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General Introduction 
 

Metabolomics, which is also noted as “metabonomics”, is the systematic study 

involving small biological molecular named “metabolites” [1-3]. It characterizes the 

variations at the level of metabolites in living organism triggered by the endogenous 

or exogenous stimulations. Metabolomics plays an important role in the systematic 

biology, which is also known as “omics”, including genomics, transcriptomics and 

proteomics [4]. Compared with the other “omics”, which investigate the innate 

properties and modification in the organism, metabolomics is the terminal of systemic 

biology that presents the definitive characteristics and even the responses to the 

environment distinct in the life. Genomics determines the genome of the living bodies. 

Transcriptomics and proteomics analyses the transcriptome and proteome 

respectively. These upstream omics tell “what may happen” to the organism, but 

metabolomics shows “what has happened” to the organism (Figure 1).  

 

 

Figure 1. The ‘‘Omics’’ cascade comprises complex datasets that as an entity comprehensively describe 

the response of biological systems to disease, genetic, and environmental perturbations. The most 
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powerful database will integrate data from all omics levels. However, of these databases the 

metabolome is the most predictive of phenotype [5].  

Until present, metabolomics has been widely applied in the studies of clinical medicine 

[6-8], intestinal flora analysis [9], environment [10], botany [11], drug development 

[12], nutrition [13], food science [14, 15]. 

In the latest years, diagnosis and treatment measurements are revolved by the 

presence of the mention “Precision Medicine”[16] which emphasizes the individual 

clinical care [16]. As metabolomics allows to investigate the whole metabolic profile of 

biological systems, it provides evidence for the understanding of individual cases. 

Consequently, in the clinical field, currently, metabolomic is widely applied to improve 

the diagnosis and prognosis. Metabolomics is sensitive to figure out the metabolic 

variation, which is correlated to certain lesions in the patients. Detection of significant 

variations in some specific metabolites leads to the discovery of relevant lesions or 

diseases. The metabolite indicators are named as the “biomarkers” of diagnosis [17]. 

As a consequence, seeking for the new reliable biomarkers, which improves the 

diagnosis of disease, has been one of the main purposes of the application of 

metabolomics in clinical medicine.  

The other primary goal of the application of metabolomics in the field is to predict the 

outcome of disease. According to the comparison of the metabolic profile in the 

patients, some metabolites are likely to be sensitive and specific in the discrimination 

between the patients with and without optimist prognosis. These metabolites are 

therefore the biomarkers of prognosis that help to understand the severity of disease 

in each individual, even at the onset of the disease, so that the personalized treatment 

will be subsequently executed.  

However, the individual differences and different reactions and compliances to the 

therapy among the patients make it still challenging to determine new biomarkers [18]. 

To this end, mounting studies aim to seek out the reliable biomarkers for clinical 

diagnosis or prognosis. In this study, we focused on the application of metabolomics 

to seek out the biomarkers predicting the outcome for septic shock and for 

hepatocellular carcinoma (HCC). 



10 
 

 

Metabolomics is usually realized based on two principal analytical methods: nuclear 

magnetic resonance (NMR) spectroscopy and mass spectrometry (MS) [19]. With NMR 

spectroscopy, the sample preparation is easier than MS method and the method does 

no damage to the sample, and it shows a quite good reproducibility. However, its low 

sensitivity and the narrow measuring concentration range are the disadvantages. MS, 

which is usually coupled by chromatography or by capillary electrophoresis, shows its 

excellent sensitivity and its wide dynamic range and a larger metabolome coverage. 

Actually, the complementarity of the two techniques in metabolomic study has been 

well revealed [20]. Consequently, one of the objectives of this study is to accomplish 

the metabolomic studies using both 1H NMR spectroscopy and mass spectrometry. 

 

The project was carried out by the collaboration between the team of “NMR 

metabolomic” from the Chimie, Structure, Propriétés de Biomatériaux et d’Agents 

Thérapeutiques (CSPBAT) laboratory of University Paris XIII (Bobigny, France) and the 

Key Laboratory of Separation Science for Analytical Chemistry from Dalian institute of 

chemistry physics (DICP, Dalian, China). NMR spectroscopy and MS based metabolomic 

studies are respectively finalized in the two laboratories. The thesis work was also in 

close collaboration with Jean Verdier University Hospital (Bondy, Paris, France).  

 

This thesis is composed by four parts: general introduction, methodology, 

experimental research and conclusions with perspectives. The methodology part is 

principally divided into two sections: 1H NMR-based metabolomics and MS-based 

metabolomics. 

For the part of experimental research, the first study aims to understand the 

differences in the metabolic profile of serum between the surviving and non-surviving 

patients in the early stage of septic shock by liquid chromatography-mass 

spectrometry (LC-MS) based metabolomics. A non-targeted scan of the metabolic 

profile for the septic shock patients was applied using LC-MS. According to the 
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differences at the level of the metabolic profile, septic survivors were distinguished 

from the septic non-survivors before clinical interventions.  

 

The second study about the determination of biomarkers predicting the mortality for 

the patients who suffered from septic shock by using 1H NMR spectroscopy. 

Discriminatory models were revealed to exhibit the differences of serum metabolome 

between the evolutions of septic shock survivors and non-survivors during the first 12 

hours. 

 

The last part of the study presents a work of discovery of serum biomarkers predicting 

the recurrence for HCC patients before and after radio frequency ablation (RFA) 

therapy. By comparing the metabolic profile of recurrent HCC patients with those 

without relapse, we attempted to find out the key metabolites indicating the HCC 

recurrence before and after the RFA treatment. The study was achieved by gas 

chromatography-mass spectrometry (GC-MS) based metabolomics.  
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I. Methodology  
 

Chapter I. Methodology of general metabolomics  

 

1.1.1 Definition 

 

Metabolomics, was first defined by Prof. Nicholson as “the quantitative measurement 

of the dynamic multiparametric metabolic response of living systems to 

pathophysiological stimuli genetic modification” [21]. The other definition from the 

point of view of metabolites (small biological molecules ≤1500 Da) is the study aiming 

to systematically qualify and quantify metabolites in one biological system (e.g. 

biological fluid, cells, tissues, etc.) at one point of time [22].   

Metabolomics is an important part of “omics” which is a general name for the studies 

determining and quantifying pools of biological molecules that translate into 

structures, functions, and dynamics in organisms. It consists of studies such as 

genomics, transcriptomics, proteomics, metabolomics, etc. Unlike other above 

mentioned “omics”, metabolomics investigates the small molecules which are the 

terminal metabolites indicating not only the inner modification in organisms but also 

the impact issued from the alteration of environment [23].  

 

1.1.2 Development of metabolomics 

 

The definition of “metabolomics” was first introduced for biomedical research in the 

year of 90s. Until now, it has been applied in kinds of fields [6-15]. It has been well 

developed in the recent years by increasing studies. Figure 2 shows the evolution of 

the number of submitted articles of metabolomics in the past decade, which reveals 

an increasing amount of metabolomic studies. Accordingly, a cascade of researches in 

this field has been being ongoing, especially in the 21th century. The present study 

focuses on the application of metabolomic seeking the biomarkers for clinical 



13 
 

diagnosis and prognosis.. 

 

 

 

Figure 2. Diagram presenting the number of papers, which include the word “metabolomic” along the 

past decade according to the statistics by google scholar (https://scholar.google.com/) 

 

1.1.3 Metabolomic experimental Steps 

 

The protocol guiding the experiences of metabolomics has been summarized by 

former studies [19, 24, 25]. Generally, the main manipulative steps include 

experimental design, sampling and stockage, preparation of samples, data acquisition, 

data analyses, result validation, and interpretation of results (Figure 3).  
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Figure 3. Schematic flow-chart emerging the general process of the metabolomic study. 

 

Experimental design 

For metabolomic, the experimental design involves, for example, the selection of 

sampling time, the selection of spectroscopy experimental method, the method of 

sample preparation, the choice of statistic process. In a word, the experimental design 

should coincide with the needs of the solution of the scientific problem [26, 27].  

 

Sampling and storage 

It is always required that the sample collection should be representative of population 

and homogenous [28]. The corresponding measures are to limit the variations among 

the samples and to collect the samples randomly in the population. That is, biological 

samples should be collected simultaneously in the same way for the people with 

similar ages, a proper proportion of gender, similar healthy conditions, etc.  

Generally, for bio-samples, solid (tissue, organ, cells, etc.) and liquid samples (serum, 

plasma, urine, CSF, saliva, etc.) are collected for metabolic analyses.  

Serum samples are obtained after removing the spontaneous clot in collected blood. 

Whereas, plasma samples are prepared by adding an anticoagulant (e.g. EDTA, citrate, 

lithium heparin, etc.) in the blood and then centrifuging to eliminate the hemocytes 

and platelets. Compared with the blood sampling, samplings of urine is simpler that 

no particular treatment is otherwise needed other than rapid package and good 

storage [25].  

To avoid the variation of metabolic profile in the air, the sampling is recommended to 

be executed rapidly and then the samples should be stored at -80oC before analyses in 
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order to achieve a metabolism quenching [29-31]. 

The processes from sample preparation to the biological interpretation will be exposed 

in the following two chapters.  
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Chapter II. 1H NMR spectroscopy-based metabolomics  

 

1.2.1. Principle of NMR spectroscopy  

 

A. Theory of Lamor frequency 

Nuclear Magnetic Resonance (NMR) is a physical phenomenon in which atomic nuclei, 

in a magnetic field, absorb and then emit an electromagnetic radiation [32]. 

When an atomic nucleus possessing unpaired protons and neutrons (such as 1H, 13C, 

15N, 31P) is located in an external magnetic B0, the proton spins with an angular speed 

and a frequency, v0, called the Larmor frequency, unique for each isotope [33]. The 

Larmor frequency is related to the external magnetic field B0 through the 

gyromagnetic constant γ. 

0 0B                                                          (1.2.1)                                                                                                                                         

The intrinsic magnetic moment of nucleons are also called « spins ». They are oriented 

parallel (α) or antiparallel (β) to the direction of the magnetic field B0 (Figure 4a, 4c). 

In fact, when an atomic nucleus is submitted to an external magnetic field, the lowest 

energy is split into two levels of energy: the higher energy, which corresponds to the 

anti-parallel orientation and the lower energy, which corresponds to the parallel 

orientation of the magnetic moment (Figure 4b). The energetic difference ΔE is given 

by: 

0E hB                                                         (1.2.2)                                                                                                                                               

where h is the Planck constant. If N is the number of particles in each energy level: 

 

                                     (1.2.3)                                                                                                

where Nα > Nβ (Boltzmann distribution [34]) and k is the Boltzmann constant. It should 

be noticed that the difference of energy (E) is fairly small and so is the difference 

between Nα and Nβ. 

If the proton is submitted to another alternative magnetic field B1, a part of the 

0exp exp
hBN E

N kT kT

    
    

   
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protons with the lower energy Eα are stimulated and leads to a transition to the level 

Eβ. As the field B1 is shut down, the excited protons tend to return to the ground state 

and result in an emission and this emission will be recorded by the receptor and 

amplified by the amplifier of spectrometer. As to the magnetic moment of the protons, 

before the excitation with B1 (may be along x or y axis of figure 4d), the direction of 

resultant magnetic moment for the protons with lower energy (α) is parallel to B0 while 

the resultant magnetic moment for the protons with higher energy (β) is opposite. 

Given that the number of the protons in the ground state is larger than those in the 

excited energetic level, the resultant magnetic moment Mresultant is parallel to B0 (Figure 

4c). The direction of M is changed by the presence of B1 and when B1 is shut down, M 

will relax to the equilibrium state (Figure 4d). 
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Figure 4. Diagram presenting the principles of spin for the nuclei located in a magnetic field B0. a: when 

located in the magnetic field B0, two types of nucleolus spins are available: spin parallel to the direction 

of B0 (I = +1/2, I is the spin characteristics) or spin antiparallel to B0 (I = -1/2). b: Energy splitting in the 

presence of an external magnetic field. c: Resultant magnetic moments for all the spins in the B0 field 

d : Once nucleus spins receives a radio frequency B1 during a short period, for the excited protons, the 

direction of their magnetic moment M will be firstly changed then comes back to the equilibrium state. 

 

B. Chemical shift and coupling 

Due to the current elicited by the electron cloud, the real strength of the external field 

changes. Formula 1.2.4 exposes the relation between the external field strength (B0) 

and the effective field strength (Beff) for the nuclei, where σ is the screening constant.  

 

                                                   (1.2.4)                                                                                                                   

We introduce the chemical shift δ and generally the chemical shift of tetramethylsilane 

(TMS) is used as reference for 1H RMN experiences. For one standard substance, its 

chemical shift is calculated by the equation 1.2.5:     

                                                (1.2.5) 

where νsub is the frequency of the substance being measured; νref is the exact 

frequency of the TMS, and ν0 depends on the field strength B0. As the value of the ratio 

is small, δ is described by multiplying 106.Therefore, δ is presented in ppm.  

 

Spin-spin coupling  

It is difficult to identify a substance or even a chemical group only with the help of the 

chemical shift. This is because the electron cloud of the chemical groups are influenced 

by its chemical spatial environment, and the interaction among the groups not only 

alters the original chemical shift of substance but also remolds its multiplicity of the 

surrounding electron cloud.  

 0 1effB B  

6

0

10
sub ref 





 
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The effect is dependent on the interaction between the spins, which are located in the 

magnetic field. 

Always for the example of 1H NMR spectroscopy, a molecular model with 2 adjacent 

groups of protons HA and HB is shown in the Figure 6. The chemical shift of HA is altered 

by the interaction between HA and HB. And as there exists two directions of spin of HB 

(Spin = +/- 1/2), two peaks are visible, representing the interaction between HB and HA. 

This effect is called spin-spin coupling. Accordingly, the presence of the number of 

peaks, which is also called the multiplicity, is due to the combination of the two spin 

types of the interacted proton. For one group of proton, the multiplicity of peak can 

be deduced by the triangle of Pascal (taken the example of the two groups of protons 

HA and HB, shown Figure 7). The intensity of each peak corresponds to the possible 

combinations. It should be noted that the spin-spin coupling is generally detectable 

within the three bonds distance, however, in molecules such as alkenes and molecules 

with aromatic cycles, the interaction may be observed within a distance of 5 bonds.  

 

 

Figure 6. Schematic presentation of the effect of spin-spin coupling. 2 protons labelled HA and HB are 

located on two adjacent carbons CA and CB. There are 2 possibilities for HA spins (parallel HA1 or anti-

parallel HA2) relative to HB. The effect leads to a chemical shift between the two kinds of spins HA1 and 
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HA2.  

 

 

Figure 7. Diagram presenting the combinations of spins. Peaks are presented by the bars in the 

diagram. The intensity of each peak is presented by the height and thickness of the bar. The ratio of 

intensity among the peaks is marked on the bars. (A) The law of the combination corresponds to the 

triangle of Pascal (B). 

 

C. General NMR data pre-processing 

 

1) Appodization  

Once the acquisition of spectrum is done during the Free induction Decay (FID) [35], 

the spectrum is beforehand subjected to be multiplied by the factor e-tπ, named line-

broadening (LB, in Hz), which is also called appodization, prior to the transformation 

of Fourier. One goal is to enhance the ratio signal/noise in the spectrum. The other 

objective is to narrow the peak stretches. 

 

2) Fourier Transform (FT)  
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The FT is the central step in NMR data processing, which transforms the time domain 

signal into a frequency domain signal. After the treatment of FT, acquired signals are 

converted into bell-shaped peaks whose airs represent the quantification of 

corresponding compounds.  

 

1.2.2 Description of NMR spectrometer  

 

The main parts of the NMR spectrometry include sample changer, superconducting 

magnet, probe (containing transmitter and signal receptor), amplifier and signal 

processing monitor [36], the schematic diagram is presented in Figure 5.  
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Figure 5. Schematic diagram of the main components of the NMR spectrometer. 1: injection port; 2: 

superconducting magnet; 3: probe; 4: amplifier; 5: monitor. 

 

 1/ Sample changer 

It is the entrance of the sample which allows to perform a series of experiments 

automatically according to an edited experimental sequence. Concerning the 
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metabolomic studies, typically, the biological sample is prone to evolve due to the 

enzymatic reactions. Aiming at this problem, the sample changer used for sequential 

metabolic studies is thermostated at low temperature (4°C). 

 

 2/Superconducting magnet 

It is produced by the induction coil. The coil is immersed in the liquid helium with its 

temperature at 4K to preserve the superconductivity. Meanwhile, liquid nitrogen is 

filled at the outer layer of the liquid helium. It helps to isolate the environment of the 

superconductor.  

 

 3/Probe  

It is the core component of the instrument, in terms of exciting the nuclear spins, and 

detecting the NMR signal. The sample is inserted into the probe to perform the NMR 

experiment. The probe contains the radiofrequency (Rf) coils, tuned at specific 

frequencies for specific nuclei in a given magnetic field. The probe also contains the 

necessary hardware to control the sample temperature. 

 

 4 and 5/Signal amplifier and monitor 

The received signals are accumulated by the amplifier and Fourier transform is 

subsequently performed.  

 

1.2.3. Experimental steps of NMR-based metabolomics 

 

A. Sample preparation 

In the part of NMR-based metabolomic of this thesis work, serum samples were 

analyzed with a 500MHz NMR spectrometry (Bruker, Avance III). The samples were 

prepared before the acquisition of spectrum. As the samples were kept in the freezer 

at -80oC before the experiences, they were first thawed on the ice. Afterwards, 450 μL 

of each sera sample was added in the NMR tube. 50 μL of D2O was also added into the 

tube.  
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B. Water suppression using pre-saturation pulses during data acquisition 

As metabolomics analyzes samples from bio-systems, which usually contain a 

considerable quantity of water. The signal of H20 are aimed to be removed during the 

acquisition for its high intensity and large peak masking other signals with low 

concentrations which are close to it. A low power pulse at the solvent frequency and 

is applied during the preparation delay. This low power pulse excites the water proton 

signal such that no signal can fully accumulate and be measured. Indeed, the method 

cannot remove completely the signal of water, as the peak of water remains large in 

our experiences, specifically, further suppression of the region of chemical shift for the 

peak of water will be introduced in the part “correction of baseline and region 

suppression”. 

 

C. Phasing 

To have the peaks of the spectrum as more symmetric as possible, the phasing process 

after the transform is always necessary. The available software in our laboratory for 

the correction of phase include NMR pipe (https://www.ibbr.umd.edu/nmrpipe/), 

Topspin (Bruker, Germany) and Chenomix (Chenomix, Canada). We denote both the 

factors by “phase 0” and “phase 1” respectively. Generally, in our works, the phase for 

all the spectra was corrected only by the phase 0. The uniform criterion was to balance 

the two extremes of the spectrum superior or equal to 0.    

 

 D. Correction of baseline and region suppression 

The appropriate definition of baseline for the NMR spectrum is basic for the following 

analyses. This is because the ultimate assignment and quantification are all dependent. 

Especially, in metabolomic studies, the assignment for the peaks representing 

metabolites with low concentration but significant is definitely due to the 

establishment of baseline. For the qualification of each peak, their intensity should be 

integrated from the baseline to the top of the peak. In the current study, the regions 

of chemical shift (ppm) such as (-1, 0) and (8.5, 10) were suppressed since there were 
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no signals in the regions. The region (4.8, 5.2) has also been removed because of the 

present of the peak H20. And the region (3.7 4) was otherwise rejected in the study of 

septic shock because the presence of large peaks in the region corresponds to the 

arterial perfusion by starch, in the emergency rescue, which are not belonging to the 

metabolome of patients. 

 

C. Calibration and alignment 

The variation of magnetic field, pH, salt concentration, temperature or other 

instrument-related variables need to be considered [37]. The calibration is the first 

general step of the alignment Introduced standard substance such as 

trimethylsiylpropionic acid (TSP) or dimethylsilalpentanesulfonic acid (DSS) for being 

the referred peak. Nevertheless, these organic compounds have a good affinity to 

some serum proteins (e.g. Albumin) [38]. Consequently, the doublet of lactate (1.32d), 

the doublet of -glucose (5.23d) and the singlet of formate (8.5s) in the spectra can be 

used as the reference to calibrate the spectra.  

Further, once the spectrum is calibrated at the chemical shift of the referred peak, 

discrepancy of the signals of others peaks may still exist among the multiple 

acquisitions. Hence, other peaks are aligned by referring to the average or by the 

median of all the spectra.  

  

D. Peak assignment 

With a certain condition of pH and experimental temperature, most peaks in the NMR 

spectra are identifiable by referring their chemical shift and multiplicity. Moreover, 1H 

NMR 2D experiments, assignment results from other previous studies and established 

database (e.g. human metabolome database, HMDB, http://www.hmdb.ca) are 

helpful for the identification of the substance. In our study, the software Chenomx 

(Chenomx Inc., Alberta, Canada) was also applied for the assignment. One of the 

spectrum recorded with the serum samples of one septic shock patient is taken as an 

example (shown figure 8), table 1 shows the assignment obtained by the Chenomx 

software.   
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Figure 8. One of the 1H NMR spectrum recorded with the serum samples of patients suffering from 

septic shock. (NMR Spectrometer: Bruker Avance III 500MHz) 

 

 

0.85m 1.5m VLDL, LDL, lipids 

0.82d 0.95d 2-Hydroxyisovalerate 

0.89t 1.64m 1.73m 2-HB 

0.93t 0.99d Isoleucine 

0.95dd 1.70m Leucine 

0.97d 1.03d Valine 

1.06d  3-Hydroxyisobutyrate 

1.19d 4.15m 3-HB 

1.30s 3-Hydroxy-3-methylglutarate 

1.13d Isobutryrate 

1.16d Isopropanol 

1.22d  Methylmalonate 

1.32d 4.11q Lactate 

1.40m Glycocholate 

1.46d Alanine 

1.875m 1.70m Lysine 
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1.91s Acetate 

1.98m 3.32m Proline 

1.99s Acetamide 

2.02s Glycoproteine 

2.12m 2.32m  Glutamate 

2.09m 2.41m Glutamine 

2.2s  Acetoacetate 

2.36s Pyruvate 

2.39s Succinate 

2.52d 2.68d Citrate 

2.71s Dimethylamine 

2.89s  Trimethylaimine 

2.90s N,N-dimethylglycine 

3.05t Proline 

3.25s Creatine 

3.03s 3.92s Creatinine 

3.14s 4.04s Dimethysulfone 

?3.18s Acetyl-carnitine/Choline 

?3.19s 4.11ddd Choline 

3.23t 3.72m 3.82m 4.64d 5.23d Glucose 

3.25s TMAO/Betaine 

3.27t Glucose-6-phosphate 

3.34s Caffeine 

3.55s Glycine 

3.65dd 3.55dd Glycerol 

4.05t Myo-insitol 

5.175d Mannose 

5.79s Urea 

6.52s Fumarate 
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6.88d 7.18d Tyrosine 

7.32d 7.36d Phenylalanine 

7.77d  Tyrosine 

7.67s 7.02s  1-MH 

7.70s dTTP 

8.5s Formate 

Table 1. Assignment of the example spectra recorded with one septic shock patient sample, using 

Chenomx software. s: singlet; d: double; dd: doublet of doublet; t: triplet; q: quartet; m: multiplet. 

 

E. Spectra bucketing 

The spectra bucketing corresponds to the definition of variables. The spectrum is 

actually divided by each 0.001ppm chemical shift. For an acquisition from -1 to 11ppm, 

11000 intervals called “buckets” are consequently obtained. The bucket is composed 

by the value of its chemical shift and the corresponding recorded intensity. For the 

spectra pre-treated by the above processes, all their buckets are gathered and a 

dataset is thereby created. The integrated dataset is afterward defined as the matrix X 

for the analytical software where its lines representing for each recording of spectrum 

and its column representing for each bucket. 

  

Other experimental steps in NMR-based metabolomics such as data pre-treatment, 

statistical analyses, result validation and biological interpretations will be concretely 

discussed in chapter IV. 
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Chapter III Mass spectrometry based metabolomics  

 

1.3.1 Principle of mass spectrometer 

 

The mass spectrometry (MS) is an instrument which serves to test the molecular mass 

and the structure of substance. The identification of the compounds is achieved by 

analyzing the ion fragments ionized from the substance.  

After the ionization, the ion fragments are volatilized to gas phase and then separated 

in the light of the ratio of mass to charge (M/Z) [39].  

 

Basically, a mass spectrometer possesses an ion source to produce gas phase ions, one 

or several mass analyzers to separate the ions according to their mass, a detector to 

count the ions, and a monitor with its accessories [40]. Figure 13 has schematically 

presented the main elements of the mass spectrometer.   

 

 

 

Figure 13. Schematic diagram presenting the main components of the mass spectrometer. The vacuum 

for the ion source, analyzer and detector is maintained by the pumps. The output of the spectrum is 

presented on the connected computer.  

 

Ionization and fragmentation  

 There are various methods of ionization, which can be roughly divided into two types: 

hard ionization and soft ionization.  

In the part of the research of HCC recurrence, an electron ionization (EI) was applied. 

EI is a hard ionization which uses the energetic electrons to impact directly the 
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molecule. The principle of the formation of molecular ion in the EI is expressed by the 

following equation: 

M + e- → M+ + 2e-                                                (1.3.1) 

where M is the ionized molecule to be ionized and M+ is the molecular ion after the 

electronic reaction. 

After the impact, energy belonging to e- is transmitted to the molecular ion M+, results 

in further fragmentations. The secondary fragmentations may be ionic or neutral. In 

the part of metabolomic study on HCC recurrence research, as well as many other past 

metabolomic studies using the tandem of gas chromatography and mass spectrometry, 

the EI source is applied. 

An electrospray ionization (ESI) was employed to combine to ultra-performance liquid 

chromatography for studying the septic shock mortality. 

Compared with the hard ionization method, the ESI source is classified as a soft-

ionization since less energy is sent up to the molecule, and the molecule is then 

disrupted into positively charged molecular ion and electron in the ion source. The 

molecular ion is then further fragmented.  

As to its application in the combination of LC-MS, the liquid of sample (whose pH is 

usually adjusted) is smashed into micro droplets (1-2μm) by a high voltage. The 

molecule wrapped in the droplets is then ionized by the effect of Coulomb explosion, 

which is issued from the evaporation by the pneumatic nebulization and the 

inhomogeneous distribution of charges between inside and outside of the droplets. 

The ions are detected in the form of cations such as [M+H]+, [M+Na]+ and [M+nH]+ in 

the positive mode and detected as [M-H]- in the negative mode.  

Other rifely used ion sources which are connected to the MS include chemical 

ionization (CI) [41], fast atom bombardment (FAB) [42], atmosphere pressure chemical 

ionization (APCI) [43] and matrix assisted laser desorption ionization (MALDI) [44].  

      

Analyzer  

The analyzer may serve for collision, selection and analysis of the ions. After the 

injection of the ions from the ion source, the ions are subjected to the analyzer and 
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their kinetic energy is provided by the force of electric and magnetic field forces. The 

ions are separated by their different radius of rotation based on its m/z. There are 

various types of MS analyzer such quadrupole (Q) [45], time of flight (TOF) [46], ion 

trap (IT) [47], orbitrap [48], and Fourier transform ion cyclotron resonance (FT-ICR) 

[49]. In this thesis work, the tandem of analyzers linear trap quadrupoles-orbitrap 

(LTQ-orbitrap) and quadrupole were applied for the analyses in LC-MS and GC-MS 

respectively.  

 

 Quadrupole (Q)  

As shown in Figure 14 below, the quadrupole analyzer is composed by the four 

electrodes in which there are two connected pairs of rods. All the rods are connected 

with one direct current (DC) source and an alternative current source which is 

generated by a radiofrequency. At one certain time point, between one pair of rods 

there is an electric field with a voltage (=VDC+VRFcos(ωt)) and between the other pair 

the field intensity is meanwhile adverse (=-VDC-VRFcos(ωt)). With an EI source which is 

widely used in the GC-MS, only positive ions are injected into the quadrupole. The ion 

is therefore attracted by the rod with negative field and repelled by the positive one. 

Due to the alternative filed intensity, the ion will go through the analyzer with an 

oscillation. The ion selection and separation depend on its ratio m/z. With the 

presence of the introduced DC, non-selected ions will hit the rod (shown in the figure 

by the “unstable trajectory”) and those ions within the range of detection are allowed 

to pass through the analyzer. The amplitude of the oscillation corresponds to the ratio 

m/z, too. This is because the ions with smaller m/z will be accelerated faster than big 

ones, and therefore lead to a larger amplitude which is perpendicular to the central 

axis of the quadrupole. Thus, ions with smaller m/z spend longer time than ones with 

bigger m/z on passing the analyzer, which is the feature of the ion separation.        
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Figure 14. Schematic diagram exhibiting the structure of the quadrupole and the passing path of ion in 

the analyzer.  

 

Additionally, applications of a tandem of triple quadrupoles are widespread for 

targeted metabolomics. In the QQQ-MS, the first Q serves as a mass filter and it 

submits the screened ions into the second Q with an acceleration. The Q2 is like a 

container of collision where the selected ions are collided with neutral gas molecule 

and a collision-induced dissociation (CID) is elicited for the fragmentation of the ions 

[50]. The fragments of the precursor ions are eventually transmitted into the Q3 and 

their masses are scanned. With the mass information of the precursors and their 

product ions, a better understanding of the structure of an undefined molecule and 

also a good quantification will be achieved.  

 

 Orbitrap 

The orbitrap is a spindle-like MS analyzer which allows to trap ions orbiting around the 

trap axis with their specific orbitals in the analyzer. Ions are trapped in the analyzer, 

and an outer alternative electric filed makes the ions orbit around and oscillate along 

the trap axis. The frequency of the orbit depends on the mass-charge ratio, which is 

presented by the formula 1.3.2.  

 

( / )z m k                                                              (1.3.2) 
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where ω is the angular velocity of the oscillation, z/m is the mass-charge ration and k 

is field curvature. Hence, the ions are separated and recognized in the light of their 

different frequency.  

The advantages of the orbitrap includes its high resolution (accurate until 0.0001Da) 

and low mass error. A cutaway view of orbitrap mass analyzer is shown in Figure 15.  

 

Figure 15. A cutaway view of orbitrap mass analyzer. Ions are injected into the orbitrap at the point 

indicated by the red arrow. The ions are injected with a velocity perpendicular to the long axis of 

orbitrap (the Z axis), where they begin coherent axial oscillations within  (By Hu. et al. 2005) [51].  

 

Detector 

After the ions pass the analyzer, the signals of the ions are recorded and accumulated 

by the detector. Indeed, the reception and the recording of signals are by the sequence 

of different mass-charge ratio. As the ions are separately captured, their resultant 

weak currents are recorded and stimulated by an amplifier. For example, the electron 

multiplier [52] is frequently applied as the amplifier which is generally composed by a 

pair of metal plate. The secondary emission to the opposite plate is possible after the 

first hit on one of the plates, which is favored by the existence of potential difference 

between the two plates. The repeated alternative movement of the charged particle 

in the amplifier makes it possible to record the signal from the same particle. Other 

used detectors include Faraday cups and ion-to-photon detectors [53].  
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1.3.2 Tandem mass spectrometry (MS/MS) or tandem MS to chromatography 

techniques  

 

MS/MS[54] 

The tandem mass spectrometry, also noted as MS/MS or MS2 is commonly used in the 

metabolomic studies for the qualification of the ion peaks or for determining the 

structure of the unknown compounds.  

As regard to the principle of the MS/MS, briefly, the ions are firstly selected and 

separated in the first MS by their m/z. Then, further dissociation of the ions takes place 

in the second MS [50]. Eventually, the experience provides information not only the 

mass-to-charge ratio of both the precursor ion and the product ion, but also the 

position of fracture in the initial ion.  

In the case that only one mass spectrometry is applied, the assignment of the MS 

peaks is primarily realized by referring the obtained value of m/z to the exact mass of 

the ion. However, this is not reliable for the existence of isomers. Through the 

application of MS/MS technique, the qualification should be more convincible if the 

product ions of the observed ion can be also matched to those which are obtained by 

the standard substance or to some data base of note. On the other hand, the 

difference of m/z between the precursor and product ion allows to speculate the 

position of the fractured bond in the precursor ion, and therefore to speculate the 

configuration of the unknown substance.  

 

Chromatography–MS 

In the studies of metabolomics, as the analyte is usually a mixture of extensive 

molecules, if the bio-samples are analyzed directly by the MS, the repetition of 

fragment ions from different molecules makes it hard to interpret the MS peaks. Hence, 

a tandem of chromatography with MS is appreciated, which allows to beforehand 

separate the analyte in the light of the property of its elements [55]. The isolated 

components are eluted in gradient and then ionized in the ion source.  
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Concretely, the analyte is packed by the carrier, which may be gas or liquid, flows 

through the chromatographic column. The chromatographic column plays a role as a 

stationary phase which is able to absorb the analyte in the mobile phase by a certain 

percentage of quantity of the analyte. The coefficient of distribution (K) of the 

component in both the stationary and mobile phase is a constant at equilibrium 

(formula 1.3.3). The absorbed fractions are gradually washed off and detected 

respectively by the detector. Meanwhile, the time of retention (Rt), which is calculated 

by the formula 1.3.4, is recorded for each component. A flow through the 

chromatographic column about a mixture of two substance is taken as an example, 

shown Figure 16.   

 

K = Cs/Cm                                                             (1.3.3) 

 

0 0
s

m

V
Rt t t K

V
                                                             (1.3.4) 

 

where Cs and Cm are the concentrations in the stationary phase and mobile phase of 

the absorbed solute; the Vs and Vm are the volumes retained by the two phases 

respectively. t0 is the dead time [56].  

The gas chromatography-mass spectrometry and the liquid chromatography-mass 

spectrometry are widely used for carrying out metabolomic studies.            
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Figure 16. Schematic diagram showing a flow of a mixture of two components A and B through the 

chromatographic column. A and B are separately eluted and recorded by the detector. After the 

transform of signal, the corresponding peaks of A and B are present on the monitor.  

 

 Gas chromatography 

The gas chromatography uses a carrier gas which wraps the analyte and runs through 

the column. It separates the mixture with the components that are easy to be 

vaporized. The tandem of GC-MS can be applied in the analyses with solid, liquid, and 

gaseous samples [57].  

The applied carrier gas needs to be pure and stable. This is because the MS is sensitive 

to detect the impurities and the reaction between the carrier gas and the stationary 

phase should be stemmed. Gas such as hydrogen, nitrogen, and inert gases are used 

as the carrier gas.  

An EI ion source is commonly used for the GC-tandem MS. The reactive electrons are 

produced by the heated cathode. The separation of the components depends mostly 

on the temperature programming of the column and the flow speed of the carrier gas.   

The mass selective detector (MSD) is usually used as the detectors of the GC-MS [58].   

In order to improve the vaporability, thermostability and even the sensitivity of the 

compounds in the analyte, which is beforehand treated by a derivatization. The active 

hydrogens, in the groups such as –OH, -COOH, -SH, -NH2, etc., are substituted by the 
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groups with lower polarity. In the view of need, the derivatization strategies can be 

chosen among the methods such as silanization, acylation, halogenate, etc. [59]  

The transmission of particle is at the atmosphere in the chromatography part but is 

vacuum for the MS part. For the non-targeted metabolomic analyses, the full scan field 

ranges usually between 50 to 600 m/z. And, the selective ion monitoring (SIM) method 

is applied for the targeted analyses which requires the set of the scan range of m/z in 

the several periods of retention time. As the EI source is mostly employed, only the 

positive mode is available, and the precursor molecular ion is not detectable. Hereby, 

the qualification of the peaks depends on the specific fragments. The relative 

quantification of component is done by the determination of the peak area. In the 

present work, the SHIMADZU GC-MS 2010 plus was utilized.  

 

 Liquid chromatography [60] 

Liquid chromatography is the other tandem method to the MS. Unlike the GC-MS, 

liquid mobile phase is applied as the carrier of analytes. The mobile phase is a mixture 

of two solutions with distinct polarities: one polar solution (e.g. H20+0.1% formic acid) 

and one solution with low polarity (e.g. acetonitrile). The percentage of each solution 

is adjusted along the separation to preserve as more metabolites whose polarities are 

in a large range as possible.  

The choice of the chromatographic column is principally dependent on the polarity of 

the metabolites of interest. Generally, reversed-phase (RP) column such as C8 and C18 

column [61] is suitable for the separation of molecule with medium and low polarity 

while a hydrophilic interaction chromatography (HILIC) column [62] is predominant for 

the separation of polar or ionic compounds. 

LC-MS has been taken advantage in metabolomic studies since it allows to obtain a 

large coverage of metabolites in bio-systems and to achieve an exact molecular mass 

for the metabolites with a high sensitivity and resolution. It is possible to analyze and 

to detect both positive and negative ions. Besides, a combination between the 

application of RP column and HILIC column helps to obtain more metabolites of 

interest.  
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During this study, an ultra-performance liquid chromatography (UPLC)-MS is applied. 

The column is filled with particles inferior to 2μm, which increases linear velocity with 

a high pressure. Compared with the high-performance liquid chromatography (HPLC) 

technology using fillings of 3.0 to 4.6μm, the UPLC leads to a better resolution, 

sensitivity and a faster analytical speed [63]. A HSS (high strength silica) T3 column 

(Waters, Milford, MA, USA) which is a RP column has been applied. It is actually a 

modified C18 column which performs a better separation in polar molecule and in a 

larger pH range than C18 column. Using such a column in untargeted metabolomic 

analyses, we have achieved not only a good retention of nonpolar molecule such as 

kinds of lipids but also a good retention of polar metabolites such as amino acids. 

Other than tandem chromatography-MS, the combination between capillary 

electrophoresis (CE) and MS is also well applied for metabolomic studies. The major 

aimed metabolites by the technique are the polar metabolites [64, 65].   

 

1.3.3 Processes of mass spectrometry-based metabolomics 

 

The process of execute the mass spectrometry based metabolomics is mostly similar 

to the process of NMR spectroscopy-based metabolomic which has been exposed in 

the last chapter. However, some operations in the steps distinguish from those in the 

precedent method. The remarkable feature of the MS based metabolomics is 

therefore introduced as following: 

 

Sample preparation  

The sample preparation begins from the removal of proteins. Solution of extractant 

such as methanol, acetonitrile is added to the biofluid. After a centrifugation, the 

proteins are precipitated while the supernatant is drawn and lyophilized. Indeed, the 

metabolites to be analyzed are dissolved in the supernatant liquid. In this thesis work, 

methanol water solution (volume ratio 1:4) was used as the extractant. However, it 

should be underlined that for lipidomics studies (important branch of metabolomics, 

not included in this study) [66], which focus on the analyses in the extensive kinds of 
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lipids, the extractant is different from the mentioned compounds, solution with less 

polarity is applied for the dissolution of the lipids.     

The freeze-dried samples should be redissolved before the instrumental analyses. For 

LC-MS the solution can be consistent with the extractant. For GC-MS studies, 

derivatization reagent is added into the lyophilized samples, and the sample analyses 

are performed after the extraction of the supernatant after the derivatization 

reactions.  

The preparation of quality control (QC) samples are demanded at the same time of the 

preparation of the real samples. The QC samples are collected usually by the mixture 

and a subpackage of all the real samples. The method of extraction should be in accord 

with that in real samples.   

Moreover, one or several internal standard references are also added into the samples 

during the preparation. The internal standard substance does not exist in the analyte 

and it serves to a better quantification with their known concentration.   

 

Spectra acquisition and peak assignment  

In the sequence of analyses, the QC samples are inserted after an equal amount of real 

samples. They are used to affirm the stability of the instrument and to acquire 

complementary product ion information [26]. 

Unlike the spectrum of NMR spectroscopy, the spectrum of MS within the scan scope 

of m/z is not necessarily continuous. A mass spectrum is presented by bars 

accompanied by a determined mass. Each peak represents a molecular ion or an ion 

fragment which are corresponding to certain metabolites. However, in the experiences 

of chromatography tandem to MS, the total ion current (TIC) chromatogram is 

continuous which describes the integrated intensity across the entire range of masses 

being detected at every point of retention time in the analysis. Figure 17 shows a 

comparison between the mass spectrum and a TIC chromatogram.  
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Figure 17. Comparison between the mass spectrum and a TIC chromatogram. A: MS/MS spectrum of 

UDCA (ursodeoxycholic acid), taken from HMDB (www.hmdb.ca) the abscissa is for the m/z and the 

ordinate is for the relative intensity; B: One of the TIC chromatograms obtained by the serum metabolic 

profiling in the septic shock patients. The abscissa is not m/z but the retention time obtained by UPLC-

ESI-Orbitrap-MS. UDCA was one of the detected metabolites in the experience (negative mode, [M-

H]=391.2831 RT=9.27min) but not visible in the TIC diagram.     

 

With the help of the chromatography, the qualification of the ion peaks can be both 

determined by the m/z and by the retention time. The data base such as HMDB and 

metlin (https://metlin.scripps.edu/index.php) can be also helpful for the assignment 

of the peaks. In the case that more than one isomer is possibly present, the further 

confirmation of the qualification can be done by matching the results of MS/MS or the 

spectra of corresponding standard substance.  

 

http://www.hmdb.ca/
https://metlin.scripps.edu/index.php
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Data pre-processing 

The ion peak area is usually recorded for the quantification of each peak. For the data 

obtained from GC-MS analyses, a deconvolution should be first operated on the data. 

Apart from this, peak matching and alignment are followed, which are accomplished 

by the software such as SIEVE, Markview for LC-MS and Leco ChromaTOF for GC-MS.  

Afterwards, the assessment of the stability of QC samples is necessary to confirm the 

reliability of the recorded peaks. In order to avoid some exogenous substance in each 

test, the peaks are eliminated if the null peak area is present in more than 20% samples. 

Afterwards, RSD of each peak of QC samples is calculated and those peaks with a RSD 

superior to 30% are also removed for their poor stability. Equally, only the remained 

ion peaks after the screening are further analyzed in the real samples. A PCA analysis 

including all the QC and real samples is also useful to view the dispersion between the 

samples. A focalization of QC samples in the PCA score plot should normally found for 

they are in fact equivalent. Figure 18. has shown an example of the PCA exhibiting the 

QC samples and the real samples.  

 

Figure 18. A score plot of PCA obtained by analyses of GC-MS on all the samples of HCC patients. The red triangles 

are the QC samples and the blue triangles represent the real samples.  

 

Introduced methods of normalization are equally applicable for the MS peaks 

normalization. Besides, the normalization can be otherwise implemented by referring 

to the internal reference. We chose the internal reference that shows the lowest RSD 

in the QC samples as the reference of normalization. The normalization is performed 
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by the ratio of intensity of each peak to the detected intensity of standard reference 

in every real sample.  

 

Once the data is processed, the statistical analyses methods as well as result validation 

and biological interpretation which are similar to those applied with NMR-based 

approach will be exposed in the next chapter.  
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Chapter IV. Similar experimental steps and comparison 

between NMR and MS-based metabolomics  

 

For both NMR and MS-based metabolomics, methods of data pre-treatment 

encompassing the spectra normalization, the variable scaling are similar. Similarity can 

be also found for the methods of statistical analyses as well as the result validation and 

biological interpretation. First part of this chapter summarizes the similar experimental 

steps for both the techniques-based metabolomics. A brief comparison between the 

two techniques is concluded at the end of the chapter.  

  

1.4.1 Methods of data pre-treatment 

A. Normalization 

  

The normalization of spectrum is a method attenuating macroscopically the dilution 

effect. Except for the experimental errors, a common source of non-induced variance 

issues from the large dynamic range of metabolite concentrations in the studied 

samples, which gives rise to unequal variance of residuals [67]. But, the variability of 

one certain metabolite is often analyzed by its mean concentration, the 

heterogeneous changes in different samples elicit errors in the results. On the other 

hand, for the analyses in the biofluid, urine for example, another important influencing 

factor is the inequivalent intake of water among different subjects. Thus, a 

normalization of the peaks for each spectrum in the whole dataset is needed.   

Numbers of normalization methods are available, among which, the integrated peak 

area normalization, quotient normalization and quantile normalization are the most 

employed.  

 

1) Integral peak area normalization 

Integral peak area normalization is simple for we only need to sum up the total peak 

area of one spectrum and then integrate the area for each peak and calculate its 



44 
 

proportion to the total. However, this method is prone to be biased as the intense 

peaks occupy a large proportion in the total area and the spectrum is extremely 

sensitive to their variation. In this case, small but significant peaks in a bucket are 

possible to be unequally normalized.  

 2) Quotient normalization 

Compared with integral normalization, the quotient normalization is more frequently 

suggested in the data pre-treatment of metabolomics. This is because it is less 

hampered by extreme amounts of metabolites than the above. And, normalization in 

samples with low metabolic variations is more exact [68]. The algorithm is as following:  

  

1. Perform an integral normalization for all the test spectrum 

 2. Calculate the median spectrum (usually we choose the median spectrum) 

3. Calculate the quotients of all variables included in test spectrum to those in the      

reference spectrum   

 4. Calculate the median of the obtained variable quotients 

 5. Divide all the variables of the test spectrum by this median 

  

3) Quantile normalization 

The quantile normalization is frequently performed by the following steps [69, 70]: 

 

1.  List and assign each of the variables to a column and metabolites to a row (for  

mass, for NMR, each row represents a sample).  

2.  Each column is sorted by intensity from the lowest to the highest.  

3.  Determine the arithmetical mean of each row according to sorted rank.  

4.  Substitute the mean value for each intensity value in the row.  

5.  Restore the original order of the assigned mean values to determine the 

normalized relative intensity.  

 

Hence, quantile normalization is a normalization method based on the ranking of the 

variables.  It reduces the non-biological systematic errors. 
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B. Variable Scaling  

The scaling, is the normalization of the variables. Given that the analyzed variables 

correspond to the metabolites, in the case that several metabolites are fairly 

concentrated, the variation of these metabolites or the corresponding variables will 

be over highlighted. The consequence will be that significant variation in the low 

concentration metabolites will be overlooked. To avoid this bias, it is necessary to 

balance the weight of all the variables, and the variable scaling should be done. In 

metabolomic studies the mostly frequently applied scaling methods include Auto-

scaling (or “UV-scaling”), Pareto scaling and range scaling. Their algorithms and their 

characteristics are shown in table 2 [71]. Figure 11(a-d) takes one example and shows 

the achieved scaling by three different methods. Accordingly, we observe that after 

the scaling, the intensities of the variables have been all centered and thereby a new 

normal-like redistribution is performed for the variables.   

 

Method  Formula Goal Advantage Disadvantage 

Auto-scaling  Compare metabolites 

based on correlations 

All metabolites 

become equally 

important 

Inflation of the 

measurement errors 

Pareto-scaling  Reduce the relative 

importance of large values, 

but keep data structure 

partially intact 

Stays closer to the 

original 

measurement than 

auto-scaling 

Sensitive to large fold 

changes 

Range-scaling  Compare metabolites relative 

to the biological response 

range 

All metabolites 

become equally 

important. Scaling is 

related to biology 

Inflation of the 

measurement errors and 

sensitive to outliers 

Table 2. Different frequently used scaling methods and their characteristics.  
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a. 

 

b 
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c 

Figure 9. Schematic diagram presenting the effect of three different scaling methods. a: the Auto-

scaling; b: the Pareto-scaling, c: range-scaling. Abscissa axis: intensity of the variable, ordinate axis: 

density of the variable. The example data of 1H NMR urine metabolomic study from Metaboanalyst 

3.0 (metaboanalyst.ca) is used to exhibit the comparison between the scaling methods.  

 

1.4.2 Data statistical analyses 

 

There are usually a large number of samples and variables for metabolomic analyses. 

Hence, statistical analyses are employed for the visualization and interpretation of 

metabolomic variations. 

There are two main aspects of statistical analysis in the metabolomics: univariate 

analyses and multivariate analyses. The choice between the two strategies depends 

on the initial experimental design. In general, multivariate analyses are prior for the 

non-targeted spectroscopic analyses because they usually consist of large numbers of 

variables with their considerable correlation between them. Univariate analyses are 
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important for the targeted analyses, which focus on the quantification of some known 

feature metabolites. In NMR spectroscopy based metabolomic studies, however, the 

application of multivariate analyses is dominant since each detected metabolite may 

correspond to not only one peak, which is a traced by numbers of variables. In spite of 

that, by calculating the mean intensity of involved peaks, univariate analyses have 

been equally shown to be feasible in NMR spectroscopy based metabolomics [72].  

 

A. Univariate analyses 

 

1) Student T test 

In metabolomic studies, student T-test is usually used to determinate the difference 

between two means from two compared groups. The null hypothesis of the test H0 is 

that there is no difference of mean between the two sets of data. The null hypothesis 

should be rejected if the probability of the H0 is inferior to the threshold of confidence, 

and the H1 “there exists significant difference of mean between the two groups of 

samples” is accepted.    

Its formula is shown as below: 

                               

where                            (1.4.1)  

In the formula, and are the mean of the two groups of samples; n1 and n2 are 

the numbers of samples for the two groups respectively and (n-1) represent the degree 

of freedom for each group. The SX1 and SX2 are the standard deviation for the two 

groups and Sp is the pooled standard deviation.   

 

There are preconditions includes: 

 (1) the samplings should be randomized  

1X 2X
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 (2) each studied group should be independent to others;  

 (3) the distribution of the studied variables should follow or almost follow the 

 normal  distribution in the population;  

 (4) the variance of variable among different population should be equivalent. 

In metabolomic analyses, T test is frequently used to verify whether one metabolite is 

significantly varied in the comparison between two studied groups of subjects. The 

threshold p < 0.05 is usually regarded as the criterion that difference of concentration 

of the metabolite is significant.  

 

2) T’ test 

The T’ test is the derivative test from student T-test. It is used when the variances of 

the two compared groups are not equivalent.  

 

3) Binomial test 

If the distribution of the variables does not follow the normal distribution, the student 

T-test or T’ test are not available. In this case, nonparametric tests [73] are employable 

to understand whether the two groups are significantly different. There are types of 

nonparametric tests, in which the binomial test [74] is frequently used in metabolomic 

analyses. In the test, the variable is only possible with two values (e.g. control group 

vs. experience group). In our studies, the binomial test is realized in the SPSS software 

(IBM, Chicago, USA) [75], whose initial hypothesis and final decision are analogous to 

that in T-test. As an example, when the amount of sample is relatively small, to figure 

out if the concentration of one metabolite is significantly different between healthy 

controls and patients, the binomial test is proposed.  

  

4) ANOVA  

ANOVA, short for Analysis of Variance is another statistical test providing whether the 

means of two or more than two groups are equal. [76]. It is similar to the student T-

test when only two groups are analyzed. 

For the studied variable(s), in fact, their variations exist between inter- and intra- 
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groups. The null hypothesis is similar to that in T-test: we suppose initially that there 

is no difference of mean among the groups, and refuse finally the hypothesis if the 

intergroup mean difference is much larger than that in the intragroup. For the 

metabolomic study, ANOVA is therefore predominant when there are more than two 

studied groups.  

 

B. Multivariate analyses 

 

 1) Unsupervised methods 

 

a. Hierarchical cluster analysis  

There are numbers of algorithms in cluster analysis [77], in which the subjects and the 

analytes are first grouped to subsets and analyzed separately. The advantage is that it 

shows clearly both quantitative relationship and correlation among the analytes and 

the samples. In metabolomic studies, hierarchical cluster analysis (HCA) [78] is the 

frequently applied to discover the metabolite discriminators. Figure 12 presents an 

example of heat map which complies with the HCA algorithm.  
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Figure 10. An example of heat map concerning the comparison between the mice with genotype 

knockout (KO) and wild type (WT). The green color stands for the downregulation of analyte while 

the red color represents the up-regulating. The correlations among the variables are shown by the 

connecting lines [79]. (Example taken from www.metaboloanalyst.ca) 

 

b. Principal component analysis (PCA)  

Principal component analysis is a multivariate technique that analyzes a data in which 

observations are described by several correlated quantitative variables [80, 81] . The 

aim of the analysis is to find out a transformation that transforms an original set of 

correlated variables to a new set of uncorrelated variables, called principal 

components [82]. The input data set is noted as a matrix X. A linear combination T of 

X is sought, noted as: 

                                                     (1.4.2) T X p E  

http://www.metaboloanalyst.ca/
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where p is the weight of X and E is the residue. In the space of T, the first component 

T1 is the first column of T matrix that represents the largest variation among the 

variables. The components are obtained in order of decreasing importance, and the 

aim is to reduce the dimension of the variables. The second component is 

perpendicular to T1 and T3 is perpendicular to the plane formed by T1 and T2, and so 

on. Consequently, the data is usually represented by two or three dimensions.  

The two analyses HCA and PCA belong to unsupervised learning methods in which the 

data is not labelled.  

 

 2)Supervised methods 

 

a) PLS-DA 

Compared with the unsupervised methods, supervised multivariate methods 

introduce extraneously a matrix of response Y, which is related to the classification. 

Partial least squares discriminant analysis (PLS-DA), is derived from PLS regression 

(PLS-R) [83], which finds the linear relationship between Y and X: 

                                                 

Y = f(X) + E                                                               (1.4.3) 

 

b) OPLS-DA  

Orthogonal partial least squares – discriminant analysis (OPLS-DA) is an extension of 

PLS-DA. It allows to remove the systematic variation of matrix X which are not 

correlated with Y, which helps to make the model simpler to be interpreted. With a 

similar regression algorithm as PLS-DA, a single component is used to predict the class 

while the other components describe the orthogonal variation with respect to this first 

predictive component [84]. 

 

 

Important parameters in the PLS/OPLS-DA: 
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 R2 and Q2 

 R2X and R2Y record the fraction of explained variance of X and of Y respectively by 

each calculated component. Q2 represents the predictability of the model [85]. The 

closer to 1, the better ability of prediction is for Q2.      

 VIP 

 The variable importance in projection (VIP) is the weight of each variable in the 

model. In the part of MS-based metabolomic study the VIP was used to define the 

most important metabolite discriminator for different groups. It also can be used to 

select variables in order to filter the noise and other uncorrelated variables [86].  

 AUROC 

The area under receiver operating characteristic curve (AUROC), is a graphical plot 

that displays the performance of a binary classifier system as its discrimination 

threshold is varied [87]. The ROC curve is characterized by the sensitivity (axis y) and 

specificity (1-specificity for the axis x) of the classification. Taking example of clinical 

applications of ROC curve, the sensitivity of a diagnostic test is the proportion of 

patients for whom the outcome is positive that are correctly identified by the test. The 

specificity is the proportion of patients for whom the outcome is negative that are 

correctly identified by the test.  

 

Method of multi-levels model 

In the study aiming to investigate the evolution of septic shock, we have employed the 

multi-levels models on the patients who provided two points of samplings [88], which 

aims to analyze the samples belonging to the same subject in the multivariate analysis. 

The method allows to remove the variation of inter-individual, which is often 

calculated as the principal difference between the samples in the model of 

multivariate analysis, shown Figure 11. Hence, we use this method to determinate the 

metabolic differences between the two samplings for each patient, providing us the 

information of the effect of the clinical intervention and the individual feedback.  
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Figure 11. Principle of the multi-levels model presented in a space of two metabolites. The dots and the 

triangles represent two different samplings. Each color represents the same subject. Before the paired 

method conversion, it seems that the main distinction issues from the differences between the subjects 

but not between the different samplings for each subject; after the rearrangement by the paired 

method, the mean points of the two samplings are placed to the coordinate origin and an obvious 

discrimination between the two samplings is thereby displayed.  

 

1.4.3 Result validation  

 

The validation of the results is rifely required in the metabolomic studies since the 

obtained discriminatory models or metabolites are generally significant for the studied 

population only when they are applicable to predict the new specimens. Actually, 

univariate and multivariate analyses are applied to verify the reliability of obtained 

with new samples or with internal validation by sample permutation.   

In many studies, the samples are divided into two parts: training set and test set. The 

samples in the training set are used to establish a discriminatory model, which 

monitors the differences between the samples in different groups. Afterwards, the 

samples of in the test set are projected into the founded model to verify the predictive 

ability of the model [89]. On the other aspect, as multivariate analyses such as PLS-DA 

and OPLS-DA are frequently used in the data analysis, among large numbers of variable 
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dimensions it is usually possible to find out a dimension which separates well the 

compared groups even though the differences between the groups are not significant. 

The effect called “over-fitting” is therefore not acceptable [90]. Further, the SIMCA-P 

software is widely used in nowadays to perform PLS/OPLS discriminatory models. 

However, in our previous study we demonstrated that the obtained results from the 

software might be at random because the algorithm is dependent to the order of the 

samples [91]. In conclusion, validation of the findings is important to ensure that the 

findings are not bias. In our studies, we primarily used two sorts of validations: internal 

validations by the samples in the training set and external validations by the samples 

in the test set. 

 

 A. Permutation validation 

The permutation validation confirms that the discriminatory model is not over-fitting. 

Figure 12 shows an example of permutation validation (obtained in the SIMCA-PA 

software). The abscissa is the correlation between the permutated variable and the 

original variable. The ordinate corresponds to the calculated R2 and Q2. The blue line 

stands for the linear regression of Q2 with the permutation of Y, and the green line 

represents the similar evolution of R2. Theoretically, the two value should achieve the 

maximum when the permutated Y equals exactly that in the training model. Hence, 

the slope of both the two lines should be positive [92, 93].  
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Figure 12. Example of permutation and cross validation in SIMCA-P. [94] 

 

 B. Validation by the test set 

One strategy of validation by the test set is to reproject the samples which are not 

included in the training set to the established discriminator model. The prediction is 

valid if the model performs still a good separation in the test samples. Another strategy 

which is ensure the significance of several determined discriminatory metabolites by 

calculate their area under receiver operating curve (AUROC) [95]. After the 

quantification of the targeted metabolites is obtained, AUROC of the metabolites can 

be calculated to verify the sensitivity and specificity of the metabolites for being a 

potential biomarker. The value of AUROC range from 0.5 to 1, where 0.5 means there 

is no separation and 1 means the separation between the groups is perfect.    

Further, if there are various significant metabolites found with excellent performances 

in the discriminatory model. A combinational biomarker can be generated by a 

regression analysis with the defined metabolites. The validation by AUROC can be 

simply executed with the combinational biomarker in the test set. 

 

 

 

 



57 
 

1.4.4 Biological interpretation 

 

The detection of the significant variations in the metabolites enables to deduce the 

variation of the involved metabolic pathways. Typically, for the clinical application of 

metabolomics, the understanding of deregulation of the metabolic pathways is 

important which provides evidence to improve the diagnosis, prognosis and as well as 

the treatment protocol. Frequently used database of metabolic pathways include 

“KEGG pathway” (http://www.kegg.jp/kegg/pathway.html) and “HMDB pathway” 

(http://www.hmdb.ca/pathways) [96-98]. The database not only reveals the 

attribution of metabolic pathway for the metabolites, but it provides information of 

related proteins and genes as well. Furthermore, the metabolomic results inspire the 

complementary experiences with other omics platforms. Accordingly, the parallel 

observation in the genome or proteome improves the understanding of the origin of 

the variation of metabolites. Besides, some online software such as “Metaboanalyst 

3.0” (www.metaboanalyst.ca) [99] and “Biocyc” (http://biocyc.org) [100] are available 

to induce the metabolic and signaling pathways which are correlated with the 

determined discriminators. Some commercial bioinformatics solutions (e.g IPA 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/ and 

MetaCore https://portal.genego.com/ ) provide useful features for performing 

molecular pathway and network analyses. Most of them integrate information from 

different omics approaches and focus on providing solutions that facilitate a deeper 

insight into the role of the metabolites in the molecular mechanisms of patho-

physiological processes [101].  

 

1.4.5 Comparison and combination between NMR-based and MS-based 

metabolomics. 

 

Both NMR and MS, which are the two principal techniques in metabolomics, have 

been used for the determination of clinical biomarkers in this study.  

http://www.kegg.jp/kegg/pathway.html
http://www.metaboanalyst.ca/
http://biocyc.org/
https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/
https://portal.genego.com/


58 
 

A comparison between the two approaches concerning their application in 

metabolomics shows that MS provides a wider coverage of metabolites than NMR 

does. The reason should be that MS brings a better sensitivity. Metabolome is usually 

analyzed in 1H NMR-based metabolomics with limits of detection on the order of 

10μM [102]. A study of Nicolson et al. has eventually determined about 55 

metabolomics in human plasma by different sequences using a 750MHz NMR 

spectrometer [103]. The number of defined metabolites increased to 70 in another 

study using GC-MS during only one analysis in the plasma of sheep [104], given that 

more metabolites are possible to be identified with LC-MS. Even though using a 

cryoprobe helps to improve the sensitivity and resolution for NMR, the high cost limits 

its use. Indeed, especially for untargeted metabolic profiling, the coverage of 

metabolites is crucial to find out as more significant variations as possible in the 

metabolome.  

However, the quantification of NMR-based method is more reliable since the 

reproducibility is better and the acquisition is less influenced by the salinity of the 

sample [102]. Alterations may be present among the results obtained from MS 

instruments within different tandems and from the bias of alignment and peak 

matching which are performed with the software for a same sample [105]. Besides, 

NMR-based method needs a simpler preparation of samples and also do less damage 

to the samples.  

Studies using the combination of both NMR and MS-based methods have been 

performed, which showed that the two methods were well complementary. 

Apparently, the coverage of metabolites is improved by using both of the two 

techniques and it was shown that the combination of the data sets from the two 

methods is promising for metabolomic studies [106, 107]. Using the combination of 

the two techniques helps to develop a high-throughput metabolomic method of tissue 

extraction [108]. Another study showed that using the two methods together helps to 

fast identify unknown metabolites [109]. 
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II. Metabolomic studies of sepsis and septic shock  
 

2.1 Introduction of sepsis and septic shock  

 

Sepsis is defined as a systemic inflammatory response syndrome (SIRS) which is caused 

by infections [110, 111]. It’s diagnosed by the symptoms such as abnormal body 

temperature, rapid breathing, elevated heart rate, confusion and edema [112, 113]. 

As sepsis develops, severe sepsis is characterized by the advent of organ dysfunction 

or tissue hypoperfusion [114]. Septic shock is the most severe stage which is 

accompanied by multiple organ dysfunction syndrome (MODS) [115] and a continuous 

intractable low blood tension [116, 117]. The evolution of sepsis is shown in Figure 19 

[117]. Furthermore, complications such as bleeding [118], coagulation and thrombus 

[119, 120], necrosis [121] are also frequently present along the sepsis which aggravate 

the case. Sepsis is usually caused by bacterial infection and it is also possible to be 

caused by the invasion of fungi or virus [122]. Of which, kinds of gram-positive and 

gram-negative bacteria were found to be mainly related [123].  

In recent years, although improvement of effective antibiotic therapies are applied in 

the treatment [124], and the early goal-directed therapy is also widely suggested [125, 

126], but the mortality of sepsis, or especially septic shock, remains high (up to 30% - 

50%) [127, 128] because of complexities and the lack of evidence in the early prognosis 

with the frequently used biomarkers (e.g. CRP, IL-6, PCT, etc.)[129, 130] or clinical score 

assessments (e.g. SOFA), in this context, new methods for the diagnosis and for 

predicting the outcome of sepsis in the early stage are eagerly required.  
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Figure 19. Schematic diagram expressing the evolution of sepsis [117].  

 

With the help of metabolomic studies, it is possible to monitor the metabolic variation 

in the organism. Hence, large amount of studies have been performed for finding out 

the metabolic characteristics in septic subjects or severe subjects and for seeking new 

biomarkers. In this work of thesis, we mainly focus on the prediction of mortality of 

septic shock, meanwhile, it is equally vital to understand the metabolic variation in the 

earlier stages.  

 

2.2. State of art for metabolomics studies about sepsis and 

septic shock 

 

2.2.1 Early diagnosis 

 

In the past, gram-negative bacteria induced lipopolysaccharide (LPS) toxin release is 

considered as the main cause of sepsis [131]. LPS results in modulating related genes 

and proteins such as high-mobility group box-1 (HMGB-1) [132], LBP (LPS binding 

protein), soluble CD14 [133, 134], C-reactive protein (CRP) [135], tumor necrosis factor 

α (TNFα) [136] and interleukin [137, 138], etc., which involve in the signaling of 

systemic inflammatory response. However, as mentioned in the introduction, sepsis 

may be also elicited by gram-positive bacteria. In order to understand the metabolic 

distinct between the different origins of infection, Hoerr et al. revealed that 
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differences in metabolic profile exist between gram-positive and gram-negative 

induced infections in mouse model. The main discriminators were detected as kinds 

of amino acids, urea, and Krebs cycle involved metabolites [139].  

Metabolomic approach is applicable to deduce the stage of sepsis as a LC-MS based 

metabolomic study has shown discrimination of metabolic profile among the different 

stage of sepsis [140].  

Using 1H NMR-based metabolomic analyses with lung tissue, BAL fluid and serum 

respectively, Izquierdo-Garcia et al. realized new models which consists of 

discriminatory metabolites such as alanine, creatinine and myoinositol differing septic 

rats from healthy ones [141]. In human patients, with the help of the similar approach, 

another work using serum concerning sepsis early diagnosis was performed by 

Mickiewicz et al. In their work, metabolic differences were compared not only 

between septic and control subjects but also between the septic and SIRS patients. 

Accordingly, it’s shown that it was feasible to achieve discriminations among the three 

group of patients with high specificity and sensitivity [142]. On the other hand, urine 

samples analyzed by GC-MS also showed separation among controls, late and early 

onset of neonatal sepsis [143]. Besides, targeted metabolomics study involving 186 

analytes emerged important discriminations between SIRS without infection patients 

and septic ones. In the study, fatty acid (C10:1) and PCaaC32:0 showed good reliability 

to characterize sepsis compared with SIRS [144].   

 

2.2.2 Prognosis 

 

Sepsis, especially severe sepsis and septic shock trigger a high mortality rate in the 

patients. Accordingly, there is always an urgent needs of accurate prognosis in the 

early stage. As the variation of metabolic profile is sensible to the evaluation of the 

disease severity, metabolomics is therefore a useful tool to predict the outcome of 

sepsis.  

In the study of Lin et al, cecal ligation and puncture (CLP) was operated for imitating 

sepsis in rodents [145]. They predicted thereby the prognosis of sepsis by comparing 
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the metabolic profile according to NMR spectroscopy of the surviving rats and the non-

survivors. It was found in their work that elevated level of lactate, alanine, 

acetoacetate, acetate and hydroxybutyrate were witnessed in the non-surviving rats. 

Meanwhile, the decreased metabolite was formate [146]. Similar work which was 

performed by the (high performance liquid chromatography) HPLC-MS has revealed 

that considerable variations were further found in the serum fatty acids such as oleic 

and linoleic acid [147].  

The prediction of outcome in the human patients is extensively focused by the 

researchers. With the NMR-based metabolomic study on urine from severe sepsis or 

septic shock patients, patients with positive prognosis were separable from the ones 

with negative prognosis. The major discriminators included some amino acids, glucose 

and ethanol [148].  

Recently, combination of multiple platform is favored in the prognosis of sepsis. Indeed, 

with the help of various techniques, the findings will be ensured. By integrating 

metabolomic analyses and inflammatory mediator profiling, death in sepsis was well 

predicted, they found that the combination of metabolites and inflammatory 

mediators show a better sensitivity and specificity in the prediction than the classical 

clinical evolution systems (e.g. SOFA, APACHE) [149]. Furthermore, applying together 

metabolomics and proteomics also showed an excellent improvement of prognosis by 

Langley et al [150]. They reported that the defect of fatty acids and their related 

carnitine variations were the first obvious characteristics of adverse outcome in sepsis. 

Some energy-related metabolites such as lactate, citrate, malate and gluconeogenic 

amino were generally increased in the serum of non-survivors. Their findings were 

generally in accord with other studies except that they did not find differences in the 

metabolic profiles between different origins infected sepsis (among S. pneumonia, S. 

aureus, or E. coli infections).  

 

2.2.3 Other metabolomic studies concerning sepsis 

 

Sepsis-induced dysfunction of organ is one of the main aggravated factors of the 
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disease [151, 110, 152-156]. Hence, various studies focused on determining the 

metabolic variations of dysfunction of different organs. For example, research of 

sepsis-induced acute lung injury exhibited a remarkable increase of glutathione, 

adenosine, phosphatidylserine in septic patients compared with the healthy controls, 

which indicated the increased oxidant stress, loss of ATP homeostasis and apoptosis 

respectively; and a decrease level of sphingomyelin which reflected the disruption of 

endothelial barrier function [157]. For the case sepsis-induced liver dysfunction, 

targeted metabolome in rats were analyzed by Racknagel et al. Increasing levels of bile 

acids were discovered in the septic patients with liver dysfunction than those in 

controls [158]. Sepsis involved heart and kidney injury were also studied by 

metabolomics, as to the findings, abnormal concentration of carnitine and its 

derivatives were correlated to the acute kidney injury (AKI) [159], and the affected 

Krebs cycle enzymes by the sepsis was considered as the main factor of heart failure 

[160].   

Other metabolomic studies on sepsis includes the one of Stinger et al., who explained 

in their studies that metabolomic studies on whole blood (WB) might be less lengthy 

and might retain more information including blood cells. According to their work, most 

metabolites leads to a higher concentration of metabolites than those in the serum; 

18 vital metabolites were uniquely detected in the WB. Their work remind us using the 

WB might be in priority for studying sepsis [161].   
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2.3 Experimental research: Determination of metabolic 

differences between the septic shock survivors and non-

survivors 

 

As it has been introduced in the beginning of the chapter, to date, the mortality rate 

in the septic shock patients still remains high, thus, there is always an urgent need of 

effective prognostic method. Hence, we attempt to investigate the metabolic 

differences between the septic shock survivors and non-survivors by using the 

metabolomic approach. We expected to better understand the clinical features in the 

cases with poor outcome, according to our results, which might give reason to execute 

specific treatments.     

We are aware that more information can be obtained by using both NMR spectroscopy 

and MS metabolomics. Thus, the two methods were experienced to finalize the 

experimental research. Our first study aims to use LC-MS to find out the metabolic 

differences between the septic shock survivors and non-survivors before clinical 

interventions.  

 Before the performance of the study, the choice of studied cohort and the 

selection of the samples are crucial within the experimental design. The cohort of 

subjects is screened in order to homogenize the samples.  

As it was well known that the age was related to the survival rate of sepsis [162], and 

the majority of patients were aged more than 55 years old. Consequently, a few 

patients younger than 30 years were primarily excluded. The patients with cancer were 

also excluded in the analyses. This is because extensive metabolic pathways are prone 

to be modified by the tumor-related signaling [163]. Patients with cirrhosis or chronic 

kidney diseases were also removed since the injury in the liver and kidney by the two 

complications hinders the immune defense [164]. Also, the two factors were reported 

to impact the survival by the previous studies [165, 166]. Indeed, the patients affected 

by blood diseases were not included because the innate distinct in the blood might 

influence the discriminatory analyses.  
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Sera metabolomics has been proven effective in the previous studies. Of note, sera 

metabolome is informative. Serum is also easy to be collected and stored. Compared 

with other biofluids, the stability and integrity of sera are preeminent [167]. Hence, 

serum is focused as the prime subject in the thesis works of metabolomics.  

As regard to the determination of metabolic differences between the septic survivors 

and non-survivors. The samplings at the admission of hospitalization were in priority 

to be used for the metabolomic study, for the metabolic profiles are least intervened 

by the clinical treatment. Besides, the investigation in the samplings before treatments 

seems the most significant to display the internal variations which are triggered by the 

disease. As a consequence, the first study predicting the mortality of septic shock by 

the metabolome variations was done with the samples at H0 (drawn before clinical 

interventions).   

 

2.3.1 Study 1: Application of LC-MS-based metabolomics method in differentiating 

septic survivors from non-survivors. 
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According to the findings in the first study, we were informed that the metabolic 

profiles of the septic shock survivors were well distinguished from those of the non-

survivors. In the following step, we considered to understand if there also exists 

differences of evolutions of the case in the metabolome between the survived and 

dead septic shock patients. Also, a NMR-based metabolomic study may confirm our 

findings of the LC-MS-based study and may provide complementary information of 

metabolome variations predicting the septic shock mortality. Consequently, the 

second study on the determination of metabolite biomarkers for predicting septic 

shock mortality was performed with 1H NMR spectroscopy in our French laboratory.  

 

2.3.2. Study 2: 1H NMR spectroscopy based metabolomic study predicting the 

mortality of septic shock in the early stage and during its evolution 
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Abstract 

 

Septic shock is the most severe phase of sepsis, leading a high mortality. However, the 

prognosis of septic shock remains difficult for the present. In the current study, to 

investigate the differences of metabolic profile between the septic shock survivors and 

the non-survivors, we set up models separating the two group of patients using NMR 

based metabolomic. We report that the metabolic differences are found both before 

the clinical treatment and during 24 hours after the hospitalization. Further, the up-

regulating metabolites such as glucose, lactate, creatinine in the separations between 

survivors and non-survivors are exposed to be decreased in the survivors during 24 

hours after the hospitalization. Our separating models also show better predictions of 

mortality than the clinical scores. The results determine that the NMR based 

metabolomic is useful for the prediction of mortality of septic shock.   

Key words: 1H Nuclear Magnetic Resonance spectroscopy, metabolomics, septic shock, 

discriminatory model, biomarkers.  
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Introduction 

 

Septic shock is the most severe phase of sepsis [1, 2]. It is intractable as it is usually 

accompanied by types of complications such as hypotension and multiple organ 

dysfunctions syndrome (MODS) [3]. The common strategies of treatment for septic 

shock include the antibiotic therapy and the compressive infusion. In recent years, the 

early goal-directed therapy (EGDT) which improves curative effect is recommended to 

be applied [4, 5]. However, the early personalized prognosis and diagnosis remain 

challenging because of the complicated etiology and pathogenesis. Evaluation with 

some biomarkers (e.g. TNF-alpha, IL-6 and PCT, etc.) and with clinical scores such as 

sequential organ failure assessment (SOFA) [6] have been applied for the prognostic, 

their reliabilities are not satisfactory [7]. Thus, there is still an urgent task to find new 

methods the early prognosis and diagnosis. 

Recently, studies have shown that the metabolomics is employable for early diagnosis 

and for predicting clinical prognosis. As regard to the researches in sepsis, in the 

comparison between the septic patients and healthy subjects, potential biomarkers 

have been announced with their good performance characterizing sepsis. Mickiewicz 

et al. reported that they were able to distinguish the differences between systemic 

inflammatory response syndrome (SIRS) [8]. Some other works have shown 

discriminations of metabolic profile of septic patients in the early stage of sepsis in the 

condition of the outcome. In our previous pilot study, we have also applied the liquid-

chromatography – mass spectrometry (LC-MS) based metabolomic to expose 

important differences in the metabolic prolife between the septic shock survivors and 

non-survivors before clinical intervention. Most of these studies were designed to be 

performed by using the samples at a single time point. However, empirically, good 

outcome of the illness also depends on positive compliance to the treatment and a 

good understanding of individual feedback should be therefore the foundation of 

personalized therapy. Consequently, in the present study we proceed to discover the 

discrimination of metabolic profile between the septic shock survivors and non-
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survivors both before and during the treatment by using 1H NMR spectroscopy 

metabolomics.   

 

Materials and Methods 

 

Patients and samples collection 

All human serum samples were collected by the Jean Verdier Hospital, Paris, written 

informed consent was obtained from all subjects or their surrogate decision maker. 

Patients according with specific published criteria for septic shock at admission to the 

intensive care unit (ICU) were enrolled in this study. The samplings were fulfilled from 

January 2009 to December 2011. The screening standard included following factors: 

(1) younger than 30 years old; (2) hematonosis; (3) cancer and other metabolic-related 

diseases; (4) cirrhosis or chronic kidney disease. We included definitely 29 patients 

who died within 7 days after admission to the ICU and 21 alive patients in our study. 

All the samplings were obtained before clinical therapies on the patients under fasting 

condition. Serum were subsequently stored at -80oC before experiments.  

The serum samples were drawn under fasting conditions and were subsequently 

stored at -80oC.  

 

Sample preparation  

450 μL of unfreezed samples were pipetted into a NMR tube of 5mm diameter 

together with 50μL of D2O. Prepared samples were then submitted to the NMR 

spectroscopy (Advance III, Bruker, Germany) Spectra were acquired at 297K (Other 

parameters). The 1H NMR spectra were recorded by the Carr-Purcell-Meiboom-Gill 

(CPMG) sequence [9]. The spin-spin relaxation delay was during 18ms with 128 

transients in one record. For several samples, the 2D NMR experiments by the total 

correlation spectroscopy (TOCSY) sequence were achieved to affirm the quantification 

with the 1D spectra. The mixing time was 80ms with 32 transients in one record.  
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Data processing 

After the spectra were acquired for all the samples, they were manually phased and 

their linear baseline were unified based on the NMRPipe Software[10]. All free 

induction decays (FIDs) were multiplied by a 0.3 Hz exponential line broadening factor 

prior to Fourier Transformation. The spectral region was restricted between -1 to 

10ppm with 11000 divisions of 0.01ppm. The region of water (4.6-5.5ppm) was 

excluded in order to avoid the impact of its massive intense on other signals. Peaks 

from 3.7 to 4.4ppm were also removed since peaks in the section represented the 

infusion of the starch, which aided to heighten the blood tension in the patients. The 

spectra were then normalized by the algorithm of quotient [11]. All the peaks were 

centered by the method of auto-scaling. The peaks were adequately identified by the 

Human metabolome database (HMDB, www.hmdb.ca) NMR library and by the 

Chenomx software (Chenomx Inc, Canada).  

 

Multivariate analyses 

All the multivariate analyses were achieved in-house using the Matlab software 

(version 2012b, Massachusetts, USA), based on the code of Trygg and Wold. A principal 

component analysis (PCA) for all the recorded spectra data was first used to detect 

outliers which may contain abnormally acquired peaks. Orthogonal projection to 

latent structure-discriminant analysis (OPLS-DA) was applied to establish the 

discriminatory models between different groups of patients. The models were 

validated by the cross-validation method [12].  

 

Results  

 

Sample distribution  

116 samples from 56 patients were obtained in which 49 enrolled samples were drawn 

at the admission of hospitalization before clinical interventions (samples H0) in a part 

of the patients and 57 samples were obtained 24 hours after the hospitalization with 
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uniform anti-biotic treatments (samples H24). 76 samples were H0-H24 paired from 

the same patients (38 pairs) in which 23 pairs were from the survived patients and 15 

pairs were from non-survived patients.  

 

Identification of peaks 

One of the recorded spectra was taken as an example, shown in Figure 1 with the labels 

of identified peaks. All the defined peaks were otherwise listed in the table 1 (Page 25) 

with their chemical shift and multiplicity.  

 

Figure1. One of the spectrum obtained in the patients of septic shock with a 500MHz 1H NMR 

Spectroscopy (Avance III, Bruker).  

  

Discriminatory analyses separating septic non-survivors from survivors with samples 

drawn before treatments. 

For the sampling H0, a model based on OPLS-DA was performed with 28 samples 

drawn from septic non-survivors and 21 from survivors. Shown in Figure 2, an obvious 

separation between the two groups of patients was observed in the score plot (Figure 

2a) with the Q2 = 0.58, a cross-validation including 500 permutations presented that 

the model was not over-fitting (Figure S-1). On the basis of the findings in the loading 

plot (Figure 2b), the most correlative peaks corresponding to the discriminatory 

metabolites were found and numerated. They were also cited in table 2 with their 

chemical shift, multiplicity and correlation. Positive correlation means the 

concentration of the metabolite was up-regulated in the non-survivors, and negative 
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correlation represented a down-regulation of the metabolite in the non-survivors. 

Accordingly, it was shown that levels of amino acids such as alanine, lysine, glutamate 

and tyrosine increased in the non-survivors. Increasing concentrations were also found 

in several energy metabolism-related metabolites such as 3-hydroxybutryrate, lactate 

creatinine. Meanwhile, metabolites involved in the tricarboxylic acid (TCA) cycle such 

as glucose, pyruvate, citrate and fumarate were also observed to be up-regulated in 

the non-survivor. Other significant up-regulating metabolites were found in choline 

and urea. On the contrary, glycoprotein was the only one decreased metabolite in the 

findings. The results showed that there existed differences between the survivors and 

the non-survivors before clinical intervention.  

 

 

 

Figure 2. OPLS-DA of the discriminatory model between the septic shock survivors and non-survivors at 

H0. a. Score plot, blue dots represent the survivors and the red dots represent the non-survivors; b. 

loading plot. The color indicates the correlation between the marked peak and the classification of the 

sample. The closer to red the color is, the more important the correlation is. Positive peaks implies an 

up-regulation of the represented metabolite in the non-survivors and the negative peaks present a 
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diminution of the represented metabolite in the non-survivors. 

 

Peaks  Correlation Identification 

1.06d 0.39 3-Hydroxybutyrate 

1.32d, 4.11q 0.4 Lactate 

1.46d 0.35 Alanine 

2.02s -0.32 Glycoprotein 

2.13m, 2.32m 0.34 Glutamate 

2.37s 0.43 Pyruvate 

2.52d, 2.69d 0.44 Citrate 

3.03s, 3.92s 0.41 Creatinine 

3.19s 0.49 Choline 

3.23t,3.72m,3.82m,4.64d,5.23d 0.48 α-Glucose 

3.29s 0.44 Unknown 

4.21d 0.34 Unknown 

5.79s 0.5 Urea 

6.52s 0.31 Fumarate 

6.88d,7.18d 0.48 Tyrosine 

7.31m, 7.41m 0.41 Unknown 

8.32s 0.37 Unknown 

Table 1. Discriminatory metabolites in the separation between the septic shock survivors and non-

survivors at H0. s: singlet; d: doublet; t: triplet; q: quadruplet; m: multiplet.  
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Discriminatory analysis of the evolution of septic shock from H0 to H24 for septic 

shock survivors and non-survivors         

For the patients having both their samples H0 and H24, a clear separation between 

the samples H0 and H24 was observed in the H0-H24 paired model, based on the 

method of multi levels [13]. On the basis of the “within model”, which determines the 

evolution from H0 to H24, the evolution of septic shock from H0 to H24 for each 

patient was investigated and differences of the evolution of septic shock between the 

survivors and the non-survivors were taken in account in a new OPLS-DA model. H0 

samples only from septic shock survivors and from non-survivors were separated from 

those from the H24 samples. The Q2 for the separation in the survivors was 0.45, the 

primary discriminators were listed in the Table 2. Accordingly, a universe increment 

has been found in various amino acids from H0 to H24 for the non-surviving patients. 

However, a reversed variation was found in the amino acids such as valine, glutamate, 

glutamine and glycine for the evolution from H0 to H24 for the septic survivors. 

Opposite variations have been also detected in citrate and glycoprotein according to a 

comparison of evolution between the survivors and non-survivors. 
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Table 2. Discriminatory metabolites with their correlations in the separation between paired H0 and H24 samples. 

Correlation 1: correlation of the metabolite to the discriminatory model for the non-survivors; Correlation 2: 

correlation of the metabolite to the discriminatory model for the survivors. Variation1: direction of variation of 

concentration for the metabolite from H0 to H24 for the non-survivors; direction of variation of concentration for 

the metabolite from H0 to H24 for the survivors. : increased concentration of the metabolite at H24 compared 

with H0; : decreased concentration of the metabolite at H24 compared with H0. s: singlet, d: doublet, t: triplet, q: 

quadruplet, m: multiplet. NS: difference not significant. 

 

Discriminatory analysis separating the samples H0 from H12 only for septic shock 

survivors  

Another OPLS-DA model separating the H0 and H12 samples was carried out only 

among the septic shock survivors, aiming to understand the evolution of the disease 

in the subjects with optimist prognosis. For each included subject, his H0 and H12 

samples were paired. The Q2 was calculated with 2 components, and equal to 0.44. 

The validation proved that the model was not over-fitting. According to the score plot 

Chmical	shift Assignment Correlation1 Correlation2 Validation1 Variation2

0.88m VLDL,	LDL 0.72	 NS ↓ -

0.97d	1.03d Valine NS 0.35 - ↓

1.06d 3-Hydroxyisovalerate 0.69 0.31 ↓ ↓

1.14d isobutryrate 0.61 0.57 ↓ ↓

1.23s CH3	lipids 0.67 NS ↓ -

1.32d	4.11q Lactate NS 0.38 - ↓

1.46d Alanine -0.48 NS ↑ -

1.58m Lipids		CH2 -0.39 NS ↑ -

1.7m Lysine -0.51 NS ↑ -

1.91s Acetate 0.35 0.53 ↓ ↓

2.03s Glycoprotein 0.44 -0.35 ↓ ↑

2.12m	2.32m Glutamate -0.48 0.34 ↑ ↓

2.07m	2.43m Glutamine -0.47 0.51 ↑ ↓

2.37s Pyruvate NS 0.29 - ↓

2.55d	2.62d	 Citrate -0.61 0.48 ↑ ↓

3.02s Creatinine -0.57 NS ↑ -

3.1s Malonate 0.63 0.55 ↓ ↓

3.14s Dimethylsulfone 0.72	 NS ↓ -

3.19s Choline 0.64 0.65 ↓ ↓

3.23t	3.72m	3.82m	 alpha-Glucose 0.47 NS ↓ -

3.55s Glycine -0.34 0.64 ↑ ↓

3.65dd Glycerol 0.56 0.45 ↓ ↓

4.05t Myo-insitol	 0.41 0.47 ↓ ↓

4.37s Unknown 0.69 0.49 ↓ ↓

6.88d	7.8d	 Tyrosine -0.43 NS ↑ -

7.04s 1-MH -0.44 NS ↑ -

7.32d	 Phenylalanine -0.39 NS ↑ -
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of the model, a good separation between the two groups was obtained (Figure 3a). 

The principal metabolites which correlated to the discrimination between the two 

groups were shown in the loading plot (Figure 3b) and Table 3. Interestingly, for these 

patients, the involved metabolites were similar to the findings in the previous models 

but with an adverse trend of variation. In other words, generally, the serum level of 

energetic metabolites such as glucose, lactate and pyruvate; choline and several amino 

acids down-regulated in H12 samples, when it was compared with that in H0 samples. 

It also proved that the determined discriminators were related to the prognosis of 

septic shock.  

 

 

 

Figure 3. OPLS-DA of the paired discriminatory model comparing the H0 samples from the H12 samples 

for the survived septic shock patients.  
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Peak Correlation Identification 

0.85m, 1.27m, 2.02m 0.3 lipids, LDL, vLDL 

1.14d -0.4 Isobutyrate 

1.32d 4.12q -0.42 Lactate 

1.47d -0.41 Alanine 

2.22s 0.42 Acetoacetate 

2.36s -0.39 Pyruvate 

2.09m 2.41m -0.39 Glutamine 

3.23t,3.72m,3.82m,4.64d,5.23d -0.6 α-Glucose 

4.21d -0.34 Unknown 

6.89d 7.18s -0.46 Tyrosine 

8.13s 0.48 Adenine 

Table 3. Discriminatory metabolites in the paired model distinguishing the H0 samples from the H12 samples for 

the septic shock survivors.  

 

Discussion 

 

Septic shock remains a leading cause of death in the ICU nowadays. This should be due 

to the difficulties of the prediction of outcome in the early stage. Further, the septic 

shock patients are generally treated by the uniform therapy protocol, however, the 

individual differences such as the gravity of disease on the onset and the different 

responses to the clinical intervention should affect the final outcome. Therefore, in the 

present study, we have investigated differences of metabolic profile evolution from the 

admission into ICU to one day after the admission between the survivors and the non-
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survivors. On the basis of our results, we exposed that metabolic differences might 

exist both before and during the clinical therapy between the septic shock survivors 

and non-survivors. Discriminators such as lactate, creatinine, glucose and glutamate 

were present in the two separation, they were all up-regulated in the non-survivors.  

According to the comparison of evolution H0 to H24 between survivors and non-

survivors, opposite variations in the metabolites such as several amino acids, citrate 

and glycoprotein were found. An increased level of various amino acids and citrate in 

the non-survivors at H24, compared with H0, showed a more severe case of septic 

shock as the same result had been exhibited with the separation between the 

survivors and non-survivors before clinical intervention. Besides, the decrement of 

glycoprotein from H0 to H24 for the non-surviving patients was accord with the finding 

obtained in the survivors vs. non-survivors model at H0. On the contrary, decreased 

levels of amino acids such as glutamate, glutamine and glycine, as well as citrate were 

found in the H0 to H24 evolution for the survivors and an increased concentration of 

glycoprotein was obtained at H24 compared with H0 for the survivors, which affirm 

that the defined significant discriminators were responsible for the death before and 

even after clinical intervention.  

Also, we report that the above discriminators decreased in the survivors from H0 to 

H12, this finding confirmed that the blood level of the discovered discriminators were 

correlated with bad prognosis of septic shock. Namely, the higher the level of these 

molecule was, the poorer the outcome was during the first twelve hours after 

hospitalization. 

It has been reported that sepsis related systemic inflammatory responses (SIRS) 

elicited insulin resistance (IR). Local activation of immunological response is induced 

by the reactions to the endotoxin released by the infectious bacteria. The reactions 

suppress insulin receptor subtract-1 and therefore attenuate insulin receptor signaling. 

As the level of blood sugar is directly modulated by insulin, in the current study, the 

present of glycemia in the septic non-survivors might provide evidence of a more 

severe inflammation in the non-survivors before clinical interventions. The effect was 

also proved to be related with poor outcome in the model 2 and 4. On the contrary, 
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for the model separating H0 and H24 samples for the survivors, the level of glucose 

decreased at H24, which showed an optimist evolution of case.  

Lactate is another one of the common indicators of bad outcome in all the achieved 

models, its level in the serum reflects the severity of hypoxia and disorder of the 

energy supply. Correspondingly, pyruvate, which is an important materiel for the TCA 

cycle, was also found to be elevated in the more severe septic shock cases. 

Interestingly, although considerable amount of pyruvate was transferred to lactate due 

to the low oxygen press in the blood, increases of two TCA cycle-related metabolites 

(fumarate and citrate) were still present in the non-survivors. One reason might be 

that the increased level of various amino acids induced anaplerotic reactions and 

enhanced the concentration of the related TCA cycle metabolites. The results were 

similar to those in several other works and equally revealed in our previous study. 

Furthermore, it has been known that mitochondria were injured by the over-

production of NO and free residues during the sepsis [14, 15]. Thus, the disorder of 

the respiratory chain might be another reason for the accumulation of TCA cycle 

related metabolites and for the conversion from pyruvate to lactate.  

Glycoprotein is mostly located on the membrane of cells, the diminution of its level in 

the non-survivors might indicate the existence of cell injuring. Further, it has been well 

known that the waste of muscle tissue and a sever protein breakdown, which might 

be another issue of the suppress of glycoprotein, is present in the case. Likewise, it 

was declared by Wang et al. that the ratio lactate/albumin was an independent marker 

of multi-organ dysfunctions (MODs) and death [16]. 

Meanwhile, as it is known, the up-regulating creatinine indicates the waste of muscle 

tissue. Thus, both the augment of the amino acids and creatinine could be a proof of 

the breakdown of glycoprotein. Other significant discriminators between the survivors 

and the non-survivors included choline and urea. Choline was known to be bond with 

the reaction of cell signaling responding the inflammation [17]. A mounting of urea 

could be a signal of the more severe kidney injury [18].  

It has been widely reported that the clinical scores evaluating the severity of sepsis 

was not accurate. In the current study, we exhibit that the NMR metabolomics based 
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discriminatory models experience a better prediction of mortality than the two clinical 

scores (AUROCSOFA=0.63 and AUROCAPSII = 0.76). Our results may help to improve 

the early characterization of severe cases in the septic shock patients, which may be 

an evidence for the personalized treatment.  

 

Conclusion 

 

In this study, we reveal metabolic differences between the survivors and non-survivors 

both before and different evolutions during the 24 first hours after hospitalization of 

septic shock between the survivors and non-survivors. The deregulation of some 

amino acids and some energy-related metabolites such as glucose, lactate and 

creatinine account for the discrimination between the septic survivors and the non-

survivors. We note that the consistence of the variation in such metabolites was found 

in the separation of patients before and after clinical intervention. The comparison 

between the AUROC of our model and the prediction of mortality by the SOFA or APSII 

score showed that our models are more reliable to predict the outcome of septic shock. 

Our findings illustrate that the 1H NMR based metabolomics is helpful to improve the 

prognosis of septic shock.  
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2.3.3 Conclusion to the first part of experimental research 

 

Septic shock is the most severe case of sepsis inducing always a high mortality. 

However, the mechanism of the evolution from septic shock to death for the patients 

eventually died of septic shock is still not clear. From a point of view of metabolomics, 

the alterations in the metabolic profile might reveal the related varied pathways in the 

non-survivors compared with the survivors.    

In this first part of thesis work, the goal is to predict septic shock mortality by both 

NMR and MS-based metabolomics. The separation between the septic shock survivors 

and non-survivors was found before clinical intervention according to the analyses of 

metabolic profiles of the patients, using the above two techniques. Beyond the 

coincide metabolites detected by the two methods, metabolites such as kinds of fatty 

acids, bile acids were only detected with the MS-based approach whilie the NMR-

based analyses determined glucose and glycoprotein which were not detectable in our 

LC-MS experiences. Further, on the basis of the results involving the evolution of septic 

shock metabolome during the first 24 hours after the admission into the ICU, 

differences of evolution from H0 to H24 between the survivors and the non-survivors 

have been revealed. Notably, the deregulation of energy-related metabolism and a 

comprehensive up-regulation of the amino acids, as well as the decline of glycoprotein 

are found to be specific in the non-survivors. Moreover, using both MS and NMR based 

metabolomics shows a power to acquire a reamarkable coverage of metabolites and 

they are mutally complementary.  
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III. Metabolomic studies of hepatocellular carcinoma 

(HCC) 
 

3.1 Introduction of hepatocellular carcinoma 

 

Hepatocellular carcinoma is the fifth most malignant common type of cancer, and is 

the most common type of liver cancer [168]. According to the previous report, the 

incidence of HCC is more than 3 cases in 100000 people, and the number is increasing 

in recent years [169].  More than 80% of the HCC cases were reported caused by the 

hepatitis virus (hepatitis B or C) infection or virus-induced cirrhosis [170]. Other 

possible inducing factors includes hepatic injury caused by frequent alcohol abuse 

[171] or other kinds of intoxication [172], and by obesity induced non-alcoholic fatty 

liver disease (NAFLD) [173, 174], etc.  

The HCC is diagnosed by some physical symptoms (such as malaise, anorexia, wasting, 

right upper quadrant abdominal pain, and distension). And confirmed by the clinical 

imaging (such as ultrasound, IMR, CT, etc.). The increasing blood concentration of α-

fetoprotein AFP is well referred as the signal of the development of HCC [175]. The 

Barcelona clinical Liver Cancer (BCLC) staging is proposed as the grading standard of 

HCC [176]. The staging system estimates the tumor stage (the Milan criteria is 

frequently referred [176]), liver function status, physical status and cancer symptoms.  

The main treatments of HCC includes the liver transplantation [177], surgical resection 

[178], percutaneous injection (PI) [179], radiotherapy and radio frequency ablation 

(RFA) [180]. Among which, the first two strategies were reported with slightly better 

outcome than the others, but they are easier to introduce additional surgical trauma 

[181]. And, HCC is not sensitive to chemotherapies because of its abnormal apoptosis 

[182].  

Early screening, especially the follow-up in the patients affected by cirrhosis or 

hepatitis by imaging tests has been rifely recommended as a crucial improvement for 

the outcome. Yet, due to the liver compensatory function and the insufficient of the 
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molecular biomarker like AFP, the early diagnosis of HCC remains challenging and HCC 

is still one of the most lethal cancers. The mortality was recently noted till more than 

50% [183]. Furthermore, like other cancers, the primary threats for the survival of HCC 

are the metastasis and recurrence. Until present, there is always a lack of evidence to 

predict the two risks in the perioperative period. Hence, to sum up, the discovery of 

predicting biomarkers is an urgent demand for both the diagnosis and prognosis of 

HCC.  

 

3.2 State of arts for metabolomic studies of HCC 

 

3.2.1. Metabolomics aiding the diagnosis of HCC 

 

Even though the detection of HCC by the clinical imaging techniques is reliable for the 

diagnostic of HCC. For the people “in high risk” of suffering from HCC, such as cirrhosis 

or hepatitis patients, or even the hepatitis B virus carriers, the early screening is 

important. This is because the development from cirrhosis or from hepatitis to HCC is 

common. Besides, the misdiagnosis in the early stage may happen by the confusion of 

the hypervascular nodules or by the concealment of the cirrhotic fibers [184]. The 

chemical examination that determines the blood level of AFP was regarded as useful 

for the diagnosis of HCC. However, it has been previously reported that AFP was not 

as specific as the biomarker of HCC. As metabolomics is powerful in the discovery of 

novel biomarkers, the search for new biomarkers of HCC has become an important 

task in many metabolomic studies. 

Various metabolomic studies based on the analyses on serum has been performed. In 

one of the precedent works from our laboratory (Dalian, China) metabolomic study 

aiming to find out the biomarkers of diagnosis of HCC has been performed in the 

model of rats and then tested in the model of human patients. In the study, non-

targeted method using LC-MS revealed that 3 metabolites (taurocholic acid, 

lysophosphoethanolamine 16:0, and lysophosphatidylcholine 22:5) were potential to 
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affirm the rats with HCC against the control rats. Additionally, they were equally useful 

to distinguish different HCC stages in the rats. The following test study of the effect of 

the 3 metabolites in human patients showed that the defined markers were effective 

for the discrimination between small HCC and cirrhosis. They were ulteriorly found to 

be significant separating HCC patients from the patients with chronic liver disease 

[185].  

Similar work was done by Liu et al, who used RPLC-MS, HILIC-MS and NMR approaches 

for the HCC discovery in human patients. According to their findings, variations of the 

metabolites such as β-hydroxybutyrate, oxaloacetate, short chain fatty acids, bile acids, 

carnitines and lysoPCs between healthy volunteers and HCC patients were found. The 

altered metabolites indicated disorders in the pathways such as ketogenesis, TCA cycle, 

lipid genesis, and bile acids in HCC patients. Further, HCC patients were also found 

separable from the cirrhotic patients. Precisely, levels of glycerol, β-hydroxybutyrate, 

and acetylcarnitine were adjacent between cirrhotic patients and healthy controls 

while their levels were elevated in HCC cases. Opposite distinction was found in 

tyrosine, phytosphingosine, PC 4:0 and LPC 16:0 [186]. The findings in deregulation of 

lipids were supported by analogic reports by Fages, Zhou and Nahon as well [187-189].  

Not only with serum samples, but also urine samples were found useful to distinguish 

the HCC from benign tumor or healthy controls. The abnormal levels of bile acids are 

confirmed in the patients of HCC [190].  

Furthermore, another our precedent work exhibited the metabolic variation of the 

HCC tumor compared with the peripheral tissues. Determined varied pathways such 

as glycolysis, gluconeogenesis, and beta-oxidation with the suppressed TCA cycle were 

account for the separation [191]. In all the above studies, the sensitivity and the 

specificity of the defined metabolite discriminators performed better than AFP in 

diagnosing HCC. In brief, both NMR and MS based-metabolomics are useful to improve 

the HCC diagnosis.  

 

3.2.2. Improvement of HCC prognosis by metabolomics 
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Recurrence and metastasis of HCC are the two major threats after the treatment 

removing HCC tumor. This may be due to unsatisfying deletion of cancer cells, micro-

vascular invasion and incorrect postoperative conditioning. However, their 

mechanisms are not clear until present. Consequently, an appropriate prognosis in the 

early stage of HCC is always needed for guiding the following therapy and recovery 

policy. But, the scarce of biomarkers predicting the HCC metastasis or recurrence 

makes it still problematic. Thus, seek for the biomarkers predicting the metastasis or 

recurrence has been another important goals in some metabolomic studies.  

   

 Prediction of HCC recurrence using metabolomics  

According to the GC-MS analysis on urine from HCC patients, Ye et al. showed it 

possible to tell differences between early recurrent and non-recurrent HCC patients. 

Samples before and after surgical operation were collected and tested. As to results, 

the principally varied metabolic pathways in the perioperative period involve purine 

and pyrimidine metabolism, various amino acids and glyoxylate metabolism [192]. 

Another work concerning the HCC recurrence was performed with the LC-MS platform 

by Zhou et al. In the non-targeted metabolomic study on serum samples, comparison 

of metabolic profiles between early recurrent HCC and late recurrent HCC with or 

without vascular invasion showed an apparent separation among the samples. Apart 

from methionine and two aromatic amino acids, lipids such as bile acids, steroids and 

fatty acids [193].  

  

 Prediction of HCC metastasis using metabolomics 

Metabolomic characteristics of HCC metastasis-induced lung cancer was studied by 

Wang et al. using NMR based metabolomics. The established model was based on the 

operation on the rats. By comparing among controls, HCC rats with and without 

metastasis, it was proposed that the alterations in the pathways of glycolysis, glycine 

and choline were related to the HCC metastasis [194].  

Interestingly, the factors revealed which linked to the recurrence were similar to those 

in the separation between HCC and other cases. The fact might indicate that the 
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marker metabolites for HCC development, e.g. the bile acids and glycine and serine 

pathway were deregulated, were also associated to the prediction of the outcome of 

HCC. Especially, the up-regulated glycine, serine pathway and bile acids were 

universally observed in the diagnosis and prognosis of HCC. Thus, quantification of the 

relevant molecules in the patients with high risk of being affected by HCC and in HCC 

patients can be referred for the diagnosis and prognosis of HCC.  

 

3.2.3. Other metabolomic studies on HCC patients with/without hepatitis  

 

Both chronic hepatitis B and C are the principal causes of HCC [195, 196]. Other than 

the two major inducements, alcohol abuse and obesity should also account for the 

important issues [197, 198]. However, the mechanism of development of viral HCC 

differs from that of non-viral HCC, and so does the corresponding clinical treatments. 

For example, it was recommended by the guideline that treating viral HCC should start 

from the therapy for the hepatitis [168]. In order to make clear the impact of the 

inducing factors in HCC, metabolomic studies which investigate the metabolic 

characteristics in different type of HCC were carried on. 

Actually, the metabolic differences between viral and non-viral HCC had been well 

known, thus, our previous study studying the influence of the RFA therapy on HCC 

patients were achieved separately among HCC patients with or without hepatitis virus 

[199]. 

According to the contribution of Gao et al., metabolic differences among patients 

suffering from HCC, cirrhosis, and hepatitis B were well shown. As being discussed, the 

elevated TCA cycle related metabolites were specific for HCC compared with the HBV 

patients. Besides, the up-regulated lipogensis was proven once again true in the 

comparison between other types of liver diseases and HCC [200]. Another study 

focusing on determining the metabolic profile of HCC patients with hepatitis B 

distinguished well the HCC patients with HBV from those without viral infection. On 

the basis of the findings, even though metabolic variations like increased fatty acids in 

HBV-related HCC patients were in accord with those in the previous studies, which 



96 
 

concern the comparison between HCC and cirrhotic patients, some adverse alterations 

were reported this time such as less concentrated glycolysis and TCA cycle-related 

metabolites, blood amino acids including serine and glycine. This might be partially 

explained by the demand of energy and amino acids in the presence of malignant 

tumor. The other reason might be due to the activity of hepatitis virus which depletes 

more energy and amino acids [201].  

Similar work aiming to investigate the metabolic features in HCC patients induced by 

HCV was carried out by Fitan et al. Samples from the whole preoperative period were 

analyzed and they witnessed that unlike the findings with HBV-related HCC, the HCC 

patients affected by HCV-induced cirrhosis got elevated amino acids and lipids levels 

than the HCV cirrhosis patients without HCC [202]. The divergence of results might 

imply that even the metabolic profiles of HCC patients vary when they are affected by 

different type of hepatitis virus.  

Among the metabolomic studies on non-viral HCC, alcohol-induced HCC models were 

simulated in the nude mice in the study of Li et al. By comparing with the controls, it 

was found that amino acids such as leucine, phenylalanine and tryptophan were 

down-regulated in the alcohol-induced HCC, so were LPEs and LPCs. Meanwhile, 

mounting PCs were otherwise observed. In the study, the profiles of metabolites of 

cases of liver injury were also compared with those of the controls. Interestingly, the 

defined discriminator metabolites for the separation HCC/control were also significant 

for the model separating liver injury from healthy subjects [203].  

Both genetic and metabolic specificities in HCC patients with NAFLD were investigated 

by Clark et al. The observed metabolite discriminators separating the NAFLD from HCC 

patients were generally consistent with the findings in the alcohol-related HCC. 

Concretely, declines of tryptophan, phenylalanine and LPCs were again found in the 

HCC cases when compared with the patients suffering from NAFLD. Other defined 

metabolites included ketoglutarate, creatine, taurine which increased and arachidonic 

acid, lysine and citrulline which decreased in the HCC patients [204]. Additionally, the 

relevant HCC metabolomic studies have been summarized in table 3.   
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Table 3. A summary of metabolomic-based HCC studies [205].   

 Summary of recent metabolomic studies in the field of HCC 
 

Author and year Biological 

specimens 

Technological 

Platform used 

Decreased or increased metabolites in the patients compared to the 

control group 

Gao H (2009) serum NMR Acetate, pyruvate, glutamine, glycerol, tyrosine, phenylalanine 
 

 
Fitian AI (2014) 

 

 
serum 

 

 
GC/MS UPLC/MS-MS 

alpha-ketoglutarate, 1-methylhistidine 
LDL, VLDL, valine, acetoacetate, choline, taurine, "unsaturated lipid" 
HCC vs. cirrhosis: 12-hydroxyeicosatetraenoic acid (12-HETE), 15- 

   HETE, sphingosine, γ-glutamyl oxidative stress-associated 
metabolites, xanthine, amino acids, serine, glycine , aspartate , a- 
cylcarnitines 

   HCC vs. controls: Azelate, Taurochenodeoxycholate 
(TCDCA) Taurocholate (TCA), Taurolithocholate 3-sulfate, 
Grycocholate (GCA) Tauroursodeoxycholate (TDCA) 

 

 
Yang Y(2007) 

 

 
liver 

 

 
NMR 

Grycochenodeoxycholate (GDCA) Undecanedioate Sebacate 
(decanedioate) 
High-grade HCC vs. low-grade HCC tumors: lactate, leucine 

   glutamine, glutamate, glycine and alanine, choline and 
phosphorylethanolamine (PE) 
glucose,PC, GPC, triglycerides and glycogen 

Yin P(2009) serum HPLCESITOFMS TCA, GCA, bilirubin, TCDCA, GCDCA, carnitine, acetylcarnitine 
Hypoxanthine, phytosphingosine, dihydrosphingosine, LPC(18:2), 
LPC(18:3), LPC(16:1), LPC(18:0), taurine, 6-methyl-nicotinic acid 

Chen T(2011) serum 

/urine 

UPLCESIQTOFMS 

and GCTOFMS 
Serum: 

carnitine, GCDCA, GCA, cysteine, 2-oxoglutarate, lactate, 
pyruvate, inosine, erythronate, 

   Urine: 
GCA, dopamine, adenosine, xanthine, phenylalanine, dihydrouracil, 
hypotaurine, threonine, N acetylneuraminic acid 
Serum: 

   glycerol, glycine, serine, aspartate,citrulline, tryptophan, lysine, 
glucosamine, phenylalanine, β-alanine, glycerate, arabinose, 
creatinine, phosphate, O-Phospho-l-serine 

   Urine: 
normetanephrine, Cysteine, TMAO, adenine, cysteic acid, 6- 
aminohexanoate, creatine 

Patterson AD(2011) plasma UPLCESIQTOFMS glycodeoxycholate, deoxycholate 3-sulfate, bilirubin,fetal bile acids 
7α-hydroxy-3-oxochol-4-en-24-oic acid and 3-oxochol-4,6-dien-24- 
oil 

 
 

Wang B(2012) 

 
 

serum 

 
 

UPLCESIQTOFMS 

LPC(20:4), LPC(22:6)LPC(14:0), LPC(16:0), LPC(20:2), LPC(18:0) 
LPC(18:1), LPC(18:2), LPC(20:5), LPC(18:3), LPC(20:3) 
GCDCA , Canavaninosuccinate, phenylalanine, 

 
Ressom HW (2012) 

 
serum 

 
UPLCESIQTOFMS 

PC(16:0/22:6, LPC(16:0), LPC(18:0), PC(18:0/18:2), PC(16:0)/20:4) 
lysophosphatidylcholine (lysoPC 17:0) 
glycochenodeoxycholic acid 3-sulfate (3-sulfo-GCDCA), 

 
 

Xiao JF 

 
 

serum 

 
 

UPLCESIQTOFMS 

glycocholic acid (GCA), glycodeoxycholic acid (GDCA), 
taurocholic acid (TCA), and taurochenodeoxycholate (TCDCA) 
PhePhe 

 
Zhang A 

 
urine 

 
UPLCESIQTOFMS 

TCDCA, GDCA, 3β, 6β-dihydroxy-5β-cholan-24-oic acid, oleyol carnitine 
GCA 

  GCA  
Nahon P(2012) 

 
Budhu A(2013) 

serum 

 
liver 

NMR 

 
GCMS 

Glutamate, acetate ,N-acetyl glycoprotein 
Glutamine 
monounsaturated palmitic acid 

Beyoğlu D(2013) liver GCMS glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, 

   and linoleic acid 
glycolysis, attenuated mitochondrial oxidation, and arachidonic acid 
synthesis 

Chen F(2011) 
Shariff MI, (2011) 

serum 
urine 

UPLCESITQMS 
NMR 

1-Methyladenosine 
Creatine, Carnitine 
Glycine, TMAO, Hippurate, Citrate, Creatinine 

Wu H(2009) 
Yang J(2004) 

urine 
urine 

GCMS 
HPLC 

xylitol and urea elevated. 
pseudouridine, 1-methyladenosine, xanthosine, 1-methylinosine, 1- 
and 2-methylguanosine, N4-acetylcytidine, adenosine 

Chen J(2009) urine HILIC RPLC MS Hypoxanthine, Proline betain, Acetyl carnitine, Carnitine, 
Phenylacetylglutamine 
Carnitine C9:1, Carnitine C10:3, Butylcarnitine 

 
Red color: increased metabolite 

Blue color: decreased metabolite
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3.3. Experimental research: Comparison of the metabolomic 

profiles in the patients suffering from hepatitis C-related 

hepatocellular Carcinoma with and without recurrence. 

 

The second part of the thesis work concerns the prediction of recurrence in small HCC 

patients. It is known that small HCCs (≤5 cm or up to 3 lesions ≤3cm) lead a better 

outcome than big ones [206]. And, for the small HCCs, the RFA treatment is 

recommended since it is effective and brings less operational wound to the patients. 

Even though, the HCC recurrence and metastasis remain the principal threats for the 

outcome. It was reported that the rate of HCC recurrence was up to 70% for 3 years 

and 80% for 5 years after the treatment [207, 208].  

Biomarkers such as AFP, MAGEs and CK19 were currently accepted to predict the HCC 

recurrence [209]. But, the altered metabolic pathway correlated to the relapse of HCC 

is still not clear. Thus, finding out novel metabolite biomarkers predicting the 

recurrence is always required. 

As introduced before, many metabolomic studies have been performed to achieve the 

goal, and some potential metabolite biomarkers were discovered with their 

remarkable sensibility and specificity. For example, in one of the past studies of the 

Chinese laboratory, LC-MS was applied to determine the metabolic characteristics in 

early and late HCC recurrent patients. Various lipids were found significant in the 

discrimination between early recurrent and late recurrent HCC patient [193]. For the 

current study of HCC recurrence, we attempted to make clear of the variations in the 

pathways such as glycolysis and TCA cycle in the recurrent subjects. GC-MS is qualified 

to detect and well quantify such metabolites, it was therefore chosen to be applied.  

Additionally, different types of HCC like viral-HCC and non-viral HCC should be 

distinguished in the treatment and prognosis. The metabolic differences between 

viral-HCC and non-viral HCC have also been well emerged in one of our past studies 

[199]. However, to our known, these differences were not viewed in the past 

metabolomic studies which aim to determine the biomarkers of relapse. Besides, more 
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than one sampling before and after clinical interventions may help to understand the 

feedbacks to the treatment. Thus, in the current work, we intend to find out potential 

biomarkers in viral and non-viral HCC respectively, with two samplings in pre- and post- 

operative periods.  

 

3.3.1 Study 3: Determination of metabolite biomarker candidate for recurrence of  

hepatocellular carcinoma in the hepatitis C virus-related HCC patients   
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Abstract 

 

Hepatitis C virus (HCV) infection leads to a high risk of converting to hepatocellular 

carcinoma (HCC). Radio frequency ablation (RFA) has been proved effective for early 

stage of small HCC. Whereas, the HCC relapse is still the primary threat for the 

outcome after the therapy. In the present study, with the comparison between recurrent 

and non-recurrent patients, we aim to understand the characteristics of metabolic profile 

variation for HCC recurrence before and after RFA therapy by applying gas 

chromatography-mass spectrometry (GC-MS) based metabolomics. Significant 

variations were observed in the pathways such as glycerolipid, TCA cycle, fatty acids 

and amino acids between recurrent and non-recurrent patients. We report that the 

variation trend of the involved pathways are not coincided except for the fatty acids 

before and after RFA treatment. Using a random forest (RF) test and a validation with 

other samples in the validation set, the combination biomarker by glutamate and 

aspartate showed a good performance in predicting the HCC recurrence before RFA 

treatment while the combination of glycerol and proline was determined for predicting 

recurrence in HCV-related HCC patients after RFA treatment.  

 

Key words: HCC, HCV, recurrence, gas chromatography metabolomics, combinational 

biomarker. 
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Introduction 

 

Hepatocellular Carcinoma (HCC) is one of the most common cancers in the world (1). 

Despite of improvement of survival in recent years (2,3), the high worldwide incidence 

and malignancy-associated death rate is still challenging, due to the high rate of 

recurrence and the difficulties of prognosis. In the present, surgical resection, liver 

transplantation, percutaneous injection (PI) and radio frequency ablation (RFA) are the 

primary means of curative therapies for HCC. It has been reported that the first two 

above leaded a slight higher 5-year overall survival than RFA (4). However, RFA takes 

priority when the HCC is diagnosed at early stage or when the tumor size is small, since 

this approach shows its safety, relative simplicity and low operative wound to the 

patients (5). As for the risk factors for HCC, it has been claimed that more than 80% 

cases of HCC are associated with viral hepatitis, which induces chronic cirrhosis 

bringing a high risk of HCC (2).  

As to the hepatitis C-related HCC, the prevalence is always mounting worldwide 

in recent years. Especially, in the countries such as the Japan, Egypt and some African 

countries, hepatitis C virus (HCV) infection has been the overwhelming cause 

promoting HCC (6).  It has been suggested that HCV contributed to HCC by directly 

modulating pathways that promote malignant translation of hepatocytes (7). HCC may 

be induced indirectly via HCV involved chronic inflammation, cell death, proliferation, 

and cirrhosis. It was reported that HCC risk increases to 17-fold in HCV-infected 

patients compared to HCV-negative subjects (8) However, direct-acting antiviral 

treatment has been recently reported to be associated with a higher risk of HCC 

recurrence, which makes the therapy to the HCV-related HCC cases more complicated 

(9). 
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 Early screening and diagnosis of HCC are recommended in the high-risk patients 

(10), and known to be essential to improve the outcome. To this end, beyond the 

traditional marker alpha fetoprotein (AFP), which was demonstrated to be possibly 

inaccurate, various new biomarkers have been applied in the clinical assessments to 

execute early screening and prediction of the outcome (2). Besides, it has been shown 

that the metabolomics is employable in the early diagnosis and prognosis (11,12). Our 

previous metabolomic studies have revealed the differences of metabolic profiles 

existing between HCC patients and healthy controls or cirrhotic patients (13-15), and 

liquid chromatography-mass spectrometry (LC-MS) can be used to discriminate HCC 

early recurrence from late recurrence (16). Similar studies were also reported by other 

researchers (17-22). However, in most of those previous HCC studies, the distinct of 

the development of HCC between hepatitis virus-infected patients and non-viral 

patients was not taken in consideration. In one of our previous studies, we have 

demonstrated that the metabolic profiles from viral HCC patients were distinguished 

from those of non-viral HCC patients (23). To go further, in the present study, we 

attempt to compare the metabolic profile between the recurrent and non-recurrent HCV-

related HCC patients, before and after their RFA treatment, so as to seek out potential 

metabolite biomarker candidate predicting the HCC relapse.  

 

Materials and methods 

Sample collection  

All the serum samples were collected by the Jean Verdier Hospital, Bondy, France 

(F93140). They were from the same cohort of HCC as our previous study (23).  The 

patients diagnosed as HCV infection-related HCC according to the criteria from 

January 2002 to December 2012 were included. 
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21 enrolled patients were encompassed in the training set and 25 patients were 

comprised in the validation test. For all the patients concerned, a follow-up visit had 

been achieved until present day. The recurrence of HCC in the recurrent patients was 

detected less than 2 years after the RFA treatment. Along the follow-up visit, the first 

sampling had taken place before the RFA therapy within 14 days, noted as BT while the 

AT were the samples drawn two months after the RFA therapy. 

 

Chemicals  

The derivatization reagents, pyridine, N-methyl-N-(trimethylsilyl)-trifluoroacetamide 

(MSTFA) and the internal standard L-Norvaline were purchased from Sigma-Aldrich 

China Inc. (Shanghai, China). The dichloromethane was bought from Merck 

(Darmstadt, Germany). The ultrapure water was obtained by Milli-Q water purification 

system (Millipore, USA). Other chemicals used for reference substance were listed in 

the supplementary information (S1). 

 

Sample preparation 

The samples in the training set and the validation set were stepwise analyzed. All of 

them were initially stored at -80oC until the sample preparation, which was proceeded 

on ice. An equal aliquot was extracted from each serum sample in order to make up a 

pool of samples, from which 16 quality control (QC) samples in the training set and 9 

QC samples in the validation set were afterward subpacked. For the real samples, a 

volume of 100 μL was extracted from each sample into the eppendorf tube where 400 

μL methanol solution (methanol: H2O = 4:1) was then added to precipitate proteins. 

440 μL liquid supernatant from each tube was finally drawn after the centrifugation at 

the condition of 4 oC and 15 000 x g for 15 minutes. All those extracted samples were 
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then freeze-dried.  

During the redissolution process, 100 μL of methoxyamine solution (20 mg/mL in 

pyridine) was added to each sample. The samples were thereafter taken to the water 

bath for derivatization reaction during 1.5 hour. The following step was the reaction in 

the water bath with 80 μL of MSTFA added during one hour. After centrifugation, the 

supernatant was transferred to the mass spectrometry for the following GC-MS analysis. 

The samples in the validation set were similarly prepared but 10μL of L-Norvaline was 

otherwise added into the samples to be the internal standard.  

 

GC-MS analysis 

Shimadzu GC-MS 2010 was used for the metabolic profiling of each sample. A 

capillary column (30m x 250μm x 0.25μm) and an electron ionization (EI) source were 

employed. The carrier gas was helium with a flow rate of 1.2 mL/min through the 

chromatography column. The split ratio was set to 10:1. For the training set, the gradient 

temperature program was set as follows: 70 oC at the beginning (during 3 minutes), then 

gradually increased to 220 oC by an increase of 4 oC/min, and then heat up to 300 oC 

with the gradient at 8 oC/min, held for 10 minutes. The voltage of the detector was at 

1.1 kV. The temperature of the injection port and the transfer line was kept at 280 oC. 

The temperature of the ion source was 230oC. The scan field was set between 33 to 600 

m/z.  

 For the validation set, all the similarly prepared samples were analyzed in the same 

apparatus as that used with the training set samples. The metabolite discriminators 

defined by the training set (aspartate, glutamate, proline and glycerol) as well as the 

internal standard L-norvaline were analyzed in selective ion monitoring (SIM) mode. 

The characteristic ions with m/z = 70, 72, 84, 142, 142, 144, 160, 205, 232, 246 for the 



107 
 

five targeted metabolites were obtained by analyses on their standards and assigned by 

referring to the database, presented later, according to their mass-to-charge ratio (m/z) 

and their retention time, shown in the Table S-1. The retention time ranges 

corresponding to the above ions have been displayed in the Table S-2. The gradient 

temperature program was different from that in the training set: started by 70oC in the 

first 3 minutes, the temperature was increased to 180oC by 5oC/min, then went up to 

310oC by 20oC/min, retained for 5 minutes. The even time was set to 0.2s.  

Several blank samples (without containing in the vial) were tested before the 

sample analysis for wiping off the residues remaining in the column. Before the analysis 

of the real samples, several QC samples were beforehand analyzed to confirm the 

stability of the instrument. Every injection took 1 μL of droplet from all the sample. 1 

QC sample was inserted after every 6 real samples in the sequence of analysis to 

monitor the reproducibility and stability of the method. When spectra of all the samples 

were recorded, a light diesel sample was subsequently analyzed for acquiring the 

retention index (RI).   

 

Data processing  

The pretreatment such as the deconvolution, the peaks matching, the retention time 

alignment, etc. of the spectrum was performed with the help of Leco ChromaTOF 

software (St. Joseph MI, version 3.25) and XCMS (xcmsonline.scripps.edu). The 

assignment of the ion peaks was achieved by matching the library (NIST, Mainlib, 

Replib, Wiley and Feihn). The assignment of peaks was based on the value of m/z and 

the calculated RI. The qualification for most of the principal discriminators was 

confirmed by analyzing correspondent reference substances. For the case that several 

peaks correspond to one same metabolite, we retained the one with lower RSD and 
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higher ratio of signal and noise (S/N). 

The recording of the area for each determined ion peak was regarded as the relative 

quantification for its corresponding metabolite. A data set recording the area for the ion 

peaks was therefore generated. The peaks that contained more than 20% null area in all 

the QC samples were excluded. Normalization of the peaks was then done. The relative 

standard deviation (RSD) for every normalized peak in the QC samples was also 

calculated. Those peaks whose RSDs were superior to 0.3 were also removed. 

The principal component analysis (PCA) and the partial least square discriminant 

analysis (PLS-DA) were achieved by submitting the data set to the SIMCA-P software 

(version 11, Umetrics, Umeå, Sweden). Heat maps were displayed by the 

MultiExperiement Viewer (Mev, version 4.9.0, Dana-Farber Cancer Institute, MA, 

USA). Other statistical analyses were assumed by the SPSS statistics (version 19, IBM, 

Chicago, USA). The acquisition of spectra for some available reference substance was 

served to confirm the qualification of most of the discriminators.  

To investigate the ability of prediction of the defined biomarker candidate of HCC 

recurrence, the validation of defined principal metabolites was performed by the feature 

selection of random forest (RF). The calculation was realized by the algorithm written 

in the C++ language. For the discrimination between the recurrent and non-recurrent 

HCV-HCC patients, two third of samples were utilized to be the training data while the 

remaining one third of the samples were acted as the validation set. Both the two RF 

analyses were run 100 times, the frequency of the present of a certain discriminator in 

all runs was obtained. Discriminator with a frequency of present superior to 50% was 

considered as a potential biomarker. 

The binary logistic regression (BLR) with the method “condition: forward” was 

used to select the potential biomarkers in the discriminators. The data of the obtained 
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discriminators were again submitted to the BLR with the method “enter”. A probability 

representing the combination of the discriminators was calculated for each sample. And 

the probability was sent up to test the area under receiver operating characteristic curve 

(AUROC).  

 

Results 

 

For the samples in the training set, data pretreatment was started with the 16 QC 

samples. After the deconvolution and peak alignment for the QC samples, 459 peaks 

were initially detected. After removing the peaks with more than 20% null area, it was 

shown that 87% of the peaks were found stable with their RSD of area inferior to 30%, 

occupying 94% of total peak area. Other peaks with RSD superior to 30% were 

therefore excluded. To test the stability of the analytical sequence, an assessment by 

PCA for all the QC samples was performed (Figure S-1), a focalization of the QC 

samples was observed by comparing to all other real samples, which showed a good 

stability of the analytical sequence. Finally, 230 peaks which correspond to comprised 

compounds in the serum were obtained. Afterward, peaks in the real samples were 

qualified by the characterized peaks in QC samples and then quantified by the 

integration of their area. The information of peak area represents the relative 

concentration of corresponding compound in the serum. Finally, a data set for real 

samples containing peak area information for all their 230 defined peaks was therefore 

established, and analyzed in the following discriminatory analyses.  

 For the experiences with the samples in the validation set, the estimation of the 

RSD for the targeted peaks in the 9 QC samples were obtained, shown in the table S-3, 

the peaks with smaller RSD were selected and submitted to the tests of AUROC. 
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Baseline characteristic of patients. 

85 samples from 46 patients fulfilling the inclusion criteria were ultimately included in 

the present study. Among the samples, 38 were included in the training set while 47 

others were encompassed in the validation set. The distribution of all the samples was 

noted in Figure 1. The samples were regrouped by the sampling time (BT: before RFA 

therapy; AT: 2 months after RFA therapy) and recurrence (NR: non-recurrent patients; 

R: recurrent patients). e.g. RBT means the sample obtained before RFA treatment from 

non-HCV infection HCC patient with recurrence; NRAT means the sample drawn from 

HCV-infected patient without recurrence after RFA therapy. The baseline information 

for all the included patients is shown in Table 1. On the basis of the statistical data in 

the table, no significant variation (p>0.05) from the clinical assessments was found 

between the recurrent group and the non-recurrent group.  

On the contrary, significant differences between HCV-HCC patients and non-viral HCC 

patients were found in the largest nodule size, the cholesterol, the blood sugar content 

and two transaminases. The results implied that the principal discrepancy among the 

patients corresponds to the fact whether the patient was affected by viral hepatitis, 

which has been determined in our previous study (23). 
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Figure 1. Flowchart of the distribution of patients and samples. BT: before RFA therapy, 

AT: after RFA therapy; NR: HCC patients without recurrence R: patients with 

recurrence. 

 

Discriminatory analyses in the patients with HCV between the recurrent and the 

non-recurrent group 

For the cohort of HCC patients infected with HCV, 18 samples collected before RFA 

treatment while 20 samples were collected 2 months after the treatment were available. 

PCA and PLS-DA were performed for the two cohorts respectively, shown in Figure 2. 

According to the multivariate analyses, clear separations between RBT vs. NRBT (Figure 

2 A-B) and RAT vs. NRAT (Figure 2 C-D) were observed. Significant differences were 

shown between the recurrent patients and non-recurrent patients before and after RFA 

treatment. With 2 components, the Q2 for the two models were equal to 0.34 and 0.5 

respectively. Cross validations for the two models demonstrated that they were not 

over-fitting (shown Figure S-2). As regard to the PLS-DA analyses, the contribution of 

each metabolite to the model was determined by the variable importance in the 
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projection (VIP). Metabolites with their VIP superior to 1 were all listed in the Table 

S1 accompanied by their P-value and fold change for the two model respectively. Heat 

maps showing their different variation directions and fold changes in each sample are 

present in Figure 2E-2F.  

 

 

Figure 2. Multivariate analysis RBT vs. NRBT. and RAT vs. RBT. A-D: Score-plot of PCA 

and PLS-DA. Blue dots: non-recurrent patients; red dots: recurrent patients. A: PCA for 

the samples RBT and NRBT. B: PLS-DA for the separation between NRBT and RBT. C: 

PCA of the samples RAT and NRAT. D: PLS-DA for the separation between RAT and 
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NRAT. E-F: Heat map presenting the hierarchical clustering analysis for the two 

separation, on the left of the dotted line: non-recurrent patients; on the right of the dotted 

line: recurrent patients. E: heat map for RBT vs. NRBT; F: heat map for RAT vs. NRAT. 

 

Metabolome differences between the recurrent and the non-recurrent groups 

before the RFA therapy (BT) 

As it has been shown in Figure 2E, 35 metabolites were determined to be significant in 

the comparison between RBT and NRBT. Among the significant discriminators, we 

exhibited a general increased level of amino acids in the RBT, compared with NRBT. 

Concerning the free fatty acids in the serum, FFA 4:0 and FFA 12:0 were elevated in 

the RBTs compared with those in NRBT, while FFA 18:0 and FFA 22:6 

(Docosahexaenoic acid, DHA) varied in the opposite direction. Besides, upregulation 

of two pentose phosphate pathway (PPP) involved metabolites such as ribitol and 

arabitol was observed. Being linked to the purine metabolism, xanthine and urate were 

down-regulated in the recurrent patients. Several energy-related organic acids such as 

lactic acid, glycolic acid, glutaric acid and sebacic acid were also shown to be 

responsible for the separation of RBT vs. NRBT. Other significant discriminators 

included indolelactate, benzeneacetate, benzoate and urea. A pathway showing the 

discriminations in involved metabolites between the RBT and the NRBT has been shown 

in Figure 3. 
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Figure 3. Discriminators with their relative quantification and their involving pathways 

of NRBT (blue bars) vs. RBT (red bars). *: p<0.05, **: p<0.01. 

 

Metabolome differences between the recurrent and the non-recurrent patients 

after the RFA therapy (AT) 

For the comparison between RAT and NRAT, 50 metabolites were shown significantly 

varied (shown Figure 2F). Among them, generally heightened fatty acids were found in 

the recurrent cases, except for arachidonic acid (ARA, FFA 20:4), which was similar to 
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the finding in the fatty acids with BT. But, we noticed kinds of metabolites such as 

amino acids, PPP involved metabolites and lactate altering adversely against the 

comparison in BT. Opposite variation directions of certain metabolites against their 

regularities observed with BT were otherwise true for metabolites such as benzoate and 

glutarate. Moreover, 2 metabolites involved in the TCA cycle, citrate and isocitrate, 

augmented in recurrent cases, which was not found in the comparison of RBT vs. NRBT. 

Other significant differences related to the post-operational recurrence were found in 

the metabolites such as creatinine, citrulline, threonate, 2-hydroxybutyrate, 3-

aminoisobuyrate, etc. (Table S-4). Relative quantifications of some metabolite 

discriminators distinguishing the RAT from the NRAT have been shown within their 

involving pathways the Figure 4. 
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Figure 4. Discriminators with their relative quantification and their involving pathways. 

A: NRAT (blue bars) vs. RAT (red bars). B: Discriminators included in the glycerolipid 

metabolism and the fatty acids in the discrimination between NRAT and RATs. *: p<0.05, 
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**: p<0.01. 

 

Determination of potential biomarkers predicting HCC recurrence for the HCV-

related patients 

Further determination of key discriminators was achieved by the analysis of volcano 

plot (Figure 5). N-acetyl-lysine, glutamate and aspartate were defined for their acute 

variation in the RBT vs. NRBT comparison; aspartate, proline, glutarate, glycerol and 

FFA 14:0 were characterized as the metabolites highly correlated to the prediction of 

HCC relapse after the treatment. Area under receiver operating characteristic curve 

(AUROC) for each defined metabolite was subsequently calculated to affirm its 

reliability of recurrence prediction (shown in Table 2 and Figure 5C-D). Accordingly, 

apart from FFA 14:0, all the defined principal discriminators showed outstanding 

performances with their AUROC superior to 0.80. 
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Figure 5. Determination of primary metabolite discriminators and potential 

combinational biomarkers of recurrence for HCV-related HCC patients. A-B Volcano 

plot for the determined metabolites. Axis x: log2 (fold change); axis y: log10 (P-value). 

A: RBT vs. NRBT; B: RAT vs. NRAT. C-D ROC for the obtained important discriminators 

from the volcano plot. C: RBT vs. NRBT; D: RAT vs. NRAT. E-F: ROC of the potential 

combinational biomarkers before and after RFA treatment. E: ROC of the combination 

of glutamate and aspartate separating RBT from NRBT; F: ROC of the combination of 

glycerol and proline separating RAT from NRAT. 

 

Validation tests of the primary discriminators were performed by the random forest 
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(RF) during 100 runs. For the comparison by the recurrence prior to the treatment, the 

average accuracy rate on independent tests was 80.7%±7.6%; the result for the RAT 

and NRAT separation was 82.9%±8.0%. Table 2 displays the probability of presence of 

the discriminator in the 100 runs of RF models. It can be observed that N-acetyl-lysine 

and FFA 14:0 were present in less than half of the RF models, which should be rejected 

for being biomarker candidates. Other metabolites were proved to be more important 

for the two models.  

Finally, after the exclusion of the two metabolites with poor performances in the 

RF models, the remaining metabolites were submitted to determine potential 

combinational biomarkers. For the model based on the samples obtained before the 

treatment (BT), the combination of aspartate and glutamate showed an accuracy of 100% 

in ROC (Figure 5E). For AT, glycerol and proline were the two crucial variables for the 

prediction. Their combination showed 99% accuracy of prediction for post-operative 

recurrence (Figure 5F). 

 

Validation by the validation set 

The predictability of recurrence of the two combinational biomarker candidates in the 

samples of validation set was verified by another ROCs. As shown in Figure 6, the 

combination of aspartate and glutamate presents an AUROC = 0.83 for the prediction 

of HCC recurrence in the BT. The AUROC was equal to 0.78 for the prediction of HCC 

recurrence in AT by the combination of glycerol and proline. 
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Figure 6. Validation of the combinational potential biomarkers predicting the 

recurrence of HCC in the patients with HCV by ROC curves. A. ROC curve for the 

prediction of recurrence in the BT; B. ROC curve for the prediction of recurrence in the 

AT. 

 

Discussion 

 

Until present, the causes of recurrence as well as the prevention of recurrence are still 

elusive and the recurrence of HCC remains a primary threat for the outcome. 

Metabolomics is powerful to reveal subtle physiological changes in the biological 

system, which may correspond to the stimulations of lesions and diseases, proved useful 

for predicting the recurrence of cancer (24,25). In the current work, obvious 

discrimination of recurrent samples against non-recurrent samples was revealed in the 

cohort with HCV infection before and after RFA therapy. From the point of view of 

metabolites, comprehensive alterations in the recurrent patients were detected, 

compared with the ones without HCC relapse.  
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Free fatty acids glycerolipid metabolism 

Among the HCV-related HCC patients, it was notable that a comprehensive turnover of 

free fatty acids in the recurrent patients was found both before and after RFA treatment 

compared with those without recurrence. Even-carbon chain fatty acids including long-

chain and medium-chain saturated fatty acids (SFAs) and monounsaturated fatty acids 

(MUFAs) were up-regulated in the comparison NRAT vs. RAT. Interestingly, short-chain 

and medium-chain fatty acids were determined up-regulated in RBT compared to NRBT. 

However, arachidonic acid (ARA, 20:4) and docosahexaenoic acid (DHA 22:6), which 

are long-chain polyunsaturated acids (PUFAs), were meanwhile down-regulated in RAT 

and RBT respectively (Shown in Figure 3, 4A). First, immune function like anti-

inflammatory of PUFAs was well known (26). The depletion of PUFAs might refer to 

a poor prognosis owing to the hepatic viral infection. Second, HCV core protein causes 

insulin resistance which might be the direct origin of the wide increase of fatty acids in 

blood (27). It was also known as activating the liver X receptor alpha (LXRα), which 

modulated inflammatory genes and resulted in lipogensis (28). Being associated with 

the LXR, the raised level of 7-hydroxycholesterol (P<0.05) in recurrent patients also 

referred to a hypercholesterolemia and consequently cancer growth (29). Third, 

significant increased level in FFAs was found in the comparison between HCV infected 

cells and controls (30), a higher level in the HCC patients with HCV might imply a 

more activated HCV core protein. Finally, FFAs were demonstrated responsible for the 

cancer invasion and migration of HCC cancer cells (31). Taken together, both before 

and after RFA therapy, the deregulation of FFA in the serum of HCV infected HCC 

patients should account for the HCC recurrence. 

 

Glycerolipid metabolism, TCA cycle and energy-related metabolism 
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Notable upregulation of glycerol (p<0.01), which is another precursor of triglyceride 

(TG) synthesis other than FFAs, was observed in RAT compared with NRAT. Meanwhile, 

as being two upstream metabolites for glycerol, glyceraldehyde (p<0.05) and glycerate 

(p<0.01) were down-regulated. It has been discussed that the HCV induced insulin 

resistance and inhibition of synthesis of TG, consistent with the accumulation of 

glycerol and FFAs in the patients with relapse, shown in Figure 4B.  

On the other hand, enhanced lactate (p<0.05) synthesis from pyruvate (p<0.05) in 

the recurrent patients was observed. We ever reported upregulation of lactate as a 

potential biomarker for the HCC recurrence (32). This is due to a high energy demand 

from the HCC cell emergence (33). Notably, it was best known that the HCV core 

protein activates the hypoxia-inducible factor 1 (HIF1), which promotes hypoxic 

environment for the development of HCC (34).. 

Increments of two metabolites in the TCA cycle, citrate (p<0.05) and isocitrate 

(p<0.05) were only found in recurrent patients after their treatment, which could be 

attributed to the growth of energy demand for generation of tumor.    

 

Amino acids  

According to our analyses before and after RFA therapy, the level of amino acids was 

of great importance for the separation between the recurrent and non-recurrent group 

(shown in Figure3 and 4A).  

For the discriminatory analyses of recurrence in AT, the downregulation of various 

amino acids presented in Figure 4 had been widely reported as less optimist prognosis 

in HCC patients (14,18,20,35-38), which was primarily due to the comprehensive 

protein depletion after clinical treatment and the upregulation of anabolism prior to the 

relapse. 
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But, as a contrast to the results above in AT, except for two branched chain amino 

acids (BCCA), reverse variation trend was found in numbers of amino acids alteration 

emerged in NRBT vs RBT. As it has been documented, the up-regulated serine and 

threonine pathway was considered as an important signal of bad outcome of cancer 

(18,20). Upregulation of proline and cysteine pathway was otherwise observed along 

the proliferation and the cell cycle of HCC (39). The elevated level of glutamate and 

aspartate might be related to the deregulation of the aminotransferases such as GGC 

and AST in the case of HCC (40,41).   

 

Pentose phosphate metabolism  

Arabitol and ribitol, which were included in pentose phosphate pathway (PPP), were 

found significantly up-regulated in the comparison of RBT to NRBT. Being related to the 

synthesis of nucleoside, upregulation of pentose related pathway might be due to 

dynamic proliferation of DNA in the recurrent patients before RFA therapy. On the 

contrary, after the tumor was removed, significant declines not only in the two above 

metabolites but also in ribonic acid and xylonic acid in RAT compared to NRAT. Given 

that TCA cycle involved metabolites and lactate were found elevated in the recurrent 

group after RFA therapy, the decrement of the PPP metabolites might issue from a 

down-regulation of the energy supply from this pathway. 

 

Other significantly varied metabolites in the recurrent patients  

For the model NRBT vs. RBT, beyond discussed metabolites and pathways, other 

metabolites listed in the Table S1 were also significantly altered in RBT. The decline of 

xanthine, accompanied by the decrease of urate might be subjected to the consumption 

of purine during the replication of DNA. Elevated methylmalonate was linked to the 
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up-regulated TCA cycle and the degradation of BCCAs. The acetylation of lysine was 

reported attenuated in another cancers (42), in accordance to our result. We previously 

reported heightened 2-hydroxybutyrate (2-HB) as a potential marker separating HCC 

patients and health controls (14), however, in this work, decline of 2-HB was exhibited 

in small HCC patients with relapse.  

Metabolites such as citrulline and oxalate also contributed to the separation 

between NRAT and RAT. Citrulline is synthetized in liver, decreased citrulline indicated 

an altered liver function and a deprivation of synthesis citrulline from argininosuccinate 

(43). As for oxalate, it was also reported remarkably augmented in recurrent patients 

when compared with non-recurrent patients (32).  

 

Determination of the combinational biomarkers of recurrence for the HCC 

patients with HCV 

 The primary discriminators related to the recurrence were defined, shown in Figure 

5.  Eventually, the combination of aspartate and glutamate shows potential to predict 

recurrence for the BT. As discussed above, previous studies have reported the 

predictability of HCC recurrence by AST and GGT, providing evidence that the two 

amino acids which are directly regulated by the two aminotransferases may be also 

significant indicators for recurrence before the clinical operation. On the other aspect, 

after the small HCC was removed by the RFA treatment, strikingly, the remarkable 

upregulation of glycerol, accompanied by the increment of various fatty acids should 

attribute to the HCV-induced insulin resistance which hindered the synthesis of TG. 

The combination of glycerol and proline was eventually shown powerful to predict 

HCC recurrence for the AT. Our experiences of validation with external test samples 
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showed the predictability of the determined combinational biomarker candidates were 

acceptable both before and after RFA therapy.  

 

Conclusions  

  

In our previous study, considerable metabolic differences were reported between HCC 

patients with and without hepatitis virus infections. In the present study, we contribute 

to investigate the metabolic differences between recurrent and non-recurrent HCC 

patients before and after their RFA therapy. In the HCC patients with HCV infection, 

clear separation by recurrence is found both before and after the RFA treatment. Further 

analysis concerning the patients shows a general increase of various fatty acids in the 

recurrent patients compared with the non-recurrent patients, which may indicate a 

dynamic activity of the HCV core protein in the recurrent patients. Whereas, 

inconsistent alterations regularity for the pathways of amino acids and PPP were 

otherwise revealed between pre-operation and post-operation. We suppose that specific 

metabolic variations before the suppression of tumor in the recurrent patients were 

linked to DNA replication and tumor proliferation. However, observed decline of amino 

acid and deregulation of energy-related metabolites, especially TCA cycle-involved 

metabolites, may be associated with the protein depletion after clinical operation and 

up-regulated anabolism for tumor genesis. With the confirmation of external validation, 

finally, we suggest that the combination of glutamate and aspartate and the combination 

of glycerol and proline are potential to be the combinational biomarkers for the 

prediction of HCC recurrence with HCV before and after RFA treatment respectively.  
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Figure Legends 

 

Figure 1. Flowchart of the distribution of patients and samples. BT: before RFA therapy, 

AT: after RFA therapy; NR: HCC patients without recurrence R: patients with 

recurrence. 

 

Figure 2. Multivariate analysis RBT vs. NRBT. and RAT vs. RBT. A-D: Score-plot of PCA 

and PLS-DA. Blue dots: non-recurrent patients; red dots: recurrent patients. A: PCA for 

the samples RBT and NRBT. B: PLS-DA for the separation between NRBT and RBT. C: 

PCA of the samples RAT and NRAT. D: PLS-DA for the separation between RAT and 

NRAT. E-F: Heat map presenting the hierarchical clustering analysis for the two 

separation, on the left of the dotted line: non-recurrent patients; on the right of the dotted 

line: recurrent patients. E: heat map for RBTs vs. NRBTs; F: heat map for RAT vs. NRAT. 

 

Figure 3. Discriminators with their relative quantification (y-axis) and their involving 

pathways of NRBT (blue bars) vs. RBT (red bars). *: p<0.05, **: p<0.01. 

 

Figure 4. Discriminators with their relative quantification (y-axis) and their involving 

pathways. A: NRAT (blue bars) vs. RAT (red bars). B: Discriminators included in the 

glycerolipid metabolism and the fatty acids in the discrimination between NRAT and 

RAT. *: p<0.05, **: p<0.01. 

 

Figure 5. Determination of primary metabolite discriminators and potential 

combinational biomarkers of recurrence for HCV-HCC patients. A-B Volcano plot for 

the determined metabolites. Axis x: log2 (fold change); axis y: log10 (P-value). A: RBT 
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vs. NRBT; B: RAT vs. NRAT. C-D ROC for the obtained important discriminators from 

the volcano plot. C: RBT vs. NRBT; D: RAT vs. NRAT. E-F: ROC of the potential 

combinational biomarkers before and after RFA treatment. E: ROC of the combination 

of glutamate and aspartate separating RBT from NRBT; F: ROC of the combination of 

glycerol and proline separating RAT from NRAT. 

 

Figure 6. Validation of the combinational potential biomarkers predicting the 

recurrence of HCC in the patients with HCV by ROC curves. A. ROC curve for the 

prediction of recurrence in the BT; B. ROC curve for the prediction of recurrence in the 

AT.  
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Table 1. Baseline of the enrolled patients in the study. All the percentages were 

calculated by the proportion in all the enrolled patients. Uni-nodular: HCC patient who 

had only one nodule of tumor. AFP: alpha fetoprotein; TG: triglyceride; AST: aspartate 

aminotransferase; ALT: alanine aminotransferase; GGT: γ-glutamyl transpeptidase. P-

valueRec: P-value for the comparison between recurrent and non-recurrent HCC patients 

 

 

  

Total

Training set

Patients

with HCC

recurrence

Patients

without

HCC

recurrence

P-valueRec

Total Test

set

Patients

with HCC

recurrence

Patients

without

HCC

recurrence

P-valueRec

Number of

patients
21 11 (52%) 10(45%) NA 25 13(52%) 12(48%) NA

Age (Average) 70.6±0.3 70.2±0.4 69.7±0.3 0.22 67.6±0.5 65.8±0.9 69.4±1.0 0.23

Gender (Male

%)
18(86%) 9(82%) 9(90%) NA 17 (68%) 8(61%) 9(75%) NA

Uni-nodular

HCC
16(76%) 9(81%) 7(70%) NA 20(80%) 10(77%) 10(83%) NA

Largest nodule

size (mm)
28.2±0.2 28±0.4 28.4±0.4 0.44 24.4±0.4 27.6±0.8 21.0±0.7 0.04

AFP (ng/ml) 44.4±2.7 52.6±5.5 36.5±5.3 0.34 45.39±5.0 74±8.1 19.2±2.8 0.04

TG (g/L) 1.1±0.02 1.1±0.03 1.1±0.07 0.47 1.0±0.01 1.0±0.02 0.9±0.02 0.39

Cholesterol

(g/L)
4.4±0.03 4.5±0.05 4.2±0.07 0.2 3.8±0.04 3.5±0.04 4.1±0.10 0.14

Glycemia (IU/L) 6.6±0.32 6.9±0.08 6.4±0.06 0.18 6.5±0.07 6.3±0.11 6.6±0.17 0.32

AST (IU/L) 58.4±1.1 64.3±3.1 53±0.9 0.26 68.9±1.6 87.8±3.3 50.1±2.3 0.01

ALT (IU/L) 49.5±0.7 50.3±1.7 48.8±1.1 0.45 57.7±1.6 72.9±3.3 42.5±2.3 0.03

GGT (IU/L) 123.2±1.9 140.0±4.7 107.7±3.5 0.13 141.5±5.1 177.4±7.0 105.6±12.7 0.09

Test setTraning Set
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Table 2. Determination of principal metabolites in the separation between the HCV-

related HCC patients with recurrence and the patients without recurrence. 

 

  Metabolite m/z RT (min) VIP P-value 
Fold 

Change 
AUROC RF 

BT 

L-Glutamate 246 22.71 2.11 <0.001 2.3 0.87 54.3% 

L-Aspartate 232 20.31 2.01 <0.001 1.82 0.87 68.0% 

N-Acetyl-lysine 98 38.46 1.98 <0.001 0.56 0.82 43.3% 

AT 

Glycerol 205 13.89 1.78 <0.001 1.8 0.92 74.7% 

L-Proline 142 14.44 1.97 <0.001 0.6 0.89 51.7% 

L-Aspartate 232 20.31 1.94 <0.001 0.61 0.80  54.7% 

Glutaric acid 115 14.45 1.94 <0.001 0.58 0.80  50.7% 

FFA 14:0 285 27.73 1.76 0.001 1.76 0.43 44.0% 
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3.3.2 Conclusion to this part of experimental research 

 

HCC is primary in liver cancer which leads to a high rate of recurrence and mortality. 

However, current prediction of HCC recurrence is not as reliable as expected. HCV 

infection is one of the primary causes of HCC. Our previous study has shown 

comprehensive differences of metabolome between the viral and non-viral HCC 

patients. Even though some studies concerning the recurrence of HCC has been 

performed before, to our known, the metabolome of the patients was not analyzed in 

the condition of a classification of the patients by the fact of virus infection.   

In the present study, GC-MS-based metabolomics has been applied to analyze the 

differences of metabolome between the recurrent and non-recurrent HCC patients, 

especially in the patients who are affected by the HCV infection. We report that clear 

separations have been found with the metabolic profiles between the HCV-related 

recurrent and non-recurrent HCC patients, before and after their RFA therapies. 

Metabolites involved the pathways such as amino acids, fatty acids, glycerolipid 

metabolism, PPP accounted for the prediction of HCC recurrence in the HCV-HCC 

patients. With our validations of results, our eventually defined combinational 

biomarker candidates were shown to be potential for the prediction of HCC relapse 

before and after RFA treatment.  

On the contrary, no clear separation about the HCC relapse was found when we 

compared the two groups of non-viral patients, same results were found with all the 

enrolled patients. Since variations in considerable kinds of lipids were revealed to be 

responsible to the HCC recurrence, next study should be performed with a systematic 

lipidomics which will provide further information of the variations of lipids and 

relevant pathways.    
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General conclusions and perspectives 
 

The development of metabolomics makes it an important component in the system 

biology. It has been shown that the determination of the expression of certain 

metabolites was directly related to a physiological state. Therefore, its application in 

the field of clinical research is potential. One of the core tasks of metabolomics in the 

clinical applications is to find out novel and accurate biomarkers with which we are 

able to have a better understanding of individual physiological situation in time, to 

predict the outcome of disease and to perform targeted treatments.  

In the first part of the study, we aimed to determine the biomarkers predicting the 

mortality of septic shock. Metabolic differences were uncovered by both LC-MS and 

1D NMR spectroscopy between the septic survivors and the non-survivors before 

clinical intervention. Further, with the help of paired model by NMR-based approach, 

the evolution of metabolic profiles from the hospitalization to 24h later were 

investigated, and an apparent separation between the survivors and non-survivors was 

found again. Interestingly, according to the results found with the NMR experiences, 

variations of the metabolites such as energy-related metabolites and some amino 

acids in the non-survivors were in accord with those found with MS experiences. On 

the other hand, for example, variations in some urea cycle-involved metabolites and 

in glucose were only determined by the LC-MS-based method and by the NMR-based 

method respectively. According to the study using the both techniques, we figure out 

the method with LC-MS a better coverage of metabolites is achievable, but, an easier 

sample preparation and data analysis is proceeded with NMR than MS. Also, it is 

shown that both the MS and NMR-based metabolomics are useful for the clinical 

application and the two techniques are complementary. We claim that using 

meanwhile both the techniques will provide more information of the metabolome 

than using only one platform and the similar obtained findings from the two 

techniques can be a mutual confirmation for the two work.   

In the second part of the work, biomarkers were sought for predicting HCC relapse in 
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the HCC patients who were also suffered from HCV infection. Serum samples from HCC 

patients before and after RFA treatment were studied separately by the fact of 

infectious hepatitis virus. GC-MS has been applied for the serum metabolome analyses. 

Accordingly, considerable differences of metabolic profiles have been exhibited 

between HCC recurrent patients and non-recurrent patients before and after RFA 

therapy. As regard to the obtained results, similar variation in the fatty acids, which 

may be related to the activity of HCV core protein, in the recurrent patients compared 

with the non-recurrent patients before and after RFA therapy. However, strikingly, 

opposite regularities in the pathways such as amino acids and PPP are found from the 

two discriminant models about HCC relapse. We suggest that the difference of 

variation directions in the involved pathways issue from the exclusion of tumor.   

This study brings some imperfectness which might be accomplished in the following 

work. Above all, the number of samples was a remarkable limit in the both parts of 

the work. More other samples, especially some samples obtained from other hospitals 

should be tested to confirm the obtained results. Besides, we witnessed that there 

were a variety of variations in lipids along the study. Thus, to achieve a larger coverage 

of all kinds of lipids, lipidomics studies are suggested in the future work to detect 

concrete changes in certain lipids.   

For the part concerning the septic shock, to better understand the exact mechanism 

from the septic shock to death in the non-survivors, the isotropic tracing technique is 

preferred to find out the origin of the variations in the discriminatory metabolites. 

Further, exhibited deregulation of urea cycle in the septic non-survivors implied severe 

kidney injury in these patients. A further metabolomic study using urine samples may 

be more direct and provide more information of alterations in kidney injury-related 

pathways.  

For the study on HCC, as limited by the cohort, we principally worked on the 

recurrence in the patients with hepatitis C, but not in those with hepatitis B. It has 

been reported recently that the hepatitis B has become the main cause of HCC 

incidence, a following work may concentrate on determining the biomarkers 

predicting the recurrence in the HCC patients with hepatitis B.  
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Actually, the parts of the study are shared by our French and Chinese laboratory, but 

all the serum samples were taken in France. A validation of our results in the Chinese 

relevant patients in the future may make the results generally significant.       

Finally, revealed metabolic variations in the non-survived patients of septic shock or in 

the HCC-HCV recurrent patients may indicate related alterations in the genome and 

proteome. Thus, studies applying other omics may provide a further understanding of 

the deregulation of relevant metabolic pathways and help to better understand the 

mechanisms for the patients with different outcomes. 
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Appendix                                                                                          

 

Appendix 1. Supporting information of the septic shock-related 

study 1   

 

Table S1. Identified metabolites by the retained peaks following the pre-processing with the help of 

database. *: metabolites with VIP > 1; #: metabolites with p-value < 0.05; ^: metabolites confirmed 

by the MS/MS; metabolites identified by the database but rejected by the comparison to the result 

of MS/MS; &: significantly varied metabolites defined by both the positive and negative modes.  

 

M/Z Mode Time Attribution 

80.0495 Positive 0.44 Pyridine 

90.055 Positive 0.66 DL-Alanine 

90.0551 Positive 0.91 L-Alanine?*# 

90.0551 Positive 0.41 L-Alanine^ 

104.0706 Positive 0.44 Amino-isobutric acid*# 

104.1073 Positive 0.4 Choline 

105.0548 Positive 0.88 3,(4)-Hydroxybutryric acid*# 

113.0348 Positive 2.86 Uracil*# 

114.0661 Positive 0.69 Creatinine?*# 

114.0665 Positive 0.42 Creatinine*#^ 

116.0709 Positive 0.96 DL-proline*# 

116.0712 Positive 0.71 L-Proline*#^ 

117.0742 Positive 0.44 Betaine*#^ 

118.0862 Positive 0.44 L-Valine*#^ 

118.0863 Positive 0.72 L-Valine?*# 

120.0655 Positive 0.44 L-Threonine 

122.0965 Positive 3.1  Phenylethylamine* 

130.0501 Positive 0.68  Pyroglutamic acid 

130.0863 Positive 0.44 Pipecolic acid 

132.077 Positive 0.43 Creatine*#^ 

132.077 Positive 0.71 Creatine?*# 

132.1019 Positive 1.11 L-isoleucine*#^ 

132.1019 Positive 0.84 L-Leucine*#^ 

133.0973 Positive 0.35 Ornithine*#^ 

137.046 Positive 0.64 Hypoxanthine*#^ 

138.0551 Positive 2.52 Aminobenzoic acid* 

139.0505 Positive 0.44 Urocanic acid 

143.1069 Positive 4.85 Octenoic acid 

144.102 Positive 0.71 Proline betaine*# 

146.1174 Positive 2.15 Acetylcholine* 
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147.0767 Positive 0.71 DL-Glutamine? 

147.0767 Positive 0.44 L-Glutamine*#^& 

147.113 Positive 0.35 L-Lysine^ 

148.0604 Positive 0.44 L-Glutamate*#^ 

150.0586 Positive 0.62 Methionine^ 

152.0321 Positive 0.71 PhenylGlycine 

152.0362 Positive 0.34 Methylcysteine sulfoxide^ 

153.041 Positive 0.67 Xanthine 

162.1128 Positive 0.71 L-carnitine 

166.0528 Positive 0.95 Methionine sulfoxide^ 

166.086 Positive 1.85 DL-Phenylalanine 

166.0861 Positive 1.57 L-Phenylalanine*#^& 

166.0864 Positive 1.32 DL-Phenylalanine?*# 

169.036 Positive 0.59  Uric acid 

176.0706 Positive 4.28 Indoleacetic Acid^ 

176.0708 Positive 4.7 Indoleacetic Acid? 

176.1029 Positive 1.83  Citrulline*#^ 

176.1032 Positive 3.52 Citrulline?*# 

176.1034 Positive 2.85 Citrulline?*# 

180.0654 Positive 1.83 Hippuric acid*#^ 

181.072 Positive 2.56 Glucose 

182.0811 Positive 2.28 L-Tyrosine? 

182.0811 Positive 1.1 Tyrosine?*# 

182.0815 Positive 0.71 L-Tyrosine*#^& 

184.0948 Positive 0.41 Epinephrine 

188.0707 Positive 2.43 L-Tryptophan*# 

194.0816 Positive 3.36  2-Methylhippuric acid*#^ 

195.0875 Positive 3.07 Caffeine^ 

195.0878 Positive 3.56 Caffeine? 

196.0604 Positive 2.96 Salicyluric acid 

204.1234 Positive 0.62 Carnitine C2:0*#^ 

208.0971 Positive 4.31 N-acetyl-DL-Phenylalanine 

218.1391 Positive 1.06 Carnitine C3:0 

224.0915 Positive 1.99 N-acetyl-L-tyrosine* 

229.1544 Positive 1.01 Ile-Pro* 

229.1545 Positive 0.76 Pro-Leu 

232.1548 Positive 2.33 Carnitine C4:0*#^ 

246.1703 Positive 3.05 Carnitine C5:0 

247.1078 Positive 4.52 N-acetyl-DL-Tryptophan 

252.1082 Positive 0.45 Deoxyadenosine 

259.0929 Positive 0.68 Ribothymidine 

260.1861 Positive 4.17 Carnitine C6:0? 

260.1862 Positive 4.44 Carnitine C6:0*#^ 

261.145 Positive 2.76 Glu-Leu* 
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262.129 Positive 0.63 Epidermin 

279.1702 Positive 4.28 Leucyl-Phe 

280.1396 Positive 0.63 Glycated valine 

284.186 Positive 2.98   α-Hydroxymetoprolol*# 

286.2018 Positive 4.99 Carnitine C8:1*# 

288.2172 Positive 5.16 Carnitine C8:0*# 

288.2896 Positive 8 Sphinganine 

294.1543 Positive 1.28 Glycated Isoleucine 

294.155 Positive 0.98 Glycated leucine 

300.2899 Positive 11.8 Sphingosine 

314.1578 Positive 4.5 Phe-Phe 

314.2328 Positive 6.37 Carinitine C10:1 

316.248 Positive 6.86 Carnitine C10:0*#^ 

328.1025 Positive 1.32  p-Acetamidophenyl glucuronide 

331.2847 Positive 12.33 MG 16:0* 

339.1547 Positive 4.72 Nicotine glucuronide* 

342.264 Positive 7.47 Carnitine C12:1 

344.279 Positive 7.93 Carnitine C12:0*#^ 

359.3156 Positive 13.81 MG 18:0^ 

368.2795 Positive 7.91 Carnitine C14:2 

370.2948 Positive 8.44 Carnitine C14:1 

371.1699 Positive 5.16 4-Hydroxy-3,5-bis(1-methylethyl)phenyl 

glucuronide 

372.3109 Positive 8.97 Carnitine C14:0^ 

388.1969 Positive 5.83 Terazosin 

398.3262 Positive 9.32 Carnitine C16:1* 

400.3421 Positive 9.91 Carnitine C16:0*#^ 

401.3415 Positive 14.4 7-Ketocholesterol 

401.3457 Positive 9.91 Calcifediol 

426.358 Positive 10.16 Carnitine C18:1 

428.3735 Positive 10.77 Carnitine C18:0*#^ 

73.0293 Negative 0.74 Propionic acid* 

89.0241 Negative 0.61  L-Lactic acid*#^ 

89.0241 Negative 1.75 DL-Lactic acid?*# 

89.0242 Negative 1.21 DL-Lactic acid?*# 

101.0244 Negative 0.4 2-Oxobutanoate 

103.0398 Negative 1.04 Hydroxybutyric acid 

103.0398 Negative 1.54 Hydroxyisobutyric acid 

105.0193 Negative 0.43 Glyceric acid 

117.0189 Negative 0.76 Succinic acid*#^ 

117.0552 Negative 2.31 Hydroxyvaleric acid*# 

121.0291 Negative 3.19 Benzoic acid 

128.0348 Negative 0.68 DL-Glutamate* 

130.0868 Negative 0.78 DL-Leucine/Isoleucine 
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133.014 Negative 0.41 Malic acid*#^ 

135.0296 Negative 0.43 Threonic acid* 

137.0238 Negative 4.48 Salicylic acid 

145.05 Negative 2.32  Adipic acid 

145.0617 Negative 0.4 L-Glutamine*#^& 

145.0866 Negative 4.78 2-Hydroxy enanthoic acid 

146.0456 Negative 0.43 L-Glutamate 

147.0293 Negative 0.79 alpha-Ketoglutarate*#^ 

147.0444 Negative 3.85 Cinnamic acid*# 

149.0451 Negative 0.43 Ribose 

150.0554 Negative 2.94 2-Phenylglycine 

151.0258 Negative 0.77 Xanthine* 

151.0395 Negative 3.54 p-Hydroxyphenylacetic acid 

157.0498 Negative 2.5 Succinylacetone*# 

158.0814 Negative 3.5 N-isovalerylglycine 

164.0709 Negative 1.89 L-Phenylalanine*#^& 

172.9904 Negative 2.2 Phenol sulfate*# 

179.0558 Negative 0.4 Allo-Inostiol* 

180.0659 Negative 0.74 L-Tyrosine*#^& 

183.1381 Negative 7.12 FFA C11:1 

185.1175 Negative 6.94 OH-FFA C11:1* 

187.0059 Negative 3.38 p-Cresol sulfate 

187.0968 Negative 4.7 Nonanedioic acid 

191.0193 Negative 0.65  Citric acid*#^ 

191.0557 Negative 0.43 Quinic acid 

201.1121 Negative 5.44 Sebacic acid* 

202.1076 Negative 0.76 Acetylcarnitine 

203.0816 Negative 4.14 3-Hydroxymethylantipyrine 

203.0816 Negative 2.43 L-Tryptophan 

204.0656 Negative 4.12  Indolelactic acid*#^ 

207.0763 Negative 3.55 Kynurenine 

208.0605 Negative 3.53 Hydroxyphenylacetylglycine 

212.0013 Negative 2.49 Indoxy sulfate*#^ 

213.0215 Negative 4.95 Methylthiobenzoic acid 

215.164 Negative 8.62 Hydroxydodecanoic acid*# 

222.0761 Negative 1.72 Acetyl-L-tyrosine*^ 

222.0762 Negative 2.64 Acetyl-L-tyrosine?*# 

227.1275 Negative 6.34 Traumatic acid 

229.1432 Negative 6.81 Dodecanedioic acid 

230.0116 Negative 1.47 Norepinephrine sulfate 

243.1701 Negative 3.53 Leu-Iso 

246.0735 Negative 5.51 Asp-Asp 

255.2313 Negative 9.82 FFA 16:0*#^ 

263.1018 Negative 3.18 Phe-Gln 
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269.2106 Negative 10.63 FFA 17:0 

283.2628 Negative 11.08 FFA 18:0*#^ 

289.1277 Negative 3.2 Argininosuccinate*#^ 

327.2161 Negative 7.17 FFA 22:6 

367.1557 Negative 6.36 Etiocholanolone sulfate 

369.1717 Negative 5.78 DHAS 

369.172 Negative 6.83 ANDS 

391.2831 Negative 9.27 UDCA*#^ 

391.2834 Negative 12 CDCA 

407.2778 Negative 7.84 CA^ 

409.2335 Negative 11.1 LPC 16:0^ 

433.2335 Negative 10.69 LPC 18:2 

448.3033 Negative 7.92 GUDCA*#^ 

448.3035 Negative 6.99 GCDCA*#^ 

452.2758 Negative 8.92 LPE 16:0 

464.2994 Negative 5.91 GCA*#^ 

466.3047 Negative 7 LPC 14:0*#^ 

476.2757 Negative 9.64 LPE 18:2*#^ 

478.2911 Negative 10.31 LPE 18:1 

480.3064 Negative 11.08 LPE 18:0*#^ 

498.26 Negative 9.15 LPE 20:5*#^ 

498.2858 Negative 6.31 TCDCA 

500.2753 Negative 9.7 LPE 20:4*#^ 

502.2917 Negative 10.08 LPE 20:3*# 

514.2804 Negative 6.4 TCA 

528.2595 Negative 6.8 GUDCS*#^ 

 

 

  

Table S2. Discriminating metabolites in the comparison between septic survivors and non-survivors. 

The fold change is calculated by the report of concentration non-survivor/ survivor, thereby values 

which are inferior to 1 are for decreased metabolites in dead patients and increased metabolites 

possess values which are superior to 1 

 

Identified Metabolites Mode m/z tR (Min) P-Value Fold change 

 L-Lactic acid Negative 89.0241 0.61  1.53E-02 1.51  

Creatinine Positive 114.0665 0.42  6.13E-03 1.69  

L-Proline Positive 116.0712 0.71  1.47E-04 2.64  

Succinic acid Negative 117.0189 0.76  1.52E-02 2.66  

Betaine Positive 117.0742 0.44  1.62E-05 5.18  

L-Valine Positive 118.0862 0.44  1.00E-08 4.30  

Creatine Positive 132.077 0.43  8.84E-04 3.04  

L-Leucine Positive 132.1019 0.84  7.39E-09 6.04  

L-Isoleucine Positive 132.1019 1.11  6.21E-08 15.77  
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Malic acid Negative 133.014 0.41  8.80E-04 3.83  

Ornithine Positive 133.0973 0.35  1.06E-02 0.18  

Hypoxanthine  Positive 137.046 0.64  1.18E-03 0.36  

L-Glutamine Negative 145.0617 0.40  2.40E-02 2.28  

alpha-KG Negative 147.0293 0.79  6.41E-04 2.17  

L-Glutamate Positive 148.0604 0.44  5.00E-02 1.89  

L-Phenylalanine Positive 166.0861 1.57  6.88E-04 1.92  

 Citrulline Positive 176.1029 1.83  3.95E-08 0.13  

Hippuric acid Positive 180.0654 1.84  3.57E-03 0.17  

L-Tyrosine Positive 182.0815 0.71  1.23E-02 2.44  

 Citric acid Negative 191.0193 0.65  2.29E-03 2.23  

 2-Methylhippuric acid Positive 194.0816 3.36  8.70E-03 0.18  

 Indolelactic acid Negative 204.0656 4.12  1.58E-03 2.59  

Carnitine C2:0 Positive 204.1234 0.62  8.93E-09 0.18  

Indoxy sulfate Negative 212.0013 2.49  2.85E-03 3.14  

Carnitine C4:0 Positive 232.1548 2.33  7.11E-03 6.06  

FFA 16:0 Negative 255.2313 9.82  1.15E-06 0.70  

Carnitine C6:0 Positive 260.1862 4.44  3.07E-02 2.60  

FFA 18:0 Negative 283.2628 11.08  5.30E-04 0.57  

Argininosuccinate Negative 289.1277 3.2 1.00E-02 0.70  

Carnitine C10:0 Positive 316.248 6.86  2.46E-03 1.72  

Carnitine C12:0 Positive 344.279 7.93  5.52E-03 4.33  

UDCA Negative 391.2831 9.27  1.25E-02 4.75  

Carnitine C16:0 Positive 400.3421 9.91  1.97E-03 0.52  

Carnitine C18:0 Positive 428.3735 10.77  1.25E-02 0.55  

GUDCA Negative 448.3033 7.92  8.19E-04 3.87  

GCDCA Negative 448.3035 6.99  3.83E-02 3.23  

GCA Negative 464.2994 5.91  1.50E-03 4.32  

LPC 14:0 Negative 466.3047 7.00  7.33E-04 4.91  

LPE 18:2 Negative 476.2757 9.64  4.96E-03 0.56  

LPE 18:0 Negative 480.3064 11.08  7.91E-03 0.48  

LPE 20:5 Negative 498.26 9.15  5.33E-03 0.60  

LPE 20:4 Negative 500.2753 9.70  8.70E-03 0.57  

GUDCS Negative 528.2595 6.80  1.89E-03 3.35  
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Figure S1. The PCA score plot for all the real samples and QC samples. Red triangles: QC samples; 

blue squares : real samples.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S2. Validation of the PLS-DA model revealing that the model is not over-fitting. The samples 

were permutated into a different order from that in the established model for 200 times. The green 

triangles stand for the obtained R2 value and the blue squares stand for the obtained Q2 value by the 

200 permutations.  
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Appendix 2: Supporting information of the HCC-related study. 

 

S1. Chemical reference substance used in the study. 

 

2-Hydroxybutyrate, 3-Hydroxybutyrate, 3-aminoisobutyrate, 7-hydroxycholesterol, 

benzoate, citrate, isocitrate, gluconate, glyceraldehyde, glycerate, glycerol, glycolate, 

hydroxyisovalerate, hydroxylamine, isosuccinate, lactate, threonate, oxalate, urate, 

xanthine, citrulline, L- asparagine, L-aspartate, L-cysteine, L-glutamine, L-glutamate, 

L-isoleucine, L-leucine, L-proline, L-threonine, L-serine, L-tryptophan and N-acetyl-

L-lysine were purchased from Sigma-Aldrich China Inc. (Shanghai, China); D-arabitol, 

D-ribitol, butanoic acid (FFA 4:0), hexanoic acid (FFA 6:0), decanoic acid (FFA 10:0), 

dodecanoic acid (FFA 12:0), pentadecanoic acid (FFA 15:0), palmitic acid (FFA 16:0), 

octadecanoic acid (FFA 18:0), 11-Eicosenoic acid (FFA 20:1), Arachidonic acid (FFA 

20:4) and Docosahexaenoic acid (FFA 22:6) were offered by the J&K Scientific Ltd. 

(Beijing, China). 
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Table S-1 Definition of the characteristic ions for the targeted metabolites. The 

information was obtained by analyzing the corresponding standards.  

 

Metabolites Retention time (min) m/z 

Aspartate 
18.16 160 

20.63 232 

  11.3 70 

Proline 14.75 142 

  20.04 142 

Glutamate 
20.91 84 

23.02 246 

Glycerol 14.21 205 

L-Norvaline 
9.64 72 

13.35 144 

 

 

 

 

 

Table S-2. Targeted scan period and ions for the validation experience. The listed ions 

are the ions characterize the metabolites norvaline (targeted ion: 72/144), glutamate 

(84/246), aspartate (160,232), proline (70,142) and glycerol (205).  

 

Scan time (min) Targeted Ions (m/z) 

9～12 72，70 

12～16 144,205,142 

17～19 160 

19～21 232,84 

21～24 142,246 
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Table S-3. Relative standard deviation (RSD) for all the detected characteristic ions. 

For the peak normalization by the internal standard, 2 characteristic ions for L-norvaline 

(m/z = 72, m/z = 144) were detected. The ion m/z = 144 was ultimately chosen as the 

reference of peak normalization because it brought a RSD = 0.17, which was calculated 

by the peak area in all the 9 QC samples, lower than that for m/z = 72 (RSD = 0.25). 

After all the peak areas were normalized, RSD for the targeted ions in each QC sample 

were obtained as shown. For one metabolite with two detected characteristic ions, the 

ion with a lower RSD than the other (presented in bold) was chosen for the following 

analyses.       

 

Metabolites m/z 
Retention 

time (min) 
RSD 

L-Norvaline 1 72 9.34 0.255  

L-Proline 1 70 11 0.359  

L-Norvaline 2 144 13.05 0.000  

Glycerol 205 13.93 0.230  

L-Proline 2 142 14.48 0.196  

Aspartate 1 160 17.86 0.139  

Aspartate 1 232 20.33 0.361  

Glutamate 1 84 20.61 0.290  

Glutamate 2 246 22.72 0.761  
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Table S-4. Significant altered metabolites in discrimination between recurrent HCV-

HCC patients and non-recurrent HCV-HCC patients. BT: before RFA therapy; AT: after 

RFA therapy. TR: time of retention. FC: fold change, calculated by the ratio of R/NR. 

*: metabolites confirmed by the standard reference substance. 

 

Subgroup TR QN Metabolites P-value FC 

BT 

7.95  117 Lactate* 0.021  0.81 

8.32  173 FFA 6:0* 0.009  1.76 

8.39  147 Glycolic acid* 0.027  1.3 

9.74  131 2-Hydroxybutyrate* 0.006  0.55 

10.60  86 L-Leucine* 0.001  0.59 

11.17  86 L-isoleucine* 0.009  0.63 

13.29  177 Urea 0.028  1.26 

13.39  132 L-Serine* 0.021  1.37 

14.53  164 Benzeneacetate 0.010  1.65 

15.01  147 Isosuccinate* 0.001  1.47 

17.47  147 Unknown 3 0.006  1.98 

17.51  373 Sebacic acid 0.030  1.31 

17.59  103 FFA 4:0 0.038  1.44 

18.14  189 (R,S)-3,4-Dihydroxybutanoate 0.006  1.41 

20.31  232 L-Aspartate* 0.001  1.82 

20.41  230 L-Proline* 0.027  1.75 

21.11  246 L-Cysteine* 0.006  1.83 

21.71  110 Unknown 1 0.002  1.56 

22.71  246 L-Glutamate* 0.000  2.3 

22.74  192 L-Phenylalanine* 0.049  1.34 

23.47  257 FFA 12:0* 0.004  1.86 

24.89  217 Arabitol* 0.048  1.37 

24.99  217 Ribitol* 0.009  1.38 

30.58  333 D-Gluconic acid* 0.048  1.57 

30.95  173 Benzoate 0.044  0.49 

31.03  353 Xanthine* 0.022  0.58 

32.44  437 2-Keto-d-gluconic acid 0.013  0.67 

32.58  456 Urate* 0.030  0.52 

34.33  202 3-indolelactic acid 0.003  0.62 

35.50  232 Unknown 2 0.046  1.24 

36.83  70 2-Deoxy-D-ribose 0.022  0.68 

38.46  98 N-alpha-acetyl-L-lysine* 0.001  0.56 

38.73  98 FFA 18:0  0.037  0.67 

40.26  91 FFA 22:6* 0.022  0.61 
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47.97  456 7-Hydroxycholesterol* 0.004  2.24 

AT 

7.95  117 Lactate* 0.036  1.2 

8.67  147 Pyruvate* 0.017  1.28 

9.29  146 Hydroxylamine* 0.035  1.26 

9.74  131 2-Hydroxybutyric acid* 0.010  1.62 

10.15  147 Oxalate* 0.021  0.79 

10.71  233 3-Hydroxybutyric acid* 0.007  1.86 

12.08  131 Hydroxyisovalericacid* 0.043  0.77 

12.41  73 Glyceraldehyde* 0.001  0.66 

13.13  179 Benzoate* 0.001  1.38 

13.79  158 L-leucine* 0.028  0.81 

13.89  205 Glycerol* 0.001  1.8 

14.37  158 L-Isoleucine* 0.022  0.79 

14.39  130 L-Threonine* 0.036  0.78 

14.44  142 L-Proline* 0.000  0.6 

14.45  115 Glutaric acid* 0.001  0.58 

15.41  189 glycerate* 0.008  0.81 

18.66  248 3-Aminoisobutyrate* 0.035  2.03 

18.79  229 FFA 10:0* 0.003  1.66 

20.31  232 L-Aspartate* 0.001  0.61 

20.84  292 L-Threonate* 0.002  0.77 

20.99  115 Creatinine* 0.001  0.66 

21.11  246 L-Cysteine* 0.005  0.65 

21.71  110 Unknown 1 0.051  1.3 

23.47  257 FFA 12:0* 0.021  1.52 

23.81  116 L-asparagine*  0.016  0.57 

25.83  292 Ribonic acid 0.006  0.67 

25.85  357 Glycerol 1-phosphate 0.021  0.6 

26.10  156 L-glutamine* 0.020  0.27 

26.20  292 2-Keto-l-gluconic acid 0.009  0.67 

27.05  273 Citric acid* 0.008  1.7 

27.12  245 Isocitric acid* 0.002  2 

27.19  157 Citrulline* 0.017  0.65 

27.47  283 Myristoleicacid 14:1 0.004  2.51 

27.73  285 Myristic acid 14:0* 0.001  1.76 

29.72  299 FFA 15:0* 0.007  1.29 

29.76  175 Acetamide 0.007  0.73 

31.21  311 Palmitelaidic acid FFA 16:1* 0.004  2.11 

31.63  313 FFA 16:0* 0.000  1.27 
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33.59  217 Ribitol 0.006  0.76 

34.54  202 L-Tryptophan*  0.006  0.49 

34.85  117 FFA 18:1 0.001  1.54 

35.22  117 FFA 18:0* 0.007  1.23 

35.49  82 FFA 18:2 0.002  1.54 

35.50  232 Unknown 2 0.018  0.78 

35.82  232 2-Deoxy-D-ribose 0.029  0.79 

36.27  56 11,14-Eicosadienoic acid 0.020  0.77 

37.26  80 FFA 20:4* 0.007  0.71 

37.37  158 Xylonic acid 0.018  0.73 

38.09  367 11-Eicosenoic acid* 0.003  1.52 

49.14  202 Leu-Trp 0.012  0.59 
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Figure S-1 Score plot of PCA presenting the comparison between the QC samples (red 

and circled triangles) and the real samples (blue triangles).  
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Figure S-2. Cross-validation for the two PLS-DA models separating the recurrent and 

the non-recurrent HCC patients with HCV. A: Model validation for NRBT vs RBT B: 

Model validation for NRAT vs RAT. The samples were permutated into a different order 

from that in the established model for 200 times. The green triangles stand for the 

obtained R2 value and the blue squares stand for the obtained Q2 value by the 200 

permutations. The Y-axis represents R2 and Q2 value for every model while the X-axis 

represents the correlation coefficient between original and permuted response data. 
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Abstract                                    
 

A cascade of metabolomic studies have been developed in the recent decade. The application of 

metabolomics in the clinical field has been shown to be promising since even subtle physiological 

changes can be revealed by a metabolomic study which determines variations in the metabolome. 

Personalized clinical care is currently proposed for almost all the diseases, however, it is still difficult 

to be executed for the scarce of clinical biomarkers. This thesis work concerns the applications of 

both 1H NMR-based and MS-based metabolomics in the determination of potential serum 

biomarkers which help to improve personalized diagnosis and prognosis. It is composed by two 

principal parts. The first part of the work aims to find out metabolite biomarkers predicting the 

mortality of septic shock before clinical intervention and first 12 hours after hospitalization using 

NMR-based and LC-MS-based metabolomic methods respectively. The goal of the second part of 

the work is to seek potential biomarkers predicting the recurrence of HCC before and after RFA 

treatment. Our findings not only show that both the two applied techniques were useful for the 

discovery of novel clinical biomarkers, but also show that the two techniques are complementary.  
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Résumé                                     
 

De nombreuses études métabolomiques a été développée au cours de la dernière dizaine année. 

L'application de la métabolomique dans le traitement clinique s'est révélée prometteuse puisque 

même des faibles modifications physiologiques peuvent être révélées par une étude 

métabolomique. Des soins cliniques personnalisés sont actuellement proposés pour presque 

toutes les maladies, mais il est encore difficile de les réaliser à cause du manque de biomarqueurs 

cliniques. Ce travail de thèse a pour le but de la détermination de biomarqueurs cliniques par la 

spectroscopie RMN et par la spectrométrie de masse. Il est composé de deux parties : la première 

partie du travail vise à déterminer les biomarqueurs des métabolites prédisant la mortalité du choc 

septique avant l'intervention clinique et les 12 premières heures après l'hospitalisation en utilisant 

respectivement des méthodes métaboliques basées sur la RMN et la LC-MS. L'objectif de la 

deuxième partie du travail est de rechercher des biomarqueurs potentiels prédisant la récidive du 

CHC avant et après le traitement RFA. Nos résultats montrent non seulement que les deux 

techniques appliquées ont été utiles pour la découverte de nouveaux biomarqueurs cliniques, mais 

montrent également que les deux techniques sont complémentaires. 
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