ms = ±1 become much larger than those in ms = 0,
hence the great efficiency to spin filter ms = ±1 atoms.

In other words, when q → 0, the density of states and the number of available states
at a given energy is larger in the spin excited states ms = ±1 than in the lower energy
state ms = 0, in strong contrast with the non-interactive case for which the two spectra
are identical. As a consequence when q → 0 most of the thermal atoms leave ms = 0,
which leads to a very efficient reduction in entropy after spin filtering ms = ±1 states.

There is ultimately a limit for our cooling process arising from the quantum deple-
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Figure 10.1: Comparison of entropy reduction efficiency in the case of Na in the homo-
geneous case, for a quadratic shift qf = 0.01 times the initial chemical potential. Initial
temperatures are in units of the non-interacting critical temperature. Without taking
into account interactions (red line), the reduction is significant and approaches its limit
(horizontal line, see text) over a wide range of temperatures. When taking into account
the interactions (blue points), the reduction is even better, and can reach in particular
very small values at very low temperatures. The entropy reduction decreases at ultra
low Ti due to the final value of qf .

tion in the modes with ms = ±1, which has the following expression [155] for q → 0:

n±1,qd = ni
8

3π1/2

(

ni

(
a2 − a0

3

)3
)1/2

(10.6)

When a high level of purity of the BEC is reached, spin filtering of ms = ±1 atoms
ultimately starts to affect the ground state. The numerical value for Na is 2n±1,qd/ni =
8.10−6 for ni = 1020m−3: the quantum depletion is then very small in ms = ±1.

Other kind of limitation come into play in fact, and define practical limits. For
example, when the number of particles thermally excited becomes very small, filtering
becomes non relevant: at temperatures of 10−3Tc0, there is about one particle thermally
excited for BECs with 106 atoms. This signals the breakdown of one approximation
of our model, i.e. the thermodynamics limit. Therefore Fig.10.1 shows that the spin
filtering process is efficient in the whole experimentally relevant temperature domain
(i.e. when the number of thermal excitations is larger than one). For instance, starting
with an initial temperature of 10−2Tc0, a reduction of entropy by an order of magnitude
is conceivable with only one cooling cycle. Our cooling scheme thus offers perspective
to reach entropies per atom well below the 10−3kB record value which has been demon-
strated in [170].
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[69] Drever, R. W. P., Hall, J. L., Kowalski, F. V., Hough, J., Ford, G. M., Munley,
A. J., and Ward, H.: Laser phase and frequency stabilization using an optical
resonator. Applied Physics B, 31(2), 97–105, (1983), ISSN 1432-0649. 28

[70] Stam, K. M. R. van der, Ooijen, E. D. van, Meppelink, R., Vogels, J. M., and
Straten, P. van der: Large atom number Bose-Einstein condensate of sodium.
Review of Scientific Instruments, 78(1), (2007). 35



BIBLIOGRAPHY 247

[71] Ertmer, W., Johann, U., and Mosmann, R.: Measurement of the Nuclear
Quadrupole Moment of 53Cr by Laser-RF Double Resonance. Z. Phys. A, Atoms
and Nuclei, 309, (1982). 39, 40

[72] Becker, U, Teppner, U, and Wusthof, U: Hyperfine structure of the 7P states in
the configurations 3d54p and 3d44s4p of 53Cr. J. Phys. B: Atomic and Molecular
Physics, 11(14), 2435, (1978). 39, 42, 44

[73] Jarosz, A, Stefanska, D, Elantkowska, M, Ruczkowski, J, Buczek, A, Furmann,
B, Glowacki, P, Krzykowski, A, Piatkowski, L, Stachowska, E, and Dembczynski,
J: High precision investigations of the hyperfine structure of metastable levels in
a chromium atom. Journal of Physics B: Atomic, Molecular and Optical Physics,
40(13), 2785, (2007). 40, 44

[74] Metcalf, H.J. and Straten, P. van der: Laser Cooling and Trapping . Springer edi-
tion, (1999). 39, 46, 187

[75] W. J. Childs, L. S. Goodman, D. von Ehrenstein: Magnetic hyperfine interaction
of 53cr. Physical Review, 132, 2128–2135, (1963). 42

[76] Furmann, B., Jarosz, A., Stefanska, D., Dembczynski, J., and Stachowska, E.:
Isotope shift in chromium. Spectrochimica Acta Part B: Atomic Spectroscopy,
60(1), 33 – 40, (2005). 42

[77] Truscott, Andrew G., Strecker, Kevin E., McAlexander, William I., Partridge,
Guthrie B., and Hulet, Randall G.: Observation of Fermi Pressure in a Gas of
Trapped Atoms . Science, 291(5513), 2570–2572, (2001), ISSN 0036-8075. 48, 75

[78] Schreck, F., Khaykovich, L., Corwin, K. L., Ferrari, G., Bourdel, T., Cubizolles,
J., and Salomon, C.: Quasipure Bose-Einstein Condensate Immersed in a Fermi
Sea . Phys. Rev. Lett., 87, 080403, Aug 2001. 48, 75

[79] Tolra, B. Laburthe, O’Hara, K. M., Huckans, J. H., Phillips, W. D., Rolston,
S. L., and Porto, J. V.: Observation of Reduced Three-Body Recombination in a
Correlated 1D Degenerate Bose Gas. Phys. Rev. Lett., 92, 190401, May 2004.
51

[80] Rauer, B., Grisins, P., Mazets, I. E., Schweigler, T., Rohringer, W., Geiger, R.,
Langen, T., and Schmiedmayer, J.: Cooling of a One-Dimensional Bose Gas.
Phys. Rev. Lett., 116, 030402, Jan 2016. 51

[81] Gring, M., Kuhnert, M., Langen, T., Kitagawa, T., Rauer, B., Schreitl, M.,
Mazets, I., Smith, D. Adu, Demler, E., and Schmiedmayer, J.: Relaxation and
Prethermalization in an Isolated Quantum System. Science, 337(6100), 1318–
1322, (2012), ISSN 0036-8075. 51



248 BIBLIOGRAPHY

[82] Billy, Juliette, Josse, Vincent, Zuo, Zhanchun, Bernard, Alain, Hambrecht, Ben,
Lugan, Pierre, Clément, David, Sanchez-Palencia, Laurent, Bouyer, Philippe,
and Aspect, Alain: Direct observation of anderson localization of matter waves
in a controlled disorder. Nature, 453(7197), 891–894, (2008). 51

[83] Werner, J., Griesmaier, A., Hensler, S., Stuhler, J., Pfau, T., Simoni, A., and
Tiesinga, E.: Observation of Feshbach Resonances in an Ultracold Gas of 52Cr.
Phys. Rev. Lett., 94, 183201, May 2005. 51, 55, 71, 93

[84] Gribakin, G. F. and Flambaum, V. V.: Calculation of the scattering length in
atomic collisions using the semiclassical approximation. Phys. Rev. A, 48, 546–
553, Jul 1993. 51, 92, 93, 94

[85] Pethick, C.J. and Smith, H.: Bose Einstein Condensation in Dilute Gases . Cam-
bridge university press edition, (2008). 52, 53, 62, 199
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Quantum gases of Chromium: thermodynamics and magnetic
properties of a Bose-Einstein condensate and production of a Fermi sea

Abstract

This thesis presents experimental results performed with Quantum gases of Chromium atoms.
The specificity of Chromium resides in its large electronic spin s=3 and non negligible dipole-
dipole interaction between atoms.

We produced a new quantum gas, a Fermi sea of the 53Cr isotope. Optimization of the
co-evaporation with the 52Cr bosonic isotope leads to 103 atoms at T/TF = 0.66± 0.08.

We obtained new results on thermodynamics of a spinor Bose gas. By ”shock cooling” a
thermal multi-spin component gas, we find that the condensation dynamics is affected by spin
changing collisions. We also demonstrate a new cooling mechanism based on the spin degrees of
freedom when the Bose Einstein condensate (BEC) is in the lowest energy spin state. Dipolar
interactions thermally populate spin excited states at low magnetic field. Purification of the
BEC is obtained by selectively removing these thermal atoms.

Finally, we present spin dynamics experiments. In a first experiment, spin dynamics following
preparation of atoms in a double well trap in opposite stretch spin states allow to measure the
last unknown scattering length of 52Cr: a0 = 13.5±15

10 aB (with aB the Bohr radius). We then
present preliminary results performed in a 3D lattice and in the bulk, where spin excitation is
performed by a spin rotation. We investigate for different experimental configurations which of
a theory with or without quantum correlations fits best our data.

Keywords: Bose-Einstein condensate, Fermi sea, dipolar interactions, thermodynamics for
magnetism, cooling, optical lattices.

Gaz quantiques de Chrome: propriétés thermodynamiques et
magnétiques d’un condensat de Bose-Einstein et production d’une mer

de Fermi

Résumé

Le manuscrit présente des expériences réalisées avec des gaz quantiques de Chrome, un
élément présentant un large spin électronique s=3 et des interactions dipolaires non négligeables.

Nous avons produit un nouveau gaz quantique, une mer de Fermi avec l’isotope 53Cr con-
tenant jusqu’à 1000 atomes à T/TF = 0.66± 0.08, en optimisant la co-évaporation avec l’isotope
bosonique.

Nous avons obtenu de nouveaux résultats sur la thermodynamique d’un condensat de Bose
Einstein (CBE) avec degré de liberté de spin. En refroidissant rapidement un gaz thermique
multi-composante, nous observons que la dynamique de condensation est affectée par les collisions
d’échange de spin. Nous démontrons aussi un nouveau mécanisme de refroidissement, utilisant
le degré de liberté de spin, lorsque le CBE est produit dans le niveau de spin de plus basse
énergie. Les interactions dipolaires peuplent thermiquement les états de spin excités à bas champ
magnétique, et une purification du CBE est obtenue en retirant sélectivement ces atomes.

Enfin nous présentons des expériences de dynamique de spin. Dans une première expérience,
cette dynamique est obtenue en utilisant un double puits avec des états de spin opposés. Ceci a
permis une première mesure d’une des longueurs de diffusion du 52Cr: a0 = 13.5±15

10 aB . Nous
présentons également des résultats préliminaires dans un piège harmonique et dans un réseau
3D. La dynamique de spin est produite par rotation du spin des atomes. La comparaison avec
la théorie nous permet de mettre en évidences l’apparition de corrélations quantiques.

Mot clés: Condensation de Bose Einstein, mer de Fermi, interactions dipolaires, thermody-
namique du magnétisme, refroidissement, réseaux optiques, échange de spin.


