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André Martins Research scientist, Unbabel Examinateur
Roberto Wolfler Calvo Professeur, Université Paris 13 Examinateur
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Abstract

In linguistics and Natural Language Processing (NLP), syntax is the study
of the structure of sentences in a given language. Two approaches have mainly
been considered to describe them: dependency structures and phrase-structures.
A dependency links a pair of words together with its relation type whereas a
phrase-structure describe a sentence by means of a hierarchy of word sets called
constituents. In this thesis, we focus on phrase-structure parsing, that is the
computation of the constituency structure of a given sentence. Context-Free
Grammars (CFGs) have been widely adopted by the NLP community due to
their simplicity and the low complexity of their parsing algorithms. However,
CFGs are too limited in order to describe all phenomena observed in natural
language structures. Therefore, Lexicalized Tree Adjoining Grammars (LTAGs)
have been widely studied as a plausible alternative, among others. They are
more expressive than CFGs but can also be parsed in polynomial time. Un-
fortunately, the best known algorithm has a O(n7) time complexity with n the
length of the input sentence. Thus, in practice most algorithms are based on
greedy methods which require fairly strong independence assumptions. The
main approach in the literature, called supertagging, filters the search space in
a pre-processing step while ignoring long distance relationships, one of the main
motivation for LTAGs.

In the past years, combinatorial optimization techniques have been success-
fully applied to computationally challenging NLP tasks. We follow this line of
work in the case of LTAG parsing. More precisely, in our setting, a given NLP
problem is reduced to a subgraph selection problem. As such, it has a generic
form which may interest other research communities. Then we formulate the
generic graph problem as an Integer Linear Program. Integer Linear Program-
ing has been widely studied and many optimization methods exist. We focus on
Lagrangian relaxation which previously received much attention from the NLP
community. Interestingly, the proposed algorithms can be parametrized to fit a
range of different data without impacting efficiency.

Our first contribution is a novel pipeline for LTAG parsing. Contrary to
the supertagging approach, we propose a pre-processing step which takes into
account relationships between words: well-nested dependency parsing with 2-
bounded block degree. An algorithm with a O(n7) time complexity has been
proposed for this problem in the literature, which is similar to the standard
LTAG parser complexity. In order to tackle the complexity challenge, we show
that it can be reduced to a subgraph selection problem which can be expressed
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via a generic ILP. With our algorithm, the well-nested constraint can easily be
toggled off and the block degree bound can be changed. Thus, as an example,
it can be used for parsing problems related to other lexicalized grammars. We
experiment on several problems showing the efficiency and usefulness of our
method.

Our second contribution is a novel approach for discontinuous constituent
parsing. We introduce a variant of LTAG for this task. Parsing is then equiv-
alent to the joint tagging and non-projective dependency parsing problem. We
show that it can be reduced to the Generalized Maximum Spanning Arbores-
cence problem which has been previously studied in the combinatorial optimiza-
tion literature. A novel resolution algorithm based on Lagrangian relaxation is
proposed. We experiment on two standard discontinuous constituent datasets
and obtain state-of-the-art results alongside competitive decoding speed.

Key words: Parsing, Tree Adjoining Grammars, Lagrangian relaxation, Gen-
eralized Maximum Spanning Arborescence



Français

Titre: Approches fondées sur la relaxation Lagrangienne pour l’analyse syn-
taxique avec grammaires d’arbres adjoints

Résumé: Ces dernières années, des méthodes issues de l’optimisation com-
binatoire ont été appliquées avec succès pour résoudre des problèmes algorith-
miques difficiles en Traitement Automatique des Langues (TAL). Nous suivons
cette méthodologie dans le cadre de l’analyse syntaxique avec des Grammaires
d’Arbres Adjoints Lexicalisées. Plus précisément, un problème d’analyse est
d’abord réduit à un problème de sélection de sous-graphe. Ensuite, nous formu-
lons ce dernier sous forme de Programme Linéaire en Nombres Entiers. Beau-
coup d’algorithmes ont été proposés pour ces formulations. Nous nous concen-
trons sur la relaxation Lagrangienne qui a reçu beaucoup d’attention de la part
de la communauté du TAL. La particularité de notre méthode réside dans le
fait que nos algorithmes résolvent des problèmes généraux et peuvent donc être
testés sur différentes données.

Mots clés: Analyse Syntaxique, Grammaires d’Arbres Adjoints, Relaxation
Lagrangienne, Arborescence généralisée de poids maximum
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Chapter 1

Introduction

A formal language is a possibly infinite set of strings specified via rules
defining how symbols can be combined. In general, formal languages are de-
scribed thanks to either rule-rewriting or tree-based systems. The most popular
rule-rewriting formalism is Context-Free Grammar (CFG), which is expres-
sive enough to describe programming languages, among others. In this thesis,
though, we focus on natural languages where symbols are words and strings
are sentences. Joshi [1985] argued that CFGs are not well suited to natural
languages, leading to the development of mildly context-sensitive gram-
mars, including Tree Adjoining Grammars (TAGs). Following research in
linguistics confirmed the ability of TAGs to model composition rules observed in
natural language sentences [Abeillé, 1988, Abeillé et al., 1990]. In other words,
grammars are generators of well-formed sentences. A concrete example of TAGs
attractiveness over CFGs is their ability to model cross-serial dependencies. In
Dutch, relative clauses like “dat Jan de kinderen zag zwemmen”, meaning
“that Jan saw the children swim”, are composed by first enumerating all the
subjects and then all the verbs. This phenomenon, certifying that the number
of verbs is equal to the number of subjects alongside dependencies from the kth

verb to the kth subject, is roughly equivalent to the copy language problem, that
is building a grammar which models the set of strings {ww| ∈ Σ∗}, where Σ is
a set of symbols. It is well-known that the latter problem cannot be modelled
with CFGs.

The other way around, the grammatical analysis of a given sentence, called
the parse, exposes relationships between phrases that may not be directly rep-
resented in the word sequence. Both analogies are useful in Natural Language
Processing (NLP): encoding and decoding messages are obviously critical prob-
lems for the development of human language interfaces. Usually, grammatical
analysis rely on data that have been annotated by experts. Because these lin-
guistic structures often look like trees, they are called treebanks. However, pars-
ing with TAGs automatically extracted from annotated treebanks has received
little attention from the community even though Chiang [2000] experimentally
demonstrated their accuracy. Importantly, an alternative line of work is based
on splittable TAGs [Schabes and C. Waters, 1995, Carreras et al., 2008, Kasai
et al., 2017] which have efficient parsing algorithms but cannot directly encode
properties that make TAGs linguistically plausible, including cross-serial depen-
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1.1. LEXICALIZED TREE ADJOINING GRAMMARS 11

dencies. We believe the unattractiveness of mildly context-sensitive formalisms
is due to their long decoding time. The aim of this thesis is to propose an effi-
cient parsing framework for Lexicalized Tree Adjoining Grammars (LTAGs), a
variant of TAGs where each tree must have exactly one lexical anchor, that is
a leaf with a word [Schabes et al., 1988].

1.1 Lexicalized Tree Adjoining Grammars

1.1.1 Motivation

A grammar is a finite set of rules which constrain the combination of symbols
(words) in order to generate the possibly infinite set of valid strings (sentences)
in a given language. As an example, the informal simple rule a subject followed
by a verb is a valid clause validates the English sentence “She walks”. Tradition-
ally, coherent subsets of words, called constituents,1 are grouped with respect to
their hierarchical relationships resulting in a tree called phrase-structure [Chom-
sky, 1957]. The sentence “She walks the dog” contains 7 constituents : She,

walks, the, dog, the dog, walks the dog, She walks the dog.2 Relationships
include the noun phrase “the dog” with determinant “the” and noun “dog”.
Figure 1.1 exposes the full phrase-structure of the sentence alongside two plau-
sible constructions from fragments called elementary trees.3 Thus, a sentence
can be generated by combining fragments representing local syntactic units via
combination operations. As of now, we only introduce the substitution
operation which merges the root node of a tree fragment with the leaf of an-
other if the labels are equal. Such generative grammars are qualified as shallow
because they only certify the grammatical correctness of a sentence without im-
posing any semantic coherence. As reported by Noam Chomsky, the sentence
“Colorless green ideas sleep furiously” is thus valid despite being meaningless.
This issue can be partially addressed thanks to lexicalization. A grammar is
lexicalized if and only if each one of its elementary trees contain exactly one
lexical anchor, that is a word. Figure 1.2 exhibits two elementary trees associ-
ated with the word “walks”, either used as an intransitive or transitive verb.
Moreover, note that the sentence “She walks the dog” is semantically correct
but “She walks the river” is not. Because elementary trees are lexicalized, we
can trivially add a substitution constraint: the object associated with a transi-
tive realization walks can only be in a subset of allowed words, including dog but
not river. As such, the substitution operation in a lexicalized grammar directly
encodes semantic information: we qualify this family of formalisms as deep.
Although beyond the scope of this work, note that unification grammars,
which combine surface and semantic structures, found a widespread intestest in
the linguistic community and rely upon TAGs, among others [Abeillé, 2007].

1We abuse definitions and ignore the difference between part of speech and constituent for
simplicity.

2Unless otherwise specified, all the examples follow the Penn Treebank annotation scheme
[Marcus et al., 1993].

3Note that, when the tree fragments are of depth 1, the formalism is equivalent to standard
CFGs. Moreover, readers familiar with the TAG formalism may be offended by the usage of
substitution for the determinant: our goal is to introduce the formalism, not to propose a
linguistically plausible grammar.
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Figure 1.1: (a) Phrase-structure of the sentence “She walks the dog” according
to the Penn Treebank annotation guide. (b) Example of a possible construction
using elementary trees of depth 1 only. Boxes delimit elementary trees and
dashed arcs substitution operations. (c) Alternative with a lexicalized grammar.
The number of elementary trees used is equal to the number of words.
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Figure 1.2: Examples of lexicalized elementary trees. (a) In its intransitive
form, the verb “walks” only requires a subject (NP node). (b) When used as
a transitive verb, an object is required (right NP node). (c)-(d) Noun phrase
elementary trees.
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1.1.2 Parsing

Given a sentence, parsing is the computation of its syntactic structure ac-
cording to a grammar. Several properties of natural languages make this a
challenging task. First, a sentence may be ambiguous: in the sentence “She

bought a house on the hill”, the location may either refer to the transaction
place or to the building location. Disambiguation may rely on the context or the
most common usage. Note that if the location was a boat, both analyses would
be allowed only under a shallow formalism but not under a deep one. Secondly,
a grammar is always constructed with respect to a strict subset of the possible
infinite number of sentences. Several syntactic structures may not be observed
beforehand. As an example, a parser must be able to deduce the use of “walks”
as a transitive word even if it was an unknown phenomenon at the design step.
Even with extensive hand-engineering effort, one cannot take into account ev-
ery possible linguistic incongruity. Among other phenomena, we can point out
that dialects and figures of speech may abuse the standard morpho-syntactic
coherence of a sentence. Finally and obviously, spelling and grammatical errors
are commonly observed. The key solution resides in weighted parsing. Likeli-
hood scores are given to elementary trees and combination operations. In order
to account for unobserved constructions, it is common to construct elementary
trees from templates: each observed tree fragment can be modified by changing
its lexical anchor. Nowadays, likelihood scores are computed via machine learn-
ing. Given a grammar and a scoring model, the optimal syntactic structure is
the highest scoring analysis.

There are many challenges involved in the development of a parsing algo-
rithm, notably accuracy and speed. The first issue has led to the production
of hand-annotated data. Constituency parsers are often built with a gram-
mar automatically extracted from a subset of this data and evaluated against
held-out sentences. Moreover, real-world NLP applications often require fast
analysis. There are two schools of thought on this subject. First, parsers of-
ten rely on the context-free assumption [Carreras et al., 2008] because mildly
context-sensitive grammars have high space and time complexities. Second,
greedy and beam-search based algorithms have recently achieved state-of-the
art results in constituent parsing [Zhu et al., 2013, Coavoux and Crabbé, 2017].
These algorithms read the sentence from left to right, at each step taking a
(non-deterministic) decision on the structure to predict. This method is similar
to the (deterministic) left-to-right parsing algorithm used by compilers [Aho
et al., 1986].

1.1.3 Previous work

Mildly context-sensitive weighted grammars are attractive for concrete appli-
cations outside the research scope. However they suffer from high parsing com-
plexities: the standard LTAG algorithm has a O(n8) time and O(n5) space com-
plexities with n the length of the input sentence. This last dynamic program-
ming algorithm is based on a variant of the Cocke-Younger-Kasami (CYK) al-
gorithm [Kasami, 1965, Younger, 1967, Cocke, 1970] where the phrase-structure
is constructed bottom-up while ensuring feasibility according to the grammar.
The program must keep in memory all possible subtrees given a subset of words
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and attempt every possible elementary tree inclusion and attachment, resulting
in those non-tractable complexities, see Section 3.3. Previous work on tractable
LTAG parsers mainly focused on three alternatives. First, an asymptotically
faster O(n7) algorithm has been proposed by Eisner and Satta [2000]. However,
it remains too slow for practical applications. Secondly, Left-to-Right parsers
have been proposed for TAGs [Nederhof, 1998, A. Prolo, 2002, Shen and Joshi,
2005]. A possible approach with this technique is to keep in memory only a
beam4 of candidates at each step, similarly to transition-based parsers. Their
main drawback is their failure to guarantee the optimality of a returned phrase-
structure or even an assessment of its quality. Thirdly and finally, a popular
approach is to include a preliminary step called supertagging: only a subset
of elementary trees per word are retained as candidates [Joshi and Srinivas,
1994]. These subsets can be singletons. In practice, supertagging is efficient
for short sentences but fails on long ones as it does not impact the asymptotic
worst time complexity. Additionally, it often relies on strong independence as-
sumptions. Most supertagging models are uni-gram or bi-gram, that is every
elementary tree is predicted independently or only dependencies between two
consecutive trees are considered. However, in LTAGs, relationships may be of
long distance which will be hardly captured by these independence assumptions.
In the sentence “She walks, despite her hatred for quadruped mammals, the

dog”, capturing the transitive nature of the first verb is difficult without further
analysis.

To avoid these problems, recent work of Kasai et al. [2017] proposed a pipeline
system with a neural supertagger built upon dense vector representation of
elementary trees followed by a transition-based algorithm. They argue that
the recurrent neural architecture implicitly captures long distance relationships.
However, their transition based parser cannot generate mildly context-sensitive
structures. We propose an alternative approach by:

• Explicitly representing long distance relationships,

• Permitting the complete generative capacity of LTAGs.

Unlike most of the previous work, we do not rely on strong elementary tree filter-
ing or greedy approaches in order to ensure parsing speed but on combinatorial
optimization.

Even beyond the scope of mildly context-sensitive grammars, efficient con-
stituency parsing is often regarded as a more difficult task than another syntac-
tic formalism called dependency parsing [Tesnière, 1959, Melčuk, 1988]. In the
latter, relations between words are expressed via bi-lexical dependencies, with
each dependency defining the head and the modifier of the relation. As an
example, in the sentence “She walks the dog”, “She” is the modifier of the
word “walks” in the analysis given in Figure 1.3. Dependencies may be labeled
with the type of the relation, like subject of. Lexical Functional Grammars
incorporate both syntactic representations in a shared structure [Kaplan and
Bresnan, 1982]. However, in practice, many dependency parsers simply ignore

4 We call beam search any heuristic procedure where only the most promising candidates
are explored at a given step. This set of candidates is called beam.
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v4

sub obj
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She walks the dog

Figure 1.3: Example of a dependency parse. An arrow represents a labeled
head → modifier relation.

the constituency structure. As such, their major benefit is that they are not
built upon a grammar but only impose constraints on the structure.5 Simply
speaking, the most common approach called projective dependency parsing
forbids crossing dependencies (Figure 1.4). Interestingly, even if both projective
dependency parsing and CFG parsing have the same asymptotic time complex-
ity with respect to the sentence length, the latter incorporate a non-negligible
multiplicative constant due to the grammar.6 Thus, dependency parsing has
received a lot of attention from the research community. State-of-the-art results
are constantly improving, in regard of both accuracy and parsing time. Histor-
ically, several dependency treebanks were built by converting constituent trees
via hand-crafted transformation rules called head-percolation tables [Yamada
and Matsumoto, 2003, Johansson and Nugues, 2007, Seeker and Kuhn, 2012].
Because of this, several authors incorporated dependency-based filtering in con-
stituency parsers. Carreras et al. [2008] extracted a splittable LTAG grammar
according to a head-percolation table. Then, they filtered the constituent parser
search space using dependency marginal scores. Recently, Kong et al. [2015]
proposed an algorithm which transforms a dependency parse to a constituency
one. This task is not deterministic thus they relied on a weighted CFG grammar.
Their pipeline parser has a quadratic worst-time complexity but, surprisingly,
a linear observable running time in practice. Fernández-González and Mar-
tins [2015] reduced the constituency parsing problem to a labelled dependency
parsing problem. Interestingly, LTAGs naturally encode bi-lexical dependencies
which represent combination operations between elementary trees. It seems
therefore appropriate to apply a similar methodology and examine the LTAG
parsing problem as a constraint dependency parsing task, which is precisely
what we propose in this thesis.

1.2 Contributions

The primary concern of this thesis is efficient LTAG parsing. Following the
line of work linking dependency and constituency parsing, we study LTAG pars-
ing as a dependency parsing task. Indeed, a LTAG derivation tree is a graph

5 There exists grammar based dependency formalisms. However, they have received little
attention from the NLP community.

6 Theoretically, algorithms with a lower complexity have been proposed for CFG parsing,
relying on fast matrix multiplication methods [Valiant, 1975]. However, they are rarely used
in practice.
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v1
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v3

v4

v5

v6

v7

He claims she seems to like the dog

Figure 1.4: This example is a non-projective dependency parse because of the
two red arcs. This non-projective dependency structure is motivated by TAG
parsing [Kallmeyer and Kuhlmann, 2012].

where each word is represented by a vertex labeled with its elementary tree. A
combination operation is represented by an arc labeled with the address of the
operation site. The derivation tree is therefore a dependency structure: each
vertex has at most one predecessor, the graph is acyclic and has a unique root,
i.e. a unique vertex without predecessor. This structure and its labels are highly
constrained by the grammar. For example, the label on an arc must ensure that
it encodes a combination between similar syntactic units. An example is given
in Figure 1.5. However, we depart from previously cited work as we do not
consider projective syntactic dependencies obtained by head-percolation tables
but dependencies induced from LTAG combination operations. The latter are
known to be of a non-trivial type of structure [Bodirsky et al., 2005]. Unfortu-
nately, there are no annotated treebanks which exploit the expressive power of
LTAGs. To the best of our knowledge, previous experimental work only consid-
ered LTAGs restricted to context-free languages [Chiang, 2000, Carreras et al.,
2008, Kasai et al., 2017]. These grammars have a cubic parsing time [Schabes
and C. Waters, 1995]. The problem is challenging: we want to develop fast
decoding algorithms without any test data. Moreover, Satta [1994] showed that
developing an asymptotically faster algorithm for TAG parsing is as difficult
as boolean matrix multiplication, a well studied problem in the literature. To
overcome these difficulties, we formulate the critical parts of LTAG parsing as
subgraph selection problems that are generic enough to have other applications.
Then, we formulate these graph problems as Integer Linear Programs (ILPs).
We propose resolution algorithms for the ILPs and test their efficiency on ex-
isting benchmarks. Thus, we are able to show that our parsing algorithms are
practically efficient.

1.2.1 Derivation tree parsing

In order to tackle the complexity challenge of LTAG parsing, Joshi and Srini-
vas [1994] proposed to rely on a two step pipeline:

1. A tagger assigns one elementary tree to each word.

2. The standard LTAG algorithm is run using previous information as a filter.

They motivate their work by the fact that an elementary tree is a rich descrip-
tion of a lexical item (for example intransitive verb), i.e. a specialization of a
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1(NP (PRP She))

2

(S NP (VP (VB walks) NP)

3

(DET the)
4 (NP (NN dog))

1.1
1.2.2

1.1

She walks the dog

Figure 1.5: Derivation tree representation of a parse. Labels on vertices (respec-
tively arcs) represent elementary trees (respectively operation site addresses).

part of speech tag (for example verb). However, taggers commonly rely on local
evidences only, which may not be sufficient for recursive structures and long
distance relationships that can be modeled with LTAGs. Moreover, supertag-
ging does not reduce the asymptotic complexity of LTAG parsing. Our first
contribution, in Chapter 5, is a novel pipeline system:

1. A constraint dependency parser assigns head-modifier relations.

2. A dynamic program assigns elementary trees and operation sites.

As such, we consider the derivation tree structure instead of the resulting phrase-
structure and follow the common pipeline practice of dependency structure
parsing. Elementary trees are assigned with respect to non local context as
their attachment sites are fixed. The first step is known to have a O(n7) time
complexity [Gómez-Rodŕıguez et al., 2009] and we propose an algorithm with
linear time complexity for the second one (Section 5.6). Unfortunately, the
dependency parser of Gómez-Rodŕıguez et al. [2009] is not efficient enough on
sentences longer than ≈ 20 words. Indeed, LTAG dependencies have an intri-
cate structure: they are well-nested arborescences with 2-bounded block degree
[Bodirsky et al., 2005]. In order to tackle this complexity challenge, we propose
to rely on combinatorial optimization. We introduce two novel Integer Linear
Programming (ILP) formulations of this problem. Interestingly, our ILPs allow
to easily toggle the well-nested property and change the block degree bound.
They can therefore model dependency structures induced by other lexicalized
grammars [Kuhlmann, 2007].

Although LTAGs are linguistically motivated, they can only be used in the
case of continuous phrase-structures, that is phrase-structures where every con-
stituent form a group of contiguous words. However, several treebanks have
been annoted with discontinuous constituents [Brants et al., 2004, Evang and
Kallmeyer, 2011]. Also, Bunt et al. [1987] argued that discontinuity is inevitable
in order to bridge the gap between syntax and semantics. In Chapter 6, we show
that the discontinuous phrase-structure parsing problem can be tackled through
a variant of LTAGs: we relax the intricate structure of the derivation tree. Then,
the construction of the phrase-structure can introduce discontinuity. We reduce
the joint problem of assigning head-modifier relations and elementary trees to a
graph problem called the Generalized Maximum Spanning Arborescence. The
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latter is NP-complete and has already been studied by the optimization com-
munity [Myung et al., 1995, Pop, 2009]. Thus, once again, we can rely on ILP
optimization techniques in order to ensure practical efficiency.

1.2.2 Efficient parsing via Lagrangian Relaxation

Fast decoding of linguistic structures has been a major concern in the NLP
community. Unfortunately, some problems are known to have a high complex-
ity. Several authors proposed to formulate them as ILPs which are optimized
using appropriate techniques. Koo et al. [2010] applied dual decomposition to
high-order dependency parsing which is known to be a NP-hard problem. Riedel
and Clarke [2006] enforce the linguistic plausibility of a dependency parse by
lazily generating violated constraints.7 We take a similar approach since the
CPLEX software, commonly used as a baseline method for solving ILPs, is in-
efficient with our programs. We rely on Lagrangian relaxation, a method that
was previously successfully applied to NLP8 [Rush and Collins, 2012, Sontag
et al., 2010]. Simply speaking, in a given maximization problem, we identify
a set of complicating constraints: if they were absent, then the program could
have been solved using an efficient polynomial time algorithm. These difficult
constraints are removed and introduced as penalties in the objective. The re-
sulting program, called the Lagrangian dual, is a parametrizable upper-bound
on the original one. By minimizing on its parameters, called the Lagrangian
multipliers, we tighten this bound. We rely on subgradient descent for the dual
optimization, an iterative method: at each step, the relaxed problem is solved
with updated multipliers. The optimal solution of the original problem may be
obtained under certain conditions.

For our first problem, decoding the maximum well-nested arborescence with
2-bounded block degree, we observe that (1) we can relax the LTAG specific con-
straints to obtain a quadratic problem and (2) the number of relaxed constraints
is high. Moreover, given an arborescence, it is easy to check if it is well-nested
or if it has a 2-bounded block degree. Thus, we mix Lagrangian relaxation with
lazy constraint generation (Section 5.4). The dual optimization process starts
with an empty set of multipliers. Then, at each step of the subgradient descent,
we seek for violated relaxed constraints before updating the multipliers. This
technique is called Non Delayed Relax-and-Cut [Lucena, 2005]. As part of our
pipeline proposal, the decoded arborescence is used as a filter for elementary
trees and attachment sites assignment. So we have to return the best possible
structure that satisfies the constraints in order to limit error propagation and
ensure the feasibility of the second step. Unfortunately, the global optimum of
the Lagrangian dual cannot deliver such a certificate in the general case, even if
it often happens in practice. Thus, we propose to rely on the Branch-and-Bound
algorithm, an exhaustive search procedure. Variables are recursively fixed to 0
or 1 in a search tree. A portion of the search space, that is sub-parts of the
search tree, can be safely removed if the Lagrangian relaxation returns an upper
bound which is less than the best known solution.

7This technique is called the cutting-plane method in the optimization vocabulary.
8 In order to avoid confusion, we stress that, in this thesis, NLP always stands for Natural

Language Processing and never for Non-Linear Programming.
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The second problem consists of the joint assignment of tags (elementary trees)
and dependencies. We show that this task is equivalent to the Maximum Gen-
eralized Spanning Arborescence problem. Unfortunately, it has received little
attention from the community and only in cases of graphs with symmetric arc
weights. Myung et al. [1995] proposed a dual ascent optimization method em-
bedded in a Branch-and-Bound procedure. We propose an alternative dual
optimization algorithm more in tune with the current trend in the NLP com-
munity and which is able to produce a certificate of optimality in 99% of cases
without relying on an exhaustive search procedure (Section 6.4). In the ILP we
propose, there are local and global constraints. Local constraints link depen-
dencies with tags. Global constraints ensure the arborescence structure. We
propose to reformulate the ILP in order to rely on dual decomposition, a spe-
cial flavor of Lagrangian relaxation where the dual is decomposed in a set of
independent subproblems. In our case, there are two subproblems which can
be run in quadratic time. The first one is a tagging problem with minimal de-
pendency interaction and the second one is an arborescence decoding problem.
The obtained Lagrangian dual can again be efficiently optimized thanks to the
subgradient descent algorithm.



Chapter 2

Publications1
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Abstract: We present a novel dependency parsing method which enforces two
structural properties on dependency trees: bounded block degree and well-
nestedness. These properties are useful to better represent the set of
admissible dependency structures in treebanks and connect dependency
parsing to context-sensitive grammatical formalisms. We cast this prob-
lem as an Integer Linear Program that we solve with Lagrangian Relax-
ation from which we derive a heuristic and an exact method based on
a Branch-and-Bound search. Experimentally, we see that these methods
are efficient and competitive compared to a baseline unconstrained parser,
while enforcing structural properties in all cases.

Transforming Dependency Structures to LTAG Derivation Trees

Authors: Caio Corro, Joseph Le Roux
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Related Formalisms
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Abstract: We propose a new algorithm for parsing Lexicalized Tree Adjoin-
ing Grammars (LTAGs) which uses pre-assigned bilexical dependency re-
lations as a filter. That is, given a sentence and its corresponding well-
formed dependency structure, the parser assigns elementary trees to words
of the sentence and return attachment sites compatible with these elemen-
tary trees and predefined dependencies. Moreover, we prove that this al-
gorithm has a linear-time complexity in the input length. This algorithm
returns all compatible derivation trees as a packed forest. This result is of
practical interest to the development of efficient weighted LTAG parsers
based on derivation tree decoding.

Efficient Discontinuous Phrase-Structure Parsing via the Generalized
Maximum Spanning Arborescence

Authors: Caio Corro, Joseph Le Roux, Mathieu Lacroix

Conference: Conference on Empirical Methods in Natural Language Process-
ing 2017

Publication date: September 2017

Abstract: We present a new method for the joint task of tagging and non-
projective dependency parsing. We demonstrate its usefulness with an
application to discontinuous phrase-structure parsing where decoding lex-
icalized spines and syntactic derivations is performed jointly. The main
contributions of this paper are (1) a reduction from joint tagging and
non-projective dependency parsing to the Generalized Maximum Span-
ning Arborescence problem, and (2) a novel decoding algorithm for this
problem through Lagrangian relaxation. We evaluate this model and ob-
tain state-of-the-art results despite strong independence assumptions.
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Chapter 3

Lexicalized Tree Adjoining
Grammar

A sentence in a natural language is not a sequence of words randomly gen-
erated one after the other. The linguistic research community investigates the
structure of natural languages which are described by the means of grammars.
Several theories have been proposed to describe a grammar. In this chapter,
we introduce the phrase-structure formalism which hierarchically decomposes a
sentence in coherent word subsets (Section 3.1). Then, we show how Lexical-
ized Tree Adjoining Grammars (LTAGs) can be used in order to describe the
well-formedness of sentences by imposing constraints on the phrase-structure
construction (Section 3.2). Although language generation is an interesting and
challenging task, we focus on a different one called parsing (Section 3.3): given a
sentence, what is its associated phrase-structure? Unfortunately, the algorithm
has an intractable complexity in practice. In order to rely on combinatorial
optimization, we seek a simple graph representation of the parsing problem.
Thus, we conclude by introducing the LTAG derivation tree structure, a depen-
dency structure describing the construction process of the phrase-structure via
a LTAG (Section 3.4).

3.1 Phrase-structure

In this section, we introduce the syntactic phrase-structure formalism, or,
more precisely, constituent analysis [Chomsky, 1957]. Syntactic analysis is an
active research area in linguistics. We do not claim to give a complete picture
of the field. Definitions related to syntax are borrowed form Brinton [2000].
Examples are in English and follow the annotation conventions of the Penn
Treebank [Marcus et al., 1993], a widely used corpus. We first introduce the
notion of constituency. Then, we describe how to generate well-formed natural
language sentences by imposing rules on the hierarchy of its constituents. The
resulting generation process gives a phrase-structure. In practice, this procedure
relies on formal grammars. We introduce Context-Free Grammars for these first
examples. Finally, we explain relations among constituents at the same level of
the hierarchy, which will lead to the concept of lexicalization and Lexicalized

23
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Tree Adjoining Grammars in Section 3.2.

Definition 3.1: Constituent
A constituent is a set of words defining a syntactic unit in a hierarchical
syntactic structure. As such, it is a part of a sentence that can be moved,
modified or deleted alongside agreement adjustments.

We distinguish two types of constituents. On the one hand, the grammatical
category of a single word which we refer to as the part of speech tag. Each
word is assigned a single tag representing its function in the phrase-structure,
for example determiner DET, verb VB, adjective JJ or noun NN, among others.
They constitute the bottom level of the hierarchy, i.e. nodes adjacent to leaves.
Note that a word can be ambiguous: it can have different part of speech tags
assigned in different contexts. As an example, the word “orange” can either be
an adjective or a noun. On the other hand, other constituents are non-lexical:
they identify a (possibly unary) set of words, and can be decomposed into a
sequence of lower-level constituents. As an example, a simple declarative clause
S can be decomposed into a nominal phrase NP (the subject) followed by a verbal
phrase VP (the predicate). In this thesis, examples rely on the part-of-speech
tags and constitutency labels that were used for the Penn Treebank [Marcus
et al., 1993], which we report in Appendix A.

We define a simple set of rewriting rules using a Context-Free Grammar
(CFG) as follows:

• NP → DT NN

• NP → DT JJ NN

• NP → NP CC NP

The left-hand side of a rule is a unique constituent, called a non-terminal symbol:
the one being rewritten. The right-hand side is the sequence of symbols that
the former can be rewritten into: it is a sequence of non-terminal and terminal
(words) symbols. In the case of phrase-structures, only part of speech tags can
be rewritten into lexical items:

• DET → the

• NN → dog

We can generate sentences using these rules, see Figure 3.1. The generated
phrase-structure is called the derived tree.

Definition 3.2: Derivation
A derivation in a CFG is a sequence of rule applications which rewrites the
start symbol, usually S, into a string. A derivation ends when the resulting
string contains terminal symbols only.
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• S → NP VP

• NP → NN

• VP → VB

• NN → PRP

• NP → DT NN

• PRP → she

• DET → the

• NN → woman

• VB → walks
She walks

PRP VB

NP VP

S

The woman walks

DET NN VB

NP VP

S

Figure 3.1: Two examples of derived tree that can be built using the grammar
on the left of the figure.

Definition 3.3: Derived tree
The derived tree is a representation of a derivation process as a graph. Nodes
represent symbols and edges derivation steps.

CFGs are not powerful enough to describe every construction observed in
natural languages. First, derivation constraints are local to a constituent and
its direct children only. As such, they cannot forbid “the river” to be the object
of the verb “walk” without duplicating the number of non-terminals. As an
example, we could have defined a specialization of the rule VB→ VB NP, meaning
a verb followed by a noun phrase: VB-walks→ VB-walks NP-dog. However, the
resulting number of rules would lead to an impractical grammar. Second, some
linguistic structures cannot be constrained using CFGs. In Dutch, a relative
clause can be constructed by a sequence of subjects followed by a sequence
of verbs: there must be the same number of subject and verbs, the first verb
being associated with the first subject, and so on. This kind of structure is
called cross-serial dependencies and is roughly equivalent to the copy-language
problem, a well-known limitation of CFGs. Third and finally, CFGs can generate
continuous constituents only, or, in other words, constituents that are derived
into a contiguous sequence of words only.

Definition 3.4: Constituent yield
The yield of a constituent is the set of terminal symbols it has been rewritten
into during the derivation process.

The derivation process induces an ordering between words (leafs in the derived
tree). Indeed, in a CFG, the symbols on the right-hand side of a rule are ordered.
Given a rule S → NP VP, all the terminals in the yield of the NP symbol in a
derived tree will be preceding the ones in the yield of the VP symbol.

Definition 3.5: Continuity
A constituent is continuous if its yield is a contiguous sequence of terminals
in the string obtained via derivation. If not, the constituent is discontinuous.
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What

WP

WHNP

does

MD

she

PRP

NP

SQ

SBARQ

walk

VB

VP

?

Figure 3.2: Example of a discontinuous phrase-structure in English due to wh-
movement. The yield of the VP constituent is not a contiguous set of words.

A phrase-structure or derived tree is continuous if each one of its constituents
is continuous. Similarly, a phrase-structure is discontinuous if at least one
of its constituents is discontinuous.

CFGs can only generate continuous derived trees. Several treebanks are an-
notated with discontinuous constituents, even in English [Evang and Kallmeyer,
2011] (see Figure 3.2). Linear Context-Free Rewriting Systems (LCFRS), which
generalize the CFG formalism, are capable of deriving discontinuous phrase-
structures. Unfortunately, the LCFRS parsing algorithm complexity is pro-
hibitive for NLP applications. As an example, the parsing algorithm of Gómez-
Rodŕıguez et al. [2010] has O(n6) complexity in the most restricted case.1

In CFGs and derived trees previously described, there is no hierarchical re-
lationship defined between the direct children of a constituent, which we call
siblings. We introduce two kinds of relationship that can exist between siblings.
This will lead us to the notion of lexicalization.

Definition 3.6: Head-modifier relationship
Given two words in the same constituent, their relationship is qualified as
head-modifier if the modifier word is optional and can thus be removed. For
example, in the sentence “She owns a red car”, red is a modifier of car.
Indeed, the sentence “She owns a car” is grammatically correct.

Definition 3.7: Governor-complement relationship
Given two words in the same constituent, their relationship is qualified as
governor-complement if both words are mutually dependent: one cannot oc-
cur without the other. This is the case for the predicate-subject relationship.

1 Note that this complexity is lower the LTAG parser one but it is for unlexicalized LCFRS
only. The unlexicalized TAG parser has also a O(n6) complexity.
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For example, in the simple sentence “She walks”, neither She nor walks can
be removed. The direction of the relation is given by their semantic rela-
tion: She is a semantic argument of walks, therefore She is the complement
of walks.

Definition 3.8: Lexicalized constituent
A constituent is lexicalized if it emphasizes which one of its children contains
the head or governor word in its yield.

Unless otherwise specified, we will not distinguish between the two kinds of
relationship and refer to both as head-modifier. We mark the head or governor
of a relation with the sign ∗ in the right-hand side of a CFG rule. For example,
in the rule S → NP VP∗, the verbal phrase VP is the head of the noun phrase
NP. The lexical head of a constituent can be retrieved by moving down to a
lexical leaf going through constituents marked as head only. Figure 3.3 shows
an example of a derived tree built using a CFG which marks heads. Lexicalized
rules are appealing as they can be used to enforce semantic constraints. In
the rule VP → VB∗ NP, if the lexical head of the VB constituent is walks, we
can restrict allowed lexical heads of the NP constituent to a subset of words
containing dog but not river. Thus, with the toy grammar in Figure 3.3, we
can avoid the generation of the grammatically correct but semantically incorrect
sentence “She walks the river”. However, imposing such restriction in a CFG
is not natural and impacts the size of the grammar and the parsing algorithm
complexity. In the next section, we introduce the Lexicalized Tree Adjoining
Grammar formalism which naturally encodes lexicalization. Moreover, we show
that it is more expressive than CFGs and thus is a better model for several
common linguistic constructions.

3.2 Definitions

Tree Adjoining Grammar (TAG) is a tree-based formalism where elementary
trees are combined together in order to build the derived tree [Joshi, 1985, 1987].
Specifically, Lexicalized TAGs (LTAGs) are TAGs where each elementary tree
contains exactly one lexical leaf [Schabes et al., 1988]. Contrary to a CFG, a
LTAG can naturally encode semantic constraints. We first describe a simpler
formalism called Lexicalized Tree Substitution Grammar (Subsection 3.2.1) and
then complete with the adjunction operation (Subsection 3.2.2).

3.2.1 Lexicalized Tree Substitution Grammar

The Lexicalized Tree Substitution Grammar (LTSG) formalism is a restricted
version of the LTAG one. It only has one type of elementary trees, initial trees,
and one combination operation, substitution.
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• S → NP VP∗

• VP → VB∗ NP

• NP → DET NN∗

• PRP → She∗

• VB → walks∗

• DET → the∗

• NN → dog∗

She walks the dog

(she)

PRP

(walks)

VB

(the)

DET
(dog)

NN

(dog)

NP

(she)

NP

(walks)

VP

(walks)

S

Figure 3.3: (Left) Lexicalized CFG. Each rule identifies its head with the star
symbol. (Right) Example of lexicalized constituency structure. The constituent
is the same color as its head word.

Definition 3.9: Lexicalized Tree Substitution Grammar
A Lexicalized Tree Substitution Grammar is a tuple 〈N,T,ΓI , S, fSS〉 where:

• N is a set of non-terminal symbols;

• T is a set of terminal symbols disjoint from N ;

• ΓI is a set of initial trees built with symbols in N ∪ T ;

• S ∈ N is the start symbol;

• fSS : ΓI × Z+ → P(ΓI) is the function that represents combination
constraints.

Each elementary tree in ΓI must have exactly one node labeled with a ter-
minal which must be a leaf. This specific node is called the lexical anchor
of the tree. Moreover, the root node of a tree must be labeled with a non-
terminal.

In practice, non-terminals are constituent labels (VP, NP, . . . ) and terminals
are words (she, walks, . . . ). Without loss of generality, the derived tree is valid
only if its root node is the specific non-terminal S.2 An elementary tree assigns
a role to a word in a sentence. As an example, two different elementary trees
associated with the word walks define two different uses of this verb: either
as an intransitive or as a transitive verb (see Figure 3.4). In the intransitive
case, the verb only requires one argument on its left side, the NP leaf, which will
be its subject. In the transitive case, the verb also requires an argument (the
object) on its right side, hence the rightmost NP leaf. Therefore, an elementary

2It is trivial to extend this constraint to a subset of non-terminals instead of a single one.
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walks

VB

VP

S

NP

(a) Intransitive

walks

VB

VP

S

NP

NP

(b) Transitive

Figure 3.4: Elementary trees can be understood as part of speech specialization.
This example illustrates the use of walks as an intransitive or a transitive verb.
In both cases, the same part of speech tag is used.

tree could be understood as a specialization of a part of speech tag. In order
to distinguish between initial trees and part of speech tags, the former are
often called supertags [Joshi and Srinivas, 1994]. Assigning supertags is called
supertagging instead of simply tagging.3

Definition 3.10: Substitution
Let G = (V,E) be an undirected graph (see Section 4.1 for a formal definition
of graph) with finite set of nodes V labeled with elements of N ∪T and finite
set of edges E. Moreover, we suppose that G is connected and is a tree. Let
τ ∈ ΓI be an initial tree and v ∈ V a node. Substituting τ into v is defined
as:

• if v is not a leaf or if v and the root of τ do not have the same label:
the operation is undefined;

• otherwise, a new graph is defined by merging the root of τ with node
v.

Due to the structure of initial trees, substitution can only happen to nodes
labeled with non-terminals.

An example of substitution is given in Figure 3.5. This operation can be
constrained thanks to the fSS : ΓI×Z+ → P(ΓI) function, with P the powerset.
Given an initial tree τ ∈ ΓI and a node address4 i ∈ Z+, fSS(τ, i) is the set
of initial trees that can be substituted into this node. Thus, we can restrict
the set of object modifiers of the verb walks: we only include the subset of
elementary trees with valid lexical anchors, for example dog, in the image of
fSS(τ, i) where τ is a tree representing a transitive use of walks and i is the
address of its object substitution site. A sentence generation is completed when
all leafs are labeled with non-terminals. The LTSG formalism we introduced
in this subsection is more appealing to describe phrase-structure constraints
than the CFG one. Moreover, elementary trees, which are also called supertags,
define the precise function of each word in the sentence. In the next section,

3The word supertag has also been used in other grammatical formalisms such as Combi-
natory Categorial Grammars.

4 We use Gorn addresses which will be introduced in Section 3.3.
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Figure 3.5: (a) The dotted arc depicts a substitution from the root node of
the initial tree with lexical anchor She into another node. (b) The resulting
structure.

we extend the formalism with auxiliary trees combined through adjunctions,
leading to LTAGs.

3.2.2 The adjunction operation

In Dutch, relative clauses like “dat Jan de kinderen zag zwemmen”, mean-
ing “that Jan saw the children swim”, are composed by first enumerating all
the subjects and then all the verbs. Theoretically, the number of subject-verb
couples can be infinite: “dat Jan Piet de kinderen zag helpen zwemmen”,
and so on. A possible construction using a LTSG is given in Figure 3.6. Note
that the elementary tree anchored with subject Jan must then be substituted
into the elementary tree anchored with zwemmen. However, Jan is the subject
of zag. Thus, this construction breaks our motivation for lexicalized grammars
as the combination operation does not represent a head-modifier relationship
in this example. This phenomenon is called cross-serial dependencies: the first
(respectively second, . . . ) subject is a modifier of the first (respectively second,
. . . ) verb. This is roughly equivalent to the copy language {ww|w ∈ Σ∗}, where
Σ is a set of symbols, which is not a context-free language.5 However, it is a
mildly context-sensitive language that can be described thanks to a Lexicalized
Tree Adjoining Grammar (LTAG).

Definition 3.11: Mildly Context-Sensitive Language
A set of languages is mildly context-sensitive [Joshi, 1985, Kallmeyer, 2010]
if:

• it contains all context-free languages,

• it can describe limited cross-serial dependencies,

• it can be parsed in polynomial time,

• it has the constant growth property.

The constant growth property imposes that for all strings longer than a fixed
constant in the language, there exists a string in the language which has the

5The copy language defined over symbols Σ = {a, b} contains, among others, the following
strings: aa, bb, abab, abbaabba.



3.2. DEFINITIONS 31

zag

VB

VP

S

NP

zwemmen

VB

VPS

S

NP

Figure 3.6: Dutch relative clause construction using a TSG.

same length plus a positive constant value [Weir, 1988]. Limited cross-serial
dependencies means that the size of the dependent chains that interleave in
cross-serial dependencies is bounded by a constant. For example, in TAGs
this constant is two, meaning that the language {ww|w ∈ Σ∗} can be de-
scribed with a TAG but not {www|w ∈ Σ∗}. The set of languages described
by TAGs is mildly context sensitive.

Definition 3.12: Lexicalized Tree Adjunction Grammar
A LTAG is a tuple 〈N,T,ΓI ,ΓA, S, fSS , fSA, fOA〉 where:

• N is a set of non-terminal symbols;

• T is a set of terminal symbols disjoint from N ;

• ΓI is a set of initial trees built with symbols in N ∪ T ;

• ΓA is a set of auxiliary trees built with symbols in N ∪ T ;

• S ∈ N is the start symbol;

• fSS : ΓI × Z+ → P(ΓI) is the function that represents substitution
constraints;

• fSA : Γ×Z+ → P(ΓA) and fOA : Γ×Z+ → P(ΓA) are functions that
represent adjunction constraints.

The set Γ , ΓI ∪ ΓA is the set of elementary trees. LTAGs share many
similarities with LTSGs (Definition 3.9). The root of an auxiliary tree must
be labeled with a non-terminal symbol. Moreover, each auxiliary tree in ΓA

must have:

• exactly one node labeled with a terminal which must be a leaf (lexical
anchor);

• exactly one foot node.

The foot node must be a leaf and labeled with the same symbol as the root
node. It is identified with symbol ∗.
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deliberately

RB VP∗

VP

like

VB

VPNPSQ∗WHNP

SQ

Figure 3.7: Examples of auxiliary trees. The adjective deliberately modifies a
verbal phrase. The auxiliary tree anchored with like can be used to construct a
question: the interrogative word must be substituted at the leftmost leaf of the
tree.

The specificity of LTAGs is that auxiliary trees can be combined through the
adjunction operation. Two examples of auxiliary trees are given in Figure 3.7.
Contrary to substitution, where a tree is merged at the frontier of another tree,
an adjunction breaks the destination tree in two.

Definition 3.13: Adjunction
Let G = (V,E) be an undirected graph with finite set of nodes V labeled
with elements of N ∪T and finite set of edges E. Moreover, we suppose that
G is connected and is a tree. Let τ ∈ ΓA be an auxiliary tree and v ∈ V a
node. Adjoining τ into v is defined as:

• if v and the root of τ do not have the same label then the operation is
undefined;

• otherwise, a new graph is defined by replacing v with the root of τ and
merging v with the foot node of τ .

Due to the structure of auxiliary trees, adjunction can only happen to nodes
labeled with non-terminals.

An example of adjunction is given in Figure 3.8. The example in Figure 3.9
shows a LTAG grammar that solves a simple cross-serial dependencies problem.
Similarly to substitution, this operation can be constrained thanks to the fSA :
Γ × Z+ → P(ΓA) function. Moreover, we can force adjunction to happen at
a given node with the function fOA : Γ × Z+ → B set to true if adjunction is
obligatory. In the standard LTAG formalism, maximum one adjunction per node
is allowed. Multiple adjunctions have been proposed, but we do not consider
them as they bring additional issues regarding the order in which combination
operations are applied [Schabes and Shieber, 1992, Gardent and Narayan, 2015].

In this section, we introduced the LTAG formalism in order to generate nat-
ural language sentences. These grammars are able to encode some semantic
constraints. Moreover, LTAGs are more expressive than CFG and allow to cor-
rectly model some cross-serial dependencies. Finally, note that the adjunction
operation can be used to describe recursive or optional structures without in-
creasing the grammar size. It is customary to use substitution and obligatory
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Figure 3.8: (a) The dashed arc depicts an ajdunction operation. (b) The result-
ing structure. If necessary, the two VP nodes may be merged in a post-processing
step in order to reflect the treebank annotation style.
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Figure 3.9: (a) Simplified example of cross-serial dependencies via the adjunc-
tion operation [Kroch and Santorini, 1987]. (b) The resulting structure. After
following substitutions, the subject of zag will be before the subject of zwemmen

in the generated sentence.
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adjunction to model governor-complement relationships and non-obligatory ad-
junction to model head-modifier ones [Abeillé, 1988, Abeillé et al., 1990, Gar-
dent and Kallmeyer, 2003] Finally, note that LTAGs can only induce continuous
phrase-structures.

3.3 Parsing

In the previous section, we introduced LTAGs for natural language sentence
generation. We now turn to the opposite problem: given a sentence and a
grammar, how was it generated? This problem is called parsing and is the
main focus of this thesis. The resulting constituency tree may be of interest
for a subsequent task as it exposes the underlying structure of the sequence of
words, see Nesson et al. [2006] and Li et al. [2017], among others. For example,
Li et al. [2017] recently showed how constituent analysis can be used in order to
improve an automatic translation system. Importantly, constituents can easily
be augmented with their function, as subject or object, when parsing with
LTAGs: an elementary tree defines the function of a word (supertag) and its
operation sites define types of relation of modifiers.

Note that the parsing term may typically refer to three different but strongly
related tasks via the notion of semi-ring parsing [Goodman, 1999]. First, recog-
nition: can this sentence be generated by a given grammar? Second, derivation
forest parsing: decoding the set of all possible derivation trees. This is due to
the fact that natural languages are ambiguous, so a given sentence can have
several meanings and thus several grammatical analyses. For example, this is
the case of the sentence “She bought a house on the hill”. Third, weighted
disambiguation: what is the best parse in the derivation forest? In this last
task, one must rely on a scoring function which evaluates the plausibility of a
given phrase-structure.

We first introduce a generic framework to describe parsing algorithms based
on logical deduction rules (Subsection 3.3.1). We show how it can be augmented
with weights in order to compute the highest scoring parse if the weight function
decomposes nicely with respect to the deduction rules. Then, we describe a
LTAG parser in Subsection 3.3.2 and discuss the LTAG parsing complexity in
Subsection 3.3.3. We focus on the bottom-up algorithm commonly called the
CYK-like parser in reference to the CFG parser [Kasami, 1965, Younger, 1967,
Cocke, 1970]. Other parsing algorithms have been proposed for non-lexicalized
TAGs including Earley-types [Schabes and Joshi, 1988, Joshi and Schabes, 1997]
and a LR-types [Nederhof, 1998, A. Prolo, 2002, Shen and Joshi, 2005] which
could be upgraded in a LTAG perspective.6 Earley-type parsers build parse
trees in a left-to-right fashion using top-down predictions in order to reduce
the search space.7 LR-type parsers build offline top-down predictions of the
Earley-type parsers that are not dependent of the input. Thus, the resulting
parser only needs to read the sentence from left to right. A LR parser combined
with beam-search results a so called transition-based parser where only a subset

6Worst-case complexities may not be preserved.
7However, the asymptotic complexity is equivalent to the bottom-up approach.
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(or beam) of the possible candidates are kept leading to incomplete8 but fast
parsing.9

3.3.1 Parsing as deduction

Describing an algorithm via pseudo-code has several drawbacks. Many deci-
sions in the pseudo-code do not belong to the parsing strategy but to the actual
implementation: in which order are the intermediate results constructed? How
are they stored? Moreover, space and time complexities may be tedious to infer
because of data structures and their accessors, among others. Finally, proving
soundness and correctness is not straightforward. Pereira and Warren [1983]
followed by Shieber et al. [1995] proposed to rely on a deduction-based frame-
work: we start with a set of axioms and a goal item must be reached thanks to a
set of deduction rules. In this framework, the space complexity is readily avail-
able from item definitions and time complexity from deduction rules, regardless
of the actual implementation. We quickly introduce this formalism and show
how any deduction-based parser can be implemented using the agenda-based
framework [Kay, 1986].

We introduce the parsing formalism with CFGs in a slighlty variant form of
the Chomsky normal form [Chomsky, 1959]: each rewriting rule must have in its
right-hand side either exactly one symbol or exactly two non-terminal symbols.
Let s = s1 . . . sn be the input sentence and R the set of production rules of the
grammar. The item set is defined as triplets [A, i, j] with:

• A a non-terminal symbol of the grammar;

• 1 ≤ i ≤ j ≤ n two integers defining the yield span of the rule.

The semantics of a rule is simple: a constituent labeled A dominates the sub-
string from the word at index i to the word at index j in the input sentence.
Or, in other words, we successfully build a constituent A that yields the word
sequence si . . . sj . Let S be the start symbol, meaning the root constituent of a
parse tree must be S in order to be valid. Thus, the goal of a CFG parser is to
produce the following item:

Deduction rule: Goal

[S, 1, n]

The axioms are defined as follows:

8 There is no guarantee to build the full parse forest neither to retrieve the highest scoring
parse, hence the use of the term incomplete.

9A practical transition-based parser should however also include a back-tracking technique
in order to ensure that at least one feasible parse is constructed.
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Item Rule
1. [PRP, 1, 1] Lex scan (He)
2. [VB, 2, 2] Lex scan (walks)
3. [NP, 1, 1] Move unary with 1
4. [VP, 2, 2] Move unary with 2
5. [S, 1, 2] Move binary with 3 and 4

Figure 3.10: Parsing trace of the sentence “He walks” with the grammar given
in Figure 3.1. The last item is a goal item so the sentence has been correctly
parsed.

Deduction rule: Lex scan

A→ si ∈ R
[A, i, i]

The condition on the right-hand side of the bar defines constraints on axiom
creation. Basically, we create an item for each word si of the input sentence
with each non-terminal A such that a A → si exists in the grammar. We now
turn to rules that deduce new items from existing ones. First, we investigate
rules with a single non-terminal in the right-hand side (unary rules):

Deduction rule: Move unary

[B, i, j]
A→ B ∈ R

[A, i, j]

The item at the top is called the antecedent and the item at the bottom the
consequent. Second, we need two antecedents with consecutive yields when
the right-hand side is composed of two non-terminals (binary rules):

Deduction rule: Move binary

[B, i1, j1] [C, i2, j2]
A→ B C ∈ R ∧ j1 + 1 = i2

[A, i1, j2]

Given a rule A → B C ∈ R, we can deduce an item with non-terminal A if and
only if we have two items with non-terminals B and C with consecutive yields.
Figure 3.10 gives an example of parsing with the grammar in Figure 3.1.

Let g = |R| be the size of the grammar, t the number of non-terminal symbols
and n the input sentence length. The space complexity of a deduction-based
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[VB, 2, 2]

[NP, 1, 1]

[VP, 2, 2]

[S, 1, 2]

move unary

move unary

move

binary

Figure 3.11: Back-pointers are stored as a directed hyper-graph, that is a graph
where arcs can have multiple sources: vertices represent items and hyper-arcs
represent deduction rule applications.

algorithm is bounded by the maximum number of items. Our items are indexed
by a non-terminal and a yield span, thus the space complexity of CFG parsing is
O(n2t), that is asymptotically quadratic with respect to the input sentence size.
The time complexity is bounded by the rule which has the maximum number
of free variables in its antecedents. For CFG parsing, the move binary rule
has six free variables: A, B, C, i1, j1, j2. Indeed, i2 is constrained to be equal to
j1 + 1. Moreover, A, B, C are non-terminals but are constrained by the grammar
and i1, j1 and j2 are indices in the input sentence. Thus, the time complexity
of this CFG parser is O(n3g) or asymptotically cubic with respect to the input
sentence length.

So, what do we do with the goal item? As such, the only information therein
is correctness of the input sentence with respect to the given grammar: this
sentence could have been generated with the grammar. But how? In order to
retrieve the set of all possible derivation trees for the input sentence, we have
to keep back-pointers in memory in order to retrieve the derivation process.
If we define the items as vertices in a directed hyper-graph, back-pointers will
be hyper-arcs from the set of antecedents to the consequent of deduction rule
applications. A single vertex can have several incoming hyper-arcs as it could
have been created using different rules and/or antecedent if the grammar is
ambiguous. Figure 3.11 gives the back-pointers graph for the parsing example
in Figure 3.10. Thus, given the goal item, we can follow back-pointers in the
reverse order in order to build one or several derived tree.

We now turn to weighted parsing. In this task, we wish to compute the
derivation tree in the parse forest which maximizes a weighting function. The
function must decompose nicely so this task is tractable. We assign weights
to axioms and deduction rules. Then, the weight of a parse is the sum of the
deduction rule weights it used. Maximizing over the parse forest is trivial with
the following construction in the back-pointer hyper-graph:

1. Add a root vertex.

2. Add arcs from the root vertex to each axiom vertex. The weights of these
arcs are the weights associated with axioms.

3. Assign weights to hyper-arcs corresponding to their deduction rules.



38 CHAPTER 3. LEXICALIZED TREE ADJOINING GRAMMAR

Then, the task reduces to computing the path with maximum weight from the
root vertex to the goal vertex. Note however that we do not need to realize
this computation as a post-processing step: when adding a vertex to the back-
pointer hyper-graph, add the incoming hyper-arc which maximizes the score
from the root vertex to the added vertex only. This change does not impact the
complexity of the parser.

Let us finally discuss a generic implementation of deduction-based parsers.
A common practice is to rely on dynamic programming in order to deduce
items: a chart is created and then items are added to it ordered by yield span
lengths, from shorter ones to longer ones. This is easy for CFG parsing but
is more challenging for more complex grammars. The agenda-based framework
is an alternative to dynamic programming [Kay, 1986]. Axioms are placed in
an agenda and an empty chart is created. While the agenda is not empty, an
item is randomly popped, added to the chart and tested as an antecedent of
each deduction rule. If the rule is binary, all possible compatible antecedents
available in the chart are used to build a consequent. A deduced item is added
to the agenda if it is not already present in the chart. The space and time
complexities of these algorithms are no worse than the ones induced by item
and rule structures.10

3.3.2 CYK-like algorithm for LTAGs

In this subsection, we describe the deduction-based LTAG parser [Schabes
et al., 1988] using notations inspired by [Kallmeyer and Satta, 2009]. In the fol-
lowing, we suppose a LTAG 〈N,T,ΓI ,ΓA, S, fSS , fSA, fOA〉 (see Subsection 3.2.2)
and an input sentence s = s1 . . . sn. Moreover, without loss of generality, we
suppose that every elementary tree is binary, i.e. every node must have at most
two children.

Item definition

We index nodes in an elementary tree τ ∈ Γ using Gorn addresses. A Gorn
address is a sequence of integers from Z+ indicating a path beginning at the
root node of the tree, see Figure 3.12. Given a Gorn address p ∈ Z+ and an
elementary tree τ ∈ Γ, the predicate p ∈ τ is true if and only if a node exists in
τ at address p. Items are 8-tuples of the form [h, τ, p, c, i, k, l, j] with:

1. Lexical anchor index 1 ≤ h ≤ n;

2. Elementary tree τ ∈ Γ;

3. Gorn address p of a node in τ ;

4. Combination flag c ∈ {>,⊥} indicating if we have already checked ad-
junction > or not ⊥ at the node at position p;

5. Yield span 1 ≤ i ≤ j ≤ n;

10 Note however that, in order to ensure the tightest possible upper bound on time com-
plexity, the algorithm must rely on efficient data containers. However, this problem is beyond
the scope of this thesis.



3.3. PARSING 39

walks
1211

VB121

VP 12

S 1

NP11

NP 122

Figure 3.12: An elementary tree with Gorn address of nodes in red.

6. Gap span i ≤ k ≤ l ≤ j if the sub-analysis represented by the item has a
gap, k = l = − otherwise.

Axioms and goal

There are two families of axioms. First, the lex scan rule creates items with
position at the lexical anchor if the elementary tree lexical anchor is equal to
the word at this position in the sentence:

Deduction rule: Lex scan

τ(p) = sh
[h, τ, p,>, h,−,−, h]

Second, the foot predict rule predicts the span of the content that will be
added below the foot node after adjunction. Given the function foot : ΓA → Z+

which returns the foot node position of an auxiliary tree, the creation of these
axioms is defined as:

Deduction rule: Foot predict

τ ∈ ΓA ∧ p = foot(τ) ∧ k ≤ l ∧ (h < k ∨ l < h)
[h, τ, p,>, k, k, l, l]

Basically, these items predict the possible yield spans of the non-terminal where
the auxiliary tree τ anchored at word position h will be adjoined into.11 We
now turn to deduction rules that combine items in order to create new ones.

Traversal rules

We start with traversal operations which move up inside an elementary tree.
The move unary rule can be applied to nodes which do not have any sibling:

11 To reduce the search space, we could check here that the lexical anchor of the auxiliary
tree is equal to the word sh.
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Deduction rule: Move unary

[h, τ, p · 1,>, i, k, l, j]
p · 2 /∈ τ

[h, τ, p,⊥, i, k, l, j]

Note that the combination operation must be > in the antecedent, meaning
we already checked for adjunction. Moving up to a node with two children is
trickier as we have to take into account that only one of them can contain a gap
in its yield span. First, we start with the case where none of them has a gap:

Deduction rule: Move binary no gap

[h, τ, p · 1,>, i1,−,−, j1] [h, τ, p · 2,>, i2,−,−, j2]
j1 + 1 = i2

[τ, p,⊥, i1,−,−, j2]

The condition checks that both yield spans are contiguous. Then, suppose that
only the left child has a gap:

Deduction rule: Move binary left gap

[h, τ, p · 1,>, i1, k, l, j1] [h, τ, p · 2,>, i2,−,−, j2]
j1 + 1 = i2 ∧ k 6= −

[τ, p,⊥, i1, k, l, j2]

Finally, a similar rule takes care of a gap inherited from the right child:

Deduction rule: Move binary right gap

[h, τ, p · 1,>, i1,−,−, j1] [h, τ, p · 2,>, i2, k, l, j2]
j1 + 1 = i2 ∧ k 6= −

[τ, p,⊥, i1, k, l, j2]

Combination rules

Elementary trees can be combined via either substitution or adjunction oper-
ations. The former is used to attach initial trees and the latter auxiliary trees.
An initial tree can be substituted if the item is at the root node. Moreover, the
destination node must be a leaf and both node labels must match:
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Deduction rule: Substitute

[m, τ ′, 1,>, i,−,−, j]
p · 1 /∈ τ ∧ τ(p) = τ ′(1) ∧ τ ′ ∈ ΓI ∩ fSS(τ, p)

[h, τ, p,>, i,−,−, j]

An adjunction can be realized if and only if the current yield span of the desti-
nation node can fill the gap span of the modifier.

Deduction rule: Adjoin

[m, τ ′, 1,>, i1, k1, l1, j1] [h, τ, p,⊥, k1, k2, l2, l1]
τ(p) = τ ′(1) ∧ τ ′ ∈ ΓA ∩ fSA(τ, p)

[h, τ, p,>, i1, k2, l2, j1]

Finally, the last rules allow ajdunction to be skipped at nodes which do not
have the obligatory adjunction constraint:

Deduction rule: Null adjoin

[h, τ, p,⊥, i, k, l, j]
¬fOA(τ, p)

[h, τ, p,>, i, k, l, j]

An example of LTAG parsing with these rules and the phrase-structure in
Figure 3.13 is given in Table 3.1.

3.3.3 Complexity

As explained previously, space and time complexities can be directly inferred
from item structures and deduction rules, respectively. The first and last four
elements of an item are word indices in the sentence, thus they can take at
most n5 different values. Thus, the space complexity is O(n5gt) with g the
maximum ambiguity (second element) and t the maximum number of nodes in
an elementary tree (third element).12 The maximum ambiguity is the maximum
number of elementary trees sharing the same lexical anchor. The Adjoin rule
is the one with the most free variables in its antecedents: 8 word positions,
two elementary trees and one Gorn address. Thus, the time complexity of this
LTAG parser is O(n8g2t).

12The combination flag can take two different values and thus is a constant that does not
appear in the big O notation.
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Item Rule
1 [1, τ1, 111,>, 1,−,−, 1] Lex scan
2 [1, τ1, 11,⊥, 1,−,−, 1] Move unary
3 [1, τ1, 11,>, 1,−,−, 1] Null adjoin
4 [1, τ1, 1,⊥, 1,−,−, 1] Move unary
5 [1, τ1, 1,>, 1,−,−, 1] Null adjoin
6 [2, τ2, 111,>, 2,−,−, 2] Lex scan
7 [2, τ2, 11,⊥, 2,−,−, 2] Move unary
8 [2, τ2, 11,>, 2,−,−, 2] Null adjoin
9 [2, τ2, 121,>, 3, 3, 3, 3] Foot scan
10 [2, τ2, 1,⊥, 2, 3, 3, 3] Move binary right gap with 8
11 [2, τ2, 1,>, 2, 3, 3, 3] Null adjoin
12 [3, τ3, 1211,>, 3,−,−, 3] Lex scan
13 [3, τ3, 121,⊥, 3,−,−, 3] Move unary
14 [3, τ3, 121,>, 3,−,−, 3] Null adjoin
15 [3, τ3, 12,⊥, 3,−,−, 3] Move unary
16 [3, τ3, 12,>, 2,−,−, 3] Adjoin with 11
17 [3, τ3, 11,>, 1,−,−, 1] Substitute with 5
18 [3, τ3, 1,⊥, 1,−,−, 3] Move binary no gap with 16
19 [3, τ3, 1,>, 1,−,−, 3] Null adjoin

Table 3.1: Parse trace of the sentence She deliberately walks. The antecedent
of an unary rule is its previous line. For rules with several antecedents, we refer
their line numbers. The phrase-structure generation process of this sentence
using a LTAG is given in Figure 3.13. We denote τ1 the elementary tree selected
for the first word, τ2 for the second and so on. We only display items necessary to
build the goal. With a more complicated grammar and an ambiguous sentence,
several derivations would have been possible.
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(a) LTAG analysis, the OA in subscript
indicates an obligatory adjunction site
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(b) Phrase-structure/derived tree

Figure 3.13: (a) Construction example with a LTAG. (b) Phrase-structure.

An asymptoticaly faster algorithm with a O(n6 max(n, g)gt) time complexity
has been proposed by [Eisner and Satta, 2000]. They observed that the Adjoin
rule simultaneously carries out two independent tests: (1) that the modifier
can be adjoined into the head node and (2) that the modifier correctly wraps
around the current head node yield span. Thus, they break the operation in 3
different rules leading to a lower time complexity. However, it remains too high
for practical use cases where fast analysis is expected: a O(n7) factor is a major
bottleneck for long sentences.

3.4 Derivation tree

The deduction rule framework is a convenient tool to study parsing algo-
rithms. However, it is unclear if a lower upper bound on LTAG parsing time
complexity can be achieved. Satta [1994] reduced boolean matrix multiplication
to TAG parsing and argued that obtaining a lower complexity bound for the lat-
ter problem is thus likely to be as difficult as to the former one.13 We propose to
rely on combinatorial optimization in order to develop an efficient LTAG parser.
Unfortunately, the bottom-up derived tree construction methodology does not
seem convenient for this task. Indeed, optimization techniques are often applied
to graph problems. It is well known that any dynamic programming algorithm
can be reduced to the shortest path problem on an acyclic hypergraph [Martin
et al., 1990] enabling the use of optimization in order to ensure efficient decod-
ing, see Clautiaux et al. [2016], among others. However, it happens that LTAG
parses have a convenient graph representation. Rambow and Joshi [1997] first

13 The LTAG and TAG parsing algorithms are slightly different but share many similarities.
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She deliberately walks

Figure 3.14: Derivation tree of the sentence She deliberately walks with respect
to the construction in Figure 3.13.

noticed that they can be represented as labeled dependency structures called
derivation trees which we introduce in this section.

Definition 3.14: Derivation tree
Let G = 〈N,T,ΓI ,ΓA, S, fSS , fSA, fOA〉 be a LTAG grammar and s =
s1 . . . sn be a sentence. A LTAG derivation tree for sentence s is a directed
graph D = 〈V,A〉 with V = {v1 . . . vn} the set of vertices and A the set of
arcs where each node vi ∈ V corresponds to word si. Each vertex vi ∈ V is
labeled with a single elementary tree in ΓI ∪ ΓA which must have word si
as lexical anchor. An arc (vh, vm) ∈ A represents a combination operation,
either a substitution or an adjunction, from the elementary tree anchored
at sm into the elementary tree anchored at sh. The Gorn address of the
operation site is labeled on the arc.

An example of a LTAG derivation tree is given in Figure 3.14. This structure
is an arborescence: each vertex has at most one incoming arc, it does not contain
a cycle and it is connected. This structure is highly constrained by the grammar:
it must describe a valid LTAG derived tree. Combination operations must be
correct. For example, only auxiliary trees may be adjoined and operation sites
must share the same non-terminal symbol. Besides these grammar constraints,
Bodirsky et al. [2005] demonstrated that the arborescence itself has a special
structure: it is well-nested and is of 2-bounded block degree. We defer the
formal definitions of these properties to Chapter 5.

Rambow [2010] argued that one must distinguish between the syntactic struc-
ture and the representation type. The problem we focus on is syntactic phrase-
structure parsing. This syntactic content is naturally expressed as a hierarchical
structure tree. However, a LTAG derivation tree contains exactly the same syn-
tactic content as a derived tree despite its structural difference. If attachment
operations are encoded in node labels of the derived tree, one representation can
be converted to the other without losing information. Thus, instead of pars-
ing a sentence by constructing the derived tree in a bottom-up fashion, like in
the CYK-type algorithm presented in the previous subsection, we propose to
parse the derivation tree explicitly. This task is a dependency parsing problem
which can be formalized as a graph decoding problem. As such, it is natural to
tackle the complexity challenge using the combinatorial optimization techniques
introduced in the next chapter.



Chapter 4

Efficient structure decoding

In the previous chapter, we introduced the linguistic motivation for mildly
context-sensitive parsing as well as practical algorithms. We argued that dealing
with these non context-free grammars directly is unfortunately not efficient
enough for practical applications because of the time complexity of the chart-
based parsing algorithm. There has been some attempt to develop more efficient
alternatives. Eisner and Satta [2000] proposed a O(n7) algorithm for Lexicalized
Tree-Adjoining Grammars (LTAGs). Unfortunately, it remains too inefficient
for practical use. Schabes and C. Waters [1995] proposed a LTAG inspired
formalism called Lexicalized Tree Insertion Grammar (LTIG) with a cubic time
parsing algorithm. However, LTIGs do not have the expressive power that
makes LTAGs interesting. Thus, it appears that in the current literature one
has to choose between fast decoding and expressiveness. We propose to study
LTAG parsing as a subgraph selection task, along the same line as the work of
Kuhlmann and Jonsson [2015] for semantic parsing. Through this approach, we
develop algorithms for derivation tree parsing using tools from combinatorial
optimization.

Combinatorial optimization techniques have been successfully applied in NLP.
As an example, before the rise of neural networks, dependency parsers achieved
state of the art results in terms of accuracy and speed by relying on Inte-
ger Linear Programming formulations and well-known optimization techniques
like linear relaxation [Martins et al., 2009a], Lagrangian relaxation [Koo et al.,
2010], column generation [Riedel et al., 2012] and branch-and-bound [Qian and
Liu, 2013]. Rush et al. [2010] combined a constituency parser and a part of
speech tagger. Similarly, Le Roux et al. [2013] combined different constituency
parsers which must reach an agreement. As the problems are not tractable,
they rely on heuristics based on Lagrangian relaxation. However, in the NLP
works listed above, optimization techniques are necessary because of the inclu-
sion of high-order likelihood weights or the combination of several systems. On
the contrary, the problems we study in this thesis have an intricate structure
even in the simplest case. This is closer to the work of Riedel and Clarke [2006]
who include linguistically motivated constraints in dependency parsing via lazy
constraint generation and the Combinatory Categorial Grammar parser based
on Lagrangian relaxation of Auli and Lopez [2011].

45
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In this chapter, we describe a decoding framework relying on Integer Linear
Programming (ILP) and Lagrangian relaxation. First, in Section 4.1, we intro-
duce basic notions and notations from graph theory that we will use through
this work. As a running example, we will show how non-projective dependency
parsing can be naturally formulated as a constrained subgraph selection prob-
lem for which there exists a simple combinatorial algorithm. However, if we add
additional constraints on the structure, this may not be true anymore. Thus,
in Section 4.2, we introduce ILP. Many graph problems can be naturally formu-
lated with this framework. ILP is not tied to a solving method and, in general,
optimizing one is NP-hard. Lagrangian relaxation (Section 4.3) combined with
subgradient descent (Section 4.4) has been widely adopted by both NLP and
optimization communities in order to solve huge and intricate problems. In-
tuitively, we exploit the structure of our programs to identify a set of difficult
constraints. We remove them and introduce them as penalties in the score, lead-
ing to an efficient heuristic method. We emphasize that Lagrangian relaxation
may produce a certificate if an optimal solution is obtained. Finally, we describe
problem reduction in Section 4.5, a method to efficiently prune the search space,
and Branch-and-Bound in Section 4.6, a generic algorithm used to solve an ILP
exactly.

4.1 Graph-based structure decoding

Graph theory is an appealing tool as it is a lingua franca among computer
scientists: it is unlikely that a postgraduate student did not take at least one
class using graphs before obtaining his/her Master’s degree. Moreover, visual
representations are straightforward and many definitions, like path and cycle,
are intuitive and do not need an in-depth knowledge to be understood. Thus, re-
ducing an intricate parsing problem to a graph problem seems like a reasonable
choice. In this section, we explain the notion of structure decoding and its rela-
tion with subgraph selection. Important notations that will be used throughout
this thesis are introduced. We will use non-projective dependency parsing as an
example to illustrate the content.

Definition 4.1: Structure decoding
Given an input s, decoding aims at finding the best element inside a set
of output candidates Os with respect to a weight function fs : Os → R.
In other words, the goal is to find o ∈ Os that maximizes fs. In this
work, s = s1 . . . sn will always be a sentence in a natural language, i.e. a
sequence of tokens, with possibly accompanying features, like morphological
information. The decoding process is said to be structured because:

1. the set of output candidates is specific to a given input in contrast with
the simplest forms of regression or classification,

2. the set of output candidates can have an exponential size with respect
to the input,

3. an output is composed of a set of highly constrained components.

Other works in the literature have similar definition of structured output
spaces [Smith, 2011, Martins, 2012].
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Remember that natural languages are ambiguous (Section 3.1). Given a
sentence s, one can define Os as the set of all grammatically correct phrase-
structures of s. In this setting, components may be hierarchical dominance of
constituents. As an example, a noun-phrase with yield span [si, sj ] can contain
a determinant followed by a noun. Constituents are obviously constrained: in
English, the determinant will always be at the left of the noun. In the Lexical-
ized Tree-Adjoining Grammar formalism, Os can be the set of valid derivation
trees. That is, components are elementary trees assignments and attachments
operations. Finally, in dependency parsing, candidates are valid syntactic struc-
tures which are composed of bi-lexical relations between words. In Definition 4.1
above, the weight function fs may be estimated using machine learning. In that
case, structure decoding is also called structured prediction.

Two questions arise from Definition 4.1: given an input, what is the size of
the search space? and how is a weight function formalized? Contrary to what
one may think, these are related. Regarding the first question, the search space
may be very large. Indeed, in practice, grammars are automatically extracted
from treebanks. In order to ensure experimental robustness, they are often
highly ambiguous, thus allowing linguistically absurd analyses. For example, in
LTAG parsing, a common practice is to replace elementary trees with templates:
any elementary tree can anchor any word. In dependency parsing, state of the
art parsers allow every bi-lexical relation between every couple of words in a
sentence. Thus, the weight function must be carefully designed in order to
allow efficient maximization in the search space. In general, it is defined as a
sum of weights of subset of components of candidate o. In dependency parsing,
the subsets may be singletons, each one containing a bi-lexical relation. It is
then obvious that in the sentence “She walks the dog”, the is unlikely to be
the head of dog: this single dependency must be associated with a low weight.
A more complicated parser may also introduce subsets of sibling relations, for
example subsets containing all relations sharing the same head. In order to
ensure computational tractability, the number of subsets of a candidate o is
often polynomially bounded by the size of the input s. However, given a search
space Os and a weight function fs, there may not exist a tractable maximization
algorithm. We now introduce the graph theory vocabulary that will allow us to
describe more formally Os and fs for a given problem.

Definition 4.2: Directed graph
A directed graph is a tuple G = (V,A) with V = {v0 . . . v|V−1|} a finite set
of vertices and A ⊆ V ×V a finite set of arcs. Arcs are couples where the first
element is the source and the second the destination. For convenience,
an arc (vi, vj) will mainly be written as vi → vj . In this document, unless
otherwise specified, we simply refer to graph for a directed graph.

An undirected graph is a graph where arcs are unordered couples, that is
sets of two vertices. Traditionally, the terminologies node and edge are used
to refer to vertex and arc, respectively, in undirected graphs.

Given a vertex subset W ⊆ V , we note δout(W ) and δin(W ) its sets of out-
going and incoming arcs, respectively. The set δ(W ) = δout(W ) ∪ δin(W ) is
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v0 v1

v2v3

v4 v5

v6v7

Figure 4.1: Solid red and blue arcs are sets δin(v3) and δout(v3), respectively.
The cut-set of v3 contains these four arcs. Dashed red and blue arcs are sets
δin({v6; v7}) and δout({v6; v7}), respectively. Similarly, δ({v6; v7}) contains the
four dashed arcs. Note that arcs between v6 and v7 are not part of these sets.

the cut-set of W , see Figure 4.1. If W is a singleton, we drop the set-defining
braces. Given a subset of arcs T ⊆ A, we note V [T ] its cover, that is the
set of incident vertices, or in other words the set of vertices that are source or
destination of at least one arc in T : V [T ] = {v ∈ V |δ(v)∩T 6= ∅}. If V [T ] = V ,
then the structure defined by arcs T is a spanning structure.

Definition 4.3: Arborescence
Let G = (V,A) be a graph. An arborescence T ⊆ A is a set of arcs
inducing a connected graph with no circuit and where the incident vertices
have at most one incoming arc in T . The root of the arborescence T is the
single vertex of V [T ] with no incoming arc. It is easy to show that, in an
arborescence, each vertex is a descendant of the root one.

A spanning arborescence is an arborescence with V [T ] = V . See
Figure 4.2 for an example.

Given an arborescence T and a vertex v ∈ V [T ], the sub-arborescence
T ′ rooted at v is the maximum subset of arcs T ′ ∈ T forming a v-rooted
arborescence.

Given an input s, a structured output space Os and a scoring function fs, we
reduce the decoding to a subgraph selection task by defining how to build:

1. a graph Gs = (V,A);

2. the set of subgraph candidates T s ⊆ P(A), with P the powerset, so that
there is a bijection between Os and T s.

We assume that we can define the scoring function on the reduced problem
search space fs : T s → R. Thus, under the graph formulation, components
of candidate T ∈ T x are arcs. The simplest weight function decomposes as
f(T ) =

∑
a∈T wa, with wa the weight of arc a ∈ A. This weighting model is

called arc-factored. More elaborated models are called higher-order models.1

Definition 4.4: Maximum Spanning Arborescence
Given a graph G = (V,A), the Maximum Spanning Arborescence (MSA)
problem aims at computing the spanning arborescence T ⊆ A rooted at a
vertex v ∈ V that maximizes an arc-factored weighting model.

1Note that a weighting function could also take into account vertices in V [T ].
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v0 v1 v2 v3 v4

She walks the dog

Figure 4.2: Example of non-projective dependency parsing via graph formula-
tion with the sentence “She walks the dog”. Arcs are dependency candidates,
thick red arcs describe a v0-rooted arborescence.

Example 4.5: Non-projective dependency parsing
We illustrate the decoding process with the arc-factored model for non-
projective dependency parsing of McDonald et al. [2005]. In dependency
parsing, given a sentence of length n, an output candidate is a bi-lexical
analysis of a sentence defined as follows. An artificial root word is added.
Every word, except the root:

• is assigned exactly one head;

• must be a descendant of the root word.

As such, components are head-modifier relationships and an output candi-
date must satisfy the previous rules. Using the graph formalism, vertices
will represent words and arcs head-modifier relations.

Given an input sentence s = s1 . . . sn , we build a graph G = (V,A) with
n + 1 vertices where vm is associated with the word sm, plus an artificial
root vertex v0. A bi-lexical dependency candidate with head-word sh and
modifier-word sm is represented by an arc vh → vm. Then, the set of valid
dependency parses T is the set of v0-rooted spanning arborescences of G.
See Figure 4.2 for an example. The arc-factored weight of a candidate is
defined as:

f(T ∈ T ) =
∑
a∈T

wa

where wa is a likelihood weight of including the bi-lexical dependency rep-
resented by arc a ∈ A. Note that, nowadays, this weight is learned with
machine learning.

Enumerating candidates T is intractable. Indeed, given a complete graph
with n vertices, there exists (n+1)n−1 spanning arborescences on it [Cayley,
1889]. However, under an arc-factored model, maximization can be done ef-
ficiently with the Maximum Spanning Arborescence (MSA) algorithim [Chu
and Liu, 1965, Edmonds, 1967, Tarjan, 1977]. This algorithm has a quadratic
complexity with respect to the number of vertices.
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Before the rise of deep neural networks in the NLP community, dependency
parsers as the one previously described were enhanced thanks to high-order
models. That is, the weight function would decompose into subsets including
several arcs. For example, the sibling weighting model can be formulated as:

f(T ∈ T ) =
∑
a∈T

wa +
∑
v∈V

∑
a1∈T∩δ+(v)

∑
a2∈T∩δ+(v)\{a1}

w′a1,a2

where w′a1,a2 is the sibling weight for including both arcs a1 and a2. Unfor-
tunately, McDonald and Satta [2007] proved that computing the spanning ar-
borescence of maximum weight for this family of models is NP-hard. A break-
through in non-projective dependency parsing occurred when the problem was
formulated thanks to an Integer Linear Program, enabling the use of efficient
techniques borrowed from the combinatorial optimization community [Martins
et al., 2009a, Koo et al., 2010, Riedel et al., 2012]. We follow this line of work
but we focus on graph problems which are inherently complex, even in the case
of an arc-factored weighting model.

4.2 Integer Linear Programming

In this section, we describe how a subgraph selection problem can be modeled
as an Integer Linear Program (ILP). Intuitively, components of the graph like
arcs and vertices will be represented by binary variables. Then, constraints are
used to prohibit variable assignments that do not represent valid structures in
the search space. Although simple, programs of this family have been highly
studied in the literature [Genova and Guliashki, 2011]. Many methods have been
proposed to tackle problems with intractable complexities including the travel-
ing salesman [Bellmore and Nemhauser, 1968], the set covering [Christofides and
Korman, 1975] and the Steiner tree [Gordeev and Tarastsov, 1993] problems, to
name only a few. In this Section, we introduce ILPs alongside important prop-
erties. Various methods which exploit the structure of a specific program have
been proposed like column and row generation, relaxation and decomposition.
An important asset is their ability to provide a certificate of optimality when
the best solution is obtained. This is in contrast with non-optimal greedy or
beam-search methods, like transition parsers. We focus on Lagrangian relax-
ation which will be introduced in Section 4.3.

4.2.1 Introduction

Given a set of vectors X, optimization seeks to find one of its elements that
maximizes2 an objective function f : D → R with X ⊆ D. Formally, we
define an optimization program as follows:

argmax
x

f(x)

s.t. x ∈ X

A feasible solution is any element x ∈ X. Given the optimal score f̂ =
maxx∈X f(x), an optimal solution is noted x̂ ∈ {x ∈ X|f(x) = f̂}.

2 Readers familiar with the optimization literature may be more used to minimization
problems. We follow the trend in NLP instead.
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An optimization program can be classified according to the nature of the
objective function and the constraints. A linear program (LP) is a program
for which the objective function is affine and the feasible set is a polytope
described by a finite set of linear constraints. Using vector notation, we write a
LP as:

argmax
x

w>x+ e

s.t. Ax ≤ b

where x ∈ Rc is the vector of c variables (columns), w ∈ Rc is the weight vector
and e a constant defining the affine objective function. Note that e can be
omitted without changing the set of optimal solutions, hence the name linear
program. As will be shown below, it is however convenient to keep this constant
term. The feasible solution set is X = {x ∈ Rc|Ax ≤ b} where A ∈ Rr×c is a
matrix and b ∈ Rr a vector defining r constraints (rows). One can observe that
each constraint defines a hyperplane delimiting the set of feasible solutions in
the c-dimensional solution space. If we furthermore constrain some components
of x to be integers, the program is called a Mixed-Integer Linear Program.
In this work, we will focus on pure Integer Linear Programs (ILPs), that is
where x is restricted to be an integer vector. Moreover, we restrict each element
of x to be binary, which leads to Binary Linear Programs (BLP) of the form:

argmax
x

w>x+ c

s.t. Ax ≤ b
x ∈ B|x|

with B = {0, 1}. In the graph formulation introduced in the previous section,
components, that is arcs, are defined as binary elements of vector x. Thus,
the set of constraints delimits the set of valid subgraphs. Note that many
other families of programs have been studied in the literature including, inter
alia, conic, quadratic, non-linear and disjunctive ones. The families which an
optimization problem belongs to are not necessary exclusive but their study is
far beyond the scope of this thesis.

Example 4.6: ILP formulation of the MSA
We now give a formulation of non-projective dependency parsing as an ILP.
Recall that, given a sentence s1 . . . sn, we build a graph G = (V,A) with
V = {v0 . . . vn} and A = V × V (Example 4.5). Given an arc-factored
scoring function f(T ⊆ A) =

∑
a∈T wa, we search a v0-rooted spanning

arborescence T on G which maximizes f . Let x ∈ BA be a vector of |A|
binary variables indexed by arcs. Given an assignment of x, an arc a ∈ A
belongs to the arborescence if and only if xa = 1. Then, the MSA can be
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computed thanks to the following program [Schrijver, 2003]:

argmax
x

∑
a∈A

xawa (4.1)

s.t. x(δin(v0)) = 0 (4.2)

x(δin(v)) = 1 ∀v ∈ V + (4.3)

x(δin(W )) ≥ 1 ∀W ⊆ V + (4.4)

x ∈ BA (4.5)

with V + = V \ {vo}. The objective (4.1) maximizes the arc-factored score
of the arborescence. Constraint (4.2) ensures that the root vertex has no
incoming arc while constraints (4.3) ensure that other vertices have exactly
one. Finally, the decoded structure is acyclic because of the previous con-
straints together with inequalities 4.4: for each subset of vertices, there must
be at least one incoming arc.

Searching the optimal solution of this ILP with a generic algorithm would
probably lead to poor performance as there are an exponential number of
inequalities (4.4). However, it is well-known that an algorithm for the MSA
with a O(|V |2) time-complexity exists [Chu and Liu, 1965, Edmonds, 1967,
Tarjan, 1977]. This property will be used throughout this thesis: if an ILP
can be cast to the MSA program (4.1)-(4.5), then it can be solved efficiently.
On a side note, formulations of this problem with a polynomial number of
constraints have also been proposed [Magnanti and Wolsey, 1995, Martins
et al., 2009a]. They rely on a flow formulation where commodities are sent
to vertices through arcs. We discuss this model in Subsection 5.2.2.

The term solving defines the search of an optimal solution of an optimization
program and such a procedure is called a solver. The time complexity of a solver
is defined with respect to the number of constraints and variables in the input
program. A solver is said to deliver a certificate of optimality if it provably
returns an optimal solution for a given problem. Otherwise, it is qualified as a
heuristic procedure. Efficiently solving an optimization program is a difficult
task which keeps a large community of researchers busy. Commonly, solvers are
either general enough for a family of programs, that is where the variables and
constraints are not known beforehand, or specialized for a single program, that
is variables and constraints must obey a generic predefined structure. This does
not necessarily imply that the numbers of variables and constraints are fixed. We
qualify implementations of the first type of solvers as off-the-shelf. The most
famous solver for Linear Programs is the simplex algorithm. Starting from a
feasible solution, the simplex iteratively moves to better feasible solutions and
is able to provide a certificate when an optimal solution is reached. It has an
exponential worst-case complexity but a polynomial amortized complexity. It
is known to be experimentally efficient. Another solver for Linear Programs
is the interior-point algorithm which has a polynomial complexity. The most
famous off-the-shelf solver implementation for LP is CPLEX.3 It is often used

3 CPLEX can solve other families of optimization programs like ILPs and quadratic pro-
grams. https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/

https://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
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as a baseline for comparison against specialized procedures. However, we need
to clarify that CPLEX is not a pure implementation of a solver like the simplex.
Instead, it uses an intricate in-house recipe which relies on specialized procedures
depending on the structure of the input program.

Because solving an optimization program, called the primal, may be diffi-
cult, it is sometimes appealing to consider alternatives to the original formu-
lation which expose interesting properties. Note that as we are studying the
maximization of a primal problem, any primal feasible solution score is a lower
bound on the primal optimal score. A relaxation of a LP is an alternative to
the primal program which contains at least the same search space, and which
assigns weights greater or equal to the primal feasible solution original weights
[Geoffrion, 1974]. It is easy to see that the optimal score of a relaxed problem
is an upper bound to the primal optimal score. An obvious way to relax an
ILP is to remove one or several constraints. Another alternative to the primal
formulation is the dual. A dual formulation of a well-formed4 primal maximiza-
tion problem is a problem which yields upper bounds to the primal one [Boyd
and Vandenberghe, 2004]. However, there is no obligation that any primal and
dual optimal solutions match, and neither their scores. The difference between
optimal scores of both problems is known as the duality gap. One motivation
for the use of a dual formulation is the composition of systems which iteratively
improve the quality of the lower and the upper bound by passing information
from one to the other. We will discuss a construction method relying both on
relaxation and duality, called Lagrangian relaxation, in Section 4.3.

4.2.2 Properties

As previously stated, we will only focus on boolean ILPs of the following form:

argmax
x

w>x+ e

s.t. Ax ≤ b
x ∈ B|x|

In this section, we will introduce general properties of such a program. For sim-
plicity, we suppose that the inequality constraints always describe a polytope,
or, in other words, that the problem is bounded and that an optimal solution
exists.

Theorem 4.7: NP-hardness of ILP solving
Finding a primal feasible solution given an ILP is NP-hard.

Proof. The minimum vertex cover is a known NP-hard problem [Dinur and
Safra, 2005] and can be expressed as a compact ILP.

4 Importantly, with a finite optimal score.
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Theorem 4.8: NP-completeness of ILP satisfiability
Given an ILP, computing a feasible solution is a NP-complete problem.
Given a variable assignment, it is possible to check in polynomial time that
it is a feasible solution.

Proof. See Karp [1972].

From theorem 4.7, we can suspect an ILP formulation of a parsing problem
will not lead to an efficient optimization procedure if we use an off-the-shelf
solver. By theorem 4.8, even finding a feasible solution or an approximate
solution is not straightforward. However, checking if a variable assignment is a
feasible solution is straightforward. A common workaround is to solve the linear
relaxation of an ILP, that is an ILP where the integrality constraint has been
removed. Now, we will show that even if solving a LP can be realized with a
polynomial time complexity, it only provides little information about the ILP
optimal solution aside from an upper bound.

Theorem 4.9: LP solving is in P
Given a LP, a feasible solution can be found with a polynomial-time com-
plexity.

Proof. See Khachiyan [1980], Karmarkar [1984].

However, deducing an ILP’s optimal solution from its linear relaxation solu-
tion is not a trivial task. This can be easily shown with the following artificial
program with variables x1 and x2:

argmax
x1,x2

x1 (4.6)

s.t. − 0.1x1 − x2 ≥ −1 (4.7)

− 0.09x1 + x2 ≥ 0.5 (4.8)

x1 ≥ 0 (4.9)

x2 ≥ 0 (4.10)

x1, x2 ∈ Z (4.11)

The single optimal solution of this problem is x̂1 = 5, x̂2 = 1. However, as can
be observed in Figure 4.3, the optimal solution of the linear relaxation, that is
the same program but with constraint (4.11) removed, is different. Moreover,
the distance between these two points can be arbitrarily large: it is easy to
change the two constraints (4.7)-(4.8) in order to increase it while maintaining
the same set of integer feasible solutions. For the sake of completeness, we
would like to point out that previous work proposed a characterisation of the
distance between optimal solutions of an ILP and its linear relaxation [Blair and
Jeroslow, 1979, Cook et al., 1986], where the distance is bounded with respect to
the coefficients in matrix A. However, as showed with the example, even if the
distance is bounded, it does not mean that it is close nor easy to reach. More



4.2. INTEGER LINEAR PROGRAMMING 55

x1

x2

Figure 4.3: Graphical representation of the search of the ILP (4.6)-(4.11). The
purple (respectively blue) line depicts constraint (4.7) (respectively (4.8)). Black
dots are feasible solutions and the red dot is the single optimal solution. The
orange dot is the optimal solution of the linear relaxation.

recently, Martins et al. [2009b] studied a similar bound in the case of linear
relaxation of boolean variables only.

Definition 4.10: Integrality property
A LP has the integrality property if all the vertices of the polytope described
by the constraints have integer coordinates only.

It is straightforward to see that the optimal solution of a LP is always a vertex
of the polytope described by its constraints. Thus, by Definition 4.10, given an
ILP, if its linear relaxation has the integrality property, then both problems
have the same optimal solution set. The program defined in Example 4.6 has
the integrality property. Thus, solving the MSA is equivalent to solving its linear
relaxation.5 This will be of special interest in the following section where we
will draw connections between linear and Lagrangian relaxation. Proving that
a LP has the integrality property is beyond the scope of this thesis. Several
methods exist, including proving that the matrix A is totally unimodular and
defining the facets of the convex hull of integer solutions.

Definition 4.11: Standard dual program
Given a primal LP of the form:

argmax
x

w>x+ c

s.t. Ax ≤ b

its standard dual program is given by:

argmin
λ

b>λ+ c

s.t. A>λ = w

λ ≥ 0

5 However, this is not true for all the formulations of the problem. For example, the uni-
commododity formulation of the MSA proposed in Martins et al. [2009a] does not have this
property.
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where λ ∈ R|λ| is the vector of dual variables.

The dual program of Definition 4.11 has many applications. As an exam-
ple, one variant of the simplex algorithm constantly swaps between the primal
and standard dual formulations. Note that the number of constraints and the
number of variables are swapped when transforming one formulation into the
other. One can easily observe this because the matrix A is transposed, meaning
its number of rows, that is the number of constraints (respectively variables),
becomes the number of columns, that is the number of variables (respectively
constraints), in the standard dual. A well-known and interesting fact of the LP
standard dual formulation is that both programs have the same optimal score,
that is w>x̂ = b>λ̂. Moreover, by means of the complementary slackness
theorem, an optimal solution of one formulation can be deduced from an op-
timal solution of the other. However, we are interested in ILPs. If the ILP
has the integrality property, it shares similar properties with its standard dual.
However, defining such a program is a difficult task, commonly referred to as
polyhedral study. If it has not the integrality property, there exists a dual gap,
or in other words w>x̂ is strictly lower than b>λ̂. In the next section, we present
an alternative formulation called the Lagrangian dual based on Lagrangian
relaxation.

4.3 Lagrangian relaxation

Lagrangian relaxation [Geoffrion, 1974, Beasley, 1993, Lemaréchal, 2001, Guig-
nard, 2003] is an optimization technique that has been successfully used by both
optimization [Held and Karp, 1970, 1971, Ceria et al., 1998] and NLP commu-
nities [Koo et al., 2010, Le Roux et al., 2013, Almeida and Martins, 2013, Das
et al., 2012]. Intuitively, given an ILP6, a set of constraints making the program
difficult to solve is identified. Observing that if these constraints were absent
then the program would be easy to solve, they are removed and introduced as
penalties in the objective.

4.3.1 Definitions

Let a primal ILP be of the following form:

argmax
x

w>x+ e (4.12)

s.t. Ax ≤ b (4.13)

Cx ≤ d (4.14)

x ∈ B|x| (4.15)

where a single constraint matrix

[
A
C

]
has been horizontally divided into two

matrices A and C, and similarly for vectors b and d. We suppose that (4.13)
and (4.14) are the sets of easy and hard constraints, respectively. Formally,

6Lagrangian relaxation can be applied to optimization programs of other families, but we
will restrict our presentation to ILPs.
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we qualify a set of constraints as easy if and only if solving an affine objective
with respect to them can be done efficiently thanks to a polynomial algorithm.
Then, hard constraints can be interpreted as supplementary constraints that
prevent the use of this algorithm. Thus, one aims to remove them in order to
easily solve the problem. Lagrangian relaxation provides a framework which
achieves this goal while exposing attractive properties.

Definition 4.12: Lagrangian relaxation
Given an ILP defined as (4.12)-(4.15), we relax the constraint set (4.14) and
introduce them as penalties in the objective:

argmax
x

w>x+ e− λ>(Cx− d) (4.16)

s.t. Ax ≤ b (4.17)

x ∈ B|x| (4.18)

where λ ≥ 0 is an arbitrary vector of Lagrangian multipliers.

One of the main motivations for using Lagrangian relaxation is that the
newly defined objective can be formulated as a new ILP with reparameterized
weights. Moreover, it can be easily solved because of the premise on easy con-
straints:

argmax
x

w′>x+ e′

s.t. Ax ≤ b
x ∈ B

where w′ and e′ are the reparameterized vectors:

w′ = w + λ>C

e′ = e− λ>d

It is a relaxation because, for any set of multipliers λ ≥ 0, its optimal score is an
upper bound to the primal optimal score, see Section 4.3.2 for the proof. As of
now, we will consider that solving the Lagrangian relaxation is a closed problem,
removing the need of an optimization program formulation. Thus, we define
X = {x|Ax ≤ b and x ∈ B|x|} the set of feasible solutions of the Lagrangian
relaxation and f(x;λ) = w′>x + e′ the reparameterized score function. The
optimal solution score with respect to the set of Lagrangian multipliers can
then simply be noted:

L(λ) = max
x∈X

f(x;λ)

Thus, in order to find the tightest upper bound as possible, we aim to search
the λ assignment that minimizes L(λ).
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Definition 4.13: Lagrangian dual
Given a Lagrangian relaxation following Definition 4.12, the Lagrangian
dual problem is:

argmin
λ

L(λ)

λ ∈ R+

Thus, L(λ) is called the Lagrangian dual objective.

Example 4.14: MSA with out-degree constraints
Given a graph G = (V,A), we wish to compute the MSA where each vertex
must have at most d outgoing arcs. This problem can be formulated thanks
to the following ILP:

argmax
x

∑
a∈A

xawa (4.19)

s.t. x(δin(v0)) = 0 (4.20)

x(δin(v)) = 1 ∀v ∈ V + (4.21)

x(δin(W )) ≥ 1 ∀W ⊆ V + (4.22)

x(δout(v)) ≤ d ∀v ⊆ V (4.23)

x ∈ Bc (4.24)

where inequalities (4.23) are the out-degree constraints. Obviously, if the
latter were absent, the program would be easy to solve: they are ideal can-
didates for relaxation. We build the following Lagrangian relaxation or La-
grangian dual objective:

argmax
x

∑
a∈A

xawa −
∑
v∈V

λv(x(δout(v))− d) (4.25)

s.t. (4.20)− (4.22) (4.26)

x ∈ Bc (4.27)

with λ ≥ 0 the vector of Lagrangian multipliers indexed by vertices. The
objective (4.25) can be rewritten as:∑

a∈A
xawa −

∑
v∈V

λv(x(δout(v))− d)

=
∑
a∈A

xawa −
∑
v∈V

λvx(δout(v)) +
∑
v∈V

λvd

By definition of the notation, we have x(δout(v)) =
∑
v→v′∈δout(v) xv→v′ .

Let e′ =
∑
v∈V λvd be the reparameterized constant:

=
∑
a∈A

xawa −
∑
v∈V

∑
v→v′∈δout(v)

λvxv→v′ + e′
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The double sum can be rewritten as:

=
∑
a∈A

xawa −
∑

v→v′∈A
λvxv→v′ + e′

=
∑

v→v′∈A
xv→v′(wv→v′ − λv) + e′

Thus, we can define the reparameterized weight vector w′ with w′v→v′ =
wv→v′ − λv:

= x>w′ + e′

Thus, the Lagrangian dual objective can be computed with the standard
MSA algorithm with updated weights. Building the Lagrangian dual is then
straightforward.

Historically, this relaxation with d = 1 has been successfully used as a
heuristic to solve the travelling salesman problem [Held and Karp, 1970,
1971].

In the next section, we will study various properties of the Lagrangian dual.
An optimization method for problems of this form called subgradient descent
is introduced in section 4.4.

4.3.2 Properties

In this section, we expose attractive properties of the Lagrangian dual. First,
we formally prove that the Lagrangian relaxation is indeed a relaxation of the
primal. Then, we give necessary and sufficient conditions under which the La-
grangian relaxation optimal solution is also the optimal primal solution. Thus,
if we solve the Lagrangian dual by iteratively solving the Lagrangian relaxation
with different multipliers, we can easily check if a solution of the relaxation
solution is optimal. Moreover, we will prove that the Lagrangian dual is a non-
differentiable but convex function. This leads us to the use of the subgradient
descent algorithm (Section 4.4) as a solving method [Shor, 1985].

Theorem 4.15: Weak Lagrangian duality
For any vector of multipliers λ ≥ 0, the dual objective L(λ) is an upper

bound to the primal optimal score, that is w>x̂+ e ≤ L(λ).

Proof. The proof of theorem 4.15 is straightforward:

w · x̂+ e ≤ wx̂+ e+ λ>(Cx̂− d)

≤ f(x̂;λ)

≤ max
x∈X

f(x;λ)

≤ L(λ)
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The first line holds because x̂ is a primal feasible solution, thus Cx̂−d ≤ 0, and
λ ≥ 0. Moreover, maximizing f(;λ) over X may only provide higher or equal
scores than the assignment x̂ ∈ X.

Theorem 4.16: Strong Lagrangian duality
If, for any λ and x̄ = argmaxx∈X f(x;λ), it holds that λ>(Cx̄− d) = 0 and
Cx̄ ≤ d, then x̄ = x̂ is a primal optimal solution. The first condition is called
complementary slackness and the second primal feasibility.

Proof. By theorem 4.15, we know that w>x̂ + e ≤ f(x̄;λ). Moreover, from
prerequisites we have w>x̂ + e ≤ w>x̄ + e. Because Bx̄ ≤ d, it is a primal
feasible solution so w>x̂+ e ≥ w>x̄+ e. Thus, trivially, w>x̂+ e = w>x̄+ e.

Example 4.17: Optimal Lagrangian multipliers
We apply the Lagrangian relaxation in Example 4.14 to the toy graph defined
in Figure 4.4a. The out-degree is fixed to d = 1, i.e. each node must have at
most one outgoing arc in the spanning arborescence. First, we set λ to be
a null vector. The Lagrangian relaxation solution is then simply the MSA
with original weights, as depicted on Figure 4.4a.

Intuitively, we want to penalize outgoing arcs from v0 because the solu-
tion contains two of them. Thus, we set the following multipliers:

λv0 = 2

λv1 = 0

λv2 = 0

The reparameterized weight of arc v0 → v1 is then (see Example 4.14):

w′v0,v1 = wv0,v1 − λv0 = 1− 2 = −1

and similarly for arc v0 → v2. The weight of arc v1 → v2 is left unchanged.
For now, we omit the bias e′ as it does not impact the optimal solution. The
MSA solution with reparameterized weights is depecited in Figure 4.4b.

This solution is optimal if and only if complementary slackness and pri-
mal feasibility hold (Theorem 4.16). Primal feasibility is trivial to check:
each vertex has indeed at most one outgoing arc. We are left with comple-
mentary slackness:

λ>(Cx− d) =
∑
v∈V

λv(x(δout(v))− d)

= λv0(1− 1) + λv1(1− 1) + λv0(0− 1)

= 0

proving that the solution in Figure 4.4b is a primal optimal solution.

Theorems 4.15 and 4.16 state that the Lagrangian relaxation provides an
upper bound to the primal problem and that there may exist an assignment
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v0

v1 v2

1 1

0

(a) Graph with original
weights

v0

v1 v2

−1

−
1

0

(b) Graph with reparameter-
ized weights

Figure 4.4: Red bold arcs denotes MSAs.

of multipliers so that the solution of the relaxed problem is equal to the pri-
mal optimal solution, respectively. Unfortunately, Lagrangian relaxations can
introduce a dual gap, meaning the primal and dual optimal solutions do not
match. Thus, whether or not to choose Lagrangian relaxation instead of linear
relaxation is a matter of computational cost and dual tightness. For example,
in Example 4.14, the dual objective has a exponential number of constraints but
we nerveless efficiently optimize it with the Chu-Liu-Edmonds’ algorithm. In
general, if the relaxed problem can be solved thanks to a specialized polynomial
time algorithm, then it is worth trying to apply Lagrangian relaxation. In the
next subsection, we discuss the specific case of equality constraints relaxation.
A generic and experimentally efficient method to minimize the Lagrangian dual,
called subgradient descent, is introduced in Section 4.4.

4.3.3 Equalities and dual decomposition

Let a primal be of the form:

argmax
x

w>x+ e (4.28)

s.t. Ax ≤ b (4.29)

Cx = d (4.30)

x ∈ Bc (4.31)

where (4.30) is the set of hard constraints. We obtain the following program by
relaxing constraints (4.30):

argmax
x

w>x+ e+ λ>(Cx− d) (4.32)

s.t. Ax ≤ b (4.33)

x ∈ Bc (4.34)

with λ an unconstrained set of Lagrangian multipliers. To understand why
the Lagrangian multipliers are unconstrained, suppose we equivalently replace
the equalities with Cx ≤ d and −Cx ≤ −d and relax them:

argmax
x

w>x+ e− λ1(Cx− d)− λ2(−Cx+ d) (4.35)

s.t. Ax ≤ b (4.36)

x ∈ Bc (4.37)
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with λ1 and λ2 two sets of positive Lagrangian multipliers. The objective func-
tion can be rewritten as:

w>x+ e− λ1(Cx− d)− λ2(−Cx+ d)

= w>x+ e− λ1(Cx− d) + λ2(Cx− d)

= w>x+ e+ (λ2 − λ1)(Cx− d)

Thus, λ = λ2 − λ1 is an unconstrained set of multipliers.

Note that when relaxing equalities only, primal feasibility implies complemen-
tary slackness. Indeed, it is easy to see that if Bx = d, then λ(Bx− d) = 0 for
any λ.

Definition 4.18: Dual decomposition
A dual decomposition is a Lagrangian dual with a dual objective that
decomposes in several independent subproblems.

Let (P) be a primal program defined as:

(P ) argmax
x

w>x

s.t. Aix ≤ bi 1 ≤ i ≤ l
x ∈ B|x|

with Ai and bi matrices and vectors defining l sets of constraints. We suppose
that maximizing x with respect to only one set of constraints Aix ≤ bi can be
computed efficiently. In order to perform dual decomposition, we first need to
reformulate the program. The vector of variables x is replaced by distinct copy
vectors xi ∈ B|x|, 1 ≤ i ≤ l. We introduce a vector of variables z called the
witness vector that is used to ensure that all copy vectors are equal. Let wi,
1 ≤ i ≤ l, be weight vectors such that

∑l
i=1 w

i = w. Then, the problem can be
reformulated as:

(P ′) argmax
x

l∑
i=1

wi>xi (4.38)

s.t. Aixi ≤ bi 1 ≤ i ≤ l (4.39)

z = xi 1 ≤ i ≤ l (4.40)

xi ∈ B|x| 1 ≤ i ≤ l (4.41)

z ∈ R|x| (4.42)

Variables z in constraint set (4.40) ensure that all copies {xi} are equal. ILPs
(P ) and (P ′) are obviously equivalent. By relaxing constraints (4.40), we build
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the following Lagrangian relaxation:

argmax
x

l∑
i=1

wi>xi +

l∑
i=1

λi(z − xi)

s.t. Aixi ≤ bi 1 ≤ i ≤ l
xi ∈ B|x| 1 ≤ i ≤ l
z ∈ R|x|

Note that z is unconstrained. If the set of Lagrangian multipliers is defined such
as
∑l
i=1 λ

i 6= 0, then the term
∑l
i=1 λ

iz makes the objective unbounded. Thus,
we restrict the domain of the Lagrangian multipliers to Λ = {{λi}|

∑
i λ

i = 0}.
The Lagrangian relaxation then becomes:

L∗({λi}) = max
x

l∑
i=1

w′i>xi

s.t. Aixi ≤ bi 1 ≤ i ≤ l
xi ∈ Bc 1 ≤ i ≤ l

with w′i = wi + λi the reparameterized weight vectors. Note that z has dis-
appeared from the objective. Given a set of multipliers {λi}, computing the
Lagrangian objective amounts to solving l distinct subproblems:

(Pi) max
xi

w′i>xi

s.t. Aixi ≤ bi

xi ∈ B|x|

If the solution of each subproblem Pi can be easily computed, then computing
the Lagrangian objective is easy. Moreover, the subproblems can be parallelized.

The Lagrangian dual of the previous problem is simply:

min
{λi}∈Λ

L∗({λi})

Note that the set of dual feasible solutions lies in Λ instead of the set of real
vectors (or instead of the set of positive real if we compare to inequalities relax-
ation).

Example 4.19: MSA with out-degree constraints (2)
We propose a different relaxation of Example 4.14 via dual decomposition.
Remember that, given a graph G = (V,A), we wish to compute the MSA
where each vertex must have at most d outgoing arcs. This problem can be
formulated thanks to the following ILP:

argmax
x

∑
a∈A

xawa (4.43)

s.t. x ∈ X (4.44)

x(δout(v)) ≤ d ∀v ⊆ V (4.45)

x ∈ B|x| (4.46)
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with X the arborescence polytope as defined by constraints (4.20)-(4.22).
Let {xi} = {x1, x2} be the copy variables, {wi} = {w1, w2} be any weight
vectors such that

∑
i w

i = w and z ∈ R|x| be the witness vector. Then, the
problem can be reformulated as:

argmax
x

∑
i

wi>xi (4.47)

s.t. x1 ∈ X (4.48)

x2(δout(v)) ≤ d ∀v ⊆ V (4.49)

z = xi ∀i ∈ {1, 2} (4.50)

x1, x2 ∈ B|x| (4.51)

We build the following Dual objective by relaxing constraints (4.50):

argmax
x

∑
i

w′i>xi (4.52)

s.t. x1 ∈ X (4.53)

x2(δout(v)) ≤ d ∀v ⊆ V (4.54)

x1, x2 ∈ Bc (4.55)

with w′i = wi + λi and {λi} ∈ Λ is the set of Lagrangian multipliers.
Maximizing this program reduces to computing two distinct subproblems:

(P1) argmax
x

w′1>x1

s.t. x1 ∈ X
x1 ∈ B|x|

(P2) argmax
x

w′2>x2

s.t. x2(δout(v)) ≤ d ∀v ⊆ V
x2 ∈ B|x|

Subproblem P1 can be computed thanks to the MSA algorithm with up-
dated weights. Subproblem P2 searches, for earch vertex, the d outgoing
arcs with maximum positive weights. With a convenient data structure,
this can be computed in quadratic time, similar to the MSA.

4.4 Subgradient descent

Subgradient descent is an optimization technique which aims at finding the
minimum value of a non-differentiable convex function.7 The technique is sup-
ported by the subgradient theory, a generalization of the gradient (Section 4.4.1).
In particular, we will show that for the family of functions defined by Lagrangian
duals of ILPs, it this straightforward to compute a subgradient at any point.
The pseudo-code of the algorithm is given in Section 4.4.2.

7 If we search the maximum of a non-differentiable concave function, the similar method is
called supergradient ascent. We choose to focus on subgradient descent in this section because
the Lagrangian dual of a maximization problem is a minimization problem.
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4.4.1 Theory

Gradient descent is a well-known optimization technique for differentiable
functions [Boyd and Vandenberghe, 2004]. Given a differentiable function, at
any point of the domain, the opposite of the gradient at this point is the fastest
decreasing direction. Thus, a function is iteratively minimized by moving in
that direction with a given stepsize. A good stepsize can be computed via any
line search or trust region technique. Moreover, when the gradient is null, the
given point is a stationary point (a local minimum, a local maximum or an
inflection) or, if the function is convex, a global minimum. A notable use of
gradient descent based optimization is the backpropagation algorithm for neu-
ral network parameters estimation [Linnainmaa, 1976, LeCun et al., 2012]. But
what if the studied function is not differentiable? If it is nonetheless convex, a
common alternative is the subgradient descent method [Shor, 1985]. Given a
point in the domain of a function, its subgradient set is the set of supporting
hyperplanes of this function. Notably, if the function is differentiable at a given
point, the subgradient set at this point is the singleton containing the gradient.
Thus, a similar iterative algorithm can be used. However, subgradient descent
misses many of the interesting properties of gradient descent: a subgradient is
not necessarily a direction of decreasing and several frequent line search and
trust region methods are not applicable. In this section, we introduce the the-
ory that supports the subgradient descent algorithm. Experimentally, despite
its drawbacks, it is a simple method that has proven to be efficient in many
applications.

Definition 4.20: Convex set
A set D is convex if and only if:

∀d, d′ ∈ D, ε ∈ [0, 1] : εd+ (1− ε)d′ ∈ D

Definition 4.21: Convex function
Given a function f : D → R, f is convex if and only if D is a convex set and:

∀d, d′ ∈ D, ε ∈ [0, 1] : f(εd+ (1− ε)d′) ≤ εf(d) + (1− ε)f(d′)

A set is convex if, given two arbitrary elements of it, any convex combination
of them is also included in the former set. Figure 4.5a illustrates a convex set:
if d′′ is a convex combination of d, d′ ∈ D, then d′′ ∈ D is always true. In
Figure 4.5b, the set is non-convex, meaning there exists a point d′′ which is a
convex combination of two d, d′ ∈ D with d′′ /∈ D. The similar definition for
a function can be understood as, for any two given points of a function with a
convex domain, all their convex combinations must lie above the function (see
Figure 4.5c). If not, the function is non-convex (See Figure 4.5d). We will now
develop this last point in order to obtain a formal definition of a subgradient.
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(b) a non-convex set

f(d)

d

f(d′)

d′

(c) A convex function

f(d)

d

f(d′)

d′
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Figure 4.5: Convexity

Definition 4.22: Graph
Given a function f : D → R, its graph is the set of tuples in DR defined by:

{(d, f(d))|d ∈ D}

Definition 4.23: Epigraph
Given a function f : D → R, its epigraph is the set of tuple in DR defined
by:

epi f = {(d, r)|d ∈ D and f(d) ≤ r}

Definition 4.24: Supporting hyperplane
Given a set S, a supporting hyperplane of S is a hyperplane such that:

• S is entirely contained in one of the half-spaces separated by the hy-
perplane;

• S has at least one boundary point with the hyperplane.

Definition 4.25: Subgradient
Given a function f : D ⊆ Rn → R, a subgradient at d ∈ D is a vector g ∈ Rn
such that:

∀d′ ∈ D : f(d′) ≥ f(d) + g>(d′ − d)
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d

f(d)

Figure 4.6: No supporting hyperlane to the epigraph of the function exists at
the black dot. Thus, the subgradient is undefined at this point.

The set of subgradients at point d is called the subdifferential and is de-
noted ∂f(d).

The graph of f can be understood as the set of points which are usually used
in order to draw it. The epigraph of f is the set of points which are, roughly
speaking, above the graph. Thus, equivalently to Definition 4.21, a function is
convex if its domain and its epigraph are convex sets. Let D be a convex set
and f : D → R be a convex function. Given a point d ∈ D, a subgradient g ∈
∂f(d) is a supporting hyperplane of epi f with (d, f(d)) being a boundary point.
Alternatively and equivalently, the graph {(d′, f(d)+g>(d′−d))|d′ ∈ D} defines
a supporting hyperplane of f . It is easy to see that the function f ′(d′; g) =
f(d) + g>(d′ − d) is a global subestimator of the function. As such, moving
along the subgradient of a given point may be a good idea in order to minimize
a function. However, such an approach is appealing only if a subgradient exists
at all points of the domain of f . Figure 4.6 shows an example of a non-convex
function which has at least one point where its subgradient is undefined. It can
be proven that a subgradient exists at any point of a convex function via the
hyperplane separation theorem [Boyd and Vandenberghe, 2004]. We focus on
the specific case of Lagrangian duals in Subsection 4.4.2.

So far, we showed that a subgradient is a global subestimator of a convex
function and we suppose that there exists at least one subgradient at a given
point of the domain. The main motivation behind subgradient descent is that if
we want to find the minimum of f , it may not be a bad idea to move along the
direction of descent of one of its subgradients. Unlike the gradient descent case,
there is no guarantee that following this direction always results in a diminution
of f . However, it always results in the decrease of the distance to a point which
attains the minimum of f . If, at first glance, this difference may not seem
important, it has a practical downside: if, after moving with a given stepsize,
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we obtain a point with a higher value, we cannot certify that this is because
the stepsize was too important. This may be counter-intuitive because it is not
observable in a function which has a 2 dimensions graph.

Theorem 4.26: Descent direction
Given a convex function f : D ⊆ Rn → R, d ∈ D, g ∈ ∂f(d) a subgradient

at d and d̂ = argmind∈D f(d), ∃ε ∈ R such that:

‖(d− εg)− d̂‖ ≤ ‖d− d̂‖

Thus, the subgradient at a given point of a convex function is a descent
direction.

Proof. We suppose that d is not a minimizer of f .

‖(d− εg)− d̂‖2 = ‖d− d̂‖2 + ‖εg‖2 − 2εg>(d− d̂)

By Definition 4.25 of the subgradient f(d)− f(d̂) ≥ g>(d− d̂)

≤ ‖d− d̂‖2 + ‖εg‖2 − 2ε(f(d)− f(d̂))

≤ ‖d− d̂‖2 + ε2‖g‖2 − 2ε(f(d)− f(d̂))

Therefore, we have ‖(d− εg)− d̂‖2 < ‖d− d̂‖2 when ε2‖g‖2−2ε(f(d)−f(d̂) < 0.

Let a = ‖g‖2 and b = 2(f(d̂) − f(d)). We now have to prove that there exists
at least one ε value for which aε2 − bε < 0. Note that the left side roots are
b−
√
b2

2a = 0 and b+
√
b2

2a = b
a . We have a > 0 and b > 0 because d is not a minimizer

of f , thus the gradient cannot be null and f(d̂) < f(d). Thus, aε2 − bε < 0 has
at least one solution because there exists two distinct left-side roots. Thus:

≤ ‖d− d̂‖2

meaning there always exists a stepsize for which the subgradient is a descent
direction.

Definition 4.27: Projection
A function p : D → D′ is a projection from set D to set D′ if and only if,
for any d ∈ D and d′ ∈ D′:

‖d− p(d)‖ ≤‖d− d′‖

That is, p(d) is the closest point to d in D′.

Theorem 4.28: Projected descent direction
Given a convex function f : D ⊆ Rn → R, d ∈ D, g ∈ ∂f(d) a subgradient

at d, d̂ = argmind∈D f(d) and a projection function p : Rn → D, ∃ε ∈ R
such that:

‖p (d− εg)− d̂‖ ≤ ‖d− d̂‖
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Thus, the subgradient at a given point of a convex function is a descent
direction after projection in the domain.

Proof. From Theorem 4.26, we have:

‖(d− εg)− d̂‖ ≤ ‖d− d̂‖

By definition, the projection of a point into D is closer to the original than any
other point in D. That is ‖p (d− εg)− d̂‖ ≤ ‖(d− εg)− d̂‖. Thus:

‖p (d− εg)− d̂‖ ≤ ‖d− d̂‖

which ends the proof.

4.4.2 Algorithm

In the previous section, we theoretically motivated the use of subgradient in-
formation in order to minimize a non-differentiable convex function. We showed
that moving along the opposite direction of a subgradient at a given point brings
closer to an optimal point. In this section, we apply subgradient descent to La-
grangian duals (see Section 4.3). We describe how a subgradient can be easily
computed at any point of the Lagrangian dual objective. Moreover, we write
down the complete minimization algorithm.

A Lagrangian dual is a function of the form:

min
λ∈Λ

L(λ)

with Λ the domain of Lagrangian multipliers and L the Lagrangian dual ob-
jective. It is unlikely that a closed form solution for this problem exists in the
general case. However, L is non-differentiable but convex (Theorem 4.29).

Theorem 4.29: Lagrangian dual objective convexity
Let L(λ ∈ Λ) = maxx∈X f(x;λ) be a Lagrangian dual objective with Λ a

convex set and f(x;λ) = h(x) + λ>l(x). Function h is the original primal
score function and function l is the contribution of relaxed constraints. Then,
L is convex but non-differentiable.

Proof. Except in trivial cases, the function is obviously non-differentiable be-
cause of the max operator. In order to prove that L is convex, we have to show
that for any λ, λ′ ∈ Λ and ε ∈ [0, 1]:

L(ελ+ (1− ε)λ′) ≤ L(ελ) + L((1− ε)λ′)

Let λ∗ = ελ+(1−ε)λ′ and x∗ = argmaxx∈X f(x;λ∗). Obviously, as L maximizes
over x, we have:

f(x∗;λ) ≤ L(λ)

f(x∗;λ′) ≤ L(λ′)
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Multiplying and then summing both inequalities, we obtain:

εf(x∗;λ) + (1− ε)f(x∗;λ′) ≤ εL(λ) + (1− ε)L(λ′)

The left side can be reformulated as:

εf(x∗;λ) + (1− ε)f(x∗;λ′) = ε(h(x∗) + λ>l(x∗)) + (1− ε)(h(x∗) + λ′>l(x∗))

= εh(x∗) + ελ>l(x∗) + (1− ε)h(x∗) + (1− ε)λ′>l(x∗)
= h(x∗) + (ελ+ (1− ε)λ′)>l(x∗)
= f(x∗;λ∗)

= L(λ∗)

Thus L(ελ + (1 − ε)λ′) ≤ L(ελ) + L((1 − ε)λ′), meaning the Lagrangian dual
objective is convex. Note that in this proof, we did not use any property of
the search space X, the primal objective function f and neither the relaxed
constraints. This is a major property that motivated the use of Lagrangian
relaxation beyond the scope of linear problems [Bertsekas, 1999].

Theorem 4.30: Subgradient of the dual objective
Let L(λ ∈ Λ) = maxx∈X f(x;λ) with Λ a convex set and f(x) = w>x +

e + λ>(Cx − d) be a Lagrangian dual objective, where primal constraints
Cx ≤ d have been relaxed. Given a set of multipliers λ ∈ Λ, let x̂ =
argmaxx∈X f(x;λ). Then:

Cx̂− d ∈ ∂L(λ)

is a subgradient of L at λ.

Proof. Definition 4.25 states that Cx̂− d is a subgradient at λ if and only if:

L(λ′) ≥ L(λ) + (Cx̂− d)>(λ′ − λ)

for every λ′ ∈ Λ. Starting with the right side of the inequality:

L(λ) + (Cx̂− d)>(λ′ − λ)

= max
x∈X

(
w>x+ e+ λ>(Cx− d)

)
+ (Cx̂− d)>(λ′ − λ)

= w>x̂+ e+ λ>(Cx̂− d) + λ′>(Cx̂− d)− λ>(Cx̂− d)

= w>x̂+ e+ λ′>(Cx̂− d)

= f(x̂;λ′)

≤ max
x∈X

f(x;λ′)

≤ L(λ′)

Thus Cx̂− d ∈ ∂L(λ).
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By Theorem 4.30, we can easily compute a subgradient for any given La-
grangian multiplier. We compute the dual objective solution and then Cx̂ − d
is a subgradient, which basically corresponds to the quantity of violation of re-
laxed constraints. The Lagrangian multipliers can then be updated with the
following rule:

λ = p
(
λ− εt(Cx̂− d)

)
with p a projection operator into Λ and ε the stepsize.8 The stepsize can be
fixed with the rule of Polyak [1987]:

ε =
L(λ)− LB
‖Bx̂− d‖2

where LB is the best known lower bound at the current iteration. Pseudo-code
of the algorithm is given in Algorithm 1. We suppose that we can use a primal
heuristic, that is an algorithm which computes a primal solution with respect
to the reparameterized weights. Importantly, the algorithm delivers a certificate
of optimality if complementary slackness holds or the lower and upper bounds
are equal.

Algorithm 1 The subgradient descent algorithm minimizing a Lagrangian dual.

lb← −∞ . Initialize lower bound
ub← +∞ . Initialize upper bound
p← − . Will store the best found primal solution
λ = 0 . Initialize Lagrangian multipliers
for 1 ≤ t ≤ T do

x̂ = argmaxx∈X f(x;λ) . Dual objective
ub = min(ub, f(x̂;λ))
x̄ = primal(λ) . Primal heuristic
if f(x̄;λ) > lb then

lb = f(x̄;λ)
p← x̄

if Cx̂ ≤ d then . Test primal feasibility
if λ>(Cx̂− d) = 0 then . Test complementary slackness

return x̂
if f(x̂;λ) > lb then . Update lower bound ?

lb = f(x̂;λ)
p← x̂

if lb = ub then . If both bounds match, then p is optimal
return p

λ = p (λ− εt(Cx̂− d)) . Update and project multipliers

return p . Return the possibly non-optimal best known primal feasible

4.5 Problem reduction

In the previous section, we introduced the subgradient descent algorithm in
order to minimize a Lagrangian dual problem. We supposed that there exists

8The projection operator can be removed if the multipliers are unconstrainted.



72 CHAPTER 4. EFFICIENT STRUCTURE DECODING

an efficient polynomial time algorithm to solve the Lagrangian dual objective
as it must be iteratively computed. But even in that case it is appealing to
prune the search space when it is big so the running time of each iteration is
minimized. Problem reduction [Beasley, 1993] consists in fixing certain variables
while maintaining the possibility to deliver an optimality certificate: a variable
is fixed to 1 (respectively 0) if it is guaranteed to be (respectively not to be) in
an optimal solution.

Let (P ) and (L) respectively be a primal problem and a Lagrangian dual
objective of the form:

(P ) argmax
x

h(x)

s.t. x ∈ X
x ∈ X ′

(L) argmax
x

f(x;λ)

s.t. x ∈ X

where the constraints describing the set X ′ have been relaxed. The value h(x) of
any primal feasible solution x ∈ X is a lower bound to the primal optimal score
and, by definition, the value of maxx∈X f(x;λ) for any dual feasible solution
λ ∈ Λ is an upper bound to the primal optimal score. Consider the following
Lagrangian dual objective with an additional constraint on a single variable xi:

(L′) argmax
x

f(x;λ)

s.t. x ∈ X
xi = 1

It is straightforward to prove that if the optimal solution score of this problem
(L′) is lower than the best known lower bound of (P ), then we can fix xi = 0
in (P ) and (L′). Alternatively, if we impose an additional constraint xi = 0 in
(L) and observe a similar result, then we can fix xi = 1. Thus, solving (L′) can
be used to prune the search space.

In practice, we want to rely on the structure of (L) so (L′) can be computed
efficiently for each variable which has not been fixed yet by modifying the op-
timal solution of (L). The best case scenario is a constant time algorithm and
thus a linear time problem reduction algorithm.

4.6 Branch-and-bound

The primal and Lagrangian dual optimal scores may not match if there exists
a dual gap. Moreover, the subgradient descent algorithm is executed for a fixed
number of iterations in practice. Thus, the algorithm may not converge even
if the dual is tight. The Branch-and-Bound algorithm is an exhaustive search
procedure which uses the upper bound given by a dual formulation in order to
prune the search space [Land and Doig, 1960]. The algorithm has two different
steps which are successively executed:

1. the branching step splits the search space into two subproblems with
disjoint solution sets;
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lb = 10

ub = 20

lb = 5

ub = 9

lb = 10

ub = 20

lb = 12

ub = 12

lb = 10

ub = 12

x0 = 0 x0 = 1

x1 = 0 x1 = 1

Figure 4.7: Example of a branch-and-bound search tree.

2. the bounding step computes lower and upper bounds with the subgradi-
ent descent algorithm.

Any subproblem which has an upper bound lower to the best known (global)
lower bound can be safely removed.

Figure 4.7 shows a graphical example of a Branch-and-Bound search where
lb and ub respectively denote the lower and upper bounds computed at each
node. In the topmost node, we compute bounds on the complete search space.
Then, as the subgradient descent algorithm did not converge, we branch into
two subproblems according to variable x0. By fixing x0 = 0 we obtain an upper
bound that is less than the best known lower bound, so we can safely stop the
search procedure at this node. We branch again on the other node but with
variable x1. One of the nodes has converged and the other cannot improve the
best known solution. So the primal optimal solution score is 12.

4.7 Conclusion

In this chapter, we explained the Lagrangian relaxation heuristic for solving
ILPs. The resulting Lagrangian dual can be efficiently minimized via subgra-
dient descent. In the examples, the maximum spanning arborescence must be
computed at each iteration of the subgradient descent on a graph with repa-
rameterized weights. Fortunately, this can be efficiently computed in quadratic
time with the Chu–Liu/Edmonds’ algorithm.

In Chapter 3, we showed that the Lexicalized Tree Adjoining Grammar pars-
ing problem can be formulated as a graph problem via the derivation tree repre-
sentation. The best known algorithm for this problem has a O(n7) complexity
with n the input sentence length. In order to tackle this complexity challenge,
we propose to rely on Lagrangian relaxation. Thus, in the following we intro-
duce novel ILPs for this parsing problem. Again, solving the Lagrangian dual
objective will require to compute the maximum spanning arborescence.
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Chapter 5

Derivation tree parsing via
the Yield Restricted
Maximum Spanning
Arborescence

In Chapter 3, we introduced motivation of phrase-structure parsing with Lex-
icalized Tree Adjoining Grammars (LTAGs). Algorithms which have been pro-
posed in the literature either have a too high complexity or make unreasonable
assumptions. As a reminder, the best known parser, which was proposed by Eis-
ner and Satta [2000], is a O(n7) method based on deduction rules. Moreover,
supertagging as a pre-processing step cannot account for long range depen-
dencies explicitly while transition based methods lack of optimality guarantee.
Our original contribution is a new two steps pipeline for LTAG derivation tree
parsing (Section 5.1).

In the first step (Section 5.1), we assign LTAG-compatible bi-lexical rela-
tions, that is we parse a well-nested arborescence with a 2-bounded block de-
gree [Bodirsky et al., 2005]. The resulting structure is an unlabeled derivation
tree. Interestingly, this step is not dependent of a specific LTAG. However,
the best known parsing algorithm for this dependency parsing problem has a
O(n7) complexity [Gómez-Rodŕıguez et al., 2009]. Thus, we introduce a novel
characterization of the problem in terms of graph and propose two new ILPs
in Section 5.2. In Section 5.3, we show that one of the ILPs can be reduced to
a more general problem that we call the Yield Restricted Maximum Spanning
Arborescence. This problem has an exponential number of difficult constraints.
These constraints can be relaxed resulting and introduced in the objective. How-
ever, computing the objective value and updating all Lagrangian multipliers are
time consuming tasks. Thus, in Section 5.4, we propose to tackle this challenge
by lazy generation of multipliers, a technique called Non-delayed Relax-and-Cut
in the literature [Lucena, 2005]. We experimentally show the efficiency of our
method on several datasets with different types of constraints in Section 5.5:
different block degree limits and with or without the well-nestedness require-

75
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ment.

The second step of the pipeline is a parse tree labeler: elementary trees and
operations sites are assigned to the dependency structure. We propose an al-
gorithm for this problem in Section 5.6 using the deduction rule formalism.
Moreover, we prove that this step has a linear time complexity with respect to
the sentence size.

5.1 Motivations

Dependency parsing has been argued to be an easier task than phrase-structure
parsing, leading to the development of many parsers for the former task. We
can single out two major reasons for this claim. Firstly, dependency parsers
usually do not rely on a grammar. Many systems only enforce structural con-
straints on dependency trees. The famous dependency parser of Eisner [2000]
enforcing projectivity (see Section 5.2) is still one of the most commonly used
by the NLP community. Indeed, several treebanks, including the PTB conver-
sion using the head-percolation table of Collins [2003], contain only projective
dependency trees. However, other datasets contain more intricate structures.
Thus, several algorithms have been proposed in order to achieve a high-coverage
of dependency treebanks while maintaining a polynomial complexity [Gómez-
Rodŕıguez et al., 2009, 2011, Pitler et al., 2012, 2013, Satta and Kuhlmann,
2014]. McDonald et al. [2005] showed that unconstrained dependency parsing,
usually referred to as non-projective parsing, can be realized with a quadratic
complexity. This approach can generate dependency trees which do not respect
properties observed in treebanks but achieves high-accuracy results in practice
[Ma and Hovy, 2017]. Secondly, most approaches achieve state of the art results
while relying on a pipeline system. While it is possible to assign head-modifier
relationships together with grammatical relations, most approaches rely on a
post-processing parse tree labeler for the latter (see Figure 5.1).

In order to reduce LTAG parsing to a dependency parsing task, we need to
incorporate grammar based constraints into the dependency framework while
maintaining short parsing time. This is a challenging task. Previous work of
Riedel and Clarke [2006] incorporated linguistically motivated constraints into
a dependency parser. They rely on optimization methods in order to provide
tractable parsing time. We follow a similar process.

An LTAG derivation tree has a highly constrained structure. Obviously, sub-
stitution sites must be filled. Moreover, a given site in an elementary tree may
forbid adjunction, impose mandatory adjunction and/or provide fine-grained
constraints on allowed adjunctions. For substitution and adjunction operations,
non-terminal labels must match. Finally, the derivation tree must correctly
transform into a continuous derived tree with respect to the word order, that
is the derived tree must not contain crossing edges. Note that, contrary to
the derived tree, the derivation tree may contain crossing arcs due to wrapping
adjunctions, which will be discussed in the next section. These arcs appear con-
jointly with correct auxiliary trees, heads, operation sites and yields to ensure
the derived tree correctness. Note that removing this requirement, which will be
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The dog he claims she seems to like

⇓ Dependency parsing
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The dog he claims she seems to like
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sub vmod
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obj
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The dog he claims she seems to like

Figure 5.1: The dependency parsing pipeline. We follow the convention of
chunking to like as a single lexical item [Kallmeyer and Kuhlmann, 2012].
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Figure 5.2: The proposed TAG parsing pipeline.

discussed in Chapter 6, does not induce an easy parsing problem. However, one
may want to break this problem into two: on one side, heads assignment, on the
other elementary trees and operation sites assignment. As such, the first one
does not directly take into account the grammar. This is even more important
given that lexicalized grammars are highly ambiguous in practice in order to
ensure generalization. Thus, we propose the following pipeline:

1. A dependency parser which outputs LTAG compatible unlabeled deriva-
tion trees;

2. A parse tree labeler which assigns elementary trees to words and operation
sites to head-modifier relations.

See Figure 5.2 for an illustration of the process.

Our approach benefits from several advantages. The first step does not take
into account the grammar, obviously meaning that its asymptotic complexity
will not incorporate a (potentially big) grammar constant. Moreover, long range
dependencies are taken into account from the beginning. Long range dependen-
cies are problematic in the standard pipeline approach as most supertaggers
predict elementary trees independently. This can be problematic, as an exam-
ple, in the presence of long parenthetical elements (see Figure 5.3). We note
that a more sophisticated supertagger may prevent this kind of error at the ex-
pense of increasing the complexity [Bonfante et al., 2014]. However, we are not
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She walks

VB

VP

S

NP

NP

the dog

NN

NP

.

She walks , despite her hatred for quadruped mammals , the dog .

VB

VP

S

NP

NN

NP?

Figure 5.3: In the top example, the pipeline algorithm correctly assigned the
transitive verb supertag to walks. In the bottom example, due to the long range
dependency, it fails: thus, we cannot assign a head to dog.

aware of any experimental result based on such an approach. Finally, we rely
on subproblems which are actively studied by the NLP community: dependency
parsing and tree tagging. As such, any improvement in the parameterization
of dependency parsers can be directly incorporated in our work. As we will
see in Section 5.6, tree parse labeling is equivalent to constrained CYK pars-
ing. Thus, similarly, any improvement in the parameterization of tree taggers
or linear chain taggers can also be incorporated in our work.

5.2 Parsing well-nested arborescences with 2-
bounded block degree

A combination operation in a LTAG encodes a head-modifier relationship be-
tween two words. Bodirsky et al. [2005] showed that the resulting dependency
structure can be characterized using a restricted class of drawings, that is totally
ordered forests. In Subsection 5.2.1, we formally introduce these structures but
using arborescence properties: well-nested arborescences with 2-bounded block
degree (2-BBD). Parsing well-nested arborescences with 2-BBD is a difficult
task. Gómez-Rodŕıguez et al. [2009] proposed a O(n7) time complexity algo-
rithm, that is with an asymptotic complexity similar to LTAG parsing. An
obvious question at this stage is to ask whether our pipeline approach provides
any practical benefit as its first step is as difficult as the original parsing algo-
rithm? We argue that this dependency parsing problem which is not dependent
on a specific LTAG has two main advantages. First, even if the asymptotic com-
plexity of both algorithms seems similar, the grammar constant in the LTAG
parser complexity may induce prohibitive parsing time even for short sentences.
This is a particularly important problem since, in real-world applications, the
grammar may be highly ambiguous in order to be robust to noisy inputs (gram-
matical errors, unknown words, . . . ). Second, the parsing problem becomes
simpler and can be expressed as a graph decoding problem as we do not need
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to check many constraints from the grammar.1

Our characterization using arborescence properties naturally leads to the de-
velopment of parsing algorithms by adding constraints on existing ILP formula-
tions for arborescence decoding. In Subsection 5.2.2 we propose an ILP with a
polynomial number of constraints. However, the decoding time using a generic
solver is unsatisfactory. Moreover, the intricate structure of the program pre-
vents the use of Lagrangian relaxation. Thus, we propose an alternative ILP in
Subsection 5.2.3 which has an exponential number of constraints but exposes
an appealing structure.

5.2.1 Definitions

In this subsection, we propose a formal definition of k-BBD and well-nestedness
as properties of an arborescence. This is not, of course, fundamentally differ-
ent from existing definitions but we stress that it simplifies the exposition of
the parsing problem as a graph optimization problem. We prove that we can
constrain an arborescence to be well-nested and have a k-BBD thanks to con-
straints on arc sets. Intuitively, this will be of a major interest when solving the
problem via Lagrangian relaxation. Indeed, if the relaxed problem is the uncon-
strained maximum spanning arborescence, then it can be solved efficiently via
the Chu–Liu/Edmonds’ algorithm (see Example 4.6). However, this is possible
only if penalties from relaxed constraints violation are defined on arc weights.
The polynomial program proposed in Subection 5.2.2 does not fulfill this re-
quirement contrary to the exponential one in Subection 5.2.3.

Let G = (V,A) be a graph with V = {v0, . . . vn} the finite set of vertices and
A ⊆ V × V the set of arcs. The block degree and well-nestedness properties
suppose a total order on vertices. Without loss of generality, we rely on the
common integer order via vertex indices, i.e. v0 < v1 < · · · < vn−1 < vn. The
predecessor (respectively successor) of vertex vk is vk−1 (respectively vk+1).

Definition 5.1: Yield of a vertex
Let T ⊆ A be a set of arcs. The yield of a vertex v ∈ V with respect to T
corresponds to the set of vertices reachable from v with respect to T .

Definition 5.2: Block degree
The block degree of a vertex set W ⊆ V is the number of vertices of W
without a predecessor inside W . Given an arborescence T , the block degree
of a vertex is the block degree of its yield and the block degree of T is the
maximum block degree of its incident vertices. An arborescence satisfies
the k-BBD condition if its block degree is less than or equal to k. This
definition is illustrated in Figure 5.4.

1 The LTAG parsing problem can be formulated as a graph decoding problem using the
generic construction of Martin et al. [1990] which reduces a dynamic program to a shortest
path problem in an acyclic hypergraph. However, this formulation would need a graph with
a O(n7) number of vertices.
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v0

v1

v2

v3

v4

s0 s1 s2 s3 s4

Vertex Yield Block-degree

v0 {v0, v1, v2, v3, v4} 1

v1 {v1,v4} 2

v2 {v2, v3} 1

v3 {v3} 1

v4 {v4} 1

Figure 5.4: Example of a 2-BBD arborescence. The table shows yields and
block-degree of each vertex. Vertices in bold do not have their predecessor in
the set. The vertex with maximum block-degree is v1, meaning the arborescence
has a block-degree equal to two. It has a 2-BBD, 3-BBD, . . .

0

v1

v2

v3

v4

s0 s1 s2 s3 s4

Vertex Yield

v0 {v0, v1, v2, v3, v4}

v1 {v1, v3}

v2 {v2, v4}

v3 {v3}

v4 {v4}

Figure 5.5: Example of an ill-nested arborescence: yields of v1 and v2 are dis-
joints, i.e. {v1, v3}∩ {v2, v4} = ∅, and v1 < v2 < v3 < v4 with v1, v2 in the yield
of v1 and v2, v4 in the yield of v2.

Definition 5.3: Well-nestedness
Two disjoint subsets I1, I2 ⊆ V interleave if there exist i, j ∈ I1 and k, l ∈ I2
such that i < k < j < l. An arborescence is well-nested if it is not incident
to two vertices whose yields interleave. Otherwise, it is said to be ill-nested,
see Figure 5.5.

Let T ⊆ A be a subset of arcs inducing a v0-rooted spanning arborescence.
In the following, without loss of generality, we define arborescence properties on
arborescence T . From Definition 5.2 and Definition 5.3, we can derive necessary
and sufficient conditions so that T is a well-nested arborescence with 2-BBD:

• For each vertex vk ∈ V , the block degree of its yield with respect to
arborescence T is at most 2;

• For each couple of vertices vk, vl ∈ V such that vk 6= vl, their yields with
respect to T are either not disjoint or do not interleave.

The 2-BBD condition can be constrained by collecting the yield of each vertex
vk ∈ V , that is checking the existence of a path from vk to other vertices via
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arcs in T , and forcing them to have at most two vertices without predecessor.
Similarly, the well-nestedness condition can be checked using paths. This is
exactly how the polynomial program in Section 5.2.2 will be derived.

Note that arcs are not directly used in the definition of block degree and well-
nestedness. However, these conditions require to compute, among other, the
yield of each vertex. This is something that may be inefficient in optimization
programs because it introduces additional variables and intricate constraints.
Alternatively, we propose to define properties of T via subsets of arcs in T only.

Definition 5.4: Family of bounded block degree vertex subsets
Given a vertex set V and an integer k ≥ 0, we denote V≥k the family of
vertex subsets of V with block degree greater or equal to k.

Theorem 5.5: k-bounded block degree arborescence
An arborescence T is not k-BBD if and only if there exists a vertex subset

W ∈ V≥k+1 whose cutset δ(W ) contains a single arc in T , that is |δ(W )∩T | =
1.

Proof. By definition of block degree, a dependency tree is not k-BBD if and
only if it is incident with a vertex whose yield W belongs to V≥k+1. In other
word, T is not k-BBD if it contains a subarborescence T ′ such that V [T ′] equals
W ∈ V≥k+1. This holds if and only if W has exactly one entering arc (since
v0 /∈W ) and no leaving arc belonging to T .

Definition 5.6: Family of ill-nested vertex subsets
Given a vertex set V , we denote V ill the family of couples of disjoint inter-
leaving vertex subsets of V .

Theorem 5.7: Well-nestedness arborescence
An arborescence T is not well-nested if and only if there exists a couple

(I1, I2) ∈ V ill such that δ(I1) ∩ T and δ(I2) ∩ T are singletons.

Proof. δ(I1) and δ(I2) both intersect T only once if and only if T contains two
subarborescences T1 and T2 such that V [T1] = I1 and V [T2] = I2. This means
that T is incident with two vertices whose yields are I1 and I2, respectively.
Result follows from the definition of V ill and well-nested arborescences.

By Theorem 5.5, we can check if an arborescence satisfies the 2-BBD property
via conditions on the cutset of subsets of vertices only, see Figure 5.6. Obvi-
ously, the size of V≥3 grows faster than V . Similarly, the well-nested property
can be checked via conditions on cuts of subset couples of vertices only, see
Figure 5.7. We derive from these theorems an ILP with an exponential number
of constraints in Section 5.2.3.
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(b) 2-BBD arborescence

Figure 5.6: If there is only one adjacent arc to the arc set {v1, v3, v5}, which is
of block degree 3, then the arborescence is not 2-BBD.
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(b) Well-nested arborescence

Figure 5.7: If there is only one adjacent arc to subset {v1, v3} and one adjacent
arc to subset {v2, v4}, then the arborescence is ill-nested.

5.2.2 A polynomial ILP formulation

We now derive a compact ILP formulation, that is a program with a poly-
nomial number of variables and constraints, for computing the maximum well-
nested and 2-BBD arborescence. First, we explain the multi-flow commodity
formulation introduced by Martins et al. [2009a] for computing the Maximum
Spanning Arborescence. Contrary to the ILP formulation of Schrijver [2003],
which was based on arc-variables only (see Example 4.6), it introduces addi-
tional variables but it is compact. Moreover, the flow variables can be used to
compute the yield of vertices. Then, we propose constraints in order to ensure
well-nestedness and bounded block degree. Unfortunately, they will need the
introduction of new variables in the program. Finally, we study the complexity
of this ILP and its downsides.

Multi-flow commodity formulation of the MSA

Let G = (V,A) be a directed graph with n+1 vertices, V = {v0 . . . vn}, and T
the set of all v0-rooted spanning arborescences on G. A spanning arborescence
T ∈ T is defined as a subset of arcs T ⊆ A. We seek to compute the v0-
rooted maximum spanning arborescence. We assume that the weighting model
is arc-factored: the weight of a spanning arborescence T can be written as
f(T ∈ T ) =

∑
a∈T wa with wa the weight of arc a ∈ A. In the multi-flow

commodity formulation of the MSA, the root v0 sends one commodity to each
vertex. A vertex must consume its own commodity exactly once. Commodities
flow through selected arcs and with respect to their direction only. Moreover,
only n arcs can be selected, meaning that the induced structure is connected.
Thus it correctly models the set of v0-rooted arborescences T .
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Let x ∈ BA be a vector of boolean variables indexed by the set of arcs A,
with xa = 1 meaning that arc a is selected. Let y ∈ RV +×A be the vector of
flow variables indexed by vertices and arcs: yv,a is the quantity of commodities
which must be delivered to vertex v ∈ V + that goes through arc a ∈ A. Given
a subset of arcs B ⊆ A, x(B) corresponds to

∑
a∈B xa. We abuse this notation

and define yv(B) ,
∑
a∈B yv,a for flow variables. The MSA problem can be

formulated thanks to the following ILP:

max
x

∑
a∈A

xawa (5.1)

s.t. yv(δ
+(0)) = 1 ∀v ∈ V + (5.2)

yu(δ−(v))− yu(δ+(v)) = 1[v = u] ∀v, u ∈ V + (5.3)

yv,a ≤ xa ∀a ∈ A, v ∈ V + (5.4)

x(A) = n (5.5)

x ∈ BA (5.6)

y ∈ RV
+×A (5.7)

with V + = V \ {v0} and 1 the Kronecker delta, that is 1[v = u] is equal to 1 if
v = u and 0 otherwise. Constraints (5.2) ensure that the root vertex sends one
unit of commodity to each vertex. Each vertex consumes exactly one unity of
its commodity because of constraints (5.3). An arc can only carry flow if it is
selected thanks to constraints (5.4) and constraints (5.5) ensure that there are
exactly n selected arcs. This formulation has the integrality property, meaning
that relaxing the integrality constraint on arc variables (5.6) to x ∈ [0, 1]A leaves
the optimal solution unchanged [Martins, 2012].

Bounded block degree

The yield of vertex vi ∈ V is denoted N(vi). The block degree of vertex vi
is equal to the number of vertices in N(vi) which do not have their predecessor

in N(vi). Let b ∈ BV + × BV +

be a matrix of boolean variables. We constrain
b so that bvi,vj = 1 if and only if vertex vj ∈ V is in the yield of vi ∈ V
and predecessor vj−1 is not. In other words, bvi,vj = 1 if and only if vj is the
beginning of a block in the yield of vi. To achieve this, we basically need to
linearize the boolean operation p = ¬q ∧ r [Boros and Hammer, 2002]:

p ≤ 1− q (5.8)

p ≤ r (5.9)

p ≥ (1− q) + r − 1 (5.10)

In the following, we use this boolean constraint as a linear constraint. If vj is
in the yield of vi, then the commodity at destination of vj must flow through
the incoming arc of vi. Thus, we build the following constraints. The vertex v1

is always the beginning of a block in its own yield:

bv1,v1 = 1 (5.11)



5.2. PARSING WN ARBORESCENCES WITH 2-BBD 85

Obviously, the root vertex v0 cannot be in the yield of any other vertex. Thus,
checking if v1 is the beginning of a block in the yield of u is simply:

bu,v1 = yu(δin(v1)) ∀u ∈ V + \ {v1} (5.12)

Because a vertex is always in its own yield, checking if it is a beginning of a
block is equivalent to checking if its previous vertex is not in the yield. Let
pred and succ be the predecessor and successor predicates, respectively, that
is pred(vi) = vi−1 and succ(vi) = vi+1. Then, we can define the following
constraints:

bu,u = 1− ypred(u)(δ
in(u)) ∀u ∈ V + \ {v1} (5.13)

Finally, in other cases, we use the previously defined boolean equation:

bu,v = ¬ypred(v)(δ
in(u)) ∧ yv(δin(u)) ∀u ∈ V +, v ∈ V + \ {v1, u, succ(u)}

(5.14)

Thus, thanks to constraints (5.11)-(5.14), bu,v is equal to one if and only if
vertex v is the beginning of a block in the yield of vertex u. The block degree of
an arborescence is the maximum block degree of its incident vertices. In order
to ensure that an arborescence has a k-BBD, we must ensure that each of its
incident vertices has a block degree less or equal to k. To this end, we sum the
beginning of block indicators:∑

v∈V +

bu,v ≤ k ∀u ∈ V + (5.15)

Well-nestedness

We now propose constraints to enforce well-nestedness. From Definition 5.3,
an arborescence is ill-nested if there exist two vertices such that:

• their yields W 1 and W 2 are disjoint, i.e. W 1 ∩W 2 = ∅;

• and there exist u, u′ ∈W 1 and v, v′ ∈W 1 such that u < v < u′ < v′.

However, it is difficult to directly enforce well-nestedness using this condition.
Havelka [2007] introduced the notion of ill-nested set of an arc: an arborescence
is well-nested if and only if the ill-nested set of each one of its arcs is empty.

Definition 5.8: Ill-nested set
Let G = (V,A) be a graph and T ⊆ A be a subset of arcs inducing an
arborescence. Given two vertices vi, vj ∈ V [T ] such that vi < vj and vi →
vj ∈ T (respectively vj → vi ∈ T ), the ill-nested set of arc vi → vj ∈ T
(respectively vj → vi ∈ T ) is the set:

{vk → vl ∈ T | ∃(I1, I2) ∈ V ill such that

vi, vj ∈ I1 ∧ vk, vl ∈ I2∧
vi →∗ vl /∈ T ∧ vj →∗ vl /∈ T∧
vk →∗ vi /∈ T ∧ vl →∗ vi /∈ T}
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where vi →∗ vj ∈ T denotes the existence of a path from vertex vi to vertex
vj using arcs of T only.

Theorem 5.9: Well-nestness and ill-nested sets
Let G = (V,A) be a graph and T ⊆ A an arborescence. T is well-nested if
and only if the ill-nested set of each arc in the arborescence a ∈ T is empty.

Proof. Intuitively, the theorem states that any ill-nested couple of vertex set
must not define the yields of two distinct sub-arborescences in the arborescence
T . See Havelka [2007] for the complete proof.

In order to ensure well-nestedness, if an arc is selected in the arborescence
then its ill-nested set must be empty. If we take into account each arc in the
set independendly, this condition can be written as:

vi → vj ∈ T
⇒ ¬
(

vk → vl ∈ T
∧ vi →∗ vl /∈ T
∧ vj →∗ vl /∈ T
∧ vk →∗ vi /∈ T
∧ vl →∗ vi /∈ T

)

for each quadruple vi, vj , vk, vl ∈ V such that there exists a couple (I1, I2) ∈ V ill

with vi, vj ∈ I1 and vk, vl ∈ I2. Using the boolean equivalence a⇒ b = ¬a ∨ b,
we have:

= ¬vi → vj ∈ T
∨ ¬
(

vk → vl ∈ T
∧ vi →∗ vl /∈ T
∧ vj →∗ vl /∈ T
∧ vk →∗ vi /∈ T
∧ vl →∗ vi /∈ T

)

Because ¬(a ∧ b) = ¬a ∨ ¬b, we can reformulate the condition:

= ¬vi → vj ∈ T ∨ ¬vk → vl ∈ T
∨ vi →∗ vl ∈ T ∨ vj →∗ vl ∈ T
∨ vk →∗ vi ∈ T ∨ vl →∗ vi ∈ T
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Thus, the following linear constraint set ensures well-nestedness:

(1− xvi→vj ) + (1− xvk→vl)
+ yvl(δ

in(vi)) + yvl(δ
in(vj)) + yvi(δ

in(vk)) + yvi(δ
in(vl)) ≥ 1

∀ vi, vj , vk, vl ∈ V such that there exists a couple (I1, I2) ∈ V ill

with vi, vj ∈ I1 and vk, vl ∈ I2 (5.16)

Discussion

The following ILP can be used to compute the well-nested arborescence with
k-BBD:

argmax
x

∑
a∈A

xawa

s.t. (5.2)-(5.6) (arborescence)

(5.11)-(5.15) (k-BBD)

(5.16) (well-nestedness)

This formulation is compact because it has a polynomial number of variables
and constraints with respect to the input graph. The number of arc variables
x is bounded by O(|V |2) and the number of flow variables y by O(|V |3). The
number of constraints (5.2)-(5.6) is bounded by O(|V |3). To bound the block
degree of the predicted arborescence, we need to introduce O(|V |2) variables b
to compute the beginning of block in the yield of each vertex. There are O(|V |2)
constraints (5.11)-(5.15). The most expensive constraint set is (5.16) ensuring
well-nestedness as it is defined on quadruples of vertices, thus its size is bounded
by O(|V |4).

Although the multi-commodity flow formulation of the MSA problem has the
integrality property, the additional constraints no longer guarantee that solving
the LP relaxation will give an integral optimal solution anymore. Thus, solving
the problem with a generic solver relies on an algorithm with an exponential
complexity. In practice, with CPLEX, we observed intractable running times
even with small graphs.

As a final note, we discuss the use of Lagrangian relaxation. One wishes to
relax bounded block degree and well-nestedness constraints so that the poly-
nomial time algorithm for the MSA problem can be used at each iteration of
the subgradient descent procedure that minimizes the Lagrangian dual. How-
ever, both constraint sets rely on paths via flow variables. Penalizing flow
variables cannot be incorporated in the Chu–Liu/Edmonds’ algorithm as it as-
sumes an arc-factored model. Interestingly, we proposed a compact formulation
of the problem but which seems difficult to use in order to build a fast pars-
ing method. We observe that if we want to rely on the MSA as a subproblem
in the Lagrangian relaxation framework, the relaxed constraints must penalize
arcs independently. We propose a formulation which satisfies this requirement
in the next section.
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5.2.3 An exponential ILP formulation

Again, let x ∈ BA be a vector of boolean variables indexed by the set of arcs
A, with xa = 1 meaning that arc a is selected. Our exponential formulation does
not rely on flow variables: we can rely on the arborescence polytope introduced
in Example 4.6. To simplify the program, we denote X the set of assignments
of x inducing v0-rooted spanning arborescences only (see Example 4.6). The
arc-factored MSA problem is then simply:

max
x

∑
a∈A

waxa (5.17)

s.t. x ∈ X (5.18)

which can be solved via the Chu–Liu/Edmonds’ algorithm.

We ensure that arborescence x is of k-BBD thanks to Theorem 5.5. For all
subsets of vertices W ∈ V≥k, there must be at least two arcs in the cutset of
W :

x(δ(W )) ≥ 2 ∀W ∈ V≥k (5.19)

Similarly, from Theorem 5.7, an arborescence is well-nested if and only if for
all couples of vertex subsets (I1, I2) ∈ V ill, there are at least two arcs adjacent
to the cutset of I1 or to the cutset of I2. Because we already constrained the
structure to be an arborescence, both sets have at least one incoming arc. Thus,
we introduce the following constraint set:

x(δ(I1)) + x(δ(I2)) ≥ 3 ∀(I1, I2) ∈ V ill (5.20)

It is easy to see that the size of sets V≥k and V ill grows rapidly with respect to the
size of V . Thus, a program including these constraints is totally inappropriate
to be optimized using a generic solver.

Our exponential formulation is:

max
x

∑
a∈A

waxa

s.t. x ∈ X (arborescence)

(5.19) (k-BBD)

(5.20) (well-nestedness)

We obviously identify constraint sets (5.19) and (5.20) as the difficult ones: if
they were absent, the problem would reduce to the MSA problem which has a
quadratic time complexity. Thus, they are ideal relaxation candidates. However,
relaxing an exponentially large set of constraints is also a technical challenge.
In the next section, we generalize this program and then derive an efficient
heuristic based on Lagrangian relaxation. The proposed procedure relies on a
black box in order to lazily compute violated constraints.
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5.3 Reduction to the Yield Restricted Maximum
Spanning Arborescence problem

A k-BBD arborescence is an arborescence where no vertex has a yield with a
block degree strictly greater than k. In other words, there is a set of yields which
are forbidden. Similarly, well-nestedness is a constraint on pairs of disjoint sub-
arborescences or, in other words, pairs of yields. This naturally leads to a more
general problem where we want to compute an arborescence with resctrictions
on the yields of its sub-arborescences: the Yield Restricted Maximum Spanning
Arborescence problem.

5.3.1 Definition

We introduce the Yield Restricted Maximum Spanning Arborescence (YRMSA)
problem, which, to the best of our knowledge, has not been studied in the liter-
ature yet. Without loss of generality, we assume v0-rooted arborescences only.

Definition 5.10: Yield Restricted Arborescence
Let G = (V,A) be a graph and F be a set of forbidden yield sets. Each

F ∈ F is a set of yields F = (W 1, . . . ,W |F |) such that:

• Items are subsets of vertices, W k ⊆ V +;

• Items are mutually disjoint, W k ∩W l = ∅ for all k 6= l.

A F Yield Restricted Arborescence is an arborescence T such that there
is no set of sub-arborescences in T which have yields F ∈ F .

Thus, the well-nested MSA with 2-BBD is equivalent to the F YRMSA where2

F = V ill ∪ V≥3.

5.3.2 ILP formulation

We first introduce Theorem 5.11, from which we will derive our ILP formula-
tion. Given a set of forbidden yield sets F , we want to prevent an arborescence
from having |F | distinct subarborescences with yields F for every F ∈ F . If for
any F ∈ F , each yield in F has exactly one incident arc, then this constraint
is violated. This theorem is similar to the one we introduce for well-nestedness
(Theorem 5.7).

Theorem 5.11: Yield restricted arborescence
An arborescence T is not F-yield restricted if and only if there exists a set
of yields F ∈ F such that δ(Fk) ∩ T is a singleton for every yield Fk ∈ F .

Proof. Each Fk ∈ F intersects T only once if and only if T contains |F | arbores-
cences T1 . . . T|F | such that V [T1] = F1 ∧ · · · ∧ V [T|F |] = F|F |. This means that
T is incident with |F | vertices whose yields are F1 . . . F|F |.

2We treat elements of V≥3 as sets of size 1.
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Let G = (V,A) be a graph and F a set of forbidden yields. We introduce
a variable vector x indexed by arcs A. Then, the YRMSA problem can be
formulated as the following ILP:

argmax
x

x>w (5.21)

s.t. x(δin(v0)) = 0 (5.22)

x(δin(v)) = 1 ∀v ∈ V + (5.23)

x(δin(W )) ≥ 1 ∀W ⊆ V + (5.24)

|F |∑
i=1

x(δ(Fi)) ≥ |F |+ 1 ∀F ∈ F (5.25)

x ∈ B|A| (5.26)

As usual, the objective (5.21) maximizes the decoded structure objective un-
der an arc-factored model and constraints (5.22)-(5.24) defines the spanning
arborescence polytope. Moreover, constraint set (5.25) ensures that there is no
set of sub-arborescences with yields equal to any set F ∈ F . This formulation
does not have the integrality property in the general case, so we need to enforce
x to contain boolean values via constraint (5.26). Note that this program is not
compact because of the size of constraint set (5.24), regardless of the size of F .3

However, alternatively, we could have defined the arborescence polytope thanks
to the multi-commodity flow formulation which has a polynomial number of
variables and constraints (see Section 5.2.2), but is does not address the size of
F .

5.3.3 Lagrangian Relaxation

In this section, we propose a Lagrangian relaxation formulation of the pro-
gram defined by (5.21)-(5.26). It is easy to see that constraint set (5.25) is
a set of difficult constraints: if they were absent, then the program would re-
duce to the MSA problem, which can be computed in quadratic time thanks to
the Chu–Liu/Edmonds’ algorithm. Thus, we relax them to build the following
Lagrangian dual objective:

max
x

L(x;λ) (5.27)

s.t. x ∈ X (5.28)

with λ the vector of Lagrangian multipliers associated with forbidden yield
constraints and X the arborescence polytope. The dual objective function is:

L(x;λ) = w>x+
∑
F∈F

λF

 |F |∑
i=1

δ(Fi)− (|F |+ 1)


=
∑
a∈A

waxa +
∑
a∈A

∑
F∈F

xaλF1[a ∈ δ(F )]

−
∑
F∈F

λF (|F |+ 1)

3In our application, F has indeed an exponential size.
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First, note that the last line contains constant terms only, so it does not influence
the optimal solution. Other terms can be rearranged to build reparameterized
weight function:

w′a =wa +
∑
F∈F

λF1[a ∈ δ(F )]

Thus, the Lagrangian dual objective can be efficiently computed by running the
Chu–Liu/Edmonds’ algorithm on a graph with updated weights. However, the
size of F impacts the computation of reparameterized weights.

The Lagrangian multiplier vector has a very high cardinality. When the graph
becomes large, this may involve several downsides regarding memory usage.
Moreover, updating them all at each iteration is computationally inefficient.
However, when searching for the well-nested maximum spanning arborescence
of k-BBD, computing sub-arborescences that violate the bounded block degree
and well-nestedness constraints given an arborescence is a simple quadratic time
problem [Havelka, 2007], see Appendix C. An elegant option would be to lazily
generate the Lagrangian multipliers: at each iteration, we look for violated con-
straints and add the associated multipliers to the existing ones. This is exactly
how we tackle the problem in the following section. The proposed procedure
relies on a black box in order to lazily compute violated constraints and can
thus be applied to other problems as well.

5.4 Efficient decoding via Non Delayed Relax-
and-Cut

In this section, we describe our decoding method for the YRMSA prob-
lem based on the Non Delayed Relax-and-Cut algorithm [Lucena, 2005]. This
method has been proposed in order to optimize Lagrangian duals with many
relaxed constraints: only a subset of Lagrangian multipliers is lazily generated
at each iteration by computing violated constraints. This technique is closely
related to column and row generation in linear programming.4 We experimen-
tally validate our method on several datasets and using different constraint sets
(see Section 5.5).

5.4.1 Motivations

A common practice to optimize a Lagrangian dual is to rely on the pro-
jected subgradient descent algorithm (Section 4.4). It is an iterative algorithm
which updates the Lagrangian multipliers by extracting information from the
Lagrangian dual objective. Let λt be the vector of Lagrangian multipliers at
iteration t and let p a projection function to the domain of multipliers. The
multipliers are updated as follows:

λt+1 = p(λt − stgt) (5.29)

4 We lazily generate relaxed constraints whereas row generation lazily generate hard con-
straints.
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where st is the stepsize and gt is the subgradient at iteration t. Obviously,
memory usage is an issue when the vector of multipliers is exponentially large
with respect to the input. Moreover, and more importantly, computing the
gradient becomes an intractable task. This is all the more surprising given that,
in the ILP proposed in the previous section, we showed that the Lagrangian
dual objective of our problem can be computed in polynomial time.

In order to tackle this computational challenge, Lucena [2005] proposed an
alternative optimization framework based on subgradient descent called Non
Delayed Relax-and-Cut. Instead of relying on the full vector of multipliers,
the latter is lazily constructed, ignoring provably null elements. The element
associated with a single relaxed constraint is added only once it has been violated
at a given iteration. First, we recall that the domain of multipliers is the non-
negative orthant as we relaxed inequalities (5.25) only in order to build our
Lagrangian dual (see Definition 4.12). Thus, the projection operator p is the
element-wise operation:

p(λ) = max(0, λ)

In other words, negative elements are set to null. If the Lagrangian multipliers
are initialized to λ1 = 0, then, after the projection, constraints that have never
been violated up to iteration t will have a null element in λt. This is straighfor-
ward to observe in the update rule (5.29): the stepsize is strictly positive and a
subgradient element associated with a relaxed constraint f(x) ≥ 0 is f(x), thus
positive or null when the constraint is satisfied (see Theorem 4.30). Second, a
common stepsize when optimizating Lagrangian duals [Fisher, 1981] is:

st =
L∗(λt)− LBt

‖gt‖2

where LBt is the best known lower bound at iteration t. As reported by Beasley
[1993], when dealing with many constraints, even if polynomially bounded, the
‖gt‖2 term can result in each Lagrangian update being almost null, meaning the
multipliers are nearly stagnant. Because of the projection operator p, elements
of λt which are null and have positive or null associated subgradient element
will have null values in λt+1. Thus, a good practice is to modify the subgradient
so that, for any element i, if gti > 0 and λti = 0, then we set gti = 0. This has
the same effect on the multipliers as the projection, but it prevents the stepsize
from becoming too small. Hence, instead of generating a full subgradient at each
iteration, which is an expensive operation because we would need to consider
all multipliers associated with constraints, we process only a subpart, namely
the one associated with constraints that have been violated in the current or
previous iterations. We refer the reader to [Lucena, 2005, 2006] for an in-depth
survey of Lagrangian dual optimization via Non Delayed Relax-and-Cut.

5.4.2 Algorithm

Let CV t be the set of relaxed constraints violated at iteration t and PV t the
set of constraints which have been violated in at least one previous iteration.5

5 Lucena [2005] proposed to remove constraints from PV t if they have not been violated
in the last i iterations, where i is a predefined constant. We do not follow this advice.
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These sets are not necessarily disjoint. At each iteration, we need to compute
the set of violated constraints CV t. In our generic framework for solving the
YRMSA problem, this is a parameterizable black-box. In the particular case of
the well-nested MSA with k-BBD problem, this is an easy task. Finding pairs
of ill-nested sub-arborescences and sub-arborescences with block degree strictly
greater than k are both quadratic time problems, see Havelka [2007] and Möhl
[2006], respectively. We give pseudo-code for both algorithms in Appendix C.
Note that there may be many overlapping constraints inside CV t, that is arcs
may appear in several constraints. This can lead to exaggeration in the weight
reparameterization of arcs. Thus, in practice, it may be more efficient to only
add a subset of violated constraints inside CV t. The strategy is left to the
user as it can be directly implemented inside the black-box. The subgradient
gt and the updated multipliers λt+1 are only computed for elements associated
with constraints CV t ∪PV t. Then, the set of previously violated constraints is
trivially updated as PV t+1 = CV t∪PV t. The full Non Delayed Relax-and-Cut
algorithm is exposed in Algorithm 2.

Algorithm 2 The Non Delayed Relax-and-cut algorithm mimizing our YRMSA
Lagrangian dual.

lb← −∞ . Initialize lower bound
ub← +∞ . Initialize upper bound
p← undef . Will store the best found primal solution
λ1 = 0 . Initialize Lagrangian multipliers
PV 0 = ∅ . Initialize the set of previously violated constraints
for 1 ≤ t ≤ T do

x̂ = maxx∈X f(x;λ) . Dual objective
ub = min(ub, f(x̂;λ))
CV t ← blackbox(x̂) . Compute violated constraints
PV t ← PV t−1 ∪ CV t
if |CV t| = 0 then . Test primal feasibility

if λ>(Bx̂− d) = 0 then
. Only check for the set of relaxed constraints in PV t

return x̂
if f(x̂;λ) > lb then . Update lower bound ?

lb = f(x̂;λ)
p← x̂

if lb = ub then . If both bound match, then p is optimal
return p

λ = p (λ− εt × (Bx̂− d))
. Only update for the set of relaxed constraints in PV t

return p . Return the possibly non-optimal best known primal feasible

5.4.3 Problem Reduction

Problem reduction is an efficient technique in order to prune the search space
while maintaining the ability to deliver a certificate of optimality, contrary to
beam pruning (see Section 4.5). Moreover, the efficiency of a Branch-and-Bound
procedure crucially depends on the number of free variables. Thus, early prun-
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ing is an important benefit in order to guarantee efficient decoding. In most
approaches in the literature, problem reduction relies on the fact that com-
puting a new solution from the objective dual solution by adding an equality
constraint on a single variable is a low time complexity problem. As an exam-
ple, updating a Lagrangian dual objective solution can be realized in constant
time when the relaxed problem is unconstrained [Beasley, 1987], or in linear
time if the relaxed problem is the Maximum Spanning Tree problem6 [Beasley,
1989]. Unfortunately, such an efficient method, relying on a small update of an
optimal solution, is not known for the MSA problem. We propose two different
procedures in order to guarantee that a variable must, or must not, be in the
optimal solution. That is, we are able to fix some arc variables to 1 or 0. The
first one requires to re-compute the MSA on an updated graph. The second one
is based on a different relaxation of the spanning arborescence problem.

Fixing Variables to 1

Since a vertex in V + = V \ {v0} must have exactly one parent, fixing xa = 1
for an arc a = vi → vj greatly reduces the problem size, as it will also fix
xvh→vj = 0, for all vh → vj ∈ A such that h 6= i. Among all arc variables
that can be set to 1, promising candidates are either the arcs in a solution of
the unconstrained MSA or the arcs obtained in the best dual solution after the
subgradient descent. There are exactly |V +| such arcs in each set of candidates,
so we test fixation for at most 2|V +| variables. In this case, we are ready to
pay the price of a quadratic computation for each of these arcs. Hence, for each
candidate arc we obtain an upper bound by seeking the (unconstrained) MSA
on the graph where this arc is removed. If this upper bound is lower than the
score of the best solution found so far, we can safely say that this arc is in the
optimal solution. Consequently, this procedure has a cubic time complexity.

Fixing Variables to 0

We could apply the same strategy for fixing variables to 0. However, this
reduction is less rewarding and there are many more variables set to 0 than 1
in a MSA solution. Instead, we rely on a relaxation of the maximum spanning
arborescence problem. We recall that the latter can be formulated thanks to
the following ILP:

max
x

x>w (5.30)

s.t. x(δin(v0)) = 0 (5.31)

x(δin(v)) = 1 ∀v ∈ V + (5.32)

x(δin(W )) ≥ 1 ∀W ⊆ V + (5.33)

x ∈ Bc (5.34)

We build a relaxation by removing the acyclic constraints 5.33. Then, changing
an optimal solution by adding a constraint forcing a single arc vi → vj ∈ A
variable to 1 is a constant time problem with the appropriate data structure:
remove the single incoming arc of vertex vj and add arc vi → vj . The score
of the updated solution of this new relaxation provides an upper bound on a

6This problem is equivalent to the MSA with symetric arc scores.
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solution containing arc a. If this upper bound is lower than the score of the
best solution found so far, we can fix the variable xa to 0. This procedure has
a quadratic complexity.

5.5 Experimental results

We introduced a novel problem called the Yield Restricted Maximum Span-
ning Arborescence (YRMSA). This was motivated by the LTAG parsing strategy
we proposed in Section 5.1: our algorithm relies on computing the well-nested
maximum arborescence with 2-BBD. The only algorithm previously proposed
in the literature has an impractical O(n7) complexity with n the length of the
input sentence [Gómez-Rodŕıguez et al., 2009]. Instead of developing a specific
optimization technique for this problem, we proposed a more general framework.
We evaluate our method on several datasets with several constraint families. In-
terestingly, we are able to efficiently parse k-BBD structures without enforcing
well-nestedness, which is a NP-complete problem [Satta, 1992].

5.5.1 Datasets

Several authors argued that the standard classification of dependencies as ei-
ther projective or non-projective (i.e. unrestricted) might not be precise enough
to describe the annotated structures observed in several datasets [Pitler et al.,
2012, Satta and Kuhlmann, 2014, Kuhlmann and Nivre, 2006]. They proposed
finer-grained descriptions of dependency structures in terms of well-nestedness,
bounded block degree and edge degree, among others. We restrict ourselves to
the first two properties as they are defined on sub-arborescence yields. We used
the following corpora to test our Lagrangian framework:

English: We extracted dependencies from the Wall-Street Journal part of the
Penn Treebank (PTB) with additional NP bracketings [Vadas and Curran,
2007] using the LTH converter.7 In line with common practice, sections
02-21 were used for training, 22 for development and 23 for testing. Part
of speech tags were predicted by the Stanford tagger8 trained with 10-
jackkniffing.9

German: We used dependencies from the SPMRL dataset [Seddah et al., 2014],
with predicted part of speech tags and the official split. Following common
practice, we removed sentences of length greater than 100 in the test set.

Dutch, Spanish and Portuguese: We used the Universal Dependency Tree-
bank 1.2 [Van der Beek et al., 2002, McDonald et al., 2013, Afonso et al.,
2002] with gold part of speech tags and the official split. Again, we re-
moved sentences of length greater than 100 in the test sets.

The structure distributions according to well-nestedness and block degree are
shown in Table 5.1. As expected, we observe that different datasets contain
different data distributions with respect to these properties. Gómez-Rodŕıguez

7http://nlp.cs.lth.se/software/treebank_converter/
8http://nlp.stanford.edu/software/tagger.shtml
9Prediction precision: 97.40%

http://nlp.cs.lth.se/software/treebank_converter/
http://nlp.stanford.edu/software/tagger.shtml
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English German Dutch
WN IL WN IL WN IL

Block degree 1 92.26 - 67.60 - 69.13 -
Block degree 2 7.58 0.12 27.12 0.79 28.50 0.08
Block degree 3 0.12 0.01 3.86 0.30 2.24 0.01
Block degree 4 - - 0.19 <0.01 0.04 -
Block degree > 4 - - 0.11 <0.01 - -

Spanish Portuguese
WN IL WN IL

Block degree 1 93.95 - 81.56 0.05
Block degree 2 5.99 0.04 13.92 0.02
Block degree 3 0.02 - 3.76 -
Block degree 4 - - 0.54 -
Block degree > 4 - - 0.14 -

Table 5.1: Distribution of dependency tree characteristics in datasets. Values in
bold are the smallest subsets to contain 99% of the sentences in each language.

et al. [2011] introduced several dynamic programming algorithms to ensure k-
BBD and well-nestedness. Because decoding ill-nested structures is known to
be NP-complete, they proposed an algorithm only for a strict subclass. How-
ever, computational costs make their algorithms unattractive for practical use.
Moreover, each different combination on structure restrictions involves the de-
velopment of a different chart-based algorithm. Fortunately, our method allows
us to easily change the bounded degree constraint or toggle the well-nestedness
one. Thus, for each language, we decided to use the tighter combination of
bounded block degree and well-nestedness constraints which covers at least 99%
of the data. Therefore, we chose to enforce 2-BBD and well-nestedness for En-
glish and Spanish, 3-BBD and well-nestedness for Dutch and Portuguese and
3-BBD only for German, i.e. a decoded arborescence can be ill-nested.

5.5.2 Decoding

In this subsection, we discuss issues related to the decoding process. We
tested three decoding strategies. First, the MSA that computes the best uncon-
strained arborescence. Second, a Lagrangian heuristic based method (LR): we
run the subgradient descent algorithm to optimize the Lagrangian dual prob-
lem. Then, we return the best found primal valid solution, even if we do not
get an optimality certificate. Third and finally, an exact and optimal method
based on Branch-and-bound (B&B) where each node of the search tree com-
putes its upper-bound via subgradient descent (see Section 4.6). In the latter
two strategies, the subgradient descent is stopped after a fixed maximum num-
ber of iterations. We chose 100 for English and 200 for other languages after
tuning on the development set.

Our attempt to run the dynamic programming algorithm of Gómez-Rodŕıguez
et al. [2009] was unsuccessful. Even with heavy pruning we were not able to
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Figure 5.8: Optimality rate (y-axis) vs number of subgradient iterations (x-axis)
for English (thin blue) and German (thick red). Solid lines denote the optimal
rate with certificate, dashed is without.

English (96 sentences) German (59 sentences)
MSA LR B&B MSA LR B&B

Mean 0.02 0.26 0.53 0.04 0.51 0.71
Std. 0.01 0.20 0.86 0.02 0.41 1.39
Med. 0.02 0.21 0.27 0.03 0.47 0.47
3rd 0.03 0.34 0.53 0.05 0.71 0.80
Total 1.81 25.09 50.52 2.18 30.19 42.20

Figure 5.9: Timings for different parsing algorithms on the test for solutions
which do not satisfy constraints after running the MSA. We give (in seconds)
average time, standard deviation, median time, time to parse up to the 3rd
quartile and total time.

run it on sentences longer than 20 words.10 We also tried to use CPLEX on the
compact ILP formulation we proposed in Section 5.2.2. The decoding time was
also prohibitive, approximately one hour for the English dataset. Thus, we did
not explore these two decoding methods in our experiments. Obviously, both
would have returned similar results to B&B.

We discuss the efficiency of our methods on data for English and German.
Other languages give similar results. Optimality rates after the subgradient
descent are reported in Figure 5.8. We see that Lagrangian Relaxation often
returns optimal solutions but fails to give a certificate of their optimality. Table
5.9 shows parsing times for sentences which require more than one iteration of
the subgradient descent. We see that LR and B&B, while slower than MSA,
are fast in the majority of cases, below the third quartile. Inevitably, there are
some rare cases where a large portion of the search space is explored, and thus
their parsing time is high. Let us remark that these algorithms are run only
when MSA returns an invalid structure, and so the total time is very acceptable
compared to the baseline.

Finally, we stress the importance of the problem reduction techniques pro-
posed in Section 5.4.3 as a pre-processing step for the B&B decoder: after sub-
gradient descent is performed, problem reduction removes an average of 83.97%
(respectively 76.59%) of arc variables in the English test set (respectively Ger-
man test set).

10Original authors also reported a similar observation (private communication).
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5.5.3 Training

For this experiment, we use linear classifier for arc weights based on hand-
crafted features. Feature weights are trained using the averaged structured
perceptron [Collins, 2002] with 10 iterations. The best iteration is selected on
the development set. We used the same feature set as in TurboParser [Martins
et al., 2010], including features for lemma and part of speech tags. For German,
we additionally use morpho-syntactic features.

Training with the structured perceptron requires to decode the optimal struc-
ture for each instance at each iteration. Unfortunately, relying on the branch-
and-bound algorithm results in excessively large training time. Alternatively,
one can relies on approximate decoding. However, this must be undertaken
with care. Previous work argued that a good practice is to rely on a decoding
algorithm which computes the optimal solution in a strictly larger search space,
or in other word, which computes the solution of a relaxed problem [Finley
and Joachims, 2008, Komodakis, 2011]. Thus, we used the unconstrained MSA
problem for training. We also experimented using the Lagrangian relaxation
procedure. It did not significantly improve accuracy and made training and
decoding slower, similarly to the observation of Martins et al. [2009b].

5.5.4 Parsing Results

Table 5.2 shows attachment score (UAS), percentage of valid dependency
trees and relative time to MSA for different systems for our three decoding
strategies. We can see that all three decoding methods are almost equivalent
in terms of parsing accuracy (UAS). However, we are interested in computing
valid structures. The MSA fails to retrieve arborescences which expose the
desired properties. Even if for German the gap is small, this means that the
decoded structures are useless for a subsequent parse tree labeling task via
formal grammars like LTAGs.

In order to see how much well-nested and bounded block-degree structures are
missed by a state-of-the-art parser, we compare our results with TurboParser.11

We run the parser with three different feature sets: arc-factored, standard
(second-order features), and full (third-order features). The results are shown
in Table 5.3. Our model, by enforcing strict compliance to structural rules
(100% valid dependency trees), is closer to the empirical distribution than Tur-
boParser with arc-factored model on all languages but German. Higher-order
scoring functions manage to get more similar to the treebank data than our
strict thresholds for all languages but Portuguese, at the expense of a significa-
tive computational burden.

We interpret this fact as an indication that adding higher order features into
our system, or that relying on state-of-the-art neural network parameterization,
would make the relaxation method converge more often and faster. Thus, the
pipeline we proposed in Chapter 5 for LTAG parsing via derivation tree parsing
may be of interest in order to ensure fast parsing. Unfortunately, we were not
able to conduct this experiment due to the lack of an annotated dataset.

11We used 2.1.0 and all defaults but the feature set.
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MSA LR B&B

English
UAS 89.45 89.54 89.53

2-BBD/WN 96.02 – –
Relative Time 1 1.8 2.5

German
UAS 87.79 87.78 87.78

3-BBD 98.81 – –
Relative Time 1 1.5 1.7

Dutch
UAS 77.30 76.96 77.40

3-BBD/WN 94.82 – –
Relative Time 1 1.7 5

Spanish
UAS 83.37 83.37 83.44

2-BBD/WN 92.62 – –
Relative Time 1 2.7 3

Portuguese
UAS 83.13 82.99 83.21

3-BBD/WN 87.84 – –
Relative Time 1 5.7 19.7

Table 5.2: UAS, percentage of valid structure and decoding time for test data.
Time is relative to MSA decoding. The percentage of valid structure is always
100% except for MSA decoding.

Corpus → English (99.84) German (99.27) Dutch (99.87)
Order ↓ UAS VDT RT UAS VDT RT UAS VDT RT
1st 89.29 94.87 1 87.97 98.74 1 76.10 93.26 1
2nd 92.04 99.75 16 89.83 99.28 16 79.05 97.93 18
3rd 92.37 99.75 34 90.35 99.24 36 79.68 97.41 37

Corpus → Spanish (99.94) Portuguese (99.24)
Order ↓ UAS VDT RT UAS VDT RT
1st 83.11 93.43 1 83.53 94.79 1
2nd 86.61 98.54 10 87.35 98.96 15
3rd 87.31 99.64 18 88.09 98.98 32

Table 5.3: UAS, percentage of valid dependency trees (VDT) and relative time
(RT) obtained by Turboparser for different score functions on test sets. For
each language we give the percentage of valid dependency structures in the
data, according to the constraints we postulated.
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5.6 Parse tree labeling

We proposed novel formulations of well-nested dependency parsing with 2-
BBD as optimization problems. We now turn to the parse tree labeling problem:
given a sentence and a LTAG-compatible dependency tree, how can we assign
elementary trees and attachment-sites? We introduce a novel algorithm for this
task inspired by the CYK LTAG parser and prove that it has a linear time
complexity.

5.6.1 Notation

We introduce notations which are used to simplify the algorithm exposition.
The input of the algorithm is a sentence s = s1 · · · sn and a graph G = (V,A)
with V = {v1 · · · vn} the set of vertices, where vk is the representation of word
sk, and A ⊂ V ×V the set of arcs describing a spanning arborescence with root
vr. We make the following assumptions on the arborescence described by A:

• It is well-nested.

• it has a 2-BBD.

We emphasize that these properties are mandatory: the following parse labeling
algorithm is undefined on graphs exposing a different structure. The word sr is
the root word of the sentence, the only one which is assigned an initial tree but
which is not attached via substitution to another tree.

Given a vertex vi ∈ V \ {vr} and δin(vi) = {vj → vi}, its parent is vertex
vj = parent(vi). The predecessor (respectively successor) of a vertex vi ∈ V
is vertex vi−1 (respectively vi+1), which is independent of the graph structure.
The vertex with the smallest (respectively largest) index in a set is the left-
most (respectively rightmost) vertex. The yield of a vertex vk ∈ V , written
N(vk), is the set of vertices reachable from vk with respect to A, including itself.
Moreover, we denote Nleft(vk) (respectively Nright(vk)) the leftmost (respectively
rightmost) vertex in the yield of vertex vk. Because the input is constrained to
2-BBD arborescences only, a vertex has at most one gap. The set of vertices in
the gap of vk is M(vk). If and only if vk is of block degree 1, then M(vk) = ∅. We
define Mleft(vk) (respectively Mright(vk)) the leftmost (respectively rightmost)
vertex in the gap of node vk. Mleft(vk) and Mright(vk) are undefined for vertices
with a block degree of 1. The definitions are illustrated in Figure 5.10

Recall that a LTAG is a tuple 〈N,T,ΓI ,ΓA, S, fSS , fSA, fOA〉 with:

• N is a set of non-terminal symbols;

• T is a set of terminal symbols disjoint from N ;

• ΓI is a set of initial trees built with symbols in N ∪ T ;

• ΓA is a set of auxiliary trees built with symbols in N ∪ T ;

• S ∈ N is the start symbol;

• fSS is the function that represents substitution constraints;
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v1

v2

v3

v4

v5

v6

Why, he asks, does she walk ?

Notation Value

parent(v4) v3

N(v4) {v1, v4, v5, v6}

Nleft(v4) v1

Nright(v4) v6

M(v4) {v2, v3}

Mleft(v4) v2

Mright(v4) v3

Figure 5.10: Example of a 2-BBD and well-nested dependency structure. The
right table exposes notations we use for information we can extract about vertex
v4.

• fSA and fOA are functions that represent adjunction constraints.

Elementary trees can be combined via substitution and adjunction operations,
see Section 3. An unlabeled parse tree is represented by an arborescence where
an arc vh → vm represents a combination of the elementary tree anchored at
word sm into the elementary tree anchored at word sh.

5.6.2 Item definition

Given a LTAG 〈N,T,ΓI ,ΓA,ΓS , fOA, fSA〉, a sentence s = s1 . . . sn and the
corresponding dependency structure G = (V,A), items are 6-tuples of the form
[vh, τ, p, c, bl, br] with:

1. considered vertex vh ∈ V in the dependency structure, corresponding to
word sh;

2. elementary tree τ ∈ Γ, indicating the association of the anchor of τ with
word sh;

3. Gorn address p ∈ τ of a node in the elementary tree;

4. combination flag c ∈ {⊥,>} specifying if a combination operation has
already been investigated > or not ⊥ at node p;

5. left boundary bl ∈ V ∪ {lh, gh,−} defines the left boundary of the yield of
the item, which is discussed in more details below;

6. right boundary br ∈ V ∪ {lh, gh,−} defines its right boundary.

In the LTAG parsing algorithm presented in Section 3.3, boundaries of the yield
are given using integer indices. Instead, we use either vertices V or special
values lh, gh and −. If the left boundary of an item is node vm ∈ V , the
left (respectively right) boundary position is given by Nleft(vm) (respectively
Nright(vm)). Special value lh is used to indicate that the lexical anchor is used
as a boundary. The remaining values are used to indicate that the boundary is
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determined by the foot node span. The boundary is set to special value gh if
and only if the span of vh has a gap, i.e. M(vh) 6= ∅. Finally, note that vertices
which do not have a gap in their span, can still be combined through left or
right adjunction. Thus, we can still use gh in order to qualify the boundary of a
sub-analysis which targets to be combined through a left (or right) adjunction.
However, in this case, one of the boundaries is undefined, which is specified
with the value −. Because boundaries are given by means of different kinds of
values, we use the following syntactic sugar in order to minimize the number of
combination rules:

←−vm , Nleft(vm)
−→vm , Nright(vm)
←−
lh , vh
−→
lh , vh

←−gh ,

{
Mleft(vh) if M(vh) 6= ∅
pred(Nright(vh)) otherwise

−→gh ,

{
Mright(vh) if M(vh) 6= ∅
succ(Nleft(vh)) otherwise

Note that
−→− and

←−− are undefined, meaning that rules which use these values
in their side condition cannot be applied.

Tree τ is a candidate for word represented by vertex vh and its dependents if
we can go up at its root node with boundaries equal to the span of vh. In order
to simplify notations, we use intermediate items to represent them. If the item
has both boundaries defined, then:

Deduction rule: Full

[vh, τ, 1,>, bl, br] ←−
bl = Nleft(vh) ∧

−→
br = Nright(vh)

[vh, τ ]

If h 6= r, this item will be a candidate to combination through substitution
(respectively adjunction) if τ ∈ T I (respectively τ ∈ TA), or similarly, if vh
has no gap (respectively has a gap). Two other intermediate items are used
specifically to indicate that they are meaning to be combined through left and
right adjunction:

Deduction rule: Full left

[vh, τ, 1,>, bl,−] ←−
bl = Nleft(vh)

[vh, τ,←]
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Deduction rule: Full right

[vh, τ, 1,>,−, br] −→
br = Nright(vh)

[vh, τ,→]

A triplet item ending with the ← (respectively →) symbol is a candidate
for left (respectively right) adjunction. Obviously, τ in the antecedent of both
rules must be an auxiliary tree. This is constrained by the Foot scan rule
introduced in the following subsection. We observe in antecedents that one of
the boundaries is unknown: this is due to the fact that the vertex has no gap,
thus we cannot deduce the yield span of the content that will be placed under
the foot node of τ in the derived tree.

5.6.3 Axioms and goal

The first axiom is:

Deduction rule: Lex scan

lex(τ) = p ∧ τ(p) = sh
[vh, τ, p,>, lh, lh]

meaning that, for each vertex vh and elementary tree τ , we instantiate items
with lexical anchor sh, starting at the lexical anchor address. Moreover, we
create items at the foot position of an auxiliary tree for vertices with a gap in
their yield:

Deduction rule: Foot scan

τ ∈ ΓA ∧ foot(τ) = p ∧ M(vh) 6= ∅
[vh, τ, p,>, gh, gh]

Finally, the last two axioms are used to predict possible trees, on vertices
without gap, that will be combined through left or right adjunction:

Deduction rule: Foot scan left

τ ∈ ΓA ∧ foot(τ) = p ∧ M(vh) = ∅
[vh, τ, p,>, gh,−]
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Deduction rule: Foot scan right

τ ∈ ΓA ∧ foot(τ) = p ∧ M(vh) = ∅
[vh, τ, p,>,−, gh]

A proof completes if any tree τ ∈ ΓS is a candidate for the root vertex vr of
the dependency structure:

Deduction rule: Goal

[vr, τ ]
τ ∈ ΓS

In the rest of this section, we describe rules governing allowed deductions.

5.6.4 Traversal rules

We start with tree traversal.12 Obviously, the premise of any move operation
is that we already checked any potential operation, marked by the > flag. Given
address p · 1 in tree τ , we consider two cases. First, if node p · 1 does not have
any sibling, i.e. p · 2 /∈ τ :

Deduction rule: Move unary

[vh, τ, p · 1,>, bl, br]
(p · 2) /∈ τ

[vh, τ, p,⊥, bl, br]

Secondly, if p · 2 exists, the siblings must be contiguous:

Deduction rule: Move binary

[vh, τ, p · 1,>, bl1, br1] [vh, τ, p · 2,>, bl2, br2]
succ(

−→
br1) =

←−
bl2

[vh, τ, p,⊥, bl1, br2]

12As previously, we assume binary elementary trees in the following presentation, but this
can be generalized to other tree structures.
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5.6.5 Combination rules

Finally, let us concentrate on combination operations. The simplest one is
substitution. Substituting initial tree τ ′ anchored at sm into site p of elementary
tree τ anchored at sh is formally defined as:

Deduction rule: Substitute

[vm, τ
′]

M(vm) = ∅ ∧ τ ′(1) = τ(p) ∧ (p · 1) /∈ τ ∧ τ ′ ∈ fSS(τ, p)
[vh, τ, p,>, vm, vm]

The first condition checks that sub-analysis in the antecedent does not have
a gap. From the axioms and the fact that the antecedent is not a triplet, it
follows that τ ′ is an initial tree. The second condition checks that both labels
match. If τ ′ is a well-defined tree, then τ ′(1) and τ(p) must be non-terminals.
Finally, the third and last condition checks that the substitution targets a leaf.

The wrapping adjunction combines a modifier with a gap:

Deduction rule: Wrapping adjoin

[vm, τ
′] [vh, τ, p,⊥, bl, br]

τ ′ ∈ fSA(τ, p)

Mleft(vm) =
←−
bl ∧ Mright(vm) =

−→
br∧

[vh, τ, p,>, vm, vm]

The first two conditions check that the gap of the left antecedent is equal to
the yield of the right antecedent. Similarly as for substitution, τ ′ is constrained
to be an auxiliary tree from the axioms. The last condition checks that adjoining
τ ′ into site p in tree τ is allowed. Note that, in the consequent, both boundaries
are defined by the adjoined child: it is a wrapping adjunction.

Left and right adjunctions deal with vertices without gap. The adjoined tree
is a triplet with third item forcing the direction:

Deduction rule: Left adjoin

[vm, τ
′,←] [vh, τ, p,⊥, bl, br]

Nright(vm) + 1 =
←−
bl ∧ τ ′ ∈ fSA(τ, p)

[vh, τ, p,>, vm, br]

Deduction rule: Right adjoin

[vm, τ
′,→] [vh, τ, p,⊥, bl, br]

Nleft(vm)− 1 =
−→
br ∧ τ ′ ∈ fSA(τ, p)

[vh, τ, p,>, bl, vm]
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Finally, if allowed, adjunction may be skipped at the current site:

Deduction rule: Null adjoin

[vh, τ, p,⊥, bl, br]
¬fOA(τ, p)

[vh, τ, p,>, bl, br]

5.6.6 Example

We now give a simple example to illustrate our algorithm with the sentence
“What does she deliberately walk?” and its associated phrase-structure de-
picted in Figure 5.11a. Furthermore, we suppose a toy grammar that can be
used to build this sentence only, see Figure 5.11b. The example includes substi-
tution, wrapping adjunction and left adjunction. The input is the dependency
analysis in Figure 5.11c. Observe that the root vertex v2 is the only vertex with
a block degree equal to two is v5. After the parse tree labeler is run, one obtains
the derivation tree in Figure 5.11d which can be used to build the derived tree.
In this toy example, the output is a single derivation tree. With an ambigu-
ous input sentence and a more complex grammar, the algorithm would have
returned several derivation trees with the same dependency structure. If the
input is incompatible with the grammar, then the algorithm fails and outputs
an error.

The trace is given in Table 5.4. To simplify the execution, we use a quaternary-
move operation. Alternatively, we could have binarized all elementary trees,
which is a common practice in TAG parsing. It does not impact the asymptotic
complexity.

5.6.7 Correctness

Since we use the deductive parsing framework, proving the correctness of the
algorithm is straightforward from the notion of item invariant. Proving that
every production rule maintains this invariant gives us soundness. Conversely,
completeness can be proven by induction on items. In the following, we explain
our invariant.

An item [vh, τ, p, c, bl, br] can be deduced from the axioms through the appli-
cation of deduction rules if and only if, with respect to the input dependency
parse, τ(p) can be derived to generate the subsequence of terminals and foot
nodes:

• if address p in τ does not dominate a foot node, the subsequence is←−
bl . . .

−→
br ;

• if p in τ dominates a foot node and this is not a left nor a right adjunction
bl, br /∈ {

←
gh,
→
gh}, the subsequence is

sNleft(bl) . . . spred(Mleft(vh))X
∗ssucc(Mright(vh)) . . . sNright(br);
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Item Rule
1. [v1, τ1, 1.1.1,>, l1, l1] lex-scan (What)
2. [v1, τ1, 1.1,⊥, l1, l1] move-unary
3. [v1, τ1, 1.1,>, l1, l1] null-adjoin
4. [v1, τ1, 1,⊥, l1, l1] move-unary
5. [v1, τ1, 1,>, l1, l1] null-adjoin
6. [v1, τ1] full
7. [v3, τ3, 1.1.1,>, l3, l3] lex-scan (she)
8. [v3, τ3, 1.1,⊥, l3, l3] move-unary
9. [v3, τ3, 1.1,>, l3, l3] null-adjoin
10. [v3, τ3, 1,⊥, l3, l3] move-unary
11. [v3, τ3, 1,>, l3, l3] null-adjoin
12. [v3, τ3] full
13. [v4, τ4, 1.1.1,>, l4, l4] lex-scan (deliberately)
14. [v4, τ4, 1.1,⊥, l4, l4] move-unary
15. [v4, τ4, 1.1,>, l4, l4] null-adjoin
16. [v4, τ4, 1.2,>, g4,−] foot-scan-left
17. [v4, τ4, 1,⊥, l4,−] move-binary with 15
18. [v4, τ4, 1,>, l4,−] null-adjoin
19. [v4, τ4,←] full-left
20. [v5, τ5, 1.1,>, v1, v1] substitute with 6
21. [v5, τ5, 1.2,>, g5, g5] foot-predict
22. [v5, τ5, 1.3,>, v3, v3] substitute with 12
23. [v5, τ5, 1.4.1.1,>, l5, l5] lex-scan (walk)
24. [v5, τ5, 1.4.1,⊥, l5, l5] move-unary
25. [v5, τ5, 1.4.1,>, l5, l5] null-adjoin
26. [v5, τ5, 1.4,⊥, l5, l5] move-unary
27. [v5, τ5, 1.4,>, v4, l5] left-adjoin 19
28. [v5, τ5, 1,⊥, v1, l5] move-quaternary with 20, 21, 22
29. [v5, τ5, 1,>, v1, l5] null-adjoin
30. [v5, τ5] full
31. [v2, τ2, 1.1.1.1,>, l2, l2] lex-scan (does)
32. [v2, τ2, 1.1.1,⊥, l2, l2] move-unary
33. [v2, τ2, 1.1.1,>, l2, l2] null-adjoin
34. [v2, τ2, 1.1,⊥, l2, l2] move-unary
35. [v2, τ2, 1.1,>, v1, v5] wrapping-adjoin with 30
36. [v2, τ2, 1,⊥, l2, l2] move-unary
37. [v2, τ2, 1,>, l2, l2] null-adjoin
38. [v2, τ2] full

Table 5.4: Trace of the parsing example. The antecedent of a unary rule is its
previous line. For rules with several antecedents, we refer their line numbers.



108 CHAPTER 5. DERIVATION TREE PARSING VIA THE YRMSA

What does she deliberately walk ?

WP VB PRP VBRB
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(a) Phrase-structure/derived tree

walk

VB

NPNPSQ∗WHNP

SQ

She

PRP

NP
What

WP

WHNP

does

VB

SQOA

SBARQ

deliberately

RB

VP

VP∗

(b) LTAG analysis, the OA in subscript indicates an obligatory
adjunction site
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(c) Dependency analysis
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1.1
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1.3

1.4
.1

What does she deliberately walk ?

(d) Derivation tree

Figure 5.11: Phrase-structure of the sentence “What does she deliberately

walks?” alongside a LTAG analysis which relies on wrapping and left adjunc-
tions.
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X

Y

X∗

sNleft(bl) spred(Mleft(vh)) ssucc(Mright(vh)) sNright(br)sNleft(vh) sNright(vh)

Figure 5.12: Invariant of an item [vh, τ, p, c, bl, br] when vertex vh has a block
degree of 2. X is the root node of τ , X∗ its foot node and Y the node at address
p. Only the gray area has been parsed.

• if p in τ dominates a foot node and bl =
←
gh, the subsequence is

X∗sNleft(vh) . . . sNright(br);

• if p in τ dominates a foot node and br =
→
gh, the subsequence is

sNleft(bl) . . . sNright(vh)X
∗;

with X∗ the foot node of τ . A visualization is provided on Figure 5.12.

5.6.8 Complexity

It is common practice to directly deduce space and time complexities from
item structures and deduction rules, respectively. However, improving bounds
in this setting may lead to algorithms difficult to understand. Thus, we de-
cided to propose a deduction-based algorithm that is simple to understand but
which naively exposes a loose upper bound on its underlying complexity. In this
section, we prove that the space and time complexities are linear.

In order to simplify the analysis, we suppose an agenda-based implementation
[Kay, 1986]. Each deduced item is placed in an agenda. While the agenda is not
empty, the main loop pops out an item from it and adds it to the chart. Then,
the popped out item is tested as an antecedent, and all deduced consequents
are pushed into the agenda if not already present in the chart. See Algorithm 3
for an outline of the algorithm.

Before analysing the algorithm complexity, we observe that the first value of
an item, the current vertex, is redundant. Indeed, given the value of the left
boundary (or right boundary), we can always retrieve the considered vertex in
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Algorithm 3 Outline of the parsing algorithm. Lines 17-20 apply the move
binary rule.

1: A← [] . Empty Agenda
2: for 1 ≤ m ≤ n do . Init
3: for τ ∈ Γ do . Lex. scan
4: if τ(lex(τ)) = sm then
5: A.push([τ, lex(τ),>, lm, lm])

6: for τ ∈ ΓA do . Foot scan
7: if (vm)→ 6= − then
8: A.push([τ, foot(τ),>, gm, gm])
9: else

10: A.push([τ, foot(τ),>, ←gm,
←
gm])

11: A.push([τ, foot(τ),>, →gm,
→
gm])

12: C ← [] . Empty Chart
13: while |A| > 0 do
14: [τ, p · 1,>, bl1, br1]← A.pop()
15: C.add([τ, p · 1,>, bl1, br1])
16: . apply Move binary
17: Let bl2 be the unique boundary with (br1)⇒ + 1 = (bl2)⇐

18: for [τ, p · 2,>, bl2, br2] ∈ C do
19: if [τ, p,>, bl1, br2] /∈ C then
20: A.push([τ, p,>, bl1, br2])

21: ...Apply other rules...

constant time. Obviously, when the boundary is given by a vertex vm, we have
vh = (vm)↑.

13 For special boundary values, all indexed by a word position h, a
similar operation is straightforward. For example, if a boundary is given by lh
then the considered vertex is vh.

The algorithm has a maximum of two nested loops: the main while loop and
for loops matching the second antecedent of binary rules. We first consider the
while loop. An item is added to the agenda if and only if it is not present in
the chart. Thus, each item is considered exactly once by this loop. We note
n the length of the input sentence, t the maximum number of nodes in an
elementary tree τ ∈ Γ and g = |Γ| the number of elementary trees.14 Naively,
the number of items is then bounded by O(n2tg). However, the number of
combination operations which can be applied on an elementary tree is bounded
by its number of nodes, provided we dismiss multiple adjunction sites. In this
case, each node of an elementary tree may be adjoined or substituted on at most
once. Thus, given an elementary tree and a left boundary, the number of values
allowed as a right boundary is limited. This leads to a tighter bound on the
number of items: O(min(t, n)ntg).

13We assume that the data structure storing the dependency graph provides such a function
in constant time.

14Alternatively, g can be the number of elementary trees associated with the most ambiguous
word of the vocabulary.
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We now investigate time complexity. Move binary is the only rule which has
two free antecedents. Indeed, it is easy to see that, in the other binary rules,
fixing the right antecedent always fixes the left one. For the Move binary
rule, given the left antecedent, the number of candidates for the right one is
naively bounded by O(n). However, we previously argued that, given a fixed left
boundary, the maximum number of right boundary alternatives cannot exceed
the number of sites on the current elementary tree. Thus, we can tighten the
bound to O(min(t, n)).

In conclusion, the time complexity of the proposed algorithm isO(min(t, n)2ntg),
that is asymptotically linear with respect to the input sentence length.

5.7 Conclusion

In this chapter, we proposed a novel pipeline algorithm for the LTAG parsing
problem. The first step is a dependency parsing task with a complexity roughly
similar to LTAG parsing. The second step is a parse tree labeler with linear
time complexity. As we do not have a LTAG corpus annotated with wrap-
ping adjunctions, we experimented our dependency parser on different datasets,
demonstrating at the same time the efficiency and the usefulness of the proposed
approach.

Moreover, we introduced the Yield Restricted Maximum Spanning Arbores-
cence problem. It is a generalization of the well-nested MSA with k-BBD prob-
lem. This modelization allows to change the block degree bound easily and to
toggle the well-nestedness constraint. We proposed an efficient decoding algo-
rithm based on Lagrangian relaxation. Experimentally, the resulting parser is
on par in terms of accuracy scores but returns valid structures quicker than
high-order models. More importantly, the high-order models happen to return
more valid structures but they do not guarantee it.



Chapter 6

Discontinuous
phrase-structure Parsing
via the Generalized
Maximum Spanning
Arborescence

In the previous chapter, we proposed a new pipeline algorithm for LTAG
parsing. We identified the constrained dependency structure of LTAG deriva-
tion trees as the bottleneck and proposed two novel ILP formulations of the
problem. But can we get rid of the well-nestedness and 2-bounded block degree
constraints? As such, the first step of the pipeline would reduce to the Maximum
Spanning Arborescence (MSA) problem. We propose to remove the structural
constraints on the derived tree: any crossing arc is allowed. The generative
power of this grammar is in practice useless as it means that the word order
is not taken into account. However, it is nonetheless useful for parsing. We
motivate our work with discontinuous phrase-structure parsing in Section 6.1.
The MSA can be solved in quadratic time, so we propose instead to decode
dependencies and supertags jointly.

Given a graph where vertices are partitioned into clusters, a generalized span-
ning arborescence is a set a of arcs inducing an arborescence adjacent to exactly
one vertex per cluster. In Section 6.2, we reduce the joint problem of supertag-
ging and non-projective dependency parsing to Generalized Maximum Spanning
Arborescence (GMSA): vertices in a cluster represent supertag candidates for
a word. Unfortunately, computing the GMSA given an arc-factored model is a
NP-hard problem [Myung et al., 1995]. The problem has received little attention
from the combinatorial optimization community [Myung et al., 1995, Feremans
et al., 1999, 2002, Pop, 2009]. In particular, it has mainly been studied as an
alternative to solve the equivalent undirected problem, the Generalized Maxi-
mum Spanning Tree problem, that is on directed graphs with special structure:
opposite arcs between two vertices have the same weight. We adapt an ILP

112
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formulation of the problem [Pop, 2009] in Section 6.3 in order to propose a new
decoding method for the GMSA based on dual decomposition. As such, we
depart from previous techniques proposed in the optimization literature for this
problem and follow a recent trend in the NLP community [Koo et al., 2010, Das
et al., 2012, Le Roux et al., 2013, Almeida and Martins, 2013]. We describe
our decomposition in Section 6.4. In Section 6.5, we introduce a decoding al-
gorithm for our Lagrangian dual heuristic. We experiment its efficiency on a
discontinuous phrase-structure parsing task in Section 6.6. Interestingly, we ob-
tain a certificate of optimality for ≈ 99% of the test instances without relying
on Branch-and-Bound. Moreover, our approach results in low decoding time
and high parsing scores on two standard benchmarks.

6.1 Motivations

Many head-modifier relationships can be directly deduced from the constituency
structure. For example, the subject of a verb is attached at the clause S level and
its object at the verbal phrase VP level. Words with non-local dependencies can
introduce discontinuous constituency structures, for example in wh-questions:
the object of the main verb, attached at the VP level, is the first word of the
sentence and therefore crosses the subject constituent, see Figure 6.1. How-
ever, in the original Penn Treebank [Marcus et al., 1993] all constituents are
constrained to be continuous so they can be parsed with CFGs. Thus, the an-
notation guide allows the introduction of empty anchors with traces that can
be used to retrieve these non-trivial head-modifier relationships that cannot
be represented with a continuous structure, see Figure 6.2 for an example. In
practice, besides a few notable exceptions [Johnson, 2002, Cai et al., 2011, Kum-
merfeld and Klein, 2017], parsers ignore empty elements and thus are not able
to recover traces. Although LTAGs generate continuous constituents only, they
can encode non-local head-modifier attachments in the derivation tree, see Fig-
ure 6.3. Unfortunately, no large scale automatic or manual annotation that take
into account these phenomena have been produced by the community. Evang
and Kallmeyer [2011] proposed to automatically transform the continuous Penn
Treebank into discontinuous phrase-structures. The resulting constituency tree
cannot be parsed using CFGs or LTAGs. A common approach is to rely on
Linear Context-Free Rewriting Systems (LCFRSs) [Weir, 1988], a discontinu-
ous generalization of CFGs. However, this formalism has the same problem as
CFGs concerning shallow versus deep syntax. Moreover, LCFRS parsers have
prohibitive space and time complexities [Gómez-Rodŕıguez et al., 2010].

In order to combine the deep syntax ability of LTAGs with the discontinuous
constituency representation, we propose to relax constraints on the dependency
structure of derivation trees. As such, the derivation tree is constrained only
with respect to anchors and combination constraints. Note that this relaxed
grammar has an odd generative power: there is no constraint on word order.
However, we focus on parsing so we simply ignore this problem.
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Figure 6.1: The wh-movement introduces a discontinuous constituent.
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Figure 6.2: The Penn Treebank uses empty elements with traces in order to
represent discontinuous constituents as continuous ones.
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Figure 6.3: The adjunction operation in LTAGs can be used to represent dis-
continuous constituents in the derivation tree although the derived tree is nec-
essarily continuous.
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Figure 6.4: Illustration of the two adjunction operations.

6.2 Reduction to the Generalized Maximum Span-
ning Arborescence problem

In this section, we show how the parsing problem with a variant of LTAGs
can be reduced to the Generalized Maximum Spanning Arborescence (GMSA)
problem. We consider spinal TAGs (see definition below) without any constraint
on the derivation tree structure. Then, the LTAG parsing problem reduces to
the joint supertagging and dependency parsing task:

1. Supertagging: select one elementary tree per word.

2. Dependency parsing: choose combination operations.

An ILP formulation of GMSA problem is described in the next section.

6.2.1 Spinal Tree Adjoining Grammar

In this subsection, we briefly explain the formalism derived from LTAG called
Spinal Tree Adjoining Grammar (STAG) that we will use in order to parse
discontinuous phrase-structures. Importantly, we do not require derivations
to be LTAG compatible (i.e. well-nested dependencies with a 2-bounded block
degree). Moreover, elementary tree structures and combination operations differ
from LTAG.

A spine is a lexicalized tree where each node labeled with a non terminal
has a single child. In other words, in contrast with a LTAG’s elementary trees,
a spine is a single path from the root node to the lexical anchor. Derived
trees are built from two kinds of operations: regular adjunctions and sister
adjunctions. There is no substitution operation. Contrary to auxiliary trees,
spines do not have a foot note. A regular adjunction duplicates the target site.
A sister adjunction attaches both spines together directly. The two operations
are illustrated in Figure 6.4. There is no restriction on operation sites.1 This
formalism and its linguistic relevance has been investigated by Shen [2006].
Figure 6.5 illustrates an example of analysis.

1Except, obviously, that we cannot adjoin into a node labeled with a part of speech tag.
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Figure 6.5: A derivation with spines and adjunctions (dashed arrows). The
induced dependency tree is non-projective. Each color corresponds to a spine.
All operations are sister adjunctions.

6.2.2 Generalized Spanning Arborescence

Let D = (V,A) be a directed graph and T ⊆ A be a subset of arcs. Let
π = {V0, . . . , vn} be a partition into clusters of V . In other words,

⋃
W∈πW = V

and W ∩ W ′ = ∅ for any W,W ′ ∈ π such that W 6= W ′. We remind that
V [T ] ⊆ V is the subset of vertices that are adjacent to at least one arc in
T . Recall that a subset T ⊆ A of arcs is called an arborescence if the graph
(V [T ], T ) is connected, acyclic and each vertex has at most one entering arc.
The vertex with no entering arc is called the root of T .

Definition 6.1: Generalized Spanning Arborescence
A subset of arcs T is a Generalized Spanning Arborescence (GSA) if and
only if [Myung et al., 1995]:

• T is an arborescence;

• V [T ] contains exactly one vertex in each cluster of π.

The cluster which contains the only vertex without incoming arc is called
the root cluster.

Without loss of generality, in the following we assume that we want to com-
pute a GSA rooted at cluster W0 and that W0 = {v0} is a singleton. Thus, we
call such a GSA a v0-rooted GSA. Figure 6.6 gives an example of a v0-rooted
GSA. The partition of V is composed of a cluster having one vertex and six
clusters having four vertices each. Every cluster is depicted by a hatched area.
The GSA is given by the arcs and its adjacent vertices are the orange ones.

The Maximum v0-rooted Generalized Spanning Arborescence (GMSA) prob-
lem consists in computing the v0-rooted GSA with maximum score according
to a weighting function f : P(A)→ R. As with the MSA problem, a weighting
function is said to be arc-factored if and only if it can be written as:

f(T ) =
∑
a∈T

wa

where wa is the score of a single arc. Note that we can include weights associated
with vertices in their incoming arcs. Contrary to the arc-factored MSA problem
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V0

V1 V2 V3 V4 V5 V6

Figure 6.6: Example of a v0-rooted generalized spanning arborescence. Dashed
areas represent clusters.

which has a quatratic-time complexity, the arc-factored GMSA problem is NP-
hard [Myung et al., 1995].2

6.2.3 Reduction

Given an instance of the STAG problem with sentence s = s1 . . . sn, we con-
struct an instance of GMSA as follows. With every spine of every word sk,
we associate a vertex v. For k = 1, . . . , n, we denote by Vk the set of vertices
associated with the spines of sk. Moreover, we add a set V0 containing only one
vertex and V0 will now refer both to the cluster and to the vertex it contains
depending on the context. Let π = {V0, . . . , Vn} and V = ∪nk=0Vk. For each
couple vi, vj of vertices such that vi ∈ Vh and vj ∈ Vm, h 6= m and m 6= 0, we
associate an arc vi → vj corresponding to the best adjunction of the root of the
spine associated with vj of Vm to the spine associated with vertex vi of Vh. The
weight associated with the arc can be expressed in terms of the modifier spine,
the head spine and/or the adjunction operation. This ends the construction of
(D,π,w).

There is a 1-to-1 correspondence between the solutions to GMSA and those
to the joint supertagging and spine parsing task in which each adjunction is
performed with the label maximizing the score of the adjunction. Indeed, the
vertices covered by a GSA T with root V0 correspond to the spines on which the
derivation is performed. By definition of GSAs, one spine per word is chosen.
Each arc of T corresponds to an adjunction. The score of the arborescence is
the sum of the scores of the selected spines plus the sum of the scores of the
best adjunctions with respect to T . Hence, one can solve GMSA to perform
joint tagging and non-projective dependency parsing.

As an illustration, the GSA depicted in Figure 6.7 represents the derivation
tree of Figure 6.5: the vertices of V \V0 covered by the GSA are those associated
with the spines of Figure 6.5 and the arcs represent the different adjunctions.
For instance the arc from V3 to V2 represents the adjunction of spine NP-PRP to
spine S-VP-VB at index 0.

2In the EMNLP publication where our work was published, we described the weighting
model differently. However, both approaches are equivalent and we stick to arc-factored
models to ensure the consistency of this thesis.
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Figure 6.7: The generalized spanning arborescence inducing the derivation tree
in Figure 6.5.

6.3 Integer Linear Programming formulation

Let x ∈ BA and y ∈ BV be the variable vectors associated with arcs and
vertices. An arc a ∈ A (respectively a vertex v ∈ V ) is selected if and only if
xa = 1 (respectively yv = 1). We want to constrain assignments on both vectors
such that vector x can only represent a v0-rooted GSA and y its incident vertices.

Contracting a vertex subset W ⊆ V consists in removing vertices W and
adding a vertex w. Every arc u → v ∈ δin(W ) is replaced by an arc u → w
and every arc v → u ∈ δout(W ) by w → u. We denote Dπ the graph obtained
by contracting each cluster of π in D. Note that a GSA of D and π induces
a spanning arborescence in Dπ. For instance, contracting each cluster in the
graph given by Figure 6.6 leads to a graph Dπ having 7 vertices and the set of
dashed arcs corresponds to a spanning arborescence of Dπ, see Figure 6.8. Thus,
y must satisfy the following constraints, adapted from the MSA [Schrijver, 2003]
on clusters:

x(δ−(V0)) = 0 (6.1)

x(δ−(Vk)) = 1 ∀1 ≤ k ≤ n (6.2)

x(δ−( ∪
Vk∈π′

Vk)) ≥ 1 ∀π′ ⊆ π \ {V0} (6.3)

In order to simplify notation, we define the polytope of spanning arborescences
on cluster:

X π = {x ∈ {0, 1}A|x satisfies (6.1)-(6.3)}

Thus, we will use constraint x ∈ X π as a linear constraint in the following.

Note that X π includes invalid structures, see Figure 6.9 for an example. In-
deed, we need to add constraints between vectors of variables (adjacency) and
force that the structure contains only one vertex per cluster in y. The GMSA



6.4. DUAL DECOMPOSITION 119

V0

V1 V2 V3 V4 V5 V6

Figure 6.8: If we contract all the clusters of the graph in Figure 6.6, we obtain
a spanning arborescence.

V0

V1 V2 V3 V4 V5 V6

Figure 6.9: Forcing the structure to be an arborescence over clusters is not
enough to ensure that it is a GSA. In this example, there are 2 adjacent vertices
in cluster V2.

problem can be formulated with the following ILP:

max
x,y

w>x (6.4)

s.t. x ∈ X π (6.5)

yv ≥ xa ∀v ∈ V, a ∈ δ(v) (6.6)

yv(Vk) = 1 ∀0 ≤ k ≤ n (6.7)

x ∈ BA, y ∈ BV (6.8)

Constraint set (6.5) forces selected arcs to be a spanning arborescence over
clusters. Constraint set (6.6) ensures that a vertex is selected if at least one of
its adjacency arcs is selected. There is exactly one selected vertex per cluster
thanks to constraints (6.7). Note that because of (6.5), (6.6) and (6.7), a vertex
is selected if and only if it has an adjacent arc. Finally, the objective function
(6.4) seeks to maximize the sum of selected arc weights. Thus, the optimal
solution of this ILP is the arc-factored v0-rooted GMSA of the graph. We
propose a new efficient algorithm for computing the GMSA based on a relaxation
of this ILP.

6.4 Dual decomposition

To perform the dual decomposition, we first reformulate the ILP (6.4)-(6.8)
by introducing copy variables, as explained in Section 4.3.3. For this purpose,
we replace the variables x by three copies {xi} = {x1, x2, x3}, xi ∈ BA and
the witness vector z ∈ RA. Let w1, w2 and w3 be weight vectors such that
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∑3
i=1 w

i = w. A simple strategy, which we follow, is to define w1 = w2 = w3 =
1
3w. The GMSA can then be reformulated as:

max
{xi},y,z

3∑
i=1

wi>xi (6.9)

s.t. x1 ∈ X (6.10)

yv ≥ x2
a ∀v ∈ V, a ∈ δ−(v) (6.11)

yv ≥ x3
a ∀v ∈ V, a ∈ δ+(v) (6.12)

yv(Vk) = 1 ∀0 ≤ k ≤ n (6.13)

x1, x2, x3 ∈ BA, x ∈ BV (6.14)

z = xi ∀1 ≤ i ≤ 3 (6.15)

Note that each copy only appears in a single constraint set. As usual in dual
decomposition, the witness variable vector z only appears in equations (6.15).
Their goal is to ensure equality between copies x1, x2 and x3. Thus, this ILP
is equivalent to the program (6.4)-(6.8).

We relax constraints (6.15) and build the following Lagrangian dual objective:

L∗({λi}) = max
{xi},y,z

3∑
i=1

wi>xi +

3∑
i=1

λi> · (z − xi)

s.t. (6.10)− (6.14)

where {λi} = {λ1, λ2, λ3}, with λ1, λ2, λ3 ∈ RA, is the set of Lagrangian
multipliers. We restrict the domain of {λi} in the dual problem to the set

Λ = {{λi}|
∑3
i=1 λ

i = 0} and rewrite the dual objective as (Section 4.3.3):

= max
{xi},y

3∑
i=1

w̄i>xi

s.t. (6.10)− (6.14)

where w̄i = wi − λi are reparameterized weight vectors. It is easy to see that
computing the dual objective given the Lagrangian multipliers decomposes in
two independent subproblems:

P1(w̄1) = max
x1

w̄1>x1

s.t. x1 ∈ X π
P2(w̄2, w̄3) = max

x2,x3,y
w̄2>x2 + w̄3> · x3

s.t. (6.11)− (6.14)
Thus, our Lagrangian decomposition is a dual decomposition method. Efficient
algorithms to solve both subproblems are proposed in Section 6.5.1.

The Lagrangian dual is:

min
{λi}∈Λ

L∗({λi})

This problem can be minimized using the standard subgradient algorithm, Sec-
tion 4.4.2. In the next section, we introduce efficient algorithms to solve both
subproblems.
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6.5 Efficient decoding

In this section we describe how the Lagrangian dual is efficiently minimized.
We begin with quadratic algorithms to solve both subproblems (Subsection 6.5.1).
These are sufficient to realize the subgradient descent. However, we then show
that we can improve convergence with simple techniques that do not increase
the complexity of subproblems (Subsection 6.5.2). Finally, we propose a method
to prune the search space via problem reduction (Subsection 6.5.3).

6.5.1 Combinatorial algorithms for subproblems

Obviously, both subproblems could be solved using a generic solver. However,
we prefer to rely on efficient combinatorial algorithms. The pseudo-code for both
subproblems is described in Appendix D.

Subproblem P1

Subproblem P1 is:

max
x1

w̄1>x1

s.t. x1(δ−(V0)) = 0

x1(δ−(Vk)) = 1 ∀1 ≤ k ≤ n
x1(δ−( ∪

Vk∈π′
Vk)) ≥ 1 ∀π′ ⊆ π \ {V0}

Recall that these constraints define a spanning arborescence over clusters. On
the contracted graph Dπ where all parallel arcs are removed except the one
with maximum weight, they define a (standard) spanning arborescence. Thus,
subproblem P1 can be solved in quadratic time via the Chu–Liu/Edmonds’
algorithm on the contracted graph.

Subproblem P2

Subproblem P2 is:

max
x2,x3,y

w̄2>x2 + w̄3> · x3

s.t. yv ≥ x2
a ∀v ∈ V, a ∈ δ−(v)

yv ≥ x3
a ∀v ∈ V, a ∈ δ+(v)

yv(Vk) = 1 ∀0 ≤ k ≤ n
x2, x3 ∈ BA, y ∈ BV

Observe that each value of x2 and x3 is only constrained by a single value of y.
The problem amounts to selecting a vertex for each cluster as well as:

• all its incoming arcs in x2 with positive weight w̄2;

• all its outgoing arcs in x3 with positive weight w̄3.

The optimal solution of P2 is the assignment of variables following these rules
with maximum objective value.



122 CHAPTER 6. DISCONTINUOUS PHRASE-STRUCTURE PARSING

For each vertex v ∈ V , we compute its local weight w′v:

w′v =
∑

a∈δin(v)

max(0, w̄2) +
∑

a∈δout(v)

max(0, w̄3) ∀v ∈ V

which is the sum of all its incoming arcs with positive w̄2 weight and outgoing
arcs with positive w̄3 weight. Let V max be the set of vertices defined by:

V max =
⋃
Vc∈π

argmax
v∈Vc

w′v

This set contains the vertex with maximum local weight in each cluster. Let
A2 and A3 be the sets of arcs such that A2 (respectively A3) contains all the
arcs with positive weights entering (respectively leaving) a vertex of V max. The
optimal solution of P2 is the assignment of variables such that:

• y corresponds to the incident vector of V max.

• x2 corresponds to the incident vector of δin(V max);

• x3 corresponds to the incident vector of δout(V max);

This procedure can be realized with a O(|V |2) time complexity. If the number
of vertices per cluster is bounded by a constant, then the time complexity is
O(|π|2).3

6.5.2 Lagrangian enhancement

In practice, subgradient descent is proven to converge to the Lagrangian dual
minimum in a bounded number of iterations. However, in practice, two problems
are often encountered. First, the presence of a dual gap, meaning that we can
never guarantee to return the optimal solution without relying on an exhaustive
search method like branch-and-bound. Second, a common practice is often to
stop the minimization after a number of iterations fixed in advance in order to
guarantee short decoding time. Thus, the dual minimum may not be reached. In
this section, we propose two improvements of the previous relaxation which aim
at increasing the number of delivered certificates while decreasing in practice
the number of required subgradient descent iterations.

Constraint tightening

Constraints which would have been redundant in the primal program may be
of interest in the Lagrangian dual objective [Beasley, 1993]. We propose to add
two sets of constraints to subproblem P2:

max
x2,x3,y

w̄2>x2 + w̄3>x3

s.t. (6.11)− (6.14)

x2(δin(Vk)) = 1 ∀Vl ∈ π+ (6.16)

x3(δout(Vk) ∪ δin(Vl)) ≤ 1 ∀Vk ∈ π, Vk ∈ π+ \ {Vk} (6.17)

3In our application, the number of vertices in a cluster is bounded by the grammar size.
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Constraints (6.16) force each cluster, except the root, to have exactly one in-
coming arc in x2. Constraints (6.17) ensure that there is at most one selected
arc between two clusters. These two properties are obviously required in a GSA
primal valid solution and are satisfied by any solution of P1.

These two constraints can be added without impacting the asymptotic com-
plexity of the algorithm. Intuitively, when computing the local weights, the
first one requires to keep the incoming arc with maximum weight instead of all
arcs with positive weights. The second one requires to store outgoing arcs in
different containers, one per destination cluster. Then, instead of selecting all
outgoing arcs with positive weights, we only add the one with maximal weight
per destination cluster, if it has a positive weight.

Arc reweighting

Previously introduced constraint set (6.16) forces each cluster, except the
root, to have exactly one incoming arc in the incidence vector x2. Unfortunately,
imposing such a constraint on x3 while maintaining the same decoding algorithm
is not straightforward.4 We propose to change the initial arc weight vector w so
P2 would naturally tend to satisfy this constraint. This change does not impact
the primal optimal solution set. In order to keep the same primal optimal
score, a constant bias term can be added to the objective. For each cluster
Vk ∈ π \ {V0}, let mk = maxa∈δin(Vk) wk be the maximal score of its incoming
arcs.5 We modify weights such that less incoming arcs have positive weights.
Let εk be a value such that mk − εk is positive only for arcs in δin(Vk) which
have weight mk. Subtracting εk from the weight wa of each arc of δin(Vk) does
not modify the primal optimal solution set because only one entering arc per
cluster is selected.

6.5.3 Problem reduction

We propose a problem reduction technique, in order to prune the search
space, which is fast to compute. Let {x̂i}, ŷ be an optimal solution of L∗({λi})
computed at any iteration of the subgradient algorithm and LB the best known
lower bound. Let v ∈ V be a vertex which is not in the current dual optimal
solution, that is ŷv = 0. If we compute an upper bound to the GMSA with
additional constraint yv = 1 that is less than or equal to LB, then yv cannot be
in the primal optimal solution: yv and its adjacent arcs can be safely removed
from the graph. Let u be the vertex such that ŷu = 1 and both v and u are in the
same cluster. Then, using the local weights (Subsection 6.5.1), L∗({λi})−cu+cv
is an upper bound on the weight of any solution to the GMSA with yv = 1.
In fact, this is the solution of the Lagrangian dual objective with the same
Lagrangian multipliers and the additional constraint. This operation can be
realized in constant time with appropriate cache strategy. We can check the
whole graph in linear time with respect to the number of vertices. If the number
of vertices per cluster is bounded, then the problem reduction algorithm has a
O(|π|) time complexity.

4We strongly suspect that it will impact the asymptotic complexity.
5Several arcs may have the same weight, so there may be more than one arc with maximal

score.
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6.6 Experimental results

In this section, we run experiments with the GMSA as a framework for dis-
continuous constituency parsing with STAGs. Arc weights are computed using
neural networks (Subsection 6.6.1). We test our model on two datasets (Sub-
section 6.6.2) and obtain state of the art results while being very fast (Subsec-
tion 6.6.3). This demonstrates the relevance of the GMSA as a model for NLP
problems.

6.6.1 Neural parameterization

We rely on a conditional probabilistic model for our framework. We imple-
ment our probability distributions with neural networks, more specifically we
build a neural architecture on top of bidirectional recurrent networks, more
precisely bi-LSTMs [Hochreiter and Schmidhuber, 1997], that compute context
sensitive representations of words. At each step, the recurrent architecture is
given as input a concatenation of word and part of speech embeddings. We refer
the reader to Goldberg [2016] for more information.

Given a sentence, we assume a derivation is generated by three distinct tasks:
supertagging, non-projective dependency parsing and arc labeling. As previ-
ously, we follow the common approach in dependency parsing and assign labels
in a post-processing step, although our model is able to incorporate label scores
directly.6 Thus, in the GMSA we are left with jointly decoding a dependency
structure and assigning a sequence of spines. We suppose that adjunctions are
generated by an arc-factored model, and that a spine prediction depends on both
current position and head position. Moreover, we assume independence between
probabilities. Then parsing amounts to finding the most probable derivation and
can be realized in the log space. A more precise description of our model is given
in Appendix E.

6.6.2 Datasets

Discontinuous constituent parsing is not very common. Thus, there are only a
few datasets available. We ran a series of experiments on the two main corpora
annotated with discontinuous constituents.

English: We used an updated version of the Wall Street Journal part of the
Penn Treebank corpus [Marcus et al., 1993] which introduces discontinuity
[Evang and Kallmeyer, 2011]. As usual, sections 2-21 are used for training,
22 for developpement and 23 for testing. We used both gold and predicted
POS tags by the Stanford tagger,7 trained with 10-jackknifing.8 Spines
are extracted following the head-percolation table of Collins [1997].

German: We used the Tiger corpus [Brants et al., 2004] with the split de-
fined for the SPMRL 2014 shared task [Maier, 2015, Seddah et al., 2013].

6 Our motivation for this pipeline is to reduce the number of weights to compute and to
mimic the standard dependency parsing architecture.

7http://nlp.stanford.edu/software/tagger.shtml
8Prediction precision: 97.40%

http://nlp.stanford.edu/software/tagger.shtml
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Following Maier [2015] and Coavoux and Crabbé [2017], we removed sen-
tences number 46234 and 50224 as they contain annotation errors. We
only used the given gold POS tags. Spines are extracted following the
head-percolation table distributed with Tulipa [Kallmeyer et al., 2008].

6.6.3 Results

Regarding decoding, we keep only the 10 spines with maximum marginal
probability but allow every possible adjunction. The maximum number of iter-
ations of the subgradient descent is set to 500 and the stepsize is fixed following
the rule of Polyak [1987].

Parsing results and timing on short sentences only (≤ 40 words) and full
test set using the default discodop9 eval script are reported on Table 6.1 and
Table 6.2.10 We report labeled recall (LR), precision (LP), F-measure (LF) and
time measured in minutes. We also report results published by van Cranenburgh
et al. [2016] for the discontinuous PTB and Coavoux and Crabbé [2017] for
Tiger. Moreover, dependency unlabeled attachment scores (UAS) and tagging
accuracies (Spine acc.) are given on Table 6.3. We achieve significantly better
results on the discontinuous PTB, while being roughly 36 times faster together
with a low memory footprint.11 On the Tiger corpus, we achieve on par results.
Note however that Coavoux and Crabbé [2017] rely on a greedy parser combined
with beam search.

Fast and efficient parsing of discontinuous constituent is a challenging task.
Our method can quickly parse the whole test set, without any parallelization
or GPU, obtaining an optimality certificate for more than 99% of the sentences
in less than 500 iterations of the subgradient descent, partly thanks to the en-
hancement presented in Subsection 6.5.2 and the problem reduction algorithm
in Subsection 6.5.3. Moreover, we obtain state-of-the-art results. Our decoding
algorithm is obviously slower than the greedy search method of Coavoux and
Crabbé [2017], however, it is way faster than the exact decoder of [van Cranen-
burgh et al., 2016]. These findings show the benefits of the GMSA formulation
for NLP problems.

6.7 Conclusion and future work

In this chapter, we introduced a novel approach to discontinuous phrase-
structure parsing based on STAGs, a variant of LTAG. We showed that this
problem is equivalent to GMSA. We introduced a novel dual decomposition
algorithm for this problem which computes the optimal solution for ≈ 99%
of the test instances while being fast in practice. We evaluated our decoding
algorithm on two datasets and achieve state of the art results.

9https://github.com/andreasvc/disco-dop/
10C2017 processing time is 137.338 seconds plus approximatively 30 seconds for model and

corpus loading (personnal communication).
11Execution times are not directly comparable because we report our experimental condi-

tions and published results.

https://github.com/andreasvc/disco-dop/
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LR LP LF Time
Short sentences only

This work 90.63 91.01 90.82 ≈ 4
This work† 89.57 90.13 89.85 ≈ 4
VC2016† 87.00 ≈ 180

Full test set

This work 89.89 90.29 90.09 ≈ 6.5
This work† 88.90 89.45 89.17 ≈ 5.5

Table 6.1: Parsing results and processing time in minutes on the english discon-
tinuous PTB corpus. Results marked with † use predicted part of speech tags.
VC2016 indicates results of van Cranenburgh et al. [2016].

LR LP LF Time
Short sentences only

This work 82.69 84.68 83.67 ≈ 7.5

Full test set

This work 80.66 82.63 81.63 ≈ 11
C2017 81.60 ≈ 2.5

Table 6.2: Parsing results and processing time in minutes on the german Tiger
corpus. C2017 indicates results of Coavoux and Crabbé [2017].

Future work may extend our algorithm to include bi-gram weights on vertices
and high-order weights on arcs. This can be achieved with slight modifications
in the second subproblem. Moreover, note that graphs with weights given by
machine learning techniques may have a distribution which happens to acceler-
ate convergence [Martins et al., 2009b]. Further experiments should investigate
the application of our algorithm with datasets from the optimization community
and with symmetric graphs in order to solve the undirected version of the prob-
lem. Moreover, bounds given by our decomposition should be compared with
the ones given by the algorithm of Myung et al. [1995]. Although the GMSA
has not been studied a lot, future work may use the TSPLib dataset [Reinelt,
1991] which was used by previous authors to test algorithms for the Generalized
(Assymetric) Travelling Salesman problem.
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UAS Spine acc.
English 93.70 97.32
English† 93.04 96.81
German 92.25 96.49

Table 6.3: Dependency parsing and tagging results. Results marked with † use
predicted part of speech tags.
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Chapter 7

Conclusion

Mildly context-sensitive grammars have been introduced in order to ensure
both polynomial parsing time and broad linguistic coverage. In particular, the
linguistic relevance of Tree Adjoining Grammars (TAGs) has been studied ex-
tensively since their introduction. Although polynomial, existing parsing algo-
rithms in the literature are either experimentally intractable due to their O(n7)
complexity or prohibit wrapping adjunctions, and are therefore restricted to
context-free languages. We proposed a novel approach to tackle this kind of
challenging NLP problems. First, we reduced a given problem to a subgraph
selection task: we reduced LTAG dependency parsing to the Yield Restricted
Maximum Spanning Arborescence problem and discontinuous phrase-structure
parsing to the Generalized Maximum Spanning Arborescence problem. This
reduction led to a generic problem which may have application in other fields.
Moreover, graph theory is appealing as it is a lingua franca among computer
scientists. Second, we introduced an ILP formulation of the graph problem. As
such, we could rely on many combinatorial optimization techniques. Third and
finally, we applied Lagrangian relaxation to solve the ILPs. In this chapter, we
summarize the contributions of this thesis and discuss possible extensions.

7.1 Summary of contributions

Lexicalized Tree Adjoining Grammars (LTAGs) are a variant of TAGs where
each elementary tree has exactly one lexical anchor. As such, the derivation tree
of a LTAG is a labeled bi-lexical dependency structure. Previous work in the
literature characterized it as a well-nested arborescence with 2-bounded block
degree. Following previous work in dependency parsing, we rely on a pipeline
approach for this problem. First we parse the dependency structure and then
we run a parse tree labeler. Interestingly, the computational complexity of
LTAG parsing is broken down: the first step has a O(n7) complexity, similar
to LTAG but without the grammar constant, and the second step has a linear
time complexity with respect to the input sentence length but takes into account
the grammar. As the first step is the bottleneck of our approach, we introduced
two ILPs formulations for decoding the maximum well-nested arborescence with
2-bounded block degree. In particular, we showed that one of them has an ex-
ponential number of constraints but an interesting and generalizable structure.

129
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We proposed a decoding algorithm based on Lagrangian relaxation and showed
its efficiency on several datasets.

The complexity of LTAG parsing is due to the intricate structure of the in-
duced dependencies. We proposed a novel approach to discontinuous constituent
parsing that follows our previously described LTAG parser but:

• We do not impose any constraint on the dependency structure aside from
being an arborescence.

• We do not impose structural restriction on combination operations.

• We jointly decode the bi-lexical dependency structure and elementary trees
assignment.

We showed that the induced derived tree can then include discontinuous con-
stituents. Moreover, this problem is equivalent to the Generalized Maximum
Spanning Arborescence. We proposed a novel decoding algorithm based on
dual decomposition and achieved state-of-the-art results on two standard bench-
marks.

7.2 Future work

In this section, we discuss possible future research directions.

7.2.1 Lexicalized Tree Adjoining Grammar parsing

In Chapter 5, we proposed a novel LTAG parsing algorithm based on a pipeline
method. We tackled the complexity challenge using Lagrangian relaxation on
a Integer Linear Programming formulation of the problem. We reported ex-
perimental results on the efficiency of our parser with different problems which
have a similar structure to LTAG derivation trees, namely well-nested arbores-
cences with k-bounded block degree. Unfortunately, we were not able to test the
relevance of our algorithm for phrase-structure parsing, in particular regarding
long distance relationships, as we do not have a LTAG annotated corpus. Ville-
monte de la Clergerie [2010] developed a Tree Adjoining Meta-Grammar which
has a wide coverage of French. Moroever, Villemonte De La Clergerie [2013]
showed that this symbolic grammar gets strong competitive parsing scores on
the French Treebank [Abeillé et al., 2003]. As such, it may be used as the basis
for the automatic extraction of a LTAG corpus in order to test our algorithm.1

7.2.2 Parsing other lexicalized grammars

Kuhlmann [2007] studied the relation between lexicalized grammars and in-
duced bi-lexical dependencies. We summarize his results in Table 7.1. Lexical-
ized Linear Context-Free Rewriting Systems (LLCFRS) are particulary appeal-
ing as LCFRS extraction is straighforward from discontinuous treebanks [Maier
and Søgaard, 2008, Kallmeyer, 2013] and head percolation rules are available

1At of the date of this thesis, we are discussing the feasibility of this approach with Eric
Villemonte De La Clergerie.
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Formalism k-bounded block degree Well-nested
Context-Free Grammar X X
Linear Context-Free Rewriting System X
Coupled Context-Free Grammar X X
Tree Adjoining Grammar X X

Table 7.1: Properties of dependencies induced from the Lexicalized alternative
of several formalisms

in order to perform lexicalization. Moreover, the general parsing problem is
NP-complete if the grammar induces ill-nested dependencies. However, our de-
pendency parser is able to efficiently parse this family of structures and can be
used in a similar pipeline to the one we proposed for LTAGs.

7.2.3 Natural Language Processing applications of the Gen-
eralized Maximum Spanning Arborescence

The Generalized Maximum Spanning Arborescence (GMSA) problem is equiv-
alent to the joint tagging and non-projective dependency parsing problem. A
natural application is the case of part of speech (POS) tags, which was pre-
viously explored by Bohnet and Nivre [2012] with a transition system. Many
POS taggers rely on bi-gram weights, that is the weight of two consecutive tags.
This weighting model can be included in the decoding algorithm we proposed
for the GMSA. Indeed, we can solve in polynomial time the second subproblem
(Subsection 6.5.1) using a variant of the Viterbi algorithm [Forney, 1973], which
includes bi-gram weights.

Regarding dependency parsing, high-order models were commonly considered
as mandatory in order to obtain state-of-the-art dependency scores before the
rise of neural networks. Pei et al. [2015] also observed a small improvement
with high-order neural parameterization thanks to a specific activation function.
Note that these weighting models may be highly relevant for small datasets.
High-order weights can also be introduced in the second subproblem of our
decoding algorithm using a technique similar to Koo et al. [2010].

7.2.4 Simple and accurate derivation tree parsing

Last but not least, we observe that dependency parsers have recently achieved
extremely high performances [Dozat and Manning, 2017]. Thus, relying on a
pipeline procedure similar to the one we propose for LTAG parsing may pro-
duce state-of-the-art results with a continuous and/or discontinuous spinal TAG
grammar. Although simple, such an approach may be competitive with transi-
tion based parsers both with respect to parsing time and accuracy.
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Carlos Gómez-Rodŕıguez, John Carroll, and David Weir. Dependency pars-
ing schemata and mildly non-projective dependency parsing. Computational
Linguistics, 37(3), 2011.

Joshua Goodman. Semiring parsing. Computational Linguistics, Volume 25,
Number 4, December 1999, 1999.

Eduard Nikolaevich Gordeev and OG Tarastsov. The steiner problem: A survey.
Discrete Mathematics and Applications, 3(4):339–364, 1993.

Monique Guignard. Lagrangean relaxation. Top, 11(2):151–200, 2003.
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Djamé Seddah, Reut Tsarfaty, Sandra Kübler, Marie Candito, D. Jinho Choi,
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Appendix A

Penn Treebank tag set

Figure A.1 and Figure A.2 report the set of constituency labels and part-of-
speech tags used in the Penn Treebank [Marcus et al., 1993], respectively.
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S Simple declarative clause
SBAR Clause introduced by a subordinating conjunction
SBARQ Direct question introduced by a wh-word or a wh-phrase
SINV Inverted declarative sentence
SQ Inverted yes/no question or main clause of a wh-question
ADJP Adjective phrase
ADVP Adverb phrase
CONJP Conjunction phrase
FRAG Fragment
INTJ Interjection
LST List marker
NAC Not a Constituent
NP Noun phrase
PP Prepositional phrase
PRN Parenthetical
PRT Particle
QP Quantifier phrase
RRC Reduced relative clause
UCP Unlike coordinated phrase
VP Vereb phrase
WHADJP Wh-adjective phrase
WHAVP Wh-adverb phrase
WHNP Wh-noun phrase
WHPP Wh-prepositional phrase
X Unknown, uncertain, or unbracketable

Table A.1: Constituency labels
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CC Coordinating conjunction
CD Cardinal number
DT Determiner
EX Existential there
FW Foreign word
IN Preposition or subordinating conjunction
JJ Adjective
JJR Adjective, comparative
JJS Adjective, superlative
LS List item marker
MD Modal
NN Noun, singular or mass
NNS Noun, plural
NNP Proper noun, singular
NNPS Proper noun, plural
PDT Predeterminer
POS Possessive ending
PRP Personal pronoun
PRP$ Possessive pronoun
RB Adverb
RBR Adverb, comparative
RBS Adverb, superlative
RP Particle
SYM Symbol
TO to
UH Interjection
VB Verb, base form
VBD Verb, past tense
VBG Verb, gerund or present participle
VBN Verb, past participle
VBP Verb, non-3rd person singular present
VBZ Verb, 3rd person singular present
WDT Wh-determiner
WP Wh-pronoun
WP$ Possessive wh-pronoun
WRB Wh-adverb

Table A.2: Part-of-speech tags



Appendix B

Maximum Spanning
Arborescence

The Maximum Spanning Arborescence1 (MSA) algorithm has been indepen-
dently proposed by Edmonds [1967], Chu and Liu [1965], Bock [1969]. The
best known worst-case complexity with a complete graph, O(n2) with n is the
number of vertices, is due to Tarjan [1977]. However, the algorithm in the origi-
nal publication contains errors which were corrected by Camerini et al. [1979].2

A discussion of the application of the MSA for dependency parsing alongside
examples can be found in McDonald et al. [2005].

We now give a simple explanation of the algorithm. Let G = (V,A) be a
directed graph with vertices V = {v0 . . . vn}, arcs A = V × V and let w ∈ RA
be a vector of weights indexed by arcs. Without loss of generality, we assume
v0 is the desired root. Edmonds [1967] proved that, given a subset of vertices
W ⊆ V \ {v0}, if the set of arcs composed of the arc of maximum weight
for each vertex v ∈ W defines a cycle, then the MSA of the graph contains
every arc of this cycle except one. Thus, the v0-rooted MSA can be computed
as follows. First, construct arc subset T by adding the best incoming arc for
each vertex v1 . . . vn. If the resulting graph is an arborescence, then T is the
MSA. Else, find any cycle in T , contract the cycle and repeat the procedure.
This contraction aims at finding which arc in the cycle is the single one that
should be replaced. Finally, cycles can be decontracted in order to rebuild the
original graph. Note that the arc weights must be updated after contraction.
We report the reader to the original publications for a detailed explanation of
the algorithm. The pseudo-code is described in Algorithm 4. Because you can
make at most n contractions and selecting the best incoming arcs is a O(n2)
task,3 the whole procedure has a cubic time complexity. However, Tarjan [1977]

1 This algorithm is often presented as solving the Minimum Spanning Arborescence prob-
lem. We prefer the maximization formulation in order to be more consistent with the NLP
literature.

2Some of these algorithms focus on an equivalent problem called optimum branching.
3 A contracted graph has at most n vertices. A single vertex has at most n incoming arcs

and selecting the incoming arc for a single vertex is a linear time procedure without ordered
data structures. Thus, selecting the best incoming arc for each vertex of a contracted graph
is a O(n2) problem.
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proposed a more efficient algorithm with a O(n2) time complexity, relying on a
set of priority queues for efficient max and union operations.

Algorithm 4 Pseudo-code for the MSA

1: function MSA(G,V,w)
2: T ← ∅ . Output variable (set of arcs)
3: for v ∈ V + do

. Select the best incoming arc for each vertex in V +

4: T ← T ∪ {argmaxa∈δin(v) wa}
5: if T is acyclic then
6: return T
7: C ← Any subset of arcs forming a cycle in T
8: V ′, A′, w′ ← Contract(V,A,w,C)
9: T ← MSA(V ′, A′, w′)

. a is an arc of the cycle which has been replaced in the arborescence
10: a ∈ {vi → vj ∈ C|∃vk : vk → vj ∈ T}
11: return T ∪ C \ {a}

12: function Contract(V,A,w,C)
. Any vertex identifier that can be used to represent the contracted cycle

13: vc ∈ {vc|vc /∈ V }
14: for vi ∈ V \ C do
15: if ∃vj ∈ C : vj → vi ∈ A then

. Select the best incoming arc for each vertex in the cycle
16: A← A ∪ {vc → vi}
17: wvc→vi ← max{wvj→vi |vj ∈ C}
18: for vi ∈ V \ C do
19: if ∃vj ∈ C : vi → vj ∈ A then

. Construct outgoing arcs for the new vertex with updated weights
20: A← A ∪ {vi → vc}
21: wvi→vc ← max{wvi→vj −wvv→vj +

∑
a∈C wa|vj ∈ C ∧ vk → vj ∈

C}
22: V ← V \ C ∪ {vc}
23: A← {vi → vj ∈ A|vi ∈ V ∧ vj ∈ V }
24: return V,A,w



Appendix C

Subproblems for the
well-nested arborescence
with k-bounded block
degree

In this appendix, we give the pseudo-code for the two algorithms used for
computing the maximum well-nested arborescence with k-bounded block degree
in Chapter 5. The inputs are a set of vertices V and a v0-rooted spanning
arborescence T . The first one computes the block degree of an arborescence
and the second returns true if a given arborescence is well-nested. In practice,
in the black box for our algorithm solving the YRMSA, we must return sets of
yields. This modification is straighforward.

C.1 Gap degree of an arborescence

The function compute-yield in Algorithm 5 computes the yield of the vertex
vh with respect to arborescence T . The results is stored in the input vector y:
if vertex vi is in the yield of vh, then y[i] is set to True. Let n be the number of
vertices adjacent to T . Then, this algorithm as a O(n) linear time complexity.
Indeed, the recursive call to compute-yield can be only be done n times as T
does not contain any cycle.1

Algorithm 5 Algorithm which computes the yield of a given vertex.

1: function compute-yield(T, vh, y)
2: y[vh] = True
3: for vh ← vm ∈ δout(vh) ∩ T do
4: compute-yield(T, vm, y)

1 We assume that δout(vh)∩T is a constant time operation. This can be realized by storing
T in a convenient data structure.
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The function compute-block-degree in Algorithm 6 computes the block
degree of an spanning arborescence T . For each vertex, we compute its yield
and then count the number of vertices that are at the beginning of a block. The
block degree the arborescence is the maximum block degree of its vertices. This
algorithm has a O(n2) time complexity, that is quadratic with respect to the
number of vertices.

Algorithm 6 Algorithm which computes the block degree of a spanning ar-
borescence.

1: function compute-block-degree(V, T )
2: max bd← 0
3: for vi ∈ V do
4: y ← Vector of size |V | filled with False
5: compute-yield(T, vi, y)

6: if y[0] = True then . Does v0 start a block?
7: bd← 1
8: else
9: bd← 0

10: for vj ∈ V \ {v0} do
11: if y[j − 1] = False ∧ y[j] = True then . Does vj start a block?
12: bd← bd+ 1

. We return the maximum between all vertices
13: max bd← max(max bd, bd)

14: return max bd

C.2 Well-nestedness of an arborescence

In order to test if a spanning arborescence is well-nested, we compute the
ill-nested set of each one of its arc (Definition 5.8). If every set is empty, the
arborescence is well-nested. The algorithm has two nested for-loops on arcs in
the arborescence. A spanning arborescence contains exactly n − 1 arcs so the
time complexity of the algorithm is O(n2). This algorithm was first proposed
by Havelka [2007].
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Algorithm 7 This algorithm returns true if and only if an arborescence is
well-nested.

1: function is-well-nested(V, T )
2: y ← Matrix of size |V | × |V | filled with False
3: for vi ∈ V do
4: compute-yield(T, vi, y[i])

5: for vi → vj ∈ T do
6: for vk → vl ∈ T \ {vi → vj} do
7: . Test if vk → vl is in the ill-nested set of vi → vj
8: if min(i, j) < k < max(i, j) ∧ ¬(min(i, j) < l < max(i, j)) then
9: if ¬(y[i][l] ∨ y[j][l] ∨ y[k][i] ∨ y[l][i]) then

10: return False
11: if min(i, j) < l < max(i, j) ∧ ¬(min(i, j) < k < max(i, j)) then
12: if ¬(y[i][l] ∨ y[j][l] ∨ y[k][i] ∨ y[l][i]) then
13: return False

. All sets where empty, so we return True
14: return True



Appendix D

Subproblems for the GMSA

In this appendix, we give the pseudo-code of the two algorithms for computing
the dual objective of the Lagrangian relaxtion of the GMSA in Section 6.5.

D.1 Subproblem 1

The first subproblem compute the Maximum Spanning Arborescence (MSA)
over clusters. Given a graph (V,A) with arc weight w and clusters π, we build
a graph where the vertices are clusters and arcs are the highest scoring arcs
between clusters. Then, we run an implementation of the MSA algorithm on
this graph. The algorithm is given in Algorithm 8.

Algorithm 8 Function which computes the MSA over clusters.

1: function subproblem1(V,A,w, π)
2: A′ ← {} . Arcs of the contracted graph
3: w′ ← [] . Arc weights in the contracted graph

. Construct the contracted graph
4: for vh → vm ∈ A do
5: i← π−1(vh) . π−1(vh) returns the cluster index of vh
6: j ← π−1(vm)

7: if vi → vj /∈ A′ then
8: A′ ← A′ ∪ vi → vj

9: if vi → vj /∈ w′ ∨ w[vi → vj ] > w′[vi → vj ] then
10: w′[vi → vj ]← w[vi → vj ]

11: return MSA(π, A′, w′)

D.2 Subproblem 2

The second subproblem computes local cluster solutions without respecting
the arborescence constraint. The algorithm is given in Algorithm 9.
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Algorithm 9 Function which computes the solution of the second subproblem.

1: function subproblem2(V,A,win, wout, π)
2: score← 0
3: for Vk ← π \ {V0} do
4: score← score+ get-best-in-cluster(Vk, w

in, wout, π)

5: return score

6: function get-best-in-cluster(V,A,win, wout, π)
7: score = −∞
8: for v ← V do
9: score← max(score, compute-vertex-score(v,A,win, wout, π) )

10: return score

11: function compute-vertex-score(v,A,win, wout, π)
12: score head← −∞
13: for a ∈ δ−(v) do
14: score head = max(score head, win

a )

15: score modifiers← 0
16: for a ∈ δ+(v) do
17: if wout

a > 0 then
18: score modifiers← score modifiers+ wout

a

19: return score head+ score modifiers



Appendix E

Probabilistic model

In this appendix, we describe the neural network which estimates the con-
ditional probabilities for the experiments in Chapter 6. Under our parsing
model, a parse tree is composed of a set of head attachments h (head words),
a set of spine assignments t (supertags), a set of attachment positions i (non-
terminal positions) and a set of attachment operations a (sister or regular ad-
junctions). Given an input sentence s, the probability of a derivation is given
by P (h, t, i,a|s). By the chain rule, we have:

P (h, t, i,a|s) = P (h|s)× P (t|s,h)× P (i,a|s,h, t)

We assume independence between each adjunction operation and that the propa-
bility of a spine for a given word depends on its head only. Thus, we decompose
the score of an arc as the sum of three distinct log-probabilities:

• logPα which is the log-probability of a given word to be attached to a
given head;

• logPν which is the log-probability of the modifier spine represented by the
destination vertex of the arc;

• logPγ which is the log-probability of the label, that is of the position of
the adjunction in the head spine and the adjunction type.

The three distributions Pα, Pν and Pγ can be learned independently. Therefore
the training algorithm does not need to compute the GMSA for each instance,
which would be a time-consuming task. Note that a richer model could also
include the probability of the head spine. In practice, arc labeling (i.e. assigning
non-terminal positions and operation types) is realized as a post-processing step,
which is a common approach in dependency parsing.

Given a input sentence s = s1 . . . sn, we first compute context-sensitive word
embeddings with a two-stack Bi-LSTM [Hochreiter and Schmidhuber, 1997].
Note that these context-sensitive embedding are shared between the three dis-
tributions. The resulting embeddings bk are then passed through specific feed-
forward networks depending on the distribution and role. The result of the
feed-forward transformation parameterized by set of parameters ρ of a word
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embedding bs is a vector denoted b
(ρ)
s . We first define a biaffine attention net-

work weighting dependency relations [Dozat and Manning, 2017]:

o
(α)
h,m = b(α1)>

m W (α)b
(α2)
h + V (α)b

(α2)
h

where W (α) and V (α) are trainable parameters, m a given modifier index and h
a given head candidate index. Moreover, we define a biaffine attention classifier
networks for class c as:

o
(τ)
c,h,m = b(τ1)>

m W (τc)b
(τ2)
h

+ V (τc)
(
b(τ1)
m ⊕ b(τ2)

h

)
+ u(τc)

where ⊕ is the concatenation. W (τc), V (τc) and u(τc) are trainable parameters.
Then, we define the weight of assigning spine t to word at position m with head

h as o
(ν)
s,h,m.

Distributions of dependencies Pα and spines Pν are parameterized by these
biaffine attention networks followed by a softmax layer:

Pα(h|m,w) =
exp o

(α)
h,m∑

h′ exp o
(α)
h′,m

Pν(s|h,m,w) =
exp o

(ν)
s,h,m∑

s′ exp o
(ν)
s′,h,m

Now we move on to the post-processing step predicting arc labels. For each
adjunction of spine s at position m to spine t at position h, instead of predicting
a site index i, we predict the non-terminal nt at t[i] with a biaffine attention
classifier.1 The probability of the adjunction of spine s at position m to a site
labeled with nt on spine t at position h with type a ∈ {regular, sister} is:

Pγ(nt, a|h,m) = Pγ′(nt|h,m,w)

× Pγ′′(a|h,mw)

Pγ and Pγ′′ are again defined as distributions from the exponential family using
biaffine attention classifiers:

Pγ′(nt|h,m, t) =
exp o

(γ′)
nt,h,m∑

nt′ exp o
(γ′)
nt,h,m

Pγ′′(a|h,m, t) =
exp o

(γ′′)
t,h,m∑

a′ exp o
(γ′′)
a′,h,m

1 If a spine contains repeated non-terminal sequences, we select the lowest match.
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We use embeddings of size 100 for words and size 50 for parts-of-speech tags.
We stack two bidirectional LSTMs with a hidden layer of size 300, resulting
in a context sensitive embedding of size 600. All feed-forward networks have
a unique elu-activated hidden layer of size 100 [Clevert et al., 2016]. We reg-
ularize parameters with a dropout ratio of 0.5 on LSTM inputs. We estimate
parameters by maximizing the likelihood of the training data through stochastic
subgradient descent using Adam [Kingma and Ba, 2015]. Our implementation
uses the Dynet library [Neubig et al., 2017] with default parameters.
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