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Résume en Français

Cette thèse de doctorat porte sur le développement et l’étude d’une fonction de densité
d’énergie pour les réseaux cristallins 2D dans le contexte de l’élasticité en déplacements
finis. Ceci est réalisé par la mise en œuvre d’une nouvelle manière de prendre en compte la
symétrie des matériaux. La méthodologie développée n’est plus limitée aux opérations or-
thogonales telles que l’invariance du réseau par rotation et réflexion, mais inclut également
d’autres transformations non orthogonales, comme les cisaillements invariants. Ce type
d’invariance est dicté par le groupe de symétrie globale qui, pour les réseaux de Bravais,
cöıncide avec le groupe de matrices entières et inversibles GL(n,Z). La mise en œuvre de
ce potentiel a pour effet d’obtenir un paysage énergétique contenant un nombre infini de
puits de potentiel et caractérisé par un comportement périodique le long des directions de
déformations en cisaillement. Ce comportement périodique est défini de manière tensorielle
pour les déformations finies génériques. C’est donc un paysage beaucoup plus riche que
celui utilisé par d’autres modèles dans lesquels une énergie périodique n’est associée que
dans des directions prédéterminées, en termes de cinématique et formulée en termes de
petites déformations. La thèse est structurée en six chapitres.

Dans le premier chapitre, qui a pour rôle d’introduction, le contexte général et l’état
de l’art sont traités de manière synthétique. Les raisons pour lesquelles une meilleure
compréhension de la plasticité cristalline est très importante sont brièvement rappelées.
C’est un phénomène très complexe dans lequel le rôle déterminant est assumé par les dis-
locations, défauts du réseau cristallin qui facilitent le glissement relatif entre les plans du
réseau et permettent ainsi la propagation de déformations permanentes. Le phénomène
est rendu extrêmement compliqué par le fait que les dislocations peuvent interagir en-
tre elles de plusieurs manières mais également avec d’autres défauts qui caractérisent le
réseau cristallin, ce qui rend difficile la formulation de modèles capables de décrire le
phénomène de manière précise et exhaustive. D’autre part, même avec les puissances de
calcul actuelles, la description de ce phénomène en termes d’interactions entre atomes in-
dividuels est souvent prohibitive. Le chapitre décrit brièvement le concept de dislocation
et son interprétation dans le contexte du solide continu, élastique et linéaire. Ensuite,
les différentes méthodes utilisées pour modéliser les écoulements plastiques à l’échelle mi-
cro et nano sont rappelées, des modèles atomistiques aux approches dans lesquelles une
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cinématique prenant en compte la présence de plans glissants est intégrée dans une for-
mulation continue. Parmi les nombreux modèles proposés par la communauté scientifique,
nous nous limitons à une exposition synthétique de certains des plus connus, en soulignant,
pour chaque méthode, les principaux aspects, avantages et inconvénients, et la longueur
d’échelle typique des simulations.

Dans le deuxième chapitre, on introduit l’énergie de déformation utilisée, pour le mo-
ment formulée sous forme d’énergie de réseau. Le chapitre commence par la discussion de
quelques concepts de base de la cristallographie, dont la compréhension est nécessaire à la
formulation de la densité d’énergie introduite. En particulier, nous décrivons les réseaux
cristallins simples, appelés réseaux de Bravais, et définis comme des structures périodiques
de points dans l’espace qui peuvent être décrites en termes de répétitions entières de deux
vecteurs linéairement indépendants, les vecteurs de base eI du réseau cristallin:

L(eI) =
{
x ∈ R2, x = vIeI , vI ∈ Z

}
, (1)

A partir d’un réseau, on associe une matrice de la métrique CIJ = eIeJ , par définition
symétrique et définie positive. L’espace de configuration des métriques est donc le sous-
espace Q+

2 de matrices définies symétriques et positives. C’est l’espace 3D délimité par
l’hyperbolöıde det C = C11C22 − C122 > 0. Contrairement aux vecteurs de base, la
métrique C est invariante dans des rotations rigides et nous allons donc définir directement
l’énergie en fonction de C plutôt que en fonction des vecteurs de base eI , l’énergie élastique
devant satisfaire au principe d’invariance par rotation. L’invariance sous GL(2,Z) prend
en compte le fait que le même réseau peut être décrit avec des bases distinctes infinies,
toutes reliées les unes aux autres au moyen d’opérations non orthogonales. Lorsque deux
bases eI et ēI (et donc les métriques respectives) décrivent le même réseau, elles sont liées
par l’action du groupe GL(2,Z). Cela signifie que les deux métriques sont liées à travers
l’opération:

C̄ = mTCm C̄IJ = mKICKLmLJ . (2)

Puisque l’action du groupe GL(2,Z) ne modifie pas le volume du réseau, les réseaux
avec surface unitaire, situés sur l’hyperbolöıde det C = 1, sont choisis comme référence.
Cet hyperbolöıde sera visualisé sur le disque de Poincaré. L’action de GL(2,Z) sur l’espace
des métriques divise cet espace en cinq orbites, chacune correspondant à l’un des 5 types
possibles de réseau de Bravais en 2D ( monoclinique primitif, orthorhombique primitif,
orthorhombique centré, tétragonal primitif et hexagonal primitif). Pour nos besoins, il est
utile de définir un domaine fondamental pour l’action de GL(2,Z), afin que chaque type
de réseau de Bravais ait un et un seul représentant. En fait, une fois qu’un domaine fonda-
mental D a été identifié, il sera possible de définir une énergie de référence ϕ0 uniquement
sur celui-ci, puis d’étendre sa validité à l’ensemble de l’espace métrique en utilisant:

ϕ(C) = ϕ(mtCm) = ϕ0(C̃) . (3)
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Pour que cela soit réellement possible, il est nécessaire de disposer d’un mapping qui, à
partir du C générique, renvoie le C̃ correspondant sur le domaine fondamental. Ceci peut
être facilement réalisé si D est choisi comme:

D =

{
C ∈ Q+

2 , 0 < C11 ≤ C22, 0 ≤ C12 ≤
C11

2

}
. (4)

En fait, pour ce choix de D, la matrice m qui relie une base générique à la base
de référence correspondante est une procédure itérative appelée réduction de Lagrange.
Elle consiste à choisir parmi toutes les métriques équivalentes possibles celle à laquelle
correspond la base réduite, qui est donnée par:

• ẽ1 est le vecteur du réseau le plus court.

• ẽ2 est le vecteur du réseau le plus court non colinéaire avec ẽ1 et pour lequel le signe
est choisi de sorte que l’angle entre les deux soit aigu.

Une fois que D a été choisi de cette manière, il est nécessaire de définir l’énergie de référence
sur celle-ci. Elle doit satisfaire au moins une continuité C2 sur les contours de D, de manière
à assurer la continuité du module d’élasticité. On utilise la procédure développée par Conti
et Zanzotto [CZ04], où l’énergie de référence est définie par l’assemblage de polynômes
appropriés satisfaisant la continuité requise. Ce ϕ permet de modéliser, pour un choix
de coefficients appropriés, un réseau carré à symétrie carrée ou un réseau triangulaire à
symétrie hexagonale. Après la construction de l’énergie, le paysage énergétique périodique
ainsi obtenu est décrit en détail, pour les symétries carrée et hexagonale. L’énergie prend

v



automatiquement en compte la présence de directions à faible coût énergétique le long
des plans cristallographiques. De plus, elle représente pleinement l’asymétrie d’énergie
qui caractérise les directions génériques du cisaillement. Les trajets de chargement qui
cöıncident avec les bords de D sont particulièrement intéressants. Ce sont des cisaille-
ments purs qui, dans une formulation non linéaire, diffèrent des cisaillements simples en
termes de déformation réelle et pas seulement en termes de rotation rigide. Ce sont des
trajets de chargement qui déforment le réseau dans des configurations rectangulaires et
rhombiques respectivement. Le trajet qui relie le point de symétrie carré S au point de
réseau triangulaire T est, pour les deux énergies considérées, le trajet caractérisé par la
barrière d’énergie la plus basse de tous les trajets de chargement apparaissant à partir de
la configuration de référence non déformée. L’autre frontière de D convergeant dans la
symétrie considérée (il s’agit d’une transformation rectangulaire dans le cas de S et d’un
autre type de déformation rhombique dans le cas de T ) est le trajet qui évolue vers l’infini
vers une barrière énergétique de plus en plus haute, sans rencontrer aucun autre puits de
potentiel.

L’importance de la définition du modèle en termes de déformations non linéaires est
également abordée dans le chapitre 2. En fait, les configurations qui, en termes de C, sont
distinctes et identifiées par différents points de l’hyperbolöıde se superposent en termes de
déformation linéaire. Un exemple concret de ceci est donné.

Au chapitre 3, la densité d’énergie introduite jusqu’à présent en termes d’énergie de
réseau est introduite dans une formulation continue et hyperélastique. Pour que cela soit
possible, il est nécessaire de supposer que l’hypothèse de Cauchy Born est valide. Cette
hypothèse affirme que le réseau cristallin associé à un point générique de l’objet X est
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déformé selon le gradient de déformation en ce point F = ∂x
∂x :

ei = FiJeJ . (5)

Par conséquent, dans cette hypothèse, il est possible de faire cöıncider la densité d’énergie
φ du corps continu avec la densité d’énergie ϕ introduite pour le réseau cristallin:

φ(F) := ϕ(FeI) = ϕ(ei), (6)

En particulier, le tenseur métrique cöıncide avec le tenseur de déformation non linéaire de
Cauchy-Green droit, exprimé dans la base de référence.

Le problème élastique est introduit dans sa forme forte et une fonction introduisant
l’énergie potentielle associée au corps est introduite. La méthode utilisée pour la solution,
appelée méthode des éléments finis, est ensuite brièvement décrite. Elle consiste à trouver
une solution approchée du problème exprimé sous une forme faible, c’est-à-dire rechercher
un minimum pour l’énergie potentielle. Dans notre cas, la discrétisation rendue nécessaire
pour résoudre le problème prend également un sens physique, l’énergie invariante GL(2,Z)
nécessitant une régularisation. Le domaine est divisé en une série d’éléments réguliers.
Chacun de ces éléments représente un ensemble d’atomes tel que le paysage énergétique
qui leur est associé est périodique. Avec un exemple simple, il est montré que le nombre
d’atomes associé à cette hypothèse est en réalité réduit. Le chapitre se termine par une
illustration d’une dislocation isolée telle qu’elle apparâıt dans le modèle. Deux exemples
simples d’interaction entre deux dislocations distinctes sont également discutés.

Au chapitre 4, le modèle introduit est utilisé pour étudier la nucléation homogène de
dislocations dans un cristal parfait. Deux symétries différentes sont montrées (cristal carré
et triangulaire) et différents trajets de chargement sont étudiés. En particulier, différents
cisaillements simples sont considérées en plus des cisaillements purs mentionnés ci-dessus.
Cette étude est accompagnée d’un critère de stabilité analytique, basé sur la positivité
définie du tenseur acoustique qik:

qik = njnkaijkl , (7)

avec:

aijkl = FjRFlSAiRkS AiRkS =
∂2φ

∂FiR∂FkS
, (8)

Ce tenseur est lié aux conditions de propagation des ondes d’accélération dans le matériau,
dont le lien avec la stabilité et l’unicité de la solution homogène est connu. En particulier,
lorsque la positivité définie est perdue pour une certaine direction n, une onde stationnaire
est admise dans cette direction de propagation. Donc l’unicité de la solution homogène
fait défaut et de nouvelles augmentations de charge entrâınent une instabilité de cette
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solution. Le cristal se réorganise en un équilibre différent dans lequel différents puits de
potentiel sont occupés simultanément, donnant lieu à une microstructure caractérisée par
la présence de défauts de réseau. Les résultats numériques sont en accord avec cette anal-
yse. Pour les deux symétries, il existe un bon accord avec la charge critique fournie par
l’analyse basée sur le tenseur acoustique. Les deux symétries montrent la formation de
microstructures diverses et complexes dès la première perte d’instabilité. Les situations
les plus intéressantes se produisent aux transformations rhombiques et rectangulaires cor-
respondant aux limites du domaine fondamental, tandis que les simples déformations de
cisaillement réparties de manière variable dans le paysage énergétique donnent lieu à des
situations intermédiaires. En particulier, le long de la transformation rhombique entre
les points T et S, les deux symétries montrent la présence d’une nucléation simultanée
de deux types de dislocations différents, en accord avec l’analyse du tenseur acoustique
qui prévoit la présence simultanée de deux modes d’instabilité. Dans les deux cas, le
point selle associé à l’autre symétrie (c’est-à-dire T pour le réseau S et S pour le réseau
T) est un point de selle connecté à un couplage non trivial entre différents systèmes de
glissement. L’autre cisaillement pur donne également lieu à des phénomènes intéressants.
Dans le cas de la symétrie carrée, il y a une réorganisation globale du cristal, qui semble
être en rotation. En analysant la microstructure, nous constatons que cette rotation est
obtenue par une combinaison fine des cisaillements invariants. Dans le réseau triangulaire,
on peut encore voir une double activation du système de glissement, du fait que la direc-
tion du mode d’instabilité est orientée exactement à mi-chemin entre ces deux systèmes
de glissement. On déduit de ces résultats que le paysage périodique identifié par GL(2,Z)
permet de décrire le phénomène de nucléation de manière beaucoup plus riche et variée que
ne le permettent d’autres modèles périodiques formulés en termes de déformations linéaires.

Dans le chapitre 5, une autre densité d’énergie GL(2,Z) invariante est développée di-
rectement à partir d’un potentiel interatomique de type Lennard-Jones. Nous montrons
que nombre des effets décrits plus haut par l’énergie polynomiale se retrouvent également
dans ce cas, et sont donc associés à la forme périodique imposée par la symétrie globale
et non à l’effet de la construction particulière de l’énergie de référence dans le domaine
fondamental D. Certaines différences apparaissent à la suite de la modélisation différente
utilisée pour la partie volumique de l’énergie. Cela avait été modélisé empiriquement dans
le cas de l’énergie polynomiale alors que dans ce cas, il est directement imposé par la forme
du potentiel interatomique utilisé. En conséquence de la modélisation différente du volume,
certains types de défauts apparaissent, tels que les vides et les microfractures, qui n’avaient
pas été mis en évidence auparavant. Nous avons nommé l’énergie ainsi construite ”Lennard-
Jones homogène”. En fait, il ne s’agit pas d’une approche purement atomistique, puisque
l’invariance de GL(2,Z) suppose qu’un certain nombre d’atomes se déforment de manière
homogène autour du point considéré. Pour mieux quantifier les effets de cette approxima-
tion, une comparaison directe est faite ensuite entre cette méthode et certaines simulations
atomistiques utilisant le même potentiel. Bien que la structure du cœur de la dislocation
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soit représentée de manière approximative, d’importantes analogies sont observées con-
cernant les types de microstructure observées à la suite d’une nucléation homogène. Des
résultats des simulations de nanoindentation sont ensuite présentés. Ici aussi, il existe une
certaine analogie en termes de charge critique et de type de nucléation. Cependant, le
modèle GL(2,Z) présente certaines limites dans la représentation de l’évolution des mi-
crostructures qui, soumises à la contrainte de compatibilité, (implicite dans la formulation
continue), s’avèrent parfois trop rigides.

Le chapitre 6 est réservé aux conclusions et développements futurs. La méthode pro-
posée est comparée aux autres approches présentées au chapitre 1 pour mettre en évidence
ses caractéristiques innovantes. Nous discutons ensuite des développements possibles, dont
le plus important est certainement l’extension du modèle aux trois dimensions.
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all simple lattices of unit volume, is shown as reference. b) Relation between different

square symmetry metric points is illustrated schematically. These lattices are equivalent

but characterized by a different choice of the lattice basis vectors {eI}. . . . . . . . . 31

2.5 Poincaré Representation of the Configurational Space: space det C = 1 in the

Poincaré disk representation. For the sake of clarity, only some of the infinite square

and triangular lattices are illustrated explicitly. Full and dashed lines, corresponding to

rhombic and rectangular lattices, respectively, are geodesics in the hyperbolic space. . . 32

2.6 Maximal EPNs: Examples of maximal EPNs in Q+
2 , indicated as dashed areas (funda-

mental domain D is also shown). Maximal EPN for a square lattice metric (on top), and

for a triangular lattice metric (on bottom). In both cases, the boundary does not belong

to the (open) maximal EPN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Energy Landscape: Energy landscape corresponding to energy density (2.27) for square

symmetry β = − 1
4

(on top) and hexagonal symmetry β = 4 (on bottom) is illustrated

on the Poincaré disk. Color indicates the energy level, blue-low, red-high. An upper cut-

off of 4.15 has been used for the highest-energy values for an improved visualization of

low-energy barriers and wells. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.8 Shear Loading Paths: Energy landscape for different shearing paths θ = 0◦, θ =

arctan(1/2) and θ = 45◦ is shown. Shear asymmetry and different periodic behavior along

general shearing directions are fully described. . . . . . . . . . . . . . . . . . . . . 41

2.9 Square Symmetry Reference Well: Configuration of square wells near reference well

S, the simple shears θ = 0◦ and θ = 90◦ are showed with continue blue lines while pure

shear paths are showed with differently dashed blue lines (b). Energy landscape along

these low energy barriers is illustrated with evidence of triangular lattice point T, located

in the upper vertex of the fundamental domain. In (c) the graphs of energy profiles

corresponding to skinny and fat rhombic paths are shown, together with the θ = 0◦ shear

path. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.10 Linear and Nonlinear Configurational Spaces: Representation of nonlinear and lin-

ear θ = 0◦, θ = 90◦ shearing paths. Linearized strain components are situated on plane

tr(C) = 2, tangent to the initial undeformed configuration S. As the square configura-

tions S+1
0 and S−1

90 differ for a nonlinear component, they result merged in one point the

linearized strain space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.11 Shear Loading Paths in the Triangular Lattice: Energy landscape for shearing paths

θ = 30◦ and θ = 60◦ is shown. The different periodic behaviors along general shearing

directions are fully described. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
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2.12 Hexagonal Symmetry Reference Well: Configuration of triangular wells near the

reference well T. Simple shears θ = 0◦, 60◦ and 120◦ are showed with continue blue lines

while pure shear paths are showed with differently dashed lines (a). Energy landscape

near the reference well, with evidence on the fact that energy is significantly lower along

the fat rhombic path (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1 Finite Deformation: Schematic representation of the Lagrangian undeformed configu-

ration and of the Eulerian deformed configuration in a finite deformation problem. . . . 53

3.2 Cauchy-Born Rule: Representation of the Cauchy-Born assumption. The continuum

formulation is linked to the lattice based one by assuming the lattice vectors {eI} to

behave like the element of infinitesimal lenght dX in the continuum formulation. . . . . 56

3.3 Periodic Behavior and Length Scale: Construction of a periodic energy density func-

tion φ(C) implies that the fundamental element of the model is given by a certain number

of atoms deforming homogeneously. Here, MS energy profile corresponding to a domain

of N × N atoms interacting with a Lennard-Jones potential is shown in correspondence

of a simple shear deformation. Note that periodicity manifests already in correspondence

of small sizes N . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Dislocation Stress Field in the Square Lattice: On the left: Cauchy stresses along an

horizontal middle section of the analyzed domain. On the right: stress fields corresponding

to the three stress components σxx, σxy and σyy (values showed are in between −0.1 and

0.1.) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Dislocation Structure in the Square Lattice: On the left: distribution of metrics

associated with discrete elements on configurational space C11, C22, C12, with evidence

on engaged wells S and S+1
0 . On the right: A picture of the full domain is showed along

with a detail of the triangulation in correspondence of the dislocation core, showing the

presence of sheared element configurations. . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Dislocation Stress Field in the Triangular Lattice: On the left: Cauchy stresses

along an horizontal middle section of the analyzed domain. On the right: stress fields

corresponding to the three stress components σxx, σxy and σyy (values showed are in

between −0.03 and 0.03). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.7 Dislocation Structure in the Triangular Lattice: On the left: finite element dis-

tribution on configurational space C11, C22, C12 with evidence on engaged wells T and

T+1
0 . On the right: A picture of the full domain is showed along with a detail of the

triangulation in correspondence of the dislocation core, showing the presence of sheared

element configurations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

3.8 Dislocation Annihilation: Initial configuration imposed to the system which ends with

annihilation of the two dislocations of opposite sign. On the left, we show the analyzed

domain with colors corresponding to the Cauchy stress σxy field. On the right, the elements

distribution in the configurational space is shown. . . . . . . . . . . . . . . . . . . 66
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3.9 Dislocation Annihilation Process: Some steps of the minimization procedure are

shown, in correspondence of which the gradual approaching of dislocations is observed, up

to the point in which the two dislocations annihilate originating a perfect crystal. On the

top, Cauchy stress σxy field is shown, along with the corresponding elements distribution

in the configurational space (on bottom). . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 Initial (top) Configuration and Final Equilibrium State (bottom) for the Case

of the Two Dislocations of the Same Sign. The two dislocation repel each other up

to an equilibrium distance in which attractive and repulsive forces are balanced. In this

case the engaged wells are S, S+1
0 and S+2

0 . Some readjustments of the elements occupying

the low-energy valleys between the wells is observed between initial and final configuration. 68

4.1 Yield Surface for the Square Lattice: a) Simple shear trajectory θ = 0◦ is shown, with

evidence on the point in which the bifurcation appears. b) Bifurcation points, drawing the

yield surface, are showed for different simple shears in which the angle θ is progressively

increased of 5◦. We show also the bifurcation points corresponding to the fat rhombic and

rectangular pure shears (grey stars). c) The yield surface, obtained by interpolation of

bifurcation point, is shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.2 Analyzed Shear Paths on the Configurational Space: Two pure shears, the rectan-

gular and the rhombic paths coinciding with boundaries of D, and the three simple shears

θ = 0◦, arctan( 1
2
), and 45◦ are analyzed. . . . . . . . . . . . . . . . . . . . . . . . 76

4.3 det qik Profiles along the Fat Rhombic and the Rectangular Paths: Evidence on

load αc for which equality in (4.10) is satisfied. The fat rhombic pure shear (on top) shows

the simultaneous appearence of two instability directions while just one appears in case

of the rhombic path (on bottom). On the side of each graph we show the orientation of

wave direction n⊥ with respect of the deformed lattice cell at α = αc. . . . . . . . . . 77

4.4 det qik Profiles for the Simple Shears θ = 0◦, arctan( 1
2
), 45◦: Evidence on critical

load α = αc. Lattice configurations corresponding to α = αc and associated unstable

modes n⊥ are also shown. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.5 Homogeneous Nucleation: In this picture, a perfect crystal with fixed boundary con-

ditions is loaded quasistatically up to load value α at which stability of the homogeneous

configurations is lost. System deforms homogeneously up to point a), and all the elements

are mapped on a single point on configurational space. In the post instability equilib-

rium, point b), the system show patterning and more than one wells are occupied on

configurational space. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.6 Energy Density up to Nucleation: Evolution of energy density φ along the four

considered paths. On the left: the fat rhombic and the rectangular pure shears. On the

right: The three simple shears θ = 0◦, arctan( 1
2
), and 45◦. A good agreement between the

analytic value αc and the numerical α∗c is observed in all these loading directions. The

showed data were obtained from a N = 104 simulation. . . . . . . . . . . . . . . . . 82
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4.7 Homogeneous Nucleation along the two Pure Shears: These loading paths re-

spectively the paths for which instability happens at lowest and higher value of loading

parameter α. These two ”extremal” paths are representative of two different mechanisms

of nucleation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.8 Post-Instability Pattern for the Rhombic Pure Shear: Results are shown for a

N = 104 domain with both periodic (left) and fixed (right) boundaries. On top: the

Cauchy stress σxy is shown in the full domain with evidence on two edge dislocations.

On bottom: The element points in the configurational space. Wells S, S0◦
1 , and S90◦

−1 are

simultaneously activated. The points on the valleys connecting these wells correspond to

the elements in the dislocation core. . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.9 Post-Instability Pattern for the Rectangular Pure Shear: A N = 104 domain

is considered. Results for a simulation with periodic boundaries (left) and fixed (right).

On top: the Cauchy stress σxy in the full domain with evidence on a region, to better

illustrate the final, 45◦-rotated cristal lattice structure. On bottom: the elements points

in the configurational space show the engagement of the two wells S0◦
1 , and S0◦

−1 (or more

precisely a 45◦-rotated equivalent of these two), with some residual defects variously placed. 86

4.10 Crystal Rearrangement along the Rectangular Path On top: details of the crystal

structure along the rectangular path before (a), and after (b), nucleation. On the bottom,

a detail of the post-instability pattern, where elements of the triangulation are shown.

The crystal structure experiences a global rearrangement where the 45◦ rotated version of

wells S0◦
1 and S0◦

−1 are finely mixed. This rearrangement gives again a square lattice, but

rotated by 45◦. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.11 Cauchy Stress σxy and Lattice Structure for the Rhombic and the Rectangular

Paths:. (a) rhombic, (b) rectangular. In yellow we highlight the dislocation cores and

the other observed topological defects. While in (a) the shear is limited to specific lattice

planes, in (b) the rearrangement is global. . . . . . . . . . . . . . . . . . . . . . . . 88

4.12 Post-Instability Patterns for the Considered Simple Shears: A N = 104 domain

is considered. Cauchy stress σxy is showed on the entire domain and on a blown-up detail,

to better appreciate the difference of the obtained patterns. Distribution of the elements

points in the configurational space it is also shown. . . . . . . . . . . . . . . . . . . 90

4.13 A detail of the Simple Shear θ = 45◦ Post-Instability Pattern: colors indicate

the values of σxy component of Cauchy stress. Regions with different orientations are

accorded with various topological defects. As in the rectangular path, the lattice rotation

is actually a mixture of compatible sheared phases. Dislocations are also observed. . . . 91

4.14 Post-Instability Pattern for a N = 106 Simulation with Periodic Boundary

Conditions for θ = 0◦ Simple Shear: Colors indicate the σxy stress field. . . . . . . 92

4.15 Post-Instability Pattern for a N = 106 Simulation with Periodic Boundary

Conditions for θ = 45◦ Simple Shear: Colors indicate the σxy stress field. . . . . . . 93

4.16 Yield Surface for the Triangular Lattice: a) The yield surface enclosing the region

surrounding the reference triangular well T is illustrated with a thick black line. b) The

analyzed shear paths and their relation with the yield surface are shown. . . . . . . . . 94
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4.17 det qik Profiles along the Fat Rhombic and the Skinny Rhombic Paths: Evidence

on the load αc for which equality in (4.10) is satisfied. the fat rhombic pure shear (a) shows

the simultaneous appearence of two instability directions, while just one appears in case of

fat rhombic path (b). On the side of each graph, we show the orientation of wave direction

n⊥ with respect of the deformed lattice cell at α = αc. . . . . . . . . . . . . . . . . . 95

4.18 det qik Profiles along The Considered Simple Shears: Profiles for θ = 60◦ and

θ = 30◦ loading paths are shown, with evidence on load αc for which equality in (4.10)

is satisfied. Both these simple shears are characterized by the presence of one unstable

mode only, not aligned with crystallographic directions. . . . . . . . . . . . . . . . . 96

4.19 Precursors of the Incipient Instability: Inhomogeneous states, precursors of the

incipient dislocation nucleation, for the considered loading paths. These precursors are

characterized by the appearence of higher energy bands, periodically spaced, and whose

orientation match the direction of the unstable mode n⊥ predicted analytically. . . . . . 98

4.20 Energy Density up to Nucleation for the Triangular Lattice: Evolution of the

energy density φ along the four considered trajectories. On the left: the fat rhombic and

the skinny rhombic pure shears. On the right: the two simple shears θ = 60◦, and 30◦.

Instability happens systematically later than what predicted analytically, and we observe

α∗c ≈ 1.1αc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

4.21 Dislocation Nucleation in the Triangular Lattice along θ = 60◦ Simple Shear:

Evolution of the energy density and the Cauchy stress σxy field representing three different

phases of the instability which leads, from the first appearence of inhomogeneous bands,

to the formation of dislocations. These are not equilibrium states, but are part of the

overdamped dynamics implicit in the minimization procedure. The sequence shows nucle-

ation in the θ = 60◦ simple shear. On bottom we show the corresponding distribution of

the elements in the configurational space, which highlights the importance of the square

point in driving the development of the banded precursors. . . . . . . . . . . . . . . . 100

4.22 Dislocation Nucleation in the Triangular Lattice along θ = 30◦ Simple Shear:

Evolution of the energy density and the Cauchy stress σxy field representing three different

phases of the instability which leads, from the first appearence of inhomogeneous bands,

to the formation of dislocations. These are not equilibrium states, but are part of the

overdamped dynamics implicit in the minimization procedure. The sequence shows nucle-

ation in the θ = 30◦ simple shear. On bottom we show the corresponding distribution of

the elements in the configurational space, which highlights the importance of the square

point in driving the development of the banded precursors. . . . . . . . . . . . . . . . 101

4.23 Rotation Distribution in the Band Patterning: θ = 30◦ (left) and θ = 60◦ (right)

simple shears. This inhomogeneous equilibrium configuration immediately preceeds the

instability process described in Figure 4.21, where the interval of observed rotations furter

increases, up to the formation of dislocation dipoles. . . . . . . . . . . . . . . . . . 102
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4.24 Bands Patterning in configurational space: Dispersion of elements in configurational

space corresponding to the first instants of instability, when bands spread originating a

new inhomogeneous pattern. The two case of the skinny and the fat rhombic paths are

shown. Here the Dispersion is originated by the bands which are respectively tangential

and perpendicular to the yield surface. . . . . . . . . . . . . . . . . . . . . . . . . 102

4.25 Post-Instability Pattern along the Fat Rhombic Pure Shear: A N = 104 domain is

considered. On top and bottom, results from simulations with fixed and periodic boundary

conditions are shown, respectively.(b) Cauchy stress σxy field is shown in the full domain.

(c) The distribution of elements points in configurational space. The simultaneous presence

of the three wells T, T60◦
1 , and T0◦

−1 is evident when one considers the corresponding

triangulation in which we show a detail in (a). . . . . . . . . . . . . . . . . . . . . . 104

4.26 Post-Instability Pattern along the Skinny Rhombic Pure Shear: A N = 104 do-

main is considered. On top, the intermediate stable twin obtained with periodic boundary

conditions is shown, followed by the dislocation pattern obtained under further loading.

On bottom, results of a simulation with fixed boundary conditions are showed. In this

case, the twin cannot form and dislocations nucleate without an intermediate equilibrium

phase. On the left (a), a detail of the triangulation is showed to highlight the simultaneous

presence of the three wells T, T120◦
−1 and T60◦

1 . (b) Cauchy stress σxy field is shown in the

full domain. (c) Elements points in the configurational space. . . . . . . . . . . . . . 105

4.27 Post-Instability Pattern for Simple Shear θ = 60◦: A N = 104 domain is consid-

ered. On top, the configuration obtained for fixed boundary conditions is shown, while on

bottom, results for an analogous simulation with periodic boundaries are illustrated. (a)

a detail of the domain triangulation, (b) Cauchy stress σxy field on the full domain, (c)

corresponding elements distribution in the configurational space. . . . . . . . . . . . 107

4.28 Post-Instability Pattern for Simple Shear θ = 30◦: A N = 104 domain is considerd.

On top, the configuration obtained for fixed boundary conditions is shown, while on bottom

results for an analogous simulation with periodic boundaries are illustrated. (a) a detail of

the domain triangulation, (b) Cauchy stress σxy field on the full domain, (c) corresponding

elements distribution in the configurational space. . . . . . . . . . . . . . . . . . . 108

4.29 Pattern Evolution in the Square Lattice: A N = 4 · 104 square lattice domain

with periodic boundaries is loaded along the simple shear path θ = 0◦. The system

present hardening up to a second stress drop where some grains, initially small, appears.

These grains gradually increase allowing the system to deform almost without additional

hardening. Notice how the configurational space show the development of increasing

complexity. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

4.30 Pattern Evolution in the Triangular Lattice: A N = 4·104 triangular lattice domain

with periodic boundaries is loaded along the simple shear path θ = 0◦. The system present

hardening up to a second stress drop where additional dislocations are activated. Then,

deformation localize along a shear band in the upper region of the periodic domain. . . . 111
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5.1 Energy Construction based on Cauchy-Born Rule: If the atomic lattice is assumed

to follow the macroscopic deformation F, the position of all atoms can be determined

starting from the deformation of an atomic cell only, described by vectors e1 and e2.

All the needed distances entering the computation of φ can then be evaluated as linear

combinations of these vectors. The advantage of using the reduced vectors consist in the

fact that one may consider the same atomic cell during the entire deformation, without

changing the cut-off radius. If reduction is not used, distances of the sampled atoms starts

to exceed the cut-off and the periodic behavior is gradually lost. . . . . . . . . . . . . 116

5.2 Energy landscape for the HLJ energy: (isochoric part) obtained from the considered

Lennard-Jones potential is shown on the Poincaré disk with evidence on the shearing

paths θ = 30◦ and θ = 60◦. Cut-off = 0 has been used for an improved visualization of

low-energy barriers and wells. Notice how, qualitatively, the landscape resembles the one

obtained for the polynomial energy. . . . . . . . . . . . . . . . . . . . . . . . . . 118

5.3 Comparison of Post-Instability Patterns in Polynomial and HLJ: Post-instability

patterns (on a N = 104 domain) for the θ = 60◦ simple shear are shown in terms of Cauchy

stress component σxy. Polynomial energy on top and HLJ on bottom. While the overall

behaviour of the crystal is the same, the case of HLJ is richer, more wells are engaged and

different types of defects appear. . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.4 Histograms of Metric Component C12 and of Elements Volume: (a) Distribution

of metric component C12 show that T60◦
1 , of metric C12 = −0.5774, is the most active well

(other than reference well T, with metric component C12 = 0.5774) for both polynomial

and HLJ energies. (b) Distribution of elements volume, the great majority of elements

preserve their volume (unitary), but HLJ shows the presence of few elements whose volume

is very high. Histogram y-axis has been cut to better visualize the distribution. . . . . 120

5.5 Volumetric Defects: (a) HLJ energy is characterized by the appearence of defects such

as voids and nano-cracks, associated, in our modeling framework, with element dilatation.

(b) The instability of a sample, to which dilatation is imposed, manifests itself with the

formation of more pronounced nano-cracks. . . . . . . . . . . . . . . . . . . . . . 120

5.6 Volumetric Response On top: response to uniaxial tension and compression of the

Polynomial and HLJ energies is compared. The pair-potential based strain energy density

is characterized by a flattening in correspondence of tension. On bottom, we show the

evolution of the HLJ energy landscape in correspondence of different values of det C.

While in compression one observes an overall increase of the energy density which causes

steepening of the barriers, the tension response is characterized by a progressive flattening

of the overall landscape. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.7 Dependence on det C of the Yield Surface: Evolution of the stability region, that

we called yield-surface, is shown for the Polynomial and the HLJ energy. The peculiar

response to tension in the HLJ energy causes the progressive shrinking of its stability

region, up to a complete disappearance. . . . . . . . . . . . . . . . . . . . . . . . . 122
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5.8 HLJ Yield Surface: By using criterion (4.10), the yield surface is constructed. As in the

Polynomial energy, maximum and minimum values of αc are found along the fat rhombic

and the skinny rhombic shear paths, respectively. . . . . . . . . . . . . . . . . . . . 124

5.9 HLJ det qik Profiles along the Fat Rhombic and the Skinny Rhombic Paths:

Evidence on load αc for which equality in (4.10) is satisfied. the fat rhombic pure shear

(on top) shows the simultaneous appearance of two instability directions, while just one

appears in case of skinny rhombic path (on bottom). On the side of each graph we

illustrate the orientation of the wave directions n and the polarization vectors m, with

respect of the deformed lattice cell at α = αc. In the fat rhombic path, differently from

the polynomial energy, wave polarization m is not aligned with n⊥, (while it is still the

case in the skinny rhombic path). . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.10 HLJ det qik Profiles along θ = 60◦ and θ = 30◦ Simple Shear Paths: Profiles for

θ = 60◦ and θ = 30◦ loading paths are shown with evidence on load αc for which equality

in (4.10) is satisfied. Both these simple shears are characterized by the presence of one

unstable mode only, not aligned with the crystallographic directions. Differently from the

polynomial energy, the wave polarization m is not aligned with n⊥. . . . . . . . . . . 127

5.11 First Instability in HLJ: On top, profiles of the energy density from α = 0 up to

first instability α∗c , together the considered path, are shown for simulations of N = 104

nodes and fixed boundary conditions. In all cases, there is a good agreement with the

analytical prediction αc (highlighted with a red star symbol). On bottom, the equilibrium

configuration just preceding instability is shown. Even in this case, it is possible to observe

the appearance of a modulation oriented along n⊥. . . . . . . . . . . . . . . . . . . 129

5.12 Post-Instability Pattern along the Fat Rhombic Pure Shear: A N = 104 domain

is considered. on the top and bottom, results from simulations with fixed and periodic

boundary conditions are shown respectively. (a)Cauchy stress σxy field is showed in the full

domain. (b) Elements distribution in the configuration space. The simultaneous presence

of the three wells T, T60◦
1 , and T0◦

−1 is evident when one considers the corresponding

triangulation, of which we show a detail in Figure 5.14. . . . . . . . . . . . . . . . . 130

5.13 Post-Instability Pattern along the Skinny Rhombic Pure Shear: A N = 104

domain is considered. on the top and bottom, results from simulations performed with

fixed and periodic boundary conditions are shown, respectively. (a) Cauchy stress σxy

field is shown in the full domain. (b) Elements distribution in the configurational space.

The simultaneous presence of the three wells T, T60◦
1 , and T120◦

−1 is evident when one

considers the corresponding triangulation (Figure 5.14). When periodic boundaries are

used, dislocation nucleation is preceded by a stable modulation, illustrated on the top of

the figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.14 Details of the Post-Instability Patterns along the two Rhombic Pure Shears:

Details of the triangulation corresponding to post instability patterns along the fat rhombic

(a), and the skinny rhombic (b) pure shears show clearly the activation of two different

wells simulaneously. These are T60◦
1 , and T0◦

−1 in the case of the fat rhombic path, and

T60◦
1 and T120◦

−1 in the case of the skinny rhombic path. . . . . . . . . . . . . . . . . 132
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5.15 Dislocation Energy Density: Comparison between the energy density associated to an

edge dislocation core in HLJ and MS. . . . . . . . . . . . . . . . . . . . . . . . . 134

5.16 Dislocation Stress Field: Comparison between dislocation stress fields for a single

dislocation in HLJ and MS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.17 Energy Landscape for Different Values of det C From top to bottom, we show the

HLJ energy landscape in corresponedence of different values of det C, respectively, we use

det C = 0.7, 1.0 and 1.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.18 Analytic Yield Surface and MS Calculations: The black line show the yield sur-

face evaluated analytically, based on acoustic tensor criterion (4.10). Grey stars show

(C11, C12, C22) points at which first instability was observed in MS simulations, along dif-

ferent shearing deformations. The showed results are obtained from simulations performed

on a domain containing ≈ 104 atoms deformed with fixed boundaries. . . . . . . . . . 138

5.19 θ = 60◦ Post-Instability Patterns at Different Values of det C: From top to bottom,
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Chapter 1

Introduction

Crystalline solids flow plastically when macroscopic stresses reach certain given thresholds.
It is well known that the plastic deformation of crystals is originated from the generation
and motion of interacting lattice defects, called dislocations. Dislocations of a material
evolve collectively in a complex energy landscape, driven by the applied loading and long
range mutual interactions [Wil54]. Controlling crystal plasticity is needed in a variety of ap-
plications, among which, metal hardening [Cot02], fatigue failure [ILVSVP+16], nano-scale
forming and micro-pillar optimization [CCPS10, ZSZ+17, PWW+19]. Plastic deformation
of crystalline materials is a very complex phenomenon as it involves many length scales.
Indeed, the typical spatial heterogeneities involved in crystal plasticity extend from the
atomistic length scale (dislocation cores and grain boundary structures), to mesoscale dis-
locations patterns and grain microstructures, up to the macroscopic scale of the specimen.
At the macroscale, plasticity appears as a smooth flow described by a continuous stress-
strain response, however, this is not the case when one considers micro and nano-samples.
In order to describe and understand plastic deformation, several theories have been de-
veloped. The classical continuum theory of plasticity is based on the assumption that
crystalline materials flow irreversibly when maintaining yield thresholds. Stress-strain re-
sponse is modelled with continuous curves, an approach implying that the aforementioned
heterogeneities are homogenized out. This approach has been very successful in repro-
ducing some of the most important plasticity phenomena such as yield, hardening and
shakedown. In some cases (bulk bcc metals, tetrahedral covalent crystals, etc.) the ob-
stacles are strong, the dislocation interaction is weak and the plastic flow can be seen as
a sum of uncorellated events. However, in other cases (such as fcc metals, hcp crystals
with basal glide etc.) dislocation mobility is high and the elastic interaction among distant
dislocations is important [ST12]: then, the collective behavior at the macroscale emerges
as a correlated outcome of many events at the microscale. In particular, such plastic flows
exhibit in the steady state irregular isolated bursts and reveal apparently randomly lo-
calized active slip volumes, with both spatial and temporal fluctuations spanning many
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scales. Moreover, temporal intermittency manifests itself through acoustic emissions with
power law statistics of avalanches. The associated spatial heterogeneities take the form
of coherent dislocation structures characterized by the alternation of low and high dislo-
cation density regions. The emergence of power laws suggests that the relation between
microscopic and macroscopic pictures of plastic flow is rather complex and in some ex-
tent, more akin to turbulence than to elasticity. The critical nature of plastic flow has
direct consequences for industrial applications beyond its obvious fundamental interest.
A better understanding of finite-size effects in plasticity is relevant for miniaturization
of devices such as the micro- and nano-electromechanical systems (MEMS and NEMS)
[LCL+10, HJY+15, FLH12, NN09], and in general for the integration of micro and nano-
components, whose importance is increasing in many fields of engineering.

While the continuum phenomenological laws describe well the effects of macro-scale
plasticity, a more detailed description of defect interactions is necessary to capture essential
features of plasticity at small scales, including the formation of complex microstructures.
The most accurate modelling of material behavior should involve quantum mechanics and
incorporate every atom to atom interaction. However, atomistic modelling techniques are
prohibitively expensive in terms of computational time in the majority of applications, even
at the small scales of interest. Much effort has been devoted by the scientific community in
order to develop strategies suitable to the task of modelling small-scale plasticity at a rea-
sonable computational cost. Most of the proposed models of this type attempt to include
in a continuum framework the discrete features necessary to model small-scale plasticity
while maintaining a reasonable level of approximation. Indeed, continuum description is
advantageous as it reduces drastically computations and allows for more straightforward an-
alytical and numerical treatments. However, capturing discrete effects within a continuous
description is not straightforward. The formulation of this type of models is complicated
even further by the fact that the evolution of dislocations and the resulting plastic flow are
extremely complex. Dislocations move collectively and can interact in many different ways
(including annihilation, multiplication, formation of locks, etc.). Moreover, both long range
interactions due to the elastic far-fields, and short range reactions involving deformations
of the defect cores, are fundamental features in the evolution of the plastically deformed
solid. It is then not straightforward to find a compromise between accounting properly for
all these phenomena and keeping the computational cost at a reasonable level.

In this context, this PhD Thesis focuses on the development of an innovative meso-
scopic model of crystal plasticity. The main idea is to construct an energy functional that
depends on such mechanical macroscopic quantities as tensorial strain with lattice dis-
creteness inherently accounted for. The proposed approach is advantageous due to the fact
that, while keeping many features of the continuum formulation, it accounts for long and
short-range interactions, allowing dislocations to nucleate and interact without the need
for ad-hoc relations.

2



We are entering a very active field of research, as existing strategies for the modelling of
small scale plasticity are numerous and new ones are continuously proposed. These meth-
ods spans the different scales involved in the phenomenon of plasticity, varying from about
10−1 nm, the atomic dimensions, up to the 100 of µm typical of lattice microstructures.

In the following, we will present a background on the most successful modelling strate-
gies already developed in the literature. This background is crucial to better contextu-
alize the subject of this Thesis and to highlight the innovative features of the proposed
approach. Therefore, we start with a general overview and discuss briefly the existing
approaches that attracted most of the attention of the scientific community. We keep the
of the previous work at the minimal level and focus on athermal dynamics only, omitting
approaches which incorporate finite time scales. More comprehensive expositions can be
found in [McD19, TM11].

Before introducing the models we provide the necessary background on dislocations,
which is essential for the understanding of our notations (for a more detailed discussion
of dislocation, see the books of Hirth and Lothe [HL06] and of Hull and Bacon[HB01]).
We begin our review from microscale starting from the lowest level possible, where inter-
atomic forces are resolved in full detail. Then we cover progressively larger scales while
illustrating methods allowing one to reduce the number of degrees of freedom at the expense
of adopting phenomenological rules governing dislocations kinematics and interaction.

1.1 The Idea of Dislocations

Dislocations are common defects in crystalline materials and can be viewed as distortions
of the perfect lattice structure. Dislocations appeared first as mathematical objects in the
work of Vito Volterra [Vol07]. However it was only much later that their connection to
plastic flow was understood, mostly due to the work of Orowan [Oro34], Taylor [Tay34] and
Polanyi [Pol34]. These scientists independently understood how the presence of dislocations
explains the experimental fact that resistance of a crystal to an imposed shear is much lower
than the theoretical strength needed to slide two perfect lattice planes relatively to each
other. They realized that it is the massive dislocation flow along crystal slip systems that
causes macroscopic plastic deformation, and therefore, these microscopic defects are called
the ”carriers of plasticity”. In a general 3D framework dislocations may be of three different
types: edge, screw and mixed. To illustrate the main ideas in a 2D setting, we show the
edge dislocations, schematically represented in Figure 1.1. In this figure we put in evidence
two different ways of interpreting dislocations: one presents the edge dislocations as the
distortion resulting from the insertion of an extra atomic plane, the other considers it as the
boundary between slipped and unslipped regions of the lattice. The latter interpretation
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Figure 1.1: Left: Schematic Representation of a Dislocation: it can be considered as the lattice
distortion associated to the presence of an extra crystallographic plane that is inserted in the upper half of
the crystal (a) or as the distortion separating the slipped from the unslipped part of the crystal (b). Image
taken from [ST12]. Right: The Burgers Circuit: defining the Burgers vector associated to the enclosed
dislocation(s) (from [HB01])

implies finite deformations of the original lattice and it is very important for the subject
of this PhD Thesis. We will often refer to it in the discussions to follow.

A dislocation is characterized by its Burgers vector b, that can be defined as its ”topo-
logical charge”. Imagine a closed circuit connecting atom to atom in a deformed crystal
(a Burgers circuit) containing one or more dislocations. The same circuit will be open if
encloses a region of perfect crystal. The vector connecting the two open ends of the circuit
is called the Burgers vector. The Burgers vector obtained for circuits containing more than
one dislocation will be equal to the sum of the Burgers vector of the single dislocations
enclosed in the circuits. Dislocations create lattice distortions, then causing an internal
stress in the lattice.

In the case of isotropic linear elasticity, expressions for Cauchy stress generated by a
straight edge dislocation in an infinite media can be obtained analytically [HB01, HL06].
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Figure 1.2: Cauchy Stress Contours about a positive edge dislocation.

At distance r from the dislocation core we obtain:

σxx = − Gb

2π(1− ν)

y(3x2 + y2)

(x2 + y2)2
(1.1)

σxy =
Gb

2π(1− ν)

x(x2 − y2)

(x2 + y2)2
(1.2)

σyy =
Gb

2π(1− ν)

y(x2 − y2)

(x2 + y2)2
, (1.3)

with

G =
E

2(1 + ν)
, (1.4)

the shear modulus, written in term of the Young Modulus E and the Poisson ratio ν. As
already mentioned, these solutions are reliable at some distance from the dislocation core.
However they break down in the vicinity of the core where they show instead a singularity
(σij →∞ for r→ 0). In view of this failure of linear elasticity, lattice discreteness and non-
linearities play an important role in determining the characteristics of the core region. On
the other hand, far from the dislocation core, the linear elasticity theory remains adequate.
This observation constitutes the basis of many mesoscale models, as we will illustrate in
what follows.

1.2 Atomistic Modelling

Most accurate approaches existing for the description of crystals are based on the direct
modelling of atomistic interactions. A common approach in this category is known as
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Molecular Dynamics MD. It is usually based on regularizing atomistic interactions by an
interatomic potential [Pau93, Bar18]. This is already an approximation: a rigorous, ab ini-
tio, treatment of atomic behavior would imply the solution of the Schrödinger’s equation.
For solids, approximate solutions of this equation can be obtained by means of the Density
Functional Theory (DFT) [Par80], developed by Hohenberg and Kohn [HK64] and Kohn
and Sham [KS65]. In DFT, electronic wave functions are not considered explicitly and
energy of the ground state is assumed to depend only on the electron density. However
this method is still very expensive computationally, and even the biggest simulations reach
a maximum of 103 atoms. A way to reduce this computational cost is to discard electronic
degrees of freedom. This is the main assumption of the Born-Oppenheimer theory, which
states that electrons arrange instantaneously with respect to the slowly evolving nuclei.
Then, nuclei are assumed to behave as rigid particles that move in response to nonlocal
forces. This hypothesis does not hold in all situations, however it is reasonable when the
Broglie wavelenght is much smaller than an interatomic spacing, which is the case, for
instance, at near zero temperatures ≈ 0K. In this case waves are spatially localized and
atoms can be modelled as rigid particles. Atomic interactions may then be simplified using
suitable phenomenological functions which are used to represent potential energy Π of a
certain set of atoms.

Let’s consider a system of N atoms and let’s ri be the position of atom i. The total
potential energy Π of the system can be written as a function of all atomic positions:

Π = Π(r1, r2, . . . , rN ) . (1.5)

Once Π is known, the force on each atom i can be evaluated as the derivative of Π with
respect to atom position ri. Then, for a given assembly of N particles, evolution of the
system can be obtained by solving Newton equations:

fi = −∂Π

∂ri
. (1.6)

Interatomic potentials are needed for the construction of Π and should be calibrated to
reproduce the thermodinamical properties of the specific material. The simplest way to
obtain Π is to use a pair-potential. Then the total energy can be written as the sum of
pair interactions between atoms:

Π =
N−1∑
i=1

N∑
j=i+1

ϕp(rij) , (1.7)

where rij = ‖ri − rj‖ is the distance between atoms i and atom j. Here ϕp is a suitable
pair potential dependent only on interatomic distance rij . An usual choice, accounting for
both long-range attraction and short range repulsion, is the Lennard-Jones potential:

ϕ(rij) = 4ε

[(
σ

rij

)12

−
(
σ

rij

)6
]
, (1.8)
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Figure 1.3: Lennard-Jones Pair Interaction: Both long range attraction and short range repulsion
are represented. It is possible to notice that upon a certain distance r interaction becomes zero.

where ε is the depth of the energy minimum and r = 21/6σ is the correspondent atomic
scale. An example of Lennard Jones potential is shown in Figure.1.3.

Noticing that the value of ϕp(rij) tends to zero when atom j moves far from atom i, a
cut-off radius rc can be often introduced to simplify calculations. Then we can write:

ϕ(rij) =

{
ϕp(rij) if rij ≤ rc
0 if rij > rc

.

Pair potentials are often used because of their simplicity and numerical efficiency, however
they give poor description of the mechanical response for most crystals as they do not
account properly for the change in the bonding angle. Moreover, they do not distinguish
between surface and bulk atoms. One way to overcome these limitations is to construct
multi-body potentials of the form:

Π =
∑
i<j

ϕp(rij) +
∑
i<j<k

ϕthree(ri, rj , rk) +
∑

i<j<k<l

ϕfour(ri, rj , rk, rl) + . . . (1.9)

assuming a fast convergence towards real atomistic potential. Use of the three-body term
ϕthree already allows to account for the angles between atomics bonds, as for instance in
the Stillinger-Weber potential [SW85]. Angle dependence is important when atoms form
well localized coovalent bonds, as in dielectric solids and semi-conductors. Metals are
characterized by more diffuse electronic configurations and suitable interatomic potentials
can be obtained in the framework of the Embedded Atom Method (EAM) introduced by
Daw and Baskes [DB83, DB84]. This method also makes use of a pair potential, which
is often the above mentioned Lennard-Jones (1.8). It also incorporates a nonlocal energy
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potential accounting for the atomic density of the local environment. The potential energy
of the system is defined as:

Π =
∑
i<j

ϕp(rij) +
∑
i

F (ρi) , (1.10)

where

ρi =
∑
i 6=j

f(rij) . (1.11)

Here F is the embedding function which represents the energy needed to incorporate atom
i in an environment characterized by electron density ρi and f(ri) is the contribution of
atom i to electron density. Given that the embedding function F is nonlinear, this formu-
lation successfully accounts for many-body effects that cannot be reproduced by a simple
superimposition of pair interactions. Differently from simple pair-potentials, the EAM
approach has been successfully fitted to reproduce the value of elastic constants of met-
als. Numerous examples of material-specific EAM realizations are found in the literature
(see for instance [CY96]). In particular we mention the Ercolessi-Adams potential for alu-
minium [EA94, LEA04] and the Mishin potential for copper [MMP+01].

An important feature of interatomic potential models is that they allow one to obtain
the atomic site energy Ei in a straightforward manner. While the total potential energy Π
has a clear physical meaning, the energy Ei, corresponding to a single atom, is a somewhat
artificial construction. However, it will be very useful when bridging discrete atomistic de-
scription with continuum stress-strain relationships. In the case of a many-body potential,
Ei is obtained by considering, in the relative sums, half of every pair-term contribution, a
third of every three-body term and so on. In the case of the EAM potential one has:

Ei =
1

2

∑
j

ϕp(rij) + F (ρi) , (1.12)

and it can be easily checked that Π =
∑

iEi. Note that site energy Ei is associated with
atom i, however it depends on positions of all other atoms within the cut-off trough pair
interactions of the type ϕp(rij).

1.3 Multiscale Models

The MD techniques rely minimally on phenomenology and do not need any phenomeno-
logical assumption concerning the formation of dislocations and their motion. Dislocations
emerge automatically as a result of atomistic interactions which also determine their kinet-
ics. MD simulations were successfully used in plasticity, for instance, they were instrumen-
tal in the studying of dislocation nucleation in perfect and defected crystals [ZRSOB17],
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intermittent plasticity in metals [NS15], and the irreversible behavior of colloidal polycrys-
tals [MCM11].

However, the major drawback of MD method is the limitation on the accessible length
scales. Typical MD simulations typically spans length scales varying from tens to hundreds
of nanometers. Moreover, a fully atomistic resolution is not necessary far from dislocation
cores, where long-range stresses characterizing far-field interaction between dislocations
are well described by Volterra linear elastic solution (1.3). An ideal strategy would be to
discard unnecessary degrees of freedom while keeping the essential features of dislocations
cores. In view of this, the majority of small-scale plasticity models attempt to exploit the
advantages of a continuum formulation while simultaneously keeping track of the discrete-
ness characterizing small scale interaction. This type of modelling is called multi-scale, as
it attempts to span different length scales simultaneously [McD19, TM11], a fine scale, the
dislocation core, and different coarse ones, where a progressively less description is suffi-
cient. Some of these methods introduce dislocations explicitly as specific objects moving
in a linear-elastic medium. These dislocation-like objects obey specific rules which account
for the short range interactions, for instance, ad-hoc criteria are added to implement nu-
cleation and annihilation.

To this category belong Discrete Dislocation Dynamics (DDD) and the Phase Field
Method (PFM), discussed below. Other strategies instead, literally split the analyzed
system in an atomistic, MD-based, subdomain and a continuum one, characterized by
a coarser type modelling. These are known in literature as coupled methods, of which
the Quasi-Continuum method (QC) is probably the most typical example. In this case
the accessible system sizes are somewhat constrained by the fact that resolution is fully
atomistic in some regions, while their advantage is that only minimal phenomenology is
needed. Among all the discussed strategies, Crystal Plasticity (CP) is the most coarse.
In this case, dislocations are not included explicitly but are present implicitly in the form
of a constrained kinematics which mimics slip-plane localized deformation. We illustrate
schematically the length scales spanned by the models mentioned above in Figure 1.4,
(based on analogous schemes in [Caz13, PKM13, McD19]). Smaller length scales imply
less phenomenology and higher resolution.

1.3.1 The Quasi-Continuum Method

The Quasi-Continuum method (QC) was originally proposed by Ortiz and co-authors in
[TPO96] and was then significantly developed in the following years [SMT+99, MT02,
DELT07, SET14]. It is based on the observation that a fully atomistic resolution is actu-
ally needed only in limited regions of the modeled problem, where deformation gradients
are high. The majority of the modeled domain is instead characterized by slowly varying
deformation fields and can be modeled by means of the classical continuum theory.
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Figure 1.4: Modelling Techniques and Spanned Lenght Scales: Schematic illustration of the tipical
lenght scales spanned by simulations with the four illustrated models for small-scale plasticity.

Considering this, authors subdivide the domain in a subdomain Ωcont, where the for-
mulation is continuum, and a subdomain Ωatom, where the formulation is atomistic. In a
quasistatic setting, equilibrium is found by parametric minimization of the total potential
energy Π of the system. The latter is taken as a sum of potential energies on these two
subdomains:

Π = Πcont + Πatom . (1.13)

Potential energy Πatom is evaluated as the sum of the site energies Ei of all atoms in Ωatom:

Πatom =
∑

Ωatom

Ei , (1.14)

In the continuum subdomain Ωcont site energies Ei are replaced with a continuum energy
density φ. Differently from the site energy Ei (1.12), which depends on the displacement u
of all other atoms within its cut-off radius, the continuum energy density φ(X) at a generic
point X depends only on the displacement gradient at that point. An important feature of
QC is that the continuum energy density φ is evaluated directly on the basis of interatomic
potentials. This can be done assuming that deformation gradient F = ∇(X + u)1 is
homogeneous in the neighborhood of point X and that the atomic lattice is deforming
accordingly. Consequently, all site energies Ei of atoms in the lattice underlying continuum
point X are equivalent and depend only on the homogeneous deformation gradient F(X).
This means that the corresponding continuum energy density φ is given simply by:

φ(X) =
1

Ω0
Ei(F(X)) , (1.15)

1We will discuss in full detail this deformation tensor in Chapter 3.
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where Ω0 is the volume of the undeformed lattice cell.

Practically, in order to minimize (1.13) numerically, the continuum subdomain Ωcont

has to be subdivided in a number ne of discrete elements with volume Ωe such that Ωcont =∑ne
e Ωe. The potential energy Πcont is then approximated by:

Πcont ≈ Π̃cont =

ne∑
e

Ωeφ(Fe) , (1.16)

where Fe is the homogeneous deformation gradient within element e. It is important to
notice that computation of a continuum energy density by means of (1.15) implies the
important physical assumption that the continuum deformation gradient F actually de-
scribes the deformation of the underlying atomic lattice. This hypothesis is known as
Cauchy-Born rule and has important consequences. We will explain these concepts in
more detail in Chapter 3.

An advantage of the QC method is that it is easily integrated in a Finite Element
Method (FEM), a well developed technique for the numerical solution of continuum prob-
lems2. Moreover, QC allows one to coordinate the evolution of Ωcont and Ωatom with the
deformation process, in a way that the atomistic description can be limited only where it
is truly needed. This can be done with automatic adaption schemes, which can expand the
atomic region to the detriment of the continuum one and vice-versa [SMT+99].

A inherent weakness of the QC is given by the necessity of patching the continuum
and discrete subdomains Ωcont and Ωatom through a sharp interface. Naturally, the differ-
ences between the two formulations generate spurious forces, known as ghost forces. Their
control is not straightforward, but the spurious effects may be reduced, given that some
precautions have been taken [MT02, TM11]. The QC method has been used in many ap-
plications, including the study of nano-indentation, deformation of grain-boundaries and
crack tip evolution [MT02].

The somewhat contradictory nature of the interface connecting subdomains Ωcont and
Ωatom led the authors to use, in some applications, a completely continuum formulation,
known as the local QC [TOP96]. In this case, the potential energy is evaluated on the
entire domain Ω by means of the Cauchy-Born based energy density (1.15) and we have
Π ≈ Π̃cont, however, this energy can be attributed either to a continuum or to a lattice.
This local QC is by itself a meso-scale method mixing continuum and atomistic features.
More specifically, it is a mixed discrete-continuum formulation where the constitutive law

2We will discuss the FEM method in more detail when discussing the numerical implementation of
the proposed model. Important references for this method, now widely used in all branches of continuum
mechanichs, are [ZT00a, ZT00a] and [Hug12].
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relating stresses and strains is evaluated directly from interatomic potentials and not de-
fined phenomenologically.

Some authors refer to the local QC model as Cauchy-Born Theory of Crystal Elasticity
[OP98]. This approach was shown to be capable of representing dislocations, even if in
an approximated, coarsened, way. The success of this method is due to the fact that the
use of the Cauchy-Born assumption imbues the continuum energy density with elastic non-
linearity, and most importantly, with the correct crystal invariance3. However, at the same
time, it underrepresent some truly atomistic features, for instance, deformation gradients
varying rapidly within the cut-off distance cannot be adequately represented. Among other
approaches using the Cauchy-Born based continuum energies, we mention the Interatomic
Potential FEM method (IPFEM) by Van Vliet and co-workers [VVLZ+03, ZLVV+04].
This is an independently formulated local QC used for the study of homogeneous nucle-
ation during nanoindentation.

As we have already mentioned, coupled atomistic methods different from QC were also
proposed in literature, even if they did not reach the same attention. They also confront
the issue of the continuum-atomistic interface. We refer the reader to the dedicated review
of Miller and Curtin [CM03], to the more general review of McDowell [McD19] and also to
the corresponding chapter in the book of Tadmor [TM11], which contains an exhaustive
discussion of these techniques.

1.3.2 Discrete Dislocations Dynamics

Differently from the approaches based on the QC method and its local versions, where dis-
locations emerge as a result of atomistic interactions or lattice-informed properties of the
constitutive functions, in the Discrete Dislocation Dynamics (DDD) method dislocations
are inserted explicitly, and modeled as line segments which evolve in an elastic medium and
interact with each other through linear-elasticity. To account for the core non-linearity,
specific rules controlling close-range interactions between dislocations are then added to
the formulation. This method was developed to describe the collective motion of a large
number of dislocations and it allows one to simulate length scales up to about tens of
µm in a 3D setting [Caz13]. The DDD method was first proposed at the beginning of
1990 by Kubin and co-authors [KC92, DPB+92]. Since then, it has been significantly de-
veloped and has been widely used to study microscale plasticity, with the main focus on
dislocation patterning [DMM+11, ACT+07]. Different DDD codes were developed by dif-
ferent teams of researchers. In particular we mention the French codes microMegas (mM)
[DPB+92, DMM+11, DG15], TRIDIS[FGC96] and NUMODIS[DDO+14], and the US code
ParaDIS [BCF+04].

3This is the reason why the local QC is similar, to some extent, to the model presented in this thesis
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The DDD method reduces to the solution of the equations of motion of the dislocation
segments, and generally inertial terms are neglected (over-damped dynamics). This leads
to a system of differential equations in which the segment instantaneous velocity vi is linked
directly to the applied force fi, through some phenomenological mobility law. Despite the
simplicity of this main underlying idea, solution of these equations is complicated by the
fact that topology of the dislocation network is not fixed: dislocation segments vary in
their number and in their connectivity during the simulation.

The method starts with a given network of dislocations, discretized in different ways
depending on the particular DDD implementation. Thus, the discrete representation of
dislocations can be nodal, when forces and displacements are evaluated at the network
nodes [BC06], or based on the subdivision of the dislocation network in rigidly moving,
elementary, segments [DPB+92, DMM+11, DG15].

Forces fi are then evaluated for every segment (or node, depending on the particular
DDD formulation) of the net. In a linear elastic setting, the force per unit length acting
on a dislocation line is given by the Peach-Koehler formula:

fPK = (σ + σext) · b× a , (1.17)

where σ is the internal stress resulting from the elastic interaction of a given dislocation
with the other dislocation segments, σext the stress related to the external applied forces,
b is the Burgers vector and a is an unit vector tangent to the dislocation segment. The
analytical expressions for σ available in literature for infinite dislocation loops can be cor-
rected to account for finite dimensions [FC99]. The corresponding representations in the
case of anisotropic elasticity are also available [RSB+01].

Once forces fi are evaluated along every segment i, dislocation motion is given on the
basis of mobility functions of the type:

vi = M(fi) . (1.18)

Mobility of a dislocation line depends on many factors, among which the orientation of
the force with respect of the gliding plane, the orientation of the dislocation line and the
lattice structure of the considered material. In view of this, many mobility functions were
proposed in the literature, depending on the specific problem at hand (see for instance
the discussion in the dedicated section of [BC06]). A very simple approach consists in
neglecting the component of fi orthogonal to the gliding plane and assuming that velocity
depends linearly on in plane component τi (the resolved shear stress):

vi

{
= 0 if τ∗i = |τi| − τ f

= sign(τi)
τ∗i bi

B otherwise
. (1.19)
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where τ f is a friction parameter and B a viscous drag coefficient.

As already remarked, phenomena intrinsically related to core effects, such as annihila-
tion, nucleation, formation of junctions, climb and cross-slip, need to be accounted through
specifically added phenomenology. These corresponding relations can be fitted using data
obtained from MD simulations [BAK+98]. However, the necessity of building ad-hoc rules
for accounting essential dislocation mechanisms is still a major limitation of this approach.
Another problem is how to control the topology of the evolving net. Dislocation lines
change their curvatures and their configuration during the simulation and their discretiza-
tion in linear segments has to be updated accordingly. Changes in the topology due to
segments interlocking is notoviously difficult to account.

To summarize, the DDD method is advantageous when one needs to model micrometric
samples with a large number of dislocation lines whose long-range interactions are crucial.
In the last decades DDD has been used to model many small-scale plasticity phenom-
ena, among which the study of dislocation mechanisms beyond strain hardening [DK97,
ZRHdlR00], dislocation patterning in monotonic and cycling loading [WG05, KMG+10]
and the intermittency of plastic flow [ILZ+14].

Finally we mention that the effort to couple DDD with MD, developed by Shilkrot et
al. [SMC02, SMC04], referred to as the Coupled Atomistic Discrete Dislocation (CADD)
method, is worth of notice. However examples of applications of such coupled strategy are
still very limited.

1.3.3 Phase Field Method

An alternative approach to treat dislocations in a continuum framework is the Phase Field
Method (PFM), based on the Ginzburg-Landau theory [LL13, Gin04]. This is a general
method that can be applied to a wide range of physical problems and it is called so since
it was originally applied to study the evolution of different phases in metals and alloys
[Che02, SFDS12]. In the application of the phase field model for dislocations, the order
parameter (phase-field) ψ assumes integer values reflecting the amount of an elementary
shear on a given slip plane. Dislocations can then appear as elements of domain boundaries
in finite regions that underwent different amount of shears. The number of order parame-
ters ψa can be chosen to represent the number of slip planes and will then characterize the
crystal symmetry.

The system is assumed to evolve quasi-statically minimizing at each moment of time its
total free energy E, which is given as a functional of the fields ψα(x). The spatial-temporal
evolution of the phase-fields can be obtained by linking the variational derivatives of the
functional E(ψα(x)) with the rates of change of the fields ψa(x), which leads to a system
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of Partial Differential Equations (PDEs). Given that the fields ψa(x) are not conserved,
the simplest evolution equations of this type take the form:

∂ψa(x)

∂t
= −κ δE

δψα(x)
, (1.20)

where κ is a mobility coefficient and δE
δψa

is the variational derivative of functional E with
respect of field ψα.

The first applications of PFM to dislocation modelling were proposed in [WJCK01,
RLBF03] and are based on the elastic equivalence between a localized slip region associated
with a dislocation loop and a platelet inclusion, already pointed out by Nabarro [Nab51].
It can be described by a (stress-free) eigenstrain4 :

ε∗ij =
binj − bjni

2d
, (1.21)

where b and n are the Burgers vector and the normal to the slip plane. In this way,
dislocations can be coherently described in a PFM setting if we associate with every slip
system α a phase field ψα(x) and the eigenstrain ε∗αij determined by the corresponding
Burgers vector ba. Since densities ψα(x) characterize the slip produced by dislocations
passed at point x along slip system α they must assume integer values (positive or negative).
When more than one slip system are present, the total eigenstrain is given by the sum of
eigenstrains ε∗αij associated to the various slip systems:

ε∗ij =
∑
α

ε∗αij ψα(x) . (1.22)

Construction of the free energy functional E(ψα(x)) reduces to the addition of three terms,
an elastic term Eel, a lattice term Elatt and a gradient term Egrad:

Etot = Eel + Elatt + Egrad . (1.23)

In the context of linear elasticity, the elastic energy Eel is given by:

Eel =
1

2

∫
ω
cijkl(εij − ε∗ij)(εkl − ε∗kl)dω −

∫
ω
σextij εijdω , (1.24)

where σextij is an external uniform stress, εij is the tensor of small deformations and cijkl
is the tensor of the linear-elastic moduli. The equilibrium state associated with (1.24) can
be determined analytically (see [Kha13] and[RLBF03] for more details).

4By eigenstrain we mean a stress-free deformation as in the case of thermal expansion or twinning.
Being obstructed by the surrounding body, the eigenstrain cannot take place freely and causes an internal
stress. The problem of finding the stress associated with an arbitrary inclusion is known in literature as
Eshelby problem [Esh57]. Its solution requires the knowledge of a Green function, which can be conveniently
expressed in Fourier space, as illustrated by Khachaturyan [Kha13].
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The lattice term Elatt is added to stabilize the phase fields ψα(x) to integer values.
It takes the form of a sum of periodic potentials (one for each slip system) with infinite
number of wells. A simple possible form is:

Elatt =

∫
ω

∑
α

Aα
2π2

(1− cos(2πψα(x)))dω , (1.25)

where Aα are adjustable coefficients (see also [RLBF17] and [ZZNH18] where different
forms of Elatt have been proposed).

Finally, the gradient term Egrad is added in order to penalize inhomogeneous configu-
rations where phase fields ψα vary rapidly in space. The presence of this term results in a
diffuse structure of the dislocation core. The term Egrad it has to be nonzero only along
the dislocation line and one suitable form is:

Egrad = B

∫
ω

∑
α

||nα ×∇ψα(x)||2dω , (1.26)

with B adjustable coefficient and nα normals to slip systems.

The PFM method has been largely used to study individual dislocations and their in-
teraction with other phases [HC01, Che02]. New versions and applications are continuously
proposed and some recent developments were reviewed in [HSLK11]. Extensions of PFM
to finite strains have been developed as well [JL16]. One of the inherent challenges for this
method is the fact that choosing the appropriate length scale describing the dislocation
cores is not straightforward and has to be done phenomenologically. Moreover, the true
periodic lattice structure is resolved only very approximately by the use of scalar parame-
ters controlled by scalar periodic functions and by the use of a linear elasticity framework.
Considering this, the rigorous account for the lattice-induced coupling between different
plastic mechanisms remains a challenge.

1.3.4 Crystal Plasticity Theory

Continuum crystal Plasticity theory (CP) is the most broadly used approach to the mod-
elling of crystal plasticity. It is based on introducing lattice-based kinematics in the classical
continuum setting. Its original mathematical formulation was given by Hill [Hil66] and Hill
and Rice [HR72], and its first applications were considered in the works of Asaro and Rice
[AR77, Asa83] and Pierce, Asaro and Needleman [PAN83]. Since then, it has been devel-
oped further by many other authors (see [REH+10] for a complete review). With respect
of the previously discussed methods, CP spans larger length scales, varying between µm
and mm, due to the coarser representation of plastic deformation. In the recent CP for-
mulations, deformations are assumed to be finite and the adopted continuum description
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clearly distinguish between reference and deformed configurations. The incorporation of
lattice features in the continuum formulation is done by a multiplicative decomposition of
the total deformation gradient F in an elastic and a plastic component:

F = FeFp . (1.27)

Decomposition (1.27) implies that that deformation takes place in two stages. First, Fp

brings the initial reference state Ω to an intermediate state Ω∗ characterized by plastic
deformation only, and then Fe brings the body to the final configuration ω through elas-
tic deformation and rigid lattice rotation. Following [Man72, AR77], we assume that Fp

leaves the underlying lattice structure undeformed and unrotated. The absence of rota-
tion of the lattice vectors in the intermediate configuration ensures the uniqueness of the
decomposition (1.27). The peculiarity of the CP approach is in the construction used for
the plastic component Fp, which is done by constraining dislocation kinematics. Plastic
flow is assumed to evolve along pre-selected slip directions by means of volume preserving
shears, which leaves the crystal lattice undistorted and stress-free [McH04]. Every slip
system α is characterized by two unit vectors nα and aα, indicating respectively the nor-
mal to the slip plane and the direction of the slip. Plastic deformation is then modeled
as a friction-controlled shear deformation γα along these slip planes. When multiple slip
planes are active simultaneously, the total plastic strain at the generic point is assumed to
be given by the superimposition of shear strains γα at that point. In order to coherently
include this shear-constraining kinematics in the continuum formulation, it is necessary
to link the shear strains γα to the tensorial measure of strain Fp. This is done using the
spatial velocity gradient L = ḞpFp−1, which is related to the shear strain rates γ̇α through
the expression [Ric71]:

L =
∑
α

γ̇αaα ⊗ nα . (1.28)

To relate the shear strain rates γ̇α to the local stress a constitutive law needs to be in-
troduced. Different proposals are found in the literature, some of them phenomenological,
others more physically based. One of the simplest phenomenological approaches is to as-
sume that the shear strain rates γ̇α depends on the stress only through resolved shear stress
τα. Assuming also the dependence on other material parameters gα, we obtain relations of
the type:

γ̇α = γ̇α(τα, gα) , (1.29)

where parameters gα allow one to characterize the hardening along different slip systems α.
Most importantly, constitutive relations (1.29) allow one to distinguish between inactive
(|τα| < gα) and active (|τα| > gα) slip planes. One of the most broadly used expressions is
[PAN83]:

γ̇α = γ̇0
αsign(τα)

(
|τα|
gα

)m
. (1.30)
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Similar formulations can be found already in [Ric71, Hut76]. Parameters gα are assumed
to be coupled with plastic mechanisms:

ġα =
∑
β

hαβ|γ̇β| (1.31)

where h is the hardening matrix, rate independence is ensured by condition |τ̇α| = ġα. The
relations (1.31) account for the hardening caused by γ̇α on the slip system (diagonal terms
hαα, expressing self-hardening) and on the other slip systems β 6= α (off-diagonal terms
hαβ, expressing latent hardening). Construction of this hardening matrix is generally based
on phenomenological observations [McH04].

The incremental equations are completed with the introduction of a constitutive law
for the elastic part of the deformation (see for instance [McH04]). The simplest formula-
tions assume linear dependence between the second Piola-Kirchhoff strain tensor S∗ and
the Right Cauchy-Green strain tensor C∗5 in the intermediate configuration Ω∗, however
the possibility of using higher order elastic moduli have been considered as well [Teo13].
The obtained incremental equations, relating total (plastic and elastic) stress to the total
deformation can be equivalently mapped to the deformed configuration, as it is done in
[AN85, Asa83]. The original formulation in the undeformed configuration is summarized
in [HDA88, MAS93, CO93].

As we have already mentioned, the continuum CP approach is way more coarser than
the previously discussed strategies, in particular, in this approach plastic defects are not
resolved individually. Dislocations are effectively replaced by continuously evolving incre-
mental shear strains γα. Both short range and long range dislocation interactions are then
hidden in this coarse representation. On the other hand, the simplified kinematics allows
one to access larger time and length scales and to model complex 3D systems with complex
geometries. The method can be easily implemented in a FEM setting, which allows one to
model a variety of physical phenomena, ranging from grain boundary evolution to pattern
formation in cycling loading [REH+10, AFA+18]. Some other dislocation-related effects,
such as kink and shear-band formation, can be also included in the continuum CP model
[For98], however, at the expense of introducing a much richer set of kinematic variables.

1.3.5 Conclusions

In this concise review of crystal plasticity models we illustrated different techniques which
were proposed to enrich continuum formulations by adding various discrete features. The
common objective of such hybrid methods is to achieve an acceptable description of dislo-
cations and, at the same time, reaching length scales that would be inaccessible to purely

5In the following chapters we will define these stress and strain measures in more detail.
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atomistic models. None of the proposed methods can be thought as uniquely superior in
an absolute sense, as they are all designed for different applications and each carries its
own advantages and disadvantages. Methods in which dislocations are added ”by hand”
can handle larger modelling scales, but are characterized by uncertainty implied by the
use of the phenomenological rules. On the other hand, methods like QC, which resolve
dislocations in full detail, present other types of uncertainties due to the presence of the
atomistic-to-continuum interface regions and to the necessity to follow their evolution. In
the last decade, the major efforts were directed to the integration of different strategies
with each other, in a way that lower-scale models are used to calibrate the phenomenolog-
ical rules needed at larger scales. In this context, each of the discussed strategies has its
own domain of application and often the advancement of one ends up benefiting the other.
The local QC is what mostly resembles the mesoscopic model proposed in this PhD thesis
in terms of the general setting and the range of spanned length scales. Its formulation
is particularly advantageous: it has a purely continuum, non-linear, finite displacement
formulation, but at the same time it integrates atomistic features without any phenomeno-
logical assumptions other than the ones adopted in lattice models. However, there is an
inherent contradiction in assuming that the energy (1.15) remains adequate for every size,
no matters how indefinitely small, as implicitly postulated in the continuum setting. We
will discuss this point extensively in the rest of this PhD Thesis.

The Thesis is structured as follows. In Chapter 2 we show how to construct the energy
density functional on which the proposed mesoscopic model is based. Some basic concepts
of crystallography, essential for understanding the theory, are also recalled. A suitable
energy for the purpose of modelling plasticity is the polynomial form proposed in [CZ04],
that is discussed in detail. After, the obtained energy landscape is shown. In Chapter
3, the energy density functional, introduced before for a crystalline lattice, is extended
to a continuum hyperelastic formulation. Some details concerning the numerical imple-
mentation are also discussed. The chapter ends with some simple validation tests, where
the dislocation core and some basic dislocations interactions are illustrated. Chapter 4
is dedicated to the study of the homogeneous nucleation of dislocations in the framework
given by the introduced mesoscopic model. Numerical simulations are accompanied by
an analitical stability criterion which allows one to better interpret the obtained results.
These show the formation of very complex defect patterns already in correspondence of
this early stage of plasticity. In Chapter 5, we introduce a different form for the energy
density function, which respects the same symmetry properties as before, but that is based
directly on interatomic potentials. We show that the mechanisms of pattern formation
previously observed with the polynomial form are robust and manifest also with the use
of this energy functional. Then, the obtained results are compared directly with atomistic
simulations using the same pair potential. In Chapter 6, we provide concluding remarks
and perspectives.
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Chapter 2

The Model

In this Chapter, we present the model that will be used throughout this Thesis for the de-
scription of crystal plasticity. Generally speaking, when modeling non-isotropic materials
characterized by the presence of a lattice structure, the symmetry properties associated
with the lattice itself need to be accounted for. This means, for instance, that the energy
must have the same value every time the deformation produces a symmetry-related config-
uration. Such symmetry-based invariance differs from the material frame indifference, the
invariance related to rigid body motions, and the symmetry associated with the changes
of reference coordinate system, and it is known as material symmetry. In the classical
notion of material symmetry, developed most extensively by Coleman and Noll [CN64]
and widely used in elasticity theories [TN04], this invariance is expressed only in terms of
rotations applied to the reference lattice. In crystallography, this type of transformations
is expressed by the crystallographic point group P (eI). Later, we will define this object in
more detail; for now, we just mention that the invariance of a lattice by means of rotations
does not recover fully the material symmetry.

To explain this, we provide a simple example. Consider a regular square lattice de-
formed by a homogeneous simple shear. When increasing the shear deformation, the as-
sociated energy will grow up to a maximum value and then decrease again down to a new
minimum where an equivalent lattice configuration is recovered, as illustrated schemati-
cally in Figure 2.1. Although this periodicity is not described by the crystallographic point
group P (eI), it is fundamental for plasticity-related phenomena. For instance, an edge dis-
location can be represented as a lattice configuration intermediate between two subsequent
wells of the type illustrated in Figure 2.1 (see also Figure 1.1 in the previous chapter). More
precisely, a dislocation can be interpreted as the boundary between sheared and unsheared
crystal regions, and is then represented by a sequence of distorted lattice elements whose
energy is somewhere around the energy barrier separating the two equivalent wells. We
schematize this concept in Figure 2.2.
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Figure 2.1: Lattice Invariant Shears: Schematic representation of shear invariance for a square lattice
subjected to simple shear S = I + αe1 ⊗ e2. Energy density ϕ has to be minimum in correspondence of
equivalent lattice configurations, i.e. for every integer α.

Figure 2.2: Energetic Profile of a Dislocation: Schematic representation of a dislocation as the
boundary between sheared and unsheared crystal regions. Two energetically equivalent square crystal con-
figurations are made compatible thanks to the presence of an edge dislocation. Lattice elements belonging
to the core are higher in energy and their energetic state is located up the energy barriers.
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Description of lattice invariant deformations by using periodic energy functionals is
not new in literature, and dates back to the one-dimensional model of Frenkel Kontorova
[FK39]. Several other 1D models with periodic elastic energies were proposed for the
description of dislocation cores [Nab47, KKKL93, CB03], the analysis of dislocation nu-
cleation [LS86, PCB07] and the study of the intermittency characterizing the plastic flow
[ST11, ST12]. Extension of these models to a tensorial, multi-dimensional, formulation
with linearized kinematics was also considered in [MO07, Onu03, CB05]. However, in all
these works, the periodic landscape was defined only along highly symmetric shear direc-
tions, and did not reflect adequately the symmetry properties of the crystal. The fact that
they all make use of linearized kinematics and define strain as ε = 1

2(∇uT +∇u), where
u is the displacement from initial configuration, makes the exact representation of crystal
symmetry impossible.

In this Chapter, we introduce a model where a periodic landscape is completely de-
fined in the full tensorial space of finite strains E = 1

2(∇uT +∇u +∇uT∇u) and which
is fully coherent with the symmetry of the lattice for general shear directions. In its inno-
vative work [Eri77, Eri80, Eri05, Eri87, Eri91], Ericksen realized that the required lattice
invariance property is not the one associated with the finite group P (eI), but rather the
one described by the infinite global symmetry group G(eI). The latter turns out to be
coincident with the set of unimodular matrices GL(2,Z). While P (eI) expresses the in-
variance only with respect of orthogonal transformations (i.e. rotation and reflections),
G(eI) := GL(3,Z) accounts also for non-orthogonal transformations describing lattice in-
variant shears. These are needed for the description of the slip associated with plastic
deformation (as the one illustrated in Figure 2.1).

It has been shown that the invariances described by P (eI) and G(eI) symmetries are
compatible, as the first can be obtained from the second, provided that G(eI) is restricted
to a suitable neighborhood, known as the Ericksen-Pitteri neighborhood (EPN) [Pit84]. In-
tuitively, the analog of an EPN in the simple scalar example, showed in Figure 2.1, would
be the region between −0.5 and 0.5, associated with single well and thus representing the
domain where the system deforms ”elastically”. Point group P (eI) invariance can be seen
as a ”small strain” restriction of G(eI) and the two theories are coherent.

In view of the above, only by implementing the crystal invariance dictated by G(eI) it
is possible to include irreversible crystal deformations in the model [Eri77, Eri80, PZ02].
We remark that, to account for lattice-invariant shears, geometrically non-linear strains
are absolutely necessary to distinguish different symmetry-related lattices. Energies ac-
counting for such invariance have been developed for the description of martensitic phase
transitions [DRGT88, HGK89, SSL01, CZ04, PRTZ09, DV16], and have been studied in
[Fon87, Kin87b, Kin87a, CK88], however a systematic investigation of their capability to
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describe plasticity is still missing.

We consider our approach as a combination of two different perspectives. From one
point of view, it has been shown that plasticity is suitably described by periodic elastic en-
ergies. Indeed, plastic deformation can be interpreted as a change of phase where the lattice
goes from a reference state, to a symmetry-related sheared configuration. Dislocations will
appear in view of incompatibility between these two phases, represented by two minima of
the potential. This understanding led to the development of several scalar models in which
periodic energy was assigned along slip directions [FK39, Nab47, Onu03, CB05, ST12]. On
the other hand, there were several efforts to include microstructural lattice features directly
into the continuum thermoelastic problem [Eri05, Eri87, Eri91, TPO96, CZ04]. Mostly due
to Ericksen’s efforts, the inadequacy of P (eI) for the task of modeling symmetry breaking
reconstructive crystal transformations, and therefore plasticity, was finally realized.

An energy landscape with material symmetry based on the GL(3,Z) invariance, must
be periodic in shear and is therefore characterized by infinite number of wells. Moreover,
in contrast to the previously mentioned scalar models, this landscape must be defined for
general finite strains. Considering this, a GL(3,Z) invariant model must be a geometrically
nonlinear tensorial extension of the scalar theories. In such model the nucleation of dislo-
cations will result from elastic instability of the system and the interactions of dislocations
will be fully described by the periodic energy landscape, without the need of any additional
phenomenology.

The ensuing model takes the form of Landau theory, in which the geometrically non-
linear metric tensor, measuring the local deformation, becomes the order parameter [BAB+19].
Different phases are the shear-invariant configurations described by an infinite number of
equivalent energy wells, whose position is governed by the global symmetry group GL(3,Z).

We begin this Chapter by discussing some fundamental notions of crystallography (we
refer to [Eng12] for deeper insights). Discussion will be limited, for simplicity, to two di-
mensional systems. We will therefore illustrate invariance under the GL(2,Z) group rather
than GL(3,Z), which also allows for a more transparent representation of the associated
configurational space. We continue by showing how an energy possessing the desired sym-
metry can be actually constructed. In particular, we discuss the polynomial energy function
developed in [CZ04] for the description of martensitic phase transitions. In particular, we
show that this energy is also suitable for description of crystal plasticity. We then describe
in detail the properties of the obtained energy landscape for two different type of lattices:
square and triangular.

Implementation of this energy in a general continuum mechanics framework will be
illustrated in the following Chapter.
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2.1 Notions of Crystallography

A Bravais lattice is a structure that can be constructed by infinite integer translations of
two linearly independent vectors {eI}, the lattice basis, in every space direction, i.e. more
formally:

L(eI) =
{
x ∈ R2, x = vIeI , vI ∈ Z

}
, (2.1)

where Einstein summation convention is implied. Bravais lattices are also referred to as
simple lattices 1. We can associate with a basis {eI} a metric tensor C:

CIJ = CJI = eI · eJ (1 ≤ I, J ≤ 2) . (2.2)

The tensor C is always symmetric and positive definite. For a given Bravais lattice, there
are infinite choices for the basis {eI}, i.e. infinite ways to describe the same lattice. The
group of all the transformations leaving a lattice L(eI) invariant is known as the global
symmetry group G(eI) of lattice L(eI). It is the maximal subgroup of group Aut of
invertible tensors2 leaving a lattice invariant:

G(eI) := {H ∈ Aut : L(HeI) = L(eI)}
= {H ∈ Aut : HeI = mJIeJ , m ∈ GL(2,Z)} .

(2.3)

All 2D lattices are characterized by the same global invariance, as their symmetry is ex-
pressed by groups, that, in suitable bases, do all coincide with GL(2,Z), the set of reversible
2D integer matrices:

G(eI) := GL(2,Z) = {m, mIJ ∈ Z, det(m) = ±1} . (2.4)

In other words, invariance within this group means that we may choose infinite number
of different bases for the same lattice. However they must be all in relation through the
action of GL(2,Z):

ēJ = mIJeI with m ∈ GL(2,Z) . (2.5)

The corresponding symmetry for metric tensors C is given by

C̄ = mTCm C̄IJ = mKICKLmLJ . (2.6)

1Crystals which are characterized by a more complex structure are called multilattices. In this case
additional parameters pi, the lattice shifts, are needed in addition to the lattice basis {eI} to describe the
crystal structure.

2When linear maps are represented in matrix form, we are assuming a reference basis for the description
of space R2. Here, we will always assume as reference basis the Cartesian orthonormal basis {II} of R2,
coincident with the square symmetry lattice. The fact that we are implying a reference basis for the
description of space R2 should not be confused with the fact that the same lattice in Z2 can be represented
by several equivalent bases. Indeed, all these different equivalent bases are implicitly expressed in terms of
{II}, chosen for the representation of the space.
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Figure 2.3: Bravais Lattice: Schematic representation of a simple, Bravais, lattice. It is fully described
by an integer basis {eI} which, periodically translated in space, defines the lattice. Choices for the integer
basis {eI} are infinite, but all these basis are in relation by the action of the global symmetry group
GL(2,Z).

To summarize, every time that we perform a change of basis we are operating within the
group GL(2,Z). Similarly, every time that the lattice is deformed into a symmetrically
equivalent structure, such deformation can be also described as the action of GL(2,Z)
on the initial configuration. Equations (2.5) and (2.6) describe the action of the global
symmetry group GL(2,Z) on the configurational space B of basis vectors (4D space of
linearly-independent 2D vectors) and on the space Q+

2 of lattices metrics (the 3D space
of positive definite symmetric second order tensors ∈ R2). In what follows we will mostly
refer to the invariance with respect to configurational space Q+

2 , which naturally accounts
for frame indifference.

The notion of global lattice symmetry based on G(eI) may seem in contradiction with
the classical notion of crystallographic point group P (eI). This is the set of all the orthog-
onal transformations that leave the crystal invariant:

P (eI) := G(eI) ∩ O
= {Q ∈ O : QeI = mJIeJ , m ∈ GL(2,Z)} ,

(2.7)

where O is the set of all orthogonal matrices QTQ = 1. The operations Q ∈ P (eI) are
rotations and reflections (orthogonal transformations) mapping the lattice L(eI) in itself.
In other words, P (eI) is the orthogonal subset of G(eI). We mention that both P (eI) and
G(eI) are independent of the specific basis eI , but depend only on the lattice L. Indeed
the following is easily proved [PZ02]:

G(eI) := G(mJIeJ) ∀m ∈ GL(2,Z) (2.8)

P (eI) := P (mJIeJ) ∀m ∈ GL(2,Z) . (2.9)

However, while G(eI) is an infinite group, P (eI) is not. Indeed, given a certain lattice
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basis:
mJI = eJ ·QeI ⇒ |mJI | ≤ ‖eJ‖‖QeI‖ = ‖eJ‖‖eI‖ (2.10)

which admits only finite integral solutions (‖v‖ euclidean norm of vector v).

In some sense, the size of the point group P (eI) of a certain lattice is indicative of
the ”amount of symmetry” of that lattice. This concept does not apply to G(eI), which
contains the infinite number of non-rigid mappings associated with the arbitrariness of
the chosen lattice basis. The implied deformations are simple shears leaving the crystal
invariant and can be written as:

SeI = sIJeJ , S = I + â⊗ n̂ (sIJ) ∈ GL(2,Z), (2.11)

where â and n̂ are two orthogonal unit vectors; I is the identity matrix. A detailed proof
of this claim can be found in [Eri05].

Since it is desirable to treat in the same manner lattices that are equivalent, one needs
a suitable criterion for a classification of lattices with equivalent properties. The classical
subdivision of lattices in crystal systems is based on conjugacy relations among their point
groups. Indeed, when an orthogonal transformation Q ∈ O is applied to basis {eI}, the
associated point group is transformed to the O-conjugate of itself:

P (QeI) = QP (eI)Q
T . (2.12)

Then, the two lattices L and L′ are said belong to the same crystal system when their
respective point groups are orthogonally conjugate. In 2D there are 4 different crystal
systems: oblique, rectangular, square and triangular.

A finer classification is offered by the subdivision of lattices in Bravais types (also called
lattice types in literature). This classification is based on conjugacy in GL(2,Z), that is
more restrictive condition that conjugacy in O [PZ02]. To explain how this classification
is obtained, it is necessary to introduce the lattice groups L(eI), that are integral repre-
sentations of the point groups P (eI):

L(eI) := {m ∈ GL(2,Z) : mIJeJ = QeI ,Q ∈ P (eI)} . (2.13)

Notice that, differently from P (eI) and G(eI), lattice group L(eI) of a given lattice depends
on the specific basis {eI} chosen to describe that lattice. They are finite and coincide with
the maximal subgroups of GL(2,Z) acting orthogonally on a certain lattice. When a basis
eI is transformed into an equivalent one e′I = mJIeJ by the application of an integer matrix
m ∈ GL(2,Z), the associated lattice group changes into a GL(2,Z)-conjugate:

L(e′I) = m−1L(eI)m. (2.14)
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We say that two lattices L and L′ belong to the same Bravais type if their respective lattice
groups L(eI) and L(e′I) are conjugate in GL(2,Z), i.e. (2.14) holds for some m ∈ GL(2,Z).
Also, when L and L′ have the same Bravais type, there will be a certain choice for basis
{e′I} such that L′(e′I) will be equivalent to L(eI). Notice also that lattice group is not
affected by orthogonal transformations, in the sense that:

L(QeI) = L(eI). (2.15)

The concept of lattice group can be reformulated in terms of the correspondent metric
tensor C:

L(eI) =
{
m ∈ GL(2,Z) : mTCm

}
:= L(C) . (2.16)

In 2D, there are 5 Bravais types, oblique, rectangular, rhombic, square and triangular (the
latter indicating an equilateral triangle with hexagonal symmetry). The corresponding
groups, along with the classification of crystal systems, are reported in Table 2.1, taken
from [CZ04]. Note that the action (2.6) defines the relation between metric tensors of the
same Bravais type. Then, it divides the configurational space of metric tensors Q+

2 in 5
orbits, each corresponding to a particular Bravais type.
Summarizing, there are two different criteria for the classification of simple lattices:

• Conjugacy of point groups P (eI) in O, resulting in the classifications of lattices in
crystal systems. This classification is also known as geometric symmetry of simple
lattices.

• Conjugacy of lattice groups L(eI) in GL(2,Z), resulting in the classifications of lat-
tices in Bravais types (also lattices types), also called arithmetic symmetry of simple
lattices.

Both of these classifications are based on the notion of crystallographic point group P (eI),
however the second is more suitable for the purpose of this Thesis, being directly compatible
with GL(2,Z) invariance. Indeed, it can be seen as the restriction of actions (2.5) and (2.6)
to a suitable neighborhood of ”small but finite” deformations, the so called Ericksen-Pitteri
Neighborhood (EPN) (see [Pit84] and chapter 4 of [PZ02] for more details).

2.1.1 Bravais Lattices in C Space

Since the tensor C is symmetric, we may represent all possible 2D Bravais lattices in the
three dimensional space given by C11, C22, C12. This configurational space is very useful
for visualizing the different lattice types and will be important for the understanding of
the energy construction.
We remark that, because C ∈ Q+

2 by definition, every admissible lattice metric C belongs
to the subspace limited by condition det(C) > 0, that is, the upper part of the 3D sur-
face limited by the hyperbolic surface det(C) = C11C22 − C2

12 = 0. By restricting the
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Crystal system
(International

Symbol)

Lattice type
(International

Symbol)
Fixed set

Lattice group
(up to inversion)

oblique
(2)

oblique
(p2)

0 < C11 < C22

0 < C12 <
C11

2

(
1 0
0 1

)

rectangular
(p2mm)

0 < C11 < C22

C12 = 0

(
1 0
0 1

)
,

(
−1 0
0 1

)

rectangular
(2mm)

Fixed set I

0 < C11 = C22

0 < C12 <
C11
2

(
1 0
0 1

)
,

(
0 1
1 0

)
rhombic

or
centered–

rectangular
(c2mm)

Fixed set II

0 < C11 < C22

0 < C12 =
C11

2

(
1 0
0 1

)
,

(
1 1
0 −1

)

square
(4mm)

square
(p4mm)

0 < C11 = C22

C12 = 0

(
1 0
0 1

)
,

(
0 −1
1 0

)
(
−1 0
0 1

)
,

(
0 1
1 0

)

triangular
(6mm)

triangular
(p6mm)

0 < C11 = C22

0 < C12 =
C11

2

(
1 0
0 1

)
,

(
0 −1
1 1

)
(

1 1
−1 0

)
,

(
−1 0
1 1

)
(

1 1
0 −1

)
,

(
0 1
1 0

)

Table 2.1: The five Bravais types of simple lattices in 2D, and the fixed sets (sets of metrics with given
lattice group) intersecting the fundamental domain D in (2.21), with the corresponding lattice groups (only
one element of each pair (m,−m) is tabulated). See also Figure 2.4.

description to the hyperbolic surface det(C) = C11C22 −C2
12 = 1, we limit the analysis

to lattices with the volume of a unit cell, chosen as reference (see Figure 2.4). This can
be done without loosing generality since all the other hyperbolic surfaces are related ho-
motetically. A particular unit lattice has infinite representations on the det C = 1 surface,
all in relation through action (2.6). As a consequence, the invariance subdivides the sur-
face det C = 1 into a series of subdomains related by trivial symmetry operations. Each

29



of these subdomains is a fundamental domain for the action (2.6), i.e. a subset of Q+
2

such that every GL(2,Z) orbit, and then every Bravais lattice type, has one and just one
element contained in it. In Figure 2.4 (on top) this subdivision of the det C = 1 space is
illustrated, with the focus on one of these fundamental domains, denoted by D. Notice
as higher symmetry lattices, triangular and square, are identified by points, rhombic and
rectangular lattices by lines, while generic oblique lattice occupy all the remaining points
of the det C = 1 surface.

In Figure 2.4 (on bottom) we illustrate schematically how these equivalent configura-
tions can be distinguished through:

• A different choice for the reference basis vectors eI .

• Application of a lattice invariant shear (2.28) on the reference basis eI .

Once a fundamental domain D fixing the tessellation has been chosen, the energy can
be defined on it only and its action will be automatically extended to the entire det C = 1
space, by the mapping (2.6). This implies that the ensuing energy landscape must be
periodic.
As already remarked, the configurational space det C = 1 is a hyperbolic surface. A
representation of this space can be obtained using one of the available models of hyperbolic
geometry. In Figure 2.5 the space det C = 1 and its tessellation in invariant subdomains is
showed using the Poincaré disk, in which the infinite hyperbolic surface is projected to a
circle of unit radius. This representation is particularly useful as it allows to have a global
representation of the infinite configurational space. In this projection, the points at infinity
are represented by the external circumference of the disk. The mapping linking a point

(x, y) on the disk with the point (x̂, ŷ) = (C12
C22

,
√

detC
C22

) on a generic hyperbolic surface of

determinant det C 3 is given by the formulas:

x =
x̂2 + ŷ2 − 1

x̂2 + (ŷ + 1)2
(2.17)

y =
2x̂

x̂2 + (ŷ + 1)2
(2.18)

Note that the boundaries of the subdomains of periodicity correspond, on the Poincaré
disk, to diameters or to the arcs of circle intersecting the disk perpendicularly, which are
geodesics in this representation of the hyperbolic surface [And06].

3on this surface, once that det C, C22 and C12 are given, component C11 is determined by condition
det C = C11C22 − C2

12 = 1.
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Figure 2.4: Configurational Space: a) Illustration of strain space C11,C12,C22. Admissible metric
tensors should satisfy condition det C > 0, which corresponds to a hyperboloid in the C11,C12,C22 space. A
portion of the infinite hyperbolic surface det C = 1, containing all simple lattices of unit volume, is shown as
reference. b) Relation between different square symmetry metric points is illustrated schematically. These
lattices are equivalent but characterized by a different choice of the lattice basis vectors {eI}.
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Figure 2.5: Poincaré Representation of the Configurational Space: space det C = 1 in the
Poincaré disk representation. For the sake of clarity, only some of the infinite square and triangular
lattices are illustrated explicitly. Full and dashed lines, corresponding to rhombic and rectangular lattices,
respectively, are geodesics in the hyperbolic space.

2.2 Energy Construction

Our model is based on the assumption, due to J. Ericksen [Eri97], that a strain energy
density ϕ for the crystalline lattice exists, and that it depends only on the current config-
uration of the basis vectors 4 ei.

We already remarked that the crystal behavior has to be independent from the choice
of the observer. This means that the lattice energy ϕ must satisfy the condition of frame
indifference [Sal09, FLBGS10, Bha03, SMF19]. Therefore, we build strain energy density
directly as a function of C rather than as a function of the basis vectors [eI ], thus elim-
inating rigid rotations in the actual (Eulerian) space. To satisfy material symmetry of
the lattice, which we discussed above, the function ϕ(C) must also be invariant under the

4Here we limit the discussion to simple lattices, however we remark that this approach can be extended,
with some additional complexity, to multi-lattices as well (see for instance chapter 11 of [PZ02] or chapter
11 of [TM11].
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action of the global symmetry group GL(2,Z):

ϕ(C) = ϕ(mTCm) . (2.19)

Definition of an energy with the required symmetry (2.19) may not seem straightfor-
ward, however one can notice that ϕ does not need to be defined on the entire surface
det C = 1. Instead, a reference energy ϕ0 can be constructed on a fundamental domain
only, a subdomain ofQ+

2 where every Bravais type has one and only one representative met-
ric. Once a fundamental domain D has been chosen and the reference energy ϕ0 defined,
an extension ϕ invariant under GL(2,Z) and defined on to the entire surface det C = 1
can be obtained simply by setting:

ϕ(C) = ϕ(mTCm) = ϕ0(C̃) . (2.20)

In order to exploit the property (2.20), one has to have a general procedure which, for a
general metric tensor C, generates the matrix m which maps it back on the corresponding
reference metric C̃ ∈ D. For the reasons that will be explained shortly, it is convenient to
chose the fundamental domain D in the form:

D =

{
C ∈ Q+

2 , 0 < C11 ≤ C22, 0 ≤ C12 ≤
C11

2

}
. (2.21)

It is easy to see that D contains only one representative of every Bravais type. More
specifically, the square symmetry is represented by point C11 = C22 = 1, C12 = 0, triangular

lattice symmetry by point C11 = C22 = γ2, C12 = γ2

2 , where γ = 4

√
4
3 is the length of basis

vectors of a unit area triangular lattice. Descending to lower symmetries, rectangular and
rhombic lattices are located along lines, coinciding with the boundaries of D. The C12 = 0
boundary is the one corresponding to rectangular lattices configurations while the other two
boundaries correspond to two different type of rhombic lattices: the ”skinny rhombi” and
the ”fat rhombi”. Along the C12 = C11

2 boundary we find ”skinny rhombi” configurations,
i.e. configurations in which one of the angles is smaller than 60 degrees, so that a diagonal
is shorter than the side, while on the remaining boundary C11 = C22 one has the ”fat
rhombi”, whose angles are all between 60◦ and 120◦, and both diagonals longer than the
side (see also [CZ04]). Generic obliquous lattices cover the interior of D.
The importance of this choice of D is given by the particular form of the metrics C̃ ∈ D.
They have what is called the reduced form of Lagrange, characterized by the conditions:

• ẽ1 is the shortest lattice vector.

• ẽ2 is the shortest lattice vector not collinear with ẽ1 and for which the sign is chosen
in such a way that the angle between the two is acute.

For this choice of the reference domain, the needed mapping between a general C and
its corresponding analogue C̃ ∈ D is known. It is given by the iterative procedure known
as Lagrange reduction. Given an arbitrary lattice basis eI , the corresponding Lagrange
reduced basis ẽI can be obtained by applying the finite iterative procedure:
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• if |e1| ≥ |e2|, swap the two vectors;

• if e1 · e2 ≤ 0, change sign to e2;

• if f = e1 − e2 is shorter than e2, replace e2 with f . . . .

The same procedure can be also expressed in terms of the components of C:

• if C12 < 0, change sign to C12;

• if C22 < C11, swap the two components;

• if 2C12 > C11 set C12 = C12 − C11 and C22 = C22 + C11 − 2C12. . . .

Now that the fundamental domain D and the reduction mapping are given, only the ref-
erence energy ϕ0 is missing. It may be parameterized in many different ways, (using
polynomials expressions, Fourier coefficients, spline interpolations, ...) but it has to re-
spect a suitable regularity at the boundaries. We will require ϕ0 to satisfy C2 smoothness,
which ensures the continuity of the elastic moduli.

Moreover, ϕ0 must have a minimum which corresponds to the chosen crystal symme-
try. For instance, when modeling a square lattice, ϕ0 will be constructed in such a way
that minimum coincides with the square symmetry lattice (that is point C11 = C22 = 1,
C12 = 0). Once this requirement is satisfied, the extended energy ϕ has the desired sym-
metry and is indefinitely periodic in tensorial space.

Up to now we considered only volume-invariant metrics which evolve on surface det C =
1 only. However, one needs to consider also the reference lattices outside of this surface,
exploring configurations which allows for a volume change (the system will have det C < 1
when compressed and det C > 1 when extended). This poses no particular problem since
det C is invariant under GL(2,Z). Therefore, by defining ϕ0 as a function of scaled vari-
ables CIJ/(det C)1/2 and of det C one can decouple the isochoric contribution to the energy
from the volumetric one.

2.2.1 Polynomial Energy

In [CZ04] Conti and Zanzotto, following Parry [Par76] who formulated the smoothness
conditions and considered various special examples, introduced a general 6-th order poly-
nomial GL(2,Z) invariant energy with the objective of modelling irreversible martensitic
transformations. This energy depends, in addition to C, on a thermal parameter β which
allows, when increased, to pass from a square symmetry to an hexagonal one. Here we
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adopt this energy for the modelling of plastic deformation without considering phase tran-
sitions, i.e. keeping the parameter β fixed.

The proposed polynomial energy function ϕ has to be C2 smooth across the boundaries
of D. The application of this condition is simplified significantly when one uses polynomials
that are invariants of a certain point group. To better explain this fact we need to explain
better the concept of Ericksen-Pitteri neighborhood (EPN).
The concept of EPN where firstly introduced by Ericksen and Pitteri [Eri79, Pit84]. It
is widely used to distinguish reversible and irreversible martensitic transformations (see
also [Bha98, BCZZ04]). An EPN is a subspace of Q+

2 which contains transformations
with the property that the initial, the final and all the intermediate configurations have a
common finite symmetry subgroup. Consider, for instance, a deformation represented by
the reference point C0 coinciding with the symmetry point T in Figure 2.6. During the
deformation we will change the Bravais type of the lattice going, for instance, to an oblique
final configuration C1. The corresponding lattice group L(C0) will change but, as long as
the corresponding metric stays in the EPN, it will be a subgroup of L(T). If, instead, the
final configuration ends up located outside the EPN, L(C1) will be no more a subgroup
of L(T), but of an other lattice group centered on an other higher symmetry point that is
”nearer” to the final configuration. As a consequence of this, it will be no more possible
to describe the entire deformation process (which contains all intermediate configurations)
using a finite subgroup of GL(2,Z).

More formally, given any lattice metric L(C0), an open neighborhood N (C0) of C0 in
Q+

2 is an EPN if the following properties are satisfied:

(i) mtNm = N for all m ∈ L(C0);

(ii) mtNm ∩N = ∅ for all m ∈ GL(2,Z) \ L(C0).

The maximal EPNs for the reference square and triangular lattices are shown in Figure
2.6. For instance, the maximal EPN associated with the square lattice S is given by the
four copies of fundamental domain D converging on square symmetry point S and obtained
trough the action of the lattice group L(S). Similarly, the maximal EPN for the triangular
symmetry is given by the six copies of D converging on hexagonal symmetry point T. For
a generic obliquous lattice, the maximal EPN coincides simply with D itself. Intuitively,
we can say that the maximal EPN associated with a certain symmetry correspond to its
”elastic” subdomain, meaning, the ”area of pertinence” of the corresponding energy well.

Once shapes of the maximal EPNs are found, we can use polynomials that are continu-
ous in the maximal N (T). In this case continuity requirements are automatically satisfied
on two of the three boundaries of the fundamental domain D. Then, we know from [SR97],
that if we use linear combinations of hexagonal invariants Ii the continuity of the corre-
sponding polynomials is ensured under L(T) and therefore along all the maximal N (T).
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Figure 2.6: Maximal EPNs: Examples of maximal EPNs inQ+
2 , indicated as dashed areas (fundamental

domain D is also shown). Maximal EPN for a square lattice metric (on top), and for a triangular lattice
metric (on bottom). In both cases, the boundary does not belong to the (open) maximal EPN.
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These invariants can be expressed as functions of the corresponding metric tensors:

I1 =
1

3
(C11 + C22 − C12),

I2 =
1

4
(C11 − C22)2 +

1

12
(C11 + C22 − 4C12)2, (2.22)

I3 = (C11 − C22)2(C11 + C22 − 4C12)− 1

9
(C11 + C22 − 4C12)3 .

We can now consider sixth-order polynomial functions ϕ̂0 of (C11, C12, C22) , with
restrictions C2

12 < C11C22, that can be written as linear combination of the invariants Ii.
It can be proved [CZ04] that C2 continuity on the boundary C12 = 0 of D is ensured by
setting:

∂ϕ̂0

∂C12

∣∣∣∣
C12=0

= 0. (2.23)

By considering all the sixth order polynomial of this type, we obtain a 10-dimensional
linear space and therefore 10 linearly independent vectors ψi are needed to define the most
general potential ϕ0. Since det C is invariant, three basis vectors may be respectively det C,
its square and its cube, the others can be chosen as functions of invariants Ii. A suitable
choice for the vectors ψi is:

ψ1 = I1
4 I2 −

41 I2
3

99
+

7 I1 I2 I3

66
+

I3
2

1056
,

ψ2 = I1
2 I2

2 − 65 I2
3

99
+
I1 I2 I3

11
+
I3

2

264
,

ψ3 =
4 I2

3

11
+ I1

3 I3 −
8 I1 I2 I3

11
+

17 I3
2

528
,

ψ4 =
9 I1

5

2
− 4 I1

3 I2 + I1 I2
2 − I2 I3

48
, (2.24)

ψ5 = 48 I1
5 − 24 I1

3 I2 + I1
2 I3,

ψ6 = 21 I1
4 − 5 I2

2 + I1 I3,

ψ7 = −5 I1
3

2
+ I1 I2 −

I3

48
,

ψ8 = det C

ψ9 = (det C)2

ψ10 = (det C)3

The general sixth order polynomial ϕ̂0, satisfying the required continuity conditions, can be
obtained by linear combinations of the functions ψi listed above. To decouple the isochoric
and the volumetric contributions, we define the energy ϕ0 in terms of scaled variables
C/ det1/2 C:

ϕ0(C) = ϕ0

(
det C,

C

det1/2 C

)
. (2.25)
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The functions ψi are homogeneous and the scaling C
(detC)1/2

can be incorporated easily. The

decoupled ϕ0 can be written as:

ϕ0(C) = h(det C) +

7∑
i=1

βiψi

(
C

det1/2 C

)
, (2.26)

where βi are constant coefficients whose values of βi must be chosen to ensure that the
minimum of ϕ0(C) has the desired symmetry. For instance, we can make choices:

• β1 = −1
4 β3 = 1 β2 = β4 = β5 = β6 = β7 = 0 to ensure square symmetry.

• β1 = 4 β3 = 1 β2 = β4 = β5 = β6 = β7 = 0 to ensure hexagonal symmetry.

To cover both possibilities we can set:

ϕ0(C) = β1ψ1

(
C

det1/2 C

)
+ ψ3

(
C

det1/2 C

)
−K(ln det C− det C) , (2.27)

where the volumetric part has been taken in the logarithmic form to exclude configurations
with infinite compression. The coefficient K plays the role of a bulk modulus.

In Figure 2.7 energy contours for the square (β = −1/4) and triangular (β = 4) lattices
are illustrated on the Poincaré disk (a cut-off value of 4.15 has been used for visualizing
better the shape of the low energy valleys).

It is important to remember that the chosen configurational space does not tell apart
configurations which differs only by a rigid rotation. Therefore, every energy well in our
energy landscape represent an infinite number of configurations, that are indeed energeti-
cally equivalent, an ”orbit”, see [Bha98] for more details.

2.2.2 Energy Landscape

In this section we illustrate some important features of the obtained energy landscape.
While our observations will be based on the energy potential (2.27), the discussed features
are general and are related directly to the GL(2,Z) invariance.

We begin with the case when the energy minimizer is the square symmetry lattice.
Then, the discussion will be extended to the case of the triangular lattice. In both cases, the
periodic behavior of the energy emerges automatically from the use of GL(2,Z) invariance.
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Figure 2.7: Energy Landscape: Energy landscape corresponding to energy density (2.27) for square
symmetry β = − 1

4
(on top) and hexagonal symmetry β = 4 (on bottom) is illustrated on the Poincaré

disk. Color indicates the energy level, blue-low, red-high. An upper cut-off of 4.15 has been used for the
highest-energy values for an improved visualization of low-energy barriers and wells.
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Square Lattice

We now focus on the periodic energy anchored at a square lattice. The reference metric S
written in the reference basis eT1 = {1 0}, eT2 = {0 1} and has components C11 = C22 =
1, C12 = 0. To visualize the infinite periodicity of our polynomial energy, consider three
simple shears of the type:

S = I + αa⊗ n (2.28)

where a and n are two orthogonal unit vectors indicating, respectively, the shear direction
and its normal. The remaining parameter α represents the amount of shear. Notice that
if we assume a = e1 and n = e2 in (2.28), we obtain, for integer values of α, a lattice
invariant shear of the type (2.11).

Suppose that the shearing direction a is inclined by θ = 0◦ (that is the case we just
mentioned), arctan(1

2) and 45◦ with respect to the horizontal direction. Matrix F, express-
ing the corresponding deformation of the reference undeformed basis vectors {eI}, (such
that e∗i = FeI

5) is given by:

F =

[
1− α cos θ sin θ α sin2 θ

α cos2 θ 1 + α cos θ sin θ

]
. (2.29)

For our three values of the angle θ, we obtain accordingly:

F0◦ =

[
1 α
0 1

]
Farctan( 1

2
) =

[
1− 2

5α
1
5α

−1
5α 1 + 2

5α

]
F45◦ =

[
1− 1

2α
1
2α

−1
2α 1 + 1

2α

]
.

(2.30)

When a homogeneous deformation F parametrized by α is applied to the reference basis we
obtain a loading path in the configurational space C11, C22, C12. The deformed basis {e∗i }
reproduces a square lattice every time that the corresponding matrix F in (2.29) acquires
all integer entries, i.e. every time that it describes a lattice-invariant shear (2.11). It is
easy to see that the three shears in (2.30) have, respectively, periods of α = 1, 5 and 2.
Note that the implied periodicity is not necessarily symmetric with respect of the original
state {eI}, as we observe for θ = arctan(1

2) in Figure 2.7, where we show energy profiles
(a) and the evolution of the shearing paths on the configurational space (b). As expected,
the energy barriers are significantly lower along the direction θ = 0◦, which, being aligned
with a crystallographic plane, represents a natural shearing direction for the crystal. As a
consequence of the square lattice symmetry, shear paths characterized by angles θ inclined
by ±90◦ with respect to each other are energetically equivalent, i.e. they generate the same

5Distinction between low-case and capital indexes will be introduced more systematically in the next
Chapter. For now we anticipate the fact that capital letters refers to quantities in the undeformed, reference
state while low-case indexes refers to the same quantities after a deformation process.
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(a) (b)

Figure 2.8: Shear Loading Paths: Energy landscape for different shearing paths θ = 0◦, θ =
arctan(1/2) and θ = 45◦ is shown. Shear asymmetry and different periodic behavior along general shearing
directions are fully described.

energy landscape. An interesting feature, revealed by the Poincaré disk representation is
that all simple shear paths are tangent to the boundary at infinity. Notice also that the
obtained landscape is way more generic than the one resulting from the periodic energies
proposed in [MO07, Onu03, CB05].

While simple shears allow one to explore the energy landscape by probing it along
the circular trajectories, other interesting loading paths are the ones corresponding to the
boundaries of the fundamental domain D. As we have already mentioned, those correspond
to rhombic and rectangular lattices and are also geodesics on the Poincaré disk. By symme-
try, the points belonging to these paths are local maxima or minima of the energy. In the
case of the landscape centered at a square lattice the rectangular and the fat rhombic path,
originating at the point S, are both at the bottom of energy valleys. Observe also that
the fat rhombic path is directed towards a local maximum, the triangular lattice point T,
while the rectangular path evolves towards infinity spanning an increasingly higher energy
barrier without encountering any other square lattice configurations.
In the case of a fat rhombic path the deforming directions are the diagonals of the square.
The corresponding pure shear deformation is given by the matrix (see also [DMS12,
TVMN19]):

F =
1√

coshα

[
coshα sinhα

0 1

]
. (2.31)

The energy barrier along this path is lower with respect to the previously mentioned θ = 0◦

simple shear. The point T is a local maximum along the fat rhombic direction, but is a
minimum along the skinny rhombic one, as we illustrate schematically in Figure 2.9. The
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triangular point T is therefore a saddle point in which three low energy valleys converge.
Since in our model the low-energy valleys define available slip systems, this position of T
makes it particularly important in determining non-trivial coupling between the activated
slips.
The rectangular path also corresponds to a pure shear, in which the vertical direction is
extended and the horizontal shortened. The associated deformation gradient is:

F =

[ √
1− α 0
0 1√

1−α

]
. (2.32)

As we have already remarked, this paths evolves towards infinity without crossing any
other shear invariant minimizer of our square lattice centered energy landscape.
While simple and pure shears are distinguished just by a rigid rotation in a linear strain

description, the relation is more complex in a geometrically non-linear strain formulation
[DMS12, TVMN19]. Indeed, these two deformations define two different paths in the
configurational space, which are not at all rotation-related.
The overlap of pure and simple shears trajectories it is not the only approximation implied
by linearized small strains assumption. Indeed, consider the two symmetry related shears
with θ = 0◦ and θ = 90◦, that are given by the matrices:

F0◦ =

[
1 α
0 1

]
F90◦ =

[
1 0
−α 1

]
(2.33)

These are the most natural simple shears for the crystal since they are oriented along
crystallographic directions. They have period 1 and relatively low energy barriers. As
previously remarked, these two paths are equivalent energetically, however they are distin-
guished in terms of the associated strains. In a linear description, the components of the
linearized strain tensor ε are the same for these two trajectories:

ε =
1

2

[
0 α
α 0

]
. (2.34)

Instead, they are different when considering the nonlinear strain tensor 2E = (C− I):

E0◦ =
1

2

[
0 α
α α2

]
E90◦ =

1

2

[
α2 α
α 0

]
. (2.35)

A nonlinear term ∝ α2 appears along one of the diagonal entries E11 and E22, which are
proportional to the stretch along the initial lattice vectors e1 and e2. In the small strain
limit, the condition of constant volume is expressed by the requirement that the trace
of the deformed cell remains constant. Then, the linearized configurations are located
on the plane tr(C) = 2, which is tangent to the hyperboloid det C = 1 in the initial
undeformed square state S (as schematized in Figure 2.10). One may easily verify from
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(a)

(b) (c)

Figure 2.9: Square Symmetry Reference Well: Configuration of square wells near reference well S,
the simple shears θ = 0◦ and θ = 90◦ are showed with continue blue lines while pure shear paths are showed
with differently dashed blue lines (b). Energy landscape along these low energy barriers is illustrated with
evidence of triangular lattice point T, located in the upper vertex of the fundamental domain. In (c) the
graphs of energy profiles corresponding to skinny and fat rhombic paths are shown, together with the θ = 0◦

shear path.
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Figure 2.10: Linear and Nonlinear Configurational Spaces: Representation of nonlinear and linear
θ = 0◦, θ = 90◦ shearing paths. Linearized strain components are situated on plane tr(C) = 2, tangent
to the initial undeformed configuration S. As the square configurations S+1

0 and S−1
90 differ for a nonlinear

component, they result merged in one point the linearized strain space.

(2.34) that in such approximate theory the paths θ = 0◦ and θ = 90◦ merge along the line
C11 = C22 = 1. Therefore the two different minima S+1

0 and S−1
90 collapse, in a linear theory,

on the same point. This causes a degeneracy since it is no longer possible to distinguish
between the two cases. For instance, when the system is forced through instability, it may
choose to restore its square structure in one way or another depending on which basis
vector is more prone to stretch. The same superimposition phenomenon takes place for the
trajectories θ = 45◦, θ = 135◦. More generally, the further is the position of the minima
from the original undeformed state, the more relevant are the nonlinear components for
their description in the space C11, C22, C12. The above examples show the importance of
using the geometrically non-linear strain in any tensorial description of plastic slip. In
other words, a fully coherent use of the GL(2,Z) invariance requires the formulation in
terms of geometrical non-linear strains.

Triangular Lattice

We now turn to the case of the triangular symmetry crystal. In this case the reference state
is given by the point T, the upper vertex of the fundamental domain D, with coordinates
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(a) (b)

Figure 2.11: Shear Loading Paths in the Triangular Lattice: Energy landscape for shearing paths
θ = 30◦ and θ = 60◦ is shown. The different periodic behaviors along general shearing directions are fully
described.

C11 = C22 = γ2, C12 = γ2

2 . Now the lattice cell is indeed described by the basis vectors:

e1 =

{
γ
0

}
e2 =

{
1
2γ√
3

2 γ

}
, (2.36)

where γ = 4

√
4
3 . In the triangular lattice, there are three axes of symmetry, inclined

respectively at θ = 0◦, 60◦ and 120◦. This higher symmetry manifests itself also in the
fact that more copies of the fundamental domain (six) are converging in T. The energy
barriers corresponding to simple shears with θ = 60◦, oriented along lattice directions,
and with a general inclination θ = 30◦ are illustrated in Figure 2.11. Such paths will
pass through energy minima every time the deformed vectors become integer multiples of
the basis (2.36). This takes place at every α = γ2 for θ = 60◦ (or, analogously θ = 0◦,
θ = 120◦) and at every α = 3γ2 for θ = 30◦ (or θ = 90◦ , 150◦). As in the square lattice,
barriers are significantly lower in shearing directions that are aligned with crystallographic
planes. An interesting feature of the triangular lattice is that symmetry related shear paths
with θ = 0◦, θ = 60◦ and θ = 120◦ pass through the same energy wells, (see Figure 2.12).
Matrices of these shears are given by:

F0◦ =

[
γ γ

2 + α
√

3
2 γ

0
√

3
2 γ

]
, F60◦ =

[
γ − α

√
3

4 γ
γ
2

−γ
4α

√
3

2 γ

]
,

F120◦ =

[
γ + α

√
3

4 γ
3 1

8γ(4 + α(2 +
√

3γ2))

−α
√

3
2 γ

√
3

2 γ − α
(2+
√

3γ2)
4γ

]
.

(2.37)
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It is easy to verify that the strain configurations associated with the wells {T0◦
1 , T120◦

−1 },
{T60◦

1 , T0◦
−1} and {T120◦

1 , T60◦
−1 } coincide. The associated deformed lattices are related by a

60◦ rigid rotation, see Figure (2.12). Then, differently from what is observed in the square
lattice, symmetry related shears result in strain-equivalent lattices configurations, and the
corresponding deformation gradients are distinguished just by a rigid rotation. However,
the related simple shear paths are different and cross only on the C space.

Pure shears corresponding to the boundary of D deserve special attention. In the point
T, one observes the crossing of the skinny and the fat rhombic path, the first evolve at in-
finity towards an increasingly higher energy barriers (as the rectangular path in the square
lattice), the second one is directed towards the square symmetry point S, which is a local
maximum inside the associated energy valley. The energy level is significantly lower along
this pure shear path comparing to the paths describing simple shears, in a way far more
pronounced than what is observed in the square lattice case, see Figure 2.12. In view of
this, the point S is likely to play a very important role in the mechanism of dislocation
nucleation.

The fat rhombic path is again described by matrix (2.31), which for α = 0.5493 corre-
sponds to the triangular lattice. Starting from this value, it is possible to span the path
towards the square configuration S by decreasing α. The skinny rhombic path is obtained
by applying to the reference basis the matrix (2.32):

F =

[
γ
√

1− α 0

0
√

3
2 γ

1√
1−α

]
(2.38)

In Figure 2.12 we schematically depict the elongated and shortened directions associated
with such pure shears. Finally, we remark that the difference between simple and pure
shears will be lost in a linear strain description.

2.2.3 Additional Remarks

In this Chapter, we discussed the importance of adopting GL(2,Z) invariance in the con-
struction of an energy density suitable for the description of plastic deformation in crystals.
Differently from the point group based material symmetry, GL(2,Z) invariance takes into
account lattice-invariant shears ensuring that the energy landscape is periodic. We showed
a way to effectively construct an energy possessing the desired invariance. Despite the fact
that the quantitative values of the energy barriers are controlled by the particular polyno-
mial form we use, the general properties of the system and the overall form of the energy
landscape depend exclusively on the imposed invariance. In particular, the behavior of the
system in simple shear and the very peculiar role of the high symmetry points T and S, are
the general consequence of the GL(2,Z) invariance, unrelated to the specific representation
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(a)

(b)

Figure 2.12: Hexagonal Symmetry Reference Well: Configuration of triangular wells near the
reference well T. Simple shears θ = 0◦, 60◦ and 120◦ are showed with continue blue lines while pure shear
paths are showed with differently dashed lines (a). Energy landscape near the reference well, with evidence
on the fact that energy is significantly lower along the fat rhombic path (b).
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of the potential within the fundamental domain D. This will become even clearer when
we present the GL(2,Z)-invariant energy obtained from pair-potential in Chapter 6.
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Chapter 3

Continuum Formulation and
Numerical Implementation

In the previous Chapter we showed how to construct a strain energy density with symme-
try properties derived directly from the global symmetry group GL(2,Z). This allowed us
to describe the energy landscape associated with lattice invariant-shears, which are essen-
tial for the description of crystal plasticity. In this Chapter we illustrate how to include
the presented energy in the continuum framework accounting for finite deformations. By
constructing a strain energy density function for the crystal lattice, we implicitly assumed
that this energy represents the potential energy of a unit cell. In order to link continuum
and discrete, lattice-based, descriptions one needs to make another fundamental assump-
tion, known as Cauchy-Born rule. This will allow us to connect the two formulations in a
straightforward manner, but with some drawbacks. From one point of view, the possibility
to exploit a fully continuum formulation is advantageous. Macroscopic quantities such as
stresses and strains are defined directly and the energy minimization can be treated in full
generality as a boundary value problem. Moreover, such continuum setting allows one to
exploit the well-known techniques available for the numerical solution of PDEs, such as
the finite differences and the finite elements methods. On the other hand, by assuming
the Cauchy-Born hypothesis, truly atomisitc non-local interactions are lost and replaced
by the study of slowly varying fields. Another drawback is due to the fact that GL(2,Z)
invariant, purely continuum approaches suffer from the lack of convergence, the obtained
solution is dependent on the adopted discretization and tends to a totally-relaxed, fluid
like state in the limit of infinite fineness of the discretization [Fon87].

To deal with these issues we introduce explicitly a length scale into the theory making
the approach not fully continuum. We recall that purely continuum GL(2,Z) invariant the-
ories have been studied before ([BJ89, Fon87, Kin87b, Kin87a, CK88]), and that GL(2,Z)
invariant continuum energies derived by using the Cauchy-Born rule are important ele-
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ments of local formulation of the QC method [TPO96]. In [OP98] Ortiz refers explicitly to
such approach as Cauchy-Born Theory of Crystal Elasticity. Here we deviate from these
purely-continuum models by incorporating the inherent length scale explicitly. Moreover,
our construction of the energy density is based directly on the requirement that GL(2,Z)
invariance is satisfied exactly instead of being gradually lost with deformations, as in the
case of the local QC method.

We start with introducing the boundary value problem used for elasto-static problems,
in their general, finite-displacement formulation.Then we discuss how to coherently include
the lattice-based energy in such continuum framework using the Cauchy-Born rule. We
address some peculiar aspects involved in the mathematical formulation of GL(2,Z) in-
variant energies and then address explicitly the introduction of the internal length scale.
Numerical implementation of the model is also presented. We conclude the Chapter show-
ing some initial validation tests for the proposed model: the visualization of a dislocation
core and an illustration of the simplest interactions between two dislocations.

3.1 The Hyperelastic Boundary Value Problem

Consider a hyperelastic1 medium subjected to prescribed boundary conditions. The prob-
lem incorporates finite deformations and it is therefore necessary to distinguish the initial
undeformed state, the Lagrangian configuration from the final deformed one, the Eulerian
configuration, each of them characterized by their respective coordinate systems.

In what follows, when not explicitly stated otherwise, the convention will be used where
the capital letters refer to Lagrangian quantities and low-case letters to Eulerian variables.
Let’s Ω be a body in the Lagrangian, undeformed reference state and define ∂Ω as its
boundary. Suppose that assigned tractions T∗ and displacements u∗ are given on separate
subdomains of the boundary ∂ΩT and ∂Ωu, such that ∂ΩT ∪∂Ωu = ∂Ω and ∂ΩT ∩∂Ωu = ∅.
After deformation, the body is represented by the domain ω with boundary ∂ω (see Figure
3.1). We further assume that a material point X in the undeformed configuration is mapped
on the point x in the deformed configuration. For simplicity, both Lagrangian and Eulerian
reference systems are assumed to be Cartesian. These two systems of basis vectors will
be denoted by [II ] and [ii] respectively. Position vectors in the undeformed and deformed
configurations can be represented in their Cartesian components:

X = XIII (3.1)

x = xiii , (3.2)

1A hyperelastic material, or Green Elastic, is an elastic material, not necessarely linear-elastic, which
admits an energy density function [Ogd97]
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Figure 3.1: Finite Deformation: Schematic representation of the Lagrangian undeformed configuration
and of the Eulerian deformed configuration in a finite deformation problem.

where we recall that the capital and low-case indices refers to Lagrangian and Eulerian
configurations respectively (Einstein convention xiii =

∑
i xiii is implied). Indexes vary

between 1, . . . , nd where nd is the dimension of the system (nd = 2 in 2D).
With the choice that the vector bases [II ] and [ii] coincide, we can write:

xi = δiJ(XJ + UJ) , (3.3)

where δiJ is the Kronecker delta, which implies that UI = ui. The goal is to find a
displacement field u such that the deformed configuration is in equilibrium, meaning that
internal stresses due to the deformation are balanced by the externally imposed tractions.
It is then necessary to introduce suitable stress and strain measures. We first define the
deformation gradient F, a second order tensor whose components are given by:

FiJ =
∂xi
∂XJ

. (3.4)

The tensor F can also be expressed in terms of displacements as:

FiJ = δiJ +
∂ui
∂XJ

, (3.5)

and describes the change of length for an infinitesimal line element dX after the deforma-
tion:

dxi = FiJdXJ . (3.6)

Its determinant J = det F maps an infinitesimal undeformed volume element dΩ into a
deformed Eulerian element dω, so that:

dω = JdΩ . (3.7)
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The single-valuedness of the deformation requires that the determinant J is positive def-
inite. We note that F is a two-point tensor, which is defined in Lagrangian and Eulerian
configurations simultaneously. Moreover it is not material frame indifferent. A rotation-
independent strain measure for the Lagrangian reference system is then the right Cauchy-
Green strain tensor:

C = FTF , CIJ = FkIFkJ , (3.8)

which is written in matrix form and in components, respectively. Notice that the determi-
nant of C must be positive definite:

det C > 0 . (3.9)

To derive the constitutive law relating stress and strains, one needs the strain energy
density φ(C). For hyperelastic materials, stress measures P and S, the first and the second
Piola-Kirchhoff strain tensors, can be defined by the relations:

P = ρ0
∂φ

∂F
, PiJ = ρ0

∂φ

∂FiJ
(3.10)

S = 2ρ0
∂φ

∂C
, SIJ = 2ρ0

∂φ

∂CIJ
(3.11)

where ρ0 is the density in the Lagrangian, undeformed state. These two stress measures
are related by:

P = FS PiJ = FiKSKJ . (3.12)

Mathematical equilibrium condition states that the divergence (∇·) of stresses must be
balanced by the applied bulk forces. The boundary value problem for an elasto-static solid
can be formulated as follows:

∇ ·P + ρ0B = 0 , PiJ,k + ρ0Bk = 0 on Ω (3.13)

PN = T∗ , PiJNj = T ∗j on ∂ΩT (3.14)

u = u∗ , ui = u∗i on ∂Ωu (3.15)

where B are body forces, N is the normal unit vector to δΩT in the Lagrangian reference
system and operator (·),k is the partial derivative with respect of coordinate k. System
(3.13-3.15) is known as the strong form of the elasto-static boundary value problem. This
formulation selects a critical point of the total potential energy of the system,

Π =

∫
Ω
ϕ(C(X))dΩ−

∫
Ω
ρ0B · udΩ−

∫
∂ΩT

T∗ · ud∂Ω . (3.16)

Solution of the elasto-static problem can be also found through the direct minimization of
functional Π with respect to u. The path followed by the Finite Element Method (FEM)
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[ZT00a, ZT00b] is to solve the system of PDEs through the discretization of the corre-
sponding weak, integral, formulation. The continuum domain Ω is then made discrete
through the design of a numerical grid (the mesh), and solution u is calculated exactly
only on selected points Xi (mesh nodes). Then, an approximate solution u is obtained on
the entire domain by interpolations of the obtained nodal values ui, using suitable inter-
polation functions (shape functions).

Notice that the discretization, necessary for solving numerically the system of con-
tinuum PDEs, brings an internal length scale into the problem (3.13-3.15). As we have
already mentioned, in GL(2,Z) invariant theories there is a need of a regularization, as
the non-regularized solution exhibits a fluid like behavior. In our theory the discretization
will then be more than a numerical tool, and will assume a physical meaning, as we will
discuss shortly.

Minimization of the discretized form of (3.16) generally leads to a non-linear problem
that is solved numerically using usually minimization strategies of the family of the Newton-
Raphson method (NR). For the minimization of (3.16) it will be necessary to compute,
along with the energy ϕ(C), also its derivatives:

SIJ = 2ρ0
∂φ

∂CIJ
(3.17)

CIJKL = 2ρ0
∂φ2

∂CIJ∂CKL
. (3.18)

Hessian CIJKL is a fourth order tensor relating increments of stress ṠIJ to increments of
strain ĊKL. It is sometimes called the second elasticity tensor, while the first elasticity
tensor is:

AiJkL =
∂2φ

∂FiJ∂FkL
, (3.19)

We remark that the second Piola-Kirchhoff stress S is the work-conjugate of C (as P
is the work-conjugate of F) and therefore is the stress measure to be used in the problem.
Once S is calculated, it is desirable to evaluate also the Cauchy stress tensor σ, whose
components give the stresses in the current, deformed configuration. This Eulerian stress
measure can be obtained from S using the relations:

σ =
1

J
FSFT , σij =

1

J
FiISIJFjJ , (3.20)

where J = det F is the jacobian of the transformation. Operation f∗(x) = FxFT , ap-
pearing in (3.20) is called push forward. It allows one to map forward to the deformed
configuration second order tensors defined in the Lagrangian (undeformed) one. Its in-
verse f∗(x) = F−1xF−T , the pull back, allows one to map back Eulerian tensors in the
Lagrangian configuration.
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Figure 3.2: Cauchy-Born Rule: Representation of the Cauchy-Born assumption. The continuum
formulation is linked to the lattice based one by assuming the lattice vectors {eI} to behave like the
element of infinitesimal lenght dX in the continuum formulation.

3.2 The Energy ϕ in the Continuum Formulation

To use the lattice -based energy density in the continuum framework one has to establish
a link between discrete lattice description and the continuum one. This is usually done
through the assumption of the Cauchy-Born rule (CBR), introduced by Cauchy [Cau28] and
subsequently improved by Born[Bor15]. It states that material vectors dX in the continuum
description deform in agreement with lattice vectors eI , underlying the continuum at point
X [Eri05, Eri08, Zan96]. It implies that the local deformation gradient F(x) actually
describes the deformation of the underlying lattice:

ei = FiJeJ . (3.21)

Therefore, once (3.21) is assumed to hold, one may compute the energy density φ for unit
volume of the crystal viewed as a continuum using the lattice energy ϕ

φ(F) := ϕ(FeI) = ϕ(ei), (3.22)

where the reference lattice vectors eI are understood as fixed. Since material frame in-
difference must hold, that is, the material constitutive response has to be independent of
the chosen frame of reference, the continuum energy depends on F only through the right
Cauchy-Green strain tensor C = FTF. In the reference basis II = eI , This strain tensor is
represented by the metric tensor of the lattice:

CIJ = eI ·CeJ . (3.23)

Then, we can directly define the continuum energy density φ as dependent on C:

φ(C) = ϕ(eI ·CeJ) (3.24)
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Notice that, since F and C are referred to a certain reference basis eI , the function φ
actually depends on this choice. Also matrices m ∈ GL(2,Z) are implicitly referred to eI .
Therefore, when reference state is changed, also φ and m change accordingly. In this Thesis
work we always keep as reference basis eI the unit square lattice aligned with Cartesian
reference system II (i.e: eT1 = {1 0}, eT2 = {0 1}).

One has to keep in mind that the CBR may break in some conditions [Eri08, Zan96].
However, in the case of simple Bravais lattices CBR can be always used to obtain suitable
energy densities representing the correct symmetry group [Zan96]. The main consequence
of CBR is that the energy ϕ(C) is inherently local2. This means that only slowly varying
fields can be handled. As a consequence, the obtained description will produce a somewhat
blurred picture with respect to a truly atomistic approach. Locality is an intrinsic conse-
quence of the continuum formulation, as the principle of local action (see footnote 2) is
implicit in the formulation of the classical nonlinear elasticity [MH94, TN04]. This means
that our discrete elements will not be truly atomistic, but rather will be representative of
a meso-scale block of atoms. Therefore, there is an inherent length-scale associated with
the Cauchy-Born assumption. We assume that it is the smallest atomistic size for which
the energy landscape can be viewed as periodic in the range of strains of interest. This
aspect has to be kept in mind as there is no other internal length scale in the theory.

Now that a continuum form of the energy density function φ is obtained, we can use it
in the hyperelastic problem (3.13-3.15). To this end we need to first find the dependence
of the density function φ on the reference energy density φ0, defined on the fundamental
domain D. Every time that partial derivatives of φ are computed, this dependence must
be used. Indeed, employing the chain rule, we have for the first and second derivatives of
φ respectively:

∂φ

∂CKL
=

∂φ0

∂C̄IJ

∂C̄IJ
∂CKL

, (3.25)

∂2φ

∂CIJ∂CKL
=

∂

∂CKL

[
∂φ0

∂C̄OZ

∂C̄OZ
∂CIJ

]
=

∂2φ0

∂C̄RSC̄OZ

∂C̄OZ
∂CIJ

∂C̄RS
∂CKL

. (3.26)

The Lagrange-reduced, reference metric C̄ is related to the unreduced one by action (2.6),
i.e. in components:

C̄KL = mIKCIJmJL . (3.27)

Then the partial derivatives of the reference metric C̄ are given by:

∂C̄KL
∂CIJ

= mIKmJL . (3.28)

2 We consider as local approach a continuum theory for which holds the principle of local action, i.e.
such that response at a certain point is given by the value of model variables at that point only. In a
non-local material formulation instead, properties at a certain point depend also on values of variables in
other distinguished material points.
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The expressions for the second Piola-Kirchhoff S stress (3.17) and second elasticity tensor
C (3.18) are then:

SIJ = 2mIOmJZ
∂φ0

∂C̄0Z
, (3.29)

CIJKL = 2mKWmLUmIRmJS
∂2φ0

∂C̄RSC̄WU
. (3.30)

Since CIJ is symmetric, the matrix forms of [∂φ0
∂C̄

] and [ ∂
2φ0

∂C̄∂C̄
] are given by:

[
∂φ0
∂C̄

]
=

[
∂φ0
∂C̄11

1
2
∂φ0
∂C̄12

1
2
∂φ0
∂C̄12

∂φ0
∂C̄22

]
(3.31)

[
∂2φ0
∂C̄∂C̄

]
=


[

∂2φ0
∂C̄2

11

1
2

∂φ0
∂C̄12∂C̄11

1
2

∂φ0
∂C̄12∂C̄11

∂2φ0
∂C̄22∂C̄11

]
1
2

[ ∂φ0
∂C̄11∂C̄12

1
2
∂φ0
∂C̄2

12
1
2
∂φ0
∂C̄2

12

∂φ0
∂C̄22∂C̄12

]
1
2

[ ∂φ0
∂C̄11∂C̄12

1
2
∂φ0
∂C̄2

12
1
2
∂φ0
∂C̄2

12

∂φ0
∂C̄22∂C̄12

] [
∂2φ0

∂C̄11∂C̄22

1
2

∂φ0
∂C̄12∂C̄11

1
2

∂φ0
∂C̄12∂C̄11

∂2φ0
∂C̄2

22

]
.

The formulas (3.29) and (3.30) can be written in matrix form as:

S = m

[
∂φ0

∂C̄

]
mT . (3.32)

C = mm

[
∂2φ0

∂C̄∂C̄

]
mTmT . (3.33)

In this way, all the elements for the solution of PDEs system (3.13-3.15) in terms of the
GL(2,Z)-invariant energy are in place.

3.3 Regularization

We have already mentioned that, as a consequence of its local nature, the continuum
Cauchy-Born theory of elasticity lacks an intrinsic length scale [OP98]. This is not a re-
alistic limit since in a scale-free setting, GL(2,Z) invariant energies inevitably produce
zero deviatoric stresses. The refinement of the discretization mesh produces in such sys-
tems increasingly fine oscillations, with solid reaching a ”fluid like” liquid state in the
limit [Eri73, Fon87]. This means that in a purely continuum framework this theory is
not suitable for the description of crystals and that a regularized length scale needs to be
introduced. Intuitively, this internal length scale has to be somewhere in between a fully
atomistic scale and a coarse continuum macroscale.

To better illustrate this point, we propose a simple thought experiment, illustrated
in Figure 3.3. We take a simple regular box of N ×N atoms interacting with each other
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through a Lennard-Jones pair potential and deform it homogeneously in simple shear. Then
the total potential energy of the box Π is computed and divided by the box volume to ob-
tain the energy density ϕ. For an increasing value of N the obtained landscape becomes
almost perfectly periodic. Moreover, periodicity manifests itself already in atomic domains
whose size is relatively small. For instance, at N = 10 the second and the first wells differ
one another for less than 10%, at N = 50 the second well is captured almost exactly. This
simple experiment suggests that GL(2,Z)-invariant energies do actually represent a small
set of atoms deforming homogeneously. Therefore, the inherent length scale implied in the
CBR assumption, can be taken as the smallest volume where a periodic energy can be
reasonably assigned inside the strain domain of interest in the particular problem.

We recall that the numerical solution of the hyperelastic problem (3.13-3.15) is obtained
using a discrete grid. We can therefore associate a physical meaning with the adopted
discretization, i.e. we make the assumption that the meso-scale GL(2,Z) invariant elements
are at the same time:

• large enough to effectively exhibit a periodic energy landscape.

• small enough to capture the phenomena of interest, for instance the nucleation of
dislocations.

As a consequence of the inherent locality of the ensuing mesoscopic description, some
aspects of a truly atomistic description will be necessarily lost, for instance, dislocations
cores will be represented in a coarse-grained, blurred way. However, the main features of the
dislocation cores are still well captured and the main dislocation interactions, responsible
for instance, for their annihilation, will be accounted without any ad hoc assumptions.

3.4 Numerical Implementation

To find the the numerical solution of the hyperelastic problem (3.13-3.15) we wrote our
FEM code using the C++ programming language [Str00]. We used the weak form of the
PDEs, and looked for a displacement field u such that the total potential energy Π(u)
(3.16) is minimized. Stationary points of the functional Π(u) are given by the condition:

∂Π

∂u
= 0 . (3.34)

For simplicity, we do not consider external applied tractions T∗ and volume forces B. In-
stead, we prescribe displacements of the boundary ∂Ω = ∂Ωu.

The continuum reference domain Ω is discretized using a regular grid of triangular
elements, coherent with the lattice structure. With each node we associate a deformed
cell defined by the basis vectors ei aligned with the element sides. Displacements are
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Figure 3.3: Periodic Behavior and Length Scale: Construction of a periodic energy density function
φ(C) implies that the fundamental element of the model is given by a certain number of atoms deforming
homogeneously. Here, MS energy profile corresponding to a domain of N × N atoms interacting with a
Lennard-Jones potential is shown in correspondence of a simple shear deformation. Note that periodicity
manifests already in correspondence of small sizes N .

then approximated by the interpolation of nodal values ua (the effective unknowns of the
discretized problem):

u ≈ û =

nn∑
a

Na(X)ua . (3.35)

Here upper index a indicates the corresponding node and nn is the total number of nodes in
the discretization of Ω. Interpolation functions Na(X) = {Na

x1(X), Na
x2(X)} satisfy condi-

tion Na(Xb) = δab. They are chosen linear piecewise, with nonzero values only on elements
containing node a. The local definition of the shape functions simplifies noticeably imple-
mentation of the approximate displacement (3.35). We use classical triangular elements
(see also Chapter 8 in [ZT00a]). The same interpolation is used along the two directions
X1 = X and X2 = Y , (Na

X = Na
Y ). More specifically, both the horizontal and the vertical

components of the displacement field u are interpolated using the shape functions of the
type:

Na =
aa + baX + caY

2∆
(3.36)

where ∆ is the area of the triangular element while the coefficients aa, ba and ca depends
only on nodal Lagrangian coordinates:

aa = XbYc −XcYb ba = Yb − Yc ca = Xc −Xb . (3.37)

Indices [·]a,b,c refer to the three nodes belonging to the same element. The discrete defor-
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mation gradient is then given by (in components):

FiJ = δiJ +
n∑
a

Na
Ju

a
i , (3.38)

where Na
,J are the derivatives of nodal function Na with respect to coordinate J . By re-

placing displacement u with the approximate interpolation of nodal values û =
∑nn

a Naua,
we effectively replace (3.34) by the system of nnndim equations:

∂Π

∂uai
=

∫
Ω

∂φ

∂FiJ

∂FiJ
∂uai

dΩ =

∫
Ω
PiJ(F)Na

JdΩ , (3.39)

Note that only derivatives of the shape functions N enter the integral (3.39). Those depend
only on nodal values Xa of the Lagrangian coordinates X:

Na
,X =

Yb − Yc
2∆

, Na
,Y =

Xc −Xb

2∆
. (3.40)

Therefore, all terms of the integrand can be extracted from under the integral making the
integration of (3.39) straightforward (

∫
Ωe
dΩ = Ωe).

Every time an out of balance displacement field is imposed on the boundaries ∂Ω, the
residual forces fa appear at nodes:

fai = − ∂Π

∂uai
= −

∫
Ω
PiJ(F)Na

JdΩ. (3.41)

These forces need to be equated to zero in order to satisfy (3.39). Since these residual
forces depend on the displacement field u through P, the problem is non-linear and the
minimization of Π(u) requires an iterative procedure. Here we utilize the L-BFGS strategy
(Limited-memory Broyden Fletcher Goldfarb Shanno algorithm) [LN89], which belongs to
the family of the Newton-Raphson methods. More specifically, we integrated into our code
the L-BFGS solver available with the dlib C++ library [Kin09]. This strategy allows one
to converge to a local energy minimum even in the strongly non-convex case considered here.

The L-BFGS routine takes as an input the total energy of the system Π =
∫
ω φ(û)dΩ

and the vector of nodal residual forces f whose components are given by (3.41). Then it
evaluates an approximated form of the hessian matrix that is used in the construction of a
tangent matrix K. Finally, an iterative solution of the discrete system

Kk∆uk+1 − fk = 0 , (3.42)

is attempted iterating on k for as long as the residual falls beyond the specified toler-
ance threshold. The resulting solution is a vector of nodal displacements u given by
uk+1 = uk + ∆uk+1. An iterative system of the type (3.42) is solved for every applied
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load increment.

We now summarize the implemented numerical procedure. For a given loading step,
strain tensors Fe and Ce are evaluated in every element of the mesh. These tensors are
assumed to represent the deformation of the underlying lattice basis [ei]. Then, Lagrange
reduction procedure is applied element-wise thus allowing evaluation of the corresponding
reduced basis ēi and therefore of matrices me (using equation 2.5). Obviously, when Ce is
located within fundamental domain D, Lagrange reduction gives simply me = I. Once me

are found, the second Piola-Kirchhoff stress is evaluated using (3.29) and the first Piola-
Kirchhoff is computed from it (3.12). In this way, all the elements for the calculation of
the total energy Π =

∑
e

∫
Ωe φ(Ce) and of the vector of residual forces f (3.41) are in place

and the iterative solution of (3.42) can be sought. The Cauchy stress tensor σe can be
evaluated by post-processing the results obtained for Fe and Se using relation (3.20).

3.5 Model Validation

Now that the strain energy and the associated boundary value problem have been formu-
lated and implemented in a numerical code, we can perform some validation tests. One
of the main advantages of the proposed model is in its capability to describe dislocations
and their main interactions without the need of any phenomenological rules. To show that
this is indeed the case, we discuss here some simple tests. We start by showing a single
edge dislocation and discussing the corresponding stress field. We continue with two simple
examples in which two edge dislocations are placed at close distance and allowed to inter-
act. The observed interaction process is presented as a sequence of non-equilibrium states
with evolution described by the minimization procedure which we interpret physically as
an over-damped athermal dynamics.

3.5.1 Dislocation Core Sructure

To create a single dislocation in an otherwise perfect crystal, we prescribe a displacement
field corresponding to Volterra for the edge dislocation (1.3), which we use as initial con-
dition for the relaxation process under free boundary conditions. More specifically, the
imposed displacement field is (see also [HL06])

ux =
b

2π

[
arctan

y

x
+

xy

2(1− ν)(x2 + y2)

]
, (3.43)

uy =
b

2π

[
1− 2ν

4(1− ν)
ln(x2 + y2) +

x2 − y2

4(1− ν)(x2 + y2)

]
, (3.44)

where b is the Burgers vector magnitude and ν the Poisson’s ratio. This implemented
displacement field corresponds to an edge dislocation centered at point X = Y = 0 , and
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Figure 3.4: Dislocation Stress Field in the Square Lattice: On the left: Cauchy stresses along an
horizontal middle section of the analyzed domain. On the right: stress fields corresponding to the three
stress components σxx, σxy and σyy (values showed are in between −0.1 and 0.1.)

we choose an unit Burgers vector aligned with the X direction.

We now discuss the results obtained for a square domain with N = 200 × 200 nodes,
however, the obtained solution does not depend significantly on the domain size, provided
that we have enough elements to resolve the dislocation core (the lower limit is N ≈ 10).
The resulting equilibrium solution indeed corresponds to a single edge dislocation in the
middle of the domain with a step appearing in the left side of the crystal (see also Figure
3.5).

In Figure 3.4 we illustrate the obtained Cauchy stress field along the horizontal section
in the middle of the domain and stress contours near the dislocation core. Note the quali-
tative agreement with the solution of Volterra illustrated in Chapter 1. However, now the
dislocation core is resolved. Clearly, the finer is the discretization, the narrower will be the
obtained dislocation core.

In Figure 3.5 we show how the metric tensors of the finite elements composing the
discretized domain are arranged on Poincaré disk representing the configurational space
C11, C22 and C12. Clearly, the two energy wells S and S+1

0 are involved simultaneously and
elements in between, distributed along the low-energy valley, actually form the dislocation
core. On the same figure, we illustrate the full domain, showing the Cauchy stress σxy
profiles, and a detail of the element triangulation inside the dislocation core.
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Figure 3.5: Dislocation Structure in the Square Lattice: On the left: distribution of metrics
associated with discrete elements on configurational space C11, C22, C12, with evidence on engaged wells S
and S+1

0 . On the right: A picture of the full domain is showed along with a detail of the triangulation in
correspondence of the dislocation core, showing the presence of sheared element configurations.

The same test was performed for the triangular lattice. In this case the value of the
Burgers vector magnitude b in the initial displacement field equals the triangular lattice
spacing γ. Equilibrium solution is, as in the square lattice case, given by a single dis-
location centered in the middle of the domain with an extra step appearing in the left
surface of the crystal. Stress profiles are also in qualitative agreement with linear elas-
tic solution (1.3), even if the core structure is somehow different of what was observed in
the case of the square crystal, most prominently the computed stress peak values are lower.

In Figure 3.7 we show the corresponding distribution of the values of the metric tensor
in configurational space, with the clear evidence of the engagement of two energy wells
T and T+1

0 . Elements forming the the dislocation core are well aligned with the θ = 0◦

shear trajectory. In Figure 3.7 we illustrate a detail of the grid triangulation around the
dislocation core.
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Figure 3.6: Dislocation Stress Field in the Triangular Lattice: On the left: Cauchy stresses along
an horizontal middle section of the analyzed domain. On the right: stress fields corresponding to the three
stress components σxx, σxy and σyy (values showed are in between −0.03 and 0.03).

Figure 3.7: Dislocation Structure in the Triangular Lattice: On the left: finite element distribution
on configurational space C11, C22, C12 with evidence on engaged wells T and T+1

0 . On the right: A picture
of the full domain is showed along with a detail of the triangulation in correspondence of the dislocation
core, showing the presence of sheared element configurations.
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Figure 3.8: Dislocation Annihilation: Initial configuration imposed to the system which ends with
annihilation of the two dislocations of opposite sign. On the left, we show the analyzed domain with colors
corresponding to the Cauchy stress σxy field. On the right, the elements distribution in the configurational
space is shown.

3.5.2 Dislocation Interactions

We now discuss two simple examples of dislocation interactions. In a first example, two
edge dislocations of opposite sign are introduced in the domain with a relatively small dis-
tance between each other. In the second example, we consider an analogous configuration
but in which dislocations have the same sign. In the first example, dislocations attract
each other up to a point at which the two cores merge, thus restoring the perfect crystal
configuration. In the second example the two cores repel up to a point when the two
dislocations become lattice trapped. The first example is of particular importance as anni-
hilation is a typical example of short-range interaction, which in our model is accounted for
automatically. We recall that the initial configurations are not static equilibria and that
the observed ”dynamics” corresponds to minimization steps of the L-BFGS algorithm. In
both examples we used a regular N = 200× 200 grid.

In Figure 3.8 we show the initial configuration in the annihilation test, characterized by
the presence of a dislocation dipole involving energy wells S−1

0 and S. Due to the recipro-
cal attraction between the two dislocations, this initial configuration is out of equilibrium.
Dislocations are observed to approach towards each other up to the point in which the two
cores annihilate restoring a perfect crystal which is the final equilibrium state. In Figure
3.9 we illustrate different phases of this process in terms of Cauchy stress σxy profiles and
show the corresponding element distribution in the configurational space. As the two dis-
locations approach each other, elements migrate gradually from S−1

0 to the neighboring
well S. In the final configuration all the elements are centered in point S, and we recover
a perfect crystal.

In the second example the two dislocations repel each other. They are observed to
migrate in the direction of the external boundaries up to the point in which they reach
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Figure 3.9: Dislocation Annihilation Process: Some steps of the minimization procedure are shown,
in correspondence of which the gradual approaching of dislocations is observed, up to the point in which
the two dislocations annihilate originating a perfect crystal. On the top, Cauchy stress σxy field is shown,
along with the corresponding elements distribution in the configurational space (on bottom).

an equilibrium. In Figure 3.10 we illustrate the initial and final configurations in terms of
Cauchy stress σxy contours and show the element distribution in the configurational space.

These examples are simple, however they allow us to illustrate the inner working of
the proposed model. Despite the fact that we are dealing with a local formulation, our
examples show that the model can effectively describe the main features of dislocation
interaction.
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Figure 3.10: Initial (top) Configuration and Final Equilibrium State (bottom) for the Case
of the Two Dislocations of the Same Sign. The two dislocation repel each other up to an equilibrium
distance in which attractive and repulsive forces are balanced. In this case the engaged wells are S, S+1

0 and
S+2
0 . Some readjustments of the elements occupying the low-energy valleys between the wells is observed

between initial and final configuration.
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Chapter 4

Homogeneous Nucleation

As a proof of principle, we apply the proposed model to the study of nucleation of dis-
locations in a perfect crystal, also called homogeneous nucleation of dislocations. The
homogeneous, defectless crystal is loaded quasi-statically up to a critical load for which
it becomes unstable. This loss of stability drives the evolution of the crystal towards a
new equilibrium configuration in which crystalline defects are present. We study system-
atically this elastic instability and the ensuing defect patterns. Our particular focus is on
the role of crystal symmetry (square and triangular crystals) and of crystal orientation
inside the loading device. Before performing simulations, we characterized analytically the
stability condition for the system, thus obtaining reference values for the critical loads and
the related unstable modes. The presence of an analytical criterion will allow us to better
interpret the obtained numerical results.

Despite the fact that defect-free crystals are uncommon in nature, the study of ho-
mogeneous nucleation phenomena has become more important with the increasing minia-
turization of technological devices, containing only very few initial dislocations. Homo-
geneous dislocation nucleation under mechanical probing tests, such as nanoindentation,
has been widely investigated with both experiments [dlFZG+02, GVVS01] and simulations
[ZLVV+04, MR08, GM16]. This phenomena plays a fundamental role also in different ex-
perimental conditions, such as, for instance, the homogeneous compression of nano-pillars
[RNS07]. Moreover, dislocations have been observed to nucleate homogeneously also at
the interior of grains in polycrystals [GO08]. Here we are more interested in a theoretical
investigation of the homogeneous nucleation phenomena, which allows one to identify and
characterize various relevant mechanisms in a fundamental manner.

We begin with the theory leading to the Legendre-Hadamard stability condition [Had03],
which was used, for instance, by Hill in his analysis of stability of crystals [Hil58, Hil62].
Then, we will discuss our numerical results obtained for square and triangular crystals,

71



dedicating a subsection to each crystal symmetry. We start with the analytical predictions
for the bifurcation point and then present the study of the post-bifurcation behavior in de-
tail. In this Chapter we limit our analysis to the case of the polynomial energy (2.27), while
the following Chapter we will study the same physical phenomenon using the pair-potential
based energy.

4.1 Stability Criterion

It is known that the solution of the problem (3.13-3.15) with displacements controlled at
the whole boundary is stable with respect to small perturbations as long as the energy
function φ is strongly elliptic [Hil62, Ogd97]. Consider a homogeneous, slowly increasing
deformation described by the deformation gradient F. Along the loading path, the corre-
sponding energy φ(F) will be strongly elliptic up to a certain critical value of the imposed
load Fc. This value is a bifurcation point in the solution path and for F > Fc the homoge-
neous solution will cease to be stable. The strong ellipticity condition can be formulated
in terms of the acoustic tensor Q, defined by the condition:

Qik(N) = NJAiJkLNL , (4.1)

where N is an arbitrary unit vector in the Lagrangian configuration and AiJkL the lin-
earized elastic moduli (3.19).

Tensor Qik is called acoustic tensor since it is related to the propagation infinitesimal
waves superimposed on a finite deformation [Eri53]. We recall that, since stability can be
understood by studying the system’s response to a perturbation, the theory of infinitesimal
waves and stability analysis of the incremental boundary problem are closely connected (see
for instance section 6.4 of [Ogd97]).
The strong ellipticity condition is then expressed as:

Qik(N)mimk > 0 , (4.2)

with m being an arbitrary unit vector in the Eulerian configuration. Stability of the
solution is lost when the inequality (4.2) is no longer strict, with equality emerging for
some non-trivial N and m.
Consider the incremental version of equilibrium equation (3.13) (with no body forces):

(AiJkLu̇k,L),J = 0 , (4.3)

The analogy with the theory of infinitesimal waves becomes apparent when we consider
the dynamic counterpart of (4.3):

(AiJkLu̇k,L),J = %
∂2u̇i
∂t2

, (4.4)
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and take as incremental displacement u a form of a plane wave

u = mf(N ·X− ct) , (4.5)

where unit vectors N and m are, respectively, the wave direction and the wave polarization,
f is a double differentiable function and c represents the wave velocity. By substituting
(4.5) in (4.4) we obtains:

Qik(N)mk = AiJkLNJNLmk = %c2mi , (4.6)

which is known as the propagation condition. As long as Q is positive definite (i.e. as
long as the incremental equations are strongly elliptic) the eigenproblem (4.6) has two real
eigenvalues (three in the three-dimensional case) corresponding to a longitudinal and a
transversal wave [Hil62]. Instead, when Q is positive semi-definite, equation (4.6) admits
solution with c = 0 for some non-zero N and m, thus implying the existence of a stationary
wave, and therefore an incipient instability. When (4.6) admits negative eigenvalues, the
homogeneous configuration is unstable. This indicates the emergence of a new equilibrium
and implies inhomogeneity and pattern formation.

The direction N and the polarization m of the corresponding wave can be interpreted
as the characteristics of the nucleated defects. Indeed, the same acoustic tensor based
instability criterion is used for the prediction of shear bands [Ric76], with the Eulerian
counterpart n of N being the normal to the plane in which the shear band develops.

In our mesoscopic setting, if n turns out to be approximately perpendicular to m, we
expect the nucleating defects to be dislocations with slip plane normal to n and Burgers
vector aligned with m.

For hyperelastic materials condition (4.4) implies:

det(Q(N)) = 0 . (4.7)

It is possible to reformulate this condition in a way that the associated wave direction and
polarization are both in the Eulerian configuration. Consider the Eulerian moduli aijkl
obtained from AiJkL applying the push-forward operator (already mentioned in Chapter
3):

aijkl = FjRFlSAiRkS , (4.8)

The expression in the Eulerian configuration for the acoustic tensor qik is then:

qik = njnkaijkl , (4.9)

which leads to a fully Eulerian formulation of the stability criterion:

det(q(n)) = 0 . (4.10)
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That is the condition that we will be using in what follows.

Since the energy density φ is defined directly in terms of C, it is convenient to compute

acoustic tensor AiJkL = ∂2φ
∂FiJ∂FkL

(or aijkl) in terms of CIJKL = 2ρ0
∂φ2

∂CIJ∂CKL
. This is done

by the relation:
AiJkL = 2CRJSLFkRFiS + SJLδik . (4.11)

Moreover, in the computation of (4.2), one has to take in consideration the relations (3.29-
3.30). The expression of the acoustic tensor in terms of the reference energy φ0 takes the
following form:

Qik = NJNL(4mXWmJUmY RmLS
∂2φ0

∂C̃RSC̃WU
FkY FiX + δik2mJOmLZ

∂φ0
∂C̃0Z

) . (4.12)

The use of condition (4.7) in continuum elasticity is rather common [Big12], however it has
been also used to predict nucleation of microscale defects (see for instance the ”Λ criterion”
proposed in [VVLZ+03, ZLVV+04, ZZ08]). The adequacy of this criterion to characterize
microscale instabilities is still debated. In [MR08] the authors contest its validity for
prediction of dislocation nucleation under nanoindentation, a situation characterized by a
strongly heterogeneous strain field. This statement is partly confuted in [GM16], where the
authors found this criterion adequate for the analysis of nucleation under nanoindentation.
In our work the use of this criterion is fully justified as we are studying instability of an
homogeneously deformed body loaded in a hard device.

4.2 Square Lattice

In this Section, we report the homogeneous nucleation results obtained for the square
lattice, which is simulated numerically using the polynomial energy (2.27). First, we dis-
cuss the analytical results obtained from the stability analysis, with focus on the value of
the critical load αc and the related orientation n. Then, we discuss the post-bifurcation
patterns obtained through numerical minimization of the energy functional (3.16).

4.2.1 Stability analysis

Starting from the undeformed configuration, we used condition (4.10) to identify the do-
main in the configurational space where the strong ellipticity holds. Within this region,
the crystal can deform homogeneously and elastically, however, as soon as the equality
in (4.10) can be achieved for some non trivial n, the homogeneous state becomes unsta-
ble and defects begin to appear within the crystal. To study the onset of instability in
the perfect crystal, we look for the points in configurational space for which the equality
det qik = 0 holds, which distinguish the boundary of homogeneous, elastic regime. With
some semantic freedom, we will refer to the surface identified in this way as the yield surface.
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To find the points belonging to the yield surface, we considered different simple shear
deformations of type (2.28) and identified the first value of the loading parameter α = αc
for which the condition det qik = 0 is satisfied (the bifurcation point). This special state
corresponds to a point in the configurational space as we illustrate in Figure 4.2. By
spanning the configurational space with many simple shear trajectories, we find a set of
bifurcation points and the yield surface is then obtained by interpolation. The points in
which the yield surface intersects the boundaries of the fundamental domain are of par-
ticular interest, and therefore we considered explicitly also the fat rhombic (2.31) and the
rectangular (2.32) pure shears.

The obtained yield surface is illustrated in In Figure 4.2. Observe that the lowest value
of αc corresponds to the case when the energy barrier is the lowest. The corresponding
path is the rhombic pure shear, and αc = 0.132. This value increases continuously as we
move to the rectangular pure shear, corresponding to the highest energy barrier, where the
associated critical load is αc = 0.499. The form of the yield surface is therefore elongated
as illustrated in Figure 4.2.

We performed such stability analysis along five different loading paths. These are
the two pure shears which, starting from point S, travel along the boundary of funda-
mental domain D (rhombic and rectangular), and three simple shears, with inclinations
θ = 0◦, arctan(1

2), and 45◦, see (2.30). As we have already remarked, the two pure shears
are important as they correspond to two extremal responses of the system. The other paths
are representative of three different ways of spanning the energy landscape with a simple
shear (see also the corresponding energy landscape in Figure 2.8 of Chapter 2). In Figure
4.2) we show all the analyzed paths on configurational space. They are all characterized
by different values of the critical load αc.

For all these paths, we evaluated the corresponding unstable directions n. Then, solv-
ing the eigenproblem (4.6), we obtained the corresponding polarization vectors m, which
are always almost perpendicular to n. This suggests that instability will develop with the
nucleation of dislocations along the slip plane n⊥, in analogy with the shear-band type
instability in a purely continuum problem.

By associating with each unstable mode a unit vector n = (cos ξ, sin ξ)T we can show
the det qik profiles as a function of the instability angle ξ, which characterizes the orien-
tation of n with respect to the reference horizontal axis X. In Figure 4.3 we show such
graphs for the rhombic and rectangular paths, while in Figure 4.4 we show the analogous
graphs for our three simple shears. In each case, we show two profiles corresponding to
the beginning of the loading path (α = 0.001) and to the critical load α = αc, where the
equality in (4.10) is first reached for some n.
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(a) (b) (c)

Figure 4.1: Yield Surface for the Square Lattice: a) Simple shear trajectory θ = 0◦ is shown, with
evidence on the point in which the bifurcation appears. b) Bifurcation points, drawing the yield surface,
are showed for different simple shears in which the angle θ is progressively increased of 5◦. We show also
the bifurcation points corresponding to the fat rhombic and rectangular pure shears (grey stars). c) The
yield surface, obtained by interpolation of bifurcation point, is shown.

Figure 4.2: Analyzed Shear Paths on the Configurational Space: Two pure shears, the rectangular
and the rhombic paths coinciding with boundaries of D, and the three simple shears θ = 0◦, arctan( 1

2
), and

45◦ are analyzed.
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Figure 4.3: det qik Profiles along the Fat Rhombic and the Rectangular Paths: Evidence on load
αc for which equality in (4.10) is satisfied. The fat rhombic pure shear (on top) shows the simultaneous
appearence of two instability directions while just one appears in case of the rhombic path (on bottom).
On the side of each graph we show the orientation of wave direction n⊥ with respect of the deformed lattice
cell at α = αc.
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In the case of the fat rhombic pure shear path (Figure 4.3) we observe the simultaneous
appearance of two unstable modes n1(ξ1) and n1(ξ2). Angles ξi are respectively ξ1 = −6.3◦

and ξ2 = 88.74◦. Then, the associated directions n⊥1 and n⊥2 are almost aligned with the
vectors of the lattice cell in the Eulerian configuration at α = αc, inclined respectively by
0.00◦ ≈ ξ⊥2 and 82.40◦ ≈ ξ⊥1 with respect of X axis (see Figure 4.3). This means that both
these two slip directions are likely to be activated and we expect dislocations to nucleate
simultaneously along e1 and e2.

This simultaneous appearance of the two unstable modes n is quite remarkable. Indeed,
while the appearance of dislocations along e1 is suggested by the direction of the applied
load, the coupling with e2 is counterintuitive. This coupling is due to the peculiar nature
of the saddle point T, already discussed in Chapter 2 (see also Figure 2.9). This will be
explained more clearly in the next subsection.

Along the rectangular pure shear path, only one instability direction n = (cos ξ, sin ξ)T

can be activated, with the angle ξ = 0.00◦. Despite n⊥ being perfectly aligned with the
stretched direction e2 this instability does not result in the activation of the corresponding
slip system, as we are going to see below.

Graphs obtained for the three simple shear paths show behaviors that are in between
these two cases. The results of the stability analysis for the simple shear path θ = 0◦

are very similar to those of the fat rhombic path, with two unstable modes appearing
almost simultaneously at αc 1 = 0.132 and αc 2 = 0.133. Even in this case, the correspond-
ing unstable modes are approximately aligned with the deformed lattice directions, with
ξ0◦

1 = −6.03◦, ξ0◦
2 = 88.96◦ and current e1, e2 inclined by 0.00◦ ≈ ξ0◦⊥

2 and 82.50◦ ≈ ξ0◦⊥
2

respectively.

Instead, for higher values of θ, one observes the predominance of a single unstable
mode, with ξ26◦ = −3.69◦ and ξ45◦ = −14.85◦. The corresponding direction n⊥ is close to
the sheared vertical lattice vector e2, with a misaligment of about 5◦ for both θ = 26◦ and
the θ = 45◦ shear paths.

These observations suggest a strong dependence of the post-instability pattern on the
loading path, i.e. the orientation of the crystal with respect to loading device. For the
paths which evolve in the low energy basin identified by square point S and triangular
point T, instability occurs at relatively low values of the load α. Moreover, two unsta-
ble modes appear almost simultaneously suggesting the simultaneous activation of the two
plastic mechanisms corresponding to the two low energy valleys associated with θ = 0◦ and
θ = 90◦ simple shears. Instead, paths evolving through higher energy barriers are charac-
terized by higher values of αc, instability takes place at higher values of energy density φ
and the associated unstable mode is not aligned with any of the lattice directions.
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Figure 4.4: det qik Profiles for the Simple Shears θ = 0◦, arctan( 1
2
), 45◦: Evidence on critical load

α = αc. Lattice configurations corresponding to α = αc and associated unstable modes n⊥ are also shown.
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4.2.2 Simulations Results

Simulations were performed by loading the system quasi-statically. The system is assumed
to evolve slowly through a series of equilibrium configurations, each characterized by a
slightly different load. Therefore, dynamic effects can be neglected and the quasi-static
problem (3.13-3.15) needs to be solved for each of the applied load steps. Evolution of the
system is followed until the value of loading parameter for which stability is lost.

We refer to the numerical counterpart of analytical value αc as α∗c . Stability loss
manifests itself through a sudden drop in the average stress and the appearance of an inho-
mogeneous configuration of defects. The emergence of complexity can be also observed in
configurational space. Indeed, by assigning a point in the configurational space to the met-
ric Ce of every individual finite element of the discretization, we observe a perfect overlap
for α < α∗c . However, when stability is lost, the homogeneous configuration breaks down
and points spread in configurational space, reaching different energy wells (see Figure 4.5).
In what follows, we will always associate with the observed patterns the corresponding
configuration in the space of metric tensors C, as in Figure 4.5.

In order to ensure independence of the system size, we performed the simulations consid-
ering different numbers of nodes, ranging from 104 to 106. We also used different boundary
conditions, experimenting with both fixed and periodic conditions1. No significant depen-
dence on these factors was identified in the performed simulations, and the presented results
have to be considered robust. The loading step, however, has to be selected with some
care. We first loaded the system with a load step of 10−3 to ensure an overall agreement
between the numerical value α∗c and the αc evaluated theoretically. In a second set of tests,
we refined the load step to 10−4 in the proximity of the critical value of α to capture in
more detail the nucleation phenomenon.

For all the considered paths, an excellent agreement between the numerical value α∗c
corresponding to the first instability and the theoretical value of αc was observed (see
Figure 4.6). Connection of the obtained patterns with the evaluated unstable modes n
is more straightforward along some paths than others, as we show below. We begin the
discussion with the two pure shear paths. They are particularly revealing as they represent
two extremal system responses and they evolve along highly symmetric directions in the

1In order to apply periodic boundary conditions, we assign as neighbor to each boundary node the
corresponding node on the opposite side. Positions of these periodic neighbors are then adjusted, keeping
in mind that they have to be translated by the domain dimension deformed accordingly with the imposed
deformation gradient F. In correspondence of every loading step, boundary nodes are moved in agreement
with the imposed deformation gradient, but are then let free to relax.

80



Figure 4.5: Homogeneous Nucleation: In this picture, a perfect crystal with fixed boundary conditions
is loaded quasistatically up to load value α at which stability of the homogeneous configurations is lost.
System deforms homogeneously up to point a), and all the elements are mapped on a single point on
configurational space. In the post instability equilibrium, point b), the system show patterning and more
than one wells are occupied on configurational space.
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Figure 4.6: Energy Density up to Nucleation: Evolution of energy density φ along the four considered
paths. On the left: the fat rhombic and the rectangular pure shears. On the right: The three simple shears
θ = 0◦, arctan( 1

2
), and 45◦. A good agreement between the analytic value αc and the numerical α∗c is

observed in all these loading directions. The showed data were obtained from a N = 104 simulation.
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Figure 4.7: Homogeneous Nucleation along the two Pure Shears: These loading paths respectively
the paths for which instability happens at lowest and higher value of loading parameter α. These two
”extremal” paths are representative of two different mechanisms of nucleation.
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Figure 4.8: Post-Instability Pattern for the Rhombic Pure Shear: Results are shown for a N = 104

domain with both periodic (left) and fixed (right) boundaries. On top: the Cauchy stress σxy is shown in the
full domain with evidence on two edge dislocations. On bottom: The element points in the configurational
space. Wells S, S0◦

1 , and S90◦
−1 are simultaneously activated. The points on the valleys connecting these

wells correspond to the elements in the dislocation core.
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energy landscape. The fat rhombic path is the one for which instability takes place at the
lowest level of energy and at the smaller value of the critical load, while the rectangular
path is the one for which both the energy and the stresses are the highest. In Figure
4.7, we illustrate evolution of energy density φ along these loading paths and show the
configuration of stress at the loading steps immediately preceding and following instability.
The results obtained for rhombic pure shear are summarized in Figure 4.8, where we show
the post-instability pattern along with elements distribution in the configurational space.
Coloring reflects the value of the Cauchy stress components σxy.

As predicted by the instability analysis, both vertical and horizontal edge dislocations
are present in the post-bucling state. We emphasize that all these dislocations nucleate
collectively. We recall that in our model dislocations appear as interfaces between equiv-
alent shear-related phases and that elements located along low-energy valleys connecting
the energy wells represent dislocation cores (as illustrated in Figure 3.5). Considering the
configuration of dislocation shown in Figure 4.8 one can clearly notice how both plastic
slips associated with the two energy valleys are activated. The three wells S, S0◦

1 , and
S90◦
−1 are simultaneously present in the post-instability equilibrium, and points in between

S and S0◦
1 and in between S and S90◦

−1 correspond to the horizontal and vertical dislocation
cores, respectively. Observing the distribution of points in the configurational space, one
can understand the importance of the saddle point T ensuring the coupling of these two
modes.

Along the rectangular pure shear path, the mechanical behavior and the resulting de-
fect pattern are very different. Indeed, the post instability configuration appear as a 45◦

rotated version of the original configuration. Some elongated configurations of defects are
also observed, but they are rather different from the neatly defined edge dislocations found
along the fat rhombic pure shear path. Quite interestingly, this rotated configuration is
obtained by a fine mixture of shear-equivalent phases, in which the undeformed crystal
phase S is entirely absent. We illustrate this in detail in Figures 4.9 and 4.11. Observe
that, the engaged energy wells are 45◦ rotated versions of the S0◦

1 and S0◦
−1 wells (we recall

that each well is the configurational space represent an orbit where the rotation equivalent
configurations are indistinguishable). Even if some disorder is present, the rotated con-
figuration emerges as a fine mixture of these two fully compatible phases almost without
any presence of interface defects. This is a very different behavior from what is observed
along the rhombic pure shear phat, where the sheared phases were confined to some isolated
slip planes throughout the crystal. Here the lattice reorganization is global and cooperative.

To summarize, we observe two very different behaviors while loading the crystal along
the opposite sides of the fundamental domain. Along the fat rhombic path, which crosses
the yield surface at low energy, instability manifests itself as collective nucleation of edge
dislocations. The coupling of the vertical and the horizontal slip planes, predicted by the
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Figure 4.9: Post-Instability Pattern for the Rectangular Pure Shear: A N = 104 domain is
considered. Results for a simulation with periodic boundaries (left) and fixed (right). On top: the Cauchy
stress σxy in the full domain with evidence on a region, to better illustrate the final, 45◦-rotated cristal
lattice structure. On bottom: the elements points in the configurational space show the engagement of the
two wells S0◦

1 , and S0◦
−1 (or more precisely a 45◦-rotated equivalent of these two), with some residual defects

variously placed.
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Figure 4.10: Crystal Rearrangement along the Rectangular Path On top: details of the crystal
structure along the rectangular path before (a), and after (b), nucleation. On the bottom, a detail of
the post-instability pattern, where elements of the triangulation are shown. The crystal structure experi-
ences a global rearrangement where the 45◦ rotated version of wells S0◦

1 and S0◦
−1 are finely mixed. This

rearrangement gives again a square lattice, but rotated by 45◦.
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Figure 4.11: Cauchy Stress σxy and Lattice Structure for the Rhombic and the Rectangular
Paths:. (a) rhombic, (b) rectangular. In yellow we highlight the dislocation cores and the other observed
topological defects. While in (a) the shear is limited to specific lattice planes, in (b) the rearrangement is
global.
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instability analysis, highlights the importance of point T in shaping the energy landscape.
On the other hand, along the rectangular path, instability takes place at much higher val-
ues of energy density. The path crosses the landscape far away from any low-energy valleys
and the energy minimization leads to the global reorganization of the crystal, in which
the two compatible sheared configuration S0◦

1 and S0◦
−1 become finely mixed throughout

the full crystal volume. In this latter case relation between predicted unstable mode n
and the observed pattern is not really visible. The rectangular path intersects the yield
surface in correspondence of its narrow edge and may therefore seem a somewhat extreme
type of loading. However, we will illustrate shortly how the corresponding reorganization
mechanism appears also in the case of other simple shears crossing the yield surface in
correspondence of high energy values.

The simple shear paths show an intermediate behavior between the two extreme cases
discussed above. In agreement with what was predicted by the stability analysis, the θ = 0◦

shear path shows a response analogous to the one along the rhombic shear path, and a
collective nucleation of vertical and horizontal dislocations is observed. The activation of
both low energy valleys is clearly visible in the configurational space, where it is possible
to notice the simultaneous engagement of the three wells S, S0◦

1 and S90◦
−1 (Figure 4.12.(a)).

The θ = arctan(1
2) shear path also shows nucleation of linear defects identifiable as edge

dislocations, but only along the vertical shear plane. This agrees with the stability analysis
prediciting that only one mode n gets activated, even if a certain misaligment between n⊥

and Eulerian lattice direction e2 exists. In the configurational space we observe a major
stream of points in the valley between the S and S90◦

−1 wells. however the final configurations
are not centered at the bottoms of these wells, but are slightly shifted towards rectangular
lattices, meaning that the system is not fully relaxed (Figure 4.12.(b)). The most interesting
scenario is observed for the θ = 45◦ simple shear path, which crosses the yield surface far
from the low energy valley. In this case, the final pattern is characterized by the presence
of grains with different lattice orientation, separated by irregular boundaries. Inside each
grain some isolate edge dislocations is present. This added complexity is reflected in the
associated configurational space of metric tensors, where one can see that, in addition to
the reference well, all the four neighboring wells become also engaged, and few elements
even reach more distant wells. In Figure 4.13, we show how the differently oriented crystal
regions can be obtained with a combination of shear-invariant phases, similarly to what
was observed along the rectangular path. Therefore, in this case both the dislocations-
type slip and the global rearrangement mechanism are activated, allowing the system to
reach a very complex patterning already during its first instability. in this case, as for
the case of the rhombic pure shear, we do not observe a direct connection between the
predicted unstable mode n and the observed pattern. As we have already mentioned,
these patterning features are independent of system sizes and of the nature of boundary
conditions. In Figures 4.14 and 4.15 we show patterns obtained for a N = 106 simulations
as we apply θ = 0◦ and θ = 45◦ simple shears. The larger system size allows one to
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(a) (b) (c)

Figure 4.12: Post-Instability Patterns for the Considered Simple Shears: A N = 104 domain is
considered. Cauchy stress σxy is showed on the entire domain and on a blown-up detail, to better appreciate
the difference of the obtained patterns. Distribution of the elements points in the configurational space it
is also shown.
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Figure 4.13: A detail of the Simple Shear θ = 45◦ Post-Instability Pattern: colors indicate the
values of σxy component of Cauchy stress. Regions with different orientations are accorded with various
topological defects. As in the rectangular path, the lattice rotation is actually a mixture of compatible
sheared phases. Dislocations are also observed.
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generate more complex rearrangements in the microstructure, however, the main features
of the emerging defect patterns remain the same.

Figure 4.14: Post-Instability Pattern for a N = 106 Simulation with Periodic Boundary Con-
ditions for θ = 0◦ Simple Shear: Colors indicate the σxy stress field.

4.3 Triangular Lattice

In this Section, we apply the same analysis to the triangular lattice with hexagonal sym-
metry. To this end, we first construct the polynomial energy (2.27) with coefficient β = 4
and the perform stability analysis based on strong ellipticity condition (4.10). We focus on
some representative paths and discuss simulation results, pointing out their relation with
the analytical predictions. This allows us to show not only the significant dependence of
the nucleated defect pattern on orientation of the sample in the loading device, but also
on the symmetry of the lattice.

4.3.1 Stability analysis

Starting from the reference triangular well T, we followed general shearing paths and com-
puted the first critical values of the load α = αc where the strict inequality in (4.10) first
fails. This gives us the yield surface, separating the region of configurational space where
homogeneous deformation of the crystal is stable from the region in which one can expect
the simultaneous activation of energy wells different from T. In Figure 4.16 we illustrate
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Figure 4.15: Post-Instability Pattern for a N = 106 Simulation with Periodic Boundary Con-
ditions for θ = 45◦ Simple Shear: Colors indicate the σxy stress field.

the computed yield surface. Here, the two extremal paths corresponding to the boundaries
of the fundamental domain are two rhombic pure shears: the fat rhombic path and the
skinny rhombic path, (the associated deformation gradient is given by (2.31) and (2.38),
respectively). Note the difference with the yield surface which we derived for the case of
the square lattice (Figure 4.2): in the present case the highest value of αc, i.e. 0.285, is the
one along the low energy fat rhombic path, while the lowest value αc = 0.135 corresponds
to the high-energy skinny rhombic path. The value of αc increases continuously between
these two opposite sides of the fundamental domain and the yield surface presents a charac-
teristic triangular shape. Given this symmetry, the difference between the critical values of
αc at the extremes of the yield surface are less pronounced than in the case of square lattice.

In addition to the two rhombic pure shears, we also consider simple shears paths θ = 60◦

(equivalent to θ = 0◦ and 120◦) and θ = 30◦ (equivalent to θ = 90◦ and 150◦). These
two simple shears are the representatives of an ”easy” shearing direction, along a dense
crystallographic plane, and a ”hard” one, evolving towards higher energy barriers (see also
Figure 2.11 in chapter 2). All these mentioned paths are illustrated in Figure 4.16 (b).

We perform the acoustic tensor analysis as before, and report the det qik profiles in Fig-
ure 4.17 and Figure 4.18 for the pure and simple shears, respectively. Similarly to what we
have encountered in the case of square symmetry, two instability directions are observed to
appear simultaneously along the low energy fat rhombic path. Then, even in the triangular
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(a) (b)

Figure 4.16: Yield Surface for the Triangular Lattice: a) The yield surface enclosing the region
surrounding the reference triangular well T is illustrated with a thick black line. b) The analyzed shear
paths and their relation with the yield surface are shown.

lattice, there exists a non trivial coupling between various plastic mechanisms. However,
while in the case of square symmetry wave directions were aligned with crystallographic
planes, in the present case the corresponding directions n⊥ are not particularly aligned with
any of the deformed lattice vectors. Indeed, one has for the two directions ξ⊥1 = 82.98◦ and
ξ⊥2 = −7.97, while the crystallographic planes are oriented at 0.00◦ and 75.01◦ respectively
(see Figure 4.17). Along the skinny rhombic path, just one instability direction is observed
and, similarly to what we have encountered in the case of square symmetry, this direction
is exactly perpendicular to the compressed axis. The analyzed simple shears paths are
characterized by the presence of one unstable mode only, not aligned with the deformed
crystallographic directions. In the ”easy” simple shear θ = 60◦ direction, the misalignment
with the closest direction e2 is of about 18◦, and is even more pronounced in the more
generic shear direction θ = 30◦, where the misalignment exceeds 30◦. We summarize all
these results in Figure 4.18. The critical loadings are αc = 0.179 and αc = 0.162 for θ = 60◦

and θ = 30◦, respectively.

We remark that also for the triangular symmetry the polarization vector m is always
perpendicular to n, thus indicating a ”shear-band” type of instability. However, the mis-
alignment with the crystallographic directions makes the prediction of the activated slip
planes less straightforward.
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Figure 4.17: det qik Profiles along the Fat Rhombic and the Skinny Rhombic Paths: Evidence
on the load αc for which equality in (4.10) is satisfied. the fat rhombic pure shear (a) shows the simultaneous
appearence of two instability directions, while just one appears in case of fat rhombic path (b). On the
side of each graph, we show the orientation of wave direction n⊥ with respect of the deformed lattice cell
at α = αc.
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Figure 4.18: det qik Profiles along The Considered Simple Shears: Profiles for θ = 60◦ and θ = 30◦

loading paths are shown, with evidence on load αc for which equality in (4.10) is satisfied. Both these simple
shears are characterized by the presence of one unstable mode only, not aligned with crystallographic
directions.
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4.3.2 Simulations Results

As in the case of the square symmetry, numerical simulations were performed for different
system sizes (varying between 104 and 106) and boundary conditions (fixed and periodic).
While these factors do not influence the observed mechanisms of homogeneous nucleation,
a certain care has to be taken when considering another factor, the applied loading step.

Our loading protocol will be the same as the one adopted previously for the square
symmetry case. In a first set of experiments, to verify the overall agreement with the
analytic instability criterion, it is used with a loading increment of 10−3. Then, a refine-
ment to 10−4 is adopted near the first instability in order to capture in detail the inherent
homogeneous nucleation pattern.

Precursors of Instability and Nucleation Mechanism

In the performed simulations, an overall agreement with the analytical yield surface is
observed, however, differently from what we saw in the square symmetry case, nucleation
occurs for values α∗c which are of about a 10% higher than the corresponding analytical pre-
dictions αc. However, when det qik is already negative and in proximity of the nucleation
event, the system stops being perfectly homogeneous and instead develops periodically-
spaced modulations (see Figure 4.19).

For all the considered loading paths, orientation of these inhomogeneous bands agrees
with the direction n⊥ obtained from the strong ellipticity condition (4.10). These bands are
observed more clearly when fixed boundary conditions are used. However, the mechanism
leading to instability is independent from the particular type of boundary conditions. The
non-equilibrium configurations found by the minimization algorithm show the growth of
the observed bands that, first become more pronounced and end up being the sources for
the nucleation of dislocations. The dislocations appear as dipoles, originating at the center
of the bands themselves, where the lattice is more distorted.

To better understand this process, consider Figure 4.21 where the main phases of the
evolution are illustrated for simple shear directions θ = 60◦ and θ = 30◦. The observed
bands represent lattice modulations which carry a relative rotation centered in the mid-
dle of the bands (phase 1 in Figure 4.21). As the amplitude of the modulation grows,
leading to higher relative rotations, the system gets ready for the formation of dislocation
dipoles (phase 3). In Figure 4.23, we illustrate specifically the relative rotation that are
already observable from the early, pre-instability stage of the bands formation. Starting
from an homogeneous state characterized by a particular value of rotation R = U−1F,
further rotations start to spread around this value, spanning a certain interval and thus
shaping the banded structure. The reason for which the instability direction, driving the
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(a) (b)

(c) (d)

Figure 4.19: Precursors of the Incipient Instability: Inhomogeneous states, precursors of the in-
cipient dislocation nucleation, for the considered loading paths. These precursors are characterized by the
appearence of higher energy bands, periodically spaced, and whose orientation match the direction of the
unstable mode n⊥ predicted analytically.
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Figure 4.20: Energy Density up to Nucleation for the Triangular Lattice: Evolution of the energy
density φ along the four considered trajectories. On the left: the fat rhombic and the skinny rhombic pure
shears. On the right: the two simple shears θ = 60◦, and 30◦. Instability happens systematically later than
what predicted analytically, and we observe α∗c ≈ 1.1αc
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Figure 4.21: Dislocation Nucleation in the Triangular Lattice along θ = 60◦ Simple Shear:
Evolution of the energy density and the Cauchy stress σxy field representing three different phases of the
instability which leads, from the first appearence of inhomogeneous bands, to the formation of dislocations.
These are not equilibrium states, but are part of the overdamped dynamics implicit in the minimization
procedure. The sequence shows nucleation in the θ = 60◦ simple shear. On bottom we show the corre-
sponding distribution of the elements in the configurational space, which highlights the importance of the
square point in driving the development of the banded precursors.
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Figure 4.22: Dislocation Nucleation in the Triangular Lattice along θ = 30◦ Simple Shear:
Evolution of the energy density and the Cauchy stress σxy field representing three different phases of the
instability which leads, from the first appearence of inhomogeneous bands, to the formation of dislocations.
These are not equilibrium states, but are part of the overdamped dynamics implicit in the minimization
procedure. The sequence shows nucleation in the θ = 30◦ simple shear. On bottom we show the corre-
sponding distribution of the elements in the configurational space, which highlights the importance of the
square point in driving the development of the banded precursors.
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Figure 4.23: Rotation Distribution in the Band Patterning: θ = 30◦ (left) and θ = 60◦ (right)
simple shears. This inhomogeneous equilibrium configuration immediately preceeds the instability process
described in Figure 4.21, where the interval of observed rotations furter increases, up to the formation of
dislocation dipoles.

Figure 4.24: Bands Patterning in configurational space: Dispersion of elements in configurational
space corresponding to the first instants of instability, when bands spread originating a new inhomogeneous
pattern. The two case of the skinny and the fat rhombic paths are shown. Here the Dispersion is originated
by the bands which are respectively tangential and perpendicular to the yield surface.

band formation, is not oriented along the crystallographic planes, can be seen clearly if we
observe how elements evolve in the configurational space. As we illustrate in Figures 4.21
and 4.22, the early configurations of these bands are clearly influenced by the presence of
the low energy square saddle point. More specifically, the band formation corresponds, in
the configurational space, to the spreading of the configuration points that were originally
superimposed on a single point along the imposed shearing path. The spreading cloud of
the configurational points evolves towards an elongated structure clearly pointing towards
the square symmetry saddles in the middle of low energy valleys (phase 1 of Figures 4.21
and 4.22). This phenomenon takes place generally for all shear directions, with two partic-
ular cases. Those are the two rhombic paths, where the spreading associated with bands
formation is in the direction either tangential or perpendicular to the yield surface, see
Figure 4.24.

In the case of the fat rhombic, low energy, path two types of bands appear simulta-
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neously, in agreement of what we learn from the stability analysis where two unstable
directions n⊥i are found. However these two trajectories are exactly superimposed in the
configurational space which makes the visualization of this effect less straightforward than
in the square lattice. The skinny rhombic path it is also peculiar in the way that the orien-
tation of n⊥i lays exactly in the middle of the two deformed crystallographic planes θ = 60◦

and θ = 120◦. As we will show below, this also results in the simultaneous activation of
two slip systems.

Post-Instability Patterns

We discuss now more in detail how the dislocation patterns emerge from the band struc-
tures using the fat rhombic pure shear as our first example. For this type of loading, the
presence of two activated slip system is clearly visible in the post-instability equilibrium
configurations, shown in Figure 4.25) (where we report the results obtained under both
fixed and periodic boundary conditions). The simultaneous presence of well-distinguished
triangular lattices T60◦

1 and T0◦
−1 is also clearly visible. We remark that these energy wells,

that are distinguished in term of relative slip system, are superimposed in the configura-
tional space, as they are equivalent in term of strain and are different only in terms of a
rigid rotation (see also Figure 2.12 in chapter 2). The high symmetry square lattices rep-
resent, in this case, degenerate saddles which allow the system to activate two slip systems
simultaneously. In view of the fact that space does not distinguish rotations, the actual
landscape driving the evolution of the system is more complex than what we see in C space
and higher dimensions must be involved.

Activation of two slip systems is observed also in the case of the skinny rhombic path,
but is associated here with a different mechanism. Indeed, when we load the system with
periodic boundary conditions, the vertical bands tangential to the yield surface create
twins. We illustrate this stable equilibrium phase in Figure 4.26. These twins evolve, un-
der further loading, up to the point of formation of dislocations along the two slip systems
connecting the reference configuration T with the sheared configurations T120◦

−1 and T60◦
1

respectively. The evolution of the system in configurational space shows the activation of
both valleys and the two type of dislocations are clearly visible (see Figure 4.26). Some
more distant wells are also getting engaged, due to the interaction of the nucleated dislo-
cations. Whe the fixed boundary conditions are applied, the twins do not form, due to the
higher impediment to shape change, and the system evolves directly towards the double
dislocation type configuration.

As we have already observed in the case of the square lattice, simple shears show an
intermediate behavior with respect to what we see along the rhombic pure shear paths. In
those cases, just one slip system is activated as a direct consequence of the banded modula-
tion that precede dislocation nucleation, as only one type of dipoles forms when the bands
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(a) (b) (c)

Figure 4.25: Post-Instability Pattern along the Fat Rhombic Pure Shear: A N = 104 domain is
considered. On top and bottom, results from simulations with fixed and periodic boundary conditions are
shown, respectively.(b) Cauchy stress σxy field is shown in the full domain. (c) The distribution of elements

points in configurational space. The simultaneous presence of the three wells T, T60◦
1 , and T0◦

−1 is evident
when one considers the corresponding triangulation in which we show a detail in (a).
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(a) (b) (c)

Figure 4.26: Post-Instability Pattern along the Skinny Rhombic Pure Shear: A N = 104 domain
is considered. On top, the intermediate stable twin obtained with periodic boundary conditions is shown,
followed by the dislocation pattern obtained under further loading. On bottom, results of a simulation with
fixed boundary conditions are showed. In this case, the twin cannot form and dislocations nucleate without
an intermediate equilibrium phase. On the left (a), a detail of the triangulation is showed to highlight the

simultaneous presence of the three wells T, T120◦
−1 and T60◦

1 . (b) Cauchy stress σxy field is shown in the
full domain. (c) Elements points in the configurational space.
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start to grow. However, due to the fact that these bands are periodically distributed and
not aligned with the activated planes, the nucleated dislocations subsequently interact with
each other and with the boundaries causing the secondary activation of other slip systems.
The secondary activation is more present when the misaligment is more pronounced. In
Figure 4.27 we illustrate the patterns obtained for the θ = 60◦ shear path, where just one
type of dislocation, the one between wells T and T60◦

1 , is present. The pattern associated
with the θ = 30◦ shear path is characterized by the involvement of multiple wells, a fact
observed for both fixed and periodic boundary conditions.

It is interesting to notice that, while in the square symmetry case there was no significant
difference between the instability behavior resulting from simple θ = 0◦ shear path and
the neighboring pure shear path pointing straight to the energy valleys, in the triangular
lattice the behavior differs along such two paths. In particular the double slip activation is
not observed for the θ = 0◦ (or equivalently θ = 60◦) simple shear. This is related to the
fact that, while in the square symmetry case these deformations cross the yield surface in
relatively close points, this does not happen in the case of triangular symmetry. Of course,
when crossing the yield surface along other shearing paths intersecting the yield surface
near the fat rhombic pure shear, the same double activation is observed (this happens for
instance when using θ = 10◦ path and other symmetry related paths).

4.3.3 Beyond the First Instability: Some Perspectives

The mechanisms described above are not limited to homogeneous nucleation and are not
operating only at the first instability, but also play a role in the subsequent evolution of the
system. Some preliminary results show that the appearance of grains in square lattices may
take place at larger strains, in particular, during a second pronounced stress drop. This sec-
ond rearrangement, however, strongly depends on the system dimension and on the applied
boundary conditions. In Figure 4.29 we show a N = 4 · 104 simulation of a square lattice
with periodic boundary conditions where a θ = 0◦ simple shear path is continued after the
first nucleation event. The initial pattern, constituted by edge dislocations, becomes more
complex by the formation of grains, that appear after a second, sharp, stress drop. These
grains, initially small, gradually grow without significant hardening. Formation of grains
however, is never observed in the triangular lattice, that responds to further loading with
activation of additional slips. In Figure 4.30 an hexagonal crystal with periodic boundaries
is loaded along simple shear θ = 0◦. Here the second stress drop corresponds to a second
nucleation of edge dislocations. Also in this case, deformation proceeds without additional
hardening over a certain value of the loading parameter α, however, here this is associated
with the localization of dislocations along a shear band in the upper part of the domain
(see (c) in Figure 4.30).

These studies are still in the initial stage, however, even if a systematic investigation
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Figure 4.27: Post-Instability Pattern for Simple Shear θ = 60◦: A N = 104 domain is considered.
On top, the configuration obtained for fixed boundary conditions is shown, while on bottom, results for an
analogous simulation with periodic boundaries are illustrated. (a) a detail of the domain triangulation, (b)
Cauchy stress σxy field on the full domain, (c) corresponding elements distribution in the configurational
space.
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Figure 4.28: Post-Instability Pattern for Simple Shear θ = 30◦: A N = 104 domain is considerd.
On top, the configuration obtained for fixed boundary conditions is shown, while on bottom results for an
analogous simulation with periodic boundaries are illustrated. (a) a detail of the domain triangulation, (b)
Cauchy stress σxy field on the full domain, (c) corresponding elements distribution in the configurational
space.
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is still missing, the influence of the mechanisms discussed in this section is clearly visible
even after the first nucleation event.

4.4 Conclusive Remarks

The obtained results show how the very structure of the energy landscape, whose main
features are imposed by the symmetry requirements, fundamentally affects the homoge-
neous dislocation nucleation phenomenon. For both considered lattice symmetries, when
a quasi-static load is applied slowly enough, the strain localization associated with the el-
lipticity loss appears diffusely throughout the crystal volume. Defects nucleate collectively
thus creating a complex pattern already during the first major avalanche.

The main mechanisms of dislocation nucleation can be identified considering two load-
ing paths only. These are the pure shears associated with the sides of the fundamental
domain D that both originate in the reference energy well (points S or T). One of these
paths points straight to the lowest energy barrier, on the way to the other high symmetry
point. The other evolves towards the infinity without intersecting any other minimizer
along the way. While the square lattice is characterized by an elongated yield surface with
two corners enclosed between high energy barriers, this does not happen for the triangular
lattice, whose yield surface has less sharp corners all pointing towards low energy valleys.
As a result, in the square lattice one observes post-instability patterns that are not edge
dislocations, but are instead characterized by the global, energetically-costly crystal rear-
rangements involving combinations of both rotations and shears. This does not happen in
the triangular lattice where, due to the different shape of the wells themselves, the forma-
tion of dislocation dipoles is always a dominant feature. In both symmetries, orientation
of the applied load affects significantly the observed post-instability patterns. Most im-
portantly, in both cases the other high symmetry phases are responsible for the non-trivial
coupling of the activated slip systems. This interesting feature shows that these peculiar
points of the energy landscape have a fundamental role in the development of complexity
in the system. Our findings hint toward a scenario in which location of wells, together
with the corresponding saddle points between them, is what controls the post-instability
pattern. In this sense, our minimal model provides a useful tool for understanding the
link between the structure of defect patterns and the energy landscape characterizing the
crystal.
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Figure 4.29: Pattern Evolution in the Square Lattice: A N = 4 · 104 square lattice domain with
periodic boundaries is loaded along the simple shear path θ = 0◦. The system present hardening up to
a second stress drop where some grains, initially small, appears. These grains gradually increase allowing
the system to deform almost without additional hardening. Notice how the configurational space show the
development of increasing complexity.
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Figure 4.30: Pattern Evolution in the Triangular Lattice: A N = 4 · 104 triangular lattice domain
with periodic boundaries is loaded along the simple shear path θ = 0◦. The system present hardening up to
a second stress drop where additional dislocations are activated. Then, deformation localize along a shear
band in the upper region of the periodic domain.
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Chapter 5

GL(2,Z) Invariant Energy based on
Interatomic Potentials

In the previous Chapters, discussion and simulations were based on the polynomialGL(2,Z)
invariant energy proposed in [CZ04]. This allowed us to highlight the important properties
originating in this type of symmetry, in particular related to the presence of an infinite
number of equivalent energy wells. This property makes the energy landscape rugged
and non-convex, thus allowing one to incorporate plasticity and microstructure formation
in a fully hyperelastic formulation. One important advantage of the polynomial energy
is that it is available in explicit form for the energy is actually needed only within the
fundamental domain D. However, this polynomial energy potential does not attempt to
match quantitatively the behavior of any specific crystal, because no physical information
was used apart from the imposed symmetry. In addition, the complex polynomial form of
the energy (2.27) does not allow a straightforward identification of elastic constants, thus
making it difficult to calibrate this model using experimental measurements. In view of
these drawbacks, we decided to construct the reference energy φ0 within D using a dif-
ferent procedure also relying on the Cauchy-Born rule (CBR). More specifically, in this
Chapter we illustrate how to construct the reference energy φ0 directly from interatomic
pair potentials ϕp(rij) provided by atomistic modeling. The chosen procedure is analogous
to the one used in [OP98] and in the local QC method [MT02, TM11] with the only added
feature that construction needs to be done explicitly only within D.

We begin the Chapter discussing such construction in full detail. Then, we illustrate
the obtained energy landscape. Interestingly, we find that the isochoric part of the energy
is qualitatively similar to the one described by the polynomial potential. Instead, the vol-
umetric response is found to be fundamentally different. Its importance in defining the
post-instability behavior of a dislocated crystal is one of the most important findings of
this Thesis
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A considerable part of this Chapter is devoted to the discussion of the homogeneous
nucleation of dislocations. We consider the same loading paths as before for the triangular
crystal and repeat for the new potential the analytic study of the acoustic tensor. We
discuss the numerical results obtained in our nucleation tests and conclude that the non-
trivial coupling between slip systems is still present if we use this empirical potential.

Then, we turn to a direct comparison of the results based on the atomistically informed
strain energy density with those obtained with Molecular Statics (MS)1. Indeed, we know
that Cauchy-Born based continuum methods can represent dislocation cores, but only in
a coarse manner. The debate concerning their capability to give a reliable approximation
of atomic-scale phenomena is still open.

We begin our comparison by juxtaposing dislocation cores structures as they appear in
the two models. Then, we discuss the homogeneous nucleation phenomenon. We first test
the validity of the analytical predictions based on (4.10) and then compare qualitatively
post-instability patterns. We conclude by showing some simulations of nano-indentation.
In contrast to other cases discussed in this Thesis, indentation induces nucleation under a
strongly inhomogeneous strain field.

5.1 Energy Construction

We have already emphasized that CBR is crucial for including lattice features in to the
hyperelastic boundary value problem. As we discussed in Chapter 3, to link macroscopic
continuum deformation tensor F to the deformation of the lattice, one has to assume that
(3.21) holds. Then, CBR allows one to derive a continuous energy density from interatomic
potentials in a straightforward manner.

The idea of constructing continuum energy density functions directly from interatomic
potentials exploiting CBR is not new. However here, instead of using CBR for finding the
potential φ directly, we apply the CBR procedure on the fundamental domain D and ob-
tain only φ0. Then, by using (2.20), we automatically extend the obtained potential from
D into the infinite configurational space. This allow us to preserve GL(2,Z) invariance
for general deformations including the neighborhoods of ”far-away” wells. Instead, in the
commonly used CBR-hyperelastic approach, the periodicity is limited by the cut-off radius
rc used to compute the interatomic potential (see Figure 5.1).

An accurate modeling of metals would require the use of interaction potentials more

1This is the static counterpart of Molecular Dynamics, discussed in chapter 1 and can be seen as the
atomistic counterpart of the quasi-static continuum simulations performed in this thesis.
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sophisticated than a simple pair interaction potential, as, for instance, the previously men-
tioned EAM (1.10). However, the fact that we are operating in a two-dimensional setting
makes the choice of a simple Lennard-Jones potential (1.8) rather convenient for the pur-
pose of this comparison, as it is known to describe a stable triangular lattice in 2D. It is
appreciated that the extension of the model to 3D would probably make the choice of EAM
more adequate. This is not a major issue as the discussed procedure is general and can be
implemented also in a fully 3D setting. Any potential admitting a site energy of the type
(1.12) could be used as well.

More specifically, we consider the 2D Lennard-Jones potential introduced in [Pli95a,
WSS87], which describes a stable 2D triangular lattice with interatomic distance a =
0.687204444. This Lennard Jones potential has been slightly modified from its standard
form (1.8) in a way that it becomes a twice continuously differentiable function, which is
necessary to ensure continuity of the stresses. We can write it explicitly

ϕp(rij) =


4ε

((
σ
rij

)12
−
(
σ
rij

)6
)

+A, for rij < rin∑4
k=0 gk(rij − rin)k, for rin < rij < rc

0 for rij > rc

(5.1)

where

A = g0 − 4ε

((
σ

rin

)12

−
(
σ

rin

)6
)

g0 = −1

6
(rc − rin)(3g1 + g2(rc − rin))

g1 =
24εσ6

r13
in

(r6
in − 2σ6)

g2 =
12εσ6

r14
in

(26σ6 − 7r6
in)

g3 = −(3g1 + 4g2(rc − rin))

3(rc − rin)2

g4 =
(g1 + g2(rc − rin))

2(rc − rin)3
.

Parameters have value σ = 2 sin(π/10), ε = 0.5, rc = 2.5 and rin = 2. Modifications,
added to ensure continuity of derivatives, do not affect the overall form of the potential,
illustrated in Figure 1.3.
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Figure 5.1: Energy Construction based on Cauchy-Born Rule: If the atomic lattice is assumed
to follow the macroscopic deformation F, the position of all atoms can be determined starting from the
deformation of an atomic cell only, described by vectors e1 and e2. All the needed distances entering
the computation of φ can then be evaluated as linear combinations of these vectors. The advantage of
using the reduced vectors consist in the fact that one may consider the same atomic cell during the entire
deformation, without changing the cut-off radius. If reduction is not used, distances of the sampled atoms
starts to exceed the cut-off and the periodic behavior is gradually lost.

We can now obtain the lattice energy density starting from (1.12), and in the case of
the Lennard-Jones crystal we need to compute:

ϕ =
1

Ωa
Ei =

1

Ωa

1

2

∑
j

ϕp(rij), (5.2)

where Ωa is the volume of the atomic cell in the undeformed reference state and φp(rij) is
the pair potential (5.1). We recall that only atoms such that rij = |xj−xi| ≤ rc contribute
to (5.2). Now we adopt the CBR to derive a continuum energy density φ as in (3.22).
Since the deformation of atomic positions follows local F homogeneously, positions xj −xi
of all the j atoms in (5.2) are known and can be written as a linear combinations of the
the unit basis eI (2.36) describing the triangular lattice:

xj − xi = sFηe1 + lFηe2 l, s ∈ Z lηe1 + sηe2 < rc . (5.3)

where η is a factor accounting for the actual dimensions of the atomic cell. Considering
that distances can be written as a function of metric components:

rij =
√

(xj − xi) · (xj − xi) =
√
η2s2C11 + 2η2slC12 + η2l2C22 . (5.4)

we can derive a continuous energy φ(C) in a straightforward manner, simply replacing
expressions (5.4) for rij in (5.2). At this point, we deviate from the more conventional
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Cauchy-Born approaches (as the local QC) by focusing on the reference energy φ0 rather
that φ directly. This is achieved simply by using reduced metrics C̄IJ in (5.4), thus ob-
taining:

φ0 =
1

Ωa

1

2

r∗∑
s

r∗∑
l

ϕp(

√
η2s2C̄11 + 2η2slC̄12 + η2l2C̄22) , (5.5)

where C̄IJ are the reduced metrics and r∗ is an integer such that r∗ηe1 = rc. Since we use
reduced metrics, the obtained energy is defined in the fundamental domain D.

The C2 continuity of the pair interactions potential ϕp(rij) ensures that the reference
energy φ0 is C2 continuous as well. Then, the energy can extended to the entire space
of metric tensors Q+

2 by means of (2.20). We remark that, since GL(2,Z) operates only
for isochoric transformations, Lagrange reduction does not interfere with the volumetric
part of the energy that becomes automatically accounted for in the illustrated procedure.
Therefore, it does not need to be added explicitly as a separate term.

We recall that the derivatives ∂φ0
∂C̄IJ

and ∂2φ0
C̄IJ C̄IK

are needed for the evaluation of the

second Piola-Kirchhoff stress tensor S given by equation (3.29) and of the elastic moduli
C (3.30). They are also obtained in a straightforward manner:

∂φ0

∂C̄IJ
=

1

Ωa

1

2

r∗∑
s

r∗∑
l

∂ϕp
∂r

∂r

∂C̄IJ
, (5.6)

∂φ0

∂C̄IJ C̄KL
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1

Ωa

1

2

r∗∑
s

r∗∑
l

(
∂2ϕp
∂r2

∂r

∂C̄IJ

∂r

∂C̄KL
+
∂ϕp
∂r

∂2r

∂C̄IJ C̄KL
) . (5.7)

The use of the reduced metrics in the definition of the energy density is not essential, but
allows one to maintain the correct symmetry no matter how large is the applied deforma-
tion. Indeed, while the use of (2.20) ensures that GL(2,Z) is preserved indefinitely, the
conventional Cauchy-Born based methods would actually need to use increasing values of
the cut off radius in order to maintain the periodicity of the energy landscape when defor-
mation are large. In Figure 5.1 we give a schematic representation of this effect. Indeed,
while the reduction ensures that the atoms over which the energy is sampled are contained
inside the cut-off radius, this does not happen when one uses non-reduced metrics, as the
sampled region becomes increasingly distorted.

5.1.1 Energy Landscape

In the following we will refer to the strain energy density defined above as Homogeneous
Lennard Jones (HLJ). In Figure 5.2 we illustrate the isochoric part of the obtained energy
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Figure 5.2: Energy landscape for the HLJ energy: (isochoric part) obtained from the considered
Lennard-Jones potential is shown on the Poincaré disk with evidence on the shearing paths θ = 30◦ and
θ = 60◦. Cut-off = 0 has been used for an improved visualization of low-energy barriers and wells. Notice
how, qualitatively, the landscape resembles the one obtained for the polynomial energy.

landscape on the Poincaré disk. Note that the qualitative shape of the energy does not
differ significantly from the one obtained from the polynomial energy in the case of the tri-
angular crystal (Figure 2.7, on bottom). This is somewhat expected, as the global periodic
behavior is dictated by the GL(2,Z) directly.

The implementation of HLJ and its use in numerical simulations highlighted the impor-
tance of the volumetric part of the energy. As we have already mentioned, it is automati-
cally accounted for in the case of HLJ, if we use procedure (5.5), where Lagrange reduction
is invoked only for volume-preserving deformations. We recall that, in the polynomial
potential, the volumetric term was added explicitly using a phenomenological function of
det C. This arbitrariness was justified by the fact that volume-related effects are generally
thought to have limited influence in plasticity, since the slip associated with dislocation
flow is volume preserving. Our study instead, highlights some interesting effects arising
exactly from the specifics of the volumetric response.

To be more precise, we consider the patterns obtained from the homogeneous nucleation
analysis in the case of shearing path θ = 60◦, see in Figure (5.3). Observing the distribution
of metric tensors in the configurational space, one can notice that the pattern obtained for
HLJ is much sparser than the pattern in the polynomial model. Histograms of the metric
components C12 (see Figure 5.4) confirm that the well T60◦

1 (with C12 = −0.577) is the
most engaged in both cases. However, HLJ show the secondary activation of other wells
and the appearance of other defects, that looks like voids or nanocracks. Those always
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Figure 5.3: Comparison of Post-Instability Patterns in Polynomial and HLJ: Post-instability
patterns (on a N = 104 domain) for the θ = 60◦ simple shear are shown in terms of Cauchy stress component
σxy. Polynomial energy on top and HLJ on bottom. While the overall behaviour of the crystal is the same,
the case of HLJ is richer, more wells are engaged and different types of defects appear.
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(a) (b)

Figure 5.4: Histograms of Metric Component C12 and of Elements Volume: (a) Distribution of

metric component C12 show that T60◦
1 , of metric C12 = −0.5774, is the most active well (other than reference

well T, with metric component C12 = 0.5774) for both polynomial and HLJ energies. (b) Distribution
of elements volume, the great majority of elements preserve their volume (unitary), but HLJ shows the
presence of few elements whose volume is very high. Histogram y-axis has been cut to better visualize the
distribution.

(a) (b)

Figure 5.5: Volumetric Defects: (a) HLJ energy is characterized by the appearence of defects such as
voids and nano-cracks, associated, in our modeling framework, with element dilatation. (b) The instability
of a sample, to which dilatation is imposed, manifests itself with the formation of more pronounced nano-
cracks.
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Figure 5.6: Volumetric Response On top: response to uniaxial tension and compression of the Poly-
nomial and HLJ energies is compared. The pair-potential based strain energy density is characterized by
a flattening in correspondence of tension. On bottom, we show the evolution of the HLJ energy landscape
in correspondence of different values of det C. While in compression one observes an overall increase of the
energy density which causes steepening of the barriers, the tension response is characterized by a progressive
flattening of the overall landscape.
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Figure 5.7: Dependence on det C of the Yield Surface: Evolution of the stability region, that we
called yield-surface, is shown for the Polynomial and the HLJ energy. The peculiar response to tension in
the HLJ energy causes the progressive shrinking of its stability region, up to a complete disappearance.
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appear in HLJ, while they are not observed when we use the polynomial energy. In Figure
5.5 we illustrate these defects in detail. The void-like defects may be interpreted also as
vacancies. By looking at the element triangulation, we observe that these defects originate
from the dilatation of some of the elements. This is confirmed by histograms of volume
element distribution, showed in Figure 5.4. Indeed, while the polynomial energy show a
more or less symmetric distribution of volume values for shrunken and dilated elements,
the case of HLJ is characterized by an asymmetry towards very high volumes.

This asymmetry can be easily explained when we observe the different response that the
two energies show for uniaxial tension and compression along the vertical axis Y, see Fig-
ure 5.6. The phenomenological term −K(ln(det C)− det C) increases indefinitely for both
compression (det C < 1) and tension (det C > 1). Instead, HLJ shows a sharp increase
in compression, but it reaches a plateau in tension for a certain value of det C > 1. This
Lennard-Jones like behavior is also observed in correspondence of others biaxial and uniax-
ial deformations and is a general feature coming directly from the chosen pair-interaction
potential.

To better illustrate this point, in Figure 5.6 we show also the evolution of the energy
landscape as we change the value of det C. We observe an overall steepening of the valleys
and the increase of the energy barriers in correspondence of compression. For tension, the
landscape gradually flattens, up to the point of the disappearance of both the barriers and
the wells. This means that beyond a certain value of det C > 1 elements may expand
with almost no energetic cost. As a result, the system will undergo an instability with the
formation of what can be interpreted as a crack. We show an example of this in Figure
5.5.

This difference in behavior can also be seen in the structure of the stability region.
Indeed, while in the case of the polynomial energy the yield surface does not change sig-
nificantly with changing det C, in the case of HLJ it progressively shrinks under increasing
det C, up to a point where it reduces to a point. We highlight that cracks are never observed
if we use the term −K(ln(det C) − det C) for the description of our volumetric response,
and their appearance is indeed related to the flattening of HLJ potential at large values of
det C. This type of behavior is not a feature of the chosen Lennard-Jones interaction, but
is common to all pair-potentials (the interaction goes to zero for distances rij > rc).

5.1.2 Homogeneous Nucleation

In this subsection we discuss the results obtained from the homogeneous nucleation tests
for the HLJ energy. The objective is to show that the interesting features highlighted by
the use of the polynomial energy are general and are encountered in HLJ based model as
well. In particular, we would like to check the robustness of the coupling between differ-
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Figure 5.8: HLJ Yield Surface: By using criterion (4.10), the yield surface is constructed. As in the
Polynomial energy, maximum and minimum values of αc are found along the fat rhombic and the skinny
rhombic shear paths, respectively.

ent slip systems, due to the presence of the square saddle point S, and the ubiquity of
the ”banded modes” preceding instability. For the moment, we limit our analysis to the
loading paths evolving along the hyperbolic surface det C = 1. In the next Section we will
consider also deformations with nonzero volumetric component.

The same paths considered previously in the case of the polynomial energy are analyzed
here, in particular, the two pure shears describing the skinny rhombic (2.31) and the fat
rhombic (2.38) configurations, and the two simple shears θ = 60◦ and θ = 30◦. As before,
these paths are chosen to guarantee a comprehensive sampling of the landscape, with both
highly symmetric and generic directions taken into account.

Using criterion (4.10) we identified the yield surface for the HLJ energy, see Figure 5.8.
As in the polynomial energy case, the maximum and the minimum value of the critical
load αc are found along the fat rhombic and the skinny rhombic pure shear paths, with
values αc = 0.164 and αc = 0.130, respectively. Note, however, that the shape of this yield
surface is rounder than in the case of the polynomial energy (Figure 4.16). Moreover, the
instability is encountered at lower values of α, which makes the elastic region enclosed by
the yield surface smaller.

As we have done in the previous Chapter, we look at directions n and polarization
vectors m along the selected paths. We recall that, once a non-trivial vector n delivering
equality in (4.10) has been found, the associated vector m is obtained solving the eigen-
problem (4.6). We show the graphs presenting det qik profiles as a function of the angle
ξ, which characterize the orientation of n. While in the case of the polynomial energy we
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always observed that n⊥ ‖m, a fact that is characteristic of incompressible materials, this
does not happen in general for HLJ.

Using the HLJ energy, we observe along the fat rhombic path the simultaneous appear-
ance of two instability directions, respectively ξ1 = 87.93◦ and ξ2 = −19.49◦ (see Figure
5.9). The corresponding polarization vectors, inclined with respect to the horizontal direc-
tion with angles χ = −20.69◦ and χ = 89.17◦, are not perpendicular to wave directions.
Moreover, neither n⊥i and mi are oriented along crystallographic planes.

Along all the other considered paths we obtain only one unstable wave direction. A
peculiarity of the skinny rhombic path is that n⊥ is almost perpendicular to the horizontal
axis and is practically parallel to the corresponding polarization vector m, as we illustrate
in detail in Figure 5.9.

Results for the two simple shears θ = 60◦ and θ = 30◦ are illustrated in Figure 5.10.
Along these directions, m and n⊥ are not parallel and none of them is aligned with crys-
tallographic planes.

Despite the presence of a certain misalignment between n⊥ and m in the majority of
cases, the angles between them are always much smaller than 90◦. Therefore, as in the
case of the polynomial energy, we expect a shear-like instability appearing as nucleation of
dislocation dipoles oriented along n⊥.

Simulation Results

As for the previous Chapter, we repeated simulations for different boundary conditions
and different system sizes. Here we show the results obtained for N = 104. Quasi-static
loading is applied with load increments of ∆α = 10−3 which are subsequently refined to
N = 10−4 when value of det qik approaches 0. The loading at which the first instability is
observed numerically, α∗c , is in very good agreement with the analytical value αc as we show
in Figure 5.11. In contrast to the polynomial case, we do not encounter here a systematic
delay of the numerical instability, and the difference between αc and α∗c are of the order of
10−3.

The characteristic modulation preceding the dislocation nucleation instability is still
observed. In Figure 5.11 we show the periodic modulation obtained for the two simple
shear directions. The bands are aligned along the directions n⊥ as it is predicted by the
stability analysis. Dislocation nucleation develops through the same mechanism as in the
case of the polynomial energy, with dislocation dipoles developing as a result of the spread-
ing of the modulation bands (see Figure 4.21). We find again that the instability manifests
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Figure 5.9: HLJ det qik Profiles along the Fat Rhombic and the Skinny Rhombic Paths:
Evidence on load αc for which equality in (4.10) is satisfied. the fat rhombic pure shear (on top) shows
the simultaneous appearance of two instability directions, while just one appears in case of skinny rhombic
path (on bottom). On the side of each graph we illustrate the orientation of the wave directions n and
the polarization vectors m, with respect of the deformed lattice cell at α = αc. In the fat rhombic path,
differently from the polynomial energy, wave polarization m is not aligned with n⊥, (while it is still the
case in the skinny rhombic path).
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Figure 5.10: HLJ det qik Profiles along θ = 60◦ and θ = 30◦ Simple Shear Paths: Profiles for
θ = 60◦ and θ = 30◦ loading paths are shown with evidence on load αc for which equality in (4.10) is
satisfied. Both these simple shears are characterized by the presence of one unstable mode only, not aligned
with the crystallographic directions. Differently from the polynomial energy, the wave polarization m is
not aligned with n⊥.
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itself in the configuration space through the spreading of the element points along an elon-
gated interval pointing towards point S. The configurational points then spread along the
valley in the energy landscape and eventually reach the neighboring wells. The fact that
the modulation formation is influenced by the presence of the saddle S, highlights the im-
portance of this point in characterizing the ultimate defect pattern.

Most importantly, the double slip activation associated with the fat rhombic path is
encountered also in HLJ, and both wells T60◦

1 and T0◦
−1 ≡ T120◦

1 end up being be engaged
in the post instability pattern. This mechanism is independent of the used boundary con-
ditions, and in Figure 5.12 we report similar results for fixed and periodic boundaries.
Activation of the two slip systems is clearly observable in Figure 5.14 where a detail of the
triangulation (for periodic boundary) is illustrated.

Along the other pure shear path we observe the same behavior as in the case of the
polynomial energy. The instability develops tangentially to the yield surface and, after the
appearance of a vertical modulation, we obtain a stable configuration in which elements
are arranged periodically in differently oriented regions. The relative misorientation is less
pronounced than in the case of the polynomial energy, but still clearly present, see Figure
5.13. Under further loading, the system evolves towards collective nucleation of disloca-
tions along the slip systems T60◦

1 and T0◦
−1, which are symmetrically oriented with respect

to the vertical direction, that is parallel to n⊥. A detail of the triangulation, showing
clearly the presence of these two slip systems, is shown in Figure 5.14.

To summarize, we have shown as the main phenomena exhibited by the polynomial
model are robust as long as the energy density respects the GL(2,Z) symmetry. The ob-
served differences, such as the misalignment between n⊥ and m, are likely to be related to
the volumetric part. This volumetric component is also what causes the appearance of a
broader variety of defects, such as voids and nano-cracks.
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Figure 5.11: First Instability in HLJ: On top, profiles of the energy density from α = 0 up to first
instability α∗c , together the considered path, are shown for simulations of N = 104 nodes and fixed boundary
conditions. In all cases, there is a good agreement with the analytical prediction αc (highlighted with a red
star symbol). On bottom, the equilibrium configuration just preceding instability is shown. Even in this
case, it is possible to observe the appearance of a modulation oriented along n⊥.
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(a) (b)

Figure 5.12: Post-Instability Pattern along the Fat Rhombic Pure Shear: A N = 104 domain is
considered. on the top and bottom, results from simulations with fixed and periodic boundary conditions
are shown respectively. (a)Cauchy stress σxy field is showed in the full domain. (b) Elements distribution

in the configuration space. The simultaneous presence of the three wells T, T60◦
1 , and T0◦

−1 is evident when
one considers the corresponding triangulation, of which we show a detail in Figure 5.14.
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(a) (b)

Figure 5.13: Post-Instability Pattern along the Skinny Rhombic Pure Shear: A N = 104 domain
is considered. on the top and bottom, results from simulations performed with fixed and periodic boundary
conditions are shown, respectively. (a) Cauchy stress σxy field is shown in the full domain. (b) Elements

distribution in the configurational space. The simultaneous presence of the three wells T, T60◦
1 , and T120◦

−1

is evident when one considers the corresponding triangulation (Figure 5.14). When periodic boundaries are
used, dislocation nucleation is preceded by a stable modulation, illustrated on the top of the figure.
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(a) (b)

Figure 5.14: Details of the Post-Instability Patterns along the two Rhombic Pure Shears:
Details of the triangulation corresponding to post instability patterns along the fat rhombic (a), and the
skinny rhombic (b) pure shears show clearly the activation of two different wells simulaneously. These are

T60◦
1 , and T0◦

−1 in the case of the fat rhombic path, and T60◦
1 and T120◦

−1 in the case of the skinny rhombic
path.
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5.2 Comparison with Molecular Statics

In the previous Section we compared two different GL(2,Z)-invariant theories: one con-
structed starting from a phenomenological polynomial potential and another one obtained
from an interatomic potential directly. They were shown to share common properties and
exhibit analogous behavior during dislocation nucleation (first instability), with some dif-
ferences related to the volumetric response.

In this Section we compare the predictions of the HLJ model with the fully atomistic
simulations, performed using MS (both approaches use interatomic potential (5.1)). The
purpose of such comparison is to characterize more quantitatively the differences between
these two approaches and to highlight the atomistic features that the coarse-grained HLJ
is capable, or not capable, to capture. Indeed, due to its inherent locality, HLJ is expected
to lose at least some features of the fully atomistic description. On the other hand, since
it does not require the resolution of all particle to particle interactions, is more effective
computationally.

Cauchy-Born based energy densities are known to describe dislocation cores [TPO96],
which can nucleate and stabilize due to the fact GL(2,Z) symmetry is accounted for. How-
ever, the deformations developing at distances shorter than the cut-off radius cannot be
properly described, and therefore these cores are coarser than the ones observed in the
fully non-local atomistic simulations. Some authors consider these local representation of
dislocations to be too coarse and prefer to adopt other methods [TSBK99, MR08]. Here
we develop a systematic comparison between simulations using a GL(2,Z) invariant energy
and the MS approach with the objective to quantify the limits of the local representation
of dislocation.

In the following Sections we neglect the fact that each element in our mesh actually
represents a (small) cluster of atoms deforming homogeneously. To make the comparison
more direct, we compare the HLJ model with MS simulations with a number of atoms
comparable with the number N of discretization nodes used in the mesoscopic model.
Therefore, one may see HLJ as atomistic scale simulations in which the actual inhomo-
geneity of each particle environment is neglected. Even in this atomistic perspective, HLJ
remain advantageous because one does not need to look for all neighboring particles and
the nodal forces are computed directly from the deformation gradient F. Moreover, the
method offers a straightforward coarse-graining procedure through simple reduction the
actual number of nodes.

We begin the comparison by presenting the structure of a single dislocation core. Then
we perform homogeneous nucleation simulations to ensure that predictions based on con-
dition (4.10) remain valid also in a fully atomistic setting. Simulations are performed
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for different values of det C and obtained patterns are compared. We conclude the chap-
ter showing some example of nano-indentation tests. All the presented MS simulations
were performed using the open-source molecular dynamics code LAMMPS (Large-scale
Atomic/Molecular Massively Parallel Simulator) [Pli95b].

5.2.1 Dislocation Core

The representation of the dislocation core is an essential test allowing one to asses the pos-
sibility of using HLJ for modeling plasticity. Considering this, we put in direct comparison
dislocation cores structures as they appear in MS and HLJ. Volterra displacement field
(3.44) is enforced on the MS and HLJ domains, and then allowed to relax. In both cases,
an edge dislocation structure emerges in the middle of the domain. Both such dislocations
are characterized by similar distribution of the energy density, which we illustrate by com-
paring the energy profiles along the horizontal axis passing through the core (Figure 5.15).
However, the associated stress fields are different in scale, as we illustrate in Figure 5.16 2.

Figure 5.15: Dislocation Energy Density: Comparison between the energy density associated to an
edge dislocation core in HLJ and MS.

2We recall that in MS stresses are not obtained directly, as they are macroscopic measures, but are
evaluated post-processing atomistic forces in neighboring atoms ( see for instance [TPM09])
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(a) (b)

Figure 5.16: Dislocation Stress Field: Comparison between dislocation stress fields for a single dislo-
cation in HLJ and MS.

Both representations of dislocations start from the same initial configuration, however
the atomistic cores exhibit higher stress fields than the cores obtained using HLJ. At the
same time, the qualitative shapes of the stress fields are similar (as it was also the case for
the polynomial energy). This confirms that HLJ can be seen as a coarse representation of
MS where some details of the core structure are lost.

One way to improve the continuum description would be to include gradient terms
in the development of φ, as it is done in other continuum theories attempting the fine
description of the core regions [LMA06]. For the moment, we remain with our local repre-
sentation even if the cores are somewhat misrepresented in terms of the associated stresses.
We believe that this is not a crucial flaw in view of the fact that the main application of
the method is the description of a large number of interacting dislocations (rather than a
detailed description of a single defect).

5.2.2 Homogeneous Nucleation

In this Section we compare the results obtained from the MS homogeneous nucleation
tests with what observed for the model using the HLJ energy. Moreover, in addition to the

135



reference case det C = 1, we study three different situations when the imposed deformation
has either det C = 0.7 (compressed) or det C = 1.3 (extended). In this way, we include
volumetric effects in the comparison. Instead of simple shear (2.28) we apply a slightly
different deformation field:

F = κI + αa⊗ n , (5.8)

where κ = 4
√

det C.

Consider three distinct surfaces det C = constant. In Figure 5.17 we show their
Poincaré disk representation, we also show the energy landscape along some simple shears
trajectories intersecting the fundamental domain, thus highlighting the periodic behavior
of the energy and the surface-dependent heights of the energy barriers. We remark that the
homogeneous energy landscape is identical for MS and HLJ models. We note again that
compression causes a steepening of the barriers while extension makes the overall energy
landscape flatter.

MS simulations were performed on square domains with about 104 atoms and they
are compared with HLJ simulations describing similar number of nodes. Both fixed and
periodic boundary conditions were used, to ensure independence of the observed patterns
from the loading mode. First of all, we verified the agreement of the observed critical load
α∗c with the analytical value αc obtained from the acoustic tensor analysis. In the previous
Sections we reported (see Figure 5.8) the yield surface obtained analytically using the con-
dition (4.10) and illustrated its progressive shrinking as the value of det C is increased. In
Figure 5.18 we presented, along with the analytic yield surface, the points for which first
instability is observed in MS simulations (grey stars). These points correspond to shear-
ing deformations with angles between θ = 30◦ ÷ 60◦, spanning the fundamental domain
(see also Figure 5.17). Even if instability takes place slightly later than what predicted
analytically, there is an overall agreement with the analytical results for the yield surface,
in particular, its shrinking is observed as predicted for det C > 1. Boundary conditions
do not affect these results significantly, and analogous pictures are observed in the case of
fixed or periodic boundary conditions.

Homogeneous nucleation is an unusual test for MS, and α∗c is known to be very sensi-
tive to both quenched disorder and the tolerance of the computational algorithm. For this
reason, we specifically studied the dependence of α∗c on the noise and observed that there
is indeed convergence of the instability threshold when noise is sufficiently small. A simi-
lar study, comparing homogeneous nucleation in MS with acoustic tensor predictions, has
been performed along specific deformation paths by Steinmann and coauthors in [SES06].
They also observed an overall agreement between the first instability and the analytical
prediction based on the acoustic tensor criterion, and showed a progressive convergence of
α∗c towards αc for increasing system sizes.
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Figure 5.17: Energy Landscape for Different Values of det C From top to bottom, we show the
HLJ energy landscape in corresponedence of different values of det C, respectively, we use det C = 0.7, 1.0
and 1.3.
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Figure 5.18: Analytic Yield Surface and MS Calculations: The black line show the yield surface
evaluated analytically, based on acoustic tensor criterion (4.10). Grey stars show (C11, C12, C22) points at
which first instability was observed in MS simulations, along different shearing deformations. The showed
results are obtained from simulations performed on a domain containing ≈ 104 atoms deformed with fixed
boundaries.

We now turn to the study of post-instability patterns and the corresponding element
distributions in the configuration space. Components of the metric tensor are not defined
directly in the MS simulations. In order to compute them, we need to post-process the
data. More precisely, we labeled the atoms in their reference, homogeneous state and drew
a grid in a way that every atom has six neighbors, constructing six triangular ”elements” for
each atom. Then, we looked at the images of these pseudo-elements in the post-instability
state and computed the corresponding C tensors. In other words, we treated the atoms as
they were keeping the same neighbors after the instability. In this way, one can plot points
in the configuration space, as we have done for the GL(2,Z)-invariant model.

Among all the shearing paths, we illustrate the results obtained for the θ = 60◦ and
θ = 30◦ simple shears. These are reported, in terms of energy density, in Figures 5.19 and
5.20. A feature that immediately captures one’s attention is the formation of fractures
in the det C = 1.3 case, which is observed for both shearing paths. These fractures have
basically the same orientation in MS and HLJ models. More precisely, they appear along
the direction of what would have been the activated slip system in the det C = 1 case (that
is, the one associated to wells T60◦

1 and T120◦
−1 respectively). In Figure 5.22 we show the

details of the triangulation. Observe that these cracks emerge from the dilatation of a row
of elements. The remaining crystal regions shrink restoring their original size.

For the other two values of det C, only edge dislocations are observed. More than
one slip system is activated, but most dislocations glide along the slip system T60◦

1 for
the θ = 60◦ shear and along the slip system T120◦

−1 for θ = 30◦. These dislocations are
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Figure 5.19: θ = 60◦ Post-Instability Patterns at Different Values of det C: From top to bottom,
post instability patterns corresponding to det C = 0.7, det C = 1.0 and det C = 1.3 shearing deformations
are shown for HLJ and MS, respectively. Edge dislocations are observed in the first two cases, together
with voids and other volumetric defects. The patterns obtained for det C = 1.3 show the localization of
the deformation along cracks.
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Figure 5.20: θ = 30◦ Post-Instability Patterns at Different Values of det C: From top to bottom,
post instability patterns corresponding to det C = 0.7, det C = 1.0 and det C = 1.3 shearing deformations
are shown for HLJ and MS, respectively. Edge dislocations are observed in the first two cases, together
with voids and other volumetric defects. The patterns obtained for det C = 1.3 show the localization of
the deformation along cracks.
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Figure 5.21: Detail of the det C = 1.3 Post-Instability Patterns: Fractures appear in the HLJ
model in the form of highly extended elements. The same interpretation can be used in MS simulations
plotting atoms and their links with the initial neighbours.

Figure 5.22: Detail of the det C = 1.0 Post-Instability Patterns: Activation of the same slip system
is observed in HLJ and MS simulations.
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more sparsely distributed for the HLJ model while in the case of MS they mostly mi-
grate towards the boundary. Both type of simulations are characterized by the appearance
of voids and nano-cracks, independently of the considered value of det C. Interestingly,
these defects appear as expanded elements in our fixed-neighbors, post-processing triangu-
lations. The overall picture is similar to the one illustrated in Figure 5.5 for the HLJ model.

In order to make more quantitative the considerations presented above, we now con-
sider in more detail the case det C = 1. The corresponding element distribution in the
configuration space and the histogram of the metric components are shown in Figures 5.23
and 5.24. Clearly, both models show the engagement of the same energy valleys (slip sys-
tems). Histograms (whose y-axis has been cut) show the major dominance of the wells
T60◦

1 and T120◦
−1 (for the loading path with θ = 60◦ and θ = 30◦, respectively). The overall

distribution of metric components is comparable in MS and HLJ models. In the MS sim-
ulations more elements occupy these slip-related wells, producing more dislocations than
in the HLJ model. In Figure 5.22 we illustrate a detail of the triangulation, which clearly
shows the activated slip planes.

An analogous discussion can be presented for the case det C = 0.7. The corresponding
element distribution in the configuration space is shown in Figure 5.25. Also in this case
there is a qualitative agreement between HLJ and MS models, which both show the acti-
vation of the same energy valleys.

To summarize, our study of the homogeneous dislocation nucleation under uniform
loading, confirmed that the HLJ model is able to represent most of the features observed
in atomistic simulations. The local criterion based on the analysis of the acoustic tensor
gives a reliable prediction of the yielding threshold. The post-instability mechanisms de-
scribed by GL(2,Z) symmetric potentials are also encountered in MS simulations. This
re-enforces the idea that GL(2,Z)-invariant energies, with their periodic arrangement of
wells, can effectively describe the evolution of dislocations configurations in the presence
of several slip systems, even if the dislocation cores and the short range interactions are
not represented exactly. Moreover, the use of CBR in the construction of the energy den-
sity allows one to account for other interesting effects such as the formation of cracks and
voids. The difference between the two approaches (mesoscopic theory and MS) shows in
the global arrangement of dislocations, which in MS simulations migrate more easily to-
wards the boundaries.

The above observations should be viewed as only preliminary since homogeneous nu-
cleation is a highly idealized test of the theory. We recall that the main objective of our
approach is to study the evolution of the dislocation patterns under continuous loading.
In the next Section we extend the comparison of the HLJ model with MS simulations to
the case when nucleation is induced by a strongly inhomogeneous strain field.
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Figure 5.23: θ = 60◦ Element Distribution in the Configuration Space and Histograms of
Metric Components: Distribution of elements in the configuration space is similar in HLJ and MS
simulations, and shows the clustering of a large number of elements along the low-energy valley connecting
wells T and T60◦

1 . Analogies in the distributions can be deduced also looking at the histograms of metric
components.
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Figure 5.24: θ = 30◦ Element Distribution in the Configuration Space and Histograms of
Metric Components: Distribution of elements in the configuration space is similar in HLJ and MS
simulations. Elements are sparser with respect of the shearing path θ = 60◦, but a large number of elements
along the low-energy valley connecting wells T and T120◦

−1 is observable, together with a minor engagement
of several other wells. Analogies in the distributions can be deduced also looking at the histograms of metric
components.
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Figure 5.25: det C = 7 Element Distribution in the Configuration Space : elements arrange
similarly in HLJ and MS simulations, showing the major activation of the same energy valley.
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5.2.3 Nanoindentation

In the current literature, most of the studies of the homogeneous nucleation focus on nano-
indentation tests. This is a test in which a nanometric piston is pressed down on the
material, under displacement or force control. Nano-indentation tests performed on per-
fect crystals show an elastic response up to a point in which a discontinuous behavior,
characterized by discrete jumps, emerges [VVLZ+03]. This transition coincides with the
appearance of plastic deformation in the material, which manifests itself through the homo-
geneous nucleation of dislocation dipoles in the regions where the strongly inhomogeneous
strain field achieves its peak value.

Many papers have been dedicated to the study of homogeneous nucleation under nanoin-
dentation with the objective of understanding the mechanisms of incipient plasticity in
perfect crystals. In particular, many studies were focused on the definition of a suitable
criterion of yield predicting the critical indentation penetration depth and the location of
the nucleating defects. Early on, Van Vliet et al. [VVLZ+03] proposed the acoustic tensor
criterion as a suitable tool for predicting nucleation under nano-indentation and performed
continuous simulations using a variant of the Cauchy-Born, pair-potential based energy
density[ZLVV+04, ZZ08]. Later, Miller and Rodney, however, criticized the predictions
based on the study of the acoustic tensor[MR08]. Indeed, due to its inherent locality,
such criterion can not take into account non-local effects, which play an important role
in the indentation induced dislocation nucleation process. In [GM16] Garg and Maloney
partially mitigate this strong opinion showing that the acoustic tensor criterion always
predicts correctly the nucleation site observed in MS simulations. Moreover they observed
an agreement between the associated direction and polarization vectors and the nucleating
dipole. However, nucleation appeared only after the acoustic tensor has become negative
over a certain region.

Our study contributed to this debate as a local and a non-local approaches are com-
pared directly. While for the case of a homogeneous loading, as the one discussed in the
previous subsection, a good agreement with acoustic tensor based predictions could be ex-
pected, this is no more the case for the case of nano-indentation, where the imposed strain
field F is highly inhomogeneous.

In our numerical experiments we used HLJ and MS domains with the same parame-
ters. More specifically, we considered domains for which the vertical scale Ly is half the
horizontal scale Lx, we analyzed different scales for the indenter radius: R = 25, 50, 100.
Simulations were then performed for different values of Lx = 50, 100, 200. Emerging dislo-
cations and activated slip planes are also known to depend on the orientation of the crystal
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with respect of the indenter [GM16]. Here we considered two orientations: with the hori-
zontal plane of the crystal aligned with the horizontal boundary of the domain (orientation
O1) and with the crystal is rotated at 90◦ (orientation O2). The indenter was modeled
as spherical and it is assumed to be frictionless and infinitely rigid. The simulations were
performed quasi-statically, by imitating slow pressing of the indenter in the displacement
control. We compared the critical indentation depths dc and the post instability patterns
generated in our mesoscopic model with the ones obtained in the MS simulatios.

The results obtained for Lx = 100, and R = 25, 50 are reported in Figure 5.26 where
we considered the orientation O1 and in Figure 5.27 where we analyzed the orientation
O2. Looking at the energy-penetration graphs, one can observe an overall agreement in
terms of the critical indenter depth, even if the latter is systematically underestimated in
the HLJ model. Results obtained in all simulations are summarized in the graphs shown
in Figure 5.28. Here one can see that the critical depth scales similarly in HLJ and MS
simulations, with the exception of smaller scale simulations where the representation given
by the HLJ model is too coarse.

Post-instability patterns generated in the two types of simulations appear to be ba-
sically similar, however, important differences are also present. The overall agreement
concerns the nucleation sites and the activated slip planes, and there is also an agreement
with what was reported in other more detailed studies (see, for instance [MR08, GM16]).

For the orientation O1 the instability is observed, as expected, to initiate from a single
region, aligned with the center of the indenter and located at a certain depth away from
the surface. While in [GM16] a single dislocation dipole was found, we mostly saw the
activation of two dislocation dipoles simultaneously, and observed just one only at small
values of R (see the case Lx = 100, R = 25 in Figure 5.26). The main difference between
the MS and HLJ pictures is in fact that in HLJ simulations the double dipole activation
causes the formation of a high energy defect in the nucleation site (as is clearly visible in
the R = 50 pattern illustrated in Figure 5.26). We will come back to this point shortly.

The orientation O2 shows nucleation at higher penetration depths with respect of O1,
with nucleation of dislocations starting from two different points disposed symmetrically
with respect of the indenter. For small values of R, dislocations nucleate from the imme-
diate proximity of the surface and migrate towards the lower boundary along the vertical
direction. At larger values of R, the two symmetric nucleation sites are located at higher
depths and dislocations appear along the slip planes oriented of θ ± 30◦ with respect of
the horizontal axis, as it was also observed observed in [GM16]. Comparing to MS, the
HLJ model also shows the formation of a larger disordered region in the proximity of the
indenter, which is characterized by high energy localization.
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Figure 5.26: GL(2,Z) and Atomistic simulations for two different values of indenter radius R.
Crystal orientation is 0◦.
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Figure 5.27: GL(2,Z) and Atomistic simulations for two different values of indenter radius R.
Crystal orientation is 90◦.
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Figure 5.28: Critical indenter depht dc: on top, orientation O1, on bottom orientation O2. Critical
indenter depht dc in MS simulations and in the mesoscopic model for different system sizes and values of
the indenter radius R.
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Figure 5.29: A detail of the Post-Nucleation Pattern: In the right we show a detail of the HLJ
post-instability pattern from a O1 nanoindentation test, while on the left we illustrate a detail from an
analogous MS simulation. Clearly, the compatibility requirement implicit in the GL(2,Z)-invariant model
results in an excessive constraintment.

Considering all this, the limits of the local HLJ approach vs fully atomistic MS simu-
lations are not related to its capability to predict correctly the critical depth dc and the
location of the incipient dislocation dipole, but rather to represent in detail the nucleated
defects. Indeed, in contrast to what we see in MS, the HLJ model predicts the formation of
a high energy cluster of deformed elements in the most inhomogeneously deformed regions.
This is particularly clear for the orientation O1, where the double dipole formation leaves
behind a region of distorted elements. To better illustrate this effect, we report a detail
of the corresponding triangulation in Figure 5.29. While in the HLJ model, the elements
are constrained to preserve their topology this constraint does not exist in MS where par-
ticles move freely and change neighbors during the deformation. As a consequence, the
high energy residual defect region is not resolved in the same manner and most probably
spurious strains appear as a result of the continuity constraint. This case can be viewed
as an example showing that not all dislocations entanglements can be resolved adequately
using our mesoscopic description.

5.2.4 Concluding Remarks

In this Chapter we illustrated how to obtain a GL(2,Z)-invariant energy directly from the
knowledge of pair-interactions using the CBR. Differently from the already existing ap-
proaches which extract the energy density using analogous procedures, our method allows
one to preserve the GL(2,Z) invariance for large deformations by defining the reference
energy on the fundamental domain, and then imposing the condition (2.20).

We have shown that the isochoric component of the energy obtained using the CBR is
analogous to the polynomial construction discussed in the others Chapters of the Thesis.
The interesting effects that were observed in the previous Chapter regarding the dislocation
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patterning during the homogeneous nucleation have been also encountered in the pair-
potential based model. In particular, we also observed the appearance of a modulation
preceding the formation of the dislocation dipoles (oriented as predicted analytically), and
the double slip activation along the two pure shears limiting the fundamental domain.
The use of the pair-potential based energy emphasized the importance of the volumetric
component of the energy density, which has been shown to be responsible for the appearance
of voids and nano-cracks. The correct account for the volumetric effects also allows one to
describe the appearance of fractures under tensile loads. Comparison with the atomistic
simulations showed that in our mesoscopic model some truly discrete effects are inevitably
lost. The dislocation cores are represented coarsely and some spurious entanglements
of defects arise from the compatibility constraint necessarily enforced on the mesoscopic
elements. On the positive side, the global features of the emerging patterns, including the
activated slip systems, appear to be well captured.
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Chapter 6

Conclusions and Perspectives

In this Thesis, we showed that the use of a hyperelastic, geometrically non-linear model
can by itself be sufficient to describe plastic flow and dilsocation motion, given that the
symmetry is correctly accounted for. This means that one has to account for the presence
of lattice invariant transformations, originated from the global symmetry described by the
group GL(n,Z). The resulting energy landscape has an infinite number of wells, arranged
periodically in a way that is fully compatible with a finite strain formulation. In this frame-
work, plasticity emerges when, as a result of elastic instability, some regions of the originally
homogeneous system leave the reference well and variously distribute in strain space, oc-
cupying different wells and thus producing complex patterning. Plastic mechanisms are
not assigned a priori, but arise directly from the GL(n,Z) invariance requirement. They
assume the form of low energy valleys, connecting the periodically distributed energy wells.

In [BAB+19], we have stressed that this formulation can be seen as a Landau theory for
crystal plasticity. In this Landau framework, the (infinite) symmetry-related wells repre-
sent the shear-invariant, equivalent crystal configurations and the non-linear strain assumes
the function of the order parameter. The plastically deformed solid can then be seen as
a mixture of these infinite equivalent phases, with dislocations appearing at their boundary.

Periodicity of energy landscape is strictly connected to the Cauchy-Born hypothesis, as
individuals atoms are not subjected to a perfectly periodic energetic environment. More-
over, this assumption is needed to place the energy density in a continuum hyperelastic
framework. The resulting approach is inherently local and some features of the atom-
istic level description are inevitably lost. The internal length scale implied by this model
characterizes an imaginary mesoscopic cluster of atoms always deforming homogeneously.
One way to interpret this hypothesis is to assume that the model is atomistic, but that
the inhomogeneity of the deformation is intentionally neglected in the local interactions.
Both interpretations result in the fact that the microstructure appears coarse grained, in
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particular dislocation cores are represented in a somewhat ”blurred” way.

Considering this, the model is similar in its spirit to QC, where the smallest elements
are assumed to coincide with atomic cells, but, at the same time, the possibility to neglect
micro-inhomogeneities in the continuum region allows one to reduce the number of degrees
of freedom and therefore to cut the computational cost. Comparing to QC, the proposed
approach renounces the full resolution of non-local features, thus avoiding the necessity of
defining patching regions, whose description is non-trivial. It is also different from the local
version of the QC method, by the fact that GL(n,Z) invariance is imposed globally, while
in the local QC it is obtained numerically using the CBR, and consequently potentially
violated at large deformations.

The PFM method, briefly discussed in the Introduction, also appears on the first sight
similar to the approach presented in this Thesis. It also uses periodic functions and intro-
duces dislocations using the symmetry of lattice invariant strains. However, these analogies
are only apparent. While in the PFM the slip systems are imposed a priori with refer-
ence to pre-designed mechanisms, in our model they emerge as a consequence of GL(n,Z)
symmetry alone. Moreover, in the PFM, the periodic energy landscape linked to the slip
is formulated in terms of linearized strains, which makes the global representation of sym-
metries questionable. Another feature of the PFM is that some mathematical tricks are
needed to ensure that the plastic strain parameters take integer values and that the dislo-
cation cores are regularized properly, while none of this is needed in our GL(n,Z)-invariant
mesoscopic approach.

The DDD method needs even more phenomenological rules as dislocations are mim-
icked by discrete segments with cores reduced to lines. Consequently, all core effects need
to be modeled phenomenologically, including dislocation annihilation and locking. The
non-linear hyperelastic nature of the problem is not taken into account directly, as the
forces acting on dislocation line-segments are computed on the basis of linear elasticity.

The advantage of our proposed method is that the description of dislocational flow is
obtained in a fully coherent framework with minimal assumptions. Using our approach,
we were able to describe the dependence of the dislocation patterning on the orientation
of the load and on crystal symmetry. During homogeneous loading, dislocations nucleate
collectively. The critical load was shown to be in agreement of with the analytical predic-
tions based on the ellipticity loss criterion, which also effectively predicts the geometrical
nature of the emerging unstable modes. Patterns different from developed dislocations
were observed in the case of square symmetry for particular loading conditions, leading
away from the energy valleys. On the other hand, in the triangular symmetry case the
instability always leads to the activation of one or multiple slip systems, preceded by a
diffuse modulation, and in the particular cases, by a banded structure. In both symme-
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tries, it was shown that some high symmetry lattice configurations, located at the corner
of the fundamental domain, play a crucial role in fomenting complexity, being related to a
simultaneous activation of the two energy valleys converging there.

The use of two different potentials confirms that the observed effects are sufficiently
general and are induced exclusively by the global crystal symmetry. The use of the non-
linear finite strain theory was shown to be essential to properly describe the associated
periodic energy landscape. Linear descriptions are not able to tell apart wells and valleys
that are different if we account for the finite strains effects. Instead, the proposed model
allows one to analyze the evolution of the system in an infinite energy landscape where all
slips, including the large ones, are described correctly. A more complete description should
take into account rotations, which are unimportant for the computation of the energy, but
would be useful to distinguish the configurations which differ only by a rigid rotation (this
is particularly interesting in the case of the triangular symmetry).

The use of a pair potential-based energy density reveals some important effects related
to the volumetric component of the energy. In particular, the corrected account of the sys-
tem’s response under tension, allows one to capture fracture, which is implicitly included
into the range of phenomena covered by this model.

Our preliminary comparison with the fully atomistic simulations suggests that, even
if dislocation cores are described in a coarse form, the main features of the dislocation
patterning are captured correctly. In view of this, our method is suitable for studying
the evolution of systems containing a large number of interacting dislocations, even if
the detailed description of isolated defects, for which MD already performs well, may be
challenging. Therefore, the objective of the method should be the study of dislocation
patterning under monotone and cyclic loading, and the analysis of the statistics of the
associated plastic avalanches.

The most obvious limitation of the model presented in this Thesis is its 2D charac-
ter, which prevents modeling of the realistic crystal structures. In this Thesis, the use
of a 2D formulation was mostly due to the desire to study the simplest situation first.
The transparent 2D setting made it possible to represent the associated three-dimensional
configurational space in a straightforward manner, while in a fully 3D formulation the
configurational space would have to be five dimensional (as the symmetric matrix C is a
third order tensor). Now, that the most basic features of the GL(n,Z) invariance have
been highlighted, it would be interesting to see how the same effects look in a fully 3D set-
ting. This would require lots of further implementation work and some additional effort in
the visualization of the associated configurational space. However, there are no particular
theoretical limits for the development of a 3D extension of the model. Higher dimensional
procedures equivalent to Lagrange reduction exists, in particular, the Seeber reduction
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scheme for 3D and the Minkowski reduction scheme one for a general, n-dimensional case
(see, for instance, Chapter 4 of [Eng12]). The construction of a polynomial energy, ensuring
the required smoothness on the associated 5D fundamental domain, however, is far from
being an easy task. On the other hand, the Cauchy-Born procedure presented in Chapter 5
is immediately extendable to 3D. The resulting energy will possess the required continuity
provided that the utilized pair potential is continuous.

To conclude, we consider the presented approach as a powerful tool in the description
of small scale plasticity, where the representation of both long and short range elastic
interactions is achieved with minimal phenomenological assumptions. The fact that the
problem is formulated in the framework of finite hyperelaticity means that such macro-
scopic quantities as stresses and strains are directly accounted for without sacrificing the
lattice symmetry. Moreover, the type of the boundary and of the loading conditions that
can be studied in this way is very broad.

As we have already shown, under the applied load, the system evolves showing dis-
continuous jumps associated with dislocation rearrangements, showing complex statistics
of plastic avalanches. The associated configurational space, where available slip systems
appear as low energy valleys, also offers an interesting and unusual perspective on the
intermittency and the defect patterning.

Below we list our main conclusions:

1. We presented a new meso-scopic model of crystal plasticity which take a form of
geometrically and physically nonlinear elasticity theory with nonconvex energy. The
regularization comes from the discretization of the continuum theory with the ele-
ment size serving as a regularization length scale.

2. The new model emphasizes the role of the global GL(2,Z) symmetry accounting faith-
fully for lattice invariant deformations which correspond to the infinity of equivalent
energy wells. Then, plastic slip can be associated with the switching between the
neighboring energy wells. This description allows one to represent plastic flow in
a fundamentally new way: as a dynamics of points in the configurational space of
metric tensors.

3. We studied two examples of nonlinear elastic potentials respecting GL(2, Z) symme-
try: one phenomenological, based on the piece wise smooth polynomial interpolation,
and another one semi-empirical, based on a particular choice of the interatomic po-
tential.
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4. The main advantage of the new approach is the automatic (parameter free) descrip-
tion of the short range dislocation interactions, individual nucleation and annihilation
events and formation of various complex dislocational patterns.

5. The activation of the ”plastic mechanisms”, described in our theory by the extended
valleys (rather ravines) in the energy landscape, is directed by the energy minimiza-
tion only which accounts automatically for the coupling between different slip planes.
Such coupling is largely controlled by the saddle points corresponding to the unstable
high symmetry phases.

6. Despite its quasi-continuum nature, the proposed model accounts kinematically faith-
fully for the lattice trapping effects and incorporates a nonzero Peierls stress.

7. We showed that the model is capable of describing collective dislocation nucleation
events which, in case of homogeneous nucleation, leads to the formation of complex
dislocation patterns. Heterogeneous nucleation was studied through the simulation
of the nano-indentation tests and results were shown to be in qualitative and quan-
titative agreement with molecular statics experiments.

8. Our study revealed for the first time the possibility of the development of the long-
wave pre-nucleation elastic modulation preceding the ultimate emergence of plasticity.

9. The proposed model allowed us to study the effect of the crystallographic symmetry
and of the orientation of the sample in the loading device on the complexity of the
emerging dislocation pattern. The strong dependence of the obtained patterns on
these factors places doubts on the claims of the universality in crystal plasticity.

10. The proof of principle study conducted in this Thesis suggests the effectiveness of the
proposed model in dealing (in a parameter free way) with large number of disloca-
tions. It opens the way towards the study of the complexity associated with plastic
flows in crystals associated with the emergence of scale free spatial and temporal
correlations.
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1828.

[Caz13] Oana Cazacu. Multiscale Modeling of Heterogenous Materials: From Microstructure
to Macro-scale Properties. John Wiley & Sons, 2013.

[CB03] A Carpio and LL Bonilla. Edge dislocations in crystal structures considered as
traveling waves in discrete models. Physical review letters, 90(13):135502, 2003.

[CB05] A Carpio and L L Bonilla. Discrete models of dislocations and their motion in cubic
crystals. Phys. Rev. B Condens. Matter, 71(13):134105, April 2005.

[CCPS10] Yong S Chen, Woosong Choi, Stefanos Papanikolaou, and James P Sethna. Bend-
ing crystals: emergence of fractal dislocation structures. Physical review letters,
105(10):105501, 2010.

[Che02] Long-Qing Chen. Phase-field models for microstructure evolution. Annual review of
materials research, 32(1):113–140, 2002.

[CK88] Michel Chipot and David Kinderlehrer. Equilibrium configurations of crystals.
Archive for Rational Mechanics and Analysis, 103(3):237–277, 1988.

[CM03] Willian A Curtin and Ronald E Miller. Atomistic/continuum coupling in compu-
tational materials science. Modelling and simulation in materials science and engi-
neering, 11(3):R33, 2003.

[CN64] Bernard D Coleman and Walter Noll. Material symmetry and thermostatic inequal-
ities in finite elastic deformations. Archive for Rational Mechanics and Analysis,
15(2):87–111, 1964.

[CO93] Alberto M Cuitino and Michael Ortiz. Computational modelling of single crystals.
Modelling and Simulation in Materials Science and Engineering, 1(3):225, 1993.

[Cot02] AH Cottrell. Commentary. a brief view of work hardening. In Dislocations in solids,
volume 11, pages vii–xvii. Elsevier, 2002.

[CY96] J Cai and YY Ye. Simple analytical embedded-atom-potential model including a
long-range force for fcc metals and their alloys. Physical Review B, 54(12):8398,
1996.

162



[CZ04] Sergio Conti and Giovanni Zanzotto. A variational model for reconstructive phase
transformations in crystals, and their relation to dislocations and plasticity. Archive
for rational mechanics and analysis, 173(1):69–88, 2004.

[DB83] Murray S Daw and M Io Baskes. Semiempirical, quantum mechanical calculation of
hydrogen embrittlement in metals. Physical review letters, 50(17):1285, 1983.

[DB84] Murray S Daw and Michael I Baskes. Embedded-atom method: Derivation and
application to impurities, surfaces, and other defects in metals. Physical Review B,
29(12):6443, 1984.

[DDO+14] Julie Drouet, Laurent Dupuy, Fabien Onimus, Frédéric Mompiou, Simon Perusin,
and Antoine Ambard. Dislocation dynamics simulations of interactions between
gliding dislocations and radiation induced prismatic loops in zirconium. Journal of
Nuclear Materials, 449(1-3):252–262, 2014.

[DELT07] Matthew Dobson, Ryan S Elliott, Mitchell Luskin, and Ellad B Tadmor. A mul-
tilattice quasicontinuum for phase transforming materials: Cascading cauchy born
kinematics. Journal of Computer-Aided Materials Design, 14(1):219–237, 2007.

[DG15] Benoit Devincre and Riccardo Gatti. Physically justified models for crystal plasticity
developed with dislocation dynamics simulations. 2015.

[DK97] B Devincre and LP Kubin. Mesoscopic simulations of dislocations and plasticity.
Materials Science and Engineering: A, 234:8–14, 1997.
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