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Résumé

Dans cette thèse, nous présentons notre travail de recherche dans le domaine du calcul haute performance en mé-
canique des fluides (CFD) pour architectures de type cluster et cloud. De manière générale, nous nous proposons
de développer un solveur efficace, appelé ADAPT, pour la résolution de problèmes de CFD selon une vue classique
correspondant à des développements en MPI et selon une vue qui nous amène à représenter ADAPT comme un graphe
de tâches destinées à être ordonnancées sur une plateforme de type cloud computing.

Comme première contribution, nous proposons une parallélisation de l’équation de diffusion-convection couplée à
un système linéaire en 2D et en 3D à l’aide de MPI. Une parallélisation à deux niveaux est utilisée dans notre implé-
mentation pour exploiter au mieux les capacités des machines multi-coeurs. Nous obtenons une distribution équilibrée
de la charge de calcul en utilisant la décomposition du domaine à l’aide de METIS, ainsi qu’une résolution pertinente
de notre système linéaire creux de très grande taille en utilisant le solveur parallèle MUMPS (Solveur MUltifrontal
Massivement Parallèle).

Notre deuxième contribution illustre comment imaginer la plateforme ADAPT, telle que représentée dans la pre-
mière contribution, comme un service. Nous transformons le framework ADAPT (en fait, une partie du framework)
en DAG (Direct Acyclic Graph) pour le voir comme un workflow scientifique. Ensuite, nous introduisons de nouvelles
politiques à l’intérieur du moteur de workflow RedisDG, afin de planifier les tâches du DAG, de manière opportuniste.
Nous introduisons dans RedisDG la possibilité de travailler avec des machines dynamiques (elles peuvent quitter ou
entrer dans le système de calcul comme elles veulent) et une approche multi-critères pour décider de la “meilleure”
machine à choisir afin d’exécuter une tâche. Des expériences sont menées sur le workflow ADAPT pour illustrer
l’efficacité de l’ordonnancement et des décisions d’ordonnancement dans le nouveau RedisDG.

Mots clés: calcul haute performance, MPI, partitionnement du maillage, résolution de systèmes linéaires creux,
cloud computing
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Abstract

In this thesis, we present our research work in the field of high performance computing in fluid mechanics (CFD)
for cluster and cloud architectures. In general, we propose to develop an efficient solver, called ADAPT, for problem
solving of CFDs in a classic view corresponding to developments in MPI and in a view that leads us to represent
ADAPT as a graph of tasks intended to be ordered on a cloud computing platform.

As a first contribution, we propose a parallelization of the diffusion-convection equation coupled to a linear sys-
tem in 2D and 3D using MPI. A two-level parallelization is used in our a implementation to take advantage of the
current distributed multicore machines. A balanced distribution of the computational load is obtained by using the
decomposition of the domain using METIS, as well as a relevant resolution of our very large linear system using the
parallel solver MUMPS (Massive Parallel MUltifrontal Solver).

Our second contribution illustrates how to imagine the ADAPT framework, as depicted in the first contribution, as
a Service. We transform the framework (in fact, a part of the framework) as a DAG (Direct Acyclic Graph) in order to
see it as a scientific workflow. Then we introduce new policies inside the RedisDG workflow engine, in order to sched-
ule tasks of the DAG, in an opportunistic manner. We introduce into RedisDG the possibility to work with dynamic
workers (they can leave or enter into the computing system as they want) and a multi-criteria approach to decide on
the “best” worker to choose to execute a task. Experiments are conducted on the ADAPT workflow to exemplify how
fine is the scheduling and the scheduling decisions into the new RedisDG.

Key words: high performance computing, MPI, mesh partitionning, sparse direct solver, cloud computing
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Chapter 1

Introduction

1.1 General background

The CFD, for Computational Fluid Dynamics is a branch of fluid mechanics that uses numerical methods to investigate
and propose solutions to problems that involve fluid flows. This development aid tool becomes essential in all industrial
areas related to fluid dynamics such as aerospace, plasma physics, porous media, meteorology, etc. Depending on the
chosen approximations, which are the result of a compromise between the requirements in terms of accuracy of the
physical representation, and computing resources available, the numerical solution of equations allows access to all
instantaneous variables at each point of the computational domain.

Nowadays, CFD has reached a sufficient degree of maturity to be integrated with the industrial design process, in
addition to the test campaigns because it limits the number of trials needed during a development cycle, and access
all physical quantities on the whole computational domain. It alleviates the requirements to reduce design time and
research performance solutions in a context where the objectives are multiple and often conflicting. With the ever
increasing power of computing resources, it is now possible to achieve resolution levels for a detailed description of
physical phenomenon.

1.2 Problem

Besides, scientists have always wanted to acquire a better knowledge of their environment. They conduct experiments
to explain and predict the universe. With the emergence of computers, a new discipline that has greatly accelerated
this process emerged: computer science. In addition to that, computers are capable of simulating experiments that can
validate new concepts or designs with a precision never seen before.

Indeed, using numerical simulations, we can avoid the costly and complicated installation, time, or dangerous
experiences. In addition, simulations can be used in various fields such as aerodynamics, meteorology, biology,
finance, plasma physics, etc. This list is not exhaustive, but shows how simulations can affect many areas on a day to
day database environment.

Thus, the numerical simulation is a very active area of research: testing must be both accurate and fast. Numerical
calculations are often made as a complement to experiments and theoretical analysis, but can also be the only method
suitable for a certain problem, for economical or technical reasons. One reason for the increasing use of numerical cal-
culations is the development of robust and efficient numerical methods, another reason would be the price/performance
for high performance computers.

In particular, nuclear fusion reactors are a promising area of research for our future as a new energy source, and
require very precise simulations. Here, we look at the unbalanced ionization process (discharge) that occur when a
neutral gas is exposed to the electric field of high intensity. They can be in various forms depending on the electric
field and the pressure and the volume of the medium.

In this thesis, we will focus mainly on the streamers that are generated by ionization waves. Streamer discharge
is used in several applications such as elimination of pollutants. The numerical simulation of the streamer diffusion is
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based on a mathematical model of various levels of complexity, including the hydrodynamic approximation, leading
to a system of equations which comprises the convection-diffusion-reaction equations for a charged particle coupled
with the Poisson equation of the electric field.

Given the complexity of the phenomenon, it is essential to get realistic simulations that lead to find the best combi-
nation of models, numerical methods and computer resources. The numerical simulation of this physical phenomenon
is then enriched by strong interactions between researchers in three disciplines : physics, mathematics and computer
science. This research is based on the exploitation of computer science resources and, specifically, aim to develop
parallelization techniques to effectively use resources calculation and storage.

1.3 Objective

Generally, this problem cannot be resolved continuously over the whole domain, but it must be studied in many points.
Parallel computing intervenes in this case because it can perform calculations that would take too long if they were
running on a single processor on a single machine by a single execution thread (one process, one thread). Most types
of calculation must, for example, be made in a fixed and short time.

This is the case, for example, for the plasma phenomenon. A simulation should be performed daily and for the
next day. In addition, the reliability of the results depends on the fineness of the calculation parameters, including that
of the grid used to discretize the space and time: the increase in computing power to solve a problem involving more
parameters, therefore gives a more accurate results. Similarly, many scientific applications require thousands of hours
of computing: it would be unreasonable to expect the result calculated by a sequential program.

In our case, when we started to work on that research topic, the code took two days to capture the Streamer 2D and
one month in case of 3D, hence the necessity of the transition to parallelization. Parallel computing promises to be
effective and efficient in tackling these computational problems. However, parallel programming is different from and
far more complex than conventional serial programming, and building efficient parallel programs is not an easy task.
Furthermore, the fast evolution of parallel computing implies algorithms to be changed accordingly, and the diversity
of parallel computing platforms also requires parallel algorithms and implementations to be written with consideration
on the underlying hardware platform.

Recently, several researchers have been where interested in parallelizing fluid dynamics codes that include convection-
diffusion-reaction equations coupled with Poisson equation. The general idea is to run the calculations using all avail-
able resources either using shared memory or distributed one. In the case of distributed memory architecture, the
whole domain must be cut into subdomains using tools such as METIS or SCOTCH to do the calculations on each
processor independently from any other. The resolution of the linear system deduced from the Poisson equation is
made using parallel direct methods (MUMPS, PaStiX, SuperLU, . . . ) or parallel iterative methods (Pestc, GMRES,
. . . ).

Furthermore, the emergence of new types of Internet-based computing such as cloud computing impacts seri-
ously the field of High Performance Computing. Major companies, among them Google, Microsoft, Amazon. . . offer
"computing as a service". Amazon started its AWS (Amazon Web Services) project more than 10 years ago.

One of Amazon Web Service’s key components, EC2 (Elastic cloud Computing), was developed by a small team
in a satellite development office in South Africa. Chris Pinkham, who worked as an engineer in charge of Amazon’s
global infrastructure in the early 2000s, noticed that "It struck us in the infrastructure engineering organisation that we
really needed to decentralize the infrastructure by providing services to development teams". He also noticed "That
was a big motivating factor."

Pinkham thought about this issue and, in 2003, started trying to build an "infrastructure service for the world".
His hope was that he could develop a service that would not only deal with Amazon’s infrastructure, but also help
developers. Since its official launch in 2006, EC2’s value has grown and it has become the cornerstone of Amazon’s
ecosystem of cloud services.

With cloud computing, computing is a service, among other services. The infrastructure is supposed to scale up
and to scale down according to the demand and many other facilities have been proposed and adopted since 2006. We
will discover some of them later on in our document.

The same appetite appeared for Google that now proposes many cloud services among them the google Cloud
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Pub/Sub1 which is a fully-managed real-time messaging service that allows you to send and receive messages between
independent applications. You can leverage Cloud Pub/Sub’s flexibility to decouple systems and components hosted
on Google Cloud Platform or elsewhere on the Internet. As Google teams love to say: "By building on the same
technology Google uses, Cloud Pub/Sub is designed to provide “at least once” delivery at low latency with on-demand
scalability to 1 million messages per second (and beyond)".

In our work we also use the Pub/Sub paradigm in order to coordinate the components of a workflow engine able
to execute scientific workflows in an opportunistic manner. This thesis contributes to the field of workflow scheduling
and revisits HPC in terms of cloud computing. In some ways we improve an existing WaaS (Workflow as a Service)
tool. For doing this, we need to adapt the way we decompose a scientific computational intensive problem. A practical
use case demonstrates the potential of our approach for doing HPC in the cloud.

The world is really changing quickly since we are now faced to very easy ways to book resources (CPU, mem-
ory, disk), even coming from different cloud providers. For instance, the RosettaHub platform2 allows you to book
ressources alternatively on Amazon, Microsoft. . . clouds. RosettaHUB makes it possible for everyone to simultane-
ously use Python, R, Julia, SQL, Scala, Spark, Mathematica, ParaView, etc. as well as any computational code or li-
brary from within one single portal exposing web based and highly usable clouds management consoles, workbenches
and notebooks.

1.4 Outline

This manuscript is organized as follows
We present in Chapter 2 an introduction to high performance computing. We detail the different architectures that

have been developed to perform efficient computation. We begin with a brief presentation of the various architectures
and optimization algorithms that result. Then, we present a state of the art of graph partitioning. Finally, we explain
the different methods available to exploit the new heterogeneous parallel machines. Those methods that have been
developed to address sparse linear systems are described, and we particularly focus on sparse direct algebra parallel
solvers, which are the target of this thesis.

We will then present, in Chapter 3, state of art of cloud computing, Service Computing, and Workflow systems.
In Chapter 4, we introduce the streamer problem included in ADAPT framework and explain numerical schemes

used to solve differential equations. Then we reduce the computational time cost of our ADAPT platform through
parallelism. The parallel architecture exploited is: the cluster (set of network connected PCs). Furthermore, we par-
allelize 2D and 3D streamer codes using MPI, the most critical points are memory management and communications.
The aim of this work is to adapt the code on this programming model, to optimize it and offer the possibility to do
tests in reduced time.

In chapter 5, we discuss about the case of scheduling the ADAPT workflow according to the RedisDG workflow
engine. More precisely, we schedule workflows of different sizes of a specific workflow solving one CFD problem of
the ADAPT framework.

Finally, we will conclude and will present some areas for improvement of these methods in Chapter 6.

1https://cloud.google.com/pubsub/
2https://www.rosettahub.com/welcome
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Chapter 2

Numerical Simulation

Contents
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Introduction to High Performance Computing (HPC) . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 The taxonomy of Flynn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Limitations and cost of parallelism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.4 Architectures of supercomputers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.5 Parallel computing libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.3 Graph partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.1 Modelization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 METIS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Parallel sparse linear algebra methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.1 Sparse linear algebra methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4.2 Parallel solver MUMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.5 CFD solvers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Solving Fluid Dynamics problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.5.3 Classical discretization methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.1 Context

A numerical simulation models generally the time evolution of a physical phenomenon in a domain of space. These
simulations are based on a discretization in time and space. Often one uses an iterative scheme in time and space dis-
cretization via a geometric mesh elements (triangles, squares, tetrahedron, etc.). Concretely, in our case this numerical
simulation is represented by an evolution equation coupled with Poisson equation (see equation (2.1)).

These simulations, increasingly complex, require to be executed in parallel. The domain should be distributed
among multiple computing units. The mesh is splitted into as many parts as processors used. The time discretization
can calculate the system status at a given time from the previous state. More accurately, the state of an element is
calculated from its previous state and the state of some other elements depending on the physical model; generally, it
is the neighboring elements in the mesh, in addition to that, a linear system is computed at each iteration to solve the
Poisson equation.

This distribution induces communications between processors when one of them requires data owned by others.
These communications are synchronous and all processors must therefore advance the simulation at the same pace.
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A good distribution or partition data should provide balanced parts and minimizing the number of data dependencies
between processors, minimizing the time computing and communication.

A model for the problem is according to equation 2.1.
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(2.1)
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−→
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(2.2)

We aim to parallelize both the linear solver issued from the Poisson equation and the evolution equation using
domain decomposition and mesh adaptation at "the same time". To our knowledge this is the first time that such a
challenge is considered. Separating the two steps may add delays because we need to synchronize them and to align
the execution time on the slowest processor. Considering the two steps simultaneously offers the potential to better
overlap different computational steps. Some authors have tackled the parallelization of either the linear solvers or the
evolution equation usually without mesh adaptation.

In [1] the authors consider the parallelization of a linear system of electromagnetic equation on non adaptive
unstructured mesh. Their time integration method leads to the resolution of a linear system which requires a large
memory capacity for a single processor.

In [2] the authors introduce a parallel code which was written in C++ augmented with MPI primitives and the LIS
(Linear Iterative Solver) library. Several numerical experiments have been done on a cluster of 2.40 GHz Intel Xeon,
with 12 GB RAM, connected with a Gigabit Ethernet switch. The authors note that a classical run of the sequential
version of their code might easily exceed one month of calculation. The improvement of the parallel version was
performed by the parallelization of three parts of the code: the diagonalization of the Schrödinger matrix, advancing
one step in the Newton–Raphson iteration, and the Runge-Kutta integrator.

The authors in [3] focused only on the parallelization of a linear solver related to the discretization of self-adjoint
elliptic partial differential equations and using multigrid methods. It should also be mentioned that authors in [4] have
successfully studied similar problems to those presented in this paper.

The associated linear systems have been solved using iterative GMRES and CG solvers [5]. One difference is
that in our work we consider direct methods based on LU decomposition using the MUMPS solver. Moreover, the
direct solution methods generally involve the use of frontal algorithms in finite elements applications. The advent
of multi—frontal solvers has greatly increased the efficiency of direct solvers for sparse systems. They make full
use of high performance software layers such as invoking level 3 Basic Linear Algebra Subprograms (BLAS) [6, 7]
library. Thus the memory requirement is greatly reduced and the computing speed greatly enhanced. Multi—frontal
solvers have been successfully used both in the context of finite volumes, finite elements methods and in power system
simulations.

2.2 Introduction to High Performance Computing (HPC)

2.2.1 Introduction

The demand of performances in numerical simulation is growing. Indeed, the application domains require to im-
plement more and more calculations while considering increasing data sizes, assuming long execution time. As an
illustration, we can mention programs for the simulation of weather forecasts and plasma physics, whose needs are
growing.

The HPC (High Performance Computing) is a discipline that aims to tackle this problem. It involves the adaptation
and execution of large programs in heavy computing on supercomputers. These machines typically include a large
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number of processors or calculation units, allowing them to perform many tasks in parallel. They also make available
a large memory space to handle large problems in data size. The input/output system is also designed to provide a
wide bandwidth.

Running a program on a supercomputer requires application specific IT (Information Technology) developments.
The original sequential program must first be optimized. Then, the implementation of the parallelization involves
identifying and building computational tasks that can run simultaneously. This is called independence: tasks whose
results do not depend on each other can be run simultaneously.

Some definitions are now presented as well as terminologies that are commonly found in HPC.
Task and parallel task

A task is a portion of a work to be carried by a computer. This is typically a set of instructions executed on a processor.
A parallel task is a task that can run on multiple processors.

Process and thread
A process is a program in execution, it is created by the operating system. It contains one or more threads. A thread
consists of one or more tasks. In a multi-threaded programming, each thread has its own memory and shared global
memory of the parent thread.

Acceleration
Acceleration is the ratio of running time between sequential program and its parallel version. An ideal acceleration is
the number of processors used (see scalability).

Massively parallel
This term is used to refer to hardware architectures that contain a large number of processors. This number is obviously
constantly increasing, at the time of writing this manuscript it is around a ten million.

Communications
Communication is the exchange of data between parallel tasks. These communications are usually made through a
network.

Synchronization
Synchronization is a breakpoint in a task that is released when other tasks have arrived at the same level. The aim is
generally to coordinate tasks against communications.

granularity
Granularity is the ratio of computation time and the communication time. The grain is said coarse grain if a large
amount of calculation is processed between communications and fine grain if instead there is a little calculation be-
tween communications.

scalability
The scalability of a parallelized system is its ability to provide an acceleration proportional to the number of processors.
It depends on the hardware (bus speed, etc.), on the ability of the algorithm to be parallelized and also on programming.
Ideal scalability is 1.

In the following, the taxonomy of Flynn will be introduced. Then, a quantification tool of the possible acceleration
by parallelization will be presented, later we presents the two types of parallelism: parallelism on shared memory
machine and on distributed memory machine.

2.2.2 The taxonomy of Flynn

As opposed to the archetype of a sequential machine, where instructions are executed one by one to the rhythm of
clock cycles on a single datum, parallel machines can follow different execution models. These models have been
proposed by Michael J. Flynn. [8]. They are based on the type of organization of the data and instruction streams.

• SISD Model (Single Instruction Stream, Single Data Stream): a sequential computer which exploits no paral-
lelism, Von Neumann architecture.

• the model MISD (Multiple Instruction Stream, Single Data Stream): the same data is processed by several
processors in parallel.

• SIMD model (Single Instruction stream, Multiple Data stream): table of processors, where each processor
executes the same instruction on its own local data.
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Figure 2.1: Flynn classification

• The model MIMD (Multiple Instruction stream, Multiple Data stream): several processors process different
data, each processor has a separate memory. The most used parallel architecture.

2.2.3 Limitations and cost of parallelism

Ideally, the acceleration of a parallelized program should be the number of computing cores used (optimal scalability).
The reality is unfortunately not as simple because there are always sequential parts which can represent a significant
cost. Amdahl proposed in 1967 [9] the following model to describe the acceleration that can provide a machine with
n processors (2.3):

Acc =
1

rs +
rp
n

(2.3)

Where rs + rp = 1, rs and rp are respectively the proportions sequential and parallelized program. This model
limits the acceleration that can make parallelization. Indeed, the limit as n approaches infinity is finished 2.2.

Gustafson proposed in 1988 [10] a reevaluation of the Amdahl’s law because he considered it too pessimistic 2.3.
Parallelization is not just to reduce the computation time of a given problem, as Amdahl sees, but especially to

deal with more important issues. In this case, the sequential proportion remains more or less constant. Indeed, in our
problems, the sequential part typically contains the extraction of a mesh. The latter is of complexity N, where N is
the number of nodes, for example. The physical problem to be solved can be meanwhile complexity of N log N if it
is of finite elements, or N2 in the case of an integral method for example. The rising cost of sequential operations is
minimal compared to those parallelizable. Gustafson therefore defines a linear acceleration law (2.4):

Acc = rs + n.rp (2.4)

The truth is probably somewhere between the laws of Amdahl and Gustafson, Ni proposed a finer law [11] which
also takes into account the communication time between processors, this law will not be presented in this manuscript.

2.2.4 Architectures of supercomputers

2.2.4.1 Multi-level parallelism

Technically, the introduction of the parallelization is based on the target technology. There are two categories particu-
larly prevalent on current supercomputers:

• Shared memory architectures,
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Figure 2.2: Amdahl’s law, acceleration in the number of CPUs for different proportion of sequential program. Accel-
eration is limited here.

Figure 2.3: Gustafson’s Law, acceleration depending on the number of processors for different proportion of sequential
program. The acceleration follows a linear law.

• Distributed memory architectures.

It is possible to mix these technologies to form a hybrid parallel machine which are increasingly common in the
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market for supercomputers. As an illustration, we can mention the chines Machine Sunway Taihulight (see Figure
2.4), located at Wuxi, Developed by the National Research Center of Parallel Computer Engineering & Technology
(NRCPC) and installed at the National Supercomputing Center. It displays a computing power of 93 petaflop/s. The
system has a theoretical peak performance of 125.4 Pflop/s with 10,649,600 cores and 1.31 PB of primary memory.
It is a machine for a hybrid parallelism distributed memory between nodes, and shared memory between cores within
the same node.

Figure 2.4: The supercomputer Sunway, Wuxi, China

There is a third type of prevalent architecture : the accelerator. This calculation means is designed to achieve high
computational power while minimizing energy costs and space requirements compared to conventional multi-core
processors. An accelerator consists mainly of the accumulation of a large number of processing units and a large
memory space shared between these units. The processing units are less powerful and specialized in the calculation,
therefore less versatile than those of a general-purpose processor. That is why parallel programming on this technology
is requesting more substantial programming effort, the codes must be adapted depending on the architecture specific to
the accelerator. As an example we can mention the graphics cards (GPGPU for general-purpose computing on graphics
processing units) concatenating a large number of computing units in groups sharing resources (cache, instruction
stack. . . ).

In the following, we present the two types of parallelism of interest for this project, namely the parallelism on
shared memory architecture and on distributed memory architecture.

• The parallelism on shared memory machine: Shared memory machines share the same memory area, acces-
sible by all processing units. The shared memory machines are characterized by a set of processors which all
have direct access to a common memory, through which they can communicate. This implies that we can define
tasks to run in parallel, for example by distributing iterations of a loop via simple directives. The parallel tasks
are then distributed on different threads, themselves distributed over the computing units of the shared memory
machine considered. The directives in a code mean that we become intrusive in the code, but conversely, we
quickly obtain a parallel code while keeping the code as close as possible to the original version.

• The parallelism of distributed memory machine: Typically, distributed memory machines are composed of a
large number of processors or multiprocessor each with its own memory, also known as compute node. These
nodes are interconnected by a fast communication network (InfiniBand technology, for example) so they can
communicate. The MAGI cluster at Paris 13 University has been used in this thesis. It contains about 50 Dell
FC430 blades with 10 Hyper-Threading dual processor cores (40 cores per blade), and 64 GB RAM per blade
interconnected by InfiniBand.
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Figure 2.5: Shared vs Distributed memory

2.2.4.2 Multicore

Multicore processors are called processors that contain multiple processing units. Since 2012, it is the most common
architecture, it also represents the new standard for PCs. The number of computing cores is usually between 2 and 8.
It is a shared memory architecture because all cores have access to the RAM. To exploit this architecture, it is common
to divide the problem into n threads, where n is the number of cores on the machine. This partitioning is fairly easy to
implement because the number of partitions is low, and further, the memory is shared between threads.

2.2.4.3 SMT architecture

The SMT architecture (Simultaneous MultiThreading) optimizes the use of resources of multicore processors, such as
wasted cycles (Figure 2.6). Pipelines are shared between multiple threads, registers and caches also. The individual
performance of each thread is degraded, but the execution of all threads is improved [12] and [13]. For example, the
Intel Core i7 2600, is an SMT architecture. Indeed, the processor has eight logical cores while there are physically
four. This mechanism, that simulates the presence of more cores than there exists physically, is called hyperthreading
by Intel.

2.2.4.4 NUMA architecture

The NUMA architecture (Non Uniform Memory Access or Non Uniform Memory Architecture) allows the grouping
of processors, and processors are connected together by a specific bus. In a NUMA system, the memory access for a
processor is fast regarding its own memory, but may be less fast to access the memory of others processors. The sharing
of memory and peripherals imply that the NUMA multiprocessor technique exploits a sophisticated memory and cache
coherence protocol across all processors attached to the platform. This protocol is a key component for efficient load-
balancing strategies. Figure 2.7 shows the topology of a NUMA system composed of two 4 core multiprocessors on
MAGI cluster and their dedicated memory, forming two NUMA nodes.

Compared to SMP (Symmetric MultiProcessing) technology, the NUMA architecture allows a greater number of
processors simultaneously. The NUMA architecture requires a standalone operating system for each processor while
in SMP, only one operating system is used jointly by all.
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Figure 2.6: The SMT architecture optimizes the operation of computing saturating their pipelines processor resources

2.2.4.5 Computing cluster

A computing cluster means a collection of computers interconnected by a network. The scale of this network is local:
a room or a building. This is a distributed memory architecture, each machine has no "direct" access to the memory
of others. For a parallel computing code developer, he must also manage explicitly the communication which can
become a bottleneck (see granularity).

The MAGI cluster
The MAGI cluster is located at the University of Paris 13.

• 50 Dell FC430 blades

• 10 Hyper-Threading dual processor cores (40 cores per blade);

• 64 GB RAM per blade;

• Local disk is made of SSD;

• InfiniBand for the low latency interconnect;

• Total of 2000 cores.

• 3 servers “shared memory”

• 16, 40 and 80 cores;

• 512 GB RAM;

• Local SATA disks;

• Infiniband;
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Figure 2.7: Topology of a computer with 2 NUMA nodes

• Total of 136 cores.

• 1 GPU node

• 4 Tesla cards K40m;

• 40 intel cores;

• 60 GB RAM;

• Infiniband.

• 16 B500 Bull blades

• 12 processors with 12 cores; 4 blades and 192 GB RAM;

• 6 blades with 8 cores;

• Total of 192 cores.

2.2.5 Parallel computing libraries

The few libraries presented here are among the best known to achieve performance.
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Figure 2.8: Topology of MAGI cluster

OpenMP
OpenMP is a multi-platform API for C/C++ and Fortran. It allows to easily carry parallel codes on shared memory
architectures. The most common operation is to parallelize the loops provided each iteration in the loop is independent
of the others.

MPI
Message Passing Interface is an API for C/C++ and Fortran. Contrary to OpenMP, it exploits the distributed memory
architectures by passing messages between machines. This is now the standard on distributed memory parallel systems
such as clusters and Grids.

CUDA
Cuda is an API developed by Nvidia that allows to exploit the graphics card brand to perform calculations.

OpenCL
Open Computing Language is an API developed by the Khronos Group in 2008. First introduced as an open alternative
to CUDA, OpenCL is much as it handles both the GPU multi-CPU platforms.

In this thesis, the standard Message Passing Interface is used. As the name suggests, MPI is a programming tool for
exchanging messages. There are several implementations and MPI libraries, for instance the Open MPI library (open
source) which is used in Chapter 4 of this thesis. The MPI programming model is to distribute the total workload
across multiple processes that can be run on multiple computing nodes, each with a memory space of its own. It is
the responsibility of the programmer to explicitly divide the workload, for example by distributing the total volume of
data to be processed on the various processes within the framework of solving a partial differential equation.
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When running an MPI process, all necessary variables in this process are private and only visible in this process.
This is why the MPI library provides various communication functions, blocking or not, for a group or point to point
exchange between multiple processes. This is also the programmer bears the task of organizing communication be-
tween processes as needed. From the perspective of development, the establishment of such parallelism is particularly
intrusive, involving many changes in the case of algorithms for solving partial differential equations. These changes
are mainly the distribution of data, calculations and organization of communications.

2.3 Graph partitioning

2.3.1 Modelization

Meshes partitioning needs the calculation of dependencies between elements to construct a graph. Some partitioners
use a model of hyper-graph, more general than the graph model. A graph partitioning tool or hyper-graph calculates
scores by taking into account two objectives:

1. The parts must be balanced, that is to say about the same size. The partitioners create parts roughly balanced
within a "unbalanced factor". An imbalance factor of 5% means that a chunk may reach up to 1.05 times its
ideal size.

2. A cost function, called cutting of the graph, is minimized. This cost function varies according to the model and
it generally deals with the communication time between processors.

To apply the graph partitioning or hyper-graph to a given problem, it is necessary to model it. It is important to
choose a model adapted to the problem. The partitioner can create a partition based on optimizing the most adapted
criteria for this simulation. The most common approach is to model the materials to be distributed in the form of
a graph. The graph constructed must model the constraints of distributed computing: load balancing and reducing
communications. A graph is defined either by a set of vertices and a set of edges connecting the vertices in pairs.

The edges of the graph are used to represent the dependencies between "elements" of the model. For example, the
calculation of a feature may require data from adjacent elements in the mesh. A node in the graph is connected to all
vertices representing neighboring elements in the mesh.

If elements are associated with different calculation loads, it is possible to associate weights with the vertices
representing these calculation loads. In the same way, if some communications are more costly than others, a weight
can be assigned to the edges. A graph partitioning tool optimizes two objectives: the balancing and cutting. The size of
part is the number of vertices, in case they are balanced the size is the sum of their weights. The performance function
most generally used in the graph partitioning tool is the number of cut edges (or the sum of their weight). An edge is
called “cut” when both ends are assigned to different parts. The aim is to reduce the volume of data communication
between processors.

Figure 2.9: A mesh of 6 elements and the associated graph modeling the dependencies
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Figure 2.9 shows the modeling of a 2 x 3 square grid as a graph. Each vertex of the graph corresponds to a square
of the grid and is connected to the vertices corresponding to its neighbors in the mesh.

This model, although widespread, does not always perfectly model the communication volume required for the
induced distribution. Since an edge connects two vertices, each cut edge induces two vertices to communicate. But a
vertex can have several cut edges of the same part and the graph cutting may overestimate the communication volume
induced by the partition. In Figure 2.10, a mesh of 6 elements is partitioned into two parts : a blue part and a green
part. 4 elements have at least one neighbor in the other part, it’s the elements that need to be shared with the other
processor. But 3 edges are divided by the partition.

Figure 2.10: Mesh and graph splitted into two

Many tools have been proposed for the partitioning of graphs/meshes to solve this problem, such as Chaco [14],
SCOTCH [15] METIS [16], etc. ADAPT in this operation is done using METIS.

2.3.2 METIS

METIS is a software package for partitioning large irregular graphs, partitioning large meshes, and computing fill
reducing orderings of sparse matrices. The algorithms in METIS are based on multilevel graph partitioning described
in [17, 18, 19], and based on the multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning
schemes. The multi-level method reduces the size of the original graph, performs a partition on this and then finally
uncoarsens the graph to find a partition for the original graph. METIS can be used as a suite of stand alone partitioning
applications or by linking a user’s Fortran or C application to the METIS library.

In Figures 2.12 and 2.13 we can see that the mesh is divided by METIS into two domains in both 2D and 3D cases,
the number of cells in each subdomain are comparatively the same.

2.4 Parallel sparse linear algebra methods

2.4.1 Sparse linear algebra methods

Solving linear systems of equations has always been a precious approach to solve real life problems in numerous
domains such as physics, geometry, etc. About four thousand years ago, Babylonians had already discovered how to
solve a 2 x 2 linear system. In the early 19th century, Carl Gauss developed a method called “Gaussian elimination”
in order to solve linear systems of equations.

The scientific community has developed multiple methods to efficiently solve sparse linear systems of the form

Ax = b (2.5)
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Figure 2.11: The various phases of the multilevel graph bisection. During the coarsening phase, the size of the graph
is successively decreased; during the initial partitioning phase, a bisection of the smaller graph is computed; and
during the uncoarsening phase, the bisection is successively refined as it is projected to the larger graphs. During the
uncoarsening phase the light lines indicate projected partitions, and dark lines indicate partitions that were produced
after refinement.

Figure 2.12: Unstructured 2D mesh

where A is a sparse matrix of size n. A is said to be a sparse matrix if it contains only few non zero terms. This low

27



Figure 2.13: Unstructured 3D mesh

fill-in is owed to either nonexistent or neglected interactions in the mathematical model used by the simulation. Indeed,
the coefficients of the matrix usually represent the interactions between two points resulting from the discretization of
the studied problem. Frequently, interactions between two remote points can be neglected and zero terms appear in
the matrix. x and b are two n sized vectors. x is the unknown of the system to be solved and b is called the right-hand
side. x can then be obtained with the formula b = A−1x.

However, the computation of the matrix A−1 is generally avoided. Indeed, we have no a priori knowledge of the
structure of A−1, and it might require being stored in an expensive dense matrix. This computation would require
too much memory and computational time. The scientific community developed many other methods to obtain the
solution x. These methods are adapted to the characteristics and the constraints of the simulation code. Indeed, the
need for accuracy, the structural and numerical stability of the matrix at each time step, and its numerical complexity
depends on the studied problem and the method used for the simulation.

There are two main methods for solving sparse linear systems: direct methods and iterative methods.

2.4.1.1 Direct methods

This section is devoted to direct resolution methods. It presents the graph models for the analysis of factorization
process and the steps needed to build a successful direct factorization. One may refer to [20, 21, 22] and references
therein for a more complete view of the direct methods. The direct resolution methods involve calculating the solution
x of the system (2.5) by the successive resolutions of triangular or diagonal systems obtained by the factorization of
matrix A. There are different types of factorizations, foremost among which are:

• LU factorization : a regular matrix A can be decomposed as A = L.U where L is a lower triangular matrix with
unit diagonal and U an upper triangular matrix;

• Cholesky factorization : a positive definite symmetric matrix A can be decomposed in the formA = L.LT where
L is a lower triangular matrix;

• Crout factorization : a positive definite symmetric matrix A can be decomposed in the form A = L.D.LT where
L is a lower triangular matrix with unit diagonal and D a diagonal matrix. Note that it is possible to use the
L.D.LT factorization for positive non-definite symmetric matrices. In this case the D matrix is block-diagonal.
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After factorization, the initial system solution can be obtained by successively solving triangular systems. For example,
in the case of a factorization "LU", we solve:

{

L.y = b

U.x = y
(2.6)

Algorithm 1: Scalar LU factorization

1

Inputs : A = (aij) regular matrix of dimension n Outputs : matri-
ces L and U such as L.U=A
for k:=1 to N do

for i:=k+1 to N-1 do
aik = aik/akk

for j:=k+1 to N do
aij = aij - aik * akj

end
end

end

Algorithm 1 presents the factorization algorithm A = L.U . The matrix A is factorized locally by replacing its
terms by those of two triangular matrices L and U . When the matrix is sparse, only non-zero elements are stored
and operations on zero elements are removed. But when assigning the line 7 of the algorithm, if aij was zero before
appointment, a new non-zero element is introduced into the factorized matrix L.U . During the factorization process,
new non-zero terms are created and factors are fuller than the initial matrix.

2.4.1.2 Iterative methods

An iterative method is to solve a problem using an initial value x0 that are refined to gradually get closer to the solution.
So we construct a series of vectors x1, x2, · · · , xk which converges towards the solution vector x = (x1, x2, · · · , xn).
The first traces of iterative methods for solving linear systems appear with the work of Gauss, Jacobi, Seidel, Nekrasov
and in the nineteenth century (see [23] for details). The years 50-70 are dominated by the use of stationary iterative
methods. These methods include modifying the components of the approximation of the solution in a certain order to
achieve a satisfactory solution accuracy. the four major stationary iterative methods are:

• The Jacobi method is to calculate at step k a new approximation of each component (x1, x2, · · · , xn) of the
solution vector x independently. A new approximation xi the ith equation of the system was extracted using
the previous approximation xk−1 to the other terms of x present in the equation. A resolution is obtained by
unknowns at each iteration from the solution of the previous iteration. This method is easy to implement but its
convergence is slow.

• The Gauss-Seidel method is very similar to the Gauss method. It just allows to take into account new approxi-
mations of the components as they are calculated.

• The method of relaxation (SOR for successive over-relaxation) is an improvement of the previous method which
introduces a relaxation parameter to improve the method of convergence speed.

In spite of their theoretical elegance, these iterative methods suffer from serious limitations such as lack of generics.
Their convergence depends on parameters a priori difficult to estimate such as, for example, the spectrum of the matrix.
In many practical problems, these methods hardly diverge or hardly converge. They are still used as multi-grid methods
smoothers or as Krylov methods preconditioners.
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Either a method is direct (LU, QR, etc.) and therefore is quick and accurate, but consumes lot of memory. Either
it is iterative (GMRES, GC, etc.), memory-efficient, but slow enough to achieve a sufficient quality solution.

In this thesis, we are interested in the resolution of our large parallel sparse linear equations using the direct method.
This method is the most expensive both in term of memory and computational power. However, as we have explained,
it is widely used because it can reach a very high accuracy. We find many academic and industrial libraries dedicated
to solving large sparse linear systems on massively parallel computers. Some of these libraries are specialized in direct
methods. In general, this is the most consuming step of calculation time. Among the tools available as parallel direct
methods we can mention : SuperLU, PARDISO, PaStiX and finally MUMPS that we use and which is among the
fastest hollow parallel matrix solvers.

2.4.2 Parallel solver MUMPS

MUMPS has been developed by teams of three laboratories: CERFACS, ENSEEIHT-IRIT and RAL. Since the public
(royalty-free) finalized version (MUMPS 5.0.2 July 2016). These substantive developments solve anomalies, extend
the scope of use, improve ergonomics and above all, enrich the functionalities. MUMPS [24, 25, 26] is therefore
a sustainable product, developped and maintained by teams of IRIT, CNRS, INRIA and CERFACS (half a dozen
people).

It uses multi-frontal method to solve the system of linear equations on parallel computers in a distributed envi-
ronment and using MPI. The multi-frontal method for solving sparse matrix linear systems is a direct method based
on the LU factorization of the matrix. In what follows, we will consider multi-frontal method that solves the linear
system Ax = b; either if A is symmetric or not. In both cases, the structure of the matrix is first analyzed to determine
an order which, in the absence of any digital pivoting will preserve parsimony in the factors. The approximation of
the minimum level is used for model A+AT . The resolution of the linear system equation is done in 3 basic steps:

1. During analysis, preprocessing (see Subsection 3.2), including an ordering based on the symmetrized pattern
A+AT , and a symbolic factorization are performed. During the symbolic factorization, a mapping of the multi-
frontal computational graph, the so called elimination tree[33], is computed and used to estimate the number of
operations and memory necessary for factorization and solution. Both parallel and sequential implementations
of the analysis phase are available.

2. During factorization Apre = LU or Apre = LDLT , depending on the symmetry of the preprocessed matrix,
is computed. The original matrix is first distributed (or redistributed) onto the processors depending on the
mapping computed during the analysis. The numerical factorization is then a sequence of dense factorization on
so called frontal matrices. In addition to standard threshold pivoting and two-by-two pivoting (not so standard
in distributed memory codes) there is an option to perform static pivoting. The elimination tree also expresses
independency between tasks and enables multiple fronts to be processed simultaneously. This approach is called
multi-frontal approach. After factorization, the factor matrices are kept distributed (in-core memory or on disk);
they will be used at the solution phase.

3. The solution xpre of LUxpre = bpre or LDLT xpre = bpre where xpre and bpre are respectively the transformed
solution x and right-hand side b associated to the preprocessed matrix Apre, is obtained through a forward
elimination step.

Ly = bpre or LDy = bpre (2.7)

followed by a backward elimination step

Uxpre = y or LTxpre = y (2.8)

The solution xpre is finally postprocessed to obtain the solution x of the original system Ax = b, where x is
either assembled on an identified processor (the host) or kept distributed on the working processors. Iterative
refinement and backward error analysis are also postprocessing options of the solution phase.
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All these steps can be called up separately or together. This can be exploited to minimize the computation solution
for the subsequent iterations in the solution of a set of nonlinear equations. For example, if the matrix structure does
not change during iteration, the analyzing step can be skipped after the evaluation. Similarly if the matrix does not
change, part of that analysis and factoring can be neglected.

2.4.2.1 Symbolic factorization and elimination tree

The symbolic factorization phase is not concerned with numerical values. Here we look for a permutation matrix
that will reduce the number of operations and memory requirements in the subsequent phase and then calculate a
dependency graph associated with factoring. This symbolic factorization organizes the factors. The removal of tree
represents the task dependency calculation, it gives a partial order in which the columns can be eliminated.

Figure 2.14: Symbolic factorization and elimination tree

2.4.2.2 Multifrontal method

You can see the multi-frontal method as a combination of left-looking and right-looking approches where all updates
are sent after factoring in the current node, but only to his father. Figure 2.15 illustrates the principle of multi-frontal
method to reduce the communication between the nodes of the tree.

Algorithm 2 presents the sequential multi-frontal LU algorithm. For each block column, the column block as-
sociated matrix is allocated and assembled using initial values and the sons contributions. The diagonal-block is
factorized, the off-diagonal system is solved and the frontal matrix is updated. This frontal matrix is then passed to
the column-block’s father in the elimination tree. The latter adds up all the frontal matrices he receives with its own
Schur complement before sending the result to its father and so on.
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Algorithm 2: Multi-frontal factorization: A = LU .

1 for k:=1 to N do
2 /* Assemble the matrix using frontal matrices from sons */;
3 Assemble the frontal matrix associated to Ak,k;
4 /* Factorize diagonal block */;
5 Factorize Ak,k in Lk,k.Uk,k;
6 /* Solve off-diagonal systems */;
7 Solve L(1−bk),k.Uk,k = A(1−bk),k;
8 Solve Lk,k.Uk,(1−bk)= Ak,(1−bk);
9 /* Update the Schur complement */;

10 A(1−bk),(1−bk) = A(1−bk),(1−bk) − L(1−bk),k.Uk,(1−bk)

11 end

Figure 2.15: Multifrontal algorithm applied on the matrix from Figure 2.15 Level 2 frontal matrix is updated using the
Schur complement of level 3 frontal matrices (represented with boxes and bent arrows for the most left bottom frontal
matrices). And level 1 is updated by its two sons from level 2.

2.4.2.3 Pivot ordering

Suppose that each node in the tree corresponds to a task that consumes provisional data of children and produced
preliminary data, which passes parental node. When the width of the tree is large, we have a good parallelism, many
interim blocks to store and high memory usage. Moreover, when the tree is deep enough, we have less parallelism and
memory usage is smaller. Figure 2.16 shows the different choices of order of the pivot.
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Figure 2.16: Pivot ordering

2.5 CFD solvers

2.5.1 Background

The development of modern computation fluid dynamics (CFD) began with the advent of digital computer in the early
1950s mentioned in the book [27]. Recent progression in computing coupled with reduced costs of CFD software
packages has advanced CFD as a viable technique to provide effective and efficient design solutions.

A partial differential equation is a relation between a function of several variables and its (partial) derivatives. Many
problems in physics, engineering, mathematics and even banking are modeled by one or several partial differential
equations. Freefem++ [28], trioCFD [29] and OpenFVM [30] are softwares to solve these equations numerically in
dimensions two or three.

Library Finite Volumes Finite Elements Mesh Mesh type
name method method adaptation

TrioCFD No Yes Yes Unstructured
FreeFem++ No Yes Yes Unstructured
OpenFVM Yes No No Unstructured

ADAPT Yes Yes Yes Unstructured

Table 2.1: Main properties of ADAPT
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2.5.2 Solving Fluid Dynamics problems

The numerical solution of Fluid Dynamics problems is done in these steps:

• Continuous physical problem is described by a continuous mathematical model (put into equations).

• Continuous mathematical model is discretized on the basis of one of the numerical methods.

• Discretized equations are approximated using the appropriate numerical schemes, the resolution algorithm is
established.

• Algorithm is coded (C/C++, Fortran, Matlab, Java, ...).

• Code is executed on a computer.

• If all goes well, the approximate solution of the initial problem is obtained.

Figure 2.17: CFD Modeling Overview

Pre-Processing is the step where the modeling goals are determined and computational grid is created. In the
second step numerical models and boundary conditions are set to start up the solver. Solver runs until the convergence
is reached. When solver is terminated, the results are examined which is the post-processing part.
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2.5.3 Classical discretization methods

A fundamental consideration for CFD code developers is the choice of suitable techniques to discretize the modeled
fluid continuum. Of the many existing techniques, the most important include finite differences, finite elements and
finite volumes. Although all these produce the same solution at high grid resolutions, the range of suitable problems
is different for each. This means that the employed numerical technique is determined by the conceived range of code
applications.

Finite differences methods (FDM) and finite elements methods (FEM), which are the basic tools used in the
solution of partial differential equations in general and CFD in particular, have different origins. In 1910, at Royal
Society of London, Richardson presented a paper of the first FDM solution for the stress analysis of a mansory dam.
In contrast, the first FEM work was published in the Aeronautical Science Journal by Turner, Clough, and Topp in
1956s. Finite volume methods (FVM), because of their simple data structure, have become increasingly popular in
recent years, their formulations being related to both FDM and FEM.

Finite differences techniques are of limited use in many engineering flows due to difficulties in their handling
of complex geometries. This has led to increased use of finite elements and finite volumes, which employ suitable
meshing structures to deal appropriately with arbitrary geometry. Finite elements [31] can be shown to have optimality
properties for some types of equations. The first FEM work was published in the Aeronautical Science Journal by
Turner, Clough, and Topp in 1956s.

When the governing equations are expressed through finite volumes, they form a physically intuitive method
of achieving a systematic account of the changes in mass, momentum and energy as fluid crosses the boundaries
of discrete spatial volumes within the computational domain [32]. The ease in the understanding, programming and
versatility of finite volumes has meant that they are now the most commonly used techniques by CFD code developers.
Table 2.2 summarize differences between the three methods.

Table 2.2: Classical discretization methods
Finite differences method Finite volumes method Finite elements method
FDM FVM FEM

Programmation Simple implementation Conservation of quantities Very precise
(flux, mass, energy, ...) High scalability

Convergence Very slow computation Faster computation Monstly unstructured grids
Structured/Unstructured High memory consumption High memory consumption
(adaptive) grids High detail require Complex mesh implementation
High detail require denser mesh Complex mesh generation
denser mesh For strong deformations

remeshing required
Typical application Misc(fluids, solids, ...) Fluids Solids
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3.1 Cloud computing

3.1.1 Introduction

Cloud computing corresponds to the concept of using a network of servers on the internet to process, store and manage
data. The NIST1 defines the concept as a model for enabling ubiquitous, convenient, on-demand network access to
a shared pool of configurable computing resources (e.g., networks, servers, storage, applications, and services) that
can be rapidly provisioned and released with minimal management effort or service provider interaction. This cloud
model is composed of five essential characteristics, three service models, and four deployment models.

The NIST report says that the essential characteristics of cloud computing are:

1. On-demand self-service. A consumer can unilaterally provision computing capabilities, such as server time and
network storage, as needed automatically without requiring human interaction with each service provider.

1http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-145.pdf
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2. Broad network access. Capabilities are available over the network and accessed through standard mechanisms
that promote use by heterogeneous thin or thick client platforms (e.g., mobile phones, tablets, laptops, and
workstations).

3. Resource pooling. The provider’s computing resources are pooled to serve multiple consumers using a multi-
tenant model, with different physical and virtual resources dynamically assigned and reassigned according to
consumer demand. There is a sense of location independence in that the customer generally has no control or
knowledge over the exact location of the provided resources but may be able to specify location at a higher level
of abstraction (e.g., country, state, or datacenter). Examples of resources include storage, processing, memory,
and network bandwidth.

4. Rapid elasticity. Capabilities can be elastically provisioned and released, in some cases automatically, to scale
rapidly outward and inward commensurate with demand. To the consumer, the capabilities available for provi-
sioning often appear to be unlimited and can be appropriated in any quantity at any time.

5. Measured service. Cloud systems automatically control and optimize resource use by leveraging a metering
capability1 at some level of abstraction appropriate to the type of service (e.g., storage, processing, bandwidth,
and active user accounts). Resource usage can be monitored, controlled, and reported, providing transparency
for both the provider and consumer of the utilized service.

According to the same report, the service models are:

1. Software as a Service (SaaS). The capability provided to the consumer is to use the provider’s applications
running on a cloud infrastructure2. The applications are accessible from various client devices through either a
thin client interface, such as a web browser (e.g., web-based email), or a program interface. The consumer does
not manage or control the underlying cloud infrastructure including network, servers, operating systems, storage,
or even individual application capabilities, with the possible exception of limited user- specific application
configuration settings.

Figure 3.1: Separation of responsibilities

You manage means you are managing the system as an administrator system (low level). For the SaaS 3.1 the
user has just to use the software and noting else.
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2. Platform as a Service (PaaS). The capability provided to the consumer is to deploy onto the cloud infrastruc-
ture consumer-created or acquired applications created using programming languages, libraries, services, and
tools supported by the provider.3 The consumer does not manage or control the underlying cloud infrastructure
including network, servers, operating systems, or storage, but has control over the deployed applications and
possibly configuration settings for the application-hosting environment.

3. Infrastructure as a Service (IaaS). The capability provided to the consumer is to provision processing, storage,
networks, and other fundamental computing resources where the consumer is able to deploy and run arbitrary
software, which can include operating systems and applications. The consumer does not manage or control the
underlying cloud infrastructure but has control over operating systems, storage, and deployed applications; and
possibly limited control of select networking components (e.g., host firewalls).

Since this time, the definition now includes similar concepts such as NaaS (Network as a Service) to refer to the
ability to virtualize almost all the functionalities of a router.

Concerning the deployment models, the above mentioned NIST report considers:

1. Private cloud. The cloud infrastructure is provisioned for exclusive use by a single organization comprising
multiple consumers (e.g., business units). It may be owned, managed, and operated by the organization, a third
party, or some combination of them, and it may exist on or off premises.

2. Community cloud. The cloud infrastructure is provisioned for exclusive use by a specific community of con-
sumers from organizations that have shared concerns (e.g., mission, security requirements, policy, and com-
pliance considerations). It may be owned, managed, and operated by one or more of the organizations in the
community, a third party, or some combination of them, and it may exist on or off premises.

3. Public cloud. The cloud infrastructure is provisioned for open use by the general public. It may be owned,
managed, and operated by a business, academic, or government organization, or some combination of them. It
exists on the premises of the cloud provider.

4. Hybrid cloud. The cloud infrastructure is a composition of two or more distinct cloud infrastructures (private,
community, or public) that remain unique entities, but are bound together by standardized or proprietary tech-
nology that enables data and application portability (e.g., cloud bursting for load balancing between clouds).

3.1.2 Others cloud deployment models

Distributed cloud is a cloud computing platform that can be assembled from a distributed set of machines in different
locations, connected to a single network or hub service. It is possible to distinguish between two types of distributed
clouds: public-resource computing and volunteer cloud:

• Public-resource computing—This type of distributed cloud results from an expansive definition of cloud com-
puting, because they are more akin to distributed computing than cloud computing. Nonetheless, it is considered
a sub-class of cloud computing, and some examples include distributed computing platforms such as BOINC
and Folding@Home.

• Volunteer cloud—Volunteer cloud computing is characterized as the intersection of public-resource comput-
ing and cloud computing, where a cloud computing infrastructure is built using volunteered resources. Many
challenges arise from this type of infrastructure, because of the volatility of the resources used to built it and
the dynamic environment it operates in. It can also be called peer-to-peer clouds, or ad-hoc clouds. An inter-
esting effort in such direction is Cloud@Home, it aims to implement a cloud computing infrastructure using
volunteered resources providing a business-model to incentivize contributions through financial restitution.

The Intercloud concept is an interconnected global "cloud of clouds" and an extension of the Internet "network of
networks" on which it is based. The focus is on direct interoperability between public cloud service providers, more
so than between providers and consumers (as is the case for hybrid- and multi-cloud)
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The Multicloud concept is to refer to the use of multiple cloud computing services in a single heterogeneous
architecture to reduce reliance on single vendors, increase flexibility through choice, mitigate against disasters, etc. It
differs from hybrid cloud in that it refers to multiple cloud services, rather than multiple deployment modes (public,
private, legacy).

3.1.3 How to use?

Cloud computing is widely used, even for personal usages, as a means of storing information for users to be accessed
wherever there is an internet connection, removing the need for an array of backups on a variety of devices

The servers are often maintained by cloud service providers such as Apple’s iCloud service or Google Drive, who
initially offer a limited amount of storage for free – iCloud offering an initial 5GB of storage which can later be
upgraded into an indefinite amount for a fee which covers the cost of the storage facilities required for the function of
network storage. almost the same is true for Amazon and its S3 service for data.

The cloud system consists of two portions – the front and the back end. The front end usually corresponds to the
users device and network used to connect to the resources on the cloud system. The user utilises the application to
access the cloud computing system through an interface, this could be through a web browser as for CUMULUS or
a specific application such as Dropbox and once connection is established the user is free to use the service such as
retrieving files or amending documents.

The backend of a cloud system consists of various computers, servers and storage systems. These devices perform
and host the services the user wishes to access; such as a Web server, a database server. . . or, in our case, a system for
computing. In our views, computation is also a service. Potentially, any kind of service can be implemented through
a cloud solution.

The CUMULUS2 cloud available at Sorbonne Paris cité is an example of private cloud. The members of the IDV
(Imageries du Vivant) project uses it as a community cloud. On engineer is dedicated for the management of the virtual
IDV data center which is a confined infrastructure inside CUMULUS.

The Figures 3.2 and 3.3 depict a session of the CUMULUS cloud that the user access through a browser. A Ubuntu
Linux has been deployed, and inside this system, a browser has been launched in order to access to a service related
to images. It is important to notice that all the services are running on CUMULUS (Ubuntu and the Web service for
managing images) and only the display is done on the user’s device. The benefit is that we have concentrated the data
on the same location making more efficient the computation over data because of the principle of data-locality.

Cloud computing has a multitude of benefits and limitations which must be considered within computer systems.
A major factor in cloud computing is cost efficiency, for instance licensing fees and electronic equipment can easily
rack up a large expense. The fees for renting a service may be low if the user rent the service on-demand (pay-as-
you-go model) and not for ever (on the user’s PC the service is always available, but it is not necessary the case for
cloud).

Negatives aspects of cloud systems include technical issues which can arise at any time, downtime of a server of
a cloud service can render the data stored within unreachable. Until 2014, the LIPN laboratory at Paris 13 university
participated to the IWGCR3 (International Working Group on Cloud Computing Resiliency) project to inspect cloud
availability.

3.1.4 Examples of cloud services

3.1.4.1 Microsoft Azure

Since it started back in 2010, Microsoft Azure was known as Windows Azure up until 2014. It has since grown
tremendously with multiple data centres around the world and availability of its services in over 22 regions worldwide.
Azure provides Platform as a Service (PaaS) and Infrastructure as a Service (IaaS) and is considered to be a market
lead in IaaS.

2http://cirrus.uspc.fr/cumulus/
3http://iwgcr.org
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Figure 3.2: An example of a CUMULUS session: the ImageJ application is running inside a virtual machine

Figure 3.3: An example of a CUMULUS session: a navigator is running inside a virtual machine in order to access an
image repository located inside the CUMULUS cloud.
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From the services offered by Azure, users can run existing applications from the public cloud or develop new
applications. A number of organizations opt to use Azure for disaster recovery, data backup and in some cases even as
alternatives to local physical servers.

Azure’s success has come due to the large variety of services available on the platform which include its ability
to support a good number of programming languages. Its core services include computing, storage, networking and
analytics.

3.1.4.2 Amazon Web Services (AWS)

AWS was developed in 2006, being among the first ever cloud computing platforms. Under amazon.com, the AWS
platform was at first developed to offer online services for websites and client applications. AWS has multiple servers
across the globe with central hubs and availability zones across different regions to minimize the impact of outages
and ensure sustainability of the system.

AWS competes strongly with platforms like Microsoft Azure and Google Cloud Services. AWS offers multiple
high speed, scalable and low-cost services like S3 for the storage.

Its four main features include networking, computing, storage and content delivery and database. These core
features can further be divided into up to 36 services including to date;

3.1.4.2.1 S3 - Simple Storage Service. This is used for online backup and storage of application programs and
other date.

3.1.4.2.2 CloudDrive . This allows users upload and access multiple files like documents, music, videos and
photos provided they have internet-connected devices. This also includes streaming.

3.1.4.2.3 CloudSearch . This is a search service that enables customized search in other applications.

3.1.4.2.4 ElastiCache. This is a caching service that works to increase speeds of Web applications by avoiding the
database load. It is compliant with Memcached which is a high performing, open source object caching system with
distributed memory.

3.1.4.2.5 DDB - Dynamo Database. This service is for NoSQL (Not Only SQL) database and is known for scala-
bility and low latencies.

3.1.4.2.6 RedShift. This is a data warehouse service for analytic workloads. It connects to SQL -based clients
additional business tools.

3.1.4.2.7 Elastic Compute Cloud – EC2. This service serves as an unlimited group of virtual machines/VMs and
helps business clients to access and run application programs.

3.1.4.3 Google Cloud Platform

Google says that “Google Cloud Platform lets you focus on what’s next for your business. Google Cloud Platform
frees you from the overhead of managing infrastructure, provisioning servers and configuring networks.” The Google
services have nicknames with clear meanings, among them the Google App Engine that lets you build, run, and scale
applications without breaking a sweat, the Google Compute Engine delivers virtual machines running in Google’s
innovative data centers and worldwide fiber network. Compute Engine’s tooling and workflow support enable scaling
from single instances to global, load-balanced cloud computing, the BigQuery service which is Google’s fully man-
aged, petabyte scale, low cost analytics data warehouse. BigQuery is serverless, there is no infrastructure to manage
and the user don’t need a database administrator, so he can focus on analyzing data to find meaningful insights, use
familiar SQL, and take advantage of the Google pay-as-you-go model.
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The Google Cloud Dataflow delivers high-scale data processing through an Open Source API. Dataflow is a unified
programming model and a managed service for developing and executing a wide range of data processing patterns
including ETL, batch computation, and continuous computation. Cloud Dataflow frees you from operational tasks like
resource management and performance optimization. Built upon services like Google Compute Engine, Dataflow is
an operationally familiar compute environment that seamlessly integrates with Cloud Storage, Cloud Pub/Sub, Cloud
Datastore, Cloud Bigtable, and BigQuery. The open source Java- and Python-based Cloud Dataflow SDKs enable
developers to implement custom extensions and to extend Dataflow to alternate service environments. We will talk
later on of the Pub/Sub paradigm because is it central to the workflow engine we will use to experiment with our HPC
codes.

3.1.5 Cloud enabling technology

Cloud computing has evolved from number of existing technologies. These technologies are the predecessor of cloud
computing and provide the much needed foundation. We shortly introduce Web 2.0 technologies and Grid computing,
then, in the next section, we develop the concept of Service computing.

3.1.6 Web 2.0

The Web 2.0 is the successor of Web 1.0 and it provides environment for participation and collaboration for different
entities having same interest. There are many definitions of Web 2.0; some of these definitions have been given as
follows.

Web 2.0 takes place on Internet and not limited to a single software product. It is open, shared and users provide
content and add value. Web 2.0 is about social publishing and not just developing web pages. It lowered the barrier
of contribution from many users. In Web 2.0 data can be gathered, stored, analyzed and disseminated using online
environment. It allows the end users to experience participation and interaction via a global, web based platform.

Aggregation services gathers the information from multiple sources and publish them in one place such as RSS
feed. We intensively use the publish mechanism later on. These tools enable the web page to offer multiple pages
from single site.

Data mashups are services capable to pull the data from multiple sources. Further, this data can be used by
aggregators to filter the information.

All of these facilities are widely used in cloud computing for sharing the information among users and among
different information providers.

3.1.7 Grid computing

The term grid computing originated in the early 1990s as a metaphor for making computer power as easy to access as
an electric power grid. The power grid metaphor for accessible computing quickly became canonical when Ian Foster
and Carl Kesselman published their seminal work, "The Grid: Blueprint for a new computing infrastructure" (1999).

Grid computing is a paradigm in which a number of network participate in sharing their resources. It can be viewed
as a federation of clusters. Grid computing (see Figure 3.4) uses the resources of numerous computers in a network
to work on a single problem at the same time. This is usually done to address a scientific or technical problem at the
same time.

On a basic of volunteering, a well-known example of grid is the Search for Extraterritorial Intelligence (SETI)
@Home project. In this project computer all over the world permits the SETI project to share the unused cycles of
their computer to search for signs of intelligence.

The Desktop Grid Computing book [33] is a synthesis of work done during the past two decades. It covers many
challenging problems, starting from the main components of a desktop grid. Later on, in this manuscript, we will
provide with more information about them at the moment we will introduce the RedisDG workflow engine which is
inspired by the ideas of desktop grids.

Desktop grids allows to build virtual supercomputers. Grid computing offers a way to solve Grand Challenge
problems such as protein folding, financial modeling, earthquake simulation, and climate/weather modeling. The
fastest virtual supercomputers are:
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Figure 3.4: Grid computing

• As of August 2015, BOINC – 139 PFLOPS.

• As of August 2015, Folding@home – 36.3 x86-equivalent PFLOPS.

• As of August 2015, Einstein@Home 0.801 PFLOPS.

• As of August 2015, SETI@Home 0.677 PFLOPS.

• As of August 2015, MilkyWay@Home 0.381 PFLOPS.

• As of August 2015, GIMPS 0.235 PFLOPS.

Desktop grids offer computing power at low cost. Desktop grids (DGs) are built out of commodity PCs and
use Internet as the communication layer. DGs also aim at exploiting the resources of idle machines over Internet.
Indeed, DGs have important features that explain the large number of international projects aiming to better exploit
this computational potential. Many DGs systems [33] have been developed using a centralized model. The most
popular are BOINC [34], Condor [35], OurGrid [36] and Xtremweb [37].

To summary, in the mid-1990, grid computing was introduced to combine computers from multiple administrative
domains to reach a common goal. Internet was the communication layer to federate the domains and this fact is
noticeable.

One of the main strategies of grid computing is to use middleware to divide and apportion pieces of a program
among several computers, sometimes up to many thousands. One can say that middleware were popularized into
the grid computing world. At this time, many middleware were developed, among them Globus Toolkit, gLite, and
UNICORE.

Globus online4 can be seen as the successor of Globus and it has been merge with the Globus project. Globus
Online addresses the challenges faced by researchers in moving, sharing, and archiving large volumes of data among

4https://www.globus.org
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distributed sites. With Globus Online, you hand-off data movement tasks to a hosted service that manages the entire
operation, monitoring performance and errors, retrying failed transfers, correcting problems automatically whenever
possible, and reporting status to keep you informed while you focus on your research. Command line and web-based
interfaces are available. The command line interface, which requires only ssh to be installed on the client, is the
method of choice for grid-based workflows.

The Enabling Grids for E-sciencE project5, based in the European Union and included sites in Asia and the United
States, was a follow-up project to the European DataGrid (EDG) and evolved into the European Grid Infrastructure.
This, along with the LHC Computing Grid (LCG), was developed to support experiments using the CERN Large
Hadron Collider.

3.2 Service Computing

3.2.1 Introduction

A challenging cloud topic is on how to automate the process through which the user can provision resources on-
demand. By minimizing user involvement, automation speeds up the process, reduces labor costs and reduces the
possibility of human errors. Cloud computing adopts concepts from Service-oriented Architecture (SOA) that can help
the user break these problems into services that can be integrated to provide a solution. Cloud computing provides all
of its resources as services, and makes use of the well-established standards and best practices gained in the domain
of SOA to allow global and easy access to cloud services in a standardized way.

Services Computing [38] has become a cross-discipline that covers, for our concerns, Web services and service-
oriented architecture (SOA), cloud computing, business process modeling. This scope of Services Computing covers
almost the whole life-cycle of services innovation research that includes business componentization, services mod-
eling, services creation, services realization, services annotation, services deployment, services discovery, services
composition, services delivery, service-to-service collaboration, services monitoring, services optimization, as well as
services management. The goal of Services Computing is to enable IT services and computing technology to perform
business services more efficiently and effectively.

More specifically, the IEEE Transactions on Services Computing (TSC) journal is a journal that focuses on research
on the algorithmic, mathematical, statistical and computational methods that are central in services computing; the
emerging field of Service Oriented Architecture, Web Services, Business Process Integration, Solution Performance
Management, Services Operations and Management. The transactions covers but is not limited to the following topics:
Mathematical foundation of Services Computing, Service-Oriented Architecture (SOA), Service creation, develop-
ment, and management, Linkage between IT services and business services, Web services security and privacy, Web
services agreement and contract, Web services discovery and negotiation, Web services management, Web services
collaboration, Quality of Service for Web services, Web services modeling and performance management, Solution
frameworks for building service-oriented applications, Composite Web service creation and enabling infrastructures,
Business and scientific applications using Web services and SOA, Business process integration and management using
Web services, Standards and specifications of Services Computing, Utility models and solution architectures, Re-
source acquisition models in Utility Computing, Mathematical foundation of business process modeling, integration
and management, Business process modeling, integration, and collaboration.

Although service computing has become a new research are both in academia and industry, it has not a unified
concept as we can note from the bove long list of terms.. As it is in a continuously developing process, its definition
and connotation are also constantly changing.

Mike P. Papazoglou, who is from the software system design and development perspective, thinks that "Service
computing is a way of developing application systems with services as the basic elements" [39]. Munindar P Singh
and Michael N. Huhns, who are from the application of service technology, think that "Service computing is the set of
technologies that combine service concept, service system architecture, service technology and service infrastructure
together to guide how to use these services" [40]. Maria E. Orlowska and Sanjiva Weerawarana, who are from the
distributed computing field, think that "Service computing is a kind of distributed computing paradigm evolved from

5https://www.egi.eu

45



object-oriented and component-oriented computing. It makes different application systems that are distributed, achiev-
ing rapid, flexible seamless integration and cooperation" [41]. Liangjie Zhang, who is from the discipline perspective,
thinks that "Service computing is a basic discipline that crosses computers, information technology, commercial man-
agement and consultation services. Its objective is to use service science and service technology to eliminate the gap
between commercial services and information technology services" [42, 43].

3.2.2 Service Oriented Architecture (SOA)

A service-oriented architecture (SOA) is a style of computer software where services are provided to the other compo-
nents by application components, through a communication protocol over a network. The basic fundamental principles
of service oriented architecture is independent of vendors, products and technologies. A service is a discrete unit of
functionality that can be accessed remotely and acted upon and updated independently.

A service has four properties according to one of many definitions of SOA:

1. It logically represents a business activity with a specified outcome.

2. It is self-contained.

3. It is a black box for its consumers.

4. It may consist of other underlying services.

Different services can be used in conjunction to provide the functionality of a large software application. Service-
oriented architecture makes it easier for software components to communicate and cooperate over the network, without
requiring any human interaction or changes in the underlying program, so that service candidates can be redesigned
before their implementation.

According to the Wikipedia definition of Service Oriented Architecture 6 each SOA building block can play any
of the three roles:

• Service provider. It creates a web service and provides its information to the service registry. Each provider
debates upon a lot of hows and whys likes which service to expose, whom to give more importance: security
or easy availability, what price to offer the service for and many more. The provider also has to decide what
category the service should be listed in for a given broker service and what sort of trading partner agreements
are required to use the service.

• Service broker. Is is also known as the service registry. Its main functionality is to make the information
regarding the web service available to any potential requester. Whoever implements the broker decides the scope
of the broker. Public brokers are available anywhere and everywhere but private brokers are only available to a
limited amount of public.

• Service requester/consumer. It locates entries in the broker registry using various find operations and then
binds to the service provider in order to invoke one of its web services. Whichever service the service-consumers
need, they have to take it into the brokers, bind it with respective service and then use it. They can access multiple
services if the service provides multiple services.

The service consumer-provider relationship is governed by a service contract, which has a business part, a func-
tional part and a technical part.

Later on, we will introduce the RedisDG workflow engine that follows, as much as possible, the above mentioned
principles. This service is built upon a broker, the consumers can be view as the workers requesting work to do.
RedisDG implement a very basic Service provider building block since in our case the cloud layer, above the RedisDG
service, implements it. The consumer-provider relationship is also under the responsibility of the cloud layer.

6https://fr.wikipedia.org/wiki/Architecture_orienté_services
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3.2.3 Microservices

Microservices is a specialization of and implementation approach for service-oriented architectures (SOA) used to
build flexible, independently deployable software systems. As with SOA, services in a microservice architecture
(MSA) are processes that communicate with each other over a network in order to fulfill a goal. Also, like SOA, these
services use technology-agnostic protocols. The microservices approach is a first realization of SOA that followed the
introduction of DevOps7 and is becoming more popular for building continuously deployed systems.

In a microservices architecture, services should have a small granularity and the protocols should be lightweight. A
central microservices property that appears in multiple definitions is that services should be independently deployable.
The benefit of distributing different responsibilities of the system into different smaller services is that it enhances the
cohesion and decreases the coupling. This makes it easier to change and add functions and qualities to the system at
any time. It also allows the architecture of an individual service to emerge through continuous refactoring.

To summarize, our personal view of microservices is the following and constitutes one possible definition:

1. Services are designed to perform a single function;

2. The project organization should consider AUTOMATION, DEPLOYMENT and testing;

3. Each service is ELASTIC, RESILIENT, modular, minimal and complete;

We put in capital letters, some keywords that are common between the worlds of microservices and cloud comput-
ing. This explains what cloud computing can bring to the field of microservices. But microservices approach builds on
several best practices, standards and patterns for software design, architecture, and DevOps style organization that can
also cross-fertilize the field of cloud computing. At least, microservices requires expertise in distributed programming
in particular for the interaction of microservices and in the context of ‘faults’.

The contradiction is that some people think that the key principles and issues with microservices are not exactly
the above-mentioned properties, and they argue:

1. Microservices is hype; subroutines, modular programing, object orientation, functional programming, aspect-
oriented programming, distributed services, service-oriented architecture. . . All are in some way microservices;

2. The first modularization technique is probably the subroutine library across the machine room of EDSAC at
Cambridge (May 1949) – It was later that monolithic programs appeared;

3. The major advantage of (micro)services is functional decomposition; This is important for maintenance (under-
standability, easier to locate errors), for re-use of code and for matching the code to the enterprise requirements;

4. A problem with (micro)services is that it is hard to maintain the NFRs (Non Functional Requirements) consis-
tently across the services;

5. Another common feature is connections by message passing, not shared main memory; this has advantages for
distribution but not for performance;

3,4,5 are all relevant to cloud computing;

The RedisDG workflow engine we will introduce later on tries to follow the ideas of micro-services in the sense
that, for instance, the scheduling services implement multiple policies that can be view as single and independent
services. It is very easy to switch from one policy to another one.

7DevOps is a culture, movement or practice that emphasizes the collaboration and communication of both software developers and other
information-technology (IT) professionals while automating the process of software delivery and infrastructure changes.
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3.3 Workflow systems

3.3.1 Introduction

A scientific workflow system is a specialized form of a workflow management system designed specifically to compose
and execute a series of computational or data manipulation steps, or workflow, in a scientific application. In this thesis
’workflow’ and ’scientific workflow’ are considered equivalent for sake of simplicity.

The simplest computerized scientific workflows are scripts that call in data, programs, and other inputs and produce
outputs that might include visualizations and analytical results. These may be implemented in programs such as R or
MATLAB, or using a scripting language such as Python or Perl with a command-line interface.

By focusing on the scientists, the focus of designing scientific workflow system shifts away from the workflow
scheduling activities, typically considered by grid computing environments in the past and now by cloud computing
environments for optimizing the execution of complex computations on predefined resources, to a domain-specific
view of what data types, tools and distributed resources should be made available to the scientists and how can one
make them easily accessible and with specific Quality of Service (QoS) requirements.

In our case, we will see later that QoS means mastering the load of the system and/or the fairness of the system
and/or the energy consumed by the workflow system. We shift from a vision based only on the execution time to a
vision with multiple objectives, all of them are measurable.

3.3.2 The RedisDG workflow engine

Resource utilization in computer systems is usually below 10% [44] due primarily but not only to resource over-
provisioning. Efficient resource sharing in cloud is, as a consequence, challenging. Resource under-provisioning will
inevitably scale-down performance and resource over-provisioning can result in idle time, thereby incurring unneces-
sary costs for the user. In this paper, in order to address the problem of finding a ’good’ resource utilization, we use
an old-fashionable computer engineering principle which is multiplexing processes on the same compute unit. But
since the compute units have been allocated by a cloud system and are spread over multiple sites we also need to pay
attention to the impact of the network performance on the effective sharing of resources.

The cloud user needs to be sure that all the reserved computing units are utilized and also that they are fully
used (the processor load is as high as possible). These two conflicting objectives are under concern in the RedisDG
framework. They are conflicting because either you distribute the tasks as much as possible on the different computing
units but they are running under a low CPU utilization metric or you consolidate tasks on few computing units and
you get first a better utilization and resource sharing on a subset of computing unit and, second you get idle time spent
in the other subset of the computing units.

The usage scenario that has been implemented is as follows. We assume that a user has booked N compute units
in the cloud. Now the user submit a scientific workflow to the cloud. The cloud system deploys the workflow engine
(RedisDG in our case) on the N compute units and starts the processing of the workflow’s tasks. There is no elasticity
in the classical sense where new compute units are dynamically added/removed and no user intervention for instance
to configure auto-scaling indicators and thresholds.

The RedisDG [45, 46, 47] system is a desktop grid middleware which is a light desktop grid middleware that has
been formally designed and easy to cloudify. It makes possible to offer ’Desktop Grid as a Service’ in a cloud context.
Note that the cloudification of BOINC or Condor is also possible by at a very high price for the integration [48].

RedisDG has been integrated (cloudiflied) inside SlapOS [49] which is a distributed Cloud Computing system
designed by Université de Paris 13 and NEXEDI. Marketed in Europe, Japan and China, it comprises deployment
functions and automatic orchestration used in production by SANEF, Mitsubishi, Airbus Defence. . . From a research
point of view, SlapOS has been studied in many contexts [50, 51, 52] ranging from resiliency to energy optimization
and Software as a Service Data movement.

The goal and the difficulties are to define a desktop grid middleware able to support workflows that is light enough
to be integrated easily into a cloud and using current Web technologies (in our case the Publish-Subscribe paradigm).
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Figure 3.5: The publish-Subscribe paradigm in action

3.3.2.1 RedisDG modeling

The Publish-Subscribe paradigm is an asynchronous mode for communicating between entities. On Figure 3.5 some
users, namely the subscribers or clients or consumers, express and record their interests under the form of subscrip-
tions, and are notified later by another event produced by other users, namely the producers.

This communication mode is multipoint, anonymous and implicit. Thus, it allows spatial decoupling (the inter-
acting entities do not know each other), and time decoupling (the interacting entities do not need to participate at the
same time). This total decoupling between the production and the consumption of services increases the scalability by
eliminating many sorts of explicit dependencies between participating entities. Eliminating dependencies reduces the
coordination needs and consequently the synchronizations between entities. These advantages make the communicat-
ing infrastructure well suited to the management of distributed systems and simplify the development of a middleware
for the coordination of components in a workflow engine context.

The paradigm also allows to implement reactive or opportunistic strategies: when an event occur, in our case the
publication of a task to do, we decide on the ’best think’ to do based on the knowledge available at the time the event
was generated. Many modern computing platforms, as those introduced earlier in the manuscript, exhibit extreme
levels of dynamic heterogeneity. The availability and relative efficiencies of such platforms’ computing resources
can change at unexpected times and in unexpected ways. Scheduling a computation for efficient execution on such
a platform can be quite challenging, particularly when there are dependencies among the computation’s constituent
chores (jobs, tasks, etc.).

The LIPN team working on RedisDG started by performing a formal modeling, based on an initial modeling of the
publish-subscribe paradigm and adapted to REDIS interactions. REDIS has been chosen as the framework supporting
the Publish-subscribe paradigm. Information about the modeling can be found in [46] and it serves as guidelines
for the global modeling of the RedisDG protocol; it as been verified in order to get confidence into the protocol to
demonstrate that we have no deadlock and also some ’good’ properties such as the coordinator cannot ’leave’ the
system before any other component.

3.3.2.2 RedisDG protocol

In this subsection we introduce the coordination algorithm of RedisDG system. It is the highest view possible. Some
technical details are given in the experiments section. The algorithm is entirely based on the publication-subscription
paradigm. The middleware obtained offers the same features as the majority of desktop grid middleware such as
Condor and BOINC. It manages scheduling strategies especially the dependencies between tasks, the execution of
tasks and the verification/certification of the results; since the results returned by the workers can be manipulated or
altered by malicious workers. The general objectives for the RedisDG protocol are:
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• Using an asynchronous paradigm (publish-subscribe) that ensures, as much as possible, a complete decoupling
between the coordination steps (for performance reasons);

• Ensuring the system resilience by duplicating tasks and actors. Even if the system is asynchronous and the tasks
are duplicated, we need to ensure the progress of tasks execution. We also assume that actors are duplicated for
resilience reasons;

WaitingTasks

TasksToDo

TasksInProgress

TasksToCheck

FinishedTasks

Volunteer

Workers

Select

Volunteers

Emergency

Monitor

Checker

Broker

Workers

Coordinator

Figure 3.6: Interactions between components of the RedisDG system

In Figure 3.6, we present the steps of an application execution. In RedisDG, a task may have five states: Wait-

ingTasks, TasksToDo, TasksInProgress, TasksToCheck and FinishedTasks. These states are managed by five actors: a
broker, a coordinator, a worker, a monitor and a checker. Taken separately, the behavior of each component in the
system may appear simple, but we are rather interested in the coordination of these components, which makes the
problem more difficult to solve.

The key idea is to allow the connection of dedicated components (coordinator, checker, . . . ) in a general coordina-
tion mechanism in order to avoid building a monolithic system. The behavior of our system as shown in Figure 3.6 is
as follows:

1. Tasks batches submission. Each batch is a series-parallel graph of tasks to execute.

2. The Broker retrieves tasks and publishes them on the channel called WaitingTasks.

3. The Coordinator is listening on the channel WaitingTasks.

4. The Coordinator begins publishing independent tasks on the channel TasksToDo.
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5. Workers announce their volunteering on the channel VolunteerWorkers.

6. The coordinator selects Workers according to SLA criteria.

7. The Workers, listening beforehand on the channel TasksToDo start executing the published tasks. The event
’execution in progress’ is published on the channel TasksInProgress.

8. During the execution, each task is under the supervision of the Monitor whose role is to ensure the correct
execution by checking if the node is alive. Otherwise the Monitor publishes again, tasks that do not arrive at the
end of their execution. It publishes, on the channel TasksToDo, in order to make the execution of the task done
by other Workers.

9. Once the execution is completed, the Worker publishes the task on channel TasksToCheck.

10. The Checker verifies the result returned and publishes the corresponding task on the channel FinishedTasks.

11. The Coordinator checks dependencies between completed tasks and those waiting, and restarts the process in
step (4).

12. Once the application is completed (no more tasks), the Coordinator publishes a message on the channel Emer-

gency to notify all the components by the end of the process.

3.3.3 Volatility and result certification issues

The volatility of computing resources introduces challenging issues both for desktop grids and clouds. In this thesis,
volatility means that some computing resources publish their volunteering to participate or to leave a project to help
in realizing a computing task. Security and result certification issues are also important for desktop grids computing
platforms.

Desktop grids use volunteer computers that are exposed to the Internet. Volunteer computers may leave or enter
to the system at any time upon the decision of a person. Moreover, volunteer computers are untrusted: the result of
running a job cannot generally be assumed to be correct. Malicious users may intentionally return wrong results, either
to subvert the research or to get undeserved credit (when you participate for a project you receive back some credits
that compensate your work).

Some applications have the property that results can be verified quickly on the server side, for instance by a
checksum. Others allow plausibility checks, for example that energy has been conserved in a physical simulation. In
other cases, projects must use replication to validate results and through majority voting.

Applications that do floating-point arithmetic typically get different results when run on different types of CPUs,
or using different numerical libraries. This may make it difficult to decide when two results agree. For algorithms that
are numerically stable, the results can b e compared with a fuzzy comparison function supplied by the project . For
unstable algorithms (e.g., most physical simulations), desktop grids frameworks provide with special mechanisms. For
instance, BOINC provides a mechanism called homogeneous redundancy (HR). When HR is used, BOINC ensures
that all instances of a given job are issued to hosts that are numerically equivalent for that application.

For more details, chapter 11 of [53] contains a documented survey of techniques, strategies and best practices to
enforce security and result certification properties in desktop grids. In this thesis we assume that the issues for results
certification are solved and they are not part of our work.

Volatility issues, as we understand it in this thesis, may also happen in the case of clouds despite the fact that
computing resources are confined into a single data center and are not exposed to the Internet. Assume that a cloud
user may submit different jobs over a pool of rented resources. At a given time he may wishes to accelerate the
completion of one job in allocating more computing resources to this job. In this case allocated resources need to
‘leave’ some jobs in order to be reallocated to the targeted job.
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3.3.4 Related works on workflow scheduling

Applications in e-Science are becoming increasingly large-scale and complex. These applications are often in the form
of workflows [54] such as MONTAGE, Blast [55], CyberShake [56] with a large number of software components and
modules. Workflow and scheduling policies have been studied for one decade or two. In the reminder of this section
we consider many categories of strategies. At a high level of abstraction, we focus first on the works that seek to
optimize the execution time and/or QoS constraints of the workflows running in grid environments, and second works
anchored in the Map-Reduce framework (data aware scheduling).

Workflow management systems related works are presented in the synthesis from Valduriez [57] or in the work of
Carole Goble [58]. These two papers are more related to cloud computing and data intensive scientific workflows in
putting an emphasis on data management.

Many studies as those in [59, 60, 61, 62] may also serve as complimentary readings on workflow scheduling and
they can be considered as conventional works.

Many works validate the strategies through simulations. In our case our option is to run real world applications
(ADAPT) which requires a special effort for designing an experimental plan, to check the reproducibility of the
experiments. . . Moreover The context of these works are not adapted to our context because they do not take into
account a dynamic view of the system in reacting to events when they arrive and they are ’clairvoyant’-like. Static
information are supposed to be available (task graph, date of the events, task duration and costs. . . ). They take a
scheduling decision on the basis of a fixed number of workers. With the Publish-Subscribe paradigm in mind a ’more
efficient’ worker may join the system in the near future.

3.3.4.1 Scheduling and workflow management systems

In [63] authors consider the pipelined workflow scheduling where the execution of a large class of application can be
orchestrated by utilizing task-, data-, pipelined-, and/or replicated-parallelism. Indeed, they focused on the scheduling
of applications that continuously operate on a stream of data sets, which are processed by a given workflow, and hence
the term pipelined. These data sets all have the same size (which is not part of our assumption) and the DAG (Directed
Acyclic Graph) model is used to describe the applications. Authors also dealt mainly with the throughput and latency
performance metrics which are not under concern in our work. The main contribution of this survey is in structuring
existing works by considering different levels of abstraction (workflow models, system models, performance models).

In [64] authors investigated the problem of scheduling independent tasks under the paradigm of the master-worker.
They consider heterogeneous situations where resources can have different speeds of computation and communication.
The most interesting part of the work is to focus on the question of determining the optimal steady state scheduling
strategy for each processor (the fraction of time spent computing and the fraction of time spent communicating with
each neighbor). This question is quite different from the question of minimizing the total execution time, and the
authors solve the problem is polynomial time. The paper demonstrate that we can observe the behavior of a system
from a point of view that is not always focused on the execution time, as in our case.

In [65] authors considered the problem of dynamic load-balancing on hierarchical platforms. They focused more
specifically on the work-stealing paradigm which is an online scheduling technique. They reviewed some existing
variations and proposed two new algorithms, in particular the HWS algorithm which was analyzed in the case of fork-
join task graphs. In their framework the authors considered that the graph is generated online during the execution.
This is not our assumption. In our case we assume that new workers can potentially join the system in a dynamic
way. However the analysis part in this work is interesting because it exemplifies the use of graph parameters such as
the critical path. The execution time (mono criteria) is discussed in the paper as opposed to our work that offers a
multi-criteria performance metric.

Swift [66] is an implicitly parallel programming language that allows the writing of scripts that manage program
execution across distributed computing resources, including clusters, clouds, grids, and supercomputers. The JETS
middleware [67] component is closely related to Swift and it provides high performance support for many-parallel-
task computing (MPTC). The MTC model [68] consists of many, usually sequential, individual tasks that are executed
on processor cores, without inter-task communication. The tasks communicate only through the standard file system
interfaces, and optimization are possible [69]. We do not assume in our work the availability of a global file system.
Data exchange between tasks are explicitly specified in the workflow description. With RedisDG, data exchange are
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implemented through Redis servers or by a ’scp-like’ implementation, in a transparent way from the user point of view.
The AWS cloud system [70] and some other cloud management services such as enStratus [71], RightScale [72],

and Scalr [73] offer schedule-based (or predetermined) and rule-based (dynamic) auto-scaling mechanisms. Schedule-
based auto-scaling mechanisms allow users to add and remove capacity at a given time that is fixed in advance. Rule-
based mechanisms allow users to define simple triggers by specifying instance scaling thresholds and actions, for
instance to add/remove instance when the CPU utilization verifies a certain property making the framework dynamic.
These mechanisms are simple and convenient when users understand their application workload and when the rela-
tionship between the scaling indicator and the performance goal is easy to determine. From a purely cloud point of
view it is not realistic to let the user make actions at this level: more automation is needed because clouds are for non
expert users in order to serve requests on-demand and in a self-service way.

The paper [74] presents the Maximum Effective Reduction (MER) algorithm, which optimizes the resource ef-
ficiency of a workflow schedule generated by any particular scheduling algorithm. MER takes as input a workflow
schedule generated by an existing scheduling algorithm then, with the allowance of a limited increase in the original
makespan, it consolidates tasks into a fewer number of resources than that used for the original schedule. To do this,
MER essentially optimizes the trade-off between makespan increase and resource usage reduction. The paper intro-
duce three building blocks, firstly the delay limit identification algorithm for finding the minimum makespan increase
for the maximal resource reduction, second the task consolidation algorithm and third the resource consolidation al-
gorithm. Finally, MER is evaluated in a simulated environment with three different scheduling algorithms and under
four different workflow applications.

In [75] authors present an approach whereby the basic computing elements are virtual machines (VMs) of various
sizes/costs, jobs are specified as workflows, users specify performance requirements by assigning (soft) deadlines to
jobs. Then, the optimization problem is to ensure all jobs are finished within their deadlines at minimum financial cost.
One key point is to dynamically allocating/deallocating VMs and scheduling tasks on the most cost-efficient instances.
Another key point about a user intervention is that authors use deadlines that serve as the performance requirements
specified by the users, and deadline misses are not strictly forbidden. Authors use deadline assignment techniques to
calculate an optimized resource plan for each job and determine the number of instances using the Load Vector idea
(intuitively, the vector is the number of the machines needed to finish the task on VMm).

3.3.4.2 A focus on workflow scheduling according to a Service Oriented view

In a series of works [76, 77] Marc Frîncu and all. explore the dynamic and unpredictable nature of the grid systems
to offer mechanisms for adaptation at any given moment. For instance, the author proposed in [76] a scheduling
algorithm which minimizes each task’s estimated execution time by considering the total waiting time of a task, the
relocation to a faster resource once a threshold has been reached and the fact that it should not be physically relocated
at each reassignment but only at a precise moment, through a simple marking, to reduce the network traffic. The key
advantage of the proposed solution is to consider tasks of multiple workflows when they arrive and not batch after
batch. One drawback is that the algorithm is based on user estimates for the value of the execution time and authors
propose that this information be obtained by using historical data and applying some learning mechanisms.

In [77] the focus is cloud computing and the authors noticed that vendors do prefer to use their own scheduling
policies and often choose their negotiation strategies. In the framework of workflow scheduling, the goal in that paper
is the minimization of the overall user cost. The problem addressed in the paper is to access services provided by
different cloud vendors, each with their own internal policies. Two major problems are dealt with: finding cloud
resources and orchestrating services from different cloud vendors. The key idea in the paper is, once the workflow is
submitted, an agent tries to schedule the tasks on the best available service through negotiation with other agents. It
can be noticed that no static scheduling decisions are made and that tasks are scheduled one by one as they become
ready for scheduling.

In [78] authors developed the concept of dynamic dataflows which utilize alternate tasks as additional control over
the dataflow’s cost and QoS. Dataflow systems allow users to compose applications as task graphs that consume and
process continuous data, and execute on distributed commodity clusters and clouds. The key point in the paper is
that authors addressed the problem of scheduling tasks when the input rates changes. The goal is to build dataflow
systems with a greater concern for self-manageability. Indeed authors investigated autonomous runtime adaptations in
response to fluctuations in both input data rates and cloud resource performance. Authors formulated the underlying
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optimization problem as a constrained utility maximization problem during the period for which the dataflow is exe-
cuted. Then they first use meta-heuristics to solve it, for instance a genetic algorithm-based algorithm. Second they
proposed greedy heuristics to find an approximate solution to the optimization problem. At last, they evaluated the
proposed heuristics through a simulation study based (partly) on the popular CloudSim [79] simulator.

In [80] the authors addressed the lack of integrated support for data models, including streaming data, structured
collections and files, that are limiting the ability of workflow engines to support emerging applications that are stream
oriented. The key idea of the proposed framework is in its ability to transition from one data model to another one.
The paper is more about architectural issues than scheduling issues. However the workflow framework evaluation is
done on a private Eucalyptus cloud which is always challenging because of the complex nature of real systems.

3.3.4.3 Theoretical foundation of fair scheduling

In [59] authors reviewed the solutions for allocating suitable resources to workflow tasks so that the execution can be
completed to satisfy objective functions specified by users. This paper can be considered as studying conventional so-
lutions for the workflow scheduling problem. The context is Grid computing and the authors first introduced workflow
management systems that define, manage and execute workflows on computing resources. Our context is more related
to volunteer computing and we want to design, as a whole, the interactions of components, especially the interactions
between the workflow scheduling and data movement components.

Moreover, there are two types of abstract workflow model, deterministic and non-deterministic. In a deterministic
model, the dependencies of tasks and I/O data are known in advance, whereas in a non-deterministic model, they are
only known at run time. In our case the dependencies are known in advance but nodes publish their volunteering. We
may consider them as active and not passive, making a strong distinction with other works.

The heuristics recalled in [59] are based on the performance estimation for task execution and I/O data transmis-
sion. In our work, we do not make any assumption about performance estimation, apriori known. Dependency mode
scheduling algorithms intends to provide a strategy to order and map workflow tasks on heterogeneous resources based
on analyzing the dependencies of the entire task graph, in order to complete these interdependent tasks at earliest time.
The strategy ranks the priorities of all tasks in a workflow application at one time. One issue with this strategy is to
set weights on tasks. One idea is to set the weight of each task and edge to be equal to its estimation execution time
and communication time. In our case we assume that the execution context is fluctuating (nodes may enter/leave the
system at any time) making the estimates of weights a challenging problem.

Fair resource allocation problem address how to divide resources fairly to a set of users in a system where users
have different resource demands. Previous works in computer science [81, 82, 81, 82, 83] mainly focused on the
allocation of a single resource and took place in the field of networking. For instance authors first transform selection
of the best users and rates issued from a complex general optimization problem into a set of two formulations: a multi-
user scheduling problem that maximizes total system throughput and a control-update problem that ensures long-term
deterministic or probabilistic fairness constraints.

In [84] authors proposed a multi-resource allocation mechanism, which is the generalized form extending a single
resource allocation to multiple types resources allocation, known as Dominant Resource Fairness(DRF) mechanism.
DRF equalizes user’s dominant share among all users, and it provides several attractive fairness properties: sharing
incentive (allocation should be better than dividing each resource equally among all users), envy-freeness (no user
would like to trace his allocation with any other user), Pareto efficiency (no user can increase his allocation without
decreasing allocation of other users) and strategy-proof (a user cannot increase her allocation by lying about her
requirements). DRF has quickly attracted a lot of attention and has been extended to many dimensions.

Dolev and al. in [85] proposed another alternative notion of fairness for multi-resource allocation, called Bottleneck-
Based Fairness (BBF). Roughly speaking, an allocation of resources is considered fair if every user either gets all the
resources he wishes for, or else gets at least his entitlement on some bottleneck resource, and therefore cannot com-
plain about not receiving more. Recently, Wang et al. in [86] proposed a new allocation model BAA based on the
notion of per-device bottleneck sets. Th context of he work is multi-tiered storage made up of heterogeneous devices.
Clients bottlenecked on the same device receive throughput in proportion to their fair shares, while allocation ratios
between clients in different bottleneck sets are chosen to maximize system utilization.

Gutman and Nisan [87] formalized both fairness notions in economic terms, extending them to apply to a larger
family of utilities. The technical results are algorithms for finding fair allocations corresponding to two fairness
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notions. First of all, regarding the notion suggested by Ghodsi and al., they presented a polynomial-time algorithm
that computes an allocation for a general class of fairness notions, in which their notion is included. Second, they
showed that a competitive market equilibrium achieves the desired notion of fairness.

In [88] Wong and al. generalized the DRF mechanism and plunged it into a unifying framework trying to cap-
ture the tradeoffs between fair allocation and system efficiency. Intuitions behind the analysis are explained in two
visualizations of multi-resource allocation.

Recently, Wang and al. [89] proposed DRFH, a generalization of DRF to an environment with multiple servers.
They also designed a simple heuristic that implements DRFH in real-world systems. Large-scale simulations driven
by Google cluster traces showed that DRFH significantly outperforms the traditional slot-based scheduler, leading to
much higher resource utilization with substantially shorter job completion times.

Parkes and al. [90] extended DRF in several ways and considered the zero demands of some resources required by
a user, and in particular they studied the case of indivisible tasks. Authors also charted the boundaries of the possible
in this setting, contributing to a new relaxed notion of fairness and providing both possibility and impossibility results.

In [91] Cole and al. revisited the classic problem of fair division from a mechanism design perspective and provided
an elegant truthful mechanism that yields surprisingly good approximation guarantees for the widely used solution of
Proportional Fairness. They proposed a new mechanism, called the Partial Allocation mechanism, that discards a
carefully chosen fraction of the allocated resources in order to incentivize the agents to be truthful in reporting their
valuations. This mechanism introduced a way to implement interesting truthful outcomes in settings where monetary
payments are not an option.

3.3.4.4 Pareto efficiency

Pareto [92] efficiency is a balance of resource distribution such that one individual’s lot cannot be improved without
impairing the lot of one or more other individuals.

The concept of Pareto efficiency is based on the work of Vilfredo Pareto, an Italian economist of the late 19th and
early 20th century, who is better known for the Pareto principle. The concept derives from Pareto’s work on income
distribution and economic efficiency. In recent years, the principle has been applied to other areas of study including
engineering, project management and the social sciences.

Within a given system, if one individual or other entity can be given a benefit without worsening the situation for
any other individual or entity, doing so is known as a Pareto improvement. According to this concept, it is desirable to
continue to make Pareto improvements until it is no longer possible to do so because a benefit to one individual would
worsen the lot of one or more others. When no further Pareto improvements can be made, Pareto efficiency is said to
have been reached.

3.3.4.5 Data-aware scheduling

In [93] authors focused on the MapReduce framework for processing massive data over computing clouds. The major
factor affecting the performances of map-reduce jobs is locality constraints for reducing data transfer cost in using
poor network bandwidth. They proposed a scheduling approach that provides 1) a data pre-placement strategy for
improving locality and concurrency and 2) a scheduling algorithm considering locality and concurrency. They pointed
a need for scheduling workflow services composed of multiple MapReduce tasks with precedence dependency in
shared cluster environments. In this paper they also introduced the data cohesion score that we reuse in our paper.

Authors in [94] noticed a conflict between fairness in scheduling and data locality (placing tasks on nodes that
contain their input data). They investigated this problem in designing a fair scheduler for a 600-node Hadoop cluster
at Facebook. To address the conflict between locality and fairness, they proposed a simple algorithm called delay
scheduling: when the job that should be scheduled next according to fairness cannot launch a local task, it waits for a
small amount of time, letting other jobs launch tasks instead.

Authors found that delay scheduling achieves nearly optimal data locality in a variety of workloads and can in-
crease throughput by up to 2x while preserving fairness. In addition, authors put forward the simplicity of delay
scheduling that makes it applicable under a wide variety of scheduling policies.

The difference with our work is as follows. First authors consider multiple jobs and they try to optimize at this
granularity level. We consider only the optimization of one job. Second they give a priority to local tasks, otherwise,
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they skip to another job. If a job has been skipped long enough, they start allowing it to launch non-local tasks to avoid
starvation.

Tudoran, Costan and Antoniu in [95] introduced OverFlow, a uniform data management system for scientific
workflows running across geographically distributed sites. Their solution is environment-aware, as it monitors and
models the global cloud infrastructure, offering high and predictable data handling performance for transfer cost and
time, within and across sites. OverFlow proposes a set of pluggable services, grouped in a data scientist cloud kit.
The toolkit aims at monitoring the underlying infrastructure, to exploit smart data compression, de-duplication and
geo-replication, to evaluate data management costs. The system was validated on the Microsoft Azure cloud across
its 6 EU and US data centers. The experiments were conducted on hundreds of nodes using synthetic benchmarks and
real-life bio-informatics applications (A-Brain, BLAST).

Comparing to our view this work adopts a higher point of view and manages the data issues at a broker level as
well at an intra or inter-site level for the data transfers by protocol switching. In our current work we do not consider
real (cloud) providers but only geographically distributed clusters inside the same VLAN. We also do not investigate
the issues with the choice of protocols we can use to transfer data.

The paper [96] introduces a new scheduling criterion, Quality-of-Data (QoD), which describes the requirements
about the data that are worthy of the triggering of tasks in workflows. Based on the QoD notion, authors propose
a novel service-oriented scheduler planner, for continuous data processing workflows, that is capable of enforcing
QoD constraints and guide the scheduling to attain resource efficiency. QoD describes the minimum impact that new
input data needs to have in order to trigger re-execution of processing steps in a workflow. This impact is measured
in terms of data size, magnitude of values and update frequency. QoD can also be seen as a metric of triggering
relaxation or optimist reuse of previous results. The core of the paper is a new scheduling algorithm for the Cloud that
is guided by QoD, budget, and time constraints. The Markov Decision Process (MDP) technique is used to transform
the problem. Authors explain that branch scheduling on the MDP representation is performed by starting from the
most ’complex’ branch to the ’least’ complex one. In fact they exhibit an optimization problem they solve using a
dynamic programming algorithm.
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Chapter 4

ADAPT
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4.1 Description of ADAPT

ADAPT [97, 98] is an object oriented platform for running numerical simulations with a dynamic mesh adaptation
strategy and coupling between finite elements and finite volumes methods.

ADAPT, as a CFD (Computational Fluid Dynamics) software package, has been developed for realizing numerical
simulation on an unstructured and adaptive mesh for large scale CFD applications. The ADAPT project is concerned
with skills from numerical analysis, computer science and physics, and treat many physical phenomena such as com-
bustion, plasma discharge, wave propagation, etc. The object oriented ADAPT platform is able to do coupling between
finite volumes and finite elements methods.

Yet another advantage of ADAPT is to focus in streamers which can be used in many applications. For example:

• Streamers are used for treatment of contaminated media like exhaust gases, polluted water or bio gas because
the streamers emit the reactive radicals.

• The streamers are also used in the processing of electronics, especially for etching and deposition of thin films.
They can be applied in surface modification e.g. hardening, corrosion resistance among others.

• Another utilization of the weakly ionized gas is to control a boundary layer in airflow at high speeds because
achievements in aerospace allow to create hypersonic air vehicles at a Mach number greater than 6.

The existing ADAPT implementation is a sequential C++ code for each phenomenon, and the code requires a huge
CPU time for executing a 3D simulation. For example, the 3D streamer code may run up to 30 days before returning
results, for this reason we decided to parallelize the code. This paper is an important step into this direction.
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4.1.1 Governing equations

The modeling of streamer propagation mechanism in atmospheric pressure discharges received a large attention and
was the subject of a large research effort during the last two decades. Until very recently, streamer propagation was
essentially described through fluid models that couple non-stationary transport equations for charged species (electron
and ions) with a Poissons (elliptic) equation for the electrical potential. Usually the transport equations of charged
species consist of time-dependent convection-diffusion-reaction equations.

In principle, when using advanced physical model, the source terms in these equations include a non-local compo-
nent induced by the photoionization effect that was often invoked as the main propagation driver at least for streamer
in field-free space. In this case, a radiation transport model has to be used and a non local radiation transfer equation
has to be coupled to the transport and Poisson’s equations.

These results have a very high computational cost, recently an advanced physical model based on Eddington’s
approximation allowed a very efficient description of the photoionization phenomenon. It remains that very often,
a background seed electron field was used to simulate the electrons generated by photoionization phenomenon and
responsible for the avalanches that takes place at the streamer tip and that are responsible for streamer propagation.
The photoionization effect is deeply studied, e.g. in [99] where several approximations are taken into account. There
are also more complex boundary conditions for the Poisson’s equation in [99].

The simplest minimal model of discharge motion [100], is taken into account in our work. It consists of a
convection-diffusion-reaction for the electron density, an ordinary differential equation for the positive ion density
coupled by the Poisson’s equation for the electric potential:

∂ne

∂t
+ div(ne

−→ve −De
−→
∇ne) = Se,

∂ni

∂t
= Se,

(4.1)

where t is the time, ne denotes the electron density, ni the positive ion density, ve the electron drift velocity, De the
diffusion coefficient Se = S+

i are source terms. The system is coupled with the Poisson’s equation for the electric
potential V .

∆V = −
e

ǫ
(ni − ne) , (4.2)

whereQ = − e
ǫ
(ni−ne) (2D tests were computed withQ = − e

ǫ

(ni−ne)
104 , ǫ is the dielectric constant, e the electron

charge. The intensity of the electric field is computed as a negative gradient of the electric potential.

~E = −
−→
∇V , (4.3)

The electron drift velocity −→ve is a function of the electric field
−→
E and depends on the ratio ||

−→
E ||
N

where N is the
neutral gas density (N=2, 5.1019 cm−3)
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(4.4)

The diffusion coefficient De is a function of the electron drift velocity and the electric field:

De = −

[

0.3341.109.

(

||
−→
E ||

N

)0.54069]

.
||−→ve||

||
−→
E ||

. (4.5)

The source terms depend on the electron drift velocity and the electron density:

Se =
α

N
.||−→ve||.ne.N. (4.6)
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S+
i = Se. (4.7)

where the ratio α
N

[cm2] is computed by following formula

if
||
−→
E ||

N
> 1.5.10−15,

α

N
= 2.6.10−16 exp(

−7.248.10−15

||
−→
E ||
N

)

else,
α

N
= 6.619.10−17 exp(

−5.593.10−15

||
−→
E ||
N

).

(4.8)

Initial conditions
The electric field is established between two planar electrodes. High voltage 25000V is applied at the anode and

the cathode is grounded. The disturbance in the electric field between these two planar electrodes is given by an initial
Gaussian pulse. The photo-ionization effect, which is necessary to run streamer, is substitute by a background density.
For the two dimension case we have: dimensions

ne(x, y, 0) = 1016.e
−

(x−0.2)2+(y−0.25)2

σ2 + 109[cm−3], σ = 0.01,

ni(x, y, z, 0) = ne(x, y, z, 0)
(4.9)

and for the three dimensions case:

ne(x, y, z, 0) = 1016.e
−

(x−0.2)2+(y−0.25)2+(z−0.25)2

σ2 + 109[cm−3], σ = 0.01,

ni(x, y, z, 0) = ne(x, y, z, 0)
(4.10)

Boundary conditions
The Neumann’s homogeneous condition is considered at all boundaries for the electron density:

∂ne

∂t
= 0, for anode and cathode (4.11)

Following Dirichlet’s conditions are prescribed for the electric potential at the anode and the cathode:

V = 25000[V ], for anode

V = 0, for cathode
(4.12)

The Neumann’s homogeneous condition is prescribed at the rest of boundaries:

∂V

∂−→n
= 0, (4.13)

4.1.2 Numerical Approximation

The streamer propagation phenomenon is described through the time-space evolution of physical variables such as
electron density, ion density, electric field and space charge. All these characteristics experience a several orders of
magnitude variation in a very narrow region located at the micro-discharge tip (the so called streamer region). Further,
the transport equations and the electric field equation are strongly coupled through source-terms, transport fluxes and
space charge. The propagation dynamics intimately depends on the space-time distribution of the microdischarge
characteristics in this tinny region with a characteristics length of few micrometers. Researchers therefore concentrate
on the development of high order schemes, e.g., FCT, QUICK, (W)ENO, MUSCLE, improved Sharfeter-Gummel,
etc., for 1D geometries and 2D-axisymmetrical geometries.

The use of highly non-symmetrical electrode system, along with the non-planar nature of the streamer propagation
motivated some groups to adapt some of these numerical schemes to the case of non-structured grids. Nevertheless
the streamer simulation remains costly and time consuming. That’s the reason why a simple upwind scheme extended
by a Van Leer’s type MUSCL algorithm together with Barth-Jespersen limiter is used in this work. The dynamic mesh
adaptation improve the accuracy of the simple scheme. There it is possible to use another limiters such as Van Albada
limiter. The Barth-Jespersen limiter is chosen because it’s a quite simple limiter and doesn’t depend on parameters
which should be tuned.

As it was mentioned before, streamer propagation is represented by unsteady convection diffusion reaction equa-
tions for electric particles coupled with Poisson’s equation for electrical potential. The unsteady equations are solved
by an explicit scheme on unstructured grid. The discretized Poisson’s equation leads to a system of algebraic linear
equations which is solved with a direct solver at each time step.
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4.1.2.1 Numerical method

The finite volumes method is one of the most used approximation techniques for partial differential equations that
come from the physical conservation law. Unlike the method of finite elements or finite differences, it results from
a choice in the physical sense based on writing assessments. The idea is to discretize on each cell, called "control
volume", the integral form of the problem instead of its differential form. The convection-diffusion-reaction equations
for the filler particle density (electrons and positive ions) and the Poisson equation for the electric potential is treated
by method of finite volumes on unstructured meshes.

The system of convection-diffusion-reaction equations for the charge particle densities (electrons, positive ions)
and the Poisson’s equation for the electric potential are treated by the finite volumes method on unstructured meshes.
The algorithm is as follows:

• new values of the electron density ne and the ion density ni are computed by an explicit scheme;

• the electrical potential is established from the new values by numerical solution of the Poisson’s equation;

• the electric field
−→
E is computed from the electric potential;

• the electron drift velocity ve and the diffusive coefficient De is computed as functions of the electric field
−→
E ;

• a new time layer is computed => new values of ne; ni;

• a new mesh is made by a dynamical mesh adaptation after several iterations;

• values of unknowns are interpolated form the old mesh to the new one.

4.1.2.1.1 Unstructured mesh The numerical solution of any partial differential equation requires the discretization
of the computational domain so that the physical flow is predicted at a desired accuracy. There are two ways to proceed:

• The first is to use structured grids that are easy to generate, the simplicity of the mesh allows the execution
accelerated speeds. But the difficulty remains to generate meshes of this type in more complex geometry.

• Another approach to the discretization of a domain is to use unstructured meshes. In this context, the triangular
cells (tetrahedral respectively) are the most simple forms that can be used to cover an area of two-dimensional
calculation (tridimensional respectively). In our work we focus on unstructured grids which have the advantage
of generating elements within complex geometries, and can add or remove nodes or elements when necessary.

Figure 4.1: Unstructured 2D mesh
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Figure 4.2: Cell-centered

4.1.2.1.2 Cell-centered Here we use the cell-centered (block-centered) methods, in which the primal grid cells are
used to define the control volumes (the control volumes in our case coincide with the triangles of the mesh).

4.1.2.1.3 Discretization of Electron Density Equation The finite volumes method is used for discretization of
the electron density equation. The domain Ω discretized using a set of subdomains µi, Ω ≡ ∪i, which do not overlap
each other and have common boundaries. Integration over volume µi gives (the treatment is the same in 3D and leads
to the same general form).

∫∫

µi

∂ne

∂dt
dV +

∫∫

µi

div(ne
−→ve)dV −

∫∫

µi

div(De
−→
∇ne)dV =

∫∫

µi

SedV. (4.14)

By using Green’s formula and dividing by the volume, the equation (4.14) leads to

∂ne

∂t
+

1

µi

∮

∂µi

ne
−→v e

−→n ds−

∮

∂µi

De
−→
∇ne

−→n ds = Se, (4.15)

with the unit normal vector −→n . Now we approximate the curvilinear integral by a summation. So one obtains for
a volume µi:

∂ne

∂t
= −

1

µi

m
∑

j=1

(nn
eij

−→v eij
−→n ij |σij | −Deij

−→
∇nn

eij
−→n ij |σij |) + SN

ei
(4.16)

where m is number of faces of volume µi,
−→n ij is the unit normal vector of the face σij(face between volumes µi

and µj) and |σij | is its length. Other variables denoted by subscript ij represent variables on the face σij . At the end,
the time derivative is approximated by Runge-Kutta method

n
(0)
ei = nn

ei
,

n
(k)
ei = nn

ei
+ α(k)Res(n

(k−1)
ei ),

n
(n+1)
ei = n

(3)
ei .

(4.17)

k = 1, 2, 3, and the coefficient α(1) = α(2) = 0.5, α(3)= 1. The residual in equation (4.17) is given by

Res(n
(k−1)
ei ) = −

∆t

µi

m
∑

j=1

(n
(k−1)
eij

−→v eij
−→n ij |σij | −Deij

−→
∇n

(k−1)
eij

−→n ij |σij |) + ∆t.S
(k−1)
ei (4.18)

Where ∆t is a time step.

4.1.2.1.4 Discretization of Convective Terms The convective flux in electron density equation is computed by a
simple upwind scheme:
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neij =

{

nei si (veij .
−→n ij) ≥ 0

nej sinon.
(4.19)

with assumption that the normal vector −→n ij is oriented from the cell Ti to the cell Tj . Computation of the interface
drift velocity −→v eij will be explained later.

Higher order approximation in space
The upwind scheme has a first order of accuracy. It leads to a high numerical dissipation which is necessary to

compensate by higher order algorithm. The scheme is therefore extended by a Van Leer’s type MUSCL algorithm
together with Barth-Jespersen limiter.

One introduces ñei , and ñej in the equation (4.19) instead of nei and nej

ñei = nei + ψi.(
−→
∇nei .

−→ri ),

ñej = nej + ψj .(
−→
∇nej .

−→rj )
(4.20)

−→
∇nei ,

−→
∇nej are gradients of electron density in cells Ti and Tj . We can compute the gradients assuming that

the electron density is piecewise linear function and its value nei is in the center of gravity of the cell Ti. This linear
function is computed by the least square method which involves all neighbors of the cell Ti (neighbors with at least
one common vertex). −→ri is a vector coming from the center of gravity of the cell Ti to the center of gravity of a face
σij . In the same way, −→rj is a vector coming from the center of gravity of the cell Tj to the center of gravity of a

face σij . ψi and ψj are Barth-Jespersen limiter function. The gradient
−→
∇nei = ((ne)x, (ne)y)) equation (4.20) is

computed by following formulas in 2D

(ne)x =
Iyy .Jx.Ixy .Jy

D
, (ne)y =

Ixx.Jy .Ixy .Jx

D
(4.21)

where Ixx, Iyy , Ixy , Jx, Jy are given by equation (A.1). We obtain a little bit more complicated relations in 3D for
components of the gradient

(ne)x =
(IyyIzz − I2yz)Jx + (IxzIyz − IxyIzz)Jy + (IxyIyz − IxzIyy)Jz

D

(ne)y =
(IxzIyz − IxzIzz)Jx + (IxxIzz − I2xz)Jy + (IxyIxz − IyzIxx)Jz

D

(ne)z =
(IxyIzz − IxzIyy)Jx + (IxyIxz − IyzIxx)Jy + (IxxIyy − I2xy)Jz

D

(4.22)

where Ixx, Iyy , Izz , Ixy , Ixz , Iyz , Jx, Jy , Jz are dened by equations (A.2).
The Barth-Jespersen limiter is given by following formula

ψi =























min(1,
nemax − nei

∆2
)si ∆2 > 0

1si ∆2 = 0

min(1,
nemin

− nei

∆2
)sinon.

(4.23)

where nemax
is maximum of electron density from values in the cell Ti and all neighboring cells with common

face, nemin
is minimum of electron density from values in the cell Ti and all neighboring cells with common face. ∆2

is given by relation ∆2 =
−→
∇nei .

−→r , which comes from the cell’s center of gravity to the center of gravity of one of
faces of the cell Ti. Final ψi is the minimum over the faces.

4.1.2.1.5 Discretization of Dissipative Terms The curvilinear integral of the diffusive term in the equation (4.15)
is approximated by numerical integration around a cell boundary, so one can write:

∮

∂µi

De
−→
∇ne

−→n ds =
m
∑

j=0

Deij

−→
∇nn

eij
−→n ij |σij | (4.24)

where
−→
∇nn

eij
represents gradient of the electron density on the face σij , −→n ij is a unit normal vector of the face

σij and |σij | is its measure. The constant m indicate the total number of a cell’s faces. Computation of the diffusion
coefficient Deij is described in the equation (4.44).
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Figure 4.3: Diamond cell in 2D

Gradient Computation in 2D Approximation of the electron density gradient
−→
∇neij in 2D is done on the diamond

cell (see Fig. 4.3). The diamond cell is constructed by connection of centers of gravity (L; R) of cells Ti, Tj which
share the face σij and its endpoints A, B. One obtains the co-volume Dσij

by this construction.
One can assume that the electron density gradient is constant on the co-volume Dσij

. According to Green-Gauss
theorem the approximation leads to

−→
∇neij =

1

µ(Dσij
)

[

1

2
(ne(A) + ne(R))−→n AR|σAR|+

1

2
(ne(R) + ne(B))−→n RB |σRB |

+
1

2
(ne(B) + ne(L))

−→n BL|σBL|+
1

2
(ne(L) + ne(A))

−→n LA|σLA|

]

(4.25)

ne(A), ne(B), ne(L), ne(R) represents value of the electron density in the point A, B, L, R. −→n AR is a unit normal
vector of the co-volume face σAR and |σAR| is its length. The others co-volume faces and their normal vectors are
labeled analogically (see Fig. 4.3). When we factor one half out of the square bracket and modify the expression
inside the square brackets, we obtain

−→
∇neij =

1

2µ(Dσij
)

[

(−→n AR|σAR|+−→n LA|σLA|)ne(A) + (−→n RB |σRB |+−→n BL|σBL|)ne(B)+

(−→n AR|σAR|+−→n RB |σRB |)ne(R) + (−→n BL|σBL|+
−→n LA|σLA|)ne(L)

]

(4.26)

The following equalities are obvious:

−→n AR|σAR|+−→n LA|σLA| = −→n LR|σLR|
−→n RB |σRB |+−→n BL|σBL| = −−→n LR|σLR|

−→n AR|σAR|+−→n RB |σRB | = −→n ij |σij |
−→n BL|σBL|+

−→n LA|σLA| = −−→n ij |σij |

(4.27)

If we substitute relations (4.27) in the equation (4.26), it gives:

−→
∇neij =

1

2µ(Dσij
)

[

(ne(A)− ne(B))−→n LR|σLR|+ (ne(R)− ne(L))
−→n ij |σij |

]

(4.28)

The electron density values ne(A), ne(B) in the face σij points are computed by the least square method:

ne(A) =

N(A)
∑

p=1

αp(A)nep, ne(B) =

N(B)
∑

p=1

αp(B)nep. (4.29)
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where nep is value of the electron density in the cell Tp, N(A) (N(B)) is number of cells including vertex A (B),
αp(A) and αp(B) are weights coming from the least square method. One can write (for vertex A):

αp(A) =
1 + λx(xp − xA) + λy(yp − yA)

N(A) + λxRx + λyRy

(4.30)

where the weights parameters are given by formulas (A.3).
Gradient approximation in 3D
The diamond cell in 3D is constructed by the centers of gravity L; R of cells Ti, Tj which contain the common face

σij . The rest of vertices of the diamond cell are vertices of the face σij(see Fig. 4.4). The electron density gradient
−→
∇neij is approximated by following formula which coming from the equations (A.4) - (A.6).

Figure 4.4: Diamond cell in 3D

−→
∇neij =

1

3µ(Dσij
)

[

(ne(A)− ne(C))−→n BRDL|σBRDL|+ (ne(B)− ne(D))−→n ALCR|σALCR|

+(ne(R)− ne(L))
−→n ij |σij |

]

(4.31)

The electron density values ne(A), ne(B), ne(C) and ne(D) are computed by the least square method:

ne(A) =

N(A)
∑

p=1

αp(A)nep, ne(B) =

N(B)
∑

p=1

αp(B)nep. (4.32)

ne(C) =

N(C)
∑

p=1

αp(C)nep, ne(D) =

N(D)
∑

p=1

αp(D)nep. (4.33)

The weights αp(A) is given by

αp(A) =
1 + λx(xp − xA) + λy(yp − yA) + λz(zp − zA)

D
(4.34)

Where λx, λy , λz D are expressed in relations (A.7).

4.1.2.1.6 Discretization of the Positive ion Density The equation for ion density is in the minimal model only
an ordinary differential equation and its numerical approximation is represented by three steps Runge-Kutta method
(equivalent of equation (4.18))
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(4.35)

where the coefficients α(k) are the same as in the equation (4.18) and the residual is expressed by relation:

Res(n
(k−1)
ii

) = ∆t.S
(k−1)
ei . (4.36)

4.1.2.1.7 Discretization of Poisson’s Equation Discretization of Poisson’s equation leads to a system of linear
equations with a sparse matrix. Such system of equation can be solved by direct methods or by iterative methods. Iter-
ative methods gives possibilities as Jacobi iterative method, Gauss-Seidel iterative method or super relaxation method
which is improved Gauss-Seidel iterative method. There are also gradients method such as Biconjugate gradients
method or GMRES method (generalized minimum residual method).

The GMRES method together with proper preconditioning is very often used in numerical simulations (solving of
implicit scheme, etc.). Gauss elimination or LU factorization owned direct methods. The LU factorization is more
suitable when right hand side of the system of equation is changed. Because of dynamic mesh adaptation, the matrix of
the system of equations is changed after a given number of iterations and the right hand side is changed each iteration.
This leads to "quasi-stationary" matrix of equations and therefore LU factorization is the proper method in our case.
We use MKL library from Intel to solve the system of liner equations by LU factorization. The Poisson’s equation is
discretized by a central type approximation which leads to a system of linear equations:

A.
−→
V n+1 =

−→
b n+1 (4.37)

A is a matrix of coefficients,
−→
V is a vector of unknowns (its dimension is equaled to the total number of cells)

and
−→
b is a vector of right hand side. The updated values nn+1

e and nn+1
i are used for the evaluation of the source

term in equation (4.2). A row i in the matrix A corresponds to the cell Ti. We use a similar finite volumes method
approximation as for diffusive terms in the equation for electron density (4.24).

∫∫

µi

Q =

∫∫

µi

∆V dV =

∮

∂µi

−→
∇V ds =

m
∑

j=1

−→
∇Vij

−→n ij |σij | (4.38)

An approximation of the gradient
−→
∇Vij is also made by the diamond cell (see Fig. Fig. 4.3, Fig. Fig. 4.4).

According to the equation (4.28), one can write for 2D case

−→
∇Vij =

1

2µ(Dσij
)

[

(V (A)− V (B))−→n LR|σLR|+ (V (R)− V (L))−→n ij |σij |

]

(4.39)

When we substitute the equation (4.39) to a relation

∆V =
1

µi

m
∑

j=1

−→
∇Vij

−→n ij |σij | (4.40)

we obtain the final form of approximation of the Poisson’s equation in 2D

∆V =
m
∑

j=1

[

1

2µiDσij

.−→n LR|σLR|.−→n ij |σij |VA−

1

2µiDσij

.−→n LR|σLR|.−→n ij |σij |VB+

1

2µiDσij

.−→n ij |σij |.
−→n ij |σij |VR−

1

2µiDσij

.−→n ij |σij |.
−→n ij |σij |VL

]

(4.41)

where electrical potential values VA, VB are computed by the least square method (see equation (4.29)) with
weights computed according to equation (4.30).
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For 3D case, the electrical potential gradient is approximated according to equation (4.31), so one can write

−→
∇Vij =

1

3µ(Dσij
)

[

(V (A)− V (C))−→n BRDL|σBRDL|

+(V (B)− V (D))−→n ALCR|σALCR|+ (V (R)− V (L))−→n ij |σij |

]

(4.42)

If we substitute the equation (4.42) to the equation (4.40), the numerical approximation of the electrical potential
in 3D leads to

∆V =

[

1

3µiDσij

−→n BRDL|σBRDL|.
−→n ij |σij .VA−

1

3µiDσij

−→n BRDL|σBRDL|.
−→n ij |σij .VC+

1

3µiDσij

−→n ALCR|σALCR|.−→n ij |σij .VB−

1

3µiDσij

−→n ALCR|σALCR|.−→n ij |σij .VD+

1

3µiDσij

−→n ij |σij .
−→n ij |σij .VR−

1

3µiDσij

−→n ij |σij .
−→n ij |σij .VL

(4.43)

The electrical potential values VA, VB , VC and VD come from the least square method ((4.32),(4.33)). The least
square weights are computed by equation (4.34).

4.1.2.1.8 Discretization of Intensity of Electric Field, Electron Drift Velocity and Diffusion Coefficient The
intensity of electric field is given as a negative gradient of the electrical potential

−→
E n=−grad(V n). The intensity

of electric field is computed on cell faces by diamond scheme (see equation (3.17) and (3.20)). The electron drift

velocity is a function of the intensity of electric field −→v eij =f(
−→
E n

ij) depends on the ratio
||
−→
En

ij ||

N
[V cm2], where N is

the neutral gas density (N=2.5.1019 cm3). The precise formula is expressed in (B.1). Finally we can compute the
diffusion coefficient De as a function of the intensity of electric field and the electron drift velocity

Deij = −

[

0.3341.109.

(

||
−→
En

ij ||

N

)0.54069]

.
||−→v n

eij
||

||
−→
En

ij ||
. (4.44)

Values at the cell center of gravity are estimated as average value of the values on the cell faces.

4.1.2.1.9 Discretization of Source Terms The source terms depends on the electron drift velocity and the electron
density, so one can write for the cell Ti.

Sn
ei

=
α

N
.||−→v n

ei
||.nn

ei
.N (4.45)

where the ratio α
N

is computed by the following formula

if
||
−→
E ||

N
> 1.5.10−15,

α

N
= 2.6.10−16 exp

(

−7.248.10−15

||
−→
En

ij
||

N

)

else
α

N
= 6.619.10−17 exp

(

−5.593.10−15

||
−→
En

ij
||

N

)

.

(4.46)
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4.2 Performance results for parallel 2D streamer code

4.2.1 Benchmark settings

All computations are done on the same reference grid with 529240 cells on unstructured mesh. The second order
scheme is used in the tests.

4.2.1.1 Initial conditions

We consider the following initial conditions for the rectangular domain

ne(x, y, 0) = 1016.e
−

(x−0.2)2+(y−0.25)2

σ2 + 109[cm−3], σ = 0.01,

ni(x, y, 0) = ne(x, y, 0)
(4.47)

The initial Gaussian pulse for the electron and ion densities creates disturbance in the electric field which is
necessary for initialization of ionization process in the wave propagation. The background electron and ion densities
109cm3 substitute the photoionization effect which is neglected in this simple streamer model. The computation is
stopped at prescribed time when the head of electron avalanche is still inside the computational domain. In further
computation, the discharge goes out through the right boundaries and the source terms increase to infinity but this
effect doesn’t represents physical behavior of the electric discharge.

4.2.1.2 Boundary conditions

The left boundaries of the domains are anode, the right boundaries are plane cathodes. There are prescribed homo-
geneous Neumann conditions for all unknowns for upper and lower boundaries. Following boundary conditions are
prescribed for the anode and the cathode

∂ne

∂t
= 0, for anode and cathode

V = 25000[V ], for anode

V = 0, for cathode

(4.48)

4.2.2 Shared memory with pure MPI programming model

We performed some numerical experiments on a shared memory machine. The following experiments were carried
out using MAGI cluster from University Paris13, Villetaneuse, France. This machine contains about 50 Dell FC430
blades with:

• 10 Hyper-Threading dual processor cores (40 cores per blade);

• 64 GB RAM per blade;

• Local disk is made of SSD;

• InfiniBand for the low latency interconnect. infiniBand

We use the pure MPI parallel programming model mentioned in Section 2.2 (no OpenMP directives) and one MPI
process per core. For the parallelization of CFD simulations, ADAPT employs the domain decomposition method.
The 2D unstructured mesh was decomposed using the sequential version of METIS, because the splitting takes less
than 0.001% of the running time of 2D streamer. Algorithm 1
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4.2.2.1 General structure of the ADAPT solver

We first present the main structure of the solver:

• Initialization

– Data initialization: read the input file;

– Domain initialization: construct the subdomains;

– Fields initialization: allocate arrays;

• Loop on time

– Solve evolutive equation;

– Solve Poisson problem;

– update variables;

– Store results;

• Finalize

In the data initialization step, we read inputs from an external file in which we specify the dimension, some
physical quantities, and other characteristics of the problem. Then we initialize the computational domain. In the
field initialization step, we allocate the necessary memory for both density of electron and ion. Then we consider
the solving phase which is inside a loop on time. This step, which has been clearly explained in Chapter 1, consists
of solving a convection-diffusion equation, a Poisson equation, and of updating the auxiliary variables by an explicit
correction. We can choose to store the solution after each time iteration, or after a given number of iterations in order
to save memory space. For example, we can decide to store solutions every 500 iterations. If the time step is 0.001
second, then the final simulation will be constructed by the solutions obtained every 0.5 second. Of course, this can
be changed, depending on the required accuracy.

Figure 4.5: The main procedure of ADAPT solver

4.2.2.2 Algorithms of important parts

Page 71 provides with a piece of pseudo code that shows how the parallelization is done in the streamer code according
to the coupling of evolution equation with Poisson equation. We can see that most parts of the code are parallel ones
(line 19, line 9 to 11 and line 22 to 26) except reading and splitting mesh in the beginning and between lines 14 and
15. Indeed, at this step, we construct matrix A (equation 2) that will be used to solve the linear system in line 19: the
matrix A is computed one time because it depends only on the mesh. We also put information about the overlapping
between the communication and computation steps that are source for performance.
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Algorithm 3: Algorithm of parallel ADAPT

1 W:double;
2 if rank==0 then /* for the master processor */

3 Read mesh data;
4 Split mesh with METIS;
5 Distribute mesh to all processors;
6 end
7 W=0;
8 for each rank do /* for each processor */

9 Initialize conditions and create constants;
10 Send the informations of halos cells to neighbor subdomains;
11 Apply boundary conditions;
12 end
13 if rank==0 then
14 Construct matrix of linear system;
15 Split the matrix and send part of each processor;
16 end
17 for each iteration do
18 for all rank do /* for all processors */

19 Solve linear system using MUMPS;
20 end
21 for each rank do
22 Send the informations of halos cells to neighbor subdomains;
23 Apply boundary conditions;
24 Compute fluxes of convection, diffusion and source term;
25 Update solution : Wn+1 =Wn +∆t ∗ (rez_conv + rez_dissip+ rez_source);
26 Save results in parallel way using Paraview;
27 end
28 end

Computation of neij: In figure included in algorithm 4 we took the example when the mesh is splitted into two
subdomains, and we compute neij on the face σij . For a given face σk, suppose Ti and Tj are respectively the cells at
the left and right of σk. Let’s note σk = σij and nek = neij . The algorithm 4 shows how the neij is computed on face
σij .

Algorithm 4: Compute neij on face ij

11111

F:number of faces;
for k:=1 to F do

if dot(Vk.nk) >= 0 then
nek = nei ;

end
else

if σk is inner faces then
nek = nej ;

end
else if σk is halo faces then

nek = neh ;/* neh : halo value sent by

neighbor subdomain */

end
end

end

Computation of
−→
∇neij : In figure included in algorithm 5 we take the same mesh, and we compute

−→
∇neij of the
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face σij . The algorithm 5 shows how the
−→
∇neij is computed on volume µij . The diamond cell in 4.3 is constructed

by connection of centers of gravity (i, j) of cells Ti, Tj which shares the face σij and its endpoints A,B.

−→
∇neij =

1

2µ(Dσij
)

[

(ne(A)− ne(B))−→n LR|σLR|+ (ne(R)− ne(L))
−→n ij |σij |

]

(4.49)

Algorithm 5: Compute value at node nenode

11111

nenode
:double;

N :number of nodes;
Alpha :weight coming from the least square method;
for n:=1 to N do

for c:=1 to inner cells around node n do
nenode

(n)+ = Alpha ∗ nej (c);
end
for m:=1 to halo cells around node do

nenode
(n)+ = Alpha ∗ neh (m);

end
end
return nenode

;

Algorithm 6: Compute ∇neij on face ij

1 F:number of faces;

2
−→
∇u:Vector2d;

3 for k:=1 to F do
4 A:first node of face;
5 B:second face node;
6 i:center of gravity of cell Ti;
7 j:center of gravity of cell Tj ;
8 mes = 1

2µ(Dσij
) ;

9 if Inner faces then
10

−→
∇u(k) = mes ∗ (nenode

(A)− nenode
(B))−→n LR|σLR|+ (nej − nei)

−→n ij |σij |;
11 end
12 else if Halo faces then
13

−→
∇u(k) = mes ∗ (nenode

(A)− nenode
(B))−→n LR|σLR|+ (neh − nei)

−→n ih|σih|;
14 end
15 end

16 return
−→
∇ne;
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Solving linear system using MUMPS
The MUMPS (MUltif-rontal Massively Parallel Solver) is one of parallel distributed solver using a multi-frontal
method for the solution of sparse linear equations. The solution of sparse system with the MUMPS solver is achieved
in three phases:

1. The analysis phase;

2. The Factorization phase;

3. The solution phase.

Algorithm 7: Solving linear system

1 V: vector for unknowns;
2 get_triplet(Vi, Vj , Vx) // compute the tree vectors to solve

linear system;
3 analyze()// Analyze part;
4 factorize()// Factorization part;
5 solve()// Solving linear system;
6 return V;

4.2.3 Parallel 2D results

Table 4.1 and 4.2 summarize the 2D streamer results. The speedup in this example shows a good scalability of the
present method for solving the convection-diffusion equation coupled with poisson equation problems using mesh
with:

• First case : 529240 cells, 264621 nodes.

• Second case : 1321486 cells, 662244 nodes.

For practical applications, the computation time could be reduced in :

• The first case from 49h54min (one computing core) down to 5min (1024 computing cores).

• The second case from around 180h (one computing core) down to 14min (1024 computing cores).

These tests is made on MAGI cluster at Paris 13.

4.2.3.1 Scalability measurement:

There are two basic ways to measure the scalability of parallel algorithms:

1. Strong scaling with a fixed problem size but the number of processing elements are increased.

2. Weak scaling with problem size and compute elements increasing concurrently.

The speedup is defined as

sp =
tb

tN
,

and the ideal speedup, spideal, is naturally equivalent to the number of compute cores. Therefore, the strong scaling
efficiency can also be calculated by

sp

spideal

which shows how far is the measured speedup from the ideal one.
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In the this work, the strong scaling measurement is employed and the scaling efficiency is calculated by:

tbN

tNNb

100, N ≥ Nb

where tb is the wall clock time of a base computation, Nb is the number of compute cores used for the base computa-
tion, tN is the wall clock time of a computation with N compute cores.

4.2.3.2 First case

Table 4.1: Execution time (in s) of different parts of parallel 2D streamer code using mesh with 529240 cells
Compute cores Total Convection Diffusion Linear solver

1 184561 10542 48438 125580
2 92837 5112 24715 63010
4 46502 2595 12452 31454
8 23868 1369 6559 15939
16 13542 778 3801 8963
32 6830 496 1805 4529
64 3801 246 1053 2502

128 2017 115 515 1386
256 1125 63 281 780
512 623 34 176 413

1024 323 18 95 209

The number of MPI processes varies from 1 to 1024. We observe in Fig. 4.6 that the CPU time decreases
significantly with the number of processes, showing then a good scalability of the solver. We observe that the diffusive
term represent 26% of the global computational time and this percentage remains the same when the number of
processes increases, the linear system represent 68% and the convective terme represent 6%.

4.2.3.3 Second case

Table 4.2: Execution time (in s) of different parts of parallel 2D streamer code using mesh with 1324486 cells
Compute cores Total Convection Diffusion Linear solver

1 646739 32953 140166 473620
2 324483 15692 70791 238000
4 157412 7560 34335 115517
8 82145 4224 17970 59951
16 42994 2243 9997 30754
32 22421 1176 5191 16054
64 11470 610 2695 8165

128 6043 323 1415 4305
256 3150 169 737 2244
512 1628 87 378 1163

1024 840 46 199 595

Figures 4.7, 4.8, 4.10 and 4.11 illustrate the speedup and the strong scaling efficiency in the computations of our
illustrate example with tb the wall clock times by one compute core. A more detailed insight into the data of this
example provides interesting information about the computational efficiency of the individual parts of the parallel
simulation. The results of the strong scaling tests, plotted in Fig 4.8 depict that the parallel speedup of the different
parts increases up to 1024 computational cores, so our parallel strategy shows it is efficiency.
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Figure 4.6: Time breakdown for running 2D streamer code using 529240 cells

Figure 4.7: Speedup of different parts of parallel 2D streamer code using mesh with 529240 cells
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Figure 4.8: Efficiency of different parts of parallel 2D streamer code using mesh with 529240 cells

Figure 4.9: Time breakdown for running 2D streamer code using 1324486 cells

4.2.3.4 Comparison between sequential and parallel code

In Figure 4.12 a comparison is made between sequential 2D streamer code and parallel counterpart. We can also
observe the propagation of streamer in two cases: more the mesh is fine more the results are accurate (without oscil-
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Figure 4.10: Speedup of different parts of parallel 2D streamer code using mesh with 1324486 cells

Figure 4.11: Efficiency of different parts of parallel 2D streamer code using mesh with 1324486 cells

lations). In table 4.3, the parallel code takes the same running time (using 64 MPI processors) as the sequential code
but the input size is 12 times greater. To conclude, our strategy although not classical shows to be very efficient, and
provides with relevant properties regarding performance.
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Mesh type Compute cores Execution time
Mesh using 43674 elements 1 04h30min

Mesh using 529240 elements
1 150h15min

64 03h59min

Table 4.3: Comparison between sequential and parallel code

Figure 4.12: Plasma discharge in sequential code (left) and parallel one (right)
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4.3 Performance results for parallel 3D streamer code

4.3.1 Benchmark settings

All computations are done on the same reference grid with 657542 cells on unstructured mesh. The second order
scheme is used in the tests.

4.3.1.1 Initial conditions

We consider the following initial conditions for the rectangular domain

ne(x, y, 0) = 1012.e−
(x−0.2)2+(y−0.25)2+(z−0.25)2

σ2 + 106[cm−3], σ = 0.01,
ni(x, y, z, 0) = ne(x, y, z, 0)

(4.50)

The initial Gaussian pulse for the electron and ion densities creates disturbance in the electric field which is
necessary for initialization of ionization process in the wave propagation. The background electron and ion densities
106 cm3 substitute the photoionization effect which is neglected in this simple streamer model. The computation is
stopped at prescribed time when the head of electron avalanche is still inside the computational domain. In further
computation, the discharge goes out through the right boundaries and the source terms increase to infinity but this
effect doesn’t represents physical behavior of the electric discharge.

4.3.1.2 Boundary conditions

The left boundaries of the domains are anode, the right boundaries are plane cathodes. There are prescribed homoge-
neous Neumann conditions for all unknowns for upper, lower and lateral boundaries. Following boundary conditions
are prescribed for the anode and the cathode

∂ne

∂t
= 0, for anode and cathode

V = 25000[V ], for anode
V = 0, for cathode

(4.51)

4.3.2 Parallel 3D results

First case

Table 4.4: Execution time (in s) of different parts of parallel 3D streamer code using mesh with 657542 cells
Compute cores Total(s) Convection(s) Diffusion(s) Linear solver(s)

1 2440370 317615 201530 1921224
2 1401176 160527 135876 1104772
4 754647 89185 79993 585469
8 432547 62920 54178 315449
16 268265 41249 32610 194405
32 165734 28570 21417 115746
64 99391 18843 12712 67835

128 64881 13697 8632 42551
256 41319 8033 4900 28384
512 29568 6776 3770 19020

Table 4.4 and 4.5 summarizes the 3D streamer results. The speedup in this example shows a good scalability of
the introduced method for solving the convection-diffusion equation coupled with poisson equation problems using
mesh with 657542 cells. For practical applications, the computation time could be reduced from around one month
(one computing core) down to 8h (512 computing cores). This experiment was accomplished on the MAGI cluster at
Paris13.
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Figure 4.13: Time breakdown for running 3D streamer code using 657542 cells

Figures 4.14, 4.15, 4.17 and 4.18 illustrate the speedup and the strong scaling efficiency in the computations of
our illustrate example. A more detailed insight into the data of this example provides interesting information about
the computational efficiency of the individual parts of the parallel simulation. The results of the strong scaling tests,
plotted in Fig 4.14 depict that the parallel speedup of the different parts increases up to 512 computational cores, so our
parallel strategy shows its efficiency. Figure 4.19 represents the 3D streamer propagation in domain [0 0.5][0 0.5][0
0.5] that we can draw from the results of our experiments.

second case

Table 4.5: Execution time (in s) of different parts of parallel 3D streamer code using mesh with 2000186 cells
Compute cores Total Convection Diffusion Linear solver

1 5233328 1258654 815399 3159275
2 2817795 642452 440061 1735282
4 1505111 343347 264563 897201
8 820245 180135 142910 497200

16 477171 97224 83047 296900
32 258955 47623 45420 165912
64 152617 25540 30648 96429

128 83717 14450 16968 52299
256 55494 8946 9939 36609
512 31413 4899 5595 20919
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Figure 4.14: Speedup of different parts of parallel 3D streamer code using mesh with 657542 cells

Figure 4.15: Efficiency of different parts of parallel 3D streamer code using mesh with 657542 cells
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Figure 4.16: Time breakdown for running 3D streamer code using 2000186 cells

Figure 4.17: Speedup of different parts of parallel 3D streamer code using mesh with 2000186 cells
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Figure 4.18: Efficiency of different parts of parallel 3D streamer code using mesh with 2000186 cells
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Figure 4.19: Streamer propagation using mesh with 657542 cells
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5.1 Introduction

In this chapter we discuss about the use case of scheduling the ADAPT workflow according to the RedisDG workflow
engine. More precisely, we schedule workflows of different sizes of a specific workflow solving one CFD problem
of the ADAPT framework. In previous chapters we have introduced parallel decompositions according to a tightly
coupled approach. Tightly-coupled software means routines (modules, programs) that work in only one type of system
and are dependent upon each other. For instance we have introduced MPI-codes to drive performances.

We now introduce a loosely coupled approach. Loosely-coupled software means routines (modules, programs) are
called by an application and executed as needed. Loosely-coupled software often refers to programs with standard in-
terfaces that serve multiple computing environments. Web services or more generally Services employ loose coupling.
When a function is required, the appropriate Web service module is executed.

Our main objective now is more in the production of a high level view of our CFD problems rather than in a code
with unbelievable performance in time and tailored for a specific computer architecture. In other words we seek to
exploit resources all over the Internet and not only those in supercomputers. The developer or scientist point of view is
changing and it is now in decomposing the problem according to a Direct Acyclic Graph (DAG) vision and in counting
on a ’high performance’ workflow engine. The scientist does not need to have knowledge in parallel programming or
in parallel architecture and systems. He needs to be focused on his decomposition, not on how to implement it. The
computer scientist needs to know where and when to take resources. . . not the scientist from any others disciplines! In
doing this we hide the complexity inherent to the details, thanks to a services vision.

The organization of the chapter is as follows. In section 5.2 we introduce some discussion on the ways to do HPC
in clouds. The discussion on the ways to schedule workflows has been done in a previous chapter. In section 5.3 we
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introduce our problem. We enforce the idea that we do not provide with complexity analysis of the general problem
but we draw paths to solve it practically. We also introduce the DAG we are working with and its property. Section 5.4
introduces our contributions, from an algorithmic point of view, to execute our DAG with the RedisDG framework.

5.2 Related discussions on HPC in the cloud

A 20-node cluster built with virtualized machines that have 64 Gbytes of RAM and 16 cores each costs around US$14
per hour in 2016 and for major companies. The economic model of Qarnot Computing1, an innovative company in
HPC located in Montrouge - France, is 0.25 e/H/CPU (8 cores). More over there is no charge for data transfer, no
charge for storage/caching, no charge for booting time. People may wonder if using HPC online services would be the
solution.

Challenges such as how to decide which jobs should be moved to the cloud and when is a problem for computer
scientists and not decision makers. The US Department of Energy’s Magellan Report2 from December 2011 on Cloud
Computing for Science contains analyses on running HPC and data-intensive applications in the cloud.

During the past years, the Magellan project looked at various cloud models such as Infrastructure as a Service
(IaaS) and Platform as a Service (PaaS), virtual software stacks, MapReduce and its open source implementation
(Hadoop), and resource provider and user perspectives. Specifically, the Magellan project was charged with answering
the following research questions:

1. Are the open source cloud software stacks ready for DOE HPC science?

2. Can DOE (Department of Energy) cybersecurity requirements be met within a cloud?

3. Are the new cloud programming models useful for scientific computing?

4. Can DOE HPC applications run efficiently in the cloud? What applications are suitable for clouds?

5. How usable are cloud environments for scientific applications?

6. When is it cost effective to run DOE HPC science in a cloud?

The 169-pages report summarizes the finding as follows:

Cloud approaches provide many advantages, including customized environments that enable users to
bring their own software stack and try new computing environments without significant administration
overhead, the ability to quickly surge resources to address larger problems, and the advantages that come
from increased economies of scale. Virtualization is the primary strategy of providing these capabilities.
Our experience working with application scientists using the cloud demonstrated the power of virtualiza-
tion to enable fully customized environments and flexible resource management, and their potential value
to scientists.

Cloud computing can require significant initial effort and skills to port applications to these new mod-
els. This is also true for some of the emerging programming models used in cloud computing. Scientists
should consider this upfront investment in any economic analysis when deciding whether to move to the
cloud.

Significant gaps and challenges exist in the areas of managing virtual environments, workflows, data,
security, and others. Further research and development is needed to ensure that scientists can easily and
effectively harness the capabilities exposed with these new computing models. This would include tools to
simplify using cloud environments, improvements to open-source clouds software stacks, providing base
images that help bootstrap users while allowing them flexibility to customize these stacks, investigation of
new security techniques and approaches, and enhancements to MapReduce models to better fit scientific

1http://www.qarnot-computing.com/
2http://www.nersc.gov/assets/StaffPublications/2012/MagellanFinalReport.pdf
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data and workflows. In addition, there are opportunities in exploring ways to enable these capabilities in
traditional HPC platforms, thus combining the flexibility of cloud models with the performance of HPC
systems.

The key economic benefit of clouds comes from the consolidation of resources across a broad com-
munity. Existing DOE centers already achieve many of the benefits of cloud computing because these
centers consolidate computing across multiple program offices, deploy at large scales, and continuously
refine and improve operational efficiency.

According to the report, cloud models often provide additional capabilities and flexibility that are helpful to certain
workloads. The report recommends that DOE labs and centers consider adopting and integrating these features of
cloud computing research.

Specifically, the report’s findings are as follows:

• Finding 1. Scientific applications have special requirements that require solutions that are tailored to these
needs.

• Finding 2. Scientific applications with minimal communication and I/O are best suited for clouds.

• Finding 3. Clouds require significant programming and system administration support.

• Finding 4. Significant gaps and challenges exist in current open-source virtualized cloud software stacks for
production science use.

• Finding 5. Clouds expose a different risk model requiring different security practices and policies.

• Finding 6. MapReduce shows promise in addressing scientific needs but current implementations have gaps and
challenges.

• Finding 7. Public clouds can be more expensive than in-house large systems.

• Finding 8. DOE supercomputing centers already approach energy efficiency levels achieved in commercial
cloud centers.

• Finding 9. Cloud is a business model and can be applied at DOE supercomputing centers.

Additionally, the report states that performance of tightly coupled applications running on virtualized clouds using
commodity networks can be significantly lower than on clusters optimized for these workloads. This can be true
even at mid-range computing scales. As a result, the report concludes that current cloud systems are best suited for
high-throughput, loosely coupled applications with modest data requirements.

Our work is to remove the doubts and provide effective solutions to the different black spots that the report raise.
To be precise, in this thesis, we focus on the scheduling and placement decisions of tasks/jobs. We renovate in
deep the ways we traditionally use for these issues. We also focus on small/medium size computer systems and not
supercomputers that may be monopolized by two communities in France, ’écoulements reéactifs ou/et multiphasiques’
and ’physique théorique et physique des plasmas’, since they have used 59% of the total number of hours allocated
for the TURING supercomputer at IDRIS3 in 2015. The TURING machine is ranked 81 in the June 2016 Top500
list4. We also revisit the performance metrics by which we evaluate a solution and we show how to deal with metrics
related to the energy consumption, the load, the cost of systems. . . for instance. Evaluating a solution only under the
makespan metric i.e. a metric used in the supercomputing world, is not fair!

UberCloud5 is the online community and marketplace where engineers, scientists, and their service providers
discover, try, and buy Computing Power and Software as a Service, from Cloud Resource and Software Providers
around the world. Engineers and scientists can explore and discuss how to use this computing power to solve their
demanding problems. The Web site explains that:

3http://www.idris.fr/media/data/lalettre/la-lettre-de-l-idris-mai-2016.pdf
4https://www.top500.org/list/2016/06/
5https://www.theubercloud.com/
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UberCloud is best known for its UberCloud Experiment, the free, community driven effort that ex-
plores the end-to-end process of accessing and using remote High Performance Computing (HPC) re-
sources in HPC Centers and HPC Clouds, on demand. Participants of the experiment get hands on experi-
ence on using remote computing resources for their own projects; learning how to cope with the challenges
and resolving many of the common roadblocks. Project teams working on end-users applications discuss
their experiences, the hurdles they ran into, their lessons learned, and the best practices, on the UberCloud
community web site.

The compendiums of case studies now appear annually. For instance, the 2015 one6 explains the benefit of do-
ing HPC in the cloud from the candid descriptions of problems encountered, problems solved, and lessons learned.
Projects covered in this edition are in fields of Computational Fluid Dynamics (CFD), Computer Aided Engineering
(CAE), Structural Analysis, and life-sciences.

5.3 Problem definition

5.3.1 Elements of vocabulary

We assume that computations and their dependencies have the structure of dags (directed acyclic graphs) that serve
as computational models. The nodes of a computation-dag G represent chores (jobs, tasks, etc.) to be executed; G’s
arcs (directed edges) represent inter-chore dependencies that constrain the order in which chores can be executed.
Specifically, a node v cannot be executed until all of its parents have been executed. Once all of v’s parents have
been executed, v becomes eligible (for execution) and remains so until it is executed. G may have one or more
sources—nodes that have no parents, hence are immediately eligible—and one or more sinks—nodes that have no
“children.” The execution of G terminates once all nodes have been executed.

A schedule Σ for a dag G is a topological sort of G, i.e., a linear ordering of G’s nodes in which all parents of each
node v lie to the left of v. The schedule prescribes the order in which G’s nodes are selected for execution.

The dag G can be enriched by information related to the execution platform. For instance an edge can be labeled
with a weight representing a communication cost for transferring data between two nodes. Depending on the modeling,
we have two orthogonal approaches for scheduling G’s nodes:

• Platform oblivious algorithms: in this case, only the structure of the graph is used for choosing the order
of nodes execution; Platform-oblivious scheduling can be advantageous for the targeted platforms because it
exploits unchanging, perfectly-known characteristics of one’s computation rather than attempting to adapt to
characteristics of the platform, which are at best imperfectly known and, indeed, may change dynamically ;

• Platform dependent algorithms: in this case, (physical) information related to the platform is used in supplement
to the structure of the graph. The advantages are that supposed important parameters influencing the behavior
of executions are taking into account in the modeling, hence (supposed) better performance. In doing this we
constraint the problem reducing the choices we can potentially make at each step of the scheduling algorithm.
One problem is with the choice of the influencing parameters and, in the real world, how we measure them.

5.3.2 The ADAPT workflow

From a methodological point of view, we have realized a conversion of the parallel ADAPT algorithm described with
algorithm 3, page 71 into a Direct Acyclic Graph. The ADAPT graph that we schedule has the shape depicted on
Figure 5.1. Each node of the graph corresponds to a line in the algorithm 3, page 71. For instance, the node labelled
METIS corresponds to line 4, the line 9 corresponds to the nodes INIT{0..7}, the node labelled MUMPS corresponds
to line 19, the lines 21 to 27 correspond to the nodes ITER{0..number of iteration}_{0..7}.

The key idea is to decompose the solution according to services (METIS, MUMPS. . . ) and let them being sched-
uled by the RedisDG workflow engine. The key idea is no more with the design of tightly coupled parallel codes, as
with MPI, but rather, to adopt a higher view in terms of general services. As with the design of computer programs,

6https://www.theubercloud.com/ubercloud-compendium-2015/
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the process of converting a parallel or sequential program into a scientific workflow is not a formal process and it is
deeply anchored into the experience of the programmer in term of idioms and best practices.

5.3.3 Intuition for the problem

The framework for executing the ADAPT workflow is the RedisDG system. This system has been built to tackle the
problems with the extreme levels of dynamic heterogeneity of modern computing platforms such as clouds and desktop
grids. The availability and relative efficiencies of such platforms’ computing resources can change at unexpected times
and in unexpected ways. The central interaction paradigm used for the RedisDG system is the publish-Subscribe
paradigm.

For instance, the modeling of a node (volunteer) that wants to enter to the system, dynamically, corresponds to a
subscribe action on a channel. The modeling of a node that leaves the system corresponds to an unsubscribe action
on a dedicated channel. The dynamic arrival/departure of nodes disrupts the scheduling decisions that cannot be done
according to static information but on an opportunistic manner. With RedisDG, when a request for executing a task
is made by the coordinator, all or some nodes/workers reply to the request. Then a decision should take place to elect
one node.

This process can be depict according to the following steps. Given a workflow to schedule, our ’RedisDG Publish-
Subscribe’ orchestrator proceeds as follows: first, tasks or subset of tasks that could be processed are selected (de-
pending on tasks and data dependencies). Then, it publishes events for the execution of the tasks. Subscribers start to
answer and at a chosen date, the orchestrator decides to deploy the tasks with the list of subscribers it knows.

There are two challenges here: the first one is to decide on the date at which we consider that the sublist of
subscribers we have is enough. Indeed, the more we wait, the more we have subscribers, but the more we globally
delay the processing of the workflow. The second challenge is to decide on the best allocation for the subscribers.
In this thesis, we mainly propose to augment the set of practical heuristics, adapted to the ADAPT workflow, for this
problem and we make an experimental evaluation of them.

5.3.4 Theoretical view of the global problem

We now describe the problem that we want to solve. Let us assume a bag of N jobs where each job corresponds to
a set of tasks. Our allocation problem can be formulated as a decision problem with N rounds. In the round i, the
scheduler publishes and decides on the best allocation of tasks of the ith job.

The round i starts at date tpub with the publication of a request for the processing of the set of tasks Ji =
{Ti,1, . . . , Ti,n}. These tasks could be processed by at most |Wi| workers according to a finite set of strategies
S1, . . . , Sk. A strategy defines how the scheduler deploys Ji on the workers (Wi). We assume a time interval ]tpub, tw]
in which the scheduler could wait before deciding on the allocation of all tasks. At any date t ∈]tpub, tw], there is a
finite set Wi(t) of Workers that subscribed to the published request. The goal for the scheduler is to choose, at the
beginning of each round i, a maximal waiting time (or a closing date) topti ∈]tpub, tw] and a strategy Sopt

i for the
processing ofJi such as to maximize a total reward R

N
∑

i=1

R(tpub, S
opt
i ,Wi(t

opt
i ))

. In this model the reward, we can expect from a strategy, could include several possible dimensions (response time,
fairness, energy etc.). It also depends on the publishing time tpub and the closing date topti . The closing date is used
because it decides on the set of workers to which a task could be assigned. The publishing date is considered to handle
the cases where the strategy that was chosen will start to deploy the tasks at date t′ = tpub + ǫ which is the first date
coming after tpub and whereWi(tpub+ǫ) is not null. In this general model, we also make the following considerations:

1. At any date t < t′, W (t) is unknown;

2. At the beginning of each round, the scheduler does not know the reward that any strategy and closing date could
lead to.
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Figure 5.1: The ADAPT workflow
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This general decision problem is hard to solve. Indeed, we can formulate some of its variants as a multi-armed
bandit problem [101]. For instance, let us assume that the time is discretized and that we have only one strategy. Then,
the problem we have consists in choosing a date between tpub and tw such as to maximize the total reward on a finite
set of rounds; this corresponds to the multi-armed bandit problem. In the same way, if we consider that topti is always
fixed, we have again a bandit problem that consists of choosing among k strategies in N rounds.

5.4 Scheduling the ADAPT workflow

5.4.1 Recent work

The LIPN-AOC team has recently studied (papers are under reviewing) different methods and reward strategies to
decide the workers to choose. They remain valid for the ADAPT workflow and they are the following ones, under a
summarized form:

• Methods:

– The Uniform policy: volunteers are chosen according to uniform random law;

– The OldestElected policy: the coordinator chooses workers with the oldest date when a task has been
scheduled;

• Rewards:

– The execution time spent in computing nodes; The goal will be to finish the execution as soon as possible;

– The fairness. We define the fairness as the standard deviation of the cumulative computing time for each
worker on a given time window. Note that this notion can be refine for a job; The idea is to make an
equilibrium over all the nodes to ensure that every node is computing time after time;

– The energy consumption. We denote CPULoad(w, x) the average CPU load during the execution of a
task x on a worker w. We assume that each worker can express a value of energy consumption of a task
instance from the CPU load thanks to a function E . This function depends of the consumption model of
the hardware, i.e. the CPU, installed on the worker w. Note that this notion can easily be generalized for a
job. The idea is to distribute the work in order to minimize the energy consumption.

Then, the following heuristics has been deployed:

• HEURISTIC 1 (FCFS): Upon a task becomes independent, the coordinator publishes it to all the workers. This
task is allocated on the first answering worker.

• HEURISTIC 2: Upon a task becomes independent, the coordinator publishes it to all the workers. If a worker w
is free it answers directly, otherwise it delays the answer to the coordinator until it becomes free. This ensure the
liveness property because at least one worker answers eventually. When the coordinator receives a reply from a
worker w for task t, it first saves this will for t. If t has been already allocated to another worker, the coordinator
allocates to w another task t′ that has not yet been executed among those for which w wished to execute.

• HEURISTIC 3: Upon a task becomes independent, the coordinator publishes it to all the workers and starts
a timer for λ time unit. All workers answer whatever their state ensuring thus the liveness. During λ, the
coordinator saves all volunteer workers for a task. Upon the expiration of the timer (timeout), it chooses a
worker among the set of volunteers according to a policy described in the beginning of this section. If no worker
has answered, the coordinator activates again the timer.

• HEURISTIC 4: The aim of this heuristic is to promote the communication between workers avoiding the master
node solicitation and thus useless communication. Indeed, it is possible to transfer directly intermediate data
between two workers which execute two dependent tasks. To achieve this goal, the procedure is identical to the
heuristic 3 except that:
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– all tasks are published by the master at the job submission time to make a priori allocation based on
policies described in the previous subsection. Thus, once all tasks are assigned it is possible to determine
the communication scheme.

– workers subscribe to the FinishedTask channel in order to know when their predecessors has finished
leading to a data downloading.

5.4.2 Properties of the ADAPT workflow

The ADAPT workflow, depicted on Figure 5.1, has the following properties when we execute it on a real platform:

1. The cost in time for executing the first two stages of the workflow (METIS step) is very low comparing to the
other costs;

2. The cost of transferring data between nodes is also very low. The transferring data correspond to the exchange of
parameters of the model; Heuristics taking into account this cost has no influence on the result and may degrade
the overall performance if the time cost for deciding or realizing the ’optimized’ transfers is high.

3. The dag is symmetric, ’horizontally’ and ’vertically’. If we observe the dag from the top to the bottom and
excepting the initial METIS step, we note a succession of exchange and merge steps that repeat each others.
The execution time of any ’path’ from the root node to the sink node is the same, meaning that all the paths
are equivalent. A scheduling strategy based on the critical path of the graph without weights (the longest path
in term of number of traversed nodes from the source to the sink) leads to unless work since all the paths are
equivalent.

These observations motivate our study to propose novel and complementary approaches comparing to the ones
that we have explained above. Our aim is also to propose a balance between strategies that are fully platform oblivious

and fully platform dependent. Based on the previous observations, it seems difficult to develop a strategy based on
a simple structural property of the considered dag, such as the order (the number of vertices), the size (the number
of edges), the diameter (the longest of the shortest path lengths between pairs of vertices) since the values for these
parameters do not discriminate a lot.

We do prefer to investigate a) the impact of the availability of nodes, b) the impact of coupling strategies for the
decisions on the selection of nodes and c) the impact of a) and b) simultaneously.

5.4.3 Potential impact of the availability of nodes

In the field of desktop grids, the studies on the availability of workers [102, 103] by Kondo et al. show that workers
follows different statistical laws. Authors have identified:

1. six clusters of nodes with different statistical laws (Gamma (4) - Log-Normal (1) and Weibull (1)) ;

2. a global law for all the workers that follows a Weibull law of shape of 0.3787 and scale of 3.0932. We keep this
model for our work despite the fact that this choice is questionable versus the choice of a model with six clusters
because the variability in the distributions in the clusters seems important as quoted by the authors;

Let us recall that the Weibull laws constitute mainly approximations which are particularly useful in various tech-
niques whereas it would be very difficult and of little interest to justify a particular form of law. From this point of
view they are analogous to the normal law that effectively replaces distributions ’almost’ symmetrical. A distribution
with positive values (or, more generally but less frequently, with values greater than a given value) has almost always
the same shape. It starts from a frequency of occurrence which null, increases to a maximum and decreases more
slowly. It is then possible to find in the Weibull family a law which does not deviate too much from the available data
by calculating the shape and scale parameters from the mean and the variance observed.

An example of an availability model for the workers is depicted on Figure 5.2. On the x axis we have time in
second and on the y axis we have the probabilities for a worker to be available. Both models have the same shape
parameter equal to 0.3787 as recorded by Kondo in [102], [103], [104]. The scale parameter of the law is different.
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This allows to generate a model where the machine is present on the first time interval and then no longer available
on the other intervals. The second model makes it possible to simulate a machine not really available at the beginning
and at the end of the time interval and available on intermediate time intervals. Both models are based on time periods
of about 10 minutes (600 seconds), which corresponds to the time measured to execute one of the ADAPT workflows
when machines are still available.

Note that availability problems may also appear with the Amazon or other major cloud services providers context.
The Spot instances of AWS are defined as follows:

Spot instances let you bid on spare Amazon EC2 instances to name your own price for compute
capacity. The Spot price fluctuates based on the supply and demand of available EC2 capacity. Your Spot
instance is launched when your bid exceeds the current Spot market price, and will continue run until you
choose to terminate it, or until the Spot market price exceeds your bid. You are charged the Spot market
price (not your bid price) for as long as the Spot instance runs. If the Spot market price increases above
your bid price, your instance will be terminated automatically and you will not be charged for the partial
hour that your instance has run. With Spot instances, you will never be charged more than the price you
bid.

If you include a duration requirement with your Spot instances request, your instance will continue to
run until you choose to terminate it, or until the specified duration has ended; your instance will not be
terminated due to changes in the Spot price.

We can observe that the cause of deconnections of the service may be given in exceeding a budget. . . and not
because of a network failure or more intuitive problems.

In our system, any worker is now running as follows. When the coordinator publishes a request to execute a task,
the workers now publish, among the information that return to the coordinator, if they are available. For that, the
workers look at the current time interval and according to a threshold, the workers decide if they are available or not.
In our implementation, when a period of time ends, we restart a new generation for a Weibull law in order to not wait
indefinitely. This process helps in avoiding deadlock problems because we have ensured that the threshold, which
determines whether the machine is available or not, is always greater than the smallest of the probability values. So,
at each new generation there will be at least one time interval for which the machine will be available.

Figure 5.2: Examples of Weibull laws for the availability of workers

5.4.4 Potential impact of coupling both strategies

In integrating into our RedisDG framework both a model for the availability of workers as well as a combination
of decision criteria to select workers we become more and more realistic and we can study, experimentally, the best
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trade-offs between the different parameters characterizing a real workflow engine system. In another words, the goals
are to measure the impacts of such decisions on the overall performance of the RedisDG system and to explore more
realistic environments.

5.4.4.1 Integration of an availability model

According to the proposed Heuristics 3-bis we capture the availability of nodes in the selection process as follows.
Note that this heuritics is inspired by the abovementioned Heuritics 3.

Heuristics 3-bis: upon a task becomes independent, the coordinator publishes it to all the workers and starts a
timer for λ time unit. All workers answer, whatever their states, ensuring thus the liveness and also publish if they are
available or not. During λ, the coordinator saves all volunteer workers for a task. Upon the expiration of the timer
(timeout), it chooses a worker among the set of available volunteers according to a policy described in the beginning
of section 5.4 (see the discussion about methods and rewards). If no worker has answered or if all the workers that
have answered are unavailable, the coordinator activates again the timer and it publishes again the task.

Let us now introduce some observations done during an experiment with this new heuristics. We consider an
ADAPT workflow as the one depicted on Figure 5.1 of width 4 but with 506 tasks. This means that the height of the
workflow is more important than for the workflow depicted on Figure 5.1. The number of nodes for executing the
workflow is 6: one for the coordinator and 5 workers. We also use 2 clusters of the Grid5000 testbed, both located in
the Nancy site. During the execution, 3 workers have choosen (randomly) to behave like the availability model at the
right of Figure 5.2 and two workers have chosen to behave according to the availability model at the left of Figure 5.2.

The total execution time is 01h:07m:41s and it is given by the two measures of Start Time: 2016-12-25 01:17:17,999,
and End Time: 2016-12-25 02:24:58,526.

From the logs of the coordinator, we extracted the following trace:

2016-12-25 01:18:56,987 - RedisDG-coordinator - INFO - Coordinator publish task 5_1 to workers

2016-12-25 01:18:56,989 - RedisDG-coordinator - INFO - worker worker_grimoire-7.nancy.

grid5000.fr_1482624969.4 is Falsevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,990 - RedisDG-coordinator - INFO - worker worker_graphene-49.nancy.

grid5000.fr_1482624969.46 is Truevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,990 - RedisDG-coordinator - INFO - worker worker_graphene-52.nancy.

grid5000.fr_1482624969.23 is Truevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,991 - RedisDG-coordinator - INFO - worker worker_graphite-2.nancy.

grid5000.fr_1482624969.27 is Falsevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:18:56,991 - RedisDG-coordinator - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is Truevolunteer for 5_1 : state_task = SUBMITTED

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - Timeout for task 5_1

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - volunteer for task 5_1, should submit

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - Choosing a volunteer for 5_1

2016-12-25 01:19:03,118 - RedisDG-coordinator - INFO - volunteer worker_griffon-25.nancy.

grid5000.fr_1482624968.45 choosed for 5_1

The coordinator publishes task 5.1. Two workers are unavailable (grimoire-7 and graphite-2). Three workers are
available (graphene-49, graphene-52 and griffon-25). At time 01:19:03,118 the timer expires, thus a worker is selected
(randomly). griffon-25 is elected as the worker in charge of task 51.

From the logs of the griffon-25 worker we get:

2016-12-25 01:18:57,787 - RedisDG-worker - INFO - Worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is finishing task T32_1

2016-12-25 01:18:57,790 - RedisDG-worker - INFO - I m available? True

2016-12-25 01:19:03,921 - RedisDG-worker - INFO - Task 5_1 has been selected for [’worker

_griffon-25.nancy.grid5000.fr_1482624968.45’] (state task = GIVEN)

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 selected for 5_1

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - add task 5_1 in tasks_ready_to_run

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - Worker worker_griffon-25.nancy.
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grid5000.fr_1482624968.45 is executing task 5_1

2016-12-25 01:19:03,922 - RedisDG-worker - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 : I start the execution of 5_1

This trace shows that at 01:18:57,787 griffon-25 has terminated the execution of task T321, and it is still available.
At time 01:19:03,921 griffon-25 has been selected for the execution of task 51. Thus griffon-25 starts to execute this
task.

In the logs of the Coordinator we can also observe a period for which no workers are available. This period starts
at 02:21:19,752 . When the timer expires at 02:22:07,379 the coordinator concludes that no workers are available
for tasks 971. Then it publish again the same task at 02:22:07,380 (the time before the new-publication is chosen
randomly in the range 0 to 5 seconds). . . and this time graphene-52 is chosen as the worker for executing task 971. The
log corresponding to this scenario is as follows:

2016-12-25 02:21:19,752 - RedisDG-coordinator - INFO - Coordinator publish task 97_1 to

workers

2016-12-25 02:21:19,754 - RedisDG-coordinator - INFO - worker worker_grimoire-7.nancy.

grid5000.fr_1482624969.4 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:21:19,755 - RedisDG-coordinator - INFO - worker worker_graphene-49.nancy.

grid5000.fr_1482624969.46 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:21:19,755 - RedisDG-coordinator - INFO - worker worker_graphene-52.nancy.

grid5000.fr_1482624969.23 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:21:19,768 - RedisDG-coordinator - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:21:19,771 - RedisDG-coordinator - INFO - worker worker_graphite-2.nancy.

grid5000.fr_1482624969.27 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:22:07,379 - RedisDG-coordinator - INFO - Timeout for task 97_1

2016-12-25 02:22:07,380 - RedisDG-coordinator - INFO - no volunteer for task 97_1, restart

timer

2016-12-25 02:22:07,380 - RedisDG-coordinator - INFO - Coordinator publish task 97_1 to

workers

2016-12-25 02:22:07,382 - RedisDG-coordinator - INFO - worker worker_grimoire-7.nancy.

grid5000.fr_1482624969.4 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:22:07,383 - RedisDG-coordinator - INFO - worker worker_graphene-49.nancy.

grid5000.fr_1482624969.46 is Truevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:22:07,383 - RedisDG-coordinator - INFO - worker worker_graphene-52.nancy.

grid5000.fr_1482624969.23 is Truevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:22:07,383 - RedisDG-coordinator - INFO - worker worker_griffon-25.nancy.

grid5000.fr_1482624968.45 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:22:07,383 - RedisDG-coordinator - INFO - worker worker_graphite-2.nancy.

grid5000.fr_1482624969.27 is Falsevolunteer for 97_1 : state_task = SUBMITTED

2016-12-25 02:23:12,419 - RedisDG-coordinator - INFO - Timeout for task 97_1

2016-12-25 02:23:12,420 - RedisDG-coordinator - INFO - volunteer for task 97_1, should submit

2016-12-25 02:23:12,420 - RedisDG-coordinator - INFO - Choosing a volunteer for 97_1

2016-12-25 02:23:12,420 - RedisDG-coordinator - INFO - volunteer worker_graphene-52.nancy.

grid5000.fr_1482624969.23 choosed for 97_1

Another interesting part of the griffon-25 logs to introduce is the following execution trace:

2016-12-25 01:23:34,849 - RedisDG-worker - INFO - Worker worker_griffon-25.nancy.grid5000.fr_

1482624968.45 is finishing task 17_1

2016-12-25 01:23:34,852 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:34,854 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:34,855 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:34,856 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:40,019 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:40,490 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:40,549 - RedisDG-worker - INFO - I m dispo? False
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2016-12-25 01:23:41,164 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:50,292 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:51,355 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:52,185 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:23:54,557 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:07,681 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:11,099 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:12,033 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:12,108 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:29,691 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:34,520 - RedisDG-worker - INFO - Task T162_1 has been selected for

[’worker_graphite-2.nancy.grid5000.fr_1482624969.27’] (state task = GIVEN)

2016-12-25 01:24:38,270 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:24:38,782 - RedisDG-worker - INFO - Task T161_1 has been selected for

[’worker_graphite-2.nancy.grid5000.fr_1482624969.27’] (state task = GIVEN)

2016-12-25 01:25:02,049 - RedisDG-worker - INFO - Task T160_1 has been selected for

[’worker_graphite-2.nancy.grid5000.fr_1482624969.27’] (state task = GIVEN)

2016-12-25 01:25:10,695 - RedisDG-worker - INFO - Task T163_1 has been selected for

[’worker_graphite-2.nancy.grid5000.fr_1482624969.27’] (state task = GIVEN)

2016-12-25 01:25:14,266 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:25:20,752 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:25:31,154 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:25:49,864 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:26:12,726 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:26:40,648 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:27:22,027 - RedisDG-worker - INFO - I m dispo? False

2016-12-25 01:28:03,965 - RedisDG-worker - INFO - I m dispo? True

2016-12-25 01:28:50,615 - RedisDG-worker - INFO - Task 18_1 has been selected for

[’worker_graphene-49.nancy.grid5000.fr_1482624969.46’] (state task = GIVEN)

2016-12-25 01:28:56,427 - RedisDG-worker - INFO - I m dispo? True

2016-12-25 01:28:56,429 - RedisDG-worker - INFO - I m dispo? True

2016-12-25 01:28:56,430 - RedisDG-worker - INFO - I m dispo? True

2016-12-25 01:28:56,431 - RedisDG-worker - INFO - I m dispo? True

2016-12-25 01:29:02,130 - RedisDG-worker - INFO - Task T170_1 has been selected for

[‘worker_graphene52.nancy.grid5000.fr_1482624969.23’] (state task = GIVEN)

In this scenario, griffon-25 has just finished the execution of task 171. Then it replies several time that it is not
available. We notice that the interval of time for sending new participating requests varies from 0 second to almost
19 seconds (01:25:49,864 - 01:25:31,154). This is due to the random time to sleep for the coordinator in case of
unavailable workers. During this period of time tasks T1621, T1611, T1601, T1631, 181 and T1701 are allocated on
different workers (graphite-2. graphene-49 and graphene52) even when griffon-25 restarts to be be available again (see
the message "I m dispo? True" at date 01:28:03,965). It is due to the fact that the winner, among available workers, is
selected randomly.

5.4.4.2 Integration of a multicriteria approach for the selection of workers

Our proposition for implementing a multicriteria approach for selecting workers is also based on the abovementionned
Heuristics 3, and is as follows.

Heuristics 3-ter: upon a task becomes independent, the coordinator publishes it to all the workers and starts a
timer for λ time unit. All workers answer whatever their state ensuring thus the liveness and also publish if they are
available or not. During λ, the coordinator saves all volunteer workers for a task. Upon the expiration of the timer
(timeout), it chooses a worker among the set of available volunteers according to a Pareto front computation and based
on the load, energy and fairness rewards as depict at the beginning of section 5.4. If no worker has answered or if all
the workers that have answered are unavailable, the coordinator activates again the timer and it publishes again the
task. Among the points on the Pareto front we choose the ’first’ as the winner (others policies are also possible but
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they are left for future works: random choice or according to the value of one criteria. . . ).
This new heuristics is now part of the general algorithm that is depicted with Algorithm 8. This algorithm provides

with more details about the implemention. A new class named Pareto has been added inside file VolunteerSelec-
torStrategies.py which is in charge of the different heuristics. The Pareto class inherits, from the VolunteerSe-
lectorStrategy class, of the getScore(worker_id) function in charge of returning a list containing the following
information: Fairness (the metric for controling the load balancing), Energy and CPU load for worker_id. We
apply this function to all the available workers in order to build a matrix. This matrix is sent to the Pareto compu-
tation, returning the Pareto front. Then in the Pareto front we select one point. It remains to find the worker_id
corresponding to this point in order to elect it as the worker in charge of the task’s execution.

Algorithm 8: Details of the multi-criteria approach (concrete view)

1 Inputs: T (task to execute); S (set of N available/ready workers)
2 Output: workerid (the worker that will be used to execute the task T )
3 for k:=1 to N do
4 Matrix := Matrix + getScore(workerk)
5 end
6 Compute the Pareto front on Matrix
7 Select one point on the Pareto front
8 Retreive the workerid associated to this point
9 Elect workerid as the worker in charge of the execution of task T

Let us now introduce the logs of an execution of the ADAPT workflow according to the multicriteria approach. In
this case we use 30 machines (1 for the coordinatoor and 29 workers) and 5 clusters of grid5000 (grisou, graphene,
graphite, griffon, grimoire), all of them are located in the Nancy site. Note that this configuration7 forms a very
heterogeneous one.

We consider first the logs of the coordinator. We found the following trace:

2017-01-03 22:41:24,258 - RedisDG-coordinator - INFO - Choosing a volunteer for T11_1

2017-01-03 22:41:24,258 - RedisDG-coordinator - INFO - Scores of worker_grisou-17.nancy.

grid5000.fr_1483479622.02 is [1.0, 26.588, 4.8]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores of worker_grisou-21.nancy.

grid5000.fr_1483479621.56 is [1.0, 22.772, 1.2]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores of worker_graphene-18.nancy.

grid5000.fr_1483479622.4 is [1.0, 32.736000000000004, 10.6]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores of worker_graphene-2.nancy.

grid5000.fr_1483479622.51 is [1.0, 67.343, 66.7]

2017-01-03 22:41:24,259 - RedisDG-coordinator - INFO - Scores for task T11_1 :

[[ 1. 26.588 4.8 ]

[ 1. 22.772 1.2 ]

[ 1. 32.736 10.6 ]

[ 1. 67.343 66.7 ]]

’worker_grisou-17.nancy.grid5000.fr_1483479622.02’: [1.0, 26.588, 4.8],

’worker_grisou-21.nancy.grid5000.fr_1483479621.56’: [1.0, 22.772, 1.2],

’worker_graphene-2.nancy.grid5000.fr_1483479622.51’: [1.0, 67.343, 66.7],

’worker_graphene-18.nancy.grid5000.fr_1483479622.4’: [1.0, 32.736000000000004, 10.6]

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - Scores after sort for task T11_1

:

[[ 1. 26.588 4.8 ]

[ 1. 22.772 1.2 ]

[ 1. 32.736 10.6 ]

[ 1. 67.343 66.7 ]]

7https://www.grid5000.fr/mediawiki/index.php/Nancy:Hardware
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2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - Pareto-Frontier-Multi Result for

task

T11_1 is : [ 1. 26.588 4.8 ]

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - volunteer worker_grisou-17.nancy.

grid5000.fr_1483479622.02 choosed for T11_1

2017-01-03 22:41:24,260 - RedisDG-coordinator - INFO - select the volunteer worker

worker_grisou-17.nancy.grid5000.fr_1483479622.02 for task T11_1 : state_task = GIVEN

The task requesting to be executed is task T111 and, at the time we need to execute it, only 4 workers are available.
We notice that Pareto computation leads to the selection of grisou-17 as the machine node that will execute task
T111. In fact, two points are located on the Pareto front: (1., 26.588, 4.8) and (1., 22.772, 1.2). Our implementation
selects the first one in the list.

We can also consider another part of the execution trace:

2017-01-03 22:42:00,350 - RedisDG-coordinator - INFO - Choosing a volunteer for 4_1

2017-01-03 22:42:00,350 - RedisDG-coordinator - INFO - Scores of worker_grimoire-3.

nancy.grid5000.fr_1483479622.42 is [0.0, 0.0, 0.0]

2017-01-03 22:42:00,350 - RedisDG-coordinator - INFO - Scores of worker_grisou-39.

nancy.grid5000.fr_1483479622.0 is [1.0, 22.348, 0.8]

2017-01-03 22:42:00,350 - RedisDG-coordinator - INFO - Scores of worker_graphene-22.

nancy.grid5000.fr_1483479622.26 is [0.0, 0.0, 0.0]

2017-01-03 22:42:00,350 - RedisDG-coordinator - INFO - Scores of worker_graphene-2.

nancy.grid5000.fr_1483479622.51 is [2.0, 98.489, 9.1]

2017-01-03 22:42:00,350 - RedisDG-coordinator - INFO - Scores of worker_graphene-18.

nancy.grid5000.fr_1483479622.4 is [2.0, 63.776, 9.0]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_graphene-135.

nancy.grid5000.fr_1483479622.85 is [0.0, 0.0, 0.0]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_graphene-137.

nancy.grid5000.fr_1483479623.0 is [1.0, 67.343, 66.7]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_graphene-140.

nancy.grid5000.fr_1483479622.59 is [0.0, 0.0, 0.0]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_graphene-19.

nancy.grid5000.fr_1483479622.78 is [1.0, 29.98, 8.0]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_graphene-20.

nancy.grid5000.fr_1483479622.71 is [1.0, 30.298000000000002, 8.3]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_graphene-142.

nancy.grid5000.fr_1483479623.14 is [1.0, 30.298000000000002, 8.3]

2017-01-03 22:42:00,351 - RedisDG-coordinator - INFO - Scores of worker_grimoire-7.

nancy.grid5000.fr_1483479622.59 is [0.0, 0.0, 0.0]

2017-01-03 22:42:00,352 - RedisDG-coordinator - INFO - Scores for task 4_1 :

[[ 0. 0. 0. ]

[ 1. 22.348 0.8 ]

[ 0. 0. 0. ]

[ 2. 98.489 9.1 ]

[ 2. 63.776 9. ]

[ 0. 0. 0. ]

[ 1. 67.343 66.7 ]

[ 0. 0. 0. ]

[ 1. 29.98 8. ]

[ 1. 30.298 8.3 ]

[ 1. 30.298 8.3 ]

[ 0. 0. 0. ]]

...

...
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...

2017-01-03 22:42:00,353 - RedisDG-coordinator - INFO - Pareto-Frontier-Multi Result for

task 4_1 is : [ 0. 0. 0.]

2017-01-03 22:42:00,353 - RedisDG-coordinator - INFO - volunteer worker_grimoire-3.

nancy.grid5000.fr_1483479622.42 choosed for 4_1

2017-01-03 22:42:00,353 - RedisDG-coordinator - INFO - select the volunteer

worker worker_grimoire-3.nancy.grid5000.fr_1483479622.42 for task 4_1 : state_task = GIVEN

In this case we notice that at the time we need to compute task T41, 12 workers are available, and 5 of them have
not yet be used (the score is 0), resulting in the choice of grimoire-3 as the worker for task T41. Note that the Pareto
front contains 5 points and we have selected the first one in the list of scores.

At last we have the following trace:

2017-01-03 22:43:37,989 - RedisDG-coordinator - INFO - volunteer for task 8_1, should submit

2017-01-03 22:43:37,989 - RedisDG-coordinator - INFO - Choosing a volunteer for 8_1

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_grisou-39.

nancy.grid5000.fr_1483479622.0 is [2.0, 52.646, 8.3]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_grimoire-3.

nancy.grid5000.fr_1483479622.42 is [1.0, 30.616, 8.6]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-17.

nancy.grid5000.fr_1483479623.03 is [1.0, 31.57, 9.5]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-22.

nancy.grid5000.fr_1483479622.26 is [1.0, 30.509999999999998, 8.5]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-19.

nancy.grid5000.fr_1483479622.78 is [1.0, 29.98, 8.0]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-20.

nancy.grid5000.fr_1483479622.71 is [1.0, 30.298000000000002, 8.3]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-137.

nancy.grid5000.fr_1483479623.0 is [1.0, 67.343, 66.7]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-142.

nancy.grid5000.fr_1483479623.14 is [1.0, 30.298000000000002, 8.3]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-140.

nancy.grid5000.fr_1483479622.59 is [1.0, 31.04, 9.0]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-24.

nancy.grid5000.fr_1483479622.97 is [1.0, 30.828000000000003, 8.8]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-105.

nancy.grid5000.fr_1483479623.25 is [2.0, 97.71799999999999, 8.4]

2017-01-03 22:43:37,990 - RedisDG-coordinator - INFO - Scores of worker_graphene-143.

nancy.grid5000.fr_1483479623.0 is [2.0, 62.397999999999996, 8.9]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphene-135.

nancy.grid5000.fr_1483479622.85 is [1.0, 30.828000000000003, 8.8]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphene-21.

nancy.grid5000.fr_1483479622.55 is [1.0, 31.782, 9.7]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphene-141.

nancy.grid5000.fr_1483479622.95 is [1.0, 31.252, 9.2]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphene-138.

nancy.grid5000.fr_1483479622.62 is [1.0, 67.517, 67.3]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphene-139.

nancy.grid5000.fr_1483479622.81 is [1.0, 31.57, 9.5]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphene-16.

nancy.grid5000.fr_1483479622.96 is [1.0, 31.57, 9.5]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_graphite-3.

nancy.grid5000.fr_1483479620.93 is [2.0, 45.862, 1.4]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_griffon-8.

nancy.grid5000.fr_1483479622.34 is [1.0, 27.542, 5.7]

2017-01-03 22:43:37,991 - RedisDG-coordinator - INFO - Scores of worker_grimoire-7.

nancy.grid5000.fr_1483479622.59 is [1.0, 22.666, 1.1]
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2017-01-03 22:43:37,992 - RedisDG-coordinator - INFO - Scores for task 8_1 :

[[ 2. 52.646 8.3 ]

[ 1. 30.616 8.6 ]

[ 1. 31.57 9.5 ]

[ 1. 30.51 8.5 ]

[ 1. 29.98 8. ]

[ 1. 30.298 8.3 ]

[ 1. 67.343 66.7 ]

[ 1. 30.298 8.3 ]

[ 1. 31.04 9. ]

[ 1. 30.828 8.8 ]

[ 2. 97.718 8.4 ]

[ 2. 62.398 8.9 ]

[ 1. 30.828 8.8 ]

[ 1. 31.782 9.7 ]

[ 1. 31.252 9.2 ]

[ 1. 67.517 67.3 ]

[ 1. 31.57 9.5 ]

[ 1. 31.57 9.5 ]

[ 2. 45.862 1.4 ]

[ 1. 27.542 5.7 ]

[ 1. 22.666 1.1 ]]

...

...

...

2017-01-03 22:43:37,994 - RedisDG-coordinator - INFO - Pareto-Frontier-Multi Result

for task 8_1 is : [ 1. 22.666 1.1 ]

2017-01-03 22:43:37,994 - RedisDG-coordinator - INFO - volunteer worker_grimoire-7.

nancy.grid5000.fr_1483479622.59 choosed for 8_1

2017-01-03 22:43:37,995 - RedisDG-coordinator - INFO - select the volunteer worker

worker_grimoire-7.nancy.grid5000.fr_1483479622.59 for task 8_1 : state_task = GIVEN

In this case we notice that 21 workers are available for task T8_1, resulting in the selection of grimoire-7 as the
worker for executing this task.

To conclude this experimental part, we can say that all these examples illustrate the different situations in which
our new RedisDG system can be faced to. They also illustrate how our measures and solutions can be fine. We could
even envision a post-mortem analysis tool to fully exploit the logs.

5.4.4.3 ADAPT workflow results

In our ADAPT workflow, we have integrated a transport equation coupled with a poisson equation. Figure 5.3 depicts
the 2D transport in domain [0 1][0 0.5] that we can draw from the results of decomposing our code as a service.
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Figure 5.3: Results of ADAPT worfklow
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Chapter 6

Conclusion

6.1 Summary of our results

The main objective of this work was to improve the performance (computation time and accuracy) of ADAPT platform.
We present the parallelization of the convection-diffusion equation coupled with the linear system using MPI, and
execute the ADAPT graph of tasks on a grid/cloud computing testbed using RedisDG.

Massive parallel computer systems are necessary in many scientific fields. A lot of computational science applica-
tions are executed on clusters or supercomputers to provide results on many different topics such as weather modeling,
life sciences, etc. Moreover, researchers are investigating various related fields where the behavior of parallel com-
puter systems is studied and new programming models to take into account the next generations of supercomputers
are developed.

The difficulty of achieving a good scale during the execution of some parallel applications while we increase the
number of the processors is known and depends on many factors. Performance evaluation can provide an insight about
the performance of an application and indicate possible bottlenecks. The first focus was to accelerate calculations of
ADAPT platform which includes 2D and 3D codes of streamer equations. We used to do this multiple processors, it’s
the parallelism. We tested our solutions using the MAGI cluster at Paris 13. This architecture has been the focus of
our study of the contribution of parallelism using the distributed memory parallelization. To this parallel architecture,
a different partitioning strategy, communication and task synchronization has been established.

The full workflow is realized in (1) using external tools such as METIS for mesh partitioning in order to enable the
computational load balancing for the global assembly, (2) using MPI to realize the communication patterns, (3) using
MUMPS to solve the system of linear equations. The current approach with MUMPS shows significant advantages in
terms of avoiding the problems of preconditioners, and doesn’t need a lot of iterations to converge to the solution. In
summary, the most important advantages of the presented scheme are:

• Efficient memory usage distribution over computer nodes;

• Good scalability to solve the convection-diffusion equation;

• Stable, fast and good scalability of linear solvers provided by MUMPS.

As second focus, in the section entitled HPC as a Service we have built a case study to see the ADAPT appli-
cation as a service for a scientific workflow engine (RedisDG). The basic idea is to admit that excellent, in terms of
performance, digital libraries are now available because they have been optimized for many hardware architectures.
The problem is not so much to try again to improve performance but rather, in our opinion, to exploit all the resources
(calculations, networks, disks) available on the planet and/or in major cloud providers and for everyone. In this con-
text, it is necessary to allow all scientists to access these resources simply by forgetting almost all the techniques that
the HPC universe has developed over the last thirty years.
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Cloud computing provides a framework for facilitating access to computing resources. The formalism of scien-
tific workflows also provides a benign framework for describing calculations from well-identified basics. We have
decomposed ADAPT into "great services" and using well-known tools, among these METIS and MUMPS.

Our work in the context of scientific workflows continued in the context of the placement of these major services
on cloud-based architectures. We used the RedisDG [105] workflow engine, deploying it, not in a cloud as it has
already been studied, but in the Grid5000 national testbed to enrich it in terms of capturing the dynamicity of systems
and also the cloud’s mismanagement that usually accentuates problems related to waste of resources [106], [107].
Indeed, we know [44] that resource utilization in computer systems is usually below 10% due primarily but not only
to resource over-provisioning. Efficient resource sharing in cloud is, as a consequence, challenging. Resource under-
provisioning will inevitably scale-down performance and resource over-provisioning can result in idle time, thereby
incurring unnecessary costs for the user.

For that later objective we have incorporated a multi-criterion based selection of the nodes. The RedisDG frame-
work now theoretically guarantees the adoption of a better set of placements for tasks of the workflow. More specifi-
cally, it seeks the non-dominated solutions (Pareto’s Dominance concept). In contrast to existing solutions that address
specific objectives, our framework was devised to support many types of objectives and to be easily extensible, which
enables the implementation of new and generic prioritised elements.

In fact we have considered ADAPT on a platform where the calculation nodes can arrive and leave at any time
by publishing announcements of subscriptions or unsubscribing to a calculation service. This framework, called
volunteer cloud by C. Cérin et al., Corresponds either to the possibility, for machines on the Internet, to participate in
calculations or to machines in a data center that leaves a calculation to go to help (Peak activity) another calculation.
We experimented with RedisDG in this innovative way via an effective software solution. The RedisDG system is now
enriched with this feature, which makes it unique.

Concerning the multi-criteria selection of the nodes for the execution of the tasks of a workflow, and as said
previously, we have simply implemented a Pareto criterion which is based concretely on values and feedback of
the RedisDG system before our work. The design and integration of this selection method is not straightforward
because, remember, the whole RedisDG protocol is based on the publication-subscription interaction mechanism. It
is not customary in the community of scientific workflows and HPC generally to use this protocol to solve problems,
including the allocation problem. It is therefore another originality of our work. Let us note in passing that the
mechanism of publication underwriting is the key point for the management of the dynamicity.

The OpenAlea system [108, 109] is a workflow system based on λ-dataflow which is able to uniformly deal with
classical data analysis, visualization, modeling and simulation tasks. λ-dataflow means that the system uses higher-
order constructs in the context of dataflows theory and thus allows to represent control flow using algebraic operators
(e.g., condition- als, map/reduce. . . ). One of the major originality of OpenAlea lies in the way iteration is handled
by introducing a specific kind of actor, called dataflow variable X. It allows to specify that, at a given port, an actor
receives an unbound variable rather than a value.

6.2 Future works

This thesis proposed several effective solutions to reduce the calculation time for the streamer code in 2D as well as in
3D. The work of this thesis can be the base for the next version of our framework ADAPT.

A new computation model could be introduced to predict more accurately the performance as the power rate of a
real execution usually is not stable. Our framework can support more MPI calls, hybrid Parallelism using both MPI
and OpenMP. An another approach is to consider GPUs, and Intel Xeon Phi accelerators.

As far as computing time is concerned, our tests were performed symbolically, we measured only the calculation
time. It would be interesting to add measurements of memory consumption to verify that the large scaling does not
cause a significant increase in memory consumption, and therefore additional cost in computation time. The resolution
of the linear system was carried out using the MUMPS solver based on MPI, the ideal is to use a hybrid solver such as
PaStix [110], MaPHyS [111], etc.

We plan also to investigate in depth the mesh partitioning problems and to conduct experiments with specific
tools. We may target PAMPA [112] and the question is how such tools can impact the overall performance of ADAPT
software. The challenge is to mix mesh partitioning and dynamic mesh adaptations. How to manage load balancing in

104



this context? When dealing with three dimensional problems, the question is even more critical.
On the other hand, we can consider working with other scientific workflows and with our new version of RedisDG.

The NASA MONTAGE workflow has been studied in Leila Abidi’s thesis at LIPN and presents challenges in terms of
data exchange that we do not have as part of the ADAPT workflow. Specific work on effective data management for
RedisDG is already underway in the LIPN group and will result in a communication for The 6th IEEE International
Symposium on Cloud and Service Computing. On the other hand this work does not take place in dynamic context and
does not use multicriteria techniques. We could take advantage of this study to really get to scale, that is, to study our
system as part of hundreds of thousands of jobs. The question then is who is responsible for managing the breakdown
problems. Our workflow engine or the cloud? For now, RedisDG is not designed with fault-tolerance mechanisms.
This is an interesting way of working.

Another opportunity for future work is given at the direct acyclic graph (DAG) level that is the model for compu-
tation. In our work, we assume, implicitly, that each node corresponds to a sequential task. The parallelism is depicted
by parallel edges started from the same node. We could imagine that a node corresponds to a parallel execution, for
instance a parallel version of METIS or MUMPS for instance. At present time we capture this possibility in executing
a threaded version of METIS or MUMPS on a single node, meaning that only one worker is executing the task. A
distributed version of METIS or MUMPS, meaning that more than one worker is executing the distributed version
METIS or MUMPS is a challenging question.

One important issue is to describe a collaborative system able to execute the DAG, more precisely a hierarchical
DAG because a node can be unfolded. In this vein, we can imagine to unfold a node, dynamically, if we have enough
resource, or we could request, on demand, new resources. At an abstract level, such systems are usually modeled with
centralized and state-based formalisms like automata, Petri nets or statecharts. They can also directly be specified with
dedicated notations like BPEL [113] or BPMN [114]. In this context we will surely also need the contributions from
the fields of lazy evaluation, abstract grammar and context-free languages as well as from software engineering in a
broad sense.

Note that, in this later context, the OpenAlea system [108, 109] is a workflow system based on λ-dataflow which
is able to uniformly deal with classical data analysis, visualization, modeling and simulation tasks. λ-dataflow means
that the system uses higher-order constructs in the context of dataflows theory and thus allows to represent control flow
using algebraic operators (e.g., condition- als, map/reduce. . . ). One of the major originality of OpenAlea lies in the
way iteration is handled by introducing a specific kind of actor, called dataflow variable X. It allows to specify that, at
a given port, an actor receives an unbound variable rather than a value.

An actor in OpenAlea is an elementary brick (a.k.a. component or activity) that has a name, a function object
(a functor, a program, a web service, a micro service or a composite actor), and explicitly defined input and output
ports. A semantic type is associated to each port (with a corresponding color). A workflow is represented as a directed
multi-graph where nodes are actors, and directed edges are data links between output and input ports. A workflow can
become a (composite) actor in another workflow to allow composition. In another word, one of the main originality
of OpenAleat is to introduce higher-order dataflows as a means to uniformly combine classical data analysis with
modeling and simulation.

At last we would like to mention a specific future work related to the placement of tasks. The ’new’ RedisDG
framework now implement strategies that build non-dominated scenarios sets (using the Pareto Dominance concept).
In this case, a non-dominated scenario is better in at least one objective and, at the same time, not worse in any
other objective, compared to a base scenario. Despite the efficiency, this strategy stagnates in environments with many
objectives, i.e., possibly reaching a state where none result is good enough for all objectives simultaneously. Moreover,
the selection of the best scenario for the deployment is also a challenge due the limited evaluation’s strategies, their
execution time and cost. We may point out that deploying a task inside Google cloud is maybe more or less costly
than deploying inside the Amazon cloud.

This problem relates to the question that none of the existing solutions consider, at the same time and to the best
of our knowledge, the important cloud’s characteristics: SLO (Service Level Objectives), SLA (Service Level Agree-
ment), policies and costs. Remind that a service level objective (SLO) is a key element of a service level agreement
(SLA) between a service provider and a customer. SLOs are agreed as a means of measuring the performance of the
Service Provider and are outlined as a way of avoiding disputes between the two parties based on misunderstanding.
Even if we focus only on the cost objective we may notice that our current solution may provide a task placement of
two tasks on the same computing node. . . but these tasks represent a duplicated service that absolutely should reside
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on two distinct computing nodes. To address more in deep all of these challenges, we propose to start with the works
of Guilherme Arthur Geronimo, Rafael Brundo Uriarte and Carlos Becker Westphall in [115] and [116] because these
works propose a combinaison of generic approaches to mix SLO, SLA, policies and costs constraints for the problem
of the placement of Virtual Machines (VM) in a cloud platform.
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Appendix A

A.1 Relations Used in Reconstruction

Relations coming from the least square method which are used in 2D reconstruction

Ixx =
∑m

j=1(xj − xi)
2, Iyy =

∑m
j=1(yj − yi)

2,

Ixy =
∑m

j=1(xj − xi)(yj − yi), Jx =
∑m

j=1(nej − nei )(xj − xi),

Jy =
∑m

j=1(nej − nei )(yj − yi), D = Ixx.Iyy − Ixy2.

(A.1)

Relations coming for the least square method which are used in 3D reconstruction

Ixx =
∑m

j=1(xj − xi)
2, Iyy =

∑m
j=1(yj − yi)

2,

Ixy =
∑m

j=1(xj − xi)(yj − yi), Ixz =
∑m

j=1(xj − xi)(zj − zi),

Izz =
∑m

j=1(zj − zi)
2, Iyz =

∑m
j=1(yj − yi)(zj − zi),

Jx =
∑m

j=1(nej − nei )(xj − xi), Jy =
∑m

j=1(nej − nei )(yj − yi),

Jz =
∑m

j=1(nej − nei )(zj − zi),

D = IxxIyyIzz + 2IxyIxzIyz − IxxI
2
yz − IyyI

2
xz − IzzI

2
xy .

(A.2)

A.2 Relations for Dissipative Terms

Weights parameters for the 2D gradient computation in diffusion terms:

Rx =
∑N(A)

j=1 (xP − xA), Rx =
∑N(A)

j=1 (yP − yA),

Ixx =
∑N(A)

j=1 (xP − xA)2, Iyy =
∑N(A)

j=1 (yP − yA)2,

Ixy =
∑N(A)

j=1 (xP − xA)(yP − yA).

λx =
IxyRy−IyyRx

D
, λx =

IxyRy−IyyRx

D
, D = IxxIyy − I2xy .

(A.3)

3D computation of the gradient in the diffusion terms is given by following relation

109



−→
∇neij =

1

3µ(Dσij
)

[

(−→n ABR|σABR|+−→nDAR|σDAR|+−→n BAL|σBAL|+
−→n ADL|σADL|)ne(A)+

(−→n ABR|σABR|+−→n BCR|σBCR|+−→n BAL|σBAL|+
−→n CBL|σCBL|)ne(B)+

(−→n BCR|σBCR|+−→n CDR|σCDR|+−→n CBL|σCBL|+
−→nDCL|σDCL|)ne(C)+

(−→n CDR|σCDR|+−→nDAR|σDAR|+−→nDCL|σDCL|+
−→n ADL|σADL|)ne(D)+

(−→n ABR|σABR|+−→n BCR|σBCR|+−→n CDR|σCDR|+−→nDAR|σDAR|)ne(R)+

(−→n BAL|σBAL|+
−→n CBL|σCBL|+

−→nDCL|σDCL|+
−→n ADL|σADL|)ne(L)

]

(A.4)

The vector equilibrium implies

−→n ABR|σABR|+−→nDAR|σDAR|+−→n BAL|σBAL|+
−→n ADL|σADL| =

−→n BRDL|σBRDL|

−→n ABR|σABR|+−→n BCR|σBCR|+−→n BAL|σBAL|+
−→n CBL|σCBL| =

−→n ALCR|σALCR|

−→n BCR|σBCR|+−→n CDR|σCDR|+−→n CBL|σCBL|+
−→nDCL|σDCL| = −−→n RBDL|σRBDL|

−→n CDR|σCDR|+−→nDAR|σDAR|+−→nDCL|σDCL|+
−→n ADL|σADL| = −−→n ALCR|σALCR|

−→n ABR|σABR|+−→n BCR|σBCR|+−→n CDR|σCDR|+−→nDAR|σDAR| = −→n ij |σij |

−→n BAL|σBAL|+
−→n CBL|σCBL|+

−→nDCL|σDCL|+
−→n ADL|σADL| = −−→n ij |σij |

(A.5)

When we substitute the equations (A.5) in the equation (A.4), we can write for the electron density gradient
−→
∇neij

−→
∇neij =

1

3µ(Dσij
)

[

(ne(A)− ne(C))−→n BRDL|σBRDL|

+(ne(B)− ne(D))−→n ALCR|σALCR|+ (ne(R)− ne(L))
−→n ij |σij |

]

(A.6)

Parameters in the weights for gradient computation are given by following relations

Rx =
∑N(A)

j=1 (xP − xA), Rx =
∑N(A)

j=1 (yP − yA), Rz =
∑N(A)

j=1 (zP − zA),

Ixx =
∑N(A)

j=1 (xP − xA)2, Iyy =
∑N(A)

j=1 (yP − yA)2, Izz =
∑N(A)

j=1 (zP − zA)2,

Ixy =
∑N(A)

j=1 (xP − xA)(yP − yA), Ixz =
∑N(A)

j=1 (xP − xA)(zP − zA),

Iyz =
∑N(A)

j=1 (yP − yA)(zP − zA),

D = IxxIyyIzz + 2IxyIxzIyz − IxxI
2
yz − IyyI

2
xz − IzzI

2
xy ,

λx =
(I2xz−IyyIzz)Rx+(IxyIzz−IxzIyz)Ry+(IxzIyy−IxyIyz)Rz

D

λy =
(IxyIzz−IxzIyz)Rx+(I2xz−IxxIzz)Ry+(IyzIxx−IxzIxy)Rz

D

λz =
(IxzIyy−IxyIyz)Rx+(IyzIxx−IxzIxy)Ry+(I2xy−IxxIyy)Rx

D

(A.7)

110



Bibliography

[1] Franck Assous, J. Segré, and Eric Sonnendrücker. A domain decomposition method for the parallelization
of a three-dimensional maxwell solver based on a constrained formulation. Mathematics and Computers in

Simulation, 81(11):2371–2388, 2011.

[2] Francesco Vecil, José M. Mantas, María J. Cáceres, Carlos Sampedro, Andrés Godoy, and Francisco Gámiz. A
parallel deterministic solver for the schrodinger-poisson-boltzmann system in ultra-short dg-mosfets: Compar-
ison with monte-carlo. Computers & Mathematics with Applications, 67(9):1703 – 1721, 2014.

[3] Yvan Notay and Artem Napov. A massively parallel solver for discrete poisson-like problems. Journal of

Computational Physics, 281(0):237 – 250, 2015.

[4] Pawan Kumar, Stefano Markidis, Giovanni Lapenta, Karl Meerbergen, and Dirk Roose. High performance
solvers for implicit particle in cell simulation. Procedia Computer Science, 18:2251–2258, 2013.

[5] Youcef Saad and Martin H. Schultz. Gmres: A generalized minimal residual algorithm for solving nonsymmet-
ric linear systems. SIAM Journal on Scientific and Statistical Computing, 7(3):856–869, 1986.

[6] L. S. Blackford, J. Demmel, J. Dongarra, I. Duff, S. Hammarling, G. Henry, M. Heroux, L. Kaufman, A. Lums-
daine, A. Petitet, R. Pozo, K. Remington, and R. C. Whaley. An updated set of basic linear algebra subprograms
(blas). ACM Transactions on Mathematical Software, 28:135–151, 2001.

[7] Ronald F. Boisvert and Jack Dongarra. Preface to the special issue on the basic linear algebra subprograms
(BLAS). ACM Trans. Math. Softw., 28(2):133–134, 2002.

[8] David B Skillicorn. A taxonomy for computer architectures. Computer, 21(11):46–57, 1988.

[9] Gene M Amdahl. Validity of the single processor approach to achieving large scale computing capabilities. In
Proceedings of the April 18-20, 1967, spring joint computer conference, pages 483–485. ACM, 1967.

[10] John L Gustafson. Reevaluating amdahl’s law. Communications of the ACM, 31(5):532–533, 1988.

[11] X-H Sun and Lionel M Ni. Another view on parallel speedup. In Supercomputing’90., Proceedings of, pages
324–333. IEEE, 1990.

[12] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous multithreading: maximizing on-chip
parallelism. In 25 years of the international symposia on Computer architecture (selected papers), pages 533–
544. ACM, 1998.

[13] Jack L Lo, Joel S Emer, Henry M Levy, Rebecca L Stamm, Dean M Tullsen, and Susan J Eggers. Converting
thread-level parallelism to instruction-level parallelism via simultaneous multithreading. ACM Transactions on

Computer Systems (TOCS), 15(3):322–354, 1997.

[14] Bruce Hendrickson and Robert Leland. The chaco user’s guide: Version 2.0. Technical report, Technical Report
SAND95-2344, Sandia National Laboratories, 1995.

111



[15] François Pellegrini and Jean Roman. Scotch: A software package for static mapping by dual recursive biparti-
tioning of process and architecture graphs. In International Conference on High-Performance Computing and

Networking, pages 493–498. Springer, 1996.

[16] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for partitioning irregular graphs.
SIAM J. Sci. Comput., 20(1):359–392, December 1998.

[17] George Karypis and Vipin Kumar. Multilevel graph partitioning schemes. In ICPP (3), pages 113–122, 1995.

[18] George Karypis and Vipin Kumar. Multilevelk-way partitioning scheme for irregular graphs. Journal of Parallel

and Distributed computing, 48(1):96–129, 1998.

[19] George Karypis and Vipin Kumar. Analysis of multilevel graph partitioning. In Proceedings of the 1995

ACM/IEEE conference on Supercomputing, page 29. ACM, 1995.

[20] Kyle A Gallivan, Michael Heath, Esmond Ng, B Peyton, Robert Plemmons, C Romine, A Sameh, and R Voigt.
Parallel algorithms for matrix computations, volume 22. Siam, 1990.

[21] Iain S Duff. A review of frontal methods for solving linear systems. Computer Physics Communications,
97(1):45–52, 1996.

[22] Michael T Heath, Esmond Ng, and Barry W Peyton. Parallel algorithms for sparse linear systems. SIAM review,
33(3):420–460, 1991.

[23] Richard Barrett, Michael W Berry, Tony F Chan, James Demmel, June Donato, Jack Dongarra, Victor Eijkhout,
Roldan Pozo, Charles Romine, and Henk Van der Vorst. Templates for the solution of linear systems: building

blocks for iterative methods, volume 43. Siam, 1994.

[24] Patrick Amestoy, Iain S. Duff, Jean-Yves L’Excellent, and Jacko Koster. MUMPS : A general purpose dis-
tributed memory sparse solver. In Tor Sørevik, Fredrik Manne, Randi Moe, and Assefaw Hadish Gebremedhin,
editors, Applied Parallel Computing, New Paradigms for HPC in Industry and Academia, 5th International

Workshop, PARA 2000 Bergen, Norway, June 18-20, 2000 Proceedings, volume 1947 of Lecture Notes in Com-

puter Science, pages 121–130. Springer, 2000.

[25] Patrick Amestoy, Abdou Guermouche, Jean-Yves L’Excellent, and Stéphane Pralet. Hybrid scheduling for the
parallel solution of linear systems. Parallel Computing, 32(2):136–156, 2006.

[26] Patrick R Amestoy, Iain S Duff, Jean-Yves L’Excellent, and Jacko Koster. A fully asynchronous multifrontal
solver using distributed dynamic scheduling. SIAM Journal on Matrix Analysis and Applications, 23(1):15–41,
2001.

[27] TJ Chung. Computational fluid dynamics. Cambridge university press, 2010.

[28] Frédéric Hecht. New development in freefem++. Journal of Numerical Mathematics, 20(3-4):251–266, 2012.

[29] Katia Ait Ameur, Camille Coti, Caroline Japhet, Pascal Omnes, Mathieu Peybernes CEA, and Thomas Rubiano.
Cemracs 2016 project:’schwarz for triocfd’space-time domain decomposition for the stokes system; application
to the triocfd code.

[30] David A Janes. Practical options for desktop cfd using open-source software.

[31] Gouri Dhatt, Emmanuel Lefrançois, and Gilbert Touzot. Finite element method. John Wiley & Sons, 2012.

[32] Henk Kaarle Versteeg and Weeratunge Malalasekera. An introduction to computational fluid dynamics: the

finite volume method. Pearson Education, 2007.

[33] Christophe Cerin and Gilles Fedak. Desktop Grid Computing. Chapman and Hall-CRC, 1 edition, 2012.

112



[34] David P. Anderson. Boinc: A system for public-resource computing and storage. Grid Computing, IEEE/ACM

International Workshop on, 0:4–10, 2004.

[35] Ali R. Butt, Rongmei Zhang, and Y. Charlie Hu. A self-organizing flock of condors. J. Parallel Distrib.

Comput., 66(1):145–161, 2006.

[36] Nazareno Andrade, Walfredo Cirne, Francisco Vilar Brasileiro, and Paulo Roisenberg. Ourgrid: An approach
to easily assemble grids with equitable resource sharing. Job Scheduling Strategies for Parallel Processing, 9th

International Workshop, JSSPP 2003, Seattle, WA, USA, June 24, 2003, Revised Papers, 2862:61–86, 2003.

[37] G. Fedak, C. Germain, V. Neri, and F. Cappello. XtremWeb: a generic global computing system. Cluster

Computing and the Grid, 2001. Proceedings. First IEEE/ACM International Symposium on, pages 582–587,
2001.

[38] Zhaohui Wu. Service Computing: Concept, Method and Technology. Academic Press, 2015.

[39] Mike P. Papazoglou and Dimitrios Georgakopoulos. Introduction. Commun. ACM, 46(10):24–28, 2003.

[40] Munindar P. Singh and Michael N. Huhns. Service-oriented computing - semantics, processes, agents. Wiley,
2005.

[41] Maria E. Orlowska, Sanjiva Weerawarana, Mike P. Papazoglou, and Jian Yang, editors. Service-Oriented Com-

puting - ICSOC 2003, First International Conference, Trento, Italy, December 15-18, 2003, Proceedings, vol-
ume 2910 of Lecture Notes in Computer Science. Springer, 2003.

[42] Hong Cai and Jia Zhang. SOA services and solutions. In 2006 IEEE International Conference on Services

Computing (SCC 2006), 18-22 September 2006, Chicago, Illinois, USA. IEEE Computer Society, 2006.

[43] Liang-Jie Zhang, Jia Zhang, and Hong Cai. Services Computing. Springer-Verlag Berlin Heidelberg, 2007.

[44] Albert G. Greenberg, James R. Hamilton, David A. Maltz, and Parveen Patel. The Cost of a Cloud: Research
Problems in Data Center Networks. Computer Communication Review, 39:68–73, 2009.

[45] Leila Abidi, Jean-Christophe Dubacq, Christophe Cérin, and Mohamed Jemni. A publication-subscription
interaction schema for desktop grid computing. In Sung Y. Shin and José Carlos Maldonado, editors, SAC,
pages 771–778. ACM, 2013.

[46] Leila Abidi, Christophe Cérin, and Mohamed Jemni. Desktop grid computing at the age of the web. In James J.
Park, Hamid R. Arabnia, Cheonshik Kim, Weisong Shi, and Joon-Min Gil, editors, GPC, volume 7861 of
Lecture Notes in Computer Science, pages 253–261. Springer, 2013.

[47] Walid Saad, Leila Abidi, Heithem Abbes, Christophe Cérin, and Mohamed Jemni. Wide area bonjourgrid as
a data desktop grid: Modeling and implementation on top of redis. In 26th IEEE International Symposium

on Computer Architecture and High Performance Computing, SBAC-PAD 2014, Paris, France, October 22-24,

2014, pages 286–293. IEEE Computer Society, 2014.

[48] 2013 IEEE International Symposium on Parallel & Distributed Processing, Workshops and Phd Forum, Cam-

bridge, MA, USA, May 20-24, 2013. IEEE, 2013.

[49] Jean-Paul Smets-Solanes, Christophe Cérin, and Romain Courteaud. Slapos: A multi-purpose distributed cloud
operating system based on an ERP billing model. In Hans-Arno Jacobsen, Yang Wang, and Patrick Hung,
editors, IEEE International Conference on Services Computing, SCC 2011, Washington, DC, USA, 4-9 July,

2011, pages 765–766. IEEE, 2011.

[50] Romain Courteaud, Yingjie Xu, and Christophe Cérin. Practical solutions for resilience in slapos. In 4th IEEE

International Conference on Cloud Computing Technology and Science Proceedings, CloudCom 2012, Taipei,

Taiwan, December 3-6, 2012, pages 488–495. IEEE Computer Society, 2012.

113



[51] Congfeng Jiang, Jian Wan, Christophe Cérin, Paolo Gianessi, and Yanik Ngoko. Towards energy efficient
allocation for applications in volunteer cloud. In 2014 IEEE International Parallel & Distributed Processing

Symposium Workshops, Phoenix, AZ, USA, May 19-23, 2014, pages 1516–1525. IEEE Computer Society, 2014.

[52] Walid Saad, Heithem Abbes, Mohamed Jemni, and Christophe Cérin. Designing and implementing a cloud-
hosted saas for data movement and sharing with slapos. IJBDI, 1(1/2):18–35, 2014.

[53] Christophe Cérin and Gilles Fedak. Desktop grid computing. CRC Press, 2012.

[54] S. Bharathi, A. Chervenak, E. Deelman, G. Mehta, Mei-Hui Su, and K. Vahi. Characterization of scientific
workflows. In Workflows in Support of Large-Scale Science, 2008. WORKS 2008. Third Workshop on, pages
1–10, Nov 2008.

[55] Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schäffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and
David J. Lipman. Gapped blast and psiblast: a new generation of protein database search programs. NUCLEIC

ACIDS RESEARCH, 25(17):3389–3402, 1997.

[56] Robert Graves, Thomas H. Jordan, Scott Callaghan, Ewa Deelman, Edward Field, Gideon Juve, Carl Kessel-
man, Philip Maechling, Gaurang Mehta, Kevin Milner, David Ok aya, Patrick Small, and Karan Vahi. Cy-
berShake: A Physics-Based Seismic Hazard Model for Southern California. Pure and Applied Geophysics,
168:367–381, 2011.

[57] Ji Liu, Esther Pacitti, Patrick Valduriez, and Marta Mattoso. A survey of data-intensive scientific workflow
management. J. Grid Comput., 13(4):457–493, 2015.

[58] Yogesh Simmhan, Lavanya Ramakrishnan, Gabriel Antoniu, and Carole A. Goble. Cloud computing for data-
driven science and engineering. Concurrency and Computation: Practice and Experience, 28(4):947–949,
2016.

[59] Jia Yu, Rajkumar Buyya, and Kotagiri Ramamohanarao. Workflow Scheduling Algorithms for Grid Computing,
pages 173–214. Springer Berlin Heidelberg, Berlin, Heidelberg, 2008.

[60] H. Topcuoglu, S. Hariri, and Min-You Wu. Performance-effective and low-complexity task scheduling for
heterogeneous computing. IEEE Transactions on Parallel and Distributed Systems, 13(3):260–274, Mar 2002.

[61] M. Rahman, S. Venugopal, and R. Buyya. A dynamic critical path algorithm for scheduling scientific workflow
applications on global grids. In e-Science and Grid Computing, IEEE International Conference on, pages
35–42, Dec 2007.

[62] R. Sakellariou and H. Zhao. A hybrid heuristic for dag scheduling on heterogeneous systems. In Parallel and

Distributed Processing Symposium, 2004. Proceedings. 18th International, pages 111–, April 2004.

[63] Anne Benoit, Umit V. Catalyurek, Yves Robert, and Erik Saule. A Survey of Pipelined Workflow Scheduling:
Models and Algorithms. ACM Computing Surveys, 45(4), 2013.

[64] Olivier Beaumont, Arnaud Legrand, and Yves Robert. The master-slave paradigm with heterogeneous proces-
sors. IEEE Trans. Parallel Distributed Systems, 14(9):897–908, 2003.

[65] Jean-Noël Quintin and Frédéric Wagner. Hierarchical work-stealing. In Pasqua D’Ambra, Mario Rosario
Guarracino, and Domenico Talia, editors, Euro-Par 2010 - Parallel Processing, 16th International Euro-Par

Conference, Ischia, Italy, August 31 - September 3, 2010, Proceedings, Part I, volume 6271 of Lecture Notes in

Computer Science, pages 217–229. Springer, 2010.

[66] Michael Wilde, Mihael Hategan, Justin M. Wozniak, Ben Clifford, Daniel S. Katz, and Ian T. Foster. Swift: A
language for distributed parallel scripting. Parallel Computing, 37(9):633–652, 2011.

[67] Justin M. Wozniak, Michael Wilde, and Daniel S. Katz. JETS: language and system support for many-parallel-
task workflows. J. Grid Comput., 11(3):341–360, 2013.

114



[68] Ioan Raicu, Ian T. Foster, and Yong Zhao. Guest editors’ introduction: Special section on many-task computing.
IEEE Trans. Parallel Distrib. Syst., 22(6):897–898, 2011.

[69] Zhao Zhang, Allan Espinosa, Kamil Iskra, Ioan Raicu, Ian T. Foster, and Michael Wilde. Design and evaluation
of a collective IO model for loosely coupled petascale programming. CoRR, abs/0901.0134, 2009.

[70] Amazon ec2. http://aws.amazon.com/ec2/.

[71] enstratus. http://www.enstratus.com.

[72] Rightscale. http://rightscale.com.

[73] Scalr. https://www.scalr.net.

[74] Young Choon Lee, Hyuck Han, and Albert Y. Zomaya. On resource efficiency of workflow schedules. In
David Abramson, Michael Lees, Valeria V. Krzhizhanovskaya, Jack Dongarra, and Peter M. A. Sloot, edi-
tors, Proceedings of the International Conference on Computational Science, ICCS 2014, Cairns, Queensland,

Australia, 10-12 June, 2014, volume 29 of Procedia Computer Science, pages 534–545. Elsevier, 2014.

[75] Ming Mao and Marty Humphrey. Auto-scaling to minimize cost and meet application deadlines in cloud work-
flows. In Scott Lathrop, Jim Costa, and William Kramer, editors, Conference on High Performance Computing

Networking, Storage and Analysis, SC 2011, Seattle, WA, USA, November 12-18, 2011, pages 49:1–49:12.
ACM, 2011.

[76] Marc Frîncu. Dynamic scheduling algorithm for heterogeneous environments with regular task input from
multiple requests. In Nabil Abdennadher and Dana Petcu, editors, Advances in Grid and Pervasive Computing,

4th International Conference, GPC 2009, Geneva, Switzerland, May 4-8, 2009. Proceedings, volume 5529 of
Lecture Notes in Computer Science, pages 199–210. Springer, 2009.

[77] Marc Eduard Frîncu. Scheduling service oriented workflows inside clouds using an adaptive agent based ap-
proach. In Borko Furht and Armando Escalante, editors, Handbook of Cloud Computing., pages 159–182.
Springer, 2010.

[78] Alok Gautam Kumbhare, Yogesh L. Simmhan, Marc Frîncu, and Viktor K. Prasanna. Reactive resource pro-
visioning heuristics for dynamic dataflows on cloud infrastructure. IEEE T. Cloud Computing, 3(2):105–118,
2015.

[79] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, César A. F. De Rose, and Rajkumar Buyya. Cloudsim:
a toolkit for modeling and simulation of cloud computing environments and evaluation of resource provisioning
algorithms. Softw., Pract. Exper., 41(1):23–50, 2011.

[80] Daniel Zinn, Quinn Hart, Timothy M. McPhillips, Bertram Ludäscher, Yogesh Simmhan, Michail Giakkoupis,
and Viktor K. Prasanna. Towards reliable, performant workflows for streaming-applications on cloud platforms.
In 11th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, CCGrid 2011, Newport

Beach, CA, USA, May 23-26, 2011, pages 235–244. IEEE Computer Society, 2011.

[81] J. Mo and J. Walrand. Fair end-to-end window-based congestion control. IEEE/ACM Transactions on Network-

ing, 8(5):556–567, Oct 2000.

[82] Y. Liu and E. Knightly. Opportunistic fair scheduling over multiple wireless channels. In INFOCOM 2003.

Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE Societies, vol-
ume 2, pages 1106–1115 vol.2, March 2003.

[83] S. K. Baruah, N. K. Cohen, C. G. Plaxton, and D. A. Varvel. Proportionate progress: A notion of fairness
in resource allocation. In Proceedings of the Twenty-fifth Annual ACM Symposium on Theory of Computing,
STOC ’93, pages 345–354, New York, NY, USA, 1993. ACM.

115



[84] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott Shenker, and Ion Stoica. Dominant
resource fairness: Fair allocation of multiple resource types. In Proceedings of the 8th USENIX Conference on

Networked Systems Design and Implementation, NSDI’11, pages 323–336, Berkeley, CA, USA, 2011. USENIX
Association.

[85] Danny Dolev, Dror G. Feitelson, Joseph Y. Halpern, Raz Kupferman, and Nathan Linial. No justified com-
plaints: On fair sharing of multiple resources. In Proceedings of the 3rd Innovations in Theoretical Computer

Science Conference, ITCS ’12, pages 68–75, New York, NY, USA, 2012. ACM.

[86] Hui Wang and Peter Varman. Balancing fairness and efficiency in tiered storage systems with bottleneck-aware
allocation. In Proceedings of the 12th USENIX Conference on File and Storage Technologies, FAST’14, pages
229–242, Berkeley, CA, USA, 2014. USENIX Association.

[87] Avital Gutman and Noam Nisan. Fair allocation without trade. In Proceedings of the 11th International Con-

ference on Autonomous Agents and Multiagent Systems - Volume 2, AAMAS ’12, pages 719–728, Richland,
SC, 2012. International Foundation for Autonomous Agents and Multiagent Systems.

[88] C. Joe-Wong, S. Sen, T. Lan, and M. Chiang. Multi-resource allocation: Fairness-efficiency tradeoffs in a
unifying framework. In INFOCOM, 2012 Proceedings IEEE, pages 1206–1214, March 2012.

[89] Wei Wang, Baochun Li, and Ben Liang. Dominant resource fairness in cloud computing systems with hetero-
geneous servers. CoRR, abs/1308.0083, 2013.

[90] David C. Parkes, Ariel D. Procaccia, and Nisarg Shah. Beyond dominant resource fairness: Extensions, limita-
tions, and indivisibilities. In Proceedings of the 13th ACM Conference on Electronic Commerce, EC ’12, pages
808–825, New York, NY, USA, 2012. ACM.

[91] Richard Cole, Vasilis Gkatzelis, and Gagan Goel. Mechanism design for fair division: Allocating divisible
items without payments. In Proceedings of the Fourteenth ACM Conference on Electronic Commerce, EC ’13,
pages 251–268, New York, NY, USA, 2013. ACM.

[92] Artur Andrzejak, Derrick Kondo, and David P Anderson. Exploiting non-dedicated resources for cloud com-
puting. In 2010 IEEE Network Operations and Management Symposium-NOMS 2010, pages 341–348. IEEE,
2010.

[93] Dongjin Yoo; Kwang Mong Sim. A locality enhanced scheduling method for multiple mapreduce jobs in a
workflow application.

[94] Matei Zaharia, Dhruba Borthakur, Joydeep Sen Sarma, Khaled Elmeleegy, Scott Shenker, and Ion Stoica. Delay
scheduling: a simple technique for achieving locality and fairness in cluster scheduling. In Christine Morin and
Gilles Muller, editors, European Conference on Computer Systems, Proceedings of the 5th European conference

on Computer systems, EuroSys 2010, Paris, France, April 13-16, 2010, pages 265–278. ACM, 2010.

[95] Radu Tudoran, Alexandru Costan, and Gabriel Antoniu. Overflow: Multi-site aware big data management for
scientific workflows on clouds. IEEE Trans. Cloud Computing, 4(1):76–89, 2016.

[96] Sergio Esteves and Lucas Veiga. WaaS: Workflow-as-a-Service for the Cloud with Scheduling of Continuous
and Data-Intensive Workflows. The Computer Journal, 58, 2015.

[97] F. Benkhaldoun, I. Elmahi, S. Sari, and M. Seaid. An unstructured finite-volume method for coupled models
of suspended sediment and bed load transport in shallow-water flows. Int. J. Numer. Meth. Fluids, 72:967–993,
2013.

[98] F. Benkhaldoun, J. Fort, K. Hassouni, and J. Karel. Simulation of planar ionization wave front propagation on
an unstructured adaptive grid. Journal of Computational and Applied Mathematics, 236:4623–4634, 2012.

[99] Sébastien Célestin. Study of the dynamics of streamers in air at atmospheric pressure. 2010.

116



[100] Carolynne Montijn, Willem Hundsdorfer, and Ute Ebert. An adaptive grid refinement strategy for the simulation
of negative streamers. Journal of Computational Physics, 219(2):801–835, 2006.

[101] Nicolò Cesa-Bianchi. Multi-armed bandit problem. In Encyclopedia of Algorithms, pages 1356–1359. 2016.

[102] Bahman Javadi, Derrick Kondo, Jean-Marc Vincent, and David P. Anderson. Mining for statistical models of
availability in large-scale distributed systems: An empirical study of seti@home. In 17th Annual Meeting of the

IEEE/ACM International Symposium on Modelling, Analysis and Simulation of Computer and Telecommunica-

tion Systems, MASCOTS 2009, September 21-23, 2009, South Kensington Campus, Imperial College London,
pages 1–10, 2009.

[103] Daniel Lázaro Iglesias, Derrick Kondo, and Joan Manuel Marquès. Long-term availability prediction for groups
of volunteer resources. J. Parallel Distrib. Comput., 72(2):281–296, 2012.

[104] Bahman Javadi, Derrick Kondo, Jean-Marc Vincent, and David P. Anderson. Discovering statistical models of
availability in large distributed systems: An empirical study of seti@home. IEEE Trans. Parallel Distrib. Syst.,
22(11):1896–1903, 2011.

[105] Leila Abidi, Christophe Cérin, and Kais Klai. Design, verification and prototyping the next generation of
desktop grid middleware. In Ruixuan Li, Jiannong Cao, and Julien Bourgeois, editors, GPC, volume 7296 of
Lecture Notes in Computer Science, pages 74–88. Springer, 2012.

[106] Aman Kansal, Feng Zhao, Jie Liu, Nupur Kothari, and Arka A. Bhattacharya. Virtual machine power metering
and provisioning. In Proceedings of the 1st ACM Symposium on Cloud Computing, SoCC ’10, pages 39–50,
New York, NY, USA, 2010. ACM.

[107] Senthil Nathan, Purushottam Kulkarni, and Umesh Bellur. Resource availability based performance bench-
marking of virtual machine migrations. In Proceedings of the 4th ACM/SPEC International Conference on

Performance Engineering, ICPE ’13, pages 387–398, New York, NY, USA, 2013. ACM.

[108] Christophe Pradal, Samuel Dufour-Kowalski, Frédéric Boudon, Christian Fournier, and Christophe Godin. Ope-
nalea: a visual programming and component-based software platform for plant modelling. Functional Plant

Biology, 35(10):751–760, 2008.

[109] Christophe Pradal, Christian Fournier, Patrick Valduriez, and Sarah Cohen Boulakia. Openalea: scientific
workflows combining data analysis and simulation. In Proceedings of the 27th International Conference on

Scientific and Statistical Database Management, SSDBM ’15, La Jolla, CA, USA, June 29 - July 1, 2015, pages
11:1–11:6, 2015.

[110] Pascal Hénon, Pierre Ramet, and Jean Roman. Pastix: a high-performance parallel direct solver for sparse
symmetric positive definite systems. Parallel Computing, 28(2):301–321, 2002.

[111] Emmanuel Agullo, Luc Giraud, Abdou Guermouche, Azzam Haidar, and Jean Roman. Maphys or the develop-
ment of a parallel algebraic domain decomposition solver in the course of the solstice project. In Sparse Days

2010 Meeting at CERFACS, 2010.

[112] Cédric Lachat, François Pellegrini, and Cecile Dobrzynski. Pampa: Parallel mesh partitioning and adaptation.
In 21st International Conference on Domain Decomposition Methods (DD21), 2012.

[113] Arnaud Lanoix, Julien Dormoy, and Olga Kouchnarenko. Combining proof and model-checking to validate
reconfigurable architectures. Electronic Notes in Theoretical Computer Science, 279(2):43–57, 2011.

[114] Jeffrey O Kephart and David M Chess. The vision of autonomic computing. Computer, 36(1):41–50, 2003.

[115] Guilherme Arthur Geronimo, Rafael Brundo Uriarte, and Carlos Becker Westphall. Order@cloud: A VM
organisation framework based on multi-objectives placement ranking. In Sema Oktug, Mehmet Ulema, Ci-
cek Cavdar, Lisandro Zambenedetti Granville, and Carlos Raniery Paula dos Santos, editors, 2016 IEEE/IFIP

Network Operations and Management Symposium, NOMS 2016, Istanbul, Turkey, April 25-29, 2016, pages
529–535. IEEE, 2016.

117



[116] Guilherme Arthur Geronimo, Rafael Brundo Uriarte, and Carlos Becker Westphall. Toward a framework for
vm organisation based on multi-objectives. In ICN 2016, The Fifteenth International Conference on Networks,

Lisbon, Portugal, February 21 - 25, 2016.

118


