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Abstract

The continuous development of video sensors and their miniaturization has ex-
tended their use in various applications ranging from video surveillance systems
to computer-assisted surgery and the analysis of physical and astronomical phe-
nomena. Nowadays it becomes possible to capture video sequences in any envi-
ronment and without any heavy and complex adjustments as was the case with
the old video acquisition sensors. However, the ease in accessing visual informa-
tion through the increasingly easy-to-handle sensors has led to a situation where
the number of videos distributed over the Internet is constantly increasing and it
becomes difficult to effectively correct all the distortions and artifacts that may
result from the signal acquisition. As an example, more than 600000 hours of
videos are uploaded each day on Youtube. One of the most perceptually annoy-
ing degradation is related to the image instability due to camera movement during
the acquisition. This source of degradation manifests as uncontrolled oscillations
of the whole frames and may be accompanied with a blurring effect. This af-
fects the perceptual image quality and produces visual discomfort. There exist
some hardware solutions such as tripods, dollies, electronic image stabilizers or
gyroscope based technologies that prevent video from blurriness and oscillations.
However, their use is still limited to professional applications and as a result, most
amateur videos contain unintended camera movements. In this context, the use
of software tools, often referred to as Digital Video Stabilization (DVS), seems
to be the most promising solution. Digital video stabilization aims at creating a
new video showing the same scene but removing all the unintentional components
of camera motion. Video stabilization is useful in order to increase the quality
and the visual comfort of the viewer, but can also serve as a pre-processing step
in many video analysis processes that use object motion, such as background
substraction or object tracking.

Video Stabilization (VS) has been an active area of research in the last two
decades. More than one hundred methods have been proposed in the literature,
and most of these methods are composed of several functional blocks, i.e pro-
cessing steps such as motion estimation, modeling or removal. This thesis offers
a structured and detailed overview by focusing on the most representative ap-
proaches developed during the last two decades. Highlighting some limitations on
the VS process itself as well as the lack of an accepted methodology for comparing
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the huge number of developed techniques is another major goal of this contribu-
tion. This overview is conducted by using an incremental approach based on the
essential steps of common video stabilization method. Following this approach,
we outline and discuss the different components of digital video stabilization, and
provide insights on the current challenges in this hot and evolving topic.

One of the unsolved problem in the field of VS is Video Stabilization Quality
Assessment (VSQA). As such, video stabilization evaluation is a multi-criterion
problem that could not be easily expressed through some mathematical multi-
objective optimization schemes used in computer vision. Indeed, the visual dis-
comfort due to the camera motion, artifacts caused by the stabilization process
such as resolution loss and distortions all contribute to the quality of the output
video. All these artifacts and distortions are not be mathematically tractable.
This is mainly due to the fact that visual discomfort and other perceptual annoy-
ing effects are inherently subjective, making objective evaluation rather difficult.
This is probably why although many video stabilization methods have been pro-
posed, a little attention has been paid to video stabilization quality assessment.
Very often the quality of the processed video is evaluated simply by visual inspec-
tion or with basic quantitative measures such as PSNR-based metrics. However,
these quantitative measures do not exploit any knowledge nor well-defined model
of the visual discomfort due to video instability. Furthermore, these measures
only assess a small subsets of the features or characteristics of motion that are
considered as the main origins of such annoying distortion. This thesis provides
a rigorous study and discussion of the existing VSQA metrics and then propose
a framework for developing a methodology for effective VSQA. By confronting
subjective evaluation experiments and objective measurements, this work is an
attempt to lay the cornerstone towards a universal evaluation methodology.

Video stabilization operates in several interdependent steps. In a nutshell, the
video motion field is estimated in order to compute the original camera path. The
camera path is then smoothed in order to obtain more coherent movements and
a new stable and perceptually pleasant video. While each step has its own set of
difficulties, the most challenging aspects of video stabilization lie in the estimation
of the camera motion and the evaluation of the video stabilization quality. For
instance, all detected movements do not convey reliable information about the
camera motion. Indeed, movements caused by moving objects are not the result
of the camera motion and can lead to errors if not removed. Such challenges
are widely studied in the literature. In this thesis, we propose a new method
to identify and remove movements caused by objects rather than the camera
motion. By recording the displacement in the video of a small set of interest
points, we discriminate and identify the object and camera motion using the
duration of the trajectory and the characteristics of its movements. This feature
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trajectories selection strategy first analyzes each feature trajectory on a local
time-window, in order to account for its duration and movement properties. Two
local weights are defined that rank each trajectory according to its duration and
its adequacy with the movements observed on a time-window centered on a given
frame. These local weights are then combined in order to form a global trajectory
weight that accounts for the phenomenon observed during the whole duration
of the trajectory. Finally, the feature trajectories with the largest weights are
selected to estimate the camera motion parameters. Results on a dataset of 15
videos show that this approach outperforms standard outlier removal procedures
such as RANSAC.
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Résumé en français

Le développement continu de capteurs vidéo et leurs miniaturisations ont étendus
leurs usages dans diverses applications allant de la vidéo-surveillance aux systèmes
de chirurgie assisté par ordinateur et l’analyse de mouvements physiques et de
phénomènes astrophysiques. De nos jours, il est devenu possible de capturer des
séquences vidéos dans n’importe quel environnement, sans de lourds et complexes
ajustements comme c’était le cas avec les anciens capteurs vidéos. Cependant,
l’aisance à accéder à l’information visuelle à travers des capteurs de plus en plus
faciles à manipuler a conduit à une situation où le nombre de vidéos distribuées
sur internet est en progression constante et il devient difficile de corriger effi-
cacement toutes les déformations et artefacts qui découlent de l’acquisition du
signal. Par exemple, plus de 600000 de vidéos sont chargées sur Youtube chaque
jour. Une des dégradations les plus gênantes pour la vision humaine est liée à
l’instabilité de l’image due aux mouvements de la caméra lors de l’acquisition
du signal. Cette source de dégradations se manifeste sous la forme d’oscillations
incontrôlées de la trame entière et peut être accompagnée par un effet de flou.
Cela affecte la qualité de l’image et produit un inconfort visuel. Il existe des
solutions mécaniques telles que les tripodes, chariots, stabilisateurs électroniques
ou des technologies s’appuyant sur les gyroscopes qui empêchent les effets de flou
ou les oscillations. Cependant, leur utilisation reste limitée à des applications
professionnelles et en conséquence, la plupart des vidéos amateurs contiennent
des mouvements de caméra non intentionnels. Dans ce contexte, l’utilisation de
méthodes numériques, souvent nommées stabilisation de vidéos numérique, sem-
ble être une solution prometteuse. La stabilisation numérique cherche à crée
une nouvelle vidéo montrant la même scène mais en supprimant toutes les com-
posantes non intentionnels du mouvement de caméra. La stabilisation vidéo est
utile pour améliorer la qualité et le confort visuel du spectateur, mais peut aussi
servir d’étape de prétraitement pour de nombreux procédés d’analyse vidéo util-
isant le mouvement, tel que la soustraction de l’arrière-plan ou le suivi d’objet.

La stabilisation de vidéo a été un thème de recherche active pendant les vingt
dernières années. Plus d’une centaine de méthode ont étés proposées dans la
littérature, et la plupart de ces méthodes sont composées de plusieurs bloques,
par exemple des étapes telles que l’estimation, la modélisation ou la suppression
de mouvements. Cette thèse offre une analyse poussée et détaillée des méthodes
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proposées en se focalisant sur les approches les plus représentatives développées
durant les vingt dernières années. Un des objectifs majeur de cette contribution
vise à souligner quelques limitations du processus de stabilisation ainsi que le
manque de méthodologie pour comparer le grand nombre de techniques dévelop-
pées. Cette analyse se fonde sur les étapes essentielles des méthodes standards
de la stabilisation de vidéos avec une approche incrémentale. Après cette ap-
proche nous présentons et commentons les différents composants de la stabili-
sation numérique, et apportons un aperçu des différents défis dans ce sujet en
évolution. Un des aspects non résolu dans ce domaine est l’évaluation de la qual-
ité de la stabilisation. L’évaluation de la stabilisation de vidéo est un problème
à multiples critères qui ne peut être facilement exprimé à travers une méthode
d’optimisation à critères multiples telle qu’on en utilise en vision par ordinateur
En effet, l’inconfort visuel causé par le mouvement de la caméra, les artefacts
liés au processus de stabilisation tels que la perte de résolution et les distorsions
contribuent tous à la qualité finale de la vidéo de sortie Tous ces artefacts et
distorsions ne sont pas aisément formulés mathématiquement Cela vient princi-
palement du fait que l’inconfort visuel et autres effets gênants pour la perception
humaine sont intrinsèquement subjectifs, ce qui rend l’évaluation objective diffi-
cile. C’est probablement pourquoi de nombreuses méthodes de stabilisations ont
été proposées, mais peu d’attention a été prêtée à l’évaluation de la qualité de la
stabilisation. Très souvent, la qualité de la vidéo traitée est évaluée par simple
inspection visuelle ou par des mesures quantitatives simples comme celles basées
sur le PSNR. Cependant ces mesures quantitatives n’exploitent pas de connais-
sances ou de modèles bien définis de l’inconfort visuel que cause l’instabilité de
la caméra. De plus, ces mesures ne prennent en compte que de petits groupes de
caractéristiques du mouvement qui sont considérées comme les sources principales
de distorsions gênantes. Cette thèse fourni une étude et analyse rigoureuse des
méthodes existantes d’évaluation de qualité et propose un cadre pour développer
une méthodologie pour une évaluation efficace de la stabilisation. En confrontant
expériences d’évaluation subjectives et mesures objectives, ce travail tente de
poser les bases d’une future méthode d’évaluation universelle.

La stabilisation de vidéo opère en plusieurs étapes interdépendantes. Simplement,
le champ de mouvements est estimé pour obtenir les déplacements de caméra orig-
inaux Le chemin de la caméra est ensuite lissé pour obtenir des mouvements plus
cohérents et une nouvelle vidéo stable et plaisante visuellement. Si chaque étape
a ses propres difficultés, l’aspect le plus difficile est l’estimation du mouvement de
la caméra et l’évaluation de qualité de stabilisation. Par exemple, tous les mou-
vements détectés ne contiennent pas des informations fiables sur le mouvement
de caméra. En effet, les déplacements dus à des objets en mouvements ne dé-
coulent pas du mouvement de la caméra et peuvent créer des erreurs s’ils ne sont
pas détectés et supprimés. Ces défis sont étudiés dans la littérature. Dans cette
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thèse, nous proposons une nouvelle méthode pour identifier et supprimer les mou-
vements causés par des objets mobiles plutôt que le mouvement de caméra. En
enregistrant les déplacements dans la vidéo d’un petit groupe de points d’intérêts,
nous discriminons et identifions les mouvements d’objets et de caméra en utilisant
la durée des trajectoires et les caractéristiques des mouvements. Cette sélection
de trajectoires analyse chaque trajectoire dans une fenêtre temporelle locale, afin
de tenir compte de ses caractéristiques de mouvement et de durée. Deux poids
locaux sont définis pour trier chaque trajectoire selon sa durée et la pertinence de
ses mouvements observés dans une fenêtre temporelle centrée sur la trame con-
sidérée. Ces poids locaux sont combinés pour former un poids global qui puisse
rendre compte des phénomènes observés pendant toute la trajectoire considéré.
Enfin, les trajectoires avec les poids les plus importants sont sélectionnés pour
estimer les paramètres du mouvement de caméra. Les résultats sur un set de
15 vidéos montre que cette approche est plus performante que des méthode de
suppression de valeurs aberrantes tel que RANSAC.
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Chapter 1

Introduction

1.1 Context and motivations

The continuous development of video sensors and their miniaturization has ex-
tended their use in various applications ranging from video surveillance systems
to computer-assisted surgery and the analysis of physical and astronomical phe-
nomena [1]. Nowadays it becomes possible to capture video sequences in any
environment and without any heavy and complex adjustments as was the case
with the old video acquisition sensors [2]. However, the ease in accessing visual
information through the increasingly easy-to-handle sensors has led to a situation
where the number of videos distributed over the Internet is constantly increasing
and it becomes difficult to effectively correct all the distortions and artifacts that
may result from the signal acquisition.

One of the most perceptually annoying degradation is related to the image in-
stability due to camera movement during the acquisition [3]. This source of
degradation manifests as uncontrolled oscillations of the whole frames and may
be accompanied with a blurring effect. This affects the perceptual image quality
and produces visual discomfort. Professional videos are captured using mechan-
ical stabilizers such as tripods or dollies [4] to enforce carefully planned camera
movements. There also exist some hardware solutions such as electronic image
stabilizers or gyroscope based technologies that prevent video from blurriness and
oscillations [5] - see Figure 1.1. While these hardware solutions produce satisfying
results, they fail in some cases, are device dependent and are not widely available.
As a result, most amateur videos contain unintended camera movements [6].

In this context, the use of software tools seems to be the most promising solution.
The main reasons are the flexibility, the ease of use and the possibility to update
and adapt the software solutions to various environments and applications. Fur-
thermore, they offer the advantage of being applicable to older videos and could
be of great importance for cultural heritage video restoration applications. This
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thesis focuses on these software solutions, often referred to as Digital Video Sta-
bilization (DVS). The developed solutions aim at removing or at least reducing
instabilities that mainly manifest themselves as abnormal involuntary/voluntary
camera movements. The process of video stabilization is illustrated on Figure 1.2
and Figure 1.3.

Figure 1.1 Video stabilization based on additional motion sensors. Electronic Image
Stabilization (EIS) is a highly effective method of compensating for hand jitter that
manifests itself in distracting video shake during playback. EIS relies on an accurate
motion sensor for tracking the source of jitter,which may be hand shake or vehicle
motion for example. The motion information is then integrated during the current
video frame and used to compensate for it by cropping the viewable image from a
stream of video frames thru the imaging pipeline. Source : TDK InvenSense solutions

for video stabilization

These instabilities can produce different types of degradation. Abrupt motion,
often seen when using hand-held devices, or high-frequency tremors, such as those
felt on a moving vehicle, can cause important visual discomfort [7], [8]. Lower-
frequency motion, such as the up and down movements resulting from walking
while filming, can distract the viewer from the focus of the video [9]. Finally, for a
camera equipped with a rolling shutter sensor, fast camera movements can induce
deformations in the scene [10], [11]. Digital stabilization aims at creating a new
video showing the same scene but removing all these unintentional components
of camera motion.

Digital video stabilization is useful in various contexts. As the production and dif-
fusion of video increases, the facilitation of high-quality amateur videos becomes
an important field for video-sharing platforms such as Youtube [4]. In professional
contexts, law enforcement agencies have increasingly access to videos taken on the
spot as evidence. Similarly, they increasingly make use of body cameras, which
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Figure 1.2 Illustration of video stabilization.Video stabilization aims at removing
unintentional movements and create a smooth video.

suffer from sever shakes whenever the wearer is running [12]. Video surveillance
cameras can also suffer from detrimental jitter, often due to meteorological con-
ditions [13]. Stabilizing such videos can make their exploitation much easier.
Other fields that can benefit from this are the medical field with camera-assisted
surgery, or remote control of unmanned aerial vehicles [14]. Video stabilization
also allows the separation of camera-induced motion and object-dependent mo-
tion. This can serve as a pre-processing step in many video analysis processes
that use object motion, such as background substraction or object tracking [13].

While digital stabilization can use additional information from gyroscopes or
accelerometers [7], or different viewpoints [15] to improve or facilitate the process,
most methods only rely on the video sequence taken from a single camera. Early
methods used simple 2-dimensional models such as translations or similarities to
represent the camera motion and remove all perceived camera motion to obtain
a video corresponding to a simulated video captured by a fixed virtual camera
[16]. Motion filters and path-fitting techniques have since been introduced to take
intentional camera motion into account, in order to simulate professional camera
movements [2]. Similarly, more complex motion models, based on structure-
from-motion methods, have been proposed. These computationally demanding
solutions, relying on 3-dimensional models, become now attractive and practical
thanks to the current high-performance computation technologies [17]. However,
computing depth from a video sequence remains a long and difficult process that
fails in many situations, hence the enduring popularity of 2-dimensional models.
Another type of models, that attempt to obtain visually-plausible rather than
physically-accurate videos, has emerged more recently [18].
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It It+1

Ĩt+1

Video Stabilization

Figure 1.3 Principle of video stabilization. From frame It to It+1, the camera moves,
as well as the gray circle in the foreground. Video stabilization consists in computing
It+1, a new version of frame It+1 in which the static objects (here, the background)

are motionless.

1.2 Basic notions on video analysis and processing

This section describes basic notions related to video processing, that will be useful
in the following manuscript.

1.2.1 Digital representations of videos

First, let us consider how videos are represented in digital format. Videos are
sequences of images, called frames. Each of these frames show what the observed
scene looked like at a given time t. For the sake of simplicity, we will refer from
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Figure 1.4 Illustration of the composition of a colour video, with the three different
colour channels.

now on frame t the frame corresponding to the view of the scene at this time
t. The succession of frames gives the impression of continuous movements from
the series of still images. This is because the rate of succession of the frames is
very rapid. This rate is noted in frame per second (fps), with most videos using
25-30 fps. In digital format, frames are represented as H × W × C matrices.
H indicates the number of rows and W the number of columns in the matrix.
Meanwhile, C represents the number of channels used. In the case of black and
white videos, only one channel, representing the luminosity, is used. In colour
videos, three channels are used to code the image in the colour-space RGB for
the raw format. Figure 1.4 shows the composition of an RGB image. Cases with
C>3 are possible, such as videos taken with depth cameras, but are beyond the
scope of this thesis. Each intersection of a row and column is called a pixel, for
picture element. The dimensions H×W of the frames composing a video is called
the resolution, and indicates how precisely the scene can be rendered.

1.2.2 Pinhole camera model

The acquisition of frames is done by projecting the 3D points of the scene onto the
2D camera plane. The link between the 3D scene coordinates (xs, ys, zs) and the
camera plane coordinates (xv, yv) are described using the pinhole camera model
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(see Figure 1.5). If (C,X, Y, Z) is the coordinate system of the 3-dimensional
space and (c, u, v) the coordinates of the camera plane onto which the image
is projected, the relationship between three dimensional points and their two
dimensional projection can be written as :

UV
S

 = K


xs

ys

zs

1

 (1.1)

with the relationship between the coordinates of the camera plane and the vector
(U, V, S) given by:

xv = u
S

yv = V
S

(1.2)

In this equation, K is a 3×4 matrix that describes the mathematical relationship
between the coordinates of a point in three-dimensional space and its projection
onto the image plane. In the simplest case, K only depends on the focal distance
f , that is the distance between the image plane and the camera center C:

K =

−f 0 0 0
0 −f 0 0
0 0 1 0

 (1.3)

However, this assumes that the aspect ration of the pixels is 1:1. Furthermore, it
is only valid if the center of the image plane is also the origin of the coordinate
system, when in practice we often use the bottom left corner of the frame as the
origin. In such cases, the matrix K is described as:

K =

−fkx 0 x0 0
0 −fky y0 0
0 0 1 0

 (1.4)

In such cases, kx and ky indicate the aspect ratio of the pixels, while x0 an y0
indicate the coordinates of the new origin in the current coordinate system. The
coordinates of the scene use the camera aperture as the origin, hence any motion
of the camera has repercussions on the coordinates of the scene and therefore on
the projected image.

1.2.3 Motion blur and rolling shutter

This acquisition is done over a slight time lapse, which can lead to sufficiently
fast objects to change projection between the beginning and the end of this lapse,
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Figure 1.5 Illustration of the projection onto the image plane. (C,X, Y, Z) is the 3-D
coordinate system of the scene, (c, u, v) the 2-D coordinate system of the image plane

and f the focal distance.

Figure 1.6 Illustration of the rolling shutter effect. Note the tilted tower in the
second frame. This is caused by fast camera movements from left to right, which
causes vertical edges to be seen as diagonal as the camera changes position between

capturing successive rows.

creating what is called “motion blur". While CDD sensors capture the whole
frame at the same time, CMOS sensors use instead what is called “rolling shutter":
that is, frames are acquired one row at a time rather than all at once. Because
of this, fast camera movements can cause deformations in vertical structures, as
the camera changes position while the frame is captures. Figure 1.6 shows an
exemple of rolling shutter artifact.

1.2.4 Compression and encoding

Once video frames have been captured, they are encoded in specific formats,
usually with a degree of compression. The videos considered here are either in AVI
or MP4 format with a variety of codec, the h264 codec being the most common.
The h264 codec codes the images in the Y’CbCr color space, which uses the
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luminance Y’ and the luminance with the blue and red channels subtracted (Cb
and Cr respectively). However, for the treatment of video stabilization methods,
frames are decompressed and converted to RGB format before being treated. The
impact of compression on the stabilization results are beyond the scope of this
thesis.

1.3 Contributions and publications

The contributions of this thesis are composed of three main parts :

• A didactic and structured overview of video stabilization meth-
ods and current challenges. The main purpose of this contribution is to
provide a fairly unifying framework to allow a better understanding of the
progress of this research subject with appreciable industrial and academic
benefits. This overview is focused on the main challenges, practical aspects
and mathematical core concepts of the video stabilization techniques. By
using a step-by-step approach, the video stabilization pipeline can be put
in perspective so as to compare the main available approaches and discuss
the milestones of this research area.

W. Guilluy, L. Oudre and A. Beghdadi. Video stabilization: overview,
challenges and perspectives. submitted to IEEE Transactions on Circuits
and Systems for Video Technology. 2018.

• A new method for outlier removal and camera motion estimation.
The estimation of the 2D or 3D camera parameters from feature trajecto-
ries is a tricky process since not all movements present in the video give
information on the camera motion. While static objects are only affected
by camera-induced movements, other objects undergo displacements that
are caused by both the camera motion and the movements of the object in
the scene. These moving objects need to be separated from the others and
removed in order to compute the correct camera path. We propose a novel
approach to assess and select the best feature trajectories to use in the cam-
era motion estimation for video stabilization. Unlike standard approaches
used for the selection of feature trajectories, we analyze the movement of
the feature trajectories through all frames and compute a global weight by
considering multiple criteria such as movement and duration.

W. Guilluy, L. Oudre and A. Beghdadi. Feature trajectories selection for



1.4. Overview of the manuscript 29

video stabilization. In Proceedings of the European Signal Processing Con-
ference (EUSIPCO). Rome, Italy. 2018.

• A new framework for the video stabilization quality assessment.
To the best of our knowledge there has been very few studies dedicated to
performance evaluation of video stabilization methods. The lack of such
studies is mainly due to the fact that video instability, like other spatio-
temporal distortions and artifacts, is very difficult to model. Indeed, the
way this distortion affects the perceived quality is misunderstood and there
is no way on how to quantify, in an effective way, the effect of this distor-
tion on the overall quality of the video. Our contribution in this context is
twofold. First, by scrupulously reviewing all existing metrics and describing
the assumptions behind them, we provide one of the first study dedicated to
evaluation. Secondly, we confront existing metrics with subjective results
collected on viewers so as to enlighten the existing links between objective
scores and visual inspection.

W. Guilluy, A. Beghdadi and L. Oudre. A performance evaluation frame-
work for video stabilization methods. In Proceedings of the European Work-
shop on Visual Information Processing (EUVIP). Tampere, Finland. 2018.

1.4 Overview of the manuscript

The manuscript is organized as follows: chapter 2 presents an overview of previous
methods of video stabilization. Chapter 3 reviews the different ways that video
stabilization methods have been evaluated and presents an investigation of the
performances of several video stabilization methods on a sample of those metrics,
comparing them to a user study of the stabilization methods to investigate the
links between the proposed metrics and the user experiences. Chapter 4 present
a novel selection method to identify motion caused solely by the camera motion
and evaluates the impact on a standard stabilization pipeline. Finally, chapter 5
offers concluding remarks on the contributions of this work and the current state
of video stabilization research.
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Chapter 2

Video stabilization : challenges and
methods

Video stabilization aims at transforming a video I corrupted by involuntary cam-
era movements into a stabilized video Ĩ, in which these movements are smoothed
in order to produce a coherent and continuous video stream with low visual dis-
comfort and better display quality. This operation is a complex process composed
of many steps that could be roughly grouped into two main block as illustrated
in Figure 2.1. First, the original video I is analyzed through motion estimation
process. The aim of this first phase is to compute estimates of the camera move-
ments from the video. In a second phase, these estimated camera movements are
corrected and smoothed, as in attempt to remove their involuntary parts while
preserving their voluntary parts. The video is finally processed by using the
softened camera movements, so as to generate the stabilized video signal Ĩ.

As mentioned in Chapter 1, video stabilization has been a major field of research
during the last two decades due to the wide range of its potential applications.
Many approaches have been introduced in the literature to solve this problem.
Although based on these two general principles (analysis and correction), the
methods have evolved by adding pre/post processing steps and using more pre-
cise models. In particular, the level of complexity in the video analysis step has
increased across the years in order to refine the estimation of the camera motion.
As a result, most of current state-of-the-art methods are composed of five to ten
processing blocks that are conceived to adapt to the different situations encoun-
tered throughout the stabilization process and to improve the performances. In
this article, we provide a structured overview of the stabilization methods pro-
posed in the literature, according to the chart-flow presented on Figure 2.1. To
this end, we propose to decompose each of the two main stages of video sta-
bilization into a series of functional blocks, that will be studied and described
individually. These functional blocks have been picked according to their popu-
larity in the community and to their abilities to enlighten the different directions
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Figure 2.1 Main steps for video stabilization

taken in the literature. Although all these blocks are not necessary present in
all published methods, they constitute a convenient way to compare the different
approaches according to the same analysis grid.

The first stage of video stabilization consists in the analysis of the video. The
aim is to estimate the camera motion from all the motions observed in video.
In the following, we decompose this analysis stage into three main successive
steps : motion estimation, outlier removal and camera motion modeling. First,
the frames of the video are analyzed so as to understand all the movements in
the video : this is the motion estimation step. These movements might be due
to the camera or to moving objects/subjects in the scene. In order to only focus
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on the movements that are in fact due to the camera, the second step consists
in outlier removal. Based on general assumptions on the possible impacts of
camera movements on the video, this block discards all movements that are not
consistent to a plausible camera displacement. Consequently, this step extracts
the movements that will be useful in the stabilization process. Finally, the last
block provides a camera motion modeling from the relevant movements ex-
tracted from the video. As will be seen in the next section, this can be done either
by assuming a geometrical model for the camera displacement (in this case the
block outputs geometrical parameters for the camera), or by using an empirical
model which does not take the geometrical constraints into account.

At the end of the first stage, camera motion estimates are available and can be
used to process the shaky video. The second stage of video stabilization consists in
the processing of the video. More specifically, the camera motion models output
by the first stage go through a correction process so as to reconstruct a more
pleasing video. In the following, we decompose this processing stage into two
main successive steps : camera motion correction and video rendering. The first
block performs a camera motion correction by smoothing and filtering the
camera movements. Whether geometrical parameters of the camera are available
or not, the correction step aims at suppressing the involuntary camera movements
and to compute a new plausible camera motion. In this step, the strength of the
stabilization can also be adjusted so as to provide pleasing results for the viewer.
Finally, the new camera movements are applied back to the original disturbed
video, within the video rendering step. This final step reconstructs a new video
with smoothed camera movements.

In the following, for the sake of completeness and clarity, the video stabilization
process is presented as a set of interdependent steps described in the order they
appear in the whole VS pipeline. First, the video analysis step consists of esti-
mating motions present in the video (Section 2.1), then identifying those resulting
from the motion of the camera (Section 2.2) to be used to model the original path
of the camera (Section 2.3). The video is then stabilized by correcting the path
of the camera (Section 2.4) and rendering a video (Section 2.5), simulating the
scene as captured by a virtual stabilized camera following the corrected path.

Notations

The aim of this whole process is to transform a video sequence I containing
unintentional camera movements into a stabilized sequence Ĩ. In the following,
let zt , [xt, yt, 1] be a pixel belonging to frame t and It(zt) the luminance channel
of the frame t at the pixel zt.
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2.1 Motion estimation

The first step of any video stabilizer is to acquire knowledge of the camera move-
ments. However, in the context of digital stabilization, no direct information
about the camera is known, since only the video sequence is available. Motion
estimation aims to recover movements present in the video sequence, which will
be used to determine the motion of the camera. These movements are estimated
by searching for correspondences between consecutive frames. Pixels (or blocks
of pixels) from the first frame are matched with the pixels (or blocks of pixels)
in the following frame if they are assumed to correspond to the same element
within the captured scene. Several approaches have been introduced to solve this
problem: some try to find a match for every pixel in the frame (Section 2.1.1),
others use blocks of pixels (Section 2.1.2) and finally, points of interest can be
used to estimate the movements (Section 2.1.3).

2.1.1 Pixel-based matching

Pixel-matching methods seek to determine the motion of pixels between two
frames [19]. As illustrated in Figure 2.3, each pixel of the first frame corre-
sponds to the projection of a 3D point in the observed scene onto the camera
plane, and is matched by the pixel of the following frame corresponding to the
projection of the same 3D point onto the new camera plane [20]. To determine
this point-to-point correspondence, the luminance of any given object is assumed
to be constant throughout a video sequence. Therefore, such methods attempt
to match pixels with the same intensity. However, many pixels in a given pair of
frames may have similar intensity; therefore additional constraints are needed to
obtain a unique solution [21], [22]. Early methods suppose that the movements



2.1. Motion estimation 37

It It+1

Optical flow

Figure 2.3 Principles of optical flow. Optical flow aims at computing the displacement
of each pixel between frame It and It+1. It is often displayed as a vector field.

are predominantly caused by the motion of the camera, which is modeled by a
2D transformation. Such methods, instead of computing the displacement for ev-
ery pixel, search for the transformation parameters that best explain the overall
displacement of the frame. Those parameters are easily estimated by minimiz-
ing the luminance difference between the two adjacent frames [23].If Ht denotes
the transformation matrix between the frames t and t + 1, the best parameters
minimize the differences ||It(Htzt)− It+1(zt+1)||2 for all pixels. Robust functions
have also been used to make this approach more robust to outliers [24]. This ap-
proach solves simultaneously the different steps of the camera motion modeling.
This saves times, but needs a pre-determined motion model. Since only adjacent
frames can be compared, there is not enough information to solve a 3D motion
model, constraining the results to 2D models. In addition, this cannot be used
with an outlier removal scheme. It is also sensitive to changes in illumination.
A recent method [25] uses a similar approach to identify the correction directly,
using the pixel matches as one component of an energy function using neural
networks.
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It It+1

Figure 2.4 Principles of block matching. Block matching aims at computing the
displacement of blocks of pixels between frame It and It+1.

Another approach is to determine the optical flow between adjacent frames. Op-
tical flow consists in finding the displacement field (ut, vt) of each pixel zt between
two consecutive frames It and It+1 . These displacements are estimated thanks to
several assumptions, such as that neighbouring pixels have similar movements [26]
or that the flow is smooth or piece-while smooth [27]. The flow is often computed
iteratively using the spatial and temporal gradients[28]. The main advantage of
using optical flow is that it recovers a dense flow field, which is necessary for some
stabilization methods [29] or for enhancements such as in-painting [30]. Another
advantage is that neighbourhood relations are easy to determine between motion
vectors, which can be exploited in later steps [31]. However, computing dense
optical flow may require heavy computations. This can be partially alleviated by
using other faster matching methods to compute an initial flow before running
the iterative algorithm [32]. Another option, which has been used in real-time
applications [3], is to use sparse optical flow, which do not solve for motion in
low-gradient areas. The main drawback of optical flow is the running time: this
is often the longest operation in a video stabilization process that uses it, as the
movements from easily matched features must be propagated to flat spaces. Liu
et al. [29] report 1.1 seconds per frame to compute the optical flow out of 1.5 sec-
onds per frame for the whole stabilization algorithm. In addition, times is spent
calculating the optical flow on features that have their own movement in addition
to the camera’s, and therefore are hard to use to evaluate the camera’s move-
ments. Finally, because motion vectors are determined for pixel coordinates and
not for specific features, trajectories of objects or features cannot be determined.
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2.1.2 Block-matching

Instead of finding correspondences between pixels, block-matching methods use
blocks of pixels of size (2n+1)×(2n+1) and estimate their displacements between
adjacent frames, as illustrated on Figure 2.4. The use of blocks allows to remove
some ambiguities that appear when matching individual pixels, by decreasing the
chance of several matches being detected. Furthermore, by assuming that motion
between two frames is limited, it is possible to only consider blocks of pixels
within a certain search radius of the block to be matched, further restricting the
possibilities for matches. The best displacement (ux, uy, 1) for a given pixel (zt =
(xt, yt, 1)) is the one minimizing the energy E , with the considered displacements
(ux, uy, 1) smaller than the given search radius.

E(xt, yt, ux, uy) =
n∑

k=−n

n∑
l=−n

||It(xt + k, yt + l, 1)− It+1(xt +ux + k, yt +uy + l, 1)||2

(2.1)
To that end, block-matching approaches are based on search windows that con-
strain the possible motions. This is computationally very efficient, but two main
problems emerge. First, the aperture problem caused by the search windows:
smaller windows run the risk of being too small to contain the true motion, while
larger windows are prone to containing several possible matches. Secondly, ho-
mogeneous surfaces have little to promote one match over another. These regions
are therefore often dropped from computing the displacement, and are consid-
ered ambiguous. The result is a motion field presenting similar advantages to the
optical flow fields, with easy neighbourhood relations but no object trajectories.
The main disadvantages is that untextured areas are not filled in.

2.1.3 Feature-matching

Feature matching seeks to identify points in the scene that are easily recognizable.
In this case, only the displacements of these points of interest are computed, as
illustrated on Figure 2.5. By processing the entire video frame after frame, the
positions of these points can be tracked using the properties of the given features,
forming trajectories. One of the advantages of using this approach is that the
same point can be tracked and recognized across many frames, from the frame it
is originally identified to the frame where it is no longer present. In particular,
the study of the trajectories can give a better insight on the movements present
in the scene.

A commonly used [10], [11], [13], [14], [17], [18], [33], [34] tracking algorithm is the
KLT tracker [35]. A feature detection algorithm is used to initialize the position
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It It+1

Figure 2.5 Principles of feature point matching. Feature point matching aims at
computing the displacement of only a subset of relevant pixels between frame It and

It+1.

of tracked points, which are then tracked using optical flow. A confirmation
check verifies that the feature has been tracked correctly, otherwise the feature
trajectory is ended. New feature points can be detected in later frames if too
many feature points have been lost.

SIFT points are also widely used [2], [36]–[39]. These features use descriptors
based on the image gradient to obtain very specific descriptors that make matches
very reliable. The descriptors contain the orientation of the feature in order to be
rotation-invariant, and detection is used at several image scales that help avoid
problems caused by zooming, although it is slower than most alternatives. SURF
points were designed on similar principles [40], but optimized for speed, making
them a good alternative [41]–[43]. SIFT features have also been used in conjunc-
tion with line detection methods [44], as deformations caused by stabilization are
particularly visible on lines.

Other features used include Maximally Stable Extremal regions (MSER) [45] or
FAST corners using BRIEF descriptors [12], [46]. MSER detect contiguous re-
gions whose borders are darker/brighter than any pixel in the region. An ellipse is
then fitted over the region, using the covariance matrix to identify the ellipse axis
in order to make it rotation-invariant. FAST corners are detected when a contigu-
ous number of pixels are darker or lighter by a tolerance threshold compared to the
central pixel, and descriptors are based on binary comparisons between the cen-
tral pixel and the rest of the patch. FREAK descriptors [47] have also been used in
some recent works Zhao2019TrajDerivatives. These binary descriptors use overlapping samples similar to the distribution of retinal cells in the human eye.,
[48], [49]

Feature-matching provides accurate and fast results, and the obtained trajecto-
ries allow for additional temporal analysis in the remaining steps of the process,
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although scenes with large uniform regions can sometimes yield few features per
frame. However, because features are spread unevenly across the video frames.
This can lead to some areas being over-represented in the motion analysis. Fur-
thermore, neighbourhood relations are harder to establish.

2.2 Outlier removal

While all movements observed in the video sequence are affected by the motion
of the camera, not all observed movements are suitable to determine the camera
motion. The presence of moving objects in the filmed scene can be a source of
errors, as the movements of the objects could be mistaken for those caused by the
camera motion. Errors can also occur while determining the movements in the
video sequence. Finally, some movements may be too complex for a given motion
model. Detecting and removing such movements is important to ensure accu-
rate camera motion analysis. Therefore, several methods use a post-processing
step after the movement estimation [50], that are designed to remove these out-
liers. Two main approaches can be used, that are either based on frame-to-frame
analysis (Section 2.2.1) or on the whole video stream (Section 2.2.2).

2.2.1 Frame-to-frame analysis

Most outlier detectors consider two adjacent frames and label as outliers all the
displacements that do not fit the general observed movement. This can be done
by computing the fitting error between the estimated camera model and the
individual movements in the video. If the majority of movements are caused
solely by the camera motion, they are assumed to fit the camera motion model,
and those deviating from the model are considered unreliable.

The most commonly used method is the RANSAC algorithm [51]. Using a given
motion model, RANSAC randomly selects data to determine the model parame-
ters and measures the distance between the expected positions and the observed
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positions, with a threshold determining whether a given point is considered inlier
or outlier. The parameters resulting in the fewest outliers are selected. Different
variants on RANSAC have been used. For instance, umLESAC uses preliminary
tests before measuring the fitting error to discard bad data samples quickly and
adapts the number of iterations to the dataset [52]. Another variant, ORSA, uses
an a contrario approach to avoid a hard threshold on the fitting error [53]. This
approach has the advantage of solving for camera motion and detecting outliers
at the same time. But it can led astray if the majority assumption is false for a
single frame.

Assumptions on camera motion can also be used to determine outliers. One
hypothesis is that objects in the scene move faster than the camera. Outliers
are detected simply by thresholding the velocity of the observed movements [45].
Another hypothesis, in the case of dense optical flow, is to consider the smoothness
of the flow field. Thresholding the spatial gradient of the vertical and horizontal
flow fields detects the edges of moving objects, and by successive iteration can
remove all flow vectors corresponding to moving objects [29]. Median filters can
also be applied, on both fine scale to remove tracking errors and small moving
object, then on a larger scale to remove larger outliers [54]. Finally the spatial
distribution can be taken into account. For instance, a RANSAC variant applies
a grid over the reference frame and limits the number of movements selected
from one quad for any iteration of RANSAC [34], which avoids over-fitting the
model to a specific area of the frame. Using a similar grid, RANSAC can be
applied separately to each quad, resulting in local outlier detection [4]. Because
only adjacent frames are used, this approach can be applied in real-time without
requiring a buffer. It can also be used with any type of motion detection methods.

2.2.2 Video stream analysis

Outlier detection can also take into account motion over more than two frames.
This allows the consideration of the evolution of motion vectors over time, how-
ever it requires tracking points over several frames. Trajectories recovered using
feature point tracking is often used in this regard. One criteria that can be ex-
ploited is the difference between expected and observed motion. In particular,
the motion induced by the camera has been modeled as a projection into a low
rank subspace. Trajectories whose projections differ strongly from the original
motion at any given time are considered faulty and discarded [18]. similarly, if
the RANSAC algorithm has been used to determine an initial transformation,
then the differences between the known positions of features and the expected
positions can be computed [48]. These differences, called projection errors, can
be used to refine the outlier rejection. Trajectories that repeatedly cause large
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projection errors can then be reclassified as outliers. In addition, trajectories that
have been often classified as outliers can be excluded from the initial RANSAC
execution and reclassified as inliers only if they have small projection errors. Ob-
serving trajectories over a given temporal window can also give insight on which
trajectories are the most reliable. Firstly, some approaches require trajectories
of a minimum length, such as models using epipolar geometry [55], which require
temporally distant frames to work. Trajectories that do not span the required
frames are therefore considered outliers. Methods that work directly on trajec-
tories may require a minimum length for a trajectory to be usable, and need to
augment some trajectories that are too short, in which case it is logical to pri-
oritize the trajectories requiring the least degree of interpolation [11]. Finally,
moving objects often leave the frame quickly as they pass through the scene,
so longer trajectories are prioritized as more likely to belong to the static back-
ground of the scene [18]. The spatial distribution can also be exploited over a
period of time. Bi-layer clustering is a method used to detect large moving ob-
jects in the foreground of videos. It uses motion and colour to segment feature
trajectories into two clusters, and chooses to remove the cluster with the greater
compacity, as the background of a scene is far less compact than moving objects
[11]. These methods are only applicable if feature trajectories have been obtained
using feature-matching while detecting motion in the video.

2.3 Camera motion modeling

Once outliers have been removed, the remaining movements are the result of
the camera motion. They can therefore be used to model or approximate the
camera motion. To that end, two strategies can be used. In most works, the
modeling of the camera motion is based on geometrical models that describe the
physical process of capturing a scene with a pinhole camera. Early works have
proposed to use 2D models that approximate the effects of camera motion on
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the movements of pixels in the video (Section 2.3.1). By recovering the depth
information and using 3D models, it is also possible to seek for the original 3D
displacements of the camera (Section 2.3.2). Alternatively, another approach is
to avoid geometrical models to obtain perceptually plausible models, in order
to obtain visually acceptable corrections rather than physically accurate ones
(Section 2.3.3).

2.3.1 2D models

As such, the physical movement of the camera lies in a 3D space. However,
the influence of the camera movements is only accessible through the frames of
the video, i.e a 2D space. This is why 2D models approaches do not attempt
to recover the original 3D path of the camera but model its influence between
two frames as a 2D transformation. More specifically, considering two successive
frames It and It+1, and a pixel zt , [xt, yt, 1] belonging to frame t, its coordinates
zt+1 in frame t+ 1 are given by

zt+1 = Htzt (2.2)

where Ht is a 2D-transformation matrix describing the motion between frames t
and t+ 1. The general form of matrix Ht,

Ht =

h11 h12 h13
h21 h22 h23
h31 h32 1

 , (2.3)

allows to consider several types of 2D transformations such as pure translation,
pure rotation, similarity, affinity or homography. 2D approaches have been really
popular for their simplicity of use and low computational cost [16]. They do
not require the challenging task of depth estimation, and provide, in case of low
parallax or small relative depth variations, a fast and robust way of determining
camera movements [24], [56]. Moreover, the 2D assumption is often valid on a
local temporal scale when the movements of the camera are not to large. They
can also be computed from frame-to-frame correspondences, and can thus be
used in conjunction with any type of motion detection. Finally, the parameters
of the transformation and the pixel position are enough to determine the expected
location of the pixels after applying camera motion. This means that the motion
caused by the camera is known for every pixel and the corrections required can
likewise be known exhaustively.
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The simplest parametric planar transforms to be considered are the similarities
(also referred to as simplified affine models) [16]. They are able to handle trans-
lations, scaling and rotation along the camera axis and are based on only four
parameters a, b, tx, ty such that

Ht =

a −b tx
b a ty
0 0 1

 . (2.4)

Parameters a and b handle the scaling the rotation along the roll-axis, while tx
and ty respectively model the horizontal and vertical translations. By setting
a = λ cos(θ) and b = λ sin θ, the scaling/rotation effects can be specified with λ
the scaling parameter and θ the rotation parameter [57]. The estimation of the
four parameters can be solved by linear Least Squares Method on a set of redun-
dant equations [36], [58], [59], possibly combined with filtering/outlier removal
[32], [42]. Histogram approaches have also proven to be effective in this context
[60], [61]. Empirical studies have shown that, in videos acquired with hand-held
cameras, most of the involuntary movements such as vibrations are considered
significant in the place perpendicular to the z-axis [56]. These results allow to
think that by only considering scale, z-axis rotation, and translations, it is possi-
ble to obtain an acceptable approximation [6], since the impact of pitch and yaw
rotations on the final image warping are often minimal for this kind of videos.
Furthermore, due to its low number of parameters to be estimated, the similarity
model constitutes a relevant solution for real-time applications [3]. The similarity
model also presents the advantage of introducing very little deformations, which
makes it robust to outliers and noise [62]. However, it cannot account for strong
rotations outside of the camera axis , which may limit its performances in strongly
degraded videos.

Slightly more complex with six parameters, the affinity (or generalized affine
model) is the most commonly used 2D model. By replacing parameters a and b
by four parameters a11, a12, a21, a22 the matrix transformation writes

Ht =

a11 a12 tx
a21 a22 ty
0 0 1

 . (2.5)

The affinity model encompasses most of the qualities of the similarity model, but
additionally allows the possibility of shear [9], [37], [44], [46]. The parameters
can be estimated with standard differential motion techniques [23], with more
complex cost functions [24] or through multi-scale [63] or hierarchical analysis
[30], [64]. The major advantage of using an affinity model lies in the fact that
it naturally handle global motions, for which the affinity parameters at every
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location should be the same [65]. The model can deal with scenes containing
small relative depth variations and zooming effects [38] and provides an acceptable
compromise between accuracy and computational cost[45]. However, being a 2D
planar transform, it cannot model non-linear inter-frame motion [4].

Finally, the most exhaustive 2D is the homography, which uses 8 parameters.
The matrix transform becomes

Ht =

a11 a12 tx
a21 a22 ty
a31 a32 1

 . (2.6)

While the interpretation of the coefficients is not as straightforward as for simi-
larity or affinity [2], they control rotations, translations, zooming and sheering in
the x- and y- axis [66]. Homographies have been popular for image registration
[53], and most authors use techniques developed in this context for the estimation
of the eight parameters [13], [14], [44]. Nevertheless, the homography model has
the potential to cause severe deformations, particularly in the presence of outliers
[12].

Other 2D models include simpler models with 3 [62], [67], [68] or 4 parameters (2
rotations and 2 translations) [69]. So-called 2.5D models propose to compromise
between 2D and 3D models, by considering cases where 3D displacements can be
simplified to avoid the need for depth (translations 1 axis (x, y or z)) [70].

2.3.2 3D models

Contrary to 2D models, 3D models aim at recovering the actual original 3D
displacement of the camera, which is represented by a single point, according
to the standard pinhole camera assumption. Instead of only considering the
influence of the camera motion in the 2D plane, the 3D models are able to provide
physically realistic displacements in all the directions. Their ability to compute
a precise estimation of the movement is dependant on the depth recovery step,
i.e the estimation of the distance to the camera of each 3D point seen in the
frames [55], [71]. Recovering depth consists in analyzing the original video (where
the available information lies in 2D planes), in order to retrieve the original 3D
content of the scene. This task, referred to as structure-from-motion [17], often
uses groups of 3 key-frames and estimates the parametric 3D transformation that
best fit the observed movement. In practice, the computation of the model may be
subject to numerical instabilities, especially if the movement is not strong enough.
To that end, it is common to use distant key frames, that insure that sufficient
motion is present. This is only possible using feature trajectories, as it is the only
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motion estimation method that can match points across distant frames. Even
so, if the motion contains no depth differences and/or no translations, numerical
instabilities are inevitable. To handle this issue, some recent works propose to add
geometrical constraints in the model (existence of planes [72], manifold constraints
[73]) that help to provide accurate computation. The computation cost, which is
often high, can be be kept under control by only focusing on particular regions of
interest [74], [75]. Because of this, the depth is usually only recovered for certain
pixels, which leads to incomplete motion fields and corrections.

The main drawbacks of 3D models can also be taken into account by building
hybrid models that combine 2D models (which are efficient, easy to compute but
imprecise) and 3D models (which are physically accurate but tricky to compute).
To that end, some methods propose to only consider certain displacements in
the 3D space. For instance, by considering only rotations, it is possible to drop
the depth recovery task and only focus on the estimation of the calibration ma-
trix and the rotation matrix [7], [10]. This assumption appears to be valid for
hand-held shakes but is violated in more complex conditions such as walking or
driving. In the context of moving vehicles, plausible movements are limited to
rotations and translation in the direction of the car displacement. By using these
constraints, it is possible to simplify the general 3D model and provide ad hoc for-
mulation that are lighter than structure-from-motion [8]. Finally, some authors
propose to introduce the notion of 2.5D models, and to define ad hoc models that
correspond to classical situations (dolly, vertical or horizontal tracking...). The
specification of the movements helps to compute the depth estimation and can
therefore provide accurate results.

2.3.3 Perceptual models

As seen in the previous subsections, there are many different motion models
to choose from. The choice of the appropriate model can be tricky when no
extra information is available on the camera movement, which unfortunately is
often the case. Moreover, models perform very differently depending on the
scene and the camera motion, and choosing an inappropriate model can have
severe repercussions on the stabilization results [18]. Several approaches have
been proposed to try to combine the robustness and computational efficiency of
2D models with the accuracy of 3D models. Such approaches have in common
an important principle : the main objective of video stabilization is to improve
visual comfort. As a result, these methods prefer to avoid geometrical models and
instead use models that provide visually plausible videos rather than physically
accurate ones. Such models are referred to as perceptual models. While their
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principles vary, they have in common that they strive for results that are not
necessarily geometrically accurate but will seem accurate to human perception.

One approach is to apply several 2D transforms to a single frame.. For instance,
homographies are known to provide a good approximation of the camera motion
in many situations, and mainly fail in the presence of parallax. In order to
combine the robustness of this model and avoid the distortions caused by depth
differences, the camera can be modeled by a mixture of homographies [76]. An
initial global homography is used to fit one frame onto the next. Then, each frame
is divided into 4x4 quadrants, and each quadrant of the reference frame is fitted to
the corresponding quadrant of the following frame using a different homography.
These localized homographies can account for different motions (such as those
caused by parallax) in a single frame. This approach allows for more flexibility
while retaining the robustness of 2D transforms, but no longer corresponds to a
physical model.

Another way to avoid a specific model is to exploit a known property of camera
movements: the movements resulting from the camera motion can be approx-
imated over a small time window by a low rank subspace [77]. By projecting
the trajectories recovered from feature points into a low-rank subspace through
matrix factorization techniques, it is possible to model the motion of the cam-
era without requiring knowledge of the depth, while retaining a flexibility that
would be lost with a fixed 2D motion model [18]. The projected trajectories are
known as eigen-trajectories and can then smoothed like any other trajectories.
The projection is done by computing the concatenating the feature trajectories
and applying the SVD decomposition to the resulting matrix. Truncating the
SVD decomposition to the k largest singular values corresponds to the projec-
tion in a k rank subspace. Since projecting the trajectories in their entirety is
impractical, a moving factorization strategy is used. An initial projection is done
over a given number of frames, and the rest of the trajectories are progressively
factorized into the initial subspace. Tang et al. use the same principle but use
alternative factorization methods either based on a sparse representation strategy
to improve the factorization [78], or using local projection rather than projecting
all trajectories in the same subspace [79]. Once the factorization is complete, we
obtain three sets of parameters : the singular values, parameters that depend on
the feature tacked and parameters that depend on the frame considered. These
last parameters can be treated as the camera parameters for the purposes of
smoothing the trajectories. This approach requires feature trajectories, and is
liable to fail if few long trajectories are available.

It is also possible to forego any motion model and treat the observed trajectories
directly. Several methods apply filtering or path-fitting to the feature trajectories
and then rely on sparse reconstruction methods [11], [33]. Koh et al. [11] find
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Figure 2.8 Main approaches for camera motion correction

an optimal trajectory for each feature individually, and find a reconstruction
step that will find a good compromise between the obtained optimal trajectories.
Wang et al. [33] use neighbourhood constraints to determine the optimal paths for
the different features. Similarly, this can be done for all pixels using optical flow
in successive frames to obtain the trajectories of all pixels in a given frame over
a time window, and smoothing the resulting motions [31]. Another approach is
to consider the motion at a given location rather than tracking pixels or features.
Using optical flow, it is possible to observe the variations of motion at any given
frame coordinates over time. The motions occurring at given locations are termed
"pixel profiles", and the same stabilization criterion can be applied to obtain a
stabilized video [29], [80].

2.4 Camera motion correction

Once the camera motion has been modeled, new camera movements should be
determined that will result in a better video. This begs the question : what types
of camera motion should be used instead of the originals? Since one of the most
problematic aspects of camera motion is the high-frequency shakes, which causes
considerable visual discomfort, filters are often used to remove such problems
(Section 2.4.1). Another possibility is to look to cinematographic considerations
for the type of motion used (Section 2.4.2).

2.4.1 Filtering

Temporal filters can be used to remove unwanted components of camera motion.
Depending on the camera motion model, they can be applied to feature trajecto-
ries to obtained the stabilized position of feature points, or to the camera motion
parameters to obtain the stabilized position of the camera. In the latter case,
parameters are generally treated separately. A very common filter is the Gaus-
sian filter [10], [30], [31], [38], [45], [64]–[66], [72] (see Figure 2.9). It suppresses
the high-frequency motion that are the most detrimental to visual comfort, and
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Figure 2.9 An example of camera motion filtering on the first camera parameter with
a gaussian filter. The original parameters are shown in blue, whereas the filtered

parameters are shown in red.

the level of stabilization is easy to modify by altering the width of the Gaussian
kernel used. Another common filter is the Kalman filter [8], [14], [24], [32], [46].
It uses the observed motion to estimate the intentional motion and the unwanted
motion to be corrected. Motion Vector Integration [41], [57] combines the current
and previous frame-to-frame motion to determine a stable camera motion with
the initial frame as reference. Finally other methods use second order filters [43],
[70] with cut-off frequencies based on the considered applications.

How these filters are applied depend on the way the camera motion is modeled.
In most instances, the filters are applied separately to each parameters of the
camera motion model. Otherwise, trajectories are filtered.
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Figure 2.10 An example of path-fitting. The x coordinates of a trajectory over 300
frames is depicted in blue. The coordinates of a stabilized version of this trajectory
is depicted in orange. The black arrow indicates a static segment identified by the
path-fitting algorithm. Green arrows indicate where steady movements have been
detected, and red arrows show the frames where constant acceleration was enforced.

2.4.2 Path-fitting

Determining what is a "good" path for the camera motion is difficult. Several cri-
teria can be taken into consideration, such as quality of motion and the introduc-
tion of artifacts. Quality of motion can be simply considered as the smoothness
of the movements, but we can also look to cinematographic criteria to have an
idea of which type of movements are considered desirable. In general, we try to
obtain one of three types of camera movements: still shots with no movements,
tracking shots with constant movements and smooth transitions between differ-
ent segments. The transitions are considered smooth when the acceleration is
constant. These types of motion are illustrated in figure ??. The main artifact
caused by video stabilization is a loss of resolution. Stabilizing a video entails
simulating a camera path different from the original. Because of this, parts of
the scene as filmed by the simulated camera may not have been filmed by the
original camera, leading to undefined areas. The most common way to deal with
these areas is to crop them out, leading to a loss of resolution.

One approach is to fit a particular model to the camera motion, in particular
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polynomial models. Constant models simulate still shots, linear models simulate
tracking shots, and quadratic models can simulate the transition from one to
other. This has been combined with user-input to choose which motion type is
expected [71]. However, these models do not hold for long video sequences, so the
quadratic models can be replaced by spline interpolation, with control point cho-
sen by the user [18]. To avoid user-input while handling longer sequences, fitting
quadratic models over time-windows rather than the entire sequence and com-
bining them with a Gaussian filter has also been proposed [38]. Another similar
method is Re-cinematography [2], which automatically detects static segments
in the camera motion and use tracking shots to link different static segments.
To avoid sudden accelerations, quadratic motion is used at the juncture between
static and tracking segments. Another approach is to use an energy minimization
scheme to determine the new camera motion[11], [33], [76]. The regularity of
the camera motion is represented by one or more energy terms depending on the
expectations on the camera motion. The loss of resolution is either used as a
hard constraint on the smoothed camera path or as another energy term. Other
considerations are easy to implement as additional energy terms or constraints.
Grundmann & al [4] proposed three energy terms for the motion regularity us-
ing L1 optimization, based on the first, second and third order derivation of the
camera motion. The first order derivation corresponds to the expectation of a
static camera, the second order derivation to the expectation of constant cam-
era motion and the third order derivation to the expectation of smooth motion
variation. Using L1 optimization forces the solution into one of these roles rather
than finding a compromise. This minimization is subject to both a maximum
deviation from the original path and a minimum coverage of the video frames.
Song & al [42] use a similar constraint on the deviation from the original camera
path but only use an L2 constraint on the second order derivation of camera mo-
tion. Several methods consider the deviation from the original path as an energy
term combined with a first order derivation on the camera motion [3], [12], [29],
[58], [73], [80]. A second order derivation can also be used for the data term
[81], or combine second and first order derivation [11]. Additional constraints
can be used to avoid distortion artifacts, with constraints on spatial rigidity [33].
Weights are typically used to balance the data and regularity terms, and can be
adapted to preserve motion-discontinuity which, while visually distracting, would
cause heavy resolution loss to correct [76].

2.5 Video rendering

Once a new camera path has been computed, a new video corresponding to this
path must be rendered. This step depends on the choice of camera model. Most



2.5. Video rendering 53

Video
rendering

Dense reconstruction

Sparse reconstruction

Figure 2.11 Main approaches for video rendering

geometrical models describe the original and corrected motion for each pixel,
allowing for dense reconstruction where the all modifications applied are known
(Section 2.5.1). However, some models only describe the motion, both original
and rectified, for certain points. A sparse reconstruction is then used to spread
known corrections to all pixels (Section 2.5.2).

2.5.1 Dense reconstruction

In the case of dense reconstruction, the original and stabilized positions are either
known or can be computed for every pixel in any given frame. This is the case for
approaches using 2D or 3D geometrical motion models or for approaches based
on dense optical flow.

Methods using transformation matrices need to find the right transformations to
fit the original motion into the corrected motion. Let Ht denote the transforma-
tion between frame t and t+1 and H̃t the smoothed version of this transformation.
In order to apply the smoothed transform back to the original video, it is neces-
sary to define a reference frame on which all other frames will be aligned. In this
case, one frame, usually the first, can serve as a global reference to the rest of the
video. Compositional methods multiply the different transformations between
the reference frame and the considered frame, while additive methods compute
the cumulative parameters between the reference and the considered frame. Al-
ternatively, in additive methods, each frame can serve as a local reference to
compute its corrected motion, which can avoid the accumulation of motion es-
timation errors from distant frames [13]. The stabilized frame is then obtained
by applying the transformation to each coordinate of the frame. In the case of
3D transformations that take translation into account, depth maps are recovered
using structure-from-motion (SFM) [17]. In the case of perceptual models using
dense flow fields, the original optical flow is corrected to the stabilized optical
flow.
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2.5.2 Sparse reconstruction

Sparse reconstruction is needed when the motion correction is known for only
certain pixels. It seeks to spread the corrections known at certain points to the
rest of the image. It is necessary when using 3D models with a sparse depth
map or using single-frame warping, as well as perceptual models that focus on
stabilizing a select number of trajectories. Content-preserving warps (CPW) [71]
spreads the correction from known pixels to the rest of the frame by applying a
4x4 grid over the video frame over the image, and using the known corrections
to warp the grid, and the frame with it. The position of each pixel and feature
point zit is re-written as a function of the enclosing quad vertices:

zit = wtiVi[t] (2.7)

with Vi[t] is a vector containing the coordinates of the vertices enclosing the ith
interest point and wti a vector of weights that sums up to one. This way changing
the position of the vertices also alters the position of the enclosed pixels. New
vertices positions Ṽ are computed using an energy minimization method, with
two components. First, the data energy term constrains the known points into
their stabilized position.

Edata(Ṽ ) =
∑
i

||zti − wtiṼi[t]|| (2.8)

Second, the structure energy constricts each quad to a similarity transform,
weighted by the salience of each quad. This avoids deformations in highly tex-
tured areas. To enforce the similarity, quads are divided into two triangles. Under
a similarity transform, the location of each vertex can be computed from the posi-
tions of the other vertices. Deviations from this position indicate that the applied
transform is not a similarity.

V1 = V2 +R90(V3 − V 2), R90 =

(
0 1
-1 0

)
(2.9)

The structure energy of a vertex can then be defined as

Estructure(Ṽ1) = Ṽ1 − Ṽ2 +R90(Ṽ3 − Ṽ 2) (2.10)

The structure energy of the mesh is obtained by summing up the energy of each
vertex. The final energy is the weighted sum of the data and structure energies:

E(Ṽ ) = Edata(Ṽ ) + αEstructure(Ṽ ) (2.11)
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Figure 2.12 An example of sparse reconstruction. The top row show two frames from
a video sequence. The bottom row shows the warping scheme from Liu & al. [76],

which warps the left hand frame to the right hand one.

The parameter α controls the trade-off between stabilization of the trajecto-
ries and the preservation of structures in the video. Once the new vertices are
known, the corrected position of each pixel is obtained using the initially com-
puted weights and the new vertices positions. This warping scheme is used in
several stabilization methods [75], [76] (see Figure 2.12), and has served as the
basis for other warping schemes. For instance, a tighter mesh (with each quad
approximately 10x10 pixels) is used along with reliability weights for each fea-
ture points, to avoid the influence of outliers [33]. The similarity constraint is
also changed to an homography constraint. Finally, Koh et al. [11] add a reg-
ularity constraint based on the distance between the centers of adjacent quads,
and change the structure constraint to maintain right angles for each quad.

2.6 Challenges and perspectives

Video stabilization has seen considerable progress in recent years. However, many
challenges remain, in particular regarding the evaluation of the stabilization pro-
cess. Despite several propositions, there is still no accepted metric to to quantify
the quality of video stabilization. Indeed, to our knowledge there is no refer-
ence data-set to test different stabilization processes, as different scenes lead to
very different difficulties. This is particularly problematic, as video stabilization



56 Chapter 2. Video stabilization : challenges and methods

necessitates a trade-off between the removal of unwanted motion and the loss
of resolution it causes. Without an objective measure, this trade-off needs to
be fixed heuristically. Other difficulties involve the running time: videos can
take a long time to process, and striving for real-time stabilization requires not
only a computationally very efficient process but will also lack information about
the future camera movements, complicating the determination of the stabilized
camera path. Another challenge is the presence of moving objects. Moving ob-
jects often result in occlusions, which are challenging to in-painting methods and
can degrade the quality of motion detection. Their presence can also mislead
the camera motion estimation, particularly large moving objects, which are fre-
quently mistaken for the dominant camera movement. Motion blur, caused by
fast camera motion, is also problematic as it disrupts the estimation of motion
in the video, which impacts every aspect of the stabilization process. Finally,
the choice of motion model is a difficult one, as 3D models are computationally
heavy and unstable, while 2D models are insufficient to model scenes containing
strong parallax. Perceptual models meanwhile strive for a middle ground, but
at the risk of deformations and physically-inaccurate results. The detection of
moving objects, while remaining difficult, has seen promising results by exploiting
either motion discontinuities or the evolution of motion over time. While full 3D
models remain unstable, 2D models have proven efficient for smaller degrees of
stabilization or for scenes lacking parallax, while perceptual models have shown
a wider range of stabilization without excessive loss of robustness.
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Chapter 3

Performance evaluation of video
stabilization algorithms

3.1 Introduction and motivations

Over the two last decades many methods for video stabilization have been pro-
posed in the literature. However, some open problems have not yet been thor-
oughly addressed. In particular, the performance evaluation of video stabilization
algorithms, or video stabilization quality assessment (VSQA), remains an open
problem. Very often the quality of the processed video is evaluated using some
subjective and intuitive criteria or by using some simple quantitative measures.
However, these quantitative measures do not exploit any knowledge nor well de-
fined model of the visual discomfort due to video instability. To the best of our
knowledge there has been very few studies dedicated to performance evaluation of
video stabilization methods [86]–[88]. Because of this, while several metrics have
been proposed to validate video stabilization algorithms, there are no agreed-upon
criteria or metric for assessing the quality of video stabilization.

This evaluation is a complex problem for several reasons. Firstly, the goal of
video stabilization is to remove unintentional camera motion, but the definition
of the intentional and unintentional parts of the movements observed in the video
is inherently subjective. A formal definition would require a priori knowledge on
the original intention of the cameraman during the video capture, which is often
unknown or difficult to predict. Therefore, one has to rely on some heuristics and
intuitive definitions to discriminate between the two types of camera movements,
namely "unwanted" and "wanted". However, the impact of spatio-temporal dis-
tortions or artifacts, such as those caused by the motion of the camera, is very
difficult to model. The impact of unwanted camera motion on the observer is
poorly understood, and there is still a lack of an established and widely accepted
perceptual model to quantify the visual discomfort that may result from camera
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movement or other electronic instabilities. Furthermore, to achieve an efficient
video stabilization, one has to find a trade-off between the removal of unwanted
camera motion and the introduction of artifacts, most notably losses in resolu-
tion and field of view. Indeed, another factor that limits the effectiveness of video
stabilization is the appearance of an indefinite areas due to the fact that the mo-
tion zones may not completely match those of the field of view. The undefined
zones need to be removed by cropping and filled-in using some image in-painting
techniques [89] or other ad hoc solutions. While this can be used to remove dis-
tractions [9] and tighten the focus of the camera, it may also remove valuable
areas from the scene. Finally, such evaluations depend strongly on the content
of the captured scenes and the types of camera movements to be removed. This
opens the field to a multitude of possible scenarios that is difficult to represent
through a single reference database that could be used by the scientific community
working on VS.

Moreover, in the absence of a well accepted methodology for comparing the ex-
isting video stability methods, it is difficult to effectively judge the impact on the
quality of the output at each step of Video Stabilization. Indeed, video stabi-
lization pipeline is composed of several successive steps, making thus the overall
objective VSQA rather a hard task without the use of an effective VSQA met-
ric taking into account the specificity of each step of the process. Such efficient
VSQA metric would help in comparing the available VS techniques for a given
application. While some parts of the stabilization process, such as the camera
motion estimation, can be evaluated separately, some other components of the
VS pipeline could not be evaluated independently. Specifically, the choice of how
to stabilize the camera motion is dependent on the desired output. Hence, the
main objective of this study is to provide a comprehensive overview and a frame-
work for developing an effective methodology for VSQA. Both subjective VSQA
protocols and objective evaluation through quantitative measures are considered.

3.2 Background

In this section, we propose to review the different attempts in the literature to
assess the performance of video stabilization methods. Two main approaches are
considered: subjective evaluation based on user studies and objective evaluation
based on metrics.
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3.2.1 Subjective evaluation

The main objective of video stabilization is to improve the visual comfort of view-
ers, which is inherently a subjective goal. Indeed, the video stabilization quality
is highly related to several aspects, such as the choice of the substituted/virtual
camera path or the correction of rolling shutter, that depend on psycho-visual
criteria that are not completely understood. For these reasons, subjective eval-
uation methods for VSQA are often preferred. There are two ways to perform
subjective evaluation. A user study can be conducted on a pool of observers to
record their preferences between two or more stabilization methods. The alter-
native is to rely on video examples of that exhibit the performances of different
stabilization methods on similar videos.

User studies

Formal user studies, due to their complexity, have rarely been used for VSQA.
To our knowledge, only five documented studies exist in the literature.

• Koh & al. [11] test their stabilization method against commercial algo-
rithms: the Youtube Stabilizer [4], and the Warp Stabilizer of Adobe After
Effects [18]. They used a database containing the most challenging prob-
lems for video stabilization. This set of videos is organized into 7 cate-
gories: “Simple", “Object", “Depth", “Rolling Shutter", “Crowd", “Driving"
and “Running", according to the video content and the challenges that it
presents for video stabilization methods. The dataset contains a total of
162 videos assembled from various publications [4], [18], [29], [34], [76], [90]
and videos available on the Internet. 50 users participated in the study.
Each was shown 3 randomly selected videos from each category, for a total
of 21 videos, using pairwise comparison between the method proposed by
Koh & al. and one of the commercial stabilizers. The placement of the two
videos was randomly determined for each video to avoid bias, and users
had to choose between “ Method A ", “ Method B " or “ No Preference ".
Thee users were instructed to neglect differences in aspect ratios, contrast
or sharpness. Instead, they were told to focus on deformations of scene
structures, rolling shutter distortions, and wobbling or shaking.

• Zhang & al. [9] also compare their method to the Youtube and Warp sta-
bilizers, but use 3 different versions of their algorithm (simple stabilization,
low-level optimization and high-level optimization). The study included 25
participants, 15 male and 10 females, aged 20 to 30, and used 16 videos
collected from the internet. Subjects were shown the original video juxta-
posed with each stabilized version, with the order randomly selected. They
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were asked to rate the stabilized video on four criteria: the stability of the
video content, whether any distracting objects were present, the quality of
the movements of the camera, and how much of the scene was removed by
cropping. The first three criteria were rated between -4 (important degra-
dations compared to the original video) to +4 (important improvements on
the original video), while the cropping was rated between -4 and 0, as it is
impossible to obtain a better field of view than the original video.

• Liu & al. [76] use a dataset comprised of 174 videos between 10 and 60 sec-
onds, divided into seven categories: “Simple", “Quick rotation", “Zooming",
“Large parallax", “Driving", “Crowd" and “Running" . The study involved
40 participants, using four randomly chosen videos from each category to
obtain 28 samples for each participant. The evaluation used pairwise com-
parisons between the proposed algorithm and either the Youtube Stabilizer
or the Warp Stabilizer, but unlike previous instances, users were unable to
choose “no preference". Users could play videos at the same time or one by
one, pause or restart the video as they saw fit. They were told to ignore
differences in ratio or sharpness, which could be caused by the codec used
in the algorithms. Participants were asked after the test the criteria they
used to make their choice.

• Wang & al. [31] compare their algorithm to that of Liu & al. [76] and Mat-
sushita [30]. The study included 78 participants, using 10 video samples.
Each participant was asked to give each stabilization result a score between
0 and 100 (the higher the score the more effective the stabilization). The
different results were shown randomly and anonymously. Participants were
asked to give accurate evaluations, and were allowed to watch each video
several times before giving their score.

• Zhang & al. [88] created a full-reference dataset. Two cameras, an osmo
camera equipped with a mechanical stabilizer, and a goPro camera with-
out stabilizing equipment were set as close as possible, with similar resolu-
tion and frame-rate. Different scenes were filmed using the cameras, after
which the videos were truncated to retain only the portions visible on both
videos. This dataset contains 9 categories: "walking", "climbing", "run-
ning", "riding", "driving", "large parallax", "crowd", near-range object"
and "dark", with five videos in each category. Because videos have been
truncated, the resolution varies but lies around 940 pixels in width and
500 in height, while the duration averages to around 15 seconds per videos.
Four stabilizers were tested: Adobe After Effects warp stabilizer, Google
Youtube Stabilizer, Deshaker and the temporally optimized stabilization.
Twenty participant rated each method on each video. Participants viewed
two videos simultaneously: the video taken with a mechanical stabilizer and
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the corresponding video after being processed by one of the aforementioned
algorithm. They were unaware as to the stabilization process used for each
video. Both videos were rated from 1 (best) to 5 (worst). The score of the
digital stabilization method was the difference between the two ratings.

Interestingly, each of these protocols is different. There is no consensus on the
different steps of the process (rating system, presence of the original video, pos-
sibility to have no preference, etc.). In particular, instructions given to the users
vary widely, which may have an impact on the outcome of the study since they
were asked to focus on only a few aspects of video stabilization. Finally, all these
studies aimed at demonstrating the efficiently of one algorithm over the state-of-
the-art methods: there might therefore exist a bias in the experiment design that
voluntary focused on the positive aspects of the algorithm.

Visual inspection

Besides the already mentioned limitations, user-studies are also time-consuming
and difficult to set up. This is probably the main reason why they are not more
present in the literature. However, there a still a need for subjective evaluation
since it is the easiest and most complete way of assessing video stabilization [85].

To address this unsolvable problem, most authors invite the reader to perform
this evaluation themselves. They present examples of their results on various
datasets and leave the subjective evaluation up to the reader. These datasets
usually encompass a variety of scenes, and include stress cases were the proposed
method fails to highlight the limitations of the process. Comparisons with previ-
ous methods are often shown. Because the implementations of different methods
are not always available, it is not always possible to obtain new results for pre-
viously proposed methods. It is therefore quite common to use previously given
examples of such stabilization method, alongside the results of the newer stabi-
lization method on this video, to compare two methods. Because these results are
difficult to view on paper, it is frequent to add markers such as a cross targeting
a specific feature to help visualizing the misalignment in the original video or in
failed cases compared to successful stabilizations.

3.2.2 Objective evaluation

There are few objective measures that have been used for video-stabilization qual-
ity assessment. While some intermediate steps can be evaluated using ground-
truths, such as the estimation of the camera path, other steps are much harder
to quantify. The determination of the new camera path, for instance, relies both
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heavily on the camera motion estimation and subjective ideas of what the move-
ments of the camera should be. Meanwhile, the evaluation of the end result is
challenging as it is based on several criteria, some of which are inherently subjec-
tive. So far, several metrics based on different criteria have been suggested but
none have been widely accepted, and neither has strong correlation between the
subjective preferences and objective metrics proposed been shown.

Several approaches have been used to define relevant metrics. Some use a blind
setting and base their metric on the end result of the stabilization, i.e. on the
stabilized video, that should exhibit good properties. Some only assess the esti-
mation of the camera parameters, using ground truth data obtained via synthetic
videos or controlled video capture.

Metrics without ground-truth

In most cases, no ground-truth (i.e. perfectly stabilized video) is available. Evalu-
ation thus consists in either comparing the stabilized video to the original unstable
video or to judge the quality of the stabilized video in itself. Thus, evaluating
the end result of video stabilization is difficult because several criteria come into
play.

The most common evaluation metric is the Inter-frame Transformation Fidelity
(ITF) index [91], [92], based on the inter-frame PSNR. This measures the simi-
larity between successive frames, which is assumed to be higher when the camera
path is smooth. In this context, good video stabilization should produce a video
with a larger ITF. However, moving objects will negatively impact the PSNR
without necessarily affecting the stabilization.

Several metrics have been proposed to evaluate the smoothness of the camera
motion using the detected movements in the video after stabilization. The average
of the velocity of pixels between adjacent frames is one of the ways to estimate the
camera instability [31]. However, since the most disturbing factor in the camera
movements are not fast camera motion but abrupt changes in the camera motion,
the acceleration can be used instead [85], specifically the acceleration observed in
feature trajectories. Dong et al. [14] use a closely related metric that measures
the differences between the accelerations in the original video and the smoothed
video.

Moreover, video stabilization introduces artifacts, which must be taken into ac-
count when evaluating the results. Since the stabilization process introduces a
reduction in resolution to avoid undefined ares, this provides an intuitive way to
evaluate the losses caused by the stabilization. Two approaches exist: the per-
centage of undefined area before cropping gives a certain idea of the information
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loss due to the camera rectification [13], [39], while the cropping ratio informs us
to the resolution loss after the cropping scheme used [76]. Another artifact intro-
duced by certain methods are distortions caused by perceptual motion models or
certain warping schemes. Such distortions are often specific to certain methods,
which define distortions differently [76], [79].

Metrics based on ground-truth

Several approaches have been proposed to evaluate the camera motion modeling,
as it is both a key component of video stabilization and one of the components for
which it is possible to obtain a ground truth. While for most videos such ground
truth is inaccessible, using synthetic video with digital tools such as Blender or
Maya Autodesk allows the comparison between the known original 3D path of
the camera, and the modelled camera path. Using the difference between each
estimated camera motion parameter and the ground truth, both the average error
[79] and the maximum error can be used to evaluate the camera motion estimation
[8]. The maximum error is important as a large error, even for a single frame, can
induce drastic cropping, while the average error give a good idea of the motion
estimation accuracy. For methods using 2D motion models, 3D synthetic scenes
are unsuitable, instead still video are captured using mechanical stabilizers such as
tripods and artificial transforms are applied to simulate video shaking with known
2D transform parameters. A common metric used is the Root Mean Square Error
[43], [44], that measure directly the differences between the expected and observed
position of pixels. Since different parameters can have very different values yet
similar impacts, this measure can be easier to interpret.

In addition to completely synthetic sequences, it is possible to control the scene
so as to obtain pseudo-ground truth. Jia et al. [7] captured videos using a smart-
phone lay-ed out on the ground, rotating it, then replacing it in the original
position. This constrains the motion to mostly a rotation along the z-axis, and
ensures that the final angle of the camera should be identical to the beginning.
The difference between the estimated parameters for the z-axis of the camera
at the start and end of the video can give an estimation of the camera motion
accuracy. Aguilar et al. [56] test their method on videos captured by A.R.Drones
1.0, but they also set up a camera on a tripod to film the aforementioned drone to
obtain its motion in the camera plane, which can be compared to the estimated
motion of the drone. Methods using feature tracking can use the feature positions
to evaluate the camera motion estimation. After determining the camera motion
between two adjacent frames t and t+1, the projected positions of feature points
of t after applying the estimated camera motion can be compared to the known
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positions of the features at frame t+1. Jeon et al. [12] uses different features and
compare errors obtained between the projected and observed feature positions.

Finally, [88] use two cameras, one with mechanical stabilizer and one without,
to obtain videos with full reference. Using these references, they define a metric
based on the distance between the camera path of the digitally stabilized video
with the mechanically stabilized video. To obtain accurate path while avoid-
ing complex structure-from-motion, the videos are segmented by planes and a
separate 2D path is determined for each plane (using homographies).

3.3 Proposed framework

The aim of this section is to investigate the performances of several video stabi-
lization methods, on the same database, with the same objective metrics. These
results will be confronted with subjective assessment by several viewers so as to
better understand the relevance of the objective metrics and their link with actual
subjective perceptions.

Overall, this study is based on

• 35 videos reflecting different challenges of video stabilization (see Section
3.3.1)

• 4 standard video stabilization methods (see Section 3.3.2)

• 5 standard metrics for VSQA and 2 image/video metrics (see Section 3.3.3)

• 18 viewers and a subjective evaluation framework (see Section 3.3.4)

3.3.1 Database

The performance of four representative video stabilization methods is evaluated
using the database assembled by Koh et al. [11] from different publications [4],
[18], [29], [34], [76], [90]. This database contains the most challenging problems
for video stabilization. This set of videos is organized into 7 categories: “Simple",
“Object", “Depth", “Rolling Shutter", “Crowd", “Driving" and “Running", accord-
ing to the video content and the challenges that it presents for video stabilization
methods. Sample thumbnails of the videos are displayed on Figure 3.1.

Videos from the “Simple" category contain smooth depth differences and slow
camera motion, which do not present any particular challenge to most video
stabilization methods. Videos from the “Object" category contain large moving
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objects in the foreground, which represent a very challenging problem as it is
very difficult to discriminate between camera-induced motion and motion result-
ing from moving objects. Therefore, any common VS method that could not
discriminate between these movements may produce inconsistent results. Videos
from the “Depth" category contain strong depth discontinuities. This is another
very challenging problem for VS methods based on 2D motion models since the
depth aspect is not properly taken into account in these approaches and espe-
cially in the case of important depth. The “Rolling Shutter" category consists
of videos taken using a camera that captures the video row by row. In the
case of fast camera motion this may produce noticeable video distortion due this
scan-line acquisition system. The videos in this category contain such artifacts,
usually caused by fast lateral motion which tilts vertical structures of the scene.
Videos from the category “Crowd" contain many independent movements and oc-
clusions, which makes the process of determining the camera motion to stabilize
more complicated. The “Driving" sequences are taken from videos embarked on
moving vehicles. These videos contain a main steady forward motion disturbed by
high frequency shakes of variable intensity, as well as important depth differences
and occlusions or moving objects. The "Running" sequences contain excessive
shakes that are difficult to correct while maintaining a good video resolution as
well as important depth differences.

3.3.2 Methods

In this work, we propose to assess the performances of four standard video stabi-
lization methods. These methods have been chosen because they are representa-
tive of the current approaches that appear in the literature. They are also all free
of charge and their source-code or software are available, which allows to conduct
a fair comparison of the considered VS methods. In the following, we provide a
brief description of the VS techniques used in this study.

• Deshaker [93] is a free plugin that can be used within the VirtualDub
software. It is a fast, free and ready-to-use tool that stabilizes horizon-
tal/vertical panning, rotation and zooming. The method assumes that the
camera movement between two successive frames can be modelled as a 2D
transform (homography, affinity...). Its interface offers a large number of
settings and parameters that can be useful for advanced users. In the fol-
lowing experimental setting, we have used the default parameters of these
softwares. It uses a block-matching algorithm to determine movements
within the video with a coarse-to-fine approach to handle large movements.
Default settings uses 30-pixel blocks, 30% of the coarser frame as the initial
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search range then 4 pixels for the search refinement at each iterations, end-
ing with the frame at half the original scale. Motion vectors are discarded
if either the maximum pixel difference or the combined differences between
blocks are above given thresholds respectively 20 and 300), or if a pixels
move too far in a direction that does not fit with the camera model (with
a threshold of 4 pixels). The correction applied is computed by minimizing
the squared correction and the motion acceleration, with a maximum cor-
rection for both panning, zoom and rotation (set to 15 degrees for panning,
15% for zoom and 5 degrees for the rotation). It also allows to consider
rolling shutter effect when determining and correcting the camera motion.

• Youtube Stabilizer [4], [94] is arguably the most popular video stabilization
software. Approximately 300 hours of videos are uploaded in Youtube each
minute, and the Youtube Stabilizer is a routine discretionary option in the
upload process. Similarly to Deshaker, the method assumes a simple 2D
geometrical transform between two successive frames, but includes a L1-
regularization in the smoothing process, that mimics the motions produced
by professional cameramen. The strength of the stabilization is finely tuned
so as to ensure that the region or subject-of-interest is always visible in the
stabilized video. It also uses homography mixtures to detect and correct
rolling shutter artifacts.

• Sanchez et al. method [82] is a recent video stabilization method, publicly
available on IPOL [13]. This method assumes a 2D homography transfor-
mation between two successive frames involving 8 parameters. It is based
on a local smoothing of the transform parameters used in the computation
of the stabilized video.

• Koh et al.method [11] is also a recent method which, unlike other VS
approaches, does not assume any 2D transformation between consecutive
frames. Instead, this approach attempts to provide a plausible and per-
ceptually satisfying correction, that is not based on the geometrical reality
of the scene. This method also includes an explicit rolling shutter removal
step, and is able to handle large objects in the foreground.

3.3.3 Metrics

Here, we focus on five common VSQA metrics, namely : Inter-frame Transforma-
tion Fidelity (ITF), Average Speed (AvSpeed), Average Acceleration (AvAcc), Av-
erage Percentage of Conserved Pixels (AvPCP) and Inter-frame Similarity Index
(ISI), based on the structural similarity index(SSIM). We also used two metrics
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used for image and video quality evaluation : Spatial Efficient Entropic Differenc-
ing for Quality Assessment (SPEED-QA)[95], and a blind video quality metric
known as VIIDEO [96].

Interframe Transformation Fidelity (ITF)

The most widely used metric for assessing the performance of video stabilization
methods is the Interframe Transformation Fidelity (ITF) index [91], [92]. It is
based on the video inter-frame PSNR. Given a video I composed of Nf frames,
ITF is expressed as the average inter-frame PSNR.

ITF =
1

Nf − 1

Nf−1∑
i=1

PSNR(t), (3.1)

where PSNR(t) is the peak signal-to-noise ratio (in dB) based on the mean-
square-error between frames I(t) and I(t + 1). The intuitive idea behind this
metric is that, if the camera movement is smooth (i.e., stabilized video), the sim-
ilarity between the consecutive frames should be larger than in the presence of
strong camera motion. This metric can also assess the distortions and photo-
metric artifacts that may result from the stabilization process. Note that, if no
objects/subjects are in movement in the video and if the stabilization is perfect,
the ITF would tend towards infinity.

Interframe Similarity Index (ISI)

Another metric that can be used in a similar way is the Structural Similarity Index
(SSIM) [97]. In order to extend its application to video streams, we define the
Interframe Similarity Index (ISI) as the average of the SSIM between successive
frames across the video. This new VSQA metric is given by:

ISI =
1

Nf − 1

Nf−1∑
i=1

SSIM(t), (3.2)

where SSIM(t) is the structural similarity index between frames I(t) and I(t+1).
High values of ISI mean that successive frames are perceptually similar, which is
provide better visual comfort for viewer.
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Average Speed (AvSpeed)

Another aspect that could be analyzed when judging the quality of the stabilized
video is the local motion. Indeed, the stabilization process acts on the move-
ments present in the video. The stabilization process should produce a smooth-
ing effect of these annoying movements leading to a fluid video sequence. This
can be checked by extracting salient feature points in the video and analyzing
their displacement along the video. Intuitively, in a properly stabilized video, the
movements of these feature points are smooth, i.e. with small speed/acceleration.
Considering the ith features point with coordinates zi(t) in frame I(t), its move-
ment can be characterized by its instantaneous speed żi(t) = zi(t + 1)− zi(t) or
its instantaneous acceleration z̈i(t) = zi(t + 1) − 2zi(t) + zi(t − 1). The Average
Speed (AvSpeed) metric is expressed as the average speed of all feature points
along the video [31]. If a total of Np feature points are extracted in the video,
the AvSpeed metrics is given by:

AvSpeed =
1

Np(Nf − 1)

Np∑
i=1

Nf−1∑
t=1

‖żi(t)‖2 , (3.3)

and is defined as the average quantity of movement of the feature points: it
should be as low as possible. In the literature, several feature points have been
proposed for motion computation (SURF, SIFT, KLT, sparse optical flow...). In
our experiment, we make use of the KLT descriptors thanks to their relatively
low computational cost and efficiency.

Average Acceleration (AvAcc)

The analysis of the quantity of movements present in the video may not be
sufficient to assess the qualitative aspects of video stabilization. Indeed, the
perception of the movement is not only linked to the quantity but also to the
type of movement present in the video. In particular, professional cameramen use
hardware solutions (such as steadycam), that tend to produce movements with
linear displacement or speed [71]. Furthermore, if the cameraman is attempting
to follow a subject of interest, the observed motion is intentional and should not
be removed. For these reasons, several authors have considered that stabilization
should be assessed according to the acceleration rather than the speed of feature
points. The Average Acceleration (AvAcc) metric [79] could be expressed as:

AvAcc =
1

Np(Nf − 2)

Np∑
i=1

Nf−1∑
t=2

‖z̈i(t)‖2 , (3.4)
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This metric quantifies the average acceleration of the feature points. For a good
stabilized video, this measure is low.

Average Percentage of Conserved Pixels (AvPCP)

Video stabilization naturally induces a resolution loss in the processed video.
Indeed, in case of strong stabilization, the inverse 2D or 3D transform applied
on frames often create unknown area in the video that cannot be interpolated
without additional information. To circumvent this limitation, one has to apply
some post-processing solutions such as cropping, zooming or video re-sizing, so
as to remove those blank areas. The loss of resolution, if large, may produce an
annoying effect and can therefore be considered as a criterion of evaluation [82]
. One way to quantify this effect is to express the ratio of pixels that survive
the VS process. Given the original video I and a stabilized video Ĩ, the Average
Percentage of Conserved Pixels (AvPCP) could expressed as the following ratio:

AvPCP =
100

Nf

Nf∑
t=1

res(Ĩt)
res(It)

, (3.5)

where res(.) is the resolution (in pixels) (i.e.res(It) = MN if It if of size N ×M).
Obviously, a well stabilized video should have high AvPCP value so as to minimize
the fraction of lost pixels during the stabilization process. It is worth noticing
that the interpretation of this metric greatly depends on the level of stabilization:
in particular, note that this metric equals 100% if no stabilization is performed.
This metric should only be used in addition to other performance metrics or to
evaluate methods with the same level of stabilization.

SpEED-QA

Spatial Efficient Entropic Differencing for Quality Assessment (SpEED-QA) [95]
is an image quality metric that uses natural scene statistics (NSS) to determine
the quality of an image. It is based on the observation that an image treated with
local mean removal should be close to a gaussian scale mixture. This criterion
is used on both the original and distorted image, and the difference is used to
evaluate the loss of quality, with smaller scores indicating smaller losses. To
evaluate an image, SpEED first computes the locally mean subtracted images
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Ilms for both the reference and distorted image:

Ilms(zt) = I(zt)− µ(zt), (3.6)

µ(xt, yt, 1) =
K∑

k=−K

L∑
l=−L

wk,lI(xt + k, yt + l, 1) (3.7)

In this equation, wk,l is a Gaussian weight. The resulting images are divided
into M blocks to obtain local assessments of the degradations: Cm is the mth

block of Ilms. Since this is applied to both the reference and distorted images,
Cmr denotes the block of the reference image while Cmd denotes the block of the
distorted image. These blocks are modelled as Gaussian scale mixtures (GSM):

C ′mr = SmrUmr +Wmr, (3.8)
C ′md = SmdUmd +Wmd (3.9)

where Smr and Smd are non-negative random variables representing the salience
of the block, while Umr and Umd are Gaussian random vectors and Wmr and Wmd

are Gaussian noise. Observations of NSS indicate this model should hold best
for pristine videos. The quality of the block can therefore be evaluated using
the conditional entropies h(C ′mr|Sr = sr) and h(C ′md|Sd = smd). To give greater
importance to salient areas, the entropies are locally weighted by the scalar factors
γr and γd :

amr = γrmr(C
′
mr|Smr = smr), (3.10)

amd = γmdh(C ′md|Smd = smd) (3.11)

where γmr = log(1 + s2mr) and γmd = log(1 + s2md). The final SPEED score is
obtained using the differences between the reference and distorted entropies, and
averaging the results for each block:

SPEED-QA =
M∑
m=1

|amr − amd| (3.12)

This metric indicates whether the distorted image exhibits statistical anomalies
more pronounced than the reference image. It has been used both as an image
quality metric and to evaluate video quality [98] by measuring the differences
between adjacent frames, and has been shown to perform as well or better than
SSIM or PSNR on video and image quality databases such as LIVE [99], [100]
VQA.
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VIIDEO metric

VIIDEO [96] is a no-reference video quality metric that measures the correlation
between scene statistics in the video and a filtered version of the video over
time. Rather than work on video frames directly, VIIDEO uses the differences
∆It between adjacent frames t and t+ 1, to exploit the temporal changes in the
video.

∆It = It+1 − It,∀t ∈ {1, 3, 5, . . . ,
N

2
} (3.13)

These frame differences are compared to a the filtered differences ∆Gt using a
Gaussian filter in the spatial domain:

∆Gt(x, y) =
K∑

k=−K

L∑
l=−L

wk,l∆It(x+ k, y + l) (3.14)

where wk,l is a Gaussian weighting function. Both the initial and filtered differ-
ences are then treated using local mean removal and contrast normalization:

∆Ît(zt) =
∆It(zt)− µt(zt)
σt(zt) + C

(3.15)

∆Ĝt(zt) =
∆It(zt)− µgt (zt)
σgt (zt) + C

(3.16)

where µt(zt) is the local mean of ∆It and σt(zt) the local standard deviation
of ∆It, while µgt (zt) and σgt (zt) denote the local mean and standard deviation
of ∆Gt. A property of such normalized differences is that adjacent coefficients
show regular structures that are disturbed by distortions. To exploit this, the
products of adjacent coefficients in vertical, horizontal and diagonal directions are
computed. Such products can be asymmetric generalized Gaussian distributions.
The parameters of these distributions are used as descriptors, respectively Φt and
Γt. The temporal differences of these vectors are captured over a time-frame of
length S, noted :

At(x, y) = {Φt+1+s(x, y)− Φt+s(x, y),∀s ∈ {1, 2, ...S}} (3.17)
Bt(x, y) = {Γt+1+s(x, y)− Γt+s(x, y),∀s ∈ {1, 2, ...S}} (3.18)

Coefficient θt+νk are then defined as the coefficients of the co-variance between
At+νk(x, y) and Bt+νk(x, y), representing the correlations between the structural
changes in the original and filtered video.

VIIDEO =
∑
t+νk

∑
f

θt+νkf (3.19)
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Figure 3.1 Sample thumbnails of the videos used in this study.

Lower scores indicate greater differences between the initial and filtered video.
Since filtering has a greater impact on high quality videos, high quality videos
have lower scores than low quality videos. It has been used to evaluate the effects
of compression on video quality [101] It is particularly interesting because unlike
several no-reference quality metrics, it is not trained on any dataset, meaning
that it is not tailored to a specific type of scene, which is valuable to assess video
stabilization as the effects and challenges vary greatly for different types of scenes.

3.3.4 Experimental setup

We use pairwise comparisons to determine the preferences between different video
stabilization techniques. We selected a dataset comprised of 5 videos from each of
the 7 categories in the previously mentioned database in order to perform visual
tests, for a total of 35 videos. Sample images are shown in figure 3.1 In order to
facilitate the visual tests, shorter videos were chosen and truncated to 10 seconds
short when they exceed this duration. The 35 videos from the dataset were
treated with the stabilization algorithms described above. The original videos
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Figure 3.2 Exemple of the evaluation setup.

were also included to account for the side effect of the VS methods that may
degrade the input videos, resulting in 5 versions of each video. Observers were
shown two different versions of the same video, and had to choose which one they
preferred, according to their own criteria. They also had the option to indicate no
preference between the two. Each observer was shown 50 randomly selected pairs
of videos, with each of the 35 videos shown at least once. Each pair consists on
two randomly chosen versions the video. Videos could be replayed once, but users
were instructed that they could chose their preference-choice at any time. In doing
so, the negative effects of visual fatigue and the reduction of visual attention are
minimized. The tests were performed on eighteen observers at the Laboratoire
de Traitement et Transport de l’Information(L2TI) on a calibrated LCD monitor
in a controlled environment as the one used for image quality assessment and
described in [102]. The observers were students and members of the laboratory,
most of which were not experts in video stabilization or quality. The average age
was 31 years old.

3.4 Results and discussion

The performance evaluation of the 4 VS methods has been done on a set of 7
video categories representing various challenging scenarios as mentioned previ-
ously. In the following we provide a brief discussion on some preliminary results
by considering both subjective and objective aspects.



78 Chapter 3. Performance evaluation of video stabilization algorithms

Select video

Select two 

versions

Play videos

Is the choice 

made before 

the end?

Replay the 

videos

Wait for the 

user's choice

A choice is 

made

Record 

preference

Have fty 

videos been 

seen?

End session

Start session

Figure 3.3 Workflow of the evaluation protocol

3.4.1 Objective performance evaluation

Tables 3.1 and 3.2 display the values of the objective metrics obtained by the
methods and video categories described in Section 3.3. The first observation is
that the method by Koh et al. obtains the best general performances according
to the AvSpeed, AvAcc and VIIDEO criteria, and second best on the ITF and ISI
metrics. It outperforms other methods on all categories for at least one metric
of evaluation. Whereas, Deshaker obtains the lowest performances for both ITF
and ISI, but the best result according to the AvPCP and SpEED-QA metric.
Using the default settings, this method specifically avoids excessive corrections in
order to maintain video resolution. As expected and described in Section 3.2.2,
the AvPCP is in contradiction with other metrics: there is a compromise to make
between keeping the video resolution high and perform a severe stabilization.
Interestingly, the metric values are sometimes better on the original unstabilized
video than on the stabilized one. This phenomenon is especially observed with
Youtube and Sanchez et al. methods, for instance on the Driving or Crowd
categories. In fact, since these methods are based on 2D geometrical models,
they sometimes fail at dealing with videos in which the camera movement lies
in a 3D space or includes parallax effects. This causes erratic stabilizations that
mis-estimate the camera movement and actually create additional distortions in
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original Deshaker
[93]

Youtube
[4]

Sanchez
et al. [82]

Koh et
al. [11]

crowd

ITF 19.03 20.35 18.24† 22.67 22.42
AvSpeed 3.83 2.71 5.78† 2.81 2.52
AvAcc 1.12 0.40 0.90 0.43 0.33
AvPCP 100 78† 69† 54† 74†

ISI 0.62 0.70 0.60† 0.78 0.72
SpEED-

QA 0.51 0.49 0.54† 0.52† 0.50

VIIDEO 0.13 0.11 0.17† 0.10 0.09

depth

ITF 21.67 22.05 22.7 23.8 24.01
AvSpeed 3.50 2.55 2.99 2.65 2.21
AvAcc 2.84 0.79 2.20 0.58 0.53
AvPCP 100 83† 92† 64† 83†

ISI 0.70 0.76 0.75 0.80 0.82
SpEED-

QA 0.54 0.49 0.56† 0.45 0.49

VIIDEO 0.11 0.09 0.10† 0.08 0.08

driving

ITF 23.18 20.88† 22.03† 22.78† 23.11†

AvSpeed 2.56 1.39 1.36 1.42 1.23
AvAcc 2.85 0.86 0.94 0.91 0.53
AvPCP 100 85† 79† 62† 78†

ISI 0.69 0.69 0.75 0.75 0.76
SpEED-

QA 0.76 0.47 0.61† 0.53 0.56

VIIDEO 0.11 0.10 0.10† 0.09 0.09

object

ITF 21.17 22.64 23.21 24.95 23.88
AvSpeed 3.54 1.99 3.07 3.81† 1.89
AvAcc 2.21 0.93 0.88 1.38 0.64
AvPCP 100 80† 70† 49† 79†

ISI 0.68 0.76 0.76 0.85 0.79
SpEED-

QA 0.62 0.50 0.54 0.49 0.56

VIIDEO 0.12 0.10 0.12 0.12 0.10

Table 3.1 Results on the objective metrics (part 1). The scores denoted with †

correspond to cases where the stabilized video has worse objective quality level than
that of the original video.

the video, which are hard to estimate as those metrics show good results on image
similarity metrics. Apart from the AvPCP metrics, it appears that all metrics are
coherent with each other: although their ranking is somewhat different. Globally,
it could be noticed that the metric values are of the same order for the considered
dataset.
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original Deshaker
[93]

Youtube
[4]

Sanchez
et al. [82]

Koh et
al. [11]

rollingShutter

ITF 20.65 24.09 29.75 28.62 26.43
AvSpeed 7.29 2.09 2.32 1.46 1.70
AvAcc 6.16 1.15 0.50 0.90 0.40
AvPCP 100 69† 69† 60† 63†

ISI 0.59 0.77 0.88 0.86 0.86
SpEED-

QA 0.57 0.53 0.61† 0.56 0.56

VIIDEO 0.15 0.09 0.06 0.10 0.09

running

ITF 18.46 22.9 22.65 26.57 25.88
AvSpeed 7.14 1.91 3.32 1.74 1.67
AvAcc 3.14 0.74 0.96 0.78 0.41
AvPCP 100 61† 52† 37† 57†

ISI 0.56 0.69 0.76 0.85 0.75
SpEED-

QA 0.51 0.52† 0.56† 0.53† 0.56†

VIIDEO 0.16 0.08 0.12 0.08 0.08

simple

ITF 24.48 27.87 31.64 31.33 28.64
AvSpeed 3.24 1.29 0.96 1.06 1.34
AvAcc 2.89 0.61 0.40 0.48 0.36
AvPCP 100 83† 72† 72† 83†

ISI 0.74 0.88 0.93 0.93 0.88
SpEED-

QA 0.60 0.57 0.57 0.49 0.57

VIIDEO 0.16 0.08 0.12 0.08 0.08

average

ITF 21.23 22.97 24.32 25.82 24.91
AvSpeed 4.44 1.99 2.83 2.14 1.79
AvAcc 3.24 1.29 0.97 0.78 0.46
AvPCP 100 77† 72† 57† 74†

ISI 0.65 0.75 0.78 0.83 0.79
SpEED-

QA 0.59 0.51 0.57† 0.51 0.54

VIIDEO 0.13 0.09 0.10 0.10 0.09

Table 3.2 Results on the objective metrics (part 2). The scores denoted with †

correspond to cases where the stabilized video has worse objective quality level than
that of the original video.

3.4.2 Subjective performance evaluation

Table 3.3 presents the sample preference matrix of the subjective pair comparison
tests, averaged on all videos. The method by Koh et al. obtains the best overall
results : it is preferred to any other methods in two-thirds of cases. This result
is coherent with the results obtained with the IFT, AvSpeed and AvAcc metrics.
The second best method is Deshaker, which may appear surprising according
to the results of Table 3.1. In fact, the fact that Deshaker does not perform
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M1 M2 M3 M4 M5
M1 - 5.5 7 9 4.5
M2 12.5 - 11 10 7.5
M3 11 7 - 8.5 7.5
M4 9 8 9.5 - 6
M5 13.5 10.5 10.5 12 -

Table 3.3 Sample preference matrix aggregated on all videos for 18 observers. Score
in case (i, j) corresponds to the average number of observers that preferred method i
over method j. M1 = no stabilization, M2 = Deshaker [93], M3 = Youtube [4], M4

= Sanchez et al. [82], M5 = Koh et al. [11]
.

Metric ITF AvSpeed AvAcc AvPCP ISI SPEED-
QA VIIDEO

Kendall
Rank
Order
Coeffi-
cient

0.12 -0.13 -0.23 -0.05 0.13 -0.07 -0.17

Table 3.4 Kendall Rank Order coefficient for the different metrics used

strong stabilizations and keeps a reasonable video resolution has for consequence
that this methods never produce aberrant results, on the contrary to Youtube or
Sanchez et al. Thus, strong stabilization is not the only criterion seeked by the
observer, that prefers a video with acceptable camera movements than a fully
stabilized video with distortions. The two last methods are Youtube and Sanchez
et al. which perform a good stabilization (see Tables 3.1 and 3.2) with high image
similarity metrics but fail on several videos and tend to produce over-cropping.
Interestingly, no stabilization is sometimes preferred to any stabilization, which
confirms that video stabilization is a processing step that can in fact cause distor-
tions. It should be noted that both Youtube and Sanchez et al. seem to perform
well in the “simple" category, and that as this database is representative of the
range of challenges for video stabilization, it may not be representative of the
usual type of scenes for which these methods are optimized.
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3.4.3 Correlations between subjective and objective met-
rics

In Table 3.4, we computed the Kendall Rank Order coefficient [103] (KC) be-
tween the subjective assessment and the different objective metrics. This coeffi-
cient compares two ordered lists, for which each pair of elements is rated either
concordant if the two elements are in the same order in each list, or discordant if
they are ordered differently in both lists. The coefficient is then calculated using
the difference between the number of concordant pairs CP and the number of
discordant pairs DP normalized by the maximum value possible, which corre-
sponds to the total number of pairs TP . This results in a coefficient between -1
and 1, where 1 indicates that all pairs are similarly ordered and -1 that all pairs
are ordered differently in the two lists. Values closer to 0 indicate lesser or no
correlation between the orders of the considered lists.

KC =
CP −DP

TP
(3.20)

Here, we apply this between the results of the subjective evaluation and those of
the objective metrics. For each objective metric, we look at every pair of videos
evaluated subjectively and consider the pair concordant if the user preferred the
video with the highest score, and discordant otherwise. This gives us a total of
750 pairs of videos to evaluate each metric.

The ITF and ISI correlate positively with the subjective evaluations while the
SpEED-QA metric correlates negatively as expected, since higher scores indicate
lower quality images. However, the low values for the coefficients indicate that
such image quality evaluations are not a very good indicator of the effectiveness of
video stabilization algorithms. The VIIDEO metric also correlates negatively as
expected, but the higher score indicates that the temporal distortions evaluated
are a better indicator of the subjective preferences compared to the image quality
evaluation. Both the average speed AvSpeed and the average acceleration AvAcc
are correlated negatively, as users prefer stable videos with fewer movements, but
it is worth noting that the acceleration metric correlates much better than the
velocity metric, indicating that it is the shifts in camera motion rather than the
direct camera motion which is discomforting to users. Finally, the cropping ratio
is rated negatively and extremely poorly, indicating that the loss of resolution is
considered less important than the quality of the video or its motion. The low
scores observed generally seem to reinforce the idea that multiple criteria affect
video stabilization, and in particular it should be noted that the cropping ratio
is often in opposition to other metrics, with aggressive stabilization obtain high
values on most metrics but strongly reducing the video resolution.
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3.5 Conclusion

Through this study it has been shown that the performance evaluation of video
stabilization methods is far from being an easy subject. The few objective quality
assessment measures that have been proposed in the literature do not include any
knowledge of the effect of video instabilities on the human visual system. This
study was not intended to propose such models but to encourage people to work
in this direction and propose models to account for visual discomfort that may
result from video instabilities. At the time of this study there have been no
complete subjective and objective studies dedicated to VSQA. This contribution
is a first step into the direction of filling this gap by proposing a video stabilization
quality assessment methodology.



Chapter 4
Feature trajectories selection for video

stabilization



85

Chapter 4

Feature trajectories selection for
video stabilization

4.1 Introduction and motivations

As seen in Chapter 2, video stabilization operates in several interdependent steps,
summarized on Figure 4.1. First, the video motion field is estimated using a
frame-to-frame matching process. This estimation can be performed by tracking
a set of salient features or points of interest in the successive frames. Several
feature points trackers have been proposed in the literature. The most popular
are SIFT, SURF or KLT [104]. The position of a given feature point throughout
the video forms a feature trajectory, that represents the movement of an object
in the video. Secondly, the original moving camera path is computed by using
the estimated two-dimensional flow field. Usually a 2D or 3D motion model is
used and the camera parameters are computed by solving linear equations. The
camera path is then corrected and smoothed to obtain more coherent and smooth
movement. Finally, a video restoration process based on the estimated camera
path is used.

The estimation of the 2D or 3D camera parameters from feature trajectories is
a tricky process since not all movements present in the video give information
on the camera motion. While static objects are only affected by camera-induced
movements, other objects undergo displacements that are caused by both the
camera motion and the movements of the object in the scene. These moving
objects need to be separated from the others and removed in order to compute the
correct camera path. This task, referred to as outlier removal in this manuscript,
is crucial, since it is linked to the ability of the method to deal with complex
scenes containing several objects or subjects.
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Figure 4.1 Main steps for video stabilization. The current chapter focuses on the
outlier removal step.

4.1.1 Background

Interestingly, this step is often poorly documented in the papers and most of the
authors do not address this issue or use ad hoc procedures. A complete overview
of the state-of-the-art methods for outlier removal is presented in Section 2.2. For
the sake of completeness and clarity, a brief overview of the main approaches is
provided in the following.
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The most common approach to handle this issue is based on the RANSAC algo-
rithm [105] which is a parametric motion model that aims to quantify the point-
to-point geometric correspondence between two successive frames (e.g. affine
transform, homography...)[34], [106]. The feature points that do not fit the model
are considered as outliers and removed. In RANSAC, outliers are detected by
thresholding the projection error, but other approaches using the number of false
alarms or negative log-likelihood can avoid the problem of fixing such a threshold
[53]. By assuming low camera movements, simple strategies can be implemented
by removing feature points with a velocity above a given threshold [45]. Al-
ternatively, neighborhood information could be exploited to remove undesirable
moving objects under the assumption of locally smooth motion vector field. The
dense optical flow assumption could be then used to remove spurious movements
by thresholding the motion gradient [107]. Delaunay triangulation can be used
to establish neighborhood constraints, removing points whose motion differs from
those of points lying along an edge of the triangulation [108].

4.1.2 Limits of the RANSAC approach

While all these strategies are efficient on simple cases where the vast majority of
feature points belong to static objects or background, they provide poor results
when the global assumptions they are based on are not valid (camera movements
that fit a parametric model, low amplitude and spatially coherent movements).
In particular, large objects moving in the foreground or scenes with many mov-
ing objects can prove difficult to handle. Furthermore, all these methods reject
feature points based on the observation of two successive frames. They do not
consider the feature trajectory during its whole lifetime. For instance, the same
feature point may be considered as an inlier for certain pair of frames and as an
outlier elsewhere. As such, the movement analysis provided by classic approaches
is only local and is not adequate to really identify which feature trajectories are
relevant for the camera movement estimation.

To prove this point, we propose to run two preliminary experiments. We consider
two videos :

• close_person : In this sequence, the person in the foreground is moving
from side to side while being filmed by an unstable camera : see Figure 4.2

• 14_person : In this sequence, the train is moving forward rapidly while
filmed by an unstable camera : see Figure 4.3

For these two videos, we run the RANSAC algorithm and watch for three suc-
cessive frames the feature points labelled as inliers and outliers.
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Figure 4.2 Three successive frames from the close_person sequence. Feature points
classified as inliers by RANSAC are marked in green, while feature points classified
as outliers are marked in blue. In the area circled in red, we can see that most feature

points located on the person or in upper left corner change status abruptly.

• For the video close_person, we see on Figure 4.2 that in three adjacent
frames, the RANSAC algorithm successively fits the motion model to dif-
ferent areas. In the first frame, it works perfectly as the moving person is
correctly identified as an outlier and the motion fits over the entire back-
ground. In the second, the person is no longer identified as an outlier, and
the motion model instead finds a compromise between the moving person
and the right-hand portion of the background, which does not fit with the
left-hand portion of the background. This means that including the per-
son influences the motion model enough to reject part of the background.
Finally, in the last frame, a motion model is found that fits both the back-
ground and the person.

• For the video 14_object, we see on Figure 4.3 that the features detected on
the train start as outliers and are later classified as inliers when their per-
ceived motion has slowed down. The transition between inlier and outlier
can occur for large groups of features at once, as shown by the transition
between the first and second frame. This abrupt change impacts the back-
ground, as a large portion of the background rightfully considered inliers in
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Figure 4.3 Three successive frames from the 14_object sequence. Feature points
classified as inliers by RANSAC are marked in green, while feature points classified
as outliers are marked in blue. Features identified on the train are initially classified
as outliers while their perceived velocity is high and are progressively classified as
inliers as their velocity in the camera plane decreases. The left hand circle highlights
the area were most of thses features change from outliers to inliers. The right hand
circle highlights features belonging to immobile objects, that change classification
depending on the best compromise that the RANSAC algorithm can find between the

background and the train.

the first frame are suddenly considered outliers. Since RANSAC cannot ac-
count for the motion between more than two frames, the incoherence of the
movements of the train are ignored, and the best model found is a compro-
mise between the motion of the train and the background - a compromise
that can change very quickly from frame to frame.

This phenomenon is not only visible on several adjacent frames and is in fact
very common when the RANSAC algorithm is used. To prove this point, we
have computed for each frame t, the percentage of features points that were
considered as inliers in frame t and outliers in frame t + 1 (and vice versa).
These plots are displayed in Figure 4.4 (for close_person) and Figure 4.5 (for
14_object). For the sequence close_person, we can see that we have frequent
peaks where up to 65% of the features change from inliers to outliers and vice-
versa, corresponding to frames where a compromise between the foreground and
background is preferred to the background. This can mislead the camera motion
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Figure 4.4 Percentage of features for which the classification inlier/outlier changes in
the close_person video
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Figure 4.5 Percentage of features for which the classification inlier/outlier changes in
the 14_object video

estimation into detecting sudden shifts in the camera movements as different
parts of the scene are considered. In the sequence 14_object, fewer features
change at one time but the changes are far more frequent, as the RANSAC
algorithm constantly find a different balance between foreground and background.
These instabilities highlight the benefits of fixing once and for all whether a given
trajectory should be considered for the motion estimation rather than determining
the inliers for every pair of frames.

4.1.3 Contributions

In this chapter, we propose a novel approach to assess and select the best feature
trajectories to use in the camera motion estimation for video stabilization. Unlike
standard approaches used for the selection of feature trajectories, we analyze the
movement of the feature trajectories through all frames and compute a global
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Figure 4.6 Illustration of the KLT feature points on the close_person video

weight by considering multiple criteria such as movement and duration. Section
4.2 presents the proposed method for feature trajectories selection. Section 4.3 is
devoted to the performance evaluation, along with results on several videos and
a comparison with state-of-the-art. The last section provide some concluding
remarks and some open problems and perspectives.

4.2 Feature Trajectories Selection

First, let us consider a video corrupted by camera movements, from which fea-
ture trajectories are extracted using the KLT tracker [104]. This tracker detects
interest points and tracks them throughout the video to form feature trajectories:
this process is illustrated on Figure 4.6.

Let
zi[t] = (xi[t], yi[t])

† (4.1)

denote the position of the ith feature point at frame t. The instantaneous velocity
of this feature point is denoted

żi[t] = zi[t+ 1]− zi[t]. (4.2)

Since trajectory i might not last for the whole video duration, let define tstarti and
tendi , as the starting time and end time, respectively, of the ith trajectory.

The feature trajectories selection strategy proposed in this chapter is based on
the following steps:

1. First, we study each feature trajectory on a local time-window, in order
to account for its duration and movement properties. More specifically, we
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define two local weights wdi [t] and wmi [t] withing the range [0, 1] that rank
trajectory i according to its duration and its adequacy with the movements
observed on a time-window centered on frame t.

2. Then, we merge all local weights wdi [t], wmi [t] in order to form a global
trajectory weight wi that accounts for the phenomenon observed during
the whole duration of the trajectory.

3. We select the feature trajectories with the largest weights wi for the camera
motion estimation.

4.2.1 Temporal criterion

Feature trajectories that span too few frames are likely to be unreliable. In
most cases, they correspond to feature points that are not salient enough or not
detected by the KLT tracker, or to moving objects that do not stay in the scene
for long. This is a well-known problem usually handled by using ad hoc techniques
such as duration thresholding in order to remove short trajectories and keeping
only the longest ones[109].

To this end we propose to consider a time window of length 2Nw+1 = 31 centered
on frame t, and to compute a duration weight wdi [t] that accounts for the local
duration of trajectory i. This weight is defined as:

wdi [t] =
min(tendi , t+Nw)−max(tstarti , t−Nw) + 1

2Nw + 1
. (4.3)

This weight is within the range [0, 1] and corresponds of the percentage of frames
within the temporal window of interest for which trajectory i is defined.

4.2.2 Motion criterion

The aim of the second criterion is to associate to each feature point a weight
related to the nature of its motion. The intent of this process is to discrimi-
nate between moving and static objects in the distorted video. However, without
knowledge of the scene, the best motion model corresponding to the video is un-
certain. Therefore, instead of using RANSAC [105] or its variants [53], which
are based on parametric and geometric models, we propose to identify the domi-
nant movement in the video without assuming a given motion model, by using a
projection in a low-rank subspace[109].
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Figure 4.7 Example on the close_person video (frame 100). All trajectories belonging
to the time-window of interest are projected in the (ux,uy) plane. The majority
of the contributions aggregate around the red point (mode of the 2D histogram).
When selecting only feature points close to this mode (green points), we retrieve
feature points from the background that are only corrupted by camera motion. On
the contrary feature points far from the mode (blue points) correspond either to the

moving woman or to spurious feature points.
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We consider a time window of length 2Nw + 1 = 31 centered on frame t, and
form the local velocity matrix Ż[t] which contains all instantaneous velocities
{żi[τ ]}t+Nw

τ=t−Nw
belonging to trajectories that overlap with the time-window of in-

terest. This matrix is then analyzed with a Singular Value Decomposition (SVD)
algorithm that handles missing values through an iterative process [110] :

Ż[t] = UΣV† (4.4)

where U and V are unitary matrices and Σ is a diagonal matrix.

The largest singular value λ1 in Σ captures the information corresponding to the
dominant movement that is localized within the time-window of interest. The
first left-singular vector u1 in U corresponds to the contribution of each trajec-
tory to this dominant movement. Intuitively, all feature trajectories belonging to
static objects or background, should have similar contributions to this dominant
movement. On the contrary, moving objects or pixels should have different con-
tributions and thus be identifiable. First, u1 is decomposed by taking every other
line and forming ux and uy, with ux containing the parameters describing the
parameters of the horizontal movements and uy the parameters of the vertical
movements. Figure 4.7 illustrates this process: feature points affected only by
camera motion tend to aggregate in the (uy,ux) plane. By detecting the mode
(ux∗ , u

y
∗) of the 2D-histogram (16 × 16) of these contributions, we can define a

movement weight wmi [t] that accounts for the distance (in the (uy,ux) plane) of
trajectory i to the detected mode:

wmi [t] = e−γ[(u
x
i −ux∗)2+(uyi−u

y
∗)

2] (4.5)

where γ = 1000 is a scale parameter. This weight is comprised between 0 and 1
and can be interpreted as an agreement score according to the dominant move-
ment. It is a local score that provides a non-parametric assessment of the ade-
quacy of the movement of the feature point.

4.2.3 Combination process

Both local weights wdi [t] and wmi [t] provide complementary information on the
relevance of the feature trajectories. For instance, long trajectories may corre-
spond to moving objects and have large duration weights, but are likely to have
small movement weights since their movements would not fit the dominant mo-
tions seen in the video. It is therefore intuitive to combine both scores in order
to take into account both criteria in the selection process.
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Although local weights can provide insights on the relevance of the trajectories,
they are not sufficient to select the feature trajectories. For example, a moving
object can be static or follow the camera motion through a few frames and then
return to its original own movement. In this case, the local movement weight
increases and then decreases in the video, despite the fact that the trajectory is not
suitable for robust camera parameter estimation. Note that all common methods
for feature trajectory selection (such as RANSAC) have the same drawbacks.
Indeed, since they consider only two successive frames, they might consider as
inliers feature points that belong to moving objects but are static in the few
frames of interest (see Section 4.1.2).

In order to address these two issues, we propose to first combine the two local
weights, and then average the obtained local weight on the whole duration of the
trajectory. This leads to the local weight defined below.

wi =
1

tendi − tstarti + 1

tend
i∑

t=tstarti

wdi [t]× wmi [t]. (4.6)

This weight lies in the range [0, 1]. It is worth to point out that trajectories with
large weights wi have sufficient duration and their movements are consistent in
accordance to the dominant movements present in the video. This means that
it is unlikely that these trajectories belong to non detected KLT feature points,
moving objects or artifacts.

This weighting method can be used in several strategies for feature trajectories
selection. In this work, we remove all trajectories whose weight wi is lower than
a threshold λ. This threshold is set such as there is always a minimum number
Ns = 40 of trajectories present in each frame.

4.3 Results and discussion

The selection process introduced in this chapter can be seen as a pre-processing
step that can be used in any video stabilization method that relies on feature
trajectories. This step can be evaluated independently by visual inspection of
the selected trajectories or as part of a video stabilization process.
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4.3.1 First observations

Figure 4.8 presents the selected trajectories for the video close_person. In this
video, the woman is moving in front of a static background that is only corrupted
by camera movements. The selection process successfully extracts Ns = 40 tra-
jectories belonging to the static background and all those belonging to the moving
foreground are removed. Note that, contrary to RANSAC, this selection remains
the same during the whole video, so there is no risks of oscillations between
inlier/outlier status.

Additional results on five different videos can be found on our webpage1: in all
tested videos, the trajectories belonging to moving objects are correctly rejected
by our method.

4.3.2 Evaluation framework

In the following, we investigate the relevance and the impact of the selection step
within the video stabilization process. To that end, we propose to plug our pre-
processing step into a standard video stabilization method, called Local Linear
Matrix-Based smoothing (LLMB) [82]. First, we estimate the 2D affine model
Ht,t+1 between two successive frames t and t+ 1

Ht,t+1 =

 1 + a11 a12 Tx
a21 1 + a22 Ty
0 0 1

 . (4.7)

These transformations are computed by solving a least-square problem from the
feature trajectories retained by our trajectory selection algorithm. Then, these
transformations are accumulated and smoothed using a Gaussian filter (with
σ = 50). The difference between the accumulated and smoothed transformations
defines an inverse transform H̃t that can be applied to frame t in order to diminish
the camera movements. The resulting stabilized video is finally cropped to remove
undefined regions.

For sake of comparison, three different stabilization methods are evaluated :

• In our method, 2D transforms are computed with a least-square approach
by using only the selected trajectories. The video is then processed with
the LLMB stabilization method [82].

1http://www-l2ti.univ-paris13.fr/∼guilly/
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Figure 4.8 Example on the close_person video (frame 100). On the left frame are all
trajectories detected by the KLT tracker, and on the right are the selected trajectories.

All trajectories corresponding to the moving woman have been removed.

• In the RANSAC method, 2D transforms are computed from all available
trajectories using the RANSAC approach [105]. The video is then processed
with the same LLMB stabilization method [82].

• In Youtube stabilizer, local outliers are removed and the video is stabilized
by using cinematographic criteria [4].

4.3.3 Subjective evaluation

We tested these methods on fifteen videos, which are illustrated in figure 4.9 pre-
senting different challenges for video stabilization, such as large moving object or
depth differences [109]. An excerpt of these results is available on our webpage1.
Figure 4.10 presents a screen-shot of the results obtained by the three methods
for the 14 _ object video which depicts a train leaving a station. Interestingly,
the motion of the train is interpreted by both the RANSAC algorithm and the
Youtube stabilizer as being part of the camera movement. The RANSAC algo-
rithm seeks a compromise between the parameters of the background movement
and the train motion, causing distortions in the video, that are outlined in green
in the figure. The Youtube stabilizer avoids spatial distortions but causes arti-
ficial camera motion in an attempt to stabilize the train motion in short bursts
before re-centering on the original camera path. These temporal distortions are
visible on the video but are unfortunately impossible to display on still image
frames. We recommend the readers to refer to our website for further analysis.
Note that in both cases the attempt to correct the movements of an object causes
the RANSAC and Youtube algorithm to stray further than necessary from the
original camera path, causing a loss in resolution. This loss is easily visible for
RANSAC and our method since cropped areas are visible in black, but it can
also be seen in the Youtube result by comparing how much of the train is visible
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Figure 4.9 Sample thumbnails of the videos used to evaluate the proposed method.

compared to the original video. Results on other videos show similar effects: our
method allows robustness in the presence of large moving objects for which both
the RANSAC algorithm and the Youtube video editor fail.

4.3.4 Objective evaluation

In order to confirm the observed results, we need objective metrics to measure
the benefits of the proposed selection method. We propose to use the objective
metrics already described in Chapter 3 to compare the results of our feature
selection compared to the results using the RANSAC algorithm.

Seven metrics are used for eveluation : Interframe Transformation Fidelity (ITF),
Average Speed (AvSpeed), Average Acceleration (AvAcc), Average Percentage of
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Figure 4.10 Example on the 14_object video (frame 68). On the upper left is the
original video, on the upper right the result of the RANSAC algorithm, on the lower
left the results of the Youtube stabilizer and on the lower right the result of our algo-
rithm. Cropped areas are displayed in black for RANSAC and our method. Youtube

stabilizer automatically re-sizes the video.

Conserved Pixels (AvPCP) and Inter-frame Similarity Index (ISI), Spatial Effi-
cient Entropic Differencing for Quality Assessment (SPEED-QA) [95] and VI-
IDEO [96]. For more explanations, please refer to Section 3.3.3. Results are
displayed in Table 4.1.

Results shows improvements over the ITF metric for stabilized videos over the
original video in most cases, with the exception of three videos containing par-
ticularly important depth differences that affine transforms cannot account for.
Our selection method shows slight improvements on average over the standard
method, with particular improvements over the video “9 object", where the
RANSAC algorithm is mislead by the large moving object it contains whereas
we correctly discard it. Two videos show better results for untreated videos: "10
driving" and "8 driving", both of which contain strong depth changes which are a
poor fit for the affine model used. Similarly, the ISI metric favours the stabilized
videos over the original, with the exception of videos containing strong depth dif-
ferences. No significant differences can be found on average between our selection
method and the RANSAC algorithm. The average speed AvSpeed shows on aver-
age better performances on our method but is highly variable from one video to
the next. The average acceleration AvAcc usually favours the original video. One
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Video Version ITF ISI AvSpeed AvAcc AvPCP SPEED-QA VIIDEO

3 crowd
Original video 18.27 0.61 3.59 2.22 1 0.86 0.78

RANSAC 19.64 0.66 2.14 2.73 0.44 0.077 0.81
Trajectory selection 19.58 0.66 2.15 2.67 0.43 0.082 0.81

4 object
Original video 26.45 0.85 2.22 1.29 1 0.090 0.69

RANSAC 28.89 0.90 1.31 1.40 0.76 0.037 0.70
Trajectory selection 28.85 0.90 1.31 1.39 0.77 0.039 0.70

22 driving
Original video 29.44 0.94 0.39 0.60 1 0.023 0.66

RANSAC 30.18 0.94 0.46 0.76 0.87 0.023 0.68
Trajectory selection 29.69 0.94 0.5 0.87 0.95 0.028 0.69

8 object
Original video 19.71 0.65 2.19 0.64 1 0.166 0.63

RANSAC 22.64 0.72 1.58 0.86 0.70 0.071 0.62
Trajectory selection 22.87 0.75 1.89 0.71 0.75 0.061 0.63

1 object
Original video 21.60 0.72 4.16 2.36 1 0.136 0.76

RANSAC 23.95 0.78 2.41 2.74 0.61 0.098 0.77
Trajectory selection 23.76 0.78 2.46 2.76 0.58 0.086 0.78

12 object
Original video 26.58 0.86 0.77 0.43 1 0.085 0.59

RANSAC 27.08 0.86 0.89 0.68 0.96 0.095 0.63
Trajectory selection 26.83 0.86 0.91 0.70 0.98 0.105 0.63

5 driving
Original video 24.39 0.80 2.69 3.41 1 0.128 0.70

RANSAC 23.92 0.78 3.44 5.38 0.77 0.134 0.72
Trajectory selection 23.84 0.78 3.47 5.48 0.79 0.141 0.72

17 driving
Original video 21.81 0.77 3.10 1.60 1 0.158 0.72

RANSAC 22.43 0.80 2.31 2.13 0.62 0.043 0.72
Trajectory selection 22.77 0.81 2.23 2.04 0.63 0.046 0.72

8 driving
Original video 31.71 0.84 0.55 1.65 1 0.009 0.77

RANSAC 24.38 0.78 1.04 2.50 0.79 0.034 0.72
Trajectory selection 24.48 0.78 0.96 2.36 0.82 0.034 0.75

9 object
Original video 17.40 0.48 3.43 1.35 1 0.159 0.57

RANSAC 17.19 0.51 3.87 4.44 0.57 0.187 0.68
Trajectory selection 18.78 0.57 2.41 1.73 0.79 0.163 0.60

20 driving
Original video 23.34 0.76 2.11 1.16 1 0.098 0.70

RANSAC 23.95 0.77 2.03 1.75 0.77 0.099 0.73
Trajectory selection 23.84 0.77 2.08 1.90 0.82 0.104 0.72

10 driving
Original video 24.63 0.83 2.18 2.43 1 0.121 0.70

RANSAC 21.61 0.81 2.48 3.37 0.70 0.135 0.74
Trajectory selection 21.73 0.82 2.44 3.47 0.77 0.139 0.74

14 object
Original video 20.72 0.71 1.04 0.78 1 0.066 0.54

RANSAC 21.23 0.71 1.02 1.02 0.64 0.069 0.66
Trajectory selection 21.46 0.73 1.02 0.95 0.89 0.066 0.60

10 object
Original video 20.48 0.62 2.66 0.87 1 0.065 0.64

RANSAC 23.44 0.73 1.79 0.70 0.82 0.063 0.62
Trajectory selection 23.31 0.72 1.89 0.68 0.82 0.069 0.63

15 object
Original video 25.1 0.76 2.11 2.22 1 0.109 0.81

RANSAC 22.47 0.76 1.89 3.06 0.77 0.090 0.76
Trajectory selection 22.32 0.72 1.89 2.98 0.77 0.089 0.77

Average
Original video 23.44 0.75 2.18 1.53 1 0.100 0.68

RANSAC 23.53 0.77 1.91 2.24 0.72 0.083 0.70
Trajectory selection 23.61 0.77 1.84 2.04 0.77 0.085 0.70

Table 4.1 Full results on the database. The best results are shown in bold.
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possible explanation is that the stabilization process seeks to diminish the am-
plitude of the camera movements rather than its variations. Our method, while
significantly worse than the original videos, does provide an improvement over
the method using RANSAC. The cropping ratio AvPCP is significantly better
using our algorithm, obtaining on average 5% more resolution than the alter-
native, with improvements up to 25% on some of the more challenging videos.
The original video is of course not cropped, and so retains the full resolution.
SPEED-QA results are better for the stabilized videos on average, despite sev-
eral original videos being rated above the stabilized versions. The method using
RANSAC slightly outperforms our approach on average. The VIIDEO metric
rates the original videos better, both on average and in most cases. This could
be linked to distortions caused by unsuitable transformations. In most cases the
differences our approach and the standard stabilization methods are extremely
small, and no differences can be observed on average. Both video and image
quality metrics show very close results between RANSAC-based stabilization and
our method, which can be explained by the fact that the stabilization methods
are very similar. In particular, the use of an affine model can strongly impact
the image structure that is evaluated by those metrics. improvements over the
RANSAC-based method are more pronounced on the metrics AvAcc, AvSpeed
and AvPCP, although interestingly the AvAcc is better for the original videos.

Some authors [82] have recently introduced an unsupervised and objective crite-
rion for the evaluation of video stabilization, which is based on resolution loss.
The idea is to compare the percentage of empty regions obtained by several meth-
ods with the exact same level of stabilization (σ value). Indeed, different degrees
of stabilization naturally lead to differences in resolution loss. However by com-
paring this percentage on videos treated with the same stabilization method, we
can judge whether our trajectory selection helps limit the resolution loss. Intu-
itively, this criterion illustrates how close the transformations estimated using our
trajectory selection are to the true camera movement compared to the transfor-
mations computed using RANSAC.

This metric is linked to the Average Percentage of Conserved Pixels (AvPCP),
but not identical. It should be noted that the cropping strategy, which seeks a
rectangular area of fixed dimensions, lead to different results between the per-
centage of undefined area and cropped ratio. Enforcing a rectangular shape often
leads to crop some valid areas of a frame to ensure that we retain a rectangle,
while fixing the dimensions of the window leads to determining the cropping ratio
when using the maximum rather than the average of undefined areas. Results
for this metric on fifteen videos are presented on Table 4.2 for our method and
the RANSAC method. Unfortunately, results are not available for Youtube sta-
bilizer as it uses different stabilization and cropping strategies. Table 4.2 shows
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Video RANSAC Trajectory selection
3_crowd 8.69 8.09
4_object 4.17 3.89
22_driving 3.72 1.15
8_object 10.75 3.83
14_object 3.90 1.43

close_person 6.55 6.57
10_object 3.72 3.77
12_object 0.80 0.43
5_driving 3.14 3.33
17_driving 9.74 6.86
8_driving 2.82 2.36
15_object 4.34 4.65
9_object 7.42 3.32
20_driving 2.99 2.79
10_driving 4.53 2.62
average 5.15 3.67

Table 4.2 Mean percentage of undefined area before cropping

that using our trajectory selection reduces the average undefined area (-1.5% in
average), which leads to better resolution after cropping. In particular, scenes
containing large moving objects greatly benefit from our method, making it pos-
sible to obtain a strong stabilization while keeping acceptable video resolution.
The video "8_object" is the clearest example. In this video, a truck in the fore-
ground moves forward and right, exiting the scene before the end of the video.
At the time the truck leaves the scene, the stabilization method using RANSAC
creates a sudden distortion, with an extremely strong shearing effect that results
in large undefined areas. This is due to the transition between a motion model
that found a compromise between the motion of the truck and that of features
in the background to a motion model based solely on feature in the background.
On the other hand, our method avoids using features located on the truck from
the beginning of the sequence, so no such distortion is observed, removing the
undefined areas it caused. This leads to an improvement of 3.83% of undefined
pixel using our selection method compared to 10.75% using RANSAC. Similar
videos are "22_driving" and "10_driving", both featuring large objects appear-
ing or disappearing from view. In "9_object" the RANSAC algorithm mistakes
the movements of a large object as the dominant motion, whereas our method
correctly identifies the background. In several cases with large objects, such as
"15_object", RANSAC obtains similar or better results, as it also identifies the
moving objects but avoids over-fitting to a specific area of the scene.
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4.4 Conclusion

In this work, we presented a feature trajectories selection method for video sta-
bilization. Through this study, it has been shown that by taking into account
duration and motion criteria, it was possible to select more reliable feature trajec-
tories to be used for video stabilization purpose. The obtained results have been
evaluated subjectively and objectively using some intuitive criteria. The proposed
method shows smaller percentage of undefined areas using similar stabilization
methods. Future perspectives include making use of the spatio-temporal distri-
bution of feature points to refine the selection process and the impact of different
motion models on the performance.
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Chapter 5

Conclusion

Through this thesis, it has been shown that although there are many published
theoretical works and efficient software and hardware solutions for video stabi-
lization, there are still many challenging issues that need to be tackled. From
the results and the provided comprehensive overview, we could conclude that VS
is far from being a solved problem. One typical example, is to consider a video
taken from a moving car, facing the front of the vehicle. Such scenes contain large
depth differences that make the computation of the camera motion difficult, as 2
dimensional models will not be able to account for large depth differences. While
3 dimensional models can account for such depth changes, they are very suscep-
tible to outliers, such as moving objects like other vehicles on the road. Another
example is a shot tracking a group from a close distance. If this group takes up
a large enough portion of the frame, it is easy to mistakenly use their motion
to determine the motion of the camera. Indeed, outlier detection methods often
rely on outliers having different movements, and struggle in the presence of an
homogeneous group of moving objects or people. This can result in detecting
erroneous camera movements and worsen the camera motion as we compensate
the wrong motions. This thesis has also clearly pointed out the lack of an effec-
tive framework for VSQA. This lack of standardized evaluation impairs both the
evaluation of stabilization method and investigations in what types of camera
motion are desirable, as well as when the stabilization artifacts are acceptable
and when they are worse than the original unintentional motions.

This thesis attempts to contribute to the lack of standardized methods of VSQA
by reviewing different objective quality assessment measures that have been pro-
posed in the literature and assess their reliability when compared with a subjec-
tive evaluation study. This is done using four representative methods of video
stabilization, but we also examine the results on the original video to better un-
derstand the extent to which video stabilization artifacts can be detrimental to
users. Additionally, we propose a feature trajectories selection method for video
stabilization, in order to deal with scene containing important moving objects.
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This selection method makes no assumptions regarding the type of camera mo-
tion expected, making it compatible with any stabilization methods using feature
tracking. The obtained results are evaluated subjectively and objectively using
the previously investigated metrics. By using temporal criteria and an analysis
over time of the motion of feature points, we can eliminate undesirable features
corresponding to moving objects. Several metrics have shown that this allows
improvements to the stabilization results.

Currently, perceptual models seem to be the most promising option to model
the camera motion, as 2D models have proven too rigid for a number of scenes
while 3D models remain very susceptible to outliers. In particular, a model using
homography mixtures has been implemented in adobe after-effects and is among
the state-of-the-art [76]. While optical flow has seen renewed interest in the light
of these new types of model, the computational cost remains an obstacle, while
feature tracking using SURF matching or the KLT tracker are very effective.
However, the detection and removal of outliers remains a challenge for extreme
cases where immobile features are outnumbered by moving features. In such
cases, it is difficult to correctly differentiate between the moving objects and
the fixed background. Furthermore, the evaluation of stabilization methods still
lacks a reference metric that correlates well to viewer preferences. One way
to go a step further and propose new solutions is to exploit the new advances
in machine learning approaches and more specifically Deep Learning methods.
Indeed, combining DL techniques with perceptual vision models and especially
motion perception models is undoubtedly a promising approach to propose a
effective evaluation method. Deep learning could also be exploited to recognize
common moving objects without relying on the background forming the majority
of the scene.
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