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Résumé
Les systèmes de communications MIMO (Multiple Input Multiple Output) utilisent des réseaux

de capteurs qui peuvent s’étendre à de grandes dimensions (MIMO massifs) et qui sont pressentis

comme solution potentielle pour les futurs standards de communications à très hauts débits.

Un des problèmes majeur de ces systèmes est le fort niveau d’interférences dû au grand

nombre d’émetteurs simultanés. Dans un tel contexte, les solutions ’classiques’ de conception de

pilotes ’orthogonaux’ sont extrêmement coûteuses en débit utile permettant ainsi aux solutions

d’identification de canal dites ’aveugles’ ou ’semi-aveugles’ (abandonnées pour un temps dans

les systèmes de communications civiles) de revenir au-devant de la scène comme solutions

intéressantes d’identification ou de déconvolution de ces canaux MIMO.

Dans cette thèse, nous avons commencé par une analyse comparative des performances, en se

basant sur les bornes de Cramèr-Rao (CRB), afin de mesurer la réduction potentielle de la taille

des séquences pilotes et ce en employant les méthodes dites semi-aveugles basées sur l’exploitation

conjointe des pilotes et des données. Les résultats d’analyse montrent que nous pouvons réduire

jusqu’à 95% des pilotes sans affecter les performances d’estimation du canal.

Nous avons par la suite proposé de nouvelles méthodes d’estimation semi-aveugle du canal,

éventuellement de faible coût, permettant d’approcher les performances limites (CRB). Nous

avons proposé un estimateur semi-aveugle, LS-DF (Least Squares-Decision Feedback), basé

sur une estimation des moindres carrés avec retour de décision qui permet un bon compromis

performance / complexité numérique. Un autre estimateur semi-aveugle de type sous-espace a

aussi été proposé ainsi qu’un algorithme basé sur l’approche EM (Expectation Maximization)

pour lequel trois versions à coût réduit ont été étudiées. Dans le cas d’un canal spéculaire, nous

avons proposé un algorithme d’estimation paramétrique se basant sur l’estimation des temps

d’arrivés combinée avec la technique DF.

Mots Clés— MIMO/ massive MIMO, OFDM, CRB, semi-aveugle, méthode sous-espace,

algorithme EM, LS-DF, canal spéculaire.
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Abstract
Multiple Input Multiple Output (MIMO) systems use sensor arrays that can be of large-scale

(we will then refer to them as massive MIMO systems) and are seen as a potential candidate for

future digital communications standards at very high throughput.

A major problem of these systems is the high level of interference due to the large number of

simultaneous transmitters. In such a context, ’conventional’ orthogonal pilot design solutions are

expensive in terms of throughput, thus allowing for the so-called ’blind’ or ’semi-blind’ channel

identification solutions (forsaken for a while in the civil communications systems) to come back

to the forefront as interesting solutions for identifying or deconvolving these MIMO channels.

In this thesis, we started with a comparative performance analysis, based on Cramèr-Rao

Bounds (CRB), to quantify the potential size reduction of the pilot sequences when using semi-

blind methods that jointly exploit the pilots and data. Our analysis shows that, up to 95% of

the pilot samples can be suppressed without affecting the channel estimation performance when

such semi-blind solutions are considered.

After that, we proposed new methods for semi-blind channel estimation, that allow to approach

the CRB with relatively low or moderate cost. At first, we have proposed a semi-blind estimator,

LS-DF (Least Squares-Decision Feedback), based on the decision feedback technique which allows

a good compromise between performance and numerical complexity. Other semi-blind estimators

have also been introduced based on the subspace technique and on the maximum likelihood

approach, respectively. The latter is optimized via an EM (Expectation Maximization) algorithm

for which three reduced cost versions are proposed. In the case of a specular channel model, we

considered a parametric estimation method based on times of arrival estimation combined with

the DF technique.

Keywords— MIMO/ massive MIMO, OFDM, CRB, semi-blind, subspace method, EM

algorithm, LS-DF, specular channel.
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Introduction

“Creativity requires the courage to let go of certainties. ”Erich Fromm

0.1 Overview

Over the last few decades, wireless communications have seen remarkable developments in many

distinct fields. This started with academic research, where a lot of improvement and progress has

been made. This is also evident in military applications, where traditional war and weapons have

been replaced by autonomous weapons (like Unmanned Aerial Vehicles (UAV)) and electronic

cybernetic war. The civilian field has also seen its part of wireless communications progress, in

the sense that our lives have becomes more virtual and connected.

Mobile cellular communications are considered as the most common radio access application

for wireless communications, whose remarkabale development can be divided into five generations

envolving from the first generation (1G) to the fifth generation (5G) [1]. In the 1980s, the

analog mobile radio systems were used and adopted for 1G mobile communications. With the

appearance of digital technology, the second generation (2G) mobile communications standards

and systems were developed. Digital systems in 2G are superior to the analog systems in terms

of system capacity, link quality and additional services. Furthermore, unlike the 1G analog

systems employed in different countries, Global System for Mobile communications (GSM) in

2G have been standardized and have spread all over the world [2]. The success of GSM in 2G

motivated the development of the third generation (3G) communications systems which are the

first mobile systems for broadband wireless communications. Thanks to the wideband Code

Division Multiplexing Access (CDMA) techniques [3], new applications such as internet browsing

and audio/video streaming have been developed and used in 3G communications. Despite the fact

that 3G networks provided better service quality and boosted the system capacity, nowadays, the

Long-Term Evolution (LTE) and LTE-Advanced (LTE-A) integrating the fourth generation (4G)
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are deployed [4]. The flagship technologies of 4G systems are Multiple-Input Multiple-Output

(MIMO) and Orthogonal Frequency Division Multiplexing (OFDM) [4].

The use of multiple antennas at the transmitter or at the receiver or at both (MIMO), can

substantially increase data throughput and the reliability of radio communications [5, 6]. MIMO

communications systems offer additional degrees of freedom provided by the spatial dimension,

which can be exploited to either simultaneously transmit independent data-streams (spatial

multiplexing) thereby increasing the data-rate, or multiplicative transmission of single data

stream (spatial diversity) to increase the system reliability [5, 7].

On the other hand, multicarrier modulation techniques (OFDM) make the system robust

against frequency-selective fading channels by converting the overall channel into a number of

parallel flat fading channels, which helps to achieve high data rate transmission [8, 9]. Besides,

the OFDM eliminates the inter-symbol interference and inter-carrier interference thanks to

the use of a cyclic prefix and an orthogonal transform. Moreover, the combination of MIMO

technology with OFDM called MIMO-OFDM systems, has enabled high speed data transmission

and broadband multimedia services over wireless links [8, 10].

Another important development in wireless communications, apart from mobile cellular

networks, is the Wireless Local Area Network (WLAN) [11]. The Institute of Electrical and

Electronics Engineers (IEEE) 802.11 based WLAN is the most broadly deployed WLAN tech-

nology. Nowadays, WLAN services are widely used not only at homes and offices but also at

restaurants, libraries and many other public services and locations. The standardization process

of IEEE 802.11 based WLAN originated in the 1990s, and since it has evolved several times

in order to increase its throughput, enhance its security and compatibility leading to several

versions 802.11 b/a/g/n/ac [12, 13]. In 2009, the IEEE 802.11n standardization process was

completed and adopted in Wi-Fi (WIreless FIdelity) transmissions offering high data rate, which

primarily results from the use of multi-antennas (MIMO) and multi-subcarriers modulation

(OFDM) techniques (MIMO-OFDM systems) [10].

The unprecedented usage of smart phone, tablets, super-phones etc., equipped with data-

intensive applications like video streaming, graphics heavy social media interfaces and real time

navigation services, has called for revolutionary changes the current 4G to the next generation

wireless systems. Although 4G systems could be loaded with much more services, real time

functionality and data than previous systems, there is still a dramatic gap between the people’s

practical requirements and what can be offered by the 4G technologies. To meet the strong

demands from the explosive growth of cellular users and the associated potential services, currently



0.2. Channel estimation 3

the fifth generation (5G) standard is under extensive investigation and discussion. With speeds

of up to 10 gigabits per second, 5G is set to be as much as 100 times faster than 4G [14]. The

two prime technologies for sustaining the requirements of 5G are the use of millimeter wave

(mmWave) and massive MIMO systems [15].

With a higher number of Base Station (BS) antennas, around few hundreds, compared to the

classical MIMO systems (8 antennas for the LTE), massive MIMO or large-scale MIMO systems

can achieve huge gains in spectral and energy efficiencies [14, 16, 17]. Massive MIMO systems

overcome several limitations of the traditional MIMO systems such as security, robustness and

throughput rate [18, 15]. It has been demonstrated that massive MIMO systems hold greater

promises of boosting system throughput by 10 times or more by simultaneously serving tens of

users in the same time-frequency resource [18]. So that, both throughput and system capacity

will be highly enhanced in order to satisfy the increasing amount of data exchange and demand

for quality of service for the future cellular networks.

To fully realize the potentials of the aforementioned technologies, the knowledge of Channel

State Information (CSI) is indispensable. To improve the system performance, it is essential that

CSI is available at both transmitter and the receiver. The knowledge of CSI is used for coherent

detection of the transmitted signals at the receiver side. On transmitter side, CSI, is crucial to

design effective precoding schemes for inter-user interference cancellation. However, the perfect

knowledge of CSI is not available in practice, therefore it has to be estimated. This thesis is

concerned with efficient and low complexity channel estimation algorithms for MIMO-OFDM

and massive MIMO-OFDM systems.

0.2 Channel estimation

The well conduct of wireless communications system’s objective depends largely upon the

availability of the knowledge of its environment. The propagation environment refers to the

communications channel which provides the connection between the transmitter and the receiver.

Thus, channel estimation is of paramount importance to equalization and symbol detection.

Several channel models and channel estimation approaches have been developed in literature

depending on their applications and on the selected standard. The estimation approaches can be

divided into three main classes as follows:
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0.2.1 Pilot-based channel estimation

Typically, channel estimation is performed by inserting, in the transmitted frame, a training

sequences (called pilots) known a priori at the receiver, according to a known arrangement

pattern in the frame (block, comb or lattice) [19, 20, 21]. At the receiver side then, by observing

the output in correspondence of the pilot symbols, it is possible to estimate the channel. This

knowledge is then fed into the detection process, to allow optimal estimation of the data. This

approach (pilot-based channel estimation), is the most commonly used in communications

standards [22, 13], for its low computational complexity and robustness. Its drawback consists

of the fact that the pilot symbols do not carry useful information, therefore they represent a

bandwidth waste. Moreover, most of the observations (those related to the unknown symbols)

are discarded in the estimation process, thus representing a missed opportunity to enhance the

accuracy of the channel estimate.

0.2.2 Blind channel estimation

Unlike pilot-based channel estimation, blind channel estimation methods are fully based on

the statistical properties of the unknown transmitted symbols (i.e. no pilots are transmitted)

[23, 24, 25]. This approach reduces the overhead but needs a large number of data symbols for

statistical properties and powerful algorithms. Moreover, pilot-based approaches give better

performance at low computational complexity than the blind ones.

0.2.3 Semi-blind channel estimation

Each channel estimation class has its own benefits and drawbacks. Generally, the first class

(i.e. pilot-based channel estimator) provides a more accurate channel estimation than the blind

estimation class. However, the second class, in most cases, increases the spectral efficiency

compared to the first one. Therefore, it would be advantageous to retain the benefits of the two

techniques through the use of Semi-Blind (SB) estimation methods [26, 27, 28, 29] which exploit

both data and pilots to achieve the desired channel identification.

0.3 Thesis purpose and manuscript organization

The number of channel parameters to be estimated in MIMO and massive MIMO systems

increases with the system dimension (i.e. number of transmitters and receivers). Hence, the

pilot-based channel estimation techniques have a severe limitation due to the required longer size

of the pilot sequences. However, the transmission of a longer pilot sequence is not desirable in a
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communications system, since they do not carry useful information and represent a bandwidth

waste. Furthermore, the wireless spectral resource is becoming more and more scarce and precious

due to the limitation, by nature, of the spectrum allocated to wireless communications services.

In this context, this thesis proposes to use semi-blind channel estimation approach, which

exploits all the transmitted signal’s information (i.e. pilots and unknown data), to overcome

the above-mentioned resource problems. Instead of using semi-blind estimation to improve

the channel estimation performances, herein, we propose to keep the same performances of

pilot-based estimation but reducing the pilot sequences. However, due to the complexity of

the blind estimation part, semi-blind estimation increases the receiver complexity compared to

pilot-based methods.

Thanks to the channel reciprocity property and according to the widely accepted Time

Division Duplexing (TDD) protocol used in MIMO-OFDM and massive MIMO-OFDM systems

[30, 31], CSI is estimated only during the uplink transmission (at the Base Station (BS)) then

transmitted to the different users for channel equalization in the downlink. Hence, the ’semi-blind’

complex channel estimation task could be easily achieved by the powerful calculator at the BS.

The study of the semi-blind solution, proposed in this thesis, is divided into two principal

parts. The first part concerns the performance analysis of semi-blind channel estimation methods.

The second part is dedicated to the derivation of semi-blind channel estimation algorithms.

0.3.1 Part I - Channel estimation limit Performance analysis

The first part of thesis focuses on the performance bounds analysis of the semi-blind and

pilot-based channel estimation methods in the context of MIMO-OFDM and massive MIMO-

OFDM systems. To obtain general comparative results independent from specific algorithms or

estimation methods, this analysis is carried out using the estimation performance limits given by

the Cramér-Roa-Bound (CRB).

The first contribution of this thesis is to quantify the rate of reduction of the transmitted

pilots using semi-blind channel estimation while ensuring the same pilot-based channel estimation

performance. Chapter 1 introduces the CRB derivations for semi-blind and pilot-based channel

estimation approaches [32]. This performance analysis is performed for different data models

(Circular Gaussian (CG), Non Circular Gaussian (NCG), Binary/Quadratic Phase Shift Keying

(BPSK/QPSK)) and different pilot design schemes such as: block-pilot type arrangement,

comb-type pilot arrangement and lattice-type arrangement. For the BPSK/QPSK case, a new

approximation of the CRB is proposed to avoid heavy numerical integral calculations. Moreover,
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in the massive MIMO context, an efficient computational technique to deal with the huge-size

matrix manipulation needed for the CRB derivation is proposed exploiting the block diagonal

structure of the covariance matrices.

The derived CRBs are then used to quantify the achievable rate of pilot compression allowed

by the use of a semi-blind approach in the context of MIMO-OFDM and very large MIMO-OFDM

systems. The main outcome of this analysis is that, using the semi-blind channel estimation

method, one can reduce more than 95% of the pilot size.

In chapter 2, the CRBs derivation is extended to the massive MIMO-OFDM case taking into

account multi-cell scenario and pilot contamination issue. Through this chapter, the effectiveness

of semi-blind channel estimation approaches is investigated and shown that it is possible to

efficiently solve the pilot contamination problem when considering BPSK/QPSK signals.

As a byproduct of the derived CRBs in MIMO-OFDM context, a derivation of CRBs in the

case of Single-Input Multiple-Output (SIMO-OFDM) system for deterministic and stochastic

Gaussian data model is proposed in chapter 3. A practical application of the derived CRB is

proposed in this chapter, which consists of protecting the exchanged data between a drone and

mobile stations against blind interceptions. To do so, one tunes the system parameters in such

a way, the blind identification is not possible (too poor) while the semi-blind one allows the

’authorized’ user to get a relatively good channel estimate and to restore properly the transmit

data.

In chapter 4, two further investigations on the performance bounds, based on the derivation of

CRB, of MIMO-OFDM channel estimation are proposed. The first one deals with the analytical

derivation of the CRBs in the presence of Carrier Frequency Offset (CFO) for semi-blind channel

estimation. The analysis and comparison of the CRBs with and without CFO shows that the

CFO impacts advantageously the CRB of the semi-blind channel estimation mainly due to the

CFO cyclostationarity propriety. The second investigation evaluates and compares the CRB for

the estimation of the subcarrier channel coefficients with and without considering the OFDM

structure (i.e. when taking into account the relation between these coefficients through the

Fourier transform of the channel taps and when ignoring this relation in the estimation process).

The latter highlights the significant gain associated to the time-domain channel estimation as

compared to the frequency domain one which, somehow, disregards the OFDM structure.
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0.3.2 Part II - Semi-blind channel estimation approaches

The second part of the thesis, once the theoretical limit semi-blind channel estimation performance

based on the CRB is performed, proposes four semi-blind channel estimation algorithms. The

major requirements of the proposed algorithms are: (i) low complexity, (ii) good performance to

reach the CRB at moderate or high SNR.

The first considered estimator (LS-DF) is quite cheap as it uses a simple least squares (LS)

estimation together with a decision feedback (DF) where the estimated data is re-injected to the

channel estimation stage to enhance the estimation performance. In particular, we have taken

advantage of this estimator to quantify the overall power consumption gain (about 66%) due to

the pilot-size reduction associated to this semi-blind approach.

The second semi-blind channel estimator, proposed in this thesis, is based on the Maximum

Likelihood (ML) technique. The latter is known to be powerful but also too expensive. Hence,

for the ML cost optimization, new Expectation Maximization (EM) algorithms for the channel

taps estimation are introduced in chapter 6. A main focus of chapter 6 is the reduction of the

numerical complexity while preserving at best the channel estimation quality. To do so, three

approximation/simplification approaches are proposed after introducing the exact version of the

EM-MIMO algorithm, where the MIMO-OFDM system is treated as one block to estimate the

overall channel vector through an iterative process.

The first approach consists of decomposing the MIMO-OFDM system into parallel MISO-

OFDM systems. The EM algorithm is then applied in order to estimate the MIMO channel in

a parallel way. The second approach takes advantage of the semi-blind context to reduce the

EM cost from exponential to linear complexity by reducing the size of the search space. Finally,

the last proposed approach uses a parallel interference cancellation technique to decompose the

MIMO-OFDM system into several SIMO-OFDM systems. The latter are identified in a parallel

scheme and with a reduced complexity.

In between the cheap LS-DF and the relatively expensive EM method, we have considered

some intermediate solutions. Hence, in chapter 7, an efficient semi-blind subspace channel

estimation, in the case of MIMO-OFDM system, is proposed for which an identifiability result is

first established for the subspace based criterion. The proposed algorithm adopts the MIMO-

OFDM system model without cyclic prefix and takes advantage of the circulant property of the

channel matrix to achieve lower computational complexity and to accelerate the algorithm’s

convergence by generating a group of sub-vectors from each received OFDM symbol.

For the practical case of specular channel model, chapter 8 proposes a parametric approach
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based on the Time-Of-Arrival (TOA) estimation using subspace methods for SISO-OFDM

systems. At first the TOA estimation is achieved using only one OFDM pilot. The latter is

used to generate a group of sub-vectors, with an appropriate windowing, to which one can apply

subspace methods to estimate the TOA. Then a refining step based on the incorporation of the

unknown data on the channel estimation process is considered. The semi-blind TOA estimation

is done using a Decision Feedback process (as detailed in chapter 5), where a first estimate of the

transmitted data is used with the existing pilot to enhance the TOA estimation performance.

At the end, in appendix A, we present joint channel and CFO estimation in a Multiple Input

Single Output (MISO) communications system. This problem arises in OFDM based multi-relay

transmission protocols such as the geo-routing one proposed by A. Bader et al. in 2012. Indeed,

the outstanding performance of this multi-hop relaying scheme relies heavily on the channel

and CFO estimation quality at the physical layer. In this work, two approaches are considered:

The first is based on estimating the overall channel (including the CFO) as a time-varying one

using an adaptive scheme under the assumption of small or moderate CFOs while the second

one performs separately, the channel and CFO parameters estimation based on the considered

data model.
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OFDM communications systems

Knowledge is the conformity

of the object and the intellect.

Averroes (Ibn Rochd)

The main objective of this chapter is to quantify the rate of reduction of the overhead due

to the use of a semi-blind channel estimation. Different data models and different pilot design

schemes have been considered in this study. By using the Cramér Rao Bound (CRB) tool, the

estimation error variance bounds of the pilot-based and semi-blind based channel estimators for a

MIMO-OFDM system are compared. In particular, for large MIMO-OFDM systems, a direct

computation of the CRB is prohibitive and hence a dedicated numerical technique for its fast

computation has been developed. The most important result is that, thanks to the semi-blind

approach, one can skip about 95% of the pilot samples without affecting the channel estimation

quality as shown in1[32].

Abstract

1 [32] Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Performance bounds analysis for semi-blind

channel estimation in MIMO-OFDM communications systems," IEEE Transactions on Wireless Communications,

vol. 16, no. 9, pp. 5925-5938, Sep. 2017.
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1.1 Introduction

The combining of the Multiple-Input Multiple-Output (MIMO) technology with the Orthogonal

Frequency Division Multiplexing (OFDM) (i.e. MIMO-OFDM) is widely deployed in wireless

communications systems as in 802.11n wireless network [22], LTE and LTE-A [4]. Indeed, the use

of MIMO-OFDM enhances the channel capacity and improves the communications reliability. In

particular, it has been demonstrated in [14, 16], that thanks to the deployment of a large number

of antennas in the base stations, the system can achieve high data throughput and provide very

high spectral efficiency.

Using multicarrier modulation techniques (OFDM in this chapter) makes the system robust

against frequency-selective fading channels by converting the overall channel into a number of

parallel flat fading channels, which helps to achieve high data rate transmission [9]. Moreover,

the OFDM eliminates the inter-symbol interference and inter-carrier interference thanks to the

use of a cyclic prefix and an orthogonal transform. In such a system, channel estimation remains

a current concern since the overall performance depends strongly on it, particularly for large

MIMO systems where the channel state information becomes more challenging.

This chapter is dedicated to the comparative performance bounds analysis of the semi-blind

channel estimation and the data-aided approaches in the context of MIMO-OFDM systems. To

obtain general comparative results independent from specific algorithms or estimation methods,

this analysis is conducted using the estimation performance limits given by the CRB2. Therefore,

we begin by providing several CRB derivations for the different data models (Circular Gaussian

(CG), Non Circular Gaussian (NCG), Binary/Quadratic Phase Shift Keying (BPSK/QPSK))

and different pilot design schemes (block, comb and lattice). For the particular case of large

dimensional MIMO systems, we exploited the block diagonal structure of the covariance matrices

to develop a fast numerical technique that avoids the prohibitive cost and the out of memory

problems (due to the large matrix sizes) of the CRB computation. Moreover, for the BPSK/QPSK

case, a realistic approximation of the CRB is introduced to avoid heavy numerical integral

calculations. After computing all the needed CRBs, we use them to compare the performance of

the semi-blind and pilot based approaches. It is well known that semi-blind techniques can help

reduce the pilot size or improve the estimation quality [35]. However, to the best of our knowledge,

this is the first study that thoroughly quantifies the achievable rate of pilot compression allowed

by the use of a semi-blind approach in the context of MIMO-OFDM. A main outcome of this

2Note that the considered performance bounds are tight (i.e. they are reachable), as shown in [33, 34], and

hence their use for the considered communications system analysis and design is effective.
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analysis is that it highlights the fact that, by resorting to the semi-blind estimation, one can

get rid of most of the pilot samples without affecting the channel identification quality. Also

an important by-product of this study is the possibility to easily design semi-orthogonal pilot

sequences in the large dimensional MIMO case thanks to their significant shortening.

This chapter is organized as follows. Section 1.2 introduces the basic concepts and data

models of the MIMO-OFDM system. Section 1.3 briefly introduces the well known pilot-based

channel estimation CRB while section 1.4 derives the analytical expressions of the semi-blind

CRBs when block-type pilot arrangement is considered. Section 1.5 investigates the CRB for

semi-blind channel estimation for comb-type and lattice-type pilots arrangement. The large

MIMO computational issue is considered in section 1.6, where a new vector representation and

treatment for the fast manipulation of block diagonal matrices are proposed. Section 1.7 analyzes

the throughput gain of the semi-blind channel estimation as compared to pilot-based channel

estimation. Finally, discussions and concluding remarks are drawn in section 1.8.

1.2 Mutli-carrier communications systems: main concepts

This section first introduces the MIMO-OFDM wireless communications scheme represented by

its mathematical model. Given the context of this chapter related to channel estimation, this

section also provides the commonly used pilot arrangement patterns available in the literature or

already specified by communications standards.

1.2.1 MIMO-OFDM system model

The multi-carrier communications system, illustrated in Figure 1.1, is composed of Nt transmit

antennas and Nr receive antennas using K sub-carriers. The transmitted signal is assumed to be

an OFDM one. Each OFDM symbol is composed of K samples and is extended by the insertion

of its last L samples in its front considered as a Cyclic Prefix (CP). The CP length is assumed to

be greater or equal to the maximum multipath channel delay denoted N (i.e. N ≤ L).

The received signal at the r-th antenna, after removing the CP and taking the K-point FFT

of the received OFDM symbols, is given in time domain by:

yr =
Nt∑
i=1

F T(hi,r)
FH

K
xi + vr K × 1, (1.1)

where F represents the K-point Fourier matrix; hi,r is the N × 1 vector representing the channel

taps between the i-th transmit antenna and the r-th receive antenna; xi is the i-th OFDM symbol
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of length K; and T(hi,r) is a circulant matrix. vr is assumed to be an additive white Circular

Gaussian (CG) noise satisfying E
[
vr(k)vr(i)H

]
= σ2

vIKδki; (.)H being the Hermitian operator;

σ2
v the noise variance; IK the identity matrix of size K ×K and δki the Dirac operator.

The eigenvalue decomposition of the circulant matrix T(hi,r) leads to:

T(hi,r) = FH

K
diag{Whi,r}F, (1.2)

where W is a matrix containing the N first columns of F and diag is the diagonal matrix

composed by its vector argument. Finally equation (1.1) becomes:

yr =
Nt∑
i=1

diag{Whi,r}xi + vr. (1.3)

This equation can be extended to the Nr receive antennas as follows:

y = λx + v, (1.4)

where y =
[
yT1 · · ·yTNr

]T
; x =

[
xT1 · · ·xTNt

]T
; v =

[
vT1 · · ·vTNr

]T
withv ∼ NC

(
0,σ2

vINrK
)
; and

λ= [λ1 · · ·λNt ] with λi =
[
λi,1 · · ·λi,Nr

]T where λi,r = diag{Whi,r} .

Next sections address the analytical CRB derivations. In order to facilitate their calculations,

equation (1.4) is rewritten in a most appropriate form and some notations are introduced:

h =
[
hT1 · · ·hTNr

]T
is a vector of size NrNtN × 1 (where hr =

[
hT1,r · · ·hTNt,r

]T
); XDi = diag{xi}

is a diagonal matrix of size K×K; X =
[
XD1W · · ·XDNt

W
]
of size K×NNt; and X̃ = INr ⊗X

a matrix of size NrK ×NNtNr and ⊗ refers to the Kronecker product. According to these

notations, equation (1.4) is rewritten as follows:

y = X̃h + v. (1.5)

1.2.2 Main pilot arrangement patterns

Most wireless communications standards specify the insertion of training sequences (i.e. preamble)

in the physical frame. These sequences are considered as OFDM pilot symbols and are known

both by the transmitter and receiver (see e.g. [22]). Therefore the receiver exploits these pilots to

estimate the propagation channel. These pilots can be arranged in different ways in the physical

frame. This chapter focuses on three pilot patterns mainly adopted in communications systems.

They are described in what follows.

Figure 1.2a illustrates the block-type pilot arrangement where the pilot OFDM symbols are

periodically transmitted. This structure is well adapted to frequency-selective channels.
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Figure 1.1: MIMO-OFDM communications system

Figure 1.2b concerns the comb-type pilot arrangement which is more adapted to fast fading

channels. For this structure, specific and periodic sub-carriers are reserved as pilots in each

OFDM symbol. Each OFDM symbol contains Kp sub-carriers dedicated to pilots and the

remaining i.e. Kd =K −Kp sub-carriers are dedicated to the data. Every OFDM symbol has

pilot tones at the periodically-located sub-carriers.

Figure 1.2c represents a lattice-type pilot arrangement. In this structure the Kp sub-carrier

positions are modified across the OFDM symbols in a diagonal way with a given periodicity.

This arrangement is appropriate for time/frequency-domain interpolations for channel estimation.

To be adapted to these two last pilot structures, equations (1.4) and (1.5) representing the

MIMO-OFDM system model are modified as follows3:

y =
[
λp λd

] xp
xd

+ v =

 X̃p

X̃d

h + v. (1.6)

where xp and xd represent the pilot and data symbol vectors, respectively. Similarly λp and λd
are the corresponding system matrices.

In the sequel, to take into account the time index (ignored in equation (1.6)), we will refer to

the t-th OFDM symbol by y(t) instead of y.

1.3 CRB for block-type pilot-based channel estimation

This section introduces the well known analytical CRB bound [34] associated to the pilot-based

channel estimation with the block-type pilot arrangement. The CRB is obtained as the inverse
3This rewriting considers implicitly a permutation of the OFDM sub-carriers which has no impact on our

performance analysis.
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Figure 1.2: Pilot arrangements: (a) Block-type with Np pilot OFDM symbols and Nd data OFDM symbols;

(b) Comb-type with Kp pilot sub-carriers and Kd data sub-carriers; and (c) Lattice-type with Kp pilot

sub-carriers and Kd data sub-carriers with time varying positions.

of the Fisher Information Matrix (FIM) denoted Jpθθ where θ is the unknown parameter vector

to be estimated corresponding in this case to the channel vector4 i.e. θ = h.

Since the noise is an independent identically distributed (i.i.d.) random process, the FIM for

θ, when Np pilot OFDM symbols of power σ2
p are used, can be expressed as follows:

Jpθθ =
Np∑
i=1

Jpiθθ, (1.7)

where Jpiθθ is the FIM associated with the i-th pilot OFDM symbol given by [36, 35]:

Jpiθθ = E

{(
∂ lnp(y(i),h)

∂θ∗

)(
∂ lnp(y(i),h)

∂θ∗

)H
}
, (1.8)

4We ignored here the unknown noise power parameter σ2
v since its estimation error does not affect the desired

channel parameter estimation.
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where E(.) is the expectation operator; and p(y(i),h) is the probability density function of the

received signal given h.

According to the complex derivation ∂
∂θ∗ = 1

2

(
∂
∂α + j ∂

∂β

)
for θ = α+ jβ, the derivation of

equation (1.8) is then expressed by:

Jpiθθ = X̃(i)HX̃(i)
σ2

v
. (1.9)

Therefore the lower bound, denoted CRBOP (OP stands for ’Only Pilot’), of the unbiased MSE

(Mean Square Error) channel estimation when only pilots are exploited to estimate the channel

is given by
(

X̃p =
[
X̃(1)T · · ·X̃(Np)

T
]T)

:

CRBOP = σ2
vtr

{(
X̃H
p X̃p

)−1
}
. (1.10)

The best performance is reached when the pilot sequences are orthogonal, as designed in

[22, 37], in which case, X̃H
p X̃p is simplified as follows X̃H

p X̃p =Npσ
2
pINtNrN .

1.4 CRB for semi-blind channel estimation with block-type pilot arrangement

This section addresses the derivation of the CRB analytical expression for semi-blind channel

estimation when the pilot arrangement pattern is assumed to be a block-type one. In this

context the CRB computation relies not only on the known transmitted pilot OFDM symbols

(i.e. training sequences) but also on the unknown transmitted OFDM symbols.

To derive the CRB expression, three cases have been considered depending on whether the

transmitted data is stochastic Circular Gaussian (CG)5, stochastic Non-Circular Gaussian (NCG)

or i.i.d. BPSK/QPSK signals. Data symbols and noise are assumed to be both i.i.d. and

independent. Therefore the FIM, denoted Jθθ, is divided into two parts:

Jθθ = Jpθθ + Jdθθ, (1.11)

where Jpθθ is related to the FIM associated with known pilots (given by (1.7) and (1.9)), and Jdθθ
concerns the FIM dedicated to the unknown data. Depending on the data model, the vector of

unknown parameters θ is composed of complex and real parameters (i.e θc and θr) as follows:

θ =
[
θTc (θ∗c)

T θTr

]T
, (1.12)

5We adopt here the Gaussian CRB as it is the most tractable one as well as the least favorable distribution

case [38].
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where θc represents the complex-valued6 channel taps while θr concerns the unknown data and

noise parameters. The FIM for a complex parameter θ is derived in [40, 39]. With respect to

this new parameter vector, the previous pilot-based FIM matrix is expressed as:

Jpθθ =


X̃H
p X̃p

σ2
v

0 0

0 X̃H
p X̃p

σ2
v

0

0 0 Jpθrθr

 , (1.13)

where Jpθrθr will be specified later for each considered data model.

Before proceeding further, let us introduce the following notation: Denote x the signal

composed of known pilots xp and unknown transmitted data xd: x = [xTp xTd ]T . The unknown

transmitted data xd is composed of Nd OFDM symbols, i.e xd = [xTs1 xTs2 · · · x
T
sNd

]T .

1.4.1 Circular Gaussian data model

In this section, the Nd unknown data OFDM symbols are assumed to be stochastic CG and

i.i.d. with zero mean and a covariance matrix Cx = diag
(
σ2

x
)
with σ2

x
def=
[
σ2

x1 · · ·σ
2
xNt

]T
where

σ2
xi denotes the transmit power of the i-th user. The data FIM is equal to the FIM of the first

data OFDM symbol multiplied by the number of symbols Nd. The observed OFDM symbol is

CG, i.e y∼NC (0,Cy), where the output auto-covariance matrix is given by:

Cy =
Nt∑
i=1

σ2
xiλiλ

H
i +σ2

vIKNr . (1.14)

The unknown parameters θc and θr of the vector θ in equation (1.12) are given by:

θc = h ; θr =
[
σ2

x
T
σ2

v

]T
. (1.15)

For the pilot-based FIM, the sub-matrix Jpθrθr is provided by:

Jpθrθr =

 0Nt×Nt 0Nt×1

01×Nt
NrK
2σ4

v

 (1.16)

The data-based FIM of this model is given by [36]:

Jdθθ = tr

{
C−1

y
∂Cy
∂θ∗

C−1
y

(
∂Cy
∂θ∗

)H}
. (1.17)

6A complex parameter represents two real valued parameters. So, one can use either the real and imaginary

parts or equivalently, the complex parameter and its conjugate (see [39] for more details).
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The derivation of the FIM is related to the following equations: ∂Cy
∂σ2

xi
= 1

2λiλ
H
i ; ∂Cy

∂σ2
v

= 1
2IKNr ;

and ∂Cy
∂h∗i

= λCx
∂λH

∂h∗i
. To simplify the latter, for each i = 1, · · · , NNrNt, the corresponding

indices iNt = 1, · · · , Nt; iNr = 1, · · · , Nr; and iN = 1, · · · , N are calculated. Therefore after some

simplifications, we obtain ∂Cy
∂h∗i

= σ2
xiNt

λiNt

∂λHiNt
∂h∗i

. The FIM Jdθθ has the following form:

Jdθθ =Nd



Jhh Jhh∗ Jhσ2
x

Jhσ2
v

Jh∗h Jh∗h∗ Jh∗σ2
x

Jh∗σ2
v

Jσ2
xh Jσ2

xh∗ Jσ2
xσ

2
x

Jσ2
xσ

2
v

Jσ2
vh Jσ2

vh∗ Jσ2
vσ

2
x

Jσ2
vσ

2
v


, (1.18)

where

[Jhh]i,j = [Jh∗h∗ ]Hi,j = tr

C−1
y σ2

xiNt
λiNt

∂λHiNt
∂h∗i

C−1
y σ2

xjNt

∂λjNt
∂hj

λHjNt

 ,1≤ i, j ≤NtNrN (1.19)

[Jhh∗ ]i,j = [Jh∗h]Hi,j = tr

C−1
y σ2

xiNt
λiNt

∂λHiNt
∂h∗i

C−1
y σ2

xjNt
λjNt

∂λHjNt
∂h∗j

 , (1.20)

[
Jσ2

xσ
2
x

]
i,j

= 1
4 tr

{
C−1

y λiλ
H
i C−1

y λjλ
H
j

}
,1≤ i, j ≤Nt (1.21)

Jσ2
vσ

2
v

= 1
4 tr

{
C−1

y C−1
y

}
, (1.22)

[
Jhσ2

x

]
i,j

=
[
Jh∗σ2

x

]H
i,j

= 1
2 tr

C−1
y σ2

xiNt
λiNt

∂λHiNt
∂h∗i

C−1
y λjλ

H
j

 , 1≤ i≤NtNrN

1≤ j ≤Nt
(1.23)

[
Jhσ2

v

]
i
=
[
Jhh∗σ2

v

]H
i

= 1
2 tr

C−1
y σ2

xiNt
λiNt

∂λHiNt
∂h∗i

C−1
y

 ,1≤ i≤NtNrN (1.24)

[
Jσ2

xσ
2
v

]
i
= 1

4 tr
{
C−1

y λiλ
H
i C−1

y

}
,1≤ i≤Nt. (1.25)

Once the total FIM Jθθ is obtained by the summation of the two FIMs given by equations (1.13)

and (1.18) it is inverted to obtain the CRB matrix. Then, the top-left NNtNr×NNtNr subblock

of the CRB matrix (referred to as h-block) is extracted to deduce the CRB, denoted CRBCGSB ,

for the channel parameter vector.
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1.4.2 Non-Circular Gaussian data model

In this section, the unknown data OFDM symbols are assumed to be NCG with:

Cx = E
[
xxH

]
= diag

{
σ2

x
}
,

C′x = E
[
xxT

]
= ρcdiag

{
ejφ1 · · ·ejφNt

}
Cx,

(1.26)

where 0< ρc ≤ 1 is the non-circularity rate (for simplicity, we consider here a common non-

circularity coefficient for all users); and φ= [φ1 · · ·φNt ]
T the non-circularity phases.

The vectors θc and θr are given by :

θc = h ; θr =
[
σ2

x
T
φT ρc σ

2
v

]T
. (1.27)

For the pilot based FIM, Jpθrθr is still equal to zero except for its lower-right entry corre-

sponding to Jpσ2
vσ

2
v
which is equal to NrK

2σ4
v
. The data-based FIM of this model is given by the

following expression [39, 41]:

[
Jdθθ

]
i,j

= 1
2 tr

C̃−1
y
∂C̃y
∂θ∗

C̃−1
y

(
∂C̃y
∂θ∗

)H , (1.28)

where

C̃y =

 Cy C′y
C′∗y C∗y

 , (1.29)

C′y = E
[
yyT

]
=

Nt∑
i=1

ρce
jφiσ2

xiλiλi
T . (1.30)

The FIM Jdθθ has the following form:

Jdθθ =Nd



Jhh Jhh∗ Jhσ2
x

Jhφ Jhρc Jhσ2
v

Jh∗h Jh∗h∗ Jh∗σ2
x

Jh∗φ Jh∗ρc Jh∗σ2
v

Jσ2
xh Jσ2

xh∗ Jσ2
xσ

2
x

Jσ2
xφ

Jσ2
xρc

Jσ2
xσ

2
v

Jφh Jφh∗ Jφσ2
x

Jφφ Jφρc Jφσ2
v

Jρch Jρch∗ Jρcσ2
x

Jρcφ Jρcρc Jρcσ2
v

Jσ2
vh Jσ2

vh∗ Jσ2
vσ

2
x

Jσ2
vφ

Jσ2
vρc

Jσ2
vσ

2
v


, (1.31)

To derive the FIMs
[
Jdθθ

]
i,j
, the following computational details are required:

∂C̃y
∂σ2

xi
= 1

2

 λiλi
H ρce

jφiλiλi
T

ρce
−jφiλi

∗λi
H λi

∗λi
T

 , 1≤ i≤Nt, (1.32)

∂C̃y
∂φi

= 1
2σ

2
xiρc

 0 jejφiλiλi
T

−je−jφiλi∗λiH 0

 , 1≤ i≤Nt, (1.33)
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∂C̃y
∂ρc

= 1
2ρc

 0 C′y
C′∗y 0

 , ∂C̃y
∂σ2

v
= 1

2I2KNr . (1.34)

The computation of ∂C̃y
∂h∗i

for each i= 1, · · · , NNrNt corresponds to:

∂C̃y
∂h∗i

=

 D1 0

D2 + DT
2 DT

1

 , (1.35)

where, for iNt = 1, · · · , Nt; iNr = 1, · · · , Nr; and iN = 1, · · · , N .

D1 = σ2
xiNt

λiNt

∂λHiNt
∂h∗i

, D2 = ρce
jφiNt σ2

xiNt
λ∗iNt

∂λHiNt
∂h∗i

. (1.36)

Once the total FIM Jθθ is obtained, it is inverted to get the global CRB, then the h-block of

the CRB is extracted to calculate the CRB denoted CRBNCGSB .

1.4.3 BPSK and QPSK data model

This section addresses the computation of the CRB according to BPSK and QPSK data model

denoted CRBBPSKSB and CRBQPSKSB . The SIMO-OFDM system is first considered. The MIMO-

OFDM system, under the assumption of high SNR, is then discussed.

1.4.3.1 SIMO-OFDM system

The received signal at the k-th sub-carrier, is provided by:

y(k) =
[
y1,k · · ·yNr,k

]T = λ(k)σxx(k) + v(k) for k = 1, . . . ,K. (1.37)

where x(k), k = 1, . . . ,K are independent identically distributed (i.i.d.) random symbols taking

values ±1 (respectively, ±
√

2
/

2± i
√

2
/

2 ) with equal probabilities for BPSK (respectively

QPSK) modulations. λ(k) is the k-th component of the FFT of h given in equation (1.4), i.e.

λ(k) =
[
(Wh1,1)k , · · · ,

(
Wh1,Nr

)
k

]T
. The likelihood function is given as a mixture of Q Circular

Gaussian as follows:

p(y(k),θ) = 1
Q(πσ2

v)Nr
Q∑
q=1

e
−‖y(k)−λ(k)σxxq‖2

/
σ2

v
, (1.38)

with Q= 2 and xq =±1 (respectively Q= 4 and xq =±
√

2
/

2± i
√

2
/

2) for BPSK (respectively

QPSK) modulation and θ is given by (1.12) with θc = h and θr = [σx,σv]T .
Equation (1.38) is then rewritten as:

pBPSK(y(k),θ) = 1
(πσ2

v)Nr
e
−
(
‖y(k)‖2+σ2

x‖λ(k)‖2)/
σ2

v cosh
(
σx
σ2

v
g1
(
y(k)

))
, (1.39)
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pQPSK(y(k),θ) = 1
(πσ2

v)Nr
e
−
(
‖y(k)‖2+σ2

v‖λ(k)‖2)/
σ2

v cosh
(

σx√
2σ2

v
g1
(
y(k)

))
cosh

(
σx√
2σ2

v
g2
(
y(k)

))
,

(1.40)

where g1
(
y(k)

)
= 2<

(
yH(k)λ(k)

)
and g2

(
y(k)

)
= 2=

(
yH(k)λ(k)

)
(<(.) and =(.) being the real

and imaginary parts). To calculate the FIM in (1.18), the following second derivatives are first
computed:

∂2 ln pBPSK(y(k),θ)
∂h∗i ∂h

∗
j

=−σ
2
x
σ2

v

∂λH(k)
∂h∗i

∂λ(k)
∂hj

+ σ2
x
σ4

v
g1
′′(y(k)

)
ij
f, (1.41)

∂2 ln pBPSK(y(k),θ)
∂σx∂σx

=−
∥∥λ(k)

∥∥2

2σ2
v

+
g12 (y(k)

)
4σ4

v
f, (1.42)

∂2 ln pBPSK(y(k),θ)
∂σv∂σv

= 1
4

(
2Nr
σ2

v
−

6
(
‖y(k)‖2+σ2

x‖λ(k)‖2)
σ4

v
+ 6σxg1(y(k))

σ4
v

tanh
(
σx
σ2

v
g1
(
y(k)

))
+ σ2

xg12(y(k))
4σ6

v
f

)
,

(1.43)

∂2 ln pBPSK(y(k),θ)
∂h∗i ∂σx

= 1
2

(
−2σx

σ2
v

∂λH(k)
∂h∗i

λ(k) + σx
σ4

v
g1
(
y(k)

)
g1′
(
y(k)

)
i
f + 1

4σ2
v
g1′
(
y(k)

)
i
tanh

(
σx
σ2

v
g1
(
y(k)

)))
,

(1.44)

∂2 ln pBPSK(y(k),θ)
∂h∗i ∂σv

= 1
2

(
2σ2

x
σ3

v

∂λH(k)
∂h∗i

λ(k)−
2σ2

x
σ5

v
g1
(
y(k)

)
g1′
(
y(k)

)
i
f − σx

2σ3
v
g1′
(
y(k)

)
i
tanh

(
σx
σ2

v
g1
(
y(k)

)))
,

(1.45)

∂2 ln pBPSK(y(k),θ)
∂σx∂σv

= 1
4

(
4σx
σ3

v

∥∥λ(k)
∥∥2− 2σx

σ5
v
g12 (y(k)

)
f − 2g1(y(k))

2σ3
v

tanh
(
σx
σ2

v
g1
(
y(k)

)))
, (1.46)

where g1′, g1′′ and f are given by: g1′
(
y(k)

)
i

def= ∂λH(k)
∂h∗i

y(k), g1′′
(
y(k)

)
i,j

def= yH(k)
∂λ(k)
∂hj

∂λH(k)
∂h∗i

y(k)

and f def= 1
cosh2

(
σx
σ2

v
g1(y(k))

) . Using the regularity condition, we obtain:

E

[
∂ ln pBPSK(y(k),θ)

∂σx

]
= 0 ⇒ E

[
g1
(
y(k)

)
tanh

(
σx
σ2

v
g1
(
y(k)

))]
= 2σx

∥∥∥λ(k)
∥∥∥2
, (1.47)

E

[
∂ ln pBPSK(y(k),θ)

∂h∗i

]
= 0 ⇒ E

[
g1
′(y(k)

)
tanh

(
σx
σ2

v
g1
(
y(k)

))]
= σx

∂λH(k)
∂h∗i

λ(k). (1.48)

To compute the FIM entries, equations (1.47) and (1.48) of the regularity conditions are used

together with the fact that f vanishes to 0 when SNR> 0 as shown in Figure 1.3a. This

approximation is exploited to neglect all integration terms7 involving function f .
7Note that this approximation takes into account the fact that all the terms multiplying function f are also

bounded and vanish rapidly to 0 for large values of their arguments.
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Therefore, the total FIM Jdθθ is expressed as follows:

Jdθθ =Nd

K∑
k=1

Jdθθ(k), (1.49)

where the entries of Jdθθ(k) are given by:

[Jhh]i,j = [Jh∗h∗ ]Hi,j = σ2
x
σ2

v

∂λH(k)
∂h∗i

∂λ(k)
∂hj

, [Jhh∗ ]i,j = [Jh∗h]i,j = 0, (1.50)

[Jσxσx ] =

∥∥∥λ(k)
∥∥∥2

2σ2
v

, [Jσvσv ] = Nr
σ2

v
, (1.51)

[Jhσx ]i = [Jh∗σx ]Hi = σx
2σ2

v

∂λH(k)
∂h∗i

λ(k), (1.52)

[Jhσv ]i = [Jh∗σv ]Hi = [Jσxσv ] = 0. (1.53)

Remark: The high SNR approximation can be explained by the fact that the integral evaluation
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Figure 1.3: (a) Representation of function f w.r.t. the SNR, (b) BPSK Probability density function

can be approximated by a sum of two integrals corresponding to the two pdf terms (peaks)

illustrated in Figure 1.3b. In other words the FIM of the BPSK case can be approximated as a

weighted sum of gaussian FIMs.

In QPSK modulation, since high SNR (i.e. SNR> 0) is assumed, the two functions:

f1
def= 1

cosh2
(

σx√
2σ2

v
g1(y(k))

) and f2
def= 1

cosh2
(

σx√
2σ2

v
g2(y(k))

) vanish to 0. Similar approximations are
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then used and lead to the same FIM expression as for the BPSK case(
i.e.CRBBPSKSB = CRBQPSKSB

)
.

1.4.3.2 MIMO-OFDM system

In the case of (Nt×Nr) MIMO-OFDM system, the likelihood function given by equation (1.38)

is nothing else than a mixture of QNt Gaussian pdfs:

p(y(k),θ) = 1
QNt

QNt∑
q=1

1
(πσ2

v)Nr
e
−
∥∥∥y(k)−λ(k)C

1
2
x xq

∥∥∥2/
σ2

v
, (1.54)

with λ(k) =
[
λ(k),1, · · · ,λ(k),Nt

]
where λ(k),i =

[
(Whi,1)k , · · · ,

(
Whi,Nr

)
k

]T
.

Consequently, the computation of the FIM appears to be prohibitive. This CRB is computed

under high SNR assumption as a weighted sum of Gaussian FIMs as explained previously.

Jdθθ(k) = 1
σ2

vQ
Nt

QNt∑
q=1

∂λ(k)C
1
2xxq

∂θ∗


H∂λ(k)C

1
2xxq

∂θ∗

 (1.55)

[
Jdθθ(k)

]
i,j

= 1
σ2

vQ
Nt

QNt∑
q=1

xHq

(
∂λ(k)C

1
2
x

∂θ∗i

)H(
∂λ(k)C

1
2
x

∂θ∗j

)
xq[

Jdθθ(k)
]
i,j

= 1
σ2

vQ
Nt

∑
q,m,l

x∗q (m)xq (l)Γi,jm,l 1≤m, l ≤Nt
(1.56)

Where Γi,j =
(
∂λ(k)C

1
2
x

∂θ∗i

)H(
∂λ(k)C

1
2
x

∂θ∗j

)
and Γi,jm,l refers to its (m,l)-th element.

Note that QAM constellations being symmetric around zero, we have:

1
QNt

QNt∑
q=1

x∗q (m)xq (l) = 0, form , l,

1
QNt

QNt∑
q=1

x∗q (m)xq (m) = 1, form= l,

(1.57)

The latter equality is due to the chosen normalization while the former equality is due to the

symmetry (around zero) of the constellation. Therefore:
[
Jdθθ(k)

]
i,j

= 1
σ2

v
tr
{
Γi,j

}
(1.58)

The sub-blocks of the FIM given in equation (1.18) have the form shown in (1.58) with:

[Jhh]i,j = [Jh∗h∗ ]Hi,j = 1
σ2

v
tr

Cx
∂λH(k)
∂h∗i

∂λ(k)
∂h∗j

 ; [Jσxσx ] =
λH(k)λ(k)

2σ2
v

(1.59)

[Jhσx ]i,j = [Jh∗σx ]Hi,j = 1
σ2

v
tr

∂λ
H
(k)

∂h∗i
λ(k)

∂C
1
2x

∂σxj
C

1
2x

 ; [Jσvσv ] = Nr
σ2

v
. (1.60)
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And the other block terms appearing in matrix (1.18) are zeros. Note that this approximate

FIM is common to all symmetric constellations including the considered BPSK and QPSK

signals.

1.5 CRB for semi-blind channel estimation with comb-type and lattice-type pilot

arrangements

This section deals with the derivation of the CRB when the arrangement of the known pilots

is assumed to be a comb or a lattice type structure8. As in the previous section, the CRB

computation exploits both known and unknown transmitted OFDM symbols.

As developed in section 1.3, the pilot-based FIM is given by equation (1.13), where the

total number of transmitted OFDM symbols is Np =Nd =Ns. The FIM associated to the Kp

sub-carriers of the i-th OFDM symbol is then given by:

Jpihh =
X̃H
piX̃pi

σ2
v

, Jpiσ2
vσ

2
v

= NrKp

2σ4
v
. (1.61)

As for the block pilot case, the best performance is obtained when the pilot sequences are

orthogonal in which case the CRB matrix is equal to σ2
vK

σ2
pNpKp

INtNrN .

To derive the semi-blind CRB in the comb-type pilot arrangement, the mean and covariance

matrix of the likelihood function are required and are provided as follows:

µ= λpxp = X̃ph, Cy =
Nt∑
i=1

σ2
xiλdiλ

H
di

+σ2
vIKNr . (1.62)

1.5.1 Circular Gaussian data model

In this section, the unknown data OFDM symbols are assumed to be stochastic CG, the FIM of

one OFDM symbol is provided by:

Jθθ =
(
∂µ

∂θ∗

)H
C−1

y
∂µ

∂θ∗
+ tr

{
C−1

y
∂Cy
∂θ∗

C−1
y

(
∂Cy
∂θ∗

)H}
. (1.63)

Jθθ∗ = tr

{
C−1

y
∂Cy
∂θ∗

C−1
y
∂Cy
∂θ∗

}
. (1.64)

Equation (1.15) provides the vector of unknown parameters; and the h-block FIM is equal to:

Jhh =
Ns∑
i=1

X̃H
piC
−1
y X̃pi +Nstr

{
C−1

y
∂Cy
∂h∗ C−1

y

(
∂Cy
∂h∗

)H}
. (1.65)

8The lattice type structure is in fact a comb type structure with varying pilot positions along the OFDM

symbols. Hence, the CRB derivation of the latter is similar to that of the comb-type case.
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Jhh∗ =Nstr

{
C−1

y
∂Cy
∂h∗ C−1

y
∂Cy
∂h∗

}
. (1.66)

The other entries of the FIM are obtained in a similar way as in section 1.4.1. Also, the

derivative of Cy w.r.t. the channel parameters is obtained as before after replacing λi by λdi .

1.5.2 Non-Circular Gaussian data model

In the NCG case, the FIM has the same form as the CG one described by equations (1.63)

and (1.64). We just need to extend the parameter vector as in section 1.4.2 and to replace Cy

by C̃y provided in equation (1.29) and λi by λdi corresponding to the Kd data sub-carriers.

1.5.3 BPSK and QPSK data model

According to the results in section 1.4.3, the FIM is expressed as follows:

Jθθ = Jpθθ +NS

K∑
k=Kp+1

Jdθθ(k), (1.67)

where Jpθθ is deduced from equation (1.61); and Jdθθ(k)k=Kp+1, ··· ,K is given in section 1.4.3 by

equations (1.49) and (1.58).

1.6 Computational issue in large MIMO-OFDM communications systems

The aim of this section is to study the semi-blind channel estimation performance in large

MIMO-OFDM communications systems where the base station is assumed to be equipped with

a relatively large number of antennas and serves a large number of users.

Depending on the data model (CG or NCG), the CRB are provided by equations (1.17), (1.28),

(1.65) and (1.66) in the previous sections. For a large MIMO-OFDM system, the implementation

of these equations consumes not only a huge memory space but also a high computational time.

Indeed the CRB computation requires the manipulation of several large dimensional matrix

operations such as inversion, Hermitian transpose, trace and product. To avoid these strong

implementation constraints, a new efficient algorithm is proposed. It exploits the structure of the

covariance matrix composed of diagonal blocks. Before describing the developed algorithm, the

following subsection introduces the new organization of the diagonal blocks into a new structure

called vector representation.
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1.6.1 Vector representation of a block diagonal matrix

Consider R a block diagonal matrix containingMl×Mc diagonal matrices, each one of size K×K

(i.e. R :MlK×McK). Denote A the efficient organization of R where only the diagonal vectors

of each diagonal block matrix are kept so that its dimension is reduced (i.e. A : MlK ×Mc).

This organization into a new vector is given by the following notation:

aml,mc = diag(Rml,mc) , (1.68)

where aml,mc =
[
aml,mc(1) · · · aml,mc(K)

]T
is the mc column and ml block row vector of A,

1≤ml ≤Ml and 1≤mc ≤Mc. Figure 1.4 illustrates this organization for Ml = 3 and Mc = 2.
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Figure 1.4: Vector representation of the block diagonal matrix R with Ml = 3 and Mc = 2.

1.6.2 Fast computational matrix product

We propose a fast computation of the matrix product of two R-type matrices (i.e. R1 :

MlK ×McK and R2 : McK ×MxK) using their corresponding A-type matrices (i.e. A1 and

A2):

A = A1 ~A2 (1.69)

where ~ denotes the equivalent product. The element at mx column and ml block row vector of

A is given by: � being the element-wise product.

aml,mx =
Mc∑
mc=1

a1
ml,mc �a2

mc,mx . (1.70)

For example, the direct product of our (NrK×NrK) covariance matrices or their derivatives

costs N3
rK

3 flops while the optimal product costs only N3
rK (i.e. we reduce the costs by a factor
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K2). The trace of a square matrix R based on it’s vector representation A is given by:

tr{R}=
K∑
k=1

Ml∑
ml=1

aml,ml(k). (1.71)

1.6.3 Iterative matrix inversion algorithm

This subsection deals with the R-type matrix inversion (i.e. R−1) using its vector representation

A introduced previously. To do so, an iterative matrix inversion algorithm is proposed. It exploits

the Schur’s complement summarized as follows:

 E F

G H


−1

=

 E−1 + E−1FH−1GE−1 −E−1FH−1

−H−1GE−1 H−1

 , (1.72)

where E and H are assumed to be invertible matrices. The proposed iterative matrix inversion

algorithm (starting from the top-left matrix sub-block) follows the steps described below:

• Initialization step:

- Set E0 = a1,1. The inversion of E0, denoted I1, is given by I1 = 1./E0, where ./ denotes

the element-wise division.

- Set E1 = a1,1, F1 = a1,2, G1 = a2,1 and H1 = a2,2. The inversion of the matrix E1 F1

G1 H1

 of A-type, denoted I2, is given by:

I2 =

 I1,1
2 I1,2

2

I2,1
2 I2,2

2

 , (1.73)

where

I2,2
2 = 1./H1,

I1,1
2 = I1 + I1 ~F1 ~ I2,2

2 ~G1 ~ I1,

I1,2
2 =−I1 ~F1 ~ I2,2

2 ,

I2,1
2 =−I2,2

2 ~G1 ~ I1,

(1.74)

and ~ denotes the equivalent product as explained in section 1.6.2.

• The matrix inversion process is iterated. At the m-th iteration, the algorithm inverses the
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matrix

 Em−1 Fm−1

Gm−1 Hm−1

 of A-type, where:

Em−1 =


a1,1 · · · a1,m−1

...
. . .

...

am−1,1 · · · am−1,m−1

 ; Fm−1 =


a1,m

...

am−1,m

 ;

Gm−1 =
[

am,1 · · · am,m−1
]

; Hm−1 = am,m.

(1.75)

Based on the results of the previous iteration, i.e. (m−1)-th iteration and using the Schur’s

complement formula, the inverse matrix Im:

Im =

 I1,1
m I1,2

m

I2,1
m I2,2

m

 , (1.76)

is given by the following expressions:

I2,2
m = 1./Hm−1,

I1,1
m = Im−1 + Im−1 ~Fm−1 ~ I2,2

m ~Gm−1 ~ Im−1,

I1,2
m =−Im−1 ~Fm−1 ~ I2,2

m ,

I2,1
m =−I2,2

m ~Gm−1 ~ Im−1.

(1.77)

• The inversion process is iterated until the Ml-th iteration. The A-type matrix inversion is

then deduced as follows: A(−1) = IMl
.

The previous matrix inversion procedure as well as the proposed matrix product, based on

the vector representation, lead to an overall CRB computational cost saving of order O
(
K2) (i.e.

we reduce the cost from O
(
K3N3

r

)
to O

(
KN3

r

)
).

1.7 Semi-blind channel estimation performance bounds analysis

The objectives of this section is to discuss the semi-blind channel estimation performance bounds

through the derived CRB and to show the impact of the pilot reduction on the channel estimation

quality. Block-type, comb-type and lattice-type pilot arrangements are considered for (4×4) and

large MIMO-OFDM wireless systems. Note that all the CRB plots given in the sequel correspond

to the analytical expressions derived in this chapter.

1.7.1 (4× 4) MIMO-OFDM system

This section deals with IEEE 802.11n wireless communications systems (i.e. MIMO-OFDM

systems) [22]. The training sequences correspond to those specified by the standard as shown
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Parameters Specifications

Channel model IEEE 802.11n

Channel length N = 4

Number of LTF pilot OFDM symbols NLTF
p = 2

Number of HT-LTF pilot OFDM symbols NHT−LTF
p = 4

Number of data OFDM symbols Nd = 40

Pilot signal power σ2
p = 23 dBm

Data signal power σ2
x = [20 21 18 19] dBm

Number of sub-carriers K = 64

Signal to Noise Ratio SNRp = [-5:20] dB

Non-circularity rate ρc = 0.9

Non-circularity phases φ=
[π

4
π
2
π
6
π
3
]

Table 1.1: MIMO-OFDM simulation parameters.

in Figure 1.5. In the legacy preamble (i.e. 802.11a), two identical fields named Long Training

Field (LTF) are dedicated to channel estimation. Each field (or pilot) is represented by one

OFDM symbol (K = 64 samples) where a CP (L= 16 samples) is added at its front. In the High

Throughput preamble, a set of identical fields named High Throughput Long Training fields

(HT-LTF) are specified and each field is represented by one OFDM symbol (K = 64 samples)

with a CP (16 samples). These fields (or pilots) are dedicated to MIMO channel estimation.

Their number depends on the number of transmit antennas (Nt). Therefore the training sequence

length is equal to Np = NLTF
p +NHT−LTF

p . The data field is represented by a set of OFDM

symbols depending on the length of the transmitted packet.

HT-LTF…….... Data

Legacy Preamble High Throughput Preamble

2 Pilot OFDM Symbols Pilot OFDM SymbolsLTFN

HT-LTFHT-STFHT-SIGL-SIGL-LTFL-LTFL-STF

4 s 4 s 4 s 4 s

Figure 1.5: Physical frame HT-mixed format in the IEEE 802.11n standard for 20 MHz bandwith.

Simulation parameters are summarized in Table 1.1, where the used IEEE 802.11n channel

model is of type B with path delay [0 10 20 30] µs and an average path gains of [0 -4 -8 -12] dB. The

Signal to Noise Ratio associated with pilots at the reception is defined as SNRp = ‖λxp‖2

NrKσ2
v
. The
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signal to noise ratio SNRd associated with data is given in a similar way by SNRd = E[‖λxd‖2]
NrKσ2

v
.

1.7.1.1 Block-type pilot arrangement

Figure 1.7 compares the normalized CRB
(
tr{CRB}
‖h‖2

)
versus SNRp. The CRB curves confirm

that the CRBs of semi-blind channel estimation are lower than the CRB when only pilots are

exploited (CRBOP ). Note that, CRBNCGSB gives better results than the CRBCGSB while the

BPSK and QPSK cases provide the best CRB results.

Semi-blind channel estimation approach is traditionally used to improve the channel identifica-

tion accuracy. However this chapter shows that semi-blind approach can be exploited to increase

the throughput in MIMO-OFDM wireless system while maintaining the same achieved channel

estimation quality when using only pilots samples. For this, to reach the CRBOP , the proposed

strategy consists of decreasing the number of pilot samples and increasing accordingly the number

of data samples for the semi-blind case, until we reach the same estimation performance (i.e. at

the crossing point of the two CRB plots). This strategy, when preserving the orthogonality of

the pilot matrix, may lead to a hybrid OFDM symbol containing both pilot samples and data

samples as shown in Figure 1.6. Note that this new pilot arrangement yields to Nd block-type

data and Np comb-type pilot arrangement. The total FIM is then the sum of the two FIMs as

derived in sections 1.4 and 1.5.

Figure 1.8 shows the influence of increasing the number of data OFDM symbols (Nd) on the

CRBSB for a given SNRp = 10 dB around the IEEE 802.11n operating mode. Obviously, the

larger the data size is, the higher gain is obtained in favor of the semi-blind method under the

assumption of quasi-static channel. For fast varying channels, we need to consider moderate

or short packet sizes (Nd), however, we observe that the obtained performance gain remains

significant even for that case, i.e. for Nd < 40.

Figure 1.9 illustrates the CRB of semi-blind channel estimation versus the number of samples

removed from the pilot OFDM symbol for SNRp = 10 dB. The proposed strategy replaces

these removed samples by data samples leading therefore to a comb-type OFDM symbol (see

Figure 1.6). The horizontal line provides the CRB for pilot-based channel estimation and is

considered as the reference to be reached. For CRBCGSB , 840 samples are removed from pilot

OFDM symbols i.e. 55%, and for CRBNCGSB 1280 (83%) samples9 are removed from pilot OFDM

symbols. For CRBBPSKSB and CRBQPSKSB more samples are removed. Indeed only 5% are

9In this example, we have 4 transmitters each having 6 pilot symbols of size 64 so that the total number of

pilot samples is 6× 4× 64 = 1536. Hence, removing 1280 pilot samples corresponds to an approximate reduction

percentage of 83%.
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retained. These results show clearly that semi-blind estimation in MIMO-OFDM wireless system

brings a significant gain in terms of throughput.

Figure 1.10 shows the impact of the number of data OFDM symbols on the number of the

deleted pilot samples for SNRp = 10 dB. When the number of data OFDM symbols increases,

the number of samples of the pilot OFDM symbol to remove increases too. Note that the results

observed in Figure 1.9 can be deduced from Figure 1.10 for Nd = 40.

(a) : Block-type pilots arrangement (b) : Pilots samples reduction scheme
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Figure 1.6: Pilot samples reduction scheme for block-type pilot arrangement.

1.7.1.2 Comb-type and lattice pilot arrangement

This section analyzes the limit bounds of the channel estimation performance when comb-type

pilots arrangement is used. The number of pilot samples per OFDM symbol is Kp = 8, Kd = 56

for data, Ns = 40, while the other simulation parameters (i.e. N , σ2
x, σ2

p, SNRp, φ, ρ, K and

the channel model) are given in Table 1.1.

Both comb and lattice arrangements depend on the position of pilot sub-carriers in the OFDM

symbol as shown in Figure 1.2b and Figure 1.2c. Figure 1.12, shows the normalized CRB versus

SNRp. Note that the two configurations provide approximately the same results in our context.

Figure 1.13 and Figure 1.14 illustrate the CRB of semi-blind channel estimation versus the

number of samples removed from the pilots for SNRp = 10 dB. The difference between the

two figures is the way that is adopted to reduce the pilot samples: in serial or parallel way as

presented in Figure 1.11. Serial reduction procedure is done in Figure 1.13 where we remove
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Figure 1.7: Normalized CRB for the block-type pilot arrangement versus SNRp(dB)

Kp pilot samples from each OFDM symbol in a serial way. As a result, we obtain a frame that

contains both comb and block type pilot arrangements. Figure 1.14 shows the result of parallel

reduction, i.e. we reduce the number of pilot’s sub-carriers in all OFDM symbols simultaneously

(i.e. each time, one removes Ns pilot samples that are replaced by data samples). The advantage

of the parallel reduction is that we preserve the frame structure (i.e. Comb-type).

Note that with the ’parallel’ approach, 50% of pilot samples are removed against only 40% in

a serial way in the case of CG signal model. For the NCG signal model, 81% of pilot samples

are removed with the parallel scheme and 70% with serial scheme. When BPSK/QPSK model

signals are used, the same amount of pilot samples reduction is reached(90%).

Table 1.2 summarized the obtained reduction rates with the block-type and the comb-type

(with parallel and serial schemes), respectively. Note that the reduction rates are relatively close

with a slight advantage in favour of the block-type pilot design.

1.7.2 Large MIMO-OFDM system

In this section, the MIMO-OFDM system is composed of 10 transmit antennas and 100 receive

antennas involving the manipulation of huge matrices of size 6400×6400 exploiting therefore the
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Figure 1.8: Normalized CRB for the block-type pilot arrangement versus Nd

CG NCG BPSK/QPSK

block-type 55% 83% 95%

Comb-type (in parallel) 50% 81% 90%

Comb-type (in serial) 40% 70% 90%

Table 1.2: Block-type and Comb-type comparisons.

fast computational algorithms developed in section 1.6. To the best of our knowledge, until now

no standard has been dedicated to such MIMO-OFDM system. So, Zadoff-Chu (ZC) sequences,

used in the LTE standard [4], are adopted in this chapter as pilot training sequences. ZC sequence

is defined by the following equation:

xu (k) = e−
jπuk2
K , (1.78)

when the sequence length, denoted K, is even and u ∈ {1,3,5 · · ·K − 1} being the sequence index

[42]. For the channel model, the specular model proposed in [43] is used, where we assume

a uniform linear array antenna with antenna spacing equals to half wavelength. We consider

channels having N = 4 i.i.d. paths with: an average path gains of [0 -2 -6 -10] dB, Directions Of

Arrivals of
[π

5
π
10

π
7
π
3
]
and Directions Of Departures of

[π
4
π
6
π
10

π
3
]
.
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Figure 1.9: Normalized CRB versus the number of deleted pilot samples for the block-type pilot arrangement

Figure 1.15 compares the normalized CRB versus SNRp. The CRB curves show clearly that

the CRBSB of semi-blind channel estimation are lower than the CRB of the only pilots case

(CRBOP ).

Figure 1.16 illustrates the CRB of semi-blind channel estimation versus the number of samples

removed from the pilot OFDM symbols using a block-type pilot arrangement and for SNRp = 10

dB. The horizontal line provides the CRB for full pilot-based channel estimation and is considered

as the reference to be reached. For CRBCGSB , 54% samples are removed from the pilot OFDM

symbol, and for CRBNCGSB 87% samples are removed from the pilot OFDM symbol. These results

show clearly that semi-blind channel estimation in large MIMO-OFDM wireless system brings a

significant gain in terms of throughput.

1.8 Discussions and concluding remarks

This chapter has focused on the theoretical performance limit of the semi-blind channel estimation

in MIMO-OFDM and large MIMO-OFDM systems. Analytical derivations of the channel

estimation CRBs have been provided for different data models and for different pilot design

patterns (i.e. block-type, lattice-type and comb-type pilot arrangement). In particular, the
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Figure 1.10: Number of deleted pilot samples versus Nd for the block-type pilot arrangement.
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Figure 1.11: Pilot samples reduction scheme for comb-type and lattice-type pilot arrangements.

previous analytical study includes new CRB derivations for the Non-Circular Gaussian and

the BPSK/QPSK data model cases. For the latter, a realistic CRB approximation has been

given to bypass the high complexity of the exact BPSK/QPSK CRB computation. Another
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Figure 1.12: Normalized CRB versus SNRp for the comb-type pilot arrangement

contribution of this chapter consists of an effective computational technique to deal with the

huge-size matrix manipulation needed for the CRB calculation in the large size MIMO scenario.

Finally, based on the previous CRB derivation, through investigations of the pilot reduction

potential of the semi-blind channel method has been conducted in the contexts of IEEE 802.11n

MIMO-OFDM and large MIMO-OFDM, respectively. The main outcomes of this work consist of

the key observations made out of the previous investigation which can be summarized as follows:

• The most important observation is the huge pilot samples reduction (in the considered

examples, one can reach more than 95% reduction of the pilot size) and consequently the

throughput gain obtained thanks to the semi-blind channel estimation while maintaining

the same pilot-based channel estimation quality. Note that, this pilot size reduction is an

important research topic that has been considered by several authors including [44] where

a semi-orthogonal pilot design is introduced allowing for a savings of the overhead size of

approximately 50% of the overhead size. Herein, we show that, thanks to the semi-blind

approach, the attainable reduction is much higher as it can exceed 95% of the original size.

• For the BPSK/QPSK case, we have observed that the pilot reduction is maximal in that the

left pilot samples are necessary to remove the inherent ambiguity of the blind identification
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Figure 1.13: Normalized CRB versus the number of deleted pilot samples for the comb-type pilot arrange-

ment (serial reduction)

techniques. One can even suggest completely removing the pilot for channel estimation

and use the synchronization sequence to get rid of the blind identification indeterminacies.

• For large dimensional systems, the design of a large number of semi-orthogonal sequences

is a challenging problem [44]. As we have shown that only small size pilot sequences are

needed for the semi-blind channel estimation, the design of such semi-orthogonal pilots

becomes much easier.

• The non-circularity property is shown to provide an additional gain of about 30% in terms

of pilot size reduction as compared to the circular case. In addition when considering the

finite alphabet nature of the transmit signal (BPSK/QPSK), one can almost double the

reduction rate obtained for the Gaussian circular signals.

• For quasi-static channels, we observed that the block-type pilot design is slightly preferable

to the comb-type one. Also, in our investigation we considered two types of comb structures

(Figure 1.2b and Figure 1.2c) but both lead to approximately the same performance limit.

• The performance gains observed in the context of large MIMO-OFDM are slightly higher
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Figure 1.14: Normalized CRB versus the number of deleted pilot samples for the comb-type pilot arrange-

ment (parallel reduction)

than those observed for IEEE 802.11n MIMO-OFDM systems. In fact, the additional gain

is due to the large number of receive antennas as compared to the number of transmit

antennas (100 receive antennas and 10 transmit antennas in the considered example) which

represents a typical configuration in large MIMO systems [14].

• In this chapter, we have chosen to exploit the semi-blind strategy to gain in terms of data

throughput while preserving the channel estimation quality, however other ways exist to

take advantage of the SB scheme. For instance, one can use the SB methods to improve

the channel estimation and consequently the symbol detection quality as shown in [26, 27].

Or otherwise, one can use the pilot size shortening to achieve a non negligible transmit

power reduction as shown in [33], an objective aligned with the current trends for a green

communications systems.
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formance analysis

In order to succeed,

we must first believe that we can.

Nikos Kazantzakis.
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EUSIPCO 2018 conference1.

Channel estimation is a critical process in a massive MIMO-OFDM system. However, pilot

contamination, an undeniable challenging issue, severely affects the performance of the system and

hence the aim of this chapter is to investigate the effectiveness of semi-blind channel estimation

approaches, using the Cramér Rao Bound (CRB) tool. This analysis demonstrates in particular

that when considering the finite alphabet signals, it is possible to efficiently solve the pilot

contamination problem with semi-blind channel estimation approach.

Abstract

1 [45] O. Rekik, A. Ladaycia, K. Abed-Meraim, and A. Mokraoui, "Performance Bounds Analysis for Semi-Blind

Channel Estimation with Pilot Contamination in Massive MIMO-OFDM Systems," in 2018 26th EUSIPCO, Sep.

2018, Rome, Italy.
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2.1 Introduction

Massive Multiple-Input Multiple-Output (MIMO) is a promising technology for the next genera-

tion cellular networks [17]. With a higher number of Base Station (BS) antennas (beyond 100

antennas), compared to the classical MIMO systems, massive MIMO technology has proven its

ability to improve the spectral and power efficiency [18]. So that, both throughput and system

capacity will be highly enhanced in order to satisfy the increasing amount of data exchange and

demand for quality of service for the future cellular networks [46].

In order to fully exploit all of the potentials offered by a massive MIMO system, accurate

Channel State Information (CSI) is necessary. It is obtained only during the uplink transmission,

thanks to the channel reciprocity property and according to the widely accepted Time Division

Duplexing (TDD) protocol [30], [31]. In that case, all users in all cells send their uplink training

sequences synchronously which are used, by the BS, to estimate the uplink channels. The

traditional methods used to get the CSI rely on the pilot-based channel estimation (e.g. [17]).

However, due to the non-orthogonality of the pilot sequences, these methods are severely affected

by what is called pilot contamination [47], as depicted in Figure 2.1. It is one of the major

issues of massive MIMO systems that must be addressed because its effect cannot be reduced by

increasing the number of BS antennas.

Figure 2.1: Illustration of pilot contamination in massive MIMO-OFDM systems where user1,2 and user2,2

(resp. user1,1 and user2,1) share the same training sequence.

Many pilot contamination mitigation strategies have been proposed. Some of them propose
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to create more orthogonal pilots by slicing the time and frequency resources [48], however such a

choice will lead to a system capacity decrease. Other approaches are based on suppressing the

inter-cell interference by appropriate signal processing techniques, based on statistical information

of channel matrices [49], [50]. In such approaches, only a small portion of spatial dimensions

is used for data transmission, whereas the unemployed dimensions will be used for suppressing

noise and interference. However, many assumptions have to be considered to get statistical

information of channel matrices. Instead of depending only on pilot sequences, a data-aided

channel estimation has been considered (e.g. [51]). Thus, besides pilots, the decoded data is used

for channel estimation. Nonetheless, It is strongly assumed to have the ability to recover most of

data for accurate channel estimation. Some approaches have focused on designing appropriate

inter-cell communications protocols and resource allocation [52, 53, 54] in order to allow reusing

pilots without inter-cell interference. The counterpart is that the information exchange among

cells will add more complexity to the cellular networks.

In recent works, a particular attention has been drawn to blind (e.g. [55, 56]), and semi-blind

(e.g [57, 58, 59]) methods. The former is fully based on the statistical properties of the transmitted

data, whereas the latter depends on the joint use of pilots and data.

The focus of this study falls into the scope of performance analysis of semi-blind channel

estimation with pilot contamination in the context of multi-cell massive MIMO-OFDM systems.

For an estimator-independent performance analysis, the Cramér Rao Bound (CRB) is derived

for both pilot-based and semi-blind channel estimation by taking into account a perfect synchro-

nisation between the BS of the cell of interest and the neighboring cells BSs. This study is an

extension of the MIMO-OFDM case, done in chapter 1, to a massive MIMO-OFDM system, by

taking into account the multi-cell context and the phenomenon of pilot contamination in the

case of synchronized BSs transmissions.

It is worth to note that semi-blind techniques allow to retain the advantages of pilot-based and

blind-based approaches; i.e. more channel estimation accuracy and more robustness against pilot

contamination, while reducing their drawbacks; i.e. pilot contamination and inherent ambiguity

with high computational complexity.

2.2 Massive MIMO-OFDM system model

This section presents the massive MIMO-OFDM wireless system model adopted in this thesis.

An uplink transmission is considered. The system is composed of Nc cells each one having one

BS with Nr antennas and Nt randomly located users using each a single antenna.
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Let us ignore at first the received signals from the adjacent cells. Therefore the received

signal, after cyclic prefix removal and FFT, at the r-th BS antenna of the l-th cell, assumed to

be a K sub-carriers OFDM signal, is given by (see chapter 1):

yl,r =
Nt∑
i=1

F T (hl,i,r)
FH

K
xl,i + vl,r, (2.1)

where K is the OFDM symbol length; F represents a K-point Fourier matrix; hl,i,r is a N × 1

vector representing the channel taps between the i-th user, of the l-th cell, and the r-th receive

antenna; T (hl,i,r) is a circulant matrix; xl,i is the i-th user OFDM symbol of cell l. vl,r is assumed

to be an additive white Circulant Gaussian (CG) noise so that E[vl,r(k)vl,r(i)H ] = σ2
vlIKδki

where σ2
vl is the noise variance at the l-th cell; δki being the Kronecker delta operator.

Using the eigenvalue decomposition of the circulant matrix T (hl,i,r) given by:

T (hl,i,r) = FH

K
diag

{
Whl,i,r

}
F, (2.2)

the received signal, of dimension NrK × 1, at the l-th BS can be re-expressed as follows:

yl = λlxl + vl, (2.3)

where yl = [yTl,1...yTl,Nr ]
T ; xl = [xTl,1...xTl,Nt ]

T ; vl = [vTl,1...vTl,Nr ]
T ; λl = [λl,1...λl,Nt ] with λl,i =

[λl,i,1...λl,i,Nr ]T where λl,i,r = diag{Whl,i,r} and W is formed by the N first columns of F.

In order to facilitate the derivation of the CRB w.r.t. h1, equation (2.3) is rewritten as

follows:

yl = X̃lhl + vl, (2.4)

where hl = [hTl,1,1...hTl,Nt,1......h
T
l,1,Nr ...h

T
l,Nt,Nr

]T is a NrNtN × 1 vector; X̃l = INr ⊗Xl is a

NrK ×NrNtN dimensional matrix with Xl = [Xl,D1W...Xl,DNt
W] of size K ×NtN , and Xl,Di

is a K×K diagonal matrix containing the i-th user symbols, i.e. Xl,Di = diag(xl,i), and ⊗ refers

to the Kronecker product.

Now, let us take into account the effect of the neighboring cells on the first one, considered

without loss of generality as the interest cell. With the assumption of perfect synchronization

between the Nc cells, equation (2.3) becomes:

y1 =
Nc∑
l=1
λlxl + v1 = λtotxtot + v1, (2.5)

where λtot = [λ1 . . .λNc ] and xtot = [xT1 . . .xTNc]T .

Similarly to (2.4), equation (2.5) can be rewritten as follows:

y1 =
Nc∑
l=1

X̃lhl + v1 = X̃tothtot + v1, (2.6)



50 Chapter 2. Performances analysis (CRB) for massive MIMO-OFDM systems

where X̃tot = [X̃1 . . .X̃Nc ] and htot = [hT1 . . .hTNc ]
T .

2.3 Pilot contamination effect

Herein, the effect of pilot contamination on the performance of semi-blind channel estimation

approaches is investigated, under the assumption of perfectly synchronized BSs in the different

Nc cells in a massive MIMO-OFDM system. In such a case, and with same pilots in all cells, the

worst case of pilot contamination occurs as explained next.

During the uplink data transmission, the BS has to learn the transmission channel by

exploiting the known symbols (i.e. pilots) at the uplink. To adopt this strategy the pilots used

within the same cell and in the neighboring cells should be mutually orthogonal. However this

necessitates a complex cell synchronization and cooperation scheme. In addition, the channel

time coherence [60], [61] limits the total number of orthogonal pilots leading to the reuse of the

same pilots in many neighboring cells. The worst case occurs when the same set of pilots is

reused in all Nc adjacent cells. In this situation, equation (2.6) becomes:

y1 =
Nc∑
l=1

X̃1Phl + v1 = X̃1P

Nc∑
l=1

hl + v1, (2.7)

where X̃1P corresponds to the pilot symbols of the first cell.

To illustrate the pilot contamination effect in that case, the Least Squares (LS) estimate of

the first cell channel vector, i.e. h1, is given by:

ĥLS1 = X̃#
1Py1 = h1 +

Nc∑
l=1,l,1

hl + X̃#
1Pv1, (2.8)

with X̃#
1P = (X̃H

1P X̃1P )−1X̃H
1P is the pseudo inverse of X̃1P .

This equation clearly shows that the channel estimate ĥLS1 is affected by an additional bias

corresponding to the sum of channel components of the users sharing the same pilot sequences

in different cells. This phenomenon, referred to as pilot contamination, severely degrades the

channel estimation performance. To overcome this problem, an alternative solution consists of

using semi-blind channel estimation approach. In the sequel, the potential of this approach is

analyzed and discussed through the use of the CRB tool.
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2.4 Cramér Rao Bound derivation

Here we derive the CRB for pilot-based and semi-blind channel estimation. For the complex

valued channel taps, the parameters vector θ is defined, in our case, as follows:

θ = [hTtot (h∗tot)
T ]T , (2.9)

where, for simplicity, the signal and noise powers are assumed to be known.

Under the assumption that pilots and data (corresponding to block-type arrangement) are

statistically independent, as in chapter 1 the FIM is given by equation (1.11).

2.4.1 CRB for pilot-based channel estimation

The noise components are assumed to be independent identically distributed (i.i.d.), and only

Np pilots are used for channel estimation. Based on the data model, the pilot-based FIM can be

expressed by:

Jpθθ =
Np∑
i=1

Jpiθθ, (2.10)

with Jpiθθ is the FIM associated to the pi-th pilot symbol given by:

Jpiθθ =

Jpihtothtot 0

0 Jpih∗toth∗tot

 , (2.11)

where Jpih∗toth∗tot = (Jpihtothtot)
∗.

By considering a massive MIMO-OFDM system with Nc cells, the pilot-based FIM associated

to the channel vector htot is then expressed as follows:

Jpihtothtot =
X̃H
tot,piX̃tot,pi

σ2
v1

, (2.12)

which can also be written in a more detailed form:

Jpihtothtot = 1
σ2

v1


X̃H

1pi
X̃1pi . . . X̃H

1pi
X̃Ncpi

...
. . .

...

X̃H
Ncpi

X̃1pi . . . X̃H
Ncpi

X̃Ncpi

 . (2.13)

Ideally, if the pilots of the cells are mutually orthogonal, i.e. X̃H
i,pi

X̃j,pi = 0 ∀ i , j, then the

FIM becomes a bloc diagonal matrix which is the most favorable case. On the other hand, if

the cells share the same set of pilots, i.e. the worst case of pilot contamination, the FIM is then
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equivalent to:

Jpihtothtot = 1
σ2

v1


X̃H

1pi
X̃1pi . . . X̃H

1pi
X̃1pi

...
. . .

X̃H
1pi

X̃1pi . . . X̃H
1pi

X̃1pi

 . (2.14)

To compute the CRB, the FIM has to be inverted. However, according to this last equation,

Jpihtothtot , and consequently Jhtothtot , is not a full rank matrix. In fact, according to proposition

2.1, the kernel of this FIM is of dimension 2(Nc− 1)NtNrN , corresponding to the number of

indeterminacies we need to get rid of. In other words, this translates the non-identifiability of

the channel vector of the interest cell when pilot contamination occurs.

Proposition 2.1. The FIM in (2.14) is a singular matrix and its kernel dimension is 2(Nc−

1)NtNrN which corresponds to the number of indeterminacies of the problem (i.e. the number

of unknown real channel parameters for the Nc− 1 neighboring cells).

Proof: See appendix 2.A.

2.4.2 CRB for semi-blind channel estimation

In this section we derive the CRB for the semi-blind channel estimation for a multi-cell massive

MIMO-OFDM system with pilot contamination. Both pilots and data are taken into account in

the derivation of the FIM as shown in equation (1.11). At first, we investigate the performance

bounds of the semi-blind scheme when only the Second Order Statistics (SOS) are considered.

For that, we use a Circular Gaussian data model as developed in chapter 1. Latter on, we extend

this analysis to the case where information based on Higher Order Statistics is available. This

will be illustrated using a finite alphabet source signal.

2.4.2.1 Gaussian source signal

As mentioned previously, we consider here only the SOS corresponding to the Gaussian CRB.

Hence, we assume that the data symbols are i.i.d. Circular Gaussian distributed with zero mean

and a diagonal covariance matrix composed of the users’ transmit powers i.e. Cxl = diag(σ2
xl,i)

with l = 1...Nc and i= 1...Nt. Under this assumption, the received signal y1 is Circular Gaussian

with covariance matrix:

Cy1 =
Nc∑
l=1
λlCxlλ

H
l +σ2

v1IKNr . (2.15)

The data-based FIM can be expressed as follows (e.g.[62], [35]):

Jdhtothtot =

Jdhtothtot Jdhtoth∗tot
Jdh∗tothtot Jdh∗toth∗tot

 , (2.16)



2.4. Cramér Rao Bound derivation 53

where Jdhtothtot is a (NcNrNtN)-dimensional matrix with elements Jdhihj given by:

Jdhihj = tr

C−1
y1

∂Cy1

∂h∗i
C−1

y1

(
∂Cy1

∂h∗j

)H . (2.17)

The i-th component of the vector htot corresponds to the channel tap of indices {iNc , iNt , iNr , iN}

associated to the cell, the user, the BS antenna and the time lag of hi. Based on the results

provided in chapter 1, Jdhihj is given by:

Jdhihj = (Jdh∗i h∗j )
∗ = tr

C−1
y1 σ

2
iNc ,iNt

λiNc ,iNt

∂λHiNc ,iNt
∂h∗i

C−1
y1 σ

2
jNc ,jNt

∂λjNc ,jNt
∂hj

λHjNc ,jNt

 (2.18)

and

Jdhih∗j
= (Jdh∗i hj )

∗ = tr

C−1
y1 σ

2
iNc ,iNt

λiNc ,iNt

∂λHiNc ,iNt
∂h∗i

C−1
y1 σ

2
jNc ,jNt

λjNc ,jNt

∂λHjNc ,jNt
∂h∗j

 (2.19)

It is important to notice that using a semi-blind estimation method with only the SOS of the

received data is not sufficient to alleviate the pilot contamination problem. Indeed, the SOS-SB

scheme reduces the number of indeterminacies but does not get rid of all of them. More precisely,

we have the following proposition:

Proposition 2.2. The FIM in (2.17) is a singular matrix and, in the case Nr >NcNt, its kernel

dimension is (NcNt)2 correponding to the number of indeterminacies in the blind channel

estimation case. When considering the SOS-based semi-blind channel estimation, the kernel

dimension of the FIM in (1.11) becomes ((Nc− 1)Nt)2.

Proof: See Appendix 2.B.

2.4.2.2 Finite alphabet source signal

Here we consider the non Gaussian nature of communications signals through the use of a finite

alphabet (BPSK) data model. The observed signal at the k-th sub-carrier is given by [32]:

y1(k) = λtot(k)Cx
1
2 x(k) + v1(k) for k = 1, ...,K, (2.20)

where λtot(k) is the k-th Fourier component of htot; Cx is a block diagonal matrix formed by

users’ transmit powers of each cell; x(k) = [xT1,(k)...x
T
Nc,(k)]

T with xl,(k) = [xl,1,(k)...xl,Nt,(k)]T so

that xl,i,(k) for k = 1...K are i.i.d. BPSK symbols taking values ±1 with equal probabilities.

In this case, the likelihood function is a sum of 2NcNt Gaussian pdfs given by:

p(y1(k),θ) = 1
2NcNt

2NcNt∑
q=1

1
(πσ2

v1)Nr
e

−

∥∥∥∥∥y1(k)−λtot(k) Cx
1
2 xq

σ2
v1

∥∥∥∥∥
, (2.21)
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where xq is the q-th realization of x(k).

To obtain a tractable FIM expression, a realistic approximation is proposed in [32] leading to

the data-based FIM, at the k-th sub-carrier, given by:

Jdhtothtot(k) = 1
σ2

v12NcNt
2NcNt∑
q=1

∂λtot(k)Cx
1
2 xq

∂h∗tot

H∂λtot(k)Cx
1
2 xq

∂h∗tot

 . (2.22)

The total data-based FIM is then obtained as follows:

Jdhtothtot =Nd

K∑
k=1

Jdhtothtot(k), (2.23)

where Nd is the total number of data symbols.

Thanks to the implicit higher order statistics information available in this non-Gaussian case,

the semi-blind based channel estimation is able to alleviate completely the pilot contamination

problem according to the following proposition:

Proposition 2.3. The non Gaussian semi-blind FIM as given in (2.17) is non singular meaning

that all indeterminacies have been removed.

Proof: See Appendix 2.C.

In this case, the top-left (NrNtN)× (NrNtN) block of the FIM inverse is considered as the

CRB for the semi-blind estimation of the first cell channel vector.

2.5 Performance analysis and discussions

In the following section, numerical experiments will be performed to highlight the different results

given in the previous sections for a massive MIMO-OFDM system. The pilots are generated

according to Zadoff-Chu sequences [4], whereas the simulation parameters are summarized in

Table 2.1, unless otherwise mentioned.

Experiment 1: Figure 2.2 illustrates the normalized CRB for the channel parameters vector

h1, given by tr{CRB}
‖h1‖2 , for semi-blind channel estimation (SB) with respect to the SNR for BPSK

model as well as the Gaussian (G) data model using orthogonal pilots. A comparison is made

with respect to the pilot-based CRBO
OP case using orthogonal (O) intra and inter-cell pilots. Note

that CRBNO
OP and CRBG−NO

SB for the non orthogonal case (when the adjacent cells use the same

pilots) are not considered since, as mentioned in sections 2.4.1 and 2.4.2.1, the channel parameters

vector of the interest cell cannot be identified in that cases. However, such an ambiguity is

removed by semi-blind techniques for finite alphabet source signals as illustrated by the plot of

CRBBPSK−NO
SB , which stands for the semi-blind CRB of a BPSK signal for the worst case of non
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Parameters Specifications

Number of cells Nc = 3

Number of receive antennas Nr = 100

Number of users per cell Nt = 2

Channel taps N = 4

Number of OFDM sub-carriers K = 64

Number of OFDM pilot symbols Np = 4

Number of OFDM data symbols Nd = 40

Nc pilot signal powers (dBm) Pxp = [23 18 15]

(Nt)×Nc data signal powers (dBm) Pxd = [(20 18.8431), (15.7062 13.3648), (11.2 9.01)]

Table 2.1: Massive MIMO-OFDM simulation parameters.

orthogonal (NO) pilots (i.e. adjacent cells using the same pilots). As can be seen, CRBBPSK−NO
SB

is almost superposed with CRBBPSK−O
SB , which denotes the case of orthogonal pilots.
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Figure 2.3: Gaussian CRB versus SNR with different orthogonality levels.

Experiment 2: We investigate now the impact of pilots orthogonality level through the

following metric:

ρ=

∥∥∥X̃H
iP

X̃jP

∥∥∥∥∥∥X̃iP

∥∥∥∥∥∥X̃jP

∥∥∥ , (2.24)

where ‖.‖ is the 2-norm.

Note that 0 ≤ ρ ≤ 1, so that ρ= 0 corresponds to the perfect orthogonality, whereas ρ= 1

stands for the worst case of pilot contamination, i.e. same synchronized pilots.

As can be expected, in the case of non-perfectly orthogonal pilots, the channel vector estimation

is slightly degraded but even with a high level of non orthogonality (ρ= 70% for the SB case and

ρ= 50% for the OP case), the channel estimation for the OP and the Gaussian cases remains

possible with relatively good estimation accuracy for moderate and high SNRs as illustrated in

Figure 2.3.

Experiment 3: By considering the worst scenario of pilot contamination, the effect of the

number of OFDM data symbols, i.e. Nd, on the CRBBPSK−NO
SB , for a given SNR= 10dB, is

illustrated in Figure 2.4. It can be observed that, starting by one OFDM data symbol, the BS

can successfully identify and estimate the channel components of the interest cell. Moreover,
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the CRB is significantly lowered with just few tens of OFDM data symbols and almost reaches

the performance of the orthogonal case, i.e. CRBBPSK−O
SB . Such a result matches perfectly

with the limited coherence time constraint of massive MIMO systems and helps to reduce the

computational cost. As compared to CRBO
OP we can see a significant performance gain in favor

of the semi-blind method.

Experiment 4: By considering again the worst case of pilot contamination, the behavior

of the CRBs considered in Figure 2.2, with respect to the number of BS antennas, i.e. Nr, is

investigated in Figure 2.5. It is easily observed that when Nr increases, which leads also to the

increase of the number of channel components to be estimated, the CRBBPSK
SB is significantly

lowered thanks to the increased receive diversity. Such a result supports the effectiveness of

semi-blind techniques for pilot contamination mitigation in the context of massive MIMO-OFDM

systems.

Experiment 5: The channel order is often not known with accuracy and needs extra processing

for its estimation. Thus, in Figure 2.6 we investigate the behavior of the aforementioned

performance when the number of the channel taps is overestimated, i.e. considered equal to its

maximum value corresponding to the cyclic prefix size (N = L). For illustration purpose, we
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have considered two cells, each with one user and a BS with Nr = 10 antennas. As can be seen

from Figure 2.6, the channel order overestimation leads to a performance loss of approximately 6

dB which corresponds to the ratio (in dB) between the overestimated and the exact channel

orders.

2.6 Conclusion

The focus of this chapter is on the performance analysis of semi-blind channel estimation

approaches, under the effect of pilot contamination. A multi-cell massive MIMO-OFDM system

has been considered with perfectly synchronized BSs. An estimator-independent analysis has

been conducted on the basis of the CRB. More precisely, analytical CRB expressions have been

derived by considering, the worst case of pilot contamination for different data models. For the

case of pilot-based channel estimation, pilot contamination introduces a non-identifiability of the

channel vector of the interest cell. A 2(Nc−1)NtNrN -dimensional kernel of the FIM corresponds

to such an ambiguity.

For the case of semi-blind channel estimation, it is possible to solve efficiently the pilot

contamination problem when considering finite alphabet communications signals. However, the

issue of channel identifiability is not fully solved when considering only the second order statistics.
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2.A Proof of proposition 2.1

Proof. The FIM kernel dimension corresponds to the number of indeterminacies we need to remove

(or equivalently the number of constraints we need to consider) to achieve full identifiability.

In the case of only pilots channel estimation in the presence of pilot contamination, the only

parameters vector that can be estimated without bias is htot =∑Nc
i=1 hi.

Now, from htot one is able to determine every single channel hi, i = 1, ...Nc iff (Nc − 1)

channel vectors are known (besides htot). Since each channel vector is complex valued and of

size NtNrN , this corresponds to 2(Nc− 1)NtNrN unknown real-valued parameters needed for

full identifibility.

2.B Proof of proposition 2.2

Proof. Considering the data only first (i.e. blind context), it is known that if the Nr × (NcNt)

channel transfer function is irreductible, then one can estimate the channel parameters using the

SOS up to an (NcNt)× (NcNt) unknown constant matrix [63],[64].

Now, since we assumed the source power known, the latter indeterminacy reduces to an

unknown (NcNt)× (NcNt) unitary matrix, which can be modeled by (NcNt)2 free real angle
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parameters.

Somehow, the data SOS allows us to reduce the convolution model into an instantaneous

(NcNt) dimensional linear mixture model.

Finally, as in the only pilots case, due to the pilot contamination, the only way to complete

the channel identification via the pilot use, is to have (know) the space directions of the interfering

users of the neighboring cells corresponding to ((Nc− 1)Nt)2 real parameters to determine.

2.C Proof of proposition 2.3

Proof. For non-Gaussian (communications) signals, the information provided by the Second

Order Statistics as well as Higher Order Statistics of the data allows us to identify the channels up

to an unknown (NcNt)× (NcNt) diagonal unitary matrix(see for example identifiability results in

[65]). This corresponds to NcNt unknown real parameters that can be easily estimated through

the use of the pilots.
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SIMO-OFDM system CRB derivation and application

Our greatest weakness lies in

giving up. The most certain way to

succeed is always to try just one more

time.

Thomas A. Edison.

This chapter focuses on SIMO-OFDM communications system, which is a particular case of

the MIMO-OFDM case derived in chapter 1. Unlike in chapter 1, where the CRB derivations

have been done in the frequency domain, the performances limits are derived in time domain. By

using the CRB tool, before performing Fourier transform (i.e. in time domain), we compare the

estimation error variance of the pilot-based and semi-blind based techniques for different data

models1(deterministic and stochastic models). A practical application of the derived CRB is

proposed in this chapter, which consists on the protection of the exchanged data between a drone

and mobile stations against blind interceptions2.

Abstract

1 [66] A. Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "What semi-blind channel estimation

brings in terms of throughput gain?" in 2016 10th ICSPCS, Dec. 2016, pp. 1-6, Gold Coast, Australia.
2 [67] A. Ladaycia, A. Belouchrani, K. Abed-Meraim, and A. Mokraoui, "Parameter optimization for defeating

blind interception in drone protection," in 2017 Seminar on Detection Systems Architectures and Technologies

(DAT), Feb. 2017, pp. 1-6, Alger, Algeria.
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3.1 Introduction

Channel estimation in SIMO-OFDM communications systems can be done in time domain

(i.e. before applying Fourier transform to the received signal) or in the frequency domain as

developed in chapter 1. This chapter focuses on the channel estimation performance of a SIMO-

OFDM wireless communications system. The objective is to show that a semi-blind channel

estimation approach based on a compromise between the inserted block-type arrangement pilots

and the transmitted symbols can preserve the SIMO-OFDM performance system while increasing

significantly the information throughput. In order to analyze the theoretical performance limit

of the different considered channel estimation approaches, CRB is derived. The CRB bounds, in

a IEEE 802.11n wireless context, are then analyzed and discussed.

A practical application of the derived CRBs consists of protecting the exchanged data between

a drone and mobile stations against blind interceptions. The developed strategy for a SIMO-

OFDM communications system consists to prevent the interceptors to achieve a good blind

channel estimation while allowing an accurate channel identification by the drone in the same

wireless transmission conditions. To do so, a relevant selection of the communication parameters

such as an appropriate data model with a specific data power is proposed. Simulations show

that, under the same wireless transmission conditions, the blind channel estimation approach

achieves the worst performance ensuring therefore the protection of the transmitted data.

3.2 SIMO-OFDM wireless communications system

Before deriving the CRB to analyze the performance of the channel estimation approaches, this

section introduces the mathematical representation, in time domain, of the SIMO-OFDM wireless

communications system.

Consider a SIMO-OFDM wireless system using Nr receive antennas, as shown in Figure 3.1,

receiving the signal y(k) given by:

y(k) =
N−1∑
i=0

h(i)x(k− i) + v(k), (3.1)

where h(i) = [h1(i) · · · hNr(i)]
T ; y(k) = [y1(k) · · · yNr(k)]T ; and v(k) = [v1(k) · · · vNr(k)]T is an

additive independent white Complex-Gaussian circular noise with E
[
v(k)v(i)H

]
= σ2

vINrδki.

The received signal is assumed to be an OFDM one where a Cyclic CP is introduced in each front

of an OFDM symbol. The signal x is composed of K samples and a CP of L samples. Under the
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Figure 3.1: SIMO-OFDM wireless communications system.

assumption that N ≤ L, the received signal is expressed as:

y = T(h)x + v, (3.2)

where x = [x(0) · · ·x(K − 1)]T ; y =
[
yT1 · · ·yTNr

]T
with yi = [yi(0) · · ·yi(K − 1)]T ; and h =[

hT1 · · ·hTNr
]T

with hi = [hi(0) · · ·hi(N − 1)]T . T(h) is a matrix containing Nr circulant K ×K

Toeplitz blocks:

T(h) =


T(h1)
...

T(hNr)

 . (3.3)

The first row of the i-th block (with i= 1, · · · ,Nr) is[
hi(0) 01×(K−N) hi(N − 1) · · · hi(1)

]
, while the others are deduced by a simple cyclic shift

to the right of the previous row.

In order to simplify the CRB calculations (i.e. derivative with respect to h) in the next

sections, equation (3.2) is rewritten as follows:

y = X̃h + v. (3.4)

X̃ = INr ⊗X, (3.5)

where X, given in the next equation, is a circulant matrix of size K×N . Each column is obtained
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by a simple down cyclic shift of the previous one with the first column being x.

X =



x(0) x(K − 1) · · · x(K − (N − 1))

x(1) x(0) · · · x(K − (N − 2))
...

. . .
. . .

. . .

x(K − 1) x(K − 2) · · · x(K −N)


. (3.6)

3.3 CRB for SIMO-OFDM pilot-based channel estimation

The objective of this section is to derive an explicit expression of the CRB for radio-mobile

channels in terms of MSE when only pilots are used by the receiver to estimate the SIMO-OFDM

channels. In what follows, OFDM block-type arrangement pilots are considered as Figure 1.2a.

The CRB is computed as the inverse of the FIM denoted Jθθ where θ is the unknown

parameter vector to be estimated:

θ =
[
hT σv

2
]T
. (3.7)

The noise being i.i.d., the FIM for θ can be written as follows:

Jθθ =
Np∑
i=1

Jθθi =Np

 X̃H
p X̃p

σ2
v

0

0 NrK
2σ4

v

 , (3.8)

where, for simplicity, we assumed that the same OFDM symbol is repeated Np times as it is

the case in many communications standards (see [22]). The lower bound of unbiased channel

MSE (Mean Square Error) estimation, when only pilots are used, is CRBOP provided by:

CRBOP = σ2
v
Np

(
X̃H
p X̃p

)−1
. (3.9)

3.4 CRB for SIMO-OFDM semi-blind channel estimation

For semi-blind channel estimation in the SIMO-OFDM communications system context, the

computation of the CRB relies on the transmitted frame composed of known pilot OFDM symbols

(preamble or training sequence) and unknown transmitted data. To derive the explicit expression

of the CRB, two cases have been distinguished depending on whether the transmitted data is

deterministic or stochastic Gaussian3 xd ∼NC(0,σ2
x).

In this context and under the assumptions that the data symbols and noise signal are both

i.i.d., the FIM can be divided into two parts: one part is dedicated to pilots and denoted Jp
(given by equation (3.8)); and the second part concerns the unknown data Jd, i.e. J = Jp + Jd.

3We adopt here the Gaussian CRB as it is the most tractable one and also because it represents the least

favorable distribution case [38].
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We assume that the unknown transmitted data, denoted xd, is composed ofNd OFDM symbols,

i.e xd = [xTs1 xTs2 · · · x
T
sNd

]T . Denote x the signal composed of known pilots and transmitted data:

x = [xTp xTd ]T . The received signal, denoted y, corresponding to the transmitted unknown data

xd is expressed as follows:

y = Td(h)xd + v = X̃dh + v, (3.10)

where X̃d has the following form:

X̃d =
[
X̃T
s1 X̃T

s2 · · · X̃
T
sNd

]T
, (3.11)

with X̃si the matrix given by equation (3.5) and filled with the elements of the i-th data OFDM

symbol xsi . Matrix Td(h) is given by:

Td(h) = INd ⊗T(h). (3.12)

3.4.1 Deterministic Gaussian data model

Here the unknown data OFDM symbols are assumed to be deterministic so that the unknown

parameter vector θ becomes:

θ =
[
hT xT

d σ2
v

]T
. (3.13)

The corresponding FIM expression is given in [39, 68, 36]:

Jd =


X̃H
d X̃d

σv2
X̃H
d Td(h)
σv2 0

Td(h)HX̃d

σv2
Td(h)HTd(h)

σv2 0

0 0 NrMd
2σ4

v

 . (3.14)

The global FIM when taking into account the FIM of the pilots becomes:

J =


X̃H
d X̃d+Np(X̃H

p X̃p)
σ2

v

X̃H
d Td(h)
σ2

v
0

Td(h)HX̃d

σ2
v

Td(h)HTd(h)
σ2

v
0

0 0 Nr(Md+Mp)
2σv4

 . (3.15)

Therefore the CRB explicit expression for semi-blind channel estimation is given as follows:

CRBDetSB = σ2
v

(
A−BD−1C

)−1
(3.16)

where A = X̃H
d X̃d +Np

(
X̃H
p X̃p

)
; B = CH = X̃H

d Td(h); and D = Td(h)HTd(h). To avoid the

inversion of the very large matrix, we use the Schur’s complement as well as the properties of

circulant matrices to compute the CRB denoted CRBDetSB in a relatively simple way.
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3.4.1.1 Special-case: Hybrid pilot in semi-blind channel estimation with deterministic Gaussian data

model

This section derives the CRBDetSB when an OFDM symbol may be considered as a hybrid OFDM

symbol containing both pilot samples and data samples, i.e. xhyb =
[

xThybp xThybd

]T
. The

received hybrid symbol has then the following form:

yhyb =
[

Thybp(h) Thybd(h)
] xhybp

xhybd

+ v. (3.17)

Finally CRBDetSB is given as in equation (3.16) where matrix A corresponds to:

A = X̃H
d X̃d +Np

(
X̃H
p X̃p

)
+ X̃H

hybX̃hyb

−X̃H
hybThybd(h)

(
TH
hybd

(h)Thybd(h)
)−1

Thybd(h)HX̃hyb.
(3.18)

3.4.2 Stochastic Gaussian data model (CRBStochSB )

This section addresses the case where the unknown data is assumed to be stochastic Gaussian

and i.i.d. with zero mean and variance σ2
x. Hence, the FIM is equal to the FIM of the first data

OFDM symbol multiplied by the number of symbols Nd. The vector of the unknown parameters

θ is:

θ =
[
hT σs2 σv

2
]T
. (3.19)

The FIM of this model is therefore given by [36]:

[Jθθ]i,j = tr

C−1
Y Y

∂CY Y

∂θ∗i
C−1
Y Y

(
∂CY Y

∂θ∗j

)H , (3.20)

where

CY Y = σ2
sT(h)T(h)H +σ2

vINrK . (3.21)

To derive the FIM we used the following information:
∂CY Y
∂h∗i

= σ2
sT(h)T

(
∂h
∂h∗i

)H
, ∂CY Y

∂σ2
s

= 1
2T(h)T(h)H , and ∂CY Y

∂σ2
v

= 1
2INrK .

The FIM Jd has the following form:

Jd =Nd


Jhh Jhσ2

s
Jhσ2

v

Jσs2h Jσs2σs2 Jσs2σv2

Jσv2h Jσv2σs2 Jσv2σv2

 , (3.22)

where
[Jhh]i,j =

tr

{
C−1
Y Y σs

2T(h)T
(
∂h
∂h∗i

)H
C−1
Y Y σs

2T
(
∂h
∂h∗j

)
T(h)H

}
,

(3.23)
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Jσs2σs2 = 1
4 tr

{
C−1
Y Y T(h)T(h)HC−1

Y Y T(h)T(h)H
}
, (3.24)

Jσv2σv2 = 1
4 tr

{
C−1
Y Y C−1

Y Y

}
, (3.25)

[
Jhσs2

]
i = 1

2 tr

C−1
Y Y σs

2T(h)T
(
∂h
∂h∗i

)H
C−1
Y Y T(h)T(h)H

 , (3.26)

[
Jhσv2

]
i = 1

2 tr

C−1
Y Y σs

2T(h)T
(
∂h
∂h∗i

)H
C−1
Y Y

 , (3.27)

[
Jσs2σv2

]
= 1

4 tr
{
C−1
Y Y T(h)T(h)HC−1

Y Y

}
. (3.28)

For the blind case, as well known, the blind estimation techniques through second order

statistics (i.e. using only the data FIM Jd given by equation (3.22)), channel impulse response

can be determined up to a complex unknown factor. Therefore, the FIM is rank deficient.

In order to avoid the ambiguity of the unknown factor and obtain the CRB, one can fix one

non-zero complex channel parameter, hn to its largest energy ‖hn‖2. Which is equivalent to

delete the rows and columns corresponding to hn in the FIM [69, 70]. Then the CRB denoted

by CRBCGBlind is given by the h-bloc of the inverse of FIM.

3.4.2.1 Special-case: Hybrid pilot in semi-blind channel estimation with stochastic Gaussian model

This section modifies the CRBStochSB expression when a hybrid OFDM symbol is considered

according to:

CY Yhyb = σs
2Thybd(h)Thybd(h)H +σ2

v. (3.29)

µ(h) = xhybpThybp(h). (3.30)

The final FIM under the previous assumptions is expressed as: J = Jp + Jhyb + Jd, where each

element
[
Jhyb

]
i,j has the following form:

[
Jhyb

]
i,j =

(
∂µ(h)
∂θ∗i

)H
C−1
Y Yhyb

(
∂µ(h)
∂θ∗j

)
+tr

{
C−1
Y Yhyb

(
∂CY Yhyb

∂θ∗i

)
C−1
Y Yhyb

(
∂CY Yhyb

∂θ∗j

)H}
.

(3.31)
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3.4.2.2 Reduction of the FIM computational complexity

This section addresses the issue of reducing the computational complexity of the FIM. Note that

each element [Jd]i,j depends on C−1
Y Y . Therefore it is important to reduce its computational

complexity.

To calculate C−1
Y Y , we propose to exploit the circular structure of T(h). Moreover, we

exploit the sparsity structure of T(h) and T
(
∂h
∂h∗i

)
to reduce the matrix products that increase

dramatically with the number of antenna (Nr), OFDM symbol samples (K) and the channel

length (N).

Thereby T(h) can be written as:

T(h) = (INr ⊗F)DFH , (3.32)

where D =
[

D1
T · · · DNr

T

]T
with Di a diagonal matrix containing the Fourier transform

of hi and F the Fourier matrix operator. Equations (3.21) and (3.32) yield to:

CY Y = (INr ⊗F)
(
σs

2DDH +σv
2INrK

)(
INr ⊗FH

)
. (3.33)

Therefore to compute C−1
Y Y , the inverse of

(
σs

2DDH +σv
2INrK

)
is calculated using the

Woodbury matrix identity leading to this simplified expression:
(
σs

2DDH +σv
2INrK

)−1
=

1
σv2 INrK −

σs
2

σv4 D

IK + σs
2

σv2

Nr∑
i=1

DH
i Di

−1

DH . (3.34)

To compute T
(
∂h
∂h∗i

)
with i = 1, · · · ,NNr, we start by calculating indices iNr and iN cor-

responding to the iNr -th antenna and the iN -th tap of the channel function (iNr = 1, · · · ,Nr,

iN = 1, · · · ,N) respectively. The fact that T(h) is block circular, so T
(
∂h
∂h∗i

)
contains Nr−1 zero

blocks and its iNr -th block is equal to the IK circularly shifted to the left by iN steps.

Finally, C−1
Y Y

∂CY Y
∂h∗i

is simplified as follows:

C−1
Y Y

∂CY Y
∂h∗i

=


0 · · · 0 σs

2C−1
Y Y Tshift(h1) 0 · · · 0

...
...

...
...

...
...

...

0 · · · 0 σs
2C−1

Y Y Tshift(hNr) 0 · · · 0

 ,
(3.35)

where Tshift(hi) is equal to T(hi) circularly shifted to the left by iN steps.
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Base station Interceptor

Figure 3.2: Interception of signals.

3.5 CRB analysis for defeating blind interception

While exchanging data between drones and base stations, one can intercept this data by the

deployment of interceptor at the area of interest (as illustrated in Figure 3.2) and then applying

blind identification methods, the interceptor can then exploit the data and even uses spoofing.

The system drone-base station is considered as a SIMO-OFDM communications system, as

illustrated in Figure 3.1. The channel estimation is done by the base station, which exploits the

pilot OFDM symbols send by the drone as illustrated in Figure 3.3. The interceptor does not

know the training sequences dedicated to the channel estimation, so it considers the transmitted

signal as data to blindly estimate the propagation channel between drone and interceptor. This

section analyzes the parameters to be used by the drone communications system. A relevant

selection of the parameters, in terms of the CRB, is then provided in such a way that any blind

channel estimation method is not able to correctly recover the transmission channel making then

the interception of the transmitted data difficult while improving the performance of data-aided

channel estimation approaches.

The CRB tool (derived in section 3.3 and in section 3.4) allows to find the waveform model

providing the worst blind channel estimation CRB. The reduction of the number of data symbols

also contributes to the degradation of the blind channel estimation. However this reduction

affects the transmission rate between the drone and the base stations. To solve this problem, a

large number of data symbols can be subdivided into sub-sequences and transmitted to multiple

frequency channels making then difficult the blind channel estimation since a large number of
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Pilot OFDM Symbols Data OFDM Symbols

Data OFDM Symbols

Signal received at the 
Base station

Signal received at the 
Interceptor

Figure 3.3: Received OFDM symbols as considered by the stations and the interceptor.

sub-channels should be estimated using at each time only a small number of data symbols.

3.6 Simulation results and discussions

The objectives of this section is to discuss the blind and semi-blind channel estimation performance

bounds using the derived CRBs to show: (i): the impact of the pilot reduction on the channel

estimation and to quantify the reduced pilots; (ii): the parameters of the transmitted signal to

avoid the blind interception.

3.6.1 Throughput gain analysis of SIMO-OFDM semi-blind channel estimation

Herein we analyze the limit bounds of the channel estimation performance in the IEEE 802.11n

SIMO-OFDM wireless system [22]. The test training sequence corresponds to that specified

by the standard. Figure 1.5 represents the IEEE 802.11n physical frame HT-Mixed format. In

the legacy preamble (i.e. 802.11a) two identical fields named LTF are dedicated to channel

estimation. Each field (or pilot) is represented by one OFDM symbol (K = 64 samples) where a

CP (L= 16 samples) is added at its front. In the High Throughput preamble, a set of identical

fields named HT-LTF are specified and represented by one OFDM symbol (K = 64 samples)

with a CP (16 samples). These fields (or pilots) are specified to MIMO channel estimation. Their

number depends on the number of transmit antennas (Nt). Since in this chapter Nt = 1, only one

HT-LTF pilot OFDM symbol is used (see [22]). Therefore the training sequence length is equal

to Np =NLTF
p +NHT−LTF

p . The data field is represented by a set of OFDM symbols depending

on the length of the transmitted packet. Simulation parameters are summarized in Table 3.1.

The Signal to Noise Ratio associated with pilots at the reception is defined as SNRp =
‖T(h)xp‖2

NrMpσ2
v
. The signal to noise ratio SNRd associated with data is given (in dB) by: SNRd =

SNRp− (Pxp−Pxd) where Pxp (respectively Pxd) is the power of pilots (respectively data)

(both in dB).
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Parameters Specifications

Channel model Cost 207

Number of transmit antennas Nt = 1

Number of receive antennas Nr = 3

Channel length N = 4

Number of LTF pilot OFDM symbols NLTF
p = 2

Number of HT-LTF pilot OFDM symbols NHT−LTF
p = 1

Number of data OFDM symbols Nd = 40

Pilot signal power Pxp = 23 dBm

Data signal power Pxd = 20 dBm

Number of sub-carriers K = 64

Signal to Noise Ratio SNRp = [-5:20] dB

Table 3.1: SIMO-OFDM simulation parameters.

Figure 3.4 compares the normalized CRB ( tr{CRB}‖h‖2 ) versus SNRp. The CRB curves show

clearly that semi-blind channel estimation CRBSB (in deterministic and Stochastic) are lower

than the CRB (CRBOP ) when only pilots are exploited. Note that, as expected, stochastic case

(CRBStochSB ) gives better results than the deterministic case (CRBDetSB ).

Traditionally semi-blind channel estimation approach is used to improve the channel identi-

fication accuracy. However, in this chapter the semi-blind approach is considered in order to

increase the throughput in SIMO-OFDM wireless system while maintaining the same channel

estimation quality that is achieved when using pilots only. For this, in order to reach the CRBOP ,

we propose to decrease the number of pilot samples and increase the number of data samples.

This strategy may lead to a hybrid OFDM symbol containing both pilot samples and data

samples. .

Figure 3.5 shows the influence of increasing the number of data OFDM symbols (Nd) on

the CRBSB deterministic and stochastic for a given SNRp = 6 dB corresponding to the IEEE

802.11n operating mode. Obviously, the larger the data size is the higher gain we obtain in favor

of the semi-blind method.

Figure 3.6 illustrates the CRB of semi-blind channel estimation versus the number of samples

removed from the pilot OFDM symbol for a given SNRp = 6 dB. The proposed strategy is to

replace these removed samples by data samples leading therefore to a hybrid OFDM symbol.
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Figure 3.4: Normalized CRB versus SNRp.
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Figure 3.5: Normalized CRB versus Nd (SNRp = 6 dB).
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Figure 3.6: Normalized CRB versus the number of deleted pilot samples (SNRp = 6 dB).

The horizontal line provides the CRB for pilot-based channel estimation and is considered as the

reference to be reached. For CRBDetSB , 119 samples are removed from pilot OFDM symbol i.e.

only 73 samples (38%) are retained as pilot samples. For CRBStochSB more samples are removed.

Indeed only 23 samples (i.e. 11%) are retained. These results show clearly that semi-blind

estimation in SIMO-OFDM wireless system brings a significant gain in terms of throughput.

Figure 3.7 shows the impact of the number of data OFDM symbols on the number of the

deleted pilot samples for a given SNRp = 6 dB and a normalized CRBStochSB = 2.652× 10−3.

When the number of data OFDM symbols increases, the number of samples of the pilot OFDM

symbol to remove increases too. Note that the results observed in Figure 3.6 can be deduced

from Figure 3.7 when the number of data OFDM symbol is equal to 40.

Figure 3.8 illustrates the number of deleted pilot samples versus the number of receive

antennas (Nr) of the SIMO-OFDM system in semi-blind channel estimation. The larger the

number of receive antennas is, the higher is the number of removed pilot symbols. Note that, in

the SISO case and for the deterministic CRB, the data symbols do not help reducing the pilot

size since each new observation brings as many unknowns as equations.
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Figure 3.9: Normalized CRB versus SNRp.

3.6.2 Blind interception analysis

In this subsection, the blind interception is investigated using CRBs in order to protect the

exchanged data between drone and BS. Simulations are conducted using two receivers (Nr = 2),

two training sequences (Np = 2) and two data OFDM symbols (Nd = 2). The rest of simulation

parameters are given in Table 3.1

Figure 3.9 compares the normalized CRB ( tr{CRB}‖h‖2 ) versus SNRp. The CRB curves show

clearly that the blind channel estimation CRBBlind in CG, NCG and BPSK/QPSK data models

are higher than the CRB when only pilots are exploited (CRBOP ). Note that BPSK/QPSK case

(CRBBPSKBlind CRBQPSKBlind ) gives better results than other data models and the CG data model

(CRBCGBlind) provides the worst blind channel estimation performance. These results remain valid

even if the number of receive antennas increases.

In accordance with these results and in order to protect the transmitted information by the

drone, we propose to tune some parameters of the SIMO-OFDM system. We first impose to

the SIMO-OFDM system to operate at 0 dB (by adjusting the data power) and to process on a

signal modelled as a CG data. Indeed with these working conditions, the stations are able to

estimate the channel taps with an acceptable performance (see in Figure 3.9, CRBOP = 0.12)

compared to the interceptor (see Figure 3.9, CRBCGBlind = 2.38) which is not able to recover the
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Figure 3.10: Normalized CRB versus Nr (SNR= 0 dB).

transmitted information between the drone and the mobile stations.

Figure 3.10, Figure 3.11 and Figure 3.12 show the impact of the number of the receive

antennas on the blind channel estimation performance limits for three SIMO-OFDM system

operating modes i.e. SNR= 0 dB, SNR= +5 dB and SNR=−5 dB (with the worst previous

case i.e CG data model). Increasing the number of the receive antennas improves the blind

channel estimation performance, but remains greater than the identification threshold (CRB = 1)

in Figure 3.10 and Figure 3.12. However in Figure 3.11, the interceptor can estimate the channel

taps then extracts the transmitted data.

3.7 Conclusion

This chapter focused on the theoretical limit of channel estimation performance in SIMO-

OFDM wireless system. Analytical derivation of CRBs have been provided for: (i) pilot-based

channel estimation (CRBOP ); (ii) blind channel estimation when data is assumed to be CG

(CRBCGBlind), NCG (CRBNCGBlind); and (iii) semi-blind channel estimation when data is assumed

to be deterministic (CRBDetSB ) and stochastic Gaussian (CRBStochSB ), respectively. the main

outcomes of this study are:
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Figure 3.11: Normalized CRB versus Nr (SNR= 5 dB).
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• In the context of IEEE 802.11n SIMO-OFDM system, the test results showed clearly the

pilot samples reduction and consequently the throughput gain in SIMO-OFDM semi-blind

channel estimation while maintaining the same pilot-based limit channel estimation quality.

• In the context of blind interception, the analysis of simulation results show that the worst

blind channel estimation performance is obtained in the case of CG data model (CRBCGBlind)

while an acceptable performance of pilot-based channel estimation is achieved. Therefore

to avoid the interception of the information, the SIMO-OFDM communications system is

tuned in such away to adjust the power of the CG data depending on the number of pilots

and the length of the physical packet.
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Analysis of CFO and frequency domain channel estimation

effects

In theory there is no difference

between theory and practice. In

practice there is.

Lawrence “Yogui” Berra,1925

This study deals with semi-blind channel estimation CRB performance of MIMO-OFDM wireless

communications system in the uplink transmission. The first contribution shows that the Carrier

Frequency Offset (CFO) impacts advantageously the CRB of the semi-blind channel estimation

mainly due to the CFO cyclostationarity propriety. The second contribution states that when

the relation between the subcarrier channel coefficients is not taken into account, i.e. without

resorting to the inherent OFDM ’channel structure’ during the channel estimation, results in a

loss of the estimation performance. An evaluation of the significant performance loss resulting

from this approach is provided1.

Abstract

1 [71] A. Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Further investigations on the

performance bounds of MIMO-OFDM channel estimation," in The 13th International Wireless Communications

and Mobile Computing Conference (IWCMC 2017), June 2017, pp. 223-228, Valance, Spain.
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4.1 Introduction

MIMO-OFDM wireless communications system provides many advantages as the channel capacity

enhancement and the improvement of the communications reliability. However to achieve good

performance, the receiver should pay attention to compensate the time and frequency offsets

before extracting the information from the transmitted physical packet. Indeed the Carrier

Frequency Offset (CFO) affects the subcarriers orthogonality and degrades the OFDM system

performance. A state of the art on this issue shows that the CFO estimation can be performed

either on redundant information (Non-Data-Aided (NDA) approaches) or training sequences

(Data-Aided (DA) approaches) included in the transmitted physical packet. DA approaches

exploit training sequences either designed by authors or specified by some standards. In [72], the

authors use null subcarriers and propose a suboptimal method to estimate the CFO. Pilot-based

estimators have been discussed in [73], [74], [75] and [76] where the authors exploit cascaded

orthogonal pilots to jointly estimate the CFO and CSI, which remains, in wireless communications

system, a current concern since the overall system performance depends strongly on it.

This chapter studies the lower bounds performance of semi-blind channel estimation of

a multiuser MIMO-OFDM wireless system in the uplink transmission for different receivers

according to the strategies described below.

The objective of the first study is to show that, by exploiting the cyclostationarity introduced

by the CFO to the NCG signals, the presence of Multiple CFO (MCFO), considered as a problem

in MIMO-OFDM systems, improves the channel identification when semi-blind techniques using

Zadoff Chu (ZC) training sequences are performed. To analyze the theoretical performance

of this approach, the analytical CRB is derived. The CRBs, in the case of NCG signal with

and without CFO, are then analyzed and discussed. To the best of our knowledge, despite the

existing huge of literature on the considered topic, this analysis is the only one that investigates

thoroughly how the CFO impacts the CRB of the semi-blind channel estimation advantageously.

The second study evaluates and compares the lower bounds performance for the estimation

of the subcarrier channel coefficients with and without considering the OFDM structure (i.e.

when taking into account the relation between these coefficients through the Fourier transform of

the channel taps and when ignoring this relation in the estimation process). Indeed, for the sake

of computational simplicity, many existing OFDM receivers estimate these channel coefficients

as if they were ’independent’ [77].
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4.2 MIMO-OFDM communications system model in the presence of MCFO

Before describing the multiuser MIMO-OFDM wireless communications system adopted in this

chapter, this section introduces some notations and assumptions.

The communications system is considered in the uplink transmission. It is composed of

Nt transmit antennas associated with users sharing the same radio ressources and Nr receive

antennas (see Figure 1.1) deployed on the same device (i.e. on a single transmitting base station).

In this context, the receiver has a single local oscillator and each transmitter has its own local

oscillator. Therefore the received signal may be affected by Multiple independent CFO (MCFO)

introduced by the difference in local oscillator frequencies at the transmitters and receiver. Denote

νi the normalized CFO occurred between the i-th transmitter local oscillator and the r-th user

of the receiver local oscillator.

Each OFDM symbol is composed of K samples (i.e K subcarriers). A Cyclic Prefix (CP)

of L samples (with L ≥ N ; N being the maximum delay of the channel) is inserted between

consecutive OFDM symbols to prevent against Inter-Symbol Interference. These samples are

chosen as the L last samples of the OFDM symbol preceding the CP.

The transmitted signal x is assumed to be independent Non-Circular complex-Gaussian

(NCG). It is represented by the vector x of size NtK× 1 and is given by x =
[
xT1 · · ·xTNt

]T
where

xi is the OFDM symbol transmitted by the i-th antenna; and (.)T represents the transpose

operator. The covariance matrices for the transmitted signal x are expressed by:

Cx = E
[
xxH

]
= diag

{
σ2

x1 · · ·σ
2
xNt

}
C′x = E

[
xxT

]
= ρcdiag

{
ejφ1 · · ·ejφNt

}
Cx,

(4.1)

where ρc is the non-circularity rate (with 0< ρc < 1); φi (with i= 1, · · · ,Nt) the non-circularity

phases; σ2
xi the variance of the xi OFDM symbol.

Denote hi,r the vector Channel Impulse Response of size N × 1 between the i-th transmitter

and r-th receiver. The vector v of size NrK× 1 (v =
[
vT1 · · · vTNr

]T
) is considered as an additive

channel noise assumed to be independent white Complex-Gaussian Circular of zero-mean and

variance σ2
v.

After removing the CP, the received discrete baseband signal y associated with the ns-th

OFDM symbol (y =
[
yT1 · · ·yTNr

]T
of size NrK×1), in time domain, is given in a matrix form as:

y = Λ̄nsx + v, (4.2)
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where the matrix Λ̄ns of size NrK ×NtK is defined as:

Λ̄ns =
[
Λ̄1
ns · · ·Λ̄

Nt
ns

]
with

Λ̄i
ns = (INr ⊗Γns (νi))

[
ΛT
i,1 · · ·ΛT

i,Nr

]T
and

Λi,r = FH√
K
diag{Whi,r} ,

(4.3)

where Λi,r, Λ̄i
ns are matrices of size K ×K and NrK ×K respectively ; F the Discrete Fourier

Transform matrix; W the N first columns of F; and Γns (νi) the normalized CFO matrix of size

K ×K at the ns-th OFDM symbol given by:

Γns (νi) = ej2πνi(ns−1)(K+L)/K×

diag
{

1, ej2πνi/K , · · · , ej2πνi(K−1)/K
}
.

(4.4)

To facilitate the CRB derivation for channel estimation in the next sections, equation (4.2) is

rewritten in this form:

y = X̃h + v, (4.5)

where h is the MIMO channel vector h =
[
hT1 · · ·hTNr

]T
of sizeNNtNr×1 with hr =

[
hT1,r · · ·hTNt,r

]T
;

and X̃ = INr ⊗X where the matrix X of size K ×NNt is defined by:

X =
[
Γns (ν1) FH√

K
diag{x1}W · · ·

Γns (νNt) FH√
K
diag{xNt}W

]
.

(4.6)

4.3 CRB for channel coefficients estimation in presence of MCFO

The aim of this section is to derive, in the presence of MCFO, the lower bound on the semi-blind

channel estimator’s variance (of unbiased estimators) using not only the known pilot OFDM

symbols (i.e. training sequence) but also the encapsulated unknown data OFDM symbols in the

physical packet. Figure 1.2a illustrates the block-type arrangement OFDM pilots in a physical

packet adopted in this chapter.

The CRB for semi-blind channel estimation is deduced from the inverse of the complex FIM

denoted Jθθ which is composed of the FIMs associated to pilots and data, derived as follows.

4.3.1 FIM for known pilot OFDM symbols

This section, based on equations (4.2) and (4.5), focuses on the derivation of the FIM Jpθθ when

only Np received pilot OFDM symbols are used to estimate the MIMO channel. The vector of

parameters is then defined as:

θ =
[
hT h∗T νT σv

2
]T
, (4.7)
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where ν is the MCFO vector given by [ν1 · · ·νNt ]
T .

Since the channel noise is assumed to be i.i.d., the FIM for θ when Np pilot OFDM symbols

are used is deduced as:

Jpθθ =
Np∑
i=1

Jpiθθ, (4.8)

where Jpiθθ is the FIM associated with the i-th pilot OFDM symbol defined as:

Jpiθθ =



Jhh Jhh∗ Jhν Jhσ2
v

Jh∗h Jh∗h∗ Jh∗ν Jh∗σ2
v

Jνh Jνh∗ Jνν Jνσ2
v

Jσ2
vh Jσ2

vh∗ Jσ2
vν

Jσ2
vσ

2
v


. (4.9)

Each sub-matrix, Jθiθj (with θi, θj ∈Θ), is deduced according to:

Jθiθj = E


(
∂ lnp(y(i),θ)

∂θi
∗

)(
∂ lnp(y(i),θ)

∂θj
∗

)H (4.10)

where E(.) is the expectation operator; and p(y(i),θ) the probability density function of the

received baseband signal given θ.

Based on the complex derivative ( ∂
∂θ∗ = 1

2

(
∂
∂α + j ∂

∂β

)
for θ = α+ jβ), the derivation of

equation (4.10) leads to:

Jθiθj = 1
σ2
v

∂
(
X̃h

)
∂θ∗i

H∂
(
X̃h

)
∂θ∗j

 with θi, θj ∈Θ. (4.11)

4.3.2 FIM for unknown data OFDM symbols

This section, based on equations (4.2) and (4.5), deals with the derivation of the FIM Jdθθ when

Nd unknown transmitted OFDM data symbols are used to estimate the MIMO channel. The

vector of parameters is defined as:

θ =
[
hT h∗T ΣT

x ΦT νTρc σv
2
]T
, (4.12)

where Σx =
[
σ2

x1 · · ·σ
2
xNt

]T
and Φ = [φ1 · · ·φNt ]

T .

Since the channel noise is assumed to be i.i.d., the FIM for Nd unknown OFDM symbols is

then expressed as:

Jdθθ =
Nd∑
ns=1

Jdnsθθ , (4.13)
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where Jdnsθθ is the FIM of the ns-th data OFDM symbol defined as:

Jdnsθθ =



Jhh Jhh∗ JhΣx JhΦ Jhν Jhρc Jhσ2
v

Jh∗h Jh∗h∗ Jh∗Σx Jh∗Φ Jh∗ν Jh∗ρc Jh∗σ2
v

JΣxh JΣxh∗ JΣxΣx JΣxΦ JΣxν JΣxρc JΣxσ2
v

JΦh JΦh∗ JΦΣx JΦΦ JΦν JΦρc JΦσ2
v

Jνh Jνh∗ JνΣx JνΦ Jνν Jνρc Jνσ2
v

Jρch Jρch∗ JρcΣx JρcΦ Jρcν Jρcρc Jρcσ2
v

Jσ2
vh Jσ2

vh∗ Jσ2
vΣx Jσ2

vΦ
Jσ2

vν
Jσ2

vρc
Jσ2

vσ
2
v



. (4.14)

The FIM, Jθiθj (with θi, θj ∈Θ), has been derived in [36], [40], [39] and is expressed as:

Jθiθj = 1
2 tr

C̃−1
Y Y

∂C̃Y Y

∂θ∗i
C̃−1
Y Y

(
∂C̃Y Y

∂θ∗j

)H , (4.15)

where

C̃Y Y =

 CY Y C′Y Y
C′∗Y Y C∗Y Y

 , (4.16)

with

CY Y =
Nt∑
i=1

σ2
xiΛ̄

i
ns

(
Λ̄i
ns

)H
+σv

2IKNr , (4.17)

C′Y Y =
Nt∑
i=1

ρce
jφiσ2

xiΛ̄
i
ns

(
Λ̄i
ns

)T
. (4.18)

The FIM Jθiθj also requires the following information:

∂C̃Y Y

∂σ2
xi

= 1
2

 Λ̄i
ns

(
Λ̄i
ns

)H
ρce

jφiΛ̄i
ns

(
Λ̄i
ns

)T
ρce
−jφi

(
Λ̄i
ns

)∗(
Λ̄i
ns

)H (
Λ̄i
ns

)∗(
Λ̄i
ns

)T
 , (4.19)

∂C̃Y Y

∂φi
= 1

2
(
jφiρcσ

2
xi

)
×

 0 ejφiΛ̄i
ns

(
Λ̄i
ns

)T
−e−jφi

(
Λ̄i
ns

)∗(
Λ̄i
ns

)H
0

 , (4.20)

∂C̃Y Y

∂ρc
= 1

2ρc

 0 C′Y Y
C′∗Y Y 0

 , (4.21)

∂C̃Y Y

∂σ2
v

= 1
2I2KNr . (4.22)

The computation of ∂C̃Y Y
∂h∗i

for each i= 1, · · · , NNrNt provides:

∂C̃Y Y

∂h∗i
=

 D1 0

D2 + DT
2 DT

1

 , (4.23)
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where

D1 = σ2
xiNt

Λ̄iNt
ns

∂

(
Λ̄
iNt
ns

)H
∂h∗i

D2 = ρce
jφiNt σ2

xiNt

(
Λ̄iNt
ns

)∗ ∂(Λ̄
iNt
ns

)H
∂h∗i

.

(4.24)

for iNt = 1, · · · , Nt; iNr = 1, · · · , Nr; and iN = 1, · · · , N .

Once the FIM Jθθ deduced as described above (from equations (4.8) and (4.13)), the CRB

for semi-blind channel estimation in the presence of MCFO, denoted CRBMCFO
NCG (h), is extracted

from the h-block of the computed CRB.

4.4 CRB for subcarrier channel coefficient estimation

This section assumes that the mobile stations of the previous communications system are perfectly

synchronized (i.e. νi = 0). In this context, the DFT applied to equation (4.3) results in:

Λ̄ns =
[
Λ̄1
ns · · ·Λ̄

Nt
ns

]
with

Λ̄i
ns =

[
ΛT
i,1 · · ·ΛT

i,Nr

]T
and

Λi,r = diag{λi,r} , where

λi,r = Whi,r.

(4.25)

For the sake of computational simplicity, instead of estimating the channel taps, many existing

OFDM receivers estimate the subcarrier channel coefficients (i.e. the vector λi,r) as if they were

’independent’ (see e.g. [77]). The aim of this section is to derive the CRB for these subcarrier

channel coefficients estimation without considering the OFDM structure (i.e. ignoring the relation

between these coefficients through the Fourier transform of the channel taps).

The CRB, denoted CRBNCG(λ), requires the computation of the FIM where the complex

parameter Θc of the unknown vector parameters Θ is:

Θc =
[
λTi,r · · · λTNt,Nr

]T
. (4.26)

The vector of the unknown real parameters θr of the unknown vector parameters Θ corresponds

to:

θr =
[
ΣT

x ΦT ρc σv
2
]T
. (4.27)

Since the stations are synchronized (i.e. νi = 0), the FIM Jθθ for the vector θ, compared

to the previous section, is deduced from the FIM of one data (i.e Jns=n1
θθ ) or pilot (i.e. Jpi=p1

θθ )

OFDM symbol using equations from (4.15) to (4.24). Jn1
θθ (respectively Jp1

θθ) is then multiplied by

the number of data i.e. Nd (respectively Np) OFDM symbols as follows: Jθθ =NpJp1
θθ +NdJ

dn1
θθ .
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Note that Jθiθj for the channel taps, given in the previous section, is replaced by the FIM

computed for the subcarrier coefficients.

As in Section 4.3, the CRB for the subcarrier channel coefficients, denoted CRBNCG(λ), is

then extracted from the λ-block of the computed CRB. The lower bounds performance of the

semi-blind channel estimation using both strategies (i.e. CRBNCG(λ), CRBMCFO=0
NCG (h)) will

be discussed in the following section.

4.5 Simulation results

This section analyzes the lower bounds performance of the semi-blind channel estimators (i.e.

CRBMCFO
OP (h), CRBMCFO

NCG (h), CRBNCG(h) (without MCFO) and CRBNCG(λ)) derived in

the previous section.

4.5.1 Experimental settings

Zadoff-Chu (ZC) sequences, used in the LTE standard [4], are adopted as pilot training sequences.

ZC sequence is given by the following equation:

xu (k) = e−
jπuk2
K , (4.28)

when the sequence length, denoted K, is even and u ∈ {1,3,5 · · ·K − 1} being the sequence index

[42].

The simulation parameters being as follows: N = 4 (channel length); Np = 1 (number of pilot

OFDM symbols); Nd = 40 (number of data OFDM symbols); K = 64 (number of sib-carriers);

L = 16 (length of CP); Pxp = 10dBm (power of the pilot signal); Pxd = 90dBm (power of

the data signal); ρc =0.9 (non-circularity rate); φ =
[π

4 ,
π
2 ,

π
3 ,

π
6
]
(Non-circularity phase); and

ν = [0.015,0.5,0.4,0.025] (Normalized CFO).

4.5.2 Channel estimation performance analysis

Figure 4.1 and Figure 4.2 illustrate the normalized CRB
(
tr{CRB}
‖h‖2

)
versus SNR when: (i) only

pilots are exploited to estimate the channel in presence of MCFO (i.e. CRBMCFO
OP (h)); (ii)

semi-blind channel estimation in presence of MCFO (i.e. CRBMCFO
NCG (h)); and (iii) semi-blind

channel estimation when the stations are perfectly synchronized (i.e. CRBNCG(h)).

Figure 4.1 considers (2× 2) MIMO-OFDM system using the following parameters: Np = 1;

Nd = 40; two normalized CFOs equal to 0.015 and 0.5. The CRB curves show clearly that the

CRB of semi-blind channel estimation, in the presence or absence of MCFO, are lower than the
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Figure 4.3: Normalized CRB versus SNR with circular Gaussian and non-circular Gaussian signals (with

(4× 4) MIMO-OFDM).

CRB when only pilots are used. Moreover the CRB in the presence of MCFO (CRBMCFO
NCG ) is

about 3 dB lower than the CRB when the transmitters and receiver are perfectly synchronized

(CRBNCG(h)). Although the CFO being a traditional problem when only pilots are used to

estimate the channel, the gain of 3 dB proves however to be an advantage in semi-blind channel

identification. Figure 4.2 provides additional results in (4×4) MIMO-OFDM system and confirm

our analysis.

Figure 4.3 provides the Circular and Non-circular Gaussian CRBs if (4× 4) MIMO-OFDM

system. Even thought the vector of the unknown parameters θ is larger, the CRB corresponding

to NCG data signal is lower than the CRB corresponding to the CG signal.

For a given SNR = 6 dB (around the operating mode of the IEEE 802.11n), Figure 4.4

presents the normalized CRB of the semi-blind channel estimation in the presence and absence of

MCFO (i.e. CRBNCG(h) and CRBMCFO
NCG (h)) versus the number of data OFDM symbols (Nd).

The analysis of the curves confirms the traditional result which states that when the number

of symbols to estimate the channel increases, the estimation performance is better. Moreover,

this analysis clearly shows the contribution of MCFO on the performance improvement of the

channel estimation.
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Figure 4.4: Normalized CRB versus Nd (with SNR= 6 dB).

Figure 4.5 compares the CRBNCG(λ) of the subcarrier channel coefficient estimation to the

CRBNCG(h) of the channel taps estimation. A large gain (larger than 15 dB) is observed in

favor of the situation where the channel structure (given by (4.3)) is taken into account in the

estimation process. This study shows that the price paid for this simplicity is ’too high’ as the

performance loss (in terms of estimation accuracy) might be quite significant as illustrated by

the simulation example. Moreover, note that when the CBR of λ is derived directly from the

CRB of h, the limit performance bound achieved by the CRB of h is recovered. This discussion

remains valid when only pilots (CRBOP (λ), CRBPO(h)) are exploited for the channel estimation.

Figure 4.6 provides additional results in (4× 4) MIMO-OFDM system and confirm our results.

Note that when a comb-type pilot arrangement (see Figure 1.2b) is used, the performance

bounds of a MIMO-OFDM channel estimation (after some changes in the developed equations)

remain similar to those provided by Figure 4.1, Figure 4.4 and Figure 4.5.

4.6 Conclusion

This chapter focused on lower bounds performance of the semi-blind channel identification in a

multiuser MIMO-OFDM wireless communications system, in the uplink transmission, considering
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Figure 4.5: Normalized CRB for the subcarrier channel coefficients estimation.
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a NCG data model. Two important results have been derived as follow:

• The first one is related to the impact of the CFO on the improvement of the CRBMCFO
NCG (h)

compared to the CRBNCG(h) without CFO.

• The second one, is based on the approach that estimates the subcarrier channel coefficients

only for sake of simplicity. This strategy proved that the price paid for this simplicity is

too high because the CRBNCG(λ) performance loss might be quite significant compared

to the CRBNCG(h) of the channel taps estimation.
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Least Squares Decision Feedback (LS-DF) Semi-blind es-

timator

To get what you love, you must

first be patient with what you hate.

Al-Ghazali.

This chapter proposes a Least Square Decision Feedback (LS-DF) semi-blind channel estimator

showing that a reduction of 76% of the pilot’s power is obtained compared to the LS pilot-based

estimator for the same channel estimation performance. The LS-DF performance are compared

then to the theoretical maximum power reduction of the transmitted pilots when semi-blind

channel estimator is deployed while ensuring the same pilot-based channel estimation performance

for BPSK/QPSK data models and a block-type pilot arrangement as specified in the IEEE

802.11n standard. The detailed description of our proposed algorithm has been published in the

conference EUSIPCO 20171

Abstract

1 [33] A. Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Toward green communications using

semi-blind channel estimation," in 2017 25th European Signal Processing Conference (EUSIPCO), Aug. 2017, pp.

2254-2258, Kos, Greece.
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5.1 Introduction

Channel estimation is of paramount importance to equalization and symbol detection problems

in most wireless communications systems. This task is achieved using blind channel estimation

methods (e.g. [24]), or based on pilots [20, 21]. However these pilots consume not only a large

part of throughput but also significant power resources. This becomes even more important for

future communications systems such as massive-MIMO systems. Indeed the explosive growth of

high data rate applications where the corresponding energy consumption is also growing at a

staggering rate has urged for an intensive research work on green communications to protect

our environment and cope with global warming [78]. In [66], the throughput problem has been

investigated for SIMO-OFDM systems. In [79], authors present the state-of-the-art of the green

communications methods. Antenna selection using beamforming algorithm is proposed in [80].

This study suggests an unusual approach to reduce the consumed power making the most of

the advantages of semi-blind channel estimation approaches. The underlying idea consists of

removing pilot samples which are replaced by zero-samples while ensuring the same performance as

pilot-based channel estimation approaches. The maximal reduction of the theoretical transmitted

pilot’s power is first addressed when semi-blind approaches are deployed instead of pilot-based

approaches for the same estimation performance. To do so, the theoretical limit channel estimation

performance, based on the analytical CRB, is considered. The real gain in terms of pilot’s power

reduction at the transmitter is then evaluated when Least Square Decision Feedback (LS-DF)

semi-blind channel estimator is used. In addition, the overconsumption at the receiver is evaluated

and discussed.

5.2 LS-DF semi-blind channel estimation algorithm

The MIMO-OFDM system model adopted in this study is given in chapter 1 as depicted in Figure

1.1. Moreover, the CRBs derived in chapter 1 (subsection 1.4.3 for alphabet finite (BPSK and

QPSK) modulation), are used quantify the theoretical limit power reduction of the transmitted

pilots without affecting the channel estimation quality. This will be used to compute the power

saving due to this shortening at the transmitter side. For comparison fairness, we need to evaluate

to power consumption increase at the receiver side due to the use of a more elaborate semi-blind

estimation algorithm. For this reason, we introduce in this section a semi-blind estimation

method that has the advantages of simplicity and effectiveness (i.e. it reaches the CRB for

moderate and high SNRs).
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5.2.1 Main steps of the LS-DF algorithm

The LS-DF channel estimation algorithm is considered as a LS estimator which incorporates

the feedback equalizer. Traditionally the LS-DF algorithm re-injects the estimated signal as a

feedback to the equalizer stage to enhance the estimation performance of the transmitted data.

This process is iterated several times.

Instead of using the LS-DF algorithm in its original version, this study exploits this algorithm

as a semi-blind channel estimator since the estimated data at the previous stage are now

considered as "pilots" when the algorithm re-estimates the channel taps according to the LS

channel estimation as illustrated in Figure 5.1.

According to the system model represented by equation (1.5), the conventional LS pilot-based

channel estimation is expressed by (for more details see [21]):

ĥop =
(
X̃H
p X̃p

)−1
X̃H
p y. (5.1)

The LS channel estimation performance is widely discussed in literature. It has been shown

that the MSE of this estimator reaches the CRBOP . Therefore the MSEOP is given by:

MSEOP = σ2
vtr

{(
X̃H
p X̃p

)−1
}
. (5.2)

Moreover when the training sequences xp are orthogonal,
(
X̃H
p X̃p

)
is equal to σ2

pINNtNr and

the MSE is minimal. After estimating the channel (i.e. ĥop), the Zero-Forcing (ZF) equalizer is

LS 
Channel Estimation 

Equalization +
Decision

y
px

ˆ
oph ˆ dx

LS 
Channel Estimation 

Equalization +
Decision

ˆ
sbh ˆ dx

Figure 5.1: LS-DF semi-blind channel estimation approach.

adopted to estimate the transmitted signal. It refers to a form of linear equalization algorithm

often used in communications systems. It applies the inverse of the channel frequency response

λ̂
# to the received signal where # denotes the pseudo inverse matrix, and λ̂ is the channel
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frequency response of ĥop calculated as in subsection 1.2.1. The equalized signal, denoted xzf , is

then deduced:

xzf = λ̂#y = λ̂#
λ̂x + λ̂#v. (5.3)

After that, a hard decision is taken on the equalized signal to estimate the transmitted signal x̂d.

The new training sequences become:

xp = [xpT x̂Td ]T . (5.4)

Based on equation (5.1), the channel taps are then estimated (ĥsb in Figure 5.1). The ZF

equalizer, given by equation (5.3), estimates the signal xzf on which a hard decision is taken to

estimate the transmitted data x̂d.

5.2.2 Computational cost comparison of LS and LS-DF algorithms

This section compares the computational cost of the LS-DF semi-blind channel estimator to the

LS pilot-based channel estimation. The computational cost is evaluated in terms of real number

of flops (i.e. number of multiplications plus number of additions).

At the receiver, the number of flops consumed by LS pilot-based channel estimation algorithm

is deduced from equation (5.1) where X̃p and y are of size NpNrK ×NtNrN and NpNrK × 1

respectively. The details of the number of flops required to estimate ĥop are listed in Table 5.1.

At the receiver, the flops consumed by the LS-DF algorithm are equal to the flops due to

the equalizer/decision stage added to the flops required to estimate ĥsb and ĥop (see Table 5.1).

Note that the flops required for the equalizer/decision stage can be easily compensated by the

reduction of the flops due to the removed pilots from the initial training sequence, this will

be discussed in simulation results (90% samples of the initial training sequence are removed).

Therefore the LS-DF semi-blind channel estimator consumes ∆Flops more flops than the LS

pilot-based channel estimator:

∆flops = 2(NtNrN)3 + 4(NtNrN)2 (NdNrK)

+(NtNrN)(NdNrK)− (NtNrN)2− (NtNrN) .
(5.5)

In [81], the authors investigate the relationship between the flops number and the correspond-

ing consumed power denoted Flops per Watt (Flops/Watt). It is then possible to measure the

equivalent consumed power in Watts. Depending on the functional characteristics of the processor,

the consumed power per Watt is between 5 and 100GFlops/Watt. If P is the consumed power,

given in GFlops/Watt, the consumed power associated to ∆Flops can be deduced as follows:

∆Power = ∆flops

P
10−6 mWatt (5.6)
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Operation Number of flops

X̃H
p X̃p 2(NtNrN)2NpNrK − (NtNrN)2(

X̃H
p X̃p

)−1
2(NtNrN)3(

X̃H
p X̃p

)−1
X̃H
p 2(NtNrN)2NpNrK − (NtNrN)NpNrK(

X̃H
p X̃p

)−1
X̃H
p y 2(NtNrN)NpNrK − (NtNrN)

ĥop

2(NtNrN)3 + 4(NtNrN)2NpNrK

+(NtNrN)NpNrK − (NtNrN)2

−(NtNrN)

ĥsb

4(NtNrN)2 ((Np +Nd)NrK)+

(NtNrN)((Np +Nd)NrK)+

2(NtNrN)3− (NtNrN)2− (NtNrN)

FlopsEq

2NtNrNdK2 + 2(NrK)2NtK+

2(NtK)3− (NrK)2

−NtNrK2−NtNdK

Table 5.1: Flops number.

5.3 Performance analysis and discussions

This section analyzes and quantifies the transmitted power that can be reduced when semi-

blind channel estimation approach is deployed while maintaining the same performance as LS

pilot-based channel estimation approach.

The considered MIMO-OFDM wireless system is related to the IEEE 802.11n standard [22].

The training sequences correspond to those specified by the standard. In the legay preamble

(i.e. 802.11a) two identical fields named LTF (Long Training Field) are dedicated to channel

estimation. Each field (or pilot) is represented by one OFDM symbol (K = 64 samples) where a

CP (L= 16 samples) is added at its front. In the High Throughput preamble, a set of identical

fields named High Throughput Long Training fields (HT-LTF) are specified and represented by

one OFDM symbol (K = 64 samples) with a CP (16 samples). These fields (or pilots) are specified

to MIMO channel estimation. Their number depends on the number of transmit antennas (Nt).

Since in this chapter Nt = 3, four (NHT−LTF
p = 4) HT-LTF pilot OFDM symbols are used (see

[22] for details). Therefore the training sequence length is equal to Np =NLTF
p +NHT−LTF

p . The

data field is represented by a set of OFDM symbols depending on the length of the transmitted

packet (Nd). Simulation parameters are summarized in Table 5.2.



5.3. Performance analysis and discussions 103

Parameters Specifications

Channel model Cost 207

Number of transmit antennas Nt = 3

Number of receive antennas Nr = 4

Channel length N = 4

Number of LTF pilot OFDM symbols NLTF
p = 2

Number of HT-LTF pilot OFDM symbols NHT−LTF
p = 4

Number of data OFDM symbols Nd = 40

Pilot signal power Pxp = 23 dBm

Data signal power Pxd = 20 dBm

Number of subcarriers K = 64

Consumed power (GFlops/Watt) P = 5

Table 5.2: Simulation parameters.

The Signal to Noise Ratio associated with pilots at the reception is defined as SNRp =
‖λp‖2

NrNpKσ2
v
. The signal to noise ratio SNRd associated with data is given (in dB) by: SNRd =

SNRp− (Pxp−Pxd) where Pxp (respectively Pxd) is the power of pilots (respectively data)

(both in dB).

5.3.1 Theoretical limit pilot’s power reduction

This section analyzes the maximum pilot’s power reduction evaluated from the theoretical limit

bound performance of the semi-blind channel estimation approach.

The transmitted pilot’s power is reduced in such a way that semi-blind approach achieves

the same performance as pilot-based channel estimation approach (i.e. CRBOP ). To do so, the

proposed strategy replaces the removed pilot samples by zero-samples leading therefore to a

reduction of the average pilot’s transmitted power or equivalently to the transmitted energy).

Figure 5.2 provides the CRB for semi-blind channel estimation versus the reduced pilot’s

power for a given SNRp = 12 dB. The horizontal line represents the CRB for pilot-based channel

estimation and is considered as the reference to be reached. Only 8% of pilot’s power is retained

(i.e. 185 mW are reduced). These results show clearly that semi-blind estimation in MIMO-

OFDM system brings a significant gain in terms of the transmitted pilot’s energy reduction.

Figure 5.3 shows the impact of the number of data OFDM symbols on the pilot’s transmitted
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Figure 5.2: Normalized CRB versus the reduced power (SNRp = 12 dB).
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Figure 5.4: NRMSE of LS and LS-DF estimators versus SNRp.

power (in percentage) for a given SNRp = 12 dB. When the number of data OFDM symbols

increases, the percentage of the reduced pilot’s power becomes more significant. Note that the

results observed in Figure 5.2 can be deduced from Figure 5.3 when the number of data OFDM

symbols is equal to 40.

5.3.2 LS-DF performance in terms of power consumption

This section investigates the energy balance of the complete system (transmitter and receiver),

namely the power deployed by the transmitter and that consumed by the receiver when the

LS-DF algorithm is adopted.

The curves in Figure 5.4 present the Normalized Root Mean square Error (NRMSE) of LS

and LS-DF estimators versus the SNRp. Note that for the hBPSKSB , hQPSKSB LS-DF reaches the

CRBBPSKSB , CRBQPSKSB at height SNR, and gives better results compared to the LS pilot-based

approach (hOP ) from SNRp = 2 dB.

Figure 5.5 presents the transmitted pilot’s power versus the SNRp. The higher the SNRp is,

the lower transmitted pilot’s power is in favor of the LS-DF semi-blind estimator. The same

results are obtained in Figure 5.6 which presents the reduced power versus SNRp.
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Figure 5.5: Transmitted pilot’s power versus SNRp.
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Figure 5.7: NRMSE of the LS-DF channel estimator versus the percentage of the reduced pilot’s power

(SNRp = 12 dB).

Figure 5.7 provides the NRMSE of the LS-DF estimator versus the reduced pilot’s power

(in percentage) for a given SNRp = 12 dB (with Nd = 40). The pilot’s power is reduced in such

a way that the LS-DF estimator performance (hBPSKSB , hQPSKSB ) reaches the same performance

as the LS pilot-based estimator. For BPSK data model, only 49 mW is required instead of 200

mW (100%) when pilot-based channel estimation is used (i.e. a reduction of 76%). For QPSK

data model, 74% of the pilot’s power is also reduced. Although the LS-DF algorithm leads to

an overconsumption of the energy at the receiver side since more operations are required (see

equation (5.5), ∆flops = 94863360 Flops, equivalent to ∆Power = 19 mW), the complete system

(i.e. transmitter and receiver) saves 66% (i.e. 132 mW). The flops due to the equalization stage,

assumed to compensate the flops associated to the removed pilots (assumption in section 5.2.2),

are equivalent to Flopseq = 3233792 Flops. While 2924976 Flops are due to the removed pilots.

The flops difference is 308816 Flops and is in fact negligible (308816<< ∆flops equivalent to 0.061

mW) confirming the assumption. Therefore the global MIMO-OFDM system (i.e. transmitter

and receiver) saves 65,97% i.e. 131.94 mW of power consumption.
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5.4 conclusion

This chapter focused on the power reduction problem in a MIMO-OFDM wireless system

specifically during the channel estimation stage. The study proposed to deploy semi-blind

channel estimation approach allowing the transmitter to reduce the number of samples in

the training sequence while ensuring the same estimation performance as pilot-based channel

estimation approach. The maximum theoretical reduction of the pilot’s power consumption,

based on the CRB for semi-blind channel estimation approach, is first investigated for the IEEE

802.11n MIMO-OFDM system with BPSK and QPSK data models. Simulation results, for the

same channel estimation performance, show clearly a significant reduction of the pilot’s power

equivalent to 76% when LS-DF semi-blind channel estimation is deployed instead of the LS

pilot-based channel estimation. A global power reduction of 65,97% is possible for the complete

wireless MIMO-OFDM system.
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EM-based blind and semi-blind channel estimation

Problems are not stop signs, they

are guidelines.

Robert H. Schuller.

This chapter deals with semi-blind channel estimation of MIMO-OFDM system using Max-

imum Likelihood (ML) technique. For the ML cost optimization function, new Expectation

Maximization (EM) algorithms for the channel taps estimation are introduced. Different approxi-

mation/simplification approaches are proposed for the algorithm’s computational cost reduction.

The first approach consists of decomposing the MIMO-OFDM system into parallel MISO-OFDM

systems. The EM algorithm is then applied in order to estimate the MIMO channel in a parallel

way. The second approach takes advantage of the semi-blind context to reduce the EM cost from

exponential to linear complexity by reducing the size of the search space. Finally, the last proposed

approach uses a parallel interference cancellation technique to decompose the MIMO-OFDM

system into several SIMO-OFDM systems. The latter are identified in a parallel scheme and with

a reduced complexity. These algorithms have been published in the conference ICASSP 20181and

submitted to IET communications2

Abstract

1 [82] A. Ladaycia, A. Belouchrani, K. Abed-Meraim, and A. Mokraoui, and, "EM-based semi-blind MIMO-

OFDM channel estimation," in 2018 IEEE International Conference on Acoustics, Speech and Signal Processing

(ICASSP2018), Apr. 2018, Alberta, Canada.
2 [83] A. Ladaycia, A. Belouchrani, K. Abed-Meraim and A. Mokraoui, "Semi-Blind MIMO-OFDM Channel

Estimation using EM-like Techniques," IET communications, Mai. 2019.(submitted)
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6.1 Introduction

As shown in chapter 1, for a target estimation quality, the SB approach improves the throughput

by reducing the training sequences up to 95%. In addition, SB methods can be used to reduce

the transmitted power (’green communications’), e.g. [33] (chapter 5) or eventually to improve

the estimation quality.

Among the channel estimation techniques, the Maximum Likelihood (ML) is one of the most

efficient in terms of quality but at the cost of high computational complexity. To achieve the

ML estimate at ’affordable’ costs, the Expectation Maximization (EM) algorithm is considered

for both channel and transmit data estimation (see e.g. [84]). In the case of a MIMO-OFDM

system using TDD mode, the CSI is estimated at the base station (uplink) and then transmitted

to the different users for channel equalization in the downlink.

The EM can be used blindly to estimate the channel or semi-blindly when training sequences

are available. In [84], the authors used a precoder and employ data tones as virtual pilots for

channel estimation. In [85] an alternative EM-based method is introduced for the estimation of

the channel taps in the frequency domain. In [86], the authors proposed an EM algorithm by

assuming a Gaussian distribution for the unknown data even when the data symbols are drawn

from a finite constellation such as QPSK. Recently, this work has been extended in [87] by using

a Gaussian mixture model, leading to improved estimation performance for high SNR (typically

SNR > 25dB).

The objective of this chapter is to propose alternative EM-based solutions with improved

efficiency as compared to similar existing methods3. First our EM-based algorithms are distinct

from the previous ones ([85], [84]) in terms of the channel parameters to be estimated. Instead

of estimating the channel coefficients in the frequency domain (i.e. subcarriers channel frequency

gains), we estimate directly the channel taps in the time domain so one can obtain a significant

gain as analyzed in chapter 1. Furthermore, in order to have parallelizable and/or reduced cost

estimation methods, three approximate EM algorithms are proposed.

Before doing so, this chapter introduces first the exact version where the MIMO-OFDM

system is treated as one block to estimate the overall channel vector through an iterative process.

Afterward, three complementary approximate EM versions are proposed.

The first approximate EM algorithm, useful if parallel processing machins are available,

decomposes the MIMO-OFDM system into parallel MISO-OFDM systems to estimate the vector

channel taps independently for each receiver. In the case of underdetermined system (i.e. number
3Part of this work has been published in [82].
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of transmitters greater than the receivers one), where the traditional methods could not estimate

the transmit data, we succeed through the two proposed EM-based algorithms to estimate the

channel taps and data properly.

The second method consists of a Simplified EM algorithm, denoted S-EM, that allows to

reduce the computational heaviness based on an initial estimation of the channel and the data

using the pilots. More specifically, this approximation consists of limiting the averaging in

the expectation step to a neighborhood of the initial data vector estimate, hence reducing the

complexity from an exponential to a linear cost in terms of the number of transmitters.

The last proposed approach, again takes advantage of the semi-blind context using an

initial pilot-based estimation of the channel and the data together with a parallel interference

cancellation technique to transform the original MIMO problem into parallel SIMO systems

identification problems which can be solved in a parallel scheme and with reduced complexity.

6.2 System model

Consider a (Nt×Nr) MIMO-OFDM system composed of Nt transmit antennas and Nr receive

antennas, as illustrated in Figure 1.1. The transmitted signal is an OFDM one, composed of

K samples (subcarriers) and L Cyclic Prefix (CP) samples. The CP length is assumed to be

greater or equal to the maximum multipath channel delay denoted N (i.e. N ≤ L). The received

signal at the k-th subcarrier by the r-th receive antenna, denoted yr(k), after removing the L

CP samples and taking the K-point DFT, is given by:

yr (k) =
Nt∑
i=1

N−1∑
n=0

hri(n)wnkK di(k) + vr(k) 0≤ k ≤K − 1, (6.1)

where di(k) represents the transmitted data by the i-th transmitter at the k-th subcarrier.

The noise vr is assumed to be an additive white Circular Complex Gaussian (CCG) satisfying

E
[
v(k)v(i)H

]
= σ2

vIKδki where (.)H is the Hermitian operator; σ2
v the noise variance; IK

the identity matrix of size K ×K and δki the Kronecker symbol. hri(n) is the n-th channel

taps coefficient between the i-th transmitter and the r-th receiver. wnkK (with wK = e−j2pi/K)

represents the (n,k)-th coefficient of the K-DFT matrix. The matrix form of equation (6.1) can

be given as:

yr (k) = wT (k)Hrd(k) + vr(k), (6.2)
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where the transmitted data d(k) = [d1(k), · · · ,dNt(k)]T , and w(k) =
[
1 wkK , · · · ,w

(N−1)k
K

]T
. The

channel matrix taps Hr is given by:

Hr =


hr1(0) · · · hrNt(0)
...

. . .
...

hr1(N − 1) · · · hrNt(N − 1)

 . (6.3)

The model equation (6.2), when considering all the received signal in a single vector

y(k) = [y1(k), · · · ,yNr(k)]T , can be rewritten in the following compact form:

y(k) = W(k)Hd(k) + v(k), (6.4)

where W(k) = INr ⊗wT (k) and H = [HT
1 , · · · ,HT

Nr
]T .

In the following, the received OFDM symbols are assumed to be independent and identically

distributed (i.i.d). The EM-algorithms are derived according to two different OFDM symbols

arrangement: (i) the comb-type scheme (Figure 1.2b) with Kp pilot’s subcarriers corresponding

(after index permutation) to k = 0, · · · ,Kp − 1 and Kd subcarriers dedicated to data; (ii) the

block-type pilot arrangement (Figure 1.2a) using Np OFDM symbols for the pilot and Nd symbols

for the data.

We assume the transmitted data to belong to a finite alphabet and we denote byD (respectively

|D|) the finite set of all possible realizations of the data vector d (respectively its cardinal).

6.3 ML-based channel estimation

Our objective is to estimate the unknown channel parameters through a Maximum Likelihood

(ML) criterion optimized by the EM technique, briefly reviewed in section (6.3.1). The unknown

parameters are grouped in θ containing the channel taps (vec(H) or vec(Hr)) and the noise

power σv
2 (for simplicity, the signal power is assumed to be known). The ML estimation can be

written as:

θML = arg max
θ

logp(y;θ) , (6.5)

where p(y;θ) is the pdf of the observed vector y parameterized by θ.

6.3.1 EM algorithm

The EM algorithm is an iterative optimization technique that seeks for the ML estimate of the

unknown parameters using the marginal likelihood of the observed data y.

More precisely, the EM-algorithm is based on the two following steps:
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• Expectation step (E-step): Computation of the auxiliary function as:

Q
(
θ,θ[i]

)
= Ed|y;θ[i] [logp(y,d;θ)] , (6.6)

Since p(y,d;θ) = p(y|d;θ)p(d), equation (6.6) becomes (up to a constant independent of

θ), equal:

Q
(
θ,θ[i]

)
= Ed|y;θ[i] [logp(y|d;θ)] , (6.7)

• Maximization step (M-step): Derivation of θ[i+1] which maximizes the auxiliary function

Q
(
θ,θ[i]

)
as:

θ[i+1] = arg max
θ
Q
(
θ,θ[i]

)
(6.8)

This process is shown in [36], [88] to increase the likelihood value (L), i.e p(y|d;θ), and conse-

quently it leads to the algorithm’s convergence to a local maximum point since:

L
(
y,θ[i+1]

)
≥ L

(
y,θ[i]

)
(6.9)

6.3.2 MIMO-OFDM semi-blind channel estimation for comb-type pilot arrangement

This subsection addresses the derivation of the EM algorithm for semi-blind channel estimation

when the pilot arrangement pattern is assumed to be a comb-type one (Figure 1.2b) or which

each OFDM symbol consists of Kp pilots subcarriers and Kd data one. The total number of

transmitted OFDM symbols is Ns.

The likelihood function, under the data model assumption, is expressed by:

p(y;θ) =
Kp−1
Π
k=0

p(y(k) ;θ)
K−1
Π

k=Kp
p(y(k) ;θ) , (6.10)

where p(y(k);θ)∼N
(
W(k)Hdp(k),σ2

vI
)
, for k = 0, · · · , Kp− 1, dp(k) being the pilot vector at

the k-th subcarrier, and for k =Kp, · · ·K − 1

p(y(k) ;θ) =
|D|∑
ξ=1

p
(
y(k)|dξ;θ

)
p
(
dξ
)
, (6.11)

with p
(
y(k)|dξ;θ

)
∼N

(
W(k)Hdξ,σ2

vI
)
.

The two steps of the EM algorithm are presented below.

6.3.2.1 E-step

After some straightforward derivations and simplifications (see Appendix 6.A), Q
(
θ,θ[i]

)
can be

given by:

Q
(
θ,θ[i]

)
=
Kp−1∑
k=0

logp(y(k)|dp(k);θ) +
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)

logp
(
y(k)|dξ;θ

)
, (6.12)
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where
αk,ξ

(
θ[i]
)

= p
(
dξ|y;θ[i]

)
= p(y(k)|dξ;θ[i])p(dξ)

p(y(k);θ[i])
= p(y(k)|dξ;θ[i])p(dξ)
|D|∑
ξ′=1

p(y(k)|dξ′ ;θ[i])p(dξ′)
.

(6.13)

All the realizations dξ are assumed equiprobable and hence one can ignore the term p
(
dξ
)
in

equation (6.13).

6.3.2.2 M-step

The objective of the M-step is to find θ, i.e. the channel matrix H and the noise power σ2
v

maximizing the auxiliary function:

θ[i+1] = arg max
θ

Q
(
θ,θ[i]

)
. (6.14)

By zeroing the derivative of Q
(
θ,θ[i]

)
in (6.12) w.r.t. H and using the vec operator’s

properties
(
vec(ACB) =

(
BT ⊗A

)
vec(C)

)
, one obtains:

vec
(
H[i+1]

)
=[

Kp−1∑
k=0

(
dp(k)∗dp(k)T ⊗W(k)HW(k)

)
+

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)]−1

×
[
Kp−1∑
k=0

vec
(
W(k)Hyp (k)dp(k)H

)
+

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)
vec

(
W(k)Hy(k)dξH

)]
.

(6.15)

Similarly, setting to zero the derivative of Q
(
θ,θ[i]

)
w.r.t. σv

2 leads to:

{σv
2}[i+1] =

1
K

(
Kp−1∑
k=0

∥∥∥yp (k)−W(k)H[i+1]dp(k)
∥∥∥2

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)∥∥∥y(k)−W(k)H[i+1]dξ

∥∥∥2
)
.

(6.16)

The algorithm is summarized in Algorithm 1 below.

6.3.3 MIMO-OFDM semi-blind channel estimation for block-type pilot arrangement

This subsection deals with EM algorithm for semi-blind channel estimation in the block-type

pilot case (Figure 1.2a). In order to ease the derivation of the EM algorithm, in this context, the

system model given in equation (6.4) can be rewritten as (1):

y = X̃ Ph + v. (6.17)

where, for simplicity, the time index corresponding to OFDM symbols is omitted. The data

matrix is: X̃ = INr ⊗X, where X =
[
XD1W · · ·XDNt

W
]
of size K ×NNt and XDi = diag{di}
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Algorithm 1 SB-EM channel estimation algorithm
Initialization:

1: i= 0;

2: θ[0] =
[
vec

(
H[0]

)T
,{σ2

v}[0]
]T

which represents the standard pilot-based channel and noise

estimates;

Processing:

3: Estimate H[i+1] using H[i] and {σ2
v}[i] according to equation (6.15);

4: Estimate {σ2
v}[i+1] using H[i+1], H[i] and {σ2

v}[i] according to equation (6.16);

5: Set θ[i] = θ[i+1];

6: While
(
‖H[i+1]−H[i]‖> ε

)
repeat from step 3;

Else: Ĥ = H[i+1] and σ̂2
v = {σ2

v}[i+1];

is a diagonal matrix of size K ×K corresponding to the OFDM symbol transmitted by the i-th

transmitter. The channel vector taps is h = vec(H) and P is a permutation matrix.

When Only Pilots (OP) are used to estimate the channel taps, the ML estimator coincides

with the Least Squares (LS) estimator ([21]) given by:

ĥOP =

Np∑
t=1

PHX̃H
ptX̃ptP

−1 Np∑
t=1

PHX̃H
ptypt , (6.18)

where X̃pt refers to the t-th pilot OFDM matrix defined in (1.5).

The derivation is done in a similar way to the comb-type pilot (see Appendix 6.B), leading to

the the EM semi-blind channel H and σv
2 noise power estimation given by:

vec
(
H[i+1]

)
=
[
PHX̃H

p X̃pP+
K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)]−1

×
[
PHX̃H

p Yp+
K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)
vec

(
W(k)Hy(k)dξH

)]
.

(6.19)

{σv
2}[i+1] =

1
K(Np+Nd)

(∥∥∥Yp− X̃pP vec
(
H[i+1]

)∥∥∥2
+
K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)∥∥∥y(k)−W(k)H[i+1]dξ

∥∥∥2
)
.

(6.20)

The algorithm, in the block-type pilot arrangement case, is the same as Algorithm 1 using

equations (6.19) and (6.20) in steps 3 and 4.
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6.4 Approximate ML-estimation

Due to the heaviness of the EM-algorithm mainly due to the large number of channels (Nr) and

the large value of |D| which grows exponentially with the number of transmitters, herein we

propose three simplified versions of the EM-algorithm to reduce the computational complexity

while guaranteeing approximately the same estimation performance.

6.4.1 MISO-OFDM SB channel estimation

In this subsection, the MIMO-OFDM system is sub-divided into Nr parallel MISO systems,

for which the EM is applied in a parallel scheme. By ignoring the common input data, one

can see from equations (6.2) and (6.3) that the MIMO-OFDM system can be decomposed into

Nr parallel MISO-OFDM systems, as illustrated in Figure 6.1. Besides allowing the parallel

processing of the data, this approach is of practical interest when the noise is spatially colored

since only the noise power at the considered receiver is estimated in this scheme.

The parameters of the r-th MISO-OFDM system are denoted as:

θr =
[
vec(Hr)T ,σ2

vr

]
(6.21)

The estimation of Hr and σ2
vr , using the EM algorithm, leads to the same expressions as

in the MIMO case given in section (6.3) where H and W(k) are replaced by Hr and w(k),

respectively.
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Figure 6.1: MIMO-OFDM system model using Nr parallel MISO-OFDM systems.
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6.4.2 Simplified EM algorithm (S-EM)

The computational heaviness in equations (6.15) and (6.16) is due to the summation over all the

possible realizations of the data vector d (i.e. |D|). In this subsection we propose a simplified

method to reduce the summation set from |D| (which growth exponentially with the number Nt)

to another reduced summation set of size |D′| proportional to Nt.

The proposed approach is summarized in Figure 6.2, where we use the Decision Feedback

Equalizer technique (DFE) to re-estimate the channel using the EM-based algorithm. According

to the system model comb-type equation (6.4) or block-type equation (6.17), the first step consists

of estimating the channel taps based on equation (6.18) using only pilots.

After estimating the channel (i.e. ĥop), a linear equalizer is adopted to have a first estimate

of the transmitted signal applies the inverse of the channel frequency response to the received

signal. After that, a hard decision is taken on the equalized signal to estimate the transmitted

signal d̂d (for more detail see chapter 5). Using d̂d, the summation in equations (6.15), (6.16),

(6.19) and (6.20) is done on a reduced size set |D′| corresponding to the neighborhood of d̂d
defined here as the points differing from d̂d by at most one entry.

LS 

Channel Estimation 
Equalization +

Decision

y
pd

ˆ
oph ˆ

dd
S-EM

Algorithm
ˆ S EM

SB


h

Figure 6.2: Simplified EM algorithm.

6.4.3 MIMO-OFDM SB-EM channel estimation algorithm based on Nt EM-SIMO

In this case, to avoid the summation through all the set of |D|, we propose in this subsection

another simplified EM-algorithm, in which we decompose the MIMO-OFDM system into Nt
SIMO-OFDM system. At each iteration, one can estimate the channel taps of the t-th transmitter

after doing a DFE equalizer and eliminating the received signal from the other transmitters. As

illustrated in Figure 6.3, we start by estimating the MIMO channel taps using the pilots with

the LS estimator (ĥop), then applying the ZF equalizer followed by a hard decision to estimate

the transmitted data sent by each transmitter (d̂1 · · · d̂Nt) . Once the transmitted data are

estimated, one can consider it as interference and taking a SIMO-OFDM system. The data
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model equation, given in equation (6.4), can be rewritten in this case as:

ySIMO
u (k) = y(k)−W(k)Ĥūd̂ū(k) = W(k)hudu(k) + zu(k), (6.22)

where ySIMO
u (k) is an estimate of the received signal from only the u-th user, hu represents the

u-th column of the channel matrix H corresponding to the u-th SIMO-OFDM system channel

taps. Ĥū is the estimate of the channel matrix of the interfering users, i.e. Ĥū is equal to Ĥ

from which the u-th column is removed.

zu(k) represents the noise and interference residual terms. Under the simplifying assumption

zu(k)∼N
(
0,σ2

zuI
)
, one can write:

p
(
ySIMO
u (k) ;θu

)
∼N

(
W(k)hudu(k),σ2

zuI
)
, (6.23)

where the vector of unknown parameters is: θu =
[
hTu ,σ

2
zu

]T
.

By doing so, we obtain Nt SIMO-OFDM subsystems that can be processed ’independently’

(possibly in parallel scheme) according to the following EM iterative algorithm: For u= 1, · · · ,Nt:

6.4.3.1 E-step

The auxiliary function Q
(
θu,θ

[i]
u

)
can be written as:

Q
(
θu,θ

[i]
u

)
=
Kp−1∑
k=0

logp
(
ySIMO
p,u (k) |dp,u(k);θu

)
+

K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ
(
θ

[i]
u

)
logp

(
ySIMO
u (k) |dξ;θu

)
,

(6.24)

where {dp,u(k)} represent the pilot symbols and |Du| is the set of symbol values (alphabet) of

the u-th user and:

p
(
ySIMO
p,u (k) |dp,u(k);θu

)
∼N

(
W(k)hudp,u(k),σ2

zuI
)
, (6.25)

p
(
ySIMO
u (k) |dξ;θu

)
∼N

(
W(k)hudξ,σ2

zuI
)
, (6.26)

αk,ξ
(
θ

[i]
u

)
=

p
(
ySIMO
u (k) |dξ;θ

[i]
u

)
p
(
dξ
)

|Du|∑
ξ′=1

p
(
ySIMO
u (k) |dξ′ ;θ

[i]
u

)
p
(
dξ′
) . (6.27)
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6.4.3.2 M-step

By zeroing the derivative of Q
(
θu,θ

[i]
u

)
given in equation (6.24) w.r.t hu, we obtain:

h
[i+1]
u =[
Ns∑
t=1

(
Kp−1∑
k=0

W(k)HW(k)dpt,u(k)d∗pt,u(k) +
K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ,t
(
θ

[i]
u

)
W(k)HW(k)dξd∗ξ

)]−1

×
Ns∑
t=1

(
Kp−1∑
k=0

W(k)HySIMO
pt,u (k)d∗pt,u(k) +

K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ,t
(
θ

[i]
u

)
W(k)HySIMO

u,t (k)d∗ξ

)
.

(6.28)

Similarly, by zeroing the derivative of Q
(
θu,θ

[i]
u

)
given in equation (6.24) w.r.t σ2

zu , one can

get:

{σzu
2}[i+1] = 1

KNs

Ns∑
t=1

(
Kp−1∑
k=0

∥∥∥ySIMO
pt,u (k)−W(k)h[i+1]

u dpt,u(k)
∥∥∥2

+
K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ,t
(
θ

[i]
u

)∥∥∥ySIMO
u,t (k)−W(k)h[i+1]

u dξ

∥∥∥2
)
.

(6.29)

The EM-MIMO-OFDM SB channel estimation algorithm based on Nt EM-SIMO-OFDM is

then summarized below in Algorithm 2.

Algorithm 2 SB-EM channel estimation based on Nt EM-SIMO
Initialization:

1: LS-channel estimation using pilots (i.e. ĥOP );

2: Transmitted data estimation (i.e. d̂) using ZF (or other) equalizer followed by a hard decision;

3: Interference cancellation: Considering one SIMO system by eliminating the received signal

from the other transmitted signals;

4: Initialization of θ[0]
u =

[
h

[0]
u
T
,{σ2

zu}
[0]
]T

, u= 1, · · · ,Nt as the standard pilot-based channel

and noise estimates;

Processing: : For u= 1 :Nt
5: Estimation of h[i+1]

u using h[i]
u and {σ2

zu}
[i] according to equation (6.28);

6: Estimation of {σ2
zu}

[i+1] using {σ2
zu}

[i], h[i]
u , and h[i+1]

u according to equation (6.29);

7: Set θ[i]
u = θ[i+1]

u ;

8: While
(
‖h[i+1]

u −h[i]
u ‖> ε

)
repeat from step 5;

Else: ĥu = h[i+1]
u and σ̂2

zu = {σ2
zu}

[i+1]; end For

6.5 Discussions

We provide here some insightful comments on the proposed EM-like algorithms.
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Figure 6.3: Nt EM-SIMO SB channel estimation algorithm.

• Blind estimation: For the blind channel estimation, one can ignore the pilot’s terms in

equations (6.15) and (6.16) and take into account only the data OFDM subcarriers as

follows:

vec
(
H[i+1]

)
=
[
Ns∑
t=1

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ,t
(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)]−1

×
[
Ns∑
t=1

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ,t
(
θ[i]
)
vec

(
W(k)Hyt (k)dξH

)]
.

(6.30)

{σv
2}[i+1] = 1

KdNs

Ns∑
t=1

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ,t
(
θ[i]
)∥∥∥yt (k)−W(k)H[i+1]dξ

∥∥∥2
 . (6.31)

• EM-MISO: Besides allowing the parallel processing of the data, the proposed MISO-EM

approach is of practical interest when the noise is spatially colored since only the noise

power at the considered receiver is estimated in this scheme.

On the other hand, since we deal with underdetermined system identification in this case,

this approach cannot be considered for a large number of users. Indeed, it is known that

the maximum number of sources allowed for system identifiability depends on the number

of sensors, e.g. [89]. Hence, to deal with a large number of transmitters, we need to extend

this approach by considering several blocks of receivers of size 1< nr <Nr each (i.e. each

subsystem would be of size Nt×nr) that can be processed in parallel scheme.

• Numerical cost: If one considers a brute force implementation of the previous EM for-

mulas, one can observe that for the standard EM-MIMO version, the cost is of order

O(NsKMNt(NtNrN)2) flops per iteration where M is the finite alphabet size. For the

simplified EM version, the costs is reduced to O(NsKMNt(NtNrN)2) (i.e. the factor

MNt becomes MNt). For the EM-MISO, for each of the Nr subsystems (assumed to work

in parallel scheme), we have a computational complexity of order O(NsKMNt(NtN)2).

Finally, for the EM-SIMO version, the cost is O(NsNtKM(NrN)2) flops per iteration.
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• Algorithm’s convergence: As mentioned in section III-A, the EM-MIMO algorithm con-

verges to a local maximum point of the likelihood function [88]. This observation holds

for the EM-MISO but since the latter is underdetermined, the algorithm’s initialization is

more difficult and the risk of local (instead of global) convergence is higher. Also, since the

convergence rate of an EM algorithm is inversely related to the Fisher information of its

complete-data space [88], the rate of convergence would be lower in that case as compared

to the standard EM-MIMO algorithm. The EM-SIMO is somehow a specific version of

the SAGE (Space-Alternating Generalized Expectation-Maximization) algorithm which is

shown in [90] to lead to faster convergence under some mild assumptions. Finally, for the

simplified EM version, the convergence is dependent of the quality of the first LS estimate.

Indeed, since one restricts the search in (6.15), (6.16), (6.19) and (6.20) to the neighboring

of the initially detected input vector (i.e. the set |D′| instead of |D|), the estimation quality

as well as the algorithm’s convergence would depend strongly on this reduced size search

space. In fact, if the exact input vector belongs to the set |D′|, then, the S-EM would have

the same convergence properties as the standard EM-MIMO algorithm4.

• EM-SIMO: In our work, we have chosen to use a parallel interference cancellation technique

followed by an EM-based channel estimation for each SIMO subsystem. However, other

possible implementations might be used (not considered here) including: (i) the use

of sequential (instead of parallel) interference cancellation; (ii) the combination of the

interference cancellation and the EM-based channel up-date in each iteration of our recursive

EM algorithm.

6.6 Simulation results

This section analyzes the performance of the EM blind and semi-blind channel estimators in

terms of the NRMSE evaluated as:

NRMSE =

√√√√√ 1
Nmc

Nmc∑
i=1

∥∥∥ĥ−h
∥∥∥2

‖h‖2
, (6.32)

where Nmc = 500 represents the number of independent Monte Carlo realizations. The perfor-

mance study is conducted for the three system configurations presented in this thesis i.e MIMO-

OFDM system (hEM−MIMO
SB and hEM−MIMO

B ), parallel MISO-OFDM systems (hEM−MISO
SB and

4Note that the error probability of the ZF equalizer is known in the literature, and hence, one can use this

information to get an upper bound of the convergence probability of our S-EM algorithm.
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Parameters Specifications

Number of pilot subcarriers Kp = 8

Number of data OFDM symbols Ns = 16

Number of data subcarriers Kd = 56

Pilot signal power σ2
p = 13 dBm

Data signal power σ2
d = 10 dBm

Number of subcarriers K = 64

Table 6.1: Simulation parameters.

hEM−MISO
B ), and SIMO-OFDM systems (hEM−SIMO

SB ). Also, we have considered both comb-

type and block-type pilots in our simulation and obtained the same kind of results. Therefore,

for simplicity, we present next only those corresponding to the comb-type pilot design.

For simulations, the IEEE 802.11n training sequences are used as pilots and the channel

model is assumed of type B with path delay [0 10 20 30] µs and an average path gains of [0 -4 -8

-12] dB [22]. Simulation parameters are summarized in Table 6.1.

6.6.1 EM-MIMO performance analysis

We analyse here the behavior of the EM-MIMO algorithm in terms of convergence rate and

estimation accuracy. In the first experiment given in Figure 6.4, we can see that at SNR = 10dB,

we have an algorithm’s convergence in almost 1 iteration for a (2×2) MIMO system. In Figure 6.5,

we illustrate the convergence rate for this same system but for different SNR values. Eventhough

the number of iterations increases with the noise level, it remains relatively low and we reach the

steady state regime in only few (less than 10) iterations.

Another way to exploit the SB scheme is to use it to reduce the pilot size while preserving

the channel estimation quality similar to the one of the OP case [32]. Figure 6.6 presents the

performance of the proposed EM-algorithm versus the number of samples removed from the pilot

OFDM symbols for a given SNR equal to 10 dB (i.e. corresponding to the operating mode of the

IEEE 802.11n). The black and magenta horizontal curves represent the full pilot-based channel

estimation (hOP where the pilot’s size is constant) and ’EM-blind channel’ (hEMB ) estimation5,

respectively. The SB channel estimation performance decreases when increasing the number of

deleted pilot samples. However, it still gives better results than OP-channel estimation even

though most of the pilot samples are removed.
5For the blind case, we have removed the indeterminacies, e.g., [64], in order to evaluate the NRMSE.
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Figure 6.4: EM-MIMO algorithm’s convergence: Convergence at SNR= 10dB.
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Figure 6.6: Performance of the proposed EM algorithm versus the number of deleted pilot samples.

Figure 6.7 compares the proposed EM-algorithm (i.e. EM-MIMO), its approximate version

(S-EM) and the algorithm developed in [86] referred to as G-EM and denoted hG−EMSB . The

latter is based on a data Gaussian assumption. Note that, we have also compared our results

with those of the GMM-based EM algorithm in [87] which shows improved performance only

for quite high SNRs (starting from 25 dB in our context) as compared to the G-EM. Therefore,

we choose here to keep only the comparative results with the latter algorithm. As shown in

Figure 6.7, for (2× 2) and (4× 4) MIMO systems, we can see that the performance of the S-EM

and the standard EM-MIMO are close but with a significant computational complexity gain

in favor of the S-EM. Also our approximate EM algorithm outperforms the G-EM one. The

significant gain can be partially explained by the fact that the authors of [86] estimate the channel

coefficients in the frequency domain instead of estimating directly the channel taps h which leads

to performance loss as shown in [71]. On the other hand, the G-EM has the advantage to not

require the knowledge of the channel size N contrary to our methods.
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Figure 6.7: EM-MIMO and S-EM algorithm’s performance versus G-EM: (a) 2× 2 MIMO-OFDM; (b)
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Figure 6.8: NRMSE of the EM algorithms versus SNR: 2× 2 MIMO.

6.6.2 EM-MIMO versus EM-MISO

Here we compare the EM-MIMO performance and the performance of the proposed EM-MISO

algorithm, where the MIMO-OFDM system is decomposed into Nr MISO-OFDM subsystems.

Figures 6.8 and 6.9 provide the performance of the different channel estimation algorithms

(i.e. hOP , hEM−MIMO
SB , hEM−MIMO

B , hEM−MISO
SB and hEM−MISO

B ) benchmarked by the per-

formance limit defined by the Cramèr Rao bound CRBSB detailed in [32]. The plots represent

the NRMSE versus the SNR, in the case of (2× 2) (Figure 6.8) and (4× 4) (Figure 6.9) MIMO-

OFDM systems. The curves show clearly that the SB EM-MISO behaves properly with a slight

performance loss as compared to the SB EM-MIMO.

Now, we consider a (4× 2) underdetermined MIMO system. Simulation results are provided

in Figure 6.10 where we can see that even in this particular configuration the EM-based channel

estimation algorithms perform very well. Figure 6.11 presents the behavior of the EM algorithms

when increasing the number of data OFDM symbols (i.e. Nd) for a SNR set at 10 dB. The curve

analysis confirms that when the number of data OFDM symbols increases, the performance of

the EM algorithm in the blind and semi-blind approaches improvs significantly with only few

tens of data OFDM symbols (which matches well with the limited coherence time of MIMO and
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Figure 6.9: NRMSE of the EM algorithms versus SNR: 4× 4 MIMO.
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Figure 6.10: NRMSE of the EM algorithms versus SNR in the underdetermined case (Nt >Nr).
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Figure 6.11: NRMSE versus the number of OFDM symbols (Nd).

massive MIMO systems).

6.6.3 EM-MIMO versus EM-SIMO

Figure 6.12 provides the performance versus the SNR of the proposed EM-SIMO algorithm in

the case of (2× 2) MIMO system decomposed into 2-SIMO subsystems (i.e. hEM−SIMO
SB (ZF ),

where ZF refers here to the ZF equalizer used to initialize the algorithm). One observes that

for a small number of users, the proposed algorithm provides good results with a significant

reduction of the execution time.

Figure 6.13 illustrates the performance of the (4×4) MIMO system decomposed into 4-SIMO

subsystems. We observe that when the number of users increases, the cumulative residual

interference terms strongly affect the algorithm’s performance (i.e. hEM−SIMO
SB (ZF )) if the

latter uses a cheap equalizer, for instance the ZF, for its initialization. Hence, we present the

EM-SIMO results for the case where the ZF equalizer is replaced by an ML-like detector based

on Stack algorithm [91], [92] (i.e. hEM−SIMO
SB ). As we can see, the performance improvement is

significant as we almost reach the CRB even at low SNR values while hEM−SIMO
SB (ZF ) reaches

the CRB only at 35 dB in that context. This highlights the importance of the initialization step
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Figure 6.12: Performance of EM-SIMO algorithm versus SNR: 2× 2 MIMO.

for the EM-SIMO especially for large dimensional systems.

6.7 Conclusion

This chapter introduces the EM based blind and semi-blind channel identification in MIMO-

OFDM wireless communications systems. Since the EM-like algorithms are relatively expensive,

a main focus of this work is the reduction of the numerical complexity while preserving at best

the channel estimation quality. For that, we relied on three items:

(i) First, we took advantage of the semi-blind context which provides a good initial channel

estimate (based on the available pilots) to achieve fast convergence rates (typically few iterations

are sufficient to reach the steady state regime).

(ii) Since more and more systems use nowadays several computing units, we divided the

overall estimation problem (MIMO) into several reduced size sub-problems (SIMO or MISO) to

help reducing the cost and exploiting the parallel computational architectures.

(iii) Finally, we introduced an approximate EM algorithm (S-EM) which is shown to overcome

other existing approximate EM solutions from the literature and more importantly it helps

reducing the algorithm’s complexity from exponential to polynomial one.
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Figure 6.13: Performance of EM-SIMO algorithm versus SNR: 4× 4 MIMO.

6.A Derivation of the EM algorithm for comb-type scheme

We assume that the OFDM symbols are i.i.d. and belong to a finite alphabet set of size |D|. The

log-likelihood function is given by:

log (p(y;θ)) =
Kp−1∑
k=0

p(y(k) ;θ)+
K−1∑
k=Kp

p(y(k) ;θ) , (6.33)

• E-step

The auxiliary function Q
(
θ,θ[i]

)
, in the E-step of the EM-algorithm, can be derived as:

Q
(
θ,θ[i]

)
= Ed|y;θ[i]

[
Kp−1∑
k=0

log(p(y(k)|dp(k);θ)) +
K−1∑
k=Kp

log(p(y(k)|dd(k);θ))
]

=
Kp−1∑
k=0

log(p(y(k)|dp(k);θ)) +
K−1∑
k=Kp

Ed|y;θ[i] [log(p(y(k)|dd(k);θ))]

=
Kp−1∑
k=0

log(p(y(k)|dp(k);θ)) +
K−1∑
k=Kp

|D|∑
ξ=1

p
(
dξ|y(k);θ[i]

)
log
(
p
(
y(k)|dξ;θ

))
(6.34)

where

log
(
p
(
y(k)|dξ;θ

))
=−1

2 log
(
2πσ2

v

)
− 1

2σ2
v

∥∥y(k)−W(k)Hdξ
∥∥2 (6.35)
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log(p(y(k)|dp(k);θ)) =−1
2 log

(
2πσ2

v

)
− 1

2σ2
v
‖y(k)−W(k)Hdp(k)‖2 (6.36)

p
(
dξ|y(k);θ[i]

)
= αk,ξ

(
θ[i]
)

=
p
(
y(k) |dξ;θ[i]

)
p
(
dξ
)

|D|∑
ξ′=1

p
(
y(k) |dξ′ ;θ[i]

)
p
(
dξ′
) (6.37)

By substituting equations (6.35) and (6.36) in equation (6.34), one can write the auxiliary

function Q
(
θ,θ[i]

)
as follow:

Q
(
θ,θ[i]

)
= g

(
σ2

v
)
− 1

2σ2
v

Kp−1∑
k=0
‖y(k)−W(k)Hdp(k)‖2

− 1
2σ2

v

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)∥∥y(k)−W(k)Hdξ

∥∥2
(6.38)

• M-step

The value of H that maximize Q
(
θ,θ[i]

)
, can be calculated by setting the derivative of the

latter w.r.t. H to zero as next:

Kp−1∑
k=0

W(k)HW(k)Hdp(k)dp(k)H+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)(

W(k)HW(k)Hdξ(k)dξ(k)H
)

−
Kp−1∑
k=0

W(k)Hyp (k)dp(k)H−
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)

W(k)Hy(k)dξH = 0

(6.39)

Using the following vec operator property:

vec
(
W(k)HW(k)Hdp(k)dp(k)H

)
=
(
dp(k)∗dp(k)T ⊗W(k)HW(k)

)
× vec(H) , (6.40)

we obtain:

vec
(
H[i+1]

)
=[

Kp−1∑
k=0

(
dp(k)∗dp(k)T ⊗W(k)HW(k)

)
+

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)]−1

×
[
Kp−1∑
k=0

vec
(
W(k)Hyp (k)dp(k)H

)
+

K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ
(
θ[i]
)
vec

(
W(k)Hy(k)dξH

)]
.

(6.41)

6.B Derivation of the EM algorithm for block-type scheme

In the case of block-type pilot arrangement, we combine the two data models given in equations

(6.17), for pilot OFDM symbols transmission, and (6.4) for data transmission.
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• E-step

As developed in Appendix 6.A, the auxiliary function, in this case, is given by:

Q
(
θ,θ[i]

)
= log(p(y|dp;θ)) +

K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)

log
(
p
(
y(k)|dξ;θ

))
(6.42)

where

log(p(y|dp;θ)) =−1
2 log

(
2πσ2

v

)
− 1

2σ2
v

∥∥∥y(k)− X̃ P× vec(H)
∥∥∥2

(6.43)

Finally,

Q
(
θ,θ[i]

)
= g

(
σ2

v
)
− 1

2σ2
v

∥∥∥y(k)− X̃ P× vec(H)
∥∥∥2

− 1
2σ2

v

K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)∥∥y(k)−W(k)Hdξ

∥∥2 (6.44)

• M-step

By zeroing the derivative of equation (6.44) w.r.t. vec(H), we obtain:

PHX̃H
p X̃pP× vec(H)+

K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)
× vec(H)

−PHX̃H
p Yp−

K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)
vec

(
W(k)Hy(k)dξH

)
= 0.

(6.45)

then leads to :

vec
(
H[i+1]

)
=
[
PHX̃H

p X̃pP+
K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)]−1

×
[
PHX̃H

p Yp+
K−1∑
k=0

|D|∑
ξ=1

αk,ξ
(
θ[i]
)
vec

(
W(k)Hy(k)dξH

)]
.

(6.46)
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Subspace blind and semi-blind channel estimation

The only way of discovering the

limits of the possible is to venture a

little way past them into the

impossible.

Clarke’s Second Law.

In this chapter, we propose a semi-blind (SB) subspace channel estimation technique for which

an identifiability result is first established for the subspace based criterion. Our algorithm adopts

the MIMO-OFDM system model without cyclic prefix and takes advantage of the circulant

property of the channel matrix to achieve lower computational complexity and to accelerate the

algorithm’s convergence by generating a group of sub vectors from each received OFDM symbol.

The contributions of this work have been published in national 1and international 2conferences.

Abstract
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2 [94] A. Ladaycia, K. Abed-Meraim, A. Mokraoui, and A. Belouchrani, "Efficient Semi-Blind Subspace Channel

Estimation for MIMO-OFDM System," in 2018 26th European Signal Processing Conference (EUSIPCO), Sep.

2018, Rome, Italy.
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7.1 Introduction

Research work on semi-blind methods can be divided into two categories. The first category

groups works that aim to improve the performance of the channel estimation through the joint

use of pilots and data symbols. This is the case, for example, of [95] where the authors used a

subspace approach or [26] which proposes a decomposition of the channel matrix into a whitening

matrix and another unitary. The second category includes works that focus on reducing the size

of the transmitted pilot signals in order to improve the throughput gain (see for example [66]).

In [33], the authors exploit the semi-blind approach to reduce the transmitted power ("green

communications").

This chapter proposes a semi-blind channel estimation method based on the subspace

decomposition (in signal subspace and noise subspace) of the covariance matrix of the received

signal. The derivation of subspace methods depends on the matrix system model. In our case,

we use an appropriate windowing that increases the convergence rate together with the circular

Toeplitz block structure of the system matrix associated with an OFDM symbol. First, we

establish a subspace identifiability result linked to this structure before using it for semi-blind

channel estimation.

Note that in the literature there exist already several versions of the subspace method, for

example [95, 96] differ from the one proposed in this thesis by incorporating the cyclic prefix

(CP) and virtual carriers (VC) into the system model which changes the size and structure of the

system channel matrix. The latter methods are efficient only for large sample sizes and hence

a fast alternative approach has been introduced in [97]. Compared to this last method, our

solution does not rely on the presence of VC and has a lower computational complexity. Finally,

we present simulation results with comparative study that assess the performance gain achieved

by the proposed solution.

7.2 System model

This MIMO-OFDM system adopted in this study is illustrated in Figure 1.1 and described in

chapter 1. The received signal y at the Nr receivers of the MIMO-OFDM system is given by 1

(after CP removal):

y = Hx + v, (7.1)

where y =
[
yT1 · · ·yTNr

]T
and x =

[
xT1 · · ·xTNt

]T
. The noise v =

[
vT1 · · ·vTNr

]T
is assumed to

be additive independent white Circular Complex Gaussian (CCG) satisfying E
[
v(k)v(i)H

]
=
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σ2
vIKδki; (.)H being the Hermitian operator; σ2

v the noise variance; IK the identity matrix of

size K ×K. The channel matrix H is given by:

H =


H1,1 · · · H1,Nt
...

. . .
...

HNr,1 · · · HNr,Nt

 . (7.2)

Each sub-block Hi,j (with i= 1, · · · , Nr and j = 1, · · · , Nt) of the matrix H is a circulantK×K

Toeplitz matrix. The first row of the (i, j)-th block contains the propagation channel coefficients

between the i-th transmitter and the j-th receiver hi,j i.e.
(
hi,j = [hi,j(0) · · · hi,j(N − 1)]T

)
, given

by:
[
hi,j(0) 01×(K−N) hi,j(N − 1) · · · hi,j(1)

]
. The signal xi, sent by the i-th transmitter is

an OFDM signal, modulating the data signal di, using the inverse Fourier transform IFFT, as

follows

xi = WH

√
K

di, (7.3)

where W represents the K-point Fourier matrix. Equation (7.1), can be rewritten as:

y = HWd + v = Ad + v, (7.4)

where A = HW and W = INt⊗W with ⊗ referring to the Kronecker product. The transmitted

data are regrouped in d =
[
dT1 · · ·dTNt

]T
.

In the sequel the received OFDM symbols are assumed to be i.i.d and the Np pilots are

arranged according to the block-type scheme followed by Nd data OFDM symbols. To take into

account the time index (ignored in equations (7.1) and (7.4)), we will refer to the t-th OFDM

symbol by y(t) instead of y.

7.3 MIMO channel estimation

This section first reminds the well known Least Squares estimator, denoted LS, based on the

pilot symbols known at the receiver side. Our subspace blind estimator is then introduced

to ultimately derive the proposed semi-blind estimation solution. This is formulated by the

minimization of a cost function that incorporates both the pilot and the blind (data) part.

7.3.1 Pilot-based channel estimation

In order to derive LS estimator, based on the training sequences, equation (7.1) is rewritten as:

y = X̃h + v, (7.5)
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where h =
[
hT1 · · ·hTNr

]T
is a vector of size NrNtN × 1 representing the MIMO channel taps

(where hr =
[
hT1,r · · ·hTNt,r

]T
). X̃ = INr⊗X, with X = [X1 · · ·XNt ] where Xi is a circulant K×N

Toeplitz matrix containing the elements of xi. Each column is obtained by a simple down cyclic

shift of the previous one with the first column being the vector xi.

The LS channel estimator ĥLS , using Np pilot OFDM symbols, X̃p =
[
X̃(1)T · · ·X̃(Np)

T
]T

,

is obtained by the minimization of the following cost function:

C (h) =
∥∥∥ỹp− X̃ph

∥∥∥2
, (7.6)

with ỹp =
[
y(1)T · · ·y(Np)T

]T
.

Then the LS estimator is given by [21]:

ĥLS =
(
X̃H
p X̃p

)−1
X̃H
p ỹp. (7.7)

7.3.2 Subspace based SB channel estimation

In this subsection, we consider the subspace approach for the data model given in equation (7.1).

Based on the data model assumptions, the data covariance matrix is equal to:

Cy = E(yyH) = σ2
xHHH +σ2

vIKNr (7.8)

Hence, the signal subspace (principal subspace of Cy) coincides with the range space of H

while the noise subspace is its orthogonal complement. These subspaces can be estimated from

the eigenvalue decomposition (EVD) of Cy according to:

Cy = UΛUH = [Us |Un ]

 Λs 0

0 Λn


 UH

s

UH
n

 , (7.9)

where Cy is estimated using Nd data OFDM symbols as follows:

Ĉy = 1
Nd

Nd∑
t=1

y(t)y(t)H . (7.10)

Λ is a diagonal matrix containing the eigenvalues in descending order, the matrix Us of size

KNr×KNt contains the eigenvectors associated with the largest eigenvalues representing the

signal subspace. The noise subspace Un is associated with the K (Nr −Nt) smallest eigenvalues,

i.e.:

[Us |Un ] = [u1 · · · uKNt |uKNt+1 · · · uKNr ] . (7.11)

Now, the subspace identification applies only when the range space of matrix H (range(H))

characterizes uniquely the channel vector h (up to certain inherent indeterminacies [63]). For
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this purpose, we have proved the following identifiability result:

Lemma 7.1. Let H(z) be the Nr ×Nt polynomial filtering matrix which (i, j)-th entry is

given by hi,j(z) = ∑N
k=0hi,j(k)z−k. Under the assumption that H(z) is irreducible (i.e.

rank(H(z)) =Nt for all z), the range space of matrix H characterizes the channel as follows:

For any polynomial matrix H′(z) of degree N , we have range(H′) = range(H) if and only if

H′(z) = H(z)Q, where Q is a constant Nt×Nt matrix representing the inherent indeterminacy

of the blind approach [63].

Using the previous lemma, we can blindly identify the channel vector through the orthogonality

relation between the noise and signal subspaces according to:

uHi A = 0 i=KNt + 1, · · · ,KNr, (7.12)

where A is the channel matrix given in equation (7.4).

Solving this orthogonality relation in the least squares sense leads to:

C (H) =
KNr∑

i=KNt+1

∥∥∥uHi A
∥∥∥2

=
KNr∑

i=KNt+1

∥∥∥uHi HW
∥∥∥2
. (7.13)

By partitioning vector ui of dimension KNr × 1 into Nr vectors vir (r = 1, · · · ,Nr) of size K

as follows:

ui =
[

vi1
T · · · viNr

T
]T
, (7.14)

one can generate the NNr ×K matrix Vi as:

Vi =
[

Vi
1 · · ·Vi

Nr

]T
, (7.15)

where each matrix Vi
r is circulant of size N ×K constructed from the vector vir. Each line is

obtained by a simple left cyclic shift of the previous one with the first line being the vector vir
T .

The cost function given by equation (7.13), can then be rewritten in the following form:

C (H) =
KNr∑

i=KNt+1

∥∥∥HTVi
∗W

∥∥∥2
=

KNr∑
i=KNt+1

∥∥∥HTVi
∗
∥∥∥2
, (7.16)

where
H =

[
h1 · · · hNt

]
h =

[
hT1 · · · hTNt

]T
hi =

[
h1,i(0) · · · h1,i(N − 1) · · ·hNr,i(0) · · · hNr,i(N − 1)

]T .
(7.17)
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This criterion reduces finally to:

C (h) =
Nt∑
i=1

hTi Φh∗i = hT (INt ⊗Φ)h∗

= hH (INt ⊗Φ∗)h,
(7.18)

where

Φ =
KNr∑

i=KNt+1
Vi
∗Vi

T , (7.19)

The cost function in the semi-blind subspace case is composed of two cost functions: the least

squares based on the pilots and the one related to the subspace blind estimation:

C (h) =
∥∥∥ỹp− X̃pPh

∥∥∥2
+αhH (INt ⊗Φ∗)h, (7.20)

where α is a weighting factor3 for the subspace method and P is a permutation matrix such that

h = Ph. The minimization of the latest cost function, leads to the semi-blind channel estimation

as:

ĥ =
(
PHX̃H

p X̃pP +α(INt ⊗Φ∗)
)−1

PHX̃H ỹp. (7.21)

The channel estimation performance is strongly related to the estimation quality of covariance

matrix, which is relatively poor when the number of data OFDM symbols is small. To alleviate

this concern and also to reduce the computational cost (via a reduced size EVD), we introduce

next a windowing technique that helps obtaining ’closed to optimal’ performance with small

number of OFDM symbols.

7.3.3 Fast semi-blind channel estimation

In this part, we propose to subdivide each OFDM symbol into Ng OFDM subvectors, according

to a specific shift which will be detailed hereafter. Using one received OFDM symbol y given in

equation (7.1), one can define a set of sub-vectors y(g) of size NrG× 1 (G<K being a chosen

window size) as follows4

y(g) =
[
y1(g : g+G− 1)T · · ·yNr(g : g+G− 1)T

]T
, (7.22)

where g = 1, · · · ,K −G+ 1. Then, we group the Ng (Ng =K −G+ 1) vectors into one matrix

YG =
[
y(1) · · ·y(NG)

]
that is given by:

YG = HGXG + VG, (7.23)
3The optimal weighting can be derived as in [98] using a two step approach.
4For simplicity, we adopt here some MATLAB notations.
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where the new channel matrix HG (NrG×NtK) is extracted from the matrix H given in (7.2)

as:

HG =


H1,1(1 :G, :) · · · H1,Nt(1 :G, :)

...
. . .

...

HNr,1(1 :G, :) · · · HNr,Nt(1 :G, :)

 . (7.24)

and the input data matrix is given by XG =
[
x(0) · · ·x(NG−1)

]
, where x(g) is obtained from vector

x by applying g up-cyclic shifts.

Using equation (7.3), one can establish the relation between the i-th transmitted signal xi(g)
and the data di as:

xi(g) = WH

√
K

Dgdi = WH

√
K

di(g), (7.25)

where Dg is (K ×K) diagonal phase matrix given by:

Dg = 1√
(K)

diag{ej2π(g)(0) · · ·ej2π(g)(K−1)} (7.26)

Then, x(g) = Wd(g), where d(g) =
[
(d1

(g))
T · · ·(dNt(g))

T
]T

. Finally, by concatenating all the data

vectors in one NtK ×Ng matrix DG =
[
d(0) · · ·d(NG−1)

]
, equation (7.23) becomes:

YG = HGWDG + VG (7.27)

The estimation of the correlation matrix is done using the NdNg vectors (instead of using

only Nd vectors), which leads to fast convergence speed:

ĈG = 1
NdNG

Nd∑
t=1

YG(t)YG(t)H . (7.28)

As in the previous section, under the condition that matrix HG is full column rank (and

hence GNr >KNt), one can use the subspace orthogonality relation as in (7.12) to estimate the

channel vector using the EVD of ĈG.

7.4 Performance analysis and discussions

Herein, we analyze the performance of the subspace semi-blind channel estimators in terms of

the normalized Root Mean Square Error (NRMSE) given by equation (6.32) for the two subspace

methods presented in this thesis i.e. when considering one symbol OFDM and the case when we

split this OFDM symbol into several subvectors.

The considered MIMO-OFDM wireless system is related to the IEEE 802.11n standard [22]

composed of two transmitters (Nt = 2) and three receivers (Nr = 3). The pilot sequences (or
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training sequences) correspond to those specified in the IEEE 802.11n standard, where each pilot

is represented by one OFDM symbol (K = 64 samples) of power Pxp = 23 dBm completed by a

CP (L= 16 samples) at its front. The data signal power is Pxd = 20 dBm. The channel model is

of type B with path delay [0 10 20 30] µs and an average path gains of [0 -4 -8 -12] dB.

The Signal to Noise Ratio associated with pilots at the reception is defined as

SNR= ‖Hxp‖2

NrNpKσ2
v
. (7.29)

Figure 7.1 presents a comparison between the proposed SB method, the SB method in [97]

(hG=45
SB [12]), the LS method (hLS) and the SB Cramèr Rao bound CRBSB , detailed in [32], for

Np = 4 and Nd = 150. For the subspace method, we considered the full-OFDM symbol case5

with G=K = 64 (hG=64
SB ) and the windowed case with G= 45 (hG=45

SB ). The curves represent

the NMSE versus the SNR for all considered methods. Several observations can be made out of

this experiment: First, both SB methods (the proposed one and the SB method in [97]) have

the same estimation performance but our algorithm has a reduced computational cost due to

the reduced size of matrix YG as compared to the one used in [97] and to the circulant matrix

structure which helps reducing the cost of the calculation of matrix Φ in equation (7.19). Second,

by comparing the cases G = K = 64 and G = 45, one can see that the windowing is of high

importance to achieve the SB gain for small sample sizes. Finally, comparing the obtained results

with the CRB, we observe a gap of few dBs with the optimal estimation.

Figure 7.2 presents the performance of the SB method with G=K = 64 and G= 45 versus

the number of data OFDM symbols (Nd). Also, as a benchmark, we compare the results with

the case where the covariance matrix for G = K = 64 is perfectly estimated (hESB) and given

by equation (7.10). One can see that without windowing a large number of OFDM symbols

(more that 300) is needed to achieve the gain of the SB approach, while the proposed windowing

allows us to converge with about 20 OFDM symbols only. Another observation is that increasing

the window size G improves the estimation accuracy when a large number of OFDM symbols is

available.

For a given SNR = 10dB, Figure 7.3 illustrates the impact of the size of the partitioned

OFDM symbol6 (G) on the estimation performance for the cases Nd = 40 (small sample size),

Nd = 150 (moderate sample size) and Nd = 300 (large sample size). We notice that the window

size choice has a strong impact on the estimation performance and for small and moderate sample
5For this case, the method in [97] does not work without the use of the VC and hence its corresponding plot is

not provided.
6Note that for HG to be tall and full column rank, G belongs to the range [43,64].
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sizes, an optimal value of G exists and depends on Nd. For large sample sizes, the optimal

window size is G=K which confirms the observation made previously in Figure 7.2.

7.5 Conclusion

A new version of the semi-blind subspace method for channel estimation is proposed in the

context of MIMO-OFDM systems. For that, we have introduced a new blind subspace estimation

method for which an identifiability result has been established. This SB method exploits the

circulant matrix structure to reduce the computational complexity and an appropriate windowing

technique to improve the estimation accuracy for small or moderate sample sizes.
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Semi-blind estimation for specular channel model

It always seems impossible

until it’s done.

Nelson Mandela.

This work has been done in collaboration with Marius Pesavento as part of a mobility to

Germany (Darmstadt). It has been published in ICASSP 2019 conference1.

This study deals with semi-blind channel estimation in SISO-OFDM communications system in

the case of specular channel model. The proposed algorithm proceeds in two main stages. The

first one addresses the pilot-based Time-Of-Arrival (TOA) estimation using subspace methods

and then estimates the channel through its specular model. In the second stage, one considers a

decision feedback equalizer that is used to refine the channel parameters estimates.

Abstract

1 [99] A. Ladaycia, M. Pesavento, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Decision feedback

semi-blind estimation algorithm for specular OFDM channels," in 2019 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP2019), Accepted.
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8.1 Introduction

Channel identification can be done by estimating the channel parameters, i.e. parametric channel

estimation [100], or by estimating directly the channel coefficients [82]. Channel estimation

approaches based on the parametric channel modeling require Time-Of-Arrival (TOA) (multipath

delays) estimation.

Many TOA estimation approaches, based on pilots, have been developed and long established

in sensor array processing. Among these methods, one can cite the subspace techniques such

MUltiple SIgnal Classification (MUSIC) algorithm [101], [102], root MUSIC (rootMUSIC) [103],

[104], [105] and ESPRIT algorithm (Estimation of Signal Parameters via Rotational Invariance

Technique) [106]. A new subspace-like algorithm using Partial Relaxation (PR) technique is

proposed in [107] and considered here in our work.

The objective of this work is to propose an efficient pilot-based and semi-blind channel

estimation algorithms for SISO-OFDM system based on TOA estimation.

The first contribution is related to the TOA estimation using only one OFDM pilot. The

latter is used to generate a group of sub vectors, with an appropriate windowing, to which one

can apply subspace methods to estimate the TOA.

The second contribution is to incorporate the unknown data on the channel estimation process.

The semi-blind TOA estimation is done using a Decision Feedback process [33], where a first

estimate of the transmitted data is used with the existing pilot to enhance the TOA estimation

performance.

8.2 SISO-OFDM system communications model

The considered SISO-OFDM communications system is illustrated in Figure 8.1. Each OFDM

symbol is composed of K samples and is extended in time domain by the insertion of its last L

samples in its front considered as a Cyclic Prefix (CP). The CP duration is assumed to be greater

than or equal to delay spread. The received signal considered in baseband, after removing the

CP, is given in the time domain by the following equation:

y(t) = x(t) ∗
N∑
p=1

h̄isinc(t− τi) + v(t), (8.1)

where x(t) is the transmitted signal, N the number of multipaths, h̄i and τi are respectively the

complex gain and the time delay (TOA) of the i-th path.

After sampling the received OFDM signal (using the sampling rate Ts) and taking its K-point
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FFT, the received signal can be written as:

y = x�A(τ)h̄ + v, (8.2)

where y (respectively x) is the K × 1 vector for each received (respectively transmitted) OFDM

symbol. The � symbol denotes the element wise multiplication and h̄ the channel complex gain

vector defined as h̄ = [h̄1, · · · , h̄N ]. The matrix A(τ) ∈ CK×N is given by:

A(τ) =



1 · · · 1

e−
2πiτ1
KTs · · · e−

2πiτN
KTs

...
. . .

...

e−
2πi(K−1)τ1

KTs · · · e−
2πi(K−1)τN

KTs


, (8.3)

and v is an additive white Circular Gaussian noise satisfying E
[
v(k)v(i)H

]
= σ2

vIKδki where

(.)H is the Hermitian operator; σ2
v the noise variance; IK the identity matrix of size K ×K.

Denote h the global transmission channel defined as h = A(τ)h̄. Equation (8.2) then becomes:

y = x�h + v. (8.4)

P/S
IFFT

L(CP)

S/P
FFT

L(CP)

X1(0)

X1(k-1)

y1(0)

y1(k-1)

....

....

....

....

Figure 8.1: SISO-OFDM communications system

8.3 Proposed channel estimation

This section concerns the proposed Decision Feedback (DF) semi-blind channel estimation

algorithm. This algorithm is based on the concept of Decision Feedback Equalizer technique

(DFE) described in [33]. It is composed of two main stages summarized in Figure 8.2. The first

one, described in section 8.3.1, provides a coarse estimate of the channel parameters that are

used for its first stage equalization. The decision of this stage is then feeded back to the second

one, developed in section 8.3.2, to improve the channel estimation performance.
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8.3.1 First stage: pilot-based TOA estimation

To identify the channel, the first stage focuses on the estimation issue of the time delays, i.e.

τi due to multipaths, exploiting the known training sequences. The latter, also referred to as

pilots, are organized according to a block-type pilot arrangement where Np ODFM symbols

are dedicated to pilots and Nd OFDM symbols are reserved for data [82]. The known training

sequences are then exploited by the receiver to estimate the TOA.

Consider � the element wise division. Each element yi of the received signal corresponding

to the i− th OFDM symbol, is divided by the i− th OFDM pilot vector xi. An average is then

performed on the Np division results as follows:

z = 1
Np

Np∑
i=1

yi�xi = A(τ)h̄ + ṽ, (8.5)

ṽ being the resulting average noise term.

To apply the subspace methods, one needs a ’sufficient’ number (larger than N) of data

vectors satisfying the parametric model in (8.5). For that NG symbols, i.e. NG = K −G+ 1,

are built from z using a shift windowing of size N <G<K. As proposed in [94], these shifted

symbols are concatenated in one matrix Z = [z1, · · · ,zNG ] ∈ CG×NG given by:

Z = [A1(τ)h̄, · · · ,ANG(τ)h̄] + Ṽ, (8.6)

where Ṽ corresponds to the resulting shifted noise term. One observes that each matrix

Ag(τ) ∈ CG×N is equal to A1(τ) multiplied by a diagonal matrix Dg ∈ CN×N . The latter is

given by:

Dg = diag
{
e−

2πi(g−1)τ1
KTs · · ·e−

2πi(g−1)τN
KTs

}
. (8.7)

with g = 1, · · · ,NG. Therefore, equation (8.6) is rewritten as:

Z = A1(τ)S + Ṽ with S = [D1h̄, · · · ,DNGh̄]. (8.8)

To estimate the TOA, subspace techniques such as MUSIC [101, 102], rootMUSIC [103, 104,

105], ESPRIT [106], and DOA estimation method using Partial Relaxation (PR) [107], [108] are

exploited and compared in the sequel. The received OFDM symbols are assumed to be i.i.d. and

uncorrelated with the channel noise. An estimate of the covariance matrix R̂ of the processed

signal z is given by:

R̂ = 1
NG

ZZH . (8.9)
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Based on the subspace approach, using eigenvalue decomposition (EVD), the covariance

matrix is decomposed:

R̂ = ÛΛ̂ÛH =
[
Ûs

∣∣∣Ûn

] Λ̂s 0

0 Λ̂n


 ÛH

s

ÛH
n

 , (8.10)

where the diagonal matrix Λ̂s, of size N ×N , contains the largest eigenvalues (λ̂1, · · · , λ̂N ); and

Ûs ∈ CG×N represents the signal subspace containing the corresponding principal eigenvectors

of R̂. Similarly, the noise subspace Ûn ∈ CG×(G−N) is associated with the (G−N) smallest

eigenvalues Λ̂n ∈ C(G−N)×(G−N).

Remark: Note that instead of averaging the OFDM symbols in (8.5) followed by the windowing

of vector z, one can apply first the windowing on each OFDM symbol and average the results

through the sample estimate covariance matrix in equation (8.9). The latter approach is more

expensive but allows us to slightly improve the estimation accuracy of the TOA parameters.

The standard subspace method (MUSIC algorithm) exploits the orthogonality of the noise

and signal subspaces to estimate the TOA according to [101, 102]: minτ ‖ÛH
n a(τ)‖2 where

a(τ) = [1,e−
2πiτ1
KTs , · · · ,e−

2πi(G−1)τ1
KTs ]T . To avoid this complex non-linear optimization problem, a

simplified subspace approach using polynomial rooting (rootMUSIC) has been proposed in the

literature [103, 104, 105]. On the other hand, to improve the estimation accuracy, one should

minimize ‖ÛH
n A(τ)‖2 which requires a joint estimation of all TOA parameters. This is obviously,

too expensive, and hence an alternative solution is the one given in [107], [108] using partial

relaxation.

Once the TOA τ is estimated, the least-squares estimate of the complex gain vector h̄ and

the global channel h, using equation (8.5), is deduced as follows:

ˆ̄h = A(τ̂OP )]z,

ĥOP = A(τ̂OP )ˆ̄h,

(8.11)

where (.)] denotes the pseudo inverse matrix. Once estimating the channel (ĥOP ), a linear

equalizer is performed and a hard decision is applied to obtain a first estimate of the transmitted

signals (X̂d). The latter, concatenated to the pilots, are exploited by the second stage as a new

training sequence:

Xp = [Xp X̂d] ∈ CK×(Np+Nd). (8.12)



8.4. Simulation results 153

8.3.2 Second stage: DF semi-blind channel estimation

The first stage feeds back the estimated data (equation (8.12)) to the second stage. This data is

now considered as pilots and is then used to re-estimate the TOA and channel (i.e. τ̂SB, ĥSB).

Three DF approches are derived according to the involved TOA estimation algorithm, namely:

the MUSIC algorithm (i.e MUSIC-DF), the rootMUSIC algorithm (rootMUSIC-DF) algorithm

or the PR algorithm (PR-DF).

TOA Estimation
Equalization +

Decision

y
px

ˆ
OPτ ˆ

dx

TOA Estimation
Equalization +

Decision

ˆ
dxˆ

SBτ

Channel

estimation

ˆ
OPh

Channel

estimation

ˆ
SBh

px

First stage

Second stage

Figure 8.2: DF semi-blind TOA estimation approach.

8.4 Simulation results

This section discusses the performance of the proposed DF semi-blind channel estimation

algorithm. The pilot sequences correspond to those specified in the IEEE 802.11n standard [22].

The parameters of simulations are summarized in the next table 8.1. The estimation performance

is measured in terms of the Normalized Root Mean Square Error (NRMSE), given by:

NRMSE =

√√√√√√ 1
Nmc

Nmc∑
i=1

∥∥∥∥θ̂(i)−θ
∥∥∥∥2

‖θ‖2
, (8.13)

where θ represents the parameter under performance analysis (τ or h).

Figures 8.3 and 8.4 compare the performance between MUSIC, Root-MUSIC and PR estima-

tors when using only the first stage with one OFDM pilot symbol and the complete scheme DF

semi-blind (i.e. two stages when the data symbols are feeded back).

In Figure 8.3, one can observe that using one OFDM pilot leads to a good estimation of TOA.

This estimation is enhanced when DF technique (referred to as MUSIC-DF, rootMUSIC-DF and

PR-DF) is applied even at low SNR.
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Parameters Specifications

Channel model IEEE 802.11n

Frequency sampling 1
Ts

= 20MHz

Number of multipaths N = 4

Time Of Arrivals τ = [2 6 10 15]Ts
Number of paths N = 4

Number of pilot OFDM symbols Np

Number of data OFDM symbols Nd

Pilot signal power Pxp = 23 dBm

Data signal power Pxd = 20 dBm

Number of subcarriers K = 512

Cyclic prefix L = 64

Size of the partitioned symbol G = 128

Number of equivalent symbols NG = 385

Number of Monte Carlo realizations Nmc = 100

Table 8.1: Specular channel model simulation parameters.
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Figure 8.4: Global channel estimation (h) performances versus SNR when Np=1 and Nd=8.

Figure 8.4 presents the channel estimation performance. The proposed approach performs

well compared to the LS estimator even if the latter uses 4 OFDM pilot symbols instead on

1. Moreover the DF semi-blind approach behaves good even from relatively low SNRs. Note

that at very low SNRs (lower than 2 dB), the DF approach becomes inefficient due to the ill

channel equalization and hence the high decision error rate in that context. In the same plot,

we present a comparison between the proposed approaches and the LS-DF algorithm proposed

in [33], where we can observe that a significant gain is obtained in favor of the two methods

presented in this thesis. While considering the Symbol Error Ratio (SER) plots of Figure 8.5,

one can see also a non-negligible performance gain in favor of the proposed DF-based approach.

At a given SNR=-5dB, Figure 8.6 shows the influence of increasing the number of pilot OFDM

symbols Np in the estimation process on the performance of the pilot-based TOA (i.e. first stage).

Indeed the TOA estimation performance is improved when the number of pilot OFDM symbols

Np is increased. Note that using few pilots (Np < 3) PR gives better performance than the two

other subspace methods and from Np = 4 the three estimators have the same behavior.

Figure 8.7 illustrates the impact of increasing the number of data OFDM symbols in the

DF semi-blind channel estimation, on the performance of the TOA estimation compared to
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pilot-based TOA estimation (i.e. only the first stage) represented by horizontal lines. As can be

seen, only very few data symbols are needed to achieve most of the semi-blind performance gain.

8.5 Conclusion

This chapter addressed two channel estimation approaches using TOA pilot-based and semi-blind

estimation. The first one exploits pilot symbols with a subspace estimation method and the

second employed semi-blind approach using a decision feedback (DF). Simulation results showed

that good performance can be reached using only one OFDM pilot symbol with appropriate

windowing.
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Conclusion and future work

We ought not to be embarrassed

of appreciating the truth and of

obtaining it wherever it comes from,

even if it comes from races distant

and nations different from us.

Nothing should be dearer to the seeker

of truth than the truth itself, and there

is no deterioration of the truth, nor

belittling either of one who speaks it or

conveys it.

Al-Kindi.
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9.1 Achieved work

Channel estimation is of paramount importance to equalization and symbol detection problems in

most wireless communications especially in MIMO-OFDM systems. Hence, it attracts the interest

of researchers and system developers since the twentieth century. A spectacular advance has been

realized with the development and implementation of pilot-based channel estimation algorithms

motivated by its low complexity and feasibility in regards of the available calculators at that

time. The appearance of powerful computers (processors) available at the base stations, and

the ever increasing demand for higher data rates have led to consider other channel estimation

approaches. The proposed approaches, mainly semi-blind (SB) techniques, increase the data

rates by reducing the number of transmitted pilots since the latter do not carry information and

represent a bandwidth waste. Moreover, many challenging aspects are moderately or weakly

investigated in the open literature with respect to semi-blind channel estimation. This thesis is

one of the contributions dealing with SB channel identification and its analysis in the context of

MIMO-OFDM systems.

Several contributions to the SB channel estimation have been realized in the thesis: the

quantification of the maximum rate of reduction of the transmitted pilots using SB channel

estimation while ensuring the same pilot-based estimation quality, then the development of

efficient SB channel estimators (LS-DF, subspace methods, EM-based algorithms). Moreover,

further investigations on the performance bounds of MIMO-OFDM channel estimation have

been successfully addressed including the analysis of the effect of CFO on channel estimation

performance.

Below, we briefly summarize the overall thesis work, before listing the points corresponding

to our main contributions.

First, the theoretical performance limits for the semi-blind and pilot-based channel estimation

methods have been addressed in the context of MIMO-OFDM and massive MIMO-OFDM

systems. This analysis has been conducted through the analytical derivation of the CRBs for

different data models (i.e. CG, NCG and BPSK/QPSK) and for different pilot design patterns

(i.e. block-type, lattice-type and comb-type pilot arrangement). The investigation of the derived

CRBs shows the huge pilot sample reduction and consequently the throughput gain obtained

thanks to the semi-blind approach while maintaining the same pilot-based channel estimation

quality. In this thesis, we show that, by properly using SB techniques, the attainable reduction

can exceed 95% (BPSK data model) of the original size.

This study has also been extended to large MIMO-OFDM systems (10× 10) where we show
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that the performance gains are slightly higher than those observed for smaller size MIMO-OFDM

systems. Moreover, the same study, in chapter 2, has been generalized to multi-cell massive

MIMO-OFDM systems under the effect of pilot contamination. Thereafter, we have shown

that, using SB methods, it is possible to solve efficiently the pilot contamination problem when

considering finite alphabet communications signals.

Second, we investigated the effect of the CFO on channel estimation performance using

the CRB tool. Due to the CFO cyclostationarity propriety, we show that The CFO impacts

advantageously the semi-blind channel estimation. In the case of MISO-OFDM communications

system based on multi-relay transmission protocols, we have proposed two efficient approaches

to jointly estimate transmission channel and CFOs. In the same context, another study has

been conducted to evaluate and compare the CRB for the estimation of the subcarrier channel

coefficients with and without considering the OFDM structure (i.e. estimating the channel taps

in the time domain or in the frequency one). This study highlights the significant gain associated

to the time domain approach.

Thirdly, we proposed four SB channel estimation algorithms. We started with the simplest one

(LS-DF) which is based on the LS estimator used in conjunction with a decision feedback where

the estimated data are re-injected to the channel estimation stage to enhance the estimation

performance. In the context of green communications, we shown that, thanks to SB LS-DF

algorithm, one can reduce up to 76% of pilot’s transmitted power.

The second SB approach is based on the maximum-likelihood (ML) technique, one of

the most efficient but also most expensive estimation methods. The optimization of the ML

criterion is done through an iterative technique using the EM-algorithm. We proposed three

approximation/simplification approaches to deal with the numerical complexity of the classical

EM-algorithm. The proposed three approximations (i.e. EM-MISO, S-EM, EM-SIMO) give a

good performance at lower computational cost as compared to the standard EM-algorithm.

An intermediate solution (i.e. it is cheaper than the ML but more expensive as well as more

efficient than the LS-DF), is the one based on subspace technique introduced in chapter 7.

Finally, for the practical case of specular channel model, we proposed a parametric approach

based on TOA estimation using subspace methods for SISO-OFDM systems. The semi-blind

TOA estimation is realized using a Decision Feedback process that is considered to enhance

the TOA estimation performance starting from a first ’rough’ estimate obtained thanks to the

existing pilot.
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9.2 Thesis contributions

The main contributions of this research are listed below:

• Derivation of the channel estimation CRBs for different data models (i.e. CG, NCG,

BPSK/QPSK) and for different pilot design patterns (i.e. block-type, lattice-type and

comb-type pilot arrangement) in the case of MIMO-OFDM system.

• For BPSK/QPSK data model, a realistic CRB approximation has been given to bypass the

high complexity of the exact CRB computation.

• Proposition of an effective computational technique to deal with the huge-size matrix

manipulation needed for the CRB calculation in the large size MIMO scenario and massive

MIMO.

• Quantification of rate of reduction of the overhead (pilots) due to the use of SB channel

estimation.

• Derivation of the SB channel estimation CRBs for multi-cell massive MIMO-OFDM system

under pilot contamination phenomenon.

• Investigation of the effectiveness of SB channel estimation to solve the pilot contamination

problem when considering finite alphabet communications signals.

• Contribution to drone protection against blind interception using CRBs analysis in the

blind context.

• Derivation of the SB channel estimation CRBs in the presence of CFO in MIMO-OFDM

system, and investigation of the positive impact of CFO on channel estimation performance.

• Proposition of two approaches to jointly estimate CFO and channel coefficients.

• Quantification of the performance degradation between estimating the channel coefficients

on time or frequency domain.

• Contribution to green communications by quantifying the reduced transmitted power using

SB channel estimation.

• Proposition of SB channel estimator based on decision feedback strategy (LS-DF).

• Contribution to SB channel estimation using EM-algorithm in the case of MIMO-OFDM

system.
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• Derivation of four simplified versions of the SB EM-method.

• Contribution to SB subspace channel estimation for MIMO-OFDM system.

• Derivation of a parametric SB method to estimate channel parameters (TOA) in the case

of specular OFDM channel.

9.3 Future work

The research work related to SB channel estimation in MIMO-OFDM systems, carried out in

this thesis can be extended in several directions. Some recommendations for future work are

listed below.

• Extend the SB channel estimation performance analysis to non-Gaussian noise case, where

GMM (Gaussian Mixture Model) can be used to approximate the noise probability density

function to a GMM one using EM algorithm. Furthermore, consider the stochastic channel

model (instead of deterministic one) where Bayesian approach can be considered to evaluate

the CRB for a given channel type.

• As shown in appendix A, the major issue of the OMR protocol in the MISO communications

scenario, is the CFO. It will be interesting to evaluate, using the CRB, the maximum

allowed CFO to guarantee a target transmission quality.

• Extend the study of chapter 8 to the MIMO-OFDM systems. This study can also be

enriched by a performance analysis by deriving the corresponding CRBs.

• Implement the proposed algorithms in this thesis in a real system such as a video trans-

mission system and evaluate in practice the throughput gain due to the use of SB channel

estimation approaches.
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CFO and channel estimation

Success is not final, failure is not

fatal: it is the courage to continue

that counts.

Winston Churchill.

This work has been done in collaboration with Ahmed Bader and Mohamed Slim Alouini from

KAUST, Saudi Arabia. It has been published in EUSIPCO 2017 conference1.

This study deals with the joint channel and carrier frequency offset (CFO) estimation in a MISO

communications system. This problem arises in OFDM based multi-relay transmission protocols

such that the geo-routing one proposed by A. Bader et al in 2012. Indeed, the outstanding

performance of this multi-hop relaying scheme relies heavily on the channel and CFO estimation

quality at the PHY layer. In this work, two approaches are considered: The first is based on

estimating the overall channel (including the CFO) as a time-varying one using an adaptive

scheme under the assumption of small or moderate CFOs while the second one performs separately,

the channel and CFO parameters estimation based on the considered data model.

Abstract

1 [109] A. Ladaycia, K. Abed-Meraim, A. Bader and M. S. Alouini, "CFO and channel estimation for MISO-

OFDM systems," in 2017 25th European Signal Processing Conference (EUSIPCO), Aug. 2017, pp. 2264-2268,

Kos, Greece.
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A.1 Introduction

Recently, an efficient beaconless geo-routing based multi-hop relaying protocol, namely OMR

(OFDM-based Multi-hop Relaying) protocol, has been proposed in [110], [111]. As for other

existing geo-routing protocols, in OMR the nodes can locally make their forwarding decisions

using very limited knowledge of the overall network topology. Relaying decisions in OMR are

taken in a distributed fashion at any given hop based on location information, in order to

alleviate the overhead which rapidly grows with node density. In addition, to deal with the fact

that the proposed paradigm leads to the creation of multiple copies of the same packet with

different propagation delays, OMR relies on the OFDM which allows correct packet detection at

a receiving node thanks to the use of the cyclic prefix (see [110] for more details).

In [111] and [110], it has been shown that the OMR overcomes existing contention based

geo-routing relaying protocols in terms of end-to-end performance (throughput and time-space

footprint). However, the performance analysis in [110], [112] relies on the assumption of perfect

frequency synchronization between the nodes.

In standard OFDM systems, it is well known that frequency desynchronization leads to a

carrier frequency offset (CFO) at the receiver node which deteriorates significantly the decoding

performance. Fortunately, this problem is well mastered and many solutions exist to track and

correct this CFO effect [113], [114].

The existing solutions from the literature are not adequate for our case, as we have several

simultaneous transmitters (i.e. we have a particular MISO system where all relays transmit the

same data packet through different channels) each with its own CFO and channel. The aim of

this study is to provide solutions to this severe problem in order to preserve the end-to-end high

performance of the OMR protocol.

A.2 MISO-OFDM communications system model

Consider an OFDM system with K subcarriers and using a cyclic prefix of length L larger

than the channel impulse response size N . Assume the received signal is affected by a carrier

frequency offset2 (due generally to desynchronization between the transmitter and receiver’s local

oscillators). Then, for one single transmitter, after sampling and removing the guard interval,

the received discrete baseband signal at time ns (associated with the ns-th OFDM symbol) is

2In this study, the effect of time desynchronization is neglected.
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given by [114]:

y(ns) = Γ(ns)
FH√
K

Hx(ns) + v(ns) (A.1)

where y(ns) = [y0(ns), · · · , yK−1(ns)]T , and

x(ns) = [x0(ns), · · · , xK−1(ns)]T (xk(ns) being the transmitted symbol at time ns and subcarrier

k). The noise v(ns) at time ns, is assumed to be additive white Circular Complex Gaussian

(CCG) satisfying E
[
v(k)v(i)H

]
= σ2

vIKδki; (.)H being the Hermitian operator; σ2
v the noise

variance; IK the identity matrix of size K ×K and δki the Dirac operator.

The channel frequency response matrix H of size K×K, where channels are assumed constant

over the packet transmission period is defined as:

H = diag
{ W√

K
h̄
}

= diag{H0, · · · , HK−1} , (A.2)

Hk is the channel frequency response at the k-th subcarrier. h̄ = [h(0) , · · · ,h(N − 1)]T , F is

the (K ×K) Discrete Fourier Transform matrix; W the N first columns of F; and Γ(ns) the

normalized CFO matrix of size K ×K at the ns-th OFDM symbol given by:

Γ (ns) = ej2πφnsdiag
{

1, · · · ,ej2πφ(K−1)/K
}
. (A.3)

φ= ∆f ×Ts is the normalized CFO where ∆f is the CFO and Ts is the symbol period.

Now, considering a MISO system where Nt nodes transmit simultaneously the same data to

a single node as illustrated in Figure A.1, the received signal in (A.1) becomes:

y(ns) =
Nt∑
i=1

Γi(ns)
FH√
K

Hix(ns) + v(ns) (A.4)

one can write equation (A.4) as:

y(ns) =
Nt∑
i=1

Γi(ns)
FH√
K

X(ns)hi + v(ns), (A.5)

where

X(ns) = diag{x0(ns), · · · , xK−1(ns)}

hi =
[
Hi,0, · · · , Hi,K−1

]T
Γi(ns) = ej2πφinsdiag{1, · · · , ej2πφi(K−1)/K

}
.

(A.6)

Hi,k refers to the frequency response of the i-th channel at the k-th frequency. Equation (A.5)

can be re-written as :

y(ns) = H̄(ns)x(ns) + v(ns), (A.7)
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where:

H̄(ns) =
Nt∑
i=1

Γi(ns)
FH√
K

Hi (A.8)

P/S
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L(CP)

S/P
FFT

L(CP)

P/S
IFFT

L(CP)

Nt

1

X(0)

X(k-1)
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y(0)

y(k-1)

....
....

....

....

....

......

....

Figure A.1: MISO-OFDM model.

A.3 Non-Parametric Channel Estimation

Since the transmitted data is common to all nodes, we consider in this approach the Nt channels

with their CFOs as one global time varying channel given in (A.8). Let us assume a slow

channel variation (i.e. small CFOs), in such a way the global channel is considered approximately

constant over few OFDM symbols. In this case, and after doing the FFT, equation (A.5) can be

approximated by :

y(ns) = X(ns)h + v, (A.9)

h is the equivalent global time-varying channel vector corresponding to (A.8).

The channel estimation is performed using Np pilot OFDM symbols3,

Under Gaussian noise assumption, the (LS) Least Squares (LS coincide with the optimal

Maximum Likelihood (ML) estimator in that case) estimation of h is given by:

ĥ =
(
Xp

HXp

)−1
Xp

Hyp. (A.10)

Where yp =
[
y(1)T · · ·y(Np)T

]T
and

Xp =
[
X(1)T · · ·X(Np)T

]T
.

This algorithm can be implemented efficiently in the following way:

1) It is initialized by sending Np successive pilot symbols.
3We assume the channel approximately invariant over the pilot sequence duration.
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2) Use the estimated channel for the equalization and detection of the current data symbol.

3) Then, pilots are replaced in (A.10) by the ”decided symbols” using a sliding window of

size Np and following a ”decision directed approach”, i.e. one replaces X(ns) by X̂(ns) the

decided symbol at time ns.

The latter estimation method is valid only if the CFOs are small valued in which case the previous

algorithm leads to good channel and symbol detection performance4.

For the most general case where the CFO values are ’non controllable’ and not necessarily

small, we propose next a more complex but more adequate method for the estimation of the

global channel parameters.

A.4 Parametric Channel Estimation

In the case of ’relatively’ large CFO values, the slow channel variation assumption is violated

and the previous solution fails to provide an appropriate channel estimate. In that case, we need

to resort to the direct estimation of the channel parameters (i.e. CFOs and channel impulse

responses). Based on the data model in (A.5), one can use a Maximum Likelihood (ML) method

for the estimation of the desired parameters. However, the ML cost function being highly non

linear, we consider instead a reduced cost estimation method where we neglect the phase variation

along one OFDM symbol, so that one can approximate:

Γi(ns)≈ ej2πφinsIK (A.11)

Equation (A.11) leads to the approximate noise free model

y(ns)≈
FH√
K

X(ns)h̃(ns), (A.12)

where h̃(ns) =
Nt∑
i=1

hiej2πφins refers to the equivalent time varying channel.

Now, by definition, the channel vector hi represents the frequency response coefficients of the

i-th channel, i.e. hi = Wh̄i
/√

K. One can rewrite h̃(ns) in matrix form as:

h̃(ns) = W√
K

[
h̄1, · · · , h̄Nt

]
e(ns)

= W√
K

h̄(ns),

(A.13)

4This suggests that one should consider a rough frequency synchronization between all nodes by exchanging for

example a known and comon tone signal that can be used to mitigate the frequency offsets.
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where e(ns) =
[
ej2πφ1ns , · · · ,ej2πφNtns

]T
and h̄(ns) =

[
h̄1, · · · , h̄Nt

]
e(ns).

The estimate of the channel impulse response h̄(ns) can be easily obtained in the LS sense

(using pilot symbols) as follows:

z(ns) = WH

√
K

X(ns)−1 F√
K

y(ns)≈ h̄(ns) (A.14)

By using Np successive OFDM pilots, one can hence estimate:

Z = [z(1) , · · · ,z(Np)]

≈
[
h̄1, · · · , h̄Nt

]


ej2πφ1 · · · ej2πNpφ1

...
. . .

...

ej2πφNt · · · ej2πNpφNt


=

^

HEH

(A.15)

From the rows of matrix Z, one can obtain an estimate of the channel’s CFO while the

column vectors provide an estimate of the channel impulse responses. Since, in general the CFO

values are relatively small and hence closely separated and the sample size (i.e. Np) is small too,

one needs to use high resolution techniques for the frequency estimation. One can use ESPRIT5

method to estimate the frequencies. To this end, by performing a regular SVD decomposition on

the composite matrix Z one can write

Z = UΣVH (A.16)

where, V : Np×Nt is a matrix of principal right singular vectors6. Since E and V span the

same subspace (i.e. the row space of Z), one can write V = EQ, where Q : Np×Np is a non

singular unknown matrix.

Let V1 = V (without the last row) and V2 = V (without the first row), then

V1 = E1Q, V2 = E2Q (A.17)

where, E1 = E without the last row and E2 = E without the first row. Hence, one can express

V2 in terms of E1 as follows

E2 = E1Φ, Φ = diag
{
e−j2πφ1 , · · · ,e−j2πφNt

}
(A.18)

5ESPRIT stands for Estimation of Subspace Parameters via Rotational Invariance Technique [115].
6We assume here that Np >Nt and that the CFOs are distinct, φi , φj if i , j.
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Considering equations (A.17) and (A.18), we write V2 as:

V2 = E1ΦQ (A.19)

by evaluating Ψ as

Ψ = V1
#V2 = Q−1ΦQ (A.20)

where (.)# refers to the pseudo-inverse operator. Φ is estimated as the matrix of eigenvalues

of Ψ and the CFOs are obtained from the phase arguments of the eigenvalues. Once Φ is

obtained, one can estimate
^

H as

^

H≈ Z
(
EH

)#
(A.21)

Remarks:

1) ESPRIT is an expensive method and can be replaced by a Fourier search if the CFOs, are

not too close as compared to the resolution limit of the DFT, i.e. |(φi−φj)| ≥ 2
Np

.

2) The channel and CFO estimates in (A.20) and (A.21) can be used to initialize a numerical

method for ML optimization (e.g. for example with Levenberg-Marquardt method [116]) in

order to improve the estimation performance, especially when the approximation in (A.11)

is roughly satisfied.

A.5 Simulations results

This section analyzes the channel estimation performance for the considered MISO-OFDM

wireless system. The training sequence used in this work is the Zadoff-Chu sequence considered

in the LTE standard [4]. Fig. 1.2a represents the block-type pilot arrangement adopted in this

work. Each field (or pilot) is represented by one OFDM symbol (K = 64 samples) where a CP

(L= 16 samples) is added at its front. Simulation parameters are summarized in Table A.1.

The SNR associated with pilots at the receiver is defined as SNRp = ‖Xph‖2

KNpσ2
v
. The SNR,

denoted SNRd (in dB), associated with data is given by: SNRd = SNRp− (Pxp−Pxd) where

Pxp (respectively Pxd) is the power of pilots (respectively data) in dB.

Figure A.2 compares the NMSE of the estimated data (related to the considered channel

estimation methods followed by linear zero-forcing equalization) versus SNRp at relatively low

CFO. The NMSE curves show that the parametric method and the non-parametric one have
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Parameters Specifications

Channel model Cost 207

Number of transmit antennas Nt = 3

Number of receive antennas Nr = 1

Channel length N = 4

Number of pilot OFDM symbols Np = 4

Number of data OFDM symbols Nd = 5

Pilot signal power Pxp = 23 dBm

Data signal power Pxd = 20 dBm

Number of sub-carriers K = 64

Table A.1: MISO system simulation parameters.

similar performance in this context (for comparison, the plot in blue represents the CFO free

context, while the magenta plot is for the channel estimate obtained by ’ignoring’ the CFO

effect).

One can observe also that the gap with CFO free context increases with the SNR which

motivates for considering the ML or other advanced estimation approaches in future works to

improve the estimation performance. Figure A.3 presents comparative results but for the symbol

error rate with BPSK modulated signal.

In Figures A.4 and A.5, we consider a similar experiment but for high CFO values. In that

case the non-parametric approach is not adequate and does not allow correct detection of the

data symbols. As in the previous figure, we still observe a large performance gap between the

cases with and without CFO suggesting the use of more elaborated methods to compensate this

performance loss.

In Figures A.6, A.7 and A.8, we evaluate the Normalized Root Mean Squares Error (NRMSE)

of the channel estimate versus the SNR or the pilot sequence size Np. It is observed that for

large SNR or large number of pilot symbols, the parametric approach performance improves

significantly. Also, its performance for high CFO values is slightly better than for low CFOs

due to the improved frequency resolution. On the other hand, the estimation quality of the

non-parametric solution becomes worse for larger training sequences since the assumption that

the channel remains invariant over all the pilot duration is not satisfied when Np increases.
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Figure A.2: NMSE of the data versus SNRd (with and without CFO) at low CFO
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Figure A.3: Symbol error rate versus SNRd (with and without CFO) at low CFO
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Figure A.4: NMSE of the data versus SNRd (with and without CFO) at high CFO
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Figure A.6: NRMSE of the channel estimation versus SNR (with and without CFO).
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Figure A.7: NRMSE of the channel estimate versus Np at low CFO.
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Figure A.8: NRMSE of the channel estimate versus Np at high CFO.

A.6 Conclusion

Based on the above theoretical study as well as on the experimental set-up of Dr Mohamed Tlich

(not presented here) [117], we can draw the following remarks:

In this study we proposed a first solution for the channel and CFO estimation that is relatively

cheap but can be used only if a rough frequency synchronization between all nodes is available

to guarantee the ’small values’ of the CFOs and consequently the slow channel variation needed

in this approach.

A second solution is provided based on parametric estimation. It is more expensive in terms

of computational resources and pilots (i.e. requires longer pilots) but can work without frequency

synchronization.
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B.1 Introduction

Au cours des dernières décennies, les communications sans fil ont connu des développements

remarquables dans de nombreux domaines distincts. Cela a commencé avec la recherche universi-

taire, où de nombreuses améliorations et progrès ont été réalisés. Cela est également évident

dans les applications militaires, où la guerre et les armes traditionnelles ont été remplacées par

des armes autonomes (comme les véhicules aériens sans pilote (UAV)) et la guerre électronique

cybernétique. Le domaine civil a également vu sa part de progrès dans les communications sans

fil, en ce sens que nos vies sont devenues plus virtuelles et connectées.

L’utilisation de plusieurs antennes au niveau de l’émetteur ou du récepteur, ou des deux

(MIMO), peut considérablement améliorer les performances des systèmes de transmission [5, 6].

Les systèmes de communications MIMO offrent des degrés de liberté supplémentaires fournis

par la dimension spatiale, qui peuvent être exploités pour transmettre simultanément des flux

de données indépendants (multiplexage spatial) augmentant ainsi le débit de données, ou la

transmission multiplicative d’un flux de données unique (diversité spatiale) pour augmenter la

fiabilité du système [5, 7].

B.1.1 Motivations

L’utilisation sans précédent de téléphones intelligents, tablettes, super-téléphones, etc., équipés

d’applications gourmandes en données, telle que la vidéo en streaming, de lourdes interfaces

graphiques pour réseaux sociaux et des services de navigation en temps réel, a poussé à des

changements révolutionnaires de la 4G à la prochaine génération de systèmes sans fil . Bien

que les systèmes 4G puissent être chargés avec beaucoup plus de services, de fonctionnalités en

temps réel et de données que les anciens systèmes, il subsiste un écart considérable entre les

exigences pratiques de la population et ce que peuvent offrir les technologies 4G. Pour répondre

aux fortes demandes de la croissance explosive des utilisateurs de téléphones cellulaires et des

services potentiels associés, la norme de la cinquième génération (5G) fait actuellement l’objet

d’une enquête et de discussions approfondies. Avec des vitesses pouvant atteindre 10 gigabits par

seconde, la 5G devrait être 100 fois plus rapide que la 4G [14]. Les deux technologies principales

pour répondre aux exigences de la 5G sont l’utilisation des systèmes à ondes millimétriques

(mmWave) et des systèmes MIMO massifs [15].

Avec un nombre plus élevé d’antennes à la station de base (BS), quelques centaines, par

rapport aux systèmes MIMO classiques (8 antennes pour le LTE), des systèmes MIMO massifs

ou MIMO à grande échelle peuvent offrir un grand gains d’efficacité spectrale et énergétique
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[14, 16, 17].

Les systèmes de communications MIMO massifs surmontent plusieurs limitations des systèmes

MIMO traditionnels, tel que la sécurité, la robustesse et le débit de traitement [18, 15]. Il a

été démontré que les énormes systèmes MIMO promettaient de multiplier par 10 le débit du

système tout en desservant simultanément des dizaines d’utilisateurs sur la même ressource

temps-fréquence [18]. Pour cela, le débit et la capacité du système seront fortement améliorés

afin de satisfaire la quantité croissante d’échange de données et demande de qualité de service

pour les futurs réseaux cellulaires.

Pour exploiter pleinement le potentiel des technologies susmentionnées, la connaissance du

canal de transmission (CSI) est indispensable. Pour améliorer les performances du système, il

est essentiel que la CSI soit disponible à la fois au niveau de l’émetteur et du récepteur. La

connaissance de CSI est utilisée pour la détection cohérente des signaux transmis du côté du

récepteur. Du côté des émetteurs, la CSI est essentielle pour concevoir des schémas de précodage

efficaces pour l’annulation des interférences entre utilisateurs. Cependant, la connaissance parfaite

de la CSI n’est pas disponible dans la pratique, elle doit donc être estimée. Cette thèse s’intéresse

aux algorithmes d’estimation du canal de transmission et de faible complexité pour les systèmes

MIMO-OFDM et les systèmes MIMO-OFDM massifs.

B.1.2 Estimation du canal de transmission

La bonne conduite de la mission du système de communications sans fil dépend en grande partie

de la disponibilité de la connaissance de son environnement. L’environnement de propagation fait

référence au canal de communications qui assure la connexion entre l’émetteur et le récepteur.

Ainsi, l’estimation de canal de transmission est d’une importance primordiale pour l’égalisation et

la détection de symboles. Plusieurs modèles de canaux et approches d’estimation de canaux ont

été développés dans la littérature en fonction de leurs applications et de la norme sélectionnée.

Les méthodes d’estimation peuvent être divisées en trois classes principales discutées ci-dessous.

B.1.2.1 Estimation de canal basée sur les séquences pilotes

En générale, l’estimation du canal de transmission est réalisée en insérant, dans la trame

transmise, des séquences d’apprentissage (appelées pilotes) connue a priori par le récepteur, selon

une disposition connue dans la trame (bloc, peigne ou réseau) [19, 20, 21]. Côté récepteur, en

observant la sortie en correspondance des symboles du pilote, il est possible d’estimer le canal.

Cette connaissance est ensuite introduite dans le processus de détection afin de permettre une

estimation optimale des données. Cette approche (estimation du canal basée sur les pilotes) est
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la plus utilisée dans les normes de communications [22, 13], pour sa faible complexité de calculs

et sa robustesse. Son inconvénient réside dans le fait que les symboles pilotes ne contiennent pas

d’informations utile, ils représentent donc un gaspillage de bande passante. De plus, la plupart

des observations (celles liées aux symboles inconnus) sont ignorées dans le processus d’estimation,

ce qui représente une occasion manquée d’améliorer la précision de l’estimation du canal.

B.1.2.2 Estimation aveugle du canal

Contrairement à l’estimation de canal basée sur les séquences pilotes, les méthodes d’estimation

de canal aveugle s’appuient entièrement sur les propriétés statistiques des symboles transmis

inconnus (c’est-à-dire qu’aucun pilote n’est transmis) [23, 24, 25]. Cette approche réduit le

temps de réponse du système, mais nécessite un grand nombre de symboles de données pour les

propriétés statistiques et de puissants algorithmes. De plus, les approches basées sur les pilotes

donnent de meilleures performances à faible complexité de calculs que les approches d’estimation

aveugles.

B.1.2.3 Estimation semi-aveugle du canal

Chaque méthodes d’estimation de canal a ses avantages et ses inconvénients. Généralement, la

première classe (c’est-à-dire un estimateur de canal basé sur les pilotes) fournit une estimation

de canal plus précise que la classe d’estimation aveugle. Cependant, la seconde classe, dans

la plupart des cas, augmente l’efficacité spectrale par rapport à la première. Par conséquent,

il serait avantageux de conserver les avantages des deux techniques en utilisant des méthodes

d’estimation semi-aveugles [26, 27, 28, 29], exploitant à la fois les données et les pilotes pour

identifier le canal de transmission.

B.1.3 Objectifs de la thèse

Un des problèmes majeurs de ces systèmes est le fort niveau d’interférences dû au grand

nombre d’émetteurs simultanés. Dans un tel contexte, les solutions ’classiques’ de conception de

pilotes ’orthogonaux’ sont extrêmement coûteuses en débit utile permettant ainsi aux solutions

d’identification de canal dites ’aveugles’ ou ’semi-aveugles’ (abandonnées dans les systèmes

de communications civiles) de revenir au-devant de la scène comme solutions intéressantes

d’identification ou de déconvolution de ces canaux MIMO.

Dans cette thèse, nous avons commencé, dans la première partie, par une analyse comparative

des performances, en se basant sur les bornes de Cramèr-Rao (CRB), afin de mesurer la réduction

potentielle de la taille des séquences pilotes en employant les méthodes dites semi-aveugles basées

sur l’exploitation conjointe des pilotes et des données. Les résultats d’analyse montrent que nous
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pouvons réduire jusqu’à 95% des pilotes sans affecter les performances d’estimation du canal.

Nous avons par la suite, dans la deuxième partie, proposé de nouvelles méthodes d’estimation

semi-aveugle du canal, à faible coût, permettant d’approcher les performances limites (CRB).

Nous avons proposé un estimateur semi-aveugle, appelé LS-DF (Least Squares-Decision Feedback),

basé sur une estimation des moindres carrés avec retour de décision qui permet un bon compromis

performance / complexité numérique. Un autre estimateur semi-aveugle de type sous-espace a

aussi été proposé ainsi qu’un algorithme basé sur l’approche EM (Expectation Maximization)

pour lequel trois versions à coût réduit ont été étudiées. Dans le cas d’un canal spéculaire, nous

avons proposé un algorithme d’estimation paramétrique qui s’appuie sur l’estimation des temps

d’arrivés combinée avec la technique DF.

Dans cette annexe, nous présentons un résumé en langue Française des travaux réalisés.

B.1.4 Liste des publications

Les travaux de recherche développés dans cette thèse ont donné lieu aux publications suivantes :

Articles de revues :

1) Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Performance bounds

analysis for semi-blind channel estimation in MIMO-OFDM communications systems,"

IEEE Transactions on Wireless Communications, vol. 16, no. 9, pp. 5925-5938, Sep. 2017.

2) A. Ladaycia, A. Belouchrani, K. Abed-Meraim and A. Mokraoui, "Semi-Blind MIMO-

OFDM Channel Estimation using EM-like Techniques," IEEE Transactions on Wireless

Communications, May. 2019. (submitted).

3) O. Rekik, A. Ladaycia, K. Abed-Meraim, and A. Mokraoui, "Performance Bounds Analysis

for Semi-Blind Channel Estimation with Pilot Contamination in Massive MIMO-OFDM

Systems," IET Communications, May. 2019. (submitted).

Articles de conférences :

1) A. Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "What semi-blind channel

estimation brings in terms of throughput gain?" in 2016 10th ICSPCS, Dec. 2016, pp. 1-6,

Gold Coast, Australia.

2) A. Ladaycia, A. Belouchrani, K. Abed-Meraim, and A. Mokraoui, "Parameter optimization

for defeating blind interception in drone protection," in 2017 Seminar on Detection Systems

Architectures and Technologies (DAT), Feb. 2017, pp. 1-6, Alger, Algeria.
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the performance bounds of MIMO-OFDM channel estimation," in The 13th International

Wireless Communications and Mobile Computing Conference (IWCMC 2017), June 2017,

pp. 223-228, Valance, Spain.
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nications using semi-blind channel estimation," in 2017 25th European Signal Processing

Conference (EUSIPCO), Aug. 2017, pp. 2254-2258, Kos, Greece.

5) A. Ladaycia, K. Abed-Meraim, A. Bader, and M.S. Alouini, "CFO and channel estimation for

MISO-OFDM systems," in 2017 25th European Signal Processing Conference (EUSIPCO),

Aug. 2017, pp. 2264-2268, Kos, Greece.

6) A. Ladaycia, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Contributions à
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France.
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MIMO-OFDM channel estimation," in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP2018), Apr. 2018, Alberta, Canada.

8) A. Ladaycia, K. Abed-Meraim, A. Mokraoui, and A. Belouchrani, "Efficient Semi-Blind

Subspace Channel Estimation for MIMO-OFDM System," in 2018 26th European Signal

Processing Conference (EUSIPCO), Sep. 2018, Rome, Italy.

9) O. Rekik, A. Ladaycia, K. Abed-Meraim, and A. Mokraoui, "Performance Bounds Analysis

for Semi-Blind Channel Estimation with Pilot Contamination in Massive MIMO-OFDM

Systems," in 2018 26th European Signal Processing Conference (EUSIPCO), Sep. 2018,

Rome, Italy.

10) A. Ladaycia, M.Pesavento, A. Mokraoui, K. Abed-Meraim, and A. Belouchrani, "Decision

feedback semi-blind estimation algorithm for specular OFDM channels," in 2019 IEEE

International Conference on Acoustics, Speech and Signal Processing (ICASSP2019).

11) A. Ladaycia, A. Belouchrani, K. Abed-Meraim, and A. Mokraoui, "Efficient EM-algorithm

for MIMO-OFDM semi blind channel estimation," in 2019 Conference on Electrical Engi-
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12) O. Rekik, A. Ladaycia, K. Abed-Meraim, and A. Mokraoui, "Semi-Blind Source Separation

based on Multi-Modulus Criterion: Application for Pilot Contamination Mitigation in

Massive MIMO Systems," in The 19th ISCIT, Ho Chi Minh City, Vietnam. in The 19th

ISCIT, Ho Chi Minh City, Vietnam.

13) A. Ladaycia, A. Belouchrani, K. Abed-Meraim, and A. Mokraoui, "Algorithme EM efficace

pour l’estimation semi-aveugle de canal MIMO-OFDM," in GRETSI 2019.

B.2 Analyse de performances limites d’estimation de canal des systèmes de com-

munications MIMO-OFDM

La combinaison de la technologie MIMO et de la modulation OFDM (c’est-à-dire MIMO-OFDM)

est largement déployée dans les systèmes de communications sans fil, comme dans le réseau sans

fil 802.11n [22], LTE et LTE-A [4]. En effet, l’utilisation de MIMO-OFDM améliore la capacité

de canal et la fiabilité des communications. En particulier, il a été montrée dans [14, 16] que

grâce au déploiement d’un grand nombre d’antennes dans les stations de base, le système pouvait

atteindre un débit de transmission élevé et offrir une efficacité spectrale très élevée.

Dans un tel système, l’estimation de canal de transmission reste une préoccupation actuelle

dans la mesure où la performance globale en dépend fortement, en particulier pour les grands

systèmes MIMO où l’estimation de canal de transmission devient plus complexe.

Cette section est consacré à l’analyse comparative de performances limites de de l’estimation

semi-aveugle et aux approches basées uniquement sur les pilotes de canal de transmission,

dans le contexte des systèmes MIMO-OFDM. Pour obtenir des résultats comparatifs généraux

indépendamment des algorithmes ou des méthodes d’estimation spécifiques, cette analyse est

réalisée à l’aide de la CRB.

Par conséquent, nous commençons par donner plusieurs dérivations de CRB pour différents

modèles de données (Gaussienne circulaire (CG), Gaussienne non circulaire (NCG), Binary /

Quadratic Phase Shift Keying (BPSK / QPSK)) et différentes organisations des pilotes (blocs,

peignes et treillis). Dans le cas particulier des systèmes MIMO de grandes dimensions, nous

avons exploité la structure diagonale des blocs des matrices de covariance pour développer une

technique numérique rapide qui évite les coûts prohibitifs et les problèmes de mémoire insuffisante

(dus aux grandes tailles de matrice) du calcul de la CRB. De plus, dans le cas BPSK / QPSK, une

approximation réaliste de la CRB est introduite pour éviter des calculs d’intégrales numériques

lourds. Après avoir calculé toutes les CRB nécessaires, nous les utiliserons pour comparer les
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performances des approches semi-aveugles et ainsi que celles basées uniquement sur les séquences

pilotes.

Il est bien connu que les techniques semi-aveugles peuvent aider à réduire la taille de la

séquence d’approntissage ou à améliorer la qualité de l’estimation [35]. Cependant, il s’agit

de la première étude qui quantifie de manière approfondie le taux de réduction de la séquence

d’apprentissage lorsque une approche d’estimation semi-aveugle dans le contexte de MIMO-

OFDM est utilisée. L’un des principaux résultats de cette analyse est de mettre en évidence le

fait qu’en recourant à l’estimation semi-aveugle, on peut se supprimer la plupart des échantillons

pilotes sans affecter la qualité de l’identification du canal. Un autre résultat important de cette

étude est la possibilité de concevoir facilement des séquences pilotes semi-orthogonales dans le

cas de grande dimension MIMO grâce à leur taille réduite.

B.2.1 Systèmes de communications à porteuses multiples : concepts principaux

B.2.1.1 Modèle du système MIMO-OFDM

Le système de communications MIMO, illustré par la Figure B.1, est composé de Nt antennes

d’émission et Nr antennes de réception utilisant K sous-porteuses. Le signal émis est supposé

OFDM.

Le signal reçu au r-ème antenne, après suppression du cyclic préfixe et après avoir calculé la

FFT est donné par :

yr =
Nt∑
i=1

F T(hi,r)
FH

K
xi + vr K × 1, (B.1)

où F représente la matrice de Fourier; hi,r est le vecteur des coefficients du canal de transmission;

xi est le i-ème symbole OFDM; et T(hi,r) est une matrice circulaire. vr représente le bruit,

supposé additif Gaussian tel que E
[
vr(k)vr(i)H

]
= σ2

vIKδki; σ2
v la puissance du bruit.

Dans le cas général, l’équation précédente peut se mettre sous les deux formes suivantes :

y = λx + v, (B.2)

y = X̃h + v. (B.3)

B.2.1.2 Principaux modèles d’arrangement des pilotes

Les séquences pilotes peuvent être structurées en bloc (Figure B.2a), en peigne (comb) (Fig-

ure B.2b) ou bien réseaux (lattice) comme le montre la Figure B.2c
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Figure B.1: Modèle du système MIMO-OFDM

B.3 CRB pour une estimation de canal basée sur les pilotes arrangés selon le type

bloc

La CRB est obtenue en inversant la matrice d’information de Fisher (FIM) notée Jpθθ où θ est le

vecteur des paramètres à estimer θ = h :

Jpθθ =
Np∑
i=1

Jpiθθ, (B.4)

avec Jpiθθ la FIM assossie i-ème pilote donnée par [36, 35] :

Jpiθθ = E

{(
∂ lnp(y(i),h)

∂θ∗

)(
∂ lnp(y(i),h)

∂θ∗

)H
}
. (B.5)

Puis la CRB est comme suit :

CRBOP = σ2
vtr

{(
X̃H
p X̃p

)−1
}
. (B.6)

B.3.1 CRB pour une estimation semi-aveugle de canal dans le cas des pilotes arrangés

selon le type bloc

Pour dériver l’expression de la CRB, trois cas ont été considérés, selon que les données transmises

sont stochastiques, gaussiennes circulaires (CG), stochastiques gaussiennes non circulaires (NCG)

ou i.i.d. signaux BPSK / QPSK. Les symboles de données et le bruit sont supposés être à la fois

i.i.d. et indépendants. Par conséquent, la FIM, notée Jθθ, est divisée en deux parties :

Jθθ = Jpθθ + Jdθθ, (B.7)

où Jpθθ la FIM des pilotes, et Jdθθ est la FIM des données.



B.3. CRB pour une estimation de canal basée sur les pilotes arrangés selon le type bloc193

Pilot OFDM symbols Data OFDM symbols

Fr
eq

ue
nc

y

Time

…....... …........ …........

OFDM symbol

pN dN

(a)

Time

Fr
eq

ue
nc

y

…........

OFDM symbol

(b)

Time

Fr
eq

ue
nc

y

OFDM symbol

(c)

Figure B.2: Organisation des séquences pilotes: (a) organisation en bloc; (b) en peigne; (c) en réseau.

Le vecteur des paramètres inconnus θ est composé des paramètres complexes et réels (i.e θc
et θr) comme suit :

θ =
[
θTc (θ∗c)

T θTr

]T
, (B.8)

B.3.1.1 Modèle de données gaussien circulaire

Le signal est supposé CG centré et de matrice de covariance Cx = diag
(
σ2

x
)
avec σ2

x
def=
[
σ2

x1 · · ·σ
2
xNt

]T
.

La FIM des données eest égale à la FIM d’un symbole OFDM multiplié par le nombre de symboles

OFDM Nd. La matrice de covariance du signal reçu y est donnée par :

Cy =
Nt∑
i=1

σ2
xiλiλ

H
i +σ2

vIKNr . (B.9)

Les paramètres inconnus sont donnés par :

θc = h ; θr =
[
σ2

x
T
σ2

v

]T
. (B.10)
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La FIM est donnée par la trace suivante :

Jdθθ = tr

{
C−1

y
∂Cy
∂θ∗

C−1
y

(
∂Cy
∂θ∗

)H}
. (B.11)

B.3.1.2 Modèle de données gaussien non circulaire

Dans ce cas les vecteurs des paramètres sont donnés par :

θc = h ; θr =
[
σ2

x
T
φT ρc σ

2
v

]T
. (B.12)

où 0< ρc ≤ 1 et φ= [φ1 · · ·φNt ]
T sont le taux et la phase de non-circularité du signal.

Après calculs, la FIM est donnée par:

[
Jdθθ

]
i,j

= 1
2 tr

C̃−1
y
∂C̃y
∂θ∗

C̃−1
y

(
∂C̃y
∂θ∗

)H , (B.13)

où

C̃y =

 Cy C′y
C′∗y C∗y

 , (B.14)

C′y = E
[
yyT

]
=

Nt∑
i=1

ρce
jφiσ2

xiλiλi
T . (B.15)

B.3.1.3 Modèle de données BPSK et QPSK

Dans le cas BPSK/QPSK, la fonction de vraisemblance est donnée par :

p(y(k),θ) = 1
QNt

QNt∑
q=1

1
(πσ2

v)Nr
e
−
∥∥∥y(k)−λ(k)C

1
2
x xq

∥∥∥2/
σ2

v
, (B.16)

avec λ(k) =
[
λ(k),1, · · · ,λ(k),Nt

]
où λ(k),i =

[
(Whi,1)k , · · · ,

(
Whi,Nr

)
k

]T
.

Après calculs, simplifications et approximations à fort SNR, la FIM est donnée par :

Jdθθ(k) = 1
σ2

vQ
Nt

QNt∑
q=1

∂λ(k)C
1
2xxq

∂θ∗


H∂λ(k)C

1
2xxq

∂θ∗

, (B.17)

[
Jdθθ(k)

]
i,j

= 1
σ2

vQ
Nt

QNt∑
q=1

xHq

(
∂λ(k)C

1
2
x

∂θ∗i

)H(
∂λ(k)C

1
2
x

∂θ∗j

)
xq,[

Jdθθ(k)
]
i,j

= 1
σ2

vQ
Nt

∑
q,m,l

x∗q (m)xq (l)Γi,jm,l 1≤m, l ≤Nt,
(B.18)

où Γi,j =
(
∂λ(k)C

1
2
x

∂θ∗i

)H(
∂λ(k)C

1
2
x

∂θ∗j

)
.
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Paramètres Spécifications

Modèle du canal IEEE 802.11n

Nombre de trajets multiples N = 4

Nombre de symboles OFDM pilotes (LTF) NLTF
p = 2

Nombre de symboles OFDM pilotes (HT-LTF) NHT−LTF
p = 4

Nombre de symboles OFDM données Nd = 40

Puissance du signal des pilotes σ2
p = 23 dBm

Puissance du signal des données σ2
x = [20 21 18 19] dBm

nombre de sous porteuse K = 64

Rapport signal sur bruit SNRp = [-5:20] dB

Taux de non circularité ρc = 0.9

Phases de non circularité φ=
[π

4
π
2
π
6
π
3
]

B.3.2 Résultats de simulations

Les simulations ont été réalisées dans le contexte du standard IEEE 802.11n. La trame physique

est représentée par la Figure B.3. Les paramètres de simulations sont donnés dans le tableau

suivant.

HT-LTF…….... Data

Legacy Preamble High Throughput Preamble

2 Pilot OFDM Symbols Pilot OFDM SymbolsLTFN

HT-LTFHT-STFHT-SIGL-SIGL-LTFL-LTFL-STF

4 s 4 s 4 s 4 s

Figure B.3: Trame physique du standard IEEE 802.11n.

La Figure B.5 représente les CRBs normalisées
(
tr{CRB}
‖h‖2

)
en fonction du SNRp. Les courbes

confirment que les CRB de l’estimation semi-aveugle du canal sont inférieures à celles de la CRB

lorsque seuls les pilotes sont exploités (CRBOP ). Notons que la CRBNCGSB donne de meilleurs

résultats que la CRBCGSB et que la CRBSB dans le cas BPSK et QPSK donnent les meilleures

performances. Sur la Figure B.6, on présente l’effet d’augmenter le nombre de symboles OFDM

sur les performances d’estimation semi-aveugle.

L’approche d’estimation de canal semi-aveugle est traditionnellement utilisée pour améliorer

la précision d’identification de canal. Cependant, ce chapitre montre que l’approche semi-aveugle

peut être exploitée pour augmenter le débit du système sans fil MIMO-OFDM tout en maintenant

la même qualité d’estimation de canal obtenue lors de l’utilisation d’échantillons pilotes. Pour
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cela, pour atteindre la CRBOP , la stratégie proposée consiste à réduire le nombre d’échantillons

pilotes et à augmenter en conséquence le nombre d’échantillons de données (Figure B.4) pour le

cas semi-aveugle, jusqu’à atteindre la même performance d’estimation. Pour cela, on présente

sur la Figure B.7 la CRB normalisée semi-aveugle en fonction du nombre de pilotes supprimés.

On remarque dans le cas CG on peut supprimer jusqu’à 55% des pilotes et 87% dans le cas NCG

et 95% pour les modulations BPSK et QPSK

(a) : Block-type pilots arrangement (b) : Pilots samples reduction scheme

Pilot sub-carrier
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Time
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Figure B.4: Réduction des pilotes

B.4 Algorithme EM efficace pour l’estimation semi-aveugle de canal MIMO-OFDM

L’estimation semi-aveugle de canal basée sur le Maximum de Vraisemblance (MV) est l’une

des approches assez souvent retenue pour ses bonnes performances mais au prix d’une grande

complexité de calcul. Dans [84], l’algorithme EM maximise la vraisemblance pour estimer non

seulement le canal mais également les données transmises. Les auteurs proposent un précodeur

et utilisent des sous-porteuses de données comme pilotes virtuels pour l’estimation du canal.

Dans [85], une méthode alternative basée sur l’algorithme EM est introduite pour l’estimation

des coefficients du canal dans le domaine fréquentiel. Dans [86], les auteurs ont développé un

algorithme EM en supposant que les données inconnues suivent une distribution Gaussienne

même lorsque les symboles sont de type QPSK. Bien que l’algorithme EM soit performant,

il engendre une lourde charge de calcul. Nous proposons tout d’abord une version exacte de

l’algorithme EM pour estimer de manière itérative le canal MIMO dans le contexte semi-aveugle.
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Figure B.5: CRB normalisée en fonction du SNRp(dB)

Dans le but de réduire son coût de calcul, le système MIMO-OFDM est ensuite décomposé de

façon à transformer le problème initial d’estimation en un problème d’identification de canal des

sous-systèmes MISO en parallèle.

B.4.1 Système de communications MIMO-OFDM

Le système de communications MIMO-OFDM considéré est composé de Nt émetteurs et de Nr
récepteurs. Soit K le nombre de sous-porteuses. Après suppression du préfixe cyclique et le

calcul de la TFD de K- points, le signal yr(k) reçu sur la k-ème sous-porteuse du r-ème récepteur

est donné par:

yr (k) =
Nt∑
i=1

N−1∑
n=0

hri(n)wnkK di(k) + vr(k) 0≤ k ≤K − 1, (B.19)

où di(k) représente les données transmises par le i-ème émetteur sur la k-ème sous porteuse;

vr = [vr(1), · · · ,vr(K)] le bruit supposé additif Gaussien tel que E
[
vr(k)vr(i)H

]
= σ2

vIKδki ;

hri(n) le n-ème coefficients du canal de transmission entre le i-ème émetteur et le r-ème récepteur;

et N la longueur du canal. wnkK représente le (n,k)-ème coefficient de la matrice de Fourier W

de taille K ×K.
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Figure B.6: CRB normalisé en fonction du nombre des symboles OFDM donnés Nd

L’équation (B.19) peut se mettre sous forme matricielle :

yr (k) = wT (k)Hrd(k) + vr(k), (B.20)

avec d(k) = [d1(k), · · · ,dNt(k)]T les données transmises ; w(k) =
[
1 wkK , · · · ,w

(N−1)k
K

]T
; et Hr

la matrice des coefficients du canal définie comme suit :

Hr =


hr1(0) · · · hrNt(0)
...

. . .
...

hr1(N − 1) · · · hrNt(N − 1)

 . (B.21)

La représentation vectorielle du signal reçu, c.a.d. y(k) = [y1(k), · · · ,yNr(k)]T et v(k) =

[v1(k), · · · ,vNr(k)]T , permet de réécrire l’équation (B.20) sous une forme compacte :

y(k) = W(k)Hd(k) + v(k), (B.22)

où W(k) = INr ⊗wT (k) (⊗ représente le produit de Kronecker) et H = [HT
1 , · · · ,HT

Nr
]T .

Dans ce qui suit, les symboles OFDM reçus sont supposés i.i.d. L’algorithme EM est présenté

pour une organisation en peigne des symboles OFDM [32]. NotonsKp le nombre de sous-porteuses
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Figure B.7: CRB normalisée en fonction du nombre des pilotes supprimes

pilotes et Kd celui des sous-porteuses dédiées aux données. Les données transmises sont supposées

appartenir à un alphabet fini. On note D = {dξ} (respectivement |D|) l’ensemble fini de toutes

les réalisations possibles du vecteur de données d (respectivement son cardinal).

B.4.2 Estimation semi-aveugle de canal MIMO

Avant de présenter l’algorithme EM pour l’estimation semi-aveugle du canal MIMO, rappelons

rapidement les grandes lignes de cet algorithme. Le vecteur des paramètres inconnus θ contient

les coefficients du canal de transmission vec(H) ainsi que la puissance du bruit σv
2. L’algorithme

EM est un processus d’optimisation itératif qui estime les paramètres inconnus en maximisant

la vraisemblance marginale des données reçues y. Notons y les données incomplètes et d les

données cachées. L’algorithme EM est basé sur les deux étapes suivantes :

• Étape d’évaluation de l’espérance (étape-E) – Calcul de la fonction auxiliaire :

Q
(
θ,θ[i]

)
= Ed|y,θ[i] [logp(y|d;θ)] (B.23)
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• Étape de maximisation (étape-M) – Calcul de θ[i+1] qui maximise Q
(
θ,θ[i]

)
comme :

θ[i+1] = arg max
θ
Q
(
θ,θ[i]

)
(B.24)

La convergence de l’algorithme EM à un maximum local a été montrée et discutée dans [88].

B.4.2.1 Algorithme EM pour l’estimation semi-aveugle de canal MIMO

Cette section met en oeuvre l’algorithme EM pour l’estimation semi-aveugle du canal MIMO. La
fonction du maximum de vraisemblance est donnée par :

p(y;θ) =
Kp−1
Π
k=0

p(y(k) ;θ)
K−1
Π

k=Kp
p(y(k) ;θ) , (B.25)

où p(y(k);θ)∼N
(
W(k)Hdp(k),σ2

vI
)
, pour

k = 0, · · · , Kp− 1, dp(k) est le vecteur contenant la séquence pilote de la k-ème sous-porteuse; et
pour k =Kp, · · ·K − 1, on a :

p(y(k) ;θ) =
|D|∑
ξ=1

p
(
y(k)|dξ;θ

)
p
(
dξ
)
, (B.26)

avec p
(
y(k)|dξ;θ

)
∼N

(
W(k)Hdξ,σ2

vI
)
.

Étape-E : Après simplification, Q
(
θ,θ[i]

)
devient :

Q
(
θ,θ[i]

)
=
Kp−1∑
k=0

logp(y(k)|dp(k);θ) +
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)

logp
(
y(k)|dξ ;θ

)
, (B.27)

où

αk,ξ

(
θ[i]
)

=
p
(

y(k) |dξ ;θ[i]
)
p
(
dξ
)

|D|∑
ξ′=1

p
(

y(k) |dξ′ ;θ[i]
)
p
(
dξ′
) . (B.28)

Dans ce travail, toutes les réalisations dξ sont équiprobables. Le terme p
(
dξ
)
est alors ignoré

dans l’équation (B.28).

Étape-M : Cette étape estime θ, c.a.d. la matrice des coefficients du canal H et la puissance

du bruit σ2
v en maximisant la fonction auxiliaire :

θ[i+1] = arg max
θ

Q
(
θ,θ[i]

)
. (B.29)

En mettant à zéro la dérivée de Q
(
θ,θ[i]

)
, donnée par l’équation (B.27), par rapport à H et

en utilisant la propriété suivante de l’opérateur vec :
vec(ACB) =

(
BT ⊗A

)
vec(C), on obtient :

vec
(

H[i+1]
)

=

[
Kp−1∑
k=0

(
dp(k)∗dp(k)T ⊗W(k)HW(k)

)
+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)(

dξ∗dξT ⊗W(k)HW(k)
)]−1

×

[
Kp−1∑
k=0

vec
(

W(k)Hyp (k)dp(k)H
)

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)
vec
(

W(k)Hy(k)dξH
)]

.

(B.30)
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De même, la mise à zéro de la dérivée de Q
(
θ,θ[i]

)
par rapport à σv

2 donne :

{σv2}[i+1] = 1
K

(
Kp−1∑
k=0

∥∥∥yp (k)−W(k)H[i+1]dp(k)
∥∥∥2

+
K−1∑
k=Kp

|D|∑
ξ=1

αk,ξ

(
θ[i]
)∥∥∥y(k)−W(k)H[i+1]dξ

∥∥∥2
)
.

(B.31)

L’algorithme est résumé comme suit :

Algorithm 3 estimation du canal par l’algorithme SA-EM-MIMO
Initialisation :

1: i= 0 ;

2: θ[0] =
[
vec

(
H[0]

)T
,{σ2

v}[0]
]
qui représentent les estimés du canal de transmission et de la

puissance du bruit en se basant que sur les séquences pilotes ;

Traitement :

3: Estimation de H[i+1] utilisant H[i] et {σ2
v}[i] selon l’équation (B.30) ;

4: Estimation de {σ2
v}[i+1] utilisant H[i+1], H[i] et {σ2

v}[i] selon l’équation (B.31) ;

5: Remplacer θ[i] = θ[i+1] ;

6: Tant que
(
‖H[i+1]−H[i]‖> ε

)
répéter à partir de l’étape 3 ;

Sinon : Ĥ = H[i+1] et σ̂2
v = {σ2

v}[i+1].

B.4.2.2 Algorithme EM pour l’estimation semi-aveugle de canal des sous-systèmes

La sommation sur toutes les réalisations possibles du vecteur d (c.a.d. |D| introduite dans

les équations (B.30) et (B.31)) engendre une lourde charge de calcul croissante de manière

exponentielle avec Nt. Pour réduire cette charge de calcul, nous proposons de décomposer le

système MIMO-OFDM en NCPU sous-systèmes MIMO-OFDM de taille (Ns×Nr) avec Ns <Nt.

Cette stratégie est pertinente lorsque la station de base est dotée de calculateurs équipées de

NCPU processeurs en parallèle. Ainsi, au lieu d’estimer le canal MIMO comme un seul système,

la complexité des calculs est répartie entre tous les processeurs du système NCPU . L’algorithme

EM est appliqué sur tous les sous-systèmes MIMO-OFDM (en parallèle), où chaque sous-système

est composé de Ns émetteurs et de Nr récepteurs, où Ns est la partie entière de Nt/NCPU
(bNt/NCPUc) ou bNt/NCPUc+ 1.

A chaque itération (sur les sous-systèmes), les coefficients du canal du u-ème (u= 1 · · ·NCPU )

sous-système sont estimés après avoir supprimé les autres signaux reçus des autres (Nt−Ns)

émetteurs en utilisant l’égaliseur DFE (voir Figure B.8). Ce dernier estime tout d’abord le canal

en s’appuyant sur les séquences pilotes avec l’estimateur LS (ĥOP ). L’algorithme de détection,

développé dans [91], est ensuite appliqué afin d’estimer les données transmises (d̂1 · · · d̂Nt).
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Pour estimer le canal du u-ème sous-système MIMO, les signaux transmis par les autres

émetteurs sont considérés comme interférences et par conséquent sont soustraits au signal reçu

comme suit :

ysub−MIMO
u (k) = y(k)−W(k)Ĥūd̂ū(k)

= W(k)Hudu(k) + zu(k),
(B.32)

où ysub−MIMO
u (k) est un estimé du signal reçu uniquement des Ns utilisateurs du u-ème sous-

système, Hu représente les Ns colonnes de la matrice H correspondant aux coefficients du canal

de transmission du u-ème sous-système. Ĥū est l’estimée de la matrice du canal des (Nt−Ns)

utilisateurs interférants, c.a.d. Ĥū est égale à Ĥ dans laquelle les Ns colonnes qui correspondent

au u-ème sous-système sont supprimés.
zu(k) représente le bruit et les termes résiduels d’interférence. Sous l’hypothèse que zu(k)∼

N
(
0,σ2

zuI
)
, on peut écrire :

p
(

ysub−MIMO
u (k) ;θu

)
∼N

(
W(k)Hudu(k),σ2

zuI
)
, (B.33)

où θu =
[
HT
u ,σ

2
zu
]T est le vecteur des paramètres inconnus.

En faisant ce traitement, on obtient NCPU sous-systèmes MIMO-OFDM pouvant être traités

indépendamment, en parallèle, selon l’algorithme EM itératif suivant :

Pour u= 1, · · · ,NCPU :
Etape-E : La fonction auxiliaire Q

(
θu,θ

[i]
u

)
est écrite comme suit :

Q
(
θu,θ

[i]
u

)
=
Kp−1∑
k=0

logp
(

ysub−MIMO
p,u (k) |dp,u(k);θu

)
+

K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ

(
θ

[i]
u

)
logp

(
ysub−MIMO
u (k) |dξ ;θu

)
,

(B.34)

où {dp,u(k)} représente les symboles pilotes, |Du| est l’ensemble des réalisations possibles des
symboles du u-ème sous-système avec :

p
(

ysub−MIMO
p,u (k) |dp,u(k);θu

)
∼N

(
W(k)Hudp,u(k),σ2

zuI
)
, (B.35)

p
(

ysub−MIMO
u (k) |dξ ;θu

)
∼N

(
W(k)Hudξ ,σ

2
zuI
)
, (B.36)

αk,ξ

(
θ

[i]
u

)
=

p
(

ysub−MIMO
u (k) |dξ ;θ

[i]
u

)
p
(
dξ
)

|Du|∑
ξ′=1

p
(

ysub−MIMO
u (k) |dξ′ ;θ

[i]
u

)
p
(
dξ′
) . (B.37)

Étape-M : En mettant à zero la dérivée de Q
(
θu,θ

[i]
u

)
donnée dans l’équation (B.34) par rapport

à Hu, on obtient :

H[i+1]
u =

[
Kp−1∑
k=0

W(k)HW(k)dpt,u(k)d∗pt,u(k) +
K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ,t

(
θ

[i]
u

)
W(k)HW(k)dξd∗ξ

]−1

×

(
Kp−1∑
k=0

W(k)Hysub−MIMO
pt,u (k)d∗pt,u(k) +

K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ,t

(
θ

[i]
u

)
W(k)Hysub−MIMO

u,t (k)d∗ξ

)
.

(B.38)
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De même, la mise à zero de la dérivée de Q
(
θu,θ

[i]
u

)
donnée par l’équation (B.34) par rapport

à σ2
zu , permet d’obtenir :

{σzu
2}[i+1] = 1

K

(
Kp−1∑
k=0

∥∥∥ysub−MIMO
pt,u (k)−W(k)H[i+1]

u dpt,u(k)
∥∥∥2

+
K−1∑
k=Kp

|Du|∑
ξ=1

αk,ξ,t

(
θ

[i]
u

)∥∥∥ysub−MIMO
u,t (k)−W(k)H[i+1]

u dξ
∥∥∥2
)
.

(B.39)

L’algorithme d’estimation semi-aveugle EM-MIMO basé sur NCPU EM-MIMO est résumé par

la Figure B.8.

Algorithm 4 Estimateur SA-EM basé sur NCPU EM-MIMO
Initialisation :

1: Estimation basée que sur les pilotes (LS) (i.e. ĥOP ) ;

2: Estimation des données transmises (i.e. d̂) utilisant des algorithmes de détection et décision

[91] ;

3: Annulation des Interférences : Considérons un (Ns×Nr) sous-système MIMO en éliminant

les autres signaux reçus des autres émetteurs (interférences) ;

4: Initialisation de θ[0]
u =

[
H[0]
u ,{σ2

zu}
[0]
]
, u = 1, · · · ,NCPU par leurs estimés obtenus par les

pilotes seuls ;

Traitement : Pour u= 1 :NCPU
5: Estimation de H[i+1]

u utilisant H[i]
u et {σ2

zu}
[i] selon l’équation (B.38) ;

6: Estimation de {σ2
zu}

[i+1] utilisant {σ2
zu}

[i], H[i]
u , et H[i+1]

u selon l’équation (B.39);

7: Mettre θ[i]
u = θ[i+1]

u ;

8: Tant que
(
‖H[i+1]

u −H[i]
u ‖> ε

)
répéter à partir de l’étape 5 ;

Sinon : Ĥu = H[i+1]
u et σ̂2

zu = {σ2
zu}

[i+1]; Fin pour

…
.
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Figure B.8: Estimation semi-aveugle basée sur NCPU sous-systèmes.
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B.4.3 Analyse des performances

Les simulations s’appuient sur un système de communications sans fil (4×4)-MIMO. Les séquences

pilotes correspondent à celles spécifiées dans le standard IEEE 802.11n [22] avec K = 64 et Kp =

8. Le canal de propagation multi-trajet est représenté par un canal de type B avec un retard de

propagation [0 10 20 30] µs et une atténuation moyenne de [0 -4 -8 -12] dB. Notons (hMIMO
SA )

la version exacte de l’algorithme EM ; (hsous−MIMO
SA ) l’algorithme EM d’estimation avec une

décomposition du système en NCPU = 2 MIMO-OFDM sous-systèmes. Les performances de ces

algorithmes sont mesurées en termes d’erreur quadratique moyenne normalisée (NRMSE).

La Figure B.9 compare les performances des deux estimateurs à la borne de Cramér-Rao

(CRBSA) [32] en fonction du SNR (dB). Les courbes confirment bien que l’estimation semi-

aveugle donne de meilleures performances comparées aux méthodes classiques basées uniquement

sur les séquences pilotes (hOP ). De plus, l’algorithme semi-aveugle proposé, dans lequel le

système MIMO-OFDM est décomposé en 2 sous-systèmes MIMO (2×4), donne de bons résultats

avec une réduction significative du temps d’exécution (de moitié).

La Figure B.10 compare l’influence de l’augmentation du nombre de symboles OFDM Nd sur

les performances d’estimation des canaux mesurées en termes de NRMSE pour un SNR= 10

dB. Les courbes montrent que les performances de l’estimation semi-aveugle s’améliorent au fur

et à mesure que le nombre de symboles OFDM Nd augmente.
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B.5 Conclusion

L’estimation du canal est d’une importance capitale pour l’égalisation et la détection des symboles

dans la plupart des systèmes de communications sans fil, en particulier dans les systèmes MIMO-

OFDM. Il suscite dès lors l’intérêt des chercheurs et des développeurs de systèmes depuis le

XXe siècle. Une avancée spectaculaire a été réalisée avec le développement et la mise en œuvre

d’algorithmes d’estimation de canal basés sur les pilotes, motivés par sa faible complexité

et sa faisabilité en ce qui concerne les calculateurs disponibles à cette époque. L’apparition

d’ordinateurs puissants (processeurs) disponibles aux stations de base et la forte demande

en débits de données plus élevés ont conduit à envisager d’autres approches d’estimation de

canaux. Les approches proposées, principalement les techniques semi-aveugles, augmentent le

débit de données en réduisant le nombre de pilotes transmis, car ces derniers ne transmettent

pas d’informations et représentent un gaspillage de la bande passante. En outre, de nombreux

problématiques sont faiblement étudiés dans la littérature en ce qui concerne l’estimation du canal

semi-aveugle. Cette thèse est l’une des contributions traitant de l’identification de canaux de de

transmission en semi-aveugle et de son analyse dans le contexte des systèmes MIMO-OFDM.

Plusieurs contributions à l’estimation semi-aveugle du canal de transmission ont été réalisées

dans cette thèse : la quantification du taux maximum de réduction des pilotes transmis en

utilisant l’estimation semi-aveugle du canal tout en garantissant la même qualité d’estimation

basée sur les pilotes, puis le développement d’estimateurs semi-aveugles efficaces du canal (LS-DF,

méthodes sous-espace, algorithmes basés sur l’algorithme EM). De plus, d’autres études sur les

limites de performance de l’estimation de canal MIMO-OFDM ont été abordées, notamment

l’analyse de l’effet du CFO sur les performances de l’estimation de canal. Ci-dessous, nous

résumons brièvement le travail réalisé dans de cette thèse.

Premièrement, les limites de performance théoriques pour les méthodes d’estimation de

canaux semi-aveugles et basées sur des pilotes ont été abordées dans le contexte des systèmes

MIMO-OFDM et des systèmes massifs MIMO-OFDM. Cette analyse a été réalisée par le biais

de la dérivation analytique des CRB pour différents modèles de données (CG, NCG et BPSK /

QPSK) et pour différents modèles de conception pilotes (par exemple, agencement pilote de type

bloc, type réseau et type peigne). L’étude des CRB dérivés montre l’énorme réduction du nombre

d’échantillons pilotes et, par conséquent, le gain en débit obtenu grâce à l’approche semi-aveugle,

tout en conservant la même qualité d’estimation de canal en utilisant que les pilotes. Dans cette

thèse, nous montrons que, en utilisant les techniques semi-aveugle, la réduction peut dépasser

95% (modèle de données BPSK) de la taille originale.
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Cette étude a également été étendue aux grands systèmes MIMO-OFDM (10× 10), où

nous montrons que les gains de performance sont légèrement supérieurs à ceux observés pour

les systèmes MIMO-OFDM de taille plus petite. De plus, la même étude, a été généralisée

aux systèmes massifs multi-cellules MIMO-OFDM sous l’effet de la contamination des pilotes.

Par la suite, nous avons montré qu’en utilisant les méthodes semi-aveugle, il est possible de

résoudre efficacement le problème de contamination des pilotes lorsqu’on considère des signaux

de communications en alphabet fini.

Deuxièmement, nous avons étudié l’effet du CFO sur les performances de l’estimation de

canal à l’aide de l’outil CRB. En raison de la propriété de cyclostationnarité du CFO, nous

montrons que le CFO impacte avantageusement l’estimation du canal semi-aveugle. Dans le cas

du système de communications MISO-OFDM basé sur des protocoles de transmission à relais

multiples, nous avons proposé deux approches efficaces pour estimer conjointement le canal de

transmission et les CFO. Dans le même contexte, une autre étude a été menée pour évaluer

et comparer les CRB pour l’estimation des coefficients de canal de sous-porteuse avec et sans

considération de la structure OFDM (c’est-à-dire l’estimation des coefficients de canal dans le

domaine temporel ou fréquentiel). Cette étude met en évidence le gain significatif associé à

l’approche du domaine temporel.

Troisièmement, nous avons proposé quatre algorithmes d’estimation semi-aveugle de canal.

Nous avons commencé par le plus simple (LS-DF) qui repose sur l’estimateur LS utilisé con-

jointement avec un retour de décision dans lequel les données estimées sont réinjectées à l’étape

d’estimation de canal pour améliorer les performances de l’estimation. Dans le contexte des

communications écologiques, nous avons montré que, grâce à l’algorithme semi-aveugle LS-DF,

on pouvait réduire jusqu’à 76% de la puissance transmise par les pilotes.

La seconde approche semi-aveugle repose sur la technique du maximum de vraisemblance (ML),

l’une des méthodes d’estimation les plus efficaces mais aussi les plus coûteuses. L’optimisation du

critère ML se fait par une technique itérative utilisant l’algorithme EM. Nous avons proposé trois

approches d’approximation/simplification pour traiter la complexité numérique de l’algorithme

EM classique. Les trois approximations proposées (à savoir EM-MISO, S-EM, EM-SIMO)

donnent de bonnes performances à un coût de calcul inférieur par rapport à l’algorithme EM

classique.

Enfin, pour le cas pratique du modèle à canal spéculaire, nous avons proposé une approche

paramétrique basée sur une estimation des temps d’arrivés (TOA) utilisant des méthodes sous-

espace pour les systèmes SISO-OFDM. L’estimation semi-aveugle des TOAs est réalisée à l’aide
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d’un processus de retour de décision qui améliore les performances de l’estimation des TOAs à

partir d’une première estimation obtenue grâce aux pilotes existants. Les principales contributions

de cette thèse sont énumérées ci-dessous :

• Dérivation des CRB d’estimation de canal pour différents modèles de données (CG, NCG,

BPSK / QPSK) et pour différents modèles de conception pilote (agencement pilote de type

bloc, type réseau et type peigne) dans le cas du système MIMO-OFDM .

• Pour le modèle de données BPSK / QPSK, une approximation réaliste du CRB a été

donnée pour contourner la grande complexité du calcul exact du CRB.

• Proposition d’une technique de calcul efficace pour traiter la manipulation des matrices de

grande taille nécessaire pour le calcul des CRBs dans le scénario MIMO de grande taille et

le MIMO massif.

• Quantification du taux de réduction des séquences pilotes grâce à l’utilisation de l’estimation

semi-aveugle du canal.

• Dérivation des CRB d’estimation semi-aveugle du canal pour un système MIMO-OFDM

massif multicellulaire en tenant en compte le phénomène de contamination des pilotes.

• Étude de l’efficacité de l’estimation semi-aveugle du canal de transmission pour résoudre le

problème de contamination des pilotes.

• Contribution à la protection des drones contre l’interception aveugle à l’aide de l’analyse

des CRBs dans le contexte aveugle.

• Dérivation des CRB d’estimation semi-aveugle de canal en présence de CFO dans le système

MIMO-OFDM et l’étude de l’impact positif de CFO sur les performances de l’estimation

de canal.

• Proposition de deux approches pour estimer conjointement les coefficients CFO et le canal

de transmission.

• Quantification de la dégradation des performances entre l’estimation des coefficients de

canal dans le domaine temporel ou fréquentiel.

• Contribution aux communications écologiques en quantifiant la réduction de la puissance

transmise à l’aide d’une estimation semi-aveugle de canal.
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• Proposition de un estimateur semi-aveugle de canal basé sur la stratégie de retour de

décision (LS-DF).

• Contribution à l’estimation semi-aveugle du canal en utilisant l’algorithme EM dans le cas

du système MIMO-OFDM.

• Dérivation de quatre versions simplifiées de l’algorithme semi-aveugle EM classique.

• Contribution à l’estimation semi-aveugle sous-espace du canal pour le système MIMO-

OFDM.

• Dérivation d’une méthode semi-aveugle paramétrique pour estimer les paramètres de canal

(TOA) dans le cas d’un canal OFDM spéculaire.
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Titre : Annulation d’interférences dans les systèmes MIMO et MIMO massifs
(Massive MIMO).
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algorithme EM, LS-DF, canal spéculaire.

Résumé : Les systèmes de communications MIMO utilisent des réseaux de capteurs qui peuvent
s’étendre à de grandes dimensions (MIMO massifs) et qui sont pressentis comme solution potentielle
pour les futurs standards de communications à très hauts débits. Un des problème majeur de ces
systèmes est le fort niveau d’interférences dû au grand nombre d’émetteurs simultanés. Dans un
tel contexte, les solutions ’classiques’ de conception de pilotes ’orthogonaux’ sont extrêmement
coûteuses en débit utile permettant ainsi aux solutions d’identification de canal dites ’aveugles’
ou ’semi-aveugles’ de revenir au-devant de la scène comme solutions intéressantes d’identification
ou de déconvolution de ces canaux MIMO.
Dans cette thèse, nous avons commencé par une analyse comparative des performances, en nous
basant sur les CRB, afin de mesurer la réduction potentielle de la taille des séquences pilotes et
ce en employant les méthodes dites semi-aveugles. Les résultats d’analyse montrent que nous
pouvons réduire jusqu’à 95% des pilotes sans affecter les performances d’estimation du canal. Nous
avons par la suite proposé de nouvelles méthodes d’estimation semi-aveugle du canal, permettant
d’approcher la CRB. Nous avons proposé un estimateur semi-aveugle, LS-DF qui permet un
bon compromis performance / complexité numérique. Un autre estimateur semi-aveugle de type
sous-espace a aussi été proposé ainsi qu’un algorithme basé sur l’approche EM pour lequel trois
versions à coût réduit ont été étudiées. Dans le cas d’un canal spéculaire, nous avons proposé un
algorithme d’estimation paramétrique se basant sur l’estimation des temps d’arrivés combinée
avec la technique DF.

Title : Interference cancellation in MIMO and massive MIMO systems

Keywords : Geostrophic equilibrium, low Froude number, hyperbolic system, finite volume
method, Godunov scheme, numerical diffusion, well-balanced scheme, Coriolis force.

Abstract : MIMO systems use sensor arrays that can be of large-scale (massive MIMO) and are
seen as a potential candidate for future digital communications standards at very high throughput.
A major problem of these systems is the high level of interference due to the large number of
simultaneous transmitters. In such a context, ’conventional’ orthogonal pilot design solutions are
expensive in terms of throughput, thus allowing for the so-called ’blind’ or ’semi-blind’ channel
identification solutions to come back to the forefront as interesting solutions for identifying or
deconvolving these MIMO channels.
In this thesis, we started with a comparative performance analysis, based on CRB, to quantify
the potential size reduction of the pilot sequences when using semi-blind methods that jointly
exploit the pilots and data. Our analysis shows that, up to 95% of the pilot samples can be
suppressed without affecting the channel estimation performance when such semi-blind solutions
are considered. After that, we proposed new methods for semi-blind channel estimation, that
allow to approach the CRB. At first, we have proposed a SB estimator, LS-DF which allows a
good compromise between performance and numerical complexity. Other SB estimators have also
been introduced based on the subspace technique and on the ML approach, respectively. The
latter is optimized via an EM algorithm for which three reduced cost versions are proposed. In
the case of a specular channel model, we considered a parametric estimation method based on
times of arrival estimation combined with the DF technique.
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