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General Introduction

In 1937, when cooling down liquid helium, Kapitza [1], Allen and Misener [2] observed that its
viscosity suddenly dropped to almost zero (later proven to be exactly zero), which suggested a
new state of matter described a “superfluid”. London, one year later, established the link with
the “Bose-Einstein condensation” phenomenon proposed by Einstein in 1924 [3–5], which was
up to there rather considered as a pathologic limit of the Bose statistics. Quantum mechanics
predicts that particles are also waves, which extend over a typical size 𝜆dB = ℎ/

√
2𝜋𝑀𝑘B𝑇 ,

where 𝑀 is the mass of the particles and 𝑇 the temperature. Bose-Einstein condensation
occurs when at low enough temperature the spatial extent of the particles grows up to reaching
the interparticle distance: what was once an ensemble of individual particles then begins to
behave as a giant matter wave whose flow properties are again extremely different. In this way,
superfluidity provided for the first time a manifestation of quantum effects at a macroscopic
scale – and even reached later astrophysical scales [6, 7].

Although initially described as “the ability of a fluid to flow without friction” superfluidity
is somehow defined by the ensemble of its properties [8]. Among these properties, one can cite
the existence of a critical speed above which the “frictionless flow” is not true anymore [9],
or the possibility for the current to flow virtually indefinitely when the flow velocity lies
below the critical speed [10, 11]. Possibly even more astonishing are the rotation properties
of these systems. In a superfluid, the particles behave like a giant wave, characterized by an
amplitude and a phase whose gradient gives the fluid velocity. This implies that a superfluid
is irrotational, and setting it into rotation requires quantized vortices to enter the system,
introducing singularities in the fluid where the density vanishes in order to allow it to rotate
[12–15].

Many remarkable experiments have been performed with superfluid helium. The advent of
gaseous Bose-Einstein condensates provided later a new system allowing to study superfluidity
in the dilute regime. These systems are to superfluid helium what gases are to liquids: while in
superfluid helium the atomic density is large and the interactions strong, in dilute superfluids
the density is low and the interactions much weaker. This lower density allows to describe
the system very accurately through simple mean-field theories. In addition, these systems
are usually well isolated and come with a extremely broad palette of manipulation tools and
possibilities to shape the potential landscape of the systems. In this way, these “quantum
gases” open a path to a better understanding of phenomena in a variety of domains which
extend, in fact, way beyond the sole superfluidity.

However, as the atomic density is much smaller in dilute gases than in liquids, the tem-



perature required in order for the atoms to “overlap” is also considerably smaller: while the
critical temperature to achieve superfluidity in helium is around 2K, the temperature neces-
sary to reach quantum degeneracy in cold atom clouds ranges typically between 100 nK and
1 ➭K. This was made possible by the development of laser cooling techniques. Starting from
the eighties, the techniques allowing to manipulate matter using light beams and magnetic
field displayed an amazingly fast development, from laser cooling of ions [16, 17] and neutral
atoms [18] to atom traps [19–21], finally enabling evaporative cooling of the atoms down to the
obtention of a Bose-Einstein Condensate (BEC), 70 years after its prediction [22, 23]. These
developments led to two Nobel prizes in 1997 [24–26] and 2001 [27,28].

Since the experimental achievement of the first dilute BECs, the field of ultracold atoms
completely exploded, the control onto the systems getting finer and finer, allowing for example
to load ultracold atoms into “eggbox-like” potentials formed by optical lattices [29] and then
image and manipulate them at the single-atom level [30–32]; to achieve new exotic quantum
sytems like quantum droplets [33–35], synthetic magnetic fields [36–38] or supersolids [39,
40]; to perform measurements with an unprecedented precision, allowing to test fundamental
concepts of physics [41–43]; or to apply the concepts of quantum optics to atoms instead of
photons [44–46]. The study of superfluidity in such systems also displayed extremely fast
progress, and for example the existence of a critical velocity [47] and collective modes [48–50]
were demonstrated only a few years after the first dilute BECs. On the side of rotating
superfluids, the observation of the first vortices [51,52], of large vortex lattices [53] and of the
existence of a Lowest Landau Level [54] – demonstrating in this way a remarkable analogy
with the Quantum Hall Effect [55] – were achieved one after the other in less than five years;
phase-engineering allowed to observe and study vortices carrying multiple charge [56], and
ring-shaped traps to study superfluid flow within wave guides [57–59].

Among the tools that come with quantum gases, there is also the possibility to generate
very strong confinements and access in this way regimes of lower dimensionality [60]. In
these regimes, the thermal and quantum fluctuations play an important role, encouraging the
presence of phase disorder in the systems. In two dimensions, for example, this leads to a
new phase transition between a superfluid state and a normal phase called the Berezinskii-
Kosterlitz-Thouless (BKT) transition [61, 62] whose interplay with possible condensation of
the gas is highly subtle [63, 64]; in 1D there is a wide variety of possible phases depending
on the number of atoms and their relative interations [65], among which the most surprising
is probably the Tonks regime, in which bosons behave like fermions [66]. Exploring the
superfluid properties in these regimes presents therefore a significant interest [67–69].

While vortices provide a way to allow rotation in superfluids by creating regions where the
fluid density cancels, it is not the only method. A natural geometry for studying superfluid
flow is the ring geometry: persistent currents can be stabilized along the waveguide formed by
the potential. Such systems allowed for example to study the quantization of such a flow [58]
and its hysteretic behavior [59], or the appearance of a flow after a sudden quench below the
critical temperature due to the “Kibble-Zurek” effect [70, 71]. It also suggests the possibility
to achieve an atomic analogue to the SQUIDs5 [72, 73], which raises a significant interest.

Another strategy allowing to have a hole in the gas around which the superfluid will rotate
relies on the centrifugal force. A gas rotating faster than the frequency of its trap will be
expelled from the center of the trap; the addition of nonharmonic confinement to prevent the
atoms from escaping then gives rise to a “dynamical” ring potential whose shape is tailored

5. Superconducting QUantum Interference Devices – it is a magnetometer made of a ring-shaped supra-
conductor with two parallel Josephson junctions.



by the rotation itself. Such a geometry, when reaching large rotation rates, should enable
to generate a so-called giant vortex configuration, in which all the atoms are flowing along
a 1D ring, all the vortices of the cloud having migrated within the central hole [74–76]. A
first attempt to reach this regime, more than 10 years ago, was unsuccessful [77]; despite the
absence of recent experimental work on this topic it continues to attract theoretical interest
[78–80].

The work presented in this document aims at studying the rotational properties of super-
fluidity in the two aformentioned cases of annular geometry, as well as their connection to the
lower dimensional regimes. It is divided into three parts: after a common general part, the
second part deals with the realization of a ring-shaped trap, suitable for studying persistent
currents and superfluid flow, with a technique that could possibly allow to enter the 2D or
even 1D regimes. The third part deals with the regime of fast-rotating superfluids: by rotat-
ing a gas fast enough in a non-harmonic trap, we are able to generate an effective Mexican
hat potential and generate a “dynamical” ring-shaped gas, which incidentally happens to be
quasi-2D. The overall structure of this thesis will be the following:

∙ The first part aims at presenting the tools needed to properly understand the details
associated to the production, manipulation and observation of our systems. Chapter 1
will describe the general properties and behavior of trapped quantum gases. The second
chapter will then detail from a theoretical point of view the central technique of our
experiments: the realization of RF-dressed adiabatic potentials. Chapter 3 will finally
present the general experimental details of our setup, from the production of the BEC
to the imaging procedures.

∙ The second part is dedicated to the work realized on the topic of superfluid flow in ring-
shaped gases. The fourth chapter will present the theoretical details about superfluid
flow in annular traps and about the way we realize such a trap. Chapter 5 will then
describe the experimental obtention of a BEC in the ring trap, and chapter 6 will be
dedicated to the preparation and detection of a superfluid flow in this annular BEC.

∙ Finally, the third part of my thesis will present the work on the topic of fast-rotating
superfluids and the obtention of an annular gas whose shape is due to its own rotation.
The 7th chapter will detail the theory that lies behind rotating superfluid and the interest
towards fast rotation. Chapter 8 will then present the experimental achievements on this
topic, from the obtention of a “dynamical ring” to the possible observation of thermal
melting of vortex lattices.

The first part contains all the details that are common to the following two parts. Parts two
and three have both their own detailed introduction as well as a chapter dedicated to the
theoretical details useful to understand them, and can therefore be read independently from
each other.





Part I

Preliminaries





Chapter 1

Bose-Einstein condensation,

superfluidity and rotation

This chapter aims at presenting the basic concepts and theoretical tools needed to describe
Bose-Einstein condensates (BECs). Starting from the principle of Bose condensation, I will
first describe the physics of a BEC at rest. I will then extend it to its out-of-equilibrium
behavior and show how it leads to the concept of superfluidity as well as the consequences on
the rotation of the gas. This will lead me to introduce the two central ideas on which parts 2
and 3 of this document are based. Finally, I will conclude this chapter by describing the case
of two-dimensional gases and the Berezinskii-Kosterlitz-Thouless transition.

1.1 Bose-Einstein Condensation

1.1.1 Bose-Einstein condensation in an harmonic trap

Principle of BEC

Let us begin by considering a gas of 𝑁 bosons, supposed for now non-interacting, at thermal
equilibrium at temperature 𝑇 . Described in grand-canonical ensemble and denoting 𝜇 the
chemical potential of the system, the average number of bosonic particles in a given state 𝑗
with energy 𝐸𝑗 reads:

𝑁𝑗 =
1

𝑒(𝐸j−𝜇)/𝑘B𝑇 − 1
. (1.1)

𝑁𝑗 must obviously be positive, which sets the condition 𝜇 < min(𝐸𝑗). Denoting 𝐸0 the
energy of the ground state (supposed nondegenerate) and defining the origin of energies to
have 𝐸0 = 0, this condition becomes:

𝜇 < 𝐸0 = 0. (1.2)

In addition to that, counting the total number of atoms in excited states 𝑁exc leads to the
expression:

𝑁exc =
∑︁

𝑗>0

𝑍

𝑒𝐸j/𝑘B𝑇 − 𝑍
, (1.3)
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where 𝑍 = exp(𝜇/𝑘B𝑇 ) is called the fugacity. The condition (1.2) leads to 𝑍 < 1, and thus
sets an upper bound on the population of the excited states:

𝑁exc < 𝑁 (𝑚𝑎𝑥)
exc (𝑇 ) =

∑︁

𝑗>0

1

𝑒𝐸j/𝑘B𝑇 − 1
. (1.4)

In other words, if 𝑁 > 𝑁
(𝑚𝑎𝑥)
exc (𝑇 ), all the additional particles must be in the ground state,

which can eventually attain macroscopic population. This corresponds to the phenomenon
called Bose-Einstein condensation (BEC).

Depending on the geometry and dimensionality, the sum 𝑁
(𝑚𝑎𝑥)
exc (𝑇 ) may or note converge,

indicating whether this quantum1 degeneracy of the ground state can be achieved.

Bose-Einstein condensation in harmonic traps

A significant part of the work described here was achieved in harmonic traps, and I will
therefore specifically describe this case.

Let us consider that the atoms are now confined in an harmonic trap with frequencies
𝜔𝑥, 𝜔𝑦, 𝜔𝑧. The energies of the single particle states then write:

𝐸𝑛x,𝑛y ,𝑛z = (𝑛𝑥 +
1
2)~𝜔𝑥 + (𝑛𝑦 +

1
2)~𝜔𝑦 + (𝑛𝑧 +

1
2)~𝜔𝑧. (1.5)

The sum (1.4) then becomes a triple sum over (𝑛𝑥, 𝑛𝑦, 𝑛𝑧). Turning this sum into an
integral2 using density of states allows one to calculate the maximal population of the excited
states [81]:

𝑁 (𝑚𝑎𝑥)
exc (𝑇 ) = 𝜁(3)

(︂

𝑘B𝑇

~𝜔ho

)︂3

, (1.6)

where 𝜔ho = (𝜔𝑥𝜔𝑦𝜔𝑧)
1/3 is the geometric average of the trapping frequencies and 𝜁(𝑛) is the

Riemann 𝜁 function.
When dealing with ultracold atoms experiments, we usually prefer to think in terms

of transition temperature. Such a temperature can be estimated by supposing that 𝑁 =

𝑁
(𝑚𝑎𝑥)
exc (𝑇𝑐) at the transition (i.e. the population in the ground state is still negligible, and the

total number of particles just reaches the maximum allowed in the excited states). Equation
(1.6) can then be rewritten:

𝑘B𝑇𝑐 = ~𝜔ho

(︂

𝑁

𝜁(3)

)︂1/3

= 0.94~𝜔ho𝑁
1/3. (1.7)

Below this temperature, quantum degeneracy is achieved, and the fraction of atoms in the
ground state can be deduced from:

𝑁0

𝑁
= 1−

(︂

𝑇

𝑇𝑐

)︂3

. (1.8)

1. As opposition to thermal degeneracy, which would correspond to the temperature being so low that
excited states cannot be thermally populated.

2. This is relevant if the energies in the system are much larger than the level spacings, especially kBT ≫
~ωho, and if the number of atoms in the system is large.
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Condensate wavefunction and correlation function

Let us now try to describe the atomic state in such a system; we will write Ψ̂(r) the field
operator creating a particle at position r. One can decompose the state of the system in the
basis of the single-particle states 𝜙𝑖, with creation operators 𝑎̂𝑖:

Ψ̂(r) =
∑︁

𝑖

𝜙𝑖(r)𝑎̂𝑖. (1.9)

The number of particles in the single-particle ground state 𝜙0 can then be written as 𝑁0 =
⟨𝑎̂†0𝑎̂0⟩. If the system is condensed, the population of the ground state is macroscopic: sup-
posing that the total number of particles in the system is large, one has therefore 𝑁0 ≫ 1.
It is then relevant to treat the field classically and ignore the noncommutativity between 𝑎̂0
and 𝑎̂†0, writing 𝑎̂0 ≈

√
𝑁0 [82]. The field operator can then be rewritten as:

Ψ̂(r) =
√︀

𝑁0𝜙0 +
∑︁

𝑖 ̸=0

𝜙𝑖(r)𝑎𝑖, (1.10)

and for 𝑇 ≪ 𝑇𝑐, as most atoms are in the ground state the atomic state is approximately√
𝑁0𝜙0(r) (and 𝜙0 then depends, of course, on the considered system). The field operator is

then replaced by a c-number.
Writing the field operator is also useful to provide a more general definition of Bose-

Einstein condensation. The first order correlation function can be written as the one-body
density matrix:

𝑔1(r, r
′) = ⟨Ψ̂†(r)Ψ̂(r)′⟩. (1.11)

In the case of a uniform gas, Penrose and Onsager showed that the population of the ground
state is given by lim|r−r′|→∞ 𝑔1(r, r

′) = 𝑁0/𝑉 , with 𝑉 the volume of the gas [83]. The Bose-
Einstein condensation is therefore equivalent to the the existence of a non-zero limit of the first
order correlation at large distances. This criterion provides, in fact, a more general definition
of the condensation that can be generalized to any system, from the limit |r− r

′| → ∞:

∙ If 𝑔1(r, r′) tends towards a non-zero limit, the system is condensed. One can also speak
of “off-diagonal long-range order”, as it involves the non-diagonal terms of the density
matrix.

∙ If 𝑔1(r, r′) goes down to zero, the gas is non-condensed.

In fact, intermediate cases can also happen: especially, for finite-size systems, the correlation
function can tend towards zero on a distance that is larger than the size of the system,
leading to the so-called quasicondensation where the system is coherent while strictly speaking
condensation does not occur (as can happen in the 2D case, see section 1.3). More generally,
in the non-condensed case, the distance over which the correlation function goes to zero can
be used to define a “correlation length” which describes the size over which the system is
coherent, which can sometimes be non-negligible compared to the size of the system.

1.1.2 Interacting Bose-Einstein Condensate

Let us come back to our harmonic trap. In the previous section, we deduced that in the absence
of interactions for 𝑇 ≪ 𝑇𝑐 the atomic state could be described by the c-number

√
𝑁𝜙0(r),

𝜙0(r) being for harmonic traps the wavefunction of the ground state of the harmonic oscillator.



18 Bose-Einstein condensation, superfluidity and rotation

However, this picture happens to be completely wrong in the vast majority of experimentally
obtained cases (fig. 1.1). This is due to the presence of interactions between atoms, which
significantly modifies the condensate’s behavior even in the weakly interacting case. In the
case of repulsive interactions (which will be the case during this whole document), it is indeed
favorable for the atoms to populate different (single-particle) states in order to reduce the
density: the real ground state in which condensation will occur is therefore modified by the
interactions between atoms. We can however suppose that the approach described in section
1.1.1 still holds, and describe the field classically: Ψ̂(r) = 𝜓(r) (with

∫︀

|𝜓|2 = 𝑁). This
approximation supposes that the populated states contain many atoms each, so that we can
neglect the noncommutativity of the single-particle annihilation and creation operators. The
susbsequent question is then: what is the equation that governs 𝜓(r)?

Figure 1.1 – Density distribution of a sodium condensate in a harmonic trap: the non-
interacting description (dashed line), corresponding to the gaussian distribution of the
harmonic oscillator’s ground state, differs very significantly from experimental results.
The Thomas-Fermi profile (solid line) shows a good agreement with the data. The pres-
ence of repulsive interactions significantly broadens the cloud, reducing the local density.
Figure from [81], data from [84].

Let us describe the interactions first. For ultracold temperatures and dilute gases, inter-
actions are essentially low-energy binary collisions (“s-wave” collisions), for which the exact
shape of interaction potential does not matter: all the interaction can be summarized by a
single parameter, the scattering length 𝑎 [82]. The effective interaction potential between two
particles can therefore be described by a Dirac potential with only one amplitude parame-
ter [81]:

𝑉int(r− r
′) = 𝑔int𝛿(r− r

′), (1.12)

where 𝑔int is the coupling constant, which reads:

𝑔int =
4𝜋~2𝑎

𝑀
, (1.13)

M being the atomic mass.
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For such interactions, applying the Heisenberg equation to Ψ̂(r) and then replacing, again,
Ψ̂(r) by 𝜓(r) leads to [81]:

(︂

−~
2∇2

2𝑀
+ 𝑉ext(r) + 𝑔int|𝜓(r, 𝑡)|2

)︂

𝜓(r, 𝑡) = 𝑖~
𝜕𝜓

𝜕𝑡
(r, 𝑡). (1.14)

This equation, called “Gross-Pitaevskii equation” (GP equation), describes well the behavior
of most trapped atomic gases. It takes the form of a non-linear Schrödinger equation ; the
first term corresponds to kinetic energy of the condensate, the second one to the trapping
energy, and the third one to the interaction energy. Describing the ground state wavefunction
classically corresponds, in fact, to a mean-field approximation: the GP equation describes the
behavior of a single atom in the field created by the 𝑁 − 1 ≈ 𝑁 other atoms.

By separating the time and spatial dependence of the condensate wavefunction like one
would do to write the time-independent Schrödinger equation, 𝜓(r, 𝑡) = 𝜓(r) exp(−𝑖𝜇𝑡/~),
we can write the stationnary Gross-Pitaevskii equation, describing the ground state of the
system at rest3:

(︂

−~
2∇2

2𝑀
+ 𝑉ext(r) + 𝑔int|𝜓(r)|2

)︂

𝜓(r) = 𝜇𝜓(r). (1.15)

For a large number of particles with repulsive interactions (i.e. 𝑔int > 0, or 𝑎 > 0), the
kinetic term usually becomes very low and can be neglected – this is called the Thomas-
Fermi approximation. For a harmonic trap, the density variations happen on a typical size
𝑑ho =

√︀

~/𝑀𝜔ho, called the harmonic oscillator length, which also gives the typical size of
the cloud: comparing the kinetic term and the interaction term in the previous equation, we
find that this approximation will be relevant for 𝑁𝑎 ≫ 𝑑ho. The previous equation can then
be rewritten as:

𝑛(r) = |𝜓(r)|2 = 𝜇− 𝑉ext(r)

𝑔int
. (1.16)

We see that the density distribution “mimics” the potential landscape, filling the trap up to
the chemical potential 𝜇 = 𝑔int𝑛max (see figure 1.2). For a harmonic trap, it leads to the
following density distribution:

𝑛(r) = 𝑛(0)

(︂

1− 𝑥2

𝑅2
𝑥

− 𝑦2

𝑅2
𝑦

− 𝑧2

𝑅2
𝑧

)︂

, (1.17)

where the right hand side is positive, and 0 everywhere else. The 𝑅𝑗 , called Thomas-Fermi

radii, are defined for the axes of the harmonic trap as: 𝑅2
𝑗 = 2𝜇/𝑀𝜔2

𝑗 , and give the total
extent of the cloud along the directions of the trap. This profile is the one describing the
density distribution of figure 1.1.

In this regime, the chemical potential of a 3D cloud trapped in a harmonic potential thus
writes [81]:

𝜇3𝐷 =
1

2
𝑀𝜔2

ho𝑅
2
ho =

~𝜔ho

2

(︂

15𝑁𝑎

𝑎ho

)︂2/5

. (1.18)

Finally, one may note that equation (1.17) leads to a discontinuity of the derivative of the
density where density cancels, and thus to an infinitely high kinetic energy on the edges of the
cloud. In fact, the Thomas-Fermi approximation does not hold in regions where the density

3. It is also possible to derive it directly from a variational method [82].
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which is the speed of sound in the gas 𝑐. One may note that for non-interacting gases (𝑔 = 0),
the critical velocity vanishes: repulsive interactions are necessary to achieve superfluidity.

This approach is however limited as it considers only the excitations that are described
by the Bogoliubov approach; especially, the possibility to nucleate vortices in the fluid can
significantly lower the real critical velocity [12]. In the non-uniform case, computing properly
all the possible excitations to which an impurity can couple is quite troublesome and there is
often no model allowing to compute 𝑣𝑐 precisely.

1.2.2 Hydrodynamic formulation

Larger displacements and excitations of the condensate are also described by the time-
dependent Gross-Pitaevskii equation (1.14), but it would be useful to have a description
of the fluid that corresponds more to what we are used to ; in particular we would like to
have an expression for the fluid velocity.

Multiplying equation (1.14) by 𝜓* and substracting its complex conjugate, we find:

𝑖~

(︂

𝜓* 𝜕
𝜕𝑡
𝜓 + 𝜓

𝜕

𝜕𝑡
𝜓*
)︂

=
~
2

2𝑀

(︀

𝜓*∇2𝜓 − 𝜓∇2𝜓*)︀ , (1.26)

which also writes:
𝜕

𝜕𝑡
|𝜓|2 = ~

2𝑀𝑖
∇ · (𝜓*

∇𝜓 − 𝜓∇𝜓*). (1.27)

Since |𝜓(r, 𝑡)|2 = 𝑛(r, 𝑡), this equation can thus be written under the form of the continuity
equation for a classical compressible fluid:

𝜕𝑛

𝜕𝑡
+∇ · (𝑛v) = 0, (1.28)

where the velocity 𝑣 of the fluid is defined as:

v =
~

2𝑀𝑖|𝜓|2 (𝜓
*
∇𝜓 − 𝜓∇𝜓*) . (1.29)

Writing the wavefunction as amplitude and phase5:

𝜓(r, 𝑡) =
√︀

𝑛(r, 𝑡) exp(𝑖𝑆(r, 𝑡)) (1.30)

thus leads to the expression of the local velocity of the superfluid:

v(r, 𝑡) =
~

𝑀
∇𝑆(r, 𝑡). (1.31)

Multiplying equation (1.14) by 𝜓*, adding its complex conjugate and injecting (1.30) leads
to the equation:

1

2
𝑀v

2 − ~
2

2𝑀
√
𝑛
∇2(

√
𝑛) + 𝑔int𝑛+ 𝑉ext +𝑀

𝜕

𝜕𝑡

(︂

~𝑆

𝑀

)︂

= 0, (1.32)

5. A more rigorous writing of the phase is ϕ(r, t) = µt+S(r, t), but the phase µt is uniform over the whole
cloud and is thus not implied in its superfluid dynamics. However, it can be useful to keep in mind that
S(r, t) is the deviation from the phase of the stationary state.
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or, equivalently, to the Euler equation for a quantum fluid [85]:

∇

(︂

1

2
𝑀v

2 − ~
2

2𝑀
√
𝑛
∇2(

√
𝑛) + 𝑔int𝑛+ 𝑉ext

)︂

+𝑀
𝜕v

𝜕𝑡
= 0. (1.33)

This equation is equivalent to the classical Euler equation, describing the evolution of an
inviscid flow (as expected for a superfluid), with the addition of a term involving explicitly
~, corresponding to a “quantum pressure”. The combination of equations (1.28) and (1.33) is
in fact equivalent to the Gross-Pitaevskii equation, simply separating it into amplitude and
phase. These hydrodynamic equations are the ones that allow, for example, to compute the
collective modes in the case of a trapped gas [89].

1.2.3 Rotating superfluids

Equation (1.31) is crucially important, as it directly links the superfluid velocity to the phase.
It also shows that the superfluid flow is irrotational : ∇ × v = 0, which leads to important
consequences when trying to describe to rotation of a superfluid.

One has to note that an irrotational flow doesn’t necessarily imply the absence of rotation
of the fluid: it means that locally, the fluid doesn’t rotate, but the ensemble motion of a
condensate can still allow rotation and non-zero angular momentum (an example will be
discussed in chapter 7). However, this configuration usually allows the cloud to carry only a
small angular momentum: a large angular momentum would require large anisotropies and
large ensemble motion, which is usually unstable and decays to form quantized vortices [90,91].
It is these vortices which “hold” the rotation of a superfluid.

Quantized vortices

A very important relation when dealing with rotating superfluids can be obtained by calcu-
lating the circulation of the superfluid velocity along a closed loop: since this velocity is given
by (1.31), it corresponds to calculating the phase difference between a point and itself. The
wavefunction having to be single-valued this difference then has to be an integer multiple of
2𝜋. The circulation then has to be quantized, as noted by Onsager and Feynman [12,92]:

∮︁

𝒞
v(r, 𝑡) · dl = ~

𝑀
∆𝒞𝑆 = ℓ× 2𝜋

~

𝑀
, ℓ ∈ Z. (1.34)

However, due to Stokes’ theorem and the irrotationality of the superfluid velocity, this
circulation is necessarely equal to zero if the velocity can be continuously defined on the
surface enclosed by the contour. A non-zero circulation thus requires the atomic density to
vanish somewhere on this surface to allow the presence of a phase singularity, that is, a vortex.
A quantized vortex can be seen simply as a node in the condensate wave function, around
which the phase rotates by a multiple of 2𝜋 (see figure 1.5): in this way, the superfluid flow
can rotate around it while keeping its irrotational character. Note that the two-dimensional
and three-dimensional cases differ here: in 2D, the vortex is a point around which the fluid
rotates, while in 3D the vortices are lines, which allows for example vibrations of vortices or
vortex rings.

While in principle any multiple of 2𝜋 is possible, a configuration with |ℓ| < 1 is in practice
unstable: a vortex with a phase winding larger than 2𝜋 spontaneously breaks into several
vortices with 2𝜋 phase winding each [56,93], which repel each other.
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1.3.1 The quasi-2D regime in a vertically harmonic trap

First, how do we enter the 2D regime? The first criterion is that the gas should have all
dynamics frozen in the vertical direction: the particles all have to be in the same vertical
state. This is achieved when both the gas temperature and the chemical potential have
to be too low for the first excited vertical state to be populated. For a vertical harmonic
confinement, this condition corresponds to 𝑘B𝑇, 𝜇 < ~𝜔𝑧. Note that this is very different from
Bose-Einstein condensation: this time, we have a thermal degeneracy of the ground state (but
only in the vertical direction).

The second criterion deals with interactions: if the vertical size of the gas is smaller than
the scattering length, the collisions have to be treated in 2D; if the gas is harmonically trapped
with all atoms in the vertical ground state, this corresponds to 𝑑𝑧 < 𝑎 (𝑑𝑧 being the vertical
oscillator length). The gas can then be considered as truly 2D.

While the first criterion can be fulfilled with available experimental techniques, the second
one is considerably more difficult to verify (and in our experiments, 𝑑𝑧 is typically 50 to 100
times larger than 𝑎). If only the first criterion is satisfied, the gas is said quasi-2D : the vertical
motion of the particles is frozen, but the collisions are still described by 3D physics. In this
case, one can show that the interactions between atoms can still be described using a Dirac
potential, but with a modified coupling constant:

𝑔2𝐷 =
𝑔int√
2𝜋𝑑𝑧

=
~
2

𝑀
𝑔, (1.35)

where 𝑔 is a dimensionless coupling constant, expressed as:

𝑔 =
√
8𝜋

𝑎

𝑑𝑧
. (1.36)

In the case of a condensed gas (whose validity will be described in the next section), the
Gross-Pitaevskii equation will then stay valid (both in its time-dependent and stationnary
versions), simply replacing 𝑔int by 𝑔2𝐷 and replacing the 3D wavefunction 𝜓 by its value
averaged along 𝑧 (and replacing the space density 𝑛 by a surface density 𝜌). Note that in the
experiments described in this document, 𝑔 is typically of the order of 0.1.

1.3.2 (Quasi) condensation in 2D

Let us now discuss the possibility of condensation in 2D. For a uniform (quasi-)2D gas, the sum
(1.4) does not converge, meaning that no condensation can occur. However, Berezinskii [61]
and Kosterlitz and Thouless [62] predicted that an interacting 2D gas should undergo a phase
transition towards a superfluid state, now called the BKT transition, at a critical phase-space
density 𝒟 = 𝜌𝜆2dB that was later computed to be equal to [94]:

𝒟𝑐 = ln(380/𝑔). (1.37)

Remarkably, at the transition the superfluid phase-space density 𝒟𝑠 presents a universal jump
from 0 to 4, see section 1.3.3. This transition does not allow a long-range order to appear
in the gas and the correlation function 𝑔1 still goes down to zero at long distance, but while
this decay is exponential for large temperatures, it is only algebraic for 𝒟 > 𝒟𝑐, allowing a
more extended phase coherence that is sufficient for superfluidity; in the case of finite-size
systems this coherence can even extend on the whole system size. Such a gas is called a
quasicondensate, that is a condensate with a nonuniform, fluctuating phase [95].
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1.3.3 The BKT mechanism

The mechanism allowing the appearance of superfluidity in a 2D gas is particularly elegant.
It deals with the presence of vortices within the gas: since a vortex causes a winding in the
phase of the wavefunction, the proliferation of free vortices in the gas would destroy the phase
order, and prevent the occurence of superfluid behavior. In 2D, the thermal fluctuations can
cause the nucleation of vortex-antivortex pairs, that is, pairs of vortices with opposite charge.
If the vortex and antivortex stay close to each other, they will cause a local perturbation,
but their respective effects will cancel far away from the pair. Therefore, the existence of a
quasi long-range order will depend on whether the vortex-antivortex pairs can unbind or not.
Using thermodynamic considerations, Kosterlitz and Thouless [62] showed that the average
elongation of the pair ⟨(r𝑣− r𝑎)

2⟩ expresses from the phase-space density of the superfluid 𝒟𝑠

as:

⟨(r𝑣 − r𝑎)
2⟩ = 𝜉2

𝒟𝑠 − 2

𝒟𝑠 − 4
. (1.41)

This expression is defined only for 𝒟𝑠 > 4: for lower phase-space density, the vortex-antivortex
pair can unbing freely, while for a phase-space density larger than 4 the distance between
them will be of the order of a few 𝜉 (see figure 1.6). The appearance of superfluidity in the
gas therefore requires the phase-space density 𝒟𝑠 of the superfluid to be larger than 4; the
condition (1.37) in fact corresponds to the phase-space density 𝒟 of the whole gas required
to reach 𝒟𝑠 = 4. It also leads to a so-called “universal jump ” of the superfluid density from
𝒟𝑠 = 0 to 𝒟𝑠 = 4 at the transition.

It is also interesting to quantify the order in the system by computing the effect of phase
and density fluctuations. One can show that for 𝒟 ≪ 1, the density fluctuations are strongly
suppressed [94]. Concerning the phase fluctuations, while the short-wavelength phase fluc-
tuations are prohibited in the superfluid regime, the long-wavelength phase fluctuations still
have an impact, and lead to a decay of the correlation function 𝑔1 at long distance [63]:

𝑔1(r, 0) ≈ 𝜌

(︂

𝜆𝑑𝐵
𝑟

)︂1/𝒟s

. (1.42)

However, while 𝑔1 decays exponentially in the thermal regime, it is here always larger than
𝜌(𝜆/𝑟)−1/4 and can easily have a significant value at the edges of the gas.



Chapter 2

Trapping atoms with RF-dressed

potentials

The central tool in our experiment is the use of radiofrequency-dressed (RF-dressed) adiabatic
potentials to trap and manipulate atomic clouds [98, 99]. RF-dressed traps give access to
highly versatile and precisely tunable traps, that enable interesting trapping geometries. Still,
it isn’t as common as techniques like optical dipole trapping and the underlying mechanism
is quite subtle. This chapter is intended to give the theoretical bases required for a good
understanding of the work presented in this thesis, as well as the “RF-dressing for dummies”
document I would have liked to find when starting to deal with these traps. It will, for a
significant part, be inspired of the review of Hélène Perrin and Barry Garraway [100], towards
which people looking for a complete description should go.

RF-induced adiabatic potentials were first proposed in 2001 by O. Zobay and B.M.
Garraway [98]. The idea was to couple different Zeeman substates in an inhomogeneous
static magnetic field to create avoided crossings and trap atoms on isomagnetic surfaces, and
it was initially intended to generate two-dimensional (2D) atom traps. The first experimental
realization of such a trap was achieved at LPL in 2003 [99, 101], but the 2D character was
achieved later, in 2013 [102], and has been used for example to study the collective modes
of 2D superfluids [68, 103, 104]. In addition to low-dimensional trapping, this method also
showed useful to generate exotic trap geometries, for example double well potentials [105].
Combining it with optical potentials enables even more geometries to be achieved, for ex-
ample ring potentials [106, 107] or lattice potentials [108]. Finally, the fast control available
with such traps allows one to modulate the control parameters and produce time-averaged
potentials [109, 110]. Among the current projects under development involving RF-dressed
potentials, one can cite the realization of a Sagnac interferometer using a ring-shaped TAAP
potential [111] or the project of realizing a bubble trap in space, in the absence of gravity [112].
A more detailed review of the last developments in the field can be found in [113].

2.1 Introduction to RF dressing

Let us now enter the core of the problem. I will first try to explain the physical principle on
which RF-dressed traps rely. The problem can be expressed quite simply:
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“How can we trap atoms at an arbitrary position using an inhomogeneous static magnetic
field and an oscillating magnetic field?”

2.1.1 Trapping an atom in an inhomogeneous magnetic field

To begin with, we can try to answer a simplified version of the question: how can we trap
atoms in an inhomogeneous static magnetic field?

Let us consider an atom in a state with total angular momentum 𝐹 evolving in a static
magnetic field B0(r) = 𝐵0(r)e𝑧. In the following, I will call “spin” the total angular momen-
tum, sum of nuclear spin, electronic spin and orbital angular momentum.

The angular momentum operator of the atom will be denoted F̂. The field defines a
quantization axis, and we can find a basis to diagonalize both F̂

2 and the projection of F̂
along e𝑧, denoted 𝐹𝑧. For the sake of simplicity, I will for now use a two level system, i.e.
𝐹 = 1/2. The eigenstates of the system will then be written |±⟩𝑧, with eigenvalues:

𝐹𝑧|±⟩𝑧 = ±1

2
~|±⟩𝑧, F̂

2|±⟩𝑧 = ~
2𝐹 (𝐹 + 1)|±⟩𝑧. (2.1)

These two eigenstates correpond to the spin being oriented in the same (or opposite)
direction as the magnetic field. The hamiltonian of the system writes:

𝐻̂ =
𝑔𝐹𝜇B
~

B0 · F̂ =
𝑔𝐹𝜇B
~

𝐵0𝐹𝑧, (2.2)

with 𝜇B the Bohr magneton and 𝑔𝐹 the Landé factor of the atomic state. The energy of the
eigenstates is then 𝐸± = ±𝑔𝐹𝜇B𝐵0/2: if the field is inhomogeneous, supposing 𝑔𝐹 > 0, the
|+⟩𝑧 state will be attracted towards regions where the field has a lower modulus (“low-field
seeker”), and the |−⟩𝑧 state towards high magnetic fields (high-field seeker). If 𝑔𝐹 < 0 it is
simply the opposite situation.

This already allows us to trap an atom: depending on its state and on the sign of 𝑔𝐹
one has to realize a maximum or minimum of the magnetic field. However, Wing’s theorem
forbids the existence if a maximum in the modulus of a static magnetic field [114]: it is thus
necessary to trap atoms in a low-field seeking state.

Things become a little more complex if the field orientation is not uniform (which corre-
sponds to realistic cases, where it is needed to trap atoms along all directions). The atom will
be trapped provided it stays in the local state that is attracted towards the field minimum,
i.e. if it adiabatically follows the field orientation. It is thus necessary to take care when
trapping low-field seeker atoms: if the minimum of the magnetic field is too weak, the atoms
may not follow the field orientation, which results in atoms escaping the trap, called Majorana
losses [115].

One can also show that the spin will precess around the axis of the static field, with
frequency: 𝜔0(r) = |𝑔𝐹 |𝜇B|B0(r)|/~, called the Larmor frequency. The eigenenergies 𝐸± of
the states can then be simply written 𝐸± = ±~𝜔0(r)/2.

2.1.2 Trapping an atom anywhere in an inhomogeneous magnetic field

It is somehow possible to explain the most basic principle of RF-dressed potentials classically,
by reformulating a little bit our question: how is it possible to stabilize a magnet at an
arbitrary position in an inhomogeneous magnetic field?
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the isomagnetic region defined by:

𝐵0(r) =
~𝜔rf

𝜇B|𝑔𝐹 |
. (2.3)

2.1.3 Adiabaticity and Landau-Zener paradigm

This description allows to explain how atoms can be trapped close to resonance, but doesn’t
tell anything on their behavior around the resonance itself: we need a mathematic treatment
of what happens when atoms cross it to understand things properly.

Let us add to the system of section 2.1.1 an oscillating magnetic fieldB1 = 𝐵1 cos(𝜔rf𝑡)e𝑥+
𝐵1 sin(𝜔rf𝑡)e𝑦 ; we can define similarly to 𝜔0(r) the frequency Ω1 = |𝑔𝐹 |𝜇B|B1|/~, and the

interaction of the atom with this field writes, if 𝑔𝐹 > 0: 𝑉1 = Ω1

[︁

cos(𝜔rf𝑡)𝐹𝑥 + sin(𝜔rf𝑡)𝐹𝑦

]︁

with 𝐹𝑥, 𝐹𝑦 the projections of F̂ along e𝑥, e𝑦. In the basis rotating at 𝜔rf around e𝑧:

|±̃(𝑡)⟩𝑧 = exp

[︂−𝑖𝜔rf𝑡

~
𝐹𝑧

]︂

|±⟩𝑧 = 𝑒∓𝑖𝜔rf𝑡/2|±⟩𝑧, (2.4)

the total hamiltonian of the system writes:

𝐻̂ =
~

2

[︂

−𝛿(r) Ω1

Ω1 𝛿(r)

]︂

(2.5)

where 𝛿(r) = 𝜔rf − 𝜔0(r) is the detuning between the oscillating field and the local Larmor
frequency.

However, the complete description of the evolution of an atom in a space-dependent po-
tential can easily become complex since the position and momentum operators R̂, P̂ do not
commute. For simplicity, we will keep a semi-classical description, and consider that:

∙ 𝛿 and Ω1 depend exclusively on space.

∙ r = ⟨R̂⟩ and ∆R = 0: the atoms are point-like, and their time evolution then depends
only of their position.

∙ the atomic motion happens at a constant velocity: r(𝑡) = v𝑡.

We will thus consider that what happens to the atoms can be described as a sweep of the
parameters 𝛿 and Ω1:

𝛿(r(𝑡)) = 𝛿(v𝑡) ↔ 𝛿(𝑡) (2.6)

Ω1(r(𝑡)) = Ω1(v𝑡) ↔ Ω1(𝑡). (2.7)

The considered hamiltonian will then be (2.5), but this time considering time-dependent
Ω1 and 𝛿:

𝐻̂ =
~

2

[︂

−𝛿(𝑡) Ω1(𝑡)
Ω1(𝑡) 𝛿(𝑡)

]︂

. (2.8)

At an instant 𝑡, 𝐻̂ can be diagonalized with a unitary operator 𝑈̂ †:

𝐻̂𝐴 =
~

2

[︂

−Ω(𝑡) 0
0 Ω(𝑡)

]︂

= 𝑈̂ †(𝑡)𝐻̂𝑈̂(𝑡). (2.9)
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The instantaneous eigenenergies are then:

𝐸±(𝑡) = ±~

2
Ω(𝑡) = ±~

2

√︁

𝛿2(𝑡) + Ω2
1(𝑡). (2.10)

Writing 𝜓(𝑡) and 𝜓𝐴(𝑡) the atomic state in the respective bases where 𝐻̂ and 𝐻̂𝐴 are
diagonal, with 𝜓(𝑡) = 𝑈̂(𝑡)𝜓𝐴(𝑡), the Schrödinger equation:

𝑖~
𝜕

𝜕𝑡
𝜓(𝑡) = 𝐻̂(𝑡)𝜓(𝑡) (2.11)

becomes for 𝜓𝐴(𝑡):

𝑖~
𝜕

𝜕𝑡
𝜓𝐴(𝑡) = 𝐻̂𝐴(𝑡)𝜓𝐴(𝑡)− 𝑖~𝑈̂ † 𝜕

𝜕𝑡
𝑈̂𝜓𝐴(𝑡). (2.12)

We see, then, that the atom will “follow” the eigenstates of 𝐻̂𝐴(𝑡) if the last part of equation
(2.12) stays small. For the hamiltonian (2.8), this correction term has the form [100]:

~

2

[︂

0 𝛾(𝑡)
𝛾*(𝑡) 0

]︂

. (2.13)

𝛾(𝑡) is the correction corresponds to non-adiabatic coupling between the eigenstates of 𝐻̂𝐴,
with 𝛾(𝑡) given by:

𝛾(𝑡) = −𝑖 𝛿̇(𝑡)Ω1(𝑡)− 𝛿(𝑡)Ω̇1(𝑡)

Ω2(𝑡)
. (2.14)

Following the eigenstates of 𝐻̂𝐴 then supposes the condition [117]

|𝛾(𝑡)| ≪ Ω(𝑡). (2.15)

Let us then go back to the description of an atom evolving in an inhomogeneous static
magnetic field and an oscillating field. If we suppose that the oscillating field has a homoge-
neous amplitude such that Ω̇1 = 0, this condition then rewrites:

|𝛿̇| ≪ Ω2, (2.16)

which is called the adiabaticity condition.
In these conditions, the Landau-Zener model [118, 119] expresses the probability of non-

adiabatic transition when crossing the resonance:

𝑃 = exp

(︂

−𝜋Ω
2
1

|𝛿̇|

)︂

. (2.17)

Let us finally sum up what we have seen until now: for an atom evolving in an inhomo-
geneous magnetic field in the presence of an oscillating field, the energy of the atom in the
upper state at time 𝑡 is 𝐸(𝑡) = ~

2

√︀

𝛿2(𝑡) + Ω2
1(𝑡), which equivalently means that the effective

energy landscape felt by the atom can be expressed as 𝐸(r) = ~

2

√︀

𝛿2(r) + Ω2
1(r), with 𝛿 the

detuning between the local Larmor frequency and the oscillating field frequency and Ω1 the
local Rabi coupling, provided that the adiabaticity condition |𝛿̇| ≪ Ω2 is respected (for an
atom in motion and a time-independent 𝛿(r), it becomes |v ·∇𝛿| ≪ Ω2).
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2.2 Formalism of RF-dressed traps

Up to now, I explained the principles on which RF-dressed adiabatic potentials rely, but we
now need a more detailed treatment, that would allow us to fully describe a trap for ultracold
atoms based on this method. In particular, we need to be able to describe the case of more
than 2 spin states (which is always the case when working with bosons1), and to be able to take
into account the local polarization of the oscillating field (the previous treatment corresponds
to circular polarization). This description is detailed in sections III and IV of [100], that I
will present here in a simplified version.

2.2.1 Classical field treatment of magnetic resonance

Like previously, we want to describe the behavior of an atom placed in the combination of
a static magnetic field B0 = 𝐵0e𝑧 and an arbitrary classical magnetic field oscillating at RF
frequency B1(𝑡) = 𝐵𝑥 cos (𝜔rf𝑡)e𝑥 +𝐵𝑦 cos (𝜔rf𝑡)e𝑦 +𝐵𝑧 cos (𝜔rf𝑡)e𝑧.

Using a quantization axis e𝑧, there is a basis where F̂
2 and 𝐹𝑧 are diagonal. We will

consider all atoms to be in the same 𝐹 state, and the spin eigenstates will then be written
|𝑚⟩𝑧, with 𝐹𝑧|𝑚⟩𝑧 = 𝑚~|𝑚⟩𝑧 and 𝑚 ∈ {−𝐹,−𝐹 + 1, ..., 𝐹 − 1, 𝐹}.

The magnetic interaction between the static field and the atomic spin reads:

𝐻̂0 =
𝑔𝐹𝜇B
~

B0 · F̂ (2.18)

and we can write the Larmor frequency as:

𝜔0 = |𝑔𝐹 |𝜇B𝐵0/~. (2.19)

For an arbitrary polarization, it is more practical to describe the RF field using complex
notation, as B1(𝑡) = ℬ1𝑒

−𝑖𝜔rf 𝑡 + 𝑐.𝑐., with ℬ1 the complex field amplitude:

ℬ1 =
𝐵𝑥

2
𝑒−𝑖𝜑ye𝑥 +

𝐵𝑦

2
𝑒−𝑖𝜑ye𝑦 +

𝐵𝑧

2
𝑒−𝑖𝜑ze𝑧, (2.20)

or, writing 𝜖 the complex polarization of the field (|𝜖| = 1):

ℬ1 = ℬ1𝜖. (2.21)

We choose to describe the RF field in the spherical basis (e+, e−, e𝑧), with

e+ = − 1√
2
(e𝑥 + 𝑖e𝑦), e− =

1√
2
(e𝑥 − 𝑖e𝑦). (2.22)

The component along e𝑧 of the RF field is aligned with the static field, and provided 𝐵𝑧 ≪ 𝐵0,
its effect is negligible [120,121]2. We will thus only consider orthogonal components, and write
the RF amplitude as

ℬ1 = 𝐵+e+ +𝐵−e− (2.23)

with 𝐵± = e
*
± ·𝜖ℬ1. In the spherical basis, we can write F̂ ·e± = ∓ 1√

2
𝐹±, with 𝐹± the raising

and lowering operators defined as 𝐹± = 𝐹𝑥 ± 𝑖𝐹𝑦.

1. F=0 is not relevant, being insensitive to magnetic fields.
2. Bz comparable to B0 leads to a modification of the Landé factor when calculating the RF coupling to

Bx and By.
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Using these definitions, the coupling between the RF and the atomic spin can be written
as:

𝑉1 =
𝑔𝐹𝜇B
~

ℬ1 · F̂ 𝑒−𝑖𝜔rf 𝑡 + ℎ.𝑐. (2.24)

=
𝑔𝐹𝜇B
~

[︂

− 1√
2
𝐵+𝐹+ +

1√
2
𝐵−𝐹−

]︂

𝑒−𝑖𝜔rf 𝑡 + ℎ.𝑐. (2.25)

And defining the (complex) coupling amplitudes as:

Ω± = ∓
√
2
|𝑔𝐹 |𝜇B

~
𝐵±, (2.26)

it can be expressed more nicely as:

𝑉1 = 𝑠

[︂

Ω+

2
𝐹+ +

Ω−
2
𝐹−

]︂

𝑒−𝑖𝜔rf 𝑡 + ℎ.𝑐. (2.27)

Here, we introduced 𝑠 = 𝑔𝐹 /|𝑔𝐹 | the sign of the Landé factor.
We can then, finally, write the total hamiltonian 𝐻̂ = 𝐻̂0 + 𝑉1:

𝐻̂ = 𝑠𝜔0𝐹𝑧 + 𝑠

[︂

Ω+

2
𝑒−𝑖𝜔rf 𝑡𝐹+ +

Ω*
+

2
𝑒𝑖𝜔rf 𝑡𝐹− +

Ω−
2
𝑒−𝑖𝜔rf 𝑡𝐹− +

Ω*
−
2
𝑒𝑖𝜔rf 𝑡𝐹+

]︂

. (2.28)

The first term corresponds to precession of the spin around e𝑧, and the four next terms
correspond to transitions between the different |𝑚⟩𝑧 substates.

Like for section 2.1.3, we will now look at what happens in the basis rotating at frequency
𝑠𝜔rf around e𝑧, with rotated states |𝜓⟩rot = exp(− 𝑖𝑠𝜔rf 𝑡

~
𝐹𝑧)|𝜓⟩. In this basis, denoting 𝛿 =

𝜔rf − 𝜔0, the hamiltonian now reads:

𝐻̂rot = −𝑠𝛿𝐹𝑧 + 𝑠

[︂

Ω+

2
𝑒𝑖(𝑠−1)𝜔rf 𝑡𝐹+ +

Ω*
+

2
𝑒−𝑖(𝑠−1)𝜔rf 𝑡𝐹−

]︂

+ 𝑠

[︂

Ω−
2
𝑒−𝑖(𝑠+1)𝜔rf 𝑡𝐹− +

Ω*
−
2
𝑒𝑖(𝑠+1)𝜔rf 𝑡𝐹+

]︂

. (2.29)

Depending on the sign of 𝑠, the first two terms or the last two terms will be static, whereas
the two other terms will evolve at very high frequency ±2𝜔rf . We can then suppose that the
two non-resonant terms, evolving much faster than the rest of the system, will average to 0,
and consider only the two static terms, in what is called the Rotating Wave Approximation
(RWA). This approximation is valid in the limit where |𝛿|,Ω± ≪ 𝜔rf .

We will then denote Ω1 = Ω𝑠 ; in both cases Ω1 = −
√
2𝑔𝐹𝜇B𝐵𝑠/~. Writing Ω1 = |Ω1|𝑒𝑖𝜑

and transforming into the states rotated by 𝑠𝜔rf𝑡 + 𝜑 instead of just 𝑠𝜔rf𝑡, the effective
hamiltonian then becomes:

𝐻̂eff = −𝑠𝛿𝐹𝑧 + 𝑠
|Ω1|
2

(𝐹+ + 𝐹−) (2.30)

= 𝑠(−𝛿𝐹𝑧 + |Ω1|𝐹𝑥). (2.31)

Then we can finally rewrite:
𝐻̂eff = Ω𝐹𝜃, (2.32)
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where we defined:

Ω =
√︁

𝛿2 +Ω2
1, (2.33)

𝐹𝜃 = cos(𝜃)𝐹𝑧 + sin(𝜃)𝐹𝑥, (2.34)

𝜃 = arccos

(︂−𝛿
Ω

)︂

+
𝑠− 1

2
𝜋. (2.35)

𝐹𝜃 is the projection of F̂ along a new axis in the 𝑥 − 𝑦 plane: e𝜃 = cos(𝜃)e𝑧 + sin(𝜃)e𝑥.
In other words, everything happens as if the atom was evolving in a static magnetic field
oriented along e𝜃. We can define a new set of eigenstates in the rotating basis:

|𝑚⟩𝜃 = 𝑒−𝑖𝜃𝐹y/~|𝑚⟩𝑧, (2.36)

and the eigenenergies of the corresponding states are:

𝐸𝑚 = 𝑚~Ω. (2.37)

We thus see that the dressing corresponds to creating a minimum of an effective magnetic
field to trap the atoms.

Close to the resonance, we can now write the adiabaticity criterion simply as:

|𝜃| ≪ Ω. (2.38)

If this criterion is fulfilled, the spin adiabatically follows the orientation of the effective local
magnetic field e𝜃. Going from one side of the resonance to the other one, this corresponds to
a complete flip of the spin, with a continuous rotation of the spin orientation.

2.2.2 Adiabatic potentials for RF-dressed atoms

The previous description corresponds to a uniform magnetic field and is thus unsufficient to
describe a trap. We also need to take into account the spatial dependence of all parameters:
static field amplitude and orientation, RF polarization and amplitude. The basic principle,
however, still holds: provided the atoms adiabatically follow the local states |𝑚⟩𝜃(r), they will
feel an effective potential landscape whose value is:

𝑉𝑚(r) = 𝑚~Ω(r) = 𝑚~

√︁

𝛿2(r) + Ω2
1(r). (2.39)

For practical reasons, the extreme adiabatic state |𝑚 = 𝐹 ⟩𝜃 will always be used for
trapping: for 𝐹 ≤ 1 it is the only state that is trapped, and for 𝐹 > 1 having all atoms
in the maximally polarized state avoids spin-changing collisions, which would result in atom
losses [122]. In the following, all occurences of 𝑚 will then be replaced by 𝐹 .

General principles

The expression (2.39) already allows us to get a good insight on what happens for this kind
of potential:
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∙ The 𝛿(r) dependence, which is generally the strongest, indicates that the atoms will be
trapped in the place where 𝛿(r) = 0, i.e. where the RF is resonant with the Larmor
frequency. For a given RF frequency, this corresponds to an isomagnetic surface. The
strength of the confinement depends on the local magnetic gradient (which is, by defini-
tion, orthogonal to the surface). Writing 𝛼 = |∇𝜔0| this gradient (in units of frequency),
we can deduce the trapping frequency [100]:

𝜔transverse = 𝛼

√︂

𝐹~

𝑀Ω1
(2.40)

where 𝑀 is the atomic mass. This confinement can easily be quite strong in practice,
between several hundred Hz and a few kHz, and can be used to reach low-dimensional
regimes. The atoms evolve on an isomagnetic surface, in general bubble-shaped.

∙ On the other hand, on resonance the Ω1(r) dependency will also structure the shape of
the potential close to resonance. The variations in Rabi coupling being usually much
smoother than the variations in the Larmor frequency, it in fact structures the fine
shape of the potential, modifying the local confinement on the isomagnetic surface (cf
eq. (2.40)) and attracting the atoms to the regions with lower coupling: the potential
restricted to the resonant surface writes 𝐹~Ω1(r). This can become a problem for staying
within adiabaticity conditions, but the presence of gravity can often be used to prevent
atoms from reaching the regions where Ω would be too low to ensure adiabaticity. On
the other hand, tailoring the local coupling can be used to modify the trap, for example
to create a double well [105], to excite specific collective modes [68] or to induce rotation
in the trapped cloud (cf chapters 6 and 8).

A few more useful expressions

To go beyond these general principles, we need to be able to compute exactly the value of the
potential (2.39) in a given experimental configuration. The whole question is thus: what are
the expressions of 𝛿(r) and Ω1(r)? Let us write, as previously, the static field and RF field:

B0 = 𝐵0(r)u(r), (2.41)

B1(r, 𝑡) = 𝐵1(r)𝜖(r)𝑒
−𝑖𝜔rf 𝑡 + 𝑐.𝑐. (2.42)

where u(r) = B0(r)/|B0(r)| is the unitary vector giving the local orientation of the magnetic
field.

𝛿(r) can be very simply expressed as

𝛿(r) = 𝜔rf − |𝑔𝐹 |𝜇B𝐵0(r)/~. (2.43)

The expression of Ω1(r) is more subtle. We have seen that it depends on the local compo-
nent of B1(r, 𝑡) along the local spherical polarization 𝜎𝑠. This component can be expressed,
using the local spherical basis (e+(r), e−(r), u(r)) defined by the local magnetic field orien-
tation, as ℬ1(r)e

*
𝑠(r) · 𝜖(r). The local coupling is then

Ω1(r) = −
√
2
𝑔𝐹𝜇B
~

ℬ1(r) e
*
𝑠(r) · 𝜖(r) (2.44)

= −Ωrf e
*
𝑠(r) · 𝜖(r), (2.45)
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with Ωrf =
√
2|𝑔𝐹𝜇Bℬ1|/~. Ωrf is the maximal coupling one can expect to achieve for a given

RF field amplitude ℬ1 (it can be attained only with a circularly polarized RF field). Using
the properties of the spherical basis, Ω1(r) can also be expressed as [100]:

|Ω1(r)| =
Ωrf

2
|𝜖× u+ 𝑖𝑠u× (𝜖× u)| (2.46)

=
Ωrf

2

√︀

1− |𝜖 · u|2 + |𝜖× u|2 + 2𝑖𝑠u · (𝜖× 𝜖
*). (2.47)

In the particular case of a RF field that is circularly polarized 𝜎𝑠 around the 𝑧 axis, it can
be simplified:

|Ω1(r)| =
Ωrf

2
[1 + 𝑢𝑧(r)], (2.48)

with 𝑢𝑧(r) = u · e𝑧.
In the other interesting case of a field that is linearly polarized along 𝑧 axis, it reads:

|Ω1(r)| = Ωrf

√︂

1− 𝑢𝑧(r)
2

2
. (2.49)

With this, we should now be able to describe any trap based on RF dressing.

2.3 The dressed quadrupole trap

Now that the principles have been properly introduced, I will make one step further towards
experimental application and describe in detail the trap we use in our experiment, the dressed
quadrupole trap.

The quadrupole field is the simplest way to obtain a magnetic trap, obtained with a pair
of coils in anti-Helmholtz configuration. The obtained magnetic field is linear, and reads:

B0(r) = 𝑏′(𝑥e𝑥 + 𝑦e𝑦 − 2𝑧e𝑧). (2.50)

The corresponding local Larmor frequency is then:

𝜔0(r) = 𝛼
√︀

𝑥2 + 𝑦2 + 4𝑧2, (2.51)

with 𝛼 the value of the horizontal magnetic gradient 𝑏′ in frequency units:

𝛼 = |𝑔𝐹 |𝜇B𝑏′/~. (2.52)

For a given value of the RF frequency 𝜔rf , the atoms are trapped on the isomagnetic
surface defined by 𝜔0(r) = 𝜔rf , which corresponds to an ellipsoid (fig. 2.2):

𝑥2 + 𝑦2 + 4𝑧2 = 𝑟2𝑏 . (2.53)

𝑟𝑏 is then the radius at the equator of this “bubble trap”, and its value is:

𝑟𝑏 =
𝜔rf

𝛼
. (2.54)

Adding gravity, supposed to be aligned with the axis of the quadrupole trap e𝑧, and
neglecting for now the details of polarization (i.e. considering uniform coupling Ω1), we can
guess that the atoms will then fall to the bottom of this bubble due to gravity, giving a
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Due to gravity, the potential minimum is shifted slightly below the resonant ellipsoid, and
is located at (𝑥 = 0, 𝑦 = 0, 𝑧 = −𝑅), with 𝑅 being equal to [102]:

𝑅 =
𝑟𝑏
2

(︃

1 +
1

√︀

4𝛽2 − 1

Ω0

𝜔rf

)︃

. (2.63)

Around the potential minimum at the bottom of the bubble, it is then possible to make a
second order development of the potential and get the oscillation frequencies:

𝜔⊥ =

√︂

𝑔

4𝑅

[︂

1− 𝐹~Ω0

2𝑀𝑔𝑅

√︂

1− 1

4𝛽2

]︂1/2

, (2.64)

𝜔𝑧 = 2𝛼

√︂

𝐹~

𝑀Ω0

(︂

1− 1

4𝛽2

)︂3/4

. (2.65)

These frequencies are similar to (2.55), (2.56), but with factors taking into account the fact
that the potential minimum is shifted due to gravity (the “pendulum” is now slightly longer).
The value of 𝜔⊥ is also slightly reduced due to the attraction to the zero of coupling at the
top of the bubble. This trap is isotropic in the 𝑥− 𝑦 plane.

For convenience, one can define the dimensionless quantity:

𝛾 =
𝐹~Ω0

𝑀𝑔𝑅

√︂

1− 1

4𝛽2
, (2.66)

which describes the typical ratio between the coupling gradient and gravity (the factor
(1 − 1/4𝛽2)1/2 present here is quite inelegant, but putting it here simplifies a lot subse-
quent formulas). In most experimental cases 𝛽 ≫ 1 and inequality (2.61) simply corresponds
to 𝛾 < 2. With this definition, 𝜔⊥ can simply be rewritten as:

𝜔⊥ =

√︂

𝑔

4𝑅

[︁

1− 𝛾

2

]︁1/2
. (2.67)

2.3.2 Linear polarization

The other simple interesting case corresponds to the simplest one that can be obtained ex-
perimentally, the linear polarization:

𝜖 = e𝑥. (2.68)

From (2.49), we can again deduce the local coupling:

|Ω1(r)| = Ω0

√︃

1− 𝑥2

ℓ𝑏(𝑟, 𝑧)2
, (2.69)

where Ω0 is the maximum Rabi coupling. This time, |Ω1| = Ω0 in the 𝑦−𝑧 plane, and Ω1 = 0
on the two extreme points at the equator: 𝑥 = ±𝑟𝑏, 𝑦 = 𝑧 = 0, where the local static field is
aligned with the RF field.

The position of the potential minimum is identical to (2.63) and this time, the trapping
frequencies are [102]:

𝜔𝑥 =

√︂

𝑔

4𝑅

[︂

1− 𝐹~Ω0

𝑀𝑔𝑅

√︂

1− 1

4𝛽2

]︂1/2

=

√︂

𝑔

4𝑅
[1− 𝛾]1/2 , (2.70)
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𝜔𝑦 =

√︂

𝑔

4𝑅
, (2.71)

𝜔𝑧 = 2𝛼

√︂

𝐹~

𝑀Ω0

(︂

1− 1

4𝛽2

)︂3/4

. (2.72)

Again, the frequencies are slightly modified due to gravity. The coupling being homogeneous
in the whole 𝑦 − 𝑧 plane, 𝜔𝑦 is this time simply equal to the pendulum frequency, while
the correction to 𝜔𝑥 due to the attraction of the holes is twice stronger than in the circular
polarization case, the holes now being at half height of the bubble. This configuration gives
an anisotropic trap in the 𝑥− 𝑦 plane.

Again, gravity must be strong enough to prevent the atoms from reaching the two points
with zero coupling; this condition can be deduced from (2.70) as 𝛾 < 1. Compared to
the circular polarization case, the minimum of coupling is this time at the equator and the
constraint on Ω0 is then twice stronger.

2.3.3 Elliptical polarization and control of the fine shape of the bubble

Using expression (2.47) allows us to compute the exact potential shape for any polarization of
the RF wave. Before giving exact results, it is still possible to describe the general behavior
or the trap:

∙ There are two holes somewhere on the bubble, where the coupling cancels. For a 𝜎𝑠

polarization with respect to the 𝑧 axis, the two holes merge at the top of the bubble, for a
𝜎−𝑠 they merge at the bottom of the bubble (which makes this configuration impossible
to use for trapping atoms). For an elliptical horizontal polarization, the holes are placed
somewhere in between, in the same vertical plane cutting the bubble in two halves.

∙ Keeping atoms trapped will, again, suppose the condition:

𝐹~Ω0 < 𝑀𝑔ℎhole, (2.73)

with ℎhole the height of the lowest hole with respect to the bottom of the bubble and
Ω0 = |Ω1(𝑥 = 0, 𝑦 = 0, 𝑧 = −𝑅)| the coupling at the bottom of the bubble, where
atoms should be located if gravity wins.

∙ Supposing that the atoms stay at the bottom of the bubble, the potential minimum
will stay at the same position (2.63), and the oscillation frequencies will be the same
as previously: trapping on resonance corrected due to gravity vertically, pendulum
frequency

√︀

𝑔/4𝑅 corrected from the attraction of the holes radially. For a non-circular
polarization, the trap will be anisotropic and its axes will be the same as those of the
polarization ellipse.

Let us give another useful result: supposing that the polarization plane is orthogonal to
the quadrupole axis (i.e. in the horizontal plane), we can write any polarization as:

𝜖 = cos(Θ)e𝑥 + 𝑒𝑖Φ sin(Θ)e𝑦. (2.74)

The coordinates of the holes are then
⎧

⎪

⎨

⎪

⎩

𝑥 = 𝑟𝑏 sin(t) cos(𝜑)

𝑦 = 𝑟𝑏 cos(t) sin(𝜑)

𝑧 = 𝑟b
2 cos(t)

. (2.75)
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For an arbitrary polarization in the horizontal plane written as (2.74), the local Rabi
coupling reads from (2.47) [124]

Ω2 =
Ω2
rf

2

(︂

1− 𝑟2 + (𝑥2 − 𝑦2) cos(2Θ) + 2𝑥𝑦 sin(2Θ) cos(Φ)

2ℓ2𝑏
− 2𝑧

ℓ𝑏
sin(2Θ) sin(Φ)

)︂

. (2.78)

The central term describes the anisotropy in the 𝑥−𝑦 plane; it is convenient to recast it in the
frame oriented along the polarization axes: 𝑥′ = cos(𝜑)𝑥+sin(𝜑)𝑦 and 𝑦′ = sin(𝜑)𝑥−cos(𝜑)𝑦,
with 𝜑 defined in (2.76):

Ω2 =
Ω2
rf

2

(︃

1− 𝑟2 − 2
√︀

𝜂(1− 𝜂)(𝑥′2 − 𝑦′2)

2ℓ2𝑏
− 2𝑧

ℓ𝑏
(2𝜂 − 1)

)︃

(2.79)

where 𝜂 is defined by:

𝜂 =
1 + sin(2Θ) sin(Φ)

2
. (2.80)

𝜂 defines the anisotropy of the coupling in the 𝑥−𝑦 plane, but also the coupling at the bottom
of the bubble:

Ω0 =
√
𝜂Ωrf (2.81)

𝜂 takes values between 0 and 1, being equal to 1 (or 0) for a circular polarization and 1/2 for
a linear polarization.

The trapping frequencies then expresses from a second order development:

𝜔𝑥′ =

√︂

𝑔

4𝑅

[︂

1− 𝛾

2

(︂

1−
√︂

1

𝜂
− 1

)︂]︂1/2

, (2.82)

𝜔𝑦′ =

√︂

𝑔

4𝑅

[︂

1− 𝛾

2

(︂

1 +

√︂

1

𝜂
− 1

)︂]︂1/2

, (2.83)

𝜔𝑧 = 2𝛼

√︂

𝐹~

𝑀Ω0

(︂

1− 1

4𝛽2

)︂3/4

, (2.84)

and we find the results expected in the previous section for 𝜂 = 1 or 𝜂 = 1/2. The anisotropy
of the trap can then be expressed as:

𝜀 =
|𝜔2

𝑦′ − 𝜔2
𝑥′ |

𝜔2
𝑦′ + 𝜔2

𝑥′

=
𝛾
√︁

1
𝜂 − 1

2− 𝛾
. (2.85)

One has to take care here that 𝛾 implicitely depends on 𝜂, as it depends on the Rabi coupling
at the bottom of the bubble Ω0, which depends itself on 𝜂 following equation (2.81).

To help interpreting these results, it is possible to relate 𝜂 to the position of the holes on
the bubble:

𝜂 =
1

2

(1 + cos(t))2

1 + cos2(t)
⇒

√︂

1

𝜂
− 1 =

1− cos(t)

1 + cos(t)
, (2.86)

allowing to rewrite 𝜔𝑥′ , 𝜔𝑦′ :

𝜔𝑥′ =

√︂

𝑔

4𝑅

[︂

1− 𝛾

1 + cos(t)

]︂1/2

, (2.87)
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𝜔𝑦′ =

√︂

𝑔

4𝑅

[︂

1− 𝛾 cos(t)

1 + cos(t)

]︂1/2

. (2.88)

Along the semi-major axis of the polarization, 𝜔𝑥′ is the pendulum frequency reduced by
the attraction of the holes: the correction term involves the ratio between the energy of the
hole attraction 𝐹~Ω0 (difference in coupling energy between the bottom and the hole) and the
gravitational energy necessary to reach the hole 𝑀𝑔𝑅 [1 + cos(t)]. On the other hand, for 𝜔𝑦′

the factor cos(t) shows that the correction can decrease or increase the pendulum frequency.
We also see that the condition for the existence of the trapping frequencies is 𝛾 < 1 + cos(t),
as expected.

Finally, for a given anisotropy (i.e. given 𝜂), within this parametrization it is possible to
give the values of (Θ, Φ) corresponding to an arbitrary orientation of the trap 𝜑 (allowing us
for example to dynamically rotate the trap) [125]:

Θ(𝜂, 𝜑) =
1

2
arccos

(︁

2
√︀

𝜂(1− 𝜂) cos(2𝜑)
)︁

, (2.89)

Φ(𝜂, 𝜑) = arccos

(︂

2
√︀

𝜂(1− 𝜂)
sin(2𝜑)

sin(2Θ(𝜂, 𝜑))

)︂

(2.90)

= arccos

(︃

2
√︀

𝜂(1− 𝜂) sin(2𝜑)
√︀

1− 4𝜂(1− 𝜂) cos2(2𝜑)

)︃

. (2.91)





Chapter 3

Experimental setup: from the

rubidium oven to the bubble trap.

All the experiments described here take as a starting point the RF-dressed “bubble” trap
whose theoretical description has been given in detail in the previous chapter. In this chap-
ter, I will first outline the experimental scheme that leads to the formation of an ultracold
atomic gas in such a trap, and I will then describe more in detail the device that allows for
controlling precisely our bubble trap – a DDS (“Direct Digital Synthesizer ”), which has been
modified during my PhD. Finally, I will describe the imaging setup that has been used to
take experimental pictures.

The construction of our experimental setup has begun more than ten years ago now, and
three PhD theses have already been written on it [86, 87, 126]; a reader wishing to have all
details on the experiment should go towards these.

3.1 The experimental setup

3.1.1 Overall system

The experiment is built around three chambers placed under vacuum. The first one is a 2D
MOT used as a source of pre-cooled atoms. It sends atoms to a second chamber made of steel,
in which a 3D MOT is formed. These two steps happen continuously when the experiment
is in standby. When an experimental sequence is launched, the atoms from the 3D MOT are
transfered to a magnetic trap whose coils are placed on a mechanical translation. These coils
are then displaced to bring the atoms in a third, final chamber – a glass cell, in which the
cooling of atoms down to degeneracy and the subsequent experiments will happen (fig. 3.1).

The whole experiment is controlled by a script in which all successive experimental steps
are described, which is then interpreted by a C++ program. Details can be found in [128].
We use 4 computers: one controls the experimental setup through analog and digital output
cards from National Instruments1, two computers control the imaging cameras and display
the corresponding pictures, and one is used to analyze the pictures and generate the scripts
used to control the DDS (cf 3.3).

1. Two PCI-6733 cards, one PCI-6713 and one DIO-32 card.
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3.2.2 Magnetic transport

The first step of the sequence aims at transfering the atoms from the MOT to a quadrupole
trap that can be mechanically displaced to the science cell (the coils of this quadrupole trap
are the ones that are used to generate the MOT, but the trapping configuration is not the
same). We start by ramping up the current in these coils to compress the MOT and increase
the atomic density while increasing the detuning of the MOT beams to reduce the repulsion
between atoms coming from multiple scattering events. The current in the coils is then
turned off and the detuning is increased again to cool down the atoms during an optical
molasses phase. At the end of this phase, the repump beam is shut down so that all atoms
get depumped to the state |5𝑆1/2, 𝐹 = 1⟩, which is the state with which we work in all the
experiment. Finally, all beams are shut down and the current is ramped up again to generate
a quadrupole magnetic trap in which atoms are loaded. We trap the atoms that are in the
|𝐹 = 1,𝑚 = −1⟩ state; atoms in 𝑚 = 0 and 𝑚 = +1 are lost.

The coils are then physically displaced over a distance of around 30 cm up to the position
of the final quadrupole coils, bringing the atoms into the science cell. The current in the
magnetic transport coils is then ramped down and the current in the final quadrupole coils
is ramped up to transfer the atoms in this new magnetic trap, and the transport coils are
sent back to their initial position. After transfer, we have around 108 atoms trapped, with a
temperature of 150 ➭K.

The final steps of the experiment happen in this science cell, a glass cell manufactured
by Starna with inner (outer) dimensions 10× 10 (12.5× 12.5) mm, under ultra-high vacuum
(10−11mbar).

J ·mol−1 ·K−1

The final quadrupole trap is realized by two conical coils placed above and below the cell,
which generate a horizontal gradient 𝑏′0 =1.98G · cm−1 ·A−1. The power supply we use2 can
deliver up to 110A and 15V, with a rise/fall time of a few milliseconds; switches allow fast
shutting down of the current in the coils (around 150 ➭s [126], useful especially for time-of-
flight imaging). The coil wire is hollow and water circulates inside to dissipate the heat in
the coils.

3.2.3 The plugged quadrupole trap

Bose-Einstein condensation of rubidium requires, like for most atoms, evaporative cooling to
increase the phase-space density. Using an RF knife in a magnetic trap is usually an efficient
way to perform this step: shining an RF field at a given frequency on the atoms couples the
different Zeeman substates and atoms get expelled from the trap if they reach resonance with
the RF, enabling to eliminate atoms whose energy is too high. Such RF evaporation allows
one to reduce the atomic cloud’s temperature and increase the density at the center of a trap.
However, in the case of a quadrupole trap, the magnetic field vanishes at the center of the
trap and the atoms that arrive there get lost due to Majorana losses (cf. 2.1.1): the increase
of density at the center of the trap leads to strong atom losses. This problem has been solved
using various methods, for example using time averaging (TOP traps) to trap the atoms in a
minimum of the average magnetic field while the real zero of the magnetic field stays far away
from the atoms [129] or using hybrid optical-magnetic traps [23,130,131] where the atoms are
maintained away from the place where the magnetic field vanishes by dipole beams.

2. Delta elektronika 15-100
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In our experiment, we use this second approach, using a “plug” beam to expel atoms from
the center of the trap [86, 127]. A 10W, 532 nm blue-detuned beam is focused on the center
of the quadrupole. It is oriented along the 𝑦 axis of the experiment (cf fig. 3.1), and even
though it covers the center of the trap it is slightly off-centered. This creates a unique effective
potential minimum slightly away from the center, where a condensate can be trapped without
suffering too much from losses.

Once this laser is on, we perform a ramp of the RF knife frequency to achieve evaporative
cooling. A first evaporation ramp, going from 50MHz to 4MHz in 13.6 s, is performed at
high magnetic field gradient: 𝑏′ = 216G · cm−1 horizontally, corresponding to 110A in the
quadrupole coils; then the magnetic field gradient is reduced to 𝑏′ = 55G · cm−1 to further
reduce Majorana losses (the optical plug gets more efficient to expel atoms from the center).
A final evaporation is then realized in 5 s, going from 2MHz to 300 kHz, and we achieve Bose-
Einstein condensation. This method allows to achieve a quasi-pure BEC with around 2× 105

atoms, however it is more favorable for the following experiments to stop evaporation before
this stage, at 350 kHz, to keep more atoms, about 5× 105.

3.2.4 The dressed trap

Hardware presentation

On the sides of the science cell, two RF antennas generate RF fields along the 𝑥 and 𝑦
directions, allowing to generate an RF field with any polarization in the horizontal plane as
described in section 2.3 (fig. 3.3). During my thesis, a third antenna has been placed below
the cell to generate RF fields along the vertical axis; details will be given in chapter 5. A good
stability of the RF phase is mandatory for achieving large lifetimes in RF-dressed traps [132]:
this is obtained by using digital frequency synthetizers (DDS). We control the voltage and
relative phase of each antenna; the obtained RF coupling is calibrated directly with the atoms
by using RF spectroscopy so that we directly control the effective coupling felt by the trapped
atoms. More details about the DDS and control of the RF are given in section 3.3.

Transfer procedure

Once the atoms are condensed, we transfer them from the plugged trap to the dressed
quadrupole trap described in chapter 2. For that, we need to “dress” the atomic state adia-
batically, so that the atoms stay in the effectively trapped state (which corresponds, once the
atoms are trapped on the resonance, to a mixture of all three Zeeman substates).

In a first step, the amplitude of the RF field is ramped up far below resonance, to fullfill
the adiabaticity condition (2.38) (we need to start with a large Ω, which can be achieved
only through large 𝛿 since Ω1 = 0 at the beginning of the ramp). In the plugged trap, the
atoms are located at a place that is resonant for RF frequency around 250 kHz; the RF field
amplitude is ramped up from 0 to typically 50 kHz in 5ms at a frequency of 175 kHz: the
resonant surface is then within the plug beam and inaccessible to the atoms. Moreover, the
second harmonic of the RF frequency, at 2×175 = 350 kHz, is beyond the resonance frequency
(and corresponds to the final value of the evaporation ramp) so that the cloud is unaffected
by possible harmonics that would be generated by the RF synthesizer.

The RF frequency is then ramped up with a constant amplitude3 from its initial frequency,

3. In fact, the amplitude is not really constant: the voltage applied to the antennas keeps a constant
amplitude but the antennas’ admittance depends on the RF frequency. This dependence is however
smooth.
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∙ The radial trapping frequencies at the bottom of the bubble (typically 20 to 50Hz) are
also controlled by the current and frequency (which modify the pendulum frequency),
and slightly modified by the RF amplitude and polarization.

∙ The control of the RF polarization also allows us to tune the trap’s horizontal anisotropy
[102] (defined as 𝜀 = |𝜔2

𝑦 − 𝜔2
𝑥|/(𝜔2

𝑦 + 𝜔2
𝑥); typically 0 to 0.5) and orientation [68].

∙ The vertical frequency depends strongly on the magnetic gradient and can thus be tuned
easily by changing the current in the quadrupole coils. It also depends on the square
root of the Rabi coupling. It can reach high values (typically 0.5 to 2 kHz), allowing to
reach the quasi-2D regime [102].

∙ Finally, the temperature of the trapped gas can be adjusted by using an additional RF
field (“RF knife”) slightly detuned compared to the RF dressing frequency [100].

Even though I cited the RF amplitude as allowing to adjust the trap parameters, it has
to be changed with caution since it determines the Landau-Zener loss rate in the trap [134];
even small changes can lead to prohibitive reduction of the atomic lifetime (which can, for
low gradient and sufficiently high Rabi coupling, reach three minutes).

The RF knife

It can be useful to detail a little more the use of the RF knife, as its use in a dressed
trap can be quite subtle. The overall idea is to apply a second, weak RF field to the trap
with frequency 𝜔knife, which leads to “double dressing” [113, 135]. It leads not only to an
additional dressing on the surface resonant with the knife frequency, but also to multi-photon
resonances, especially at 2𝜔rf − 𝜔knife. In practice, we use a knife frequency slightly higher
than 𝜔rf : 𝜔knife = 𝜔rf + 𝛿𝜔knife, with 𝛿𝜔knife > 0. This leads to two additional resonances at a
distance ±𝛿𝜔knife from the “main” dressing (see figure 3.4). Supposing that the Rabi coupling
at the two secondary resonances is weak, this sets a depth for the trap:

𝑈max = 𝐹~(𝜔knife − 𝜔rf − Ω1(r)). (3.1)

This scheme therefore allows to perform RF evaporation ramps in the trap, or to set a maximal
temperature to prevent heating. However, even if the Rabi coupling at the knife resonance
is small, it is not necessarily homogeneous on the whole trap: in particular, the antenna
generating the RF knife field is placed on the side of the trap, and the knife is therefore
linearly polarized. This can lead to small anisotropic trap deformations; in particular, when
the atoms are placed at the equator of the bubble (in the ring-shaped trap, see part II), the
coupling vanishes at two points (see section 2.3.2), and the evaporation will not be uniform
in the trap.

3.3 The new DDS

During my PhD, we decided to change the DDS used to control the dressing RF field until
then [86]. This decision came from two joined needs:

∙ The stability of the internal clock of the microcontroller in this DDS wasn’t very good,
leading to jitter in the timings of the dressing sequences. This was preventing us from
using the DDS to generate complex patterns; especially our new DDS allows us to rotate
the atoms with the trap itself (cf 6.1.3 and 8.2.1).
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we close the switches a few seconds before turning on the RF, during the evaporation ramp,
while the atoms are still hot and not too much sensitive.

3.3.2 Control of the DDS

The DDS is controlled by the computer through two connections. The first one, a USB con-
nection, allows us to transfer instructions from the computer to the microcontroller. However,
it is slow and unable to give precise control during experimental sequences. It is therefore
supported by a digital TTL command controlled by one of the digital outputs of the computer:
the instructions are loaded into the MCU through USB, then triggered by the TTL.

The MCU has two modes of operation:

∙ “Ramp” mode: we specify the desired output states at specific times and the corre-
sponding time steps, and the MCU computes the whole ramp from these points. This is
used, for example, to generate the dressing ramps used to transfer the atoms from the
plugged quadrupole trap to the bubble trap.

∙ “Pattern” mode: this mode allows to perform more complex tasks. A file containing all

the successive states the output has to take and the corresponding time steps is loaded
into the MCU, which will then read and apply them. This allows to perform arbitrary
RF patterns (within the limits of the microcontroller internal memory - around 25 kB),
it is used for example to rotate the bubble.

In both cases, we use MATLAB programs to compute and write the scripts that will be send
to the DDS during experimental sequences. In one sequence, we can use up to 4 ramps and 4
patterns; however the MCUmemory can only keep one of each in memory. Using several ramps
or several patterns requires to load them during the sequence, using USB communication. This
can take up to several hundreds of milliseconds (depending on the amount of information to
transfer) with a jitter in the communication duration of a few milliseconds: it has to happen
during non-critical parts of the experimental sequence (e.g. waiting times).

3.3.3 Calibration of the DDS

The command of the DDS is digital: the control of the RF amplitude is done by choosing a
value between 0 and 1024 (the DDS has a 10-bit amplitude resolution), which leads to a certain
power level at the output of the DDS; the signal is then amplified and sent to antennas with
a certain impedance (which depends on the RF frequency – this dependence can modify the
relative phase between the antennas). We therefore need a calibration to be able to translate
the desired effect on the atoms into the instruction we have to give to the microcontroller.

Spectroscopy in the dressed trap

For a given configuration of the dressed trap, it is possible to measure the Rabi coupling at
the position of the atoms by performing spectroscopy in the trap. By shining a weak RF
field at a frequency 𝜔probe, it is possible to couple the different local dressed states |𝑚⟩𝜃(r)
(cf section 2.2), which are separated by |Ω1(r)|. This coupling leads to losses from the trap:
the measurement of |Ω1(r)| at the position of the atoms (i.e. Ω0 in relevant experimental
cases) is done by finding the probe frequency that maximizes the losses. It is usually possible
to measure Ω0 within a 0.5 kHz precision. The optimal precision is achieved using very cold
gases (to minimize Doppler broadening), very weak probe intensities (to minimize power
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3.4 Imaging the atomic cloud

Let us finally discuss our main diagnostic tool: the production of pictures from the atomic
clouds. There are three main techniques that are used to image ultracold atoms systems:
the fluorescence imaging, the phase contrast imaging, or the absorption imaging. In our
experiment, we use the third one. The overall idea is to shine onto the atoms a resonant
probe beam, and compare the corresponding picture to a picture of the probe in the absence
of the atoms: in this way, we can measure the atomic density from the shade that the cloud
creates (see figure 3.7). As the atoms exchange many photons during the process, the cloud
however heats up a lot and gets destroyed; this technique is therefore destructive and a new
cloud has to be prepared for each experimental picture we want to take.

Figure 3.7 – Left: picture of the probe beam in the presence of the atoms. The light
being resonant, the atoms scatter photons from the beam, creating a shade on the picture.
By comparing this picture with the picture of the probe taken in the absence of the atoms
(center), one can reconstruct the atomic density and generate a picture of the atoms
(right). The quality of the final picture is extremely sensitive to the good alignment of
the probe beam between both primary pictures: for that reason, we use a fringe reduction
algoritm to compute the probe “ideal” picture [138].

We have the possibility to make a picture of the atoms in the trap (in situ pictures) or
after a time-of-flight expansion (TOF): the trap is turned off, and the atoms fall and expand
freely during a certain duration before the picture gets taken. In the first case, we measure the
space distrubution; in the second, we can measure the momentum distribution (if the TOF
is long enough to allow neglecting the initial size of the cloud). Both provide complementary
diagnostic tools; we can note that the in situ imaging of the cloud requires to use a high
intensity probe: the consequences will be detailed in the next section. However, the measured
distribution is integrated along the imaging axis: we thus have two imaging systems that
allow us to image the atoms from above (integrated along 𝑧) and from the side (integrated
along 𝑥) – these axes are presented on figure 3.3.

3.4.1 High intensity absorption imaging

The description of the interaction of the probe with the atoms can be quite complex if we
take into account all possible atomic levels, but quite simple if we consider only a two-level
atom, through the Bloch equations. We image the atoms using a resonant laser on the
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𝐹 = 2 → 𝐹 = 3 transition, and considering that these are the only levels that get populated
significantly the two-level system seems a relevant approach. Let us note 𝜔at the pulsation
of the transition, 𝜆at the corresponding wavelength, and Γ its width; the absorption cross
section and saturation intensity read respectively:

𝜎0 =
3𝜆2at
2𝜋

; 𝐼sat =
~𝜔3

atΓ

12𝜋𝑐2
. (3.2)

Supposing that the probe propagates along the 𝑧 axis, the absorption of the probe beam
while it crosses through the cloud will behave as:

d𝐼

d𝑧
= −𝑛(r)𝜎(𝐼)𝐼, (3.3)

where 𝐼 is the probe intensity and 𝜎(𝐼) the real cross-section, which depends on the probe
intensity. In practice, we measure the atomic density integrated along the beam propagation
axis: 𝑛(𝑥, 𝑦) =

∫︀

𝑛(r)𝑑𝑧. In the case of non-saturating imaging (𝐼 ≪ 𝐼sat), we find the usual
Beer-Lambert absorption law, and 𝑛(𝑥, 𝑦) can be deduced from the intensity of the probe
after absorption by the atoms 𝐼𝑓 and the initial intensity 𝐼𝑖 following:

𝜎0𝑛(𝑥, 𝑦) = − ln

[︂

𝐼𝑓 (𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

]︂

. (3.4)

The quantity 𝜎𝑛(𝑥, 𝑦) ≡ 𝑜𝑑(𝑥, 𝑦) is called the optical density, and it is what is measured in
practice.

When we try to image dense clouds – for example to image the in situ density profile,
working with low probe intensities can lead to a complete absorption of the beam profile
(leading to infinite densities when using equation (3.4)), to collective effects like multiple
scattering, or to systematic errors in the measured densities because the atoms in front of the
probe absorb most of the probe photons, and the atoms in the back of the cloud are therefore
exposed to lower intensities (leading to a 𝑧 dependence of 𝐼 in equation (3.3)). To image such
clouds, there are two strategies: either repump a small fraction of the atoms in the scattering
state 𝐹 = 2, artificially reducing the optical density in this way, or use high probe intensities
in order to saturate the atomic transitions. In this latter case, the cross section of the atoms
writes:

𝜎(𝐼) =
𝜎0

𝛼* + 𝐼/𝐼𝑠𝑎𝑡
, (3.5)

where 𝛼* is a dimensionless correction parameter that is used to take into account the deviation
from the ideal two-level system due for example to the polarization of the imaging beam or
the presence of other levels. It corresponds to considering an effective absorption intensity
𝛼*𝐼sat instead of its ideal value [139]. In this case, the optical density reads:

𝜎0𝑛(𝑥, 𝑦) = −𝛼* ln

[︂

𝐼𝑓 (𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

]︂

+
𝐼𝑖(𝑥, 𝑦)− 𝐼𝑓 (𝑥, 𝑦)

𝐼sat
(3.6)

≡ −𝛼*𝑑log + 𝑑diff . (3.7)

The first term corresponds to the low-intensity limit (i.e. the Beer-Lambert law); the second
term to the high-intensity limit: if the atomic transition is completely saturated, each atom
absorbs photons at a rate Γ/2, regardless of the beam intensity, and the atomic density is
thus directly proportional to the number of “missing photons”.
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The parameter 𝛼* is obtained experimentally, by calibrating the imaging system. A first
method to calibrate this parameter has been developed by G. Reinaudi [139], and later ex-
tended by L. Chomaz [140]. In this latter approach, the parameter 𝛼* is allowed to depend on
the optical density of the cloud, to correct for possible collective effects. We used this method
in our experiment, and observed a weak linear dependence of 𝛼* with the optical density:
𝛼*(𝑜𝑑) = 𝛼0 + 𝛼𝑠𝑜𝑑, with 𝛼0 = 1.89 and 𝛼𝑠 = 0.39 (the details about this calibration can be
found in [87]). In this case, the atomic density can finally be computed through the relation:

𝜎0𝑛 =
𝛼0𝑑log + 𝑑diff
1− 𝛼𝑠𝑑log

. (3.8)

Finally, one can note that specific care about the probe pulse intensity and duration has
to be taken when working with high intensity probe beams: indeed, when the atoms exchange
many photons, they can get accelerated and get out of resonance, or get depumped in 𝐹 = 1,
and a too long probe pulse leads to a systematic underestimation of the atom number, as
the number of atoms able to scatter photons decreases with time. The details about the
choice of the probe parameters can be found in appendix B. One has also to take care that
high intensity absorption imaging can amplify parasit fringes in the image with respect to
its low-intensity counterpart. Indeed, while a modulation of the probe intensity imprinted on
the beam after it interacts with the atoms will be washed out in the logarithmic term of the
optical density, it will stay in the differential term. A weak interference effect on the camera,
for example, can be highly detrimental for very high intensity pictures while images taken
with a lower probe intensity will be less affected.

3.4.2 Experimental setup

Imaging along the horizontal axis

To perform our horizontal images, we use a collimated probe beam with a 2.7mm waist. After
the atoms, it passes through a single telescope with a total magnification 𝐺 = 2.17, and then
goes onto a iXon 885D EMCCD camera, from Andor. It has a 1004×1002 pixel matrix, with
a 8mm pixel size. A quarter waveplate ensures that the imaging beam is circularly polarized,
and a magnetic field aligned with the imaging axis is turned on during the probe pulse to
polarize the atoms. A 532 nm polarizing beamsplitter is placed after the cell to deflect the
plug beam that is also aligned along this axis and avoids to focus the 10W beam onto the
camera (while letting the 780 nm light through), and an interferential filter prevents any green
light to reach the camera. Since the experiments are done with the atoms in the 𝐹 = 1 state,
a repumper beam is used to bring the atoms back to 𝐹 = 2 before sending the probe pulse
(it is locked on resonance with the 𝐹 = 1 → 𝐹 = 2 transition, see figure 3.2). We use this
setup to image the clouds after a long time-of-flight (typically 15 to 25ms), for example to
measure the atomic temperature and optimize the cooling of the atomic cloud.

Imaging along the vertical axis

The vertical imaging setup is made of a pair of telescopes providing a magnification around 8.
We use a Luca-R EMCCD from Andor, with a 1004×1002 pixel matrix and a 8mm pixel size.
The resolution of the system is 4 ➭m, allowing us to perform precise profile measurements of
in-trap clouds. The whole imaging setup (camera + telescopes) is mounted on a three-axis
micrometric translation; this allows, in particular, to adjust the vertical focus plane. The
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depth of focus of the system is approximately 70 ➭m, comparable or smaller than the vertical
radius of the bubble trap: for example, imaging a cloud at the bottom of the bubble or imaging
a ring-shaped gas at the equator of the bubble (see part II) requires to shift the position of the
system; this also allows us to image atomic clouds from above after a time-of-flight expansion.
Similarly to the horizontal imaging, we use a collimated probe beam with a 0.7mm waist,
circularly polarized using a quarter waveplate, and we use a vertically aligned magnetic field
to polarize the atoms during the imaging process. Even with our high-intensity aborption
procedure, the density of the cloud can be too large for a correct imaging. To avoid this
problem, we use a second repumper beam that is far detuned from the 𝐹 = 1 → 𝐹 = 2
transition (typically 250MHz away, for a linewidth around 6MHz), that allows us to repump
only a fraction of the cloud. In this way, we can image a cloud with the same profile, with
only a multiplicative factor on the atom number (which can be measured by comparing with
the horizontal imaging). Using a far-detuned repumper is necessary to achieve a uniform
repumping: indeed, the photons of a repumper on resonance would be directly absorbed by
the first encountered atoms, and rempump in this way only the front side of the cloud and
not its back.

3.4.3 Stern-Gerlach procedure

Shutting down the trap to perform a time-of-flight expansion can require some caution when
working with RF-dressed atoms. Indeed, when the atoms are in a dressed trap, their state
is a mixture of the different Zeeman substates (see 2.2.1). When the RF is switched off,
the atomic state will get projected along the eigenstates of the local bare magnetic field,
leading to the separation of the atomic cloud into three clouds in the 𝑚 = −1, 0, 1 Zeeman
substates. Therefore, any stray field gradient present while the trap is switched (for example
due to residual eddy currents) will accelerate the 𝑚 = 1 and the 𝑚 = −1 clouds along
opposite directions. After a long time-of-flight – we usually use 𝑑𝑡TOF = 23ms, even a small
acceleration during the switch-off can lead to a small separation of these three clouds, with
a separation that can be comparable to the cloud’s size. When working with high currents
in the quadrupole trap, we usually see that at the end of the time-of-flight there are three
clouds that overlap (see figure 3.8). To avoid this effect, one can keep on purpose the magnetic
gradient on while the RF is switched off: the 𝑚 = 1 and 𝑚 = −1 clouds will then be strongly
accelerated, and after TOF the three clouds completely separate: we can then image precisely
the 𝑚 = 0 cloud, that has been left unaffected by the gradient.





Part II

Ultracold atoms in a ring-shaped trap





Introduction

Superfluidity implies rotational properties that are very different from those of a conventional
fluid, as described in chapter 1, and a superfluid with a ring geometry is an interesting system
as it can bear rotation without necessiting singularities (i.e. vortices) to be present in the
bulk of the fluid; the Feynman-Onsager criterion (1.34) here remarquably implies that the
circulation of the flow along the ring is quantized. The ring geometry also allows to fully
exploit the inviscid character of the superfluid flow, since a superfluid can flow within a ring
trap in principle indefinitely (in practice, for experimentally accessible dilute superfluids10 the
lifetime of the flow will be limited by the lifetime of the trapped atoms).

Proposals for realizing ring geometries for ultracold atoms came soon after the experimen-
tal achievement of Bose-Einstein condensation. We can distinguish two kinds of proposals:
one aims at realizing atom interferometry based on the Sagnac effect, and relies on large
size traps (ring radius of typically hundreds of micrometers) [111, 141, 142]. The ring is then
thought as an “atomic waveguide” in which small atomic wavepackets will evolve: a large
radius allows to maximize the interferometric sensitivity but having a continuous superfluid
gas in the whole trap is then challenging. The second approach aims at studying superfluidity
in the presence of rotation as described previously, with traps small enough to allow reaching
condensation in the whole system [57–59].

In this second approach, the first ring-shaped BEC and the first observation of a persistent
flow were achieved in the W.D. Phillips group in 2007 [57]; a few years later the same group
(now led by G.K. Campbell), as well as the Hadzibabic group, studied the flow quantization
[58,143]; they also studied intensively the effect of a weak barrier present in the ring [144–147]
and demonstrated the hysteretic behavior of the superfluid flow [59]. More generally, there
is now a field of research aiming at realizing “atomtronic” circuits, studying atomic transport
properties in a way analogous to the transport of electrons in electronic circuits, in which
ring-shaped traps completely find their place, for example trying to realize atomic equivalent
of SQUIDs11 [72, 73,148].

Finally, we can also mention that the ring geometry was used to perform quantum sim-
ulation, trying to simulate for example astrophysical systems: the Dalibard group studied
in this way the Kibble-Zurek effect [71, 149] as originally proposed by W. Zurek [70], and
the Campbell group recently studied the supersonic expansion of a quantum system [150] in
analogy with the universe expansion.

10. as opposed to dense superfluids, i.e. superfluid helium. The dilute character corresponds to
√
na3 ≪ 1.

11. Superconducting QUantum Interference Devices.
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A significant part of my work was dedicated to the experimental realization of a ring trap
suitable for studying superfluidity in an annular geometry, and this is what I will present
in this second part. This part is divided into three chapters: chapter 4 will present the
theory of superfluid flow in ring traps and the interest of such a geometry, and then present
the method we to use to make the ring trap. Chapter 5 will detail the realization of the
trap. An initial version of it had been built by the previous PhD student who worked on the
experiment, Camilla de Rossi [87], and my contribution consisted in the improvement of this
setup. Finally, chapter 6 will present the production and dectection of a superfluid flow in
the annular gas.



Chapter 4

A ring trap for ultracold atoms: how

and why

This chapter aims at laying down the theoretical background that will be useful for under-
standing this part of my thesis. It will be divided into two sections: in a first section, I will
present the general theory of ring-shaped superfluids and superfluid flow. The second section
will then detail the principle and characteristics of the method we use to obtain a ring-shaped
BEC.

4.1 Superfluidity in ring traps

4.1.1 1D, single atom description

I will start with a simple description of a single atom1 in a ring trap with radius 𝑟0, considering
only a 1D case (i.e. a “wire” ring), as described in [151]: the position of the atom is defined
only by its azimuthal angle 𝜑 and the atomic state will then be written as 𝜓(𝜑). As the ring
is closed on itself, 𝜓 is periodic with period 2𝜋: 𝜓(𝜑+ 2𝜋) = 𝜓(𝜑).

Considering a constant potential along the ring, the hamiltonian only contains kinetic
energy and writes:

𝐻̂ = −~
2∇2

2𝑀
= − ~

2

2𝑀𝑟20

d2

d𝜑2
; (4.1)

its eigenstates and eigenenergies are then:

𝜓ℓ(𝜑) =
1√
2𝜋𝑟0

𝑒𝑖ℓ𝜑, 𝐸ℓ =
~
2

2𝑀𝑟20
ℓ2. (4.2)

These states correspond to a phase winding of ℓ × 2𝜋 along the ring, and thus verify
the quantization of flow circulation (1.34). From the eigenstates, we can deduce the angular
velocity of the flow in the ring. The local velocity reads from (1.31):

v(𝜑) =
~

𝑀
∇(ℓ𝜑) =

~

𝑀𝑟0
ℓe𝜑, (4.3)

1. This also describes a pure, non-interacting BEC.
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and the angular velocity for state ℓ is therefore:

Ωℓ = ℓ× ~

𝑀𝑟20
(4.4)

= ℓ× Ω𝑞. (4.5)

We see that the rotation frequency is quantized, with rotational quantum Ω𝑞 = ~/𝑀𝑟20.
Having the whole cloud rotating at Ωℓ corresponds to an angular momentum ℓ~ per atom.

Due to this quantization, we can guess that if the gas undergoes forced rotation at a
frequency 𝑛Ω𝑞, the corresponding ground state will be the ℓ = 𝑛 state. But then, what
happens if the excitation happens somewhere between two quanta?

For a potential rotating at an angular speed Ωrot, it is useful to see what happens in the
rotating frame. This can be computed by adding to the hamiltonian the term:

−Ωrot𝐿𝑧 = 𝑖~Ωrot
d

d𝜑
, (4.6)

and we can then write it as:

ˆ̃𝐻 =
~
2

2𝑀𝑟20

(︂

𝑖
d

d𝜑
+

Ωrot

Ω𝑞

)︂2

− 1

2
𝑀Ω2

rot𝑟
2
0. (4.7)

The eigenstates of this new hamiltonian are the same as in the non-rotating state (given
by (4.2)), but their energies now write:

𝐸ℓ(Ωrot) =
~
2

2𝑀𝑟20

(︂

ℓ− Ωrot

Ω𝑞

)︂2

− 1

2
𝑀Ω2

rot𝑟
2
0 (4.8)

=
~
2

2𝑀𝑟20

(︂

ℓ2 − 2ℓ
Ωrot

Ω𝑞

)︂

=
~Ω𝑞

2

(︂

ℓ2 − 2ℓ
Ωrot

Ω𝑞

)︂

. (4.9)

These energies are shown on figure 4.1 (left). We see that the state with the lowest energy
changes every Ω𝑞: for a potential rotating between −Ω𝑞/2 and Ω𝑞/2, the ground state will
be ℓ = 0, which is the state corresponding to the absence of rotation; for a rotation between
Ω𝑞/2 and 3Ω𝑞/2, it will be ℓ = 1, rotating at Ω𝑞, etc. In other words, the ground state is the
state 𝑛 for which 𝑛Ω𝑞 is the closest to Ω. Interestingly, it means that starting from a ring
at rest, an excitation with angular velocity |Ωrot| < Ω𝑞/2 will leave the atomic state into the
non-rotating state, reminiscent of the critical velocity of a superfluid.

The last term in equation (4.7) corresponds to the centrifugal energy. It is uniform on
the whole cloud and therefore doesn’t depend on the state ℓ; we can thus remove it by an
appropriate change in the energy reference. The energy of state ℓ then simply becomes:

𝐸ℓ(Ωrot) =
~Ω𝑞

2

(︂

ℓ− Ωrot

Ω𝑞

)︂2

. (4.10)

We then see that the relevant energy spectrum, plotted on figure 4.1 (right), is in fact periodic
with respect to Ωrot, with periodicity Ω𝑞: 𝐸ℓ+𝑛(Ωrot + 𝑛Ω𝑞) = 𝐸ℓ(Ωrot).
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We see here that the vertical axis is simply “modulated” by the error function, and the
electric field cancels as expected in the 𝑧 = 0 plane. The corresponding intensity profile is
shown on figure 4.6.

Outside the focal plane, the electric field can be written as [159]:

𝐸(r) = 𝐴𝑥(𝑥)
2𝑖√
𝜋𝑤𝑧

∫︁ ∞

0
sin

(︂

2𝑢
𝑧

𝑤𝑧

)︂

𝑒
𝑖u

2y
zR 𝑒−𝑢2

𝑑𝑢, (4.15)

where 𝑧𝑅 is the vertical Rayleigh length, equal to 𝜋𝑤2
𝑧/𝜆. Here, we exploited the independence

of 𝑥 and 𝑧 axes: 𝐴𝑥(𝑥) is the field amplitude along the 𝑥 direction. In our case, at the vertical
focus point the beam is horizontally collimated3, and 𝐴𝑥 simply writes:

𝐴𝑥(𝑥) =

√︂

2𝑃LS

𝜋𝑤𝑥
𝑒
− x2

w2
x . (4.16)

The corresponding energy landscape for the atoms then simply writes: 𝑈sheet(r) =
𝜂𝐿|𝐸(r)|2, where 𝜂𝐿 gives the potential shift due to the presence of the dipole beam and
depends on the detuning of the beam compared to the 𝐷1 and 𝐷2 lines4; in our case it
is equal to 𝜂𝐿 = ℎ × 1.22× 109Hz ·W−1 · ➭m2 (computed taking into account non-RWA
terms [161]).

4.2.2 Overall ring characteristics

Oscillation frequencies

Let us now describe the final ring potential. From previous section, we can deduce the vertical
trapping frequency: close to 𝑧 = 0, equation (4.14) can be approximated to:

𝐸(0, 0, 𝑧 ≪ 𝑤𝑧) ≈
√︂

2𝑃LS

𝜋𝑤𝑥𝑤𝑧

2𝑧√
𝜋𝑤𝑧

. (4.17)

The resulting trapping frequency in between the two sheets is then:

𝜔𝑧,0 =
4

𝜋

√︃

𝜂𝐿𝑃LS

𝑀𝑤3
𝑧𝑤𝑥

, (4.18)

and if we slightly go off-center, the local vertical confinement varies as:

𝜔𝑧(𝑥, 𝑦) = 𝜔𝑧,0 × exp

(︂

− 𝑥2

𝑤2
𝑥

)︂

×
[︂

1 +
𝑦2

𝑧2𝑅

]︂−3/4

. (4.19)

From a first-order development, we can then deduce a relation between 𝑤𝑥 and 𝑧𝑅 that
minimizes the anisotropy of the trap close to the center: 𝑧𝑅 =

√
3/2𝑤𝑥. From equation

(4.14), we can also deduce that maximizing the vertical confinement at a distance 𝑟0 in the 𝑥
direction (for a given laser power) is achieved by choosing 𝑤𝑥 = 2𝑟0.

The radial frequency in the ring is defined by the confinement on the isomagnetic surface,
as described in (2.40). Having an azimuthally uniform confinement in the ring – to avoid

3. Strictly speaking, we have to replace wx by wx

√︀

1 + (y/xR)2, with xR the horizontal Rayleigh length
equal to πw2

x/λ, but in our experiment xR is more than 1000 times larger than all relevant dimensions.
4. Strictly speaking, it depends on all lines, but those are the two that have a non-negligible importance

for the frequencies we consider here.
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breaking rotational symmetry – supposes a circular RF polarization (cf 2.3.1), and the radial
frequency, if the atoms are at the equator of the bubble, reads5:

𝜔𝑟,0 = 𝛼

√︂

2~

𝑀Ω0
. (4.20)

If the atoms are not at the equator, it becomes:

𝜔𝑟(𝑧) = 𝜔𝑟,0

√︂

1 +
2𝑧

𝑟𝑏
. (4.21)

Finally, the critical temperature for condensation in the ring trap reads [124]:

𝑘B𝑇𝑐 =

(︂

𝑁~
3𝜔𝑧𝜔𝑟

𝜁(5/2)
√
2𝜋𝑀𝑟0

)︂2/5

, (4.22)

where 𝜁 is the Riemann zeta function. Note that this expression can also be recast under the
form:

𝑛1𝜆dB = 𝜁(5/2)

(︂

𝑘B𝑇

~𝜔

)︂2

, (4.23)

with 𝑛1 = 𝑁/2𝜋𝑟0 being the one-dimensional density and 𝜔 =
√
𝜔𝑟𝜔𝑧 the geometrical average

of the oscillation frequencies. It evidences the fact that the gas is harmonically trapped along
two dimensions and uniform along the third one.

Chemical potential and lower dimensions

In a ring with radius 𝑟0 and trapping frequencies 𝜔𝑟, 𝜔𝑧 and azimuthally uniform confinement,
the chemical potential for a 3D gas in the Thomas-Fermi regime reads [106]:

𝜇3D = ~𝜔

√︂

2𝑁𝑎

𝜋𝑟0
. (4.24)

If the chemical potential and the temperature are both lower than 𝜔𝑧, (almost) all atoms are
in the vertical ground state and we enter the two-dimensional regime. The chemical potential
is then modified and is equal to:

𝜇2D = ~𝜔

(︂

𝜔𝑟

𝜔𝑧

)︂1/6(︂ 3𝑁𝑎

4
√
𝜋𝑟0

)︂2/3

. (4.25)

Our vertical trapping scheme allows reaching high trapping frequencies (𝜔𝑧 ≈ 2𝜋 × 3 kHz),
and we can reasonnably expect to reach the quasi-2D regime with it. We can also, with only a
few modifications, increase the radial trapping frequency around 1.5 kHz, which would allow
to envision reaching 𝜇2𝐷 ≤ 𝜔𝑟 (see 5.4). In this last case, the atoms are almost all in the
transverse ground state, entering the quasi-1D regime. The chemical potential then finally
becomes:

𝜇1D = ~𝜔
𝑁𝑎

𝜋𝑟0
. (4.26)

5. I remind here that Ω0 is the Rabi frequency at the bottom of the bubble, and the coupling at the equator
is Ω0/2.





Chapter 5

Experimental realization of the ring

trap

The construction of the ring trap setup started with the previous PhD student who worked on
the experiment, Camilla de Rossi [87]. The team succeeded in building the light sheet setup
and realized ring-shaped traps; however the obtained annular gases were inhomogeneous or
even disconnected when cold enough to be condensed, and could not be used for the studies
we wanted to perform. The time spent trying to improve this initial setup led to a good
understanding of some of the required tunings, but also to realize that the initial setup did
not have the stability and the fine tuning possibilities required to achieve a “good enough”
ring, and in the end most of the setup has been reconstructed.

The requirements our ring-shaped gas has to fulfill are the following:

∙ Ultracold temperature (∼ 100 nK), low enough to reach quantum degeneracy.

∙ A good regularity: we need the trap to be as smooth as possible to have rotational
invariance; in other words we want the potential roughness to be much smaller than the
chemical potential in the ring trap.

∙ A lifetime long enough to perform experiments within the ring trap (several seconds).

This chapter will give the experimental details about the ring setup implementation. It
will be divided into three parts: in a first section I will start discussing the double light sheet
setup, how we align the optical elements and how we load the resulting potential. The second
section will be dedicated to a discussion about the required RF control, which happens to be
much more critical than expected. The third section will present the work that was achieved
on characterizing the finally obtained trap.

5.1 The double light sheet

5.1.1 Experimental system

Shaping the light sheet beam

The light sheet beam is shaped from a 532 nm, 5W laser beam generated by a Coherent Verdi
V5 monomode laser. The output beam is collimated, with a 1mm waist. The beam is shaped





5.1 The double light sheet 79

of the lenses angles, and to synchronously rotate the lenses together (which is a precious
possibility, since the relative angle of the cylindrical lenses is very critical – see section 5.1.4).
This whole system will thereafter be called “the cage”. It is placed on the main optical table,
whereas the rest of the system is placed on a smaller breadboard placed at the height of
the science cell; a periscope is placed right after the cage to lift the beam. The phase plate
is located on this breadboard; it is mounted on a vertical translation stage2 with a 1 ➭m
resolution and a rotation mount. The final lens, L4, is mounted on top of a micrometric
translation stage along the beam propagation axis (longitudinal position) and its mount has
translation screws3 along both other axes (lateral and vertical position; the screws are not
graduated and have a 250 ➭m per turn precision).

Turning on and off the light sheet

The control of the light sheet intensity is achieved by using a quartz acousto-optical modula-
tor4 (AOM): the 0th order is sent to a beam blocker and the 1st order goes to the experiment.
The choice of a quartz AOM comes from the high power (5W) that goes through: quartz
AOMs are not very sensitive to high power (we haven’t been able to see any thermal effect),
whereas the previous AOM of the setup, with a TeO2 crystal, had prohibitive thermal effects
(large thermal lens effect and fluctuations of the beam position while switching from 0th to
1st order). This AOM works at fixed frequency and its angular separation is small (0.6∘); the
separation between both diffraction orders is done in the middle of the cage, almost 1m away
from the AOM. We also considered using a Pockels cell followed by a polarizing beamsplitter
instead of an AOM, but we had problems of ringing when switching off the signal.

5.1.2 Installation of the light sheet

The light sheet setup is made of many elements, each of them having many degrees of freedom
and needing careful setting and alignment. I will here describe the overall procedure and
observables we used to install the system onto the experiment.

Aligning the (almost) naked beam on the atoms

The first step of alignment aims at ensuring that the beam reaches the atomic cloud (whose
size is of the order of a few micrometers). This step is achieved with the “naked” beam, without
the phase plate and without the cage. Before dismantling the previous light sheet setup (in
which we were already able to load the atoms), we recorded its beam path using diaphragms;
this allowed us to set back the beam at a position not too far away to the previous one. The
spherical lens L4 is then set in place.

The rough alignment is done using a thermal cloud as a probe: the naked beam is pointed
onto an atomic cloud in the quadrupole trap for which we didn’t evaporate until the end (in
the absence of the plug beam). The cloud is then released from the trap in the presence of the
beam: the repulsive effect of the laser can significantly modify the expansion of the thermal
cloud, leading to “holes” in the profile after time of flight (see figure 5.2). The position of the
beam with respect to the atoms can then be deduced from this profile; since the cloud is hot

2. M-461-7-M from Newport, with a SM-13 vernier micrometer.
3. Mount LM1XY/M from Thorlabs; it was mostly chosen for its compacity.
4. I-M110-2C10B6-3-GH26 from Gooch & Housego, with a A35110-S-1/50-P4K7U driver.
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vertical confinement are maximized; we thus try to maximize the vertical expansion of the
cloud (i.e. its size after time-of-flight, measured on horizontal images) when released from
the trap. Applying a static bias field along the 𝑥 axis of the experiment allows to laterally
displace the cloud in the light sheet and helps realizing the alignment (allowing to know in
which direction to displace the sheet).

Finally, the focus of L4 can also be improved by performing measurements on the trapped
atoms, maximizing the vertical oscillation frequency measured in the double light sheet po-
tential; this measurement is detailed in section 5.3.3.

5.1.3 Loading procedure

Basic principle

The loading scheme is, in its most basic principle, quite simple: we need to align the light
sheet with the bottom of the bubble, so that the atoms get caught between the two intensity
maxima of the sheet beam while it is turned on. In practice, it is simple to displace the
bubble trap: a pair of vertical coils in Helmholtz configuration located above and below the
cell generate a vertical bias magnetic field, which shifts the bubble trap vertically. However,
the current in the coils cannot change sign: the bubble can be shifted only along one direction
with respect to its position at zero bias. Details about its calibration are given in appendix
A. On the contrary, displacing the light sheet vertically is quite difficult.

The simplest way to load the atoms into the light sheet and obtain an annular gas is then
to first raise the bubble to a height 𝑧shift while the laser is still off to align the bottom of
the bubble with the position of the dipole trap minimum, turn on the sheet (we use a sine
ramp), and then lower the bubble so that the atoms get displaced towards the equator of the
bubble (see fig. 5.7). We do not necessarily have to bring them up to the equator; the height
∆𝑧 from which the bubble is displaced in the second step allows to control the radius of the
obtained ring.

We could also imagine instead lowering the bubble twice during this procedure6, but this
would lead to important currents in the bias coils in the final situation: ideally, we would like
the magnetic bias field to be very small in the final configuration in order to minimize the
position noise due to possible current noise in the power supply. For the same reason, the
light sheet is aligned slightly above the center of the quadrupole trap7, see figure 5.7 leftmost
picture.

To check the good respective alignment of the cloud and the double light sheet after lifting
the bubble, we turn off the magnetic confinement and shine briefly (0.1ms pulse) the light
sheet; the cloud then evolves during the usual time-of-flight procedure. The cloud doesn’t
have time to move during the light pulse, but it gets accelerated: its position and shape after
the TOF then indicates what was its relative position with respect to the sheet (fig. 5.8).
If the alignment is correct, the cloud’s center of mass should not be displaced compared to
its position in the absence of the light pulse, but it is broadened. On figure 5.8 we see that
there are, in fact, three positions corresponding to an absence of average displacement; they
can however easily be discriminated: two of them correspond to a maximum of light intensity
at the position of the atoms while only one (the good one) corresponds to a minimum of

6. By having the bottom of the bubble above the light sheet before applying the vertical bias.
7. In principle, having the light sheet aligned right on the center of the would be better. However, the shift

can be done only along one direction (to lift the bubble), which means that if the zero of the quadrupole
is above the sheet the atoms will never be able to reach the equator. Since the light sheet position is
subject to small drifts, we take a small safety margin to avoid having to displace the sheet.
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possible to generate any polarization in the 3D space, even if the antennas are not perfectly
orthogonal with each other. We can then use it to correct the effects due to misalignments of
the two main dressing antennas, similarly to [110].

Mathematical interlude

Let us consider an arbitrary polarized dressing RF field, with complex polarization 𝜖 =
cosΘ cosΘ𝑧e𝑥 + sinΘ cosΘ𝑧𝑒

𝑖Φ
e𝑦 + sinΘ𝑧𝑒

𝑖Φze𝑧. We want to compute the local coupling in
the ring trap, that is, at the equator of the bubble. Defining the position with its azimuthal
angle 𝜑, the quadrupole field orientation writes: u = cos𝜑 e𝑥 + sin𝜑 e𝑦. From equation
(2.47), the local coupling can be written as:

Ω2
1(𝜑) =

Ω2
rf

4

[︂

3− cos(2Θ𝑧)

2
−𝐴1 cos(𝜑+Φ1)−𝐴2 cos(2𝜑+Φ2)

]︂

, (5.4)

where 𝐴1, Φ1, 𝐴2, Φ2 are equal to:

𝐴1 = 2 sin(2Θ𝑧)

√︁

sin2Θsin2(Φ− Φ𝑧) + cos2Θsin2Φ𝑧, (5.5)

Φ1 = − arctan

[︂

cosΘ sinΦ𝑧

sinΘ sin(Φ− Φ𝑧)

]︂

, (5.6)

𝐴2 = cos2Θ𝑧

√︁

cos2(2Θ) + sin2(2Θ) cos2Φ, (5.7)

Φ2 = − arctan [cosΦ tan(2Θ)] . (5.8)

Even though these formulas are not very appealing, one can find here the two phenomena
that are observed:

∙ A modulation with period 𝜋, corresponding to the “double-moon” asymmetry. It de-
pends very weakly of the tilt Θ𝑧 of the antennas with respect to the vertical axis, and
appears if the polarization is elliptical.

∙ A modulation with period 2𝜋, corresponding to the observed “lateral tilt”, that depends
strongly on Θ𝑧.

It can then be interesting to look at the limit described previously: a polarization that is
circular, but slightly inclinated compared to the quadrupole axis due to a tilt of the antennas,
that is: Θ = 𝜋/4, Φ = 𝜋/2, Θ𝑧 ≪ 1. In this case, the local coupling simplifies to:

Ω1(𝜑) =
Ωrf

2

√︃

1− 4√
2
Θ𝑧 cos(𝜑− Φ𝑧) (5.9)

≈ Ωrf

2
(1−

√
2Θ𝑧 cos(𝜑− Φ𝑧)), (5.10)

and we find a modulation of the Rabi coupling with an amplitude ΩrfΘ𝑧 whose orientation
corresponds to the orientation of the 𝑧 component of the polarization. Since we work with
Ω1 = 2𝜋 × 100 kHz, even a very small angle Θ𝑧 can lead to a modulation whose amplitude
will be on the order of a few kilohertz.
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Choice of the antenna

The third antenna is necessarily very different from the two principal dressing antennas: the
presence of the quadrupole coils prevents us to place it just next to the cell and close to the
atoms like they are; it has to be placed above or below the coils.

To choose the antenna, we started by computing the expected coupling that a given
antenna could create on the atoms (we tried at first to use old antennas that were already
available). However, all antennas we tried had an effect on the atoms much smaller than
expected, that we interpret as probably coming from a screening effect from the quadrupole
coils. In the end, the protocol for choosing the third antenna turned out to be “try an antenna
configuration and see whether it is satisfying”. The criterion used to validate the antenna is
the possibility to balance the atomic density in a ring (cf next section) realized with a high
Rabi coupling (> 50 kHz at the equator) for a dressing at low frequency (0.3MHz) and to
balance a ring at low coupling (25 kHz) and high frequency (1.2MHz) – with the antenna
geometries we have the possibility to install on the experiment, we systematically have a loss
in admittance for increasing frequency. We finally use an antenna with 4 loops of copper
wire, with dimensions 11 × 6.5 cm, placed below the quadrupole coils. Its admittance10 is
𝑌 = 128mS when operated at 0.3MHz and 𝑌 = 32mS at 1.2MHz.

Effect and tuning of the third antenna

Testing the third antenna on the “bare” dressed trap is difficult, because it has no effect at
the bottom of the resonant ellipsoid (since the polarization of the RF it produces is aligned
with the static field at this position). In particular, we cannot generate a dressed trap with
this antenna alone and thus cannot calibrate it like we usually do; we haven’t found a way to
calibrate the antenna yet. We instead use the third antenna as a correction parameter and
look for its effect on the ring itself, at the equator of the bubble. The antenna is simply turned
on within a given configuration of phase and amplitude, together with both other antennas
(tuned so that the trap at the bottom is as circular as possible). We load a ring with the
usual protocol, and we see how the addition of the third RF field modifies the obtained ring
configuration.

The addition of the third antenna allows us to modify the potential landscape and displace
the atoms within the ring. The phase of the antenna controls the direction in which the atoms
are attracted (compared to the situation in its absence), and the amplitude changes how much
the atoms are displaced in this direction, see figure 5.14.

The tuning of the parameters of the antennas – three amplitudes and two relative phases
– is eventually achieved by optimizing the density homogeneity of the ring. A 𝜋 periodic
asymmetry, as seen on figure 5.12 or the first ring of figure 5.14, is corrected by adjusting the
relative phase and amplitude of the two main antennas; a 2𝜋 periodic asymmetry, as seen
on figure 5.13, by adjusting the phase and amplitude of the third antenna. Applying a knife
to reduce the chemical potential allows to be more sensitive to potential irregularities (if the
cloud is condensed, which we are able to do – cf section 5.3.2) and achieve more precise tuning
of the antennas.

We also realized a spectroscopic measurement of the coupling in the ring in the presence
of the third antenna (figure 5.15); we saw as expected a strong reduction of the resonance
width, confirming the “correction” of the coupling inhomogeneities by this new RF field.

10. measured with a vector network analyzer.
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mogeneities in the ring and would be seen directly on the ring profile at rest. Measurements
of the radial frequency with a thermal cloud in the ring, without lowering the knife after the
rinc compression ramp, lead to similar results. We intend in a near future to try measuring
the radial frequency by exciting the parametric resonance of the ring (an oscillation of the
ring radius at 2𝜔𝑟 should lead to large heating of the gas, even for small amplitude) to see if
the results are identical.

5.3.4 Lifetime and heating rate

While working on the optimization of the ring, we realized that the lifetime and the heating
rates in our trap were highly unsatisfactory, respectively less than 1 s and up to several
microkelvin per second. This led to significant work in order to understand the phenomena
leading to losses and heating in the ring.

Characterization of the noise and expected heating

To understand better the heating rate, we tried to separate the two parts contributing to the
trap to see where the heating and losses come from:

∙ We observed the behavior of the “dressed part” of the trap by preparing dressed traps
at the bottom of the bubble, with twice less current and Rabi coupling compared to the
ring, to mimic the local magnetic gradient and coupling of the ring. In this trap, we
observed very large lifetimes (∼ 100 s) and a heating rate around 10 nK · s−1.

∙ We tried to isolate the behavior of the double sheet by measuring heating rates in the
double sheet plus quadrupole trap (cf section 5.3.3). We measured initially a heating
rate ranging between typically 10 and 100 nK · s−1 depending on the laser power, that
we were able to completely suppress by a careful mechanical isolation of the experiment
(building a better isolation box around the experiment and displacing some fans, see
below). The lifetime in this trap after working on heating prevention is around 5 to 10 s
for maximal laser power, but it is probably unrelated to the lifetime in the ring trap as
the radial confinement is extremly different.

To understand things better, we measured the noise spectrum of the trapping laser: both
its power and beam-pointing fluctuations can cause heating of the trapped cloud, and the
beam-pointing fluctuations can also lead to radial frequency and position fluctuations (see
next section). The power noise can be easily measured using a photodiode; the beam-pointing
noise is measured using a quadrant photodiode on which we image the focal point of the beam.

The measured values did not explain the high heating rate we observe in the light sheet
and the ring: the heating rates that we deduce from these measurements are extremely low
– the main source of noise seems to be the the position noise of the light sheet, leading to
2.2 nK · s−1 at maximal light sheet power. However, we identified two fans that were placed on
RF amplifiers to cool them down as a significant source of beam pointing noise11 (see figure
5.24). We also tried to track other noise sources in the room by looking for modifications
in the light sheet position noise power spectrum after turning off different devices but saw
nothing significant.

11. Placing the RF amplifiers as close as possible to the experiment to avoid long cables and reduce leakage
of RF photons is a good idea, but if they need fans to be cooled, they should not be placed on the optical
table to avoid vibrations!
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trapping frequency [162]. Writing 𝜖(𝑡) the relative fluctuations of 𝜈2𝑧 : 𝜈
2
𝑧 (𝑡) = 𝜈2𝑧 (1+𝜖(𝑡)),

this heating rate reads:
Γ𝐼 = 𝜋2𝜈2𝑧𝑆𝜖(2𝜈𝑧), (5.13)

where 𝑆𝜖 is the power spectral density of the stiffness relative noise (in Hz−1), defined
as:

𝑆𝜖(𝜈) = 4

∫︁ +∞

0
𝑑𝜏 cos(2𝜋𝜈𝜏)⟨𝜖(𝑡)𝜖(𝑡+ 𝜏)⟩; (5.14)

in the case of light intensity, 𝑆𝜖 is equal to the relative intensity noise of the beam:

𝑆𝜖(𝜈) =
4

⟨𝐼⟩2
∫︁ +∞

0
𝑑𝜏 cos(2𝜋𝜈𝜏)⟨𝐼(𝑡)𝐼(𝑡+ 𝜏)⟩. (5.15)

Using a photodiode, we measured the relative intensity noise PSD, which is equal to
−125 dB ·Hz−1 in the 1 kHz–10 kHz range (see figure 5.24). If the light sheet is turned
on at maximal power, leading to 𝜈𝑧 = 2.7 kHz, the corresponding time constant is around
4× 104 s: the effect of power noise should therefore be extremely weak.

∙ Position fluctuations of the light sheet (“position noise”) also generate heating. This
heating is linear and depends on the noise at the trap frequency [162]. The increase in
energy reads:

⟨𝐸̇⟩ = 1

4
𝑀𝜔4

𝑧𝑆𝑧(𝜈𝑧), (5.16)

where 𝑆𝑧 is the position noise power spectral density, in m2 ·Hz−1; its measurement
can be seen on figure 5.24. For a vertical trapping frequency of 2.7 kHz, this noise is
approximately−110 dB · ➭m2 ·Hz−1, leading to an increase in energy of 𝑘B×2.2 nK · s−1.
For a vertical trapping frequency of 1.2 kHz, corresponding to 20% of the maximal laser
power, there is a peak on the noise PSD, which is approximately equal to −90 dB; the
corresponding expected heating rate is 8 nK · s−1.

To the heating coming from the light sheet, we can add three “secondary” heating sources
that specifically come from the way we achieve our ring:

∙ The position fluctuations of the light sheet cause fluctuations of the radial trapping
frequency, as it changes the local Rabi coupling. From the same reasoning as [162], we
can guess that it will generate parametric heating sensitive to the position noise at twice
the radial frequency, with a heating rate:

Γ𝑧 = 𝜋2𝜈2𝑟

(︂

1

𝜈2𝑟

𝜕(𝜈2𝑟 )

𝜕𝑧

)︂2

𝑆𝑧(2𝜈𝑟). (5.17)

∙ The same position fluctuations also cause a variation of the ring radius, and thus gen-
erate a radial position noise. Again, reasoning like [162] suggests a linear heating de-
pending on the sheet position noise at the radial frequency:

⟨𝐸̇⟩𝑧 =
1

4
𝑀𝜔4

𝑟

(︂

𝜕𝑟0
𝜕𝑧

)︂2

𝑆𝑧(𝜈𝑟). (5.18)

If the ring is at the equator, the derivative of 𝑟0 is zero and this heating source then
cancels. If the ring is above or below the light sheet (𝑧 ̸= 0), we have to take into
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account the evolution of both the ring radius and the radial frequency with 𝑧. We have

𝑟0 =
√︁

𝑟2𝑏 − 4𝑧2, and its derivative with respect to 𝑧 is then equal to −4𝑧/𝑟0. The value

of 𝜔𝑟(𝑧) is given by expression (4.21), and equation (5.18) becomes:

⟨𝐸̇⟩𝑧 = 4𝑀𝜔4
𝑟 (𝑧)

𝑧2

𝑟20
𝑆𝑧(𝜈𝑟(𝑧)), (5.19)

or equivalently:

⟨𝐸̇⟩𝑧 = 4𝑀𝜔4
𝑟,0

𝑧2

𝑟2𝑏

1− 2𝑧
𝑟b

1 + 2𝑧
𝑟b

𝑆𝑧(𝜈𝑟(𝑧)) ≃
𝑧≪𝑟b

4𝑀𝜔4
𝑟,0

𝑧2

𝑟2𝑏
𝑆𝑧(𝜈𝑟), (5.20)

where 𝜔𝑟,0 = 𝜔𝑟(0) is the radial trapping frequency at the equator. Equation (5.17) also
becomes:

Γ𝑧 =
𝜔2
𝑟 (𝑧)

4𝑟2𝑏

1
(︁

1 + 2𝑧
𝑟b

)︁2𝑆𝑧(2𝜈𝑟(𝑧)) =
𝜔2
𝑟,0

4𝑟2𝑏

1

1 + 2𝑧
𝑟b

𝑆𝑧(2𝜈𝑟(𝑧)). (5.21)

For our measured values, the corresponding heating rate and lifetime are respectively
lower than 0.1 nK · s−1 and on the order of 1× 106 s, and these effects can therefore be
completely neglected.

∙ The power fluctuations of the double light sheet will also lead to a position noise, as the
vertical position of the atoms depends on the light sheet power due to the gravitational
sag. The vertical position of the atoms in the double sheet compared to its center
reads 𝛿𝑧 = −𝑔/𝜔2

𝑧 . Following the same reasoning as previously, one can expect a linear
heating:

⟨𝐸̇⟩𝑧 =
1

4
𝑀𝑔2𝑆𝜖(𝜈𝑟(𝑧)). (5.22)

The corresponding heating rate is on the order of 10−4 nK · s−1 and is therefore com-
pletely negligible. One could also think that if the atoms are not at the equator, the
noise on the vertical position will also lead to radial position noise as well as fluctua-
tions of the radial trapping frequency, but since the vertical position fluctuations are
extremely weak these noise sources can probably be safely ignored.

Finally, the effect of fluctuations of the dressed trap part can be computed, using again
the same principle:

∙ The frequency noise of the RF source will cause a fluctuation of the ring radius, and
a position noise depending on the relative frequency noise of the RF source 𝑆𝜈rf ,rel at
the radial frequency:

⟨𝐸̇⟩𝛿𝜈rf =
1

4
𝑀𝜔4

𝑟 (𝑧)
𝑟4𝑏
𝑟20
𝑆𝜈rf ,rel(𝜈𝑟), (5.23)

⟨𝐸̇⟩𝛿𝜈rf =
1

4
𝑀𝜔4

𝑟,0𝑟
2
𝑏

1 + 2𝑧
𝑟b

1− 2𝑧
𝑟b

𝑆𝜈rf ,rel(𝜈𝑟(𝑧)) ≃
𝑧≪𝑟b

1

4
𝑀𝜔4

𝑟,0𝑟
2
𝑏𝑆𝜈rf ,rel(𝜈𝑟(𝑧)). (5.24)

To have a heating rate ⟨𝐸̇⟩𝛿𝜈rf < 𝑘B × 1 nK · s−1 with our trapping frequencies, the
relative frequency noise of the RF source has to be lower than −118 dB ·Hz−1. In
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addition, if the ring is not at the equator, it will cause fluctuations of the radial trapping
frequency, with a resulting parametric heating rate:

Γ𝛿𝜈rf = 𝜈2𝑟 (𝑧)

(︂

𝑧

𝑟𝑏 + 2𝑧

)︂2

𝑆𝜈rf ,rel(2𝜈𝑟), (5.25)

Γ𝛿𝜈rf = 𝜔2
𝑟,0

𝑧2

𝑟2𝑏

1

1 + 2𝑧
𝑟b

𝑆𝜈rf ,rel(2𝜈𝑟(𝑧)) ≃
𝑧≪𝑟b

𝜔2
𝑟,0

𝑧2

𝑟2𝑏
𝑆𝜈rf ,rel(2𝜈𝑟(𝑧)). (5.26)

If the initial temperature of the cloud is 100 nK and supposing a vertical offset of
1 ➭m, a heating rate lower than 1 nK · s−1 requires a relative frequency noise lower
than −65 dB ·Hz−1 (note that this requirement is equivalent to having a time constant
larger than 100 second).

∙ The amplitude noise of the RF source will cause fluctuations of Ω1 and therefore of
the radial frequency, and generate parametric heating with a time constant:

Γ𝛿𝑎 =
𝜔2
𝑟 (𝑧)

4
𝑆a,rel(2𝜈𝑟) =

𝜔2
𝑟,0

4

(︂

1 +
2𝑧

𝑟𝑏

)︂

𝑆a,rel(2𝜈𝑟(𝑧)) (5.27)

where 𝑆a,rel is the amplitude noise of the RF source. Supposing an initial temperature of
100 nK, the relative amplitude noise required to have a heating rate lower than 1 nK · s−1

is −85 dB ·Hz−1.

∙ The fluctuations of the magnetic gradient will cause both fluctuations of the ring
radius and of the trapping frequency, leading to a linear heating:

⟨𝐸̇⟩𝛿𝛼 =
1

4
𝑀𝜔4

𝑟 (𝑧)
𝑟4𝑏
𝑟20
𝑆𝛼,rel(𝜈𝑟(𝑧)), (5.28)

⟨𝐸̇⟩𝛿𝛼 =
1

4
𝑀𝜔4

𝑟,0𝑟
2
𝑏

1 + 2𝑧
𝑟b

1− 2𝑧
𝑟b

𝑆𝛿𝛼(𝜈𝑟(𝑧)) ≃
𝑧≪𝑟b

1

4
𝑀𝜔4

𝑟,0𝑟
2
𝑏𝑆𝛼,rel(𝜈𝑟(𝑧)). (5.29)

and a parametric heating with a time constant:

Γ𝛿𝛼 = 𝜔2
𝑟 (𝑧)

(︃

1 + 3𝑧
𝑟b

1 + 2𝑧
𝑟b

)︃2

𝑆𝛼,rel(2𝜈𝑟(𝑧)), (5.30)

Γ𝛿𝛼 = 𝜔2
𝑟,0

(︁

1 + 3𝑧
𝑟b

)︁2

1 + 2𝑧
𝑟b

𝑆𝛼,rel(2𝜈𝑟(𝑧)) ≃
𝑧≪𝑟b

𝜔2
𝑟,0𝑆𝛼,rel(2𝜈𝑟(𝑧)) (5.31)

where 𝑆𝛼,rel is the PSD of the relative noise on the gradient (which should correspond
to the relative noise of the current supply). The formula giving the linear heating rate
is the same than in the case of RF frequency fluctuations and the requirement on the
relative fluctuations is therefore the same: it has to be lower than −118 dB ·Hz−1 for the
linear heating to be lower than 1 nK · s−1. For the parametric heating, a time constant
larger than 100 s requires a relative noise below −95 dB ·Hz−1.

Due to the low heating rate observed in the dressed trap, we however did not investigate these
noise sources in detail for now.



108 Experimental realization of the ring trap

Lifetime in the ring

After the heating sources, it is also useful to make the list of the possible origins for atom
losses. There are six possible loss sources in our trap, among which two are susceptible to
affect us:

∙ Tunnelling through the light sheet should not be a problem, as the barrier height
is two orders of magnitude larger than any other energy in the system, and the barrier
is also quite thick due to the slow intensity decay of the light sheet for large 𝑧.

∙ Collisions with the background gas set the ultimate lifetime of atoms in the trap;
in ultra-high vacuum (10−11mbar in the science cell) they are normally negligible – the
corresponding lifetime is several minutes and is not limiting in our experiments.

∙ Photon scattering from the light sheet can lead, in addition to heating, to atom losses
by a change in the atomic internal state. The scattering rate, given by equation (5.12),
is however very small due to the choice of a blue-detuned double sheet, and this effect
is negligible.

∙ Landau-Zener losses come from non-adiabatic following of the dressed atomic levels
(see 2.1.3); a detailed theoretical description of their behavior can be found in [134].
They depend extremely strongly on the local Rabi coupling, almost creating a threshold
effect: if Ω1 is too low, the lifetime will be extremely small, if it is high enough the
corresponding lifetime will be very large and the atomic lifetime will be set by other
effects (a modification of Ω1 by a few 10% can be enough to go from one regime to the
other one). For a magnetic gradient 𝑏′ = 178G · cm−1 horizontally, we usually work with
Ω1 = 2𝜋 × 50 kHz (i.e. Ω0 = 2𝜋 × 100 kHz at the bottom of the bubble). At maximal
gradient (𝑏′ = 214G · cm−1), while the lifetime is only 0.4 s for a 40 kHz coupling, it
reaches several seconds for a coupling of 56 kHz; on the other hand, going from 56 kHz
to 63 kHz had no aditional effect on the lifetime, which then appears to be limited by
three-body losses. We might note that on our measurements the minimum value to
have in the ring appears higher than the minimum value that would be required in an
equivalent (i.e. same local gradient and local Rabi coupling) bubble trap. Additional
work to understand this effect is planned in the near future

∙ Three-body recombination leads to the loss of the corresponding atoms from the
trap. They depend only on the local atomic density, and set a definitive limit on the
atom number we can expect with a given trapping frequency. The decay reads [163]:

d𝑁

d𝑡

⃒

⃒

⃒

⃒

3𝑏

= −𝐾3

∫︁

𝑑𝑉 𝑛(𝑡)3, (5.32)

where the coefficient 𝐾3 has been measured by Burt et al. [163] to be around
6× 10−30 cm6 · s−1 for a condensed gas of 87 Rb in the 𝐹 = 1, 𝑚 = −1 sublevel (for a
thermal gas, it is 6 times larger due to bunching effects). In the ring trap and supposing
that the gas is in the 3D regime, expression (5.32) can be rewritten:

d𝑁

d𝑡

⃒

⃒

⃒

⃒

3𝑏

= −𝐾3

(︂

𝑀𝜔𝑟𝜔𝑧

4𝜋2𝑟0𝑔

)︂

𝑁2(𝑡), (5.33)

and in the absence of other loss sources, 𝑁(𝑡) therefore reads:

𝑁(𝑡) =
1

𝐾3

(︁

𝑀𝜔r𝜔z

4𝜋2𝑟0𝑔

)︁

𝑡+ 1
𝑁(0)

. (5.34)
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5.4 Future developments: towards lower dimensions

I will conclude this chapter by a discussion about lower-dimensional regimes (2D and 1D ring).
The possibility to access these regimes is one of the main interests of our method for realizing
ring traps, and they now seem reasonably accessible; I will discuss here the conditions and
methods to reach them.

5.4.1 Towards quasi-2D rings

The 2D regime we can expect to reach is the “saturnian ring” configuration (the “wrapped
sheet” configuration would require a radial trapping frequency significantly larger than the
vertical trapping frequency and would be much more difficult to reach). Reaching this quasi-
2D regime requires a chemical potential and a temperature smaller than the vertical trapping
frequency. The maximal vertical frequency we can achieve is 2.7 kHz. For the moment, we lack
a proper measurement of the ring temperature: the ring profile measured after time-of-flight
indicates that the temperature of the gas is below 280 nK as the gas stays condensed with
2× 104 atoms (using formula (4.22) we estimate the critical temperature for this number of
atoms to be around 280 nK), but this doesn’t tell us whether the temperature is lower than
the vertical trapping frequency (it corresponds to 𝑘B𝑇/ℎ ≈ 5.8 kHz). The chemical potential
in the ring ranges between 1.5 and 4.5 kHz depending on the number of condensed atoms
in the trap and the vertical trapping frequency12, meaning that we should be very close to
the two-dimensional regime. We can try to reduce it further by removing atoms from the
trap or increasing the ring radius to lower the density. A difficulty can come from keeping a
reasonable heating rate (a high power in the light sheet comes with more heating), and low
enough three-body losses. We also have to ensure a good enough homogeneity of the potential:
the lower the chemical potential, the better we need the potential to be homogeneous.

5.4.2 Towards quasi-1D rings

Reaching the quasi-1D regime requires the chemical potential and the temperature to be also
smaller than the radial trapping frequency. The most favorable configuration to reach this
regime corresponds to 𝜔𝑧 = 𝜔𝑟. In this case, using equation (4.24), comparing the chemical
potential to the trapping frequencies leads to the condition for reaching the quasi-1D regime:

2𝑁𝑎

𝜋𝑟0
. 1, (5.35)

which appears to be independent from the trapping frequencies. It can even be simply ex-
pressed as a condition on the atomic linear density:

𝑛1 =
𝑁

2𝜋𝑟0
.

1

4𝑎
, (5.36)

equal to 47 atoms per micrometer. For a ring with radius 20 ➭m, it corresponds to approxi-
mately 6000 atoms, small but detectable. However, it might be useful to increase the chemical
potential in order to reduce the relative effect of potential inhomogeneities, which would re-
quire to increase the trapping frequency (𝜇1𝐷 = 2~𝜔𝑛1), by increasing the magnetic gradient.
A stronger trapping would also make it easier to have a temperature lower than ~𝜔/𝑘B; it
will however increase the three-body losses and there will probably be, again, a tradeoff to

12. µ3D ∝
√
Nωzωr, see (4.24).
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make. By increasing the magnetic gradient and keeping Ω2
0/𝑏

′ constant to avoid a too strong
increase of the Landau-Zener losses, we can expect to achieve up to 𝜔 = 2𝜋 × 1.7 kHz with
only minor modifications of the experimental system (by tripling the magnetic gradient, see
later).

5.4.3 Coil heating tests

To increase 𝑏′, we need to increase the current in the quadrupole coils. This requires a more
powerful current supply, and also to be sure that the coils will be able to sustain the target
current. We therefore made heating tests to estimate how much current we can put in the
coils without risking to damage them.

Realizing heating tests on the real coils would be very dangerous, but we have a spare coil
built on the same model than the ones we have on the experiment, on which we could perform
tests. To try getting as close as possible to the real system, we did the tests with a pair of
additional coils in series with the coil we wanted to test to have similar total electric resistance;
all coils were water-cooled similarly to the real experiment, with a water flow adjusted to be
identical (0.9L ·min−1); the supply cables were also identical (same cable) to the ones we
have on the experiment. We used the power supply of the magnetic transport coils13 to
realize the tests; it can deliver up to 400A and 15V. Temperature probes were installed on
most elements: supply cables, coil, copper wire (downstream from the coil), junction between
coil and supply wires.

In a first series of measurements, we measured the equilibrium temperature of the elements
for a given current, once the system equilibrated. The first element to change will be the
supply cable, which heats up a lot; to perform the experiments beyond 160A we had to use
two cables in parallel to avoid it heating too much. Finally, we were able to put 300A in the
system without suffering too much heating of the different elements: +40 ∘C in the bare wire,
+30 ∘C in the wires and +25 ∘C in the coils, see figure 5.26. The limiting factor was then the
junction between the two parallel supply cables, meaning that we will have to take care of
the junction between the cable and the coil and the real experiment. Using a thermal camera
could be useful to track local overheating points in the solderings.

A second set of experiments aimed at measuring the rising and lowering times of the
elements’ temperature. Indeed, in the real experiments we want to perform, the current in
the coils will have to be very high only during a few seconds, with a duty cycle around one
minute, meaning that the temporal behavior can be important. These measurements show
two categories of behavior:

∙ For the elements made of hollow wire and water-cooled, the time constants are around
5 to 10 seconds, meaning that the steady state can be achieved during one experimental
sequence. However, these elements do not suffer too much heating.

∙ for the larger, uncooled elements (cables and junctions), the time constants are around a
few minutes, meaning that the steady state will never be reached during one experimen-
tal sequence. We thus expect that when cycling experiment, they will reach a steady
state with a heating proportional to the duty cycle. We could confirm this behavior by
applying current pulses lasting 10 s every two minutes and observed that the heating
indeed stabilized around 10/120 of the value measured for continuous current.

13. SM15-400 from Delta Elektronika.





Chapter 6

Preparation of a persistent flow

Once a satisfying annular gas has been achieved in the ring trap, the next step to study
superfluid flow is developing the ability to both generate and detect it. This has been done
for our ring, and this chapter will describe it. Its first part will describe the three methods we
implemented (or work at implementing) to generate rotation: the first one consists in putting
into the ring a local defect that will then be displaced to stir it; the second one relies on
imprinting directly onto the gas the phase we want the superfluid to acquire, and the third
one consists in rotating the whole “dressed part” of the ring trap. The second part of this
chapter will then describe the detection of the obtained flow.

6.1 Experimental tools for rotating the ring

6.1.1 The laser stirrer

A first method that allows to generate superfluid flow in a ring is to focus onto it a small
blue-detuned laser beam whose position can be controlled, allowing in this way to displace an
obstacle within the fluid [144,145,155]. Since the excitation is local, it is also a useful tool to
probe the superfluid critical velocity and has been widely used in that purpose [47, 67, 164].
We have implemented and tested such a system on our experiment, that I will describe in the
following.

Experimental system

The principle of the system is quite simple: a blue-detuned laser beam goes through a pair of
successive crossed acousto-optical modulators1 (AOMs), each of them deflecting the beam (we
use the first order of both AOMs) from a certain angle that depends on its applied frequency,
and the beam is subsequently focused onto the atomic gas. Adjusting the frequency of the
AOMs allows to modify the impact position onto the atoms, and thus to displace the stirring
beam within the gas (figure 6.1).

We want the final spot to be highly focused (around 5 ➭m waist), and the required power
is rather weak (less than 10mW); a leakage of the ALS laser beam used to generate the plug
(𝜆 = 532 nm) is then sufficient. For space reasons, there is 20 cm between the last lens of

1. DTSXY-250-532 from AA opto-electronic
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Alignments

Our vertical imaging setup allows us to monitor the profile of the stirrer beam at the position
of the atoms (see fig. 6.3a). An interference filter can be placed onto the imaging axis to
allow the 780 nm imaging light to pass while preventing the 532 nm light to reach the camera,
or removed to allow taking pictures of the green light. In the first case, we can image the
atoms in the presence of the stirrer beam, hoping for example to see a hole in the atomic cloud
(6.3a). In the second case this is not possible: the stirrer beam is much more focused than
the probe beam and saturates the camera if its dynamical range is chosen to image properly
the probe. However, it allows to directly image the stirrer beam (figure 6.3b) and compare
its position with the position of the atoms measured on pictures taken in the absence of the
stirrer.

Aligning the stirrer onto the atoms can then be achieved by using this camera: we align
the beam on the position where the atoms would be detected (without the filter). The stirrer
beam is then roughly aligned, but still needs careful tuning: after this step, we usually still
do not hit the atoms with the stirrer beam.

The fine alignment is then done taking in situ pictures of an atomic cloud at the bottom
of the bubble in presence of the beam (with the filter). The first step is to detect the effect
of the beam onto the atoms. If the stirrer is left static and turned on with a very high power
(around 10mW, which corresponds to a light shift on the atoms caused by the stirrer of
approximately 100 kHz), the cloud is then usually slightly displaced, indicating the relative
position of the stirrer compared to the atomic cloud (when the power is large, the beam has
an effect even away from its central position, possibly due to the presence of a diffuse light
pedestal around the “real” beam). It is also possible to describe circular trajectories at high
frequency and look for the heating induced onto the atoms. Once we detect the effect of the
stirrer, we try to pierce the cloud with it and adjust the beam position until we hit the center
of the cloud (see figure 6.3b). This displacement can be done by changing the frequencies
determining the impact point or the angle of the dichroïc mirror sending the beam onto the
atoms. The former allows to be easily reproducible and more precise displacements, but the
latter can be required to ensure that the cloud is in the center of the region accessible to the
stirrer (limited by the AOM’s bandwidth).

Beam focus and beam waist measurement

We can also try to use this vertical camera to focus the beam onto the atoms: it is possible to
scan the vertical position of the camera to measure the beam profile, and compare the focal
point obtained in this way with the camera position for which the imaging focus is correct.
The longitudinal position of the last lens can then be adjusted to focus the stirrer properly8.
These measurements seem to display a weak astigmatismn for the stirrer beam, as well as
optical aberrations away from the focal point; the measured waist is around 8 ➭m. They have,
however, to be taken with caution because the vertical camera was built initially to image
780 nm light, and the lenses were chosen with a coating (B coating from Thorlabs) that has a
very weak reflectance for 780 nm light (0.2% announced by the manufacturer) but significant
reflectance at 532 nm (around 9%), which limits the trust we can put into these images; we
also noticed afterwards that some of the pictures used to perform the measurements were
saturated, therefore increasing the measured waist. We can also note that due to the finite

8. However, when the screw blocking the lens translation is loosened there is some backlash on the lens
lateral position, and the beam lateral alignment then has to be done again.
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6.1.2 Phase imprinting with a SLM

Another commonly used method to generate circulation in a ring trap relies on phase imprint-
ing [57, 58]. It has the advantage of creating a deterministic flow into the ring with a good
fidelity.

The current experimental implementations of such a scheme rely on Raman two-photon
transition where one of the photons carries orbital angular momentum (coming from a
Laguerre-Gauss beam) and the other one does not (coming from a gaussian beam). Such
a method requires internal states between which the transition is driven, usually Zeeman sub-
states: even though this method is very appealing, it is therefore very difficult to implement
in a magnetic trap (and even more difficult in a RF-dressed trap, since the atoms are not in
a single state but in a mixture of states).

We are currently trying to implement a setup that would allow us to similarly imprint a
given phase onto the atoms, but relying on a beam with an intensity helix rather than a phase
helix (i.e. a Laguerre-gaussian beam). The idea is to shine onto the atoms a laser beam with a
position-dependent intensity 𝐼(r) and corresponding position-dependent potential 𝑈(r). If the
beam is turned on during a short time 𝜏 , the atoms will locally acquire a phase proportional
to the pulsed potential:

𝜓(r, 𝜏) = 𝜓(r, 0)𝑒−
iU(r)τ

~ . (6.1)

If we imprint in this way a ℓ×2𝜋 phase onto the atoms, we should be able to directly imprint
the desired ℓ flow level.

In practice, the finite resolution of the optical system may however prevent from directly
using such a scheme: the phase gradient is indeed applied on most of the ring, but instead of a
local 2𝜋 phase jump, it will imprint a 2𝜋 phase ramp whose size will be the optical resolution.
This ramp will then create a strong flow propagating against the one we want to create and
cancel the effect of the prepared phase gradient (see figure 6.5 c). For this reason, we intend
to use the stirrer beam described in previous section to deplete the region where the phase
jump should happen while the intensity helix is applied. We have studied the dynamics of
the flow after the barrier is removed and shown that the ℓ = 1 − 3 states can be prepared
efficiently [167].

The intensity helix will be generated by a Spatial Light Modulator (SLM) used in “mask
mode”: the SLM is placed between a pair of crossed polarizer analyzer, and locally rotates
the beam polarization to determine the intensity that will go through the analyzer: the SLM
imprints an arbitrary spatial polarization profile, which then becomes an arbitrary intensity
profile after the analyzer. In the end, such a setup can in principle be used to generate
arbitrary phase profiles. Beyond the idea of imprinting a given circulation, the possibility of
imprinting any phase profile onto the atoms would be useful for example to generate and study
solitons [168], or to study the recombination of phase domains and Kibble-Zurek mechanism
(similarly to [149], but with controlled instead of random phases). The SLM has been tested
in the lab and its use has been theoretically investigated during the last two years; it is now
ready to be set up onto the experiment. Experimental details and numerical simulations can
be found in [87,167].

6.1.3 Rotating the bubble trap

A last method for setting the atoms into rotation consists in deforming and rotating the trap
itself, similarly to a “rotating bucket” experiment. More precisely, we would like to rotate the
radial part of the confinement, which happens to be the dressed trap.
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Introduction

Superfluidity implies the irrotationality of the velocity field of a fluid. However, rotation
is still possible if quantized vortices are introduced in the superfluid, creating density zeros
around which the fluid is able to rotate [12, 13, 15, 92, 169]. When many of these vortices are
present, they arrange into regular vortex arrays, allowing the superfluid to mimic a solid-body
rotation velocity field, leading to the “coarse-grained” velocity regime [53].

Even though vortices are quantum objects, these effects can still be explained by a classical
field description of the wavefunction of the fluid [170]. When the rotation gets even faster
however, the quantum nature of the wavefunction cannot be neglected anymore, and the
superfluid should enter exotic regimes like the Lowest Landau Level regime [54], analogue
to the quantum Hall effect for a supraconductor. Strongly correlated states like Laughlin
states can even be reached when the number of vortices becomes comparable to the number
of particles in the fluid [171]. On the experimental side, the ability to produce and study
increasingly fast rotating dilute superfluids was developed very rapidly after the realization
of the first gaseous BECs [51–54, 172], but after 2005 the experimental efforts concentrated
on other aspects of the vortex physics [173–178].

A promising method for reaching some of the fast rotating regimes is to use anharmonic
trapping [179]. Indeed, one of the major experimental difficulties when entering fast rotat-
ing regimes is that in the usual case of harmonic traps, the centrifugal force compensates or
overcomes the trapping force, leading to a divergence in the size of the gas when the rotation
frequency approaches the trapping frequency, or even to the expulsion of all atoms if the rota-
tion frequency exceeds the trapping frequency [170]. A stronger than harmonic confinement
ensures to maintaining the atoms in the trap even if the rotation frequency is higher than
the trapping frequency. The effective potential in the rotating frame then takes the shape
of a Mexican hat and the gas becomes annular. If the rotation is large enough, all vortices
then migrate within a central density hole and the gas becomes effectively 1D, leading to a
stable, “giant” vortex [74–76,79]. This regime has been approached in 2004 in the group of J.
Dalibard [77], although without reaching a vanishing density in the center.

The experiments described in this part result from a proposition of Romain Dubessy, who
suggested to stir a cloud at the bottom of the bubble in order to achieve a giant vortex: indeed,
as the bubble trap is anharmonic, it could be a suitable system to explore these regimes. The
initial attempts, described at the beginning of chapter 8, were unsuccessful, but the results
were surprising enough to trig some studies in order to understand better our results, which
finally led us to very interesting (and unexpected) results, among which the achievement of a
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“ dynamical” ring-shaped gas.
This part consists of two chapters: chapter 7 details the different rotation regimes of a

superfluid and introduces from a theoretical point of view some of the techniques we used to
study fast-rotating gases in bubble traps. Chapter 8 presents the experimental results, from
the first attempts to the realization of fast-rotating dynamical rings, as well as the results we
obtained on the characterization of such a system.



Chapter 7

Theory of rotating superfluids

This chapter aims at describing from a theoretical point of view the behavior of vortices in
the case of fast rotating Bose gases, i.e. the case where many vortices are present in the gas,
and to introduce in this way the basics on which the third part of my thesis relies. In a first
section, I will describe the behavior of vortices in the case of small to moderate rotations
(Ωrot < 𝜔⊥); this regime has been studied a lot experimentally and theoretically and is now
well understood. In a second section, I will describe the regime of fast rotations, when the
rotation frequency gets very close to the trapping frequency. Despite the significant number
of predicted phenomena that haven’t been observed in this regime, no experimental work
seems to have been carried on this topic during the last decade; it is this regime that we
want to explore. Note that a more detailed review of these topics can be found in [170]. The
third section will then describe the behavior of the quadrupole modes of rotating condensates,
which gives useful tools to probe the properties of the superfluid. Finally, I will describe the
theory that lies behind a few usual techniques for studying vortices: how we nucleate them
and how we observe them.

All the experiments I will present in this part are performed at the bottom of our bubble
trap: the trapping geometry there is highly oblate, with 𝜔𝑧/𝜔⊥ ∼ 10. For this reason, I will
here consider only the case of 2D superfluidity, meaning that:

∙ All the rotations that will be considered are along the vertical axis.

∙ The quantized vortices are also aligned along this axis, and we neglect their possibility
to tilt and/or bend.

In this case, the velocity field lies in the horizontal plane and does not depend on the 𝑧
position. Note that this doesn’t require the condensate to be 2D or quasi-2D: the restriction
here applies only to the allowed behavior of the vortex lines [180].

7.1 Vortices in a rotating superfluid

7.1.1 A single vortex

Let us start by describing the behavior of a single vortex line in a superfluid. The most crucial
relationship for describing the velocity field in a superfluid is the Feynman-Onsager relation
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(1.34), that I recall here:

∮︁

𝒞
v(r, 𝑡) · dl = ~

𝑀
∆𝒞𝑆 = ℓ× 2𝜋

~

𝑀
, ℓ ∈ Z. (7.1)

Computing this relation on a circle with radius 𝑟 centered on the vortex leads to the velocity
field it creates:

v =
ℓ~

𝑀𝑟
e𝜑. (7.2)

In principle, the “charge” of the vortex ℓ can take any integer value, but a vortex with |ℓ| > 1
is unstable and spontaneously splits into several singly-charged vortices [56], and we will only
consider ℓ = ±1 in this chapter.

The Stokes’ theorem then leads to a singular vorticity localized at the position of the
vortex:

∇× v =
2𝜋~

𝑀
𝛿(r)e𝑧. (7.3)

Since the velocity field diverges for 𝑟 → 0, the density has to vanish in this limit to keep
a finite kinetic energy. Comparing the kinetic energy:

𝐸𝑘 =
1

2
𝑀v

2 =
~
2

2𝑀𝑟2
(7.4)

with the chemical potential 𝜇 allows to estimate the typical size over which the density will
vanish, 𝑟𝑣 =

√︀

~2/2𝜇𝑀 , which happens to be the healing length 𝜉. We can note that 𝜉
corresponds to the distance to the vortex below which the flow becomes supersonic (the
sound velocity being given by (1.25)). More accurately, Gross-Pitaevskii simulations lead to
a root-mean-square core radius around 𝑟𝑣 = 1.94𝜉 [54].

7.1.2 Many vortices: the coarse-grained vorticity approximation

Let us now consider the case of a rotating trapped gas in which a significant number of
vortices are present. One can show [170] that for a given angular momentum 𝐿𝑧, the velocity
configuration that minimizes the energy of a rotating fluid is the solid-body rotation vsb =
Ω×r, where Ω is given by the classical solid-body moment of intertia: 𝐿𝑧 = Ω×𝑀⟨𝑟2⟩. This
configuration, however, implies ∇ × v = 2Ω and is unachievable for a superfluid whose flow
is irrotational.

Nevertheless, when several vortices are present in the superfluid, the way they distribute
within the fluid allows many configurations for the velocity field, and the lowest energy con-
figuration is the one that mimics the solid body rotation. For a sufficiently large amount of
vortices, one can make the assuption of a “coarse-grained” vorticity, where the vortices are
uniformly distributed within the condensate with a surface density [12]:

𝑛𝑣 =
𝑀Ωeff

𝜋~
, (7.5)

where Ωeff is defined from the mean angular momentum per atom 𝐿𝑧 as:

Ωeff =
𝐿𝑧

𝑀⟨𝑟2⟩ . (7.6)
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As a useful formula, I recall here that for a harmonically trapped BEC, ⟨𝑟2⟩ can be expressed
from the Thomas-Fermi radii [181]:

⟨𝑟2⟩ =
𝑅2

𝑥 +𝑅2
𝑦

7
(7.7)

Each vortex having a singular vorticity ℎ/𝑀 , the local vorticity is then 𝑛𝑣ℎ/𝑀 , i.e. ∇×
v = 2Ωeffe𝑧, and we find the expected solid-body rotation. Note that Ωeff can always be
defined, even for a amount angular momentum per particle – however, for small numbers of
vortices, the flow will of course significantly deviate from the solid-body rotation.

From the vortex density 𝑛𝑣 one can then deduce the area per vortex 𝑛−1
𝑣 = 𝜋~/𝑀Ωeff ≡ 𝜋𝑙2

and define the “magnetic length” (by analogy with the quantum Hall effect):

𝑙 =

√︃

~

𝑀Ωeff
, (7.8)

which would correspond to the radius of a circular cell: the intervortex separation is then
approximately1 2𝑙.

The total number of vortices in the superfluid is then equal to:

𝑁𝑣 =
𝑅2

⊥(Ωeff)

𝑙2
, (7.9)

where 𝑅⊥ increases with Ωeff due to the centrifugal force.
Computing the ground state of the system is then relevant in the frame rotating at Ωeff .

In this referential, the total energy of the system in a configuration given by the wavefunction
𝜓 writes [170]:

𝐸[𝜓] =

∫︁

𝑑𝑉

[︂(︂

1

2
𝑀v

2 + 𝑉ext

)︂

|𝜓|2 + 1

2
𝑔int|𝜓|4

]︂

−
∫︁

𝑑𝑉𝑀Ωeff e𝑧 · r× v|𝜓|2, (7.10)

where we neglected the kinetic energy associated to the spatial variation of the condensate
density, i.e. in the Thomas-Fermi approximation (not that this includes the kinetic energy
associated to the density variation in the vortex core). Considering the hypotheses we made
on 2D superfluidity and using the definition (7.6), this energy can be reexpressed as:

𝐸[𝜓] =

∫︁

𝑑𝑉

[︂(︂

1

2
𝑀v

2 −𝑀Ω2
effr

2 + 𝑉ext

)︂

|𝜓|2 + 1

2
𝑔int|𝜓|4

]︂

, (7.11)

and one can finally split the energy functional into two parts, as:

𝐸[𝜓] =

∫︁

𝑑𝑉

[︂(︂

𝑉ext −
1

2
𝑀Ω2

effr
2

)︂

|𝜓|2 + 1

2
𝑔int|𝜓|4

]︂

+

∫︁

𝑑𝑉
1

2
𝑀(v − vsb)

2|𝜓|2. (7.12)

The first term corresponds to the energy of the system in the solid-body configuration, and the
second one to the additional kinetic energy of the deviation to this solid-body rotation (note
that it is always positive, as the solid body rotation configuration is the one that minimizes
the energy). The coarse-grained vorticity approximation (also called “diffuse vorticity”) then

1. The exact distance between vortices depends on the vortex repartition geometry, for example in the
triangular lattice configuration it is equal to 2l

√︀

π/3.
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7.2 The fast-rotating regime

The coarse-grained vorticity description presented in section 7.1.2 works well for moderate
rotation regimes (Ωeff . 𝜔⊥), but fails in the fast rotating regime (for Ωeff → 𝜔⊥). We should
even speak about fast-rotating regimes: as Ωeff gets closer and closer to 𝜔⊥, the quantum
gas is predicted to undergo a series of quantum phase transitions and reach highly correlated
states. Most of these regimes are yet completely unaccessible experimentally as they typically
require a number of vortices comparable or even larger than the number of particles (for now,
the lowest achieved values for 𝜈 = 𝑁/𝑁𝑣 are around 500 [54]), but even the regimes that are
the easiest to achieve present a significant interest. They are the primary motivation for the
work I will present in the next chapter, and I will here describe what is expected to happen
in these rotation regimes and what has been experimentally achieved. Finally, I will describe
what we can hope to achieve with our experiment on this topic.

7.2.1 Theoretical interest

The Lowest Landau Level

The coarse-grained vorticity is based on the mean-field Thomas-Fermi approximation: it
neglects the kinetic energy associated to local density variations, that is, it considers the
velocity field created by the vortices but not the modifications of the density in the vortex
core. This is valid as long as the vortex core size is much smaller than the inter-vortex
distance: 𝜉 ≪ 𝑙. However, as the effective rotation frequency Ωeff grows closer to 𝜔⊥, the
radial trapping becomes extremely weak due to the centrifugal force and the chemical potential
strongly drops: the healing length 𝜉 then tends to diverge. On the other hand, the inter-
vortex distance saturates to 𝑙 ≈ 𝑑⊥ as Ωeff approaches 𝜔⊥: for large enough rotation rates,
the previous approximations fall and another description of the system that fully takes into
account its quantum nature becomes necessary.

To understand the physics in this system, it is useful to consider the quantum description of
the trapped particles, using the creation and annihilation operators of the harmonic oscillator.
The most convenient basis, more precisely, is the basis of circularly polarized states 𝑎̂± =
(𝑎̂𝑥 ∓ 𝑖𝑎̂𝑦)/

√
2. In this basis, the hamiltonian of the harmonic oscillator reads:

𝐻0 = ~𝜔⊥(𝑎̂
†
+𝑎̂+ + 𝑎̂†−𝑎̂− + 1), (7.16)

and the angular momentum:
𝐿𝑧 = ~(𝑎̂†+𝑎̂+ − 𝑎̂†−𝑎̂−). (7.17)

Denoting 𝑛± the eigenvalues of the number operators 𝑎̂†±𝑎̂±, the energy of the eigenstates in
the rotating frame can then be written under the two equivalent forms:

𝐸(𝑛+, 𝑛−) = 𝑛+~(𝜔⊥ − Ωeff) + 𝑛−~(𝜔⊥ +Ωeff), (7.18)

= 𝑛~𝜔⊥ −𝑚~Ωeff , (7.19)

with 𝑛 = 𝑛++𝑛− and 𝑚 = 𝑛+−𝑛−. The corresponding energies are plotted on figure 7.2: we
see that for Ωeff → 𝜔⊥ all states with 𝑛 = 𝑚 become quasidegenerate, forming the so-called
“Lowest Landau Level” (LLL).

Let us come back to our initial questioning. The condition 𝜉 ∼ 𝑑⊥ can be reexpressed
as 𝜇 ∼ ~𝜔⊥: in this case, supposing that the gas is quasi-2D (which is often the case since
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𝑧 = −
√︁

𝑟2𝑏 − 𝑟2/2. We consider the case of a circularly polarized RF field, as described in

section 2.3.1. In the rotating frame, the total potential can then be written as:

𝑉 (𝑟, 𝑧) = 𝐹~Ω1(𝑟, 𝑧) +𝑀𝑔𝑧 − 1

2
𝑀Ω2

eff𝑟
2. (7.23)

Using expression (2.60) for Ω1, we can rewrite it as:

𝑉eff(𝑟) = 𝐹~
Ω0

2
−𝑀𝜔2

⊥𝑟
2
𝑏

√︃

1− 𝑟2

𝑟2𝑏
− 1

2
𝑀Ω2

eff𝑟
2, (7.24)

where 𝜔⊥ is equal to:

𝜔⊥ =

√︂

𝑔

2𝑟𝑏

[︂

1− 2𝐹~Ω0

𝑀𝑔𝑟𝑏

]︂1/2

, (7.25)

which coincides with expression (2.64) for 𝛽 ≪ 1. From equation (7.24), the equilibrium
position can then be found, defining 𝜅 ≡ 𝜔2

⊥/Ω
2
eff , as:

𝑟eq =

{︃

0 if Ωeff ≤ 𝜔⊥,

𝑟𝑏
√
1− 𝜅2 if Ωeff > 𝜔⊥;

(7.26)

𝑧eq =

⎧

⎨

⎩

−𝑟𝑏
2

if Ωeff ≤ 𝜔⊥,

−𝜅𝑟𝑏
2

if Ωeff > 𝜔⊥.
(7.27)

A hole will then appear at the center of the cloud if the chemical potential is lower than
the centrifugal barrier height, which reads:

𝑈𝑏 =
1

2
𝑀Ω2

eff𝑟
2
𝑏 (1− 𝜅)2 . (7.28)

Evaluating the chemical potential can get slightly tricky as the trapping frequencies change
while the cloud climbs on the bubble’s sides. In this case, the orientation of the local basis is
determined by the angle 𝜃rot = arctan(−𝑟eq/𝑧eq), and the trapping frequencies become [125]:

𝜔2
𝑧′ = 𝜔2

𝑧

(︂

1 + 3𝜅2

2(1 + 𝜅)
+

Ω2
0

𝜔2
rf

3𝜅(9𝜅4 − 7𝜅2 − 2)

8(1 + 3𝜅2)

)︂

− 1− 𝜅2

1 + 3𝜅2
Ω2
eff , (7.29)

𝜔2
⊥′ = 𝜔2

⊥
4

𝜅

1− 𝜅2

1 + 3𝜅2
. (7.30)

Note that these equations are only valid for 𝜅 < 1. These trapping frequencies can then be
used to compute the chemical potential using the same formulas than for the ring trap, (4.24)
and (4.25).

It can also be useful to relate to the case of harmonic plus trapping; the corresponding
predictions should be valid when the atoms stay close to the bottom of the bubble. The
parameter 𝜆 describing the strength of the quartic confinement (see (7.22)) can be expressed
easily from (7.24) as:

𝜆 =
𝑑2⊥
4𝑟2𝑏

. (7.31)
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In this case, the central hole is predicted to appear for an effective rotation frequency [76]:

Ωℎ = 𝜔⊥

⎡

⎣1 + 2
√
𝜆

(︃

3
√
𝜆𝑔𝑁

2𝜋

)︃1/3
⎤

⎦

1/2

. (7.32)

Note that this latter prediction relies on the quasi-2D character of the gas, 𝑔 being the
dimensionless coupling constant (see 1.3); this hypothesis is fulfilled in the experiments that
will be described in the next chapter: the chemical potential already dropped below ~𝜔𝑧 due
to the weakening of the radial confinement before the appearance of the hole.

Finally, one can note that the finite magnetic force that can be exerted onto the atoms
sets an upper bound on the allowed rotation frequency: if the centrifugal force goes beyond
the maximal magnetic force, the atoms are expelled from the trap. This condition can be
estimated at the equator of the bubble as:

𝑀Ω2
eff𝑟𝑏 < 𝐹~𝛼, (7.33)

which gives an upper bound to the allowed rotation frequency:

Ωeff ∼
√︃

𝐹~𝛼

𝑀𝑟𝑏
∼ 𝜔⊥

√︀

2𝛽. (7.34)

The maximal value for our magnetic gradient is currently 𝑏′ = 216G · cm−1, the upper bound
for the rotation frequencies we can achieve is therefore approximately Ωeff ∼ 3.5𝜔⊥: we cannot
hope to reach extremely fast rotations with this scheme, but it should still be sufficient to
allow us performing interesting experiments.

7.3 Collective modes of a rotating condensate

The collective modes of a trapped atomic gas can give a significant insight about their behavior
[50, 68, 103, 198]. Especially, in the case of rotating superfluids, the quadrupole mode can be
used as a probe to measure the angular momentum of the gas, or equivalently its rotation
frequency [199, 200]. Since we use this method to measure the rotation or our gases, I will
here enter the details of the underlying theory.

7.3.1 Collective modes of a trapped condensate

Computing the low-energy collective modes of a trapped gas is achieved by following an
approach similar to Bogoliubov’s (see 1.2.1): the hydrodynamic equations are linearized by
computing the effect of small variations 𝛿𝑛(r, 𝑡) of the atomic density around the ground-
state solutions 𝑛(r). Since our system is highly oblate, we choose to look for transverse
deformations, and exploiting the rotational invariance of our system, we look for 𝛿𝑛 solutions
with the form:

𝛿𝑛(𝑡) = 𝑒𝑖𝑚z𝜑𝑟|𝑚z |𝑃 (𝑟2)𝑒−𝑖𝜔𝑡, (7.35)

where 𝑃 is a polynomial of degree 𝑝. Injecting these solutions within the hydrodynamic
equations (and neglecting the quantum pressure terms – which correspond to the so-called
hydrodynamic approximation) leads to the dispersion relation [201]:

𝜔2 = 𝜔2
⊥

(︂

4

3
𝑝2 +

4

3
𝑝𝑚𝑧 + 2𝑝+𝑚𝑧

)︂

. (7.36)
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The nucleation of vortices in a superfluid through stirring of the initially vortex-free cloud
requires two main ingredients:

∙ The state containing vortices has to be energetically favorable compared to the vortex-
free state, meaning that the cloud has to rotate fast and/or to carry angular momentum.
In the harmonic case, the minimal rotation that the cloud has to achieve for the first
vortex to be favored reads [170]:

Ωmin =
5

2

~

𝑀𝑅2
⊥
ln

(︂

𝑅⊥
𝜉

)︂

. (7.41)

This frequency is usually quite small, for example in the parameters of the experiments
described in the next chapter it corresponds to approximately 5Hz (while all the fre-
quencies considered in the experiments are larger than 20Hz).

∙ A surface instability: nucleating vortices requires to introduce a length scale 𝜉 into
the system, that is much smaller than the length scales of the system at rest. This
requires surface instabilities, i.e. the flow at the nucleating surface has to become
turbulent [205,206].

These two ingredients can be obtained by different method: for example, one can displace
a stirrer beam (or several stirrer beams) within the fluid faster than the critical velocity
[166,207], or rotate the cloud within an anisotropic trap [52,90].

7.4.2 Driving the cloud through quadrupole resonance

I will detail more this latter case, as it is the one we use the most in our experiments. To
generate rotation in the cloud, we make the trap anisotropic and rotate this anisotropy (see
figure 7.10) at a frequency Ωrot. The problem can then be expressed as: how can we couple
angular momentum into the cloud through the rotation of the trap?

Let us express as 𝜔𝑋 and 𝜔𝑌 the oscillation frequencies of the rotating trap; the trap’s
anisotropy is defined as 𝜀 = (𝜔2

𝑋 − 𝜔2
𝑌 )/(𝜔

2
𝑋 + 𝜔2

𝑌 ). As we want to drag a superfluid initially
at rest, its vorticity is necessarly zero as it has no vortices in it. We can look for the velocity
field under the form of the quadrupolar flow (see fig. 7.10):

v = 𝛼𝑞∇(𝑋𝑌 ), (7.42)

where v is the velocity in the laboratory frame and 𝑋, 𝑌 the coordinates in the frame rotating
at Ωrot. Injecting this formula into the hydrodynamic equations shows that in the rotating
frame the cloud keeps the usual parabolic Thomas-Fermi shape, but with effective trapping
frequencies [181]:

𝜔̃2
𝑋 = (1 + 𝜀)𝜔2

⊥ + 𝛼2
𝑞 − 2𝛼𝑞Ωrot, (7.43)

𝜔̃2
𝑌 = (1− 𝜀)𝜔2

⊥ + 𝛼2
𝑞 + 2𝛼𝑞Ωrot, (7.44)

and one can show that 𝛼𝑞 verifies the equation:

𝛼3
𝑞 + 𝛼𝑞(𝜔

2
⊥ − 2Ω2

rot) + 𝜀Ωrot𝜔
2
⊥ = 0. (7.45)
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The free expansion of a harmonically trapped BEC initially the Thomas-Fermi regime has
been described by Castin and Dum [208]. The cloud keeps its parabolic shape, but the TF
radii become rescaled by a factor 𝜆𝑗 : 𝑅𝑗(𝑡) = 𝑅𝑗(0)𝜆𝑗(𝑡). Their results have been extended
later to the case of a rotating cloud [209], and in this latter case the scaling factors follow the
equations:

𝜆̈⊥ =
𝜔2
⊥ − Ω2

eff

𝜆3⊥𝜆𝑧
+

Ω2
eff

𝜆3⊥
, (7.49)

𝜆̈𝑧 =
𝜔2
𝑧

𝜆2⊥𝜆
2
𝑧

. (7.50)

Depending on the shape of the trapped gas, we can then see two different limit behaviors
for the expansion:

∙ In the case of a cigar-shaped gas, the expansion is essentially radial and 𝜆𝑧 ∼ 1: the rota-
tion then has only little effect on the expansion. The cloud’s radial size becomes simply

rescaled by a factor
√︁

1 + 𝜔2
⊥𝑡

2, and the vortex size evolves in the same proportion.

∙ In the case of a pancake-shaped gas, the vertical expansion of the cloud is much faster
than the radial expansion. Therefore, the size of the vortices grows, in proportion, faster
than the cloud’s radius [210,211]. However, no simple analytical formulas are available
in this limit.





Chapter 8

Fast rotating Boses gases in a

RF-dressed trap

This chapter describes the experimental results that have been achieved on the topic of fast-
rotating superfluids. All the experiments were realized at the bottom of the bubble trap, as
described in the previous chapter (section 7.2.3). In particular, I will detail the achievement of
a cloud rotating faster than the trapping frequency, which then takes a donut shape. To avoid
confusion with the second part of this thesis, I will restrict the use of the terms “ring-shaped”
and “annular” gases to the gas trapped with the blue-detuned double sheet, and rather speak
of “donut-shaped gas” or “dynamical ring”.

The first two sections of this chapter describe the achievement of such a donut-shaped
gas, first using the stirrer beam, and then exciting the cloud with a quadrupole deformation.
The two next sections then describe the study of this donut-shaped gas and the transition
regimes from the connected gas. The third section presents how we probe the quadrupole
modes in the gas, using both a percussive and a resonant method imported from the group
of J. Dalibard [200, 212]. The fourth and last section discusses the vortex distribution in
the dynamical ring – or rather, the absence of visible vortices in the dynamical ring and the
progressive melting of the vortex lattice while we enter the fast-rotating regime.

8.1 First experiments with the laser stirrer: reaching the fast

rotation regime

8.1.1 First attempt

The first attempts to achieve a fast rotating gas in the bubble trap were done with the stirrer
beam (described in section 6.1.1). Starting from a gas at the bottom of the bubble, the stirrer
was pointed onto it and described circular trajectories with various parameters (radius of
typically 10 to 25 ➭m for a cloud size around 20 ➭m and frequencies around 35 to 50Hz for a
trapping frequency of 37.5Hz). We initially tried to cool down the cloud during the stirring
process: starting from a thermal cloud close to the BEC limit, the cloud was stirred during
500ms while the RF knife was ramped down, and then allowed to relax in the presence of a
low knife. In these conditions, we expect to prepare a cloud rotating at very large speed, and
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The corresponding increase in the Gaussian width would be 0.89× 10−3m · s−1, comparable
to our measured expansion even though quite smaller. If we compute the expected 3D chem-
ical potential using formula (4.24) (which should be valid for a condensed dynamical ring)
with the aformentioned values for the trapping frequencies and atom number, the result is
approximately ℎ × 230Hz, lower than the vertical trapping frequency, which confirms that
the hypothesis of a quasi-2D condensate is relevant.

From this discussion, we believe that the observed cloud is quantum degenerate, and we
will make this supposition during the rest of the chapter.

8.2.7 Effect of the RF knife

One element of the experiments has been neglected up to now in our analysis of the system:
the RF knife, which is required to suppress the cloud heating during the experiments, in
particular at long times. Indeed, as it causes atomic losses, it can have an impact on the
rotation of the cloud, and as it is selective in position due to coupling inhomogeneities (see
section 3.2.4) this effect might not be simple.

The effect of the knife can be seen by looking for the time evolution of a cloud rotating
at the bottom of the bubble for different knife heights. In a series of experiments, we set a
gas into rotation at the bottom of the bubble following the procedure described previously,
with a quite smooth excitation: Ωrot = 2𝜋 × 24.3Hz, 𝜂 = 0.995/𝜀 = 0.039 and 5.5 turns.
During the formation of the cloud and the rotation process, the knife is left at a frequency
𝜔knife = 2𝜋× 0.37MHz (i.e. 20.7 kHz above the bottom of the trap2); 250ms after the end of
the excitation the knife is then ramped down to another value in 100ms. The 250ms waiting
time before ramping down the knife allow the cloud to go back to its round shape. We then
let the cloud evolve during various waiting times and image it from the side after a 23ms
time-of-flight. Depending on the final knife value, the cloud shows strikingly different profiles,
with an aspect ratio varying from a factor up to three (see figure 8.9).

The aspect ratio of the cloud after time-of-flight is an interesting observable to measure
the rotation, as it depends only on the trap’s parameters (which can be precisely measured)
and the rotation frequency. Its evolution with the rotation frequency can be computed from
equations (7.49) and (7.50) (assuming a harmonic trapping), and we can hope to access in
this way the rotation frequency of the cloud. It is plotted on figure 8.9: sadly, we have no
analytic formula that could allow us to convert the aspect ratio into the rotation frequency,
but we also see that very conveniently the aspect ratio evolves almost linearly with Ωeff over
a very wide range of frequencies. A linear fit of the central part of the data allows to recover
the correct result within 1% for rotation frequencies between 7.2 and 32.1Hz and gives an
easy and convenient way to measure the rotation frequency of the gas. The fact that this
linear relation does not work for very low or very high frequencies is not really a problem: for
low frequencies, the coarse-grained vorticity approximation is not valid anymore and Ωeff does
not describe the system accurately, while for high frequencies the trapping is not harmonic
anymore and the computed expansion is wrong anyway.

Using this linear dependence of the effective rotation frequency, we can come back to the
data by looking, now, to the evolution of Ωeff as a function of the knife (plotted on figure 8.10).
We observe a slow increase of the rotation frequency with time after the initial excitation,
which depends on the final knife height: for a high knife, this increase is negligible, while as
we lower the knife value this increase gets more and more important. For long waiting times,

2. I recall here that the relative height of the knife compared to the bottom of the trap is F~(ωknife−ωrf−Ω0),
and the atoms are in F = 1.
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the rotation frequency seems to saturate. We can also look for the variations of Ωeff with
respect to the number of atoms left in the BEC; we see that the rotation frequency seems to
increase linearly with atom losses, and the lower the knife, the stronger the dependency (the
slope of the linear relationship increases).

We interprete this effect as a “spin-up evaporation” similar to the one used in the Cornell
group [172]. Indeed, as the local Rabi coupling decreases while the atoms get further away
from the trap center, the knife will remove more efficiently the atoms that are close to the axis
of rotation and have a lower angular momentum, and spin up the cloud in this way. This effect
is far from being negligible: depending on the knife, the achieved rotation frequencies can vary
from more than a factor of two. Adjusting the knife therefore gives us an additional tool to
control the rotation frequency of the cloud. This gives, for example, a possible explanation to
the fact that we are able to generate a dynamical ring with excitation frequencies lower than
𝜔⊥: while the initial amount of angular momentum would lead to a cloud rotating slower than
𝜔⊥, during the relaxation the rotation is also slowly accelerated by the knife, up to Ωeff > 𝜔⊥.
A confirmation of this possibility was obtained by starting from a cloud set into rotation with
parameters that appeared to lead to a simply connected rotating gas: lowering the knife more
than usual allowed to transform it into a donut-shaped cloud (even though the atom number
in the final cloud was lower than what we are able obtain with a more violent initial stirring).

Note that all the experiments described in this chapter, unless specific precision, were
performed with the same knife as the one used for the first experiments, at 0.365 kHz.

8.3 Quadrupole modes in the dynamical ring

We have demonstrated the production of these “dynamical ring” gases, the next step is then
to characterize their behavior and properties: especially, we would like to have a direct proof
of superfluidity and to measure their rotation frequency. A study of the quadrupole modes
in such a gas would therefore be extremely interesting: indeed, as described in section 7.3,
their frequencies can allow to access the effective rotation frequency of the cloud, as well as
give a tool to discriminate a superfluid from a thermal cloud. We have no theory that could
describe properly the case of these modes for a dynamical ring in the bubble trap, but we
know what to expect when the cloud is still simply connected and it is interesting to see how
the quadrupole modes behavior evolves when going from a regime to the other one.

8.3.1 Percussive excitation of the quadrupole modes

A first method to probe these modes consists in applying to the cloud a strong static anisotropy
for a short time: 𝜂 is ramped from 1 to typically 0.65-0.85 (corresponding to 𝜀 ∼ 0.2) in 0.3ms,
stays constant during 4.4ms and is then ramped back to 1 in 0.3ms. The complete scheme
lasts 5ms while we have 2𝜋/𝜔⊥ = 29ms: the atoms do not have the time to significantly
move, but they feel the force exerted by the anisotropic potential. We then observe the
subsequent evolution of the cloud in the rotationally invariant potential. We excite in this
way the superposition of both +2 and -2 modes: we therefore look for the out-of-phase
oscillation of both radii of the cloud (see figure 8.11). In the presence of rotation, due to the
lifted degeneracy between +2 and -2 modes, the axes of this ocillation will then precess at
(𝜔+ − 𝜔−)/4. Repeating the experiment and taking in situ pictures for different durations of
the waiting time in the trap after excitation, we can then track the orientation of the axis
of the oscillation and deduce the corresponding effective oscillation frequency. Note that the
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with the effective rotation of the cloud and compare it with the predictions (7.39)(7.40). In
fact, to do so, we compare the absolute values of the frequencies of the modes to their splitting.
The results are plotted on figure 8.15: we see a small but significant deviation compared to the
harmonic prediction (7.39), which depends only on Ωeff . We can then try to compare the mode
frequencies with the deviation predicted due to the presence of the quartic term, injecting the
Thomas-Fermi radii measured on the in-trap cloud (using a harmonic plus quartic fit of the
profiles) and the value for the quartic term 𝜆 predicted from (7.31): the predicted deviation
agrees very well with the observed frequencies, suggesting that the observed frequency shift is
indeed due to this confinement. It also confirms the very good precision that can be achieved
through the method of resonant excitation, as the corresponding effect is very small.

8.4 Time-of-flight analysis of the rotating clouds

One of the most useful tools for studying rotating quantum gases is the time-of-flight detection
of vortices, and it would be especially interesting to observe the vortex distribution in the
dynamical ring. We can note, in particular, that the other experiment that tried to enter
the faster-than-harmonic rotation regime in a harmonic plus quartic trap [77] had observed
a disappearance of the vortices while entering this regime, which is still not fully explained.
We therefore tried to develop the ability to image the vortices in our gases.

8.4.1 Detection of vortices

The first attempts to observe the vortices in the cloud were done with simply connected gases
rotating at the bottom of the bubble trap. They were set into rotation using the rotating
bucket method, with an important excitation (typically 𝜀 = 0.14 and a rotation frequency
around 25Hz) to ensure there should be many vortices in the cloud, and a long relaxation
time (typically 10 or 20 s) to ensure that the cloud reaches equilibrium before imaging. The
expected signature for the presence of vortices is the triangular lattice distribution of the
holes after expansion of the cloud (if we saw holes but not the array, we could for example
interprete them as coming from imaging defects due to fringes or a bad camera focus).

To image the vortices, the simplest method appeared to be the best: we remove the
trapping potential, perform a time-of-flight and take a vertical absorption picture of the
atoms. For a time-of-flight longer than 20ms, we begin to guess the presence of vortices in
the cloud due to local density reduction, and after 30ms, the observed holes significantly
pierce the cloud (see figure 8.16). For time-of-flight durations longer than 30ms, the cloud
crashes on the lower window of the science cell. The vertical camera has to be translated
every time we change the time-of-flight duration to adjust the focus on the atoms (the whole
imaging setup – camera and lenses – is mounted on a micrometric translation stage).

We realized later that a Stern-Gerlach procedure (see section 3.4.3) considerably increases
the visibility of the vortices: in the absence of the Stern-Gerlach procedure, when we perform
a time-of-flight even at low magnetic gradient, the shutdown of the magnetic fields is not
instantaneous and the three Zeeman substates get very slightly separated; this results in a
blurring of the final pictures (and looking at the Fourier transform of the pictures shows a
favored axis in the distribution identical on all pictures, indicating the direction of splitting
of the clouds).

Once we were able to see the vortices, we then performed weak excitations around the
quadrupole resonance to ensure that we were able to observe the expected behavior and to
detect unique vortices – this was discussed in section 8.2.2.
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very large (after 23ms TOF its radius is typically beyond 150 ➭m) and the density drops
significantly, causing a high sensitivity to residual imaging noise and fringes. It also prevents
us from using the parameters that are optimal for imaging “normal” vortex lattices: for these
parameters (30ms TOF and Stern-Gerlach procedure) the density is simply too low for taking
pictures, with optical densities significantly smaller than one.

8.4.3 Loss of contrast of the vortex lattices in the fast-rotating regime

Observing a loss of contrast in the vortices was not necessarily surprising, as the earlier
attempts to enter this regime also displayed this effect [77]. In order to understand better
the loss of contrast of vortices in the donut-shaped cloud, we tried to vary the excitation
procedure used to generate it, trying for example to achieve it using two excitations. The
goal was to first realize a nice and large vortex array, and subsequently enter the dynamical
ring regime with only a weak excitation, in order to avoid the apparently strongly excited
step we see on figure 8.18. However, all the realizations of clouds with many vortices showed
a lot of disorder in the vortex lattice, even after very long relaxation times (more than 10 s).

At first, this was quite surprising, because the early works on vortex lattices [53] sytemat-
ically displayed higly ordered lattices, and even claimed that obtaining the lattice was easier

than initially expected; they also used very strong excitations to nucleate the vortices and
still saw quick relaxation (in less than 1 s) towards very regular arrays. However, we then
realized that these experiments were realized in cigar-shaped traps, while ours are performed
in pancake-shaped traps; other experiments realized in similar pancake-shaped traps seem to
also display less-ordered lattices [216].

We think that these effects could come from thermal fluctuations: when our cloud rotates
fast we get close from the two-dimensional regime (and even finally enter it), in which the
coherence length is expected to decrease with the rotation frequency [195]. The vortex lattice
could then melt while the cloud stays superfluid, for example through thermal activation of
dislocation pairs, as described in section 7.2.1. We can try to use the estimations of Gifford and
Baym for the melting temperature [192], neglecting the quartic contribution to our trap: for
our trap frequencies with typically 1.5×105 atoms, this temperature ranges typically between
0.1 and 0.2𝑇𝑐; for a cloud rotating at 26Hz the corresponding temperature should be around
20 nK while for a cloud rotating at 32Hz it drops to approximately 10 nK; while we do not
know our temperatures precisely the hypothesis of thermal melting therefore seems relevant.
Note that the approximation of harmonic trapping is relevant if 1−(Ωeff/𝜔⊥)2 ≫ 𝜆(𝑅⊥/𝑑⊥)2;
for a cloud rotating at Ωeff/2𝜋 = 32Hz we still have a factor of 5 between these terms.

In order to investigate this effect, we took time-of-flight pictures of gases rotating at
various frequencies. We simply excite the gas using the rotating bucket method at a given
frequency (the number of turns, 5.5, is kept constant for all pictures), and let the cloud relax
for 10 s; the conditions for stirring and waiting are identical to the conditions in which the
data of figure 8.12 were taken, which allows us to know the effective rotation frequencies of
the clouds. We then perform a 30ms time-of-flight with a Stern-Gerlach procedure and image
the cloud. Typical results are shown on figure 8.19. For moderate rotation frequencies, we
observe well-ordered vortex lattices, but when Ωeff gets closer to the trapping frequencies the
cloud gets more and more disordered and even seems to completely lose the lattice structure.

Even though some theoretical work has been achieved about thermal fluctuations in 2D
vortex lattices, there is yet no model that could be used to quantitatively analyze these
pictures. We however tried to quantify the loss of the vortex lattice visibility, computing the
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2D Fourier transform of the pictures:

𝑛̃(𝑘𝑥, 𝑘𝑦) =

∫︁

𝑑𝑥𝑑𝑦 exp(−𝑖𝑘𝑥𝑥) exp(−𝑖𝑘𝑦𝑦)𝑛̄(𝑥, 𝑦), (8.4)

where 𝑛̄ is the vertically integrated density profile of the atoms, measured on the experimental
pictures. The computed 𝑛̃(𝑘𝑥, 𝑘𝑦) are displayed on figure 8.19. For low frequencies, we clearly
see the six peaks corresponding to the triangular lattice; for higher frequencies the visibility
of the peaks decreases and they get blurred along the azimuthal direction and the Fourier
distribution now displays a ring, indicating the presence of a typical distance between vortices
but a loss of the global lattice orientation. Finally, at high frequency this ring disappears,
leaving only a disc at small momenta.

To go further in the analysis, we then compute the radial average of the Fourier Transform:

𝜌(𝑘) =

∫︁

𝑘𝑑𝜃𝑛̃(𝑘, 𝜃) (8.5)

with 𝑘 =
√︀

𝑘𝑥𝑘𝑦 and 𝜃 = arctan(𝑘𝑦/𝑘𝑥); the corresponding results are shown on figure 8.20.
The lattice now appears through a peak in the Fourier distribution. The height of this peak
decreases with the rotation frequency, indicating that the distance between vortices gets more
loose, and the peak completely disappears for excitation frequencies larger than 29Hz (which
corresponds to the cloud rotating around 33Hz, see figure 8.14). We also see that the peak’s
position drifts towards lower momenta. This can be associated with the evolution of the
magnetic length 𝑙 =

√︀

~/𝑀Ωeff , which gives the intervortex spacing (see section 7.1.2): a
lower momenta in the Fourier transform after time-of-flight corresponds to a smaller distance
in situ. It is however difficult to quantitatively describe it, as the relation between the in
situ distance and the distance after time-of-flight is not exactly a Fourier transform: our
time-of-flight is not long enough to allow being in the far field regime.

These data suggest that we should be able to perform interesting measurements about
what seems to be the thermal melting of the vortex lattice. However, we lack for now a proper
theoretical model with which to compare: first, to adapt the theoretical work achieved on
finite-temperature, fast-rotating gases [195] to the finite-size case we achieve experimentally.
Second, to translate the effect of phase fluctuations within the trapped gas into a measurable
quantity, taking into account the time-of-flight expansion of the gas.

In this latter dataset, the contrast of the pictures decreases dramatically when Ωeff gets
too close to 𝜔⊥. It would also be interesting to observe the vortex distribution at the edge
between both regimes, once we seem to be completely outside the regime of the vortex lattice
but before the appearance of the hole in the system, i.e. right when the harmonic trapping
cancels. We achieved that by exciting the cloud the same way we would do as to realize
a dynamical ring (5.5 turns at 31.1Hz and 𝜀 = 0.14), but performing the sequence with a
higher knife frequency: 0.369Hz instead of 0.365Hz; the spin-up effect due to the knife is
therefore weaker. After various waiting times we then perform a 23ms time-of-flight and
image the cloud from above. The corresponding pictures are shown on figure 8.21. The
observed density profile is quite spectacular, and we see that the atoms seem to gather into
small “blobs”, without looking in any way like a vortex lattice. While one could think about
turbulent behavior, the corresponding behavior shows no sign of relaxation; even after a 60 s
waiting time the atomic cloud, while much smaller, still displays these small blobs. If we are,
as we expect, in the presence of a melted vortex lattice, this possibly corresponds to phase
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The annular geometry is ideally suited to study superfluidity thanks to its ability to withstand
persistent flow [57]. In such a system the continuity of the superfluid wavefunction, that has
to be single-valued, also implies that the circulation of the velocity field along the waveguide
has to be quantized [58]; the combination of the flow metastability with the circulation quan-
tization leads to an hysteretic behavior [59]. Many experimental and theoretical efforts are
currently being dedicated to exploit the remarkable properties of ring-shaped quantum gases
to achieve “atomtronic” circuits [72,73,146] or to perform quantum simulation [149,150].

During my PhD, I demonstrated the possibility to achieve a connected, condensed gas in a
ring trap realized by combining a radiofrequency-dressed trap and a blue-detuned double light
sheet. RF dressing is a trapping technique that combines RF photons and a static magnetic
field. It allows to trap atoms on the isomagnetic surface where the RF is resonant with the
splitting between the different Zeeman substates of the static field: in our case, we trap in
this way the atoms on a surface of an ellipsoid, leading to a bubble-shaped trap. The double
light sheet then confines the atoms within a thin slice of this bubble, leading to a ring-shaped
trap. This achievement requires a very good precision on the optical alignments in the system
generating the light sheet, a very fine control over the polarization of the dressing RF wave,
as well as a great care in the control of potential heating sources. We then demonstrated the
ability of the ring-shaped condensate to sustain a superfluid flow.

The technique used to generate the ring presents the advantage of enabling, in principle,
to reach the quasi-2D or even quasi-1D regimes, and the experimental results presented in
this manuscript suggest that we could be close to these regimes. The quasi-1D regime, in
particular, presents a high theoretical interest as it can be seen as a uniform 1D system
with periodic boundary conditions: the experimental availability of such a system would
therefore open up interesting possibilities to perform quantum simulation. There are three
main difficulties that could make it hard to enter this regime. First, the trapping frequencies
we can currently achieve set strong limits on the temperature we can accept to enter the quasi-
1D regime, which should stay lower or comparable to 30 nK. Second, lowering the chemical
potential will increase the sensitivity to residual optical defects and potential inhomogeneities.
One can note that even if this difficulty appears too hard to overcome, it could also be turned
into an advantage for studying annular 1D gases in the presence of disorder, which also
presents a real interest due to localization effects [217,218]. Third, the very low atom number
required for the gas to be quasi-1D could cause difficulties to obtain accurate images of the
cloud and require improvements of the optical system.
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Now that our ring trap is operational (in the 3D case), we can start developing an exper-
imental toolbox around it. We are, for example, planning to implement a phase imprinting
system, for which a significant preparatory work has already been achieved [167]. While its
first purpose is to generate a superfluid flow, it will also provide the ability to imprint ar-
bitrary potential landscapes. This could open considerable opportunities in the perspective
of quantum simulation, allowing for example to generate arbitrary phase domains and study
their recombination (using the laser stirrer to generate barriers between the domains), or to
imprint solitons [168]. A digital micromirror device could also bring many possibilities that
are complementary to the ones offered by the phase imprinting setup, built around a SLM:
while an SLM allows to imprint continuous spatial patterns but cannot be dynamically con-
figured, a DMD imprints only discrete spatial patterns (light or no light) with a very fast
operation rate – however in this second case a quasi-continuous pattern can be recovered by
binning pixels and taking advantage of the finite optical resolution.

The improved control over the dressing RF field developed in order to improve the ho-
mogeneity of the ring-shaped gas also allowed us to achieve “dynamical rings” at the bottom
of the bubble trap, i.e. gases rotating faster than the trapping frequency and maintained
trapped by the anharmonicity of the bubble [76]. Deforming and rotating the trap allows
to set the atoms into very fast rotation, and the high smoothness of the trapping potential
allows us to keep the atoms in rotation during tens of seconds. Careful checks give evidence
that the corresponding donut-shaped cloud is still quantum degenerate.

We then adapted to our experiment some of the tools that have been previously developed
to study rotating superfluids.

One of these tools is the ability to probe the quadrupole modes of the gas, by a percussive
or a resonant excitation. The collective modes of trapped gases provide a way to probe their
behavior, and the frequency modification of these modes in the presence of rotation is espe-
cially interesting. We achieved a very good accuracy on the measurement of the quadrupole
mode frequencies and demonstrated our ability to probe fine effects like the shift of these fre-
quencies in the presence of anharmonicities. The experimental availability of the dynamical
ring, combined with the many possibilities to excite the cloud offered by the versatility of
the RF-dressed trap, now opens the possibility to observe the predicted behavior of collective
modes in such a system, for instance for the monopole and quadrupole modes [196,203] or in
the more exotic case of Rossby waves [78].

The second tool is the ability to image quantized vortices inside the rotating gas through
time-of-flight expansion. While we can observe regular vortex lattices for moderate frequen-
cies, these lattices seem to melt for fast rotations, getting more and more disordered as the
rotation frequency increases; and the dynamical ring displays no vortices but large-scale den-
sity fluctuations. We interprete this effect as a thermal melting of the lattice: indeed, a vortex
lattice can be considered as a 2D crystal. It is therefore sensitive to phase fluctuations and can
undergo a BKT-type melting towards a liquid phase at finite temperature, even while the gas
is still condensed [191–193]. This effect has only be sparsely explored with quantum gases and
lets us hope for fascinating developments. For example, by combining the mechanical stirring
of the gas and the spin-up evaporation by the RF knife, it should be possible to produce gases
rotating at identical frequencies but various temperatures and observe the subsequent effect
on the atoms. The possibility to adjust the vertical frequency of our trap could also allow
us to observe the interplay between this effect and the (conventional) BKT physics when
the gas itself becomes quasi-2D. The main requirement to perform these studies would be
the ability to relate the density fluctuations observed after time-of-flight to the in-trap phase
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fluctuations [219], that will probably soon be numerically investigated in our team.
To conclude, the high versatility and potential regularity of RF-dressed quadrupole traps

allows to achieve novel kinds of ring-shaped superfluids. The first kind, using a ring-shaped
potential, suggests the possibility to achieve unidimensional quantum gases with periodic
boundary positions, which would provide new possibilities to study the fascinating 1D physics.
The second kind, exploiting the centrifugal force, allows to enter the fast-rotating regimes of
superfluidity deeper than ever. While we are still far away from reaching the “giant vortex”
configuration, this achievement could open the way to a better understanding of these regimes,
in which our preliminary experiments suggest that there is still a lot to explore.
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Appendix A

Compression of the ring with constant

radius

A.1 Calibration of the vertical bias

A good calibration of the vertical magnetic bias field is necessary to control properly the sheet
loading and the ring formation. It is achieved by simply measuring the position of the cloud
after a fixed time of flight for different values of the magnetic bias field. The bias coils create a
constant magnetic field offset and the quadrupole field is linear; the subsequent displacement
should then increase linearly with the magnetic bias or with the current in the bias coils.
A linear fit of the position of the cloud position then gives the slope of the position versus
current function. This slope depends on the quadrupolar gradient, and thus on the current
in the quadrupole coils. The most interesting value is, in fact, the product of the slope by
the quadrupole current, that I will call 𝛼zs, which is fixed for our coil geometry. If we denote
𝐵𝑏 = 𝐵𝑏,0 × 𝐼bias the static field created by the vertical bias field, the total vertical magnetic
field reads 𝐵bias − 2𝑏′𝑧 (I recall here that 𝑏′ is the horizontal magnetic gradient generated by
the quadrupole coils). The equilibrium position therefore writes:

𝑧𝑒𝑞 =
𝐵𝑏

2𝑏′
=
𝐵𝑏,0

2𝑏′
× 𝐼bias. (A.1)

We also have 𝑏′ = 𝑏′0𝐼quad (𝑏′0 = 1.98G · cm−1 ·A−1 on our experiment), and multiplying the
slope by the current in the quadrupole coils 𝐼quad for which it was measured gives the constant
coefficient 𝛼zs:

𝛼zs =
𝐵𝑏,0

2𝑏′0
(A.2)

In general, applying a current 𝑍shift in the bias coils leads to a displacement 𝑧shift of the
bubble that depends on the current in the quadrupole coils 𝐼quad:

𝑧shift = 𝑍shift ×
𝛼zs

𝐼quad
. (A.3)

This equation allows one to convert any vertical distance in microns into the corresponding
amount of current in the bias coils (given the quadrupole current 𝐼quad). I will, as a convention,
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where 𝑍bs(𝐼quad) is the current that has to be applied to align the bottom of the bubble with
the light sheet. It is relevant to separate it into two parts, one corresponding to the distance
between the center of the light sheet and the center of the quadrupole trap denoted 𝑧0shift, and
the other to the radius of the bubble 𝑟𝑏:

𝑍bs(𝐼quad) =

[︂

𝑧0shift +
𝑟𝑏(𝐼quad)

2

]︂

× 𝐼quad
𝛼zs

(A.12)

= 𝑧0shift ×
𝐼quad
𝛼zs

+
~𝜔rf

2|𝑔𝐹 |𝜇B𝑏′0𝛼zs
. (A.13)

We can then write 𝑍𝑏 = ~𝜔rf/|𝑔𝐹 |𝜇B𝑏′0𝛼zs the bias current corresponding to a vertical dis-
placement equal to the vertical size of the bubble, which doesn’t depend on 𝐼quad. 𝑧0shift can
be deduced from the value 𝑍shift = 𝑍bs(𝐼ini), which is the current put in the coils to load the
light sheet described in section 5.1.3, as:

𝑧0shift =

(︂

𝑍shift −
𝑍𝑏

2

)︂

× 𝛼zs

𝐼ini
. (A.14)

Combining everything, the current to apply in the bias coils finally reads:

𝐼biasZ =

(︂

𝑍shift −
𝑍𝑏

2

)︂

𝐼quad
𝐼ini

+
𝑍𝑏

2
−∆𝑍(𝐼quad) (A.15)

= 𝑍shift +

(︂

𝑍shift −
𝑍𝑏

2

)︂(︂

𝐼quad
𝐼ini

− 1

)︂

− 𝑟fin
2𝛼zs

(︁

𝐼fin −
√︁

𝐼2fin − 𝐼2quad

)︁

. (A.16)



Appendix B

Additional details about high intensity

absorption imaging

The last tunings and calibrations of our high intensity imaging setup were performed as I

was a master student in the team, between March and July 2015, and represented a significant

amount of the work I performed at that time. I include here the translated chapters of the

corresponding report that relate to how we implemented this technique.

When we installed the laser stirrer on the experiment, we had to place a dichroic mirror on
the probe beam path: this implied a recalibration of the parameter 𝛼* that we use to compute
the optical density in the case of high-intensity absorption imaging. However, this work on
the imaging system led us to observe a phenomenon that we did not take into account until
then, leading to an artificial diminution of the measured atom number. Taking care about this
effect led to a reduction of the signal-to-noise ratio (SNR) of our imaging, and I finally worked
on the optimization of the imaging accuracy, in order to compensate this SNR reduction.

B.1 High-intensity imaging of dense clouds

B.1.1 Two-level system modelization and corresponding notations

Let us begin by properly defining the studied system. At the end of the cooling process, we
obtain a cloud of ultracold atoms that we want image as accurate as possible in order to deduce
its characteristics (temperature, excitations, collective modes, etc.). All these informations
are deduced from the atomic density profile measured on the pictures and the precision of
this density measurement is therefore highly critical.

In practice, studying the imaging process corresponds to studying the interaction of an
atomic ensemble with a laser beam – in this case tuned on the 𝐷2 transition (see figure
3.2). The number of atomic levels that can have an impact on the system in this process
is considerable: 4 principal levels (𝐹 = 1, 𝐹 = 2, 𝐹 ′ = 2, 𝐹 ′ = 3) can be populated in a





B.1 High-intensity imaging of dense clouds 187

this case, the effective cross-section depends on the ratio between the probe intensity and the
saturation intensity and can be written:

𝜎 =
𝜎0

1 + 𝐼/𝐼sat
. (B.2)

In practice, the situation is more complex because we have more than two levels, and it
depends on the polarization configurations and the real atomic structure. One therefore intro-
duces heuristically the 𝛼* parameter, trying to keep the two-level atom model but replacing
the parameters that intervene in the process by their effective values [139]: 𝛼* is defined so
that the effective saturation intensity is equal to 𝛼*𝐼sat. In this case, the absorption cross-
section writes:

𝜎 =
𝜎0

𝛼* + 𝐼/𝐼sat
. (B.3)

From this expression, one can deduce the formula allowing to compute the optical density
from the incident and transmitted intensities:

𝜎0𝑛(𝑥, 𝑦) = −𝛼*ln

[︂

𝐼𝑓 (𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

]︂

+
𝐼𝑖(𝑥, 𝑦)− 𝐼𝑓 (𝑥, 𝑦)

𝐼sat
≡ 𝑑𝑂(𝑥, 𝑦), (B.4)

where 𝑛(𝑥, 𝑦) is the integrated density in the 3D case. 𝑑𝑂(𝑥, 𝑦) is called the generalized

optical density. These results were introduced in [139] in the 3D case, then extended to the
2D case in [220].

B.1.3 Calibration of the α
* parameter

The 𝛼* parameter, that thus allows to compute the optical density, cannot be obtained the-
oretically; it depends on the imaging system and has to be calibrated. To do so, we choose
an atomic cloud (in our case, with an optical density of 3 or 4) from which we take a set of
pictures while varying the probe intensity: as the cloud is identical on all pictures, if 𝛼* is
calibrated correctly all the optical densities computed from the different pictures should also
be identical. The optical density on each picture is computed using different values for 𝛼*;
the correct value should be the one for which the deviation between the optical densities of
the different pictures is minimized. In practice, we try to minimize the standard deviation
between the curves describing the evolution of the optical density with the radius, taken from
a cloud whose density is rotationally invariant (see figure B.2).

Note that this method requires to constantly work with a very high intensity (typically
𝐼 ≥ 10𝐼sat) in order to eliminate multiple scattering phenomena: otherwise, we systematically
underestimate the number of atoms present in regions where the atomic density is high, factor
𝛼* or not [220].

B.1.4 Alternative method for computing α
*

The above method, initiated by G. Reinaudi in 2007 [139], has recently been improved and
developed in more detail by L. Chomaz, who describes in his thesis an alternative method for
measuring the factor 𝛼* [140] based on the decomposition of the right-hand member of the
equation (B.4) in two terms, which we will later call 𝑑log and 𝑑diff :

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑log(𝑥, 𝑦) ≡ −ln

[︂

𝐼𝑓 (𝑥, 𝑦)

𝐼𝑖(𝑥, 𝑦)

]︂

,

𝑑diff(𝑥, 𝑦) ≡
𝐼𝑖(𝑥, 𝑦)− 𝐼𝑓 (𝑥, 𝑦)

𝐼sat
.

(B.5)
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probe beam, the bias caused by these systematic effects varies from one point to another in
significant proportions.

B.2.1 Effect of the probe beam intensity

The first factor that can be considered to understand better these effects is the intensity of
the probe beam. Let us start by looking at the case where only the Doppler effect comes into
play: when we tend towards high intensities in front of 𝐼sat, we see that the fraction of atoms
measured goes through a minimum around 2𝐼sat, then increases with intensity (figure B.5).
This effect can be explained by two limit cases:

∙ If the intensity is very low compared to 𝐼sat, the number of scattered photons per atom
remains very low, and the atoms are only slightly accelerated: the Doppler effect is
negligible; the atom remains resonant for the entire duration of the pulse.

∙ If, on the other hand, the intensity is very high compared to 𝐼sat, the detuning between
the probe and the atom quickly becomes important, but the intensity is sufficient for
the resonance to be very wide and the saturation parameter to remain high in front of
1: the atom remains saturated throughout the whole duration of the pulse.

The Doppler effect alone is not enough to explain all the missing atoms; it is also necessary
to take into account the depumping to 𝐹 = 1 through the level 𝐹 ′ = 2. The saturation
parameter associated with the transition 𝐹 = 2 → 𝐹 ′ = 2 is much lower than 1 because
the probe detuning is very large (about 267MHz, since we are tuned to resonance with the
transition 𝐹 = 2 → 𝐹 ′ = 3). The absorption to 𝐹 ′ = 2 – and therefore the depumping
rate – thus increases linearly with the intensity of the probe. When we add depumping to
the calculation of artificial losses caused by the Doppler effect, the minimum is no longer a
minimum: beyond this point, the fraction of detected atoms continues to decrease, even if it
does so less sharply.

Nevertheless, calculating the depumping from the sole calculation of the saturation pa-
rameter is insufficient; it is also necessary to take into account the polarization of the probe
beam: if the incident photons have a circular polarization, the conservation of the angular
momentum forbids the transition |𝐹 = 2,𝑚𝐹 = +2⟩ → |𝐹 ′ = 2,𝑚𝐹 = +2⟩ (figure B.6). In
the case of our vertical imaging system, we dispose of a fine tuning of the polarization, so the
depumping should be very low; on the other hand this tuning is not present in the case of our
horizontal imaging and the depumping should be much more present there.

To take into account the impact of polarization, we multiply the depumping rate calculated
from the saturation parameter by a coefficient 𝛾dep between 0 and 1. This coefficient is
determined by measuring the curve of the number of atoms detected as a function of the
probe duration, and by making an adjustment4 of these data by our decrease model (figure
B.6). We find a coefficient 𝛾dep = 0.97 ± 0.01 on the horizontal axis and 𝛾dep = 0.18 ± 0.01
on the vertical axis; this corresponds well to what we expected and confirms the relevance of
the model used.

B.2.2 Effect of the probe pulse duration

Although its impact is interesting to study in order to understand the phenomenon, the
intensity of the probe beam is not a factor that can really be exploited to take images:

4. By a least square method.
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∙ Either the depumping is important, and the pulses must absolutely be chosen very short.
The Doppler effect will not be sufficiently present in this case for an initial frequency
offset to be useful (optimal disagreement very close to 0).

∙ Or the depumping is very low: in this case we can consider using longer pulses. The
Doppler effect is important in this case, and one can consider shifting the initial fre-
quency to optimize the detected atom fraction.

However the value of 𝛾dep, even for the vertical axis, is quite constraining, and the change
in the frequency of the probe is quite painful (the frequency is not difficult to change, but it
would require to measure the resonance curve every time to be certain of the optimal value).

The shift in the probe resonance implies that the calibrations performed so far were
distorted: indeed, until then, the probe frequency was tuned by measuring such resonance
curves but the corresponding measurements were probably distorted due to the Doppler effect.
Resonance measurements repeated with shorter probe pulses displayed a probe resonance that
is actually closer to the atomic resonance. One can also note that the Doppler effect causes a
deformation of the resonance curve of the probe (which is no longer Lorentzian). This effect
is quite delicate to observe, and its measurement should not bring much information; I did
therefore not focus onto it in particular.

B.3 Signal to noise ratio and optimization of the imaging pa-

rameters

This (necessary) reduction in the signal-to-noise ratio during the imaging process has led me
to work on optimizing the imaging parameters: what are the parameters that allow images
to be taken with the best sensitivity, while limiting the systematic effects? We also consid-
ered activating the EMCCD gain5 (electron multiplication) of the CCD cameras used on the
experiment.

I therefore calculated the detailed evolution of the signal-to-noise ratio as a function of the
imaging parameters (intensity and duration of the probe, EMCCD gain value, and number
of imaged atoms) – which is not linear, because the number of photons received depends
non-linearly on the number of atoms: see B.1.2.

B.3.1 Analysis of the different noise sources

The factors that influence the signal-to-noise ratio are the following:

∙ the shot noise: it corresponds to the fluctuations of the number of photons in the probe;
it is poissonian, with a variance 𝑁ph. It is a fundamental noise, independent of the
properties of our cameras. Once converted into the number of counts on the camera, it
is equal to 𝜎phot =

√︀

𝐶/𝜖, where 𝐶 is the number of counts measured by the camera
and 𝜖 the number of electrons created on the sensor needed to obtain a measured count
on the camera (1.2 electrons for the horizontal camera, 1.8 for the vertical camera).

∙ the probability of detection of photons by the camera (depending on its quantum effi-
ciency and on losses on the different windows/mirrors/etc...), which can be modelled by
a coefficient 𝜂: a photon passed through the cloud has a probability 𝜂 of generating an
electron on the camera.

5. “Electron Multiplying Charged Coupled Device ”.
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∙ the readout noise: error on the number of electrons detected when reading a pixel. It is
equal to 𝜎𝑟𝑜 = 17.2 electrons – either 9.6 counts or 60 photons – for the vertical camera
(Andor Luca-R) and 𝜎𝑟𝑜 = 5.5 electrons – either 4.6 counts or 60 photons – for the
horizontal camera (Andor iXon DV885)6.

∙ the digitization noise: error related to the discretization of the output signal, it cor-
responds to 1 count (13.1 photons for the iXon, 6.26 for the Luca). It is negligible
compared to the readout noise.

∙ the dark current, corresponding to the parasitic electrons created on the camera sensor
by something other than incident photons – by thermal effects or during charge transfer.
In our case, it is systematically negligible: the images are taken too quickly for these
phenomena to have an impact7

∙ the use or not of electron multiplication (and if so, its value 𝐺). The use of EMCCD
allows to reduce very significantly the impact of reading noise, which does not depend
on the amplitude of the measured signal, but increases shot noise by a factor of

√
2𝐺

due to the principle of electron multiplication by avalanche effect.

∙ The noise added to the pictures when subtracting the background image (systematic
effects are corrected, but at the cost of adding noise). The shot noise being very low on
this image, we consider that the additional noise is equal to the reading noise 𝜎𝑟𝑜. In
all the following, I will consider that the subtraction of the background noise is taken
into account by adding this noise, and I will reason as if we were working with only two
images.

The variance of the signal measured on one image is thus:
{︃

Var(𝐶) = ⟨𝐶⟩
𝜖 + 2𝜎2𝑟𝑜 if the EMCCD gain is disabled

Var(𝐶) = 2𝐺 ⟨𝐶⟩
𝜖 + 2𝜎2𝑟𝑜 if a gain 𝐺 is used,

(B.10)

where 𝐶 is the random variable describing the number of counts measured.

B.3.2 Relative error on the measured atom number

This variance corresponds to the noise measured on one image; in practice, two pictures (with
and without atoms) are measured and the density of atoms in the cloud is calculated from
these two images (equation (B.8)): it is the uncertainty on this density that we are interested
in.

We can estimate via a numerical calculation the error we will have on the measurement
of an optical density. This calculation is done in three steps:

∙ calculation of the number of photons 𝑁𝑓 passing through the cloud (by numerically
inverting the equation (B.8)).

∙ calculation of the noises associated with the measurements of 𝐶𝑖 and 𝐶𝑓 (number of
counts measured for the images with and without atoms) by the CCD camera.

6. We measured 13.1 photon per count and 1.2 electrons per count – either one electron for 11 photons –
for the iXon, and 6.26 photons per count and 1.8 electron per count – or one electron for 3.5 photons –
for the Luca.

7. It can be noted that it increases in proportion to the square of the EMCCD gain, but the envisioned
values for the gain are not large enough to make it important.
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∙ estimation of the total error on the atomic density measurement 𝜎𝑑O from the errors on
the measured parameters: 𝐶𝑖, 𝐶𝑓 , 𝛼0, 𝛼𝑠. It should be remembered that the error on the
measurement of a quantity 𝐴(𝑋1, ..., 𝑋𝑛) is, if the measurements of 𝑋𝑖 are independent:

𝜎𝐴 =

√︃

∑︁

(︂

𝜕𝐴

𝜕𝑋𝑖

)︂2

× 𝜎2𝑋i
, (B.11)

where 𝜎𝑋i
is the standard uncertainty on the measurement of 𝑋𝑖.

Details about this calculation can be found in B.5.

B.3.3 Combination of all the studied effects

Preliminary calculations quickly showed that the optimization of the relative accuracy on
the optical density was far from obvious and depended a lot on the optical densities to be
measured. These calculations also showed that the increasing the duration of the probe pulses
systematically results in more accurate measurements: while the risk of systematic errors
requires short pulses, the accuracy of our measurements requires long pulses. For a given
probe intensity, there is an optimal value of 𝜏pulse resulting from the compromise between
these two effects – chosen as follows: I consider that a couple of parameters {𝜏pulse, 𝐼} is
acceptable if the systematic error caused by the Doppler effect and the depumping is hidden
within the measurement error, i.e. less than twice the standard error on the measurement
(the factor of two is chosen arbitrarily).

Once this criterion has been defined, the accuracies obtained for different imaging param-
eters can be compared, as shown in figure B.8. These comparisons show that there is no
optimal parameter pair, but that the optimal pair is to be chosen according to what we are
trying to observe (i.e. the density of the cloud we are interested in). Even if there are generic
parameters that can be used to make fairly accurate measurements over all possible clouds,
it may still be interesting to look for parameters that optimize the accuracy over the desired
area (for example, our cloud temperature measurements are based on a Hartree-Fock fit of
the cloud wings, and in this case high density areas are not of interest to us).

It should also be noted that these calculations can also give us directly the error bars to
be used during our measurements.

On the other hand, while at first glance attractive, the EMCCD gain finally proved to be
uninteresting in our case: as soon as we work with intensities or exposure times that are a
little high, the shot noise becomes very important (see B.3.1) and so does the error on the
optical density; the only use we could find would be to improve very low intensity images for
the 𝛼0 and 𝛼𝑠 calibration – that is, not interesting enough for us to take the time to make
the necessary calibrations to use this functionality.

B.3.4 Conclusions about the imaging process

These studies allowed us to correct systematic effects that were present until then on our
imaging system, and to improve its accuracy; we can say with certainty that we now have a
more reliable system than before. The calculations of the accuracy that we performed should
allow us to knowingly choose the best imaging parameters for each measurement.

The first measurements performed after this work, aiming to measure the temperature
of atomic clouds in the dressed trap from a Hartree-Fock fit of the wings of the in-trap
cloud, were much more satisfactory than those performed so far. In particular, the two
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If we assume the system to be constantly in its stationary state (i.e. if we look at the
system at long durations compared to 1/Γ or if we look at the average state of the system10,
the average population in the excited state reads:

𝜎𝑒𝑒 =
1

2
× 𝑠

1 + 𝑠
. (B.13)

The number of photons scattered by one atom between 𝑡 and 𝑡+ 𝑑𝑡 is thus:

𝑁diff(𝑡) = Γdiff(𝑡) 𝑑𝑡 = Γ𝜎𝑒𝑒 𝑑𝑡 =
Γ

2
× 𝑠(𝑡)

1 + 𝑠(𝑡)
𝑑𝑡, (B.14)

where 𝑠 varies with time through 𝛿.

Calculation of the Doppler effect

To take into account the Doppler effect, one has to replace 𝛿 by 𝛿(𝑡), computed from the recoil
velocity of the atoms and Γdiff(𝑡). The recoil velocity of the atoms (velocity acquired through
the absorption of a photon) reads:

𝑣rec =
~𝑘

𝑚
. (B.15)

An absorption-emission cycle11 therefore leads to an evolution of detuning equal to:

𝛿phot = 𝑘 · 𝑣rec =
~𝑘2

𝑚
=

2𝜋ℎ

𝑚𝜆2
= 2𝜔rec, (B.16)

where 2𝜋𝜔rec is the recoil frequency. 𝛿(𝑡) then reads:

𝛿(𝑡) = 𝛿phot ×
∫︁ 𝑡

0
Γdiff(𝑡) 𝑑𝑡. (B.17)

Calculation of depumping

Depumping has no effect on the atomic detuning (as the previous calculation does not depend
on the number of atoms), but it leads to a diminution over time of the number of atoms
remaining in the system. To take it into account, one has to calculate the transition rate from
𝐹 = 2 to 𝐹 ′ = 2. This rate can be calculated from the optical Bloch equations as above, this
time taking into account the two-level system corresponding to the 𝐹 = 2 → 𝐹 ′ = 2 transition
(there is no coupling between 𝐹 ′ = 2 and 𝐹 ′ = 3, and the two transitions are thus assumed
to be independent) – this leads to the same calculation by replacing 𝛿 by 𝛿′ = 𝛿+∆22, where
∆22 is the detuning between the 𝐹 = 2 → 𝐹 ′ = 2 and 𝐹 = 2 → 𝐹 ′ = 3 transitions (equal
to 2𝜋 × 267MHz). This gives the value of 𝜎𝑒𝑒,22, that is the proportion of excited atoms in
the state 𝐹 ′ = 2.

Between 𝑡 and 𝑡+𝑑𝑡, the number of atoms decreases by 𝑁(𝑡)×Γ𝜎𝑒𝑒,22×𝑑𝑡×𝜂dep,22 where
𝑁(𝑡) is the number of atoms and 𝜂dep,22 is the branching factor (probability of falling from
one state to another) from 𝐹 = 1 to 𝐹 ′ = 2 (equal to 0.5).

In fact, this rate depends on the light polarization (cf. B.2.1), and we use a coefficient
𝛾dep experimentally determined to take this into account; the decrease in the number of atoms
thus becomes:

𝑁at(𝑡+ 𝑑𝑡) = 𝑁at(𝑡)−𝑁at(𝑡)× Γ 𝜎𝑒𝑒,22 𝜂dep,22 𝛾dep 𝑑𝑡. (B.18)

10. Which is the case for imaging since we are interested in the atomic ensemble rather than individual
atoms.

11. As we are interested in the ensemble behaviour, we consider that spontaneous emission has no effect
because its averages to zero.



B.5 Calculation of the relative error on the optical density 199

B.4.2 Principle of computations

Solving this system analytically promises to be quite unpleasant12. However a numerical
calculation with discrete steps of 𝑑𝑡 seems appropriate and much easier. Let us replace the
values 𝑋(𝑡) by their value at 𝑡 = 𝑖 × 𝑑𝑡, denoted 𝑋𝑖. To follow the evolution of the system
with time, one simply has to follow the loop:

∙ We know Γdiff,𝑖, 𝑠𝑖, 𝛿𝑖, 𝑣𝑖, 𝑁at,𝑖.

∙ Calculation of 𝑠:

𝑠𝑖+1 =
𝐼

𝐼sat

Γ2/4

𝛿2𝑖 + Γ2/4

∙ Calculation of the number of photons scattered between 𝑡 and 𝑡+ 𝑑𝑡:

Γdiff,𝑖+1 =
Γ

2
× 𝑠𝑖+1

1 + 𝑠𝑖+1

∙ Inclusion of the Doppler effect:

𝛿𝑖+1 = 𝛿𝑖 + Γdiff,𝑖+1 × 𝛿phot × 𝑑𝑡

∙ Calculation of the depumping and diminution of the atom number (après computing
𝜎𝑒𝑒,22,𝑖):

𝑁at,𝑖+1 = 𝑁at,𝑖 −𝑁at,𝑖 × Γ𝜎𝑒𝑒,22,𝑖 𝜂dep,22 𝛾dep 𝑑𝑡

∙ ... And back to step 1.

By having the system evolve in this way and adding the values of 𝑁at,𝑖Γdiff,𝑖 at each step,
the total measured signal (i.e. the number of photons absorbed by the cloud) can be calculated
and compared to what we would expect without the two parasitic effects.

B.5 Calculation of the relative error on the optical density

This section is intended to detail the calculations used in section B to calculate the relative
accuracy on the measured optical density (B.3).

B.5.1 Influence of shot noise on the measured images

This calculation is strongly inspired from what is described in Appendix A of [221], adapted
to our system.

Detection of the light signal

We can model the detection of 𝑁ph photons (poissonian signal13) by the camera as a beam-
splitter with a transmission coefficient 𝜂 (taking into account the camera’s quantum efficiency,
losses, etc.): an incident photon gives an electron with a probability 𝜂.

12. It is feasible “almost” simply if we assume a constant σee,22, i.e. that the detuning caused by the Doppler
effect is negligible compared to ∆22.

13. This concerns both the partially absorbed signal and the signal without absorption, because the absorp-
tion by the atoms retains the poissonian character of the light signal.
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The number of created electrons is then:

𝑁ei =

𝑁ph
∑︁

𝑖=1

𝑋𝑖,

where 𝑁ph is the number of incident photons and 𝑋𝑖 the number of electrons obtained for
one photon (𝑋𝑖 = 0 ou 1, with probability 1− 𝜂 and 𝜂):

{︃

⟨𝑁ph⟩ = 𝑁,

Var(𝑁ph) = 𝑁.

{︃

⟨𝑋𝑖⟩ = 𝜂,

Var(𝑋𝑖) = 𝜂(1− 𝜂).

The average value and variance of 𝑁ei therefore read:
{︃

⟨𝑁𝑒𝑖⟩ = 𝜂𝑁,

Var(𝑁ei) = ⟨𝑁ph⟩Var(𝑋𝑖) +Var(𝑁ph) ⟨𝑋𝑖⟩2 = 𝑁𝜂(1− 𝜂) +𝑁𝜂2 = ⟨𝑁𝑒𝑖⟩ .
(B.19)

One can note that the signal stays poissonian.

Amplification of the light signal

The amplification of the initial electronic signal is based on a probabilistic cascade process:
it is therefore inseparable from shot noise. For more details on the EMCCD gain (principle
and equation of noise), the reader is invited to go towards [221].

The final electronic signal can be written as:

𝑆 =

𝑁ei
∑︁

𝑖=1

𝑋𝑖,

where 𝑁𝑒𝑖 is the number of electrons generated on the CCD sensor during image capture and
𝑋𝑖 is the number of electrons obtained after cascade for one initial electron:

{︃

⟨𝑁𝑒𝑖⟩ = 𝜂𝑁,

𝑉 𝑎𝑟(𝑁𝑒𝑖) = 𝜂𝑁.

{︃

⟨𝑋𝑖⟩ = 𝐺,

Var(𝑋𝑖) = 𝐺2.

The average value and variance of 𝑆 therefore read:
{︃

⟨𝑆⟩ = 𝜂𝑁𝐺,

Var(𝑆) = ⟨𝑁ei⟩Var(𝑋𝑖) +Var(𝑁ei) ⟨𝑋𝑖⟩2 = 2𝜂𝑁𝐺2 = 2𝑆𝐺.
(B.20)

Mesurement of the light signal

Finally, the camera counts the electrons collected on each pixel (𝜖 electrons give one measured
count). The finally measured signal is therefore:

{︃

⟨𝐶⟩ = 𝜂𝑁𝐺
𝜖 ,

Var(𝐶) = Var(𝑆)× 1/𝜖2 = 2𝜂𝑁𝐺2

𝜖2
= 2𝐶𝐺

𝜖 + 1
(B.21)

if the signal is amplified, and:
{︃

⟨𝐶⟩ = 𝜂𝑁
𝜖 ,

Var(𝐶) = Var(𝑆)× 1/𝜖2 = 𝜂𝑁
𝜖2

= 𝐶
𝜖 + 1

(B.22)

if no amplification is used.
The addition of a square count to the variance corresponds to the error related to dis-

cretization; in practice it is negligible.
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B.5.2 Error on the measured optical density

The optical density reads (section B.1.4):

𝜎0𝑛 ≡ 𝑑𝑂 =
𝛼0𝑑log + 𝑑diff
1− 𝛼𝑠𝑑log

, (B.23)

with:
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑log = −𝑙𝑛
[︂

𝐼𝑓
𝐼𝑖

]︂

= −𝑙𝑛
[︂

𝐶𝑓

𝐶𝑖

]︂

𝑑diff =
𝐼𝑖 − 𝐼𝑓
𝐼sat

=
𝐶𝑖 − 𝐶𝑓

𝐶sat

, (B.24)

where 𝐶sat is the number of counts corresponding to 𝐼sat, that is:

𝐶sat = 𝐼sat ×
𝜆 𝜏pulse 𝑎

2
pix

𝜖 ℎ𝑐 𝐺2
,

with 𝑎pix the pixel size (8 ➭m for both our cameras) and 𝐺 the magnification of the imaging
system (8.3 for the vertical axis, 2.17 for the horizonal one).

There are 4 independent sources of error: errors related to measurements of 𝐶𝑖 and 𝐶𝑓 , and
those related to calibrations14 of 𝛼𝑠 and 𝛼0.

I recall here that the error on the measurement of a quantity 𝐴(𝑋1, ..., 𝑋𝑛) is, if the
measurements of the 𝑋𝑖 are independent:

𝜎𝐴 =

√︃

∑︁

(︂

𝜕𝐴

𝜕𝑋𝑖

)︂2

× 𝜎2𝑋i
, (B.25)

where 𝜎𝑋i
is the standard uncertainty on the measurement of 𝑋𝑖.

One has:
⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑑𝑂
𝜕𝛼0

=
𝑑log

1− 𝛼𝑠𝑑log
,

𝜕𝑑𝑂
𝜕𝛼𝑠

=
𝑑log

1− 𝛼𝑠𝑑log
× 𝑑𝑂,

𝜕𝑑𝑂
𝜕𝑑log

=
𝛼0 + 𝛼𝑠𝑑𝑂
1− 𝛼𝑠𝑑log

,

𝜕𝑑𝑂
𝜕𝑑diff

=
1

1− 𝛼𝑠𝑑log
,

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝜕𝑑log
𝜕𝐶𝑖

=
1

𝐶𝑖
,

𝜕𝑑log
𝜕𝐶𝑓

= − 1

𝐶𝑓
,

𝜕𝑑diff
𝜕𝐶𝑖

=
1

𝐶sat
,

𝜕𝑑diff
𝜕𝐶𝑓

= − 1

𝐶sat
.

(B.26)

The uncertainty on the measured optical density therefore reads:

𝜎𝑑opt =
1

|1− 𝛼𝑠𝑑log|

[︃

(𝑑log)
2 𝜎2𝛼0

+ (𝑑log𝑑𝑂)
2 𝜎2𝛼0

+

(︂

𝛼0 + 𝛼𝑠𝑑𝑂
𝐶𝑖

+
1

𝐶sat

)︂2

𝜎2𝐶i

+

(︂

𝛼0 + 𝛼𝑠𝑑𝑂
𝐶𝑓

+
1

𝐶sat

)︂2

𝜎2𝐶f

]︃1/2

. (B.27)

14. These calibrations being performed together, we may have doubts about the independence of errors on
αs and α0, but it is unlikely that this will significantly affect the final result.
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Appendix C

Table of notations and symbols

The experiments described in this document extend to a quite wide range of topics, leading to
a large number of notations between which it is easy to get lost (especially, studying rotating
gases in RF-dressed traps leads to a very large number of “omega-something” notations).
I include here as a reminder a list of the main notations, with the pages where they are
introduced or defined.

General notations

Constants:

Symbol Description Value
ℎ (~) (reduced) Planck constant 6.626× 10−34 J · s−1 (1.054× 10−34 J · s−1)
𝑐 Speed of light 2.998× 108m · s−1

𝑘B Boltzmann constant 1.381× 10−23 J ·K−1

𝜇B Bohr magneton 9.274× 10−24 J · T−1 (ℎ× 1.399MHz ·G−1)
𝑀 Atomic mass of the 87Rb 1.443× 10−25 kg
𝑔 Gravitational acceleration 9.81m · s−2

Coordinates systems and axes:

Symbol Description
𝑥, 𝑦, 𝑧 Cartesian coordinates

e𝑥, e𝑦, e𝑧 Corresponding basis
e+, e−,u Spherical basis defined by the orientation of the static magnetic field u(r)
𝑟, 𝜑, 𝑧 Cylindrical coordinates

e𝑟, e𝜑, e𝑧 Corresponding basis
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Description of the trap and the trapped gas:

Symbol Description Page
𝜔𝑗/𝜈𝑗 Trapping frequency in the direction 𝑗, in rad · s−1/Hz 16
𝑑𝑗 Length of the harmonic oscillator associated to the trapping in direction 𝑗 19
𝑅𝑗 Thomas-Fermi radius in the direction 𝑗 19

𝑉ext(r) External trapping potential 19
𝑇 Temperature of the gas 15
𝑇𝑐 Critical temperature for Bose condensation 16, 75
𝜆dB de Broglie wavelength 9
𝑁 Number of particles 15
𝜇 Chemical potential 15, 19
𝑔int Coupling constant 18
𝑔 Dimensionless coupling constant (in the 2D case) 26

𝜓(r, 𝑡) Atomic wavefunction 18
𝑛(r, 𝑡) Atomic density 19
𝜉 Healing length 20

𝑆(r, 𝑡) Local phase of the wavefunction 23
v(r, 𝑡), 𝑣(r, 𝑡) Superfluid velocity 23

Magnetic trapping and RF dressing:

Symbol Description Page
B0(r) Static magnetic field 30
B1(𝑡) Oscillating RF magnetic field 32
𝐹 Total angular momentum of a single atom 30
𝑔𝐹 Corresponding Landé factor 30
𝑚 Atomic magnetic state 34

𝜔0(r) Larmor frequency 34
𝜔rf RF frequency 31

Ω1(r) Local Rabi coupling 32
𝛿(r) Detuning between the RF frequency and the local Larmor frequency 32
𝜖 RF polarization 34
𝜂 Anisotropy of the RF coupling 44
𝛼 Magnetic gradient (in units of frequency) 37, 38
𝑏′ Horizontal gradient of the quadrupole static field 38
𝑟𝑏 Horizontal radius of the bubble trap 38
Ω0 Rabi coupling at the bottom of the bubble 40
Ωrf Maximal achievable Rabi coupling 37
𝛽 Ratio between the magnetic gradient and gravity 40
𝑅 Distance between the atoms and the center of the quadrupole 41

𝜔knife Frequency of the RF knife 53



Table of notations and symbols 205

Part II: Utracold atoms in a ring-shaped trap

Symbol Description Page
ℓ Winding number 67
𝑟0 Radius of the ring trap 67
𝜔𝑟 Radial trapping frequency (in the ring-shaped trap) 75
𝜔𝑧 Vertical trapping frequency 74

L1,L2,L3,L4 Designation of the successive lenses of the light sheet setup 78

Part III: Fast-rotating Bose gases in RF adiabatic potentials

Symbol Description Page
𝜔𝑧 Vertical trapping frequency 41
𝜔⊥ Radial trapping frequency (in the isotropic case) 41
𝜀 Horizontal trap anisotropy 44

Ωrot Angular velocity of the trap (if it is rotating) 144
𝐿𝑧 Average angular momentum of the gas (along the 𝑧 axis) 130
𝑁𝑣 Number of vortices in the gas 131
𝑛𝑣 Vortex surface density 130
Ωeff Effective rotation frequency of the gas 130
𝜆 Relative strength of the quartic trapping term compared to the harmonic trapping 136
Ωℎ Rotation frequency of the gas required for the appearance of a central hole 140
𝑙 Magnetic length of the rotating gas 131
𝜔± Frequency of the 𝑚𝑧 = ±2 quadrupole modes 141
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Résumé

Le caractère irrotationnel des superfluides est à l’origine de propriétés de rotation spectacu-
laires. Pour que le fluide puisse tourner, sa densité doit s’annuler localement en une singularité
appelée tourbillon quantique ou vortex. La géométrie annulaire présente un grand intérêt pour
étudier la superfluidité car le gaz peut tourner autour d’un trou central sans présenter de sin-
gularité, permettant l’existence de courants permanents à la circulation quantifiée le long de
l’anneau.

Nous confinons des atomes froids habillés par un champ radiofréquence dans un potentiel
adiabatique reposant sur un piège magnétique quadrupolaire. Le potentiel résultant, en forme
de bulle, à la fois très lisse et facilement modifiable, nous permet de réaliser deux types de
condensats de Bose-Einstein en forme d’anneau. Une première stratégie consiste à utiliser une
nappe de lumière très désaccordée pour confiner les atomes à l’intersection entre la bulle et le
plan imposé par la lumière – un anneau. Nous présentons la mise en œuvre et l’optimisation de
ce piège sur notre expérience et démontrons la possibilité de préparer et observer des courants
superfluides dans l’anneau.

Une deuxième voie exploite la force centrifuge et l’anharmonicité du potentiel adiabatique
pour créer un potentiel effectif en forme de chapeau mexicain en faisant tourner les atomes
piégés au fond de la bulle plus vite que la fréquence du piège. Après avoir réalisé un tel
système, nous en sondons les modes quadrupolaires pour caractériser sa rotation. L’étude de
la distribution des vortex dans le gaz en rotation montre également un effet de fonte thermique
des réseaux de vortex à température finie.

Mots-clefs : Condensation de Bose-Einstein, potentiel adiabatique, atomes habillés par la
RF, superfluidité, courants permanents, vortex, anneaux, rotations rapides.

Abstract

The irrotational nature of superfluids leads to spectacular rotational properties. For the fluid
to rotate, its density must locally vanish at a singular point called a quantum vortex. The
annular geometry is of great interest for studying superfluidity as the gas can rotate in this
geometry around a central hole without requiring any singularity, allowing the existence of
persistent currents along the ring with a quantized circulation.

In out experiment, we confine cold atoms dressed by a radiofrequency field in an adiabatic
potential based on a quadrupolar magnetic trap. The resulting bubble-shaped potential, both
very smooth and easily tunable, allows us to produce two types of ring-shaped Bose-Einstein
condensates. A first strategy consists in adding a far-detuned light sheet to confine the atoms
at the intersection between the bubble and the horizontal plane imposed by the light field –
i.e. a ring. We present the implementation and optimization of this trap and demonstrate
the possibility to prepare and observe superfluid currents in the ring.

A second path exploits the centrifugal force and the anharmonicity of the adiabatic poten-
tial to create an effective Mexican hat potential by rotating the trapped atoms at the bottom
of the bubble faster than the trap frequency. After having realized such a system, we probe
its quadrupolar modes to characterize the rotation. The study of vortex distribution in the
rotating gas also shows a thermal melting effect of the finite temperature vortex lattice.

Keywords: Bose-Einstein Condensates, adiabatic potentials, RF-dressed atoms, superflu-
idity, superfluid flow, vortex, rings, fast rotations.
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