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(zeneral Introduction

In 1937, when cooling down liquid helium, Kapitza [1], Allen and Misener [2] observed that its
viscosity suddenly dropped to almost zero (later proven to be exactly zero), which suggested a
new state of matter described a “superfluid”. London, one year later, established the link with
the “Bose-Einstein condensation” phenomenon proposed by Einstein in 1924 [3-5], which was
up to there rather considered as a pathologic limit of the Bose statistics. Quantum mechanics
predicts that particles are also waves, which extend over a typical size A\gqg = h/v/2r M kT,
where M is the mass of the particles and T the temperature. Bose-Einstein condensation
occurs when at low enough temperature the spatial extent of the particles grows up to reaching
the interparticle distance: what was once an ensemble of individual particles then begins to
behave as a giant matter wave whose flow properties are again extremely different. In this way,
superfluidity provided for the first time a manifestation of quantum effects at a macroscopic
scale — and even reached later astrophysical scales [6,7].

Although initially described as “the ability of a fluid to flow without friction” superfluidity
is somehow defined by the ensemble of its properties [8]. Among these properties, one can cite
the existence of a critical speed above which the “frictionless flow” is not true anymore [9],
or the possibility for the current to flow virtually indefinitely when the flow velocity lies
below the critical speed [10,11]. Possibly even more astonishing are the rotation properties
of these systems. In a superfluid, the particles behave like a giant wave, characterized by an
amplitude and a phase whose gradient gives the fluid velocity. This implies that a superfluid
is irrotational, and setting it into rotation requires quantized vortices to enter the system,
introducing singularities in the fluid where the density vanishes in order to allow it to rotate
[12-15].

Many remarkable experiments have been performed with superfluid helium. The advent of
gaseous Bose-Finstein condensates provided later a new system allowing to study superfluidity
in the dilute regime. These systems are to superfluid helium what gases are to liquids: while in
superfluid helium the atomic density is large and the interactions strong, in dilute superfluids
the density is low and the interactions much weaker. This lower density allows to describe
the system very accurately through simple mean-field theories. In addition, these systems
are usually well isolated and come with a extremely broad palette of manipulation tools and
possibilities to shape the potential landscape of the systems. In this way, these “quantum
gases” open a path to a better understanding of phenomena in a variety of domains which
extend, in fact, way beyond the sole superfluidity.

However, as the atomic density is much smaller in dilute gases than in liquids, the tem-



perature required in order for the atoms to “overlap” is also considerably smaller: while the
critical temperature to achieve superfluidity in helium is around 2 K, the temperature neces-
sary to reach quantum degeneracy in cold atom clouds ranges typically between 100 nK and
1uK. This was made possible by the development of laser cooling techniques. Starting from
the eighties, the techniques allowing to manipulate matter using light beams and magnetic
field displayed an amazingly fast development, from laser cooling of ions [16,17] and neutral
atoms [18] to atom traps [19-21], finally enabling evaporative cooling of the atoms down to the
obtention of a Bose-Einstein Condensate (BEC), 70 years after its prediction [22,23]. These
developments led to two Nobel prizes in 1997 [24-26] and 2001 [27,28].

Since the experimental achievement of the first dilute BECs, the field of ultracold atoms
completely exploded, the control onto the systems getting finer and finer, allowing for example
to load ultracold atoms into “eggbox-like” potentials formed by optical lattices [29] and then
image and manipulate them at the single-atom level [30-32]; to achieve new exotic quantum
sytems like quantum droplets [33-35], synthetic magnetic fields [36-38| or supersolids |39,
40[; to perform measurements with an unprecedented precision, allowing to test fundamental
concepts of physics [41-43]; or to apply the concepts of quantum optics to atoms instead of
photons [44-46]. The study of superfluidity in such systems also displayed extremely fast
progress, and for example the existence of a critical velocity [47] and collective modes [48-50]
were demonstrated only a few years after the first dilute BECs. On the side of rotating
superfluids, the observation of the first vortices [51,52], of large vortex lattices [53] and of the
existence of a Lowest Landau Level [54] — demonstrating in this way a remarkable analogy
with the Quantum Hall Effect [55] — were achieved one after the other in less than five years;
phase-engineering allowed to observe and study vortices carrying multiple charge [56], and
ring-shaped traps to study superfluid flow within wave guides [57-59].

Among the tools that come with quantum gases, there is also the possibility to generate
very strong confinements and access in this way regimes of lower dimensionality [60]. In
these regimes, the thermal and quantum fluctuations play an important role, encouraging the
presence of phase disorder in the systems. In two dimensions, for example, this leads to a
new phase transition between a superfluid state and a normal phase called the Berezinskii-
Kosterlitz-Thouless (BKT) transition [61,62] whose interplay with possible condensation of
the gas is highly subtle [63,64]; in 1D there is a wide variety of possible phases depending
on the number of atoms and their relative interations [65], among which the most surprising
is probably the Tonks regime, in which bosons behave like fermions [66]. Exploring the
superfluid properties in these regimes presents therefore a significant interest [67-69].

While vortices provide a way to allow rotation in superfluids by creating regions where the
fluid density cancels, it is not the only method. A natural geometry for studying superfluid
flow is the ring geometry: persistent currents can be stabilized along the waveguide formed by
the potential. Such systems allowed for example to study the quantization of such a flow [58]
and its hysteretic behavior [59], or the appearance of a flow after a sudden quench below the
critical temperature due to the “Kibble-Zurek” effect [70,71]. It also suggests the possibility
to achieve an atomic analogue to the SQUIDs® [72,73], which raises a significant interest.

Another strategy allowing to have a hole in the gas around which the superfluid will rotate
relies on the centrifugal force. A gas rotating faster than the frequency of its trap will be
expelled from the center of the trap; the addition of nonharmonic confinement to prevent the
atoms from escaping then gives rise to a “dynamical” ring potential whose shape is tailored

5. Superconducting QUantum Interference Devices — it is a magnetometer made of a ring-shaped supra-
conductor with two parallel Josephson junctions.



by the rotation itself. Such a geometry, when reaching large rotation rates, should enable
to generate a so-called giant vortex configuration, in which all the atoms are flowing along
a 1D ring, all the vortices of the cloud having migrated within the central hole [74-76]. A
first attempt to reach this regime, more than 10 years ago, was unsuccessful [77]; despite the
absence of recent experimental work on this topic it continues to attract theoretical interest
[78-80].

The work presented in this document aims at studying the rotational properties of super-
fluidity in the two aformentioned cases of annular geometry, as well as their connection to the
lower dimensional regimes. It is divided into three parts: after a common general part, the
second part deals with the realization of a ring-shaped trap, suitable for studying persistent
currents and superfluid flow, with a technique that could possibly allow to enter the 2D or
even 1D regimes. The third part deals with the regime of fast-rotating superfluids: by rotat-
ing a gas fast enough in a non-harmonic trap, we are able to generate an effective Mexican
hat potential and generate a “dynamical” ring-shaped gas, which incidentally happens to be
quasi-2D. The overall structure of this thesis will be the following:

e The first part aims at presenting the tools needed to properly understand the details
associated to the production, manipulation and observation of our systems. Chapter 1
will describe the general properties and behavior of trapped quantum gases. The second
chapter will then detail from a theoretical point of view the central technique of our
experiments: the realization of RF-dressed adiabatic potentials. Chapter 3 will finally
present the general experimental details of our setup, from the production of the BEC
to the imaging procedures.

e The second part is dedicated to the work realized on the topic of superfluid flow in ring-
shaped gases. The fourth chapter will present the theoretical details about superfluid
flow in annular traps and about the way we realize such a trap. Chapter 5 will then
describe the experimental obtention of a BEC in the ring trap, and chapter 6 will be
dedicated to the preparation and detection of a superfluid flow in this annular BEC.

e Finally, the third part of my thesis will present the work on the topic of fast-rotating
superfluids and the obtention of an annular gas whose shape is due to its own rotation.
The 7" chapter will detail the theory that lies behind rotating superfluid and the interest
towards fast rotation. Chapter 8 will then present the experimental achievements on this
topic, from the obtention of a “dynamical ring” to the possible observation of thermal
melting of vortex lattices.

The first part contains all the details that are common to the following two parts. Parts two
and three have both their own detailed introduction as well as a chapter dedicated to the
theoretical details useful to understand them, and can therefore be read independently from
each other.
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Preliminaries






|
Chapter

Bose-Einstein condensation,
superfluidity and rotation

This chapter aims at presenting the basic concepts and theoretical tools needed to describe
Bose-Einstein condensates (BECs). Starting from the principle of Bose condensation, I will
first describe the physics of a BEC at rest. 1 will then extend it to its out-of-equilibrium
behavior and show how it leads to the concept of superfluidity as well as the consequences on
the rotation of the gas. This will lead me to introduce the two central ideas on which parts 2
and 3 of this document are based. Finally, I will conclude this chapter by describing the case
of two-dimensional gases and the Berezinskii-Kosterlitz-Thouless transition.

1.1 Bose-Einstein Condensation

1.1.1 Bose-Einstein condensation in an harmonic trap
Principle of BEC

Let us begin by considering a gas of N bosons, supposed for now non-interacting, at thermal
equilibrium at temperature 7. Described in grand-canonical ensemble and denoting p the
chemical potential of the system, the average number of bosonic particles in a given state j

with energy E; reads:
! 1.1
e(Ej—u)/ksT _ 1" (1.1)

N; =

N; must obviously be positive, which sets the condition 1 < min(£};). Denoting Ey the
energy of the ground state (supposed nondegenerate) and defining the origin of energies to
have Fy = 0, this condition becomes:

1< Ey=0. (1.2)

In addition to that, counting the total number of atoms in excited states Nexc leads to the
expression:

Z
Nexc = ZMa (13)
7>0
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where Z = exp(u/ksT) is called the fugacity. The condition (1.2) leads to Z < 1, and thus
sets an upper bound on the population of the excited states:

1
Nexe < NSZ“\(T) = E : Ej/ksT _ 1" (1.4)
>0 ¢ -1

In other words, if N > NGEJZE‘”) (T"), all the additional particles must be in the ground state,
which can eventually attain macroscopic population. This corresponds to the phenomenon
called Bose-Einstein condensation (BEC).

Depending on the geometry and dimensionality, the sum Né;’éw) (T') may or note converge,
indicating whether this quantum' degeneracy of the ground state can be achieved.

Bose-Einstein condensation in harmonic traps

A gignificant part of the work described here was achieved in harmonic traps, and T will
therefore specifically describe this case.

Let us consider that the atoms are now confined in an harmonic trap with frequencies
Wz, Wy, w.. The energies of the single particle states then write:

Enzmy,nz = (ng + %)hwx + (”y + %)h‘*}y + (. + %)hwz (1.5)
The sum (1.4) then becomes a triple sum over (ngz,ny,n.). Turning this sum into an

integral® using density of states allows one to calculate the maximal population of the excited
states [81]:

3
NG ) = ) (1) (16)

where wp, = (wxwywz)l/ 3 is the geometric average of the trapping frequencies and ((n) is the
Riemann ¢ function.

When dealing with ultracold atoms experiments, we usually prefer to think in terms
of transition temperature. Such a temperature can be estimated by supposing that N =
N{mew) (T,) at the transition (i.e. the population in the ground state is still negligible, and the
total number of particles just reaches the maximum allowed in the excited states). Equation
(1.6) can then be rewritten:

1/3
ksTe = Hwno (C(3)> = 0.94hwpo N /3. (1.7)
Below this temperature, quantum degeneracy is achieved, and the fraction of atoms in the

ground state can be deduced from:
Ny 7\*

1. As opposition to thermal degeneracy, which would correspond to the temperature being so low that
excited states cannot be thermally populated.

2. This is relevant if the energies in the system are much larger than the level spacings, especially kg7 >
hwho, and if the number of atoms in the system is large.
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Condensate wavefunction and correlation function

Let us now try to describe the atomic state in such a system; we will write ¥(r) the field
operator creating a particle at position r. One can decompose the state of the system in the
basis of the single-particle states ;, with creation operators a;:

U(r) = Z i(r)as. (1.9)

The number of particles in the single-particle ground state g can then be written as Ny =
<&$&0>. If the system is condensed, the population of the ground state is macroscopic: sup-
posing that the total number of particles in the system is large, one has therefore Ny > 1.
It is then relevant to treat the field classically and ignore the noncommutativity between ag
and dg, writing ag ~ v/No [82]. The field operator can then be rewritten as:

U(r) = v/Nowo + Z%(I‘)di, (1.10)

i#£0

and for T' <« T, as most atoms are in the ground state the atomic state is approximately
vV Nowo(r) (and g then depends, of course, on the considered system). The field operator is
then replaced by a c-number.

Writing the field operator is also useful to provide a more general definition of Bose-
Einstein condensation. The first order correlation function can be written as the one-body
density matrix:

g1(r,r') = (T (x)T(r)). (1.11)

In the case of a uniform gas, Penrose and Onsager showed that the population of the ground
state is given by limp. |00 g1(r, ') = No/V, with V' the volume of the gas [83]. The Bose-
Einstein condensation is therefore equivalent to the the existence of a non-zero limit of the first
order correlation at large distances. This criterion provides, in fact, a more general definition
of the condensation that can be generalized to any system, from the limit |r — r/| — oo:

e If g1 (r,r’) tends towards a non-zero limit, the system is condensed. One can also speak
of “off-diagonal long-range order”, as it involves the non-diagonal terms of the density
matrix.

e If g1(r,r’) goes down to zero, the gas is non-condensed.

In fact, intermediate cases can also happen: especially, for finite-size systems, the correlation
function can tend towards zero on a distance that is larger than the size of the system,
leading to the so-called quasicondensation where the system is coherent while strictly speaking
condensation does not occur (as can happen in the 2D case, see section 1.3). More generally,
in the non-condensed case, the distance over which the correlation function goes to zero can
be used to define a “correlation length” which describes the size over which the system is
coherent, which can sometimes be non-negligible compared to the size of the system.

1.1.2 Interacting Bose-Einstein Condensate

Let us come back to our harmonic trap. In the previous section, we deduced that in the absence
of interactions for 7' < T¢ the atomic state could be described by the c-number v Npg(r),
©o(r) being for harmonic traps the wavefunction of the ground state of the harmonic oscillator.
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However, this picture happens to be completely wrong in the vast majority of experimentally
obtained cases (fig. 1.1). This is due to the presence of interactions between atoms, which
significantly modifies the condensate’s behavior even in the weakly interacting case. In the
case of repulsive interactions (which will be the case during this whole document), it is indeed
favorable for the atoms to populate different (single-particle) states in order to reduce the
density: the real ground state in which condensation will occur is therefore modified by the
interactions between atoms. We can however suppose that the approach described in section
1.1.1 still holds, and describe the field classically: ¥(r) = (r) (with [|¥|?> = N). This
approximation supposes that the populated states contain many atoms each, so that we can
neglect the noncommutativity of the single-particle annihilation and creation operators. The
susbsequent question is then: what is the equation that governs ¢ (r)?

1000
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60 —40 -20 0 20 40 6C
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Figure 1.1 — Density distribution of a sodium condensate in a harmonic trap: the non-
interacting description (dashed line), corresponding to the gaussian distribution of the
harmonic oscillator’s ground state, differs very significantly from experimental results.
The Thomas-Fermi profile (solid line) shows a good agreement with the data. The pres-
ence of repulsive interactions significantly broadens the cloud, reducing the local density.
Figure from [81], data from [84].

Let us describe the interactions first. For ultracold temperatures and dilute gases, inter-
actions are essentially low-energy binary collisions (“s-wave” collisions), for which the exact
shape of interaction potential does not matter: all the interaction can be summarized by a
single parameter, the scattering length a [82]. The effective interaction potential between two

particles can therefore be described by a Dirac potential with only one amplitude parame-
ter [81]:

Vint(r - 1'/) = gint5(1‘ - I'/)a (1-12)

where gint is the coupling constant, which reads:

Arhia
Jint = VR (1.13)

M being the atomic mass.
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For such interactions, applying the Heisenberg equation to ‘il(r) and then replacing, again,
U(r) by 9(r) leads to [81]:

ﬁ2v2 5
<_ oM + V:ext(r> + gint|¢(1‘,t)‘2> ¢(I‘,t) — Zﬁai’f

(r,1). (1.14)

This equation, called “Gross-Pitaevskii equation” (GP equation), describes well the behavior
of most trapped atomic gases. It takes the form of a non-linear Schrédinger equation ; the
first term corresponds to kinetic energy of the condensate, the second one to the trapping
energy, and the third one to the interaction energy. Describing the ground state wavefunction
classically corresponds, in fact, to a mean-field approximation: the GP equation describes the
behavior of a single atom in the field created by the N — 1 ~ N other atoms.

By separating the time and spatial dependence of the condensate wavefunction like one
would do to write the time-independent Schrédinger equation, ¥ (r,t) = ¢(r)exp(—iut/h),
we can write the stationnary Gross-Pitaevskii equation, describing the ground state of the
system at rest?:

( h2V?

e Vi) +gimw<r>2) () = (). (1.15)

For a large number of particles with repulsive interactions (i.e. gt > 0, or a > 0), the
kinetic term usually becomes very low and can be neglected — this is called the Thomas-
Fermi approximation. For a harmonic trap, the density variations happen on a typical size
dho = V/h/Muwy,, called the harmonic oscillator length, which also gives the typical size of
the cloud: comparing the kinetic term and the interaction term in the previous equation, we
find that this approximation will be relevant for Na > dy,. The previous equation can then
be rewritten as:

n(r) = f(o)f? = £ Veelr) (1.16)

Gint

We see that the density distribution “mimics” the potential landscape, filling the trap up to
the chemical potential p = gintMmax (see figure 1.2). For a harmonic trap, it leads to the
following density distribution:

562 2 2
n(r) = n(0) (1 — % - R2> , (1.17)

where the right hand side is positive, and 0 everywhere else. The R;, called Thomas-Fermi
radii, are defined for the axes of the harmonic trap as: RJZ = 2u/M wjz-, and give the total
extent of the cloud along the directions of the trap. This profile is the one describing the
density distribution of figure 1.1.

In this regime, the chemical potential of a 3D cloud trapped in a harmonic potential thus
writes [81]:

2/5
e <15Na> . (1.18)

1
= —“Mw? R? =
3D 2 Who{Ltho 92 ho

Finally, one may note that equation (1.17) leads to a discontinuity of the derivative of the
density where density cancels, and thus to an infinitely high kinetic energy on the edges of the
cloud. In fact, the Thomas-Fermi approximation does not hold in regions where the density

3. It is also possible to derive it directly from a variational method [82].
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Figure 1.2 — In the Thomas-Fermi approximation, the density distribution mirrors the
potential landscape. Top: potential landscape, bottom: density distribution.

is very low. An estimation of the size over which the kinetic term is non negligible, denoted
&, can be done by comparing the kinetic energy for an evolution on a distance & with pu:

h? 1
= = . 1.19
¢ 2Mp  \/S8man ( )

&, called the healing length, describes the typical minimal size on which the atomic density
can vary from n to 0. Similarly, on the edges of the condensate the Thomas-Fermi profile will
in fact be smoothened by the kinetic term.

1.2 Out-of-equilibrium behavior of BECs

The previous section described the behavior of a BEC at rest, however, like most phase
transitions the Bose condensation leads to very significant changes in the dynamical behavior
as compared to the case of a thermal gas. We therefore also need theoretical tools to describe
the out-of equilibrium behavior of such a system. In particular, this will lead us to show that
a Bose-condensed gas, in the presence of interactions, is superfluid.

1.2.1 The Bogoliubov approach
Bogoliubov spectrum

An interesting approach to begin with corresponds to supposing that most of the condensate
is at rest, and look for small fluctuations around this equilibrium position. With this in mind,
a relevant description of the wavefunction can be written as:

U(r,t) = [o(r) 4 (e, t)]e H/h, (1.20)

Here, 7 is the wavefunction of the BEC at rest — i.e. the solution of the stationary GP
equation as described in section 1.1.2, and the corresponding density will be noted n(r). The
quantity di(r,t) is the deviation from the condensate at rest, and is supposed to be much
smaller than ¢ (r). Under these conditions, the GP equation can be linearized by removing
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all high order terms, leading to [85]:

h2V?
2M

L0 "
iho 0% = — 0 + Gingn (1) [0 + 209)] — pdep. (1.21)

Solving this equation leads to the ezcitation spectrum of the sytem, and the results obvi-
ously depends on the geometry of the system (due to the n(r) term). For a uniform system
with density n, it leads to the so-called Bogoliubov spectrum:

2k [ h2K? B2k 2
Bp= o (22 L ogn) =22 14 = 1.22
k \/2M <2M +2g t") o\ e (122)

where Fj is the energy of an elementary excitation of the system, corresponding to a plane
wave with wavevector k; the spectrum is plotted on figure 1.3. For low-energy excitations, it
is proportional to k, corresponding to a phononic excitation: Ejy = hck, where ¢ = /gingn/M
is the speed of sound in the gas. For high-energy excitations, it is quadratic, describing free-
particle excitations shifted by the condensate chemical potential: Ej = giywn + h?k?/2M.
These two domains correspond to excitations with wavelength larger or smaller than the
healing length of the condensate.

T
10 |-
1
L k> 2 /]
2 s & = 1+ 3 ’
g 2m (kS)
=
g ya Scissors
2 'k’ / //[dealBose as |
2 & = +gn s & \
o 4 2m s -4
Q ’ ~
s} , -
: I
2r e o =ck A
u— -
0 1 1
0 1 2 3 SR - -
ke Quadrupole Monopol

Figure 1.3 — Left: Bogoliubov excitation spectrum (black solid line), plotted with the
two phonon-like (black dashed line) and particle-like (red dashed line) excitation limits.
Figure taken from [85]. Right: illustration of the first collective modes in highly oblate (or
quasi-2D) trapped gases — in which case the oscillation happens in-plane.

For a non-uniform gas, computing the excitation spectrum can lead to various results
depending on the gas geometry. In particular, whereas in the case of uniform gas the low-
energy excitations are plane waves, for trapped gases it takes the form of collective excitations
called collective modes [82]. In the simplest case of a harmonically trapped gas, we can
mention for example the dipole mode (center of mass oscillation at the bottom of the trap),
the monopole “breathing” mode (corresponding to the oscillation of the cloud radius), the
quadrupole mode (oscillation of the cloud radii in phase opposition), or the scissors mode
(oscillation of the orientation), which are represented on figure 1.3 in the case of an oblate
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gas. All these modes have their own excitation spectrum and eigenfrequencies and can give a
significant insight into the physics of trapped gases. A lot of work on the study of these modes
has been achieved in our team in the case of 2D gases [86,87]; a more detailed description will
be presented in chapter 7.

Critical velocity

Once we know the excitation spectrum of the gas, we can wonder how to create these excita-
tions. Let us consider the case of momentum transfer from an object moving with a velocity
v relative to an homogeneous fluid, for example a point-like impurity moving with velocity v
within the fluid at rest*. Writing the conservation of momentum and energy for creating an
excitation of energy Ej and momentum hk leads to the inequality [82]:

Ej
V> —. 1.23
o (1.23)
In other words, for a given excitation there can be threshold for velocity under which creating
this excitation is not allowed. If all excitations have such a threshold, it implies the existence
of a velocity threshold below which no excitation can be created at all (fig. 1.4). This “critical
velocity” then expresses as:

Ej
=min | — | . 1.24
v > v, = min (hk:) (1.24)

k

<]

Figure 1.4 — Illustration of the notion of critical velocity. An obstacle moving within
the fluid below critical velocity cannot create excitations, and the fluid does not interact
with it. Above the critical velocity, creating excitations is possible, allowing interactions.

The existence of a non-zero critical velocity means that a defect moving slowly enough
will not interact with the fluid. In particular, it means that the viscosity for the motion of
this defect is stricty zero. This is the definition of superfluidity as expressed by Landau [88].

For the uniform gas, this velocity is easily deduced from (1.22):

Ve =/ Gintn/M, (1.25)

4. The case initially considered by Landau was a superfluid flowing with velocity v along a capillary, and
the momentum transfer from the container to the fluid.
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which is the speed of sound in the gas c¢. One may note that for non-interacting gases (g = 0),
the critical velocity vanishes: repulsive interactions are necessary to achieve superfluidity.

This approach is however limited as it considers only the excitations that are described
by the Bogoliubov approach; especially, the possibility to nucleate vortices in the fluid can
significantly lower the real critical velocity [12]. In the non-uniform case, computing properly
all the possible excitations to which an impurity can couple is quite troublesome and there is
often no model allowing to compute v, precisely.

1.2.2 Hydrodynamic formulation

Larger displacements and excitations of the condensate are also described by the time-
dependent Gross-Pitaevskii equation (1.14), but it would be useful to have a description
of the fluid that corresponds more to what we are used to ; in particular we would like to
have an expression for the fluid velocity.

Multiplying equation (1.14) by ¢* and substracting its complex conjugate, we find:

ih ¢*—a U+ qpi) vt = L (p* V2 — pV2Y*) (1.26)
ot ot 2M ’ ’
which also writes: 5 "
2_ v . * _ *
—m\w\ = 2Miv (V" — p V™). (1.27)

Since [(r,t)|? = n(r,t), this equation can thus be written under the form of the continuity
equation for a classical compressible fluid:

on
g +V - (nv) =0, (1.28)

where the velocity v of the fluid is defined as:

h

= oM (V*VY —9pVyr). (1.29)

A%

Writing the wavefunction as amplitude and phase®:

(e, 1) = /(D) exp(iS(r, ) (1.30)
thus leads to the expression of the local velocity of the superfluid:

v(r,t) = %VS(r,t). (1.31)

Multiplying equation (1.14) by ¢*, adding its complex conjugate and injecting (1.30) leads
to the equation:

L = G2 4 g+ Vi + 2 (P2 2o (1.32)
9 QM\/?Z Jint ext ot \ M =Y, .

5. A more rigorous writing of the phase is ¢(r,t) = ut + S(r,t), but the phase ut is uniform over the whole
cloud and is thus not implied in its superfluid dynamics. However, it can be useful to keep in mind that
S(r,t) is the deviation from the phase of the stationary state.
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or, equivalently, to the Euler equation for a quantum fluid [85]:

h2
oM/n

This equation is equivalent to the classical Euler equation, describing the evolution of an
inviscid flow (as expected for a superfluid), with the addition of a term involving explicitly
h, corresponding to a “quantum pressure”. The combination of equations (1.28) and (1.33) is
in fact equivalent to the Gross-Pitaevskii equation, simply separating it into amplitude and
phase. These hydrodynamic equations are the ones that allow, for example, to compute the
collective modes in the case of a trapped gas [89].

0
VQ(\/E) + gintn + ‘/ext> + Ml = 0. (133)

1
ZMv? = =
V(2 M ot

1.2.3 Rotating superfluids

Equation (1.31) is crucially important, as it directly links the superfluid velocity to the phase.
It also shows that the superfluid flow is irrotational: V x v = 0, which leads to important
consequences when trying to describe to rotation of a superfluid.

One has to note that an irrotational flow doesn’t necessarily imply the absence of rotation
of the fluid: it means that locally, the fluid doesn’t rotate, but the ensemble motion of a
condensate can still allow rotation and non-zero angular momentum (an example will be
discussed in chapter 7). However, this configuration usually allows the cloud to carry only a
small angular momentum: a large angular momentum would require large anisotropies and
large ensemble motion, which is usually unstable and decays to form quantized vortices [90,91].
It is these vortices which “hold” the rotation of a superfluid.

Quantized vortices

A very important relation when dealing with rotating superfluids can be obtained by calcu-
lating the circulation of the superfluid velocity along a closed loop: since this velocity is given
by (1.31), it corresponds to calculating the phase difference between a point and itself. The
wavefunction having to be single-valued this difference then has to be an integer multiple of
2. The circulation then has to be quantized, as noted by Onsager and Feynman [12,92]:

jiv(r,t) -dl = %ACS =0 x 271'%75 €Z. (1.34)

However, due to Stokes’ theorem and the irrotationality of the superfluid velocity, this
circulation is necessarely equal to zero if the velocity can be continuously defined on the
surface enclosed by the contour. A non-zero circulation thus requires the atomic density to
vanish somewhere on this surface to allow the presence of a phase singularity, that is, a vortex.
A quantized vortex can be seen simply as a node in the condensate wave function, around
which the phase rotates by a multiple of 27 (see figure 1.5): in this way, the superfluid flow
can rotate around it while keeping its irrotational character. Note that the two-dimensional
and three-dimensional cases differ here: in 2D, the vortex is a point around which the fluid
rotates, while in 3D the vortices are lines, which allows for example vibrations of vortices or
vortex rings.

While in principle any multiple of 27 is possible, a configuration with |¢| < 1 is in practice
unstable: a vortex with a phase winding larger than 27 spontaneously breaks into several
vortices with 27 phase winding each [56,93|, which repel each other.
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Figure 1.5 — Left: principle of a vortex (in two dimensions). Let us suppose that the
atomic density cancels somewhere: both real part and imaginary part of the wavefunction
then have to cancel somewhere; I draw as a red line the border between positive and
negative real part and as a blue line the border between positive and negative imaginary
part. Following equation (1.31), we see that the fluid now rotates around the crossing be-
tween both regions, which corresponds to a node in the wavefunction. Right: experimental
pictures of vortices, in superfluid helium (top, from [15]) and in a dilute BEC (bottom,
from [52]); the fluid rotates around each of these vortices at the same time.

Beyond quantized vortices

Vortices provide a way to indroduce angular momentum in a cloud by locally creating a
zero of the density. However, if the density vanishes locally in the cloud for some other
reason, circulation around the corresponding region is also allowed. Two ways to produce
such configurations will be studied in this thesis, corresponding to parts two and three:

e The trap can have an annular shape: in this case, the fluid at rest already has a hole
in its center. In such a configuration, it is possible to create a persistent flow along the
ring, and due to relation (1.34) the circulation of the flow along the ring is quantized.

e In the case of a very fast rotation, a centrifugal barrier can appear at the center of the
gas, leading to the appearance of a hole around which the fluid rotates. The gas will
also adopt a ring shape, but this time the effect will be dynamical, as the hole somehow
sustains itself through the rotation it creates.

1.3 2D systems and the BKT transition

I will now conclude this chapter by discussing the case of 2D gases, as it provides one of the
motivations for the work presented in part II and describes a significant part of what happens
in part III.
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1.3.1 The quasi-2D regime in a vertically harmonic trap

First, how do we enter the 2D regime? The first criterion is that the gas should have all
dynamics frozen in the vertical direction: the particles all have to be in the same vertical
state. This is achieved when both the gas temperature and the chemical potential have
to be too low for the first excited vertical state to be populated. For a vertical harmonic
confinement, this condition corresponds to kg1, i < Aw,. Note that this is very different from
Bose-Einstein condensation: this time, we have a thermal degeneracy of the ground state (but
only in the vertical direction).

The second criterion deals with interactions: if the vertical size of the gas is smaller than
the scattering length, the collisions have to be treated in 2D; if the gas is harmonically trapped
with all atoms in the vertical ground state, this corresponds to d, < a (d, being the vertical
oscillator length). The gas can then be considered as truly 2D.

While the first criterion can be fulfilled with available experimental techniques, the second
one is considerably more difficult to verify (and in our experiments, d, is typically 50 to 100
times larger than a). If only the first criterion is satisfied, the gas is said quasi-2D: the vertical
motion of the particles is frozen, but the collisions are still described by 3D physics. In this
case, one can show that the interactions between atoms can still be described using a Dirac
potential, but with a modified coupling constant:

Jint h? ~

gop = \/%d = Mg, (135)

where ¢ is a dimensionless coupling constant, expressed as:

G= \/Swdﬂ. (1.36)

In the case of a condensed gas (whose validity will be described in the next section), the
Gross-Pitaevskii equation will then stay valid (both in its time-dependent and stationnary
versions), simply replacing gint by gop and replacing the 3D wavefunction ¢ by its value
averaged along z (and replacing the space density n by a surface density p). Note that in the
experiments described in this document, g is typically of the order of 0.1.

1.3.2 (Quasi) condensation in 2D

Let us now discuss the possibility of condensation in 2D. For a uniform (quasi-)2D gas, the sum
(1.4) does not converge, meaning that no condensation can occur. However, Berezinskii [61]
and Kosterlitz and Thouless [62] predicted that an interacting 2D gas should undergo a phase
transition towards a superfluid state, now called the BKT transition, at a critical phase-space
density D = pA3p that was later computed to be equal to [94]:

D. = In(380/3). (1.37)

Remarkably, at the transition the superfluid phase-space density Ds presents a universal jump
from 0 to 4, see section 1.3.3. This transition does not allow a long-range order to appear
in the gas and the correlation function g; still goes down to zero at long distance, but while
this decay is exponential for large temperatures, it is only algebraic for D > D,, allowing a
more extended phase coherence that is sufficient for superfluidity; in the case of finite-size
systems this coherence can even extend on the whole system size. Such a gas is called a
quasicondensate, that is a condensate with a nonuniform, fluctuating phase [95].
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The case of harmonically trapped quasi-2D gases is even more subtle. In the non-
interacting case, the density of states is modified and real condensation has been demonstrated
to occur at a critical atom number [96]:

2 (kT2
NO=T (s 1.38
=T () (13%)

where w) is the radial trapping frequency. This corresponds to the critical temperature

V6N

™

keTe = hw, (1.39)

However, one can show that in this case, the density at the center of the trap diverges (even
though the total number of particles is conserved) [63]: in the presence of repulsive interac-
tions, this is not possible and true condensation does not occur. Instead, a BKT transition

occurs again, for a particle number slightly higher than the one required for condensation in
the non-interacting case [97]:

Ncreal 3§ 2 g 3§ g
. ~1+—=1 = —= |1 In{=]]|. 1.4
NO tam <16 T R T (1.40)

This increased critical atom number corresponds, somehow, to the additional atoms one has
to put in the trap in order to reach the critical phase-space density in its center, due to
repulsive interactions. It has been remarkably verified in the group of Z. Hadzibabic [64] (see
figure 1.6). The BKT transition (in the interacting case) and the BEC transition (in the
non-interacting case) connect in the limit § — 0.
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Figure 1.6 — Left: measurement of the critical atom number for the BKT transition,
taken from [64], depending on the interaction parameter g. The solid line corresponds
to the prediction of equation (1.40). Right: underlying mechanism for the transition: for
D > D, (or equivalently Ds > 4), the thermally activated vortex-antivortex pairs stay
bound together: their impact on the gas is only local. For D < D,, they are not bound
anymore and vortices freely proliferate in the gas, destroying the phase order.
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1.3.3 The BKT mechanism

The mechanism allowing the appearance of superfluidity in a 2D gas is particularly elegant.
It deals with the presence of vortices within the gas: since a vortex causes a winding in the
phase of the wavefunction, the proliferation of free vortices in the gas would destroy the phase
order, and prevent the occurence of superfluid behavior. In 2D, the thermal fluctuations can
cause the nucleation of vortex-antivortex pairs, that is, pairs of vortices with opposite charge.
If the vortex and antivortex stay close to each other, they will cause a local perturbation,
but their respective effects will cancel far away from the pair. Therefore, the existence of a
quasi long-range order will depend on whether the vortex-antivortex pairs can unbind or not.
Using thermodynamic considerations, Kosterlitz and Thouless [62] showed that the average
elongation of the pair ((r, —r,)?) expresses from the phase-space density of the superfluid Dj
as: D9
((ry —14)%) = §2DZ 1

This expression is defined only for Dy > 4: for lower phase-space density, the vortex-antivortex
pair can unbing freely, while for a phase-space density larger than 4 the distance between
them will be of the order of a few & (see figure 1.6). The appearance of superfluidity in the
gas therefore requires the phase-space density D of the superfluid to be larger than 4; the
condition (1.37) in fact corresponds to the phase-space density D of the whole gas required
to reach Dy = 4. It also leads to a so-called “universal jump ” of the superfluid density from
Ds =0 to Dg = 4 at the transition.

It is also interesting to quantify the order in the system by computing the effect of phase
and density fluctuations. One can show that for D < 1, the density fluctuations are strongly
suppressed [94]. Concerning the phase fluctuations, while the short-wavelength phase fluc-
tuations are prohibited in the superfluid regime, the long-wavelength phase fluctuations still
have an impact, and lead to a decay of the correlation function g; at long distance [63]:

1/Ds
g91(r,0) = p <AdB> : (1.42)

(1.41)

r

However, while g; decays exponentially in the thermal regime, it is here always larger than
p(A\/r)~1/* and can easily have a significant value at the edges of the gas.
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Chapter

Trapping atoms with RF-dressed
potentials

The central tool in our experiment is the use of radiofrequency-dressed (RF-dressed) adiabatic
potentials to trap and manipulate atomic clouds [98,99]. RF-dressed traps give access to
highly versatile and precisely tunable traps, that enable interesting trapping geometries. Still,
it isn’t as common as techniques like optical dipole trapping and the underlying mechanism
is quite subtle. This chapter is intended to give the theoretical bases required for a good
understanding of the work presented in this thesis, as well as the “RF-dressing for dummies”
document I would have liked to find when starting to deal with these traps. It will, for a
significant part, be inspired of the review of Héléne Perrin and Barry Garraway [100], towards
which people looking for a complete description should go.

RF-induced adiabatic potentials were first proposed in 2001 by O. Zobay and B.M.
Garraway [98]. The idea was to couple different Zeeman substates in an inhomogeneous
static magnetic field to create avoided crossings and trap atoms on isomagnetic surfaces, and
it was initially intended to generate two-dimensional (2D) atom traps. The first experimental
realization of such a trap was achieved at LPL in 2003 [99,101|, but the 2D character was
achieved later, in 2013 [102], and has been used for example to study the collective modes
of 2D superfluids [68,103,104]. In addition to low-dimensional trapping, this method also
showed useful to generate exotic trap geometries, for example double well potentials [105].
Combining it with optical potentials enables even more geometries to be achieved, for ex-
ample ring potentials [106,107| or lattice potentials [108]. Finally, the fast control available
with such traps allows one to modulate the control parameters and produce time-averaged
potentials [109,110]. Among the current projects under development involving RF-dressed
potentials, one can cite the realization of a Sagnac interferometer using a ring-shaped TAAP
potential [111] or the project of realizing a bubble trap in space, in the absence of gravity [112].
A more detailed review of the last developments in the field can be found in [113].

2.1 Introduction to RF dressing

Let us now enter the core of the problem. I will first try to explain the physical principle on
which RF-dressed traps rely. The problem can be expressed quite simply:
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“How can we trap atoms at an arbitrary position using an inhomogeneous static magnetic
field and an oscillating magnetic field?”

2.1.1 Trapping an atom in an inhomogeneous magnetic field

To begin with, we can try to answer a simplified version of the question: how can we trap
atoms in an inhomogeneous static magnetic field?

Let us consider an atom in a state with total angular momentum F' evolving in a static
magnetic field Bg(r) = By(r)e,. In the following, I will call “spin” the total angular momen-
tum, sum of nuclear spin, electronic spin and orbital angular momentum.

The angular momentum operator of the atom will be denoted F. The field defines a
quantization axis, and we can find a basis to diagonalize both F? and the projection of F
along e, denoted F.. For the sake of simplicity, I will for now use a two level system, i.e.
F =1/2. The eigenstates of the system will then be written |+),, with eigenvalues:

. 1 A
Fz’i>z = iih‘i>27 F2li>z = th(F + 1)H:>z- (2-1)

These two eigenstates correpond to the spin being oriented in the same (or opposite)
direction as the magnetic field. The hamiltonian of the system writes:

gris
h

with pp the Bohr magneton and gp the Landé factor of the atomic state. The energy of the
eigenstates is then Fy = +gpugBy/2: if the field is inhomogeneous, supposing gr > 0, the
|+). state will be attracted towards regions where the field has a lower modulus (“low-field
seeker”), and the |—), state towards high magnetic fields (high-field seeker). If gp < 0 it is
simply the opposite situation.

This already allows us to trap an atom: depending on its state and on the sign of gp
one has to realize a maximum or minimum of the magnetic field. However, Wing’s theorem
forbids the existence if a maximum in the modulus of a static magnetic field [114]: it is thus
necessary to trap atoms in a low-field seeking state.

Things become a little more complex if the field orientation is not uniform (which corre-
sponds to realistic cases, where it is needed to trap atoms along all directions). The atom will
be trapped provided it stays in the local state that is attracted towards the field minimum,
ie. if it adiabatically follows the field orientation. It is thus necessary to take care when
trapping low-field seeker atoms: if the minimum of the magnetic field is too weak, the atoms
may not follow the field orientation, which results in atoms escaping the trap, called Majorana
losses [115].

One can also show that the spin will precess around the axis of the static field, with
frequency: wo(r) = |gr|us|Bo(r)|/k, called the Larmor frequency. The eigenenergies Ey of
the states can then be simply written EL = +hwp(r)/2.

H=

ByF., (2.2)

B, - F _ gFr;UB

2.1.2 Trapping an atom anywhere in an inhomogeneous magnetic field

It is somehow possible to explain the most basic principle of RF-dressed potentials classically,
by reformulating a little bit our question: how is it possible to stabilize a magnet at an
arbitrary position in an inhomogeneous magnetic field?
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The answer is: flip it. By flipping the magnet, the forces exerted on it are changed to
their opposite. If the magnet is regularly flipped, it should be possible to keep it at a stable
position, the magnet going back and forth around its average position.

We thus need to think about a way to “flip” the atomic spin. A mechanism allowing to do
that is the phenomenon of nuclear magnetic resonance [116], which won Rabi his Nobel prize
in 1944. By applying on the atoms an oscillating magnetic field orthogonal to the local static,
directing magnetic field, it is possible to resonantly flip the atomic state if the frequency of
the oscillating field is equal to the Larmor frequency defined by the static field.

Vie) $/

— —

hwrf —CC> th

e R

Figure 2.1 — Basic principle of RF-dressed adiabatic potentials. Left: bare potentials
(for a linear variation of wy(r)). The whole system is exposed to an RF field; in places
where its frequency is equal to the local energy difference between the Zeeman states it
is able to flip the atomic spin. Atoms in the blue regions are attracted towards resonance
and can be trapped, whereas atoms in the yellow (dashed) regions are expelled from
resonance. Right: corresponding adiabatic potential close to resonance, with the shape
g\/ (wo(r) — wee)? + Q7. The atoms now continuously evolve between |+), and |—) states.
The energy splitting between levels on resonance is equal to h{2;.

We can then go back to the previous question of a spin evolving in an inhomogeneous
magnetic field (that we will still, for now, consider always aligned along e.): since the local
magnetic field amplitude varies, the Larmor frequency will now also vary in space. We also
add an oscillating magnetic field orthogonal to e, (that I will in the following call “RF field”,
since it is what we use in practice), with uniform amplitude By and frequency wy, and we
suppose that the local Larmor frequency is equal to w, at some position.

An atom in state |[4), located at a place where the Larmor frequency wq(r) is higher than
wyt will be attracted towards lower magnetic fields: the Larmor frequency will then decrease
during its displacement, and it will at some point come into resonance with w,s. The oscillating
field is then able to flip its spin. Since the atom has some velocity, it will cross the resonance
and arrive on the other side, but its state then became |—),: the potential landscape it feels
becomes inverted and it is now attracted towards places with higher wp(r)... which will cause
it to cross resonance again, and get flipped again while going back to the other side of the
resonance (see figure 2.1).

In the end, the atom gets trapped around the resonance wy(r) = wyt, or, equivalently, on
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the isomagnetic region defined by:

Tuwoy
Bo(r) = d

— . 2.3
MB‘QF’ (23)

2.1.3 Adiabaticity and Landau-Zener paradigm

This description allows to explain how atoms can be trapped close to resonance, but doesn’t
tell anything on their behavior around the resonance itself: we need a mathematic treatment
of what happens when atoms cross it to understand things properly.

Let us add to the system of section 2.1.1 an oscillating magnetic field By = By cos(wyft)e,+
By sin(wyet)e, ; we can define similarly to wo(r) the frequency @y = |gp|us|/B1|/h, and the

interaction of the atom with this field writes, if g > 0: Vi=O [cos(wrft)f'} + sin(wrft)ﬁy}

with FJ;, Fy the projections of F along e;, e,. In the basis rotating at w,r around e;:

\i@»z—em)y%?ﬁﬁ4Lﬂz_e$wﬂw2iﬁ7 (2.4)

the total hamiltonian of the system writes:

S +

where d(r) = wyf — wo(r) is the detuning between the oscillating field and the local Larmor
frequency.

However, the complete description of the evolution of an atom in a space-dependent po-
tential can easily become complex since the position and momentum operators f{, P do not
commute. For simplicity, we will keep a semi-classical description, and consider that:

e 0 and ; depend exclusively on space.

or— <ﬁ) and AR = 0: the atoms are point-like, and their time evolution then depends
only of their position.

e the atomic motion happens at a constant velocity: r(t) = vt.

We will thus consider that what happens to the atoms can be described as a sweep of the
parameters 0 and 1:

d(r(t)) = d(vt) « (t) (2.6)
M (r(t) = (vt) © N(?). (2.7)
The considered hamiltonian will then be (2.5), but this time considering time-dependent
Qq and 9:
g D=0 a(?)
=3 [wt) 5(t) | (28)

At an instant ¢, H can be diagonalized with a unitary operator Ut

AA:ZT%Qg%J:wmﬁmw (2.9)
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The instantaneous eigenenergies are then:

Ei(t) = igﬁ(t) = ig, [62(t) + Q3 (). (2.10)

Writing ¢(t) and 14 (t) the atomic state in the respective bases where H and H, are
diagonal, with ¢ (t) = U(t)1a(t), the Schréodinger equation:

0 -
maw) = H(t)y(t) (2.11)
becomes for 14 (t):
O a(t) = Ha1ya(t) — 001 2 0ua(0) (2.12)

We see, then, that the atom will “follow” the eigenstates of H A(t) if the last part of equation
(2.12) stays small. For the hamiltonian (2.8), this correction term has the form [100]:

4 %)

~(t) is the correction corresponds to non-adiabatic coupling between the eigenstates of H A,
with (t) given by:
BB — 3N

() = —i 0 . (2.14)

Following the eigenstates of H4 then supposes the condition [117]
|y (1) < Q(t). (2.15)

Let us then go back to the description of an atom evolving in an inhomogeneous static
magnetic field and an oscillating field. If we suppose that the oscillating field has a homoge-
neous amplitude such that Q¢ = 0, this condition then rewrites:

0] < 02, (2.16)

which is called the adiabaticity condition.
In these conditions, the Landau-Zener model [118,119] expresses the probability of non-
adiabatic transition when crossing the resonance:

Q2
P =exp (—7r.1> . (2.17)
0]

Let us finally sum up what we have seen until now: for an atom evolving in an inhomo-
geneous magnetic field in the presence of an oscillating field, the energy of the atom in the
upper state at time t is E(t) = 2/62(t) + Q2(t), which equivalently means that the effective
energy landscape felt by the atom can be expressed as E(r) = 2/52(r) + Q2(r), with § the
detuning between the local Larmor frequency and the oscillating field frequency and 2 the

local Rabi coupling, provided that the adiabaticity condition ](5 | < Q2 is respected (for an
atom in motion and a time-independent §(r), it becomes |v - V| < Q2?).
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2.2 Formalism of RF-dressed traps

Up to now, I explained the principles on which RF-dressed adiabatic potentials rely, but we
now need a more detailed treatment, that would allow us to fully describe a trap for ultracold
atoms based on this method. In particular, we need to be able to describe the case of more
than 2 spin states (which is always the case when working with bosons!), and to be able to take
into account the local polarization of the oscillating field (the previous treatment corresponds
to circular polarization). This description is detailed in sections IIT and IV of [100], that I
will present here in a simplified version.

2.2.1 Classical field treatment of magnetic resonance

Like previously, we want to describe the behavior of an atom placed in the combination of
a static magnetic field By = Bge, and an arbitrary classical magnetic field oscillating at RF
frequency B1(t) = B, cos (wytt)e, + By cos (wrrt)e, + B, cos (wytt)e..

Using a quantization axis e, there is a basis where F2 and F, are diagonal. We will
consider all atoms to be in the same F' state, and the spin eigenstates will then be written
|m), with F;|m), = mh|m), and m € {—F,—-F +1,..., F -1, F}.

The magnetic interaction between the static field and the atomic spin reads:

Hy = QF:B By - F (2.18)
and we can write the Larmor frequency as:
wo = |gr|peBo/h. (2.19)

For an arbitrary polarization, it is more practical to describe the RF field using complex
notation, as B1(t) = Bie ™t + c.c., with B; the complex field amplitude:

B. . B B. .
B, = 7"”6—1%% + ?ye_wyey + {e_z‘z’zez, (2.20)
or, writing € the complex polarization of the field (Je| = 1):

B, = Bie. (2.21)

We choose to describe the RF field in the spherical basis (ey,e_,e,), with

1 . 1 ,
e, = —ﬁ(ex +iey), e = ﬁ(ex —iey). (2.22)
The component along e, of the RF field is aligned with the static field, and provided B, < By,
its effect is negligible [120,121]?. We will thus only consider orthogonal components, and write
the RF amplitude as
Bl = B+e+ + B_e_ (223)

with By = €% -eB;. In the spherical basis, we can write F- er = :F%Fi, with Fi the raising

and lowering operators defined as Fi =F, + iﬁ'y.

1. F=0 is not relevant, being insensitive to magnetic fields.
2. B. comparable to By leads to a modification of the Landé factor when calculating the RF coupling to
B, and B,.



2.2 Formalism of RF-dressed traps 35

Using these definitions, the coupling between the RF and the atomic spin can be written
as:

Vl _ gris

B Fe @it 4pe (2.24)

grps 1 ~ 1 S
= ———B/F . +—B_F | e ™"+ he 2.25
B \/i +4H+ \/§ ( )

And defining the (complex) coupling amplitudes as:

Oy — :F\fz‘gFil“B B, (2.26)

it can be expressed more nicely as:
N Q. . Q_ - 3
‘/1 = S |:2+F+ + 2F_:| eilwrft "‘ h.C. (227)

Here, we introduced s = gr/|gr| the sign of the Landé factor.
We can then, finally, write the total hamiltonian H = Hy + Vi:

Q Qr Q- o0
H = swoF, —1—3[ 2* ettt [ 4 2+ et 4 7(fer’fF_+7‘e“"rftF+ : (2.28)

The first term corresponds to precession of the spin around e,, and the four next terms
correspond to transitions between the different |m), substates.

Like for section 2.1.3, we will now look at what happens in the basis rotating at frequency
swye around e, with rotated states |¢);0r = exp(— strft F,)|1). In this basis, denoting § =
wyf — wo, the hamiltonian now reads:

*

Ao = s6F 1 Q2+ el Dwrt fr 4 Q2+ e—i(s—l)wrftp]
Q_ —i(s+1)wyst T Qr i(s+1)west
+ s 76 rf F_ =+ 76 rf F+ . (229)

Depending on the sign of s, the first two terms or the last two terms will be static, whereas
the two other terms will evolve at very high frequency +2w,s. We can then suppose that the
two non-resonant terms, evolving much faster than the rest of the system, will average to 0,
and consider only the two static terms, in what is called the Rotating Wave Approximation
(RWA). This approximation is valid in the limit where |0, Q0+ < wyt.

We will then denote Q; = Q ; in both cases Q1 = —v/2gpusBs/h. Writing Q) = |Q;]e?
and transforming into the states rotated by swyt + ¢ instead of just swyet, the effective
hamiltonian then becomes:

~ 191|

Hogp = —s0F, + s X (B + B (2.30)

= s(—0F, + |Ql| E,). (2.31)

Then we can finally rewrite:
Heg = QFy, (2.32)
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where we defined:

0 =,/62+ Q2 (2.33)

Fy = cos(0) F, + sin(0) F, (2.34)
=y s—1
= —_— . 2.
6 = arccos < q ) + 5 " (2.35)

Fjy is the projection of F along a new axis in the # — y plane: ey = cos(f)e. + sin(f)e,.
In other words, everything happens as if the atom was evolving in a static magnetic field
oriented along eg. We can define a new set of eigenstates in the rotating basis:

myg = e F M my (2.36)
and the eigenenergies of the corresponding states are:
E,, = mhQ. (2.37)

We thus see that the dressing corresponds to creating a minimum of an effective magnetic
field to trap the atoms.
Close to the resonance, we can now write the adiabaticity criterion simply as:

0] < Q. (2.38)

If this criterion is fulfilled, the spin adiabatically follows the orientation of the effective local
magnetic field eg. Going from one side of the resonance to the other one, this corresponds to
a complete flip of the spin, with a continuous rotation of the spin orientation.

2.2.2 Adiabatic potentials for RF-dressed atoms

The previous description corresponds to a uniform magnetic field and is thus unsufficient to
describe a trap. We also need to take into account the spatial dependence of all parameters:
static field amplitude and orientation, RF polarization and amplitude. The basic principle,
however, still holds: provided the atoms adiabatically follow the local states \m>9(r), they will
feel an effective potential landscape whose value is:

Vin(r) = mhQ(r) = mhy/62(r) + Q3(r). (2.39)

For practical reasons, the extreme adiabatic state |m = F)y will always be used for
trapping: for F' < 1 it is the only state that is trapped, and for F > 1 having all atoms
in the maximally polarized state avoids spin-changing collisions, which would result in atom
losses [122]. In the following, all occurences of m will then be replaced by F.

General principles

The expression (2.39) already allows us to get a good insight on what happens for this kind
of potential:
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e The 6(r) dependence, which is generally the strongest, indicates that the atoms will be
trapped in the place where 6(r) = 0, i.e. where the RF is resonant with the Larmor
frequency. For a given RF frequency, this corresponds to an isomagnetic surface. The
strength of the confinement depends on the local magnetic gradient (which is, by defini-
tion, orthogonal to the surface). Writing o = |Vwy| this gradient (in units of frequency),
we can deduce the trapping frequency [100]:

Fh
Wtransverse — & M€y, (240)

where M is the atomic mass. This confinement can easily be quite strong in practice,
between several hundred Hz and a few kHz, and can be used to reach low-dimensional
regimes. The atoms evolve on an isomagnetic surface, in general bubble-shaped.

e On the other hand, on resonance the Q;(r) dependency will also structure the shape of
the potential close to resonance. The variations in Rabi coupling being usually much
smoother than the variations in the Larmor frequency, it in fact structures the fine
shape of the potential, modifying the local confinement on the isomagnetic surface (cf
eq. (2.40)) and attracting the atoms to the regions with lower coupling: the potential
restricted to the resonant surface writes F'782 (r). This can become a problem for staying
within adiabaticity conditions, but the presence of gravity can often be used to prevent
atoms from reaching the regions where Q would be too low to ensure adiabaticity. On
the other hand, tailoring the local coupling can be used to modify the trap, for example
to create a double well [105], to excite specific collective modes [68] or to induce rotation
in the trapped cloud (cf chapters 6 and 8).

A few more useful expressions

To go beyond these general principles, we need to be able to compute exactly the value of the
potential (2.39) in a given experimental configuration. The whole question is thus: what are
the expressions of §(r) and Q;(r)? Let us write, as previously, the static field and RF field:

By = By(r)u(r), (2.41)

Bi(r,t) = Bi(r)e(r)e ™t 4 c.c. (2.42)

where u(r) = Bo(r)/|Bo(r)| is the unitary vector giving the local orientation of the magnetic
field.
d(r) can be very simply expressed as

§(r) = wit — |gr|1sBo(r)/h. (2.43)

The expression of Q(r) is more subtle. We have seen that it depends on the local compo-
nent of Bi(r,t) along the local spherical polarization o°. This component can be expressed,
using the local spherical basis (e4(r), e_(r), u(r)) defined by the local magnetic field orien-
tation, as Bi(r)ei(r) - €(r). The local coupling is then

S

O (r) = —\/igF:B Bi(r) e(r) - e(r) (2.44)

= —{ e (r) - €(r), (245)
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with Quf = v/2|grpusBi|/h. Quy is the maximal coupling one can expect to achieve for a given
RF field amplitude By (it can be attained only with a circularly polarized RF field). Using
the properties of the spherical basis, 21 (r) can also be expressed as [100]:

Q

|Q1(r)|:7rf|e><u+isux (e x u) (2.46)
O, :

= Qf\/l—|e-u\2—|—\e><u\2+2zsu-(e><e*). (2.47)

In the particular case of a RF field that is circularly polarized ¢® around the z axis, it can

be simplified:

Q; 1+ u.(r)], (2.48)

Q1 (r)] =

with uy(r) =u-e,.
In the other interesting case of a field that is linearly polarized along z axis, it reads:

1 —uy(r)?

(0] = gy —

(2.49)

With this, we should now be able to describe any trap based on RF dressing.

2.3 The dressed quadrupole trap

Now that the principles have been properly introduced, I will make one step further towards
experimental application and describe in detail the trap we use in our experiment, the dressed
quadrupole trap.

The quadrupole field is the simplest way to obtain a magnetic trap, obtained with a pair
of coils in anti-Helmholtz configuration. The obtained magnetic field is linear, and reads:

Bo(r) = b'(ze, + ye, — 2ze;). (2.50)

The corresponding local Larmor frequency is then:

wo(r) = av/a? + y? + 422, (2.51)

with « the value of the horizontal magnetic gradient o’ in frequency units:

a = |gp|usb’ /h. (2.52)

For a given value of the RF frequency wys, the atoms are trapped on the isomagnetic
surface defined by wy(r) = wy, which corresponds to an ellipsoid (fig. 2.2):

2y 422 =0 (2.53)

rp is then the radius at the equator of this “bubble trap”, and its value is:

Wrf
Ty = —. 2.54
= (254
Adding gravity, supposed to be aligned with the axis of the quadrupole trap e,, and
neglecting for now the details of polarization (i.e. considering uniform coupling €2;), we can

guess that the atoms will then fall to the bottom of this bubble due to gravity, giving a
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Figure 2.2 — Quadrupole vector field (blue arrows) and the corresponding isomagnetic
surface (black line), on which the atoms are trapped.

N

pancake-shaped cloud with some residual curvature. We can already give an estimate of
the trapping frequencies at the bottom of the bubble, neglecting for now the contribution of
gravity and coupling inhomogeneities (considering the potential minimum stays on resonance):

~ 2.
Wl 27‘1), ( 55)
Fh
L =2 ) 2.
w a o (2.56)

The radial trapping frequency is the pendulum frequency with radius 2, corresponding to
the local radius of curvature at the bottom. The vertical trapping frequency is the magnetic
trapping on resonance, expressed from (2.40) (the vertical gradient being 2«). We have to
mention that these frequencies make sense only close to the minimum, the trap geometry
being not at all harmonic.

To lighten future expressions, I will now define the generalized distance to the center of

the quadrupole field:
Op(r,2) = V12 + 422 (2.57)

r being the radial coordinate: r = \/x2 + y2.
The direction of the magnetic field, necessary to compute the local coupling, reads [100]:

_xey tyey, —2ze, re —2ze, (2.58)

Vr? 4+ y? + 422 ly(r, 2)

Let us now compute the exact potential in two situations, the most commonly used in
experiment: the circular and linear polarizations.

2.3.1 Circular polarization
The atoms, once at the bottom of the bubble, feel a magnetic field aligned along the z axis

(u=e;). The coupling at this position is maximized for a o® polarization aligned with z:

1 .
€= —ﬁ(s e, +iey). (2.59)
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The equation (2.48) then leads to the expression of the local coupling:

1 (r)] = % (1 - 6;,(2:2)) (2.60)

where ) is the Rabi coupling obtained at the bottom of the bubble, which happens to be
the maximal Rabi coupling®.

As mentioned previously (section 2.2.2), the potential on the resonant surface is equal to
FhQy(r). Since ©; = 0 at the top of the bubble, the atoms are naturally attracted towards
this point which corresponds to a minimum of potential. However, having the atoms reach
this point is very detrimental to the experimentalist, because the absence of coupling means
that atoms passing there cannot follow the dressed state and get their spin flipped?, resulting
in their loss from the trap. This point thus acts as a “hole” from which the atoms will escape
the trap: it is absolutely necessary to keep a “coupling gradient” weaker than gravity to ensure
that the atoms stay at the bottom of the equator (fig. 2.3) [102,123].

Figure 2.3 — Scheme of the dressed quadrupole trap, seen from the side. Atoms fall
to the bottom of the bubble due to gravity. At one or two points of the surface (red
crosses), the coupling cancels, creating “holes” from which the atoms can escape. Left:
linear polarization configuration, with two holes at the equator; right: circular polarization
configuration, with one hole at the top. -

This condition can be expressed as:
FhQy < Mgry, (2.61)

or, writing 8 = F]\Z—O; the ratio between magnetic gradient and gravity:

Qp < 2L, (2.62)
g
On the other hand, § > 1 is required so that the magnetic gradient is strong enough
to compensate gravity (otherwise, atoms will simply fall off the trap). This means that the
maximum Rabi coupling should be significantly smaller than the RF frequency — which is also
required to ensure RWA.

3. In previous documents about dressed quadrupole traps, 2o was defined as the maximal Rabi coupling
on the bubble, which happened to also be the Rabi coupling at the bottom of the bubble. However, for
the generalization of the dressed quadrupole trap to any polarization that will follow in this chapter,
defining €2y as the coupling at the bottom happens to be more convenient. I think it is also a more
relevant definition anyway, because with this definition )¢ can always be experimentally measured, since
it is the coupling at the position of the atoms.

4. The spin flip happens in the dressed state basis. Related to the static magnetic field, the problem is
rather that their spin is not flipped while crossing the resonance.
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Due to gravity, the potential minimum is shifted slightly below the resonant ellipsoid, and
is located at (xr =0,y =0,z = —R), with R being equal to [102]:

Ty 1 Q()
R=— |14+ ——=—]. 2.63
2 ( \/4ﬁ2—1wrf> ( )

Around the potential minimum at the bottom of the bubble, it is then possible to make a
second order development of the potential and get the oscillation frequencies:

1/2
_ |9 |, FM [ 1
w| = iR [1 SMgR 1 452} , (2.64)
[ Fh 1\*4

These frequencies are similar to (2.55), (2.56), but with factors taking into account the fact
that the potential minimum is shifted due to gravity (the “pendulum” is now slightly longer).
The value of w, is also slightly reduced due to the attraction to the zero of coupling at the
top of the bubble. This trap is isotropic in the z — y plane.

For convenience, one can define the dimensionless quantity:

FhQ 1
= Y p— 2.
Y= IR 7 (2.66)

which describes the typical ratio between the coupling gradient and gravity (the factor
(1 — 1/48%)'/2 present here is quite inelegant, but putting it here simplifies a lot subse-
quent formulas). In most experimental cases § > 1 and inequality (2.61) simply corresponds
to v < 2. With this definition, w,; can simply be rewritten as:

Wy = \/g [1 . %] 2 (2.67)

The other simple interesting case corresponds to the simplest one that can be obtained ex-
perimentally, the linear polarization:

2.3.2 Linear polarization

€=e,. (2.68)

From (2.49), we can again deduce the local coupling:

22
[ (r)| = Qom, (2.69)

where € is the maximum Rabi coupling. This time, |21] = Q¢ in the y — z plane, and 1 =0
on the two extreme points at the equator: x = +r,,y = z = 0, where the local static field is
aligned with the RF field.

The position of the potential minimum is identical to (2.63) and this time, the trapping
frequencies are [102]:

1/2
S R T B R Y ISRV
we=1/15 [1 2o V! 452] =/l -1 (2.70)
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Again, the frequencies are slightly modified due to gravity. The coupling being homogeneous
in the whole y — 2 plane, w, is this time simply equal to the pendulum frequency, while
the correction to w, due to the attraction of the holes is twice stronger than in the circular
polarization case, the holes now being at half height of the bubble. This configuration gives
an anisotropic trap in the x — y plane.

Again, gravity must be strong enough to prevent the atoms from reaching the two points
with zero coupling; this condition can be deduced from (2.70) as v < 1. Compared to
the circular polarization case, the minimum of coupling is this time at the equator and the
constraint on ) is then twice stronger.

Wy = (2.71)

2.3.3 Elliptical polarization and control of the fine shape of the bubble

Using expression (2.47) allows us to compute the exact potential shape for any polarization of
the RF wave. Before giving exact results, it is still possible to describe the general behavior
or the trap:

e There are two holes somewhere on the bubble, where the coupling cancels. For a o°
polarization with respect to the z axis, the two holes merge at the top of the bubble, for a
o~ * they merge at the bottom of the bubble (which makes this configuration impossible
to use for trapping atoms). For an elliptical horizontal polarization, the holes are placed
somewhere in between, in the same vertical plane cutting the bubble in two halves.

o Keeping atoms trapped will, again, suppose the condition:
FnQoy < Mghnole, (2.73)

with hpele the height of the lowest hole with respect to the bottom of the bubble and
Qo = |z =0, y =0, 2= —R)| the coupling at the bottom of the bubble, where
atoms should be located if gravity wins.

e Supposing that the atoms stay at the bottom of the bubble, the potential minimum
will stay at the same position (2.63), and the oscillation frequencies will be the same
as previously: trapping on resonance corrected due to gravity vertically, pendulum
frequency /g/4R corrected from the attraction of the holes radially. For a non-circular
polarization, the trap will be anisotropic and its axes will be the same as those of the
polarization ellipse.

Let us give another useful result: supposing that the polarization plane is orthogonal to
the quadrupole axis (i.e. in the horizontal plane), we can write any polarization as:

€ = cos(0)e, + ¢ *sin(O)e,. (2.74)
The coordinates of the holes are then

x = rpsin(t) cos(o)
y = rpcos(t)sin(o) . (2.75)

z = 7 cos(t)
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(t,¢) are the polar coordinates of the holes, taking into account the vertical “flattening” of the
bubble by a factor of two as compared to the sphere; they are defined through [124]:

tan(2¢) = tan(20) cos(P), (2.76)

sin(20) sin(®)

cos(t) = 1+ /1 —sin?(20) sin?(®)

(2.77)

Equation (2.76) gives two solutions within [0, 27|, ¢ and ¢ + 7. It corresponds to the ori-
entation of the semi-major axis of the polarization ellipse with respect to the x axis. Equation
(2.77) gives the vertical position of the holes in the bubble (fig. 2.4); for a circular polarization
(® = £7/2 and © = 7/4 4+ nm, n € Z) we find cos(t) = £1 meaning the holes are at the
top (or the bottom) of the ellipsoid whereas for a linear polarization (¢ = 0 + nm, n € Z),
cos(t) = 0 meaning the holes are at the equator. In these conditions, and supposing [ < 1
for simplicity, the height of the holes with respect to the bottom reads: hpele = R(1+ cos(t)),
and the condition (2.73) can be rewritten simply as v < 1 + cos(t).

Figure 2.4 — Left: position of the holes (red arrows) on the “unflattened” bubble, in
spherical coordinates (t, ¢) for an arbitrary polarization located in the horizontal plane. t
and ¢ can be modified independently by tuning the RF polarization. Right: position of the
holes (red crosses) in the plane oriented along the semi-major axis of the RF polarization.
Continuous black line: real profile of the bubble, dashed line: unflattened bubble, on
which t is defined. For a linear polarization, t = 7 /2, for a circular polarization t = 0 or
t = 7 (depending on the sign of the polarization).

By giving the azimuthal position of the holes, (2.76) also gives the symmetry axis of the
bubble. A good control of (O, ®) thus allows to tune the orientation of the trap as desired.

2.3.4 Detailed parametrization of arbitrary polarization

I will here go beyond the previous section, by giving analytical results that can be interesting
when working with arbitrary polarization. This section will generalize the results of sections
2.3.1 and 2.3.2 to any elliptical polarization in the horizontal plane.
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For an arbitrary polarization in the horizontal plane written as (2.74), the local Rabi
coupling reads from (2.47) [124]

0 =

02 24 (2% —y? 2 2zysin(2 2

Qp ([ (2= — y*) cos( @);— zysin(20) cos(®) 2z §in(20) sin(®) ) . (2.78)
2 20 by

The central term describes the anisotropy in the x —y plane; it is convenient to recast it in the

frame oriented along the polarization axes: 2’ = cos(¢)x+sin(¢)y and y' = sin(¢)z — cos(¢)y,

with ¢ defined in (2.76):

Qf r2 —2/n(l —n)(z? —y?) 2z
02 — 7f (1 - 572 — E(Qn —1) (2.79)
b

where 7 is defined by:
_ 1+4sin(20)sin(®)
= 5 .
71 defines the anisotropy of the coupling in the z —y plane, but also the coupling at the bottom
of the bubble:

(2.80)

Qo = s (2.81)

7 takes values between 0 and 1, being equal to 1 (or 0) for a circular polarization and 1/2 for
a linear polarization.
The trapping frequencies then expresses from a second order development:

Wy = \/E [1 - % (1 - \/Fﬂ 1/2, (2.82)
wy = \/g [1 - % <1 + 717 - 1)} 1/2, (2.83)

Fh 1\

and we find the results expected in the previous section for n = 1 or n = 1/2. The anisotropy
of the trap can then be expressed as:

|w§, —wi| 7 % -1
eE=— 5 = . (2.85)
Wy +wz, 2—x

One has to take care here that v implicitely depends on 7, as it depends on the Rabi coupling
at the bottom of the bubble Qp, which depends itself on 7 following equation (2.81).
To help interpreting these results, it is possible to relate 1 to the position of the holes on

the bubble: a ( )) ©
+ cos(t 1 1 — cos(t
— -——1= 7 2.
T2 1+ cos2(t) ~ Vn 1+ cos(t)’ (2.:86)

allowing to rewrite wy/, wy:

B [ " (287)
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Wy = \/E {1 - mff;&)} 1/2. (2.88)

Along the semi-major axis of the polarization, w, is the pendulum frequency reduced by
the attraction of the holes: the correction term involves the ratio between the energy of the
hole attraction Fh€)y (difference in coupling energy between the bottom and the hole) and the
gravitational energy necessary to reach the hole MgR [1 4 cos(t)]. On the other hand, for w,y
the factor cos(t) shows that the correction can decrease or increase the pendulum frequency.
We also see that the condition for the existence of the trapping frequencies is v < 1 + cos(t),
as expected.

Finally, for a given anisotropy (i.e. given 1), within this parametrization it is possible to
give the values of (0, ®) corresponding to an arbitrary orientation of the trap ¢ (allowing us
for example to dynamically rotate the trap) [125]:

O(n,¢) = %arccos (2 n(l —n) COS(2¢)) , (2.89)

®(n, ) = arccos (2\/ sin(2¢) ) (2.90)

Sln (20(n, ¢))

2/
- <\/1 —dn(1—n) 0082(2¢)> ' 29
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Chapter

Experimental setup: from the
rubidium oven to the bubble trap.

All the experiments described here take as a starting point the RF-dressed “bubble” trap
whose theoretical description has been given in detail in the previous chapter. In this chap-
ter, I will first outline the experimental scheme that leads to the formation of an ultracold
atomic gas in such a trap, and I will then describe more in detail the device that allows for
controlling precisely our bubble trap — a DDS (“Direct Digital Synthesizer ”), which has been
modified during my PhD. Finally, I will describe the imaging setup that has been used to
take experimental pictures.

The construction of our experimental setup has begun more than ten years ago now, and
three PhD theses have already been written on it [86,87,126]; a reader wishing to have all
details on the experiment should go towards these.

3.1 The experimental setup

3.1.1 Overall system

The experiment is built around three chambers placed under vacuum. The first one is a 2D
MOT used as a source of pre-cooled atoms. It sends atoms to a second chamber made of steel,
in which a 3D MOT is formed. These two steps happen continuously when the experiment
is in standby. When an experimental sequence is launched, the atoms from the 3D MOT are
transfered to a magnetic trap whose coils are placed on a mechanical translation. These coils
are then displaced to bring the atoms in a third, final chamber — a glass cell, in which the
cooling of atoms down to degeneracy and the subsequent experiments will happen (fig. 3.1).

The whole experiment is controlled by a script in which all successive experimental steps
are described, which is then interpreted by a C++ program. Details can be found in [128].
We use 4 computers: one controls the experimental setup through analog and digital output
cards from National Instruments', two computers control the imaging cameras and display
the corresponding pictures, and one is used to analyze the pictures and generate the scripts
used to control the DDS (cf 3.3).

1. Two PCI-6733 cards, one PCI-6713 and one DIO-32 card.
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Figure 3.1 — Sketch of the experimental setup seen from above. Represented here are
the vacuum chambers of the 2D MOT and the 3D MOT and the science cell. The transport
coils (thick blue) can move from the MOT chamber to the science cell to transfer the atoms
in a second pair of quadrupole coils (light blue), where most of the experiment happens.
The notations of the “x axis” and “y axis” of the experiment are considered as a reference
thoughout this manuscript. In green is the “plug” laser beam used during evaporative
cooling. Figure from [127].

3.1.2 Rubidium 87

In our experiment, we work with rubidium 87 atoms. Rubidium is a soft metal, with a fusion
point at 39.3°C. Rubidium has been widely used for studying Bose condensates: it is an
alkali atom with a simple electronic structure, it has collisional properties that are favorable
for reaching BEC, and it has a cycling transition (D line, see fig. 3.2) easily accessible with
cheap lasers, which makes it the “default” atom to work with for people who are not looking
for specific properties (e.g. Feshbach resonances or large spin).

3.1.3 The lasers

We use six lasers on our experiment:

e An extended cavity laser diode (NarrowDiode, from Radiant Dyes) locked on the
|5SI/2,F =2) > |551/2,F = 3) transition, used for probing the atoms and as a fre-
quency reference for the other 780 nm lasers.

e A telecom 1560 nm laser, amplified then frequency-doubled, which gives us a high-power
(2W) 780 nm laser used for laser cooling. It has been developped in our team by Paul-
Eric Pottie; more details can be found in [126].

e Two Sanyo 780 nm laser diodes on the |5Sl/2,F =1) — |5Sl/2,F = 2) transition. One
is on resonance with the transition and is used to repump the atoms in the MOT and
for imaging, the second one is detuned to achieve partial repumping of the atoms during
the imaging process (cf section 3.4).
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Figure 3.2 — Hyperfine structure of the 8"Rb D transition and frequency of the 780 nm
laser beams.

e Two high power green lasers at 532nm. They are blue-detuned compared to the D5 line,
and thus repel the atoms. One is an Azur Light System 10 W laser, used to generate
the plug beam (cf 3.2.3) and the stirrer (cf section 6.1.1). The second one is a Coherent
Verdi 5 W laser and is used to generate a light sheet beam used to make ring-shaped
trap (see part II).

3.2 Experimental sequence

3.2.1 2D + 3D MOT

The experimental sequence starts from a built-in 2D MOT, developed by the SYRTE labora-
tory. A cell containing rubidium is heated around 70 °C to release a rubidium vapor which is
transversally cooled by two retroreflected beams in the presence of a magnetic field gradient.
This creates a line of trapped atoms with a low transverse temperature. A “pushing” laser
beam tuned on resonance and aligned along this line continuously sends these atoms through
a differential pressure tube towards the second chamber. This system serves as an efficient
source of atoms for the 3D MOT.

In this second chamber, three pairs of independent, contrapropagating beams slightly
detuned from the atomic resonance cool down atoms and trap them to the center of a magnetic
quadrupole field generated by a pair of coils in anti-Helmholtz configuration, realizing a 3D
MOT. A repump beam mixed with the cooling beams and tuned on the 551/2,F =1 =°
P39, F' = 2 sends atoms which fall in the state 1S, 12 B = 1) back to the cycling transition.
We typically load 10° Rb atoms in the MOT in approximately 10s.

The 2D+3D MOT runs continuously between experimental sequences; when the sequence
starts the push beam is shut down and we work with the atoms that are present in the 3D
MOT at that time.
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3.2.2 Magnetic transport

The first step of the sequence aims at transfering the atoms from the MOT to a quadrupole
trap that can be mechanically displaced to the science cell (the coils of this quadrupole trap
are the ones that are used to generate the MOT, but the trapping configuration is not the
same). We start by ramping up the current in these coils to compress the MOT and increase
the atomic density while increasing the detuning of the MOT beams to reduce the repulsion
between atoms coming from multiple scattering events. The current in the coils is then
turned off and the detuning is increased again to cool down the atoms during an optical
molasses phase. At the end of this phase, the repump beam is shut down so that all atoms
get depumped to the state \551/2, F = 1), which is the state with which we work in all the
experiment. Finally, all beams are shut down and the current is ramped up again to generate
a quadrupole magnetic trap in which atoms are loaded. We trap the atoms that are in the
|F'=1,m = —1) state; atoms in m = 0 and m = +1 are lost.

The coils are then physically displaced over a distance of around 30 cm up to the position
of the final quadrupole coils, bringing the atoms into the science cell. The current in the
magnetic transport coils is then ramped down and the current in the final quadrupole coils
is ramped up to transfer the atoms in this new magnetic trap, and the transport coils are
sent back to their initial position. After transfer, we have around 10® atoms trapped, with a
temperature of 150 pK.

The final steps of the experiment happen in this science cell, a glass cell manufactured
by Starna with inner (outer) dimensions 10 x 10 (12.5 x 12.5) mm, under ultra-high vacuum
(10~ mbar).

J-mol~!. K1

The final quadrupole trap is realized by two conical coils placed above and below the cell,
which generate a horizontal gradient b) =1.98 G -ecm ™! - A=1. The power supply we use? can
deliver up to 110 A and 15V, with a rise/fall time of a few milliseconds; switches allow fast
shutting down of the current in the coils (around 150 us [126], useful especially for time-of-
flight imaging). The coil wire is hollow and water circulates inside to dissipate the heat in
the coils.

3.2.3 The plugged quadrupole trap

Bose-Einstein condensation of rubidium requires, like for most atoms, evaporative cooling to
increase the phase-space density. Using an RF knife in a magnetic trap is usually an efficient
way to perform this step: shining an RF field at a given frequency on the atoms couples the
different Zeeman substates and atoms get expelled from the trap if they reach resonance with
the RF, enabling to eliminate atoms whose energy is too high. Such RF evaporation allows
one to reduce the atomic cloud’s temperature and increase the density at the center of a trap.
However, in the case of a quadrupole trap, the magnetic field vanishes at the center of the
trap and the atoms that arrive there get lost due to Majorana losses (cf. 2.1.1): the increase
of density at the center of the trap leads to strong atom losses. This problem has been solved
using various methods, for example using time averaging (TOP traps) to trap the atoms in a
minimum of the average magnetic field while the real zero of the magnetic field stays far away
from the atoms [129] or using hybrid optical-magnetic traps [23,130,131] where the atoms are
maintained away from the place where the magnetic field vanishes by dipole beams.

2. Delta elektronika 15-100
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In our experiment, we use this second approach, using a “plug” beam to expel atoms from
the center of the trap [86,127]. A 10 W, 532nm blue-detuned beam is focused on the center
of the quadrupole. It is oriented along the y axis of the experiment (cf fig. 3.1), and even
though it covers the center of the trap it is slightly off-centered. This creates a unique effective
potential minimum slightly away from the center, where a condensate can be trapped without
suffering too much from losses.

Once this laser is on, we perform a ramp of the RF knife frequency to achieve evaporative
cooling. A first evaporation ramp, going from 50 MHz to 4 MHz in 13.6s, is performed at
high magnetic field gradient: ' = 216 G - cm™! horizontally, corresponding to 110 A in the
quadrupole coils; then the magnetic field gradient is reduced to b = 55G -cm™! to further
reduce Majorana losses (the optical plug gets more efficient to expel atoms from the center).
A final evaporation is then realized in 55, going from 2 MHz to 300 kHz, and we achieve Bose-
Einstein condensation. This method allows to achieve a quasi-pure BEC with around 2 x 10°
atoms, however it is more favorable for the following experiments to stop evaporation before
this stage, at 350 kHz, to keep more atoms, about 5 x 10°.

3.2.4 The dressed trap
Hardware presentation

On the sides of the science cell, two RF antennas generate RF fields along the z and y
directions, allowing to generate an RF field with any polarization in the horizontal plane as
described in section 2.3 (fig. 3.3). During my thesis, a third antenna has been placed below
the cell to generate RF fields along the vertical axis; details will be given in chapter 5. A good
stability of the RF phase is mandatory for achieving large lifetimes in RF-dressed traps [132]:
this is obtained by using digital frequency synthetizers (DDS). We control the voltage and
relative phase of each antenna; the obtained RF coupling is calibrated directly with the atoms
by using RF spectroscopy so that we directly control the effective coupling felt by the trapped
atoms. More details about the DDS and control of the RF are given in section 3.3.

Transfer procedure

Once the atoms are condensed, we transfer them from the plugged trap to the dressed
quadrupole trap described in chapter 2. For that, we need to “dress” the atomic state adia-
batically, so that the atoms stay in the effectively trapped state (which corresponds, once the
atoms are trapped on the resonance, to a mixture of all three Zeeman substates).

In a first step, the amplitude of the RF field is ramped up far below resonance, to fullfill
the adiabaticity condition (2.38) (we need to start with a large €2, which can be achieved
only through large § since ©Q; = 0 at the beginning of the ramp). In the plugged trap, the
atoms are located at a place that is resonant for RF frequency around 250 kHz; the RF field
amplitude is ramped up from 0 to typically 50kHz in 5ms at a frequency of 175kHz: the
resonant surface is then within the plug beam and inaccessible to the atoms. Moreover, the
second harmonic of the RF frequency, at 2 x 175 = 350 kHz, is beyond the resonance frequency
(and corresponds to the final value of the evaporation ramp) so that the cloud is unaffected
by possible harmonics that would be generated by the RF synthesizer.

The RF frequency is then ramped up with a constant amplitude® from its initial frequency,

3. In fact, the amplitude is not really constant: the voltage applied to the antennas keeps a constant
amplitude but the antennas’ admittance depends on the RF frequency. This dependence is however
smooth.
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below resonance, to a frequency above resonance (from 175 kHz to 770 kHz in 120 ms). During
this ramp, the size of the bubble grows; the atoms reach resonance and are then “caught” by
the bubble: while the bubble continues to get bigger, the potential minimum is now on the
bubble.

Finally, the RF frequency is slowly ramped (up or down) to its final value (typically 0.3 to
1.2MHz), in 175ms. During the whole RF ramp procedure, the plug beam is slowly turned
off. In the end, the potential minimum lies at the bottom of the bubble, where atoms get a
pancake shape (fig. 3.3). The slow final step aims at minimizing the oscillations at the end
of the transfer: from figure 3.3 we see that the atomic cloud has a lateral motion during the
transfer from the plugged trap; it then has to be realized slowly enough to avoid a strong
dipole motion [86]. At the end of this transfer procedure, we have typically 4 to 5 x 10°
atoms trapped, with a temperature around 150 nK and a condensed fraction around 30 to 50
percent.

The position of the plug beam is very critical for both the efficiency of the evaporation
in the plugged quadrupole trap and the success of the transfer procedure (it affects a lot
the amplitude of the residual dipole motion). Its position is controlled by two piezoelectric
actuators placed on the last mirror on the plug beam path; it is optimized every day by
maximizing the number of condensed atoms we have in the dressed trap after transfer.

tz 1y
Vertical
Imaging

Horizontal
Imaging

Figure 3.3 — Left: sketch of the antennas position around the glass cell. Both antennas
are made of 10 loops of copper wire; they are square-shaped with 16 mm sides. Antenna
H1 is placed 16.5 mm away from the atoms, its inductance and capacity are 3.83 pH and
39.2 pF; antenna H2 is placed 12.0 mm away from the atoms (it is wrapped around the
cell) and its inductance and capacity are 3.22pH and 35.0 pF [133]. One can also see
both axes used to image the atoms. Right: sketch of the dressing procedure, as seen from
the side. Atoms initially placed in A in the plugged quadrupole trap are caught by the
growing bubble and transfered in B while the plug (in green) is turned off. Figures are
taken from [86,102].

Controlling the bubble geometry

The bubble trap is highly versatile and its parameters can be adjusted easily and dynamically
(cf section 2.3):

e The radius of the bubble (typically 10 to 100 pm vertically) can be adjusted by changing
the current in the coils or the RF frequency.
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e The radial trapping frequencies at the bottom of the bubble (typically 20 to 50 Hz) are
also controlled by the current and frequency (which modify the pendulum frequency),
and slightly modified by the RF amplitude and polarization.

e The control of the RF polarization also allows us to tune the trap’s horizontal anisotropy
[102] (defined as ¢ = ]wg - w%]/(wi + w?); typically 0 to 0.5) and orientation [68].

e The vertical frequency depends strongly on the magnetic gradient and can thus be tuned
easily by changing the current in the quadrupole coils. It also depends on the square
root of the Rabi coupling. It can reach high values (typically 0.5 to 2kHz), allowing to
reach the quasi-2D regime [102].

e Finally, the temperature of the trapped gas can be adjusted by using an additional RF
field (“RF knife”) slightly detuned compared to the RF dressing frequency [100].

Even though I cited the RF amplitude as allowing to adjust the trap parameters, it has
to be changed with caution since it determines the Landau-Zener loss rate in the trap [134];
even small changes can lead to prohibitive reduction of the atomic lifetime (which can, for
low gradient and sufficiently high Rabi coupling, reach three minutes).

The RF knife

It can be useful to detail a little more the use of the RF knife, as its use in a dressed
trap can be quite subtle. The overall idea is to apply a second, weak RF field to the trap
with frequency wynife, which leads to “double dressing” [113,135]. It leads not only to an
additional dressing on the surface resonant with the knife frequency, but also to multi-photon
resonances, especially at 2w, — winife- In practice, we use a knife frequency slightly higher
than wy: Winife = Wit + OWinife, With dwipite > 0. This leads to two additional resonances at a
distance +dwypife from the “main” dressing (see figure 3.4). Supposing that the Rabi coupling
at the two secondary resonances is weak, this sets a depth for the trap:

Umax = Fh(wknife — Wyf — Ql(r)) (31)

This scheme therefore allows to perform RF evaporation ramps in the trap, or to set a maximal
temperature to prevent heating. However, even if the Rabi coupling at the knife resonance
is small, it is not necessarily homogeneous on the whole trap: in particular, the antenna
generating the RF knife field is placed on the side of the trap, and the knife is therefore
linearly polarized. This can lead to small anisotropic trap deformations; in particular, when
the atoms are placed at the equator of the bubble (in the ring-shaped trap, see part II), the
coupling vanishes at two points (see section 2.3.2), and the evaporation will not be uniform
in the trap.

3.3 The new DDS

During my PhD, we decided to change the DDS used to control the dressing RF field until
then [86]. This decision came from two joined needs:

e The stability of the internal clock of the microcontroller in this DDS wasn’t very good,
leading to jitter in the timings of the dressing sequences. This was preventing us from
using the DDS to generate complex patterns; especially our new DDS allows us to rotate
the atoms with the trap itself (cf 6.1.3 and 8.2.1).
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Figure 3.4 — Left: resonances in the presence of two RF frequencies, one for dressing and
one for the knife. The solid lines correspond to the Zeeman substates in the quadrupole
trap: two single-photon resonances happen when the frequency splitting is equal to wypife
and w,, and a three-photon transition at 2wyt — Winife = Wit — OWinife- 1NOte that other
multiphoton resonances happen, but they are further away from the main resonance.
Right: dressed state in which the atoms are trapped. The presence of the RF knife opens
the trap on both sides of the resonance, imposing a maximal trap height. The Rabi
coupling of these secondary resonances is not equal on the two sides of the transition (the
coupling of the single-photon resonance is equal or larger to the coupling of the three-
photon resonance [113]). Both are however much weaker than the Rabi coupling for the

dressing at wys (they are exagerated on the figure to make them visible).

e Due to misalignments effects in the RF field, we needed to put a third dressing antenna
on the experiment, synchronized with the two main antennas (cf section 5.2.2). The
old DDS had only two outputs and didn’t allow us to do that, whereas the new one
has eight parallel output and allows us to control the third antenna (and leaves us the
possibility to implement many more things with the remaining outputs).

The synthesizer is home-made and has been realized in our electronics workshop. In this

section, I will give the technical details about this new device and the way we control it.

3.3.1 Hardware

The structure of the DDS is presented on figure 3.5. The device is composed of three parts:

e The DDS itself (in fact, a pair of identical DDS chips*). It converts a 10 MHz clock
signal given by an external frequency synthesizer® into eight (4 per DDS) analog periodic
signals (sine waves with possibility of modulation, even if we use only sine outputs),
phase, amplitude and frequency. The signal synthesis is achieved numerically, ensuring
the continuity of the RF phase. The DDS has a 32-bit frequency resolution, 10-bit
amplitude control resolution and 14-bit phase offset resolution and can operate for a
clock frequency of up to 500 MHz.

4. AD9959 from Analog Devices.
5. a Stanford DS345, also used to perform spectroscopy in the trap.
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Figure 3.5 — General layout of the DDS system, see text (figure from [136]).

e A microcontroller unit (MCU)®, used to control the DDS. Operating the DDS chip itself
is beyond capabilities of the computer controlling the experiment”; instead the MCU
is programmed in advance using the computer and triggered during the experimental
sequence. It has an 80 MHz update rate, allowing update of the DDS outputs with a
refresh rate of a few microseconds depending on the output which is modified (phase,
frequency, amplitude).

e A box of amplifiers® (not represented in the figure) is used to transform the output
signal of the DDS into a usable signal with sufficient amplitude, which is then sent to
the dressing antennas. All the inputs of the amplifier are equipped with an individual
switch?, allowing fast switching of each RF signal. The amplifiers have a fixed gain;
adjusting the gain can be done by putting external damper components downstream.
Splitting the DDS/MCU part from the amplifier part allows future update of both parts
independently.

We noticed that the switches implemented before the amplifiers were causing large spikes
(several volts on a few milliseconds) when commuted to allow RF passing through (i.e. closed),
even with an input signal set to zero. This comes, a priori, from the fact that the switches
are designed for fast commutation, typically aroung 1 MHz-1 GHz (tests realized for regular,
fast commutation show no spikes). In our case, they can stay opened during several tens of
seconds; it is possible that we have accumulation of static electricity during this time that get
released when commuting. It is necessary to take care about it when turning on the RF, for
such spikes can lead to disastrous effects when sent to the atoms. Specifically, it means that

6. TM4C123GH6PMI chip from Texas Instrument, mounted onto a TM4C123G launchpad evaluation
board.
7. Some digital boards can allow such operation [137], but they are expensive, more difficult to implement
and have a lower update rate.
. Gali-84+ from Mini-Circuits.
9. RSW-2-25P from Mini-Circuits.

[oe}
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we close the switches a few seconds before turning on the RF, during the evaporation ramp,
while the atoms are still hot and not too much sensitive.

3.3.2 Control of the DDS

The DDS is controlled by the computer through two connections. The first one, a USB con-
nection, allows us to transfer instructions from the computer to the microcontroller. However,
it is slow and unable to give precise control during experimental sequences. It is therefore
supported by a digital TTL command controlled by one of the digital outputs of the computer:
the instructions are loaded into the MCU through USB, then triggered by the TTL.

The MCU has two modes of operation:

e “Ramp” mode: we specify the desired output states at specific times and the corre-
sponding time steps, and the MCU computes the whole ramp from these points. This is
used, for example, to generate the dressing ramps used to transfer the atoms from the
plugged quadrupole trap to the bubble trap.

e “Pattern” mode: this mode allows to perform more complex tasks. A file containing all
the successive states the output has to take and the corresponding time steps is loaded
into the MCU, which will then read and apply them. This allows to perform arbitrary
RF patterns (within the limits of the microcontroller internal memory - around 25kB),
it is used for example to rotate the bubble.

In both cases, we use MATLAB programs to compute and write the scripts that will be send
to the DDS during experimental sequences. In one sequence, we can use up to 4 ramps and 4
patterns; however the MCU memory can only keep one of each in memory. Using several ramps
or several patterns requires to load them during the sequence, using USB communication. This
can take up to several hundreds of milliseconds (depending on the amount of information to
transfer) with a jitter in the communication duration of a few milliseconds: it has to happen
during non-critical parts of the experimental sequence (e.g. waiting times).

3.3.3 Calibration of the DDS

The command of the DDS is digital: the control of the RF amplitude is done by choosing a
value between 0 and 1024 (the DDS has a 10-bit amplitude resolution), which leads to a certain
power level at the output of the DDS; the signal is then amplified and sent to antennas with
a certain impedance (which depends on the RF frequency — this dependence can modify the
relative phase between the antennas). We therefore need a calibration to be able to translate
the desired effect on the atoms into the instruction we have to give to the microcontroller.

Spectroscopy in the dressed trap

For a given configuration of the dressed trap, it is possible to measure the Rabi coupling at
the position of the atoms by performing spectroscopy in the trap. By shining a weak RF
field at a frequency wprobe, it is possible to couple the different local dressed states |[m)g(y)
(cf section 2.2), which are separated by |Q1(r)|. This coupling leads to losses from the trap:
the measurement of |Q;(r)| at the position of the atoms (i.e. g in relevant experimental
cases) is done by finding the probe frequency that maximizes the losses. It is usually possible
to measure )y within a 0.5 kHz precision. The optimal precision is achieved using very cold
gases (to minimize Doppler broadening), very weak probe intensities (to minimize power
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broadening) and adjusting the probing duration to maximize contrast in the signal without
clipping the signal (i.e. avoiding to remove all atoms from the trap). An example of such a
spectroscopy measurement can be found on figure 3.6.

B [}
=] (=]
T T

L]
1 1

Atom number [x105]
N

o

T

1

Measured Rabi Frequency [kHz]

0 + L + 1 + L 0 1 1 1
42 44 46 48 00 02 04 06 08

Probe frequency [kHz] Antenna command

Figure 3.6 — Left: Example of a spectroscopy line measured at the bottom of the bubble;
the corresponding Rabi coupling is 45.00(25) kHz. The red curve shows a Lorentzian
fit of the data; however the line shape is often asymmetric and it is most of the time
simpler to locate precisely the resonance by taking close points around the maximum of
absorption rather than measuring the whole line. Right: Example of the calibration of
H1 antenna’s response at 1.2 MHz; the antenna’s command is a value between 0 and 1.
For low command values, the measured coupling increases linearly with the command;
for high values non-linearities in the amplifier lead to a reduction of the obtained Rabi
frequency. The red line shows the fit of the linear response. The slope is 105.8(4) kHz: at
this dressing frequency (i.e. 1.2 MHz), the resolution on the antenna’s amplitude control
(i.e. the maximal achievable precision on the obtained Rabi coupling) is then 105.8/1024
= 103.3(4) Hz.

Calibration of the antennas

The calibration of the antennas is achieved by realizing dressed traps with only one antenna
for different dressing amplitudes. Using only one antenna leads to a linear polarization con-
figuration, where the maximal coupling is reached at the bottom (i.e. where the atoms are);
RF spectroscopy then allows to measure the maximal achievable Rabi coupling for a given
amplitude, and to calibrate the command/coupling relationship. It is better to make such
a calibration at high magnetic gradient, to reduce the displacement of atoms due to grav-
ity (which causes a shift of the measured resonance). An example of such a calibration is
presented on figure 3.6.

Once such a calibration is done, it is possible to directly command the antennas in Rabi
coupling units and ask for the desired result. This also allows to compute the resolution we
can achieve on the final coupling (typically 100 to 200 Hz on each antenna). Such a calibration
has to be done for each antenna, for all values of the dressing frequency at which we want to
work.
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3.4 Imaging the atomic cloud

Let us finally discuss our main diagnostic tool: the production of pictures from the atomic
clouds. There are three main techniques that are used to image ultracold atoms systems:
the fluorescence imaging, the phase contrast imaging, or the absorption imaging. In our
experiment, we use the third one. The overall idea is to shine onto the atoms a resonant
probe beam, and compare the corresponding picture to a picture of the probe in the absence
of the atoms: in this way, we can measure the atomic density from the shade that the cloud
creates (see figure 3.7). As the atoms exchange many photons during the process, the cloud
however heats up a lot and gets destroyed; this technique is therefore destructive and a new
cloud has to be prepared for each experimental picture we want to take.

f

i« ' d
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Figure 3.7 — Left: picture of the probe beam in the presence of the atoms. The light
being resonant, the atoms scatter photons from the beam, creating a shade on the picture.
By comparing this picture with the picture of the probe taken in the absence of the atoms
(center), one can reconstruct the atomic density and generate a picture of the atoms
(right). The quality of the final picture is extremely sensitive to the good alignment of
the probe beam between both primary pictures: for that reason, we use a fringe reduction
algoritm to compute the probe “ideal” picture [138].

We have the possibility to make a picture of the atoms in the trap (in situ pictures) or
after a time-of-flight expansion (TOF): the trap is turned off, and the atoms fall and expand
freely during a certain duration before the picture gets taken. In the first case, we measure the
space distrubution; in the second, we can measure the momentum distribution (if the TOF
is long enough to allow neglecting the initial size of the cloud). Both provide complementary
diagnostic tools; we can note that the in situ imaging of the cloud requires to use a high
intensity probe: the consequences will be detailed in the next section. However, the measured
distribution is integrated along the imaging axis: we thus have two imaging systems that
allow us to image the atoms from above (integrated along z) and from the side (integrated
along x) — these axes are presented on figure 3.3.

3.4.1 High intensity absorption imaging

The description of the interaction of the probe with the atoms can be quite complex if we
take into account all possible atomic levels, but quite simple if we consider only a two-level
atom, through the Bloch equations. We image the atoms using a resonant laser on the
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F =2 — F = 3 transition, and considering that these are the only levels that get populated
significantly the two-level system seems a relevant approach. Let us note wy the pulsation
of the transition, Az the corresponding wavelength, and I' its width; the absorption cross
section and saturation intensity read respectively:

32 AT

or sat = 1ore?’

00 (3.2)
Supposing that the probe propagates along the z axis, the absorption of the probe beam
while it crosses through the cloud will behave as:

% = —n(r)o(I)1, (3.3)
where I is the probe intensity and o(I) the real cross-section, which depends on the probe
intensity. In practice, we measure the atomic density integrated along the beam propagation
axis: n(z,y) = [ n(r)dz. In the case of non-saturating imaging (I < Iss), we find the usual
Beer-Lambert absorption law, and n(z,y) can be deduced from the intensity of the probe
after absorption by the atoms Iy and the initial intensity I; following:

If(w,y)]
Ii('rv y) .

The quantity on(x,y) = od(z,y) is called the optical density, and it is what is measured in
practice.

When we try to image dense clouds — for example to image the in situ density profile,
working with low probe intensities can lead to a complete absorption of the beam profile
(leading to infinite densities when using equation (3.4)), to collective effects like multiple
scattering, or to systematic errors in the measured densities because the atoms in front of the
probe absorb most of the probe photons, and the atoms in the back of the cloud are therefore
exposed to lower intensities (leading to a z dependence of I in equation (3.3)). To image such
clouds, there are two strategies: either repump a small fraction of the atoms in the scattering
state F' = 2, artificially reducing the optical density in this way, or use high probe intensities
in order to saturate the atomic transitions. In this latter case, the cross section of the atoms
writes:

oon(z,y) = —1In [ (3.4)
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where o is a dimensionless correction parameter that is used to take into account the deviation
from the ideal two-level system due for example to the polarization of the imaging beam or
the presence of other levels. It corresponds to considering an effective absorption intensity
a* It instead of its ideal value [139]. In this case, the optical density reads:

(3.5)

If(z,y)| | Li(z,y) — If(z,y)
oon(z:9) o [Iz‘(x,y) * Lgat (36)
= —a"diog + daifr- (3.7)

The first term corresponds to the low-intensity limit (i.e. the Beer-Lambert law); the second
term to the high-intensity limit: if the atomic transition is completely saturated, each atom
absorbs photons at a rate I'/2, regardless of the beam intensity, and the atomic density is
thus directly proportional to the number of “missing photons”.
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The parameter o* is obtained experimentally, by calibrating the imaging system. A first
method to calibrate this parameter has been developed by G. Reinaudi [139], and later ex-
tended by L. Chomaz [140]. In this latter approach, the parameter o* is allowed to depend on
the optical density of the cloud, to correct for possible collective effects. We used this method
in our experiment, and observed a weak linear dependence of o* with the optical density:
a*(od) = o + asod, with ap = 1.89 and as = 0.39 (the details about this calibration can be
found in [87]). In this case, the atomic density can finally be computed through the relation:

agdiog + daif

3.8
1— asdlog ( )

oon =

Finally, one can note that specific care about the probe pulse intensity and duration has
to be taken when working with high intensity probe beams: indeed, when the atoms exchange
many photons, they can get accelerated and get out of resonance, or get depumped in F' =1,
and a too long probe pulse leads to a systematic underestimation of the atom number, as
the number of atoms able to scatter photons decreases with time. The details about the
choice of the probe parameters can be found in appendix B. One has also to take care that
high intensity absorption imaging can amplify parasit fringes in the image with respect to
its low-intensity counterpart. Indeed, while a modulation of the probe intensity imprinted on
the beam after it interacts with the atoms will be washed out in the logarithmic term of the
optical density, it will stay in the differential term. A weak interference effect on the camera,
for example, can be highly detrimental for very high intensity pictures while images taken
with a lower probe intensity will be less affected.

3.4.2 Experimental setup
Imaging along the horizontal axis

To perform our horizontal images, we use a collimated probe beam with a 2.7 mm waist. After
the atoms, it passes through a single telescope with a total magnification G = 2.17, and then
goes onto a iXon 885D EMCCD camera, from Andor. It has a 1004 x 1002 pixel matrix, with
a 8 mm pixel size. A quarter waveplate ensures that the imaging beam is circularly polarized,
and a magnetic field aligned with the imaging axis is turned on during the probe pulse to
polarize the atoms. A 532nm polarizing beamsplitter is placed after the cell to deflect the
plug beam that is also aligned along this axis and avoids to focus the 10 W beam onto the
camera, (while letting the 780 nm light through), and an interferential filter prevents any green
light to reach the camera. Since the experiments are done with the atoms in the F' = 1 state,
a repumper beam is used to bring the atoms back to F' = 2 before sending the probe pulse
(it is locked on resonance with the F' = 1 — F = 2 transition, see figure 3.2). We use this
setup to image the clouds after a long time-of-flight (typically 15 to 25ms), for example to
measure the atomic temperature and optimize the cooling of the atomic cloud.

Imaging along the vertical axis

The vertical imaging setup is made of a pair of telescopes providing a magnification around 8.
We use a Luca-R EMCCD from Andor, with a 1004 x 1002 pixel matrix and a 8 mm pixel size.
The resolution of the system is 4 pm, allowing us to perform precise profile measurements of
in-trap clouds. The whole imaging setup (camera + telescopes) is mounted on a three-axis
micrometric translation; this allows, in particular, to adjust the vertical focus plane. The
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depth of focus of the system is approximately 70 pm, comparable or smaller than the vertical
radius of the bubble trap: for example, imaging a cloud at the bottom of the bubble or imaging
a ring-shaped gas at the equator of the bubble (see part II) requires to shift the position of the
system; this also allows us to image atomic clouds from above after a time-of-flight expansion.
Similarly to the horizontal imaging, we use a collimated probe beam with a 0.7 mm waist,
circularly polarized using a quarter waveplate, and we use a vertically aligned magnetic field
to polarize the atoms during the imaging process. Even with our high-intensity aborption
procedure, the density of the cloud can be too large for a correct imaging. To avoid this
problem, we use a second repumper beam that is far detuned from the F =1 — F = 2
transition (typically 250 MHz away, for a linewidth around 6 MHz), that allows us to repump
only a fraction of the cloud. In this way, we can image a cloud with the same profile, with
only a multiplicative factor on the atom number (which can be measured by comparing with
the horizontal imaging). Using a far-detuned repumper is necessary to achieve a uniform
repumping: indeed, the photons of a repumper on resonance would be directly absorbed by
the first encountered atoms, and rempump in this way only the front side of the cloud and
not its back.

3.4.3 Stern-Gerlach procedure

Shutting down the trap to perform a time-of-flight expansion can require some caution when
working with RF-dressed atoms. Indeed, when the atoms are in a dressed trap, their state
is a mixture of the different Zeeman substates (see 2.2.1). When the RF is switched off,
the atomic state will get projected along the eigenstates of the local bare magnetic field,

leading to the separation of the atomic cloud into three clouds in the m = —1,0,1 Zeeman
substates. Therefore, any stray field gradient present while the trap is switched (for example
due to residual eddy currents) will accelerate the m = 1 and the m = —1 clouds along

opposite directions. After a long time-of-flight — we usually use dtTor = 23 ms, even a small
acceleration during the switch-off can lead to a small separation of these three clouds, with
a separation that can be comparable to the cloud’s size. When working with high currents
in the quadrupole trap, we usually see that at the end of the time-of-flight there are three
clouds that overlap (see figure 3.8). To avoid this effect, one can keep on purpose the magnetic
gradient on while the RF is switched off: the m = 1 and m = —1 clouds will then be strongly
accelerated, and after TOF the three clouds completely separate: we can then image precisely
the m = 0 cloud, that has been left unaffected by the gradient.
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Figure 3.8 — Left: Picture of an atomic cloud produced in the dressed trap at high
gradient (218 G - cm ™! horizontally) and 1.2 MHz dressing frequency, taken after a 23 ms
time-of-flight and observed with the horizontal imaging setup. We see three clouds over-
lapping, corresponding to the three m = —1,0,1 Zeeman substates (see text). Right:
picture of a cloud produced in identical conditions, except that the magnetic gradient was
left on during the first 0.1 ms of the TOF expansion: the m = 0 state is unaffected, while
the +1 and —1 states were expelled (they still can be seen on the edges of the picture).
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Ultracold atoms in a ring-shaped trap






Introduction

Superfluidity implies rotational properties that are very different from those of a conventional
fluid, as described in chapter 1, and a superfluid with a ring geometry is an interesting system
as it can bear rotation without necessiting singularities (i.e. vortices) to be present in the
bulk of the fluid; the Feynman-Onsager criterion (1.34) here remarquably implies that the
circulation of the flow along the ring is quantized. The ring geometry also allows to fully
exploit the inviscid character of the superfluid flow, since a superfluid can flow within a ring
trap in principle indefinitely (in practice, for experimentally accessible dilute superfluids'? the
lifetime of the flow will be limited by the lifetime of the trapped atoms).

Proposals for realizing ring geometries for ultracold atoms came soon after the experimen-
tal achievement of Bose-Finstein condensation. We can distinguish two kinds of proposals:
one aims at realizing atom interferometry based on the Sagnac effect, and relies on large
size traps (ring radius of typically hundreds of micrometers) [111,141,142]. The ring is then
thought as an “atomic waveguide” in which small atomic wavepackets will evolve: a large
radius allows to maximize the interferometric sensitivity but having a continuous superfluid
gas in the whole trap is then challenging. The second approach aims at studying superfluidity
in the presence of rotation as described previously, with traps small enough to allow reaching
condensation in the whole system [57-59].

In this second approach, the first ring-shaped BEC and the first observation of a persistent
flow were achieved in the W.D. Phillips group in 2007 [57]; a few years later the same group
(now led by G.K. Campbell), as well as the Hadzibabic group, studied the flow quantization
[58,143]; they also studied intensively the effect of a weak barrier present in the ring [144-147|
and demonstrated the hysteretic behavior of the superfluid flow [59]. More generally, there
is now a field of research aiming at realizing “atomtronic” circuits, studying atomic transport
properties in a way analogous to the transport of electrons in electronic circuits, in which
ring-shaped traps completely find their place, for example trying to realize atomic equivalent
of SQUIDs!! [72,73,148].

Finally, we can also mention that the ring geometry was used to perform quantum sim-
ulation, trying to simulate for example astrophysical systems: the Dalibard group studied
in this way the Kibble-Zurek effect [71,149] as originally proposed by W. Zurek [70], and
the Campbell group recently studied the supersonic expansion of a quantum system [150] in
analogy with the universe expansion.

10. as opposed to dense superfluids, i.e. superfluid helium. The dilute character corresponds to vVna® < 1.
11. Superconducting QUantum Interference Devices.
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A significant part of my work was dedicated to the experimental realization of a ring trap
suitable for studying superfluidity in an annular geometry, and this is what [ will present
in this second part. This part is divided into three chapters: chapter 4 will present the
theory of superfluid flow in ring traps and the interest of such a geometry, and then present
the method we to use to make the ring trap. Chapter 5 will detail the realization of the
trap. An initial version of it had been built by the previous PhD student who worked on the
experiment, Camilla de Rossi [87], and my contribution consisted in the improvement of this
setup. Finally, chapter 6 will present the production and dectection of a superfluid flow in
the annular gas.



|
Chapter

A ring trap for ultracold atoms: how
and why

This chapter aims at laying down the theoretical background that will be useful for under-
standing this part of my thesis. It will be divided into two sections: in a first section, I will
present the general theory of ring-shaped superfluids and superfluid flow. The second section
will then detail the principle and characteristics of the method we use to obtain a ring-shaped
BEC.

4.1 Superfluidity in ring traps

4.1.1 1D, single atom description

I will start with a simple description of a single atom! in a ring trap with radius rg, considering
only a 1D case (i.e. a “wire” ring), as described in [151]: the position of the atom is defined
only by its azimuthal angle ¢ and the atomic state will then be written as 1(¢). As the ring
is closed on itself, v is periodic with period 27: (¢ + 27) = ¥(¢).

Considering a constant potential along the ring, the hamiltonian only contains kinetic
energy and writes:

- h2V? h? o d?
2M 2Mr§ de
its eigenstates and eigenenergies are then:
Ye() = S Ey = " (2. (4.2)
V2rrg 2Mr3

These states correspond to a phase winding of ¢ x 27 along the ring, and thus verify
the quantization of flow circulation (1.34). From the eigenstates, we can deduce the angular
velocity of the flow in the ring. The local velocity reads from (1.31):

v(6) = 17V (6) = 1

Ee¢, (43)

1. This also describes a pure, non-interacting BEC.
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and the angular velocity for state £ is therefore:

h
Qe=1 4.4
¢ X M?’g ( )
=0 x Q. (4.5)
We see that the rotation frequency is quantized, with rotational quantum ), = h/Mr3.

Having the whole cloud rotating at €, corresponds to an angular momentum ¢A per atom.
Due to this quantization, we can guess that if the gas undergoes forced rotation at a
frequency nf{l,, the corresponding ground state will be the ¢ = n state. But then, what
happens if the excitation happens somewhere between two quanta?
For a potential rotating at an angular speed Q,qt, it is useful to see what happens in the
rotating frame. This can be computed by adding to the hamiltonian the term:

d
_QI‘OtLZ — ihQrOt@y (46)
and we can then write it as:
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The eigenstates of this new hamiltonian are the same as in the non-rotating state (given
by (4.2)), but their energies now write:

h2 Qo N2 1
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These energies are shown on figure 4.1 (left). We see that the state with the lowest energy
changes every {Q;: for a potential rotating between —€,/2 and €,/2, the ground state will
be ¢ = 0, which is the state corresponding to the absence of rotation; for a rotation between
,/2 and 3Q,/2, it will be £ = 1, rotating at €, etc. In other words, the ground state is the
state n for which n{}, is the closest to ). Interestingly, it means that starting from a ring
at rest, an excitation with angular velocity |Qot| < ©4/2 will leave the atomic state into the
non-rotating state, reminiscent of the critical velocity of a superfluid.

The last term in equation (4.7) corresponds to the centrifugal energy. It is uniform on
the whole cloud and therefore doesn’t depend on the state ¢; we can thus remove it by an
appropriate change in the energy reference. The energy of state £ then simply becomes:

hQ Dot \ 2
EZ(Qrot) — 7261 < QOt> . (410)
q

We then see that the relevant energy spectrum, plotted on figure 4.1 (right), is in fact periodic
with respect to Qot, with periodicity Qg: Epypn (ot + 18q) = Er(Qrot ).
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A Ey(Qy) A Ep(Q)

Figure 4.1 — Left: energy of the different states in the ring depending on the rotation
frequency Q0. The ground state changes every Q. For [Q0] < ,/2, the ground state
is not rotating. Right: same energy spectrum when we discard the constant offset energy
corresponding to the centrifugal term. We see that the relevant energy spectrum is in fact
periodic. Figure adapted from [151].

4.1.2 Transition between states and persistent flow

The energy spectrum presented above is interesting as it shows the discrete circulation levels in
the ring and gives their separation. However, it doesn’t tell anything about the (meta)stability
of the flow, because it doesn’t describe what is probably the most interesting part of the physics
in this system: the transition between states.

Indeed, changing the lowest-energy state doesn’t mean that the system will follow: there
is no simple way to continuously deform a phase winding ¢; into a phase winding fs # (1,
and the states will have a “topological” protection that prevents change of state: a phase slip
is required to allow transition between states. The mechanisms that allow such phase slips
come with energetic barriers that can very significantly displace the threshold frequency for
which the transition between states will happen. This makes the superfluid flow metastable,
and leads to an hysteretic behavior [59,152].

In all the experiments realized up to now, the system is not unidimensional but 2D or 3D,
allowing the existence of vortices within the bulk; the role they play in the transition between
states is crucial: a vortex crossing the annulus will generate a 27 phase jump in the ring (see
figure 4.2). From the state of the art, we can typically distinguish two kinds of experiments
and behaviors:

e The ring can be set into rotation by adding a local rotating potential, for example a blue-
detuned beam piercing or reducing locally the atomic density [144,145]. In this case,
the local modification of the potential makes it favorable for something to happen there;
especially in the case of a blue-detuned potential, the density is locally lowered and the
mechanism for creating or dissipating flow seems to involve formation or breaking of a
vortex-antivortex pair at this place [153,154].

e The rotation can come from rotation of the global potential. This includes the interesting
case of superfluid flow rotating in a static ring [58], as well as the case of a static annular
gas evolving in a rotating potential, where the gas will be set into rotation due to
potential rugosity. In this case, the dissipation will involve more global mechanisms like
collective modes (the phase slip coming from an instability of such a mode). Dubessy
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et al. [155] showed that the easiest modes to excite should be surface waves at the edges
of the ring and showed good agreement with experiment [58] concerning the stability of
the flow.

Figure 4.2 — Iso-density surface and phase profile of a ring-shaped BEC with a vortex
present in the bulk. A loop along the ring enclosing the vortex (“outer” loop on the figure)
shows a 27 phase winding, while a loop along the ring that doesn’t enclose it (“inner”
loop) has no overall phase winding. If the vortex crosses the annulus to reach the center,
the final circulation will be ¢ = 1, if it crosses it towards the outer edge, it will be ¢ = 0.
Vortices thus allow phase slips by creating a singularity within the gas. Figure taken
from [156].

4.1.3 Measurement of superflow

Studying superfluid flow requires the ability to detect and measure it. The first observation of
superflow was based on a “self-interference” method [57]: the ring potential is switched off and
the atoms expand freely during a time-of-flight; it spreads and atoms coming from different
places of the ring interfere together in the center. If the phase is uniform in the ring, these
interferences are constructive and a peak is visible after TOF. If there is flow within the ring,
there is also a ¢ x 27 phase winding and these interferences are then destructive: a hole will
remain in the center of the gas, and the size of the hole will provide a measurement of |¢|.

This can be understood quite intuituitively from the 1D model described previously: the
atomic density after a time-of-flight, if this one is long enough, corresponds to the momentum
distribution of the atoms, i.e. to the square of the Fourier transform of the wavefunction.
From equation (4.2), we can write the momentum-space wavefunction along an arbitrary axis
e, belonging to the ring plane:

drrdp dz 1 i(0h—r-
oo =pes) = [ G amet D=0, 6.2) (4.11)
x 1 dgpe'to=roPsing) — 1, (o). (4.12)
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The momentum-space wavefunction corresponding to the state ¢ thus has the shape of
a Bessel function of order ¢, with a central peak for / = 0 and a central node for ¢ # 0.
The Bessel functions of order 0,1,2, as well as their squares (corresponding to the momentum
distribution of the atoms) are plotted on figure 4.3. For ¢ # 0, we see the presence of a node
for p = 0, but also that the position of the maximum increases with £.
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Figure 4.3 — Plot of the three first orders of the Bessel function (left) and their square
(right)

Of course, in the three-dimensional case and in the presence of interactions things are
not so simple, and in practice it is difficult to achieve time-of-flight expansions long enough
to completely neglect the initial position distibution: a precise description of the density
profile after time-of-flight requires Gross-Pitaevkii simulations [143], but this simple model
already allows to get a good idea of what happens. This method has been the most used for
superflow dectection and measurement; it was used for example by Moulder et al. to study
the decay from a flow level to another, in a beautiful demonstration of both quantization and
metastability of flow [58] (see figure 4.4).

Two other methods recently appeared: one also relies on interferences, this time between
the ring and a phase reference, generating spiral patterns. This method allows one to detect
the sign of the corcilation in addition to its absolute value [71,146]. The second relies on
the time evolution of sound standing waves in the ring, as the presence of a flow breaks the
symmetry between waves propagating clockwise or counterclockwise along the ring [157].

4.2 Description of our trap

Let us now describe the principle we use to realize a ring trap for ultracold atoms. It was
proposed soon after the first realization of a dressed trap [106]; a first experimental realization
was achieved for thermal atoms two years later [107], but was never used to manipulate BECs.
The idea is to confine the atoms at the intersection between a bubble, obtained through RF-
dressing (as described in chapter 2), and a plane, obtained through a far-detuned laser beam
generating vertical confinement (see figure 4.5). This confinement can in principle be obtained
by either a vertical blue-detuned standing wave, as proposed initially [106] (the atoms are then
confined between two intensity maxima; a beautiful realization of such a setup is presented
in [158]), a red-detuned light sheet beam (never used for hybrid optical/RF traps but used
for example in [58,146]), or a pair of blue-detuned light sheets (like in [71,107]). It is this last
method that we use on our experimental setup.
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Figure 4.4 — Measurement of the evolution of superfluid flow in a ring with time, realized
in the group of Z. Hadzibabic [58]. Left, top: size of the hole remaining in the gas after
time-of-flight. Each point corresponds to one experiment: preparation of the ring and
creation of ¢ = 3 flow, wait for a given time, TOF and measurement of the atomic
density profile. After time-of-flight, a hole remains in the gas (see text); three distinct
radii of the hole or a bright central peak are measured, indicating four circulation levels
(¢ =3,2,1,0). Initially prepared in ¢ = 3, the flow in the ring decays with time, due to
atomic losses. Since the trap is static, the ground state corresponds to ¢ = 0, but the
metastability of the states prevents the flow to decay; the reduction of atom number in the
trap (Left, bottom) causes a reduction of the potential barrier associated to metastability,
and the flow then slowly decays, following several random decay steps which are consistent
with a decay through surface modes [155]. Right: profile of the ring after time-of-flight,
showing discrete sizes of the central hole, or a peak in the center if no flow is present (top
to bottom: ¢ =3,2,1,0).

4.2.1 The light sheet setup

Let us begin by describing the way we realize this double light sheet (that I will simply call
“the light sheet” in the following). It is obtained by placing a 0 — 7 phase plate on the path
of a gaussian blue-detuned laser beam that is subsequently focused on the atoms. The phase
plate applies a w phase shift to the vertical half of the beam with respect to the lower half
(see figure 4.6): the applied phase difference creates a plane in which the light will interfere
destructively, resulting in a local absence of light; the atoms can then be trapped there.

The computation of the light intensity on the atoms, i.e. in the focal plane, is simply done
by computing light propagation. In our case, the beam propagates along the y axis and the
phase plate is vertical. An incident field E;(2/, 2") with wavelength A arrives on a lens with
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Figure 4.5 — General principle of our ring trap. The atoms are confined on the isomag-
netic surface defined by RF dressing (blue ellipse) and within the plane defined by two
blue-detuned light sheets (in green). The intersection of both traps creates a ring-shaped
potential.
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Figure 4.6 — Left: schematic representation of the phase plate. Right: Intensity profile
(or equivalently light potential) of the light sheet beam (in red), normalized to the height
of the gaussian profile corresponding to the absence of the phase plate (in black). The
modulation by an error function creates a minimum of potential at the center of the light
sheet. One may also note that the power decay for large z is also much slower [159].

focal length f, and we suppose that the phase plate is placed right in front of the lens?. The
electric field in the focal plane then reads:

00 00 0
Ef(z,z) = ;—f / dx ( /0 - / )Ei(x',z')ei’f@’HZ’Z)/fdz', (4.13)

which can be rewritten as [160]:

. | 2Ps z? 22 .z
E - _ =) = = fl1— 4.14
t(z, 2) i/ — exp [ <w%> (wg er sz ) (4.14)

where w,., w, are the beam waists in the absence of the phase plate and Prg is the total power
in the light sheet beam. Supposing the incident beam was vertically collimated with waist
w; -, the vertical waist on the atoms is then w, = Af/mw; .. The horizontal waist has no
real constraint: if the incident beam’s axis is the same as the axis of the phase plate, then
horizontal and vertical axes are decoupled.

2. In our case the phase plate is placed approximately 30 cm before the lens, but since the beam is vertically
collimated before the lens it doesn’t change anything.
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We see here that the vertical axis is simply “modulated” by the error function, and the
electric field cancels as expected in the z = 0 plane. The corresponding intensity profile is
shown on figure 4.6.

Outside the focal plane, the electric field can be written as [159]:

2i o iy
E(r) = Ay(x) Tzw /0 sin <2u;> e r e " du, (4.15)

where zp is the vertical Rayleigh length, equal to mw? /). Here, we exploited the independence
of x and z axes: Az(z) is the field amplitude along the = direction. In our case, at the vertical
focus point the beam is horizontally collimated®, and A, simply writes:

2Pg -2
Ay(z) = ”WLS@ W (4.16)
xr

The corresponding energy landscape for the atoms then simply writes: Ugpeet(r) =
np|E(r)|?, where 1y gives the potential shift due to the presence of the dipole beam and
depends on the detuning of the beam compared to the Dy and D lines*; in our case it
is equal to ny, = h x 1.22 x 10 Hz- W~ . pm? (computed taking into account non-RWA
terms [161]).

4.2.2 Overall ring characteristics

Oscillation frequencies

Let us now describe the final ring potential. From previous section, we can deduce the vertical
trapping frequency: close to z = 0, equation (4.14) can be approximated to:

2P 2z

TWLW, \/TW,

E0,0,z < w,) =~ (4.17)

The resulting trapping frequency in between the two sheets is then:

4 | npPus
= —y | —— 4.18
W20 m\ Mw3w,’ ( )

and if we slightly go off-center, the local vertical confinement varies as:

22 y? —3/4
w;(x,y) = ws 0 X €xp <_w2> X [1 + 2] . (4.19)

x ZR

From a first-order development, we can then deduce a relation between w, and zp that
minimizes the anisotropy of the trap close to the center: zp = v/3/2w,. From equation
(4.14), we can also deduce that maximizing the vertical confinement at a distance rg in the x
direction (for a given laser power) is achieved by choosing w, = 2ry.

The radial frequency in the ring is defined by the confinement on the isomagnetic surface,
as described in (2.40). Having an azimuthally uniform confinement in the ring — to avoid

3. Strictly speaking, we have to replace w, by wz+/1+ (y/zr)?, with zr the horizontal Rayleigh length
equal to ﬁwﬁ/)\, but in our experiment xr is more than 1000 times larger than all relevant dimensions.

4. Strictly speaking, it depends on all lines, but those are the two that have a non-negligible importance
for the frequencies we consider here.



4.2 Description of our trap 75

breaking rotational symmetry — supposes a circular RF polarization (cf 2.3.1), and the radial
frequency, if the atoms are at the equator of the bubble, reads®:

2h
MQy

(4.20)

Wrpo =«

If the atoms are not at the equator, it becomes:

2
wr(2) = wroy /1 + T—Z (4.21)
b

Finally, the critical temperature for condensation in the ring trap reads [124]:

Nh3w,w, 2/5 .
kpT, = (C(5/2)\/WT0) , (4.22)

where ( is the Riemann zeta function. Note that this expression can also be recast under the
form:

kT
niAas = ((5/2) ( 7% > : (4.23)
with ny = N/27rg being the one-dimensional density and @ = /w,w, the geometrical average
of the oscillation frequencies. It evidences the fact that the gas is harmonically trapped along
two dimensions and uniform along the third one.

Chemical potential and lower dimensions

In a ring with radius rg and trapping frequencies w,, w, and azimuthally uniform confinement,
the chemical potential for a 3D gas in the Thomas-Fermi regime reads [106]:

2Na
wsp = hw . (4.24)

Tro

If the chemical potential and the temperature are both lower than w,, (almost) all atoms are
in the vertical ground state and we enter the two-dimensional regime. The chemical potential
is then modified and is equal to:

1/6 2/3
Wy 3Na
p— 175} —_— . 4.2
#zD hw( Z> (4ﬁro> (4.25)

Our vertical trapping scheme allows reaching high trapping frequencies (w, ~ 27 x 3kHz),
and we can reasonnably expect to reach the quasi-2D regime with it. We can also, with only a
few modifications, increase the radial trapping frequency around 1.5 kHz, which would allow
to envision reaching pop < w, (see 5.4). In this last case, the atoms are almost all in the
transverse ground state, entering the quasi-1D regime. The chemical potential then finally
becomes:

Na
p1p = hw—-. (4.26)

Tro

5. I'remind here that 2 is the Rabi frequency at the bottom of the bubble, and the coupling at the equator
is Qo/2
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Chapter

Experimental realization of the ring
trap

The construction of the ring trap setup started with the previous PhD student who worked on
the experiment, Camilla de Rossi [87]. The team succeeded in building the light sheet setup
and realized ring-shaped traps; however the obtained annular gases were inhomogeneous or
even disconnected when cold enough to be condensed, and could not be used for the studies
we wanted to perform. The time spent trying to improve this initial setup led to a good
understanding of some of the required tunings, but also to realize that the initial setup did
not have the stability and the fine tuning possibilities required to achieve a “good enough”
ring, and in the end most of the setup has been reconstructed.
The requirements our ring-shaped gas has to fulfill are the following:

e Ultracold temperature (~ 100nK), low enough to reach quantum degeneracy.

e A good regularity: we need the trap to be as smooth as possible to have rotational
invariance; in other words we want the potential roughness to be much smaller than the
chemical potential in the ring trap.

e A lifetime long enough to perform experiments within the ring trap (several seconds).

This chapter will give the experimental details about the ring setup implementation. It
will be divided into three parts: in a first section I will start discussing the double light sheet
setup, how we align the optical elements and how we load the resulting potential. The second
section will be dedicated to a discussion about the required RF control, which happens to be
much more critical than expected. The third section will present the work that was achieved
on characterizing the finally obtained trap.

5.1 The double light sheet

5.1.1 Experimental system
Shaping the light sheet beam

The light sheet beam is shaped from a 532nm, 5 W laser beam generated by a Coherent Verdi
V5 monomode laser. The output beam is collimated, with a 1 mm waist. The beam is shaped
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by the following elements (also presented on figure 5.1):

e A pair of cylindrical lenses (L;, L) generates a vertical 3:1 telescope to expand the
beam vertically to a 3 mm waist.

e A pair of lenses, one cylindrical and the second spherical (Ls, Ly) creates a horizontal
telescope to give a horizontally collimated, 200 pm waist beam.

e The spherical lens also focuses the beam vertically, with a waist of 5.6 pm at the focal
plane (where the atoms will be), with a Rayleigh length of 185 pm.

e A 0-7 “step” phase plate is placed after lens Lg; it generates a plane with no laser power
in which we can trap atoms vertically.

f=-100 =300
- | - Bt
w =1 mm — mpm\‘

w = 3 mm 0" \
Vertical plane -T f =100
(spherical)
| [ |
|
w =1 mm - \- w = 200 pm
Horizontal plane f = 500

Figure 5.1 — Principle of the light sheet beam shaping (see text), and picture of the
cage setup. Lj, Lo and Lg are cylindrical lenses; they are shown in transparency on the
axes on which they do not act.

In practice, lenses L1, Lo and L3z are mounted together on a cage system from Thorlabs
(see fig. 5.1); it forces them to be parallel and aligned together. Each of them is placed in
a rotation mount whose angle is controlled by a micrometric screw!: this enables fine tuning

1. CRM1P/M from Thorlabs.
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of the lenses angles, and to synchronously rotate the lenses together (which is a precious
possibility, since the relative angle of the cylindrical lenses is very critical — see section 5.1.4).
This whole system will thereafter be called “the cage”. It is placed on the main optical table,
whereas the rest of the system is placed on a smaller breadboard placed at the height of
the science cell; a periscope is placed right after the cage to lift the beam. The phase plate
is located on this breadboard; it is mounted on a vertical translation stage? with a 1pm
resolution and a rotation mount. The final lens, L4, is mounted on top of a micrometric
translation stage along the beam propagation axis (longitudinal position) and its mount has
translation screws® along both other axes (lateral and vertical position; the screws are not
graduated and have a 250 pm per turn precision).

Turning on and off the light sheet

The control of the light sheet intensity is achieved by using a quartz acousto-optical modula-
tor* (AOM): the 0'" order is sent to a beam blocker and the 15* order goes to the experiment.
The choice of a quartz AOM comes from the high power (5 W) that goes through: quartz
AOMs are not very sensitive to high power (we haven’t been able to see any thermal effect),
whereas the previous AOM of the setup, with a TeOq crystal, had prohibitive thermal effects
(large thermal lens effect and fluctuations of the beam position while switching from 0" to
1% order). This AOM works at fixed frequency and its angular separation is small (0.6°); the
separation between both diffraction orders is done in the middle of the cage, almost 1 m away
from the AOM. We also considered using a Pockels cell followed by a polarizing beamsplitter
instead of an AOM, but we had problems of ringing when switching off the signal.

5.1.2 Installation of the light sheet

The light sheet setup is made of many elements, each of them having many degrees of freedom
and needing careful setting and alignment. I will here describe the overall procedure and
observables we used to install the system onto the experiment.

Aligning the (almost) naked beam on the atoms

The first step of alignment aims at ensuring that the beam reaches the atomic cloud (whose
size is of the order of a few micrometers). This step is achieved with the “naked” beam, without
the phase plate and without the cage. Before dismantling the previous light sheet setup (in
which we were already able to load the atoms), we recorded its beam path using diaphragms;
this allowed us to set back the beam at a position not too far away to the previous one. The
spherical lens L4 is then set in place.

The rough alignment is done using a thermal cloud as a probe: the naked beam is pointed
onto an atomic cloud in the quadrupole trap for which we didn’t evaporate until the end (in
the absence of the plug beam). The cloud is then released from the trap in the presence of the
beam: the repulsive effect of the laser can significantly modify the expansion of the thermal
cloud, leading to “holes” in the profile after time of flight (see figure 5.2). The position of the
beam with respect to the atoms can then be deduced from this profile; since the cloud is hot

2. M-461-7-M from Newport, with a SM-13 vernier micrometer.
3. Mount LM1XY /M from Thorlabs; it was mostly chosen for its compacity.
4. I-M110-2C10B6-3-GH26 from Gooch & Housego, with a A35110-S-1/50-P4K7U driver.
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Figure 5.2 — Expansion of a hot thermal gas in the presence of the naked beam (only Ly
is present on the setup). The presence of the beam blocks the atoms and leads to regions
where atoms do not spread (white arrow). Such pictures allow to deduce the position of
the beam with respect to the cloud; on the right hand picture the depletion is centered,
meaning that the beam is horizontally aligned with the atomic cloud.

and expands a lot is is possible to detect the laser on a broad zone. The beam position can
then be adjusted by modifying the vertical and lateral position of L4 to center it onto the
atoms (i.e. on the center of the quadrupole). This method is adapted from the rough plug
beam alignment procedure described in [86].

The fine alignment is done starting from a condensed cloud in the dressed trap; we shine
the beam during a given time (typically 1 to 15ms) while the BEC is released from the trap.
A long pulse duration allows to deduce the relative position of the beam with respect to the
cloud: if the beam is higher than the cloud, the cloud will fall without feeling its effect; if
the beam is lower than the cloud the latter will be deviated or explode during its time of
flight. The vertical position of the cloud can be adjusted using a vertical static magnetic bias
field (see section 5.1.3); by playing on both its position and the vertical position of Ly it is
possible to align the beam at the desired vertical position (ideally, this position has to be
slightly above the zero of the quadrupole trap, see section 5.1.3). We progressively reduce the
pulse duration until we can precisely locate the beam and displace it as desired: if we know
(from the long exposure) that the beam is placed below the atomic cloud but see no effect of
the beam, it means that the cloud is too high and it doesn’t have time to hit the laser before
it is switched off. Figure 5.3 shows the typical time-of-flight pictures obtained in the different
cases.

We note that these methods can also be useful with the final light sheet setup, to find the
light sheet if it got misaligned and doesn’t hit the atoms anymore.

The focus of lens Ly (i.e. its longitudinal position) can also be achieved with a similar
method: once the beam is aligned with the cloud (with the method mentioned above), shining
onto the BEC a brief light pulse (0.1 ms at low power) while it is released from the trap will
cause it to explode. We can then measure the “explosion width” (see figure 5.4) and use it
as a criterion for tuning the focus of lens Ly, adjusting its longitudinal position to maximize
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2) ST 0 Q)

Figure 5.3 — Determination of the naked beam position using light pulses. The cloud
is released from the bubble trap and the beam is turned on for a given duration at the
same time. If the beam stays on for a long time (a,b), the cloud will burst if the beam is
below the trap (a) or stay unharmed if the beam is above (b). If the beam stays on for
a short time 7,5 (c,d), two more cases exist: if the beam is closer than ngul so/2 from
the atoms (c) the atoms will reach it while it is on, get deflected and then pursue their
fall; if it is lower the beam will be off when the atoms reach its position. By adjusting the
time during which the beam stays on while atoms fall, it is thus possible to measure the

relative position of the trap and the beam.

the cloud explosion (see figure 5.4); we have in this way a precision of about 0.2mm for a
theoretical Rayleigh length of 1.7 mm (note that the Rayleigh length of the final beam will be
190 um, due to the vertical expansion of the beam by the first telescope that is absent at this
stage). A finer tuning of this focus will be achieved later by measuring the vertical oscillation
frequency in the double sheet potential (cf section 5.3.3).

If the beam pitch is important, the vertical position of the cloud has to be adjusted
significantly when the longitudinal position of Ly is modified; this can be used to probe the
horizontality of the beam and correct it (a mirror is placed before Ly; changing its vertical
angle while shifting the vertical position of the lens allows to change the beam’s angle without
modifying its impact point). Using this observable, we were able to tune this angle within 1°.

Both these tunings are preliminary and can be achieved more precisely later using as a
probe the behavior of the atoms within the light sheet; they aim at having an initial system
sufficiently well aligned to load the atoms within the sheet.
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Figure 5.4 — Left: time-of-flight pictures of BECs after shining the Verdi beam directly
onto it in the absence of the cage (only Ly is present); the beam is shone during 0.1 ms
at 10% of its maximal power as the trap is switched off. (a) is obtained for a beam well
aligned on the cloud, (b) for a beam slightly above the cloud. (c) is also aligned with
the cloud, but Ly is better focused: the explosion of the cloud is more important. Right:
“width” of explosion of the cloud Ax depending on the longitudinal position of L. Az is
measured only for a good alignment of the beam onto the atoms (situation a or ¢, not b).
The red line is a polynomial fit shown as a guide to the eye.

Setting of the cage system and the phase plate

The relative angles of Lj, Lo and L3 are very critical (we need them to be aligned much
better than 1°, cf section 5.1.4). The cage setup is prepared before being installed onto the
experiment: it is easier to align L; and Lo alone. L; is placed onto the cage and aligned to be
close to vertical: the laser beam is sent onto a camera and we orient L; to measure a beam
angle as close as possible to 90°). To position Lo, we have two degrees of freedom, the angle
of the lens and the distance to Lj; the parallelism to L; is fixed by the cage. They are tuned
by ensuring that the beam is collimated and doesn’t rotate during its propagation (any small
angle between both lenses causes a significant rotation of the beam’s axis); we can tune the
relative angle within 0.3° in this way. We tried to also tune the angle of L3 before setting the
cage using a camera, trying to get the same angle of the beam with Ls than without; however
the beam in the absence of Lj is very large and its orientation is difficult to measure precisely
(the beam is larger than the camera) and the obtained tuning turned out to be unsufficient
(only 1° precision).

Once the alignment of the naked beam and L4 were done, the cage has been installed on
the experiment. Placing a camera to monitor the beam after the cell (around 3 cm after the
focal point of the light sheet beam) allowed a better tuning of the angle of Ls: we measured
the angle of the beam in the absence of Ls, then placed L3 back and tuned its orientation
such that the orientation of the final beam is unchanged. The beam profile at this position
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in the presence of L3 is not very anisotropic and its angle is not measured with a very good
accuracy; we thus made a linear fit of the beam angle depending on the lens’ orientation to
compensate for the bad precision of the fit given by the beamprofiler on a single realization
of the angle (fig. 5.5). We achieved in this way an accuracy better than 1° for tuning the
angle of L. The longitudinal positioning of Ls has been done by ensuring that the beam
stays horizontally collimated after passing through the science cell.
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Figure 5.5 — Left: Profile of the light sheet measured with a beamprofiler camera placed
approximately 3cm away from its focal point, without (left) or with (right) the phase
plate present on the beam path. Anisotropy is here reverted compared to the focal plane,
due to the strong vertical focus (see figure 5.1). Before setting the phase plate, the beam’s
orientation is used to tune the angle of Lj3; the phase plate is then placed in order to
ensure that the slit created in the beam is orthogonal to its angle and that it is vertically
centered. The fringes that are visible on both pictures (i.e. not the horizontal ones) come
from interferences on the camera itself and are not present on the real beam. Right:
Evolution of the orientation of the beam in the absence of the phase plate (corresponding
to the left hand picture) with respect to the angle of Ls. The orientation of L3 is tuned
so that the orientation of the final beam (red line) is the same as the one measured in
absence of L3 (black horizontal line).

The phase plate is set into position using the same camera; its angle and height are tuned
so that the slit created in the beam is aligned along the beam angle and centered. The angle
of the phase plate isn’t very critical and can stay at this value; its height requires more careful
subsequent tuning.
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Fine alignments of the light sheet

We want the dark region within the double sheet to be perfectly horizontal. The pitch angle,
controlled through the vertical position of L4 and the last deflector mirror, is tuned by loading
atoms into the light sheet (cf section 5.1.3), then turning off the magnetic confinement: the
atoms then spread into the sheet; if it is tilted we see on the vertical pictures that their center
of mass drifts with time towards lower altitude regions. The roll angle is tuned by looking at
the cloud after time-of-flight using our horizontal imaging: during TOF, the cloud expands
perpendicularly to the light sheet, due to the strong vertical confinement. We thus align the
light sheet’s angle by synchronously rotating Ly, Ly and L3® to have the expansion of the cloud
coincide with the angle of gravity (both angles being measured on our horizontal camera).

The angle of gravity with respect to the camera is measured through the free fall of the
cloud: we let the atoms fall during different times ¢ and record the position of their center-
of-mass. It should follow the law:

1 -
2(t) = 70 + vzt + 50:t%, (5.1)

1 -
z(t) = 20 + va ot + 500t", (5.2)

where z and z are the position of the cloud’s center of mass on the axes of the camera, v; o the
initial cloud velocity along these axes and g; the projection of gravity along the same axes.
The angle of gravity is then given by arctan(g,/g.), which we measure as being 0.7(5)° (fig.
5.6). It is this measurement that limits the precision we achieve on the sheet’s horizontality
in the z — y plane.
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Figure 5.6 — Measurement of the projection of gravity g, on the x axis of the horizontal
imaging camera (see section 3.4). Combined to the corresponding projection on the z axis
of the camera, this allows to measure the relative angle of the camera and gravity.

The expansion of a cloud loaded in the light sheet also allows to tune the lateral position
of Ly: the atoms should be placed at the center of the light sheet, where the power and

5. In principle we should also tune the angle of the phase plate, but the effect of its angle on the resulting
light sheet is very weak, and we thus do not have a very precise control on its angle: we cannot rotate
it synchronously with the lenses when we correct for small angles.
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vertical confinement are maximized; we thus try to maximize the vertical expansion of the
cloud (i.e. its size after time-of-flight, measured on horizontal images) when released from
the trap. Applying a static bias field along the z axis of the experiment allows to laterally
displace the cloud in the light sheet and helps realizing the alignment (allowing to know in
which direction to displace the sheet).

Finally, the focus of L can also be improved by performing measurements on the trapped
atoms, maximizing the vertical oscillation frequency measured in the double light sheet po-
tential; this measurement is detailed in section 5.3.3.

5.1.3 Loading procedure
Basic principle

The loading scheme is, in its most basic principle, quite simple: we need to align the light
sheet with the bottom of the bubble, so that the atoms get caught between the two intensity
maxima of the sheet beam while it is turned on. In practice, it is simple to displace the
bubble trap: a pair of vertical coils in Helmholtz configuration located above and below the
cell generate a vertical bias magnetic field, which shifts the bubble trap vertically. However,
the current in the coils cannot change sign: the bubble can be shifted only along one direction
with respect to its position at zero bias. Details about its calibration are given in appendix
A. On the contrary, displacing the light sheet vertically is quite difficult.

The simplest way to load the atoms into the light sheet and obtain an annular gas is then
to first raise the bubble to a height zg,; while the laser is still off to align the bottom of
the bubble with the position of the dipole trap minimum, turn on the sheet (we use a sine
ramp), and then lower the bubble so that the atoms get displaced towards the equator of the
bubble (see fig. 5.7). We do not necessarily have to bring them up to the equator; the height
Az from which the bubble is displaced in the second step allows to control the radius of the
obtained ring.

We could also imagine instead lowering the bubble twice during this procedureS, but this
would lead to important currents in the bias coils in the final situation: ideally, we would like
the magnetic bias field to be very small in the final configuration in order to minimize the
position noise due to possible current noise in the power supply. For the same reason, the
light sheet is aligned slightly above the center of the quadrupole trap’, see figure 5.7 leftmost
picture.

To check the good respective alignment of the cloud and the double light sheet after lifting
the bubble, we turn off the magnetic confinement and shine briefly (0.1 ms pulse) the light
sheet; the cloud then evolves during the usual time-of-flight procedure. The cloud doesn’t
have time to move during the light pulse, but it gets accelerated: its position and shape after
the TOF then indicates what was its relative position with respect to the sheet (fig. 5.8).
If the alignment is correct, the cloud’s center of mass should not be displaced compared to
its position in the absence of the light pulse, but it is broadened. On figure 5.8 we see that
there are, in fact, three positions corresponding to an absence of average displacement; they
can however easily be discriminated: two of them correspond to a maximum of light intensity
at the position of the atoms while only one (the good one) corresponds to a minimum of

6. By having the bottom of the bubble above the light sheet before applying the vertical bias.

7. In principle, having the light sheet aligned right on the center of the would be better. However, the shift
can be done only along one direction (to lift the bubble), which means that if the zero of the quadrupole
is above the sheet the atoms will never be able to reach the equator. Since the light sheet position is
subject to small drifts, we take a small safety margin to avoid having to displace the sheet.
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Figure 5.7 — Light sheet loading and ring formation scheme. In a first step, the bubble
is lifted to align the atoms with the sheet, which is then turned on. The bubble is then
lowered from a certain height to generate a ring-shaped trap.

intensity. If the atoms are aligned with the maximum of intensity, the final cloud will have
a minimum of density at its center whereas it will have a maximum of atomic density at its
center if it is aligned along the zero-intensity plane. Trying to load the atoms in the sheet also
immediately discriminates between both situations. The light sheet position slightly drifts
from day to day; this alignment therefore has to be done daily.

Compression with constant radius

The presence of residual defects in the light sheet that we couldn’t remove led us to try
compressing the ring, to increase the chemical potential of the gas (see section 5.1.4). Having
a small ring also makes it easier to reach condensation, by increasing the atomic density. We
thus needed a scheme to obtain a ring with a high magnetic gradient.

A first possibility consisted in compressing the cloud in the bubble before loading the
sheet. However, compressing the cloud leads to significant heating: we need to apply a quite
low RF knife during the compression to keep the cloud condensed, and this limits significantly
the number of atoms we have in the trap after compression (around 1 x 10° atoms in a pure
BEC). For reaching the 2D regime at the bottom of the bubble, this is not a problem, because
we can work with the cloud right after that, but when we have to subsequenty load the ring,
we end up with a too low number of atoms in the final trap. If we do not apply the knife during
compression in order to keep many atoms, the cloud gets very hot and cannot be loaded into
the light sheet properly anymore. We could also compress the cloud after loading the sheet
but before making the ring; however in this situation the cloud is extremely sensitive to any
fluctuation in the relative position between the sheet and the bubble, and the compression in
this configuration leads to huge losses and heating.

Compressing the ring itself proved to be the best scheme. We tried to compress the ring
while keeping its radius constant (i.e. increasing only w, ), following two criteria:

e At the end of the ramp, the ring has to be at the equator of the final bubble.
e The radius of the ring has to remain constant during the whole ramp.

The first condition aims at minimizing the ring radius fluctuations (and the corresponding
heating) that would come from fluctuations in the relative position of the sheet compared to
the bubble (due to position noise in the sheet beam and current noise in the bias coils): at
the equator, the derivative of the radius with respect to the position of the sheet cancels. The
second condition aims at avoiding as much as possible changes in the cloud shape during the
compression ramp, to minimize heating and losses: if we make a large ring at the equator of
the bubble before the compression, the atoms will get dragged within the disorder created by
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Figure 5.8 — Left: vertical potential profile of the light sheet (red) and its derivative
(black), also corresponding to the opposite of the force exerted onto the atoms. There
are three positions (b,c) for which the atoms are not displaced (zero force), but two of
them correspond to potential maxima (b) and can be easily discriminated. The x-axis is
graduated in units of the vertical waist in the absence of the phase plate (see fig. 4.6).
Right: profile of the atomic cloud after time-of-flight expansion (23 ms). (a) corresponds
to atoms in the dressed trap. (b) and (c) are taken after shining briefly a laser beam onto
the atomic cloud in the dressed trap when the cloud is at positions indicated on the left
plot. In both cases, we see no displacement of the cloud’s center-of-mass, but for (b) the
cloud expands a lot vertically and has a minimum of density in its center while in (c) it
has a maximal density at the center, due to the different force profiles. If the cloud were
at a position with respect to the sheet different from (b) or (c), the center-of-mass would
be significantly displaced. The vertical position of the cloud is shifted by approximately
5.5um between (b) and (c), close to the expected value of w,. Finally, (d) is taken after
loading the light sheet. Since the vertical trapping frequency is significantly larger there
than in the dressed trap, the vertical expansion is more important than in (a).

the light defects, and we would prefer to increase the magnetic gradient without displacing
the atoms. It is possible to fullfill both conditions by loading the sheet from a bubble at low
gradient and making a ring below the equator, with a small initial radius; we then adjust the
vertical bias while compressing the bubble with a linear compression ramp (see figure 5.9).
The details of the bias field ramp are given in appendix A.

5.1.4 Optical defects in the light sheet

To conclude this section, I will detail here the most notable issues we had that were due to
the optical setup. They can be classified into two categories: the first ones are optical defects
due to misalignments of the light sheet setup, and the second ones are optical defects due to
bad optical quality of our glass cell.

The easiest way to diagnose the defects in the light sheet is to realize a “2D time-of-flight”
(2D TOF): once the atoms are loaded within the light sheet, the magnetic confinement is
switched off and the atoms freely evolve within the light sheet during typically 10 ms. They
serve as a probe for measuring the potential landscape: if there are defects in the light sheet
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Figure 5.9 — Principle of the ring compression with constant radius: while the magnetic
gradient increases, the size of the bubble decreases; the vertical bias is adjusted at the
same time so that the ring radius stays constant. At the end of the compression, the ring
is at the equator of the bubble, i.e. the vertical magnetic field cancels at the center of
the light sheet. The ring position does not change, but the radial confinement increases
significantly.

itself, instead of spreading isotropically the atoms will be trapped in optical defects and stay
in the potential minima.

Most of our pictures taken to probe the light sheet were achieved in this way; however it
is better to release the magnetic trapping after doing the “undressing” sequence we developed
later (described in section 5.3.3): putting all atoms in only one Zeeman substate before
switching off the RF avoids Stern-Gerlach effects due to residual magnetic fields (for example
eddy currents when shutting down the quadrupole field) when the atoms spread between the
two sheets.

Misalignments in the telescope

To help us understand the effect that the tuning of the different parameters could have on the
final light sheet, we realized a complete modelisation of the light sheet setup® that allows us
to numerically compute the resulting light sheet parameters. We have the possibility to tune
all parameters (positions and angles) for each element in the setup, see the expected effect
and compare it with the experiment (see figure 5.10).

In the end, we have two things that need to be aligned with specific care:

e The relative angles of the cylindrical telescope lenses: if their angles are not well parallel
(or orthogonal), both axes “mix together” and instead of an absence of light within the
sheet, there is no light only in the central point of the sheet; the beam still has the
shape of a pair of sheets but there is also a lateral confinement. It is much weaker than
the vertical confinement, but the lateral barriers can still be high enough (already 1 kHz
for a 1° misalignment) to create a large “tube” within the sheet that prevents achieving
a homogeneous sheet (fig. 5.10 a). This tuning is achieved by carefully preparing the
telescope before setting it onto the experiment, as described in section 5.1.2.

e The vertical position of the phase plate: one could think that since the beam is very
large at the position of the phase plate (3 mm waist vertically), the position of the plate
is not very critical, while it is in fact extremely sensitive. For even a small misalignment
of this position, the beam is not splitted into two equal parts anymore, and we see a

8. It is based on gaussian ABCD matrix propagation for describing the setup up to the phase plate, and
direct light propagation computation beyond.
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barrier appearing in the center of the sheet that can split the cloud in two parts (fig.
5.10 b). A vertical diplacement of 100 pm is already enough to create a barrier with
more than 2kHz height. In the end, we tune this parameter by minimizing the effect
on the atoms after 2D TOF; we tune it within 10-20 pm.
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Figure 5.10 — Left: simulation of the effect of a 1° misalignment of the angle of L3. The
central panel shows the light sheet profile, the top panel is a cut of the profile within the
light sheet, and the right panel is a cut of the vertical profile of the light sheet. Right, a:
effect of a misalignment in the telescope (L3 has an angle of a few degrees compared to
L; and L), seen after 24 ms spreading in the sheet (2D TOF). The atoms are confined
within a lateral tube aligned with the axis of the light sheet, as seen on the left panel. b:
effect of a misalignment of the phase plate height of around 300 pm, seen after 15ms 2D
TOF: a barrier appears in the center of the sheet, and the atoms are strongly expelled
towards the sides.

Diffraction on the cell

In addition to the large-scale (i.e. comparable to the sheet dimensions) defects presented in
the previous section, we saw also small-scale (a few micrometers) defects in the trapped gas.
As previously, we can probe them by performing 2D TOF: we see small atomic “cigars” in
which atoms stay trapped after expansion, whose orientation is similar to the axis of the light
sheet (figure 5.11).

We interprete these defects as coming from diffraction and speckle on our optical cell,
whose optical quality is not excellent: residual green light ending up inside the light sheet will
create small barriers, preventing the atoms to reach the corresponding places. The small size
of our cell also doesn’t help, since the atoms are close (5mm) from the diffracting surface.
We haven’t been able to average these defects by modulating the light sheet beam orientation
(we can only marginally displace the sheet).
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Figure 5.11 — Left: ring realized at low magnetic gradient (28.5A / 56.5G - cm ™" hori-
zontally) and large RF frequency (1.2 MHz); the ring forms much below the equator: 7pm
above the bottom of the bubble for a 150 pm vertical radius. Center: same ring, with RF
evaporation. For both rings, we see small defects all along the circumference. Right: ex-
pansion of a ring (2D time-of-flight) in the same sheet potential. All pictures correspond
to the same region. We interprete theses small-scale defects as coming from green light
diffracted by inhomogeneities of the glass cell.

It emerged from discussions with Thomas Bourdel, Martin Robert-de-Saint-Vincent, Jean-
Loup Ville and Jérome Beugnon (who also work or worked with 2D confinement) that they
had similar problems; they solved it by either looking for regions free from defects (putting
their cloud between two optical defects), using large vacuum chambers so that the atoms are
far away from the windows, or having a chemical potential significantly larger than the height
of the defects. The first solution isn’t achievable for us since the size of our rings (typically 50
to 100 pum) is significantly larger than the distance between two defects, and the second one
is even less (changing the cell would require a large amount of work to rebuild the system).
We decided to try the second method by compressing the ring and using smaller radii, as
described in section 5.1.3: this increases the chemical potential in the ring and we could hope
to reduce in this way the relative density inhomogeneities coming from these incompressible
optical defects; it indeed allowed us to achieve satisfying rings.

5.2 RF control improvement

Even though many careful alignments have to be done on the light sheet setup, the RF
polarization happened to be another critical tuning. For a long time, we were confident
in our control of the “dressed trap part” of the ring due to our experience of working with
such traps [68,102,103]. However, all our previous experiments were realized at the bottom
of the bubble: in these conditions, tuning the RF polarization corresponds to adjusting the
oscillation frequencies and the trap’s symmetry, for which the sensitivity to a good polarization
circularity is quite weak (cf equation (2.85)). On the contrary, when making a ring at the
equator of the bubble, the local RF coupling defines the value of the local (azimuthally)
potential minimum °. Let us consider that the ring trap is achieved at the equator of the
bubble; the corresponding potential in the z = 0 plane can then be expressed using polar

9. Stricly speaking, the Rabi coupling also strongly impacts the absolute value of the potential minimum
at the bottom of the bubble, but it is almost uniform on the region explored by the atoms because the
solid angle (considering the unflattened bubble) of this region is small.
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coordinates (r, ¢) as:

V(r,¢) = hy/86%(r) + Q3(9). (5.3)

The potential energy along the ring (corresponding to §(r) = 0) is then equal to h€2;(¢). For
a typical coupling of 50 kHz, even coupling variations at the level of a percent lead to 500 Hz
variations in the trap potential undergone by the atoms, for a typical chemical potential
between 1 and 5 kilohertz, leading to significant variations of the local atomic density.

5.2.1 Instability of the RF polarization

We became suspicious about RF misalignments after having implemented the ring compres-
sion, when we ended up with annular gases which had irregularities with a well-defined sym-
metry axis which could hardly be attributed to random optical defects and was not aligned
with the sheet propagation axis (figure 5.12). We also saw instability in the orientation of this
axis, and an attempt of measuring the Rabi coupling in the ring trap doing RF spectroscopy
(as described in section 3.3.3) showed an extremely broad (2 10kHz) resonance, indicating
large coupling inhomogeneities.

The instability in the orientation of the inhomogeneities appeared to come from drifts in
the relative phase of the antennas: the synthesizer generating the clock of the DDS was used
for something else for a short period of time during the experimental sequence, leaving the
DDS without a clock (before using the DDS, but after programming it). Its outputs were
then randomly drifting in phase during that time — note for experimentalists wishing to use a
DDS: newver let it without its clock! The observed asymmetry thus comes from an elliptically
polarized RF. We could easily solve the problem after having understood it but it led us to
realize that we needed a more careful control of the RF polarization.

Figure 5.12 — Left: picture of a ring-shaped gas realized after implementing the com-
pression scheme. We see no inhomogeneities that could be attributed to optical defects.
The ring is at the equator, compressed at 100 A (198 G - em~! horizontally) and the dress-
ing frequency is 0.6 MHz (the expected radius is then 44pum). Center, right: same ring
after performing RF evaporation to cool down the atoms; reducing the number of atoms
and temperature allows to see inhomogeneities better. We end up with two ring pieces
facing each other, signature of an elliptical polarization. Both rings are obtained within
the same apparent conditions, indicating the instability of the DDS we had trouble with.



92 Experimental realization of the ring trap

5.2.2 Implementation of a 3D polarization control
Need for a third antenna

With a careful tuning of the antenna’s polarization, we were able to suppress the asymmetry
leading to two “moon crescents” facing each other, but we ended up instead with a highly pro-
nounced left-right asymmetry (figure 5.13). A spectroscopy measurement in the ring showed
that the line was still extremely broad. This asymmetry looks like the effect of a lateral tilt
in the light sheet’s angle, but trying to rotate this angle showed no difference in the obtained
ring (both in aspect and resonance width).

Figure 5.13 — Left: ring-shaped gas obtained for a tuning of the antennas leading to a
rotationnaly invariant trap at the bottom of the bubble. We end up with a strong lateral
imbalance, which is not due to an inclination of the potential caused by gravity. Ring
realized for 110 A in the coils (218 G - cm ™! horizontal gradient) and dressing at 0.3 MHz.
Right: effect of a misalignment of the RF field with respect to the quadrupole axis. The
local quadrupole field is represented by the blue arrows; the RF field (red or black arrow)
is uniform over the whole system. I consider here only the contribution of a linearly
polarized RF (in the plane of the drawing), as is the field created by a single antenna.
The contribution of the RF field cancels where it is parallel to the local static field: if the
RF field is horizontal (black arrow) it happens at the equator (black crosses), if it is tilted
it happens both above and below the equator (red arrow and crosses). In this latter case,
the contribution of this field to the coupling in the ring — i.e. at the equator — created
by an antenna orthogonal to the plan of the drawing will be an increase of the coupling
on one side of the ring and a decrease on the other side (this contribution has opposite
projections on the local o™ polarization), resulting in a lateral imbalance of the ring.

After computing the effect that the tilt of a dressing antenna with respect to the horizontal
plane would have (a tilt within the plane can be corrected by adjusting the relative phase
between antennas), we realized that even a very small tilt could have an extremely large effect
on the atoms : for a coupling at the bottom of the bubble around 100 kHz, an angle of 1° on
one of the dressing fields leads to several kilohertz imbalance between both sides of the ring
at the equator! (fig. 5.13).

However, the control we have on our antenna orientation is clearly below the precision that
would therefore be necessary (the setup was not designed with this in mind), and changing the
way the antennas are placed is now extremely difficult. We thus decided to, instead, install a
third dressing antenna, that generates a vertical RF field: with three different antennas, it is
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possible to generate any polarization in the 3D space, even if the antennas are not perfectly
orthogonal with each other. We can then use it to correct the effects due to misalignments of
the two main dressing antennas, similarly to [110].

Mathematical interlude

Let us consider an arbitrary polarized dressing RF field, with complex polarization € =
cos © cos ©, e, + sin © cos @zeiq’ey + sin©,¢e'®=e,. We want to compute the local coupling in
the ring trap, that is, at the equator of the bubble. Defining the position with its azimuthal
angle ¢, the quadrupole field orientation writes: u = cos¢ e, + sin¢ e,. From equation
(2.47), the local coupling can be written as:

0200 = 5 2259 oo 0 - meostzo | G
where Ay, @1, A, Py are equal to:
Ay =2 sin(2@z)\/sin2 Osin?(® — ®,) + cos? Osin? @, (5.5)
®; = — arctan megssi(bglibzq)z)} ) (5.6)
Ay = cos? @Z\/COS2(2@) + sin?(20) cos? @, (5.7)
®y = — arctan [cos @ tan(20)] . (5.8)

Even though these formulas are not very appealing, one can find here the two phenomena
that are observed:

e A modulation with period 7, corresponding to the “double-moon” asymmetry. It de-
pends very weakly of the tilt ©, of the antennas with respect to the vertical axis, and
appears if the polarization is elliptical.

e A modulation with period 27, corresponding to the observed “lateral tilt”, that depends
strongly on O,.

It can then be interesting to look at the limit described previously: a polarization that is
circular, but slightly inclinated compared to the quadrupole axis due to a tilt of the antennas,
that is: © =x/4, ® =x/2, O, < 1. In this case, the local coupling simplifies to:

0 (6) = Q; - \z@z cos(e — @) (5.9)
~ %(1 — /20, cos(¢p — D)), (5.10)

and we find a modulation of the Rabi coupling with an amplitude €2,®, whose orientation
corresponds to the orientation of the z component of the polarization. Since we work with
Q1 = 27 x 100kHz, even a very small angle ©, can lead to a modulation whose amplitude
will be on the order of a few kilohertz.
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Choice of the antenna

The third antenna is necessarily very different from the two principal dressing antennas: the
presence of the quadrupole coils prevents us to place it just next to the cell and close to the
atoms like they are; it has to be placed above or below the coils.

To choose the antenna, we started by computing the expected coupling that a given
antenna could create on the atoms (we tried at first to use old antennas that were already
available). However, all antennas we tried had an effect on the atoms much smaller than
expected, that we interpret as probably coming from a screening effect from the quadrupole
coils. In the end, the protocol for choosing the third antenna turned out to be “try an antenna
configuration and see whether it is satisfying”. The criterion used to validate the antenna is
the possibility to balance the atomic density in a ring (cf next section) realized with a high
Rabi coupling (> 50kHz at the equator) for a dressing at low frequency (0.3 MHz) and to
balance a ring at low coupling (25kHz) and high frequency (1.2MHz) — with the antenna
geometries we have the possibility to install on the experiment, we systematically have a loss
in admittance for increasing frequency. We finally use an antenna with 4 loops of copper
wire, with dimensions 11 x 6.5cm, placed below the quadrupole coils. Its admittance'? is
Y = 128 mS when operated at 0.3 MHz and Y = 32mS at 1.2 MHz.

Effect and tuning of the third antenna

Testing the third antenna on the “bare” dressed trap is difficult, because it has no effect at
the bottom of the resonant ellipsoid (since the polarization of the RF it produces is aligned
with the static field at this position). In particular, we cannot generate a dressed trap with
this antenna alone and thus cannot calibrate it like we usually do; we haven’t found a way to
calibrate the antenna yet. We instead use the third antenna as a correction parameter and
look for its effect on the ring itself, at the equator of the bubble. The antenna is simply turned
on within a given configuration of phase and amplitude, together with both other antennas
(tuned so that the trap at the bottom is as circular as possible). We load a ring with the
usual protocol, and we see how the addition of the third RF field modifies the obtained ring
configuration.

The addition of the third antenna allows us to modify the potential landscape and displace
the atoms within the ring. The phase of the antenna controls the direction in which the atoms
are attracted (compared to the situation in its absence), and the amplitude changes how much
the atoms are displaced in this direction, see figure 5.14.

The tuning of the parameters of the antennas — three amplitudes and two relative phases
— is eventually achieved by optimizing the density homogeneity of the ring. A 7 periodic
asymmetry, as seen on figure 5.12 or the first ring of figure 5.14, is corrected by adjusting the
relative phase and amplitude of the two main antennas; a 27 periodic asymmetry, as seen
on figure 5.13, by adjusting the phase and amplitude of the third antenna. Applying a knife
to reduce the chemical potential allows to be more sensitive to potential irregularities (if the
cloud is condensed, which we are able to do — cf section 5.3.2) and achieve more precise tuning
of the antennas.

We also realized a spectroscopic measurement of the coupling in the ring in the presence
of the third antenna (figure 5.15); we saw as expected a strong reduction of the resonance
width, confirming the “correction” of the coupling inhomogeneities by this new RF field.

10. measured with a vector network analyzer.



5.3 Characterization of the ring 95

Figure 5.14 — Effect of the third antenna on the annular density. Left to right: annular
gas obtained for a relative phase of the third antenna (within an arbitrary offset) of
respectively 0, —7/4, w/4, © with identical amplitude. Changing the third antenna’s
phase allows to diplace the atoms within the ring. These rings are achieved with a dressing
frequency of 0.3 MHz and 110 A in the quadrupole coils; the ring obtained in the absence
of the third antenna is the one presented in figure 5.13. Here, there is a small residual
imbalance between the main dressing antennas, that can be seen on the leftmost ring:

when the third antenna is tuned properly, we have a residual “double moon” asymmetry
like on figure 5.12.
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Figure 5.15 — Left: in situ picture of a ring balanced using the third antenna. The mag-
netic gradient is maximal (110 A/218 G - cm ™! horizontally) and the dressing frequency is
0.3 MHz. Right: spectroscopic line measured in the same ring, with and without turning
on the third antenna. Without the third antenna, the line width is significantly broadened:
a Gaussian fit gives a 4.8(6) kHz width, against 2.9(3) with the third antenna. Note that
these data were taken in a ring which was not fully balanced yet (there is a small residual
imbalance in the ring that was corrected later).

5.3 Characterization of the ring

Once we are able to generate a balanced ring-shaped gas, we need ways to characterize the
trap and measure its oscillation frequencies (vertical and radial). We also need to characterize
the number of atoms we are able to trap, as well as the temperature of the gas, its lifetime

and its heating rate.

Up to now, we worked on characterizing only one realization of the ring: I uaq = 90A
in the quadrupole coils (178 G - em™! horizontally), dressing at w, = 27 x 0.3 MHz with a
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coupling Q¢/2 = 2w x 50kHz at the equator of the ring (shown on figure 5.16). However, the
techniques described here should work for all ring parameters.

Figure 5.16 — Optimized ring that we characterized. The central dot and the outer
concentric rings are due to diffraction in the imaging system and do not correspond to
real atoms; we oriented the probe in order to align it in the center of the ring (to avoid
overlap with the real ring profile).

5.3.1 Ring trap dimensions

Since the atomic cloud is placed on the surface of an ellipsoid, the evolution of the ring radius
ro when the bubble is placed at a height z should follow the equation:

3 =1 — 422 + 82z, — 422, (5.11)

where z, is the position of the light sheet (z = z; corresponds to the ring being at the equator).

We can verify this relation by applying an additional vertical magnetic bias to the ring
and measuring the radius of the obtained ring. Results of such a measurement are shown on
figure 5.17. We find a good agreement with the expected behavior, however the measured
maximum radius (22.3(1) pm) differs slightly from the radius expected with the parameters
we use (24.6 pm, computed from equation (2.54)). We do not understand this discrepancy
yet; we recalibrated the magnification of our vertical imaging setup but it did no improve the
agreement. We also see a small offset in vertical position, meaning that the ramp we use for
ring compression does not bring the cloud exactly at the equator. This offset had already been
deduced from spectroscopy in the ring trap: the Rabi coupling measured in the ring trap was
lower than half of the coupling at the bottom (for a circularly polarized RF, as discussed in
section 2.3.1, the coupling at the equator is equal to half the coupling at the bottom). We can
easily correct it by applying an offset to the final bias field used to displace the quadrupole
trap and make the ring.
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Figure 5.17 — Evolution of the square of the ring radius when the bubble is displaced.
The red line shows a 2-parameter fit following equation (5.11). The fit shows a good
agreement with the data; we find a maximal radius of 22.3(1) pm and a vertical offset
of 3.0(1) pm compared to the ideal sheet position deduced from the light sheet loading
procedure. The radius is computed by taking two cuts of the ring diameter along both
axes of the camera; for each cut we make two Gaussian fits of the ring opposite positions
and deduce the ring diameter (the radial profile is Gaussian because the Thomas-Fermi
radius of the ring is significantly below our imaging resolution). The square of the radius is
then computed by multiplying the radii obtained along both axes. Error bars correspond
to the errors given by the Gaussian fit.

5.3.2 Cloud temperature and condensation of the annular gas
Loading procedure and evaporative cooling in the ring trap

Ideally, we would like to load as many atoms as possible in the ring, with a temperature as
low as possible. However, the control of the gas temperature is achieved using a RF knife to
cool down the atoms in the ring, at the price of atom losses. There is thus a tradeoff between
both requirements. The loading procedure should also be as adiabatic as possible — even if in
practice, we still have a large heating during the procedure: the temperature of the annular
gas after loading can easily go beyond 600 nK in the absence of specific care.

We load the ring starting from a cloud that is condensed but not very cold and still contains
many atoms (~ 4 x 10°), and we maintain a RF knife during the whole loading procedure,
high enough to avoid suffering too many losses during the transfer but also low enough to
ensure that the temperature does not get too high and that we keep a configuration for which
we can perform evaporative cooling efficiently. Once the ring is achieved, the knife is then
slowly lowered to perform cooling in the ring and reach condensation again.

The knife was first optimized step after step during the ring loading procedure, trying to
maximize the total number of atoms at each step. The most satisfying solution was eventually
to keep the knife at a constant frequency, 455 kHz (i.e. initially 55 kHz above the trap bottom).
The crucial part is probably the light sheet loading, because this value was found initially
by maximizing the number of atoms loaded into the light sheet; trying to optimize the knife
when making and compressing the ring leads to only minor improvements. In the end, we
simply do the whole dressing procedure with a high knife and load and compress the ring
without modifying the knife frequency. We load in this way around 3 x 10° atoms in the trap,
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with a temperature of typically 230 nK.

Once the ring is loaded, we lower the knife and perform evaporative cooling in the ring
in two steps. The knife is first strongly lowered quite fast (-65kHz in 100 ms): during the
compression, the Rabi coupling at the position of the atoms has been divided by two because
the atoms went from the bottom to the equator of the bubble, and the knife is then very
high: it can be lowered quickly without causing too much losses. A second ramp then lowers
the knife more slowly, to evaporate atoms in the ring (-10kHz in 200ms). In the end, we
can achieve a ring with typically 1 to 1.5 x 10° atoms and no detectable thermal fraction. A
summary of the time evolution for the knife frequency can be seen on figure 5.18
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Figure 5.18 — Evolution of the knife frequency during the sequence, compared to the
evolution of the Rabi coupling in the ring — plotted with an offset w,s. The depth of the
trap 1S winife — 21 — wir (see section 3.2.4). The different sequences to load and cool down
the atoms in the ring are also indicated, with the corresponding timings.

Profile of the condensed annular gas

It would be useful to be able to measure properly the temperature and condensed fraction of
the final gas, but we currently lack a proper model to analyze the profile of the ring measured
after time of flight. Still, Murray et al. [143] computed the profile of a ring-shaped BEC after
TOF seen from above using Gross-Pitaevskii equation, and we can already get expectations
from it. In the absence of rotation, such a gas already has a bimodal profile (see figure
5.19): one part comes from the overall BEC expansion, and we also see an interference peak
appearing in the center of the gas corresponding to constructive interferences between the
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different parts of the ring, see section 4.1.3. In the presence of a thermal fraction, we would
thus need a trimodal fit. Avinash Kumar and Romain Dubessy implemented Gross-Pitaevskii
simulations of the atomic profile, which could help to discriminate and measure properly the
different contributions, but this is still work in progress. For now, we can only say that we see
no thermal fraction in the ring (both parts of the BEC expansion being anisotropic, unlike
the thermal part, we can discriminate between them).

Figure 5.19 — Expansion of a ring-shaped BEC after time-of-flight, in the absence of
rotation. Left: seen from the side after 23 ms TOF; right: seen from above, after 10 ms
TOF. In both cases, we see a central interference peak.

5.3.3 Measurement of the oscillation frequencies
Vertical oscillation in the double light sheet

The vertical oscillation frequency in the light sheet is measured through the dipole motion of
an atomic cloud evolving in the light sheet alone. To this aim, we load the atoms in the light
sheet without making a ring, and then turn off the bubble trap. However, turning off the
bubble trap abruptly would lead to three clouds evolving together within the light sheet (the
atomic dressed state gets projected on m = —1,0 and +1, cf section 3.4.3): we thus need to
perform an “undressing” procedure before letting the cloud oscillate.

To do so, we increase the vertical bias field to shift the resonant surface far away above the
light sheet, while the atoms remain confined by the dipole potential. In this way, we rotate
the dressed state to align it with the static field (cf equation (2.35): we go from [§| < ©Q to
|0| = Q, thus € goes from 7/2 to 0), and we then bring all atoms in the same bare magnetic
state (| + 1)g becomes | + 1),). We then switch off the RF field while keeping all atoms in
the same Zeeman substate; the atoms get trapped in a combination of the double light sheet
and the quadrupole trap (the sheets ensure vertical confinement and the quadrupole creates
radial confinement), as shown on figure 5.20.

Since the quadrupole field still attracts the atoms to its center, the potential minimum
in the vertical direction isn’t exactly at the center of the light sheet at that time. To excite
the vertical dipole motion, we then simply switch off the quadrupole field: the atoms oscillate
around the minimum of the light potential. We let them evolve for some time, switch off the
sheet too and measure the position of the atomic cloud after a fixed time-of-flight: this allows
us to measure precisely (better than 1%) the vertical trapping frequency in the dipole trap
alone (figure 5.21). We also measured the dependence of w, with respect to the light sheet
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Figure 5.20 — Loading of the “sheet plus quadrupole” trap, starting from the double
light sheet loaded from the bubble trap. In a first step (a), the bubble is lifted by applying
a vertical bias field; the sheet confinement being much stronger than the quadrupole
attraction the atoms stay trapped between the two sheets. The atoms thus get out of
resonance, and the dressed state now coincides with the low-field seeker bare state. The
RF field can then be turned off (b), and all atoms stay in the state attracted by the
zero of the quadrupole (the corresponding forces are represented by the dark blue arrows).
Vertically, the atoms stay trapped in the sheet, slighly off-centered due to the attraction of
the quadrupole. When the latter is turned off, the atoms then ocillate vertically. Radially,
the quadrupole attracts the atoms to the center of the light sheet, which creates a weak
confinement (typically 10 Hz at low gradient).

power and verified that we had the expected v/PLg scaling. In the end, the maximal frequency
we are able to achieve is 2.72(2) kHz.

The possibility to measure precisely w, also allows us to achieve a precise tuning of the
focus of the last spherical lens, by maximizing the vertical trapping frequency (figure 5.22).
The accuracy on the focus of L4 is much better in this way (compared to the method described
in section 5.1.2); we achieve a sensitivity around one tenth of the vertical Rayleigh length zp .
(expected around 150 pm). We could think about measuring zp . in this way, but it would
require additional data points.

Radial oscillation frequency

To measure the radial oscillation frequency, we slightly “shake” the ring radius: we slowly
ramp up the dressing frequency by 8 kHz in 9.8 ms to increase the ring radius while keeping
the atoms at rest, and the frequency is then ramped down to its initial value in 0.2 ms, too
fast for the atoms to follow. The response time of the atoms is around 1/w, 2 1ms but the
ramp is still slow enough to fullfill the dressing adiabatic condition (5/92 = 2.5 x 1073). The
atoms are then in the ring we want to characterize but away from their equilibrium value,
and start to oscillate. Choosing a frequency sweep much smaller than 2; ensures that the
oscillation happens in the harmonic part of the trap. We let them oscillate during a given
time, and then take a picture from above; we expect to see the observed radius oscillate. As
the in situ oscillation has a too small amplitude to be detected with a satisfying precision,
we perform a small time-of-flight of 3ms before taking the picture to increase the signal
amplitude. Too long time-of-flight has to be avoided to ensure that the opposite sides of the
ring never overlap. Typical results are shown on figure 5.23. We observe an oscillation of the
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Figure 5.21 — Left: Oscillation of the cloud in the light sheet properly focused, for 20%
of the maximal power, measured after 23 ms time-of-flight; the extracted frequency is
1.46(1) kHz. Right: Square of the measured frequency as a function of the power in the
light sheet, measured after the phase plate. The real power on the atoms is probably
slightly smaller due to losses on the next optical elements — the beam then passes through
a lens, is reflected on a polarizing beamsplitter and goes through the first window of the
science cell. We find the expected linearity.
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Figure 5.22 — Evolution of the measured vertical trapping frequency with the longitu-
dinal position of Ly. The error bars are given by the fit of w,, similar to the one shown
on figure 5.21 (left); these data were taken early after implementing the light sheet and
we improved significantly our sensitivity in the determination of v, since then, explaining
why the uncertainties are much larger here. The evolution of w, is supposed to follow
expression (4.19), but we have too large error bars and/or not enough points to verify it
accurately.

ring radius as expected, but we also see that the different parts of the ring are not in phase.
To understand that in more details, we analysed the pictures by separating angular regions.
We measure the oscillating frequency within each region, and we then compare the different
results.
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Figure 5.23 — Left: pictures of the oscillation of the ring, taken after a short 3ms TOF.
The radius of the ring oscillates, but it doesn’t seem round anymore, indicating a dephasing
between the different part of the rings. To look for this effect more in detail, we thus
compute the local frequency, measured on small angular section of the ring (in white).
Right, top: oscillation of the ring radius measured on a 30° wide region. The radius is
measured by computing the distance between the center-of-mass of the whole ring and
the center-of-mass of the atoms in the chosen region. We measure a 656(3) Hz frequency.
Right, bottom: evolution of the measured frequency along the ring. On each angular region
we measure the oscillation frequency as above. Horizontal lines indicates the angular
domains over which the frequency was computed; vertical error bars are the errors given
by the fits. The average radial frequency is 643(1) Hz for an expected frequency of 590 Hz.
The red line is a sine fit to the data.

The average measured frequency, 643(1) Hz, is a bit larger than the frequency we would
expect from equation (4.20), 590 Hz. We might note that this 10% discrepancy goes in the
same direction that the 10% discrepancy on the expected radius (cf section 5.3.1). A possible
explanation would be a drift in the quadrupole gradient or the control of the current in the
coils since the corresponding calibration in 2011.

We also see an angular dependence of the frequency along the ring, with an identical
frequency for places facing each other in the ring (a sine fit of the frequency evolution gives
a 185(8)° period). The difference in frequency cannot be explained by inhomogeneities of the
Rabi coupling in the ring: the coupling difference that would explain such inhomogeneities,
around 6 kHz between points located at 90° from each other, would lead to large density inho-
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mogeneities in the ring and would be seen directly on the ring profile at rest. Measurements
of the radial frequency with a thermal cloud in the ring, without lowering the knife after the
rinc compression ramp, lead to similar results. We intend in a near future to try measuring
the radial frequency by exciting the parametric resonance of the ring (an oscillation of the
ring radius at 2w, should lead to large heating of the gas, even for small amplitude) to see if
the results are identical.

5.3.4 Lifetime and heating rate

While working on the optimization of the ring, we realized that the lifetime and the heating
rates in our trap were highly unsatisfactory, respectively less than 1s and up to several
microkelvin per second. This led to significant work in order to understand the phenomena
leading to losses and heating in the ring.

Characterization of the noise and expected heating

To understand better the heating rate, we tried to separate the two parts contributing to the
trap to see where the heating and losses come from:

e We observed the behavior of the “dressed part” of the trap by preparing dressed traps
at the bottom of the bubble, with twice less current and Rabi coupling compared to the
ring, to mimic the local magnetic gradient and coupling of the ring. In this trap, we
observed very large lifetimes (~ 100s) and a heating rate around 10nK - s™1.

e We tried to isolate the behavior of the double sheet by measuring heating rates in the
double sheet plus quadrupole trap (cf section 5.3.3). We measured initially a heating
rate ranging between typically 10 and 100nK - s~ depending on the laser power, that
we were able to completely suppress by a careful mechanical isolation of the experiment
(building a better isolation box around the experiment and displacing some fans, see
below). The lifetime in this trap after working on heating prevention is around 5 to 10s
for maximal laser power, but it is probably unrelated to the lifetime in the ring trap as
the radial confinement is extremly different.

To understand things better, we measured the noise spectrum of the trapping laser: both
its power and beam-pointing fluctuations can cause heating of the trapped cloud, and the
beam-pointing fluctuations can also lead to radial frequency and position fluctuations (see
next section). The power noise can be easily measured using a photodiode; the beam-pointing
noise is measured using a quadrant photodiode on which we image the focal point of the beam.

The measured values did not explain the high heating rate we observe in the light sheet
and the ring: the heating rates that we deduce from these measurements are extremely low
— the main source of noise seems to be the the position noise of the light sheet, leading to
2.2nK - s~! at maximal light sheet power. However, we identified two fans that were placed on
RF amplifiers to cool them down as a significant source of beam pointing noise!! (see figure
5.24). We also tried to track other noise sources in the room by looking for modifications
in the light sheet position noise power spectrum after turning off different devices but saw
nothing significant.

11. Placing the RF amplifiers as close as possible to the experiment to avoid long cables and reduce leakage
of RF photons is a good idea, but if they need fans to be cooled, they should not be placed on the optical
table to avoid vibrations!
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Figure 5.24 — Left: Measurement of the position noise power spectral density in the
light sheet, performed with a quadrant photodiode. The black and red spectra are taken
in the same conditions, except for two fans placed on the optical table that were turned off
for the red spectrum. We see a drop of up to 60dB in the position noise at low frequency.
Right: Measurement of the relative intensity noise power spectral density of the light sheet
beam. The beam is turned on at full power, and we measure the power fluctuations of a
leakage of the beam through a mirror.

Detailed analysis of the noise sources

Let us discuss the (many) different possible heating sources on our experiment.

e Photon scattering from the light sheet can be a source of heating. In principle, the use
of blue-detuned rather than red-detuned light sheet allows to reduce a lot this heating,
because the atoms are placed in an intensity minimum. The scattering rate for atoms
in the vertical ground state or for a thermal gas are respectively given by [106,161]:

Tw. L TkeT
45L 9 sc,th = 2h(5L 3

Fsc,O = (5.12)
where I' is the natural linewidth of the D transition and 7 the detuning between
the light sheet and the transition. The corresponding increase in temperature is then
(T) = 2T ecl'sc With Tie. the recoil temperature of the D transition, equal to 360 nK. For
a thermal gas at a temperature 7 = 100 nK, the expected heating rate is 1nK -s™!; in
the vertical ground state and for the maximal vertical trapping frequency v, = 2.7 kHz,
we expect 0.6nK -s~!. These expressions however suppose that the atoms are at the
center of the light sheet; the presence of gravity could displace them towards regions
with higher intensity and increase the scattering rate. For our typical parameters the
corresponding shift 6z = —¢g/w? is smaller but comparable to the size of the vertical
harmonic oscillator (0.11 pm compared to 0.28 um for v, = 1.5kHz), which should lead
to a small increase of the heating rate, by a factor 1 + 2822 /d. [124] (this corresponds
typically to a 30% increase).

e Intensity fluctuations of the light sheet (“power noise”) cause variations of the vertical
oscillation frequency, leading to a parametric heating in the trap. The temperature
increases exponentially, with a heating rate depending on the fluctuations at twice the
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trapping frequency [162]. Writing e(t) the relative fluctuations of v2: v2(t) = v2(1+e€(t)),

this heating rate reads:
Iy =28 (2v,), (5.13)

where S, is the power spectral density of the stiffness relative noise (in Hz~!), defined
as:

+00
Se(v) = 4/ dr cos(2mvT){e(t)e(t + 7)); (5.14)
0
in the case of light intensity, S, is equal to the relative intensity noise of the beam:

4 [T
Se(v) = [GE / dr cos(2mvT)(I(t)I(t + 7)). (5.15)
0
Using a photodiode, we measured the relative intensity noise PSD, which is equal to
—125dB - Hz ! in the 1kHz-10kHz range (see figure 5.24). If the light sheet is turned
on at maximal power, leading to v, = 2.7 kHz, the corresponding time constant is around
4 x 10*s: the effect of power noise should therefore be extremely weak.

e Position fluctuations of the light sheet (“position noise”) also generate heating. This
heating is linear and depends on the noise at the trap frequency [162|. The increase in
energy reads:

(B) = {Muts. (), (5.16)

where S, is the position noise power spectral density, in m? - Hz™!; its measurement
can be seen on figure 5.24. For a vertical trapping frequency of 2.7kHz, this noise is
approximately —110dB - pm? - Hz™!, leading to an increase in energy of kg x2.2nK - s~ 1.
For a vertical trapping frequency of 1.2 kHz, corresponding to 20% of the maximal laser
power, there is a peak on the noise PSD, which is approximately equal to —90 dB; the
corresponding expected heating rate is 8nK - s~

To the heating coming from the light sheet, we can add three “secondary” heating sources
that specifically come from the way we achieve our ring:

e The position fluctuations of the light sheet cause fluctuations of the radial trapping
frequency, as it changes the local Rabi coupling. From the same reasoning as [162], we
can guess that it will generate parametric heating sensitive to the position noise at twice
the radial frequency, with a heating rate:

2 2
I, =22 (,,128&,)) S.(2u,). (5.17)

T
e The same position fluctuations also cause a variation of the ring radius, and thus gen-
erate a radial position noise. Again, reasoning like [162| suggests a linear heating de-
pending on the sheet position noise at the radial frequency:

2
(B). = jorwt (52 5200 (5.18)

If the ring is at the equator, the derivative of rq is zero and this heating source then
cancels. If the ring is above or below the light sheet (z # 0), we have to take into
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account the evolution of both the ring radius and the radial frequency with z. We have
ro = 4 /r? — 422, and its derivative with respect to z is then equal to —4z/rg. The value

of wy(2) is given by expression (4.21), and equation (5.18) becomes:

. 22
(B), = 4Mw;(2) =5 S.(v,(2)), (5.19)

o
or equivalently:

21— 22 2

. z p z
(E): = 4Muwy o ——52S.(n(2)) = 4Mw;{0r—2$z(ur), (5.20)

2
1+ 2 2Ly, 2

where wy o = w,(0) is the radial trapping frequency at the equator. Equation (5.17) also
becomes: )
2
wi(z) 1 wrg 1
: 8. (20, () = =20
2Pz\4Mr 2 22
47’1) 1 + E

4r} (1 n 24)

=

S.(2v,(2)). (5.21)

For our measured values, the corresponding heating rate and lifetime are respectively
lower than 0.1nK - s~! and on the order of 1 x 10%s, and these effects can therefore be
completely neglected.

The power fluctuations of the double light sheet will also lead to a position noise, as the
vertical position of the atoms depends on the light sheet power due to the gravitational
sag. The vertical position of the atoms in the double sheet compared to its center
reads 6z = —g/w?. Following the same reasoning as previously, one can expect a linear
heating:

(B), — ngQSe(VT(z)). (5.22)

The corresponding heating rate is on the order of 107#nK -s~! and is therefore com-
pletely negligible. One could also think that if the atoms are not at the equator, the
noise on the vertical position will also lead to radial position noise as well as fluctua-
tions of the radial trapping frequency, but since the vertical position fluctuations are
extremely weak these noise sources can probably be safely ignored.

Finally, the effect of fluctuations of the dressed trap part can be computed, using again
the same principle:

e The frequency noise of the RF source will cause a fluctuation of the ring radius, and

a position noise depending on the relative frequency noise of the RF source S, ;e at
the radial frequency:

. 1 7‘4
<E>5Vrf = ZMwé(Z)T%Svrf,rel(Vr)v (523)
0
; 1 4,2 1+ %l? 1 4 92
<E>5l’rf = ZMwnorb 1_727251/&,1"61(”7‘(2)) erb ZMWT‘,OrbSVrf,rel(V”’(Z))' (524)

b

To have a heating rate (E>5l,rf < kg x 1nK -s~! with our trapping frequencies, the
relative frequency noise of the RF source has to be lower than —118dB-Hz~!. In
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addition, if the ring is not at the equator, it will cause fluctuations of the radial trapping
frequency, with a resulting parametric heating rate:

2
z
s, = v2(2) <Tb - 22) Sy o rel (201, (5.25)
2 2 1 ) 52
Lsuy = wr,ogﬂsurf,rel(%r@)) = wr,orgsurf,rel(%T(Z)). (5.26)

T
If the initial temperature of the cloud is 100nK and supposing a vertical offset of
1pm, a heating rate lower than 1nK -s™! requires a relative frequency noise lower
than —65dB - Hz~! (note that this requirement is equivalent to having a time constant
larger than 100 second).

e The amplitude noise of the RF source will cause fluctuations of €21 and therefore of
the radial frequency, and generate parametric heating with a time constant:

w2 (z w? 2z

s, = ri)sa,rel@’/r) = 20 <1 + > Sarel(2vr(2)) (5.27)
Ty

where S, rel is the amplitude noise of the RF source. Supposing an initial temperature of

100 nK, the relative amplitude noise required to have a heating rate lower than 1 nK - s—*
is —85dB - Hz 1.

e The fluctuations of the magnetic gradient will cause both fluctuations of the ring
radius and of the trapping frequency, leading to a linear heating;:

. 1 7
<E>6a = ZMWé(Z)T%Sa,rel(VT(Z»v (5'28)
0
: 1 g 21 ?‘Tf 1 4 .2
<E>§a = ZMwT,OTb @S&a(yr(z)) z<%7‘b ZMWT,OTbSa,rel(Vr(Z))- (529)

Ty

and a parametric heating with a time constant:

2 1422

. Ty

Lso = Wy (Z) 1+ 2z Sa,rel(27/r(z)>> (530)
Th

(1+2)

2 Th 2
Lsa = wr,owsa,rel@”r@)) Z%ﬁ) wr,OSa,rel(QVT(Z» (5.31)

b

where S o1 is the PSD of the relative noise on the gradient (which should correspond
to the relative noise of the current supply). The formula giving the linear heating rate
is the same than in the case of RF frequency fluctuations and the requirement on the
relative fluctuations is therefore the same: it has to be lower than —118 dB - Hz~! for the
linear heating to be lower than 1nK -s~!. For the parametric heating, a time constant
larger than 100s requires a relative noise below —95dB - Hz 1.

Due to the low heating rate observed in the dressed trap, we however did not investigate these
noise sources in detail for now.
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Lifetime in the ring

After the heating sources, it is also useful to make the list of the possible origins for atom
losses. There are six possible loss sources in our trap, among which two are susceptible to
affect us:

e Tunnelling through the light sheet should not be a problem, as the barrier height
is two orders of magnitude larger than any other energy in the system, and the barrier
is also quite thick due to the slow intensity decay of the light sheet for large z.

e Collisions with the background gas set the ultimate lifetime of atoms in the trap;
in ultra-high vacuum (107! mbar in the science cell) they are normally negligible — the
corresponding lifetime is several minutes and is not limiting in our experiments.

e Photon scattering from the light sheet can lead, in addition to heating, to atom losses
by a change in the atomic internal state. The scattering rate, given by equation (5.12),
is however very small due to the choice of a blue-detuned double sheet, and this effect
is negligible.

e Landau-Zener losses come from non-adiabatic following of the dressed atomic levels
(see 2.1.3); a detailed theoretical description of their behavior can be found in [134].
They depend extremely strongly on the local Rabi coupling, almost creating a threshold
effect: if Q) is too low, the lifetime will be extremely small, if it is high enough the
corresponding lifetime will be very large and the atomic lifetime will be set by other
effects (a modification of Q1 by a few 10% can be enough to go from one regime to the
other one). For a magnetic gradient &’ = 178 G - cm ™! horizontally, we usually work with
) =27 x 50kHz (i.e. Qp = 27 x 100kHz at the bottom of the bubble). At maximal
gradient (b’ = 214G - cm™1), while the lifetime is only 0.4s for a 40 kHz coupling, it
reaches several seconds for a coupling of 56 kHz; on the other hand, going from 56 kHz
to 63kHz had no aditional effect on the lifetime, which then appears to be limited by
three-body losses. We might note that on our measurements the minimum value to
have in the ring appears higher than the minimum value that would be required in an
equivalent (i.e. same local gradient and local Rabi coupling) bubble trap. Additional
work to understand this effect is planned in the near future

e Three-body recombination leads to the loss of the corresponding atoms from the
trap. They depend only on the local atomic density, and set a definitive limit on the
atom number we can expect with a given trapping frequency. The decay reads [163]:

dN ‘

NIk, / AVn(t)?, (5.32)
where the coefficient K3 has been measured by Burt et al. [163] to be around
6 x 10730 cm5 - 57! for a condensed gas of 87 Rb in the F' =1, m = —1 sublevel (for a

thermal gas, it is 6 times larger due to bunching effects). In the ring trap and supposing
that the gas is in the 3D regime, expression (5.32) can be rewritten:

dN Muw,w
—| =-K. =) N2 (¢ :
i, =K (G ) 2, (53)
and in the absence of other loss sources, N(t) therefore reads:
1
N(t) = (5.34)

Mwpw 1
K ( 47ru2)7';ug> t+ N(0)
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e The RF knife could cause losses if the heating rate is large. This effect, however, has
not been investigated for now.

For now, the lifetime in the ring seems to be limited by these three-body losses. A mea-
surement of the lifetime in the ring trap is displayed on figure 5.25; an analysis of the data
using formula (5.34) displays a very good agreement with the data. However, the correspond-
ing lifetime is not very large, and suggests that increasing the chemical potential as much as
possible through compression in order to overcome the light sheet defects can also be dan-
gerous because it strongly increases the three-body losses, and we will have to search for the
optimal tradeoff at some point. The observed lifetime of several seconds is however already
large enough to perform experiments in the ring.
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Figure 5.25 — Lifetime of the ring for I y.q = 110A, ©; = 27 x 56 kHz measured in
the ring (100 kHz at the bottom) and low light sheet power (20% of the maximal power),
plotted in linear scale (left) and logarithmic scale (right). The red line is deduced from
equation (5.34) using the first datapoint as an initial parameter; no free parameter is
used. Note that these data were taken with a higher gradient than what is described
in most of section 5.3, b’ = 214G -cm ™! instead of 178 G - cm™!. The ring radius was
measured on the pictures to be equal to 17.7pm, the vertical trapping frequency was
measured later to be equal to 1.46kHz, and the value for K3 = 5.8 x 107*2m6 - 57! is
taken from [163] (note that the relative uncertainty on this last value is 33%). The radial
trapping frequency has not been measured in these experimental conditions; I used as an
input the frequency expected theoretically with a scaling factor 643/590 corresponding to
the difference between the measured frequencies and the expected frequencies, see 5.3.3.

5.3.5 Conclusion

We still have some characterization work left to understand the behavior of the radial fre-
quency and the exact ring dimensions, and we can probably find more optimal parameters to
minimize the three-body losses in the ring while keeping a good regularity. However, we are
now able to generate a ring trap good enough for performing experiments: the three require-
ments that were announced at the beginning (ultracold temperature, good regularity, decent
lifetime) are now fullfilled. We also succeeded in generating a superflow in the trap; this point
will be discussed in the next chapter.
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5.4 Future developments: towards lower dimensions

I will conclude this chapter by a discussion about lower-dimensional regimes (2D and 1D ring).
The possibility to access these regimes is one of the main interests of our method for realizing
ring traps, and they now seem reasonably accessible; I will discuss here the conditions and
methods to reach them.

5.4.1 Towards quasi-2D rings

The 2D regime we can expect to reach is the “saturnian ring” configuration (the “wrapped
sheet” configuration would require a radial trapping frequency significantly larger than the
vertical trapping frequency and would be much more difficult to reach). Reaching this quasi-
2D regime requires a chemical potential and a temperature smaller than the vertical trapping
frequency. The maximal vertical frequency we can achieve is 2.7 kHz. For the moment, we lack
a proper measurement of the ring temperature: the ring profile measured after time-of-flight
indicates that the temperature of the gas is below 280nK as the gas stays condensed with
2 x 10* atoms (using formula (4.22) we estimate the critical temperature for this number of
atoms to be around 280 nK), but this doesn’t tell us whether the temperature is lower than
the vertical trapping frequency (it corresponds to ksT'/h ~ 5.8 kHz). The chemical potential
in the ring ranges between 1.5 and 4.5kHz depending on the number of condensed atoms
in the trap and the vertical trapping frequency'?, meaning that we should be very close to
the two-dimensional regime. We can try to reduce it further by removing atoms from the
trap or increasing the ring radius to lower the density. A difficulty can come from keeping a
reasonable heating rate (a high power in the light sheet comes with more heating), and low
enough three-body losses. We also have to ensure a good enough homogeneity of the potential:
the lower the chemical potential, the better we need the potential to be homogeneous.

5.4.2 Towards quasi-1D rings

Reaching the quasi-1D regime requires the chemical potential and the temperature to be also
smaller than the radial trapping frequency. The most favorable configuration to reach this
regime corresponds to w, = w,. In this case, using equation (4.24), comparing the chemical
potential to the trapping frequencies leads to the condition for reaching the quasi-1D regime:

2]\7a<1

~Y )

(5.35)

Tro

which appears to be independent from the trapping frequencies. It can even be simply ex-
pressed as a condition on the atomic linear density:

N
ny =

= <
21mrg ~

1
1’ (5.36)
equal to 47 atoms per micrometer. For a ring with radius 20 um, it corresponds to approxi-
mately 6000 atoms, small but detectable. However, it might be useful to increase the chemical
potential in order to reduce the relative effect of potential inhomogeneities, which would re-
quire to increase the trapping frequency (u1p = 2kwny), by increasing the magnetic gradient.
A stronger trapping would also make it easier to have a temperature lower than hw/kg; it

will however increase the three-body losses and there will probably be, again, a tradeoff to

12. psp x VNw.wy, see (4.24).
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make. By increasing the magnetic gradient and keeping Q3/b’ constant to avoid a too strong
increase of the Landau-Zener losses, we can expect to achieve up to @ = 27 x 1.7kHz with
only minor modifications of the experimental system (by tripling the magnetic gradient, see
later).

5.4.3 Coil heating tests

To increase b, we need to increase the current in the quadrupole coils. This requires a more
powerful current supply, and also to be sure that the coils will be able to sustain the target
current. We therefore made heating tests to estimate how much current we can put in the
coils without risking to damage them.

Realizing heating tests on the real coils would be very dangerous, but we have a spare coil
built on the same model than the ones we have on the experiment, on which we could perform
tests. To try getting as close as possible to the real system, we did the tests with a pair of
additional coils in series with the coil we wanted to test to have similar total electric resistance;
all coils were water-cooled similarly to the real experiment, with a water flow adjusted to be
identical (0.9L - min~!); the supply cables were also identical (same cable) to the ones we
have on the experiment. We used the power supply of the magnetic transport coils'® to
realize the tests; it can deliver up to 400 A and 15V. Temperature probes were installed on
most elements: supply cables, coil, copper wire (downstream from the coil), junction between
coil and supply wires.

In a first series of measurements, we measured the equilibrium temperature of the elements
for a given current, once the system equilibrated. The first element to change will be the
supply cable, which heats up a lot; to perform the experiments beyond 160 A we had to use
two cables in parallel to avoid it heating too much. Finally, we were able to put 300 A in the
system without suffering too much heating of the different elements: +40°C in the bare wire,
+30°C in the wires and 425 °C in the coils, see figure 5.26. The limiting factor was then the
junction between the two parallel supply cables, meaning that we will have to take care of
the junction between the cable and the coil and the real experiment. Using a thermal camera
could be useful to track local overheating points in the solderings.

A second set of experiments aimed at measuring the rising and lowering times of the
elements’ temperature. Indeed, in the real experiments we want to perform, the current in
the coils will have to be very high only during a few seconds, with a duty cycle around one
minute, meaning that the temporal behavior can be important. These measurements show
two categories of behavior:

e For the elements made of hollow wire and water-cooled, the time constants are around
5 to 10 seconds, meaning that the steady state can be achieved during one experimental
sequence. However, these elements do not suffer too much heating.

e for the larger, uncooled elements (cables and junctions), the time constants are around a
few minutes, meaning that the steady state will never be reached during one experimen-
tal sequence. We thus expect that when cycling experiment, they will reach a steady
state with a heating proportional to the duty cycle. We could confirm this behavior by
applying current pulses lasting 10s every two minutes and observed that the heating
indeed stabilized around 10/120 of the value measured for continuous current.

13. SM15-400 from Delta Elektronika.
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Figure 5.26 — Left: measurement of the steady-state heating (i.e. increase of tempera-
ture) of the different elements of the setup (supply cable, bare wire and coil) depending
on the supply current. Hollow symbols correspond to data taken with one supply cable,
full symbols after doubling it (see text). Solid lines are parabolic fits of the datasets.
Right: measurement of the rise time for the current in the coils for 200 and 300 A (both
measurements give the same time constant, 10.4(4) s and 10.4(6) s). I also show an equiv-
alent curve for the junction between the cables: we see a linear increase, because the time
constant is much larger: data taken for longer evolution, as well as combination of the
slope and the steady-state measurement, give a rise time around four minutes.

Both cases suggest that we can go even beyond 300 A without suffering excessive heating.
We tried to test that by pushing our supply up to 400 A for short amounts of time (a few
seconds), but we were limited by the voltage the supply is able to deliver.

Looking for commercial power supplies, it seems that the final limitation will be the avail-
ability of a supply able to deliver enough power with a good enough stability at a reasonable
price rather that heating problems; we still should be able to easily double or triple our gradi-
ent (provided that we change the supply cables). We will however take care to the evolutions

of the magnetic gradient that could happen through possible thermal expansion of the coils
for large current.



|
Chapter

Preparation of a persistent flow

Once a satisfying annular gas has been achieved in the ring trap, the next step to study
superfluid flow is developing the ability to both generate and detect it. This has been done
for our ring, and this chapter will describe it. Its first part will describe the three methods we
implemented (or work at implementing) to generate rotation: the first one consists in putting
into the ring a local defect that will then be displaced to stir it; the second one relies on
imprinting directly onto the gas the phase we want the superfluid to acquire, and the third
one consists in rotating the whole “dressed part” of the ring trap. The second part of this
chapter will then describe the detection of the obtained flow.

6.1 Experimental tools for rotating the ring

6.1.1 The laser stirrer

A first method that allows to generate superfluid flow in a ring is to focus onto it a small
blue-detuned laser beam whose position can be controlled, allowing in this way to displace an
obstacle within the fluid [144,145,155]. Since the excitation is local, it is also a useful tool to
probe the superfluid critical velocity and has been widely used in that purpose [47,67, 164].
We have implemented and tested such a system on our experiment, that I will describe in the
following.

Experimental system

The principle of the system is quite simple: a blue-detuned laser beam goes through a pair of
successive crossed acousto-optical modulators' (AOMs), each of them deflecting the beam (we
use the first order of both AOMs) from a certain angle that depends on its applied frequency,
and the beam is subsequently focused onto the atomic gas. Adjusting the frequency of the
AOMs allows to modify the impact position onto the atoms, and thus to displace the stirring
beam within the gas (figure 6.1).

We want the final spot to be highly focused (around 5pm waist), and the required power
is rather weak (less than 10 mW); a leakage of the ALS laser beam used to generate the plug
(A = 532nm) is then sufficient. For space reasons, there is 20 cm between the last lens of

1. DTSXY-250-532 from AA opto-electronic
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Figure 6.1 — Principle of the laser stirrer. A blue-detuned laser beam goes through a
pair of AOMs and is then focused onto the atoms. Each AOM generates a diffracted
beam whose position depends on the AOM frequency; we only use the doubly-diffracted
beam (an iris filters the 0'" order of both AOMs). Adjusting the frequency of each AOM
allows to displace the beam spot in the x —y plane and to generate arbitrary time-varying
position patterns. Mirrors are nor represented; in practice the setup is folded on itself for
space reasons, and a dichroic mirror is placed between the last lens and the atoms to send
the beam onto the atoms (the vertical probe beam passes through the same mirror). Only
one axis is represented here (the other one is identical).

the setup and the atoms, making it difficult to focus the beam efficiently; we thus strongly
defocus the beam after it gets deflected, before focusing it onto the atoms. At the output of
the fiber, the beam has a 0.4 mm waist; after the AOMS a f = 17.8 mm achromatic doublet?
expands it and it is then collimated by a f = 250 mm lens®. The beam waist is then around
5.6mm; a f = 200 mm lens? then focuses the beam onto the atoms, with a final waist of 6 um
(the corresponding Rayleigh length is 2121um). The final lens is placed in a threaded mount
that can be rotated to adjust the beam focus®*.

Controlling the beam position

The RF signal sent to the AOM comes from a DDS chip® driven by a microcontroller®, in a
setup similar to the one described in section 3.3 ; the output signal then goes through two
fixed gain amplifiers” before going to the AOMs. The setup has been built at the electronics
workshop of the lab. Again, the choice of a digital synthesizer (rather than analog) gives a
better frequency stability and therefore a lower position noise for the final beam. We compute
and load in advance into the microcontroller the list of pairs of frequencies corresponding to
the successive positions the beam will have to take, which are output at a given frequency
that we set. After reaching the last position, the system comes back to the first in a closed
loop. The frequency of the final motion is thus given by the output rate divided by the
number of points in the list. The clock frequency of the microcontroller is 800 kHz, and we
lock it on a 8 MHz quartz crystal clock; a trajectory containing 100 frequency couples can
be operated up to 130 Hz. The AOMs operate at a central frequency of 80 MHz and have a

. MAP052550-A from Thorlabs.

. AC508-250-A and AC508-200-A from Thorlabs.

. SM2V10 from Thorlabs.

. AD9959 from Analog Devices, identical to the one used to generate the dressing RF field.
. MSP430f169 from Texas Instruments.

. AMPA-B-30 from AA opto-electonic.
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50 MHz bandwidth; we calibrated the displacement of the spot as 10.23(8) pm - MHz ! and
the displacement range of the spot is therefore 250 pm in each direction. Each frequency is
encoded on 32 bits, and the precision on the AOM frequencies is below 1Hz. Up to now,
we mostly realized circular trajectories, but such a system can in principle produce arbitrary
patterns and allow for optical painting (provided a change in the microcontroller to permit
faster operation).

Power stabilization

Changing the AOM frequencies has the drawback of changing the diffraction efficiency; chang-
ing the frequency of the first AOM also changes the incidence angle on the second one (and
thus, again, its diffraction efficiency), and the reflectivity of the mirrors also changes with
the angle of incidence. Ensuring a constant power in the stirrer beam therefore requires a
stabilization process.

Although a feedback loop adjusting the intensity in the beam sounds appealing, it would
be very difficult to set up, as it requires a reliable error signal. Since the inclination of the
beam constantly varies, a glass plate collecting a part of the stirrer beam would have a varying
reflectivity and the intensity of the deflected beam would not directly match the intensity in
the main beam.

Instead, we rely on the fact that the fluctuations to correct depend only of the beam’s
angle: we can thus expect to achieve a complete cartography of the system, measuring the
obtained power in the beam for each possible position. We can thus adjust the power of the
RF applied to the deflecting AOMs to ensure that the power in the final stirring beam is
always the same. Using this method, we reduced the power fluctuations in the beam to 4%
peak-to-peak with a standard deviation lower than 1% against respectively 20% and 6% in
the absence of correction. The power spectral density with and without correction is shown
on figure 6.2.
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Figure 6.2 — Power spectral density of the relative intensity noise in the stirrer beam,
measured with (black) and without (red) power stabilization process, between 10 and
400 Hz (left) and between 10 Hz and 25 kHz (right). The stirrer rotates at 37 Hz, and we see
the peaks corresponding to its harmonics — the power stabilization doesn’t suppress them,
but we have a noise reduction up to 20 dB. The green line shows equivalent measurement
achieved for a static beam, with constant orientation.
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Alignments

Our vertical imaging setup allows us to monitor the profile of the stirrer beam at the position
of the atoms (see fig. 6.3a). An interference filter can be placed onto the imaging axis to
allow the 780 nm imaging light to pass while preventing the 532 nm light to reach the camera,
or removed to allow taking pictures of the green light. In the first case, we can image the
atoms in the presence of the stirrer beam, hoping for example to see a hole in the atomic cloud
(6.3a). In the second case this is not possible: the stirrer beam is much more focused than
the probe beam and saturates the camera if its dynamical range is chosen to image properly
the probe. However, it allows to directly image the stirrer beam (figure 6.3b) and compare
its position with the position of the atoms measured on pictures taken in the absence of the
stirrer.

Aligning the stirrer onto the atoms can then be achieved by using this camera: we align
the beam on the position where the atoms would be detected (without the filter). The stirrer
beam is then roughly aligned, but still needs careful tuning: after this step, we usually still
do not hit the atoms with the stirrer beam.

The fine alignment is then done taking in situ pictures of an atomic cloud at the bottom
of the bubble in presence of the beam (with the filter). The first step is to detect the effect
of the beam onto the atoms. If the stirrer is left static and turned on with a very high power
(around 10 mW, which corresponds to a light shift on the atoms caused by the stirrer of
approximately 100kHz), the cloud is then usually slightly displaced, indicating the relative
position of the stirrer compared to the atomic cloud (when the power is large, the beam has
an effect even away from its central position, possibly due to the presence of a diffuse light
pedestal around the “real” beam). It is also possible to describe circular trajectories at high
frequency and look for the heating induced onto the atoms. Once we detect the effect of the
stirrer, we try to pierce the cloud with it and adjust the beam position until we hit the center
of the cloud (see figure 6.3b). This displacement can be done by changing the frequencies
determining the impact point or the angle of the dichroic mirror sending the beam onto the
atoms. The former allows to be easily reproducible and more precise displacements, but the
latter can be required to ensure that the cloud is in the center of the region accessible to the
stirrer (limited by the AOM’s bandwidth).

Beam focus and beam waist measurement

We can also try to use this vertical camera to focus the beam onto the atoms: it is possible to
scan the vertical position of the camera to measure the beam profile, and compare the focal
point obtained in this way with the camera position for which the imaging focus is correct.
The longitudinal position of the last lens can then be adjusted to focus the stirrer properly®.
These measurements seem to display a weak astigmatismn for the stirrer beam, as well as
optical aberrations away from the focal point; the measured waist is around 8 um. They have,
however, to be taken with caution because the vertical camera was built initially to image
780 nm light, and the lenses were chosen with a coating (B coating from Thorlabs) that has a
very weak reflectance for 780 nm light (0.2% announced by the manufacturer) but significant
reflectance at 532nm (around 9%), which limits the trust we can put into these images; we
also noticed afterwards that some of the pictures used to perform the measurements were
saturated, therefore increasing the measured waist. We can also note that due to the finite

8. However, when the screw blocking the lens translation is loosened there is some backlash on the lens
lateral position, and the beam lateral alignment then has to be done again.
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Figure 6.3 — (a) In situ picture of the atomic cloud in the presence of the stirrer beam,
when the stirrer is aligned to hit the center of the cloud. (b) Circular trajectory of the
stirrer beam imaged directly onto the vertical camera (in the absence of the filter). (c) Cut
into the profile (a), fitted using different methods. The red, dashed line corresponds to a
Thomas-Fermi fit of the addition of a parabolic profile to which is superimposed a gaussian
profile, without constraint on the different parameters. The black dotted line is an attempt
to match the same profile by computing the real atomic density using realistic parameters
for the atom numbers, trap frequencies and beam power, and applying a gaussian blurring
to take into account the finite optical resolution of the imaging system. The black solid
line is the corresponding raw profile, before applying the blurring. While the real cloud
is probably largely pierced by the stirrer beam, the hole observed on the pictures still
doesn’t seem very deep due to the limited optical resolution.

resolution of the imaging system, 4 pm, the lowest waist value we can measure on the camera

is V62 +42 = 7.2 pm.

Another method to achieve the beam focus and measure its waist would rely on the imaging
of the condensate pierced by the stirrer: in the Thomas-Fermi regime, its profile should match
the profile of the stirrer. Applying a vertical bias field allows to displace the cloud and
therefore measure the evolution of the beam waist along its propagation axis. However, the
waist measured using this method were significantly larger than expected (between 10 and
20 um), and proportional to the stirrer beam power... We later realized that since the optical
resolution of our imaging system is close to the beam waist, the atomic profile measured
on the pictures is dramatically altered compared to the real profile (see figure 6.3c) and the
fitted beam waist cannot be trusted. If we compute the expected atomic profiles and apply
a gaussian blurring to take into account the imaging resolution, we are able to reproduce
profiles that seem to match the measured ones, but the number of parameters that we have
to adjust is too large to allow measuring the beam waist in this way with a good precision.
These pictures also strongly suggest the presence of a diffuse light pedestal around the stirrer
beam, as the Thomas-Fermi radii of the cloud increases way more in the presence of the stirrer
beam than what the stirrer itself could cause. A light pedestal accompanying the beam could
for example weaken the harmonic confinement, as it would be blue-detuned like the stirrer.
These effects still require additional data to be properly understood.
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Test of the stirrer: measuring a superfluid critical velocity

To ensure that the stirrer works properly, we used it to measure a critical velocity in the
gas, similarly to [47]. We displace the stirrer beam within a very cold gas at the bottom
of the bubble, following circular trajectories with 10 pm radius for different frequencies (the
Thomas-Fermi radius of the gas is 22um). We expect to observe a threshold effect: if the
linear velocity of the beam is below the critical velocity, nothing should happen, if it is above
we expect to see heating in the cloud. These experiments were done in the presence of a RF
knife, and the cloud heating instead translates into atom losses; the experiment was done in a
compressed bubble (b’ = 198 G - em~!) at 1 MHz dressing frequency; the trapping frequencies
are approximately 37.5 Hz radially and 1600 Hz vertically.

The results are presented on figure 6.4: we see a clear threshold at a linear velocity of
0.37(12) mm - s~!. The sound velocity is estimated around 2.6mm -s~!. It is significantly
larger, because our beam is intense enough to significantly lower the local density and then
lower the local sound velocity; for obstacles whose size is significantly larger than the healing
length ¢ the dissipation mechanism involves nucleation of vortex-antivortex pairs [12, 165].
Critical velocity experiments performed with ultra-cold experiments typically give values for
ve/c between 0.1 and 0.5 [47,166], and our measurement is also within this range (v./c ~ 0.14).
The critical velocity depends on many parameters (whether the cloud is completely pierced
or not, hole size, density slope on the edge of the hole, ...) and there is yet no model that

seem to predict the expected values properly.
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Figure 6.4 — Measurement of the critical velocity in a highly oblate gas. The stirrer
is displaced within the gas at constant velocity, describing circular trajectories. At low
velocities, nothing seems to happen; for higher velocities the atom number gets lowered:
the stirrer creates excitations and heating, and the knife then removes atoms. We analyze
the data by performing two linear fits on both regimes; the intersection corresponds to
v =0.37(12) mm - s~ L.
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6.1.2 Phase imprinting with a SLM

Another commonly used method to generate circulation in a ring trap relies on phase imprint-
ing [57,58]. It has the advantage of creating a deterministic flow into the ring with a good
fidelity.

The current experimental implementations of such a scheme rely on Raman two-photon
transition where one of the photons carries orbital angular momentum (coming from a
Laguerre-Gauss beam) and the other one does not (coming from a gaussian beam). Such
a method requires internal states between which the transition is driven, usually Zeeman sub-
states: even though this method is very appealing, it is therefore very difficult to implement
in a magnetic trap (and even more difficult in a RF-dressed trap, since the atoms are not in
a single state but in a mizture of states).

We are currently trying to implement a setup that would allow us to similarly imprint a
given phase onto the atoms, but relying on a beam with an intensity helix rather than a phase
helix (i.e. a Laguerre-gaussian beam). The idea is to shine onto the atoms a laser beam with a
position-dependent intensity I(r) and corresponding position-dependent potential U(r). If the
beam is turned on during a short time 7, the atoms will locally acquire a phase proportional
to the pulsed potential:

W(r,7) = @ZJ(r,O)e_%. (6.1)
If we imprint in this way a £ x 27 phase onto the atoms, we should be able to directly imprint
the desired ¢ flow level.

In practice, the finite resolution of the optical system may however prevent from directly
using such a scheme: the phase gradient is indeed applied on most of the ring, but instead of a
local 27 phase jump, it will imprint a 27 phase ramp whose size will be the optical resolution.
This ramp will then create a strong flow propagating against the one we want to create and
cancel the effect of the prepared phase gradient (see figure 6.5 ¢). For this reason, we intend
to use the stirrer beam described in previous section to deplete the region where the phase
jump should happen while the intensity helix is applied. We have studied the dynamics of
the flow after the barrier is removed and shown that the ¢ = 1 — 3 states can be prepared
efficiently [167].

The intensity helix will be generated by a Spatial Light Modulator (SLM) used in “mask
mode™ the SLM is placed between a pair of crossed polarizer analyzer, and locally rotates
the beam polarization to determine the intensity that will go through the analyzer: the SLM
imprints an arbitrary spatial polarization profile, which then becomes an arbitrary intensity
profile after the analyzer. In the end, such a setup can in principle be used to generate
arbitrary phase profiles. Beyond the idea of imprinting a given circulation, the possibility of
imprinting any phase profile onto the atoms would be useful for example to generate and study
solitons [168], or to study the recombination of phase domains and Kibble-Zurek mechanism
(similarly to [149], but with controlled instead of random phases). The SLM has been tested
in the lab and its use has been theoretically investigated during the last two years; it is now
ready to be set up onto the experiment. Experimental details and numerical simulations can
be found in [87,167].

6.1.3 Rotating the bubble trap

A last method for setting the atoms into rotation consists in deforming and rotating the trap
itself, similarly to a “rotating bucket” experiment. More precisely, we would like to rotate the
radial part of the confinement, which happens to be the dressed trap.
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Figure 6.5 — Principle of our phase imprinting setup. (a) Optical setup used to generate
the intensity helix (with a CCD camera to image the beam where the atoms will be). (b)
Measured intensity pattern, showing the intensity helix. (c) Azimuthal intensity profile
corresponding to the measurement shown in (b), along the red dotted circle. The gray
region corresponds to the phase ramp that happens instead of the expected phase jump
due to finite optical resolution (it will also happen on the real setup). (d) Principle of
phase imprinting. The intensity helix is shone onto the ring-shaped gas, locally depleted
where the 0 — 27 phase jump will be. Figure from [167].

Starting from a cylindrically symmetric trap (circular polarization), we deform it to make
it slightly anisotropic. This is done by making the polarization slightly elliptic, increasing the
amplitude of the current in one of the dressing antennas and decreasing it into the other one:
we then end up in the “double-moon” configuration described in section 5.2.1 (see figure 6.6).
We rotate in this way the axis of the polarization ellipse, which in turns rotates the atoms in
the trap. The parametrization of such a rotation is described in 2.3.4, and the corresponding
phase and amplitude applied to the antennas is shown on figure 6.6.

A limitation of this method is that it does not allow to rotate a deformation with a very
small amplitude. Indeed, the resolution we have on the dressing field amplitudes corresponds
to a 100 to 200 Hz precision on the Rabi coupling at the equator. Continuously deforming
the trap therefore requires coupling variations of at least 1kHz, and equivalent potential
variations, meaning that they cannot be small as compared to the chemical potential of the
gas (typically 1 to 5kHz).

However, this method is very easy to apply and requires no alignment: we thus started
with it to try generating superflow in the ring, which we did with success. This realization
will be described in more detail in the next section.
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Figure 6.6 — Left: in situ pictures of a ring-shaped BEC during rotation for a ring
configuration equivalent to the one described in 5.3, at different times of the rotation.
An imbalance between antennas creates inhomogeneities within the ring whose axis can
be controlled, allowing to set the ring into rotation. Right: parameters describing the
successive states taken by the RF: amplitudes of the H1 (blue) and H2 (red) antennas, and
relative phase between them (magenta). For the sake of comprehension, amplitudes are
expressed as the corresponding coupling onto the atoms. In a first step (100 first points),
an amplitude imbalance between the antennas is created (here, the peak-to-peak height
of the deformation is around 1.2kHz). The phase and amplitude then evolve following
equations (2.89) and (2.91); due to the finite resolution of the DDS we see a discretization
of the amplitudes (different for both antennas since they are not identical). This rotation
pattern lasts 500 points; the refresh rate allows to control the rotation frequency and this
step can be repeated to determine the number of turns. Finally, in a third step (100 last
points), the antennas are brought back to the isotropic configuration. One may note that
due to imperfect physical alignment of the antennas, the amplitudes of the antennas in the
isotropic configuration (horizontal dotted lines) correspond to a small imbalance between
antennas, and the relative phase is also slightly different from /2.

6.2 Flow detection

Once we were able to obtain a ring-shaped gas that seemed able to withstand superfluid flow,
as described in 5.3, we tried to generate and observe it. As a reminder, the corresponding
ring has a 22.3(1) pm radius, vertical and radial frequencies around 2kHz and 650 Hz, and
typically 5 x 10* atoms; we do not know the cloud temperature but we see no discernable
thermal fraction in a time-of-flight expansion.

As it is easier to set up, we chose to use the whole ring rotation to create a circulation (as
described just above). We used various excitation amplitudes and rotation frequencies; these
studies are for now preliminary and we do not have yet a specific and proven set of optimal
parameters.
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6.2.1 Time-of-flight detection
Presence of a hole after time-of-flight

For the detection of superfluid flow within the ring, we rely for now on the presence of a hole
within the cloud after time-of-flight expansion, as described in 4.1.3. The first attempt of
detection was done with a large excitation amplitude: the peak-to-peak height of the ring
deformation was around 6kHz (i.e. larger than the chemical potential), and the ring was
rotated at 10 Hz (for a rotational quantum expected around 0.2 Hz).

We then turn off the confinement and let the cloud fall for 10 ms, and we applied a Stern-
Gerlach procedure to get rid of the +1 and the —1 states (see section 3.4.3). Depending on
whether we rotate the ring or not, we then see a hole or a peak in the center of the ring, as
we could expect [143]. Looking at the cloud from the side in similar conditions, we either see
one single peak at the center of the cloud, or a widened cloud that presents two maxima in
the horizontal direction (figure 6.7). This gives us a very clear signature of the presence of a
superflow in the ring.

Figure 6.7 — Left: pictures of a ring without (top) and with (bottom) rotation, observed
from above after 10ms TOF and 0.7 ms Stern-Gerlach. Right: pictures of the same cloud
observed from the side after 23 ms TOF and 0.5 ms Stern-Gerlach. The rotation is done
at 10 Hz and lasts one turn; the cloud relaxes during 0.5s before the imaging procedure.

Looking after a longer TOF to achieve a better resolution and trying various excitation
parameters, we then end up with very different hole sizes (figure 6.8).
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Figure 6.8 — Vertical pictures of the ring after rotation, 500 ms holding time and 23 ms
time-of-flight. The excitation has a peak-to-peak height of around 1.2kHz (the corre-
sponding rotation pattern is the one displayed on figure 6.6) and we make 2.5 turns. The
excitation frequencies are, from left to right, 8 Hz, 9 Hz, 9 Hz and 25 Hz. Repeating the
sequence for an excitation frequency of 8 Hz, we never saw a hole in the cloud, suggesting
that the critical rotation frequency lies between 8 and 9Hz. Note that the size of all
pictures is identical, but the color scale is different on the first picture (twice larger).

Hole size quantization and evolution

The observation of this hole within the cloud after time-of-flight with a variable diameter
depending on the stirring parameters leaves no doubt about the presence of a superfluid flow
within the ring. However, we would also like to observe the discrete character of the hole
radius, and to be able to know which state was present in the ring from the TOF pictures.
The method used by other teams to do so is the realization of a histogram of the obtained
hole radii for various parameters. We expect to see well-separated peaks corresponding to the
different ¢ states [58,143]. This is the next thing we plan to achive for the work on the ring.
Gross-Pitaevskii simulations of the cloud’s expansion in the presence of a superfluid flow are
also being performed in the team, and we hope to achieve quantitative comparison with our
data.

After creating a large hole, we tried to look at the time evolution of the hole size, in order
to ensure that the superfluid flow is indeed metastable. The results can be seen on figure 6.9.
The hole size decreases slowly on a time scale comparable with the atom number evolution,
probably due to atom losses as has been observed in [58]. We observe the presence of a hole
in the gas up to 6s after the initial excitation, however we do not have enough data yet to
perform quantitative measurements.
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Figure 6.9 — Vertical pictures of the ring after rotation, various holding times and 23 ms
time-of-flight. The excitation has a peak-to-peak height of around 1.2 kHz (the correspond-
ing rotation pattern is the one displayed on figure 6.6) and we apply 2.5 turns at 25 Hz.
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Introduction

Superfluidity implies the irrotationality of the velocity field of a fluid. However, rotation
is still possible if quantized vortices are introduced in the superfluid, creating density zeros
around which the fluid is able to rotate [12,13,15,92,169]. When many of these vortices are
present, they arrange into regular vortex arrays, allowing the superfluid to mimic a solid-body
rotation velocity field, leading to the “coarse-grained” velocity regime [53].

Even though vortices are quantum objects, these effects can still be explained by a classical
field description of the wavefunction of the fluid [170]. When the rotation gets even faster
however, the quantum nature of the wavefunction cannot be neglected anymore, and the
superfluid should enter exotic regimes like the Lowest Landau Level regime [54], analogue
to the quantum Hall effect for a supraconductor. Strongly correlated states like Laughlin
states can even be reached when the number of vortices becomes comparable to the number
of particles in the fluid [171]. On the experimental side, the ability to produce and study
increasingly fast rotating dilute superfluids was developed very rapidly after the realization
of the first gaseous BECs [51-54,172], but after 2005 the experimental efforts concentrated
on other aspects of the vortex physics [173-178].

A promising method for reaching some of the fast rotating regimes is to use anharmonic
trapping [179]. Indeed, one of the major experimental difficulties when entering fast rotat-
ing regimes is that in the usual case of harmonic traps, the centrifugal force compensates or
overcomes the trapping force, leading to a divergence in the size of the gas when the rotation
frequency approaches the trapping frequency, or even to the expulsion of all atoms if the rota-
tion frequency exceeds the trapping frequency [170]. A stronger than harmonic confinement
ensures to maintaining the atoms in the trap even if the rotation frequency is higher than
the trapping frequency. The effective potential in the rotating frame then takes the shape
of a Mexican hat and the gas becomes annular. If the rotation is large enough, all vortices
then migrate within a central density hole and the gas becomes effectively 1D, leading to a
stable, “giant” vortex [74-76,79]. This regime has been approached in 2004 in the group of J.
Dalibard [77|, although without reaching a vanishing density in the center.

The experiments described in this part result from a proposition of Romain Dubessy, who
suggested to stir a cloud at the bottom of the bubble in order to achieve a giant vortex: indeed,
as the bubble trap is anharmonic, it could be a suitable system to explore these regimes. The
initial attempts, described at the beginning of chapter 8, were unsuccessful, but the results
were surprising enough to trig some studies in order to understand better our results, which
finally led us to very interesting (and unexpected) results, among which the achievement of a
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“ dynamical” ring-shaped gas.

This part consists of two chapters: chapter 7 details the different rotation regimes of a
superfluid and introduces from a theoretical point of view some of the techniques we used to
study fast-rotating gases in bubble traps. Chapter 8 presents the experimental results, from
the first attempts to the realization of fast-rotating dynamical rings, as well as the results we
obtained on the characterization of such a system.



|
Chapter

Theory of rotating superfluids

This chapter aims at describing from a theoretical point of view the behavior of vortices in
the case of fast rotating Bose gases, i.e. the case where many vortices are present in the gas,
and to introduce in this way the basics on which the third part of my thesis relies. In a first
section, I will describe the behavior of vortices in the case of small to moderate rotations
(Qot < wy); this regime has been studied a lot experimentally and theoretically and is now
well understood. In a second section, I will describe the regime of fast rotations, when the
rotation frequency gets very close to the trapping frequency. Despite the significant number
of predicted phenomena that haven’t been observed in this regime, no experimental work
seems to have been carried on this topic during the last decade; it is this regime that we
want to explore. Note that a more detailed review of these topics can be found in [170]. The
third section will then describe the behavior of the quadrupole modes of rotating condensates,
which gives useful tools to probe the properties of the superfluid. Finally, I will describe the
theory that lies behind a few usual techniques for studying vortices: how we nucleate them
and how we observe them.

All the experiments I will present in this part are performed at the bottom of our bubble
trap: the trapping geometry there is highly oblate, with w,/w, ~ 10. For this reason, I will
here consider only the case of 2D superfluidity, meaning that:

e All the rotations that will be considered are along the vertical axis.

e The quantized vortices are also aligned along this axis, and we neglect their possibility
to tilt and/or bend.

In this case, the velocity field lies in the horizontal plane and does not depend on the z
position. Note that this doesn’t require the condensate to be 2D or quasi-2D: the restriction
here applies only to the allowed behavior of the vortex lines [180].

7.1 Vortices in a rotating superfluid

7.1.1 A single vortex

Let us start by describing the behavior of a single vortex line in a superfluid. The most crucial
relationship for describing the velocity field in a superfluid is the Feynman-Onsager relation
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(1.34), that I recall here:

B h
dl= — = — ) A
iv(r,t) dl= T Ac§=(x2m (€T (7.1)

Computing this relation on a circle with radius r centered on the vortex leads to the velocity

field it creates:
th

= —ey.
v Mr¢

(7.2)
In principle, the “charge” of the vortex ¢ can take any integer value, but a vortex with |¢| > 1
is unstable and spontaneously splits into several singly-charged vortices [56], and we will only
consider £ = +1 in this chapter.

The Stokes’ theorem then leads to a singular vorticity localized at the position of the

vortex:
2mh

V xv= ﬁé(r)ez. (7.3)
Since the velocity field diverges for » — 0, the density has to vanish in this limit to keep

a finite kinetic energy. Comparing the kinetic energy:

Ep=_-Mv=_——— (7.4)

with the chemical potential u allows to estimate the typical size over which the density will
vanish, r, = \/h?/2uM, which happens to be the healing length £&. We can note that ¢
corresponds to the distance to the vortex below which the flow becomes supersonic (the
sound velocity being given by (1.25)). More accurately, Gross-Pitaevskii simulations lead to
a root-mean-square core radius around r, = 1.94¢ [54].

7.1.2 Many vortices: the coarse-grained vorticity approximation

Let us now consider the case of a rotating trapped gas in which a significant number of
vortices are present. One can show [170] that for a given angular momentum L., the velocity
configuration that minimizes the energy of a rotating fluid is the solid-body rotation vy, =
Q x r, where ) is given by the classical solid-body moment of intertia: L, = € x M (r?). This
configuration, however, implies V x v = 22 and is unachievable for a superfluid whose flow
is irrotational.

Nevertheless, when several vortices are present in the superfluid, the way they distribute
within the fluid allows many configurations for the velocity field, and the lowest energy con-
figuration is the one that mimics the solid body rotation. For a sufficiently large amount of
vortices, one can make the assuption of a “coarse-grained” vorticity, where the vortices are
uniformly distributed within the condensate with a surface density [12]:

o MQeff

v ’ 75
n — (7.5)
where Qqg is defined from the mean angular momentum per atom L, as:
L
Qe = z (7.6)

M{(r?)’
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As a useful formula, I recall here that for a harmonically trapped BEC, (r?) can be expressed
from the Thomas-Fermi radii [181]:

R? + R?
(r*) = — (7.7)

Each vortex having a singular vorticity h/M, the local vorticity is then n,h/M, i.e. V x
v = 20ge,, and we find the expected solid-body rotation. Note that Qg can always be
defined, even for a amount angular momentum per particle — however, for small numbers of
vortices, the flow will of course significantly deviate from the solid-body rotation.

From the vortex density n, one can then deduce the area per vortex n;l =wh/MQeg = ml?
and define the “magnetic length” (by analogy with the quantum Hall effect):

h
=4/ Y (7.8)

which would correspond to the radius of a circular cell: the intervortex separation is then
approximately! 21.
The total number of vortices in the superfluid is then equal to:

_ R (Qen)

NU l2 )

(7.9)
where R, increases with Qg due to the centrifugal force.
Computing the ground state of the system is then relevant in the frame rotating at Qeg.

In this referential, the total energy of the system in a configuration given by the wavefunction
¥ writes [170]:

Ely] = /dV K;MV? + Véxt> ]? + ;gintw‘4:| - /dVMQeff e, -1 x vy (7.10)

where we neglected the kinetic energy associated to the spatial variation of the condensate
density, i.e. in the Thomas-Fermi approximation (not that this includes the kinetic energy
associated to the density variation in the vortex core). Considering the hypotheses we made
on 2D superfluidity and using the definition (7.6), this energy can be reexpressed as:

Bl = [[av | (5309% = MOZ 4 Vo ) I+ el (7.1

and one can finally split the energy functional into two parts, as:

E[ﬂ)] = /dV |:(‘/8Xt — ;MQgHIJ) |¢’2 + ;gint|¢)|4:| + /dV;M(V — va)2|¢}|2~ (712)

The first term corresponds to the energy of the system in the solid-body configuration, and the
second one to the additional kinetic energy of the deviation to this solid-body rotation (note
that it is always positive, as the solid body rotation configuration is the one that minimizes
the energy). The coarse-grained vorticity approximation (also called “diffuse vorticity”) then

1. The exact distance between vortices depends on the vortex repartition geometry, for example in the
triangular lattice configuration it is equal to 2[/m/3.



132 Theory of rotating superfluids

consists in neglecting this second term; in this case we see that the rotation of the condensate
simply leads to a weakening of the radial trapping.

In the case of a harmonically trapped condensate with radial frequency w,, the radial
trapping potential then simply becomes %M (w? — QgH)TQ; the Thomas-Fermi radii then vary
due to the modification of the effective trapping frequencies as:

2 \ —3/10 9 \1/5
Ry (Qer) = R1(0) <1 — w‘f) , R.(Qer) = R.(0) (1 — ‘;ff> . (7.13)
1

and the cloud’s in-trap aspect ratio therefore reads:

RJ_(Qeﬁ") . \/ wﬁ_ B ngf (7 14)

Rz(Qeff) B Wy
The subsequent modification of the cloud’s in-trap aspect ratio can, for example, be used
as an effective probe of the rotation frequency Qe [54]. We can also notice that due to
the weakening of the radial trapping frequency, the critical temperature decreases with the

rotation frequency [182]:

2 \1/3

L) _ <1 - Q-Gf) . (7.15)
Tc(o) wi

One has to note, however, that the vertical radius can become very small when Q. becomes

comparable with w ; these formulas are only valid if we stay in the three-dimensional regime

(i.e. if the vertical radius stays larger than d).

Finally, one may note that these considerations do not indicate anything about the ar-
rangement of the vortices within the cloud. In most cases, however, the lowest-energy con-
figuration corresponds to the triangular lattice, as initially predicted for vortices in type-I1
superconductors [183] or superfluid helium [184] (also called Abrikosov lattice). Pictures of
such a vortex lattice observed in a dilute superfluid can be seen on figure 7.1. However,
other lattices geometries might be obtained depending on the system; for example in a spinor
consensate square lattices have been observed [185].

Figure 7.1 — Left: observation of vortex lattices in a rotating superfluid. One can see
approximately 13 (left) and 130 (right) vortices, visible due to the depletion they create in
the gas. Note that a time-of-flight expansion of the gas is necessary to see them. Figure
from [53]. Right: Gross-Pitaevskii simulations of the density profile and velocity field
(black arrows) of a rotating condensate, taken from [186]. The left plot corresponds to
the velocity in the laboratory frame while the right one corresponds to the velocity in the
frame rotating at {.g, that is, the deviation to the solid-body rotation.
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7.2 The fast-rotating regime

The coarse-grained vorticity description presented in section 7.1.2 works well for moderate
rotation regimes (Qeg < wy ), but fails in the fast rotating regime (for Qe — w, ). We should
even speak about fast-rotating regimes: as Q.g gets closer and closer to w,, the quantum
gas is predicted to undergo a series of quantum phase transitions and reach highly correlated
states. Most of these regimes are yet completely unaccessible experimentally as they typically
require a number of vortices comparable or even larger than the number of particles (for now,
the lowest achieved values for v = N/N, are around 500 [54]), but even the regimes that are
the easiest to achieve present a significant interest. They are the primary motivation for the
work I will present in the next chapter, and I will here describe what is expected to happen
in these rotation regimes and what has been experimentally achieved. Finally, I will describe
what we can hope to achieve with our experiment on this topic.

7.2.1 Theoretical interest
The Lowest Landau Level

The coarse-grained vorticity is based on the mean-field Thomas-Fermi approximation: it
neglects the kinetic energy associated to local density variations, that is, it considers the
velocity field created by the vortices but not the modifications of the density in the vortex
core. This is valid as long as the vortex core size is much smaller than the inter-vortex
distance: & < . However, as the effective rotation frequency Qg grows closer to w,, the
radial trapping becomes extremely weak due to the centrifugal force and the chemical potential
strongly drops: the healing length £ then tends to diverge. On the other hand, the inter-
vortex distance saturates to [ =~ d; as Qg approaches w,: for large enough rotation rates,
the previous approximations fall and another description of the system that fully takes into
account its quantum nature becomes necessary.

To understand the physics in this system, it is useful to consider the quantum description of
the trapped particles, using the creation and annihilation operators of the harmonic oscillator.
The most convenient basis, more precisely, is the basis of circularly polarized states a+ =
(4 F idy)/+/2. In this basis, the hamiltonian of the harmonic oscillator reads:

Hy=hw, (alay +ala_+1), (7.16)

and the angular momentum:
L. =nh(ala, —ala). (7.17)

Denoting ny the eigenvalues of the number operators &ldi, the energy of the eigenstates in
the rotating frame can then be written under the two equivalent forms:

Eng,n_) =nih(w) — Qegr) + n_fi(wy + Qesr), (7.18)
= nhw| — mhQeg, (7.19)

with n = ny +n_ and m = ny —n_. The corresponding energies are plotted on figure 7.2: we
see that for Qg — w all states with n = m become quasidegenerate, forming the so-called
“Lowest Landau Level” (LLL).

Let us come back to our initial questioning. The condition £ ~ d; can be reexpressed
as p ~ hwy: in this case, supposing that the gas is quasi-2D (which is often the case since
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Figure 7.2 — Evolution of the energies given by (7.19) for (a) Qeg = 0, (b) Qeg = 0.4w .
and (¢) Qe = 0.9w, . The splitting between opposite m levels increases with Q.g, and
for Qeg =— w, all states with n = m become quasidegenerate, forming the LLL. In this
latter case, if 4 < 2w, , the only significantly populated states are those of the LLL. Figure
adapted from [187].

the chemical potential strongly drops for fast rotations), the single-particle states that are
accessible are restricted to the LLL, i.e. m = m (or equivalently n_ = 0). The condensate
wavefunction can then be rewritten as [187]:

1/}(7“) = Z O‘m@m@“) (720)

= Z Qe e/ 20 (7.21)
m

one can show that in this case, the gas keeps a parabolic shape but with a different radius than
in the mean-field Thomas-Fermi regime (even though the kinetic energy term is now taken
into account), and the size of the vortices saturates around d; . One can also note that the
number of vortices in the cloud then corresponds to the number of zeros in the wavefunction,
given by the index of the highest populated state: N, = mmax- A more detailed review of the
the gas properties in this state can be found in [170,187].

Highly correlated states

As the rotation frequency gets closer to w, the number of states in the LLL that can get
significantly populated grows. When this number becomes comparable to the number of
particles (N ~ mpax = N,), the mean-field approach becomes irrelevant, and the system
enters highly correlated many-body states. The first expected effect is the melting of the
vortex lattice due to quantum fluctuations (for N/N, < 6 [171]), and for even larger rotations
the system enters Laughlin states. The system then loses its superfluid character. The physics
of these states is far beyond the scope of what is described in this document, and reaching
them experimentally with rotating superfluids appears for now as out of reach. A reader

wishing more details about these regimes shoud direct towards [171].

Thermal melting of the vortex lattice

All the previous descriptions correspond to a zero-temperature behavior. We can note, how-
ever, that for large rotations in the quasi-2D regime a melting of the vortex lattice due to
thermal fluctuations is expected. As discussed below, such a phenomenon can be described
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Figure 7.3 — Left: example of a local defect in a triangular lattice, with two sites having
only 5 neighbours (marked with blue squares) and two sites with 7 neighbours (blue
circles) close to each other. Such a defect can be seen as a dislocation pair (a dislocation
corresponding to a site with 5 neighbours next to a site with 7 neighbours): as long as the
pair stays tied, the orientational order can be preserved away from the defect, while if the
thermal fluctuations are large enough to unbind such pairs, their proliferation will destroy
long-range order, similarly to what happens in the BKT transition. Figure from [188,189].
Right: observation of melting in a 2D superconducting lattice by Guillamon et al [190].
Plotted are the amplitude of the peaks in the Fourier Transform of the vortex lattice
pictures, and the parameter ¢ which indicates the Current-Voltage relationship in the
superconductor (o = 1 corresponds to a normal conductor and o < 1 to a superconductor).
They observe a range in temperature for which the studied sample is superconducting (o <
1) but the absence of peaks in the Fourier transform indicates the absence of crystalline
order, indicating a vortex liquid phase.

as a Kosterlitz-Thouless transition [62] due to the unbinding of thermal dislocations in a 2D
lattice (see figure 7.3).

For a 2D vortex lattice in an incompressible superfluid (i.e. superfluid helium films), it
has been predicted that the vortex lattice should melt above a temperature 7;, lying below
the BKT critical temperature Tpxr, T}, = ToxT/47V3 [191] (i.e. =~ 0.05TpkT). This result
has been recently extended to the general case of superfluid vortex lattices by Gifford and
Baym [192], based on the theory of 2D vortex melting for solids [193,194]. Again, a melting
of the vortex lattice is predicted for T,, < T < TpkT. Matveenko and Shlyapnikov then
computed the correlation function and phase coherence in such a system [195], and predicted
that even when density fluctuations are strongly suppressed, the phase coherence can decay
on a short lenghtscale and cause irregularities in the vortex lattice or even its melting if the
temperature is not low enough.

Such a thermal melting has been observed in the case of a 2D superconducting vortex
lattice [190] (see figure 7.3), but not in the case of a superfluid, and the physics of such a
transition is still poorly understood.

Fast rotation in a harmonic plus quartic trap

The major difficulty for experimental achievement of harmonically trapped gases rotating
close to Qe =~ w, is the absence of radial confinement due to the centrigugal force. An
interesting strategy that could enable reaching the fast-rotating regime lies in the addition of
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Figure 7.4 — Numerical simulations of the appearance of a giant vortex for a rotating
gas confined in a harmonic plus quartic trap, taken from [76]. Starting from a regular
vortex for low rotation frequencies (a), when the rotation increases a hole appears at the
center of the cloud in which several vortices are present, while some other vortices stay in
the bulk (c). Finally, for very large rotation frequencies, all the vortices merge into the
hole (e), leading to formation of a “giant vortex”.

a higher-order confinement, able to keep the atoms trapped for rotation frequencies equal or
even larger than the trapping frequency. Most theoretical studies investigated the case of a
harmonic plus quartic trap [76,179,196]:
1 9 [ o rd
Vext (1) = EMwl <7“ + )\d—2> . (7.22)
1
For such a trapping configuration, rotating faster than the harmonic trapping frequency leads
to a mexican hat potential in the rotating frame, with a repulsive harmonic anticonfinement
at the center of the trap and a quartic confinement at large distances.

Such a trap doesn’t allow to explore exactly the same regimes than described previously in
this section: for example, the LLL is now an approximation that holds only if the quartic term
is weak compared to the harmonic confinement, and is not necessarily reached for increasing
Qe as the chemical potential doesn’t drop arbitrarily low anymore. However, it also provides
interesting regimes on its own. If the cloud rotates significantly faster than w, , the repulsive
barrier that appears at the center of the trap can become larger than the chemical potential,
leading to the appearance of a central hole in the gas, which becomes annular (see figure 7.4).
While some vortices remain in the bulk, others then locate within the hole present at the
center of the cloud and become “phantom” vortices, leading to a multiply charged vortex in
the center of the trap. For even larger rotations, all vortices are expected to migrate within
this hole and leave the bulk vortex-free, forming in this way a “giant” multiply-quantized
vortex with a pure irrotational flow within the bulk [74-76,79]. In this limit, the annular gas
reaches the one-dimensional regime.

7.2.2 Experimental achievements

Up to now, only two experiments tried to reach the fast-rotating regime:

e The first one, in the group of Eric Cornell, studied the Lowest Landau Level regime in a
harmonically trapped gas [54]. Using an evaporative cooling technique to accelerate the
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rotation of the gas followed by an optical increase of the rotation, they reached up to
Qe = 0.993w, and started to enter the LLL regime. They observed the saturation of the
vortex size (fig 7.5) and studied the oscillations of the vortex lattice, called “Tkachenko
oscillations”. We can also note that in his thesis, V. Schweikhard mentions that the
observed vortex lattice became very fragile if the temperature was not kept very low,
possibly due to thermal lattice melting effects [197].

e The second one, in the group of Jean Dalibard, tried to obtain fast-rotating gases in the
harmonic plus quartic case [77]. When reaching Qg 2 w , they observed a depletion of
the density in the center of the cloud, but could not completely form the expected hole:
trying to increase the cloud rotation further was unsuccessful (fig 7.5). In parallel to
the density depletion, they also observed a blurring of the vortices in their condensate,
whose origin remains unclear.
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Figure 7.5 — Left: evolution of the fractional core area, i.e. the ratio between the surface
of a vortex core 7r2 and the area per vortex in the lattice w/2, as a function of the ratio
between twice the rotation frequency and the chemical potential describing the entrance
in the LLL regime. While for small rotation frequencies, the core size grows in proportion
of the vortex lattice cell, it saturates for higher rotation frequencies (the dashed line
is the prediction of the TF theory and the dotted horizontal line the one of the LLL
theory). Figure from [54]. Right: pictures of the rotating gases in the experiment of
Bretin et al. [77] after TOF expansion, for various excitation frequencies (written below
the pictures). Above the trapping frequency (w; = 27 x 64.8 Hz), a density minimum
appears in the center of the cloud but the vortex lattice gets blurred. The attempt to
reach faster rotation regimes was unsuccessful (picture h).

Even though these two experiments began entering the fast-rotating regime, they did not
go further in their exploration, neither did any other.
7.2.3 Our strategy
General principle

Following the strategy of the addition of a higher order confinement described above, our
bubble-shaped trap (described in chapter 2) has the advantage of being naturally anharmonic:
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while the motion of the atoms is pendulum-like at the bottom of the bubble, when they get
away from the center they have to climb the edges of the ellipsoid, leading to significantly
stronger confinement. We can thus, without having to modify our experimental system, try
to explore the regimes leading to the giant vortex. In this regard, our system has several
advantages:

e We are able to achieve very smooth potentials with a good trapping lifetime, allowing
to study the evolution of the system over long times.

e We have a good control of our trap’s geometry and thus achieve a very good rotational
invariance.

e This control of the geometry also allows to set the atoms into rotation easily.

e At the bottom of the bubble, we can easily reach the quasi-2D regime when rotating
fast, as the vertical trapping frequency is quite high (above 300 Hz).

C_OC OC >

Qegr= 0 Qe = w1 Qegr= 1.1 w Qegr= 1.5 w

Figure 7.6 — Principle of the fast rotation in the bubble: for low rotation frequencies,
the atoms stay at the bottom of the bubble; for rotation frequencies faster than the radial
pendulum frequency they start to climb on the edges of the bubble. Here, the red lines
are the numerically computed Thomas-Fermi surfaces of the cloud (i.e. the isopotential
lines Vexi(r,z) — MQ2;/2 = p) in the conditions of the experiments described in the
next chapter, while the black lines correspond to the isomagnetic surface of the bubble
trap, with a cut in the  — z plane. Computations were done for the parameters we used
in the experiments described in the next chapter: w,¢ = 27 x 0.3 MHz and 28.5 A in the
quadrupole coils (b’ = 55.4G - em™1), corresponding to 7, = 77.7 pm, Qo = 27 x 49.25 kHz
and 10° atoms in the cloud. Note that the Thomas-Fermi surfaces are here computed for
a 3D cloud, but the cloud enters the quasi-2D regime during the process.

For those reasons, this system seems suitable to attempt further exploration of the fast-
rotating regimes. We can however note a major drawback due to the “exotic” geometry of
such a system, that is the absence of theory for this exact geometry and the difficulty to
extend the existing theory (especially, for Qeg > w, the cloud becomes tilted with respect to
the rotation axis).

Technical details

Let us now describe more precisely the case of rotating gases in our bubble-shaped trap. For
simplicity, I will suppose that the atoms stay on the resonant surface, which supposes the
magnetic gradient to be significantly stronger than gravity: § < 1 and ¢, = 7, leading to
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Z = —\ /rg —1r2/2. We consider the case of a circularly polarized RF field, as described in

section 2.3.1. In the rotating frame, the total potential can then be written as:
1
V(r,z) = FiQ(r, z) + Mgz — iMQzHT2. (7.23)

Using expression (2.60) for €21, we can rewrite it as:

where w) is equal to:

2F

1/2
wi =L |1 : (7.25)
2ry Magry, ’

which coincides with expression (2.64) for 5 < 1. From equation (7.24), the equilibrium
position can then be found, defining xk = wi / Qgﬁ, as:

Teq = )
4 rpvV1 — k%2 if Qeg > wi;
D i Qg <wy,
Zeq = 27’(, . (7.27)
—KE if Qe > w).

A hole will then appear at the center of the cloud if the chemical potential is lower than
the centrifugal barrier height, which reads:

Uy = MQ2ﬁrb (1—k)*. (7.28)
Evaluating the chemical potential can get slightly tricky as the trapping frequencies change

while the cloud climbs on the bubble’s sides. In this case, the orientation of the local basis is
determined by the angle 6o = arctan(—req/zeq), and the trapping frequencies become [125]:

1+3k2 Q2 3k(96* — TK? - 2) 1— k2
2 2 0 2
) = — - Q 2
Wy Wy <2(1 +,<J) + w?f 8(1 +352) 1 +3I€2 eff» (7 9)
41—
Wl =u? < (7.30)

Lkl + 362

Note that these equations are only valid for kK < 1. These trapping frequencies can then be
used to compute the chemical potential using the same formulas than for the ring trap, (4.24)
and (4.25).

It can also be useful to relate to the case of harmonic plus trapping; the corresponding
predictions should be valid when the atoms stay close to the bottom of the bubble. The
parameter A describing the strength of the quartic confinement (see (7.22)) can be expressed
easily from (7.24) as:

d2
1

= —, 7.31
47“5 ( )
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In this case, the central hole is predicted to appear for an effective rotation frequency [76]:

\/X~N 1/3 1/2
Oy =w; |1+2VA <32g> . (7.32)
T

Note that this latter prediction relies on the quasi-2D character of the gas, ¢ being the
dimensionless coupling constant (see 1.3); this hypothesis is fulfilled in the experiments that
will be described in the next chapter: the chemical potential already dropped below Aw, due
to the weakening of the radial confinement before the appearance of the hole.

Finally, one can note that the finite magnetic force that can be exerted onto the atoms
sets an upper bound on the allowed rotation frequency: if the centrifugal force goes beyond
the maximal magnetic force, the atoms are expelled from the trap. This condition can be
estimated at the equator of the bubble as:

MQ2gry < Fha, (7.33)

which gives an upper bound to the allowed rotation frequency:

Fha
Qg ~ 4| —2 28. 34
F Mg~ LY B (7.34)

The maximal value for our magnetic gradient is currently b’ = 216 G - cm ™!, the upper bound
for the rotation frequencies we can achieve is therefore approximately Qg ~ 3.5w, : we cannot
hope to reach extremely fast rotations with this scheme, but it should still be sufficient to
allow us performing interesting experiments.

7.3 Collective modes of a rotating condensate

The collective modes of a trapped atomic gas can give a significant insight about their behavior
[50,68,103,198]. Especially, in the case of rotating superfluids, the quadrupole mode can be
used as a probe to measure the angular momentum of the gas, or equivalently its rotation
frequency [199,200]. Since we use this method to measure the rotation or our gases, I will
here enter the details of the underlying theory.

7.3.1 Collective modes of a trapped condensate

Computing the low-energy collective modes of a trapped gas is achieved by following an
approach similar to Bogoliubov’s (see 1.2.1): the hydrodynamic equations are linearized by
computing the effect of small variations dn(r,t) of the atomic density around the ground-
state solutions m(r). Since our system is highly oblate, we choose to look for transverse
deformations, and exploiting the rotational invariance of our system, we look for dn solutions
with the form:

on(t) = em=Prlm=l p(p2)emiwt (7.35)

where P is a polynomial of degree p. Injecting these solutions within the hydrodynamic
equations (and neglecting the quantum pressure terms — which correspond to the so-called
hydrodynamic approximation) leads to the dispersion relation [201]:

4 o

4
w?=w? <3p + 3P +2p+ mz> . (7.36)
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The transverse modes are thus defined by two quantum numbers: p, which gives the number
of radial nodes, and m, which corresponds to the symmetry of the mode with respect to the
z-axis. A few examples of these modes are shown on figure 7.7.

Dipole Quadrupole

Figure 7.7 — Illustration of the simplest modes in a 2D condensate. From left to right:
the monopole mode (p = 1, m, = 0), the dipole mode (p = 0, m, = 1) and the quadrupole
mode (p =0, m, = 2).

One should note that the relation (7.36) is valid only in the oblate case. If the cloud is
instead in the quasi-2D regime (i.e. if the Thomas-Fermi approximation is not valid in the
vertical direction), the dispersion relation is different; the collective modes are similar but
their frequencies are not the same anymore [103,201]. On the contrary, if the cloud is not
highly oblate, oscillations in the vertical direction are coupled to the transverse oscillations,
which also leads to a different dispersion relation [89]. However, the modes with p = 0 keep
the same frequency /m.w | in all three cases. This is in particular the case of the quadrupole
modes, in which we will be interested in the following.

7.3.2 The quadrupole modes in a rotating superfluid

The quadrupole modes are the modes corresponding to p = 0, m, = +2. The deformation
then has the shape on = A2T2€_iwit+2i¢, with wy = V2w, . The cloud is elongated in one
direction and compressed in the other one, and this deformation rotates at the frequency
wi/2 = w1 /V2 (with opposite direction of rotation for the +2 and the —2 modes). These
modes are represented on figure 7.8.

If the cloud sustains angular momentum, the symmetry between the two modes gets
broken, with a frequency splitting [199]:

2L,
Wy —W— = W = 2Qeﬁ‘ (737)
Their frequencies also follow the relation:
w2 +w? = 4w, (7.38)

which leads, combining both formulas, to the new frequency of both modes:

we = /202 — Q2 £ Q. (7.39)

This splitting gives a useful tool for probing the angular momentum of a cloud; however
in many cases it is easier to excite the superposition of both quadrupole modes rather than
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my=-+2 my=-2  equal superposition

Figure 7.8 — Illustration of the two m, = +2 quadrupole modes of a flat (oblate or
quasi-2D) gas, and their equal weight superposition, called “quadrupole oscillation”. If the
cloud carries angular momentum, the frequency of both modes are not identical anymore,
and the axis of the quadrupole oscillation rotates at one fourth of the difference between
the frequencies.

only one of them. In the absence of rotation of the cloud, this superposition corresponds
to an oscillation of both cloud’s radii in opposition of phase — which corresponds to the
commonly called “quadrupolar oscillation”. If the degeneracy of both m, = +2 modes is
lifted by angular momentum present in the cloud, they do not rotate around the cloud at the
same speed anymore: the axes of the quadrupolar oscillation then precesses at a frequency
¢ = (wy —w_)/4 [200], providing in this way an observable to measure L.

7.3.3 Collective modes in the case of a harmonic plus quartic trapping

Finally, I will briefly discuss the case of the collective modes in the case of a harmonic plus
quartic trapping. We have to distinguish two cases:

o If Q. < w), the condensate is still simply connected, and the modes are very similar
to those in a harmonic trap, except for a shift in frequency. For example, while the
frequency of the monopole mode is independent of the rotation frequency, it isn’t the
case anymore in the presence of the quartic trapping [202]. In the case of the quadrupole
modes, their frequencies get shifted compared to the harmonic case (7.39) but the split-
ting between them remains equal to 2Q.g [203]:

R2
wy = \/<2 + 3/\%> w? — Q% + Qe (7.40)

where Rpax is the Thomas-Fermi radius of the cloud (taking into account the quartic
confinement). Note that this formula is in fact valid as long as the cloud is simply
connected, i.e. as long as Qe < Oy, (in particular, it can be valid even for Qeg > w) ).

e For faster rotations, once a hole appears at the center of the cloud, the frequencies
of the modes are expected to significantly deviate. Two predictions, in particular, are
remarkable: first, in the limit of large Qe and/or small A, there is an infinite family

of modes with frequency 4/ GQEH — Zwi, independent of both the polarity m, and the
quartic strength A. Second, in the case of the quadrupole modes, once the hole formed
there should be four quadrupole modes: two modes with m, = +2 and two modes

m, = —2, with distinct frequencies (among which three should be possible to observe),
see figure 7.9 [196,203].
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Figure 7.9 — Frequencies of the quadrupole modes in a harmonic plus quartic trap com-
puted by M. Cozzini [203], plotted in units of w,. The blue, upwards triangles correspond
to the m, = +2 modes and the red, downward triangles correspond to the m, = —2 modes,
obtained by numerically integrating the GP equation. The vertical dashed line indicates
Qe = Qp. It is much larger here than in our case (2, ~ 1.05w ) because the chosen value
for the quartic term is A = 0.5 (while it is equal to 1.3 x 10~ for our experiments): since
the quartic term is much stronger, the hole formation requires a larger rotation frequency
— see equation (7.32). Above this value, two additional modes appear, leading to two
co-propagating and two counterpropagating modes. The solid lines correspond to sum
rules predictions. For Q.g < §2;, the two lines correspond to the two solutions of equation

(7.40). For Qe > Qy, the upper frequencies tend towards 4/6Q2; — 2w? .

In the case of the bubble trap, no calculations have been done and what should happen is
unclear, but we can hope that for Qg close to w, the system will stay close enough from the
harmonic plus quartic trapping case for the predictions of this second case to be valid. Also,
since the prediction of degenerate modes for larger {2.¢ is independent from A, we can hope
that it does not depend too much on the exact geometry of the cloud and will also stay valid.

7.4 Experimental techniques for studying vortices

I will finish this chapter by describing briefly the usual experimental methods that are used
to study vortices in degenerate quantum gases; in particular I will discuss the case of vortex
nucleation and vortex detection.

7.4.1 Nucleating vortices

There are principally two ways to introduce vortices within a superfluid. The first one relies
on phase imprinting [51,204]. It provides a very controllable way to create a given number of
vortices or to generate multiply-charged vortices [56]. However, it is not efficient for generating
very large number of vortices, and thus not suitable for the experiments we want to realize.
The second way relies on the mechanical stirring of the cloud to inject large amounts of
angular momentum, and it is the one we are interested in here.
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The nucleation of vortices in a superfluid through stirring of the initially vortex-free cloud
requires two main ingredients:

e The state containing vortices has to be energetically favorable compared to the vortex-
free state, meaning that the cloud has to rotate fast and/or to carry angular momentum.
In the harmonic case, the minimal rotation that the cloud has to achieve for the first
vortex to be favored reads [170]:

5 h R,
Qi = 2 (22 A1
2 MR? n( ¢ > (7.41)

This frequency is usually quite small, for example in the parameters of the experiments
described in the next chapter it corresponds to approximately 5Hz (while all the fre-
quencies considered in the experiments are larger than 20 Hz).

e A surface instability: nucleating vortices requires to introduce a length scale £ into
the system, that is much smaller than the length scales of the system at rest. This
requires surface instabilities, i.e. the flow at the nucleating surface has to become
turbulent [205,206].

These two ingredients can be obtained by different method: for example, one can displace
a stirrer beam (or several stirrer beams) within the fluid faster than the critical velocity
[166,207], or rotate the cloud within an anisotropic trap [52,90].

7.4.2 Driving the cloud through quadrupole resonance

I will detail more this latter case, as it is the one we use the most in our experiments. To
generate rotation in the cloud, we make the trap anisotropic and rotate this anisotropy (see
figure 7.10) at a frequency ,0t. The problem can then be expressed as: how can we couple
angular momentum into the cloud through the rotation of the trap?

Let us express as wx and wy the oscillation frequencies of the rotating trap; the trap’s
anisotropy is defined as ¢ = (w% — w?)/(w% +w?). As we want to drag a superfluid initially
at rest, its vorticity is necessarly zero as it has no vortices in it. We can look for the velocity

field under the form of the quadrupolar flow (see fig. 7.10):
v = a,V(XY), (7.42)

where v is the velocity in the laboratory frame and X, Y the coordinates in the frame rotating
at Qrot- Injecting this formula into the hydrodynamic equations shows that in the rotating
frame the cloud keeps the usual parabolic Thomas-Fermi shape, but with effective trapping
frequencies [181]:

0% = (14wl + af — 20 o, (7.43)

(:}32/ = (]. — €)Wi + ag + 2Oqu)rota (74:4)

and one can show that oy verifies the equation:

ol + ag(w] — 200,) + eQorw? = 0. (7.45)

rot
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Figure 7.10 — Principle of the considered excitation: the trap is made anisotropic and
rotates at a constant frequency $2,ot. The cloud’s anisotropy . is not necessarily the
same as the anisotropy ¢ of the trap and depends on both Q.. and €; injecting angular
momentum in the cloud requires to deform it significantly. In such a situation, the cloud’s
velocity is describes by the quadrupolar velocity field v = a,V(XY') (blue arrays). It
ensures V x v = 0 and is thus allowed in a superfluid; it allows the cloud to carry angular
momentum even in the absence of vortices. Note that close to the large axis of the trap,
the velocity field matches a solid-body rotation. The more the cloud is deformed the
closer the cloud is to the solid-body rotation (and its angular momentum then also tends
towards this limit).

oy completely characterizes the velocity field and the shape of the condensate, and the
solutions of this equation then give the possible behavior of the condensate. One can also
show that «, is linked to the deformation of the condensate 6. = (R% — R%)/(R% + R%):

w2 — w2
g = thﬁ = Qrotde- (7.46)

The angular momentum per particle in the cloud then reads:
L. = M{r*)5?Qpo. (7.47)

We see that compared to the angular momentum of the classical low M (1“2)Qrot, there is a
reduction of L, by a factor 2. Injecting angular momentum in the cloud therefore requires
to deform the condensate.

The solutions of equation (7.45) are plotted on the figure 7.11. Depending on the values
of € and 0, we see up to three possible solutions. They can be divided into two branches:

e The normal branch goes from ot = 0 to wy. For this branch, oy < 0, meaning
that the long axis is oriented along the weak trapping direction. As 2,4 increases, the
deformation of the cloud increases, up to ,ot = wy where both the cloud’s small radius
and its angular momentum diverges.



146 Theory of rotating superfluids

e The overcritical branch, with ay > 0, corresponds to a cloud rotating with an orientation
perpendicular to the trap’s axes (i.e. with a big radius oriented along the strong trapping
direction). It starts at Q.04 = +00, comes to lower frequencies up to a back-bending
point, and then ends up at Q,ot = wx. One can note that the upper part of this branch
is dynamically unstable, while its lower part is stable and corresponds to a condensate
rotating while keeping an almost round shape.

1.0t

-1.0¢+

Figure 7.11 — Rescaled solutions of equation (7.45) depending on the rotation frequency
of the trap Qo1 (plotted from 0 to w,, for e = 0 (black, dashed line), £ = 0.05 (red solid
line) and £ = 0.2 (blue solid line). The vertical dotted lines correspond to Qo1 = wy.
For ¢ = 0.2, the limit of the normal branch coincides with the backbending point of the
overcritical branch; for € > 0.2 the normal branch ends before this point and there is a
range of rotation frequencies for which no solution is allowed.

The backbending point happens at a frequency (2, which is the solution of [91]:

2 2o 2 _1\%/?
a:Q“’t< ( t/‘;” > . (7.48)

Starting from a cloud at rest, turning on the rotating anisotropy with a rotation frequency
above or below this point will lead to a strong change in the cloud’s behavior, as the branch
that gets the most easily excited is not the same anymore. In particular, as the deformation
of the cloud is much weaker on the lower part of the overcritical branch, it allows the cloud
to carry significantly less angular momentum than the normal branch.

7.4.3 Detecting vortices

In trapped atomic gases, ¢ is usually very small, typically a few 0.1 pm: in most cases, it is
well below the imaging resolution and cannot be detected directly. Imaging vortices in dilute
superfluids thus requires to perform a time-of-flight expansion to allow the core size to expand:
as the cloud expands freely, the density strongly drops and the healing length significantly
increases and the size of the vortices can become large enough for them to be detected by
conventional imaging techniques [52,53].
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The free expansion of a harmonically trapped BEC initially the Thomas-Fermi regime has
been described by Castin and Dum [208]|. The cloud keeps its parabolic shape, but the TF
radii become rescaled by a factor A\j: R;(t) = R;(0)A;(¢). Their results have been extended
later to the case of a rotating cloud [209], and in this latter case the scaling factors follow the
equations:

. w2 _ QQ QQ
A = L ety el 7.49
LTTRN e (7.49)
2
A, = 2= 7.50
YPE (7:50)

Depending on the shape of the trapped gas, we can then see two different limit behaviors
for the expansion:

e In the case of a cigar-shaped gas, the expansion is essentially radial and A, ~ 1: the rota-
tion then has only little effect on the expansion. The cloud’s radial size becomes simply

rescaled by a factor /1 + wﬁ_tQ, and the vortex size evolves in the same proportion.

e In the case of a pancake-shaped gas, the vertical expansion of the cloud is much faster
than the radial expansion. Therefore, the size of the vortices grows, in proportion, faster
than the cloud’s radius [210,211]. However, no simple analytical formulas are available
in this limit.
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Chapter

Fast rotating Boses gases in a
RF-dressed trap

This chapter describes the experimental results that have been achieved on the topic of fast-
rotating superfluids. All the experiments were realized at the bottom of the bubble trap, as
described in the previous chapter (section 7.2.3). In particular, I will detail the achievement of
a cloud rotating faster than the trapping frequency, which then takes a donut shape. To avoid
confusion with the second part of this thesis, I will restrict the use of the terms “ring-shaped”
and “annular” gases to the gas trapped with the blue-detuned double sheet, and rather speak
of “donut-shaped gas” or “dynamical ring”.

The first two sections of this chapter describe the achievement of such a donut-shaped
gas, first using the stirrer beam, and then exciting the cloud with a quadrupole deformation.
The two next sections then describe the study of this donut-shaped gas and the transition
regimes from the connected gas. The third section presents how we probe the quadrupole
modes in the gas, using both a percussive and a resonant method imported from the group
of J. Dalibard [200,212]. The fourth and last section discusses the vortex distribution in
the dynamical ring — or rather, the absence of visible vortices in the dynamical ring and the
progressive melting of the vortex lattice while we enter the fast-rotating regime.

8.1 First experiments with the laser stirrer: reaching the fast
rotation regime

8.1.1 First attempt

The first attempts to achieve a fast rotating gas in the bubble trap were done with the stirrer
beam (described in section 6.1.1). Starting from a gas at the bottom of the bubble, the stirrer
was pointed onto it and described circular trajectories with various parameters (radius of
typically 10 to 25 pm for a cloud size around 20 pm and frequencies around 35 to 50 Hz for a
trapping frequency of 37.5 Hz). We initially tried to cool down the cloud during the stirring
process: starting from a thermal cloud close to the BEC limit, the cloud was stirred during
500 ms while the RF knife was ramped down, and then allowed to relax in the presence of a
low knife. In these conditions, we expect to prepare a cloud rotating at very large speed, and



150 Fast rotating Boses gases in a RF-dressed trap

even reach a situation where the central density is depleted due to the centrifugal force (see
chapter 7).

As the stirring proceeds, we saw the gas expanding a lot in the horizontal plane. In
addition, the cloud became very anisotropic, with the main axis almost always oriented in the
same direction (in a few cases, it happened to be oriented approximately orthogonally to the
most frequent orientation). This favored orientation appeared to depend on the amplitude
balance between the dressing antennas. Looking for the time evolution of the cloud, the knife
removed during the waiting time to ensure that it doesn’t modify the behavior of the gas,
we observed that for short times after excitation, the cloud displayed a lowered density at its
center while being quite anisotropic, and equilibrated back to a round shape in approximately
1s, passing through a highly anisotropic situation (see figure 8.1). Later tests also showed
that the orientation of the cloud in the anisotropic phase depends on the rotation direction:
the clouds obtained for clockwise or counterclockwise rotations were oriented orthogonally.
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Figure 8.1 — Evolution of the anisotropy of a fast stirred cloud in a trap with residual
asymmetry. The initial cloud has a lower density in its center which quickly fills while
the short axis quickly reduces, leading to a rise of the anisotropy. The long axis then also
reduces on a longer time scale, going back to a round gas.

8.1.2 Balance between antennas

The presence of a favored axis in a trap expected to be rotationnaly invariant appeared very
surprising at first sight. However, previous works [172] reported that for very high rotation
rates, even a small residual asymmetry of the trap can lead to large anisotropy of the final
gas: indeed, as one of frequencies of the quadrupole mode becomes very close to zero when the
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effective rotation frequency of the cloud gets closer to the trapping frequency (see equation
(7.39)), this quadrupole mode will get resonantly driven by static asymmetries.

These experiments were performed before implementing the third dressing antenna, cf
section 5.2.2: the small tilt of the dressing antennas could, for example, explain the origin
of such a small asymmetry in the trapping potential. After implementing the third antenna,
we repeated these experiments, looking for the effect it would have onto the atoms. When
scanning the third antenna’s parameters and looking for the cloud after a given time, we
observed that the third antenna allows to reduce the anisotropy, corresponding to a slower
relaxation dynamics and a larger depletion in the center at the beginning (figure 8.2).
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Figure 8.2 — Left: aspect ratio of the cloud measured in situ after fast stirring and
200 ms waiting time in the trap, as a function of the third antenna’s amplitude (amplitude 1
corresponds to the maximum available power). We see a highly peaked resonance behavior,
signature of the high criticity of the trap symmetry. Note that the two main dressing
antennas were not very well balanced for these data, and the cloud’s aspect ratio thus
doesn’t go down to 1. Right: in situ pictures of the cloud after respectively 200 ms and
4 s, for a careful tuning of all three antennas. The cloud has a clear depletion in its center
and is much more round than previously; its relaxation dynamics is also much slower.

Finally, after a very careful tuning of the antennas, we were able to almost suppress the
anisotropy, ending up with a “donut-shaped” gas for stirring frequencies exceeding the trapping
frequency. This shape seemed to have a similar relaxation than previously, going through a
very anisotropic phase, but on a much longer time scale (several seconds). For optimal tuning,
we managed to reach a satisfying cylindrical symmetry with just the two main antennas (this
will be discussed more in detail in section 8.2.5). It also appeared simpler use a low magnetic
gradient (as it allows to keep more atoms in the trap) and to apply a constant knife during
the whole experimental sequence.

8.2 The fast rotating bucket

The change of the DDS (cf 3.3) gave us the possibility to rotate the atomic gas using the
bubble itself, and it to allows setting the atoms into rotation in a more controllable way than
the stirrer, as it is insensitive to optical alignments. Since this is the method we used the
most, I will now enter its details.
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8.2.1 Rotation of the bubble itself

The overall idea of this rotation method is the “rotating bucket”, already used since a long
time to rotate superfluid helium [13] or dilute BECs [52]. The atoms are placed in a trap that
is slightly anisotropic in the horizontal plane, and the anisotropy is then rotated at a given
frequency. For dilute superfluids, the transfer of angular momentum from the container to
the atoms has been studied in detail in the group of J. Dalibard [90,213] and C.J. Foot [91].
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Figure 8.3 — Principle of the rotating bucket scheme. The polarization of the dressing
RF (controlled by the parameter 7, see 2.3.4) is made elliptical in a 0.8 ms ramp, and the
polarization axis is then rotated for a given time; the polarization is then made circular
again. This allows to make the trap anisotropic and rotate it at the desired frequency.
After a given waiting time in the rotationnaly invariant trap, the resulting cloud is imaged
(in situ or after a time-of-flight procedure). Note that this scheme can be repeated at the
end of the waiting time to excite the cloud again, for example to excite quadrupole modes
in the rotating cloud (see 8.3).

In our case, the control of the RF polarization allows us to easily perform such an ex-
periment: the degree of ellipticity of the RF polarization sets the anisotropy of the trap,
and the axis of the polarization ellipse determines the orientation of the trap; corresponding
theoretical details are given in sections 2.3.3 and 2.3.4.

In the absence of additional precision, all the experiments described below follow the
experimental sequence shown on figure 8.3: starting from a condensate at rest at the bottom
of a bubble in circular polarization, we ramp up the anisotropy in a short time (0.8 ms), rotate
it at a constant anisotropy and frequency for a certain number of turns', and the anisotropy
is then ramped down in a short time, again 0.8 ms, while the trap doesn’t rotate anymore.
The cloud then evolves in a rotationally invariant potential; the radial and vertical frequencies
have respectively been measured as 34.2(2) Hz and 357.9(5) Hz. The parameters of the trap
used for all these experiments are b’ = 55.4G -cm~! (the quadrupole current was 28.5A),
wyr = 2w X 0.3 MHz and Qg = 27 x 49.3 kHz; the expected bubble radius is then r, = 78 pm.

1. For practical reasons, this number is integer or half-integer
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8.2.2 Resonance at wL/\/ﬁ

Setting the cloud into rotation with this method was demonstrated to occur through the
resonance of the quadrupolar modes [90,91], expected around w, /v/2. A good way to ensure
that the rotation process works as expected is to look for this resonance. For that, we rotate
a very small anisotropy (¢ = (wi — w2)/(w; 4+ w2) = 0.03). After a relaxation time of
15, we let the cloud expand to observe possible vortices and count them. The corresponding
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