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Introduction

This thesis is a contribution to the �eld of logic in computer science. In the setting of ludics,
a system that �ts into the Curry–Howard correspondence, we study the formulas/types
from both a logical and a computational point of view. The focus is set in particular on
inductive data types, functional types and non-linearity. We analyse the structure and the
interactive properties of the objects considered, two aspects closely related in ludics where
interaction is the central notion.

Context

Proofs as Programs

The Curry–Howard correspondence is a striking connection between proof theory and pro-
gramming language theory. It states that proofs and programs are the same objects, in a
sense that can be made precise. This observation has shed a new light on two �elds of
research, that were previously independent, and has led to fruitful interactions.

Proof theory is the branch of mathematical logic studying proofs as formal objects. It
grew in the beginning of the 20th century. At that time, mathematics were going through a
foundational crisis, leading to an increasing demand for formalism, in particular under the
impulsion of Hilbert. In 1934, Gentzen introduced natural deduction [Gen34], and sequent
calculus the following year [Gen35], as formal syntaxes for proofs, so as to demonstrate
the coherence of arithmetic. The main theorem (Hauptsatz) of these systems is the cut-
elimination theorem: any sequent calculus proof with cuts, corresponding to the use of a
lemma, can be rewritten in a cut-free proof of the same statement.

Around that period also, several models of computation were developed, in particu-
lar the famous Turing machines [Tur36]. Another one was the λ-calculus, imagined by
Church [Chu41] as a theory of functions for the foundations of mathematics, but then re-
cast into a successful computational tool. It has since been particularly well-suited for the
theoretical analysis of functional programming.

First observed by Curry [Cur34] in the 1930s for combinatory logic, the proof–program
correspondence was later made precise by Howard [How80] who describes how simply-
typed λ-calculus and intuitionistic natural deduction coincide. What is now known as
the Curry–Howard correspondence can be presented as the identi�cation of three main
layers: formulas correspond to types, proofs to programs, and cut-elimination to program
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Logic Programming
formulas types

atomic formula base type
logical connective type constructor

proofs programs (λ-terms)
introduction of⇒ abstraction
elimination of⇒ application
cut-elimination evaluation (β-reduction)

cut redex

Figure 1: The Curry–Howard correspondence

evaluation (see Figure 1). The third (dynamic) part of this correspondence is particularly
interesting, since it means that the cut-elimination procedure of proofs actually computes.
Curry–Howard has since been extended to various logics or computational features, bring-
ing a better understanding to both logical systems and programming languages. In partic-
ular, it was at the origin of the emergence, 30 years ago, of linear logic.

From Linear Logic to Ludics

Linear logic and connectives. Linear logic [Gir87, Gir06] arose from Girard’s study
of coherent spaces as a denotational model for system F, a second-order λ-calculus. It is a
logic concerned with resource consumption. Typically, the intuitionistic implication⇒ is
decomposed into two operations:

A⇒ B becomes !A( B

where ! (of course) allows multiple uses of A, while ( (lollipop) is an implication that
linearly consumes its source to turn it into its target. Hypotheses are now resources: the
number of times a hypothesis is used in a proof does matter. As a consequence, we dis-
tinguish between the connectives of linear logic that are strictly linear, the multiplicative–
additive connectives (⊗,⊕,`,&,(), and those which deal with duplication and erasure,
the exponentials (!, ?). The structural rules are restricted to exponential formulas, so as
to precisely control the use of resources. This restriction leads to several versions of the
usual connectives. In particular, we have:

• a multiplicative (⊗ tensor) and an additive (& with) conjunction,
• a multiplicative (` par) and an additive (⊕ plus) disjunction.

These connectives are multiplicative or additive depending on how the logical rules asso-
ciated deal with context. They also come with polarities: ⊗ and ⊕ are said positive while
& and ` are negative.

Polarisation and focalisation. The distinction between positive and negative con-
nectives comes from the observation that the inference rules associated to negative ones

8
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are reversible, contrarily to the rules for positive ones. Reversibility means that the conclu-
sion of a rule is provable if and only if its premises are. As a consequence, during proof-
search, one can safely start by decomposing negative formulas without losing anything in
terms of provability. Starting from this idea of reversibility, Andreoli [And92] goes further
with focalisation, a remarkable property satis�ed by linear logic proofs. It relies on the
observation that the positive rules also have interesting characteristics. Focalisation states
that any provable formula admits a focalised proof, that is, a proof constructed according
to the following proof-search strategy:

• if the sequent contains a negative formula then decompose this formula,
• otherwise, try and choose a positive formula, and decompose it and its subformulas

until obtaining a negative formula.
Focalised proofs are thus proofs in the branches of which negative and positive layers
of rules alternate. Therefore, it is possible to design a proof system with synthetic con-
nectives (gathering layers of connectives of same polarity), where there are a generalised
positive rule and a generalised negative one. A proof then alternates such rules. The fo-
calisation discipline has played a major role for the design of polarised linear logic [Lau02]
and ludics [Gir01].

From proofs to designs. In Girard’s presentation of ludics [Gir01], the basic objects,
called designs, look like proofs of multiplicative–additive linear logic (MALL) in which we
would have erased the formulas, keeping only the structure. More precisely, designs are
derived from proofs that are focalised and with synthetic connectives. We give an idea of
how this is done. Below is a very simple example of (part of) a focalised MALL proof with
synthetic connectives, where A, B, C , D are positive formulas.

....
` A,B
` A`B

....
` C

....
` D

` C &D
` ((A`B)⊗ (C &D))⊕ E

Notice that the �rst rule from the bottom decomposes the synthetic positive connective
(_ ⊗ _) ⊕ _. If we forget about the formulas, and we only keep some information about
their location, the previous proof becomes:

....
` ξ.1.0, ξ.1.4

ξ.1 `

....
` ξ.2.8

....
` ξ.2.3

ξ.2 `
` ξ

After pushing negative formulas on the left side of the symbol `, all formulas have been
replaced by �nite sequences of numbers corresponding to addresses, where:

• the conclusion formula is given any address ξ,
• for every formula of address σ, its immediate subformulas (with respect to synthetic

connectives) are given an address of the form σ.n for n ∈ N,

9
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For example here, ξ.1 is the address of the subformula A ` B. Now, if we keep only the
tree structure of the proof and we label each node by an action corresponding to the logical
rule used, we get the following:

(+, ξ, {1, 2})

....
(−, ξ.2, {3})

....
(−, ξ.2, {8})

....
(−, ξ.1, {0, 4})

An action (ε, σ,R) is composed of:
• a polarity ε ∈ {−,+}, corresponding to the polarity of the logical rule applied,
• an address σ, corresponding to the location of the active formula of the rule,
• a rami�cation R ⊆ N, indicating the subformulas freed by the rule, and that can

possibly be used as active formulas above this node.
Such a tree is a design. However, designs can be in�nite both in height and in width
in general; in particular, there is no equivalent of the axiom rule, replaced instead by an
in�nitary η-expansion. Moreover, there exists a special action daimon in ludics that has no
proof-theoretic equivalent. A detailed exposition of the way designs derive from focalised
proofs is found in Curien’s notes [Cur05].

Computational designs. Terui [Ter11] introduces another syntax for designs: instead
of proof skeletons, designs are terms in the style of π-calculus. In this new syntax, the
design previously given as example becomes:

x|a〈b(y, z).p1, c(s).p2 + d(t).p3〉

where p1, p2, p3 are positive designs. The symbols a, b, c, d are called names and generalise
the notion of rami�cation. x|a is a positive action of address x, while b(y, z), c(s) and d(t)
are negative actions, and do not have explicit addresses. The relation between an address
and its sub-addresses in Girard’s syntax is partially recovered here as variable binding.
The original formulation of ludics by Girard emphasises the geometry of proofs, while
Terui’s syntax insists on their computational aspect; both have their advantages, but we
shall prefer the latter for this thesis.

Ludics, an Interactive Semantics

Ludics. When introduced by Girard [Gir01], ludics was aimed at providing a framework
to reconstruct logic from scratch. In particular types/formulas are not given but are recov-
ered from interaction. Girard proves that ludics gives a fully complete model for a polarised
variant of MALL with second-order quanti�cation, and since then other polarised variants
of linear logic have been considered in ludics, with exponentials [BF11, BT10b] or �xed
points [BDS15]. The computational meaning of ludics has also been explored, in partic-
ular by viewing designs as data or functions [Sir15, Ter11] and by considering ludics as

10



INTRODUCTION

a foundation for logic programming [Sau08]. The similarities between ludics and game
semantics have been investigated [FH02, BF11, FQ13, FQ16]. All these works have proved
ludics to be a fruitful setting for both logical and computational purpose.

Interaction and behaviours. As we have seen, designs are proof structures without
formulas, we could say untyped proofs. Designs only retain from proofs the relevant infor-
mation with respect to cut-elimination, that is the tree structure and the formulas’ location.
And this is precisely the dynamics of cut-elimination, called interaction in ludics, that al-
lows to recover the typing for designs. A cut occurs between two designs when they share
a common location with opposite polarities, and interaction eliminates such cuts. A partic-
ularly interesting case is closed interaction, corresponding intuitively to eliminating a cut
between a proof ofA and a proof ofA⊥, which may seem surprising. This is made possible
by the special rule z (daimon) of ludics, allowing to “prove” anything. As a consequence,
designs are more general than proofs, since some are cheating by using the daimon. Inter-
action can be seen as a confrontation between two proof sketches, where each one tries to
refute what the other asserts, and if one eventually plays z it means “I give up” and the
process stops. From a programming perspective, z corresponds to an error/exception at
runtime, causing an interruption of the execution.

` ξ ξ `

z

cut

The reason why closed interaction and the daimon are needed is to be able to recover
the types of ludics, the behaviours. A closed interaction leads either to z – if the two de-
signs discuss gently until one gives up – or to Ω – if one is unable to answer an unexpected
question of the other or if the dialogue lasts forever – which are interpreted respectively
as convergence and divergence. Two designs are orthogonal if their interaction converges,
and a behaviour B is a set of designs closed under bi-orthogonal.

B⊥⊥ = B

Equivalently, it is the set of all the designs which pass the same set of tests B⊥, where tests
are also designs. The idea is that of assimilating a formula to the set of its proofs. Ludics
thus �ts in Curry–Howard as follows: designs correspond to proofs/programs, interaction
is cut-elimination/evaluation, and behaviours are equivalent to formulas/types.

11



INTRODUCTION

Logical connectives and completeness. As soon as introducing ludics, Girard pro-
vides a full completeness result for polarised MALL. The interpretation of MALL formulas
as behaviours relies on constructors that combine behaviours in order to form new ones;
such constructors are called logical connectives, since they correspond to actual connec-
tives of linear logic. The typical way to de�ne a connective in ludics is by taking the
bi-orthogonal closure of a set of designs built from the designs of other behaviours.

A⊗B =


⊗

d e
d ∈ A, e ∈ B


⊥⊥

Closing by bi-orthogonal ensures that a set constructed this way is a behaviour. How-
ever, there exists a fundamental result called internal completeness which states that the
bi-orthogonal closure is actually not necessary for such a set to be a behaviour. This prop-
erty thus gives a direct and compositional description of the contents of behaviours con-
structed by logical connectives. Internal completeness is a key prerequisite for the full
completeness result.

Ludics and other semantics. Ludics can be seen as a variant of game semantics, and
more particularly of the one proposed by Hyland and Ong [HO00] (HO games). Game
semantics has successfully provided fully abstract models for various logical systems and
programming languages, in particular PCF [HO00, Nic94, AJM00]. A computation is mod-
eled as a play between a player and an opponent who move alternatively, following the
game rules given by an arena. A set of plays on an arena can constitute a strategy for the
player. In ludics, the interaction between two designs can be described as a play, and de-
signs resemble strategies. Faggian and Hyland [FH02] actually describe ludics as a game
semantics on a universal arena. Other pieces of work cultivate the analogy [BF11, FQ13,
FQ16], the common idea being to describe designs in terms of the traces of their possible
interactions. However, ludics is more symmetrical than game semantics, designs being
strategies for either the player or the opponent. This symmetry comes from the daimon,
and enables closed interaction, which has no equivalent in game semantics. The possibility
to di�erentiate between divergence and termination allows to recover the types interac-
tively, instead of �xing an arena a priori by restricting the possible moves. In other words,
no game rules are given before we start playing. As a consequence, studying types in lu-
dics is more about exploring than constructing. The semantic types of ludics, obtained by a
bi-orthogonal closure, are reminiscent of the way types are de�ned in classical realisability
[Kri09] and in geometry of interaction [Gir89]. On a higher level of abstraction, this is also
similar to the double-glueing categorical construction [HS03]. Let us �nally mention that
designs and their interaction �t into the framework of abstract Böhm trees [CH07], which
are kind of strategies together with an abstract machine, general enough to embed Böhm
trees, λ-calculus, PCF and, as a matter of fact, ludics.
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INTRODUCTION

Inductive, Functional and Non-Linear Types in Ludics

A Structural Approach

Exploring the types of ludics. Original (linear) ludics contains many other behaviours
than those interpreting MALL formulas, and even more if we consider non-linear exten-
sions of ludics. The starting point of our research is the following question: since most
behaviours are not the interpretation of linear logic formulas, what are they? This ques-
tion – raised from the beginning of ludics – brings the idea that the remaining behaviours
could have an interesting logical or computational counterpart. Exploring the behaviours
demands that we study the way they interact, and interaction in ludics is intimately linked
to the structure of the objects. We have several tools available to analyse the structure of
behaviours, the �rst and maybe most important one being internal completeness. Other
tools are visitable paths, regularity and purity.

Paths. The result of a closed interaction gives no information but convergence or diver-
gence. On the other hand, the trace of the interaction process is much more informative.
Exploiting this idea, Fouqueré and Quatrini [FQ13] de�ne paths as a ludics equivalent of
plays in HO games. A path is a sequence of actions describing an interaction. What is
interesting is to consider the set of visitable paths at the level of a behaviour; this set
characterises the behaviour in the sense that all the possible interactions are captured.
Regularity and purity are two interactive properties of behaviours that rely on the notion
of visitable path.

Regularity. Informally, a behaviour B is regular if every path in a design of B is re-
alised by interacting with a design of B⊥, and vice versa. In this thesis, we prove an
internal completeness result for in�nite unions of behaviours – discussed later – which
relies on the hypothesis of regularity for these behaviours. This property is not actually
ad hoc: it was introduced by Fouqueré and Quatrini [FQ16] to characterise the denota-
tions of MALL formulas as being precisely the regular behaviours satisfying an additional
�niteness condition. In this direction, our intuition is that – letting �niteness aside – reg-
ularity captures exactly the behaviours corresponding to µMALL formulas, a logic with
�xed points [Bae12].

Purity. Thinking of Ludics as a programming language, we would like to guarantee type
safety, that is, ensure that “well typed programs cannot go wrong” [Mil78]. This is the pur-
pose of purity, a property of behaviours: in a pure behaviour, maximal interaction traces
are z-free, in other words whenever the interaction stops with z it is actually possible
to ask for more and continue the computation. Introduced by Sironi [Sir15] (and called
principality in her work), this property is related to the notions of winning designs [Gir01]
and pure designs [Ter11], but at the level of a behaviour.
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Our contributions. This thesis begins by providing the tools we will need to study the
behaviours in the following. We employ the elegant term-calculus formulation of ludics
proposed by Terui [Ter11] (restricted to linear designs). In this syntax, it is not entirely
possible to consider actions individually since designs are compiled in a sense, but adapting
the notion of path requires that we do so. More precisely, we need to recover addresses
for all actions, and this is done with a notion of located actions.

A path corresponds to the trace of an interaction between two designs; but designs
may split during the process, leading to an interaction between more than two designs
after some reduction steps. As a consequence, if we want to de�ne the interaction path
inductively, we need to consider interaction between two sets of designs, which we call
multi-designs. And we do need to give an inductive de�nition of interaction path, so that
some results can be proved by induction on the length of a path. In particular, we prove
that two (multi-)designs are orthogonal if and only if there exists a path appearing on both
sides.

Following Fouqueré and Quatrini [FQ16], we study the logical connectives ´, ˆ, ⊕, ⊗
and( of ludics (where ´ and ˆ are shifts of polarities) in terms of their visitable paths.
For example, the case of ⊕ is easy: the set of visitable paths of M ⊕N, noted VM⊕N, is
essentially the disjoint union of VM and VN. Di�culties come with the tensor, because in
the general case the set VM⊗N is described using a tricky condition; moreover, the proof
relies on results proved with multi-designs. Using the form of the visitable paths of the
connectives, we prove that regularity is stable under all such behaviour constructions, and
purity is stable under all except(.

Fixed points, inductive and functional types

Fixed points theory. Induction and coinduction, especially the �rst one, are common
methods in mathematics for de�nitions and proofs. They deal with �xed points: a def-
inition by induction corresponds to describing the least �xed point of some operator,
while coinduction is a greatest �xed point. The interest that computer science shows in
�xed points probably �nds its origins in theorems such as Knaster–Tarski’s [Tar55] or
Kleene’s [Kle52]. Given a complete lattice and a monotone operator over it, the Knaster–
Tarski �xed point theorem ensures the existence of a complete lattice of �xed points, en-
tailing in particular the existence of a least and a greatest �xed point. Kleene’s theorem
has a more constructive �avour: it constructs the least �xed point of a continuous function
over a complete partial order (CPO) as the supremum of an ascending chain. The use of
�xed points has then spread in areas such as recursive functions [Rog67], formal languages
[HMU07] and, more interestingly for us, in the study of the semantics of programs [SS71].
One may refer to [San09] for a good historical background of �xed points in computer
science.

Fixed points in linear logic. Reasoning about induction and coinduction in logic can
be done by adding �xed points. In particular, it is possible to extend MALL with least and
greatest �xed points, leading to µMALL [Bae12]. In this logic, the formulas are those of
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MALL to which are added some of the form

µX.A and νX.A

where second-order variables can appear in A. There are logical rules associated to the
(dual) connectives µ and ν, and the whole system enjoys cut-elimination and focalisation.
The interest of such a logic is to gain some expressivity by allowing an in�nite use of
resources, which is usually handled by the exponentials in linear logic. Fixed points can
thus be seen as an alternative to exponentials.

Fixed points in ludics. Baelde, Doumane and Saurin [BDS15] provide a ludics model
for µMALL; their work is the starting point for our study of inductive types in ludics.
They interpret formulas of the form µX.A and νX.A as respectively the least and the
greatest �xed point of an operator over the positive behaviours. The existence of such
�xed points behaviours is ensured by the Knaster-Tarski theorem, but this approach is
non-constructive in the sense that it does not provide an explicit way to build the �xed
points. We shall overcome this by using Kleene’s �xed point theorem instead.

Fixed points have also been studied in other settings close to ludics. Both McCusker
[McC98] and Clairambault [Cla09] have considered �xed points in game semantics. Mel-
liès and Vouillon [MV05] have introduced a realisability model for recursive (i.e., inductive
and coinductive) types.

Data and functions. Functional programming usually deals with data, functions over
data and functions over functions. Data types allow one to present information in a struc-
tured way. Many data types have a natural inductive (e.g., natural numbers, lists) or coin-
ductive (e.g., streams, in�nite trees) structure, thus �xed points are particularly well-suited
to present them from a theoretical perspective. The representation of both data and func-
tions in ludics has been studied previously. Terui [Ter11] proposes to encode them as
designs in order to express computability properties in ludics; in his work, data and func-
tions are not considered at the level of behaviours, i.e., of types. Sironi [Sir15] describes
the behaviours corresponding to some data types: integers, lists, records, etc. as well as
�rst-order function types.

Our contributions. Our aim is to interpret constructively the (potentially inductive)
data types and the (potentially higher-order) functional types as behaviours of ludics, so
as to study their interactive properties. We describe the language of data patterns – much
inspired by the syntax of µMALL formulas – in which all the usual (inductive) data types
can be written, for example

Nat = µX.(zero⊕X) .

Following [BDS15], we interpret these patterns compositionally as behaviours constructed
by logical connectives and by �xed points. The novelty is that we provide an internal com-
pleteness theorem for �xed points, so that such data behaviours can be described in a con-
structive way. This result states that, given an in�nite sequence (An)n∈N of increasingly
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large behaviours satisfying particular conditions (among which regularity), we have

(
⋃
n∈N

An)⊥⊥ =
⋃
n∈N

An .

By Kleene’s �xed point theorem, the behaviour interpreting an inductive type µX.A is
of the form (

⋃
n∈N An)⊥⊥; our internal completeness result applies here, and it indicates

that the bi-orthogonal closure is unnecessary, thus a �xed point behaviour is obtained as
a simple union. Using this, we prove that all data behaviours are regular.

We also combine data behaviours to construct the functional behaviours: a behaviour
of the form A( B is the set of designs that, when interacting with a design of type A,
outputs a design of type B. In particular, our framework includes higher-order functions.
Functional behaviours are proved to be regular too, but on the other hand not always
pure. More precisely, we give a characterisation of impure function types: we show that
a functional behaviour fails to satisfy purity if and only if it is higher-order and takes
functions as argument; this is typically the case of

(A( B)( C .

We prove however that under a well-bracketedness condition we can avoid such errors in
the execution of ludics programs. We will discuss the computational meaning of this result,
making a parallel with HO games.

Our results concerning inductive and functional types in ludics have been presented
in a CSL paper [Pav17].

Exponentials and Non-Linearity

Exponentials. Although nice and well-behaved, MALL is a weak logic. Recovering
more expressive power requires that we go beyond this strictly linear fragment of lin-
ear logic; one way to do this is with �xed points, that we just mentioned, and another
is by considering exponentials. The exponentials come as two unary connectives, dual to
each other, ! (of course) and ? (why not). Among the cut-elimination steps dealing with
exponentials, the interesting one is between the rules of contraction and promotion:

π1....
`?Γ, A

`?Γ, !A
!

π2....
` ∆, ?A⊥, ?A⊥

` ∆, ?A⊥
c

`?Γ,∆
cut

 

π1....
`?Γ, A

`?Γ, !A
!

π1....
`?Γ, A

`?Γ, !A
!

π2....
` ∆, ?A⊥, ?A⊥

`?Γ,∆, ?A⊥
cut

`?Γ, ?Γ,∆
cut

`?Γ,∆
c

Notice that proof π1 is duplicated in this process. Such duplications are precisely what the
concept of non-linearity wants to capture in logic. On the other hand, from the program-
ming point of view, non-linearity expresses the ability for a program to use its arguments
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multiple times, or to be called multiple times. The relationship between exponentials and
�xed points, as two alternatives to upgrade MALL, has been studied, in particular by Baelde
and Miller [BM07, Bae12]. The two features seem to have di�erent expressive power, but
from our understanding it is not so clear what one can do that the other cannot. Baelde
and Miller have encoded µMALL in LL2 (linear logic with second order quanti�cation),
however they doubt that the same is possible without second order; the other way round,
they remark that �xed points satisfy structural rules, but we do not fully apprehend to
what extent this makes it possible to get by without exponentials.

Non-linearity in ludics. Original ludics [Gir01] is linear, which is enough to capture
the multiplicative–additive fragment of linear logic but not the exponentials. Moreover,
linear designs are unable to model programs that can be called arbitrarily many times
during an execution. Hence the need for non-linear ludics. Non-linearity manifests it-
self in the possibility for an address to be repeated in a design. This implies that, dur-
ing an interaction, designs may be duplicated. There have been various works to extend
ludics so as to handle duplications with non-linearity. Maurel [Mau04] was the �rst to
propose such a framework: he allows repetitions of addresses in Girard’s designs, adding
justi�cation pointers to discard possible ambiguities. The syntax of Terui [Ter11] is na-
tively able to describe non-linear designs. In a game semantics fashion, Basaldella and
Faggian [BF11] introduce neutral actions to get non-deterministic counter-designs inter-
acting against non-linear designs, and they show a full completeness result for a polarised
version of multiplicative–exponential linear logic (MELLS). The same idea of non-linearity
against non-determinism is employed by Basaldella and Terui [BT10b] who simply extend
the designs–as–terms syntax of [Ter11] with non-deterministic superpositions of positive
designs; this allows them to recover exponentials by capturing full polarised linear logic
(LLP). With non-linearity, some interesting properties of ludics are lost. Designs are no
longer separable, thus two di�erent designs may have exactly the same orthogonal designs.
Because of that, internal completeness does not hold for positive connectives in non-linear
ludics.

Another approach for modelling the exponentials in ludics relies on linear approxima-
tions, in the way of the Taylor expansion of λ-terms [ER08], as done by Mazza [Maz17].
This approach is closer to AJM games [AJM00] than HO.

Non-determinism as the dual of non-linearity. If non-linearity is considered with-
out non-determinism, some designs have parts that cannot be visited by interaction. In
order for interaction to take fully advantage of non-linear designs, one can introduce
non-deterministic counter-designs. This is the same idea underlying the necessity of z
to have enough counter-designs against linear designs. Non-determinism corresponds
to a non-uniform semantics for programs: when called twice, a program is allowed to
change its mind and to give a di�erent result. The non-determinism considered in ludics
[BF11, BT10b] is universal, which means that an interaction converges only if every single
choice leads to the daimon.
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Our contributions. We settle the bases for an exploration of non-linear ludics, so as to
better understand the structure of exponential behaviours. We employ the formalism of
Basaldella and Terui [BT10b]. In this enriched framework, we adapt several notions intro-
duced in the linear setting. What we are particularly interested in is internal completeness
and a notion of path that can capture interaction traces.

As already mentioned, general internal completeness does not hold anymore for pos-
itive connectives. We prove an alternative result for the connectives ´,⊗,⊕ that can be
seen as a weaker form of internal completeness. In the case of the tensor, the result states
the following: a design d ∈ N1 ⊗N2 is the gathering of two designs d1 and d2 linked by
a supplementary action corresponding to ⊗ at the base:

⊗

d1 d2

d =

but instead of having di ∈ Ni (as internal completeness in the linear case), our result states
that the result of interaction between di and any design in (N1 ⊗ N2)

⊥ is in Ni. Such
a result is similar to what has been obtained by Basaldella and Faggian [BF11]; however,
their setting is di�erent, and they do not consider additives.

In a non-deterministic setting, an interaction is not described by a single path anymore.
To overcome this, we introduce n-paths which are sets of paths that are coherent in some
sense. We give arguments, but not a formal proof, of why n-paths must be the good notion
to capture interaction between two orthogonal non-linear and non-deterministic designs.
We also propose other conjectures on visitable paths in this setting.

A lot of work is still to be undertaken in non-linear ludics. In particular, we aim to
generalise our study of data and function types to this non-linear setting. Another goal we
would like to achieve is characterising the behaviours corresponding to LLP formulas by
a regularity argument, the same way Fouqueré and Quatrini [FQ16] characterised MALL.

Outline

The thesis is organised as follows:
• In Chapter 1, after reviewing the basic notions and some important theorems of

ludics, we adapt the notion of path to Terui’s syntax for designs and we present
regularity and purity.

• Chapter 2 is a technical one, in which we introduce multi-designs so as to prove the
existence and uniqueness of the interaction path for two orthogonal (multi-)designs,
as well as other useful results.

• Chapter 3 makes the connection between logical connectives and paths, by provid-
ing the form of the visitable paths of behaviours constructed by connectives, and
showing that regularity and purity are stable under the connective constructions.
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• In Chapter 4, we interpret the inductive data types as behaviours using logical con-
nectives and least �xed points. We show that such behaviours are regular and pure,
and we provide a new internal completeness result for in�nite unions of behaviours,
unveiling the structure of �xed points behaviours.

• In Chapter 5, functional types are interpreted as behaviours as well, and we show
that a behaviour of this kind is impure if and only if it corresponds to a type of
functions that take functions as arguments.

• Finally, Chapter 6 is focused on non-linear ludics. In this setting, we provide alter-
native results to internal completeness for the positive connectives, and we describe
an interaction as an n-path. We end by suggesting some future work concerning
paths in non-linear ludics.
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1 | Ludics and Paths

This �rst chapter introduces ludics and settles precisely the tools we will need in the fol-
lowing. We describe linear designs and paths, which are our main focus in this thesis.
The framework will occasionally be extended, though: in Chapters 2 and 6 we generalise
our approach by considering respectively multi-designs and non-linearity. In the other
chapters, the de�nitions given here fully apply.

In his seminal paper [Gir01], Girard gives an extensive presentation of ludics. The
original syntax he introduces, driven by a sound conceptual point of view, gives clear
intuitions on how designs are derived from sequent calculus proofs. However, it lacks
practicality. Instead, we choose to adopt the formalism of Terui’s computational ludics
[Ter11], which is presented as a term calculus (akin to λ-calculus or π-calculus). We �nd
this syntax easier to get accustomed to, moreover it can easily embed non-linearity, thus
it is best suited for our purpose.

In Section 1.1, we recall the classical notions of ludics: designs, interaction, behaviours,
incarnation and logical connectives. We also state three fundamental theorems that will
be needed later; the �rst two, associativity and monotonicity, are known as being part
of the analytical theorems, some remarkable properties of designs and normalisation; the
third one, internal completeness, gives a direct description of behaviours constructed with
logical connectives. Then in Section 1.2 we adapt to Terui’s setting the work of Fouqueré
and Quatrini [FQ13] about paths, which was originally conducted in Girard’s syntax for
ludics; this approach, which brings closer ludics and game semantics, will be one of our
guidelines all along this thesis. It allows us, in Section 1.3, to de�ne regularity and purity,
two interactive properties of behaviours that we will get back to for the study of data and
function types.

1.1 Computational Ludics

Let us introduce the necessary ludics background for the rest of the thesis. The designs
are the primary objects of ludics, corresponding to proofs or programs. Cuts between
designs can occur, and their reduction is called interaction. The behaviours, i.e., the types
or formulas of ludics, are particular sets of designs, and are de�ned thanks to interaction.
Compound behaviours can be formed with logical connectives constructions which satisfy
internal completeness, a remarkable property giving a direct description of the behaviours.
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CHAPTER 1. LUDICS AND PATHS

1.1.a Designs, Interaction and Associativity

The atomic blocks of designs are actions. Suppose given :
• an in�nite set V0 of variables and
• a countably in�nite set S , called signature, and an arity function ar : S → N. The

elements a, b, · · · ∈ S are called names, and we will sometimes write their arities
as superscripts: ai, bj , ... where i, j ∈ N.

De�nition 1.1.1 (Action)
A positive action is either z (daimon), Ω (divergence), or a with a ∈ S . A negative
action is a(x1, . . . , xn) where a ∈ S , ar(a) = n and x1, . . . , xn ∈ V0 distinct. An
action is proper if it is neitherz nor Ω.

De�nition 1.1.2 (Design)
Positive and negative designs are coinductively de�ned by:

p ::= z | Ω | x|a〈n1, . . . , nar(a)〉 | n0|a〈n1, . . . , nar(a)〉 ,
n ::=

∑
a∈S a(xa1, . . . , x

a
ar(a)).pa .

The daimonz is for convergence, Ω for divergence. Proper positive designs (i.e., di�erent
from z and Ω) play the same role as applications in λ-calculus: either a variable x or a
negative design n0 is applied, via a name a, to as many negative designs as the arity of a.
Negative designs are a superposition of abstractions, where each name a ∈ S binds ar(a)
variables and is followed by a positive design. Compared to the designs of [Ter11], our
de�nition introduces only a minor change: we do not consider identities, a way to consider
the axiom rule in ludics, which can instead be encoded as an in�nitary η-expansion.

Notation
In the following, the symbols d, e, . . . refer to designs of any polarity, while p, q, . . .
and m, n, . . . are speci�cally for positive and negative designs respectively. Moreover,
we will often use the following notations:

• a(−→x ) for a(x1, . . . , xn) and a〈−→n 〉 for a〈n1 . . . nn〉,
• Ω− for

∑
a∈S a(

−→
xa).Ω and x|a〈

−→
Ω−〉 for x|a〈Ω−, . . . ,Ω−〉,

• we will write partial sums for negative designs, for example a(x, y).p + b().q

instead of a(x, y).p + b().q +
∑

c 6=a,c6=b c(
−→
zc).Ω.

Given a design d, the de�nitions of the free variables of d, written fv(d), and the
(capture-free) substitution of x by a negative design n in d, written d[n/x], can easily be
inferred, as well as the α-equivalence between designs. For the formal de�nitions, refer to
[Ter11]. We will consider designs up to α-equivalence.

Let us give some more de�nitions:
• A design is total if it is 6= Ω, it is proper if it is 6= Ω and 6= z.
• A subdesign of a design d is a sub-term of d.
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• A cut is a positive design of the form n0|a〈−→n 〉, and a cut in a design d is a subdesign
of d which is a cut. We call cut-free a design that contains no cut.

In this thesis – except in Chapter 6 – we will focus on linearity. Thus in the following
when writing “design” we mean “linear design”, as de�ned below. Linearity forbids the
repetition of a variable in two di�erent parts of a design that may be used during the same
interaction.

De�nition 1.1.3 (Linear design)

A design is linear if for every subdesign of the form x|a〈−→n 〉 (resp. n0|a〈−→n 〉), the sets
{x}, fv(n1), . . . , fv(nar(a)) (resp. the sets fv(n0), fv(n1), . . . , fv(nar(a))) are pairwise
disjoint.

Interaction provides a cut-elimination procedure, which corresponds to β-reduction if
we consider a cut as a redex of λ-calculus.

De�nition 1.1.4 (Normalisation / interaction)
The normalisation of designs – also called interaction between designs, when two
sides are clearly identi�ed – is obtained by means of a reduction step applied on cuts:∑

a∈S a(xa1, . . . , x
a
ar(a)).pa | b〈n1, . . . , nk〉  pb[n1/x

b
1, . . . , nk/x

b
k] .

Let p be a design, and let ∗ denote the re�exive transitive closure of ; if there exists
a design q that is neither a cut nor Ω and such that p ∗ q, we write p ⇓ q; otherwise we
write p ⇑. The normal form of a design, which is a particular cut-free design, exists and is
unique [Ter11]:

De�nition 1.1.5 (Normal form)
The normal form of a design d, noted ([d]), is de�ned by

([p]) = z if p ⇓ z ,

([p]) = Ω if p ⇑ ,

([p]) = x|a〈([n1]), . . . , ([nk])〉 if p ⇓ x|a〈n1, . . . , nk〉 ,

([
∑

a∈S a(
−→
xa).pa]) =

∑
a∈S a(

−→
xa).([pa]) .

Example 1.1.6

Let x0, x1, x2, x3 ∈ V0 be distinct variables and a1, b1, c0 ∈ S be names. Consider the
following designs:

p = x0|a〈b(x1).(x1|c〈〉)〉 and n = a(x2).(x3|b〈c().(x2|b〈c().z〉)〉) .

The interaction between n and p, when n is substituted in p on variable x0, corresponds
to the following reduction steps (where bold vertical bars correspond to cuts, for the
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sake of readability):

p[n/x0] = a(x2).(x3|b〈c().(x2|b〈c().z〉)〉) | a〈b(x1).(x1|c〈〉)〉
 x3|b〈c().((b(x1).(x1|c〈〉)) | b〈c().z〉)〉
 x3|b〈c().((c().z) | c〈〉)〉
 x3|b〈c().z〉 .

Thus the normal form is ([p[n/x0]]) = x3|b〈c().z〉

Finally, we state the associativity theorem, one of the important results in ludics which
corresponds to a weak form of the Church-Rosser property. This theorem justi�es refer-
ence to “the” normal form of a design.

Theorem 1.1.7 (Associativity)
Let d be a design and n1, . . . , nk be negative designs.

([d[n1/y1, . . . , nk/yk]]) = ([([d])[([n1])/y1, . . . , ([nk])/yk]]) .

This result has �rst been established by Girard [Gir01]. The theorem, in the form given
above, has been by Basaldella and Terui [BT10b].

1.1.b Behaviours

In the next section, we will describe a particular interaction as a sequence of actions, or
path (De�nition 1.2.10). By “particular” we mean that the interaction should be:

• two-sided, i.e., we can clearly identify two designs (or two sets of designs, see Chap-
ter 2) corresponding to the duality program/environment or player/opponent, so
that the trace of the interaction can be recorded on either side.

• closed, i.e., it does not produce a concrete result but outputs only an indication on
termination of the computation: eitherz (convergence) or Ω (divergence).

To this end, we consider atomic designs and we study the interaction between two atomic
designs, which is the simplest interaction of this form. In the rest of this thesis, we dis-
tinguish a particular variable x0 ∈ V0, that cannot be bound: it is reserved for positive
atomic designs, and plays the role of an initial location.

De�nition 1.1.8 (Atomic, closed)
Let d be a design.

• d is atomic if d is positive and fv(d) ⊆ {x0}, or if d is negative and fv(d) = ∅.
• d is closed if it is positive and it has no free variable.

Note that the normal form of a closed design is either z or Ω, in other words either con-
vergence or divergence. This binary possibility of output leads to distinguish between two
forms of closed interaction:

• the well-typed one, which guarantees termination (z),
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• the bad one, in which in�nite chattering occurs (Ω).
In particular, if p and n are atomic then p[n/x0] is closed, and the orthogonality relation
between two atomic designs of opposite polarities indicates the convergence of their in-
teraction. A ludics type, called behaviour, is then a set of atomic designs interacting the
same way with their environment, i.e., closed by bi-orthogonal. These notions will be
generalised in Chapter 2 with multi-designs.

De�nition 1.1.9 (Orthogonality)
Two atomic designs p and n are orthogonal, noted p ⊥ n or n ⊥ p, if ([p[n/x0]]) = z.

Given a cut-free atomic design d, de�ne d⊥ = {e cut-free | d ⊥ e}; if E is a set of
cut-free atomic designs of same polarity, de�ne E⊥ = {d cut-free | ∀e ∈ E, d ⊥ e}.

De�nition 1.1.10 (Behaviour)

A set B of cut-free atomic designs of same polarity is a behaviour if B⊥⊥ = B.

A behaviour is either positive or negative depending on the polarity of its designs.

Notation
Symbols A,B, . . . will designate behaviours of any polarity, while M,N . . . and
P,Q, . . . will be for negative and positive behaviours respectively.

With our de�nition, a behaviour B only contains cut-free designs. We could have
considered the set {d design | ([d]) ∈ B} instead, which is also closed by bi-orthogonal if we
take into account designs with cuts. The reason why we require cut-freeness is technical,
in particular it gives a simple formulation of internal completeness (Theorem 1.1.21).

A behaviour really corresponds to a set of designs with the same “behaviour” since it
can alternatively be de�ned as the orthogonal of a setE of cut-free atomic designs of same
polarity – E corresponds to a set of tests or trials. Indeed, E⊥ is always a behaviour, and
every behaviour B is of this form by taking E = B⊥. All the designs passing the set of
tests are equally able to interact with their common opponents, and are therefore part of
the same type.

Example 1.1.11

Let a2, b1, c0 ∈ S . Consider the designs

m1 = a(x1, x2).(x1|b〈c().(x2|b〈c().z〉)〉)
and m2 = a(x1, x2).(x2|b〈c().(x1|b〈c().z〉)〉)

(note that we will soon introduce a tree syntax for designs, which will make m1 and
m2 more readable, see Figure 4 on page 38). The negative behaviour A = {m1,m2}⊥⊥
contains for example the designs

m′1 = a(x1, x2).(x1|b〈c().(x2|b〈c().z〉)〉) + b(y).z

and m′2 = a(x1, x2).(x2|b〈c().z〉) .
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Indeed, A = {p}⊥ where

p = x0|a〈b(y1).y1|c〈〉, b(y2).y2|c〈〉〉

and we have m′1 ⊥ p and m′2 ⊥ p.

1.1.c Incarnation

Not everything in a behaviour is useful, in the sense that some of its designs may have
parts that can never be visited during interaction. If we go back to Example 1.1.11, notice
that, in design m′1, the part “+b(y).z” is of no use for interacting with designs of A⊥; if we
get rid of this, we obtain the design m1 that is still in A. Hence the notion of incarnation.
The incarnation of a behaviour B is the subset of B containing only the designs whose
actions are all visited during an interaction with a design in B⊥. Those correspond to the
designs that are minimal for the stable ordering v, where d′ v d if d can be obtained from
d′ by substituting positive subdesigns for some occurrences of Ω. Studying the incarnation
is enough to prove the interactive properties of a behaviour.

De�ning formally the incarnation requires to de�ne �rst both the stable ordering (v)
and the intersection (∩). The reader familiar with the original presentation of ludics will
note that these correspond respectively to the inclusion and the real intersection of designs
as sets of chronicles [Gir01].
De�nition 1.1.12 (Stable ordering)
v is the largest binary relationR over designs such that:

1. ifzR d then d = z,
2. if ΩR d then d is positive,
3. if x|a〈−→n 〉 R d then d = x|a〈−→m〉 and ni R mi for 1 ≤ i ≤ ar(a),
4. if n0|a〈−→n 〉 R d then d = m0|a〈−→m〉 and ni R mi for 0 ≤ i ≤ ar(a),
5. if

∑
a∈S a(

−→
xa).pa R d then d =

∑
a∈S a(

−→
xa).qa and pa R qa for all a ∈ S .

De�nition 1.1.13 (Intersection)
∩ is a partial operation over cut-free designs de�ned by:

• z ∩z = z,
• p ∩ Ω = Ω ∩ p = Ω,
• x|a〈−→n 〉 ∩ x|a〈−→m〉 = x|a〈n1 ∩m1, . . . , nar(a) ∩mar(a)〉 if all ni ∩mi de�ned,
•
∑

a∈S a(
−→
xa).pa∩

∑
a∈S a(

−→
xa).qa =

∑
a∈S a(

−→
xa).(pa∩qa) if all pa∩qa de�ned,

• d ∩ e is not de�ned otherwise.

The stable ordering means that a design is “less de�ned” than another, while the inter-
section takes the maximally de�ned cut-free design which is less de�ned than two others.
Note that the intersection is de�ned only between two designs agreeing on the names of
proper positive actions, it is not de�ned otherwise. This allows to describe the incarnation
of a behaviour B as the set of (cut-free atomic) designs that are minimal for v, but still
de�ned enough to interact with designs of B⊥.
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De�nition 1.1.14 (Incarnation)
Let B be a behaviour and let d ∈ B.

• The incarnation of d in B is |d|B =
⋂
{d′ ∈ B | d′ v d}. If |d|B = d we say

that d is incarnated (or material) in B.
• The incarnation |B| of B is the set of the incarnated designs of B.

Remark 1.1.15
The incarnation |d|B of d is the smallest (forv) design d′ such that d′ v d and d′ ∈ B.

Proof . We easily prove the (contrapositive of the) following assertion (α): if d1, d2 and e
are cut-free designs such that d1∩d2 is de�ned, if d1 v e or d2 v e then d1∩d2 v e. Hence,
by de�nition of the incarnation, |d|B v d. Moreover, as remarked by Terui [Ter11], the
fact that |d|B ∈ B is due to the stability theorem, one of the analytical theorems of ludics.
Finally, for any other design d′ such that d′ v d and d′ ∈ B, we have |d|B v d′, indeed:
since d′ v d′, by de�nition of the incarnation and by (α) we deduce |d|B = |d|B∩d′ v d′.
�

Notation
When there is no ambiguity on the behaviour considered, we simply write |d| for |d|B.

By restricting to incarnated designs in a behaviour, we ensure that for any action in
a design there exists an interaction using it, in the sense that this action will be part of
a cut that is reduced at some point of the interaction process. Going further in this idea
(Section 1.3), the regularity property will certify that every valid sequence of actions –
every path – in designs of the incarnation is the trace of an interaction.

1.1.d Monotonicity

As associativity (Theorem 1.1.7), monotonicity is an analytical theorem that we will need
in this thesis. In order to state it, we consider the observational ordering � over designs.
Informally, we have d′ � d if d can be obtained from d′ by substituting:

• positive subdesigns for some occurrences of Ω.
• z for some positive subdesigns.

The formal de�nition is given below.

De�nition 1.1.16 (Observational ordering)
� is the largest binary relation R over designs de�ned as v (De�nition 1.1.12) but
replacing 3rd and 4th items by:

3. if x|a〈−→n 〉 R d then d = z or d = x|a〈−→m〉 and ni R mi for 1 ≤ i ≤ ar(a),
4. if n0|a〈−→n 〉 R d then d = z or d = m0|a〈−→m〉 and ni R mi for 0 ≤ i ≤ ar(a),
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Remark 1.1.17
For all positive designs p and p′, we have:

• Ω � p � z,
• if p v p′ then p � p′.

We can now state the monotonicity theorem; a proof of the theorem formulated in this
form is found in [Ter11].

Theorem 1.1.18 (Monotonicity)

• If d � e and m � n, then d[m/x] � e[n/x].
• If d � e then ([d]) � ([e]).

Remark 1.1.19
Monotonicity makes explicit the fact that the relation � compares the likelihood of
convergence: if d ⊥ e and d � d′ then d′ ⊥ e. In particular, given a behaviour B, if
d ∈ B and d � d′ then d′ ∈ B.

1.1.e Logical Connectives and Internal Completeness

Behaviour constructors – the logical connectives – can be applied so as to form compound
behaviours. These connectives, coming from (a polarised variant of) MALL, are used for
interpreting formulas as behaviours, and will also indeed play the role of type constructors
for the types of data and functions. For example, one can already guess that the tensor⊗ is
used to form product types, while the linear map( corresponds to functional types con-
structions. In addition to the usual multiplicative–additive connectives, we also consider
a positive shift ´ and a negative shift ˆ to handle polarities.

In this subsection, after de�ning the connectives we consider, we state the internal
completeness theorem for these connectives, which makes explicit the structure of a be-
haviour constructed via logical connectives. This theorem constitutes a �rst step – and
an important one – towards the precise analysis of the structure of behaviours that we
conduct in this thesis, in particular with the study of data types (Chapter 4) and functional
types (Chapter 5).

In the rest of this thesis, suppose the signature S contains the distinct unary names
N, π1, π2 and the binary name ℘. Remember that x0 is the distinguished variable intro-
duced at the beginning of § 1.1.b.

Notation
• We write H = N, ι1 = π1, ι2 = π2 and • = ℘.
• Given a behaviour B and x fresh, de�ne Bx = {d[x/x0] | d ∈ B}; such a

substitution operates a “delocation” with no repercussion on the behaviour’s
inherent properties.

• Given a k-ary name a ∈ S , we write a〈N1, . . . ,Nk〉 or even a〈−→N〉 for the set
{x0|a〈−→n 〉 | ni ∈ Ni}, and we write a(−→x ).P for {a(−→x ).p | p ∈ P}.
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• Given a negative design n =
∑

a∈S a(
−→
xa).pa and a name a ∈ S , we denote by

n�a the design a(
−→
xa).pa (that is a(

−→
xa).pa +

∑
b6=a b(

−→
xb).Ω).

De�nition 1.1.20 (Logical connectives)
Given negative behaviours M,N and a positive behaviour P, new behaviours can be
constructed by applying the logical connectives de�ned by:

´N = H〈N〉⊥⊥ (positive shift) ,
ˆP = (N(x).Px)⊥⊥, with x fresh (negative shift) ,

M⊕N = (ι1〈M〉 ∪ ι2〈N〉)⊥⊥ (plus) ,
M⊗N = •〈M,N〉⊥⊥ (tensor) ,
N( P = (N⊗P⊥)⊥ (linear map) .

The connectives ´, ˆ, ⊕ and ⊗ match those de�ned by Terui [Ter11]. Except(, which
is de�ned dualy to ⊗, all these connective constructions require that we close a set of de-
signs by bi-orthogonal, to ensure it is a behaviour. But the internal completeness theorem
states that this closure is actually unnecessary, i.e., connectives apply on behaviours in a
constructive way. For each connective, we present two versions of internal completeness:
one concerned with the full behaviour, the other with the behaviour’s incarnation.
Theorem 1.1.21 (Internal completeness)

Given negative behavioursM,N and a positive behaviour P, we have:

´N = H〈N〉 ∪ {z} and |´N| = H〈|N|〉 ∪ {z} ,
ˆP = {n | n�N ∈ N(x).Px} and |ˆP| = N(x).|Px| ,

M⊕N = ι1〈M〉 ∪ ι2〈N〉 ∪ {z} and |M⊕N| = ι1〈|M|〉 ∪ ι2〈|N|〉 ∪ {z} ,
M⊗N = •〈M,N〉 ∪ {z} and |M⊗N| = •〈|M|, |N|〉 ∪ {z} .

A proof of this theorem, in a more general form, can be found in [Ter11].

1.2 Paths

The correspondence between ludics and game semantics has been studied [BF11, FH02,
FQ13, FQ16]. It relies on the identi�cation of designs with strategies, by describing a design
as a set of interaction traces. Girard represents such interaction traces as disputes [Gir01];
technically, a dispute is a �nite sequence of actions that records the history of a possible
interaction between two orthogonal designs. We choose to adopt the approach of Fouqueré
and Quatrini [FQ13] who give a notion of path following the same idea, except that paths
are de�ned independently of any design.
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The main interest of paths can be observed at the level of behaviours. Given a be-
haviour B, we can consider all the possible interactions between a design of B and a
design of B⊥, leading to the set of the visitable paths of B. This set characterises the
behaviour’s structure – being however unable to distinguish between the interaction of
an in�nite design and the one of arbitrarily large �nite designs in a behaviour, see the
discussion on coinduction in Section 4.4 – therefore it will be subject to much attention
in this thesis. In particular, it is needed for de�ning and proving regularity and purity of
behaviours (see Section 1.3).

The point of this section is to adapt the de�nitions and �rst results of [FQ13] to the
setting of computational ludics (§ 1.2.b). This requires �rst the recovery of notions from
Girard’s ludics: location and chronicles (§ 1.2.a) – the latter being called views here, to �t the
game semantics approach. Similarities between ludics and HO games are then discussed
further in § 1.2.c.

From now on, anytime we deal with paths, should it even be in the context of multi-
designs (Chapter 2) or non-linearity (Chapter 6), we adopt Barendregt’s variable conven-
tion: for designs in a given context, we always assume that:

1. no variable appears both free and bound, and
2. bound variables all have distinct names.

1.2.a Location and Designs as Trees

Location is a primitive idea in Girard’s ludics [Gir01] in which the places of a design are
identi�ed with loci or addresses, but this concept is not visible in Terui’s presentation of
designs-as-terms. We overcome this by introducing actions with more information on
location, that we call located actions, and which are necessary to:

• represent cut-free designs as trees – actually, forests – in a satisfactory way,
• de�ne views and paths (§ 1.2.b).

De�nition 1.2.1 (Located action)
A located action κ is one of

z (daimon) ,
x|a〈x1, . . . , xar(a)〉 (proper positive action) ,
ax(x1, . . . , xar(a)) (proper negative action) ,

where in the last two cases, a ∈ S is the name of κ, the variables x, x1, . . . , xar(a)
are distinct, x is the address of κ and x1, . . . , xar(a) are the variables bound by κ. A
positive action is eitherz or a proper positive action; a negative action is a proper
negative action.

In the following, “action” will always refer to a located action.

Notation

• We will often denote a located action by symbol κ, sometimes indicating polarity
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with an exponent: κ+ or κ−.
• Like for designs, x|a〈−→x 〉 stands for x|a〈x1, . . . , xn〉 and ax(−→x ) for
ax(x1, . . . , xn).

Thanks to located actions, we are able to give a true representation of total cut-free
designs as trees (forests in general); compared to what is done in [Ter11], we do not need
to label the arrows, all the information is contained inside the nodes. Such a representation
enhances the readability of designs, thus we shall use it in examples rather than terms; it
moreover reminds of Girard’s designs [Gir01] which are related to MALL sequent calcu-
lus derivations. The intuitions for constructing the tree corresponding to a design, given
below, should be read together with Example 1.2.2 as an illustration.

By construction, every total design is a forest of actions, possibly in�nite both in height
and in width; it is not always a single tree since a negative design

∑
a∈S a(

−→
xa).pa gives

as many trees as there is a ∈ S such that pa 6= Ω, but by abuse we might write “tree”
in all cases. To turn the nodes into located actions, the distinguished variable x0 is given
as address to every negative root of a tree, and fresh variables are picked as addresses
for negative actions bound by positive ones. This way, negative actions from the same
subdesign, i.e., part of the same sum, are given the same address. A tree is represented
bottom-up: the root is at the bottom, and children are above their parent. There is a
one-to-one correspondence between well-formed tree representations and designs, up to
α-equivalence for negative addresses bound by positive actions.

A more precise and concise way to describe the tree representation of a design uses
the views, which we are about to de�ne (§ 1.2.b): simply write all the views of the design
bottom-up, merging the common pre�xes.

Example 1.2.2

Let a2, b2, c1, d0 ∈ S . The following design is represented by the tree of Figure 2:

d = a(x1, x2).(x2|b〈a(x3, x4).z+ c(y1).(y1|d〈〉),c(y2).(x1|d〈〉)〉) .

Fresh variables z1 and z2 have been picked, both bound by the second node from the
bottom, and used as addresses of negative actions just above it. Two of these three
negative actions have address z1, the other has z2: this depends on the position they
occupy in x2|b〈 · , · 〉, �rst or second.

De�nition 1.2.3 (Justi�cation)
Suppose a design d is represented as a tree, and let κ be a proper action of this tree.

• κ is justi�ed if its address is bound by an actionκ′ of opposite polarity appearing
below κ in the tree, we then say that κ′ is the justi�cation of κ; if κ is not
justi�ed, it is called initial.

• κ is hereditarily justi�ed by an action κ′ of the tree if there exist actions
κ1, . . . , κn such that κ = κ1, κ′ = κn and for all i such that 1 ≤ i < n, the
action κi is justi�ed by κi+1.
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ax0(x1, x2)

x2|b〈z1, z2〉

cz2(y2)

x1|d〈〉

cz1(y1)

y1|d〈〉

az1(x3, x4)

z

Figure 2: Representation of design d from Example 1.2.2.

Note that except the root of a tree, which is always initial, every negative action is justi�ed
by the only positive action immediately below it.

1.2.b Views and Paths

Characterising an interaction between two atomic designs of opposite polarities is useful
since a behaviour is de�ned with respect to the possible interactions of its designs, hence
the concept of path. A path is a sequence of actions followed in a design during interaction.
Here we adapt the notions of path, interaction path and visitable path [FQ13] to ludics à la
Terui.

Let us start by giving an intuition of what are the views and the paths of a design. On
Figure 3 (page 34) are represented a view and a path of design d from Example 1.2.2. Views
are branches in the tree representing a cut-free design (reading bottom-up), while paths
are particular “promenades” starting from the root of the tree; not all such promenades
are paths, though (see Example 1.2.9).

For every positive proper action κ+ = x|a〈−→y 〉 de�ne κ+ = ax(−→y ), and similarly if
κ− = ax(−→y ) de�ne κ− = x|a〈−→y 〉. Given a sequence of proper actions s = κ1 . . . κn,
write s for the sequence κ1 . . . κn.

De�nition 1.2.4 (Dual of a sequence)
Let s be a �nite sequence of proper actions such that if s contains an occurrence ofz,
it is necessarily in last position. The dual of s , written ∼s , is the sequence de�ned by:

• ∼s = sz if s does not end withz,
• ∼s = s ′ if s = s ′z.

Note that
∼∼s = s . The notions of justi�ed, hereditarily justi�ed and initial actions

(§ 1.2.a) also apply in sequences of actions, where indeed the justi�cation of an action has
to be placed before it in a sequence (instead of below in a tree).

Let us de�ne alternated justi�ed sequences, a basis for both views and paths.

De�nition 1.2.5 (Alternated justi�ed sequence)
An alternated justi�ed sequence (or aj-sequence) s is a �nite sequence of actions
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such that:
• (Alternation) polarities of actions alternate,
• (Daimon) ifz appears, it is the last action of s ,
• (Linearity) each variable is the address of at most one action in s .

The (unique) justi�cation of a justi�ed action κ in an aj-sequence is noted just(κ), when
there is no ambiguity on the sequence we consider.

Notation

• Given an action κ and a set of sequences V , we write κV for {κs | s ∈ V }.
• We write ε for the empty sequence.

In the next de�nition, remember that the variable x0 is distinguished.
De�nition 1.2.6 (View, view of a design)

• A view v is an aj-sequence such that each negative action which is not the �rst
action of v is justi�ed by the immediate previous action.

• Given a cut-free design d, the views of d, written V[d], are de�ned recursively –
together with V[n]x where n is a cut-free negative design and x does not appear
in n – as follows:

– V[Ω] = ∅,
– V[z] = {z},
– V[x|a〈−→n 〉] =

⋃
i≤ar(a) κ

+
a V[ni]yi where κ+a = x|a〈−→y 〉 with −→y fresh,

– V[n] = V[n]x0 ,
– V[

∑
a∈S a(

−→
xa).pa]x = {ε} ∪ {κ−a | a ∈ S and pa 6= Ω}

∪
⋃
a∈S κ

−
a V[pa] where κ−a = ax(

−→
xa).

Note that the views of a design indeed satisfy the de�nition of view. Views are considered
up to α-equivalence, therefore the choice of fresh variables does not matter. This notion
corresponds to the one of chronicle in original ludics [Gir01]. We now show how to extract
a view from an aj-sequence.
De�nition 1.2.7 (View of a sequence, anti-view of a sequence)

• The view of an aj-sequence is de�ned inductively by:
– pεq = ε,
– psκ+q = psqκ+,
– psκ−q = ps0qκ− where s0 is the pre�x of s ending on just(κ−),

or s0 = ε if κ− initial.
• The anti-view of an aj-sequence, noted xsy, is de�ned symmetrically by revers-

ing the role played by polarities; equivalently xsy =
∼
p∼sq.

Informally, taking the view of an aj-sequence consists in the following process, starting
from the last action of the sequence: for each action considered, if it is positive go to previ-
ous action, if it is negative jump to its justi�cation and erase all the actions in between; stop
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ax0(x1, x2)

x2|b〈z1, z2〉

cz2(y2)

x1|d〈〉

cz1(y1)

y1|d〈〉

az1(x3, x4)

z

a view a path

Figure 3: A view and a path of a design.

when reaching either the �rst action of the sequence or a negative initial action. A problem
is that this process might erase the negative justi�cation of a positive action, transforming
a justi�ed action into an initial one. The P-visibility condition in the de�nition of path
(De�nition 1.2.8) ensures we avoid such a situation; symmetrically, O-visibility prevents
from erasing the positive justi�cation of a negative action while taking the anti-view.

Our de�nition of path below actually corresponds to a reversible path for Fouqueré and
Quatrini, since we will not need to consider non-reversible paths. This implies in particular
that the dual of a path is a path.

De�nition 1.2.8 (Path, path of a design)
A path s is a positive-ended (or empty) aj-sequence satisfying the following:
(P-visibility) For every pre�x s ′κ+ of s with κ+ justi�ed, just(κ+) ∈ ps ′q;
(O-visibility) For every pre�x s ′κ− of s with κ− justi�ed, just(κ−) ∈ xs ′y.
Given a cut-free design d, a path s is a path of d if for every pre�x s ′ of s , ps ′q is a
view of d. A non-empty path is positive or negative depending on the polarity of its
�rst action; the empty path is negative.

Example 1.2.9
Let d be the design from Example 1.2.2. The path of d indicated on Figure 3 is:

s1 = ax0(x1, x2) x2|b〈z1, z2〉 cz1(y1) y1|d〈〉 cz2(y2) x1|d〈〉 .

The following sequence is also a promenade in the tree of d, but not a path of it because
O-visibility is not satis�ed for the negative action cz1(y1):

s2 = ax0(x1, x2) x2|b〈z1, z2〉 cz2(y2) x1|d〈〉 cz1(y1) y1|d〈〉 .

The de�nition of path does not refer to interaction, it relies only on conditions exter-
nal to any design. Let us now establish the link between paths and interaction, keeping
in mind that paths are aimed at characterising an interaction between designs. Given
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two orthogonal designs d and e, the trace of their interaction can be described as a se-
quence of actions – the interaction path – corresponding to the succession of reductions
performed. The following de�nition thus assumes that such a sequence is e�ectively a
path, and moreover that it always exists and is unique; these statements will be proved
in Chapter 2 (Proposition 2.2.9), since they require more material built on the notion of
multi-designs, a generalisation of designs.

De�nition 1.2.10 (Interaction path)
Let d and e be cut-free atomic designs such that d ⊥ e. The interaction path of d with
e is the unique path s of d such that ∼s is a path of e. We write this path 〈d← e〉.

A good intuition is that 〈d← e〉 corresponds to the sequence of actions that the interaction
between d and e follows on the side of d.

Multi-designs will also make it possible to prove (as Proposition 2.2.11) that the conver-
gence of a closed interaction is equivalent to the existence of such a path, which constitutes
an alternative – static – way of de�ning orthogonality:

Proposition 1.2.11
Let d and e be cut-free atomic designs. d ⊥ e if and only if there exists a path s of d such
that ∼s is a path of e.

Finally, we consider interaction paths at the level of a behaviour B, leading to a set of
visitable paths that describes the possible interactions between a design of B and a design
of B⊥.

De�nition 1.2.12 (Visitable path of a behaviour)

A path s is visitable in a behaviour B if there exist designs d ∈ B and e ∈ B⊥ such
that s = 〈d← e〉. The set of visitable paths of B is written VB.

Remark 1.2.13

For every behaviour B,∼VB = VB⊥ .

1.2.c Ludics vs. Hyland–Ong Games

Game semantics is an interactive semantics for programs and logic, based on the idea of
a game between two players. It provided a satisfactory answer to the long open problem
of full abstraction for PCF [AJM00, HO00, Nic94]. Programs or proofs are modeled as
strategies, while types or formulas correspond to arenas.

There are many similarities between ludics and Hyland–Ong game semantics, indeed:
in HO games, strategies are sets of plays that are very much like the paths. More generally,
we have the following correspondence:
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Action — Move
View / Chronicle — View

Path / Dispute — Play
Design — Innocent strategy

Behaviour — Arena

This correspondence can be made precise [BF11, FH02]. Let us simply stress the following:
the reason why designs correspond to innocent strategies is that they can be de�ned as sets
of views; this implies that given a design / strategy, the next positive action / move of a path
/ play is entirely determined by partial information on the computation history – the view.
Note that this will no longer be true when considering designs that are non-deterministic
(in Chapter 6).

Although very close to each other, ludics and HO games have an important di�erence.
In HO games, one starts by describing an arena as a set of moves together with an en-
abling relation which indicates what plays are allowed in this game; strategies are then
coherent sets of plays following the rules of the game, that is, the enabling. Ludics, on the
other hand, adopts the converse approach: designs and interaction are primitive, while
behaviours are recovered as sets of designs sharing common ways of playing; this is made
possible by the special actionz that allows closed interaction.

As remarked by Baelde, Doumane and Saurin [BDS15], this reversal is the reason why
it is easier to study �xed points in ludics than in game semantics [Cla09], while game
semantics is best suited to model linear logic exponentials than ludics. In a sense, this
thesis studies both �xed points and exponentials in ludics, respectively as inductive types
(Chapter 4) and non-linearity (Chapter 6), and it appears that we got more fruitful results
in the �rst direction, for the moment.

1.3 Regularity and Purity

We now de�ne regularity and purity, two properties of behaviours concerned with the
visitable paths, i.e., the possible interactions. These properties will be a tool for under-
standing better the structure of data types (Chapter 4) and functions types (Chapter 5).
Recall that the idea behind regularity is that it corresponds to the multiplicative–additive
behaviours, and purity ensures type safety thus it is a desirable property for data types.

We start by de�ning the operations of shu�e and anti-shu�e on paths, which inter-
leave actions while respecting the alternation of polarities. The idea of the shu�e comes
from [BS98] and will be the main ingredient when describing the visitable paths of a tensor
in Chapter 3. Recall that a subsequence of a sequence κ1 . . . κp is a sequence κi1 . . . κik
such that 1 ≤ i1 < · · · < ik ≤ p, and let s�s ′ denote the subsequence of s containing only
the actions that occur in s ′.

De�nition 1.3.1 (Shu�le, Anti-Shu�le)
Let s and t be paths of same polarity, let S and T be sets of paths of same polarity. The
shu�le (�) is de�ned by:

• s � t = {u path formed with actions from s and t | u�s = s and u�t = t} if s
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and t are negative,
• s � t = {κ+u path | u ∈ s ′ � t ′} if s = κ+s ′ and t = κ+t ′ are positive with

the same �rst action,
• s � t is not de�ned otherwise;
• S � T = {u path | ∃s ∈ S, ∃t ∈ T such that s � t is de�ned and u ∈ s � t},

The anti-shu�le ( �) is de�ned by s �t =
∼∼s � ∼t and S �T =

∼∼
S �

∼
T .

Alternatively, the anti-shu�e can be de�ned the same way as the shu�e but reversing the
role of the polarities.

A path u is in s � t if it consists of actions from s and t that have been interleaved in
a precise way: it must be possible to write

s = u0s1s2 . . . sk ,

t = u0t1t2 . . . tk ,

u = u0s1t1s2t2 . . . sktk ,

where u0 is the maximal common pre�x of s and t , and s1, . . . , sk, t1, . . . , tk are sequences
of actions beginning on a negative action and ending on a positive one, or empty. More-
over, u must be a path, thus the interleaving has to comply with the justi�cation pointers
so that u satis�es the visibility conditions.

Remark 1.3.2
• The shu�e is de�ned modulo α-equivalence (see example below).
• If non-empty, the common pre�x u0 ends on a positive action; if u0 is empty

then s and t are negative paths.
• After the common pre�x u0, the rests of the paths s and t are disjoint.
• If s and t are both z-ended, then s � t is empty, unless s = t and in this case

s � t = {s} = {t}.

Example 1.3.3
Consider the following paths:

s = ax0(x1, x2) x2|b〈x3, x4〉 cx3() x1|d〈〉 ,
t = ax0(y1, y2) y2|b〈y3, y4〉 ey4(z) z|f〈〉 .

They have a common pre�x ax0(x1, x2) x2|b〈x3, x4〉 (modulo α-equivalence). By in-
terleaving their actions, we obtain the two following sequences:

u = ax0(x1, x2) x2|b〈x3, x4〉 ex4(z) z|f〈〉 cx3() x1|d〈〉 ,
u ′ = ax0(x1, x2) x2|b〈x3, x4〉 cx3() x1|d〈〉 ex4(z) z|f〈〉

(where the address of the action of name e has been changed according toα-renaming).
We have u ∈ s � t but u ′ /∈ s � t since u ′ is not a path, indeed: O-visibility is not
satis�ed for action ex4(z).
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A =

 ax0(x1, x2)

x1|b〈y1〉

cy1()

x2|b〈y2〉

cy2()

z

, ax0(x1, x2)

x2|b〈y2〉

cy2()

x1|b〈y1〉

cy1()

z



⊥⊥

B =

 dx0(z)

z|e〈s1, s2〉

fs2(t2)

t2|g〈〉

fs1(t1)

t1|g〈〉

, dx0(z)

z|e〈s1, s2〉

fs1(t1)

z



⊥⊥

m1 m2 n1 n2

Figure 4: A regular and a non-regular behaviour

De�nition 1.3.4 (Regularity)
A behaviour B is regular if the following conditions are satis�ed:

• for every design d ∈ |B| and every path s of d, s ∈ VB,
• for every design d ∈ |B⊥| and every path s of d, s ∈ VB⊥ ,
• The sets VB and VB⊥ are stable under shu�e (i.e., VB is stable under� and �).

The intuition is that a behaviour B is regular if every path formed with actions of the
incarnation of B, even mixed up, is a visitable path of B, and similarly for B⊥. Not all the
behaviours are regular, as shown in the following example.

Example 1.3.5
Consider the two behaviours A and B generated as indicated on Figure 4 (A is the
same behaviour as in Example 1.1.11). The behaviour A is regular: we could check
that all the conditions are satis�ed. On the other hand, B is not regular: we have
n1 ∈ |B| but the path corresponding to the right branch of n1 is not visitable in B.
Indeed, the presence of design n2 in B forces the interaction to visit �rst the left branch
of n1; if we wanted to visit the right one �rst, we would need a counter-design of the
form

p = x0|d〈e(s1, s2).(s2|f〈n〉)〉

but such a design is not orthogonal to n2, thus is not in B⊥.

Remark 1.3.6
Regularity is a property of both a behaviour and its orthogonal since the de�nition is
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symmetrical: B is regular if and only if B⊥ is regular.

Now, in order to de�ne purity, consider the following preliminary de�nition.

De�nition 1.3.7 (Extensible, maximal visitable path)
Let B be a behaviour.

• Az-free path s ∈ VB is extensible in VB if there exists a proper negative action
κ− such that sκ−z ∈ VB; in this case the sequence sκ− is called a witness of
extensibility.

• A z-ended path tz ∈ VB is extensible in VB if there exists a proper positive
action κ+ such that tκ+ ∈ VB; similarly, tκ+ is a witness of extensibility.

• Given s , s ′ ∈ VB, the path s extends the path s ′ in VB if either s = s ′ or s ′ is
extensible in VB with witness a pre�x of s .

• A path in VB is maximal in VB if it is not extensible in VB.

De�nition 1.3.8 (Purity)
A behaviour B is pure if all thez-ended paths in VB are extensible, in other words if
there is no maximal z-ended path.

Purity ensures that when an interaction encounters z, this does not correspond to a real
error but rather to a partial computation, as it is possible to continue this interaction. Note
that we cannot require behaviours to be entirelyz-free, daimons being necessarily present
in all behaviours. Indeed, given d ∈ B, for any design d′ obtained from d by cutting o�
branches and replacing them with z, we have d′ ∈ B since d � d′; in other word, the
following property always holds: if sκ+ ∈ VB then sz ∈ VB.

We prove in Chapters 3 and 4 that purity and regularity of behaviours are preserved
when applying logical connectives ´, ˆ,⊕,⊗ or when taking a least �xed point. The con-
nective(, however, might break purity: this is detailed in Chapter 5. The computational
and logical meaning of these two properties will be made clearer then.
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2 | Multi-Designs

Designs are not su�cient in order to prove results by induction on an interaction, that is,
by induction on the length of an interaction path. The reason is that, given designs d and
e such that d ⊥ e, the path 〈d← e〉 has been de�ned statically, for the moment. We would
rather like to de�ne it as

〈d← e〉 = κ〈d′ ← e′〉
where κ is the only action at the base of d such that its dual κ is at the base of e, and where
d′ and e′ are the designs obtained after one reduction step of the interaction between d and
e. The problem is that there may not exist such designs d′ and e′.

Consider for example the designs d and e on Figure 5. We have d ⊥ e and the �rst
action of 〈d← e〉 is indeed κ = x0|a〈x, y〉. But one reduction step gives

d[e/x0] e′[d′1/x, d
′
2/y] ,

in other words the design d leads to two designs. In this particular case, we might want to
re�ne our previous idea by setting

〈d← e〉 = κ〈{d′1, d′2} ← e′〉 .

This example justi�es the necessity of considering not only designs but also multi-
designs in order to deal with such partial computations. In particular, it will enable us to
give a dynamic (i.e., inductive) de�nition of the interaction path (De�nition 2.2.3).

x0|a〈x, y〉

cy()

z

bx(z)

z|d〈〉

d

ax0(x, y)

x|b〈z〉

dz()

y|c〈〉

e

 

bx(z)

z|d〈〉

d′1

cy()

z

d′2

x|b〈z〉

dz()

y|c〈〉

e′

Figure 5: Why we need multi-designs
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From the beginnings of ludics [Gir01], the orthogonality between a design and a set
of designs has been considered. This allows for an extended notion of behaviour; indeed,
note that the behaviours we introduced in the previous chapter (De�nition 1.1.10) are very
limited because of the restriction to atomic designs (we should actually call them atomic
behaviours). Though inspired by the anti-designs of Terui [Ter11], the multi-designs go
further by giving the possibility to describe the interaction between two sets of designs.
This generalisation should however be taken as a technical investigation for our purpose,
rather than an interesting concept in itself.

The present chapter thus lifts the framework of ludics to multi-designs, so as to prove
properties of the interaction path. More precisely, after introducing the necessary notions
in Section 2.1, we show the following in Section 2.2:

• the existence and uniqueness of the interaction path between two orthogonal multi-
designs (Proposition 2.2.9),

• the equivalence between the existence of such a path and the orthogonality of two
multi-designs (Proposition 2.2.11, a generalisation of Proposition 1.2.11),

• the associativity for paths (Proposition 2.2.12).
These results are needed for the following, in particular for Chapter 3. Their proofs are
rather technical, with many lemmas, so the reader intuitively convinced may not neces-
sarily need to read them throughout.

2.1 A Generalisation of Designs

The aim of this section is to get a notion as general as possible of multi-design. In partic-
ular, the closed-compatible multi-designs capture exactly what remains of a closed inter-
action between two designs after some steps of reductions (kind of residues). Going back
to Figure 5 above, the interaction between {d′1/x, d′2/y} and e′ is an example of closed-
compatibility: the design – noted Cut{d′1/x,d′2/y}|e′ – obtained after performing the substi-
tutions is closed, thus the interaction leads either toz or Ω. This way, we recover notions
of orthogonality and behaviour for multi-designs matching the ones for designs.

2.1.a Multi-Designs

The notion of multi-design introduced below generalises the one of anti-design [Ter11],
and in particular it generalises designs. Interaction between two compatible multi-designs
D and E corresponds to the elimination of cuts in the multi-design CutD|E, which is ob-
tained by substituting designs of D in designs of E and vice versa.

De�nition 2.1.1 (Multi-design)

• A negative multi-design is a set

{(x1, n1), . . . , (xk, nk)}

where x1, . . . , xk are distinct variables and n1, . . . , nk are negative designs, such
that for all i, j with 1 ≤ i 6= j ≤ k we have fv(ni) ∩ {x1, . . . , xk} = ∅ and
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fv(ni) ∩ fv(nj) = ∅.
• A positive multi-design is a set

{p, (x1, n1), . . . , (xk, nk)}

where {(x1, n1), . . . , (xk, nk)} is a negative multi-design and p is a positive de-
sign such that fv(p)∩{x1, . . . , xk} = ∅, and for all 1 ≤ i ≤ k, fv(p)∩fv(ni) = ∅.

Notation

• We use D,E, . . . to denote multi-designs of any polarity, M,N, . . . for negative
ones and P,Q, . . . for positive ones.

• A pair (x, n) in a multi-design is denoted by n/x or (n/x); hence a negative
multi-design will be written {n1/x1, . . . , nk/xk} (or even {

−−→
n/x}), a positive one

{p, n1/x1, . . . , nk/xk}, and we write (n/x) ∈ D instead of (x, n) ∈ D. This
notation makes the parallel with substitution: if N = {n1/x1, . . . , nk/xk} and
d is a design, then we can write d[N] for the substitution d[n1/x1, . . . , nk/xk].

• By abuse, we might even write n ∈ D when the variable associated to n in the
multi-design D does not matter; thus when writing “let d ∈ D”, the design d can
be either positive or negative associated with a variable in D.

• A design can be viewed as a multi-design: a positive design p corresponds to the
positive multi-design {p}, and a negative design n to the negative multi-design
{n/x0}, where x0 is the same distinguished variable we introduced for atomic
designs. In this case, notations p and n can replace {p} and {n/x0} respectively.

Note that if D and E are multi-designs, D ∪ E is not always a multi-design.

De�nition 2.1.2 (Normal form)
Let D be a multi-design. Its normal form is the cut-free multi-design de�ned by

([D]) = {(([n])/x) | (n/x) ∈ D} ∪ {([p]) | p ∈ D} .

The associativity theorem naturally extends to multi-designs as follows.

Theorem 2.1.3 (Multi-associativity)
Let D be a multi-design and n1, . . . , nk be negative designs.

([D[n1/y1, . . . , nk/yk]]) = ([([D])[([n1])/y1, . . . , ([nk])/yk]]) .

Proof . Immediate from the de�nition of the normal form of a multi-design (De�nition
2.1.2) and simple associativity (Theorem 1.1.7). �
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De�nition 2.1.4 (Free variables, negative places)
Let D be a multi-design.

• The free variables of D are fv(D) =
⋃

d∈D fv(d).
• The negative places of D are np(D) = {x | ∃n (n/x) ∈ D}.

In De�nition 2.1.1, the condition “for all 1 ≤ i ≤ k, fv(ni) ∩ {x1, . . . , xk} = ∅” (to-
gether with the similar condition for p in the positive case) can thus be rephrased as
“fv(D) ∩ np(D) = ∅”. When two multi-designs D and E interact, this condition en-
sures that a substitution speci�ed in D or in E creates a cut between a design from D
and a design from E, and never between two designs on the same side. This is exactly the
form of interaction we want in the following: an interaction with two distinct sides. But in
order to talk about interaction between two multi-designs, we must �rst determine when
two multi-designs are compatible, i.e., when we can de�ne substitution between them in a
unique way, without ambiguity, which is not the case in general.

2.1.b Compatibility, Orthogonality and Behaviours

De�nition 2.1.5 (Compatible, closed-compatible)
Let D and E be multi-designs.

• D and E are compatible if they satisfy the following conditions:
– fv(D) ∩ fv(E) = np(D) ∩ np(E) = ∅,
– either they are both negative and there exists x ∈ np(D) ∪ np(E) such

that x /∈ fv(D) ∪ fv(E), or they are of opposite polarities.
• D and E are closed-compatible if they are of opposite polarities, compatible,

and satisfying fv(D) = np(E) and fv(E) = np(D).

Intuitively, compatible means that we are able to de�ne the multi-design CutD|E corre-
sponding to the interaction betweenD andE, and closed-compatible means that this multi-
design is a closed design: there are no free variables left, nor negative designs that would
not have been substituted. CutD|E is what we obtain after performing all the substitutions
possible between designs of D and designs of E. For example:

• if p and n are atomic then Cutp|n = p[n/x0];
• if P = {p,m1/x1, . . . ,mk/xk,m

′
1/x
′
1, . . . ,m

′
p/x
′
p} where p is an atomic positive

design and n is a negative design such that x1, . . . xk ∈ fv(n) and x′1, . . . x′p /∈ fv(n),
then CutP|n = {p[n[

−−→
m/x]/x0],

−−−→
m′/x′}.

Formally, it is de�ned as follows.

De�nition 2.1.6 (Cut)
LetD andE be compatible multi-designs. CutD|E is a multi-design de�ned by induction
on the number of designs in E:

CutD|∅ = D , (1)
CutD|E = Cut(D\S)∪{p[S]} | E\{p} if p ∈ E , (2)
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CutD|E = Cut(D\S)∪{n[S]/x} | E\{n/x} if (n/x) ∈ E and x /∈ fv(D) , (3)
CutD|E = Cut(D\S)[n[S]/x] | E\{n/x} if (n/x) ∈ E and x ∈ fv(D) , (4)

where S = {(m/y) ∈ D | y ∈ fv(p)} in (2),
= {(m/y) ∈ D | y ∈ fv(n)} in (3) and (4).

The successive pairs of compatible (resp. closed-compatible) multi-designs stay compat-
ible (resp. closed-compatible) after one step of the de�nition, thus this is well de�ned.
Moreover, if D and E are closed-compatible then, according to the base case, CutD|E is a
closed design.

Example 2.1.7
Recall the designs of Figure 5 at the beginning of the chapter. We have:

Cut{d′1/x,d′2/y}|e′ = Cute′[d′1/x,d′2/y]|∅ = e′[d′1/x, d
′
2/y]

by applying step 2 and then step 1 of De�nition 2.1.6; proceeding in a di�erent order:

Cute′|{d′1/x,d′2/y} = Cute′[d′1/x]|{d′2/y} = Cute′[d′1/x,d′2/y]|∅ = e′[d′1/x, d
′
2/y]

by applying step 4 twice and then step 1. Here we have S = ∅ every time, this is in
fact a very simple example.

We can now extend the notions of orthogonality and behaviours to multi-designs. Note
that, for two multi-designs D and E to be orthogonal, it is necessary that they are closed-
compatible: the negative places of D (resp. E) must exactly match the free variables of E
(resp. D).

De�nition 2.1.8 (Orthogonality)
Let D and E be closed-compatible multi-designs. D and E are orthogonal, noted
D ⊥ E, if ([CutD|E]) = z.

De�nition 2.1.9 (Behaviour)

A set B of cut-free multi-designs of same polarity is a behaviour if B⊥⊥ = B.

This de�nition generalises the behaviours of designs (De�nition 1.1.10). The conception
of multi-designs was aimed at getting the most general notion of behaviour in ludics, and
we claim that we have it.

2.1.c First Properties

We begin with a proposition derived from multi-associativity.

Proposition 2.1.10
Let D,E be compatible multi-designs. We have ([CutD|E]) = ([Cut([D])|([E])]).
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Proof . By induction on E:
• If E = ∅ then ([CutD|∅]) = ([D]) = ([Cut([D])|∅]) = ([Cut([D])|([∅])]).
• If p ∈ E, write E′ = E \ {p} and let

S = {m1/y1, . . . ,mk/yk} = {(m/y) ∈ D | y ∈ fv(p)} .

By de�nitions of the normal form of multi-designs (De�nition 2.1.2) and of Cut.|.
(De�nition 2.1.6), and using associativity (Theorem 2.1.3), we have:

([CutD|E]) = ([Cut(D\S)∪{p[S]}|E′ ]) by Def. 2.1.6
= ([Cut([(D\S)∪{p[S]}])|([E′])]) by induction hypothesis
= ([Cut([D\S])∪{([([p])[([m1])/y1,...,([mk])/yk]])}|([E′])]) by Def. 2.1.2 and Thm. 2.1.3
= ([Cut([([D\S])∪{([p])[([m1])/y1,...,([mk])/yk]}])|([E′])]) by Def. 2.1.2
= ([Cut([D\S])∪{([p])[([m1])/y1,...,([mk])/yk]}|([E′])]) by induction hypothesis
= ([Cut([D])|([E])]) by Def. 2.1.2 and 2.1.6.

• If (n/x) ∈ E with x /∈ fv(D), write E′ = E \ {n/x} and the reasoning is similar as
above with S = {(m/y) ∈ D | y ∈ fv(n)}.

• If (n/x) ∈ E with x ∈ fv(D), write E′ = E \ {n/x} and let

S = {m1/y1, . . . ,mk/yk} = {(m/y) ∈ D | y ∈ fv(n)} .

We have:

([CutD|E]) = ([Cut(D\S)[n[S]/x]|E′ ]) by Def. 2.1.6
= ([Cut([(D\S)[n[S]/x]])|([E′])]) by induction hypothesis
= ([Cut([([D\S])[([([n])[([m1])/y1,...,([mk])/yk]])/x]])|([E′])]) using Thm. 2.1.3 twice
= ([Cut([([D\S])[([n])[([m1])/y1,...,([mk])/yk]/x]])|([E′])]) by Thm. 2.1.3
= ([Cut{([D\S])[([n])[([m1])/y1,...,([mk])/yk]/x]|([E′])]) by induction hypothesis
= ([Cut([D])|([E])]) by Def. 2.1.2 and 2.1.6.

�

Now we prove two useful lemmas.
Lemma 2.1.11

Let D,E be compatible multi-designs. We have CutD|E = CutE|D.

Proof . By induction on the number n of variables in (fv(D)∩np(E))∪ (fv(E)∩np(D)).
• If n = 0 then CutD|E = CutE|D = D ∪ E.
• Let n > 0 and suppose the property is satis�ed for all k < n. Without loss of

generality suppose there exists x ∈ (fv(D) ∩ np(E)). Thus there exists {n/x} ∈ E.
Let us write E′ = E \ {n/x}. Let S = {(m/y) ∈ D | y ∈ fv(n)}.
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– If S = ∅, let d ∈ D be the design such that x ∈ fv(d), and let us write
D′ = D \ {d}. If d is positive then:

CutD|E = CutD′∪{d[n/x]}|E′ by one step 4 of Def. 2.1.6
= CutE′|D′∪{d[n/x]} by induction hypothesis
= Cut(E′\T ′)∪{d[n/x,T ′]}|D′ by one step 2 of Def. 2.1.6,

where T ′ = {(m/y) ∈ E′ | y ∈ fv(d[n/x])}. Let T = {(m/y) ∈ E | y ∈ fv(d)},
we have T = T ′ ∪ {n/x}, indeed: fv(d[n/x]) = (fv(d) \ {x}) ∪ fv(n), where
fv(n)∩np(E) = ∅ by de�nition of a multi-design, thus also fv(n)∩np(E′) = ∅.
Therefore:

Cut(E′\T ′)∪{d[n/x,T ′]}|D′ = Cut(E\T )∪{d[T ]}|D′ = CutE|D

by one step 2 of Def. 2.1.6 backwards, hence the result. The reasoning is similar
if d is negative and D = D′ ∪ {d/y}, we just have to distinguish between the
cases y ∈ fv(E′) and y /∈ fv(E′).

– Otherwise, let

S′ = {(m/y) ∈ E | y ∈ fv(S)}
and S′′ = {(m/y) ∈ D | y ∈ fv(S′)} .

Note that S′ ⊆ E′ and S′′ ⊆ (D \ S). We have:

CutE|D = Cut(E′\S′)∪{n[S[S′]]}|D\S by several steps 4 of Def. 2.1.6
= CutD\S|(E′\S′)∪{n[S[S′]]} by induction hyp., since S 6= ∅
= Cut(D\(S∪S′′))[n[S[S′[S′′]]]/x]|E′\S′ by one step 4 of Def. 2.1.6
= CutD|E by steps 4 of Def. 2.1.6 backwards.

The last equality is obtained by moving successively, from left to right, all the
designs from S′, and �nally the design n.

�

Lemma 2.1.12
LetD1,D2 and E be multi-designs such thatD1 ∪D2 is a multi-design withD1 andD2

disjoint, and E is compatible with D1 ∪D2. We have:

CutD1∪D2|E = CutD1|CutE|D2
.

Proof . By induction on D2:
• If D2 = ∅ then CutE|D2

= E hence the result.
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• If p ∈ D2 then CutE|D2
= Cut(E\S)∪{p[S]}|D′

2
where D′2 = D2 \ {p} and S =

{(m/y) ∈ E | y ∈ fv(p)}. Thus by induction hypothesis:

CutD1|CutE|D2
= CutD1∪D′

2|(E\S)∪{p[S]}

= Cut((D1∪D′
2)\S′)∪{p[S[S′]]}|E\S by one step 2 of Def. 2.1.6

= Cut((D1∪D2)\S′)[S[S′]]|E\S ,

where S′ = {(m/y) ∈ (D1 ∪ D2) | y ∈ fv(S)}. Finally, by several steps 4 of
De�nition 2.1.6 backwards, this is equal to CutD1∪D2|E.

• If (n/x) ∈ D2 and x /∈ fv(E), then similar to the previous case.
• If (n/x) ∈ D2 and x ∈ fv(E), then CutE|D2

= Cut(E\S)[n[S]/x]|D′
2

where D′2 =
D2 \ {n/x} and S = {(m/y) ∈ E | y ∈ fv(n)}. Thus by induction hypothesis:

CutD1|CutE|D2
= CutD1∪D′

2|(E\S)[n[S]/x]

= Cut(E\S)[n[S]/x]|D1∪D′
2

by Lemma 2.1.11
= CutE|D1∪D2

by one step 4 backwards of Def. 2.1.6
= CutD1∪D2|E by Lemma 2.1.11.

�

2.2 Paths and Multi-Designs

In this section, we generalise the interaction path to multi-designs. In particular, we give
an inductive de�nition of the interaction sequence (De�nition 2.2.3) and we show (Propo-
sition 2.2.9) that it corresponds to the same notion as the interaction path. Then we prove
(Proposition 2.2.11) that two multi-designs D and E are orthogonal if and only if there
exists a path of D such that its dual is a path of E. Finally, we give a result of associativity
for interaction paths (Proposition 2.2.12).

2.2.a Interaction Path

Recall that we write ε for the empty sequence.
De�nition 2.2.1 (Path, view)

Let D be a cut-free multi-design.
• A view of D is a view of a design in D.
• A path of D is a path s of same polarity as D such that for all pre�x s ′ of s , ps ′q

is a view of D.

We are now interested in a particular form of closed interaction, where we can identify
two sides of the multi-design: designs are divided in two groups such that there are no cuts
between designs of the same group. This corresponds exactly to the interaction between
two closed-compatible multi-designs. The notion of interaction path (De�nition 1.2.10) is
extended to multi-designs.
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De�nition 2.2.2 (Interaction path)
Let D and E be cut-free closed-compatible multi-designs such that D ⊥ E. The inter-
action path of D with E is the unique path s of D such that ∼s is a path of E.

But nothing ensures the existence and uniqueness of such a path: this will be proved in
the rest of this subsection. We will moreover show that, if D ⊥ E, this path corresponds to
the interaction sequence de�ned below. For the purpose of giving an inductive de�nition
of the interaction sequence, we de�ne it not only for a pair of closed-compatible multi-
designs but for a larger class of pairs of multi-designs. Thus, in the rest of this subsection,
we suppose that we have two multi-designs D and E that are

• cut-free,
• of opposite polarities,
• compatible,
• satisfying fv(D) ⊆ np(E) and fv(E) ⊆ np(D).

De�nition 2.2.3 (Interaction sequence)
The interaction sequence of D with E, written 〈D← E〉, is the sequence of actions
followed by interaction on the side of D. More precisely, if we write p for the only
positive design of D ∪ E, the interaction sequence is de�ned recursively as follows.

• If p = z then:

〈D← E〉 = z ifz ∈ D ,

〈D← E〉 = ε ifz ∈ E .

• If p = Ω then 〈D← E〉 = ε.
• If p = x|a〈−→m〉 then there exists n such that (n/x) ∈ E if p ∈ D, (n/x) ∈ D

otherwise. Let us write n =
∑

b∈S b(
−→
yb).pb. We have

〈D← E〉 = κ〈D′ ← E′〉

where
– κ = x|a〈−→ya〉, D′ = (D \ {p}) ∪ {

−−−→
m/ya} and E′ = (E \ {n/x}) ∪ {pa} if

p ∈ D,
– κ = ax(

−→
ya), D′ = (D \ {n/x}) ∪ {pa} and E′ = (E \ {p}) ∪ {

−−−→
m/ya}

otherwise.

Note that this applies in particular to two closed-compatible multi-designs. Remark also
that this de�nition follows exactly the interaction between D and E: indeed, in the in-
ductive case of the de�nition, the multi-designs D′ and E′ are obtained from D and E
similarly to the following lemma. In particular the interaction sequence is �nite whenever
the interaction between D and E is �nite.

In the following, let denote a step of reduction of one design in a multi-design:

D1  D2 if d1  d2 with d1 ∈ D1 and D2 = D1 \ {d1} ∪ {d2} .
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In particular there are several possible reductions from a multi-design, depending on which
design we choose to reduce. Note that if D1  D2 then ([D1]) = ([D2]).

Lemma 2.2.4

Suppose D positive and E negative. Let p = x|a〈−→n 〉 be the only positive design of D,

and suppose there exists n0 such that (n0/x) ∈ E, say n0 =
∑

b∈S b(
−→
xb).pb. Then:

CutD|E  CutD′|E′ \ {(m/xai ) | xai /∈ fv(pa)}

where D′ = (D \ {p}) ∪ {
−−→
n/xa} and E′ = (E \ {n0/x}) ∪ {pa}.

Proof . Let us prove this result in the case D and E are closed-compatible; in the general
case, the reduction step from multi-design CutD|E in the lemma corresponds to reducing
the positive design q of CutD|E, thus the proof is similar by simply ignoring the negative
designs in D ∪ E that are not substituted in q.

If D and E are closed-compatible, CutD|E is a closed design, and since this design has
cuts we can apply one (unique) step of reduction to it. Let S′ = {(m/xai ) | xai /∈ fv(pa)}.
We have to prove CutD|E  CutD′|E′ \ S′. The proof is done by induction on the number
of designs in E.

• If E = {n0/x}, then E′ = {pa}. In this case let S = {(m/y) ∈ D | y ∈ fv(n0)}, and
remark that, as E and D are closed-compatible, S = D \ {p}. Thus:

CutD|E = Cut(D\S)[n0[S]/x]|∅ by one step 4 of Def. 2.1.6
= p[n0[S]/x]

 pa[S][
−−→
n/xa]

= pa[D
′]

= {pa[D′ \ S′0]} ∪ S′0 \ S′ where S′0 = S′�D′

= CutS′
0∪{pa[D′\S′

0]}|∅ \ S
′

= CutD′|pa \ S
′ by one step 2 of Def. 2.1.6 backwards

= CutD′|E′ \ S′ .

• Otherwise there exists (n1/z) ∈ E such that x 6= z. Suppose z /∈ fv(D) (resp.
z ∈ fv(D)). De�ne:

– S = {(m/y) ∈ D | y ∈ fv(n1)}, and remark S = {(m/y) ∈ D′ | y ∈ fv(n1)},
– D′′ = (D′ \ S) ∪ {(n1[S]/z)} (resp. D′′ = (D′ \ S)[n1[S]/z]),
– E′′ = E′ \ {(n1/z)}.
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We have:

CutD|E = Cut(D\S)∪{(n1[S]/z)}|E\{n1/z} by one step 3 of Def. 2.1.6
( resp. = Cut(D\S)[(n1[S]/z)]|E\{n1/z} by one step 4 of Def. 2.1.6 )

 CutD′′|E′′ \ S′ by induction hypothesis
= CutD′|E′ \ S′ by step 3 (resp. 4) of Def. 2.1.6 backwards.

�

Lemma 2.2.5

If z ∈ ([CutD|E]) (in particular if D ⊥ E) then 〈D ← E〉 =
∼
〈E← D〉. Otherwise

〈D← E〉 = 〈E← D〉.

Proof . It is clear from the de�nition of the interaction sequence that the proper actions in
〈D← E〉 are the opposite of those in 〈E← D〉 (even if 〈D← E〉 is in�nite). Concerning
the daimon: since the interaction sequence follows the interaction between D and E, z
appears at the end of one of the sequences 〈D ← E〉 or 〈E ← D〉 if and only if z ∈
([CutD|E]), and in this case 〈D← E〉 =

∼
〈E← D〉. �

Lemma 2.2.6
Every positive-ended pre�x of 〈D← E〉 is a path ofD. In particular, if 〈D← E〉 is �nite
and positive-ended then it is a path of D.

Proof . First remark that every (�nite) pre�x of 〈D← E〉 is an aj-sequence. Indeed, since
D and E are well shaped multi-designs the de�nition of interaction sequence ensures that
an action cannot appear before its justi�cation, and all the conditions of the de�nition of
an aj-sequence are satis�ed: Alternation and Daimon are immediate from the de�nition of
interaction sequence, while Linearity is indeed satis�ed as variables are disjoint in D and
E (Barendregt’s convention).

By de�nition, for every pre�x s of 〈D ← E〉, psq is a view. We show that it is a view
of D by induction on the length of s :

• If s = ε then pεq = ε is indeed a view of D.
• If s = z then 〈D ← E〉 = z. From the de�nition of the interaction sequence, we

know that in this casez ∈ D, hence pzq = z is a view of D.
• If s = κs ′ where κ is proper, then 〈D← E〉 = κ〈D′ ← E′〉 where D′ and E′ are as

in De�nition 2.2.3, and s ′ is a pre�x of 〈D′ ← E′〉. By induction hypothesis, ps ′q is
a view of D′. Two possibilities:

– Either κ = κ+ is positive. From the de�nition of the interaction sequence, it
means that p := x|a〈−→m〉 ∈ D, κ+ = x|a〈−→ya〉 andD′ = (D\{p})∪{

−−−→
m/ya}. We

have psq = pκ+s ′q and either pκ+s ′q = κ+ps ′q if the �rst negative action of
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ps ′q is justi�ed by κ+ (i.e., ∃i such that ps ′q is a view of mi/y
a
i ), or pκ+s ′q =

ps ′q otherwise (i.e., ps ′q is a view of D \ {p}). In the second case, there is
nothing more to show; in the �rst one, by de�nition of the views of a design,
κ+ps ′q is a view of p = x|a〈−→m〉.

– Or κ = κ− is negative. Hence there exists a design n =
∑

b∈S b(
−→
yb).pb such

that (n/x) ∈ D, κ− = ax(
−→
ya), and D′ = (D \ {n/x}) ∪ {pa}. We have

psq = pκ−s ′q and either pκ−s ′q = κ−ps ′q if the �rst action of ps ′q is positive
(i.e., ps ′q is a view of pa), or pκ−s ′q = ps ′q otherwise (i.e., ps ′q is a view of
D′ \ {pa} ⊆ D). In the second case, there is nothing to do; in the �rst one,
note that κ−ps ′q is a view of (n/x), hence the result.

We have proved that psq is a view of D. This implies in particular that 〈D← E〉 satis�es
P-visibility, indeed: given a pre�x sκ+ of 〈D ← E〉, the action κ+ is either initial or it
is justi�ed in s by the same action that justi�es it in D; since psq is a view of D, the
justi�cation of κ+ is in it, thus P-visibility is satis�ed. Similarly, we can prove that ptq is a
view of E whenever t is a pre�x of 〈E← D〉, therefore 〈E← D〉 also satis�es P-visibility;
by Lemma 2.2.5 either 〈E ← D〉 =

∼
〈D← E〉 or 〈E ← D〉 = 〈D← E〉, thus this implies

that 〈D ← E〉 satis�es O-visibility. Hence every positive-ended pre�x of 〈D ← E〉 is a
path, and since the views of its pre�xes are views of D, it is a path of D. �

Remark 2.2.7

If sκ+1 and sκ+2 are views (resp. paths) of a multi-design D then κ+1 = κ+2 . Indeed, if
sκ+1 and sκ+2 are views of D, the result is immediate by de�nition of the views of a
design; if they are paths of D, just remark that psκ+1 q = psqκ+1 and psκ+2 q = psqκ+2
are views of D, hence the conclusion.

Lemma 2.2.8
SupposeD ⊥ E, s is a path ofD and s is a path of E. The path s is a pre�x of 〈D← E〉.

Proof . Suppose s is not a pre�x of 〈D ← E〉. Let t be the longest common pre�x of s
and 〈D ← E〉 (possibly ε). Without loss of generality, we can assume there exist actions
of same polarity κ1 and κ2 such that κ1 6= κ2, tκ1 is a pre�x of s and tκ2 is a pre�x of
〈D← E〉: indeed, if there are no such actions, it is because 〈D← E〉 is a strict pre�x of s ;
in this case, it su�ces to consider 〈E← D〉 and s instead.

• If κ1 and κ2 are positive, then tκ1 and tκ2 are paths of D, and by Remark 2.2.7 we
have κ1 = κ2, contradiction.

• If κ1 and κ2 are negative, a contradiction arises similarly from the fact that tκ1 and
tκ2 are paths of E where κ1 and κ2 are positive.

Hence the result. �

The following result ensures that the interaction path is well de�ned, i.e., that such a
path exists and is unique.
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Proposition 2.2.9

IfD ⊥ E, there exists a unique path s ofD such that ∼s is a path of E, and s = 〈D← E〉.

Proof . Lemmas 2.2.5 and 2.2.6 show that 〈D ← E〉 is a path of D, and its dual is a path
of E. Uniqueness follows from Lemma 2.2.8. �

Conversely, we prove that the existence of such a path implies the orthogonality of
multi-designs (Proposition 2.2.11). First a lemma.

Lemma 2.2.10
SupposeD and E are closed-compatible and have a �nite interaction, withD positive and
Ω /∈ D. Suppose that for every path sκ+ ofD such that κ+ is proper and s is a path of E,
sκ+ is a path of E, and suppose also that the same condition is satis�ed when reversing
D and E. Then D ⊥ E.

Proof . By induction on the number n of steps of the interaction before divergence/con-
vergence:

• If n = 0, then we must have D = z, since Ω /∈ D. Hence the result.
• If n > 0 then p ∈ D is of the form p = x|a〈−→n 〉 and there exists n0 =

∑
b∈S b(

−→
xb).pb

such that (n0/x) ∈ E. Let κ+ = x|a〈−→xa〉 and remark that κ+ is a path of p. By
hypothesis, κ+ = ax(

−→
xa) is a path of E, thus a path of n0, and this implies pa 6= Ω.

By Lemma 2.2.4, we have

CutD|E  CutD′|E′ \ {(m/xai ) | xi /∈ fv(pa)}

where D′ = (D \ {p}) ∪ {
−−→
n/xa} and E′ = (E \ {n0/x}) ∪ {pa}. This corresponds

to the Cut between two closed-compatible multi-designs D′′ ⊆ D′ (negative) and
E′′ ⊆ E′ (positive), where:

– Ω /∈ E′′ because pa 6= Ω;
– their interaction is �nite and takes n− 1 steps;
– the condition on paths stated in the proposition is satis�ed for D′′ and E′′,

because it is for D and E: indeed, the paths of D′′ (resp. E′′) are the paths t
such that κ+t is a path of D (resp. κ+t is a path of E), unless such a path t
contains a negative initial action whose address is not the address of a positive
action on the other side, but this restriction is harmless with respect to our
condition.

We apply the induction hypothesis to get D′′ ⊥ E′′. Finally D ⊥ E.
�

The following proposition reduces orthogonality between multi-design (thus also be-
tween designs) to the existence of an interaction path.
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Proposition 2.2.11
Suppose D and E are closed-compatible. D ⊥ E if and only if there exists a path s of D
such that ∼s is a path of E.

Proof . (⇒) If D ⊥ E then the result follows from Proposition 2.2.9.
(⇐) We prove that the hypothesis of Lemma 2.2.10 is satis�ed. Let us show that every
path of D (resp. of E) of the form tκ+ where κ+ is proper and t is a path of E (resp. of D)
is a pre�x of s (resp. of s ). By induction on the length of t , knowing that it is either empty
or negative-ended:

• If t is empty, κ+ is necessarily the �rst action of the positive design in D (resp. in
E), hence the �rst action of s (resp. of s ).

• If t = t0κ−, then t0κ− is a path of E (resp. of D) and t0 is a path of D (resp. of E).
By induction hypothesis, t = t0κ− is a pre�x of s (resp. of s ), thus t is a pre�x of s
(resp. of s ). The path s is of the form s = tκ′+s ′. But since s and tκ+ are both paths
of D (resp. E), they cannot di�er on a positive action, hence κ+ = κ′+. Thus tκ+ is
a pre�x of s .

�

2.2.b Associativity for Interaction Paths

Let us conclude this chapter with an important proposition.

Notation
If s is a path of a multi-design D, and E ⊆ D, then we write s�E for the longest
subsequence of s that is a path of E. Notice that this is well de�ned.

Proposition 2.2.12 (Associativity for paths)
LetD, E and F be cut-free multi-designs such that E∪ F is a multi-design with E and F
disjoint, and suppose D ⊥ (E ∪ F). We have:

〈E← ([CutF|D])〉 = 〈E ∪ F← D〉�E .

This proposition states that we can view the restriction of the interaction path 〈E∪F← D〉
to its actions coming from E as another interaction path itself, namely the interaction path
between E and the result of the interaction of F with D. It looks like associativity in the
sense that F can switch to either side of the interaction.

Proof . We prove the result for a larger class of multi-designs. Instead of the assumption
D ⊥ (E ∪ F), suppose that D and E ∪ F are:

• of opposite polarities,
• compatible,
• satisfying fv(D) ⊆ np(E ∪ F) and fv(E ∪ F) ⊆ np(D)
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• and such that z ∈ ([CutE∪F|D]) (in particular their interaction is �nite).
First remark that F and D are compatible, hence it is possible to de�ne CutF|D. Then since
z ∈ ([CutE∪F|D]), we havez ∈ ([CutE|([CutF|D])]), indeed:

([CutE∪F|D]) = ([CutE|CutF|D ]) by Lemmas 2.1.12 and 2.1.11

= ([CutE|([CutF|D])]) by Proposition 2.1.10.

This also shows that E and ([CutF|D]) are compatible. As they are of opposite polarities
and they satisfy the condition on variables, 〈E← ([CutF|D])〉 is de�ned.

Let s = 〈E ∪ F ← D〉, and let us show the result (i.e., s�E = 〈E ← ([CutF|D])〉) by
induction on the length of s , which is �nite because the interaction between D and E∪ F
is �nite.

• If s = ε then necessarilyz ∈ D thus also z ∈ ([CutF|D]). Hence

s�E = ε = 〈E← ([CutF|D])〉 .

• If s = z then z ∈ E ∪ F. In this case, eitherz ∈ E and then

〈E← ([CutF|D])〉 = z = s�E

orz ∈ F thus z ∈ ([CutF|D]) and

〈E← ([CutF|D])〉 = ε = s�E .

• If s = κ+s ′ where κ+ = x|a〈−→xa〉 is a proper positive action, then E∪F is a positive
multi-design such that its only positive design is of the form p = x|a〈−→m〉. Thus D
is negative, and there exists n such that (n/x) ∈ D of the form n =

∑
b∈S b(

−→
xb).pb,

where pa 6= Ω because the interaction converges. Let D′ = (D \ {n/x}) ∪ {pa}.
– Either p ∈ F [reduction step]. In this case, we have

s�E = s ′�E

so let us show that s ′�E = 〈E ← ([CutF|D])〉. By de�nition of the interaction
sequence, we have s ′ = 〈E ∪ F′ ← D′〉 where F′ = (F \ {p}) ∪ {

−−−−→
(m/xa)}.

Thus by induction hypothesis

s ′�E = 〈E← ([CutF′|D′ ])〉 .

But by Lemma 2.2.4,

〈E← ([CutF′|D′ ])〉 = 〈E← ([CutF|D])〉

because the negatives among
−−−−→
(m/xa) in ([CutF′|D′ ]) will not interfere in the

interaction with E, since the variables−→xa do not appear in E. Hence the result.
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– Or p ∈ E [commutation step]. In this case, we have

s�E = κ+(s ′�E)

and by de�nition of the interaction sequence s ′ = 〈E′ ∪ F ← D′〉 where
E′ = (E \ {p}) ∪ {

−−−−→
(m/xa)}. Thus by induction hypothesis

s ′�E = s ′�E′ = 〈E′ ← ([CutF|D′ ])〉 .

But we have

〈E← ([CutF|D])〉 = 〈E← ([CutF|D′∪{(n/x)}\{pa}])〉
= 〈E← ([CutF|D′ ]) ∪ {(n′/x)} \ {p′a}〉
= κ+〈E′ ← ([CutF|D′ ])〉

where n′ is the only negative design of ([CutF|D]) on variable x, and p′a the only
positive design of ([CutF|D′ ]). Hence

〈E← ([CutF|D])〉 = κ+(s ′�E) = s�E .

• If s = κ−s ′ where κ− = ax(
−→
xa), then D is positive with only positive design of the

form p = x|a〈−→m〉, and there exists a negative design n such that (n/x) ∈ E∪F, with
n of the form n =

∑
b∈S b(

−→
xb).pb where pa 6= Ω. By de�nition of the interaction

sequence, we have s ′ = 〈((E∪ F) \ {n/x})∪ {pa} ← D′〉 where D′ = (D \ {p})∪
{
−−−−→
(m/xa)}.
– Either n ∈ F [reduction step]. In this case, we have

s�E = s ′�E

so let us show that s ′�E = 〈E← ([CutF|D])〉. By induction hypothesis

s ′�E = 〈E← ([CutF′|D′ ])〉

where F′ = (F \ {n/x}) ∪ {pa}, and by Lemma 2.2.4 we deduce

s ′�E = 〈E← ([CutF|D])〉 ,

hence the result.
– Or n ∈ E [commutation step]. In this case, we have

s�E = κ−(s ′�E) .

By induction hypothesis

s ′�E = s ′�E′ = 〈E′ ← ([CutF|D′ ])〉

56



2.2. PATHS AND MULTI-DESIGNS

where E′ = (E \ {n/x}) ∪ {pa}. But we have

〈E← ([CutF|D])〉 = 〈E← ([Cut
F|D′∪{p}\{

−−−−→
(m/xa)}])〉

= 〈E← ([CutF|D′ ]) ∪ {p′} \ {
−−−−−→
(m′/xa)}〉

= κ−〈E′ ← ([CutF|D′ ])〉

where p′ is the only positive design of ([CutF|D]), and for each i ≤ ar(a), m′i is
the only negative design of ([CutF|D′ ]) on variable xai . Therefore

〈E← ([CutF|D])〉 = κ−(s ′�E) = s�E ,

which ends the proof.
�

To conclude, let us stress that associativity for paths is necessary for describing, in the
next chapter, the visitable paths of a behaviour constructed with a tensor ⊗ (Proposition
3.2.6).
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3 | Connectives and Interaction

From now on, we go back to designs and behaviours of designs as introduced in Chap-
ter 1. The present chapter is devoted to a precise analysis of behaviours constructed by
logical connectives, in preparation for the subsequent study of inductive data types (Chap-
ter 4) and functional types (Chapter 5). Our focus is two-fold: visitable paths on one side,
regularity and purity on the other.

Thanks to internal completeness, we know what kind of designs a behaviour con-
structed by connectives consists of. It is then natural to wonder what kind of interactions
can such a behaviour perform. The trace of an interaction being recorded in a path, asking
this question amounts to wondering what the visitable paths of this behaviour are. After
some preliminaries in Section 3.1, we describe in Section 3.2 the form of the visitable paths
that each connective leads to. Following internal completeness, on which they rely, these
results push further the study of the behaviours’ structure.

Using these results, we can then study the interactive properties of behaviours con-
structed by connectives: regularity and purity. Indeed, these properties are both concerned
with the visitable paths of a behaviour. We prove that all our connectives preserve regu-
larity (Section 3.3), and that all of them except( preserve purity (Section 3.4). This study
will be completed in the next chapter by showing that the two properties are preserved by
least �xed points, thus that they hold for all (�nite) data types.

Fouqueré and Quatrini [FQ16] proved similar results about visitable paths and the sta-
bility of regularity in the original framework of ludics, where the de�nition of connectives
is slightly di�erent. Sironi [Sir15] studied purity in original ludics as well. Our proofs are
mostly di�erent, though.

3.1 Preliminaries

First, we establish several results useful for the rest of the chapter.

3.1.a Paths and Observational Ordering

We show how to construct, from a visitable path, a design which is maximal for �.

Lemma 3.1.1
Let s be a path of a design. There is a unique design maximal for � such that s is a path
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of it. This design is noted ppsqqc.

Proof . If s is a path of d, ppsqqc is obtained from d by replacing all positive subdesigns
(possibly Ω) whose �rst positive action is not in s by z. �

Notice that, actually, the design ppsqqc does not depend on d but only on path s .
Example 3.1.2

Consider the design d and the path s below:

d = x|a〈b(y).(y|e〈〉), c().z+ d(z).(z|e〈〉)〉 ,
s = x|a〈x1, x2〉 bx1(y) y|e〈〉 cx2() z .

x0|a〈x1, x2〉

dx2(y)

z|e〈〉

cx2()

z

bx1(y)

y|e〈〉

s

We have ppsqqc = x|a〈b(y).(y|e〈〉) +
∑

f 6=b f(
−→
xf ).z,

∑
f∈S f(

−→
xf ).z〉 .

x0|a〈x1, x2〉

. . .fx2(
−→
xf )

z

. . .dx2(y)

z

cx2()

z

bx1(y)

y|e〈〉

. . .fx1(
−→
xf )

z

. . .
s

Lemma 3.1.3
If s ∈ VB then ppsqqc ∈ B.

Proof . If s ∈ VB, there exists d ∈ B such that s is a path of d, thus d � ppsqqc. The result
then comes from monotonicity (Theorem 1.1.18). �

3.1.b More on Paths

Let B be a behaviour. We start by proving that the visitable paths of B are paths of designs
in the incarnation of B.
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Lemma 3.1.4
If d ∈ B and s ∈ VB is a path of d, then s is a path of |d|.

Proof . Let e ∈ B⊥ such that s = 〈d← e〉, and let t = 〈|d| ← e〉.
• Since |d| v d, the path s cannot be a strict pre�x of t , and s and t cannot di�er on

a positive action by Remark 2.2.7.
• If t is a strict pre�x of s then it is positive-ended. So ∼s and ∼t are paths of e di�ering

on a positive action, which is impossible.
• If s and t di�er on a negative action, say uκ−1 and uκ−2 are respective pre�xes of s

and t with κ−1 6= κ−2 , then uκ−1 and uκ−2 are paths of e di�ering on a positive action,
which is impossible.

Thus we must have s = t , hence the result. �

The next lemma essentially asserts that the pre�xes of visitable paths of B are also
visitable in B.

Lemma 3.1.5
Let s ∈ VB. For every positive-ended (resp. negative-ended) pre�x s ′ of s , we have s ′ ∈ VB
(resp. s ′z ∈ VB).

Proof . Let s = 〈d← e〉 where d ∈ B and e ∈ B⊥, and let s ′ be a pre�x of s .
• If s ′ is negative-ended, let κ+ be such that s ′κ+ is a pre�x of s . The action κ+ comes

from d. Consider the design d′ obtained from d by replacing the positive subdesign
of d starting on action κ+ withz. Since d � d′, by monotonicity d′ ∈ B. Moreover
s ′z = 〈d′ ← e〉, hence the result.

• If s ′ is positive-ended then either s ′ = s and there is nothing to prove or s ′ is a strict
pre�x of s , so assume we are in the second case. s ′ isz-free, hence s ′ is a negative-
ended pre�x of ∼s ∈ VB⊥ . Using the argument above, it comes

∼
s ′ = s ′z ∈ VB⊥ , thus

s ′ ∈ VB.
�

Now we show that, after following any positive-ended pre�x s ′ of a visitable path
s ∈ VB, a design d of B is always receptive to the next action κ− of the path s .

Lemma 3.1.6

Let s ∈ VB. For every pre�x s ′κ− of s and every d ∈ B such that s ′ is a path of d, s ′κ−
is a pre�x of a path of d.

Proof . There exist d0 ∈ B and e0 ∈ B⊥ such that s = 〈d0 ← e0〉. Let s ′κ− be a pre�x of
s , and let d ∈ B such that s ′ is a path of d. Since s ′ is a pre�x of a path of e0, s ′ is a pre�x
of 〈d← e0〉. We cannot have s ′ = 〈d← e0〉, otherwise

∼
s ′ = s ′z and s ′κ− would be paths
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of e0 di�ering on a positive action, which is impossible by Remark 2.2.7. Thus there exists
κ′− such that s ′κ′− is a pre�x of 〈d← e0〉, which is a path of d, and necessarily κ− = κ′−.
Finally s ′κ− is a pre�x of a path of d. �

3.1.c An Alternative De�nition of Regularity

We give, in Proposition 3.1.10, another de�nition of regularity which is equivalent to Def-
inition 1.3.4 and best suited to conduct the proofs. Indeed, given a behaviour B such that
VB and VB⊥ are stable by shu�e, Proposition 3.1.10 states that we only need to check
that some speci�c sequences, the bi-views, are visitable in B to ensure that all paths of |B|
and |B⊥| are visitable, in other words to ensure that B is regular. Note that the bi-views
(terminology coming from [Lau04]) correspond to trivial chronicles in [FQ16].

De�nition 3.1.7 (Bi-view)
• A bi-view is an aj-sequence such that each proper action except the �rst one is

justi�ed by the immediate previous action. In other words, it is a view such that
its dual is a view as well.

• The bi-view of an aj-sequence is de�ned inductively by:

〈ε〉 = ε empty sequence ,

〈sz〉 = 〈s〉z ,

〈sκ〉 = κ if κ 6= z initial ,
〈sκ〉 = 〈s0〉κ if κ 6= z justi�ed, where s0 pre�x of s ending on just(κ) .

We also write 〈κ〉s (or even 〈κ〉) instead of 〈s ′κ〉 when s ′κ is a pre�x of s .
• The bi-views of a design d are the bi-views of its paths (or of its views). In

particular, ε is a bi-view of negative designs only.
• The bi-views of designs in |B| are called the bi-views of B.

Note that 〈s〉 = pxsyq = xpsqy.

Lemma 3.1.8

1. Every view is in the anti-shu�e of bi-views.
2. Every path is in the shu�e of views.

Proof .
1. Let v be a view, the result is shown by induction on v:

• If v = ε or v = κ, it is itself a bi-view, hence the result.
• Suppose v = v′κ with v′ 6= ε and v′ ∈ t1

�. . . �tn where the ti are bi-views.
– If κ is negative, as v is a view, the action κ is justi�ed by the last action

of v′, say κ+. Hence κ+ is the last action of some bi-view ti0 . Hence
v ∈ t1

�. . . �ti0−1

�(ti0κ) �ti0+1

�. . . �tn.
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– If κ is positive, either it is initial and v ∈ t1

�. . . �tn

�κwith κ a bi-view,
or it is justi�ed by κ− in v′. In the last case, there exists a unique i0 such
that κ− appears in ti0 , so let tκ− be the pre�x of ti0 ending with κ−. We
have that v ∈ t1

�. . . �tn

�(tκ−κ) where tκ−κ is a bi-view.
2. Similar reasoning as above, but replacing �by �, “bi-view” by “view”, “view” by

“path”, and exchanging the role of the polarities of actions.
�

Remark 3.1.9
Following the previous result, note that every view (resp. path) of a design d is in the
anti-shu�e of bi-views (resp. in the shu�e of views) of d.

Proposition 3.1.10
B is regular if and only if the following conditions hold:

• the positive-ended bi-views of B are visitable in B,
• VB and VB⊥ are stable under� (i.e., VB is stable under� and �).

Remember that VB⊥ =
∼
VB (Remark 1.2.13), hence the equivalence between VB⊥ being

stable under� and VB under �.

Proof . Let B be a behaviour.
(⇒) Suppose B is regular, and let t be a positive-ended bi-view of B. There exists a view
v of a design d ∈ |B| such that t is a subsequence of v, and such that v ends with the
same action as t. Since v is a view of d, v is in particular a path of d, hence by regularity
v ∈ VB. There exists e ∈ B⊥ such that v = 〈d ← e〉, and by Lemma 3.1.4 we can even
take e ∈ |B⊥|. Since ∼v is a path of e, p∼vq is a view of e. But notice that p∼vq =

p∼tq =
∼
t by

de�nition of a view and of a bi-view. We deduce that
∼
t is a view (and in particular a path)

of e, hence
∼
t ∈ VB⊥ by regularity. Finally, t ∈ VB.

(⇐) Assume the two conditions of the statement. Let s be a path of some design of |B|. By
Lemma 3.1.8, we know that there exist views v1, . . . , vn such that s ∈ v1� · · ·�vn, and for
each vi there exist bi-views ti,1, . . . , ti,mi such that vi ∈ ti,1

�. . . �ti,mi . By hypothesis
each ti,j is visitable in B, hence as VB is stable by anti-shu�e, vi ∈ VB. Thus as VB is
stable by shu�e, s ∈ VB. Similarly the paths of designs of |B⊥| are visitable in B⊥. Hence
the result. �

3.2 Visitable Paths and Connectives

The goal of this section is to make explicit the form of the visitable paths for behaviours
constructed by logical connectives. First recall the notations given at the beginning of
§ 1.1.e (page 28), and we also introduce new ones.
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Notation

• Let us note κH = x0|H〈x〉, κN = Nx0(x), κ• = x0| • 〈x, y〉 and κιi = x0|ιi〈xi〉
for i ∈ {1, 2}.

• Given a path s and a fresh variable x, de�ne sx = s [x/x0] where the substitution
a�ects both free variables and variables that are addresses of negative initial
actions; for example:

if s = x0|a〈y〉 by() z then sx = x|a〈y〉 by() z

replacing a free variable – that is, the address of a positive initial action;

if t = ax0(y) y|b〈〉 then tx = ax(y) y|b〈〉

replacing a “free” negative place – that is, the address of a negative initial action.
• Given a design d and a fresh variable x, we write dx for d[x/x0]; if d = n is

negative then we consider that the substitution also a�ects views and paths:
V[nx] = V[n]x, thus the paths of nx are {sx | s path of n}.

• Write V x
B for {sx | s ∈ VB}, and remark that V x

B = VBx .
• Recall that, for an action κ and a set of paths V , we write κV = {κs | s ∈ V }.

We show how we can, from the visitable paths of behaviours M,N,P, deduce the
ones of ´N, ˆP,M ⊕N,M ⊗N and N ( P, in other words we give a compositional
description of the visitable paths. More precisely, we prove the following:

V´N = κHV
x
N ∪ {z} (Proposition 3.2.1),

VˆP = κNV
x
P ∪ {ε} (Proposition 3.2.1),

VM⊕N = κι1V
x1
M ∪ κι2V

x2
N ∪ {z} (Proposition 3.2.4),

VM⊗N = κ•(V
x
M � V y

N) ∪ {z} if M and N regular (Proposition 3.2.8).

We also prove the general form of the visitable paths of M ⊗N, which is not as simple
as in the regular case (Proposition 3.2.6). Finally, the visitable paths of N( P are easily
deduced from those of the tensor in both the general and the regular case (Corollaries 3.2.7
and 3.2.9).

These results are necessary for proving the stability of regularity and purity in the next
sections. Internal completeness plays a central role in the proofs.

3.2.a Shifts

The visitable paths of the shifts have a really simple form: we essentially just need to add
an action at the beginning of the paths of N or P.

Proposition 3.2.1 (Visitable paths of the shi�s)

1. V´N = κHV
x
N ∪ {z}.

2. VˆP = κNV
x
P ∪ {ε}.
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We need two lemmas before proving this proposition.

Lemma 3.2.2

1. (N(x).(N⊥)x)⊥ ⊆ H〈N〉 ∪ {z}.
2. N(x).(N⊥)x ⊆ H〈N〉⊥.

Proof . Let E = H〈N〉 and F = N(x).(N⊥)x. To show the lemma, we must show
F⊥ ⊆ E ∪ {z} and F ⊆ E⊥.

1. Let q ∈ F⊥. If q 6= z, q is necessarily of the formH〈n〉where n is a negative atomic
design. For every design p ∈ N⊥, we have N(x).px ∈ F and q[N(x).px/x0]  
p[n/x0], thus ([q[N(x).px/x0]]) = ([p[n/x0]]) = z since q ⊥ N(x).px. We deduce
n ∈ N, hence q ∈ E.

2. Let m = N(x).px ∈ F . For every design n ∈ N, we have H〈n〉[m/x0]  p[n/x0],
thus ([H〈n〉[m/x0]]) = ([p[n/x0]]) = z since p ∈ N⊥ and n ∈ N. Hence m ∈ E⊥.

�

The following lemma states that, indeed, ´ and ˆ are dual connectives.

Lemma 3.2.3

ˆP = (´P⊥)⊥.

Proof . If we take N = P⊥, Lemma 3.2.2 gives us:
1. (N(x).Px)⊥ ⊆ H〈P⊥〉 ∪ {z} and
2. N(x).Px ⊆ H〈P⊥〉⊥.

Let E = H〈P⊥〉, and let F = N(x).Px. By de�nition ˆP = F⊥⊥. From (2) we deduce
F⊥⊥ ⊆ E⊥, and from (1) E⊥ = (E ∪ {z})⊥ ⊆ F⊥⊥. Hence ˆP = F⊥⊥ = E⊥ =
(´P⊥)⊥. �

Proof (Proposition 3.2.1) .
1. (⊆) Let q ∈ ´N and m ∈ (´N)⊥, let us show that 〈q ← m〉 ∈ κHV

x
N ∪ {z}.

By Lemma 3.2.3, m ∈ ˆN⊥. If q = z then 〈q ← m〉 = z. Otherwise, by
Theorem 1.1.21, q = H〈n〉 with n ∈ N. We have 〈q ← m〉 = 〈q ← |m|〉 by
Lemma 3.1.4 , where |m| ∈ N(x).|(N⊥)x| by Theorem 1.1.21, hence |m| is of the
form |m| = N(x).px with p ∈ N⊥. By de�nition 〈q← |m|〉 = κH〈nx ← px〉, where
〈nx ← px〉 ∈ V x

N.
(⊇) Indeed z ∈ V´N. Now let s ∈ κHV

x
N. There exist n ∈ N and p ∈ N⊥ such

that s = κH〈nx ← px〉. Note that H〈n〉 ∈ H〈N〉 and N(x).px ∈ N(x).(N⊥)x.
By Lemma 3.2.3, ˆN⊥ = (´N)⊥, hence H〈n〉 ⊥ N(x).px. Moreover 〈H〈n〉 ←
N(x).px〉 = κH〈nx ← px〉 = s , therefore s ∈ V´N.

2. By Lemma 3.2.3, the previous item, and the fact that VB =
∼
VB⊥ for any behaviourB,

we have: VˆP =
∼
V(ˆP)⊥ =
∼
V´P⊥ =
∼
(κHV

x
P⊥ ∪ {z}) = κN

∼
V x
P⊥∪{ε} = κNV

x
P∪{ε}.

�
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3.2.b Plus

The visitable paths of the plus are simple too: we add a di�erent action at the beginning
of a path depending on if it comes from VM or VN.

Proposition 3.2.4 (Visitable paths of the plus)
VM⊕N = κι1V

x1
M ∪ κι2V

x2
N ∪ {z}.

Proof . Remark that

M⊕N = (ι1〈M〉 ∪ {z}) ∪ (ι2〈N〉 ∪ {z})

is the union of behaviours⊕1M and⊕2N, which correspond respectively to ´M and ´N
with a di�erent name for the �rst action. Moreover,

(M⊕N)⊥ = {n | n�π1 ∈ π1(x).(M⊥)x and n�π2 ∈ π2(x).(N⊥)x}
= (&1M

⊥) ∩ (&2N
⊥)

where the behaviours &1M
⊥ and &2N

⊥ correspond to ˆM⊥ and ˆN⊥ with di�erent
names; note also that for every d ∈ |&1M

⊥| (resp. |&2N
⊥|) there exists d′ ∈ (M⊕N)⊥

such that d v d′, in other words such that d = |d′|&1M⊥ (resp. |d′|&2N⊥ ). Therefore the
proof can be conducted similarly to the one of Proposition 3.2.1(1). �

3.2.c Tensor and Linear Map

The case of the tensor is much trickier than the shifts or the plus. Though all the visitable
paths of M⊗N (exceptz) are obtained by shu�ing a path of VM and a path of VN, tensor
and shu�e do not match exactly. More precisely, we have

VM⊗N ⊆ κ•(V x
M � V y

N) ∪ {z} ,

but the converse inclusion does not hold in general, as shown in the following example;
we will however prove in the next subsection that it holds if both behaviours are regular
(Proposition 3.2.8).

Example 3.2.5
Go back to the behaviours A and B of Figure 4 (page 38), and recall that A is regular
but B is not. We have

s1 = ax0(x1, x2) x1|b〈y1〉 cy1() x2|b〈y2〉 ∈ VA ,

s2 = dx0(z) z|e〈s1, s2〉 fs1(t1) t1|g〈〉 fs2(t2) t2|g〈〉 ∈ VB ,

and we can de�ne the path

s3 = dx(z) z|e〈s1, s2〉 ay(x1, x2) x1|b〈y1〉 fs1(t1) t1|g〈〉
cy1() x2|b〈y2〉 fs2(t2) t2|g〈〉
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which satis�es s3 ∈ s1x � s2y , but κ•s3 /∈ VA⊗B. Indeed, we can check that for any
design d such that∼κ•s3 is a path of d, we have d 6⊥ x0| • 〈m2, n2〉 (where m2 ∈ A and
n2 ∈ B are the designs from Figure 4), hence d 6∈ (A ⊗ B)⊥. The minimal (in the
sense of the stable ordering v) such design d is the following:

℘x0(x, y)

x|d〈z〉

ez(s1, s2)

y|a〈x1, x2〉

bx2(y2)

s2|f〈t2〉

gt2()

z

bx1(y1)

s1|f〈t1〉

gt1()

y1|c〈〉

d =

∼κ•s3

divergence!

interaction with
x0| • 〈m2, n2〉

The idea highlighted in the previous example is that a non-regular behaviour can induce
an orientation (here B forces to visit fs1(t1) before fs2(t2)), but this orientation might not
be respected by all of the paths in the shu�e of the two behaviours of which we take the
tensor. Thus we need a supplementary condition in order to capture the visitable paths of
the tensor in general.

Proposition 3.2.6 (Visitable paths of the tensor)
s ∈ VM⊗N if and only if the two conditions below are satis�ed:

1. s ∈ κ•(V x
M � V y

N) ∪ {z},
2. for all t ∈ V x

M � V y
N, for all κ− such that κ•tκ− is a path of pp∼sqq

c
, we have

tκ−z ∈ V x
M � V y

N .

This proposition is a joint work with Fouqueré and Quatrini; in [FQ16], they prove a similar
result in the framework of original ludics. In our setting, the proof uses some material on
multi-designs introduced in Chapter 2. In this proof, for all negative designs m and n, let
us write m ⊗ n instead of x0| • 〈m, n〉. The associativity for paths (Proposition 2.2.12), in
particular, plays an important role in this proof, by relating the interaction path of m⊗ n
with a negative design n0 to the one of m (resp. n) with the normalisation of p[n/y] (resp.
p[m/y]), where p is a subdesign of n0; this is what allows us to decompose a path of VM⊗N
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in two paths, one from VM and one from VN.

Proof . (⇒) Let s ∈ VM⊗N. If s = z then both conditions are trivial, so suppose s 6= z.
By internal completeness (Theorem 1.1.21), there existm ∈M, n ∈ N and n0 ∈ (M⊗N)⊥

such that
s = 〈m⊗ n← n0〉 .

Thus n0 must be of the form n0 =
∑

a∈S a(
−→
za).pa with p℘ 6= Ω (remember that • = ℘),

and we have
s = κ•s ′ where s ′ = 〈{mx, ny} ← p℘〉 .

Let us prove both properties:
1. By Proposition 2.2.12,

s ′�mx = 〈mx ← ([p℘[n/y]])〉 ,

where mx ∈Mx. Moreover

([p℘[n/y]]) ∈Mx⊥ ,

indeed: for any m′ ∈M, we have

([([p℘[n/y]])[m′/x]]) = ([p℘[n/y,m′/x]]) = ([(m′ ⊗ n)[n0/x0]]) = z

using associativity and one reduction step backwards. Thus

s ′�mx ∈ V x
M .

Likewise,
s ′�ny = 〈ny ← ([p℘[m/x]])〉 so s ′�ny ∈ V y

N .

Therefore
s ′ ∈ (V x

M � V y
N) .

2. Now let t1 ∈ V x
M, t2 ∈ V

y
N. Suppose t ∈ (t1 � t2) and κ− is a negative action such

that κ•tκ− is a path of pp∼sqq
c
. Without loss of generality, suppose moreover that the

action κ− comes from mx, and let us show that t1κ−z ∈ V x
M. Let

t ′ = 〈{ppt1qqc/x, ppt2qqc/y} ←
pp∼s ′qq

c

〉 .

We show that t1κ− is a pre�x of t ′�ppt1qqc and that t ′�ppt1qqc ∈ V x
M, leading to the

conclusion by Lemma 3.1.5. Note the following facts:
(a) pp∼sqq

c
= ℘(x, y).

pp∼s ′qq
c

+
∑

a6=℘ a(
−→
za).z, and thus pp

∼
s ′qq

c

6= z (otherwise a path
of the form κ•tκ− cannot be path of pp∼sqq

c
).

(b) t is a path of the multi-design {ppt1qqc/x, ppt2qqc/y}, and t is a pre�x of a path
of pp
∼
s ′qq

c

since κ•tκ− is a path of pp∼sqq
c
, thus t is a pre�x of t ′ by Lemma 2.2.8.
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(c) Since t is az-free positive-ended pre�x of t ′, we have that κ•t is a strict pre�x
of
∼
κ•t ′. Thus there exists a positive action κ+0 such that κ•tκ+0 is a pre�x of
∼
κ•t ′. The paths κ•tκ− and κ•tκ+0 are both paths of pp∼sqq

c
, hence necessarily

κ+0 = κ−. We deduce that tκ− is a pre�x of t ′.
(d) The sequence t ′�ppt1qqc therefore starts with (tκ−)�ppt1qqc.
(e) We have (tκ−)�ppt1qqc = (t�ppt1qqc)κ− because, since κ− comes from mx, it is

hereditarily justi�ed by an initial negative action of address x, and thus κ−
appears in design ppt1qqc. We deduce (tκ−)�ppt1qqc = (t�ppt1qqc)κ− = t1κ−.

(f) Moreover, by Proposition 2.2.12 t ′�ppt1qqc = 〈ppt1qqc ← ([
pp∼s ′qq

c

[ppt2qqc/y]])〉.
Hence (by d, e, f)

t1κ− is a pre�x of t ′�ppt1qqc = 〈ppt1qqc ← ([
pp∼s ′qq

c

[ppt2qqc/y]])〉 .

Since ppt1qqc ∈Mx (by Lemma 3.1.3) and ([
pp∼s ′qq

c

[ppt2qqc/y]]) ∈Mx⊥ (by associativity,
similar reasoning as item 1), we deduce

t ′�ppt1qqc ∈ V x
M .

Finally, by Lemma 3.1.5,
t1κ−z ∈ V x

M .

(⇐) Let s ∈ κ•(V
x
M � V y

N) ∪ {z} such that the second constraint is also satis�ed. If
s = z then s ∈ VM⊗N is immediate, so suppose s = κ•s ′ where s ′ ∈ (V x

M � V y
N).

Consider the design pp∼sqq
c
, and note that pp∼sqq

c
= ℘(x, y).

pp∼s ′qq
c

+
∑

a6=℘ a(
−→
za).z. We show

by contradiction that pp∼sqq
c
∈ (M⊗N)⊥, leading to the conclusion.

Let m ∈M and n ∈ N and suppose that m ⊗ n 6⊥ pp∼sqq
c
. By Lemma 2.2.10 and given

the form of design pp∼sqq
c
, the interaction with m ⊗ n is �nite and the cause of divergence

is necessarily the existence of a path t and an action κ− such that:
1. t is a path of m⊗ n,
2. tκ− is a path of pp∼sqq

c

3. tκ− is not a path of m⊗ n.
Hence t is of the form t = κ•t ′. Choose m and n such that t is of minimal length with
respect to all such pairs of designs non orthogonal to pp∼sqq

c
. Let t1 = t ′�mx and t2 = t ′�ny ,

we have t ∈ κ•(t1� t2). Consider the design pp∼tqq
c
, and note that pp∼tqq

c
= ℘(x, y).

pp∼t ′qq
c

+∑
a6=℘ a(

−→
za).z. We prove the following:

• pp∼tqq
c
∈ (M⊗N)⊥: By contradiction. Let m′ ∈M and n′ ∈ N such that m′ ⊗ n′ 6⊥

pp∼tqq
c
. Again using Lemma 2.2.10, divergence occurs necessarily because there exists

a path v and a negative action κ′− such that:
1. v is a path of m′ ⊗ n′,
2. vκ′− is a path of pp∼tqq

c
,

3. vκ′− is not a path of m′ ⊗ n′.
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Since the views of vκ′− are views of t , vκ′− is a path of pp∼sqq
c
. Thus m′⊗ n′ 6⊥ pp∼sqq

c
.

Moreover v is strictly shorter than t , indeed: v and t are z-free, and since vκ′− is
a path of pp∼tqq

c
any action of vκ′− is an action of t . This contradicts the fact that t

is of minimum length. We deduce pp∼tqq
c
∈ (M⊗N)⊥.

• t ∈ κ•(V x
M � V y

N): We show t1 ∈ V x
M, the proof of t2 ∈ V y

N being similar. Since t

is a path of m⊗ n and ∼t a path of pp∼tqq
c
, we have

t = 〈m⊗ n← pp∼tqq
c
〉 = κ•〈{mx, ny} ← pp

∼
t ′qq

c

〉 ,

hence
t ′ = 〈{mx, ny} ← pp

∼
t ′qq

c

〉 .

Thus by Proposition 2.2.12

t1 = t ′�mx = 〈mx ← ([
pp∼t ′qq

c

[n/y]])〉 .

Moreover
([
pp∼t ′qq

c

[n/y]]) ∈Mx⊥ ,

since for every design m′ ∈M we have

([([
pp∼t ′qq

c

[n/y]])[m′/x]]) = ([
pp∼t ′qq

c

[n/y,m′/x]]) = ([(m′ ⊗ n)[pp
∼tqq

c
/x0]]) = z ,

by associativity, one reduction step backwards, and the fact that pp∼tqq
c
∈ (M⊗N)⊥.

It follows that t1 ∈ V x
M.

• tκ− is a path of m⊗ n: Remember that tκ− is a path of pp∼sqq
c
, and we have just

seen that t ∈ κ•(V
x
M � V y

N). Using the second constraint of the proposition, we
should have t1κ−z ∈ V x

M or t2κ−z ∈ V y
N. Without loss of generality suppose

t1κ−z ∈ V x
M. Since mx ∈Mx and t1 is a path of mx, we should also have that t1κ−

is a pre�x of a path of mx by Lemma 3.1.6, hence pt ′κ−q = pt1κ−q is a view of mx.
But in this case, knowing that t is a path of m⊗ n and that ptκ−q = κ•pt ′κ−q is a
view of m⊗ n, we deduce that tκ− is a path of m⊗ n.

Last point contradicts the cause of divergence between m ⊗ n and pp∼sqq
c
. Hence pp∼sqq

c
∈

(M ⊗ N)⊥. Moreover, ∼s is a path of pp∼sqq
c
, and since s ∈ κ•(V

x
M � V y

N) there exist
m0 ∈M and n0 ∈ N such that s is a path of m0⊗ n0 (and m0⊗ n0 ∈M⊗N). We deduce
s = 〈m0 ⊗ n0 ← pp∼sqq

c
〉, hence s ∈ VM⊗N. �

Corollary 3.2.7 (Visitable paths of linear map)
s ∈ VN(P if and only if the two conditions below are satis�ed:

1. ∼s ∈ κ•(V x
N �
∼
V y
P) ∪ {z},

2. for all t ∈ V x
N �
∼
V y
P , for all κ

− such that κ•tκ− is a path of ppsqqc, we have

tκ−z ∈ V x
N �
∼
V y
P .
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Proof . Immediate from the de�nition of(, Proposition 3.2.6 and Remark 1.2.13. �

3.2.d Tensor and Linear Map, Regular Case

In the regular case, Proposition 3.2.8 shows that the visitable paths of a behaviour VM⊗N
can be constructed as a simple shu�e of paths.

Proposition 3.2.8
IfM andN are regular then

VM⊗N = κ•(V
x
M � V y

N) ∪ {z} .

Proof . Suppose M and N regular. Following Proposition 3.2.6, it su�ces to show that
any path s ∈ κ•(V x

M�V y
N)∪{z} satis�es the following condition: for all t ∈ V x

M�V y
N,

for all negative action κ− such that κ•tκ− is a path of pp∼sqq
c
, tκ−z ∈ V x

M � V y
N.

If s = z, there is nothing to prove, so suppose s = κ•s ′ where s ′ ∈ V x
M � V y

N. Let

t ∈ V x
M� V y

N and κ− be such that κ•tκ− is a path of pp∼sqq
c
, that is tκ− is a path of pp

∼
s ′qq

c

.
Let s1, t1 ∈ V x

M and s2, t2 ∈ V y
N such that s ′ ∈ s1 � s2 and t ∈ t1 � t2. Without loss of

generality, suppose κ− is an action in s1, thus we must show t1κ−z ∈ V x
M. Notice that

〈t1κ−〉 = 〈tκ−〉 = 〈κ−〉s ′ = 〈κ−〉s1 (the second equality follows from the fact that tκ−

is a path of pp
∼
s ′qq

c

). Since s1 ∈ V x
M, the sequence 〈κ−〉s1 = 〈t1κ−〉 is a bi-view of Mx. Let

s ′1κ− be the pre�x of s1 ending with κ−. By Lemma 3.1.5 s ′1κ−z ∈ V x
M, so 〈t1κ−z〉 =

〈s ′1κ−z〉 is also a bi-view of Mx; by regularity of M, we deduce 〈t1κ−z〉 ∈ V x
M. We have

t1κ−z ∈ t1 � 〈t1κ−z〉, where both t1 and 〈t1κ−z〉 are in V x
M, hence t1κ−z ∈ V x

M by
regularity of M. �

Corollary 3.2.9
IfN and P are regular then

VN(P =
∼
κ•(VN �

∼
VP) ∪ {ε} .

3.3 Regularity and Connectives

Proposition 3.3.1
Regularity is stable under ´, ˆ, ⊕, ⊗ and(.

The proof of this result relies on internal completeness and on the form of visitable paths.
We break it into several proofs, one for each connective. Like for visitable paths, the shifts
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(Proposition 3.3.2) and the plus (Proposition 3.3.3) are rather simple. The tensor (Proposi-
tion 3.3.4) occasions the most di�culties; in particular, it requires the alternative formula-
tion of regularity we gave at the beginning of this chapter (Proposition 3.1.10). As usual,
the case of the linear map (Corollary 3.3.6) is easily deduced from the tensor.

Proposition 3.3.2

1. IfN is regular then ´N is regular.
2. If P is regular then ˆP is regular.

Proof .
1. Following Proposition 3.1.10:

• By internal completeness, the bi-views of ´N are of the form κHt where t
is a bi-view of N. Since N is regular t ∈ VN. Hence by Proposition 3.2.1,
κHt ∈ V´N.

• Since VN is stable by shu�e, so is V´N = κHV
x
N where κH is a positive action.

• For all paths κNs , κNt ∈ V(´N)⊥ = κNV
x
N⊥ such that κNs � κNt is de�ned, s

and t necessarily start by the same positive action and s � t ⊆ V x
N⊥ because

VN⊥ (thus also V x
N⊥ ) is stable by�, hence κNs�κNt = κN(s� t ) ⊆ V(´N)⊥ .

2. If P is regular then P⊥ is too. Then, by the previous point, ´P⊥ is regular, therefore
so is (´P⊥)⊥. By Lemma 3.2.3, this means that ˆP is regular.

�

Proposition 3.3.3
If M andN are regular thenM⊕N is regular.

Proof . Similar to Proposition 3.3.2 (1), by the same remark we made in proof of Proposi-
tion 3.2.4. �

Proposition 3.3.4
IfM andN are regular, then M⊗N is regular.

In order to prove this proposition, we need to be able to take the shu�e of two sequences
for which we do not know if they satisfy O-visibility. We call pre-path a positive-ended P-
visible aj-sequence. The shu�le s� t of two negative pre-paths s and t is the set of paths
u formed with actions from s and t such that u�s = s and u�t = t . The following lemma
states that, in fact, if the shu�e of two pre-paths is non-empty then these sequences satisfy
O-visibility. It will be useful for proving that certain sequences are paths in the proof of
the proposition.

Lemma 3.3.5
Let s and t be negative pre-paths. If s � t 6= ∅ then s and t are paths.
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Proof . We prove the result by contradiction. Let us suppose that there exists a triple
(s , t , u) such that s and t are two negative pre-paths, u ∈ s � t is a path, and at least one
of s or t does not satisfy O-visibility, say s : there exists a negative action κ− and a pre�x
s0κ− of s such that the action κ− is justi�ed in s0 but just(κ−) does not appear in xs0y.

We choose the triple (s , t , u) such that the length of u is minimal with respect to
all such triples. Without loss of generality, we can assume that u and s are of the form
u = u0κ−z and s = s0κ−z respectively. Indeed, if this is not true, u has a strict pre�x
of the form u0κ−; in this case we can replace (s , t , u) by the triple (s0κ−z, u0�t , u0κ−z)
which satis�es all the constraints, and where the length of u0κ−z is less or equal to the
length of u .

Let κ+ = just(κ−). u is necessarily of the form u = u1α−u2α+κ−z where α−
justi�es α+ and κ+ appears in u1, indeed:

• κ+ does not appear immediately before κ− in u , otherwise it would also be the case
in s , contradicting the fact that κ− is not O-visible in s .

• The action α+ which is immediately before κ− in u is justi�ed by an action α−, and
κ+ appears before α− in u , otherwise κ+ would not appear in xu0y and that would
contradict the O-visibility of u .

Let us show by contradiction something that will be useful for the rest of this proof: in the
path u , all the actions of u2 (which cannot be initial) are justi�ed in α−u2. If it is not the
case, let u1α−u ′2β be longest pre�x of u such that β is an action of u2 justi�ed in u1, and
let β′ be the following action (necessarily in u2α+), thus β′ is justi�ed in α−u2. If β′ is
positive (resp. negative) then β is negative (resp. positive), thus pu1α−u ′2βq = pu ′1q (resp.
xu1α−u ′2βy = xu ′1y) where u ′1 is the pre�x of u1 ending on just(β). But then pu1α−u ′2βq
(resp. xu1α−u ′2βy) does not contain just(β′): this contradicts the fact that u is a path,
since P-visibility (resp. O-visibility) is not satis�ed.

Now de�ne u ′ = u1κ−z, s ′ = u ′�s and t ′ = u ′�t , and remark that:
• u ′ is a path, indeed, O-visibility for κ− is still satis�ed since xu1α−u2α+κ−y =
xu1yα−α+κ− and xu1κ−y = xu1yκ− both contain κ+ in xu1y.

• s ′ and t ′ are pre-paths, since s ′ is of the form s ′ = s1κ−z where s1 = u1�s is a
pre�x of s containing κ+ = just(κ−), and t ′ = u ′�t = u1�t is a pre�x of t .

• u ′ ∈ s ′ � t ′.
• s ′ is not a path: Note that s is of the form s1s2κ−z where s1 = u1�s and s2 =
α−u2α+�s . By hypothesis, s is not a path because κ+ does not appear in xs1s2y. But
xs1s2y is of the form xs1ys ′2, since all the actions of s2 are hereditarily justi�ed by
the �rst (necessarily negative) action of s2, indeed: we have proved that, in u , all
the actions of u2 (in particular those of s2) were justi�ed in α−u2. Thus κ+ does not
appear in xs1y, which means that O-visibility is not satis�ed for κ− in s ′ = s1κ−z.

Hence the triple (s ′, t ′, u ′) satis�es all the conditions. This contradicts the minimality of
u . �

Proof (Proposition 3.3.4) . Following Proposition 3.1.10, we prove that the positive-
ended bi-views of M⊗N are visitable in M⊗N, and that VM⊗N and V(M⊗N)⊥ are stable
by shu�e.
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Every bi-view of M ⊗ N is of the form κ•t. It follows from internal completeness
(incarnated form) that κ•t is a bi-view of M⊗N if and only if t is a bi-view either of Mx

or of Ny . As M (resp. N) is regular, positive-ended bi-views of Mx (resp. Ny) are in V x
M

(resp. V y
N). Thus by Proposition 3.2.8, positive-ended bi-views of M⊗N are in VM⊗N.

From Proposition 3.2.8, and from the fact that � is associative and commutative, we
also have that VM⊗N is stable by shu�e.

Let us prove that VM⊗N is stable by anti-shu�e. Let t , u ∈ VM⊗N and let s ∈ t �u ,
we show that s ∈ VM⊗N by induction on the length of s . Notice �rst that, from Propo-
sition 3.2.8, there exist paths t1, u1 ∈ V x

M and t2, u2 ∈ V y
N such that t ∈ κ•(t1 � t2) and

u ∈ κ•(u1 � u2). In the case s of length 1, either s = z or s = κ•, thus the result is
immediate. So suppose s = s ′κ−κ+ and by induction hypothesis s ′ ∈ VM⊗N. Hence,
it follows from Proposition 3.2.8 that there exist paths s1 ∈ V x

M and s2 ∈ V y
N such that

s ′ ∈ κ•(s1 � s2). Without loss of generality, we can suppose that κ− is an action of t1,
hence of t . We study the di�erent cases, proving each time either that s ∈ VM⊗N or that
the case is impossible.

• Either κ+ = z. In this case, s1κ−z is a negative pre-path. As s is a path and
s ∈ κ•(s1κ−z � s2), by Lemma 3.3.5, we have moreover that s1κ−z is a path.
Notice that κ•〈s1κ−〉 = 〈κ−〉s = 〈κ−〉t = κ•〈κ−〉t1 . Hence 〈s1κ−〉 = 〈κ−〉t1 is a
bi-view of Mx. Let tκ− = 〈s1κ−〉. By Lemma 3.1.8, s1 is a shu�e of anti-shu�es
of bi-views of Mx, one of which is the bi-view t. Then remark that s1κ−z is also a
shu�e of anti-shu�es of bi-views of Mx, replacing t by tκ−z (note that tκ−z is
indeed a bi-view ofMx since tκ−z = 〈t0κ−z〉where t0κ− is the pre�x of t1 ending
with κ−, and t0κ−z ∈ V x

M by Lemma 3.1.5). It follows from Proposition 3.1.10 that
s1κ−z ∈ V x

M. Finally, as s ∈ κ•(s1κ−z � s2) and by Proposition 3.2.8, we have
s ∈ VM⊗N.

• Or κ+ is a proper action of t1, hence of t . Remark that ps ′κ−q = pκ•s1κ−q =
κ•ps1κ−q, thus just(κ+) appears in ps1κ−q hence s1κ−κ+ is a (negative) pre-path.
As s is a path and as s ∈ κ•(s1κ−κ+ � s2), by Lemma 3.3.5 s1κ−κ+ is a path. We
already know from the previous item that s1κ−z ∈ V x

M. Notice that κ•〈s1κ−κ+〉 =
〈κ+〉s = 〈κ+〉t = κ•〈κ+〉t1 . Hence 〈s1κ−κ+〉 = 〈κ+〉t1 is a bi-view of Mx. Let
uκ+ = 〈s1κ−κ+〉. By Lemma 3.1.8, s1κ−z is a shu�e of anti-shu�es of bi-views of
Mx, one of which is the bi-view uz. Remark that s1κ−κ+ is also a shu�e of anti-
shu�es of bi-views of Mx, replacing uz by uκ+. By Proposition 3.1.10, s1κ−κ+ ∈
V x
M. Finally, as s ∈ κ•(s1κ−κ+� s2) and by Proposition 3.2.8, we have s ∈ VM⊗N.

• Or κ+ is a proper action of u1, hence of u . The reasoning is similar to the previous
item, using u and u1 instead of t and t1 respectively.

• Orκ+ is a proper action of t2, hence of t . This is impossible, being given the structure
of s : the action κ+0 following the negative action κ− in t is necessarily in t1 (due to
the structure of a shu�e), hence the action following κ− in s is necessarily either
κ+0 (hence in t1) or in u .

• Or κ+ is a proper action of u2, hence of u : this case also leads to a contradiction.
We know from the previous item that a positive action of t2 cannot immediately
follow a negative action of t1 in s . Similarly, a positive action of u2 (resp. t1, u1)
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cannot immediately follow a negative action of u1 (resp. t2, u2) in s . Suppose that
there exists a positive action κ+0 of u2 (or resp. t2, u1, t1) which follows immediately
a negative action κ−0 of t1 (or resp. u1, t2, u2). Let s0κ−0 κ

+
0 be the shortest pre�x of s

satisfying such a property, say κ+0 is an action of u2 and κ−0 is an action of t1. Then
the view ps0κ−0 q is necessarily only made of κ• and of actions from t1 or u1, thus it
does not contain just(κ+0 ) (where κ+0 cannot be initial because N is negative), i.e.,
s does not satisfy P-visibility: contradiction.

�

Corollary 3.3.6
IfN and P are regular, then N( P is regular.

3.4 Purity and Connectives

We end this chapter by studying purity when applying connectives.
Proposition 3.4.1

Purity is stable under ´, ˆ, ⊕ and ⊗.

Proof (Proposition 3.4.1) . We must prove that:
• if N is pure then ´N is pure,
• if P is pure then ˆP is pure,
• if M and N are pure then M⊕N is pure,
• if M and N are pure then M⊗N is pure.

For the shifts and the plus, the result is immediate given the form of visitable paths of ´N,
ˆP and M⊕N (Propositions 3.2.1 and 3.2.4). Let us prove the result for the tensor.

Let s = s ′z ∈ VM⊗N. According to Proposition 3.2.6, either s = z or there exist
s1 ∈ V x

M and s2 ∈ V y
N such that s ∈ κ•(s1 � s2). If s = z then it is extensible with

κ•, so suppose s ∈ κ•(s1 � s2). Without loss of generality, suppose s1 = s ′1z. Since M
is pure, s1 is extensible: there exists a proper positive action κ+ such that s ′1κ+ ∈ V x

M.
Then, note that s ′κ+ is a path: indeed, since s ′1κ+ is a path, the justi�cation of κ+ appears
in ps ′1q = ps ′q. Moreover s ′κ+ ∈ κ•(V

x
M � V y

N), let us show that s ′κ+ ∈ VM⊗N. Let

t ∈ V x
M � V y

N and κ− a negative action such that κ•tκ− is a path of pp
∼
s ′κ+qq

c

, and by
Proposition 3.2.6 it su�ces to show that tκ−z ∈ V x

M � V y
N. But

pp∼s ′κ+qq
c

= pps ′κ+zqq
c

= pps ′qq
c

= pp∼sqq
c
,

therefore κ•tκ− is a path of pp∼sqq
c
. Since s ∈ VM⊗N, by Proposition 3.2.6 we get tκ−z ∈

V x
M � V y

N. Finally s ′κ+ ∈ VM⊗N, hence s is extensible. �

Unfortunately, when N and P are pure, N( P is not necessarily pure. However, we
prove that a weaker form of purity, called quasi-purity, holds for N( P under regularity
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assumption (Proposition 3.4.3). In Chapter 5, with a notion of functional behaviour, we
will identify precisely the case when purity is not preserved.

De�nition 3.4.2 (Well-bracketed path, quasi-purity)

• We say that a path s is well-bracketed if, for every justi�ed action κ in s , when
we write s = s0κ′s1κs2 where κ′ justi�es κ, all the actions in s1 are hereditarily
justi�ed by κ′.

• A behaviour B is quasi-pure if all thez-ended well-bracketed paths in VB are
extensible, in other words if there is no maximalz-ended well-bracketed path.

Note that a pure behaviour is indeed quasi-pure.

Proposition 3.4.3
IfN and P are quasi-pure and regular thenN( P is quasi-pure.

Proof . Since N and P are regular, V(N(P)⊥ = κ•(V
x
N�
∼
V y
P) ∪ {z} by Corollary 3.2.9.

Let s ∈ V(N(P)⊥ and suppose ∼s is z-ended, i.e., s is z-free. We must show that either ∼s
is extensible or ∼s is not well-bracketed. The path s is of the form s = κ•s ′ and there exist
z-free paths t ∈ V x

N and u ∈
∼
V y
P such that s ′ ∈ t � u . We are in one of the following

situations:
• Either ∼u ∈ V y

P is not well-bracketed, hence neither is ∼s .
• Otherwise, since P is quasi-pure, ∼u = uz is extensible, i.e., there exists a proper

positive action κ+u such that uκ+u ∈ V
y
P . If sκ+u is a path, then sκ+u ∈ VN(P, hence

∼s is extensible: indeed,
∼
sκ+u = sκ+u z ∈ κ•(t�uκ+u z), thus sκ+u z ∈ κ•(V x

N�
∼
V y
P).

In the case sκ+u is not a path, this means that κ+u is justi�ed by an action κ−u that
does not appear in psq, thus we have something of the form:

sκ+u = . . . κ+ . . . κ−u . . . κ− . . . κ+u

just.just.

view psκ+u q

If κ− comes from t , and thus also κ+, then s is not well-bracketed, indeed: since κ−u
is hereditarily justi�ed by κ• and by no action from t , we have:

s = κ• . . . κ+ . . . κ−u . . . κ− . . .

just.

just.
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So suppose now that κ− comes from u , thus also κ+. We know that puq contains
κ−u = just(κ+u ), thus in particular puq does not contain κ−; on the contrary, we have
seen that psq contains κ−. By de�nition of the view of a sequence, this necessarily
means that, in s , between the action κ− and the end of the sequence, the following
happens: psq comes across an action α−t from t , justi�ed by an action α+

t also from
t , making the view miss at least one action αu from u appearing in puq, as depicted
below.

s = κ• . . . κ− . . . α+
t . . . αu . . . α−t . . .

just.

view psq

Since αu is hereditarily justi�ed by κ• and by no action from t , the path s is not
well-bracketed: the justi�cations of αu and of α−t intersect.
To sum up, we have proved that in the case when ∼u = uz is extensible, either ∼s is
extensible too or it is not well-bracketed.

Hence N( P is quasi-pure. �
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4 | Inductive Types

Though ludics draws inspiration from (linear) logic, it can also be considered as a func-
tional programming language. This is the point of view we adopt in Chapters 4 and 5
by studying respectively data types and functions types in ludics. As already mentioned,
there have been previous works on data and functions in ludics [Ter11, Sir15]. Our ap-
proach aims at being as generic as possible by studying the behaviours corresponding to
all the usual data types (of �nite data) and to functional types that might be higher-order.

In the previous chapters, we have laid the foundations for representing and studying
data types in ludics. Indeed, the logical connectives play the role of type constructors,
and we have proved some results about their visitable paths, in particular regularity and
purity. However, this is yet very limited, since with these connectives we cannot have
in�nite data types. We need least �xed points to be able to consider inductive data types,
such as the following (here in OCaml):

> type nat = Zero | Succ of nat ;;

> type ’a list = Nil | Cons of ’a * ’a list ;;

> type ’a tree = Empty | Node of ’a * (’a tree) list ;;

This chapter brings important contributions in the study of inductive types and least �xed
points in ludics, building on the work of Baelde, Doumane and Saurin [BDS15]. In Sec-
tion 4.1, we give a grammar for data patterns corresponding to data types, where ⊕ and
⊗ are for sum types and product types respectively, and the symbol µ is an operator for
inductive types. Data patterns are interpreted as behaviours; in particular µ is interpreted
as a least �xed point, which has an explicit form thanks to Kleene’s �xed point theorem.
Going further, we prove in Section 4.2 a new internal completeness theorem for in�nite
unions satisfying some conditions (Theorem 4.2.2), giving a direct way of constructing the
least �xed points. Then we conduct in Section 4.3 a structural study of data behaviours:
internal completeness gives us information on the visitable paths, thus we can prove that
such behaviours are regular and pure. Finally, in Section 4.4, we give some ideas for the
future study of coinductive types in ludics.

From a programming perspective, designs play a double role:
• the role of programs (player’s strategy),
• the role of the environment (opponent’s strategy).

Indeed, the (closed) interaction between two designs corresponds to running a certain pro-
gram in a certain environment. Typically, if a design in the behaviour A ( B interacts
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with a design in the orthogonal behaviour (A ( B)⊥ = A ⊗ B⊥, this corresponds to
the evaluation of a program of typeA→ B in an environment that provides an argument
of type A and consumes the result of type B returned by the program. In this context,
a daimon corresponds to the interruption of the computation. If z comes from the en-
vironment, it corresponds either to an incomplete argument of type A or to the natural
end of the computation after the environment received and consumed the result of type
B. Ifz comes from the side of the program, then it corresponds to a bug of this program,
which is not able to provide what is required. It is thus natural to expect that the daimon
comes from the environment rather than from the program, and the purpose of purity is
precisely to ensure this is the case for all the programs of a given type. Hence our interest
for this property in a computational context, and we show in this chapter that it holds for
the ludics interpretation of inductive data types.

Regularity, on the other hand, means unoriented in the sense that every possible inter-
action trace of a type is realised. This is indeed a desirable property for data types, since
for example we would like to have the choice between visiting �rst a or b when we are
given a pair (a, b). But this property also has two major bene�ts for our study:

• it guarantees that we can apply the internal completeness theorem for �xed points,
• it might lead to characterise µMALL in ludics (discussed in § 4.3.c).

This is why we need to ensure it holds for data behaviours.

Notation
Abusively, we denote the positive behaviour {z} byz all along this chapter.

4.1 Inductive Data Types as Kleene Fixed Points

The point of this section is to interpret data types as ludics behaviours, called the data
behaviours, and to give an explicit description of the behaviours corresponding to inductive
types thanks to Kleene’s �xed point theorem.

4.1.a Data Patterns

We de�ne the data patterns via a type language and we interpret them as behaviours.
Data patterns correspond to some (positive) formulas of polarised MALL extended with
a constructor µ for inductive types; similarly to [BDS15], we will interpret the logical
connectives of the logic by the corresponding constructors of ludics, and µ as a least �xed
point behaviour.

Suppose given a countably in�nite set V of second-order variables: X,Y, · · · ∈ V .
Recall that Ω− :=

∑
a∈S a(

−→
xa).Ω. Let S ′ = S \ {N, π1, π2, ℘} and de�ne the set of

constants Const = {Ca | a ∈ S ′} which contains a behaviour Ca = {x0|a〈
−→
Ω−〉}⊥⊥ for

each a ∈ S ′, i.e., such that a is not the name of a connective. Remark that, for all a ∈ S ′,
VCa = {z , x0|a〈−→x 〉}, thus indeed Ca is regular and pure.
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De�nition 4.1.1 (Data pa�ern)
The set P of data patterns is generated by the inductive grammar below.

A,B ::= X ∈ V | a ∈ S ′ | A⊕+ B | A⊗+ B | µX.A

The set of free variables of a data pattern A ∈ P is denoted by FV(A).

Example 4.1.2
Let zero, nil, empty ∈ S ′ and X ∈ V . The data types given as example in the intro-
duction of this chapter can be written in the language of data patterns as follows:

Nat = µX.(zero⊕+ X) ,

ListA = µX.(nil ⊕+ (A⊗+ X)) ,

TreeA = µX.(empty ⊕+ (A⊗+ ListX))

= µX.(empty ⊕+ (A⊗+ µY.(nil ⊕+ (X ⊗+ Y )))) .

Notation

In the following, we will denote by B+ the set of positive behaviours.

An environment σ is a function that maps the free variables of a data pattern to
positive behaviours. The notation σ,X 7→ P stands for the environment σ where the
image of X has been set (or changed) to behaviour P. We call an environment regular
(resp. pure) if its image contains only regular (resp. pure) behaviours.

Given a data pattern A ∈ P and an environment σ, the interpretation of A in the
environment σ, written JAKσ , is the positive behaviour de�ned by:

JXKσ = σ(X) , JA⊕+ BKσ = (ˆJAKσ)⊕ (ˆJBKσ) ,

JaKσ = Ca , JA⊗+ BKσ = (ˆJAKσ)⊗ (ˆJBKσ) ,

JµX.AKσ = lfp(φAσ ) ,

where lfp(φAσ ) stands for the least �xed point of the function de�ned by

φAσ : B+ → B+

P 7→ JAKσ,X 7→P .

The fact that this function has a least �xed point is ensured by the Knaster-Tarski �xed
point theorem, as pointed out by Baelde, Doumane and Saurin [BDS15].

Notation

Abusively we will write⊕+ and⊗+, instead of (ˆ·)⊕ (ˆ·) and (ˆ·)⊗ (ˆ·) respectively,
for behaviours.
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4.1.b Kleene Fixed Point Theorem

Although we know that all data patterns have a behaviour counterpart, the Knaster–Tarski
�xed point theorem is non-constructive, it gives no concrete information on �xed points.
Thus we do not know what all the designs in the interpretation of µX.A are. For example,
is there really nothing else in JNatK than the designs corresponding to natural numbers?
A more constructive approach is needed so as to understand the structure of �xed points
behaviours, and we start in this subsection by proving that we can apply Kleene’s �xed
point theorem instead of Knaster–Tarski’s. In the next section, we will moreover prove an
internal completeness result for in�nite union, which will give a direct construction for
least �xed points behaviours.

Recall the following de�nitions and theorem. A partial order is a complete partial
order (CPO) if each directed subset has a supremum, and there exists a smallest element,
written ⊥. A function f : E → F between two CPOs is Scott-continuous (or simply
continuous) if for every directed subset D ⊆ E we have

∨
x∈D f(x) = f(

∨
x∈D x).

Remark 4.1.3
A continuous function f : E → F is monotone, i.e., if x ≤E y then f(x) ≤F f(y).

Theorem 4.1.4 (Kleene �xed point theorem)
Let L be a CPO and let f : L → L be Scott-continuous. The function f has a least �xed
point, de�ned by

lfp(f) =
∨
n∈N

fn(⊥) .

The set B+ ordered by ⊆ is a CPO, with least element z; indeed, any subset P ⊆ B+ has
a supremum given by

∨
P = (

⋃
P)⊥⊥. Hence the next proposition proves that we can

apply the theorem.

Proposition 4.1.5

Given a data patternA ∈ P , a variableX ∈ V , an environmentσ : FV(A)\{X} → B+,
the function φAσ is Scott-continuous.

To prove this proposition, we �rst need the following lemma.

Lemma 4.1.6
Let E,F be sets of cut-free atomic negative designs and G be a set of cut-free atomic
positive designs.

1. ´(E⊥⊥) = H〈E〉⊥⊥.
2. ˆ(G⊥⊥) = {n | n�N ∈ N(x).Gx}⊥⊥.
3. (E⊥⊥)⊕ (F⊥⊥) = (ι1〈E〉 ∪ ι2〈F 〉)⊥⊥.
4. (E⊥⊥)⊗ (F⊥⊥) = •〈E,F 〉⊥⊥.

Proof . We prove (1) and (2), the other cases are very similar to (1).
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1. H〈E〉⊥⊥ = {n | n�N ∈ N(x).(E⊥)x}⊥ = (ˆ(E⊥))⊥ = (´(E⊥⊥))⊥⊥ = ´(E⊥⊥),
2. {n | n�N ∈ N(x).Gx}⊥⊥ = {H〈m〉 | m ∈ G⊥}⊥ = (´(G⊥))⊥ = ˆ(G⊥⊥),

using the de�nition of the orthogonal, internal completeness, and Lemma 3.2.3. �

We can now prove Proposition 4.1.5. Note that, while this proposition justi�es that it
is possible to apply Kleene’s �xed point theorem, its proof uses this theorem itself! But no
contradiction here: the proof is done by induction on data patterns, and we apply Kleene’s
theorem solely on patterns of the previous induction step. This procedure, for proving a
result by induction, of using what seems like a corollary of this result (here corresponding
to Corollary 4.1.7) is typical in this chapter, because of �xed points. It will sometimes lead
to very long induction hypotheses, where many things have to be proved at the same time,
for example in the proof of Propositions 4.3.1 and 4.3.2.

Proof (Proposition 4.1.5) . By induction on A, we prove that for every X and every σ
the function φAσ is continuous. Note that φAσ is continuous if and only if for every directed
subset P ⊆ B+ we have

∨
P∈P(JAKσ,X 7→P) = JAKσ,X 7→

∨
P. The cases A = Y ∈ V and

A = a ∈ S are trivial, and the case A = A1 ⊕+ A2 is very similar to the tensor, hence we
only treat the two remaining cases. Let P ⊆ B+ be directed.

• Suppose A = A1 ⊗+ A2, thus JAKσ,X 7→P = JA1Kσ,X 7→P ⊗+ JA2Kσ,X 7→P, with both
functions φAiσ : P 7→ JAiKσ,X 7→P continuous by induction hypothesis. For any
positive behaviour P, let us write σP instead of σ,X 7→ P. We have∨

P∈P

JAKσP = (
⋃
P∈P

JAKσP)⊥⊥ = (
⋃
P∈P

(JA1KσP ⊗+ JA2KσP))⊥⊥ .

Let us show that⋃
P∈P

(JA1KσP ⊗+ JA2KσP) = •〈
⋃

P′∈P

ˆJA1KσP′ ,
⋃

P′′∈P

ˆJA2KσP′′ 〉 ∪ {z} . (∗)

By internal completeness, for every P ∈ P we have

JA1KσP ⊗+ JA2KσP = •〈ˆJA1KσP , ˆJA2KσP〉 ∪ {z} .

The inclusion (⊆) of (∗) is then immediate, so let us prove (⊇). First, indeed, z
belongs to the left side. Let P′,P′′ ∈ P, let m ∈ ˆJA1KσP′ , n ∈ ˆJA2KσP′′ , and let
us show that •〈m, n〉 ∈ JA1KσP ⊗+ JA2KσP where P = P′ ∨ P′′ (note that P ∈ P
since P is directed). By induction hypothesis, φA1

σ is continuous, thus in particular
monotone; since P′ ⊆ P, it follows that

JA1KσP′ = φA1
σ (P′) ⊆ φA1

σ (P) = JA1KσP .

Similarly we have
JA2KσP′′ ⊆ JA2KσP .

Using internal completeness for the negative shift, we get

•〈m, n〉 ∈ •〈ˆJA1KσP , ˆJA2KσP〉 ⊆ JA1KσP ⊗+ JA2KσP
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which proves (∗). By internal completeness, Lemma 4.1.6 and induction hypothesis,
we deduce:

(
⋃
P∈P

(JA1KσP ⊗+ JA2KσP))⊥⊥ = •〈
⋃

P′∈P

ˆJA1KσP′ ,
⋃

P′′∈P

ˆJA2KσP′′ 〉⊥⊥

= (
⋃

P′∈P

ˆJA1KσP′ )⊥⊥ ⊗ (
⋃

P′′∈P

ˆJA2KσP′′ )⊥⊥

= (
⋃

P′∈P

JA1KσP′ )⊥⊥ ⊗+ (
⋃

P′′∈P

JA2KσP′′ )⊥⊥

= JA1Kσ,X 7→
∨

P ⊗+ JA2Kσ,X 7→
∨

P

= JAKσ,X 7→
∨

P .

Consequently φAσ is continuous.
• If A = µY.A0, de�ne

f0 : Q 7→ JA0Kσ,X 7→
∨

P,Y 7→Q

and, for every P ∈ B+,

fP : Q 7→ JA0Kσ,X 7→P,Y 7→Q .

Those functions are continuous by induction hypothesis, thus using Kleene’s �xed
point theorem we have

lfp(f0) =
∨
n∈N

f0
n(z) and lfp(fP) =

∨
n∈N

fP
n(z) .

Therefore∨
P∈P

(JAKσ,X 7→P) =
∨
P∈P

(lfp(fP)) =
∨
P∈P

(
∨
n∈N

fP
n(z)) =

∨
n∈N

(
∨
P∈P

fP
n(z)) .

For every Q ∈ B+ the function

gQ : P 7→ fP(Q)

is continuous by induction hypothesis, hence

f0(Q) =
∨
P∈P

fP(Q) .

From this, we prove easily by induction on m that for every Q ∈ B+ we have

f0
m(Q) =

∨
P∈P

fP
m(Q) .

Thus ∨
P∈P

(JAKσ,X 7→P) =
∨
n∈N

f0
n(z) = lfp(f0) = JAKσ,X 7→

∨
P .

We conclude that the function φAσ is continuous.

84



4.1. INDUCTIVE DATA TYPES AS KLEENE FIXED POINTS

�

Corollary 4.1.7

For every A ∈ P , X ∈ V and σ : FV(A) \ {X} → B+,

JµX.AKσ =
∨
n∈N

(φAσ )n(z) = (
⋃
n∈N

(φAσ )n(z))⊥⊥ .

This result gives an explicit formulation for least �xed points. However, the ⊥⊥-closure
might add new designs which were not in the union, making it di�cult to know the ex-
act content of such a behaviour. The point of Section 4.2 will be to provide an internal
completeness result proving that the closure is actually not necessary.

4.1.c Steady Data Patterns and Data Behaviours

Let us �nish the section by de�ning a restricted set of data patterns so as to exclude the
degenerate ones. Consider for example ListA

′ = µX.(A⊗+X), a variant of ListA (see Ex-
ample 4.1.2) which misses the base case. It is degenerate in the sense that the base element,
here the empty list, is interpreted as the designz. This is problematic: an interaction go-
ing through a whole list will end with an error, making it impossible to explore a pair of
lists for example. The pattern Nat′ = µX.X is even worse since JNat′K = z. The point of
steady data patterns is to ensure the existence of a basis; this statement will be formalised
in Lemma 4.3.4.

De�nition 4.1.8 (Steady data pa�ern)
The set Ps of steady data patterns is generated by the inductive grammar:

A,B ::= a ∈ S ′ | A⊕+ K | K ⊕+ A | A⊗+ B | µX.A

where K is a data pattern such that JKKσ is pure if σ is pure.

In the cases of⊕+, the condition onK ensures the preservation of purity, i.e., type safety;
note that K is not necessarily steady, in particular variables can be introduced on this
side, while the basis will come from the side of A. We will prove (in Section 4.3) that
behaviours interpreting steady data patterns are pure, thus in particular a data pattern of
the form µX.A is steady if the free variables of A all appear on the same side of a⊕+ and
under the scope of no other µ (since purity is stable under ´, ˆ,⊕,⊗). We claim that steady
data patterns can represent every type of �nite data, hence the following de�nition.

De�nition 4.1.9 (Data behaviour)
A data behaviour is the interpretation of a closed steady data pattern.

85



CHAPTER 4. INDUCTIVE TYPES

4.2 Internal Completeness for In�nite Union

An important contribution of this thesis is the following internal completeness theorem,
stating that an in�nite union of simple regular behaviours with increasingly large incar-
nations is a behaviour: the ⊥⊥-closure is useless.
De�nition 4.2.1 (Slice, simple behaviour)

• A slice is a design in which all negative subdesigns are either Ω− or of the form
a(−→x ).pa, i.e., at most unary branching. c is a slice of d if c is a slice and c v d.
A slice c of d is maximal if for any slice c′ of d such that c v c′, we have c = c′.

• A behaviour B is simple if for every design d ∈ |B|:
1. d has a �nite number of maximal slices, and
2. every positive action of d is justi�ed by the immediate previous negative

action.

Condition (2) of simplicity ensures that, given d ∈ |B| and a slice c v d, one can �nd a path
of c containing all the positive proper actions of c until a given depth; thus by condition
(1), there exists k ∈ N depending only on d such that k paths can do the same in d.
Theorem 4.2.2

Let (An)n∈N be an in�nite sequence of simple regular behaviours such that for all n ∈ N,
|An| ⊆ |An+1| (in particular An ⊆ An+1). The set

⋃
n∈N An is a behaviour.

In this theorem’s statement, we demand that the behaviours’ incarnations – and not simply
the behaviours themselves – are increasing; this is because there are many examples of
behaviours A and B with A ( B but |A| ) |B|. In fact, adding carelessly designs
to a behaviour has more chances to globally restrict the possible interactions within the
behaviour, that is, to reduce its incarnation. Since incarnation is the part of the behaviour
that truly interacts, it is the part that we want increasing; moreover, |A| ⊆ |B| always
implies A ⊆ B.

A union of behaviours is not a behaviour in general; Theorem 4.2.2 gives su�cient
conditions so that it is. Counterexamples are easily found if releasing either the inclusion of
the incarnations or the simplicity condition. It is probably possible to re�ne the de�nition
of simple with a less strict second condition, so that the theorem still holds. For example,
Faggian gives in her thesis [Fag01] a characterisation of designs that can be entirely visited
by a single interaction, which might provide us with a better condition, but this is yet to
be explored.

Note moreover that the proof of this theorem relies strongly on regularity. We do
believe it is possible to �nd a counterexample of the theorem if we remove the regularity
hypothesis, but we have not got one by the time this thesis is completed.

Before proving the theorem, we need several lemmas. Suppose (An)n∈N is an in�nite
sequence of regular behaviours, with |An| ⊆ |An+1| for all n ∈ N; the simplicity hy-
pothesis is not needed for now. Notice that the de�nition of visitable paths can harmlessly
be extended to any set E of cut-free atomic designs of same polarity, even if it is not a
behaviour; the same applies to the de�nition of incarnation, provided that E satis�es the
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following: if d, e1, e2 ∈ E are such that e1 v d and e2 v d then there exists e ∈ E such
that e v e1 and e v e2. In particular, as a directed union of behaviours,

⋃
n∈N An satis�es

this condition.

Notation
In the proofs of this section, we will denote by A the set

⋃
n∈N An.

Lemma 4.2.3
Let (An)n∈N be an in�nite sequence of regular behaviours such that for all n ∈ N,
|An| ⊆ |An+1|. We have:

1. ∀n ∈ N, VAn ⊆ VAn+1 ,
2. V⋃

n∈N An
=

⋃
n∈N VAn ,

3. |
⋃
n∈N An| =

⋃
n∈N |An|.

Proof .
1. Fix n and let s ∈ VAn . There exists d ∈ |An| such that s is a path of d. Since
|An| ⊆ |An+1| we have d ∈ |An+1|, thus by regularity of An+1, s ∈ VAn+1 .

2. (⊆) Let s ∈ VA. There exist n ∈ N and d ∈ |An| such that s is a path of d. By
regularity of An we have s ∈ VAn .
(⊇) Let m ∈ N and s ∈ VAm . For all n ≥ m, VAm ⊆ VAn by the previous item,
thus s ∈ VAn . Hence if we take e = pp∼sqq

c
, we have e ∈ An

⊥ for all n ≥ m by
Lemma 3.1.3. We deduce

e ∈
⋂
n≥m

An
⊥ = (

⋃
n≥m

An)⊥ = (
⋃
n∈N

An)⊥ = A⊥ .

Let d ∈ Am such that s is a path of d; we have d ∈ A and e ∈ A⊥, thus 〈d← e〉 =
s ∈ VA.

3. (⊆) Let d be minimal for v in A. There exists m ∈ N such that d ∈ Am. Thus d is
minimal for v in Am otherwise it would not be minimal in A, hence the result.
(⊇) Let m ∈ N, and let d ∈ |Am|. By hypothesis, d ∈ |An| for all n ≥ m. Suppose
d is not in |A|, so there exists d′ ∈ A such that d′ v d and d′ 6= d. In this case, there
exists n ≥ m such that d′ ∈ An, but this contradicts the fact that d ∈ |An|.

�

Lemma 4.2.4
Let (An)n∈N be an in�nite sequence of regular behaviours such that for all n ∈ N,
|An| ⊆ |An+1|. We have:

V⋃
n∈N An

=
∼
V(

⋃
n∈N An)⊥ = V(

⋃
n∈N An)⊥⊥ .
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Proof . In this proof we use the alternative de�nition of regularity (Proposition 3.1.10).
We prove VA =

∼
VA⊥ , and the result will follow from the fact that for any behaviour B (in

particular if B = A⊥⊥) we have∼VB⊥ = VB. First note that the inclusion VA ⊆
∼
VA⊥ is

immediate.
Let s ∈ VA⊥ and let us show that ∼s ∈ VA. Let e ∈ |A⊥| such that s is a path of e.

By Lemma 3.1.8 and the remark following it, s is in the shu�e of anti-shu�es of bi-views
t1, . . . , tk of A⊥. For every i ≤ k, suppose ti = 〈κi〉; necessarily, there exists a design
di ∈ A such that κi occurs in 〈e ← di〉, i.e., such that ti is a subsequence of 〈e ← di〉,
otherwise e would not be in the incarnation of A⊥ (it would not be minimal). Let n be big
enough such that d1, . . . , dk ∈ An, and note that in particular e ∈ An

⊥. For all i,
∼
ti is a

bi-view of |di|An , thus it is a bi-view of An. By regularity of An we have
∼
ti ∈ VAn . Since

∼s is in the anti-shu�e of shu�es of
∼
t1, . . . ,

∼
tk, we have ∼s ∈ VAn using regularity again.

Therefore ∼s ∈ VA by Lemma 4.2.3(2). �

Lemma 4.2.5
Let (An)n∈N be an in�nite sequence of regular behaviours such that for all n ∈ N,
|An| ⊆ |An+1|. The behaviours (

⋃
n∈N An)⊥ and (

⋃
n∈N An)⊥⊥ are regular.

Proof . Let us show A⊥ is regular using the equivalent de�nition (Proposition 3.1.10).
• Let t be a bi-view of A⊥. By a similar argument as in the proof above, there exists
n ∈ N such that

∼
t is a bi-view of An, thus

∼
t ∈ VAn ⊆ VA. By Lemma 4.2.4, t ∈ VA⊥ .

• Let s , t ∈ VA⊥ . By Lemma 4.2.4, ∼s , ∼t ∈ VA. By Lemma 4.2.3(2), there exists n ∈ N
such that ∼s , ∼t ∈ VAn , thus by regularity of An we have

∼s �∼t ⊆ VAn and ∼s � ∼t ⊆ VAn

where VAn ⊆ VA, in other words
∼s � t ⊆ VA and∼s �t ⊆ VA .

By Lemma 4.2.4 we deduce

s � t ⊆ VA⊥ and s �t ⊆ VA⊥ ,

hence VA⊥ is stable under shu�e and anti-shu�e.
Finally A⊥ is regular. We deduce that A⊥⊥ is regular since regularity is stable under
orthogonality (Remark 1.3.6). �

Let us introduce some more notions for the following proof. An ∞-path (resp. ∞-
view) is a �nite or in�nite sequence of actions satisfying all the conditions of the de�nition
of path (resp. view) but the requirement of �niteness. In particular, a �nite∞-path (resp.
∞-view) is a path (resp. a view). An ∞-path (resp. ∞-view) of a design d is such that
any of its positive-ended pre�x is a path (resp. a view) of d. We call in�nite chattering a
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closed interaction which diverges because the computation never ends; note that in�nite
chattering occurs in the interaction between two atomic designs p and n if and only if there
exists an in�nite∞-path s of p such that ∼s is an∞-path of n (where, when s is in�nite, ∼s
is obtained from s by simply reversing the polarities of all the actions). Given an in�nite
∞-path s , the design ppsqqc is constructed similarly to the case when s is �nite (see the
proof of Lemma 3.1.1 in Chapter 3).

For the proof of the theorem, suppose now that the behaviours (An, )n∈N are simple.
Remark that the second condition of simplicity implies in particular that the dual of a path
in a design of a simple behaviour is a view.

Proof (Theorem 4.2.2) .
We must show that A⊥⊥ ⊆ A since the other inclusion is trivial. Remark the follow-

ing: given designs d and d′, if d ∈ A and d v d′ then d′ ∈ A. Indeed, if d ∈ A then
there exists n ∈ N such that d ∈ An; if moreover d v d′ then in particular d � d′, and by
monotonicity d′ ∈ An, hence d′ ∈ A. Thus it is su�cient to show |A⊥⊥| ⊆ A since for
every d′ ∈ A⊥⊥ we have |d′| ∈ |A⊥⊥| and |d′| v d′.

So let d ∈ |A⊥⊥| and suppose d /∈ A. First note the following: by Lemmas 4.2.4 and
4.2.5, every path s of d is in VA⊥⊥ = VA, thus there exists d′ ∈ |A| containing s . We
explore separately the possible cases, and show how they all lead to a contradiction.
If dhas an in�nite number ofmaximal slices then, using König’s lemma (every in�nite
tree contains either a vertex of in�nite degree or an in�nite branch), we are in one of the
following cases:

• Either there exists a negative subdesign n =
∑

a∈S a(
−→
xa).pa of d for which there

is an in�nity of names a ∈ S such that pa 6= Ω. In this case, let v be the view of
d such that for every action κ− initial in n, vκ− is the pre�x of a view of d. All
such sequences vκ− being pre�xes of paths of d, we deduce by regularity of A⊥⊥
and using Lemma 3.1.5 that vκ−z ∈ VA⊥⊥ . Let d′ ∈ |A| be such that v is a view
of d′. Since d′ is also in A⊥⊥, we deduce by Lemma 3.1.6 that for every action κ−
initial in n, vκ− is the pre�x of a view of d′. Thus d′ has an in�nite number of slices:
contradiction.

• Or we can �nd an in�nite ∞-view v = (κ−0 )κ+1 κ
−
1 κ

+
2 κ
−
1 κ

+
3 κ
−
3 . . . of d (the �rst

action κ−0 being optional, depending on the polarity of d) satisfying the following:
there is an in�nity of i ∈ N such than κ−i is one of the �rst actions of a negative
subdesign

∑
a∈S a(

−→
xa).pa of d with at least two names a ∈ S such that pa 6= Ω.

Let vi be the pre�x of v ending on κ+i . There is no design d′ ∈ |A| containing v,
indeed: in this case, for all i and all negative action κ− such that viκ− is a pre�x of
a view of d, viκ− would be a pre�x of a view of d′ by Lemma 3.1.6, thus d′ would
have an in�nite number of slices, which is impossible since the An are simple. Thus
consider e = pp∼vqq

c: since all the vi are views of designs in |A| =
⋃
n∈N |An| and

since the An are simple, the sequences∼vi are views, thus ∼v is an∞-view. Therefore
an interaction between a design d′ ∈ A and e necessarily eventually converges
by reaching a daimon of e, indeed: in�nite chattering is impossible since we cannot
follow v forever, and interaction cannot fail after following a �nite portion of v since
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those �nite portions vi are in VA. Hence e ∈ A⊥. But d 6⊥ e, because of in�nite
chattering following v. Contradiction.

If d has a �nite number of maximal slices c1, . . . , ck then for every i ≤ k there exists
an∞-path si that visits all the positive proper actions of ci. Indeed, any (either in�nite or
positive-ended) sequence s of proper actions in a slice c v d, without repetition, such that
polarities alternate and the views of pre�xes of s are views of c, is an∞-path:

• (Linearity) is ensured by the fact that we are in only one slice,
• (O-visibility) is satis�ed since positive actions of d, thus also of c, are justi�ed by the

immediate previous negative action (a condition true in |A|, thus also satis�ed in d
because all its views are views of designs in |A|)

• (P-visibility) is natively satis�ed by the fact that s is a promenade in the tree repre-
senting a design.

For example, s can travel in the slice c as a breadth-�rst search on pairs of nodes (κ−, κ+)
such that κ+ is just above κ− in the tree, and κ+ is proper. Then 2 cases:

• Either for all i, there exists ni ∈ N and di ∈ Ani such that si is an ∞-path of di.
Without loss of generality we can even suppose that ci v di: if it is not the case,
replace some positive subdesigns (possibly Ω) of di by z until you obtain d′i such
that ci v d′i, and note that indeed d′i ∈ Ani since di � d′i. Let N = max1≤i≤k(ni).
Since d 6∈ A, thus in particular d 6∈ AN , there exists e ∈ A⊥N such that d 6⊥ e. The
reason of divergence cannot be in�nite chattering, otherwise there would exist an
in�nite∞-path t in d such that ∼t is in e, and t is necessarily in a single slice of d
(say ci) to ensure its linearity; but in this case we would also have di 6⊥ e where
di ∈ AN , impossible. Similarly, for all (�nite) path s of d, there exists i such that s
is a path of ci thus of di ∈ AN ; this ensures that interaction between d and e cannot
diverge after a �nite number of steps either, leading to a contradiction.

• Or there is an i such that the (necessarily in�nite)∞-path si is in no design of A.
In this case, let e = pp∼siqq

c
(where ∼si is a view since the An are simple), and with a

similar argument as previously we have e ∈ A⊥ but d 6⊥ e by in�nite chattering,
contradiction.

�

Under the same hypotheses as Theorem 4.2.2 and by Lemma 4.2.3, we thus have that
the set

⋃
n∈N An is a behaviour satisfying

V⋃
n∈N An

=
⋃
n∈N

VAn and |
⋃
n∈N

An| =
⋃
n∈N

|An| ,

hence the following corollary.
Corollary 4.2.6

Let (An)n∈N be an in�nite sequence of simple regular behaviours such that for all n ∈ N,
|An| ⊆ |An+1|.

•
⋃
n∈N An is a simple and regular behaviour.

• If moreover all theAn are pure then
⋃
n∈N An is a pure behaviour.
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4.3 Regularity and Purity of Data

In this section, we show that the interpretation A of a data pattern of the form µX.A
can be expressed as an in�nite union of behaviours (An)n∈N satisfying the hypotheses of
Theorem 4.2.2. By applying this theorem, the goal is to be able to construct A without
performing the bi-orthogonal, and to deduce its regularity and purity. More precisely, we
prove that behaviours interpreting data patterns (resp. steady data patterns) are regular
(resp. pure). We end this section by discussing the relation between regularity andµMALL.

4.3.a Regularity of Data

We call an environment σ simple if its image contains only simple behaviours. In this
subsection, we prove the two following propositions, stating respectively that:

• the interpretation of a data pattern in a simple regular environment is a simple regu-
lar behaviour (Proposition 4.3.1), the interesting case being that data patterns with-
out free variable (closed) only generate simple regular behaviours;

• the explicit form for the interpretation of a pattern of the form µX.A, that has been
given in Corollary 4.1.7, need not be closed by bi-orthogonal (Proposition 4.3.2); this
indeed relies on our previous internal completeness result (Theorem 4.2.2).

Proposition 4.3.1
For all A ∈ P and simple regular environment σ, JAKσ is simple regular.

Proposition 4.3.2

For all A ∈ P , X ∈ V , and σ : FV(A) \ {X} → B+ simple regular,

JµX.AKσ =
⋃
n∈N

(φAσ )n(z) .

It seems that each of these statements is a prerequisite for the other one, indeed: from
Proposition 4.3.1 we could deduce Proposition 4.3.2 using Theorem 4.2.2, and the other
implication could be obtained from Corollary 4.2.6. For doing this, we would need the
following “lemma”, which is required as a hypothesis for both Theorem 4.2.2 and Corol-
lary 4.2.6: for all A ∈ P , X ∈ V , σ : FV(A) \ {X} → B+ simple regular, and n ∈ N, we
have

|(φAσ )n(z)| ⊆ |(φAσ )n+1(z)| .

Actually, these three results (the two propositions and the inclusion above) are proved
simultaneously, included in the same induction hypothesis.

Proof (Propositions 4.3.1 and 4.3.2) . By induction on A, we prove that for all X ∈ V
and σ : FV(A) \ {X} → B+ simple and regular, the induction hypothesis consisting in
the �ve following statements holds:

1. for all P,P′ ∈ B+ simple regular, if |P| ⊆ |P′| then |φAσ (P)| ⊆ |φAσ (P′)|;
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2. for every n ∈ N, |(φAσ )n(z)| ⊆ |(φAσ )n+1(z)|;
3. for every P ∈ B+ simple regular, φAσ (P) is simple and regular;
4. JµX.AKσ =

⋃
n∈N(φAσ )n(z);

5. |JµX.AKσ| =
⋃
n∈N |(φAσ )n(z)|.

In this proof, given any positive behaviour P, we write σP for σ,X 7→ P.
If A = X ∈ V or A = a ∈ S ′: immediate.
If A = A1 ⊕+ A2 or A = A1 ⊗+ A2:

1. Follows from the incarnated form of internal completeness (in Theorem 1.1.21).
2. Easy by induction on n, using the previous item.
3. Regularity of φAσ (P) comes from Proposition 3.3.1, and simplicity is easy since the

structure of the designs in JAKσP is given by internal completeness.
4. By Corollary 4.1.7 we have

JµX.AKσ = (
⋃
n∈N

(φAσ )n(z))⊥⊥ ,

and by Theorem 4.2.2 we have

(
⋃
n∈N

(φAσ )n(z))⊥⊥ =
⋃
n∈N

(φAσ )n(z)

since items (2) and (3) guarantee that the hypotheses of the theorem are satis�ed.
5. By the previous item and Lemma 4.2.3(3).

If A = µY.A0:
1. Suppose |P| ⊆ |P′|, where P and P′ are simple regular. We have

|φAσ (P)| = |JµY.A0KσP | =
⋃
n∈N

|(φA0
σP

)n(z)|

by induction hypothesis (5), and similarly for P′. By induction on n, we prove that

|(φA0
σP

)n(z)| ⊆ |(φA0
σP′ )

n(z)| (δ)

It is immediate for n = 0, and the inductive case is:

|(φA0
σP

)n+1(z)| = |φA0
σP

((φA0
σP

)n(z))|
⊆ |φA0

σP
((φA0

σP′ )
n(z))| by induction hypotheses (1), (3) and (δ)

= |φA0

σ,Y 7→(φ
A0
σP′ )

n(z)
(P)|

⊆ |φA0

σ,Y 7→(φ
A0
σP′ )

n(z)
(P′)| by induction hypotheses (1) and (3)

= |(φA0
σP′ )

n+1(z)| .

3. By induction hypotheses (2), (3) and (4) respectively, we have
• for every n ∈ N, |(φA0

σ )n(z)| ⊆ |(φA0
σ )n+1(z)|,

• for every n ∈ N, (φA0
σ )n(z) is simple regular,
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• JµY.A0Kσ =
⋃
n∈N(φA0

σ )n(z).
Consequently, by Corollary 4.2.6, JµY.A0Kσ is simple regular.

2. 4. 5. Similar to the cases A = A1 ⊕+ A2 and A = A1 ⊗+ A2.
To conclude this proof, remark that (3) proves Propositions 4.3.1, indeed: if X /∈ FV(A),
i.e., if σ : FV(A) → B+, then for every behaviour P we have φAσ (P) = JAKσ . Moreover,
indeed, (4) corresponds to Proposition 4.3.2. �

Corollary 4.3.3
Data behaviours are regular.

4.3.b Purity of Data

We now move on to proving purity. The proof that the interpretation of a steady data
pattern A is pure relies on the existence of a basis for A (Lemma 4.3.4).

Notation
Write V max

B for the set of maximal visitable paths of B.

Lemma 4.3.4
Every steady data pattern A ∈ Ps has a basis, i.e., a simple regular behaviour B such
that for every simple regular environment σ we have

• |B| ⊆ |JAKσ| (in particular B ⊆ JAKσ),
• for every path s ∈ VB, there exists t ∈ V max

B z-free extending s (in particular B
pure),

• V max
B ⊆ V max

JAKσ .

Proof . By induction on A:
• If A = a then it has basis JaK = Ca.
• If A = A1 ⊕+ A2, without loss of generality suppose A1 is steady, with basis B1.

Take ⊗1ˆB1, as a basis for A, where the connective ⊗1 is de�ned like ´ with a
di�erent name of action: ⊗1N = ι1〈N〉⊥⊥ and by internal completeness ⊗1N =
ι1〈N〉 ∪ {z}.

• If A = A1 ⊗+ A2 then both A1 and A2 are steady, of respective base B1 and B2.
The behaviour B = B1⊗+B2 is a basis forA, indeed: since B1 and B2 are regular,
Proposition 3.2.8 gives

VB1⊗+B2
= κ•(V

xˆB1
� V y

ˆB2
) ∪ {z}

where, by Proposition 3.2.1,

VˆBi = κNV
x
Bi ∪ {ε} for i ∈ {1, 2} ;

from this, and using internal completeness, we deduce that B satis�es all the con-
ditions.
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• Suppose A = µX.A0, where A0 is steady and has a basis B0, let us show that B0 is
also a basis for A.

– By (the proof of) Proposition 4.3.2,

|JAKσ| =
⋃
n∈N

|(φA0
σ )n(z)| ,

and since B0 is a basis for A0 we have

|B0| ⊆ |JA0Kσ,X→z| = |(φA0
σ )(z)| ,

so indeed |B0| ⊆ |JAKσ|.
– By induction hypothesis, we immediately have that for every path s ∈ VB0 ,

there exists t ∈ V max
B0

z-free extending s .
– By Lemma 4.2.3(2)

VJAKσ = {z} ∪
⋃
n∈N

V
(φ
A0
σ )n+1(z)

= {z} ∪
⋃
n∈N

VJA0Kσn

where σn = σ,X 7→ (φA0
σ )n(z) has a simple regular image. By induction

hypothesis, for all n ∈ N, V max
B ⊆ V max

JA0Kσn , therefore V max
B ⊆ V max

JAKσ .
�

Proposition 4.3.5

If A ∈ Ps of basis B, X ∈ V , and σ : FV(A) \X → B+ simple regular,

JµX.AKσ =
⋃
n∈N

(φAσ )n(B) .

Proof . Since B is a basis for A we have

z ⊆ B ⊆ JAKσ,X→z = φAσ (z) .

The continuity of the function φAσ implies that it is monotone, thus

(φAσ )n(z) ⊆ (φAσ )n(B) ⊆ (φAσ )n+1(z)

for all n ∈ N (straightforward induction). Hence

JµX.AKσ =
⋃
n∈N

(φAσ )n(z) =
⋃
n∈N

(φAσ )n(B) .

�

Proposition 4.3.6
For all A ∈ Ps and simple regular pure environment σ, JAKσ is pure.
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Proof . By induction on A. The base cases are immediate and the connective cases are
solved using Proposition 3.4.1. Suppose now A = µX.A0, where A0 is steady with basis
B0. We have

JAKσ =
⋃
n∈N

(φA0
σ )n(B0)

by Proposition 4.3.5, let us prove it satis�es the hypotheses needed to apply the second
point of Corollary 4.2.6. By induction hypothesis and Proposition 4.3.1, for every simple,
regular and pure behaviour P ∈ B+ we have φA0

σ (P) = JA0Kσ,X 7→P simple, regular and
pure, hence it is easy to show by induction that for every n ∈ N, (φA0

σ )n(B0) is as well.
Moreover, for every n ∈ N we have

|(φA0
σ )n(B0)| ⊆ |(φA0

σ )n+1(B0)| ,

indeed: we showed in the proof of Propositions 4.3.1 and 4.3.2 that for P,P′ ∈ B+ simple
regular such that |P| ⊆ |P′| we had |φA0

σ (P)| ⊆ |φA0
σ (P′)|; thus it is easy to prove the

inclusion above by induction on n since the base case (for n = 0) corresponds to |B0| ⊆
|JA0Kσ,X 7→B0 |, and this holds by de�nition of a basis. Finally, by Corollary 4.2.6, JAKσ is
pure. �

Corollary 4.3.7
Data behaviours are pure.

Remark 4.3.8
We have just seen that data behaviours – i.e., behaviours interpreting closed steady
data patterns – are regular (Corollary 4.3.3), pure (Corollary 4.3.7), and simple (deduced
from Proposition 4.3.1). An interesting question is whether there are other behaviours
that are regular, pure and simple. The answer is yes, here are some ideas why:

• In a technical – and not so interesting – way, we could consider generalised data
patterns with n-ary connectives, and/or interpret a connective by any name in S
of the same arity instead of �xing one (the way we �xed • for⊗), and we would
still get regular pure simple behaviours.

• The interpretations of non-steady data patterns are simple and regular (Proposi-
tion 4.3.1), and we are convinced that they are pure as well but we do not know
how to prove it. On the other hand, we believe that the following stronger form
of purity is satis�ed by steady data patterns, but not by the non-steady ones: any
z-ended visitable path can be extended by az-free maximal visitable path.

• Coinductive behaviours, that we will discuss brie�y in Section 4.4, are regular.
At least some of them are also pure and simple – typically the examples Natω ,
List∞A and StrA we will give then – and they might all be but this is still to prove.

• Apart from those, we have the feeling that the only other behaviours able to
satisfy all the conditions would correspond to non-recursive types, i.e., types that
cannot be described by a grammar but only by mean of a non-recursive function.
This direction has to be explored further so as to determine if such behaviours
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could be regular, pure and simple.

4.3.c About Regularity and µMALL

Although in this chapter the focus is on the interpretation of data patterns, we should say
a word about the interpretation of (polarised) µMALL [Bae12] in ludics. µMALL corre-
sponds to multiplicative–additive linear logic extended with least and greatest �xed points,
denoted µX.A and νX.A respectively. The formulas of a polarised version of µMALL,
which are a bit more general than data patterns, are generated by:

P,Q ::= Xp | X⊥n | 1 | 0 | M ⊕N | M ⊗N | ´N | µXp.P

M,N ::= Xn | X⊥p | ⊥ | > | P &Q | P `Q | ˆP | νXn.M

where the usual involutive negation relies on the dualities 1/⊥, 0/>, ⊕/&, ⊗/`, ´/ˆ,
µ/ν; in particular, we have

(µXp.P )⊥ = νXn.(P
⊥[X⊥n /Xp])

where Xn is a fresh negative variable. The interpretation of these formulas as ludics be-
haviours, given in [BDS15], is as follows:

• 1 is interpreted as a constant behaviour Ca,
• 0 is the daimon z,
• the positive connectives match their ludics counterparts,
• µ is interpreted as the least �xed point of a function φAσ similarly to data patterns,
• the negation corresponds to the orthogonal.

We know that constants and z are regular, and that regularity is preserved by the con-
nectives (Proposition 3.3.1) and by orthogonality (Remark 1.3.6). Notice moreover that, by
applying Kleene’s theorem to �xed points behaviours (Corollary 4.1.7) and by Lemma 4.2.5,
we get that regularity is preserved by least �xed points. Hence the following.
Proposition 4.3.9

The behaviours interpreting µMALL formulas are regular.

Why is this interesting? Fouqueré and Quatrini [FQ16] have proved that regularity cap-
tures exactly MALL if we restrict to �nite behaviours, where a behaviour is �nite if its
incarnation contains a �nite number of designs, each of which has a �nite tree represen-
tation.
Proposition 4.3.10

A behaviour is the denotation of a polarised MALL formula if and only if it is regular and
�nite.

Note that Proposition 4.3.10 has been formalised in Girard’s framework, thus some techni-
cal details in the de�nition of connectives are di�erent, but it is essentially the same. Now,
if we drop �niteness, we expect to get the following result (modulo some uninteresting
technical details corresponding to �rst item of Remark 4.3.8).
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Conjecture 4.3.11
A behaviour is the denotation of a polarised µMALL formula if and only if it is regular.

In fact, this conjecture would not hold if there existed regular non-recursive behaviours, as
mentioned at the end of Remark 4.3.8. It might therefore be necessary to add a condition
to the conjecture: this has to be investigated. Fouqueré and Quatrini do not have this
recursivity issue since the behaviours – thus also the designs – they consider are �nite.

4.4 Coinductive Types: Ideas

Extending our study to greatest �xed points νX.A, i.e., coinductive types, is the next
objective. Here we give some ideas for future work in this direction.

We can for example de�ne the following coinductive types, where zero, nil ∈ S ′:

Natω = νX.(zero⊕+ X) ,

List∞A = νX.(nil ⊕+ (A⊗+ X)) ,

StrA = νX.(A⊗+ X) .

They correspond respectively to:
• the natural numbers extended with the in�nite ordinal ω,
• the �nite and in�nite lists of elements of type A,
• the in�nite lists (streams) of elements of type A.

Note that, contrarily to the other two examples, the inductive counterpart µX.(A⊗+ X)
of type StrA is not a steady data pattern. The idea is that such coinductive patterns corre-
spond to in�nite objects only (and not �nite and in�nite, like the two others); in particular,
a computation in this type can only end by a daimon, i.e., a voluntary interruption of the
program, otherwise the computation runs forever.

In ludics, the interpretation of coinductive types in an environment σ is straightfor-
wardly given by

JνX.AKσ = gfp(φAσ )

and the Knaster–Tarski �xed point theorem ensures that such greatest �xed points be-
haviours exist [BDS15]. Although Kleene’s theorem does not apply here, there exists a
dual of this theorem for greatest �xed points (see e.g. [San09]), this might help us �nd-
ing the explicit form of coinductive behaviours. Intuitively, it is clear that, compared to
least �xed points, greatest ones add the in�nite “limit” designs in (the incarnation of) be-
haviours. For the example of Natω given above, we should have

|JNatωK| = |JNatK| ∪ {dω}

where
dω = succ(dω) = x0|ι2〈ˆ(x).dω

x〉 .
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Concerning the visitable paths of such coinductive types, it seems that they are the
same as the corresponding inductive ones, for example

VJNatωK = VJNatK .

Indeed, a computation is always �nite, thus it cannot distinguish between in�nite objects
and �nite objects of unbounded size. Unless we consider a notion of∞-path, as in the proof
of Theorem 4.2.2, and we choose to accept in�nite chattering as a convergent computation,
as it is the case in [BT10a] for example. This choice would make orthogonality characterise
safety rather than termination, which is sound when dealing with in�nite data.

It would then be interesting to study the purity of these coinductive behaviours; note
that regularity is already ensured since it holds for all denotations of µMALL formulas.
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5 | Functional Types

In this chapter we combine data behaviours with the connective( to get functional be-
haviours, which are the ludics interpretation of functional types. The idea of functional
behaviours is not a novelty. Girard [Gir01] has introduced sequents of behaviours ; for
example the – non atomic – behaviour

A ` B

is the set of all the designs that, when interacting with a design in A, produce a design
in B. Our interpretation of functional types in ludics is essentially the same, with some
slight changes to ensure that functional behaviours are:

• atomic, i.e., composed of atomic designs, in the sense of De�nition 1.1.10;
• positive (the important being that they are all of same polarity).

This allows us to combine types so as to get higher order function types, where functions
can have other functions as arguments or as outputs.

In Section 5.1, we de�ne the functional behaviours thanks to the connective(. The
goal of Section 5.2 is then to prove that, among those behaviours, the ones that correspond
to higher-order functional types taking functions as arguments, which is typically the case
of the type

(A( B)( C ,

are exactly the impure ones. This fact is interesting from a computational point of view,
if we recall that purity ensures the safety of execution: given such a type, it means that
some ludics programs of this type have bugs. This will be discussed in Section 5.3.

5.1 Functional Behaviours

Let us write D for the set of data behaviours.

De�nition 5.1.1 (Functional behaviour)
A functional behaviour is a behaviour inductively generated by the grammar

P,Q ::= P0 ∈ D | P⊕+ Q | P⊗+ Q | P(+ Q

where P(+ Q stands for ´((ˆP)( Q).

99



CHAPTER 5. FUNCTIONAL TYPES

Functional behaviours combine data behaviours with the logical connective(, but also
⊕ and ⊗ so as to get sum and product types on functions. As for data, shifts are added so
as to respect the polarities, and all the functional behaviours are positive.

In the previous chapter, we have shown that data behaviours are regular and pure.
However, building up the functional behaviours with(, we may loose purity. The next
proposition ensures at least regularity and quasi-purity, a weaker form of purity that we
introduced in Chapter 3 (De�nition 3.4.2), for all functional types. It is immediately de-
duced from Propositions 3.3.1, 3.4.1 and 3.4.3.

Proposition 5.1.2
Functional behaviours are regular and quasi-pure.

Remark 5.1.3
In this thesis, we consider the functional types separately from �xed points, for sim-
plicity. However, this keeps us from taking into account some interesting types, for
example lists of functions. Allowing to take �xed points over functional types is a
future work, but in order to do this we must carefully determine the restrictions to im-
pose. Typically, we should probably forbid variables to appear in a negative position,
for example we want to accept

µX.(A(+ X)⊕+ B but not µX.(X (+ A)⊕+ B .

Indeed, the �rst type corresponds to functions taking a �nite number of arguments of
type A and returning a result of type B, while the meaning of the second one is rather
unclear. It would then be interesting to see if it is possible to generalise our internal
completeness result for in�nite unions to these new �xed points types.

5.2 Where Impurity Arises

The goal of this section is to prove Proposition 5.2.1, which identi�es exactly the impure
functional behaviours. In order to state it, consider contexts de�ned inductively as fol-
lows:

C ::= [ ] | C ⊕+ P | P⊕+ C | C ⊗+ P | P⊗+ C | P(+ C

where P is a functional behaviour.

Proposition 5.2.1
A functional behaviourP is impure if and only if there exist contexts C1, C2 and functional
behaviours Q1,Q2,R withR /∈ Const such that

P = C1[ C2[Q1(
+ Q2](

+ R ] .
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The proof of this proposition �rst requires several lemmas.

Notation
Let us denote the set of functional behaviours by F , and recall that D stands for the
set of data behaviours.

Lemma 5.2.2

Let P ∈ D, and let Q be a pure regular behaviour. The behaviour P(+ Q is pure.

Proof . By Proposition 3.4.1 it su�ces to show that (ˆP)( Q is pure. Remark �rst that,
by construction of data behaviours, the following assertion is satis�ed in views (thus also
in paths) of ˆP: every proper positive action is justi�ed by the negative action preceding
it.

By regularity and Corollary 3.2.9, we have

V(ˆP)(Q =
∼
κ•(VˆP �

∼
VQ) ∪ {ε} .

Let sz ∈ V(ˆP)(Q, and we prove that it is extensible. There exist t1 ∈ VˆP and t2 ∈ VQ
such that ∼

sz = s ∈ κ•(t1 �
∼t2) .

In particular t1 is z-free and t2 is z-ended, say t2 = t ′2z. Since Q is pure, there exists
κ+ such that t ′2κ+ ∈ VQ. Let us show that sκ+ is a path, i.e., that if κ+ is justi�ed then
just(κ+) appears in psq, by induction on the length of t1:

• If t1 = ε then sκ+ = t ′2κ+ hence it is a path.
• Suppose t1 = t ′1κ−p κ+p . Since t1 isz-free, κ+p is proper. Thus s is of the form

s = s1κ−p κ+p s2 ,

and by induction hypothesis s1s2κ+ is a path, i.e., just(κ+) appears in ps1s2q.
– Either psq = ps1s2q and indeed just(κ+) also appears in psq.
– Or psq is of the form

psq = ps1qκ−p κ+p s ′2

as, by the remark at the beginning of this proof, κ+p is justi�ed by κ−p . This
means in particular that s ′2 starts with the same positive action as s2, therefore

ps1s2q = ps1qs ′2 .

Since just(κ+) appears in ps1s2q, it also appears in psq.

Therefore sκ+ is a path. Since sκ+ ∈
∼
κ•(VˆP �

∼
VQ) and the behaviours are regular,

sκ+ ∈ VP(+Q, thus sz is extensible. As this is true for everyz-ended path in V(ˆP)(Q,
the behaviour (ˆP)( Q is pure, and so is P(+ Q. �
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Lemma 5.2.3

If P ∈ F andQ ∈ Const then P(+ Q is pure.

Proof . We prove that (ˆP) ( Q is pure, and the conclusion will follow from Proposi-
tion 3.4.1. Let κ+ = x0|a〈−→y 〉 where Q = Ca, and let

sz ∈ V(ˆP)(Q .

As in the proof of Lemma 5.2.2, there exist t1 ∈ VˆP and t2 ∈ VQ such that
∼
sz = s ∈ κ•(t1 �

∼t2)

with t2 z-ended. But VQ = {z, κ+}, thus t2 = z and ∼t2 = ε. Hence

sz =
∼
κ•t1 ,

and this path is extensible with action κ+, indeed: sκ+ is a path because κ+ is justi�ed by
κ•, which is the only initial action of sκ+ thus appearing in psq; moreover

∼
sκ+ ∈ κ•(t1 �

∼
κ+)

where κ+ ∈ VQ, therefore
sκ+ ∈ V(ˆP)(Q .

�

Lemma 5.2.4
Let P,Q ∈ F . If there exists az-free (resp. z-ended) maximal path s ∈ VQ, then there
exists az-free (resp. z-ended) maximal path t ∈ VP(+Q.

Proof . Suppose there exists a z-free (resp. z-ended) maximal path s ∈ VQ. Since P is
positive and di�erent fromz, there exists s ′ ∈ VˆP non-empty andz-free. Let t ′ =

∼
κ•s ′∼s ,

and remark that t ′ = κ•s ′s . This is a path (O- and P-visibility are satis�ed), it belongs to
V(ˆP)(Q, it is z-free (resp. z-ended). Suppose it is extensible, and consider both the
“z-free” and the “z-ended” cases:

• if s and t ′ are z-free, then there exists a negative action κ− such that

t ′κ−z ∈ V(ˆP)(Q =
∼
κ•(VˆP � VQ⊥) ∪ {ε} .

Since t ′κ−z = κ•s ′sκ−z, we necessarily have sκ−z ∈ VQ (indeed: the sequence
s ′κ− has two adjacent negative actions thus cannot be a path). This contradicts the
maximality of s in VQ.

• if s and t ′ are z-ended, there exists a positive action κ+ that extends t ′ and a con-
tradiction arises with a similar reasoning.
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Hence t ′ is maximal in V(ˆP)(Q. Finally, t = κHt ′ ful�lls the requirements. �

Lemma 5.2.5
For every behaviour P ∈ F , there exists s ∈ VP maximal and z-free.

Proof . By induction on P. If P ∈ D then take s ∈ VB maximal, where B is a base of P.
Use Lemma 5.2.4 in the case of(+, and the result is easy for ⊗+ and ⊕+. �

Lemma 5.2.6
Let P ∈ F and let C be a context. If C[P] pure then P pure.

Proof . We prove the contrapositive by induction on C. Suppose P is impure.
• If C = [ ] then C[P] = P, thus C[P] is impure.
• If C = C′ ⊕+ Q or Q⊕+ C′ and by induction hypothesis C′[P] is impure, i.e., there

exists a maximal path sz ∈ VC′[P], then one of κι1κNsz or κι2κNsz is maximal in
VC[P], hence the result.

• If C = C′ ⊗+ Q or Q ⊗+ C′ and by induction hypothesis there exists a maximal
path sz ∈ VC′[P], then by Lemma 5.2.5, there exists az-free maximal path t ∈ VQ.
Consider the path u = κ•κ

t
Ntκs

Nsz, where:
– κt

N justi�es the �rst action of t ,
– κs

N justi�es the �rst action of s , and
– κ• justi�es κt

N and κs
N, one on each (1st or 2nd) position, depending on the form

of C.
We have u ∈ VC[P], and u isz-ended and maximal, hence the result.

• If C = Q(+ C′ and by induction hypothesis C′[P] is impure, then Lemma 5.2.4 (in
its “z-ended” version) concludes the proof.

�

We can now prove the proposition.

Proof (Proposition 5.2.1) . (⇒) Suppose P impure. By induction on behaviour P:
• P ∈ D is impossible by Corollary 4.3.7.
• If P = P1 ⊕+ P2 (resp. P = P1 ⊗+ P2) then one of P1 or P2 is impure by

Proposition 3.4.1, say P1. By induction hypothesis, P1 is of the form

P1 = C′1[ C′2[Q1(
+ Q2](

+ R ] .

Let C1 = C′1⊕+ P2 (resp. C1 = C′1⊗+ P2) and C2 = C′2, and we get the result for P.
• If P = P1(+ P2, then P2 6∈ Const by Lemma 5.2.3, and:

– If P2 impure, then by induction hypothesis P2 is of the form

P2 = C′1[ C′2[Q1(
+ Q2](

+ R ] ,
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and it su�ces to take C1 = P1 → C′1 and C2 = C′2 to get the result for P.
– If P2 is pure, since it is also regular the conclusion follows from Lemma 5.2.2.

(⇐) Let C1, C2 be contexts, Q1,Q2,R ∈ P with R 6∈ Const. Let

P = C1[ C2[Q1(
+ Q2](

+ R ] and Q = C2[Q1(
+ Q2] .

We prove that P is impure.
First suppose that

P = C2[Q1(
+ Q2](

+ R ,

and in this case we show the result by induction on the depth of context C2. The exact
induction hypothesis will be:

there exists a maximal z-ended path in VP of the form κHsz
where s ∈ κ•((κNVQ)�

∼
VR).

• If C2 = [ ], then

Q = Q1(
+ Q2 = ´(ˆQ1( Q2) and P = Q(+ R = ´(ˆQ( R) .

In order to di�erentiate actions κH, κN, κ• used to construct Q from those to con-
struct P, we will use corresponding superscripts. Let κQN t1 ∈ VˆQ1

be z-free (and
non-empty). Let t2 ∈ VQ2 be a maximal z-free path: its existence is ensured by
Lemma 5.2.5, and it has one proper positive initial action κ+2 . Now let:

t =
∼
κQ• κ

Q
N t1
∼t2 = κQ• κ

Q
N t1t2 .

Similarly to the path constructed in proof of Lemma 5.2.4, we have that t isz-free,
it is in V(ˆQ1)(Q2

, and it is maximal. Thus κQH t ∈ VQ. Since R /∈ Const, there
exists a path of the form κ+κ−z ∈ VR, and thus necessarily κ+ justi�es κ−. De�ne
the sequence:

sz = κP• κ
P
Nκ

Q
Hκ

Q
• κ

Q
Nκ

+κ−t1t2z

and notice the following facts:
1. sz is a path: it is a linear aj-sequence. Since κ− is justi�ed by κ+, O- and

P-visibility are easy to check.
2. sz ∈ VˆQ(R: indeed, we have

∼
sz ∈ κP• (κPNκ

Q
H t �
∼
κ+κ−z)

where κPNκ
Q
H t ∈ VˆQ and κ+κ−z ∈ VR.

3. sz is maximal: Let us show that sz is not extensible. First, it is not possi-
ble to extend it with an action from Q⊥, because this would contradict the
maximality of t in VQ. Suppose it is extensible with an action κ+′ from R, i.e.,

sκ+′ ∈ VˆQ(R and
∼
sκ+′ ∈ κP• (κPNκ

Q
H t �
∼
κ+κ−κ+′)
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where κ+κ−κ+′ ∈ VR. The action κ+′ (that cannot be initial) is necessar-
ily justi�ed by κ−. But psq contains necessarily the �rst negative action of
t2, which is the only initial action in t2, and this action is justi�ed by κQ• in
s . Therefore psq does not contain any action from s between κQ• and t2, in
particular it does not contain κ− = just(κ+′). Thus sκ+′ is not P-visible: con-
tradiction. Hence sz maximal.

Finally κPH sz ∈ VP is not extensible, and of the required form.
• If C2 = Q0(+ C, then Q is of the form

Q = Q0(
+ Q′ ,

thus the previous reasoning applies.
• If C2 = C ⊗+ Q0 or Q0 ⊗+ C, the induction hypothesis gives us the existence of a

maximal path in VC[Q1(+Q2](+R of the form κPHκ
P
• κ

P
N s ′zwhere κPN s ′ ∈ (κPN t ′)�

∼u with t ′ ∈ VC[Q1(+Q2] and u ∈ VR. Let t0 ∈ VQ0 be z-free and maximal, using
Lemma 5.2.5. Consider the following sequence:

sz = κP• κ
P
Nκ

Q
• κ0Nt0κ1Ns ′z

where:
– κ0N justi�es the �rst action of t0,
– κ1N justi�es the �rst action of s ′ thus the �rst action of t ′,
– κQ• justi�es κ0N and κ1N,
– κPN now justi�es κQ• ,
– κP• justi�es the same actions as before.

Notice that:
1. sz is a path: O- and P-visibility are satis�ed.
2. sz ∈ VˆQ(R: We have

κQ• κ
0
Nt0κ1Nt ′ ∈ κQ• (κ0NVQ0 � κ1NVC[Q1(+Q2]) = VQ ,

hence
∼
sz ∈ κP• (VˆQ �

∼
VR).

3. sz is maximal: Indeed, it cannot be extended neither by an action of Q⊥0 (con-
tradicts the maximality of t0) nor by an action of C[Q1 (+ Q2]

⊥ or R (con-
tradicts the maximality of s ′).

Finally κPH sz ∈ VP is a path satisfying the constraints.
• If C2 = C ⊕+ Q0 or Q0 ⊕+ C, by induction hypothesis, there exists a path of the

form κPHκ
P
• κ

P
N s ′z maximal in VC[Q1(+Q2](+R, where κPN s ′ ∈ (κPN t ′) � ∼u with

t ′ ∈ VC[Q1(+Q2] and u ∈ VR. Reasoning as the previous item, we see that for
one of i ∈ {1, 2} (depending on the form of context C2) the path κPHκP• κPNκ

Q
ιiκNs ′z

(where κPN now justi�es κQιi ) is in VP, maximal, and of the required form.
The result for the general case, where P = C1[ C2[Q1 (+ Q2] (+ R ], �nally comes
from Lemma 5.2.6. �
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x0|H〈x〉

℘x(x1, x2)

x1|H〈y〉

Ny(y′)

y′| • 〈z1, z2〉

q2 z2(−→v )

z

Nz1(s)

x2|ι1〈s′〉

Ns′(t)

s|q1〈−→u 〉

s1

p1

x0|H〈x〉

℘x(x1, x2)

x1|H〈y〉

Ny(y′)

y′| • 〈z1, z2〉

q2 z2(−→v )

x2|ι1〈s′〉

Ns′(t)

z

Nz1(s)

s|q1〈−→u 〉

s2

p2

Nx0(x)

x| • 〈x1, x2〉

π1 x2(s′)

s′|H〈t〉

bs′()

z

Nx1(y)

y|H〈y′〉

℘y′(z1, z2)

z1|H〈s〉

q1 s(
−→u )

z2|q2〈−→v 〉

∼s1

∼s2

n

Figure 6: Designs p1, p2 and n

5.3 Example and Discussion

Proposition 5.2.1 states that a functional behaviour which takes functions as argument is
not pure: some of its visitable paths end with a daimon z, and there is no possibility to
extend them. In terms of proof-search, playing the daimon is like giving up; from a com-
putational point of view, the daimon appearing at the end of an interaction expresses the
sudden interruption of the computation. In order to understand why such an interruption
can occur in the speci�c case of higher-order functions, consider the following example
which illustrates the proposition.

Let Q1,Q2,1 be functional behaviours, with 1 ∈ Const. De�ne Bool = 1⊕+ 1 and
consider the behaviour

P = (Q1(
+ Q2)(

+ Bool .

This is a type of functions which take a function as argument and output a boolean. The
designs p1 and p2 represented in Figure 6 are in P, while n ∈ P⊥. The visitable path
s1 = 〈p1 ← n〉 is z-ended and maximal in VP, in other words this path is an evidence of
the impurity of P. Indeed, if we let respectively

κ1 = x0|q1〈−→u 〉 be the �rst action of designs in Q1 ,

κ2 = x0|q2〈−→v 〉 be the �rst action of designs in Q2 ,

β = x0|b〈〉 be the �rst action of designs in 1 ,
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´ [ˆ ´ (ˆ Q1 ( Q2) ( (⊕1 ˆ 1)]

q´ P x0|H〈x〉
q( O ℘x(x1, x2)

qˆ P x1|H〈y〉
q´ O Ny(y

′)

q( P y′| • 〈z1, z2〉
qˆ O Nz1(s)

q⊕1 P x2|ι1〈s′〉
qˆ O Ns′(t)

a1 P κ1

a2 O κ2

z P z

Figure 7: Representation of path s1 ∈ VP in the style of a play

then s1 contains the actions κ1 and κ2 in such a way that it cannot be extended with β
without breaking the P-visibility condition, and there is no other available action in designs
of P to extend it. On the contrary, the path s2 = 〈p2 ← n〉 isz-ended but extensible with
the action β.

We also give an intuition in the style of game semantics: Figure 7 represents s1 as a
legal play in a strategy of type P = (Q1 (+ Q2) (+ Bool (note that only one “side”
⊕1ˆ1 of Bool is represented, corresponding for example to true, because we cannot play
in both sides). This analogy is informal, it should stand as an intuition rather than as a
precise correspondence with ludics; for instance, and contrary to the way it is presented in
game semantics, the questions are asked on the connectives, while the answers are given
in the sub-types of P. On the right are given the actions in s1 corresponding to the moves
played. The important thing to remark is the following: if a move b corresponding to
action β were played instead ofz at the end of this play, it would break the P-visibility of
the strategy, since this move would be justi�ed by move qˆ.

The computational interpretation of the z-ended interaction between p1 and n is the
following: a program p of type P launches a child process p′ to compute the argument of
type Q1 → Q2, but p starts to give a result in Bool before the execution of p′ terminates,
leading to a situation where p cannot compute the whole data in Bool. The interaction
outputsz, i.e., the answer given in Bool by p is incomplete.

Moreover, by Proposition 5.1.2, functional behaviours are quasi-pure, therefore the
maximal z-ended visitable paths are necessarily not well-bracketed. This is indeed the
case of s1: remark for example that the move q⊕1 appears between a1 and its justi�ca-
tion qˆ in the sequence, but q⊕1 is not hereditarily justi�ed by qˆ. In HO games, well-
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bracketedness is a well studied notion, and relaxing it introduces control operators in pro-
grams (see e.g [AM99]). If we extend such an argument to ludics, this would mean that
the appearance of z in the evaluation of higher-order functions can only happen in the
case of programs with control operators such as jumps, i.e. programs which are not purely
functional.
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6 | Non-Linear Ludics

Original ludics [Gir01] is strictly linear – one should actually say a�ne – hence it lacks the
possibility of expressing the exponentials of linear logic. There has been various propo-
sitions to extend ludics with non-linearity [BF11, BT10b, Mau04, Ter11]. Here we fol-
low the one of Basaldella and Terui [BT10b], in which designs are non-linear and non-
deterministic, extending the syntax used in the previous chapters. They prove that their
version of ludics is expressive enough to capture LLP. By abuse, we call this setting non-
linear ludics.

x0|a〈y〉

cy()

x0|a〈y〉

cy()

z

by()

z

by()

x0|a〈y〉

cy()

z

by()

z

p

ax0(y)

y|c〈〉y|b〈〉 ∧

n

Figure 8: Non-linearity vs. non-determinism

Non-linearity in ludics corresponds to the possibility of repeating an address in a de-
sign. This results in the fact that, during the interaction, some designs can be copied and
used several times. Non-determinism is needed in order to have enough tests against these
non-linear designs, the same way z gives enough tests to interact with linear ones. In-
deed, consider for example the non-linear design p of Figure 8. If p interacts only against
deterministic designs, two branches of the tree can never be visited, since choosing either
b or c at the �rst branching will force the next choice to be the same. On the other hand, if
we make it interact with the non-deterministic design n – where non-determinism is ex-
pressed by the conjunction of positive terms – then all the branches can be visited. From
this point of view, non-determinism corresponds to the ability for a program to give di�er-
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ent results when asked successively the same question. The non-determinism we consider
here is universal (must testing) rather than existential (may testing): an interaction con-
verges if and only if all possible choices made at positive conjunctions lead toz.

This chapter is much more a work in progress than the previous ones. In Section 6.1,
we upgrade the de�nitions of designs, behaviours and multi-designs to non-linear ludics.
This allows us to investigate internal completeness in Section 6.2: although it holds for
negative connectives, it does not for positive ones, so we provide alternative results that
still give some interesting information on the structure of behaviours. In Section 6.3 we
conjecture that n-path is the right notion to capture an interaction trace in the non-linear
setting. We end the chapter by giving, in Section 6.4, some directions for future work.

6.1 Basic De�nitions

We still �x a set of variables V0 and a signature S , and we suppose S contains the names
N, π1, π2, ℘ for the connectives.

6.1.a Designs

We recall, in this subsection, the de�nitions from [BT10b]. From now on, a design can be
non-linear (i.e., no restriction on the occurrences of free variables) and non-deterministic
(i.e., conjunctions of positive terms).

De�nition 6.1.1 (Design)
The class of positive designs p, q, . . . , that of predesigns s, t, . . . , and that of negative
designs n, m, . . . are coinductively de�ned as follows:

p ::= Ω (divergence),

|
∧
{si : i ∈ I} (conjunction),

s ::= x|a〈n1, . . . , nar(a)〉 (simple predesign),
| n0|a〈n1, . . . , nar(a)〉 (cut),

n ::=
∑
a∈S

a(−→x ).pa (abstraction),

where I ⊆ Nat is an index set.

The daimon is now encoded by the empty conjunction: z =
∧
∅. Several de�nitions

of Chapter 1 are adapted in a straightforward way, to the new setting: free variables,
substitution, total design, subdesign, linear design, atomic design, closed design.

De�nition 6.1.2 (Deterministic design)
A design is deterministic if, in any occurrence of subdesign p =

∧
{si : i ∈ I}, the

set I is either empty (i.e., p = z) or a singleton (i.e., p is a predesign).
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Notation

• By abuse, given a predesign s and a positive design p =
∧
{si : i ∈ I}, we write

s ∈ p if there exists i ∈ I such that s = si.
• Following the same idea, we write p  ∗3 s if p  ∗ q and s ∈ q, where the

reduction step is de�ned below.

De�nition 6.1.3 (Normalisation / interaction)
The reduction step on (non-linear non-deterministic) designs is de�ned as follows:

if (
∑
a∈S

a(
−→
xa).pa) | b〈−→n 〉 ∈ p then p  pb[

−−→
n/xb] .

There are indeed several possibilities of reduction from a conjunction. For example if
p = x0|a〈〉 ∧ x0|b〈〉 and n = a().p1 + b().p2 then we have

p[n/x0] p1 and p[n/x0] p2 .

De�nition 6.1.4 (Normal form)
The normal form of a design d is de�ned by:

([p]) = Ω if p ∗ Ω or if there is an
in�nite reduction
sequence starting from p;

=
∧
{ x|a〈([−→n ])〉 | p ∗3 x|a〈−→n 〉 } otherwise;

([
∑
a∈S

a(
−→
xa).pa]) =

∑
a∈S

a(
−→
xa).([pa]) .

In particular, given a closed design p, we have:
• ([p]) = z if all the reduction sequences from p end withz,
• ([p]) = Ω otherwise.

This is the reason why the non-determinism here is universal: overall convergence re-
quires that any possible choice converges. The notions of orthogonality and behaviour
then correspond to the linear case.
De�nition 6.1.5 (Orthogonality, behaviour)

Two atomic designs p and n are orthogonal if ([p[n/x0]]) = z. A behaviour B is a
set of cut-free atomic designs of same polarity such that B⊥⊥ = B.

Finally, recall that the associativity theorem (Theorem 1.1.7) states that, given designs
d, n1, . . . , nk, we have:

([d[n1/y1, . . . , nk/yk]]) = ([([d])[([n1])/y1, . . . , ([nk])/yk]]) .
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This theorem still holds with non-linear non-deterministic designs; it is in this extended
setting that Basaldella and Terui [BT10b] proved it. We will need associativity for some
proofs in the following.

6.1.b Multi-Designs

Again, we need a notion of multi-design, introduced for the linear case in Chapter 2. In-
deed the internal completeness results for ` and ⊗ we give in the next section refer to
behaviours of multi-designs. We just recall the main de�nitions, with slight modi�cations
to �t the non-linear setting. The designs in a multi-design are no longer required to have
disjoint sets of free variables, since this requirement corresponds to a linearity condition.

De�nition 6.1.6 (Multi-design)
• A negative multi-design is a set

{(x1, n1), . . . , (xk, nk)}

where x1, . . . , xk are distinct variables and n1, . . . , nk are negative designs, such
that for all i with 1 ≤ i ≤ k we have fv(ni) ∩ {x1, . . . , xk} = ∅.

• A positive multi-design is a set

{p, (x1, n1), . . . , (xk, nk)}

where {(x1, n1), . . . , (xk, nk)} is a negative multi-design and p is a positive de-
sign such that fv(p) ∩ {x1, . . . , xk} = ∅.

Thenormal form of a multi-design, as well as its free variables andnegative places,
are de�ned exactly like in the linear case.

Given two multi-designs D and E, we de�ne the directed graph G(D,E) with:
• np(D) ∪ np(E) as set of vertices,
• an edge from x to y if y ∈ fv(n) where (n/x) ∈ D ∪ E.

De�nition 6.1.7 (Compatible, closed-compatible)
Let D and E be multi-designs.

• D and E are compatible if they satisfy the following conditions:
– np(D) ∩ np(E) = ∅,
– they are either both negative or of opposite polarities,
– the directed graph G(D,E) is acyclic.

• D and E are closed-compatible if they are of opposite polarities, compatible,
and satisfying fv(D) = np(E) and fv(E) = np(D).

The acyclicity condition prevents from having negative designs n1, . . . , nk such that, for all
1 ≤ i < k, ni is substituted in ni+1 and nk is substituted in n1. Such a situation would not
necessarily be problematic, since designs are de�ned coinductively, but for simplicity we
do not want to consider this because we will not need it. Notice that acyclicity was always
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satis�ed in the linear version of the de�nition of compatible (De�nition 2.1.5), thanks to
linearity and the additional condition in the case both multi-designs were negative.

The multi-design CutD|E, which operates the substitutions between two multi-designs,
is then de�ned as one would expect, leading naturally to the notions of orthogonality and
behaviour.

De�nition 6.1.8 (Cut)
LetD andE be compatible multi-designs. CutD|E is a multi-design de�ned by induction
on the number of designs in E:

CutD|∅ = D , (1)
CutD|E = Cut(D\S′)∪{p[S]} | E\{p} if p ∈ E , (2)
CutD|E = Cut(D\S′)∪{n[S]/x} | E\{n/x} if (n/x) ∈ E and x /∈ fv(D) , (3)
CutD|E = Cut(D\S′)[n[S]/x] | E\{n/x} if (n/x) ∈ E and x ∈ fv(D) , (4)

where, if we let d = p in (2) and d = n in (3) and (4),

S = {(m/y) ∈ D | y ∈ fv(d)} and S′ = S \ {(m/y) | y ∈ fv(E \ {d})} .

De�nition 6.1.9 (Orthogonality, behaviour)
Two closed-compatible multi-designs D and E are orthogonal if ([CutD|E]) = z. A
set B of cut-free multi-designs of same polarity is a behaviour if B⊥⊥ = B.

In the rest of this chapter, behaviours of designs will be called “atomic behaviours”.

6.2 About Internal Completeness

This section presents new results about the atomic behaviours constructed by connectives
in a non-linear setting. In non-linear ludics, internal completeness holds for negative con-
nectives, but it does not hold anymore for positive ones. To overcome this issue, we prove
alternative – and still meaningful – results for ´,⊕ and⊗ (Propositions 6.2.6, 6.2.7 and 6.2.8
respectively); these results are similar to what Basaldella and Faggian obtain [BF11] in a
di�erent non-linear ludics setting than ours, but they do not take additives into account.
Before this, we need preliminaries about the conjunction of designs.

6.2.a Conjunction of Designs

The non-determinism of designs allows us to de�ne the conjunction p ∧ q of two positive
designs, such that a design n is orthogonal to p∧ q if and only if it is orthogonal both to p
and q. Such a conjunction does not work that well on negative designs, but one implication
is still preserved (see Lemma 6.2.2).
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De�nition 6.2.1 (Conjunction of designs)
Let p, q be positive designs. The conjunction of p and q, noted p ∧ q is de�ned by:

p ∧ q = Ω if p = Ω or q = Ω ,

=
∧
{sk : k ∈ I ∪ J} if p =

∧
{si : i ∈ I} and q =

∧
{sj : j ∈ J}

with I and J disjoint .

Note that, given two total positive designs, we can always suppose that their index set is
disjoint modulo renaming, thus the conjunction of two positive designs is always de�ned.

The next lemma justi�es the de�nition; we state it in a generalised form, where oppo-
nents can be multi-design.

Lemma 6.2.2
Let p1, p2 be positive designs.

1. For every negative multi-design N, we have

p1 ∧ p2 ⊥ N if and only if (p1 ⊥ N and p2 ⊥ N) .

2. For every positive multi-design P, every a ∈ S and all variables −→x , we have

a(−→x ).(p1 ∧ p2) ⊥ P implies (a(−→x ).p1 ⊥ P and a(−→x ).p2 ⊥ P) .

Proof .
1. Note that Cut(p1∧p2)|N = (p1 ∧ p2)[N], and by de�nition we have

([(p1 ∧ p2)[N]]) = ([p1[N] ∧ p2[N]]) = ([p1[N]]) ∧ ([p2[N]])

if neither p1[N] nor p2[N] reduces to Ω. Moreover Cutp1|N = p1[N] and Cutp2|N =
p2[N]. Therefore

([Cut(p1∧p2)|N]) = z if and only if ([Cutp1|N]) = ([Cutp2|N]) = z .

2. We prove the result for P = p an atomic design, the multi-design case being similar.
Let us note

n = a(−→x ).(p1 ∧ p2)

n1 = a(−→x ).p1

n2 = a(−→x ).p2

and suppose n ⊥ p, that is
p[n/x0] 

∗ z .
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This means that each sequence of reductions starting from p[n/x0] and following a
particular sequence of choices ends on a daimon. In particular, some of these choices
are between p1 and p2, when reaching a copy of design n.
But any sequence of reduction starting from p[n1/x0] or from p[n2/x0] matches a
reduction sequence from p[n/x0], since it corresponds to making the same choice
(either always p1 or always p2) every time we reach a copy of n. Let us explain
this more precisely, reasoning by contradiction. Suppose there exists a reduction
sequence from p[ni/x0] (where i = 1 or 2) which is not a sequence of reduction
from p[n/x0]. Thus, at some point during interaction, the reduction sequences split,
and this happens necessarily in a situation involving n vs. ni (interacting against a
design of the form q = x0|a〈−→m〉) since this is the only di�erence between the two
interactions. In such a situation, we have

q[n/x0] p′1[n/x0] and q[n/x0] p′2[n/x0]

where
p′1 = p1[

−−−→
mi/xi] and p′2 = p2[

−−−→
mi/xi] ;

on the other hand,
q[ni/x0] p′i[ni/x0] .

Therefore, each time we reach this point during the interaction of p[n/x0], it su�ces
to choose pi, and the interaction will continue the same way it does for p[ni/x0]:
contradiction. We deduce that all the reduction sequences from p[ni/x0] end with
z, hence ni ⊥ p.

�

Example 6.2.3
Let us illustrate the fact that the converse of Lemma 6.2.2(2) does not hold in general.
Consider the designs depicted on Figure 9, where

n1 = a(y).(y|b〈〉) and n2 = a(y).(y|c〈〉) .

We have n1 ⊥ p and n2 ⊥ p, but if we consider the conjunction

n = a(y).(y|b〈〉 ∧ y|c〈〉)

of n1 and n2, then n 6⊥ p.

Remark that design n from the previous example is represented on Figure 8. Actually,
the designs of Figures 8 and 9 shed light on the fact that non-deterministic opponents make
it possible to explore a non-linear design throughout, leading to interaction traces (i.e.,
paths) that we could not get in a deterministic setting. This corresponds to a non-uniform
semantics for programs, as remarked by Maurel [Mau04]. Indeed, if we let true = n1 and
false = n2, then n is an argument that, when interrogated, can output either true or
false. Such a term cannot be de�ned in a uniform (that is, deterministic) world.
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x0|a〈y〉

cy()

x0|a〈y〉

cy()

z

by()

x0|a〈y〉

by()

z

p

ax0(y)

y|b〈〉

n1

ax0(y)

y|c〈〉

n2

Figure 9: A counterexample to the converse of Lemma 6.2.2(2)

Note that, with respect to interaction, the conjunction of designs∧ is close to the inter-
section of designs ∩ that we de�ned in the linear deterministic setting (De�nition 1.1.13).
We could extend this de�nition to embed non-linear non-deterministic designs, and if we
did so we would have the following: for all positive designs p and q such that p ∩ q is
de�ned, and for any negative multi-design N,

(p ∩ q) ⊥ N if and only if (p ∧ q) ⊥ N .

In other words, p∩ q and p∧ q are not separable. However p∩ q 6= p∧ q, and there would
also be cases when p ∩ q is not de�ned but p ∧ q is.

6.2.b Logical Connectives and Negative Internal Completeness

The logical connectives ´, ˆ, ⊕, ⊗ and( are de�ned as in De�nition 1.1.20, except that
now our notion of design has been widened. We can also consider the negative connectives
& (with) and ` (par) de�ned dualy to ⊕ and ⊗ respectively:

P & Q = (P⊥ ⊕Q⊥)⊥ ,

P`Q = (P⊥ ⊗Q⊥)⊥ .

Similarly to Lemma 3.2.3, we have

ˆP = (´P⊥)⊥ .

Note that we do not have explicit connectives ! and ? though we said that non-linearity in
ludics could model exponentials. In fact, non-linear ludics corresponds to logical systems
where formulas are implicitly exponential, typically LLP in which the structural rules are
extended to all the negative formulas. Without drawing a precise correspondence (others
did [BT10b]), the next subsection will still give an idea about how the interaction process
in behaviours constructed by logical connectives can now duplicate designs.

For the three negative connectives, we have the following internal completeness result.
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ax0(y)

y|b〈〉

n ∈ N

x0|H〈x〉

ax(y)

y|b〈〉

p1 ,

x0|H〈x〉

ax(y)

x0|H〈x〉

ax(y)

y|b〈〉

p2 , . . . ∈ ´N
Figure 10: A counterexample to internal completeness for ´

Theorem 6.2.4 (Internal completeness, negative non-linear case)
Let P,Q be positive atomic behaviours.

ˆP = {n | n�N ∈ N(x).Px} ,
P & Q = {n | n�π1 ∈ π1(x).Px and n�π2 ∈ π2(x).Qx} ,
P`Q = {n | n�℘ ∈ ℘(x, y).R} ,

where R = {{n1/x, n2/y} | n1 ∈ P⊥, n2 ∈ Q⊥}⊥ is a behaviour of multi-designs.

This result comes directly from Theorem 2.17 of [BT10b]. The incarnated form of the
theorem would follow easily, if we had de�ned incarnation for non-linear designs and
multi-designs.

6.2.c About Positive Internal Completeness

A problem is that, in this non-linear setting, internal completeness does not hold anymore
for the positive connectives, as shown for ´ in the following example.

Example 6.2.5

Consider the behaviour N = {n}⊥⊥ where n = a(y).(y|b〈〉). The positive atomic
behaviour ´N contains in particular all the designs pi de�ned by:

p1 = x0|H〈n〉 ,
pi+1 = x0|H〈a(y).pi〉 .

If i > 1 then pi /∈ H〈N〉, contradicting the internal completeness theorem for the
linear case (Theorem 1.1.21). All these designs are represented in Figure 10.
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x0|H〈x〉

nx

∈ ´N∈ ´N

n ∈ N ⇒ ∈ ´N

Figure 11: Construction of ´N

We however have alternative results to internal completeness for ´, ⊕ and ⊗ (Propo-
sitions 6.2.6, 6.2.7 and 6.2.8 respectively). Let us start with the shift.
Proposition 6.2.6

Given a negative atomic behaviourN, the following are equivalent:
1. p ∈ ´N \ {z}.
2. p = x0|H〈n〉 such that for every m ∈ ˆN⊥, ([n[m/x0]]) ∈ N.
3. p = x0|H〈n〉 such that for every q ∈ N⊥, ([q[n/x0]]) ∈ ´N.

Let us explain to what extent this result is close to internal completeness. It states that

´N = H〈N′〉 ∪ {z}

where, though N′ 6= N (unlike linear internal completeness), we still have an interesting
property which has two equivalent formulations:

• N′ is the set of designs falling in N when interacting with a design of ˆN⊥.
• N′ is the set of designs falling in ´N when interacting with a design of N⊥.

In particular, the �rst point acknowledges that, contrarily to the linear case, a design in
´N can force its opponent (in ˆN⊥) to duplicate, so as to interact several times with it.
Put di�erently, N′ is the behaviour of multi-designs de�ned by

N′ = {{q,m/x0} | q ∈ N⊥,m ∈ ˆN⊥}⊥ .

In particular, indeed, we have N ⊆ N′.
Note that we can also describe ´N in a coinductive way, by:
• H〈N〉 ∪ {z} ⊆ ´N
• if n ∈ N then x0|H〈n′〉 ∈ ´N where n′ is obtained from n by replacing some of its

positive subdesigns by designs of ´N (as illustrated in Figure 11).
Let us now give the equivalent results for ⊕ and ⊗. In fact, the three propositions

are very akin to each other, and so are their proofs. It would probably be possible to
factorise them into a single proposition, if we considered a generic form of connective
[Ter11, BT10b]. We leave it as future work.
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Proposition 6.2.7
Given negative atomic behavioursN1 andN2, the following are equivalent:

1. p ∈ N1 ⊕N2 \ {z}.
2. p = x0|ιi〈n〉 with i ∈ {1, 2} and such that for every m ∈ N⊥1 & N⊥2

([n[m/x0]]) ∈ Ni .

3. p = x0|ιi〈n〉 with i ∈ {1, 2} and such that for every q ∈ N⊥i

([q[n/x0]]) ∈ N1 ⊕N2 .

Proposition 6.2.8
Given negative atomic behavioursN1 andN2, the following are equivalent:

1. p ∈ N1 ⊗N2 \ {z}.
2. p = x0| • 〈n1, n2〉 such that for every i ∈ {1, 2} and every m ∈ N⊥1 `N⊥2

([ni[m/x0]]) ∈ Ni .

3. p = x0| • 〈n1, n2〉 such that for every i ∈ {1, 2} and every q ∈ N⊥i

([q[ni/x0]]) ∈ N1 ⊗N2 .

Similarly to the case of the shift, we have

N1 ⊕N2 = ι1〈N′1〉 ∪ ι2〈N′2〉 ∪ {z}
where N′i = {{q,m/x0} | q ∈ N⊥i ,m ∈ N⊥1 & N⊥2 }⊥

and

N1 ⊗N2 = •〈N′1,N′2〉 ∪ {z}
where N′i = {{q,m/x0} | q ∈ N⊥i ,m ∈ N⊥1 `N⊥2 }⊥ .

We give two out of three proofs for these propositions, since they are very similar: the
positive shift (Proposition 6.2.6), which is the simplest, and the tensor (Proposition 6.2.8),
which leads to consider behaviours of multi-designs. An important remark is that the
proofs rely on non-determinism, by taking the conjunction of some designs.

Proof (Prosition 6.2.6) .
(1)⇒ (2) Let p ∈ ´N such that p 6= z, and let m ∈ ˆN⊥. We have ˆN⊥ = (´N)⊥, so

p ⊥ m . By internal completeness (Theorem 6.2.4), there exists q ∈ N⊥ such that

m�N = N(x).qx .
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Since p 6= z, there exists a design n such that

p = x0|H〈n〉 .

Let q′ ∈ N⊥, let us show that

([n[m/x0]]) ⊥ q′ .

Let
m′ = N(x).(qx ∧ q′x) .

Since q, q′ ∈ N⊥ we have q ∧ q′ ∈ N⊥ by Lemma 6.2.2(1), therefore m′ ∈ ˆN⊥.
Hence p ⊥ m′. By the unique one-step reduction possible, we deduce

([p[m′/x0]]) = ([(q ∧ q′)[n[m′/x0]/x0]]) = z ,

thus
n[m′/x0] ⊥ (q ∧ q′) .

By Lemma 6.2.2(1), this implies that

n[m′/x0] ⊥ q′ , thus also m′ ⊥ q′[n/x0]

(since ([q′[n[m′/x0]/x0]]) = z). We deduce by Lemma 6.2.2(2) that

m�N ⊥ q′[n/x0] .

It follows immediately that

m ⊥ q′[n/x0] , thus also n[m/x0] ⊥ q′ ,

and by associativity
([n[m/x0]]) ⊥ q′ .

Hence the result.
(2)⇒ (1) Let

p = x0|H〈n〉

where n is a design such that for every m ∈ ˆN⊥ we have

([n[m/x0]]) ∈ N .

Let m ∈ ˆN⊥, and we show that

p ⊥ m .

By internal completeness, there exists q ∈ N⊥ such that

m�N = N(x).qx
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and we have
p[m/x0] q[n[m/x0]/x0] ,

where ([n[m/x0]]) ∈ N by hypothesis. Since q ∈ N⊥, by associativity we deduce

([q[n[m/x0]/x0]]) = ([q[([n[m/x0]])/x0]]) = z ,

thus
p ⊥ m .

Finally p ∈ ´N.
(2)⇔ (3) Suppose p is of the form p = x0|H〈n〉. Using associativity, we have:

for every m ∈ ˆN⊥, ([n[m/x0]]) ∈ N

⇔ for every m ∈ ˆN⊥ and every q ∈ N⊥, q ⊥ ([n[m/x0]])

⇔ for every m ∈ ˆN⊥ and every q ∈ N⊥, q ⊥ n[m/x0]

⇔ for every m ∈ ˆN⊥ and every q ∈ N⊥, ([q[n[m/x0]/x0]]) = z

⇔ for every m ∈ ˆN⊥ and every q ∈ N⊥, q[n/x0] ⊥ m

⇔ for every m ∈ ˆN⊥ and every q ∈ N⊥, ([q[n/x0]]) ⊥ m

⇔ for every q ∈ N⊥, ([q[n/x0]]) ∈ ´N .

�

Proof (Prosition 6.2.8) . In this proof, let R = {{m1/x1,m2/x2} | m1 ∈ N1,m2 ∈
N2}⊥. In particular we have (N⊥i )xi ⊆ R for i = 1, 2.
(1)⇒ (2) Let p ∈ N1 ⊗ N2 such that p 6= z, and let m ∈ N⊥1 ` N⊥2 . By de�nition

p ⊥ m. By internal completeness, there exists q ∈ R such that

m�℘ = ℘(x1, x2).q .

Since p 6= z, there exist designs n1, n2 such that

p = x0| • 〈n1, n2〉 .

Let i ∈ {1, 2}, let q′ ∈ N⊥i . We show that

([ni[m/x0]]) ⊥ q′ .

Let
m′ = ℘(x1, x2).(q ∧ q′xi) ,

and note that q′xi ∈ (N⊥i )xi ⊆ R. Since q, q′xi ∈ R we have q ∧ q′xi ∈ R by
Lemma 6.2.2(1), therefore m′ ∈ N⊥1 `N⊥2 . Hence m′ ⊥ p. By the unique one-step
reduction possible, we deduce

([p[m′/x0]]) = ([(q ∧ q′xi)[n1/x1, n2/x2][m
′/x0]]) = z ,
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hence
{n1/x1, n2/x2}[m′/x0] ⊥ (q ∧ q′xi) .

By Lemma 6.2.2(1), this implies that

{n1/x1, n2/x2}[m′/x0] ⊥ q′xi ,

i.e.,
ni[m

′/x0] ⊥ q′

since xi /∈ fv(q′xi). Thus also

m′ ⊥ q′[ni/x0]

(since ([q′[ni[m
′/x0]/x0]]) = z). We deduce by Lemma 6.2.2(2) that

m�℘ ⊥ q′[ni/x0] .

It follows that

m ⊥ q′[ni/x0] , thus also ni[m/x0] ⊥ q′ .

By associativity we get
([ni[m/x0]]) ⊥ q′ .

Hence the result.
(2)⇒ (1) Let

p = x0| • 〈n1, n2〉

where n1, n2 are such that for every m ∈ N⊥1 `N⊥2 we have

([n1[m/x0]]) ∈ N1 and ([n2[m/x0]]) ∈ N2 .

Let m ∈ N⊥1 `N⊥2 , and we show that

p ⊥ m .

By internal completeness there exists q ∈ R such that

m�℘ = ℘(x1, x2).q .

Let us write n′1 = n1[m/x0] and n′2 = n2[m/x0], we have

p[m/x0] q[n′1/x1, n
′
2/x2] ,

where ([n′1]) ∈ N1 and ([n′2]) ∈ N2 by hypothesis. Since q ∈ R, by associativity we
deduce

([q[n′1/x1, n
′
2/x2]]) = ([q[([n′1])/x1, ([n

′
2])/x2]]) = z ,

thus
p ⊥ m .

Finally p ∈ N1 ⊗N2.
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(2)⇔ (3) Suppose p is of the form p = x0| • 〈n1, n2〉. Using associativity, for every
i ∈ {1, 2} we have:

for every m ∈ N⊥1 `N⊥2 , ([ni[m/x0]]) ∈ Ni

⇔ for every m ∈ N⊥1 `N⊥2 and every q ∈ N⊥i , q ⊥ ([ni[m/x0]])

⇔ for every m ∈ N⊥1 `N⊥2 and every q ∈ N⊥i , q ⊥ ni[m/x0]

⇔ for every m ∈ N⊥1 `N⊥2 and every q ∈ N⊥i , ([q[ni[m/x0]/x0]]) = z

⇔ for every m ∈ N⊥1 `N⊥2 and every q ∈ N⊥i , q[ni/x0] ⊥ m

⇔ for every m ∈ N⊥1 `N⊥2 and every q ∈ N⊥i , ([q[ni/x0]]) ⊥ m

⇔ for every q ∈ N⊥i , ([q[ni/x0]]) ∈ N1 ⊗N2 .

�

6.3 Non-Linear Non-Deterministic Paths

This section introduces paths in non-linear ludics. In particular, paths are non-linear, i.e.,
a variable can appear free several times. After describing an interaction as a set of paths
(an n-path), we give ideas on what visitable paths of behaviours constructed by logical
connectives may look like.

In a previous work [Pav14] we investigated the notion of path in non-linear but de-
terministic ludics. Then, we needed a condition of internal coherence in the de�nition of
path; this condition had to do with uniformity (the fact that, when asked the same ques-
tion, the answer given is the same). With non-determinism, this condition is no longer
required. But an interaction is not described by a single interaction path anymore, it is
now associated to a set of paths corresponding to all the possible choices.

6.3.a Views and Paths

We consider the same notion of (located) action as in the previous chapters (De�ni-
tion 1.2.1). Thus we can still represent cut-free designs as trees/forests, but now there
can be several positive nodes as roots, or above a single negative node. We will sometimes
need to put annotations in order to di�erentiate between positive actions with the same
name. The idea is the following: given a positive design

∧
{si : i ∈ I}, for each i ∈ I

the �rst positive action of si receives the annotation i. This way, all the positive proper
actions in a design receive an annotation, and we can for example di�erentiate between
the views

bx0(x) x|a〈y〉1 and bx0(x) x|a〈y〉2

of design n1 from Figure 12 (page 125). But we avoid writing the annotations when un-
necessary.
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De�nition 6.3.1 (Ajn-sequence)
• An ajn-sequence is a sequence of actions satisfying all the conditions from

De�nition 1.2.5 except for Linearity.
• An annotated ajn-sequence is a pair (s , u) where s is an ajn-sequence and u

is a sequence of indexes of length the number of proper positive actions in s .
If κ+n is the n-th positive action of s , then the n-th element of u is called the
annotation of κ+n in s .

De�nition 6.3.2 (View)
• A view is an annotated ajn-sequence (v, u) such that each negative action of v

which is not the �rst one is justi�ed by the immediate previous action.
• Given a cut-free design d, the views of d, noted V[d], is the set of views de-

�ned recursively as in De�nition 1.2.6, adding the following case for positive
disjunction:

V[
∧
{si : i ∈ I}] =

⋃
i∈I V[si] if I 6= ∅

and where each proper positive action is annotated with the index i associated
to the corresponding predesign.

• The view of an annotated ajn-sequence (s , u) is p(s , u)q = (psq, u′) where:
– psq is de�ned as the view of an aj-sequence (De�nition 1.2.7),
– u′ is the subsequence of u containing only the annotations of the proper

positive actions appearing in psq.

Notation
For annotated ajn-sequences, we may abusively write s instead of (s , u), and psq in-
stead of p(s , u)q, the annotations being implicit.

De�nition 6.3.3 (Path)
• A path is a positive-ended (or empty) P-visible and O-visible ajn-sequence.
• Given a cut-free design d, a path s is a path of d if there exists a sequence u

such that for all pre�x s ′ of s , p(s ′, u)q is a view of d.

Example 6.3.4
Consider the designs of Figure 12. Designs n1 and n2 have di�erent views, even up to
re-indexing of positive actions. This implies in particular that the path

s = bx0(x) x|a〈y〉 cy(z) z|d〈〉 cy(z) z|e〈〉

is a path of n2 but not of n1, indeed: we need to choose between annotating x|a〈y〉
with 1 or 2, thus we can never visit both branches of n1. As a consequence, we have
n1 ⊥ p but n2 6⊥ p; a more precise explanation will be given in the next subsection
(Example 6.3.10).
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bx0(x)

x|a〈y〉2

cy(z)

z|e〈〉1

x|a〈y〉1

cy(z)

z|d〈〉1

∧

n1

bx0(x)

x|a〈y〉1

cy(z)

z|e〈〉2z|d〈〉1 ∧

n2

x0|b〈x〉

a(x)y

y|c〈z〉

ez()

y|c〈z〉

ez()

z

dz()

y|c〈z〉

dz()

z

p

Figure 12: N-paths and orthogonality

This example also shows that a non-linear path can visit several times the same
action in a design: here the negative action cy(z) of design n2 appears twice in s .

De�nition 6.3.5 (Interaction path)
Let d and e be cut-free atomic designs of opposite polarities. An interaction path of
d with e is a path s of d such that ∼s is a path of e.

Unlike the linear case, the existence of an interaction path between d and e does not ensure
their orthogonality. The convergence of interaction now requires that we have a set of such
interaction paths, coherent in a sense. Such a set is called an n-path and is described in the
next subsection.

6.3.b N-Paths

Given two cut-free atomic designs of opposite polarities d and e, write 〈d← e〉 for the set
of interaction paths of d with e, and remark that 〈e ← d〉 =

∼
〈d← e〉. After de�ning n-

paths, we conjecture that d ⊥ e if and only if the sets 〈d← e〉 and 〈e← d〉 are respectively
n-paths of d and e.

Notation
In the following, given a set S of sequences, let us denote by pref(S) the set of the
pre�xes of sequences of S.
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De�nition 6.3.6 (N-path)
A non-deterministic path or n-path is a non-empty set S of paths satisfying the
following conditions:
(P-universality) For all pre�xes sκ+, t ∈ pref(S), if psq = ptq then tκ+ ∈ pref(S);
(O-universality) For all pre�xes sκ−, t ∈ pref(S), if xsy = xty then tκ− ∈ pref(S).

The idea, formalised in Conjecture 6.3.9, is that an n-path corresponds to a (convergent)
interaction. A path in it is the interaction trace for a particular choice made at each non-
deterministic branching. Thus an n-path containing a single path is for a deterministic
interaction.

The P-universality condition ensures that if, when reaching a conjunction, the n-path
visits a positive action κ+ of this conjunction, then each time it reaches the same conjunc-
tion it must be able to visit κ+. This requirement comes from the universality of our non-
determinism: interaction must systematically visit all the positive actions of a conjunction
it reaches. O-universality corresponds to the same requirement for the orthogonal.

Remark 6.3.7

If S is an n-path then its dual ∼S = {∼s | s ∈ S} is an n-path.

De�nition 6.3.8 (N-path of a design)
Given a cut-free design d and an n-path S, S is an n-path of d if all the paths in S are
paths of d and the following condition is satis�ed:

For every path sκ+ of d, if there exists κ′+ such that sκ′+ ∈ pref(S) then
sκ+ ∈ pref(S).

Again, the condition in this de�nition expresses the universality of non-determinism: it
ensures that if, at some point of the interaction, at least one positive action in a conjunction
of d is visited by the n-path, then all the positive actions of this conjunction are.

The purpose of n-paths would be to prove the following conjecture, in order to estab-
lish the exact correspondence between orthogonality and n-paths.

Conjecture 6.3.9
Let d and e be cut-free atomic designs of opposite polarities. d ⊥ e if and only if there
exists an n-path S of d such that

∼
S is an n-path of e; moreover, this n-path is S = 〈d← e〉.

We are strongly convinced that this holds, but we have not proved it yet. It would probably
require to adapt all the results about multi-designs (Chapter 2) to the non-linear setting,
indeed: the linear version of this conjecture (Proposition 1.2.11) relies on such results. Let
us however give the following example as an intuition.

Example 6.3.10
Going back to the designs of Figure 12, we have n1 ⊥ p with
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〈n1 ← p〉 = { bx0(x) x|a〈y〉 cy(z) z|d〈〉 cy(z) z|d〈〉 ,

bx0(x) x|a〈y〉 cy(z) z|e〈〉 cy(z) z|e〈〉 } .

We can check that 〈n1 ← p〉 is an n-path of n1 while
∼
〈n1 ← p〉 = 〈p ← n1〉 is an

n-path of p. On the other hand we have n2 6⊥ p and

〈n2 ← p〉 = 〈n1 ← p〉

where 〈n2 ← p〉 is indeed an n-path but not an n-path of n2; the problem is that:

though bx0(x) x|a〈y〉 cy(z) z|d〈〉 cy(z) z|e〈〉 is a path of n2
and bx0(x) x|a〈y〉 cy(z) z|d〈〉 cy(z) z|d〈〉 ∈ pref(〈n2 ← p〉)

we have bx0(x) x|a〈y〉 cy(z) z|d〈〉 cy(z) z|e〈〉 6∈ pref(〈n2 ← p〉)

which contradicts the condition in De�nition 6.3.8.

6.4 Outlook

We now present some possible future directions of research.

Visitable paths and connectives. There is still work to undertake concerning the re-
lation between paths and logical connectives in a non-linear setting. In particular, as for
the linear case (Section 3.2 in Chapter 3), we would like to prove the form of visitable
paths of behaviours constructed by connectives. Those visitable paths are in particular
non-linear, thus some parts can be repeated many times. We conjecture the way they may
look like.

De�nition 6.4.1 (Visitable path)

A path s is visitable in an atomic behaviour B if there exist d ∈ B and e ∈ B⊥ such
that s ∈ 〈d← e〉. The set of visitable paths of B is written VB.

Shu�le � and anti-shu�le �on non-linear paths are de�ned the same way as for
linear ones (De�nition 1.3.1); but s � t is now a larger set than in the linear case, since
the notion of path has been extended. We also consider unary operations� and �on
a set of path V , de�ned by:

�V =
⋃
k∈N

{s1 � ...� sk | si ∈ V } and �

V =
⋃
k∈N

{s1 �... �sk | si ∈ V } .

In order to prove the conjecture below, we should rede�ne regularity, thus also incarnation:
this is not di�cult. Similarly to the visitable paths of the tensor (Propositions 3.2.6 and
3.2.8), we guess that regularity is needed to have such simple formulations.
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Conjecture 6.4.2
Let M,N be negative behaviours, let P be a positive behaviour, and suppose these be-
haviours are regular. We have:

V´N =

�

(κHVN) ,

VˆP =�(κNVP) ,

VM⊕N =

�

(κι1VM) � �(κι2VN) ,

VM⊗N =

�

(κ•(VM � VN)) .

Compared to the linear version of visitable paths for connectives, the non-linear ones
combine the paths with anti-shu�es, which corresponds to the possibility of repeating a
location. We believe that, similarly to the linear case, the proof of this conjecture relies in
particular on:

• internal completeness for the negative connectives (Theorem 6.2.4) and the weaker
alternative for the positive connectives (Propositions 6.2.6, 6.2.7 and 6.2.8),

• a non-linear equivalent of the associativity for interaction paths (Proposition 2.2.12),
which would require that we adapt many results concerning multi-designs to non-
linear ludics.

Regularity and purity. Towards a study of the types of non-linear ludics, as we did
in the linear case, we could use the form of the visitable paths to deduce regularity and
purity of behaviours constructed by connectives.

Conjecture 6.4.3
In non-linear ludics:

• regularity is stable under ´, ˆ,⊕,⊗,`,&,(;
• purity is stable under ´, ˆ,⊕,⊗.

Recall that Fouqueré and Quatrini [FQ16] proved, in linear ludics, that �nite regular
behaviours correspond exactly to the interpretation of MALL formulas (Proposition 4.3.10).
Following this idea, we believe that it is possible to capture LLP in non-linear ludics.

Conjecture 6.4.4
In non-linear ludics, a behaviour is the denotation of a formula of LLP if and only if it is
regular and �nite.

Separation vs. weak separation. It has been observed [BF11, BT10b, Mau04] that
separation, an analytical theorem of linear ludics which is the analogue of Böhm’s theorem
in λ-calculus, does not hold in the non-linear setting, even if we restrict to deterministic
designs. In other words, there exist designs d1 6= d2 that are not separable, in the sense
that every design e is orthogonal either to both d1 and d2 or to none of them. The designs
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pi of Figure 10 (page 117) are an example of non-separable designs; in fact, it is because we
lack separation that we do not have true internal completeness for positive connectives.

But we might have an alternative, weak separation, that di�erentiates designs accord-
ing to interaction paths.

Conjecture 6.4.5 (Weak separation)
Let d1 and d2 be cut-free atomic designs of same polarity such that d1 6= d2. There exists
a cut-free atomic design e such that 〈d1 ← e〉 6= 〈d2 ← e〉.
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Conclusion

The research conducted in this thesis has consisted in exploring ludics to highlight and
deconstruct some behaviours with an interesting computational or logical meaning. More
precisely, we focused on the behaviours representing data types and functional types, and
on the behaviours of non-linear ludics.

A �rst step has been to gather all the necessary material into the framework of com-
putational ludics, where designs are terms. The properties of behaviours with respect to
interaction can be characterised by their visitable paths, and we have followed this ap-
proach to analyse the behaviours we were interested in. We have expressed the visitable
paths of the behaviours constructed by logical connectives in a compositional way. This,
together with internal completeness, has led us to prove that these behaviours were reg-
ular – the key notion for the characterisation of MALL in ludics – and those constructed
without( were pure – that is, type safe.

Interpreting the inductive data types in ludics requires that we consider a least �xed
point operator in addition to the usual connectives. Adopting a constructive approach, we
have provided an internal completeness result for �xed points, unveiling the structure of
the behaviours corresponding to inductive types. As a consequence, we could show that
data behaviours were regular and pure. But the behaviours interpreting types of functions
taking functions as argument are impure: a bad interruption of the execution can happen
in the case of a ludics program which is not strictly functional (in the sense of functional
programming). However, under regularity assumption, well-bracketedness keeps from
getting such errors.

The work achieved so far lies mainly in linear ludics, but we have also started to study
non-linearity, which is interesting from both the “proof” and the “program” perspective:
indeed, it allows to consider proofs that can use their hypotheses several times, as well
as programs that can call their arguments several times. In non-linear ludics, internal
completeness does not hold anymore for the positive connectives, but we could recover
a weaker form. We have also described how the paths could be adapted to describe an
interaction in a setting that is both non-linear and non-deterministic, with the notion of
n-path.

Some ideas for future work then arise naturally:
• We plan to extend our study of data types with greatest �xed points νX.A, i.e.,

coinduction (discussed in Section 4.4).
• Getting a real characterisation of µMALL in ludics should be possible, by proving
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that a behaviour is regular if and only if it is the denotation of a µMALL formula
(Conjecture 4.3.11).

• It would be interesting to consider �xed points together with functional types (dis-
cussed in Remark 5.1.3).

• Another future goal is to generalise the study of data and functions to non-linear lu-
dics. This would require to lift the results on multi-designs to the non-linear setting,
in order to prove that the existence of an n-path matches orthogonality (Conjec-
ture 6.3.9) and to make explicit the form of the visitable paths for the connectives
(Conjecture 6.4.2). From this, we believe we could deduce regularity and purity (Con-
jecture 6.4.3).

• In non-linear ludics, we would also like to characterise the behaviours corresponding
to LLP as the regular and �nite ones (Conjecture 6.4.4)

• Finally, we believe that we can recover a weaker form of separation in non-linear
ludics (Conjecture 6.4.5), which may have some interesting outcomes.

More generally, studying non-regularity in ludics could also be interesting. Indeed, our
exploration has only led to regular behaviours for the moment. The non-regular ones have
more surprising interactions, and could model logical or programming features with a no-
tion of orientation. For example, we believe that non-regular behaviours could represent
processes executions in concurrent computing, with notions like synchronisation, dead-
locks, etc. On a logical side, non-regularity can lead to new oriented logical connectives,
for example the oriented tensor studied by Fouqueré and Quatrini [FQ16].

z
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Inductive, Functional and Non-Linear Types in Ludics

Abstract

This thesis investigates the types of ludics. Within the context of the Curry–Howard cor-
respondence, ludics is a framework in which the dynamic aspects of both logic and pro-
gramming can be studied. The basic objects, called designs, are untyped in�nitary proofs
that can also be seen as strategies from the perspective of game semantics, and a type or
behaviour is a set of designs well-behaved with respect to interaction. We are interested
in observing the interactive properties of behaviours. Our attention is particularly focused
on behaviours representing the types of data and functions, and on non-linear behaviours
which allow the duplication of objects. A new internal completeness result for in�nite
unions unveils the structure of inductive data types. Thanks to an analysis of the visitable
paths, i.e., the possible execution traces, we prove that inductive and functional behaviours
are regular, paving the way for a characterisation of µMALL in ludics. We also show that
a functional behaviour is pure, a property ensuring the safety of typing, if and only if it
is not a type of functions taking functions as argument. Finally, we set the bases for a
precise study of non-linearity in ludics by recovering a form of internal completeness and
discussing the visitable paths.

Types inductifs, fonctionnels et non-linéaires en ludiqe

Résumé

Cette thèse est consacrée à une exploration des types de la ludique. S’inscrivant dans un
contexte marqué par la correspondance de Curry–Howard, la ludique est un cadre permet-
tant d’étudier l’aspect dynamique de la logique et de la programmation. Les objets de base,
appelés desseins, sont des preuves in�nitaires non-typées qui peuvent également être vues
comme des stratégies sous l’angle de la sémantique des jeux, et un type ou comportement
est un ensemble de desseins se conduisant de la même manière du point de vue de l’inter-
action. On s’intéresse aux propriétés interactives des comportements. Notre attention se
porte en particulier sur les comportements représentant les types de données et de fonc-
tions, et sur les comportements non-linéaires qui permettent la duplication d’objets. Un
nouveau résultat de complétude interne pour les unions in�nies dévoile la structure des
types de données inductifs. Grâce à une analyse des chemins visitables, c’est-à-dire des
possibles traces d’exécution, on prouve que les comportements inductifs et fonctionnels
sont réguliers, ouvrant la voie pour une caractérisation de µMALL en ludique. On montre
également qu’un comportement fonctionnel est pur, une propriété garantissant la sûreté
du typage, si et seulement si ce n’est pas un type de fonctions prenant des fonctions en
argument. En�n, on pose les bases d’une étude précise de la non-linéarité en ludique en
retrouvant une forme de complétude interne et en discutant des chemins visitables.
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