
Université Paris 13 - Université Paris Nord
Laboratoire d’Informatique de Paris Nord - LIPN

Équipe: Algorithmes et Optimisation Combinatoire - AOC

Thèse de doctorat

Column generation methods for quadratic
mixed binary programming

présentée par

Enrico Bettiol

à l’École Doctorale Galilée

pour obtenir le grade de

Docteur d’Université
Spécialité: Informatique

soutenue publiquement devant le jury composé de:

Lucas Létocart Université Paris 13 Directeur de thèse

Emiliano Traversi Université Paris 13 Co-encadrant de thèse

Frédéric Roupin Université Paris 13 Président du jury

Samuel Burer University of Iowa Rapporteur

Antonio Frangioni University of Pisa Rapporteur

Immanuel Bomze University of Vienna Examinateur

Francesco Rinaldi University of Padova Examinateur

à Villetaneuse, le 6 novembre 2019



2



Contents

Introduction 15
Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

1 Preliminaries and basic definitions 19
1.1 Linear Algebra and Geometry . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
1.3 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
1.4 Related classes of cones and polytopes . . . . . . . . . . . . . . . . . . . . 28
1.5 Matrix completion problems . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2 Introduction to Quadratic and Conic Programming 31
2.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.2 Formulations of Quadratic Programs . . . . . . . . . . . . . . . . . . . . . 32
2.3 Formulations of Conic Programs . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 Duality theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.4.1 Specific cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Solution methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 First order methods for quadratic problems . . . . . . . . . . . . . . . . . 39

2.6.1 Frank-Wolfe method . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.7 Column Generation methods . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7.1 Dantzig-Wolfe Decomposition (DWD) . . . . . . . . . . . . . . . . 41
2.8 Simplicial Decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.8.1 Dantzig-Wolfe and Simplicial decompositions . . . . . . . . . . . . 45
2.9 Convex quadratic programs . . . . . . . . . . . . . . . . . . . . . . . . . . 46
2.10 Branch & Bound for Mixed Integer convex QPs . . . . . . . . . . . . . . . 47
2.11 Mixed Integer Quadratically Constrained Quadratic Problems (MIQCQPs) 48

2.11.1 Extended space for solving MIQCQPs . . . . . . . . . . . . . . . . 49
2.12 Copositive optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3



4

I Continuous and mixed binary convex QPs 53

3 A conjugate direction based Simplicial Decomposition framework for
solving a specific class of dense convex quadratic programs 55
3.1 Master program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.1 An adaptive conjugate directions based method (ACDM) for solving
the master . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.1.2 A fast gradient projection method for solving the master . . . . . . 62
3.2 Pricing program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.2.1 Early stopping strategy for the pricing . . . . . . . . . . . . . . . . 64
3.2.2 Shrinking cuts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.1 Instances description . . . . . . . . . . . . . . . . . . . . . . . . . . 69
3.3.2 QPLIB instances . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.3.3 Specific problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.3.4 Extended benchmark . . . . . . . . . . . . . . . . . . . . . . . . . . 77
3.3.5 Preliminary tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
3.3.6 Numerical results related to the extended testbed . . . . . . . . . . 82
3.3.7 CPU time usage in the SD framework . . . . . . . . . . . . . . . . 87
3.3.8 In-depth analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
3.5 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 A simplicial decomposition framework for dense convex quadratic mixed
binary problems 93
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
4.2 SD integrated in a Branch and bound . . . . . . . . . . . . . . . . . . . . 94

4.2.1 Branching strategy, branching rules . . . . . . . . . . . . . . . . . . 94
4.2.2 Column exploitation . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.2.3 Lower bound and Early stopping . . . . . . . . . . . . . . . . . . . 95

4.3 Computational results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.1 Instances description . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.3.2 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

4.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.5 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

II Decomposition on matrices 101

5 Matrix generation algorithms for binary quadratically constrained quadratic
problems 103
5.1 Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.2 The BQP relaxation for BQCQPs . . . . . . . . . . . . . . . . . . . . . . . 104
5.3 Solving the BQP relaxation with Dantzig-Wolfe decomposition . . . . . . 105



5

5.4 Binary QPs with linear equality constraints . . . . . . . . . . . . . . . . . 107
5.4.1 Reinforcing the formulation . . . . . . . . . . . . . . . . . . . . . . 108

5.5 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.1 Feasibility of the master . . . . . . . . . . . . . . . . . . . . . . . . 111
5.5.2 Early stopping of the pricing . . . . . . . . . . . . . . . . . . . . . 112

5.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
5.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.8 Future research directions . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

6 Block-BQP decomposition 121
6.1 Block-BQP relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.1.1 Restricted master, dual and pricing problems . . . . . . . . . . . . 124
6.2 Comparison to the original BQP relaxation . . . . . . . . . . . . . . . . . 126

6.2.1 Two overlapping blocks . . . . . . . . . . . . . . . . . . . . . . . . 126
6.2.2 Case of several blocks . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.3 Computational aspects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.4 Numerical results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
6.5 Conclusions, applications and future research directions . . . . . . . . . . 139

7 Conclusions and research directions 145
7.1 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146



6



Abstract

A significant number of real-world problems can be modeled as (mixed integer)
nonlinear programming problems. There are several solution methods in literature for
these problems, which are, however, not always efficient in general, in particular for large
scale problems. Decomposition strategies such as Column Generation have been developed
in order to substitute the original problem with a sequence of more tractable ones. One
of the most known of these techniques is Dantzig-Wolfe Decomposition: it has been
developed for linear problems and it consists in solving a sequence of subproblems, called
respectively master and pricing programs, which leads to the optimum. This method can
be extended to convex non linear problems and a classic example of this, which can be
seen also as a generalization of the Frank-Wolfe algorithm, is Simplicial Decomposition
(SD).

In this thesis we discuss decomposition algorithms for solving quadratic optimization
problems. In particular, we start with quadratic convex problems, both continuous and
mixed binary. Then we tackle the more general class of binary quadratically constrained,
quadratic problems.

In the first part, we concentrate on SD based-methods for continuous, convex quadratic
programming. We introduce new features in the algorithms, for both the master and the
pricing problems of the decomposition, and provide results for a wide set of instances,
showing that our algorithm is really efficient if compared to the state-of-the-art solver Cplex.
This first work is accepted for publication in the journal Computational Optimization and
Applications.

We then extend the SD-based algorithm to mixed binary convex quadratic problems;
we embed the continuous algorithm in a branch and bound scheme that makes us able
to exploit some properties of our framework. In this context again we obtain results
which show that in some sets of instances this algorithm is still more efficient than Cplex,
even with a very simple branch and bound algorithm. This work is in preparation for
submission to a journal.

In the second part of the thesis, we deal with a more general class of problems,
that is quadratically constrained, quadratic problems, where the constraints can be
quadratic and both the objective function and the constraints can be non convex. For
this class of problems we extend the formulation to the matrix space of the products of
variables; we study an algorithm based on Dantzig-Wolfe Decomposition that exploits a
relaxation on the Boolean Quadric Polytope (BQP), which is strictly contained in the

7



8

Completely Positive cone and hence in the cone of positive semidefinite (PSD) matrices.
This is a constructive algorithm to solve the BQP relaxation of a binary problem and
we obtain promising results for the root node bound for some quadratic problems. We
compare our results with those obtained by the Semidefinite relaxation of the ad-hoc
solver BiqCrunch. We also show that, for linearly constrained quadratic problems, our
relaxation can provide the integer optimum, under certain assumptions. We further study
block decomposed matrices and provide results on the so-called BQP-completion problem;
these results are connected to those of PSD and CPP matrices. We show that, given a
BQP matrix with some unspecified elements, it can be completed to a full BQP matrix
under some assumptions on the positions of the specified elements. This result is related
to optimization problems. We propose a BQP-relaxation based on the block structure
of the problem. We prove that it provides a lower bound for the previously introduced
relaxation, and that in some cases the two formulations are equivalent. We also conjecture
that the equivalence result holds if and only if its so-called specification graph is chordal.
We provide computational results which show the improvement in the performance of the
block-based relaxation, with respect to the unstructured relaxation, and which support
our conjecture. This work is in preparation for submission to a journal.

Keywords : Quadratic Optimization, Column Generation, Dantzig-Wolfe-Decomposition,
Simplicial Decomposition, Correlation polytope, Boolean Quadric Polytope.



Résumé

La programmation non linéaire mixte peut modéliser un grand nombre de problèmes
réels. Cependant, ces problèmes peuvent contenir de nombreuses variables ou contraintes,
il convient donc de proposer des méthodes de décomposition afin de les résoudre effi-
cacement. Parmi ces techniques on peut citer la génération de colonnes et notamment
la décomposition de Dantzig-Wolfe. Il s’agit d’une reformulation du problème original,
qui permet de générer une séquence de sous-problèmes plus simples, appelés maître et
pricing, pour obtenir la valeur optimale. Développée d’abord pour les problèmes linéaires,
la décomposition de Dantzig-Wolfe peut être généralisée à des problèmes convexes: dans
ce contexte, elle est notamment connue sous le nom de décomposition simpliciale.

Cette thèse présente des algorithmes de décomposition pour des problèmes quadra-
tiques. La première partie de ce manuscrit est dédiée aux problèmes quadratiques convexes,
continus et mixtes binaires. Dans la deuxième partie, des algorithmes pour résoudre des
problèmes binaires avec contraintes quadratiques sont présentés.

La première partie est consacrée à la résolution de problèmes convexes, quadratiques et
continus. Un algorithme basé sur la décomposition simpliciale est proposé: des nouveaux
éléments sont ajoutés à la fois au problème maître et au pricing; nous avons testé notre
algorithme sur une grande quantité d’instances avec une structure déterminée, et nos
résultats montrent que l’algorithme que nous proposons est très efficace par rapport à
Cplex, un solveur générique pour ces problèmes. Ce premier travail a été soumis à un
journal pour publication. Ensuite, nous étendons cet algorithme aux problèmes convexes
mixtes binaires. Nous incorporons la méthode pour le cas continu dans un algorithme de
branch and bound qui nous permet d’exploiter des propriétés de notre formulation. Dans
ce contexte aussi, des résultats numériques sont fournis: ils montrent que, dans certains
cas, les performances de notre algorithme sont efficaces par rapport à Cplex. Ce travail
est en préparation pour soumission à un journal.

La deuxième partie de cette thèse est dédiée à l’étude d’algorithmes pour des problèmes
quadratiques avec contraintes quadratiques. On se concentre sur les problèmes binaires,
dont la relaxation continue peut être non convexe. Nous considérons en premier lieu la
formulation étendue avec une matrice qui représente les produits des variables. Nous
proposons ensuite un algorithme basé sur la décomposition de Dantzig-Wolfe pour obtenir
une relaxation dans le Boolean Quadric Polytope (BQP). Ce polytope est connu aussi
comme Correlation polytope et il est strictement contenu dans le cône des matrices
complètement positives et des matrices semidéfinies positives. Notre algorithme permet de

9



10

résoudre cette relaxation, les bornes obtenues sont plus fortes que les bornes SDP et, dans
certains cas, les temps de calcul sont comparables ou meilleurs que ceux de BiqCrunch, un
solveur ad-hoc. On montre aussi que la relaxation BQP est une reformulation du problème
binaire original, en exploitant un résultat sur les matrices complètement positives, pour
les problèmes à contraintes linéaires en égalité.

Ensuite, nous considérons des problèmes où les matrices sont décomposables par blocs.
Une relaxation basée sur les blocs est proposée et nous prouvons que cette relaxation est
valide pour la relaxation BQP. De plus, prouver l’équivalence entre les deux relaxations
est un problème de complétion BQP. La relaxation décomposée par blocs est BQP-
complétable dans certains cas, mais n’est pas possible dans d’autres cas. À partir de
résultats expérimentaux, nous conjecturons que la classe de problèmes qui sont BQP-
complétables est la classe de problèmes dont le graphe de specification des matrices est
chordal. Des résultats computationnels montrent que la formulation par blocs, dans
certaines instances où elle est équivalente à la relaxation originale, peut être beaucoup
plus efficace. Ce travail est en préparation pour soumission à un journal.

Mots-clés : Optimisation quadratique, Géneration de colonnes, Décomposition de
Dantzig-Wolfe, Décomposition simpliciale, Boolean Quadric polytope, Correlation poly-
tope.



Acknowledgments

I would like to thank Prof. Antonio Frangioni and Prof. Samuel Burer for having
accepted to be referees of my thesis.

Many thanks to Lucas and Emiliano, for having accepted to supervise me for my PhD
after having helped me during my Master’s Thesis. In particular I thank Lucas for his
support, his scientific advice and help. Emiliano devoted an incredible amount of time
to me and was always available: I thank him for the long discussions, his commitment,
suggestions, and patience.

I would like to express my gratitude to Francesco for his patience, from the supervision
of my Master’s thesis to now: he never stopped helping me. And it is mostly thanks to
him I decided to start a PhD.

Thanks to Prof. Manuel Bomze for having offered me the possibility to spend two
intense months in Vienna and to work with him, for his scientific advice and suggestions,
and his kindness.

Thanks to the other members of the AOC team, in particular to Frédéric Roupin,
who accepted to be president of the jury, and to Roberto, available to listen and help
whenever I needed. Thanks to all the members of the LIPN, who make this lab a pleasant
environment.

Thanks to my office mates and to the other PhD colleagues: Ugo, Sarah, Mehdi,
Davide, Jawher, Juan José, Massinissa, and all others, with whom I shared this experience
and enjoyed several hilarious moments.

A special thank goes to Emiliano jr, for all the moments we shared in these years, the
endless discussions about everything, for his advice and where necessary psychological
support.

Infinite thanks to Stefania, exceptionally generous friend, who helped me on everything,
included picking up the mail for me and offering me to stay at her place (and having my
name engraved on her mailbox for that).

Many thanks to all my friends for their support, in particular to Marcos, Desi, Giulia,
to Michelone and all the Sicilian guys, to many other people who I met in these years.

Grazie in modo speciale ai miei genitori e a mio fratello, che mi hanno sostenuto
sempre.

11



12



Abbreviations and Notations

B&B Branch-and-Bound algorithm
IP Integer Programming
LP Linear Programming
MILP Mixed Integer Linear Programming
QP Quadratic Programming
MIQP Mixed Integer Quadratic Programming
QCQP Quadratically Constrained Quadratic Programming
CP Conic Programming
SDP SemiDefinite Programming
COP Copositive Programming
BQP Boolean Quadric Polytope
PSD Positive SemiDefinite matrices
CPP ComPletely Positive matrices

Notations: We use the following standard notation:

N: set of natural numbers;

R: set of real numbers;

Z: set of integer numbers;

Sn: set of symmetric matrices in Rn;

Sn+: set of positive semidefinite matrices in Rn;

Sn++: set of positive definite matrices in Rn;

N n: set of nonnegative matrices in Rn;

DNN n: set of doubly nonnegative matrices in Rn;

Cn: set of copositive matrices in Rn;

C∗n: set of completely positive matrices in Rn.

Given a vector v ∈ Rn and a matrix A ∈ Rm×n:

13



14

vi: i-th element of v;

Aij : element of A in row i and column j;

Tr(·): trace operator;

v> ∈ Rn, A> ∈ Rn×m: transpose of v and of A, respectively;

e: vector of all ones;

E: matrix of all ones;

Eij : matrix with 1 on (i, j)-th and (j, i)-th element, 0 elsewhere;

In: the identity matrix of size n;

0n: null vector of dimension n;

On: null square matrix of dimension n× n;

v ≥ 0 ⇐⇒ ∀i = 1, . . . , n, vi ≥ 0;

A ≥ 0 (A ≤ 0) ⇐⇒ ∀i = 1, . . . ,m, ∀j = 1, . . . , n, Ai,j ≥ 0 (Ai,j ≤ 0);

A � 0 (A � 0)⇐⇒ A positive semidefinite (positive definite);

R+ := {x ∈ R|x ≥ 0}, Rn+ := {v ∈ Rn | v ≥ 0};

Given a function f : X ⊆ Rn → R and a point x ∈ X:

∇f(x) ∈ Rn: gradient of f in x;

Given two matrices A,B ∈ Rm×n:

〈A,B〉 :=
∑m

i=1

∑n
j=1Aij ·Bij = Tr(A>B) (Hilbert product);

Given a set S ∈ Rn:

int(S): the interior of S;

cl(S): the closure of S;

ri(S): the relative interior of S;

∂S: the boundary of S;



Introduction

In diverse fields, like Business, Industry, Finance, Logistics among many others, but
also in everyday life, making decision is a fundamental activity. In many cases decisions
are made informally, mostly based on experience. However, a formal approach is often
preferable, because some problems are complex and making the best decision is not always
straightforward. In addition, in some cases the best choice is counter-intuitive; however,
it could make us save a lot of money, time, or other resources.

Operations research is the discipline that studies methods which help to make decisions.
A formal approach is done with the introduction of a mathematical model to describe
the problem. The need for a correct and efficient way to find the best solution in several
domains gave rise to the discipline of Mathematical Optimization, which has the objective
to develop methods to solve optimization problems. The origin and the main goal of
this discipline is to help solving decision problems and a relevant part of it is related to
computational aspects. However, theoretical research is fundamental, and makes this one
of the clearest examples of fruitful applications of Mathematics, which comprises both
theory and applications.

The attention to efficiency and algorithms is another fundamental element. Different
formulations for the same problem can be solved in very different computational times.
Moreover, for the same formulation different algorithms can be used and the performances
can vary a lot. Some problems (those which belong to the so-called Polynomial class) can
be solved with algorithms which have a complexity which is bounded by a polynomial on
the size of the data. For other problems, typically the so-called NP-hard problems, no
polynomial algorithm is known and hence they are generally much more difficult to solve.

An optimization problem is formally defined as the minimization (or maximization)
of an objective, expressed as a function of several variables, and some constraints that
the variables must satisfy. The most common optimization problems are linear problems
and have the following form:

min c>x (1a)
s. t.Ax = b, (1b)

x ≥ 0. (1c)

Here n,m ∈ N, x ∈ Rn are the variables of the problem, A is a matrix in Rm×n which
defines the constraints, b ∈ Rm and c ∈ Rn is the vector of costs, which defines the
objective function. The solution of this problem is given by a vector x∗ ∈ Rn, the optimal

15



16

vector, which has objective function value v∗ = c>x∗, the minimal value among all
the feasible vectors. Linear problems can model several different problems and efficient
algorithms exist to solve them. The most used one is the simplex algorithm: it is the
most efficient in applications, but it is known not to be polynomial. However, polynomial
algorithms have been introduced: firstly the so-called ellipsoid algorithm, and more
recently interior point methods.

In some cases, continuous variables are not sufficient to describe the model and
we need to employ integer, or binary variables. This is the case, for instance, of the
so-called knapsack problem: we are given n objects, each with a value vi and a weight
wi (i = 1, . . . , n); we want to pick the subset of these objects with maximal value, whose
total weight does not exceed a capacity W . The most natural choice of variables is a
binary variable for every object, which is 1 if the object is picked, 0 otherwise.

An optimization problem can have more general forms than (1): for instance, the
objective function or the constraints can be nonlinear. If they are quadratic functions, the
problem is denoted as a quadratic problem. Depending on more specific features of the
model, several efficient ad-hoc algorithms have been developed for this class of problems
as well. This will be treated in more detail in Chapter 2. Moreover, optimization problems
can have a large number of variables or of constraints, and have specific structures. Some
solution methods specifically tailored for problems with such particular characteristics has
been developed. For instance, typically for large-scale problems, decomposition methods
are used, which find the optimum of a problem by solving sequences of subproblems with
simplified structure. Two important classes of decomposition methods are the following:
those based on an outer approximation of the feasible region, (for instance cutting plane
methods) and those which compute an inner approximation of it. Several decomposition
methods exist, but we concentrate on a specific inner approximation decomposition: the
so-called column generation technique, which will be better described in Chapter 2. In
this thesis we will present some algorithms to solve quadratic problems which are based
on a specific column generation method. We will treat different types of problems and we
will present both theoretical investigations and extensive computational results. In the
next section we will describe the structure in more detail.

Structure of the thesis

This thesis is devoted to the study and the development of algorithms based on column
generation to solve quadratic programs. Mainly, we deal with general linearly constrained
convex quadratic programs and quadratically constrained, quadratic programs. The
application of specific column generation techniques for these two classes of problems
are treated in the two main parts of the thesis. The first chapters are instead dedicated
to the introduction of the background theory, from basic concepts to more specific ones:
they are intended to summarize and present in a unified notation the notions on which
this research has been built.

We will start with an introduction in Chapters 1 and 2. In the first one we will recall
some standard mathematical concepts which are the background for this study. They



17

include convex sets and linear algebra, polyhedral and graph theory; then, we further
introduce the definitions of some matrices, cones and polytopes which are used later.

In Chapter 2 we will introduce some aspects of Quadratic Programming, along with
the most important first order solution methods and in particular column generation
methods. We also introduce basics of conic programming, with particular interest on
Semidefinite and Copositive Optimization.

This chapter concludes the introductory overview on the basic tools that are treated
and used in this thesis. The rest of the thesis is divided into two main parts: both of
them deal with column generations based algorithms applied to quadratic programming,
but with a focus on different types of problems.

In the first part, which consists of Chapters 3 and 4, we will treat algorithms for
linearly constrained convex quadratic problems; in the second part (Chapters 5 and 6)
we will consider nonconvex, quadratically constrained ones. The other main difference
is that the first part is characterized by a specific column generation algorithm, namely
Simplicial Decomposition, and its connections with continuous optimization methods;
the second part is instead based on a more combinatoric approach, linked also to conic
programming.

In Chapter 3 we present a Simplicial decomposition based algorithm for a class of
continuous, convex quadratic problems. We develop an ad-hoc algorithm, specifically for
the master problem; we integrate one other method for the master and three algorithms
for the pricing. We provide extensive computational results which show that under some
assumptions our framework is efficient with respect to a state-of-the-art solver (Cplex ).

In Chapter 4 we extend the framework to the case of mixed binary convex quadratic
problems. We embed SD into a Branch and bound scheme, which allows us to take
efficiently advantage of some properties of our framework.

The second part starts with Chapter 5, where we describe the algorithm that we
propose for solving quadratically constrained, binary quadratic problems, which consists
of a relaxation based on the Dantzig-Wolfe reformulation on the extended space. It
turns out to be a relaxation in the BQP polytope, strictly contained in the so-called
Completely Positive cone. We provide computational results, with a particular attention
to the bounds that we obtain in some cases.

Then, in Chapter 6 we consider block-decomposable problems and we show how to
take advantage of the structure in order to reduce the size of our subproblems. We show
that, in order to prove results on the equivalence of our formulations, we have to deal with
a completion problem. We present an interesting theoretical property of the completion
problem for the so-called Boolean Quadric Polytope. We also show the effectiveness of our
algorithm with results on the bound and on the computing time needed to obtain them.

Finally, in the last Chapter 7, we draw some conclusions and some perspectives of
future research directions.



18



Chapter 1

Preliminaries and basic definitions

Chapters 1 and 2 are devoted to the introduction of the background theory which is
strongly used in this thesis. In this chapter we recall some necessary basic concepts, such
as definitions of convexity, Linear Algebra and Polyhedral theory. Then, we will recall
some basic results of some important classes of matrices which will be object of study
in the following chapters. Successively, we will describe elements of graph theory. We
will conclude the chapter with a description of some important polytopes and cones of
matrices which we will deal with in the rest of the thesis and we also concentrate on a
specific problem: the so-called matrix completion problem, which involves graphs and
cones of matrices.

1.1 Linear Algebra and Geometry

We start with recalling some basic concepts of convex sets and Linear Algebra, then
some classic definitions and key results in polyhedral and conic theory. The results are
standard and for this section we mainly consider the references [23] and [39].

Definition 1.1. A set C is convex if for any couple of points x, y ∈ C, any convex
combination z of x and y is contained in C: z = αx+ (1− αy), z ∈ C ∀ 0 ≤ α ≤ 1.

Definition 1.2. Given a function f : Rn 7→ R:

f is said to be convex if ∀x, y ∈ Rn, ∀θ ∈ [0, 1], f(θx+ (1− θ)y) ≤ θf(x) + (1− θ)f(y).

For every t ∈ R, its sublevel sets are: {x ∈ Rn | f(x) ≤ t}. If f is convex, all its sublevel
sets are convex.

f is strictly convex if ∀x, y ∈ Rn, ∀0 < θ < 1, f(θx+ (1− θ)y) < θf(x) + (1− θ)f(y).

f is (strictly) concave if the function −f , defined as the opposite of f , is (strictly)
convex.

Definition 1.3. A linear combination of vectors v1, . . . , vn is a vector v = α1v1 + · · ·+
αnvn, where αi ∈ R ∀i = 1, . . . , n.

19



20

Given some vectors v1, . . . , vn, they are linearly independent if the only coefficients
αi, i = 1, . . . , n such that α1v1 + · · ·+ αnvn = 0 are αi = 0∀i = 1, . . . , n.

A set V is a (real) linear vector space if it is closed under linear combinations, i.e. every
linear combination of elements of V belongs to V.

A set of vectors v1, . . . , vn is a basis of a vector space V if they are linearly independent
and any vector v ∈ V is a linear combination of them. (As a consequence, this
linear combination is unique).

The dimension of a linear vector space is the maximum number of independent vectors
in it, so it is the number of vectors in any basis.

A subset of a vector space which is a vector space is called vector subspace.

Definition 1.4. An affine combination of points x1, . . . xn is a point x = α1x1 + · · ·+
αnxn, where αi ∈ R ∀i = 1, . . . , n and

∑n
i=1 αi = 1.

Given some points x1, . . . xn, they are affinely independent if the only coefficients αi, i =
1, . . . , n such that α1x1+· · ·+αnxn = 0 and α1+· · ·+αn = 0 are αi = 0 ∀i = 1, . . . , n.
Equivalently, the vectors x2 − x1, . . . , xn − x1 are linearly independent, irrespective
of the choice of x1.

A set S is an affine space if it is closed under affine combinations.

The dimension of an affine space S is the maximum number of affinely independent
points in S minus 1.

Given a set of points x1, . . . xn, their affine hull is the set of all their affine combinations.
It is an affine space of dimension at most n− 1.

Given a set of affinely independent points x1, . . . xn, and the point x = α1x1 + · · ·+αnxn,
the coefficients αi, i = 1, . . . , n are the barycentric coordinates of x.

Definition 1.5. Given a set S ⊆ Rn, its dimension is the maximum number of affinely
independent points in S minus 1. S is fully dimensional if its dimension is n.

Definition 1.6. A convex combination of points x1, . . . xn is a point x = α1x1 + · · ·+
αnxn, where αi ∈ R+ ∀i = 1, . . . , n and

∑n
i=1 αi = 1.

Given a set of points x1, . . . xn, their convex hull is the set of all their convex combinations.
If the points x1, . . . xn are affinely independent, their convex hull is called simplex.

Definition 1.7. A conic combination of vectors v1, . . . vn is a vector v = α1v1 + · · ·+
αnvn, where αi ∈ R+ ∀i = 1, . . . , n.

A set C is a cone if ∀x ∈ C, αx ∈ C ∀α ∈ R+. For every cone C, the origin 0 ∈ C.

A set C is a convex cone if it is closed under conic combinations, i.e. every conic
combination of elements of C belongs to C.



21

A cone C is pointed if C ∩ −C = {0}, where for every set C, −C = {x | − x ∈ C}.

Given a set of vectors v1, . . . vn, their conic hull is the set of all their conic combinations.
It is a cone and its dimension is at most n.

Remark 1.1. Trivially, linear spaces and affine, conic, convex hulls are convex sets.

Definition 1.8. A set P ∈ Rn is a polyhedron if

P = {x ∈ Rn |Ax ≤ b}.

for a matrix A ∈ Rm×n and a vector b ∈ Rm, for m ∈ N. If b = 0m, P is a cone and it is
called polyhedral cone.

Definition 1.9. A cone C ∈ Rn is finitely generated if it is the conic hull of a finite set
of vectors r1, . . . , rr ∈ Rn.

Definition 1.10. Let P = {x ∈ Rn |Ax ≤ b} ∈ Rn be a polyhedron.

The recession cone of P is the set {r ∈ Rn |x+ αr ∈ P ∀α ∈ R+} = {r |Ar ≤ 0}.

The lineality space of P is the set {r ∈ Rn |x+ αr ∈ P ∀α ∈ R} = {r |Ar = 0}.

P is pointed if its lineality space is {0}.

Definition 1.11. Let P ∈ Rn be a polyhedron. An inequality a>x ≤ b is valid for P if it
holds true for every x ∈ P .

A face of P is a set S ∈ Rn such that S = P ∪ {x | a>x = b}, where a>x ≤ b is valid for
P.

A facet of P is any maximal size face of P.

A vertex of P is a face of size 0.

An edge of P is a face of size 1.

Definition 1.12. Given two sets R,S ⊂ Rn, their Minkowski sum is the set

R+ S = {x ∈ Rn | ∃r ∈ R, s ∈ S x = r + s}.

We report the Theorems of Minkowski-Weyl, used in later discussion. For the proof
and further discussion, see for instance [39].

Theorem 1.1 (Minkowski-Weyl Theorems). The theorem is expressed in two statements,
respectively for cones and for polyhedra:

a cone is polyhedral if and only if it is finitely generated;



22

a polyhedron P = {x ∈ Rn |Ax ≤ b} can be equivalently written as the sum of the convex
hull of a finite set of points xp and the conic hull of a finite set of vectors vr:

P =

np∑
p=1

λpxp +

nr∑
r=1

µrvr

with
∑np

i=1 λp = 1 and λp ≥ 0, µr ≥ 0∀p = 1, . . . , np, r = 1, . . . , nr.

Definition 1.13. A polytope is a bounded polyhedron.

Remark 1.2. A simplex with n+ 1 vertices is hence a particular polytope with dimension
n and it is often indicated with ∆n. In its barycentric coordinates, the constraints which
define a simplex are hence the following:

n∑
i=1

λi = 1, λi ≥ 0 ∀i = 1, . . . , n. (1.1)

Remark 1.3. Not all the cones are convex or polyhedral. For instance, many cones of
matrices are not polyhedral, as we will see later.

Definition 1.14. Given a set X, a function d : X ×X → R is a metric if: d(x, y) =
0 ⇐⇒ x = y, d(x, y) = d(y, x), and d(x, y) + d(y, z) ≤ d(x, z). We consider Rn as a
metric space, i.e. the set Rn equipped with a metric, and we consider the usual Euclidean
distance. The distance between two points x, y ∈ Rn is indicated by dn(x, y) ∈ R. A Ball,
centered in x ∈ Rn of radius r > 0, is a subset Bn(x, r) ⊆ Rn such that ∀y ∈ Bn(x, r),
dn(x, y) < r. Given a convex set S ⊂ Rn:

The interior of S is int(S) = {x ∈ S | ∃εx > 0, Bn(x, εx) ⊂ S}.

The closure of S is cl(S) = {x ∈ Rn | ∀ε > 0, Bn(x, ε)∩S 6= ∅}: it is the smallest closed
set which contains S.

The Relative interior of S is ri(S) = {x ∈ S | ∃ε > 0, Bd(x, ε) ⊂ Aff(S) |Bd(x, ε) ⊂ S},
where Aff(S) is the affine hull of S and d is the dimension of S.

The boundary of S is ∂bdS = cl(S) \ int(S)

The Relative boundary of S is ∂rbdS = cl(S) \ ri(S).

Remark 1.4. We will simply use ∂S to indicate the relative boundary of S.

Another important tool is the Caratheodory theorem, which we here recall in the
version for polytopes, which is what we will use later:

Theorem 1.2 (Caratheodory’s Theorem). Let P be a polytope in Rn of dimension d.
Any point x ∈ P is a convex combination of at most d+ 1 affinely independent vertices of
P.



23

Definition 1.15. A (real) Hilbert space is a real linear vector space with an inner product
〈·, ·〉 : H ×H 7→ R.

The Hilbert spaces we will deal with are cones: Rn with the product 〈x, y〉 = x>y,
and spaces of symmetric matrices with the Hilbert product 〈X,Y 〉 = Tr(X>Y ).

Definition 1.16. For any Hilbert space H and a cone C ⊆ H:

The dual cone of C is the set C∗ ⊆ H given by:

C∗ := {y ∈ H | 〈x, y〉 ≥ 0∀x ∈ C}.

The polar cone of C is the set C⊥ ⊆ H given by:

C⊥ = {y ∈ H | 〈x, y〉 ≤ 0∀x ∈ C}.

A cone C ∈ H is said self-dual if C∗ = C.

In the following proposition (see [5]) we collect a few important properties of duality
of cones.

Proposition 1.1. Let C1, C2 be closed convex cones in Rn.

• If C1 ⊆ C2, then C∗2 ⊆ C∗1 ;

• C∗∗1 = C1;

• (C1 ∩ C2)∗ = cl(C∗1 + C∗2 )

1.2 Matrices

In this section we recall some classical sets of matrices and their properties. We
always consider real valued matrices. The books [6] and [95] are a good reference for
these concepts.

Let A ∈ Rn×n be a square matrix. We indicate with Aij the element of A in row i
and column j and with A> the transpose of A. A is Symmetric if A = A>.

Definition 1.17. Let A ∈ Rn×n be a square matrix. A submatrix S of A is a matrix
obtained by removing some rows and columns from A. S is a principal submatrix if the
indices of the removed rows and columns are the same. A minor of A is the determinant
of a square submatrix of A. A principal minor of A is the determinant of a principal
submatrix.

In the rest of this section, we always consider symmetric matrices. We indicate with
Sn the set of symmetric matrices in Rn. Here we report the Spectral Theorem for real
symmetric matrices (see [95], Theorem 4.1.5).



24

Proposition 1.2 (Spectral Theorem). A ∈ Sn if and only if ∃P,D ∈ Rn s.t. PP> = I,
D is diagonal, and A = PDP>. The diagonal of D contains the eigenvalues of A.

Remark 1.5. As a consequence, symmetric matrices have real eigenvalues.

Definition 1.18. Let A ∈ Sn. We say that A is:

Positive semidefinite (PSD) if ∀x ∈ Rn, x>Ax ≥ 0;

Positive definite (PD) if ∀x ∈ Rns.t. x 6= 0, x>Ax > 0.

We indicate, respectively, with Sn+ and Sn++ the sets of positive semidefinite and positive
definite matrices in Rn.

We recall a few of the well known properties of PSD matrices which will be useful
later. Their proofs are, for instance, in [95].

Proposition 1.3. Let A ∈ Sn. Then the following are equivalent:

• A is PSD;

• All the eigenvalues of A are nonnegative;

• All the principal minors of A are nonnegative;

• ∃B ∈ Rn×k such that A = BB>.

Remark 1.6. As a consequence of the last statement, A can be written as the sum of k
rank-1 matrices: A =

∑k
i=1 bib

>
i where bi ∈ Rn are the columns of B.

Here we define other useful matrices.

Definition 1.19. Let A ∈ Sn. We say that A is:

Non Negative (A ≥ 0) if ∀i, j = 1, . . . n,Aij ≥ 0;

Totally non negative (TN) if every minor of A is non negative;

Doubly non negative (DNN) if A is both PSD and non negative;

Remark 1.7. If A is TN, then it is both non negative and positive semidefinite, so it is
DNN.

We indicate, respectively, with N n and DNN n the sets of non negative and doubly
non negative matrices in Rn.

Finally, we introduce the copositive and completely positive matrices, which we will
treat more in detail in Chapter 2 and will be useful for the second part of the thesis.

Definition 1.20. Let A ∈ Sn. We say that A is:

Copositive (COP) if ∀x ∈ Rn+, x>Ax ≥ 0;



25

Completely positive (CPP) if ∃k,B ∈ Rn×k+ such that A = BB>.

Remark 1.8. We notice that the definitions of COP and CPP matrices come as general-
izations of the definition of PSD matrices. Wider generalizations are possible, and are
the so-called set-semidefinite matrices.

Remark 1.9. We notice that, similarly to the case of PSD matrices, the definition of a
CPP matrix can equivalently be stated as

A is CPP ⇐⇒ A =
k∑
i=1

bib
>
i ,

where bi ∈ Rn+ are the columns of B. Hence, A is in the conic hull of nonnegative rank-1
matrices.

We indicate, respectively, with Cn and C∗n the sets of copositive and completely
positive matrices in Rn.

Remark 1.10. From the definition of dual cones and from Remark 1.6, it is easy to notice
that Sn+ and N n (and also Rn) are cones and they are are self-dual, and the dual of Cn is
actually C∗n. If we consider also Proposition 1.1, we can observe that the dual cone of
DNN n is DNN n∗ = Sn +N n.

Remark 1.11. It is easy to notice that the sets Sn, Sn+, N n, DNN n are closed, convex, full-
dimensional pointed cones. Sn++ is a cone and is the interior of Sn+. It has been observed
in [91] and in [52] that also the sets Cn and C∗n are closed, convex, full-dimensional
pointed cones. All the mentioned cones share the same vertex On.

From the definitions, along with Proposition 1.1 and the Remarks, we can establish
the following relations:

C∗n ⊆ DNN n ⊆ Sn+ ⊆ Sn+ +N n ⊆ Cn. (1.2)

Remark 1.12. It has been shown by Maxfield and Minc in [107] that the first and last
inclusions hold as equalities for n ≤ 4, while the inclusions are strict for n ≥ 5. They
provide an example of a matrix which is DNN but not CPP, and in [91] there is an
example of a matrix which is COP but not nonnegative.

1.3 Graphs

Now we recall classical and specific notions of graph theory that are useful for later
discussion. For this section we refer principally to [6].

Definition 1.21. A graph G(V,E) is the data of two finite sets: V is the set of vertices
and E is the set of edges. The vertices are represented by dots and the edges are lines
connecting vertices. An edge connecting nodes i and j is represented by a couple {i, j}.



26

Definition 1.22. A directed graph D(N,A) is the data of two finite sets: N is the set
of nodes and A is the set of arcs. The vertices are represented by dots and the arcs are
directed arrows connecting nodes. Every arc has an origin node i and a destination node
j and is represented by the ordered couple (i, j).

In this part we focus on graphs. We list some standard definitions.

Definition 1.23. Two vertices u, v ∈ V of a graph G(V,E) are adjacent if there exists
an edge {u, v} ∈ E. In this case, u and v are neighbors.

G is complete if every vertex is adjacent to every other.

If G is not complete, the completion of G is a complete graph with vertex set V .

A graph H(VH , EH) is a subgraph of G if VH ⊆ V and EH ⊆ E.

A subgraph H(VH , EH) of G is induced by W ⊆ V if VH = W and EH ⊆ E is the set
of all edges of E which have endpoints in W .

A clique K is a subset of V which induces a complete subgraph of G. It is maximal if it
is not contained in any other clique.

A path is a sequence of edges {v1, v2}, {v2, v3}, . . . , {vn−1, vn} ⊆ E where v2, . . . , vn are
distinct. The length of a path is its number of edges.

A cycle is a path where the first and the last vertices are the same.

A chord of a cycle C is an edge connecting two nonconsecutive vertices of C.

G is connected if, for every u, v ∈ V there exists a path connecting them. Otherwise it is
disconnected and it has at least two distinct connected subgraphs, called connected
components of G.

A cut-vertex v is a vertex of G such that the graph induced by V \{v} has more connected
components than G.

A block is a connected graph with no cut-vertices.

A block of G is a subgraph of G which is a block and which is not contained in any other
subgraphs of G which are blocks.

Definition 1.24. We use the following notation for some special families of graphs.

Kn: the complete graphs of n vertices.

Cn: the cycles of n vertices.

Tn: a graph with n− 2 triangles. That is, a graph with n vertices, where two vertices u, v
are adjacent to all other vertices, and every other vertex is adjacent only to u and v.



27

(a) K4 (b) C4 (c) T4 (d) T5

Figure 1.1 – Examples of graphs

In Figure (1.1), there are examples of these three classes of graphs.
Here we describe the two main classes of graphs which we are interested in.

Definition 1.25. Let G(V,E) be a graph.

G is chordal if for every cycle C of length at least 4, there is an edge in G which is a
chord for C.

G is block-clique if it is connected and each block of G is a complete graph.

Remark 1.13. It follows from the definition that a block-clique graph is chordal. In fact,
the block-clique graphs can be defined in two other ways: as the chordal graphs in which
any two maximal cliques intersect in at most one vertex, or the chordal graphs which do
not contain T2 as a subgraph.

In Figure 1.2 some examples are provided.

(a) Non chordal graph (b) Chordal non block-clique graph (c) Block-clique graph

Figure 1.2 – Chordal and block clique graphs

One of the reasons of the importance of chordal graphs is motivated by the following
property. For more details, see, for instance, [6] or [87].

Definition 1.26. Given a graph G(V,E), an ordering < on the nodes set V is a perfect
elimination ordering if for every v ∈ V , the set of vertices w ∈ V which are adjacent to v,
and such that v < w, is a clique.

The following result is presented in [123]:

Proposition 1.4. A graph has a perfect elimination ordering if and only if it is chordal.

We conclude this section with one last definition:

Definition 1.27. Given a graph G(V,E) with n vertices, its adjacency matrix is a matrix
A ∈ Rn×n where Aij = Aji = 1 if {i, j} ∈ E and 0 otherwise.



28

1.4 Related classes of cones and polytopes

We here define a polytope which has interesting relations to quadratic programming.
We follow the presentation given by Ziegler in [145]. This subject has been described in
detail by Deza and Laurent in [51].

Definition 1.28. The Correlation polytope in dimension n is the convex hull of the
rank-1 n× n 0-1 matrices :

CORn := conv {X ∈ Rn×n |X = xx>, x ∈ {0, 1}n}.

The same polytope is studied by Padberg in [117], under the name of Boolean Quadric
polytope, but historically it has been firstly introduced by Pitowsky in [119] under the
name of correlation polytope. The choice of the name is justified by a probabilistic
approach: to each point in the correlation polytope, it is possible to assign a positive
probability in a probability space. Moreover, suppose that every xi are propositions,
i = 1, . . . , n, which can be true or false; then, each vertex of this polytope corresponds
to a truth assignment of the proposition x1 ∧ x2 ∧ · · · ∧ xn, where ∧ is the conjunction
operator. Hence, a convex hull of them can be seen as a measure of the correlation of
these propositions.

Remark 1.14. Padberg, instead, in [117] was interested in this polytope because it can
be seen as the domain of an unconstrained quadratic binary problem. Since our point
of view is similar to that of Padberg, we will often refer to this polytope as the Boolean
Quadric Polytope (BQP):

BQPn := CORn.

It can be easily shown that this polytope is fully dimensional in the space of symmetric
n by n matrices, whose dimension is n(n+ 1)/2. However, the complete description of all
its facets is not easy. Several families of facet defining inequalities are found and some of
them are exponentially large.

Other similar sets have been studied: Burer and Letchford, in [31] studied the convex
hull of feasible solutions of a binary unconstrained QP, that is a problem where x ∈ [0, 1]n :
this set is not a polytope and is called QPB. The authors showed some relations between
the two sets: in particular, every valid inequality for BQP is also valid for QPB. Berman
and Xu in [7], and Dahl and Haufmann in [43], describe the closely related polytope
of completely positive matrices which are expressed as sum of binary rank-1 matrices.
Moreover, these polytopes and their relations with other binary polytopes are presented
in [103].

1.5 Matrix completion problems

A concept which is of particular interest in the second part on this thesis is that of
matrix completion problems. We write here the definitions along with some important
results.



29

The definitions and results of the matrix completion problem are available in the
book [6] and in references therein, which we will highlight at the end of this paragraph.

Let Kn be a matrix cone in dimension n.

Definition 1.29. Given a matrix A ∈ Rn×n and a cone Kn of matrices in dimension n.
We say that:

A is partial if some of its entries are not specified.

A partial matrix A is partial symmetric if it is symmetric in the specified entries and its
diagonal is specified.

A partial symmetric matrix is partial-K if every principal submatrix of A, such that all
of its entries are specified, is in K.

Given a partial-K matrix A:

A completion of A is a fully specified matrix C such that C is equal to A in the specified
entries of A.

C is a K-completion of A if C ∈ K.

A is K-completable if there exist a K-completion of A.

The K-completion problem is the problem of finding a completion of a partial-K matrix.
In this context another graph has to be introduced:

Definition 1.30. The specification graph of a n by n partial symmetric matrix A is a
graph G with vertices {1, . . . , n} in which i and j are adjacent if and only if i 6= j and
Ai,j is specified.

The completion problem is stated in terms of the specification graph:

Definition 1.31. A graph G is said to be K-completable if any matrix whose specification
graph is G is K-completable.

Remark 1.15. If a matrix A is K-completable with specification graph G, then the
specification graph of any completion of A is complete and is the completion of G.

Here we state the known results for two aforementioned cones.

Proposition 1.5. A graph is PSD-completable if and only if it is chordal.

Proposition 1.6. A graph is CPP-completable if and only if it is block-clique.

The proofs of these statements are shown, respectively, in [87] and in [58].



30



Chapter 2

Introduction to Quadratic and
Conic Programming

2.1 Context

Mathematical Optimization (or Mathematical Programming) can be seen as the
formulation and solution of mathematical models to solve decision problems. The def-
inition is totally generic, because the decision problems can take very different forms.
Every decision problem contains an objective function to be optimized, subject to some
constraints, expressed by a system of conditions to be satisfied. The formulation of a
generic optimization problem is:

min f(x) (2.1a)
s. t. gi(x) ≤ 0, i = 1, . . . ,m (2.1b)

x ∈ X (2.1c)

where x ∈ Rn, X ⊆ Rn, f, gi : Rn 7→ R are the objective function and the constraint
functions; the set {x ∈ Rn |x ∈ X, gi(x) ≤ 0, ∀i = 1, . . . ,m} is the domain, or feasible
region, of the problem.

Mathematical optimization is called Linear Programming (LP) if all the functions
in the formulation are linear, and Nonlinear Programming (NLP) otherwise. Both
these branches are extremely vast areas of research and have an enormous number of
applications. In this thesis we are interested in a particular subset of NLP, which is
Quadratic Programming (QP). We will see that is is strongly related to another class of
nonlinear programs which is Conic Programming (CP).

QP can be seen as the "simplest" among the nonlinear classes of problems: often a
quadratic approximation is used to solve some more difficult nonlinear problems. Because
of properties of quadratic functions, specific techniques can be developed for this class of
problems: in some cases, they allow to solve the problems very efficiently.

In the next sections we will describe in detail the formulations of general quadratic and
conic problems, we show the most important subclasses and we concentrate on those which

31



32

are object of study in this thesis. We then dedicate a section to revise the fundamental
concepts of duality theory for the nonlinear case, in particular we will show the application
to some quadratic and conic cases. Afterwards we will describe the most important first
order solution methods and we will focus on column generation technique, central for the
work of this thesis. We will then revise other solution methods for quadratic problems;
among them there is the Branch and Bound (B&B), which will be used in Chapter 4.
We finally introduce the fundamental results in conic programming for the two relevant
classes of PSD and COP-CPP cones, which have been object of growing interest in recent
years and are related to the work in the second part of this thesis.

2.2 Formulations of Quadratic Programs

Given a function f : X ⊆ Rn → R, and x ∈ X, f is said quadratic if it is a polynomial
in the components of x of degree 2. In particular, it can be written in the following way:

f(x) =
1

2
x>Qx+ q>x+ q0, (2.2)

with coefficients given by a matrix Q ∈ Rn×n, a vector q ∈ Rn and a constant term
q0 ∈ R.

Quadratic Programming is an extraordinary wide portion of Mathematical Program-
ming. It encloses all the optimization problems in which the objective function, the
constraints or both are quadratic functions. This category contains instances of several
type and with applications in many different fields, such as, for example, Telecommunica-
tions, Finance, Biology, Energy, Robotics, just to cite a few of them (see [71], [85]).

A quadratic program in its most generic formulation can be written as follows:

min f(x) =
1

2
x>Qx+ q>x+ q0 (2.3)

s. t.
1

2
x>Aix+ a>i x+ āi ≤ 0, ∀i = 1, . . . ,m

li ≤ xi ≤ ui ∀i = 1, . . . , n

xi ∈ Z ∀i ∈ I,

where n is the number of variables, m the number of constraints. x, q, ai ∈ Rn, āi ∈ R.
The constant terms of the constraints are usually moved at the right-hand side of the
inequality sign and bi := −āi are called the right-hand-side terms of the constraints.
Q ∈ Rn×n is a quadratic matrix and ∀i = 1 . . . ,m, Ai ∈ Rn×n are the matrices of the
constraints. If some of them are null, the corresponding constraints are said to be linear.
−∞ ≤ li ≤ ui ≤ +∞ are the (extended) real lower and upper bounds for each variable xi.
I ⊆ {1, . . . , n} is the set of integer variables.
Both the objective function and the constraint matrices can be assumed symmetric
without loss of generality: indeed, one can always replace off diagonal pairs with their
average. Formulation (2.3) includes equality constraints as well: indeed, it is sufficient to
write two inequality constraints with coefficients of opposite sign.



33

Without loss of generality we mainly consider minimization problems. Indeed, all
maximization problems can be changed into minimization ones by taking the opposite of
the objective function. Nevertheless, the sense of the optimization has to be taken into
account when considering convexity of the problems: in all the thesis we assume to have
only minimization problems, unless where explicitly specified, for the sake of clarity.

The problem (2.3) can be referred to as a Mixed Integer Quadratically Constrained,
Quadratic Problem (MIQCQP). A deeper classification can be made depending on specific
characteristics of the data. The problems in this class can be:

• linear problems, if both the objective function and the constraints are linear;

• unconstrained, if there are no constraints; linearly constrained, if all the constraints
are linear; quadratically constrained otherwise;

• continuous, mixed integer or integer, if respectively I = ∅, I ⊂ {1, . . . , n}, or
I = {1, . . . , n};

• (mixed) binary if all the integer variables have lower bound of 0 and upper bound
of 1.

Given a mixed integer problem, its continuous relaxation is a problem with the same
formulation, but without the integrality constraint.

We notice that we refer to linearly constrained quadratic problems simply as QPs,
while we write QCQPs in order to specify that not only the objective function, but also
the constraints are quadratic.

One other very important distinction has to be made between convex and non convex
problems.

Definition 2.1. A problem of type (2.3) is said to be convex if all the functions in its
formulation are convex and the equality constraints are given by linear functions.

Remark 2.1. It is a classic result that a function is convex if its Hessian matrix is positive
semidefinite, and it is strictly convex if the Hessian is positive definite. The Hessian of a
function as in (2.2) is the matrix Q, hence convexity of a quadratic problem is determined
by positive definiteness of the matrices in the formulation of the quadratic functions.

Remark 2.2. It is worth noting that the inequality constraints in the formulation (2.3)
are expressed as lower inequalities between the function and the right-hand-side, which is
a given real number. If all these constraints are given by convex functions, they define a
convex set: the sub-level set of a convex function. An equivalent definition for a convex
problem is that it is a minimization problem of a convex function over a convex domain.
If, instead, the inequality had the opposite sign, this would not have been true.

Remark 2.3. Since all the linear constraints are convex, as a special case the linearly
constrained problems with linear or convex objective function are convex.



34

Distinguishing if a problem is convex is crucial, because, in general, convex problems
are much easier that non convex quadratic problems. As we will see later, indeed, several
important classes of continuous convex problems are solvable in polynomial time.

Moreover, also the solution methods for quadratic problems are heterogeneous, because
they depend a lot on other features of the instances. We will see the most important
techniques in subsequent sections.

2.3 Formulations of Conic Programs

Another specific class of nonlinear programming is that of conic problems. We are
interested in linear conic problems, which can be written as in (2.1), where f is linear, gi
are affine functions and X is a cone. We use the following notation:

min c>x (2.4)
s. t.Ax = b

x ∈ K,

where A ∈ Rm×n, n,m ∈ N, b ∈ Rm, c ∈ Rn, and K is a cone.
If K is a cone of matrices, as S+ or C for instance, we can state the problem using the

matrix notation and the Hilbert product: it then becomes:

min 〈C,X〉 (2.5)
s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ K,

where n,m ∈ N, C, Ai ∈ Rn×n, bi ∈ R, ∀i = 1, . . . ,m. Here the variables lie in the
space of the symmetric real-valued matrices Sn. It can be equivalently expressed in the
following form (although the coefficients would be different):

max
m̃∑
i=1

b̃iyi (2.6)

s. t. C̃ −
m̃∑
i=1

Ãiyi ∈ K,

where the variables are yi, i = 1, . . . , m̃. It is shown, for instance, in [52] (Section 1.2.2).
Two main classes of linear conic optimization are well known, and they are defined based
on the type of cones which are considered. The first one is the semidefinite programming
(SDP) and the second one is copositive programming (COP). In the first case K = Sn+
and in the second case K = Cn or C∗n. As we will see in the next section, the notion of
dual cone is fundamental; we recall that Sn+ is self dual and the dual of Cn is C∗n.

Among the semidefinite programming problems, the subclass of the Second Order
Cone Programming (SOCP) plays an important role. Here the cone K is the Cartesian



35

product of several cones K = K1 × · · · × KN , where each of the cones Ki, i = 1, . . . , N is
the second order cone:

Ki = {x = (x0, x̄), x̄ ∈ Rni , |x0 ≥ ||x̄||}.

||x̄|| is the Euclidean norm in Rni . This class of problems is well-known and has several
applications. Specific algorithms are formulated to solve problems with this form. For a
more detailed description, see [1].

2.4 Duality theory

Duality is one of the most important features in mathematical optimization. Here
we recall duality for nonlinear problems and we specifically derive the formulation for
the dual of a linearly constrained quadratic problem and a linear conic problem. We
also notice that duality for linear problems arises naturally, as a particular case. For this
section we mainly refer to [23], but also [3] and [9] are good references.

We consider a generic nonlinear problem in the following form:

min f(x) (2.7)
s. t. gi(x) ≤ 0, i = 1, . . . ,m

hi(x) = 0, i = 1, . . . , p.

We assume that f, gi, hi : D ⊆ Rn → R ∀i, and D is nonempty. Let F ⊆ D be
the feasible region of the problem. The Lagrangian function is the following function
L : D × Rm+ × Rp 7→ R:

L(x, λ, µ) := f(x) + λ>g(x) + µ>h(x), (2.8)

where λ ∈ Rm+ and µ ∈ Rp are the so-called Lagrangian multipliers of each constraint
and are chosen so that, for every feasible point x ∈ F ,

L(x, λ, µ) ≤ f(x) ∀λ ∈ Rm+ , ∀µ ∈ Rp. (2.9)

Remark 2.4. From the definition (2.8), clearly L(x, 0, 0) = f(x) for every x ∈ F . Then,
observing (2.9), it follows that maxλ≥0,µ L(x, λ, µ) = f(x), for every feasible point x ∈ F .
Moreover, it is clear that if x ∈ D \ F , then ∃i such that gi(x) > 0 or hi(x) 6= 0. In both
cases, supλ≥0,µ L(x, λ, µ) = +∞, because the corresponding multiplier λi or µi can grow
to +∞ (or −∞, if hi(x) < 0). Hence, minx∈D supλ≥0,µ L(x, λ, µ) is attained with x ∈ F .
Therefore, problem (2.7) can be written as:

min
x∈D

sup
λ≥0,µ

L(x, λ, µ). (2.10)

We can now introduce the Lagrange dual function, which is the infimum of L over x:

u(λ, µ) := inf
x∈D

L(x, λ, µ). (2.11)



36

Remark 2.5. If f∗ is the optimal value of the original problem, easy calculations (reported,
for instance, in [23]) show that u(λ, µ) ≤ f∗, for each λ and µ, so this function always
provides a lower bound for the optimal value of the problem.

Finally, we can define the Dual problem of (2.7), which is:

max u(λ, µ) (2.12)
s. t. λ ∈ Rm+

µ ∈ Rp

The original problem (2.7) is now called primal and the Lagrangian multipliers are called
dual variables.

Remark 2.6. We can see that, from Remark 2.5, the optimal point of the dual prob-
lem (2.12) is lower than, or equal to, the optimum of the primal problem. This is the
weak duality property.

Remark 2.7. We would like to notice that the definitions of Lagrangian dual function
and dual problem do not require any hypothesis on the convexity of the primal problem.
However, for nonconvex problems, the infimum in (2.11) can be −∞ for every λ, µ: in
this case, the dual problem provides a lower bound which is trivial and useless, as pointed
out, for instance, in [102].

It is worth noticing which are the conditions for the equality between the primal
and the dual optimal values. This property is called strong duality and requires more
conditions, called constraint qualification. Typical constraint qualification conditions are
the Slater’s conditions:

Definition 2.2. A problem of the form (2.7) satisfies the Slater’s conditions if the
problem is convex, ∀ i = 1, . . . , p, hi are affine functions, and ∃x ∈ ri(D) : gi(x) < 0
∀ i = 1, . . . ,m s.t. gi is not affine.

If a problem (2.7) satisfies the Slater’s conditions, then strong duality holds.

Remark 2.8. For linearly constrained convex problems, these conditions are always satisfied.
For more general problems, like convex QCQPs or linear conic problems, these conditions
must be verified case by case.

2.4.1 Specific cases

In order to write conveniently the dual problem, it is worth noting that this problem
is the maximization of an infimum: the value of u(λ, µ) could be −∞. It is clear that the
points x ∈ D such that infx∈D L(x, λ, µ) = −∞ must be discarded, and so this appears
as a constraint in the dual. Here the cases of a linearly constrained quadratic problem
and a linear conic problem are presented.



37

Dual of a QP

Suppose that the primal problem P has the following form:

min
1

2
x>Qx+ c>x (2.13)

s.t.Ax = b

x ≥ 0.

The case with also inequality constraints is similar. We add Lagrangian multipliers λ for
the equality constraints and µ for the nonnegativity constraints. Then the Lagrangian
function is:

L(x, λ, µ) =
1

2
x>Qx+ c>x+ λ>(Ax− b)− µ>x

=
1

2
x>Qx+ (c+A>λ− µ)>x− λ>b.

If we consider L as a function of x, it is quadratic and its domain is D = Rn, hence its
infimum is either attained at a stationary point, or is −∞. If the problem is not convex,
its minimum is −∞ for any value of λ or µ and the dual problem is useless. Hence, here
we assume that the problem is convex. Since our goal is to maximize its infimum, we force
it to be a stationary point, by fixing ∇xL(x, λ, µ) = 0. This translates in the following
constraint:

c+A>λ− µ = −Qx, or µ = Qx+A>λ+ c ≥ 0.

By substituting it in the expression of L and adding it as a constraint, the dual problem
is then:

max L(x, λ) = −1

2
x>Qx− λ>b

s.t. Qx+A>λ+ c ≥ 0

Ax = b

x ≥ 0.

We note that, if Q is the null matrix, the problem is linear and the original variabes x do
not appear in the dual, which is the classic linear dual problem.

Dual of a CP

If the primal problem has the form in (2.5), then the Lagrangian function is

L(X,λ) = 〈C,X〉+

m∑
i=1

λi(〈Ai, X〉 − bi),



38

where λi ≥ 0∀ i = 1, . . . ,m are the Lagrangian multipliers. Now,

inf
X∈K

L(X,λ) = inf
X∈K
〈C +

m∑
i=1

λiAi, X〉 − λ>b.

It is easy to see that this infimum is > −∞ if and only if

C +
m∑
i=1

λiAi ∈ K∗,

by definition of the dual cone. In this case,

inf
X∈K

L(X,λ) = 0− λ>b.

Hence, the dual problem is

sup − λ>b

s.t. C +
m∑
i=1

λiAi ∈ K∗

λ ≥ 0.

Again, if K = Rn, since it is self-dual, we obtain the classic linear dual problem.

2.5 Solution methods

The solution of quadratic or conic problems require different techniques and has
different computational complexity depending on the type of problems. Regarding conic
optimization, it has been shown that the complexity of SDP is polynomial: results
obtained with the interior point method are given by Nesterov and Nemirowski [112]
and a good description of semidefinite programming is in [135]. Nevertheless, copositive
programming is in general NP-hard, as we will see in a dedicated section.

Quadratic programming is in general NP-hard, (it is sufficient to see that it includes
Max cut problems, among others) but subclasses of it can be polynomial as well. Indeed,
it has been shown that several convex continuous problems, such as LPs, convex QPs,
SOCPs can be reformulated as SDP problems -hence they are polynomial- and specific
interior point methods have been developed for these subclasses: see [1, 112, 120, 135].
More detailed sections describing solution methods are below: we firstly concentrate
on first order and feasible direction methods, because they are preliminary to column
generation techniques, as we will see, and on Branch and bound (B&B), which will be
used in the first part to solve mixed binary quadratic problems. Then, we will examine
other important techniques.



39

2.6 First order methods for quadratic problems

In this section we briefly recall some classic methods that are used in unconstrained
optimization and some standard first order methods. They serve as an introduction and
they are also exploited in the first result described in Chapter 3. In the following sections
we will describe in detail other methods which are extensively used in this thesis. The
first part of this section is based on [9] and [114].

Typically in nonlinear optimization, the first important distinction is made between
constrained and unconstrained problems. In unconstrained optimization, specifically when
the problem is quadratic, a useful strategy is that of iterative methods.

Every algorithm for unconstrained optimization generates sequences of points x0, x1, . . .
which converge to the optimal point, up to a certain accuracy. In order to generate
successive iterates, these methods use information on the objective function, which in
this thesis is always differentiable. The main idea is to find so-called descent directions:

Definition 2.3. d ∈ Rn is a descent direction for a function f : Rn 7→ R, if for every
x ∈ Rn, ∃α > 0 s.t. f(x+ αd) < f(x).

A typical descent direction at a point x is clearly d = −∇f(x). It can easily be seen
that this is the direction which best improves the value of the function. Methods of the
steepest descent calculate this direction at each iterate x and use techniques to choose a
suitable step length α.

For convex problems, a different unconstrained optimization algorithm based on
descent directions is the so-called conjugate directions method. We describe some details
of this method, which are strongly exploited in Chapter 3.

Definition 2.4. Given a n× n symmetric, positive definite matrix Q, let d1, . . . , dn be n
distinct vectors in Rn. They are called conjugate directions w.r.t. Q if

d>i Qdj = 0 ∀i 6= j. (2.14)

It is important to note that the following proposition holds:

Proposition 2.1. Let d1, . . . dm ∈ Rn be m nonzero vectors, which are mutually conjugate
with respect to a symmetric and positive definite n × n matrix Q. Then, d1, . . . dm are
linearly independent.

In particular, n mutually conjugate directions form a basis of Rn. Moreover, the
following proposition shows how powerful the conjugate directions are:

Proposition 2.2. Let Q ∈ Rn×n a symmetric positive definite matrix and d1, . . . dn ∈ Rn
be n nonzero and mutually conjugate directions with respect to Q. Given a quadratic
function

f =
1

2
x>Qx+ c>x, (2.15)

we define the algorithm:

xk+1 := xk + αkdk, ∀k = 0, . . . , n, (2.16)



40

where x0 is any point in Rn and

αk = −∇f(xk)
>dk

d>k Qdk
(2.17)

is the coefficient such that xk+1 minimizes f along the line xk +dk. For each k = 1, . . . , n,
let Sk ⊂ Rn be the linear subspace generated by the vectors d1, . . . , dk.
Then, each xk is the optimal point of f in the affine space x0 + Sk.

As a consequence:

Proposition 2.3. Conjugate direction method converges to the minimum point of a
strictly convex quadratic function f(x) : Rn → R in at most n steps.

Based on these properties the conjugate gradient is a method which was firstly
introduced in the 1950s to solve linear systems of equations. Equivalently, it can be
used for quadratic strictly convex unconstrained optimization. A variant of this method,
introduced by Fletcher and Reeves in [63] is a technique to solve nonlinear optimization
problems. Conjugate gradient methods are based on the following idea. In order to
generate subsequent conjugate directions, at each step compute the gradient of the function
in the current point, and make it conjugate with respect to the previously generated
directions. Then, following the conjugate direction method, find the minimal point of the
function along the direction and proceed. The great advantage of using the gradient is
given by an important property: it is sufficient to make it conjugate with respect to one
single previous direction to have it conjugate with respect to all the others. Conjugate
gradient methods can be adapted to solve problems where the matrix of the objective
function is positive semidefinite.

If we consider constrained optimization, these methods cannot be directly applied,
because moving along descent directions may lead to infeasible points. In this context,
the fundamental approach is that of feasible direction methods: given a feasible point
xk, the direction dk is generated so that ∃α > 0 such that the point xk + αdk is feasible
and has a smaller objective function value than xk. In this class there are the method of
Zoutendijk and its variants (see [3]). Then, an important strategy is that of projected
gradient methods. The basic idea is to project the gradient in such a way that the
direction is a descent direction and maintains feasibility. Several methods have been
studied, starting from the projected gradient of Rosen [124] in 1960 for linear constrained
problems, and its generalizations for problems with nonlinear constraints. Other feasible
direction methods are the reduced gradient projection and its generalized variant. A
detailed description can be found for instance in [3, 9].

One other classic strategy is a first order method for solving linearly constrained, non
linear problems: the Frank-Wolfe algorithm.

2.6.1 Frank-Wolfe method

The idea of Frank-Wolfe method dates back to 1956 (see [69]), but this algorithm
received a lot of success and is widely used. For instance, as shown in [118], it is often



41

used for network flow problems. It alternates between a linear subproblem and a line
search in the segment between the current point and the solution of the subproblem. In
fact, given an iterate xk, the subproblem is

min f(xk) +∇f(xk)
>(x− xk)

s.t. x ∈ X (2.18)

and it is the linearization of the original one. It provides a descent direction and, if f
is convex, this is a lower bound of the original problem. The next iterate xk+1 is the
minimum along the line segment between xk and the optimum of problem (2.18).

This algorithm is simple and efficient in the first iterations, but the convergence rate
is sub-linear.

In order to deal with large-size problems, especially with a large number of columns, a
more useful strategy is to use a decomposition method and in particular column generation
algorithms. Column generation has been firstly introduced for Linear Programming, but it
can be applied to Quadratic Programming and more generally to Nonlinear Programming,
under some assumptions on the convexity of the problem. We will show these results in
the next chapter.

2.7 Column Generation methods

Column generation formulations for linear programs have been widely studied. A
survey is given by Barnhart et al. in [2] and many papers have been written on this
subject. Just to cite a few examples, see [49], [50], [96], [105], [111], [136], [138]. The basic
idea behind column generation algorithms is the following. Consider a formulation of a
problem in which the number of variables (columns) is large (exponential, for instance).
Then, one can start working with a small subset of them and find the optimal solution
of the restricted problem. By solving a subproblem, it is possible to determine if there
are other columns which, if added to the formulation, can provide a lower objective
function. If so, add iteratively one new variable that improves the objective function until
a certificate of optimality can be obtained.

In order to better explain how this strategy is developed, we consider the most typical
case when column generation is applied: the Dantzig-Wolfe Decomposition.

2.7.1 Dantzig-Wolfe Decomposition (DWD)

The Dantzig-Wolfe Decomposition (firstly introduced in [44]) is based on the Minkowski-
Weyl Theorem: every polyhedron is the convex combination of its extreme points plus
the conic combination of its extreme rays. This theorem is exploited in the following way



42

(see [136] or [50] for further details). Take a linear problem in the form, for instance:

min c>x (2.19)
s. t. Ax ≥ b,

x ∈ X,
(2.20)

where X is a polyhedron. The condition x ∈ X is replaced by imposing that x must be
expressed as a convex combination of the extreme points xp of X plus a conic combination
of the extreme rays xr of X: if P and R are respectively the index sets of the extreme
points and extreme rays of X,

x =
∑
p∈P

xpλp +
∑
r∈R

xrλr,
∑
p∈P

λp = 1, λp ≥ 0, λr ≥ 0 ∀p ∈ P, r ∈ R. (2.21)

Then, this expression is substituted in the rest of the constraints and in the objective
function. The result is the following:

min
∑
p∈P

cpλp +
∑
r∈R

crλr (2.22)

s. t.
∑
p∈P

apλp +
∑
r∈R

arλr ≥ b∑
p∈P

λp = 1

λp ≥ 0 ∀p ∈ P

λr ≥ 0 ∀r ∈ R,

where cj = c>xj and aj = Axj , for j ∈ P ∪ R.
A reduced master program (RMP) considers only a small subset of the sets P̄ ⊂ P of

extreme points and R̄ ⊂ R of extreme rays:

min
∑
p∈P̄

cpλp +
∑
r∈R̄

crλr (2.23)

s. t.
∑
p∈P̄

apλp +
∑
r∈R̄

arλr ≥ b,

∑
p∈P̄

λp = 1

λp ≥ 0 ∀p ∈ P̄

λr ≥ 0 ∀r ∈ R̄.



43

Given an optimal dual solution π and π0 of the current RMP, where variables π is the
dual of the first set of constraints and variable π0 is the dual of the second constraint, the
subproblem is to determine:

min
j∈P∪R

cj − π>aj − π0.

By our previous linear transformation this results in the following, called Pricing problem:

min (c> − π>A)x− π0 (2.24)
s. t. x ∈ X. (2.25)

The DWD strategy can be naturally extended to non linear problems, based of the
duality theory of non linear problems. A method which can derived directly by applying
this framework, but which historically have been discovered differently, is the Simplicial
Decomposition algorithm, which has been deeply analyzed in this thesis and will be
presented in detail in the next section.

2.8 Simplicial Decomposition

A significant part of this thesis concerns the study and the adaptation and application
of a specific column generation algorithm, namely Simplicial Decomposition algorithm.

Simplicial Decomposition (SD) represents a class of methods used for dealing with
convex problems. It was first introduced by Holloway in [94] and then further studied in
other papers (see, e.g., [93,139,140]). A complete overview of this kind of methods can
be found in [118].

This method has been developed as an extension of the Frank-Wolfe algorithm, but it
can be seen also as a particular case of decomposition based on the DWD for nonlinear
problems. In fact, it is based on the Caratheodory theorem, that states that any compact,
convex set X is the union of all simplices whose vertices belong to X. The idea is
the following: in order to solve the original convex problem, a sequence of columns, or
extreme points, is generated, based on the linearization of the original objective funtion;
the domain of the problem is reduced to the convex hull of some of these columns, the
problem is solved, a new extreme point is added and the new solution is found; this, until
a guarantee that the global optimum is found. So, this strategy is an inner approximation
of the original domain. The generation of new columns is based on the linearization of the
objective function in the optimum of the current reduced problem. So, in order to solve
the original problem, it is decomposed into simpler ones, which are called respectively
pricing and master programs, and are solved alternatingly and repeatedly. The pricing
solves the original problem with a linear objective function and finds a new extreme point,
while the master program, instead, is a problem with the original objective function, but
with lower dimension and simplified constraints.

More specifically, we consider a minimization problem of the following form:

min f(x) (2.26)
s. t. x ∈ X



44

where f is a continuous, convex function and X ⊂ Rn is a convex and compact set.
The column generation is done in the following way: starting from a single point, the

domain of each master program is the convex hull of a finite set of affinely independent
points, i.e. a simplex, and these points are the solution of the previous pricing problems.

In practice, the feasible set X is approximated with the convex hull of an ever
expanding finite set Xk = {x̃1, x̃2, . . . , x̃m} where x̃i, i = 1, . . . , m are extreme points of
X. We denote this set with conv(Xk):

conv(Xk) = {x | x =
m∑
i=1

λix̃i,
m∑
i=1

λi = 1, λi ≥ 0} (2.27)

At each iteration, it is possible to add new extreme points to Xk in such a way that a
function reduction is guaranteed when minimizing the objective function over the convex
hull of the new (enlarged) set of extreme points. If the algorithm does not find at least
one new point, the solution is optimal and the algorithm terminates.

The use of the proposed method is particularly indicated when the following two
conditions are satisfied:

1. Minimizing a linear function over X is much simpler than solving the original
nonlinear problem;

2. Minimizing the original objective function over the convex hull of a relatively small
set of extreme points is much simpler than solving the original nonlinear problem
(i.e. tailored algorithms can be used for tackling the specific problem in our case).

The first condition is needed due to the way a new extreme point is generated. Indeed,
this new point is the solution of the following linear programming problem

min ∇f(xk)
>(x− xk)

s.t. x ∈ X (2.28)

where a linear approximation calculated at the last iterate xk (i.e. the solution obtained
by minimizing f over conv(Xk) ) is minimized over the original feasible set X.

Below, we report the detailed scheme related to the classical simplicial decomposition
algorithm [10, 118, 140] (see Algorithm 1). At a generic iteration k of the simplicial
decomposition algorithm, given the set of extreme points Xk, we first minimize f over the
set conv(Xk) (Step 1), thus obtaining the new iterate xk then, at Step 2, we generate an
extreme point x̃k by solving the linear program (2.30). Finally, at Step 3, we update Xk.

Finite convergence of the method is stated in the following Proposition (see, e.g.,
[10, 140]):

Proposition 2.4. Simplicial Decomposition algorithm obtains a solution of Problem
(2.26) in a finite number of iterations, if X is polyhedral.

As already written in [140], a vertex dropping rule is also used to remove those vertices
in Xk whose weight is zero in the expression of xk, the solution of the master. This



45

Algorithm 1 Simplicial Decomposition Algorithm
Initialization: Choose a starting set of extreme points X0.

For k = 1, 2, . . .

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

(2.29)

Step 2) Generate an extreme point x̃k by solving the subproblem

min ∇f(xk)>(x− xk)
s.t. x ∈ X (2.30)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise Set Xk+1 = Xk ∪ {x̃k}
End For

dropping phase does not modify the formulation of the pricing, so it does not change the
steps of the algorithm. However, it can guarantee significant savings in terms of CPU
time, since it keeps the dimensions of the master problem small, and thus justifies the
name of the algorithm, because it keeps the domain of the master a simplex.

The most significant advantage of Simplicial Decomposition is that the dimension
of the master programs are always small: in practice, the maximal dimension of the
master problems is hardly bigger than a few hundreds, (and often it is much smaller)
hence it is generally much smaller than the dimension of the original problem. Thus,
the overall computing time can be reduced with this decomposition. Another extremely
important feature of this technique is that all the constraints are in the pricing, so,
since the problem is convex, all the reduced master programs are feasible and no dual
information is necessary.

It is worth noting one more characteristic, that will be particularly helpful for mixed
integer problems. Since in the pricing problem a linearization of the original objective
function is done, and the original function is convex, the optimization of the linear function
always provides a valid lower bound.

2.8.1 Dantzig-Wolfe and Simplicial decompositions

In principle, DWD can be applied to convex nonlinear problems. If we apply it to a
convex QP in the form (2.13) and we reformulate all the constraints with the Minkowsly-
Weyl theorem, we express the feasible region as the convex combination of all its extreme
points. If we apply column generation to solve the problem, we can easily see that the
restricted master problem is exactly the same as in SD algorithm. Indeed, if we write it,



46

we have:

min
1

2
x>Qx+ c>x

s. t. x−Bλ = 0 [π]

e>λ = 1 [π0]

λ ≥ 0,

where B = (x̃1 . . . x̃k) ∈ Rn×k is the matrix whose columns are the extreme points, and e
is the all-1 vector. π and π0 are the dual variables corresponding to the constraints. The
(quadratic) dual is:

max − 1

2
x>Qx+ π0 (2.31a)

s. t. −Qx+ π = c (2.31b)

− π>x̄j + π0 ≤ 0, ∀j = 1, . . . , k. (2.31c)

Then, the pricing problem is:

min π∗>x− π∗0
s. t. Ax = b

x ≥ 0

where π∗ and π∗0 are the optimal variables. We note that constraint (2.31b) implies that
π = ∇f(x), for every dual feasible x and π, in particular for the optimal x∗ and π∗.
Hence, the pricing can be rewritten as:

min ∇f(x∗)>x+ const

s. t. Ax = b

x ≥ 0,

which is equivalent to the subproblem of SD.

2.9 Convex quadratic programs

Other classic solution methods for a general convex quadratic program can be mainly
categorized into either interior point methods or active set methods [115]. In interior point
methods, a sequence of parameterized barrier functions is (approximately) minimized
using Newton’s method. The main computational burden is represented by the calculation
of the Newton system solution (used to get the search direction). Even if those methods
are relatively recent (they started becoming popular in the 1990s), a large number of
papers and books exist related to them (see, e.g., [78, 112,142–144]).

In active set methods, at each iteration, a working set that estimates the set of active
constraints at the solution is iteratively updated. This gives a subset of constraints to



47

watch while searching the solution (which obviously reduces the complexity of our search
in the end). Those methods, which have been widely used since the 1970s, turn out to be
effective when dealing with small- and medium-sized problems. They usually guarantee
efficient detection of unboundedness and infeasibility (other than returning an accurate
estimate of the optimal active set). An advantage of active set methods over interior
points is that they are well-suited for warmstarts, where a good estimate of the optimal
active set or solution is used to initialize the algorithm. This turns out to be extremely
useful in applications where a sequence of QP problems is solved, e.g., in a sequential
quadratic programming method. A quite large number of active set methods have been
developed in recent years (see, e.g., [41,42,46,62,90]). A detailed overview of active set
methods can be found in [115].

2.10 Branch & Bound for Mixed Integer convex QPs

In many applications the requirement that some or all the variables must be integer
is needed. This makes the problem more complicated to solve than its continuous
counterpart. Its formulation is then the following:

min f(x) = x>Qx+ c>x (2.32)
s. t. Ax ≥ b,

Cx = d,

l ≤ x ≤ u
xi ∈ Z ∀i ∈ I ⊆ {1, . . . , n},

with the same notation as above.
We would firstly distinguish the subclass of mixed integer linear problems (MILPs),

that is when the matrix Q in the objective function is null, among the MIQPs. Even if
the integrality constraints are clearly non convex constraints, MIQPs are usually called
convex if their continuous relaxation is convex. A variety of exact solution methods for
Mixed Integer Problems exists, as shown for example in [32]. The integrality constraint
is typically addressed with a technique called Branch and bound (B&B), that has been
extensively used in the literature for Mixed Integer Linear and Quadratic Problems.

It has been developed for MILPs, but can be adapted to convex MIQPs. It is based on
a key operation, called branching : if an integer constrained variable xi takes a fractional
value x∗i in the optimal solution of the continuous relaxation of the problem, then one
can replace the problem with two subproblems. In one of the subproblems, the constraint
xi ≤ bx∗i c is added, while in the other the constraint xi ≥ dx∗i e is added. In this way, a
tree structure is obtained, where each node has two children. Clearly, the solution of the
original problem is not feasible for the subproblems, but it provides a lower bound for
them. The nodes can be removed, or pruned, due to three possible reasons. The first one
is optimality: if the solution of the relaxation is feasible for the original problem, then it
is both a lower and an upper bound, and no better solutions will be found in the subtree,



48

so it is pruned. Then, one other possibility is that the problem obtained by the split
is infeasible, and in this case the node is pruned for infeasibility. The latter, but most
frequent case, is that of pruning by bound: this is the case when the lower bound given
by the solution of the continuous relaxation is higher than a known feasible solution, that
in minimization problems is always an upper bound. In this case the node is pruned too,
because in the subtree there cannot be any optimal point. No other cases can happen.
The strategy, then, in order to solve efficiently an integer problem, is that of finding the
best search of the tree in order to generate the least number of nodes by pruning the
subtrees where an optimum cannot be present, while exploring rapidly the part of the
tree that leads to the optimal point. To this aim a lot of different techniques have been
developed, but which depend largely on the type of the instance.

When the number of constraints is high, the Branch and bound technique can be
extended to the Branch and Cut, whose basic idea is that some constraints are not taken
into account in the formulation, but are added during the branching in order to determine
if the current optimal point is feasible or not: if not feasible, one excludes it from the
feasible region, by adding a valid cut, and improves the formulation. Moreover, one other
method is the branch and price: it is the combination of branch and bound with the
decomposition technique described above and it will be explained in the next paragraph.

Indeed, Column Generation can be applied to mixed integer problems, as reported for
instance in [136] and [138]. Given a problem with some integer constrained variables, one
can reformulate a subset of the constraints with the Minkowski-Weyl Theorem and rewrite
them in the rest of the constraints and in the objective function. Then, one obtains a
new integer problem, where the integrality constraints link the original variables to the
new ones. The combination of column generation in a branch and bound tree is called
Branch and price. One reason for using this reformulation is that it can be tighter, due
to the reformulation, so the lower bound in the nodes of the branch and bound tree is
likely to be higher than that obtained with the original formulation.

Finally, in order to deal efficiently with convex quadratic problems with integer
variables and exploit their properties, more refined techniques have been developed.
One of them is the use of suited ellipsoids in order to improve the bound given by the
continuous relaxation. This method consists of centering an ellipsoid in the optimal point
of the continuous relaxation, and expanding it until it contains an integer point in the
boundary and no integer points in the interior. Evaluating the objective function on it
yields a stronger lower bound which can improve the B&B algorithm. A more detailed
description, along with promising results, can be found in [25].

2.11 Mixed Integer Quadratically Constrained Quadratic
Problems (MIQCQPs)

In this section we deal with a more generic class of quadratic programs.
A generic quadratic problem that we are interested in here takes the form of (2.3),



49

here reported:

min f(x) =
1

2
x>Qx+ q>x+ q0 (2.33)

s. t.
1

2
x>Aix+ a>i x+ āi ≤ 0, ∀i = 1, . . . ,m

li ≤ xi ≤ ui ∀i = 1, . . . , n

xi ∈ Z ∀i ∈ I,

where the notation is the same as introduced before. In particular, it may contain
quadratic constraints and it can be non convex. This is the most general class of quadratic
problems and can be seen as a particular class of Mixed Integer Non Linear Problems
(MINLP).

In order to deal with these difficulties, some ad-hoc methods have been proposed.
As written in the survey [32], a typical strategy is the use of under and over estimators,
that is, the substitution of non convex constraints with convex functions that are lower
bounds for them, or respectively with concave upper bounds. Another typical technique
is linearization: the dimension of the variable space can be extended to O(n2), taking into
consideration new variables y that represent the products between x variables, and a new
set of constraints is added to make them consistent. Another technique is convexification:
the original non convex function is modified in order to make it convex, so more tractable.
The typical example arises in quadratic purely binary optimization: the binary constraints
can be equivalently rewritten as x2

i = xi for i ∈ {1, . . . , n}. This relations can be exploited
in order to add a term in the diagonal of the matrix in the objective function (and subtract
it to the linear part) in order to make the problem convex. This is the basic concept
of convexification proposed by Hammer and Rubin in [92] and it has been successively
extended to the Quadratic Convex Reformulation (QCR) methods (see [13] and [14]).

Finally, for non convex non linear problems, a relevant method is spatial branch
and bound. This method can be used in addition to the classical one, but it makes the
branching on the continuous variables: this is done when under or over estimators are
used to approximate a non convex function. If a variable y has lower and upper bounds
l < u, then one can split the problem into two subproblems l ≤ y ≤ β and β ≤ y ≤ u. In
this way, the under and upper approximations can be strengthened, taking advantage on
the reduced domain.

2.11.1 Extended space for solving MIQCQPs

A standard technique used to deal with MIQCQPs is to work on the extended space
representing the products of the original variables. Instead of the vector of variables x,
one considers the matrix variable X that is given by

X =

(
1
x

)(
1 x>

)
=

(
1 x>

x xx>

)
.

In this way, all the quadratic terms are linearized, at the price of having O(n2) variables
instead of n. The formulation of the problem is given as a linear problem in the extended



50

space, with a constraint that links together x and X. We use the following notation,
along with the Hilbert product of two matrices.

We hence define:

Q̄ :=

(
q0 q>

0n
1
2Q

)
(2.34)

Āi :=

(
0 a>i
0n

1
2Ai.

)
, ∀i = 1, . . . ,m. (2.35)

We also consider bi = −āi. With this notation, the problem (2.33) can be rewritten as:

min 〈Q̄,X〉 (2.36)
s. t. 〈Āi, X〉 ≤ bi, ∀i = 1, . . . ,m

li ≤ xi ≤ ui ∀i = 1, . . . , n

X =

(
1 x>

x xx>

)
(2.37)

xi ∈ Z ∀i ∈ I ⊂ {1 . . . , n}.

Conic relaxations

Since the constraint (2.37) is non convex and it is difficult to deal with, a standard
technique is relaxing this constraint, obtain lower bounds and then proceed with Branch
and bound techniques. The most typical relaxation is the SDP relaxation: this constraint
is replaced by the following:

X −
(

1 x>

x xx>

)
� 0, (2.38)

that is, this matrix must be PSD, or lie in the cone of positive semidefinite matrices.
SemiDefinite Programming (SDP) is particularly interesting because it is polynomial,
so a solution to the relaxation is relatively easy to obtain. Specific software has been
developed for SDP, for example the commercial solverMOSEK, SeDuMi (see [128]), SDPT3
(see [132]), CSDP (see [22]) among others. Other types of conic relaxation exist. Two
important classes are copositive and completely positive relaxations, that is optimization
in the cone of Copositive matrices or Completely positive matrices, respectively. Results
for these particular cones will be treated in detail in the following section.

2.12 Copositive optimization

The subject of copositive programming has firstly been introduced in [91]. Then, it
has received increasing interest over the last few decades and a large number of works
has been produced. For a description of copositive optimization, we start referring to [30]
and to the survey [59]. Other papers which present reviews of recent advances in this
field, along with applications, are [16] and [20]. The book [6] is also a useful source.



51

A copositive program is a linear conic optimization problem on the copositive cone,
which can be written without loss of generality as:

min 〈C,X〉 (2.39)
s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ Cn.

Its dual, as seen in Section 2.4, is a completely positive program. Since formulations (2.5)
and (2.6) are equivalent, here we can consider the following as a completely positive
problem:

min 〈C,X〉 (2.40)
s. t. 〈Ai, X〉 = bi, i = 1, . . . ,m

X ∈ C∗n.

In the literature copositive programming is used in reference to one of these two formula-
tions, due to their strong connections.

The first important result about copositive programming is given by Bomze et al.
in [18]: the authors consider the so-called Standard quadratic problem, which is the
minimization of a quadratic function over a simplex:

min x>Qx (2.41)

s. t. e>x = 1

x ≥ 0.

They prove that its completely positive relaxation:

min 〈Q,X〉 (2.42)
s. t. 〈E,X〉 = 1

X ∈ C∗n

is a reformulation of the original problem. However, Standard quadratic program is
NP-hard, since the maximum clique problem can be reduced to it. This is an example of
a convex NP-hard problem.

This first reformulation of a quadratic program in copositive form is followed by other
results. A noticeable result is given by Burer in [28]. He extended the first result to every
linearly constrained quadratic problem with binary variables: he proved that the problem
in variables x ∈ Rn:

min
1

2
x>Qx+ q>x (2.43a)

s. t. a>i x = bi, ∀i = 1 . . . ,m (2.43b)
x ≥ 0 (2.43c)
xj ∈ {0, 1} ∀j ∈ B ⊆ {1, . . . , n}. (2.43d)



52

is equivalent to the following completely positive relaxation:

min 〈1
2
Q,X〉+ q>x (2.44a)

s. t. a>i x = bi, ∀i = 1 . . . ,m (2.44b)

a>i Xai = b2i , ∀i = 1 . . . ,m (2.44c)
xj = Xjj ∀j ∈ B (2.44d)(

1 x>

x X

)
∈ C∗n+1. (2.44e)

under the so-called key-assumption, that is, a>i x = bi for all i and x ≥ 0 imply xj ≤ 1
∀j ∈ B. But this condition, as already noticed, is easily achieved without loss of generality,
even when it is not already implied. His result extends to problems which have special
quadratic constraints: the complementarity constraints.

Other equivalences between NP-hard problems and completely positive relaxations are
obtained for the maximum stable set problem (see [45]), the chromatic number (see [89]),
the quadratic assignment problem (see [121]), and also problems with uncertainty on the
data (see [110]).

Solving a copositive problem remains obviously very hard. Typically, hierarchies
of polyhedral cones are used to approximate the copositive cone. These are used, for
instance, in [17] and in [27], while in [29] the author proposes a doubly non negative
relaxation of the completely positive cone. A different approach is given by Bomze et al.
in [19], where the authors propose a feasible direction heuristic to solve a problem in the
completely positive cone. However, the initial point with a factorization is needed, which
is trivial in some cases, but difficult in general.

Geometrical aspects of these cones have been extensively studied. The interior of the
completely positive cone has been described in [60] and their result has been improved by
Dickinson in [53]. Other important results are obtained by Dickinson in [54]. There are
still some open questions, which are reported in [8].



Part I

Continuous and mixed binary
convex QPs

53





Chapter 3

A conjugate direction based
Simplicial Decomposition framework
for solving a specific class of dense
convex quadratic programs

In this chapter, we tackle convex problems with the following form:

min f(x) = x>Qx+ c>x (3.1)
s. t. Ax ≥ b,

Cx = d,

l ≤x ≤ u,

with Q ∈ Rn×n, c, l, u ∈ Rn, A ∈ Rm1×n, b ∈ Rm1 , C ∈ Rm2×n, d ∈ Rm2 , n,m1,m2 ∈ N.
We assume that the domain

X = {x ∈ Rn : Ax ≥ b, Cx = d, l ≤ x ≤ u}

is non empty and bounded and the quadratic matrix Q is positive semidefinite. Further-
more, among all possible problems of type (3.1), we are particularly interested in those
with the following additional properties:

• the Hessian matrix Q is dense;

• an optimal solution can be obtained as a proper convex combination of a small
subset of vertices in the original feasible set X;

• there exists an efficient method for minimizing a linear function over the feasible set
X, i.e., there exists an efficient linear minimization oracle that for a given y ∈ Rn
solves the problem:

min
x∈X

y>x.

55



56

We develop a simplicial decomposition type approach (see, e.g., [118,140]), that follows
the algorithm described in section 2.8.

Simplicial decomposition is related to cutting plane/column generation approaches
(see, e.g., [11, 118] for further details). Those methods are well suited to solve large
scale structured convex programs, since they can efficiently exploit the structure in the
problem. Many different cutting plane approaches have been proposed in the literature,
including: bundle method [64, 65, 101, 133, 134], center of gravity method [104, 113],
maximum volume ellipsoid cutting plane method [130], Chebyshev center cutting plane
method [61] and analytic center cutting plane method [75, 76]. In the last two decades,
some in depth computational studies related to the last class of methods, which seems to
give a good trade-off between simplicity and practical performance, have been conducted
(see, e.g., [74, 77, 83]). In some recent papers, a good number of structured problems
has been analyzed from the column-generation (primal) perspective, and a Primal-Dual
Column Generation Method (PDCGM) has been developed (see, e.g., [79–81]). PDCGM
has also been embedded into a Branch-Price-and-Cut algorithmic framework for solving
problems with integer variables (see, e.g., [109]).

Despite the vast literature in the context of cutting plane/column generation ap-
proaches, no in-depth computational and methodological analysis has been conducted so
far to investigate the behaviour of simplicial decomposition on a statistically significant
set of instances. In this work, we hence show how a well designed simplicial decomposition
framework can efficiently handle convex quadratic instances satisfying the properties
mentioned above. To obtain good performances, two important features are considered:

• a new ad-hoc method for solving the master problem, called Adaptive Conjugate
Direction Method;

• some pricing strategies that help speeding up the solution process.

In particular, the new master solver represents the first attempt to embed and wisely
reuse conjugate directions into a simplicial decomposition framework. We will describe in
depth the idea behind the algorithm and show how it works in practice. We then analyze
the connections between some pricing strategies we introduce to improve the efficiency
of our approach and classic features/ideas in cutting plane approaches. We also show
how those strategies can be embedded into the algorithmic framework without affecting
its convergence. Finally, we perform numerical experiments on a benchmark of almost
1400 instances. We start our analysis by testing our method over a suitably chosen set of
QPLIB instances [71]. This first part will show how the method performs when density
of the Hessian changes. Then we focus on structured problems satisfying the properties
described above. We consider:

• problems coming from Computational Geometry (the Chebishev problem, see,
e.g., [40] and references therein), Machine Learning/Statistics (the LASSO problem,
see, e.g., [131]) and Economics (classic Markowitz Portfolio Optimization prob-
lem [106]);



57

• problems with a combinatorial structure, that is continuous relaxations of instances
related to the Quadratic Shortest Path problem [55, 72, 129] and Quadratic Multidi-
mensional Knapsack Problem [24,125,126].

We further consider a randomly generated set of quadratic programs with dense objective
function and a small number of constraints, and test the effectiveness of the different
master/pricing strategies over this benchmark.

It is important to notice that, in principle, the proposed method can handle any
problem of type (3.1) and can also be easily modified in order to deal with problems having
a general convex objective function. However, the numerical experience we performed
indicates that our approach really makes a difference when the problem has the structure
mentioned above. In order to better understand the reasons why this happens, we need
to take into account the way the method works. A generic iteration is characterized by
two different steps:

• master problem minimization: minimization of the original function over an
inner approximation of the original feasible set X (given by the convex hull of an
ever expanding finite subset of its vertices);

• subproblem minimization: minimization of a suitable linear approximation of
the objective function over the original feasible set X.

When using a set of barycentric coordinates to re-parameterize the master, we obtain a
nicely structured quadratic program (its feasible set is the unit simplex) that is efficiently
handled by our conjugate direction method. Furthermore, since the optimal solution of
the considered problems can be described as a sparse convex combination of the vertices
in X, our framework normally takes a few iterations to get a good solution. Hence, it is
easy to see that a dense Hessian matrix Q, which is hard to handle for other methods,
is not an issue in our case (we usually have a small submatrix of the original Hessian
Q in the master). This feature, combined with a fast linear minimization oracle for the
subproblem, guarantees good performances in the end.

The rest of the chapter is organized as follows. In Section 3.1 and 3.2, we present
some strategies to improve the efficiency of the framework itself, in the master and in the
pricing problems of the Simplicial Decomposition. In Section 3.3, we report our numerical
experience. Finally, in Section 3.4, we draw some conclusions.

This work has been accepted for publication in the journal Computational Optimization
and Applications. A preliminary version is available at [12].

3.1 Master program

We start with noticing the following useful property of the master problem for quadratic
optimization.



58

Master formulation for Quadratic Problems If the original problem is quadratic,
the master can be expressed in a simplified form. We write explicitly the master program
for a quadratic form, at a generic iteration k:

min x>Qx+ c>x (3.2)

s. t. x =
k∑
i=1

λix̃i, (3.3)

k∑
i=1

λi = 1,

λi ≥ 0, ∀i = 1, . . . , k.

with Q ∈ Rn×n, c ∈ Rn.
It is possible to substitute constraints 3.3 in the objective function. We define

B :=
(
x̃1 . . . x̃k

)
(3.4)

the n× k matrix whose columns are the extreme points of Xk. Then, the constraints 3.3
can be rewritten as:

x = Bλ, (3.5)
with λ ∈ Rk the vector of the coefficients in the convex combination.

Then, if we define the following matrices:

Q̃ := B>QB, c̃ := B>c, (3.6)

by simple linear algebra, we can substitute the terms in the objective function and
eliminate the x variables, obtaining a problem with only the λ variables:

min λ>Q̃λ+ c̃>λ (3.7)

s. t.
k∑
i=1

λi = 1,

λi ≥ 0, ∀i = 1, . . . , k.

that is the standard quadratic problem in only k � n variables and it is much more
tractable.
Remark 3.1. Not for all the convex functions the original variables can be eliminated:
in general, the master remains a problem with n + k non separable variables and n
constraints, and potentially with quadratic terms in the objective function for all the
original n variables.

We now describe two strategies for solving the master problem that we have developed.
The first one is an adaptation to our framework of the unconstrained method of the
Conjugate Directions. It has been introduced to exploit the properties of the simplices and
the information gathered from previous iterations (i.e., to reuse conjugate directions). To
the best of our knowledge, this is the first time that such an algorithm is introduced and
analyzed. The second one is an adaptation of the Spectral Projected Gradient Method
presented in [15].



59

3.1.1 An adaptive conjugate directions based method (ACDM) for
solving the master

We described the conjugate directions method in Section 2.6. Before describing the
details related to the first method, we report a result, which is a consequence of the
properties of the conjugate directions, which will be useful to better understand our
algorithm.

Proposition 3.1. Conjugate direction method converges to the minimum point of a
strictly convex quadratic function f(x) : Rn → R in at most n steps.

We now describe a new conjugate direction strategy for solving the master problem in
our simplicial decomposition framework.
We would like to notice that dealing with (linear) constraints in conjugate direction or
conjugate gradient methods usually represents a complicated issue in practice. In our case,
by exploiting some master problem features, we basically avoid the explicit handling of
those constraints, and have a strategy that easily embeds the use of conjugate directions
in the end. What we hence do at each iteration of the method is trying to suitably
generate conjugate directions by taking into account the structure of the feasible set
related to the master problem and use those directions to find its optimal solution. Since
the master solution is a proper combination of some vertices in the inner approximation
of the original feasible set, we can have two different cases: if the solution lies in the
interior of the master feasible set, our conjugate direction strategy works just fine and
we get our solution; otherwise one of the generated directions will give a point on the
boundary of the feasible set, and this will get us a reduced simplex that we use to restart
the procedure. Below we analyze in depth the way our algorithm works. We remark that
k represents the index of the iteration related to the simplicial decomposition framework.

In order to ease the description of our algorithm, in this first part of the section we
assume that the objective function in (3.3) is strictly convex. Later we will prove that
the result holds even for semidefinite matrices.

The result reported in Proposition 3.1 relies on the fact that the objective function
is successively minimized along the individual directions in a conjugate set. This fact is
heavily exploited when solving the master problem with ACDM. First of all, we assume
that

• at each iteration the solution we get when solving the master is in the interior of
the simplex approximating the feasible set (if not, we can just remove from master
problem those components that have zero weight in the solution);

• a suitable set of conjugate directions is available in the affine hull described by those
vertices.

Hence, if the master solution at iteration k is in the interior of the simplex, ACDM easily
calculates it by picking the master solution obtained at the previous iteration k − 1 and
applying a minimization step along a new suitably chosen conjugate direction (keep in
mind that the pricing phase only adds one dimension at each iteration). In case the master



60

solution is on the boundary of the simplex, once the method applies the minimization
along the new conjugate direction, it hits the boundary, reduces the variable space and
needs to get a new set of conjugate directions. Luckily, this case does not happen so often
in practice, thus making ACDM a viable option. In the rest of this section, we formally
describe all the steps we need to implement the method.

Let ∆k := conv(Xk) be the domain of the current master, ∆k−1 be the domain of
the previous master, xk−1 the optimum of the previous master and x̃k /∈ ∆k−1 the new
extreme point generated with the pricing. At any SD iteration, the master problem we
want to solve (Step 1 of Algorithm 1) has the form in (3.7) and the following property
holds:

Proposition 3.2. The master solution at iteration k − 1 lies in the relative interior of a
facet of the set ∆k.

As we already noticed, if the master solution we get at iteration k − 1 is on the
boundary of the simplex, we can restrict the master problem to a smaller dimensional
face (which is always a simplex) by means of the column dropping rule. Furthermore, the
simplex of the current master is obtained by adding up the point provided by the pricing
to the set of vertices describing that reduced face.

We now consider the descent direction d̄k−1 := x̃k−1 − xk−1. At the first iteration,
that is k = 2, we keep d̄1 as the first direction d1. If k > 2, we assume that a set of
conjugate directions D = {d1, . . . , dk−2} is available from previous iterations. We then
use a Gram-Schmidt like procedure to turn direction d̄k−1 into a new direction dk−1

conjugate with respect to the set D. More specifically, we compute:

dk−1 = d̄k−1 −
k−2∑
h=1

δhk−1dh, where δhk−1 =
d̄>k−1Qdh

d>hQdh
. (3.8)

It is worth noticing that dk−1 is a descent direction too (since xk−1 is optimal,∇f(xk−1)>dh =
0, ∀ h = 1, . . . , k− 2). We use the basis B = [x̃1, . . . , x̃k] to express points xs = xk−1 and
xt = xk−1 + dk−1 thus obtaining respectively points λs and λt. We intersect the halfline
emanating from xs (and passing by xt) with the boundary of ∆k by solving the following
problem:

max α
s.t. (1− α)λs + αλt ≥ 0.

(3.9)

The solution of problem (3.9) can be directly written as

α∗ =

(
max
i

λsi − λti
λsi

)−1

.

We finally define point λp = (1− α∗)λs + α∗λt and solve the following problem

min
β∈[0,1]

f(B[(1− β)λs + βλp]). (3.10)



61

If the optimal value β∗ < 1 we get, by Proposition 3.1, an optimal solution for the master.
Otherwise, β∗ = 1 and we are on the boundary of the simplex. In this case, we just drop
those vertices whose associated coordinates are equal to zero, and get a new smaller basis
B. If B is a singleton, we can stop our procedure, otherwise we minimize f(x) in the new
subspace defined by B. In order to get a new set of conjugate directions in the considered
subspace, we use directions connecting point x∗ = Bλ∗ = Bλp with each vertex x̃j in B
(that is d̄j = x̃j − xp) and then use the same Gram-Schmidt like procedure to make them
conjugate (we want to remark that all directions d̄j need to be expressed in terms of the
new basis B). We report the algorithmic scheme below (see Algorithm 2). In order to
ease the notation, we consider |X0| = 1 in our simplicial decomposition framework. We
thus do not perform any optimization at the first iteration of the framework (i.e., when
k = 1), and we simply set x1 equal to the only point that is in X0.

We now see that the procedure still works when we assume that f in Problem (3.1) is
a quadratic convex functions (i.e., Q is positive semidefinite). We have that there could
exist some directions dh satisfying the following condition:

d>hQdh = 0, (3.11)

i.e., dh is degenerate, or in the null space of Q. Let h̄ be the smallest index related to a
direction satisfying condition (3.11). We can consider two different cases:

1. h̄ = 1) We then have dh̄ = d1 and the solution of (3.10), which is now a linear
problem, is β∗ = 1: indeed, the function is decreasing (keep in mind that dk−1 in
(3.8) is always a descent direction). So, we get a vertex (B is hence a singleton),
and the algorithm stops.

2. h̄ > 1) similarly to Case 1, we get that problem (3.10) is again linear and its solution
is β∗ = 1. The algorithm thus restricts to the face of the boundary that contains the
intersection with the half-line defined by dh̄. If we get a vertex, then the algorithm
stops; otherwise, the algorithm is still well-defined, because the intersection face
does not contain any other degenerate direction and it can go on.

The finite convergence of this algorithm is clearly guaranteed:

Proposition 3.3. An SD scheme which embeds Algorithm 2 for solving the master has
finite convergence.

Proof. The proof is based on the same arguments as in [140]: at each iteration the master
problem finds the optimum in the simplex or in one of its faces, which are simplices as
well. Moreover, even if the matrix is positive semidefinite, we always move along descent
directions so the value of the objective function always strictly decreases. Since at each
iteration we get a new simplex and the number of simplices is finite, we have that the
number of iterations must be finite as well.



62

Algorithm 2 Adaptive Conjugate Direction Method (ACDM)

Data: Basis B, conjugate directions D, and point xk−1

Step 1) Set xs = xk−1 and Ds = {d̄k−1}
Step 2) Select a d̄ ∈ Ds and set Ds = Ds \ {d̄}
Step 3) Use a Gram-Schmidt like procedure to turn d̄ into a conjugate direction ds with

respect to D
Step 4) Express points xs and xt = xs + ds in terms of B (that is xs = Bλs and xt = Bλt)
Step 5) Set

α∗ =

(
max
i

λsi − λti
λsi

)−1

Step 6) Calculate point λp = (1− α∗)λs + α∗λt and find solution β∗ of the problem

min
β∈[0,1]

f(B[(1− β)λs + βλp])

Step 7) If β∗ < 1 then set x∗ = B[(1− β∗)λs + β∗λp] and D = D ∪ {ds} go to Step 9
Else drop vertices with λ∗ = 0 from B

Step 8) If B is a singleton then STOP
Else set D = ∅ and for each x̃j ∈ B set d̄j = x̃j − x∗ (direction represented using
coordinates in B) to get a set of directions Ds and go to Step 2

Step 9) If Ds = ∅ then STOP
Else go to Step 2

3.1.2 A fast gradient projection method for solving the master

The second approach is a Fast Gradient Projection Method (FGPM) and belongs to
the family of gradient projection approaches (see e.g. [15] for an overview of gradient
projection approaches). The detailed scheme is reported below (See Algorithm 3). We
indicate with l the index related to the iterations of FGPM. At each iteration of the
method, the new point we generate is

λl+1 = λl + βl(p[λl − sl∇f(λl)]∆ − λl),

where βl ∈ (0, ρl], ρl, sl > 0 and p[λl−sl∇f(λl)]∆ is the projection over the master simplex
∆l of the point λl−sl∇f(λl), chosen along the antigradient. When p[λl−sl∇f(λl)]∆ 6= λl,
it is easy to see that the direction we get is a feasible descent direction.
The method can be used in two different ways:

a) we fix sl to a constant value and use a line search technique to get βl;

b) we fix βl and make a search changing sl (thus getting a curvilinear path in the
feasible set).

In our algorithm we consider case a) where sl = s > 0.
At each iteration, projecting the point yl = λl− s∇f(λl) over the simplex corresponds

to solve the following problem:
min
x∈∆
‖x− y‖2.



63

Algorithm 3 Fast Gradient Projection Method (FGPM)

Data: Set point λ0 ∈ Rl−1, ρ0 ∈ [ρmin, ρmax] and a scalar value s > 0.

For l = 0, 1, . . .

Step 1) Generate point
λ̂l = p[λl − s∇f(λl)]∆

Step 2) If λ̂l = λl STOP; otherwise set dl = λ̂l − λl

Step 3) Choose a stepsize βl ∈ (0, ρl] along dl and maximum stepsize ρl+1 by means
of a line search

Step 4) Set λl+1 = λl + βldl

End For

A fast projection over the simplex is used to generate the search direction [38]. This
particular way of projecting a point over the simplex is basically a Gauss-Seidel-like variant
of Michelot’s variable fixing algorithm [108]. The threshold used to fix the variables is
updated after each element is read, instead of waiting for a full reading pass over the list
of non-fixed elements (See [38] for further details).

A nonmonotone line search [86] combined with a spectral steplength choice is then
used at Step 3 (see [15] for further details) to speed up convergence. In Algorithm 4 we
report the detailed scheme of the line search. Convergence of the FPGM algorithm to a
minimum follows from the theoretical results in [15]. Therefore, the convergence of an SD
method that uses FPGM to solve the master problem directly follows from the results in
the previous sections.

Algorithm 4 Non-monotone Armijo line-search (with spectral steplength choice)

0 Set δ ∈ (0, 1), γ1 ∈ (0, 1
2

), M > 0
1 Update

f̄l = max
0≤i≤min{M,l}

f(λl−i)

2 Set starting stepsize α = ρl and set j = 0
3 While f(λl + αdl) > f̄l + γ1 α∇f(λl)

>dl
4 set j = j + 1 and α = δjα.
5 End While
6 Set yl = ∇f(λl + αdl)−∇f(λl) and bl = αd>l yl
7 If bl ≤ 0 set ρl+1 = ρmax else set al = α2‖dl‖2 and

ρl+1 = min{ρmax,max{ρmin, al/bl}}

In the FGPM Algorithm, we exploit the particular structure of the feasible set in the
master, thus getting a very fast algorithm in the end. We will show that the FGPM based
SD framework is even competitive with the ACDM based one, when dealing with some
specific quadratic instances. Moreover, differently from ACDM, FGPM is easily adapted
to solve any convex nonlinear problems, not only quadratic problems. Adapting ACDM
to solve more general problems is possible, but it is much more complicated, and it would



64

loose the fast convergence properties, which hold only in the quadratic case.

3.2 Pricing program

Now we describe two different strategies for speeding up the solution of the pricing
problem (also called subproblem). The first one is an early stopping strategy that allows
us to approximately solve the subproblem while guaranteeing finite convergence. The
second one is the use of suitably generated inequalities (the so called shrinking cuts) that
both cut away a part of the feasible set and enable us to improve the quality of extreme
points picked in the pricing phase.

3.2.1 Early stopping strategy for the pricing

When we want to solve problem (2.26) using simplicial decomposition, efficiently
handling the subproblem is, in some cases, crucial. Indeed, the total number of extreme
points needed to build up the final solution can be small for some real-world problems,
hence the total time spent to solve the master problems is negligible when compared
to the total time needed to solve subproblems. This is the reason why we may want to
approximately solve subproblem (2.30) in such a way that finite convergence is guaranteed
(a similar idea was also suggested in [10]). In order to do that, we simply need to generate
an extreme point x̃k satisfying the following condition:

∇f(xk)
>(x̃k − xk) ≤ −ε < 0, (3.12)

with ε > 0. Roughly speaking, we want to be sure that, at each iteration k, dk = x̃k − xk
is a descent direction. Below, we report the detailed scheme related to the simplicial
decomposition algorithm with early stopping (see Algorithm 5).

Algorithm 5 Simplicial Decomposition with Early Stopping Strategy for the Subproblem
Initialization: Choose a starting set of extreme points X0

For k = 0, 1, . . .

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

Step 2) Generate an extreme point x̃k ∈ X such that

∇f(xk)>(x̃k − xk) ≤ −ε < 0.

In case this is not possible, pick x̃k as the optimal solution of (2.30)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise set Xk+1 = Xk ∪ {x̃k}
End For

At a generic iteration k we generate an extreme point x̃k by approximately solving
the linear program (2.30). This is done in practice by stopping the algorithm used to



65

solve problem (2.30) as soon as a solution satisfying constraint (3.12) is found. In case
no solution satisfies the constraint, we simply pick the optimal solution of (2.30) as the
new vertex to be included in the simplex at the next iteration.

Finite convergence of the method can be proved in this case as well:

Proposition 3.4. Simplicial decomposition with early stopping strategy for the subproblem
obtains a solution of Problem (2.26) in a finite number of iterations.

Proof. Extreme point x̃k, obtained approximately solving subproblem (2.30), can only
satisfy one of the following conditions

1. ∇f(xk)>(x̃k−xk) ≥ 0, and subproblem (2.30) is solved to optimality. Hence we get

min
x∈X
∇f(xk)

>(x− xk) = ∇f(xk)
>(x̃k − xk) ≥ 0,

that is necessary and sufficient optimality conditions are satisfied and xk minimizes
f over the feasible set X;

2. ∇f(xk)
>(x̃k − xk) < 0, whether the pricing problem is solved to optimality or not,

that is direction dk = x̃k − xk is descent direction and

x̃k /∈ conv(Xk). (3.13)

Indeed, since xk minimizes f over conv(Xk) it satisfies necessary and sufficient
optimality conditions, that is ∇f(xk)

>(x− xk) ≥ 0 for all x ∈ conv(Xk).

From (3.13) we thus have x̃k /∈ Xk. Since our feasible set X has a finite number of
extreme points, case 2) occurs only a finite number of times, and case 1) will eventually
occur.

We would like to highlight that the early stopping strategy is somehow related to
the use of ε-subgradients in nonsmooth optimization (see [98] and references therein for
further details) and to recent techniques used for bundle methods (see [133,134]). When
using decomposition schemes like, e.g., cutting plane schemes, it is indeed possible to
weaken the optimality requirements in subproblems and get ε-subgradients, obtaining
usually an improvement in terms of the overall computing time of the algorithm (see,
e.g., [82,84]). Anyway, if a shallow cut (i.e., a cut that does not exclude the current query
point) is generated, the convergence of a cutting plane approach might fail. Hence, a check
is needed in order to ensure that the cut is deep enough (i.e., shallow cut is discarded, ε is
suitably reduced and a new hopefully better cut is generated). In practice, as the cutting
plane algorithm approaches the solution, the accuracy level with which the subproblem is
solved should increase. In our simplicial decomposition framework, generating a good
column (by approximately solving the pricing) while guaranteeing convergence is in
general an easier task. Indeed, by taking a look at the proof of Proposition 3.4, we can
notice that, in order to guarantee convergence, we only need the new column x̃k to be
an extreme point of X (actually might be enough getting a point x̃k from a finite subset



66

X̃ ⊂ X s.t. conv(X̃) = X) and to satisfy ∇f(xk)
>(x̃k − xk) < 0. Thus, we can generate

new columns for the master problem in a simple and natural way, without the need to
check if those columns are nearly optimal (we only need to guarantee that the objective
function can improve with respect to f(xk) in the new extended master).

3.2.2 Shrinking cuts

At each iteration k, after solving the master problem, we can consider the inequality:

∇f(xk)
>(x− xk) ≤ 0. (3.14)

Since the objective function values of the subsequent iterates xk+1, xk+2, . . . , generated by
the method will be not greater than the objective function value obtained in xk, inequality
(3.14) will then be surely satisfied by all those subsequent iterates.

This can be easily seen by taking into account convexity of f . Indeed, choosing two
points x, y ∈ Rn, we have:

f(y) ≥ f(x) +∇f(x)>(y − x).

Thus, if ∇f(x)>(y−x) > 0, we get f(y) > f(x). Hence, f(y) ≤ f(x) implies ∇f(x)>(y−
x) ≤ 0.

As also briefly discussed in [10], it is possible to use the cuts described above to
suitably modify the subproblem. More specifically, the idea is the following: let xk be
the optimal point generated by the master at a generic iteration k, we can hence add the
following shrinking cut ck to the next pricing problems:

(ck) ∇f(xk)
>(x− xk) ≤ 0.

More precisely, let {x1, . . . , xk} be the set of optimal points generated by the master
problems up to iteration k; then, for k > 0, we identify as Ck the polyhedron defined by
all the associated shrinking cuts as follows:

Ck = {x ∈ Rn : ∇f(xi)
>(x− xi) ≤ 0, i = 0, . . . , k − 1}.

(We are assuming x0 := x̃0). Therefore, at Step 2, we generate an extreme point x̃k by
minimizing the linear function ∇f(xk)>(x− xk) over the polyhedral set X ∩ Ck. Finally,
at Step 3, if ∇f(xk)

>(x̃ − xk) ≥ 0, the algorithm stops, otherwise we update Xk by
adding the point x̃k and Ck by adding the cut ∇f(xk)

>(x− xk) ≤ 0.
Below, we report the detailed scheme related to the simplicial decomposition algorithm

with shrinking cuts (see Algorithm 6).
In practice, we implemented the algorithm with the two following variants:

• At the end of Step 2, after the solution of the pricing problem, we remove all
shrinking cuts that are not active. In this way we are sure to have a pricing problem
that is computationally tractable by keeping its size under control.



67

Algorithm 6 Simplicial Decomposition with Shrinking Cuts
Initialization: Choose a starting set of extreme points X0

For k = 0, 1, . . .

Step 1) Generate iterate xk by solving the master problem

min f(x)
s.t. x ∈ conv(Xk)

Step 2) Generate an extreme point x̃k by solving the subproblem

min ∇f(xk)>(x− xk)
s.t. x ∈ X ∩ Ck

(3.15)

Step 3) If ∇f(xk)>(x̃− xk) ≥ 0, Stop. Otherwise set Xk+1 = Xk ∪ {x̃k} and
set Ck+1 = {x ∈ Rn : ∇f(xi)

>(x− xi) ≤ 0, i = 0, . . . , k}
End For

• After a considerably large number of iterations k̄, no more shrinking cuts are added
to the pricing. This is done to ensure the convergence of the Algorithm.

Finite convergence of the method is stated in the following Proposition:

Proposition 3.5. Simplicial decomposition algorithm with shrinking cuts obtains a solu-
tion of Problem (2.26) in a finite number of iterations.

Proof. We first show that at each iteration the method gets a reduction of f when suitable
conditions are satisfied. Since at Step 2 we get an extreme point x̃k by solving subproblem
(3.15), if ∇f(xk)

>(x̃k − xk) < 0, we have that dk = x̃k − xk is a descent direction and
there exists an αk ∈ (0, 1] such that f(xk +αkdk) < f(xk). Since at iteration k+ 1, when
solving the master problem, we minimize f over the set conv(Xk+1) (including both xk
and x̃k), then the minimizer xk+1 must be such that

f(xk+1) ≤ f(xk + αkdk) < f(xk).

Extreme point x̃k, obtained solving subproblem (3.15), can only satisfy one of the following
conditions

1. ∇f(xk)
>(x̃k − xk) ≥ 0. Hence we get

min
x∈X∩Ck

∇f(xk)
>(x− xk) = ∇f(xk)

>(x̃k − xk) ≥ 0,

that is necessary and sufficient optimality conditions are satisfied and xk minimizes
f over the feasible set X ∩Ck. Furthermore, if x ∈ X \Ck, we get that there exists
a cut ci with i ∈ {0, . . . , k − 1} such that

∇f(xi)
>(x− xi) > 0.



68

Then, by convexity of f , we get

f(x) ≥ f(xi) +∇f(xi)
>(x− xi) > f(xi) > f(xk)

so xk minimizes f over X.

2. ∇f(xk)
>(x̃k − xk) < 0, that is direction dk = x̃k − xk is descent direction and

x̃k /∈ conv(Xk). (3.16)

Indeed, since xk minimizes f over conv(Xk) it satisfies necessary and sufficient
optimality conditions, that is we have ∇f(xk)>(x− xk) ≥ 0 for all x ∈ conv(Xk).

Since from a certain iteration k̄ on we do not add any further cut (notice that we can
actually reduce cuts by removing the non-active ones), then case 2) occurs only a finite
number of times. Thus case 1) will eventually occur.

Adding the shrinking cuts guarantees that the direction we obtain by solving the
subproblem is a descent direction with respect to xk (which is usually the case in a SD
framework) and all points xi, i = 1, . . . , k − 1 that we consider in the definition of Ck.
This enables us to suitably cut away a part of the feasible set.

We can also see that shrinking cuts can be used to discard some of the points in
Xk generated so far. In order to better understand this fact, let us consider the master
problem described using the bary-centric coordinates:

min f(Bλ)

s.t.
∑k

i=1 λi = 1

λi ≥ 0 ∀i = 1, . . . , k,

(3.17)

where B := [x̃1 . . . x̃k]. Now, if we call λ̄ the optimal solution of problem (3.17), and
consider the KKT conditions related to this problem (keep in mind that xk =

∑k
i=1 λ̄ix̃i),

we can write the following condition:
∇f(Bλ̄)TB(ei − λ̄) = ∇f(xk)

T (x̃i − xk) ≥ 0 ∀ i : λ̄i = 0,

∇f(Bλ̄)TB(ei − λ̄) = ∇f(xk)
T (x̃i − xk) = 0 ∀ i : λ̄i > 0.

We hence get that there is no point x̃i with λ̄i 6= 0 such that condition∇f(xk)T (x̃i−xk) > 0
is satisfied. The cuts can thus make a difference when considering a version of the
Algorithm 6 that embeds the vertex dropping rule (which can be included at the end of
Step 1). Indeed, if we consider the vertices x̃i we get rid of in the inner approximation, all
those points have a λ̄i = 0. When those point also satisfy condition ∇f(xk)T (x̃i−xk) > 0,
we have that the subproblems including the shrinking cut related to xk in Ck cannot
generate again x̃i as a vertex in a subsequent iteration.



69

Shrinking cuts are connected to cutting plane approaches as well. In fact, those
constraints are somehow related to classic objective cuts (see, e.g., [98]). The main
difference in this case is that the cuts are not added directly to the original problem
in order to cut away a part of the feasible set, but instead they are used in the pricing
problem in order to shrink the original feasible set and hopefully generate better columns.
An additional interesting feature of shrinking cuts is that, when solving the pricing
problem, we always have a feasible point to warmstart the solver we use. It is indeed
easy to notice that the master solution xk both satisfies the original constraints and the
shrinking cuts in Ck. This comes from the fact that the objective function value f(xk) is
lower or equal than the objective functions of the master solutions generated at previous
iterations. On the other hand, guaranteeing feasibility while including objective cuts
might be an issue in some cutting plane strategies.

As a final remark, we would like to notice that combining the shrinking cuts with the
early stopping strategy can be done (this is a part of what we actually do in practice)
and finite convergence still holds for the simplicial decomposition framework.

3.3 Computational results

3.3.1 Instances description

In this section, we give a detailed description of the computational results obtained
with the SD based algorithmic framework we described in the previous sections.

For this reason, we introduce a benchmark that includes both generic and real
quadratic programming problems. We use instances with a moderately large number of
variables (up to 10000). This choice aims at making the problems hard enough, without
anyway requiring specific techniques for storing the Hessian matrix related to the objective
function.

Due to the specific features of the given problems, we use Cplex version 12.6.3 (see [97]
for further details) as the baseline software in our tests. This tool includes several solvers
for quadratic programming: primal simplex, dual simplex, network simplex, barrier,
sifting and concurrent. They perform differently and some of them can efficiently handle
the specific classes of problems we consider in the chapter. We point out that cutting
plane based algorithms might not be the best choice in this case, since no structure can
be exploited when solving the subproblem.

All tested algorithms were implemented in C++ using Cplex Callable Libraries. As
we will see later on, one among sifting, network and the default optimizer from Cplex is
used as solver for linear subproblems in our experiments. Furthermore, we decided to use
a tolerance of 10E − 6 for FGPM.

In the first part of our analysis we test the ACDM based SD framework (without
pricing strategies) on a set of instances from the QPLIB library [71]. The results show
that performances of our algorithm improve as the number of nonzeroes in the Hessian
matrix grows. Then, we focus on dense instances, and we present results for three classes
of continuous problems, namely the Chebishev center problem, the LASSO problem



70

and the portfolio optimization problem. Furthermore, we provide results on continuous
relaxations of two combinatorial problems: more specifically, quadratic shortest path
problems and multidimensional knapsack problem. In the second part, we analyze the
computational time of the different master and pricing settings described in the paper.

In our analysis, when considering specific problems and the extended benchmark, we
produced the performance profiles according to [56] and using the software Mathematica
version 11.3 (see [141] for further details).
We assume that we have a set S of ns solvers and a set P of np problems. We consider time
as a performance measure. For each problem p and solver s, we call tp,s the computing
time required to solve problem p by solver s. We compare the performance on problem p
by solver s with the best performance by any solver on this problem; that is, we use the
performance ratio

rp,s =
tp,s

min{tp,s : s ∈ S}

When problem is not solved rp,s =∞. Performance profiles give an overall assessment of
the performance of the solver. If we define

ρs(τ) =
size {p ∈ P : rp,s ≤ τ}

np
.

then ρs(τ) is the probability for solver s ∈ S that a performance ratio rp,s is within a
factor τ of the best possible ratio. The function ρs represents the (cumulative) distribution
function for the performance ratio. In our plots we hence have function ρs on the y axis
and τ on the x axis.

3.3.2 QPLIB instances

We start our tests with instances from the QPLIB library. A set of 36 problems is
available:

• 19 continuous convex QPs (we include both problems with linear and box con-
straints);

• 17 continuous relaxations of convex IQPs/MIQPs.

We notice that four instances out of 36 (namelyQPLIB_8500, QPLIB_8547, QPLIB_9008,
QPLIB_10038 ) have a number of variables from 160000 to 1 million variables. Those
problems are hence not included in the analysis. Among the remaining 32 instances, we
only have six instances with a dense Hessian. In order to show how the efficiency of our
code depends on the density, in Figure 3.1 we plot the ratio between the CPU time of SD
and the CPU time of Cplex to solve the problem, against the density of the problem, in
logarithmic scale. The density of a matrix is calculated as the ratio between the number
of nonzero entries and the number of entries. Since the matrices are symmetric, each
pair of symmetric non diagonal entries counts as one, and the total number of entries is
n(n+ 1)/2.



71

0.2 0.4 0.6 0.8 1.0
% Density

-4

-2

2

4

Log (time SD/Time Cplex)

Figure 3.1 – Efficiency against density for QPLIB instances, logarithmic scale

It is clear from the plot and from its trend line, that the more the instance is dense,
the more the algorithm is efficient with respect to Cplex, as we could expect. We hence
focus on instances with dense Hessian in the next subsections.

3.3.3 Specific problems

We now consider medium/large scale continuous QPs having the structure mentioned
before. As previously said, we consider:

• problems coming from Computational Geometry (the Chebishev problem, see,
e.g., [40] and references therein), Machine Learning/Statistics (the LASSO problem,
see, e.g., [131]) and Economics (classic Markowitz Portfolio Optimization prob-
lem [106]);

• problems with a combinatorial structure, that is continuous relaxations of instances
related to the Quadratic Shortest Path problem [55, 72, 129] and Quadratic Multidi-
mensional Knapsack problem [24,125,126].

We compare our algorithm with respect to Cplex. In the next subsections, we describe
the problems, how we generated the instances and we present the results.

Problem description

The Chebishev center problem: In this specific problem, the goal is finding the
circle of minimum radius that encloses all of the points in a finite set

C = {c1, . . . , cn} ⊂ Rm.



72

See [40] for details and applications. The problem can be formulated as a quadratic
problem over a simplex:

min f(x) = x>A>Ax−
n∑
i=1

‖ci‖2xi (3.18)

s.t. e>x = 1,

x ≥ 0,

with x ∈ Rn, A = (c1 . . . cn) ∈ Rm×n.
We constructed our instances by generating a matrix A ∈ Rm×n whose entries are

normally distributed. The linear term is given by the 2-norm of each column of A. We
chose three values of n: 2048, 4096, and 8192. For each of them, three values of m: 10,
100, 1000. For each combination, we used three seeds, so that we have 27 instances in
total.

The LASSO problems: LASSO, proposed by Tibshirani in 1996 [131], is a popular
tool for sparse linear regression. Given the training set

T = {(ai, bi), ai ∈ Rn, bi ∈ R, i = 1, . . . ,m},

the goal is finding a sparse linear model (i.e., a model with a small number of non-zero
parameters) describing the data. This problem is strictly connected with the Basis
Pursuit Denoising (BPD) Problem in signal analysis (see, e.g., [36]). In this case, given a
discrete-time input signal b, and a dictionary

D = {aj ∈ Rm : j = 1, . . . , n}

of elementary discrete-time signals, usually called atoms, the goal is finding a sparse linear
combination of the atoms that approximate the real signal. We formulate LASSO/BPD
problem as follows:

min
x∈Rn

‖Ax− b‖22
s.t. ‖x‖1 ≤ τ.

(3.19)

The parameter τ > 0 controls the amount of shrinkage that is applied to the model
(number of nonzero components in x).

We constructed our instances by firstly generating a matrix A ∈ Rm×n whose entries
are normally distributed. We chose three values of n: 2048, 4096, and 8192. For each of
them, two values of m: n, or n/4. Then, we generated the solution point x̄ with three
different levels of sparsity: 0.01, 0.05, and 0.1. The right-hand-side vector b is obtained
by Ax̄ + ε, with a random noise ε. For each combination we generated instances with
three different seeds; hence we have in total a benchmark of 54 LASSO instances.



73

The portfolio problem: We consider the formulation for portfolio optimization prob-
lems (POP) proposed by Markowitz in [106]. We have n available assets. We call xi the
quantity of money invested on the i-th asset during the considered period and with ri the
returns on the i-th asset. We have two different constraints. The first one giving a lower
bound µ on the expected return. We then have the budget constraint:

n∑
i=1

xi = B,

the total amount of money invested needs to be equal to the budget B (B can be simply
set to 1). In addition, we impose non-negativity for the variables (i.e., xi ≥ 0): it basically
means that short selling (selling asset that we still don’t own) is not allowed.
We consider a stochastic model for the returns: r ∈ Rn is a randomly generated vector
with mean r̄ and covariance Σ. Thus, the expected return will be

r̄>x

and variance
x>Σx.

The formulation of Portfolio Optimization Problem (POP) is then a convex quadratic
programming problem:

min f(x) = x>Σx (3.20)

s.t. r>x ≥ µ,
e>x = 1,

x ≥ 0,

The goal is thus finding the set of assets that minimizes the variance (risk connected to
the given portfolio) while guaranteeing a specific level of expected return (satisfy budget
and non-negativity constraints).

We used data based on time series provided in [4] and [35]. Those data are related
to sets of assets of dimension n = 226, 457, 476, 2196. The expected return and the
covariance matrix are calculated by the related estimators on the time series related to
the values of the assets.

In order to analyze the behavior of the algorithm on larger dimensional problems, we
created additional instances using data series obtained by modifying the existing ones.
More precisely, we considered the set of data with n = 2196, and we generated bigger
series by adding additional values to the original ones: in order not to have a negligible
correlation, we assumed that the additional data have random values close to those of the
other assets. For each asset and for each time, we generate from 1 to 4 new values, thus
obtaining 4 new instances whose dimensions are multiples of 2196 (that is 4392, 6588,
8784, 10980).

For each of these 8 instances, we chose 5 different thresholds for the expected return:
0.006, 0.007, 0.008, 0.009, 0.01, we thus obtained 40 portfolio optimization instances.



74

Continuous relaxations of combinatorial problems (CRCP) Continuous prob-
lems can obviously be viewed as a way to obtain valid dual bounds for combinatorial
problems (to be used in a Branch-and-Bound framework). For this reason, we further
analyze performances of our SD framework on models related to the continuous relaxation
of some combinatorial problems with a quadratic objective function.

In our tests, we used continuous relaxations of quadratic multidimensional knapsack
problems (see, e.g., [55, 72, 129]) and quadratic shortest path problems (see, e.g., [24, 125,
126]).

Instances related to the Quadratic Multidimensional Knapsack Problem (QMKP)
have the following form:

max f(x) = x>Qx+ c>x (3.21)
s. t. Ax ≤ b,

0 ≤x ≤ 1.

where Q ∈ Rn×n is negative definite, c ∈ Rn, A ∈ R+
m×n and b ∈ Rm+ .

The instances we used for the quadratic multidimensional knapsack problem are
provided by J. Drake in [57]. This benchmark collects various instances, including the
ORLib dataset proposed by Chu and Beasley in [37] and the GK dataset proposed by
Glover and Kochenberger, mentioned in [73]. In particular, we considered only problems
with n greater than 1000. Hence, we kept instances gk09, gk10 and gk11 of Glover
and Kochenberger from [57], and we generated other instances using the same criteria
described in [37], but using larger values of n, that is 5000, 7500 and 10000. We kept
m = 100 in this last case and we considered two different options to obtain the right
hand side. So we generated 6 instances. As regards the objective function, the coefficients
related to the linear part were already included in the instances, while for the quadratic
part we used again matrices generated in the same way as for the general problems
described before. In order to get meaningful results in the end, we suitably scaled the
two terms in the objective function with a parameter ρ. We used two different seeds to
generate the matrix and three different values for ρ. So, we have 6 combinations for the
objective function for each of the 9 linear problems (the instances gk09, gk10 and gk11
from the literature and the 6 problems generated by us) so we have 54 instances globally.

The second set of continuous relaxation of combinatorial instances are the Quadratic
shortest path problems (QSPP). Their formulation is the following:

min f(x) = x>Qx+ c>x (3.22)

s. t.
∑

e∈δ+(s)

xe = 1,

∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0, ∀v 6= s, t

∑
e∈δ−(t)

xe = 1

0 ≤ x ≤ 1.



75

with c ∈ Rn and Q ∈ Rn×n. s, t are the source and termination nodes, respectively; δ+(v)
are the outgoing arcs and δ−(v) are the incoming arcs in the node v.

The directed graphs used in the experiments are related to two different kind of
problems:

1. Grid shortest path problem, that is graphs represented by a squared grid;

2. Random shortest path problem, that is randomly generated graphs (obtained by
the generator ch9-1-1 used in the 9th DIMACS implementation challenge [48]).

For grid shortest path instances, we considered square grids of 5 different sizes k,
that is k = 30, 40, 50, 60, 70. We fixed the source and the sink respectively as the top-left
and the bottom-right node. The number of variables n, same as the number of arcs, is
2 ∗ k ∗ (k − 1). Hence we get, respectively: n = 1740, 3120, 4900, 7080 and 9660. The
number of constraints is the same as the number of vertices of the graph, that is k2.

When generating random shortest path instances, we fixed three values of n: 1000,
3000 and 5000; the number of constraints m was chosen in order to get similar densities
in the graphs: we respectively chose m = 100 and 150 for n = 1000, m = 150 and 250
for n = 3000 and m = 200 and 300 for n = 5000. In this way we obtained graphs with
densities (number of arcs over number of arcs of a complete graph with the same number
of nodes) that vary between 10% and 25%.

For both classes, we built up the objective function in this way: we defined the
quadratic part with matrices generated in the same way as for the general problems
described before; then we added linear coefficients for the linear part, generated in three
different intervals: [0.05, 0.4], [0.5, 1.0] and [2.0, 3.0]. We used two different seeds for
generating the quadratic part and for the linear part we considered three different choices,
so we have 6 problems for each value of n and m. In this way we obtained 30 different
problems for the Grid shortest path, where m is fixed depending on n, while we got 72
instances of Random shortest path, because for each n we got 2 different values for m
and for each of them we used two different seeds for generating the graph.

The benchmark consists of 30 instances based on grid graphs (QGSPP) and 72
instances based on random graphs (QRSPP).

Results

In Figure 3.2, we present the results on these six classes of problems, by means of
performance profiles. In all the instances we compared the ACDM based SD framework
with Cplex.
On LASSO and Chebishev problems, we also generated a Frank-Wolfe ad hoc algorithm,
adapted to the domain. We used the away-step version for Chebishev problems and the
Pairwise version for the LASSO problem, because they have shown to be the most efficient
ones, respectively, for the two classes. For the largest instances, it worked better than
Cplex, but on average Cplex is better.

The results show that SD outperforms Cplex in all the considered problems. In order
to show the improvements of the master and pricing techniques introduced in the previous



76

101 102 103 104

0.2

0.4

0.6

0.8

1.0

SD ACDM Cplex

(a) Chebishev

101 102 103 104 105

0.2

0.4

0.6

0.8

1.0

SD ACDM Cplex

(b) LASSO

1 2 5 10 20

0.2

0.4

0.6

0.8

1.0

SD ACDM Cplex

(c) Portfolio

1 2 5

0.2

0.4

0.6

0.8

1.0

SD ACDM Cplex

(d) QGSPP

1 2 5 10 20 50

0.2

0.4

0.6

0.8

1.0

SD ACDM Cplex

(e) QRSPP

1 2 5 10

0.2

0.4

0.6

0.8

1.0

SD ACDM Cplex

(f) QMKP

Figure 3.2 – Performance analysis of SD ACDM and Cplex.



77

sections, we extend the benchmark with some randomly generated instances, which require
a higher computational time.

3.3.4 Extended benchmark

We generated more test instances in order to evaluate the performance of the master
and pricing options. To this aim we generated a statistically significant set of quadratic
instances. They have the following form:

min f(x) = x>Qx+ c>x (3.23)
s. t. Ax ≥ b,

l ≤x ≤ u.

with Q ∈ Rn×n, c ∈ Rn, A ∈ Rm×n, b ∈ Rm , l, u ∈ Rn and both finite. In particular, Q
was built starting from its singular value decomposition using the following procedure:

• the n eigenvalues were chosen in such a way that they are all positive and equally
distributed in the interval (0, 3];

• the n × n diagonal matrix S, containing these eigenvalues in its diagonal, was
constructed;

• an orthogonal, n× n matrix U was supplied by the QR factorization of a randomly
generated n× n square matrix;

• finally, the desired matrix Q was given by Q = USU>, so that it is symmetric and
its eigenvalues are exactly the ones we chose.

The coefficients of the linear part of the objective function were randomly obtained, in a
small range, between 0.05 and 0.4, in order to make the solution of the problem quite
sparse.

The m constraints (with m � n) were generated in two different ways: step-wise
sparse constraints (S) or random dense ones (R). In the first case, for each constraint, the
coefficients associated to short overlapping sequences of consecutive variables were set
equal to 1 and the rest equal to 0. More specifically, if m is the number of constraints
and n is the number of columns, we defined s = 2 ∗ n/(m+ 1) and all the coefficients of
each i-th constraint are zero except for a sequence of s consecutive ones, starting at the
position 1 + (s/2) ∗ (i− 1). In the second case, each coefficient of the constraint matrix
takes a uniformly generated random value in the interval [0, 1]. The right-hand side was
generated in such a way to make all the problems feasible: for the step-wise constraints,
the right hand side was set equal to f ∗ s/n, with 0.4 ≤ f ≤ 1 and for a given random
constraint, the corresponding right-hand side b was a convex combination of the minimum
amin and the maximum amax of the coefficients related to the constraint itself, that is
b = 0.75 ∗ amin + 0.25 ∗ amax.



78

Each class of constraints was then possibly combined with two additional type of
constraints: a budget type constraint (b) e>x = 1, and a "relaxed" budget type constraints
(rb) slb ≤ e>x ≤ sub. Summarizing, we obtained six different classes of instances:

• S, instances with step-wise constraints only;

• S-b, instances with both step-wise constraints and budget constraint;

• S-rb, instances with both step-wise and relaxed budget constraints;

• R, instances with dense random constraints only;

• R-b, instances with both dense random constraints and budget constraint;

• R-rb, instances with both dense random and relaxed budget constraints.

For each class, we fixed n = 2000, 3000, . . . , 10000, while the number of both step-wise
and dense random constraints m was chosen in two different ways:

1) m = 2, 22, 42 for each value of n;

2) m = n/32, n/16, n/8, n/4, n/2 for each value of n.

In the first case, we then have problems with a small number of constraints, while, in
the second case, we have problems with a large number of constraints. Finally, for each
class and combination of n and m we randomly generated five instances. Hence, the total
number of instances with a small number of constraints was 450 and the total number
of instances with a large number of constraints was 750. The benchmark of Generic
instances is split into two sets: the first one consists of 450 instances with Small number
of constraints (GS) and the second one of 750 instances with Large number of constraints
(GL).

The instances we generated are positive definite; anyway, we would like to point
out that our algorithm can also solve positive semidefinite instances, as is shown in
Section 3.3.5. We restricted to positive definite ones because after reading ill-conditioned
or positive semidefinite matrices, Cplex returns an error, since it is not able to provide
guarantee of symmetry and of positive semidefiniteness. Nevertheless, for our algorithm
the performance is very similar.

3.3.5 Preliminary tests

Here, we first describe the way we chose the Cplex optimizer for solving our convex
quadratic instances. Then, we explain how we set the parameters in the different algorithms
used to solve the master problem in the SD framework.



79

Choice of the Cplex optimizer

As already mentioned, we decided to benchmark our algorithm against Cplex version
12.6.2 (see [97] for further details). The optimizers that can be used in Cplex for solving
convex quadratic continuous problems are the following: primal simplex, dual simplex,
network simplex, barrier, sifting and concurrent. The aim of our first test was to identify,
among the 6 different options, which is the most efficient for solving instances with a
dense Q and n� m.

In Table 3.1, we present the results concerning instances with 42 constraints and three
different dimensions n: 2000, 4000 and 6000. We chose problems with a small number
of constraints in order to be sure to pick the best Cplex optimizer for those problems
where the SD framework is supposed to give very good performances. For a fixed n,
three different instances were solved of all six problem types. So, each entry of Table 3.1
represents the averages computing times over 18 instances. A time limit of 1000 seconds
was imposed and in brackets we report (if any) the number of instances that reached the
time limit.

n Default Primal Dual Network Barrier Sifting Concurrent

2000 72.2 1.6 1.6 1.6 84.2 2.0 89.0
4000 641.8 (2) 12.7 13.9 13.9 618.0 (2) 11.5 689.4 (2)
6000 1000.0 (18) 31.5 30.7 30.5 1000.0 (18) 26.3 1000.0 (18)

Table 3.1 – Comparison among the different Cplex optimizers

The table clearly shows that the default optimizer, the barrier and the concurrent
methods give poor performances when dealing with the quadratic programs we previously
described. On the other side, the simplex type algorithms and the sifting algorithm seem
to be very fast for those instances. In particular, sifting gives the overall best performance.
Taking into account these results, we decided to use the Cplex sifting optimizer as the
baseline method in our experiments. It is worth noticing that the sifting algorithm is
specifically conceived by Cplex to deal with problems with n � m, representing an
additional reason for comparing our algorithmic framework against this specific Cplex
optimizer.

Tolerance setting when solving the master problem

We have three options available for solving the master problem in the SD framework:
ACDM, FGPM and Cplex. In order to identify the best choice, we need to properly set
tolerances for those methods. When using Cplex as the master solver, we decided to keep
the tolerance to its default value (that is 1E10− 6). The peculiar aspect of ACDM is that
no tolerance needs to be fixed a priori. On the other hand, with FGPM, the tolerance
setting phase is very importance since, as we will see, it can significantly change the
performance of the algorithm in the end.



80

In Table 3.2, we compare the different behaviors of our SD framework for the three
different choices of master solver. Each line of the table represents the average values
concerning the 54 instances used in the previous experiment. Column “T” represents
the time (in seconds) spent by the algorithms. “Er” and “Max Er” represent the average
and maximum relative errors with respect to the value found by Cplex (using sifting
optimizer). “Ei” and “Max Ei” represent the average and maximum distance (calculated
using `∞ norm) from the solution found by Cplex. In the last column, “Dim” represents
the dimension of the final master program.

Solver Tol T (s) Er Max Er Ei Max Ei Dim

SD FGPM

1E-02 0.25 8.64E-02 2.67E-01 2.24E-02 5.04E-02 9.9
1E-04 1.15 2.21E-04 6.79E-04 7.80E-04 1.44E-03 55.6
1E-06 2.46 5.65E-07 2.63E-06 5.72E-05 1.86E-04 102.2
1E-08 6.09 5.98E-09 1.15E-07 4.61E-06 1.88E-05 114.0
1E-10 9.81 2.35E-09 4.59E-08 3.48E-06 2.16E-05 113.4

SD Cplex 1E-06 4.66 8.86E-09 4.26E-08 5.50E-06 2.46E-05 156.0
SD ACDM None 3.63 1.53E-09 1.97E-08 2.65E-06 1.99E-05 113.1

Cplex 4.29

Table 3.2 – Comparison for the three different choices of master solver (Cplex indicates
the results obtained with sifting optimizer).

By taking a look at the table, we can easily see that the ACDM based SD framework
gets the best results in terms of errors with respect to Cplex. We can also see that the
performance of the FGPM based one really changes depending on the tolerance chosen. If
we want to get for FGPM the same errors as ACDM, we need to set the tolerance to very
low values, thus considerably slowing down the algorithm. In the end, we decided to use
a tolerance of 10E − 6 for FGPM, which gives a good trade-off between computational
time and accuracy. This means anyway that we gave up precision to keep the algorithm
fast with respect to ACDM.

Choice of the ε parameter for the early stopping pricing option

In this section we discuss how to fix the threshold ε used in equation (3.12) for the
Early Stopping option. We decided to fix the value of ε as a fraction ε0 of the quantity
|∇f(xk)

>xk|:

ε = −ε0|∇f(xk)
>xk|. (3.24)

The value of ε0 has been chosen after testing three different values on a subset of instances.
We chose the subset of the randomly generated instances with random dense constraints
and budget constraint, where SD has the worst behavior with respect to Cplex. The
results are presented in Table 3.3, where we compare the average computational time T



81

and the number of SD iterations N its. The table presents the results on the 67 instances
solved by all the algorithms.

Solver ε0 T (s) N its

SD

0.0 77.4 165.0
0.5 80.3 188.2
1.0 70.7 165.0
1.5 73.0 165.0

Cplex 9.4

Table 3.3 – Test on the ε0 parameter for the Early Stopping technique.

One can see that, with ε0 = 0.5 , the time and number of iterations are larger. On
the other hand, if ε0 = 1.5, the threshold is too weak and the early stopping is never
used. Hence, we chose the value of ε0 = 1.0, which improves the computational time
while keeping the number of iterations unchanged.

Ill-conditioned and positive semidefinite matrices

In the section, we presented results for positive definite instances with eigenvalues
equally distributed in the range [10−4, 3], so with a condition number of 3× 104.
In here, we report results obtained when varying condition number and percentage of
null eigenvalues in the Hessian matrix of the randomly generated QPs. More specifically,
for each choice of condition number and percentage of null eigenvalues, we randomly
generate 5 problems with 2000 variables and 5 problems with 4000 variables. We consider
the following choices:

• 4 different percentages of null eigenvalues : 0%, 1%, 5%, 20% ;

• condition number of 5 different orders: 104, 108, 1012, 1016, 1020.

Hence, we have 20 different combinations for a total number of 200 instances.
We notice that Cplex had a significant number of failures on those instances. Indeed,

it was able to solve only the positive definite instances with condition number up to 1012.
It returned and error in the other cases: this is mainly due to the high density of the
matrix that makes hard to detect the symmetry or the positive semidefiniteness of the
Hessian. SD ACDM was instead able to solve the vast majority of the instances (we only
got a few failures for condition number 1020) and it was faster on those instances that
Cplex was able to solve. In Table 3.4, the average CPU time in seconds is reported for SD
ACDM (with the default pricing option). Each column represents the percentage of null
eigenvalues and each row stands for the order of magnitude of each condition number
considered. SD ACDM with the best pricing option, that for these instances is Sifting +
Cuts, obtains similar results in terms of CPU time.

We would like to notice that the performance of our algorithm is not much affected by
the increase of the condition number and on the percentage of null eigenvalues. This is



82

0% 1% 5% 20%

104 0.53 0.55 0.65 0.71
108 0.61 0.62 0.62 0.85
1012 0.60 0.65 0.70 0.84
1016 0.64 0.57 0.69 0.76
1020 0.57 0.58 0.69 0.82

Table 3.4 – Average CPU time (SD ACDM).

the reason why in our tests we mainly concentrate on positive definite instances, with the
indicated condition number. We would anyway like to remark that specific techniques, e.g.
preconditioning strategies, can be used (and are actually used in many solvers) to tackle
the class of ill-conditioned problems. Some preconditioning might hence be embedded in
our framework as well in order to improve the performance, but this might be subject of
future research.

3.3.6 Numerical results related to the extended testbed

In this section, we report the numerical results of our SD framework.
In the first part of the analysis, we investigate how the use of different options for

solving the master problem influences the overall performances of the algorithm. We show
the results concerning the following three different settings for the master problem:

• ACDM: the new conjugate direction method, presented in Section 3.1.1.

• FGPM: the gradient projection method explained in Section 3.1.2.

• Cplex : the continuous optimizer of Cplex, default settings.

In the second part, we test the impact of the following pricing options:

• Default: the pricing problem is solved with the Linear Programming optimizers of
Cplex, default settings.

• Cuts: we add to the Default option the Shrinking cuts, described in Section 3.2.2.

• Early stopping: we add to the Default option the Early stopping technique described
in Section 3.2.1 .

• Cuts + Early stopping: both techniques are added to the Default option.

We further compare the default option of Cplex with more specific options like the
Sifting optimizer and the Network optimizer.



83

Master solvers

Now, we focus on the computational analysis of the different methods used for solving
the master problem in the SD framework. Figure 3.3 provides the results concerning all
the classes of problems previously introduced. We indicate with SD-Cplex, SD-ACDM
and SD-FGPM the results concerning SD using respectively Cplex, ACDM and FGPM for
solving the master problem. For the sake of comparison, we also include the performances
of Cplex.

These plots show that the SD framework significantly outperforms Cplex in the vast
majority of the cases. We can further see that SD-ACDM is the most efficient and
robust for almost all the classes of problems considered (more precisely, GS, POP, QMKP,
QGSPP and QRSPP). As regards the GL instances, we notice that SD-FGPM has better
performances than both SD-ACDM and SD-Cplex and that the Cplex solver is competitive
with it.

Pricing Options

Here, we analyze the impact of the different pricing options in the SD framework.
For each class of problems, we use as master solver the most effective method, according
to the results of the previous section. Hence, ACDM is used for the GS, POP, QMKP,
QGSPP and QRSPP instances and FGPM is used for the GL instances. Figure 3.4
shows the results concerning all the classes of problems considered. We indicate with
Default the results concerning SD using Cplex with default settings to solve the pricing
problem. Furthermore, we use Default+Cuts, Default+Early Stopping and Default +
Early Stopping + Cuts to indicate the results obtained when respectively adding to
Default the shrinking cuts, the early stopping procedure and both at the same time.

We notice that the option Default + Early Stopping shows the best performances
(both in terms of efficiency and robustness) for the GL, GP, POP and QRSPP instances.
With respect to QGSPP, Default + Early Stopping is still the most efficient, but the
Default version is slightly better in terms of robustness. We further notice that the option
Default + Early Stopping + Cuts is competitive with the option Default + Early Stopping
on the GL instances, and it is as robust as the option Default + Early Stopping on the
POP instances. Finally, if we consider the QMKP instances, the option Default is the
most efficient, while the option Default + Early Stopping + Cuts is the most robust.

Figure 3.5 finally shows the effects of replacing the Default Cplex solver for the pricing
problem with the Sifting/Network optimizer. We only focus on two specific classes of
problems where it makes sense to use such tailored approaches. More specifically, we
considered generic quadratic instances to test the Sifting and quadratic shortest path
problems to test the Network solver. We compare the best pricing option obtained from
the analysis carried out in Figure 3.4 with the different sifting variants. We would like
to highlight that, when using those tailored solvers in the pricing, early stopping can
only be implemented by means of callback functions. Since this would surely worsen
the performances of the framework, we decided not to include the option in the analysis.
As we can easily see by taking a look at the plots, the option Sifting+Cuts is the best



84

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

SD Cplex SD ACDM SD FGPM Cplex

(a) GS

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

SD Cplex SD ACDM SD FGPM Cplex

(b) GL

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

SD Cplex SD ACDM SD FGPM Cplex

(c) POP

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

SD Cplex SD ACDM SD FGPM Cplex

(d) QMKP

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

SD Cplex SD ACDM SD FGPM Cplex

(e) QGSPP

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

SD Cplex SD ACDM SD FGPM Cplex

(f) QRSPP

Figure 3.3 – Performance analysis of the different methods used for solving the master
problem in the SD framework.



85

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Default Default+Cuts Default+ Early Stopping

Default+ Early Stopping+Cuts

(a) GS

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Default Default+Cuts Default+ Early Stopping

Default+ Early Stopping+Cuts

(b) GL

1.0 1.5 2.0 2.5 3.0
0.0

0.2

0.4

0.6

0.8

1.0

Default Default+Cuts Default+ Early Stopping

Default+ Early Stopping+Cuts

(c) POP

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Default Default+Cuts Default+ Early Stopping

Default+ Early Stopping+Cuts

(d) QMKP

1.0 1.1 1.2 1.3 1.4 1.5
0.0

0.2

0.4

0.6

0.8

1.0

Default Default+Cuts Default+ Early Stopping

Default+ Early Stopping+Cuts

(e) QGSPP

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Default Default+Cuts Default+ Early Stopping

Default+ Early Stopping+Cuts

(f) QRSPP

Figure 3.4 – Performance analysis of the different options used for solving the pricing
problem in the SD framework.



86

1 2 3 4 5
0.0

0.2

0.4

0.6

0.8

1.0

Default + Early stopping Sifting

Sifting + Cuts

(a) GS

1 2 5 10 20 50
0.0

0.2

0.4

0.6

0.8

1.0

Default + Early stopping Sifting

Sifting + Cuts Cplex

(b) GL

1.0 1.1 1.2 1.3 1.4
0.0

0.2

0.4

0.6

0.8

1.0

Default Network Network + Cuts

(c) QGSPP

1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.2

0.4

0.6

0.8

1.0

Default + Early Stopping Network

Network + Cuts

(d) QRSPP

Figure 3.5 – Additional performance analysis of the different options used for solving the
pricing problem in the SD framework.



87

one when dealing with GS and GL instances. In particular, for the GL instances the SD
framework significantly outperforms also the baseline Cplex solver and finds a solution for
all the instances within the time limit. The Network option, on the other hand, guarantees
good results on both QGSPP and QRSPP instances.

Average computational time

In our experiments, we fixed a time limit of 900 seconds for all the algorithms. For
each class of problems, we report in Table 3.5 the number of available instances (N inst),
the number of instances solved within the time limit and the average computational time
in seconds spent by Cplex (NS Cplex and T Cplex ) and by SD (NS SD and T SD). We
consider the best master/pricing options for SD in the analysis. The average is done by
taking into account only the instances solved by both the algorithms. Furthermore, we
add the average number of SD iterations (N it) needed to solve the problems.

Class N inst NS Cplex T Cplex NS SD T SD N it

GS 450 450 11.7 450 2.4 171.4
GL 750 666 63.8 750 16.7 90.7
POP 40 40 9.6 40 0.7 116.6

QMKP 54 54 36.5 54 11.7 31.7
QGSPP 30 30 77.6 30 15.0 290.4
QRSPP 72 72 2.2 72 0.1 19.7

Table 3.5 – Solved instances and average CPU time.

In particular, we see that in GL problems, 84 instances out of 750 are not solved
by Cplex within the time limit, while SD with the improving tools for both master and
pricing solves all of them. We finally highlight that the most time consuming part in each
SD cycle is the solution of the pricing problem, as we point out in the next paragraph.

3.3.7 CPU time usage in the SD framework

Now we analyze the way CPU time is used in the SD framework, that is we show
the average CPU time needed for preprocessing data, solving the master problems and
solving the pricing problems (failures are not considered in the analysis). In Figures 3.6
and 3.7, we report the aggregated results over the first three classes of instances and on
the continuous relaxations of combinatorial instances, respectively. In each figure, we
report the time spent by SD in the preprocessing phase of the algorithm (preprocessing)
and in the solution of the master and pricing problem. The solving time of both the
pricing and master problem is split in the time needed to update the data structures
(updating) and the time needed to solve the problem (solvers). For each figure we provide
also the average computing time over the testbed. Figures 3.6 clearly suggests that for
generic instances the percentage of computing time of the pricing problem increases with
the increase of the size of the instances. On the other hand, the subdivision of CPU



88

times differs significantly for the three continuous relaxations of combinatorial instances
considered (QGSP, QRSP, QMK). First of all, we observe that for quadratic shortest
path instances the percentage of computing time for the pricing is lower than the one
for the quadratic multidimensional knapsack instances. This is due to the fact that the
pricing problem for a quadratic shortest path instance reduces to a simple shortest path
problem and thus it can be handled efficiently by a generic LP solver. Finally, we notice
that the preprocessing time for random shorthest path is not negligible. This behaviour
is due to the fact that the overall computing time is significantly small and hence the
total time needed to prepare the initial data structures cannot be ignored.

(a) Portfolio
Avg CPU Time:
SD-ACDM: 0.90s
Cplex: 9.58s

(b) GS
Avg CPU Time:
SD-ACDM: 3.66s
Cplex: 14.54s

(c) GL
Avg CPU Time:
SD-FGPM: 20.02s
Cplex: 59.84s

(d) Legend

Figure 3.6 – CPU time pie charts for Portfolio and General Problems.

(a) QGSP
Avg CPU Time:
SD-FGPM: 34.40s
Cplex: 93.72s

(b) QRSP
Avg CPU Time:
SD-ACDM: 0.25s
Cplex: 2.64s

(c) QMK
Avg CPU Time:
SD-ACDM: 24.40s
Cplex: 52.80s

(d) Legend

Figure 3.7 – CPU time pie charts (continuous relaxations of combinatorial instances).



89

3.3.8 In-depth analysis

In order to better analyze the behaviour of the SD framework, we show now how the
objective function value changes with respect to the elapsed time. Since we want to get
meaningful results, we only consider generic instances solved in more than 10 seconds
(but always within the time limit of 900 seconds). In particular, we consider instances
with random dense constraints and we take a set of 25 instances for each of the three
types of additional constraints. Hence, we plot

• on the x-axis the CPU time ratio, that is the CPU time elapsed divided by the
overall time needed by Cplex to get a solution on the same instance.

• on the y-axis the objective function ratio, that is the objective function value
divided by the optimal value obtained by Cplex on the same instance.

All the results are averaged over the whole set of instances. For the SD framework, we
plot the results up to twice the time needed by Cplex to get a solution. In the analysis,
we always consider the setting that includes all the pricing options (and gives same
performance as the best one). Figures 3.8a and 3.8b show the overall results for the 75
instances considered: the first figure shows the comparison between Cplex and SD FGPM,
while the second one shows the comparison of the three different SD framework versions.
From the comparison of Cplex and SD FGPM, it is easy to notice that SD gets a good
objective function value very soon. Indeed, at a CPU time ratio 0.6 (i.e., 60% of the
overall Cplex CPU time) corresponds an objective function ratio slightly bigger than 1 for
SD FGPM, while at the same CPU time ratio Cplex still needs to find a feasible solution.
Cplex gets a first feasible solution for a CPU time ratio equal to 0.7 (in this case the
objective function ratio is bigger than 2.5), and it obtains an objective function ratio close
to 1 only for a CPU time ratio bigger than 0.8. By taking a look at the comparison of the
three different versions of our SD framework, we notice that SD FGPM actually takes
longer than the others to get an objective function ratio close to 1. The better results
obtained for SD FGPM hence depend, as we already noticed, on the way we choose the
tolerance in the master solvers. Finally, in Figure 3.8c, we report the plots related to
those instances where Cplex outperforms the SD framework. Once again, we can see that
SD FGPM gets a good objective function ratio very soon, while Cplex takes much longer
to obtain a similar ratio.

3.4 Conclusions

We presented an SD framework to solve continuous convex quadratic problems.
In particular, we focused on solving instances with significantly more variables than
constraints and with an objective function having a dense Hessian. We motivated our
choice by showing literature problems with this form.

We introduced a new adaptive conjugate direction method (ACDM) that is specifically
designed to repeatedly solve the master problem of a SD algorithm; we also used a method
that conveniently adapts the projected gradient approach to this framework. Furthermore,



90

SD FGPM

Cplex

0.5 1.0 1.5 2.0
0.0

0.5

1.0

1.5

2.0

2.5

(a) SD FGPM vs Cplex.

SD Cplex

SD ACDM

SD FGPM

0.8 1.0 1.2 1.4 1.6 1.8 2.0

1.000

1.002

1.004

1.006

1.008

(b) SD solvers comparison.

SD FGPM

Cplex

0.5 1.0 1.5 2.0
0

1

2

3

4

5

(c) SD FGPM vs Cplex - GL instances (Rb con-
straints).

Figure 3.8 – Objective function decay - Objective function ratio (y-axis) and CPU time
ratio (x-axis).



91

two different strategies to speed up the pricing were analyzed: an early stopping technique
and a method to shrink the feasible region based on ad-hoc cuts. Finally, specific options
for solving the pricing problem were tested, namely the sifting and the network optimizer.

Our tests on real instances from the literature, and on randomly generated QPs, show
that our algorithm is promising for instances with the aforementioned structure. We also
generated extended instances to test our methods.

We carefully analyzed the impact of the different master and pricing settings and we
showed that our algorithm is significantly better than Cplex. In particular, ACDM seems
to be a key ingredient to obtain an effective SD framework. Finally, the pricing options
allowed to further enhance the performances of our method.

3.5 Future research directions

In this chapter we exploited the properties of the well-known Simplicial Decomposition
algorithm and added to them some adaptations in order to tackle a class of convex
continuous quadratic problems. We obtained remarkable results and we submitted our
work to a journal.

As a possible future investigation, we could try to adapt out framework to general
convex problems. Indeed, the master algorithm FGPM can be applied to any kind of
convex problem, while ACDM should be strongly modified. A first example could be that
of Perspective functions (see [67]). In this framework, variants of the classic algorithm
should be taken into consideration, in particular the so-called Restricted Simplicial
decomposition, that is a modification of the original algorithm given by adding an upper
bound on the dimension of the domains of the master problems.

As a different research direction, we could extend our framework in order to deal
with mixed integer, convex quadratic problems. Our idea is to develop a branch and
bound strategy that solves, at each node, the continuous relaxation of a mixed integer
problem by Simplicial Decomposition. Some advantages can be exploited, in particular:
firstly, the lower bounds given by the pricing problems help accelerating the computations
in the nodes that can be pruned by bound; secondly, the columns generated at each
node can provide a warmstart. This is what we present in Chapter 4, along with the
results obtained in some combinatorial problems whose continuous relaxations have been
considered above.



92



Chapter 4

A simplicial decomposition
framework for dense convex
quadratic mixed binary problems

4.1 Introduction

Many real-world applications can be modelled as Mixed Binary Quadratic Problems
(MBQPs): this means the optimization of a quadratic objective function subject to linear
or quadratic constraints, where all or a part of the variables must be binary numbers, i.e.
0 or 1. We focus on minimization of binary problems with quadratic convex objective
function, subject to linear constraints. The form of these problems is the following:

min f(x) = x>Qx+ c>x (4.1)
s. t. Ax ≥ b,

Cx = d,

l ≤x ≤ u
xi ∈ {0, 1} ∀i ∈ I ⊆ {1, . . . , n}

with Q ∈ Rn×n, c, l, u ∈ Rn, A ∈ Rm1×n, b ∈ Rm1 , C ∈ Rm2×n, d ∈ Rm2 , n,m1,m2 ∈ N.
Moreover, we assume the same further hypotheses as the continuous case:

• X = {x ∈ Rn : Ax ≥ b, Cx = d, l ≤ x ≤ u} is non-empty and bounded;

• the Hessian matrix Q is positive semidefinite and dense.

• an optimal solution of the continuous relaxation can be obtained as a proper convex
combination of a small subset of vertices in the original feasible set;

• there exists an efficient method for minimizing a linear function over the continuous
relaxation of the feasible set.

93



94

In practice, typically we deal with convex problems with a dense objective function
and relatively low number of constraints.
The class of these problems is NP-Hard and we present an algorithm to solve them. It
is based on the classic Branch and Bound method, but integrates it with a Simplicial
Decomposition type approach, to solve the continuous relaxation of the mixed binary
problem. Indeed, in chapter 3 we showed that SD is specifically tailored to solve the
continuous relaxation of problems with the aforementioned features. However, it is worth
noting that the proposed algorithm can handle any convex problem of type (4.1) and can
be easily modified in order to deal with mixed integer problems and also problems having
a general convex objective function. Also within this framework we obtained promising
results compared with the state-of-the-art solver CPLEX on some sets of instances.

4.2 SD integrated in a Branch and bound

The basic structure of our algorithm is a branch and bound, where at each node we
solve the continuous relaxation of the problem through the Simplicial Decomposition
algorithm. We wanted to embed the SD algorithm in this structure for several reasons.
The first one is that in Chapter 3 we noticed that, at least for large-size problems of this
class, this algorithm has a good performance in terms of computational time with respect
to CPLEX, so it can improve the performance in solving each node. Moreover, SD and
in particular the ACDM method described in Section 3.1.1, can take advantage of the
structure of a B&B tree by storing information in each node to simplify the computations
of the following nodes. A more detailed description of how we can efficiently embed SD
in it is proposed in the following sections. We will discuss the branching strategies and
rules, the properties of SD that will help in this context as well as computational aspects
and results will be described.

4.2.1 Branching strategy, branching rules

The branching strategy that has been used is the depth first search (DFS): at each
branching, the left child is the next node to explore. The advantages of this choice are
the following:

• the number of open nodes is kept small: indeed, at any step of the algorithm, at
most n+ 1 nodes are opened, and this is the least possible;

• it lets us find rapidly both upper and lower bounds;

• it can be implemented recursively: in this way it is not too memory consuming and
we can effectively take advantage of the SD framework, as will be explained later.

The branching rule for our experiments is the most fractional value: at each branching,
we fixed to 1 the variable with the largest fractional part. This choice is driven by the
fact that the solutions of our problems are generally sparse, so this should allow us to find
rapidly a good upper bound, even without heuristics, and often to calculate the optimal



95

value soon, as will be showed later. Other branching rules are tested, for instance the
so-called "most integer": we fix the fractional variable to the closest integer point, 0 or 1.
However, the performances obtained with this rule are similar to those obtained with the
other one.

4.2.2 Column exploitation

Another very useful enhancement of this algorithm is that many columns generated
by the Simplicial Decomposition at each node can be reused in the children nodes, if they
satisfy the constraints given by the branching. Indeed, when at a certain node a fractional
solution is found for the continuous relaxation, and branching to a variable - say i - is
performed, all the columns with ith component equal to 1 can be stored for the left child
and all the columns with ith component equal to 0 can be stored for the right child. In
this way, we can have an initial set of extreme columns for every node of the B&B tree.
This makes us able to warmstart the SD algorithm at every node, and also we can reuse a
column every time it is feasible: the algorithm will never generate the same column again.
Results which evidence the reduction of computational time are presented later. We note
that this procedure requires storing information of several columns at each node. It is
cheap with the depth first search strategy, because only two sets of columns are needed
to be stored at each node (those with a component fixed to 0 and to 1), and the number
of open nodes is limited. A different strategy, like breadth first search for instance, where
the number of open nodes can be much higher, would be much more memory consuming.
Other more refined ways of storing information given by the columns could be applied:
for instance, one could project other columns generated in a parent node to the feasible
set of the children node. Moreover, strategies can be found by taking into account the
specific structure of the problem, based for instance on easy ways to generate feasible
columns. These and other future research directions will be treated at the end of the
chapter.

4.2.3 Lower bound and Early stopping

As mentioned also in Chapter 2, the pricing problem of SD, at each cycle, gives a valid
lower bound on the solution: indeed, it solves a linearization of the original objective
function, which is convex. One can alternatively see it as the dual bound given by the
Dantzig-Wolfe decomposition method. Such a lower bound can be exploited very well
for pruning the nodes by bound and it actually gives remarkable improvements. Indeed,
in a certain node of the B&B tree, the dual bound provided by SD at each iteration, is
valid not only for the current node, but also for every node in the subtree. Hence, if
this value is larger than or equal to the current upper bound, the node can be pruned
before the termination of the SD algorithm. The main advantage can be noticed by
considering the typical tailing-off effect of column generation (see [105]): very often,
indeed, already after a few iterations, the approximate solution and often also this dual
bound are close to the optimal value. Then, several iterations only give little improvements
to the convergence to the optimum. Hence, if the node can be pruned, performing the



96

complete column generation algorithm is generally not needed, and most of the times
only very few iterations are sufficient. We also notice that the number of necessary SD
cycles is further reduced by the warmstart technique described in the previous section.

We can hence make use of the early stopping technique which has been seen in
Chapter 3, Section 3.2.1. A modification is however necessary, because of the use of the
dual bound: one cannot prune a node for bound if the pricing problem has stopped with
the early stopping, because this actually does not provide a valid lower bound, since the
solution is not optimal. For this reason, the early stopping can be implemented only if the
solution is already lower than the lower bound and, in this case, no pruning will be done.

4.3 Computational results

Here we give a detailed description of the computational results obtained with the SD
based algorithmic framework we described in the previous sections.

Due to the specific features of the given problems, we use Cplex version 12.6.2 (see [97]
for further details) as the baseline software in our tests.

4.3.1 Instances description

In our tests we consider instances related to combinatorial problems. In particular,
we focus on quadratic shortest path problems.

The instances belonging to this class of problems take the following form:

min f(x) = x>Qx+ c>x (4.2)

s. t.
∑

e∈δ+(s)

xe = 1,

∑
e∈δ+(v)

xe −
∑

e∈δ−(v)

xe = 0, ∀v 6= s, t

∑
e∈δ−(t)

xe = 1.

with c ∈ Rn and Q ∈ Rn×n. s, t are the source and termination nodes, respectively; δ+(v)
are the outgoing arcs and δ−(v) are the incoming arcs in the node v.

The directed graphs used in the experiments are related to two different kind of
problems:

1. Grid shortest path problem, that is graphs represented by a squared grid;

2. Random shortest path problem, that is randomly generated graphs (obtained by
the generator ch9-1-1 used in the 9th DIMACS implementation challenge [48]).

The benchmark consists of 12 instances based on grid graphs and 72 instances based on
random graphs.



97

4.3.2 Numerical results

In the following two tables, average results are shown for the quadratic shortest path
problem, for the grid and the randomly generated graphs, respectively. We compared the
following algorithms: CPLEX ; SD, the Simplicial Branch and Bound with no particular
features; SD-e, with the early stopping, SD-c with the reuse of feasible columns in both
the left and the right children, SD-c-e, with both the early stopping and the column reuse.

The tables represent, in average, the computational time (in seconds) for solving the
instance, the total number of Branch and Bound nodes, the number of nodes necessary
to find the optimal solution, the total time (in seconds) spent for solving all the master
problems and all the pricing problems.

Algorithm Time (s) N nodes N nodes opt. Time Master (s) Time Pricing (s)

Cplex 1036.8 163997 94633
BBSD 575.1 265192 19848 147.3 350.2

BBSD-e 564.6 265196 19845 146.1 341.9
BBSD-c 560.9 265192 19845 142.9 354.8
BSD-c-e 613.2 265194 19845 155.2 389.2

Table 4.1 – Average data for the Quadratic Shortest Path Problem, grid graphs.

Some comments have to be noticed about these results. First of all, all the algorithms
solve the problem to optimality, within the imposed timelimit of 7500 seconds. Then,
the combination of the depth first branch and bound with Simplicial Decomposition is
effective, since the computational time of this algorithm is always better than that of the
state-of-the-art software CPLEX. With respect to the grid graphs, the total number of
nodes is higher with SD than with Cplex, but the optimum is reached earlier, thanks to
the search strategy. Between master and pricing, the pricing is the most time consuming
part, coherently to the results of the continuous case in Chapter 3. Solving the pricing is
generally two to three times longer than solving the master, for both types of instances.
More deeply, if we compare the different options for the Simplicial branch and bound, we
can note that storing the columns at each node for the left and right children reduces the
computational time, as expected, in particular the time of the pricing problem is reduced.
And the early stopping strategy, even if adapted to this framework, helps only in the case
of "no storing" of the columns. The problems with random graphs are easier, hence the
total number of nodes is much smaller than with grid graphs. Nevertheless, the ratio

Algorithm Time (s) N nodes N nodes opt. Time Master (s) Time Pricing (s)

Cplex 138.8 194 5
BBSD 12.2 163 31 2.9 8.3

BBSD-e 13.9 163 31 4.6 8.3
BBSD-c 11.1 163 31 2.5 7.2

BBSD-c-e 11.4 163 31 2.9 7.0

Table 4.2 – Average data for the Quadratic Shortest Path Problem, random graphs.



98

between the time spent for solving the master and the pricing problems is substantially
unchanged.

4.4 Conclusions

We presented an efficient combination of the SD framework with a branch and bound
scheme, to solve mixed binary convex quadratic problems. It embeds in its structure
the ad-hoc method for solving the master problem, namely the adaptive conjugate
directions based method, and the early stopping strategy for the pricing. It exploits all
the advantages of the SD algorithm, as the lower (or dual) bound and the warmstart given
by the structure of the simplices in an efficient way. We showed, through a numerical
experience, that our algorithm is better than Cplex when dealing with particular instances
with a dense Hessian matrix and with a number of constraints considerably smaller than
the number of variables.

In conclusion, we showed how the SD algorithm, originally designed for continuous
problems, can be profitably embedded in a framework for mixed binary quadratic problems.
We trust that, with suited branching techniques, or appropriate cuts, different branching
rules or node searches, we can provide a powerful tool for solving complicated mixed
integer quadratic convex problems.

4.5 Future research directions

As a possible development of this algorithm, new branching rules and search strategies
shall be tested. These variants lead to different B&B trees and could be combined with
heuristics to obtain upper bounds.

Moreover, the sets of instances should be increased, by including instances from the
QPLIB library (see [71]), or from other types of problems: the quadratic multidimensional
Knapsack Problem, or the cardinality constrained, Quadratic Knapsack Problem, or even
mixed binary portfolio problems with cardinality constraints.

Additional tools shall also be tested: one is the introduction of cuts based on the
same idea of the shrinking cuts presented in Chapter 3. More specifically, whenever an
integer vector xk is obtained in the continuous relaxation at a certain node, the following
cut can be added to the pricing problem:

∇f(xk)
>(x− xk) ≤ 0. (4.3)

Indeed, the optimal integer point shall satisfy this constraint, because a descent direction
with respect to the previous feasible points shall exist. Other points that do not satisfy
this constraint shall be computed and pruned by bound. If we add these gradient cuts,
before generating them and solving the continuous relaxation, the corresponding nodes
become infeasible, hence they are immediately pruned for infeasibility: the corresponding
problems are not generated so an improvement in the algorithm could be achieved.

Moreover, the columns which are stored could be even better exploited: as noticed
above in Section 4.2.2, the columns generated in the father node which are infeasible for



99

the children can be projected to the feasible space. While a strategy to do this projection
is not straightforward or computationally efficient in general, in some cases it is actually
trivial: for instance, in a quadratic knapsack problem, every column with a fractional
variable xi can be projected to the subspace xi = 0 trivially, without changing any other
coefficient. On the other side, they can be projected on the subspace xi = 1 by suitably
changing one or a few other coefficients. The same idea could be generalized for other
types of problems, for instance the quadratic multidimensional knapsack problems.

As another possible improvement of this algorithm, one could try to project the
conjugate directions generated at a single node to the subspaces of the two children. This
could result in both avoiding to generate new directions from scratch, and also, in some
cases, in obtaining the optimum of the children by projection from the optimum of the
father; so, without solving the continuous relaxation, but exploiting the properties of the
Conjugate Direction method. In this way, the number of SD cycles could be substantially
reduced.

Another direction is the improvement of the lower bounds of the continuous relaxations.
That could be done by the use of ellipsoids, as explained in [25]. Indeed, the general idea
is to center a given ellipsoid E in the fractional optimal point and to compute the value λ
such that the scaled ellipsoid λE contains at least one integer point on its border and no
integer point in its interior. This can be done quickly if E is chosen appropriately. Then,
the minimum of the objective function f over the border of λE yields an improved lower
bound on f .

Conclusion and connection to part II What has been presented so far concludes
our study on Simplicial Decomposition algorithm applied to quadratic programs. Actually,
the main limit of SD is that it cannot solve problems that are not convex. In next part,
we consider a class of binary quadratic problems, with other characteristics: quadratic
functions can appear also in the constraints and any hypothesis about convexity is made.
Hence, the problems are more general and more difficult to solve. For this class of problems
we extend the formulation and propose a relaxation technique based on Dantzig-Wolfe
decomposition. It turns out to be a relaxation in the BQP polytope, strictly contained in
the so-called Completely Positive cone, and properties of this particular matrix cone are
investigated. We will also need to recall some further theory about cone programming
and the matrix completion problem, since we will present a result on matrix completion
on the boolean quadric polytope. In the next part, two chapters show the most important
results that we obtained. We will then conclude the thesis with a final chapter, which
will summarize the results obtained and the future directions which could be taken.



100



Part II

Decomposition on matrices

101





Chapter 5

Matrix generation algorithms for
binary quadratically constrained
quadratic problems

In this chapter we use the term matrix generation, meaning that we adapt the approach
of column generation to a formulation in the so-called lifted space, where the extreme
points are expressed in matrix form. We address purely binary problems, with quadratic
objective function and constraints. We start with the description of the formulation, then
we propose a relaxation and an algorithm to solve it. We then describe some specific
cases and we provide some computational results. This model will serve as a reference for
the developments which will follow in Chapter 6.

5.1 Formulation

A generic Binary Quadratically Constrained, Quadratic Problem (BQCQP) can be
written in the following form:

min f(x) (5.1a)
s. t. gi(x) ≤ 0 ∀i = 1, . . .m, (5.1b)

x ∈ {0, 1}n, (5.1c)

where f : Rn → R is the objective function on the variables x, and ∀i = 1, . . . ,m,
gi : Rn → R are the constraint functions. Both f and gi, ∀i = 1, . . . ,m are quadratic
functions: more specifically,

f(x) = x>Qx+ q>x+ q0,

gi(x) = x>Aix+ a>i x+ āi, ∀i = 1, . . . ,m.

Q,Ai ∈ Sn are symmetric matrices, q, ai ∈ Rn are the linear coefficients and q0, āi ∈ R
are constant terms. We define bi = −āi. Without loss of generality, we can assume q0 = 0.

103



104

Moreover, since from constraint (5.1c), ∀j = 1, . . . , n, x2
j = xj , then all the linear terms

can be omitted, because they can be added to the diagonal of the corresponding quadratic
matrix. Hence, from now on we consider the following formulation:

min x>Qx (5.2a)

s. t. x>Aix ≤ bi ∀i = 1, . . .m, (5.2b)
x ∈ {0, 1}n. (5.2c)

We remark that no further assumptions on the matrices are required. In particular,
the continuous relaxation of the problem can be non convex: i.e., we do not require Q
and Ai, i = 1, . . . ,m to be positive semidefinite.

As usual, this can be rewritten in matrix form; to this aim we make use of the Hilbert
product 〈A,B〉 and we introduce the matrix variable X ∈ Rn×n to represent all products
of the original variables: Xij = xixj , ∀i, j = 1, . . . , n.

Now, we can rewrite the original problem in this equivalent way:

min 〈Q,X〉 (5.3a)
s. t. 〈Ai, X〉 ≤ bi, ∀i = 1 . . . ,m (5.3b)

X = xx> (5.3c)
x ∈ {0, 1}n. (5.3d)

Remark 5.1. The constraint (5.3c) is a non convex constraint.
A typical way to solve a problem of this form is to do a branch and bound and to

solve at each node the SDP relaxation of the problem, using an SDP solver. Instead of
doing this, we try to provide a better bound by solving a different relaxation.

5.2 The BQP relaxation for BQCQPs

We intend to replace the constraint (5.3c) in the original formulation (5.3) by letting
the matrix X be a convex combination of rk-1 matrices Xp of the type:

Xp = xpx
>
p , xp ∈ {0, 1}n. (5.4)

The problem, then, takes the following form:

min 〈Q,X〉 (5.5a)
s. t. 〈Ai, X〉 ≤ bi, ∀i = 1 . . . ,m (5.5b)

X =
∑
p∈P

xpx
>
p λp (5.5c)

∑
p∈P

λp = 1 (5.5d)

λp ≥ 0 ∀p ∈ P, (5.5e)



105

where xp ∈ {0, 1}n are binary vectors in Rn and P is the index set of all the possible
extreme points xp:

P = {p ∈ N|xp ∈ {0, 1}n}. (5.6)

Remark 5.2. P is a finite set, but exponentially large with respect to n: since the points
xp are binary, |P| = 2n.

Proposition 5.1. The problem (5.5) is a relaxation of (5.2), and its domain is the
n-dimensional Boolean Quadric Polytope BQPn.

Proof. It is a relaxation because all the solutions of the original problem (5.2) (or
equivalently (5.3)) are achieved by our reformulation with λ ∈ {0, 1}|P|, that is in the
case when only one extreme point is considered (due to the constraint (5.5d)).

Then, by the constraints (5.5c) and the constraints on the λ variables, we know
that a solution X of (5.5) is a convex combination of rk-1 binary matrices Xp given by
Xp = xpx

>
p , where xp is binary, hence by Definition 1.20 it is in BQPn.

Remark 5.3. Since every point in the BQP polytope is a convex combination of a finite set
of doubly non negative matrices, their convex combinations are clearly in the completely
positive cone. Indeed, if we define: bp :=

√
λpxp, then constraint (5.5c) becomes:

X =
∑
p∈P

bpb
>
p ,

which implies that X ∈ C∗, as noticed in Remark 1.9. However, BQP is a bounded
polyhedron, but CPP is a non polyhedral cone. Hence BQP is strictly contained in CPP.

Remark 5.4. Since the extreme points xp are binary, the following condition holds:

Xjj =
∑
p∈P

λp[(xp)j ]
2 =

∑
p∈P

λp(xp)j ∀j = 1, . . . , n. (5.7)

Remark 5.5. Since the domain of (5.5) is strictly contained in the CPP cone, this relaxation
is stronger than the CPP relaxation (stronger than the SDP relaxation too, since the
SDP cone contains CPP).

We would like to point out that, although stronger than completely positive and
semidefinite relaxations, our relaxation is difficult to solve, mainly because the number of
extreme points is exponentially large. In the following sections we present a way to solve
this relaxation with column generation. However, we dedicate Chapter 6 to the description
of a more efficient formulation of the problem when a block structure is present.

5.3 Solving the BQP relaxation with Dantzig-Wolfe decom-
position

Formulation (5.5) expresses the constraint X ∈ BQPn as the convex combination of
its extreme points, thus our problem is in the Dantzig-Wolfe form and we can solve it with



106

a column generation method. We consider a subset P̄ ⊂ P and we solve a master program
where the extreme points belong to the set {xpx>p | p ∈ P̄}. If we solve it to optimality,
we find a feasible solution to our problem. Then we generate a pricing program that adds
a suitable column to the master, in order to decrease the objective function, and restart
by solving the new master program. If no such column can be found, then the algorithm
terminates and our feasible solution is optimal for the original problem. Since the total
number of columns is finite, the convergence is guaranteed.

Given the extreme points {xpx>p | p ∈ P̄}, the restricted master program (RMP) is the
following:

min 〈Q,X〉 (5.8a)
s. t. 〈Ai, X〉 ≤ bi, ∀i = 1 . . . ,m (5.8b)

X =
∑
p∈P̄

xpx
>
p λp (5.8c)

∑
p∈P̄

λp = 1 (5.8d)

λp ≥ 0 ∀p ∈ P̄. (5.8e)

In this way, we can replace the constraints (5.8c) in the objective function and in
the other constraints, thus obtaining a linear problem in the only λ variables. We also
introduce the notation Xp := xpx

>
p . Hence we have:

min
∑
p∈P̄

〈Q,Xp〉λp (5.9a)

s. t.
∑
p∈P̄

〈Ai, Xp〉λp ≤ bi, ∀i = 1 . . . ,m [ρ] (5.9b)

∑
p∈P̄

λp = 1 [π0] (5.9c)

λp ≥ 0 ∀p ∈ P̄. (5.9d)

We write its dual problem. We consider the latter (more compact) formulation, where
the dual variables are indicated in square brackets: let ρ ∈ Rm be the dual variables
corresponding to the quadratic constraints (5.9b) and π0 ∈ R be the dual variable
corresponding to the constraint (5.9c). Then the dual is the following:

max b>ρ+ π0 (5.10a)

s. t.
m∑
i=1

〈Ai, Xp〉ρi + π0 ≤ 〈Q,Xp〉, ∀p ∈ P̄ (5.10b)

ρ ≤ 0 (5.10c)



107

Once the restricted master program is solved to optimality, the optimal dual variables
ρ∗, π∗0 are available as well and the constraints (5.10b) are satisfied with ρ = ρ∗, π = π∗0
for every point Xp ∈ P̄. If these constraints are valid for every point Xp ∈ P, then our
primal feasible solution is feasible also for the dual of the master program, so it is optimal.
Otherwise, there are points Xp ∈ P \ P̄ that violate these constraints. In this case, we
solve a pricing program that finds one of these points and adds it to the set P̄. In order
to do so, once the master is solved and the dual variables ρ∗, π∗0 are obtained, the pricing
problem consists of finding an extreme point that minimizes the reduced cost. If the
minimum is less than 0, we can add the corresponding constraint in the dual and the
corresponding variable in the master, otherwise the algorithm terminates. For this reason,
this column generation technique can be viewed as a separation problem in the dual space.
The pricing problem takes the following form:

min 〈Q,X〉 −
m∑
i=1

〈Ai, X〉ρ∗i − π∗0 (5.11a)

s. t.X = xx> (5.11b)
x ∈ {0, 1}n (5.11c)

and can be rewritten in vector form:

min x>(Q−
m∑
i=1

ρ∗iAi)x− π∗0 (5.12a)

s. t. x ∈ {0, 1}n (5.12b)

While the master program is linear, the pricing is quadratic and it is an unconstrained
binary quadratic program.

Remark 5.6. If the original problem is convex, that is the matrix Q is positive semidefinite
and so are all the matrices Ai, then all the pricing problems are convex as well: indeed,
the matrix in its objective function is sum of positive semidefinite matrices because of
the non positivity of the dual variables ρ∗ (5.10c).

A more detailed description of the computational issues and ad-hoc techniques for
the solution of this algorithm is presented in 5.5. Computational results of this column
generation procedure, showing CPU time and bounds obtained with this relaxation, will
follow in Section 5.6.

In the next section, we present a specific case, where some more results can be
discussed.

5.4 Binary QPs with linear equality constraints

We now focus on pure binary QPs, that is binary quadratic problems with linear
constraints. We also restrict to the problems which have no inequalities in the constraints.



108

The formulation is hence the following, with the same notation as above:

min x>Qx (5.13)

s. t. a>i x = bi, ∀i = 1, . . . ,m

x ∈ {0, 1}n.

So, with the matrix notation:

min 〈Q,X〉 (5.14)
s. t. 〈Ai, X〉 = bi, ∀i = 1, . . . ,m

X = xx>

x ∈ {0, 1}n.

We notice that in this case the matrices Ai, i = 1, . . . , n are diagonal matrices, with the
vectors ai on the diagonal.

Remark 5.7. It is worth noticing that a specific case is when there are no constraints. in
this case, the problem is:

min 〈Q,X〉 (5.15)

s. t. X = xx>

x ∈ {0, 1}n.

If we apply the same relaxation described above, we obtain:

min 〈Q,X〉 (5.16)
s. t. X ∈ BQPn.

The problem being linear, it has an optimal solution in a vertex, and the vertices
are exactly the 0-1 rank-1 matrices. This means that the relaxation (5.16) is actually
an exact reformulation of (5.15). This was already noticed in [117] and [51], and was
one of the motivations which lead to the introduction of this polytope. However, if there
are constraints in the formulation, this result is evidently not true, but in order to have
an exact reformulation some additional constraints have to be introduced. In the next
section we will show this fact, by exploiting the important result of Burer in [28].

5.4.1 Reinforcing the formulation

An effective way to strenghten the formulation is adding the quadratization of the
linear constraints, as written, for example, in [127] and [47].

In particular, for linear equalities like:

a>x = b, (5.17)



109

one can square both of the sides on the equality and obtain a new, quadratic constraint:

(a>x)2 = b2, (5.18)

which can be rewritten as

x>aa>x = a>xx>a = 〈aa>, xx>〉 = b2, (5.19)

using again the Hilbert product. This constraint can always be added to the formulation,
because it is valid for the original problem and improves the relaxations.

We can add to our formulation the following valid constraints:

a>i Xai = b2i , ∀i = 1, . . .m (5.20)

By setting:
Ãi := aia

>
i , (5.21)

the constraint (5.20) can be written as:

〈Ãi, X〉 = b2i . (5.22)

Remark 5.8. We notice that the matrices Ãi, i = 1, . . . ,m are dense matrices.

If we compute the BQP relaxation of the problem with the addition of these constraints,
we get:

min 〈Q,X〉 (5.23a)
s. t. 〈Ai, X〉 = bi, ∀i = 1, . . .m (5.23b)

〈Ãi, X〉 = b2i , ∀i = 1, . . .m (5.23c)

X =
∑
p∈P

Xpλp (5.23d)

∑
p∈P

λp = 1 (5.23e)

λp ≥ 0 ∀p ∈ P, (5.23f)

where Xp := xpx
>
p and xp ∈ {0, 1}n, ∀p ∈ P.

Remark 5.9. The formulation (5.23) remains a relaxation of the original formulation
(5.14), because we added valid constraints.

As we already noticed in Section 2.12, in [28] Burer proves that every mixed binary
problem with linear constraints can be rewritten in CPP form. In particular, this holds
for problems of the form (5.13). More specifically, he proved that the CPP relaxation of
the problem is a reformulation of the original one, in the sense that the optimal values
are the same and any optimal solution in CPP form is a convex combination of optimal
solutions for the original problem. The relaxation is obtained by considering the extended
formulation and adding two more constraints: the quadratization of the linear constraints



110

and the equality between the elements in the diagonal of X and the corresponding linear
terms for every binary component (see Formulations (2.43) and (2.44)). Since in this case
we consider fully binary problems, we can use the notation introduced in this chapter,
without considering the linear terms on the variables and supposing that we added the
linear coefficients to the diagonal of the matrices of the objective function and of the
constraints. Considering formulation (5.14), the equivalent formulation is hence the
following:

min 〈Q,X〉 (5.24a)
s. t. 〈Ai, X〉 = bi, ∀i = 1 . . . ,m (5.24b)

〈Ãi, X〉 = b2i , ∀i = 1 . . . ,m (5.24c)
X ∈ C∗n, (5.24d)

where we used the notation (5.21). Burer proved that the problem (5.24) is equivalent to
(5.13). We now show that the BQP relaxation satisfies (5.24).

Proposition 5.2. The BQP relaxation (5.23) satisfies (5.24).

Proof. If a point X satisfies (5.23), then, the first two constraints of (5.24) are satisfied
since they appear also in (5.23). And the constraints (5.23d)-(5.23f) together imply (5.24d),
as noticed in Remark (5.3).

As an easy consequence, it follows that:

Corollary 5.1. The BQP relaxation (5.23) is equivalent to the original formulation
(5.13).

Proof. The previous Proposition showed that (5.24) is a relaxation for (5.23), which
is a relaxation of the original problem. Now, since (5.24) is equivalent to the original
formulation from the result in [28], it follows that also (5.23) is equivalent to (5.13).

This result shows that the BQP relaxation for purely binary equality-constrained
problems with quadratized constraints is equivalent to the original problem and to the
CPP relaxation; its domain is a polytope and in principle it allows us to solve the problem
to the optimum, without recourse to branching. However, adding quadratized constraints,
which are dense, makes the problem much more difficult: several more points are needed
for the convergence and the computational time dramatically increases. In our preliminary
tests, the algorithm always reached the time limit of several hours without convergence.

In the next section we describe in detail some computational issues and the ways we
actually implemented the algorithm. Then, some computational results are given, and
finally we present the conclusions and the possible improvements and future research
directions.



111

5.5 Computational aspects

With this framework, it is sufficient to solve a sequence of linear master problems
and unconstrained quadratic binary pricing problems to obtain the optimal value of the
BQP-relaxation of the original problem. In our fist results, we used the solver Cplex to
solve both the master and the pricing problems. Even if this Dantzig-Wolfe approach
theoretically provides a solution method for the problem we are considering, we must pay
attention to the efficiency of the algorithm and to some computational aspects. First of
all, the number of master and pricing problems to solve could be intractable in practice,
because it depends on the number of extreme points, which is exponential in the dimension
of the problem. Secondly, every pricing problem is a binary unconstrained quadratic
problem, which could be difficult in general. Finally, even the master problem is not well
defined at the beginning, because we do not start with a feasible solution and we have to
find some initial columns. In the next sections we describe the way we solve master and
pricing problems, while in the next chapter we introduce a strategy to reduce the number
of extreme points.

5.5.1 Feasibility of the master

Initializing the master is crucial: in general, finding feasible columns from which
to start the column generation algorithm is not straightforward. We use an approach
described in [137]. In fact, we use artificial columns that make the first master program
feasible. More specifically, we add one variable for each constraint, all with a large
objective function value (a so-called Big M) and the right-hand-side value as coefficient.
In this way, a feasible solution always exists, even if P̄ = ∅: all these variables can be
set to 1. Then, as soon as the algorithm provides a feasible column and so these extra
variables are fixed to 0 in the optimal solution of the master, they can be dropped. For
constraints with positive right-hand-side and lower inequality sense, they are unnecessary
and they are immediately removed. In this way, even if the first columns provided by
the pricing are not feasible, the master program finds a feasible solution, provides dual
variables, reduced costs and the algorithm can go on. The additional variables of the
master always have a non negative reduced cost.

If we call y the artificial variables, the restricted master program has the following



112

form:

min
∑
p∈P̄

〈Q,Xp〉λp +
m+1∑
j=1

Mjyj (5.25)

s. t.
∑
p∈P̄

〈Ai, Xp〉λp + b̄iyi ≤ b̄i, ∀i = 1 . . . ,m

∑
p∈P̄

λp + ym+1 = 1

λp ≥ 0 ∀p ∈ P̄.

yj ≥ 0 ∀j = 1, . . . ,m+ 1.

The dual of this problem is the following:

max ā>α+ π (5.26)

s. t.
m∑
i=1

〈Ai, Xp〉αi + π ≤ 〈Q,Xp〉, ∀p ∈ P̄ (5.27)

ājαj ≤Mj , ∀j = 1 . . . ,m

α ≤ 0

and therefore, the pricing problem is unchanged.

5.5.2 Early stopping of the pricing

As we already mentioned, the most demanding part is solving the pricing problem.
Hence we used some strategies to solve it faster, one of them is the so-called early stopping
for the pricing. Indeed, it is possible to stop the computations for solving this subproblem
when it finds a point with negative reduced cost. More specifically, we impose that the
solver stops when it finds the first binary vector that has a negative reduced cost. If
the algorithms finds it, then we can add this point to the set of extreme points for the
master and proceed in the column generation algorithm. If there are no such points, this
means that no other extreme point can be added so the algorithm has already found the
optimum and it can stop. Otherwise, if the pricing reaches its time limit without finding
any such extreme point, we do not have any guarantee of optimality: we will only have a
lower bound for the optimum of the BQP-relaxation. The best valid bound that we can
have is given by the solver: it is the minimum among the lower bounds of the open nodes
of the B&B tree and it is provided by Cplex.

5.6 Results

At first, we tested our algorithm on some instances from the QPLIB library (see [71]).
In particular, we selected some of them which contain linear or quadratic (non convex)
constraints and objective function, and purely binary variables.



113

We compare the results obtained by solving the instances with our algorithm -with
the early stopping technique- and with the solver BiqCrunch (see [99]), which is an
open source solver for binary quadratic programs that is based on the SDP. We compare
the root node bound for each instance, given by both algorithms. For BiqCrunch, we
consider three sets of parameters, in order to solve the root node relaxation. The first
set (BC-default) is the default set of parameters. The second set (BC-bound) is tuned to
obtain the best root node bound, with no additional inequality. The third set (BC-cuts)
allows to find a better root node bound, with the addition of valid triangular inequalities.
Then, we show the results of our BQP relaxation, with the early stopping technique. The
results are collected in Table 5.1. The first column contains the names of the instances,
the second one contains the optimal value, provided in the QPLIB website. Then, for each
of the BiqCrunch set of parameters and for our algorithm, two sub-columns represent the
root node bound and the time, in seconds, spent to obtain it.

Instance Opt val BC-default BC-bound BC-cuts BQP

T (s) Bound T (s) Bound T (s) Bound T (s) Bound

QPLIB-0067 -110942 9 -112840.2 0 -116485.9 22 -112799 0 -112356
QPLIB-1976 -9594 6 -80803.2 27 -51094.5 193 -45143 7 -44898
QPLIB-2017 -22984 23 -198910.4 113 -124395.9 114 -124396 124 -78215
QPLIB-2029 -34704 35 -314457.6 180 -229913.3 180 -229913 1865 -101334
QPLIB-2036 -30590 44 -388957.4 220 -257082.9 220 -257083 185 -126386
QPLIB-2055 3389110 6 1948874.3 21 1999553.8 104 2209752 92 2314020
QPLIB-2060 2528144 15 1550265.6 36 1466569.4 655 1703346 153 1707160
QPLIB-2067 3311060 12 678968.9 72 1063652.1 149 1152450 242 1260470
QPLIB-2073 7600750 24 6152309.4 57 6217026.1 1078 6827451 285 6834930
QPLIB-2085 7034580 25 4568498.2 85 4705156.8 2642 5420526 1066 5432400
QPLIB-2087 3312579 36 784483.5 123 952181.8 172 957531 2935 1442440
QPLIB-2096 7068000 73 5914217.1 82 5826147.8 2679 6305261 1210 6312620
QPLIB-2357 -647 46 -647.1 16 -733.3 46 -647 3223 -647
QPLIB-2359 -648 55 -662.0 74 -718.3 54 -662 2888 -648
QPLIB-2512 135028 8 -193036.5 2 -443431.9 117 -26966 6 0
QPLIB-2733 5358 225 -6039.9 10 -35469.4 1006 -4190 19258 -2914
QPLIB-2957 3596 728 -11613.2 78 -42428.5 2392 -9248 11261 0
QPLIB-3307 1240 118 -2684.9 5 -8652.4 1044 -1211 472 0
QPLIB-3413 2192 582 -2432.6 33 -183992.2 678 -2412 11 0
QPLIB-3587 15595 109 -665.3 5 -107792.2 109 -665 2 0
QPLIB-3614 14409 115 -0.8 4 -83637.5 123 0 2 0
QPLIB-3714 1183 14 1180.7 2 -8.7 20 1181 1607 1183
QPLIB-3751 2312 18 2308.9 2 -9.7 20 2309 7709 2312
QPLIB-3757 -563 349 -772.3 482 -664.0 344 -772 8850 -563
QPLIB-3762 -296 1 -296.0 1 -345.7 2 -296 1037 -296
QPLIB-3775 3990 24 3989.2 5 -10.6 25 3990 32932 3990
QPLIB-3803 -7360 54 -7360.3 12 -9764.6 57 -7360 5620 -7360
QPLIB-3815 -65 36 -69.7 2 -83.8 41 -69 1807 -66
QPLIB-6647 2 791 -1878.2 1009 -344.4 11271 -1 232 0
QPLIB-7127 0 1673 -7481.1 646 -351.5 1662 -7481 2750 0

Table 5.1 – Root node bound and time for QPLIB instances.

We can see that the time spent by our code is generally lower than the time needed by
BiqCrunch with the setting that provides the best valid lower bound, and our bound is
always slightly or sensibly higher. With the default settings, BiqCrunch, on the instances



114

which are solved, is much faster but obtains significantly weaker bounds. In Table 5.2, we
present the number of iterations, the dimension of the final master, (in which we deleted
all the columns with zero value) the partition of time between master and pricing of our
algorithm, for the same set of instances. We notice that the most relevant portion of time

Instance BQP bound N. its Final dim Total time (s) Time master (s) Time pricing (s)

QPLIB-0067 -112356 3 2 0 0 0
QPLIB-1976 -44898 417 31 7 0 6
QPLIB-2017 -78215 2816 35 124 21 86
QPLIB-2029 -101334 5858 39 1865 1578 239
QPLIB-2036 -126386 3008 43 185 34 122
QPLIB-2055 2314020 703 58 92 34 57
QPLIB-2060 1707160 837 77 153 63 87
QPLIB-2067 1260470 1010 77 242 112 126
QPLIB-2073 6834930 989 66 285 127 153
QPLIB-2085 5432400 1694 103 1066 626 425
QPLIB-2087 1442440 2755 124 2935 1826 1082
QPLIB-2096 6312620 1821 67 1210 926 261
QPLIB-2357 -647 28 2 3223 0 3222
QPLIB-2359 -648 82 7 2888 0 2887
QPLIB-2512 0 139 17 6 0 6
QPLIB-2733 -2914 373 36 19258 0 19248
QPLIB-2957 0 582 44 11261 0 11229
QPLIB-3307 0 318 32 472 0 469
QPLIB-3413 0 264 40 11 0 6
QPLIB-3587 0 153 31 2 0 1
QPLIB-3614 0 148 31 2 0 1
QPLIB-3714 1183 1529 3 1607 1 1602
QPLIB-3751 2312 3197 3 7709 7 7691
QPLIB-3757 -563 403 27 8850 43 8796
QPLIB-3762 -296 61 1 1037 0 1037
QPLIB-3775 3990 6373 3 32932 32 32865
QPLIB-3803 -7360 45 1 5620 0 5620
QPLIB-3815 -66 5093 50 1807 24 1766
QPLIB-6647 0 283 33 232 0 220
QPLIB-7127 0 589 51 2750 0 2677

Table 5.2 – Repartition of time between master and pricing for QPLIB instances.

is due to the pricing phase, as expected, except for some instance which need several
iterations, in which also the master problems are more challenging.

We then considered one of the classes of QPLIB instances, where our algorithm seems
particularly promising. We chose the set of the sonet instances, provided by Bonami
in [21]. We selected the instances of type nc. We have a set consisting of 51 instances.
We show the results in Table 5.3, where the notation is the same as in the previous table,
except for the fact that the optimal values are not given.

The results confirm that the performances of the BQP relaxation are generally better
than those of the SDP-based relaxation, even if there are a certain number of failures: 22
out of 51 instances reached the maximum number of iterations (100000) or the time limit
(10 hours). The BQP bound is always higher and in several cases much higher than the
SDP bound, and the CPU time is comparable.

In Table 5.4 we collect the number of iterations and the size of the final master,



115

the portion of time spent by our algorithm to solve the master and the pricing phases,
respectively. We note with M.I. the instances in which the maximum number of iterations
is reached, and with T.L. those in which the time limit is reached. We can see that the
pricing time is not so high, mostly due to the early stopping technique. However, a large
number of iterations is needed and, as we noticed for the QPLIB instances, when the
number of iterations grows, the time spent by the master problems becomes considerably
high.

Finally, we consider the Quadratic Assignment Problem (QAP), a famous linearly
constrained quadratic problem which is known to be hard to solve. It originally comes
from facility location applications and models the following problem. There are a set of n
facilities and n locations. For each pair of locations, a distance is specified and for each
pair of facilities a weight or flow is specified (e.g., the amount of supplies transported
between the two facilities). The problem is to assign all facilities to different locations
with the goal of minimizing the sum of the distances multiplied by the corresponding
flows. It can be expressed as a quadratic problem with the following form:

min f(x) =
1

2
x>Cx (5.28)

s. t. a>h x = 1, ∀h = 1 . . . , 2n

x ∈ {0, 1}n2
.

We considered only small sized instances, from the QAPlib instance (see [33]). The results
for the BQP bound appear in Table 5.5. We compared our approach to the SDP bound
given by BiqCrunch and we can note the following: the SDP root node bound is negative,
while the solution of the problem is clearly positive. Moreover, the BQP bound is 0, so
it is not tight as well, but it is computed fast and it is definitely larger than the SDP
bound. To these instances we added the quadratization of the linear constraints, in order
to obtain the original optimal point. However, we reached the time limit of 10 hours for
all the instances except the easy nug5, with only 5 facilities and locations, in which we
obtained the optimal value in 0.5 seconds.

5.7 Conclusions

In this chapter we proposed a method to solve binary QCQPs through the application
of the classic DWD onto the lifted space of products of variables. We analyzed the domains
of master and pricing problems in this formulation and we noticed that the decomposition
is done in the Boolean Quadric Polytope, strictly contained in the completely positive
cone. This method seems interesting for the simple forms of the two subproblems and,
to the best of our knowledge, it has never been proposed; the results and comparisons
with the SDP relaxation are encouraging, at least for the root node bounds that this
algorithm can obtain. A relation with the CPP reformulation of quadratic problems is
shown, which is interesting from the theoretical point of view.

In conclusion, this method seems promising: it could be an useful tool to help in the
solution of binary QCQPs, which are among the most difficult quadratic problems.



116

5.8 Future research directions

The study of this algorithm could be improved in several ways: more tests on
BQCQP instances could be done and more efficient computational techniques should
be implemented. As one of the possible improvements, the pricing problems should be
solved more efficiently: it can be seen as a max-cut problem, and there are in literature
some solvers suited for this class of problems: we could use BiqCrunch itself, or BiqMac
(see [122]), for instance. More refined ways of implementing an early stopping, or other
warmstart strategies for the pricing could be introduced. Also some techniques similar to
those used for Bundle methods (see [133,134]) shall be considered.

In addition, more tests on some literature instances for linearly equality-constrained
BQP relaxations with quadratized constraints could be done: they could confirm in
practice the theoretical results that our BQP relaxation can directly lead to the binary
optimum. Alternatively, this approach could be used in a B&B scheme, analogously as
what we proposed for convex problems in the first part of this thesis.

Then, the same important theoretical result could be extended to the case of problems
with inequalities and mixed binary problems. Indeed, there are a few issues due to the
bounds of the non integer variables in the pricing that shall be addressed, but stronger
formulations can surely be obtained.

Nevertheless, we shall note that the main difficulties of this approach are structural
and cannot be avoided. Instead, we could try to address structured problems, where a
possibly simpler decomposition could be made. Since the most difficult issues are the
huge number of extreme points, and the hardness of the pricing, the idea is to select
problems with a sparse structure, and develop an adaptation of this method which can
be computed on smaller subproblems. This is the main reason which lead us to develop
the next Chapter, where we show how such an adaptation can be constructed, along with
the main benefits and the main issues.



117

Instance BC-default BC-bound BC-cuts BQP

T (s) Bound T (s) Bound T (s) Bound T (s) Bound

gr17-nc-qc.lp 6 -19364 38 15803 242 21831 8 21973
ins.16.v1-nc-qc.lp 5 -524839 21 -387987 22 -387987 703 6636
ins.16.v2-nc-qc.lp 4 -1194454 21 -157176 21 -157176 169 75322
ins.16.v3-nc-qc.lp 4 -7048 64 929 120 1571 277 1596
ins.16.v5-nc-qc.lp 4 -21920 28 1872 169 3120 187 3193
ins.16.v6-nc-qc.lp 4 -30990 44 2119 113 3912 185 3990
ins.17.v1-nc-qc.lp 6 -1819024 27 -795830 28 -795830 - -
ins.17.v2-nc-qc.lp 6 -991482 28 -174478 28 -174478 22 138612
ins.17.v3-nc-qc.lp 6 -10478 22 2677 300 4026 15 4117
ins.17.v5-nc-qc.lp 6 -8058 37 11000 227 16400 7 16526
ins.17.v6-nc-qc.lp 6 -17380 26 12061 273 18300 7 18452
ins.18.v1-nc-qc.lp 8 -1797546 36 -384592 36 -384592 920 909
ins.18.v2-nc-qc.lp 8 -428969 39 -117439 38 -117439 1592 14816
ins.18.v3-nc-qc.lp 8 -16701 80 997 218 1740 2544 1758
ins.18.v5-nc-qc.lp 8 -63709 39 -108 39 -108 876 3516
ins.18.v6-nc-qc.lp 8 -68397 38 -1453 38 -1453 1076 4394
ins.19.v1-nc-qc.lp 10 -1251012 52 -368130 52 -368130 - -
ins.19.v2-nc-qc.lp 10 -1868551 52 -1034144 51 -1034144 - -
ins.19.v3-nc-qc.lp 11 -23488 55 -2946 55 -2946 701 1906
ins.19.v5-nc-qc.lp 11 -83125 54 -17124 54 -17124 1651 3811
ins.19.v6-nc-qc.lp 11 -123663 53 -20670 53 -20670 1724 4764
ins.20.v1-nc-qc.lp 14 -3724644 64 -996229 64 -996229 500 211908
ins.20.v2-nc-qc.lp 13 -1828616 67 -571504 67 -571504 - -
ins.20.v3-nc-qc.lp 15 -31199 69 -1158 69 -1158 - -
ins.20.v5-nc-qc.lp 14 -87227 67 -1990 68 -1990 - -
ins.20.v6-nc-qc.lp 14 -89954 68 -12886 69 -12886 - -
ins.21.v1-nc-qc.lp 19 -6874242 83 -4910836 83 -4910836 - -
ins.21.v2-nc-qc.lp 17 -2229906 85 -1539431 84 -1539431 - -
ins.21.v3-nc-qc.lp 17 -88542 86 -28206 84 -28206 - -
ins.21.v5-nc-qc.lp 18 -163943 86 -12247 88 -12247 - -
ins.21.v6-nc-qc.lp 18 -153072 89 2980 88 2980 128 20279
ins.22.v1-nc-qc.lp 23 -8168025 102 -7062597 103 -7062597 - -
ins.22.v2-nc-qc.lp 22 -3547701 105 -2995516 105 -2995516 - -
ins.22.v3-nc-qc.lp 23 -32977 113 1548 113 1548 187 7033
ins.22.v5-nc-qc.lp 23 -97889 112 1821 112 1821 197 14065
ins.22.v6-nc-qc.lp 22 -162126 112 4360 111 4360 842 17581
ins.23.v1-nc-qc.lp 27 -4545427 136 256040 137 256040 - -
ins.23.v2-nc-qc.lp 27 -849716 132 516197 141 516197 - -
ins.23.v3-nc-qc.lp 29 -79394 137 -33822 137 -33822 25710 2971
ins.23.v5-nc-qc.lp 29 -244628 138 -70162 139 -70162 - -
ins.23.v6-nc-qc.lp 28 -341041 141 -107088 141 -107088 - -
ins.24.v1-nc-qc.lp 34 -7038710 164 -5722660 159 -5722660 - -
ins.24.v2-nc-qc.lp 35 -5013345 162 -2777104 162 -2777104 - -
ins.24.v3-nc-qc.lp 37 -150047 181 -52206 181 -52206 486 6289
ins.24.v5-nc-qc.lp 34 -325428 176 -137132 176 -137132 - -
ins.24.v6-nc-qc.lp 34 -406983 175 -185316 175 -185316 2292 15722
ins.25.v1-nc-qc.lp 42 -5272983 205 -3859934 205 -3859934 - -
ins.25.v2-nc-qc.lp 42 -2362254 207 -1251807 207 -1251807 - -
ins.25.v3-nc-qc.lp 44 -110194 217 -9687 202 -9687 163 11758
ins.25.v5-nc-qc.lp 41 -257649 205 -30970 216 -30970 316 23516
ins.25.v6-nc-qc.lp 40 -284938 207 -62888 190 -62888 231 29394

Table 5.3 – Root node bound and time for sonet instances.



118

Instance BQP bound N. its Final dim Total time (s) Time master (s) Time pricing (s)

gr17-nc-qc.lp 21973 542 31 8 1 7
ins.16.v1-nc-qc.lp 6636 8658 7 703 569 131
ins.16.v2-nc-qc.lp 75322 4064 6 169 104 63
ins.16.v3-nc-qc.lp 1596 4555 25 277 212 63
ins.16.v5-nc-qc.lp 3193 4011 23 187 122 64
ins.16.v6-nc-qc.lp 3990 3755 23 185 135 49
ins.17.v1-nc-qc.lp M.I. - - - - -
ins.17.v2-nc-qc.lp 138612 1191 19 22 2 19
ins.17.v3-nc-qc.lp 4117 995 23 15 1 13
ins.17.v5-nc-qc.lp 16526 492 29 7 0 6
ins.17.v6-nc-qc.lp 18452 529 29 7 1 7
ins.18.v1-nc-qc.lp 909 3901 2 920 856 62
ins.18.v2-nc-qc.lp 14816 7281 9 1592 1440 148
ins.18.v3-nc-qc.lp 1758 5498 4 2544 2437 104
ins.18.v5-nc-qc.lp 3516 7430 5 876 725 147
ins.18.v6-nc-qc.lp 4394 6850 5 1076 940 133
ins.19.v1-nc-qc.lp M.I. - - - - -
ins.19.v2-nc-qc.lp M.I. - - - - -
ins.19.v3-nc-qc.lp 1906 5322 3 701 575 122
ins.19.v5-nc-qc.lp 3811 6637 5 1651 1499 148
ins.19.v6-nc-qc.lp 4764 8601 5 1724 1514 205
ins.20.v1-nc-qc.lp 211908 5640 15 500 340 157
ins.20.v2-nc-qc.lp M.I. - - - - -
ins.20.v3-nc-qc.lp T.L. - - - - -
ins.20.v5-nc-qc.lp M.I. - - - - -
ins.20.v6-nc-qc.lp M.I. - - - - -
ins.21.v1-nc-qc.lp M.I. - - - - -
ins.21.v2-nc-qc.lp M.I. - - - - -
ins.21.v3-nc-qc.lp T.L. - - - - -
ins.21.v5-nc-qc.lp M.I. - - - - -
ins.21.v6-nc-qc.lp 20279 3426 34 128 37 89
ins.22.v1-nc-qc.lp M.I. - - - - -
ins.22.v2-nc-qc.lp M.I. - - - - -
ins.22.v3-nc-qc.lp 7033 3960 35 187 51 132
ins.22.v5-nc-qc.lp 14065 3018 35 197 104 91
ins.22.v6-nc-qc.lp 17581 5009 35 842 687 151
ins.23.v1-nc-qc.lp M.I. - - - - -
ins.23.v2-nc-qc.lp M.I. - - - - -
ins.23.v3-nc-qc.lp 2971 19828 11 25710 24888 801
ins.23.v5-nc-qc.lp T.L. - - - - -
ins.23.v6-nc-qc.lp M.I. - - - - -
ins.24.v1-nc-qc.lp M.I. - - - - -
ins.24.v2-nc-qc.lp M.I. - - - - -
ins.24.v3-nc-qc.lp 6289 6025 39 486 248 231
ins.24.v5-nc-qc.lp M.I. - - - - -
ins.24.v6-nc-qc.lp 15722 6826 39 2292 2020 264
ins.25.v1-nc-qc.lp M.I. - - - - -
ins.25.v2-nc-qc.lp M.I. - - - - -
ins.25.v3-nc-qc.lp 11758 3240 43 163 33 125
ins.25.v5-nc-qc.lp 23516 4749 43 316 111 199
ins.25.v6-nc-qc.lp 29394 4109 43 231 61 165

Table 5.4 – Repartition of time between master and pricing for Sonet instances.



119

Instance Opt val BC-bound BQP

Bound T (s) Bound T (s)

nug5 50 -108.5 0.04 0 0.04
nug12 578 -3275 3.48 0 1.9

lipa10a 3683 -5318 0.71 0 21.7
chr12a 9552 -415541 5.87 0 0.4
chr12b 9742 -415950 8.14 0 0.8
chr12c 11156 -414401 11.18 0 0.24

Table 5.5 – Root node bound and time for QAP instances.



120



Chapter 6

Block-BQP decomposition

In this chapter we consider sparse problems in which the elements of the matrices can
be decomposed into blocks. The motivations are that in this way we can use a similar
approach to that of the last chapter, exploiting its good properties, but simplifying the
drawbacks that we evidenced in the previous analysis. Moreover, in literature there exists
several problems which are sparse and present this structure. For instance, instances from
several domains reported in the Minlplib library (a library that collects mixed integer
nonlinear problems among which several quadratic problems, see [34]) are quite sparse, as
reported in [116]. In addition, to the best of our knowledge the theoretical results which
we prove here have never been proposed before. We start with some definitions.

Definition 6.1. We define the support of a matrix M ∈ Rm×n as

Supp(M) := {(p, q) ∈ {1, . . . ,m} × {1, . . . , n} |Mpq 6= 0}.

Definition 6.2. Given n ∈ N and k ≤ n, we define a k-(Coordinate) block sequence in
Rn the set {b1, . . . , bk}, where the blocks bj ⊆ {1, . . . , n} ∀j = 1, . . . , k and:

k⋃
j=1

bj = {1, . . . , n}.

We indicate with dj = |bj | the dimension of each subset.

Remark 6.1. We also assume that no block is a subset of one other and that they are
sorted according to the order of their first element.

Definition 6.3. Given a k-block sequence, we define the Matrix blocks:

Bj := bj × bj ⊆ {1, . . . , n}2 ∀j = 1, . . . , k.

We define the set Bk :=
⋃k
j=1Bj as a Block structure in Rn×n.

Definition 6.4. The Sparsity graph of a block structure in Rn×n is a graph G(V,E)
with V = {1, . . . , n} and with edges on the block structure: {p, q} ∈ E if and only if
{p, q} ⊆ Bk.

121



122

Remark 6.2. It follows from the definition that every subgraph of the sparsity graph
induced by the vertices of a block is complete. Hence, the sparsity graph of a block
structure is given by the union of cliques.

Definition 6.5. Given a matrix M ∈ Rn×n and a block structure Bk, k ≤ n, we say that
M is block-decomposable under Bk if:

Supp(M) ⊆ Bk.

In Figure 6.1 an example is provided, with n = 5: a matrix, its block structure with
its sparsity graph are shown.


1 2 0 0 0
2 3 1 1 0
0 1 2 4 0
0 1 4 5 3
0 0 0 3 1


(a) Matrix

B1

B2

B3

(b) Block structure

1

2
3

4
5

(c) Sparsity graph

Figure 6.1 – Example of a block-decomposable matrix

In general, several block structures could be used for a single matrix. For instance,
every matrix is trivially decomposable in a structure consisting of just one n-dimensional
block. We are interested in structures with k > 1 blocks and potentially we seek a large
value of k. This means that the nonzero entries of the matrix fit in (possibly overlapping)
smaller blocks. A special case is when the blocks are disjoint:

Definition 6.6. If all the blocks in Bk have pairwise empty intersection (that is {bj}j=1,...,k

is a partition of {1, . . . , n}) then the matrix is called block-separable.

The largest possible number of k is n: if this holds, all the matrices are diagonal and
the problem can be formulated as a binary linear problem.

Definition 6.7. A quadratic problem of the form (5.2) is called block-decomposable (resp.
block-separable) if there exists a common block structure Bk under which all the matrices
of the problem (Q and Ai ∀i = 1, . . . ,m) are block-decomposable (resp. block-separable).

When dealing with block decomposable binary problems, we are interested in a
relaxation of the problem that takes into account only the vertices of the boolean quadric
polytope for each block. In this way we still consider an exponential set of extreme points,
but much smaller than the one of the problem in the original space. We have to show,
however, how to write the relaxation taking into account the intersections of the blocks,
whether this is still a relaxation for the original problem and if it is equivalent to the one
we introduced in Chapter 5. We will see that the problem of the equivalence is not trivial



123

and it is related to the matrix completion problems. The theory of matrix completion
problems is well developed for semidefinite and completely positive completion. However,
the BQP completion problem, to the best of our knowledge, has not been treated in
depth, but it can be helpful and interesting, as we will see, because it is strictly related
to binary quadratic problems.

In the rest of the chapter we will present our formulation, prove that it is a relaxation
and we will show the equivalence to the previously introduced relaxation in particular
cases.

6.1 Block-BQP relaxation

In this section we assume to have a problem of the form (5.3):

min 〈Q,X〉
s. t. 〈Ai, X〉 ≤ bi, ∀i = 1 . . . ,m

X = xx>

x ∈ {0, 1}n

and a block structure Bk under which the problem is block-decomposable. We also
introduce the following notation in order to split the data of the problem into the blocks:

Definition 6.8. For every j = 1, . . . , k we define:

Qj ∈ Rn×n : (Qj)pq :=

{
Qpq if (p, q) ∈ Bj \ (B1 ∪ · · · ∪Bj−1)

0 otherwise ,

Aji ∈ Rn×n : (Aji )pq :=

{
(Ai)pq if (p, q) ∈ Bj \ (B1 ∪ · · · ∪Bj−1)

0 otherwise ,

for every i = 1, . . . ,m. We also use the following notation for the restriction to the blocks:

XBj := X|Bj = {Xpq|(p, q) ∈ Bj} ∈ Rdj×dj , ∀X ∈ Rn×n,

xbj := x|bj = {xp|p ∈ bj} ∈ Rdj , ∀x ∈ Rn.

If we introduce variables Yj ∈ Rdj×dj for every block j = 1, . . . , k, we can provide a
relaxation of the original problem based on the blocks. In the following, with an abuse
of notation we consider Qj = (Qj)Bj ∈ Rdj×dj and Aji = (Aji )

Bj ∈ Rdj×dj . With this
notation:

〈Q,X〉 =

k∑
j=1

〈Qj , XBj 〉, 〈Ai, X〉 =
k∑
j=1

〈Aji , X
Bj 〉, ∀i = 1, . . . ,m.



124

Considering the variables Yj , we can hence write the following problem:

min
k∑
j=1

〈Qj , Yj〉 (6.1a)

s. t.
k∑
j=1

〈Aji , Yj〉 ≤ bi, ∀i = 1 . . . ,m (6.1b)

Y
Bj∩Bh
j = Y

Bj∩Bh
h ∀1 ≤ j < h ≤ k (6.1c)

Yj =
∑
l∈Pj

µjl (y
l
j)(y

l
j)
> ∀j = 1, . . . , k (6.1d)

∑
l∈Pj

µjl = 1 ∀j = 1, . . . , k (6.1e)

µjl ≥ 0 ∀l ∈ Pj , ∀j = 1, . . . , k, (6.1f)

where ylj ∈ {0, 1}dj ∀l = 1, . . . , 2dj , ∀j = 1, . . . , k are binary vector of the dimension of
the corresponding block j. Here, ∀j = 1, . . . , k, Pj are the index sets of all the possible
extreme points ylj :

Pj = {l ∈ N| ylj ∈ {0, 1}dj}. (6.2)

Remark 6.3. Clearly, if we consider the trivial decomposition in one single n dimensional
block, Formulation (6.1) is the same as what we proposed in (5.5) in Chapter 5.

Remark 6.4. Pj , j = 1, . . . , k are still exponentially large, but their sizes depend on the
size of the blocks: |Pj | = 2dj . Hence, potentially the total number of points is reduced,
with respect to the 1-block formulation:

∑k
j=1 |Pj | � 2n.

With this relaxation we allow a convex combination of extreme points for every block,
with the additional requirement, given by constraint (6.1c), that the intersections of
blocks must be consistent. From this formulation we can write the dual problem and a
pricing problem for each block.

6.1.1 Restricted master, dual and pricing problems

Similarly to the case of one single block presented in Chapter 5, we proceed to solve
this formulation by applying the Column Generation approach.

Hence, for each block j = 1, . . . k, we consider a subset P̄j ⊂ Pj . The master problem
restricted to points in P̄j , has the following form:



125

min
k∑
j=1

〈Qj , Yj〉 (6.3a)

s. t.
k∑
j=1

〈Aji , Yj〉 ≤ bi, ∀i = 1 . . . ,m [α] (6.3b)

Y
Bj∩Bh
j = Y

Bj∩Bh
h ∀1 ≤ j < h ≤ k [βj,h] (6.3c)

Yj =
∑
l∈P̄j

µjl (y
l
j)(y

l
j)
> ∀j = 1, . . . , k [πj ] (6.3d)

∑
l∈P̄j

µjl = 1 ∀j = 1, . . . , k [πj0] (6.3e)

µjl ≥ 0 ∀l ∈ P̄j , ∀j = 1, . . . , k. (6.3f)

The variables in square brackets are the dual variables: α ∈ Rm are the variables
corresponding to the original constraints. βj,h ∈ Rdjh×djh (where djh is the dimension
of the intersection between blocks j and h, with 1 ≤ j < h ≤ k) correspond to the
intersection constraints. πj ∈ Rdj×dj and πj0, for every j = 1, . . . , k, are the dual variables
corresponding to the constraints of the convex combination of extreme points.

The dual of this restricted master is the following:

max b>α+
k∑
j=1

πj0 (6.4a)

s. t.
m∑
i=1

Ajiαi +
k∑

h=1,h>j

β̃j,h −
k∑

h=1,h<j

β̃h,j + πj = Qj ∀j = 1, . . . , k (6.4b)

− 〈(ylj)(ylj)>, πj〉+ πj0 ≤ 0, ∀l ∈ P̄j , ∀j = 1, . . . , k (6.4c)

α ≤ 0, (6.4d)

where, for every block j, h = 1, . . . , k, β̃j,h ∈ Rdj×dj is equal to βj,h in the coordinates
corresponding to the intersection with block h and 0 otherwise. Following the DW
decomposition approach, similarly to Section 5.3, we write the pricing problem, which
is the problem of minimizing the reduced costs for the dual constraints (6.4c), once the
optimal dual variables α, βj,h, πj , and πj0 are obtained. It is the following:

min 〈πj∗, Yj〉 − πj0
∗

(6.5a)

s. t. Yj = yjy
>
j (6.5b)

yj ∈ {0, 1}dj ∀j = 1, . . . , k. (6.5c)

Remark 6.5. The difference with respect to the pricing problem (5.11) in Section 5.3 is
that here we have a pricing problem for each block and they are independent. Furthermore,
the size of these problems is the size of the corresponding block, hence they are potentially
much easier to solve than a single n-dimensional pricing problem.



126

6.2 Comparison to the original BQP relaxation

The question which we would like to address now is the relation between this block-
decomposed formulation and the BQP-relaxation (5.5) of the problem that we introduced
before. Our intention is to study in which cases they are equivalent. We start from
proving that the latter formulation provides a lower bound for the first one by showing
that any feasible point for (5.5) is feasible also for (6.1). Then, we will see that the vice
versa problem is a matrix completion problem in the Boolean Quadric Polytope. We will
describe the problem and we will prove it under some conditions.

To this aim, we start with the case of only two overlapping blocks, then we will see how
the results can be extended to the case of several blocks and which additional conditions
are needed on the block structure.

6.2.1 Two overlapping blocks

Here, we suppose that all the matrices Q, Ai of the problem are decomposable in
two overlapping blocks. Without loss of generality we can assume that each of the two
blocks has consecutive components. Indeed, if it is not true, a permutation of the rows
and columns can be done to make the blocks have the required structure.

Notations and settings

We introduce some notation specifically for the two-blocks case, which will be useful
for our purposes. The matrix variables which we consider are: X ∈ Rn×n the matrix
for the one-block formulation, Y ∈ Rp×p and Z ∈ Rq×q the variables for the two-blocks
formulation. We call C the intersection of Y and Z. All these matrices are square and
we use the following notation for the dimensions: let n be the side of X, and respectively
p, q and r be the sides of Y , Z and C. We consider the matrix A obtained by removing
the last r rows and columns from Y , and the matrix B obtained by removing the first
r rows and columns from Z. Let s and t be their sizes, respectively. Clearly, s+ r = p,
r + t = q and s+ r + t = n. We indicate with B3, B4, and B5 the blocks corresponding
to A, B, and C. A picture of this notation is reported in Figure 6.2. It could be useful
later to consider also the the block structures B′ := {B1, B4} and B′′ := {B3, B2}.

n

X

p

Y,B1

q

Z,B2

C
n

sA

rC

tB

n
sB3

rB5

tB4

Figure 6.2 – Notations for the blocks.



127

Using the notation introduced in Definition 6.8, we can write:

〈Q,X〉 = 〈Q1, X〉+ 〈Q2, X〉 = 〈Q1, X
B1〉+ 〈Q2, X

B2〉

and, similarly, the left-hand-side of the original constraints:

〈Ai, X〉 = 〈A1
i , X〉+ 〈A2

i , X〉 = 〈A1
i , X

B1〉+ 〈A2
i , X

B2〉, ∀i = 1 . . . ,m.

In order to write the first relaxation of the problem (5.5), in particular from con-
straint (5.5c), we need to impose that the matrix X is a convex combination of rank-1, n
by n binary matrices. From Remark (5.2), we know that the number of extreme points is
2n. Hence, we can write:

X =

2n∑
i=1

Xiλi, (6.6)

for λi ≥ 0, ∀i = 1, . . . , 2n,
∑
λi = 1. If we follow the second relaxation (6.1) instead,

based on the blocks, from (6.1d) we have similar conditions for the matrices Y and Z.
We write:

Y =

2p∑
j=1

µjYj Z =

2q∑
h=1

νhZh, (6.7)

with µj , νh ≥ 0, ∀j = 1, . . . , 2p, ∀h = 1, . . . , 2q,
∑
µj = 1

∑
νh = 1.

Similarly, we can also write:

A =
2s∑
k=1

αkAk C =
2r∑
l=1

γlCl, B =
2t∑
m=1

βmBm, (6.8)

where Ak, Cl and Bm are rk-1 matrices, generated by ak ∈ {0, 1}s, cl ∈ {0, 1}r and
bm ∈ {0, 1}t.

We now consider the extreme matrices Xi, Yj , Zh, Ak, Cl, and Bm. They are binary
and rank-1, i.e. they are generated respectively by binary vectors xi, yj , zh, am, cl, and
bm (of appropriate dimension) multiplied by the same vector transpose. The number of
such matrices equals the number of such binary vectors.

Definition 6.9. ∀k ≥ 1, we introduce the following operation:

d·c : Rp1 × · · · × Rpk → R(p1+···+pk)×(p1+···+pk)

(a1 . . . ak) 7→ da1, . . . , akc :=

a1
...
ak

 (a>1 . . . a
>
k )

where a1, . . . , ak are k vectors of dimension p1, . . . , pk.

Lemma 6.1 (Properties of d·c). Let v1, . . . , vn ∈ Rp, w1, . . . , wm ∈ Rq. Let n = p + q
and M ∈ Rn×n. Let B1 = {1, . . . , p}2 be the first block and B2 = {p+ 1, . . . , n}2 be the
last block.



128

• dxc = xx> for any vector x.

• If M = dvi, wjc ∃i, j, then MB1 = dvic, MB2 = dwjc.

• If M =
∑

i,j αi,jdvi, wjc, then

MB1 =
∑
i,j

αi,jdvi, wjcB1 =
∑
i,j

αi,jdvic

MB2 =
∑
i,j

αi,jdvi, wjcB2 =
∑
i,j

αi,jdwjc.

Remark 6.6. With our notation, every binary matrix Xi = xix
>
i ∈ {0, 1}n×n can be

rewritten as
Xi = dxic = dak, cl, bmc (6.9)

where ak, cl, and bm are binary vectors of dimensions, respectively, s, r, and t. Indeed, it
is sufficient to part the components of the vector xi into smaller vectors of the suitable
dimension. Similarly, the same holds for splitting the generators of Y and Z into generators
of, respectively, A and C, C and B. Since the number of generators in both cases is the
same, also the converse holds: every matrix obtained by applying the operation d·c to any
couple or triple of (smaller) binary vectors is a binary rk-1 generator of the larger matrix.

With this results, we use the following notation for the rest of the chapter: ∀k =
1, . . . , 2s, ∀l = 1, . . . , 2r and ∀m = 1, . . . , 2t let ak ∈ {0, 1}s, cl ∈ {0, 1}r, and bm ∈ {0, 1}t
be as before all the possible 0-1 vectors in dimension, respectively, s, r and t. We can
replace constraint (5.5c) by:

X =
2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,mdak, cl, bmc (6.10)

and, instead of constraints (6.1d) we write:

Y =
2s∑
k=1

2r∑
l=1

µk,l dak, clc (6.11)

Z =

2r∑
l=1

2t∑
m=1

νl,m dcl, bmc (6.12)

with suitable coefficients λk,l,m, µk,l and νl,m.
To the last formulas we shall add a further constraint on the intersection C. We will

see it later.



129

With this notation, we can write the two formulations which we are interested in, and
state the problem of the equivalence of them. The first one considers the matrix X:

min 〈Q,X〉 (6.13a)
s. t. 〈Ai, X〉 ≤ bi, ∀i = 1 . . . ,m (6.13b)

X =
2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,mdak, cl, bmc (6.13c)

2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,m = 1 (6.13d)

λk,l,m ≥ 0 ∀k = 1, . . . , 2s, ∀l = 1, . . . , 2r, ∀m = 1, . . . , 2t. (6.13e)

The second one takes into account the blocks, so it is expressed in terms of Y and Z:

min 〈Q1, Y 〉+ 〈Q2, Z〉 (6.14a)

s. t. 〈A1
i , Y 〉+ 〈A2

i , Z〉 ≤ bi, ∀i = 1 . . . ,m (6.14b)

Y =
2s∑
k=1

2r∑
l=1

µk,ldak, clc (6.14c)

Z =

2r∑
l=1

2t∑
m=1

νl,mdcl, bmc (6.14d)

Y B5 = ZB5 (6.14e)
2s∑
k=1

2r∑
l=1

µk,l = 1 (6.14f)

2r∑
l=1

2t∑
m=1

νl,m = 1 (6.14g)

µk,l ≥ 0 ∀k = 1, . . . 2s, ∀l = 1, . . . 2r (6.14h)
νl,m ≥ 0 ∀l = 1, . . . 2r, ∀m = 1, . . . 2t. (6.14i)

Remark 6.7. Constraints (6.14e) corresponds to constraints (6.1c) in the previous formu-
lation, and forces the equalities between elements in the intersection.

In order to prove the equivalence, at first we want to prove that every point which is
feasible for the first formulation is also feasible for the second one, and then we will do
the converse. If the first result is true, it means that our block-relaxation is not stronger
than the first one. In particular, it is a valid relaxation for the original problem.

Remark 6.8. In order to state that the first and the second formulation are equivalent,
the conditions XB1 = Y and XB2 = Z must be verified. Indeed, this guarantees that the
objective function and the left-hand-side values of the original constraints do not change
when passing from the one formulation to the other. In particular, if a point is feasible for



130

the first formulation, it is also feasible for the second one and the same objective function
values are the same.

The first result is given by the following Proposition:

Proposition 6.1. Given any feasible point for problem (6.13), i.e. a feasible matrix X
and the corresponding coefficients λk,l,m, there exist Y , Z and coefficients µk,l and νl,m,
such that (6.14) is feasible, and such that XB1 = Y and XB2 = Z.

Proof. It is sufficient to define the coefficients µk,l and νl,m in this way:

µk,l :=
∑
m

λk,l,m νl,m :=
∑
k

λk,l,m. (6.15)

We shall prove that this solution satisfies the constraints (6.14e)-(6.14i). But µk,l and
νl,m are sum of nonnegative numbers, from (6.13e), so they are nonnegative, and (6.13d)
implies: ∑

k,l

µk,l =
∑
l,m

νl,m =
∑
k,l,m

λk,l,m = 1.

Moreover, using expression (6.13c) and the result in Lemma 6.1, we can write:

XB1 =

2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,mdak, cl, bmcB1

=
2s∑
k=1

2r∑
l=1

(
2t∑
m=1

λk,l,m)dak, clc

=
2s∑
k=1

2r∑
l=1

µk,ldak, clc

= Y,

and with analogous calculations XB2 =
∑2r

l=1

∑2t

m=1 νl,mdcl, bmc = Z. In particular,
Y B5 = XB5 = ZB5 .

Remark 6.9. We notice that the result also holds in the case of separable blocks, that
is when r = 0. In this case there are no l terms, but the definition (6.15) of µk and νm
remains well defined without the index l, and the conditions are satisfied as well.

The second result that we would like to prove is the converse, which is expressed in
the following statement:

Statement 6.1. Given matrices Y and Z, and the corresponding coefficients µk,l and
νl,m such that (6.14) is feasible, is it possible to find a matrix X and coefficients λk,l,m
such that (6.13) is feasible, and such that XB1 = Y and XB2 = Z?



131

Remark 6.10. Analogously to Remark 6.8, the latter condition implies that feasibility of
the original constraints and the objective function value are maintained from the second
to the first formulation. So, if the statement 6.1 holds, an optimal solution for (6.14) is
feasible for (6.13). Together with the other implication, it proves that the two formulations
are equivalent: any point can be expressed in both formulations with the same objective
function value; in particular the optimal values are the same.

Remark 6.11. If we recall the definitions of cone completion problems seen in Section 1.5,
it is easy to notice that statement 6.1 can be expressed as a BQP-completion problem.
Indeed, the problem is to complete a matrix, specified only in the block-structure with
the Yj terms, all of which are BQP matrices, to a full dimensional BQP matrix X. More
specifically, the problem is to state if every block-decomposable partial BQP matrix can
be completed, which is exactly the definition of a completion problem.

Proving if this result is always true is not a trivial task, even in the case of only two
blocks. We firstly prove the following Lemma, which shows that the result of statement 6.1
holds if additional conditions are verified.

Lemma 6.2. Under the hypotheses of statement 6.1, if in addition:

2s∑
k=1

µk,l =

2t∑
m=1

νl,m (6.16)

holds ∀l = 1, . . . , 2r, then Proposition 6.1 holds.

Proof. Under these assumptions, we look for coefficients λk,l,m that satisfy:

2t∑
m=1

λk,l,m = µk,l ∀k, ∀l (6.17a)

2s∑
k=1

λk,l,m = νl,m ∀m, ∀l (6.17b)

λk,l,m ≥ 0 ∀k, ∀l, ∀m. (6.17c)

Indeed, if this holds, then clearly:

2s∑
k=1

2r∑
l=1

2t∑
m=1

λk,l,m =

2s∑
k=1

2r∑
l=1

µk,l =

2r∑
l=1

2t∑
m=1

νl,m = 1

and

XB1 =
2s∑
k=1

2r∑
l=1

(
2t∑
m=1

λk,l,m)dak, clc =
2s∑
k=1

2r∑
l=1

µk,ldak, clc = Y (6.18)

XB2 =

2r∑
l=1

2t∑
m=1

(

2s∑
k=1

λk,l,m)dcl, bmc =

2r∑
l=1

2t∑
m=1

νl,mdcl, bmc = Z. (6.19)



132

So, we just have to show that there exists a feasible solution for (6.17). But these are the
constraints of a transportation problem for each fixed l = 1, . . . , 2r. A classical result is
that a transportation problem is feasible if and only if the sum of the right-hand-side of the
first set of constraint equals the same sum in the second set of constraints, because both
of them equal the global sum

∑
k,m λk,l,m. But in our case, this equality is exactly (6.16),

so it holds by hypothesis and hence Proposition 6.1 holds.

Remark 6.12. We notice that this Lemma is also true when r = 0. Indeed, both
formulations (6.16) and (6.17) can be defined without the index l in this case.

The hypotheses of Lemma 6.2 do not hold in general, but only in some specific cases.
The following Proposition shows a result, with a hypothesis on the size of the intersection.

Proposition 6.2. Under the hypotheses of Statement 6.1, if in addition the dimension
of the intersection block is r ≤ 2, then the answer to statement 6.1 is positive.

Proof. From constraints (6.14c)- (6.14e), due to the property expressed in Lemma 6.1,
we have: ∑

k,l

µk,ldclc =
∑
l,m

νl,mdclc. (6.20)

If all the matrices dclc are linearly independent, equality (6.16) must hold, for each l.
Among the matrices dclc there is always the null matrix, which is dependent on the others.
However, if the nonzero matrices are linearly independent, that is, all of the matrices are
affinely independent, condition (6.16) holds for all l such that dclc is nonzero. And since
the sum of all coefficients is always 1, then by difference it holds also for the null matrix.
If r = 1 or r = 2, it is easy to see that the matrices are affinely independent, so (6.16)
holds, hence Proposition 6.1 holds. If r = 0, the hypothesis of Lemma 6.2 hold true: we
can get rid of the index l and note that

∑2s

k=1 µk =
∑2t

m=1 νm = 1. Hence, thanks to
Remark 6.12, this result is proved for the separable case as well.

This result holds with r ≤ 2, but ∀r > 2, the number of dclc matrices is 2r, and it
is greater than the dimension of the space r(r + 1)/2 plus 1. Hence, they are affinely
dependent and condition (6.16) cannot be directly obtained. Another strategy to prove
this result is by following the proof of Caratheodory’s Theorem (see, for instrance, [39]).
However, it cannot be applied straightforwardly, because nonnegativity of the coefficients
is not guaranteed.

In order to better understand this equivalence statement, and in which conditions we
could expect that it holds, we pass to the case of several blocks. In this way it will be
clear that the result does not hold in general and it will seem reasonable to propose a
conjecture, even if, unfortunately, we have not been able to prove it yet.

6.2.2 Case of several blocks

In the previous subsection we proved that, whenever we have a 2-block decomposable
problem, the solution of the BQP relaxation in the original space is always a lower bound



133

for the solution of the corresponding block-relaxation. Moreover, in some special cases
the bounds obtained by the two formulations are the same, because equivalence can be
proved. Now, we are interested to study a more generic class of block structure. The
following remark should be noted:
Remark 6.13. We are interested in th BQP-completion problem. However, the PSD and
CPP completion results, recalled in 1.5, help us and clearly show that the specification
graphs of the matrices play a significant role. Hence, we could expect that the BQP-
completion problem does not hold in general for every type of structure.

From now on we consider to have a block structure Bk and that our problem is
decomposable with respect to it. The formulation which we are dealing with are, on the
one hand (5.5), which is our original relaxation. On the other side, with several blocks
the formulation has the form as in (6.1).

Generalization of the first inclusion

It is easy to extend the result in Proposition 6.1 to the case of several blocks. This is
shown in the following Proposition, and it implies that the block-decomposed formulation
always provides a valid lower bound for the 1-block relaxation and hence for the optimal
value of the original problem.

Proposition 6.3. Given a block structure Bk, suppose that problem (5.5) is Bk-decomposable.
Given any feasible point for problem (5.5), i.e. a feasible matrix X and the corresponding
coefficients λp, p = 1, . . . , 2n, then there exists a solution of (6.1), given by Yj and µjl
with l = 1, . . . , 2dj , j = 1, . . . , k, such that XBj = Yj ∀j = 1, . . . , k.

Proof. We are given a matrix X and coefficients λp ≥ 0 ∀p,
∑2n

p=1 λp = 1, such that
X =

∑2n

p=1 λp(xpx
>
p ) with xp ∈ {0, 1}n. We introduce the following notation. For every

j ∈ {1, . . . , k}, let b̄j = {1, . . . , n}\bj the complement of the block bj in {1, . . . , n}. To each
p = 1, . . . 2n we can assign a couple of indices {l,m}: l ∈ {1, . . . 2dj}, m ∈ {1, . . . 2n−dj}.
Let yl := (xp)

bj and zm := (xp)
b̄j be the restrictions of xp to bj and b̄j . We can hence

rename xp as xl,m, λp as λl,m and write:

X =
2n∑
p=1

λp(xpx
>
p ) =

2dj∑
l=1

2n−dj∑
m=1

λl,m(xl,m xl,m
>) ∀j = 1, . . . , k. (6.21)

Hence, for all j = 1, . . . , k we can define:

µjl :=
2n−dj∑
m=1

λl,m ∀l = 1, . . . , 2dj . (6.22)

Clearly, µjl ≥ 0 and
2dj∑
l=1

µjl =

2dj∑
l=1

2n−dj∑
m=1

λl,m =

2n∑
p=1

λp = 1.



134

Moreover, for all j = 1, . . . , k, it holds:

XBj =
2dj∑
l=1

2n−dj∑
m=1

λl,m(xl,m xl,m
>)Bj =

2dj∑
l=1

(
2n−dj∑
m=1

λl,m)(yly
>
l ) =

2dj∑
l=1

µjl (yly
>
l ). (6.23)

So, there is a feasible point for (6.1), equivalent to the solution of (5.5), where µjl are
given by (6.22) and Yj are defined as:

Yj :=

2dj∑
l=1

µjl (yly
>
l ) ∀j = 1, . . . , k. (6.24)

Remark 6.14. To prove this direction of the equivalence, i.e. that the block decomposed
relaxation gives a valid lower bound to the original relaxation, we did not need to add
further hypotheses to the block structure.

The BQP completion problem with several blocks

For the converse direction, which can be states in terms of a BQP completion problem,
we firstly show that similarly to the PSD and CPP cases, not all the specification graphs
are BQP completable.

Proposition 6.4. If a graph is not chordal, then it is not BQP completable.

Proof. If the graph is not chordal, it contains a cycle of length l ≥ 4 with no chords.
Without loss of generality we suppose that the vertices of this cycle are the first ones. Any
matrix with this specification graph, restricted to the first l entries, would be specified in
the following entries: {i, i+ 1} ∀i = 1, . . . , l − 1 and {1, l} (and the symmetric elements,
of course). This means that the block structure, restricted to these entries, is made up of
l consecutive diagonal 2 by 2 blocks, and one 2 by 2 block connecting the first and the
last entry of the cycle. Hence, we can always have the following matrix (see [6], example
1.35). The question marks correspond to unspecified elements.

1

2



1 1 ? . . . ? 0

1 1
. . . . . . . . . ?

? 1
. . . . . . . . .

...
...

. . . . . . . . . . . . ?

?
. . . . . . . . . 1 1

0 ? . . . ? 1 1


. (6.25)

Indeed, every 2 by 2 diagonal matrix is given by

1

2

(
0 0
0 0

)
+

1

2

(
1 1
1 1

)



135

and the 2 by 2 matrix restricted to elements {1, l} is given by

1

2

(
1 0
0 0

)
+

1

2

(
0 0
0 1

)
so they are convex combinations of 2 by 2 rank-1 binary matrices. But it is known
(see [87], Lemma 6) that the only PSD matrix with ones on the entries (i, j) s.t. |i− j| ≤ 1
is the all-1 matrix, hence the matrix (6.25) is not PSD-completable. Hence, it not BQP
completable, since BQP is a subset of the semidefinite cone.

However, the result holds for graphs which are more general than block-clique, due to
Proposition 6.2 and the properties of chordal graphs:

Proposition 6.5. If a graph G is chordal and the size of the intersection of any two
maximal cliques of G is at most 2, then G is BQP-completable.

Proof. We prove the statement by induction on the number n of maximal cliques. If
there are only two maximal cliques, the result is given by Proposition 6.2. Now we
suppose to have n > 2 maximal cliques and we assume by inductive hypothesis that
the result holds true for n− 1 cliques. Since the graph G is chordal, there is a perfect
elimination ordering (PEO) of its vertices (see Proposition 1.4). Without loss of generality,
we suppose that the vertices of G are sorted according to this ordering. We also sort the
maximal cliques according to the order of their first vertex. We recall that, by definition
of PEO, each vertex, together with its neighbours which follow it in the order, form a
clique. In particular, all the neighbours of the first vertex belong to the first maximal
clique C1. We now consider the subgraph G′ of G induced by the last n − 1 maximal
cliques C2 ∪ · · · ∪ Cn. By inductive hypothesis G′ is BQP-completable. Hence, G is
completable if G′′ is completable, where G′′ is obtained by adding to G all the edges which
complete G′. In this way we now have two cliques: C1 and C2 ∪ · · · ∪ Cn. We notice that
C1 ∩ (C2 ∪ · · · ∪ Cn) = C1 ∩C2, again for the PEO property. Hence, if |C1 ∩C2| ≤ 2, we
can apply again Proposition 6.2 and conclude the proof.

Corollary 6.1. In particular, block-clique graphs are BQP-completable.

Remark 6.15. We already observed that BQP ⊂ C∗ ⊂ S+. However, the class of graphs
which are BQP-completable is larger than the CPP-completable graphs, which are the
block-clique graphs. We also showed in Proposition 6.4 that the BQP-completable graphs
must be chordal, so the set of these graphs is included in the set of PSD-completable
graphs.

As a consequence, it is natural to investigate what can happen for more general
chordal graphs. A natural conjecture is the following:

Proposition 6.6 (Conjecture). Every chordal graph is BQP-completable.

This would imply, together with Proposition 6.4, that a graph is BQP-completable if
and only if it is chordal. To the best of our knowledge, this conjecture has not been studied



136

yet. However, this result could be very useful, because it could allow to efficiently solve
sparse problems with a technique similar to the one used in semidefinite programming,
and with a stronger bound. We do not have the proof for this result, but numerical results
seem suggest that it holds, as we will see in the following section.

In order to prove the conjecture, we notice that we can restrict ourselves to a simpler
case, where we have only two blocks, both of them have dimension equal to n− 1, and
only the element {1, n} is not covered by the blocks. This means that the dimension of
the intersection of the blocks is n− 2 and the dimension of both s and t, with notation in
Section 6.2.1, is 1. This result is obtained by following the proof of the PSD-completion
problem in [87]: the authors strongly exploit the structure and the properties of chordal
graphs, showing that they can reduce to two blocks with only one missing entry. Under
these assumptions they prove their result for PSD completion and they prove that they can
extend it to every chordal graph, just using the properties of the structure of these graphs.
We could try to prove the same result for BQP matrices, but it is not straightforward. We
also have to keep in mind that this result do not hold if the extreme matrices are general
real nonnegative rank-1 matrices, because it would be the case of CPP-completion, which
only holds for block-clique graphs.

Inspired by these results, we provide some tests, where we compare the numerical
results obtained by our block-decomposable relaxation with a chordal block structure,
and the one-block formulation. We hence expect that the block-decomposition always
provides a lower bound; if in some cases its value is strictly lower that the other one, the
conjecture is false.

In the following sections, we present the computational aspects of this formulation
and computational results; then we will conclude, showing remarks and possible directions
to continue this study.

6.3 Computational aspects

From the computational point of view, Formulation (6.1) has some differences with
respect to Formulation (5.5). Firstly, the most evident improvement is that the number
of extreme points is reduced, as well as the size of the pricing problems, which was the
most time consuming part in the one-block formulation. However, this makes the master
program more difficult, although still linear, because of the high number of constraints for
the intersection of the blocks. The result is that if the number of blocks is relatively high
and the size of the intersections between blocks is large, then the convergence can be slow.
But if the blocks have little overlapping, or they are separated, then this formulation is
dramatically faster than the previous one. In the following paragraphs we treat in detail
how we obtained the block decomposition, and specific techniques which we used to solve
master and pricing problems.

Block decomposition We already noticed that the block structure is not unique. One
of the main issues is how to build a block structure that fits the data, and which structures
are better than others. We shall note that the aggregate sparsity graph of the problem,



137

which has one vertex for each variable and one edge corresponding to every nonzero
quadratic term in the objective function or in a constraint, is not chordal in general. Hence,
we need to add edges in order to have the desired sparsity graph. This is what is called
chordal extension of the sparsity graph of the problem. The approach used in Semidefinite
programming and described in [70] searches for the minimal chordal extension, i.e. that
which requires the least number of additional edges. Actually, computing the minimal
chordal extension is a NP-hard problem, and heuristics are proposed, for instance in [70],
to find a minimal extension quickly. As we will notice, however, this is generally not the
best choice in our case, and the quality of the bounds does not depend on the chordal
extension, of course, if the conjecture is true. We implemented an algorithm which finds
the maximal cliques, and which then generates the additional edges to obtain a chordal
extension.

The drawback of the minimal chordal extension criterion is the following: for any
couple of blocks with nonempty intersection, we need to add a number of constraints in
the master program which is polynomial on the size of the intersection. Hence, if there
exist two blocks with most of the components in common, it is probably more convenient
to group the two of them in a single block, even if its dimension becomes larger.

In order to verify this intuition, we considered some instances from the QPLIB library,
which we tested for the one-block formulation in Chapter 5. We firstly obtained the
maximal cliques and the chordal extension. Then, we grouped together cliques with a
certain percentage of elements in common and verified that they are still chordal. We
let the percentage vary from 0 to 100 and we collected all the different decomposition
patterns. We do not report here the details of these experiments because, for the chosen
instances, they show that the best option is keeping one single full-dimensional block
and in most cases the block-decomposed relaxation is not solved within the time limit.
This proves that if there are several linking constraints between different blocks, the
decomposed formulation is not efficient. However, results on block-separate problems,
which will follow, show that the improvement is very good. This means that in some cases
the block formulation is actually helpful. It is also possible to improve the resolution of
master and pricing problems, as we will see in the paragraphs which follow.

Master problem The master problem is solved with Cplex. Its initialization is made
with artificial variables as in the one-block case. The elevated number of variables can
be reduced by a technique of column dropping: we regularly remove some extreme
columns with 0 value in the convex combination which expresses the optimal point. More
specifically, in particular when there are intersections between blocks, the number of
extreme points which are generated grows very fast, but most of them are discarded,
because only a small number of columns is needed, due to the intersection constraints.
Hence, we decided to remove some of the columns with 0 weight. However, they have
reduced costs which contribute to the solution of the dual and hence the pricing problem.
Our choice is to remove only 60% of the 0-weighted extreme points, every ten iterations.
We tried also other percentages, and more sophisticated choices could be done: columns
with the highest reduced costs, or those which have 0 weight for several iterations, would



138

more likely be unnecessary for the convergence of the algorithm.

Pricing problems The pricing problems are solved with Cplex as well. An early
stopping technique can be applied with the same principle as in the previous chapter.
However, in this framework more techniques can be added, since we have several inde-
pendent pricing problems. We can solve all of them at each iteration, or just solve the
pricing problems until we find a new column with negative reduced cost: this is sufficient
for the convergence and we can directly pass to the master, without solving the remaining
subproblems. We can also add several columns at each time the pricing is solved. All
these parameters have been preliminarily tested. The best options are generally those
which make the pricing phase faster: stopping the computations of the pricing when a
column with reduced cost is found and using the early stopping technique in every pricing
problem.

6.4 Numerical results

Here we present our computational results, which show some interesting and promising
results.

We present the tests on the sonet instances, which complete the table presented in
Chapter 5 with results given by the block-decomposed framework. Table 6.1 collects
the results, with the results of BiqCrunch and the 1-block BQP-relaxation obtained in
Chapter 5 for comparison. The BiqCrunch results are restraint to the only bound and
triangular inequalities cases.

We notice that these instances are characterized by a separable structure, hence they
are particularly suited for our algorithm. Indeed, our performances are extremely good in
most instances: we obtain the same bound as before, (as expected) within a very short
time, and we solve many more instances than before: we only have two failures. Since
these instances are so easy to solve, in this case the techniques to speed up the pricing do
not change the overall computational time, so the reported results are obtained with the
default algorithm: several pricing problems are computed for every master iteration.

Similarly to what we presented in the previous chapter, in Table 6.2 we present the
number of iterations, the dimension of the final master, and the partition of time between
master and pricing problems. Here, the sizes of both the master and the pricing problems
are very small, thus the algorithm solves both the problems really fast. The master being
linear, it is easier to solve than the pricing.

Among these instances there are some of those of the QPLIB library which we tested
in the previous chapter. However, our algorithm does not perform well with the block
structure on the non-separable QPLIB instances: we reached the time limit of 10 hours
in all the cases. This is mainly due to the difficulty of the formulation, in which the
master has a considerable number of variables and constraints for the intersections of the
blocks. Several improvements could be implemented to obtain a faster resolution of these
instances, even if the complexity of these problems remains hard.



139

Finally, we generate some tests to support our conjecture. We randomly generate
instances made up of two blocks, each of them of size one less than the original problem,
so that only one element is not covered. We put linear random constraint and a quadratic
objective function with elements on these two blocks. The size of the problems goes from
4 (the first case in which the equivalence result is not proved) to 20. For each case we
run 5 different seeds and we use two different ways of generating the constraints, hence
we have 10 instances for each dimension. In Table 6.3 we present the average objective
function of the resolution with one or two blocks, along with the average number of
iterations and the average computational time in seconds. A ∗ mark means that at least
in one instance the maximum number (100000) of iterations is reached, and hence the
problem is not solved to optimality.

The results shows that the optimal values are always the same (except for the last
cases, in which the optimal value is not always available), so the conjecture is not
disproved. Moreover, it is worth noting that the number of iterations for the two-blocks
formulation increases dramatically when the size increases, and consequently the running
time increases as well. This shows that, in these cases, it is more convenient to merge the
two blocks into a single one.

6.5 Conclusions, applications and future research directions

In this chapter we introduced a block-decomposable adaptation of the column
generation-based relaxation, already introduced in Chapter 5. We showed that this
one is suited for problems which have a sparse structure. We carefully analyzed the
relations with respect to the original relaxation, specifically we discussed the equivalence
of the two formulations. We showed that the latter is always a relaxation of the previous
one, while in general it is not clear whether the equivalence holds or not. We noticed
the connection with the problem of matrix completion. In this way, we showed that the
equivalence problem can be stated as a completion problem on the BQP polytope and we
could highlight some conditions for the proof of the equivalence. More specifically, we
identified classes of problems where the result is true and other classes where it is not, and
we noted similarities with the results in the completely positive and semidefinite cones.
We proved that the BQP completion is possible for problems with chordal sparsity graphs
if the maximal dimension of the intersection of blocks is 2, and if the graph is not chordal,
completion does not hold. A complete proof of the BQP completion result is still open.
However, computational results seem to support the conjecture that the class of problems
in which it holds is the class of problems with a chordal sparsity graph. This is a result
which potentially can help solving structured binary nonconvex quadratically constrained,
quadratic problems. Our results show that the proposed algorithm is efficient for the
computation of the BQP bound when the matrices can be decomposed in separable blocks.
For more general problems, with strongly overlapping blocks, improvements or further
developments are needed.

Improvements in the implementation of master and pricing, which make the method
more efficient on more general structured problems should be developed. Furthermore,



140

the proof for the completion problem shall be completed, and the result seems to be
interesting from the theoretical point of view.

This concludes the study which has been done so far. However, other developments
are planned, with the aim to continue the research on some of the question which are still
not completely answered. A description of the possible research projects will follow in the
next, conclusive chapter.



141

Instance BC-bound BC-cuts BQP BQP-blocks

T (s) Bound T (s) Bound T (s) Bound T (s) Bound

gr17-nc-qc.lp 38 15803 242 21831 8 21973 0.2 21973
ins.16.v1-nc-qc.lp 21 -387987 22 -387987 703 6636 0.4 6636
ins.16.v2-nc-qc.lp 21 -157176 21 -157176 169 75322 0.3 75322
ins.16.v3-nc-qc.lp 64 929 120 1571 277 1596 0.2 1596
ins.16.v5-nc-qc.lp 28 1872 169 3120 187 3193 0.2 3193
ins.16.v6-nc-qc.lp 44 2119 113 3912 185 3990 0.2 3990
ins.17.v1-nc-qc.lp 27 -795830 28 -795830 - - 0.3 23921
ins.17.v2-nc-qc.lp 28 -174478 28 -174478 22 138612 0.3 138612
ins.17.v3-nc-qc.lp 22 2677 300 4026 15 4117 0.3 4117
ins.17.v5-nc-qc.lp 37 11000 227 16400 7 16526 0.2 16526
ins.17.v6-nc-qc.lp 26 12061 273 18300 7 18452 0.3 18452
ins.18.v1-nc-qc.lp 36 -384592 36 -384592 920 909 0.6 909
ins.18.v2-nc-qc.lp 39 -117439 38 -117439 1592 14816 0.9 14816
ins.18.v3-nc-qc.lp 80 997 218 1740 2544 1758 0.2 1758
ins.18.v5-nc-qc.lp 39 -108 39 -108 876 3516 0.3 3516
ins.18.v6-nc-qc.lp 38 -1453 38 -1453 1076 4394 0.3 4394
ins.19.v1-nc-qc.lp 52 -368130 52 -368130 - - 0.5 21771
ins.19.v2-nc-qc.lp 52 -1034144 51 -1034144 - - 0.5 10834
ins.19.v3-nc-qc.lp 55 -2946 55 -2946 701 1906 0.4 1906
ins.19.v5-nc-qc.lp 54 -17124 54 -17124 1651 3811 0.4 3811
ins.19.v6-nc-qc.lp 53 -20670 53 -20670 1724 4764 0.4 4764
ins.20.v1-nc-qc.lp 64 -996229 64 -996229 500 211908 0.7 211908
ins.20.v2-nc-qc.lp 67 -571504 67 -571504 - - 0.8 118351
ins.20.v3-nc-qc.lp 69 -1158 69 -1158 - - 0.2 592
ins.20.v5-nc-qc.lp 67 -1990 68 -1990 - - 0.2 1183
ins.20.v6-nc-qc.lp 68 -12886 69 -12886 - - 0.2 1478
ins.21.v1-nc-qc.lp 83 -4910836 83 -4910836 - - 1 237976
ins.21.v2-nc-qc.lp 85 -1539431 84 -1539431 - - 1.4 75682
ins.21.v3-nc-qc.lp 86 -28206 84 -28206 - - 0.4 1431
ins.21.v5-nc-qc.lp 86 -12247 88 -12247 - - 0.4 12435
ins.21.v6-nc-qc.lp 89 2980 88 2980 128 20279 0.3 20279
ins.22.v1-nc-qc.lp 102 -7062597 103 -7062597 - - 1.6 323439
ins.22.v2-nc-qc.lp 105 -2995516 105 -2995516 - - 1.4 100031
ins.22.v3-nc-qc.lp 113 1548 113 1548 187 7033 0.5 7033
ins.22.v5-nc-qc.lp 112 1821 112 1821 197 14065 0.5 14065
ins.22.v6-nc-qc.lp 112 4360 111 4360 842 17581 0.6 17581
ins.23.v1-nc-qc.lp 136 256040 137 256040 - - - -
ins.23.v2-nc-qc.lp 132 516197 141 516197 - - - -
ins.23.v3-nc-qc.lp 137 -33822 137 -33822 25710 2971 0.4 2971
ins.23.v5-nc-qc.lp 138 -70162 139 -70162 - - 0.4 5942
ins.23.v6-nc-qc.lp 141 -107088 141 -107088 - - 0.5 7427
ins.24.v1-nc-qc.lp 164 -5722660 159 -5722660 - - 2.7 18946
ins.24.v2-nc-qc.lp 162 -2777104 162 -2777104 - - 2.5 8820
ins.24.v3-nc-qc.lp 181 -52206 181 -52206 486 6289 0.5 6289
ins.24.v5-nc-qc.lp 176 -137132 176 -137132 - - 0.5 12578
ins.24.v6-nc-qc.lp 175 -185316 175 -185316 2292 15722 0.5 15722
ins.25.v1-nc-qc.lp 205 -3859934 205 -3859934 - - 3.3 110413
ins.25.v2-nc-qc.lp 207 -1251807 207 -1251807 - - 2.7 53972
ins.25.v3-nc-qc.lp 217 -9687 202 -9687 163 11758 0.6 11758
ins.25.v5-nc-qc.lp 205 -30970 216 -30970 316 23516 0.5 23516
ins.25.v6-nc-qc.lp 207 -62888 190 -62888 231 29394 0.5 29394

Table 6.1 – Root node bound and time for QCQP instances.



142

Instance BQP bound N. its Final dim Total time (s) Time master (s) Time pricing (s)

gr17-nc-qc.lp 21973 3 31 0.162 0.002 0.143
ins.16.v1-nc-qc.lp 6636 13 7 0.439 0.007 0.382
ins.16.v2-nc-qc.lp 75322 13 7 0.328 0.005 0.295
ins.16.v3-nc-qc.lp 1596 4 23 0.171 0.002 0.153
ins.16.v5-nc-qc.lp 3193 4 23 0.168 0.002 0.151
ins.16.v6-nc-qc.lp 3990 4 23 0.163 0.002 0.147
ins.17.v1-nc-qc.lp 23921 8 9 0.282 0.003 0.249
ins.17.v2-nc-qc.lp 138612 10 19 0.302 0.004 0.264
ins.17.v3-nc-qc.lp 4117 6 23 0.322 0.002 0.295
ins.17.v5-nc-qc.lp 16526 5 29 0.193 0.002 0.167
ins.17.v6-nc-qc.lp 18452 6 29 0.279 0.003 0.251
ins.18.v1-nc-qc.lp 909 17 4 0.590 0.007 0.520
ins.18.v2-nc-qc.lp 14816 24 9 0.852 0.010 0.760
ins.18.v3-nc-qc.lp 1758 4 5 0.212 0.002 0.186
ins.18.v5-nc-qc.lp 3516 4 5 0.328 0.003 0.282
ins.18.v6-nc-qc.lp 4394 4 5 0.284 0.002 0.245
ins.19.v1-nc-qc.lp 21771 11 7 0.508 0.004 0.449
ins.19.v2-nc-qc.lp 10834 10 12 0.493 0.004 0.438
ins.19.v3-nc-qc.lp 1906 7 5 0.424 0.003 0.370
ins.19.v5-nc-qc.lp 3811 7 5 0.354 0.003 0.312
ins.19.v6-nc-qc.lp 4764 7 5 0.390 0.003 0.343
ins.20.v1-nc-qc.lp 211908 14 15 0.693 0.008 0.604
ins.20.v2-nc-qc.lp 118351 17 13 0.819 0.011 0.710
ins.20.v3-nc-qc.lp 592 3 17 0.190 0.002 0.158
ins.20.v5-nc-qc.lp 1183 4 19 0.238 0.002 0.199
ins.20.v6-nc-qc.lp 1478 4 20 0.234 0.002 0.198
ins.21.v1-nc-qc.lp 237976 22 7 1.001 0.014 0.848
ins.21.v2-nc-qc.lp 75682 27 7 1.378 0.018 1.201
ins.21.v3-nc-qc.lp 1431 6 11 0.385 0.003 0.333
ins.21.v5-nc-qc.lp 12435 5 11 0.375 0.002 0.331
ins.21.v6-nc-qc.lp 20279 4 35 0.326 0.002 0.282
ins.22.v1-nc-qc.lp 323439 27 11 1.573 0.017 1.355
ins.22.v2-nc-qc.lp 100031 23 11 1.409 0.017 1.213
ins.22.v3-nc-qc.lp 7033 6 35 0.490 0.002 0.441
ins.22.v5-nc-qc.lp 14065 6 35 0.494 0.002 0.445
ins.22.v6-nc-qc.lp 17581 6 35 0.625 0.003 0.538
ins.23.v1-nc-qc.lp M.I. - - - - -
ins.23.v2-nc-qc.lp M.I. - - - - -
ins.23.v3-nc-qc.lp 2971 4 11 0.387 0.002 0.328
ins.23.v5-nc-qc.lp 5942 4 11 0.392 0.002 0.332
ins.23.v6-nc-qc.lp 7427 4 11 0.455 0.003 0.364
ins.24.v1-nc-qc.lp 18946 32 13 2.712 0.036 2.325
ins.24.v2-nc-qc.lp 8820 37 4 2.528 0.058 2.103
ins.24.v3-nc-qc.lp 6289 5 39 0.537 0.002 0.465
ins.24.v5-nc-qc.lp 12578 5 39 0.542 0.002 0.469
ins.24.v6-nc-qc.lp 15722 5 39 0.542 0.002 0.469
ins.25.v1-nc-qc.lp 110413 42 6 3.308 0.046 2.790
ins.25.v2-nc-qc.lp 53972 34 6 2.700 0.065 2.234
ins.25.v3-nc-qc.lp 11758 4 43 0.595 0.003 0.490
ins.25.v5-nc-qc.lp 23516 4 43 0.511 0.002 0.437
ins.25.v6-nc-qc.lp 29394 4 43 0.540 0.002 0.447

Table 6.2 – Repartition of time between master and pricing for Sonet instances.



143

Size type Optimal value N iterations CPU time (s)

Single Blocks Single Blocks Single Blocks

4 0 -0.6085 -0.6085 3.6 7.0 0.005 0.008
4 1 -0.7094 -0.7094 2.2 7.6 0.004 0.008
5 0 -0.6842 -0.6842 3.6 11.8 0.005 0.014
5 1 -1.2321 -1.2321 2.4 13.0 0.004 0.014
6 0 -1.3767 -1.3767 3.6 15.6 0.009 0.030
6 1 -2.3461 -2.3461 3.0 10.2 0.006 0.016
7 0 -1.6038 -1.6038 5.4 31.8 0.019 0.070
7 1 -2.8288 -2.8288 4.0 18.2 0.007 0.032
8 0 -1.9613 -1.9613 4.4 45.8 0.021 0.135
8 1 -3.1419 -3.1419 4.4 31.0 0.013 0.080
9 0 -2.4062 -2.4062 6.2 52.2 0.036 0.203
9 1 -3.4143 -3.4143 4.0 32.4 0.019 0.111

10 0 -2.6951 -2.6951 9.6 69.6 0.062 0.341
10 1 -4.4063 -4.4063 4.8 112.6 0.020 0.492
11 0 -3.2378 -3.2378 8.0 164.6 0.100 1.070
11 1 -5.4270 -5.4270 7.0 273.6 0.042 1.857
12 0 -3.3485 -3.3485 13.4 184.8 0.337 2.613
12 1 -5.9781 -5.9781 7.6 706.2 0.083 7.866
13 0 -4.0986 -4.0986 16.2 187.0 0.598 2.512
13 1 -5.4834 -5.4834 8.0 1992.2 0.089 23.745
14 0 -4.2510 -4.2510 16.4 342.8 0.846 6.496
14 1 -5.9053 -5.9053 9.4 2230.8 0.117 32.682
15 0 -4.4630 -4.4630 19.0 645.8 1.436 19.477
15 1 -6.8074 -6.8074 10.0 * 30117.6 0.240 449.012
16 0 -4.6652 -4.6652 19.2 2997.6 2.266 113.390
16 1 -6.6604 -6.6604 11.6 18475.0 0.384 332.083
17 0 -5.6246 -5.6246 24.6 2333.0 4.385 83.688
17 1 -7.2088 -7.2088 11.8 * 78874.6 0.516 3232.594
18 0 -6.1250 -6.1250 26.2 1949.2 4.162 103.928
18 1 -9.3915 -9.3915 9.6 49122.0 0.336 1158.783
19 0 -7.0102 -7.0102 19.6 4715.6 4.120 274.248
19 1 -11.4662 -11.3411 8.4 * 80140.4 0.250 2393.220
20 0 -7.4338 -7.4338 24.0 3791.6 4.766 251.151
20 1 -12.5117 -11.6938 8.2 * 62056.8 0.496 1878.439

Table 6.3 – Solution of random instances with one or two blocks.



144



Chapter 7

Conclusions and research directions

In this chapter, we summarize the main contributions of this thesis and we propose
some possible short and long term research directions which can be followed in future
works.

7.1 Main contributions

The main goal of this thesis was to propose and analyze decomposition methods
to solve hard quadratic programming problems. More specifically, we were interested
in exploiting the tool of column generation for both continuous and discrete quadratic
problems. In particular, we showed how the classic Dantzig-Wolfe approach can be applied
in different contexts: in the first part of the thesis we considered convex programs, with
linear constraints. We know that the DW decomposition can be seen as a generalization of
the Frank-Wolfe technique, known as Simplicial Decomposition. We proposed an algorithm
for both continuous and mixed binary problems, we carefully analysed its properties and
we provided extensive computational results. In the second part, we tackled general
problems, which can be non convex and have quadratic constraints. We concentrated
on binary problems and we showed how DW can be applied to the lifted formulation
and which consequences this can have on the relaxation. We provided theoretical and
computational results.

Part I In the first part of the thesis, we considered continuous, convex quadratic
problems. We introduced a new method to solve the master problem in a Simplicial
Decomposition framework, which is specifically tailored for this type of problem. We
proved its convergence and we compared its performance with another master method
and the state of the art solver Cplex. With respect to the pricing, we introduced some
improvements, namely an early stopping technique and shrinking cuts. We provided
computational results based on a large set of instances, originated from literature problems
and also randomly generated ones. We analyzed in detail the performance of our method,
and showed that it is particularly efficient with respect to Cplex for a specific class
of problems: those which have dense objective function and linear constraints, with a

145



146

combinatorial structure or with more variables than constraints. Problems with this form
arise in literature and some examples are provided.

Based on the good results obtained in the continuous case, we tackled mixed binary
quadratic problems, with a similar structure: the objective function is convex and dense,
the constraints are linear and are less than the variables. We embedded the continuous
algorithm in a branch and bound scheme. The algorithm remained effective because
we exploited the structure of the B&B tree as well, in particular the depth first search
strategy, which we implemented. With respect to the continuous case, the mixed binary
problems we tested have a lower number of variables and constraints. We did not tackle
more general convex problems, such as those with a non quadratic objective function,
or with mixed integer variables; however, in principle our framework can be modified to
solve such problems.

Part II In the second part of our work, we considered more general problems: the
objective function and the constraints are quadratic, but can be non convex. We tackled
purely binary problems. We applied the Dantzig-Wolfe decomposition to the lifted space
of variables, we showed that the relaxation that we get lies in the Boolean Quadric
Polytope and hence we proved that the bound obtained is better than classic bounds,
as the SDP bound. We provided some preliminary results. It is worth noting that, for
linearly constrained QPs, this technique could be enhanced with some standard techniques
and provide not only a relaxation, but also a reformulation.

Then, we restricted to the case of block-decomposable problems, which represent a
wide class of literature problems, since in most cases the data are sparse. We proposed
another formulation with separate subproblems for every block of the structure, which
are considerably smaller than the original problem. We provided results on the relation
between this relaxation and the previous one. We proved that in one sense the relation
is easy, but in the other direction it is an interesting problem related to the concept
of matrix completion. We provided theoretical results for this problem and proposed a
conjecture for the generic case. We provided computational results also for this algorithm,
which show that this technique is really efficient for block-separable problems, while, if
the problems have large overlaps, it shows some drawbacks and it should be improved.

In conclusion, our work shows that, in some classes of problems, decomposition
algorithms, even based on classical ones, can be efficiently employed to solve quadratic
problems and lead to good results. Moreover, the study on the BQP relaxation is
interesting because it potentially links combinatorial, quadratic and conic optimization.
We showed how BQP is related to CPP optimization, which is a continuously expanding
and very active branch of research.

7.2 Future research

In this thesis, we presented theoretical and computational results. However, our
research is not concluded and several results can be further improved and extended. Here,
we present some possible research topics, for both the parts of the thesis, which are the



147

natural continuation of this discussion, and we also draw some lines which might be
developed in future investigations.

Part I Regarding the SD-based algorithm, a subject of further improvement is surely
the B&B for mixed binary problems. As already pointed out at the end of Chapter 4,
several developments could be tested for this algorithm, whose efficiency has only been
verified on some specific types of problem. We already explained some ideas, among which
the first one to be tested is probably a clever preprocessing in which we compute a fixed
set of conjugate directions; doing so, an option which has been very useful in [24], [25]
and [26], is to fix the variable branching. In this way, it might be possible to reuse, in
different nodes, the same directions and optimal points already available: hence, we could
improve the computational results. Techniques to raise the lower bound at each node,
exploiting the ellipsoids used in [25], could be introduced in the algorithm as well. In a
long-term perspective, the algorithm could be used for nonquadratic but convex objective
functions, for continuous problems. An example is given by the perspective formulations
of quadratic or non quadratic problems (as studied in [66], [67], [68], [88]). The drawback
for generic nonlinear functions is that the change of variables in the master, which in the
quadratic case lead to a small-dimensional problem, in general cannot be done. Hence,
probably the use of restricted or nonlinear simplicial decomposition, as described in [93]
and [100] could be helpful to accelerate the convergence. As another future work, the
B&B, here introduced for the mixed binary case, could be adapted to deal with more
general mixed integer problems. In this case, also the projection of infeasible directions
and extreme points shall be further studied and can lead to interesting results.

Part II Regarding the second part of the thesis, both theoretical and computational
results shall be improved, in particular for the block-decomposable case. We shall first
prove which is the specific class of graphs which are BQP-completable, and if the conjecture
is actually true. This would be an important result, since it would prove that structured
problems can be solved in a decomposed way. We think to start from the smallest
intersection size in which the result is not known, that is dimension 3. We stated the
problem as a linear programming feasibility problem, and we are trying to show that its
dual problem is bounded.

In parallel, also several improvements on the computational side could be done, both
for the master and the pricing subproblems. In particular, the master often contains a
large number of coefficients which have a 0 weight in the expression of the optimal point.
These variables are regularly deleted, but they have an impact on the dual coefficients and
on the convergence. Hence, they should be deleted in a more efficient way. Moreover, in
the master we have an explicit formulation, which consists of both the original Yj variables
and the coefficients µlj . This formulation can be simplified, obtaining a master problem
which contains the Yj variables only implicitly; it would have much less constraints and
variables, so its optimization would become much easier. Furthermore, whenever a column
is obtained by one pricing problem, if some coordinates of this column also belong to
other blocks, it can be used to generate feasible columns for other blocks. This could



148

lead to a faster convergence. Tests on other sets of instances, with these improvements in
the implementation, can be carried out. Moreover, in both the block-decomposition and
the one-block formulation, we always solved master and pricing with Cplex. However,
there are ad-hoc solvers for the pricing problems, since they are in max-cut form. An
example of solver is BiqMac, an SDP-based B&B algorithm, described in [122]. Finally,
the computation of the different pricing problems can be easily done in parallel.

As future research, we have several other ideas to work on: for instance, we could
integrate our algorithm in a B&B approach, to obtain the solution of the problem, not
only a relaxation. We also could study how relaxations of problems with inequalities,
or mixed binary variables, can be modified to obtain a reformulation, if it is possible;
this would extend the results provided in Section 5.4. One big complication is given by
the fact that in the mixed binary case, the number of extreme points is not only infinite,
but also uncountable. Nevertheless, we could test if good bounds can be obtained in
a reasonable time. We can also extend the results to integer and maybe mixed integer
problems. Adding the quadratization of linear constraints could also be done in the
block-decomposable form, to improve the relaxation. However, if the constraints are
dense, this destroys the sparse structure, so it could only be done if the constraints are
sparse: otherwise to improve the value, a B&B is preferable.

In a longer-term perspective, we could address nonlinear non quadratic problems with
quadratic approximations. Results obtained by these relaxations could let us achieve
strong bounds in relatively short time, thus accelerating the convergence of the method.
Finding a suitable sparse quadratic function which approximates a sparse nonlinear
problem, and hence exploit the block properties, might be object of future research.



Bibliography

[1] Farid Alizadeh and Donald Goldfarb. Second-order cone programming. Mathematical
programming, 95(1):3–51, 2003.

[2] Cynthia Barnhart, Ellis L Johnson, George L Nemhauser, Martin WP Savelsbergh,
and Pamela H Vance. Branch-and-price: Column generation for solving huge integer
programs. Operations research, 46(3):316–329, 1998.

[3] Mokhtar S Bazaraa, Hanif D Sherali, and Chitharanjan M Shetty. Nonlinear
programming: theory and algorithms. John Wiley & Sons, 2013.

[4] John E. Beasley. Portfolio optimization data, 2016.

[5] Abraham Berman. Cones, matrices and mathematical programming, volume 79.
Springer Science & Business Media, 2012.

[6] Abraham Berman and Naomi Shaked-Monderer. Completely positive matrices.
World Scientific, 2003.

[7] Abraham Berman and Changqing Xu. {0, 1} completely positive matrices. Linear
algebra and its applications, 399:35–51, 2005.

[8] Avi Berman, Mirjam Dur, and Naomi Shaked-Monderer. Open problems in the
theory of completely positive and copositive matrices. Electronic Journal of Linear
Algebra, 29(1):46–58, 2015.

[9] Dimitri P Bertsekas. Nonlinear programming. Journal of the Operational Research
Society, 48(3):334–334, 1997.

[10] Dimitri P Bertsekas and Athena Scientific. Convex optimization algorithms. Athena
Scientific Belmont, 2015.

[11] Dimitri P Bertsekas and Huizhen Yu. A unifying polyhedral approximation frame-
work for convex optimization. SIAM Journal on Optimization, 21(1):333–360,
2011.

[12] Enrico Bettiol, Lucas Létocart, Francesco Rinaldi, and Emiliano Traversi. A
simplicial decomposition framework for large scale convex quadratic programming.
arXiv preprint arXiv:1705.09210, 2017.

149



150

[13] Alain Billionnet, Sourour Elloumi, and Amélie Lambert. Extending the qcr method
to general mixed-integer programs. Mathematical programming, 131(1-2):381–401,
2012.

[14] Alain Billionnet, Sourour Elloumi, and Marie-Christine Plateau. Improving the
performance of standard solvers for quadratic 0-1 programs by a tight convex
reformulation: The qcr method. Discrete Applied Mathematics, 157(6):1185–1197,
2009.

[15] Ernesto G Birgin, José Mario Martínez, and Marcos Raydan. Nonmonotone spec-
tral projected gradient methods on convex sets. SIAM Journal on Optimization,
10(4):1196–1211, 2000.

[16] Immanuel M Bomze. Copositive optimization–recent developments and applications.
European Journal of Operational Research, 216(3):509–520, 2012.

[17] Immanuel M Bomze and Etienne De Klerk. Solving standard quadratic optimization
problems via linear, semidefinite and copositive programming. Journal of Global
Optimization, 24(2):163–185, 2002.

[18] Immanuel M Bomze, Mirjam Dür, Etienne De Klerk, Cornelis Roos, Arie J Quist,
and Tamás Terlaky. On copositive programming and standard quadratic optimiza-
tion problems. Journal of Global Optimization, 18(4):301–320, 2000.

[19] Immanuel M Bomze, Florian Jarre, and Franz Rendl. Quadratic factorization
heuristics for copositive programming. Mathematical Programming Computation,
3(1):37–57, 2011.

[20] Immanuel M Bomze, Werner Schachinger, and Gabriele Uchida. Think co (mpletely)
positive! matrix properties, examples and a clustered bibliography on copositive
optimization. Journal of Global Optimization, 52(3):423–445, 2012.

[21] Pierre Bonami, Viet Hung Nguyen, Michel Klein, and Michel Minoux. On the
solution of a graph partitioning problem under capacity constraints. In International
Symposium on Combinatorial Optimization, pages 285–296. Springer, 2012.

[22] Brian Borchers. Csdp, ac library for semidefinite programming. Optimization
methods and Software, 11(1-4):613–623, 1999.

[23] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[24] C. Buchheim and E. Traversi. Quadratic combinatorial optimization using separable
underestimators. INFORMS Journal on Computing, 30(3):424–437, 2018.

[25] Christoph Buchheim, Alberto Caprara, and Andrea Lodi. An effective branch-
and-bound algorithm for convex quadratic integer programming. Mathematical
programming, 135(1-2):369–395, 2012.



151

[26] Christoph Buchheim, Marianna De Santis, Laura Palagi, and Mauro Piacentini.
An exact algorithm for nonconvex quadratic integer minimization using ellipsoidal
relaxations. SIAM Journal on Optimization, 23(3):1867–1889, 2013.

[27] Stefan Bundfuss and Mirjam Dür. An adaptive linear approximation algorithm for
copositive programs. SIAM Journal on Optimization, 20(1):30–53, 2009.

[28] Samuel Burer. On the copositive representation of binary and continuous nonconvex
quadratic programs. Mathematical Programming, 120(2):479–495, 2009.

[29] Samuel Burer. Optimizing a polyhedral-semidefinite relaxation of completely positive
programs. Mathematical Programming Computation, 2(1):1–19, 2010.

[30] Samuel Burer. Copositive programming. In Handbook on semidefinite, conic and
polynomial optimization, pages 201–218. Springer, 2012.

[31] Samuel Burer and Adam N Letchford. On nonconvex quadratic programming with
box constraints. SIAM Journal on Optimization, 20(2):1073–1089, 2009.

[32] Samuel Burer and Adam N Letchford. Non-convex mixed-integer nonlinear pro-
gramming: A survey. Surveys in Operations Research and Management Science,
17(2):97–106, 2012.

[33] Rainer E Burkard, Stefan E Karisch, and Franz Rendl. Qaplib–a quadratic assign-
ment problem library. Journal of Global optimization, 10(4):391–403, 1997.

[34] Michael R Bussieck, Arne Stolbjerg Drud, and Alexander Meeraus. Minlplib—a
collection of test models for mixed-integer nonlinear programming. INFORMS
Journal on Computing, 15(1):114–119, 2003.

[35] Francesco Cesarone and Fabio Tardella. Portfolio datasets, 2010.

[36] Scott Shaobing Chen, David L Donoho, and Michael A Saunders. Atomic decompo-
sition by basis pursuit. SIAM review, 43(1):129–159, 2001.

[37] Paul C Chu and John E Beasley. A genetic algorithm for the multidimensional
knapsack problem. Journal of heuristics, 4(1):63–86, 1998.

[38] Laurent Condat. Fast projection onto the simplex and the l1-ball. Mathematical
Programming, 158(1):575–585, 2016.

[39] Michele Conforti, Gérard Cornuéjols, and Giacomo Zambelli. Integer programming,
volume 271. Springer, 2014.

[40] Andrea Cristofari. An almost cyclic 2-coordinate descent method for singly linearly
constrained problems. Computational Optimization and Applications, 73(2):411–452,
2019.



152

[41] Andrea Cristofari, Marianna De Santis, Stefano Lucidi, and Francesco Rinaldi.
A two-stage active-set algorithm for bound-constrained optimization. J. Optim.
Theory Appl., 172(2):369–401, 2017.

[42] Frank E Curtis, Zheng Han, and Daniel P Robinson. A globally convergent
primal-dual active-set framework for large-scale convex quadratic optimization.
Computational Optimization and Applications, 60(2):311–341, 2015.

[43] Geir Dahl and Torkel Andreas Haufmann. Zero-one completely positive matrices
and the a (r, s) classes. Special Matrices, 4(1), 2016.

[44] George B Dantzig and Philip Wolfe. Decomposition principle for linear programs.
Operations research, 8(1):101–111, 1960.

[45] Etienne De Klerk and Dmitrii V Pasechnik. Approximation of the stability number of
a graph via copositive programming. SIAM Journal on Optimization, 12(4):875–892,
2002.

[46] Marianna De Santis, Gianni Di Pillo, and Stefano Lucidi. An active set feasible
method for large-scale minimization problems with bound constraints. Computa-
tional Optimization and Applications, 53(2):395–423, 2012.

[47] G Delaporte, S Jouteau, and F Roupin. Sdp s: A tool to formulate and solve
semidefinite relaxations for bivalent quadratic problems (2002).

[48] Camil Demetrescu, Andrew V Goldberg, and David S Johnson. The Shortest
Path Problem: Ninth DIMACS Implementation Challenge, volume 74. American
Mathematical Soc., 2009.

[49] Guy Desaulniers, Jacques Desrosiers, and Marius M Solomon. Column generation,
volume 5. Springer Science & Business Media, 2006.

[50] Jacques Desrosiers and Marco E Lübbecke. A primer in column generation. In
Column generation, pages 1–32. Springer, 2005.

[51] Michel Marie Deza and Monique Laurent. Geometry of cuts and metrics, volume 15.
Springer, 2009.

[52] Peter James Clair Dickinson. The copositive cone, the completely positive cone and
their generalisations. Citeseer, 2013.

[53] Peter JC Dickinson. An improved characterisation of the interior of the completely
positive cone. Electron. J. Linear Algebra, 20:723–729, 2010.

[54] Peter JC Dickinson. Geometry of the copositive and completely positive cones.
Journal of Mathematical Analysis and Applications, 380(1):377–395, 2011.



153

[55] M. Djerdjour, K. Mathur, and H.M. Salkin. A surrogate relaxation based algorithm
for a general quadratic multi-dimensional knapsack problem. Operations Research
Letters, 7(5):253–258, 1988.

[56] Elizabeth D. Dolan and Jorge J Moré. Benchmarking optimization software with
performance profiles. Mathematical Programming, 91(2):201–213, 2002.

[57] John Drake. Benchmark instances for the multidimensional knapsack problem, 01
2015.

[58] John H Drew and Charles R Johnson. The completely positive and doubly nonneg-
ative completion problems. Linear and Multilinear Algebra, 44(1):85–92, 1998.

[59] Mirjam Dür. Copositive programming–a survey. In Recent advances in optimization
and its applications in engineering, pages 3–20. Springer, 2010.

[60] Mirjam Dür and Georg Still. Interior points of the completely positive cone. Electron.
J. Linear Algebra, 17:48–53, 2008.

[61] Jack Elzinga and Thomas G Moore. A central cutting plane algorithm for the
convex programming problem. Mathematical Programming, 8(1):134–145, 1975.

[62] Hans Joachim Ferreau, Christian Kirches, Andreas Potschka, Hans Georg Bock, and
Moritz Diehl. qpoases: A parametric active-set algorithm for quadratic programming.
Mathematical Programming Computation, 6(4):327–363, 2014.

[63] Reeves Fletcher and Colin M Reeves. Function minimization by conjugate gradients.
The computer journal, 7(2):149–154, 1964.

[64] Antonio Frangioni. Solving semidefinite quadratic problems within nonsmooth
optimization algorithms. Computers & Operations Research, 23(11):1099–1118,
1996.

[65] Antonio Frangioni. Standard bundle methods: Untrusted models and duality.
Technical report, Technical reports, Department of Informatics, University of Pisa,
Italy . . . , 2018.

[66] Antonio Frangioni, Fabio Furini, and Claudio Gentile. Approximated perspec-
tive relaxations: a project and lift approach. Computational Optimization and
Applications, 63(3):705–735, 2016.

[67] Antonio Frangioni and Claudio Gentile. Perspective cuts for a class of convex 0–1
mixed integer programs. Mathematical Programming, 106(2):225–236, 2006.

[68] Antonio Frangioni and Claudio Gentile. Sdp diagonalizations and perspective cuts
for a class of nonseparable miqp. Operations Research Letters, 35(2):181–185, 2007.

[69] Marguerite Frank and Philip Wolfe. An algorithm for quadratic programming.
Naval Research Logistics (NRL), 3(1-2):95–110, 1956.



154

[70] Mituhiro Fukuda, Masakazu Kojima, Kazuo Murota, and Kazuhide Nakata. Ex-
ploiting sparsity in semidefinite programming via matrix completion i: General
framework. SIAM Journal on Optimization, 11(3):647–674, 2001.

[71] Fabio Furini, Emiliano Traversi, Pietro Belotti, Antonio Frangioni, Ambros Gleixner,
Nick Gould, Leo Liberti, Andrea Lodi, Ruth Misener, Hans Mittelmann, et al. Qplib:
A library of quadratic programming instances. Optimization Online, 5846, 2017.

[72] F. Glover, G.A. Kochenberger, B. Alidaee, and M. Amini. Solving quadratic
knapsack problems by reformulation and tabu search: Single constraint case. In
Combinatorial and global optimization, pages 111–121. World Scientific, 2002.

[73] Fred Glover and Gary A Kochenberger. Critical event tabu search for multidimen-
sional knapsack problems. In Meta-Heuristics, pages 407–427. Springer, 1996.

[74] J-L Goffin, Jacek Gondzio, Robert Sarkissian, and J-P Vial. Solving nonlinear multi-
commodity flow problems by the analytic center cutting plane method. Mathematical
Programming, 76(1):131–154, 1997.

[75] Jean-Louis Goffin and Jean-Philippe Vial. Cutting planes and column generation
techniques with the projective algorithm. Journal of optimization theory and
applications, 65(3):409–429, 1990.

[76] Jean-Louis Goffin and Jean-Philippe Vial. On the computation of weighted analytic
centers and dual ellipsoids with the projective algorithm. Mathematical Programming,
60(1):81–92, 1993.

[77] J. Gondzio, O. du Merle, R. Sarkissian, and J.-P. Vial. Accpm — a library for
convex optimization based on an analytic center cutting plane method. European
Journal of Operational Research, 94(1):206 – 211, 1996.

[78] Jacek Gondzio. Interior point methods 25 years later. European Journal of Opera-
tional Research, 218(3):587–601, 2012.

[79] Jacek Gondzio and Pablo González-Brevis. A new warmstarting strategy for the
primal-dual column generation method. Mathematical Programming, 152(1-2):113–
146, 2015.

[80] Jacek Gondzio, Pablo González-Brevis, and Pedro Munari. New developments in
the primal–dual column generation technique. European Journal of Operational
Research, 224(1):41–51, 2013.

[81] Jacek Gondzio, Pablo González-Brevis, and Pedro Munari. Large-scale optimization
with the primal-dual column generation method. Mathematical Programming
Computation, 8(1):47–82, Mar 2016.

[82] Jacek Gondzio and Roy Kouwenberg. High-performance computing for asset-liability
management. Operations Research, 49(6):879–891, 2001.



155

[83] Jacek Gondzio, Robert Sarkissian, and J-P Vial. Using an interior point method for
the master problem in a decomposition approach. European Journal of Operational
Research, 101(3):577–587, 1997.

[84] Jacek Gondzio, Jean-Philippe Vial, et al. Warm start and -subgradients in a cutting
plane scheme for block-angular linear programs. Computational Optimization and
Applications, 14:17–36, 1999.

[85] Nicholas IM Gould and Philippe L Toint. A quadratic programming bibliography.
Numerical Analysis Group Internal Report, 1:32, 2000.

[86] Luigi Grippo, Francesco Lampariello, and Stefano Lucidi. A nonmonotone line
search technique for newton’s method. SIAM Journal on Numerical Analysis,
23(4):707–716, 1986.

[87] Robert Grone, Charles R Johnson, Eduardo M Sá, and Henry Wolkowicz. Positive
definite completions of partial hermitian matrices. Linear algebra and its applications,
58:109–124, 1984.

[88] Oktay Günlük and Jeff Linderoth. Perspective reformulations of mixed integer
nonlinear programs with indicator variables. Mathematical programming, 124(1-
2):183–205, 2010.

[89] Nebojša Gvozdenović and Monique Laurent. The operator ψ for the chromatic
number of a graph. SIAM Journal on Optimization, 19(2):572–591, 2008.

[90] William W Hager and Hongchao Zhang. A new active set algorithm for box
constrained optimization. SIAM J. Optim., 17(2):526–557, 2006.

[91] Marshall Hall and Morris Newman. Copositive and completely positive quadratic
forms. In Mathematical Proceedings of the Cambridge Philosophical Society, vol-
ume 59, pages 329–339. Cambridge University Press, 1963.

[92] Peter L Hammer and Abraham A Rubin. Some remarks on quadratic programming
with 0-1 variables. Revue française d’informatique et de recherche opérationnelle.
Série verte, 4(V3):67–79, 1970.

[93] Donald W Hearn, S Lawphongpanich, and Jose A Ventura. Restricted simplicial
decomposition: Computation and extensions. Computation Mathematical Program-
ming, pages 99–118, 1987.

[94] Charles A Holloway. An extension of the frank and wolfe method of feasible
directions. Mathematical Programming, 6(1):14–27, 1974.

[95] Roger A Horn and Charles R Johnson. Matrix analysis. Cambridge university press,
2012.



156

[96] Dennis Huisman, Raf Jans, Marc Peeters, and Albert PM Wagelmans. Combining
column generation and lagrangian relaxation. In Column generation, pages 247–270.
Springer, 2005.

[97] IBM. Cplex (version 12.6.3), 2016.

[98] Krzysztof C Kiwiel. Methods of descent for nondifferentiable optimization, volume
1133. Springer, 2006.

[99] Nathan Krislock, Jérôme Malick, and Frédéric Roupin. Biqcrunch: A semidefinite
branch-and-bound method for solving binary quadratic problems. ACM Transactions
on Mathematical Software (TOMS), 43(4):32, 2017.

[100] Torbjörn Larsson, Michael Patriksson, and Clas Rydergren. Applications of simpli-
cial decomposition with nonlinear column generation to nonlinear network flows. In
Network optimization, pages 346–373. Springer, 1997.

[101] Claude Lemaréchal. Chapter vii nondifferentiable optimization. Handbooks in
operations research and management science, 1:529–572, 1989.

[102] Claude Lemaréchal. The omnipresence of lagrange. Quarterly Journal of the Belgian,
French and Italian Operations Research Societies, 1(1):7–25, 2003.

[103] Adam N Letchford and Michael M Sørensen. Binary positive semidefinite matrices
and associated integer polytopes. Mathematical programming, 131(1-2):253–271,
2012.

[104] A Yu Levin. On an algorithm for the minimization of convex functions. In Soviet
Mathematics Doklady, volume 160, pages 1244–1247, 1965.

[105] Marco E Lubbecke and Jacques Desrosiers. Selected topics in column generation.
OPERATIONS RESEARCH-BALTIMORE THEN LINTHICUM-, 53(6):1007, 2005.

[106] Harry Markowitz. Portfolio selection. The Journal of Finance, 7(1):77–91, 1952.

[107] John E Maxfield and Henryk Minc. On the matrix equation X ′X = A. Proceedings
of the Edinburgh Mathematical Society, 13(2):125–129, 1962.

[108] Christian Michelot. A finite algorithm for finding the projection of a point onto
the canonical simplex of IRn. Journal of Optimization Theory and Applications,
50(1):195–200, 1986.

[109] Pedro Munari and Jacek Gondzio. Using the primal-dual interior point algo-
rithm within the branch-price-and-cut method. Computers & Operations Research,
40(8):2026–2036, 2013.

[110] Karthik Natarajan, Chung Piaw Teo, and Zhichao Zheng. Mixed 0-1 linear programs
under objective uncertainty: A completely positive representation. Operations
research, 59(3):713–728, 2011.



157

[111] George L Nemhauser. Column generation for linear and integer programming.
Optimization Stories, 20:64, 2012.

[112] Yurii Nesterov and Arkadii Nemirovskii. Interior-point polynomial algorithms in
convex programming. SIAM, 1994.

[113] Donald J Newman. Location of the maximum on unimodal surfaces. Journal of the
ACM (JACM), 12(3):395–398, 1965.

[114] Jorge Nocedal and Stephen Wright. Numerical optimization. Springer Science &
Business Media, 2006.

[115] Jorge Nocedal and Stephen J Wright. Sequential quadratic programming. Springer,
2006.

[116] Ivo Nowak. Relaxation and decomposition methods for mixed integer nonlinear
programming, volume 152. Springer Science & Business Media, 2005.

[117] Manfred Padberg. The boolean quadric polytope: some characteristics, facets and
relatives. Mathematical programming, 45(1-3):139–172, 1989.

[118] Michael Patriksson. The traffic assignment problem: models and methods. Courier
Dover Publications, 2015.

[119] Itamar Pitowsky. Correlation polytopes: their geometry and complexity. Mathe-
matical Programming, 50(1-3):395–414, 1991.

[120] Florian A Potra and Stephen J Wright. Interior-point methods. Journal of Compu-
tational and Applied Mathematics, 124(1-2):281–302, 2000.

[121] Janez Povh and Franz Rendl. Copositive and semidefinite relaxations of the
quadratic assignment problem. Discrete Optimization, 6(3):231–241, 2009.

[122] Franz Rendl, Giovanni Rinaldi, and Angelika Wiegele. Solving max-cut to optimality
by intersecting semidefinite and polyhedral relaxations. Mathematical Programming,
121(2):307, 2010.

[123] Donald J Rose. Triangulated graphs and the elimination process. Journal of
Mathematical Analysis and Applications, 32(3):597–609, 1970.

[124] Jo Bo Rosen. The gradient projection method for nonlinear programming. part i.
linear constraints. Journal of the society for industrial and applied mathematics,
8(1):181–217, 1960.

[125] B. Rostami, F. Malucelli, D. Frey, and C. Buchheim. On the quadratic shortest
path problem. In International Symposium on Experimental Algorithms, pages
379–390. Springer, 2015.



158

[126] Borzou Rostami, André Chassein, Michael Hopf, Davide Frey, Christoph Buchheim,
Federico Malucelli, and Marc Goerigk. The quadratic shortest path problem:
complexity, approximability, and solution methods. European Journal of Operational
Research, 268(2):473–485, 2018.

[127] Frédéric Roupin. From linear to semidefinite programming: an algorithm to obtain
semidefinite relaxations for bivalent quadratic problems. Journal of Combinatorial
Optimization, 8(4):469–493, 2004.

[128] Jos F Sturm. Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones. Optimization methods and software, 11(1-4):625–653, 1999.

[129] Siddhartha S. Syam. A dual ascent method for the portfolio selection problem
with multiple constraints and linked proposals. European Journal of Operational
Research, 108(1):196 – 207, 1998.

[130] S.P. Tarasov, L.G. Khachiian, and I.I. Erlikh. The method of inscribed ellipsoids.
Doklady Akademii Nauk SSSR, 298(5):1081–1085, 1988.

[131] Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the
Royal Statistical Society: Series B (Methodological), 58(1):267–288, 1996.

[132] Reha H Tütüncü, Kim-Chuan Toh, and Michael J Todd. Solving semidefinite-
quadratic-linear programs using sdpt3. Mathematical programming, 95(2):189–217,
2003.

[133] Wim Van Ackooij and Antonio Frangioni. Incremental bundle methods using upper
models. SIAM Journal on Optimization, 28(1):379–410, 2018.

[134] Wim van Ackooij, Antonio Frangioni, and Welington de Oliveira. Inexact stabilized
benders’ decomposition approaches with application to chance-constrained problems
with finite support. Computational Optimization and Applications, 65(3):637–669,
2016.

[135] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming. SIAM review,
38(1):49–95, 1996.

[136] François Vanderbeck. On dantzig-wolfe decomposition in integer programming and
ways to perform branching in a branch-and-price algorithm. Operations Research,
48(1):111–128, 2000.

[137] François Vanderbeck. Implementing mixed integer column generation. In Column
generation, pages 331–358. Springer, 2005.

[138] François Vanderbeck and Laurence A Wolsey. An exact algorithm for ip column
generation. Operations research letters, 19(4):151–159, 1996.

[139] Jose A Ventura and Donald W Hearn. Restricted simplicial decomposition for
convex constrained problems. Mathematical Programming, 59(1):71–85, 1993.



159

[140] Balder Von Hohenbalken. Simplicial decomposition in nonlinear programming
algorithms. Mathematical Programming, 13(1):49–68, 1977.

[141] WolframAlpha. Mathematica (version 11.3), 2016.

[142] Margaret Wright. The interior-point revolution in optimization: history, recent
developments, and lasting consequences. Bulletin of the American mathematical
society, 42(1):39–56, 2005.

[143] Stephen J Wright. Primal-dual interior-point methods. SIAM, 1997.

[144] Yinyu Ye. Interior point algorithms: theory and analysis, volume 44. John Wiley &
Sons, 2011.

[145] Günter M Ziegler. Lectures on 0/1-polytopes. In Polytopes—combinatorics and
computation, pages 1–41. Springer, 2000.




