
Université Paris 13 - Université Sorbonne Paris Cité

Laboratoire d’Informatique de Paris Nord - LIPN

Équipe: Algorithmes et Optimisation Combinatoire - AOC

Exact and Heuristic Methods for
Multi-Activity Tour Scheduling Problems

Thèse de doctorat
présentée par

Stefania Pan

à l’École Doctorale Galilée

pour obtenir le grade de

Docteur en Informatique

Soutenue à Villetaneuse le 13 de décembre 2018

devant le jury composé de:

François Clautiaux Université de Bordeaux Rapporteur

Bernard Gendron Université de Montréal Rapporteur

Sophie Demassey Mines ParisTech Examinatrice

Safia Kedad-Sidhoum CNAM Examinatrice

Louis-Martin Rousseau École Polytechnique de Montréal Examinateur

Roberto Wolfler Calvo Université Paris 13 Directeur de thèse

Lucas Létocart Université Paris 13 Co-directeur de thèse

Mahuna Akplogan Horizontal Software Co-encadrant de thèse

Nora Touati Horizontal Software Co-encadrante de thèse

http://www.univ-paris13.fr
http://www.univ-paris13.fr
http://lipn.univ-paris13.fr
http://lipn.univ-paris13.fr/fr/aoc-2

Abstract

Personnel scheduling problems encompass a large collection of optimization challenges that

several organizations need to face. One of the first classifications proposed divides these

problems into: days-off scheduling, shift scheduling, and tour scheduling. The first concerns

the determination of working and rest days; the second defines the shifts to be assigned; the

third integrates days-off into shift scheduling.

The current thesis addresses the tour scheduling problem with a multi-activity context

arising in restaurant business, which was provided by the company Horizontal Software. As

such, the main goal is to define the working days and the shifts, along with the specification

of the activities in each time period. This problem is also characterized by a high degree of

flexibility, mainly due to the introduction of a long pause (interruption), and heterogeneity,

determined by conditions from employees (skills, availabilities, contract regulations, and

pre-assignments).

The problem is tackled by a Branch-and-Price algorithm, which is based on column gener-

ation. A dual ascent heuristic is implemented to speed up its convergence, and a constraint

and dynamic programming based method is proposed for generating schedules. To address

the large-scale instances, various heuristics are presented, based on column generation, large

neighborhood search and tabu search. To assess the performance of the proposed method,

computational experiments are conducted on instances from the literature and on real-world

instances that were provided by Horizontal Software.

Keywords: Multi-activity tour scheduling problem; Dual ascent; Regular grammar; Re-

source constrained shortest path; Branch-and-Price; Heuristics.

Résumé

La planification du personnel constitue une vaste classe de problèmes d’optimisation ren-

contrés dans différentes organisations. L’une des premières classifications proposées divise

ces problèmes en days-off scheduling, shift scheduling et tour scheduling. Le premier con-

cerne la détermination des jours de travail et de repos, le deuxième définit les horaires de

travail, et le troisième intègre les deux.

Cette thèse découle de la volonté de la société Horizontal Software de résoudre l’un des

problèmes difficiles rencontrés dans la restauration. Le problème relève de la catégorie du

tour scheduling dans un contexte multi-activités, où l’objectif est la définition des jours

et des horaires de travail, ainsi que la spécification des activités dans chaque période.

Ce problème présente un degré élevé de flexibilité et d’hétérogénéité. La première est

causée par l’introduction d’une longue pause (coupure), tandis que la deuxième est due

aux compétences, aux disponibilités, aux contrats et aux pré-affectations des employés.

Le problème est résolu par une méthode du type Branch-and-Price, dont l’élément clé est

la génération de colonnes. Une heuristique dual ascent a été proposée pour accélérer sa

convergence, et une méthode basée sur la programmation dynamique et par contraintes a

été proposée pour générer des plannings individuels. Afin de traiter les instances de grande

taille, différentes heuristiques ont été développées, basées sur la génération de colonnes,

la recherche à voisinage large et tabou. Des tests expérimentaux sur des instances de la

littérature et réelles ont été effectués afin dévaluer les performances des méthodes proposées.

Mots clés: Problème de planification du personnel avec plusieurs activités; Dual ascent;

Grammaire régulière; Plus court chemin avec contraintes; Branch-and-Price; Heuristiques.

Contents

Abstract i

Résumé ii

List of Figures vii

List of Tables viii

Abbreviations x

Introduction 1

Context and motivations . 2

Research objectives . 3

Thesis outline . 3

I Personnel scheduling 6

1 Problem Description 8

1.1 Definitions . 9

1.2 Problem statement . 10

1.2.1 Schedule flexibility . 10

1.2.2 Employees heterogeneity . 10

1.2.3 Constraints . 11

1.2.4 Planning quality evaluation . 13

1.3 State of the art . 14

1.3.1 Classifications of personnel scheduling 14

1.3.2 Shift scheduling . 15

1.3.3 Tour scheduling . 21

1.4 Instances . 25

1.5 Conclusions . 28

2 Mathematical Model 30

2.1 Compact MILP model . 31

2.1.1 Notations . 31

2.1.2 Objective function . 33

2.1.3 Workload constraints . 34

iii

Contents iv

2.1.4 Legal constraints . 34

2.1.5 Activities cardinality constraints . 39

2.1.6 Skills constraints . 39

2.1.7 Pre-assignment constraints . 40

2.1.8 Unavailability constraints . 40

2.1.9 Succession constraints . 40

2.1.10 Distribution constraints . 40

2.2 Dantzig-Wolfe decomposition . 41

2.2.1 Master problem . 41

2.2.2 Column generation. 42

2.3 Conclusion . 43

II Exact method 44

3 Dual Ascent Heuristic 46

3.1 Introduction . 46

3.2 Literature review . 48

3.3 Problem description . 50

3.4 A dual ascent heuristic . 52

3.4.1 Parametric reformulation . 53

3.4.2 Lagrangian relaxation . 53

3.4.3 A column generation method based on dual ascent 58

3.5 Classical Lagrangian relaxation . 59

3.6 Applications . 59

3.6.1 Multi-activity tour scheduling . 60

3.6.2 Minimum sum coloring . 60

3.7 Computational results . 61

3.7.1 Instances . 62

3.7.2 Algorithmic details . 63

3.7.3 Discussion of the results . 64

3.8 Conclusions . 68

4 Pricing Problem 70

4.1 Preliminaries . 71

4.1.1 Basic concepts . 71

4.1.2 Deterministic finite automata . 71

4.1.3 Extended transition function . 72

4.1.4 Regular language . 73

4.2 Model . 73

4.2.1 DFA for timeslots . 73

4.2.2 DFA for daily shifts . 74

4.2.3 Directed acyclic graph for schedules 79

4.3 Solving Method . 80

4.3.1 Expanded graph . 81

4.3.2 Phase 1: build timeslots . 82

4.3.3 Phase 2: build daily shifts . 83

Contents v

4.3.4 Phase 3: build schedules . 85

4.4 Heuristics . 86

4.4.1 Starting slots selection strategy . 87

4.4.2 Daily shifts selection strategy . 87

4.5 Computational results . 88

4.6 Conclusions . 97

5 Branch-and-Price 99

5.1 Column generation . 99

5.2 Branching rule . 102

5.3 Upper bound . 103

5.4 Computational results . 104

5.5 Conclusions . 109

III Heuristic methods 111

6 Heuristic Methods 113

6.1 Large Neighborhood Search . 113

6.1.1 The method . 114

6.1.2 Computational results . 118

6.1.3 Conclusions . 122

6.2 Primal-dual heuristic . 123

6.2.1 The method . 124

6.2.2 Computational results . 125

6.2.3 Conclusions . 132

6.3 Hybrid heuristic . 132

6.3.1 The method . 133

6.3.2 Computational results . 136

6.3.3 Conclusions . 140

6.4 Diving heuristic . 140

6.4.1 The method . 140

6.4.2 Computational results . 141

6.4.3 Conclusions . 144

6.5 Heuristics comparison . 144

Conclusions 147

A Optimizing power generation in the presence of micro-grids 150

A.1 Introduction . 151

A.2 The problem . 155

A.2.1 Description . 155

A.2.2 A bilevel formulation . 157

A.3 MILP reformulations . 159

A.3.1 Heuristic reformulation . 159

A.3.2 Comparative exact formulation . 160

Contents vi

A.4 Stochastic extension of the model . 161

A.4.1 Model . 162

A.4.2 Heuristic reformulation . 163

A.4.3 Comparative reformulation . 165

A.5 Case study based on thermal power unit-commitment 165

A.5.1 Data . 165

A.5.2 Numerical results . 168

A.6 Conclusions and perspectives . 171

A.7 Micro-grids . 172

Bibliography 176

List of Figures

1 E-Optim tool. 2

1.1 Demand profile example with rush periods for Real instances from E-Optim. 27

3.1 Lower bound gap, upper bound gap and dual variables oscillations for mini-
mum sum coloring problem . 67

3.2 Lower bound gap, upper bound gap and dual variables oscillations for multi-
activity tour scheduling problem . 67

3.3 Lower bound gap, upper bound gap and dual variables oscillations for the
generated instances . 68

3.4 Lower and upper bounds for instance queen10 10. 68

4.1 Notations for a DFA (Hopcroft et al. (2006)). 72

4.2 DFA for timeslots. 75

4.3 DFA for daily shift with one timeslot. 76

4.4 DFA for daily shift with two timeslots. 77

4.5 DFA for daily shift with three timeslots. 78

4.6 DFA for daily shift with three timeslots. 79

4.7 DAG to build schedules. 80

4.8 Expanded graph for the DFA in Figure 4.1. 81

4.9 Expanded graph for the DFA in Figure 4.2 83

4.10 Example of starting slot selection strategy, with ucw = 4 87

A.1 Duck curve example for a micro-grid with 10000 devices 167

A.2 Micro-grid demand management . 169

vii

List of Tables

1.1 RGR instances names. 26

1.2 RGR flexible instances names. 27

1.3 Real instances names. 27

1.4 Real instances description. 28

3.1 Results for minimum sum coloring problem with time limit 3600 seconds. . . 65

3.2 Results for multi-activity tour scheduling problem. 66

3.3 Results for the generated instances. 66

4.1 Comparison daily shifts heuristics on RGR instances with feasible configura-
tions (C1)-(C2) and starting slot selection strategy (S3). 89

4.2 Comparison starting slot heuristics on RGR flexible instances with feasible
configurations (C1)-(C3). 91

4.3 Comparison daily shifts heuristics on RGR flexible instances with feasible
configurations (C1)-(C3). 92

4.4 Comparison between the heuristic (S1)+(D1) and the optimal resolution
(S3)+(D6) with configurations (C1)-(C3), on RGR flexible instances. 93

4.5 Comparison configurations (C1)-(C6) on Real instances. 94

4.6 Comparison starting slot heuristics (S1)-(S3) on Real instances. 95

4.7 Comparison daily shifts heuristics (D1)-(D6) on Real instances. 96

4.8 Comparison between the heuristic (C1)+(S1)+(D1) and the optimal resolu-
tion ((C1)-(C6))+(S3)+(D6) (or best resolution ((C1)-(C6))+(S3)+(D5)) on
Real instances. 97

5.1 Results comparison between B&P and the Compact MILP model solved with
CPLEX 12.7 on RGR instances with time limit 8 hours. 105

5.2 Results comparison between B&P and the Compact MILP model solved with
CPLEX 12.7 on RGR flexible instances with time limit 8 hours. 106

5.3 Results comparison between B&P and the Compact MILP model solved with
CPLEX 12.7 on Real instances with time limit 8 hours. 107

5.4 Comparison cost saving RGR instances and RGR flexible instances. 108

5.5 Comparison cost saving using configurations (C1), configurations (C1)-(C3)
and configurations (C1)-(C6) on Real instances. 109

6.1 Comparison employee selection strategies (E1), (E3) and (E2) on RGR in-
stances. 119

6.2 Comparison employee selection strategies (E1), (E3) and (E2) on RGR flexi-
ble instances. 120

6.3 Comparison employee selection strategies (E1), (E3) and (E2) on Real instances.121

viii

List of Tables ix

6.4 Comparison strategy (D6) and (D3) with employee selection strategy (E1) on
RGR instances. 123

6.5 Results comparison between B&P heuristic implemented by Restrepo et al.
(2016) and the PD heuristic on RGR instances. 126

6.6 Results comparison between PD with complete exploration (D1)+(D3)+(D6)
in LNS and PD with partial exploration (D1)+(D3) in LNS on RGR instances.127

6.7 Results of PD heuristic on RGR flexible instances. 128

6.8 Results of PD heuristic on Real instances. 129

6.9 Results of PD heuristic with time limit 1200 seconds on RGR instances. . . . 130

6.10 Results of PD heuristic with time limit 1200 seconds on RGR flexible instances.131

6.11 Results of PD heuristic with time limit 1200 seconds on Real instances. . . . 131

6.12 Results comparison between B&P heuristic implemented by Restrepo et al.
(2016) and the hybrid heuristic on RGR instances. 137

6.13 Results hybrid heuristic on RGR flexible instances. 138

6.14 Results hybrid heuristic on Real instances. 139

6.15 Results comparison between B&P heuristic implemented by Restrepo et al.
(2016) and the diving heuristic time limit 1800 seconds on RGR instances. . . 142

6.16 Results diving heuristic time limit 1800 seconds on RGR flexible instances. . 142

6.17 Results diving heuristic with time limit 1800 seconds on Real instances. . . . 143

6.18 Comparison heuristics on RGR instances. 145

6.19 Comparison heuristics on RGR flexible instances. 145

6.20 Comparison heuristics on Real instances. 146

A.1 Average computation time and objective value for the micro-grid power plan-
ning preprocessing step. 168

A.2 Comparing Exact and Heuristic on small instances. 170

A.3 Solution of Heuristic for larger instances. 171

A.4 Contracts proposed and selected to five MG with |D| = 5000. 172

Abbreviations

B&B Branch-and-Bound algorithm

B&P Branch-and-Price algorithm

CG Column Generation

DA Dual Ascent

DAG Directed Acyclic Graph

DFA Deterministic Finite Automaton

IP Integer Programming

LNS Large Neighborhood Search

LP Linear Programming

MIP Mixed Integer Programming

MILP Mixed Integer Linear Programming

RMP Reduced Master Problem

SC Set Covering

SP Set Packing

SPT Set ParTitioning

TS Tabu Search

x

Introduction

The management of human capital is a crucial factor affecting the productivity and the

service quality of an organization. It plays an important role in different processes, such as

the recruitment, talent management (training, interviews and careers management), time

management and workforce management. Personnel scheduling problems arise in the lat-

ter process. Thompson (2003) points out two primary reasons for caring about personnel

scheduling. The first reason is related to the time spent defining a planning by hand that

leaves the manager less time for actually managing the employees and interacting with the

customers. The second reason concerns profitability and effectiveness, since an efficient

planning potentially leads to an overall cost reduction and performance improvement.

Over time, the evolution of management practices and the scientific advancements brought

researchers to focus on more and more complex problems with more and more diverse ap-

plications. Nowadays, many real-world personnel scheduling problems concern companies

where schedules differ from the standard eight hours per day and five days per week. The

problem becomes challenging, due to several factors such as multiple contracts, work reg-

ulations, multiple activities, employee skills and availabilities, employee preferences, etc.

As consequence, it becomes difficult finding a solution satisfying all the constraints of the

resulting complex large-scale problem. It is even more difficult finding an optimal solution

minimizing a given criterion, such as the total cost of the planning or under and over cov-

erage of the demand. In this case, it is almost impossible to define a planning by hand, and

the use of specific mathematical models and algorithms becomes essential.

Personnel scheduling concerns various areas of applications, where we find transportation

systems (airline, railway, bus), call centers, health care systems (hospital, private clinic),

emergency services (ambulance, police, firefighter), civic utilities (post office), main events

(sports competitions, casino), financial services (bank), tourism (museum), hotels, restau-

rants, retail, among others. Each company has specific requirements and rules, even tough

it may be grouped together with other companies for sectoral affinity. This diversity, along

with the development and the launch of new businesses, increases the interest addressed to

personnel scheduling.

This work has been funded by BPIfrance in the frame of the French cooperative project ADAMme,
Projet Investissement Avenir (FSN: AAP CISN2).

1

Introduction 2

Context and motivations

The human capital management is a complex and transverse task that managers need to do,

and it requires specific actions depending on the nature of each company. When a performing

tool is provided, managing employees becomes easier, guaranteeing their well-being and the

quality of the services supplied, without jeopardizing the financial health of the company.

These tools need not only to provide a planning satisfying all constraints (work regulations,

preferences, equity, etc.), but also a planning that is optimal or near-optimal according to

some given criterion (costs, demand coverage, etc.). In addition, they need to allow the

visualization and the analysis of the resulting planning, in order to let the manager benefit

from his know-how and make the appropriate corrections.

In general, this type of tools is marketed by specialized companies, such as Horizontal Soft-

ware. This company offers a software dedicated to the management of the human capital

in various areas, such as tourism, leisure activities, retail, health care, legal, restaurants,

etc. The modularity of the software allows to cover the different processes of human capital

management, from the recruitment and the talent management, to the time and the work-

force management. The module concerned with personnel scheduling is named E-Optim,

and it appears as in Figure 1. The employees and the corresponding planning are shown

in the central part of the figure, while some statistics are displayed on the bottom and on

the right allowing a rapid evaluation of the quality of the planning. In addition, different

features allow the manager to modify the solution if necessary.

Figure 1: E-Optim tool.

E-Optim has the goal of defining a planning that satisfies the different constraints character-

izing the problem, covers the demand, meets the needs and the preferences of the employees.

It also allows to automatically generate the demand based on business indicators, such as

Introduction 3

the company’s turnover or the historical data on the attendance rate, and to carry out

planning simulations based on different criteria.

This research project is originated by the will of Horizontal Software in solving efficiently the

scheduling problems arising in the context of the restaurant business, which are characterized

by various complex work regulations and a high degree of flexibility in defining the planning.

The project relies on a partnership between the company Horizontal Software and the LIPN

(Laboratoire d’Informatique Paris Nord) of the Université Paris 13.

Research objectives

Two research lines are developed along this thesis. An academic line aims at mathematically

characterize the problem that concerns Horizontal Software and its placement in the litera-

ture of personnel scheduling. Furthermore, the goal is to propose efficient solving methods

able to deal with the specificities of the problem addressed.

The second line of research is industrial in partnership with Horizontal Software. It explores

the workforce management process, and it is devoted to the improvement of the E-Optim tool

through the algorithms developed in this thesis in order to speed up and optimize the

personnel scheduling in the context of restaurant business. All these algorithms have been

implemented in the E-Optim tool.

One of the operational constraints of Horizontal Software imposes to avoid the use of a com-

mercial solver, since they cannot be embedded in E-Optim tool. However, in this thesis we

do not resort to open-source LP solvers when needed for developing an algorithm, and we

employ a state-of-the-art solver. The main reason relies on the fact that we wanted to eval-

uate the performance of the developed methods, without being affected by the performance

of an open-source and not commercial solver, which is usually less efficient. In addition,

we wanted to see “how far we could go” with the real instances provided by Horizontal

Software with the use of a state-of-the-art solver.

Thesis outline

The thesis is essentially structured in three parts:

• Part I is dedicated to the definition of the multi-activity tour scheduling problem, i.e.,

one of the problems that concerns the company Horizontal Software. After a first

chapter describing the problem addressed and its placement in the literature, different

formulations are proposed.

• Part II presents an exact approach for the multi-activity tour scheduling problem.

After a focus on two elements which are at the basis of the algorithms, the problem is

tackled by means of Branch-and-Price (B&P).

• Part III proposes four heuristic approaches for the multi-activity tour scheduling prob-

lem, with the goal of finding good solutions to the large-scale instances.

Introduction 4

Finally, conclusions of this work and future perspectives are drawn. In the following we

briefly introduce the chapters of this thesis.

Chapter 1: Problem Description

The multi-activity tour scheduling problem addressed in this thesis is introduced, giving

the basic definitions and describing the constraints and the objective considered. A review

of related problems, models and solving methods reported in the literature is presented.

Furthermore, the instances used to evaluate the performance of the algorithms that will be

proposed in this thesis are described.

Chapter 2: Mathematical Model

A compact formulation in the form of Mixed Integer Linear Program (MILP) is introduced,

along with a Dantzig-Wolfe decomposition which is well-suited for the multi-activity tour

scheduling problem. Finally, a reminder of Column Generation (CG) is presented.

Chapter 3: Dual Ascent Heuristic

Since CG is one of the key elements in this thesis, a special attention is paid to the resolution

of the reduced master problem, and a Dual Ascent (DA) heuristic for solving it is presented

in this chapter. The generality of this procedure is highlighted, and computational results

are presented in different contexts.

Chapter 4: Pricing Problem

As complement of the previous chapter, we focus on the resolution of the pricing problem,

where constraint and dynamic programming techniques are combined together. To deal with

large-scale instances, various strategies are proposed for heuristically solving the pricing

problem. Extensive computational sessions are conducted to assess the performance of the

different strategies.

This research has been done together with Louis-Martin Rousseau, during a three-months

internship at École Polytechnique de Montréal.

Chapter 5: Branch-and-Price

The algorithms presented in Chapter 3 and Chapter 4 are embedded in a CG framework,

and different strategies for speeding up its convergence are described. CG is then combined

with a branching rule into a B&P algorithm for the exact resolution of the multi-activity

tour scheduling problem. Computational experiments are performed on the testbed defined

in Chapter 1.

Introduction 5

Chapter 6: Heuristic Methods

In order to find feasible solutions to large-scale instances of the multi-activity tour scheduling

problem, four heuristic algorithms based on Column Generation (CG), Large Neighborhood

Search (LNS), and Tabu Search (TS) are proposed. Computational experiments are con-

ducted on the testbed defined in Chapter 1 in order to evaluate the performance of each

heuristic.

Appendix

Appendix A is devoted to the presentation of a work which has been studied in parallel to

the aforementioned main research topic. This work concerns the energy management in a

future decentralized system, where the interactions between a power generation company

and various micro-grids are taken into consideration.

This research has been done together with Wim van Ackooij, Jérôme De Boeck, Michael

Poss and Boris Detienne.

Part I

Personnel scheduling

6

Introduction to Part I 7

Introduction to Part I

Personnel scheduling problems arise in many different areas, such as airline, railway and

bus companies, call centers, health care systems, restaurant businnes, retail stores and

many others. Each area has particular requirements that make the concerning personnel

scheduling problem specific. As a consequence, the literature on this topic is extensive. To

support this, we mention the review of Ernst et al. (2004a), where more than 700 papers are

analyzed and classified. The application we are interested in this thesis concerns the fast

food restaurant chains, which is one of the most challenging scheduling problem that the

company Horizontal Software has to face. This problem is characterized by a high degree of

flexibility in defining personnel planning in order to respond to the particular requirements

arising in this area. In the following we describe the problem addressed in this thesis. In

particular, Part I is organized as follows:

• Chapter 1 gives the basic definitions needed to describe the problem and it introduces

the constraints considered. Furthermore, the literature review concerning personnel

scheduling is presented, together with the description of the instances used for the

computational experiments all along the thesis.

• Chapter 2 introduces a compact MILP model and a Dantzig-Wolfe decomposition of

the considered problem. In addition, the main principles of columns generation are

recalled.

Chapter 1

Problem Description

The purpose of this chapter is to describe and formalize the personnel scheduling problem

addressed in this thesis. One of the first classifications for personnel scheduling problems

was proposed by Baker (1976). According to Baker, three main groups can be distinguished:

days-off scheduling, shift scheduling, and tour scheduling.

• Days-off scheduling concerns the determination of working and rest days all over the

planning horizon.

• Shift scheduling is also called time-of-day scheduling and it concerns the definition of

the working periods during the working days of each employee.

• Tour scheduling integrates days-off and shifts scheduling by specifying both the work-

ing days and the working periods of each employee.

In general, the groups presented above consider only one work activity. However, we may

need to specify what employees do in each period since more than one work activity has

to be scheduled. In this case, the shift and the tour scheduling problems become respec-

tively the multi-activity shift scheduling and multi-activity tour scheduling problems. The

problem addressed in this thesis falls into this last category, where the goal is not only the

definition of the working days and the working periods but also the specification of work

activities in each time period. The presented classification is not the only one that can be

found in the literature. Ernst et al. (2004b) and Van den Bergh et al. (2013) categorize

personnel scheduling problems according the problem addressed, the solving method and

the application area. Further details are given in Section 1.3.1.

We formalize the problem by introducing the basic notions in Section 1.1, we describe the

characteristics and the constraints of the problem in Section 1.2, and we give an insight into

the existing literature in Section 1.3. Section 1.4 details the instances that are used for the

computational experiments all along the thesis, and conclusions are drawn in Section 1.5.

8

Chapter 1. Problem description 9

1.1 Definitions

This section describes the main elements that appear in the multi-activity tour scheduling

problem addressed.

• Time horizon: the time span that needs to be scheduled. It is usually fixed to one

week, as in our case.

• Slots: the time periods of equal length that partition the planning horizon. Usually,

the length is fixed to 15 minutes, 30 minutes or 1 hour.

• Task : a sequence of consecutive slots where the same activity is performed without

being interrupted by any other activity or pause.

• Timeslot : a sequence of activities performed consecutively. It may contain only one

activity, which is performed for the entire duration of the timeslot, or multiple different

activities, which are assigned successively without any pause on the transitions between

them.

• Break : a short pause can be assigned during the working day and it is called break. It

has a duration usually between 30 minutes and 1 hour, and if it falls during lunchtime,

the employee may have lunch during the break. For this reason, no notion of lunch

break will be introduced, in contrast to what is usually done in literature.

• Interruption: in addition to breaks, a long pause can be assigned during the working

day, and it is named interruption. Its duration usually goes from 2 hours to 5 hours.

This type of pause arises in fast food restaurant chains, where rush periods during

lunchtime and dinner are ordinary and a higher flexibility in scheduling is required.

Further details are given in Section 1.2.1.

• Shift : a combination of timeslots, breaks, and interruptions forms a daily shift. More

in details, a daily shift is made of one, two or three timeslots, where two consecutive

timeslots are separated by either a break or an interruption.

• Daily shift : a shift that covers only daily slots is called daily shift. For instance, daily

slots may consider all time periods from the opening time to 9pm.

• Night shift : a shift that covers at least one of the night slots is called night shift. For

instance, night slots may consider time periods in the late evening, from 9pm to the

closing time. The distinction between daily and night shift is necessary due to the fact

that some constraints depend on which shift the employee has worked.

• Rest between shifts: between two consecutive shifts a period where the employee does

not work needs to be assigned. This time period is called rest.

• Day-off : a day where the employee does not work is called day-off. Since our problem

falls into the category of tour scheduling, days-off are not pre-assigned and need to be

considered while defining the schedule of each employee.

• Schedule: a sequence of shifts and days-off covering the whole planning horizon is

called schedule.

• Planning : a set of schedules, one for each employee, is called planning.

Chapter 1. Problem description 10

1.2 Problem statement

This section gives the description of the problem. Many characteristics may arise in per-

sonnel scheduling, such as overlapping shifts that span multiple days, different degrees of

schedule flexibility and employees heterogeneity. Our problem focuses on the two last char-

acteristics, which are discussed in Section 1.2.1 and in Section 1.2.2. Then, the constraints

considered in the problem are detailed in Section 1.2.3 and how to evaluate the quality of a

planning is explained in Section 1.2.4.

1.2.1 Schedule flexibility

One of the most important features of the multi-activity tour scheduling problem under

study relies on the possibility of defining schedules that considerably differ one from the

other, and are able to adapt to the needs arising in fast food restaurant chains. Indeed,

fast food restaurant chains are characterized by a demand having two rush periods during

lunchtime and dinner, that follow habits. Therefore, service needs to be guaranteed in these

two periods. In order to deal with the peaks of demand, employees may be assigned to

timeslots that cover distant periods of the day. For instance, the employee works from

9am to 1pm, and from 5pm to 8pm. To the best of our knowledge, the multi-activity

tour scheduling problems in the literature do not allow this type of shifts, since the breaks

separating two timeslots are usually short breaks or lunch breaks of about one hour.

In order to guarantee such flexibility in defining schedules, the assignment of a long pause

is necessary. This pause is called interruption and it is subject to the following constraints:1

• only one interruption can be assigned each day;

• an interruption has a minimum duration of 2 hours and it cannot exceed 5 hours;

• unlike normal breaks, interruptions have a cost that reflects the fact that this type of

pause may be undesirable for the employee.

The drawback of such flexibility relies on the increase in the number of feasible shifts and,

therefore, the number of feasible schedules.

1.2.2 Employees heterogeneity

Besides the schedule flexibility presented above, another feature of the multi-activity tour

scheduling problem addressed consists in the heterogeneity of the employees. That is, each

employee has his own specificities that distinguish him from the others. As a consequence,

shifts and schedules need to be designed for each employee. In this case, the problem is

called heterogeneous multi-activity tour scheduling. Four main factors are responsible for

the heterogeneity of the problem.

1https://www.legifrance.gouv.fr/affichIDCC.do;jsessionid=3223FE83B3F0267DEC1439A0D64D5517.

tpdjo16v_1?idConvention=KALICONT000005635596&cidTexte=KALITEXT000028900902

https://www.legifrance.gouv.fr/affichIDCC.do;jsessionid=3223FE83B3F0267DEC1439A0D64D5517.tpdjo16v_1?idConvention=KALICONT000005635596&cidTexte=KALITEXT000028900902
https://www.legifrance.gouv.fr/affichIDCC.do;jsessionid=3223FE83B3F0267DEC1439A0D64D5517.tpdjo16v_1?idConvention=KALICONT000005635596&cidTexte=KALITEXT000028900902

Chapter 1. Problem description 11

• Skills: The variety of the activities considered causes the requirement of particular

skills to the employees that perform them. Furthermore, employees have different

competencies and, therefore, they can perform only a specific subset of activities.

• Availability : Each employee is associated with a set of slots where he is unavailable.

For instance, the employee has taken a day-off on Friday, or he has agreed with the

manager on not working all Thursday afternoon, or he has taken the morning off due

to a medical exam. As results, he is not available all days and all time. Many different

factors affect the availabilities, which change from one week to another.

• Contract type: Work regulations of each employee are defined by his contract. Two

types of contract are typically proposed: part-time and full-time. In general, the work

regulations are the same, but the bounds imposed are different. For instance, with a

part-time contract, an employee can work 24 hours per week, against the 35 weekly

working hours of the full-time contract.

• Pre-assignments: Employees may be pre-assigned to activities in specific time pe-

riods. As a consequence, the schedules designed need to take into account these

pre-assignments, which differ from employee to employee.

When all the employees are equivalent concerning skills, availability, contract type, and

pre-assignments, the problem is called homogeneous multi-activity tour scheduling.

1.2.3 Constraints

This section presents the constraints of the multi-activity tour scheduling problem addressed.

They are mainly grouped into five categories: workload, legal, activities cardinality, succes-

sion and distribution constraints.

Workload. They concern the demand and they are expressed as the number of employees

required for each activity in each slot. Demand modeling may be part of the scheduling

process (Ernst et al. (2004b)). However, in this thesis, we assume that the demand has

already been investigated before scheduling the employees, and it is an input data of the

problem. In addition, both under and over coverage are allowed, meaning that a planning

is feasible even though it does not satisfy exactly the demand.

Legal. They concern the definition of rules for designing timeslots, shifts, and schedules.

They mainly determine the feasibility of each of them, and they depend on the work regu-

lations defined by the contract.

• Legal for timeslot.

(L1) Activities duration. When multiple activities are considered, each of them has

its own rules related to the duration. This means that each activity can be

assigned a number of consecutive time periods that falls between a minimum and

a maximum number of slots.

Chapter 1. Problem description 12

(L2) Consecutive working time. The length of a timeslot must fall between a mini-

mum and a maximum number of slots, imposing that the number of consecutive

working time is bounded both from below and from above. These bounds aim at

avoiding unproductive and tiring timeslots by assigning working periods respec-

tively too short and too long.

• Legal for shift.

(L3) Break and interruption duration and number. The pause length must fall between

a minimum and a maximum number of slots. The pause length is associated

with its type: an interruption is longer than a break. Similarly, these constraints

restrict the number of breaks and interruptions that can be assigned into a shift.

(L4) Daily working time. Employees must work a number of time periods that falls

between a minimum and a maximum number of slots. The working time does

not consider the pauses duration and it corresponds exactly to the total length

of the timeslots assigned during the day.

(L5) Amplitude of the working day. Shifts length defines the amplitude of the working

day, and it is limited both from below and from above. This constraint avoids

that the shift spans a period of time too long, mostly when interruptions are

assigned between two timeslots in the shift.

(L6) Starting and finishing time. Shifts start and finish respectively after and within

specific time periods. For instance, in a fast food restaurant chain, shifts have

to start after the opening time and they need to be completed before the closing

time. However, there might be the need of imposing specific starting time slots

in order to simplify the problem or due to particular work regulations (Restrepo

et al. (2016)).

• Legal for schedule.

(L7) Weekly working time. Beside the daily working time restriction, employees must

work a number of weekly time periods that falls between a minimum and a

maximum number of slots.

(L8) Consecutive working days. This constraint specifies the number of days that an

employee works without having any day-off. This number is limited both from

below and from above. Even though both bounds can be imposed, the restriction

on the maximum number of consecutive working days is essential, since it forbids

that an employee works too many days in a row.

(L9) Number of working days. The total number of working days is restricted by a

minimum and a maximum bound. These constraints can also be seen as the

number of days-off that needs to be assigned in a schedule.

(L10) Rest between consecutive shifts. This constraint specifies the number of time

periods between two consecutive shifts. Both lower and upper bounds can be

imposed on this rest period, and they depend on the type of the first shift.

Indeed, the rest imposed after a night shift is generally longer than the one after

a daily shift.

Chapter 1. Problem description 13

Activities cardinality. They concern the number of activities that an employee can

perform in each slot, and this number is fixed to 1. As a consequence, in each slot an

employee either does not work or he is assigned to one single activity.

Succession. They concern the assignment of two different activities in consecutive time

periods, and they specifically forbid that one activity is assigned just after the other. This

type of constraints commonly arises in the nurse rostering problem, where a nurse cannot

perform two specific shifts successively. However, the forbidding of a particular succession

of two activities can be imposed also in multi-activity tour scheduling.

Distribution. They concern the load of activities during a specific period of time. It

differs from workload since the load of activities does not come from external demand, but

it is derived from other factors or needs. For instance, an employee has to perform some

training hours during the week. The courses are flexible and they can be attended in different

periods.

1.2.4 Planning quality evaluation

A planning is considered feasible if each employee is assigned to a schedule that satisfies all

legal, cardinality, succession and distribution constraints presented in the previous section.

More in details, activities, breaks and interruptions are grouped together into a complete

schedule that respects the constraints. In addition, the schedule is assigned to an adequate

employee, meeting his competencies, availability and pre-assignments.

Beside feasibility, we can evaluate the quality of a planning with the purpose of defining

the criteria that state if a solution is optimal or not. Different factors may contribute to

the quality of a planning, such as the total number of employees scheduled, the equity in

scheduling hard activities or the employees preferences. In this thesis, we focus on three

factors: the penalty for under and over coverage of the demand, the total cost of the planning

and the penalty for transitions between activities.

• Under and over coverage. An activity is under (over) covered in a slot when the

number of employees performing that activity in that slot is lower (greater) than the

required number defined by the demand. The costs of both under and over coverage

are considered in the objective function to evaluate how the planning satisfies workload

constraints and covers the demand. Even though the demand is given as input data,

requiring the exact coverage may cause infeasibility when solving the problem. One

possible solution is to allow only over coverage and to penalize it. However, the demand

fluctuation may result in a planning with a high number of periods over covered and

a high cost. In addition, there are days where many employees are unavailable and

the demand is overestimated compared to the real workforce that can be on duty. In

this case, the coverage of the demand may be impossible. For all these reasons, both

under and over coverage are allowed.

Chapter 1. Problem description 14

• Planning costs. Each activity is associated with a cost when performed on a specific

slot and by a specific employee. These costs allow the definition of each schedule cost

and, therefore, the complete planning cost. For instance, an activity harder than the

others to be performed due to an intense physical or mental requirement has a higher

cost; an activity performed by an employee who has the skills needed but is not the

most qualified, has a higher cost than if it is performed by another employee.

• Transitions between activities. Even when no constraint is imposed on the number

of times that an employee can change activity during a timeslot, a schedule with a

low number of transitions between activities might be preferable. For this reason, a

penalty is added to the cost of a schedule when transitions occur.

1.3 State of the art

Personnel scheduling has been studied for decades and the literature concerning this problem

is extensive. However, researchers are still very interested in personnel scheduling. This is

explained especially by a socio-economic context in constant evolution, that leads to the

need of renewing and adapting planning techniques. Section 1.3.1 presents the different

classifications that can be found in the literature of personnel scheduling problems. Then,

Section 1.3.2 and Section 1.3.3 focus on the review of shift scheduling and tour scheduling

respectively.

1.3.1 Classifications of personnel scheduling

To deal with the extensive literature of personnel scheduling, different classifications have

been proposed according to problem type, solution approach, and application area.

Baker (1976) proposes one of the first classifications where three main classes of problems

are identified: day-off scheduling, shift scheduling and tour scheduling. As previously men-

tioned, day-off scheduling concerns the determination of rest and working days in a seven-

a-day working context, over a planning horizon of usually multiple weeks. Shift scheduling

aims at defining the working periods during the working days of the employees. Finally,

tour scheduling combines the previous two problems by specifying both working days and

working periods of the employees. A detailed classification focusing on the tour scheduling

problem has been proposed by Alfares (2004). The author reviews more than 100 papers

into ten classes, according to the solution method: manual solution, integer programming,

implicit modeling, decomposition, goal programming, working set generation, LP-based so-

lution, construction and improvement, metaheuristics and other methods.

Ernst et al. (2004b) and Van den Bergh et al. (2013) present comprehensive survey of general

personnel scheduling problems. Ernst et al. (2004b) classify more than 700 published papers

according to problem type, application area, and solution approach. In particular, they

present the scheduling process as a combination of six basic modules: demand modeling,

days-off scheduling, shift scheduling, line of work construction, task assignment and staff

assignment. Recently, Van den Bergh et al. (2013) review more than 300 articles published

Chapter 1. Problem description 15

between 2004 and 2012. Papers are categorized according to four main fields: 1) personnel

characteristics (contract type, skills, individual or crew), decision delineation and shifts

definition; 2) different constraints (hard or soft, coverage, time related, fairness and balance),

performance measures and flexibility; 3) solution method and uncertainty incorporation; 4)

application area and applicability of research.

In the following we lean on the classification proposed by Baker (1976) and we present the

literature review of the two classes closer to the problem addressed in this thesis.

1.3.2 Shift scheduling

The origin of shift scheduling problems goes back to Edie (1954) in the context of scheduling

toll booth operators. Even though the author introduces the problem, no mathematical

formulation is given. The first integer programming formulation was introduced just after

by Dantzig (1954), where the proposed set covering model defines one variable for each

possible shift that can be assigned to the employees. The objective is to select the set of

shifts that covers the demand and minimize the overall cost. In general, the shift scheduling

problem consists in designing the shifts to be assigned to employees, by choosing starting

time, length, breaks placement, breaks duration, and all other flexible aspects that may be

included in the problem. However, when the degree of flexibility introduced in the model

increases, the number of possible shifts becomes very large and their complete enumeration

is not possible. This limit has encouraged researchers to study other formulations and to

model shifts implicitly rather than explicitly.

The first implicit formulation was presented by Bechtold and Jacobs (1990) for shift schedul-

ing with break placement. Instead of defining explicit variables for each possible combination

of shift and break as for the explicit set covering formulation, the authors use a shift variable

for each shift type, and a break variable for each period during which a break can start. The

matching between shifts and breaks is guaranteed by the so-called forward and backward

constraints, which ensure that implicit and explicit formulations are equivalent (Bechtold

and Jacobs (1996)). The implicit model allows reducing the number of variables, while it

requires a higher number of constraints when compared with the explicit model. Computa-

tional results show that only using the implicit formulation they were able to solve all the

considered instances.

Implicit modeling was also used to handle flexibility on shift start time and shift lengths.

Thompson (1995) combines previous works on implicit shift representation and on implicit

break placement. Shifts having the same cost per working period, the same break duration,

identical restrictions on minimum and maximum shift length, and identical restrictions on

the minimum and maximum pre- and post-break work stretch durations belong to the same

shift type. Furthermore, each shift is supposed to receive at most a single break. The

implicit model uses variables concerning shift starting time, shift finishing time, and break

for each shift type and possible starting time. A set of constraints imposes restrictions on

the minimum and maximum length for each shift type. Another set of constraints ensures

the minimum and maximum pre- and post-break work stretch durations for each shift type.

Chapter 1. Problem description 16

The model is solved by means of B&B, and it is followed by a first-in-first-out procedure

that matches shift starts to shift finishes, and shift starts to breaks to construct explicit

shifts and assign breaks to them. Thompson (1995) points out that the implicit nature of

the model imposes some restrictions on the shift cost structure. Indeed, the cost of shifts is

assumed to be a linear function of the number of working periods, since the author states

that an explicit model is more appropriate if the cost of a shift depends on starting time,

duration, break placement, etc.

Unlike the work of Bechtold and Jacobs (1990) where employees are allowed only a single

lunch break, Aykin (1996) considers a more general shift scheduling problem with multiple

breaks. In particular, they consider a 30 minutes lunch break and two 15 minutes short

breaks to be assigned in disjoint break windows. The implicit model presented uses shift

variables for each shift type, and break variables for each shift and each possible starting

time within its break windows. Computational results show that break flexibility lowers

the number of employees needed. Based on the implicit model, Aykin (1998) proposes a

Branch-and-Cut algorithm able to optimally solve the largest instances addressed until then.

Rekik et al. (2010) extend previous works on implicit models by considering a shift scheduling

problem with a high degree of flexibility. In addition to the classical flexibility sources (i.e.,

shift starting time, shift length, multiple breaks and break windows), the authors incorporate

multiple and fractionable breaks, and break windows with restrictions on pre- and post-

break work duration. The authors propose two implicit formulations that use forward and

backward constraints. Furthermore, they show that a reformulation of these constraints that

uses slack variables reduces the density of the constraint matrix. Computational results show

that the high degree of flexibility considered in the problem reduces the workforce size when

compared with other approaches. For instance, they compare the performance of using

work duration restrictions for fixing the break windows against the ideal break start time

approach proposed by Aykin (1996).

Besides implicit formulations, other methods have been proposed to solve the shift scheduling

problem. They are based on the explicit set covering formulation proposed by Dantzig

(1954), and they overcome the problems in solving it arising from the large size by means

of CG.

A B&P algorithm is proposed by Mehrotra et al. (2000) for shift scheduling with multiple

breaks, meal break and break windows. They propose a generalized set covering formulation

that includes upper and lower bounds both on the number of employees needed in each time

period and on the number of employees who can be on a break in any time period. This last

restriction can be imposed by security regulations, company policy or limited space where

taking a break. They propose and implement three branching rules based on work periods,

break periods or two specific periods. Computational experiments compare the B&P with

the implicit formulations proposed by Aykin (1996). The results show that B&P is not only

able to solve more instances to optimality, but it is in general significantly faster.

Heuristic approaches based on local search have also been proposed in the literature for

solving the shift scheduling. Indeed, Musliu et al. (2004) investigate local search proposing a

tabu search approach and several neighborhood relations for solving the shift design problem.

Chapter 1. Problem description 17

The addressed problem concerns the design of shifts in a multiple days planning horizon

and the determination of the number of employees assigned to each shift. It differs from

the classical shift scheduling problem for a planning horizon that spans up to a week and

in the fact that schedules are cyclic. Even though the authors consider a multiple days

planning horizon, they do not address the assignment of real employees, with their days-

off, rest periods and availabilities, and the problem cannot be classified as a tour scheduling

problem. The developed method is based on local search, where several moves are introduced

to define the neighborhood of a solution, which is explored according to the moves considered

or according to a first descent strategy (i.e., the exploration is interrupted as soon as an

improved solution is found). In order to reduce the portion of the neighborhood to be

explored, they focus on days and time periods with under and over coverage. The algorithms

have been included in a commercial software, which is used for solving shift design problems

in several companies.

An extension of the shift design problem is considered in Gaspero et al. (2010), where the

authors address the shift and break design problem. The issue is to find a minimum number

of shifts, the number of workers assigned to them, the number of breaks and the intervals

that they span in each shift. They propose a hybrid method that combines features of

local search and constraint programming techniques. In particular, local search is used to

design shifts and determine the number of employees assigned to shifts and breaks. Then,

a constraint programming model determines the interval variables (i.e., start and length)

of each break. This model is embedded in the local search procedure in two stages: after

constructing an initial random solution and after performing a move. Computational results

are performed to analyze the behavior of the developed hybrid method on the basis of its

components. An overview of works on shift design and break scheduling is given in Gaspero

et al. (2013), with a particular emphasis on approaches based on local search techniques.

The works presented in this section concern the definition of working and break periods

during the working days of the employees. The next section deals with the shift scheduling

problem in a multi-activity environment.

1.3.2.1 Multi-activity shift scheduling

When more than one activity is considered, the shift scheduling problem is referred to as

multi-activity shift scheduling. The goal is not only the definition of working and break

periods but also the specification of which activity each employee performs in each slot. In

the following, papers addressing this problem are reviewed.

Côté et al. (2011a) propose two IP formulations inspired by two constraints using formal lan-

guages to solve the multi-activity shift scheduling problem. One model accepts any sequence

recognized by an automaton, while the other model accepts any sequence belonging to a

context-free grammar. The authors present, for both grammars, a system of linear equations

in 0-1 variables able to identify any word recognized by the corresponding grammar.

Later, Côté et al. (2011b) propose an implicit formulation able to address the symmetry

issues previously encountered. They explain that using models where variables describe

Chapter 1. Problem description 18

whether an employee is assigned or not to an activity in a slot, exhibits a lot of symmetry

in case of homogeneous employees. Indeed, the proposed implicit model uses variables indi-

cating the number of employees assigned to an activity in a slot, and through the grammar

defining feasible shifts, they are able to build the explicit individual schedules from the

implicit solution.

Recently, Dahmen et al. (2018) show that multi-activity shift scheduling problems can be

implicitly formulated using forward and backward constraints on a series of transportation

problems. The sources of flexibility considered in defining shift types concern the starting

time, the length of the shift, the duration of the meal break and the pre- and post-break work

duration. Furthermore, minimum and maximum bounds are imposed on activities length,

with the purpose of avoiding productivity losses and important physical or mental effort. The

implicit model enumerates all possible profiles that can precede and follow the meal break,

and it uses integer variables for each shift type and each profile. A transportation problem is

defined for each shift type, where appropriate forward and backward constraints are used for

matching pre-break and post-break profiles variables. The authors describe a procedure to

build explicit shifts from the solution of the implicit model. Since pre-break and post-break

profiles are exhaustively enumerated, they can easily handle different and complex rules

on the profile feasibility. For instance, limiting the number of different activities worked

at each profile is shown to be beneficial in reducing the total number of variables and the

computational time, with a negligible degradation of the cost. Computational experiments

are performed and the implicit model proposed in the paper is compared with the implicit

one of Côté et al. (2011b). The performance of the two models depends on the characteristics

of the instances considered. Indeed, the formulation of Dahmen et al. (2018) outperforms

the one of Côté et al. (2011b) on instances where complex rules (i.e., number and length of

activities) define feasible pre- and post-break profiles, limiting their number. The opposite

behavior is shown on the instances proposed by Côté et al. (2011b), where no restrictions

on activities duration are imposed.

MIP models suffer when dealing with large-scale instances, where the employees are hetero-

geneous and a high number of activities and a high degree of flexibility is considered. For

this reason, other exact algorithms have been proposed in the literature based on CG and

B&P algorithms.

Côté et al. (2013) present a B&P approach to solve the heterogeneous version of the problem

presented in Côté et al. (2011b), where employees have different skills. The master problem

is formulated using the classical set covering formulation, while the pricing problems are

modeled by using context-free grammar that allows to define the feasible shifts for each

employee. The proposed CG is embedded within a B&P algorithm and it is flexible enough

to be adapted and solve a variety of problems. Although grammars flexibility enables to

capture a large set of shift rules, some limitations are presented concerning the total number

of working periods over a long planning horizon, such as one week.

Boyer et al. (2013) solve a shift scheduling problem with heterogeneous employees, where be-

sides considering multiple activities, they also include multiple uninterruptible tasks. They

propose a B&P algorithm that extends the one proposed by Côté et al. (2013). The pricing

Chapter 1. Problem description 19

problems are formulated using context-free grammar, and they are able to model complex

rules in the construction of feasible shifts for an employee. They give two formulations for

task precedence constraints and they propose three different branching strategies. Compu-

tational results show that the proposed B&P algorithm can find integer solutions within 2

hours with an optimality gap lower than 5% in the best case.

Besides exacts methods, the literature exhibits different approaches based on relaxations and

heuristics techniques, such as local search, large neighborhood search, and more complex

matheuristics based on CG and B&P approaches.

Demassey et al. (2005) present a CG algorithm where the regulations defining shifts are

modeled using regular language. In order to generate negative reduced cost schedules, a

constraint called cost-regular is introduced. The authors address three classes of problems,

presenting for each one the corresponding model. The first class considers homogeneous

employees and the overall cost is given by the sum of the schedules assigned to each employee,

while the second class includes also under and over covering with their additional costs.

Finally, in the third class, employees are heterogeneous and their preferences are taken into

account. Computational experiments are done on a set of generated benchmarks based

on realistic data from a retail store falling in the first category. The results provide lower

bounds on the optimal value of the original integer problem. An heuristic upper bound is

evaluated solving the integer linear program with all the generated columns. The proposed

algorithm has been extended later by the same authors in Demassey et al. (2006) where

they improve the resolution of the pricing problem and propose a B&P algorithm. The

approach is tested both on the already generated benchmarks from the retail store, and on

complex real-world instances from a large bank. Even thought the method is efficient to

solve the linear relaxation of the first instances, it fails to converge on the more complex

weekly real-world ones. Furthermore, integer solutions are found only for small instances,

with up to 3 activities.

Meisels and Schaerf (2003) propose a local search method, focusing on then hill climbing

technique. The neighborhood structure is based on the type move Replace, where an em-

ployee who is working in a specific shift, is replaced by another employee who is not working.

This move does not change the number of assignments for shift-activity pairs, therefore it

preserves the satisfaction of workload constraints. Given a solution s, the new solution is se-

lected according four different selection rules, which explore the neighborhood with different

levels of steepness. The cost function is defined as the total number of constraint violations

of the current solution, and the initial solution is constructed by a greedy procedure which

builds a solution satisfying requirements constraints. In addition, the authors propose an

extended generalized local search, which enlarges the neighborhood defining two other move

types: Insert and Delete. The search space includes all possible assignments indepen-

dently to the fact that the requirements are not satisfied. More complex selection rules

are presented, while the cost function is still defined by constraint violations of the current

solution. The difference consists in the fact that constraints are split into two categories:

violations to minimum requirements and workloads, and violations to all other constraints.

Furthermore a third component is taken into account and it measures the possibility for

Chapter 1. Problem description 20

a partial solution to be complete. Therefore, the costs function is composed by three dif-

ferent components whose weights are adaptively modified. Computational experiments are

performed on instances from the nurse rostering. The generalized local search show better

performance compared to other local search methods. The authors also analyze the role of

each single feature of their algorithm.

Quimper and Rousseau (2009) show that formal languages, such as regular and context-free

languages, can be used to model shift scheduling regulations. From these languages they

derive a large neighborhood search procedure. They proposed two Very Large Neighborhood

Search (VLNS) procedures: the first uses regular language while the second uses context-

free language. Concerning regular language, they define an automaton that recognizes the

feasible shifts satisfying the scheduling rules. They create the associated expanded graph G

where paths have a one-to-one correspondence with feasible shifts. The VLNS constructs an

initial feasible solution by randomly selecting paths in the graph G. To improve the overall

cost of this solution, they proceed as follows: they remove a schedule s in the initial solution

and they assign to each edge in G a cost according to schedule s. The shortest path in

the expanded graph G corresponds to the new schedule that replaces s. This operation is

repeated until a local minimum is reached. Concerning context-free language, they obtain

a feasible solution by constructing, for each employee, a random sequence. This is done by

traversing the grammar graph from the root to the leaves and randomly branching on a

pair of children nodes. As previously, they select a schedule s, and they replace it with a

new schedule that improves the total cost. This is done assigning weights to the nodes in

the grammar graph. This operation is repeated until a local minimum is reached. Tests on

mono-activity instances show that the methods find a solution with an optimality gap of

1% within 25 seconds for every instance considered. Furthermore, they give upper bounds

on the unsolved multi-activity instances from Demassey et al. (2006), with one day time

horizon and a number of activities from 1 to 10.

Restrepo et al. (2012) propose a heuristic method based on CG to solve the set covering

formulation of the multi-activity shift scheduling problem. More in details, the linear re-

laxation is solved by means of the CG, and the resulting reduced master problem is solved

forcing the integrality constraint to obtain an integer solution. The subproblem is modeled

as a resource constrained shortest path problem, where most of the rules defining shifts

are embedded in the underlying graph. Computational results are performed on real word

instances arising in a parking operator. Even though a week planning horizon is considered,

the authors do not address the allocation of days-off.

Dahmen and Rekik (2015) solve a multi-activity shift scheduling problem in which, given

day-off schedules associated with each employees, their objective is to construct and assign

admissible multi-activity shifts to employees in their working days. Different shift types are

considered, defined by starting time, shift duration, break duration and break window. Their

hybrid heuristic combines the tabu search technique with an exact B&B procedure. The

initial solution is built by a constructive algorithm. The classical tabu search is combined

with intensification and diversification procedures. The intensification procedure generates

new schedules that preserves some properties that often appeared in the solutions previously

Chapter 1. Problem description 21

found. The idea is based on the fact that good properties tend to appear often in the best

neighbor solutions. The diversification procedure, instead, considers a new initial feasible

solution which includes properties that appear the least in the best neighbor solutions iden-

tified in the search process. The B&B procedure is embedded into the tabu search at three

stages: the neighborhood exploration, the intensification and the diversification.

Recently, Hernández-Leandro et al. (2018) address the heterogeneous version of the multi-

activity shift scheduling. The proposed formulation is a variant of the set partitioning model

where both under coverage and over coverage are allowed and minimized. The problem is

solved using a matheuristic based on Lagrangian relaxation. In particular, demand con-

straints are relaxed in the objective function and the subgradient method is employed to

solve the Lagrangian dual. The resolution of the Lagrangian subproblems requires the gen-

eration of daily shifts, one for each employee, and context-free grammar is used to determine

the shifts with minimum cost defined by the multipliers. All generated shifts are integrated

into a restricted set partitioning problem, which is solved to obtain a feasible solution. The

main idea is to use Lagrangian relaxation to identify only the promising shifts to be con-

sidered, reducing in this way the number of variables and the complexity of the problem.

Experiments are performed on instances from the literature and the results show that the

proposed method substantially decreases the computational time and it improves in many

cases the best solution known, obtained by Côté et al. (2013).

1.3.3 Tour scheduling

In the attempt to address more complex and realistic problems in personnel scheduling,

many researchers have focus on the tour scheduling, that involves not only the design of the

shifts during the working days, but also the assignment of the days-off.

Bailey (1985) proposes one of the first implicit model for the tour scheduling problem with no

restriction on shift starting time. Besides this source of flexibility, shifts have a fix duration

of eight hours and do not include any break. The proposed model makes use of integer

variables associated to shift patterns and days-off patterns. Furthermore, under coverage

slack variables are added to demand constraints, and they are penalized in the objective

function. The author presents a heuristic to allocate shifts to days-off pattern and obtain

complete tours from the implicit solution. Computational results show that the proposed

model leads to cost saving when compared to a two phase linear programming formulation,

that first solves the days-off problem to determine the workforce available each day, and

then it solves seven shift scheduling problems.

When no restriction on the starting time is considered, it may happens that the complete

tour does not provide enough rest between consecutive shifts. Bailey (1985) suggested to

divide the 24-hour day into three overlapping 12-hour periods, and to limit each employee

to work the same period throughout the week. However, he does not show how to integrate

this extension in the model. In this regard, Jacobs and Brusco (1996) introduce the concept

of start-time band, defined as a block of shift starting times, and they propose an implicit

model that makes use of shift and days-on variables. The model is used on real instances to

Chapter 1. Problem description 22

schedule tool collectors, and the results reveal the benefit of start-time bands in reducing

the workforce size compared with fixed shift starting time.

Later, Brusco and Jacobs (2000) consider a higher degree of flexibility by introducing meal

break windows, in addition to start-time bands. The implicit model proposed makes use of

shift, working days and break variables, where the shift and break variables are linked by the

forward and backward constraints introduced in Bechtold and Jacobs (1990). Computational

results performed on real instances show that the different sources of flexibility considered

interact with each other, and the effect of one source on the optimal workforce size may

vary depending on the level of the other sources.

Besides implicit formulations, heuristic methods have been proposed for the tour scheduling

problem. Some of them are based on CG to solve the explicit set covering or set partitioning

formulations, where each feasible tour is represented with an integer variable.

Al-Yakoob and Sherali (2008) propose a heuristic CG for assigning heterogeneous employ-

ees to gas stations, which can be seen as activities. Three different shifts are considered

and they cover the complete day. The problem is formulated as a set partitioning model,

whose linear relaxation is solved by means of CG. To achieve integrality, a variable fixing

procedure generates feasible schedules for each employee. The CG subproblem consists of

a MIP constraining the shifts that can be assigned in two successive days, together with

the number of total and consecutive weekly working days. Although the limited number of

shifts considered, computational results show that the method is able to generate a solution

for instances with up to 90 stations and 336 employees.

Easton and Rossin (1991) consider a tour scheduling problem where a weekly tour needs

to be defined for a heterogeneous workforce. Employees may have a full-time contract

that imposes five consecutive working days with shifts of nine hours (four hours working

followed by one hour meal break and four hours of working) starting in every moment

of the day. In addition, employees can have a part-time contract where shifts have a fix

duration of four hours without any break. The proposed model is based on a generalized set

covering formulation where, besides the classical demand constraints, the authors introduce

constraints restricting the number of employees in a particular class to a fraction of the total

workforce. They propose a heuristic method based on CG, where the problem is solved as

an integer program as soon as all feasible tours needed to prove the optimality of the linear

relaxation are generated. Computational results show that the heuristic yields to lower cost

solutions in less time when compared to other heuristic algorithms reported in the literature.

Starting from the scheduling environment presented in Easton and Rossin (1991), Brusco

and Jacobs (1993) introduce a higher degree of flexibility. Indeed, meal breaks are allowed to

start at different times during the shift, the placement of meal breaks and the shift starting

time can float from one day to another, and days-off are not imposed to be consecutive.

The authors propose a simulated annealing heuristic where a neighbor of a solution is found

by dropping a fixed number of employees whose tours cause the highest over coverage. The

obtained partial solution is then returned to feasibility by generating new tours with the

best coverage rate: for each day, the shift that better covers the demand is selected, and a

complete tour is built by combining the five best shifts over the week. Computational results

Chapter 1. Problem description 23

show that the additional flexibility considered allows a considerable reduction in employees

requirements.

Brunner and Bard (2013) solve a tour scheduling over one week planning horizon arising

in mail processing and distribution centers, where flexibility includes different shift start-

ing time, different shifts lengths, lunch break allocation and different days-off assignments.

Furthermore, two groups of employees are considered: the first group consists of full-time or

regular employees, while the second group consists of part-time or flexible employees. The

authors developed a set covering formulation to solve the linear relaxation of the problem

and an exact B&P algorithm for obtaining integer solutions. Two different constraint-based

formulations are presented to solve the two subproblems, one for regular and one for flexible

employees. In the first, shifts are explicitly enumerated, while in the second, the idea of

implicit shift construction is exploited. Computational results analyze the impact of the

different sources of flexibility on the size of the workforce and the utilization rate (i.e., the

percentage of time that the workforce is active). They show that considerable cost savings

are possible when a high degree of flexibility is considered in the problem.

1.3.3.1 Multi-activity tour scheduling

When more than one activity is considered, the tour scheduling problem is called multi-

activity tour scheduling. While the multi-activity context has been intensively studied for

the shift scheduling problem, to the best of our knowledge, it has been considered for the tour

scheduling problem only recently. Both exact and heuristic methods have been proposed.

Gérard et al. (2016) consider a multi-activity tour scheduling problem with heterogeneous

employees. The objective is to compute employees schedules in order to minimize under

and over coverage. The authors develop four methods: a compact MILP model; a B&P

based approach with a nested dynamic programming to solve heuristically the subproblems;

a diving heuristic; a greedy heuristic based on their subproblem solver. Concerning the

second approach, in order to solve the subproblem they do not use constrained resource

shortest path formulation since they state that it is not efficient when both lower and upper

bounds are considered. Moreover, they do not employ grammar-based formulations since the

considerable number of bound constraints and a long time horizon result in a huge hyper-

graph. The proposed nested dynamic programming algorithm decomposes the individual

planning in different levels: task, timeslot, shift and individual planning (schedule). They

solve the problem starting from the inner level, and going up to the outer level. In the

branching step, they choose the most fractional triplet employee-activity-slot and they use

a depth-first strategy to explore the search tree. They heuristically accelerate the algorithm

by simplifying the assignment of breaks and pauses and by restricting the state space. In the

third approach, they fix a complete schedule for one selected employee at each node of the

search tree. The subproblem associated to this employee is no more called in descendant

nodes. In the last approach, the subproblems are still solved with their nested dynamic

program, but planning are iteratively removed and generated one by one and added to

the solution. In this approach, the dual variables are estimated considering the residual

work demand. The objective function of the subproblems is based on the residual work

Chapter 1. Problem description 24

demand which takes into account the satisfied demand by the schedules already in the partial

solution. Computational results performed both on random and mini-marts2 instances show

that the greedy heuristic is very fast but it can be far from the optimal solution; the compact

method gives optimal solution only for small instances; the heuristic B&P terminates within

24 hours time limit only for half of the instances, but it is able to find the optimal solution

for these instances; the diving heuristic is more effective and outperforms the MIP solver

both in terms of execution time and quality solution.

In parallel with Gérard et al. (2016), Restrepo et al. (2016) propose two B&P approaches

with two different formulations of the multi-activity tour scheduling problem, where hetero-

geneous employees are considered. Both formulations are based on Dantzig-Wolfe decom-

position and make use of context-free grammar to design feasible daily shift. The difference

consists in the way these daily shifts are combined into a complete schedule. Indeed, the

first one, called daily-based formulation, links them in the master problem by means of ex-

tra constraints that assure all regulations imposed on a schedule, such as the minimum and

the maximum weekly working hours, the minimum and the maximum number of working

days and the minimum rest time between consecutive daily shifts. The second one, called

tour-based formulation, assembles the daily shifts in the pricing problem using a resource

constrained shortest path problem. For both formulations branching strategies are proposed.

However, an intense variable fixing strategy is adopted for the tour-based formulation, mak-

ing the proposed B&P heuristic. Indeed, besides branching, at each node of the search tree,

the employee with the largest fractional variable is identified, and its schedule is fixed to

one. Computational results on random instances show that the daily-based formulation do

not show good performance since it is not able to improve the integer solution found at the

root node within one hour, while the tour-based formulation finds an integer solution with

an optimality gap of 1% for all instances considered.

Recently, Restrepo et al. (2018) present an approach that combines Benders decomposition

and CG. However, differently from the previous work, employees are supposed to be homo-

geneous. The model is decomposable by days, and it consists of a Benders master problem

and a set of Benders daily subproblems. The Benders master problem includes the variables

associated with employee schedules and with daily shifts shells, where activities and breaks

are not assigned. The Benders subproblems include the variables related to the allocation of

work activities and breaks to daily shifts and to the under and over coverage of the demand.

Since the number of feasible schedule can be too large to be completely enumerated, the

authors solve the Benders master problem by means of CG. The Benders subproblems are

modeled with the implicit grammar based integer programming model presented in Côté

et al. (2011b).

2A mini-mart is a small retail business that stocks a range of everyday items. Mini-marts usually charge
significantly higher prices than conventional supermarkets, and have longer open hours.

Chapter 1. Problem description 25

1.4 Instances

This section presents the instances of multi-activity tour scheduling used to evaluate the

performance of the solving methods developed in this thesis. To the best of our knowledge,

there are two works in the literature that consider a problem which is very close to ours:

Restrepo et al. (2016) and Gérard et al. (2016). We were able to obtain only the instances

considered by the first authors. However, we will see that the degree of flexibility in these

instances is reduced compared to the one faced by the company Horizontal Software. Due

to the fact that this thesis is conducted in an industrial context, it is crucial to verify

the behavior of the solution methods on instances that correspond to the reality of the

business. For this reason, both generated and real-world instances provided by Horizontal

Software have been considered.

Three different sets of multi-activity tour scheduling instances are used for the computational

experiments. The first set, called RGR, comes from the work of Restrepo et al. (2016).

The main feature of these instances is that only three types of daily shift are allowed. The

second set of instances is called RGR flexible, and it consists of a more flexible variant of

RGR where no particular structure in imposed on the daily shift. As a consequence, these

instances present a higher degree of flexibility when compared to RGR. Finally, the third

set is called Real and it has the highest degree of flexibility. It consists of instances coming

from a fast food restaurant chain, one of the business to which Horizontal Software provides

its solution.

The details of three sets are given in the following paragraphs. However, all instances share

some common features: they are all defined over a one week planning horizon and the quality

of the planning is evaluated in the same way. Indeed, the cost of performing an activity in

one slot is fixed to 15, such as the cost for every transition between activities, and under

and over assignment costs are set respectively to 100 and 10.

RGR instances. This set of instances from the work of Restrepo et al. (2016) considers

three types of daily shifts, that is four-hour shift, six-hour shift and eight-hour shift with

one-hour break in the middle. The time unit is fixed to 15 minutes. Furthermore, the

following bounds are imposed:

• the activities duration goes from 30 minutes to 6 hours, depending on the instance (L1);

• the weekly working hours fall between 35 and 40 hours (L7);

• the number of working days falls between 5 and 6 days (L9);

• the rest between consecutive daily shifts goes from 12 to 60 hours (L10).

Due to the predefined structure of the daily shifts, the bounds of some legal constraints

are implicitly imposed. For instance, the consecutive working time is either 4 or 6 hours

(L2), only one break can be assigned with a fixed duration of 1 hour and no interruption is

allowed (L3), the daily working time goes from 4 to 8 hours (L4), and the amplitude of the

working day goes from 4 to 9 hours (L5). Finally, no bounds are imposed on the consecutive

working days (L8).

Chapter 1. Problem description 26

RGR instances are further divided in three different groups G1, G2 and G3, which differ in

the type of daily shifts considered and in the slots in which they are allowed to start (L6).

• Group G1: it considers the three types of daily shifts, and each of them can start at

any slot, taking care that no daily shift starts before the first slot with workload. As

consequence, the number of feasible starting slots depends on the demand.

• Group G2: it considers two types of daily shifts, that is four-hour shift and eight-hour

shift with one-hour break in the middle. The starting slots are the same of group G1.

• Group G3: it considers all three types of daily shifts, and each of them can start only

at five predefined starting slots, that is 12am, 4am, 8am, 12pm and 3pm.

As shown in Table 1.1, instances are labeled with the format E A D V G, where E, A, D, V, and

G represent the number of employees, number of activities, length of the planning horizon

in days, version of the instance and group, respectively.

G1 G2 G3

20 1 7 v1 G1 20 3 7 v1 G2 20 1 7 v1 G3 20 3 7 v1 G3
20 1 7 v2 G1 20 3 7 v2 G2 20 1 7 v2 G3 20 3 7 v2 G3
25 1 7 v1 G1 20 3 7 v3 G2 25 1 7 v1 G3 20 3 7 v3 G3
25 1 7 v2 G1 25 1 7 v2 G3 20 5 7 v1 G3
40 1 7 v1 G1 40 1 7 v1 G3 20 5 7 v2 G3
40 1 7 v2 G1 40 1 7 v2 G3

Table 1.1: RGR instances names.

RGR flexible instances. This set considers the RGR instances of groups G1 and G2,

without imposing the daily shifts to be either a four-hour, or a six-hour or an eight-hour

shifts. The bounds of the constraints concerning the activities duration (L1), the weekly

working hours (L7), the number of working days (L9), and the rest between consecutive

daily shifts (L10) are imposed as in RGR. In addition, the daily shifts can start at any slot

(L6), such as groups G1 and G2 of RGR. Due to the fact that the daily shifts do not have

a predefined structure, RGR flexible instances impose also the following bounds:

• the consecutive working hours goes from 4 to 6 hours (L2);

• one break and one interruption are allowed each day; the first has a fixed duration of

1 hour, while the second has a duration that goes from 2 to 5 hours (L3);

• the daily working hours goes from 4 to 8 hours (L4);

• the amplitude of the working day goes from 4 to 12 hours (L5).

Instances are labeled with the format E A D V G used for RGR in order to easily identify

which instance has been considered and transformed into a RGR flexible one. We recall

that E, A, D, V, and G represent respectively the number of employees, number of activities,

length of the planning horizon in days, version of the instance and group. All instances

RGR flexible are identified with group G4.

Chapter 1. Problem description 27

G4

20 1 7 v1 G4
20 1 7 v2 G4
20 3 7 v1 G4
20 3 7 v2 G4
20 3 7 v3 G4

Table 1.2: RGR flexible instances names.

Real instances. This set contains real instances provided by the company Horizontal

Software, and they come from a fast food restaurant chain. Their main characteristic is

their high degree of flexibility, which results in a high number of feasible daily shifts and,

therefore, feasible schedules. Indeed, unlike in Restrepo et al. (2016), daily shifts are not

limited to be either four-hour, six-hour or eight-hour shifts. In addition, daily shifts with up

to three timeslots are considered that can be divided by either a break or an interruption.

The latter is typical in fast food restaurant chains and it has the goal to better handle rush

periods where the demand for employees is higher, such as lunchtime and dinner.

Figure 1.1: Demand profile example with rush periods for Real instances from E-Optim.

Instances are labeled with the format E A T V, where E, A, T and V represent respectively the

number of employees, number of activities, time unit and some informations on the version

of the instance.

60 minutes 30 minutes 15 minutes

57 11 60 le 57 11 30 le 57 11 15 le
75 14 60 ll 75 14 30 ll 75 14 15 ll
43 15 60 lb 43 15 30 lb 43 15 15 lb
38 05 60 nh 38 05 30 nh 38 05 15 nh
23 05 60 nn 23 05 30 nn 23 05 15 nn

Table 1.3: Real instances names.

The constraint bounds imposed in these instances are summarized in Table 1.4. All values

are reported in hours. The first column presents the name of the instance. The second and

third columns show respectively the consecutive working hours (c wkh) (L2), and the daily

working hours (d wkh) (L4). The amplitude of the working day (ampl) (L5) is reported in

the fourth column. The duration of the break (dur b) and the duration of the interruption

(dur i) (L3) are shown in the fifth and sixth columns, while the rest after a daily shift

Chapter 1. Problem description 28

(rest d) and the rest after a night shift (rest n) (L10) are presented in the last two columns.

For these instances, a shift is considered a night shift if it ends in the late evening, i.e. after

10pm.

Instance c wkh d wkh ampl dur b dur i rest d rest n

57 11 60 le [2,5] ≤ 10 ≤ 12 1 [2,5] ≥ 11 ≥ 12
75 14 60 ll [2,4] ≤ 10 ≤ 12 1 [2,5] ≥ 11 ≥ 12
43 15 60 lb [2,5] ≤ 10 ≤ 12 1 [2,5] ≥ 11 ≥ 12
38 05 60 nh [2,5] ≤ 9 ≤ 10 1 [2,6] ≥ 11 ≥ 12
23 05 60 nn [2,5] ≤ 9 ≤ 10 1 [2,5] ≥ 11 ≥ 12

57 11 30 le [2,5] ≤ 10 ≤ 12 0.5 [2,5] ≥ 11 ≥ 12
75 14 30 ll [2,4] ≤ 10 ≤ 12 0.5 [2,5] ≥ 11 ≥ 12
43 15 30 lb [2,5] ≤ 10 ≤ 12 0.5 [2,5] ≥ 11 ≥ 12
38 05 30 nh [2,5.5] ≤ 9 ≤ 10.5 1 [2,6] ≥ 11.5 ≥ 12.5
23 05 30 nn [2,5.5] ≤ 9 ≤ 10 1 [2,5] ≥ 11.5 ≥ 12.5

57 11 15 le [2,5] ≤ 10 ≤ 12 0.5 [2,5] ≥ 11 ≥ 12
75 14 15 ll [2,4] ≤ 10 ≤ 12 0.5 [2,5] ≥ 11 ≥ 12
43 15 15 lb [2,5] ≤ 10 ≤ 12 0.5 [2,5] ≥ 11 ≥ 12
38 05 15 nh [2,5.75] ≤ 9 ≤ 10.5 0.75 [2,5.75] ≥ 11.5 ≥ 12.5
23 05 15 nn [2,5.75] ≤ 9 ≤ 10 0.75 [2,5] ≥ 11.5 ≥ 12.5

Table 1.4: Real instances description.

In addition to the constraint bounds reported in Table 1.4, these instances consider also the

following bounds:

• the activities duration goes from 1 to 5 hours, depending on the instance (L1);

• the daily and night shifts have to start after the restaurant has opened (7am) and

have to end before the restaurant has closed time (2am) (L6);

• the weekly working hours are 24 or 35 depending if the employee has part-time or a

full time contract; in addition, the availabilities of the employee may limit the working

hours that he can perform (L7);

• the number of working days does not exceed 5 (L9), such as the number of consecutive

working days (L8); note that the two bounds coincide, and there is not a real restriction

on the consecutive working days.

We point out the high degree of flexibility that we have in defining a feasible daily shift. This

is mostly due to the large interval for the consecutive working hours and the interruption

duration, along with the high upper bound for the amplitude of the working day. As

consequence, we have a high number of feasible daily shifts and, therefore, feasible schedules.

1.5 Conclusions

In this chapter we have described the multi-activity tour scheduling problem addressed in

this thesis. Besides the various constraints defining the feasibility of the schedules, the

Chapter 1. Problem description 29

problem is characterized by high levels of heterogeneity and flexibility. The first comes from

employees skills, availabilities and contract types, while the second is determined by the legal

regulations and by the introduction of the interruption pause. The literature review shows

the variety of the problems addressed and the solution methods proposed. Even within the

same class, problems may differ in degree of flexibility considered, employees homogeneity

and constraints considered. As a result, in many cases the proposed methods are not well

suited to be adapted when other problems are considered.

In the next chapter we formalize the multi-activity tour scheduling problem throughout a

compact MILP model. In addition, we show that the problem is well-suited for the Dantzig-

Wolfe decomposition.

Chapter 2

Mathematical Model

This chapter presents two mathematical formulations of the multi-activity tour scheduling

problem addressed in this thesis: a compact MILP model and a Dantzig-Wolfe decompo-

sition. The compact MILP model described has the goal of minimizing the total cost of

the planning, given by under and over coverage penalizations, activities costs and activities

transition costs. The various complex constraints introduced in Section 1.2.3 are formu-

lated by means of linear constraints. The presented model is inspired by the one proposed

in Gérard et al. (2016). However, some extensions need to be carried out in order to consider

the following elements:

• different types of pauses, namely breaks and interruptions;

• different rest durations between two consecutive daily shifts;

• predefined length of the timeslots;

• predefined starting slots of the daily shifts;

• transition between activities in the timeslots.

When building a schedule for an employee, the minimal element that can be assigned is the

activity in a slot. Moreover, a sequence of the same activity performed consecutively is called

task, while a sequence of tasks without any pause is called timeslot. Finally, a sequence of

timeslots and pauses is called daily shift, and a sequence of daily shifts and days-off, covering

the whole planning horizon, is called schedule. We will see that the definition of the variables

reflects the layered structure of the schedule.

The chapter is organized as follows: Section 2.1 formulates the problem in the form of a

compact MILP, while Section 2.2 presents the Dantzig-Wolfe decomposition. Conclusions

in Section 2.3 close the chapter.

30

Chapter 2. Mathematical Model 31

2.1 Compact MILP model

2.1.1 Notations

This section introduces the notations used in the mathematical formulation of our multi-

activity tour scheduling problem. Firstly, we define the sets to which the variables indices

belong. For instance, we find the set of employees, the set of activities and the set of

slots. Then, we introduce the input data, that mainly consist in the bounds imposed by the

different constraints. Finally, we describe the variables used in the model.

2.1.1.1 Sets

The following list reports the sets to which the variables indices belong.

• I: set of employees;

• J : set of slots;

• A: set of activities;

• Ai: set of activities for which employee i has the skills;

• D: set of days covering the planning horizon;

• Jd: set of slots in day d (Jd ⊆ J);

• N : set of night slots (N ⊆ J);

• S: set of daily shifts;

• Si: set of daily shifts of employee i (Si ⊆ S);

• Sd: set of daily shifts in day d (Sd ⊆ S);

• T : set of timeslots;

• Ts: set of timeslots in daily shift s (Ts ⊆ T);

• B: set of breaks;

• Bs: set of breaks in daily shift s (Bs ⊆ B);

• C: set of interruptions;

• Cs: set of interruptions in daily shift s (Cs ⊆ C);

• K: set of tasks;

• Kt: set of tasks in timeslot t (Kt ⊆ K);

• Kta: set of tasks in timeslot t where activity a is performed (Kta ⊆ K);

• Ri: pre-assignments of employee i (Ri ⊆ J ×A);

• Ui: unavailable slots of employee i (Ui ⊆ J)

• Lt: set of predefined lenghts for timeslot t;

• Js: set of predefined starting slots for daily shift s (Js ⊆ J);

• Af : set of forbidden successions of activities (Af ⊆ A×A).

2.1.1.2 Input data

The following list reports the input data of the problem.

Chapter 2. Mathematical Model 32

• bja: demand for activity a in slot j;

• cija: cost for the assignment of activity a in slot j to employee i;

• cja: under assignment cost for activity a in slot j;

• c̄ja: over assignment cost for activity a in slot j;

• ct: cost for each transition between activities in timeslot t;

• [la, ua]: bounds for the duration of activity a;

• [lcw, u
c
w]: bounds for the consecutive working hours;

• [ldw, u
d
w]: bounds for the daily working hours;

• [lww , u
w
w]: bounds for the weekly working hours;

• [lm, um]: bounds amplitude daily shifts;

• [lb, ub]: bounds for the duration of breaks;

• [lc, uc]: bounds for the duration of interruptions;

• ldr : minimum rest after daily shift;

• lnr : minimum rest after night shift;

• [lnd , u
n
d]: bounds on the number of working days;

• [lcd, u
c
d]: bounds on the number of consecutive working days;

• [lsd, u
s
d]: bounds on the starting and finishing time for daily shift s;

• [lad, u
a
d]: bounds on the total number of slots spent performing activity a on day d;

• [lan, u
a
n]: bounds on the number of times activity a is performed.

2.1.1.3 Variables

The variables appearing in the model can be divided into different groups concerning activ-

ities, tasks, timeslots, breaks, interruptions and daily shifts. In the following we define the

variables belonging to each group.

Activities. The variables concerning activities are the following:

• xija ∈ {0, 1}: 1 if employee i ∈ I performs activity a ∈ A in slot j ∈ J , 0 otherwise;

• y
ja
∈ R+: under assignment for activity a ∈ A in slot j ∈ J ;

• ȳja ∈ R+: over assignment for activity a ∈ A in slot j ∈ J .

Tasks. The variables concerning tasks are the following:

• xKk ∈ {0, 1}: 1 if task k ∈ K is performed, 0 otherwise;

• yKkj ∈ {0, 1}: 1 if task k ∈ K has already started in slot j ∈ J , 0 otherwise;

• zKkj ∈ {0, 1}: 1 if task k ∈ K has already finished in slot j ∈ J , 0 otherwise.

Timeslots. The variables concerning timeslots are the following:

• xTt ∈ {0, 1}: 1 if timeslot t ∈ T is performed, 0 otherwise;

• yTtj ∈ {0, 1}: 1 if timeslot t ∈ T has already started in slot j ∈ J , 0 otherwise;

Chapter 2. Mathematical Model 33

• zTtj ∈ {0, 1}: 1 if timeslot t ∈ T has already finished in slot j ∈ J , 0 otherwise;

• lTt ∈ R+: length, or duration, of timeslot t ∈ T ;

• nTt ∈ R+: number of transitions between activities in timeslot t ∈ T ;

• vTtl ∈ {0, 1}: 1 if timeslot t ∈ T has length l ∈ Lt, 0 otherwise.

Breaks and interruptions. The variables concerning breaks and interruptions are the

following:

• xBb ∈ {0, 1}: 1 if break b ∈ B is performed, 0 otherwise;

• yBbj ∈ {0, 1}: 1 if break b ∈ B has already started in slot j ∈ J , 0 otherwise;

• zBbj ∈ {0, 1}: 1 if break b ∈ B has already finished in slot j ∈ J , 0 otherwise;

• xCc ∈ {0, 1}: 1 if interruption c ∈ C is performed, 0 otherwise;

• yCcj ∈ {0, 1}: 1 if interruption c ∈ C has already started in slot j ∈ J , 0 otherwise;

• zCcj ∈ {0, 1}: 1 if interruption c ∈ C has already finished in slot j ∈ J , 0 otherwise.

Daily shifts. The variables concerning daily shifts are the following:

• xSs ∈ {0, 1}: 1 if daily shifts s ∈ S is performed, 0 otherwise;

• ySsj ∈ {0, 1}: 1 if daily shifts s ∈ S has already started in slot j ∈ J , 0 otherwise;

• zSsj ∈ {0, 1}: 1 if daily shifts s ∈ S has already finished in slot j ∈ J , 0 otherwise;

• lSs ∈ R+: length, or duration, of daily shifts s ∈ S, 0 otherwise;

• bSs ∈ R+: starting time of daily shifts s ∈ S;

• fSs ∈ R+: finishing time of daily shifts s ∈ S;

• vSsj ∈ {0, 1}: 1 if daily shifts s ∈ S starts in slot j ∈ Js, 0 otherwise.

Using the variables previously introduced, we are able to give the mathematical model

of the problem presented in Section 1.2. In particular, we first formulate the objective

function, followed by the constraints, which are divided according to their category. We

find workload constraints that impose the coverage of the demand; legal constraints that

impose the satisfaction of the contract regulations; activities cardinality constraints that

impose a single activity to be performed in each slot; skills constraints avoid that employees

are assigned to activities for which they do not have the competencies; pre-assignment

constraints that specify when and to which activity each employee is already assigned;

unavailability constraints, that identify the slots where each employee cannot be assigned to

any activity; succession constraints, that tell the sequences of activities that are not feasible;

distribution constraints, that specify the duration and the number of times that an activity

can be performed in a period or in a set of periods.

2.1.2 Objective function

The objective function (2.1) aims at minimizing three elements: the first one consists in

the sum of the costs cija of assigning employee i ∈ I to activity a ∈ A in slot j ∈ J ; the

Chapter 2. Mathematical Model 34

second one consists in the total costs cja and c̄ja of respectively under assignment and over

assignment, for each slot j ∈ J and activity a ∈ A; the third one minimizes the number of

times activities change in each timeslot t ∈ T .

min
∑
i∈I

∑
j∈J

∑
a∈A

cijax
i
ja +

∑
j∈J

∑
a∈A

(
cjayja + c̄jaȳja

)
+
∑
t∈T

ctn
T
t . (2.1)

2.1.3 Workload constraints

The demand needs to be satisfied for each activity a and in each slot j. This is imposed by

the following equations:∑
i∈I

xija + y
ja
− ȳja = bja, ∀j ∈ J, ∀a ∈ A. (2.2)

2.1.4 Legal constraints

Legal constraints are imposed by the contract regulations and mainly define the feasibility

of a schedule. In the following we present their mathematical formulation, together with the

constraints needed to link the different variables that describe activities, tasks, timeslots,

breaks, interruptions and daily shifts.

Tasks. The set of constraints presented in this paragraph allows to impose the legal reg-

ulation (L1) on activities duration.

Variables xija are linked to task variables yKkj and zKkj by means of constraints (2.3). The

difference between yKkj and zKkj is equal to 1 only if task k is performed during slot j.

Therefore, if in task k activity a is performed, then variable xija need to be equal to 1.

xija =
∑
s∈Si

∑
t∈Ts

∑
k∈Kta

(yKkj − zKkj), ∀i ∈ I, ∀j ∈ J, ∀a ∈ A. (2.3)

Constraints (2.4)-(2.8) define the relation between variables that concern the starting, the

ending and the performing of task k. Indeed, if task k starts in slot j, then all variables

yKkj′ have value 1 for slots j′ following j according to (2.4). Analogously, if task k ends in

slot j, constraints (2.5) impose that all variables zKkj′ have value 1 for slots j′ following j.

Constraints (2.6) assure that task k ends after it starts and its duration is at least 1 slot,

while constraints (2.7) and (2.8) impose xKk equal to 1 only if task k is performed.

yKkj ≤ yKk(j+1), ∀j ∈ J, ∀k ∈ K, (2.4)

zKkj ≤ zKk(j+1), ∀j ∈ J, ∀k ∈ K, (2.5)

zKk(j+1) ≤ y
K
kj , ∀j ∈ J, ∀k ∈ K, (2.6)

yKkj ≤ xKk , ∀j ∈ J, ∀k ∈ K, (2.7)

xKk ≤
∑
j∈J

(yKkj − zKkj), ∀k ∈ K. (2.8)

Chapter 2. Mathematical Model 35

Each activity a can be performed during a number of consecutive slots bounded from above

and from below (L1). Therefore, constraints (2.9) impose lower and upper bounds on the

length of all tasks k where activity a is performed.

lax
K
k ≤

∑
j∈J

(yKkj − zKkj) ≤ uaxKk , ∀a ∈ A,∀t ∈ T, ∀k ∈ Kta. (2.9)

To forbid that two tasks k and k + 1, where the same activity a is performed, are concate-

nated, we impose constraints (2.10), which avoid the maximum duration of activity a to be

violated.

yK(k+1)(j+1) ≤ z
K
kj , ∀j ∈ J, ∀a ∈ A, ∀t ∈ T, ∀k, k + 1 ∈ Kta. (2.10)

Timeslots. The set of constraints presented in this paragraph allows to impose the legal

regulation (L2) on the consecutive working hours.

The link between variables concerning tasks and variables concerning timeslots is defined

by constraints (2.11) and (2.12). The first ensure that timeslot t is not performed if none

of the related tasks is done. The second impose that timeslot t is worked if one of its tasks

is performed. Furthermore, if employee i performs a timeslot t that covers slot j, then the

sum of variables xija over all activities needs to be equal to 1 (constraints (2.13)).

xTt ≤
∑
k∈Kt

xKk , ∀t ∈ T, (2.11)

yKkj − zKkj ≤ yTtj − zTtj , ∀j ∈ J, ∀t ∈ T, ∀k ∈ Kt, (2.12)∑
a∈A

xija =
∑
s∈Si

∑
t∈Ts

(yTtj − zTtj), ∀i ∈ I, ∀j ∈ J. (2.13)

Similarly to the tasks, constraints (2.14)-(2.18) define the relation between variables that

concern the starting, the ending and the performing of timeslot t. Constraints (2.14) and

(2.15) impose that if timeslot t starts (ends) in slot j, then all variables yTtj′ (zTtj′) take value

1 for all slots j′ following j. Furthermore, timeslot t ends after it starts and its duration

is at least 1 slot (constraints (2.16)), while xTt takes value 1 only if timeslot t is performed

(constraints (2.17) and (2.18)).

yTtj ≤ yTt(j+1), ∀j ∈ J, ∀t ∈ T, (2.14)

zTtj ≤ zTt(j+1), ∀j ∈ J, ∀t ∈ T, (2.15)

zTt(j+1) ≤ y
T
tj , ∀j ∈ J, ∀t ∈ T, (2.16)

yTtj ≤ xTt , ∀j ∈ J, ∀t ∈ T, (2.17)

xTt ≤
∑
j∈J

(yTtj − zTtj), ∀t ∈ T. (2.18)

Variable lTt defines the length of timeslot t (constraints (2.19)), and it is bounded from below

and above by means of constraints (2.20). Bounds lcw and ucw correspond to the minimum

Chapter 2. Mathematical Model 36

and maximum consecutive working hours bounds (L2).

lTt =
∑
j∈J

(yTtj − zTtj), ∀t ∈ T, (2.19)

lcwx
T
t ≤ lTt ≤ ucwxTt , ∀t ∈ T. (2.20)

Constraints (2.21) force variable nTt to be equal to the number of times activities change in

timeslot t. It corresponds to the number of tasks assigned in t minus one, since a timeslot

where only one task is assigned does not change activity.

nTt ≥
∑
k∈Kt

xTt − 1, ∀t ∈ T. (2.21)

It may happen that variables lTt are imposed to take value in a discrete set Lt. For example,

we want the duration lTt of timeslot t to be equal either to 4, or to 6 or to 8, that is

Lt = {4, 6, 8}. Constraints (2.20) is no more suitable to deal with this situation, since it

forces lTt to be bounded from below and from above. For this reason, we use variables vTtl ,

which take value 1 if timeslot t has length l. Then, constraints (2.22) and (2.23) impose

that, if timeslot t is performed, its duration take one of the values in Lt.

xTt =
∑
l∈Lt

vTtl , ∀t ∈ T, (2.22)

lTt =
∑
l∈Lt

lvTtl , ∀t ∈ T. (2.23)

Breaks and interruptions. The set of constraints presented in this paragraph allows to

impose the legal regulation (L3) on the duration of breaks and interruptions.

The link between variables concerning timeslots, breaks and interruptions is defined by

constraints (2.24)-(2.26). In particular, the first ensure that, if two consecutive timeslots are

worked, also a pause must be performed. The pause can be either a break or an interruption.

The second impose that the pause starts after the end of the previous timeslot th , while

the third impose that the following timeslot th+1 starts exactly when the pause ends.

xBbh + xCch = xTth+1
, ∀j ∈ J, ∀s ∈ S, ∀h ∈ {0, . . . , |Ts| − 1}, (2.24)

yBbhj + yCchj ≤ z
T
thj
, ∀j ∈ J, ∀s ∈ S, ∀h ∈ {0, . . . , |Ts|}, (2.25)

yTth+1j
= zBbhj + zCchj , ∀j ∈ J, ∀s ∈ S, ∀h ∈ {0, . . . , |Ts| − 1}. (2.26)

Analogously to tasks and timeslots, constraints (2.27)-(2.31) (constraints (2.32)-(2.36)) de-

fine the relation between variables that concern the starting, the end and the performing of

Chapter 2. Mathematical Model 37

break b ∈ B (interruption c ∈ C).

yBbj ≤ yBb(j+1), ∀j ∈ J, ∀b ∈ B, (2.27)

zBbj ≤ zBb(j+1), ∀j ∈ J, ∀b ∈ B, (2.28)

zBb(j+1) ≤ y
B
bj , ∀j ∈ J, ∀b ∈ B, (2.29)

yBbj ≤ xBb , ∀j ∈ J, ∀b ∈ B, (2.30)

xBb ≤
∑
j∈J

(yBbj − zBbj), ∀b ∈ B. (2.31)

yCcj ≤ yCc(j+1), ∀j ∈ J, ∀c ∈ C, (2.32)

zCcj ≤ zCc(j+1), ∀j ∈ J, ∀c ∈ C, (2.33)

zCc(j+1) ≤ y
C
cj , ∀j ∈ J, ∀c ∈ C, (2.34)

yCcj ≤ xCc , ∀j ∈ J, ∀c ∈ C, (2.35)

xCc ≤
∑
j∈J

(yCcj − zCcj), ∀c ∈ C. (2.36)

As for each single activity, the duration of breaks and interruptions is bounded both from

below and from above. Constraints (2.37) and (2.38) limit the duration of break b and

interruption c, respectively (L3).

lbx
B
b ≤

∑
j∈J

(yBbj − zBbj) ≤ ubxBb , ∀b ∈ B, (2.37)

lcx
C
c ≤

∑
j∈J

(yCcj − zCcj) ≤ ucxCc , ∀c ∈ C. (2.38)

Daily shifts. The set of constraints presented in this paragraph allows to impose the legal

regulations (L4) on the daily working hours, (L5) on the amplitude of the working day, and

(L6) on the starting and finishing time.

Constraints (2.39)-(2.41) express the link between timeslots, breaks, interruptions and daily

shifts. In particular, constraints (2.39) and (2.40) impose that daily shift s is performed,

that is xSs is equal to 1, only if one of its timeslots is performed. Furthermore, daily shift s is

performed in slot j, meaning that the difference ySsj − zSsj is equal to 1, if either a timeslot t,

a break b or an interruption c is performed in slot j. This is imposed by constraints (2.41).

xSs ≤
∑
t∈Ts

xTt , ∀s ∈ S, (2.39)

xTt ≤ xSs , ∀s ∈ S,∀t ∈ Ts, (2.40)∑
t∈Ts

(yTtj − zTtj) +
∑
b∈Bs

(yBbj − zBbj) +
∑
c∈Cs

(yCcj − zCcj) ≤ ySsj − zSsj , ∀j ∈ J, ∀s ∈ S. (2.41)

Relations between variables concerning starting ySsj , ending zSsj and performing xSs of daily

shift s are imposed by constraints (2.42)-(2.46). The use of these variables, especially ySsj and

Chapter 2. Mathematical Model 38

zSsj , is needed to define the slots bSs and fSs where daily shift s begins and ends, respectively.

ySsj ≤ ySs(j+1), ∀j ∈ J, ∀s ∈ S, (2.42)

zSsj ≤ zSs(j+1), ∀j ∈ J, ∀s ∈ S, (2.43)

zSs(j+1) ≤ y
S
sj , ∀j ∈ J, ∀s ∈ S, (2.44)

ySsj ≤ xSs , ∀j ∈ J, ∀s ∈ S, (2.45)

xSs ≤
∑
j∈J

(ySsj − zSsj), ∀s ∈ S. (2.46)

The first and the last slots of daily shift s are equal to variables bSs and fSs respectively.

These variables allow to impose constraint (2.49) on the duration of s. This constraint

corresponds to the legal regulation on the amplitude of a working day (L5).

bSs = |T |xSs −
∑
j∈J

ySsj , ∀s ∈ S, (2.47)

fSs = (|T | − 1)xSs −
∑
j∈J

zSsj , ∀s ∈ S, (2.48)

lmx
S
s ≤ fSs − bSs ≤ umxSs , ∀s ∈ S. (2.49)

Daily shift s can be forced to start after slot lsd (constraints (2.50)) and to end before usd
(constraints (2.51)) (L6).

bSs ≥ lsdxSs , ∀d ∈ D,∀s ∈ Sd, (2.50)

fSs ≤ usdxSs , ∀d ∈ D,∀s ∈ Sd. (2.51)

However, it may happen that the starting slot of daily shift s is imposed to take value in

a discrete set Js. For instance, s can start either at 8am, or at 12pm, or at 2pm. This

restriction cannot be imposed by constraints (2.50), and we make use of variables vSsj , which

take value 1 if daily shift s starts in slot j. Constraints (2.52) and (2.53) impose that, if

daily shift s is performed, it has to start in a slot that belongs to Js.

xSs =
∑
j∈Js

vSsj , ∀s ∈ S, (2.52)

bSs =
∑
j∈Js

jvSsj , ∀d ∈ D,∀s ∈ Sd. (2.53)

Constraints (2.54) bound the total daily working hours both from below and from above

(L4).

ldwx
S
s ≤

∑
t∈Ts

lTt ≤ udwxSs , ∀s ∈ S. (2.54)

Schedule. The set of constraints presented in this paragraph allows to impose the legal

regulations (L7) on the weekly working hours, (L8) on the consecutive working days, (L9)

on the number of working days, and (L10) on the rest beetween consecutive daily shifts.

Chapter 2. Mathematical Model 39

When combining daily shifts to build a complete schedule, we need to impose a rest period

of duration greater than ldr between two consecutive shifts s and s+ 1 (constraints (2.55)).

However, this rest period is not sufficient when daily shift s covers at least one of the night

slots contained in N . For instance, we may have that all slots after 10pm are considered

night slots. In this case, if a daily shift is worked after 10pm, a rest period of duration

lnr ≥ ldr is required before performing the successive daily shift s + 1 (constraints (2.56))

(L10).

ldr − (2− xSs − xSs+1)M ≤ bSs+1 − fSs , ∀s ∈ S, (2.55)

lnr − (3− xSs − xSs+1 − ySsj + zSsj)M ≤ bSs+1 − fSs , ∀j ∈ N, ∀s ∈ S. (2.56)

Constraints (2.57) limit the total weekly working hours (L7), while constraints (2.58) bound

the total number of working days (L9).

lww ≤
∑
s∈Si

∑
t∈Ts

lTt ≤ uww ∀i ∈ I, (2.57)

lnd ≤
∑
s∈Si

xSs ≤ und ∀i ∈ I. (2.58)

The number of consecutive working days is bounded from above by constraints (2.59), while

it is bounded from below by constraints (2.60) (L8).

s+ucd∑
s′=s

xSs′ ≤ ucd, ∀i ∈ I, ∀s ∈ Si, (2.59)

xSs + (w −
s+w∑

s′=s+1

xSs′) + xSs+w+1 ≥ 1, ∀i ∈ I, ∀s ∈ Si,∀w ∈ {1, . . . , lcd − 1}. (2.60)

The constraints just presented in Section 2.1.4 are usually imposed by contract regulations.

However, they are not the only constraints contributing to the feasibility of the schedules.

Other constraints concern, for instance, the pre-assignment to activities or the unavailability

of employees. In the following sections, we give the formulation of all other constraints

needed to define feasible schedules.

2.1.5 Activities cardinality constraints

Activities cardinality constraints (2.61) impose that employee i performs at most one activity

in each slot j. ∑
a∈A

xija ≤ 1, ∀i ∈ I, ∀j ∈ J. (2.61)

2.1.6 Skills constraints

The problem considers a heterogeneous workforce, that is each employee has specific skills.

Constraints (2.62) avoid that employees are assigned to activities for which they do not have

Chapter 2. Mathematical Model 40

competencies.

xija = 0, ∀i ∈ I, ∀j ∈ J, ∀a /∈ Ai. (2.62)

2.1.7 Pre-assignment constraints

Pre-assignment constraints (2.63) force an employee i to perform activity a in slot j. This

situation can arise when the manager needs a particular employee to perform a specific

activity, who may require peculiar skills. As a consequence, some assignments are fixed

before scheduling all the employees and they are imposed to be carried out in the final

planning.

xija = 1, ∀i ∈ I, ∀(j, a) ∈ Ri. (2.63)

2.1.8 Unavailability constraints

Employees may not be available during some time periods. In order to prevent from schedul-

ing employees during their unavailable slots, constraints (2.64) are imposed.

xija = 0, ∀i ∈ I, ∀a ∈ A, ∀j ∈ Ui. (2.64)

2.1.9 Succession constraints

Not all sequences of activities are feasible and it may happens that one activity a′ cannot

be performed just after another activity a. All forbidden couples of sequences of activities

are contained in set Af and constraints (2.65) prevent from assigning forbidden sequences.

xija + xi(j+1)a′ ≤ 1, ∀i ∈ I, ∀j ∈ J, ∀(a, a′) ∈ Af . (2.65)

2.1.10 Distribution constraints

Distribution constraints specify the duration (2.66) and the number of times (2.67) that an

activity can be performed each day. For instance, we want that activity a is not worked

more than 3 hours each day, or we want that it is not performed more than 1 time per day.

lad ≤
∑
j∈Jd

xija ≤ uad, ∀i ∈ I, ∀a ∈ A, ∀d ∈ D, (2.66)

lan ≤
∑

s∈Sd∩Si

∑
t∈Ts

∑
k∈Kta

xKk ≤ uan, ∀i ∈ I, ∀a ∈ A,∀d ∈ D. (2.67)

Chapter 2. Mathematical Model 41

2.2 Dantzig-Wolfe decomposition

The Dantzig-Wolfe decomposition (Dantzig and Wolfe (1960)) is well-known in personnel

scheduling. The problem is decomposed in a master problem and multiple disjoint sub-

problems. The first combines feasible schedules to satisfy workload requirements, while

minimizing the overall planning cost, given by under and over coverage penalizations, activ-

ities costs and transition costs. The second ones define feasible schedules (columns) taking

into account the specific constraints of each set of homogeneous employees. The most com-

mon models proposed in literature are based on set covering (Côté et al. (2013)), or on a

generalized version of set partitioning (Restrepo et al. (2016) and Gérard et al. (2016)). Our

model falls in the last category, since both under and over coverage are allowed. We will

refer to this model as a generalized set partitioning with convexity constraints and it will

be treated in Chapter 3.

2.2.1 Master problem

Let us denote P i the index set of all feasible schedules (columns) of employee i. Each column

with index p ∈ P i is defined as a binary vector (δipja)j∈J,a∈A, that satisfies constraints (2.3)-

(2.67) concerning employee i. More in details, δipja ∈ {0, 1} is equal to 1 if employee i ∈ I
performs activity a ∈ A in slot j ∈ J , 0 otherwise. Furthermore, let us define binary

variables xip for each p ∈ P i and i ∈ I, where xip is equal to 1 if schedule (δipja)j,a is selected

for employee i, 0 otherwise. The cost cip of each schedule considers both the cost cija of

assigning activity a to employee i in slot j, and the cost ct of changing activity within

timeslot t assigned. Therefore, the cost cip of column c is evaluated as follows:

cip =
∑
j∈J

∑
a∈A

cijaδ
i
pja +

∑
s∈Si

∑
t∈Ts

ctn
T
tp, ∀i ∈ I, ∀p ∈ P i, (2.68)

where nTtp counts the number of transitions between activities in timeslot t, belonging to

column p. The master problem can be stated as follows:

min
∑
i∈I

∑
p∈P i

cipx
i
p +

∑
j∈J

∑
a∈A

(
cjayja + c̄jaȳja

)
, (2.69)

s.t.
∑
i∈I

∑
p∈P i

δipjax
i
p + y

ja
− ȳja = bja, ∀j ∈ J, ∀a ∈ A, (2.70)

∑
p∈P i

xip = 1, ∀i ∈ I, (2.71)

xip ∈ {0, 1}, ∀p ∈ P i, ∀i ∈ I, (2.72)

y
ja
, ȳja ≥ 0, ∀j ∈ J, ∀a ∈ A. (2.73)

The objective function (2.69) minimizes the total planning cost together with the under and

over coverage costs. We recall that both activities and transitions costs are considered in

cip. Constraints (2.70) are called linking constraints and they impose the workload to be

Chapter 2. Mathematical Model 42

satisfied for each activity over the whole planning horizon. Each employee i needs to be

assigned exactly to one schedule, and this is imposed by the convexity constraints (2.71).

Finally, (2.72) and (2.73) define the variables domain. Problem (2.69)-(2.73) presents an

exponential number of variables which corresponds to the number of feasible schedules. For

this reason, techniques such as CG turn out to be suitable for solving this problem. CG is

explained in the context of multi-activity tour scheduling in the next section.

2.2.2 Column generation.

CG is a mathematical programming technique that enables to solve a wide class of large

linear problems by iteratively adding the variables of the model (Desrosiers and Lübbecke

(2005)). Typically, only a reduced number of the variables is needed to prove optimality,

which makes the technique interesting for problems with a huge number of variables. We

employ CG to solve the linear relaxation of the master problem (2.69)-(2.73), obtained by

relaxing the integrality constraints on binary variables xip. CG replaces this linear relaxation

by a restricted version, where only a subset of schedules P̃ i ⊂ P i of tractable size (|P̃ i| �
|P i|) is considered. The resulting problem is called restricted master problem (RMP) and

it is stated as follows:

(RMP) min
∑
i∈I

∑
p∈P̃ i

cipx
i
p +

∑
j∈J

∑
a∈A

(
cjayja + c̄jaȳja

)
, (2.74)

s.t.
∑
i∈I

∑
p∈P̃ i

δipjax
i
p + y

ja
− ȳja = bja, ∀j ∈ J,∀a ∈ A, (2.75)

∑
p∈P̃ i

xip = 1, ∀i ∈ I, (2.76)

0 ≤ xip ≤ 1, ∀p ∈ P̃ i,∀i ∈ I, (2.77)

y
ja
, ȳja ≥ 0, ∀j ∈ J,∀a ∈ A. (2.78)

CG algorithm iteratively solves (RMP) on the reduced set of columns P̃ i and updates P̃ i

with columns in P i \ P̃ i. To explain which columns need to be added, we introduce the dual

problem of (RMP):

(D) max
∑
j∈J

∑
a∈A

bjauja +
∑
i∈I

vi, (2.79)

s.t.
∑
j∈J

∑
a∈A

δipjauja + vi ≤ cip, ∀i ∈ I, ∀p ∈ P̃ i, (2.80)

− cja ≤ uja ≤ c̄ja, ∀j ∈ J, ∀a ∈ A, (2.81)

where {uja}j∈J,a∈A are the dual variables associated to the linking constraints (2.75), and

{vi}i∈I are the dual variables associated to the convexity constraints (2.76). Columns or

variables xip in (RMP) correspond to rows or constraints in the dual problem. The inter-

esting columns p ∈ P i \ P̃ i to be added are those for which constraint (2.80) is violated by

the current dual solution. Therefore, given the optimal dual solution (u, v), the following

Chapter 2. Mathematical Model 43

pricing problems are solved to identify the most violated constraints, or to prove that all

these constraints are satisfied and optimality is achieved. For each employee i ∈ I, the

corresponding pricing problem is stated as follows:

ci∗ := min
p∈P i

cip −
∑
j∈J

∑
a∈A

δipjauja − vi. (2.82)

In the original variables, the problem results in the following formulation:

min
∑
j∈J

∑
a∈A

(cija − uja)xija − vi +
∑
s∈Si

∑
t∈Ts

ctn
T
t , (2.83)

s.t. (2.3)− (2.67). (2.84)

The objective function evaluates the so called reduced cost of a column. According to the

optimal values of problems (2.82), two different cases can be identified: if all columns have

non-negative reduced costs, that is ci∗ ≥ 0 for all empoyees i ∈ I, then the optimal solution

of (RMP) is also optimal for the master problem; otherwise, if there exists at least one

column with negative reduced cost, that is ci∗ < 0 for at least one i ∈ I, then the column

derived from the optimal pricing solution is added to (RMP), which is solved again to

obtain new dual variables. A well-known result about CG states that the algorithm is exact

and terminates after a finite number of iterations, when
⋃
i P

i is a finite set as in our case.

Indeed, since no variable in (RMP) has negative reduced cost, we have that each column

can be generated and added at most once.

Unfortunately, CG algorithm suffers from several drawbacks. It may have a slow convergence

that leads to the well-known tailing-off effect, the oscillations of the dual variables whose

components jump from one extreme value to another and the degeneracy in the master

problem that causes multiple optimal solutions in the dual. Finally, we have the fact that

the first iterations do not generate useful columns due to the poor quality informations

given by the dual variables. The reader is refered to Vanderbeck (2005) for a review on the

main issues that arise when implementing a CG method. For dealing with these issues, we

developped a dual ascent heuristic, that turns out to speed up CG limiting the dual variable

oscillations. This method is described in Chapter 3.

2.3 Conclusion

In this chapter we presented a compact MILP formulation that models all constraints of the

multi-activity tour scheduling problem addressed in this thesis. The problem is well suited

for the Dantzig-Wolfe decomposition since it consists of disjoint subproblems that are linked

by the workload constraints. However, the latter model presents an exponential number of

variables, making techniques based on CG interesting for solving it. The next part of the

thesis presents the methods used for solving the problem. In particular, we describe a dual

ascent heuristic to speed up CG, an algorithm used for solving the pricing problem, and an

exact B&P approach to obtain integer solutions. In addition, we present different heuristic

methods to deal with real large-scale instances.

Part II

Exact method

44

Introduction to Part II 45

Introduction to Part II

Part II of this thesis focuses on an exact B&P algorithm developed for solving the multi-

activity tour scheduling problem presented in Chapter 1. The literature exhibits a wide

range of models and solution techniques such as integer programming, CG, constraint pro-

gramming, and decomposition methods. Concerning compact models, implicit and integer

programming formulations using formal language have been proposed by Côté et al. (2011a),

Côté et al. (2011b) and, more recently, Gérard et al. (2016). CG based on regular language

have been employed by Demassey et al. (2005), extended in Demassey et al. (2006) who

propose a B&P algorithm for obtaining integer solutions of the multi-activity shift schedul-

ing. Later, a similar problem has been addressed through B&P by Côté et al. (2013) and

Boyer et al. (2013). In the context of multi-activity tour scheduling, Restrepo et al. (2016)

propose a daily-based Dantzig-Wolfe decomposition which is tackled with B&P. Recently,

Restrepo et al. (2018) combines CG and Benders decomposition.

The proposed B&P algorithm differs from the previous either in the problem addressed, or

in the Dantzig-Wolfe decomposition used. One of the key elements of every B&P is CG,

which obtains a lower bound of the master problem at each node of the search tree. In

order to do that, CG iteratively solves a reduced master problem and one or more pricing

problems. Therefore, before describing the proposed B&P algorithm, we design our CG

generation framework by showing how the reduced master problem and the pricing problems

are solved. In particular, we develop a new dual ascent heuristic for the reduced master

problem. Furthermore, for solving the pricing problems, we combine constraint and dynamic

programming techniques in order to deal with the complex constraints that characterize the

problem addressed in this thesis. Part II is organized as follows:

• Chapter 3 focuses on the resolution of the reduced master problem and presents a

dual ascent heuristic to estimate dual variables in CG frameworks. In order to prove

optimality, the procedure is combined with an LP solver. This algorithm is tested

numerically not only on multi-activity tour scheduling, but also on problems from

graph theory and random generated instances.

• Chapter 4 focuses on the resolution of the pricing problem and details the model

and the algorithm used to generate minimum reduced cost schedules. The proposed

method combines constraint programming and dynamic programming techniques.

• Chapter 5 presents a B&P algorithm for obtaining an optimal integer solutions of the

problem. It makes use of the dual ascent heuristic and the pricing resolution method

proposed in the previous chapters.

Chapter 3

Dual Ascent Heuristic

The Danztig-Wolfe decomposition (2.69)-(2.73) of the multi-activity tour scheduling problem

appears in the form of a generalized set partitioning problem with convexity constraints.

This model is usually encountered in CG algorithms, where the master problem involves set

partitioning, set covering, set packing and additional convexity constraints. The purpose of

this chapter is to present a dual ascent (DA) heuristic for evaluating dual variables of the

linear relaxation of the generalized set partitioning model with convexity constraints.

Starting from Baldacci et al. (2008), the DA has shown to be very effective on different prob-

lems, helping to speed up the CG convergence and to reduce the dual variables oscillations.

To the best of our knowledge, the DA has been applied to models involving only some of the

variants and combinations of the classical set partitioning, covering and packing, which can

be all included in the generalized set partitioning model. The DA proposed in this thesis

is capable to deal with this generalized model. It is based on a parametric reformulation

and it uses the Lagrangian relaxation and the subgradient method. To prove its validity

it has been applied for solving different problems: the multi-activity tour scheduling, the

minimum sum coloring, and some new generated instances.

The chapter is organized as follows: after the introduction in Section 3.1, Section 3.2 presents

a brief review on the methods used to solve the set partitioning, set covering and set pack-

ing problems. Section 3.3 formally defines the generalized set partitioning problem with

convexity, while Section 3.4 presents the DA heuristic. Classical Lagrangian relaxation is

recalled in Section 3.5 and it is compared with DA. Different applications, together with

some computational results are presented in Section 3.6 and Section 3.7. Conclusions in

Section 3.8 close the chapter.

This paper has been submitted to Discrete Optimization in December 2017.

3.1 Introduction

The set partitioning, set covering and set packing problems are fundamental models in

combinatorial optimization and they are concerned with finding an optimal family of subsets

46

Chapter 3. Dual Ascent Heuristic 47

of elements from a set. They are formally presented as follows: suppose we are given a finite

set M = {1, . . . ,m}, and {Mj}j∈N are subsets of M , where N = {1, . . . , n}. Furthermore,

let A ∈ {0, 1}m×n be the matrix of coefficients, c ∈ Rn the vector of costs, e the m-vector

of all one and x ∈ {0, 1}n the vector of decision variables. The set covering problem is

to find a minimum cost cover of M , i.e. a collection F ⊆ N such that
⋃
j∈F Mj = M ,

{min cTx : Ax ≥ e, x ∈ {0, 1}n}. The set packing problem is to find a maximum cost

packing of M , i.e. a collection F ⊆ N such that Mj ∩Mk = ∅ for all j, k ∈ N , j 6= k,

{max cTx : Ax ≤ e, x ∈ {0, 1}n}. Finally, the set partitioning problem is to find a minimum

cost partition of M , i.e. a collection F ⊆ N which is both a cover and a packing, {min cTx :

Ax = e, x ∈ {0, 1}n}. A comprehensive survey on theory and applications of these three

models is presented for example in Balas and Padberg (1976) and Vemuganti (1998). The

set partitioning, covering and packing models are strictly related. Indeed, set partitioning

can be brought to set covering and packing. Furthermore, set packing can be restated as a

set partitioning (see Balas and Padberg (1976)). The three problems can be combined in a

unified model, which aims to allow under (over) coverage, yielding set packing (covering).

This model was first proposed by Darby-Dowman and Mitra (1985) and more recently by

Rasmussen and Larsen (2011).

This chapter addresses the generalized version of the unified set partitioning problem with

convexity constraints (i.e., constraints (3.3)), where the right hand side of coverage con-

straints (3.2) is allowed to be a positive integer vector b ∈ Zm+ . The problem is stated as

follows:

min c>x+ c>y + c>ȳ, (3.1)

s.t. Ax+ y − ȳ = b, (3.2)

Ex = e, (3.3)

y, ȳ ≥ 0, (3.4)

x ∈ {0, 1}n, (3.5)

where E ∈ {0, 1}p×n is the coefficient matrix of the convexity constraints, c and c are the

m-vectors of under and over coverage costs, and y and ȳ are the m-vectors of decision

variables controlling whether or not constraints (3.2) are respectively under or over covered.

It is not difficult to see that model (3.1)-(3.5) catches set partitioning, covering and packing

problems. In order to solve the set partitioning problem, we only need to set all components

of vectors c and c equal to a sufficiently large positive number, thereby preventing both

under and over coverage. In this case, if a feasible solution exists for set partitioning, the

unified model will have the same optimal solution. Similarly, in order to solve set covering

(resp. packing), we need to set all components of vector c (c) equal to a large positive

number, and c (c) equal to 0. When set partitioning is used as a model, an exact cover may

not exist or a solution with under and over coverage could be more interesting. However,

this situation cannot be captured in the classical set partitioning, while the flexibility of

the unified model allows deviations from an exact cover at a cost defined by the individual

penalties, leading in some cases to better solutions. Model (3.1)-(3.5) is easily transformed

Chapter 3. Dual Ascent Heuristic 48

in the unified set partitioning problem by removing constraints (3.3) and by setting vector

b equal to 1.

The proposed method for solving the generalized set partitioning problem with convexity

constraints (i.e., model (3.1)-(3.5)), usually encountered in CG algorithms, is a generaliza-

tion of the DA procedure. The DA is based on a parametric reformulation and it uses

Lagrangian relaxation and subgradient method. Its novelty consists in managing the gener-

alized set partitioning constraints, where the right hand side can be different from the unit

vector, and under-over coverage is allowed.

Two different applications are used to prove the validity of the proposed method. The

first one is the multi-activity tour scheduling problem. Gérard et al. (2016) and Restrepo

et al. (2016) propose two formulations based on the generalized set partitioning in order

to take into account under and over coverage of the demand. The second application is

the minimum sum coloring problem, which is a variant of the vertex coloring problem. A

review of recent algorithms to solve the minimum sum coloring problem can be found in Jin

et al. (2017). Recently, Furini et al. (2018) have proposed a set covering based formulation

for this problem. Since none of these two applications consider together constraints of set

partitioning, covering, packing and generalized set partitioning, the approach has been used

also to solve new generated instances.

3.2 Literature review

Set partitioning (SPT), covering (SC) and packing (SP) have been used to model a great

variety of problems in the literature. These models and their variants have been used

to formulate many practical problems in different areas such as crew scheduling, cutting

stock, facilities location, graphs coloring, personnel scheduling, vehicle routing problem,

timetabling and many others. Below we report some examples for each type of problem.

The list is limited since it is not our intent being exhaustive about the applications.

Set covering Problems where every customer is served by some location, vehicle or person

often requires the set covering structure. Balas and Carrera (1996) formulate airline crew

scheduling and bus driver scheduling using a SC model. Ceria et al. (1998a) propose a

large-scale SC model for railways crew scheduling. Muter et al. (2010) make use of SC to

model vehicle routing problem with time windows, while Malaguti et al. (2011) address the

vertex coloring problem.

Set partitioning When every customer must be served exactly once, the problem takes

the set partitioning structure. The vehicle routing problem and its variants widely use

formulations based on the SPT model, originally proposed by Balinski and Quandt (1964).

Among many different papers, we cite Baldacci et al. (2008), which address the capacitated

vehicle routing problem. Desaulniers et al. (1997) use a SPT model to solve a crew scheduling

Chapter 3. Dual Ascent Heuristic 49

problem for Air France. In Rezanova and Ryan (2010), a recovery problem for train driver

duties is modeled as SPT. Brønmo et al. (2010) use SPT for a ship scheduling problem.

Set packing The goal of satisfying as much demand as possible, without creating con-

flicts, generally requires the set packing format. Rönnqvist (1995) propose a SP model for

a cutting stock problem. Zwaneveld et al. (1996) formulate a railway feasibility problem

as a SP. Mingozzi et al. (1998) used a SP formulation for a resource constrained project

scheduling problem. Rossi and Smriglio (2001) considered a SP formulation for a ground

holding problem. In Lusby et al. (2011) is given a survey of models and methods for railway

track allocation, including formulations that rely on the SP model.

In the literature there are also papers addressing problems whose formulation combines

partitioning, covering and packing constraints. Below we report a short and non exhaustive

list of examples. Boschetti and Maniezzo (2015) use an extended covering formulation to

model a city logistics problem, where covering constraints impose all clients to be served at

least once, while the set packing-like constraints limit the number of vehicles available in

each work shift. Baldacci et al. (2016) use a set partitioning based model for the vehicle

routing problem with transhipment facilities, where clients have to be served exactly once,

while facilities may be used or not. A very similar model combining partitioning and packing

constraints is used by Baldacci et al. (2017) for the capacitated ring-star problem. Cacchiani

et al. (2014) present a set covering based formulation for the periodic vehicle routing, where

packing constraints limit the daily fleet size, while covering constraints define the relation

between combinations and routes and ensure that at least one combination is selected for

each client. All the examples reported above deal with routing problems, while, as far as

we know, the generalized set partitioning problem has been addressed only in personnel

scheduling problem (see Gérard et al. (2016) and Restrepo et al. (2016)).

Most of the models cited above have an exponential number of variables, since they are

based on a Dantzig-Wolfe decomposition approach. Typically, only a small fraction of them

is needed to prove optimality and this aspect makes CG an interesting technique. CG is an

iterative process that solves a restricted master problem and one or several subproblems (cf.

Section 2.2.2).

Primal or dual simplex methods are commonly used to solve the reduced master problem.

Despite all the progress in linear programming, solving these linear programs can be a

challenge. Various heuristics to obtain optimal and near optimal dual solutions have been

proposed. Fisher and Kedia (1990) solve a mixed set covering-partitioning model using

dual heuristics that include greedy and 3-opt heuristics and, in some cases, the subgradient

method. It is applied to the dual of the linear relaxation to provide lower bounds for a

B&B algorithm. Ceria et al. (1998b) propose a primal-dual Lagrangian heuristic that solves

both the Lagrangian relaxations of the primal and dual problems simultaneously of the

set covering problem. Then, primal and dual multipliers are used for fixing variables and

reducing the problem. An extension of the subgradient method, called the volume algorithm,

has been proposed by Barahona and Anbil (2002) to produce a valid lower bound as well as

Chapter 3. Dual Ascent Heuristic 50

an approximation of the primal solution. More recently, Boschetti et al. (2008) presented

both a dual ascent heuristic and an exact method for the set partitioning problem. The

dual ascent heuristic makes use of parametric and Lagrangian relaxations to produce feasible

dual solutions of the linear relaxation of the set partitioning problem. The exact method

described uses the dual solution found by the heuristic to define a reduced problem with a

limited subset of variables that is solved by an integer programming solver. The reduced

problem is augmented until optimality can be proven. A similar heuristic approach has been

later proposed by Boschetti and Maniezzo (2015) to solve a real-world city logistic problem,

for which the reduced master problem consists of an extended set covering problem. An

exact solution framework that employs dual ascent procedures was proposed by Baldacci

et al. (2008). The method is used for the capacitated vehicle routing problem, but it can

been tailored to solve several variants of the vehicle routing problem, as shown in Baldacci

et al. (2010). Indeed, Baldacci et al. (2011a) address the pickup and delivery problem with

time windows, Baldacci et al. (2011b) consider the periodic routing problem, while Baldacci

et al. (2016) recently solve the vehicle routing problem with transhipment facilities. In the

following we explain how to extend the dual ascent heuristic for solving the generalized set

partitioning problem with convexity constraints.

3.3 Problem description

Let us consider the following compact mixed-integer linear program formulation representing

the problem that we want to solve:

(P) min c>x̃+ c>y + c>ȳ, (3.6)

s.t. Ãx̃+ y − ȳ = b, (3.7)

Dx̃ = d, (3.8)

x̃ ∈ {0, 1}ñ, (3.9)

y, ȳ ≥ 0, (3.10)

where c ∈ Rñ, c ∈ Rm and c ∈ Rm are the vectors of costs, Ã ∈ {0, 1}m×ñ and D ∈ Rl×ñ are

the matrices of coefficients, b ∈ Zm+ and d ∈ Rl are the right hand side vectors, x̃ ∈ {0, 1}ñ,

y ∈ Rm+ and ȳ ∈ Rm+ are the decision variables. Problem (P) can be, for instance, the

compact MILP model (2.1)-(2.67) presented in Section 2.1. Let

X = {x̃ : Dx̃ = d, x̃ ∈ {0, 1}ñ}

be the finite set defined by constraints (3.8) and (3.9). The model (3.6)-(3.10) can be

reformulated by applying the classical Dantzig-Wolfe decomposition (DW), and the following

extensive formulation is obtained:

Chapter 3. Dual Ascent Heuristic 51

(EP) min
∑
p∈P̃

cpxp + c>y + c>ȳ, (3.11)

s.t.
∑
p∈P̃

δpxp + y − ȳ = b, (3.12)

∑
p∈P̃

xp = 1, (3.13)

x ∈ {0, 1}n, (3.14)

y, ȳ ≥ 0, (3.15)

where cp = c>ξp, δp = Ãξp and ξp are the extreme points of X. Moreover, it is clear that if

the constraints (3.8) have a block diagonal structure, X can be decomposed in k finite sets

X1, . . . , Xk, i.e. X =
⋃

1≤i≤kX
i, where Xi = {ξip}1≤p≤ñi . We denote I = {1, . . . , k} the

set of indices in the partition, P̃ i = {1, . . . , ñi} the set of indices of extreme points in each

subset of the partition, and M = {1, . . . ,m} is the index set of constraints in (3.7). The

DW reformulation of problem (P) takes the following form:

(EP) min
∑
i∈I

∑
p∈P̃ i

cipx
i
p +

∑
j∈M

(
cjyj + cj ȳj

)
, (3.16)

s.t.
∑
i∈I

∑
p∈P̃ i

δipjx
i
p + y

j
− ȳj = bj , ∀j ∈M, (3.17)

∑
p∈P̃ i

xip = 1, ∀i ∈ I, (3.18)

xip ∈ {0, 1}, ∀p ∈ P̃ i, ∀i ∈ I, (3.19)

y
j
, ȳj ≥ 0, ∀j ∈M. (3.20)

We remark that model (3.16)-(3.20) corresponds to the DW decomposition (2.69)-(2.73)

presented in Section 2.2. We assume that the decomposition results in zero-one coefficient

matrix, i.e. δipj ∈ {0, 1}. The DW decomposition results in an extended formulation with an

exponential number of variables that is often tackled by means of CG algorithms. CG is an

iterative process that solves a restricted master problem (RMP) for obtaining each time dual

variables. These latter are passed as objective function to the subproblems, which are solved

looking for new variables to be added to the model when and if it is necessary. Therefore,

the RMP must be solved several times quickly in order to update the dual variables passed

to the subproblems.

Chapter 3. Dual Ascent Heuristic 52

Let us consider RMP, made up of subsets of columns P i ⊆ P̃ i for all i. The restricted master

problem (RMP) appears as follows:

(RMP) min
∑
i∈I

∑
p∈P i

cipx
i
p +

∑
j∈M

(
cjyj + cj ȳj

)
, (3.21)

s.t.
∑
i∈I

∑
p∈P i

j

xip + y
j
− ȳj = bj , ∀j ∈M, (3.22)

∑
p∈P i

xip = 1, ∀i ∈ I, (3.23)

xip ≥ 0, ∀p ∈ P i, ∀i ∈ I, (3.24)

y
j
, ȳj ≥ 0, ∀j ∈M, (3.25)

where P ij = {p ∈ P i : (δip)j = 1} denotes the set of columns p ∈ P i that cover row j ∈ M .

Problem (RMP) is the linear relaxation of the generalized set partitioning. It consists in

selecting columns that satisfy coverage (3.22), minimizing the total cost (3.21) given by the

columns and the under-over coverage. Constraints (3.23) state that each row i is covered by

a convex combination of columns. Finally, constraints (3.24) and (3.25) define the domain

of the variables. Let us denote u = (u1, . . . , um) and v = (v1, . . . , vk) the vectors of the dual

variables associated respectively with constraints (3.22) and (3.23). The k subproblems,

solved to generate new variables, have the following formulation:

(SP i) ci∗ = min ci>x̃i − u>Ãix̃i − vi
s.t. x̃i ∈ Xi. (3.26)

The role of the subproblems is to provide columns that price out profitably or to prove that

none of them exists and, therefore, optimality has been achieved.

3.4 A dual ascent heuristic

In this section we describe a dual ascent heuristic to compute efficient dual solutions of

problem (RMP). The dual problem of (RMP) has the following formulation:

(D) max zD =
∑
j∈M

bjuj +
∑
i∈I

vi, (3.27)

s.t.
∑
j∈Ri

p

uj + vi ≤ cip, ∀p ∈ P i, ∀i ∈ I, (3.28)

− cj ≤ uj ≤ cj , ∀j ∈M, (3.29)

where Rip = {j ∈ M : (δip)j = 1} is the set of rows j ∈ M covered by column p ∈
P i. The dual ascent heuristic is based on a parametric reformulation of (RMP). Then,

coverage and convexity constraints are relaxed by means of penalty vectors, to derive the

Lagrangian relaxation. We explain in details these techniques respectively in Section 3.4.1

and Section 3.4.2.

Chapter 3. Dual Ascent Heuristic 53

3.4.1 Parametric reformulation

This section describes a parametric reformulation of problem (RMP). We associate to each

variable xip a set of |Rip|+ 1 binary variables zip, z
h
p for all h ∈ Rip, according to the following

expression:

xip =
1

|Rip|+ 1

(∑
h∈Ri

p

zhp + zip

)
∀i ∈ I, p ∈ P i. (3.30)

Then, the problem obtained by applying expression (3.30) has the following formulation:

min
∑
i∈I

∑
p∈P i

cip
|Rip|+ 1

(∑
h∈Ri

p

zhp + zip

)
+
∑
j∈M

(
cjyj + cj ȳj

)
, (3.31)

s.t.
∑
i∈I

∑
p∈P i

j

1

|Rip|+ 1

(∑
h∈Ri

p

zhp + zip

)
+ y

j
− ȳj = bj , ∀j ∈M, (3.32)

∑
p∈P i

1

|Rip|+ 1

(∑
h∈Ri

p

zhp + zip

)
= 1, ∀i ∈ I, (3.33)

y
j
, ȳj ≥ 0, ∀j ∈M, (3.34)

zhp , z
i
p ∈ {0, 1}, ∀p ∈ P i,∀h ∈ Rip, ∀i ∈ I. (3.35)

3.4.2 Lagrangian relaxation

Problem (3.31)-(3.35) is relaxed dualizing the linking constraints (3.32) and the convexity

constraints (3.33) by means of penalty vectors λ ∈ Rm and µ ∈ Rk respectively. Then, con-

straints (3.37) and (3.38) are added to improve the Lagrangian lower bound for given penalty

vectors λ and µ. The Lagrangian subproblem (LRP (λ, µ)) has the following formulation:

zLRP (λ, µ) = min
∑
j∈M

(∑
i∈I

∑
p∈P i

j

cip(λ, µ)zjp+ cj(λ)y
j

+ cj(λ)ȳj + bjλj

)
+

+
∑
i∈I

(∑
p∈P i

cip(λ, µ)zip + µi

)
(3.36)

s.t.
∑
i∈I

∑
p∈P i

j

zjp + y
j
− ȳj = bj , ∀j ∈M, (3.37)

∑
p∈P i

zip = 1, ∀i ∈ I, (3.38)

y
j
, ȳj ≥ 0, ∀j ∈M, (3.39)

zjp, z
i
p ∈ {0, 1}, ∀p ∈ P i,∀j ∈ Rip,∀i ∈ I. (3.40)

Note that the sum
∑

j∈M
∑

i∈I
∑

p∈P i
j
zjp is obtained by rearranging the indices of the sum∑

i∈I
∑

p∈P i

∑
h∈Ri

p
zhp . The Lagrangian costs cip(λ, µ) are defined as

cip(λ, µ) :=
cip −

∑
j∈Ri

p
λj − µi

|Rip|+ 1
,

Chapter 3. Dual Ascent Heuristic 54

while the coefficients cj(λ) and cj(λ) are respectively cj − λj and cj + λj .

Problem (LRP (λ, µ)) is decomposable into m + k subproblems, one for each row j ∈ M ,

and one for each row i ∈ I. In the following, we show how a feasible solution of the subprob-

lems can be defined. We first consider an index i ∈ I and the corresponding subproblem

(LRP i(λ, µ)),

ziLRP (λ, µ) = min
∑
p∈P i

cip(λ, µ)zip + µi (3.41)

s.t.
∑
p∈P i

zip = 1, (3.42)

zip ∈ {0, 1}, ∀p ∈ P i. (3.43)

Let pi ∈ P be the column covering row i such that pi = arg minp∈P i cip(λ, µ). An optimal

solution of problem (LRP i(λ, µ)) can be obtained setting zipi = 1 and zip = 0 for all p ∈
P i \ {pi}. We now consider the subproblems (LRP j(λ, µ)) concerning index j ∈ M , which

has the following formulation:

zjLRP (λ, µ) = min
∑
i∈I

∑
p∈P i

j

cip(λ, µ)zjp + cj(λ)y
j

+ cj(λ)ȳj + bjλj (3.44)

s.t.
∑
i∈I

∑
p∈P i

j

zjp + y
j
− ȳj = bj , (3.45)

y
j
, ȳj ≥ 0, (3.46)

zjp ∈ {0, 1}, ∀p ∈ P ij , ∀i ∈ I. (3.47)

In order to find an optimal solution of problem (LRP j(λ, µ)), we consider the Lagrangian

costs cip(λ, µ) in ascending order (cip1(λ, µ) ≤ · · · ≤ cipbj
(λ, µ) ≤ . . .) and we compare them

with cj(λ) and −cj(λ). The following three different cases can be identified:

C1 : −cj(λ) ≤ cipbj
(λ, µ) ≤ cj(λ), an optimal solution is given by setting zjp = 1 for all

indices p = p1, . . . , pbj , while all under and over coverage variables are equal to 0:

y
j

= 0, ȳj = 0, zjp =

1, p = p1, . . . , pbj ,

0, otherwise.

C2 : cipl(λ, µ) ≤ cj(λ) ≤ cipbj
(λ, µ), an optimal solution is given by setting zjp = 1 for all

indices p = p1, . . . , pl. Furthermore we set under coverage variable y
j

= bj − l, while

over coverage variable equal to 0:

y
j

= bj − l, ȳj = 0, zjp =

1, p = p1, . . . , pl,

0, otherwise.

C3 : cipbj
(λ, µ) ≤ cipl(λ, µ) ≤ −cj(λ), an optimal solution is given by setting zjp = 1 for all

indices p = p1, . . . , pl. Furthermore we set over coverage variable ȳj = l − bj , while

under coverage variable equal to 0:

Chapter 3. Dual Ascent Heuristic 55

y
j

= 0, ȳj = l − bj , zjp =

1, p = p1, . . . , pl,

0, otherwise.

The following Theorem 3.1 proves how a dual feasible solution (u, v) of cost zD ≥ zLRP (λ, µ)

can be obtained given any optimal solution of the Lagrangian subproblem (LRP (λ, µ)).

Theorem 3.1. Let us consider two vectors λ ∈ Rm and µ ∈ Rk. A feasible dual solution

(u, v) of the dual problem (D) is given by the following expression:

uj = ũj + λj , ∀j ∈M,

vi = ṽi + µi, ∀i ∈ I.
(3.48)

where

ũj = max
{
−cj(λ),min{cipbj (λ, µ), cj(λ)}

}
,

and

ṽi = cipi(λ, µ)−max
p∈P i

{∑
j∈Ri

p

(ũj − cip(λ, µ))+
}
.

Furthermore, the cost zD of this dual solution is greater than or equal to zLRP (λ, µ).

Proof. We need to prove that (u, v), defined as in (3.48), is a feasible solution of problem

(D). We can easily see that u satisfies the bound constraints (3.29). We now consider

constraints (3.28): for each i ∈ I and p ∈ P i,∑
j∈Ri

p

uj + vi =
∑
j∈Ri

p

(ũj + λj) + ṽi + µi

=
∑
i∈Ri

p

ũj + cipi(λ, µ)− max
p′∈P i

{ ∑
j∈Ri

p′

(ũj − cip′(λ, µ))+
}

+
∑
j∈Ri

p

λj + µi

≤
∑
j∈Ri

p

ũj + cipi(λ, µ)−
∑
j∈Ri

p

(ũj − cip(λ, µ))+ +
∑
j∈Ri

p

λj + µi

≤
∑
j∈Ri

p

ũj + cipi(λ, µ)−
∑
j∈Ri

p

(ũj − cip(λ, µ)) +
∑
j∈Ri

p

λj + µi

≤ cip(λ, µ) + |Rip|cip(λ, µ) +
∑
j∈Ri

p

λj + µi

= (|Rip|+ 1)cip(λ, µ) +
∑
j∈Ri

p

λj + µi = cip.

Chapter 3. Dual Ascent Heuristic 56

We now show that the cost zD of the dual solution defined with vectors λ and µ is greater

than or equal to the Lagrangian cost zLRP (λ, µ):

zD =
∑
j∈M

bjuj +
∑
i∈I

vi

=
∑
j∈M

bj(ũj + λj) +
∑
i∈I

(
cipi(λ, µ)−max

p∈P i

{∑
j∈Ri

p

(ũj − cip(λ, µ))+
}

+ µi

)
≥
∑
j∈M

bj(ũj + λj) +
∑
i∈I

(cipi(λ, µ) + µi)−
∑
i∈I

∑
p∈P i

∑
j∈Ri

p

(ũj − cip(λ, µ))+

=
∑
j∈M

(
bj ũj −

∑
i∈I

∑
p∈P i

j

(ũj − cip(λ, µ))+ + bjλj

)
+
∑
i∈I

(cipi(λ, µ) + µi)

=
∑
j∈M

zjD +
∑
i∈I

ziD.

It is easy to see that ziD = ziLRP (λ, µ). We now show that zjD = zjLRP (λ, µ) ∀j ∈ M . We

have three different cases, one for each primal solution defined in C1, C2 or C3.

If the solution is the one defined in case C1:

zjD = bjc
i
pbj

(λ, µ)−
∑

p∈{p1,...,pbj }

(cipbj
(λ, µ)− cip(λ, µ))+ + bjλj

=
∑

p∈{p1,...,pbj }

cip(λ, µ) + bjλj = zjLRP (λ, µ).

If the solution is the one defined in case C2:

zjD = bjcj(λ)−
∑

j∈{p1,...,pl}

(cj(λ)− cip(λ, µ)) + bjλj

=
∑

p∈{p1,...,pl}

cip(λ, µ) + cj(λ)(bj − l) + bjλj = zjLRP (λ, µ).

If the solution is the one defined in C3:

zjD = −bjcj(λ)−
∑

p∈{p1,...,pl}

(−cj(λ)− cip(λ, µ)) + bjλj

=
∑

p∈{p1,...,pl}

cip(λ, µ) + cj(λ)(l − bj) + bjλj = zjLRP (λ, µ).

We can conclude that zD ≥ zLRP (λ, µ).

The following Corollary states that maximizing the function zLRP (λ, µ) with respect to λ

and µ, we achieve the optimal dual value z∗D.

Corollary 3.2. The following equality holds:

max
λ,µ

zLRP (λ, µ) = z∗D. (3.49)

Chapter 3. Dual Ascent Heuristic 57

Proof. Let us consider the Lagrangian relaxation of problem (RMP), dualizing constraints

(3.22) and (3.23) by means of penalty vectors λ ∈ Rm and µ ∈ Rk respectively. We call the

resulting problem LR(λ, µ),

zLR(λ, µ) = min
∑
i∈I

∑
p∈P i

ĉip(λ, µ)xip +
∑
j∈M

(
cj(λ)y

j
+ cj(λ)ȳj+bjλj

)
+
∑
i∈I

µi, (3.50)

s.t. y
j
, ȳj ≥ 0, ∀j ∈M, (3.51)

0 ≤ xp ≤ 1, ∀p ∈ P, (3.52)

where ĉip(λ, µ) := cip −
∑

i∈Ri
p
λj − µi. The goal is to show that the following inequality

zLR(λ, µ) ≤ zLRP (λ, µ) (3.53)

holds for each vectors λ and µ. It is easy to see that zLR(λ, µ) = −∞ if cj(λ) or cj(λ) is

negative for some index i. Since zLRP (λ, µ) is always finite, inequality (3.53) holds.

We assume that both cj(λ) and cj(λ) are non negative. Furthermore, let us define the index

set P̄ i = {p ∈ P i : ĉip(λ, µ) < 0} for each i ∈ I, then we have

zLR(λ, µ) =
∑
p∈P̄ i

ĉip(λ, µ) +
∑
j∈M

bjλj +
∑
i∈I

µi.

Using the solution z of the problem LRP (λ, µ), we define the variable xp according to

expression (3.30). Finally, let J i = {p ∈ P i : xip > 0} and P̃ i = {p ∈ J i : ĉip(λ, µ) < 0}.
Then we have:

zLRP (λ, µ) =
∑
i∈I

∑
p∈Ji

ĉip(λ, µ)xip +
∑
j∈M

(
cj(λ)y

j
+ cj(λ)ȳj + bjλj

)
+
∑
i∈I

µi

≥
∑
i∈I

∑
p∈P̃ i

ĉip(λ, µ)xip +
∑
j∈M

bjλj +
∑
i∈I

µi

≥
∑
i∈I

∑
p∈P̄ i

ĉip(λ, µ) +
∑
j∈M

bjλj +
∑
i∈I

µi = zLR(λ, µ).

The first inequality comes from the fact that cj(λ) ≥ 0, cj(λ) ≥ 0 and ĉip(λ, µ)xip ≥ 0 for each

p ∈ J i \ P̃ i. The second inequality comes from the fact that xip ≤ 1 and P̃ i ⊆ P̄ i. Since the

Lagrangian relaxation LR(λ, µ) has the integrality property, we have that the Lagrangian

dual is equal to zP . Therefore

max
λ,µ

zLR(λ, µ) = max
λ,µ

zLRP (λ, µ) = z∗D.

From Corollary (3.2), it follows that the Lagrangian dual problem maxλ,µ zLRP (λ, µ) need

to be solved in order to find an optimal dual solution.

Chapter 3. Dual Ascent Heuristic 58

3.4.3 A column generation method based on dual ascent

In this section we describe a CG method to compute lower bounds of problems (RMP).

This method differs from classical CG since it solves the reduced master problem by means

of a dual ascent heuristic, instead of using the simplex algorithm (similar to Baldacci et al.

(2016) and Baldacci et al. (2017)). However, in order to prove optimality, it needs to be

combined with an LP solver. The proposed method is described as follows.

Step 1. Initialization. Initialize problem (RMP) with a set of columns P containing a feasible

solution. Furthermore, initialize the penalty vectors (λ, µ) = (0, 0), iter = 1 and the

parameter β = 2.

Step 2. Dual ascent heuristic for finding a dual feasible solution (u, v). Set z̄LRP (λ, µ) = −∞
and iterDA = 1. Perform the following steps:

Step 2a. Solve LRP (λ, µ). Using the current multipliers λ and µ, solve all subproblems

(3.41)-(3.43) and (3.44)-(3.47) and get a solution of LRP (λ, µ). If zLRP (λ, µ) >

z̄LRP (λ, µ), then update z̄LRP (λ, µ) = zLRP (λ, µ), update the dual solution (u, v)

using expression (3.48), and set β = min{2, 1.2× β}.

Step 2b. Update the multipliers (λ, µ) using the subgradient vectors (gj)j∈M and (gi)i∈I de-

fined as gj = bj−
∑

i∈I
∑

p∈P i
j
xip−yj+ȳj and gi = 1−

∑
p∈P i xip. Modify the multi-

pliers λj = λj+αgj and µi = µi+αgi, where α = β(0.1×zLRP (λ, µ))/(
∑

j∈M g2
j +∑

i∈I g
2
i).

Step 2c. Set iterDA = iterDA + 1. If after 2 consecutive iterations, z̄LRP (λ, µ) has

not improved, halve β (i.e. β = 0.5 × β). If iterDA = MaxitDA(= 10) or

β < βmin(= 0.0001), stop. Otherwise, return to Step 2a.

Step 3. Generate new columns. Generate, for each subproblem i ∈ I (3.26), the column with

minimum reduced cost ci∗. Define P ∗ the set of columns such that the reduced cost

ci∗ < −0.1.

Step 4. Stopping criteria. If P ∗ = ∅ or iter = Maxit, stop. Otherwise, update P = P ∪ P ∗

and return to Step 2.

We remark that z̄LRP (λ, µ) is a valid lower bound for problem (RMP), but it is not valid

for the complete master problem. However, a valid lower bound is given by the Lagrangian

dual bound (see Desrosiers and Lübbecke (2005)):

∑
j∈M

bjuj +
∑
i∈I

(ci∗ + vi) ≤ z∗. (3.54)

where we recall that ci∗ is the minimum reduced costs obtained solving the subproblem

(SP i) during one iteration of CG, and z∗ the optimal value of the linear relaxation of the

master problem.

Chapter 3. Dual Ascent Heuristic 59

3.5 Classical Lagrangian relaxation

In this section we show how classical Lagrangian relaxation can be employed to solve problem

(P), and it will be compared to the proposed DA.

The problem (P) can be also solved by applying the Lagrangian relaxation to the com-

pact formulation, by dualizing exactly the coverage constraints (3.7), which are the linking

constraints in the DW decomposition. The resulting subproblems are the same, and the

columns generated by the Lagrangian subproblems can be added to the reduced master

problem (Huisman et al. (2005)). The Lagrangian relaxation has the following formulation:

(CLR(λ)) zCLR(λ) = min c>x̃+ c>y + c>ȳ + λ>(b− Ãx̃− y + ȳ)

s.t. x̃ ∈ X,
y, ȳ ≥ 0.

We remark that problem (CLR(λ)) is unbounded if the Lagrangian cost vector c − λ or

c + λ has at least one negative component. Therefore, we assume that both vectors are

positive. As a consequence, in the optimal solution, vectors z and t are equal to 0. The

resulting Lagrangian problem decomposes into p subproblems, one for each k ∈ K, due to

the assumption that X is decomposable:

(CLRi(λ)) ziCLR(λ) = min ci>x̃i − λ>Ãix̃i (3.55)

s.t. x̃i ∈ Xi.

We can see that the subproblem (3.26) of the DW decomposition and the subproblem

of the Lagrangian relaxation (3.55) are identical, except for the constant term vi in the

objective function. Solution of the Lagrangian dual problem z̄CLR = maxλ zCLR(λ) gives

the maximum lower bound.

3.6 Applications

In this paragraph we show two problems whose DW decomposition leads to a particular

case of (RMP). The first is the multi-activity tour scheduling problem. The second is the

minimum sum coloring problem that consists in minimizing the sum of the cardinality of

subsets of vertices receiving the same color, weighted with the index of the color, while

ensuring that adjacent vertices receive different colors. These two applications do not con-

sider together set partitioning, covering, packing and generalized set partitioning. For this

reason, we generated further instances involving all four types of constraints.

Chapter 3. Dual Ascent Heuristic 60

3.6.1 Multi-activity tour scheduling

The DW decomposition of the multi-activity tour scheduling problem has been presented in

Section 2.2. We can note that problem (2.69)-(2.73) is modeled as generalized set partition-

ing problem with convexity constraints. Indeed, the linking constraints (2.70) are expressed

in a generalized set partitioning form since both under and over coverage are allowed, while

(2.71) are the convexity constraints. According to the notation of this chapter, the extended

formulation appears as follows:

min
∑
i∈I

∑
p∈P i

cipx
i
p +

∑
j∈M

cjyj +
∑
j∈M

cj ȳj (3.56)

s.t.
∑
i∈I

∑
p∈P i

j

xip + y
j
− ȳj = bj , ∀j ∈M, (3.57)

∑
p∈P i

xip = 1, ∀i ∈ I, (3.58)

xip{0, 1}, ∀p ∈ P i, ∀i ∈ I, (3.59)

y
j
, ȳj ≥ 0, ∀j ∈M, (3.60)

where P i contains feasible schedules of employee i and P ij ⊆ P i is the set of schedules in

which employee i works during period j. Problem (3.56)-(3.60) assigns a feasible schedule

to each employee (3.58), in order to cover the demand (3.57) while minimizing the total

costs of the planning (3.56). By replacing constraints (3.59) with the following ones:

xip ≥ 0, ∀p ∈ P i, ∀i ∈ I, (3.61)

we obtain the linear relaxation of (3.56)-(3.60). The resulting problem is a particular case

of (RMP). The subproblems, one for each employee i, generate new schedules:

min
∑
j∈M

(cij − uj) x̃ij − vi (3.62)

s.t. x̃i ∈ Xi, (3.63)

where Xi is the set of feasible schedules for employee i, and variables u and v denote the

duals associated with constraints (3.57) and (3.58).

3.6.2 Minimum sum coloring

In the minimum sum coloring problem, we are given an undirected graph G = (M,E) with

|M | = m vertices and |E| edges. A coloring C of G is a partition of M into k stable sets

C = {M1, . . . ,Mk}, where all the vertices in M i are colored with the same color i. The sum

coloring of C is given by the sum
∑

i=1,...,k(i · |M i|). The minimum sum coloring problem

consists of finding a coloring C that minimizes its sum coloring. Furini et al. (2018) introduce

directly an extended formulation for this problem, without using DW decomposition. The

model uses binary variables xip associated with each stable set p and each color i and appears

Chapter 3. Dual Ascent Heuristic 61

as follows:

min
∑
i∈I

∑
p∈P i

cipx
i
p (3.64)

s.t.
∑
i∈I

∑
p∈P i

j

xip ≥ 1, ∀j ∈M, (3.65)

∑
p∈P i

xip ≤ 1, ∀i ∈ I, (3.66)

xip ∈ {0, 1}, ∀p ∈ P i,∀i ∈ I, (3.67)

where P i contains the stable sets colored with color i, P ij ⊆ P i contains the stable sets

covering vertex j, and cip = i · |M i
p| is the cost of stable set p colored with color i. Constraints

(3.65) impose each vertex j to be contained in at least one stable set, while constraints (3.66)

impose each color i to be assigned to at most one stable set. The objective function (3.64)

aims at finding a solution with the lowest sum coloring. We remark that constraints (3.66)

can be rewritten using equalities, if we consider the empty stable set for each color i. By

replacing constraints (3.67) with the following ones:

xip ≥ 0, ∀p ∈ P i, ∀i ∈ I, (3.68)

we obtain the linear relaxation of problem (3.64)-(3.67), which is a particular case of (RMP).

It is sufficient to set all components of c equal to zero, and all components of c equal to a

sufficient large positive number. The RMP (3.64)-(3.68) combines stable sets in order to

cover all vertices, while the subproblems define as follows, one for each color i, generate new

stable sets:

min
∑
j∈M

i x̃ij −
∑
j∈M

uj x̃
i
j − vk (3.69)

s.t. x̃ij + x̃ij′ ≤ 1, ∀(j, j′) ∈ E, (3.70)

x̃ij ∈ {0, 1}, ∀j ∈M, (3.71)

where u denotes the dual variables associated with coverage constraints (3.65), while v

denotes the dual variables associated with constraints (3.66). By changing the sign of all

coefficients and the sense of the objective function, each subproblem becomes a maximum

weight stable set problem on graph G, where the weight of each vertex j ∈M is defined as

uj − i.

3.7 Computational results

We present some computational results to show the performance of the dual ascent heuristic,

by solving the linear relaxations of the problems presented above using CG. The LP solver

used for the reduced master problem is CPLEX 12.7. Then, we combine it with the dual

ascent heuristic previously presented, which is used during the first iterations of column

Chapter 3. Dual Ascent Heuristic 62

generation. To be more precise, the dual ascent heuristic is used first and it stops as

soon as the minimum reduced cost is greater than −0.1. The goal is to exploit the rapid

decrease of the lower bound gap of the dual ascent heuristic, in order to speed up the

convergence of the column generation. Finally, analogously to the dual ascent heuristic, we

combine CPLEX with the classical Lagrangian relaxation. Experiments on the minimum

sum coloring instances and on the generated instances presented above have been performed

on a Intel Xeon E5-2650 v3 (2,3GHz), 64 GB of RAM (only one core is used), while an Intel

Core i7-3770 CPU at 3,40GHz has been used for the experiments on the multi-activity tour

scheduling problem.

3.7.1 Instances

The instances that have been used for testing the proposed approach are presented in the

following paragraph. In particular, for the two applications, it was easy and possible to

identify them. Moreover, we describe and report the algorithm used to generate the new

complete instances.

Multi-activity tour scheduling instances. The multi-activity tour scheduling instances

have been generated from real ones, given by the company Horizontal Software. The in-

stances used for these tests are not the ones presented in Section 1.4. The reason relies on

the fact that the set of instances Real are characterized by a considerable computational

effort for solving the subproblems, as it will be shown in the next chapter. In order to

evaluate the efficiency of DA, we decided to generate instances where the resolution of the

subproblems does not affect strongly the total computational time of CG. The time horizon

is fixed to one day and slots have time units of 1 hour or 30 minutes, resulting in instances

with 24 and 48 slots. The instances consider 7 different activities, and 33 or 66 employees.

They differ also in workload requirements, which are inspired by realistic demand coming

from fast food restaurant chains. We consider 6 workload types named in alphabetic order,

from A to F, with increasing demand. Instances are labeled with the format S E W, where

S, E and W represent the number of slots, the number of employees and the workload type

respectively.

Minimum sum coloring instances. We perform computational experiments on 43

benchmark instances, which are frequently used to evaluate the performance of minimum

sum coloring algorithms (Jin et al. (2017)). These instances come from the COLOR 2002-

2004 competitions1.

Generated instances. We aim at further proving the validity of our approach by doing

supplementary tests on more complete and diverse instances, involving set partitioning,

covering, packing and generalized set partitioning constraints. They have been generated

combining one instance from the covering data set ({rail507, rail516, rail582}), with one

1http://mat.gsia.cmu.edu/COLOR02/

http://mat.gsia.cmu.edu/COLOR02/

Chapter 3. Dual Ascent Heuristic 63

instance from the partitioning data set ({sppaa01, sppaa02, sppaa03, sppaa05, sppaa06,

sppus03, sppus04}). These data sets are available at the Beasley’s OR-Library2. More in

details, we proceeded as follows:

• we consider one instance I1 (m1 × n1) from the set covering data set and one I2

(m2 × n2) from the set partitioning data set;

• for each instance I1 and I2, we add a number of convexity constraints corresponding

to 22% of the total number of rows. Therefore i1 = 0.22 ·m1, i2 = 0.22 ·m2 and the

total number of convexity rows is |I| = i1 + i2;

• for each instance I1 and I2, each column has been duplicated respectively i1 and i2

times, and assigned to the different convexity rows;

• half randomly chosen rows M1
1 from the set covering instance I1 are defined as general-

ized set partitioning constraints, while the other halfM2
1 is kept as covering constraints.

Analogously, half randomly chosen rows M1
2 from the set partitioning instance I2 are

defined as packing constraints while the other half M2
2 is kept as partitioning con-

straints;

• all columns costs cj are equal either to 1 or to 2. The under and over assignment

costs for the generalized set partitioning constraints are equal to 10. This means that

cj = cj = 10 for all j ∈ M1
1 . All other under and over assignment costs are defined

equal to 0 or to a large positive number (given by the sum of all columns’ costs)

depending whether they correspond to a partitioning, covering or packing constraints.

3.7.2 Algorithmic details

We provide here some details on the methods used to solve the subproblems, together with

the techniques employed to speed up the convergence of the column generation.

Multi-activity tour scheduling problem The subproblems are solved with the method

that will be presented in Chapter 4.

Minimum sum coloring problem The subproblems (3.69)-(3.71) are modeled as max-

imum weight stable set problems and are solved using the open-source implementation3 of

the B&B algorithm described in Held et al. (2012). In order to speed up the convergence

of the CG, we apply a technique proposed by Furini et al. (2018): as soon as no negative

reduced cost stable set is found for a color i such that the corresponding constraint is not

active (< 1), then no subproblem h > i is solved, due to the fact that no color h > i can

generate stable sets with negative reduced costs. This technique cannot be applied when

the RMP is solved with the dual ascent heuristic, since no primal solution is produced.

2http://people.brunel.ac.uk/~mastjjb/jeb/info.html
3https://github.com/heldstephan/exactcolors

http://people.brunel.ac.uk/~mastjjb/jeb/info.html
https://github.com/heldstephan/exactcolors

Chapter 3. Dual Ascent Heuristic 64

Therefore, we apply a different procedure for speeding up the convergence of CG: as soon

as no negative reduced cost stable set is found for color i such that the corresponding dual

variable vi = 0, we do not solve all the subproblems with color h > i such that vh = 0.

Generated instances Concerning the generated instances, we initialize the RMP select-

ing only a subset of the whole set of columns. In order to guarantee that a feasible initial

solution satisfying all generalized set partitioning constraints exists, further columns with

high costs are added. The subproblems consist simply in pricing out the remaining columns

and selecting the one with the most negative reduced cost.

3.7.3 Discussion of the results

Tables 3.1, 3.2 and 3.3 compare the two described methods DA and CLR with the standard

commercial software CPLEX.

For the minimum sum coloring problem, we report the name of the instance, the number

of vertices n, the number of edges m and the density d = 2m/n(n− 1) of the graph, which

gives an idea of the number of edges compared to the maximum number of edges that the

graph can potentially have. The computational results show, for all three methods, the

number of iterations (iter) of CG, the final number of columns in the RMP (cols) and

the total computational time (time) in seconds. Instances unsolved within one hour time

limit are marked with ”tl” and ”-”. The results on the minimum sum coloring reported

in Table 3.1, prove that CLR fails in solving 15 instances, while CPLEX fails in two of

them. Furthermore, bold time values indicate that 31 instances are solved using DA in

lower computational time compared to CPLEX. Finally, the average values on the last row,

underline that DA needs lower number of iterations and computational time to converge.

It also generates in average one third of the columns generated by CPLEX. The results on

the multi-activity tour scheduling problem and on the generated instances in Table 3.2 and

Table 3.3, confirm that DA improves the computational time, since for most of the instances

the solving time is lower compared to CPLEX.

These experiments show us that the dual ascent heuristic presented in Section 3.4, embedded

in a CG framework, improves the computational time for the majority of the instances.

Indeed, CPLEX needs more than 55% of the time employed by DA on the minimum sum

coloring, more than 35% on the multi-activity tour scheduling, and more than 42% on the

generated instances. This is also supported by the fact that lower and upper bound gaps

decrease faster when the dual ascent heuristic is employed in the first iterations.

We analyse in Figure 3.1, 3.2 and 3.3 the evolution of the lower bound gap, the upper

bound gap and dual variables oscillations during the CG procedure. It is well known that

the use of simplex method in CG causes several drawbacks, such as the dual oscillations

and the tailing-off effect (Vanderbeck (2005)). Several stabilization techniques have been

proposed to deal with these issues. Among them, we find smoothing techniques, where

dual solutions used for pricing are corrected and combined with previous duals. Every time

the reduced master problem is solved using CPLEX, we apply the smoothing technique

Chapter 3. Dual Ascent Heuristic 65

Instances DA CPLEX CLR

name n m d LB iter cols time(s) iter cols time(s) iter cols time(s)

2-Insertions 3 37 72 0.11 62 87 273 0.1 102 828 0.2 308 936 0.3
3-Insertions 3 56 110 0.07 92 151 487 0.8 205 2022 1.1 323 996 1.3
anna 138 493 0.05 276 929 3953 70.7 989 10584 103.4 623 5040 35.5
david 87 406 0.11 237 169 1200 2.9 194 2844 3.6 407 3655 7.3
DSJC125.1 125 736 0.09 314 201 1100 3211.6 320 5601 3390.7 346 1773 2976.4
DSJC125.5 125 3891 0.50 978 140 2391 55.0 166 7143 42.6 471 7258 151.7
DSJC125.9 125 6961 0.90 2500 143 5627 8.5 136 9242 9.0 631 22260 35.6
DSJC250.5 250 15668 0.50 3105 225 6690 2827.9 362 29301 2974.0 - - tl
DSJC250.9 250 27897 0.90 8235 301 18114 217.5 304 38305 265.2 - - tl
DSJR500.1c 500 121275 0.97 16234 273 31349 466.5 399 82380 877.7 - - tl
games120 120 638 0.09 443 104 1087 1434.7 142 4529 972.3 - - tl
huck 74 301 0.11 243 78 663 0.7 111 1836 0.9 504 4281 3.8
jean 80 254 0.08 217 120 868 0.9 192 2158 2.0 428 3411 4.1
miles1000 128 3216 0.40 1666 81 2808 7.8 103 5574 10.0 562 18002 81.0
miles1500 128 5198 0.64 3354 88 4764 4.8 60 5916 5.9 797 38954 63.9
miles250 128 387 0.05 325 258 1950 352.4 336 5700 242.3 353 2566 554.7
miles500 128 1170 0.14 705 103 1745 41.3 143 4635 34.9 455 7590 213.4
miles750 128 2113 0.26 1173 82 2381 6.9 107 4922 9.1 502 12165 73.8
mug100 1 100 166 0.03 202 167 859 1735.4 244 4036 2353.2 - - tl
mug100 25 100 166 0.03 202 163 761 2971.9 254 4015 1716.5 - - tl
mug88 1 88 146 0.04 178 130 628 308.9 206 3179 389.6 335 1055 1494.2
mug88 25 88 146 0.04 178 156 964 151.1 197 3257 199.7 324 1055 632.1
mulsol.i.1 197 3925 0.20 1957 281 7433 46.9 2140 23950 669.9 - - tl
mulsol.i.2 188 3885 0.22 1191 2708 9417 910.0 1832 24879 908.1 - - tl
mulsol.i.3 184 3916 0.23 1187 946 5806 185.4 1667 23425 725.5 - - tl
mulsol.i.4 185 3946 0.23 1189 342 4436 45.3 1505 23186 625.1 - - tl
mulsol.i.5 186 3973 0.23 1160 1839 9367 514.1 1622 23460 709.6 - - tl
myciel3 11 20 0.36 21 23 61 0.0 19 74 0.0 257 774 0.0
myciel4 23 71 0.28 44 36 127 0.0 38 278 0.0 308 1131 0.1
myciel5 47 236 0.22 88 88 382 0.2 99 1197 0.4 280 1103 0.6
myciel6 95 755 0.17 176 173 901 1.7 265 3932 3.8 345 1442 2.7
myciel7 191 2360 0.13 349 580 3332 47.2 858 13482 115.9 422 2139 23.2
queen10 10 100 1470 0.30 550 146 1807 130.2 178 5175 105.5 540 5284 515.5
queen11 11 121 1980 0.27 726 157 2155 721.1 199 7366 641.3 566 5877 3213.4
queen5 5 25 160 0.53 75 50 283 0.1 41 364 0.1 297 1594 0.1
queen6 6 36 290 0.46 138 47 376 0.1 46 643 0.2 321 2347 0.6
queen7 7 49 476 0.40 196 62 564 0.5 84 1430 0.8 464 3132 2.5
queen8 12 96 1368 0.30 624 90 1333 52.2 107 4140 45.3 421 4406 427.4
queen8 8 64 728 0.36 291 75 797 2.2 84 2090 1.7 388 3321 12.7
queen9 9 81 1056 0.33 405 115 1271 13.5 146 3443 15.7 - - tl
zeroin.i.1 211 4100 0.19 1822 272 11617 47.2 3535 30763 2091.3 - - tl
zeroin.i.2 211 3541 0.16 1004 387 7295 46.7 - - tl - - tl
zeroin.i.3 206 3540 0.17 998 267 6590 36.4 - - tl - - tl

Average 309 5953 488.9 489 14375 759.6 427 5840 1548.4

Table 3.1: Results for minimum sum coloring problem with time limit 3600 seconds.

proposed by Neame (1999). The dual variables (ut, vt) used to generate new columns are

obtained by taking a linear combination of the dual variables (ut−1, vt−1) of the previous

iteration and the optimal dual solution (u∗t, v∗t) of the current restricted master problem.

The subproblems are then solved using the smoothed duals. However, solving this modified

subproblem might not yield a negative reduced cost column, even when one exists for the

optimal duals. This situation is the result of a mis-pricing. In this case, the subproblem is

solved again with a convex combination stepping closer to (u∗t, v∗t). In practice, it would

be better to update the smoothed duals such that (ut, vt) = (u∗t, v∗t) after a small number

of mis-pricing iterations. For this reason, we apply the scheme proposed by Pessoa et al.

(2017), where the convex combination parameter is reduced during a mis-pricing sequence.

Figures 3.1, 3.2 and 3.3 present three graphics where: on the left, they show the behavior

of the gap between the lower bound (3.54) and the optimal value z∗ of the master problem.

In the middle, they show the behavior of the gap between the upper bound, given by the

Chapter 3. Dual Ascent Heuristic 66

Instances
DA CPLEX CLR

iter cols time(s) iter cols time(s) iter cols time(s)

24 33 A 33 1084 2.9 40 1678 3.3 198 6826 14.2
24 33 B 36 980 3.2 37 1607 3.2 156 5039 11.9
24 33 C 35 1016 3.2 39 1709 3.3 167 5636 12.4
24 66 A 29 1772 2.8 43 3554 3.9 208 14312 15.0
24 66 B 43 1036 4.3 51 4138 4.8 193 13444 13.8
24 66 C 48 1174 4.9 41 3550 4.1 202 14044 14.9
24 66 D 25 2174 2.5 46 3824 4.3 238 16364 18.9
24 66 E 41 2032 4.1 41 3550 4.0 170 11272 14.0
24 66 F 31 2098 3.2 31 2890 3.0 80 4672 7.2
48 33 A 56 1557 19.6 86 3306 31.2 232 8124 75.8
48 33 B 71 1615 25.3 76 3034 27.4 230 5971 80.5
48 33 C 58 1628 22.0 78 3080 30.0 183 5753 61.9
48 66 A 48 3378 19.0 86 6612 32.1 198 14004 64.1
48 66 B 49 2900 19.2 83 6530 32.2 212 14120 70.2
48 66 C 53 3256 20.7 81 6358 30.9 232 16324 74.6
48 66 D 51 3460 20.3 89 6826 34.5 233 15868 76.6
48 66 E 75 3312 33.1 85 6678 35.0 208 12222 76.1
48 66 F 55 3256 22.2 71 5698 27.3 198 12100 70.9

Average 46 2096 12.9 61 4145 17.5 196 10894 42.9

Table 3.2: Results for multi-activity tour scheduling problem.

Instances
DA CPLEX CLR

iter cols time(s) iter cols time(s) iter cols time(s)

rail507 sppaa01 1099 268506 1190.1 1276 295902 1652.5 1126 296636 1177.8
rail507 sppaa02 780 144495 650.4 733 149499 683.4 654 145064 52269
rail507 sppaa03 962 246043 959.5 1321 307713 1528.2 1110 313128 1072.5
rail507 sppaa05 1060 254513 1022.2 1192 275412 1507.4 1152 277445 1080.0
rail507 sppaa06 934 195915 756.3 1017 210849 1171.9 995 227171 850.4
rail507 sppus03 609 67991 431.3 565 63886 541.4 589 66385 400.1
rail507 sppus04 649 75780 529.5 598 74178 510.9 653 79657 524.9
rail516 sppaa01 1037 249011 855.2 1357 311959 1241.8 1294 307295 1112.9
rail516 sppaa02 512 105526 332.3 647 140314 460.8 856 156552 493.7
rail516 sppaa03 966 236608 770.7 1306 298856 1392.5 1252 295032 954.8
rail516 sppaa05 966 231800 766.2 1283 300056 1294.2 1176 283701 913.3
rail516 sppaa06 786 173239 547.1 1033 218254 896.5 973 233490 711.4
rail516 sppus03 536 60639 365.0 565 65108 399.5 581 66523 391.4
rail516 sppus04 515 61854 324.5 509 66783 340.6 597 74838 357.4
rail582 sppaa01 854 245416 958.0 1103 306578 1436.3 1347 323769 1372.6
rail582 sppaa02 681 154775 618.5 828 199207 734.6 910 203656 822.8
rail582 sppaa03 949 253826 1004.0 1299 341777 1616.7 1286 351219 1368.5
rail582 sppaa05 879 238048 921.9 1143 295174 1358.1 1222 323971 1266.4
rail582 sppaa06 779 192349 760.4 1018 253960 1055.4 1313 273858 1197.3
rail582 sppus03 574 73645 532.2 675 87840 685.2 701 90531 642.9
rail582 sppus04 642 85719 591.8 761 107934 706.9 764 107239 691.9

Average 798 172176 708.9 963 208154 1010.2 978 214150 853.6

Table 3.3: Results for the generated instances.

Chapter 3. Dual Ascent Heuristic 67

optimal value of the reduced master problem, and the optimal value z∗. On the right, they

show the distance between the dual variables at an intermediate iteration t, (ut, vt), and the

final dual solution (u∗, v∗).

0 30 60 90 120 150

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Iterations

G
a
p
L
B
(%

)

0 50 100 150

0

100

200

300

400

500

600

700

800

900

1000

Example

0 30 60 90 120 150

0

2

4

6

8

10

12

14

16

18

20

22

24

26

28

30

Iterations

G
a
p
U
B
(%

)

0 50 100 150

0

5

10

15

20

25

30

35

Example

0 30 60 90 120 150

0

0.25

0.5

0.75

1

1.25

1.5

1.75

Iterations

O
sc

il
la
ti
o
n
s

CPLEX

CLR

DA

0 20 40 60 80 100

0

0.5

1

1.5

2

2.5

Example

Figure 3.1: Lower bound gap, upper bound gap and dual variables oscillations for mini-
mum sum coloring problem

0 30 60 90 120 150

0

50

100

150

200

250

300

350

400

450

500

550

600

650

Iterations

G
a
p
L
B
(%

)

0 50 100 150

0

100

200

300

400

500

600

700

800

900

1000

Example

0 30 60 90 120 150

0

5

10

15

20

25

30

35

40

45

50

55

60

65

70

75

Iterations

G
a
p
U
B
(%

)

0 50 100 150

0

10

20

30

40

50

60

70

Example

0 30 60 90 120 150

0

0.25

0.5

0.75

1

1.25

1.5

Iterations

O
sc

il
la
ti
o
n
s

CPLEX

CLR

DA

0 20 40 60 80 100

0

0.1

0.2

0.3

0.4

0.5

0.6

Example

Figure 3.2: Lower bound gap, upper bound gap and dual variables oscillations for multi-
activity tour scheduling problem

We can see for the three test problems that DA allows to decrease significantly the lower

and upper bounds gaps during the first iterations of CG, yielding to a faster convergence

compare with CLR and CPLEX. Algorithm CLR is competitive with DA in decreasing

the lower bound gap, while the upper bound gap improves slowly. This behavior can be

explained by the quality of the generated columns. Indeed, the dual variables estimated by

DA allow the generation of good quality columns and a faster decrease of the upper bound

gap. Furthermore, the dual variables generated are more stable compared to CPLEX. This

Chapter 3. Dual Ascent Heuristic 68

0 500 1000 1500 2000 2500

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Iterations

lo
g
1
0
(G

a
p
L
B
(%

))

0 500 1000 1500

-4

-3

-2

-1

0

1

2

3

4

5

6

7

Example

0 300 600 900 1200 1500

0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

150

Iterations

G
a
p
U
B
(%

)

0 500 1000 1500

0

20

40

60

80

100

120

140

160

Example

0 100 200 300 400 500 600 700

0

1

2

3

4

5

6

Iterations

O
sc

il
la
ti
o
n
s

CPLEX

CLR

DA

0 250 500 750

0

1

2

3

Example

Figure 3.3: Lower bound gap, upper bound gap and dual variables oscillations for the
generated instances

0 20 40 60 80 100 120 140 160 180

-2800

-2400

-2000

-1600

-1200

-800

-400

0

400

800

CPLEX

CLR

DA

Figure 3.4: Lower and upper bounds for instance queen10 10.

behavior is marked in Figure 3.4, where we select one of the minimum sum coloring instance

(queen10 10) and we show the evolution of the lower and upper bounds for DA, CPLEX

and CLR. It is evident that the dual ascent heuristic helps to close faster the gap between

the bounds. Moreover, it reduce the oscillations of the lower bounds.

3.8 Conclusions

This chapter describes a new dual ascent heuristic, based on parametric and Lagrangian

relaxations, to obtain efficient dual feasible solutions of the generalized set partitioning

problem with convexity constraints. The proposed method is able to deal with partitioning,

Chapter 3. Dual Ascent Heuristic 69

covering, packing constraints and more general versions with right hand side different from

one, together with under and over coverage variables. The computational experiments have

been carried out on three different problem sets: the multi-activity tour scheduling, the

minimum sum coloring, and some generated instances. The results indicate that the dual

ascent heuristic is efficient and it can be integrated with methods based on simplex LP

solver to speed up the convergence of CG.

The dual ascent heuristic will be embedded in a CG generation framework used to solve

the multi-activity tour scheduling problem addressed in this thesis. In Chapter 4 we will

present the resolution method employed to solve the pricing problem.

Chapter 4

Pricing Problem

This chapter describes how we can model and build feasible schedules to be assigned to the

employees. We use regular language to model the complex constraints and we detail the

algorithm employed to define feasible schedules. The proposed method models and solves

the pricing problem in three phases, that reflect the layered structure of the schedule.

The construction of feasible schedules has been tackled in the literature with different meth-

ods. We find for instance MIP models (Côté et al. (2011b)), dynamic programming (Gérard

et al. (2016)), context-free language (Côté et al. (2013) and Restrepo et al. (2016)). In

this chapter we focus on regular language and dynamic programming. The first is used to

construct feasible daily shifts, while the second is employed to build feasible schedules. A

regular grammar is defined by a deterministic finite automaton (DFA), an easy and flexible

tools able to capture the complex rules arising in multi-activity tour scheduling problems.

Côté et al. (2011a) and Quimper and Rousseau (2009) have shown that context-free lan-

guage is superior to regular language in defining daily shift rules. However, the method

developed in this chapter builds daily shifts in two phases, and each phase employs an au-

tomaton that captures the corresponding rules. By doing so, we are able to limit the size of

the extended graphs associated to the automata. In addition, preliminary experiments have

shown that most of the computational effort is not employed to build the daily shifts, but in

the construction of the complete schedules, which is done using dynamic programming. The

use of DFAs does not seem to be a deficiency of the method presented in this chapter. For

this reason and for their flexibility and easy handling, we decided to use DFAs to capture

daily shifts rules.

The chapter is organized as follows: Section 4.1 introduces the basis of the theory of au-

tomata. Section 4.2 presents the model for timeslots, the daily shifts and schedules. The

solving method is detailed in Section 4.3, while Section 4.5 shows extensive computational

results. Conclusions are presented in Section 4.6.

70

Chapter 4. Pricing Problem 71

4.1 Preliminaries

This section introduces the tools required for modeling feasible schedules. We recall the

notions of deterministic finite automaton and regular languages. The interested reader is

referred to Hopcroft et al. (2006) for further details.

4.1.1 Basic concepts

The theory of automata relies on three main concepts: the alphabet, the strings and the

language. In the following we introduce the definitions of these terms.

Alphabet. The alphabet is a finite, nonempty set of symbols, conventionally denoted with

the symbol Σ. For example, a common alphabet is Σ = {0, 1}, the binary alphabet.

String. A string (also called word) is a finite sequence of symbols chosen from an alphabet.

For example, 101010 is a string from the binary alphabet. The string with zero occurrences

of symbols is called empty string and it is denoted ε. The length of a string w is defined

as the number of positions for symbols in the string and it is commonly denoted |w|. For

instance, the string 101010 has length 6.

Language. Given an alphabet Σ, we define Σk as the set of strings of length k, each of

whose symbol is in Σ. For example, if Σ is the binary alphabet, then Σ0 = {ε}, Σ1 = {0, 1},
Σ2 = {00, 01, 10, 11} and so on. The set of all strings over an alphabet Σ is denoted Σ∗

and is defined as Σ∗ =
⋃
k∈N Σk. We can now give the definition of a language: if Σ is an

alphabet, and L ⊆ Σ∗, then L is a language over Σ.

4.1.2 Deterministic finite automata

We introduce the formalism of a deterministic finite automaton, which is at the heart of the

model of the scheduling rules. A deterministic finite automaton (DFA) consists of a five-

tuple A = (Q,Σ, δ, q0, F), where A is the name of the DFA, Q is a finite set of states, Σ is

an alphabet containing the input symbols, δ : Q×Σ→ Q is a transition function that takes

as arguments a state and an input symbol and returns a state, q0 ∈ Q is the initial state,

and F ⊆ Q a set of final or accepting states. Defining a DFA by means of a five-tuple is not

the only possible way. Indeed, there are two other notations for DFA presented in following

two paragraphs: the transition diagram and the transition table. However, five-tuples and

the transition diagrams will be used to describe DFAs all along this chapter.

Transition Diagrams. A transition diagram for a DFA A = (Q,Σ, δ, q0, F) is defined as

a graph where for each state in Q there is a node. Then, for each state q ∈ Q and each

symbol a ∈ Σ, if δ(q, a) = p there is an arc from node q to node p, labeled a. An arrow

Chapter 4. Pricing Problem 72

A = (Q,Σ, δ, q0, F)

Q = {q0, q1, q2}
Σ = {0, 1}
F = {q1}
δ(q0, 0) = q2

δ(q0, 1) = q0

δ(q1, 0) = q1

δ(q1, 1) = q1

δ(q2, 0) = q2

δ(q2, 1) = q1

(a) Five-tuple

q0

q2

q1

Start

1

0

0,1

0

1

(b) Transition diagram

0 1

→ q0 q2 q0

*q1 q1 q1

q2 q2 q1

(c) Transition table

Figure 4.1: Notations for a DFA (Hopcroft et al. (2006)).

labeled Start goes into the start node q0. Finally, nodes corresponding to final states are

marked by a double circle, while all the other states have a single circle.

Transition Tables. A transition table is a tabular representation of the function δ. The

rows of the table correspond to the states, while the columns correspond to the symbols of

the alphabet. The entry of row q and column a is the state δ(q, a).

Example 4.1. In Figure 4.1 we show the three different notations for the DFA accepting

only the strings of 0’s and 1’s that have the sequence 01 somewhere.

The definition of a DFA formally states that there is a transition for any state on any

input symbol, to exactly one state. However, it may be more convenient to design the

DFA without some transitions, making such automaton a nondeterministic finite automaton

(NFA). Indeed, an NFA is represented essentially like a DFA, with the only difference on

the value returned by the transition function δ: a single state in the case of a DFA and a

set of states in the case of an NFA (see Hopcroft et al. (2006)). Notice that the set of states

the δ returns can be a singleton or the empty set. If we convert this NFA to a DFA, the

automaton looks almost the same, but it includes one additional state, called dead state,

and some additional arcs. Therefore, it is commonly accepted in literature to refer to an

automaton as a DFA if it has at most one transition out of any state on any symbol, rather

than if it has exactly one transition.

4.1.3 Extended transition function

We define an extended transition function δ̂ that describes what happens when we start in

any state and follow any sequence of input symbols. δ̂ : Q × Σ∗ → Q takes a state q and

a string w and returns a state p. It is constructed from a transition function δ and it is

defined by induction on the length of the input string w:

• the base step considers the empty string ε and defines δ̂(q, ε) = q;

Chapter 4. Pricing Problem 73

• the inductive step considers a generic string w of the form xa, where a is the last symbol

of w and x is the substring without the last symbol. Then, δ̂(q, w) = δ(δ̂(q, x), a).

4.1.4 Regular language

After this introduction on DFA, we are now able to give the definition of regular language.

Regular language, and therefore DFA, are the tools used all along this chapter to capture the

complex rules arising from the multi-activity tour scheduling problem and to build feasible

schedules. First, let us define the language of a DFA A = (Q,Σ, δ, q0, F). This language

is denoted L(A) and it is stated as L(A) = {w | δ̂(q0, w) ∈ F}. That is, the language of

A is the set of strings w that take the initial state q0 to one of the final states. If a given

language L is L(A) for some DFA A, then L is called a regular language.

4.2 Model

This section shows how regular languages can be used to model feasible schedules. We recall

that a schedule is feasible if it satisfies all the rules stated in Section 1.2. Defining a DFA

that consider at once the constraints describing a complete schedule, would generate an

automaton with a very large number of states. Therefore, following the approach proposed

by Gérard et al. (2016), we decide to decompose the problem of generating new schedules

into subproblems. To be more precise, we first build feasible timeslots, then we combine

timeslots with breaks and interruptions to get feasible daily shifts. Finally, daily shifts are

combined into schedules. Gérard et al. (2016) develop a nested dynamic programming to

solve the pricing problems. Their method decomposes the schedule into four levels: task,

timeslot, daily shift and schedule. They solve the subproblems starting from the inner

level (task), and going up to the outer level (schedule). We consider a similar hierarchical

decomposition, but we use different resolution method based on constraint and dynamic

programming at each level. In addition, besides break, we consider another type of pause

which consists of the interruption. In the following we introduce the models used to define

a feasible timeslot, a feasible daily shift and a feasible schedule.

4.2.1 DFA for timeslots

A timeslot is a sequence of activities performed consecutively without any break or inter-

ruption. Thus, the constraints defining its feasibility concern the following:

• employee’s skills;

• employee’s availability;

• forbidden succession of activities;

• minimum and maximum duration of activities;

• minimum and maximum consecutive working hours.

Chapter 4. Pricing Problem 74

The DFA A accepting all feasible timeslots (strings) can be formally specified by defining

the components of the five-tuple A = (Q,Σ, δ, q0, F). First, its input alphabet Σ contains

the different activities that the employee can perform, considering the skills. The state set

Q contains the initial state q0 and, for each activity a, it contains one state qda, where d

represents the duration and goes from 1 to ua. We recall that ua is the upper bound on

the consecutive performance of activity a. The transition function δ is defined as follows:

δ(q0, a) = q1
a, meaning that the timeslot can start with any activity; δ(qda, a) = qd+1

a for

every d from 1 to ua − 1 in order to allow activity a to be performed until and no longer

its maximum duration; δ(qda1 , a2) = q1
a2 for all d from la1 to ua1 , and for all activities a2

different from a1 that can be performed after a1. This type of transition states that activity

a2 can start after activity a1, as soon as a1 has been done for at least its minimum duration

la1 . The set of final states F consists of all states qda for all d from la to ua, meaning that

the timeslot can terminate when the last activity performed satisfies the minimum and the

maximum duration bounds.

The DFA A defined above captures the constraints concerning the employee’s skills and

availabilities, the succession between activities and their minimum and maximum durations.

Therefore, A accepts all the timeslots satisfying these rules, including those violating the

minimum and the maximum consecutive working hours. However, all the strings recognized

by A, whose length is between the minimum and the maximum consecutive working hours,

are feasible timeslots.

Example 4.2. Let us consider timeslots with duration between 6 slots and 8 slots and three

activities, denoted a1, a2 and a3. The duration of these activities has to be respectively in

the intervals [3, 4], [2, 2] and [2, 3]. Activity a1 cannot follow a3 and a3 cannot follow a1,

while the other sequences of activities are allowed. The automaton A = (Q,Σ, δ, q0, F) is

defined as follows:

• Q = {q0, q
1
a1 , q

2
a1 , q

3
a1 , q

4
a1 , q

1
a2 , q

2
a2 , q

1
a3 , q

2
a3 , q

3
a3} is the set of states;

• q0 = 0 is the initial state;

• F = {q3
a1 , q

4
a1 , q

2
a2 , q

2
a3 , q

3
a3} is the set of final states;

• Σ = {a1, a2, a3} is the alphabet;

• δ is the transition function defined above.

We do not give the definition of transition function δ because the detailed description is hard

to read. Figure 4.2 shows the transition diagram which is easily readable.

Strings recognized by A with length equal to 6, 7 or 8 represent timeslots satisfying all the

constraints. For readability, we avoid labeling all arcs and we assign color red, blue and

green to arcs with label respectively a1, a2 and a3.

4.2.2 DFA for daily shifts

A daily shift consists of a sequence of timeslots separated by breaks and/or interruptions.

The constraints defining its feasibility concern the following:

Chapter 4. Pricing Problem 75

q0 q1
a2 q2

a2

q1
a1 q2

a1 q3
a1 q4

a1

q1
a3 q2

a3 q3
a3

Start

a1

a2

a3

Figure 4.2: DFA for timeslots.

• number of breaks;

• number of interruptions;

• minimum and maximum duration of the break;

• minimum and maximum duration of the interruption;

• minimum and maximum daily working hours;

• minimum and maximum amplitude of the working day.

The configurations describing a feasible daily shift are limited to one, two or three timeslots

divided by a pause (break or interruption). Therefore, we can list all the configurations

within which a feasible daily shift falls:

(C1) timeslot (w);

(C2) timeslot + break + timeslot (wbw);

(C3) timeslot + interruption + timeslot (wiw);

(C4) timeslot + break + timeslot + interruption + timeslot (wbwiw);

(C5) timeslot + interruption + timeslot + break + timeslot (wiwbw);

(C6) timeslot + break + timeslot + break + timeslot (wbwbw);

(C7) timeslot + interruption + timeslot + interruption + timeslot (wiwiw);

It may be convenient to consider only a subset of configurations, since the legal constraints

can forbid some of them. For instance, if the maximum number of interruptions per day is

equal to 1, then configuration (C7) has to be deleted. Again, if we decide to consider daily

shifts with only one or two timeslots, all configurations from (C4) to (C7) can be deleted.

Therefore, three main DFA, based on the number of timeslots, can be built.

4.2.2.1 One timeslot.

The configuration considered is (C1), and the DFA A = (Q,Σ, δ, q0, F) describing all feasible

daily shifts is simple to define. The input alphabet Σ contains only the work activity, denoted

w. The state set Q contains the initial state q0 and one state qdw, for all d going from lcw
to ucw, where d represents the duration of the timeslot, and lcw and ucw are respectively

the minimum and the maximum bounds on the consecutive working hours. The transition

function δ is defined as follows: δ(q0, w) = qdw, where d = lcw, states that a daily shift has to

Chapter 4. Pricing Problem 76

start with a timeslot of at least minimum duration, while δ(qdw, w) = qd+1
w , for all d from lcw

to ucw− 1, states that the timeslot can have a duration between its minimum and maximum

bounds. The set of final states F consists of all states qdw.

Example 4.3. Let us consider daily shifts with only one timeslot, whose duration is between

6 and 8 slots. The automaton A = (Q,Σ, δ, q0, F) is defined as follows:

• Q = {q0, q
6
w, q

7
w, q

8
w} is the set of states;

• Σ = {w} is the alphabet;

• δ is the transition function defined above;

• q0 is the initial state;

• F = {q6
w, q

7
w, q

8
w} is the set of final states.

The transition diagram for the DFA accepting the feasible daily shifts with only one timeslot

is defined in Figure 4.3.

q0 q7
w

q6
w

q8
w

Start

w

Figure 4.3: DFA for daily shift with one timeslot.

4.2.2.2 Two timeslots.

The configurations considered are (C2) and (C3). The DFA A = (Q,Σ, δ, q0, F) describing

all feasible daily shifts is defined by taking an input alphabet Σ that contains the work

activity w, the break b and the interruption i. The state set Q contains the initial state q0;

states qdw1
and qdw2

represent the two timeslots, for all d from lcw to ucw; state qdb represents the

break, for all d from lb to ub; state qdi represents the interruption, for all d from lc to uc. The

transition function δ is defined as follows: δ(q0, w) = qdw1
, for d equal to lcw, states that the

daily shift must start with a timeslot of at least minimum duration; δ(qdw1
, w) = qd+1

w1
and

δ(qdw2
, w) = qd+1

w2
, for d going from lcw to ucw− 1, δ(qdb , b) = qd+1

b , for d going from lb to ub− 1

and δ(qdi , i) = qd+1
i , for d going from lc to uc− 1, state that the timeslots, the break and the

interruption have a duration between the corresponding minimum and maximum bounds;

δ(qdww1, b) = qdbb (resp. δ(qdww1, i) = qdii), for dw going from lcw to ucw and db equal to lb (resp.

di equal to lc), imposes that a break (resp. interruption) can be assigned after a timeslot

whose duration is between its minimum and maximum bounds; finally, δ(qdbb , w) = qdww2
(resp.

δ(qdii , w) = qdww2
), for db going from lb to ub (resp. di going from lc to uc) and dw equal to lcw,

state that the second timeslot has to be assigned after a break (resp. an interruption). The

set of final states F consists of qdw2
for all d going from lcw to ucw.

Chapter 4. Pricing Problem 77

Example 4.4. Let us consider daily shifts with two timeslots whose duration is between 6

and 8 slots. Furthermore, the break has a fixed duration of 1 slot, while the interruption has

a duration between 2 and 3 slots. The automaton A = (Q,Σ, δ, q0, F) is defined as follows:

• Q = {q0, q
6
w1
, q7
w1
, q8
w1
, q6
w2
, q7
w2
, q8
w2
q1
b , q

2
i , q

3
i } is the set of states;

• Σ = {w, b, i} is the alphabet;

• δ is the transition function defined above;

• q0 is the initial state;

• F = {q6
w2
, q7
w2
, q8
w2
} is the set of final states.

The transition diagram for the DFA accepting the feasible daily shifts with two timeslots is

defined in Figure 4.4.

q0 q7
w1

q6
w1

q8
w1

q1
b

q2
i

q3
i

q6
w2

q7
w2

q8
w2

Start

w

b

i

Figure 4.4: DFA for daily shift with two timeslots.

We remark that configuration (C1) can be easily integrated by adding, to the set of final

states F , the states qdw1
for all d going from lcw to ucw. In Example 4.4, we would have the

F = {q6
w1
, q7
w1
, q8
w1
, q6
w2
, q7
w2
, q8
w2
}.

4.2.2.3 Three timeslots.

The configurations considered are (C4), (C5), (C6) and (C7). The DFA A = (Q,Σ, δ, q0, F)

describing all feasible daily shifts extends the DFA with two timeslots defined in Sec-

tion 4.2.2.2. The input alphabet Σ contains the work activity w, the break b and the

interruption i. The state set Q contains the initial state q0; states qdw1
, qdw2

and qdw3
repre-

sent the three timeslots, for all d from lcw to ucw; states qdb1 and qdb2 represents the two breaks,

for all d from lb to ub; states qdi1 and qdi2 represent the two interruptions, for all d from lc to uc.

The transition function δ is defined as follows: δ(q0, w) = qdw1
, for d equal to lcw, states that

the daily shift must start with a timeslot; the timeslots, the breaks and the interruptions

have a duration between the corresponding minimum and maximum bounds, imposed by

the transitions δ(qdw1
, w) = qd+1

w1
, δ(qdw2

, w) = qd+1
w2

and δ(qdw2
, w) = qd+1

w2
, for d going from lcw

to ucw − 1, δ(qdb1 , b) = qd+1
b1

and δ(qdb2 , b) = qd+1
b2

, for d going from lb to ub− 1, δ(qdi1 , i) = qd+1
i1

Chapter 4. Pricing Problem 78

and δ(qdi2 , i) = qd+1
i2

, for d going from lc to uc − 1; δ(qdww1
, b) = qdbb1 and δ(qdww2

, b) = qdbb2 (resp.

δ(qdww1
, i) = qdii1 and δ(qdww2

, i) = qdii2), for dw going from lcw to ucw and db equal to lb (resp.

di equal to lc), impose that a break (resp. interruption) can be assigned after a timeslot

whose duration is between its minimum and maximum bounds; finally, δ(qdbb1 , w) = qdww2
and

δ(qdbb2 , w) = qdww3
(resp. δ(qdii1 , w) = qdww2

and δ(qdii2 , w) = qdww3
), for db going from lb to ub (resp.

di going from lc to uc) and dw equal to lcw, state that the second and third timeslots have to

be assigned after a break (resp. an interruption). The set of final states F consists of qdw3

for all d going from lcw to ucw.

Example 4.5. Let us consider daily shifts with three timeslots whose duration is between 6

and 8 slots. Furthermore, the break has a fixed duration of 1 slot, while the interruption has

a duration between 2 and 3 slots. The automaton A = (Q,Σ, δ, q0, F) is defined as follows:

• Q = {q0, q
6
w1
, q7
w1
, q8
w1
, q6
w2
, q7
w2
, q8
w2
q6
w3
, q7
w3
, q8
w3
, q1
b1
, q1
b2
, q2
i1
, q3
i1
, q2
i2
, q3
i2
} is the set of states;

• Σ = {w, b, i} is the alphabet;

• δ is the transition function defined above;

• q0 is the initial state;

• F = {q6
w3
, q7
w3
, q8
w3
} is the set of final states.

The transition diagram for the DFA accepting the feasible daily shifts with three timeslots is

defined in Figure 4.5.

q0 q7
w1

q6
w1

q8
w1

q1
b1

q2
i1

q3
i1

q6
w2

q7
w2

q8
w2

q1
b2

q2
i1

q3
i1

q6
w3

q7
w3

q8
w3

Start

w

b

i

Figure 4.5: DFA for daily shift with three timeslots.

As previous, we remark that configuration (C1) can be easily integrated by adding the states

qdw1
, for all d going from lcw to ucw, to the set of final states F . Furthermore, configurations

(C2) and (C3) can be integrated by adding states qdw2
, for all d going from lcw to ucw. We have

already seen that the legal constraints may exclude some possible configurations for a daily

shift. For instance, suppose that the feasible daily shifts contain three timeslots, but the

maximum number of breaks and the maximum number of interruptions are both equal to 1.

This means that configurations (C6) and (C7) are not feasible. The DFA previously defined

(see the example in Figure 4.5) does not reject strings of type wbwbw and wiwiw. To this

purpose, states qdw2
need to be duplicated in order to keep track if the second timeslot has

Chapter 4. Pricing Problem 79

started after a break or an interruption. We do not redefine the DFA A, but we show in

Figure 4.6 how this restriction can be applied to Example 4.5:

q0 q7
w1

q6
w1

q8
w1

q1
b1

q2
i1

q3
i1

q7
w2,1

q8
w2,1

q6
w2,1

q6
w2,2

q7
w2,2

q8
w2,2

q3
i2

q2
i2

q1
b2

q6
w3

q7
w3

q8
w3

Start

w

b

i

Figure 4.6: DFA for daily shift with three timeslots.

Remark. All DFA defined in Section 4.2.2 accept not only feasible daily shifts, but also

daily shifts not satisfying the constraint on the amplitude of the working day. This is due

to the fact that the transition δ(q0, w) = qdw1
, with d equal to lcw, means that the daily

shift starts with a timeslot of minimum duration lcw. Analogously, this happens with the

transition to a break δ(qdw1
, b) = qdbb1 , with db equal to lb, and the transition to an interruption

δ(qdw1
, i) = qdii1 , with di equal to lc. As consequence, a string of length 5, does not correspond

to a daily shift of 5 slots. For instance, let us consider the DFA in Figure 4.6, the string

wwbwiw has length 6 but it does not describe a daily shift with amplitude 6 slots. Indeed,

this daily shift consists of three timeslots of respectively 7, 6 and 6 slots, divided by a break

of 1 slot and an interruption of 2 slots. Therefore, its total amplitude is 22 slots. Similarly,

the DFA does not capture the constraint on the total daily working hours. Therefore, the

DFA defined in this section can capture the constraints on the number and the duration of

both breaks and interruptions, but not the constraints on the amplitude of the working day

and the total daily working hours. Section 4.3 will show how to integrate them.

4.2.3 Directed acyclic graph for schedules

A schedule consists of a sequence of daily shifts and days-off covering the whole time hori-

zon, fixed to one week in our problem. The constraints defining its feasibility concern the

following:

Chapter 4. Pricing Problem 80

• minimum and maximum weekly working hours;

• minimum and maximum number of daily shifts;

• minimum and maximum consecutive daily shifts;

• rest between two consecutive daily shifts.

We make use of a directed acyclic graph (DAG) G = (V,E) to build feasible schedules, where

V and E are respectively the set of nodes and the set of arcs. G is a layered graph where

each layer corresponds to a single day d, and contains one node vdw for each feasible daily

shift w (working day) associated to day d. Furthermore, each layer contains one node vdr
for the day-off r (rest day). Finally, V contains two additional nodes: the source s and the

sink t. The set of arcs is divided into four types: arcs (s, v1
w) (resp. (s, r1)) going from the

source node to a daily shift (resp. day-off) node of the first day; arcs (v7
w, t) (resp. (r7, t))

going from a daily shift (resp. day-off) node of the last day to the sink node; arcs (rd, vd+1
w)

and (vdw, r
d+1) connecting a day-off with daily shift of two consecutive days; arcs (vdw, v

d+1
w′)

connecting two consecutive daily shifts. While the first three types of arcs exist for all daily

shifts w, the last type exists only for tuples (w,w′) such that the constraint concerning the

rest of two consecutive daily shifts is satisfied.

v1
1

v1
2

v1
3

...

r1

Mon

s

v2
1

v2
2

v2
3

...

r2

Tue

v3
1

v3
2

v3
3

...

r3

Wed

v4
1

v4
2

v4
3

...

r4

Thu

v5
1

v5
2

v5
3

...

r5

Fri

v6
1

v6
2

v6
3

...

r6

Sat

v7
1

v7
2

v7
3

...

r7

Sun

t

Figure 4.7: DAG to build schedules.

A path from the source node s to the sink node t is a schedule satisfying certainly the rest

between two consecutive daily shifts, but there is no guarantee that all other constraints are

satisfied. Section 4.3 will show how to integrate them.

4.3 Solving Method

This section describes the method used to solve the pricing problem in a CG algorithm,

which consists in determining the schedule with the minimum reduced cost. Basically, the

Chapter 4. Pricing Problem 81

method reflects the layered structure of a schedule, constructing a new one in three phases.

It combines activities to build feasible timeslots (phase 1). Then, it uses timeslots, breaks

and interruptions to create feasible daily shifts (phase 2). Finally, it combines daily shifts

and days-off to have a complete feasible schedule (phase 3). Before giving any details, we

recall the concept of expanded graph, which is obtained from a DFA and allows to find strings

recognized by the DFA.

4.3.1 Expanded graph

The concept of the expanded graph was first introduced by Pesant (2004), where the author

defined the regular language membership constraint. A regular(x,A) constraint is defined

by means of a DFA A = (Q,Σ, δ, q0, F), describing the regular language to which a sequence

x of finite-domain variables must belong. Automaton A is unfolded into a layered directed

graph, called expanded graph (Quimper and Rousseau (2009)), where n + 1 nodes qi, with

0 ≤ i ≤ n, are created for each state q ∈ Q. Each node belongs to a different layer N i, and

arcs only appear between consecutive layers, making the graph acyclic by construction. For

each transition δ(q, a) = p, an arc (qi, pi+1) labeled a is added to the graph, for 0 ≤ i < n.

Finally, all nodes and arcs which are not on a path connecting q0
0 with a final state qn, where

q ∈ F , are removed. The expanded graph has the property that paths from the first to the

last layer are in one-to-one correspondence with a string recognized by the DFA A.

Example 4.6. Let us consider the automaton defined in Example 4.1. For readability, we

avoid labeling all arcs of the expanded graph and we assign color red to arcs with label 1 and

color blue to arcs with label 0. Figure 4.8 shows the corresponding expanded graph for n = 4.

q0
0

q0
1

q0
2

N0

q1
0

q1
1

q1
2

N1

q2
0

q2
1

q2
2

N2

q3
0

q3
1

q3
2

N3

q4
0

q4
1

q4
2

N4

1

0

Figure 4.8: Expanded graph for the DFA in Figure 4.1.

We remark that nodes and arcs which are not on a path connecting q0
0 and q4

1 are removed

from the expanded graph. Furthermore, every path connecting these two nodes corresponds to

a string recognized by the automaton in Figure 4.1. For instance, the path (q0
0, q

1
0, q

2
2, q

3
2, q

4
1)

coincides with the string 1001, accepted by the automaton since it contains the sequence 01.

We might need to find a particular path between all paths, of length n, accepted by a DFA

A. For instance, suppose that every transition δ(q, a) = p of A has a given cost caq . Then,

the associated expanded graph presents cost caq on all arcs linking nodes corresponding to

Chapter 4. Pricing Problem 82

states q and p on two consecutive layers, that is (qi, pi+1), for 0 ≤ i < n. The string of

length n, accepted by A with the minimum cost, corresponds to the path with minimum cost

between all the paths connecting node q0
0 in the first layer, with one of the final nodes in the

last layer. For instance, let us consider again the DFA in Figure 4.1 and the corresponding

expanded graph in Figure 4.8. Suppose that every transition with symbol 1 has cost 5 and

every transition with symbol 0 has cost 10. Therefore, all red arcs of the expanded graph

have cost 5, while all blue arcs have cost 10. The string of length 4 with minimum cost

accepted by the automaton, coincides with the shortest path from node q0
0 to node q4

1. The

minimum cost is 25 and one of the shortest path is (q0
0, q

1
0, q

2
0, q

3
2, q

4
1), which corresponds

to string 1101. We mention Demassey et al. (2006), who extended the regular constraint

to the cost-regular constraint in order to accept only strings whose costs fall within an

interval. We will see that we cannot apply the filtering algorithm proposed by the authors,

to reduce the size of the expanded graph.

The model presented in Section 4.2 exploits DFA to capture the rules describing feasible

timeslots and daily shifts. In the following, we will make use of the associated expanded

graph to build, in practice, timeslots and daily shifts.

4.3.2 Phase 1: build timeslots

The first phase combines activities in order to build feasible timeslots. A timeslot is feasible if

its duration (length) falls within the minimum lcw and the maximum ucw consecutive working

hours bounds, if it covers slots where the employee is available, and if it is accepted by the

DFA defined in Section 4.2.1. In order to define such timeslot, we build the expanded graph

as explained in Section 4.3.1, fixing n equal to ucw. For simplicity, we add further nodes

ti, called sink nodes, for each layer N i, with lcw ≤ i ≤ ucw. Furthermore, for each layer

N i, we add arcs from every terminal node qi, with q ∈ F , to the sink node ti. In doing

so, the shortest path from node q0
0 to node tlcw corresponds to the minimum cost timeslot

with duration lcw. The costs to assign to the arcs of the expanded graph are given by dual

variables of the reduced master problem (RMP) (2.74)-(2.78).

In this first phase, we build the timeslot with minimum cost for each starting slot and for

each duration that is feasible for the consecutive working hour constraint. The starting

slots are selected to be able to complete a timeslot of minimum duration lcw within each day.

Furthermore, only timeslots that cover slots where the employee is available are generated.

Remark. The filtering algorithm proposed by Demassey et al. (2006) for the cost-regular

constraints cannot be applied here, since we do not know the interval within which the cost

of the shortest path falls. We need to find a timeslot for each starting slot and duration,

and its cost can be either positive or negative. We cannot keep only the negative timeslots

since positive timeslots may be used to build the final optimal schedule.

Example 4.7. Let us consider the automaton defined in Example 4.2. Figure 4.9 shows

the corresponding expanded graph for lcw = 4 and ucw = 6. For readability, in the figure we

avoid writing the index of the layer to which nodes correspond. The costs to assign to the

Chapter 4. Pricing Problem 83

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N0

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N1

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N2

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N3

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N4

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N5

q0

q1
a1

q2
a1

q3
a1

q4
a1

q1
a2

q2
a2

q1
a3

q2
a3

q3
a3

N6

t4 t5 t6

Figure 4.9: Expanded graph for the DFA in Figure 4.2

arcs are given by the dual variables of the reduced master problem. Suppose that we want

to build the minimum cost timeslot starting at slot j. Thus, arc (q0, q
1
a1) has a cost equal to

the dual variable −uja1 of problem (2.79)-(2.81), corresponding to the workload constraint

in the reduced master problem related to activity a1 and slot j. The minimum cost timeslot

starting at j with duration 4, is the shortest path from node q0 to node t4.

4.3.3 Phase 2: build daily shifts

The second phase combines timeslots, breaks and interruptions to build feasible daily shifts.

A daily shift is feasible if:

• it satisfies the bounds on the daily working hours;

• it satisfies the bounds on the amplitude of the working day;

• it is accepted by one of the DFA defined in Section 4.2.2.

We recall that this DFA capture the constraints on the number and the duration of both

breaks and interruptions, but not the constraints on the amplitude of the working day and

the total daily working hours. In order to define such a feasible daily shift, we first build the

Chapter 4. Pricing Problem 84

associated expanded graph as explained in Section 4.3.1. Unfortunately, we do not know, a

priori, the value of n, that is the number of layers in the expanded graph. Indeed, the length

of a string does not coincide with the amplitude of the working day. Therefore, layers of the

expanded graph do not correspond to slots, as for the timeslots. However, we note that all

the DFAs describing a daily shift are acyclic and n cannot be greater than the longest path

between all paths connecting the initial state q0 with one of the final state. For instance, in

Example 4.5, the number of layers is not greater than 13, which corresponds to the length

of the longest path from state q0 and q8
w3

.

Concerning the sink nodes, we might need to add a sink for each layer N i for 1 ≤ i ≤ n, due

to the fact that the constraints on the amplitude are missing or they are loose. Therefore,

we add all sink nodes and, through a post-processing, we remove some of them. More in

details, a sink node ti can be deleted if the daily shift with the minimum (resp. maximum)

amplitude reaching node ti exceed the maximum (resp. minimum) bound on the amplitude.

This is done by assigning to every arc its contribution in terms of slots. For instance, let

us consider again Example 4.5, the arc of the extended graph linking node q0 in layer N0

with node q6
w1

in layer N1 has cost 6, while the one linking q6
w1

and q7
w1

has cost 1. The

shortest and longest paths are evaluated from node q0 in the first layer to all sink nodes, and

the infeasible ones are removed. However, paths reaching the remaining sink nodes are not

guaranteed to satisfy the bounds on the amplitude, and, in addition, they are not necessary

feasible for the constraint on the daily working hours. For this reason, feasible daily shifts

do not coincide simply with paths but with resource constrained paths, where the resources

concern the amplitude and the working hours.

In this second phase, we build the daily shift with minimum cost for each starting slot,

for each amplitude and for each working hours. To find such daily shifts, we implement a

label algorithm (see Irnich and Desaulniers (2005)), where paths are characterized by the

consumption of resources, in addition to their costs. More in detail, each path p is associated

to a label Lp defined as vector

Lp = (Cp,Wp, Ap),

where Cp is the cost of path p, Wp and Ap are the resources concerning respectively the

total daily working hours and the amplitude of the daily shift. The algorithm is applied

several times, one for every starting slot selected in order to be able to complete a daily

shift of minimum length. Every time a starting slot is selected, the expanded graph does

not change, but the costs on the arcs are updated and the label algorithm is applied. The

cost of the arcs is given by the cost of the corresponding timeslots found during the first

phase in Section 4.3.2.

Dominance pruning. If p1 and p2 are two different paths from the source node to a

given node, with labels Lp1 and Lp2 respectively, then p1 dominates p2 if Cp1 ≤ Cp2 , Wp1 =

Wp2 and Ap1 = Ap2 . This means that path p1 dominates p2 if its cost is lower and both

resources on daily working hours and amplitude are equal. We remark that the equality on

resources Wp and Ap is necessary due to the fact that they are not only bounded from above,

but also from below. By eliminating paths through this dominance relation, the complete

Chapter 4. Pricing Problem 85

enumeration of the paths is avoided and only labels corresponding to non-dominated paths

are kept.

Remark. We want to point out that the expanded graph defined in Section 4.3.2 allows

to find feasible timeslots by solving shortest path problems. The reason lies in the fact that

each state of the DFA (Section 4.2.1) corresponds to one slot. As a consequence, the length

of each path is exactly the duration of the timeslot. This is not the case for the DFA used to

define daily shifts (Section 4.2.2), where there is no one-to-one correspondence between the

length of a path and the duration (amplitude) of the daily shift. For instance, if we consider

the DFA of Example 4.4, the strings wbw and wiw have both length 3 but they correspond

to daily shifts with amplitude respectively 13 and 14. We may ask ourself why we do not

define a DFA for daily shift such that the length of a path is the duration of the daily shift.

There are three main reasons: first, the presence of the constraint on the total daily working

hours cannot be treated by the DFA and it forces us to solve a resource constrained shortest

path problem; second, we want to reduce the size of the DFA and, consequently, the size

of the expanded graph; third, we need to find all non-dominated paths from the source to

the sink nodes, that will be used in phase 3, presented in the next paragraph, to generate

complete schedules.

4.3.4 Phase 3: build schedules

The third phase combines daily shifts and days-off to build a feasible schedule. A schedule

is feasible if:

• it satisfies the bounds on the total weekly working hours;

• it satisfies the bounds on the the number of working days;

• it satisfies the bounds on the consecutive number of daily shifts;

• it satisfies the rest between two daily shifts.

We recall that the the rest between two daily shifts is directly integrated in the DAG

defined in Section 4.2.3, since arcs on consecutive daily shifts are added only if the rest time

is satisfied. In order to guarantee that a path from the source node s to the sink node t is a

feasible schedule, we need to consider three resources concerning all other three constraints.

In this third phase, we build the schedule with minimum cost by finding the resource con-

strained shortest path. To solve this problem, we implemented a label algorithm similar to

the one in phase 2. Each path p is associated to a label Lp defined as vector

Lp = (Cp,Wp, Rp, Dp),

where Cp is the cost of path p, Wp is the total weekly working hours, Rp is the number of

working days and Dp corresponds to the consecutive working days.

Chapter 4. Pricing Problem 86

Dominance pruning. To avoid exploring all paths and to keep only non-dominated la-

bels, we define the following dominance relation: if p1 and p2 are two different paths from

the source node to a given node, with labels Lp1 and Lp2 respectively, then p1 dominates

p2 if Cp1 ≤ Cp2 , Wp1 = Wp2 , Rp1 = Rp2 and Dp1 = Dp2 . That is, path p1 dominates p2

if its cost is lower and resources on weekly working hours, number of working days and

consecutive working days are equal. As previously, the equality on resources Wp, Rp and

Dp is needed since they have both lower and upper bounds.

Bound pruning. Labels can be pruned not only by feasibility or dominance, but also by

bound (Lozano and Medaglia (2013)). Before applying the label algorithm, we evaluate an

optimistic prediction Cvk of the cost on the path from each node vk to the sink node. This

lower bound is obtained by calculating shortest paths that do not take into account the

resources consumption, but only the costs. Therefore, given a partial path p to node vk, if

Cp + Cvk ≥ 0, then path p can be discarded since it cannot produce a path with negative

cost.

Bi-directional search. We apply the bi-directional search proposed by Righini and Salani

(2006). This approach proceeds in three steps: 1) labels are extended forward from the

source node s without creating states that cover more than half of the planning horizon; 2)

similarly, labels are extended backward from the sink node t; and 3) pairs of forward and

backward labels associated with the same node are joined together to obtain a complete

path covering the whole planning horizon. Both infeasible and unpromising paths which

cannot lead to an improvement of the best reduced cost known so far, are rejected. More

precisely, before doing the feasibility test, the approach checks if the reduced cost of the

joined label improves the best reduced cost known.

Schedule cost evaluation. Given a vector defining the cost uja of performing each ac-

tivity a ∈ A in each slot j ∈ J , we are now able to evaluate the schedule of the minimum

cost. Indeed, uja is assigned to the corresponding arc in the expanded graph used to build

feasible timeslots, and the minimum cost timeslots are built. Then, the costs of the timeslots

obtained are given to the corresponding arcs of the expanded graph used to build feasible

daily shifts, and the minimum cost daily shifts are built. Finally, the costs of the daily

shifts are associated to the corresponding arcs of the DAG used to build schedules, and

the minimum cost schedule is built. In a CG algorithm, costs uja coincide with the dual

variables of the reduced master problem (RMP) (2.74)-(2.78).

4.4 Heuristics

The exact resolution of the pricing problem usually takes too much time, and it can be

computationally expensive if performed at each iteration of a CG algorithm. The most

considerable effort is required on phase 3, where daily shifts are combined with days-off

to build complete schedules. Depending on the slot time unit (15 minutes, 30 minutes, 60

Chapter 4. Pricing Problem 87

minutes, etc.) and on the tightness of the constraints bounds, the number of feasible daily

shifts per day can be very high. It might be convenient to solve the pricing problem in a fast

but heuristic way, especially during the first iterations of CG, where a negative reduced cost

column is likely to be found without much effort. The layered structure of both model and

solving method presented in the previous sections, makes the implementation of different

heuristics easy. In Section 4.4.1 we describe different strategies that concern phase 2, while

in Section 4.4.2 the strategies presented concern phase 3.

4.4.1 Starting slots selection strategy

The first strategies concern the selection of the starting slots in phase 2 (Section 4.3.3), in

order to reduce the number of daily shifts generated and the number of times that the label

algorithm presented in Section 4.3.3 is applied. The idea is to select slots that are more

likely to be good starting slots. Three different strategies are defined based on the workload

profile.

(S1) Select the slots where the workload increases. More in details, this strategy selects all

the slots with workload higher than the previous slots, including the first slots with

demand. In the example shown in Figure 4.10, blue slots are the one selected by this

strategy.

(S2) Select the slots with strategy (S1). Moreover, if two consecutive chosen slots j and j′

are distant more than ucw slots, this strategy select also slots j+ucw, j+2ucw, etc., if they

corresponds to slots with workload greater than zero. In the example in Figure 4.10,

blue and red slots are selected by this strategy. More in details, the blue ones are the

first to be identified. Then, since slots 6 and 20 are distant more than ucw = 4 slots,

also slots 10, 14 and 18 are chosen. Similarly, slots 28 and 32 are selected.

(S3) Select all slots.

2 4 6 10 14 18 20 22 24 28 32
0

1

2

3

4

5

Figure 4.10: Example of starting slot selection strategy, with ucw = 4

4.4.2 Daily shifts selection strategy

The second heuristic strategy concerns the selection of the daily shifts in phase 3, in order to

further reduce the size of the DAG presented in section Section 4.3.4. We define six different

strategies.

Chapter 4. Pricing Problem 88

(D1) Select the daily shift with the best cost, for each day and for each daily working hour

value.

(D2) Select the daily shift with the best cost, for each day, for each amplitude and for each

daily working hour value.

(D3) Select the daily shift with the best cost, for each day and each daily working hour

value as in (D1). In addition, the first daily shift, the last daily shift and the one in

the middle of the day are selected, for each day and daily working hours value. Ties

are broken selecting the daily shift with the best cost. Indeed, by selecting only the

best daily shifts, it may happen that a feasible complete schedule cannot be found due

to the constraint on the rest between working days. In order to make this less likely

to happen, this strategy selects other daily shifts that cover together the whole day.

(D4) Select the daily shift with the best cost, for each day, amplitude and daily working

hour value as in (D2). Furthermore, analogously to (D3), the first daily shift, the last

daily shift and the one in the middle of the day are selected, for each day, amplitude

and daily working hours value. As previous, the goal is to select different daily shifts

that cover the entire day.

(D5) Select the daily shift with the best cost, for each slot and for each value of daily

working hours.

(D6) Select the daily shift with the best cost for each starting slot, for each amplitude and

for each daily working hour value. This strategy consists in selecting all daily shifts.

Remark. When the starting slot selection strategy (S3) is used together with (D6), and all

feasible configurations (C1)-(C7) are considered, then the subproblem is solved to optimality.

4.5 Computational results

This section compares the performances of the different heuristics presented in Section 4.4.1,

concerning the starting slots selection in phase 2, and in Section 4.4.2, concerning the daily

shifts selection in phase 3.

Given one instance of the multi-activity tour scheduling problem, we aim at focusing on the

resolution of one pricing problem, which consists in solving a resource constrained shortest

path problem. We consider 5 different vectors, that are used to define the costs of the

objective function of the pricing problem (2.82). These vectors are not randomly generated,

but they are extracted while solving the linear relaxation of the master problem by means

of CG. By doing so, each instance of multi-activity tour scheduling results in 5 different

instances of resource constrained shortest path. Each of them is solved multiple times,

varying the configurations (C1)-(C7), the heuristics on the starting slots (S1)-(S3) and the

heuristics on the daily shifts (D1)-(D6). We are interested in evaluating the quality of the

solution obtained solving the pricing problem and the computational time needed to solve

it. Furthermore, we are interested in the number of daily shifts per day considered in each

level of the DAG used in phase 3 (see Figure 4.7). Indeed, most of the computational effort

Chapter 4. Pricing Problem 89

to find the optimal solution is employed in this last phase, where a complete schedule is

built, and the number of daily shifts considered is a crucial factor.

The algorithms are implemented in C# and computational experiments are performed on

a 64-bit Windows operating system with 977 GB of RAM and 16 processors (only one core

is used) Intel Core running at 2.00 GHz. Experiments have been done on the three sets of

instances RGR, RGR flexible and Real presented in Section 1.4.

RGR instances. The configurations that need to be considered while building feasible

daily shifts in phase 2, are (C1) with one single timeslot, and (C2) with two timeslots

divided by a break. The selection of the starting slots for the daily shifts is one of the

feature characterizing the three groups G1, G2 and G3. For this reason, we do not perform

tests varying strategies (S1)-(S3) on the selection of the starting slots. We fix it to (S3) and

we compare the heuristics concerning the selection of the daily shifts (D1)-(D6). Due to the

predefined types of daily shifts, we remark that the feasible amplitudes are 4, 6 and 9 hours

corresponding to the 4, 6 and 8 daily working hours. As a consequence, heuristics (D1) and

(D2) coincide, such as heuristics (D3) and (D4) and heuristics (D5) and (D6).

Instance (D1)-(D2) (D3)-(D4) (D5)-(D6)

name #a gap(%) t(s) #ds gap(%) t(s) #ds gap(%) t(s) #ds

20 1 7 v1 G1 1 5.6 0.11 4 1.0 0.14 12 0.0 2.46 144
20 1 7 v2 G1 1 11.1 0.13 4 5.1 0.18 12 0.0 4.57 215
25 1 7 v1 G1 1 2.6 0.12 4 0.4 0.13 12 0.0 2.42 144
25 1 7 v2 G1 1 0.0 0.14 4 0.0 0.16 12 0.0 4.62 216
40 1 7 v1 G1 1 0.0 0.11 4 0.0 0.12 12 0.0 2.41 144
40 1 7 v2 G1 1 *28.8 0.14 4 5.4 0.19 12 0.0 4.65 216

20 3 7 v1 G2 3 0.3 0.39 3 0.3 0.39 9 0.0 1.26 95
20 3 7 v2 G2 3 12.5 0.33 3 8.0 0.33 8 0.0 2.00 143
20 3 7 v3 G2 3 6.5 0.31 3 2.8 0.32 8 0.0 2.01 141

20 1 7 v1 G3 1 5.6 0.06 4 0.0 0.08 10 0.0 0.12 10
20 1 7 v2 G3 1 12.0 0.06 4 4.2 0.08 11 0.0 0.14 15
25 1 7 v1 G3 1 18.9 0.06 4 0.0 0.07 10 0.0 0.12 10
25 1 7 v2 G3 1 0.0 0.06 4 0.0 0.08 11 0.0 0.15 16
40 1 7 v1 G3 1 0.0 0.06 4 0.0 0.08 10 0.0 0.12 10
40 1 7 v2 G3 1 63.5 0.07 4 27.7 0.08 11 0.0 0.15 16
20 3 7 v1 G3 3 0.1 0.14 4 0.0 0.15 10 0.0 0.20 10
20 3 7 v2 G3 3 74.2 0.12 4 15.2 0.14 11 0.0 0.19 16
20 3 7 v3 G3 3 49.7 0.11 4 13.9 0.13 11 0.0 0.19 15
20 5 7 v1 G3 3 3.3 0.08 4 1.9 0.09 11 0.0 0.16 16
20 5 7 v2 G3 3 8.6 0.26 4 2.1 0.28 11 0.0 0.35 16

Average 15.2 0.15 4 4.4 0.16 11 0.0 1.41 80

Table 4.1: Comparison daily shifts heuristics on RGR instances with feasible configura-
tions (C1)-(C2) and starting slot selection strategy (S3).

Table 4.1 shows, in the first two columns, some information about the resource constrained

shortest path instance: the name of the multi-activity tour scheduling from which we take

the pricing problem; the number #a of activities considered in the pricing problem. Further-

more, for each daily shift selection heuristic, the table shows the optimality gap gap(%), the

computational time t(s) and the average number #ds of daily shifts per day that appears

Chapter 4. Pricing Problem 90

in the DAG of phase 3. It is important to note that #ds represents the average number

of different daily shift shells per day, without considering all the possible combinations of

activities that can be performed. For instance, two daily shifts starting at 8am and finish-

ing at 12am without any break are considered the same daily shift, even though activities

assigned on the same slots are different. Indeed, two daily shifts with the same starting

and finishing slots can not be found in phase 3, due to the dominance applied in phase 2.

We also recall that each instance of multi-activity tour scheduling results in 5 instances of

resource constrained shortest path, and each line of the table reports average values over

the 5 instances.

Strategies (D1)-(D4) select, for each day, some specific daily shifts between all the generated

ones. Therefore, they do not guarantee that a complete feasible schedule can be found. When

this happens, the gap of the single instance is set to 100 and the average value on the table

is marked with a star “*”.

The results show, as expected, that heuristics (D1)-(D2) are faster than the others, but the

gap with the optimal solution is 15.2% on average with a high standard deviation (21.6),

which measures the dispersion of the gap values. Selecting the best daily shifts for each day

and for each value of working hours results in choosing 3 or 4 daily shifts per day, depending

on the instance. As a consequence, the algorithm finds a poor quality schedule, or even it is

not able to find a feasible one, such for the instance 40 1 7 v2 G1. Concerning (D3)-(D4),

we can see that the time is comparable with the first heuristics, but the gap is improved

and it is less than one third. This is due to the fact that multiple diversified daily shifts

are selected for each day. Even if the diversification does not guarantee to find a feasible

schedule, it helps in finding one. Finally, strategies (D5)-(D6) allow to find the optimal

solution since they both select all daily shifts generated. The computational time increases

considerably for instances of groups G1 and G2, while it is comparable for instances of group

G3. This is due to their degree of flexibility. Indeed, in groups G1 and G2 daily shifts can

start in every slot of the day, while in group G3 only 5 starting slots are selected, reducing

in this way the number of feasible daily shifts

RGR flexible instances. The only configurations that can appear for a feasible daily

shifts are (C1) with one single timeslots, and (C2)-(C3) with two timeslots divided by either

a break or an interruption. This comes from the fact that timeslots have a minimum duration

of 4 hours, and the total daily working hours cannot exceed 8 hours.

We do not show the results for every possible combination of heuristics, given that the table

would be too large. For this reason, we compare the average performances of the starting slot

selection strategies in Table 4.2, and the average performances of the daily shifts selection

strategies in Table 4.3.

As previously, Table 4.2 presents the name of the instance, the number #a of activities

in the pricing problem considered, the optimality gap gap(%), the computational time t(s)

and the number #ds of daily shifts per day considered in each level of the DAG in phase

3. The values indicate the average obtained by varying the daily shifts selection strategies

(D1)-(D6). The average results in the last line show that the optimality gap decreases when

Chapter 4. Pricing Problem 91

Instance (S1) (S2) (S3)

name #a gap(%) t(s) #ds gap(%) t(s) #ds gap(%) t(s) #ds

20 1 7 v1 G4 1 6.5 1.17 46 4.5 1.63 54 0.9 113.46 356
20 1 7 v2 G4 1 10.7 1.20 45 6.8 1.78 59 4.2 110.97 355
20 3 7 v1 G4 3 0.3 15.59 145 0.3 18.77 155 0.2 113.80 356
20 3 7 v2 G4 3 5.9 6.32 93 7.3 8.73 108 10.4 111.92 354
20 3 7 v3 G4 3 8.9 6.44 93 7.8 8.37 107 4.2 111.51 354

Average 6.5 6.14 84 5.3 7.86 97 4.0 112.33 355

Table 4.2: Comparison starting slot heuristics on RGR flexible instances with feasible
configurations (C1)-(C3).

using (S2) instead of (S1), or (S3) instead of (S2). This can be explained by the fact that

the set of slots selected by (S1) is contained in the set selected by (S2), which is in turn

contained in the set selected by (S3). This allows to generate a higher number of daily shifts.

However, there could be a drawback in considering more slots. Indeed, we note the behavior

of instance 20 3 7 v2 G4, where the gap with (S2) is greater than the one with (S1). The

reason for this lies exactly in the fact that (S2) considers a larger set of slots, and, therefore,

the best daily shifts generated are certainly better than the ones generated by (S1). As

consequence, when strategies (D1)-(D6) select the daily shifts to be considered in each level

of the DAG in phase 3, it is not guaranteed that the best schedule found with (S2) is better

than the one of (S1). Nevertheless, we can see that in general, strategy (S2) improves the

optimality gap. Concerning the computational time, it increases as the slot strategy goes

from (S1) to (S3) since a higher number of daily shifts is generated. We remark that the

increase is considerable from (S2) to (S3), due to the fact that both strategies do the average

considering the daily shift strategy (D6). However, the combination (S3)+(D6) solves the

pricing to optimality, and it takes much more time than the combination (S2)+(D6), since

(S2) restricts the number of starting slots selected. Indeed, the first combination generates

more than 1200 daily shifts per day, while the second combination generates around 100

daily shifts per day.

We also remark that the computational time of instance 20 3 7 v1 G4 in (S2) and (S3) is

much higher compare to the computational time of the similar instances 20 3 7 v2 G4 and

20 3 7 v3 G4. The reason for this behavior lies in the fact that the number of starting

slots selected by the different strategies strongly depends on the workload profile. A higher

number of starting slots selected leads to a higher number of daily shifts generated, which

is the case of instance 20 3 7 v1 G4 (145 against 93 daily shifts generated in average).

Analogously, Table 4.3 presents the optimality gap gap(%), the computational time t(s)

and the average number #ds of daily shifts per day in the DAG of phase 3, for each daily

shifts selection strategy (D1)-(D6). The values indicate the average obtained by varying

the starting slot selection strategies (S1)-(S3). For this reason, the gaps in the last column

are not equal to zero, even though strategy (D6) is used and all daily shifts are considered

in phase 3 to generate a complete schedule. The average results in the last line show that

the gap decreases while going from strategy (D1) to strategy (D6) since a higher number

Chapter 4. Pricing Problem 92

In
st

an
ce

(D
1)

(D
2)

(D
3)

(D
4)

(D
5)

(D
6
)

n
a
m

e
#

a
ga

p
(%

)
t(

s)
#

d
s

ga
p

(%
)

t(
s)

#
d

s
ga

p
(%

)
t(

s)
#

d
s

ga
p

(%
)

t(
s)

#
d

s
ga

p
(%

)
t(

s)
#

d
s

ga
p

(%
)

t(
s)

#
d

s

20
1

7
v
1

G
4

1
5.

3
0.

78
11

3.
8

0.
90

20
4.

1
1.

39
37

3.
3

2.
43

68
3.

9
64

.4
0

29
5

3.
3

1
6
2.

62
48

0
20

1
7

v
2

G
4

1
11

.7
0.

90
11

9.
9

0.
92

20
6.

3
1.

33
36

6.
3

2.
25

66
4.

5
62

.0
1

29
9

4.
5

1
6
0.

49
48

6
20

3
7

v
1

G
4

3
0.

6
2.

32
11

0.
1

2.
40

20
0.

6
2.

84
40

0.
1

3.
79

74
0.

1
84

.0
3

45
0

0.
1

2
0
0.

94
71

6
20

3
7

v
2

G
4

3
17

.7
1.

59
11

11
.5

1.
77

20
6.

3
2.

11
38

6.
3

3.
12

70
2.

6
69

.3
4

37
3

2.
6

1
7
6.

01
59

9
20

3
7

v
3

G
4

3
12

.8
1.

62
11

10
.6

1.
63

20
7.

0
2.

13
37

6.
3

2.
92

69
2.

5
68

.2
7

37
3

2.
5

1
7
6.

06
59

8

A
v
e
ra

g
e

9
.6

1
.4

4
1
1

7
.2

1
.5

2
2
0

4
.9

1
.9

6
3
8

4
.5

2
.9

0
6
9

2
.7

6
9
.6

1
3
5
8

2
.6

1
7
5
.2

2
5
7
6

T
a
b
l
e

4
.3

:
C

om
p

ar
is

on
d

ai
ly

sh
if

ts
h

eu
ri

st
ic

s
o
n

R
G

R
fl

ex
ib

le
in

st
a
n

ce
s

w
it

h
fe

a
si

b
le

co
n

fi
g
u

ra
ti

o
n

s
(C

1
)-

(C
3
).

Chapter 4. Pricing Problem 93

of daily shifts are considered for each day, while the computational time increases for the

same reason. We remark that strategies (D3) and (D4) almost halve the gap while keeping

low computational time if compared to strategies (D5) and (D6).

Finally, Table 4.4 compares the combination of heuristics (S1)+(D1) with the combination

of heuristics (S3)+(D6). The first select the smallest subset of starting slots and the smallest

subsets of daily shifts, while the second one solves the problem to optimality.

Instance (S1)+(D1) (S3)+(D6)

name #a gap(%) t(s) #ds gap(%) t(s) #ds

20 1 7 v1 G4 1 7.6 0.35 11 0.0 481.56 1232
20 1 7 v2 G4 1 15.0 0.39 11 0.0 474.20 1232
20 3 7 v1 G4 3 0.6 1.97 11 0.0 477.69 1232
20 3 7 v2 G4 3 8.7 1.21 11 0.0 478.51 1232
20 3 7 v3 G4 3 14.9 1.09 11 0.0 478.26 1232

Average 9.4 1.00 11 0.0 478.04 1232

Table 4.4: Comparison between the heuristic (S1)+(D1) and the optimal resolution
(S3)+(D6) with configurations (C1)-(C3), on RGR flexible instances.

As expected, these results confirm that finding the optimal schedule becomes more costly

when the degree of flexibility in the problem increases. Indeed, RGR flexible instances differ

from RGR instances for a higher level of flexibility in terms of timeslot duration, amplitude

of the daily shift, pause type and pause duration. More in detail, timeslots in RGR have a

duration of either 4 hours or 6 hours, while all durations in between are feasible for RGR

flexible. Furthermore, the pause considered in RGR is a break of 1 hour, that can be placed

only between two timeslots of 4 hours. RGR flexible instances, instead, consider both break

and interruptions, which can be assigned as soon as consecutive working hours constraints

are satisfied. As consequence, the number of feasible daily shift generated each day goes

from a maximum of 216 for RGR, to 1232 for RGR flexible. The next paragraph considers

a set of instances with an even higher degree of flexibility.

Real instances. Table 4.5 compares the average performances of the configurations con-

sidered to build feasible daily shifts as explained in Section 4.2.2. Due to work regulations

on interruptions (see Section 1.2.1) that limit the number of daily interruptions at one, all

configurations (C1)-(C6) allow to build feasible daily shifts, and only (C7) can be excluded.

As in the previous tables, we report the name of the instance, the number #a of activi-

ties in the pricing problem considered, the optimality gap gap(%), the computational time

t(s) and the number of daily shifts #ds per day considered in each level of the DAG in

phase 3. Instances are grouped according the time unit, meaning that the first (second and

third) group of instances considers a time unit of 60 minutes (30 minutes and 15 minutes).

The values reported indicate the average obtained by varying both starting slots selection

strategies (S1)-(S3) and daily shifts selection strategies (D1)-(D6). Due to the high level

of flexibility, the number of feasible daily shifts generated when solving the instances with

Chapter 4. Pricing Problem 94

Instance (C1) (C1)-(C3) (C1)-(C6)

name #a gap(%) t(s) #ds gap(%) t(s) #ds gap(%) t(s) #ds

57 11 60 le 6 0.0 0.17 25 0.0 4.47 106 0.0 6.63 108
75 14 60 ll 8 0.0 0.10 19 0.0 2.97 91 0.0 4.54 104
43 15 60 lb 8 0.0 0.16 23 0.0 2.89 91 0.0 4.22 93
38 05 60 nh 5 0.0 0.14 24 0.0 2.08 80 0.0 2.82 80
23 05 60 nn 5 13.8 0.11 20 0.0 1.38 63 0.0 1.77 63

Average (60min) 2.8 0.14 22 0.0 2.76 86 0.0 3.99 90

57 11 30 le 6 0.0 1.59 59 0.0 229.30 355 0.0 745.12 389
75 14 30 ll 8 0.0 0.75 47 0.0 169.73 332 0.0 544.38 402
43 15 30 lb 8 0.0 1.42 54 0.0 251.60 375 0.0 597.38 379
38 05 30 nh 5 0.0 1.67 63 0.0 74.22 274 0.0 140.03 274
23 05 30 nn 5 13.3 1.47 55 0.0 55.61 219 0.0 124.56 219

Average (30min) 2.7 1.38 56 0.0 156.09 311 0.0 430.29 333

57 11 15 le 6 0.0 22.19 110 0.0 456.53 477 0.0 431.81 499
75 14 15 ll 8 0.0 7.78 83 0.0 220.16 405 0.0 374.95 491
43 15 15 lb 8 0.0 21.16 100 0.0 430.71 530 0.0 424.91 536
38 05 15 nh 5 0.0 27.82 130 0.0 177.31 383 0.0 204.85 395
23 05 15 nn 5 13.4 26.02 119 0.0 237.57 342 0.0 184.14 354

Average (15min) 2.7 20.99 108 0.0 304.46 427 0.0 324.13 455

Table 4.5: Comparison configurations (C1)-(C6) on Real instances.

15 minutes time unit to optimality (i.e., combining configurations (C1)-(C6) with strategies

(S3) and (D6)) was in average 15000 per day. The computational time that was exceeding

12 hours, and the algorithm was not able to solve to optimality the pricing problem. For

this reason, we decided to solve these instances reducing the number of shifts selected in

phase 3, and considering daily shifts selection strategies (D1)-(D5) (i.e., excluding (D6)).

The most remarkable observation arising from the results concerns the fact that most of

the gap values are equal to zero, except for 3 instances. This can be explained by the fact

that there are many equivalent solutions, as result of the increased degree of flexibility, and

a solution with minimal cost can be found for the different configurations. In particular,

it seems that allowing one break or one interruption per day, a sufficient level of flexibility

is introduced to be able to find an optimal solution. Indeed, all gap values are equal to

zero when the instances are solved with configurations (C1)-(C3). This will be confirmed

later in Table 5.5. We will see that allowing a higher level of flexibility with configurations

(C4)-(C6), does not bring to descrease the optimal value (cost saving).

Table 4.6 and Table 4.7 compare the average performances of the starting slots selections

strategies (S1)-(S3), and the average performances of the daily shifts selection strategies

(D1)-(D6), respectively. As previously, the tables report the name of the instance, the

number #a of activities in the pricing problem, the optimality gap gap(%), the computa-

tional time t(s) and the number #ds of daily shifts considered in each level of the DAG in

phase 3. The values reported indicate the average obtained by varying both configurations

(C1)-(C6) and daily shifts selection strategies (D1)-(D6). In Table 4.6, we remark that the

average gap values are the same for strategies (S1) and (S2). Indeed, instances 23 05 60 nn,

23 05 30 nn and 23 05 15 nn present the same gap with the two slot strategies. This is

due to the fact that the average values in each line consider also the results obtained using

Chapter 4. Pricing Problem 95

Instance (S1) (S2) (S3)

name #a gap(%) t(s) #ds gap(%) t(s) #ds gap(%) t(s) #ds

57 11 60 le 6 0.0 1.28 56 0.0 2.47 75 0.0 7.52 108
75 14 60 ll 8 0.0 0.83 50 0.0 2.19 72 0.0 4.59 93
43 15 60 lb 8 0.0 1.45 58 0.0 1.68 61 0.0 4.13 88
38 05 60 nh 5 0.0 1.01 50 0.0 1.58 61 0.0 2.44 73
23 05 60 nn 5 6.8 0.42 34 6.8 0.55 39 0.1 2.29 72

Average (60min) 1.4 1.00 50 1.4 1.69 62 0.0 4.19 87

57 11 30 le 6 0.0 29.03 151 0.0 54.43 198 0.0 892.55 454
75 14 30 ll 8 0.0 32.04 159 0.0 94.18 228 0.0 588.64 395
43 15 30 lb 8 0.0 52.70 184 0.0 61.36 198 0.0 736.32 427
38 05 30 nh 5 0.0 22.19 144 0.0 29.14 160 0.0 164.59 306
23 05 30 nn 5 6.7 8.91 95 6.7 8.88 105 0.0 163.85 294

Average (30min) 1.3 28.97 147 1.3 49.60 178 0.0 509.19 375

57 11 15 le 6 0.0 95.62 245 0.0 98.97 271 0.0 715.93 570
75 14 15 ll 8 0.0 51.81 222 0.0 64.10 262 0.0 486.99 494
43 15 15 lb 8 0.0 160.68 299 0.0 163.08 308 0.0 553.02 558
38 05 15 nh 5 0.0 57.65 225 0.0 63.70 243 0.0 288.62 441
23 05 15 nn 5 6.7 48.54 188 6.7 50.27 197 0.0 348.91 430

Average (15min) 1.3 82.86 236 1.3 88.02 256 0.0 478.69 499

Table 4.6: Comparison starting slot heuristics (S1)-(S3) on Real instances.

configuration (C1), that was the only one giving a positive gap in these specific instances

when using strategies (S1) and (S2). However, when using strategy (S3) that selects all

starting slots of the day, these gap values decrease considerably or go to 0. Besides these

three instances, all the others have gaps equal to zero. Similarly, in Table 4.7 we can see

that the gap values do not decrease by varying strategies (D1)-(D6). In other words, the

selection of the daily shifts does not affect the gap in average for these instances, unlike the

configurations considered or the slot selection strategy selected. The intuition is that there

are many equivalent solutions in these pricing problems due to the high flexibility, and even

though (D1)-(D6) select a subset of daily shifts, they allow to find an optimal solution. Slot

stratgies (S1)-(S3), instead, fix the starting slots of the daily shifts reducing the space of

feasible daily shifts, and the selected slots may be not of good quality.

Table 4.8 compares the combination of heuristics that leads to the fastest computational time

with the one that leads to the optimal or the best value. The fastest heuristic is obtained

combining (C1)+(S1)+(D1). The optimal value is obtained only for instances with 60 and

30 minutes time unit, combining ((C1)-(C6))+(S3)+(D6). As previously said, it was not

possible to solve to optimality instances with 15 minutes time unit, since the average number

of daily shifts generated per day was 15000. The best value is obtained using daily shifts

selection strategy (D5) instead of (D6), that is combining ((C1)-(C6))+(S3)+(D5). The

results underline the differences in the computational effort needed by the two combinations.

However, most of the instances are solved by the fastest heuristic with a gap equal to zero.

Chapter 4. Pricing Problem 96

In
st

a
n

ce
(D

1
)

(D
2
)

(D
3)

(D
4)

(D
5)

(D
6
)

n
a
m

e
#

a
ga

p
(%

)
t(

s)
#

d
s

g
ap

(%
)

t(
s)

#
d

s
ga

p
(%

)
t(

s)
#

d
s

ga
p

(%
)

t(
s)

#
d

s
ga

p
(%

)
t(

s)
#

d
s

g
a
p

(%
)

t(
s)

#
d

s

57
1
1

60
le

6
0.

0
0
.1

8
8

0.
0

0.
36

25
0.

0
0.

30
27

0.
0

1.
72

8
3

0.
0

1
.9

5
8
7

0
.0

1
8
.0

2
2
4
9

75
1
4

60
ll

8
0.

0
0.

1
3

7
0.

0
0.

19
21

0.
0

0.
19

21
0.

0
0.

91
66

0
.0

1.
32

8
0

0
.0

1
2
.4

7
2
3
2

43
1
5

60
lb

8
0.

0
0
.1

8
8

0.
0

0.
33

25
0.

0
0.

33
27

0.
0

1.
72

8
1

0.
0

1.
49

7
5

0
.0

1
0.

4
9

19
7

38
0
5

60
n

h
5

0.
0

0
.0

9
8

0.
0

0.
19

19
0.

0
0.

20
22

0.
0

0.
81

5
8

0.
0

1
.1

6
7
7

0
.0

7
.6

2
1
8
2

23
0
5

60
n

n
5

4.
6

0
.0

7
8

4.
6

0.
15

18
4.

6
0.

17
23

4.
6

0.
78

5
5

4.
5

0
.8

2
5
7

4
.5

4
.5

2
1
2
9

A
v
e
ra

g
e

(6
0
m

in
)

0
.9

0
.1

3
8

0
.9

0
.2

4
2
2

0
.9

0
.2

4
2
4

0
.9

1
.1

9
6
9

0
.9

1
.3

5
7
5

0
.9

1
0
.6

2
1
9
8

57
1
1

30
le

6
0.

0
1
.2

8
15

0.
0

3.
07

67
0.

0
2.

05
49

0.
0

26
.1

5
23

0
0.

0
3
1.

03
24

8
0
.0

18
8
8
.4

4
9
9
8

75
1
4

30
ll

8
0.

0
1.

0
4

13
0.

0
1.

87
58

0.
0

1.
39

42
0.

0
11

.6
5

2
01

0
.0

2
1.

37
24

4
0
.0

13
9
2
.4

0
1
0
0
5

43
1
5

30
lb

8
0.

0
1
.5

8
15

0
.0

4
.1

7
81

0.
0

2.
42

49
0.

0
34

.5
4

27
6

0.
0

22
.5

8
2
14

0
.0

1
6
3
5.

4
5

98
3

38
0
5

30
n

h
5

0.
0

0
.7

6
14

0.
0

1.
99

52
0.

0
1.

41
45

0.
0

11
.8

6
17

7
0.

0
1
8.

22
21

5
0
.0

3
9
7
.6

0
7
1
8

23
0
5

30
n

n
5

4.
4

0
.6

4
14

4.
4

1.
61

49
4.

4
1.

31
45

4.
4

9.
6
8

1
58

4
.4

14
.5

3
1
78

4
.4

3
3
5
.5

1
5
4
5

A
v
e
ra

g
e

(3
0
m

in
)

0
.9

1
.0

6
1
4

0
.9

2
.5

4
6
1

0
.9

1
.7

2
4
6

0
.9

1
8
.7

8
2
0
8

0
.9

2
1
.5

5
2
2
0

0
.9

1
1
2
9
.8

8
8
5
0

57
1
1

15
le

6
0.

0
13

.0
6

27
0.

0
4
0.

72
20

3
0.

0
17

.7
5

94
0.

0
40

5.
5
3

71
8

0.
0

1
04

0.
48

76
8

-
-

4
77

7
75

1
4

15
ll

8
0.

0
1
0.

2
6

23
0.

0
20

.6
6

17
7

0.
0

10
.3

5
81

0.
0

21
7.

71
63

1
0.

0
7
45

.8
5

71
7

-
-

4
62

1
43

1
5

15
lb

8
0.

0
16

.4
5

27
0.

0
60

.0
4

26
3

0.
0

19
.5

3
96

0.
0

74
7.

19
9
15

0
.0

61
8.

09
64

0
-

-
4
8
7
2

38
0
5

15
n

h
5

0.
0

7
.6

5
26

0.
0

2
2.

30
15

8
0.

0
11

.4
4

86
0.

0
21

3.
5
0

54
2

0.
0

4
28

.4
0

7
02

-
-

3
4
9
3

23
0
5

15
n

n
5

4.
5

6
.3

4
26

4.
5

2
2.

46
14

8
4.

5
9.

14
85

4.
5

18
1.

44
48

1
4.

5
52

6.
83

61
8

-
-

2
8
8
7

A
v
e
ra

g
e

(1
5
m

in
)

0
.9

1
0
.7

5
2
6

0
.9

3
3
.2

3
1
9
0

0
.9

1
3
.6

4
8
9

0
.9

3
5
3
.0

7
6
5
7

0
.9

6
7
1
.9

3
6
8
9

4
1
3
0

T
a
b
l
e

4
.7

:
C

om
p

a
ri

so
n

d
a
il

y
sh

if
ts

h
eu

ri
st

ic
s

(D
1
)-

(D
6
)

o
n

R
ea

l
in

st
a
n

ce
s.

Chapter 4. Pricing Problem 97

Instance (C1)+(S1)+(D1) ((C1)-(C6))+(S3)+(D6)

name #a gap(%) t(s) #ds gap(%) t(s) #ds

57 11 60 le 6 0.0 0.05 5 0.0 67.79 523
75 14 60 ll 8 0.0 0.03 4 0.0 41.30 477
43 15 60 lb 8 0.0 0.05 5 0.0 33.79 387
38 05 60 nh 5 0.0 0.02 5 0.0 19.79 312
23 05 60 nn 5 20.5 0.03 5 0.0 17.49 302

Average (60min) 4.1 0.04 5 0.0 36.0 400

((C1)-(C6))+(S3)+(D6)

57 11 30 le 6 0.0 0.17 8 0.0 12146.38 2843
75 14 30 ll 8 0.0 0.15 6 0.0 7949.96 2570
43 15 30 lb 8 0.0 0.14 8 0.0 9175.21 2532
38 05 30 nh 5 0.0 0.12 9 0.0 1819.46 1654
23 05 30 nn 5 20.0 0.12 9 0.0 1945.65 1560

Average (30min) 4.0 0.14 8 0.0 6607.33 2232

((C1)-(C6))+(S3)+(D5)

57 11 15 le 6 0.0 0.94 14 0.0 3764.84 2172
75 14 15 ll 8 0.0 0.62 10 0.0 3977.60 2148
43 15 15 lb 8 0.0 0.66 14 0.0 2201.02 1710
38 05 15 nh 5 0.0 0.69 17 0.0 1525.16 1557
23 05 15 nn 5 20.1 0.69 17 0.0 1511.85 1557

Average (15min) 4.0 0.72 14 0.0 2596.09 1829

Table 4.8: Comparison between the heuristic (C1)+(S1)+(D1) and the optimal resolution
((C1)-(C6))+(S3)+(D6) (or best resolution ((C1)-(C6))+(S3)+(D5)) on Real instances.

4.6 Conclusions

In this chapter we proposed a method to generate new schedules that minimize a given

objective function (2.82), where costs correspond to dual variables when using CG. The

proposed method models and solves the problem is three phases, that reflect the layered

structure of schedules. The first phase combines activities to build feasible timeslots. Rules

defining timeslots are modeled by means of an automaton, and shortest path problems are

solved to generate timeslots. The second phase combines timeslots, breaks and interruptions

to build feasible daily shifts. Rules are modeled by means of an automaton, and resource

constrained shortest paths problems are solved to generate daily shifts. Finally, the third

phase generates a complete schedule by combining daily shifts and days-off. Rules are

modeled with a directed acyclic graph and a resource constrained shortest path problem is

solved to generate the optimal schedule.

The high degree of flexibility in terms of timeslot duration, amplitude of the daily-shift,

pause duration and pause type forces us to develope different heuristics concerning the

selection of the starting slots in phase 2, and the selection of the daily shifts in phase 3.

Computational results have been performed on three sets of instances with an increasing

level of flexibility: instances from Restrepo et al. (2016) (RGR), a more flexible version

of these instances (RGR flexible), and real instances coming from a fast food restaurant

Chapter 4. Pricing Problem 98

chain (Real). Results show the optimality gap and the solving time obtained on average

varying configurations (C1)-(C6), starting slot selection strategies (S1)-(S3) and daily shift

selection strategies (D1)-(D6). For the RGR and RGR flexible instances, the optimality gap

deteriorates when using strategies that restrict the solution space, while the computational

time decreases. This is not the case for the Real instances, where most of the heuristic

strategies allow finding the optimal solution. This may be explained by the high number of

equivalent solutions due to the degree of flexibility that characterizes these instances.

The method proposed in this chapter is used, together with the dual ascent heuristic pre-

sented in Chapter 3, in a CG framework which solves the linear relaxation of the master

problem (2.69)-(2.73). In order to obtain integer solution, CG is embedded in a B&B pro-

cedure. The resulting B&P algorithm is presented in Chapter 5.

Chapter 5

Branch-and-Price

This chapter presents a B&P algorithm for solving the multi-activity tour scheduling prob-

lem presented in Chapter 1. The B&P method makes use of CG to solve the linear re-

laxation of the Dantzig-Wolfe decomposition (2.69)-(2.73), where the integrality constraints

xip ∈ {0, 1} are replaced by 0 ≤ xip ≤ 1. In order to find an optimal integer solution starting

from the optimal fractional solution of the linear relaxation, a branching procedure needs to

be employed besides CG. This procedure eliminates the current optimal fractional solution

and divides the solution space in two parts, without eliminating integer solutions. In addi-

tion, the branching procedure needs to be managed in the pricing problems of CG, since, at

each node of the search tree, CG is used to solve the linear relaxation of the current integer

problem. The reader can refer to introductory works like Lübbecke and Desrosiers (2005)

and Barnhart et al. (1998) to have an exhaustive insight to the subject. Three elements

are the key of a B&P algorithm: 1) a CG framework to compute the lower bound at each

node of the search tree; 2) a branching rule to choose the fractional variables to branch on;

3) a heuristic to determine an upper bound on the optimal value of the problem. The goal

of this chapter is to embed the methods proposed in Chapter 3 and Chapter 4 in a B&P

scheme. We use the dual ascent (DA) heuristic and the pricing solving method in CG, for

obtaining a lower bound on the optimal solution, and a large neighborhood search heuristic

for computing an upper bound at each node of the search tree. We use the branching rules

proposed in Section 5.2.

The chapter is organized as follows: Section 5.1 presents the framework of the CG used,

Section 5.2 details the branching rule adopted, and Section 5.3 introduces a LNS heuristic for

obtaining an upper bound on the optimal value. Finally, computational results are reported

in Section 5.4, and conclusions are drawn in Section 5.5.

5.1 Column generation

A basic component of any B&P algorithm is CG that provides a lower bound at each node of

the search tree. The use of CG is justified by the fact that the linear relaxation of the master

problem (2.69)-(2.73) presents an exponential number of variables. The CG framework in

99

Chapter 5. Branch and Price 100

the proposed B&P makes use of the DA presented in Chapter 3, that has proven to speed

up the convergence of CG and to soften the oscillations of the dual variables. We recall

that DA is based on a parametric reformulation of the reduced master problem, and it uses

the Lagrangian relaxation and the subgradient method for obtaining dual solutions in order

to generate new columns. The details on the CG scheme that employs DA are presented

in Section 3.4.3. We remark that if CG makes use only of DA, it cannot converge since

the optimal dual variables are needed to prove optimality. In order to develop an exact

B&P algorithm, we need to compute the lower bound at each node of the search tree. For

this reason, as soon as CG with DA stops, the classical CG, where an LP solver is used to

evaluate the optimal dual variables, is employed until convergence. The pricing problems

are solved with the algorithm presented in Chapter 4.

It is well known that CG suffers from several drawbacks that lead to a slow convergence of

the algorithm (Vanderbeck (2005) and Lübbecke and Desrosiers (2005)). However, different

strategies directed at speeding up CG can be adopted. These strategies are the key ele-

ments for implementing an efficient CG algorithm. Desaulniers et al. (2002) describe many

acceleration ideas in the context of specific applications such as vehicle routing and crew

scheduling. In the following we describe the techniques used in our CG.

Intensification and diversification. Instead of adding only the column with minimum

reduced cost at each iteration of CG, several columns with negative reduced cost can be

added to the reduced master problem. This generally decreases the number of CG iterations,

and it is particularly easy when the method used to solve the pricing problem allows to

compute several columns, such as label algorithm. Among the strategies that can be used to

select the columns, we find intensification and diversification (Touati-Moungla et al. (2010)).

The first selects many columns between the most negative and similar ones can be added,

while the second one has the purpose of selecting a diverse set of columns. Unfortunately,

intensification typically overloads the reduced master problem, and generates a huge number

of useless variables. Some strategies can be used to generate a smaller number. Touati-

Moungla et al. (2010) have studied the characteristics and the pertinence of the information

brought by the generated columns to the restricted master problem description. The authors

state that diversification, which consists of generating complementary columns, allows to

characterize quickly a good approximation of the feasible space of the master problem,

without increasing considerably its size.

In the CG implemented in this thesis, intensification selects the 3 columns with the lowest

negative reduced cost for each pricing problem. Diversification is performed in the third

phase of the pricing resolution method (Section 4.3.4). Recall that in this phase, daily shifts

are combined into feasible schedules using a label algorithm. We use the diversification

by resolution, which consists of computing complementary schedules, i.e., each computed

schedule contains daily shifts that do not belong to any other computed schedule. More

in detail, the first resolution finds the schedule with minimum reduced cost, then the daily

shifts covered by this schedule are deleted from the DAG, and the algorithm finds the best

schedule covering the remaining nodes. This is performed until 3 diversified schedules with

Chapter 5. Branch and Price 101

negative reduced cost are defined. The advantage of this method concerns the fact that

the generated schedules do not cover the same daily shifts. However, solving multiple times

the third phase can be costly. For this reason, diversification is applied when the pricing

problem is solved heuristically, in conjunction with the daily shifts selection heuristics that

restrict the size of the DAG in the third phase.

Diversification and intensification are combined in the CG framework as follows: diversifica-

tions is applied the first iterations (= 10) of CG to quickly characterize a good approximation

of the master problem without overloading it, then intensification is used in the remaining

iterations in order to complete the optimal basis.

Columns elimination. Generally, the proportion of columns in the optimal basis is neg-

ligeable compared to the whole columns in the master problem. To limit the size of the

reduced master problem, all variables with reduced cost that exceeding 10−12 are deleted

when the total number of columns is greater than a given threshold. Due to the vari-

ety of the instances tested, it was not easy to define a common threshold for the number

of columns kept in the reduced master problem. For this reason, we decided to set this

threshold depending on the number of rows, that is 10 times the number of rows.

Heuristic pricing. When the pricing problems require a considerable computational ef-

fort, it may not be convenient to solve them to optimality at each iteration of CG. In

addition, good negative reduced cost columns are very likely to be found with a heuristic

mostly in the first iterations of CG. For this reason, we employ the heuristic strategies

presented in Section 4.4 for selecting the starting slots in phase 2, and the daily shifts in

phase 3. The main idea consists in using, at first, the fastest heuristic that most restricts

the pricing solutions space. Then, when no more negative reduced cost columns can be

found, a less restricting strategy is selected until the exact resolution of the pricing problem

is performed. The goal is to optimally solve the pricing problem only to prove that no

more negative reduced cost columns exist and CG can terminate. Due to the variety of the

instances tested, the (increasing) heuristic strategies used are different from set to set of

instances, and will be described in the computational results.

Partial pricing. Depending on the level of employees heterogeneity (skills, availability,

contract regulations), CG can present many pricing problems. In the worst case, each

employee has specific skills, availabilities and contract regulations, and a pricing problem

taking into account these features is needed for each one. On the contrary, if all employees

are equivalent, only one pricing problem is needed. A high computational effort is required

at each iteration of CG when there is a large number of pricing problems. Furthermore,

similar schedules tend to be generated since all the subproblems use the same dual variables.

To overcome this issue, partial pricing can be used. Gamache et al. (1999) use this strategy

in the context of airline crew rostering. The idea is to solve a fixed number of pricing

problems at each iteration. They are solved one after the other until the required number of

subproblems have generated at least one negative reduced cost column each. These columns

Chapter 5. Branch and Price 102

are then added to the reduced master problem. In the next iteration of CG, the resolution

of the subproblems picks up where it left off, using the new optimal dual variables. As CG

progresses, it becomes more difficult finding the required number of subproblems generating

negative reduced cost columns, and the number of subproblems solved increases. Finally,

all the subproblems are solved until no more columns are generated.

5.2 Branching rule

Besides the CG framework, another key element of B&P is the strategy selected for branching

(Vanderbeck and Wolsey (1996), Barnhart et al. (1998)). Different strategies have been used

in the literature in the context of multi-activity tour scheduling. Gérard et al. (2016) apply

a branching rule on the original variables xija, selecting the fractional one with the value

closest to 0.5. Restrepo et al. (2016) select two employees i1 and i2 whose variables hold

the two largest fractional values. Then variable identified for i1 is fixed to 1, while employee

i2 is used for the branching. Indeed, the authors determine for i2 the two variables that

hold the largest fractional value, and they apply the branching rule suggested by Côté et al.

(2013): by comparing the schedules associated to the variables for i2, they identify the first

divergent slot j, i.e. the first slot where the two schedules are different. According to the

activities performed in j, they create a partition of the set of activities. Then, they create

two nodes: each of them ensures that i2 does not perform in slot j the activities belonging

to the associated partition. However, the fact of fixing one schedule at each node makes

their B&P heuristic, since the depth of the search tree cannot be greater than the number

of employees.

The branching strategy used in the presented B&P is the one proposed by Gérard et al.

(2016). This strategy is classically used with the goal of reducing the infeasibility at most:

• xija = 0 (branch right) forbids employee i to perform activity a in slot j;

• xija = 1 (branch left) imposes employee i to perform activity a in slot j.

Ties are broken arbitrary using the employee index i. To implement this strategy, some

modifications to the pricing problems are necessary. In the following we show how the three

phases of the pricing resolution method presented in Section 4.3 are modified for dealing

with the variable fixing.

• xija = 0:

– phase 1 : when timeslots covering slot j are generated, all arcs entering nodes

corresponding to activity a and slot j are deleted from the graph. Therefore, for

each starting slot start such that j ≥ start and j ≤ start + ucw − 1, we find the

level in the expanded graph corresponding to slot j, and for all nodes in this level

that correspond to activity a, the entering arcs are deleted. The arcs are restored

as soon as another start slot is selected. None of the timeslots covering j will

have activity a performed on j;

Chapter 5. Branch and Price 103

– phase 2 : no modifications are needed;

– phase 3 : no modifications are needed.

• xija = 1:

– phase 1 : when timeslots covering slot j are generated, all arcs entering nodes that

do not correspond to activity a and slot j are deleted from the graph. Therefore,

for each starting slot start such that j ≥ start and j ≤ start + ucw − 1, we find

the level in the expanded graph corresponding to slot j, and for all nodes in this

level that do not correspond to activity a, the entering arcs are deleted. The arcs

are restored as soon as another start slot is selected. All timeslots covering j will

have activity a performed on j;

– phase 2 : daily shifts are generated for all starting slots, for all amplitudes and

for all working hours. Starting slots j′ that do not allow to cover slot j are not

considered (either because j′ is after j, or beacuse j′ is too early and even with a

daily shift of maximum amplitude we are not able to cover j). For all the other

starting slots, since we generate daily shifts for all amplitudes and for all working

hours, some of them may not cover slot j (for instance, due to a break). These

daily shifts need to be discarded;

– phase 3 : rest nodes are deleted from the day to which slot j belongs.

The search tree is explored using a depth-first strategy.

5.3 Upper bound

Primal solutions provide upper bounds on the optimal value of the problem, and they are

used to prune the search tree and fathom nodes whose lower bounds exceed the best upper

bound found. In this section we give the main ideas of the large neighborhood search (LNS)

heuristic used to determine an integer solution at each node of the search tree. However,

the method is presented in the next part of the thesis, and we refer the reader to Section 6.1

for the details.

At each node of the search tree, CG solves the linear relaxation of the current integer problem

and evaluates an optimal fractional solution. A first integer solution can be obtained by

rounding the fractional solution, selecting the variable xip with the highest value between

all p ∈ P̃ i for each employee i ∈ I. Since it is very likely that the obtained upper bound is

far from the optimal value, an LNS heuristic is employed to improve the integer solution.

LNS heuristic has been introduced by Shaw (1998), and it improves the quality of an initial

solution by iteratively destroying (destructor operator) and repairing (constructor operator)

part of the current solution. In the proposed LNS, destroying consists in removing the

schedule associated to an employee, while repairing consists in building a new schedule that

minimizes an objective function defined on the residual demand. The details on destructor

and constructor operators are given in Section 6.1.1.1 and Section 6.1.1.2 respectively.

Chapter 5. Branch and Price 104

5.4 Computational results

This section shows the computational results of the B&P described. The algorithm has been

coded in C# and tests have been performed on a 64-bit Windows operating system with

977 GB of RAM and 16 processors (only one core is used) Intel Core running at 2.00 GHz.

CPLEX 12.7 has been used as LP solver. The B&P stops as soon as optimality is proven,

or when the total time reaches a time limit of 8 hours. Experiments have been done on the

three sets of instances RGR, RGR flexible and Real presented in Section 4.5, and compare

the performances of the B&P with the solver CPLEX 12.7 used to solve the compact MILP

model presented in Section 2.1.

We have previously said that the pricing problems are solved heuristically until negative

reduced cost columns can be generated. The idea at the basis consists in using (increasing)

heuristic strategies starting from the most restricting to the least restricting one, until the

pricing problems are solved to optimality. However, the strategies used to solve the pricing

problems are different from one set of instances to the other due to their diversity, and they

will be detailed while presenting the results for each set of instances. We recall that the

heuristic strategies concern the selection of the starting slots in phase 2 (cf. Section 4.4.1),

and the selection of the daily shifts in phase 3 (cf. Section 4.4.2). Furthermore the pricing

problem can be solved heuristically also by considering a subset of configurations used to

generate the daily shifts (cf. Section 4.2.2).

RGR instances. When solving this set of instances, CG solves heuristically the pric-

ing problems starting from the daily shift selection strategy (D1). When no columns with

negative reduced cost are found, CG uses strategy (D3). Finally, to prove optimality, strat-

egy (D6) is used. We recall that RGR instances consider predefined types of daily shifts:

four-hour shifts, six-hour shifts or eight-hour shifts with one-break in the middle. As a con-

sequence, there is a one-to-one correspondence between amplitude of the working day and

daily working hours. Therefore, heuristics (D1) and (D2) coincide, such as heuristics (D3)

and (D4), and heuristics (D5) and (D6). The selection of the starting slots is one of the

feature characterizing the three groups G1, G2 and G3 of instances RGR. For this reason,

the starting slot selection strategy is fixed to (S3), that selects all feasible slots. Finally, the

configurations used are (C1) with one timeslot, and (C2) with two timeslots divided by a

break, which are the only feasible configurations for these instances. Due to the presence

of equivalent employees, the number of pricing problems does not exceed 8, therefore no

partial pricing is applied.

Table 5.1 shows the results for the RGR instances. In particular, the first and the second

columns show the name of the instance and the corresponding lower bound found solving

the linear relaxation of the master problem (2.69)-(2.73) at the root node. The next seven

columns show the results of the B&P algorithm, that is the upper bound ub achieved, the

total computational time t(s) reported in seconds, the final optimality gap gap%, the number

of nodes #nd explored in the search tree, the time tr(s) and the gap gapr% at the root node,

and the time t1%(s) for obtaining a gap lower than 1.0%. The last three columns show the

Chapter 5. Branch and Price 105

Instance lb
B&P Compact MILP

ub t(s) gap% #nd tr(s) gapr% t1%(s) ub t(s) gap%

20 1 7 v1 G1 52080 52080 29.67 0.00 3 12.42 0.6 12.42 52410 tl 11.6
20 1 7 v2 G1 49440 49440 83.68 0.00 3 18.70 0.4 18.70 233110 tl 79.7
25 1 7 v1 G1 60560 60560 30.36 0.00 2 20.76 0.9 20.76 60560 tl 4.1
25 1 7 v2 G1 72660 72660 14.73 0.00 1 14.73 0.0 14.73 203990 tl 65.6
40 1 7 v1 G1 100410 100410 43.69 0.00 5 18.44 0.4 18.44 124380 tl 24.1
40 1 7 v2 G1 98390 98390 6422.33 0.00 75 77.00 0.8 77.00 507090 tl 81.4

20 3 7 v1 G2 52900 53170 tl 0.51 106 323.16 0.9 323.16 - tl -
20 3 7 v2 G2 60120 60120 27589.73 0.00 258 235.13 0.7 235.13 - tl -
20 3 7 v3 G2 60450 60465 tl 0.02 257 187.09 0.8 187.09 - tl -

20 1 7 v1 G3 82825 82880 tl 0.07 1596 15.95 1.0 24.30 82860 tl 0.1
20 1 7 v2 G3 64675 64840 tl 0.26 1426 26.20 1.4 53.26 65170 tl 8.8
25 1 7 v1 G3 99995 100160 tl 0.17 1332 22.64 0.7 22.64 100050 tl 0.2
25 1 7 v2 G3 72660 72660 6.45 0.00 1 6.45 0.0 6.45 72660 tl 2.8
40 1 7 v1 G3 202050 202050 37.58 0.00 8 12.61 0.2 12.61 202050 tl 1.8
40 1 7 v2 G3 117677 117840 tl 0.14 692 74.49 0.8 74.49 508410 tl 81.4
20 3 7 v1 G3 71800 72325 tl 0.73 127 329.45 0.8 329.45 - tl -
20 3 7 v2 G3 61656 61670 tl 0.02 142 346.44 2.3 7936.81 - tl -
20 3 7 v3 G3 63575 63605 tl 0.05 233 156.92 2.0 717.94 - tl -
20 5 7 v1 G3 84554 86335 tl 2.11 122 803.60 6.0 - - tl -
20 5 7 v2 G3 86915 87040 tl 0.14 131 403.44 4.9 16169.93 - tl -

Average 3806.47* 0.21 326 155.28 1.3 1381.86*

Table 5.1: Results comparison between B&P and the Compact MILP model solved with
CPLEX 12.7 on RGR instances with time limit 8 hours.

upper bound, the computational time and the gap obtained by CPLEX when solving the

compact MILP model. When the value is marked with “tl”, it means that the 8 hours time

limit has been reached, while the dash “-” means that the value is not available: on columns

ub and gap% the dash states that a feasible solution is not found within the time limit, and

on column t1%(s) it states that a solution with gap lower than 1.0% is not found within the

time limit. In addition, the asterisk “*” next to the values in the last line indicates that the

average has been evaluated on the available values.

The results show that B&P is able to prove optimality for all the instances of groups G1,

for 1 instance of group G2, and for 2 instances of group G3, with a total of 9 over 20

cases. Among these instances, we can see that for almost all the mono-activity ones, the

optimal solution is quickly found exploring a few nodes of the search tree. Only 40 1 7 v2 G1

achieved optimality after 75 nodes. Concerning the unsolved instances of groups G2 and

G3, B&P finds solutions with an optimality gap that does not exceed 0.73%, except for

20 5 7 v1 G3 where the final gap is 2.11%. In general, even though B&P does not prove

optimality for all the instances within the time limit, it is able to find high quality integer

solution. Indeed, except 20 5 7 v1 G3, in all the other instances an optimality gap lower

than 1.0% is achieved within 5 hours of computational time, and within 15 minutes for most

of the instances (17 over 20). In addition, in 16 cases the high quality solution is found

either at the root node with the LNS heuristic or exploring only a few nodes of the search

tree. Concerning the compact MILP model solved with CPLEX, we can see that none of the

instances is solved within the time limit, and solutions with an optimality gap lower than

Chapter 5. Branch and Price 106

1.0% are found only for 2 instances (20 1 7 v1 G3 and 25 1 7 v1 G3). In addition, CPLEX

fails in finding a feasible integer solution in all the instances with 3 and 5 activities.

RGR flexible instances. When solving this set of instances, CG solves heuristically the

pricing problems starting from the daily shift selection strategy (D1). When no columns

with negative reduced cost are found, CG uses strategy (D4), then (D5) and finally (D6)

to prove optimality. The need of introducing further intermediate strategies to generate

columns, comes from the fact that the exact resolution of one pricing problem takes 478.04

seconds in average (cf. Table 4.4). For this reason, we want to avoid solving many times the

pricing problems to optimality. Indeed, in all instances, strategy (D6) was used only to prove

optimality or for a few iterations. As previously, the starting slot selection strategy is fixed

to (S3), that selects all feasible slots, while the configurations considered are (C1) with one

break, and (C2) and (C3) with two timeslots divided respectively by a break and an inter-

ruption respectively. Due to the fact that these instances are generated from RGR instances

without modifying the level of employees heterogeneity, the number of pricing problems of

each instance equals the one of the corresponding RGR instances. As a consequence, CG

does not make use of partial pricing.

Instance lb
B&P Compact MILP

ub t(s) gap% #nd tr(s) gapr% t1%(s) ub t(s) gap%

20 1 7 v1 G4 47660 47760 tl 0.2 69 2190.25 0.9 2190.25 55150 tl 16.0
20 1 7 v2 G4 47440 47440 16773.14 0.0 49 753.32 0.9 753.32 245320 tl 80.7
20 3 7 v1 G4 50990 51370 tl 0.8 46 4037.52 0.9 4037.52 - tl -
20 3 7 v2 G4 57245 57655 tl 0.7 25 13096.05 1.9 14726.13 - tl -
20 3 7 v3 G4 57565 57960 tl 0.7 24 14312.07 1.2 15497.70 - tl -

Average 0.5 43 6877.84 1.2 7440.98

Table 5.2: Results comparison between B&P and the Compact MILP model solved with
CPLEX 12.7 on RGR flexible instances with time limit 8 hours.

The results are presented in Table 5.2. We can see that B&P is able to solve within the

time limit only one of the instances. However, high quality solutions with an optimality

gap lower than 1.0% are found, at the root node in 3 over 5 cases, and exploring only 2

nodes in the other cases (20 3 7 v2 G4 and 20 3 7 v3 G4). The computational time varies

considerably even comparing instances with the same number of activities. This is due to

the high computational effort required by the heuristic daily shift strategies (D5), and by

strategy (D6) used to solve the pricing problems to optimality. Indeed, when these strategies

are used only to prove that no more negative reduced cost columns exist, the computational

time is relatively low (for example, 20 3 7 v1 G4), while it increases considerably when (D5)

and (D6) are used even for a few iterations of CG (for example, 20 3 7 v2 G4). For the last

two instances, the computational time employed at the root node to find the lower bound is

almost 50% of the total time. As for the RGR instances, the compact MILP model obtains

a feasible integer solution only for the mono-activity case. However, none of the instances

is solved to optimality.

Chapter 5. Branch and Price 107

Real instances. When solving this set of instances, CG solves heuristically the pricing

problems starting from the daily shift selection strategy (D1). Besides this strategy, the ini-

tial columns are quickly generated by considering only configuration (C1) with one timeslot.

When no columns with negative reduced cost are found, CG generates daily shifts with two

timeslots using configurations (C1)-(C3). Furthermore, it increases the daily shifts selection

strategies as done for RGR flexible instances, considering strategy (D4), then (D5) and fi-

nally (D6) to prove optimality. CG does not generate daily shifts with three timeslots using

configurations (C4)-(C7), both for practical reasons and for the fact that the use of these

configurations does not lead to cost saving, as it will discuss in Table 5.5. The starting slot

selection strategy is fixed to (S3), as done for the other two sets of instances. Due to the

high number of employees and the high level of heterogeneity, one pricing problem need to

be associated to each employee, resulting in a high number of subproblems. Partial pricing

is therefore employed, and 5 subproblems giving negative reduced cost columns are solved

at each iteration of CG.

Instance lb
B&P Compact MILP

ub t(s) gap% #nd tr(s) gapr% t1%(s) ub t(s) gap%

57 11 60 le 37270 37455 tl 0.5 14 1302.92 0.9 1302.92 38880 tl 4.1
75 14 60 ll 135670 136660 tl 0.7 8 1559.51 0.7 1559.51 - tl -
43 15 60 lb 33015 33060 tl 0.1 18 536.43 0.2 536.43 34215 tl 3.5
38 05 60 nh 44585 44585 16483.10 0.0 30 713.74 0.9 713.74 44585 4135.67 0.0
23 05 60 nn 21095 21095 713.33 0.0 1 713.33 0.0 713.33 21095 1316.48 0.0

Average 0.3 14 965.19 0.6 965.19

Table 5.3: Results comparison between B&P and the Compact MILP model solved with
CPLEX 12.7 on Real instances with time limit 8 hours.

Table 5.3 shows the results for the Real instances with 60 minutes time unit. B&P is

able to solve two of the instances within the time limit: 23 05 60 nn at the root node,

while 38 05 60 nh after exploring 30 nodes. However, as for RGR flexible, high quality

solutions with an optimality gap lower than 1.0% are found in all cases. These solutions

are determined at the root node with the LNS heuristic, with an average gap of 0.6%. The

instance requiring the highest time at the root node presents also the highest number of

employees, that is 75. However, from these instances it is not clear which factors affect the

most the performance of CG, since 43 15 60 lb has an average number of employees and the

highest number of activities, but the lowest computational time at the root node. We recall

that these are real instances from a fast food restaurant chain with a high degree of flexibility

and heterogeneity, and there are many factors that interact and influence the performance

of CG. This was not the case for RGR instances, where the number of activities was clearly

the most important factor. The compact MILP model is able to find the optimal solution

for the same two instances solved by B&P. For the instances 75 14 60 ll with 75 employees,

no feasible solution is found within the 8 hours time limit.

Instances with 30 and 15 minutes time unit are solved neither with the compact MILP model

nor with the B&P. The latter fails since CG is not able to solve the linear relaxation of the

master problem, due to the extremely high degree of flexibility that results in a considerable

Chapter 5. Branch and Price 108

computational effort for solving to optimality the pricing problems. These instances will be

tackled through heuristic methods in the next part of the thesis.

Cost saving RGR and RGR flexible instances. As explained in Section 1.4 and as

the name suggests, RGR flexible instances are similar to RGR instances, but they present a

higher degree of flexibility. Indeed, in RGR we have daily shifts of 4 hours, 6 hours, and 8

hours with 1 hour of break in the middle, while no particular structure is imposed in RGR

flexible instances. Timeslots have a duration between 4 and 6 hours, and two timeslots may

be divided not only by a break, but also by an interruption whose duration goes from 2 to 5

hours. For example, 20 1 7 v1 G4 and 20 3 7 v1 G4 are the flexible version of 20 1 7 v1 G1

and 20 3 7 v1 G2. The following results have the goal of evaluating the advantage of a higher

degree of flexibility. In the first column, Table 5.4 shows the name of the instance without

specifying the group to which it belongs. The second column reports the lower bound lb

obtained by CG when solving instances of groups G1 and G2. The last two columns show

the results of the instances of group G4, that is the lower bound lb and the cost saving

save% achieved. We can see that increasing the flexibility allows a cost saving that goes up

to 9.3% and it is 5.5% in average. However, as previously remarked, the resolution of the

pricing problems requires a high computational effort and the total time of the CG increases

considerably.

Instance
G1/G2 G4

lb lb save%

20 1 7 v1 * 52080 47660 9.3
20 1 7 v2 * 49660 47440 4.7
20 3 7 v1 * 52900 50990 3.7
20 3 7 v2 * 60120 57245 5.0
20 3 7 v3 * 60450 57565 5.0

Average 5.5

Table 5.4: Comparison cost saving RGR instances and RGR flexible instances.

Cost saving Real instances. From the tests presented in Section 4.5 on the resolution of

the pricing problem with the different combinations of starting slots and daily shifts selection

heuristics, we remarked that configurations (C1)-(C3) seem to give a degree of flexibility

sufficient to find the minimum reduced cost column, and according to our intuition, also the

optimal value of the linear relaxation of the problem. For this reason, we solved instances

with 60 minutes time unit considering only the configuration (C1), then configurations

(C1)-(C3) and finally configurations (C1)-(C6). In Table 5.5 we compare the lower bound

obtained by the CG. The goal is to see how increasing the degree of flexibility allows saving

in terms of cost. The results show that the use of two timeslots divided by either a break

or an interruption, i.e. configurations (C1)-(C3), bring to a cost saving up to 18.8% for the

instance with the highest number of employees (75 14 60 ll). However, when the flexibility is

Chapter 5. Branch and Price 109

further increased, the cost saving becomes negligible. Indeed, only for instance 75 14 60 ll,

configurations (C1)-(C6) allows a saving of 0.6%, while for all the other instances the cost is

equal. This is probably due to the use of the interruption pause, that allows enough flexibility

for finding an optimal or near optimal solution. In addition, we have that schedules with

three timeslots and two pauses are not appreciated by the employees, even though this type

of schedules is feasible and respects all legal regulations. Indeed, by analyzing the planning

validated by the managers of some clients of the company Horizontal Software, we remarked

that in almost all planning, daily shifts with three timeslots were absent.

Instance
(C1) (C1)-(C3) (C1)-(C6)

lb lb save% lb save%

57 11 60 le 43345 37270 16.3 37270 0.0
75 14 60 ll 161210 135670 18.8 134820 0.6
43 15 60 lb 36370 33015 10.2 33015 0.0
38 05 60 nh 48180 44585 8.1 44585 0.0
23 05 60 nn 22115 21095 4.8 21095 0.0

Average 11.6 0.1

Table 5.5: Comparison cost saving using configurations (C1), configurations (C1)-(C3)
and configurations (C1)-(C6) on Real instances.

After these considerations, we decided to consider only configurations (C1)-(C3), since the

results show that they allow to find optimal or near optimal solutions, and because they

generate daily shifts that are more desirable for the employees.

5.5 Conclusions

This chapter presented an exact B&P algorithm for obtaining integer solution to the multi-

activity tour scheduling problem. The method employs CG for solving the linear relaxation

of the master problem at each node of the search tree. Besides using the DA heuristic

presented in Chapter 3 to stabilize CG, other accelerating strategies have been presented.

The branching rule is based on the original variables xija of the MILP model described

in Chapter 2. Furthermore, a LNS heuristic is employed to find an upper bound at each

node. Computational results have been performed on the three set of instances introduced

in Section 1.4 (RGR, RGR flexible, and Real instances). The main feature of these sets

is their variety. Indeed, the first set comes from the literature and a particular structure

is imposed to the daily shifts. The second set is a more flexible variant of the first, and

removes some restrictions on the daily shift structure. The third set is the one with the

highest degree of flexibility, and the instances come from a fast food restaurant chain where

employees have different availabilities, skills and contract regulations. The results show that

B&P is able to prove optimality for some instances (12 over a total of 40). However, high

quality solutions with an optimality gap lower than 1.0% are found within the time limit,

except for one instance of the RGR set, where B&P achieves an optimality gap of 2.11%.

Chapter 5. Branch and Price 110

When increasing the degree of flexibility (RGR flexible and Real instances), a solution with

an optimality gap lower than 1.0% is found by exploring only few nodes of the search tree,

probably due to the existence of many equivalent optimal solutions. However, the higher

flexibility is the cause of the considerable computational effort needed to solve the pricing

problems, resulting in a high computational time for CG to prove optimality. Indeed, only

instances with 60 minutes time unit of the Real set are solved. The other instances with

30 minutes and 15 minutes time unit are tackled with heuristic methods in the next part of

the thesis.

Part III

Heuristic methods

111

Introduction to Part III 112

Introduction to Part III

Part III of this thesis focuses on heuristic methods for solving the multi-activity tour schedul-

ing problem. In the last decades, heuristic methods have been successfully used for attacking

a variety of difficult combinatorial optimization problems that arise in many practical ar-

eas. They have been designed to deal with problems where classical exact methods have

failed to solve them and to be efficient, either because they are difficult in their own right,

or because the practical real-world instances make them intractable. Heuristics have often

been used for solving personnel scheduling problems. The popularity of these methods lies

in the fact that they determine reasonable good feasible solutions within a limited amount

of computational time, while exact techniques may not return any feasible solution for a

long time. In addition, most heuristics are relatively easy to implement and they allow

to incorporate and exploit problem specific information. However, these methods cannot

demonstrably converge to an optimal solution. Different heuristic methods have been pro-

posed in the literature for dealing with (multi-activity) shift and tour scheduling, based

on local search (Musliu et al. (2004) and Meisels and Schaerf (2003)), large neighborhood

search combined with formal languages (Quimper and Rousseau (2009)), and tabu search

(Dahmen and Rekik (2015)). More recently, sophisticated matheuristics have been pro-

posed. In general, these methods either exploit mathematical programming techniques in

a heuristic framework, giving to mathematical programming approaches the effectiveness

which characterize heuristics, or exploit the mathematical programming models in the cus-

tomization of a heuristic (Boschetti et al. (2009)). In the recent literature, we find Gérard

et al. (2016) who propose a matheuristic method based on B&P where the pricing problem

is solved heuristically, and Hernández-Leandro et al. (2018) who solve exactly a restricted

set covering problem whose columns have been identified through the Lagrangian relaxation

of the initial problem.

In the following we present the heuristic methods developed mostly to deal with the large-

scale real instances that could not be tackled through the B&P method previously presented.

Part III is organized as follows: Chapter 6 presents four different heuristics. The first is a

large neighborhood search (LNS) which makes use of the pricing solving method presented

in Chapter 4 for exploring the neighborhood. The second combines CG and LNS that work

on and exchange sets of columns in a primal-dual framework. The third consists of a hybrid

method that makes use of a greedy heuristic, tabu search and LNS. Finally, a diving heuristic

that partially explores the search tree in a B&P framework is presented.

Chapter 6

Heuristic Methods

This chapter presents four heuristic methods for finding good feasible solutions of the multi-

activity tour scheduling problem. These methods aim at overcoming the difficulty of the

exact B&P algorithm in finding a feasible solution of the large-scale instances. The chapter

is organized as follows: Section 6.1 describes a LNS that iteratively destroys and repairs

an initial solution in order to improve it. Section 6.2 presents a primal-dual heuristic that

makes use of CG to get a lower bound, and LNS to get an upper bound and a feasible

integer solution by working on and exchanging sets of columns. Section 6.3 introduces a

hybrid heuristic that combines a greedy heuristic to determine an initial solution satisfying

workload, a tabu search to integrate a particular class of constraints, and LNS to obtain

a feasible solution. Section 6.4 presents a diving heuristic that partially explores a B&P

search tree for quickly finding a feasible solution. Finally, Section 6.5 closes the chapter by

comparing the performances of the different heuristics.

6.1 Large Neighborhood Search

This section describes a Large Neighborhood Search (LNS) heuristic, which has recently

shown good results in solving transportation and scheduling problems. We first recall the

general idea of LNS. Then, Section 6.1.1 details the proposed method which makes use of

the techniques presented in Chapter 4 for generating schedules. Finally we report some

computational results in Section 6.1.2 and conclusions in Section 6.1.3.

The large neighborhood search method was first proposed by Shaw (1998), and it allows

to improve the quality of an initial solution, through an iterative process that destroys and

repairs part of the current solution (cf. Algorithm 1). Destroying part of the current solu-

tion corresponds to the definition of its neighborhood, that needs to be explored in order to

build an improving solution. The reconstruction phase likely leads to a better solution when

the neighborhood is well chosen. For instance, too constrained neighborhoods are not rec-

ommended, since they may rebuild the current solution. Unlike local search, LNS considers

large neighborhood, providing the opportunity to escape local optima. However, particular

care needs to be taken with high dimension neighborhood. A complete exploration is very

113

Chapter 6. Heuristic methods 114

likely to find an improving solution, but it usually requires a considerable computational

effort. For this reason, partial exploration can be considered.

The concept of destroying and repairing is well adapted to problems which naturally can

be decomposed into a master problem that covers a number of activities or clients, and a

set of subproblems that need to satisfy some given constraints. As a consequence, problems

well suited for the Dantzig-Wolfe decomposition are good candidates for applying LNS

heuristics. For instance, Prescott-Gagnon et al. (2009) implement a LNS algorithm for the

vehicle routing problem with time windows, where the destructor operator chooses some

clients that are removed from the current solution. Then, in the reconstruction phase, the

problem restricted to the selected neighborhood is modeled as set partitioning, where the

variables correspond to feasible routes. A heuristic B&P method is then employed for the

exploration of the neighborhood. Quimper and Rousseau (2009) propose a LNS algorithm

for the multi-activity shift scheduling, where the destructor operator selects an employee

and removes all the activities he is performing. Formal languages are then used to explore

the neighborhood and build an improving schedule that better covers the demand. We refer

the reader to Ahuja et al. (2002) and Ropke and Pisinger (2006), who define and survey the

class of very large scale neighborhood search method to which LNS belongs.

Algorithm 1 presents the pseudo-code for a generic LNS. Variable Xi is the initial solution,

which can be built by the algorithm or it can be given as input. The best solution found

during the search is stored in Xb, while variables Xc and Xt are respectively the current and

the temporary solution, which can be discarded or accepted to be the new current solution.

The destructor operator is represented by the function Destroy(·), and it returns a copy

of the current solution Xc that has been partially destroyed. The obtained solution is then

reconstructed by the function Repair(·), and a feasible solution built from the destroyed

one is obtained. In lines 2, 3 and 4, the initial solution is built and it is used to initialize

both current and best variables. The current solution is destroyed and repaired in lines 6

and 7. Line 8 checks whether the temporary solution Xt is better than the best solution

known, which is updated if necessary in line 9. The temporary solution may be accepted

and become the new current solution or it may be rejected (line 11). All steps defined in

lines 6-11 are repeated until a stopping condition is satisfied (line 5). Different stopping

criteria may be defined, and the most commonly used are based on limiting the number of

iterations or the computational time.

The proposed method takes inspiration from the LNS proposed by Quimper and Rousseau

(2009) and from the greedy heuristic proposed by Gérard et al. (2016). It differs from these

works for the definition of the neighborhood to explore, due to the fact the multi-activity

tour scheduling problem considered is different, and for the objective function used to guide

the search.

6.1.1 The method

The proposed LNS makes use of the pricing solving method proposed in Chapter 4 to gener-

ate new feasible schedules, both to define the initial solution and to explore the neighborhood

Chapter 6. Heuristic methods 115

Algorithm 1: Generic LNS algorithm

1 Data: Xi, Xb, Xc, Xt;
2 Xi ← Initialize();
3 Xc ← Xi;
4 Xb ← Xi;
5 while stopping condition do
6 Xt ← Destroy(Xc);
7 Xt ← Repair(Xt);
8 if Xt is better than Xb then
9 Xb ← Xt;

10 end if
11 Xc ← Select(Xc, Xt);

12 end while
13 return Xb;

when the current solution needs to be reconstructed. In the following we detail the main

elements defining the proposed LNS: the destructor operator, the constructor operator and

how to define the initial solution.

6.1.1.1 Destructor operator

The destructor operator chooses one employee i ∈ I, and removes the current schedule as-

signed. As a consequence, all activities performed by this employee are deleted and some of

them may be uncovered. The obtained partial solution preserves the schedules of the other

employees, and the neighborhood of this solution is defined by the set of all feasible schedules

that can be assigned to employee i. Various strategies may be defined for choosing employee

i, and each of them results in a different neighborhood. This is the case when the employ-

ees are heterogeneous, with different skills, availabilities and contract regulations. Indeed,

each employee has a specific set of feasible schedules and therefore a specific neighborhood.

However, in case of homogeneity, the neighborhood is the same for all the employees, but

the objective function used may be different, since it is defined starting from the current

schedule of employee i. We defined three different strategies for choosing the employee and,

therefore, for defining the neighborhood of the current solution:

(E1) the first strategy simply selects one employee after the other in a round-robin way;

(E2) the second strategy orders the employees in a decreasing way considering the number

of under covered slots in which they are available and not working. The idea is to try

to define new schedules that better cover the under assigned slots;

(E3) the third strategy orders the employees in a decreasing way considering the number of

over covered slots in which they work. The idea is to redistribute their working hours

trying not to cover the over assigned slots.

Chapter 6. Heuristic methods 116

6.1.1.2 Constructor operator

The destructor operator determines the neighborhood of the current partial solution by se-

lecting an employee i ∈ I and removing his schedule. The constructor operator explores this

neighborhood in order to try to find an improving solution. In our LNS, the exploration

of the neighborhood consists of finding a new schedule for the employee selected by the

destructor operator, and this is done by means of the pricing algorithm presented in Chap-

ter 4. In order to guide the search and find a schedule that improves the current solution,

we need to define the costs {uja}j∈J,a∈A and the cost vi for the objective function defined

in (2.82):

cip −
∑
j∈J

∑
a∈A

δipjauja − vi.

More in details, uja represents the cost of covering activity a ∈ A in slot j ∈ J , and it is

defined using the residual work demand rja of the current partial solution. The residual

work demand corresponds to the not satisfied demand taking into account the schedules

in the current partial solution. More precisely, rja is strictly positive if activity a is under

covered in slot j, while it is strictly negative if it is over covered. We define costs uja as

follows:

uja =

cja, if rja > 0,

−c̄ja, otherwise,
(6.1)

where cja and c̄ja are respectively the under and over coverage costs. The definition of uja

differs from the one of Gérard et al. (2016) since the authors use the ratio between residual

and total demands. However, this definition does not take into account the cost of under

and over coverage, and this can be a disadvantage, mostly when there is a considerable

difference between the two costs. Quimper and Rousseau (2009) do not give details on how

the costs are selected.

After evaluating uja for each activity a and for each slot j, we can define vi, that represents

the cost of the schedule removed from employee i. Let p ∈ P i be the index of the schedule

{δipja}j,a removed from employee i. Cost vi is defined as follows:

vi = −
∑
j∈J

∑
a∈A

δipjauja. (6.2)

At this point, the constructor operator is able to explore the neighborhood of the current

partial solution guided by the objective function (2.82) to find a new schedule si. The goal

is to determine si with minimum (reduced) cost. If si has negative reduced costs, it means

that it improves the current solution. We remark that if the neighborhood is completely

explored, the reduced cost of si generated cannot be strictly positive, since the removed

schedule belongs to the neighborhood and can be regenerated.

Due to the fact that the neighborhood contains all the feasible schedules that can be assigned

to an employee, its size may be large. For this reason, the LNS makes use of partial

exploration by means of the heuristic strategies presented in Section 4.4.2, that select only

a subset of feasible daily shifts generated to be combined into a feasible schedule. The main

Chapter 6. Heuristic methods 117

idea is to use three different strategies with increasing degree of exploration, searching for

an improving schedule first in a restricted part of the neighborhood, then in a larger part

and finally in the complete neighborhood. The complete exploration is performed only when

the computational effort required is limited.

More in detail, the neighborhood is explored first with strategy (D1), that aims at finding

quickly a feasible schedule by selecting the most restricted set of feasible daily shift (i.e.,

in each day, the best daily shift is selected for each value of daily working hours). If the

generated schedule has a positive reduced cost, it does not improve the current solution. In

this case, it is discarded and a larger subset of daily shifts is considered by using strategy

(D3), which select diversified daily shifts for each day and each possible value of daily working

hours. Finally, if even this strategy fails in finding a negative reduced cost schedule, the

complete exploration of the neighborhood is performed, when possible, using strategy (D6).

As previously said, the reduced cost of the new schedule si can be either strictly negative

or equal to zero when the complete exploration is performed. In the first case, si improves

the current solution and it is assigned to the employee selected in the destruction phase. In

the second case, si is a schedule equivalent or equal to the removed one. Concerning the

starting slot selection strategies, it has been fixed to (S3) to avoid restricting too much the

neighborhood.

6.1.1.3 Initial solution

The LNS algorithm needs an initial solution to which it applies iteratively destuctor and

reconstructor operators. When this solution is not given as input, it builds for each employee

a feasible schedule starting from the empty planning. One possible way is to randomly select

a schedule for each employee, as done in Quimper and Rousseau (2009). However, this

procedure may lead to bad quality initial solution. Gérard et al. (2016) generates a schedule

for each employee defining costs based on the ratio between residual and total demand, as

done all along their algorithm. As previously said, this does not consider the under and over

coverage costs. For this reason we build an initial solution using costs {uja} defined in (6.1).

At the beginning, the residual demand rja is equal to the demand, and it is updated every

time a new schedule is added. In addition, in the initialization phase, LNS uses strategy (D3)

for generating quickly a feasible schedule. Indeed, strategy (D1) fails in some cases to find

a feasible schedule due to the fact that the exploration of the neighborhood is considerably

reduced. Even with strategy (D3) we do not have the guarantee that a feasible solution

is found. However, in all tests performed this situation has never occurred and the reason

relies on the fact that the strategy selects diversified daily shifts that cover different slots of

the day.

The LNS algorithm is formalized in Algorithm 2. Variables Xi, Xb, Xc and Xt are respec-

tively the initial, best, current and temporary solutions. Variables u and v are the costs used

by the constructor operator, while I is the set of employees. The algorithm starts by finding

an initial solution Xi, which is assigned both to Xc and to Xb. Then, at each iteration, the

employees are sorted according to one of the strategies (E1), (E2) or (E3) given in input (line

6). For each of the employee i in the sorted list I, the destructor operator finds a temporary

Chapter 6. Heuristic methods 118

Algorithm 2: LNS heuristic

1 Data: Xi, Xb, Xc, Xt, u, v, I;
2 Xi ← Initialize();
3 Xc ← Xi;
4 Xb ← Xi;
5 while iter < iter max and Xt 6= Xc do
6 I ← Sort (I);
7 foreach employee i ∈ I do
8 Xt ← Destroy(Xc,i);
9 (u, v)← UpdateCosts (Xt);

10 Xt ← Repair(Xt, u, v);
11 if cost(Xt) ≤ cost(Xc) and Xt 6= Xc then
12 Xc ← Xt;
13 end if

14 end foreach
15 if cost(Xt) < cost(Xb) then
16 Xb ← Xt;
17 end if

18 end while
19 return Xb;

solution Xt by removing the schedule of i (line 8), costs u and v are evaluated based on the

residual demand of Xt (line 9), and the constructor operator repairs Xt by finding a new

feasible schedules for employee i (line 10). The current solution Xc is updated with Xt if the

cost has decreased, or, in case of equivalent solutions, if Xc and Xt are different. Replacing

Xc with equivalent solutions aims at escaping local optima and it can be seen as a restart.

The LNS algorithm stops as soon as the maximum number of iterations has been reached,

or if the temporary solution Xt is equal to the current solution Xc, meaning that the LNS

has found a local optimum and it is not able to escape it.

6.1.2 Computational results

This section shows the computational results of the LNS previously described. The goal is

to evaluate the performance of the LNS with the three employees selection strategies (E1),

(E2) and (E3) presented in Section 6.1.1.1. The algorithm has been coded in C# and tests

have been performed on a 64-bit Windows operating system with 977 GB of RAM and 16

processors (only one core is used) Intel Core running at 2.00 GHz.

Experiments have been done on the three sets of instances RGR, RGR flexible and Real

presented in Section 1.4. The variety of these instances, mostly in the degree of flexibility,

forces us to set up the LNS according the class considered. The only element that needs to

be tuned is the constructor operator, due to the fact that the computational effort required

to explore the neighborhood of a solution differs considerably from class to class. For the

three sets of instances, the corresponding setting will be presented.

Chapter 6. Heuristic methods 119

Preliminary results suggest that after four iterations in average the LNS was not able to

improve the current solution Xc or it was exiting due to the fact that the temporary solution

Xt was equal to Xc. For this reason, the maximum number of iterations of the LNS have

been fixed to 5. This means that the schedule of each employee is removed and replaced at

most 5 times, and the destructor and constructor operators are called 5×the total number

of employees times.

RGR instances. The LNS has been set as described in Section 6.1.1.2: the constructor

operator starts exploring the neighborhood and looking for an improving schedule using

strategy (D1), then strategy (D3), and finally strategy (D6).

Table 6.1 compares the performance of the three employee selection strategies (E1), (E2)

and (E3). It shows the name of the instance in the first column, and the lower bound lb

known in the second column. For each employee selection strategy, the table shows the

computational time t(s) in seconds and the optimality gap gap% of the integer solution

found by the LNS. In addition, boldface indicates the lowest time and the best gap obtained

by the three strategies in each instance.

Instance lb
(E1) (E2) (E3)

t(s) gap% t(s) gap% t(s) gap%

20 1 7 v1 G1 52080 453.49 0.2 537.10 0.2 258.27 0.6
20 1 7 v2 G1 49440 849.93 0.0 974.15 0.0 745.75 1.2
25 1 7 v1 G1 60560 570.83 0.0 652.91 0.0 614.07 0.0
25 1 7 v2 G1 72660 1067.76 0.3 1127.52 0.3 1147.40 0.3
40 1 7 v1 G1 100410 1073.50 0.0 985.73 0.0 795.47 0.0
40 1 7 v2 G1 98390 1370.10 0.3 1385.63 0.2 1030.20 0.0

20 3 7 v1 G2 52900 139.56 2.5 169.66 2.5 182.56 2.3
20 3 7 v2 G2 60120 192.04 1.5 218.16 1.5 321.20 2.1
20 3 7 v3 G2 60450 223.85 0.9 197.36 0.9 236.03 0.9

20 1 7 v1 G3 82825 11.95 3.0 16.19 2.3 26.07 1.9
20 1 7 v2 G3 64675 31.46 2.0 20.27 2.5 19.95 2.1
25 1 7 v1 G3 99995 22.15 2.2 32.52 2.2 10.27 2.4
25 1 7 v2 G3 72660 20.77 1.9 24.26 1.9 22.07 2.2
40 1 7 v1 G3 202050 27.57 0.4 17.55 0.4 27.84 0.4
40 1 7 v2 G3 117677 22.76 4.6 14.66 4.7 14.53 4.8
20 3 7 v1 G3 71800 28.57 1.1 22.40 1.1 30.01 1.2
20 3 7 v2 G3 61656 33.24 3.0 20.25 3.0 27.31 3.1
20 3 7 v3 G3 63575 20.61 2.7 44.90 2.0 29.19 2.4
20 5 7 v1 G3 84554 40.91 9.0 26.25 8.2 29.10 9.6
20 5 7 v2 G3 86915 29.73 6.0 23.76 6.1 31.20 6.8

Average 311.54 2.1 325.56 2.0 279.92 2.2

Table 6.1: Comparison employee selection strategies (E1), (E3) and (E2) on RGR in-
stances.

Chapter 6. Heuristic methods 120

The last line of the table shows the average values, which reveals similar behavior of the

three strategies both in terms of time (around 300 seconds) and gap (around 2%). If we

analyze instance by instance, there is not a clear dominance of one strategy over the others.

Indeed, even though strategy (E1) has an average gap sightly higher than (E2), it finds the

best solution with the lowest optimality gap in 15 cases, against the 14 cases of (E2) and

the 8 cases of (E3). Concerning the computational time, (E1) and (E3) are the fastest in 7

cases, while (E2) is the fastest in 6 cases.

These results reveal that none of the strategies dominates when considering average and indi-

vidual gaps and computational times, and it seems that specific employees sorting strategies

do not have general benefits.

RGR flexible instances. The LNS has been set as follows: due to the high computational

effort required by a complete exploration of the neighborhood and to the fact that a new

schedule needs to be defined for each employee multiple times, the constructor operator does

not employ strategy (D6). It starts using strategy (D1), and if an improving schedule is not

found, it uses strategy (D3). Therefore, for these instances, only the partial exploration of

the neighborhood is performed.

As previous, Table 6.2 compares the performance of the three employee selection strategies

(E1), (E2) and (E3), showing the name of the instance in the first column, the lower bound

known in the second column, and the computational time t(s) and the optimality gap gap%

for each strategy.

Instance lb
(E1) (E2) (E3)

t(s) gap% t(s) gap% t(s) gap%

20 1 7 v1 G4 47660 217.07 4.1 234.83 4.5 221.40 6.8
20 1 7 v2 G4 47440 107.77 3.6 122.22 3.4 226.79 2.6
20 3 7 v1 G4 50990 215.44 7.3 220.99 7.3 225.85 7.2
20 3 7 v2 G4 57245 158.03 1.9 174.57 1.9 223.46 2.6
20 3 7 v3 G4 57565 170.89 1.6 183.53 1.6 138.51 2.2

Average 173.84 3.7 187.23 3.7 207.20 4.3

Table 6.2: Comparison employee selection strategies (E1), (E3) and (E2) on RGR flexible
instances.

The values in the last line of the table show similar average behaviors of strategies (E1) and

(E2), while strategy (E3) has the worst performance. However, when we analyze instance by

instance, (E3) obtains the best solution in 2 cases as (E2), while (E1) is the best in 3 cases.

In addition (E1) is the fastest in 4 cases over 5. Even though (E1) seems to have the best

performance, it does not dominates the other two strategies when considering individual

computational times and gaps.

Real instances. The LNS has been set as follows: for the instances with 60 minutes and

30 minutes time unit, the constructor operator is tuned as done for RGR flexible instances,

Chapter 6. Heuristic methods 121

i.e. it starts using strategy (D1), and if an improving schedule is not found, it uses strategy

(D3). For the instances with 15 minutes time unit, the number of feasible daily shifts

drastically increases, and the computational time for generating a schedule is prohibitive if

the neighborhood is not sufficiently restricted. In addition, the number of employees goes

up to 75 and schedules need to be generated multiple times for each employee. For these

reasons, the slot selection strategy and the daily shift strategy has been modified in order

to restrict the neighborhood: as slot selection strategy, we do not use (S3) but we use (S2),

that allows to select only a subset of slots based on the demand profile; in addition, the

constructor operator uses only the daily shift selection strategy (D1).

Table 6.3 shows the name of the instance and the corresponding lower bound in the first and

second column respectively. When a lower bound is not known (instances with 30 minutes

and 15 minutes time unit), the third column reports the best upper bound known, used to

evaluate the optimality gap. By abuse of language, we use the term “optimality gap” even

though the best upper bound may not be the optimal value. The last six columns show

the computational time t(s) and the optimality gap gap% for the three employee selection

strategies.

Instance lb best ub
(E1) (E2) (E3)

t(s) gap% t(s) gap% t(s) gap%

57 11 60 le 37270 - 31.45 5.0 50.76 3.3 36.71 5.4
75 14 60 ll 135670 - 37.20 1.2 30.67 1.2 28.56 1.1
43 15 60 lb 33015 - 15.10 3.8 18.94 4.0 17.52 4.5
38 05 60 nh 44585 - 17.21 1.3 30.14 1.5 25.92 1.3
23 05 60 nn 21095 - 6.83 3.2 9.77 3.2 7.34 2.8

Average (60min) 21.56 2.9 28.06 2.6 23.21 3.0

57 11 30 le - 74315 316.76 2.2 437.47 1.8 386.72 1.7
75 14 30 ll - 269530 260.53 1.4 393.08 1.4 262.52 1.5
43 15 30 lb - 64540 125.29 2.0 124.67 1.7 89.15 1.4
38 05 30 nh - 82055 119.55 1.5 217.76 1.6 181.19 1.0
23 05 30 nn - 45090 56.69 1.7 60.84 1.7 69.64 1.7

Average (30min) 175.76 1.7 246.76 1.6 197.84 1.4

57 11 15 le - 149040 526.39 1.8 353.24 0.0 354.21 1.5
75 14 15 ll - 540115 583.51 0.8 456.82 0.8 466.58 0.8
43 15 15 lb - 130210 154.48 0.9 154.10 0.9 154.61 0.4
38 05 15 nh - 159305 425.75 1.5 318.53 1.2 324.83 1.5
23 05 15 nn - 93060 122.05 0.9 81.90 0.9 83.89 0.9

Average (15min) 362.44 1.2 272.92 0.8 276.82 1.0

Table 6.3: Comparison employee selection strategies (E1), (E3) and (E2) on Real in-
stances.

Results on instances with 60 minutes time unit reveal that the three strategies achieve

similar gaps in a comparable computational time. Even though (E1) has an average gap of

2.9% (against the average gap of 2.6% of (E2)), it obtains the best gap in 2 cases over 5

Chapter 6. Heuristic methods 122

(against the 1 case of (E2)), and it is the fastest in 4 cases. Concerning the instances with

30 minutes time unit, the best performance in terms of gap is obtained by (E3), with an

average gap of 1.4% and the best gap achieved in 4 cases over 5. Finally, in the instances

with 15 minutes time unit, (E2) finds a solution with the best gap in 4 cases with the lowest

computational time, while strategies (E1) and (E3) obtain the best gap respectively in 2

and 3 cases. In general, the results on this set of instances show that the three strategies are

able to find solutions with similar optimality gap. Indeed, the average gaps on all instances

are 1.9%, 1.7% and 1.8% for strategies (E1), (E2) and (E3) respectively, with a standard

deviation of 1.2%, 1.1% and 1.4% respectively. In addition, (E1), (E2) and (E3) achieves

the best gaps in 6, 7 and 10 cases, and they are the fastest in 8, 5 and 2 cases respectively.

These results confirm the conclusion previously drawn on the fact that none of the strate-

gies dominates the others when considering average and individual gaps and computational

times.

Complete exploration vs. partial exploration on RGR instances. The following

tests have the goal of comparing the performance of the LNS when the complete exploration

of the neighborhood is performed using strategies (D1)+(D3)+(D6) (previous results on

RGR instances), with the performance of the LNS when only partial exploration is performed

using strategies (D1)+(D3).

Table 6.4 shows the name of the instance in the first column and the lower bound known

in the second column. The computational time t(s) and the optimality gap gap% of

the LNS with the possibility of completely exploring the neighborhood using strategies

(D1)+(D3)+(D6) are reported respectively in the third and fourth columns, while the last

two columns show the time and the gap of the LNS with only partial exploration using

strategies (D1)+(D3). Since no employee selection strategy has been found dominant by

the previous experimentations, these tests have been performed using strategy (E1).

The results show similar optimality gaps, but computational times much lower when only

partial exploration (D1)+(D3) is employed. This is evident in instances of groups G1 and

G2, where all time periods are feasible as starting slot for a daily shift, and the complete

exploration of the neighborhood may take up to some seconds. Even though a partial

exploration seems to be a good compromise between computational time and optimality gap,

we will see that a more intense effort looking for an improving solution can be rewarding,

mostly when the lower bound is evaluated by the algorithm and it is used to determine the

quality of the integer solution found (cf. the primal-dual heuristic in Section 6.2, Table 6.6).

6.1.3 Conclusions

This section presented a LNS heuristic for solving the multi-activity tour scheduling ad-

dressed in this thesis. The proposed method starts from an initial solution and iteratively

removes the schedule assigned to one employee (destructor operator) and builds a new sched-

ule (constructor operator) minimizing an objective function defined using residual demand

Chapter 6. Heuristic methods 123

Instance lb
(D1)+(D3)+(D6) (D1)+(D3)

t(s) gap% t(s) gap%

20 1 7 v1 G1 52080 453.49 0.2 42.78 0.2
20 1 7 v2 G1 49440 849.93 0.0 41.33 0.0
25 1 7 v1 G1 60560 570.83 0.0 51.73 0.0
25 1 7 v2 G1 72660 1067.76 0.3 73.86 0.3
40 1 7 v1 G1 100410 1073.50 0.0 78.81 0.0
40 1 7 v2 G1 98390 1370.10 0.3 84.89 0.4

20 3 7 v1 G2 52900 139.56 2.5 66.66 2.5
20 3 7 v2 G2 60120 192.04 1.5 34.72 1.5
20 3 7 v3 G2 60450 223.85 0.9 12.08 1.0

20 1 7 v1 G3 82825 11.95 3.0 14.09 3.0
20 1 7 v2 G3 64675 31.46 2.0 30.21 2.0
25 1 7 v1 G3 99995 22.15 2.2 23.60 2.2
25 1 7 v2 G3 72660 20.77 1.9 18.15 1.9
40 1 7 v1 G3 202050 27.57 0.4 28.82 0.4
40 1 7 v2 G3 117677 22.76 4.6 30.13 6.3
20 3 7 v1 G3 71800 28.57 1.1 30.61 1.1
20 3 7 v2 G3 61656 33.24 3.0 29.57 3.0
20 3 7 v3 G3 63575 20.61 2.7 24.82 2.8
20 5 7 v1 G3 84554 40.91 9.0 41.11 9.0
20 5 7 v2 G3 86915 29.73 6.0 17.06 6.4

Average 311.54 2.1 38.75 2.2

Table 6.4: Comparison strategy (D6) and (D3) with employee selection strategy (E1) on
RGR instances.

and under and over coverage costs. Three different strategies have been proposed for se-

lecting the employee in the destruction phase. However, computational results show that

they have similar performances in terms of computational time and optimality gap, and no

dominant strategy has been highlighted. For this reason, when LNS will be used, employees

will be selected in a round-robin way, i.e., using strategy (E1). We also compare complete

and partial explorations of the neighborhood, showing that the complete exploration does

not improve considerably the optimality gap. However, we will see in Section 6.2 that a

more intense effort may be rewarding.

6.2 Primal-dual heuristic

This section proposes a primal-dual (PD) heuristic, which makes use of CG to get a lower

bound, and LNS to get upper bounds and feasible integer solutions. The two methods are

embedded in the overall approach by working on and exchanging sets of columns. Even

though the method is heuristic and it does not guarantee to find an optimal solution, it

provides a lower bound that allows to evaluate the quality of the integer solution found. The

Chapter 6. Heuristic methods 124

section is organized as follows: the PD heuristic is described in Section 6.2.1, computational

results are shown in Section 6.2.2, while conclusions are presented in Section 6.2.3.

6.2.1 The method

The PD approach proposed is a heuristic whose main components are CG (cf. Section 5.1)

and LNS (cf. Section 6.1). The first solves the linear relaxation of the master problem

(2.69)-(2.73) and it obtains both a lower bound and a fractional solution. The second

improves an initial integer solution received in input from the rounding of the fractional

solution, and it obtains both an upper bound and an integer solution. The advantage of

this heuristic concerns the fact that valid lower and upper bounds are computed, and they

can be compared to evaluate the quality of the integer solution found. This characteristic

distinguishes PD from the other heuristics presented in this thesis, and from many heuristics

that we can find in the literature. Indeed, these heuristics usually tries to improve an integer

feasible solution of the problem without having an idea of how far this solution is from the

optimal one, stopping when the maximum number of iterations is achieved, a time limit is

exceeded or the best solution known does not improve.

Algorithm 3: PD heuristic

1 Data: Xb, Xt, Xf , gap, lb, RMP ;
2 gap← 1;
3 while gap > 0.01 and iter < iter max do
4 (Xf , lb)← CG (RMP);
5 Xt ← Round (Xt);
6 Xt ← LNS (Xt);
7 if cost(Xt) < cost(Xb) then
8 Xb ← Xt;
9 gap← (cost(Xb)− lb)/lb;

10 end if
11 RMP ← Update (RMP , Xt);

12 end while
13 return Xb;

Algorithm 3 presents the pseudo-code of the PD heuristic. VariablesXb, Xt andXf represent

respectively the best, temporary and fractional solutions, while gap and lb are the optimality

gap and the lower bound obtained at each iteration of PD. Finally, RMP contains the

columns of the reduced master problem. Function CG(·) solves the linear relaxation of

the master problem to optimality and it returns a fractional solution Xf and the optimal

value lb (line 4). We refer to Section 5.1 for more details on CG. In line 5, Xf is rounded

by the function Round(·), which returns a temporary integer solution Xt. The rounding is

performed by selecting the column with the highest value for each employee. Function LNS(·)
in line 6 takes as input Xt and it improves it by iteratively destructing and constructing the

solution. We refer to Section 6.1 for more details on how LNS works. The returned solution

Xt is then compared with the best solution known Xb (lines 8, 9 and 10), and both Xb and

gap are updated in case of improvement. Finally, in line 11, function Update(·) updates the

Chapter 6. Heuristic methods 125

columns of RMP as follows: it evaluates the reduced costs of all columns and it keeps in

RMP only half of the columns with reduced cost lower than 10−12; then, it adds the columns

of the integer solution Xt. Keeping some columns with small reduced cost has the goal of

speeding up the convergence of CG from the second iteration of PD. We do not keep all of

them to avoid generating only few columns in the next iteration of PD. Indeed, preliminary

results has shown that CG converges in some cases after few iterations when RMP keeps

all columns with reduced cost lower than 10−12, and the rounded solutions does not change.

In order to further speed up CG, the stopping criteria of CG is modified from the second

iteration of PD. CG is not performed until optimality is proven and no negative reduced

cost column is found, but it is stopped as soon as the gap between the value of RMP and lb

is lower than 1%, to avoid the tailing-off effect. PD heuristic iteratively calls CG and LNS

until the optimality gap is lower than 1%, or the maximum number of iterations iter max

(= 10) is exceeded.

6.2.2 Computational results

This section shows the computational results of the PD heuristic described. The algorithm

has been coded in C# and tests have been performed on a 64-bit Windows operating system

with 977 GB of RAM and 16 processors (only one core is used) Intel Core running at 2.00

GHz. CPLEX 12.7 has been used as LP solver. Experiments have been done on the three

sets of instances RGR, RGR flexible and Real presented in Section 1.4.

RGR instances. Computational results on RGR instances are shown in Table 6.5. The

first and the second columns show respectively the name of the instance and the corre-

sponding lower bound known. The next five columns report the results of the heuristic

B&P proposed by Restrepo et al. (2016). More in detail, ub, t(s) and gap% are respec-

tively the upper bound, the computational time in seconds and the optimality gap, while

tr(s) and gapr% are the computational time and the gap evaluated at the root node. The

last seven columns show the results of the PD heuristic, that is the upper bound ub, the

final computational time t(s), the final optimality gap gap%, the number of iterations it,

the computational time t1(s) and optimality gap gap1% after the first iteration, and the

percentage of time tCG% employed by CG.

Remark. For some instances, the results of B&P-RGR are marked with “-”, since it turned

out from a discussion with one of the author of Restrepo et al. (2016) that there was an error

in the grammar generating the daily shifts. From an analysis of the integer solution obtained,

it seemed that the grammar was generating only daily shifts with one transition between

activities in each timeslot. This error does not affect the instances with only one activity,

since no transition can be done. In addition, we obtain the same lower bound in 4 instances

with 3 activities (20 3 7 v2 G2, 20 3 7 v3 G2, 20 3 7 v2 G3 and 20 3 7 v3 G3) due to the

existence of equivalent solutions. For all the other instances with multiple activities, we

obtain a lower bound that is lower than the one presented in the paper by Restrepo et al.

(2016), and a comparison is not possible.

Chapter 6. Heuristic methods 126

Instance lb
B&P-RGR PD

ub t(s) gap% tr(s) gapr% ub t(s) gap% it t1(s) gap1% tCG%

20 1 7 v1 G1 52080 52080 21.31 0.0 21.31 0.0 52410 12.42 0.6 1 12.42 0.6 87.29
20 1 7 v2 G1 49440 49660 31.00 0.4 31.00 0.4 49660 18.70 0.4 1 18.70 0.4 92.15
25 1 7 v1 G1 60560 60560 16.69 0.0 16.69 0.0 61110 20.76 0.9 1 20.76 0.9 77.95
25 1 7 v2 G1 72660 72660 6.32 0.0 6.32 0.0 72660 14.73 0.0 1 14.73 0.0 90.24
40 1 7 v1 G1 100410 100850 10.77 0.4 10.77 0.4 100850 18.44 0.4 1 18.44 0.4 83.90
40 1 7 v2 G1 98390 98940 90.52 0.6 90.52 0.6 99160 77.00 0.8 1 77.00 0.8 53.41

20 3 7 v1 G2 52900 - - - - - 53355 323.16 0.9 1 323.16 0.9 87.84
20 3 7 v2 G2 60120 60120 1735.07 0.0 733.69 3.6 60560 142.93 0.7 1 142.93 0.7 84.96
20 3 7 v3 G2 60450 60780 1507.83 0.5 697.80 2.6 60935 187.09 0.8 1 187.09 0.8 77.60

20 1 7 v1 G3 82825 82860 3.66 0.0 3.66 0.0 83520 17.39 0.8 2 15.95 1.0 63.43
20 1 7 v2 G3 64675 65280 5.91 0.9 5.91 0.9 65170 57.42 0.8 4 26.20 1.4 30.54
25 1 7 v1 G3 99995 100380 3.47 0.4 3.47 0.4 100710 22.64 0.7 1 22.64 0.7 84.89
25 1 7 v2 G3 72660 73100 1.61 0.6 1.61 0.6 72660 6.45 0.0 1 6.45 0.0 74.89
40 1 7 v1 G3 202050 202250 1.38 0.1 1.38 0.1 202380 12.61 0.2 1 12.61 0.2 76.45
40 1 7 v2 G3 117677 118170 10.46 0.4 10.46 0.4 118570 74.49 0.8 1 74.49 0.8 72.83
20 3 7 v1 G3 71800 - - - - - 72370 329.45 0.8 1 329.45 0.8 93.98
20 3 7 v2 G3 61656 62125 1408.06 0.8 730.60 5.8 63010 1220.14 2.2 10 346.44 2.3 80.75
20 3 7 v3 G3 63575 63950 1370.42 0.6 686.61 5.6 64180 576.74 0.9 8 156.92 2.0 79.75
20 5 7 v1 G3 84554 - - - - - 88770 2982.18 5.0 10 803.60 6.0 92.47
20 5 7 v2 G3 86915 - - - - - 89325 1657.43 2.8 10 403.44 4.9 87.37

Average 388.61 1.0 3 150.67 1.3 78.63

Table 6.5: Results comparison between B&P heuristic implemented by Restrepo et al.
(2016) and the PD heuristic on RGR instances.

The results on the group of instances G1 show that both methods find a solution with an

optimality gap lower than 1% at the root node (B&P-RGR) or after one iteration (PD), and

the computational time is comparable. Concerning group G2, we remark that both methods

achieve a high quality solution. However, PD terminates in one iteration, while B&P-RGR

needs to explore the search tree. Indeed, the gaps at the root node are 3.6% and 2.6% in

the two instances that we can compare (20 3 7 v2 G2 and 20 3 7 v3 G2). As a result, the

computational time employed by PD is halved compared to B&P-RGR. The last group G3

presents different behaviors on the mono-activity and the multi-activity instances. When

only one activity is considered, both methods achieve an optimality gap lower than 1%.

However, B&P-RGR terminates at the root node, while PD needs more than one iteration

in 2 over 6 cases. In addition, the computational time is higher. The reason relies on the

fact that our CG uses increasing daily shift strategies (cf. Section 5.4), that may help to

speed up the convergence of CG on large-scale instances or instances with a high pricing

problem resolution effort, but it may slow CG on small instances (note that some of the

instances are solved in less than 2 seconds by B&P-RGR). In the multi-activity case, PD

terminates for optimality gap in 2 instances over 5, and one of them takes only one iteration.

However, the gap of all the unsolved instances is lower or equal than 5%. Comparison with

B&P-RGR can be done only on the two instances 20 3 7 v2 G3 and 20 3 7 v3 G3: a gap

lower than 1% is achieved in both of them by B&P-RGR, while only in the second one by

PD with a lower computational time; in the first instance PD achieves a gap of 2.2%. If we

compare the gap and the time of PD after one iteration (t1(s) and gap1%) with the ones

of B&P-RGR at the root node (tr(s) and gapr%), we note that PD finds a solution with a

halved gap in a halved computational time. In general, PD finds an integer solution with

a proven optimality gap lower than 1% in 17 over 20 instances, after only one iteration in

Chapter 6. Heuristic methods 127

14 of them. The 3 unsolved instances present a gap that is lower or equal than 5%. In

addition, the gap obtained after the first iteration never exceeds 6%.

In Section 6.1.2, we have compared complete and partial exploration of the neighborhood

when LNS is performed (cf. Table 6.4). The results have shown that the two strategies

achieve solutions with similar optimality gaps. However, partial exploration allows to de-

crease considerably the computational time in many cases. After these first results, we have

done analogous experiments on PD, meaning that PD is performed first with complete ex-

ploration in the LNS (PD (D1)+(D3)+(D6)), then it is performed with partial exploration

in the LNS (PD (D1)+(D3)).

Instance lb
PD (D1)+(D3)+(D6) PD (D1)+(D3)

ub t(s) gap% it t1(s) gap1% ub t(s) gap% it t1(s) gap1%

20 1 7 v1 G1 52080 52410 12.42 0.6 1 12.42 0.6 52410 19.23 0.6 1 19.23 0.6
20 1 7 v2 G1 49440 49660 18.70 0.4 1 18.70 0.4 49660 31.00 0.4 1 31.00 0.4
25 1 7 v1 G1 60560 61110 20.76 0.9 1 20.76 0.9 61110 22.95 0.9 1 22.95 0.9
25 1 7 v2 G1 72660 72660 14.73 0.0 1 14.73 0.0 72660 15.48 0.0 1 15.48 0.0
40 1 7 v1 G1 100410 100850 18.44 0.4 1 18.44 0.4 100850 19.47 0.4 1 19.47 0.4
40 1 7 v2 G1 98390 99160 77.00 0.8 1 77.00 0.8 99160 39.89 0.8 1 39.89 0.8

20 3 7 v1 G2 52900 53355 323.16 0.9 1 323.16 0.9 53355 249.09 0.9 1 249.09 0.9
20 3 7 v2 G2 60120 60560 142.93 0.7 1 142.93 0.7 60670 155.56 0.9 1 155.56 0.9
20 3 7 v3 G2 60450 60935 187.09 0.8 1 187.09 0.8 60935 111.57 0.8 1 111.57 0.8

20 1 7 v1 G3 82825 83520 17.39 0.8 2 15.95 1.0 83520 27.58 0.8 2 24.98 1.0
20 1 7 v2 G3 64675 65170 57.42 0.8 4 26.20 1.4 65170 46.81 0.8 4 29.70 1.4
25 1 7 v1 G3 99995 100710 22.64 0.7 1 22.64 0.7 100710 24.56 0.7 1 24.56 0.7
25 1 7 v2 G3 72660 72660 6.45 0.0 1 6.45 0.0 72660 5.83 0.0 1 5.83 0.0
40 1 7 v1 G3 202050 202380 12.61 0.2 1 12.61 0.2 202380 12.44 0.2 1 12.44 0.2
40 1 7 v2 G3 117677 118570 74.49 0.8 1 74.49 0.8 118570 38.69 0.8 1 38.69 0.8
20 3 7 v1 G3 71800 72370 329.45 0.8 1 329.45 0.8 72370 276.07 0.8 1 276.07 0.8
20 3 7 v2 G3 61656 63010 1220.14 2.2 10 346.44 2.3 62635 972.87 1.6 10 278.58 2.3
20 3 7 v3 G3 63575 64180 576.74 0.9 8 156.92 2.0 64365 733.26 1.2 10 169.56 2.0
20 5 7 v1 G3 84554 88770 2982.18 5.0 10 803.60 6.0 89745 2776.31 6.1 10 816.67 6.1
20 5 7 v2 G3 86915 89325 1657.43 2.8 10 403.44 4.9 89675 1521.46 3.2 10 434.41 5.2

Average 388.61 1.0 3 150.67 1.3 355.01 1.1 3 138.79 1.3

Table 6.6: Results comparison between PD with complete exploration (D1)+(D3)+(D6)
in LNS and PD with partial exploration (D1)+(D3) in LNS on RGR instances.

Table 6.6 shows the results obtained. In most of the instances, the two strategies find a

solution with optimality gap lower than 1% in comparable computational time. We remark

that the time employed by the complete exploration on groups G1 and G2 is much lower

compared to the one presented in Table 6.4. This is due to the fact that a lower bound is

evaluated by the PD heuristic, and it is used to stop the LNS as soon as a solution with an

optimality gap lower than 1% is found. The last three instances show the advantage we may

have with a complete exploration of the neighborhood. Indeed, in one case (20 3 7 v3 G3)

partial exploration is not able to terminate within the maximum number of iterations, and

it finds a solution with a gap 1.2%, while complete exploration takes 8 iterations to find

a solution with a gap of 0.8%. In addition, in the last two instances (20 5 7 v1 G3 and

20 5 7 v2 G3), both final gap gap% and gap after the first iteration gap1% are lower when

complete exploration is performed.

Chapter 6. Heuristic methods 128

RGR flexible instances. Computational results on RGR flexible instances are shown in

Table 6.7. As previous, the first two columns show the name of the instance and the lower

bound known, while the next seven columns report the results of the PD heuristic, that is

the upper bound ub, the final computational time t(s), the final optimality gap gap%, the

number of iterations it, the computational time t1(s) after the first iteration, the optimality

gap gap1% after the first iteration, and the percentage of time tCG% spent by CG in the

overall resolution time.

Instance lb
PD

ub t(s) gap% it t1(s) gap1% tCG%

20 1 7 v1 G4 47660 48070 2190.25 0.9 1 2190.25 0.9 94.7
20 1 7 v2 G4 47440 47880 753.32 0.9 1 753.32 0.9 97.9
20 3 7 v1 G4 50990 51485 4037.52 0.9 1 4037.52 0.9 98.0
20 3 7 v2 G4 57245 57795 13801.92 0.9 2 13096.05 1.9 98.0
20 3 7 v3 G4 57565 58095 15326.60 0.9 4 14312.07 1.2 97.4

Average 7221.92 0.9 2 6877.84 1.2 97.2

Table 6.7: Results of PD heuristic on RGR flexible instances.

Table 6.7 shows that PD is able to find a solution with a gap lower than 1% for all the

instances, and it takes only one iteration in 3 over 5 cases. Concerning the computational

time, we remark that it varies considerably from instance to instance, going from some

minutes to some hours. This is due to the high computational effort required to solve

the pricing problems to optimality, and to the fact that CG uses increasing daily shift

strategies (cf. Section 5.4). As soon as one strategy does not find a negative reduced cost

column, a less restricting strategy is selected for finding profitable columns. If the strategies

requiring a high effort (for example (D5) and (D6)) are used only to prove optimality, the

total computational time is relatively low (instance 20 3 7 v1 G4). On the contrary, if

these strategies find negative columns, they are employed in the next iterations of CG. As

consequence, the computational time increases considerably, even though these strategies

are used for few iterations. The last column tCG% of the table shows that in average 97.2%

of the total time is employed by CG (65% of this time is used only to prove optimality at

the first iteration of PD).

Real instances. Computational results on RGR flexible instances are shown in Table 6.8.

As previous, the first and the second columns show the name of the instance and the lower

bound, while the last seven columns report the results of the PD heuristic, that is the upper

bound ub, the final computational time t(s), the final optimality gap gap%, the number of

iterations it, the computational time t1(s) and optimality gap gap1% after the first iteration,

and the percentage of time tCG% employed by CG.

The results are presented for instances with 60 minutes time unit, since CG was not able

to converge within a time limit of 4 hours for instances with 30 and 15 minutes time unit,

due to the extremely high degree of flexibility and the computational effort needed to prove

Chapter 6. Heuristic methods 129

Instance lb
PD

ub t(s) gap% it t1(s) gap1% tCG%

57 11 60 le 37270 37620 1302.92 0.9 1 1302.92 0.9 99.2
75 14 60 ll 135670 136660 1559.51 0.7 1 1559.51 0.7 99.8
43 15 60 lb 33015 33075 536.43 0.2 1 536.43 0.2 99.4
38 05 60 nh 44585 45025 713.74 0.9 1 713.74 0.9 99.2
23 05 60 nn 21095 21095 713.33 0.0 1 713.33 0.0 99.5

Average 965.19 0.6 1 965.19 0.6 99.4

Table 6.8: Results of PD heuristic on Real instances.

optimality. Table 6.8 shows that PD is able to find a solution with an optimality gap lower

than 1% in all the instances with only one iteration. In addition, optimality is proven for

instance 23 05 60 nn, where PD achieves a gap equal to 0.0%. The computational time is

in average 965.19 seconds, most of which (99.4%) is employed by CG. The reason relies on

the fact that most of the time is used in CG to prove optimality, as previously remarked for

RGR flexible instances.

6.2.2.1 Primal-dual heuristic with time limit

The PD heuristic iteratively calls CG and LNS and it gets both lower and upper bounds.

The results previously presented show that most of the computational effort is employed

by CG, and the solving time may increase considerably with the degree of flexibility. As

a consequence, some instances (Real with 30 and 15 minutes time unit) were not solved.

For this reason, we propose a variant of the PD heuristic, by imposing a time limit (= 180

seconds) to both CG and LNS, and a total time limit (= 1200 seconds) to PD. In addition,

when function Update(·) is called to update the columns of the reduced master problem

RMP (cf. Algorithm 3, line 11), all columns with reduced cost lower than 10−12 are kept in

RMP , in order to further speed up CG, and to hope that it converges and finds the lower

bound within the time limit of 180 seconds in the next iteration.

In this section we call PD the primal-dual heuristic without time limit, while we call PD-tl

the variant with time limit. We remark that PD-tl does not guarantee to find a lower bound,

since CG may stop before proving optimality. However, in some cases CG converges after

some iterations of PD-tl. We also remark that LNS may terminates before the time limit of

180 seconds, due to the maximum number of iterations or due to the fact that the temporary

solution found is equal to the current solution (cf. Algorithm 2, line 5).

RGR instances. Table 6.9 shows the results on RGR instances. Since CG converges

in less than 180 seconds for most of them, we report only the 5 instances for which CG

terminates due to the time limit. When the optimality gap gap% is marked with (*),

it means that CG is able to converge not at the first iteration of PD-tl but at the next

Chapter 6. Heuristic methods 130

iterations, finding the lower bound lb and proving that the optimality gap gap% is actually

the value reported.

Instance lb
PD-tl

ub t(s) gap% gap1%

20 3 7 v1 G2 52900 53380 1058.74 0.9 0.9
20 3 7 v1 G3 71800 72155 350.49 *0.5 0.5
20 3 7 v2 G3 61656 62580 1139.44 *1.5 3.0
20 5 7 v1 G3 84554 90050 1160.50 6.5 10.5
20 5 7 v2 G3 86915 89005 1127.24 2.4 3.6

Average 967.28 2.4 3.7

Table 6.9: Results of PD heuristic with time limit 1200 seconds on RGR instances.

The results show that PD-tl is able to find a lower bound in 2 cases over 5. In particular, the

computational time of instance 20 3 7 v1 G3 is much lower than the other instances. This

is due to the fact that CG converges at the second iteration of PD-tl within the time limit

of 180 seconds. Therefore, the gap of 0.5%, that was already found after the first iteration,

can be proven and the algorithm can stop for optimality. We have a different situation

with the instance 20 3 7 v2 G3, where the lower bound is found, but PD-tl is not able to

determine a solution with a gap lower than 1% and it stops only when the total time limit

is reached. In the other 3 cases, CG is never able to converge and to find the lower bound.

Therefore, PD-tl terminates without being able to prove the optimality gap. We remark

that for the first instance 20 3 7 v1 G2, the computational time of PD-tl is triple the time

of PD (1058.74 against 323.16 seconds). The reason relies on the the fact that PD finds the

lower bound and stops for optimality gap lower than 1%, while PD-tl continues looking for

the lower bound and the best integer solution until it reaches the time limit.

RGR flexible instances. Table 6.10 shows the results on RGR flexible instances. Due

to the high computational effort needed to prove optimality, CG does not converge within

the time limit of 180 seconds and it does not find a lower bound. We recall that solving

one of the pricing problem to optimality takes in average 478.04 seconds (cf. Section 4.5,

Table 4.4), and the convergence of CG within the time limit is out of reach.

The results show that the optimality gap achieved by PD-tl is always lower than 5%, and in

4 over 5 cases it does not exceed 1.1%. In addition, PD-tl finds a solution with a null gap

for one of the instances (20 1 7 v2 G4). We also remark that PD-tl improves the initial gap

found after the first iteration of 12.5%, going from an average value of 1.6% to an average

value of 1.4%.

Real instances. Table 6.11 shows the results on the Real instances. The first column

and the second columns show the name of the instance and the lower bound. When the

latter is not available (instances with 30 minutes and 15 minutes time unit), the best upper

Chapter 6. Heuristic methods 131

Instance lb
PD-tl

ub t(s) gap% gap1%

20 1 7 v1 G4 47660 48045 1138.94 0.8 0.9
20 1 7 v2 G4 47440 47440 1141.60 0.0 0.0
20 3 7 v1 G4 50990 53065 1048.02 4.1 4.1
20 3 7 v2 G4 57245 57885 954.18 1.1 1.3
20 3 7 v3 G4 57565 58180 1051.30 1.1 1.6

Average 1066.81 1.4 1.6

Table 6.10: Results of PD heuristic with time limit 1200 seconds on RGR flexible in-
stances.

Instance lb best ub
PD-tl

ub t(s) gap% gap1%

57 11 60 le 37270 - 37430 1075.97 0.4 0.7
75 14 60 ll 135670 - 135670 1029.93 0.0 0.0
43 15 60 lb 33015 - 33100 1073.77 0.3 0.4
38 05 60 nh 44585 - 44585 986.35 0.0 0.0
23 05 60 nn 21095 - 21095 1061.85 0.0 0.0

Average (60min) 1045.57 0.1 0.2

57 11 30 le - 74315 74315 988.30 0.0 1.7
75 14 30 ll - 269530 270530 972.57 0.4 0.6
43 15 30 lb - 64540 64540 1046.34 0.0 0.2
38 05 30 nh - 82055 82055 1048.74 0.0 0.1
23 05 30 nn - 45090 45090 1028.67 0.0 0.2

Average (30min) 1016.92 0.1 0.6

57 11 15 le - 149040 151570 1095.21 1.7 6.1
75 14 15 ll - 540115 540630 1165.11 0.1 16.1
43 15 15 lb - 130210 130210 1028.58 0.0 0.9
38 05 15 nh - 159305 159305 1112.16 0.0 1.5
23 05 15 nn - 93060 93060 959.80 0.0 0.0

Average (15min) 1072.17 0.4 4.9

Table 6.11: Results of PD heuristic with time limit 1200 seconds on Real instances.

bound known is reported in the third column. The last four columns show the results of

the PD-tl heuristic, that is the upper bound ub, the computational time t(s), the optimality

gap gap%, and the optimality gap gap1% after the first iteration. By abuse of language, we

use the term “optimality gap” even though the best upper bound may not be the optimal.

Concerning the instances with 60 minutes time unit, the results show that PD-tl is able to

find an integer solution with an optimality gap lower than 0.5% in all 5 cases, and an initial

gap that does not exceed 0.7%. However, CG is not able to converge finding a lower bound

Chapter 6. Heuristic methods 132

within the time limit, and, therefore, the gap cannot be proven. Concerning the instances

with 30 minutes and 15 minutes time unit, PD-tl finds a solution with a gap that does not

exceed 0.4%, except for one instance (57 11 15 le), where the gap is 1.7%. In addition, in 7

over 10 cases PD-tl has a null gap, meaning that this heuristic finds the solution with the

best value known.

6.2.3 Conclusions

In this section we proposed a PD heuristic that makes use of CG to get lower bounds

and fractional solutions, and LNS to get upper bounds and feasible integer solutions. The

advantage of this method concerns the fact that the quality of the solution found can be

evaluated, since both lower and upper bounds are available. However, PD is subject to the

convergence of CG. As a consequence, PD is not able to solve instances with a very high

degree of flexibility (Real instances with 30 minutes and 15 minutes time unit). In order to

obtain feasible solutions also for these instances, we propose a variant of the PD heuristic

(PD-tl), that imposes a time limit to both CG and LNS. Even though the optimality gap

cannot be proven, PD-tl achieves the best upper bound known in most of the instances not

solved by PD.

6.3 Hybrid heuristic

This section presents a hybrid heuristic for solving the multi-activity tour scheduling prob-

lem addressed. This method combines a greedy heuristic, tabu search (TS) and large neigh-

borhood search (LNS). We have seen in Section 6.1 how LNS can be employed to find a

feasible solution to the multi-activity tour scheduling problem. The algorithm starts with

an empty planning and it builds the initial solution based on the residual demand (cf. Sec-

tion 6.1.1.3). However, an initial solution can be given as input. For instance, in the PD

heuristic presented in Section 6.2, the LNS takes as initial solution the rounding of the opti-

mal fractional solution of the master problem, obtained by means of CG. In this section we

describe a heuristic based on TS for obtaining an initial solution, which is used as starting

point by the LNS. The intuition behind is the following: we remarked that the common fea-

ture of most of the legal constraints is the duration, especially on consecutive slots. Indeed,

many constraints impose lower and upper bounds on the assignment of some entity (task,

timeslot, break, interruption or daily shift). For instance, we have minimum and maximum

duration on activities, on breaks and on interruptions. Furthermore, we have minimum

and maximum duration on timeslots, which is nothing but the consecutive working hours

constraint, and minimum and maximum duration of daily shifts, which corresponds to the

constraint on the amplitude of the working day. In the following, we will refer to these

constraints as duration constraints. A TS heuristic focuses on this remark to find a solution

satisfying this class of constraints.

The section is organized as follows: Section 6.3.1 describes the hybrid heuristic developed

for computing an integer feasible solution, and it details the three components, i.e. the

Chapter 6. Heuristic methods 133

greedy heuristic, the TS and the LNS. Computational results are shown in Section 6.3.2,

and conclusions are presented in 6.3.3.

6.3.1 The method

The proposed hybrid heuristic essentially combines a greedy heuristic, TS and LNS. Starting

from an initial solution satisfying workload obtained with the greedy heuristic, TS aims at

integrating a particular class of the legal constraints by keeping the demand satisfied. Then,

LNS completely repairs all schedules making them feasible, and it aims at minimizing the

total cost of the planning.

6.3.1.1 Greedy heuristic

The greedy algorithm builds a solution assigning employees to activities in order to satisfy

only workload constraints. Initially, no employee is assigned and therefore the planning is

empty. Activities are treated one by one and available employees are assigned in slots where

the considered activity is required.

Algorithm 4: Greedy heuristic

1 Xi ← [];
2 foreach activity a do
3 foreach employee i do
4 foreach slot j do
5 if bja > 0 and i is available in j then
6 Xi ← Assign(i,j,a);
7 bja − 1;

8 end if

9 end foreach

10 end foreach

11 end foreach
12 return X0;

The greedy heuristic considers only workload requirements and it assigns employees to ac-

tivities in each slot. This is done without checking if the assignments cause the violation of

other constraints. If there are enough available employees, the resulting planning satisfies

exactly the demand without any under or over coverage.

6.3.1.2 Tabu search

Tabu search is a heuristic procedure which goes back to Glover (1989) and has been used

in many applications such as Al-Turki et al. (2001), Burke et al. (2006), Chiarandini et al.

(2000) and De Bruecker et al. (2014). In our hybrid method, TS follows the greedy heuristic

and it receives an initial solution satisfying workload constraints. As previously explained,

this solution is built considering only the demand in each slot and no check is done on the

Chapter 6. Heuristic methods 134

other constraints. TS aims at integrating a particular class of constraints, which imposes

minimum and maximum bounds on the assignment of some entity. With the term “entity”

we refer to either a task, a timeslot, a break, an interruption or a daily shift. The constraints

belonging to this class, called duration constraints, are the following:

(L1) activity duration: it imposes bounds on the duration of a task;

(L2) consecutive working time: it imposes bounds on the duration of a timeslot;

(L3) break and interruption duration: it imposes bounds on the duration of a pause;

(L5) amplitude of the working day : it imposes bounds on the duration of a daily shift.

We introduce an objective function to measure how far a solution is from satisfying the

duration constraints. This function is given by the sum of all violations to constraints on

the duration of tasks (2.9), timeslots (2.20), breaks (2.37), interruptions (2.38) and daily

shifts (2.49). Let us define the set E of all entities, that is E = K ∪ T ∪ B ∪ C ∪ S where

K,T,B,C and S are respectively the set of tasks, timeslots, breaks, interruptions and daily

shifts. Furthermore, for each entity e ∈ E, let xe ∈ {0, 1} be the binary variable equal to

1 if e is performed, and let de ∈ R+ be the positive variables equal to its duration. For

instance, if e is a task k ∈ K, we have that xe corresponds to variable xKk , which is equal

to 1 if task k is performed, 0 otherwise (cf. Section 2.1.1.3). In addition de is equal to the

duration of task k, given by the sum
∑

j∈J(yKkj − zKkj) (cf. constraint (2.9)). Finally, for

each entity e ∈ E, let le and ue be respectively the lower and upper bound of the duration

of entity e. For instance, if e is a timeslot t ∈ T , we have that le and ue correspond to the

lower bound lcw and the upper bound ucw on the consecutive working time (i.e. the duration

of the timeslot).

We say that entity e violates the corresponding duration constraint if it is performed, i.e.

xe = 1, and its duration de is lower than le or greater than ue. Therefore, we can define its

violations as follows:

v(xe, de) = max{0; lexe − de; de − uexe}. (6.3)

The TS heuristic aims at finding the best quality solution, with the lowest total violation to

duration constraints, satisfying workload requirements. Therefore, the goal is the minimiza-

tion of the total violations to duration constraints. The violations v(xe, de) are weighted

using multipliers λe, which are iteratively updated.

min
∑
e∈E

λe v(xe, de). (6.4)

In order to minimize the total violation (6.4) of the duration constraints, we use a basic TS

method combined with intensification and diversification techniques. In the following we

describe the features of our TS heuristic.

Neighborhood. The neighborhood of a solution is defined by the operator called Swap.

Given a subset of consecutive slots J ′ = {j, j+1, . . . } (this subset can contain also one single

slot) and two employees i1 and i2, the solution obtained after applying Swap (i1, J
′, a1) →

Chapter 6. Heuristic methods 135

(i2, J
′, a2) is equal to the current solution except that employees i1 and i2 exchange their

activities in all the slots j in J ′. The neighborhood of a solution s is built according to

the following: we select the most violated constraint, N(s) consists of all the solutions we

can achieve by applying a Swap move on a subset J ′ of slots of the selected constraint.

We remark that, for each slot j in J ′, the two employees embedded in the move, exchange

the activities in j, ensuring that all the solutions in the neighborhood keep on satisfying

workload constraints. Regarding the neighborhood exploration, we tested both best and first

improvement. The first one consists in looking for the Swap that gives the best objective

function improvement, while the second one consists in accepting the first Swap that improves

the objective function. Due to the high number of evaluations needed, the first improvement

gives better results considering both solving time and quality of solutions.

Tabu list. We employ a dynamic tabu list. We fix minimum lmin and maximum lmax

lengths. The tabu list length changes between lmin and lmax according to the evolution

of the objective function: it increases when the best solution known does not improve

after it tabu(= 10) iterations, while it decreases when the best solution known improves.

Regarding the tabu list update, we use a FIFO policy.

Multipliers λe update. Multipliers λe are iteratively updated according the evolution

of the corresponding violation v(xe, de) after applying the Swap move. Fixing δ ∈ (0, 1) as

small constant value, λe = (1 + δ)λe if the violation increases and λe = (1 − δ)λe if the

violation decreases.

Algorithm 5: Tabu search heuristic

1 Xc ← Xi;
2 Xb ← Xi;
3 for (t = 1,.., div max) do
4 while (cost best > 0 and it < it max) do
5 Xc ← ExploreNeighborhood(Xc);
6 if (f(Xc) < f(Xb)) then
7 Xc ← Intensification(Xc);
8 Xb ← Xc;

9 else
10 UpdateTabuList();
11 end if

12 end while
13 Xc ← Diversification(Xc);
14 it max← 2 ∗ it max;

15 end for
16 return Xb;

Intensification. The basic TS is combined with intensification. When an improving Swap

(i1, J
′, a1)→ (i2, J

′, a2) is found, the neighborhood is deeply explored, and moves in adjacent

slots are evaluated.

Chapter 6. Heuristic methods 136

Diversification. We also combine the basic TS with diversification. In our heuristic, when

the best solution cannot be improved any more using the basic TS with intensification, we

employ a perturbation operator to destruct the obtained local optimum. Starting from the

best solution known, we apply Swap move in all slots in which we have a violated duration

constraint. To be more precise, for each slot we first evaluate the swap moves with all

other employees, then we select the move that leads the objective function to the lowest

deterioration. As a result, the new solution preserves part of the best solution feasibility

and differs where duration constraints are violated. Then, the basic TS with intensification

is restarted. Diversification is performed div max(= 5) times.

Stopping criteria. Many stopping conditions can be used for TS, such as the fixed num-

bers of iterations, the maximum number of iterations without any improvement of the

objective function and the total amount of computational time. Since the basic TS is in-

tegrated with a perturbation operator, it stops when the best solution cannot be improved

within a given number of iteration it max(= 100).

6.3.1.3 Large neighborhood search

The last component of the hybrid heuristic is the LNS. We recall that LNS iteratively

destroys and repairs part of the current solution with the goal of improving it. At this step we

have a solution that satisfies exactly workload constraints and it has hopefully a low violation

to duration constraints. In the first place, the LNS is employed to integrate completely all

the constraints that are still violated, by removing (destructor operator) the current schedule

of each employee, and building a new feasible schedule (constructor operator). Then, the

LNS iteratively applies destructor and constructor operators to improve the current solution

minimizing the total cost of the planning, that considers both under and over coverage. We

refer to Section 6.1 for the details of the LNS framework.

6.3.2 Computational results

This section shows the computational results of the hybrid heuristic described. The algo-

rithm has been coded in C# and tests have been performed on a 64-bit Windows operating

system with 977 GB of RAM and 16 processors (only one core is used) Intel Core running

at 2.00 GHz. Experiments have been done on the three sets of instances RGR, RGR flex-

ible and Real presented in Section 1.4. Due to the different degrees of flexibility of these

instances, the LNS component requires to be set up. For more details on how it has been

tuned, we refer to the Section 6.1 that describes the LNS (cf. Section 6.1.2).

RGR instances. Computational results on RGR instances are shown in Table 6.12. The

first and the second columns report respectively the name of the instance and the cor-

responding lower bound known. The next five columns show the results of the heuristic

B&P method proposed by Restrepo et al. (2016). More in detail, ub, t(s) and gap% are

Chapter 6. Heuristic methods 137

Instance lb
B&P-RGR Hybrid

ub t(s) gap% tr(s) gapr% ub t(s) gap%

20 1 7 v1 G1 52080 52080 21.31 0.0 21.31 0.0 52190 507.42 0.2
20 1 7 v2 G1 49440 49660 31.00 0.4 31.00 0.4 49440 476.94 0.0
25 1 7 v1 G1 60560 60560 16.69 0.0 16.69 0.0 60560 424.31 0.0
25 1 7 v2 G1 72660 72660 6.32 0.0 6.32 0.0 72660 561.10 0.0
40 1 7 v1 G1 100410 100850 10.77 0.4 10.77 0.4 100410 594.81 0.0
40 1 7 v2 G1 98390 98940 90.52 0.6 90.52 0.6 98830 1380.68 0.4

20 3 7 v1 G2 52900 - - - - - 54100 600.76 2.3
20 3 7 v2 G2 60120 60120 1735.07 0.0 733.69 3.6 60780 182.65 1.1
20 3 7 v3 G2 60450 60780 1507.83 0.5 697.80 2.6 62020 222.30 2.6

20 1 7 v1 G3 82825 82860 3.66 0.0 3.66 0.0 84650 345.39 2.2
20 1 7 v2 G3 64675 65280 5.91 0.9 5.91 0.9 68340 106.32 5.7
25 1 7 v1 G3 99995 100380 3.47 0.4 3.47 0.4 103280 129.25 3.3
25 1 7 v2 G3 72660 73100 1.61 0.6 1.61 0.6 72860 99.34 0.3
40 1 7 v1 G3 202050 202250 1.38 0.1 1.38 0.1 202930 365.31 0.4
40 1 7 v2 G3 117677 118170 10.46 0.4 10.46 0.4 123780 269.01 5.2
20 3 7 v1 G3 71800 - - - - - 72750 827.19 1.3
20 3 7 v2 G3 61655.5 62125 1408.06 0.8 730.60 5.8 64155 72.25 4.1
20 3 7 v3 G3 63575 63950 1370.42 0.6 686.61 5.6 65320 69.20 2.7
20 5 7 v1 G3 84553.9 - - - - - 95460 193.04 12.9
20 5 7 v2 G3 86915 - - - - - 92515 245.65 6.4

Average 383.65 2.6

Table 6.12: Results comparison between B&P heuristic implemented by Restrepo et al.
(2016) and the hybrid heuristic on RGR instances.

respectively the upper bound, the computational time and the optimality gap, while tr(s)

and gapr% are the computational time and the gap evaluated at the root node. The last

three columns show the results of the hybrid heuristic, that is the upper bound ub, the

computational time t(s) and the optimality gap gap%.

The results show that for instances of group G1, the hybrid heuristic is able to find a solution

with a gap lower than 0.4%, and in 4 cases over 6 the upper bound equals the lower bound,

resulting in a null gap. However, the computational time is much higher than the one

of B&P-RGR. For these instances, most of the time is employed by LNS, due to the fact

that daily shift selection strategies (D1)+(D3)+(D6) are used to find an improving schedule

when constructing the partial solution, and complete exploration of the neighborhood may

be performed.

Concerning the instances of group G2, we have that B&P-RGR finds a solution with a

gap lower than 0.5% for both instances where the comparison can be done, while the gaps

achieved by the hybrid heuristic are 1.1% and 2.6%. However, if we compare the gaps with

the one obtained at the root node by B&P-RGR (gapr%), the hybrid heuristic is able to

find a solution with a halved or an equal gap, and the computational time is lower.

Finally, from the instances of group G3 we remark a deterioration in the gaps obtained by

the hybrid heuristic on the mono-activity case, if we compare them to G1. The reason relies

Chapter 6. Heuristic methods 138

on the fact that group G3 restricts the feasible starting slots of the daily shifts, while groups

G1 and G2 allow the daily shifts to start in every time period of the day. During the TS

phase, the hybrid heuristic does not take into account the predefined starting slots and, in

some cases, this may lead to a bad quality initial solution for the LNS. However, the average

gap obtained in these 6 instances is 2.8% and the highest gap is 5.7%. The computational

time is much higher than the one of B&P-RGR. This is due to the fact that TS takes in

average 90% of the total computational time for integrating the duration constraints. The

time employed by TS is not only affected by the number of employees and activities, but also,

and in a strong way, by the demand profile. When the workload constraints require a high

number of employees, the solution found by the greedy heuristic is dense and the number of

Swap movements leading to an improvement is limited, mostly in the mono-activity context.

Therefore, TS needs to perform a deep exploration of the neighborhood to find an improving

movement. Analogously to group G2, the hybrid heuristic finds a solution with a gap lower

than the one obtained at the root node by B&P-RGR in the instances of group G3 with 3

activities.

In general, the hybrid heuristic finds a feasible solution with an average optimality gap of

2.6% and an average computational time of 383.65 seconds. In addition, the gap is lower

than 1% and 5% respectively in 40% and 90% of the instances. The highest gaps (12.9%

and 6.4%) are obtained when 5 activities and predefined starting slots are considered.

RGR flexible instances. Computational results on RGR flexible instances are shown in

Table 6.13. The first and the second columns report the name of the instance and the lower

bound known, while the last three columns report the upper bound ub, the computational

time t(s) and the optimality gap gap% obtained by the hybrid heuristic.

Instance lb
Hybrid

ub t(s) gap%

20 1 7 v1 G4 47660 50230 385.02 5.4
20 1 7 v2 G4 47440 47440 345.58 0.0
20 3 7 v1 G4 50990 52890 543.39 3.7
20 3 7 v2 G4 57245 58080 385.69 1.5
20 3 7 v3 G4 57565 58375 368.56 1.4

Average 405.65 2.4

Table 6.13: Results hybrid heuristic on RGR flexible instances.

The results show that the proposed heuristic finds a feasible solution with an average opti-

mality gap of 2.4% and an average computational time of 405.65 seconds. The highest gap is

5.4% while the lowest gap is 0.0%, meaning that a feasible solution with a value that equals

the lower bound has been found. The computational time of the hybrid heuristic is not

affected by the number of employees since all the instances consider 20 employees. However,

it is affected by the number of activities and, most important, by the demand profile, as

previously remarked. Indeed, we can see that some instances with 3 activities are solved

Chapter 6. Heuristic methods 139

in less time than instances with one activity. For example, 20 1 7 v1 G4 and 20 3 7 v3 G4

takes respectively 385.02 and 368.56 seconds. Even though the first one considers only one

activity, the total number of employees required goes up 20 in some time periods, while the

second one never exceeds 9 employees.

Real instances. Computational results on Real instances are shown in Table 6.14. The

first and the second columns report the name of the instance and the lower bound. When a

lower bound is not known (instances with 30 minutes and 15 minutes time unit), the third

column show the best upper bound known, which is used to evaluate the optimality gap. By

abuse of language, we will use the term “optimality gap” even if the best upper bound may

not be the optimal value. The last three columns report the results of the hybrid heuristic,

that is the upper bound ub, the computational time t(s) and the optimality gap gap%.

Instance lb best ub
Hybrid

ub t(s) gap%

57 11 60 le 37270 - 39100 104.06 4.9
75 14 60 ll 135670 - 136140 917.53 0.3
43 15 60 lb 33015 - 34250 41.62 3.7
38 05 60 nh 44585 - 45535 121.78 2.1
23 05 60 nn 21095 - 21450 65.64 1.7

Average (60min) 250.12 2.6

57 11 30 le - 74315 76275 533.78 2.6
75 14 30 ll - 269530 270160 1568.11 0.2
43 15 30 lb - 64540 65660 131.92 1.7
38 05 30 nh - 82055 82480 364.28 0.5
23 05 30 nn - 45090 45565 212.82 1.1

Average (30min) 562.18 1.2

57 11 15 le - 149040 151515 807.74 1.7
75 14 15 ll - 540115 540480 1849.12 0.1
43 15 15 lb - 130210 130750 275.65 0.4
38 05 15 nh - 159305 160000 840.83 0.4
23 05 15 nn - 93060 93500 318.44 0.5

Average (15min) 818.35 0.6

Table 6.14: Results hybrid heuristic on Real instances.

The results show that the hybrid heuristic finds a solution with an optimality gap always

lower than 5%, and in almost half of the instances, the gap does not exceed 0.5%. In

these cases, the high degree of flexibility of these instances helps in finding a good solution.

The differences in the computational time are mainly due to the TS heuristic. Indeed, as

previously remarked, its computational time is not only affected by the number of employees

(instance 75 14 * ll with 75 employees has the highest time), but also by the demand profile.

For example, even though instances 43 15 60 lb and 23 05 60 nn have respectively 43 and

Chapter 6. Heuristic methods 140

23 employees, the computational time of the first one is lower than the computational time

of the second one.

6.3.3 Conclusions

In this section we proposed a hybrid heuristic that makes use of a greedy heuristic to find

an initial solution that satisfies exactly workload constraints, TS to integrate a particular

class of constraints (duration constraints), and LNS to bring the solution to a complete

feasibility by integrating all still violated constraints, while minimizing the total cost of the

planning. Computational results are performed on three sets of instances with different

degree of flexibility and different characteristics. The results show that the optimality gap

is on average 2.1% and it does not exceed 5% in 88% of the instances. However, the results

show two main weaknesses of the hybrid method that concern mainly TS. The first one is

the fact that the performance of TS is strongly affected by the workload constraints. The

second one is the fact that TS does not take into account predefined starting slots.

6.4 Diving heuristic

This section presents a diving heuristic used to quickly obtain a feasible integer solution of

the multi-activity tour scheduling problem. This method consists in a depth first heuristic

that partially explores the search tree in a B&P framework. The branching rule employed in

diving heuristics is usually quite different from the ones in the exact B&P method. Indeed,

these heuristics aim at finding quickly a good feasible integer solution, and not at having a

balanced search tree. After branching, the reduced master problem is modified to deal with

the partial solution fixed, and then it is solved again. We refer the reader to the work of

Sadykov et al. (2018) for a deeper insight on diving methods. Applications in the context

of multi-activity tour scheduling can be found in the work of Gérard et al. (2016).

The diving heuristic is described in Section 6.4.1, while computational results are shown in

Section 6.4.2. Finally, conclusions are presented in Section 6.4.3.

6.4.1 The method

The diving heuristic developed for our problem solves, at each node of the search tree, the

reduced master problem by means of the CG algorithm presented in Section 5.1. In order

to obtain a fast heuristic, a time limit is introduced for CG at each node of the tree. As a

consequence, CG may stop before achieving optimality. We remark that when this happens

at the root node, a valid lower bound of the master problem (2.69)-(2.73) is not available.

A classical branching strategy used in diving heuristic corresponds at rounding up or down

a variable of the linear relaxation of the current reduced master problem (Sadykov et al.

(2018)). At each node of the search tree, the variable xip with the highest value is fixed to 1,

i.e., a complete schedule is selected for the employee i ∈ I such that column p ∈ P i, which

Chapter 6. Heuristic methods 141

is set in the partial solution. After branching, the reduced master problem is modified as

follows:

• all columns associated to employee i are deleted;

• the demand bja is updated for each slot j ∈ J and for each activity a ∈ A, according to

the fixed schedule c, i.e. bja − δipja where δipja ∈ {0, 1} is equal to 1 if c covers activity

a in slot j, 0 otherwise;

• the pricing problem corresponding to employee i is no more called in the next nodes,

in order to avoid generating other columns for this employee.

The resulting (residual) reduced master problem is then solved again. We remark that by

fixing the partial solution as previously described, CG is not affected and no modification

to the pricing problems needs to be done. Therefore, the residual master problem can be

tackled in the same way as the reduced master problem at the root node. The exploration

of the search tree is performed without backtracking. As a consequence, the depth of the

search tree coincides with the number of employees |I|, and exactly |I| nodes are solved in

the diving heuristic.

6.4.2 Computational results

This section shows the computational results of the diving heuristic described. The algo-

rithm has been coded in C# and tests have been performed on a 64-bit Windows operating

system with 977 GB of RAM and 16 processors (only one core is used) Intel Core running

at 2.00 GHz. CPLEX 12.7 has been used as LP solver. Experiments have been done on

the three sets of instances RGR, RGR flexible and Real presented in Section 1.4. The time

limit for the diving heuristic has been fixed to 1800 seconds, and, at each node of the search

tree, a time limit of 1800/|I| seconds has been imposed to CG.

RGR instances. Computational results on RGR instances are shown in Table 6.15. The

first and the second columns report respectively the name of the instance and the cor-

responding lower bound known. The next five columns show the results of the heuristic

B&P method proposed by Restrepo et al. (2016). More in detail, ub, t(s) and gap% are

respectively the upper bound, the computational time and the optimality gap, while tr(s)

and gapr% are the computational time and the gap evaluated at the root node. The last

three columns show the results of the diving heuristic, that is the upper bound ub, the

computational time t(s) and the optimality gap gap%.

The results show that the mono-activity instances of both group G1 and group G3 are

solved with an optimality gap that does not exceed 0.7%, and in 7 over 12 cases the integer

solution found has a value that equals the lower bound, resulting in a null gap. However,

even though the time limit has not been reached, the computational time is higher when

compared to the B&P-RGR which solves all these instances at the root node. This is due

to the fact that no heuristic is employed to determine an upper bound in any node of the

search tree, and an integer solution is in general available only at the end of the diving

Chapter 6. Heuristic methods 142

Instance lb
B&P-RGR Diving

ub t(s) gap% tr(s) gapr% ub t(s) gap%

20 1 7 v1 G1 52080 52080 21.31 0.0 21.31 0.0 52080 165.79 0.0
20 1 7 v2 G1 49440 49660 31.00 0.4 31.00 0.4 49440 420.28 0.0
25 1 7 v1 G1 60560 60560 16.69 0.0 16.69 0.0 60560 215.20 0.0
25 1 7 v2 G1 72660 72660 6.32 0.0 6.32 0.0 72660 515.61 0.0
40 1 7 v1 G1 100410 100850 10.77 0.4 10.77 0.4 100410 491.52 0.0
40 1 7 v2 G1 98390 98940 90.52 0.6 90.52 0.6 98500 784.42 0.1

20 3 7 v1 G2 52900 - - - - - 54510 1794.70 3.0
20 3 7 v2 G2 60120 60120 1735.07 0.0 733.69 3.6 60745 1741.68 1.0
20 3 7 v3 G2 60450 60780 1507.83 0.5 697.80 2.6 60925 1468.73 0.8

20 1 7 v1 G3 82825 82860 3.66 0.0 3.66 0.0 82990 122.38 0.2
20 1 7 v2 G3 64675 65280 5.91 0.9 5.91 0.9 65060 172.12 0.6
25 1 7 v1 G3 99995 100380 3.47 0.4 3.47 0.4 100710 177.93 0.7
25 1 7 v2 G3 72660 73100 1.61 0.6 1.61 0.6 72660 37.29 0.0
40 1 7 v1 G3 202050 202250 1.38 0.1 1.38 0.1 202050 136.56 0.0
40 1 7 v2 G3 117677 118170 10.46 0.4 10.46 0.4 117840 246.99 0.1
20 3 7 v1 G3 71800 - - - - - 72445 1845.16 0.9
20 3 7 v2 G3 61656 62125 1408.06 0.8 730.60 5.8 62880 1774.47 2.0
20 3 7 v3 G3 63575 63950 1370.42 0.6 686.61 5.6 64275 1798.06 1.1
20 5 7 v1 G3 84554 - - - - - 89200 1766.88 5.5
20 5 7 v2 G3 86915 - - - - - 89280 1801.43 2.7

Average 873.86 0.9

Table 6.15: Results comparison between B&P heuristic implemented by Restrepo et al.
(2016) and the diving heuristic time limit 1800 seconds on RGR instances.

heuristic. When dealing the multi-activity instances, the optimality gap increases, but it

never exceeds 5.5%, and in most of the cases it is lower than or equal to 3.0%.

RGR flexible instances. Computational results on RGR flexible instances are shown in

Table 6.16. The first and the second columns report the name of the instance and the lower

bound known, while the last three columns report the upper bound ub, the computational

time t(s) and the optimality gap gap% obtained by the diving heuristic.

Instance lb
Diving

ub t(s) gap%

20 1 7 v1 G4 47660 47980 1337.87 0.7
20 1 7 v2 G4 47440 47815 1268.80 0.8
20 3 7 v1 G4 50990 56010 1871.93 9.8
20 3 7 v2 G4 57245 60335 1776.13 5.4
20 3 7 v3 G4 57565 60840 1749.00 5.7

Average 1600.75 4.5

Table 6.16: Results diving heuristic time limit 1800 seconds on RGR flexible instances.

Chapter 6. Heuristic methods 143

Due to the limited time imposed to CG at each node, we wanted to avoid spending too

much time in solving the pricing problems by means of daily shifts selection strategies that

require a considerable computational effort, such as (D5) and (D6). For this reason, we uses

only the most restricting strategy (D1).

The results show that for the mono-activity instances the optimality gap achieved is lower

than 1% in both cases. For these instances, the diving heuristic terminates before the time

limit of 1800 seconds imposed. The reason relies on the fact that in the last nodes explored,

when most of the employees have been fixed, the CG terminates before the time limit since

it does not find negative reduced cost columns with the strategies used to heuristically solve

the pricing problem. Concerning the multi-activity instances, we can see that the optimality

gap deteriorates, exceeding 5.4% in the three cases and reaching a maximum gap of 9.8%.

Real instances. Computational results on Real instances are shown in Table 6.17. The

first and the second columns report the name of the instance and the lower bound. When a

lower bound is not known (instances with 30 minutes and 15 minutes time unit), the third

column show the best upper bound known, which is used to evaluate the optimality gap,

even though the best upper bound may not be the optimal value. The last three columns

report the results of the diving heuristic, that is the upper bound ub, the computational

time t(s) and the optimality gap gap%.

Instance lb best ub
Diving

ub t(s) gap%

57 11 60 le 37270 - 37550 1740.67 0.8
75 14 60 ll 135670 - 135670 1846.82 0.0
43 15 60 lb 33015 - 33125 1578.75 0.3
38 05 60 nh 44585 - 44585 1466.21 0.0
23 05 60 nn 21095 - 21095 1092.21 0.0

Average (60min) 1544.93 0.2

57 11 30 le - 74315 77465 1784.27 4.2
75 14 30 ll - 269530 269530 1866.70 0.0
43 15 30 lb - 64540 67650 1646.55 4.8
38 05 30 nh - 82055 83410 1774.33 1.7
23 05 30 nn - 45090 45505 1539.00 0.9

Average (30min) 1722.17 2.3

57 11 15 le - 149040 160470 1720.82 7.7
75 14 15 ll - 540115 540115 1843.17 0.0
43 15 15 lb - 130210 141455 1874.91 8.6
38 05 15 nh - 159305 161205 1838.32 1.2
23 05 15 nn - 93060 94050 1738.90 1.1

Average (15min) 1803.22 3.7

Table 6.17: Results diving heuristic with time limit 1800 seconds on Real instances.

Chapter 6. Heuristic methods 144

As previously done for RGR flexible instances, the pricing problems are solved with the daily

shift selection strategy (D1). The reason lies not only in the computational effort needed

when using these strategies, but also in the high number of pricing problems. We recall that

for these instances, each employee differs from the others, requiring a pricing problem for

each one. In addition, when solving the instances with 15 minutes time unit, the pricing

solution space is further restricted by using starting slot selection strategy (S2) instead of

(S3). Finally, only configurations (C1)-(C3) are considered.

The results show that for all instances with 60 minutes time unit, the diving heuristic finds

an integer solution with an optimality gap lower than or equal to 0.8%, and in 3 over 5

cases the gap is 0.0%. When the time unit decreases, we can remark a deterioration of

the optimality gaps, that reaches 4.8% for the 30 minutes and 8.6% for the 15 minutes.

However, in 2 instances (75 14 15 ll and 75 14 15 ll) the gap is equal to 0.0%, meaning that

the diving heuristic has found an integer solution with the best value known.

6.4.3 Conclusions

In this section we presented a diving heuristic which consists of a depth first heuristic search

in a B&P tree obtained by branching on the master problem variables xip. At each node, a

complete schedule is selected for one employee and it is set in the partial solution. Due to

the high computational time needed to solve exactly the root node in most of the instances,

we set a time limit for CG at each node of the search tree. The results show that 75% of

the instances are solved with an optimality gap that does not exceeding 2.0%, while 63% of

the instances has a gap not exceeding 1.0%.

6.5 Heuristics comparison

This section has the purpose of comparing the performances of the heuristics methods pre-

sented in this chapter. Table 6.18, Table 6.19 and Table 6.20 present the computational time

t(s) and the optimality gap gap% on RGR, RGR flexible and Real instances respectively.

The results are shown for the heuristics LNS (cf. Section 6.1), the PD method and its

variant PD-tl with time limit (cf. Section 6.2), the Hybrid heuristic (cf. Section 6.3), and

the Diving heuristic (cf. Section 6.4).

From Table 6.18 we can see that the best average optimality gap is achieved with the diving

heuristic, while the fastest is PD-tl. If we analyze instance by instance, the diving obtains

the best gap in 13 over 20 cases, where in half of them (7 instances) the optimal solution is

found with a null gap. Concerning the other heuristics, LNS, PD, PD-tl and hybrid find a

solution with the best optimality gap respectively in 3, 8, 10 and 4 cases over 20. Therefore,

PD-tl is competitive with the diving heuristic in terms of solution quality, while it is faster

than diving in all the instances. We remark that the computational time of PD and PD-tl is

the same in the majority of the instances. The reason relies on the fact that PD-tl imposes

a time limit of 180 seconds on CG, which is not exceeded in most of the instances. As

consequence, PD and PD-tl coincide in these cases.

Chapter 6. Heuristic methods 145

Instance
LNS PD PD-tl Hybrid Diving

t(s) gap% t(s) gap% t(s) gap% t(s) gap% t(s) gap%

20 1 7 v1 G1 453.49 0.2 12.42 0.6 12.42 0.6 507.42 0.2 165.79 0.0
20 1 7 v2 G1 849.93 0.0 18.70 0.4 18.70 0.4 476.94 0.0 420.28 0.0
25 1 7 v1 G1 570.83 0.0 20.76 0.9 20.76 0.9 424.31 0.0 215.20 0.0
25 1 7 v2 G1 1067.76 0.3 14.73 0.0 14.73 0.0 561.10 0.0 515.61 0.0
40 1 7 v1 G1 1073.50 0.0 18.44 0.4 18.44 0.4 594.81 0.0 491.52 0.0
40 1 7 v2 G1 1370.10 0.3 77.00 0.8 77.00 0.8 1380.68 0.4 784.42 0.1

20 3 7 v1 G2 139.56 2.5 323.16 0.9 1058.74 0.9 600.76 2.3 1794.70 3.0
20 3 7 v2 G2 192.04 1.5 142.93 0.7 142.93 0.7 182.65 1.1 1741.68 1.0
20 3 7 v3 G2 223.85 0.9 187.09 0.8 187.09 0.8 222.30 2.6 1468.73 0.8

20 1 7 v1 G3 11.95 3.0 17.39 0.8 17.39 0.8 345.39 2.2 122.38 0.2
20 1 7 v2 G3 31.46 2.0 57.42 0.8 57.42 0.8 106.32 5.7 172.12 0.6
25 1 7 v1 G3 22.15 2.2 22.64 0.7 22.64 0.7 129.25 3.3 177.93 0.7
25 1 7 v2 G3 20.77 1.9 6.45 0.0 6.45 0.0 99.34 0.3 37.29 0.0
40 1 7 v1 G3 27.57 0.4 12.61 0.2 12.61 0.2 365.31 0.4 136.56 0.0
40 1 7 v2 G3 22.76 4.6 74.49 0.8 74.49 0.8 269.01 5.2 246.99 0.1
20 3 7 v1 G3 28.57 1.1 329.45 0.8 350.49 0.5 827.19 1.3 1845.16 0.9
20 3 7 v2 G3 33.24 3.0 1220.14 2.2 1139.44 1.5 72.25 4.1 1774.47 2.0
20 3 7 v3 G3 20.61 2.7 576.74 0.9 576.74 0.9 69.20 2.7 1798.06 1.1
20 5 7 v1 G3 40.91 9.0 2982.18 5.0 1160.50 6.5 193.04 12.9 1766.88 5.5
20 5 7 v2 G3 29.73 6.0 1657.43 2.8 1127.24 2.4 245.65 6.4 1801.43 2.7

Average 311.54 2.1 388.61 1.0 304.81 1.0 383.65 2.6 873.86 0.9

Table 6.18: Comparison heuristics on RGR instances.

A different situation arises from the experiments on the RGR flexible instances, whose results

are presented in Table 6.19. Indeed, LNS is the fastest heuristic in all the instances and the

computational time is much lower compared to the others. The best average gap is achieved

by the PD method, with a value of 0.9% in all the instances. Furthermore, PD finds the

best solution in 3 over 5 cases. However, the time goes up to 4 hours when 3 activities are

considered, due to the high computational effort required to find a valid lower bound in the

first iteration of PD. PD-tl and the hybrid heuristic find the optimal solution for one of the

instances with a null gap, while the diving heuristic is the best in terms of optimality gap

in 1 over 5 cases.

Instance
LNS PD PD-tl Hybrid Diving

t(s) gap% t(s) gap% t(s) gap% t(s) gap% t(s) gap%

20 1 7 v1 G4 217.07 4.1 2190.25 0.9 1138.94 0.8 385.02 5.4 1337.87 0.7
20 1 7 v2 G4 107.77 3.6 753.32 0.9 1141.60 0.0 345.58 0.0 1268.80 0.8
20 3 7 v1 G4 215.44 7.3 4037.52 0.9 1048.02 4.1 543.39 3.7 1871.93 9.8
20 3 7 v2 G4 158.03 1.9 13801.92 0.9 954.18 1.1 385.69 1.5 1776.13 5.4
20 3 7 v3 G4 170.89 1.6 15326.60 0.9 1051.30 1.1 368.56 1.4 1749.00 5.7

Average 173.84 3.7 7221.92 0.9 1066.81 1.4 405.65 2.4 1600.75 4.5

Table 6.19: Comparison heuristics on RGR flexible instances.

The results on the Real instances are shown in Table 6.20. We recall that a valid lower bound

is not available for the instances with 30 and 15 minutes time unit, due to the extremely

Chapter 6. Heuristic methods 146

Instance
LNS PD PD-tl Hybrid Diving

t(s) gap% t(s) gap% t(s) gap% t(s) gap% t(s) gap%

57 11 60 le 31.45 5.0 1302.92 0.9 1075.97 0.4 104.06 4.9 1740.67 0.8
75 14 60 ll 37.20 1.2 1559.51 0.7 1029.93 0.0 917.53 0.3 1846.82 0.0
43 15 60 lb 15.10 3.8 536.43 0.2 1073.77 0.3 41.62 3.7 1578.75 0.3
38 05 60 nh 17.21 1.3 713.74 0.9 986.35 0.0 121.78 2.1 1466.21 0.0
23 05 60 nn 6.83 3.2 713.33 0.0 1061.85 0.0 65.64 1.7 1092.21 0.0

Average 21.56 2.9 965.19 0.5 1045.57 0.1 250.13 2.5 1544.93 0.2

57 11 30 le 316.76 2.2 - - 988.3 0.0 533.78 2.6 1784.27 4.2
75 14 30 ll 260.53 1.4 - - 972.57 0.4 1568.11 0.2 1866.70 0.0
43 15 30 lb 125.29 2.0 - - 1046.34 0.0 131.92 1.7 1646.55 4.8
38 05 30 nh 119.55 1.5 - - 1048.74 0.0 364.28 0.5 1774.33 1.7
23 05 30 nn 56.69 1.7 - - 1028.67 0.0 212.82 1.1 1539.00 0.9

Average 175.76 1.8 1016.924 0.1 562.18 1.2 1722.17 2.3

57 11 15 le 526.39 1.8 - - 1095.21 1.7 807.74 1.7 1720.82 7.7
75 14 15 ll 583.51 0.8 - - 1165.11 0.1 1849.12 0.1 1843.17 0.0
43 15 15 lb 154.48 0.9 - - 1028.58 0.0 275.65 0.4 1874.91 8.6
38 05 15 nh 425.75 1.5 - - 1112.16 0.0 840.83 0.4 1838.32 1.2
23 05 15 nn 122.05 0.9 - - 959.80 0.0 318.44 0.5 1738.90 1.1

Average 362.44 1.2 1072.172 0.4 818.36 0.6 1803.22 3.7

Table 6.20: Comparison heuristics on Real instances.

high degree of flexibility which leads to the difficulty for CG in solving the linear relaxation

of the master problem (2.69)-(2.73). As consequence, the gap is evaluated considering the

best upper bound found by all the heuristics tested, and we call it “optimality gap” by

abuse of language. Another consequence consists in the fact that PD is not able to solve

instances with 30 and 15 minutes time unit, since the method requires CG to converge in

order to find a valid lower bound. The results on these instances are marked with “-”. LNS

is the fastest heuristic for all the instances, and the computational time is lower of at least

one order of magnitude in some cases when compared to the other heuristics. Concerning

the quality of the solution, PD-tl achieves the best optimality gap in 12 over 15 cases, and,

except in one instance where the gap is 1.7%, the gap never exceeds 0.4%. In addition it

finds the optimal solution in 3 over 5 cases for the 60 minutes instances, while it finds the

best solution known in 7 over 10 cases for the 30 and 15 minutes instances.

In conclusion, the LNS heuristic results the fastest in 75% of the instances, mostly in the

large-scale ones. It achieves an optimality gap that is in average 2.2% and exceeds 5.0%

only in 3 cases. The heuristic that gives the best compromise between computational time

and optimality gap is PD-tl. Indeed, the first is on average 677.59 seconds, while the second

on average 0.8% and it exceeds 5.0% only in one case.

Conclusions

This thesis originates from a partnership between the company Horizontal Software and

LIPN of Université Paris 13, and it addresses the multi-activity tour scheduling problem

through different exact and heuristic methods. In the following we sum up the main contri-

butions and we outline some future improvements and research directions.

Main contributions

The problem addressed in this thesis takes inspiration from the personnel scheduling prob-

lem arising in the context of the restaurant business, one of the challenging areas in which

Horizontal Software offers its E-Optim tool. The problem is classified as multi-activity tour

scheduling problem and its main characteristic is the high degree of schedule flexibility,

coming from the work regulations and from the possibility of assigning long pauses (inter-

ruptions), which may span up to 5 hours.

Part I of this thesis presents two modeling approaches. The first is a compact MILP model

which extends the one proposed by Gérard et al. (2016) to deal with the particular features

of the addressed problem. The second is based on Dantzig-Wolfe decomposition, which

is well-suited for multi-activity tour scheduling and it allows to decompose the problem in

smaller ones. As done in Gérard et al. (2016) and Restrepo et al. (2016), the master problem

is based on a generalized set partitioning problem with convexity constraints, where binary

variables are associated to schedules, and positive continuous variables are associated to

under and over demand coverage.

Part II is devoted to the exact resolution of the problem through a B&P method, whose key

element is CG. As a first step towards the independence from commercial solvers, Chapter 3

is dedicated to the resolution of the reduced master problem and it proposes a DA heuristic

for obtaining feasible dual solutions of the generalized set partitioning problem with con-

vexity constraints. The generality of this model allows the use of DA for solving problems

that arise from different contexts. Indeed, computational experiments are done not only on

multi-activity tour scheduling instances, but also on minimum sum coloring instances and

randomly generated instances. The results reveals the quality of the dual solutions evalu-

ated by the DA, which allows to speed up the convergence of CG and soften the oscillations

of the dual variables.

147

Conclusions 148

Chapter 4 is dedicated to the resolution of the pricing problem(s) and it proposes an ex-

act three phases method based on both constraint and dynamic programming. In the first

phase, formal language (regular grammar) models the rules defining feasible timeslots. In

the second phase, timeslots, breaks and interruptions are assembled into feasible daily shifts.

Regular grammar is used to model part of the rules defining daily shifts, while a label al-

gorithm is used to determine, in the expanded graph, the resource constrained shortest

path that captures the remaining daily shifts rules. In the third phase, daily shifts and

days-off are combined into schedules by using a bi-directional label algorithm. The lay-

ered structure of the proposed methods makes it suitable for the use of different strategies

to solve heuristically the pricing problem, essentially when dealing with the large-scale in-

stances. Computational experiments compare the different strategies proposed and highlight

the higher degree of flexibility of the real instances provided by Horizontal Software when

compared with instances from the literature.

The DA and the pricing resolution method are combined into a CG framework, along with

different accelerating strategies such as intensification, diversification, columns elimination,

heuristic pricing and partial pricing. This framework is at the basis of the B&P of Chapter 5.

Computational experiments show that optimality is proven only for small-scale instances.

In addition, it fails in finding a feasible solution for the large-scale instances of Horizontal

Software, due to their degree of flexibility which results in high number feasible schedules.

In order to deal with the large-scale real instances and efficiently find good quality solutions,

Chapter 6 proposes four different heuristics: a LNS that iteratively destroys and repairs an

initial solution using the pricing solving method proposed in Chapter 4; a PD heuristic that

makes use of CG to get a lower bound, and LNS to get an upper bound and a feasible integer

solution; a hybrid heuristic that combines a greedy heuristic to determine an initial solution

satisfying workload, a TS to integrate a particular class of constraints (duration constraints),

and LNS to obtain a feasible solution; finally, a diving heuristic that partially explores a

B&P search tree. Computational experiments reveals that LNS is well-suited for obtaining

quickly feasible integer solutions, while PD determines high quality solutions. However, PD

is subject to the convergence of CG which suffers on the large-scale real instances. The

variant of PD with time limit is a good alternative for finding high quality integer solutions.

In addition to the work of this thesis, a contribution on a different research area has been

done. It deals with a problem related to the energy management in a decentralized setting,

where the interactions between a generation company and various micro-grids are taken

into account. Therefore, it has been an interesting opportunity to cope with combinatorial

and bilevel optimization applications in a rather different domain than the main one of the

thesis. Appendix A addresses a variant of the power generation problem where a generation

company interacts with the micro-grids by buying and selling power to them. The problem is

modeled as a bilevel stochastic optimization problem, and a heuristic one-level reformulation

is proposed to deal with realistic size instances.

Conclusions 149

Research directions

The work on the multi-activity tour scheduling problem addressed has left several tasks to

be accomplished shortly after the end of this thesis, and some interesting research paths

that will be investigated on a longer-term horizon. They concern both the academic and

the industrial point of view.

The limitations of the pricing solving method based on constraint and dynamic programming

have been highlighted on instances with a high degree of flexibility (RGR flexible and Real).

The main reason relies on the number of feasible daily shifts, which affects the size of

the DAG used for generating schedules in the third phase. As a consequence, dynamic

programming algorithms become slow or they are not even able to solve the pricing problem.

Real-world instances with a high degree of flexibility have been solved with time unit of 60

minutes. To solve instances with a smaller time unit, a further step needs to be done

to improve the third phase. In parallel, it could be interesting to understand how much

the flexibility characterizing the real instances is useful, taking advantage of the managers

know-how and/or analyzing the historical planning approved.

In order to deal with even more real instances it would be interesting to take into account

the distribution constraints that appear, for instance, when employees need to attend a

formation course. At this stage, it is not easy to consider these constraints when generating

the schedules due to the fact that the proposed pricing solving method “forgets” the activity

performed within each timeslot when building daily shifts. A first idea that comes in mind

consists in generating timeslots (daily shifts) where the employee works and timeslots (daily

shifts) where the employee takes the course. For instance, if the course can be attended

every day from 9am to 11am, all timeslots and daily shifts covering these time periods

are generated first forbidding and then imposing that the course is attended. In addition,

a further resource is necessary in the label algorithm of the third phase. However, the

consequence of these modifications lies in the increasing size of the DAG used for generating

schedules. A second class of constraints arising in various personnel scheduling problems

consists in the fair assignment of hard activities that may require an intense physical or

mental effort (equity constraints). These constraints are essential for the satisfaction and

the well-being of the employees. For instance, in the context of the fast food restaurant chain

where the open hours are longer than usual restaurants, a fair assignment of the opening

and closing activities is required.

Another aspect of the real instances that could be interesting to study is stochasticity,

which may be due to endogenous and exogenous factors to the company. The first concern

demand uncertainty while the second comes from the employees. One of the assumptions of

the thesis is that all availabilities of the employees are known before the scheduling process.

In addition, we assume that all employees perform the assigned schedule. However, it may

happen that some of them do not show up at work without informing the manager. In these

case, re-optimization methods could be employed with the goal of generating a new solution

which is as close as possible to the old one.

Appendix A

Optimizing power generation in the

presence of micro-grids

In this appendix we present a work that has been done during the 117th European Study

Group with Industry, in collaboration with Wim van Ackooij (EDF R&D), Jérôme De

Boeck (Graphes et optimisation mathématique, Université Libre de Bruxelles), Michael

Poss (UMR CNRS 5506 LIRMM, Université de Montpellier) and Boris Detienne (Institut

de Mathématiques de Bordeaux, Université de Bordeaux). The problem concerns energy

management in a decentralized setting. In today’s system, energy distribution is made pos-

sible by the power distribution grid, a system of transmission that allow electricity to be

transferred from the point of generation to clients houses. Therefore, all problems are all

looked at from the eye of a centralized planner, a large GenCo. Only to mention one of these

problems, the unit-commitment aims at finding the most cost-effective production schedule

while satisfying the operational constraints of the units. Network of the future generation

will replace traditional and centralize power distribution grid with smart-grids. They will

introduce new actors (micro-grids) and new type of iterations between them, which need to

be defined and investigated. In this work we focus on the relation between the main grid

and the micro-grids which will be defined through means of contracts.

This paper was accepted for publication in European Journal of Operational Research in

May 2018.

150

Appendix A. Optimizing power generation in the presence of micro-grids 151

Optimizing power generation in the presence of micro-grids

Wim van Ackooij. EDF R&D. OSIRIS, 7 Boulevard Gaspard Monge, F-91120 Palaiseau

Cedex France

Jérôme De Boeck. Graphes et optimisation mathématique, Université Libre de Brux-

elles, B-1050 Brussels, Belgium and INOCS, INRIA Lille Nord-Europe, France

Boris Detienne. Institut de Mathématiques de Bordeaux, Université de Bordeaux, Inria

Bordeaux-Sud-Ouest, 153 cours de la libération, 33400 Talence, France

Stefania Pan. UMR 7030 CNRS LIPN, Université Paris 13, 99 avenue Jean-Baptiste

Clément, 93430 Villetaneuse, France

Michael Poss. UMR CNRS 5506 LIRMM, Université de Montpellier, 161 rue Ada, 34392

Montpellier Cedex 5, France

Abstract. In this paper we consider energy management optimization problems in a fu-

ture wherein an interaction with micro-grids has to be accounted for. We will model this

interaction through a set of contracts between the generation companies owning centralized

assets and the micro-grids. We will formulate a general stylized model that can, in princi-

ple, account for a variety of management questions such as unit-commitment. The resulting

model, a bilevel stochastic mixed integer program will be numerically tackled through a

novel preprocessing procedure. As a result the solution for the bilevel (or single leader mul-

tiple follower) problem will be neither “optimistic” nor “pessimistic”. We will numerically

evaluate the difference of the resulting solution with the “optimistic” solution. We will also

demonstrate the efficiency and potential of our methodology on a set of numerical instances.

Keyword. Integer programming, power generation, bilevel optimization, stochastic opti-

mization, single leader multiple follower games.

A.1 Introduction

In the upcoming future the energy landscape will significantly change from the current

picture by incorporating more and more decentralized elements. Of particular importance

is the advent of so-called micro-grids (MG). These are subparts of the system with an

advanced energy management system interacting with programmable elements in the grid

including good monitoring and control functions, a pervasive communication system and

specific items such as smart meters, programmable loads, switchable storage systems and a

variety of controllable energy sources including solar, wind and wave generators. Some of

the major changes introduced by smart grids are the following:

Appendix A. Optimizing power generation in the presence of micro-grids 152

• Micro-grids: smaller nearly isolated sub-grids that interact only with the global system

when a load/offer mismatch occurs. Most importantly these sub-grids can be managed

to follow a local economical target (which may be different and contrary to a system-

wide interest).

• Partial storage, perhaps through electrical vehicles or powerful batteries. These stor-

age devices can partially mitigate the intermittency of local decentralized production

such as wind / solar generation.

• Demand management tools: use advanced information technology to pilot electricity

use. For instance, shut down electrical heating, reprogram hot water tank recharging

etc...

In this new setting it becomes of great interest to examine the interaction with more tra-

ditional elements composing the power system. For instance what will be the new role for

large centralized generation assets such as nuclear, thermal or hydro generation? It also

becomes of interest to examine how classical energy management questions, such as unit-

commitment (e.g., Tahanan et al. (2015)), scheduling maintenance of large power plants or

cascaded reservoir management (e.g., de Matos et al. (2017); Taktak and D’Ambrosio (2017))

should evolve to account for this new context. Needless to say, these classical management

questions are already difficult on their own without considering a potential interaction with

micro-grids. On top of this comes also the need to consider and account for uncertainty

which are of great importance for obtaining meaningful management solutions.

The interaction between such micro-grids and centralized assets may be mathematically cast

into the setting of a “game”. We will make the specific choice of considering hierarchical

games wherein a (single) large centralized operator (the leader or upper level) interacts with

one or several micro-grids (the follower(s) or lower level) in a specific way. Such problems also

go by the name of single leader multi-follower or in the case of a single follower by the naming

of Stackelberg game or principal agent problems. We follow the terminology of Dempe et al.

(2015) speaking of bilevel optimization problems, i.e., an optimization problem containing

constraints that certain variables belong to the optimal set of other parametric optimization

problems. Generally speaking these problems fall into the class of mathematical problems

with equilibrium constraints, where Facchinei and Pang (2003a,b) are key references. The

situation with multiple leaders is significantly harder to analyse and falls into the class of

Equilibrium problems with Equilibrium constraints (EPECs). We refer to, e.g., Aussel et al.

(2017a,b); Henrion et al. (2012); Heymann and Jofré (2016) for some applications in energy

and to e.g., Pang and Fukushima (2005, 2009) and references therein for structural studies.

Under some appropriate structure, a bilevel optimization problem involving only continuous

variables can be cast as a DC (difference of convex) - problem. We refer to Pang et al.

(2016); van Ackooij and de Oliveira (2017) for more on such methodology.

In Hobbs and Nelson (1992) the authors claim to investigate bilevel programming in the

electric utility industry for the first time. The lower level (or follower), representing cus-

tomers deals with maximizing benefit while investing in energy conservation. From a tech-

nical viewpoint, the authors substitute the Karush-Kuhn-Tucker (KKT) conditions for the

Appendix A. Optimizing power generation in the presence of micro-grids 153

lower level problem and process the subsequent mathematical program with equilibrium

constraints (MPEC), by employing an exhaustive search on the complementarity conditions

(one classic problem is solved for each state of the complementarity conditions). This pro-

cedure means that for an n dimensional complementarity constraint, 2n problems need to

be solved. Substituting the lower level KKT conditions in order to obtain a one-level more

classic problem is commonplace in the energy literature (e.g., Asimakopoulou et al. (2013);

Cervilla et al. (2015); Kardakos et al. (2016) just to name a few). However it should be

noted that, following Dempe and Dutta (2012), this does not necessarily lead to an equiv-

alent formulation of the original problem. In other words, the solution resulting from the

KKT reformulation need not be a solution to the original bilevel program. This phenomenon

can occur even in the simplest linear setting. We also refer to the recent Adam et al. (2018)

illustrating a similar phenomenon. The essential observation is that the original problem

is augmented with a given set of Lagrange multipliers. Consequently any local solution

to the original problem must be a local solution to the augmented problem for all such

Lagrange multipliers. However, whenever the augmented problem is solved, one ends up

with just one specific Lagrange multiplier. In principle it should thus be verified if the thus

obtained solution remains a local solution for all other Lagrange multipliers. Yet these are

in general not readily available. For a simple 2 variable example of a situation wherein

the KKT reformulation provides local solutions that are not local solutions of the original

problem, see (Dempe et al., 2015, Example 3.1). The authors of Haurie et al. (1992) also

consider a leader-follower framework in the electrical industry but rather in the objective

of benchmarking a given investment strategy in cogeneration against a centrally planned

strategy. In order to do so, they develop an iterative algorithm, which numerically seems

to converge to a Betrand-Cournot equilibrium. The comparison with the centrally planned

solution reveals inefficiencies of the given investment strategy.

Recently, demand side management (or demand response) was recognized to be an important

aspect of the upcoming electrical system. As such, the authors of Fernández-Blanco et al.

(2016) claim to be the first to consider such demand response within a bilevel framework.

The lower level (or follower) problem is an optimal power flow problem under a direct

current assumption. The lower level power balance equation and its dual multiplier in turn

help fixing the global price of energy in the upper level (or leader) problem (e.g., Hao and

Zhuang (2003); Momoh and Mili (2009) suggest a similar model but without solving it).

From a methodological viewpoint, bilinear terms are linearized using McCormick envelopes,

the lower level KKT conditions are substituted for the lower level problem and the special

model structure can be exploited through several substitutions. In view of those claims

our work is one of the first to consider the effect of demand side management on classical

energy management questions. Moreover we will highlight that demand side management is

responsible for ensuring that the optimistic and pessimistic solutions of the bilevel program

are not identical. Although in our work we will focus on the interaction between a utility

and several end-users grouped within one or several smart-grids, we will not consider the

interaction between users as done in Mohsenian-Rad et al. (2010) where the focus is on

reducing peak-to-average load ratios while accounting for potential games between users.

Appendix A. Optimizing power generation in the presence of micro-grids 154

As usual in these works, we too will adopt a market-like setting wherein a predetermined

set of contracts is offered to the customers.

In this paper we thus contribute to this difficult question by considering a stylized interaction

between a generation company (GenCo) owning a (large) set of centralized assets and a set

of micro-grids. We also account for potential competition at the centralized level, but only

in a simplified way. Indeed we will make the assumption that any competitors to the GenCo

have a fixed predetermined interaction with the micro-grids. In this work the GenCo can

offer contracts to the micro-grid that detail the price of buying/selling electricity to the

network. From a mathematical viewpoint we suggest a bilevel stochastic mixed integer

program (BMIP) which in principle can account for a variety of instantiations thus covering

any of the above management questions. In our numerical experiments however, we will

focus on unit-commitment.

The first general methods for obtaining “optimistic” optimal solutions BMIPs can be traced

back to Moore and Bard (1990) and Bard and Moore (1992), which could solve only small

instances, with up to 10 general integer variables and 35 binary variables for the first level

problem. While more recent works have shown significant improvements (e.g., Fischetti et al.

(2016) based on intersection cuts), they are unable to handle the complex MILPs involved in

unit-commitments or more complex power flow optimization problems. Our technical con-

tribution therefore lies in suggesting a tractable reformulation of the bilevel problem that

leads to a solution that is neither “optimistic” nor “pessimistic”. This “heuristic” reformu-

lation is tractable thanks to a preprocessing step that is not harder than solving the original

management problem. We also compare the solution obtained from this reformulation with

the “optimistic” solution that can only be obtained in reasonable times for small systems.

Extensive numerical experiments confirm the interest of the here suggested reformulation.

Essentially our reformulation takes inspiration, and to some degree is equivalent with, the

value function approach originally designed by Outrata (1990). An advantage of this ap-

proach over the usual substitution of the KKT conditions is that we do obtain a solution of

the original problem, albeit, not necessarily the “optimistic” solution.

The outline of this work is as follows. The assumptions of our model are described in

Section A.2, where we present the ingredients of our model in a deterministic setting. Sec-

tion A.3 deals with the suggested reformulation technique for the bilevel problem. In Sec-

tion A.4, we show how our models can be adapted to handle uncertainty. We also show how

our suggested reformulation can be adapted to this new setting. We assess our models and

methodology in Section A.5 on a case study built from realistic data. Some of the details

of the model underlying the case study are provided in A.7. Finally, we conclude the paper

in Section A.6.

Appendix A. Optimizing power generation in the presence of micro-grids 155

A.2 The problem

A.2.1 Description

In this paper we propose a stylized model wherein the current electrical system has trans-

muted into a likely potential future. In this future, several nearly independent subsystems,

– micro-grids –, exist and interact with classical generation companies. We will make the

assumption that micro-grids typically dispose of a set of generation assets mostly comprised

of renewable intermittent sources (wind, solar). Remaining energetically independent of

the rest of the system is then possible, up to a certain extent, by also disposing of a set

of batteries. The remaining time, i.e., in case of production surplus or lack of genera-

tion, an interaction with the classical generators will provide useful back up to meet the

total demand in energy. In our model we will focus on this last type of interaction from

an abstract level and suggest several convenient reformulations so as to make the model

tractable. This is non-trivial, since the formulated model will be a bilevel stochastic mixed

integer optimization problem. Needless to say, the price to pay for tractability is a heuristic

means of solving the problem, but by no means an unrealistic one. Indeed, our suggestion

solution will be “feasible”1 for the original bilevel problem, but neither be the “optimistic”

nor “pessimistic” solution. From the viewpoint of practice, this is actually not unrealistic

since both extremes (the “optimistic” and “pessimistic” views) are stylized anyway. Indeed

there is no reason to believe that an independent actor pursuing his own goals (e.g., in the

case of micro-grids, this could be to remain independent energetically speaking most of the

time), will purposely select the most advantageous response for the leader, nor any reason

to believe it would select the most adverse option. Having something in between can thus

be assumed reasonably realistic.

Before providing a more mathematical description of our model, let us begin by introducing

the key elements of it.

Parties involved We consider an extension of electricity production problems that involve

two types of parties:

• GenCos are big producers of electricity in the network (they own large assets such

as nuclear, thermal, hydro and other renewable energies). In order to avoid having

to face an even tougher class of problems (an equilibrium problem with equilibrium

constraints, or a coupled set of MPECs, e.g., Surowiec (2010)), we focus on the decision

of a single operator that faces competing companies that have a fixed, perfectly known,

policy. Hence, in what follows, GenCo refers to that single operator.

• Each micro-grid q ∈ Q consists of a small subnetwork that has highly volatile gen-

eration capacities (solar, wind), and two types of demands to be attended, which we

denote as hard and elastic demands. On the one hand, hard demands must be met

1Feasible here means that the given solution satisfies both upper and lower level constraints. Moreover
at the given fixed upper level variables, the lower level variables are optimal for the lower level problem.

Appendix A. Optimizing power generation in the presence of micro-grids 156

strictly at all times. On the other hand, elastic demands (heating up water, recharging

electric cars, ...) can be shifted within a certain time window. This models the fact

that environmentally aware users may be willing to postpone / anticipate an essential

electrical consumption in order to reduce overall environmental burden (here trans-

lated through the system cost). Since this use is essential it will take place somewhere

else within a given time window. Micro-grids are assumed to be relatively autonomous

in terms of energy. However, due to the uncertain nature of their production, they

need to buy or sell electricity from the GenCo.

Contract Micro-grids and GenCos interact through contracts that specify the costs of

buying/selling electricity from/to the GenCo for each period of the time horizon T . Specif-

ically, each contract k ∈ K is specified by (i) the price of contract ck paid by the micro-grid

to the GenCo that proposes it, (ii) a linear cost function x 7→ fktx for buying the amount x

of electricity during time period t, and (iii) a linear function y 7→ gkty for selling the amount

y of electricity during time period t. We denote by K0 the subset of contracts possibly pro-

posed by the GenCo whose decisions are being optimized, while K also contains contracts

of competing companies.

Objective On the one hand, the objective of the GenCo is to propose the least cost pro-

duction schedule based on (i) the classical costs of unit-commitment and related problems

(hydro optimization and nuclear maintenance scheduling, for instance) and (ii) the cost/ben-

efit of buying/selling electricity to the micro-grids. On the other hand, the objective of each

micro-grid is to minimize its total cost of buying/selling electricity to the GenCos, by choos-

ing a contract offered by the GenCo or one of the competing companies (in the latter case,

the GenCo does not produce, buy or earn anything for/from the micro-grid). These two con-

flicting objectives can be naturally modeled as a bilevel optimization problem, introduced

in the next section.

Coupling among the different time periods We are given a time horizon T =

{1, . . . , T} that is further partitioned into days: T = D1 ∪ · · · ∪ DJ . Elastic loads cou-

ple all time periods of a given day. However, they do not couple time periods of different

days as we may reasonably assume that the required load will be met during one full day.

Nevertheless, time periods of different days may be coupled together in the presence of bat-

teries with significant storage capacity. In this setting, the resulting multi-stage stochastic

optimization problem is significantly harder, preventing us from decomposing the problem

in time (by day). This is an immediate result of the temporal coupling of adjacent days

through the large storage capacity batteries and the “strongly increasing complexity” of

multi-stage stochastic programs with the number of stages (e.g., Shapiro (2006)).

Appendix A. Optimizing power generation in the presence of micro-grids 157

A.2.2 A bilevel formulation

We describe below our mathematical model, represented as a bilevel multi-stage stochastic

program. Let x ∈ RQ×T represent the electricity production of the GenCo. We are mainly

interested here in the interaction between the GenCo and the micro-grids, so the value xqt

represents the electricity produced by the GenCo and fed into micro-grid q during period t.

Similarly, we can define yqt as the amount of electricity bought by the GenCo from micro-

grid q during time period t. We denote by F : RQ×2T → R ∪ {∞} the cost of producing

x− y. Hence, one can think of the problem

min
x,y≥0

F (x, y) (A.1)

as a compact abstract representation for the combination of unit-commitment, nuclear power

plant maintenance planning, hydro power generation and other related problems, feeding

the connected micro-grids with the power described by x− y. The mapping F can take the

value ∞ for given vectors x, y if certain constraints cannot be met. For instance, whenever

x− y exceeds the generation capacity of the system. With this convention any constraints

on generation (or other constraints) can be readily incorporated in the framework by adding

the characteristic function of these constraints to F . Let us note that computing F (0, 0)

amounts to solving the power generation problem without considering micro-grids. In par-

ticular, computing F is therefore as difficult as computing the least cost power generation

schedule. We also remark that in view of the above discussion, assuming that the GenCo

problem is feasible without micro-grids means that F (0, 0) <∞. We note that from a com-

putational viewpoint it is better to incorporate constraints directly in the model so as to

avoid having to deal with very large numerical values. This is what is done in the numerical

experiments. Handling constraints by allowing F to take on the value ∞ is just convenient

for the mathematical presentation.

In our model the vectors x and y indicate the power flow between the micro-grids and the

(GenCo). These variables are related to the internal functioning of the micro-grids and in

particular their internal constraints. To this end we introduce an abstract constraint set

Mq for each q ∈ Q, modelling in particular the demand-power balance. These power flows

induce a certain cost governed by a contract. In our model, the GenCo has to decide which

contracts it proposes to the micro-grids. We introduce an additional binary variable Zqk that

is equal to 1 if contract k is offered to micro-grid q and zero otherwise. The index set K will

denote the set of all contracts and K0 ⊆ K, the set of contracts suggested by the GenCo, i.e.,

K \K0 is the set of contracts suggested by the competitors of the GenCo. We denote the set

of contracts that the GenCo can offer as Z ⊆ {0, 1}|Q|×|K0|. For instance, Z could contain

all binary vectors, where the GenCo offers a fixed number of contracts Nq to each micro-grid

q ∈ Q. In that case, we would have Z = {Z ∈ {0, 1}|Q|×|K0| :
∑

k∈K0
Zqk ≥ Nq, ∀q ∈ Q}.

For each micro-grid q ∈ Q, the binary variable zqk indicates if micro-grid q subscribes to

contract k. Notice that micro-grid q interacts with the GenCo only if it subscribes to one

of its contracts, that is, if
∑

k∈K0
zqk ≥ 1. We will introduce local versions of the variables

Appendix A. Optimizing power generation in the presence of micro-grids 158

x, y, called x̃ and ỹ that describe locally the power status. In particular, x = x̃ and y = ỹ

only if a contract with the GenCo is subscribed.

Summarizing, the deterministic bilevel problem below considers the following optimization

variables:

• Zqk: 1 if contract k is offered to micro-grid q (leader)

• zqk: 1 if contract k is subscribed by micro-grid q (follower)

• x̃qt: power consumed by micro-grid q during period t (follower)

• ỹqt: power produced by micro-grid q during period t (follower)

• xqt: power consumed by micro-grid q during period t from the GenCo (follower)

• yqt: power produced by micro-grid q during period t for the GenCo (follower)

We are now in measure to formulate our bilevel program:

min F (x, y)−
∑
q∈Q

∑
k∈K0

zqk(ck +
∑
t∈T

(fktxqt − gktyqt)) (A.2a)

s.t. Z ∈ Z (A.2b)

(xq, yq, zq) ∈ arg min
zq.∈{0,1}K ,x̃q ,ỹq

∑
k∈K

zqk(ck +
∑
t∈T

(fktx̃qt − gktỹqt)), ∀q ∈ Q (A.3a)

s.t. (x̃q, ỹq) ∈Mq, (A.3b)

xq = x̃q
∑
k∈K0

zqk, (A.3c)

yq = ỹq
∑
k∈K0

zqk, (A.3d)

zqk ≤ Zqk, k ∈ K (A.3e)∑
k∈K

zqk = 1, (A.3f)

where the constraints (A.2b), (A.3b)-(A.3f) are as explained below. The objective function

of the leader, (A.2a), minimizes the production cost already mentioned in (A.1) combined

with transaction costs related to the micro-grids. Similarly, the objective functions of the

micro-grids, (A.3a), amounts to minimizing their total transaction costs with respect to all

GenCos, not only the one represented by the leader. Hence, (A.3a) involves all contracts in

K while (A.2a) considers only the contracts in K0. Constraints (A.2b) and (A.3b) restrain,

respectively, the set of contracts offered by the GenCo and the feasible power consump-

tion/production for the micro-grids. Constraints (A.3c) and (A.3d) model that xq = x̃q and

yq = ỹq if and only if micro-grid q subscribes to one of the contracts offered by the GenCo.

Constraints (A.3e) impose that only the contract offered by the GenCo can be subscribed by

the micro-grid, while constraints (A.3f) forces each micro-grid to select exactly one contract.

Appendix A. Optimizing power generation in the presence of micro-grids 159

A.3 MILP reformulations

In this section we will provide two reformulations of the bilevel problem (A.2)-(A.3). In order

to understand these, it is to be observed that problem (A.2)-(A.3) is not “unequivocally”

defined in the sense that it is not clear what is meant with min in (A.2a), unless (xq, yq, zq)

in (A.3a) is always unique. A classic way to remove this ambiguity is to consider a so

called optimistic formulation wherein among all (xq, yq, zq) in the lower level problem (A.3)

optimal set, the most advantageous for the leader is chosen. The pessimistic formulation

then corresponds to picking the most disadvantageous case. Obviously both notions coincide

whenever the lower level problem has a unique solution. We refer to Dempe et al. (2015) for

further information on this topic. It is generally recognized that the pessimistic formulation

is significantly harder to analyze than the optimistic formulation. In section A.3.1 we will

suggest a reformulation that is neither optimistic nor pessimistic, but somewhere in between.

We also suggest a formulation leading to optimistic solutions in section A.3.2 for comparative

reasons. In particular the numerical experiments carried out in section A.5 will show that

results from both reformulations differ, hence implying that the arg min in (A.3a) is indeed

not unique and justifying that care should be taken in the interpretation.

A.3.1 Heuristic reformulation

The bilinear optimization problem described in the previous section involves binary variables

and non-linear constraints, all that being built on the top of the already difficult optimization

problem (A.1). Hence, we address the problem heuristically rather than exactly and we show

below how it is possible to exploit the somewhat simple linking constraints (A.3e) to provide

a heuristic reformulation for the bilinear problem.

We propose below a one-level reformulation of the bilevel problem that may lead to solutions

that are not solutions to the optimistic problem. The key aspect of our reformulation relies

on pre-processing. Specifically, for each k ∈ K and q ∈ Q, we solve the restricted follower

problem where zqk is equal to 1, namely:

min
x̃q ,ỹq

ck +
∑
t∈T

(fktx̃qkt − gktỹqkt)

s.t. (x̃qk, ỹqk) ∈Mq,

Let (xqk, yqk) be an optimal solution of the above problem and Cqk be its solution cost.

Then, a heuristic solution to the bilevel problem (A.2)-(A.3), which ensures the optimality

Appendix A. Optimizing power generation in the presence of micro-grids 160

of the lower level, can be found by solving:

min
z,Z

F (x, y)−
∑
q∈Q

∑
k∈K0

Cqkzqk (A.4a)

s.t. xqt =
∑
k∈K0

xqktzqk, ∀q ∈ Q, t ∈ T (A.4b)

yqt =
∑
k∈K0

yqktzqk, ∀q ∈ Q, t ∈ T (A.4c)

zqk ≤ Zqk, ∀q ∈ Q, k ∈ K (A.4d)∑
k∈K

zqk = 1, ∀q ∈ Q (A.4e)

zqk ≤ 1− Zq`, ∀k ∈ K, l ∈ K, q : Cqk > Cql (A.4f)

Z ∈ Z (A.4g)

z ∈ {0, 1}Q×K

The objective (A.4a) is obtained from (A.2a) by replacing the micro-grid cost for the GenCo

by Cqkzqk. Similarly, (A.4b) and (A.4c) are obtained from (A.3c) and (A.3d) by replacing

the variables x̃ and ỹ with their fixed values x and y computed in the pre-processing phase.

It is exactly in these constraints that lies the heuristic aspect of our reformulation since the

followers no longer choose the optimal solution that most benefits the leader, but instead

take the one computed in the pre-processing phase, when (A.3a) admits several solutions.

Finally, constraint (A.4f) ensures that the micro-grids choose the contracts that lead to the

cheapest solutions. Indeed if Zql = 1 and the cheap solution C̄ql is available, any costlier

solution is ruled out by equation (A.4f).

A.3.2 Comparative exact formulation

To assess the quality of our heuristic approach, we have also devised an exact one-level

reformulation for the problem where (A.4b) and (A.4c) are replaced by non-linear constraints

involving the aforementioned decision variables x̃ and ỹ that are restricted by the sets Mq

for each q ∈ Q. In addition, the formulation contains restrictions enforcing x̃ and ỹ to be

optimal for the subproblems.

Appendix A. Optimizing power generation in the presence of micro-grids 161

min
z,Z,x̃,ỹ

F (x, y)−
∑
q∈Q

∑
k∈K0

Cqkzqk (A.5a)

s.t. (A.4d)− (A.4g)

xqt =
∑
k∈K0

x̃qktzqk, ∀q ∈ Q, t ∈ T (A.5b)

yqt =
∑
k∈K0

ỹqktzqk, ∀q ∈ Q, t ∈ T (A.5c)

Cqk = ck +
∑
t∈T

(fktx̃qkt + gktỹqkt), ∀q ∈ Q,∀k ∈ K (A.5d)

(x̃qk, ỹqk) ∈Mq (A.5e)

z ∈ {0, 1}Q×K

Constraints (A.5b) and (A.5c) contain bilinear terms that can be linearized using classical

techniques. Specifically, let us introduce variables Xqkt and Yqkt, respectively equal to

products x̃qktzqk and ỹqktzqk. These variables can be substituded in constraints (A.5b)

and (A.5c), adding also the constraints

Xqkt ≤ x̃qkt
Xqkt ≤Mzqk

Xqkt ≥ x̃qkt −M(1− zqk)
Yqkt ≤ ỹqkt
Yqkt ≤Mzqk

Yqkt ≥ ỹqkt −M(1− zqk),

that models the products through linear constraints involving big-M coefficients. The diffi-

culty of the resulting MILP is that big-M coefficients often lead to numerical instability and

weak LP relaxations. In our numerical experiments we have observed no specific difficulties

related to the big-M coefficients.

A.4 Stochastic extension of the model

Power generation problems that involve renewable intermittent energy like wind and solar

are subject to uncertainty, since the output of the renewable power plants depends on the

weather conditions. This power output is therefore only partially known and should in

principle be considered uncertain. We will set up a model in this section that accounts for

uncertainty in generation. The resulting bilevel stochastic optimization problem will again

become tractable due to a reformulation akin to the one used in the deterministic case.

Obviously the main impact of considering uncertainty is that the preprocessing step will

become much harder.

Appendix A. Optimizing power generation in the presence of micro-grids 162

A.4.1 Model

The most important assumption for our stochastic model below is how we set up the struc-

ture of information. The main assumption, making a reformulation as in the deterministic

case feasible, is that we will restrict the choice of contracts to the first stage. This means

that all contracts have to be decided prior to observing any uncertainty. The second choice

involves the structure of information within the remaining stochastic program. Therein we

will assume that decent weather forecasts are available for an upcoming day and hence that

all information for a given day is known at the beginning of that day. The stochastic pro-

gram therefore has as many stages as there are days. In what follows we will denote with

ξj the uncertainty related to day j ∈ {1, . . . , J}. Let us summarize these assumptions:

• First stage

– The GenCo chooses a set of contracts that are compatible with its objective.

– Each micro-grid chooses a contract among the contracts offered by the GenCos.

• Subsequent stages The exact productions and demands are known for all entities for

all time periods that belong to the current day. Hence, the GenCo can produce the

electricity and the micro-grids manage their elastic loads and batteries according to

the chosen contracts and generated power.

A second important assumption that we will make is that uncertainty ξ has finite support.

It can therefore be represented by a finite set of scenarios Ξ and uncertainty can be assumed

to be represented by a scenario tree. For any given scenario ξ ∈ Ξ, we define x(ξ) and

y(ξ) as the scenario dependent power flows between the GenCo and micro-grids. Following

e.g., Rockafellar (2017), we choose to not make explicit the non-anticipativity constraints

which can be appended to the model through an additional abstract subspace to which

the decisions should belong. Obviously on the scenario tree these conditions are readily

enforced. As stated earlier, the optimization problem has as many stages as days and all

information within a day is assumed to be known.

The introduction of uncertainty affects both the objective function and the constraints

of the follower problem, as well as the objective function of the leader. Thanks to our

specific measurability assumption concerning the days, uncertainty in constraints has an easy

interpretation. In particular the abstract set Mq(ξ) (covering for instance power balance

equations) is such that Mq(ξ) =
∏J
j=1Mq(ξj). Consequently, we can write (x̃q(ξ), ỹq(ξ)) ∈

Mq(ξ) a.s., which for a random realization at day j, simply means that (x̃q(ξj), ỹq(ξj)) ∈
Mq(ξj) as a plain deterministic constraint.

As uncertainty is also present in the objective function, this calls for a consideration of a

tradeoff between risk and average performance (see e.g., Rockafellar and Uryasev (2013)

for a thorough discussion on such matters). As is common in practice, we will adopt a

Markowitz type of idea so that we will weigh a measure of risk and average performance.

To this end we will endow ourselves with a convex weight λ, that will weigh the average

performance and the risk measure for the leader (the micro-grids are assumed risk-neutral

Appendix A. Optimizing power generation in the presence of micro-grids 163

for now, we discuss how to relax this assumption later). We choose to use the CVaRε as a

measure of risk as it preserves convexity and moreover allows for a linear reformulation due

to the following characterization (e.g., Rockafellar and Uryasev (2000)):

CVaRε[X(ξ)] = min
v

{
v +

1

1− ε
E[(X(ξ)− v)+]

}
(A.7)

for any random variable X and probability level ε ∈ (0, 1).

We can now present the following risk-averse version of the bilevel energy management

problem:

min λE

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

 (A.8a)

+ (1− λ)CVaRε

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

(A.8b)

s.t. Z ∈ Z (A.8c)

(xq(ξ), yq(ξ), zq) ∈ arg min
zq.∈{0,1}K ,x̃q ,ỹq

E

[∑
k∈K

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

]
, q ∈ Q

(A.9a)

s.t. (x̃q(ξ), ỹq(ξ)) ∈Mq(ξ)a.s., ξ ∈ Ξ (A.9b)

xq(ξ) = x̃q(ξ)
∑
k∈K0

zqk, ξ ∈ Ξ (A.9c)

yq(ξ) = ỹq(ξ)
∑
k∈K0

zqk, ξ ∈ Ξ (A.9d)

zqk ≤ Zqk, k ∈ K0, ξ ∈ Ξ (A.9e)∑
k∈K

zqk = 1, ξ ∈ Ξ (A.9f)

A.4.2 Heuristic reformulation

As in the deterministic case, the problem (A.8)-(A.9) can be solved heuristically by solving

follower problems in a pre-processing phase. For each k ∈ K and q ∈ Q, we solve the

restricted follower problem where zqk is equal to 1

min
x̃q(ξ),ỹq(ξ)

ck + E

[∑
t∈T

(fktx̃qt(ξ)− gktỹqt(ξ))

]
(A.10a)

s.t. (x̃q(ξ), ỹq(ξ)) ∈Mq(ξ)a.s., ∀ξ ∈ Ξ, (A.10b)

Appendix A. Optimizing power generation in the presence of micro-grids 164

under non-anticipativity constraints. Let (xqk, yqk) be an optimal solution and Cqk be its

optimal value, namely,

Cqk = ck + E

[∑
t∈T

(fktxqt(ξ) + gktyqt(ξ))

]
.

Then, a heuristic solution to the stochastic bilevel problem (A.8)-(A.9), which ensures the

optimality of the lower level, can be found by solving:

min
z,Z

λE

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

+ (1− λ)CVaRε

F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk

(A.11a)

s.t. zqk ≤ Zqk, ∀q ∈ Q, k ∈ K0 (A.11b)∑
k∈K

zqk = 1, ∀q ∈ Q (A.11c)

xqt(ξ) =
∑
k∈K0

xqkt(ξ)zqk, ∀q ∈ Q, t ∈ T , ξ ∈ Ξ (A.11d)

yqt(ξ) =
∑
k∈K0

yqkt(ξ)zqk, ∀q ∈ Q, t ∈ T , ξ ∈ Ξ (A.11e)

zqk ≤ 1− Z`q, ∀k, q : Cqk > Cql (A.11f)

Z ∈ Z (A.11g)

z ∈ {0, 1}Q×K . (A.11h)

The above program can be further reformulated by replacing CVaR with its characterization

(A.7) and by introducing the optimization variables w(ξ) to linearize the function [·]+. This

yields the regular stochastic program:

min
z,Z,w(ξ)

E

λF (x(ξ), y(ξ))− λ
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk + (1− λ)

(
v +

w(ξ)

1− ε

)
s.t. (A.11b)− (A.11h)

w(ξ) ≥ F (x(ξ), y(ξ))−
∑
q∈Q

∑
k∈K0

(ck +
∑
t∈T

(fktxqt(ξ)− gktyqt(ξ)))zqk − v, ∀ξ ∈ Ξ

w(ξ) ≥ 0, ∀ξ ∈ Ξ.

We mention that a similar MILP reformulation can be obtained whenever the micro-grids

are also assumed to be risk-averse. For instance, we could consider the same Markowitz

type model and endow ourselves with a set of convex multipliers {λq}q∈Q weighting the

expectation and CVaRε for each micro-grid. The resulting counterpart of (A.10) is more

demanding computationally due to the difficulty of decomposing the problem per scenario.

Appendix A. Optimizing power generation in the presence of micro-grids 165

This difficulty is well-known in risk-averse stochastic optimization, see for instance the recent

Rockafellar (2017). As this goes beyond the scope of this paper, we disregard this extension

in what follows.

A.4.3 Comparative reformulation

As in the deterministic case, the above heuristic reformulation can be made exact by replac-

ing constraints (A.11d) and (A.11e) with the bilinear constraints

xqt(ξ) =
∑
k∈K0

x̃qkt(ξ)zqk, ∀q ∈ Q, t ∈ T , ξ ∈ Ξ (A.13)

yqt(ξ) =
∑
k∈K0

ỹqkt(ξ)zqk∀q ∈ Q, t ∈ T , ξ ∈ Ξ (A.14)

and adding constraints

Cqk = ck + E

[∑
t∈T

(fktx̃qt(ξ) + gktỹqt(ξ))

]
, ∀q ∈ Q, k ∈ K (A.15)

(x̃qk(ξ), ỹqk(ξ)) ∈Mq(ξ), ∀q ∈ Q, k ∈ K, ξ ∈ Ξ. (A.16)

Moreover optimization is now to be carried out over (z, Z, x̃(ξ), ỹ(ξ)). Evidently the resulting

problem is significantly harder!

A.5 Case study based on thermal power unit-commitment

We assess below our heuristic reformulation on a power generation problem where F rep-

resents a thermal unit-commitment problem, following closely Carrión and Arroyo (2006).

The latter minimizes the total operation cost, which is defined as the sum of the production

cost, the startup cost, and the shutdown cost. The production cost is piece-wise linear, while

the startup cost is piece-wise linear approximation of an exponential function of the off-line

time prior to the startup. Since the MILP model is rather technical, and because comput-

ing F (x, y) is not the focus of this work, we refer the interested reader to, e.g., Carrión and

Arroyo (2006) for the details about the mixed-integer linear program behind F . We also

refer to Tahanan et al. (2015) and the many references therein for further alternatives to the

model considered here. In addition, we detail the constraints used in our micro-grid model

in A.7.

A.5.1 Data

A.5.1.1 General system

The time horizon is one week starting on Monday at 12 am, each day is split in periods

of one hour, i.e., |T | = 168. The data used for the unit-commitment part is provided by

Appendix A. Optimizing power generation in the presence of micro-grids 166

Carrión and Arroyo (2006), 50 generators are used giving a daily fixed load of 135,5 GWh.

A.5.1.2 Considered contracts

Several types of contracts are proposed combining the possibility of lower prices during

nighttime and/or the possibility of lower prices during the weekend. This leads to a total of

four types of contracts. The competitors offer one contract of each type to each micro-grid.

The GenCo generates four possible contracts of each type, thus |K0| = 16 and |K| = 20.

For all contracts, the average cost of 1kW is about 0,10 EUR2.

A.5.1.3 Description of the micro-grids

In what follows we will define devices as an abstract group of objects fulfilling a purpose

of consumption, production or storage under time constraints within a micro-grid. The

devices considered, their consumption and the time periods where they are used fit numbers

reported in a recent study of electricity demand/offer equilibrium in France2.

• Consumption devices are devices appearing in a common household, which we split

into three further sub-classes:

– Constant: these devices consume power constantly. They represent 30% of the

daily consumption.

– Comfort: devices that consume power during a predetermined period each day,

representing 30% of the daily consumption.

– Elastic: devices for which predetermined windows of usage are defined for each

day as well as a total daily load. They represent 40% of the daily consumption.

The periods where comfort devices are used and elastic devices can be used as well as

their consumptions are randomly generated such that the graph of the total consump-

tion of a micro-grid fits a classical duck curve for each day. The average consumption

of 200 devices over one week is 1GWh, which corresponds to the consumption of 5000

common (European) households. Consumption of elastic devices can be reorganized

to reduce costs by taking advantage of low hourly prices, production devices and stor-

age devices. Figure A.1 illustrates the hourly demand of the micro-grid composed of

10000 devices.

• Production devices are equally split into solar panels and wind turbines. The produc-

tion capacity of each production device is generated randomly. For each micro-grid,

their production capacity is sufficient to satisfy on average 50% of the consumption of

micro-grids.

• Storage devices are of a single type, their capacity is sufficient to store on average 30%

of the daily electricity load of a micro-grid. We consider that during the storage process

2http://www.rte-france.com/fr/document/bilan-previsionnel-de-l-equilibre-offredemande-2016

http://www.rte-france.com/fr/document/bilan-previsionnel-de-l-equilibre-offredemande-2016

Appendix A. Optimizing power generation in the presence of micro-grids 167

0 2 4 6 8 10 12 14 16 18 20 22 24
0

100

200

300

400

500

Hours

M
W

Duck curve
Elastic reorganization

Figure A.1: Duck curve example for a micro-grid with 10000 devices

there is a total loss of 10% of energy due to physical constraints which corresponds to

the storage efficiency of state-of-the-art domestic batteries such as Tesla’s Powerwall3.

In the largest instance, 90,000 devices are considered, corresponding to over 2, 000, 000

households. The total consumption of devices in this instance is on average 64 GWh per

day. As on average 50% of the daily load is supplied by production devices, about 32 GWh

must be provided from the global network each day.

The penetration of the MGs in the total load of the GenCo is defined as

penetration =
load of the MGs

total load for the GenCo

If all MG considered choose a contract from the GenCo, the penetration rate is about 19%.

A.5.1.4 Uncertainty

Four simple independent scenarios are considered based on the possibility of good sunshine

and good wind that influence production of micro-grids. Weather conditions are considered

as identical each day of the week in a scenario. In bad conditions (no sunshine or no wind), a

production device produces only 50% of its maximum production capacity. Notice that this

implies that the multi-stage structure of the problem is simplified to a two-stage problem for

which no non-anticipativity constraints are required. The value of ε used in CVaR is equal

to 0.1, representing a high aversion to risk. The full instance details are available from the

authors upon request.

3https://www.tesla.com/fr BE/powerwall?redirect=no

Appendix A. Optimizing power generation in the presence of micro-grids 168

Devices Avg. Obj σ time(s)

100 34.99 2.25 0.15
200 37.41 3.67 0.32
1000 207.51 14.97 1.91
2000 332.93 21.32 3.95
5000 653.61 37.36 14.57
10000 957.65 40.56 24.01

Table A.1: Average computation time and objective value for the micro-grid power plan-
ning preprocessing step.

A.5.2 Numerical results

All the methods were implemented using Julia 0.4.6 and ILOG CPLEX 12.7 as MIP solver.

Tests were made on a 4-core i7 2.30 GHz processor with 16Go of RAM memory. Maximum

computation time is set to 3600s.

Table A.1 presents the average computation times for solving the follower problems. Times

and objectives are averaged over the 20 possible contracts for the 5 instances of micro-grids

of each size. The objectives are the average consumption costs for micro-grids of a given

size which is also the average income for a GenCo supplying those micro-grids. They are

provided in euros. The standard deviation (σ) of the objective value is also provided. These

results show that solving the restricted follower problem can be done fairly quickly. The

objective value for all contracts is positive and for all instances considered, there exists at

least one contract of the GenCo that is cheaper and one that is more expensive than those

of the competitors. Each micro-grid is financially interesting for the GenCo if the additional

production costs are not too high. In terms of size, the formulation of the follower problem

on a micro-grid with 100 devices and a single contract available contains 59136 variables

and 35390 constraints.

Figure A.2 illustrates the optimal demand strategies over time of two micro-grid of 5000

devices for two contracts. The left graph represents a micro-grid composed of households

and the right one a micro-grid composed of offices. One contract considers constant buying

and selling prices over time (full line) and the other considers smaller prices during nighttime

and weekends (dashed line). The different demand strategies will influence the production

of the GenCo if the two contracts are proposed.

Notice that the curves have a different aspect than a classical duck curve illustrated in

Figure A.1. This is due to production devices as solar panel that can be active only during

daytime. As a result, the demand is negative almost all daytime and reaches its biggest

values during nighttime. The right hand side graph is mostly flat during the weekend as the

micro-grid considered is composed of offices with very low consumption during this period.

Table A.2 presents results solving small instances with the exact (Exact optimistic) and

the heuristic (Heuristic) bilevel reformulations. Here, the value of λ is set to 1 in order

to optimize the expectation. The first two columns report the number of devices in the

Appendix A. Optimizing power generation in the presence of micro-grids 169

0 24 48 72 96 120 144 168

-100

-50

0

50

Time periods

M
W

Constant
Varying

0 24 48 72 96 120 144 168

-100

-50

0

50

100

Time periods

M
W

Cst
Varying

Figure A.2: Micro-grid demand management

considered micro-grids and the number of micro-grids of each size. Hence, the first line

considers one micro-grid with 100 devices and the last line considers five micro-grids with

100 devices plus five micro-grids with 200 devices.

It has been observed in the results that for each instance, both approaches (Heuristic and

Exact) select the same contracts for each micro-grid.

The difference between optimal values lies in the extra production cost there is for the GenCo

to satisfy the demand of the micro-grids who subscribed a contract. Specifically, in Exact,

the planning of elastic devices of those micro-grids can be reorganized to reduce the cost of

the UC problem, preserving optimal cost for the micro-grids. This observation shows that

the bilevel problem (A.8)-(A.9) (or (A.2)-(A.3)) is indeed ambiguous in so much that the

argmin of problem (A.9) is not unique. Consequently the pessimistic and optimistic versions

of the model differ and our heuristic reformulation offers something in between. However,

this gap, as reported in the column ∆(F − UC) is not very large. Indeed, let us denote

by (xopt, yopt) and (xheur, yheur) the power generation returned by Exact and Heuristic,

respectively. Columns F (xopt, yopt) − F (0, 0) and F (xheur, yheur) − F (0, 0) correspond to

GenCo’s extra production costs due to the consumption of the micro-grids in the solutions

of Exact and Heuristic respectively. The value

∆(F − UC) =
F (xheur, yheur)− F (xopt, yopt)

F (xopt, yopt)− F (0, 0)

is the relative gap between the costs of extra production in Heuristic and Exact. The

reported computation times of Heuristic do not include the preprocessing times.

Computation times of Heuristic (without considering preprocessing) are quite stable while

those of Exact tend to grow very quickly and the last instance considering 10 micro-grids

cannot be solved in one hour. Concerning the instance with a single micro-grid with 200

devices, the extra production cost is 0 because the micro-grid chose a contract of another

company. The gap on extra production cost is very low in all tests. The Heuristic/Exact

formulation of the instance with five micro-grids of 100 devices contains 200/300 binary

variables, 1680/37255 continuous variables and 1975/279725 constraints. As no variables

are related to devices in the Heuristic formulation, the number of devices does not impact

its the size.

Appendix A. Optimizing power generation in the presence of micro-grids 170

Test set Exact Heuristic
∆(F − UC) (%)

Devices nb F (xopt, yopt)− F (0, 0) time(s) F (xheur, yheur)− F (0, 0) time(s)

100 1 8.134968 76.26 8.146005 26.9 0.136
100 2 29.413995 202.3 29.438447 28.63 0.083

100 3 67.440871 312.46 67.471015 28.07 0.045
100 4 52.290345 678.9 52.334735 26.67 0.085
100 5 24.543927 690.63 24.588317 27.22 0.181

200 1 0 135.01 0 21.16 -
200 2 71.09899 242.34 71.1142 25.88 0.021

200 3 128.69007 635.02 128.717851 28.05 0.022

200 4 188.672761 1684 188.715209 25.85 0.022
200 5 171.455653 1919.43 171.498219 25.95 0.025

100-200 1 60.079001 223.74 60.090038 25.7 0.018

100-200 2 100.510032 893.82 100.550933 25.93 0.041
100-200 3 196.12615 1697.23 196.184324 27.19 0.030

100-200 4 240.957646 3520.43 241.045643 27.38 0.037

100-200 5 - > 3600 196.081488 28.7 -

Table A.2: Comparing Exact and Heuristic on small instances.

Table A.3 reports the results of Heuristic on larger instances. We consider three values

for λ: 1, 0.5 and 0. When set to 1 (resp. 0), the formulation optimizes the expectation

(resp. CVaRε). We have chosen a value ε of 0.1, representing a high aversion to risk. In

each instance, five micro-grids of each size are used. Columns E report the expectation of

the optimal solutions, columns CVaR report their conditional value-at-risk, both are given

in thousands of e. Columns sold report the number of contracts of the GenCo chosen

by the MG in the optimal solution found. These values are reported only for λ = 1 as

they were identical for other values of λ after rounding. The first line considers only the

original UC problem while the last line considers 20 micro-grids (5 of each size) with a

maximum possible penetration of 19%. Notice the negative solution cost of the last line,

which is obtained from a revenue from the micro-grids that is higher than the production

cost. Computation times tend to grow slowly when adding micro-grids and stay close to the

computation time of the original UC problem when λ = 1. For λ = 0.5, the expectation

is similar, the CVaR decreases significantly for some instances and the computation time

increases of about 20%. With λ = 0, results for the expectation and CVaR are similar than

for λ = 0.5 and computation times are more than doubled for most instances in comparaison

of λ = 1.

Our formulation does not increase much the difficulty of the UC problem on the tested

instances when minimizing the expectation. Integrating CVaR in the objective function

with λ = 0.5 seems interesting as it is not very time consuming and reduces CVaR almost

to its best attainable value.

The number of contracts sold per instance reflects the quadratic aspect of production costs

considered in the formulation for the UC Carrión and Arroyo (2006). Summing the numbers

of contracts sold in instances where all micro-grids have the same size (lines 2 to 5 of

Table A.3), a total of 19 contracts are sold to the 20 micro-grids. When solving the problem

with all 20 micro-grids together (last line of the table), only 10 contracts are sold. In this

solution, respectively 2, 1, 4 and 3 contracts are sold to the MGs of size 1000, 2000, 5000

and 10,000. The results of this last instance let us suppose the GenCo cannot afford having

Appendix A. Optimizing power generation in the presence of micro-grids 171

Test set
λ = 1 λ = 0.5 λ = 0

E CVaR time(s) sold penetration E CVaR time(s) E CVaR time(s)

UC 3599 - 20.98 0 0 3599 - 20.98 3599 - 20.98
1000 3221 3580 26.31 5 1.2% 3221 3250 30.09 3221 3250 47.41
2000 2973 3304 22.98 4 2.1% 2973 3018 26.37 2973 3018 46.71
5000 1373 1526 24.38 5 6.0% 1374 1510 27.33 1375 1509 46.54
10000 -421 768 24.98 5 10.9% -421 -144 29.87 -420 -145 56.54

1000-2000 2595 2884 25.00 9 3.3% 2595 2670 28.09 2595 2670 50.53
1000-2000-5000 378 960 25.61 14 9.1% 379 589 30.24 379 589 50.63

1000-2000-5000-10000 -2055 145 32.42 10 12.6% -2055 -1768 44.19 -2053 -1769 82.29

Table A.3: Solution of Heuristic for larger instances.

a penetration rate higher than about 13% with the contracts proposed by the competitors.

Even the small MG with 1000 devices go to competitors illustrating that the GenCo can

only propose contracts more expensive than those of competitors. If many micro-grids must

be supplied with electricity, the average production costs increases for the GenCo in the

UC problem. At some point, the GenCo cannot afford proposing low price contracts to

additional micro-grids, otherwise it would produce at a loss. Our approach prevents the

GenCo from falling in this situation by proposing contracts that are more expensive than

those of the competitors to micro-grids that are not financially interesting.

For each instance, the same MGs choose a contract of the GenCo for each value of λ

considered but the contracts sold are not all identical. Table A.4 illustrates the solution of

the instance with 5 micro-grids of size 5000. The contracts are represented in the columns

and are grouped by type. Constant price, daytime-nighttime price, week-weekend prices

and daytime-nighttime plus week-weekend prices. A blank dot appears when a contract is

proposed to a micro-grid by the GenCo, a black dot appears when a micro-grid selects a

contract. The five micro-grids select a contract from the GenCo for all values of λ but the

contracts proposed and chosen for the fourth and fifth micro-grid vary. Integrating CVaR

can discredit contracts that present a high risk in some scenarios.

A.6 Conclusions and perspectives

We have addressed a variant of power generation optimization problems where the GenCo

interacts with micro-grids by buying or selling power to them. We have modeled the problem

as a bilevel stochastic optimization problem, built on the top of the already difficult power

generation optimization problem that the GenCo must solve to produce its energy. For

realistic size data, solving the bilevel problem exactly is out of reach so that we have focused

on a heuristic reformulation that produces a solution to the bilevel problem that is neither

“optimistic” nor “pessimistic”. Although our numerical results exhibit that the resulting

solution is indeed different from the “optimistic” solution, they also indicated that the gap

is small (roughly 0.05 - 0.1 % variation on the upper level objective function). Interestingly

enough, we could link this discrepancy between the optimistic bilevel solution and our

solution to the existence of load-shifting devices within the micro-grid that are piloted

differently in the “optimistic” situation.

Appendix A. Optimizing power generation in the presence of micro-grids 172

Test set Cst price DN price WWE price DN and WWE price

MG λ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1
1

0.5
0

2

1
0.5
0

3

1
0.5
0

4

1
0.5
0

5

1
0.5
0

Table A.4: Contracts proposed and selected to five MG with |D| = 5000.

We have assessed our reformulation on a case-study based on a thermal unit-commitment

problem using realistic data. Our numerical results have confirmed the tractability of the

heuristic approach, since the solution time of our reformulation is at most 50% higher

than the one required for solving the thermal unit-commitment problem. In contrast, the

solution of an exact reformulation of the bilevel problem increases the solution times by

more than 10 000% in the presence of only 8 micro-grids. Our results also confirm the

quality of the approximation provided by our heuristic, which provides a solution very close

to the solution of the exact “optimistic” model. An interesting venue for future research

would seek to extend the kind of reformulations proposed in this paper to other bilevel

optimization problems with integer variables, which is a class of optimization problems that

are notoriously difficult to solve exactly.

A.7 Micro-grids

For simplicity, this specific study considers the bus model for power flows, that is, the

power network is not taken into consideration. We define two types of unit components in

the micro-grid, which are called devices in the sequel. Storage devices typically represent

batteries, whose status may switch between online (connected to the grid) and offline during

the time horizon. During its offline periods, a storage device can be unloaded: for example,

an electric vehicle is loaded during the night. During this time period, it can be used to

store and serve power, but it must be fully loaded at the end of the night. During the day,

the vehicle is used and its battery is emptied so that its storage level is low when it is back

online. In our setting, we associate with each storage device a set of online time intervals.

At the beginning of such a time interval, the charge level is a stochastic input parameter (for

Appendix A. Optimizing power generation in the presence of micro-grids 173

example, it depends on how much the vehicle has been used during the day). The required

charge level at the end of the online period is modeled through more general parameters

giving minimum and maximum acceptable charge levels for each online time step. We also

assume that each storage device has limited capacity, charging and discharging speed and a

power loss factor that is the proportion of power stored to the power consumed during the

charge.

The regular devices come with stochastic consumptions and productions of power during

each time step. Some of their consumption can be partially delayed (elastic demand). We

model this feature by defining a set of time intervals for each device (for example, a water

heater must heat the water during the night). During each of them, the required total power

consumption is known, as a stochastic input data. The maximum power consumption of

devices is limited during each time step.

The decisions to be taken in the micro-grid problem are, first, to choose a contract among

those proposed by the GenCos. Then, for each regular device and each time step, the amount

of elastic power consumption must be determined. For each storage device, the amounts of

power consumed (to charge) and released must be fixed. We provide below a model for the

problems faced by each one of the micro-grids.

Parameters Scenario-independent parameters:

• K: set of available contracts, defined by ck, fk and gk. We assume that ∀t ∈ T ,

fkt ≥ gkt.

• D: set of non-storage devices. For each device d ∈ D:

– Θd
D: set containing sets of time periods defining elastic consumption slots

• S: set of storage devices. For all d ∈ S:

– s̄d: capacity of storage device d

– ¯̀d: maximum power used to reload d during one time period

– ūd: maximum power released by d during one time period

– αd: power loss factor when charging d

– Θd
S : set of time intervals when d is online (can be charged or discharged). We

note, for all θ ∈ Θd
S , θ = [t−(θ), t+(θ)].

– Sdt , S̄
d
t : minimum and maximum charge level for d at time t.

Scenario-dependent parameters: For all scenarios ξ ∈ Ξ:

• For each device d ∈ D:

– ∀t ∈ T :

∗ bdt (ξ): power production of d during period t in scenario ξ

∗ rdt (ξ): power consumption of d during period t in scenario ξ

Appendix A. Optimizing power generation in the presence of micro-grids 174

∗ w̄dt (ξ): maximum possible elastic consumption of d during t

– ∀θ ∈ Θd
D

∗ edθ(ξ): total elastic power demand of d during θ in scenario ξ

– For each storage device d ∈ S and online interval θ ∈ Θd
S : Idθ (ξ) is the initial

stock level when d is plugged in.

Decision variables

• Stage 0:

– ∀k ∈ K: zk = 1 if contract k is chosen by the micro-grid, 0 otherwise

• Stage t, t ∈ T :

– xt(ξ): power consumed by the micro-grid during period t

– yt(ξ): power produced by the micro-grid during period t

∗ ∀d ∈ D, wdt (ξ): elastic power consumed by d during t

∗ For all d ∈ S:

· sdt (ξ): power stock in d at the end of t

· `dt (ξ): power consumed to charge device d during t

· udt (ξ): power released by discharging device d during t

Formulation

min E

[∑
k∈K

∑
t∈T

(fktxt(ξ) + gktyt(ξ) + ck) zk

]
(A.17a)

s.t.
∑
k∈K

zk = 1 (A.17b)

xt(ξ)− yt(ξ) =
∑
d∈D

(
rdt (ξ) + wdt (ξ)− bdt (ξ)

)
+
∑
d∈S

(
`dt (ξ)− udt (ξ)

)
∀t, ξ (A.17c)

sdt (ξ) = sdt−1(ξ) + αd`dt (ξ)− udt (ξ) ∀d ∈ S, θ ∈ Θd
S , t ∈ θ − {t−(θ)}, ξ (A.17d)

sdt−(θ)(ξ) = Idθ (ξ) + αd`dt−(θ)(ξ)− u
d
t−(θ)(ξ) ∀d ∈ S, θ ∈ Θd

S , ξ (A.17e)∑
t∈θ

wdt (ξ) = edθ(ξ) ∀d ∈ D, θ ∈ Θd
D, ξ (A.17f)

wdt (ξ) ≤ w̄d ∀d ∈ D, t, ξ (A.17g)

Sdt ≤ sdt (ξ) ≤ S̄dt ∀d ∈ S, t, ξ (A.17h)

`dt ≤ ¯̀d ∀d ∈ S, t (A.17i)

udt ≤ ūd ∀d ∈ S, t (A.17j)

`dt (ξ) = udt (ξ) = 0 ∀d ∈ S, θ /∈ Θd
S , t ∈ θ (A.17k)

zk ∈ {0, 1} ∀k ∈ K (A.17l)

x, y, w, r, s, l, u ≥ 0 (A.17m)

Appendix A. Optimizing power generation in the presence of micro-grids 175

The objective of the problem (A.17a) is to minimize the total cost for the micro-grid, which

is composed of the fixed cost of the contract, the cost of buying power from the GenCos

minus the income obtained from selling the over-production. Constraint (A.17b) states that

exactly one contract must be chosen. Constraints (A.17c) ensure that the power flow in-

to/out of the micro-grid is equal to its production/consumption during each time step. In

the right-hand-side, the summation over D (resp. S) represents the total consumption/pro-

duction of regular (resp. storage) devices. Constraints (A.17d) and (A.17e) define the level

of power stock for each device and time step. Constraints (A.17f) fix the correct total

amount of power that must be consumed by a device during an elastic consumption inter-

val. The instantaneous power consumed by a device is limited by constraints (A.17g). The

acceptable stock levels are bound by constraints (A.17h). Constraints (A.17i) and (A.17j)

define maximum charging and discharging speeds for the storage devices, while constraints

(A.17k) are just a way to state that an offline device cannot be charged or discharged (the

corresponding variables may as well be omitted in the model). The domains of the variables

are given in constraints (A.17l) and (A.17m).

Bibliography

L. Adam, R. Henrion, and J. Outrata. On M-stationarity conditions in MPECs and the

associated qualification conditions. Mathematical Programming, 168(1):229–259, Mar.

2018.

R. K. Ahuja, O. Ergun, J. B. Orlin, and A. P. Punnen. A survey of very large-scale

neighborhood search techniques. Discrete Applied Mathematics, 123(1):75–102, Nov. 2002.

U. Al-Turki, C. Fedjki, and A. Andijani. Tabu search for a class of single-machine scheduling

problems. Computers & Operations Research, 28(12):1223–1230, 2001.

S. M. Al-Yakoob and H. D. Sherali. A Column Generation Approach for an Employee

Scheduling Problem with Multiple Shifts and Work Locations. The Journal of the Oper-

ational Research Society, 59(1):34–43, 2008.

H. K. Alfares. Survey, Categorization, and Comparison of Recent Tour Scheduling Litera-

ture. Annals of Operations Research, 127(1-4):145–175, Mar. 2004.

G. E. Asimakopoulou, A. L. Dimeas, and N. D. Hatziargyriou. Leader-Follower Strategies

for Energy Management of Multi-Microgrids. IEEE Transactions on Smart Grid, 4(4):

1909–1916, Dec. 2013.

D. Aussel, P. Bendotti, and M. Pǐstěk. Nash equilibrium in a pay-as-bid electricity market:

Part 1 existence and characterization. Optimization, 66(6):1013–1025, June 2017a.

D. Aussel, P. Bendotti, and M. Pǐstěk. Nash equilibrium in a pay-as-bid electricity market

Part 2 - best response of a producer. Optimization, 66(6):1027–1053, June 2017b.

T. Aykin. Optimal Shift Scheduling with Multiple Break Windows. Management Science,

42(4):591–602, Apr. 1996.

T. Aykin. A composite branch and cut algorithm for optimal shift scheduling with multiple

breaks and break windows. Journal of the Operational Research Society, 49(6):603–615,

June 1998.

J. Bailey. Integrated days off and shift personnel scheduling. Computers & Industrial

Engineering, 9(4):395–404, Jan. 1985.

K. R. Baker. Workforce Allocation in Cyclical Scheduling Problems: A Survey. Operational

Research Quarterly (1970-1977), 27(1):155–167, 1976.

176

Bibliography 177

E. Balas and M. C. Carrera. A Dynamic Subgradient-Based Branch-and-Bound Procedure

for Set Covering. Operations Research, 44(6):875–890, Dec. 1996.

E. Balas and M. Padberg. Set Partitioning: A survey. SIAM Review, 18(4):710–760, Oct.

1976.

R. Baldacci, N. Christofides, and A. Mingozzi. An exact algorithm for the vehicle routing

problem based on the set partitioning formulation with additional cuts. Mathematical

Programming, 115(2):351–385, Oct. 2008.

R. Baldacci, E. Bartolini, A. Mingozzi, and R. Roberti. An exact solution framework for

a broad class of vehicle routing problems. Computational Management Science, 7(3):

229–268, July 2010.

R. Baldacci, E. Bartolini, and A. Mingozzi. An Exact Algorithm for the Pickup and Delivery

Problem with Time Windows. Operations Research, 59(2):414–426, Apr. 2011a.

R. Baldacci, E. Bartolini, A. Mingozzi, and A. Valletta. An Exact Algorithm for the Period

Routing Problem. Operations Research, 59(1):228–241, Feb. 2011b.

R. Baldacci, S. U. Ngueveu, and R. Wolfler Calvo. The Vehicle Routing Problem with

Transhipment Facilities. Transportation Science, 51(2):592–606, Dec. 2016.

R. Baldacci, A. Hill, E. A. Hoshino, and A. Lim. Pricing strategies for capacitated ring-star

problems based on dynamic programming algorithms. European Journal of Operational

Research, 262(3):879–893, Nov. 2017.

M. L. Balinski and R. E. Quandt. On an Integer Program for a Delivery Problem. Operations

Research, 12(2):300–304, Apr. 1964.

F. Barahona and R. Anbil. On some difficult linear programs coming from set partitioning.

Discrete Applied Mathematics, 118(12):3–11, Apr. 2002.

J. F. Bard and J. T. Moore. An algorithm for the discrete bilevel programming problem.

Naval Research Logistics (NRL), 39(3):419–435, Apr. 1992.

C. Barnhart, E. L. Johnson, G. L. Nemhauser, M. W. P. Savelsbergh, and P. H. Vance.

Branch-and-Price: Column Generation for Solving Huge Integer Programs. Operations

Research, 46(3):316–329, June 1998.

S. E. Bechtold and L. W. Jacobs. Implicit Modeling of Flexible Break Assignments in

Optimal Shift Scheduling. Management Science, 36(11):1339–1351, Nov. 1990.

S. E. Bechtold and L. W. Jacobs. The equivalence of general set-covering and implicit integer

programming formulations for shift scheduling. Naval Research Logistics (NRL), 43(2):

233–249, 1996.

M. Boschetti and V. Maniezzo. A set covering based matheuristic for a real-world city

logistics problem. International Transactions in Operational Research, 22(1):169–195,

2015.

Bibliography 178

M. A. Boschetti, A. Mingozzi, and S. Ricciardelli. A dual ascent procedure for the set

partitioning problem. Discrete Optimization, 5(4):735–747, 2008.

M. A. Boschetti, V. Maniezzo, M. Roffilli, and A. Bolufé Röhler. Matheuristics: Opti-

mization, Simulation and Control. In M. J. Blesa, C. Blum, L. Di Gaspero, A. Roli,

M. Sampels, and A. Schaerf, editors, Hybrid Metaheuristics, Lecture Notes in Computer

Science, pages 171–177. Springer Berlin Heidelberg, 2009.

V. Boyer, B. Gendron, and L.-M. Rousseau. A branch-and-price algorithm for the multi-

activity multi-task shift scheduling problem. Journal of Scheduling, 17(2):185–197, June

2013.

G. Brønmo, B. Nygreen, and J. Lysgaard. Column generation approaches to ship scheduling

with flexible cargo sizes. European Journal of Operational Research, 200(1):139–150, Jan.

2010.

J. O. Brunner and J. F. Bard. Flexible weekly tour scheduling for postal service workers

using a branch and price. Journal of Scheduling, 16(1):129–149, Feb. 2013.

M. J. Brusco and L. W. Jacobs. A Simulated Annealing Approach to the Solution of Flexible

Labour Scheduling Problems. The Journal of the Operational Research Society, 44(12):

1191–1200, 1993.

M. J. Brusco and L. W. Jacobs. Optimal Models for Meal-Break and Start-Time Flexibility

in Continuous Tour Scheduling. Management Science, 46(12):1630–1641, 2000.

E. K. Burke, P. D. Causmaecker, S. Petrovic, and G. V. Berghe. Metaheuristics for handling

time interval coverage constraints in nurse scheduling. Applied Artificial Intelligence, 20

(9):743–766, 2006.

V. Cacchiani, V. C. Hemmelmayr, and F. Tricoire. A set-covering based heuristic algorithm

for the periodic vehicle routing problem. Discrete Applied Mathematics, 163(Part 1):

53–64, Jan. 2014.

M. Carrión and J. M. Arroyo. A computationally efficient mixed-integer linear formulation

for the thermal unit commitment problem. IEEE Transactions on Power Systems, 21(3):

1371–1378, Aug. 2006.

S. Ceria, P. Nobili, and A. Sassano. A lagrangian-based heuristic for large-scale set covering

problems. Mathematical Programming, 81(2):215–228, 1998a.

S. Ceria, P. Nobili, and A. Sassano. A Lagrangian-based heuristic for large-scale set covering

problems. Mathematical Programming, 81(2):215–228, Apr. 1998b.

C. Cervilla, J. Villar, and F. A. Campos. Bi-level optimization of electricity tariffs and

PV distributed generation investments. In 2015 12th International Conference on the

European Energy Market (EEM), pages 1–5, May 2015.

Bibliography 179

M. Chiarandini, A. Schaerf, and F. Tiozzo. Solving employee timetabling problems with

flexible workload using tabu search. In Proceedings of the 3 rd Int. Conf. on the Practice

and Theory of Automated Timetabling (E. Burke & W. Erben, Eds.) pp, pages 298–302.

Citeseer, 2000.

M.-C. Côté, B. Gendron, C.-G. Quimper, and L.-M. Rousseau. Formal languages for integer

programming modeling of shift scheduling problems. Constraints, 16(1):54–76, Jan. 2011a.

M.-C. Côté, B. Gendron, and L.-M. Rousseau. Grammar-Based Integer Programming Mod-

els for Multiactivity Shift Scheduling. Management Science, 57(1):151–163, 2011b.

M.-C. Côté, B. Gendron, and L.-M. Rousseau. Grammar-Based Column Generation for

Personalized Multi-Activity Shift Scheduling. INFORMS Journal on Computing, 25(3):

461–474, July 2013.

S. Dahmen and M. Rekik. Solving Multi-activity Multi-day Shift Scheduling Problems with

a Hybrid Heuristic. J. of Scheduling, 18(2):207–223, Apr. 2015.

S. Dahmen, M. Rekik, and F. Soumis. An implicit model for multi-activity shift scheduling

problems. Journal of Scheduling, 21(3):285–304, June 2018.

G. B. Dantzig. Letter to the EditorA Comment on Edie’s “Traffic Delays at Toll Booths”.

Journal of the Operations Research Society of America, 2(3):339–341, Aug. 1954.

G. B. Dantzig and P. Wolfe. Decomposition Principle for Linear Programs. Operations

Research, 8(1):101–111, 1960.

K. Darby-Dowman and G. Mitra. An extension of set partitioning with application to

scheduling problems. European Journal of Operational Research, 21(2):200–205, Aug.

1985.

P. De Bruecker, J. Van den Bergh, J. Belien, and E. Demeulemeester. A tabu search heuristic

for building aircraft maintenance personnel rosters. Available at SSRN 2464033, 2014.

V. L. de Matos, D. P. Morton, and E. C. Finardi. Assessing policy quality in a multi-

stage stochastic program for long-term hydrothermal scheduling. Annals of Operations

Research, 253(2):713–731, June 2017.

S. Demassey, G. Pesant, and L.-M. Rousseau. Constraint Programming Based Column

Generation for Employee Timetabling. pages 140–154. Springer, Berlin, Heidelberg, May

2005.

S. Demassey, G. Pesant, and L.-M. Rousseau. A Cost-Regular Based Hybrid Column Gen-

eration Approach. Constraints, 11(4):315–333, Oct. 2006.

S. Dempe and J. Dutta. Is bilevel programming a special case of a mathematical program

with complementarity constraints? Mathematical Programming, 131(1):37–48, Feb. 2012.

S. Dempe, V. Kalashnikov, G. A. Prez-Valds, and N. Kalashnykova. Bilevel Programming

Problems: Theory, Algorithms and Applications to Energy Networks. Energy Systems.

Springer-Verlag, Berlin Heidelberg, 2015.

Bibliography 180

G. Desaulniers, J. Desrosiers, Y. Dumas, S. Marc, B. Rioux, M. M. Solomon, and F. Soumis.

Crew pairing at Air France. European Journal of Operational Research, 97(2):245–259,

Mar. 1997.

G. Desaulniers, J. Desrosiers, and M. M. Solomon. Accelerating Strategies in Column Gen-

eration Methods for Vehicle Routing and Crew Scheduling Problems. In C. C. Ribeiro and

P. Hansen, editors, Essays and Surveys in Metaheuristics, Operations Research/Computer

Science Interfaces Series, pages 309–324. Springer US, Boston, MA, 2002.

J. Desrosiers and M. E. Lübbecke. A Primer in Column Generation. In G. Desaulniers,

J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 1–32. Springer US,

Boston, MA, 2005.

F. F. Easton and D. F. Rossin. Sufficient Working Subsets for the Tour Scheduling Problem.

Management Science, 37(11):1441–1451, 1991.

L. C. Edie. Traffic Delays at Toll Booths. Journal of the Operations Research Society of

America, 2(2):107–138, 1954.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, B. Owens, and D. Sier. An Annotated Bibliog-

raphy of Personnel Scheduling and Rostering. Annals of Operations Research, 127(1-4):

21–144, Mar. 2004a.

A. T. Ernst, H. Jiang, M. Krishnamoorthy, and D. Sier. Staff scheduling and rostering: A

review of applications, methods and models. European Journal of Operational Research,

153(1):3–27, Feb. 2004b.

F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Complemen-

tarity Problems. Springer Series in Operations Research and Financial Engineering, Finite-

Dimensional Variational Inequalities and Complementarity Problems: Volume I. Springer-

Verlag, New York, 2003a.

F. Facchinei and J.-S. Pang. Finite-Dimensional Variational Inequalities and Comple-

mentarity Problems. Springer Series in Operations Research and Financial Engineering,

Finite-Dimensional Variational Inequalities and Complementarity Problems: Volume II.

Springer-Verlag, New York, 2003b.

R. Fernández-Blanco, J. M. Arroyo, N. Alguacil, and X. Guan. Incorporating Price-

Responsive Demand in Energy Scheduling Based on Consumer Payment Minimization.

IEEE Transactions on Smart Grid, 7(2):817–826, Mar. 2016.

M. Fischetti, I. Ljubić, M. Monaci, and M. Sinnl. Intersection Cuts for Bilevel Optimiza-

tion. In Q. Louveaux and M. Skutella, editors, Integer Programming and Combinatorial

Optimization, pages 77–88. Springer International Publishing, 2016.

M. L. Fisher and P. Kedia. Optimal Solution of Set Covering/Partitioning Problems Using

Dual Heuristics. Management Science, 36(6):674–688, June 1990.

Bibliography 181

F. Furini, E. Malaguti, S. Martin, and I.-C. Ternier. ILP Models and Column Generation

for the Minimum Sum Coloring Problem. Electronic Notes in Discrete Mathematics, 64:

215–224, Feb. 2018.

M. Gamache, F. Soumis, G. Marquis, and J. Desrosiers. A Column Generation Approach

for Large-Scale Aircrew Rostering Problems. Operations Research, 47(2):247–263, 1999.

L. D. Gaspero, J. Grtner, N. Musliu, A. Schaerf, W. Schafhauser, and W. Slany. A Hybrid

LS-CP Solver for the Shifts and Breaks Design Problem. In Hybrid Metaheuristics, pages

46–61. Springer, Berlin, Heidelberg, Oct. 2010.

L. D. Gaspero, J. Grtner, N. Musliu, A. Schaerf, W. Schafhauser, and W. Slany. Automated

Shift Design and Break Scheduling. In Automated Scheduling and Planning, Studies in

Computational Intelligence, pages 109–127. Springer, Berlin, Heidelberg, 2013.

M. Gérard, F. Clautiaux, and R. Sadykov. Column generation based approaches for a

tour scheduling problem with a multi-skill heterogeneous workforce. European Journal of

Operational Research, 252(3):1019–1030, Aug. 2016.

F. Glover. Tabu search-part i. ORSA Journal on computing, 1(3):190–206, 1989.

S. Hao and F. Zhuang. New models for integrated short-term forward electricity markets.

IEEE Transactions on Power Systems, 18(2):478–485, May 2003.

A. Haurie, R. Loulou, and G. Savard. A two-player game model of power cogeneration in

New England. IEEE Transactions on Automatic Control, 37(9):1451–1456, Sept. 1992.

S. Held, W. Cook, and E. C. Sewell. Maximum-weight stable sets and safe lower bounds for

graph coloring. Mathematical Programming Computation, 4(4):363–381, Dec. 2012.

R. Henrion, J. Outrata, and T. Surowiec. Analysis of M-stationary points to an EPEC

modeling oligopolistic competition in an electricity spot market. ESAIM: Control, Opti-

misation and Calculus of Variations, 18(2):295–317, Apr. 2012.

N. A. Hernández-Leandro, V. Boyer, M. A. Salazar-Aguilar, and L.-M. Rousseau. A

matheuristic based on Lagrangian relaxation for the multi-activity shift scheduling prob-

lem. European Journal of Operational Research, July 2018.

B. Heymann and A. Jofré. Mechanism Design and Auctions for Electricity Network. May

2016.

B. F. Hobbs and S. K. Nelson. A nonlinear bilevel model for analysis of electric utility

demand-side planning issues. Annals of Operations Research, 34(1):255–274, Dec. 1992.

J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory, Languages,

And Computation. Addison-Wesley, Boston, 3rd edizione edition, 2006.

D. Huisman, R. Jans, M. Peeters, and A. P. M. Wagelmans. Combining Column Generation

and Lagrangian Relaxation. In G. Desaulniers, J. Desrosiers, and M. M. Solomon, editors,

Column Generation, pages 247–270. Springer US, 2005.

Bibliography 182

S. Irnich and G. Desaulniers. Shortest Path Problems with Resource Constraints. In Column

Generation, pages 33–65. Springer, Boston, MA, 2005.

L. W. Jacobs and M. J. Brusco. Overlapping Start-Time Bands in Implicit Tour Scheduling.

Management Science, 42(9):1247–1259, Sept. 1996.

Y. Jin, J.-P. Hamiez, and J.-K. Hao. Algorithms for the minimum sum coloring problem: a

review. Artificial Intelligence Review, 47(3):367–394, Mar. 2017.

E. G. Kardakos, C. K. Simoglou, and A. G. Bakirtzis. Optimal Offering Strategy of a Virtual

Power Plant: A Stochastic Bi-Level Approach. IEEE Transactions on Smart Grid, 7(2):

794–806, Mar. 2016.

L. Lozano and A. L. Medaglia. On an exact method for the constrained shortest path

problem. Computers & Operations Research, 40(1):378–384, Jan. 2013.

M. E. Lübbecke and J. Desrosiers. Selected topics in column generation. Operations Re-

search, 53(6):1007–1023, 2005.

R. M. Lusby, J. Larsen, M. Ehrgott, and D. Ryan. Railway track allocation: models and

methods. OR Spectrum, 33(4):843–883, Oct. 2011.

E. Malaguti, M. Monaci, and P. Toth. An exact approach for the Vertex Coloring Problem.

Discrete Optimization, 8(2):174–190, May 2011.

A. Mehrotra, K. E. Murphy, and M. A. Trick. Optimal shift scheduling: A branch-and-price

approach. Naval Research Logistics (NRL), 47(3):185–200, Apr. 2000.

A. Meisels and A. Schaerf. Modelling and Solving Employee Timetabling Problems. Annals

of Mathematics and Artificial Intelligence, 39(1-2):41–59, Sept. 2003.

A. Mingozzi, V. Maniezzo, S. Ricciardelli, and L. Bianco. An Exact Algorithm for the

Resource-Constrained Project Scheduling Problem Based on a New Mathematical For-

mulation. Management Science, 44(5):714–729, May 1998.

A. Mohsenian-Rad, V. W. S. Wong, J. Jatskevich, R. Schober, and A. Leon-Garcia. Au-

tonomous Demand-Side Management Based on Game-Theoretic Energy Consumption

Scheduling for the Future Smart Grid. IEEE Transactions on Smart Grid, 1(3):320–331,

Dec. 2010.

J. A. Momoh and L. Mili. Economic Market Design and Planning for Electric Power Sys-

tems. Wiley, Nov. 2009.

J. T. Moore and J. F. Bard. The Mixed Integer Linear Bilevel Programming Problem.

Operations Research, 38(5):911–921, Oct. 1990.

N. Musliu, A. Schaerf, and W. Slany. Local search for shift design. European Journal of

Operational Research, 153(1):51–64, Feb. 2004.

Bibliography 183

İ. Muter, Ş. İ. Birbil, and G. Şahin. Combination of Metaheuristic and Exact Algorithms for

Solving Set Covering-Type Optimization Problems. INFORMS Journal on Computing,

22(4):603–619, Mar. 2010.

P. J. Neame. Nonsmooth Dual Methods in Integer Programming. PhD thesis, University of

Melbourne, Department of Mathematics and Statistics, 1999.

J. V. Outrata. On the numerical solution of a class of Stackelberg problems. Z. Operations

Research, 34(4):255–277, July 1990.

J.-S. Pang and M. Fukushima. Quasi-variational inequalities, generalized Nash equilibria,

and multi-leader-follower games. Computational Management Science, 2(1):21–56, Jan.

2005.

J.-S. Pang and M. Fukushima. Quasi-variational inequalities, generalized Nash equilibria,

and multi-leader-follower games. Computational Management Science, 6(3):373–375, Aug.

2009.

J.-S. Pang, M. Razaviyayn, and A. Alvarado. Computing B-Stationary Points of Nonsmooth

DC Programs. Mathematics of Operations Research, 42(1):95–118, Oct. 2016.

G. Pesant. A Regular Language Membership Constraint for Finite Sequences of Variables.

pages 482–495. Springer, Berlin, Heidelberg, Sept. 2004.

A. Pessoa, R. Sadykov, E. Uchoa, and F. Vanderbeck. Automation and combination of

linear-programming based stabilization techniques in column generation, May 2017.

E. Prescott-Gagnon, G. Desaulniers, and L.-M. Rousseau. A branch-and-price-based large

neighborhood search algorithm for the vehicle routing problem with time windows. Net-

works, 54(4):190–204, Dec. 2009.

C.-G. Quimper and L.-M. Rousseau. A large neighbourhood search approach to the multi-

activity shift scheduling problem. Journal of Heuristics, 16(3):373–392, Apr. 2009.

M. S. Rasmussen and J. Larsen. Optimisation-Based Solution Methods for Set Partitioning

Models. PhD thesis, Technical University of Denmark, Department of Informatics and

Mathematical Modeling, 2011.

M. Rekik, J.-F. Cordeau, and F. Soumis. Implicit shift scheduling with multiple breaks and

work stretch duration restrictions. Journal of Scheduling, 13(1):49–75, Feb. 2010.

M. I. Restrepo, L. Lozano, and A. L. Medaglia. Constrained network-based column genera-

tion for the multi-activity shift scheduling problem. International Journal of Production

Economics, 140(1):466–472, Nov. 2012.

M. I. Restrepo, B. Gendron, and L.-M. Rousseau. Branch-and-Price for Personalized Mul-

tiactivity Tour Scheduling. INFORMS Journal on Computing, 28(2):334–350, Apr. 2016.

M. I. Restrepo, B. Gendron, and L.-M. Rousseau. Combining Benders decomposition and

column generation for multi-activity tour scheduling. Computers & Operations Research,

93:151–165, May 2018.

Bibliography 184

N. J. Rezanova and D. M. Ryan. The train driver recovery problemA set partitioning based

model and solution method. Computers & Operations Research, 37(5):845–856, May 2010.

G. Righini and M. Salani. Symmetry helps: Bounded bi-directional dynamic programming

for the elementary shortest path problem with resource constraints. Discrete Optimization,

3(3):255–273, Sept. 2006.

R. T. Rockafellar. Solving Stochastic Programming Problems with Risk Measures by Pro-

gressive Hedging. Set-Valued and Variational Analysis, July 2017.

R. T. Rockafellar and S. Uryasev. Optimization of Conditional Value-at-Risk. Journal of

Risk, 2:21–41, 2000.

R. T. Rockafellar and S. Uryasev. The fundamental risk quadrangle in risk management,

optimization and statistical estimation. Surveys in Operations Research and Management

Science, 18(1):33–53, Oct. 2013.

M. Rönnqvist. A method for the cutting stock problem with different qualities. European

Journal of Operational Research, 83(1):57–68, May 1995.

S. Ropke and D. Pisinger. An Adaptive Large Neighborhood Search Heuristic for the Pickup

and Delivery Problem with Time Windows. Transportation Science, 40(4):455–472, Nov.

2006.

F. Rossi and S. Smriglio. A set packing model for the ground holding problem in congested

networks. European Journal of Operational Research, 131(2):400–416, June 2001.

R. Sadykov, F. Vanderbeck, A. Pessoa, I. Tahiri, and E. Uchoa. Primal Heuristics for

Branch-and-Price: the assets of diving methods. INFORMS Journal on Computing, Jan.

2018.

A. Shapiro. On complexity of multistage stochastic programs. Operations Research Letters,

34(1):1–8, Jan. 2006.

P. Shaw. Using Constraint Programming and Local Search Methods to Solve Vehicle Routing

Problems. pages 417–431. Springer, Berlin, Heidelberg, Oct. 1998.

T. Surowiec. Explicit stationarity conditions and solution characterization for equilibrium

problems with equilibrium constraints. PhD thesis, Humboldt-Universität zu Berlin, Mar.

2010.

M. Tahanan, W. van Ackooij, F. Antonio, and F. Lacalandra. Large-scale Unit Commitment

under uncertainty: a literature survey. 4OR, 13:115–171, Jan. 2015.

R. Taktak and C. D’Ambrosio. An overview on mathematical programming approaches for

the deterministic unit commitment problem in hydro valleys. Energy Systems, 8(1):57–79,

Feb. 2017.

G. M. Thompson. Improved Implicit Optimal Modeling of the Labor Shift Scheduling

Problem. Management Science, 41(4):595–607, Apr. 1995.

Bibliography 185

G. M. Thompson. Labor scheduling: A commentary. The Cornell Hotel and Restaurant

Administration Quarterly, 44(5):149–155, Oct. 2003.

N. Touati-Moungla, L. Létocart, and A. Nagih. Solutions diversification in a column gener-

ation algorithm. Algorithmic Operations Research, 5(2):86–95, Dec. 2010.

W. van Ackooij and W. de Oliveira. DC programming techniques with inexact subproblems’

solution for general DC programs. Submitted manuscript, pages 1–27, 2017.

J. Van den Bergh, J. Belin, P. De Bruecker, E. Demeulemeester, and L. De Boeck. Personnel

scheduling: A literature review. European Journal of Operational Research, 226(3):367–

385, May 2013.

F. Vanderbeck. Implementing Mixed Integer Column Generation. In G. Desaulniers,

J. Desrosiers, and M. M. Solomon, editors, Column Generation, pages 331–358. Springer

US, Boston, MA, 2005.

F. Vanderbeck and L. A. Wolsey. An exact algorithm for IP column generation. Operations

Research Letters, 19(4):151–159, Oct. 1996.

R. R. Vemuganti. Applications of Set Covering, Set Packing and Set Partitioning Models: A

Survey. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial Optimization,

pages 573–746. Springer US, Boston, MA, 1998.

P. J. Zwaneveld, L. G. Kroon, H. E. Romeijn, M. Salomon, S. Dauzère-Pérès, S. P. M.

Van Hoesel, and H. W. Ambergen. Routing Trains Through Railway Stations: Model

Formulation and Algorithms. Transportation Science, 30(3):181–194, Aug. 1996.

Acknowledgements

I will always be grateful to Roberto for his daily commitment and dedication as supervisor

during these three years. Sei stato un padre scientifico essenziale per tutto il tempo.

My sincerest thanks go to François Clautiaux and Bernard Gendron for having agreed to be

the referees of my thesis. I also want to thank Sophie Demassey, Safia Kedad-Sidhoum and

Louis-Martin Rousseau who have accepted to be part of the jury despite their busy agenda.

A special thank goes to Louis-Martin Rousseau, for all the constructive and valuable advices

given during the internship at École Polytechnique de Montréal (il Paese dei Balocchi).

I want to thank my co-supervisor Lucas, and Nora and Mahuna for being not only my

co-encadrants, but also good colleagues. Nora, from the moment you called me Ania by

mistake, I realize that I could really count on you. Mahuna, from your being a dreamer I

learned that I always have to try. I also thank my officemate Thomas for his good mood and

all the breaks with the Arpeggio and Ristretto coffees. A special thank goes to Horizontal

Software for giving me the opportunity of doing my PhD, and for pushing me to face new

challenges and to go further and further under the best conditions.

I would like to thank the members of LIPN with whom I share many unforgettable moments.

In particular, I am grateful to the ritals: Enrico for being the quietest flatmate at Scotti-

Pan-Bettiol place; Emiliano for your insatiable curiosity and the fermented shark; Marcos

for being so Brazilian and Italian at the same time; Michele Barbato for being my model as

PhD student and for the wise words you told me about the feelings on the last months of

PhD; Stefano, Farideh, Laura, Desirée and my officemates at LIPN (Antoine, Gaël, Rado,

Tsinjo, Ivan and all the others).

A special thank goes to Anna, Giulia and Valentina: even though many kilometers and

time zones divide us, you are always there. Aspettando la prossima Tennent’s ai Navigli. I

also thank my friends Lara, Elena and Letizia. Leti, nessuno mi ha capita più di te e Yoda

quest’estate.

Ringrazio la mia famiglia per esserci sempre stata e per esserci sempre. Luciana per una

vita passata ad assicurarti la nostra felicità, Romano per essere senza dubbio l’uomo della

mia vita, Andrea perché avere un fratello maggiore mi fa sentire intoccabile, e Gaia perché

finalmente ho anche una sorella. Ringrazio Simonetta e Roberto per farmi sentire sempre

come una figlia.

And last but definitely not least, I thank Andrea for supporting and standing me during

all these years. With your constant optimism, you taught me that you make your own luck

(even though I still think yours is pretty special).

	Abstract
	Résumé
	List of Figures
	List of Tables
	Abbreviations
	Introduction
	Context and motivations
	Research objectives
	Thesis outline

	I Personnel scheduling
	1 Problem Description
	1.1 Definitions
	1.2 Problem statement
	1.2.1 Schedule flexibility
	1.2.2 Employees heterogeneity
	1.2.3 Constraints
	1.2.4 Planning quality evaluation

	1.3 State of the art
	1.3.1 Classifications of personnel scheduling
	1.3.2 Shift scheduling
	1.3.3 Tour scheduling

	1.4 Instances
	1.5 Conclusions

	2 Mathematical Model
	2.1 Compact MILP model
	2.1.1 Notations
	2.1.2 Objective function
	2.1.3 Workload constraints
	2.1.4 Legal constraints
	2.1.5 Activities cardinality constraints
	2.1.6 Skills constraints
	2.1.7 Pre-assignment constraints
	2.1.8 Unavailability constraints
	2.1.9 Succession constraints
	2.1.10 Distribution constraints

	2.2 Dantzig-Wolfe decomposition
	2.2.1 Master problem
	2.2.2 Column generation.

	2.3 Conclusion

	II Exact method
	3 Dual Ascent Heuristic
	3.1 Introduction
	3.2 Literature review
	3.3 Problem description
	3.4 A dual ascent heuristic
	3.4.1 Parametric reformulation
	3.4.2 Lagrangian relaxation
	3.4.3 A column generation method based on dual ascent

	3.5 Classical Lagrangian relaxation
	3.6 Applications
	3.6.1 Multi-activity tour scheduling
	3.6.2 Minimum sum coloring

	3.7 Computational results
	3.7.1 Instances
	3.7.2 Algorithmic details
	3.7.3 Discussion of the results

	3.8 Conclusions

	4 Pricing Problem
	4.1 Preliminaries
	4.1.1 Basic concepts
	4.1.2 Deterministic finite automata
	4.1.3 Extended transition function
	4.1.4 Regular language

	4.2 Model
	4.2.1 DFA for timeslots
	4.2.2 DFA for daily shifts
	4.2.3 Directed acyclic graph for schedules

	4.3 Solving Method
	4.3.1 Expanded graph
	4.3.2 Phase 1: build timeslots
	4.3.3 Phase 2: build daily shifts
	4.3.4 Phase 3: build schedules

	4.4 Heuristics
	4.4.1 Starting slots selection strategy
	4.4.2 Daily shifts selection strategy

	4.5 Computational results
	4.6 Conclusions

	5 Branch-and-Price
	5.1 Column generation
	5.2 Branching rule
	5.3 Upper bound
	5.4 Computational results
	5.5 Conclusions

	III Heuristic methods
	6 Heuristic Methods
	6.1 Large Neighborhood Search
	6.1.1 The method
	6.1.2 Computational results
	6.1.3 Conclusions

	6.2 Primal-dual heuristic
	6.2.1 The method
	6.2.2 Computational results
	6.2.3 Conclusions

	6.3 Hybrid heuristic
	6.3.1 The method
	6.3.2 Computational results
	6.3.3 Conclusions

	6.4 Diving heuristic
	6.4.1 The method
	6.4.2 Computational results
	6.4.3 Conclusions

	6.5 Heuristics comparison

	Conclusions
	A Optimizing power generation in the presence of micro-grids
	A.1 Introduction
	A.2 The problem
	A.2.1 Description
	A.2.2 A bilevel formulation

	A.3 MILP reformulations
	A.3.1 Heuristic reformulation
	A.3.2 Comparative exact formulation

	A.4 Stochastic extension of the model
	A.4.1 Model
	A.4.2 Heuristic reformulation
	A.4.3 Comparative reformulation

	A.5 Case study based on thermal power unit-commitment
	A.5.1 Data
	A.5.2 Numerical results

	A.6 Conclusions and perspectives
	A.7 Micro-grids

	Bibliography

