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Abstract

Optimization of the Rate-Distortion Compromise for Stereoscopic
Image Coding using Joint Entropy-Distortion Metric

During the last decades, a wide range of applications using stereoscopic technology has
emerged still offering an increased immersion to the users such as video games with auto-
stereoscopic displays, 3D-TV or stereo visio-conferencing. The raise of these applications requires
fast processing and efficient compression techniques. In particular, stereoscopic images require
twice the amount of information needed to transmit or store them in comparison with 2D images
as they are composed of two views of the same scene. The contributions of our work are in the
field of stereoscopic image compression and more precisely, we get interested in the improvement
of the disparity map estimation.

Generally, disparities are selected by minimizing a distortion metric which is sometimes
subjected to a smoothness constraint, assuming that a smooth disparity map needs a smaller
bitrate to be encoded. But a smoother disparity map does not always reduce significantly the
bitrate needed to encode it but can increase the distortion of the predicted view. Therefore,
the first algorithm we have proposed minimizes a joint entropy-distortion metric to select the
disparities. At each step of the algorithm, the bitrate of the final disparity map is estimated and
included in the metric to minimize. Moreover, this algorithm relies on a tree where a fixed num-
ber of paths are extended at each depth of the tree, ensuring good rate-distortion performance.
In the second part of the work, we have proposed a sub-optimal solution with a smaller compu-
tational complexity by considering an initial solution -the one minimizing the distortion of the
predicted view- which is successively modified as long as an improvement is observed in terms
of rate-distortion.

Then, we have studied how to take advantages of large search areas in which the disparities
are selected as one can easily supposed that enlarging the search area will increase the distortion
performance as there will be more choices of disparities. In the other hand, the larger is the
range of the selected disparities, the higher is supposed to be the cost of the disparity map in
terms of bitrate. We have proposed two approaches allowing to take advantage of a large search
area by selecting only sets of disparities belonging to it enabling to achieve a given bitrate while
minimizing the distortion of the predicted image.
The last part of the work concerns variable block sizes which undeniably allows to improve the
bitrate-distortion performance as the block size suits to the image features. We have thus pro-
posed a novel algorithm which jointly estimates and optimizes the disparity and the block length
maps.

Keywords: optimization, stereoscopic images, compression, bitrate, distortion, entropy.
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Résumé

Optimisation du compromis débit-distorsion pour le codage d’images
stéréoscopiques utilisant une métrique conjointe entropie-distortion

Ces dernières décennies ont vu émerger de nombreuses applications utilisant la technologie 3D,
telles que les écrans auto-stéréoscopiques, les écrans de télévisions 3D ou encore la visio-conférence
stéréoscopique. Ces applications requièrent des techniques adaptées afin que leur flux de don-
nées soit compressé efficacement. En particulier, dans le cas des images stéréoscopiques, ces
dernières étant composées de deux vues de la même scène, elles nécessitent à ce titre deux fois
plus d’informations à transmettre ou à stocker que dans le cas des images 2D traditionnelles.
Nos travaux se situent dans le cadre de la compression des images stéréoscopiques. Plus précisé-
ment, ils concernent l’amélioration de l’estimation de la carte de disparité dans le but d’obtenir
un meilleur compromis entre le débit binaire nécessaire au codage de la carte de disparité et la
qualité de l’image prédite.

Généralement, la carte de disparité est estimée en minimisant la distorsion de l’image
prédite. Cette minimisation peut être sujette à une contrainte de lissage. L’idée étant qu’une
carte de disparité plus lisse nécessitera un débit binaire moindre en supposant que les mêmes
vecteurs de disparités seront sélectionnés plus souvent. Néanmoins cette contrainte de lissage
ne permet pas toujours de diminuer le coût binaire de la carte. Le lissage peut entraîner par
ailleurs une augmentation notable de la distorsion de l’image prédite. Dans le premier chapitre
de la thèse, nous présentons un algorithme d’estimation de carte de disparité minimisant une
métrique conjointe entropie-distorsion. Le coût binaire finale de la carte de disparité est estimée
à chaque étape de l’algorithme et est intégré dans le calcul de la métrique. La distortion globale
de la carte de disparité est aussi mise à jour au fur et à mesure du traitement de l’image. Par
ailleurs, cette algorithme repose sur la construction séquentiel d’un arbre dont on ne garde qu’un
nombre défini de branches à chaque profondeur de l’arbre. Ainsi, l’algorithme développé apporte
une solution sous-optimale en minimisant le coût binaire de la carte de disparité tout en assurant
une bonne qualité de l’image prédite. Le chapitre deux étend l’algorithme précédent au cas des
images non rectifiées.
Dans le troisième chapitre, nous nous intéressons au fait de trouver une solution au problème
d’optimisation du compromis débit-distorsion en réduisant la complexité numérique par rapport
à l’algorithme précédent. De ce fait, nous avons développé le R-algorithme qui se base sur une
solution initiale de Référence (celle minimisant la distorsion de l’image prédite) et la modifie
successivement tant qu’une amélioration est constatée en termes de compromis débit-distorsion.
Le quatrième chapitre s’intéresse toujours au fait d’accroître les performances de l’algorithme
développé tout en réduisant le coût en complexité numérique et donc en temps de traitement.
Nous proposons deux approches afin de tirer profit d’un grand espace de recherche sans avoir
à tester pour chaque bloc à apparier l’ensemble des disparités qui composent cet espace de
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recherche. En effet, un espace de recherche plus grand permet plus de choix de disparités et
donc potentiellement une meilleur reconstruction de l’image prédite. En contrepartie, il se peut
que le coût binaire de la carte de disparité augmente si l’ensemble des disparités sélectionnées
constituent un ensemble plus divers qu’auparavant. Les deux approches proposées permettent
de restreindre l’espace de recherche à un ensemble composées de certaines disparités permettant
de minimiser la distorsion de l’image prédite pour un débit donné.
Le dernier chapitre de la thèse s’intéresse à l’utilisation des blocs de taille variable pour la
compression des images stéréoscopiques. Elle permet une meilleure description de l’image prédite.
Cependant l’utilisation des blocs de tailles variables induit un nouveau coût : celui du signalement
de la taille de chaque bloc. Nous proposons un nouvel algorithme d’estimation de carte de
disparités optimisant conjointement les disparités choisies ainsi que la taille de chaque bloc.

Mots-clés : optimisation, images stéréoscopiques, compression, débit, distorsion, en-
tropie.
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Notations

IL Left view of the stereoscopic image

IR Right view of the stereoscopic image

ÎR Predicted right view

IL̃ Left interpolated view

K × L Size of the stereoscopic image given in pixels

X × Y Size of the stereoscopic image given in blocks

T Total number of blocks

NX ×NY Size of one block given in pixels

(iP , jP ) Position of the block in the pixel coordinates system

(iB, jB) Position of the block in the block coordinates system

d(iB, jB) Disparity of the block at position (iB, jB)

d Disparity map

W Sliding matching window containing disparities

WX ×WY Size of the sliding matching window W

w A disparity inside the matching window W

wmin The minimum disparity inside the matching window W

wmax The maximum disparity inside the matching window W

(wx, wy) A two-dimensions disparity inside the matching window W

wx_max Maximum value of the vertical component wx of the disparity (wx, wy)

wy_max Maximum value of the horizontal component wy of the disparity (wx, wy)

α Precision of the disparity

NW Number of disparities inside the matching window W

Nα Number of disparities inside the matching window W depending on the

disparities precision α, i.e. including non-integer disparities

EG(d) Global distortion of the predicted view associated to the map d

EB Local distortion of a block

Eb Local distortion of a branch in the MMA
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Et Global distortion of a partial disparity map

H(d) Entropy of the map d

J(λ,d) Cost function

λ Lagrange multiplier of the cost function

λmax Maximum value of λ

M Number of paths extended at each depth in the MMA

d
k
t Partial disparity map containing t disparities, corresponding to the k-th path

in the MMA

dkt Disparity of the k-path at the t-th depth (i.e. of the t-th block) in the MMA

k Index of the path in the MMA

t One dimension block-coordinate

pM Estimate of the disparity distribution probability given by a mixture distribution

pU Uniform distribution probability

pE Empirical disparity distribution probability

β Parameter of the MMA

Tbpp Target bitrate

s Size of block

s+ Size of block just superior to the size s

s− Size of block just inferior to the size s

Reg Regularization constraint

V (d, w) Number of occurence of the disparity w in the disparity map d

dR Reference blockwise disparity map

dRt Reference disparity of the t-th block

dt(w) Disparity map where the reference disparity at the t-th block has been replaced by w

Sn Set of n disparities selected inside W

Co(D) Set composed of all different disparities in the disparity map D

D(Sn) Disparity map estimated by the BMA using the set Sn of disparities

P(W ) All possible sets of disparities that can be made from W

W0 Set of disparities composed of the disparities effectively setected by the BMA

when it is applied using all the disparities in W

B A block

B Map containing all the blocks of the image

l Block length map

lB Length of a square block

Lmax Maximum length of a block
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Lmin Minimum length of a block

dB Disparity of the block B

Bf Block at the front of the queue

Bt Tail of the queue

ARA Adaptation of the R-Algorihtm

BDA Block Division Algorihtm

BMA Block Matching Algorihtm

BMA−DPCM Block Matching Algorihtm using DPCM coding

BMA_H Block Matching Algorihtm based on Histograms

BMA−RA Block Matching Algorihtm with a regularization constraint

BMA−RA−DPCM Block Matching Algorihtm with a regularization constraint and using

DPCM coding

BMA_S Block Matching Algorihtm based on Sets of disparities

CMU Stereoscopic image dataset

CMU − V ASC Stereoscopic image dataset

DCT Discret Cosine Transform

DPCM Differential Pulse-Code Modulation

EMMA Extended Modified M-Algorihtm

JDBLMO Joint Disparity and Block Length Maps Optimization

MMA Modified M-Algorihtm

MMA−DPCM Modified M-Algorihtm using DPCM coding

PSNR Peak Signal to Noise Ratio

RD Rate-Distortion

SSD Sum of Squared Differences
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Chapter 1

Introduction

1.1 Thesis context

Three dimensions (3D) technology offers to the viewer a great immersive experience so they

can have a more realistic representation of the scene that is viewed. From the past years, the

number of applications using 3D-technology have been increasing in many fields. We can cite for

exemple 3D visio-conferencing system [1]. In the field of medicine, the Da Vinci robot allows the

surgeon to operate more precisely by providing him with a 3D high-definition vision of the part

of the body to operate [2]. In the entertainment field also, new technologies have been developed

such as 3DTV, 3D cinema, 3D video games using virtual reality [3]. Indeed, they provide the

viewer a more pleasant experience.

A 3D/stereoscopic image is composed of two views acquired from two cameras capturing

the same scene from two slightly different points of views. By making the left eye looking at

the left view and the right eye looking at the right view simultaneously, the viewer can perceive

depth in the scene. As these images are composed of two views, if no precaution is taken, they

will require twice the amount of information needed to encode them for transmission or storage

purpose compared to traditional two-dimensional images. The interest of the public for three-

dimension contents and the rapid growth of applications using 3D images have made the issue

of efficiently coding them taking importance.

As stereoscopic images are composed of two views of the same scene, rather than encoding

them independently, in the literature, the proposed algorithms usually take advantage of the

redundancies between the two views by estimating the spatial displacement between them which

is called disparity. They generally proceed according to the following scheme: (a) first, one of the

two views is taken as the reference one. Let’s say the left one which is encoded independently; (b)

then the second view (the right one) is predicted from the reference view by estimating a disparity

map; (c) a residual image is computed between the original right view and its prediction. The

disparity map is usually encoded using an entropy coder while the left view and the residual image
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are encoded using transforms such as DCT (Discrete Cosine Transform) [4, 5, 6]. They are all

sent to the decoder which reconstructs the right view using the left view and the disparity map,

compensated with the residual image. This coding scheme is known as the disparity compensated

scheme because of its ressemblance with the motion compensated scheme developed in video

codec [7].

The disparity map estimation is therefore of primary importance in the coding process as

a good disparity map in terms of distortion improves the quality of the predicted view but can

be very expensive in terms of bitrate. It should be noted that a large number of research aims at

estimating the true disparity map for three-dimension reconstruction purpose. In fact, knowing

the true disparity, one can easily recover the depth in the scene using also the parameters of the

camera used for the image acquisition. Our work is concerned with the issue of efficiently encoding

stereoscopic images. So, we do not necessarily estimate true disparity values. For the considered

compression purpose, a good disparity map is the one achieving the best reconstruction of the

predicted view at a given bitrate.

1.2 Objectives of the work and contributions

The objective of this thesis is to develop efficient algorithms for compressing stereoscopic images.

In particular, we are interested in the estimation of disparity maps improving the optimization

of the trade-off between the bitrate needed to encode them and the distortion induced by these

maps when predicting one of the two views. Another point to consider in this thesis is the

computational complexity of the proposed solutions. In fact, let’s consider for example a small

image of size 64× 64 and a searching window of size 3× 61 (representing all possible disparities

for each pixel of the image to be predicted). Using an exhaustive search, finding the optimal

solution in terms of Rate-Distortion requires to compare about 104100 different disparity maps.

This thesis aims at finding sub-optimal solutions to the Rate-Distortion optimization prob-

lem with a reduced complexity of the developed algorithms. Here is a list of our main contribu-

tions.

Usually the disparities of the map are estimated by minimizing a distortion metric. Some-

times this minimization is subjected to a smoothness constraint thanks to a coefficient used to

give more or less weight to the constraint. A smoother disparity map is assumed to give a dis-

parity map with a smaller bitrate as same or close values of disparities are more often chosen

locally. It is generally done at the expense of an increase in the distortion of the predicted view.

The reduction of the bitrate of the disparity map is not a proper criteria present in the metric

to minimize. We propose a novel joint entropy-distortion metric to minimize taking directly into

account the bitrate of the disparity map at the time of selecting the disparities. The metric is

composed of a traditional term measuring the distortion of the predicted view and a weighted
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term approximating the final bitrate of the disparity map by its entropy at each step of the map

computation for each choices of disparities. Doing this allows to minimize not only the distortion

of the predicted image but also the bitrate of the computed disparity map. Furthermore, the

entropy of the disparity map is computed from the beginning of the map estimation without

knowing the complete distribution of the disparities in the final map. We propose in one of the

developed algorithm to approximate the entropy of the final disparity map thanks to a finite

mixture probabilities. These probabilities rely on assumptions we made about the disparity map

distribution which become more and more close to the true disparity distribution as the image

is processed.

As mentioned earlier, finding the disparity map optimizing the bitrate-distortion compro-

mise is a complex combinatorial problem. We propose to restrain the large amount of disparity

maps to explore according to two approaches: in the first one, the disparity map is estimated

sequentially block by block by constructing a tree where each path corresponds to a (partial)

disparity map being explored. At each step of the tree, only the M -best paths are extended

allowing to explore several paths and keep good rate-distortion performance. The second ap-

proach consists in considering an initial solution which is the one minimizing the distortion of

the predicted image. Then this solution is successively modified as long as improvements are

observed in terms of rate-distortion performance. This also allows to explore solutions close to

the initial one minimizing the distortion but with a lower bitrate.

Another of our contributions concerns the exploitation of large search areas in which the

disparities are selected. The use of larger search area usually increases the quality of the predicted

view thanks to more adequate choices of disparities. But it can also induce an increase in the

bitrate needed to encode the disparity map as the range of the selected disparities gets larger.

Another point is that testing all the disparities inside a larger search area for all the blocks to

match increases the processing time of the map estimation algorithms. We propose two methods

to take advantage of large search areas without having to test all choices of disparities for each

block to match. Two criteria are defined to select relevant sets of disparities inside the search

area. They are then used in the disparity map estimation process. Each of the selected sets

allows to minimize the distortion of the predicted image at a given bitrate.

Our last contribution concerns the use of variable block sizes for stereoscopic image com-

pression. We have proposed a novel algorithm which jointly optimizes the choices of disparities

as well as the division of the blocks. Using blocks of variable sizes allows to better suit the

disparities to the image features. As for example, one disparity can be used to encode a large

zone with roughly the same depth. But this is done at the expense of extra bitrate needed to

encode the blocks sizes. The proposed algorithm estimates a disparity map such as to minimize

the distortion of the predicted image but also the bitrate needed to encode the disparities and

the block size map.

3



1.3 Thesis outlines

1.3 Thesis outlines

This thesis is organized as follows. Chapter 2 first presents some basic concepts about stereoscopic

vision, then we give an overview of the methods used for disparity map estimation, first in the

case of three-dimension reconstruction purpose and then techniques used for compression purpose

are described with more details.

Chapter 3 describes the Rate-Distortion optimization problem. Then we present the de-

veloped M -algorithm bringing a sub-optimal solution to the optimization problem which rely

on a joint entropy-distortion metric. As this method implies many setting parameters, we have

included a discussion on the choices of the parameters values to obtain best performance with

our algorithm. Finally experimental results are provided to compare the developed algorithm

with conventional algorithms including or not a smoothing constraint. Chapter 4 extends the

method developed in the previous chapter to non rectified stereoscopic images. We also discuss

the impact of the search area size on the distortion performance using several images. These

works have been presented in [8, 9, 10, 11].

In Chapter 5, the purpose still consists in finding the best disparity map optimizing the

Rate-Distortion trade-off. We explore different disparity maps with a new approach. It consists

in considering an initial solution (which is the one minimizing the distortion of the predicted

view) and to modify it as long as improvements are observed. A detailed presentation of the

method is given completed with simulation results to evaluate the method. This algorithm shows

to perform better than the block-matching algorithm and also than the previous developed M -

algorithm. These results have been presented in [12, 13].

Because of the complexity of the problem of finding the optimal solution to the Rate-

Distortion optimization problem, in Chapter 6, we propose to consider rather the problem of

selecting inside a search area the best sets of disparities that improves the Rate-Distortion trade-

off. Doing this allows to take advantage of large search areas without having to test for each

block to match all possible disparities in the search area. Two methods allowing to select relevant

sets of disparities belonging to the search area are presented. Each of these sets minimizes the

distortion of the predicted view at a given bitrate. The two mentioned methods have been

presented in [14].

To still ameliorate the performance of the developed algorithms, in Chapter 7 we consider

the use of variable block sizes as they can reduce the bitrate needed to encode the disparity map.

But this is done at the expense of encoding the size of each block. We describe the proposed

JDBLMO algorithm which jointly optimize the disparity as well as the block length maps while

minimizing the distortion of the predicted view to select the disparities. This algorithm has been

depicted in [15].

Finally, Chapter 8 concludes our work and possible futur investigations are addressed.
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Note that the Rate-Distortion optimization problem is reminded at the beginning of each

chapter to allow a better understanding of the specific issues raised in each of the chapters.
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Chapter 2

State-of-the-art on stereo image coding

Due to the growing number of applications using stereoscopic images, it has become important

to find an efficient way of encoding them. They are composed of two images corresponding to

a left and a right view of the same scene, and thus requires twice the amount of information

needed to be encoded in comparison to traditional two-dimensional images. In this chapter, we

recall some basic concepts that are used in our work concerning stereoscopic images, and then

we give an overview of main techniques that have been deployed to encode them.

2.1 Basic concepts of stereoscopic vision

2.1.1 Principles of stereo vision

The term stereopsis is commonly used to refer to the three-dimensional perception resulting from

the human visual system. Our left and right eyes each capture a different view of the same scene.

These two views are sent to the brain for processing which merged them into one single image

where we can better perceive the depth. This stereoscopic vision is represented in Fig. 2.1.

Stereoscopic systems have tried to reproduce this depth perception: basically, they are

composed of two cameras placed close to each other in the scene. They capture the same scene

but from two points of view slightly different as represented in Fig. 2.2. When the left image is

viewed by the left eye and the right image is viewed by the right eye simultaneously, the viewer

can perceive the depth in the scene and see the objects in 3D.

Some additional cues are used by the human visual system to analyze the depth in the

scene. Amongst them, we can cite:

• the linear perspective: parallel lines converge with the distance;

• the texture gradient: the closer is an object from the viewer, the more its details can be

seen;
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Figure 2.1: Stereoscopic vision

Figure 2.2: Stereoscopic camera

• the motion parallax: moving objects that are closer to the viewer will seem to move faster

than objects that are far;

• the relative size: having an idea on the size of two objects or two people in an image, one

can guess how long is the distance between them;

• the superposition: when one object partially hides the view of another object, we can guess

that the first one is in front of the second one;

• the shadow: the shadow of an object can give a cue for the brain on the position and the

depth of the object in the scene.
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2.1.2 Geometrical models for stereoscopic imaging

Before discussing about stereoscopic image coding, we first introduce some geometrical models

to better understand some notions of the image coding.

2.1.2.1 The pinhole camera model

The acquisition of an image using the pinhole camera model is shown in Fig. 2.3. It is considered

as the simplest camera model but which can still accurately approximate the geometry and optics

of modern cameras [16]. This model is composed of a retinal plane, a focal plane and an image

plane. It represents the relation between a 3D object in the scene and its 2D projection into the

image plane: this mapping from 3D to 2D is called the perspective projection. Considering the

Figure 2.3: Pinhole camera model.

3D point M in the scene, a relationship can be established with this point and its projection m

in the image plane given by :

m = P ×M. (2.1)

where P is the perspective projection matrix of the camera.

2.1.2.2 Stereoscopic imaging systems representation

Using the pinhole camera model, a stereoscopic imaging system can be represented as it is

composed of two cameras capturing the same scene from two points of view slightly different as

shown in Fig. 2.4. The left and right cameras are represented by their optical centers Cl and

Cr and their corresponding perspective projection matrices Pl and Pr respectively. Given a 3D

point in the scene, the relation of this point with its two projections ml and mr on the image
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planes of the two cameras can be expressed as:

ml = Pl ×M

mr = Pr ×M. (2.2)

These two projections of the same 3D point on the image planes are called homologous points.

Figure 2.4: Stereoscopic imaging system.

2.1.2.3 Epipolar geometry and rectification

The relation between the two images can be represented by the so-called epipolar geometry as

shown in Fig. 2.5. The plane which passes through the object point M and the optical centers Cl

and Cr of the cameras is called the epipolar plane. The two points which are the intersections of

the line joining the optical centers with the two image planes are denoted el and er respectively

and called the epipoles. Finally, the lines joining the epipole el (resp. er) with the projection

ml (resp. mr) in the image plane is called the left (resp. right) epipolar line. This geometry

implies that knowing the projection point ml on the left epipolar line, its corresponding point

mr must lye on the conjugate right epipolar line. This constraint can be expressed as:

mr
TFml = 0. (2.3)

where F is the fundamental matrix depending on the parameters of the cameras that can be

found as in [17, 18].

Basically, two configurations of cameras are used for stereoscopic image acquisition. In the

first one, as shown previously in Fig. 2.5, the two cameras are placed side by side and rotated

towards each other. In this case, the epipolar lines are inclined. In the second configuration shown

in Fig. 2.6, the two cameras are still side by side but with parallel optical axes. In this case,
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the epipolar lines are parallel also. As they coincide with the images scan lines, the homologous

points can be found on the two images at the same line. If we are in the first configuration, the

epipolar lines can be made parralel by a process called rectification. This is made by finding

a transformation which projects the two images onto a common plane. Different methods for

rectifications can be found in [19, 20, 21].

Figure 2.5: Epipolar geometry.

Figure 2.6: Stereoscopic image rectification.

2.1.3 Disparity estimation for 3D reconstruction

Many works have been proposed in the field of stereo-matching with the particular goal of

reconstructing the scene in three dimensions. In fact, matching two homologous pixels results
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in a disparity vector corresponding to the relative spatial displacement between the pixels in

the two views. Performing this stereo-matching for every pixel leads to a dense disparity map.

Then, the depth in the scene can be deduced from the disparity as they are proportional. For

this purpose, several methods have been proposed that can mainly be put into two categories

described below: the local and the global methods.

2.1.3.1 Local methods

Local methods compare the similarity between two sets of pixels. Amongst them, we can distin-

guish two main types of methods: the feature-based methods and the area-based methods.

In the first category of methods, the sets of pixels are compared using different features

of the images like edges [22], segments [23] or curves [24]. These methods have the advantages

that features are less sensitive to the noise than pixels. What’s more, they are fewer in numbers

and so more easily distinguishable than pixels. But their main drawbacks is that these methods

leads to sparse disparity maps and thus need a backward step of interpolation to complete the

disparity map. Furthermore, they also need an additional step before the stereo-matching to

compute the features of the images which increase the complexity of the proposed methods.

The second category corresponds to the area-based methods. The idea consists

in defining a window around the pixel to be matched and comparing it to the same window

surrounding each possible candidate pixel inside a defined searched area in the other view. This

is represented in Fig 2.7. These kinds of methods allow to compute directly a dense disparity

Figure 2.7: Stereo-matching in area-based methods.

map but they are sensitive to locally ambiguous regions as occlusions or untextured regions.

Another difficulty is the choice of the window size and shape. Many works have been proposed

which do not consider a constant window but rather, the size and the shape of the window is

adaptively modified according to the intensity variations in the image [25, 26]. Another work

proposes to try a set of windows and to select the one which maximizes the correlation measure
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[27].

2.1.3.2 Global methods

The second main category of methods aims at minimizing one global cost function over the entire

image contrarily to local methods. Generally the cost function is expressed as the sum of a term

Ed(d) measuring the dissimilarity between the corresponding pixels and a term ES(d), called

smoothing prior, that enforces the smoothness in the estimated disparity map:

E(d) = Ed(d) + αES(d). (2.4)

Ed(d) and ES(d) both depend on the estimated disparity map d. α is a positive constant which

controls the smoothness of the estimated disparity map.

Amongst the large numbers of global methods that were proposed, we can cite the dynamic

programming: first use in [22] for stereo-matching, this technique is composed of two steps.

Considering two corresponding scan lines of size N , the first step consists of computing a path

cost matrix of size N × N by associating a cost to each possible pairing of pixels between the

two scan lines. Then, using the ordering and the smoothness constraint, the path composed

of disparities minimizing all the path costs is selected. Processing like this, the smoothness of

the disparities are enforced along the same scan line. Other works have tried to enforce the

smoothness both in horizontal and vertical directions [28, 29]. Amongst the global methods we

can also cite the ones based on graph cuts [30, 31]: the stereo matching problem is seen as a

labeling problem. Two sets are defined: a set of sites and a set of labels. The problem consists in

associating one unique label to each site of the first set. In our case, the sites correspond to the

pixels to be matched and the set of labels corresponds to a finite set of disparities. The mapping

problem consists in finding the minimal cut through a constructed graph.

Other global methods have been proposed such as belief propagation [32, 33] or variational

methods [34, 35].

It is important to note that all previously mentioned methods (local and global) aim at

estimating the true disparity map in order to reconstruct the view in three dimensions. The

goal is different from the one in this thesis which is the stereoscopic image compression. Val-

ues of disparities achieving good compression performance are not necessarily close to the true

disparities.

2.2 Overview on stereo image coding

Stereoscopic images are composed of two views generated from two cameras capturing the same

scene. Thus, the amount of information to store them or to transmit them is twice compared

to the case of traditional two-dimensional images. Efficient coding techniques taking advantages
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of the redundancies between the two views have been developed. The next section presents the

principles of these coding schemes. Then an overview of the developed methods to improve

stereoscopic image coding is given.

2.2.1 Disparity compensated stereo image coding scheme

A simple way of coding stereoscopic images would be to encode them separately using traditional

coders like JPEG or JPEG2000. However, this technique known as independent coding does not

take advantages of the redundancies that exist between the two views and thus is not so efficient

in comparison of more recent methods using the strong correlations between the two views. The

basic scheme on which they rely is called the disparity compensated coding scheme because of

its similarity with the motion compensated coding scheme used in video coding from which it is

inspired [36]. This scheme is composed of the following steps:

• at first, one of the two views is independently encoded, for example, the left one. This

view is called the reference image;

• a disparity map is estimated to predict the right view which is the target image;

• a residual image is computed between the original right image and its prediction.

The residual image and the left image are generally coded after a transformation while the

disparity map is generally encoded using an entropy coder.

Two schemes can be found in the literature: the schemes based on a open loop structure

and the ones based on a closed loop structure. Both structures are represented respectively in

Fig 2.8 and Fig 2.9. The difference between the two structures is in the estimation of the

Figure 2.8: Open Loop structure.

disparity map: in the open loop structure, the disparity map is estimated with the original left
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Figure 2.9: Closed Loop structure.

image whereas in the closed loop structure, the disparity map is estimated using the decoded

left image. At the decoder side, no matter the structure that is used, the left image is decoded

first. The right image is predicted from the left decoded image and the disparity map. Then, the

residual image is added to the predicted image to obtain the final reconstructed right image. One

can clearly see that when using the open loop structure, the computation of the residual image

(using the decoded left image) is inconsistent with the disparity compensation at the decoder

side (as the right image is predicted using the original left image). This made this structure sub-

optimal in comparison to the second one. The second closed loop structure does not have this

drawback as the encoder side and the decoder side both use the decoded left image. However,

this structure is computationally more expensive compared to the first one: considering different

target bitrates and different configurations of the left image coding, one disparity map should

be estimated for each of these decoded left images. In the open loop structure, the disparity

map is estimated only once using the original left image and is often more preferred for real time

applications.

2.2.2 Standard for stereoscopic videos compression

Recently a standard has emerged to encode multiview and more specifically stereoscopic videos.

Both of them can be used to encode stereoscopic image also. The Video Coding Expert Group

(VCEG) and the Moving Pictures Experts Group (MPEG) has jointly developed two extensions

of the video coding standard H.265 also called HEVC (High Efficiency Video Coding) adapted

for the coding of 3D videos [37]. The first one MV-HEVC has been developed for multiview

videos and the second one 3D-HEVC is more specific to stereoscopic videos.

In the two extensions, the base view is independently encoded using an HEVC encoder.

Additional coding tools have been added to the extensions to encode the dependent view(s).

15



2.2 Overview on stereo image coding

The major coding tool that have been added in the case of stereoscopic video coding

is the disparity-compensated prediction (DCP): DCP is used as an alternative to the motion-

compensated prediction (MCP). A block in a frame of the dependent view can either be encoded

using blocks of the same view at other instant (motion compensation) or using blocks of the

frame in the same access unit (i.e corresponding to the same instant) in the base view (disparity

compensation). Amongst the additional tool is the derivation of the disparity vector of a block

considering the disparities of its spatially and temporally neighboring blocks. Moreover, the

motion vectors of the dependent view can be deduced from the motion vectors of the base view.

2.2.3 Disparity estimation for stereoscopic image compression

Concerning the specific case of stereoscopic images, several approaches have been developed

from which we present the most important. One of the major axes of research in the field of

stereoscopic image coding is the estimation of the disparity map. It is usually done using blocks

instead of pixels as one disparity is send for a whole block. This step plays an important role

in the whole coding scheme as a good disparity map will lead to a better predicted image but

will be more expensive in terms of bitrates. In a same way, a disparity map with a very small

amount of information will cost less in terms of bitrate but can lead to a very poor quality of the

predicted image. The estimation of the disparity map can thus be seen as a trade-off between

the quality of the predicted image and the bitrate needed to encode it.

Some of the works estimate the disparity map in the spatial domain like Frajka et al. [38]

who distinguish the occluded blocks from the non-occluded ones. If the distortion of a block is

higher than a threshold, it is considered as occluded, so the block is left intact without being

matched. A mixed residual image results from this process with residual of blocks that have

been matched and original blocks for the occluded parts. The authors propose to encode these

two kinds of blocks differently (using a Haar transform for the occluded blocks and the DCT for

the non-occluded).

In [39], Aydinoglu and al. proposes to perform the disparity estimation by distinguishing

the occluded regions, the edges and the smooth regions. The occluded regions are independently

coded while the non-occluded regions are segmented into edges and smooth regions first. These

regions are divided into blocks of fixed sizes and then matched according to their type. The

disparity is then quantized using a uniform scalar quantization before being coded with an

adaptive arithmetic coder based on the segmentation information. Another area-based method

is proposed in [40]. Jiang and al. estimate also a blockwise disparity map by first making an

edge detection in the image to be matched. Only the disparities of the blocks corresponding to

an edge are sent to the decoder. No disparities are sent for the blocks of the internal area of an

object. The drawback of these methods is that they request to send side information about the

segmentation which impact the performance at low bitrates. In [41], Palfner and al. use a full

search block-matching algorithms to match the blocks of the predicted views. He then applies a
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wavelet transformation to the disparity map and the residual image, and encodes the resulting

coefficients with the SPIHT coder (Set Partitioning In Hierarchical Trees)[42].

Other works propose to improve the disparity estimation by varying the size and shape of

the matching window. For example, Woo and al. [26] estimate the disparity vectors for each

block of the image using an adaptive window whose shape depends on the position of the block

inside a search area. A measure of confidence is attributed for each computed disparity vector.

For the blocks with a measure of confidence two low, the disparity vectors is re-affined by using

the Overlapped Block Disparity Compensation technique including a smoothness constraint: the

disparity of the block is re-evaluated considering the disparities of neighboring blocks. After this,

a decision is taken by analyzing the corresponding blocks in the residual image: if the energy

level of a block is superior to a threshold, no disparity will be sent for this block and it will be

finally coded in Intra mode

Some works estimate the disparity map in the transform domain, mainly after having

applied the DCT and the DWT to the images. Pagliari and al. [43] propose to first apply the

DCT to the two views. Then the disparity map is estimated using a genetic algorithm. A pseudo-

random disparity map is taken as an initial solution to the matching problem. Thereafter, the

genetic algorithm is used to match the blocks and improves the initial solution. The process is

repeated iteratively until no improvements are observed. More recently, Maalouf and al. [44]

have first computed the bandelet transform of the left and the right images. Each image is

thus segmented into dyadic squares where the pixels in each square share the same geometrical

properties. Similar blocks are matched by minimizing a metric taking into account the size of

the two blocks to match and their optimal geometrical direction. At the end of the process, the

blocks for which no corresponding blocks were found are encoded directly in the residual image

which is composed of only such blocks. A similar method have been proposed in [45] where the

authors first apply a wavelet transform to both images. The matching step is performed again

with the dyadic squares after a segmentation of the subbands using a quadtree. Two dyadic

squares are matched if they minimize an energy function taking into account the dimensions of

the square and its energy.

We have seen that many techniques have been deployed to improve the stereoscopic image

coding. Many of them proposes novel way of achieving the disparity map estimation step to better

exploit the cross-correlations between the two views, by proposing new metrics to minimizing

during the stereo-matching process, using variable block sizes of variable matching window size

and/or shape. Some works also get interested in the improvement of the entropy coding of the

transformed coefficients or the choice of the transform that should be applied to the images.

Our contributions mainly focus on the improvement of the disparity map estimation.
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2.3 Conclusion

2.3 Conclusion

In this chapter, we have recalled some basic notions about the stereoscopic images before pre-

senting the most known methods that have been developed to encode them. In the next chapters,

we will present our contributions to improve the disparity map estimation process.
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Disparity map estimation algorithm

using joint entropy-distortion metric:

MMA

This chapter presents the proposed disparity map estimation algorithm using a joint entropy-

distortion metric to select the disparities. This metric models the trade-off between the mini-

mization of the predicted image distortion and the minimization of the bitrate needed to encode

the disparity map assuming that it is coded using and entropy coder. Furthermore, the algorithm

builds a tree where each path corresponds to a disparity map. At each depth of the tree, only

the M best paths are retained and extended with all possible disparities. This algorithms shows

to perform better in terms of rate-distortion than the Block-Matching Algorithm (BMA), even

when using a regularization constraint.

This chapter is organized as follows: the next section presents the rate-distortion opti-

mization problem of estimating the disparity map. Then, we present principles of the developed

algorithm which is a sub-optimal solution of the problem. The last section provides simulation

results and discuss the performance of the proposed algorithm. The contributions of this chapter

have been presented in [8, 9, 11].

3.1 Stereo-matching optimization problem

The optimization problem of the stereo-matching can be seen as the problem of minimizing a

global rate-distortion function over the entire image. Finding the optimal solution minimiz-

ing the global cost is a complex combinatorial problem. Before presenting this rate-distortion

optimization and its complexity, let’s first introduce some basic assumptions and notations.
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3.1.1 Assumptions and notations

The left and the right images are supposed to be rectified thanks to a special care during the

acquisition time or by having applied a rectification algorithm. The left image is taken as the

reference and the right view as the one to predict. Each view is divided into non-overlapping

blocks of equal size and a unique disparity is estimated for each block. That is to say all the

pixels inside a block have the same disparity.

As the two images are considered rectified, the blocks will be matched between the same

scan lines, so that the disparity is a one-dimensional horizontal vector and does not have a vertical

component. For better accuracy, non-integer disparities are considered: values of sub-pixels are

obtained by a weighed combination of the neighboring pixels intensities.

We introduce some notations before presenting the stereo-matching optimization

problem. The left and the right image (respectively IL and IR) are of size K × L pixels. They

are divided into X×Y non-overlapping blocks, each of size NX×NY pixels. A block position can

be defined by its block-coordinates (iB, jB) or by its pixel coordinates (iP , jP ). These coordinates

are linked by the following equations: iP = iB × NX and jP = jB × NY . These notations are

illustrated in Figure 3.1.

(0;0) Y-1

X-1

L-1

K-1

Block-

coordinates

Pixel-

coordinates

Bi
Pi

Bj

Pj

XN

YN
),( BB jid

Figure 3.1: MMA notations.

Inside a block located at position (iP , jP ), other pixels coordinates are defined as (iP +

u, jP + v) where u = 0, . . . , NX − 1 and v = 0, . . . , NY − 1.
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Considering these notations, in the two images, pixels intensities can be expressed as

IL(iP + u, jP + v) and IR(iP + u, jP + v). The disparity of the block at position (iB, jB) is

denoted by d(iB, jB). Thus, we can represent the whole blockwise disparity map by d as:

d = {d(iB, jB) with iB = 0, ..., X − 1; jB = 0, ..., Y − 1}. (3.1)

The disparities are not necessarily integer values and are defined with a precision of 1
α

where

α ∈ {1, 2, 4, 8}. They belong to a set W considered as the search area given by:

W = {wmin, wmin + 1/α, ..., wmax − 1/α,wmax}, (3.2)

where wmin and wmax are the searching region bounds. It should be noted here that the size of

the search area N = wmax − wmin + 1 is different from the number of possible disparities than

can be selected in this area which is equal to Nα = (N − 1)× α+ 1. The pixels intensities of

the right image are predicted from the pixels intensities in the left interpolated image and their

associated disparities as:

ÎR(iP + u, jP + v) = IL̃(iP + u, α(jP + v + d(iB, jB))) (3.3)

with u = 0, ..., NX − 1 and v = 0, ..., NY − 1.

where IL̃ is the left interpolated image of size K × αL pixels.

From this, the global distortion of the predicted image is expressed as:

EG(d) =
X−1∑

iB=0

Y−1∑

jB=0

EB(d(iB, jB)) (3.4)

with EB(d(iB, jB)) =

NX−1∑

u=0

NY −1∑

v=0

(
ÎR(iP + u, jP + v)− IR(iP + u, jP + v)

)2

and ÎR(iP + u, jP + v) = IL̃(iP + u, α(jP + v + d(iB, jB))).

An estimate of the bitrate needed to encode the disparity map is given by:

H(d) = −
∑

w

pE(d = w|d) log2 (pE(d = w|d)). (3.5)

where pE(d = w|d) is the empirical distribution probability (knowing the disparity map d)

computed as the ratio between the number of blocks having the disparity w to the total number

of blocks X × Y .

3.1.2 Rate-distortion optimization problem formalization

The stereo-matching optimization considered in this thesis consists in finding the best compro-

mise between the quality of the predicted view and the bitrate needed to encode the disparity
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map. This problem can be reformulated as finding the best disparity map minimizing the dis-

tortion of the predicted view subjected to a given bitrate. Using the Lagrangian formulation, a

global rate-distortion cost function is defined as:

J(λ,d) = EG(d) + λH(d), (3.6)

where λ is the Lagrange multiplier, EG(d) is the global distortion of the predicted view defined

in Equation 3.1.1 and H(d) is the entropy of the disparity map defined in Equation 3.5.

Minimizing this cost function for every values of λ leads to the optimal curve formed by

all the Rate-Distortion (RD) points (H(d̂λ), EG(d̂λ)). Each of these points is obtained using

the optimal disparity map d̂λ achieving the best reconstruction of the predicted view at a given

bitrate. The global cost function appears clearly to be a joint entropy-distortion metric to

minimize.

3.1.3 Properties of the global cost function

This global cost function presents some features that need to be discussed.

Indeed, for a given value of λ, finding the optimal disparity map minimizing the global

cost J(λ,d) is a complex combinatorial problem. For stereoscopic images composed of X × Y

non-overlapping blocks, there is approximately (Nα)
(XY ) disparity maps that can be computed

among which is the optimal one. As an example to illustrate this gigantic search space, let’s

consider an image of size 100 × 100 pixels. Assume that the disparities are selected in a set of

size 60 with a quater-pel accuracy (i.e. α = 4). The optimal disparity is to be found amongst

1023802 possible disparity maps.

Another aspect of this global cost concerns the relationship between the selected

disparities. For λ = 0, minimizing the global cost is equivalent to minimize the global distortion

of the predicted view, just as the Block-Matching Algorithm (BMA). Minimizing the global

distortion EG(d) over the whole image can in fact be done by minimizing independently all the

local distortions in the image as EG(d) is nothing else than a sum of the independent local

distortions EB(d(iB, jB)). So for λ = 0, the optimal disparity map can simply be computed by

selecting for each block, the disparity minimizing its local distortion. But for λ 6= 0, i.e. when

taking into account the bitrate of the disparity map, the estimation of the optimal disparity map

is more complex, as the choices of disparities for each block are all interrelated. Indeed, the

choice of a disparity at one block tends to favor the choice of the same disparity for the other

blocks. This is explained by the fact that the entropy which approximates the bitrate needed

to encode the disparity map get reduced as much as the disparity map is composed of similar

disparities.
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3.2 Presentation of the modified M -algorithm (MMA)

This section describes the proposed solution to the rate-distortion optimization problem. The

developed algorithm has been called the Modified M -Algorithm (MMA) in reference to the

original M -Algorithm from which it is inspired. Originally, the M -Algorithm has been developed

in [46] to estimate the transmitted data stream through a noisy channel using the maximum

likelihood criterion. The algorithm sequentially builds a tree, and at each depth of the tree, only

the M -best paths according to the maximum likelihood metric are being extended. This allows

to reduce the computational complexity while ensuring good performance.

In order to adapt it to our stereo-matching optimization problem, we have brought several

modifications to this algorithm which are described below.

3.2.1 Sequential MMA based on a tree structure

The developed algorithm estimates the disparity map sequentially by building a tree where each

path correspond to a different disparity map being explored. The blocks of the image to match

are processed in a raster scanning order. For each block, a disparity is selected by taking into

accounts the already chosen disparities for previous blocks but also by making an assumption

on the distribution probability on the disparities to be chosen for the remaining blocks. The

selection process is detailed in the next subsection.

As the MMA processes the blocks in a raster scanning order, we have simplified some

notations for sake of simplicity. The block coordinates (iB, jB) are now replaced by a one-

dimension coordinate t defined as:

t = iB × Y + jB + 1 with iB = 0, ..., X − 1 and jB = 0, ..., Y − 1. (3.7)

t ranges from 1 to T where T is the total number of blocks in the image (i.e. X × Y ). In the

same way, the disparity d(iB, jB) is now denoted dt and corresponds to the disparity of the t-th

block in the considered raster scanning order.

Assume that the MMA has already processed the t − 1 first blocks of the image. The

M -best paths that have been retained by the MMA are denoted d
k
t−1, where k corresponds to

the index of the path. They correspond each to a partial disparity map defined as:

d
k
t−1 =

[
dk1, d

k
2, ..., d

k
t−1

]
with k = 1, . . . ,M. (3.8)

where dkt−1 is the disparity of the (t − 1)-th block in the k-th path. When processing the t-th

block, the MMA extends each of the M previous best paths by Nα new branches corresponding

to the Nα choices of possible disparities w ∈ W for the current block. Each of these extended

new paths is denoted (dk
t−1, w). At this step of the algorithm, amongst the MNα extended paths,

the MMA selects again the M best paths minimizing the global cost function. Note that after

the process of the t-th block, the k-th retained path may not necessarily stem from the k-th path

retained for the previous block.
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3.2.2 Entropy-distortion metric computation

The global cost function defined in Equation 7.6 is composed of the global distortion of the

predicted view EG(d) and the entropy of the disparity map H(d). Thus, its computation re-

quires the knowledge of the disparity distribution probability over the entire map. As the MMA

estimates the disparity map sequentially, when processing the t-th block, this distribution prob-

ability is unknown at this step of the algorithm. So we propose some modifications to the global

cost function to adapt it to the sequential processing of the MMA. Concerning the computation

of the global distortion EG(d), it is a sum of disconnected local distortions. So when processing

the t-th block, it can easily be replaced by Et(d
k
t−1, w) which is the global distortion of the partial

disparity map (dk
t−1, w). It is defined as:

Et(d
k
t−1, w) =

t−1∑

τ=1

EB(d
k
τ ) + EB(w) with k = 1, ...,M. (3.9)

This replacement does not impact the choice of the M best paths at the t-th block. Things

are different for the computation of the disparity map entropy in the global cost function. As

said previously, it requires the knowledge of the whole disparity map which is unknown when

processing an intermediate block of the image. So we propose to estimate this distribution

probability at each step of the algorithm by making an adaptive assumption over it. To allow

a sequential disparity map estimation by the MMA, the entropy term H(d) is replaced by an

adapted entropy Hβ,t(d
k
t−1, w) when processing the t-th block. It is define as follows:

Hβ,t(d
k
t−1, w) = −

∑

d∈W

pM (dt = d|dk
t−1, w) log2

(
pM (dt = d|dk

t−1, w)
)

with k = 1, ...,M. (3.10)

where pM (dt = d|dk
t−1, w) is the disparity distribution probability of the whole disparity map

which is estimated thanks to a finite mixture distribution given by:

pM (dt = d|dk
t−1, w) = a(β, t)pU (dt = d) + (1− a(β, t))pE(dt = d|dk

t−1, w), (3.11)

where the parameter a(β, t) is set as:

a(β, t) =
β(T − t)

β(T − t) + t
. (3.12)

pU (dt = d) is a uniform distribution defined as:

pU (dt = d) =
1

Nα

. (3.13)

because the set W of all possible disparities contains Nα disparities.

pE(dt = d|dk
t−1, w) is the empirical distribution of the partial disparity map (dk

t−1, w) which

is computed as the ratio between the number of blocks having the disparity d to the total number

of processed blocks t. It is expressed as:

pE(dt = d|dk
t−1, w) =

V (dk
t−1, d)

t
. (3.14)
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The parameter β allows to choose to what extent the estimated disparity distribution should be

close to a uniform distribution (obtained when β = 1) or to the empirical distribution computed

with the partial disparity map (obtained when β = 0).

It should be noted that the function a(β, t) decreases linearly with the number of blocks

already processed, such as it is equal to zero when processing the last block of the image. In this

way, as the image is being processed, the uniform probability has less and less importance to the

detriment of the empirical probability which becomes closer to the true disparity distribution.

At the end of the image process, the estimated distribution probability is exactly equal to the

empirical probability.

The new joint entropy-distortion metric is finally defined as:

J
(
λ, β,dk

t−1, w
)
= Et

(
d
k
t−1, w

)
+ λHβ,t

(
d
k
t−1, w

)
with k = 1, ...,M. (3.15)

The steps of the MMA are summarized in Figure 3.2.

An illustration of the algorithm is also given in Figure 3.3 as an example taking M = 2

and N1 = 5.

Input: Left image IL and right image IR of size X × Y

Output: Estimated disparity map associated with IR

1. Set initial values: λ; M ; wmin; wmax; α; β; iB = −1; jB = −1;

2. Set all paths to empty sets.

3. Increment by 1 the row index iB ;

4. Increment by 1 the column index jB ;

5. Define M ×Nα branches by extending each path with a disparity;

6. Estimate the disparity probabilities of all extended paths;

7. Deduce the disparity entropy of all paths;

8. Compute the modified cost functions J(λ, β,dk
t−1, w) of all paths;

9. Sort the paths in an increasing order of the modified cost functions;

10. Select among the M ×Nα paths, the first M paths;

11. Update the M disparity maps;

12. Start again from step 3 if jB < Y otherwise continue;

13. Start again from step 2 if iB < X otherwise continue;

14. Select the best dense disparity map associated with IR.

Figure 3.2: MMA: Entropy-distortion optimization algorithm

3.2.3 Settings parameters in the MMA

The MMA relies on many parameters: the number of paths M that are extended at each depth,

the disparity range W , the size of the block to match NX ×NY , the precision of the disparities

α, the parameters λ and β. To reduce the computational load, we chose to set the following
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Figure 3.3: Stereoscopic matching optimization algorithm with M = 2 and N1 = 5.

parameters: the number of retained paths M , the disparity range W , α and β (the choice of β

is discussed in section 3.3.1).

Indeed, at a given bitrate, we restrict the parameter optimization to the choice of the size

of blocks NX×NY and the selection of the parameter λ. For this, we consider only square blocks

of size ranging from 1× 1 to 16× 16. The value of λ is also chosen amongst a finite set of values

ranging from 0 to λmax.

The optimized values of NX ×NY and λ are computed by an iterative algorithm able to

determine amongst the predefined sets, values of parameters minimizing the global distortion at

a given bitrate.

The parameter optimization algorithm relies on two tree structure: the first one allows to

explore the sizes of blocks (see Figure 3.5) and the second one, similar to the first one, allows to

explore the values of λ. Both tree structure share the same feature: going upwards in the tree

(i.e selecting a smaller size of block or a smaller value of λ) tends to increase the bitrate of the

disparity map and reduce the distortion of the predicted view. The developed algorithm uses

the knowledge of this feature to reject some combinations of parameters without trying them for
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a given bitrate, allowing to reduce the computational load of the MMA.

We introduce some notations to present the optimization parameter of this algorithm. Tbpp

is the target bitrate, bpp(λ = λi, s) is the bitrate of the disparity map estimated by the BMA

using a size of block equal to s and λ = λi. Furthermore, s+ represents the size of the block just

superior to s in the tree structure and s− represents the size of the block just inferior to s (see

Figure 3.5). For example, if s = 8 × 8, then s+ = 12 × 12 and s− = 4 × 4. The algorithm first

determines the block sizes that can satisfy the target bitrate by testing the two extreme values

of λ (i.e. λ = 0 and λ = λmax) as in Figure 3.4:

Input: Left image IL and right image IR of size X × Y

Output: Sizes of blocks that can satisfy the target bitrate

1. Initialization: set s = 8× 8 and λ = 0;

2. Compute bpp(λ = 0, s). If bpp(λ = 0, s) < Tbpp, go to step 3. Otherwise go to step 4.

3 Prune all branches related to a block size si such as si ≥ s, set s = s− and return to step 2.

4 Compute bpp(λ = λmax, s). If bpp(λ = λmax, s) > Tbpp, go to step 5, otherwise go to step 6.

5 Prune all branches related to a block size si such as si ≤ s, set s = s+ and return to step 2;

6 Retain the block size s.

7 Start again from step 2 by setting s = s− and s = s+ as long as this is possible.

Figure 3.4: Selection of the block sizes in the MMA
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Figure 3.5: Tree-structure to explore the block sizes.

A dichotomy algorithm is then applied for each retained size of blocks to determine amongst

a predefined set, the value of λ leading to the best reconstruction under the bitrate constraint.

Finally, amongst all the retained couples of parameters (block size and λ value), the best one in

terms of distortion is selected. Note that with limited modifications to this algorithm, a different
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3.3 Experimental results and discussions

goal could have been set: finding the optimal set of parameters minimizing the bitrate for a given

quality of the predicted view.

3.3 Experimental results and discussions

This section presents the simulations results that have been conducted on stereoscopic images

taken from the "Middlebury" dataset [47] ("Tsukuba", "Barn2", "Baby1", "Wood2", "Bull",

"Sawtooth" and "Venus" ) and the "Deimos" dataset [48] ("Stereo_2", "Stereo_13" and "Ste-

reo_67").

For all the simulations the left view is taken as the reference one and the right view as the

one to be predicted. The bitrate needed to encode the disparity map is approximated by the

entropy computed using the empirical disparity distribution of the disparity map. It is expressed

in bits per pixel (bpp). The distortion of the predicted view is computed using the Peak Signal-

to-Noise Ratio (PSNR) between the original right view and its prediction. It is expressed in

decibel (dB).

The performance of the MMA are compared to the BMA with and without using a reg-

ularization constraint to estimate the disparity maps. We also analyze the performance of all

algorithms using a DPCM (Differential Pulse-Code Modulation) encoder.

The rest of this section is organized as follows. We first present how the choice of the

parameter β is performed. Then we analyze the influence of the number of the retained paths M

on the MMA rate-distortion performance. We present some detailed simulation results comparing

the MMA with the BMA. Then we discuss the performance of the MMA compared to the

BMA using a regularization constraint, which is denoted BMA-RA (BMA with Regularization

Algorithm). The impact of using a DPCM encoder on all algorithms is also studied. The

particular case of dense disparity map estimation is also considered and finally we end this

section with a discussion on the MMA processing time.

3.3.1 Choice of the parameter β

To discuss the choice of the parameter β, we present an experiment that have been conducted

on the four stereoscopic images "Tsukuba", "Stereo_13", "Wood2" and "Baby1". The disparity

map is estimated by the MMA using values of β ranging from 0 to 1 with a step equal to 0.1.

Disparities are selected amongst the set [−15, . . . , 14]. Figure 3.6 presents the simulations results

as the average PSNR computed from the reconstruction of the four images versus the value of β

taken for the simulation. This simulation has been carried out for six different target bitrates:

0.01; 0.03; 0.06; 0.2; 0.5; 1.5 bpp. For each target bitrate, the performance are represented using

a different color. We can note that for all the curves, the best performance in terms of distortion

are achieved taking β ≥ 0.1. β = 0 leads to the worse performance in all cases. This corresponds
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to the case where the mixture probability does not consider the a priori uniform distribution of

the disparities in Equation (3.11), and is only composed of the empirical disparity distribution.

Furthermore, we can note that β greater than 0.2, the distortion performance remains fairly

similar even if a little decrease can be noticed as the value of β increases until 1. Considering

all these observations, we have set the parameter β equal to 0.2 for the rest of the simulations

presented in this chapter.
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Figure 3.6: MMA performance according to the parameter β.

3.3.2 Influence of the number of retained paths M on the performance

The parameter M defines the number of paths that should be retained and then extended at

each depth of the tree.

We present simulations performed on two stereo images ("Barn2" and "Wood2") to discuss

the influence of the variation of this parameter. In the simulations, β is set to 0.2, the disparities

are integer values (α = 1) and are selected amongst the set [−15, . . . , 14].

The MMA estimates a dense disparity map (the size of blocks used is equal to 1 × 1).

We compare the rate-distortion performance achieved by the MMA using M = 1 and M = 8.

Figure 3.7 presents the results on the stereoscopic image "Barn2" as the PSNR of the predicted

view versus the bitrate of the disparity map. The curve joining cross symbols (in red color)
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corresponds to the performance of the MMA using M = 1 and the curve joining circles (in blue

color) corresponds to M = 8.

For each curve, the RD points are obtained by varying the values of λ from 0 to 8000.

Both curves start from the same point (obtained using λ = 0) and join again on the bottom

left (highest values of λ). The first point actually corresponds to the performance that would

have achieved the BMA, as for λ = 0, the entropy term plays no role in the cost function.

The two curves remains below that point. This was expected because increasing the value of

λ can only lead in a reduced performance in terms of distortion as we add a constraint on the

optimization problem. From this experiment, we can note that the curve associated to M = 8

remains above the curve associated to M = 1. That is to say, taking M = 8 allows to achieve

better rate-distortion performance in this example for bitrates, especially between 0.6 bpp and

2 bpp. Taking M = 8 allows to achieve a gain of up to 3.2 dB as compared to M = 1 at the

bitrate of 0.62 bpp.

Our understanding is that the solution found by the MMA becomes closer to the optimal

solution of the stereo-matching optimization problem when λ is relatively small and when M is

increased. Indeed when λ is equal to 0, the optimal solution is the one found by the BMA, and

the complexity of finding the optimal disparity map increases with the value of λ. When M is

increased, a higher number of disparity maps are explored. So combining a small value of λ and

a higher value of M leads to a disparity map closer to the optimal solution.

However, in most of the experiments that we have conducted, no significative gains have

been observed by varying reasonably the value of M . Figure 3.8 shows the rate-distortion perfor-

mance of the MMA conducted on the stereoscopic image "Wood2" in the same conditions as for

the previous experiment. No significant difference can be seen between the performance obtained

using M = 8 and M = 1. Our understanding is that the stereo-matching optimization problem

is so complex and the search space so gigantic that increasing M with a reasonable values does

not allow to see a gain in the performance of the MMA. For this reason, the parameter M is set

to 1 in most of the following simulations.

3.3.3 Comparison with the Block-Matching Algorithm

This section discusses the rate-distortion performance of the MMA in comparison to the BMA.

Before giving an overview of the simulations results, we first present an analysis of the obtained

results on two stereoscopic images.

The first experiment have been conducted on the image "Tsukuba" using blocks of size

ranging from 1× 1 up to 16× 16 for the MMA and up to 24× 24 for the BMA. The left image

has been interpolated according to [49] to allow half disparities (α = 2). The latter is chosen

amongst the set [−15,−14.5, . . . , 14, 14.5] and the parameter β is set to 0.2 while M is set to 1.

Rate-Distortion performance of both algorithms are given from Figure 3.9 to Figure 3.12.
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Figure 3.7: Influence of the parameter M on the MMA performnce using "Barn2" with a block

size 1× 1; M = 1 and M = 8.
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Figure 3.8: Influence of the parameter M on the MMA performance using "Wood2" with a block

size 1× 1; M = 1 and M = 8.

Each figure corresponds to a specific bitrate range and has been obtained using different block

sizes. Figure 3.9 (respectively Figure 3.10, Figure 3.11 and Figure 3.12) represents the perfor-

mance of the MMA obtained using blocks of size ranging from 1× 1 to 3× 3 (respectively 4× 4

to 7×7, 8×8 to 11×11 and 12×12 to 16×16). Simulation results have been conducted using a

specific block size for different values of λ ranging from 0 to 8000 and are represented by a curve

of specific color (one color for each block size). All the curves start on the top right at a black
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circle obtained with λ = 0. The performance of the BMA are given by the dashed line joining

circles (in black color) where each circle is obtained using a different block size.

These figures clearly show that the MMA performs better than the BMA in terms of rate-

distortion. For example, using blocks of size 4 × 4, the BMA leads to a disparity map with a

bitrate of 0.27 bpp for a predicted image quality of 34.12 dB. Using the same block size, the

MMA yields to a predicted image with a slightly lower quality of 33.89 dB but the estimated

disparity has a lower bitrate of 0.14 bpp (for λ = 1.8). Although the bitrate needed to encode the

disparity map is much lower with the MMA than with the BMA, no noticeable differences can be

seen between the reconstructions of the predicted image obtained with the BMA and the MMA

(respectively given in Figure 3.16 and Figure 3.17). For comparison, the original right view is

presented in Figure 5.5. This can be explained as the MMA tends to favor the use of identical

disparities to reduce the entropy of the disparity map while ensuring good performance thanks

to the joint entropy-distortion metric. The observation of the histograms of the disparity maps

estimated by the BMA and the MMA (respectively given in Figure 3.18 and Figure 3.19) is in

agreement with this understanding. Indeed the large amount of small bars in the BMA-histogram

is replaced by fewer bars of bigger size in the histogram of the MMA. This transformation reduces

significantly the entropy of the disparity map as they are less different values of disparities, but

the selected ones appear more often in the disparity map.

Figure 3.20 and Figure 3.21 show the disparity maps estimated by the BMA and the MMA

respectively. One can clearly see that the one computed by the MMA is smoother than the map

computed by the BMA. This is coherent with the analysis of the histograms.

At the same bitrate, the MMA achieves also better performance than the BMA. For ex-

ample, we can see in Figure 3.11 that using blocks of size 13× 13, the BMA yields the RD point

(30.18dB, 0.022bpp) while the MMA yields to the point (30.81dB, 0.022bpp) using smaller blocks

of size 9 × 9 with λ = 9.9. We can observe this resulting gain of 0.63dB in the reconstruction

of the BMA (given in Figure 3.14) and the one of the MMA (given in Figure 3.15). On can see

that the edges of the lamp are better reconstructed with the MMA thanks to the use of smaller

blocks.

In what follows we discuss the performance of the two algorithms on the stereoscopic image

"Barn2". Experiments have been conducted using blocks of size ranging from 1×1 to 3×3 for the

MMA and up to 5×5 for the BMA. The disparities are selected in the set [−15,−14, . . . , 13, 14],

the parameter β is set to 0.2, values of λ are taken from 0 to 8000. The MMA has been tested

for M = 1 and M = 8.

The performance of both algorithms are shown in Figure 3.22. The results obtained by the

MMA using the same size of blocks are represented using the same color, while the performance

of the BMA are given by the dashed black line joining circles. Each circles has been obtained

using a different block size. Two curves representing the performance of the MMA starts from

each circle: the one joining cross symbols "x" is obtained taking M = 1 and the one joining
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plus symbols "+" is obtained taking M = 8. The presented results shows that allowing a little

decrease in the distortion of the predicted image allows to achieve a significant gain in terms

of bitrate. For example, using blocks of size 2 × 2, the BMA yields to the RD point (34.81dB,

0.98bpp). By allowing a little decrease in the distortion performance, the MMA can reduce the

bitrate and leads to the RD point (34.59dB, 0.43bpp) by taking λ = 1.2. Improvements can also

been observed in terms of distortion at the same bitrate. The MMA yields to a reconstructed

image of quality 35.91dB at the bitrate of 0.98bpp using blocks of size 1 × 1 with M = 8 and

λ = 11.9. This results in a gain of 1.1dB in comparison to the BMA. The reconstructions of

the right view by the two algorithms confirm this gain. Figure 3.25 shows 3 close-up views of

the area outlined by the white box on the original image represented on the top of the figure.

From left to right, the close-up views correspond to the original right image, the reconstruction

of the BMA and the reconstruction of the MMA. The face at the bottom of the triangle is better

predicted by the MMA, as for the dotted line at the center of the triangle.

Table 5.1 provides additional simulation results performed on different stereoscopic im-

ages ("Tsukuba", "Barn2", "Baby1", "Wood2", "Bull", "Sawtooth" , "Venus", "Stereo_2",

"Stereo_13" and "Stereo_67") using different size of blocks (4× 4, 6× 6 and 8× 8) and taking

M = 1. The disparities are selected amongst the set [−15,−14.5, . . . , 14, 14.5]. Concerning the

MMA, λ values ranges from 0 to 8000 and β is set at 0.2. The performance of the BMA and the

MMA are given in Table 5.1 respectively by the column 1 and 3. Results are given as the PSNR

of the reconstructed view in dB with the bitrate needed to encode the associated disparity map

in bpp. For the MMA, the results provided are given for fairly small values of λ, allowing to

reduce the bitrate as compared to the BMA to the detriment of a small decrease in the distortion

performance. Results shows that for all images and considered block sizes, the MMA allows to

achieve a significant gain in the bitrate needed to encode the disparity map, at the expense of

a little decrease in the distortion performance as expected. It should be noted that this small

decrease in the distortion performance does not induce noticeable modifications visually on the

predicted view.

3.3.4 Comparison with the BMA including a smoothness constraint

In this section, we compare the performance of the MMA to the Block-Matching Algorithm in

which a regularization constraint has been added (called BMA-RA). The BMA-RA processes

the blocks in raster scanning order and the disparity for each block is selected by minimizing the

following local cost function:

J = EB(d) + λReg(d, p). (3.16)

where λ is the Lagrange multiplier. In this equation, EB(d) represents the local distortion

induced by the disparity d. Reg(d, p) is a regularization constraint allowing to smooth the

disparity map and consequently reduce its entropy. This term takes into account the disparities
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of the three nearest neighboring blocks that have already been processed around the current

block (i.e. the left, upper and left upper corner blocks). This regularization term is expressed as:

Reg(d, p) =
√
(d2 − p2) where p is the median value of the disparities computed over the three

neighboring blocks previously cited.

In the provided simulation results, the disparities are selected in the set [−15,−14.5, . . . , 13.5, 14]

for the two algorithms. Values of λ ranges from 0 to 8000 for the MMA and 0 to 500 for the BMA-

RA. Figure 3.23 shows the performance of both algorithm on the stereoscopic image "Wood2"

using blocks of size equal to 4× 4, 6× 6 and 8× 8. Results obtained using the same size of block

are represented with the same color, with "+" symbol for the MMA and "*" symbol for the

BMA-RA. For each size of blocks, the MMA and the BMA-RA starts from the same point at the

upper right of the curves. This point has been obtained for the two algorithms by taking λ = 0

which corresponds to the minimization of the predicted view distortion only. Considering the

size of block 4× 4, both algorithm leads to the RD point (27.13 dB, 0.34 bpp) for λ = 0.When

allowing a little decrease in the predicted image quality, the MMA leads to a reconstructed im-

age of quality 26.84 dB for a bitrate of 0.08 bpp using λ = 6.8, while the BMA-RA leads to a

reconstructed image of the same quality 26.83 dB for a higher bitrate of 0.25 bpp using λ = 3.

This analysis can be extended to the results obtained with the other block sizes, showing the

advantage of the MMA on the BMA-RA.

The table 5.1 is extended with the performance of the BMA-RA on different stereoscopic

images (see column 2). λ values tested range from 0 to 8000 for the MMA and from 0 to 500

for the BMA-RA. The performance of the BMA-RA are also provided for fairly small values of

λ when it allows a reduction of the bitrate needed to encode the disparity map at the expense

of a little increase in the predicted image distortion. The comparison of the rate-distortion

performance of the two algorithms shows the advantage of the MMA over the BMA-RA as it

allows a higher decrease in the bitrate needed to encode the disparity map for an equivalent or

higher quality of the predicted view.
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Setting parameters

BMA: d ∈ [−15,−14.5, . . . , 13.5, 14]

BMA-RA: d ∈ [−15,−14.5, . . . , 13.5, 14]

MMA: d ∈ [−15,−14.5, . . . , 13.5, 14] , β = 0.2,M = 1

Stereoscopic BMA BMA-RA MMA

Images Block Size PSNR Bitrate PSNR Bitrate λ PSNR Bitrate λ

Wood2

4x4 27.13 0.34 26.83 0.25 3 26.84 0.08 6.8

6x6 26.7 0.143 26.41 0.109 3 26.39 0.027 10.6

8x8 26.54 0.077 26.25 0.06 3 26.25 0.013 14.3

Stereo_2

4x4 32.7 0.313 32.24 0.258 1 32.4 0.219 4.6

6x6 31.86 0.135 31.3 0.108 1 31.48 0.087 6.2

8x8 31.59 0.074 31.25 0.061 1 31.25 0.049 6.2

Stereo_67

4x4 41.95 0.347 41.95 0.347 0 41.6 0.169 0.1

6x6 40.68 0.1507 40.68 0.1507 0 40.4 0.056 0.1

8x8 40.73 0.083 40.73 0.083 0 40.48 0.028 0.1

Tsukuba

4x4 34.12 0.269 34.12 0.269 0 33.82 0.133 2.7

6x6 32.21 0.11 32.21 0.11 0 32.02 0.059 3.6

8x8 31.48 0.059 31.48 0.059 0 31.29 0.032 4.5

Stereo_13

4x4 29.99 0.331 29.69 0.247 2 29.74 0.216 3.1

6x6 28.96 0.139 28.68 0.103 3 28.68 0.08 4.6

8x8 28.54 0.077 28.35 0.056 3 28.4 0.051 3.1

Baby1

4x4 26.98 0.347 26.98 0.347 0 26.73 0.21 7.2

6x6 26.02 0.151 26.02 0.151 0 25.8 0.084 7.2

8x8 25.5 0.082 25.5 0.082 0 25.3 0.043 7.2

Barn2

4x4 34.51 0.247 34.51 0.247 0 34.3 0.16 1.2

6x6 34.03 0.101 34.03 0.101 0 33.77 0.067 1.8

8x8 33.08 0.055 33.08 0.055 0 32.88 0.039 1.8

Venus

4x4 31.6 0.307 31.6 0.307 0 31.41 0.194 3

6x6 30.48 0.131 30.48 0.131 0 30.18 0.083 6.6

8x8 29.75 0.071 29.75 0.071 0 29.51 0.049 6.6

Sawtooth

4x4 31.7 0.273 31.7 0.273 0 31.46 0.215 3

6x6 30.82 0.117 30.82 0.117 0 30.63 0.098 3

8x8 30.21 0.063 30.21 0.063 0 30.21 0.054 3

Bull

4x4 35.35 0.284 35.35 0.284 0 35.13 0.186 1.2
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Stereoscopic BMA BMA-RA MMA

Images Block Size PSNR Bitrate PSNR Bitrate λ PSNR Bitrate λ

6x6 34.79 0.118 34.79 0.118 0 34.52 0.079 1.8

8x8 34.18 0.064 34.18 0.064 0 33.93 0.044 1.8

Table 3.1: Comparison of rate-distortion performance of BMA, BMA-RA and MMA.

3.3.5 Comparison of all algorithms using DPCM coding

This section analyzes the impact of the DPCM coding on the MMA, BMA and BMA-RA per-

formance. The DPCM coder is lossless and is used here to encode the disparity maps estimated

by all the algorithms. The entropy is then computed on all the coded disparity maps and the

approximated bitrates are given in bits per pixel (bpp). Figure 3.24 compares the performance

of MMA-DPCM, BMA-DPCM and BMA-RA-DPCM algorithms. Tests have been conducted

using blocks of size equal to 4× 4, 6× 6 and 8× 8.

Results obtained with a same size of blocks have been represented with the same color.

The values of λ tested ranges from 0 to 8000 for MMA-DPCM and 0 to 500 for BMA-RA-DPCM.

For each block size, note that the curves corresponding to the MMA-DPCM and the BMA-RA-

DPCM start from the same point obtained with λ = 0. This point is also the one achieved

by the BMA-DPCM as for λ = 0, the selection of the disparities takes only into account the

minimization of the predicted image distortion. It can be noted that in the presented figure,

the prediction quality (in dB) achieved by the MMA-DPCM and the BMA-RA-DPCM are the

same as the one obtained by the MMA and the BMA-RA. Only the bitrate of the disparity

map has been changed due to the DPCM encoder. An analysis of these curves shows that the

MMA-DPCM still achieves better rate-distortion performance than the BMA-RA-DPCM. For

example, using blocks of size 4 × 4 and λ = 0, both algorithms gives the R-D point (26.84 dB;

0.4 bpp). Allowing a little increase in the predicted image distortion, the MMA-DPCM yields to

the point (26.84 dB; 0.109 bpp) for λ = 6.8 while the BMA-RA-DPCM provides the point (26.83

dB; 0.257 bpp) with λ = 3. For equivalent prediction quality, the MMA-DPCM still permits a

higher reduction of the bitrate of the disparity map as compared to the BMA-RA-DPCM.

Additional simulation results comparing the MMA-DPCM, the BMA-RA-DPCM and the

BMA-DPCM performance are given in Table 3.2. The parameters considered for all the algo-

rithms are provided at the top of the table.
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Setting parameters

BMA-DPCM: d ∈ [−15,−14.5, . . . , 13.5, 14]

BMA-RA-DPCM: d ∈ [−15,−14.5, . . . , 13.5, 14]

MMA-DPCM: d ∈ [−15,−14.5, . . . , 13.5, 14] , β = 0.2,M = 1

Stereoscopic BMA-DPCM BMA-RA-DPCM MMA-DPCM

Images Block Size PSNR Bitrate PSNR Bitrate λ PSNR Bitrate λ

Wood2

4x4 27.13 0.4 26.83 0.257 3 26.84 0.109 6.8

6x6 26.7 0.175 26.41 0.112 3 26.39 0.034 10.6

8x8 26.54 0.095 26.25 0.06 3 26.25 0.016 14.3

Stereo_2

4x4 32.7 0.273 32.7 0.273 0 32.4 0.18 4.6

6x6 31.86 0.102 31.86 0.102 0 31.75 0.066 3.1

8x8 31.59 0.057 31.59 0.057 0 31.43 0.037 4.6

Stereo_67

4x4 41.95 0.363 41.95 0.363 0 41.6 0.223 0.1

6x6 40.68 0.157 40.68 0.157 0 40.4 0.065 0.1

8x8 40.73 0.088 40.73 0.088 0 40.48 0.035 0.1

Tsukuba

4x4 34.12 0.23 34.12 0.23 0 33.82 0.095 2.7

6x6 32.21 0.089 32.21 0.089 0 31.97 0.044 4.5

8x8 31.48 0.047 31.48 0.047 0 31.29 0.025 4.5

Stereo_13

4x4 29.99 0.328 29.63 0.215 3 29.58 0.212 4.6

6x6 28.96 0.135 28.71 0.09 2 28.68 0.091 4.6

8x8 28.54 0.075 28.38 0.049 2 28.31 0.05 4.6

Baby1

4x4 26.98 0.384 26.98 0.384 0 26.73 0.285 7.2

6x6 26.02 0.17 26.02 0.17 0 25.8 0.12 7.2

8x8 25.5 0.095 25.5 0.095 0 25.3 0.063 7.2

Barn2

4x4 34.51 0.20 34.51 0.20 0 34.3 0.126 1.2

6x6 34.03 0.069 34.03 0.069 0 33.77 0.05 1.8

8x8 33.08 0.034 33.08 0.034 0 32.88 0.03 1.8

Venus

4x4 31.6 0.233 31.6 0.233 0 31.41 0.153 3

6x6 30.48 0.085 30.48 0.085 0 30.18 0.068 6.6

8x8 29.75 0.041 29.75 0.041 0 29.74 0.039 0.3

Sawtooth

4x4 31.7 0.183 31.7 0.183 0 31.69 0.156 0.3

6x6 30.82 0.069 30.82 0.069 0 30.81 0.065 0.3

8x8 30.21 0.036 30.21 0.036 0 30.21 0.034 3

Bull

4x4 35.35 0.21 35.35 0.21 0 35.13 0.134 1.2
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Stereoscopic BMA-DPCM BMA-RA-DPCM MMA-DPCM

Images Block Size PSNR Bitrate PSNR Bitrate λ PSNR Bitrate λ

6x6 34.79 0.073 34.79 0.073 0 34.76 0.055 0.3

8x8 34.18 0.036 34.18 0.036 0 34.17 0.029 0.3

Table 3.2: Comparison of rate-distortion performance of BMA, BMA-RA and MMA using

DPCM.

3.3.6 Performance of the MMA estimating dense disparity map

This section focuses on the performance of the MMA when estimating dense disparity map (using

blocks of size 1 × 1). Results are compared with those obtained with the Dynamic Programing

Algorithm (DPA). We used the one provided in the computer vision system toolbox of Matlab [50]

which estimates blockwise disparity map.

For each block, this algorithm estimates a disparity by minimizing the Sum of Squared

Differences (SSD) between the pixels of the blocks to be matched. Furthermore, a smoothness

constraint is added to the cost function so that the selected disparity tends to be similar to the

disparity of the neighboring already processed blocks.

Simulations results presented in this section have been performed on the stereoscopic image

"Barn2". For both algorithms, disparities are selected amongst the set [−15,−14, . . . , 13, 14].

The parameter of the MMA are set to M = 1 and β = 0.02. The performance of the MMA

are compared to those of the DPA using blocks of size 3 × 3 providing the best quality of the

predicted view for this algorithm. Using the DPA, the evaluated PSNR is equal to 23.15 dB for

a bitrate of the disparity map equal to 3.05 bpp. The MMA can produce a predicted image with

a much higher quality of 33.97 dB at a bitrate inferior to the previous one (2.88 bpp) taking

λ = 6.6.

Figure 3.26 shows the original right view of the image "Barn2". The reconstruction ob-

tained using the DPA and the MMA are given respectively in Figure 3.28 and Figure 3.27. The

gain in the prediction quality can be observed here as the newspaper is better reconstructed in

the case of the MMA.

For an equivalent quality of the predicted view (23.15 dB for the DPA and 23.81 dB for

the MMA), the MMA achieves a significant gain in the reduction of the bitrate needed to encode

the disparity map. While the DPA needs 3.05 bpp, the MMA needs only 0.83 bpp to achieve an

equivalent quality. This is explained once again by the fact that the MMA tends to favor the use

of identical disparities over the whole map, not only locally, and still ensures good rate-distortion

performance by minimizing the joint entropy-distortion metric. This analysis can be confirmed

by having a look at the disparity maps computed by the DPA and the MMA which are given

respectively in Figure 3.29 and Figure 3.30.
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3.3.7 MMA processing time and complexity

This section discusses the processing time of the MMA. For this, simulations have been performed

under Matlab environment (version R2012a) on a Personal Computer having the following char-

acteristics: Intel Core i5 processor (3.20 GHz) and a RAM of 4 GB. We present the results

obtained using the stereoscopic image "Sawtooth" of size 380 × 434 pixels from the "Middle-

bury" dataset.

For a given target bitrate, the MMA has to find adequate values of λ and of block size

to have the best prediction quality. Figure 3.31 shows the MMA processing time in function of

given target bitrates from 0.006 to 1.5 bpp. In this simulation, the MMA selects the disparities

in the set [−15,−14, . . . , 14]. The block size are chosen amongst sizes from 1× 1 to 16× 16 and

the adequate value of λ is chosen amongst a defined set of values ranging from 0 to 8000. It can

be observed that the MMA processing time globally decreases with the target bitrate, starting

from 1677 seconds for a bitrate equal 1.5 bpp up to 85 seconds for a low bitrate of 0.006 bpp.

It can be explained by the fact that for higher bitrates, the MMA tests smaller sizes of blocks,

resulting in an increase in the computation time. The processing time of the MMA is relatively

high compared to that of the BMA. In this thesis, we have focused on finding efficient disparity

map estimation algorithms in terms of Rate-Distortion performance. No special care have been

taken to optimize or reduce the processing time. We are optimist that investigations dedicated

to the reduction of the processing time of the MMA could improve its rapidity by for example

executing tasks of the MMA in parallel.

The complexity of the MMA corresponding to the number of elementary operations needed

to compute one Rate-Distortion point (i.e. for a specific value of λ) is given by:

Nw [(XY )(3NxNy − 1) +M(XY − 1)] +M(XY )(14Nw − 1) + 2MXYNw (3.17)

This complexity increases with the number of disparities in the search area, the size of the blocks,

the size of the image and the parameter M .

3.4 Conclusion

In this chapter, we have presented a new stereoscopic matching optimization algorithm called

MMA. The MMA sequentially estimates a disparity map reducing the distortion of the pre-

dicted view as well as the bitrate needed to encode the disparity map. This is achieved by the

minimization of a joint entropy-distortion metric.

The MMA assumes that the disparities of the whole map follow a specific distribution

to compute this metric. Furthermore, the MMA sequentially builds a tree where each path

corresponds to a partial disparity map. The MMA also extends only the M best paths in terms

of rate-distortion performance at each depth of the tree, thus reducing the computational load of
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the algorithm. The analysis of the simulation results supports the idea that the MMA reduces

the bitrate of the disparity map by favoring similar disparities.

Simulation results have also shown the advantage of the MMA over the BMA using or not

a smoothness constraint. All the images used for these simulations were assumed to be rectified.

The next chapter presents an extension of the MMA that have been adapted to the case of non-

rectified stereoscopic images but still works with rectified images. The extended MMA shows to

improve the performance of the MMA on both types of images.
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Figure 3.13: Original right image "Tsukuba".
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Figure 3.14: Reconstruction using BMA (30.18dB; 0.022bpp).

Figure 3.15: Reconstruction using the proposed algorithm (30.81dB; 0.022bpp) with λ = 9.9.

Figure 3.16: Reconstruction using BMA (34.12dB; 0.27bpp).
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Figure 3.17: Reconstruction using MMA algorithm (33.89dB; 0.14bpp) with λ = 1.8.
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Figure 3.18: Histogram of the disparity map based on the BMA (34.12dB; 0.27bpp).
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Figure 3.19: Histogram of the disparity map based on the MMA algorithm (33.89dB; 0.14bpp)

with λ = 1.8.
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Figure 3.20: Disparity map using BMA (34.12dB; 0.27bpp).

 

 

−15

−10

−5

0

5

10

15

Figure 3.21: Disparity map using the MMA algorithm (33.89dB; 0.14bpp) with λ = 1.8.
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Figure 3.25: From left to right close-up views of the original right image "Barn2", reconstructed

image using the BMA; and the reconstructed image using MMA.
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Figure 3.26: Original right image.

Figure 3.27: Reconstructed image using dynamic programming (23.15dB; 3.05bpp).

Figure 3.28: Reconstructed image using the MMA (33.97dB; 2.88bpp).
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Figure 3.29: Disparity map estimated using dynamic programming (23.15dB; 3.05bpp).
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Figure 3.30: Disparity distribution using the MMA (23.81dB; 0.87bpp).
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Figure 3.31: MMA processing time according to target bitrates.
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Extension of the MMA to non-rectified

stereoscopic images: EMMA

This chapter presents an extension of the MMA described in the previous chapter, called EMMA.

The extended algorithm can also be applied to non-rectified stereoscopic images while taking

advantage of the MMA performance. We first introduce some modifications in the notations. The

adaptation of the stereo-matching problem and the MMA to the case of non-rectified stereoscopic

images is then presented. This work has also been presented in [10].

4.1 Notations and assumptions

In the case of non-rectified stereoscopic images, corresponding blocks do not necessarily belongs

to the same scan lines. Thus, disparities have two components, one horizontal and one vertical.

The disparity d(ib, jb) associated to the block at position (ib, jb) in the right image (see Section

3.1.1) is redefined as d(ib, jb) = (dx, dy), with dx the vertical component of the disparity and dy

its horizontal component as represented in Figure 4.1.

The EMMA uses an enlarge sliding matching window W to perform the block-matching,

compared to the MMA to consider also vertical displacements. As shown in Figure 4.1., it

is centered on the origin of the block to be match. Its size becomes N ′ = Wx × Wy where

Wx and Wy are respectively the vertical and horizontal size of the window defined as Wx =

wx_max − wx_min + 1 and Wy = wy_max − wy_min + 1. In the same way as previously, w

now designates a two dimensions vector w = (wx, wy) such as wx = {wx_min, . . . , wx_max} and

wy = {wy_min, . . . , wy_max}. Moreover, the disparity denoted dkl representing the disparity of

the k-th path at l-th depth (see Section 3.2.1) is now redefined as dkl = (dx
k
l , dy

k
l
).
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Figure 4.1: EMMA notations.

4.2 Presentation of the extended MMA

Considering the case of non-rectified stereoscopic images, the rate-distortion optimization prob-

lem remains unchanged and is still expressed as the following Lagrangian minimization:

d̂ = argminJ(λ,d) = argmin(EG(d) + λH(d)). (4.1)

In this equation, the global distortion of the predicted image EG(d) given in equation (3.1.1) is

modified as follows to consider the two components of the disparity vectors as follows:

EG(d) =

X−1∑

ib=0

Y−1∑

jb=0

EB(ib, jb) (4.2)

with EB(ib, jb) =
x−1∑

u=0

y−1∑

v=0

(Il(ip + u+ dx, jp + v + dy)− Ir(ip + u, jp + v))2. (4.3)

The EMMA brings a sub-optimal solution to the rate-distortion optimization problem by

following exactly the same steps as the MMA summarized in Table 3.2 where the computation

of the local distortion and the entropy of each branch has been updated as explained below.

At each depth of the tree, the EMMA retains the M -best paths and extends each of them

by N ′ new branches. Each new branch corresponds to the choice of a disparity w = (wx, wy)

inside the sliding matching window W . A local distortion Eb
w
t is associated to each new branch

and its computation is updated as follows:

Eb
w
t =

x−1∑

u=0

y−1∑

v=0

(Îr(ip + u, jp + v)− Ir(ip + u, jp + v))2 (4.4)
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where Îr(ip + u, jp + v) = Il(ip + u+ wx, jp + v + wy)) as in MMA.

In the same way, a bitrate is associated to each new branch and is approximated by the

computation of the entropy of the corresponding path updated as:

Hk
t = −

wx_max∑

wx=wx_min

wy_max∑

wy=wy_min

pkt (d = w) log2(p
k
t (d = w)) for k = 1, ...M ×N ′. (4.5)

The estimation of the disparity distribution probability include the computation of the

uniform distribution probability (see equation (3.13)) which is updated to consider the larger

searching window:

pU (d = (wx, wy)) =
1

N ′
. (4.6)

4.3 Simulation results and discussions

This section provides simulation results to evaluate the performance of the EMMA. Comparisons

are carried out with the BMA. As previously, the left image is taken as the reference and the

right image as the one to be predicted. The quality of the predicted image is evaluated with the

Peak Signal-to-Noise Ratio (PSNR) computed between the original right view and the predicted

one. The bitrate of the disparity map is approximated by the entropy in bits per pixels (bpp)

calculated using the empirical disparity distribution. Simulations have been conducted on non-

rectified and also rectified stereoscopic images taken from the "Middlebury" and "CMU" datasets

[47, 51]. The first subsection provides results performed on non-rectified stereoscopic images and

the second evaluates the performance of the EMMA in the case of rectified stereoscopic images.

4.3.1 Simulation results on non-rectified stereoscopic images

This section provides an analysis of the performance of the EMMA on a non-rectified stereoscopic

image ("sand") taken from the "Middlebury" dataset. We first analyse the impact of the choice

of the sliding matching window size dimensions on the predicted image quality. The second part

shows the performance achieved by both the EMMA and the BMA on this stereoscopic image

considering the results of the first analysis.

4.3.1.1 Impact of the window size choice

In what follows, we have first studied the impact of the sliding matching window dimensions

Wx × Wy on the quality of the predicted image using the stereoscopic image "sand". This

evaluation is performed by testing several sizes of symmetrical sliding matching window Wx ×

Wy = (wx_max−wx_min+1)×(wy_max−wy_min+1) centered on the block to be matched where
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wx_max = −wx_min = {0, 1, 2, . . . , 20} and wy_max = −wy_min = {0, 1, 2, . . . , 150}. For each

sliding matching window, the BMA estimates the disparity map achieving the best reconstruction

of the right view, which quality is measured by the PSNR. A value of PSNR is thus associated

to each different size of sliding matching window. Simulations have been carried out with blocks

of size 8× 8 pixels for the block-matching.

Figure 4.2 shows the performance achieved by the BMA using each different window size:

the pixel located at position (i, j) (where i = {0, 1, 2, . . . , 20} and j = {0, 1, 2, . . . , 150}) rep-

resents the performance achieved by the BMA using a window which bouderies are set as

wx_max = −wx_min = i and wy_max = −wy_min = j. Therefore, the window used has a size of

Wx ×Wy = (i× 2 + 1)× (j × 2 + 1). For example, the pixel located at position (i, j) = (10, 60)

represents the performance of the BMA using a window of size Wx × Wy = 21 × 121 centered

on the blocks to be matched. The PSNR values have been normalized to be represented using

a grayscale. Thus, the lowest PSNR value obtained using the BMA (14 dB) is represented in

black color and the highest value (24 dB) is represented using white color.

One can distinguish in this figure an horizontal line at line i = 10 beyond which almost all

the pixels have almost the same white color. This represents the fact that taking a window size

where wx_max is greater that 10 vertically does not improve significantly the gains in the quality

of the predicted view. This results conducted us to restrict the window size in the following tests

performed using the EMMA as well as the BMA.

i

j
)0;0(

20

150

Figure 4.2: BMA performance on "Sand" using different sliding matching window sizes.

4.3.1.2 Performance evaluation of the EMMA

The EMMA and the BMA performance for the stereoscopic image "sand" are given in Figure 4.3.

The results are given as the PSNR (in dB) of the predicted view versus the bitrate of the disparity

map (in bpp). Simulations have been conducted using two sizes of blocks for both algorithms:

8 × 8 illustrated using red color and 10 × 10 using blue color. Three sizes of sliding matching

window have also been tested for the two algorithms: 1× 31 represented by ’+’ symbol; 11× 31

by ’×’ symbol; and 21×31 by ’o’ symbol. The BMA performance is given by the first point at the

top right of each curve, which also corresponds to the EMMA performance using λ=0, as both
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Figure 4.3: Rate-distortion optimization on the non-rectified stereo image "Sand".

algorithm only intend to minimize the distortion of the predicted image in this configuration.

From each of these points, starts a curve corresponding to the EMMA performance obtained for

different values of λ.

For blocks of size 8× 8 and a window of size 1× 31, the BMA leads to the R-D point (14.6

dB, 0.07 bpp), while the EMMA achieves the same PSNR but with a much lower bitrate of 0.02

bpp using the same parameter for a given value of λ. The EMMA thus allows a gain of 71%

in comparison with the BMA. For a larger window of size 21 × 31, the BMA leads to the R-D

point (21.4 dB, 0.14 bpp), while the EMMA reduces the bitrate down to 0.03 bpp by allowing a

little decrease in the prediction quality (21.1 dB). The EMMA achieves a gain of 79% in terms

of bitrate allowing this little decrease. These curves also show that for blocks of size 10× 10, the

BMA yields to the R-D point (21.2 dB, 0.09 bpp), while the EMMA achieves a gain of 0.2 dB

over the BMA at the same bitrate using smaller blocks of size 8× 8.

4.3.2 Simulation results on rectified stereoscopic images

In what follows, the impact of the choice of the sliding matching window dimensions on the

performance when the algorithm is performed on the rectified stereoscopic image "tsukuba" is

discussed. Then the performance of the EMMA and the BMA on this image is discussed.
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4.3.2.1 Impact of the window size choice

In this part, we present simulation results that have been obtained testing several sizes of the

sliding matching window taking the same parameter as in Section 4.3.1.1. Just as previously, for

each window size, the BMA estimates a disparity map and the PSNR of the resulting predicted

view is computed. The PSNR values corresponding to each size of window have been normalized

to be represented using a grayscale. More precisely, the PSNR values have been divided by the

maximum PSNR value obtained by the BMA such as all normalized values ranges between 0

and 1 and can be represented using a grayscale. Figure 4.4 shows the performance of the BMA

where the black color is associated to the lowest PSNR (17 dB) obtained by the BMA for a given

size of window, and the white color is associated to the highest value of PSNR (32 dB).

We notice that the pixels located at a position (i, j) such as i ≥ 1 and j ≥ 14 have

very close intensity values. It reflects the fact that taking window boundaries wx_max ≥ 1 and

wy_max ≥ 14 does not improve significantly the quality of the predicted view.

In what follows, we restrict the window vertical boundary to wx_max > 3 (i.e. Wx > 7)

and the horizontal boundary to wy_max > 15 (i.e. Wy > 31) for the next simulations performed

on the stereoscopic image "tsukuba".
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Figure 4.4: BMA performance on "Tsukuba" using different sliding matching window sizes.

4.3.2.2 Performance evaluation of the EMMA

Figure 4.5 shows the performance of the EMMA and the BMA performed on the rectified image

"tsukuba". For both algorithms, the same sizes of blocks (4× 4 to 6× 6) and sizes of the sliding

matching window (1× 31 and 7× 31) have been tested. Results obtained using a window of size

1× 31 are represented using blue color while the results obtained using a window of size 7× 31

are represented using red color for both algorithms.

The BMA performance is given by the very first points at the the top right of each curve

which joints a dashed lines. They are represented using ’⋄’ symbols with blue color for a window

of size 1 × 31, ’o’ symbols in red color for a window of size 7 × 31. From each of these points,

starts a curve showing the EMMA performance using the same parameter as the BMA (block

size and window size) and several values of λ. The first point of the EMMA coincides with the
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BMA performance as it is obtained using λ = 0 and in this condition, both algorithms aim at

minimizing only the distortion of the predicted image.

When observing the set of blue RD curves obtained using a window of size 1× 31 for both

algorithms, we note that the BMA leads to the RD point (31.7 dB, 0.09 bpp) using blocks of

size 6 × 6. For the same bitrate, the EMMA achieves a gain of 0.9 dB on the quality of the

predicted view using smaller blocks of size 5× 5. Although this is a rectified stereoscopic image,

when increasing vertically the boundaries of the window such as its dimensions become 7 × 31,

the EMMA still achieves better performance than the BMA using the same window size and also

than the EMMA itself using a horizontal window (i.e. 1 × 31). For example, at the bitrate of

0.13 bpp, the BMA yields to a predicted view with a PSNR of 32.6 dB using blocks of size 6× 6

while the EMMA leads to 34.1 dB using smaller blocks of size 4 × 4, resulting in a gain of 1.5

dB.
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Figure 4.5: Rate-distortion optimization on the rectified stereo image "Tsukuba".

4.4 Conclusion

The block-based disparity map estimation algorithm developed in the previous chapter have

been extended to non-rectified stereoscopic images. This algorithm follows exactly the same step

as the MMA but some modifications have been made to consider the two dimensions of the

disparity vectors in the particular case of non-rectified images. Simulations results still show the

advantage of the proposed method in comparison with the BMA.
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Benefits of the EMMA in terms of rate-distortion performance have also been observed for

rectified stereoscopic images.

Moreover, enlarging the size of the sliding matching window increases the performance of

the algorithm but at the expense of an increase in the computational complexity, and thus the

processing time of the algorithm. Finding the optimal solution to the rate-distortion optimization

problem involves to test a gigantic number of disparity maps inside a search area which size

rapidly increases with the size of the sliding matching window. In order to reduce the size of the

search area in which the sub-optimal solution is to be found, we propose to start the algorithm

with an initial solution and then to explore other disparity maps obtained from the initial one

by minimizing the rate-distortion cost. Therefore, the search area and thus the computational

complexity of the algorithm can significantly be reduced. This strategy will be explored in the

next chapter for rectified stereoscopic images.
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Reference-based block matching

algorithm: R-algorithm

In this chapter, we present the reference-based block-matching algorithm, called R-algorithm

(for Reference), which estimates the disparity map considering the disparity map computed by

the BMA as an initial solution to the rate-distortion optimization problem. Indeed, this map

is taken as a reference and is then successively modified as long as improvements are observed

in terms of rate-distortion performance. The map yielded by the BMA is the best solution

minimizing the distortion of the predicted view. By modifying it successively when improvements

are observed allows to explore disparity maps close to the initial one, requiring a smaller bitrate.

This algorithm finds a sub-optimal solution to the Rate-Distortion optimization problem with a

smaller computational complexity in comparison with the M-algorithm.

The rate-distortion optimization problem is first recalled, then the principles of the R-

algorithm are presented before discussing the experimental results. The contributions of this

chapter have been presented in [12, 13].

5.1 Rate-distortion optimization problem

This section briefly recall some notations and assumptions to formulate the optimization problem.

5.1.1 Assumptions and notations

In this chapter, we consider the stereoscopic images as rectified. The left view is taken as the

reference view and the right view is the one to be predicted.

The notations introduced in 3.1.1 summarized in Fig 3.1 are kept identical (concerning the

left and right images, the interpolated left image, the sizes of the images, the block coordinates,

the pixel coordinates, the sliding matching window and the disparities).
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5.1.2 Formulation of the Rate-Distortion optimization problem

The purpose of the work is to achieve the best compromise between the minimization of the

bitrate allocated to the disparity map and the minimization of the distortion of the predicted

image. This issue is still formalized with a Lagrangian minimization as in section 3.1.2 but

some small modifications have been made on the notations for more accuracy and are introduced

below.

The global distortion of the predicted image is expressed as:

EG(d) =
∑X−1

ib=0

∑Y−1
jb=0EB((ib, jb), d(ib, jb)), (5.1)

with EB((ib, jb), d(ib, jb)) the local distortion induced by the disparity d(ib, jb) for the block

at position (ib, jb) in the original view Ir. It is defined as:

EB((ib, jb), d(ib, jb)) = (5.2)
NX−1∑

u=0

NY −1∑

v=0

(Îr(ip + u, jp + v)− Ir(ip + u, jp + v))2.

Note that the definition of the global distortion (see Equation (5.1)) is similar to the

definition given in the chapter 3 by Equation (3.1.1). The local distortion which was denoted

EB(d(iB, jB)) has simply been renamed EB((ib, jb), d(ib, jb)). This more accurate notation is

used later in this chapter also.

The bitrate of the disparity map is still approximated by its entropy which is computed

on the empirical disparity distribution probability as follows:

H(d) = −
∑

w

pE(d = w|d) log2 (pE(d = w|d)). (5.3)

where the empirical probability of the disparity w within the disparity map d is expressed as:

pE(d = w|d) =
V (d, w)

T
. (5.4)

with V (d, w) the number of occurrence of the disparity w within the disparity map and T the

total number of blocks. Thus, the entropy of the disparity map can finally be expressed as:

H(d) = −
∑

w∈W

V (d, w)

T
log2

(
V (d, w)

T

)
. (5.5)

The rate-distortion optimization problem is defined in the same manner as in Equation

(7.6) as a Lagrangian minimization:

d̂ = argminJ(λ,d) = argmin(EG(d) + λH(d)), (5.6)

where λ is the Lagrangian multiplier.

Note that the R-algorithm presented in this chapter brings a suboptimal solution to this

metric minimization.
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5.2 Description of the proposed R-algorithm

In this section, we present the sub-optimal solution of the joint entropy-distortion metric mini-

mization problem expressed by Equation (5.6). The developed optimization algorithm, i.e. the

R-algorithm, starts with the disparity map yielded by the traditional BMA as an initial Refer-

ence disparity map. At each stage of the algorithm, this reference map is modified gradually as

long as improvements are observed. The complete process is explained below.

5.2.1 Raster scanning notations

Before describing the proposed algorithm, introduce some notations. Blocks of each view are

processed in a raster scanning order. For the sake of simplicity, block-coordinates (ib, jb) are now

replaced by a 1-D coordinate, denoted t:

t = ib × Y + jb with ib = 0, ..., X − 1 and jb = 0, ..., Y − 1. (5.7)

As a result, t ranges from 0 to T −1 where T is the total number of blocks in the right image (i.e.

X × Y ). The block disparity of coordinate t is now denoted dt. The Local distortion induced by

this disparity is EL(t, dt).

The initial reference blockwise disparity map provided by the traditional BMA is defined

as follows:

dR = {dR0 , d
R
1 , ..., d

R
t , ..., d

R
T−1}, (5.8)

where dRt is the reference disparity (i.e. the initial disparity) of the t-th block.

5.2.2 Blockwise disparity map based on the joint entropy-distortion criterion

Assume that the optimization R-algorithm has already modified the reference disparity map by

processing blocks ranging from 0 to t − 1. Therefore the updated reference blockwise disparity

map dR becomes:

dt−1 = {d0, d1, . . . , dt−1, d
R
t , . . . , d

R
T−1}, (5.9)

where d0, d1, . . . , dt−1 are the disparities that may have been changed when the algorithm has

processed blocks ranging from 0 to t − 1 and dRt , . . . , d
R
T−1 are the unchanged disparities of

the initial reference map dR. The selected disparity map dt−1 generates the best global cost

expressed as:

J(λ,dt−1) = EG(d
t−1) + λH(dt−1), (5.10)

where EG(d
t−1) is the global distortion of the predicted image and H(dt−1) is the entropy, both

related to the disparity map dt−1.

Note that the proposed algorithm changes the disparity of at most one block at the time.

Consider the next block, i.e. the t-th block, to be matched. The disparity dRt associated to this
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5.2 Description of the proposed R-algorithm

block is replaced by each of the (N − 1) × α other candidate disparities w ∈ W \ {dRt } thus

generating (N − 1)× α different disparity maps dt(w):

dt(w) = {d0, d2, ..., dt−1, w, d
R
t+1, ..., d

R
T−1}. (5.11)

For each modified disparity map, a global cost J(dt(w)) is computed as follows:

J(λ,dt(w)) = EG(d
t(w)) + λH(dt(w)), (5.12)

where EG(d
t(w)) and H(dt(w)) represent respectively the updated global distortion and entropy

related to the choice of dt(w).

The global costs J(λ,dt(w)) are then sorted in an increasing order. The disparity w = dt

which is associated to the smallest J(λ,dt(w)) is then retained and the disparity map according

to the process of the t-th block becomes:

dt = {d0, d1, ..., dt−1, dt, d
R
t+1, ..., d

R
T−1}. (5.13)

Based on this principle, the R-algorithm continues until processing the last block (i.e.

(T − 1)-th block). A new disparity map dT−1 is then estimated introducing a minimal global

cost J(λ,dT−1).

To further improve the rate-distortion performance, the R-algorithm iterates the described

process where the disparity map dT−1 is now considered as a reference disparity map. This

process is repeated as long as improvements in terms of rate-distortion are observed. Figure 5.1

summarizes the different steps of the proposed optimization R-algorithm.

5.2.3 Entropy and distortion recursive equations

To avoid being faced with a heavy computational load due to the calculation of EG(d
t(w) and

H(dt(w), the R-algorithm proposes to reuse the previous results obtained after processing the

(t− 1)-th block.

The global distortion is thus updated according to the following recursive equation:

EG(d
t(w)) = EG(d

t−1)− EB(t, d
R
t ) + EB(t, w), (5.14)

where EB(t, d
R
t ) and EB(t, w) qre the local distortion induced respectively by the disparities dRt

and w for the t-th block:

EB(t, d
R
t ) =

NX−1∑

u=0

NY −1∑

v=0

(Îr(ip + u, jp + v)− IL̃(ip + u, α(jp + v + dRt )))
2, (5.15)

and EB(t, w) =

NX−1∑

u=0

NY −1∑

v=0

(Îr(ip + u, jp + v)− IL̃(ip + u, α(jp + v + w)))2. (5.16)
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Input: Left image IL̃ and right image Ir

Output: Estimated blockwise disparity map associated with Ir

1. Estimate the disparity map using the traditional BMA;

2. Improve the reference blockwise disparity map:

a. Set initial values: λ; wmin; wmax; ib = −1; jb = −1; α;

b. Increment by 1 the row index ib;

c. Increment by 1 the column index jb;

d. Set the sliding matching window on the pixel IL̃(ip, jp);

e. Replace the disparity of the current block by each of the other

disparities w;

f. Update the global distortion induced by the predicted image

for each choice of w;

g. Update the entropy for each choice of w;

h. Compute the global entropy-distortion cost for each w;

i. Sort the costs in a decreasing order.

j. Select the disparity w minimizing the global cost.

k. Update the disparity map;

l. Start again from step c if jb < Y otherwise continue;

m. Start again from step b if ib < X otherwise continue;

n. Start again from step 2 if the final global cost is smaller than

the initial cost, otherwise continue;

3. End

Figure 5.1: Proposed optimization R-algorithm.

Note that the permutation of disparity w with dRt , increases the number of occurrence

V (dt, w) of one unit as compared to V (dt−1, w), while V (dt, dRt ) has decreased of one unit as

compared to V (dt−1, dRt ). Hence, the entropy of the modified disparity map is also updated

according to the following equation:

H(dt(w)) = H(dt−1)

+
(
V (dt−1,dRt )

T

)
log2

(
V (dt−1,dRt )

T

)
−
(
V (dt−1,dRt )−1

T

)
log2

(
V (dt−1,dRt )−1

T

)

+
(
V (dt−1,w)

T

)
log2

(
V (dt−1,w)

T

)
−
(
V (dt−1,w)+1

T

)
log2

(
V (dt−1,w)+1

T

)
.

(5.17)

5.3 Performance evaluation

5.3.1 Rate-distortion performance of the R-algorithm

This section discusses simulation results conducted on different stereoscopic images, from "Mid-

dlebury" and "Deimos" datasets [47, 52], to evaluate the performance of the proposed optimiza-
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5.3 Performance evaluation

tion R-algorithm. It is compared first with the traditional BMA. Then some additional results

are provided to carry out comparisons with the MMA presented in the chapter 3.

The base image (corresponding to the reference image in previous chapters, which is re-

named here to avoid confusion with the reference disparity map) is considered as the left one.

The predicted image is the right one which is derived from the uncompressed left image and

the estimated blockwise disparity map using the developed R-algorithm. The bitrate associated

to the disparity map is estimated by the entropy expressed in bits per pixel (bpp). For all al-

gorithms, estimated disparities have the same quarter-pixel precision ranging from −30 up to

29+3/4. The interpolated right image is computed using the same filters employed in the H.264

standard [36].

Figure 5.2 provides simulation results conducted on the stereoscopic image "Tsukuba"

(Middlebury dataset). The curve with circles (o) illustrates the PSNR involved by the BMA

disparity map versus bpp for 13 different block sizes (4 × 4 up to 16 × 16). For the sake of

visibility, circles are joined with a dashed line.

The curves with red solid line show the performance in terms of PSNR involved by the

R-algorithm disparity map versus bpp. Each curve is related to a given block size and plotted

for different values of λ. Note that each curve at its right end is connected to a circle recalling

that for λ = 0, the R-algorithm and BMA have the same performance. The analysis of these

curves clearly shows the advantage of our approach compared to the traditional BMA. Indeed

significant gains in terms of rate-distortion are observed.
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Figure 5.2: Rate-distortion performance on "Tsukuba".

Table 5.1 compares the performance using four stereoscopic images "Tsukuba", "Saw-

tooth", "Teddy" (from "Middlebury" dataset) and "Stereo_13" (from "Deimos" dataset) for

low, medium and high bitrates with 3 different block sizes (4 × 4, 6 × 6 and 8 × 8). Note that

the R-algorithm achieves a significant reduction in terms of bpp for a small reduction of the re-
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construction quality. Hence, when processing "Tsukuba" stereoscopic image using blocks of size

4 × 4, the BMA requires 0.338 bpp to ensure a reconstruction quality equal to 35.12 dB, while

the R-algorithm requires only 0.188 bpp for a very similar reconstruction quality equal to 34.98

dB. This important bitrate reduction is obtained by a different choice of disparities yielding a

lower entropy.

Stereo BMA R-algorithm

Images Block Size PSNR Bitrate PSNR Bitrate

Tsukuba

4x4 35.12 0.338 34.98 0.188

6x6 32.95 0.138 32.88 0.084

8x8 32.08 0.074 32.00 0.046

Stereo_13

4x4 30.57 0.430 30.48 0.317

6x6 29.35 0.180 29.27 0.124

8x8 28.88 0.097 28.80 0.065

Sawtooth

4x4 33.37 0.362 33.30 0.285

6x6 31.79 0.154 31.74 0.126

8x8 30.69 0.085 30.62 0.069

Teddy

4x4 26.14 0.416 26.06 0.266

6x6 25.10 0.177 25.03 0.110

8x8 24.37 0.095 24.31 0.062

Table 5.1: Comparison of rate-distortion performance between the BMA and the R-algorithm.

For equivalent PSNR (see first line of Table 5.1), the BMA disparity map histogram,

provided by Figure 5.3, is composed of many bars of medium or small height. While the R-

algorithm disparity map histogram, in Figure 5.4, contains less bars of increased height resulting

in a reduction of the disparity map entropy.

Figure 5.5 shows the original right image "Tsukuba", it indicates with a white box the

corresponding location of the close-up views of Figure 5.6, showing among other items, the

upper part of a lampshade. This figure shows two reconstructions of the right image with the

BMA on the left and with the R-algorithm on the right. Both require the same bitrate 0.14 bpp,

the BMA uses blocks of size 6 × 6, whereas the R-algorithm uses blocks of size 4 × 4. When

measuring the distortion of the whole image in PSNR, we note that the R-algorithm achieves an

improvement on the BMA of 1.5 dB: 34.5 dB as compared to 32.9 dB. With a closer look we see

a better reconstruction quality with the R-algorithm as a gray block is lacking on the upper left

corner of the lampshade on the left image.

Figure 5.7 is provided to compare the performance of the R-algorithm with the MMA.

Parameter settings are the same as for Figure 5.2 except that simulations are conducted on the

stereoscopic image "Stereo_13" and that the performance of the R-algorithm and the MMA are
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Figure 5.3: BMA blockwise disparity map histogram.
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Figure 5.4: R-algorithm blockwise disparity map histogram.

plotted for three block sizes: 4× 4, 6× 6 and 8× 8. Results obtained with the R-algorithm are

given by the set of solid lines in red joining the "x" symbols. Those obtained with the MMA

are given by the set of solid lines in blue joining the "+" symbols. This figure shows that the

R-algorithm and the MMA perform better than the BMA for a given bitrate as well as for a

given quality of reconstruction. The R-algorithm performs sligthly better than the MMA, with

a gain of 0.2 dB in terms of PSNR at the bitrate of 0.13 bpp.
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Figure 5.5: "Tsukuba" original right image.

Figure 5.6: Close-up views of the reconstructed image using the BMA (left figure) and the

R-algorithm (right figure).

5.3.2 Processing time and complexity of the R-algorithm

The above simulations have been conducted in the same conditions as in section 3.3.7, that is to

say under Matlab environment (version R2012a) on a Personal Computer having an Intel Core

i5 processor (3.20 GHz) and a RAM of 4 GB. For the stereoscopic image "Stereo_13" of size

202 × 320 pixels, using disparities amongst the range [−30, ..., 29] and blocks of size 8 × 8, the

R-algorithm takes in average 30 seconds to estimate a disparity map for a given value of the

parameter λ, corresponding to one Rate-Distortion point.

The R-algorithm has a complexity reduced compared to that of the MMA. This complexity

is computed as the number of elementary operations computed by the R-algorithm to estimate a

disparity map for a given value of λ. This complexity is computed in the case of a single iteration

of the R-algorithm and is given by:

3NwXYNXNY + 11NwXY − 7Nw − 1 (5.18)
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Figure 5.7: Rate-distortion performance on "Stereo_13".

The processing time to compute one RD-point is reduced in comparison to the MMA as the

parameter M does not make increase the complexity of the R-algorithm.

5.4 Conclusion

This chapter presented the reference block-matching algorithm (i.e. R-algorithm) which is a

sub-optimal algorithm relying on the reference disparity map provided by the traditional BMA.

This reference map is modified as long as improvements in terms of rate-distortion are observed.

Moreover, this algorithm has been concerned with reducing the computational load when updat-

ing the global distortion and entropy. Simulation results conducted on stereoscopic images show

that the proposed R-algorithm performs better in terms of rate-distortion than the traditional

BMA. To further improve the performance of such an algorithm, one idea is to enlarge the search

area in which the disparities are selected. Doing this will increase the complexity of the algorithm

and thus its processing time also. In the next chapter, we propose to take advantage of a large

search area without increasing the complexity by restraining the search area to relevant sets of

disparities.
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Improving the BMA performance based

on a selection of disparities sets:

BMA_H and BMA_S

During a stereo-matching process, as in the BMA, disparities are traditionally selected amongst

a search area by minimizing a local distortion. The larger the search area is, the better the

quality of the predicted image is, thanks to more adequate choices of disparities. But enlarging

the search area can also result in a more expensive disparity map in terms of bitrate, as the

range of the selected disparities may also increase.

The search area is a rectangular window in most cases. Instead of using all possible

disparities included in the search area, two approaches relying on the initial set of disparities

selected by the BMA are proposed. They allow to consider only a set of disparities belonging to

the search area allowing in this chapter to achieve a given bitrate while minimizing the distortion

of the predicted image.

Simulation results confirm the benefits of the proposed algorithms compared to the BMA

in terms of bitrate-distortion. The rest of the chapter is organized as follows. Section 6.1 raises

the issue of selecting a set of disparities in a given large search area. Section 6.2 then proposes

two blockwise disparity map estimation algorithms: BMA_H and BMA_S. Simulation results

are then discussed in Section 6.3. Finally Section 6.4 concludes this work. The contributions

presented in this chapter have also been published in [14].

6.1 Selection of disparities sets in a given search area

This section states the problem of selecting a set of disparities in a given large search area,

considered as an optimization problem, in such a way to minimize the distortion of the predicted

view for a given disparity map bitrate. Before presenting the problem statement, the following

section introduces some assumptions and notations.

69



6.1 Selection of disparities sets in a given search area

6.1.1 Notations and assumptions

The same notations as in section 3.1.1 are used concerning the left and right views (Il and Ir),

the size of the images (K × L pixels) and the sliding matching window of size Wx ×Wy = NW

pixels resulting in the same number of different choices of possible disparities for each block. in

addition, W denotes the initial set composed of these NW disparities. Sn is a set of n different

disparities selected amongst the initial set W . P(W ) represents all possible sets included in W .

Given a set Sn of disparities, the BMA associates to each block of the right view a unique

two-coordinates disparity d chosen amongst this set. The predicted view is denoted Îr,D as it

depends on the disparity map denoted D composed of the disparities selected for each block.

The set of all different disparities in D is denoted Co(D) as it can be regarded as the codomain

of the mapping function D.

The global distortion of the predicted view, denoted E(D), depends on the estimated

disparity map and is computed as:

E(D) =

K−1∑

i=0

L−1∑

j=0

(
Îr,D(i, j)− Ir(i, j)

)2
, (6.1)

where Îr,D is the right predicted image using the disparity map D.

Given a set Sn of disparities, the BMA computes the best disparity map D(Sn) minimizing

the global distortion of the predicted view:

D(Sn) = argmin
{D|Co(D)⊂Sn}

E(D), (6.2)

where {D|Co(D) ⊂ Sn} is the collection of all disparity maps whose codomain are included in

Sn.

The minimization issue of Equation (6.2) is achieved in an efficient manner as for each

block the disparity is selected by minimizing a local distortion metric regardless of the disparities

selected for the other blocks.

6.1.2 Problem statement

Considering a disparities set Sn, the BMA estimates a disparity map which requires a certain

bitrate to be encoded and induces a global distortion on the predicted image.

Therefore, the objective is to find the best set Sn of disparities in the search area W

minimizing the global distortion of the predicted view at a given bitrate b. This objective is

formulated as:

Sn = argmin
S′
n⊂P(W )

H(D(S′
n))≤b

1≤n≤NW

E
(
D(S′

n)
)
, (6.3)
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where E(D(S
′

n)) is the global distortion associated to the disparity map D(S
′

n).

The entropy associated to the disparity map D(S
′

n) approximating the bitrate b of this

map, denoted H(D(S
′

n)), is expressed as:

H(D(S
′

n)) = −
∑

s∈Co(D(S
′
n))

P (d = s) log2 (P (d = s)) , (6.4)

with P (d = s) the occurrence frequency of the disparity s in the map D(S
′

n).

Solving the objective formulated by Equation (6.3) for a given bitrate b requires to test all

possible disparities sets Sn of all possible sizes that can be made considering the initial set W .

For example, considering an initial set composed of 3× 121 = 363 disparities, solving Equation

(6.3) for a given bitrate requires to process
363∑

k=1

(
363

k

)
≈ 10108 different disparities sets to find

the best one minimizing the global distortion.

Instead of solving this complex optimization problem, we address the following problem:

the new objective is to find the best subset SN composed of exactly N different disparities

minimizing the global distortion of the predicted view. This optimization problem is of less

complexity than the previous one: indeed the bitrate constraint is no longer taken into account.

Moreover, the initial set of all possible disparities W is restricted to W0 = Co(D(W )): this

latter corresponds to the set of disparities effectively selected by the BMA when it is processed

using the initial set W . The new optimization problem can finally be expressed as:

SN = argmin
S′
N

⊂P(W0)

Card(S′
N
)=N

E
(
D(S′

N )
)
. (6.5)

Solving this equation for different sizes N ranging from 1 to Card(W0) leads to a family of

sets SN having decreasing values of global distortion. Indeed increasing the number of disparities

inside a set enables to choose more adequate disparities for the blocks to be matched, thus

reducing the global distortion of the predicted image. As the size of SN increases, it is also

expected that the entropy increases (however note that it may not increase). A sub-optimal

solution of equation (6.3) is obtained by selecting the highest index N for which the bitrate

constraint is respected, i.e. H(D(SN )) ≤ b, and considering SN as the sub-optimal solution.

The following section proposes two sub-optimal algorithms solving equation (6.5).

6.2 Proposed sub-optimal BMA_H and BMA_S algorithms

Before presenting the sub-optimal algorithms denoted BMA_H (for BMA based Histogram)

and BMA_S (for BMA based Sets), this section discusses the computational complexity of the

optimal solution of equation (6.5).
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Input: Il, Ir, initial disparity set W with Card(W ) = NW

and N the target size of the disparity set such as N ≤ NW .

Output: Disparity set SN and disparity map D(SN ).

1. Compute the BMA using disparities contained in W , get the

estimated disparity map D(W );

2. Sort the disparities contained in the set W in a decreasing

order according to their occurrence frequency in D(W );

3. Retain the N first disparities as the selected set SN ;

4. Compute the BMA using disparities contained in SN , get the

estimated disparity map D(SN )

Figure 6.1: BMA_H sub-optimal algorithm.

6.2.1 Computational complexity of the optimal solution

To solve equation (6.5), one method consists in processing the BMA on all possible sets SN ∈

P(W0) composed of N disparities. The optimal solution is the set SN for which the global

distortion of the predicted image is the smallest one. Depending on the size of W0 and the value

of N , this rapidly becomes a complex combinatorial problem for which this method would require

a long processing time. Consider as an example, a rectangular window containing 121× 3 = 363

disparities. Finding the set of 15 disparities minimizing the global distortion of the predicted

image leads to process
(
363
15

)
≈ 1026 sets. Even if this window is replaced by a small search area

W0 containing 33 disparities, we would still have to process
(
33
15

)
≈ 109 sets. To overcome this

issue, two sub-optimal algorithms are presented in the following.

6.2.2 Selecting the best set of disparities using BMA_H algorithm

The first sub-optimal algorithm, called BMA_H (H for Histogram), consists in processing the

BMA on the initial disparity set W so as to estimate the disparity map D(W ). The disparities

contained in D(W ) are then sorted in a decreasing order of their occurrence frequency in D(W )

(using the histogram). The set containing the N first disparities is then defined as the set SN

satisfying the constraint SN ∈ P(W0) and Card(SN ) = N . The set SN is then considered as

the sub-optimal solution of equation (6.5). Finally the BMA estimates the disparity map D(SN )

using the sub-optimal set SN . Figure 6.1 summarizes the BMA_H steps.

This algorithm is interesting in terms of computational complexity as it requires only a

little more time processing than that when using the BMA on W . However when N is much

lower than Card(W0), we should not expect good performance in terms of reducing the global

distortion. Indeed assessing the utility of a given disparity in a set SN , depends on the other

disparities of SN . It is likely that some of the disparities of an optimal set for N small may have

little occurrence frequency in D(W ) and thus be discarded when using BMA_H. In an attempt

to overcome this issue, the following disparity set selection strategy is proposed.

72



Chapter 6

6.2.3 Selecting the best set of disparities using BMA_S algorithm

The second disparity map estimation algorithm, denoted BMA_S (S for Set), provides a sub-

optimal solution of equation (6.5). The BMA_S is based on a sequential reduction of the size

of the set from Card(W0) down to N by considering first the set S = W0 and at each step by

pruning one disparity, the one for which the global distortion is being the less increased.

Assume that the proposed algorithm has already found a set Sm. There are m subsets of

size m − 1 that can be extracted from the set Sm. These subsets are defined as Sm\{s} for all

possible disparities s ∈ Sm. Selecting the best set Sm−1 is solved by

Sm−1 = Sm\{s}, (6.6)

where s = argmin
s′∈Sm

E
(
D(Sm\{s′}

)
).

The process is then iterated until obtaining the best subset SN composed of N disparities.

For a given set of size m, equation (6.6) suggests processing the BMA m times to select

the best subset Sm−1. Hence the BMA_S requires processing the BMA up to Card(W0)! times

to solve equation (6.5) (if N = 1). It is actually possible to reduce the computational complexity

of our algorithm. Indeed we propose to process the BMA only once and save in memory all local

distortions induced by each disparity for each block. When solving equation (6.6), the algorithm

just has to read the required information stored in memory.

Note that this algorithm is not optimal since the minimization is computed on a restricted

domain instead of P (W0). The rationale is that if Sm is a good choice it is likely to have a good

choice for Sm−1. As for BMA_H, it remains possible that a disparity of a set solving optimally

equation (6.5) for N small is pruned by the BMA_S while processing sets of a larger size. The

steps of the BMA_S are summarized in Fig 6.2.

6.3 Analysis and discussion of the simulation results

This section discusses the simulation results of the proposed blockwise disparity map estimation

algorithms (BMA_H, BMA_S) and the traditional BMA algorithm.

Simulations are conducted on stereoscopic images from the CMU-VASC database [51]. The

window W contains disparities ranging horizontally from −60 to 60 and vertically from −1 to 1.

Indeed simulations have shown that disparities having a small vertical component could clearly

improve the performance of the disparity map estimation (see section 4.3.2.1). On one hand it

seems that the human visual system is able to cope with such disparities and still perceive depth.

On the other hand stereoscopic cameras may not always be that precise.

73



6.3 Analysis and discussion of the simulation results

Input: Il, Ir, initial disparity set W with Card(W ) = NW

and N the target size of the disparity set such as N ≤ NW .

Output: Disparity set SN and disparity map D(SN ).

1. Compute the BMA using disparities contained in the set W ,

get the estimated disparity map D(W );

2. Extract from D(W ) the set of disparities W0;

3. Set Sm = W0 with m = Card(W0);

4. If m = N , go to step 11. Else if m > N , continue;

5. Create m new sets Sm−1 by removing one disparity s at each

time from Sm (i.e. Sm−1 = Sm\{s});

6. For each set Sm−1, compute the BMA using only the

disparities contained in this set;

7. Compute the global distortion E(D(Sm−1)) associated to

each set;

8. Retain the set of disparities Sm−1 introducing the minimal

distortion E(D(Sm−1));

9. Set m = m− 1;

10. Go to step 4;

11. Select the best set SN in terms of distortion;

12. Compute the BMA using disparities contained in SN , get the

estimated disparity map D(SN ).

Figure 6.2: BMA_S sub-optimal algorithm.
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6.3.1 Comparing BMA_H, BMA_S and the optimal solution

This section compares the performance of the sub-optimal algorithms developed in sections 6.2.2

(i.e. BMA_H) and 6.2.3 ( i.e. BMA_S) to the optimal disparity map estimation algorithm

described in section 6.2.1. For this, a small stereoscopic test image of size 64×64 pixels extracted

from the stereo set "sand" is considered [51]. For all algorithms, the BMA is processed with blocks

of equal size 10× 10 pixels.

Figure 6.3 illustrates the bitrate-distortion performance of both sub-optimal disparity map

estimation algorithms. The dashed curve joining black circles concerns the BMA_H. While

the solid line joining red circles represents the BMA_S. Both curves start from the same point

corresponding to the traditional BMA yielding a disparity map D(W ) containing 33 disparities.

The circles of each curve provides the performance when the size of the selected disparity set

ranges from 33 disparities to 1 disparity. These curves show clearly that the BMA_S achieves

better performance than the BMA_H.

Note that the curve of the BMA_H ends with the point corresponding to a set of 3

disparities. In this example, indeed no sets of smaller size could have been tested since some

blocks of the image have no adequate choices of disparities in a more reduced set due to the

side effects (e.g. blocks located at the extreme left side of the image cannot have a negative

disparity).

In Figure 6.3, the blue cross shows the performance achieved with the optimal set of 5

disparities found after processing all possible sets of 5 disparities amongst the 33 disparities of

W0, meaning that
(
33
5

)
= 237336 sets have been processed! In this experiment, the optimal set

provides exactly the same performance as the the BMA_S sub-optimal algorithm for N = 5.

Moreover the same disparities have been selected by both algorithms. This result shows that

BMA_S algorithm although it is based on a sub-optimal solution remains efficient while reducing

the computational complexity of the optimal solution.

6.3.2 Rate-distortion performance of sub-optimal algorithms

This section compares the performance of both sub-optimal disparity map estimation algorithms

(BMA_H, BMA_S) with the traditional BMA on the stereoscopic image "house2" [51]. Simu-

lations have been conducted using block sizes from 4× 4 to 12× 12 pixels.

Figure 6.4 illustrates the simulation results. The performance of the BMA_S is represented

by the red curves in solid line joining circles while the one of the BMA_H is represented by the

black dashed curves joining circles. Each curve is associated to a given block size where each

point is related to a disparity set of different size.

For a given block size, the curves of both algorithms start from the same point. This point

is also associated to the BMA rate-distortion using the same block size. The dashed blue line
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Figure 6.3: RD performance on a small stereoscopic image extracted from "sand".

joining squares illustrates the BMA performance where each square corresponds to a specific

block size. An analysis of these RD curves show that the BMA_S performs better than the

BMA_H and BMA. For a given bitrate of the disparity map, the BMA_S predicts the right

view with a greater precision as compared to the BMA and BMA_H. For example, at a bitrate

of 0.09 bpp, the BMA and the BMA_H lead to a predicted image of quality 26.4 dB while the

BMA_S yields to 28.6 dB resulting in a gain of 2.2 dB.

6.3.3 Comparing the predicted right view for a given bitrate

This section compares the quality of the "house2" predicted right view computed with the

BMA_H, BMA_S and BMA algorithms for a given bitrate equal to 0.09 bpp.

The original "house2" left and right views are represented on Figure 6.5 where the white

square on the right view frames a specific area. This area is shown in Figure 6.6 as close-ups of

the three predicted views computed respectively with BMA (block size 8 × 8), BMA_H (block

size 8× 8) , and BMA_S (block size 6× 6) using their respective disparity set (of size 184, 184

and 155 disparities). It is clearly seen that the window of the house is better predicted with the

BMA_S. Note that this higher performance is achieved using blocks of smaller size for BMA_S

than those used for BMA_H and for BMA as these two algorithms would not have coped with

such small blocks under the bitrate constraint of 0.09 bpp.

6.3.4 Performance evaluation using Bjøntegaard metric

An average PSNR difference, using the Bjøntgaard’s metric [53], is calculated between: (i)

the BMA_S and the BMA denoted ∆BMA; and (ii) the BMA_S and the BMA_H denoted
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Figure 6.4: RD performance on the stereoscopic image "house2".

Figure 6.5: "house2" original left view (at left) and original right view (at right).

Figure 6.6: Close-up of the predicted right view using the BMA (left figure), the BMA_H (middle

figure) and the BMA_S (right figure).
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∆BMA_H. The average PSNR difference is calculated respectively for low and medium bi-

trates considering the following target bitrates for all algorithms: [0.06; 0.07; 0.08; 0.09] and

[0.1; 0.25; 0.40; 0.55] (in bpp). For each target bitrate, the point achieving the best performance

in terms of PSNR under the bitrate constraint is retained for the computation of the Bjøntegaard

metric for each algorithm.

Simulations have been conducted on nine stereoscopic images from the CMU-VASC database:

"whouse", "wdc2r", "toys", ’telephone", "rubik" and "mars1r" which are natural images, and

also "sphere", "house2" and "house1" which are synthetic images [51].

Figure 6.7 illustrates an example of the retained points using the bitrate-distortion results

provided by Figure 6.4. Consider for example the target bitrate of 0.55 bpp. The best points

selected are identical and correspond to the first top right point of all curves as this is the best

point in terms of PSNR under this bitrate for all algorithms (see Figure 6.4). This point is also

considered as the best one in terms of PSNR for the target bitrate equal to 0.40 bpp as the

bitrate of this point (0.36 bpp) is inferior to it.

At low bitrate, the average PSNR difference of the BMA_S as compared to the BMA is

of 1.81 dB and the average PSNR difference of the BMA_S as compared to the BMA_H is of

1.21 dB.

At medium bitrate, the average PSNR difference of the BMA_S as compared to the BMA

and the BMA_H is respectively of 1.56 dB and 1.54 dB. Table. 6.1 summarizes the relative per-

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
25

26

27

28

29

30

31

32

bpp

P
S

N
R

 (
d
B

)

 

 

BMA_S

BMA_H

BMA

Figure 6.7: Best RD points under bitrate constraints.

formance of the proposed algorithms using the Bjøntegaard metric at low and medium bitrates.

The columns ∆BMA, at low and medium bitrates, represent the average PSNR difference of the

BMA_S as compared to the BMA. While the columns ∆BMA_H, at low and medium bitrates,
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give the average PSNR difference of the BMA_S as compared to the BMA_H.

One clearly sees the improvements of the BMA_S as compared both to the BMA and the

BMA_H in terms of bitrate-distortion performance. Note that the BMA_H achieves in most

case better performance than the BMA.

Stereo Low bitrate Medium bitrate

Images ∆BMA ∆BMA_H ∆BMA ∆BMA_H

mars1r 0.30 0.10 0.35 0.20

whouse 0.33 0.21 0.35 0.24

sphere 0.37 0.20 0.47 0.37

wdc2r 0.39 0.12 0.47 0.29

telephone 0.48 0.29 0.46 0.42

rubik 0.52 0.36 0.22 0.22

toys 1.64 0.25 0.56 0.28

house2 1.81 1.21 1.56 1.54

house1 1.40 1.36 0.59 0.59

Table 6.1: Average PSNR gain of the BMA_S over the BMA and the BMA_H

6.3.5 Processing time and complexity of the proposed algorithms

The above simulations have been conducted in the same conditions as mentioned in section 3.3.7.

Both the BMA_H and BMA_S relies on three main steps: the BMA is applied first to

estimate a disparity map, on the proposed methods in applied to select a subset of disparities

and then finally the BMA is applied again using this subset to estimate a new disparity map.

The BMA has a complexity of:

Nw(XY )(3NxNy − 1) (6.7)

Thus, the complexity of the BMA_H can be deduced as:

(Nw +N)(XY )(3NxNy − 1) (6.8)

The complexity of the BMA_S is then computed as:

(XY )(3NxNy − 1)

[
Nw +

W0(W0 + 1)(2W0 + 1)

6
−

N(N + 1)(2N + 1)

6

]
(6.9)

For the stereoscopic image "Stereo_13" of size 202 × 320 pixels, using disparities amongst the

range [−30, ..., 29] and blocks of size 8× 8, the BMA_H takes in average 0.4 seconds to compute

one Rate-Distortion point (corresponding to a set of size N). The BMA_S takes between 0.4

and 24 seconds to compute one point depending on the size of the set.
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6.4 Conclusion

Two blockwise disparity map estimation algorithms have been proposed to take advantage of

a large search area, allowing a better prediction of the right view than the traditional BMA,

while reducing the required bitrate to encode the disparity map. This is achieved by selecting an

appropriate disparity set and by processing the BMA with this specific set. Simulation results

conducted on several stereoscopic images have shown the benefits of both proposed algorithms

as compared to the BMA with a particular advantage for the second one i.e. the BMA_S.
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Joint disparity and block-length maps

optimization algorithm: JDBLMO

In block-based disparity map estimation, usually one disparity is estimated for each block, mean-

ing that pixels in any given block are predicted using the same disparity. This reduces consider-

ably the bitrate needed to encode the disparity map. Using blocks of different sizes can further

reduce the bitrate of the disparity map in some cases. Indeed, textured regions or small objects

are coded with more precision using small blocks, while in the same image, uniform regions at

roughly the same depth are coded using larger block sizes. Using blocks of variable sizes comes

at a cost, that of transmitting to the decoder sufficient information to know how the blocks of

variable sizes are displayed. In this chapter, a new algorithm jointly optimizing the disparity and

the block-length maps is presented. The developed method relies on an entropy-distortion metric

taking into account the reduction of the distortion of the predicted view but also an approxi-

mation of the bitrate needed to encode both the disparity and the block length maps. At each

step of the proposed algorithm, a decision is taken to decide if a given block should be predicted

using a single disparity value or if that block should be divided into four subblocks and predicted

using four different disparity values. This choice is coupled with a refinement of the disparity

map. Simulation results conducted on several stereoscopic images from the CMU-VASC dataset

confirm the benefits of this approach as compared to competitive block matching algorithms.

The contributions presented in this chapter have been submitted to [15].

The rest of the chapter is organized as follows. Section 7.1 introduces the stereo-matching

optimization problem in the case of variable block sizes. Section 7.2 proposes the suboptimal

optimization algorithm. Section 7.3 provides simulation results evaluating the developed algo-

rithm’s performance. Finally section 7.4 concludes this chapter.
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7.1 Rate-Distortion optimization problem

This section formalizes the rate-distortion trade-off in the case of variable block sizes. In fact,

the stereo-matching optimization algorithm is intended to yield a good estimate of the predicted

view from a given reference view while requiring a low bitrate to encode the disparity map. But

to further improve the performance, blocks of variable sizes are considered. All considered block

layouts follow a traditional quad-tree structure, that is square subblocks may only be divided into

four identical non-overlapping square blocks. Some notations and assumptions are introduced

before describing the rate-distortion optimization problem in the following section.

7.1.1 Notations and assumptions

In what follow, the same notations for the couple of left and right images (IL and IR) and their

common size (I × J pixels) are kept. Let consider in addition the following notations.

The right view is first divided into non-overlapping squared blocks of fixed size denoted

Lmax × Lmax. Each of these blocks may be further partitioned into a quadtree structure. An

example of such a layout is shown on Figure 7.1 with blocks denoted as Bk. As it is difficult to

keep track of indexes in a quadtree structure, blocks are denoted as B and the map containing

all blocks is denoted B.

Each block B is located at position (iB, jB) in a coordinates system starting from the top

left of the image, with i belonging to {0, . . . , I − 1} and j to {0, . . . , J − 1}. Each block has a

size of lB × lB pixels where the length lB belongs to L = {Lmin, 2Lmin, . . . , Lmax}. Each block

is also associated to a unique disparity dB chosen amongst a set of disparities {dmin, . . . , dmax}.

Hence, B is identified by (dB, lB, iB, jB).

The disparity map, the block-length map and the block map are represented by d, l,B.

All these maps are of the same size denoted T .

7.1.2 Coding of the block layout

Using blocks of variable sizes requires to inform the decoder about the block layout, i.e the size

and the location of each block.

The pixel values of the predicted right view ÎR on the block B are related to that of the

left view IL using the disparity dB as follows:

ÎR(iB + u, jB + v) = IL(iB + u, jB + v + dB) where u, v ∈ {0, . . . , lB − 1}. (7.1)

It may seem from Equation (7.1) that in order to compute the predicted right view on block

B, the decoder needs not only the disparity dB and the length lB, but also the location iB, jB. In

terms of bitrate this would be quite excessive. However the storage of the location information
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Example of a block-length map, split into six subsequences for clarity purpose:
8,8,4,4,4,4,8,16,16,8,8,8,8, 32, 32,

32, 16,16,8,8,8,4,4,4,4,16, 32,

Figure 7.1: Example of a block-length map and its corresponding block layout.
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Figure 7.2: Tree structure associated with the block layout shown in Figure 7.1.

of each block is avoided since a specific tree structure is adopted where an example is shown in

Figure 7.2. Its first layer has as many nodes as the number of non-overlapping square blocks

that fit into an image of size I × J . The other layers are subsequent quadtree decompositions.

Each block corresponds to a leaf in this tree structure. A block is located at the first layer if its

size is equal to Lmax ×Lmax. It is located at the second layer if its size is equal to Lmax

2 × Lmax

2 ,

and so on for the blocks of smaller size. As a result, by assigning to the tree an exploring order,

the block-length map l and the image dimensions (I and J) are sufficient to recover the block

layout without sending the locations of each block to the decoder.

The proposed exploring order corresponds to the breadth-first search in the tree. Indeed all

neighbor nodes are explored before the children nodes. This order has been chosen as opposed to

the depth-first search because breadth-first search is expected to better balance the optimization

process on the whole image rather than focusing on the first blocks right at the beginning of the

algorithm. The exploring order considered in this chapter takes into account the raster scanning

order when ordering neighboring nodes. This is illustrated in Figure 7.1 by showing a block-

length map and the corresponding image of size 64×96 pixels with a specific block layout whose

size is ranging from 4× 4 to 32× 32.

As a consequence in terms of notations, it makes sense to claim that all quantities depending

on a block B, depend only of d and l.

7.1.3 Formulation of the rate-distortion problem

In this section, the quality of the predicted right view is measured with the global distortion,

EG(B), defined as the sum of the square differences. Note that applying the remark ending
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subsection 7.1.2, EG(B) can be replaced by EG(d, l). As only one disparity is assigned to each

block, this global distortion is the sum of all local distortions denoted EB(B) accounting for the

difference between the predicted right view and the true right view on a given block B:

EG(d, l) =
∑

B∈B

EB(B) (7.2)

where EB(B) =

lB−1∑

u=0

lB−1∑

v=0

(IL(iB + u, jB + v + dB)− IR(iB + u, jB + v))2 . (7.3)

The disparity map is encoded using a lossless coder (entropy encoder). Thus the bitrate

needed to encode the disparity map is approximated by T times the measure of its entropy

computed using the empirical distributions of the disparities in the map as follows:

H(d) = −
∑

d∈D

pE(d = d|d) log2 (pE(d = d|d)), (7.4)

where pE(d = d|d) is the ratio of the number of blocks having the disparity d on the total number

of blocks T .

The block-length map is also encoded using a lossless coder. The same notation choices

have been made. TH(l) approximates the bitrate needed by the entropy coder. More specifically,

it denotes T times the entropy of the block length map computed on the empirical distribution

of the lengths in the associated map:

H(l) = −
∑

l∈L

pE(l = l|l) log2 (pE(l = l|l)), (7.5)

where pE(l = l|l) is computed as the ratio between the number of blocks having the length l on

the total number of blocks T .

Finally, the bitrate required to encode the disparity map is approximated by T (H(d) +H(l)).

To achieve the goal, the optimization problem can be posed in several ways resulting in

a low distortion of the predicted view requiring a low bitrate. One might expect the lowest

global distortion for a given bitrate or the smallest bitrate for a given global distortion. Solving

one issue or the other for every bitrate or every global distortion value leads to the same rate-

distortion curve made from all the optimal points. We propose to use once again the Lagrangian

formulation to solve the optimization problem.

The Lagrangian cost function J(λ,d, l, T ) is then defined as follows:

J(λ,d, l, T ) = EG(d, l) + λT (H(d) +H(l)) . (7.6)

Minimizing the cost function J(λ,d, l, T ) for every value of the Lagrange multiplier λ leads to

the same optimal curve. Finding the optimal solution of this cost function is a complex task.

Indeed any modification of a given disparity at a given block may modify the appropriateness of

a block division or the choice of a disparity at another block.
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7.2 Joint disparity and block-length maps optimization algorithm

(JDBLMO)

This section focuses on the minimization of the Lagrangian cost function J(λ,d, l, T ) introduced

in the previous section, for a given value of λ. Given the complexity of this optimization problem,

a sub-optimal optimization algorithm is developed. In the rest of the chapter, this algorithm is

called JDBLMO for Joint Disparity and Block-Length Maps Optimization. Figure 7.3 presents

the steps of the algorithm.

The proposed sub-optimization algorithm is performed according to three main stages.

The first stage, described in Subsection 7.2.1, is related to the initialization process where the

initial disparity and block-length maps are computed using the traditional BMA. The second

stage, described in Subsection 7.2.2, is an adaption of the R-Algorithm developed in chapter 5

since the this algorithm has been developed only for same size blocks. This algorithm is named

ARA (Adaptation of the R-Algorithm). The third stage, described in Subsection 7.2.3, reduces

the function cost J(λ,d, l, T ) by means of some Block Divisions and is called Block Divisions

Algorithm (BDA). The BDA and ARA are repeated as long as an improvement is being observed.

7.2.1 Initialization process

In this initialization step, the right view is first partitioned into blocks of size Lmax × Lmax,

setting the block-length map as a constant map. The traditional BMA is then applied on each

block. For a given block B, the disparity dB is selected by minimizing the Sum of Squared

Differences (SSD) computed between the pixel-values of the right view and the predicted view

considering only pixels in B. Using EB defined in (7.3), dB is expressed as:

dB = argmin
d∈D

EB(d). (7.7)

The collection of all dB forms an initial disparity map d. When associated with the constant

map l = [Lmax . . . Lmax], this forms an initial block map B. This block map B is then converted

into a queue whose processing is consistent with the tree-structure exploring order defined in

section 7.1.2.

Let us introduce some notations to handle B as a queue. Bf is the front block of the queue

and Bt is the tail of the queue:

B = [Bf ,Bt] . (7.8)

Removing the first block and placing it at the queue’s end leads to:

B := [Bt, Bf ] . (7.9)

This action concerns the steps 2.b.; 2.d. and 3.f. in Figure 7.3. For the sake of simplicity each

block B ∈ B is now considered as a couple (dB, lB) and the front block is denoted as (df , lf ).
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Input: Left view IL, right view IR,

minimum and maximum lengths, respectively Lmin and Lmax pixels.

Output: Joint estimated disparity and block-length map (d, l).

1. Initialization.

1.a Partition the right view into square blocks of lengths Lmax.

1.b Compute for each block B a disparity dB using the BMA.

1.c Consider this initial block map B as a queue.

1.d Set lmin = Lmax.

2. Apply the ARA on B:

2.a. Set Jold := J(B) and c := T .

2.b. Remove the queue’s front block denoted as (df , lf ).

2.c. Select the best disparity d̂ minimizing J(Bt, (d, lf )) as d ∈ D.

2.d. Update the block map: B := (Bt, (d̂, lf )).

2.e. Decrement c.

2.f. Go back to step 2.b. if c > 0.

2.g. Go back to step 2. if J(B) < Jold.

2.h. Go to step 3. if lmin > Lmin.

2.i. End here the JDBLMO.

3. Apply the BDA on B:

3.a. Set lmin = lmin

2
.

3.b. Set c := T and f := 1.

3.c. Go to step 3.f. if lf = lmin.

3.d. Compute Bs as in (7.13)

3.e. Set B := Bs and f := 0 and go to step 3.g. if J(Bs) < J(B).

3.f. Set B := [Bt, Bf ].

3.g. Decrement c.

3.h. Go to step 3.c. if c > 0.

3.i. Go to step 3.b. if f = 0

3.j. Go to step 2.

Figure 7.3: Description of the JDBLMO algorithm
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7.2 Joint disparity and block-length maps optimization algorithm (JDBLMO)

A decreasing counter denoted c is introduced, both in the ARA and the BDA. It ensures

that each block B is processed exactly once, regardless of the evolving size of the queue. This

guarantees that at the end of the processing the queue’s first block is located at the top left

of the image. This is how it works: c is first set as the initial size of the block map, it is

then decremented at each iteration and repetition terminates when c reaches 0. Control of the

repetition is achieved using the decreasing counter c (steps 2.a., 2.e. and 2.f. and steps 3.b., 3.g.

and 3.h. in Figure 7.3).

7.2.2 Adapation of the R-Algorithm (ARA)

The ARA is an adaptation of the R-algorithm developed in chapter 5. The main steps of this

latter are briefly reminded to extend its strategy to blocks of non-equal sizes.

The R-algorithm finds a suboptimal solution of an optimization problem slightly different

from the one expressed by Equation (7.6). Indeed the cost function denoted here as Jr that

is minimized by the R-algorithm does not take into account the size of the blocks since it is

assumed to be of equal-size l × l. Thus the term H(l) related to the block length map is absent

from the cost function:

Jr(λ,d) = EGr(d) + λrH(d), (7.10)

where EGr(d) = EG(d, l) with l the constant block length map only composed of the same

repeated value l and λr = λT .

The disparity map d is first set using the BMA as in (7.7). The R-algorithm processes

the disparity map by successively re-evaluating each selected disparity: each of them is being

replaced by all the other disparities of the search area D, resulting in as many disparity maps

as disparities in the search area. A rate-distortion cost is computed for each disparity map and

the one minimizing the cost is set as the new disparity of the current block. The process is

then iterated until re-evaluating all the disparities in the map. After that, considering the new

updated disparity map, the whole process is re-iterated again until no improvements are observed

in terms of rate-distortion.

This R-algorithm is now adapted to cope with not only the variable number of blocks but

also the variable sizes of these blocks. The process is achieved through the use of B as a queue.

The disparity of the front block, df is replaced by all disparities d ∈ D, resulting in as many

block maps [(d, lf ),Bt]. The selected disparity d̂ minimizes J is given by:

d̂ = argmin
d∈D

J ([(d, lf ),Bt]) . (7.11)

This modified block is removed from the front and placed at the queue’s end:

B :=
[
Bt, (d̂, lf )

]
. (7.12)
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Using the decreasing counter c, this process is iterated in such a way as to process all blocks

once and to ensure that the front block is the block located at the image’s top left corner. It is

further iterated as long improvements are made, this is checked by comparing the current value

J(B) of the cost function with a stored value denoted Jold.

7.2.3 Block Division Algorithm (BDA)

This section deals with the third stage, Block Division Algorithm (BDA), of the optimization

algorithm. The BDA consists in processing all blocks. For each block, is decided, whether

dividing the block into four subblocks helps reducing the function cost J(λ,d, l, T ) or not. This

decision is taken by comparing the cost function when applied to two block maps, one where the

front block is not divided and one where the front block is divided and disparities of each subblock

are adjusted so as to minimize J(λ,d, l, T ). Note that the BDA modifies the tree-structure only

within a specific layer consisting of all blocks of a given size. When it is first applied, it attempts

to divide blocks of size Lmax × Lmax. When applied a second time, it considers blocks of size
Lmax

2 × Lmax

2 and so on until reaching the desired size Lmin × Lmin. The parameter lmin at the

step 3.c. in Figure 7.3 controls the size of the blocks that might be divided by the BDA.

Let us first describe how to transform a block map B into a new block map, denoted Bs,

containing four new subblocks (corresponding to the step 3.d. in Figure 7.3):

• The front block (df , lf ) is divided into four subblocks denoted as (df ,
lf
2 ),(df ,

lf
2 ), (df ,

lf
2 )

and (df ,
lf
2 );

• A new block map is obtained by removing the front block and placing at the queue’s end

these four blocks:

[
Bt, (df ,

lf
2
), (df ,

lf
2
), (df ,

lf
2
), (df ,

lf
2
)

]
;

• The first subblock disparity df is replaced by all disparities d in the search area, and the

disparity d1 is selected so as to minimize J(λ,d, l, T ):

d1 = argmin
d∈D

J

([
Bt, (d,

lf
2
), (df ,

lf
2
), (df ,

lf
2
), (df ,

lf
2
)

])
;

• The selection of the second subblock disparity d2 takes into account the choice of d1. It is

also computed by testing the cost function on all disparities within the search area:

d2 = argmin
d∈D

J

([
Bt, (d1,

lf
2
), (d,

lf
2
), (df ,

lf
2
), (df ,

lf
2
)

])
;
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7.3 Performance evaluation and discussions

• The selection of the third and fourth subblock disparities d3, d4 are obtained in the same

way:

d3 = argmin
d∈D

J

([
Bt, (d1,

lf
2
), (d2,

lf
2
), (d,

lf
2
), (df ,

lf
2
)

])
,

d4 = argmin
d∈D

J

([
Bt, (d1,

lf
2
), (d2,

lf
2
), (d3,

lf
2
), (d,

lf
2
)

])
,

• The proposed block map is then expressed as:

Bs =

[
Bt, (d1,

lf
2
), (d2,

lf
2
), (d3,

lf
2
), (d4,

lf
2
)

]
. (7.13)

The decision consists in comparing J(B) with J(Bs). If J(Bs) is smaller, then the new

block map considered is Bs. If, on the contrary, J(B) is smaller, then the front block is placed

at the queue’s end indicating that it has been processed and the new block map considered is

B := [Bt, (df , lf )]

The block-division algorithm consists in repeating these steps (computing Bs and making

the comparison between the cost functions) for all the blocks of the same layer in the tree (see

Figure 7.2), i.e all the blocks having the same size. Repetition goes on until the first block is

back at the front position of the queue. This repetition is further iterated with the blocks of a

same layer as long as at least one block division has been decided, this is checked with a flag f

that is initially switched on. It is switched off as soon as a block is divided. The control of this

flag is done by steps 3.b and 3.i in Figure 7.3.

7.3 Performance evaluation and discussions

This section analyzes the performance of the proposed JDBLMO algorithm. The ability of

this algorithm to achieve a good prediction of the right view knowing the exact left view while

requiring the least bitrate is discussed. The rationale is that such an algorithm should also yield

good performance when it is integrated in a disparity compensated coding scheme.

The Peak Signal-to-Noise Ratio (PSNR) is adopted to measure the prediction quality

computed between the original and the predicted right view. The bitrate is expressed in bits per

pixel (bpp) and computed according to the entropy approximation applied to both the block-

length and the disparity maps.

Simulations are conducted on stereoscopic images taken from the "CMU-VASC" dataset [51].

The JDBLMO performance is compared with the traditional BMA using same size-block for

stereoscopic images but also with the modified version of the block-matching algorithm Intra/Inter-

frame Block Segmentation Coding (IIBSC) using variable size-blocks developed in [54].
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The predicted view is first divided into fixed-size blocks. Each block is encoded either

using an intra-frame or an inter-frame coding scheme. The latter scheme makes use of a metric

assessing the quality of the predicted block as compared to the corresponding block on the

original image using the Sum of Squared Differences (SSD). This scheme consists in two steps:

blocks are repeatedly divided so as to lower the SSD below a threshold, then these divided blocks

are repeatedly merged as long as the SSD remains below this threshold. This algorithm has been

adapted to our context and is called MIIBSC (Modified IIBSC). The modifications made to this

algorithm consist in allowing only the inter-frame coding and in adapting this prediction mode

to the context of stereoscopic image coding. The inter-frame coding becomes the inter-view

coding taking into account the two adjacent views. Furthermore only the first step is retained

and is performed as follows. The fixed-size blocks are repeatedly and recursively divided into

four subblocks of equal size until the mean squared error of each divided subblocks gets below a

threshold.

The performance discussion is organized as follows. JDBLMO, BMA and MIIBSC algo-

rithms are compared first in a more detailed fashion in subsection 7.3.1 and then in terms of

average rate-distortion performance in subsection 7.3.2.

7.3.1 JDBLMO performance evaluation compared to BMA and MIIBSC

This section compares the performance of the proposed algorithms to the test algorithms de-

scribed above using the stereoscopic image "rubik" shown at the top of Figure 7.5.

In the discussed simulations results, the right view is first divided into blocks of size 32×32

pixels. The candidate disparities are selected within the set [−30,−29, . . . , 30]. The MIIBSC is

tested according to a large number of thresholds ranging from 0 to 1000 which are applied to

the mean SSD. For a given threshold, a predicted view, a PSNR-value, a bit-rate and a global

block layout are obtained. While the JDBLMO is performed using a large number of λ-values.

The BMA is performed with four fixed set of size-blocks: 4 × 4, 8 × 8, 16 × 16 and 32 × 32.

For each parameter value, each algorithm yields a predicted view, a global block layout, and a

rate-distortion point composed of a PSNR value and a bitrate value.

Figure 7.4 illustrates the rate-distortion performance of the algorithms by joining with

lines the experimental rate-distortion points. Note that the JDBLMO (black dashed curve joining

black squares) performs better than the BMA (red curve joining red pluses) and even better than

the MIIBSC (blue curve joining blue circles). For a given bitrate of 0.015 bpp, the JDBLMO

yields a PSNR of 32.0 dB improving by 1.8 dB the BMA’s performance and by 0.9 dB the

MIIBSC’s performance.

Figure 7.5 presents above the original right view and below three close-up views of the right

part of a "wooden egg cup" extracted from the three predicted views processed with respectively

from left to right, the JDBLMO, MIIBSC and BMA. The JDBLMO yields the best visual
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Figure 7.4: Rate-distortion performance of the JDBLMO, MIIBSC and BMA performed on

"rubik".

reconstruction as the two others fail to render the triangular shape. Indeed this can be explained

by the block layout selected respectively by the JDBLMO and the MIIBSC given by Figure 7.6

and Figure 7.7. A closer look at these figures show that the triangular shape is processed with

seven subblocks by the JDBLMO and with only one block by the MIIBSC.

7.3.2 JDBLMO average rate-distortion performance compared to BMA and

MIIBSC

This section analyzes the average rate-distortion performance of the described algorithms. Sim-

ulations are performed on ten stereoscopic images, namely "book", "books", "sphere", "wdc2r",

"whouse", "rubik", "telephone", "toys", "cdc1", "house2". Eight target bitrates in bpp are de-

fined: [0.06 0.07 0.08 0.09] and [0.1 0.25 0.40 0.55], the former corresponding to low bitrate and

the latter corresponding to medium bitrate. The parameter values (λ for JDBLMO, threshold

for MIIBSC and size-block for BMA) are set so as to comply the target bitrates. The Bjøn-

tegaard metric [53] is then used to compute at low and at medium bitrate, an average PSNR

difference between the JDBLMO and the BMA, and between the JDBLMO and the MIIBSC.

These average PSNR differences are listed in Table. 7.3.2 for each of the ten stereoscopic images,

where ∆BMA stands for the former average difference and ∆MIIBSC the latter average difference.

One can observe that the JDBLMO achieves better results when compared to the BMA and in
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Figure 7.5: Above: original right view "rubik". Below, from left to right close-up views extracted

from the three predicted views processed with the JDBLMO, MIIBSC and BMA.

Figure 7.6: Block-length map resulting from the JDBLMO
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7.3 Performance evaluation and discussions

Figure 7.7: Block-length map resulting from the MIIBSC

most cases when it is compared to the MIIBSC. The gain is even higher at low bitrate compared

to the BMA.

7.3.3 JDBLMO rate-distortion performance compared to MMA and R-algorithm

This section compares the performance of the JDBLMO with the MMA and the R-algorithm

developed in the previous chapters and also with the BMA.

Figure 7.8 shows the results of an experiment conducted on the stereoscopic image "Stereo_13".

The disparity map is estimated selecting disparities between the range [−29, . . . , 29, 30].

The black dashed line joining circles gives the performance of the BMA using of size 4× 4

to 14×14 pixels. Each performance achieved with a given size of block is represented by a circle.

The set of blue curves joining ’+’ symbols represents the performance of the MMA achieved

using blocks of size 4× 4 (for the right blue curve) and 8× 8 (for the left blue curve) where each

point is obtained using a different value of the parameter λ. In the same way, the set of red

curves represents the performance of the R-algorithm using blocks of size 4×4 (for the right blue

curve) and 8× 8 (for the left blue curve) where each point is obtained using a different value of

λ. Finally, the curve in purple joining ’+’ symbols represents the performance of the JDBLMO

algorithm using variable block sizes for 32 × 32 to 4 × 4 pixels. Each point is obtained using a

different value of λ. One can see that for high bitrate, i.e. form 0.17bpp to 0.3bpp, the JDBLMO

is globally less performant than the R-algorithm which is better than the MMA itself better than

the BMA. For example, at the bitrate of 0.31, the MMA, the R-algorithm and the BMA leads

to same prediction with a quality of 29.6dB. While for the same quality, the JDBLMO needs

0.35bpp. This can be explained by the fact that all algorithms uses small blocks to reconstruct
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Stereo Low bitrate Medium bitrate

Images ∆BMA ∆MIIBSC ∆BMA ∆MIIBSC

book 0.95 0.51 0.67 0.03

books 1.08 0.10 0.90 0.19

sphere 1.14 0.90 1.02 0.25

wdc2r 1.30 0.55 0.45 -0.74

whouse 1.45 0.55 1.46 0.44

rubik 1.64 0.22 0.74 0.44

telephone 2.45 0.81 1.89 0.34

toys 3.09 -0.27 2.51 0.13

cdc1 3.14 0.50 1.80 0.04

house2 3.24 0.12 0.51 -0.01

Table 7.1: Average PSNR gain of the JDBLMO over the BMA and the MIIBSC
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Figure 7.8: Rate-distortion performance of the MMA, R-algorithm, JDBLMO and BMA on

"stereo_13".
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7.4 Conclusion

the predicted view which leads to a good reconstruction quality. Nevertheless, the JDBLMO has

to encode also a block length map containing the constant size of the blocks which is not useful

in this case.

At lower bitrates, from 0.005bpp to 0.13bpp, the JDBLMO performs better than all the

other algorithms. It takes advantage of coding large homogenous areas using big blocks but still

ensuring a good prediction quality thanks to smaller blocks.

These results confirms the use of blocks of variable block sizes at low bitrates.

7.3.4 Processing time and complexity of the JDBLMO

The simulations above have been conducted in the same conditions as mentioned in section 3.3.7.

For the stereoscopic image "Stereo_13" of size 202 × 320 pixels, using disparities amongst the

range [−30, ..., 29], the JDBLMO takes between 7 and 35 seconds to estimate a disparity map

for a specific value of the parameter λ. The complexity of the JDBLMO depends on the depth

q of the tree structure. It has been calculated in too cases. IN the first case, the JDBLMO has

the minimum complexity at very low bitrate when no blocks are being divided, thus the ARA

and the BDA are applied only once and the complexity of the JDBLMO is given by:

18NwL
2
max + 6NwXY + 5Nw + 12 (7.14)

The complexity of the JDBLMO has also been calculated at very high bitrate when all block are

being divided until the minimum block size allowed. We have assumed that the ARA and the

BDA are applied only once for each block size. Thus the complexity of the JDBLMO is given

by:

Nw(XY )(3L2
max − 1)

+
∑q−2

k=0 3NwXY L2
max + 11Nw

(
22kXY

)
− 7Nw − 1 (7.15)

+
∑q−2

k=0

(
22kXY

) (
4Nw

(
L2
max

22k
− 1

)
+ 12Nw + 13

)

7.4 Conclusion

This chapter has presented a new stereo-matching image algorithm using variable size-block.

This algorithm optimized jointly the disparity and block-length maps so as to ensure a good

reconstruction of the predicted view while minimizing the bitrate. Simulation results shown

that this sub-optimal stereo-matching algorithm achieved better prediction performance when

compared to the competitive BMA algorithm using variable size-block.
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Conclusion and future research

The developed work in this thesis has been undertaken in a context where the number of appli-

cations using 3D-technology is continuously increasing and subjected to a growing demand from

the users in terms of quality and comfort of use. Stereoscopic images require efficient techniques

for their storage or their transmission. The contributions of the work concern the compression

of stereoscopic images and more particularly, we focus on the disparity map estimation process

improving the quality of the predicted view with a constraint of low bitrate.

The disparity map estimation for stereoscopic image compression has been at the center

of many works. We have proposed five original algorithms to cope with the Rate-Distortion

optimization problem of coding stereo images. The main contributions of this thesis are recalled

below and then some clues of possible improvements are discussed.

Our first contribution was to develop a disparity map estimation algorithm (MMA) using

a joint entropy distortion metric. Most of the methods developed in the literature include a

smoothness constraint assuming that a smoother disparity map requires a bitrate less important.

Contrarily to these methods, the MMA includes an estimate of the bitrate needed to encode the

disparity map in the metric to minimize as well as a common term measuring the dissimilarity

between the blocks to be matched. This allows the MMA to ensure good bitrate-distortion

performance at each step of the disparity selection process. Furthermore as the complete disparity

map distribution is unknown during the estimation process, the final bitrate cost of the disparity

map is estimated at each step of the disparity map computation thanks to a finite mixture

probabilities. This mixture is defined such as the disparity distribution estimate becomes more

and more close to the true distribution as the image is being processed. To have the ability to

explore a large number of paths, the MMA relies in a tree where each path corresponds to a

different disparity map. At each depth of the tree, only the M -best paths are extended.

This method has shown better performance on the stereoscopic images that were tested

compared to the Block-Matching Algorithm (BMA) with and without regularization, also when

coding the estimated map with a DPCM coder.

Improvements in terms of Rate-Distortion performance were mainly obtained setting the

97



parameter M to 1 (i.e. by just extending only one disparity map at each depth of the tree). Some

of the simulations have shown a significant improvements in the bitrate-distortion performance

by increasing the values of M . But increasing the value of M is done at the expense of an

increase in the processing time also.

No particular attention have been taken in this algorithm to make it faster: programming

it in C-language or including parallel programming in the algorithm could make it run faster.

We are optimist that making some improvements dedicated to the reduction of the processing

time could results in a much less important processing time and allows to increase the value of

the parameter M to further improve the bitrate-distortion performance.

Another point to consider is that this algorithm involves many parameters. We have

conducted a short study on how to set all the parameters to obtain best performance. A fu-

ture research could consist in incorporating this algorithm in a complete disparity compensated

scheme. Then the bit allocation problem should be investigated and would be more complex as

it would involve all the extra parameters of the MMA which all have an influence on the bitrate

of the disparity map.

Another contribution of this paper was the proposed R-algorithm which takes initially the

disparity map computed by the BMA which minimizes the distortion as a reference. Then this

map is successively modified as long as improvements are observed in terms of rate-distortion

performance. The disparities are also modified according to the minimization of the proposed

joint entropy-distortion metric. This algorithm shows to perform better than the BMA and

the previously developed MMA on the stereoscopic images tested. This algorithm has also the

advantage of being simpler to use than the MMA as it does not involves any specific parameters,

and thus its processing time is significantly reduced in comparison to the MMA.

Then we get interested in improving the performance of the developed algorithms by en-

larging the search area in which the disparities are selected. Enlarging the search area can of

course improves the performance of the algorithm in terms of distortion. But it can also increase

the bitrate needed to encode the disparity map as the range of selected disparities gets larger.

Thus, we propose two methods to select relevant sets of disparities inside the search area, each

set minimizing the distortion of the predicted view at a given bitrate. Simulation results have

shown that both methods perform better that the BMA. In future investigations, this algorithm

could be used jointly with the other disparity map estimation algorithm proposed in this thesis.

Indeed, one could at first estimate the best set of disparities improving the distortion perfor-

mance given a search area and then this best set could be used by either the R-algorithm or

the JDBLMO as the set of disparities on which they rely to estimate the disparity map. This is

expected to improve the Rate-Distortion performance of both algorithms as they will be able to

take advantage of a larger search area for a small increase of the computational complexity.

Finally we have investigated the use of variable block sizes for stereoscopic image compres-

sion with the JDBLMO. As it is expected to improve the bitrate-distortion performance: larger

zones having roughly the same depth can be encoded using a single disparity. But this comes
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at the cost of sending also to the decoder information about the block sizes. We have propose

a novel algorithm which jointly optimize the disparity map as well as the block sizes while min-

imizing the distortion of the predicted view. The proposed algorithm performs better than the

MIISBC which is a method using variable block sizes inspired from video coding techniques.

In future investigations, all the developed techniques could be integrated in a disparity

compensated scheme. In fact, we have already started these works with the R-algorithm. The

base view and the residual image were coded using HEVC coder and the disparity map with a

lossless entropy coder. The distortion was measured on both views of the stereo images and the

bitrate computed as the sum of the bitrate cost of encoding the left view, the residual image and

the disparity map. The first simulations results we obtained are very encouraging to pursue in

this way as improvements have been observed in terms of global Rate-Distortion performance for

very low bitrate in comparison to the use of 3D-HEVC to encode the stereoscopic images tested.

Moreover, the developed algorithms could be included in the 3D-HEVC coder to further

improve its performance on stereoscopic video coding.

For example, the BMA_S can be used as a initial step to select the best disparities set in

a larger search area, so that this set could be used during the Disparity Compensated Prediction

(DCP) of the 3D-HEVC.

Another idea would be to run the R-algorithm on the blocks coded using DCP in 3D-

HEVC. The disparities selected by this 3D-HEVC for the blocks in one frame could be further

improved by applying the R-algorithm on this partial disparity map (as some blocks are coded

using intra prediction or inter-motion prediction). Improvements in terms of Rate-Distortion

performance are expected to be more important in the case of the coding of I-frames stereoscopic

pairs as these frames are coded independently of the rest of the videos (they are coded using

only intra coding and DCP).
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