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Abstract

Implicit Computational Complexity and Compilers

Complexity theory helps us predict and control resources, usually time and space, consumed by programs.

Static analysis on specific syntactic criterion allows us to categorize some programs. A common approach is to

observe the program’s data’s behavior. For instance, the detection of non-size-increasing programs is based on

a simple principle : counting memory allocation and deallocation, particularly in loops. This way, we can detect

programs which compute within a constant amount of space. This method can easily be expressed as property

on control flow graphs. Because analyses on data’s behaviour are syntactic, they can be done at compile time.

Because they are only static, those analyses are not always computable or easily computable and approximations

are needed. “Size-Change Principle” from C. S. Lee, N. D. Jones et A. M. Ben-Amram presented a method to

predict termination by observing resources evolution and a lot of research came from this theory. Until now,

these implicit complexity theories were essentially applied on more or less toy languages. This thesis applies

implicit computational complexity methods into “real life” programs by manipulating intermediate representa-

tion languages in compilers. This give an accurate idea of the actual expressivity of these analyses and show

that implicit computational complexity and compilers communities can fuel each other fruitfully. As we show

in this thesis, the methods developed are quite generals and open the way to several new applications.

keywords Implicit computational complexity, Static analysis, Compilers
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Résumé

Complexité Implicite et compilateurs

La théorie de la complexité s’intéresse à la gestion des ressources, temps ou espace, consommés par un pro-

gramme lors de son exécution. L’analyse statique nous permet de rechercher certains critères syntaxiques afin

de catégoriser des familles de programmes. L’une des approches les plus fructueuses dans le domaine consiste

à observer le comportement potentiel des données manipulées. Par exemple, la détection de programmes “non

size increasing” se base sur le principe très simple de compter le nombre d’allocations et de dé-allocations de

mémoire, en particulier au cours de boucles et on arrive ainsi à détecter les programmes calculant en espace

constant. Cette méthode s’exprime très bien comme propriété sur les graphes de flot de contrôle. Comme les

méthodes de complexité implicite fonctionnent à l’aide de critères purement syntaxiques, ces analyses peuvent

être faites au moment de la compilation. Parce qu’elles ne sont ici que statiques, ces analyses ne sont pas

toujours calculables ou facilement calculables, des compromis doivent être faits en s’autorisant des approxima-

tions. Dans le sillon du “Size-Change Principle” de C. S. Lee, N. D. Jones et A. M. Ben-Amram, beaucoup de

recherches reprennent cette méthode de prédiction de terminaison par observation de l’évolution des ressources.

Pour le moment, ces méthodes venant des théories de la complexité implicite ont surtout été appliquées sur des

langages plus ou moins jouets. Cette thèse tend à porter ces méthodes sur de “vrais” langages de programma-

tion en s’appliquant au niveau des représentations intermédiaires dans des compilateurs largement utilisés. Elle

fournit à la communauté un outil permettant de traiter une grande quantité d’exemples et d’avoir une idée plus

précise de l’expressivité réelle de ces analyses. De plus cette thèse crée un pont entre deux communautés, celle

de la complexité implicite et celle de la compilation, montrant ainsi que chacune peut apporter à l’autre.

mots clés Complexité implicite, Analyses statiques, Compilateurs
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soucier d’autre que notre avenir personnel. Ensuite vient mon père qui a su semer en moi un intérêt pour les

sciences et plus particulièrement l’informatique. Il y a, plus généralement, le soutien de la famille, je pense aux
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Luc pour ton aide et tes meilleurs découvertes de ce monde, je pense au warpigs, Gillette et 20 Fingers, Martine
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influences m’ont aidé à faire les bons choix aux bons moments. Alice sans qui je n’aurais sûrement pas pu finir
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Introduction

Context

Let’s play chess! Chess is a turn based board game which opposes two opponents who are moving pieces in

respect to some rules. At each turn, a player has a finite number of possible moves offering a finite number of

new possible moves and so on. The number of possible sequences of moves grows exponentially. This means

that we need a lot of time to analyse all of them and possibly choose the best or maybe just avoid the worst

sequences. Morality: “exponential is bad” - as my first algorithmic professor used to say. It is worth being

aware that, at a human scale, it is impossible to plan every move of a chess game. At least it will prevent us

from losing time by trying, even more if it is a blitz game or if the rules are changing daily2. . .

Complexity of programs

The study of complexity theory helps us predict and control resources (usually time and space) consumed by

programs. It extends to the search for the minimal amount of resources needed to solve a given problem.

It is relatively easy to compute the complexity of an algorithm but there are many different ways to solve

a problem, meaning many different programs that compute the same function, each with a potential different

complexity. For instance, sorting a list of n elements can be done in time O(n2) with the insertion sort algorithm

but in time O(n× log(n)) with a merge sort one. Figure 1 gives an idea of the growth speed of both functions.

Since there are infinitely many programs solving the same problem (or computing the same function), find-

ing the minimal complexity corresponding to a problem is difficult. In one hand, we can show upper bounds on

the complexity of functions: the existence of the insertion sort algorithm shows that the complexity of sorting

259 quintillion was the number of possible ENIGMA machine settings allied needed to test daily during the World War II
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is at most O(n2). On the other hand, lower bounds on the complexity of functions are usually extremely hard

to prove.

Knowing the complexity of a program is obviously interesting for two main reasons:

1. it helps determine efficient and non efficient parts of the program.

2. it helps predict the amount of resources needed regarding the potential inputs.

Those are two very important issues: the first is about detecting weaknesses and potential optimizations,

the second is more about security and safety of programs. Safeness is important for embedded systems such as

autonomous systems with restricted resources (i.e satellites). It is also important for security: an exaggerated3

example could be the well known RSA cryptographic system which is related to the integer factorization prob-

lem. This problem is presumed “hard” to solve, indeed no efficient algorithm has been found. When we say

“efficient” it means able to solve it in polynomial time. But it has never been proved that such an algorithm does

not exist. Yes, most of communication systems said “secure” are based on a presumption that the lower bound

complexity level of this problem is not polynomial.

While computing the complexity of a given program is not as hard as finding lower bound for a given

problem, a “real life” program is not an easy task, even less when the program is complicated or uses some

3It is exaggerated because a proof of P=NP would just mean that no scheme can be provably secure ac-

cording to the accepted definitions of security, https://crypto.stackexchange.com/questions/8891/

p-np-and-current-cryptographic-systems
10
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advanced features of programming languages. Complexity is formally defined with abstract computational

models (e.g. Turing Machines) but because it is in a too low level language, they are not widely used for actual

programs. This is why actual programs are hard to analyse and this is why communities try to develop tools

which are able to perform a clever analysis of actual programs, determine their complexity, and maybe even

analyse the function computed by the program and suggest some optimizations or drastic rewrites to improve

its complexity.

In most of the cases, predicting the amount of resources needed by a program for its execution is nearly

impossible. In Real-time systems or cloud computing, the execution environment is so unpredictable that the

only viable solution remains simulation, testing and monitoring, with all their drawbacks.

Static analyses are made without executing the program, so we cannot know which path of execution the

program will compute exactly (see section 1.2). Here, Static Complexity Analysis is the best alternative we have

to anticipate performance. The price to pay is precision.

20 years of Implicit Computational Complexity

The branch of research which study the theory and practice of static complexity analysis as described above goes

under the name of Implicit Computational Complexity (ICC). The field of Implicit Computational Complexity

was initiated by the early works of Cobham on Bounded Recursion [Cobham, 1962], and the breakthrough of

Bellantoni and Cook on Safe Recursion [Bellantoni and Cook, 1992].

These works designed restricted programming languages in which it is only possible to write programs that

run in polynomial time. The characterisation of polynomial time complexity they are based on are implicit in

two senses: firstly, there is no explicit reference to an actual computational model or other kind of machinery and

the language they use is (arguably) somewhat similar to actual programming languages; secondly, in the case

of Safe Recursion, there is no reference to an explicit bound on programs, the syntax is (strongly) constrained

but no bound needs to be provided.

That way, the programmer does not need to know about complexity anymore, and the system can nonetheless

provide bounds. Of course, the drawback is that the language is too restricted. In many cases, a programmer

can very well write a polytime program which is not part of the language. The system thus rejects it and the

program needs to be entirely rewritten. Since finding the complexity of any program is an undecidable problem,

11



we cannot entirely avoid these “false negatives”. However, the early ICC languages tend to be too restricted for

practical use. In the years since the breakthrough of Safe Recursion, many other ICC systems have been created.

A great focus has been put on getting more and more expressivity, that is, being able to accurately analyse as

many programs as possible, and, hopefully, as many actual programs in actual programming languages as

possible.

More generally, ICC aims at finding syntactic criteria on programs that guarantee some seman-

tic property. Since then, many different directions have been studied in ICC. The main ideas

revolve around following data flow (the Tiering of Leivant and Marion [Leivant and Marion, 1995],

the Size Change Termination of Lee, Jones and Ben-Amram [Lee et al., 2001], the Non-Size Increas-

ing programs of Hofmann [Hofmann, 1999a], . . . ), performing a static check on values (the Quasi-

interpretations of Bonfante, Marion and Moyen [Bonfante et al., 2011], the mwp-polynomials of Kristiansen

and Jones [Kristiansen and Jones, 2009], . . . ) or enforcing a strict type checking (variations on Girard’s Lin-

ear Logic [Girard, 1987] such as Baillot and Terui’s DLAL [Baillot and Terui, 2009]). Schöpp introduced a

more restricted Bounded Linear Logic: the Stratified Bounded Affine Logic [Schopp, 2007]. Hofmann and

Jost [Hofmann and Jost, 2003] furnish upper bounds on the heap usage in functional programming by accepting

some restrictions.

Applications

Logical methods have been applied to static complexity analysis with considerable success. Today, we have

implicit characterizations of several remarkable complexity classes, both of practical interest (constant space,

L, NC, P) and of theoretical interest (PSPACE, ELEMENTARY). However, in spite of the variety of tools used

to obtain these characterizations (structural proof theory, linear logic, type systems, quasi-interpretations. . . ),

the range of languages considered is still quite limited, and essentially confined to first-order term rewriting

systems and functional languages (which, in turn, all boil down to some form of typed-calculus). Moreover,

even if we restrict ourselves within these programming paradigms, there is a problem of expressiveness.

We may resume the situation with Figure 2. On the vertical axis, we have a higher and higher degree of

expressiveness, i.e., we are closer and closer to intensional completeness. On the horizontal axis, we have

richer and richer programming paradigms: at the low end we have first-order term rewriting, followed by

12



higher-order rewriting and functional programming (λ-calculus), then we may think of functional languages

with imperative features (memory allocation, side effects, etc.), then non-deterministic and/or probabilistic

languages, and we may put languages exhibiting parallelism and concurrent features at the high end. The dots

in the picture could represent our present achievements: a satisfactory level of expressiveness is obtained only

for the poorest paradigms (first-order term rewriting), and as we move along the horizontal axis, we either have

poor expressiveness or no result at all. The dashed curve represents the decidability barrier: it is natural to

picture it as a hyperbolic slope, because intensional completeness becomes harder as richness increases.

richness

expressiveness

Figure 2: Expressiveness versus richness.

On “toy” languages

As said previously, most of the mentioned results usually concern what we will naively call “toy” languages

(because not widely used on real programs) such as Term Rewriting Systems, λ-calculus or the LOOP language.

Term Rewrite Systems

([Avanzini, 2013] and others) use Term Rewrite Systems (TRS for short) machine model which is close to first

order functional programs. A term rewrite system (which build a program) consists of a collection of directed

equations, so called rewrite rules. Computation in this model is performed by successively applying equations

from left to right.

Term rewriting forms a Turing complete model of computation, hence fundamental questions as for example

termination of a given TRS, are undecidable in general. But TRS is a powerful abstract model for cost analysis:
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fibo(n) ->

if n <= 1

then n

else fibo(n-1)+fibo(n-2)

Figure 3: Fibonacci function in TRS.

it is easier to guess the relation between input’s size and the number of rewrite steps performed. This is why

a lot of work on TRS concern Termination analysis which provides upper bound on the maximal length of

reductions.

I can now quickly introduce the main ideas of Size-Change Principle (SCP). SCP studies termination on

TRSs with the following principle: if the reduction of a term is infinite, an infinity of functions call is made. If

we study all the possible sequences or chains of functions and show that none of them can be infinite then we

can show termination of this TRS. Resource Control Graph is one of the tool used for “SCP like” methods.

Resource Control Graphs Resource Control Graphs (RCG) is a somewhat generic framework in which to

express several different ICC analysis. This framework will be reused and customised all along this thesis.

This analysis is strongly based on annotated control graphs for the program, and the kind of annotations, as

well as the way to combine them, allows to study various properties of programs. Each state of the program

is abstracted by its size, and each instruction is abstracted by the effects it has on the state size whenever it is

executed. The abstractions of instruction effects are then used as weights on the arcs of a program’s Control

Flow Graph.

Let’s give a simple example, left-hand side of Figure 4 is a reverse function written with a stack machine.

If we add a weight, corresponding here to the space used by the program with the pop and push calls, to the

Control Flow Graph we obtain the Resource Control Graph shown on the right.

Termination is proved by finding decreases in a well-founded order on state-size, in line with other termi-

nation analyses, resulting in proofs similar in spirit to those produced by Size Change Termination analysis.

However, the size of states may also be used to measure the amount of space consumed by the program at

each point of execution. This leads to an alternative characterisation of the Non Size Increasing programs, sec-

tion 1.4. This new tool, which is one of our contribution, is able to encompass several existing analyses and

similarities with other studies suggesting that even more analyses might be expressable in this framework, thus

giving hopes for a generic tool for studying programs.
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0: if l = [] then goto 4;

1: h:=pop(l);

2: push(h,acc);

3: goto 0;

4: end;

0

end 1

2

3

0 0

-1

+1

0

Figure 4: RCG overview (explained in ).

Many such systems have been designed for various programming paradigms, making it extremely difficult

to compare them efficiently. Yet, they often seem to rely on the same techniques adapted in various ways to

cope with the idiosyncrasies of the programming paradigms. RCG is an attempt to take a step back and use a

common language to describe ICC as a single beast.

Among powerful methods to prove termination like in [Hofbauer and Lautemann, 1989, Bonfante et al., 2001,

Moser, 2009] we can find [Moyen, 2001] who presents ICAR, a tool able to analyses the implicit complexity of

TRS using RCG. Termination is checked using “Path Ordering” and complexity upper bound can be determined

with Quasi-Interpretations.

Quasi-Interpretations Quasi-interpretations (QI) can be considered as a static analysis methodology for in-

ferring asymptotic resource bounds for first-order functional programs written as constructor term rewriting

systems. Used with termination orderings, they allow to define various criteria to guarantee either space or time

complexity bounds [Bonfante et al., 2004, Bonfante et al., 2005a, Bonfante et al., 2005b, Baillot et al., 2006,

Bonfante et al., 2011].

Comparatively to Safe Recursion, the main advances are of two kinds. Firstly, instead of designing a re-

stricted language, QI work as an analysis on a Turing complete language. Programmers do not need to struggle

to write their programs any more. Obviously, the system will thus not be able to analyse everything, but it is
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still possible to run a program which does not have a QI. Thus, some parts of the program can be correctly

analysed while some are still without guarantees. It is then up to the programmer to either try and rewrite those

parts (and only those parts), or run the program as is (for example, because an external, handcrafted proof is

provided). Secondly, the analysis is implicit in an additional sense: the implicit complexity of the program. In

several cases, the given program may run in exponential time but QI nonetheless allow to detect that it would

run in polynomial time after some transformations. Thus, instead of analysing the complexity of the program

itself(explicit complexity), it tries to analyse the complexity of the function (implicit complexity). This is ob-

viously not perfect (in many cases, the implicit complexity is not detected) but still works on a huge class of

programs, namely all the programs that would be polynomial time if some Dynamic Programming technique

were used. Quasi-Interpretations have been reused in several other works and are now a well-known tool in the

ICC community.

λ-calculus

The ICC community uses λ-calculus for its types disciplines. [Baillot and Terui, 2009] presented a polymorphic

type system for lambda calculus ensuring that well-typed programs can be executed in polynomial time called

dual light affine logic (DLAL). DLAL ensures good properties on lambda-terms: a well-typed term admits a

polynomial bound on the length of any of its beta reduction sequences.

Similarly to SCT, [Abel and Altenkirch, 2002] introduced a λ-calculus language on which they implemented

a syntactical analysis able to ensure that recursive calls appear only with arguments structurally smaller than the

input parameters.

[Laird et al., 2013] compare typed λ-calculus programs regarding to how they compute something (how

many steps, in how many ways or with what probability).

By the Curry-Howard correspondence, proofs can be seen as programs. Coupling with Linear Logic it

provides interesting approaches on resources analysis. [Hofmann and Jost, 2003] wish to extend this setting to

verification of quantitative properties, such as time or space complexity bounds.
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Others

[Hofmann and Schopp, 2009] use pointers programs as abstraction for LOGSPACE-algorithms and show that

pointers programs with counting can decide undirected s-t-reachability problem.

Even if such languages do have a strong utility in Theoretical Computer Science, they are not daily used by

programmers. On the other hand, actual languages use much more constructions (e.g. objects, pattern matching,

exceptions, etc. . . ) which make analyses complicated. Thus, even after 25 years of ICC, it is not possible today

to apply its techniques on actual programs. We start filling the gap.

On “real” languages

Here we naively dub “real” languages, those which are widely used. Most of them are designed to combine rich

programming paradigms and to give the maximum freedom to the developers. Often, the whole is coated by a

comfortable syntactic sugar. The following is a really non-exhaustive list of what have been done in the field of

complexity analysis over widely used languages. Most of them search for WCET or worst-case execution time

and try to approximate number of iterations a loop can perform and provide constraints around the program

flow. To compare with ICC theories, where number of iteration of a loop is often decidedly unpredictable and

where all cases are considered because it is “negligible”, here it is really more refined.

First, we can distinguish two kind of projects: those which need user annotations (loop bounds or ranking

function) and those which not. Here we will focus on the second kind.

[Alias et al., 2010] prove termination of flowchart programs by observing decreasing behaviours of com-

puted ranking functions from program states. Their tool, dubbed RANK [Alias et al., 2013], translates C pro-

grams into integer interpreted automaton. This tool tries to provide counterexamples in the case the program

may not terminate. In the other case, it computes the worst-case computational complexity of the program. In

[Gonnord et al., 2015] they improved this work and implemented a prototype called Termite which uses LLVM

to provide SSA intermediate representation (subsection 1.1.2) and a static analyzer working over the LLVM in-

frastructure: PAGAI [Henry et al., 2012] to compute invariants in a way to produce transition relations.

[Giesl et al., 2017, Spoto et al., 2010, Falke et al., 2011] translate Java Bytecode or C programs into TRSs

or constraint logic programs and then use techniques like above to prove termination. The model checker

Terminator [Cook et al., 2006] is used to provide termination proof or counterexamples too.
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In [Ströder et al., 2014], an abstract domain is provided for tracking allocated memory at compile time on

an intermediate representation. By focusing on memory safety, it prevents undefined behaviour including non-

termination. They use Symbolic Execution Graphs to approximate all possible runs and extract an Integer

Transition System on what it is possible to prove termination.

[Albert et al., 2008b] presented COSTA which mainly provides cost of Java bytecode programs as a function

of their input data size at compile time.

This is the oldest work I mention here and it is only 9 years old. Most of them deal with compiler but

none was really officially integrated in a common one. Termination and complexity analyses are still considered

inefficient to be part of common compilers but those works claim that it not should be.

Motivations

Often, programs comes without warranty. You already read it many times in most of program’s license, here in

the GNU GPLv3:

15. Disclaimer of Warranty.

THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY

APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT

HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY

OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,

THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR

PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM

IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF

ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

This is not surprising. Because most of real-world programming languages are Turing-complete, most of

interesting properties such as termination are undecidable. One way to bring reliability on your program is to

test it. Making it exercise manually or automatically can help us to figure out if it satisfies or not some specified

properties in some cases or inputs. But, as said by Edsger W.Dijkstra: “Testing can show the presence of errors,

but not their absence.”

Tests do not prove anything therefore do not bring warranty. Static Analysis try to do so but often with

approximations (see section 1.2). From those approximations we get bounds which sometimes are sufficient to

insure the targeted property.
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Expanding Logical Ideas for Complexity Analysis

Expanding Logical Ideas for Complexity Analysis (ELICA) is an ANR research project in computer science

which started in February 2015. The aim of the ELICA project is to develop logical methods for static com-

plexity analysis, improve their expressiveness and extend their application to non-deterministic and concurrent

programming paradigms. Logic-based tools, in particular of proof theoretic origin, have proved to be of cap-

ital importance for static complexity analysis. Criteria guaranteeing complexity bounds have been formulated

(some by prospective participants to the ELICA project) using structural restrictions of the λ-calculus, subsys-

tems of linear logic in which cut-elimination has a limited complexity, type systems for functional languages,

and semantic methods (polynomial interpretations and denotational semantics). These methods do not give

precise bounds on the complexity of programs, but they have the advantage of being modular and of producing

easily verifiable certificates. However, these methods currently apply only to a restricted range of programming

languages, mostly of functional nature. Even in the functional case, the criteria are unsatisfactory in terms of

expressiveness, i.e., with respect to the number of practical programs to which they can be applied. The ELICA

project fixes as objective the development of existant logical methods and the introduction of new ones, in order

to:

• improve the expressiveness of static complexity analysis criteria for first-order functional languages, but

above all extend the scope of such criteria to higher-order complexity (in particular, type-2 complexity),

which is still largely unexplored;

• increase the practical impact of these methods by defining complexity criteria for languages with im-

perative features, and relate them to the criteria for the verification of security properties (such as non-

interference);

• apply these methods to non-deterministic and probabilistic languages, to analyze the complexity of pro-

grams implementing randomized algorithms, with the long-term goal of employing such methods for the

analysis of cryptographic and security protocols;

• extend the scope of these methods to the analysis of concurrent systems. Here, the problem is above all

of foundational nature, because there currently is no general definition of computational complexity for

concurrent processes. ELICA therefore propose to first develop a theory of computational complexity of
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interactive behaviors (generalizing problems and functions), capable of giving a formal content to notions

such as answer time to a request, memory space, number of active processes, etc. Subsequently, ELICA

studies the application of logical methods to this theory.

Push ICC theories into the “real world”

We’ve seen that ICC deals with syntactic criterion but mainly on toy languages. As mentioned in the ELICA’s

motivations, it is time to bring those theories into “real life” programming languages.

This would offer the possibility to enlarge the spectrum of programs able to be analysed and maybe offer

statistics able to give an accurate idea of the real expressivity of the methods developed in ICC. Since ICC

methods use redefined (simpler) programming language (often Turing-incomplete) in order to have sound and

complete answers, here we need to deal with Turing-complete languages and often relax the correctness no-

tion: a sound “yes” answer is sometimes sufficient. But how much can we juggle with correctness notion and

simplification of the language in real life programs?

Dream of “Complexity-certifying Compiler”

Real-world languages come with real-world compilers. Widely used compilers are usually focused on optimi-

sations. Indeed, the goal is to produce an efficient code in order to have a fast program.

First, an analysis needs to be efficient and useful to be embedded in “real-world” compilers. But, regarding

to most developers, safety is not often relevant for every days programs. It is not critical if your mail manager

application crashes, it restarts and that’s all. Then security questions can come over and here again a solution

much more easier than complex analysis is to use sandboxing and virtual environments. But we can observe

a rise of interest in certification of programs. One of the most promising project is Compcert, a formally

verified optimizing compiler of C programming language which target different architecture. It is specified,

programmed and proved in Coq a theorem prover written in Ocaml. The main particularity is that it is proven

that the translations or transformations of the code during compilation preserve the semantic of the program.

Furthermore, the performance is close to what can be generated by GCC at the -O1 level. But Compcert is still

too young and maybe too complex to have a huge community. This is why we will not consider Compcert as a

“widely used” compiler.
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ICC mostly provides analyses without much optimisation of the code. However, analyses and optimisations

are not so far apart. . . An analysis can be used to fuel further optimisations. Typically, building the Control

Flow Graph of a program is an analysis that is used for many optimisations afterwards. Providing proven bounds

on the time or space usage of a program is also a security property. If the program provably uses a fixed amount

of memory, then it will not try to perform an attack by heap or stack overflow, this warns us if the program could

try to exhaust system resources. Restricting the syntax in order to enforce (some) security is similar to what

Facebook does with the restricted FBJS. Since analysis is complex but verification is (usually) easy, one can

imagine a compiler that will provide a certificate for some property on the compiled code, in a Proof Carrying

Code paradigm [Necula, 1997]. The certificate could be checked, for example, before uploading an application

to an application store for mobile devices to guarantee some safety to the user, or, at the other end, before

downloading the application to the device to check if it has sufficient capacity to run it. The other goal here is

to vulgarize certification and enlarge the number of programs analysed.

Next, some ICC analyses are known to also embed some program transformation in them. Notably, the

Quasi-Interpretations method guarantees that the programs run in polynomial time if some sort of Dynamic

programming is used. Thus, a program admitting a QI can run in exponential time but the analysis says that it

will run in polynomial time after some (known) transformation. Bringing such analysis in compiler will indicate

which part of the code should be transformed by which method.

Contributions

New approach for ICC research

The analysis presented in this thesis can be seen as proof of concept in order to show that ICC methods can be

performed on real programming languages. This implies to work in compilers because it is where it is well-

suited to be performed. We also show that, in addition to certificates of good behaviour, our analysis can bring

optimizations.

Widely used compilers are communal and well designed therefore modular. This encourage contributions

and it brings more and more specialists able to add their own bricks into the project. It is an opportunity for this

community to bring their tools into real world languages.
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More sociologically, it creates a bridge between two communities. Yes, ICC and compilers can work to-

gether and can fuel each other fruitfully. This is just a step opening the way for future works.

Bring a new framework for Data Flow Analysis

In section 2.2, we introduce a new kind of Data Flow Analysis which generalises different notions borrowed

from ICC theories (Size-Change Principle, MWP-bounds). We show how this DFA framework can be cus-

tomized and used for complexity analysis. But we also present a possible instance of this analysis designed in

order to find quasi-invariants in loop and then propose a transformation to peel them.

For ICC

This framework could be reused in the future by the ICC community because it is designed as described in most

of the methods derived from Size-Changes ideas. Globally, the framework works over a semi-ring which is the

heart of the analysis. This semi-ring can be changed as desired in a way to perform the analysis we want.

For Compilers

This work may provide new optimizations through this analysis or at least bring new ideas coming from ICC.

Furthermore it will popularizes a branch of computer science viewed as theoretical one till now by most of

computer scientists. It shows that it is easy to implement your own customized complexity analysis using data

flows.

In the same way as compilers, this framework could be the first brick of a bigger one which could bring

contributions from a new community: an intersection between ICC and compiler ones.
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Outline

The thesis is organized as follows:

Chapter 1 introduces the basic notions of compilation and static analysis for presenting our first implemented

analysis dealing with LLVM Intermediate Representation. This analysis is a proof of concept which detect

Non-Size-Increasing programs. It was the first step for me into a widely used compiler: LLVM

Chapter 2 presents our Data-Flow Approach for complexity analysis, describes formally a Data-Flow Anal-

ysis framework and tries to show how this tool could be used for all measurable properties of complexity.

Chapter 3 gives another use of this framework: the detection of loop quasi-invariants chunks. A prototype

was developed which proposes to peel such chunks then optimize the transformed Intermediate Representation.

Source code. As an environment-friendly thesis, we do not provide in these pages the source code of our

implementations. However, it is as much a part of this work and can be consulted on their respective github

pages4.

4https://github.com/ThomasRuby
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Chapter 1

From Compilers to Implicit

Computational Complexity

1.1 Compilers

Naively, a compiler translates a human-readable source code into a non-user-friendly assembly code for ma-

chines. It takes the opportunity to analyze and optimize the compiled program. All those analyses and transfor-

mations are done on more or less different Intermediate Representations of the program.

Part of this thesis tries to apprehend how suitable those Intermediate Representations (IR) are for static

complexity analysis in a way to embed our work directly in compilers and cover a large number of widely used

languages. Compilers come with a lot of tools working at different compilation times. They are designed to

sequentially make analyses and transformations called passes.

1.1.1 Architecture and designs

The main purpose of compilers is to produce executable code for machines. Their second goal is to produce

efficient programs in terms of execution time and space memory used. During the process of translation, the pro-

gram takes different forms which are often easier to analyse and transform. Compilers are generally composed

of three parts Figure 1.1.

• The first part (the green one, on the left) is called front-end and is specific to a source language. They are

divided into three phases:

– The lexical analysis (lexing) figures out the “words” or basic bricks of the program (e.g. keyword,

identifier, symbol name)

– The syntax analysis (parsing) provides a syntax tree (Abstract Syntax Tree, AST) following rules of

a grammar (Context-Free Grammars) which defines the language’s syntax.
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CHAPTER 1. FROM COMPILERS TO IMPLICIT COMPUTATIONAL COMPLEXITY

Optimizer

Compiler

C ++

C

...

Java

Frontend

IR

X86

ARM

...

MIPS

IR

Backend

Analysis

Figure 1.1: Compiler Design

– The semantic analysis adds semantic information to the AST and builds the symbol table (a map

which binds each symbol to a value). At this level we can find some semantic checks like type

checking.

From those analyses comes an intermediate representation. This translation simplifies the job of the rest

of the compiler which does not want to deal with each expressivity of each programming language.

• The middle-end also called optimizer or Pass Manager provides analyses (over data-flow, dependence,

alias, pointer etc.) mainly used for optimizations (e.g dead code elimination, constant propagation, loop

invariant code motion etc.). Those transformations are supposed to produce a better (faster or smaller) IR

while preserving the semantic of the program.

• The back-end also provides optimizations while generating the targeted assembly code. Those optimiza-

tions are said “machine dependent”. This translation is also very technical because it goes from a virtual

machine language to a real (mechanical) one. For instance, because moving variables in and out of mem-

ory can slow considerably the whole program, the memory allocation strategy needs to be optimized

regarding to the liveness of each variable used at a time. This issue can be reduced to the problem of

K-coloring which is NP-complete thus why interplays need to be found.
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1.1. COMPILERS

This three-phases design has several advantages:

• it avoids to have n×m compilers for translating n languages into m targets.

• because it supports more languages and targets, it brings more contributors (when the project is open-

sourced).

• it tends to create specialists: a middle-end developer does not need back-end or front-end skills and can

focus on his part.

This strategy adds steps which slow down the compilation and come with potential errors. Remember that

for each step the semantic should be preserved. It also means that the quality of analysis and transformations

will depend on the quality of the intermediate language and its translators.

1.1.2 Intermediate Representations

The middle end or optimizer (opt in LLVM) aims to work over the same intermediate representation in actual

compilers. The main purpose of this choice is the genericity and portability it offers: by this way it is relatively

easy to implement your analysis over all (sourced or targeted) languages supported by the compiler. The perfect

IR is able to represent the source code and the target language without loss of information. By reading it, we

should be able to guess how the corresponding source was and what the machine language will look like.

Firstly, intermediate languages were made to simplify transformations. For instance, the three-address form

has been used for many years because of its simplicity. Decomposing all expressions into a sequence of basic

simple assignments like r0 := r1 OP r2 (where OP is a binary operator) helps to detect, replace, delete or

add sub-expressions. It also helps for translating into an assembly language.

Another useful form is the Static Single Assignment (SSA): a program is said to be in SSA form if each of

its variables is defined exactly once and each use of a variable is dominated by that variable’s definition. This

form can cohabit with the tree-address one and simplifies data-flow analyses and transformations because only

a single definition can reach a particular use of a value, we will observe that more technically further. This form

implies a unbounded number of virtual registers and also the apparition of ϕ function which is used to select an

incoming value depending on which basic block the control flow came from (see how it could be a drawback in

section 3.6).
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CHAPTER 1. FROM COMPILERS TO IMPLICIT COMPUTATIONAL COMPLEXITY

A lot of Languages can be considered as “intermediate”, among them we can find the Java bytecode, the

GNU Register Transfer Language (RTL), the GENERIC and GIMPLE, the LLVM IR etc. Some of them are

considered as Tree Intermediate Languages since tree structure facilitates the implementation of new analyses

and optimizations closer to the source. For example, at the beginning, GCC had one front-end translating source

languages to RTL (which is really low-level) and one back-end containing optimizer, code generator. The opti-

mizer was considered part of the back-end because it provided only “low-level optimizations”[Novillo, ]. Later,

a Tree Optimizer was designed to deal with Control Flow Graphs and SSA forms given from the GIMPLE

before translating into RTL as can be seen in Figure 1.3 (which is translated from the C program in Figure 1.2).

#include<stdio.h>

#include<stdlib.h>

#include<time.h>

int main(){

srand(time(NULL));

int n=rand()%100;

printf("n = %d", n);

return 42;

}

Figure 1.2: Random program in C

But also variants of source languages were designed to provide their features as portable assembly language

(e.g C Intermediate Language is used by Frama-C[Mantere et al., 2009] and Compcert[Tristan, 2009]).

More generally, we can suppose that for one specific static analysis there exists a “best” intermediate form

or representation to optimally perform it. The “best” IR for compilers is a source language independent repre-

sentation with the best interplay of expressivity regarding to all the analyses we want to perform.

The common point of the proposed features is the simplicity. But simplicity does not fit with richness. We

can interpret that into Figure 1.4 by the translation in red. What we can do is to juggle with different represen-

tation in a way to gain certain “kind of” expressivity.
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1.1. COMPILERS

main ( )

{
l ong i n t D. 2 8 2 9 ;

u n s i g n e d i n t D. 2 8 3 0 ;

i n t D. 2 8 3 1 ;

i n t D. 2 8 3 2 ;

{
i n t n ;

D. 2829 = t ime (0B ) ;

D. 2830 = ( u n s i g n e d i n t ) D. 2 8 2 9 ;

s r a n d (D. 2 8 3 0 ) ;

D. 2831 = rand ( ) ;

n = D. 2831 % 100 ;

p r i n t f ( ” n = %d ” , n ) ;

D. 2832 = 4 2 ;

r e t u r n D. 2 8 3 2 ;

}
D. 2832 = 0 ;

r e t u r n D. 2 8 3 2 ;

}

(a) GIMPLE in textual form

. . .

( c a l l i n s n 27 26 28 2 ( s e t ( r e g : SI 0 ax )

( c a l l (mem: QI ( s y m b o l r e f : DI ( ” p r i n t f ” ) [ f l a g s 0x41 ]

<f u n c t i o n d e c l 0 x 7 f a a e 3 a f b b 6 0 p r i n t f >) [0 b u i l t i n p r i n t f S1 A8 ] )

( c o n s t i n t 0 [ 0 ] ) ) ) t e s t 2 . c : 8 −1

( n i l )

( e x p r l i s t ( use ( r e g : QI 0 ax ) )

( e x p r l i s t : DI ( use ( r e g : DI 5 d i ) )

( e x p r l i s t : SI ( use ( r e g : SI 4 s i ) )

( n i l ) ) ) ) )

( i n s n 28 27 31 2 ( s e t ( r e g : SI 90 [ 10 ] )

( c o n s t i n t 42 [0 x2a ] ) ) t e s t 2 . c : 9 −1

( n i l ) )

( i n s n 31 28 35 2 ( s e t ( r e g : SI 91 [ <r e t v a l> ] )

( r e g : SI 90 [ 10 ] ) ) −1

( n i l ) )

( i n s n 35 31 36 2 ( s e t ( r e g / i : SI 0 ax )

( r e g : SI 91 [ <r e t v a l> ] ) ) t e s t 2 . c : 1 0 −1

( n i l ) )

( i n s n 36 35 0 2 ( use ( r e g / i : SI 0 ax ) ) t e s t 2 . c : 1 0 −1

( n i l ) )

. . .

(b) A part of RTL in lisp-like form

originally 130 lines

Figure 1.3: GCC Translations

richness

expressiveness

Figure 1.4: Translation to intermediate languages.

Most of the intermediate representations are pretty similar to an assembly language. It is a lower-level

programming language than the input one but it is a higher-level than real assembly language. For instance

type can be preserved without influencing analysis. The LLVM IR comes with high-level type information and

polymorphic instructions, for instance the add instruction can operate over several different types of operands.

This reduce the set of opcodes then simplify the language.
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CHAPTER 1. FROM COMPILERS TO IMPLICIT COMPUTATIONAL COMPLEXITY

1.2 Static Analysis

“Program analysis offers static compile-time techniques for predicting safe and computable approxima-

tions to the set of values or behaviours arising dynamically at run-time when executing a program on a

computer.”[Nielson et al., 1999] Only approximations because, most real-world programming languages are

Turing-complete so any non-trivial property is undecidable. A naive example could be the program in Fig-

ure 1.5.

x := read();
y := 1;
if x > 0 do :

y := 0;
f();

z := y;

Figure 1.5: A naive example

With f a pure function. Intuitively, the possible values of y that can reaches the z assignment will be 1 or

0. But maybe the right answer is just 1 because it is possible that f does not terminate and the execution flow

never reaches the z := y; statement. Static Analysis can not determine if a function terminates or not, this is

why the analysis will answer a larger set of possible values for z. We also would like to have the smallest set as

possible: the best safe approximation.

We can answer to different questions and ensure different properties regarding to this safe approximation,

at least more easily than with tests. Testing is too much focused on specific cases. It takes forever to cover all

possibilities and, over all, it does not prove anything. As mentioned before: “Testing can show the presence of

errors, but not their absence.”

Static Analysis does not solve undecidable problem but wrap or confine it the better it can. An over-

approximate analysis is said to be sound when it covers all targeted behaviours. In a way to have the best

approximation regarding to the targeted property, the analysis needs a specific abstraction.

1.2.1 Approximation

Static program analysis is performed without actually executing the analyzed program, it is opposed to dynamic

analysis. At this stage we don’t have inputs, then we can’t know what will be the accurate behavior of the
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program as languages permit infinitely many executions. We can only study all the possibilities or paths that

might be executed, then cover the entire program. Static analysis is mainly used to detect errors, dead code,

variables unused etc. . . therefore to prevent bugs or find possible optimizations.

An idea is to map real world into an abstract world easier to analyse or express. Regarding to a specific

problem it may be possible to map the concrete semantics to an abstract and finite one which is statically

analysable. This new abstraction needs to keep enough information to answer the specific problem. To give an

example, here is an enigma (given to me by a good friend Anupam Das):

There is a village of wizards and a village of dwarves. Once a year,

the wizards go over to the village of dwarves and line all the dwarves

up in increasing height order, such that each dwarf can only see the

dwarves smaller than himself. The wizards have an infinite supply of

white and black hats. They place either a white or black hat on the

head of each dwarf. Then, starting with the tallest dwarf (in the back

of the line), they ask each what color hat he is wearing. If the dwarf

answers incorrectly, the wizards kill him (the other dwarves can hear

his answer, but can’t tell if he was killed or not). What strategy can

the dwarves use to minimize the number of dwarves that are killed?

What is the most number of dwarves that will be killed using this

optimal strategy?

The answer to the last question is 1, only the first dwarf may be sacrificed (if the reader wants to find how

by itself it is pleased to jump to subsection 1.2.2).

The key of the answer is to use parity. Just knowing the parity of black hats is sufficient for the rest of the

dwarfs: they use the number of black hats in front and behind to deduce which hat they have on their head. They

just need to agree in the meaning of the data (here a simple bit) given by the first poor dwarf (for instance saying

“black” means there is an odd number of black hats and “white” an even one). This abstraction allows to give

enough information about all hats to solve the problem. Finally the real trick is to know what is the minimum

information I need and how can I map it into the smallest data structure (here parity into a bit).

This kind of Abstract interpretation is basically what is used in static analysis. “Abstract interpretation

allows the compiler to answer questions which do not need full knowledge of program executions or which

tolerate an imprecise answer (e.g. partial correctness proofs of programs ignoring the termination problems, type

checking, program optimizations which are not carried in the absence of certainty about their feasibility,. . . )”

[Cousot and Cousot, 1977].
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1.2.2 Data-Flow Analysis

Programs can be seen as a set of nodes (Basic Blocks) connected by directed edges. The whole compose the

Control Flow Graph of the program (section 1.4.3. There is one entry node and there may be several exits. Each

node takes values as input and can create/delete/modify them. Given a special set of values to the entry node, it

creates states. A state is a set of current values (or environment) associated with the current node information

(control).

This can quickly creates an infinite number of states because of the infinite possible inputs and the potential

loops the connected nodes provide. Abstract interpretations come over those states thus allow convergent static

analysis gathering information about the program’s data-flow. We can generalise by saying that all Data-Flow

Analyses aim to solve data-flow equations and the common way to do it is by using iterative algorithms over

the nodes. Those algorithms are designed to work on an abstract domain in a way to converge to a fixpoint. For

instance, in section 2.2.2 our analysis can only add dependencies between variables and this operation is mono-

tonic, furthermore the number of variable is finite then it converges to a fixpoint.

In the naive example Figure 1.6, we found that z could have two possible values. Because the control flow of

the program allow us to do a forward analysis and calculates the set of definitions of y that potentially influence

the current assignment on z.

x := read();
y := 1;
if x > 0 do :

y := 0;
f();

z := y;

Figure 1.6: Forward analysis

1.2.3 Sensitivities

Previously we said that regarding to the data-flow equation the analysis needs more or less information. Here

are different sensitivity a data-flow analysis can have:

• Flow-sensitiveness takes into account the order of the statements: dominance information is always up to

date in compilers. An example of flow-insensitive analysis could be (static) type analysis where a variable

needs to be well typed at all program points.
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• Path-sensitiveness considers all facts that happened on a taken path execution, when it is possible, this

give more precise or less approximated results. But here exponentially many paths could make it difficult

to perform such analysis, this is why path-sensitive analyses are combined with analyses of feasibility of

paths.

• Context-sensitiveness uses call graph to induce calling relationships to have a better precision on the

behaviour of functions. This approximates the call stack regarding to a specific depth because each call

generate a different context and recursivity may generate infinite contexts.

1.2.4 Trade-offs in Static Analysis

Three main parameters come out when comparing static analyses: soundness, precision (or here more specifi-

cally the recall) and performance.

• Soundness for static analysis is, as said previously, when the analysis is able to capture only the targeted

behaviours of the program. For instance, a sound analysis which says the program is bug-free means that

it is truly bug-free but when the analysis reports a bug it means that there is potentially a bug, it may be a

false negative.

• The recall refers to its ability to capture the maximum amount of cases guaranteeing the targeted be-

haviour regarding to the total targeted behaviour cases. It is a way to have the fewest false negative as

possible.

• The performance is the amount of resources, again time and memory usage, spent by the analysis to reach

the fixpoint. Surprisingly, in the field of static analysis, asymptotic bounds are not often used. It may be

because analyser designers don’t expect the nesting depth to increase as the program length increases if it

is a human who writes it. For example a program may have a million lines of code, but it will never have

a thousand nested if-then-else statements. It is a kind of gamble that in fact the nesting depth is a small

constant and the worst-case is never encountered for real programs.

The challenge in the design and implementation of static analysis is to achieve soundness with a trade-off

between recall and performance.
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1.3 A strategic choice: LLVM

In our time, two mainly used compilers exist: GCC and LLVM. For our first prototype, our choice was LLVM

because: first of all, LLVM is well documented; the community is huge and very active; it uses the same Inter-

mediate Representation throughout the compilation; it is modular; it can use GCC’s front-ends; it is more and

more used. For instance, more, and more efforts have been done to build Debian with Clang1. By comparison,

GCC remains more used but performances and accessibility are equivalents. However the LLVM community’s

documentation and help are more appropriate. The modularity also helps to contribute without knowing the

entire working flow. The analyses are, of course, feasible in GCC, Compcert2, etc.

The LLVM Project [Lattner and Adve, 2004] is a collection of modular and reusable compiler and tool chain

technologies. LLVM is an acronym for Low-Level Virtual Machine, but the scope of the project is not limited

to the creation of virtual machines. As the scope of LLVM grew, it became an umbrella project that included a

variety of other compiler and low-level tool technologies as well.

1.3.1 Architecture

LLVM was firstly designed for optimizations at compile-time, link-time, run-time and idle-time (between runs

using profiling). The strategy is to reuse the same “LLVM code” at each time and refine it. The main idea is

based on the belief that many “high-level” optimizations are not really language-dependent, and are often special

cases of more general optimizations that may be performed on the IR (e.g. both virtual function resolution for

object-oriented languages and tail-recursion elimination for functional languages can be done at this level). All

others “language-specific optimizations” must be performed in the front-end.

Now LLVM is a toolchain with many components (e.g. assemblers, compilers, debuggers, etc.) designed to

be compatible with existing tools. The large goal of this tool chain seems to be the search of the best modularity

to oppose to “single monolithic specialized-purpose tools”.

It has been designed to work with GCC, it uses GCC’s front-ends and produce an LLVM-IR to run the

LLVM Optimizer and Code Generator on it. Also the LLVM Link Time Optimizer can be used over object files

generated. It results a faster compile and execution time3.

1http://clang.debian.net/
2compcert.inria.fr/compcert-C.html
3http://llvm.org/pubs/2008-10-04-ACAT-LLVM-Intro.html
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1.3.2 Program Representation

The LLVM Intermediate Representation is a Typed Assembly Language (TAL) and a Static Single Assignment

(SSA) based representation which provides type safety, low-level operations, flexibility and capability to rep-

resent any high-level languages cleanly. As we said, this representation is used throughout all phases of the

compilation in LLVM.

The LLVM Intermediate Representation is source-language-independent, mainly because it uses a low-level

instruction set slightly richer than assembly languages, it is a RISC-like virtual instruction set. The instruction

set consists of 31 opcodes, just enough to not loose type expressivity but still a low-level representation. Most

of these operations are in a three-address form (recall: they take one or two operands and produce one result).

But, unlike RISC instructions, LLVM-IR is strictly typed, thus type mismatch can easily be detected. Types

can be primitive or constructive (composed by several primitive types or constructive types). Each instruction

has restrictions on the arguments types but they can be polymorphic: for instance add can operate on different

types, this widely reduces the number of opcodes.

Because it is typed and the function conventions are abstracted through basic instructions like call,

declare, define and ret with explicit arguments, the LLVM-IR is user-friendly. For example Figure 1.7

shows the LLVM-IR generated from the C program in Figure 1.2.

We can easily see functions, arguments and types. For instance the global variable which contains the

printed string has a composed type of [7 x i8] aka a table of 7 characters.

But what we see here is one of the three isomorphic form this IR can have. The format above is the textual

one, an other is a data-structure in-memory and the last one is a dense on-disk binary “bitcode”. Tools are

provided to translate one format to the other.

A lot of well known optimizations are dealing with this IR: Dead Code Elimination, Loop Invariant Code

Motion, Constant Propagation etc. For example: The Instruction Combination Pass is one of the simplest

passes. It knows some optimizable patterns like add X,0 is substituted in X or xor X,X in 0 etc. can detect

and replace them. Some optimizations are really specific to certain computation (e.g. detection of
n
∑

i=1

i is also

made by finding a specific pattern).

LLVM has already shown that an efficient low-level representation enriched with type information can

support high-level analyses and transformations [Tavares et al., 2014].
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...

@.str = private unnamed_addr constant [7 x i8] c"n = %d\00", align 1

; Function Attrs: nounwind uwtable

define i32 @main() #0 {

%1 = tail call i64 @time(i64* null) #2

%2 = trunc i64 %1 to i32

tail call void @srand(i32 %2) #2

%3 = tail call i32 @rand() #2

%4 = srem i32 %3, 100

%5 = tail call i32 (i8*, ...) @printf(i8* getelementptr inbounds ([7 x i8], ←֓
[7 x i8]* @.str, i64 0, i64 0), i32 %4)

ret i32 42

}

; Function Attrs: nounwind

declare void @srand(i32) #1

; Function Attrs: nounwind

declare i64 @time(i64*) #1

; Function Attrs: nounwind

declare i32 @rand() #1

; Function Attrs: nounwind

declare i32 @printf(i8* nocapture readonly, ...) #1

...

Figure 1.7: LLVM Intermediate Representation

1.3.3 Optimizer and Data Structure Analysis

The optimizer is one of the several tools or modules provided by LLVM. Designed for more modularity, the op-

timizations are built into distinct libraries and the LLVM Intermediate Representation is preserved permanently,

making it simpler for other-ends to use them.

This optimizer is mainly composed by a Pass Manager that keeps analyses information up to date, manages

memory used, enforces enabled passes with a given order and make pass developer’s life simple thanks to its

modularity. These passes visit and change the Intermediate Representation in the middle-end.

Analyses information comes to enrich the in-memory data-structure which lives during the compilation. For

instance, Definition-Use chains, which consist to link definition to all the uses for each variable, are preserved

and updated each time modifications are performed on the IR. We can guess that, regarding to what can be

modified by which pass, it is worth to delay or foresee some analyses to avoid doing it after each single trans-

formation. Passes are expected to stand on their own or declare their dependencies among other passes if they
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depend of some other analyses. When a series of passes is given, the PassManager uses the explicit dependency

information to satisfy these dependencies and optimize the execution of passes.

Options can be sent to the optimizer, the most known option is the optimization level. The level -O0

is without any optimization (aka the IR produced by the front-end). The -O2 enable most of fast and not

aggressive optimizations. -Os and -Oz are like -O2 but aim to reduce the size of the code (by disabling

unrolling for instance). -O3 uses slow and more aggressive optimizations and does not care about the size

of the generated code. Those options enable passes but also order them. We can see how by reading the

PassManagerBuilder class which set up “standard” optimization sequence for C and C++.

Pass Arguments: -tti -targetlibinfo -tbaa -scoped-noalias -assumption-cache-tracker

-profile-summary-info -forceattrs -inferattrs -ipsccp -globalopt -domtree -mem2reg -deadargelim

-domtree -basicaa -aa -instcombine -simplifycfg -pgo-icall-prom -basiccg -globals-aa -prune-eh

-inline -functionattrs -domtree -sroa -early-cse -lazy-value-info -jump-threading

-correlated-propagation -simplifycfg -domtree -basicaa -aa -instcombine -tailcallelim -simplifycfg

-reassociate -domtree -loops -loop-simplify -lcssa-verification -lcssa -basicaa -aa

-scalar-evolution -licm -loop-unswitch -simplifycfg -domtree -basicaa -aa -instcombine -loops

-loop-simplify -lcssa-verification -lcssa -scalar-evolution -indvars -loop-idiom -loop-deletion

-loop-unroll -mldst-motion -aa -memdep -lazy-branch-prob -lazy-block-freq -opt-remark-emitter -gvn

-basicaa -aa -memdep -memcpyopt -sccp -domtree -demanded-bits -bdce -basicaa -aa -instcombine

-lazy-value-info -jump-threading -correlated-propagation -domtree -basicaa -aa -memdep -dse -loops

-loop-simplify -lcssa-verification -lcssa -aa -scalar-evolution -licm -postdomtree -adce

-simplifycfg -domtree -basicaa -aa -instcombine -barrier -elim-avail-extern -basiccg

-rpo-functionattrs -globals-aa -float2int -domtree -loops -loop-simplify -lcssa-verification -lcssa

-basicaa -aa -scalar-evolution -loop-accesses -lazy-branch-prob -lazy-block-freq

-opt-remark-emitter -loop-distribute -loop-simplify -lcssa-verification -lcssa -branch-prob

-block-freq -scalar-evolution -basicaa -aa -loop-accesses -demanded-bits -lazy-branch-prob

-lazy-block-freq -opt-remark-emitter -loop-vectorize -loop-simplify -scalar-evolution -aa

-loop-accesses -loop-load-elim -basicaa -aa -instcombine -scalar-evolution -demanded-bits

-slp-vectorizer -simplifycfg -domtree -basicaa -aa -instcombine -loops -loop-simplify

-lcssa-verification -lcssa -scalar-evolution -loop-unroll -instcombine -loop-simplify

-lcssa-verification -lcssa -scalar-evolution -licm -alignment-from-assumptions

-strip-dead-prototypes -globaldce -constmerge -domtree -loops -branch-prob -block-freq

-loop-simplify -lcssa-verification -lcssa -basicaa -aa -scalar-evolution -branch-prob -block-freq

-loop-sink -instsimplify

Figure 1.8: Ordered list of pass given for-Oz

Figure 1.8 shows in color that some passes are invoked several times. Most of them are analyses: as we

said previously, metadata need to be updated in a way to be reused after a certain modification. But the most

surprising may be the several invocations of transformation passes. Indeed, we may think that an optimization

done on a program does not need to be performed again, that’s not true because of one thing: the form is

constantly changing and a transformation can reveal a new potential optimization. For example, unrolling loops

(which consists in duplicating the body before performing the loop) could make appear redundant instructions

which can be combined afterward. A lot of passes are used to prepare optimizations or clean the IR like

simplifycfg or loop-simplify.
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1.4 Non Size Increasing (NSI) Analysis: a good start

1.4.1 Introduction

In this section, we present an experiment in bringing analysis from Implicit Computational Complexity into real

life compilers.

The analysis we described here, based on NSI programs, it simple enough to be expressed on a small

assembly-like language. Since it only focus on memory allocation and deallocation, we can concentrate on

these operations (that is, the malloc and free in a C program) and on the control flow, and forget all the

complicated constructions that may be used by the programming language. Since this is a purely syntactical

analysis (as all ICC analyses), it is perfectly suited to happen at compile time.

Moreover, compilers already contain many analyses and optimisation tools that we can reuse. Most of these

tools are spread in modular passes that can be applied in various order. Typically, there is no need to rebuild the

control flow of the program. It is something that is already used by many compiler optimisations and thus that

already exists as a standalone pass. We need to call this pass and use its result. This limits the amount of code

we have to write in order to perform our analysis.

As we said in the motivations, real compilers aim to produce efficient code as fast as possible. On the

other side, ICC mainly provides analysis ensuring certain properties. But analyses can be used to fuel further

optimisations!

Currently, common systems allocate a finite space of memory, if it’s not enough during the execution, the

program needs to ask and wait for more space and waste time. If it’s too many, it’s a waste of space. Here,

knowing the precise amount of memory that a function or program will need can help optimising system calls:

rather than using the standard library to find free memory and allocate it, it becomes possible to let the program

reuse its own memory efficiently.

Thus, we chose to focus on a simple analysis that is easy to express in the compiler’s intermediate represen-

tation rather than on a powerful analysis/optimisation which require more work to be used.
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1.4.2 Non Size Increasing programs

Bellantoni and Cook identified the repetition of iteration (or recurrence) as a source of potential exponential

growth. That is, given a program like in Figure 1.9.

for i=1 to m do

for j=1 to n do

N:=N+1

done

n:=N

done

Figure 1.9: Iterations and exponential growth

The inner loop is relatively innocuous but the outer loop takes the result of the inner loop and use it to

control again the same iteration. This results in an exponential growth. In order to prevent this, Bellantoni

and Cook designed some syntactic restriction on the allowed programs. This can be seen as giving “energy” to

some variables of a program. Each loop (or recurrence) must be controlled by a variable that has energy (that

is “normal”) and the loop uses this energy, thus the result has no energy (is “safe”). This de facto prevents a

program like the one above because N, as the result of a loop, has no energy and thus cannot be used to control

another loop. However, not all iterations of iterations are bad. Typically, selection sort works by iterating the

selection of the maximum element, itself an iteration. Hofmann express this by saying that iterating is not

harmful if the result is smaller than the input, or only marginally larger. This open way for studying functions

whose output has the same size has the input, that is functions which do not increase the size of data, hence the

name of Non Size Increasing functions.

If we concentrate on the NSI part, without trying to handle polynomial bounds, this analysis is simple

enough and can be expressed in a small assembly like language. Especially, the analysis is done by only

checking memory allocation and de-allocation along the control flow graph. Thus, it is particularly well suited

to be performed in a compiler.

From Safe Recursion to Non Size Increasing

The term rewriting system below computes a list of exponential length (in the length of the input). [] is the

empty list and :: is the (infixed) cons operation.
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double(a, []) -> a::[]

double(a, x::xs) -> a::x::(double(a, xs))

exp([]) -> []

exp(x::xs) -> double(x, exp(xs))

Figure 1.10: Exponential in TRS

The point is that in the last line, the result of a recursive call to exp is used to control another recursive call

(to double). This allows to “pile up” calls to double and, in the end, computes an exponential. To prevent this,

Bellantoni and Cook forbade the writing of functions like exp via a syntactical restriction on programs which

can be assimilated to energy used to actually perform the recurrence.

Repeated iterations is a powerful expressive construction to build many reasonable programs. Indeed, writ-

ing a program by respecting the normal/safe tiering of arguments is often difficult. Typically, Hofmann looked

at an insertion sort like the program in Figure 1.11.

insert(y, []) -> y::[]

insert(y, x::xs) ->

if x<y

then x::(insert(y, xs))

else y::x::xs

sort([]) -> []

sort(x::xs) -> insert(x, sort(xs))

Figure 1.11: Insertion sort in TRS

Obviously, such a program should be accepted and it makes little sense to reject insertion sort. However,

Safe Recursion does reject the insertion sort as the last line tries to control the recurrence in insert with the

result of a recurrence in sort.

Moreover, a close look at the programs shows that exp and sort are actually exactly the same function,

which is why Safe Recursion rejects both. Thus, Hofmann came to the conclusion that the culprit is not exp

but double. Indeed, there is a main difference between double and insert which justifies rejecting one and

accepting the other. double produces an output that is twice as large as the input. On the other hand, insert

produces an output which is essentially as large as the input. In other words, insert is Non Size Increasing and

can thus be iterated without harm. A “pile” of insert will not create a growth exponential in the number of
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insert performed. Whereas double does increase the size of its input (by a non-constant factor) and thus should

not be iterated.

NSI and rewriting system

In order to detect NSI programs, Hofmann introduced a new datatype, the diamond (⋄), with the particularity

that this datatype has no constructor. That is, there is no closed term of type ⋄ and only variables can have this

type. Moreover, variables of type ⋄ must be used linearly (one by one, without duplication) in the right-hand

side of rules. Thus, in order to use ⋄ in the right-hand size of a rule, one has to provide the same number on the

left-hand side. In a sense, diamonds in the reducee are “price” to be paid to apply the rule and can only be paid

by diamonds already existing in the redex. And the linearity condition avoids duplicating an existing diamond

to pay several “prices” with the same one. The next step is to make the type system aware of ⋄. When working

with lists, it is the cons that make the size of lists, Hofmann requires a diamond for each cons. Thus, instead of

having the classical type α, α list→ α list, cons is now of type ⋄, α, α list→ α list.

To prove a bound on space usage, we only need to know the maximum amount of diamonds required at any

time. That is, we can focus on the quantitative part of the analysis and forget about the qualitative part of how

and where these diamonds are reused. With this System, it is still possible to write the insertion sort function

Figure 1.12 (where d and d’ are ⋄).

insert(d, y, []) -> cons(d, y, [])

insert(d, y, cons(d’, x, xs)) ->

if x<y

then cons(d’, x, (insert(d, y, xs)))

else cons(d, y, cons(d’, x, xs))

sort([]) -> []

sort(cons(d, x, xs)) -> insert(d, x, sort(xs))

Figure 1.12: Insertion with diamonds

The diamonds that are liberated by destructing cons on the left-hand side can be reused to build new cons

on the right-hand side. It is worth noticing that insert itself requires an extra ⋄ which can be provided by the

initial call made in sort. On the other hand, it is now impossible to write double like in Figure 1.13.

Indeed, the last line uses its two diamonds for the external cons and cannot any more pass one to the recursive
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double(d, a, []) -> cons(d, a, [])

double(d, a, cons(d’, x, xs)) ->

cons(d, a, cons(d’, x, (double(???, a, xs))))

Figure 1.13: Double with diamond - impossible

call. And if one tries to remove the ⋄ argument from double, then it is impossible to perform the two cons in

the right-hand side of the rule with only one diamond provided by the left-hand side (because of the linearity

condition).

Thus, this apparently simple change in the type system allows to detect NSI programs. Moreover, it should

be noted that Safe Recursion prevented to write both exp and sort while NSI directly prevents to write double

and thus identifies the correct culprit.

With this new type system, it is still possible to write the insertion sort in the usual way, but exponentiation

is not possible anymore.

1.4.3 NSI detection in a compiler

NSI and imperative programs

When it comes to languages with explicit memory management, the diamonds have a very natural interpreta-

tion. Indeed, Hofmann shown that NSI programs [Hofmann, 1999b] can be compiled into C programs without

malloc. The diamonds are immediately translated into pointers to free memory. If the program is NSI, then it

reuses diamonds but does not need new ones, that is, it reuses memory but does no need new pointers (obtained

by a malloc).

A typical implementation of linked lists in C as in Figure 1.14a is to represent a cell as a value and a pointer

to the next cell, and a list as a pointer to the first cell of the list. With this implementation, cons needs to create

a new cell to store the new value, that is needs to perform a malloc to obtain free memory. Moreover, once a

cell is no longer in use, it is up to the programmer to free it, even if some other cell is immediately recreated:

there is no reuse of memory.

Now, if one thinks of the analogy “diamond = pointer” Figure 1.14, it is possible to rewrite the cons without

any malloc, provided that an extra argument is used: a pointer to free memory, that is, the diamond in

the functional version above. Note that obviously nothing ensure that the pointer indeed points toward some
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struct cell {
int value ;

struct cell * next ;

};

typedef struct cell * list ;

liste nil () {
return ( list ) NULL;

}

int is empty( list l ) {
return ( l==NULL);

}

list cons( int a, list l ) {
struct cell *c;

c=malloc(sizeof(struct cell));

c−>value = a;

c−>next = (struct cell *) l ;

return ( list ) c;

}

(a) Linked list in C

typedef struct cell* diamond;

list cons(diamond d, int a, list l) {

d->value = a;

d->next = (struct cell *) l;

return (list) d;

}

(b) Diamond = Pointer

Figure 1.14: NSI into C programs

reusable memory and any data in it is destroyed by the operation. It is up to the programmer to ensure that the

diamonds are indeed available to be used. Note that a diamond is essentially a pointer to (enough memory to

store) a cell while a list is only represented as such a pointer by commodity.

With this version, we can write an insertion sort that does not use any malloc Figure 1.15.

Note that this recursive version is made to look like the functional insertion sort above. It is likely to be

inefficiently compiled while an imperative version with loops would be more efficient due to compiler optimiza-

tions, and can still be written without malloc.

It is possible to have an overview of the diamonds (i.e. of the malloc and free in an imperative version

of the program) behaviour during the recurrence. The recursion gets a diamond when pattern matching is

performed to read and compare; if it is the right position for the value it uses two diamonds (calls cons two

times): one to add the new element and another to replace the previous element; otherwise, it simply replaces

the old element (with its own diamond, dd). This way, we understand that the insert function will globally

constructs one element, and thus require and extra diamond, d, which can be provided by sort.

This NSI analysis is not only a complexity analysis. Apart from the complexity information it gives some

security properties (the program won’t overflow memory and won’t cause memory leaks) and some possibilities
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list insert (diamond d, int y, list l ) {
diamond dd; int x; list xs;

if ( is empty( l ) )

return cons(d,y, l ) ;

else {
x=l−>value;

xs=l−>next;

dd=l; // destroyed , we can reuse it

if (x<y)

return cons(dd,x, insert (d,y,xs) ) ;

else

return cons(d,y,cons(dd,x,xs)) ;

}
}

list sort ( list l ) {
diamond d; int x; list xs;

if ( is empty( l ) )

return nil () ;

else {
x=l−>value;

xs=l−>next;

d=l; // the first cell is

destroyed

return insert (d,x, sort (xs) ) ;

}

Figure 1.15: Insertion without malloc

for optimization. It becomes indeed possible to completely remove the malloc from the code and let the

program efficiently reuse its memory. This will avoid several system calls and calls to the standard library that

can slow down the program execution.

Forbidding heap allocation avoid heap overflow, fix the memory complexity and avoid system calls. By

opposition, stack-based memory allocation is simpler, faster and safer. Because data is added and removed in a

Last-In-First-Out way it is easy to track static allocation by counting every local alloca and waiting final block

of local function (or module) to consider the amount allocated blocks freed. Furthermore the stack design is

already in a reuse principle similarly to the NSI principle.

But we can’t force programmers to only use static allocation and to consider memory complexity in all cases.

It is not realistic for humans to learn and have an overview on each structure and each dependency. Therefore

we are looking for an automatic analysis. In this case the programmer will not need to know the existence of

this analysis as many others in compilers. In most of cases, the programmer has no idea of the becoming of his

algorithm during the compilation.

For the NSI analysis we are searching for the maximum amount of diamonds consumed at a time. By

analogy with a real language like C, we count the number of malloc and free called at each step of the al-

gorithm. Here, we will consider a stack machine which allocates and deallocates an indivisible part of memory:

we simulate a stack behavior on heap.

In Figure 1.16, we will consider a stack machine which allocates and deallocates an indivisible part of
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memory: we simulate a stack behavior on heap. If we define a pop function that destructs a cell (here a

struct called “node”) and a push one that constructs one cell, we obtain a C code as below.

struct node* push(struct node* head,int data){
struct node* tmp = ( struct

node*)malloc(sizeof(struct node));

if (tmp == NULL)

exit (0) ;

tmp−>data = data;

tmp−>next = head;

head = tmp;

return head;

}

struct node* pop(struct node *head,int *element){
struct node* tmp = head;

*element = head−>data;

head = head−>next;

free(tmp);

return head;

}

struct node * insert rec ( struct node *head, int

data ){
if (empty(head))

return push(head,data);

else {
int element;

head = pop(head,&element);

if (element < data)

return push

(insert rec(head,data),element) ;

else

return push(push(head,element),data);

}
}

Figure 1.16: Recursive insertion sort

Thanks to the stack machine simulation, it is easier to have an overview of the malloc and free behaviors

in the recurrence. The loop consumes a cell in order to read and compare, if it is the right position in the list it

constructs a node two times: one time to add the new cell and, in all cases, another time to replace the previous

cell. By this way, we understand that the insert function will globally construct one cell.

Control Flow Graph

It is easy to do this analysis using a Control Flow Graph (CFG). A CFG is a graph representation of all paths

that might be traversed through a program during its execution. Each node in the graph represents a basic block,

i.e. a straight-line piece of code without any jumps. Directed edges are used to represent jumps. A CFG starts

with one entry-block and has one or several exit-blocks (or leaves). That builds the structured programming

concept. In the following we give a simple example: a reverse list function.

In the following subsection, we simplify the CFG generated in Figure 1.18a with a pseudo representation as

in Figure 1.18b.
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(* with accumulator *)

rev( l ) −> rev1(l,nil )

rev1( nil , acc) −> acc

rev1(cons( t ) ,acc) −> rev1(t,cons(acc) )

(a) Reverse function in TRS

0: if l = [] then goto 4;

1: h:=pop(l) ; (* frees a diamond*)

2: push(h,acc) ; (*consumes a diamond*)

3: goto 0;

4: end;

(b) Reverse function in Stack Machine

Figure 1.17: Simple example: Reverse list function

CFG for reverse function

entry:
%head.addr = alloca %struct.node*, align 8
%element = alloca i32, align 4
%temp = alloca %struct.node*, align 8
store %struct.node* %head, %struct.node** %head.addr, align 8
store %struct.node* null, %struct.node** %temp, align 8
br label %while.cond

while.cond:
%0 = load %struct.node*, %struct.node** %head.addr, align 8
%cmp = icmp ne %struct.node* %0, null
br i1 %cmp, label %while.body, label %while.end

T F

while.body:
%1 = load %struct.node*, %struct.node** %head.addr, align 8
%call = call %struct.node* @pop(%struct.node* %1, i32* %element)
store %struct.node* %call, %struct.node** %head.addr, align 8
%2 = load %struct.node*, %struct.node** %temp, align 8
%3 = load i32, i32* %element, align 4
%call1 = call %struct.node* @push(%struct.node* %2, i32 %3)
store %struct.node* %call1, %struct.node** %temp, align 8
br label %while.cond

while.end:
%4 = load %struct.node*, %struct.node** %temp, align 8
ret %struct.node* %4

(a) Generated CFG

0

end 1

2

3

l = [] l 6= []

pop()

push()

goto()

(b) Simplified CFG

Figure 1.18: Reverse list CFG of program in

A Resource Control Graph analysis

Now if we come back to our main example, Figure 1.19a is the simplified CFG for the insertion sort function

seen above. For our analysis, we need to augment this CFG by adding a weight (the diamond usage) to each

instruction. This way it becomes the Resource Control Graph [Moyen, 2009] (RCG) Figure 1.19b. Note that

if we drop the qualitative part of the analysis, we don’t need the ⋄ type anymore as counting variables of this

type is equivalent to counting instructions producing or consuming it. This, however, only provides a proved

bound on space usage but cannot actually remove malloc and free from the program. Using this RCG given

in Figure 1.19b we can find the most expensive path according to this weight. A maximum weighted path is

quickly computable with a classical algorithm such as Dijkstra’s or Bellman-Ford’s. It is equivalent to find the

shortest paths in a weighted graph. We also need to detect positive loop in a polynomial time. Here we are in the

case where we have a single entry source. The Dijkstra’s algorithm can provides the shortest path in O(|V |2)
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cons()
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cons()cons()

cons()

goto()

(a) Control Flow Graph of the insertion sort
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end

l = []

+1

l 6= []

-1

x < yx ≥ y

+1+1

+1

(b) Resources Control Graph of the insertion sort

Figure 1.19: Insertion sort RCG

time (with |V | the number of vertices) but unlike the Bellman-Ford algorithm it can’t be used on graph with

negative edge weights and it does not detect negative loop. Bellman-Ford’s algorithm runs in O(|V |.|E|) time

(with |E| the number of edges).

Bellman-Ford’s algorithm in a pass

Initialisation To initialize all vertices, we attribute an infinite negative number represented with a null pointer

expect for the entry node which is initialized to 0 (Figure 1.20a).

Relaxation (Figure 1.20b) If we find a higher weight by a certain edge we actualise the vertex’s distance.

Positive loop detection Positives loops are detected by searching vertex which has a lower weight than a prece-

dent vertex plus the corresponding edge cost (Figure 1.21).

We understand that, because the analysis is only static, it is not accurate. We only consider the worst case

to ensure the NSI property, this is why we want to have false negatives instead of false positives. Avoiding both

is undecidable. . .
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// init

for ( std :: vector<Vertex>:: iterator

it = vertices .begin () ;

it != vertices .end() ; ++it ){
if (* it ==entry)

distance [* it ]=0;

else

distance [* it ]= nullptr ; // suposed

infinit negative number

}

(a) Initialisation.

// relax

for (unsigned long i=1; i<vertices . size () ; i++){
for (Edges:: iterator ed=edges.begin () ; ed!=edges.end() ;

ed++){
Vertex u = ed−>first. first ;

Vertex v = ed−>first.second;

if ( distance [u] + ed−>second > distance[v])

distance [v] = distance [u] + ed−>second;

}
}

(b) Relaxation.

Figure 1.20: First pass sample.

// check the positives cycles

for (Edges:: iterator ed=edges.begin () ; ed!=edges.end() ; ed++){
Vertex u = ed−>first. first ;

Vertex v = ed−>first.second;

if ( distance [u] + ed−>second > distance[v]){
return false ;

}
}
return true ;

Figure 1.21: Positive loop detection.

Implementation details

In the LLVM-IR, the malloc instruction allocates one or more elements of a specific type on the heap, return-

ing a typed pointer to the new memory. The free instruction releases memory allocated through malloc.

When the native code is generated, those instructions are converted to the appropriate native function calls,

allowing also customizations. There are no implicit accesses to memory, this simplifies all memory access anal-

yses. LLVM also builds the CFG of every functions. As we said previously, this data structure will help us to

do static analysis. LLVM provides some tools to visit and match instructions targeted in the entire graph given.

This representation can give foundations in order to create a new one. For instance, the LoopInfo pass calculates

the nesting structure of loops in a function.

In order to build our RCG we use a LLVM tool: Basic Blocks visitor (Figure 1.22) which goes through each

basic block on the CFG. We can add a function to run for each basic block. Here we compute their weight and

map this to be used by another pass. We can also do it recursively by recalling the evaluate function for each

CFG branch.
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// InstVisitor a LLVM tool

// Here it ’s a definition of an herited class

// Counts easily occurence of specific call

struct CountCallVisitor : public InstVisitor <CountCallVisitor>{
int weight;

CountCallVisitor () : weight(0) {}
void visitCallInst ( CallInst &CI){

if (const Function *F = CI. getCalledFunction () ){
if (F−>getName() == ”malloc”)

weight++;

else if (F−>getName() == ”free”)

weight−−;

}
}

};

Figure 1.22: A visitor.

In both case the complexity is O(|V |) where |V | is the number of vertices or Basic Blocks.

Maximal weight computation Now we should be able to calculate the maximal weight or worst case space

that might be used by the program. As we said previously, by reconsidering our graph we can use the Bellman-

Ford’s algorithm to find the longest path in our weighted graph.

Type definitions can show how we designed our RCG using BasicBlock Figure 1.23a. If we build our CFG

using the following code, list of BBs in functions will be not in a good order according to the control flow.

Basically, BBs are stocked in a list in the Function Class and not as a graph. We need to, recursively, travel

through each successor of blocks, starting with the entry one. To fill up this new graph we will prefer to use a

Depth-First Search to obtain our nodes in the correct order.

1.4.4 Conclusions and further work

We built a static analyzer in almost 250 lines of code mostly because it reuses the LLVM’s environment and

tools. It can be split in two parts: the first builds a Resources Control Graph and the second computes func-

tions weights and detects positives loops. This analysis has been tested on classical lists manipulation such as

reverse, concat, insertion sort and quick sort. This tool can answer to the question “Is this

program NSI?” in some cases. It assumes that every loops’ body will be executed an undecidable number of

time then it does not provide accurate bounds.
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typedef llvm :: BasicBlock* Vertex ;

// we need to be able to reach pred and

next BB with the edge structure

typedef std :: pair<Vertex, Vertex>Edge;

// edges with their weight ( corresponding

to the weight of the first BB)

typedef std :: map<Edge, int> Edges;

// need to begin with the first entry

std :: vector<Vertex> vertices ;

std :: map<Vertex, int> distance ;

(a) The type definitions.

virtual void gimmeVertices(BasicBlock* first ){
// mark checked BB

BBmap2[first]=true ;

// get terminator instructions informations

const TerminatorInst *TInst = ( first )−>getTerminator();

// local analysis ( research ”malloc” and ”free” calls)

vertices .push back(first);

// for each branch

for (unsigned I = 0, NSucc =

TInst−>getNumSuccessors();

I < NSucc; ++I) {
BasicBlock *newSucc = TInst−>getSuccessor(I);

// prevent from recursive loops

if (!BBmap2[newSucc]){
// recursive call

gimmeVertices(newSucc);

}
}

}

(b) Recursive Depth First Search visitor.

Figure 1.23: Implementation details

Furthermore, if this analysis is done on the entire program, it can be seen as a tool to detect memory leak.

This work is our first step of further implementations of ICC theories into widely used compilers.

Figure 1.24 shows the result given by our analysis for the sort function using the insertion already analyzed

by the pass (we can see “call @insert:1” which means that the maximum weight of the insert function is

equal to 1). At the end we can read that the maximum weight of the sort by insert function is 0.

A lot of work remains to be done. First of all, dependence problems appear for non-analyzed functions called

in the current CFG. External libraries should be analyzed first and results need to be kept somewhere to avoid

recompilation, maybe by using an annotated system like the Clang Language Extensions4 or something similar

for the Intermediate Representation. It could be a great idea to provide an external library like libc entirely

certified with some Implicit Complexity properties. Those properties would be attached with the compiled

library. Then, because it is only added, this could work on any pre-existent code. By this way we could

globalize the “proof-carrying code” [Necula, 1997] movement.

Optimizations can be considered by introducing a type diamond in a way to have more information about

reusability of each memory and by customizing the standard dynamic allocations and deallocations. Elimination

4http://clang.llvm.org/docs/LanguageExtensions.html
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struct node * sort by insert ( struct node *head){
int element;

struct node * temp = NULL;

while(head!=NULL){
head = pop(head,&element);

temp = insert (temp,element) ;

display (temp);

}
return temp;

}

(a) Sort by insert in C

Function sort_by_insert

entry:

-2 successors :

|while.end:

|-0 successors :

|while.body.preheader:

|-1 successors :

| |while.body:

| | free here... -1

| | call @insert : 1

| |-2 successors :

| | |if.else.i:

| | | call @puts : 0

| | |-1 successors :

| | | |while.cond.backedge:

| | | |-2 successors :

| | | | |while.end.loopexit:

| | | | |-1 successors :

| | | | | |Loop !

| | | | |Loop !

| | |if.then.i:

| | | call @printf : 0

| | |-1 successors :

| | | |do.body.i:

| | | | call @printf : 0

| | | |-2 successors :

| | | | |do.end.i:

| | | | | call @putchar : 0

| | | | |-1 successors :

| | | | | |Loop !

| | | | |Loop !

Function max weight : 0

(b) Output given by the analysis

Figure 1.24: Results

of malloc calls is not a new idea [Hofmann and Jost, 2003] but, as far as we know, it has never been done in a

real compiler. Here we can replace malloc and free calls by our own instructions to simulate them without

any system call. We did not study more this option yet.

We can also, by studying more accurately relations between input and bounds [Albert et al., 2008a], ap-

proximate a Space Complexity [Avanzini et al., 2013] and, maybe, the termination [Lee et al., 2001] because

this last work is also based on weighted Control Flow Graphs or Resources Control Graphs [Moyen, 2009].
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Chapter 2

Data Flow Approach for Complexity

Analysis

In this chapter I present an idea introduced to Jean-Yves Moyen and me by Lars Kristiansen. I then worked

in collaboration with them and Thomas Seiller in Copenhagen to reformulate and enhance it (at the time of

writing, a common paper is in process). This framework is then reused for potentials optimizations in .

First an historical part of the idea is given, second I try to introduce a formal definition of the framework

with some abstract examples and finally I propose different instances of practical uses of this idea.

2.1 History of this idea

This section is a retranscription of what have been said by Lars Kristiansen at DICE2017, it introduces the

idea of this data-flow approach for complexity analysis and also explains why we decided to work on a specific

instance of this Data-Flow Analysis framework for finding loop quasi-invariants chunks in chapter 3.

First, when Lars studied Bellantoni and Cook recursion in 2000, he observed on a simple loop-language like

shown in Figure 2.1 that if the data flow graph of a loop does not contain any circle then the computed values

will be bounded by polynomials in the input, thus the program runs in polynomial time. Those circles can be

detected by an analysis. [Kristiansen and Niggl, 2004] described a method to do so using a stacks.

(Variables) X ::= X1 | X2 | X3 | . . . | Xn

(Expression) exp ::= X | X1 + C | X1 − C | X1 +X2 | X1 −X2

(Command) com ::= X = exp | com;com | LOOP X DO com END

Figure 2.1: Simple LOOP-language.

Lars knew that he could extend his language with conditions and refined the data-flow analysis by intro-

ducing different kinds of flow (m for max, w for weak-polynomial and p for polynomial) that are more or less

“harmful things”.
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While m-flows are harmless, w-flow and p-flow might be harmful. If it exists a circle of such flow, the

program may computes a value not bounded by a polynomial in the input. The difference between w-flow and

p-flow is that w-flow is iteration-independent, the value computed does not depend on the number of times the

loop’s body is iterated, it is invariant. To avoid harmful things, we need to put restrictions on w-flow and p-flow.

[Kristiansen and Jones, 2009] developed a syntactic proof calculus for assigning mwp-flow graphs to pro-

grams represented as matrices over a semi-ring ({0,m,w, p},⊕,⊗, 0, 1). Lars wondered how powerful is this

mwp-method. . . We may argue that it is by experimenting the method on large quanta of programs or with

relevant well known examples or proving the characterization of some complexity classes. He talked about

another way to test this method: by finding good approximation of approximation etc. . . of an undecidable

problem and the complexity of those approximations. Here the non-trivial question was “how to find good

approximations?”. Approximations often come with restrictions, the goal is to avoid restrictions that exclude

programs that programmers actually would like to write.

Lars worked on a simple loop-language with deterministic conditions and standard assignments but no con-

stant were allowed, this implies that no variables can be reset. Amir Ben-Amram proved in [Ben-Amram, 2010]

that the problem is still decidable if we allow the constant 0 but becomes PSPACE-complete. If we allow the

constant 1 the problem is still open [Ben-Amram and Kristiansen, 2012]. In the previous paper, they consider

two kinds of loops (one definite and one indefinite), three kinds of assignments (standard, max and weak) and

four forms of expressions (X+1, X+Y, X, 0) therefore give different result of characterization regarding to the

loop configuration.

A real-life application came in his mind when Neil Jones asked:

Concretely, here is a puzzle I have been playing with recently : how to do CODE MOTION automatically, in a way that can

yield superlinear program speedup. Traditionally, code motion involves moving a single command to the top of a loop. But

clearly this cannot result in an asymptotic program speedup. On the other hand, if one could move a group of commands,

one could gain much more,, eg move an inner loop outside to gain quadratic speedup. The question: could your (and

Amir’s) analyses be used to this end: identifying groups of commands that can be moved outside a loop without changing

semantics?

The answer is yes, as we will show and explain in section 3.2.
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2.2 A Data Flow Analysis Framework

In this section we give a formal definition of the framework starting from the methods presented by Lars in

[Kristiansen, 2012] and [Kristiansen and Jones, 2009]. It is voluntarily reformulated and generalized to give

the reader enough intuitions for the following potential instances of analysis, particularly the one presented in

chapter 3.

To introduce our generic Data Flow Analysis framework, we will work with a simple imperative WHILE-

language with semantics similar to C. The grammar is given by:

(Variables) X ::= X1 | X2 | X3 | . . . | Xn

(Expression) exp ::= X | op(exp,...,exp)
(Command) com ::= X = exp | com;com | skip | while exp do com od |

if exp then com else com fi | use(X1,...,Xn)

Figure 2.2: Simple WHILE-language.

A WHILE program is thus a sequence of statements, each statement being either an assignment, a condi-

tional, a while loop, a function call or a skip. The use command represents any command which does not modify

its variables but use them and should not be moved around carelessly (typically, a printf). In practice, we

currently treat all function calls as use, even if the function is pure. Statements are abstracted into commands.

A command can be a statement or a sequence of commands. We also call a sequence of commands a chunk.

2.2.1 Data Flow Graph

A generic definition of a Data Flow Graph for a given command C will be a weighted relation on the set V of

variables involved in C. Formally, this can be represented as a matrix over a semi-ring, with the implicit choice

of a denumeration of the set V . We can imagine a generic semi-ring (S,+,×).

Definition 1 A Data Flow Graph (DFG) for a command C is a n× n matrix over the semi-ring (S,+,×) where

n is the number of variables involved in C.

We write M(C) the DFG of C.

For technical reasons, we identify the DFG of a command C with any embedding of M(C) in a larger matrix.

55



CHAPTER 2. DATA FLOW APPROACH FOR COMPLEXITY ANALYSIS

I.e. we will abusively call the DFG of C any matrix of the form







M(C) 0

0 Id






,

implicitly viewing the additional rows/columns as variables that do not appear in C.

In all examples, we will be using weighted relations, or weighted bi-partite graphs, to illustrate these ma-

trices. We leave it to the reader to convince herself that these matrices and graphs are in one-to-one correspon-

dence. Moreover, all examples will be based on the semi-ring ({0, 1,∞},max,×), since it is the specific case

that will be under study in later chapter: the operators describe the tropical algebra in Figure 2.3. It will be used

to represent dependencies. This will be recalled in subsection 3.3.1.

max 0 1 ∞
0 0 1 ∞
1 1 1 ∞
∞ ∞ ∞ ∞

× 0 1 ∞
0 0 0 0
1 0 1 ∞
∞ 0 ∞ ∞

Figure 2.3: Addition and Multiplication in the semi-ring ({0, 1,∞},max,×).

In examples, we represent relations by matrices with two types of arrows between two copies of the set

of variables. The left-hand side represents variables before execution and the right-hand side represents the

variables after execution (i.e time flows from left to right). Figure 2.4 illustrates these types of relations: plain

arrows for∞, dashed arrows for 1. Relation of type 0 then corresponds to the absence of arrows ending on the

right occurrence of z.

x

y

z

x

y

z

∞

1

0

Figure 2.4: Example of different types of relations

Of course, this is a simple example of semi-ring imagined ({0, 1,∞},max,×), but we can guess that it

could have bigger set of elements - or kind of relations. For convenience we define, given a command C, the

following two sets of variables.
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Definition 2 Let C be a command. We define In(C) (resp. Out(C)) as the set of variables influencing (resp.

influenced) by C.

While in later sections we will only be studying a specific case of those, the theory is quite general and

pinpoints to formal links with various works on static analysis [Lee et al., 2001, Abel and Altenkirch, 2002,

Kristiansen and Jones, 2009] and semantics [Laird et al., 2013, Seiller, 2016a, Seiller, 2016b].

2.2.2 Constructing DFGs

We now describe how the DFG of a command can be computed by induction on the structure of the command.

Base cases (skip, use and assignment) should be defined depending on what the DFG will be used for. The DFG

for assignments are obtained by straightforward generalisation of the cases. Next, define a variable e – standing

for effect – not part of the language, and define:

• M(skip) as the “empty matrix” with 0 rows and columns1;

• M(use(X1, . . . , Xn)) as the matrix with coefficients from each Xi and e to e equal to∞, and 0 coefficients

otherwise. Here, the use is seen as a printf function, it creates dependencies on involved variables

and it is non-invariant because it can have side-effects.

Composition and Multipaths.

We now turn to the definition of the DFG for a (sequential) composition of commands. This abstraction allows

us to see a block of statements as one command with its own DFG.

Definition 3 Let C be a sequence of commands [C1; C2; . . . ; Cn]. Then M(C) is defined as the matrix product

M(C1)M(C2) . . .M(Cn).

The product of two N ×N matrices A,B is defined here as usual as the matrix C with coefficients: Ci,j =

∑n

k=1(Ai,k ×Bk,j) (a definition that makes sense from the semi-ring axioms).

It is standard that the product of matrices of weights of two graphs F,G represents a graph of length 2 paths.

This operation of matrix multiplication corresponds to the computation of multipaths [Lee et al., 2001] in the

graph representation of DFGs. We illustrate this intuitive construction on an example in Figure 2.5.

1Up to the identification of the DFG with its embeddings, it is therefore the identity matrix of any size.
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Figure 2.5: DFG of Composition.

Conditionals.

We now explain how to compute the DFG of a conditional, i.e. we define the DFG of C := if E then C1 else C2;

from the DFG of the commands C1 and C2.

Firstly, we need to take into account that both commands C1 and C2 may be executed. In that case, the

overall command C should be represented by the sum M(C1) +M(C2).

However, in most cases, it is not enough to consider M(C1)+M(C2), and the DFG of the command C should

be obtained by adding a conditional correction that may depend on the expressions E and C. This correction

will here be written as CC(E).

Definition 4 Let C = if E then C1 else C2;. Then M(C) = M(C1) +M(C2) + C
C(E).
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Figure 2.6: DFG of Conditional.

While Loops

Lastly, we define the DFG of a command C := while E do C1; from M(C1). First, we define a matrix M(C∗1)

representing iterations of the command C1. Then, as for conditionals, we introduce a loop correction LC(E).
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When considering iterations of C1, the first occurrence of C1 will influence the second one and so on. Com-

puting the DFG of Cn1 , the n-th iteration of C1, is just computing the power of the corresponding matrix, i.e.

M(Cn1 ) = M(C1)
n. But since the number of iteration cannot be decided a priori, we need to sum over all pos-

sible values of n. The following expression then defines the DFG of the (informal) command C∗1 corresponding

to ”iterating C1 a finite (but arbitrary) number of times”:

M(C∗1) = limitk→∞

k
∑

i=0

M(C1)
i

To ease notations, we note M(C1)
(k) the partial summations

∑k

i=0 M(C1)
i.

Definition 5 Let C = while E do C1;. Then M(C) = M(C∗1) + L
C(E).
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Figure 2.7: DFG of While Loop.

Note that M(C∗) is not always defined (depending on the choice of semi-ring). In the case of the semiring

({0, 1,∞},max,×), the set of all relations is finite and the sequence (M(C1)
(k))k>0 is monotonic, hence this

sequence is eventually constant. I.e., there exists a natural number N such that M(C1)
(k) = M(C1)

(N) for all

k > N . One can even obtain a reasonable bound on the value of N .

Lemma 1 Let C be a command, and K = min(i, o), where i (resp. o) denotes the number of variables in In(C)

(resp. Out(C)). Then, the sequence (M(C(k)))k>K is constant.
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2.3 Potential Instances of Analysis

To perform complexity bounds analysis. We’ve already talked about [Kristiansen and Jones, 2009]. They

trace different kind of value growth flow to provide complexity bounds then termination analyses on a LOOP-

language. It is straightforward to see how we can use our framework to do so by understanding the mwp-

Algebra they use: it is a finite closed semi-ring ({0,m,w, p,∞},⊕,⊗, 0, 1). As shown in section 3.5.1 and

subsection 3.6.1 it is simple to implement such semi-ring and customize the behaviour of such DFA to fit with

the method described by Lars Kristiansen and Neil D. Jones. [Ben-Amram et al., 2008] present a similar work

for imperative programs with bounded loops. Compared to [Kristiansen and Jones, 2009] its inferences are

sound and complete and its complexity is polynomial. They give sets of dependency types like ({0, 1, 1+, 2, 3}

respectively corresponding to none, copy, additive, polynomial, and at least exponential. This forms composable

matrices describing data-flow from variables to variables.

To perform static allocation analysis. We can imagine that a RCG section is a specific case of DFG. But we

can do better here if we consider only variables corresponding to the malloc and free calls with a specific

weight (the amount of memory allocated). It would be more precise than RCG since we can keep a trace of the

sum and the variables.

To do energy consumption analysis. As in [Grech et al., 2015] we can use our framework to do Energy

consumption prediction at Intermediate Representation level. [Eder and Gallagher, 2017] shows that we can

measure consumption by (hardware) instructions. We can use a kind of map of energy consumed regarding to

the instructions (and maybe the operands). Here we can guess that it will be necessary to have bounds over loop

iterations since energy can only be summed. This could be useful for safeness of course but also for consump-

tion optimization. For instance [van Gastel and van Eekelen, 2017] propose to study energy consumption of a

specific hardware regarding to an algorithm in a way to customize algorithms regarding to the hardware or the

other way around. We can then imagine a compiler which chooses a specific implementation regarding to some

parameters on the worst case energy consumption.

To compute “worst” dependency graphs. We will see in detail a possible use of this customizable framework

in the next chapter: the main idea is to provide a “worst” dependency graph over chunks of commands in a way
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to detect invariants and quasi-invariants. It could be an enhancement of the famous Loop Invariant Code Motion

therefore an optimization which was developed independently of questions about complexity analysis.

More theoretically we suppose that DFGs can measure any desirable properties of complexity - within the

meaning of Blum axioms - if we know how to bound the complexity of each individual instruction. Also we

can imagine that external sources could provide the analyses of more or less complex pieces of code. External

sources could be humans who have proven such bounds. In such cases, the tool will have to combine and

automatically infer the complexity of the whole program. This means that the analysis does not need to be

smart therefore expensive, such thing could be possible with interactions between the compiler and the user.

Annotations à la Frama-C [Duprat et al., 2016] could ease this kind of interactions.

2.4 Conclusion

I see this framework as a tunable data flow analyzer taking as parameters a semi-ring and a pass or a method

describing the way the basic matrices have to be enriched. This framework could be used for different kind of

purpose. As briefly mentioned previously, it can enhance pre-existent analysis and can make data flow analysis

more accessible for researchers and individuals. In the next chapter we present one potential use we developed

during my thesis.
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Chapter 3

Loop Quasi-Invariant Chunk Motion

3.1 Introduction

We’ve seen that compilers turn some high-level program into a (semantically) equivalent low-level assembly

program. This translation implies many smaller transformations, notably because features such as objects,

exceptions, or even loops need to be expressed in assembly language. The compiler also performs many opti-

misations aiming at making the code more efficient. These are often needed to streamline the code generated

by the transformations but can also be used to optimise the source code.

int x=rand()%100;

while(i<100){

y=x+x; //invariant

use(y);

i=i+1;

}

→

int x=rand()%100;

if(i<100){

y=x+x; //invariant

use(y);

i=i+1;

}

while(i<100){

use(y);

i=i+1;

}

Figure 3.1: Hoisted loop invariant

A command inside a loop is loop invariant code if its execution has no effect after the first iteration of the

loop. Typically, an assignment y:=x+x in a loop is invariant (provided x is not modified inside the loop). Loop

invariants can safely be moved out of loops (hoisted) in order to make the program run slightly faster like in

Figure 3.1. While loop invariant code is maybe not so frequent in source code, many transformations along the

compilation process can generate some. For example, when compiling the editors vim or emacs, an average

of 2 instructions per loop can be hoisted. These are mostly generated by other optimisations.
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A command inside a loop is quasi-invariant if its execution has no effect after a finite number of iterations

of the loop. Typically, if a loop contains the sequence z:=y*y; y:=x+x with x invariant, then y:=x+x is

invariant. However, z:=y*y is not invariant. The first time the loop is executed, z will be assigned the old

value of y*y, and only from the second time onward will z be assigned the value (x+x)*(x+x) which is

invariant Figure 3.2. Hence, this command is quasi-invariant. It can still be hoisted out of the loop, but to do so

requires to peel the loop first: execute its body once (by duplicating it before the loop). The number of times a

loop must be executed before a quasi-invariant can be hoisted is called here the degree of the invariant.

while(i<100){

z=y*y; //quasi-invariant

use(z);

y=x+x; //invariant

use(y);

i=i+1;

}

→

if(i<100){

z=y*y;

use(z);

y=x+x;

use(y);

i=i+1;

}

if(i<100){

z=y*y;

use(z);

use(y);

i=i+1;

}

while(i<100){

use(z);

use(y);

i=i+1;

}

Figure 3.2: Hoisted loop quasi-invariant

An obvious way to detect quasi-invariants is to first detect invariants (that is, quasi-invariants of degree 1)

and hoist them; and iterate the process to find quasi-invariant of degree 2, and so on. This is, however, not very

efficient since it may require a large number of iterations.

We provide here an analysis able to directly detect the invariance degree of any statements in the loop.

Moreover, our analysis is able to assign an invariance degree not only to individual statements but also to groups

of statements (called chuncks). That way it is possible, for example, to detect that a whole inner loop is invariant

and hoist it, thus decreasing the asymptotic complexity of the program. This analysis and transformation has

first been implemented as a Proof of Concept in a toy C-parser. Next, the analysis has been implemented as

a prototype pass of the mainstream compiler LLVM and the transformation is under way. The prototype is
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currently unable to handle several common situations (and leave them untouched) because of choices made for

the sake of simplicity. It is, nonetheless, powerful enough to make significant progress compared to the existing

loop invariant code motion techniques (it can handle many more cases).

Loop optimization techniques based on quasi-invariance are well-known in the compilers

community[Aho et al., 1986]. The transformation idea is to unroll loops a finite number of time and

hoist invariants until there is no more quasi-invariant. As far as we know, this technique is called “peeling”

and it was introduced by Song et al. [Song et al., 2000]. Loop peeling and unrolling can also happen for

entirely different reasons, mostly to improve vectorization and other optimizations [Fog, 2010]. In these cases,

the decision to unroll is based on loop size and (predicted) number of iterations but not on the presence of

quasi-invariants. It may, of course, happen that quasi-invariant removal is performed as a side effect of this

unrolling, but only as a side effect and not as the main goal.

The present section offers a new point of view on invariant and quasi-invariant detection. Adapting ideas

from an optimization on a WHILE language by Lars Kristiansen [Kristiansen, 2012], we provide a way to

compute invariance degrees based on techniques developed in the field of Implicit Computational Complexity.

Implicit Computational Complexity (ICC) studies computational complexity using restrictions of languages

and computational principles, providing results that do not depend on specific machine models. Based on

static analysis, it helps to predict and control resources consumed by programs, and can offer reusable and

tunable ideas and techniques for compilers. As said in the introduction, ICC mainly focuses on syntac-

tic [Cobham, 1962, Bellantoni and Cook, 1992], type [Girard, 1987, Baillot and Terui, 2009] and Data Flow

[Lee et al., 2001, Hofmann, 1999a, Kristiansen and Jones, 2009, Moyen, 2009] restrictions to provide bounds

on programs’ complexity. The present work was mainly inspired by the way ICC community uses dif-

ferent concepts to perform Data Flow Analysis, e.g. “Size-change Graphs” [Lee et al., 2001] or “Resource

Control Graphs”[Moyen, 2009] which track data values’ behavior and uses a matrix notation inspired by

[Abel and Altenkirch, 2002], or “mwp-polynomials” [Kristiansen and Jones, 2009] to provide bounds on data

size. For our analysis, we focus on dependencies between variables to detect invariance. Dependency graphs

[Kuck et al., 1981] can have different types of arcs representing different kind of dependencies. Here we will

use a kind of Dependence Graph Abstraction [Cocke, 1970] that can be used to find local and global quasi-

invariants. Based on these techniques, we developed an analysis pass and we will implement the corresponding

transformation in LLVM.
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We propose a tool which is notably able to give enough information to peel and hoist an inner loop, thus

automatically decrease the complexity of a program from O(m ∗ n) to O(m+ n).

3.1.1 State of the art on Quasi-Invariant detection in loop

Modern compilers find loop invariant code by recursively searching for variables whose value only depends on

either code that is outside the loop; or other loop invariant code. To our knowledge, no compiler searches for

loop quasi-invariant code.

A quasi-invariance detection has been described in [Song et al., 2000]. The authors define a variable depen-

dency graph (VDG) and detect a loop quasi-invariant variable x if, among all paths ending at x, no path contain

a node included in a circular path. Then they deduce an invariant length which corresponds to the length of the

longest path ending in x. To our knowledge, this analysis has not been implemented in a compiler. Moreover,

they only analyse individual commands and do not handle chunks. In the present section, this length is called

invariance degree and presented further in subsection 3.4.1.

3.1.2 Contributions

This application lies between the fields of Implicit Computational Complexity and Compilation and provides

significant advancement to both. To the authors’ knowledge, this is the first application of ICC techniques on a

mainstream compiler. One interest is that our tool potentially applies to programs written in any programming

language managed by LLVM. Moreover, this work should be considered as a first step of a larger project that

will make ICC techniques more accessible to programmers (section 2.2). Thus, we show that 25 years after

Bellantoni & Cook breakthrough [Bellantoni and Cook, 1992], ICC techniques are ready to move into “the real

world”. On a more technical side, our tool aims at improving on currently implemented loop invariant detection

and optimization techniques. The main LLVM tool for this purpose, the Loop Invariant Code Motion pass

(LICM) combined with other passes (like instcombine), does not detect quasi-invariant of degree more than

3 (and not all of those of degree 2). More importantly, LICM will not detect quasi-invariant chunks, such as

whole loops. Our tool, on the other hand, detects quasi-invariants of arbitrary degree and is able to deal with

chunks. For instance the optimization shown in Figure 3.3 is performed neither by LLVM nor by GCC even at

their maximum optimization level or with profiling methods.
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while(j<100){

fact=1;

i=1;

while(i<=n){

fact=fact*i;

i=i+1;

}

use(fact);

j=j+1;

}

→

if(j<100){

fact=1;

i=1;

while(i<=n){

fact=fact*i;

i=i+1;

}

use(fact);

j=j+1;

}

while(j<100){

use(fact);

j=j+1;

}

Figure 3.3: Hoisted invariant factorial

3.2 First Idea on WHILE-language

We already explained in section 2.1 why Lars Kristiansen started to be interested in resource-analysis theories

and how he brought us to work on loop-invariants. Here it is his basic ideas of this potential peeling optimization

he had in mind and written in [Kristiansen, 2012]. This idea is then reformulated and enhanced in the following

section. First, it was focused on a WHILE-language as presented in Figure 2.2. Second, he introduced the notion

of chunks with inputs and outputs here represented as [X ← Y] where Y (resp. X) is the set of variables in

the input (resp. output) of this chunk. Third, he defined the notion of independence of chunks or commands and

give a first theorem we will specialize further:

Definition 6 Independence of commands (or chunks of commands).

if Out(C1) ∩ In(C2) = ∅ then C1 is independent to C2.

with In(C) (resp. Out(C)) the variables used (resp. modified or created) by the command C

Theorem 3.2.1 Let C := while E do C be a command. Then

JCK ≡ Jif E do C; while E do CK

Lars proved that it is possible to peel part of the code by finding independents chunks like in the following
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example:

while i < ? do [[X← Y]; i := i+ 1; use(X); [Y← Z]]

we may transform it to:

if i < ? do [[X← Y]; i := i+ 1; use(X); [Y← Z]];

while i < ? do [[X← Y]; i := i+ 1; use(X); ]

And then into:

if i < ? do [[X← Y]; i := i+ 1; use(X); [Y← Z]];

if i < ? do [[X← Y]; i := i+ 1; use(X); ];

while i < ? do [ i := i+ 1; use(X); ]

Lars proposed a method to peel all the chunks at once by generating fresh variables. In the next section we

try to enhance this method by adding new kind of dependencies and new algorithms to compute a dependency

graph between chunks.

3.3 Improve the Theory with the previous DFA

In this section, we sketch the main lines of the theory around the dependency flow graphs (DepFG). Here

dependency flow graphs are used to represent (weighted) relations between variables, that is relations that

carry some additional information represented by elements of a semi-ring. In the next section, for instance,

the semi-ring1 ({0, 1,∞},max,×) will be used to represent various kinds of dependencies between variables.

Consequently, all examples will be given with this specific choice of semi-ring. We will work on the same

WHILE-language as described in Figure 2.2.

This instance of data-flow graph for a given command C will be a weighted relation on the set V of variables

involved in C. We now fix, until the end of this section, an arbitrary semi-ring (S,+,×) corresponding to that

DepFG.

1The convention here is that 0×∞ = 0.
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3.3.1 Kind of dependence

As mentioned previously, here we use the semi-ring ({0, 1,∞},max,×) to represent dependencies: 0 will

represent reinitialization, 1 will represent propagation, and∞ will represent dependence. Figure 3.4 introduces

both these notions and the graphical convention used throughout this chapter.

As previously, dependencies are represented by two types of arrows from variables on the left to variables

on the right: plain arrows for direct dependency, dashed arrows for propagation. Reinitialisation of a variable

z then corresponds to the absence of arrows ending on the right occurrence of z. Figure 3.4 illustrates these

types of dependencies; let us stress here that the DEPFG would be the same if the assignment y = y; were to be

removed2 from C since the value of y is still propagated. Finally x = x+ 1 can be seen as xr = xl + 13 where

xr depends directly on xl.

x

y

z

x

y

z

dependence

propagation

reinitialization

C := [x = x + 1;

y = y;

z = 0; ]

Figure 3.4: Types of dependence

Note that in this case of dependencies, In(C) (defined in definition 2) is exactly the set of variables that are

source of a “dependence” arrow, while Out(C) is the set of variables that either are targets of dependence arrows

or were reinitialised.

3.3.2 Constructing DEPFGs

The DEPFG of a command can be computed as described in subsection 2.2.2. The semi-ring is the same,

({0, 1,∞},max,×). Here we will quickly represent the given examples previously with a corresponding com-

mand to match dependencies.

Composition and Multipaths. For the composition, there is no particular behaviour for the case of depen-

dencies Figure 3.5 illustrate an example of DEPFG composition.

2Note that y = y; does not create a direct dependence
3in SSA form
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Figure 3.5: DEPFG of Composition.

Here C1 := [w = w + x; z = y + 2; ] and C2 := [x = y; z = z ∗ 2; ]

Conditionals. In the case of dependencies where C := if E then C1 else C2; we can notice that all modified

variables in C1 and C2 should depend on the variables used in E. Denoting E the vector representing variables

in4 Var(E), O the vector representing variables in Out(C1) ∪Out(C2), and (·)t the matrix transpose, we define

CC(E) = EtO. Figure 3.6 illustrates this on an example.
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Figure 3.6: DEPFG of Conditional.

Here E :=z ≥ 0 and C1 :=[w = w + x; z = y + 2; y = 0; ];

While Loops In Figure 3.7 we define the DEPFG of a command C := while E do C1; from M(C1). In the

case of dependencies, the loop correction and the conditional correction coincide: LC(E) = CC(E).

3.4 Dependencies and Quasi-Invariants

We now study in more details the DEPFG representation of programs for the semiring ({0, 1,∞},max,×).

Each different weight represents different types of dependencies.

4I.e. the vector with a coefficient equal to ∞ for the variables in Var(E), and 0 for all others variables.
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Figure 3.7: DEPFG of While Loop.

Here E :=z ≤ 100 and C3 :=[w = w + x;x = y; z = z + 1];

Each weight express how the values of the involved variables after the execution of the command depend

on their values before the execution. There is a direct dependence between variables appearing in an expression

and the variable on the left-hand side of the assignment. For instance x directly depends on y and z in the

statement x = y + z;. When variables are unchanged by the command we call it propagation; this includes

statements such as x = x;. Propagation only happens when a variable is not affected by the command, not when

it is copied from another variable. If the variable is set to a constant, we call this a reinitialization.

3.4.1 Invariance Degree

We now explain how, based on the computation of DEPFGs, we are able to define a notion of dependence degree

for commands within a while loop. Based on this notion of degree, we show how the loop can be optimised

by peeling it in order to extract all quasi-invariant commands, reducing the overall complexity while preserving

the semantics.

Before going into details, the reader should be aware that the studied transformation applied on arbitrary

WHILE programs gives rise to non-trivial renaming issues; in particular when a peeled conditional changes the

value of a reused variable (we give an intuition of that in section 3.5.1). To simplify the exposition while being

able to show an interesting example, we here introduce the ϕ-function that, at runtime, can choose the correct

value of a variable depending on the path just taken. ϕ-functions are a standard tool of compilation, used when

the code is set in SSA form (see section 3.6). Thus, we do not delve into details concerning how they precisely

work and assume some sort of “black box” able to select the correct value.

We now consider a loop C := while E do [C1; C2; . . . , Cn]. We will build a dependence graph Dep(C) from

the information given by the DEPFGs like in Figure 3.8.
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i := 0;
x := 42;
y := 5;
a := 12;
while i < 100 do :
| j := 0;
| s := 1;
| while j < y do :
| | s := s× j;
| | j := j + 1;
| if x > 100 do :
| | y1 := x+ a;
| if x <= 100 do :
| | y2 := x+ 100;
| y := ϕ(y1, y2);
| j := i− 1;
| a := 1;
| i := j + 2;

(a) An example

j := 0;

s := 1;

while j < y do :
| s := s× j

| j := j + 1

if x > 100 do :
| y1 := y + a;

if x <= 100 do :
| y2 := x+ 100;

y := ϕ(y1, y2);

a := 1;

j := i− 1;

i := j + 2;

s

j

y

y1

y2

a

j i

(b) Dependency graph of the outer while loop

Figure 3.8: Example of dependency graph

We will define the subset of principal dependences of the command Cm w.r.t. a given variable i. Intu-

itively, this principal dependence is the last command preceding Cm which modified the value of the variable i.

However, since while and if commands may be skipped, we have to consider several main dependences in

general. Based on this, we will then build the dependence graph which simply consists in writing the principal

dependences of each command.

First, we introduce some notations. Given a variable i, we define the set i≺ as {Ck | i ∈ Out(Ck)}, the set

of command modifying variable i. Given a command Cm and a variable i ∈ In(Cm), we denote as PrDi(Cm) the

subset of i≺ – the use-def chain over our ordered commands – defined as follows:

• it contains the smallest element of i≺ w.r.t. the order <m defined as

Cm−1 <m Cm−2 <m · · · <m C1 <m Cn <m Cn−1 <m · · · <m Cm;

• if it contains a command Ch which is either a while or if, it contains the next element of i≺ w.r.t. the

order <m.
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Definition 7 Let C := while E do [C1; C2; . . . , Cn] be a command. We define the directed graph Dep(C) as

follows:

• the set of vertices V Dep(C) is equal to {C1, . . . , Cn} (the set of commands in the loop);

• the set of edges EDep(C) is equal to ⊎nm=1 ⊎i∈In(Cm) PrDi(Cm) (the set of all principal dependencies);

• the source s(i) of the edge Ck ∈ PrDi(Cm) is Ck;

• the target t(i) of the edge Ck ∈ PrDi(Cm) is Cm.

The invariance degree degC(Cm) of a command Cm w.r.t. C is then defined as follows. When clear, we will

avoid writing the subscript C to ease notations. If Cm is a source in Dep(C), then deg(Cm) = 1. If Cm has a

reflective edge in Dep(C), then deg(Cm) = ∞. Otherwise, we write Fib(Cm) – the fiber over Cm – the set of

vertices in Dep(C) defined as {Ck | ∃e ∈ EDep(C), s(e) = Ck, t(e) = Cm}, and define deg(Cm) by the following

equation, where χ>m(i) = 1 if i > m and χ>m(i) = 0 otherwise:

deg(Cm) = max ({deg(Ci) + χ>m(i) | Ci ∈ Fib(Cm)})

In particular, if Cm is part of a cycle in Dep(C), its degree is equal to∞.

For all i ∈ N ∪ {∞}, we define the inverse image deg−1(i), i.e. deg−1(i) = {Ck | deg(C)k = i}, and

we note maxdeg(C) the largest integer (i.e. not equal to∞) such that deg−1(maxdeg(C)) 6= ∅. The following

lemma will be used in the proof of the main theorem.

Lemma 2 Consider the set deg−1(i) for an integer i > 0 and the relation induced from the dependency graph,

i.e. Ci → Cj if and only if there is a sequence of edges from Ci to Cj in Dep(C). Then (deg−1(i),→) is a

partial order.

Proof 1 It is clear that → is transitive and reflexive. We only need to show that it is antisymmetric. I.e. that

there are no two commands Ci, Cj such that Ci → Cj and Cj → Ci. We suppose that two such commands can be

found and show it leads to a contradiction. Indeed, if such a situation arises, it means that the dependency graph

contains a cycle P1, . . . , Pk with P1 = Pk = Ci. By definition of the degree, one has deg(Pi+1) > deg(Pi).

More to the point, one has deg(Pi+1) > deg(Pi) as long as Pi = Ck and Pi+1 = Ch with k > h. Now, it is

clear that one of the inequalities deg(Pi+1) > deg(Pi) has to be strict, as no sequence Ci1 , Ci2 , . . . , Cik with

i1 < i2 < · · · < ik can form a cycle. This implies that deg(Ci) > deg(Ci); a contradiction.
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Based on the invariance degree, we will be able to peel loops. For this purpose, we define the following

notation. Given a sequence of commands [C1; C2; . . . ; Cn], we write [Č1; Č2; . . . ; Čn]
(i) the subsequence in which

all commands of degree strictly less than i are removed. We then define ifi = if E then [Č1; Č2; . . . ; Čn]
(i),

and whilei = while E then [Č1; Č2; . . . ; Čn]
(i). We can now state the main theorem of the section, denoting

by JCK the semantics of the command C.

Theorem 3.4.1 Let C := while E do [C1; C2; . . . , Cn] be a command. Then

JCK ≡ Jif1; if2; . . . ; ifmaxdeg(C); while∞K

The proof of this theorem is based on an induction, using the following lemma.

Lemma 3 Let C := while E do [C1; C2; . . . , Cn], and D := if1; while2. Then JCK ≡ JDK and for each command

Cm appearing in while2, degC(Cm) = degD(Cm) + 1.

Proof 2 We start by proving the claim that for each command Cm appearing in while2, degC(Cm) = degD(Cm)+

1. This is a consequence of the fact that the dependency graph Dep(D) is obtained from Dep(C) by removing

all vertices Cm for commands Cm of degree 1, together with their outgoing edges. Note that this defines a well-

formed graph since by definition of the degree, a command of degree 1 may only depend on commands which

are themselves of degree 1 (i.e. edges of target Cm are removed as well). Now, it is clear from the definition of

the dependence degree that degC(Cm) =∞ implies degD(Cm) =∞, and that if degC(Cm)) = d the command Cm

only depended commands of degree at most d. From Lemma 2 we can prove by induction that degD(Cm) = d−1.

Then, one should realise that commands of degree 1 are in fact invariants of the loop C. It is then clear that

JCK ≡ JDK.

3.5 A proof of Concept from C to C

In the previous section, we have seen that the transformation is possible from and to a WHILE-language. This

section will progressively show that we can do it in real languages by introducing our implementations. First

it will present our proof of concept5 which does both analysis and propose a transformation from C to C. After

5https://github.com/ThomasRuby/LQICM_On_C_Toy_Parser
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that, we will explain how we implemented a prototype analysis in a mainstream compiler.

3.5.1 PoC in Python over a toy parser

To easily and quickly integrate our transformation, we decided to use “pycparser”6, a C parser written in

Python. The principal interest was to simply get and manipulate an Abstract Syntax Tree Figure 3.9. Us-

ing a “WhileVisitor” we list all nested while-loops, then, with a depth-first strategy (the inner loop first), this

tool analyses and transforms the code if an invariant or quasi-invariant is detected. The analysis is divided in

two parts: the DEPFG construction and the invariance degree computation.

Analysis

The first part aims to build the DEPFG and to list relations between statements. In this implementation we

decided to define a DEPFG object as a matrix of pairs of bit and defining simply the two operations of the

semi-ring:

# Empty, Propagation, Dependence, Total (Propagation and Dependence)

Keys = [(0,0),(1,0),(0,1),(1,1)]

# Product

dicProd = {

(0,0): {(0,0): (0,0), (1,0): (0,0), (0,1): (0,0), (1,1): (0,0)},

(1,0): {(0,0): (0,0), (1,0): (1,0), (0,1): (0,1), (1,1): (1,1)},

(0,1): {(0,0): (0,0), (1,0): (0,1), (0,1): (0,1), (1,1): (0,1)},

(1,1): {(0,0): (0,0), (1,0): (1,1), (0,1): (0,1), (1,1): (1,1)}

}

# Sum

dicSum = {

(0,0): {(0,0): (0,0), (1,0): (1,0), (0,1): (0,1), (1,1): (1,1)},

(1,0): {(0,0): (1,0), (1,0): (1,0), (0,1): (1,1), (1,1): (1,1)},

(0,1): {(0,0): (0,1), (1,0): (1,1), (0,1): (0,1), (1,1): (1,1)},

(1,1): {(0,0): (1,1), (1,0): (1,1), (0,1): (1,1), (1,1): (1,1)}

}

Here we can remark that we keep the information that a variable can be (in the same time as for quantum

mechanism) strongly connected and propagated. This choice will be explain later.

6https://github.com/eliben/pycparser
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while(j<n){

fact=1; //0

i=1; //1

while (i<=y) { //2

fact=fact*i;

i=i+1;

}

if(x<100){ //3

y=x+a;

}

if(x>=100){ //4

y=x+100;

}

a = 12; //5

i=j+1; //6

j=i+1; //7

}

While:

BinaryOp <cond>: op=<

ID <left>: name=j

ID <right>: name=n

Compound <stmt>:

Assignment <block_items[0]>: op==

ID <lvalue>: name=fact

Constant <rvalue>: type=int, value=1

Assignment <block_items[1]>: op==

ID <lvalue>: name=i

Constant <rvalue>: type=int, value=1

While <block_items[2]>:

BinaryOp <cond>: op=<=

ID <left>: name=i

ID <right>: name=y

Compound <stmt>:

Assignment <block_items[0]>: op==

ID <lvalue>: name=fact

BinaryOp <rvalue>: op=*
ID <left>: name=fact

ID <right>: name=i

Assignment <block_items[1]>: op==

ID <lvalue>: name=i

BinaryOp <rvalue>: op=+

ID <left>: name=i

Constant <right>: type=int, value=1

If <block_items[3]>:

BinaryOp <cond>: op=<

ID <left>: name=x

Constant <right>: type=int, value=100

Compound <iftrue>:

Assignment <block_items[0]>: op==

ID <lvalue>: name=y

BinaryOp <rvalue>: op=+

ID <left>: name=x

ID <right>: name=a

If <block_items[4]>:

BinaryOp <cond>: op=>=

ID <left>: name=x

Constant <right>: type=int, value=100

Compound <iftrue>:

Assignment <block_items[0]>: op==

ID <lvalue>: name=y

BinaryOp <rvalue>: op=+

ID <left>: name=x

Constant <right>: type=int, value=100

Assignment <block_items[5]>: op==

ID <lvalue>: name=a

Constant <rvalue>: type=int, value=12

Assignment <block_items[6]>: op==

ID <lvalue>: name=i

BinaryOp <rvalue>: op=+

ID <left>: name=j

Constant <right>: type=int, value=1

Assignment <block_items[7]>: op==

ID <lvalue>: name=j

BinaryOp <rvalue>: op=+

ID <left>: name=i

Constant <right>: type=int, value=1

Figure 3.9: Hard factorial example with AST

A DEPFG is computed for each command using a top-down strategy following the dominance tree. The

DEPFG is composed when the corresponding command is a sequence of commands. As described previously,

we compute the correction and the maximum relations possible for a while or if statement. In Figure 3.10 it

is the DEPFG for the inner while.
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While:

BinaryOp <cond>: op=<=

ID <left>: name=i

ID <right>: name=y

Compound <stmt>:

Assignment <block_items[0]>: op==

ID <lvalue>: name=fact

BinaryOp <rvalue>: op=*
ID <left>: name=fact

ID <right>: name=i

Assignment <block_items[1]>: op==

ID <lvalue>: name=i

BinaryOp <rvalue>: op=+

ID <left>: name=i

Constant <right>: type=int, value=1

i | (1, 1) (0, 1) (0, 0)

fact | (0, 0) (1, 1) (0, 0)

y | (0, 1) (0, 1) (1, 0)

Figure 3.10: Inner loop DEPFG

With this DEPFG, we compute an invariance degree for each statement in the loop regarding to the relations

listed Figure 3.11. Here the dependencies are listed regarding to the order of the block items of the main

node, the outer while statement. For instance the tuple “(1,2,’i’)” means C1 (aka i=1;) influences

strongly C2 (aka the while statement) with the variable i. The list of list of dependencies below shows which

commands depend on which other commands inside the main loop. Here the third list “[1, 0, 4, 3]” says

that C2 depends of the commands C1,C0,C4 and C3. Remark that this is PrDi(C2), the ordered subset described

in subsection 3.4.1.

Dependence Graph:

[(1, 2, ’i’), (0, 2, ’fact’), (4, 2, ’y’), (3, 2, ’y’), (5, 3, ’a’), (7, 6, ’j’), (6, 7, ’i’)]

List of List of Dependencies:

[[], [], [1, 0, 4, 3], [5], [], [], [7], [6]]

Figure 3.11: Relations between chunks
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(initialisations not shown)

7 while (i<n) {
8 j=0; // 1

9 s=1; // 1

10 while (j<y) { // 3

11 s=s⋆j;
12 j=j+1;

13 }
14 if (x>100) { // 2

15 y1=x+a;

16 }
17 if (x<=100) { // 1

18 y2=x+100;

19 }
20 y=ϕ(y1,y2); // 2

21 a=1; // 1

22 j=i-1; // ∞
23 i=j+2; // ∞
24 }
25 return i;

26 }

peeling

7 if (i<n) {
8 j=0;

9 j1=j;

10 s=1;

11 s1=s;

12 while (j<y) {...}
13 if (x>100) {...}
14 if (x<=100) {...}
15 y21=y2;

16 y=ϕ(y1,y2);

17 a=1;

18 j=i-1;

19 i=j+2;

20 }
21 if (i<n) {
22 j=j1;

23 s=s1;

24 while (j<y) {...}
25 if (x>100) {...}
26 y12=y1;

27 y2=y21;

28 y=ϕ(y1,y2);

29 j=i-1;

30 i=j+2;

31 }
32 if (i<n) {
33 j=j1;

34 s=s1;

35 while (j<y) {...}
36 y1=y12;

37 y2=y21;

38 y=ϕ(y1,y2);

39 j=i-1;

40 i=j+2;

41 }
42 while (i<n) {
43 j=i-1;

44 i=j+2;

45 }
46 return i;

47 }

Figure 3.12: Hoisting inner loop

Peeling loops from C to C

On a non-SSA form (see section 3.6), variables are often reused to store temporary values. The problem is that

if we hoist a part of loop which changes the value of one of those variables it is possible to change the semantic.

Furthermore, it is harder if those variables are modified in a conditional chunk, in this case a ϕ-function is

needed. This issue is illustrated in Figure 3.12 if we replace y1, y2 by y and ϕ-function is removed.
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Implementation details

For this PoC we decided to fix the renaming issue by adding variables to save values (including booleans values)

after each hoisted assignments and restore them at the beginning of each new hoisted block like in Figure 3.13.

But this trick is not relevant anymore at IR level. Indeed, these are already standard in compilers, our ultimate

goal, and there is no need to rewrite a full “put into SSA form” algorithm. The PoC is nonetheless able to peel

C programs in SSA form with no invariant conditional statements (see the examples in the repository).

This implementation is almost 700 lines of Python. It is able to compute relations of each commands

or sequence of commands. This tool focuses on a restricted C syntax and considers all functions as non-pure.

Functions with side effects can be seen as an anchor in the sequence of statements, commands can not be

moved around. But we can restrain the conditions for peeling. We can theoretically hoisting pure functions as

in [Song et al., 2000]. All other side effects can be broken by this transformation, and thus should not be moved.
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while(j<n){

fact=1; //0

i=1; //1

while (i<=y) { //2

fact=fact*i;

i=i+1;

}

if(x<100){ //3

y=x+a;

}

if(x>=100){ //4

y=x+100;

}

a = 12; //5

i=j+1; //6

j=i+1; //7

}

→

if (j < n){

fact = 1;

å0 = fact;

i = 1;

å2 = i;

while (i <= y){

fact = fact * i;

i = i + 1;

}

if (x < 100){

y = x + a;

}

if (x >= 100){

y = x + 100;

}

å4 = y;

å5 = x >= 100;

a = 12;

i = j + 1;

j = i + 1;

}

if (j < n){

fact = å0;

i = å2;

while (i <= y){

fact = fact * i;

i = i + 1;

}

if (x < 100){

y = x + a;

}

if (å5){

y = å4;

}

i = j + 1;

j = i + 1;

}

if (j < n){

fact = å0;

i = å2;

while (i <= y){

fact = fact * i;

i = i + 1;

}

i = j + 1;

j = i + 1;

}

while (j < n){

i = j + 1;

j = i + 1;

}

Figure 3.13: Renaming issue in C
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3.6 A prototype in LLVM

Compilers, and especially LLVM on which we are working, use an Intermediate Representation (IR) presented

in subsection 1.1.2 to handle programs. This is a typed assembly-like language that is used during all the

stages of the compilation. Programs (in various different languages) are first translated into the IR, then several

optimizations are performed (implemented in so-called passes), and finally the resulting IR is translated again

in actual assembly language depending on the machine it will run on. Using a common IR allows to do the

same optimizations on several different source languages and for several different target architectures.

One important feature of the LLVM IR is the Single Static Assignment form (SSA) also presented in sub-

section 1.1.2. A program is in SSA form if each variable is assigned at most once. In other words, setting a

program in SSA form requires a massive α-conversion of all the variables to ensure uniqueness of names. The

advantages are obvious since this removes any name-aliasing problem and ease analysis and transformation.

The main drawback of SSA comes when several different paths in the Control Flow reach the same point

(typically, after a conditional). Then, the values used after this point may come from any branch and this

cannot be statically decided. For example, if the original program is if (y) then x:=0 else x:=1;C,

it is relatively easy to turn it into a pseudo-SSA form by α-converting the x: if (y) then x0:=0 else

x1:=1;C but we do not know in C which of x0 or x1 should be used.

SSA solves this problem by using ϕ-functions. That is, the correct SSA form will be if (y) then

x0:=0 else x1:=1; X:=ϕ(x0, x1); C.

While the SSA itself eases the analysis, we do have to take into account the ϕ functions and handle them

correctly.

Existing. LLVM does have a Loop Invariant Code Motion (LICM) pass which hoists invariants out of loops.

Used with unrolling and instruction combination optimizations it can sometimes “peel” quasi-invariants. How-

ever, as far as we know, it does not compute invariance degrees and does not detect quasi-invariant chunks.

Hence, if peeling occurs, it is as a side effect of another transformation (mostly, pipeline optimisation) and not

to hoist quasi-invariants.
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3.6.1 Preliminaries

Our pass is currently working over the branch “release 40” of LLVM7. First, we have written the framework

in a library (in the file LQICMUtils.h) in which we define what is a Relation, an object to represent

DEPFG. This Relation is mainly composed by variables (which is a set of LLVM::Values) and a

map of dependencies which link a type of dependence for a pair of variables:

typedef std::pair<Value*,Value*> Arrow;

typedef DenseMap<Arrow,DepType> DepMap;

typedef SmallPtrSet<Value*,8> VSet;

Here we need to think about each instruction to consider what could be the corresponding DEPFG of each?

We could consider that all operands create a strong dependence to the value but it is not really true. For instance

a ϕ-instruction create more propagations as in Figure 3.14: We discuss our choice further.

w

x

y

w

x

y





1 ∞ 0
0 0 0
0 ∞ 1





or

w

x

y

w

x

y





1 1 0
0 0 0
0 1 1





Figure 3.14: DEPFG of ϕ instruction.

%x = phi i32 [ %w, %while.end ], [ %y, %while.cond ]

7https://github.com/llvm-mirror/llvm/tree/release 40
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A dependency type is defined regarding to the semi-ring given:

enum DepType {

EMPT, // (0,0)

PROP, // (1,0)

STRO, // (0,1)

TOTA, // (1,1)

};

DepType Plus[4][4] = { {EMPT,PROP,STRO,TOTA},

{PROP,PROP,TOTA,TOTA},

{STRO,TOTA,STRO,TOTA},

{TOTA,TOTA,TOTA,TOTA}

};

DepType Time[4][4] = { {EMPT,EMPT,EMPT,EMPT},

{EMPT,PROP,STRO,TOTA},

{EMPT,STRO,STRO,TOTA},

{EMPT,TOTA,TOTA,TOTA}

};

Again here we have kept the information of a potential dependence which is a propagation plus a strong

dependence. We will see how this can improve our analysis. Obviously the framework comes with special

function to manipulate DFGs here DEPFGs.

Also we can see how a Chunk is represented in our pass. A Chunk is basically a map which links a set

of commands to corresponding Relations. It has his own computed Relation too. It is delimited by two

LLVM::BasicBlocks, most importantly an “end” block which is the unique successor of the chunk and

contains some information about its form: is it a loop, an if-statement, a branch or a simple block. A chunk of

if-statement is initialized when a fork is encountered (a block with two successors), a chunk is initialized for

each branch in a way to be “summed” when their first common post dominator is encountered. For the moment

it is the only case considered, loops with several exit-blocks are not considered (yet).

Secondly, we want to visit all loops using a deep-first strategy (the inner loop first). Then, as for the

LICM, our pass is derived from the basic LoopPass (loops are detected by the LLVM’s LoopInfo pass).
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Which means that each time a loop is encountered, our analysis is performed. At this point, the purpose is

to gather the relations of all instructions in the loop to compose them and provide the final relation for the

entire current chunk loop. Then a Relation is generated for each command using a top-down strategy

following the dominance tree. The SSA form helps us to gather dependence information on instructions. By

visiting operands of each assignment, it is easy to build our map of Relation. With all the current loop’s

relations gathered, we compute the compositions, condition corrections and the maximums relations possible as

described in section 2.2.2. Obviously this method can be enhanced by an analysis on bounds around conditional

and number of iterations for a loop. Finally, with those composed relations we compute a dependency graph.

This graph is defined as DepMapChunks and is a list of list as in Figure 3.11. Those principal dependences

are computed as described in Figure 3.4.1. And here, because ϕ(and select)-instructions are considered as two

potentials propagations we must look at the two values and figure out what are the new “closest” dependencies. It

is then possible to have from one variable to another a strong dependency and a propagation (i.e. the insert

instruction add two potential propagation with a strong condition correction). In this case we still need to

look at the previous affectation to add potential previous dependencies. The reader can have a look to the

recursive function called “computeDepForX” which computes for a variable (in input of a Relation here)

the closest strong dependence. From this dependency graph it is possible to compute an invariance degree for

each statement in the loop like in Figure 3.15. algorithm 1 gives the algorithm which computes those degrees.

...

while.body:

%mul = mul nsw i32 %y.0, %y.0 ← 2

call void @use(i32 %mul) ←∞

%add = add nsw i32 %rem, %rem ← 1

call void @use(i32 %add) ←∞
%inc = add nuw nsw i32 %i.0, 1 ←∞
br label %while.cond ←∞

...

...

while(i<100){

z=y*y ;

use(z);

y=x+x ;

use(y);

i++;

}

...

Figure 3.15: Invariance degrees example.

This algorithm is dynamic. It stores progressively each degree needed to compute the current one

and reuse them. Note that, for the initialization part, we are using LLVM methods (canSinkOrHoist,

isGuaranteedToExecute etc. . . ) to figure out if an instruction is movable or not. These methods provide

the anchors instructions for the current loop.
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Data: Dependency Graph and Dominance Graph

Result: List of invariance degree for each command

Initialize degrees of use to∞ and others to 0;

for each command Cm do

if the current degree deg(Cm) 6= 0 then

return deg(Cm);
else

Initialize the current degree deg(Cm) to∞;

if there is no dependence for the current chunk then

deg(Cm) = 1;

else

for each dependent command ordered (subsection 3.4.1) compute the degree deg(Cd) do

if deg(Cd) =∞ or Cd = Cm then

return∞;

end

if deg(Cm) ≤ deg(Cd) and d > m then

deg(Cm) = deg(Cd) + 1;

else

deg(Cm) = deg(Cd);
end

end

end

return deg(Cm)
end

end

Algorithm 1: Invariance degree computation.

3.6.2 Peeling loop idea

The transformation will consist in creating as many basic blocks before the loop as needed to remove all quasi-

invariants as in 3.4.1. For each block created, we include every commands with a higher or equal invariance

degree. For instance, the first preheader block will contain every commands with an invariance degree

higher or equal to 1; the second one, higher or equal to 2 etc. . . to maxdeg. The final loop will contain every

commands with an invariance degree equal to∞. In the basic example of the same factorial computed several

times Figure 3.16, the entire inner loop (in red) is hoisted out of the parent loop (in blue) as shown in Figure 3.17.

More technically we chose to reused and modify LoopUnrollPeel.cpp.

Of course, hoisting quasi-invariants of high degrees is not necessarily a good idea since it requires peeling

the loop many times and thus greatly increase the size of the code. The final decision to hoist or not will depend

on the max quasi-invariance degree and the size of the loop. It will be possible to enable a default value for both

or take those values throughout compilation options given by the user.
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while(j<100){

fact=1;

I=1;

while(I<=n){

fact=fact*I;

I=I+1;

}

use(fact);

j=j+1;

}

Figure 3.16: Simple factorial CFG.

3.6.3 Results

In this example (Figure 3.12), we compute the same factorial several times. We can detect it statically, so the

compiler has to optimize it at least in -O3. Our tests showed that is done neither in LLVM nor in GCC (we also

tried -fpeel loops with profiling). The generated assembly shows the factorial computation in the inner

loop. Moreover, the computation time of this kind of algorithm compiled with clang in -O3 still computes

n times the inner loop so the computation time is quadratic, while hoisting it results in linear time. For the

example shown in Figure 3.12 (LLVM-IR in Figure 3.18), our pass will compute the correct degrees.

To each instruction printed corresponds an invariance degree. The assignment instructions are listed by

loops, the inner loop (starting with while.cond5) and the outer loop (starting with while.cond). The

inner loop has its own invariance degree equal to 4 (line 10). Remark that we do consider the phi initialization

instructions of an inner loop. Here %fact.0 and %i.1 are reinitialized in the inner loop condition block. So

phi instructions are analyzed in two different cases: to compute the relation of the current loop or to give the

initialization of a variable sent to an inner loop. Our analysis only takes the relevant operand regarding to the

current case and do not consider others.
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if(j<100){

fact=1;

I=1;

while(I<=n){

fact=fact*I;

I=I+1;

}

use(fact);

j=j+1;

}

while(j<100){

use(fact);

j=j+1;

}

Figure 3.17: Peeled Simple factorial CFG.

Statistics have been generated by our pass on the editor vim to evaluate the magnitude of new possible

optimizations (Figure 3.19). Note that the result changes a lot regarding to when our pass is called. Here, to

compare, it is placed before all LICM iterations but without peeling. We can observe that, despite the number

of aborted analysis due to the lack of flexibility of our young pass, over less than half of the loops analyzes

LICM, we find 5984 quasi-invariants instructions, 73% of the total invariants currently hoisted by LICM. The

compilation time increased by around 23%.

The code of this pass is available online8. To provide some real benchmarks on large programs we need to

finish the transformation. We are currently working on it.

For the moment the transformation is not enough stable to be performed on long compilation like this. It

only works on our specific examples. We are currently working on the stability of our pass.

8https://github.com/ThomasRuby/lqicm_pass
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...

while.cond:

%j.0 = phi i32 [ 0, %entry ], [ %add20, %while.end ]

%y.0 = phi i32 [ 5, %entry ], [ %y.2, %while.end ]

%i.0 = phi i32 [ undef, %entry ], [ %j.0, %while.end ]

%a.0 = phi i32 [ 5, %entry ], [ 0, %while.end ]

%cmp = icmp slt i32 %j.0, %rem

br i1 %cmp, label %while.cond5, label %while.end21

while.cond5:

%fact.0 = phi i32 [ %mul, %while.body8 ], [ 1, %while.cond ]

%i.1 = phi i32 [ %add, %while.body8 ], [ 1, %while.cond ]

%cmp6 = icmp sle i32 %i.1, %y.0

br i1 %cmp6, label %while.body8, label %while.end

while.body8:

%mul = mul nsw i32 %fact.0, %i.1

%add = add nsw i32 %i.1, 1

br label %while.cond5

while.end:

%cmp10 = icmp sgt i32 %rem3, 100

%add12 = add nsw i32 %rem3, %a.0

%add12.y.0 = select i1 %cmp10, i32 %add12, i32 %y.0

%cmp14 = icmp sle i32 %rem3, 100

%add17 = add nsw i32 %rem3, 100

%y.2 = select i1 %cmp14, i32 %add17, i32 %add12.y.0

%add20 = add nsw i32 %j.0, 1

br label %while.cond

while.end21:

ret i32 %i.0

...

Figure 3.18: LLVM Intermediate Representation

(LQICM Analysis called before each LICM(3X) occurence)

Compiler: clang release_40 -Oz

Time (with - without)

8m8,020s - 7m48,244s

--- vim v8.00442 ---

13407 Number of loop

5009 Loops well analyzed by LQICM

5984 LQICM Quasi-Invariants detected

8126 LICM Invariants Hoisted

656 LQICM Quasi-Invariants blocks detected

7632 LQICM Aborted: several exit blocks

351 LQICM Aborted: Header not exiting

256 LQICM Aborted: Inner loop not analyzed

159 LQICM Aborted: Successor not found

Figure 3.19: Statistics on vim.

3.6.4 Implementation details

The only chunks considered in the current implementation are the one consisting of while (any loops in

LCSSA form) or if-then-else (any forks which have a common post dominator existing in the loop)

statements.
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This implementation (including a preliminary version of peeling) is almost 3000 lines of C++. It is able

to compute relations of each commands or sequence of commands. However, it has, for the moment, some

restrictions on the form of the loop analyzed. First, loops with several exit blocks are ignored and left intact

(typically a loop including a break); furthermore, this tool considers all functions as non-pure as for the Proof

of Concept. Even with these restrictions, the pass is able to optimise code that was previously left untouched,

thus illustrating the power of the method. We are currently trying to improve the flexibility of our pass.

3.6.5 Conclusion

Developers expect that compilers provide certain more or less “obvious” optimizations. When peeling is possi-

ble, that often means: either the code was generated; or the developers prefer this form (for readability reasons)

and expect that it will be optimized by the compiler; or the developers haven’t seen the possible optimization

(mainly because of the obfuscation level of a given code).

Our generic pass is able to provide a reusable abstract dependency graph and the quasi-invariance degrees

for further loop optimization or analysis.
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Conclusions and Further works

Conclusions

The study of Implicit Computational Complexity is 20 years old and keeps playing with toy languages. This

thesis is another step into “real world” programs for this community mainly because it tries to accompany the

researcher into a widely used compiler with a new customizable Data Flow Analysis framework.

We have seen that those implementations of ICC methods need to deal with more technical cases thus

generates more problematics often followed by more approximations but they still feasible. Now it is time to

develop them the best way we can to show the real value of those methods. And in another hand, a lot of

interesting certifications do not need accurate analysis, filling the gap should not be so difficult. It could bring

safeness and avoid to waste time in testing.

We’ve also seen that optimizations are not so far from analyses. It is possible to deal with both verifications

and optimizations as researchers around Compcert have proven. Providing certificates at compile time is not a

dream, it feasible and methods are already here for it. This could offer reliability to all users.

This thesis, more that bringing interest on complexity analysis, it is providing tools as proof of concepts

and prototypes. Particularly LQICM pass has, from my point of view, a good potential to be the first brick of a

future “Loop Invariant Code Motion” like pass. I mean that it could be widely used in compilers.
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Further works

LQICM pass is currently a prototype. The transformation is still in preliminary form and even the analysis is

making some approximations (e.g. considering all functions as non-pure) that hamper its efficiency. We will

obviously work further on the pass to finish the transformation and increase the number of cases we can handle.

On a more theoretical side, the current analysis is strongly inspired by other ICC analysis such as Size

Change Termination [Lee et al., 2001] (from which the Data Flow Graphs and Multipaths are taken) or the

mwp-analysis (from which the loop correction idea is taken) [Kristiansen and Jones, 2009]. As shown in sec-

tion 2.3, it is easy to adapt the method to similar analysis, and most of the existing code can be reused. Thus,

we plan on implementing a mwp-inspired complexity analysis in LLVM, which should be able to guarantee

the polynomiality of large parts of the code. We hope that continuing working in the frontier of both field will

expose new ideas and methods that we haven’t considered yet.
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