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Résumé

Le déchargement de calculs est l’une des solutions les plus prometteuses pour surmonter

le manque de ressources au niveau des terminaux mobiles. Elle permet l’exécution d’une

partie ou de la totalité d’une application mobile dans le cloud. L’objectif est d’améliorer

les temps d’exécution et de réduire la consommation énergétique. Malheureusement,

même si les Clouds disposent d’importantes ressources de calcul et de stockage, ils

sont généralement éloignés des équipements terminaux. Dans ce cas, cette approche

peut souffrir de délais importants et fluctuants. Cette constatation est particulièrement

problématique pour certaines applications pour lesquelles un temps de réponse réduit est

nécessaire. Pour réduire ce délai d’accès, l’une des approches émergentes est de pousser

le Cloud vers la bordure du réseau. Cette proximité permet aux applications mobiles

de décharger leurs tâches et données vers un Cloud “local” ou “Edge Cloud”. Un Edge

Cloud peut être vu comme un petit centre de traitement des données relativement à de

plus grands data centres. Cette proximité géographique entre les applications mobiles et

le cloud local signifie que le délai d’accès peut être considérablement réduit par rapport

aux Clouds distants, mais également la possibilité d’obtenir un débit plus important,

une plus grande réactivité, un meilleur passage à l’échelle, etc.

Dans cette thèse, nous nous concentrons sur le déchargement de calculs dans une

architecture de type mobiles (Mobile Edge Computing – MEC), composée de plusieurs

serveurs de périphérie. Notre objectif est d’explorer de nouvelles stratégies de décharge-

ment efficaces afin d’améliorer les performances des applications tant du point de vue

délais de calcul que consommation énergétique, tout en garantissant les contraintes

de temps d’exécution des applications. Notre première contribution est une nouvelle

stratégie de déchargement sur plusieurs serveurs de périphérie. Nous proposons par la

suite une extension de cette stratégie en incluant également le Cloud. Nous évaluons

ces stratégies tant du point de vue théorique que pratique avec l’implémentation d’un

middleware de déchargement. Finalement, nous proposons une nouvelle approche élas-
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tique dans le cas d’applications multitâches caractérisées par un graphe de dépendances

entre les tâches.



Abstract

Computation offloading is one of the most promising paradigm to overcome the lack of

computational resources in mobile devices. Basically, it allows the execution of part or

all of a mobile application in the cloud. The main objective is to reduce both execution

time and energy consumption for the mobile terminals. Unfortunately, even if clouds

have rich computing and storage resources, they are usually geographically far from

mobile applications and may suffer from large delays, which is particularly problematic

for mobile applications with small response time requirements. To reduce this long

delay, one of the emerging approach is to push the cloud to the network edge. This

proximity gives the opportunity to mobile users to offload their tasks to “local” cloud

for processing. An Edge Cloud can be seen as small data center acting as a shadow

image of larger data centers. This geographical proximity between mobile applications

and edge cloud means that the access delay can be greatly reduced, but affects also

higher throughput, improved responsiveness and better scalability.

In this thesis, we focus on computation offloading in mobile environment (Mobile

Edge Computing - MEC), composed of several edge servers. Our goal is to explore

new and effective offloading strategies to improve applications performances in both

execution time and energy consumption, while ensuring application requirements. Our

first contribution is a new offloading strategy in the case of multiple edge servers. Then

we extend this strategy to include the Cloud. Both strategies have been evaluated

theoretically and experimentally by the implementation of an offloading middleware.

Finally, we propose a new elastic approach in the case of multitasking applications

characterized by a graph of dependencies between tasks.
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K the number of edge servers available in the network.
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Nm the number of users associated to the AP m.

fm,n the local computing capacity of the nth user of the mth AP.

F k the computing capacity of the edge server k.

ck the computing resource allocation on edge server k.

(m,n) the nth user of the mth AP in the MEC.

dwm,n the amount of data to download by the user (m,n).

upm,n the amount of data uploaded to the MEC from the user (m,n).
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xkm,n the offloading decision variable for the task of user (m,n) in the edge server k.

ym,n the category to which belong the tasks (static or dynamic offloading decision

task).

gkm,n variable if the edge server k can perform the task of user (m,n).

am,n the amount of computation that user (m,n) should offload to MEC.

si the code source of the task i in multitasking application.

ej,i the data dependency between tasks i and j in multitasking application.

stki the start time of the task i, in multitasking application, on the edge server k.

ftj,i the finish time of the task i, in multitasking application, on the edge server k.

bl(i) the priority of task i in multitasking application.
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Introduction

R ecently, mobile terminals have undergone a great transformation from

small devices with limited resource capabilities to essential everyday ac-

cessories. They are indispensable for our daily communications, personal

and professional activities. The number of those terminals has increased dramatically,

with a growth in their applications and uses. However, the willingness to limit the

weight and the size by the constructors restricts seriously the resource capability and

the battery lifetime. Consequently, a powerful approach to enhance the performance

of applications and alleviate the resource scarcity of mobile terminals is to enable the

mobile terminal to perform some or all of their computational-intensive application

to a remote high-performance server, such as the cloud, and known as computation

offloading. In this chapter, we present the motivation and challenges of the computation

offloading to a new emerging computing paradigm known as Mobile Edge Computing –

MEC.

1.1 Context

The major progress in the mobile terminals technologies has facilitated the emergence of

innovative mobile applications, which integrate richer functionalities and features such as

augmented/virtual reality, face/speech recognition or high-performance operations. To

fulfill the computing resource demands of these applications, mobile terminals construc-

tors, such as Apple, Huawei, and Samsung, increase the build-in computing capabilities
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of these terminals. Nevertheless, those novel applications are often computationally

intensive and resource-hungry. Consequently, the gap between the required and the

available resources continues to grow. As a result, the users quality of experience is

highly affected and can suffer from poor latency.

Figure 1.1: User satisfaction for the performance of the applications on Samsung Galaxy S5
smartphone. (1) Very unsatisfied (5) Very satisfied [1].

Figure 1.1 draws user satisfaction of the performance of two resource-hungry ap-

plications I) Julia a high-performance numerical analysis, and II) Ambiant Occlusion

a brute force ray primitive intersection as presented in [1]. The experiments are done

using a Samsung Galaxy S5 smartphone with a computing capacity of 4 CPU-cores,

each has a frequency of 2.5 GHz. The User then gives his satisfaction in a scale from 1-

very unsatisfied to 5- very satisfied. We note that users become more satisfied

when the computing resource increases. Nevertheless, user’s satisfaction is below than 3-

Neither Satisfied Nor Dissatisfied even when the application uses all the com-

puting resources of the smartphone. Consequently, the quality of experience of such

applications can hardly fulfilled. So, it is very important to circumvent this limitation

of the mobile terminals capabilities to meet the needs of resource-hungry applications.

One possible approach is to perform these heavy computations by a more powerful

system outside the mobile terminal, which is referred to computation offloading.

The latter consists of delegating partially or completely the computation to a resource-

powerful remote server such as cloud computing. In the past years, many works have
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proposed different approaches and solutions of computation offloading including load

sharing [2], remote execution [3], and cyber foraging [4] to improve the performance of

the application and user experience of mobile terminals. The success of cloud computing

as a powerful environment with unlimited computing capabilities and the evolution

of wireless technologies that makes network connectivity ubiquitous motivate several

works to bring the cloud computing capacities to the mobile terminals from offloading

perspective. Consequently, Mobile Cloud Computing (MCC) [5] was introduced to

enrich the mobile terminals computation and battery lifetime issues. The benefits of

MCC can be summarized as the following [4]:

• Enhanced computing capability: Offloading some or all intensive computa-

tions of the application to a reliable computing resource increases significantly the

processing capability of the mobile terminal, which reduces the execution time.

• Increased battery lifetime: Moving the computation to cloud can decrease

energy consumption and increases mobile terminal battery lifetime.

• Unlimited data storage: Using the unlimited storage capacity of the cloud, to

save applications’ data, can save the storage capability of the mobile terminal.

• Enriched user interface: Due to graphical resources in the cloud, such as

GPU, MCC heavily impact 2D and 3D rendering of the application. Consequently,

The users experience richer features for multimedia applications.

Although MCC improves the performances of the application, the geographical

distance to the remote cloud might induce significant delays that are not tolerated by

many time-sensitive applications, such as online mobile gaming, augmented reality, face

and speech recognition [6, 7]. Consequently, the user may suffer from poor experience

with those applications. To address this issue, the Mobile Edge Computing (MEC)

paradigm has recently emerged as a credible solution to support resource-hungry and

time-sensitive applications. The fundamental concept underlying MEC is to push the

computing capabilities at the edge of the network, closer to end-users rather than in the

cloud. Concretely, a typical MEC environment is composed of small data-centers, called

edge servers, that are deployed nearby wireless APs, ADSL boxes or Base Stations

(BSs). Each edge server offers higher processing capacities than most mobile terminals,

allowing thus a faster execution of offloaded tasks. This geographical proximity between
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mobile terminals and edge servers means that the MEC access delay on task offloading

can be greatly reduced, compared to MCC, thereby significantly improving mobile

user experiences. Moreover, the mobile terminal can offload its computation and data

with ultra-high bandwidth compared to MCC. However, the MEC is composed of a

small server which means that each edge server can perform a limited computation at a

time. As a result, MEC performances will be decreased in a multi-user scenario when

many users try to offload their computations to the MEC. Consequently, the existing

computation offloading policies must be enhanced to improve the benefits of the MEC

in such scenarios.

1.2 Challenges

Enhancing the performances of computation offloading on MEC environment remains

an important issue. In recent years, many works presented different models and

architectures to offload computation-intensive applications to MEC. Most of these works

conclude that the efficiency of the offloading to MEC relies on many dimensions [4].

Identifying these dimensions results in designing an offloading framework that efficiently

improves the performance of mobile terminals and the applications [8].

The computation to Offload

The offloading decision
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Figure 1.2: Computation offloading dimensions [4].

As detailed in Figure 1.2, several works define three main dimensions of computa-

tion offloading [4, 8]. Each dimension refers to a specific challenge of the offloading.

Addressing these dimensions determines how to offload the computation from a mobile

terminal to a remote server (MCC/MEC) and can be summarized as follows:

• The first dimension address the computation to offload, it gives answer to the

question of what to offload? Existing works proposed three main approaches:
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1) The application: the hole application is offloaded, then the results will be

sent back to the mobile terminal.

2) A task: in this case, the application is partitioned into smaller entities,

called tasks, then the mobile offload some or all the tasks depending on the

network and computing resources availability.

3) The mobile system image: an overlay VM image of the mobile operating

system, for example Android, and the application will be transmitted to an

edge server in MEC.

• The second dimension targets the offloading decision, it tries to answer the

question when to offload? The offloading decision is the decision whether the

chosen computation will be offloaded. We define two categories for the offloading

decision as following:

1) Static offloading decision: here the offloading decision is done at the

design time of the application. The offloadable part of computation will

always be performed remotely what ever the conditions and the situation of

the mobile terminal.

2) Dynamic offloading decision: here the offloading decision is token at

runtime of the application depending on the network and system resource

availability.

• The last dimension investigates the question of where to offload? Choosing the

execution place of the computation is a challenging issue. It depends on to many

factors including the application QoS requirement and the computing resource

availability. In a MEC environment three possible locations are available:

1) The mobile terminal: in this case there is no offloading and the computa-

tion is performed locally within the mobile terminal.

2) The edge server(s): in the case where the mobile terminal decide to

offload its computation to edge server(s). It is clear that the location of the

target edge server(s) has a great impact on the performances experienced by

the end user.

3) The remote cloud: finally, the mobile terminal can also offload its compu-

tation directly to the remote cloud.
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Most of existing studies focused on computation offloading of mobile terminals to

one target place: either to a selected edge server or to the remote cloud, assuming that

the execution place has already been chosen statically [4, 8]. However, in real-world

scenario this preselected execution place maybe overloaded and cannot perform new

tasks. Moreover, several edge servers might be available around the mobile terminal.

The selection of to which server the terminal should offload its tasks is a challenging

issue, and have a big impact on the performance of the application and the overall MEC

environment.

In this thesis, we focus on the computation offloading in multi-edge server MEC

environment, where an Internet Service Provider has deployed several servers acting

as edge cloud close to existing access points or base stations. More precisely, we focus

on the selection of best offloading server(s) where we should perform the computation

of the mobile terminals. It is clear, that poor offloading server selection will result in

heavily unbalanced load among the servers. On the other hand, an efficient selection of

the offloading servers can significantly improve the performances of the applications and

thus increases the quality of experience for the end-users. The resulting challenges are:

1) which mobile terminals should offload their computation?

2) which parts of the application should be offloaded?

3) which server (edge/cloud) should perform the computation and of which mobile

terminal?

In addition, the last challenges we were also interested in the impact of application

pattern on the offloading efficiency.

1.3 Contributions

We start by investigating the problem of the minimization the energy consumed by

the mobile terminal. Basically, we design an energy-efficient offloading policy that

decides which users should offload and selects the best edge server where to perform that

offloading computations? In addition, we also investigated the impact of the amount

of offloaded computation on the offloading performances. Finally, because we consider

that all the applications have the same priority and also because they are not sharing

resources at the offloading server, we were able to demonstrate that the best choice is

to offload all the computation to the MEC or perform all of it locally.
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Second, we extended the last proposal by including the remote cloud as a candidate

offloading server, and we propose a two-tier offloading policy. In addition to the

theoretical analysis, we also added a complete experimental approach in order to

evaluate our policy with real Android mobile applications. In this case, we designed

and implemented a computation offloading middleware for Android-based terminals.

This middleware was integrated on both the mobile terminal and the offloading server.

Using this testbed we were able to run multi-users offloading experiments in local edge

and in the cloud, with the aim to compare the observed performances to the placement

decision made by our proposal.

Finally, the last contribution focuses on the offloading of multitasking applications, by

investigating the impact of the application’s architecture on the offloading performances.

We address this issue through a mobile user’s perspective that is seeking to obtain

the execution result of a resource-hungry multitasking application, possibly through

offloading some or all the tasks to a multiple edge servers’. Basically, we decide which

are the tasks that should be offloaded according to the task-dependency graph of the

application.

1.4 Thesis outline

In this chapter, we present the computation offloading new challenges and issues for

MEC environment. The rest of this manuscript is organized as follows:

• Chapter 2 Backgrounds: This chapter provides the backgrounds required in order

to understand our contributions in this thesis.

• Chapter 3: This chapter investigates computation offloading in multi-user multi-

edge server MEC environment. A new offloading policy was introduced in order

to improve the performance of the offloading in such environment.

• Chapter 4; This chapter discusses an extended version of our first offloading policy

to consider a two-tired MEC environment. In addition, it explores the real-world

experiments to prove the validity of our proposal.

• Chapter 5: This chapter explores the computation offloading for multitasking

application in multi-edge server MEC environment and it presents an efficient

offloading policy that consider offloading of graph-based dependent tasks to

multiple edge servers.
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• Conclusion 6: This chapter draws a conclusion of this thesis and presents some

perspectives and future works.

• Appendix A: This appendix provides the proof of the theorems proposed in this

thesis.
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Backgrounds

T his chapter illustrates the main motivations and issues behind the importance

of the MEC paradigm. It then discusses the principal features of this

emerging computing paradigm. Finally, the chapter investigates the major

limitations and constraints essential to the deployment of MEC in an existing network

infrastructure. In addition, the chapter presents the state-of-the-art and the challenges

of computation offloading in MEC. These considerations are viewed as prerequisites for

an understanding of the remaining work presented in this thesis.

Chapter 2 is structured as the following. Section 2.1 discusses the characteristics

of the MEC architecture and the benefits of this new environment for applications. In

section 2.2, we present computation offloading taxonomy of the works in the literature.

Existing works and problems of computation offloading are presented in section 2.3.

The last section 2.4 draws a conclusion about the importance of MEC environment

for computation offloading and the main challenges and issues to address in order to

enhance the performances of the existing solutions.

2.1 Overview of MEC architecture

MEC has emerged as a main paradigm to extends the cloud resource capabilities to the

edge of the network [9, 10]. Several proposals were introduced in order to implement

the MEC in a real-world scenario. Despite the differences in the literature definitions,

MEC has been commonly regarded as a set of small servers located at the APs or Base
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stations, which justify its partitioning as a two-tier cloud [4]. Initially, MEC has been

introduced to reduce the network delay between the mobile terminals and the remote

cloud. It is mainly used in the purpose of computation and data offloading, where

mobile applications and services are performed with low latency near to the end-user.

Consequently, a huge number of computation offloading approaches and policies has

been proposed to improve the mobile terminal performance in terms of completion time

and energy consumption of the applications. Moreover, recent works enrich the MEC

by a lots of features and functionalities such as: mobile web browser acceleration [11],

Healthcare [12], connected vehicles [13, 14] and video streaming & analysis [15].

 AP1

                  AP2

 AP3

 Local network

 Local network  Operator Network Internet

 AP4

 Local network

The remote cloud

Edge server 1

Edge server 2

Edge server 3

Figure 2.1: Overview of the architecture of a real-world scenario MEC environment.

Various architectures of this paradigm has been introduced to study its effect on

real-world deployment [4]. We distinguish three implementations each one defines how

to deploy a MEC servers within existing network infrastructure.

The Fog nodes [16] are heterogeneous edge servers that can be placed anywhere

between the cloud and the end users. The heterogeneity of fog nodes makes this

architecture capable of supporting a variety of devices working on different network and

virtualization implementations.

Alternatively, a cloudlet [8] is a VM based edge server located at the edge of
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an existing network. Cloudlet environment can be two-tiers and benefits from the

cloud capacity. While the cloudlets address the challenges of bandwidth demand and

in-advance streaming using high Internet bandwidth, the fog node has more features for

IoT and small devices. However, the owner edge server in both of cloudlet and fog node

can be anyone.

The third implementation is the standardization designed by ESTI group [17].

Unlike the first two implementations, ESTI group defines algorithms and standards

that describe how to develop, deploy and use the MEC infrastructure. It supposes that

edge servers will be deployed in existing APs or base stations, and that the network’s

operator owned all the edge servers.

In this thesis, we use the ESTI group standardization to consider a real-world

scenario MEC environment, which is a two-tiered cloud as illustrated in Figure 2.1.

First, a set of edge servers deployed at the APs and owned by the network’s operator

that serve end users devices such as connected cars, smartphones, smartwatches, etc.

Each edge server can connect to the remote cloud through the Internet in order to

benefit from the unlimited cloud resources. ESTI standardization of MEC has the

following advantages:

• On-demand self services: It ensures that MEC offers resources to mobile

terminals in few seconds. For some complex applications and services, end-users

could be invited to proceed an anticipated computing resource reservation via a

web-portal.

• Large variety of access technologies: It enables every end-user to access

computing services from various types of devices, either fixed, e.g: personal

computers and workstations, or mobile terminals like smartphones and tablets or

IoT devices.

• Elasticity: Extended from the MCC paradigm, MEC resources are provisioned

and released on-demand to the end-user in an elastic way. Elasticity of resources

consists in enabling the end-user to increase or to decrease the allocated resources

used by their tasks.

• Energy efficiency: The hardware component of mobile terminal such as screen,

processor and network interfaces are more energy demanding, one of the most
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important issue of nowadays mobile terminals is the battery lifetime. Since

manufacturers cannot meet the growing demands, MEC can be a promising

alternative solution by bringing the cloud computing resources to the mobile

terminals’ proximity to enhance its battery lifetime.

• Proximity: By deploying resources near to end-users, MEC has an advantage for

latency-sensitive applications and compute-hungry devices, such as augmented

reality (AR), video analytics, etc.

• Lower Latency: Edge servers are deployed at the nearest location to end users,

isolating network data movement from the core network. Hence, user experience

is accounted high quality with ultra-low latency and high bandwidth.

• Localization awareness: Edge-distributed devices utilize low-level signaling

for information sharing. MEC receives information from edge devices within the

local access network to discover the location of devices.

• Soft state: In the standardization every edge server does not have any hard

state, which means that the server contains only cached states of the VMs of

the applications and servers. It must download the images of this VMs form the

remote cloud or the mobile terminal. In addition, users’ data can be buffered in

edge servers en route to safety in the cloud.

Technically and economically speaking MEC is a very promising extension of the

cloud computing. It can enhance considerably the performances of a huge bunch of

applications and services, and reinforce the quality of the user’s experience. One of

the main advantages to this paradigm is to move several applications from prototyping

to development and large-scale usage such as: mobile gaming and mobile VR/VA

applications. MEC provides high distribution of the computing resources, so end-user

can run where it senses better to him. However, a real-world deployment and usage of

MEC requires to solve challenging issues related to the performances, the applications

architecture and the execution location.

2.2 Taxonomy of computation offloading

The emergence of MEC allows computation offloading of applications from poor-resource

mobile terminals. Many works have investigated this issue, introducing several new
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approaches with different offloading policies and algorithms. In this section, we will

present computation offloading taxonomy of the state-of-the-art on existing approaches.

The taxonomy refers to the techniques, methods and assumptions considered in the

literature.

Taxonomy of Computation Offloading

Performance Performance 
metricsmetrics

Resource Resource 
allocationallocationApplication Application 

architecturearchitecture

MultitaskingMultitasking

Mono-taskMono-task Network BandwithNetwork Bandwith

CPU processingCPU processing

Completion timeCompletion time

Energy consumptionEnergy consumption

Figure 2.2: Taxonomy of computation offloading

As shown in Figure 2.2, the taxonomy of computation offloading has the following

three aspects:

• The application architecture: This aspect defines the architecture of the

application that is supported by the MEC. This architecture determines how the

application will be offloaded, and describes which parts could be offloaded. A

task is a part that can be offloaded to a remote server such as: MCC or MEC.

It can be a module, a class, a thread or even a method of the application. We

recognize two categories of applications supported by a MEC environment: i) the

mono-task application, which has only on task that can be offloaded. And,

ii)the multitasking application that is composed of many tasks, which can

be executed locally or remotely in the MEC. Moreover, the tasks of an application

can be independents, or related to each other through a task-dependency graph.
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• The resource allocation: A MEC application requires two types of resource:

i) for its data volume, and ii) for its computation processing. The data volume

refers to the source code of the application, its inputs and outputs data. An

offloaded application needs network resource to transmit the data volume to the

target server. The network resource corresponds to the network bandwidth, so the

mobile terminal must reserve an amount of the bandwidth to transmit its data to

the MEC servers. In addition, the application requires CPU processing resources

to process its computation in the target server in MEC. Consequently, the mobile

terminal must allocate CPU resources in the target edge server to perform its

offloaded applications.

• The performance metrics: This aspect is related to the performances mea-

surement of the offloading. The metric is the main indicator of the offloading

decision. Literature works introduced two metrics: i) the completion time of

the application that measures the time from when an application start till it

finishes include the transmission time, the processing time and the preparation

time to display or store the output of the application. This metric can also indicate

the quality of experience of the user with the application, obtaining a shorter

completion time means that the user will be very satisfied with the performance

of this application. Consequently, minimizing this metric is important for the

efficiency of the computation offloading. An other metric is : ii) the energy

consumption, which measures the amount of the energy consummated by the

mobile terminal during the performing of the application. It can indicate the

duration of the autonomy of the mobile terminal, and so defines the duration of

usage of the device. A lower energy consumption makes the battery lifetime longer,

the device will be autonomous for long time and the user can use it longer. As

consequence, reducing this metric has a great impact on the usability of the mobile

terminal. These two metrics can be used each alone or as a linear combination.

2.3 State-of-the-art of computation offloading

An offloading work can address one or more dimensions of the computation offloading

defining previously in the Figure 1.2. Depending on the objective of the computation

offloading in MEC, an offloading policy investigates one or more challenging issues and

problems. In Figure 2.3, we distinguish four main issues addressed by the existing
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works. As we can notice, the approaches in Edge server placement and Edge server

Selection categories investigate what to offload and where to offload dimensions. However,

categories of Offloading decision and Application Partitioning study the when to offload

and What to offload and where to offload dimensions.

Figure 2.3: Review of computation offloading problems.

2.3.1 Edge server placement problem

Edge servers placement problem refers to the deployment of the servers in a real

environment. It addresses the issues related to the deployment cost, the effect on exiting

network infrastructure, the efficiency of the deployment for the end-users, and the

maintenance cost of the environment. Mike Jia et al. [18, 19] offloading approach is

one of the first heuristics on edge servers placement in a large-scale MEC environment.

Its main goal is to find the best edge servers placement in a large network, then select

an edge server to perform the computation associated to each AP. The heuristic uses

K-median clustering based on user density, then each AP is statically assigned to

one edge server. Similarly, Hong Yao et al. [20] introduced edge servers placement

and selection algorithms to support heterogeneous multi-user multi-edge server MEC

environment. Longjie Ma et al. [21] introduced a heuristic to find the minimal number

of edge servers that must be placed in an existing network infrastructure in order to

improve the user experience by performing more offloaded tasks. The users associated

to the same AP are assigned to the same edge server. In similar way, Hyun-sun Lee

et al. [22] designed an edge servers deployment heuristic to maximize the network’s

operator profile while satisfying the user’s Quality of Service (QoS). The objective was

to generate more revenue for the network’s operator by deploying the optimal number
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of edge servers within the existing AP. Finally, Yuanzhe Li et al. [23] implemented a

heuristic to deploy a set of edge servers within a local regions of APs. The objective is

to find the optimal placement solution that minimize the access time to the edge server,

and assign each AP to one edge server. Even if these proposals define a near optimal

way to deploy the servers of MEC, there is many problems of the offloading still not

investigated such as: determine the tasks to offload and choose another server when to

preassigned one is overloaded. Consequently, an efficient offloading policy must address

this problems.

2.3.2 Edge server selection problem

Other works try to find a dynamic edge server selection in multi-edge server MEC

environment, where multiple edge servers are available around mobile terminals, in

order to improve the performance of large scale MEC. Anwesha Mukherjee et al. [24,

25] designed a multi-level offloading policy to optimize the energy consumption. The

users offload to the nearest edge server in the first step. According to the amount of

resource available in this edge server, it can perform the tasks or offload them that to

another edge server and so on. Mike Jia et al. [26] introduced a heuristic to balance

the load between the edge server. Its main goal is to migrate some computations from

overloaded edge servers to underloaded edge servers to reduce the execution time and

hence improve the performance of the computation offloading in the MEC. In the same

way, Qiliang Zhu et al. [27] developed a two-tier offloading policy, where the mobile

terminal offloads its computation to a server based on the resources availability. The

policy used an agent that decides to perform the computation in the local edge server

or to offload it to the cloud. Arash Bozorgchenani et al. [28] offloading policy tries to

select a nearby fog node to offload some computation of a busy fog node in order to save

energy consumption and completion time. Similarly, Xile Shen et al. [29] introduced an

offloading policy to select the best edge server to offload to in order to reduce completion

time of task. It predicts the network and system status to select to best edge server.

Finally, Tao Ouyang et al. [30] studied services placement in MEC environment in order

to minimize the completion time of the tasks. The objective is to select the edge server

to perform the tasks, service, of each user using machine learning approach. Even these

works proposed dynamic edge server selection heuristics, the tasks is always offloaded

to the nearest edge server that decides to perform them locally or transmit them the
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other edge servers. Thus, an additional offloading cost is induced; consequently, the

performance of offloading will decrease. To improve the performances of these works,

the edge server that performs each offloaded task will be determined at the offloading

decision time without any additional costs.

2.3.3 Offloading decision problem

As we discuss previously, the offloading decision has a crucial role to determine the

efficiency of the offloading policy. Many recent works investigate the offloading decision

on MCC or MEC environment, they consider a multi-user scenarios where several mobile

terminals are connected to the AP, each has a resource-hungry task and needs to offload

it to the MCC/MEC. The objective is then is to decide which tasks should be offloaded

and which one are performed locally.

The first category of works focuses on multi-user single remote server scenario.

Meng-Hsi et al. [31] is one the first work on multi-user computation offloading in MCC.

The proposed offloading policy determines which computation must be performed in

the cloud and which one must be performed locally, by the mobile terminal. Then, it

allocates the wireless bandwidth to each user to reduce the energy consumption of the

mobile terminal. Xu Chen et al. [32] offloading policy was designed for a single edge

server MEC environment. Each user tries to offload its computation, accordingly with

the available wireless bandwidth to reduce the energy consumption. Another offloading

approach for multi-user was presented by Songtao Guo et al. [33], this work minimizes

an offloading cost defined as a combination of energy consumption and processing time.

The offloading policy decides which computation can be offloaded and allocates the

wireless bandwidth and the processor frequency to each offloaded computation. In

similar way, Keke Gai et al. [34] proposed a scheduler to assign the tasks between the

local mobile terminals and the cloud in order to save energy consumption. Yuyi Mao et

al. [35] presented an offloading policy that tries to offload the computation in multi-user

scenario to an edge server, edge server. The proposed policy allocates the CPU frequency

and the bandwidth, to each user, in order to reduce the energy consumption of the

mobile terminal. Lastly, Feng Wang et al. [36] considered a multi-antenna AP, where

each user tries to offload its computation to the edge server located in the AP. The

objective is to design an energy-efficient offloading policy that decides which user offload,

allocates thee bandwidth and the antenna used by each user that offload. Although
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all these policies improve the performances of the mobile terminal, they rely on an

unlimited capacity of the cloud. Consequently, they need some enhancements to be

applied for the MEC where edge servers have limited computing resources.

The second category of works explores multi-user multiple remote server scenario.

Tuyen X. et al. [37] consider a multi-edge server multi-user MEC. Every user has one

computation task. The main objective is to decide which users should offload and

to which edge server. They focused on partial offloading, where the offloading policy

determines at runtime which computation must be performed locally and which one

must be offloaded to a remote server. Yucen Nan et al. [38, 39], and Chongyu Zhou

et al. [40] proposed computation offloading policies to reduce the energy consumption

of fog nodes. They introduced an offloading policy where the fog nodes try to offload

their computation to the remote cloud. For each fog node, the policy decides which

computation must be offloaded to the remote cloud and which one must be performed

locally by the node. In [39], the offloading policy has been extended to reduce the

completion time of the applications. Similarly, Chongyu Zhou et al. introduced an

online offloading policy. It can select the computations that should be performed by the

nearest edge server in order to minimize a system-wide utility function, related to the

execution time. These policies reduce the energy consumption of the fog server. But,

they consider that the IoT device has a tiny computing capacity that cannot perform

all possible applications. However, the mobile device has a considerable computing

capacity, which can perform complex applications.

2.3.4 Application partitioning problem

The presented approaches assume always that the application is composed of one task,

which can be offloaded or performed locally. However, in real work most application of

mobile terminals are multitasking. For this aime, recent works explore the importance

of computation offloading to improve the performance of the multitasking application.

Dong Huang et al. [41] present an offloading approach in order to minimize the energy

consumption of the user terminal. It decides which tasks should be performed locally

and which ones should be offloaded to the remote cloud. Similarly, Thinh Quang Dinh

et al. [42] propose a joint multitasking offloading and bandwidth allocation in MEC,

with the objective of minimizing the energy consumption of the user terminal. Finally,

Weiwei Chen et al. [43] study the device to device computation offloading, where user



19

terminals can offload their computation to each other. The objective is to offload some

tasks from overloaded terminals to underloaded ones in order to reduce the total energy

consumption. However, all these works assume that the tasks are independent and can

be executed without any constrained relations among them. Unfortunately, this is not

the case for the majority of the applications [44–46].
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Figure 2.4: An example of real-world multitasking mobile application ’video navigation application’ as
shown in [47].

To address this issue, some works consider more realistic multitasking application

and includes the precedence constraints between tasks. One of the most general model

to define dependent multitasking application is to use a Directed Acyclic Graph (DAG)

model. Using this model, we can represent the application as a set of tasks under

precedence constraints and dependencies between tasks. Figure. 2.4 illustrates an

example of a real-world multitasking application for Android terminal as shown in [47].

This application allows the user to navigate a video in order to recognize the people

filmed in the video. We note that it is divided in components, where each one is

composed of a set of dependent tasks. In [48] more real-world applications are presented.

Considering this model, both Dong Huang et al. [41] and Songtao Guo et al. [33] have

proposed a new offloading method that takes into account the dependencies between
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the application’s tasks. In addition, of selecting the tasks to be offloaded, Songtao

Guo et al. [33] compute the bandwidth that should be allocated to each offloaded task.

Moreover, Lei Yang et al. [49] focus only on applications with linear tasks graph and

select the tasks to offload in order to minimize the terminal’s energy consumption.

Finally, Vincenzo De Maio et al. [50] explored the task’s graph partitioning for offloading

to MCC. They focus on the user preferences in the application partitioning to minimize

the terminal’s energy. The main drawback of the last approaches is related to the fact

that a user can offload its tasks to only one edge server. As a result, it is difficult to

maximize the parallelization of tasks to reduce the completion time.

In addition to the works referred above, the literature is also rich of works on

graph-based tasks scheduling on multiprocessing systems, such as Yusuf Özkaya et

al. [51] and Guan Wang et al. [52]. These works focus on the scheduling of multitasking

applications on homogeneous and heterogeneous multiprocessor systems. The main

objective is to minimize the completion time of the application. Unfortunately, even

though these algorithms can be very efficient in a multiprocessor system, they can not

be directly considered in MEC. The processor access delay on multiprocessor systems

can be neglected compared to the time required to offload a task to the edge server.

Indeed, the bandwidth constraints between the mobile terminal and the edge servers

have a great impact on the decision and the location of the offloading.

2.3.5 Computation offloading platforms

In order to have real experiments of computation offloading in MCC/MEC, several

works design offloading platforms for mobile terminals applications. A computation

offloading platform intends to decrease energy consumption and reduce completion time

of the application as well as to minimize the developer interference. Most of the existing

platforms are composed of two entities as illustrated in Figure 2.5. Firstly, the client side

performed by the mobile terminal, its role is to ensure the offloading on the terminal.

For this purpose, it decides which tasks should be offloading and monitors the device

and network conditions to determine when the offloading is beneficial. In addition,

it implements communication protocol to exchange the data with the server side on

the MEC. Secondly, the server side performed by the remote VM in an edge server, it

ensures the processing of the offloaded tasks to the edge server. To this aim, it handles

the execution of the tasks, monitors the network and the edge server information. It
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also implement the communication protocol to communicate with the client side.

Android Terminal

Communication handler

Offloading deciderProfiler

Client

Remote Android VM

Communication handler

Tasks handlerProfiler

NetworkNetwork

Server

app1 app2 app3 app4 app1 app2 app4

Figure 2.5: Overview of Offloading platform.

According to ESTI standardization an offloading platform has at least the following

modules:

• Offloading Decider: is responsible to decide if the offloading is beneficial and

which tasks should be offloaded. It uses the the data collected by Profiler to take

these decisions.

• Task handler: is responsible of the execution of the offloaded tasks to the

edge server. It receives those tasks from mobile terminals, then schedules their

processing. At the end of the execution of each task, this module returns back

the output to appropriate mobile terminal.

• Communication handler: is responsible to ensure the communication between

the client side and the server side of the platform. It implements a network

communication protocol such as Socket or Web Services APi.

• Profiler: is responsible to gather the information needed to evaluate the offload-

ing. It collects three types of information:



22 Chapter 2. Backgrounds

– Application profiler: the number of calls of each method as well as

the number of CPU cycles required for implementation are the important

parameters in the measurement of energy consumption which is calculated

in this section.

– Device profiler: that is related to the measurement of energy consumption

of the mobile terminal on the basis of CPU cycles, Battery usage.

– Network profiler: used to profile the wireless networking environment to

maximize energy savings. Therefore, a network measurement tool is applied

to measure the round trip time and bandwidth.

Eduardo Cuervo et al. [53] implement Maui platform for Windows Phone terminals.

This platform uses interface and annotations programming paradigm [54] to indicate

which task to offload. Byung-Gon Chun et al. [55] propose offloading platform named

Clonecloud, which uses Android Virtual Machine to offload tasks on the remote cloud.

Clonecloud uses threads-based offloading strategy to offload tasks in order to reduce

the completion time of the application. Similarly, Jose Benedetto et al. [46] design

MobiCOP, which is an Android computation offloading platform based on Google

cloud computing platform. Unfortunately, all the platforms described above have been

designed to make the offloading possible but not to choose where to offload. In addition,

they do not consider offloading to a multi-edge server MEC environment. In this thesis,

we developed a new computation offloading platform dedicated to multi-edge server

MEC environment. Using this platform, we set up a real experimentation in order to

validate our offloading policy.

2.3.6 Discussions

The offloading works presented above have been focusing on reducing the offloading cost,

energy consumption or completion time of the application. The offloading is always

done to a predetermined remote server, in MCC or in MEC. The selection of this remote

server is performed statically at deployment time based on end-user’s density on the

network; however, the density of users can change dynamically over time. Moreover, in

MEC environment the computing capacity of every edge server is limited and cannot

perform all the offloaded tasks. To avoid this situation, the most adopted strategy in

the literature was to consider multi-level offloading approaches. Basically, the tasks are

offloaded to the nearest edge server and this edge server offloads some tasks to another
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one or the remote cloud when it is overloaded. Although multi-level offloading policies

can improve the performances of the computation offloading approaches, they engender

an additional overhead. In addition, in the multi-edge server scenario, where many

edge servers are available around the mobile terminal, selecting always the same edge

server is not the best strategy. Therefore, in this thesis, we propose a new offloading

policy to improve the efficiency of computation offloading in MEC. The new policy

must consider many edge servers for which a mobile terminal can offload its tasks, and

compute optimal computation placements to optimize the offloading cost.

Moreover, the multitasking offloading approaches ignore the importance of the

parallel offloading where multiple edge servers are available around the mobile terminal.

As a consequence, in this thesis, we will explore the impact of the task-dependency

graph on the computation offloading.

2.4 Conclusion

In this chapter, we have seen the required background for the understanding of the

benefits, the challenges and the issues of computation offloading in MEC. One main

benefit of the computation offloading in MEC is to enhance and enrich the performance

of poor-resource devices such as mobile terminals. Several works investigated these

issues and introduced many offloading policies and algorithms. These works improve

the performances of the applications in MEC. However, most of this works ignored

the affect of the dynamic edge servers selection and the application architecture on

the performances of the offloading. Moreover, they do not explore the impact of the

performance metrics on the offloading decision and efficiency. In addition, theoretical

results are not consolidated with real experiments.

To deal with this problems, in this thesis, we will focus on computation offloading

in MEC environment. Our works propose efficient offloading policies that answers the

above notes, and provide a new computation offloading study that identifies all the

factors that affect the offloading. In the next chapter, we will start by explored the

importance of the edge server selection and the performance metrics.
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Dynamic edge-server selection in MEC

DM2-ECOP computation

offloading policy

In this chapter, we will study the computation offloading decision and edge servers

selection in multi-user multi-edge server MEC. The main objective is to propose

an efficient offloading policy, which improves the performance of the application

in such an environment. In addition, we will study the effect of the application

on the offloading decision, and so the efficiency of the edge server selection. The

results show that our proposal enhances the performance of the existing offloading

approaches [56].

Abstract

[56] Houssemeddine Mazouzi, Nadjib Achir, and Khaled Boussetta. “DM2-ECOP: An Efficient Computation
Offloading Policy for Multi-user Multi-cloudlet Mobile Edge Computing Environment”. In: ACM Transactions
on Internet Technology. 19.2 (2019), 24:1–24:24. doi: 10.1145/3241666

https://doi.org/10.1145/3241666
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3.1 Introduction

MEC emerges as a main paradigm to reduce the network delay for latency-sensitive

applications, such as: mobile gaming, augmented-reality, face and speech recognition [6,

7], etc. In a real implementation of MEC, many edge servers are deployed with

the existing APs, in order to support the high number of users that need to offload

their computations. In such a scenario, both of MEC computational resources and

wireless bandwidth are shared between the users. Consequently, the performance of

the computation offloading depends strongly on the computing and wireless resources

allocation strategies [31–33].

 Operator Network

Local network Local network Local network

  AP 1  AP 2 AP 3   AP 4

Edge server 1
Edge server 3

users users users users

Edge server 2

Offload to Offload to
Offload to

Figure 3.1: An example of multi-user computation offloading in multi-edge server MEC environment of
4 APs and 3 edge servers.

Recently, several works have investigated computation offloading for MEC envi-

ronment [20, 21, 25]. Most of the proposed offloading policies rely on the bandwidth

allocation, the computing resources allocation is done always in a predetermined edge-

server. This edge-server is assigned statically based on users’ density in the network [25,

26]. Therefore, as shown in Figure 3.1, users within a region will always offload to

the same edge-server. Nevertheless, the dynamic density of users may imbalance the

load between the edge-servers leading to suboptimal MEC capacities usage and longer
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offloading delays. Therefore, to achieve high performance, an offloading policy must

jointly consider bandwidth allocation, computation resource allocation, and edge-server

selection.

In this chapter, we explore computation offloading in multi-user multi-edge server

MEC. Our aim is to provide an efficient offloading policy, which determines the best

offloading decision and edge servers selection for each user with the goal of reducing the

total offloading cost. We present a new computation offloading policy named Distributed

Multi-user Multi-edge server Efficient Computation Offloading Policy (DM2-ECOP),

which targets to improve the performance of offloading in MEC environment. As in

previous works [31–33], we assume that each user executes one and only one application

at a time. However, unlike those works, we define two categories of applications that

can be supported by the MEC: 1) applications that must be performed remotely and

2) applications that can be performed either locally or remotely, accordingly with the

conditions at execution time.

DM2-ECOP formulates our computation offloading problem as a Mixed Binary

Programming, and solves it using a distributed linear relaxation-based heuristic that

follows the Lagrangian decomposition approach. It consists of two offloading decision

levels:

1. The local decision Level: for each AP, the users associated with it are han-

dled by a local offloading manager, in order to solve the offloading subproblem

of this AP. Every subproblem is solved by GBC-SFH, Greedy Best edge server

(Cloudlet) Selection First Heuristic, that determines which users should offload

theirs tasks and select an edge server to each offloaded task.

2. The global decision level: a global offloading manager ensures that the of-

floading solution given by the local decision level complies with the edge servers

resource constraints..

The remainder of the chapter is organized as the following. Section 3.2 presents

the MEC environment infrastructure and system configurations. Section 3.3 details

the computation offloading on multi-user multi-edge server MEC environment problem

and the formulation of it. Our offloading policy is discussed in the section 3.4. The

performances are illustrated, analyzed and discussed in section 3.5. The last section 3.6

draws a conclusion.
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3.2 MEC system description and modeling

In this section, we describe the MEC system model and infrastructure. Then, we present

the communication and computation offloading models. At the end, we introduce

the offloading cost and the objective function of computation offloading problem in

multi-user multi-edge server MEC environment.

AP 1

AP 2

AP 3

Local network

Local network  Operator Network

AP M Local network

Edge server 1

users

users

users

users

Edge server 2

Edge server K

Figure 3.2: An example of multi-user multi-edge server MEC environment composed of M APs and K
edge servers.

3.2.1 MEC infrastructure environment

Let us consider a MEC environment as illustrated in Figure 3.2. The infrastructure is

composed of M APs and K edge servers deployed in the AP, and we suppose that the

number of edge servers is less than the number of APs (K ≤M) [19]. In the following,

we denote the set of APs byM= {1,2, ...,M}, and K = {1,2, ...,K} as the set of the

edge servers. Each edge server k ∈ K has a computational resources characterized by

a fixed capacity, denoted F k, of computing units. A computing unit is expressed in

Giga-CPU Cycles and is defined as the number of CPU cycles per second available to

perform the tasks in that edge server. We denote by ck the number of cycles per second

allocated by server k to perform any given offloaded task. Similarly to [32, 33], we
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consider that ck, ∀k ∈ K, is fixed and does not change during the computation time.

In addition, the computing capacity of any edge server is limited and can perform a

limited number of tasks at a given time. Formally, ∀k ∈ {1,2, ...,K}, F k <∞.

3.2.2 Users requirements

As illustrated in Figure 3.2, the MEC system is observed at a given time. Extension

to continuous observation time is possible by discretizing the time into contiguous

observation intervals. At a given time, we assume that the each AP m is associated

with Nm users. Let consider Nm = {1,2, ...,Nm} as the set of users associated with the

mth AP. Let (m,n) denote the nth user associated with the mth AP. Every user can

communicate with the edge servers through the AP associated with. At the observation

time, each user (m,n) have exactly one application on his mobile terminal [18, 19, 35].

Note that our model can be extended to multiple applications easily by considering that

each application is running by a virtual mobile terminal. The application is characterized

by the following parameters:

1. The computational resource requirement in terms of CPU cycles, denoted by γm,n.

2. The amount of data uploaded to MEC, denoted by upm,n.

3. The amount of data that must be downloaded by the user from MEC at the end

of execution on the MEC, denoted by dwm,n.

4. The maximum tolerated delay according to the Quality of Service (QoS) required

by the application, denoted by tm,n.

3.2.3 Tasks requirements

Inspired from previous works in computation offloading and mobile cloud computing [4,

57], we distinguish between two categories of computation offloading applications. This

classification is based on when the offloading decision is token. The categories are:

1. The static offloading decision task

2. The dynamic offloading decision task

In the first category, the application is partitioned in advance, at the design time,

between: a local part (task) that should always be executed in the mobile and a remote
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part (task) that should always be executed remotely. As illustrated in Figure 3.3, the

task’s source code is already in the edge server, so the mobile terminal needs to transmit

only the input data to that edge server. A typical example of static offloading decision

task is the FLUID application on Android [58] which is used for particle simulations. In

this case, a lightweight client is executed on the mobile terminal, and a more complex

server part must be performed remotely in MEC, since it requires a high performance

GPU computing processors that are not commonly available in mobile terminals.

Remote Server

Mobile Device

Local part

Remote part (task)

Dependencies: data, 
parameters, ...

The task is hosted 
on the remote 

server

Figure 3.3: Illustration of Static offloading decision task category of applications.

In the second category, the application needs to be partitioned at runtime accordingly

with the network and MEC resources availability. Basically, the mobile terminal needs

to decide if it is useful to execute the task on the mobile terminal or to offload all or

part of the task. In this case, as illustrated in Figure 3.4, the mobile terminal must

transmit the source code and the input data of the task when the later is offloaded. An

example of this kind of application is the Linpack benchmarks [59] for Android, which

aims to measure the performances of Android terminals. This application can be either

totally executed on the mobile terminal or partially offloaded to a edge server.

To simplify the analysis, we model both static offloading decision task and dynamic

offloading decision task as a task with an offloading computation ratio noted as am,n.
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Remote Server

Mobile Device

Task transmitted from 
to mobile device

Dependencies: data, 
parameters, ...

Local part Remote part (task)

Remote part (task)

The app computation requirement

Percentage of the 
computation to offload

Figure 3.4: Illustration of Dynamic offloading decision task category of applications.

Basically, am,n denotes the computation ratio of the application that should be executed

remotely. In order to distinguish between static offloading decision task and dynamic

offloading decision task, we consider that for static offloading decision task the offloading

ratio is always equal to 1, which means that the tasks that belong to that category are

always offloaded. The local part is considered as equal to zero since it will not affect the

performances of the system since it should be always executed by the mobile terminal.

On the other hand, for dynamic offloading decision task, this offloading computation

ratio can take any value between 0 and 1 (i.e am,n ∈ [0,1]). In addition, for simplicity,

but without the loss of generality, we also assume that when a task is offloaded with a

given offloading computation ratio, then the amount of data that should be transmitted

are also proportional to that ratio. However, the output of the task, noted as dwm,n,

does not change whatever the value of am,n.

In order to indicate to which category the application of user (m,n) belongs, we

introduce the binary variable ym,n, which is equal 1 for static offloading decision tasks

and 0 for dynamic offloading decision task.

Finally, due to hardware and software constraints required by the task, we assume

that some edge servers cannot perform some tasks. We define another binary variable,
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gkm,n, to indicate if the edge server k can perform the task. Thus gkm,n is equal to 1

when the kth edge server can perform the task of user (m,n), 0 otherwise.

3.2.4 The local processing time

The local processing time of a task depends to its category. For static offload decision

task, the local processing time is equal zero (0), since, by definition, it must always

be offloaded. However, for dynamic offload decision task the processing time relies on

the percentage am,n of the offloaded computation. Thus, the remaining computation

must be performed locally by the user’s mobile terminal. At the observation time, we

assume that the user’s terminal has a local computing capacity, denoted as fm,n, used

to performed the task locally. Consequently, the local processing time, noted by T lm,n,

can be estimated by the ratio between the non offloaded computation and the user’s

terminal capacity. It can be given as follows:

T lm,n = (1− am,n) · γm,n
fm,n

(3.1)

From the above equation, we can notice that the local processing time of a Static

offload decision task is equal to zero (T lm,n = 0) since am,n for static offload decision

task is always equal to 1.

3.2.5 The remote processing time

The remote execution of the task of user (m,n) in the edge server k is composed of

three main steps: i) the upload time, ii) the processing time and iii) the download time.

These three times compose the offloading time. Each one of them can be expressed as

in the following.

• The upload time, denoted by Tup,km,n , is the time required for the edge server k

to receive all the input data of the task (m,n). More precisely, it is the time to

upload the amount of data am,n · upm,n to the edge server k. Tup,km,n can be be

written by the following equation:

Tup,km,n = T txm,n +T bh,km,n +Dkm (3.2)

Where T txm,n is the access time and represents the time to upload the input data to
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the AP according to the available wireless bandwidth. It can be given as follows:

T txm,n = am,n ·
upm,n
wtxm,n

(3.3)

where wtxm,n is the upload wireless bandwidth allocated to the user (m,n) at the

AP m as detailed in section 3.2.6. T bh,km,n is the backhaul time, and it represents

the time to upload the input data between the AP and the target edge server. It

can be expressed aw following:

T bh,km,n = am,n ·
upm,n

W bh,k
m

(3.4)

where W bh,k
m refers to the end to end backhaul bandwidth available between the

AP m and the edge server k. And, Dkm is the latency between the AP m and the

edge server k.

• The processing time, denoted by T e,km,n, is the time required to execute the task

(m,n) in the edge server k. Similar to the local processing time in equation 3.1,

T e,km,n can be expressed by the following equation:

T e,km,n = am,n ·
γm,n
ck

(3.5)

• The download time, denoted by T dw,km , represents the time needed for mobile

terminal to receive the task’s output dwm,n from the edge server k. From above

the assumptions , T k,dwm,n can be written as follows:

T dw,km,n = T rxm,n +T k,bhm,n +Dkm (3.6)

where T rxm,n is the time required to download the task’s output from the AP to

the mobile terminal. It can be expressed as:

T rxm,n = dwm,n
wrxm,n

(3.7)

where wrxm,n is the download bandwidth available between the AP and the mobile

terminal. T k,bhm,n is the time to download the task’s output from the edge server k
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to the AP m through the backhaul network. Similar to T bh,km,n , it is given by:

T k,bhm,n = dwm,n

W bh,k
m

(3.8)

Finlay, the total remote processing time of a task (m,n) on edge server k, denoted

by T r,km,n, can be expressed by the following equation:

T r,km,n = Tup,km,n +T e,km,n +T dw,km,n (3.9)

3.2.6 Shared wireless access bandwidth

Let now focus on the allocated wireless bandwidth at AP for each user. To develop

the expression of the upload and download allocated bandwidth for every user that

offloads its tasks to MEC, we suppose that the AP uses an orthogonal frequency division

multiple-access (OFDMA) technology. Without loss of generality and in a seek of

presentation simplicity, we assume that the bandwidth allocated on the uplink (i.e. from

the user to the AP) is the same to the bandwidth allocated on the downlink (i.e. from

the AP to the user). In addition, we admit that the channel from the user to the AP

follows quasi-static Rayleigh fading. In other words, the channel state is stationary

during the offloading period of the applications of all users.

Let Bm denote the available wireless bandwidth in the AP m. This quantity is

expressed in Hertz (Hz). Since we are considering OFDMA, Bm is divided into Bm
subcarriers. For every user (m,n), we define ptxm,n as the user terminal’s transmission

power, and htxm,n as the power gain. We consider both path loss and shadowing attenua-

tion as in [60]. We model the noise as Additive White Gaussian Noise (AWGN) [60]

random variable with zero mean and variance σ2
m. Thus, the maximum achievable data

rate (in bps) for the uplink can be expressed as follows:

wtxm,n = υm,n ·
Bm
Bm
· log2(1 +

ptxm,n · (htxm,n)2

Γ (btxm,n) · d2
m,n ·σ2

m
) (3.10)

where Γ (BER) represents the SNR margin introduced to meet the desired target bit

error rate (BER) with a QAM constellation, btxm,n is the BER of user (m,n), dm,n is the

distance between the user and the AP, and υm,n the number of subcarriers allocated to
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the user. Γ (BER) can be expressed as follows:

Γ (x) =−2 · log(5x)
3 (3.11)

Similarly, the maximum achievable data rate (in bps) for downlink can be derived

by the following equation:

wrxm,n = υm,n ·
Bm
Bm
· log2(1 +

papm · (hrxm,n)2

Γ (brxm,n) · d2
m,n ·σ2

m
) (3.12)

where papm denotes the transmission power of the AP. hrxm,n indicates the power gain

from the user to the AP when user receives data due to path loss and shadowing

attenuation [60].

Finally, regarding the backhaul network, the bandwidth capacity between any AP

m ∈ M and any edge server k ∈ K, denoted W bh,k
m and W k,bh

m , is supposed to be

symmetric and fixed during the application execution period.

3.2.7 The offloading cost

In this section, we focus on defining the offloading cost model. We define the offloading

cost as a combination of the energy consumption and the execution time of the appli-

cation. In the following, we present both local offloading cost and remote offloading

costs.

• Local offloading cost: According to the last considerations the local offloading

cost is expressed as a combination of the energy consumption and the execution

time of the tasks, as following:

Z lm,n = βm,n ·Elm,n + (1−βm,n) ·T lm,n (3.13)

where Elm,n and T lm,n are respectively the total amount of energy and processing

time of the local part of the application of user (m,n). βm,n is a weighting

parameter between execution time and energy consumption of the user’s offloading

decision. When the battery of user’s mobile terminal is at a low state, the user

needs to reduce the energy consumption then it can set βm,n = 1. On the other

hand, when a delay sensitive task is running the user can set βm,n = 0 to give

more priority to the execution time. To get a more flexible cost model, we allow
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multi-criteria offloading policy by considering energy consumption, execution time

or a combination of both of them.

Considering the energy consumption model, we use the model proposed in [61,

62]. Using this model, we can compute Elm,n as following:

Elm,n = κm,n · (fm,n)3 ·T lm,n (3.14)

where κm,n is the effective switched capacitance, which depends on the chip

architecture and is used to adjust the processor frequency. In the following, we

set κm,n = 10−9 as shown in [61, 62].

• Remote offloading cost: The total amount of energy consumed by the user’s

mobile terminal to perform the task remotely is equal to the energy used when

the terminal turns on the radio in the transmission mode to send the data to

the remote server, plus the energy used when the device turns the radio in idle

mode to wait the task completion, plus the energy used by the device when it

turn again the radio in the reception mode in order to receive the result data from

the remote server. This consumed energy can be expressed as following:

Ee,km,n = ptxm,n ·T txm,n + pidlem,n · (T e,km,n +T bh,km,n +T k,bhm,n + 2 · Dkm) + prxm,n ·T rxm,n (3.15)

where ptxm,n, prxm,n is the power consumption when the radio interface is set to

transmission or reception mode, and pidlem,n is the power consumption in the case

when the radio interface is set to of idle mode [61–63]. Finally, we can define the

remote offloading costs as following:

Ze,km,n = βm,n ·Ee,km,n + (1−βm,n) ·T r,km,n (3.16)

3.3 Computation offloading problem formulation and decomposition

In order to propose an efficient offloading policy, we formulate the problem as an

optimization problem. Then, we use Lagrangian relaxation to decompose the problem

into subproblems and solve each one separately.
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3.3.1 The completion time constraint

Let Tm,n denotes the total completion time of the task of user (m,n). From the above

system description and modeling section, one can see that Tm,n depends on the location

of the execution of the task. Precisely, it depends the the processing time and eventually

the upload and download transmission times in case of offloading. Formally, if the task

of user (m,n) is performed locally, then Tm,n = T lm,n. Otherwise, if the task is offloaded

on the edge server k then Tm,n = T r,km,n.

Hence, to integrate applications’ Quality of Services requirements (QoS), we associate

to each offloadable task a time constraint threshold. Precisely, we define a maximum

completion time threshold, denoted tm,n to any task, ∀(m,n) ∈ (M,Nm). The threshold

is obtained based on the characteristics of the application [32, 53]. It can be determined

as the duration of the submission of the task until receiving the response for an interactive

application [7]. Also, it is a hard constraint for any task, ∀(m,n) ∈ (M,Nm). The

completion time can be expressed as follows:

Tm,n = (1−
K∑
k=1

xkm,n) ·T lm,n +
K∑
k=1

xkm,n · (T r,km,n)

In other words, the optimal offloading solution of the problem must satisfy the

following constraint:

C3 : Tm,n < tm,n (3.17)

As stated before, the purpose of our offloading policy is to determine which tasks

should be offloaded and to which edge server in order to satisfy the completion time

constraint. In addition to this constraint, our purpose is to determine the optimal

offloading policy which minimize the overall energy consumed by the users terminals.

In the following sections we will detail energy consumption models for both, local and

remote tasks processing.

3.3.2 Problem formulation

As introduced earlier, our objective is to propose an efficient offloading policy, and it

decides the users that should offload their tasks, determines the amount of computation

to offload and select an edge server for each user, while minimizing the total offloading

cost. Let us denote by xkm,n the offloading decision for the task of the user (m,n) on the
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edge server k, which mean that xkm,n = 1 if the user (m,n) offloads its task to the edge

server k, 0 otherwise. Given the system description and according to the QoS and edge

servers’ resources capabilities constraints, the problem can be formulated as follows:

Minimize
M∑
m

Nm∑
n

Zm,n

Subject to C3 and :

C1 :
K∑
k=1

xkm,n ≤ 1,∀m ∈M,n ∈Nm

C2 : ym,n−
K∑
k=1

xkm,n ≤ 0,∀m ∈M,n ∈Nm

C4 : xkm,n ≤ gkm,n,∀m ∈M,n ∈Nm,k ∈ K

C5 :
M∑
m

(
Nm∑
n

xkm,n · ck)≤ F k,∀k ∈ K

C6 : xkm,n ∈ {0,1},∀m ∈M,n ∈Nm,k ∈ K

C7 : am,n ∈ [0,1],∀m ∈M,n ∈Nm

C8 : am,n ≥ ym,n,∀m ∈M,n ∈Nm

(3.18)

where Zm,n is the offloading cost of the user’s (m,n) task. Zm,n can be expressed by

the following formula:

Zm,n = (1−
K∑
k=1

xkm,n) · Z lm,n +
K∑
k=1

xkm,n · Ze,km,n (3.19)

As indicated in the problem formulation, our objective is to minimize the total

offloading cost of the users of the network. The first constraint (C1) ensures that each

task is assigned at most to one edge server. Constraints (C2) guarantee that any static

offloading decision task must be assigned to exactly one edge server, and a dynamic

offloading decision task may be assigned to at most one edge server. The next constraint

(C3) is the completion time constraint defined in 3.3.1. The next constraint (C4) ensures

that every offloaded task must be performed by an edge server that meets the hardware

and software required by the task. The constraint C5 shows that it is not possible to

exceed the computing capacity of each edge server. Constraint C6 ensures that any
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decision variable is a binary variable. Finally, constraints (C7) indicates that the ratio

of the offloaded computation must be a real value between 0 and 1. And, (C8) ensures

that each static offloading decision task must always be entirely offloaded.

Theorem 3.1. The problem 3.18 is nonlinear mixed problem with nonlinear objective

function and constraints. It is NP-hard problem.

Proof. Let us consider a special case where the same number of users are associated with

each AP, and all tasks belong to static offloading decision tasks category. Consequently,

all the tasks must be offloaded to the MEC. In addition, the bandwidth allocated to

each user is known in advance, and all the variable am,n = 1 as assumed previously.

Thus, this special case forms a linear binary problem. It can be easily reduced to the

General Assignment Problem (GAP) with assignment restrictions, which is NP-hard

as demonstrated by the work presented in [64]. Since the special case is NP-hard, the

problem 3.18 is too.

Considering the NP-hardness of the offloading optimization problem, it is difficult

to achieve an optimal solution in a reasonable time. In the next subsections, we

propose a simplification version of the problem (3.18) using Lagrangian relaxation and

decomposition approach to get a good feasible solution quickly.

3.3.3 Problem decomposition

To solve the above problem, we need to use a heuristic that reduces its complexity.

For this purpose, we call for the decomposition approach. Decomposing a complex

optimization problem consists of breaking it up into smaller ones, called subproblems,

and solving each of the smaller ones separately. Unfortunately, the constraint C5 is

considered as a complicating constraint [65, 66], since it involves the local variables of

more than one subproblem. Consequently, the decomposition of the problem (3.18) does

not work in one step and the subproblem cannot be solved independently. For these

kinds of complex problems, there are advanced decomposition techniques that solve the

problem by iteratively solving a sequence of subproblems. In this chapter, we employ

one of the most popular decomposition techniques, the Lagrangian relaxation [65, 66].

The idea of the Lagrangian relaxation comes up in the context of using Lagrangian

multipliers to decompose the problem; thus, we introduce the Lagrangian multipliers

λ = [λk,k ∈ K]T on the constraint C5, where λk denotes the price of all the tasks
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performed by the kth edge server. X and A are the set of the offloading decision

variables and the set of the offloading ratio, respectively. The Lagrangian function is

given as follows:

L(X ,A,λ) =
M∑
m

Nm∑
n

Zm,n +
K∑
k

λk
M∑
m

Nm∑
n

(xkm,n · ck−F k)

=
M∑
m

Nm∑
n

Zm,n +
M∑
m

Nm∑
n

K∑
k

λkxkm,n · ck−
K∑
k

F k

=
M∑
m

Nm∑
n

(Zm,n +
K∑
k

λkxkm,n · ck)−
K∑
k

λkF k

The Lagrange dual problem for primal problems (3.18) is then given by:

max
λ

min
X ,A

L(X ,A,λ)

We can see that the Lagrange dual problem is separable into two levels. Level 1 is

the inner minimizing, which consists of M subproblems each one concerns only one AP.

Level 2 is outer maximization, which is the master problem that considers the global

variables and constraint C5.

Focusing on this observation, we introduce a new offloading policy named Distributed

Multi-user Multi-Edge Server Efficient Computation Offloading Policy (DM2-ECOP).

In the following, we describe the proposed computation offloading policy

3.4 DM2-ECOP: Distributed Multi-user Multi-edge server Efficient Computa-

tion Offloading Policy

As introduced in the last section, the Lagrange dual is decomposable intoM subproblems.

Each subproblem tries to find an optimal offloading decision and edge server selection

to the users associated to one AP. Considering this characteristic, we design a new

offloading policy DM2-ECOP. As shown in Figure 3.5, DM2-ECOP has two levels of

decision. The local offloading manager is responsible for the offloading decision

and edge server selection of an AP. It solves the associated subproblem, then sends

the offloading decision and the edge server selection to the centralized decision level.

The MEC computation offloading manager receives the solution of all subproblems,

then it ensures that the obtained offloading solution is feasible and respects all the
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constraints. After, it updates the Lagrangian multipliers and transmits the new values

to every local offloading manager in order to improve the local solutions.

MEC Computation Offloading
manager

Local offloading manager 1 Local offloading manager M

Local Offloading Requests Local Offloading Requests

Lagrangian
multipliers

Lagrangian
multipliers

Subproblem 1:
Offloading Decisions 

and edge server selection

Subproblem M:
Offloading Decisions 

and edge server selection

Figure 3.5: DM2-ECOP offloading policy architecture overview.

3.4.1 Local offloading manager

The local offloading manager tries to solve the subproblem of one AP, in order to decide

which user can offload. Then, it selects the appropriate edge server to perform the task

of each user. According to the previous considerations, we can formulate the subproblem

of a local offloading manager as follows:

Minimize
Nm∑
n

(Zm,n +
K∑
k

λkxkm,n · ck)

Subject to:

constraints C1 - C4 and C6-C8 (3.20)

DM2-ECOP needs to know the bandwidth allocation in order to decide whether a

user should offload its task or not. To overcome this dependency problem, we use a

simple channel allocation model. Let define the offloading capacity of AP m, denoted
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by πm, which represents the number of tasks that are offloaded through AP m ∈M to

an edge server k ∈ K. Obviously, 0 ≤ πm ≤Nm. Formally the offloading capacity can

be defined as the following.

Definition 3.1. the offloading capacity of the AP m is defined as the number of tasks

that have been accepted to being performed by edge servers in the MEC environment.

We note it by πm, and it is given by:

πm =
Nm∑
n

K∑
k

xkm,n

To measure the allocated bandwidth to upload and download the offloaded tasks

at every AP, we suppose that the subcarriers are allocated with equity to all the users

that offload. Consequently, the number of subcarriers allocated to each user is given by:

υm,n = Bm
πm

(3.21)

The strategy of solving the subproblem consists to find the optimal value of the

offloading capacity (πm) that gives the minimal offloading cost. To this aim, we draw

on a heuristic that iterates all the possible values of πm with the help of the constraint

C9, presented below, to the subproblem (3.20).

C9 :
Nm∑
n

K∑
k

xkm,n = πm (3.22)

To reach good offloading solution quickly, the local offloading manager uses a greedy

heuristic to solve the subproblem ( 3.20) maned GBC-SFH, Greedy Best edge Server

Selection First Heuristic. GBC-SFH decides which users should offload, determines the

amount of the tasks’ computation to offload and select the best edge server to perform

each offloaded computations. As illustrated in algorithm 1, GBC-SFH iterates all the

possible values of the offloading capacity, denoted Πm, in an increasing order. Following

the definition 3.1, Πm = {0, ...,Nm}. For every possible value of πm, GBC-SFH allocates

the network bandwidth to each user using equation equations 3.10, 3.12 and 3.21.

The idea of the heuristic is to add the constraint C9, defined in equation 3.22, to the

subproblem in order to ensure that the offloading capacity is exactly equal to πm at each

iteration. Firstly, it starts by assigning each one of the static offloading tasks category
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to the best edge server k. This server is the one that minimizes the Lagrangian cost

Ze,km,n +λk · ck under the constraints C1−C4 and C6−C8.

Algorithm 1 the local offloading manager: pseudo code of GBC-SFH
Input:
1: Πm: Set of offloading capacity ;

Output: output the offloading decisions X , ratios A and cost Z;
2: Sort Πm in increasing order;
3: for πm ∈Πm do
4: allocate bandwidth using equations 3.10, 3.12 and 3.21;
5: offload each static offloading decision task to the edge server k that minimizes

Ze,km,n +λk · ck under constraints C1−C4 and C6−C8;
6: nboffloaded_task = number of static offloading decision tasks;
7: compute ξm,n for every dynamic offloading decision task;
8: Sort dynamic offloading decision tasks in decreasing order of ξm,n ;
9: while nboffloaded_task ≤ πm do

10: Select the edge server k that minimizes Ze,km,n+λk ·ck under constraints C1−C4,
C6−C7 and am,n = 1;

11: Compute the optimal value of am,n using theorem 3.2;
12: if am,n == 0 then
13: there is no offloading. This dynamic Offloading task must be performed

locally;
14: else
15: Offload this dynamic Offloading task to the edge server k;
16: nboffloaded_task + +;
17: end if
18: if (there is no more task) and (nboffloaded_task < πm) then
19: break the while-loop. There is no feasible solution for this value of πm;
20: end if
21: end while
22: all the remaining tasks must be performed locally;
23: update the best offloading cost Z, ratio A and decision X ;
24: end for

For each task of the dynamic offloading decision tasks category, GBC-SFH tries to

select the best edge server and compute the optimal ratio am,n of the computation to

offload. According to the resource availability, GBC-SFH can offload the task or perform

it locally, am,n = 0, by the user’s mobile terminal. Since the wireless bandwidth at the

AP may not be enough to offload all the dynamic offloading decision task, we need to

define an order to determine which dynamic offloading decision task is preferred for the

offloading. To this purpose, we define an offloading priority for each task according to

the following formula:

ξm,n = Z lm,n−min
k∈K

(Ze,km,n); under am,n = 1 (3.23)
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here the offloading priority is the local cost minus the cost when all the computation is

offloaded to the best edge server. The idea here is that where ξm,n is going higher, the

user (m,n) is more preferred to offload its task. Unlike the static offloading decision

tasks, for dynamic offloading decision tasks we need to compute am,n, to recall it defines

the amount of the computation to offload. To this end, GBC-SFH uses two-step method.

In the first step, it selects the best edge server to offload the computation of the user

(m,n). At this step, GBC-SFH chooses the edge server that minimizes the Lagrangian

Cost Ze,km,n + λk · ck under the constraints C1−C4, C6−C7 and am,n = 1. After the

selection of the best edge server, GBC-SFH computes the optimal value of am,n for the

current user. The optimal value of am,n is the solution of the following problem:

min(Ze,km,n +Z lm,n)

Subject to: constraint C7.

(3.24)

the problem 3.24 is a simple problem with one variable. Its optimal solution can be

achieved by derivative sign rules [67]. Theorem 3.2 shows when the minimum of this

problem will be achieved.

Theorem 3.2. Let us define ψm,n and µm,n the upload data-computing ratio of the

dynamic offloading decision task, and the local-remote offloading cost ratio of the user

(m,n), respectively. They are given as follows:

ψm,n = upm,n
γm,n

µm,n =
wtxm,n ·W

bh,k
m

ck · fm,n
×

([βm,n · pidlem,n + 1−βm,n] · fm,n− [βm,n ·κm,n · (fm,n)3 · ck]− [1−βm,n] · ck)
([ptxm,n ·βm,n + 1−βm,n] ·W bh,k

m + [βm,n · pidlem,n + 1−βm,n] ·wtxm,n)

The minimum of the problem 3.24 is achieved when:
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• am,n = 1, if and only if :

ψm,n < µm,n

• am,n = 0, if and only if:

ψm,n > µm,n

• the problem is constant, if and only if :

ψm,n = µm,n

Proof. The proof of the theorem 3.2 is detailed in the appendix A.1.

Using the theorem 3.2, we have three possible scenarios for dynamic offloading

decision tasks: 1) when am,n = 1, the whole computation must be offloaded, 2) when

am,n = 0, in this case there is no offloading and 3) when the problem 3.24 is constant,

than all possible values of am,n gives the same performance. As the computation

offloading is a solution to improve the performance, we choose to not offload, am,n = 0,

when this case occurs. Once the number of the offloading task is equal to the current

offloading capacity (πm), the remaining tasks are assigned to being performed locally

by the user’s mobile terminal.

Consequently, in the worst case, the GBC-SFH iterates Nm in the outer loop when

there is no static offloading decision task. Which means a complexity of Nm · log(Nm) to

sort the tasks, and Nm ·K to assign to task at the inner loop. Thus, the maximum total

number of iterations is N2
m ·K +N2

m · log(Nm). Therefore, the complexity of GBC-SFH

is O(N2
m · log(Nm)), which is fast especially when the number of users associated to

each AP is small [18, 19, 21] (≤ 20).

3.4.2 MEC computation offloading manager

The outer level of the Lagrangian dual problem is the master problem. It ensures a

feasible offloading solution of the primal problem (3.18). Finding the optimal solution

of the Lagrange dual requires an exhaustive search of all solutions’ space and Lagrange

multiplier values, which is difficult to do in general [66]. Consequently, we need
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to adopt a faster approach. To deal with this problem, we propose the subgradient-

based heuristic [65]. The proposed heuristic used in the MEC computation offloading

manager has three steps, as illustrated in the algorithm 2. First, it solves the subproblems

in the local offloading manager by the GBC-SFH for the current Lagrangian multipliers λ.

Next, the MEC computation offloading manager checks if they obtained offloading

solution is feasible. If not, the Lagrangian Adjustment Heuristic (LAH) will be used

the get a feasible solution using local search. The idea of LAH heuristics is to check if

every edge server respects the constraint C5. When a edge server does not respect this

constraint, LAH heuristic reassigns some tasks offloaded from this edge server to other

edge server that respects all constraints.

Algorithm 2 Pseudo code of MEC computation offloading manager
Input:
1: Itmax: maximum number of iterations ;
2: ε: an infinitesimal number;

Output: offloading decision and edge server selection for all users;
3: Initialize λk randomly ;
4: Zmax =−∞ ;
5: while (t < Itmax and θ(t)> ε) do
6: Zm(t) = get the solution of subproblem m from the local offloading manager m,

∀m ∈M;
7: Z(t) = ∑

m∈MZ(t)m−
∑
k∈Kλ

k ·F k ;
8: if (Z(t) > Zmax) then
9: Zfeasible = use heuristic LAH to find a feasible solution ;

10: if (Zfeasible < Z∗) then
11: Z∗ = Zfeasible ;
12: update the best solution of the primal problem ;
13: end if
14: Zmax = Z(t) ;
15: end if
16: update the Lagrange multipliers and η using equations (3.25, 3.26 and 3.27);
17: end while

At the end, the MEC computation offloading manager updates the Lagrange

multipliers by the following formula:

λk(t+ 1) = λk(t) + θ(t) · (
M∑
m

(
Nm∑
n

xkm,n · ck)−F k) (3.25)

where θ(t) is the update step. In this work, we use Held and Karp formula [65, 66] to
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update this step as follows:

θ(t) = η(t) · Z∗−Z(t)∑K
k=1(∑M

m

∑Nm
n xkm,n · ck−F k)2 (3.26)

where η(t) is a decreasing adaptation parameter 0< η(0)≤ 2, Z∗ is the best obtained

solution of the problem (3.18) and Z(t) refers to the current solution of the Lagrangian

Dual. η(t) can be expressed by the following formula:

η(t+ 1) =


ϑ · η(t) if Z(t) did not increase

η(t) otherwise

(3.27)

As suggested in [65, 66] we set the values of ϑ = 0.9 and η(0) = 2. The master

problem repeats these steps until the stop conditions, which are the maximum number

of iterations Itmax and the maximum tolerated error of the update step ε (θ ≤ ε).

3.5 Numerical results analysis

In this section, we evaluate the performance of DM2-ECOP using the characteristics of

realistic system configuration. We use a MEC environment consisting of a metropolitan

area, which is composed of 20 APs forming a ring topology. The delay between any

two APs is 3ms and the delay between every AP and the remote cloud is 100ms [18,

19]. We suppose that four edge servers are equidistantly deployed among the network,

i.e: edge server 1 is collocated with the AP 1, edge servers 2 with the AP 6, edge

server 3 with the AP 11 and edge server 4 with the AP 16. In order to study the

performance of our offloading policy, we consider four edge servers configurations. Table

3.1 illustrates the list of the edge servers configuration considered for our tests. We

consider real configurations, used by the public cloud provider such as: Amazon AWS

and Microsoft Azure [21, 32, 33], to simulate the behavior of DM2-ECOP policy for

real-world scenarios. The local computing capability of each user was randomly chosen

from fm,n ∈ [0.8,1,1.2] Giga cycles/s.

Similar to [19], we assume that the number of users connected to every AP, Nm is

not greater than 20. Precisely, Nm takes values from {5,10,15,20}. Each user runs one

application from the table 3.3, the first three applications are static offloading decision

tasks, the others are dynamic offloading decision tasks [57]. The Table 3.2 details the
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Table 3.1: List of the edge servers’ configurations used for the tests.

Configuration
Computing capacity F k and allocation ck in Giga CPU cycles/s
edge server 1 edge server 2 edge server 3 edge server 4
c1 F 1 c2 F 2 c3 F 3 c4 F 4

configuration 1 10 1000 10 1000 10 1000 10 1000
configuration 2 15 1000 10 1000 15 1000 10 1000
configuration 3 10 500 10 500 10 1500 10 1500
configuration 4 15 500 10 500 15 1500 10 1500

wireless network parameter settings as presented in [37, 42, 43, 61]. For the backhaul

network, we use the parameters presented in [68, 69]. Regarding the backhaul network,

we use the parameters presented in [70].

Table 3.2: The parameter setting of the network interface

Parameter Value Parameter Value
Bm 50 Mhz brxm,n = btxm,n 10−3

Bm 256 dm,n 10
σ2
m 5× 10−5 ptxm,n 1.28 Watts
prxm,n 1.18 Watts pidlem,n 0.1 Watts
papm 10 Watts htxm,n = hrxm,n 0.1

The performances of DM2-ECOP are compared to two offloading policies from the

literature:

• Nearest edge server Offloading (NCO) [18, 19]: in which each AP is associated to

the nearest edge server. So, all the users connected to this AP offload their tasks

to the same edge server. When a edge server is overloaded, the tasks are migrated

to another edge server.

• Full Cloud Offloading (FCO) [31, 32]: in this case the users offload their tasks to

the remote cloud. To make sense of the performances comparison of the offloading

policy DM2-ECOP, NCO and FCO, we assume that the computing capacity

allocated to perform each offloaded task in the remote cloud is 10 Giga cycles/s.

In the following, the default edge servers configuration is the first configuration

(configuration 1) and the density of users at each AP is considered as the same, i.e.,

the same number of users at each AP. Furthermore, the stop criteria of the MEC

computation offloading manager for DM2-ECOP are Itmax = 100 for the maximal

number of iterations, and ε= 10−20 for the maximum tolerated error of update steps.
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Table 3.3: The characteristic of the real-world applications used for our tests.

Application γm,n upm,n dwm,n tm,n
(Giga CPU cycles) (Kilobyte) (Byte) (Second)

static offloading decision tasks
FACE 12.3 62 60 5
SPEECH 15 243 50 5.1
OBJECT 44.6 73 50 13

dynamic offloading decision tasks
Linpack 50 10240 120 62.5
CPUBENCH 3.36 80 80 4.21
PI BENCH 130 10240 200 163

3.5.1 Convergence of DM2-ECOP

To evaluate the performance of DM2-ECOP and its convergence to a feasible solution,

table 3.4 depicts the required number of iterations to get a feasible solution and the

last value of update steps (θ). As expected, the required number of iterations increase

as the number of users in the network increases. Moreover, the update step converges

to the maximum tolerated error ε with a few number of iterations, this convergence

changes while the number of users increases. Thanks to Held and Karp formula used in

our work to update the Lagrange update step, for the rapid convergence of DM2-ECOP

offloading policy.

Table 3.4: The number of iterations and update step taken by DM2-ECOP to converge to a feasible
solution.

number of users number of iterations update step θ
100 15 0.0
200 20 9.12× 10−22

300 29 5.09× 10−21

400 43 4.46× 10−21

3.5.2 Offloading performance comparison

Figures 3.6 and 3.7 plot the offloading performances of DM2-ECOP, NCO and FCO,

if we set the cost parameter β = 1. We also distinguish between the costs related to the

network access, network backhaul and processing. We note that DM2-ECOP reduces

the total offloading cost compared to NCO and FCO. More precisely, we can see that

the access cost of DM2-ECOP is the lowest, but the processing cost is the highest.

This is due to the bandwidth allocation heuristic used by DM2-ECOP, which tries to
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maximize the bandwidth allocated to each user by minimizing the offloading capacity

(π) of each AP. So, less users can offload their tasks to the mobile edge computing with

DM2-ECOP compared to NCO and FCO. However, where the wireless bandwidth

is enough to offload all tasks, DM2-ECOP and NCO are equivalent, as shown in the

figure where 100 users are in the network.

Figure 3.6: Total offloading cost comparison of offloading policies DM2-ECOP, NCO and FCO where
the cost parameter βm,n = 1.

To understand the effect of the users density on the offloading performances, we

investigate in the Figure 3.8 the offloading gain of DM2-ECOP compared to NCO under

different users density. We consider four scenarios where the topology is divided into

two regions each one contains 10 APs. In scenario 1, the regions have the same user

density. In scenario 2, users density in region 1 is twice the user density in region 2. In

scenario 3, users density in region 1 is three times the user density in region 2. Finally,

in scenario 4, users density in region 1 is four times the user density in region 2. In

Figure3.8, we note that the offloading gain of DM2-ECOP compared to NCO goes up

when to users density goes high. For example, where 200 users are in the network,

the gain is 6.1% for scenario 1, and 10.5% for scenario 4. This is because the edge

server selection in NCO is static, so this policy needs to migrate some tasks where
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Figure 3.7: The number of users that offload for the three policies DM2-ECOP, NCO and FCO where
the cost parameter βm,n = 1.

the edge server is overloaded. Consequently, it adds an extra offloading cost. However,

DM2-ECOP tries to find the best edge server selections dynamically at the offloading

decision according to the system and network resource availability.

3.5.3 Impact of the cost parameter β on the offloading performance

In Figure 3.9 studies the effect of the offloading cost parameter β on the performance

of the policies DM2-ECOP, NCO and FCO. As we can see in the figure, the energy

consumption of DM2-ECOP is the better than NCO and FCO for all possible values

of β. Indeed, even if the we set β to 0, which means that we give a complete priority to

the tasks completion time, DM2-ECOP obtains better performances. Moreover, when

we increase the value of β, the obtained performances are even better. Consequently,

DM2-ECOP achieves better performance, in terms of energy consumption, whatever

the offloading cost: energy consumption, completion time or a combination of energy

and time. This is because the dynamic edge server selection adopted in DM2-ECOP.

In Figure 3.10 we investigate the effect of β on the performance in terms of completion

time.We note that the completion time of DM2-ECOP and NCO are better than FCO,

this is because the edge servers are close to users. Moreover, The completion time of
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Figure 3.8: Comparison of DM2-ECOP and NCO for different users density in the network

Figure 3.9: Total energy consumption comparison for policies DM2-ECOP, NCO and FCO over the
parameter β, where 200 users are in the mobile edge computing environment.
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DM2-ECOP is the lowest where β = 0. However, NCO achieves better completion time

than DM2-ECOP where β closes to 1. Consequently, NCO has the best performance

in terms of completion time. In fact, when β is close to 1, the energy consumption

becomes more important than the completion time in the expression of the offloading

cost. DM2-ECOP reduces the offloading cost by offloading less tasks to the MEC, as

shown in 3.7, in order to minimize the energy consummated by the wireless access level.

As a result, more tasks are executed locally, which increase the completion time.

Figure 3.10: Total completion time comparison for policies DM2-ECOP, NCO and FCO over the
parameter β, where 200 users are in the mobile edge computing environment.

3.5.4 Impact of the edge servers configuration

In the following, we study the performance of the offloading policies over heterogeneous

edge servers configurations. In Figures 3.11 and 3.12, we investigate the performance

of the offloading policies DM2-ECOP and NCO over four edge servers configurations

presented at the beginning or this section. We observe that the DM2-ECOP and

NCO are equivalent when the edge servers have exactly the same configurations, such

as configuration 1. However, where the computing resources allocated to each task

are heterogeneous, which corresponds to more realistic scenario, DM2-ECOP achieves

better performance in terms of energy consumption and completion time. This can
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be explained by the fact that DM2-ECOP offloads to the best edge server, but NCO

offloads to the nearest edge server. We also can notice that DM2-ECOP gets better

performance for configuration 2 than configuration 4, even if the resource allocated for

each task are the same in the two configurations. This is because of the total computing

capacity in configuration 4 is not homogeneous. Thus, NCO needs to migrate some

tasks from edge servers 1 and 2 to edge servers 3 and 4. To summarize, these results

show that DM2-ECOP can achieve a good offloading performance under different edge

server configuration.

Figure 3.11: Total energy consumption of policies over different edge servers configurations, where β = 1
and 200 users are in the mobile edge computing environment.

3.5.5 Impact of the applications characteristics

As shown previously in our analytical model, the characteristics of the application have

a crucial role in the efficiency of the offloading performance. To understand this role,

we investigate the impact of the application on the offloading cost and on the amount

of the offloaded computation, am,n.

Figure 3.13 and 3.14 depict the performances of the offloading policies for each

application under the edge servers configuration 3. We note that for static offloading

decision tasks, DM2-ECOP has better energy consumption and completion time followed
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Figure 3.12: Total completion time of policies over different edge servers configurations, where β = 1
and 200 users are in the mobile edge computing environment.

Figure 3.13: Total energy consumption of policies for each application for the configuration 3, where
β = 1 and 200 users are in MEC.
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Figure 3.14: total completion time of policies for each application for the configuration 3, where β = 1
and 200 users are in MEC.

by NCO. Indeed, the static offloading decision tasks must be offloaded, DM2-ECOP tries

to find the best edge server selection at the decision time. However, FCO offloads to the

nearest edge server, which induces an additional offloading cost since some tasks must

be migrated to other edge servers. On the other hand, for the dynamic offloading decision

tasks, we note that DM2-ECOP has the lowest energy consumption and completion

time where the application does not need to upload lots of data to the edge server,

such as CPUBENCH. However, where the application requires lots of data, such as

LINPACK and PIBENCH, the completion time of NCO and FCO are better than that

of DM2-ECOP. This is because of DM2-ECOP tries to perform the application locally,

when it uploads a lot of data in order to minimize the access cost of the users.

Finally, to analyze the performance of DM2-ECOP with the dynamic offloading

decision tasks, we study the effect of the number of users and the ratio between the

remote and the local processing capacity on the offloading decision. In Figure 3.15,

we plot the effect of the number of users per AP and thus the amount of bandwidth

allocated to each user on the offloading decision. The red area corresponds to the case

where we execute a task only locally (i.e. am,n = 0) and the green area corresponds to



57

the case where a task is totally offloaded (i.e. am,n = 1). In addition to the offloading

decision, we also plot the upload data-computing ratio ψm,n for three dynamic offloading

decision tasks, namely Linpack, CPUBENCH and PI BENCH. As we can see, the three

applications do not behave the same way when we increase the number of users per

AP. Indeed, Linpack is the most sensitive application and stop offloading when the

number of users is greater than 14. On the other hand, CPUBENCH is the less sensitive

application since it stops offloading when the number of users reaches 37. This is due to

the fact that Linpack sends much more data when it offload compared to CPUBENCH.
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Figure 3.15: The effect of the number of user connected to AP on the application partition decision,
where the local cpu power of user terminal is fm,n = 1 Giga Cycles.

In Figure 3.16, we investigate the impact of the ratio between the local and the

remote processing capacity on the offloading decision. As in the Figure 3.15, we also

plot the upload data-computing ratio ψm,n for Linpack, CPUBENCH and PI BENCH.

As we can see, more the remote processing capacity is important compared to the

local processing capacity more the decision is to offload task. However, as in last

figure, Linpack is less sensitive to that increase compared to CPUBENCH and PI

BENCH. Indeed, since the total amount of data that should be offloaded for Linpack is
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important, the offloading becomes beneficial only if the remote processing capability is

very important in comparison of the local processing capability.
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Figure 3.16: The effect of the allocation computing resource ck on the application partition decision,
where the local cpu power of user terminal is fm,n = 1 Giga Cycles.

3.6 Conclusion

In this chapter, we explored the computation offloading in multi-user multi-edge server

MEC environment. Our main objective was to understand the effect of the edge server

selection and application characteristics on the performance of the offloading. A new

computation offloading approach was designed to enhance the existing approaches.

Our proposed approach, DM2-ECOP, implements an offloading policy which decides

the users that should offload and selects an edge server to perform the tasks of each

user that offload. In addition, DM2-ECOP takes into consideration two categories of

applications, applications that must be performed remotely in MEC and applications

that can be performed both locally and remotely. For the latter category of applications,

DM2-ECOP must compute the amount of computation that should be offloaded to

MEC. The obtained numerical results show performance improvements in terms of the
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offloading cost compared to existing offloading policies under different scenarios and

edge servers configurations. Moreover, because we consider that all the tasks have the

same priority and that they are not sharing resources (same CPU) at the edge server,

we demonstrate that the best choice is to offload all the computation to the MEC or

perform all of it locally.

Even though that DM2-ECOP increases the performance of the application, it

considers only the edge servers available in the local network. Thus, in a real-world

MEC where the edge servers communicate with the remote cloud, DM2-ECOP does not

capitalize on the remote cloud unlimited resources. The MEC’s infrastructure may be

misused in such a scenario. In the next chapter, we extends our approach to include

the remote cloud in the offloading decision.
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Extension of D2M-ECOP to Two-tier MEC

ECESO offloading approach

This chapter investigates the computation offloading over two tiered MEC en-

vironment. It extends the work presented in chapter 3 by adding a second tier

to the MEC, which is the remote cloud. The objective is to minimize the total

energy consumed by the users and understand the effect of the remote cloud on the

computation offloading in MEC. Moreover, it presents an experimental proof of the

importance of our new offloading approach. The numerical and experimental results

show that our proposal achieves better performance than existing solutions [71,

72].
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4.1 Introduction

In the chapter 3, we highlight the edge server selection and computation offloading

decision in multi-user multi-edge server MEC environment. The proposed offloading

policy, D2M-ECOP, improves the performance in terms of both energy consumption

and completion time of the application. However, it is designed for a MEC environment

composed only of edge servers, which is not always a realistic scenario. In fact, a

real-word MEC environment is built on two-tier architecture [73, 74], where the edge

servers provide limited computing capabilities with ultra-low latency to the end user

while the remote cloud offers infinite computing resources with a considerable internet

latency [71, 73, 74].

The difference in the computational capabilities configuration makes the offloading

decision more challenging in such environment. Indeed, the decision whether a user

offloads its computations to an edge server or to the remote cloud can highly impact

the performance of the MEC [71]. Exactly, the placement of the users’ computation on

the MEC environment has a crucial role in the efficiency of the offloading performance

in two-tier MEC environment [71, 73, 74]. To deal with this issue, we introduce, in this

chapter, a new version of D2M-ECOP offloading policy, that we named Efficient edge

server (Cloudlet) Selection Offloading policy, ECESO. ECESO extends D2M-ECOP to

consider two-tier MEC environment. Basically, ECESO assigns each user to the best

server, edge server or the remote cloud, in the MEC in order the reduce the energy

consumption of all users, according to the network and system resources availability.

Besides that D2M-ECOP approach achieves good performances in numerical results,

it will be important to consolidate our conclusion via real-world experiments. Thus, in

this chapter, we explore the computation offloading for real-systems settings in order to

evaluate our proposal. We designed and implemented a new computation offloading

middleware for Android-based terminals for the purpose to have experiments with real

Android applications. This middleware was integrated on both the mobile terminal and

the offloading server. We integrated our offloading policy to the mobile terminal via a

client offloading middleware in order to decide if the task should be executed locally or

offloaded to the edge/remote cloud. In the remote virtual machine, we also integrated a

server offloading middleware to ensure that the offloaded tasks are correctly executed.

Using this testbed, we were able to run multi-users offloading experiments in local edge

and in the cloud, with the aim to compare the observed performances to the placement
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decision made by our proposals.

The chapter is structured as the following. Section 4.2 presents the MEC environment

infrastructure and offloading system configurations. Section 4.3 illustrates the offloading

for policy two-tier MEC. The performance and evaluation of ECESO is depicted,

analyzed and discussed in section 4.4. Section 4.5 details the computation offloading

middleware developed in order to evaluate ECESO with real-world experiments, then

it analyzes and discusses the results of the experiments. The last section 4.7 draws

a conclusion on the importance of ECESO offloading approach in the two-tier MEC

environment.

4.2 Two-tier MEC environment description and modeling

As in the chapter 3, we consider the MEC environment illustrated in Figure 4.1. The

MEC’s infrastructure is composed of M APs, K deployed edge servers and one remote

cloud. In the remainder, we will refer to the remote cloud as the (K+1)th server. As in

the previous chapter, letM denote the set of APs. The remote cloud and the edge servers

constitute a set, denoted K, of servers. All these servers offer computation resources

to perform offloaded tasks. In each server k ∈ K, the resources are characterized by a

fixed capacity, denoted F k, of computational resource units. A computational resource

unit is expressed in Ghz and is defined as the number of cycles per second allocated to

perform a task. We denote by ck the number of cycles per second allocated by server k

to perform any given offloaded task. Similarly to [32, 33], we consider that ck, ∀k ∈ K,

is fixed and does not change during the computation. We also assume that the number

of computation resources units, F k, is limited in edge servers while it is infinite in the

remote cloud. Formally, ∀k ∈ {1,2, ...,K}, F k� FK+1 =∞.

For the rest of the MEC characteristics, we use the same as in chapter 3. In addition,

due to hardware and software constraints required by the task, we assume that some

edge servers cannot perform some tasks. In this case, we define another binary variable,

gkm,n, to indicate if the edge server k can perform the task (m,n). Thus gkm,n is equal to

1 when the kth edge server can perform the task of user (m,n), 0 otherwise. Without

lose of generality, we assume that the remote cloud can perform all the tasks whatever

the type of the task. So, gK+1
m,n = 1,∀(m,n).
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Figure 4.1: An overview of the two-tier MEC environment.

4.3 Problem formulation and solution

To solve the computation offloading problem, we extend our offloading approach proposed

in the chapter 3. The new version, maned ECESO, takes on consideration the available

edge servers around uses, and the unlimited computing resource of the remote cloud.

It tries to offload more tasks in order to reduce the total energy consumption of the

users’ terminals. Basically, ECESO uses the offloading policy presented in section 3.4 of

chapter 3 with some modifications for the remote cloud. In the local offloading manager,

ECESO uses the heuristic GBC-SFH, illustrated in Algorithm 1, by considering only the

edge server. At this stage the edge servers have more importance than the remote cloud.

In MEC Computation Offloading manager algorithm, ECESO uses the heuristic LAH

presented in Algorithm 3. This heuristic insures that the obtained offloading solution

is a feasible one that satisfies the constraint C5 of the optimization problem 3.18. It

starts by checking that all the edge servers are satisfying the constraint. If not, LAH

reassigns the overloaded tasks in the edge server to the best server, edge server or the

remote cloud, which gives the minimum energy consumption of the task. In a second

step, LAH checks if the offloaded to the remote cloud is better for each task. If so, the
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task will be reassigned to the remote cloud. The remaining of the algorithm is the same

as DM2-ECOP.

Algorithm 3 Pseudo code of LAH heuristic for ECESO approach
Input:
1: The solutions of subproblem m,∀m ∈M;

Output: The cost of a feasible offloading solution Z;
2: F kallocated = ∑n∈Nm

m∈M (xkm,n · ck),∀k ∈ K;
3: stop= False;
4: while (!stop) do
5: if (for each edge server k F kallocated < F k) then
6: stop= True;
7: else
8: Select the edge server k that has F kallocated < F k;
9: Compute the priority ξm,n of each task (m,n) offloaded to edge server k using

equation 3.23;
10: Sort the tasks in increasing order of ξm,n;
11: while (F kallocated > F k) do
12: (m,n)−→ the task with the lowest ξm,n;
13: Reassign the task (m,n) to the to the server k′ ∈ K− k that satisfies the

constraint C5 of problem 3.18;
14: Update F k

′

allocated and F kallocated ;
15: end while
16: end if
17: end while
18: If a task (m,n) is offloaded to MEC, reassign it to the remote cloud if the energy

consumption will be improved and constraint C3 defined in 3.17 is respected;

4.4 Numerical results and analysis

This section focuses on the evaluation of the performance of ECESO offloading policy

by evaluating several performance metrics, e.g. the average number of offloaded tasks,

and the energy saving under different settings. The MEC environment consists of a

metropolitan area is composed of 20 APs, four edge servers already deployed in the

network and one remote cloud. In addition, two network typologies are considered. The

ring topology, in which the edge servers are equidistantly deployed in the network, i.e:

edge server 1 is collocated with the AP 1, edge servers 2 with the AP 6, edge server 3

with the AP 11 and edge server 4 with the AP 16. The second topology is generated

by GT-ITM [75] tool, where the edge servers are randomly deployed. In order to get a

better understanding of the offloading policies performances, we consider real mobile

applications shown in Table 3.3 of chapter 3. In addition, we consider two edge servers

configurations. In the first configuration, each edge server has a computing capacity
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of 1000 Giga cycles/s, and allocates 10 Giga cycles to perform every offloaded task

(F k = 1000 and ck = 10). In the second configuration, we consider heterogeneous edge

servers, where edge servers 1 and 2 have a computing capacity of 500 Giga cycles/s and

edge servers 3 and 4 have a computing capacity of 1500 Giga cycles/s. Similar to the

previews chapter, we use the network configurations illustrated in Table 3.2. Moreover,

as in [19], we assume a homogeneous users distribution in the network.

In order to evaluate the performance of ECESO approach, we compare its results

with existing approaches that consider two-tier MEC in computation offloading. They

can be detailed as follows:

• DOTA [19, 21]: In DOTA, each AP is associated with the nearest edge server. In

this case, all users connected to this AP offload their tasks to the same edge server.

When a edge server is overloaded, the tasks are migrated to the remote cloud.

• CBL [18, 26]: Using CBL we also associate each AP to the nearest edge server.

Thus, all users connected to that AP have to offload their tasks into that same

edge server. However, unlike DOTA, when the edge server is overloaded, the tasks

are migrated to another edge server.

• FCO [31, 32]: In this policy, all users offload their tasks to the remote cloud.

In order to compare these offloading policies, we also define comparison metrics

depicting the gain of a given offloading policy P . This gain represents the benefit of the

offloading policy P compared to case where the task is offloaded to the cloud (i.e. FCO

policy). We formulate the gain as following:

gain of P = 100 ∗ (cost of FCO− cost of P)
cost of FCO

4.4.1 Effect of edge server configuration

In Figure 4.2, we plot the gain of ECESO compared to the gain of DOTA and CBL,

when considering a network topology following the configuration 1 with homogeneous

edge servers characteristics. As expected, we can observe that the gain decreases when

the number of users increases. This is manly due to the fact that the backhaul cost

increases when the number of offloaded tasks. We can also observe that the performance

of ECESO, DOTA and CBL are almost equivalent, except when the number of users
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exceeds 300, where we notice that our approach is slightly better. This is due to the fact

that ECESO tries to maximize the bandwidth allocated to each user, and it offloads in

priority the tasks with the greatest impact on the cost. Consequently, less tasks are

offloading compared to the other offloading policies.
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Figure 4.2: Offloading gain over homogeneous edge servers configuration.

In Figure 4.3, we compare the performances of ECESO, BCL and DOTA in the case

where heterogeneous edge servers are deployed for the ring topology. As we can see,

when few number of users are considered (< 100), the performances of the three policies

are equivalent. However, when the number of users increases ECESO outperforms BCL

and DOTA, for both of network topologies’ configurations. This is due to the fact

that, when we increase the number of users both edge servers 1 and 2 cannot support

all the offloaded tasks. In this case, DOTA policy start to migrate the overloaded

tasks to the remote cloud, which adds more offloading costs. On the other hand, CBL

tries to migrate the overloaded tasks from edge servers 1 and 2 to edge servers 3 and

4, and also add some additional offloading cost but less than DOTA. However, using

ECESO, for each task, we can select the best edge server at the offloading decisions step,

which reduce the additional offloading cost due to the migration of tasks introduced in

DOTA and CBL. Finally, we notice that the network topology affects the performance
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of ECESO more than DOTA and CBL. For example, the gain for ECESO is 8.5,8.03%

for ring topology and GT-ITM topology consequently. However, it is 7.5,7.34% for

CBL, and 5.92,5.81% for DOTA. This is due to the fact that ECESO uses the topology

to select the edge servers. Nevertheless, DOTA and CBL assign statically the AP to

the edge server.
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Figure 4.3: Offloading gain over heterogeneous edge servers and network topology.

4.4.2 Edge servers Vs remote Cloud computing resources

Now, we investigate how each application behaves according to the amount of resources

allocated to perform it in the edge servers and in the cloud. Precisely, we fix the

computing capacity allocated to each user in the edge servers to 10 Giga cycles/s and

we vary this capacity between 10 to 20 Giga cycles/s in the cloud. In Figure 4.4, we

illustrate the behavior of static offloading decision tasks FACE, SPEECH, and OBJECT.

As we can see, all of them are always offloaded to the edge servers or the cloud have

the same computation computing 10 Giga cycles/s. However, where the remote cloud

has greater computing capacity than edge servers (ccloud > cedgeservers) all the tasks are

offloaded to the remote cloud.

Figures 4.5, 4.6 and 4.7 illustrate the performances of the ECESO policy for dynamic
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Figure 4.4: The location of the execution of tasks under different users and cloud computing capacity
(ccloud in Giga cycles/s), case of static offloading decision apps.

offloading decision tasks, CPUBENCH, PIBENCH and LINPACK, respectively. The

ratio of the offloading tasks decreases when the number of the users in the network

increases, for example, for CPUBENCH application 100% of tasks are offloaded where

the number of users is not greater than 200, but only 30% are offloaded where 1000 users

are in the network. This decreasing of the ratio of offloaded tasks is due to the wireless

bandwidth in the AP. We also note that the ratio of the offloaded tasks depends on the

application characteristics when the applications require a lot of computing resources

and transmit a huge amount of data (Linpack and PIBENCH) the ratio of offloaded

tasks is lower.

As a conclusion, offloading tasks on the edge server or the remote cloud depends

on many factors, in the figures we noticed that the computing resource allocation

in the remote cloud, the computing resource allocation in the edge servers and the

characteristics of the application affect directly the placement of the offloaded tasks.
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Figure 4.5: The location of the execution of tasks under different users and cloud computing capacity
(ccloud in Giga cycles/s), case of CPUBENCH.
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Figure 4.6: The location of the execution of tasks under different users and cloud computing capacity
(ccloud in Giga cycles/s), case of PIBENCH.
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Figure 4.7: The location of the execution of tasks under different users and cloud computing capacity
(ccloud in Giga cycles/s), case of LINPACK.

4.5 Experimental results and analysis

In addition to the numerical evaluation, we also need to evaluate the behavior of our

offloading policy using real mobile applications. In the following, we describe the tested

environment that we consider as well as our proposed offloading middleware.

4.5.1 Platform description

As illustrated in Figure 4.8, our experiments platform regroups several hardware and

software components, as described in the following.

4.5.1.1 Mobile terminal

Even if our testbed can be used with real Android smartphones, we decided to consider an

Raspberry Pi 3 device. The main idea is to have a controlled experimental environment,

since we need to measure the energy consumed by the device and also to control the

bandwidth for the mobile terminal. We used a Raspberry Pi 3 Model B (RPi3) powered

by a Quad Core Broadcom BCM2837 64bit ARMv8 processor at 1.2 GHz and 1GB

LPDDR2 of RAM at 900 MHz. On this device, we installed Android 8 "Orio" as

operating system and also our middleware, described in section 4.5.1.3. Finally, we

developed and implemented three dynamic offloading decision tasks applications: Linpack,
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Figure 4.8: An Overview of the testbed environment.

CPUBENCH and PI BENCH. Each of these bench applications was implemented as a

fragment within a common Java Android application. The size of the APK source file is

5427.2 Kilobytes.

4.5.1.2 Offloading server

The offloading server can be an edge server or an EC2 instance in AWS cloud provider.

We used a desktop PC powered by an Intel I7-6700 8 cores CPU at 3.40 GHz and

16GB DDR3 of RAM with an Ubuntu 18.04.2 LTS as operating system as the edge

server. In order to run native Android applications, we also installed, using VirtualBox,

a virtual machine with Android-x86 distribution as operating system. Android-x86 [76]

is an open source project to port Android on x86 platform. For the remote cloud, we

consider AWS Amazon Cloud using the EC2 t2.medium instance. This instance is

powered by high-frequency Intel Xeon processors with 2 vCPU and a memory of 4 GB.

In both AWS EC2 instance and the the local virtual machine, we install the server

eRAM-OS of offloading middleware.
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4.5.1.3 Computation offloading middleware

We develop a new computation offloading middleware named eRAM, Elastic Remote task

Acceleration for resource-constrained Mobile terminals, for Android-based applications

using java programming language. This middleware allows the execution of some part or

the totality of an application by a remote server in the MEC environment. It transmits

the source code and the input data of the offloaded tasks from the mobile terminal

to the target MEC edge server. As illustrated in Figure 4.9, eRAM has two main

components each is responsible of a single role of the middleware. The client component,

which is running by the Android terminal to ensure the offloading of the applications.

And the server component, which is running by the edge servers in order to ensure

the execution of the offloaded tasks and applications. Both of the client and server

communicate with each other via the network in order to exchange the information and

data. Inspired by the offloading middleware from literature [46, 53, 55, 77] to make

eRAM extensible and easy to manage, it is implemented following the component-based

design pattern [78]. Each of the components is composed of many modules, every

module has a single function and the module communicate between themselves for the

working of the middleware.

eRAM-OC, or eRAM Offloading Client, is the middleware component one the mobile

terminal side. It automates the offloading policy of the application. As detailed above,

eRAM-OC is composed of four main modules that can be detailed as the following:

• Profiler manager: The profiler collects the mobile terminal information that will

be used to improve the offloading decision. It is composed of three modules, each

one gathers a type of data. The system profiler collects the data of the terminal

such as: CPU usage, CPU frequency and the battery levels. The application

profiler gathers the data of the application such as: the processing time, the source

code size, the input data size and the number of instruction in the application.

Lastly, the data of the network such as: the bandwidth, the latency, the upload

size and downloaded data size are collected by the network profiler.

• Offloading manager: This is the core module of the middleware, it implements

the algorithms of the offloading policy. Firstly, it estimates the offloading cost

using the equations 3.13 and 3.16 and based on the information gathered by the

profiler. It determines, then, the offloading decisions of the applications to decide
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if the offloading is benefits or not. Finally, it schedules the application’s tasks

based on the offloading decisions. The offloaded tasks are transmitted to the

target edge server and the rest are performed locally.

• Communication manager: The communication manager takes in charge the com-

munication between the two modules of the eRAM platform. It uses advanced

network sockets to communicate between the client and the server. Also, it uses

zeroconf [79] protocol to discover the nearby edge servers around the mobile

terminal.

• Logger: The logger receives the gathered information and saves them in the

database. In addition, it can select the data from the data base in order to uses

them by the Offloading manager.

Figure 4.9: An overview architecture of eRAM computation offloading middleware.
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Th server module eRAM-OS, for eRAM Offloading Server, is the part of the middle-

ware running in the remote MEC server. It organizes the processing of the offloaded

tasks, and returns the results to the mobile terminal. As in the Figure, eRAM-OS is

composed of three illustrated as follows:

• Communication manager: This component ensures the communication with the

eRAM-OC of the mobile terminals that offload to the edge server. It receives the

offloaded tasks, send them to been performed in the edge server, and returns the

results to the mobile terminal.

• Execution manager: The execution manager handles the processing of the of-

floaded tasks in the edge server. It deploys the received tasks on the executing

instances. In addition, it monitors the execution’s information, such as: execution

time and allocated instance, using the profiler.

• Logger: Similarly to the logger at eRAM-OC, this module receives the gathered

information and save them in a database. These information can be used by the

Execution manager in order to improve the processing of the tasks in the edge

server.

Figure 4.10: The protocol computation offloading of eRAM middleware.

In figure 4.10, we illustrate the offloading steps. As we can see, when the user needs

to offload an application a set of messages are exchanged between the eRAM-OC and

eRAM-OS. In the following, we summarize the main steps and the objective of each

message.
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• Request an offloading authorization: As we can see in messages (steps 2,

3, 4 and 5), the eRAM-OC sends an offloading request message to eRAM-OS

to request an offloading authorization. The eRAM-OS checks the resources

availability and if so it creates a new task handler. Finally, it sends back an

acknowledgment message to the eRAM-OC to indicates that the acceptance of

the offloading request.

• Source code uploading: The second set of messages (steps 6, 7, 8, 9 and 10) are

responsible for uploading and installing the APK source code of the application

from the eRAM-OC to the eRAM-OS.

• Entry point and input data uploading: After the source code, the user trans-

mit (steps 11 and 12) task’s execution entry point in addition to the required

input data.

• Results: after the processing of the task, the eRAM-OS sends back (steps 14, 15

and 16) to the eRAM-OC the task execution results.

• End of the offloading: The last step is the transmission of an end message

(steps 17 and 18) in order to inform the eRAM-OS of the end of the offloading in

order to destroy the Task handler.

4.5.1.4 Mobile applications characteristics

Our first experiments was to characterize the benchmark of the three applications:

Linpack, CPU-Bench and PI-Bench. Each of these applications was parameterized in

order to study the system under three CPU resource requirement situations: 1) Light, 2)

Medium and 3) Full. Precisely, Linpack is a software that performs matrix calculations.

To generate light processing requirements, we parameterized Linpack with 17 square

matrix sizes, ranging from 1 to 17. Medium and full configurations were generated by

multiplying the above matrix sizes by a factor of 40 and 70, respectively. CPU-Bench is

a software that generates a random floating point and a random integer of a predefined

size n. To generate light, medium and full configurations, we set n = 106, 107 and

108, respectively. Finally, three CPU resource requirement situations for Pi-Bench are

obtained by computing pi with an approximation of 103, 104 and 105 decimal places. It

is important notice that, our results are average values obtained after executing 10 runs

with the same experiments setting.
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Using our testbed, we measured the number of CPU cycles (γm,n), the quantity of

uploaded data (upm,n) and the quantity of downloaded data (dwm,n) of the three bench

applications, under Light, Medium and Full configurations. The results are shown in

Table 4.1. One can observe that all the measured parameters are different from those

reported from the literature [57] in table 3.3, except downloaded data for Linpack. New

versions and the possibility to execute these applications by setting some parameters

might explain such a gap. Notice also that due to our implementation of these three

bench applications as fragments within the same Java Android application, the quantity

of the downloaded data is always equal to the size of the APK source file (5427.2 bytes).

Finally, we observe that among the three bench applications, Linpack is the one that

generates the lowest number of CPU cycles. Under Full configuration, it is also the one

that leads to the highest number of CPU cycles.

Table 4.1: The characteristic of the bench apps

Application γm,n upm,n dwm,n
(Giga CPU cycles) (Kilobyte) (Byte)

Linpack
Light 0.2033 5427,2 120
Medium 547.406 5427,2 120
Full 2909.11 5427,2 120

PIBENCH
Light 2.203 5427,2 56
Medium 45.539 5427,2 56
Full 1310.882 5427,2 56

CPUBENCH
Light 8.696 5427,2 30
Medium 293.613 5427,2 30
Full 745.435 5427,2 30

4.5.1.5 Network topology

To connect the Android terminals to the remote offloading servers, we have set up a

network topology composed of two Cisco routers. The first router is connected to the

client via a switch (LAN) and the second router allows our testbed to be connected

to the edge server through a local network and to the remote cloud via an Internet

connection. To connect the two routers, we use a serial link allowing us to control the

speed at which the data, in bits per second (bps), is sent between the two routers. The

main objective is to control the bandwidth between the Android terminals and the
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remote offloading server. In our experiments, we used the bandwidth values offered

by the serial link which are: 1.2Kbps, 4.8Kbps, 9.6Kbps, 38.4Kbps, 72Kbps, 125Kbps,

500Kbps, 5.3Mbps and 8Mbps.

4.5.2 Single-user scenario

Figure 4.11 shows the energy consumption measured in our testbed for Linpack easy,

when it is executed locally on the mobile terminal, on the edge with 1 or 2 vCPU and

on the clouds located at Paris or at the Ohio, both allocating 2 vCPU. The x axis

represents the bandwidth of the serial link that we have varied from 1.2 Kbps to 8

Mbps. Notice that logarithmic scale is used for x and y axis. As one can see, when the

offered bandwidth is restricted to less than 500Kbps, the lowest energy consumption is

obtained for local execution. Above 500kbps, offloading Linpack easy on the edge with

2vCPU offers better energy performances. Starting from 5.3Mbps offloading on the

cloud located at Paris outperforms the local execution. These experimental results prove

that, even for applications that require light processing resources, offloading could be

energetically beneficial when the available bandwidth to the remote server is sufficiently

high.
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Figure 4.11: Linpack easy: Energy Consumption
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Figure 4.12: Linpack medium: Energy Consumption
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Another situation fostering the remote execution is observed when the task’s pro-

cessing needs is important. This is clearly illustrated for Linpack medium in figure 4.12.

We can notice a certain hierarchy in the performances: first the closest edge, then the

remote cloud, and lastly the local execution. A noticeable discrepancy can be observed

in figure 4.12 between the clouds at Paris and at Ohio. We believe that this is related

to differentiated network latency from our lab to these two clouds. The average Round

Trip Time (RTT) measured from the terminal toward different remote servers is drawn

in figure 4.13. We can see that the RTT for the edge and the cloud in Paris are very

close to each other, while the RTT to the cloud in Ohio increases significantly for larger

bandwidth values.
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Figure 4.14: Linpack full: Energy Consumption

As shown in Figure 4.14, the observations made for Linpack medium are reinforced for

the full variant. Because Linpack full is a CPU-intensive application, it is obvious that

its completion time is mainly dominated by the computation duration. The transmission

delay is proportionally negligible. This explains why the effect of differentiated RTT

between Paris and Ohio is hardly observable in figure 4.14. However, the performance

gap between the edge and the clouds is very apparent and almost insensitive to the

bandwidth, when the latter reaches 72Kbps. We can deduce that the local edge offers
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higher CPU capacity than those provided at the clouds, despite the fact that both have

allocated 2vCPU resources. This discrepancy illustrates the impact of the heterogeneity

of the hardware and the software technologies, which are used in a multi-tier mobile

edge computing infrastructure.
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Figure 4.15: CPUBench easy: Energy Consumption

Energy consumption for CPU-Bench easy, medium and full are shown in fig-

ures 4.15, 4.16 and 4.17, respectively. The general observations regarding Linpack

holds for CPUBench. However, for CPU-Bench easy one can see in figure 4.15 that

when the bandwidth is restricted to less than 125Kbps the cloud in Paris and the local

edge have almost the same performances, with a very slight advantage for the cloud

at Paris. This can be explained by the fact that transmission duration over networks

that exhibit important delays represent a significant proportion part with respect to the

completion time of an offloaded light task. As shown in figure 4.13 when the bandwidth

is restricted to less than 125Kbps the Round Trip Time from the terminal toward the

local edge is elevated and quite similar to the RTT to the cloud at Paris.

Figures 4.18, 4.19 and 4.20 are relative to Pi-Bench. Compared to the previous

bench applications one can notice for easy and medium cases that the edge with 2vCPU

outperforms significantly the edge with 1vCPU. We believe that this is due to the
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Figure 4.16: CPUBench medium: Energy Consumption
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Figure 4.17: CPUBench full: Energy Consumption
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multi-threaded nature of this application. The computation time is lower in 2vCPU

compared to 1vCPU thanks to the ability of the former edge to process in parallel

the computation of this multi-threaded application. The advantage of offloading such

multithreaded application in a multi-CPU sever is clearly shown in figure 4.20 for the

CPU-intensive case. Clouds in Paris and Ohio, where 2vCPU resources are allocated,

outperform the 1vCPU edge.
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Figure 4.18: PiBench easy: Energy Consumption

Completion time for PiBench easy, medium and full are shown in Figures 4.21, 4.22

and 4.23, respectively. One can remark that this completion time curves have the

same shape and follow the same hierarchy than those observed in energy consumption

figures 4.19 and 4.20. Actually, in all our experiments we noticed that the consumed

energy on the terminal is quasi-stationary during the execution time of an offloaded task.

Consequently, the consumed energy is proportional to the completion time of an offloaded

task. This observation holds for Linpack and CPU-Bench, as well1. The corollary to this

finding is that in case of offloading, the remote location that minimizes the completion

time is also the one that optimize the consumed energy. This statement has been

validated in all the experiments that we have run, for the three bench applications,
1To save space, we choose not to show the completion time for Linpack and CPU-Bench
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Figure 4.19: PiBench medium: Energy Consumption

104 105 106

The bandwidth (bps)

101

102

E
ne

rg
y 

co
ns

um
pt

io
n 

(J
ou

le
s)

Local
edge: 1vCPU
edge: 2vCPU
aws: Paris
aws: Ohio

Figure 4.20: PiBench full: Energy Consumption
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under different CPU and network configurations.

When a task is executed locally, the measured energy is also quasi-stationary during

the processing time. However, as illustrated in figures 4.11, 4.12, 4.14, 4.15, 4.16, 4.17

4.18, 4.19 and 4.20 the difference of consumed energy between local and remote execution

is of several order of magnitude. Yet, in almost all the experiments that we have run, we

noticed that the decision among local and offloading that minimize the completion time

is also the one that optimize the consumed energy. The unique observed exception case

to this rule is Pi-Bench easy when the bandwidth is restricted to 9.6Kbps. Comparing

figure 4.21 to 4.18, we can remark that when the bandwidth is restricted to 9.6Kbps the

local execution minimize the completion time, while energy consumption is minimized

when Pi-Bench easy is offloaded on the 2vCPU edge.
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Figure 4.21: PiBench easy: completion time

4.5.3 Multi-user Scenario

In this section, we assessed the effect of multi-users on the offloading performances.

We incrementally varied the number of users. However, due to the constraints on the

available infrastructure nodes, at the time when we ran our experiments, we fixed the

allocated resources both at the cloud and the edge to 1vCPU and we limited the number
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Figure 4.22: PiBench medium: completion time
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Figure 4.23: PiBench full: completion time
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of mobile terminals to ten. Yet, we believe that the general tendencies, which we will

comment hereafter, still hold for larger scale.

To save space, we also choose to discuss for the multi-users context case only the

results of CPUBench. Our choice is motivated by the fact that following the one-user

experiments results (see table 4.2)), CPUBench is the only application in our benchmark

for which we observed three offloading decisions: local, edge and cloud.
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Figure 4.24: Multi-users completion time of CPUBench easy in the cloud

The completion time of CPU-Bench when it is offloaded on the cloud is represented

in figures 4.24, 4.25, and 4.26, for easy, medium and full mode, respectively. Each

curve in those figures is associated to an access bandwidth, between 1.2 kbps to 8Mbps.

The x-axis represents the number of offloading users, while the y-axis represents in

logarithmic scale the completion time in milliseconds. One can see that the completion

time increases significantly with the number of users, especially for bandwidth capacities

less than 500kbps. The contention among several users on the access network increases

the transmission delay, especially when the bandwidth capacity is quite low. This effect

is observed even for CPU-Bench in full, despite the fact the processing delay versus

transmission delay is quite important for this mode. Compared to offloading on the

edge, which is shown in figures 4.27 4.28 and 4.29, one can see that the completion time
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Figure 4.25: Multi-users completion time of CPUBench medium in the cloud
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Figure 4.26: Multi-users completion time of CPUBench full in the cloud
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in the edge increases slightly with the number of users, but the slope is much lower

than for the cloud.
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Figure 4.27: Multi-users completion time of CPU-Bench easy in 1vCPU edge

Completion time of 10 concurrent CPU-Bench users with local, edge and cloud

execution locations is shown in figures 4.30, 4.31, and 4.32, for easy, medium and full

mode, respectively. The x-axis represents in logarithmic scale the access bandwidth,

which varies between 1.2 Kbps to 8Mbps, while the y-axis represents in logarithmic

scale the completion time in milliseconds.

As shown in figure 4.30, local execution is the best placement for CPU-Bench in easy

mode when bandwidth capacity is extremely constrained: less than 9,6Kbps. Indeed, in

such condition, the transmission delay is very high and is proportionally much important

than the processing delay, even when the application is executed in the edge or the

cloud. Faster execution in the edge or in the cloud can not compensate the large

transmission time when the access bandwidth is extremely low and shared among many

(10) users. For such case, it is not worth it to offload and it is better to execute the

task locally on the mobile terminal. For bandwidth capacity larger than 10Kbps, the

experiments results show that the best decision is to offload on the edge. This result

is interesting because it indicates that even when 10 users are contending on a quite
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Figure 4.28: Multi-users completion time of CPU-Bench medium in 1vCPU edge
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Figure 4.29: Multi-users completion time of CPU-Bench full in 1vCPU edge
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limited bandwidth capacity of about 10Kbps, it still worth it to offload a computational

intensive task such as CPU-Bench to the edge. Figures 4.30, 4.31, and 4.32 show that

in almost all the cases the best offloading location is the edge. The only exception is for

easy mode with a bandwidth access set to 5.3Mbps. As shown in figure 4.13, for higher

bandwidth capacity (larger than few Mbps) the transmission delay to the edge is almost

similar to the cloud. The difference is less than 10 milliseconds. In these cases, the

completion time is almost the same on the edge and on the cloud, especially when the

computational resources required by a task are low, which is the case for CPU-Bench in

easy mode.
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Figure 4.30: 10 users completion time of CPU-Bench easy

4.6 Numerical Vs Experimental analysis

In this section, we compare and analyze the results obtained by experiments with those

obtained numerically. In table 4.2 we summarize the results obtained for single-user

scenario. The right column in table 4.2, shows the location that minimizes the consumed

energy that we derived from experimental results for the three bench applications under

different processing loads and network configurations. On the other hand, the left column

indicates the optimal locations obtained by ECESO. To fit with the applications that
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Figure 4.31: 10 users completion time of CPU-Bench medium
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Figure 4.32: 10 users completion time of CPU-Bench full
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we evaluated in our testbed, we applied the measured parameters indicated in table 4.1

to ECESO. We can see that in the majority of the cases the theoretical solution match

with the placement derived from the experimentation results. The few mismatches

are indicated in red. For Linpack, the ECESO placement solution fits with the best

placement observed via experiments in 22 cases among 27 tested configurations. Thus

compared to experiments, our proposal have determined the optimal task execution

location in 81.4% of the cases. To quantify the under-performance of ECESO in terms

of consumed energy, we calculate the relative difference of the experimentally consumed

energy among: 1) the case where task’s computational location is computed by our

proposal ECESO (left column in table 4.2) 2) the case where optimal placement solution

is derived from experiments observations (right column in table 4.2). Averaging over

the 27 possible cases, the under-performance of ECESO in terms of consumed energy

with respect to an optimal placement derived from experimental results, is limited to

1.962%.

The near-optimality of ECESO, is also confirmed for Pi-Bench and CPU-Bench. For

Pi-Bench, the optimal placement is achieved by ECESO in 85.18% of the studied cases,

with an average under-performance of 2.57% of consumed energy. For CPU-Bench

optimal placement is obtained by ECESO in 70.37% of the cases with an average

under-performance of 3.76% of consumed energy.

Finally, in table 4.3, we compare the best offloading decisions of CPU-Bench obtained

by experimentation and using ECESO, in the case of multi-user scenario (10 users). Each

line is associated to a given bandwidth capacity at the access network. Thus combining

with the three modes of CPU Bench, we have in total 27 cases. Table 4.3 shows that

the decision of ECESO matches with the best placement observed through experiments

in 66.7% of the cases. The observed errors are due to the conservative nature of our

algorithm. For example, for extremely low bandwidth capacity (low than 3.2 Kbps)

ECESO recommends to execute the task locally rather than offload it to the edge.

Similarly, for easy mode with 5.3 Mbps bandwidth access case that we discussed above,

our algorithm suggests to offload the task on the edge, while experiments have shown

that offloading on the cloud can also minimize the completion time. The conservative

nature of ECESO is mainly inherent to our modelling, which induces some assumptions

that appears to be conservative compared to real system behaviors, as observed in

experiments.
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Table 4.2: Offloading decisions for each application: ECESO vs Experiments

Bandwidth ECESO Experimentation
Easy Medium Full Easy Medium Full

Linpack
1 200 Local 2vCPU 2vCPU Local 1vCPU 1vCPU
4 800 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
9 600 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
38 400 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
72 000 Local 2vCPU 2vCPU Local 2vCPU 1vCPU

125 000 Local 2vCPU 2vCPU Local 2vCPU 1vCPU
500 000 Local 2vCPU 2vCPU Local 2vCPU 2vCPU

5 300 000 Local 2vCPU 2vCPU Local 2vCPU 2vCPU
8 000 000 Local 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

PiBench
1 200 Local 2vCPU 2vCPU Local 1vCPU 2vCPU
4 800 2vCPU 2vCPU 2vCPU Local 2vCPU 2vCPU
9 600 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
38 400 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
72 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

125 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
500 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

5 300 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
8 000 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU

CPUBench
1 200 2vCPU 2vCPU 2vCPU Local Paris 2vCPU
4 800 2vCPU 2vCPU 2vCPU 2vCPU Paris 2vCPU
9 600 2vCPU 2vCPU 2vCPU Paris 2vCPU 2vCPU
38 400 2vCPU 2vCPU 2vCPU Paris 1vCPU 1vCPU
72 000 2vCPU 2vCPU 2vCPU Paris 2vCPU 2vCPU

125 000 2vCPU 2vCPU 2vCPU 1vCPU 2vCPU 2vCPU
500 000 2vCPU 2vCPU 2vCPU 2vCPU 1vCPU 1vCPU

5 300 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
8 000 000 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU 2vCPU
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Table 4.3: Offloading decision for CPUBench with 10 users: ECESO vs Experiments

Bandwidth ECESO Experimentation
Easy Medium Full Easy Medium Full

1 200 Local Local Local Local 1vCPU 1vCPU
4 800 Local Local Local Local 1vCPU 1vCPU
9 600 Local Local Local 1vCPU 1vCPU 1vCPU

38 400 Local Local Local 1vCPU 1vCPU 1vCPU
72 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU
125 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU
500 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU

5 300 000 1vCPU 1vCPU 1vCPU Paris 1vCPU 1vCPU
8 000 000 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU 1vCPU

4.7 Conclusion

In this chapter, we study the extension of D2M-ECOP offloading approach in two-tier

MEC environment. The extended offloading policy, ECESO, considers all the available

computing resource in the MEC (edge servers and the remote cloud) and selects the

best place to perform the offloaded tasks. The numerical results show the importance

of considering two-tier MEC on the performance of the computation offloading for

multi-user scenario. In addition, we implemented ECESO in a real-world testbed.

Using this testbed, we evaluate our offloading decision policy for three real Android OS

applications, with different traffic patterns, resource demands, and multi-users context.

The experimental results highlight the efficiency of ECESO computation offloading

policy. Moreover, they illustrate that the nature of how the application is developed

affects highly the performance of the offloading.

However, ECESO supposes that the offloadable task of an application is always

known and determined statically at the design time. The computation task to offload is

always the same. However, in a real-world system the resources maybe not enough to

offload the hole computation of the task, or there is more resource than the required by

that task. In both cases, ECESO does not take on consideration to reduce or increase

the computation to offload, which affects the performance of offloading. To deal with

such a situation, we focus on the multitasking application in the next chapter.
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Elastic Offloading of Multitasking Applications to MEC

eTOMEC offloading policy

This chapter focuses on offloading multitasking application to a MEC environment.

It address this issue through a mobile user’s perspective that is seeking to obtain

the execution result of a resource-hungry multitasking application, possibly through

offloading some tasks to a multi-edge servers MEC. The completion time of the

application is constrained by a predefined strict deadline and the offloading decision

aims to minimize the mobile terminal’s energy consumption. The numerical results

shows that the proposed offloading policy eTOMEC achieves better performance

than existing solution [80].

Abstract

[80] Houssemeddine Mazouzi, Nadjib Achir, and Khaled Boussetta. “Elastic Offloading of Multitasking Appli-
cations to Mobile Edge Computing”. In: Proceedings of the 22st ACM International Conference on Modeling,
Analysis and Simulation of Wireless and Mobile Systems, MSWiM 2019, Miami Beach, FL, USA, November
25 - November 29, 2019. 2019, pp. 1–8. doi: 10.1145/3345768.3355926
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5.1 Introduction

Computation offloading has been addressed by several recent works [49]. Most of this

works focused on the the offload decision, which primary aims to determine when to

offload and to decide whether the application execution should be completely or partially

offloaded to the MEC environment. In addition, they investigated the choice of the

corresponding execution location, including either the mobile terminal or to a set of

edge or cloud servers. As presented in the previous chapters 3 and 4, the existing

offloading approaches consider the optimization of performance metrics such as the

completion time and the energy consumption of the application [33, 68, 69]. Moreover,

these approaches are based on single-task architecture type of the application where the

computation to offload is determined in advance, and it is always the same whatever

the conditions at the runtime. While some approaches have investigated multitasking

applications, the dependencies between tasks are often overlooked.

To tackle this limitation, in this chapter we explore the computation offloading for

a multitasking application characterized by a task-dependency graph to a multi-edge

server MEC environment. Our objective is to design an offloading approach that is

able to scale the number of concurrent offloaded tasks accordingly with the number of

available edge servers, while taking into consideration tasks dependencies. The offloading

aims to minimize the mobile terminal’s energy consumption, while satisfying the hard

deadline of the application’s completion time. The design of such offloading approach

is quite challenging, since it must integrate on one side, tasks dependencies and their

resource requirements (processing and communication capacities) and on the other side,

available resources on different servers and communication aspects (available bandwidth,

delay and energy costs) at access and at backbone links.

The first contribution of this chapter is the formalization of the above optimal

offloading problem as a Zero-one Integer Programming problem. Given that the resulting

problem is NP-hard, we then propose a heuristic solution, named eTOMEC. In first,

eTOMEC starts by selecting the tasks that should be offloaded according to a priority

corresponding to the energy cost in the case of the worst case offloading decision. Once

the task selected, it selects the offloading server that minimize the extra amount of

energy that could be consumed by the user’s terminal when scheduling the selected

task to that server. Finally, in the case where the obtained solution is not satisfying

the hard deadline of the application’s completion time, we propose a merging step that
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merges tasks that reduce the completion time.

The rest of the chapter is organized as follows: section 5.2 describes the studied

system. Multitasking offloading problem is formulated in section 5.3. Our proposed

offloading policy, named eTOMEC, is then developed in section 5.4. Performance

evaluation results are analyzed in section 5.5. Finally, a conclusion is drawn in section 5.6.

5.2 System description

In this section, we describe the MEC infrastructure. Then, we introduce the considered

application’s model and we detail the task-dependency graph of the application.

5.2.1 MEC infrastructure

As illustrated in Figure 5.1, we consider a multi-tier MEC environment, which is

composed of several physical or virtual machines offering computing resources at the

edge and at the cloud. We study this system through a single user’s perspective, which

is connected to this environment through an AP and that is seeking to execute a

computationally intensive application. This application is composed of a set of inter-

dependent tasks. Each task can be performed locally by the user terminal, offloaded to

edge servers or offloaded further to the remote cloud.

InternetLocal network

Edge Server 2

AP

user

Edge Server 1

Edge Server K

The remote 
Cloud

app

Figure 5.1: An illustration of MEC infrastructure environment.
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Let K = {0,1,2, ...,K,K + 1} denotes the set of all possible processing locations

of tasks. Here, the user terminal is referred by 0, the edge servers represented by

1 to K and K + 1 represents the remote cloud. In the remainder, each element of K

is referred as server. Each server offers a computational resource capacity, denoted

fk, and expressed as a CPU-cycles per second. Similarly, to [33, 49], we assume that

the user terminal has a limited computing capabilities, compared to the edge/cloud.

Formally, ∀k ∈K \ {0}, f0� fk.

5.2.2 Multitasking application modeling

We consider a mobile user that is seeking to obtain the execution result of a resource-

hungry multitasking application by offloading some tasks to a MEC environment. The

offloading decision aims to minimize the terminal’s energy consumption while ensuring

that the completion time of the application is constrained by a predefined strict deadline.

The multitasking application is composed of a set of fine granularity atomic non-

preemptive tasks. The dependencies between tasks is modeled using a weighted Directed

Acyclic Graph (DAG), noted G= (V,E), where the vertices in V represent tasks and

the edges in E represent dependencies. In the following, we will refer to the number of

tasks composing the application as n= |V |.

The construction of such multitasking DAG depends on how the developers model

their applications [33, 68]. Hence, several DAG could be associated to different im-

plementations of a given multitasking application. For instance, figure 5.2 illustrates

four DAG that correspond to different implementations on Android terminals of a

video navigation application [47]. In this figure, each edge illustrates the precedence

dependencies between tasks. Concretely, any edge (i, j) ∈ E means that task i must be

performed before task j. In the following, we will use pred(i) = {j|(j, i) ∈ E} to refer to

the immediate predecessors of a vertex i ∈ V and succ(i) = {j|(i, j) ∈ E} to represent

the immediate successors of i in G.

We can also distinguish in figure 5.2, two type of vertexes: blue and red ones. The

latters are either (a) a vertex without any predecessors, called entry task (task 1), from

which the application execution begins or (b) a vertex without any successors called exit

task (task 14), which is the latest task executed by the application. Since these tasks

are usually related to users interactions (e.g, user inputs and results rendering), we

assume that both entry and exit tasks must be performed on the user’s terminal. Such
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Figure 5.2: The DAG associated to video navigation application [47].

local execution requirement can be extended to other tasks, which cannot be performed

remotely due to some hardware or software constraints [31, 69]. To identify those tasks

we introduce an non-offloadability indicator, denoted by yi, which is set to 0 if task i

can be offloaded on a remote server, and set to 1 if it must be processed on the mobile’s

terminal. In particular, we have y1 = 1 and yn = 1.

Figure 5.3: Example of dependent tasks

In addition to the precedence order expressed by each edge, we associate to the

edge (i, j) ∈ E a weight, denoted by ei,j . This weight expressed in bytes, indicates the

amount of task i resulting data that will serve as input data to process task j. A generic

example of this weighted graph is illustrated in figure 5.3. As shown in this figure, a

weight (γi ,si) is also associated to each vertex i ∈ V . Here, γi denotes the computation

capacity, in CPU-cycles, which is required to process task i. The second parameter,
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si, is the source code size, in bytes, which needs to be transferred to a remote server

when task i is offloaded. Hence, the weights on a vertex i and on its entering edges

characterize the resources (processing capacity and data quantity) needed to process

task i.

5.3 Multitasking offloading problem

In this section, we present the computation offloading problem for multitasking applica-

tion in multi-edge server MEC environment. Then, we define completion time and the

energy consumption of the application.

5.3.1 Problem statement

Our purpose is to design an offloading policy that decides 1) which tasks should be

offloaded and 2) determines which server will process each offloaded task. The objective

of this policy is to minimize the energy consumed by the user terminal, denoted as Z .

Moreover, the offloading decisions must fulfill the following requirements: First of all,

each task needs to be scheduled onto exactly one server with respect to the precedence

constraints, which is given by the weighted Directed Acyclic Graph associated to the

multitasking application. Second, the offloading policy must ensure that the maximum

completion time of the application, denoted by T , does not exceed a given threshold,

denoted tmax. This hard constraint is introduced with the aim to enforce Quality of

Services requirements of time-sensitive applications. Finally, non-offloadable tasks must

be performed locally by the user terminal. Formally, the optimal offloading policy is

the solution of the following Zero-one Integer Programming problem:

Minimize Z

Subject to:

C1 : T ≤ tmax

C2 :
∑
k∈K

xki = 1,∀i ∈ V

C3 : 1−x0
i ≤ yi,∀i ∈ V

C4 : xki ∈ {0,1}

(5.1)
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Here, xki as a binary variable that indicates if task i ∈ V is offloaded to server k.

The first constraint (C1) guarantees that the application’s completion-time, T , is below

the given deadline tmax. Constraint C2 indicates that each task must be performed by

exactly one server. Constraint C3 is relative to the fact that the non-offloadable tasks

must be performed at the user’s terminal. Finally, constraint C4 ensures that every

decision variable is binary.

In the following, we will detail the expressions of the objective function Z and the

constrained application’s completion-time T . To this purpose, we will first describe the

network communication model. Then we will develop different time-related metrics that

will be used to model the application’s completion time and to derive the expression of

energy consumption.

5.3.2 Completion time

Clearly, the completion of the application is obtained when the exit task is processed.

Thus, the expression of T is composed of the processing time of all application’s tasks,

plus different transmission times. Indeed, communications occur at different steps of

the offloading process. Precisely, whenever a task is offloaded to the MEC environment,

its source code is transmitted from the user terminal to the remote server. Moreover,

dependencies among tasks lead to data exchanges among different locations processing

the tasks. Hence, to derive the expression of T we will first characterize the bandwidth

at access and at backhaul networks.

5.3.2.1 Bandwidth capacity

Let first focus on the allocated wireless bandwidth at access network. To this purpose,

we suppose that the AP has the same configurations used in the section 3.2.6 of

the chapter 3, which is the orthogonal frequency division multiple-access (OFDMA)

technology.

Let B denote the available wireless bandwidth in the AP. This quantity is expressed

in Hertz (Hz). Since we are considering OFDMA, B is divided into B subcarriers. We

define ptx as the user’s transmission power, and htx as the power gain. We consider

both path loss and shadowing attenuation as in [60]. We model the noise as Additive

White Gaussian Noise (AWGN) [60] random variable with zero mean and variance σ2.
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Thus, the maximum achievable rate (in bps) for the uplink can be expressed as follows:

wtx = υ · B
B
· log2(1 + ptx · (htx)2

Γ (btx) · d2 ·σ2) (5.2)

where Γ (BER) represents the SNR margin introduced to meet the desired target bit

error rate (BER) with a QAM constellation, btx is the BER,d is the distance between

the user and the AP, and υ the number of subcarriers allocated to the user. Γ (BER)

can be expressed as follows:

Γ (x) =−2 · log(5x)
3 (5.3)

Similarly, the maximum achievable bitrate (in bps) for downlink can be derived by

the following equation:

wrx = υ · B
B
· log2(1 + pap · (hrx)2

Γ (brx) · d2 ·σ2 ) (5.4)

where pap denotes the transmission power of the AP. hrx indicates the power gain

from the user to the AP when user receives data due to path loss and shadowing

attenuation [60].

Finally, the bandwidth capacity between any server m ∈K and any server k ∈K ,

denoted Wm,k, is supposed to be symmetric and fixed during the application execution

period. Notice that when m= 0 then W 0,k refers to the bandwidth between the access

point and a server k ∈K − 0.

5.3.2.2 Transmission time of source code

Using equation 5.2, we can derive the time required to transmit the source code of

task i from the user terminal to server k. This time, denoted srki , can be expressed as

the ratio between the amount of source code (si) and the available uplink bandwidth

between user i and server k. Formally:

srki =


0 if k=0

si
wtx

+ si
W 0,k otherwise

(5.5)
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5.3.2.3 Transmission time of input data from predecessor tasks

As mentioned previously, the input data of task i is the amount of all data communicated

from its predecessor tasks. Let j ∈ pred(i) be a predecessor of task i and suppose that

task j has been performed by server m, then the time required to transmit the depending

on data between tasks j and i from server m to server k. This time, denoted by Dm,kj,i ,

must be expressed as a function of the amount of data, ej,i, the location of the servers m

and k, and the available network bandwidth between server m and k. We can distinguish

four cases:

i. When task j is performed locally (m= 0) and i is performed remotely (k > 0), then

Dm,kj,i corresponds to the upload time of data dependency between user terminal

and server k.

ii. When task j is performed remotely and task i is going to be performed locally, i.e:

k = 0,m > 0, then Dm,kj,i corresponds to the download time of the data dependency.

iii. When both tasks i and j will be performed by remote servers, i.e: m> 0,k > 0,

then Dm,kj,i corresponds to the backhaul transmission time between servers m and

k.

iv. Finally, when both tasks j and i are going to been executed by the same server

then there is no communication, and Dm,kj,i = 0.

Therefore, using equations 5.2 and 5.4, we can obtain the following expression:

Dm,kj,i =



ej,i
wtx

+ ej,i
Wm,k

if m= 0 and k , 0

ej,i
wrx

+ ej,i
Wm,k

if m , 0 and k = 0

ej,i
Wm,k

if (m , k)

0 otherwise

(5.6)

5.3.2.4 Task processing time

The task i ∈ V can be processed by a server k ∈ K if enough processing resources are

available at server k and when both input data and source code of the task have been
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received by server k. Let stki denote the time at which the processing of the task i in

server k can start. This time can be expressed as follows:

stki =max(comk
i ,av

k,srki ) (5.7)

where comk
i is the time required to receive all the input data of task i. avk refers to the

time at which to server k is ready to perform task i, and srki is the time to transmit the

source code of task i to server k, which is expressed by equation 5.5. Following [33],

comk
i can be defined as the last arrived data dependency from the predecessors tasks,

and defined as follows:

comk
i = max

m∈K
( max
j∈pred(i)

[xmj · (ftmj +Dm,kj,i )]) (5.8)

where ftmj is the finish time of the task j in the server m. The time to transmit

dependency data, Dm,kj,i , is given by equation 5.6. It is worth noting here the presence

of the binary offloading decision variable, xmj in the expression of comk
i . Similarly, the

avki can be expressed as follows:

avk =max
i∈V

(xki · ftki ) (5.9)

The processing time of task i in serve k, denoted by T ki , can be estimated as the

ratio between the required and the allocated computing resource in the server [43, 68]:

T ki = γi
fk
,∀k ∈K (5.10)

The finish time of the task i ∈ V in server k, denoted ftki , is defined as the summation

of start time stki and the processing time T ki . Formally:

ftki = stki +T ki (5.11)

Finally, since application’s completion corresponds to the finish time of exit task

and given that the later is non-offloadable, we can thus deduce that:

T = ft0n (5.12)
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5.3.3 Consumed energy

Let now express our objective function, which is the energy consumption of the user’s

terminal. This quantity is composed of four elements

i. The energy consumed by the local CPU due to local processing of tasks.

ii. The energy consumed by the wireless network interface when uploading to remote

servers the source code, and the data of the offloaded tasks.

iii. The energy consumed by the wireless network interface when downloading tasks

execution results from remote servers.

iv. Finally, the energy consumed by the wireless network interface when it is in idle

mode. This mode is enabled when user terminal is waiting for the execution of

those offloaded tasks.

Using the model presented in [37, 68] and according to the last considerations, we

can compute the total energy consumption, noted Z , as follows:

Z =
∑
i∈V

(E li +E txi +E rxi ) +E idle (5.13)

where E li is the energy consumed by the user’s terminal to process task i locally.

Following [61], this energy is related to the local CPU frequency and the execution

duration of the task. Formally:

E li = κ · (f0)3 ·T 0
i ·x0

i (5.14)

Here κ is the effective switched capacitance, which depends on the chip architecture,

and is used to adjust the processor frequency. As in [61], we set κ= 10−9.

E txi represents the energy consumed by the terminal to transmit the data dependency

between task i and all its predecessors, plus the energy consumed to upload the source

code corresponding to that task. This energy can be expressed as:

E txi =
∑
k∈K

xki · ptx(srki +
∑

j∈pred(i)
(x0
j · D

0,k
j,i )) (5.15)

where ptx is the radio transmission power [33, 69].
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Similarly, E rxi is the energy consumed by the terminal to receive the data from

remote servers that have processed predecessors tasks of i. If the task i is executed

locally, then:

E rxi =
∑
k∈K

∑
j∈pred(i)

xkj ·x0
i · prx · D

k,0
j,i (5.16)

where prx is the power consumed when the radio interface receive data [33, 68].

Finally, E idle represents the amount of energy consumed by the network interface

when it is in idle mode. This energy depends on the offloading solution and the start

times of each offloaded tasks. However, its accurate expression is quite challenging

to obtain. To tackle this problem, we consider a pessimistic estimation of E idle, by

supposing that all the tasks are transmitted sequentially. Formally, this conservative

estimation can be expressed as:

E idle = max
k∈K

E idlek (5.17)

Here, E idlek is the upper bound of the idle energy consumption for the tasks that are

performed by the server k. This quantity, can be computed as follows:

E idlek =
∑
i∈V

pidle ·xki ·T ki +
∑
i∈V

∑
j∈pred(i)

∑
m∈K

pidle ·xki ·xmj · D
m,k
j,i (5.18)

where pidle is the power consumption when the network interface of the terminal is in

idle mode.

5.4 Proposed multitasking offloading policy

As introduced earlier, our objective is to decide which task must be offloaded and to

which server, in order to minimize the energy consumption of the user terminal. Formally,

considering the optimization problem presented in 5.1, we need to determine the best

values of xki , ∀i ∈ V,k ∈K . Unfortunately, this optimization problem is NP-complete,

since it can be easily reduced to a classical scheduling problem by putting the idle

energy consumption to zero and removing the constraint C1, which is considered as

NP-complete [81]. Considering the NP-hardness of the problem, it is difficult to achieve

an optimal solution. In order to solve the problem 5.1 and get a feasible solution in a

reasonable amount of time, we resort to heuristic based solution. We propose a new
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offloading heuristic, named eTOMEC for Elastic Task graph Offloading in Mobile Edge

Computing environment, which consists of two steps.

The first step of eTOMEC is built on top of the well-known tasks scheduling approach

Bottom Level Early Start Time (BL-EST) [82]. The main objective of BL-EST is to map

a graph of tasks onto a set of processors, in order to reduce the completion time of the

application. It uses an ordered list of tasks to decide with task to schedule first. In this

case, they assign to each task a priority, named as bottom level function, and defined as

the largest weight path from the current task to the exit task, including the processing

time and communication time. Unfortunately, unlike BL-EST, our communication time

depends on where the task is scheduled (i.e. offloading server) and thus the necessary

delay to send both source code and data to that server. In this case, we propose to

assign to each task a new priority considered as an upper-bound of the bottom level

function, which corresponds to the worst case offloading decision. Formally, the priority

assigned to each task is formulated as following:

bl(i) =max
k∈K

(T ki + srki ) +


0 if succ(i) = ∅

max
j∈succ(i)
k,m∈K

(bl(j) +Dk,mi,j ) otherwise
(5.19)

As we can see, from equation 5.19, that the priority assigned to each task is defines

as the sum of: (i.) the maximum time necessary to transmit the source code and to

schedule the task i, among all possible servers k ∈K , plus (ii.) the maximum, among

all the successors of the task i, of the priority assigned to that successor plus the time

required to send the data dependency between i and that successor, in the case where

the choice of offloading servers is the most unfavorable. This function guarantees an

upper-bound of the bottom level function.

Once we assign to each task its priority, we define two sets noted as Sready and Sexec.

Sready is an ordered set according to the priority assigned to each task i, i.e. bl(i). At

any moment, Sready contains only tasks that are considered as ready to be scheduled,

which means tasks that have no predecessor or have all their predecessors already been

scheduled. Initially, this list contains only the first task of the DAG, since it has no

predecessor. Once scheduled, a task i will be removed and inserted onto the second set

Sexec. Thus, Sexec contains only tasks that have been already scheduled. Finally, as

in [82], we use heap data structure as implementation for Sready in order to make the
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priority-based insertion of tasks more efficient.

As illustrated in Algorithm 4, at each iteration, the task i with the highest priority

in Sready is selected to be offloaded on the server that would result to the lowest energy

consumption for the mobile terminal. In order to select the best offloading server, we

choose the server that minimize the following optimization problem:

Minimize
k∈K

(E li +E txi +E rxi +
∑

j∈pred(i)

∑
m∈K
m,0

pidle ·xki ·xmj · D
m,k
j,i

+ pidle ·xki ·T ki )

Subject to: C3

(5.20)

where E li , E txi and E rxi are defined in 5.14, 5.15 and 5.16, respectively. The fourth term

is an upper-bound of the energy consumed in the idle mode, when all the predecessor of

the task i have to send their dependency data to the server k. The last term correspond

the energy consumed in the idle mode when the task i is executed by the server k.

The basic idea of this objective function is to select the server that minimize the extra

amount of energy that could be consumed by the user terminal when scheduling the

task i on the server k. Finally, the only constraint that we consider in this problem is

C3, which guarantees that the non-offloadable tasks must be performed at the user’s

terminal.

After selecting the optimal offloading server k∗, we move the task i from the Sready
to Sexec and we update the decision variable xki . We also check if there are new tasks

that can be inserted in Sready. Finally, we select the next task with the highest priority,

and we iterate again until Sready becomes empty.

Once we assign all the tasks, the second step is to ensure that the obtained solution

is feasible, which means that it must respect the completion time constraint C1. In

the case when the obtained solution is not feasible, we propose to merges some tasks

in order to reduce the completion time of the application. Basically, we select from

the DAG the adjacent tasks (i, j) that are offloaded to different servers and have the

highest edge weight. More precisely, the tasks with the most important dependency

data transfer time. Thereafter, among the two possible locations, we decide to merge
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the two tasks to the server that reduce the most the application competition time. This

step is repeated until we obtains a feasible solution.

Algorithm 4 Pseudo code of eTOMEC approach
Output: The offloading decisions X , energy consumption Z ;
Input: Tasks graph G = (V,E), servers and bandwidth allocation;
1: Step 1:
2: bl ← computePriority(G);
3: Sready ←∅ ;
4: insert task 1, entry task , in Sready with key bl(1);
5: avk← 0, Sexec←∅;
6: while ( Sready , ∅) do
7: i ← extractMax(Sready);
8: compute ftki using equation 5.11, ∀k ∈ K;
9: k∗← solution of problem 5.20;

10: xk
∗
i ← 1, avk∗ ← ftk

∗
i ;

11: Insert next ready tasks into Sready using bl as key;
12: Add task i to Sexec
13: end while
14: Step 2:
15: Smerge← All edges in G with key as the edge weight;
16: while (ft0n > tmax and Smerge , ∅ ) do
17: ft ← ft0n, (i,j) ← extractMax(Smerge);
18: k, m ← servers that performs tasks i and j;
19: if (k , m) then
20: xki = 0, xmi = 1, ft1 ← compute new ft0n;
21: xki = 1, xmi = 0, xmj = 0, xkj = 1; ft2 ← compute new ft0n;
22: if (ft1 > ft2 and ft2 < ft) then
23: merge task i with j;
24: else if ft1 < ft then
25: merge task j with j;
26: end if
27: end if
28: end while

5.5 Performance evaluation

In this section, we discuss the complexity of the eTOMEC offloading policy. Then, we

study its performances over different configurations and scenarios.

5.5.1 Complexity analysis

In the worst case eTOMEC iterates n · (K + 1)2 for the function computePriority

using 5.19 to compute priority of tasks. In addition to n(log(n) + 2(K + 1)) iterations

for the step 1, n times in the first while loop. For each iteration, it delete and insert
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tasks in the heap which has a complexity of log(n). In addition to 2 · (K+ 1) operations

to select the best server for each task, Similarly, it iterates |E|(log(|E|) + 4(K + 1)) in

the second while loop, the merge phase. In conclusion, the total complexity of eTOMEC

approach is O(n ·K2 +n · log(n)+n ·K+ |E| · log(|E|)+ |E| ·K). That makes eTOMEC

a quick algorithm to solve problem 5.1.

5.5.2 Results analysis

In this section, we discuss the simulation results of eTOMEC. We consider a MEC

environment with a wireless access network composed of one AP and 4 edge servers and

1 remote cloud. In addition, we consider that the edge servers have the same computing

capability to perform the tasks. As in [68, 69], we assume that both the cloud and edge

servers has a computing capability of 5 Giga cycles/s. Moreover, we suppose that user

terminal has a local computing capacity of 1 Giga cycles/s.

Table 5.1: The parameter setting of the network interface

Parameter Value Parameter Value
B 5 Mhz υ 50
B 256 brx = btx 10−3

σ2 5× 10−5 ptx 1.28 Watts
prx 1.18 Watts pidle 0.1 Watts
pap 10 Watts htx 0.1
d 10 hrx 0.1

Table 5.1 shows the wireless network parameter settings as presented in [37, 42, 43].

For the backhaul network, we use the parameters presented in [68, 69]. Finally, the

user wants to perform one application composed of 14 tasks as shown in Figure 5.2.

To understand the application graph effect, we assume that all the tasks require the

same computing resource and transmit the same amount of data. Every task requires

30 Giga cycles [33, 68]. The dependencies between tasks is set to 300KB and the

source code data to 2MB. The results of eTOMEC are compared with the following

approaches:

• WFM [83]: A list-based scheduling approach. First, it determines the level of the

tasks in a breadth-first-search traversal of the DAG. Then, the tasks in each level

are assigned to different servers using a round robin algorithm.

• HEM [83]: A clustering-based approach. Initially, it assigns the (K+2) heaviest

tasks to the servers. Then, it sorts the edges in decreasing order of their weight.



113

The endpoints, tasks, of each edge are clustered if the completion time does not

increase.

• MCOP [33, 84]: A DAG-based offloading algorithm with one single edge server.

Performance comparison

In Figures 5.4 and 5.5, we investigate the offloading performance of the four offloading

policies over different DAG-based applications. We notice that eTOMEC outperforms

WFM, HEM and MCOP in both of total energy consumption and completion time. The

only exception is for the sequential graph, this is because of the consideration of offloading

to multi-edge servers by eTOMEC, in the sequential graph all the offloaded tasks are

assigned to the same edge server in order to reduce the communication cost between

those tasks. In addition, the figures show that depending on the application graph

eTOMEC achieves better performance than the classical tasks scheduling approaches

WFM and HEM. For example, eTOMEC and WFM are 6.94% better than HEM in

energy consumption and 25.67% in completion time with parallel graph. However,

eTOMEC and HEM have the same performance for Fan In/Fan Out. Furthermore, the

energy consumption of the application depends highly on the graph. This conclusion

means that the composition of the application and the tasks-dependeny graph affect

the energy consumption and the completion time of the application.

Figure 5.4: Energy consumption comparison for different application graphs
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Figure 5.5: Completion time comparison for different application graphs

The effect of the number of the available edge servers

In order to evaluate the effect of the application graph on the performance of the

computation offloading, we study in Figures 5.6 and 5.7, the total energy consumption

the completion time when varying the number of available edge servers, when using

our approach (eTOMEC). We observe that energy consumption is highly related to

the degree of tasks that are executed in the user terminal, which is the case of tasks

1 and 14. For instance, in the case of sequential graph the user terminal uploads the

data related to the dependency between tasks 1 and 2 and download the data between

tasks 13 to the task 14. On the other hand, in the case of parallel graph the user

terminal have to send and receive data from several tasks. Hence, the additional energy

consumption is due to upload and the download of data from remote and local tasks.

Moreover, we note that completion time decreases when we increase the number of

available edge servers, except for sequential graph. In addition, we can observe that

the completion time reaches a constant value after a given number of available edge

servers. This number depends on the graph, for example, for sequential graph it is 1,

but it is equal to 12, 4 and 2 for parallel, Layer by Layer and Fan In/Fan Out graphs,

respectively. This is due to the maximum number of tasks that we can perform in

parallel. In Figure 5.6 depicts also the same behavior for the total energy consumption.

As conclusion, the application graph affects strongly the performance of offloading.
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Figure 5.6: The energy consumption of eTOMEC for different application graphs

0 2 4 6 8 10 12 14
Number of edge servers in the MEC

80

90

100

110

120

130

140

To
ta

l a
pp

lic
at

io
n 

C
om

pl
et

io
n 

tim
e(

Se
c)

Sequantial
Parallel
Layer by Layer
Fan In/Fan Out

Figure 5.7: Completion time of eTOMEC for different application graphs
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The effect of the task-dependency graph

To analyze more deeply the effect of the application’s graph on the performance of

the offloading approach, we evaluate the performance of the different approach on a

generic application. To generate a DAG for this generic application, we use Erdős–Rényi

graph generation model [85]. This model constructs a DAG composed of n tasks by

connecting the tasks between themselves using a dependency probability p. In order

word, the dependency between every two tasks is the set to a given probability p.

To have a representative sample, we generate 200 DAGs for each number of tasks n

and dependency probability p. The Figures bellow depict the performance of different

approach for the generated task-dependency graphs.
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Figure 5.8: Average energy consumption under probability p for DAG of 50 tasks.

In Figure 5.8 and 5.9, we study the average total energy consumption and completion

time of cloud-vision composed of 50 tasks according to different probability p. We

observe that when the dependency between tasks is low eTOMEC achieves better

performance. For example, for p= 0.1 the energy consumption is 82.63 joules, 121.18

joules and 119.72 joules for eTOMEC, HEM and MCOP, respectively, which makes

eTOMEC 30% better than the closest approach (MCOP). However, when the probability

p increase eTOMEC, HEM and MCOP become equivalents. This is due to fact that
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Figure 5.9: Average completion Time under probability p for DAG of 50 tasks.

when p increases the graph has more edges. Consequently, the offloading approach uses

less edge servers to performance the tasks to reduce the energy consumption and the

completion time.

In Figure 5.10 and 5.11, we investigate the effect of number of tasks in the application

graph on the offloading approach where the probability p = 0.2. From the figure, we

note that when the number of tasks is less than 20, the approaches eTOMEC, HEM

and WFM have the similar performances and they are better than MCOP. However,

when the number of tasks goes up eTOMEC and HEM become better. Our proposal

eTOMEC achieves better performance in both energy consumption and completion

time than HEM. As a conclusion from these figure, eTOMEC offloading approach is

very efficient for multitasking application in multi-edge server MEC environment.
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Figure 5.10: Average energy consumption under number of tasks in the graph (p= 0.2).
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Figure 5.11: Average completion time under number of tasks in the graph (p= 0.2).



119

5.6 Conclusion

This chapter presents a new computation offloading approach for multitasking application

in multi-edge server MEC environment. The proposed offloading approach decides which

tasks should be offload and to which server. We formalize this offloading problem as

a Zero-one Integer Programming problem. Thereafter, and due to the NP-hardness

of the problem, we propose a heuristic approach named eTOMEC. Using our efficient

offloading algorithm, we where able to scale the number of concurrent offloaded tasks

accordingly with the number of available edge servers, while taking into consideration

tasks dependencies.

The numerical results show that our proposed offloading approach, eTOMEC,

achieves better performances in both of completion time and energy consumption than

several literature approaches. In addition, we show the efficiency of eTOMEC for

multitasking application whatever the task-dependency graph. We conclude that the

performance of computation offloading approach relies strongly on the application’s

task-dependency graph.
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Conclusion and future work

This chapter summaries the research works on computation offloading efficiency for

multi-edge server MEC presented in this manuscript. In addition, it highlights some

directions to pursue in future works in this area.

6.1 Summary of contributions

The new generation of mobile terminals, such as smartphones, tablets, and ultra-books,

suffers from lacking computing resource and battery autonomy. The computation

offloading technique is a promising solution to overcome this problem since it promises

to save battery power and enriches the computing capabilities of the mobile terminals.

In this thesis, we have explored the Mobile Edge Computing environment as a way to

extend the computing capabilities of the mobile terminals through the offloading. In

this thesis, we introduce new offloading approaches to improve the performance of a

resource-hungry application in MEC.

Chapter 3 investigates the offloading computation for multi-user multi-edge server

scenario. It proposes an efficient offloading policy, which considers the offloading decision

and the edge server selection for mobile terminals. The proposed policy distinguish

between : 1.) applications that are split-up into client-server model where the server

is already available on the MEC and where the application need to offload only the

input data and 2.) the applications that need to transmit its source code in addition to

the input data to the MEC. Based on the application model, the proposed approach
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determines the offloading decision and the best target edge server where to perform

computation in order to minimize the terminals’ energy consumption.

Chapter 4 extends the offloading policy proposed in chapter 3 to two-tired MEC

environment. It studied the impact of the remote cloud on the performance of the

computation offloading. The new approach considers all the servers, including the cloud,

and offloads to the best ones in terms of energy consumption. To assess the behavior

of this approach on real scenario, we designed and implemented a new computation

offloading middleware for Android Applications that uses the proposed algorithm for

the computation offloading. Using this middleware, we studied the performances of

different real applications.

Finally, chapter 5 studies the effect of the application on the offloading performance.

Basically, it considers multitasking application where tasks are interdependent on each

other according to a directed graph. The basic idea is to use multiple edge server in order

to maximize the number of tasks that can be executed in parallel and thus maximizing

the offloading performance such as the energy consumption and the completion time of

the application.

6.2 General discussion

At the end of this thesis, we conclude that the computation offloading to MEC is a very

promising technique to enhance the mobile terminal capabilities. However, its efficiency

depends on many considerations. The application’s characteristics play an important

role to determine whether if the offloading is beneficial or not and how it affects the

offloading location in the MEC. For example, the applications that send a huge amount

of data compared to the required computation are preferred to be offloaded to an edge

server near to the user. However, applications that required more computation can

be offloaded either to MEC servers or to the remote cloud. Moreover, we note that

determining the metric to measure to performance depends also on the application’s

requirements. Minimizing the energy consumption gives a good solution, but for some

applications it is more important to consider the completion time. A hybrid metric can

be a good option. Finally, we also noticed that the way an application is developed

impacts considerably the offloading. Indeed, the architecture of the application and its

task-dependency graph determines how the offloading can be beneficial.
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6.3 Future works and perspectives

Even through that this thesis proposes efficient policies, we believe that they can be

further extended to more complex cases directions to improve and enhance these policies.

In the following, we list some directions that can be investigated in future works:

• Network bandwidth allocation: This thesis was mainly focused on the of-

floading decision and the selection of the edge server to perform offloaded tasks,

the communication resource, network bandwidth, was assumed to be allocated

in advance. In practice, the wireless bandwidth affects highly the offloading.

Consequently, it is very important to extend the proposed approaches by con-

sidering wireless bandwidth allocation to each mobile terminal. The resulting

joint-optimization problem will be more complex to solve, new approaches are

required to solve it.

• Computation resource allocation: Similar to the bandwidth allocation, the

computation resource allocation is supposed to be done in advance. However,

the efficiency of the offloading depends strongly on the processing time which

depends on this resource. So, it is important to consider dynamic computation

resource allocation and study the effect of this allocation on the performances of

the applications. As for the bandwidth allocation, the resulting offloading problem

will be a joint optimization problem.

• Offloading middleware: The experiments presented in this thesis considered

only the mono-task applications. The proposed offloading middleware do not

consider multitasking applications. However, it is important to evaluate, using

real experimentation, the performance of multitasking offloading applications. In

addition, it is important to consider different virtualization technologies in order to

evaluate the best way to implement a MEC platform. Container-based offloading

could be a promising solution for the middleware implementation.

In addition to the directions listed above, we think that the following general

directions must also be addressed as long term future works on computation offloading

in MEC:

• User mobility: One of the characteristics of mobile terminals is the mobility of

the user. Indeed, in such an environment the user moves from location to another



124 Chapter 6. Conclusion and future work

and moving from one base station to another. This mobility introduces a new

challenge to the computation offloading. Indeed, the geographical proximity of the

edge server has a significant impact on the offloading performances. One possible

approach is to select the edge server according not only on the current location of

the mobile terminal but also to the future locations.

• Pricing: It is clear that the MEC’s servers are deployed by a third party. Thus,

a pricing model for the computation plays a crucial role. The user must know

how much he pays when it offloads its computation to the MEC or to the cloud in

order to decide where to offload.

• Security: Computation offloading means that the user sends the source code

and the data of its applications to a third party, which can result in a big security

issue. Indeed, How to be sure that no copy of the user data is made? In addition,

the edge server need also to trust the user source code. Indeed, how to be sure

that the user is not transmitting a virus code to the MEC? These questions are

very challenging in the context of computing offloading. However, few works in

the literature address these issues. Consequently, it is very important to consider

the security as an important issue for real MEC deployments.
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Appendix

A.1 The Proof of Theorem 3.2 of chapter 3

Given the objective function of problem 3.24, which is a function with the variable

am,n, we can find the minimum following the derivative sign rules [67]. Let Fm,n be the

derivative of the objective function, Ze,km,n +Z lm,n, to the variable am,n. Fm,n is given

by the following expression:

Fm,n = upm,n · (
P txm,n ·βm,n + 1−βm,n

wtxm,n
+
βm,n ·P idlem,n + 1−βm,n

W bh,k
m

)+

γm,n · (
βm,n ·P idlem,n + 1−βm,n

ck
−βm,n ·κm,n · (fm,n)2− 1−βm,n

fm,n
) (A.1)

By unification of the denominators, the equation A.1 can be rewritten as follows:

Fm,n = upm,n · (
[P txm,n ·βm,n + 1−βm,n] ·W bh,k

m + [βm,n ·P idlem,n + 1−βm,n] ·wtxm,n
wtxm,n ·W

bh,k
m

)+

γm,n · (
[βm,n ·P idlem,n + 1−βm,n] · fm,n− [βm,n ·κm,n · (fm,n)3 · ck]− [1−βm,n] · ck

ck · fm,n
)

The derivative function Fm,n is a constant and does not change when the variable am,n
does. Consequently, we have three cases according to the derivative sign rules [67]:
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Case 1: Fm,n < 0, in this case the objective function of problem 3.24 is monotonically

decreasing. As a result, its minimum is achieved at am,n = 1. This case occurs when:

upm,n
γm,n

<
wtxm,n ·W

bh,k
m

ck · fm,n
×

([βm,n ·P idlem,n + 1−βm,n] · fm,n− [βm,n ·κm,n · (fm,n)3 · ck]− [1−βm,n] · ck)
([P txm,n ·βm,n + 1−βm,n] ·W bh,k

m + [βm,n ·P idlem,n + 1−βm,n] ·wtxm,n)

Case 2: Fm,n > 0, there the objective function of problem 3.24 is monotonically

increasing. Consequently, its minimum is achieved at am,n = 0. This case occurs when:

upm,n
γm,n

>
wtxm,n ·W

bh,k
m

ck · fm,n
×

([βm,n ·P idlem,n + 1−βm,n] · fm,n− [βm,n ·κm,n · (fm,n)3 · ck]− [1−βm,n] · ck)
([P txm,n ·βm,n + 1−βm,n] ·W bh,k

m + [βm,n ·P idlem,n + 1−βm,n] ·wtxm,n)

Case 3: Fm,n = 0, there the objective function of problem 3.24 is constant and does not

change. So, at the values of am,n give the same cost. This case occurs when:

upm,n
γm,n

=
wtxm,n ·W

bh,k
m

ck · fm,n
×

([βm,n ·P idlem,n + 1−βm,n] · fm,n− [βm,n ·κm,n · (fm,n)3 · ck]− [1−βm,n] · ck)
([P txm,n ·βm,n + 1−βm,n] ·W bh,k

m + [βm,n ·P idlem,n + 1−βm,n] ·wtxm,n)

Ending of the proof. �
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Titre : Algorithmes pour le déchargement de tâches sur serveurs de périphérie

Mots clefs : déchargement de calculs, cloud, mobile edge computing, terminal mobile,
partitionnement d’application, décomposition de Lagrange, graphe de tâches, DAG.

Résumé : Le déchargement de calculs est l’une des solutions les plus prometteuses pour surmonter
le manque de ressources au niveau des terminaux mobiles. Elle permet l’exécution d’une partie ou
de la totalité d’une application mobile dans le cloud. L’objectif est d’améliorer les temps d’exécution
et de réduire la consommation énergétique. Malheureusement, le cloud est généralement éloignés
des équipements terminaux. Ce qui rend cette approche souffrir de délais importants et fluctuants.
Cela est particulièrement problématique pour certaines applications pour lesquelles un temps de
réponse réduit est nécessaire. Pour réduire ce délai d’accès, l’une des approches émergentes est de
pousser le Cloud vers la bordure du réseau. Cette proximité permet aux applications mobiles de
décharger leurs tâches et données vers un Cloud “local” ou “Edge Cloud”.
Dans cette thèse, nous nous concentrons sur le déchargement de calculs dans une architecture de
type mobiles (Mobile Edge Computing – MEC), composée de plusieurs serveurs de périphérie.
Notre objectif est d’explorer de nouvelles stratégies de déchargement efficaces afin d’améliorer les
performances des applications tant du point de vue délais de calcul que consommation énergétique,
tout en garantissant les contraintes de temps d’exécution des applications. Notre première
contribution est une nouvelle stratégie de déchargement sur plusieurs serveurs de périphérie. Nous
proposons par la suite une extension de cette stratégie en incluant également le Cloud. Nous
évaluons ces stratégies tant du point de vue théorique que pratique avec l’implémentation d’un
middleware de déchargement. Finalement, nous proposons une nouvelle approche élastique dans
le cas d’applications multitâches caractérisées par un graphe de dépendances entre les tâches.

Title : Algorithms for Tasks Offloading on Multiple Mobile Edge Servers

Keywords : computation offloading, cloud, mobile edge computing, mobile terminal, application
partitioning, Lagrangian decomposition,task graph, DAG.

Abstract : Computation offloading is one of the most promising new paradigm to overcome the
lack of computational resources in mobile devices. Basically, it allows the execution of part or all
of a mobile application in the cloud. The main objective is to reduce both execution time and
energy consumption for the mobile terminals. Unfortunately, even if clouds have rich computing
and storage resources, they are usually geographically far from mobile applications and may suffer
from large delays, which is particularly problematic for mobile applications with small response
time requirements. To reduce this long delay, one of the emerging approach is to push the cloud to
the network edge. This proximity gives the opportunity to mobile users to offload their resources
consuming tasks to “local” cloud for processing. An Edge Cloud can be seen as small data center
acting as a shadow image of larger data centers. This geographical proximity between mobile
applications and edge cloud means that the access delay can be greatly reduced, but also higher
throughput, a greater responsiveness and better scalability.
In this thesis, we focus on computation offloading in mobile environment (Mobile Edge Computing
- MEC), composed of several edge servers. Our goal is to explore new and effective offloading
strategies to improve application performance in both execution time and energy consumption,
while ensuring application requirements. Our first contribution is a new offloading strategy in the
case of multiple edge servers. Then we extend this strategy to include the Cloud. Both strategies
have been evaluated theoretically and experimentally by the implementation of an offloading
middleware. Finally, we propose a new elastic approach in the case of multitasking applications
characterized by a graph of dependencies between the tasks.
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