
École Doctorale Galilée —
Université Paris 13 LIPN — CNRS,

UMR 7030, F-93430

On the theory and practice of
updatable parametric timed

automata

A thesis

in computer science

presented to the faculty of the graduate
school of Université Paris 13 in partial
fulfilment of the requirements for the

degree of Doctor of Philosophy in Computer
Science

by Mathias Ramparison
Supervisors:

Dr. Étienne André
and Dr. Didier Lime

September 5, 2019

Doctoral committee:
Patricia Bouyer Directrice de recherche, LSV, ENS Cachan Rapportrice
Jaco van de Pol Professeur, Aarhus University Rapporteur
Béatrice Bérard Professeure, Université Pierre et Marie Curie Jurée extérieure
Frédéric Herbreteau Mâıtre de Conférences, Bordeaux INP Juré extérieur
Laure Petrucci Professeure, Université Paris 13 Jurée interne
Christophe Fouqueré Professeur, Université Paris 13 Juré interne

On the theory and practice of updatable para-
metric timed automata

Keywords: parametric timed automata, parameter synthesis, reachability,
decidability, attack-fault trees.

Abstract

As cyber-physical systems become more and more complex, human debugging is not
sufficient anymore to cover the huge range of possible behaviours. For costly critical
systems where human lives can be endangered, formally proving the safety of a system
is even more crucial. This is done by defining a formal specification for the system, and
then performing the algorithmic verification that the system satisfies some formally
specified properties. With this precise and exhaustive description of a system, the
usual vagueness of human language is eliminated. In this thesis, we focus on the
verification of timed concurrent systems. Time-dependent systems are very hard to
verify, especially when the exact value of timing constants remains unknown. These
unknown timing constants are called parameters. We study several subclasses of a
parametric extension of the well-known formalism called Timed Automata. We mainly
focus on the reachability decision problem, that asks whether there exists concrete
values for these parameters such that a bug state can be reached in the system. We
further address for these subclasses a computation problem that is to synthesise the
set of parameter values for which a state is reachable. Finally, we apply our work to
the security and safety of cyber-physical systems and infrastructure: we extend with
parameters a classic formalism to model attack and failure scenarios called attack-fault
trees, and propose an implementation of the translation of parametric attack-fault trees
to parametric timed automata. This allows us to leverage the verification techniques
and tools available for the latter for the analysis of (parametric) attack-fault trees.

1

Sur la théorie et l’application des automates
paramétrés temporisés avec mises à jour.

Mots-clés: automate temporisé paramétré, synthèse de paramètres, accessibilité,
décidabilité, arbres d’attaque et de défaillance.

Résumé

À mesure que les systèmes cyber-physiques deviennent de plus en plus complexes,
le débogage humain ne suffit plus pour analyser le grand nombre de comportements
possibles. Pour les systèmes critiques coûteux où des vies humaines peuvent être mises
en danger, il est encore plus crucial de prouver formellement la sécurité d’un système.
Pour ce faire, on définit une spécification formelle pour le système, puis on vérifie
algorithmiquement que le système satisfait à certaines propriétés spécifiées de manière
formelle. Avec cette description précise et exhaustive d’un système, le flou habituel du
langage humain est éliminé. Dans cette thèse, nous nous concentrons sur la vérification
des systèmes concurrents temporisés. Les systèmes dépendant du temps sont très diffi-
ciles à vérifier, en particulier lorsque la valeur exacte des constantes de synchronisation
reste inconnue. Ces constantes de synchronisation inconnues sont appelées paramètres.
Nous étudions plusieurs sous-classes d’une extension paramétrique d’un formalisme
bien connu, les automates temporisés. Nous nous concentrons principalement sur le
problème de décision de l’accessibilité, qui pose la question de l’existence de valeurs
concrètes pour ces paramètres telles qu’un état de bogue peut être atteint dans le
système. Nous abordons en outre pour ces sous-classes un problème de calcul consistant
à synthétiser l’ensemble des valeurs de paramètres pour lesquelles un état est accessible.
Enfin, nous appliquons nos travaux à la sécurité des infrastructures et des systèmes
cyber-physiques : nous étendons avec des paramètres un formalisme classique pour
modéliser des scénarios d’attaque et de défaillance, appelés arbres de défaillance et
d’attaque, et proposons une implémentation de la traduction d’arbres de défaillance et
d’attaque paramétriques en automates paramétrés temporisés. Cela nous permet de
tirer parti des techniques et des outils de vérification disponibles pour ce formalisme
pour l’analyse des arbres de défaillance et d’attaque (paramétriques).

2

Contents

1 Introduction 5

2 Preliminaries 9
2.1 Timed Automata and Parametric Timed Automata 10

2.1.1 Syntax . 10
2.1.2 Concrete Semantics . 12

2.2 Timed CTL . 12
2.3 Problems . 13
2.4 Related work . 14

2.4.1 Updatable Timed Automata 14
2.4.2 Parametric Timed Automata 15
2.4.3 Other formalisms using parameters 15
2.4.4 Applications of timed automata to security 16

3 Timed automata with parametric updates 17
3.1 Introduction . 17

3.1.1 Contribution . 17
3.1.2 Outline . 18

3.2 Update-to-parameter Timed Automata 18
3.2.1 Syntax . 18

3.3 Undecidability . 20
3.4 Decidability . 23
3.5 Conclusion . 27

4 Parametric updates in parametric timed automata 28
4.1 Introduction . 28

4.1.1 Contribution . 28
4.1.2 Related Work . 29

4.2 Preliminaries . 29
4.3 A decidable subclass of U2P-PTAs 30
4.4 Operations on p–PDBMs . 36

4.4.1 Non-parametric update 36
4.4.2 Parametric update . 42
4.4.3 Time elapsing . 43
4.4.4 Non-parametric guard . 80
4.4.5 Parametric guard . 80

4.5 Parametric region automaton . 81
4.6 Decidability of EF-emptiness and synthesis 82

3

4.7 Case study . 86
4.8 Conclusion and perspectives . 87

5 TCTL model checking lower/upper-bound
parametric timed automata without invariants 88
5.1 Introduction . 88

5.1.1 Motivation . 88
5.1.2 Contribution . 89
5.1.3 Outline . 90
5.1.4 Additional notations . 90
5.1.5 Lower/Upper-bound parametric timed automata 90

5.2 Undecidability of TCTL emptiness for U-PTAs 92
5.3 Undecidability for bounded U-PTAs 97
5.4 Decidability of flat-TCTL for L/U-PTAs without invariants . . . 100
5.5 Conclusion and perspectives . 102

6 Parametric analyses of attack-fault trees 104
6.1 Introduction . 104

6.1.1 Contribution . 105
6.1.2 Related work . 105
6.1.3 Outline . 105

6.2 Attack-fault Trees . 106
6.2.1 AFT leaves . 106
6.2.2 AFT gates . 106

6.3 Parametric weighted timed automata 107
6.4 Translation of AFTs to PTAs . 111

6.4.1 Overview of the translation 111
6.4.2 Translation of leaves . 111
6.4.3 Translation of gates . 112
6.4.4 Top-level automaton . 115

6.5 Implementation of the translation 116
6.5.1 IMITATOR . 116
6.5.2 Translation from AFTs to PWTAs 117

6.6 Case studies . 118
6.6.1 Compromising an IoT device 118
6.6.2 SpaceX rocket Falcon 9 explosion 119

6.7 Conclusion . 121

7 Conclusion 122
7.1 Summary . 122
7.2 Perspectives . 123

4

Chapter 1

Introduction

PASADENA, Calif. – NASA’s Mars rover Curiosity is expected to resume
science investigations in a few days, as engineers quickly diagnosed a software
issue that prompted the rover to put itself into a precautionary standby status
over the weekend.

Curiosity initiated this automated fault-protection action, entering “safe
mode” at about 8 p.m. PDT (11 p.m. EDT) on March 16, while operating
on the B-side computer, one of its two main computers that are redundant to
each other. It did not switch to the A-side computer, which was restored last
week and is available as a back-up if needed. The rover is stable, healthy and in
communication with engineers.

The safe-mode entry was triggered when a command file failed a size-check by
the rover’s protective software. Engineers diagnosed a software bug that appended
an unrelated file to the file being checked, causing the size mismatch. NASA,
March 18, 2013.

“I tested several configurations, there is no bug. My software is safe”. Perhaps
this is a sentence you already said. Not much to worry about in case you are
wrong, as you just coded a calculator for your weekly expenses. Much more
if you are working on a 2.5 billion USD NASA rover. It is supposed to work
24/7 at approximatively 76 million kilometers from Earth, and embeds a lot of
different softwares, components, tools, hardwares that must work together like a
symphony. These are developed by different teams of different people from all
around the world.

Several safety questions have to be answered. How can we be sure that the
brake is functional? That there is no flaw in a hardware component? That there
is no bug in the code? Or, as we have seen in the above text, how can we be
sure that a unrelated file will not be added to the current checked file, causing a
memory overflow?

Of course, in most cases given a system there is an infinite number of possible
behaviors so it is impossible to test them all. Moreover, as systems become more
and more complex, human debugging is not sufficient anymore. Curiosity rover is
one perfectly fitting example. This is where formal methods come on track. It is
a mathematical way to model some system and properties often using a temporal
logic. With this precise and exhaustive description of a system, usual vagueness
of human language is eliminated. For instance, abstract interpretation [Cou12]
allows to verify the semantics of programming languages as well as to program

5

static analysis.
Besides, theorem proving allows to formally prove mathematical theorems

using computer science. Many tools exist, including ISABELLE/HOL [NPW02]
and COQ [HH14].

Further, model-checking is an automated way, given as an input a model of a
system and a property, to decide in human language whether the system satisfies
the property. Many tools exist such as NuSMV [CCGR00] and are used in the
industry. This work mainly focuses on models of timed systems, also called
formalisms, that is, the way to express as accurately as possible a system with
timing constraints—critical deadlines, periods—so that usual properties usually
defined with a temporal logic in classical literature can be checked. This results in
timed model-checking, and parametric timed model-checking when some timing
constants are not precisely known, as we will present in the following.

A well-known formalism is Timed Automaton [AD94] that has been widely
studied for nearly 30 years.

Timed automata (TAs) [AD94] represent a powerful formalism to model
and verify systems where concurrency is mixed with hard timing constraints.
Practical applications include verification of security protocols [CEHM04, JP07]
and securiy analysis [KPS14].

TAs are an extension of finite-state automata with clocks, i. e., real-valued
variables, that can be compared to integer constants and updated to 0 along
edges (called reset in the literature). TAs benefit from many decidability results
such as the reachability of a discrete location which is PSPACE-complete [AD94],
or the emptiness of its accepted language (and some undecidability results too,
such as language inclusion). Decision problems in TAs is still a topical research
subject [HSTW16, HSW16].

Although TAs seem to be able to model many interesting problems related
to timed concurrent systems, several extensions were studied. For instance,
TAs where clocks can be updated to integer constants have been introduced
in [BDFP04] and interesting decidability results have been obtained, depending
amongst other restrictions of the nature of the clock constraints (e. g., diagonal-
free, i. e., whether clocks are compared to each other) and the updates of clocks
(e. g., whether it is allowed to update a clock to its current value increased by
some rational constant).

In a different direction, stopping the time elapsing of at least one clock in
a TA gives stopwatch automata, for which the reachability problem becomes
undecidable [CL00].

Moreover, TAs are supported by many state-of-the-art model-checkers such
as UPPAAL [LPY97] and PAT [SLDP09].

Timed automata may turn inappropriate to verify systems where the timing
constants are subject to some uncertainty or can range in intervals, where clocks
suffer from imprecision—often studied as robustness problems [BMS13]—or
when they are simply not known at an early design stage. TAs cannot be used
when constants are taken from a dense interval, particularly when it is a real
value. In addition, if we want to verify a property for a set of constants using
traditional model checking, we have check the property for each value of the set,
which can be very efficient for a small set of values but becomes very expensive
for larger ones. Finally, when a constant is supposed to be 5, what if it is
practically encoded as 4.99... This highlights the need of unknown constants in
our formalism, also called parameters.

6

Extending timed automata with parameters in guards in place of integers
gives parametric timed automata (PTAs) [AHV93] and alleviates this drawback
by allowing parameters (unknown constants) in the timing constraints. In
the PTA literature, the main problem studied is the reachability emptiness,
or EF-emptiness (“is the set of timing parameter valuations for which a given
location is reachable empty?”). Nonetheless, all non-trivial problems are unde-
cidable for PTAs (see [And19] for a survey), especially AF-emptiness (“is the
set of timing parameter valuations such that a given location is unavoidable
empty?”) [ALR16a].

Only a few decidability results have been shown for subclasses of PTAs, such as
L/U-PTAs [HRSV02, BL09, AL17] and reset-PTAs [ALR16a]. These parametric
models can be checked using model-checkers such as IMITATOR [AFKS12]. Other
formalisms with parameters are studied in the literature, such as Parametric
Timed Petri Nets [VP99, TLR09] and are supported in model checkers such as
Roméo [GLMR05].

A more detailed section presenting decision problems considered in PTAs
is Section 2.4.2 and formal definitions of the aforementioned problems are given
in Section 2.3.

Research goal In this thesis we will define several new subclasses of PTAs,
augmented with parametric updates and focus on fresh aspects: the ability
to set a clock to a parameter i. e., an unknown constant that can be further
instantiated i. e., assigned to a concrete value (integer or rational). We will
also study L/U-PTAs without invariants. For these subclasses, we will mainly
focus on the decidability or undecidability of common classical properties of the
literature expressed in a temporal logic. Moreover the ultimate goal will be a a
computational problem that we are going to solve for a few of our subclasses: the
synthesis of the set of “good” parameter valuations for which, once instantiated,
a given property is satisfied. Following the initial inspiration of [CEHM04], we
will try to apply these formalisms with parameters to security, through modeling
timed attack scenarios.

PACS project My PhD was supported by national project ANR PACS (Para-
metric Analyses of Concurrent Systems). ANR PACS involves four laboratories:
LIPN (Paris 13), IRIF (Paris 7), LS2N (Laboratoire des Sciences du Numérique
de Nantes, formerly IRCCyN (École Centrale Nantes) and LINA (Université
de Nantes)). In addition, Kim Larsen’s group in Aalborg (Denmark) acts as a
foreign partner. This project aims to study parameters in the context of discrete
and timed/hybrid systems, both of them possibly augmented with quantita-
tive information relating to costs (e. g., energy consumption), giving cost-based
models, and probabilities in discrete or timed models.

Overview of this thesis Chapter 2 introduces the notations, defines for-
malisms and recalls problems that constitute the basis of this thesis.

In Chapter 3 we will study the ability to update clocks to parameters in TAs, a
concept we published in [ALR18b]. This work brings two new subclasses of PTAs.
One with integer-valued parameters, for which we obtain decidability results for
the EF, AF-emptiness/universality problems. In fact, we enumerate and even
synthesize parameter valuations. Another one with rational-valued parameters,

7

for which the EF, AF-emptiness/universality problems become undecidable. This
proof uses the reduction of the halting problem of a two counter machine.

In Chapter 4 we will study the ability to update clocks to parameters in
PTAs [ALR19]. This works brings a new subclass of PTAs for which the EF-
emptiness problem is decidable under the restriction that all clocks are updates
whenever a clock is compared to a parameter in a guard, or updated to a
parameter. This is an improvement of Chapter 3: we also use parameters in
guards, but add more syntactic restrictions. The proof uses a refinement of
clock regions [AD94] combined with a structure inspired of parametric bound
matrices [HRSV02] in order to obtain a finite number of sets of parameters.
Therefore, we are also able to synthesize parametric values we are interested in.

In Chapter 5 we will prove that the full TCTL logic is undecidable for U-
PTAs without invariant i. e., that one level of nesting in the formula brings
undecidability, but that flat TCTL is decidable for L/U-PTAs without invariants,
by resolving the last non-investigated liveness properties, resulting in [ALR18a].

In Chapter 6 we will define and implement the translation of attack-fault trees
(AFTs) to a new extension of timed automata, called parametric weighted timed
automata. This allows us to parametrize constants such as time and discrete
costs in an AFT and then, using the model-checker IMITATOR, to compute
the set of parameter values such that a successful attack is possible. Using the
different sets of parameter values computed, different attack and fault scenarios
can be deduced depending on the budget, time or computation power of the
attacker, providing helpful data to select the most efficient counter-measure. We
will present case studies. This work was published in [ALRS19].

Chapter 7 summarizes the thesis and concludes with a discussion on perspec-
tives.

Accepted paper in international conferences resulting from these works
are [ALR18b, ALR18a, ALR19, ALRS19].

8

Chapter 2

Preliminaries

Let N, Z, Q+ and R+ denote the sets of non-negative integers, integers, non-
negative rational numbers and non-negative real numbers respectively.

Throughout this thesis, we assume a set X = {x1, . . . , xH} of clocks, i. e.,
real-valued variables evolving at the same rate. A clock valuation is w : X→ R+.
We write ~0 for the clock valuation that assigns 0 to all clocks. Given d ∈ R+,
w + d (resp. w − d) denotes the valuation such that (w + d)(x) = w(x) + d
(resp. (w − d)(x) = w(x) − d if w(x) − d > 0, 0 otherwise), for all x ∈ X.
We assume a set P = {p1, . . . , pM} of parameters, i. e., unknown constants.
A parameter valuation v is a function v : P → Q+. Note that we consider
positive parameter valuations only as usually done in the literature [And19]. We
identify a valuation v with the point (v(p1), . . . , v(pM)) of QM+ . Given d ∈ N,
v + d (resp. v − d) denotes the valuation such that (v + d)(p) = v(p) + d (resp.
(v − d)(p) = v(p)− d if v(p)− d > 0, 0 otherwise), for all p ∈ P.

In the following, we assume / ∈ {<,≤} and ./ ∈ {<,≤,≥, >}.
A parametric guard g is a constraint over X∪ P defined as the conjunction of

inequalities of the form x ./ z, where x is a clock and z is either a parameter
or a constant in Z. A non-parametric guard is a parametric guard without
parameters (i. e., over X).

Given a parameter valuation v, v(g) denotes the constraint over X obtained
by replacing in g each parameter p with v(p). We extend this notation to an
expression: a sum or difference of parameters and constants. Likewise, given a
clock valuation w, w(v(g)) denotes the expression obtained by replacing in v(g)
each clock x with w(x). A clock valuation w satisfies constraint v(g) (denoted
by w |= v(g)) if w(v(g)) evaluates to true. We say that v satisfies g, denoted by
v |= g, if the set of clock valuations satisfying v(g) is nonempty. We say that g
is satisfiable if ∃w, v s.t. w |= v(g).

A parametric update is a partial function u : X ⇀ N ∪ P which assigns
to some of the clocks an integer constant or a parameter. For v a parameter
valuation, we define a partial function v(u) : X⇀ Q+ as follows: for each clock
x ∈ X, v(u)(x) = k ∈ N if u(x) = k and v(u)(x) = v(p) ∈ Q+ if u(x) = p a
parameter. A non-parametric update is unp : X⇀ N and a clock reset [AD94] is
unp→0 : X⇀ 0. For a clock valuation w and a parameter valuation v, we denote
by [w]v(u) the clock valuation obtained after applying v(u).

9

2.1 Timed Automata and Parametric Timed Au-
tomata

In this first section, we are going to define the formalisms we will use and extend
in this thesis.

2.1.1 Syntax

First we give the syntax of Timed Automata (TA) and an example.

2.1.1.1 Timed Automata

Definition 1 (Timed Automaton [AD94]). A TA A is a tuple A = (Σ, L, l0,X, ζ),
where: i) Σ is a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L
is the initial location, iv) X is a finite set of clocks, v) ζ is a finite set of edges
e = 〈l, g, a, unp→0, l

′〉 where l, l′ ∈ L are the source and target locations, g is a
non parametric guard, a ∈ Σ and unp→0 : X⇀ 0 is a reset function.

In a concurrent setting, timed automata can be synchronized on shared
actions. It is well-known that the product of several TAs gives a TA (see
e. g., [Mil00]). Moreover, real-time physical systems modeled with TAs can
be implemented and timed properties checked using e. g., Uppaal [BLL+95] or
IMITATOR [AFKS12].

Also note that we do not add invariants in our definition of TA, as we
will mainly focus on the state reachability property. Invariants will be added
when relevant in the definitions further chapters of this thesis. Likewise, note
that we consider only diagonal-free constraints as it is as expressive as classical
TA [BDFP04, BC13].

In order to illustrate Definition 1, we give the following example.

l1 l2 l3
press:
x := 0
y := 0

prepare:
y = 5

press again:
y ≤ 5, x > 1

x := 0

serve:
y = 8

Figure 2.1: A timed automaton modelling a coffee machine

Where we have the following elements: L = {l1, l2, l3}, l0 = l1, X = {x, y},
and Σ = {press, press again, prepare, serve}. There is four edges:

• e1 = 〈l1, g, a, unp→0, l2〉 where unp→0 sets both x, y to 0,

• e2 = 〈l2, g, a, unp→0, l2〉 where g is y ≤ 5 ∧ x > 1 and unp→0 sets x to 0,

• e3 = 〈l2, g, a, unp→0, l3〉 where g is y = 5 and

• e4 = 〈l3, g, a, unp→0, l1〉 where g is y = 8.

10

2.1.1.2 Parametric Timed Automata

As done above, we define Parametric Timed Automata (PTA) and give an
example. The definition is similar but adds a set of parameters (unknown
constants) P, and allows parameters to be used in guards, therefore becoming
parametric guards.

Definition 2 (Parametric Timed Automaton [AHV93]). A PTA A is a tuple
A = (Σ, L, l0,X,P, ζ), where: i) Σ is a finite set of actions, ii) L is a finite set
of locations, iii) l0 ∈ L is the initial location, iv) X is a finite set of clocks, v) P
is a finite set of parameters, vi) ζ is a finite set of edges e = 〈l, g, a, unp→0, l

′〉
where l, l′ ∈ L are the source and target locations, g is a parametric guard, a ∈ Σ
and unp→0 : X⇀ 0 is a reset function.

l1 l2 l3
press:
x := 0
y := 0

prepare:
y = p1

press again:
y ≤ 5, x > 1

x := 0

serve:
y = p2

Figure 2.2: A Parametric Timed Automaton modelling a coffee machine

We have the same elements as in Figure 2.1, with the additional set P =
{p1, p2}. The two last edges become:

• e3 = 〈l2, g, a, unp→0, l3〉 where g is y = p1 and

• e4 = 〈l3, g, a, unp→0, l1〉 where g is y = p2.

Given a parameter valuation v, we denote by v(A) the structure where all
occurrences of a parameter pi have been replaced by v(pi). If v(A) is such that
all constants in guards and updates are integers, then v(A) is an updatable timed
automaton [BDFP04] but will be called timed automaton (TA) for the sake of
simplicity in this thesis. In the following, we may denote as a timed automaton
any structure v(A), by assuming a rescaling of the constants: by multiplying all
constants in v(A) by their least common denominator, we obtain an equivalent
timed automaton (with integer constants), as defined in [AD94].

A bounded PTA is a PTA with a bounded parameter domain that assigns
to each parameter a minimum integer bound and a maximum integer bound.
That is, each parameter pi ranges in an interval [ai, bi], with ai, bi ∈ N. Hence,
a bounded parameter domain is a hyperrectangle of dimension M .

2.1.1.3 Lower/Upper bound Parametric Timed Automata

A famous subclass of PTA is Lower/Upper bound Parametric Timed Automata
(L/U-PTAs) [BL09]:

11

Definition 3 (L/U-PTA). An L/U-PTA is a PTA where the set of parameters
is partitioned into lower-bound parameters and upper-bound parameters, i. e.,
parameters that appear in guards are inequalities of the form p ≤ x or p < x,
and of the form p ≥ x or p > x respectively.

Note that our definition does not include invariants as the L/U-PTAs
of [HRSV02].

2.1.2 Concrete Semantics

Definition 4 (Concrete semantics of a TA). Given a PTA A = (Σ, L, l0,X,P, ζ),
and a parameter valuation v, the concrete semantics of v(A) is given by the
timed transition system (S, s0,→), with

• S = {(l, w) ∈ L× RH+} , s0 = (l0,~0)

• → consists of the discrete and (continuous) delay transition relations:

– discrete transitions: (l, w)
e7→ (l′, w′), if (l, w), (l′, w′) ∈ S, there exists

e = 〈l, g, a, u, l′〉 ∈ ζ, w′ = [w]v(u), and w |= v(g).

– delay transitions: (l, w)
d7→ (l, w + d), with d ∈ R+.

Moreover we write (l, w)
e−→ (l′, w′) for a combination of a delay and discrete

transitions where ((l, w), e, (l′, w′)) ∈ → if ∃d,w′′ : (l, w)
d7→ (l, w′′)

e7→ (l′, w′).
For instance in the TA of Figure 2.1, a possible run is :

(
l1, (0, 0)

) press−→
2.1(

l2, (0, 0)
) press again−→

1.2

(
l2, (0, 1.2)

) prepare−→
3.8

(
l3, (3.8, 5)

) serve−→
3

(
l1, (6.8, 8)

)
, where the

delay and the action of each transition has been combined for the sake of
simplicity.

In the PTA of Figure 6.3, a possible run if p1 = 2, p2 = 3:
(
l1, (0, 0)

) press−→
2(

l2, (0, 0)
) press again−→

1

(
l2, (0, 1)

) prepare−→
1

(
l3, (1, 2)

) serve−→
1

(
l1, (2, 3)

)
, where the delay

and the action of each transition has been combined for the sake of simplicity.
The same run is impossible if p1 = 5, p2 = 2, or p1 < 1.

Given a TA v(A) with concrete semantics (S, s0,→), we refer to the states
of S as the concrete states of v(A). A (concrete) run of v(A) is a possibly infinite
alternating sequence of concrete states of v(A) and edges starting from s0 of

the form s0
e0−→ s1

e1−→ · · · em−1−→ sm
em−→ · · · , such that for all i = 0, 1, . . . , ei ∈ ζ,

and (si, ei, si+1) ∈ →.
Given a state s = (l, w), we say that s is reachable (or that v(A) reaches s)

if s belongs to a run of v(A). By extension, we say that l is reachable in v(A), if
there exists a state (l, w) that is reachable. Given a run ρ of v(A), time(ρ) gives
the total sum of the delays d along ρ.

2.2 Timed CTL

TCTL [ACD93] is the quantitative extension of CTL where temporal modalities
are augmented with constraints on duration. Formulae are interpreted over
timed transition systems (TTS).

12

Given ap ∈ AP and c ∈ N, a TCTL formula is given by the following
grammar:

ϕ ::= > | ap | ¬ϕ | ϕ ∧ ϕ | EϕU./cϕ | AϕU./cϕ

A reads “always”, E reads “exists”, and U reads “until”.
Standard abbreviations include Boolean operators as well as EF./cϕ for

E>U./cϕ, AF./cϕ for A>U./cϕ and EG./cϕ for ¬AF./c¬ϕ. (F reads “eventually”
while G reads “globally”.)

Definition 5 (Semantics of TCTL). Given a TA v(A), the following clauses
define when a state si of its TTS (S, s0,→) satisfies a TCTL formula ϕ, denoted
by si |= ϕ, by induction over the structure of ϕ (semantics of Boolean operators
is omitted):

1. si |= EϕU./cΨ if there is a maximal run ρ in v(A) with σ = si
ei−→

· · · ej−1−→ sj (i < j) a prefix of ρ s.t. sj |= Ψ, time(σ) ./ c, and if ∀k s.t.
i ≤ k < j, sk |= ϕ, and

2. si |= AϕU./cΨ if for each maximal run ρ in v(A) there exists σ = si
ei−→

· · · ej−1−→ sj (i < j) a prefix of ρ s.t. sj |= Ψ, time(σ) ./ c, and if ∀k s.t.
i ≤ k < j, sk |= ϕ.

In EϕU./cϕ the classical until is extended by requiring that ϕ be satisfied
within a duration (from the current state) verifying the constraint “./ c”. Given v,
a PTA A and a TCTL formula ϕ, we write v(A) |= ϕ when s0 |= ϕ.

We define flat TCTL as the subset of TCTL where, in EϕU./cϕ and AϕU./cϕ,
ϕ must be a formula of propositional logic (a Boolean combination of atomic
propositions).

2.3 Problems

In this thesis, we address the following two families of decision problems, given P
a class of problems (e. g., reachability, unavoidability, TCTL model-checking):

P-emptiness problem:
Input: a PTA A and an instance φ of P
Problem: is the set of valuations v such that v(A) satisfies φ empty?

P-universality problem:
Input: a PTA A and an instance φ of P
Problem: are all valuations v such that v(A) satisfies φ?

We mainly focus on reachability (EF) and unavoidability (AF) [JLR15], but
described several problem studied in the literature, that we are going to study
as well in this thesis.

• EF-emptiness asks, given a PTA A and a location l whether the set of
valuations v such that there is a run in v(A) reaching l is empty? It is
equivalent to AG-universality [And19]. More formally, the problem can be

written as {v | ∃s0
e0−→ (l1, w1)

e1−→ · · · em−1−→ (l, w) a run of v(A)} = ∅?

13

• AF-emptiness asks, given a PTA A and a location l whether the set
of valuations v such that all maximal runs in v(A) reach l is empty?

More formally, the problem can be written as {v | ∀s0
e0−→ (l1, w1)

e1−→
· · · em−1−→ (l, w) · · · maximal runs of v(A)} = ∅? It is equivalent to EG-
universality [And19].

• EF-universality asks, given a PTA A and a location l whether all valuations
v are such that there is a run in v(A) reaching l? More formally, the

problem can be written as {v | ∃s0
e0−→ (l1, w1)

e1−→ · · · em−1−→ (l, w) a run of
v(A)} = Q+? It is equivalent to AG-emptiness [And19].

• Finally, AF-universality asks, given a PTA A and a location l whether all
valuations v are such that all maximal runs in v(A) reach l? More formally,

the problem can be written as {v | ∀s0
e0−→ (l1, w1)

e1−→ · · · em−1−→ (l, w) · · ·
maximal runs of v(A)} = Q+? It is equivalent to EG-emptiness [And19].

Beyond the theoretical decision problems above, a ultimate goal is the
following computation problem.

P-synthesis problem:
Input: a PTA A and an instance φ of P
Problem: compute the set of valuations v such that v(A) satisfies φ

Note that if P-emptiness is undecidable, there is no hope for a useful and
effective P-synthesis procedure.

2.4 Related work

2.4.1 Updatable Timed Automata

Updatable Timed Automata (UTA), which are TAs where clocks can be updated
to integer constants have been introduced in [BDFP04]. Many interesting
decidability results have been obtained, depending amongst other restrictions of
the nature of the clock constraints (e. g., diagonal-free, i. e., whether clocks are
compared to each other) and the updates of clocks (e. g., whether it is allowed
to update a clock to its current value increased by some rational constant).

The following table summarises some results of [BDFP04]: x, y, z are clocks,
c is an integer constant. x := c reinitializes x to c, when x := y transfers the
value of y to x. x :∈ (c; +∞) reinitilizes randomly x within the described interval,
as does x :./ y + c where ./ ∈ {<,≤,≥, >}.

simple constraints and diagonal constraints
x := c, x := y

decidable
decidable

x := x+ 1
undecidablex := y + c

x := x− 1 undecidable
x :∈ [0; c)

decidable

decidable
x :∈ (c; +∞)

undecidable
x :./ y + c

x :∈ (y + c; y + d)
x :∈ (y + c; z + d) undecidable

14

UTAs will be the working base of the first two chapters of this thesis in which
we extend UTAs with parameters in guards and in clock updates.

2.4.2 Parametric Timed Automata

In the PTA literature, the main problem studied is the reachability emptiness,
or EF-emptiness : it is “robustly” undecidable in the sense that, even when
varying the setting, undecidability is preserved. For example, EF-emptiness
is undecidable even for a single bounded parameter [Mil00], even for a sin-
gle rational-valued or integer-valued parameter [BBLS15], even with only one
clock compared to parameters [Mil00], or with strict constraints only [Doy07].
More generally, all non-trivial problems are undecidable for PTAs (see [And19]
for a survey). The unavoidability emptiness where we seek for valuations for
which some location will always eventually be reached, or AF-emptiness is also
undecidable [JLR15]. Similarly EF-universality and AF-universality are undecid-
able [ALR16a] for the general class of PTAs, while decidability results have been
shown for L/U-PTAs [HRSV02, BL09, AL17]. Sometimes, the border between
decidability and undecidability is quite thin: EF-synthesis is possible for bounded
integer-valued PTAs, while EF-emptiness becomes undecidable if boundedness
is removed [JLR15]. Other techniques are developed in order to study L/U-
PTAs [KP12b]. Another subclass of PTAs named reset-PTA [ALR16a] comes
with the decidability of EF-emptiness with the additional restriction that clocks
are reset to 0 whenever a clock is compared to a parameter in a guard. PTAs
are also studied over bounded time [KP12a]. Optimisation of time runs is also
studied through e. g., minimal-time reachability: synthesising a single parameter
valuation for which the goal location can be reached in minimal (lower-bound)
time [ABPvdP19].

2.4.3 Other formalisms using parameters

Parameters are also used in other formalisms in the literature: hybrid systems
are similar to TAs but clocks can evolve at different rates. Both theory and
practical applications of Parametric Hybrid Systems have been studied [Fre08,
FK11, AK12].

Other formalisms with parameters are studied in the literature, such as
Parametric Timed Petri Nets [VP99, TLR09] and Parametric Timed Kripke
Structures [KP14].

Parametric Timed Communicating Sequential Processes (PTCSP) have also
been studied in [ALS+13, ALSD14] as an extension of CSP [Hoa78] with timing
parameters, a process algebra used in concurrency modeling.

Parametric Task Automata, an extension of Task Automata [NWY99, FKPY07]
in which we include a list of tasks in the concrete states of a Timed Automaton
have been studied in [And17], in order to model e. g., periodic real-time systems.

Parametric Interrupt Timed Automata [BHJL13, BHJL16] and Polynomial
Interrupt Times Automata [BHP+15] also represent an active field of research
as extensions of timed automata where reachability and some variants of timed
model-checking are decidable even in presence of parameters.

15

2.4.4 Applications of timed automata to security

Timed automata are used in the verification of security protocols by translating
a language specification of a security protocol into timed automata [JP07] or
to model directly protocols with timed automata [CEHM04]. Moreover, timed
automata and its extensions are widely used in securiy analysis [KPS14].

16

Chapter 3

Timed automata with
parametric updates

3.1 Introduction

In this first technical chapter, we consider an extension of TAs where we allow
parameterized updates of clock variables. The key contribution is to characterize
a decidability boundary for the reachability problem for this class of timed
automata: the problem is undecidable when parameters are (bounded) ratio-
nals and decidable (PSPACE-complete) when parameters are restricted to be
(unbounded) integers.

3.1.1 Contribution

We show that extending timed automata with parametric updates, i. e., the ability
to update a clock to an unknown rational constant, leads to the undecidability
of the four following problems: EF-emptiness, AF-emptiness, EF-universality,
AF-universality. That is, it is undecidable to determine:

• whether the set of parameter valuations for which a run leads to a given
location is empty;

• whether for all parameter valuations there is a run that leads to a given
location;

• whether the set of parameter valuations for which a given location is
unavoidable empty;

• whether for all parameter valuations a given location is unavoidable.

In contrast, when we restrict the parameters domain to (unbounded) integers, all
four problems do not only become decidable, but we can achieve exact synthesis,
i. e., represent the full set of valuations for which a run or all runs lead(s) to a
given location.

On the one hand, our undecidability results adds to the long list of undecidable
parametric extensions of timed automata.

17

On the other hand, our decidability result enriches the notably short list
of decidable such parametric extensions: the exact synthesis of integer-valued
parameters compared as upper-bounds to clocks can be achieved [BL09]; the
emptiness of the valuations set for which a location is reachable is decidable
both for rational-valued L/U-PTAs [HRSV02], and for rational-valued integer-
point PTAs, a semantic class for which the membership is however undecidable,
although [ALR16a] exhibited a syntactic subclass, namely reset-PTAs. And
AF-universality is decidable for L/U-PTAs only if the parameters are bounded
with closed bounds (i. e., of the form p ∈ [a, b]). In the three latter cases
(i. e., L/U-PTAs and integer-point PTAs), exact synthesis cannot be achieved
though [JLR15, ALR16a], which makes our synthesis result a rarity, together
with only [BL09].

Finally, our formalism is supported by the parametric model checker IMITA-
TOR [AFKS12].

3.1.2 Outline

Section 3.2 introduces our formalism of update-to-parameter timed automata.
Section 3.3 proves our general undecidability result, while Section 3.4 proves the
decidability when parameters become integer-valued. Section 3.5 concludes the
chapter and outlines future research directions.

3.2 Update-to-parameter Timed Automata

Timed automata [AD94] are an extension of finite-state automata augmented
with clocks that can be compared to (usually) integer constants in guards (along
edges), and that can be updated (usually) to 0 along edges. We extend this
formalism by allowing clocks to be updated to parameters.

3.2.1 Syntax

Definition 6 (U2P-TA). An update-to-parameter timed automaton (U2P-TA)
A is a tuple A = (Σ, L, l0,X,P, ζ), where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. l0 ∈ L is the initial location,

4. X is a finite set of clocks,

5. P is a finite set of parameters,

6. ζ is a finite set of edges e = (l, g, a, u, l′) where l, l′ ∈ L are the source and
target locations, g is a non-parametric guard, a ∈ Σ and u : X⇀ N ∪ P is
a parametric update function.

Similarly to TAs, our U2P-TAs can be synchronized on shared actions, and
the product of several U2P-TAs gives a U2P-TA. Their implementation within
IMITATOR [AFKS12] is discussed in Section 6.5. In fact, we forbid concurrent
updates of a shared clock. Note that IMITATOR does not forbid concurrent
updates but will take into account only the last update written in the input file.

18

lA

x = 2
comA
x := 0

(a) Committee
A

lB

y = 3
comB
y := 0

(b) Committee
B

l0 l1 l2 l3 l4
t := pm
x := pA
y := pB

start

comB

comA

comA

comB

z := 0

comA, comB z ≥ 2
∧t = 12
defend

(c) A PhD student’s defense workflow

Figure 3.1: A motivating example of U2iP-TA

Example 1. Consider the U2P-TA in Figure 3.1c with five locations, four
clocks (x, y, z and t) and three parameters (pm, pA, pB). Observe that all three
parameters are used in an update along the edge from l0 and l1.

As a motivating toy example, consider the case of a PhD student aiming
at obtaining the authorization of her/his university in order to defend before
December (assuming the system is starting at any moment). Two committees
need to give their authorization sequentially (A then B), and the student must
bring both authorizations to the administration two months ahead of the defense.
Committee A (resp. B) meets periodically every two (resp. three) months, which
is depicted in Figures 3.1a and 3.1b, assuming time units are months.

The student workflow is modeled by the U2P-TA in Figure 3.1c, synchronizing
with both committees using actions comA and comB (clock x is shared between
committee A and the student automaton, while y is shared between B and the
student). First, the student starts the process at time pm, using the parametric
update t := pm. At the same time, we set the current clock of both committees
to an unknown time; that is, assuming pA ∈ [0, 2] and pB ∈ [0, 3], the last
occurrence of committee A (resp. B) is pA (resp. pB) or, put differently, the next
occurrence of committee A is 2− pA (resp. 3− pB). This allows us to analyze
symbolically the system, by setting the clock t, that acts as a global timer, to
the accurate student start date pm, while assuming an unknown situation of the
two periodic committees. Then, the student waits for the next commission A,
and gets the authorization, moving to location l2; then, (s)he waits for the next
commission B, and gets the authorization, moving to location l3. Finally, (s)he
waits two more months (using z ≥ 2) and defends in December (encoded by
t = 12) in location l4. The synchronization on comA and/or comB on self-loops
allows the system to remain non-blocking.

The purpose of this analysis is to understand when in the year the student
may start the workflow in order to be able to defend in December, depending
on the current “offset” of the committees. That is, we want to synthesize the
parameter valuations for pm, pA and pB such that the system may eventually
reach l4.

Throughout this section, let K denote the largest constant in a given U2P-TA,
i. e., the maximum of the largest constant compared to a clock in a guard or used
in an update, and the largest bound of a parameter (if the U2P-TA is bounded).

19

l0 l1 l2 l3 l4 l5
x ≤ 3

y := 0 x := 0

x < 5 x ≤ p1
y ≥ 10
∧x = p2

l′0 l0 l1 l2 l3 l4 l5
x := 0

xp1 := p1x
xp2

:= p2x

x = 0 x ≤ 3

y := 0 x := 0
xp1 := p1x
xp2

:= p2x

x < 5 xp1
≤ 12

y ≥ 10
∧xp2

= 12

Figure 3.2: A bounded PTA A (above) and its equivalent UtP(A) (below)

3.3 Undecidability

In this section, we show that our extension of TAs with parametric updates leads
to the undecidability of the EF-emptiness problem.

We show that any bounded (rational-valued) PTA [AHV93] can be trans-
formed into a U2P-TA, and therefore that U2P-TAs are at least as expressive as
(bounded) PTAs for which the EF-emptiness is known to be undecidable [Mil00].

The main idea of our proof is as follows: suppose that, in a PTA, we want
to measure a (parametric) duration p. Then we can update a clock x to 0 and
then test it with a guard x = p. But provided we know an upper bound K on
p, we could, with a U2P-TA, update clock x to K − p and test it with a guard
x = K instead. Now, since we do not allow linear expressions in updates, we
instead replace K − p with a new parameter p′ and prove that the existence
of a valuation for p′ in the U2P-TA such that the property holds, is equivalent
to that of a valuation for p in the initial PTA. This idea extends to other
comparison operators than = and its practical development requires a few clock
and parameter duplications.

Let A = (Σ, L, l0,X,P, ζ) be a bounded PTA and K its largest constant. Let
us define the following U2P-TA: A′ = (Σ, L ∪ {l′0}, l′0,X′,P′, ζ ′), which has the
same actions as A. For each x ∈ X, X′ contains x and a duplicate xp for each
parameter p to which x is compared in A. P′ contains all parameters in P, as
well as one extra parameter per clock in X; given a clock x ∈ X, we denote by
px its corresponding extra parameter in P′.

Let us now build ζ ′, initially containing all edges of ζ, and then modified as
follows. Let x be a clock. Let e = (l1, g, a, u, l2) be an edge of A. If u(x) = 0, we
perform the following modifications: first, we also update xp to px along e, i. e.,
u(xp) = px. In addition, for any edge e′ comparing clock x to parameter p in
its guard, we replace x ./ p with x ./ K. All other updates and non-parametric
guards remain unchanged. Finally, we add one additional location l′0 to the
locations L of A, which will be the new initial location, and one new additional
edge from l′0 to the former inital location l0 of A, with guard x = 0 for any
clock x ∈ X and which updates for all clock x ∈ X, xp to px.

Example 2. An example of this construction is shown in Figure 3.2, where
we assume that p1 is bounded in [2, 5] and p2 ∈ [0, 12]—therefore K = 12. For
example, 12− p1x plays the role of p1, and 12− p2x plays the role of p2.

Since the initial sets of clocks X and P are finite and our set of linear
constraints is finite, we only add a finite number of clocks and parameters to the
new automaton. Finally, ARtP is a U2P-TA. We denote by ARtP = UtP(A) this

20

transformation.
Note that our transformation adds to the initial system in the worst case one

parameter and one clock for each comparison to a parameter, i. e., |P′|+ |X′| ≤
|P|+ |X|+ 2× |P| × |X|.

In order to show that EF-emptiness is undecidable for U2P-TA, we prove the
following behavior: a goal location is reached by a run in a U2P-TA A, if and
only if there is a run in UtP(A) reaching it.

Consider the automaton presented in Figure 3.3a. Given a parameter valua-
tion v(p), we duplicate the clock x to xp and update it to px where x is updated
to 0. When x is compared to p, we replace this comparison by xp compared
to px, providing the automaton presented in Figure 3.3b. During an execution
of Figure 3.3a accessing l2, the time elapsed since the update of x until its
comparison to p is v(p). During an execution of Figure 3.3b accessing l2, the
time elapsed since the update of xp until its comparison to px is K − v(px). We
define the parameter valuation v′(p) = K − v(px). With this construction, there
is a parameter valuation v such that there is a run from l0 to l2 in Figure 3.3a
iff there is a parameter valuation v′ as defined such that there is a run from l0
to l2 in Figure 3.3b.

l0 l1 l2
x := 0

x = p

(a) A PTA A

l0 l1 l2
xp := px, x := 0

xp = K

(b) An U2P-
TA UtP(A)

Figure 3.3: A PTA A and its equivalent UtP(A)

Proposition 1. Let A be a bounded PTA, K its maximum constant, v be a
parameter valuation, and v′ = K − v. Let l be a goal location.

There is a run in v(A) reaching l iff there is a run in v′(UtP(A)) reaching l.

Proof. Let ρ be a finite run of v(A) ending in a concrete state (l, w) and let
σ = e1 . . . en be the corresponding sequence of edges taken by ρ. We build by
induction on n, a run ρ′ in v′(UtP(A)) ending in a concrete state (l, w′) such that
for all x ∈ X, w′(x) = w(x) and for all clock x′ ∈ X′\X, w′(xp) = K−v(p)+w(x).

If n = 0, then ρ′ consists only of the additional initial edge of UtP(A), which
clearly sets all clocks to the adequate values.

Suppose now that we have built ρ′ for size n and consider a run ρ with
n + 1 edges. Then ρ consists of a run ρ1, ending in (l1, w1) with n edges
followed by a delay d and finally a discrete transition along the last edge e.
From the induction hypothesis, we can build an equivalent run ρ′1 in UtP(A)
ending in (l1, w

′
1), such that for all x ∈ X, w′1(x) = w1(x) and for all clock

xp ∈ X′ \X, w′1(xp) = K−v(p)+w1(x). Let w2 (resp. w′2) be the clock valuation
obtained in A (resp. UtP(A)) after the delay d. By construction, the part of the
guard of e comparing clocks in X to constants is satisfied by w′2 since it is the same
as in A. Further, for each clock x ∈ X, such that x ./ p along e in A, we have
instead xp ./ K along the modified e in UtP(A). But w′2(xp) = K−v(p)+w2(x),
so the latter comparison is equivalent to K−v(p)+w2(x) ./ K, i. e., w2(x) ./ v(p).
So, since the guard is satisfied in A by w2, the corresponding guard is satisfied
in UtP(A) by w′2. Then clocks in X are updated normally, and for all clocks

21

l0 l1 l2
x := p, y := 0

min ≤ x ≤ max , y = 0

x := 0

Figure 3.4: A gadget that ensures a parameter p is bounded by min and max

xp ∈ X′ \ X, we have an update to v′(px) = K − v(p), which concludes the
induction.

The other direction, starting from a run in UtP(A), is similar.

Theorem 1. The EF-emptiness problem is undecidable for bounded U2P-TAs.

Proof. From the undecidability of EF-emptiness for bounded PTAs [Mil00].

We now show that this result can be extended to the full class of (unbounded)
U2P-TAs.

Theorem 2. The EF-emptiness problem is undecidable for U2P-TAs.

Proof. Similarly to the proof of [ALR16b, Proposition 8], we claim that a
bounded U2P-TA can be easily simulated using an unbounded U2P-TA. We
present a gadget in Figure 3.4 that uses two clocks (that can be clocks used by
the PTA) and two transitions that can be added before the initial location of
any unbounded U2P-TA, and ensures a parameter p is bounded, i. e., given two
integer constants min and max we have p ∈ [min,max]. We need one gadget
per parameter; these gadgets can be branched sequentially before the initial
location of an unbounded U2P-TA, and all clocks must be updated to 0 before
entering the original initial location.

The gadget works as follows: when taking the first transition from l0 to l1,
clock x is updated to p and clock y to 0. The transition from l1 to l2 can be taken
if and only if in a 0-delay ensured by the guard y = 0, we have that x ≤ max
and min ≤ x. This means there is a run from l0 to l2 if and only if there is
a parameter valuation v such that min ≤ v(p) ≤ max , which in other words
means that the parametric domain is bounded.

As from Theorem 1 the EF-emptiness problem is undecidable for bounded
U2P-TA, and as any bounded U2P-TA can be expressed using a U2P-TA, we
conclude that the EF-emptiness problem is undecidable for unbounded U2P-TA.

Corollary 1. The AF-emptiness problem is undecidable for U2P-TAs.

Proof. The AF-emptiness problem is undecidable for PTAs as it is proven unde-
cidable for one of its subclasses in [JLR15]. Since we can encode a PTA into a
U2P-TA, it is undecidable for the former.

Corollary 2. AF, EF-universality problems are undecidable for U2P-TAs.

Proof. In [ALR16a], EG, AG-emptiness problems are proven undecidable for
PTAs. As AF, EF-universality are their equivalent respectively, they are also
undecidable for PTAs, and therefore for U2P-TAs.

22

3.4 Decidability

Let us now show that, when parameters are restricted to (unbounded) integers,
the EF-emptiness problem becomes PSPACE-complete.

If parameters in an U2P-TA only have (possibly unbounded) integer valua-
tions, we say it is an U2iP-TA. Note that once valuated by an integer parameter
valuation v, an U2iP-TA is an updatable timed automaton with updates to
integer constants, as defined in [BDFP04, Section 3.1]. Hence clock regions are
still topical in this context [BDFP04, Section 5.1]. Let us recall the notion of
clock region [AD94]. Given a clock x and a clock valuation w, recall that bw(x)c
denotes the integer part of w(x) while frac(w(x)) denotes its fractional part.

Definition 7 (clock region). For two clock valuations w and w′, ∼ is an
equivalence relation defined by: w ∼ w′ iff

1. for all clock x, either bw(x)c = bw′(x)c or w(x), w′(x) > K;

2. for all clocks x, y with w(x), w(y) ≤ K, frac(w(x)) ≤ frac(w(y)) iff
frac(w′(x)) ≤ frac(w′(y));

3. for all clock x with w(x) ≤ K, frac(w(x)) = 0 iff frac(w′(x)) = 0.

A clock region Rc is an equivalence class of ∼.

Two clock valuations in the same clock region reach the same region by time
elapsing, satisfy the same guards and thus can take the same transitions [AD94].
It is a bisimulation relation.

Theorem 3. The set of parameter valuations for which a given location is
reachable is effectively computable for U2iP-TA.

Proof. We first need an intermediate lemma:

Lemma 1. Let A be an U2iP-TA. Let K be the greatest constant in A. Let
l be a goal location. Let v, v′ be two rational parameter valuations s.t. for all
parameter p, either v(p) = v′(p) or v(p) > K and v′(p) > K. There is a run in
v(A) reaching (l, w) iff there is a run in v′(A) reaching (l, w′) s.t. at each state,
two clock valuations of ρ and ρ′ are in the same clock region and location.

Proof. By induction on the length of the run. Let v, v′ be such parameter
valuations.

For a run of length 0 of v(A), there is a run of length 0 of v′(A) reaching the
initial location. If there is a run of length 0 of v′(A), there is a run of length 0
of v(A) reaching the initial location.

Now, suppose the result holds for every run of length i. Assume a run of
v(A) of length i+ 1, with a prefix ρ of length i reaching (li, wi) followed by a
state obtained using edge e = (li, g, a, u, li+1). That is, the run is of the form

ρ
e−→ (li+1, wi+1).
By induction hypothesis, let ρ′ be a run of v′(A) reaching (li, w

′
i) s.t. at each

state, two clock valuations of ρ and ρ′ are in the same clock region and location.
Now if for all clock x, no wi(x) is the result of a parametric update, then

trivially wi |= g and as wi ∼ w′i, w
′
i |= g. Alternatively, suppose for some x

and parameter p, we have wi(x) = v(p). If v(p) < K + 1 and wi |= g,

23

since v′(p) = v(p) then as wi ∼ w′i, w
′
i |= g. If v(p) ≥ K + 1 and wi |= g,

since v′(p) ≥ K + 1 then as wi ∼ w′i, w
′
i |= g. We treat the case of multiple

updates of clocks to parameters in e the same way. Finally, we can take the
transition e with the same delay. Hence

e−→ (li+1, w
′
i+1) is a run of v′(A) of

length i+ 1 reaching li+1 with the same actions, locations, delays and at each
state, two clock valuations of ρ and ρ′ are in the same clock region and location.

The other way is a direct consequence of the previous paragraph and the
definition of the clock regions.

We can now go back to the proof of Theorem 3. Let A be an U2iP-TA and
K be the greatest constant in A. Now let v be a (integer) parameter valuation.
Since v(A) is an updatable timed automaton, the reachability of a given state
(l, w) is decidable [BDFP04, Section 5]. It is sufficient to enumerate all integer
valuations s.t. for each parameter p, v(p) ≤ K + 1. Indeed, from Lemma 1 a
parameter valuation v with v(p) > K + 1 allows to take the same transitions
and reach the same guards as the parameter valuation v′ s.t. for all p′ 6= p,
v(p′) = v′(p′) and v′(p) = K + 1 so we can replace such parameter valuations by
a valuation v′ as defined previously. In conclusion, there is a finite number of
parameter valuations to test to obtain the full set of valuations for which the
goal location is reachable.

Proposition 2. The EF-emptiness problem is PSPACE-complete for U2iP-TAs.

Proof. Since we can synthesize exactly the set of parameter valuations for
which the goal location is reachable using Theorem 3, the decidability of the
EF-emptiness follows immediately.

Let us now have a look at the complexity of the EF-emptiness problem for
U2iP-TA. First, since a TA is a special case of U2iP-TA with no parametric
update, we have the PSPACE-hardness for EF-emptiness in our U2iP-TA [AD94].
Now, let G be a set of goal locations of A. Consider the non-deterministic Turing
machine that:

1. takes A, G and K as input

2. non-deterministically “guesses” an integer valuation v bounded by K + 1
and writes it to the tape

3. overwrite on the tape each parameter p by v(p), giving the updatable TA
v(A)

4. solves reachability in v(A) for G

5. accepts iff the result of the previous step is “yes”.

The machine accepts iff there is an integer valuation v bounded by K + 1 and a
run in v(A) reaching a location l ∈ G.

The size of the input is |A|+ |G|+ |K|, using |.| to denote the size in bits of
the different objects. There are at most (K + 1)M possible valuations, where
M is the number of parameters in A. Storing the valuation at step 2 uses
at most M × |K + 1| additional bits, which is polynomial w.r.t. the size of
the input. Step 4 also needs polynomial space from [BDFP04]. So globally
this non-deterministic machine runs in polynomial space. Finally, by Savitch’s
theorem we have PSPACE = NPSPACE [Sav70], and the expected result.

24

The following result is direct from Theorem 3:

Corollary 3. The EF-universality problem is decidable for U2iP-TAs.

Proof. Using Lemma 1 (see proof of Theorem 3) given an U2iP-TA A and its
greatest constant in A, there is a finite number of parameter valuations to test.
Therefore given a goal location l, it is sufficient to test whether for all parameter
valuations, there is a run reaching l in the valuated instance of A.

We state also the two following corollaries that fulfill the last unknown
decision problems considered in this chapter for U2P-TAs.

Corollary 4. The set of parameter valuations for which a given location is
unavoidable is effectively computable for U2iP-TA.

Proof. Let A be an U2iP-TA and v a parameter valuation. As we use in our
construction the same clock regions as in [AD94], suppose there is a run in v(A)
reaching a location l, then all runs going through the same clock regions are
equivalent—they satisfy the same guards, and end in the same region after an
update and after letting time elapse. Moreover, using the construction of the
region automaton of [AD94], it is sufficient to test whether all runs in the region
automaton of A reach l, which are a finite number. Using the same reasoning as
in the proof of Theorem 3 we obtain our result.

Corollary 4 leads to the decidability of the AF-emptiness problem. Following
the same reasoning as in Theorem 3, we state the last but not least result of this
chapter:

Corollary 5. The AF-emptiness and AF-universality problems are decidable for
U2iP-TAs.

Proof. Given an U2iP-TA A and using the same reasoning as in the previous
proof and the region automaton of [AD94], we can test whether all runs in this
region automaton reach l, which are a finite number. As there is a finite number
of parameter valuations to test, we can compute the set of parameter valuations
such that all runs reach l (i. e.,, AF-synthesis) from Corollary 4. Testing the
emptiness of the obtained set of parameter valuations gives AF-emptiness. Given
a goal location l, it is sufficient to test whether for all parameter valuations, there
is a run reaching l in the valuated instance of A to decide AF-universality.

Implementation in IMITATOR

U2P-TAs (and naturally U2iP-TA) are natively supported by IMITATOR [AFKS12],
a parametric model checker taking as input extensions of parametric timed au-
tomata.

Passing Example 1 as input and using the reachability synthesis algorithm,
IMITATOR synthesizes the following constraint:

pB + 4 ≥ pm ∧ pB ≥ pA + 1 ∧ pB ≤ 3

∨
pm ≤ pB + 7 ∧ pA ≤ 2 ∧ pB ≤ pA + 1

25

(a) pm = 6 (b) pm = 9

Figure 3.5: Graphical visualization in two dimensions of the parameter synthesis
of Example 1

The first conjunction of inequalities states that, if the committee B is the
next to meet (which is encoded by pB ≥ pA + 1, and could also be written as
3− pB ≤ 2− pA), then the month pm at which the student starts the process
should be less than 4 plus the number of months since the last occurrence of
committee B. (The last inequality simply recalls that pB is less than or equal
to 3). The second conjunction of inequalities states that, if the committee A is
the next to meet, then the month pm at which the student starts the process
should be less than 7 plus the number of months since the last occurrence of
committee B.

For any such valuation, there exists a run of the system (i. e., a configuration
of the committees dates respecting their respective periods) such that the student
may defend in December. Also note that, if we add proper invariants1, then
the system becomes completely deterministic and the valuations for which there
exists a run reaching l4 are also such that all runs reach l4 (since there exists
only one run), and therefore the student is guaranteed to be able to defend in
December for any of these valuations.

We can also study a situation where the system is only partially parameterized:
assume pm = 6, i. e., the student will start the process in June in any case. The
constraint encoding the current state of committees A and B is given by:

pA ≤ 2 ∧ pB ≤ pA + 1

∨
pB ≥ 2 ∧ pB ≤ 3 ∧ pB ≥ pA + 1

A graphical visualization (output by IMITATOR) is given in Figure 3.5a (plain red
depicts good valuations, i. e., for which the student may defend in December).

Alternatively, if pm = 9 (i. e., the student starts the process in September),
then the constraint on pA and pB is as follows:

pB ≥ 2 ∧ pA ≤ 2 ∧ pA + 1 ≥ pB

A graphical visualization is given in Figure 3.5b.
Finally note that this entire example is not restricted to integer-valued

parameters (rational-valued months can be used to denote finer time grain, e. g.,

1Precisely, x ≤ 2 in committee A, y ≤ 3 in committee B, and t ≤ 12 in the student
automaton.

26

days or even hours), and it therefore falls in the undecidable case of Theorem 1.
Nevertheless, IMITATOR terminates here with an exact (sound and complete)
result.

3.5 Conclusion

In this chapter we defined two new formalisms to model concurrent timed
systems with uncertainty: U2P-TA for which we proved that the EF-emptiness
problem is undecidable, even for bounded parameters, and U2iP-TA for which we
proved that the EF-emptiness problem is PSPACE-complete. This discrepancy
between integer-valued and rational-valued was already spotted in parametric
timed automata: the EF-emptiness is decidable for integer-valued parameters
with 1 parametric clock (i. e., a clock compared to a parameter in at least one
guard) and 3 non-parametric clocks [AHV93], while it becomes undecidable
over rational-valued parameters [Mil00]. Similarly, the discrepancy between
(rational-valued) bounded parameters and unbounded parameters is reminiscent
of the recent result we showed for EG-emptiness (“is the set of valuations for
which at least one maximal run remains in a given set of locations empty?”): this
problem is decidable for bounded L/U-PTAs (a parameter is either used as an
upper bound or a lower bound in guards) with rational-valued parameters, while
it becomes undecidable for the full class of L/U-PTAs [AL17]. Furthermore,
we extended our undecidability results to the EF-universality, AF-emptiness
and AF-universality problems for U2P-TA, but also our decidability results to
these same problems for U2iP-TA. This chapter therefore handles a wide range
of decision problems for U2P-TA. We assume that the decidability could be
extended to the full TCTL model checking following a similar reasoning.

The fact that we allow update to parameters in the (possibly parametric)
timed extensions of finite-state automata is quite new and, to the best of our
knowledge, has not been investigated until now. Despite having an undecidability
result when the parameter domain is rational, we believe this new formalism,
improved with parameters allowed in guards, could become decidable even over
rational-parameters if we add a few semantic restrictions. Indeed, reset-PTAs
have been studied in [ALR16a] and are a promising subclass of PTA to extend.
For this purpose, we would like to explore PTAs in which update to parameters
is also allowed, and under which conditions the EF-emptiness problem could
become decidable. Moreover, the semantic restrictions of reset-PTAs (a clock is
updated to 0 whenever it is compared to a parameter) is in a way reminiscent
to initialized rectangular hybrid automata (a variable is updated whenever its
dynamic changes) presented in [HKPV98] and it would be interesting to study
these systems in which we involve parameters. Therefore, extending our result
to hybrid automata is also an interesting perspective.

Finally, beyond the toy aspect of Example 1, we believe that U2iP-TAs can be
used to model scheduling problems for real-time systems subject to uncertainty,
notably in the tasks offsets, as this is where we used parameters in Figure 3.1.

Now that we have studied parametric updates in TAs, naturally we will try
to add parametric updates in PTAs, as PTAs are a powerful extension of TAs.
This is the subject of the next Chapter 4.

27

Chapter 4

Parametric updates in
parametric timed automata

4.1 Introduction

In this chapter, we consider an extension of PTAs and establish the decidability of
the EF-emptiness problem (that asks if the set of parameter valuations for which
a given location is reachable in the resulting TA is empty), and the corresponding
parameter synthesis problem EF-synthesis. The key to the decidability is to
impose a restriction on the transitions in the PTA in which a clock is compared
to a parameter in the guard, or a clock is updated to a parameter in the update.

Recall that the EF-emptiness problem is decidable for L/U-PTAs [HRSV02,
BL09] and for PTAs under several restrictions [BO14]; however, most other
problems are undecidable (e. g., [BL09, Qua14, JLR15, ALR16a, AL17]).

4.1.1 Contribution

We investigate parametric updates, which can model an unknown timing config-
uration in a system where processes need to synchronise together on common
events, as in e. g., programmable controller logic programs with concurrent tasks
execution. We show that the EF-emptiness problem is decidable for PTAs aug-
mented with parametric updates (i. e., U2P-PTA), with the additional condition
that whenever a clock is compared to a parameter in a guard or updated to a
parameter, all clocks must be updated (possibly to parameters)—this gives R-
U2P-PTA. This result holds when the parameters are bounded rationals in guards,
and possibly unbounded rationals in updates. Non-trivial decidable subclasses
of PTAs are a rarity (to the best of our knowledge, only L/U-PTAs [HRSV02]
and integer-points (IP-)PTAs [ALR16a]); this makes our positive result very
welcome. In addition, not only the emptiness is decidable, but exact synthesis
for bounded rational-valued parameters can be performed—which contrasts with
L/U-PTAs and IP-PTAs as synthesis was shown intractable [JLR15, ALR16a].

28

4.1.2 Related Work

Our construction is reminiscent of the parametric difference bound matrices
(PDBMs) defined in [QSW17, section III.C] where the author revisit the result of
the binary reachability relation over both locations and clock valuations in TAs;
however, parameters of [QSW17] are used to bound in time a run that reaches a
given location, while we use parameters directly in guards and resets along the
run, which make them active components of the run specifically for intersection
with parametric guards, key point not tackled in [QSW17]. Related DBMs with
an additional parameter are studied such as shrunk DBMs [SBM14, BMRS19]
and infinitesimally enlarged DBMs [San15].

Allowing parameters in clock updates is inspired by the updatable TA for-
malism defined in [BDFP04] where clocks can be updated not only to 0 (“reset”)
but also to rational constants (“update”). In [ALR18b], we extended the result
of [BDFP04] by allowing parametric updates (and no parameter elsewhere, e. g.,
in guards): the EF-emptiness is undecidable even in the restricted setting of
bounded rational-valued parameters, but becomes decidable when parameters
are restricted to (unbounded) integers.

Synthesis is obviously harder than EF-emptiness: only three results have been
proposed to synthesize the exact set of valuations for subclasses of PTAs, but they
are all concerned with integer -valued parameters [BL09, JLR15, ALR18b]. In
contrast, we deal here with (bounded) rational-valued parameters—which makes
this result the first of its kind. The idea of updating all clocks when compared to
parameters comes from our class of reset-PTAs briefly mentioned in [ALR16a],
but not thoroughly studied. Finally, updating clocks on each transition in
which a parameter appears is reminiscent of the initialized rectangular hybrid
automata [HKPV98], which remains one of the few decidable subclasses of hybrid
automata.
Section 4.2 recalls preliminaries. Section 4.3 presents R-U2P-PTA along with
our decidability result. Section 4.7 gives a concrete application of our result.

4.2 Preliminaries

Throughout this chapter, we assume / ∈ {<,≤} and ./ ∈ {<,≤,≥, >}.
Given a clock x and a clock valuation w, recall that bw(x)c denotes the

integer part of w(x) while frac(w(x)) denotes its fractional part. We define the
same notation for parameter valuations.

We first define a new class of parametric timed automata.

Definition 8. An update-to-parameter PTA (U2P-PTA) A is a tuple A = (Σ, L, l0,X,P, ζ),
where: i) Σ is a finite set of actions, ii) L is a finite set of locations, iii) l0 ∈ L is
the initial location, iv) X is a finite set of clocks, v) P is a finite set of parameters,
vi) ζ is a finite set of edges e = 〈l, g, a, u, l′〉 where l, l′ ∈ L are the source and
target locations, g is a parametric guard, a ∈ Σ and u : X⇀ N∪P is a parametric
update function.

An U2P-PTA is depicted in Figure 4.1. Note that all clocks are updated
whenever there is a comparison with a parameter (as in newBlock) or a clock is
updated to a parameter (as in blockSolutionx).

Recall that K denotes the largest constant in a given U2P-PTA, i. e., the
maximum of the largest constant compared to a clock in a guard and the largest

29

idle mine

checkx

checky

rewardx

rewardy

newTx

t = p
newBlock
x := p1
y := p2
t := 0

x = max ∧ y < max
blockSolutionx

x := 0
y := pv2
t := 0

y = max ∧ x < max
blockSolutiony

x := pv1
y := 0
t := 0

y ≤ v
okBlock

x := 0
y := 0
t := 0y > v

fakeBlock
x := p1
y := p2
t := 0

x ≤ v
okBlock

x := 0
y := 0
t := 0

x > v
fakeBlock
x := p1
y := p2
t := 0

addBlock

t := 0

addBlock

t := 0

Figure 4.1: A proof-of-work modeled with a bounded R-U2P-PTA.

upper bound of a parameter (if the U2P-PTA is bounded). Also recall that
two clock valuations in the same clock region (cf. Definition 7) and reach the
same regions by time elapsing, satisfy the same guards and can take the same
transitions [AD94]. In this chapter, we address the EF-emptiness problem.

4.3 A decidable subclass of U2P-PTAs

We now impose that, whenever a guard or an update along an edge contains
parameters, then all clocks must be updated (to constants or parameters). Our
main contribution is to prove that this restriction makes EF-emptiness decidable.

Definition 9. An R-U2P-PTA is a U2P-PTA where for any edge 〈l, g, a, u, l′〉 ∈
ζ, u is a total function whenever:1

1. g is a parametric guard, or

2. u(x) ∈ P for some x ∈ X.

1In the following we only consider either non-parametric, or (necessarily total) fully para-
metric update functions. A total update function which is not fully parametric (i. e., an update
of some clocks to parameters and all others to constants) can be encoded as a total fully
parametric update immediately followed by a (partial) non-parametric update function.

30

The main idea for proving decidability is the following: given an R-U2P-
PTA A we will construct a finite region automaton that bisimulates A, as in
TA [AD94]. Our regions will contain both clocks and parameters, and will be
a finite number. Since parameters are allowed in guards, we need to construct
parameter regions and more restricted clock regions.

We will define a form of Parametric Difference Bound Matrices (viz., p–
PDBMs for precise PDBMs, inspired by [HRSV02]) in which, once valuated by
a parameter valuation, two clock valuations have the same discrete behavior and
satisfy the same non-parametric guards. A p–PDBM will define the set of clocks
and parameter valuations that satisfies it, while once valuated by a parameter
valuation, a valuated p–PDBM will define the set of clock valuations that satisfies
it. A key point is that in our p–PDBMs the parametric constraints used in
the matrix will be defined from a finite set of predefined expressions involving
parameters and constants, and we will prove that this defines a finite number
of p–PDBMs. Decidability will come from this fact. We define this set (PLT
for parametric linear term) as follows: PLT = {frac(pi), 1− frac(pi), frac(pi)−
frac(pj), frac(pj)+1−frac(pi), 1, 0, frac(pi)−1−frac(pj),−frac(pi), frac(pi)−1},
for all 1 ≤ i, j ≤ M . Given a parameter valuation v and d ∈ PLT , we denote
by v(d) the term obtained by replacing in d each parameter p by v(p). Let us
now define an equivalence relation between parameter valuations v and v′.

Definition 10 (regions of parameters). We write that v _ v′ if

1. for all parameter p, bv(p)c = bv′(p)c;

2. for all d1, d2, d3 ∈ PLT , v(d1) ≤ v(d2) + v(d3) iff v′(d1) ≤ v′(d2) + v′(d3);

Parameter regions are defined as the equivalence classes of _, and we will
use the notation Rp for parameter regions. The set of all parameter regions
is denoted by Rp. The definition is in a way similar to Definition 7 but also
involves comparisons of sums of elements of PLT . In fact, we will need this
kind of comparisons to define our p–PDBMs. Nonetheless we do not need more
complicated comparisons as in R-U2P-PTA whenever a parametric guard or
updated is met the update is a total function: this preserves us from the parameter
accumulation, e. g., obtaining expressions of the form 5frac(pi)− 1− 3frac(pj)
(that may occur in usual PTAs).

In the following, our p–PDBMs will contain pairs of the form D = (d, /),
where d ∈ PLT . We therefore need to define comparisons on these pairs.

We define an associative and commutative operator ⊕ as /1 ⊕ /2 = < if
/1 6= /2, or /1 if /1 = /2. We define D1 +D2 = (d1 + d2, /1 ⊕ /2). Following the
idea of parameter regions, we define the validity of a comparison between pairs of
the form (di, /i) within a given parameter region, i. e., whether the comparison
is true for all parameter valuations v in the parameter region Rp.

Definition 11 (validity of comparison). Let Rp be a parameter region. Given
any two linear terms d1, d2 over P (i. e., of the form

∑
i αipi + d with αi, d ∈ Z),

the comparison (d1, /1) / (d2, /2) is valid for Rp if:

1. / = <, and either

(a) for all v ∈ Rp, v(d1) < v(d2) evaluates to true regardless of /1, /2, or

(b) for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, /1 = < and /2 = ≤;

31

2. / = ≤, and either

(a) for all v ∈ Rp, v(d1) < v(d2) evaluates to true regardless of /1, /2, or

(b) for all v ∈ Rp, v(d1) ≤ v(d2) evaluates to true, and /1 = /2, or
/1 = <.

Transitivity is immediate from the definition: if D1 /1 D2 and D2 /2 D3 are
valid for Rp, D1(/1 ⊕ /2)D3 is valid for Rp.

The following lemma derives from Definition 11:

Lemma 2 (validity of addition). Let d1, d2, d3, d4 ∈ PLT . Let Rp be a parameter
region. If (d1, /1) ≤ (d2, /2) and (d3, /3) ≤ (d4, /4) are valid for Rp then
(d1, /1) + (d3, /3) ≤ (d2, /2) + (d4, /4) is valid for Rp.

Proof. Four cases show up: for all v ∈ Rp,

• v(d1) < v(d2) and v(d3) < v(d4), then clearly v(d1) +v(d3) < v(d2) +v(d4)
and we have our result from Definition 11 (2a).

• v(d1) < v(d2) and v(d3) ≤ v(d4), then v(d1) + v(d3) < v(d2) + v(d4) and
we have our result from Definition 11 (2a).

• v(d1) ≤ v(d2) and v(d3) < v(d4), then v(d1) + v(d3) < v(d2) + v(d4) and
we have our result from Definition 11 (2a).

• v(d1) ≤ v(d2) and v(d3) ≤ v(d4), then v(d1) + v(d3) ≤ v(d2) + v(d4) and

1. if /1 = /2 and /3 = /4 then /1 ⊕ /3 = /2 ⊕ /4 and we have our result
from Definition 11 (2b).

2. if /1 = /2 and /3 = <, /4 = ≤ then /1 ⊕ /3 = < and /2 ⊕ /4 is either
< or ≤ and we have our result from Definition 11 (2b).

3. if /1 = <, /2 = ≤ and /3 = /4 then /1 ⊕ /3 = < and /2 ⊕ /4 is either
< or ≤ and we have our result from Definition 11 (2b).

4. if /1 = /3 =< and /2 = /4 =≤ then /1 ⊕ /3 =< and /2 ⊕ /4 =≤ and
we have our result from Definition 11 (2b).

From Definition 11 (2a, 2b) we have that (d1, /1) + (d3, /3) ≤ (d2, /2) + (d4, /4)
is valid for Rp.

We can now define our data structure, namely p–PDBMs (for precise Paramet-
ric Difference Bound Matrices), inspired by the PDBMs of [HRSV02] themselves
inspired by DBMs [Dil89]. However, our p–PDBM compare differences of frac-
tional parts of clocks, instead of clocks as in classical DBMs; therefore, our
p–PDBMs are closer to clock regions than to DBMs and fully contained into
clock regions of [AD94]. A p–PDBM is a pair made of an integer vector (encod-
ing the clocks integer part), and a matrix (encoding the parametric differences
between any two clock fractional parts). Their interpretation also follows that
of PDBMs and DBMs: for i 6= 0, the matrix cell Di,0 = (di,0, /i0) is inter-
preted as the constraint frac(xi) /i0 di,0, and D0,i = (d0,i, /0i) as the constraint
−frac(xi) /0i d0,i. For i 6= 0 and j 6= 0, the matrix cell Di,j = (di,j , /ij) is
interpreted as frac(xi)− frac(xj) /ij di,j . Finally for all i, Di,i = (0,≤).

Our p–PDBMs are partitioned into two types: open–p–PDBMs and point–p–
PDBMs. A point–p–PDBM is a clock region defined by only parameters which

32

contains only one clock valuation; that is, it corresponds to a set of inequalities
of the form xi = pj . In contrast, an open–p–PDBM is a clock region which can
contain several clock valuations satisfying some possibly parametric constraints,
or contain at least one clock valuation satisfying non-parametric constraints (as
the corner-point of [AD94]). In particular, the initial clock region {0H} and any
clock region {EHi } where Ei is an integer for all clock xi, is an open–p–PDBM.

Basically, only the first p–PDBM after a (necessarily total) parametric clock
update will be a point–p–PDBM; any following p–PDBM will be an open–p–
PDBM until the next (total) parametric update.

Definition 12 (open–p–PDBM). Let Rp be a parameter region. An open–p–
PDBM for Rp is a pair (E,D) with E = (E1, · · · , EH) a vector of H integers (or
∞) which is the integer part of each clock, and D is an (H + 1)2 matrix where
each element Di,j is a pair (di,j , /ij) for all 0 ≤ i, j ≤ H, where di,j ∈ PLT .
Moreover, for all 0 ≤ i ≤ H, Di,i = (0,≤). In addition:

1. For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for
Rp,

2. For all i 6= 0, j 6= 0, either (0,≤) ≤ Di,j ≤ (1, <) is valid for Rp and
(−1, <) ≤ Dj,i ≤ (0,≤) is valid for Rp or (0,≤) ≤ Dj,i ≤ (1, <) is valid
for Rp and (−1, <) ≤ Di,j ≤ (0,≤) is valid for Rp.rr

3. For all i, j, if di,j = −dj,i and is different from 1 then /ij = /ji = ≤, else
/ij = /ji = <,

4. For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form), and

5. (a) There is at least one i s.t. Di,0 = D0,i = (0,≤), or

(b) there is at least one i s.t. Di,0 = (1, <) and for all j s.t. D0,j =
(0, /0j), then we have /0j = <.

An open–p–PDBM satisfying condition 5a can be seen as a subregion of an
open line segment or a corner point region of [AD94, fig. 9 example 4.4] (it can
be seen as a border region) and one satisfying condition 5b can be seen as a
subregion of an open region of [AD94, fig. 9 example 4.4] (it can be seen as a
center region). Remark that sets of the form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1}
are forbidden by Definition 12 (3), as in the regions of [AD94].

Let Rp be a parameter region. In the following, p–PDBM�(Rp) is the set
of all possible open–p–PDBMs (E,D) for Rp.

The second type is the point–p–PDBM. It represents the unique clock valua-
tion (for a given parameter valuation) obtained after a total parametric update
in an U2P-PTA.

Definition 13 (point–p–PDBM). Let Rp be a parameter region. A point–p–
PDBM for Rp is a pair (E,D) where D is an (H + 1)2 matrix where each
element Di,j is a pair (di,j ,≤) and for all 0 ≤ i, j ≤ H, di,0 = frac(p1) = −d0,i,
and di,j = frac(p1)− frac(p2) = −dj,i, for any p1, p2 ∈ P. and for all 1 ≤ i ≤ H,
Ei = bpkc if di,0 = frac(pk), for 1 ≤ k ≤M . In addition:

1. For all i, (−1, <) ≤ D0,i ≤ (0,≤) and (0,≤) ≤ Di,0 ≤ (1, <) are valid for
Rp,

33

2. For all i, j, k, Di,j ≤ Di,k +Dk,j is valid for Rp (canonical form).

The fact that D is antisymmetric i. e., for all i, j, Di,j = −Dj,i, means that
each clock is valuated to a parameter and each difference of clocks is valuated to
a difference of parameters.

The set of all point–p–PDBM for Rp is denoted by p–PDBM�(Rp), and
the set of all p–PDBMs for Rp by p–PDBM(Rp) (hence p–PDBM(Rp) =
p–PDBM�(Rp) ∪ p–PDBM�(Rp)).

The use of validity ensures the consistency of the p–PDBM. We denote
the set of all p–PDBMs that are valid for Rp by p–PDBM(Rp). Given a
p–PDBM (E,D), it defines the subset of RH ∪ QM satisfying the constraints∧
i,j∈[0,H] frac(xi)−frac(xj)/i,jdi,j∧

∧
i∈[1,H]bxic = Ei. Given a p–PDBM (E,D)

and a parameter valuation v, we denote by (E, v(D)) the valuated p–PDBM,
i. e., the set of clock valuations defined by:∧

i,j∈[0,H]

frac(xi)− frac(xj) /i,j v(di,j) ∧
∧

i∈[1,H]

bxic = Ei.

For a clock valuation w, we write w ∈ (E, v(D)) if it satisfies all constraints
of (E, v(D)).

The following two lemmas derive from the above definitions of point–p–PDBM
and p–PDBMs:

Lemma 3 (positivity of reflexivity). Let Rp be a parameter region and (E,D)
be a p–PDBM for Rp. For all clocks i, j, (0,≤) ≤ Di,j +Dj,i is valid for Rp.

Proof. By condition (4) in Definition 12 and Definition 13 (2), we have that
Di,i ≤ Di,j+Dj,i is valid for Rp; the result follows from the fact that Di,i = (0,≤)
(again from Definition 12 and Definition 13).

Lemma 4 (neutral element of the set of cells). Let Rp be a parameter region
and (E,D) be a p–PDBM for Rp. For all clocks i, j, Di,j ≤ Di,j + Dj,j and
Di,j ≤ Di,i +Di,j are valid for Rp.

Proof. Let Rp be a parameter region and (E,D) be a p–PDBM for Rp. LetDi,j =
(di,j , /ij) with di,j ∈ PLT . By Definition 12 and Definition 13 for all clock i,
Di,i = (0,≤). We have Dj,i +Di,i = (dj,i + 0, /ij⊕ ≤) = Dj,i. Moreover from
Definition 11 (2b) Di,j ≤ Di,j is valid for Rp. Hence Di,j ≤ Di,i +Di,j is valid
for Rp. The same way we prove Di,j ≤ Di,j +Dj,j is valid for Rp.

But let us first clarify our needs graphically. Intuitively, our p–PDBMs are
partitioned into three types.

(1) The point–p–PDBM is a clock region defined by only parameters which
contains only one clock valuation; it represents the unique clock valuation (for a
given parameter valuation) obtained after a total parametric update in an U2P-
PTA. Each clock is valuated to a parameter and each difference of clocks is
valuated to a difference of parameters (it corresponds to constraints of the form
x = p and x− y = pi − pj).

Let v be a parameter valuation. We assume bv(p2)c = bv(p1)c = k ∈ N and
frac(v(p1)) > frac(v(p2)). The p–PDBM obtained after an update u(x) = v(p2)

34

and u(y) = v(p1) is represented using the following pair (where the indices 0,x,y
are shown for the sake of comprehension)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2),≤) (−frac(p1),≤)
x (frac(p2),≤) (0,≤) (frac(p2)− frac(p1),≤)
y (frac(p1),≤) (frac(p1)− frac(p2),≤) (0,≤)

)
y

(k, k + 1)

frac(v(p1))

(k, k)
frac(v(p2)) (k + 1, k) x

1− frac(v(p1))

Figure 4.2: Graphical representa-
tions of p–PDBMs and [AD94] re-
gions

Once valuated with v, it contains a unique
clock valuation. We represent it as the black
dot in Figure 4.2.

(2) In contrast, an open–p–PDBM satis-
fying condition (5a) is a clock region which
can contain several clock valuations satis-
fying some possibly parametric constraints,
or contain at least one clock valuation sat-
isfying non-parametric constraints (as the
corner-point region of [AD94]). In par-
ticular, the initial clock region {0H} and
any clock region that is a single integer
clock valuation is a p–PDBM. An open–p–
PDBM satisfying condition 5a is characterized by at least one clock x s.t.
Dx,0 = D0,x = (0,≤) and can be seen as a subregion of an open line segment or
a corner point region of [AD94, fig. 9 example 4.4]. After an immediate update
of x to k, the above p–PDBM (E,D) becomes

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (0,≤) (−frac(p1),≤)
x (0,≤) (0,≤) (−frac(p1),≤)
y (frac(p1),≤) (frac(p1),≤) (0,≤)

)

We represent it once valuated with v as the blue dot in Figure 4.2. The open
line segment of [AD94, fig. 9 example 4.4] can be represented as

((
k
k

)
,

 0 x y
0 (0,≤) (0,≤) (0, <)
x (0,≤) (0,≤) (0, <)
y (1, <) (1, <) (0,≤)

)

and is depicted as the vertical left black line in Figure 4.2.
(3) An open–p–PDBM satisfying condition (5b) is a clock region which can

contain several clock valuations satisfying some possibly parametric constraints
(as the open region of [AD94]). An open–p–PDBM satisfying condition (5b)
is characterized by at least one clock y s.t. Dy,0 = (1, <) and for all x s.t.
D0,x = (0, /ox), then we have /ox = < and can be seen as a subregion of an open
region of [AD94, fig. 9 example 4.4]. After some time elapsing, and before any
clock valuation reaches the next integer k+1—therefore the next open–p–PDBM
satisfying condition 5a—, the above p–PDBM (E,D) becomes

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (0, <) (−frac(p1), <)
x (1− frac(p1), <) (0,≤) (−frac(p1),≤)
y (1, <) (frac(p1),≤) (0,≤)

)

We represent it once valuated with v as the red line in Figure 4.2. The open
region of [AD94, fig. 9 example 4.4] can be represented as

((
k
k

)
,

 0 x y
0 (0,≤) (0, <) (0, <)
x (1, <) (0,≤) (0, <)
y (1, <) (1, <) (0,≤)

)

and is depicted as the top left black triangle in Figure 4.2.

35

Remark that sets of the form {frac(w(x)) | 0 ≤ frac(w(x)) ≤ 1} are in
contradiction with Definition 12 (3) and therefore cannot be part of a p–PDBM,
as in the regions of [AD94]. Basically, only the first p–PDBM after a (necessarily
total) parametric clock update will be a point–p–PDBM; any following p–PDBM
will be a open–p–PDBM satisfying condition 5a or 5b until the next (total)
parametric update.

The differentiation made in the previous paragraph between open–p–PDBMs
satisfying condition 5a and 5b is intended to give an intuition to the reader
about the inclusion of p–PDBMs into [AD94] clock regions. Technical details
are given in the following Section 4.4. In the following subsections Sections 4.4.1
to 4.4.5, we are going to define operations on p–PDBMs (i. e., update of clocks,
time elapsing and guards satisfaction), and will show that the set of p–PDBMs
is stable under these operations.

4.4 Operations on p–PDBMs

4.4.1 Non-parametric update

To apply a non-parametric update on a p–PDBM, following classical algorithms
for DBMs [BY03], we define an update operator, given in Algorithm Algorithm 1.

Given a p–PDBM (E,D) and unp a non-parametric update function that
updates a clock x to k ∈ N, update((E,D), unp) defines a new p–PDBM by

1. updating Ex to k;

2. setting the fractional part of x to 0: Dx,0 := D0,x := (0,≤);

3. updating the new difference between fractional parts with all other clocks i,
which is the range of values i can currently take: Dx,i := D0,i and Di,x :=
Di,0.

Intuitively, we update in (E,D) the lower and upper bounds of some clocks
to (0,≤) and the difference between two clocks Di,j to D0,j if xi is updated:
that is, the new difference between two clocks if one has been updated is just the
lower/upper bound of the one that is not updated. This allows us to conserve
the canonical form as we only “moved” some cells in D that already verified the
canonical form. Therefore update((E,D), unp) is a p–PDBM.

Algorithm 1: update(D,unp): for all clock xi where unp is defined,
update frac(xi) := 0

1 foreach xi where unp(xi) is defined do
2 Di,0 := D0,i = (0,≤)
3 for j from 1 to H do
4 Di,j = D0,j

5 Dj,i = Dj,0

6 end

7 end

Definition 14 (update of a p–PDBM). Let unp be a non-parametric update func-
tion. Given (E,D) ∈ p–PDBM(Rp), we define the update of (E,D), denoted

36

by (E′, D′) = update((E,D), unp) as: D′ is the result of Algorithm Algorithm 1
and for each clock x if unp(x) is defined E′x := unp(x), E′x := Ex otherwise.

Lemma 5 (stability under update). Let Rp be a parameter region and (E,D) ∈
p–PDBM(Rp). Let unp be a non-trivial non-parametric update. Then update((E,D), unp) ∈
p–PDBM�(Rp).

Proof. We split this proof in two parts: the first one treats the case of point–p–
PDBMs and the second one of open–p–PDBMs.

The following lemma shows that applying a update on any point–p–PDBM
transforms it into an open–p–PDBM.

Lemma 6 (p–PDBM�(Rp) becomes p–PDBM�(Rp) after update). Let Rp be
a parameter region and (E,D) ∈ p–PDBM�(Rp). Let unp be a non-parametric
update. Then update((E,D), unp) ∈ p–PDBM�(Rp).

Proof. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Consider
(E′, D′) = update((E,D), unp). After applying Algorithm 1, for all clock xi
of (E,D) where unp is defined, E′i = unp(xi); moreover for all clock j, D′i,j = D0,j

and D′j,i = Dj,0. First note that if xi, xj have been updated, D′i,j = D′j,i =
D′0,j = D′j,0 = D′0,i = D′i,0 = (0,≤) = D0,0. For all clocks i, j, k, the following
inequalities are valid for Rp:

1. (a) if xi is updated: D′i,0 = (0,≤) = D′0,i and therefore trivially it holds
that −1 ≤ D′0,i ≤ 0 and 0 ≤ D′i,0 ≤ 1 are valid for Rp;

(b) if xi is not updated: D′i,0 = Di,0 and therefore −1 ≤ D′0,i ≤ 0 and
0 ≤ D′i,0 ≤ 1 are valid for Rp because these constraints were already
satisfied in (E,D).

2. For all xi, xj , if neither xi nor xj is updated, Di,j and Dj,i are not modified
so condition Definition 12 (2) still holds. If either xi is updated, as D′i,j =
D0,j and D′j,i = Dj,0 condition Definition 12 (2) still holds as it holds
for D0,j and Dj,0 and we apply the same reasoning if xj is updated. If
both xi, xj are updated, condition Definition 12 (2) trivially holds.

3. For all xi, if it is updated then D′0,i = D′i,0 = (0,≤), hence d0,i = −di,0 = 0
and /0i = /i0 =≤; condition Definition 12 (3) holds. For all xi, xj , if
neither xi nor xj is updated, D′i,j = Di,j and D′j,i = Dj,i so condition
Definition 12 (3) holds as it holds for Di,j and Dj,i . If either xi is updated,
as D′i,j = D0,j and D′j,i = Dj,0, condition Definition 12 (3) holds as it
holds for D0,j and Dj,0. We treat the case where xj is updated similarly.
If both xi, xj are updated, condition Definition 12 (3) trivially holds.

4. Canonical form is preserved:

(a) if xi, xj , xk are not updated: since no clock is updated we have D′i,j =
Di,j , D

′
j,k = Dj,k and D′i,k = Di,k since (E,D) ∈ p–PDBM�(Rp)

from Definition 13 (2), we know that Di,k ≤ Di,j+Dj,k is valid for Rp;
therefore it remains valid.

(b) if xk is updated and xi, xj are not updated: D′i,j = Di,j and D′j,k =
Dj,0, D′i,k = Di,0 because xk is updated. Since (E,D) ∈ p–PDBM�(Rp)
from Definition 13 (2), we know that Di,0 ≤ Di,j+Dj,0 is valid for Rp;
therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

37

(c) if xj is updated and xi, xk are not updated: then D′i,k = Di,k because
neither xi nor xk are updated; since xk is updated we haveD′j,k = D0,k

and D′i,j = Di,0; since (E,D) ∈ p–PDBM�(Rp) from Definition 13
(2), we know that Di,k ≤ Di,0 + D0,k is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(d) if xj , xk are updated and xi is not updated: then D′i,k = Di,0 be-
cause xk is updated; since xj is updated we have D′i,j = Di,0 and
D′j,k = D0,0; since (E,D) ∈ p–PDBM�(Rp) from Definition 13 (2)
and Lemma 4, we know that Di,0 ≤ Di,0 + D0,0 is valid for Rp;
therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(e) if xi is updated and xj , xk are not updated: then D′i,k = D0,k,
D′i,j = D0,j because xi is updated; since xj , xk are not updated, we
have D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp) from Definition 13
(2), we know that D0,k ≤ D0,j + Dj,k is valid for Rp; therefore
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

(f) if xi, xk are updated and xj is not updated: we have D′i,k = (0,≤
) = D0,0, D′i,j = D0,j and D′j,k = Dj,0 because xi, xk are updated.
Since (E,D) ∈ p–PDBM�(Rp) from Definition 13 (2), we know
that D0,0 ≤ D0,j +Dj,0 is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

(g) if xi, xj are updated and xk is not updated: we have D′i,k = D0,k,
D′i,j = (0 <≤) = D0,0 and D′j,k = D0,k because xi, xj are updated.
Since (E,D) ∈ p–PDBM�(Rp) from Definition 13 (2) and Lemma 4,
we know that D0,k ≤ D0,0 + D0,k is valid for Rp; therefore, D′i,k ≤
D′i,j +D′j,k is valid for Rp.

(h) if xi, xj , xk are updated: we have D′i,k = D0,0, D′i,j = D0,0 and D′j,k =
D0,0 because xi, xj , xk are updated. Since (E,D) ∈ p–PDBM�(Rp)
from Definition 13 (2) and Lemma 4, we know that D0,0 ≤ D0,0+D0,0

is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

5. there is at least one clock x s.t. D′x,0 = D′0,x = (0,≤).

Therefore, (E′, D′) ∈ p–PDBM�(Rp).

The following lemma shows that applying a update on any open–p–PDBM
transforms it into an open–p–PDBM respecting Definition 12 (2).

Lemma 7 (stability of p–PDBM�(Rp) under update). Let Rp be a parameter
region and (E,D) ∈ p–PDBM�(Rp). Let unp be a non-parametric update. Then
update((E,D), unp) ∈ p–PDBM�(Rp).

Proof. Most cases are similar to the proof of Lemma 6.
The remaining cases to treat are the cases of Definition 12 (2). If i, j are

different from 0, and

1. if i, j are not updated then D′i,j = Di,j and since it is the case in (E,D),
condition Definition 12 (2) holds.

2. if j is updated and i is not updated then D′i,j = Di,0 and D′j,i = D0,i and
as condition Definition 13 (1) holds for Di,0 and D0,i in (E,D), condition
Definition 12 (2) holds in (E′, D′).

38

3. if i is updated and j is not updated then D′i,j = D0,j and D′j,i = Dj,0 and
as condition Definition 13 (1) holds for Dj,0 and D0,j in (E,D), condition
Definition 12 (2) holds in (E′, D′).

4. if i, j are updated then trivially D′i,j = D′j,i = (0,≤) and condition Defini-
tion 12 (2) holds.

Applying a non-parametric update on any point–p–PDBM transforms it
into an open–p–PDBM, and open–p–PDBMs are stable under update. It can
seem a paradox that the (non-parametric) update of a point–p–PDBM becomes
an open–p–PDBM; in fact, it remains geometrically speaking a point, i. e., a
singleton containing one clock valuation. Recall that our open–p–PDBMs include
p–PDBMs geometrically corresponding to a point for each valuation. In contrast,
point–p–PDBMs are also punctual (for each valuation), but are fully parametric.

The following lemma states that the update operator behaves as expected.

Lemma 8 (semantics of update on p–PDBM(Rp)). Let Rp be a parameter
region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. Let unp be a non-parametric
update. For all w, [w]unp ∈ update((E, v(D)), unp) iff w ∈ (E, v(D)).

Proof. We first treat the case of the p–PDBM�(Rp) (the case of the p–PDBM�(Rp)
will be handled similarly at the end). We also prove this lemma for a singleton
update (only one clock, say xi) since updating several clocks can be done by
applying several singleton updates in a 0 delay.

4.4.1.1 (E,D) ∈ p–PDBM�(Rp), (⇒)

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let
unp be a non-parametric update which updates xi to an integer n and lets the
value of other clocks unchanged. Consider (E′, D′) = update((E, v(D)), unp)
and suppose w′ ∈ (E′, D′). We want to construct a valuation w ∈ (E, v(D)) s.t.
w′ = unp(w).

Let w be a clock valuation s.t. for all clock xj where i 6= j, w(xj) = w′(xj) .
That means that for all j 6= i,

frac(w(xj)) /j0 v(dj,0), −frac(w(xj)) /0j v(d0,j) and bw(xj)c = Ej

hold from Definition 14 since it is the case in (E′, D′) and these values are left
untouched by the update. Moreover for all j 6= i, k 6= i,

frac(w(xj))−frac(w(xk))/jk v(dj,k) and frac(w(xk))−frac(w(xj))/kj v(dk,j)

again hold from Definition 14 since it is the case in (E′, D′) and these values are
left untouched by the update.

We want a valuation for w(xi) s.t.

frac(w(xi)) /i0 v(di,0) − frac(w(xi)) /0i v(d0,i) and bw(xi)c = Ei

39

hold, and for all j 6= i, k 6= i,

frac(w(xi))−frac(w(xj))/ijv(di,j) and frac(w(xk))−frac(w(xi))/kiv(dk,i)
(4.1)

hold. Let us prove that such a valuation w exists. We set bw(xi)c = Ei.
The following lemma proves transitivity of constraints on clocks with respect

to constraints in a p–PDBM.

Lemma 9. Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). Let
v ∈ Rp. Let w ∈ (E, v(D)). For all clocks i, j, k, frac(w(xj))− frac(w(xk))(/ji⊕
/ik)v(dj,i) + v(di,k).

Proof. Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp.
Let w ∈ (E, v(D)).

Since (E,D) ∈ p–PDBM(Rp), for all i, j, k we have from Definition 12 (4),

Dj,k ≤ Dj,i +Di,k

is valid for Rp hence since v ∈ Rp, we have v(Dj,k) ≤ v(Dj,i)+v(Di,k). Precisely
that is (v(dj,k), /jk) ≤ (v(dj,i), /ji) + (v(di,k), /ik) i. e.,

(v(dj,k), /jk) ≤ (v(dj,i) + v(di,k), /ji ⊕ /ik).

For all clocks j, k satisfying constraints of (E,D),

frac(w(xj))− frac(w(xk)) /jk v(dj,k).

Then for all i, j, k, either:

• from Definition 11 (2a): v(dj,k) < v(dj,i) + v(di,k) and then, regardless of
/jk and /ji⊕/ik we have frac(w(xj))−frac(w(xk))(/ji⊕/ik)v(dj,i)+v(di,k),
or

• from Definition 11 (2b):

– v(dj,k) ≤ v(dj,i) + v(di,k) and /jk = <, /ji ⊕ /ik = ≤ and then we
have frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k), or

– v(dj,k) ≤ v(dj,i) + v(di,k) and /jk = /ji ⊕ /ik and then we have
frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k) which completes
the proof.

This completes the proof of Lemma 9.

For all j 6= i and k 6= i, since v(Dj,k) ≤ v(Dj,i)+v(Di,k) from Definition 12 (4),
we have frac(w(xj))− frac(w(xk)) /jk v(dj,k) and

frac(w(xj))− frac(w(xk))(/ji ⊕ /ik)v(dj,i) + v(di,k)

holds from Lemma 9. Hence

frac(w(xj))− v(dj,i)(/ji ⊕ /ik)frac(w(xk)) + v(di,k) (4.2)

holds. Note that /ji ⊕ /ik is either ≤ or <. Note the following trick is inspired
by [HRSV02, Proof of Lemma 3.5] and [HRSV02, Proof of Lemma 3.13]. Hence

I = {t ∈ R+ | frac(w(xj))− v(dj,i) ≤ t ≤ frac(w(xk)) + v(di,k) for all clocks j, k}

40

is a non empty set. That means that choosing a frac(w(xi)) with respect to
constraints (4.1), recall that they are

frac(w(xj))− frac(w(xi)) /ji v(dj,i) and frac(w(xi))− frac(w(xk)) /ik v(di,k)

is equivalent to choose a frac(w(xi)) s.t.

frac(w(xj))− v(dj,i) /ji frac(w(xi)) and frac(w(xi)) /ik frac(w(xk)) + v(di,k)

which is a nonempty set from formula (4.2). Finally we choose a frac(w(xi)) ∈ I,
then w ∈ (E, v(D)) and it completes the proof.

4.4.1.2 (E,D) ∈ p–PDBM�(Rp), (⇐)

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let
unp be a non-parametric update which updates xi to an integer n and lets the
value of other clocks unchanged. Consider (E′, D′) = update((E, v(D)), unp).
Now suppose w ∈ (E, v(D)) and let w′ = [w]unp

.

• for xi, since unp is defined, w′(xi) = unp(xi) = E′xi
(i. e., frac(w′(xi)) = 0)

by applying update as defined in Definition 14. By applying update as
defined in Definition 14, D′i,0 = D′0,i = (0,≤), hence

−frac(w′(xi)) /0i v(d′0,i) and frac(w′(xi)) /i0 v(d′i,0)

hold from Definition 14 and Lemma 6. Moreover we know that for all j 6= i

− v(D′i,j) = −v(D′0,j) and v(D′j,i) = v(D′j,0) (4.3)

holds from Definition 14, and we also know that

frac(w′(xj))− frac(w′(xi)) = frac(w′(xj)) (4.4)

since frac(w′(xi)) = 0. Hence, combining (4.3) and (4.4), clearly since

−frac(w′(xj)) /0j v(d′0,j) and frac(w′(xj)) /j0 v(d′j,0)

hold in (E′, D′),

frac(w′(xj))−frac(w′(xi))/jiv(d′j,i) and frac(w′(xi))−frac(w′(xj))/ijv(d′i,j)

hold.

• for any two clocks xj , xk where unp is not defined, w(xj) = w′(xj) and
w(xk) = w′(xk). Hence

−v(D′0,j) /0j frac(w′(xj)) /j0 v(D′j,0)

and
−v(D′k,j) /kj frac(w′(xj))− frac(w′(xk)) /jk v(D′j,k)

hold from Definition 14 and Lemma 6 since bounds remain unchanged.

Then w′ ∈ update((E, v(D)), unp).
This concludes the case (E,D) ∈ p–PDBM�(Rp).

Let us now treat the case (E,D) ∈ p–PDBM�(Rp).

41

4.4.1.3 (E,D) ∈ p–PDBM�(Rp), (⇒)

Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp. Let
unp be a non-parametric update which updates xi to an integer n and lets the
value of other clocks unchanged. Consider (E′, D′) = update((E, v(D)), unp)
and suppose w′ ∈ (E′, D′). We want to construct a valuation

w ∈ (E, v(D)) s.t. w′ = unp(w)

Let w be a clock valuation s.t. for all clock xj where j 6= i, w(xj) = w′(xj).
That means for all j 6= i,

frac(w(xj)) /j0 v(dj,0), −frac(w(xj)) /0j v(d0,j) and bw(xj)c = Ej

hold from Definition 14 since it is the case in (E′, D′) and bounds remain
unchanged i. e., D0,j = D′0,j and Dj,0 = D′j,0. Moreover for all k 6= i and k 6= j,

frac(w(xj))−frac(w(xk))/jk v(dj,k) and frac(w(xk))−frac(w(xj))/kj v(dk,j)

also hold from Definition 14 since it is the case in (E′, D′) and bounds remain
unchanged i. e., Dk,j = D′k,j and Dj,k = D′j,k.

Recall that (E,D) contains only one clock valuation for each parameter
valuation v ∈ Rp.

Let frac(w(xi)) = v(di,0) (or equivalently frac(w(xi)) = −v(d0,i) since by
Definition 13 we have (di,0, /i0) = (−d0,i, /0i)). Then, as it is the case in (E,D),

frac(w(xi)) /i0 v(di,0), −frac(w(xi)) /0i v(d0,i) and bw(xi)c = Ei

hold, and for all j 6= i, k 6= i,

frac(w(xi))− frac(w(xj)) /ij v(di,j) and frac(w(xk))− frac(w(xi)) /ki v(dk,i)

hold, which completes the proof, as w ∈ (E, v(D)) and w′ = unp(w).

4.4.1.4 (E,D) ∈ p–PDBM�(Rp), (⇐)

This case is straightforward and similar to the case (⇐) above of open–p–PDBMs.

4.4.2 Parametric update

Given (E,D) ∈ p–PDBM(Rp) we write update((E,D), u) to denote the update
of (E,D) by u, when u is a total parametric update function, i. e., updating the
set of clocks exclusively to parameters. We therefore obtain a point–p–PDBM,
containing the parametric set of constraints defining a unique clock valuation.
The semantics is straightforward. Recall that a total update function which is
not fully parametric (i. e., an update of some clocks to parameters and some
others to constants) can be encoded as a total parametric update immediately
followed by a partial non-parametric update function.

42

4.4.3 Time elapsing

Given a parameter region Rp, recall that constraints satisfied by parameters
are known, and we can order elements of PLT . Thanks to this order, within
a p–PDBM (E,D) the clocks with the (possibly parametric) largest fractional
part i. e., the clocks that have a larger fractional part than any other clock, can
always be identified by their bounds in D. For a p–PDBM (E,D), we define the
set of clocks with the largest fractional part (LFP) as LFPRp

(D) = {x ∈ [1, H] |
0 ≤ Dx,i is valid for Rp, for all 0 ≤ i ≤ H}. Clocks belonging to LFP are the
first to reach the upper bound 1 by letting time elapse.

Definition 15 (clocks with the largest fractional part in a p–PDBM). Let
Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). A clock with the
(possibly parametric) largest fractional part is a clock x s.t. for all 0 ≤ i ≤ H,
(0,≤) ≤ Dx,i is valid for Rp.

There is at least one clock with the (possibly parametric) largest fractional
part:

Lemma 10 (existence of a clock with the largest fractional part). Let Rp be a
parameter region and (E,D) ∈ p–PDBM(Rp). There is at least one clock x s.t.
for all 0 ≤ i ≤ H, (0,≤) ≤ Dx,i is valid for Rp.

Proof. Reductio ad absurdum: Let Rp be a parameter region and (E,D) ∈
p–PDBM�(Rp) with at least 2 clocks i, j. Suppose for all clock xi there is
another clock xj s.t. Di,j < 0 is valid for Rp. Let v ∈ Rp. Then v(Di,j) < 0.

• Suppose for xj , xi is the clock s.t. Dj,i < 0 is valid for Rp. Then v(Dj,i) < 0.
We have v(Di,j) + v(Dj,i) < 0 holds, therefore 0 ≤ v(Di,j) + v(Dj,i) does
not hold, and hence 0 ≤ Di,j + Dj,i is not valid for Rp. Then (E,D)
does not respect Lemma 3 and violates condition (4) of Definition 12.
So (E,D) 6∈ p–PDBM�(Rp).

• Suppose for xj , a third clock xk is the clock s.t. Dj,k < 0 is valid for Rp.
Then v(Dj,k) < 0. Suppose we have only three clocks. Then for xk, either
xi or xj is the clock s.t. Dk,i < 0 is valid for Rp.

– Assume this is xi. Then v(Dk,i) < 0. We have v(Dk,i) + v(Di,j) < 0
and v(Dk,j) ≤ v(Dk,i) + v(Di,j) by Definition 12 (4). Follows that
v(Dk,j) + v(Dj,k) < 0 and 0 ≤ Dk,j + Dj,k is not valid for Rp.
Then (E,D) does not respect Lemma 3 and violates condition (4) of
Definition 12. So (E,D) 6∈ p–PDBM�(Rp).

– Assume this is xj . This case is similar (and simpler).

We apply the same reasoning for more than 3 clocks. Now suppose (E,D) ∈
p–PDBM�(Rp). We apply the same reasoning, replacing the argument of
condition (4) of Definition 12 by the fact from Definition 13 that D is antisym-
metric.

Note that several clocks may have the largest fractional parts (up to some
syntactic replacements 2, in that case they satisfy the same constraints in (E,D)).

2Let v ∈ Rp and suppose, we have two different syntactic expressions, such as p, 1− p that
are equal once valuated i. e., v(p) = 1− v(p). From Definition 10 remark that if it is for v, it
is for any v′ ∈ Rp. We choose one e. g., 1− v(p) and replace the second, v(p), everywhere it
appears.

43

For a p–PDBM (E,D), we define the set of clocks with the largest fractional
part (LFP) as LFPRp

(D) = {x ∈ X | 0 ≤ Dx,i is valid for Rp, for all 0 ≤ i ≤ H}.
As we are able, thanks to the parameter regions, to order our parameter valu-

ations (i. e., whether one is greater or less than another one), we can define LFP
from the constraints defined in the point–p–PDBM. We will define and apply suc-
cessively two time-elapsing algorithms: the first one starts from a point–p–PDBM
or an open–p–PDBM respecting condition Definition 12 (5a). We will prove that
we obtain an open–p–PDBM respecting condition Definition 12 (5b). The second
one, starts from an open–p–PDBM respecting condition Definition 12 (5b) and
will define the set of constraints defining the possible clocks valuations exactly
when any clock of LFP has reached its upper bound 1. We will prove that we
obtain an open–p–PDBM respecting condition Definition 12 (5a). As we will
obtain at each iteration of the algorithm an open–p–PDBM respecting either
condition Definition 12 (5a) or (5b), this will prove we have a stable set of
open–p–PDBMs. Now we explain our algorithms more precisely.

Clocks belonging to LFP are the first to reach the upper bound 1 by letting
time elapse. Since LFP can contain multiple clocks and they have the same
fractional part, we can consider any x ∈ LFP.

Let (E,D) ∈ p–PDBM(Rp) and x ∈ LFPRp
(D). To formalize time elapsing

until the largest fractional part frac(x) reaches 1, we define a time elapsing
operator that will decline in two variants depending on the input: open–p–PDBM
(Definition 12) satisfying condition (5a) and point–p–PDBM (Definition 13) or
open–p–PDBM (Definition 12 satisfying condition (5b)).

Given an open–p–PDBM satisfying condition 5a or a point–p–PDBM (E,D)
with Ex = k, TE ((E,D)) described in Algorithm 9 and named TE<, defines a
new open–p–PDBM satisfying condition 5b by

1. setting Dx,0 := (1, <) as x is the first one that will reach k + 1;

2. updating the upper bound of all other clocks i, which has increased:
Di,0 := Di,x + (1, <);

3. updating all lower bounds as they have to leave the border : D0,i :=
D0,i + (0, <) (x included).

This gives the range of possible clock valuations before frac(x) reaches 1. In-
tuitively it represents the transformation from an open line segment or the
corner-point region of [AD94] into an open region of [AD94].

Algorithm 2: TE<((E,D)): set upper bound of all frac(xi) ∈
LFPRp

(D) to 1

1 pick xi ∈ LFPRp
(D)

2 for j from 1 to H do
3 if j ∈ LFPRp

(D) then
4 Dj,0 := (1, <)
5 else
6 Dj,0 := Dj,i + (1, <)
7 end
8 D0,j := D0,j + (0, <)

9 end

44

TE< is applied to point–p–PDBMs and open–p–PDBMs respecting condi-
tion 5a; it sets Dx,0 := (1, <) and D0,x := D0,x + (0, <) for all x ∈ LFPRp

(D).
Then, for all clocks 1 ≤ j ≤ H not in LFP sets Dj,0 := Dj,i + (1, <) and
D0,j := D0,j + (0, <). This gives the range of possible clock valuations before
frac(xi) reaches 1. The obtained result is denoted by TE<((E,D)), and it
leaves E unchanged.

The time elapsing operator also operates the transformation from an open
region of [AD94] to the upper open line segment or the corner-point region
of [AD94], given in the algorithm Algorithm 15 as TE=. Given an open–p–
PDBM satisfying condition 5b (E,D) where Ex = k, TE ((E,D)) defines a new
open–p–PDBM satisfying condition 5a by

1. setting Dx,0 := D0,x := (0,≤) (intuitively both became (1,≤)) and Ex =
k + 1 (if Ex ≤ K + 1), as x is now in the upper border ;

2. updating the upper and lower bounds of all other clocks i: Di,0 := Di,x +
(1,≤) and D0,i := Dx,i + (−1,≤);

3. updating the new difference between fractional parts with all other clocks i,
which is the range of values i can currently take (as in the update operator):
Dx,i := D0,i and Di,x := Di,0.

Although we perform some additions such as Dj,i + (1, <), we do not create
new expressions that are not in PLT . In fact, this addition is performed on
a negative term (e. g., frac(p)− 1), as xi is a clock with the largest fractional
part and adding 1 transforms it into another term of PLT . The intuition is
similar when performing additions such as Di,j + (−1,≤): as xi is a clock with
the largest fractional part, di,j is a positive term. The canonical form is also
preserved by the last setting operations of the algorithm, as in the update
operator. Therefore TE ((E,D)) is a p–PDBM.

Algorithm 3: TE=((E,D)): set upper and lower bound of
all frac(xi) ∈ LFPRp

(D) to 1

1 pick xi ∈ LFPRp
(D)

2 for j from 1 to H do
3 if j ∈ LFPRp(D) then
4 Dj,0 := (0,≤)
5 D0,j := (0,≤)
6 Ej := Ej + 1

7 else
8 Dj,0 := Dj,i + (1,≤)
9 D0,j := Di,j + (−1,≤)

10 end

11 end
12 for j from 1 to H do
13 Dj,i := Dj,0

14 Di,j := D0,j

15 end

TE= is applied to open–p–PDBMs respecting condition 5b and sets Dx,0 :=
(0,≤) and D0,x := (0,≤) for all x ∈ LFPRp

(D). Then, for all clocks xj ∈

45

H \ LFPRp
(D) sets D0,j := (−1,≤) + Di,j and Dj,0 := Dj,i + (1,≤); it gives

the range of clock valuations when frac(x) reaches 1, and increments Ex, for
x ∈ LFPRp

(D) if Ex is not greater that K+ 1. It then sets, regardless of whether
xj ∈ LFPRp(D) Di,j := D0,j and Dj,i := Dj,0. Finally, for x ∈ LFPRp(D) it sets
Ex := Ex + 1. The obtained result is denoted by TE=((E,D)).

Definition 16 (time elapsing in a p–PDBM). Let Rp be a parameter re-
gion and (E,D) ∈ p–PDBM�(Rp) ∪ p–PDBM�(Rp). We define (E′, D′) =
TE ((E,D)) as applying either TE< if (E,D) respects condition 5a or (E,D) ∈
p–PDBM�(Rp), or TE= if (E,D) respects condition 5b.

Lemma 11 (stability under time elapsing). Let Rp be a parameter region.
Let (E,D) ∈ p–PDBM(Rp). Then TE ((E,D)) ∈ p–PDBM(Rp).

Proof. We prove our lemma for the two types of open–p–PDBMs and for point–
p–PDBMs, and split this proof in three lemmas.

4.4.3.1 Definition 12 type (5a) to (5b)

Lemma 12 (modification of an open–p–PDBM respecting condition 5a un-
der TE<). Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp) respect-
ing condition 5a, then TE<((E,D)) ∈ p–PDBM�(Rp) respecting condition 5b.

Proof of Lemma 12. Suppose (E,D) ∈ p–PDBM�(Rp) respects condition (5a)
of Definition 12, i. e., we have at least an x s.t. Dx,0 = D0,x = (0,≤). Since,
in Rp, we know which parameters have the largest fractional part, we can
determine LFPRp

(D) from Lemma 10. If more than one clock belong to LFPRp
(D)

then their valuations have the same fractional part. Indeed, from Definition 15
if xi, xj ∈ LFPRp

(D) then both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i are valid for Rp,
and from Definition 12 (2) we must have Di,j = Dj,i = (0,≤)(?).

Let v ∈ Rp. Assume xi ∈ LFPRp(D) and w ∈ (E, v(D)), by letting time
elapse, frac(w(xi)) is the first that might reach 1. Moreover, for all xj ∈
X \ LFPRp

(D), frac(w(xj)) cannot reach 1 before frac(w(xi)). We are going
to construct a new (E′, D′) = TE<((E,D)), which will be an open–p–PDBM
respecting condition 5b of Definition 12. While detailing the procedure of TE<,
we are going to prove that Definition 12 (1) and (2) hold for (E′, D′). Further
we will prove that (4) and (5b) also hold.

proof that Definition 12 (1) holds According to the definition of TE<

(Algorithm 9), the first step is to set a new upper bound

D′i,0 = (1, <) for all xi ∈ LFPRp
(D)

and obviously (0,≤) ≤ D′i,0 ≤ (1,≤) is valid for Rp. Then we set new upper
bounds for all other clock xj ∈ X \ LFPRp

(D) by setting

D′j,0 = Dj,i + (1, <).

Indeed, Dj,i is the constraint on the lower bound of frac(w(xj))− frac(w(xi))
and since the upper bound of xi has increased, this gives the new upper bound
of xj . Note that since xi ∈ LFPRp

(D), from Definition 15 and Definition 12 (2)
we have that −1 ≤ Dj,i ≤ 0 is valid for Rp for all clock xj . Precisely, dj,i ∈

46

{0,−p1, p2 − p1, p1 − 1− p2, p1 − 1} for some p1, p2 ∈ P where p2 ≤ p1 is valid
for Rp. Hence as dj,i + 1 ∈ {1, 1 − p1, p2 + 1 − p1, p1 − p2, p1}, we have that
d′j,0 ∈ PLT , /ji′ = /ji ⊕< = < so (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp.

Note that we cannot have (dj,i, /ji) = (−1, <) because even if (di,j , /ij) =
(1, <), since (E,D) ∈ p–PDBM�(Rp) we do not have have 0 ≤ Dj,i + Di,j is
valid for Rp from Definition 12 (4) and Lemma 3.

Secondary we set for all clock x regardless of whether they are in LFPRp
(D)

D′0,x = D0,x + (0, <).

Since some time elapsed, lower bounds of all clocks are increased. Moreover,
as (−1, <) ≤ D0,x ≤ (0,≤) is valid for Rp from Definition 12 (1), (−1,≤) ≤
D′0,x ≤ (0,≤) is also valid for Rp.

Therefore, Definition 12 (1) holds.

proof that Definition 12 (2) holds Third we set for all clocks x, y regardless
of whether they are in LFPRp

(D)

D′x,y = Dx,y

so as Definition 12 (2) holds in (E,D), it still does. More intuitively since no
fractional part has reached 1, constraints on differences of clocks and integer
parts remain unchanged.

proof that Definition 12 (3) holds For all xi:

• if xi ∈ LFPRp
(D), D′i,0 = (1, <), D′0,i = D0,i + (0, <) hence d′i,0 6= d′0,i

and /i0′/0i′ = <, condition Definition 12 (3) holds;

• if xi ∈ X \ LFPRp
(D), x ∈ LFPRp

(D), D′i,0 = Di,x + (1, <), D′0,i =
D0,i+(0, <) hence as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid
for Rp, we have d′i,0 6= d′0,i and /i0′/0i′ = < and condition Definition 12 (3)
holds.

For all xi, xj :

• if xi, xj ∈ X \ LFPRp
(D), D′i,j = Di,j and D′j,i = Dj,i, condition Defini-

tion 12 (3) holds as it holds for Di,j and Dj,i.

• if xi ∈ X \ LFPRp
(D), xj ∈ LFPRp

(D), D′i,0 = Di,j + (1, <), D′0,i =
D0,i + (0, <) hence as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is
valid for Rp, we have d′i,0 6= d′0,i and /i0′/0i′ = <, condition Definition 12 (3)
holds. The case xj ∈ X \ LFPRp

(D), xi ∈ LFPRp
(D) is treated similarly.

• if xi, xj ∈ LFPRp
(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0

and /ij′/ji′ =≤ and condition Definition 12 (3) holds.

proof that Definition 12 (4) holds Now we prove that Definition 12 (4)
holds, i. e., for all clocks xi, xj , xk, valid conditions such as D′i,j ≤ D′i,k +D′k,j
remain valid in Rp. Indeed, when time elapses, all clocks have the same behavior,
hence the difference between two clocks does not change without an update.
Precisely, for all clocks xi, xj , xk, are valid for Rp:

47

1. if xi, xj , xk ∈ X \ LFPRp
(D): let x ∈ LFPRp

(D) and

• if i, j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j

andD′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4),
we know that Di,k ≤ Di,j + Dj,k is valid for Rp; therefore, D′i,k ≤
D′i,j +D′j,k is valid for Rp.

• if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1, <),
D′i,j = Di,j and D′j,0 = Dj,x + (1, <); since (E,D) ∈ p–PDBM�(Rp)
from Definition 12 (4), we know that Di,x ≤ Di,j + Dj,x is valid
for Rp; then Di,x + (1, <) ≤ Di,j +Dj,x + (1, <) is valid for Rp from
Lemma 2 and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 =
Di,x + (1, <) and D′0,k = D0,k + (0, <); we claim that

Di,k ≤ Di,x + (1, <) +D0,k + (0, <) (4.5)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. Since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (1), we
know that

Dx,0 ≤ (1, <); (4.6)

moreover we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <) (4.7)

Since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we know
that Dx,k ≤ Dx,0 + D0,k is valid for Rp; combining with (4.6) and
(4.7) we obtain

Dx,k ≤ (1, <) +D0,k + (0, <). (4.8)

Now, since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we know
that Di,k ≤ Di,x +Dx,k is valid for Rp and combining with (4.8) we
obtain (4.5) and therefore our result.

• if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1, <); from
Definition 11 (2b) we have that

Di,x + (1, <) ≤ Di,x + (1, <)

is valid for Rp. Hence from Lemma 4

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.

• if j, k are different from 0, i = 0, we have D′0,k = D0,k + (0, <),
D′0,j = D0,j+(0, <) and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp),
from Definition 12 (4) we know that D0,k ≤ D0,j+Dj,k is valid for Rp.
Moreover we have that

D0,k+(0, <) = (d0,k, <) and D0,j+(0, <)+Dj,k = (d0,j+dj,k, <)

so we have from Definition 11 (2b)

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

48

• if j is different from 0, i = k = 0, we have D′0,0 = (0,≤), D′0,j =
D0,j+(0, <) and D′j,0 = Dj,x+(1, <); since (E,D) ∈ p–PDBM�(Rp),
from Definition 12 (4) we know that D0,x ≤ D0,j+Dj,x is valid for Rp;
moreover, from Definition 11 (2b) and Lemma 2,

D0,x + (0, <) ≤ D0,j + (0, <) +Dj,x

is valid for Rp. Recall that from Lemma 3 (0,≤) ≤ D0,x + Dx,0 is
valid for Rp and since Dx,0 ≤ (1, <) from Definition 12 (1), we have

(0,≤) ≤ D0,x + (1, <)

is valid for Rp. As we have (1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <),
we obtain that

D0,x + (1, <) ≤ D0,j +Dj,x + (1, <)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

• if k is different from 0, i = j = 0, we have D′0,k = D0,k + (0, <); From
Definition 11 (2b) and Lemma 2 we have that

D0,k + (0, <) ≤ D0,k + (0, <)

is valid for Rp. Hence from Lemma 4

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.

• if i = j = k = 0, from Definition 12 (4) and Lemma 4 we trivially
have

D′0,0 ≤ D′0,0 +D′0,0

is valid for Rp.

2. if xk ∈ LFPRp(D) and xi, xj ∈ X \ LFPRp(D): k 6= 0 and

• if i, j are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we know
that Di,k ≤ Di,j +Dj,k; therefore, D′i,k ≤ D′i,j +D′j,k.

• if i 6= 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,k + (1, <) and D′0,k =
D0,k + (0, <); we claim that Di,k ≤ Di,k + (1, <) + D0,k + (0, <) is
valid for Rp, i. e.,

(0,≤) ≤ (1, <) +D0,k + (0, <) (4.9)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (4.10)

Since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4) we know
that (0,≤) ≤ D0,k +Dk,0 is valid for Rp and from Definition 12 (1)
that Dk,0 ≤ (1, <) is valid for Rp; combining with (4.9) and (4.10)
we obtain our result.

49

• if i = 0, j 6= 0, we have D′0,k = D0,k+(0, <), D′0,j = D0,j +(0, <) and
D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4)
we know that D0,k ≤ D0,j +Dj,k. Moreover we have that

D0,k+(0, <) = (d0,k, <) and D0,j+(0, <)+Dj,k = (d0,j+dj,k, <)

so we have from Definition 11 (2b)

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = j = 0, from Definition 12 (4) and Lemma 4 we trivially have

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.

3. if xj ∈ LFPRp(D) and xi, xk ∈ X \ LFPRp(D): j 6= 0 and

• if i, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if i 6= 0, k = 0, we have D′i,0 = Di,j + (1, <), D′i,j = Di,j and D′j,0 =
(1, <); From Definition 11 (2b) we trivially have that Di,j + (1, <) ≤
Di,j + (1, <) is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid
for Rp.

• if i = 0, k 6= 0, we have D′0,k = D0,k+(0, <), D′0,j = D0,j +(0, <) and
D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4)
we know that D0,k ≤ D0,j +Dj,k is valid for Rp. Moreover we have
that

D0,k+(0, <) = (d0,k, <) and D0,j+(0, <)+Dj,k = (d0,j+dj,k, <)

so we have from Definition 11 (2b) and Lemma 2

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = k = 0, we have D′0,0 = (0,≤), D′0,j = D0,j + (0, <) and
D′j,0 = (1, <); since (E,D) ∈ p–PDBM�(Rp), from Lemma 3 we
know that (0,≤) ≤ D0,j + Dj,0 is valid for Rp, and since from Def-
inition 12 (1) Dj,0 ≤ (1,≤) is valid for Rp, that means (0,≤) ≤
D0,j + (1, <) is valid for Rp. As we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

we obtain that

(0,≤) ≤ D0,j + (0, <) + (1, <)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

50

4. if xj , xk ∈ LFPRp
(D) and xi ∈ X \ LFPRp

(D): j 6= 0, k 6= 0 and

• if i is different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4) we know
that Di,k ≤ Di,j +Dj,k; therefore, D′i,k ≤ D′i,j +D′j,k.

• if i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and
D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4)
we know that D0,k ≤ D0,j +Dj,k. Moreover we have that

D0,k+(0, <) = (d0,k, <) and D0,j+(0, <)+Dj,k = (d0,j+dj,k, <)

so we have from Definition 11 (2b) and Lemma 2

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

5. if xi ∈ LFPRp
(D) and xj , xk ∈ X \ LFPRp

(D): i 6= 0 and

• if j, k are different from 0, we haveD′i,k = Di,k, D′i,j = Di,j andD′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4) we know
that Di,k ≤ Di,j +Dj,k; therefore, D′i,k ≤ D′i,j +D′j,k.

• if j 6= 0, k = 0, we have D′i,0 = (1, <), D′i,j = Di,j and D′j,0 =
Dj,i + (1, <); from Definition 12 (4) and Lemma 3 we know that
(0,≤) ≤ Di,j + Dj,i is valid for Rp. Since, from Definition 11 (2b)
(1, <) ≤ (1, <) is valid for Rp, then from Lemma 2

(1, <) ≤ Di,j +Dj,i + (1, <)

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k =
D0,k + (0, <); we claim that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. Since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we
know that Di,k ≤ Di,0 +D0,k is valid for Rp; moreover, from Defini-
tion 12 (1), we know that Di,0 ≤ (1, <) is valid for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

so we obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.

• if i is different from 0, j = k = 0, we have D′i,0 = (1, <), D′0,0 = (0,≤);
from Definition 11 (2b) we have that

(1, <) ≤ (1, <)

is valid for Rp. Hence from Lemma 4

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.

51

6. if xi, xk ∈ LFPRp
(D) and xj ∈ X \ LFPRp

(D): i 6= 0, k 6= 0 and

• if j 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;
since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4) we know
that Di,k ≤ Di,j +Dj,k; therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j = 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <);
we claim that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. Since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we
know that Di,k ≤ Di,0 +D0,k is valid for Rp; moreover, from Defini-
tion 12 (1), we know that Di,0 ≤ (1, <) is valid for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

so we obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.

7. if xi, xj ∈ LFPRp
(D) and xk ∈ X \ LFPRp

(D): i 6= 0, j 6= 0 and

• if k 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;
since (E,D) ∈ p–PDBM�(Rp), from Definition 12 (4) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if k = 0, we have D′i,0 = (1, <), D′i,j = Di,j = (0,≤) since both
xi, xj ∈ LFPRp

(D) (cf.(?)) and D′j,0 = (1, <); then (1, <) ≤ (0,≤
) + (1, <) is valid for Rp and therefore, D′i,0 ≤ D′i,j + D′j,0 is valid
for Rp.

8. if xi, xj , xk ∈ LFPRp
(D): i, j, k are different from 0, we have D′i,k = Di,k,

D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from
Definition 12 (4) we know that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

proof that Definition 12 (5b) holds Finally, for xi ∈ LFPRp
(D), D′i,0 =

(1, <) and for all clock j s.t. D′0,j = (0, /0j′), then we have /0j′ = <. Condition
Definition 12 (5b) is satisfied.

We denote by (E,D′) the obtained p–PDBM and (E,D′) ∈ p–PDBM�(Rp).

4.4.3.2 Definition 12 type 5b to (5a)

Lemma 13. Let (E,D) ∈ p–PDBM�(Rp); let xi ∈ LFPRp
(D), xj ∈ X \

LFPRp
(D). If (di,j , /ij) = (0, /), then / = <

Proof. Let xi ∈ LFPRp(D), xj ∈ X \ LFPRp(D). Suppose (di,j , /ij) = (0,≤).
From Definition 12 (2) we should have that (dj,i, /ji) = (0,≤) so Lemma 3 is
satisfied, and then xj ∈ LFPRp

(D).

52

Lemma 14 (modification of an open–p–PDBM respecting condition 5b un-
der TE=). Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp) respect-
ing condition 5b, then TE=(E,D) ∈ p–PDBM�(Rp) respecting condition 5a.

Proof. Suppose (E,D) ∈ p–PDBM�(Rp) respects condition (5a) of Defini-
tion 12 i. e., we have at least an x s.t. Dx,0 = (1, <) and for all other j s.t.
D0,j = (0, /0j), /0j = <. First we can determine LFPRp

(D). Let x ∈ LFPRp
(D).

If more than one clock belong to LFPRp
(D) then their valuations have the

same fractional part. Indeed, from Definition 15 if xi, xj ∈ LFPRp(D) then
both (0,≤) ≤ Di,j and (0,≤) ≤ Dj,i are valid for Rp, and from Definition 12 (2)
we must have Di,j = Dj,i = (0,≤).

Let v ∈ Rp. Let xi ∈ LFPRp
(D) and w ∈ (E, v(D)). By letting time elapse,

frac(w(x)) is the first to actually reach 1. Moreover, for all xj ∈ X \ LFPRp
(D),

frac(w(xj)) cannot reach 1 before frac(w(xi)). We are going to construct a
new (E′, D′) = TE=((E,D)) which is an open–p–PDBM respecting condition 5b.
While detailing the procedure of TE=, we are going to prove that Definition 12 (1)
and (2) hold for (E′, D′). Further we will prove that (4) and (5a) also hold.

proof that Definition 12 (1) holds According to the definition of TE=

(Algorithm 15), the first step is to fix the value of frac(xi) to 0 by setting

D′i,0 = (0,≤) and D′0,i = (0,≤) for all xi ∈ LFPRp
(D).

Indeed, when frac(xi) reaches 1, in the constraints expressed by (E, v(D))
we have to increase the integer part by 1 and set the new constraints on the
fractional part to 0.

Secondary we set new upper and lower bound for all other clock xj ∈
X \ LFPRp(D)

D′0,j = Di,j + (−1,≤) and D′j,0 = Dj,i + (1,≤).

We have to force now upper and lower bounds for other clocks since we know
the interval of time that elapsed when xi reached 1.

Note that since xi ∈ LFPRp(D), xj ∈ X \ LFPRp(D) from Definition 15 we
have that (0,≤) ≤ Di,j ≤ (1, <) is valid for Rp for all clock xj . Nonetheless,
since xj ∈ X\LFPRp(D), we even have Di,j 6= (0,≤): suppose (di,j , /ij) = (0,≤):
from Definition 12 (2) we should have that (dj,i, /ji) = (0,≤) so Lemma 3 is
satisfied, and then xj ∈ LFPRp

(D). The same reasoning leads to Dj,i 6= (0,≤).
Obviously, we have Di,j 6= (0, <): suppose Di,j = (0, <), since xi ∈ LFPRp

(D)
then from Definition 15 (0,≤) ≤ Di,j should be valid for Rp, which is not from
Definition 11 (2b).

Precisely, di,j∈{1, 1−p1, p2 + 1−p1, p1−p2, p1} for any two p1, p2 ∈ P where
p2 ≤ p1 is valid for Rp. Hence as −1 + di,j∈{0,−p1, p2 − p1, p1 − 1− p2, p1 − 1},
we have that D′0,j ∈ PLT and (−1, <) ≤ D′0,j ≤ (0,≤) is valid for Rpfrom
Lemma 13.

Also note that since xi ∈ LFPRp(D), from Definition 15 and Definition 12 (2)
we have that (−1, <) ≤ Dj,i ≤ (0,≤) is valid for Rp for all clock xj . Precisely,
dj,i ∈ {0,−p1, p2 − p1, p1 − 1− p2, p1 − 1} for some p1, p2 ∈ P where p2 ≤ p1 is
valid for Rp. Hence as dj,i + 1 ∈ {1, 1− p1, p2 + 1− p1, p1− p2, p1}, we have that
d′j,0 ∈ PLT and (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp.

Clearly Definition 12 (1) holds.

53

proof that Definition 12 (2) holds Third we set for all two clocks i, j where
xi ∈ LFPRp

(D), xj ∈ X \ LFPRp
(D)

D′i,j = D′0,j and D′j,i = D′j,0,

for all two clocks xj , xk ∈ X \ LFPRp
(D)

D′j,k = Dj,k

and for all two clocks x, y ∈ LFPRp(D)

D′x,y = D′y,x = (0,≤).

Here as we have already proven above that (−1, <) ≤ D′0,j ≤ (0,≤) and (0,≤
) ≤ D′0,j ≤ (1, <) are valid for Rp, Definition 12 (2) holds.

proof that Definition 12 (3) holds For all xi:

• if xi ∈ LFPRp
(D), D′i,0 = (0,≤), D′0,i = (0,≤) hence d′i,0 = −d′0,i

and /i0′/0i′ = ≤, condition Definition 12 (3) holds;

• if xi ∈ X \ LFPRp(D), x ∈ LFPRp(D), D′i,0 = Di,x + (1,≤), D′0,i =
Dx,i + (−1,≤) as condition Definition 12 (3) holds for Di,x and Dx,i

and /ij⊕ ≤= /ij , /ji⊕ ≤= /ji, condition Definition 12 (3) holds for D′i,0
and D′0,i.

For all xi, xj :

• if xi, xj ∈ X \ LFPRp
(D), D′i,j = Di,j and D′j,i = Dj,i, condition Defini-

tion 12 (3) holds as it holds for Di,j and Dj,i.

• if xi ∈ X \ LFPRp
(D), xj ∈ LFPRp

(D), D′i,j = Di,j + (1,≤), D′j,i = Dj,i +
(−1,≤) condition Definition 12 (3) holds for Di,j and Dj,i and /ij⊕ ≤= /ij ,
/ji⊕ ≤= /ji, condition Definition 12 (3) holds for D′i,j and D′j,i. The
case xj ∈ X \ LFPRp

(D), xi ∈ LFPRp
(D) is treated similarly.

• if xi, xj ∈ LFPRp
(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0

and /ij′/ji′ =≤ and condition Definition 12 (3) holds.

proof that Definition 12 (4) holds Now we prove that Definition 12 (4)
holds, i. e., for all clocks xi, xj , xk, valid conditions such as D′i,j ≤ D′i,k +D′k,j
remain valid in Rp. This is not trivial since, in this construction some clocks
have been updated. Precisely, for all clocks xi, xj , xk, are valid for Rp:

1. if xi, xj , xk ∈ X \ LFPRp(D): let x ∈ LFPRp(D) and

• if i, j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Defini-
tion 12 (4) we know that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1,≤),
D′i,j = Di,j and D′j,0 = Dj,x+(1,≤); since (E,D) ∈ p–PDBM�(Rp),
from Definition 12 (4) we know that Di,x ≤ Di,j +Dj,x is valid for Rp;
then from Lemma 2 Di,x+(1,≤) ≤ Di,j +Dj,x+(1,≤) is valid for Rp
and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp .

54

• if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 =
Di,x + (1,≤) and D′0,k = Dx,k + (−1,≤); we claim that

Di,k ≤ Di,x + (1,≤) +Dx,k + (−1,≤) (4.11)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. We have

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤) (4.12)

Since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we know
that Di,k ≤ Di,x + Dx,k is valid for Rp; combining with (4.12) and
since Dx,k + (0,≤) = Dx,k, we obtain (4.11) and therefore our result.

• if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1,≤),
D′j,k = D′0,0 = (0,≤); we have from Definition 11 (2b) that

Di,x + (1,≤) ≤ Di,x + (1,≤)

is valid for Rp. Hence Lemma 4 gives that

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.

• if j, k are different from 0, i = 0, we have D′0,k = Dx,k + (−1,≤),
D′0,j = Dx,j+(−1,≤) andD′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp),
from Definition 12 (4) we know that Dx,k ≤ Dx,j+Dj,k is valid for Rp.
Moreover we have that

(−1,≤) ≤ (−1,≤)

is valid for Rp so we have from Definition 11 (2b) and Lemma 2

Dx,k + (−1,≤) ≤ Dx,j + (−1,≤) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if j is different from 0, i = k = 0, we have D′0,j = Dx,j + (−1,≤) and
D′j,0 = Dj,x + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from Lemma 3
we know that (0,≤) ≤ Dx,j +Dj,x is valid for Rp; moreover, we have
that

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤)

and Dj,x + (0,≤) = Dj,x. Then we have from Lemma 2

(0,≤) ≤ Dx,j + (−1,≤) +Dj,x + (1,≤)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

• if k is different from 0, i = j = 0, we have D′0,k = Dx,k + (−1,≤),
D′i,j = D′0,0 = (0,≤); we have from Definition 11 (2b) that

Dx,k + (−1,≤) ≤ Dx,k + (−1,≤)

is valid for Rp. Hence, as Dx,k + (−1,≤) + (0,≤) = Dx,k + (−1,≤)
we have

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.

55

• if i = j = k = 0, we trivially have from Definition 12 (4) and Lemma 4

D′0,0 ≤ D′0,0 +D′0,0

is valid for Rp.

2. if xk ∈ LFPRp
(D) and xi, xj ∈ X \ LFPRp

(D): k 6= 0 and

• if i, j are different from 0, we have D′i,k = D′i,0 = Di,k +(1,≤), D′i,j =
Di,j and D′j,k = D′j,0 = Dj,k+(1,≤); since (E,D) ∈ p–PDBM�(Rp),
from Definition 12 (4) we know that Di,k ≤ Di,j +Dj,k is valid for Rp;
moreover, since we have (1,≤) ≤ (1,≤) is valid for Rp then from
Lemma 2

Di,k + (1,≤) ≤ Di,j +Dj,k + (1,≤)

is valid for Rp, therefore we have D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i 6= 0, j = 0, we have D′i,k = D′i,0 = Di,k+(1,≤), D′i,0 = Di,k+(1,≤)
and D′0,k = (0,≤); clearly

(1,≤) ≤ (1,≤) + (0,≤)

and
Di,k ≤ Di,k

are valid for Rp, then from Lemma 2 we obtain D′i,k ≤ D′i,0 +D′0,k is
valid for Rp.

• if i = 0, j 6= 0, we have D′0,k = (0,≤), D′0,j = Dk,j + (−1,≤) and
D′j,k = D′j,0 = Dj,k + (1,≤); since (E,D) ∈ p–PDBM�(Rp), from
Lemma 3 we know that (0,≤) ≤ Dk,j +Dj,k is valid for Rp. Moreover
we have that

(1,≤) + (−1,≤) = (1 +−1,≤ ⊕ ≤) = (0,≤)

so we have from Lemma 2

(0,≤) ≤ Dk,j +Dj,k + (0,≤)

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = j = 0, we trivially have from Definition 12 (4) and Lemma 4

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.

3. if xj ∈ LFPRp(D) and xi, xk ∈ X \ LFPRp(D): j 6= 0 and

• if i, k are different from 0, we have D′i,k = Di,k, D′i,j = D′i,0 =
Di,j + (1,≤) and D′j,k = D′0,k = Dj,k + (−1,≤); since (E,D) ∈
p–PDBM�(Rp), from Definition 12 (4) we know that Di,k ≤ Di,j +
Dj,k is valid for Rp; moreover, since we have

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

then as Di,j +Dj,k + (0,≤) = Di,j +Dj,k, clearly D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

56

• if i 6= 0, k = 0, we have D′i,0 = Di,j+(1,≤), D′i,j = D′i,0 = Di,j+(1,≤)
and D′j,0 = (0,≤); From Definition 11 (2b) we trivially have that
Di,j + (1,≤) ≤ Di,j + (1,≤) is valid for Rp and therefore, D′i,0 ≤
D′i,j +D′j,0 is valid for Rp.

• if i = 0, k 6= 0, we have D′0,k = Dj,k + (−1,≤), D′0,j = (0,≤) and
D′j,k = D′0,k = Dj,k + (−1,≤); since (E,D) ∈ p–PDBM�(Rp), from
Definition 12 (4) we know that D0,k ≤ D0,j + Dj,k is valid for Rp.
From Definition 11 (2b) we trivially have that Dj,k + (−1,≤) ≤
Dj,k + (−1,≤) is valid for Rp. As (−1,≤) + (0,≤) = (−1,≤), we have
D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if i = k = 0, we have D′0,j = (0,≤) and D′j,0 = (0,≤); As we have

(0,≤) + (0,≤) = (0,≤)

we clearly have that D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

4. if xj , xk ∈ LFPRp
(D) and xi ∈ X \ LFPRp

(D): j 6= 0, k 6= 0 and

• if i is different from 0, we have D′i,k = D′i,0 = Di,k + (−1,≤), D′i,j =
D′i,0 = Di,k + (−1,≤) and D′j,k = (0,≤); we have that (−1,≤) + (0,≤
) = (−1,≤) and

Di,k + (−1,≤) ≤ Di,k + (−1,≤)

holds from Definition 11 (2b). Therefore, D′i,k ≤ D′i,j +D′j,k.

• if i = 0, we have D′0,k = (0,≤), D′0,j = (0,≤) and D′j,k = (0,≤);
since (E,D) ∈ p–PDBM�(Rp) from Definition 12 (4), we know
that D0,k ≤ D0,j +Dj,k. As we have

(0,≤) + (0,≤) = (0,≤)

we clearly have that D′0,k ≤ D′0,j +D′j,k is valid for Rp.

5. if xi ∈ LFPRp
(D) and xj , xk ∈ X \ LFPRp

(D): i 6= 0 and

• if j, k are different from 0, we have D′i,k = D′0,k = Di,k + (−1,≤),
D′i,j = D′0,j = Di,j + (−1,≤) and D′j,k = Dj,k; since (E,D) ∈
p–PDBM�(Rp), from Definition 12 (4) we know that Di,k ≤ Di,j +
Dj,k is valid for Rp; moreover, since we have

(−1,≤) ≤ (−1,≤)

is valid for Rp then from Lemma 2 we have D′i,k ≤ D′i,j +D′j,k is valid
for Rp.

• if j 6= 0, k = 0, we have D′i,0 = (0,≤), D′i,j = D′0,j = Di,j + (−1,≤)
and D′j,0 = Dj,i + (1,≤); from Lemma 3 we know that (0,≤) ≤
Di,j +Dj,i is valid for Rp. Moreover, we have

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

then
(0,≤) ≤ Di,j +Dj,i + (0,≤)

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

57

• if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1,≤) and D′0,k =
Di,k + (−1,≤); we have that

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

and from Definition 11 (2b) that

Di,k ≤ Di,k + (0,≤)

is valid for Rp, which gives us our result.

• if i is different from 0, j = k = 0, we have D′i,0 = (0,≤), D′j,k =
D′0,0 = (0,≤); we have from Definition 11 (2b) that

(0,≤) ≤ (0,≤)

is valid for Rp. Hence

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.

6. if xi, xk ∈ LFPRp
(D) and xj ∈ X \ LFPRp

(D): i 6= 0, k 6= 0 and

• if j 6= 0, we have D′i,k = (0,≤), D′i,j = D′0,j = Di,j + (−1,≤)
and D′j,k = D′j,0 = Dj,i + (1,≤); since (E,D) ∈ p–PDBM�(Rp),
from Lemma 3 we know that (0,≤) ≤ Di,j +Dj,i is valid for Rp; we
have

(1,≤) + (−1,≤) = (1 + (−1),≤ ⊕ ≤) = (0,≤)

and therefore from Lemma 2, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if j = 0, we have D′i,k = (0,≤), D′i,0 = (0,≤) and D′0,k = (0,≤); we
have that (0,≤) + (0,≤) = (0,≤) and from Definition 11 (2b)

(0,≤) ≤ (0,≤)

is valid for Rp. Therefore we obtain our result.

7. if xi, xj ∈ LFPRp
(D) and xk ∈ X \ LFPRp

(D): i 6= 0, j 6= 0 and

• if k 6= 0, we have D′i,k = D′0,k = Di,k + (−1,≤), D′i,j = (0,≤)
and D′j,k = D′0,k = Di,k + (−1,≤); we have that

Di,k ≤ Di,k

is valid for Rp and from Lemma 2

(−1,≤) ≤ (−1,≤)

is valid for Rp. Therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if k = 0, we have D′i,0 = (0,≤), D′i,j = (0,≤) and D′j,0 = (0,≤); we
have that (0,≤) + (0,≤) = (0,≤) and from Definition 11 (2b)

(0,≤) ≤ (0,≤)

is valid for Rp: therefore D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

8. if xi, xj , xk ∈ LFPRp
(D): i, j, k are different from 0, we have D′i,k = (0,≤),

D′i,j = (0,≤) and D′j,k = (0,≤); we have that (0,≤) + (0,≤) = (0,≤) and
from Definition 11 (2b)

(0,≤) ≤ (0,≤)

is valid for Rp: therefore, D′i,k ≤ D′i,j +D′j,k is valid for Rp.

58

proof that Definition 12 (5a) holds Finally, there is at least one clock xi ∈
LFPRp

(D) s.t. D0,i = Di,0 = (0,≤). Hence condition Definition 12 (5a) holds.
Finally, we set E′i = Ei+1 if xi ∈ LFPRp

(D) and E′j = Ej if xj ∈ X\LFPRp
(D)

We denote by (E,D′) the obtained p–PDBM and (E′, D′) ∈ p–PDBM�(Rp).

4.4.3.3 Definition 13 to Definition 12 type (5a)

Lemma 15 (p–PDBM�(Rp) becomes p–PDBM�(Rp) after TE<). Let Rp
be a parameter region and (E,D) ∈ p–PDBM�(Rp), then TE<

(
(E,D)

)
∈

p–PDBM�(Rp) respecting condition 5b.

Proof. Suppose (E,D) ∈ p–PDBM�(Rp). Since, in Rp, we know which pa-
rameters have the largest fractional part, we can determine LFPRp(D) from
Lemma 10. If more than one clock belong to LFPRp

(D) then their valuations
have the same fractional part.

Indeed, from Definition 15 if xi, xj ∈ LFPRp
(D) then both (0,≤) ≤ Di,j and

(0,≤) ≤ Dj,i are valid for Rp, and from Definition 12 (2) we must have Di,j =
Dj,i = (0,≤).

Let v ∈ Rp. Let xi ∈ LFPRp(D) and w ∈ (E, v(D)). By letting time elapse,
frac(w(xi)) is the first that might reach 1. Moreover, for all xj ∈ X \ LFPRp

(D),
frac(w(xj)) cannot reach 1 before frac(w(xi)). We are going to construct a
new (E′, D′) = TE<(E,D)) which is an open–p–PDBM respecting condition 5b.
While detailing the procedure of TE<, we are going to prove that Definition 12 (1)
and (2) hold for (E′, D′). Further we will prove that (4) and (5b) also hold.

proof that Definition 12 (1) holds According to the definition of TE<

(Algorithm 9), the first step is to set a new upper bound

D′i,0 = (1, <) for all xi ∈ LFPRp
(D)

and obviously (0,≤) ≤ D′i,0 ≤ (1, <) is valid for Rp. Then we set new upper
bounds for all other clock xj ∈ X \ LFPRp

(D) by setting

D′j,0 = Dj,i + (1, <).

Indeed, Dj,i is the constraint on the lower bound of w(xj)− w(xi) and since
the upper bound of xi has increased, this gives the new upper bound of xj .
Note that since xi ∈ LFPRp(D), from Definition 15 we have for all clock xj
that (−1, <) ≤ Dj,i ≤ (0,≤) is valid for Rp. Precisely, dj,i ∈ {0,−p1, p2 −
p1, p1 − 1 − p2, p1 − 1} for some p1, p2 ∈ P where p2 ≤ p1 is valid for Rp.
Hence as dj,i + 1 ∈ {1, 1 − p1, p2 + 1 − p1, p1 − p2, p1}, we have that d′j,0 ∈
PLT , /j0′ = /j0′ ⊕ < = < and (0,≤) ≤ D′j,0 ≤ (1, <) is valid for Rp. Note
that we cannot have (dj,i, /ji) = (−1, <) because even if (di,j , /ij) = (1, <),
since (E,D) ∈ p–PDBM�(Rp) we do not have have 0 ≤ Dj,i + Di,j is valid
for Rp from Definition 12 (4) and Lemma 3.

Secondary we set for all clock x regardless of whether they are in LFPRp
(D)

D′0,x = D0,x + (0, <).

Since some time elapsed, lower bounds of all clocks are increased. Moreover,
from Definition 13 (1) as (−1, <) ≤ D0,x ≤ (0,≤) is valid for Rp, (−1, <) ≤
D′0,x ≤ (0,≤) is also valid for Rp.

59

proof that Definition 12 (2) holds Third we set for all clocks x, y regardless
of whether they are in LFPRp

(D)

D′x,y = Dx,y

since no fractional part has reached 1, constraints on differences of clocks and
integer parts remain unchanged. As it is the case in (E,D), Definition 12 (2)
holds.

proof that Definition 12 (3) holds For all xi:

• if xi ∈ LFPRp
(D), D′i,0 = (1, <), D′0,i = D0,i + (0, <) hence d′i,0 6= d′0,i

and /i0′/0i′ = <, condition Definition 12 (3) holds;

• if xi ∈ X \ LFPRp
(D), x ∈ LFPRp

(D), D′i,0 = Di,x + (1, <), D′0,i =
D0,i+(0, <) hence as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is valid
for Rp, we have d′i,0 6= d′0,i and /i0′/0i′ = < and condition Definition 12 (3)
holds.

For all xi, xj :

• if xi, xj ∈ X \ LFPRp
(D), D′i,j = Di,j and D′j,i = Dj,i, condition Defini-

tion 12 (3) holds as it holds for Di,j and Dj,i.

• if xi ∈ X \ LFPRp
(D), xj ∈ LFPRp

(D), D′i,0 = Di,j + (1, <), D′0,i =
D0,i + (0, <) hence as (0,≤) ≤ D′i,0 is valid for Rp and D′0,i ≤ (0,≤) is
valid for Rp, we have d′i,0 6= d′0,i and /i0′/0i′ = <, condition Definition 12 (3)
holds. The case xj ∈ X \ LFPRp

(D), xi ∈ LFPRp
(D) is treated similarly.

• if xi, xj ∈ LFPRp
(D), D′i,j = D′j,i = (0,≤), hence d′i,j = −d′j,i = 0

and /ij′/ji′ =≤ and condition Definition 12 (3) holds.

proof that Definition 12 (4) holds Now we prove that Definition 12 (4)
holds, i. e., for all clocks xi, xj , xk valid conditions such as D′i,j ≤ D′i,k +D′k,j
remain valid in Rp. Indeed, when time elapses, all clocks have the same behavior,
hence the difference between two clocks does not change without an update.
Precisely, for all clocks xi, xj , xk, are valid for Rp:

1. if xi, xj , xk ∈ X \ LFPRp
(D): let x ∈ LFPRp

(D) and

• if i, j, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j

and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp) from Definition 13
(2), we know that Di,k ≤ Di,j + Dj,k is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

• if i, j are different from 0, k = 0, we have D′i,0 = Di,x + (1, <),
D′i,j = Di,j and D′j,0 = Dj,x+(1, <); since (E,D) ∈ p–PDBM�(Rp),
from Definition 13 (2) we know that Di,x ≤ Di,j +Dj,x is valid for Rp;
then from Lemma 2 Di,x+(1, <) ≤ Di,j +Dj,x+(1, <) is valid for Rp
and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if i, k are different from 0, j = 0, we have D′i,k = Di,k, D′i,0 =
Di,x + (1, <) and D′0,k = D0,k + (0, <); we claim that

Di,k ≤ Di,x + (1, <) +D0,k + (0, <) (4.13)

60

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0 + D′0,k is valid
for Rp. Since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (1) we
know that

Dx,0 ≤ (1, <) (4.14)

is valid for Rp; moreover we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (4.15)

Since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that Dx,k ≤ Dx,0 + D0,k is valid for Rp; combining with (4.14)
and (4.15) we obtain Dx,k ≤ (1, <) + D0,k + (0, <) is valid for Rp.
As Di,x ≤ Di,x is valid for Rp, using Lemma 2 we obtain

Di,x +Dx,k ≤ Di,x + (1, <) +D0,k + (0, <) (4.16)

is valid for Rp. Now, since (E,D) ∈ p–PDBM�(Rp), from Defini-
tion 13 (2) we know that Di,k ≤ Di,x + Dx,k is valid for Rp and
combining with (4.16) we obtain (4.13) and therefore our result.

• if i is different from 0, j = k = 0, we have D′i,0 = Di,x + (1, <),
D′j,k = D′0,0 = (0,≤); we have from Definition 11 (2b) that

Di,x + (1, <) ≤ Di,x + (1, <)

is valid for Rp. Hence

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.

• if j, k are different from 0, i = 0, we have D′0,k = D0,k + (0, <),
D′0,j = D0,j+(0, <) and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp),
from Definition 13 (2) we know that D0,k ≤ D0,j+Dj,k is valid for Rp.
Moreover we have that

D0,k+(0, <) = (d0,k, <) and D0,j+(0, <)+Dj,k = (d0,j+dj,k, <)

so we have from Lemma 2

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

• if j is different from 0, i = k = 0, we have D′i,k = D′0,0 = (0,≤), D′0,j =
D0,j+(0, <) and D′j,0 = Dj,x+(1, <); since (E,D) ∈ p–PDBM�(Rp),
from Definition 13 (2) we know that D0,x ≤ D0,j+Dj,x is valid for Rp;
moreover from Lemma 2,

D0,x + (0, <) ≤ D0,j + (0, <) +Dj,x

is valid for Rp. As we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

61

we obtain from Lemma 2 that

D0,x + (1, <) ≤ D0,j +Dj,x + (1, <)

is valid for Rp. Recall that from Lemma 3 (0,≤) ≤ D0,x+Dx,0 is valid
for Rp. Since from Definition 13 (1) Dx,0 ≤ (1, <) is valid for Rp,
we have (0,≤) ≤ D0,x + (1, <) is valid for Rp. Therefore D′0,0 ≤
D′0,j +D′j,0 is valid for Rp.

• if k is different from 0, i = j = 0, we have D′i,k = D′j,k = D′0,k =
D0,k + (0, <), D′i,j = D′0,0 = (0,≤); we have from Definition 11 (2b)
that

D0,k + (0, <) ≤ D0,k + (0, <)

is valid for Rp. Hence from Lemma 4

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.

• if i = j = k = 0, we trivially have

D′0,0 ≤ D′0,0 +D′0,0

is valid for Rp.

2. if xk ∈ LFPRp
(D) and xi, xj ∈ X \ LFPRp

(D): k 6= 0 and

• if i, j are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if i 6= 0, j = 0, we have D′i,k = Di,k, D′i,0 = Di,k + (1, <) and D′0,k =
D0,k + (0, <); we claim that Di,k ≤ Di,k + (1, <) +D0,k + (0, <), i. e.,

0 ≤ (1, <) +D0,k + (0, <) (4.17)

is valid for Rp, which is from Lemma 2 equivalent to D′i,k ≤ D′i,0+D′0,k
is valid for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <). (4.18)

Since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that 0 ≤ D0,k + Dk,0 is valid for Rp and from Definition 13 (1)
that Dk,0 ≤ (1, <) is valid for Rp; combining with (4.18) we obtain
(4.17) and therefore our result.

• if i = 0, j 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <)
and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13
(2) we know that D0,k ≤ D0,j + Dj,k is valid for Rp. Moreover we
have that (0, <) ≤ (0, <) is valid for Rp so we have from Lemma 2

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

62

• if i = j = 0, from Definition 13 (2) we trivially have

D′0,k ≤ D′0,0 +D′0,k

is valid for Rp.

3. if xj ∈ LFPRp(D) and xi, xk ∈ X \ LFPRp(D): j 6= 0 and

• if i, k are different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if i 6= 0, k = 0, we have D′i,0 = Di,j + (1, <), D′i,j = Di,j and D′j,0 =
(1, <); from Definition 11 (2b) we trivially have that Di,j + (1, <) ≤
Di,j + (1, <) is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid
for Rp.

• if i = 0, k 6= 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <)
and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13
(2) we know that D0,k ≤ D0,j + Dj,k is valid for Rp. Moreover we
have that (0, <) ≤ (0, <) is valid for Rp so we have

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

holds from Definition 11 (2b). Hence D′0,k ≤ D′0,j +D′j,k is valid for
Rp.

• if i = k = 0, we have D′0,j = D0,j + (0, <) and D′j,0 = (1, <);
since (E,D) ∈ p–PDBM�(Rp), from Lemma 3 we know that 0 ≤
D0,j + Dj,0 is valid for Rp, from Definition 13 (1) we know that
Dj,0 ≤ 1 is valid for Rp which means 0 ≤ D0,j + (1, <) is valid for Rp.
As we have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

we obtain that

(0,≤) ≤ D0,j + (0, <) + (1, <)

is valid for Rp and therefore D′0,0 ≤ D′0,j +D′j,0 is valid for Rp.

4. if xj , xk ∈ LFPRp
(D) and xi ∈ X \ LFPRp

(D): j 6= 0, k 6= 0 and

• if i is different from 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if i = 0, we have D′0,k = D0,k + (0, <), D′0,j = D0,j + (0, <) and
D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2)
we know that D0,k ≤ D0,j +Dj,k is valid for Rp. Moreover we have
that (0, <) ≤ (0, <) is valid for Rp so we have from Lemma 2

D0,k + (0, <) ≤ D0,j + (0, <) +Dj,k

is valid for Rp. Hence D′0,k ≤ D′0,j +D′j,k is valid for Rp.

63

5. if xi ∈ LFPRp
(D) and xj , xk ∈ X \ LFPRp

(D): i 6= 0 and

• if j, k are different from 0, we haveD′i,k = Di,k, D′i,j = Di,j andD′j,k =
Dj,k; since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if j 6= 0, k = 0, we have D′i,0 = (1, <), D′i,j = Di,j and D′j,0 =
Dj,i + (1, <); since (E,D) ∈ p–PDBM�(Rp), from Lemma 3 we
know that 0 ≤ Di,j +Dj,i. Then from Lemma 2

(1, <) ≤ Di,j +Dj,i + (1, <)

is valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

• if j = 0, k 6= 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k =
D0,k + (0, <); we claim that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0+D′0,k is valid for Rp.
Since (E,D) ∈ p–PDBM�(Rp) from Definition 13 (2), we know
that Di,k ≤ Di,0 +D0,k is valid for Rp; moreover, from Definition 13
(1), we know that Di,0 ≤ (1, <) is valid for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

We obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.

• if i is different from 0, j = k = 0, we have D′i,0 = (1, <), D′j,k =
D′0,0 = (0,≤); from Definition 11 (2b) we have that

(1, <) ≤ (1, <)

is valid for Rp. Hence

D′i,0 ≤ D′i,0 +D′0,0

is valid for Rp.

6. if xi, xk ∈ LFPRp(D) and xj ∈ X \ LFPRp(D): i 6= 0, k 6= 0 and

• if j 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;
since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2) we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if j = 0, we have D′i,k = Di,k, D′i,0 = (1, <) and D′0,k = D0,k + (0, <);
we claim that

Di,k ≤ (1, <) +D0,k + (0, <)

is valid for Rp, which is equivalent to D′i,k ≤ D′i,0+D′0,k is valid for Rp.
Since (E,D) ∈ p–PDBM�(Rp) from Definition 13 (2), we know

64

that Di,k ≤ Di,0 +D0,k is valid for Rp; moreover, from Definition 13
(1), we know that Di,0 ≤ (1, <) is valid for Rp. We have

(1, <) + (0, <) = (1 + 0, < ⊕ <) = (1, <)

We obtain that

Di,k ≤ Di,0 +D0,k ≤ (1, <) +D0,k = (1, <) +D0,k + (0, <)

is valid for Rp and therefore our result.

7. if xi, xj ∈ LFPRp(D) and xk ∈ X \ LFPRp(D): i 6= 0, j 6= 0 and

• if k 6= 0, we have D′i,k = Di,k, D′i,j = Di,j and D′j,k = Dj,k;
since (E,D) ∈ p–PDBM�(Rp), from Definition 13 (2), we know
that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore, D′i,k ≤ D′i,j +D′j,k
is valid for Rp.

• if k = 0, since both xi, xj ∈ LFPRp(D) we have D′i,j = Di,j = (0,≤),
D′i,0 = (1, <) and D′j,0 = (1, <); trivially (1, <) ≤ (0,≤) + (1, <) is
valid for Rp and therefore, D′i,0 ≤ D′i,j +D′j,0 is valid for Rp.

8. if xi, xj , xk ∈ LFPRp
(D): i, j, k are different from 0, we have D′i,k = Di,k,

D′i,j = Di,j and D′j,k = Dj,k; since (E,D) ∈ p–PDBM�(Rp), from
Definition 13 (2) we know that Di,k ≤ Di,j +Dj,k is valid for Rp; therefore,
D′i,k ≤ D′i,j +D′j,k is valid for Rp.

proof that Definition 12 (5b) holds Finally, for xi ∈ LFPRp(D), D′i,0 =
(1, <) and for all clock j s.t. D′0,j = (0, /), then we have / = <. Condition
Definition 12 (5b) is satisfied.

We set E′ = E and denote by (E,D′) the obtained p–PDBM, which is
(E,D′) ∈ p–PDBM�(Rp).

Note that, by Lemma 11 (E′, D′) is a p–PDBM. open–p–PDBMs are stable
under TE< and TE=, switching the condition they respect (5a, 5b). Applying
TE< on a point–p–PDBM transforms it into an open–p–PDBM.

The following proposition proves that time elapsing behaves as we expect.

Proposition 3 (semantics of p–PDBM under TE). Let Rp be a parameter region
and (E,D) ∈ p–PDBM(Rp). Let v ∈ Rp. There exists w′ ∈ TE ((E, v(D))) iff
there exist w ∈ (E, v(D)) and a delay δ s.t. w′ = w + δ.

Proof. Note that this proof is inspired by [HRSV02, Proof of Lemma 3.13]

Lemma 16. Let (E,D) ∈ p–PDBM�(Rp). If (E,D) satisfies condition Def-
inition 12 (5b) it has been obtained after applying Algorithm 9 on another
open–p–PDBM satisfying condition Definition 12 (5a) or a point–p–PDBM.

Let (E,D) ∈ p–PDBM�(Rp). If (E,D) satisfies condition Definition 12 (5a)
it has been obtained after applying Algorithm 15 on another open–p–PDBM
satisfying condition Definition 12 (5b) or after a non-parametric update applied
on another open–p–PDBM or a point–p–PDBM.

65

Proof. Let (E,D) ∈ p–PDBM�(Rp) and suppose (E,D) satisfies condition
Definition 12 (5b). Since for all y, if d0,y = 0 we have /0y = <, from Lemma 6
and Lemma 7 it cannot be the result of a non-parametric update where there
is at least a clock x update and Dx,0 = D0,x = (0,≤). From Lemma 14 it
cannot be the result of Algorithm 15, as there must be at least a clock x s.t.
Dx,0 = D0,x = (0,≤). Then it is the result either from Lemma 12 of Algorithm 9
applied on an open–p–PDBM satisfying condition Definition 12 (5a), or from
Lemma 15 of Algorithm 9 applied on a point–p–PDBM.

Let (E,D) ∈ p–PDBM�(Rp) and suppose (E,D) satisfies condition Def-
inition 12 (5a). Since there is at least a clock y s.t. Dy,0 = D0,y = (0,≤),
from Lemma 12 and Lemma 15 it cannot be the result of Algorithm 9, as for
all x, if d0,x = 0 we must have /ox = <. Then it is the result of either from
Lemma 14 of Algorithm 15 applied on an open–p–PDBM satisfying condition
Definition 12 (5b) or from Lemma 6 and Lemma 7 of Algorithm 1 applied on an
open–p–PDBM or a point–p–PDBM.

Let Rp be a parameter region and (E,D) ∈ p–PDBM(Rp). We have to con-
sider two different cases: (E,D) ∈ p–PDBM�(Rp) and (E,D) ∈ p–PDBM�(Rp).

Lemma 17. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let
v ∈ Rp. There is w′ ∈ TE ((E, v(D))) iff there is w ∈ (E, v(D)) and a delay δ
s.t. w′ = w + δ.

Proof. Let Rp a parameter region and (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp.

=⇒ open–p–PDBM respecting Definition 12 (5a)

Let v ∈ Rp. Consider (E′, D′) = TE ((E,D)) respecting condition Def-
inition 12 (5a), i. e., suppose there is xi s.t. D′i,0 = −D′0,i = (0,≤).
Let w′ ∈ (E′, v(D′)), for this xi we have w′(xi) = 0. We need to find a
value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent to prove for all xi, xj

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)

and
frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)

and

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).

In this proof we are going to define a δ which is different from 0, and give
it an upper bound in order to show that constraints in (E,D) are satisfied
while going backward of δ units of time from w′.

First we will prove that for all clock j, its constraints of lower bound D0,j

and upper bound Dj,0 are satisfied. Second we will prove that for all i,
bounds on their difference Di,j and Dj,i are also satisfied.

We want to show that we have to go a little backward in time from w′

to ensure the upper bounds Dj,0 of (E,D) hold. For this purpose, we are
going to prove that for all xj

Dj,0 ≤ D′j,0

66

is valid for Rp. Intuitively this means upper bounds of clocks in (E′, D′)
are greater than in (E,D), which is consistent as time is elapsing.

As (E′, D′) respects Definition 12 (5a) and precisely (E′, D′) = TE=((E,D)),
we know (E,D) is respecting condition Definition 12 (5b) from Lemma 12.
As frac(w′(xi)) = 0 it was in (E,D) a clock with the largest fractional part,
i. e., xi ∈ LFPRp

(D) and Di,0 = (1, <).

By definition of TE< (cf. Algorithm 9), in (E,D) which is the open–p–
PDBM obtained after the application of TE< on another p–PDBM (see
Lemma 16), for each xj ∈ X \ LFPRp(D), Dj,0 = Dj,i + (1, <) and for
all xj ∈ X, we have Dj,0 is of the form (dj,0, <) for some dj,0.

By definition of TE= applied to (E,D) (cf. Algorithm 15), in (E′, D′), for
each xj ∈ X \ LFPRp

(D), D′j,0 = Dj,i + (1,≤), i. e., dj,0 = d′j,0. Hence by
Definition 11 (2b) and as /j0′ is either ≤ or <, we have

(dj,0, <) = Dj,0 ≤ D′j,0 = (dj,0, /j0′)

is valid for Rp. Next we define the largest amount of time so that all upper
bounds of (E,D) are satisfied.

We claim that for all xj , frac(w′(xj))− v(dj,0) ≤ 0. Indeed, remark that
by applying Algorithm 9 then Algorithm 15, constraints on upper bounds
of clocks in (E,D) and (E′, D′) differ only by their /. As for i ∈ LFPRp(D)
and j ∈ X \ LFPRp(D) it we have Dj,0 = Dj,i + (1, <) in (E,D) and D′j,0 =
Dj,i + (1,≤) in (E′, D′), so dj,0 = d′j,0. Since for any x, its fractional part
is less or equal to its upper bound in D and therefore in D′, any difference
between a fractional part and its upper bound is either negative or null.
For all x, since frac(w′(x)) /x0′ v(d′x,0) we have frac(w′(x))− v(d′x,0) /x0′ 0.
Since v(d′x,0) = v(dx,0), frac(w′(x))− v(dx,0) /x0′ 0, therefore we have our
result.

Now we claim that we have to go at least an ε > 0 backward in time to
ensure all bounds of (E,D) are met. Let xj ∈ X \ LFPRp

(D). As

frac(w′(xj)) /j0′ v(dj,0)

we have

– either /j0′ = < and we already have frac(w′(xj)) < v(dj,0),

– or /j0′ = ≤ and for any ε > 0 we have frac(w′(xj))− ε < v(dj,0).

It is also true for each xi ∈ LFPRp(D): after applying TE< recall that we
have Di,0 = (1, <). We can take ε > 0 and define frac(w(xi)) = 1 − ε, so
we have frac(w(xi)) < v(di,0).

Now that we know we have to go a little backward in time (at least an ε > 0)
so upper bounds of (E,D) are satisfied, we are going to give an upper bound
to ε so that all lower bounds D0,j of (E,D) are also satisfied.

Let
t1 = min

x∈X
{frac(w′(x)) + v(d0,x)}

We want to prove that t1 > 0.

67

Let us prove that for all xj , D
′
0,j ≤ D0,j is valid for Rp. Recall that for

xi ∈ LFPRp
(D), we have thatDi,0 = (1, <). Moreover, from Definition 12 (4)

Di,j ≤ Di,0 +D0,j is valid for Rp, then we have

Di,j ≤ (1, <) +D0,j

is valid for Rp. Recall that after applying Algorithm 15, D′0,j = Di,j+(−1,≤
). By Definition 11 (2b) we have (−1,≤) ≤ (−1,≤). We invoke Lemma 2
which gives

Di,j + (−1,≤) ≤ (1, <) +D0,j + (−1,≤) = D0,j + (0, <) is valid for Rp.
(4.19)

As, from Definition 11 (2b) we have D0,j + (0, <) ≤ D0,j is valid for Rp, we
infer (4.19) and it gives

D′0,j ≤ D0,j is valid for Rp.

Since w′ ∈ (E′, v(D′)) we have −frac(w′(xj)) /0j′ v(d′0,j),

0 /0j′ frac(w′(xj)) + v(d′0,j).

Then we have that

0 /0j′ frac(w′(xj)) + v(d′0,j) ≤ frac(w′(xj)) + v(d0,j)

where ,

– either from Definition 11 (2a) d′0,j < d0,j ;

– or from Definition 11 (2b), d′0,j ≤ d0,j and then /0j′ = /0j = <. Indeed
as D′0,j ≤ D0,j is valid for Rp, and since (E,D) is the open–p–PDBM
obtained after the application of TE< (cf. Algorithm 9) on another
p–PDBM (see Lemma 16), we have /0j = <.

To conclude we have that for all xj either

0 /0j′ frac(w′(xj)) + v(d′0,j) < frac(w′(xj)) + v(d0,j)

or
0 < frac(w′(xj)) + v(d′0,j) ≤ frac(w′(xj)) + v(d0,j).

As t1 is by definition the minimum value of an expression frac(w′(xj)) +
v(d0,j) for a given xj , which as we just proved are all strictly positive, we
have that for all xj

0 < t1 ≤ frac(w′(xj)) + v(d0,j).

We proved that t1 > 0, so we can set δ = t1
2 (therefore δ > 0).

More intuitively δ is the value right in the middle of the least and the largest
amount of time s.t. we can go backward in time from w′ and respect all
constraints defined in (E, v(D)).

Now we are going to prove that for any clock xj , its constraints on lower
and upper bounds are satisfied, i. e.,

−v(d0,j) /0j frac(w′(xj))− δ /j0 v(dj,0).

68

First as δ < t1, we have

−frac(w′(xj))+δ < −frac(w′(xj))+t1 ≤ −frac(w′(xj))+frac(w′(xj))+v(d0,j) = v(d0,j)

which is −v(d0,j) < frac(w′(xj)) − δ. Since (E,D) is the open–p–PDBM
obtained after the application of TE< (cf. Algorithm 15) on another p–
PDBM (see Lemma 16), we have /0j = < so −v(d0,j) /0j frac(w′(xj))− δ.
Secondary as 0 < δ, we have

frac(w′(xj))−δ < frac(w)′(xj)−0 ≤ frac(w′(xj))−frac(w′(xj))+v(dj,0) = v(dj,0)

which is frac(w′(xj)) − δ < v(dj,0). Since (E,D) is the open–p–PDBM
obtained after the application of TE< (cf. Algorithm 15) on another p–
PDBM (see Lemma 16), we have /j0 = < so frac(w′(xj))− δ /j0 v(dj,0)

Now we prove that constraints defined in (E,D) on differences of clocks are
also satisfied by going back of δ units of time from w′.

Recall that in (E′, D′) we have for all clock xj ,

D′j,i = D′j,0 = Dj,i + 1 and D′i,j = D′0,j = −1 +Di,j .

In addition by definition of TE=, for xi ∈ LFPRp(D), Exi = E′xi
− 1 and

for xj ∈ X \ LFPRp
(D), Exj

= E′xj
.

We already treated the case whether i or j are 0, now suppose i, j are both
different from 0.

– if xi, xj ∈ X \ LFPRp
(D): let x ∈ LFPRp

(D) and recall that af-
ter applying Algorithm 15, D′i,j = Di,j , D

′
j,i = Dj,i; we have that

frac(w′(xj))− frac(w′(xi)) /ij′ d
′
j,i = dj,i, and therefore frac(w′(xj))−

δ − frac(w′(xi)) + δ /ji dj,i.

We also have that frac(w′(xi))− frac(w′(xj)) /ij′ d
′
i,j = di,j , therefore

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij di,j ;

– if xi ∈ LFPRp
(D) and xj ∈ X \ LFPRp

(D): recall that after applying
Algorithm 15, D′j,0 = Dj,i+(1,≤), and D′0,j = Di,j+(−1,≤). Observe
that as we added ≤ which is the neutral element of the addition ⊕
between two operators /, we have /j0′ = /ji and /0j′ = /ij . Note that
as xi ∈ LFPRp

(D), in (E′, D′) we have D′0,i = (0,≤) = D′i,0 which
means frac(w′(xi)) = 0. Going backward in time of δ units of time
from w′(xi) means that frac(w(xi)) = 1− δ.
We have that

frac(w′(xj)) /j0′ v(d′j,0) = v(dj,i) + 1

hence frac(w′(xj))− 1 /ji v(dj,i) which is equivalent to

frac(w′(xj))− δ − 1 + δ /ji v(dj,i).

The same way we have

−frac(w′(xj)) /0j′ v(d′0,j) = v(di,j)− 1

hence 1− frac(w′(xj)) /ij v(di,j) which is equivalent to

1− δ − frac(w′(xj)) + δ /ij v(di,j).

69

To conclude, we define for all xj s.t. D′0,j 6= (0,≤) and D′j,0 6= (0,≤)

w(xj) = w′(xj)− δ

and for all xi s.t. D′0,i = (0,≤) = D′i,0

w(xi) = (w′(xi)− 1) + 1− δ

and clearly, w ∈ (E, v(D)).

=⇒ open–p–PDBM respecting Definition 12 (5b)

Let v ∈ Rp. Consider (E′, D′) = TE ((E,D)) respecting condition Defini-
tion 12 (5b), i. e., suppose there is at least an xi s.t. D′i,0 = (1, <) and for
all j s.t. D0,j = (0, /0j), then we have /0j = <. Let w′ ∈ (E′, v(D′)).

We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent to
prove for all xi, xj

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)

and
frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)

and

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).

As done previously we are going to define a δ which is different from 0 so
we satisfy condition Definition 12 (5a), and show that constraints in (E,D)
are satisfied while going backward of δ units of time from w′.

We define the largest and the least amount of time so that all upper bounds
of (E,D) are satisfied. Let

t0 = max
x∈X
{0, frac(w′(x))− v(dx,0)}

and
t1 = min

x∈X
{frac(w′(x)) + v(d0,x)}.

We want to prove that t0 = t1 > 0. For this purpose, let us first show that
for all i, j we have frac(w′(xj)) − v(d′j,0) ≤ frac(w′(xi)) + v(d′0,i), which
is t0 ≤ t1.

First note that for all i, j

frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i).

By applying TE< (Algorithm 9) to (E,D), we have that D′j,i = Dj,i, i. e.,
(di,j , /ij) = (d′i,j , /ij′), and from Definition 12 (4) we have that Dj,i ≤
Dj,0 +D0,i is valid for Rp.

Hence, we have from Definition 11 (2b) that either v(dj,i) < v(dj,0) + v(d0,i)
or v(dj,i) ≤ v(dj,0)+v(d0,i) and /ji = /j0⊕/0i or /ji = < and /j0⊕/0i = ≤.

We can then write that

frac(w′(xj))− frac(w′(xi))(/j0 ⊕ /0i)v(dj,0) + v(d0,i)

70

which is equivalent to

frac(w′(xj))− v(dj,0)(/j0 ⊕ /0i)frac(w′(xi)) + v(d0,i)

so we obtain our result, as (/j0 ⊕ /0i) is either ≤ or <.

Now, recall that (E,D) respects condition Definition 12 (5a) so we have at
least an x s.t. Dx,0 = D0,x = (0,≤).

For this clock x we have that frac(w′(x)) = frac(w′(x))− v(dx,0) ≤ t0 and
that t1 ≤ frac(w′(x)) + v(d0,x) = frac(w′(x)).

Hence t0 = t1 = frac(w′(x)).

As /x0 = ≤, we have (/x0 ⊕ /0i) = /0i and (/j0 ⊕ /0x) = /j0, which gives

frac(w′(x)) = frac(w′(x))− v(dx,0) /0i frac(w′(xi)) + v(d0,i)

and

frac(w′(xj))− v(dj,0) /j0 frac(w′(x)) + v(d0,x) = frac(w′(x)).

Moreover in (E′, D′) we have that frac(w′(x)) /0x′ v(d′0,x). Since (E′, D′)
respects condition Definition 12 (5b), if D′0,x = (0, /0x′) then /0x′ = <.
Hence 0 < frac(w′(x)) and

0 < t0 = t1.

Let δ = t0 = t1. More intuitively δ is the value right in the middle of the
least and the largest amount of time s.t. we can go backward in time from
w′ and respect all constraints defined in (E, v(D)).

First we have

−frac(w′(xj))+δ ≤ −frac(w′(xj))+t1/j0−frac(w′(xj))+frac(w′(xj))+v(d0,j) = v(d0,j)

which is −v(d0,j) /j0 frac(w′(xj))− δ.
Secondary we have

frac(w′(xj))−δ ≤ frac(w)′(xj)−t0/0jfrac(w′(xj))−frac(w′(xj))+v(dj,0) = v(dj,0)

which is frac(w′(xj))− δ /0j v(dj,0).

Now we prove that constraints defined in (E,D) on differences of clocks are
also satisfied by going back of δ units of time from w′

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all
clocks xi, xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are
both different from 0. We have that frac(w′(xj))− frac(w′(xi))/ji′ v(d′j,i) =
v(dj,i), and therefore as /ji′ = /ji,

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i).

We also have that frac(w′(xi))− frac(w′(xj)) /ij′ v(d′i,j) = v(di,j), therefore
as /ij′ = /ij ,

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j).

71

To conclude, we define for all xj

w(xj) = w′(xj)− δ

and clearly, w ∈ (E, v(D)).

Conversely, let w ∈ (E, v(D)),

⇐= open–p–PDBM respecting Definition 12 (5b)

Suppose in (E,D) there is at least an xi s.t. Di,0 = (1, <) and for all j s.t.
D0,j = (0, /), we have / = <. Let xi be such a clock and v ∈ Rp.
Now consider (E′, D′) = TE ((E,D)). We need to find a value δ s.t.
w + δ ∈ (E′, v(D′)). which is equivalent to prove for all xi, xj

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)

and
frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)

and

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).

As done previously we are going to define a δ which is different from 0, and
show that constraints in (E,D) are satisfied while going forward of δ units
of time from w.

Recall that xi ∈ LFPRp
(D) and let δ = 1− frac(w(xi) which we will prove is

the exact amount of time so that all upper bounds of (E′, D′) are satisfied.
Let

t0 = max
x∈X
{−frac(w(x))− frac(v(d′0,x))}

and
t1 = min

x∈X
{frac(v(d′x,0))− frac(w(x))}.

Recall that since (E,D) respects condition Definition 12 (5b), for all j
s.t. D0,j = (0, /0j), we have /0j = <. Hence as −frac(w(xi) < v(d0,j),
frac(w(xi)) 6= 0. Using the same reasoning as before, we are going to prove
that t0 ≤ δ ≤ t1.

First we will prove that t0 ≤ δ. Consider xi ∈ LFPRp(D). For all clock xj ,
since w ∈ (E, v(D)) we have frac(w(xi))− frac(w(xj)) /ij frac(v(di,j)).

From Algorithm 15 applied to (E,D) and since xi ∈ LFPRp
(D) we obtain

in (E′, D′) that D′0,j = Di,j +(−1,≤). Clearly we have /0j′ = /ij⊕≤ = /ij .
It gives that

frac(w(xi))− frac(w(xj))− 1(/ij⊕ ≤)frac(v(di,j))− 1

which is equivalent to frac(w(xi))− frac(w(xj))− 1 /0j′ frac(v(d′0,j)) which
is equivalent to

frac(w(xi))− 1 /0j′ frac(v(d′0,j)) + frac(w(xj)).

72

This gives us our first result.

Second we will prove that δ ≤ t1. Consider xi ∈ LFPRp(D). For all clock xj ,
from Definition 12 (4) we have frac(w(xj)) − frac(w(xi)) /ji frac(v(dj,i)).
We have

frac(w(xj))− frac(w(xi)) + 1 /ji frac(v(dj,i)) + 1.

From Algorithm 15 applied to (E,D) and since xi ∈ LFPRp
(D) we obtain

in (E′, D′) that D′j,0 = Dj,i + (1,≤). Clearly we have /j0′ = /ji⊕ ≤= /ji.
Then we can write that frac(w(xj))− frac(w(xi))+1/j0′ frac(v(d′j,0)) which
is equivalent to

1− frac(w(xi)) /j0′ frac(v(d′j,0))− frac(w(xj)).

This gives us our second result.

Now for all clock xj , we obtain two results. First we have

−frac(w(xj))−δ/0j′−frac(w(xj))−t1 ≤ −frac(w(xj))+frac(w(xj))+v(d′0,j) = v(d′0,j)

which is −v(d′0,j) /0j′ frac(w(xj)) + δ.

Secondary we have

frac(w(xj))+δ/j0′ frac(w(xj))+t0 ≤ frac(w(xj))−frac(w(xj))+v(d′j,0) = v(d′j,0)

which is frac(w(xj)) + δ /j0′ v(d′j,0).

Since we already treated the case whether i or j are 0, now suppose i, j are
both different from 0.

Note that if both xi, xj ∈ LFPRp(D), as frac(w(xi)) = frac(w(xj)), Di,j =
D′i,j = (0,≤) andDj,i = D′j,i = (0,≤) from Definition 15. Hence frac(w(xi))+
δ − frac(w(xj)) − δ /ij′ frac(v(d′i,j)) and frac(w(xj)) + δ − frac(w(xj)) −
δ /ji′ frac(v(d′j,i)).

The same way, if both xi, xj 6∈ LFPRp(D) we have Di,j = D′i,j and Dj,i =
D′j,i and again our result. If either xi or xj is in LFPRp

(D), the case is
similar to D′0,j or D′i,0.

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).

⇐= open–p–PDBM respecting Definition 12 (5a)

Suppose in (E,D) there is at least an xj s.t. Dj,0 = D0,j = (0,≤) Let v ∈
Rp, and xi ∈ LFPRp

(D).

Now consider (E′, D′) = TE ((E,D)). We need to find a value δ s.t.
w + δ ∈ (E′, v(D′)). which is equivalent to prove for all xi, xj

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)

and
frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)

and

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).

73

As done previously we are going to define a δ which is different from 0, and
show that constraints in (E,D) are satisfied while going forward of δ units
of time from w.

Let
t0 = max

x∈X
{0,−frac(w(x))− frac(v(d′0,x))}

and
t1 = min

x∈X
{frac(v(d′x,0))− frac(w(x))}.

We want to prove that t0 ≤ t1. For this purpose, we are going to prove for
all clocks i, j that −frac(w(xj))− v(d′j,0) ≤ v(d′0,i)− frac(w(xi)).

First note that

frac(w(xj))− frac(w(xi)) /ji v(dj,i)

By definition of TE< applied to (E,D), we have that D′j,i = Dj,i, and from
Definition 12 (4) we have that D′j,i ≤ D′j,0 +D′0,i.

Hence, we have from Definition 11 (2b) that either d′j,i < d′j,0 + d′0,i or
d′j,i = d′j,0 + d′0,i and /ji′ = /j0′ ⊕ /0i′ or /ji′ = < and /j0′ ⊕ /0i′ = ≤.

We can then write that

frac(w(xj))− frac(w(xi))(/j0′ ⊕ /0i′)v(d′j,0) + v(d′0,i)

which is equivalent to

−frac(w(xi))− v(d′0,i)(/j0′ ⊕ /0i′)v(d′j,0)− frac(w(xj))

Now we prove that t0 = 0. Clearly from Definition 12 for any clock i we have
that −frac(w(xi))/0iv(d0,i) which is equivalent to −frac(w(xi))−v(d0,i)/0i0.

Hence if as (E,D) there is at least an xj s.t. Dj,0 = D0,j = (0,≤), for this
clock j we have −frac(w(xj))− v(d0,j) = 0.

By definition of TE< applied to (E,D), we have that D′0,i = D0,i + (0, <).
In order to respect the constraint −frac(w(xi)) − δ /0i′ v(d′0,i) which is,
as /0i′ =<, −frac(w(xi))−δ < v(d′0,i) and especially for j where v(d′0,j) = 0
we have to find a δ > 0.

In order to find an upper bound for δ, we are going to prove that t1 > 0.
From Definition 12 (4) we have in (E,D) that for any clocks i, j Dj,0 ≤
Dj,i+Di,0. Let xi ∈ LFPRp

(D). From Definition 12 (1), we have that Di,0 ≤
(1, <). This gives that Dj,i +Di,0 ≤ Dj,i + (1, <).

By definition of TE< applied to (E,D), we have that D′j,0 = Dj,i + (1, <).
Hence we have Dj,0 ≤ D′j,0.

Now as frac(w(xi)) /i0 v(di,0) we can write frac(w(xi)) /i0′ v(d′i,0) and
then 0 /i0′ v(d′i,0)− frac(w(xi)) where /i0′ =<, which prove our result.

We define δ = t1
2 , therefore t0 < δ < t1. Now for all clock xj , we obtain two

results. First we have

−frac(w(xj))−δ < −frac(w(xj))−t1/0j′−frac(w(xj))+frac(w(xj))+v(d′0,j) = v(d′0,j)

74

which is −v(d′0,j) /0j frac(w(xj)) + δ as /0j′ = <.

Secondary we have

frac(w(xj))+δ < frac(w(xj))+t0/j0′ frac(w(xj))−frac(w(xj))+v(d′j,0) = v(d′j,0)

which is frac(w(xj)) + δ /j0 v(d′j,0) as /0j′ = <.

Now we prove that constraints defined in (E′, D′) on differences of clocks
are also satisfied by going forward of δ units of time from w

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all
clock xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are
both different from 0. We have that frac(w(xj))− frac(w(xi)) /ji v(dj,i) =
v(d′j,i), and therefore as /ji′ = /ji,

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i).

We also have that frac(w(xi))− frac(w(xj)) /ij v(di,j) = v(d′i,j), therefore
as /ij′ = /ij ,

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j).

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).

Lemma 18. Let Rp be a parameter region and (E,D) ∈ p–PDBM�(Rp). Let
v ∈ Rp. There is w′ ∈ TE ((E, v(D))) iff there is w ∈ (E, v(D)) and a delay δ
s.t. w′ = w + δ.

Proof. ⇐= p–PDBM�(Rp)

Let v ∈ Rp. Consider (E′, D′) = TE ((E,D)) respecting condition Defini-
tion 12 (5b), i. e., suppose there is at least an xi s.t. D′i,0 = (1, <) and for
all j s.t. D0,j = (0, /0j), then we have /0j = <. Let w′ ∈ (E′, v(D′)).

We need to find a value δ s.t. w′ − δ ∈ (E, v(D)) which is equivalent to
prove for all xi, xj

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i)

and
frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j)

and

−frac(w′(xj)) + δ /0j v(d0,j) and frac(w′(xj))− δ /j0 v(dj,0).

As done previously we are going to define a δ which is different from 0,
and show that constraints in (E,D) are satisfied while going backward of δ
units of time from w′.

75

We define the largest and the least amount of time so that all upper bounds
of (E,D) are satisfied. Let

t0 = max
x∈X
{0, frac(w′(x))− v(dx,0)}

and
t1 = min

x∈X
{frac(w′(x)) + v(d0,x)}.

We want to prove that t0 = t1 > 0. For this purpose, let us first show that
for all i, j we have frac(w′(xj)) − v(d′j,0) ≤ frac(w′(xi)) + v(d′0,i), which
is t0 ≤ t1.

First note that for all i, j

frac(w′(xj))− frac(w′(xi)) /ji′ v(d′j,i).

By applying TE< (Algorithm 9) to (E,D), we have that D′j,i = Dj,i, i. e.,
(di,j , /ij) = (d′i,j , /ij′), and from Definition 13 (2) we have that Dj,i ≤
Dj,0 +D0,i is valid for Rp.

Hence, we have from Definition 11 (2b) that either v(dj,i) < v(dj,0)+v(d0,i)
or v(dj,i) ≤ v(dj,0)+v(d0,i) and /ji = /j0⊕/0i or /ji = < and /j0⊕/0i = ≤.

We can then write that

frac(w′(xj))− frac(w′(xi))(/j0 ⊕ /0i)v(dj,0) + v(d0,i)

which is equivalent to

frac(w′(xj))− v(dj,0)(/j0 ⊕ /0i)frac(w′(xi)) + v(d0,i)

so we obtain our result, as (/j0 ⊕ /0i) is either ≤ or <.

Now, recall that in (E,D) for all x we have d0,x = −dx,0 and /0x = /x0.

For any clock x we have that frac(w′(x)) − v(dx,0) ≤ t0 and that t1 ≤
frac(w′(x)) + v(d0,x) = frac(w′(x))− v(dx,0).

Hence t0 = t1.

As for all x, /x0 = ≤, we have for all i, j that (/x0 ⊕ /0i) = /0i and
(/j0 ⊕ /0x) = /j0, which gives

t1 /0i frac(w′(xi)) + v(d0,i)

and
frac(w′(xj))− v(dj,0) /j0 t0.

Moreover in (E′, D′) we have that frac(w′(x))/0x′v(d′0,x). From Lemma 16, (E′, D′)
is obtained after applying Algorithm 9 and therefore /0x′ = <. Hence 0 <
frac(w′(x)) and

0 < t0 = t1.

Let δ = t0 = t1. More intuitively δ is the value right in the middle of the
least and the largest amount of time s.t. we can go backward in time from
w′ and respect all constraints defined in (E, v(D)).

76

First we have

−frac(w′(xj))+δ ≤ −frac(w′(xj))+t1/j0−frac(w′(xj))+frac(w′(xj))+v(d0,j) = v(d0,j)

which is −v(d0,j) /j0 frac(w′(xj))− δ.
Secondary we have

frac(w′(xj))−δ ≤ frac(w)′(xj)−t0/0jfrac(w′(xj))−frac(w′(xj))+v(dj,0) = v(dj,0)

which is frac(w′(xj))− δ /0j v(dj,0).

Now we prove that constraints defined in (E,D) on differences of clocks
are also satisfied by going back of δ units of time from w′

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all
clocks xi, xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are
both different from 0. We have that frac(w′(xj))−frac(w′(xi))/ji′ v(d′j,i) =
v(dj,i), and therefore as /ji′ = /ji,

frac(w′(xj))− δ − frac(w′(xi)) + δ /ji v(dj,i).

We also have that frac(w′(xi))− frac(w′(xj))/ij′ v(d′i,j) = v(di,j), therefore
as /ij′ = /ij ,

frac(w′(xi))− δ − frac(w′(xj)) + δ /ij v(di,j).

To conclude, we define for all xj

w(xj) = w′(xj)− δ

and clearly, w ∈ (E, v(D)).

=⇒ p–PDBM�(Rp)

Assume in (E,D) ∈ p–PDBM�(Rp). Let v ∈ Rp, and xi ∈ LFPRp
(D).

Now consider (E′, D′) = TE ((E,D)). We need to find a value δ s.t.
w + δ ∈ (E′, v(D′)). which is equivalent to prove for all xi, xj

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i)

and
frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j)

and

−frac(w(xj))− δ /0j′ v(d′0,j) and frac(w(xj)) + δ /j0′ v(d′j,0).

As done previously we are going to define a δ which is different from 0,
and show that constraints in (E,D) are satisfied while going forward of δ
units of time from w.

Let
t0 = max

x∈X
{0,−frac(w(x))− frac(v(d′0,x))}

77

and
t1 = min

x∈X
{frac(v(d′x,0))− frac(w(x))}.

We prove that t1 ≤ t0.

for any clock i we have that Di,0 = (frac(p),≤) and Di,0 = (−frac(p),≤)
i. e., d0,i = −di,0 for some p, hence −frac(w(xi))−v(d0,i) = −frac(w(xi))+
v(di,0).

By definition of TE< applied to (E,D), we have that D′0,i = D0,i + (0, <).
In order to respect the constraint −frac(w(xi)) − δ /0i′ v(d′0,i) which is,
as /0i′ =<, −frac(w(xi))− δ < v(d′0,i), we have to find a δ > 0.

In order to find an upper bound for δ, we are going to prove that t1 >
0. From Definition 13 (2) we have in (E,D) that for any clocks i, j
Dj,0 ≤ Dj,i +Di,0. Let xi ∈ LFPRp(D). From Definition 13 (1), we have
that Di,0 ≤ (1, <). This gives that Dj,i +Di,0 ≤ Dj,i + (1, <).

By definition of TE< applied to (E,D), we have that D′j,0 = Dj,i + (1, <).
Hence we have Dj,0 ≤ D′j,0.

Now as frac(w(xi)) /i0 v(di,0) we can write frac(w(xi)) /i0′ v(d′i,0) and
then 0 /i0′ v(d′i,0)− frac(w(xi)) where /i0′ =<, which prove our result.

We define δ = t1
2 , therefore t0 < δ < t1. Now for all clock xj , we obtain

two results. First we have

−frac(w(xj))−δ < −frac(w(xj))−t1/0j′−frac(w(xj))+frac(w(xj))+v(d′0,j) = v(d′0,j)

which is −v(d′0,j) /0j frac(w(xj)) + δ as /0j′ = <.

Secondary we have

frac(w(xj))+δ < frac(w(xj))+t0/j0′ frac(w(xj))−frac(w(xj))+v(d′j,0) = v(d′j,0)

which is frac(w(xj)) + δ /j0 v(d′j,0) as /0j′ = <.

Now we prove that constraints defined in (E′, D′) on differences of clocks
are also satisfied by going forward of δ units of time from w

Recall that in (E′, D′) from the definition of Algorithm 9 we have for all
clock xj ,

D′j,i = Dj,i and D′i,j = Di,j .

Since we already treated the case whether i or j are 0, now suppose i, j are
both different from 0. We have that frac(w(xj))− frac(w(xi)) /ji v(dj,i) =
v(d′j,i), and therefore as /ji′ = /ji,

frac(w(xj)) + δ − frac(w(xi))− δ /ji′ v(d′j,i).

We also have that frac(w(xi))− frac(w(xj)) /ij v(di,j) = v(d′i,j), therefore
as /ij′ = /ij ,

frac(w(xi)) + δ − frac(w(xj))− δ /ij′ v(d′i,j).

Finally, we define w′ = w + δ and w′ ∈ (E′, v(D′)).

78

Figure 4.3: Representation of p–PDBMs in two dimensions with two clocks x, y,
two parameters p1, p2 and v s.t. bv(p1)c = bv(p2)c and frac(v(p1)) > frac(v(p2)).

Running example: Figure 4.3 represents graphically different p–PDBMs obtained
after an update u(x) = v(p2) and u(y) = v(p1) (figure 1). Time elapsing
before y ∈ LFP reaches the next integer gives the open–p–PDBM satisfying

79

condition 5b (figure 2)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2), <) (−frac(p1), <)
x (frac(p2) + 1− frac(p1), <) (0,≤) (−frac(p1) + frac(p2),≤)
y (1, <) (frac(p1)− frac(p2),≤) (0,≤)

)

After an update of y to k prior to reaching k + 1, the open–p–PDBM satisfying
condition 5a obtained is (figure 3)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2), <) (0,≤)
x (frac(p2) + 1− frac(p1), <) (0,≤) (frac(p2) + 1− frac(p1), <)
y (0,≤) (−frac(p2), <) (0,≤)

)

Time elapsing before x ∈ LFP reaches the next integer gives the open–p–PDBM
satisfying condition 5b (figure 4)

(E,D) =
((

k
k

)
,

 0 x y
0 (0,≤) (−frac(p2), <) (0, <)
x (1, <) (0,≤) (frac(p2) + 1− frac(p1), <)
y (1− frac(p2), <) (−frac(p2), <) (0,≤)

)

When x ∈ LFP reaches k+1, the open–p–PDBM satisfying condition 5a obtained
is (figure 5)

(E,D) =
((

k + 1
k

)
,

 0 x y
0 (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
x (0,≤) (0,≤) (−frac(p1) + frac(p2), <)
y (1− frac(p2), <) (1− frac(p2), <) (0,≤)

)

4.4.4 Non-parametric guard

From [AD94, Section 4.2] we have that either every clock valuation of a clock
region satisfies a guard, or none of them does. Note that a p–PDBM for Rp
is contained into a clock region of [AD94, Section 4.2], therefore we have that
if w ∈ (E, v(D)) satisfies a non-parametric guard g, then for all w′ ∈ (E, v(D))
we also have w′ satisfies g.

Let v ∈ Rp. We define v ∈ guard∀(g,E,D) iff for all w ∈ (E, v(D)), w |= g.
As any two v, v′ ∈ Rp satisfy the same constraints, the following lemma is
straightforward

Lemma 19. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a
non-parametric guard. If v ∈ guard∀(g,E,D), then for all v′ ∈ Rp, v′ ∈
guard∀(g,E,D).

4.4.5 Parametric guard

As for the previous result, using a projection on parameters i. e., eliminating
clocks, does not create new constraints on parameters that are not already in a
parameter region Rp. Indeed, a parametric guard g only adds new constraints
of the form x ./ p which gives, when eliminating clocks in both a p–PDBM
(E,D) and a parametric guard, again a comparison between elements of PLT .
Therefore, these new constraints already belong to PLT and we can decide
whether the set of clock valuations satisfying this set of constraints is non-empty
i. e., given v ∈ Rp, v(g) is satisfied by some clock valuation w ∈ (E, v(D)).
This is a key point in the overall process of proving the decidability of our
R-U2P-PTAs.

80

Note that there will also be additional constraints involving clocks (with other
clocks, constants or parameters), but they will not be relevant as we immediately
update all clocks, therefore replacing these constraints with new constraints
encoding the clock updates.

Let v ∈ Rp. We define v ∈ p-guard∃(g,E,D) iff there is a w ∈ (E, v(D))
s.t. w |= v(g).3 Again, as any two v, v′ ∈ Rp satisfy the same constraints, the
following lemma is straightforward

Lemma 20. Let (E,D) be a p–PDBM for Rp and v ∈ Rp. Let g be a parametric
guard. If v ∈ p-guard∃(g,E,D), then for all v′ ∈ Rp, v′ ∈ p-guard∃(g,E,D).

Now that we have defined useful operations on p–PDBMs, we are going, given
a parameter region Rp, to construct a finite region automaton in which for any
run, there is an equivalent concrete run in the R-U2P-PTA.

4.5 Parametric region automaton

Let (E,D) ∈ p–PDBM(Rp), we say (E′, D′) ∈ Succ((E,D)) ⇔ ∃ i ≥ 0 s.t.
(E′, v(D′)) = TE i((E,D)). In other words, (E′, D′) is obtained after apply-
ing TE ((E,D)) a finite number of times. Succ((E,D)) is also called the time
successors of (E,D).

In order to finitely simulate an R-U2P-PTA, we create a parametric region
automaton.

Definition 17 (Parametric region automaton). Let Rp be a parameter region.
For an R-U2P-PTA A = (Σ, L, l0,X,P, ζ), given (E0, D0) the initial p–PDBM
where all clocks are 0, the parametric region automaton R(A) over Rp is the
tuple (L′,Σ, L′0, ζ

′) where:

1. L′ = L× p–PDBM(Rp)

2. L′0 = (l0, (E0, D0))

3. ζ ′ = {
(
(l, (E,D)), a, (l′, (E′, D′)

)
∈ L′×Σ×L′ | either ∃e = 〈l, g, a, unp, l′〉 ∈

ζ, g is a non-parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ guard∀(g, (E
′′, D′′))

and (E′, D′) = update(E′′, D′′, unp) is an open–p–PDBM, or ∃e = 〈l, g, a, u, l′〉 ∈
ζ, g is a parametric guard, ∃(E′′, D′′) ∈ Succ((E,D)), Rp ⊆ p-guard∃(g, (E

′′, D′′))
and (E′, D′) = update(E′′, D′′, u) is a point–p–PDBM.}

Let Rp be a parameter region, A be an R-U2P-PTA andR(A) = (L′,Σ, L′0, ζ
′)

its parametric region automaton over Rp. A run in R(A) is an untimed sequence
σ : (l0, (E0, D0))e0(l1, (E1, D1))e1 · · · (li, (Ei, Di))ei(li+1, (Ei+1, Di+1))ei+1 · · ·
such that for all i we have

(
(li, (Ei, Di)), ai, (li+1, (Ei+1, Di+1))

)
∈ ζ ′, which

we also write (li, (Ei, Di))
ei−→ (li+1, (Ei+1, Di+1)). Note that we label our

transitions with the edges of the R-U2P-PTA.

3Remark that here is why our construction works for EF-emptiness, but cannot be used
for, e. g.,, AF-emptiness (“is there a parameter valuation such that all runs reach a goal
location l”): unlike guard∀(g, E,D), not all clock valuations in a p–PDBM (E, v(D)) can
satisfy a parametric guard if v ∈ p-guard∃(g, E,D).

81

4.6 Decidability of EF-emptiness and synthesis

Using our construction of the parametric region automaton R(A) for a given
R-U2P-PTA A, we state the next proposition.

Proposition 4. Let Rp be a parameter region. Let A be an R-U2P-PTA

and R(A) its parametric region automaton over Rp. There is a run σ : (l0, (E0, D0))
e0−→

(l1, (E1, D1))
e1−→ · · · (lf−1, (Ef−1, Df−1))

ef−1−→ (lf , (Ef , Df)) in R(A) iff for

all v ∈ Rp there is a run ρ : (l0, w0)
e0−→ (l1, w1)

e1−→ · · · (lf−1, wf−1)
ef−1−→ (lf , wf)

in v(A) s.t. for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

Proof. ⇐ By induction on the length of the run.

Let v ∈ Rp. As the basis for the induction, in the initial location (l0, {0}H)
the only valuation is reachable by an empty run of v(A). Moreover
{0}H∈(E0, v(D0)) the initial p–PDBM containing only 0. Therefore the
initial location (l0, (E0, v(D0))) is reachable by an empty run of R(A).

For the induction step, suppose for all v, there is run in v(A) of length f−1
we have our result.

Let v ∈ Rp and ρ = (l0, w0)
e0−→ · · · ef−2−→ (lf−1, wf−1)

ef−1−→ (lf , wf) be a
run of v(A) of length f . By induction hypothesis, there is a run σ =

(l0, (E0, D0))
e0−→ · · · ef−2−→ (lf−1, (Ef−1, Df−1)) in R(A) and for all 0 ≤ i ≤

f − 1, wi ∈ (Ei, v(Di)).

Consider ef−1. By Definition 17 of the parametric region automaton, it is
also in its set of edges ζ ′. Three cases show up:

– If ef−1 = 〈lf−1, a, g, unp, lf 〉 contains no parametric guard nor para-
metric update. Using Definition 4 there is a delay δ (possibly

0) s.t. (lf−1, wf−1)
δ7→ (lf−1w

′
f−1)

ef−17→ (lf , wf) where w′f−1 |= g
and wf = [w′f−1]unp . As wf−1 ∈ (Ef−1, v(Df−1)) there is (E′f−1, D

′
f−1) ∈

Succ((Ef−1, Df−1)) s.t. from Proposition 3 we have w′f−1 ∈ (E′f−1, v(D′f−1)).
As w′f−1 |= g by construction of our p–PDBMs (see Section 4.4.4)
any other clock valuation belonging to (E′f−1, v(D′f−1)) satisfies g.
Therefore v ∈ guard∀(g,E

′
f−1, D

′
f−1) and from Lemma 19, Rp ⊆

guard∀(g,E
′
f−1, D

′
f−1). Now, as wf = [w′f−1]unp

consider the open–
p–PDBM (Ef , Df) = update((E′f−1, D

′
f−1), unp); from Lemma 8 we

have wf ∈ (Ef , v(Df)). Finally there is an edge (lf−1, (Ef−1, Df−1))
ef−1−→

(lf , (Ef , Df)).

– If ef−1 = 〈lf−1, a, g, u, lf 〉 contains a parametric guard and a para-
metric update. Using Definition 4 there is a delay δ (possibly 0)

s.t. (lf−1, wf−1)
δ7→ (lf−1, w

′
f−1)

ef−17→ (lf , wf) where w′f−1 |= v(g)
and wf = [w′f−1]v(u). As wf−1 ∈ (Ef−1, v(Df−1)) there is (E′f−1, D

′
f−1) ∈

Succ((Ef−1, Df−1)) s.t. from Proposition 3 we have w′f−1 ∈ (E′f−1, v(D′f−1)).
As w′f−1 |= v(g), v ∈ p-guard∃(g,E

′
f−1, D

′
f−1) and from Lemma 20,

Rp ⊆ p-guard∃(g,E
′
f−1, D

′
f−1). Now, as wf = [w′f−1]v(u) consider

the point–p–PDBM (Ef , Df) = update((E′f−1, D
′
f−1), u); (Ef , v(Df))

contains only one clock valuation, precisely defined by the fully para-
metric update v(u) so we have wf ∈ (Ef , v(Df)). Finally there is an

edge (lf−1, (Ef−1, Df−1))
ef−1−→ (lf , (Ef , Df)).

82

– The case where ef−1 contains a non parametric guard and a parametric
update is similar to the previous one.

Finally, there is a run σ′ = σ
ef−1−→ (lf , (Ef , Df)) of length f in R(A) s.t.

for all 0 ≤ i ≤ f , wi ∈ (Ei, v(Di)).

⇒ By induction on the length of the run.

Let v ∈ Rp. As the basis for the induction, the initial location (l0, (E0, v(D0)))
is reachable by an empty run of R(A). Moreover, as {0}H∈(E0, v(D0)),
the initial location (l0, {0}H) is reachable by an empty run of v(A).

For the induction step, suppose it is true for all run in R(A) of length f−1.

Let v ∈ Rp and σ = (l0, (E0, D0))
e0−→ · · · ef−2−→ (lf−1, (Ef−1, Df−1))

ef−1−→
(lf , (Ef , Df)) be a run ofR(A) of length f . Consider ef−1. By Definition 17
of the parametric region automaton, it is also in the set of edges ζ of A.
Two cases show up:

– If ef−1 = 〈lf−1, a, g, unp, lf 〉 contains no parametric guard nor para-

metric update. By induction hypothesis, there is a run ρ = (l0, w0)
e0−→

· · · ef−2−→ (lf−1, wf−1) of v(A) of length f − 1 s.t. for all 0 ≤ i ≤ f − 1,
wi ∈ (Ei, v(Di)). Using Definition 17 there is (E′f−1, D

′
f−1) ∈

Succ((Ef−1, Df−1)), Rp ⊆ guard∀(g,E
′
f−1, D

′
f−1) and (Ef , Df) =

update((E′f−1, D
′
f−1), unp). From Proposition 3 we have w′f−1 ∈

(E′f−1, v(D′f−1)) and a delay δ s.t. w′f−1 = wf−1 + δ. As Rp ⊆
guard∀(g,E

′
f−1, D

′
f−1) from Lemma 19 we have v ∈ guard∀(g,E

′
f−1, D

′
f−1)

and w′f−1 |= g. Moreover, since (Ef , Df) = update((E′f−1, D
′
f−1), unp),

we define wf = [w′f−1]unp and therefore from Lemma 8, wf ∈
(Ef , v(Df)). Finally there is an edge (lf−1, wf−1)

ef−1−→ (lf , wf) and

a run ρ′ = ρ
ef−1−→ (lf , wf) in v(A) of length f s.t. for all 0 ≤ i ≤ f ,

wi ∈ (Ei, v(Di)).

– If ef−1 = 〈lf−1, a, g, u, lf 〉 contains a parametric guard and a paramet-
ric update. Using Definition 17 there is (E′f−1, D

′
f−1) ∈ Succ((Ef−1, Df−1)),

Rp ⊆ p-guard∃(g,E
′
f−1, D

′
f−1) and (Ef , Df) = update((E′f−1, D

′
f−1), u).

From Lemma 20 we can take w′f−1 ∈ (E′f−1, v(D′f−1)) s.t. w′f−1 |=
v(g). Let wf = [w′f−1]v(u). Clearly, (Ef , Df) = update((E′f−1, D

′
f−1), u)

is a point–p–PDBM; as (Ef , v(Df)) contains only one clock valuation
precisely defined by the fully parametric update v(u), we have wf ∈
(Ef , v(Df)). From Proposition 3 as w′f−1 ∈ (E′f−1, v(D′f−1)) there is
a delay δ and a wf−1 ∈ (Ef−1, v(Df−1)) s.t. w′f−1 = wf−1 +δ. Using

the induction hypothesis, there is a run ρ = (l0, w0)
e0−→ · · · ef−2−→

(lf−1, wf−1) of v(A) of length f − 1 s.t. for all 0 ≤ i ≤ f − 1,

wi ∈ (Ei, v(Di)). Finally there is an edge (lf−1, wf−1)
ef−1−→ (lf , wf)

and a run ρ′ = ρ
ef−1−→ (lf , wf) in v(A) of length f s.t. for all 0 ≤ i ≤ f ,

wi ∈ (Ei, v(Di)).

– The case where ef−1 contains a non parametric guard and a parametric
update is similar to the previous one.

83

(l0,~0) (l1, w1) · · · (li, wi) (li+1, wi+1) · · · (lj , wj) (lf , wf)
e0 e1 ei−1

ei ei+1 ej−1 ej

(a) run of A with one parametric transition ei

(l0, (E0, D0)) (l1, (E1, D1)) · · · (li, (Ei, Di)) (li+1, (Ei+1, Di+1)) · · · (lj , (Ej , Dj)) (lf , (Ef , Df))
e0 e1 ei−1

ei ei+1 ej−1 ej

(b) run of R(A) with one parametric transition ei

Figure 4.4: A run in an R-U2P-PTA A (above) and its equivalent run in R(A)
(below)

Example 3. Consider Figure 4.4. Let A be an R-U2P-PTA, Rp a parameter
region and v ∈ Rp. Suppose there is a run in A, starting from the initial

location (l0,~0) reaching a goal location (lf , wf). Along this run, all edges are
non-parametric transitions but ei = 〈li, g, ai, u, li+1〉. That is, u is a total
parametric update, and g is a possibly parametric guard.

The first part of this run, from (l0,~0) to (li, wi) is bisimulated by RL(A)0,
which is the local region automaton starting from (l0, (E0, D0)) where (E0, D0) is
the p–PDBM of the initial clock region {~0}, and ends in (li, (Ei, Di)). The second
part of this run, from (li+1, wi+1) to (lf , wf) is bisimulated by RL(A)1, which is
the local region automaton starting from (li+1, (Ei+1, Di+1)) where (Ei+1, Di+1)
is a point–p–PDBM, and can reach (lf , (Ef , Df)) and further ends in (ls, (Es, Ds)).

These runs in RL(A)0 and RL(A)1 contain only non-parametric transitions,
and as there is an edge in A from (li, wi) to (li+1, wi+1), we have to bisim-
ulate this run in R(A): this is the run starting from (RL(A)0, (l, (Ei, Di)))
and ending in (RL(A)1, (ls, (Es, Ds))) containing the parametric transition ei ,

where update((Ei, Di), u) gives (Ei+1, Di+1).

From Proposition 4, we deduce that if there is a run reaching a goal location
in an instantiated R-U2P-PTA, then for another parameter valuation in the
same parameter region there is a run in the instantiated R-U2P-PTA with the
same locations and transitions (but possibly different delays), reaching the same
location.

Theorem 4. Let A be an R-U2P-PTA. Let Rp be a parameter region and v ∈ Rp.

If there is a run ρ = (l0, w0)
e0−→ · · · ei−1−→ (li, wi) in v(A), then for all v′ ∈ Rp

there is a run ρ′ = (l0, w
′
0)

e0−→ · · · ei−1−→ (li, w
′
i) in v′(A) such that for all i,

(wi, v) l (w′i, v
′).

Proof. Let v ∈ Rp and ρ a run of v(A) reaching (li, wi). From Proposition 4,
there is a run σ in R(A) s.t. each clock valuation at a location in ρ is in the
p–PDBM at the same location in σ. Still from Proposition 4, for all v′ ∈ Rp
there is a run ρ′ in v′(A) reaching (li, w

′
i) s.t. each clock valuation at a location

in ρ′ is in the p–PDBM at the same location in σ (note that possibly v = v′).
Therefore, we have for all 0 ≤ j ≤ i that (wi, v) l (w′i, v

′) and the expected
result.

Note that there is a finite number of p–PDBMs for each parameter region Rp.
Let (E,D) ∈ p–PDBM(Rp) and consider PLT : D is an (H + 1)2 matrix made

84

of pairs (d, /) where d ∈ PLT and / ∈{≤, <}. Therefore the number of possible

D is bounded by (2 × (2 + 3 ×
(
M
2

)
+ 4 ×M))(H+1)2 . Moreover the number

of E is unbounded, but only a finite subset of all values needs to be explored,
i. e., those smaller than K + 1: indeed, following classical works on timed
automata [AD94, BDFP04], (integer) values exceeding the largest constant used
in the guards or the parameter bounds are equivalent.

To test EF-emptiness given an R-U2P-PTA A and a goal location l, we first
enumerate all parameter regions (which are a finite number), and apply for
each Rp the following process: we pick v ∈ Rp (e. g., using a linear programming
algorithm [Kar84]). Then, we consider v(A) which is an updatable timed
automaton and test the reachability of l in v(A) [BDFP04]. Then EF-emptiness
is false if and only if there is v and a run in v(A) reaching l.

Theorem 5. The EF-emptiness problem is PSPACE-complete for bounded R-
U2P-PTAs.

Proof. Since a TA is a special case of R-U2P-PTA we have the PSPACE-
hardness [AD94]. Now, let G be a set of goal locations of A. We build a
non-deterministic Turing machine that:

1. takes A, G and K as input

2. non-deterministically “guesses” a parameter region Rp

3. takes v ∈ Rp and writes it to the tape

4. overwrites on the tape each parameter p by v(p), giving the updatable TA
v(A)

5. solves reachability in v(A) for G

6. accepts iff the result of the previous step is “yes”.

The machine accepts iff there is an integer valuation v bounded by K and a run
in v(A) reaching a location l ∈ G.

The size of the input is |A| + |G| + |K|, using |.| to denote the size in
bits of the different objects. Moreover, the number of parameter regions is
bounded (M is the number of parameters in A) by

(
M ! × 2M ×

∏
p∈P(2M +

2)
)
×
(
2× (2 +M(3M−12 + 4))3

)
since they are constructed as the clock regions

of [AD94], the second part being the maximal number of constraints in a
parameter region. Picking v at step iii) uses a PSPACE linear programming
algorithm (e. g., [Kar84]). Storing the valuation at step iv) uses at most M ×|K|
additional bits, which is polynomial w.r.t. the size of the input. Step v) also
needs polynomial space from [BDFP04]. So globally this non-deterministic
machine runs in polynomial space. Finally, by Savitch’s theorem we have
PSPACE = NPSPACE [Sav70], and the expected result.

Given a goal location l and a bounded R-U2P-PTA A, we can exactly
synthesize the parameter valuations v s.t. there is a run in v(A) reaching l by
enumerating each parameter region (of which there is a finite number) and test
if l is reachable for one of its parameter valuations. The result of the synthesis
is the union of the parameter regions for which one valuation (and, from our

85

results, all valuations in that region) indeed reaches the goal location in the
instantiated TA.

Corollary 6. Given a bounded R-U2P-PTA A and a goal location l we can
effectively compute the set of parameter valuations v s.t. there is a run in v(A)
reaching l.

Proof. The procedure to obtain synthesis is as follows. We assume an R-U2P-
PTA A and a goal location l.

1. enumerate all parameter regions (of which there is a finite number)

2. for each Rp, pick a parameter valuation we pick v ∈ Rp (e. g., using a
linear programming algorithm [Kar84])

3. test the reachability of l in the updatable timed automaton v(A), which is
decidable [BDFP04]

4. if l is reachable in v(A), add Rp to the list of synthesized regions

We finally return the union of all regions Rp that reach l.
The correctness immediately comes from Theorems 4 and 5.

Remark 1. By bounding parameter valuations in guards but not those used in
updates, we still have a finite number of parameter regions. Indeed, an integer
vector E with components Ex greater than bKc+ 1 is equivalent to an integer
vector E′ with E′x = Ex if Ex < bKc+ 1 and E′x = bKc+ 1 if Ex ≥ bKc+ 1.
Moreover for all p, we have to replace each parameter valuation v used in an
update by v(p) = v′(p) if v(p) ≤ K and v′(p) = K + 1 if v(p) > K.

4.7 Case study

We implemented EFsynth for R-U2P-PTAs in IMITATOR, a parametric model
checker for (extensions of) PTAs [AFKS12].

Our class is the first for which synthesis is possible over bounded rational
parameters. We believe our formalism is useful to model several categories of
case studies, notably distributed systems with a periodic (global) behavior for
which the period is unknown: this can be encoded using a parametric guard
while resetting all clocks—possibly to other parameters.

Consider the R-U2P-PTA in Figure 4.1 with six locations, three clocks
compared to parameters (x, y, t), one constant (max) and six parameters (p, p1,
p2, v, pv1, pv2).

We consider the case of a network of peers exchanging transactions grouped
by blocks, e. g., a blockchain, using the Proof-of-Work as a mean to validate
new blocks to add. In this simplified example, we consider a set of two peers
(represented by x, y) which have different computation power (represented by p1,
p2). Peers write new transactions on the current block (newTx). If it is full
(t = p), both peers try to add a new block (newBlock) to write the transaction
on it. We update x to p1, y to p2, and t to 0 as the peers have a different
computation power, and they start “mining” the block (find a solution to a
computation problem). Either x or y will eventually offer a solution to the

86

problem (blockSolutionx if x = max or blockSolutiony if y = max). If y offers
a solution, x will check whether the solution is correct: x is updated to pv1 to
represent its rapidity to verify an offer. x can refuse the offer if the verification
is too long (fakeBlock if x > v) therefore the mining step restarts. x can
approve the offer (okBlock if x ≤ v), y is rewarded and the block is added to
the blockchain (addBlock).

We are interested in a malicious peer x that wants to avoid y to be rewarded
for every new block. Therefore x asks: “what are the possible computation
power configurations and verification rapidity so that y is eventually rewarded”
(EF (rewardy)-synthesis), considered as a bug state in the automaton.

We run this R-U2P-PTA using IMITATOR [AFKS12]4. We set max = 30
units of time and also the upper bound of p and 1 ≥ v > 0 unit of time.
IMITATOR computes a disjunction of constraints so that rewardy is unreachable:
we keep two relevant ones;

1. p1 ≥ p2: x has strictly more computation power than y in which case x
always offers a block solution, or has the same computation power than y
in which case the systems blocks. x should invest heavily into hardware to
keep its computation power high;

2. pv1 > v: the malicious peer x is always faster to verify the solution offered
by y and refuses it. The blockchain is probably compromised.

Using a parameter valuation respecting one of the previous constraints
guarantees that y is never rewarded.

4.8 Conclusion and perspectives

Our class of R-U2P-PTAs is one of the few subclasses of PTAs (actually even
extended with parametric updates) to enjoy decidability of EF-emptiness. In
addition, R-U2P-PTAs are the first “subclass” of PTAs to allow exact synthesis
of bounded rational -valued parameters.

In terms of future works, beyond reachability emptiness, we aim at studying
unavoidability-emptiness and language preservation emptiness (“given a reference
parameter valuation, does there exist another parameter valuation with the same
untimed language”), as well as their synthesis.

Finally, we would like to investigate whether our parametric updates can be
applied to decidable hybrid extensions of TAs [HKPV98, BDG+13].

In the last two chapters we have studied parametric updates in TAs and
PTAs, trying to find subclasses of PTAs for which classical TCTL formulae are
decidable. In the next chapter, we will consider TCTL itself and study U-PTAs
and L/U-PTAs without invariants.

4Experiments were conducted with IMITATOR 2.10.4 “Butter Jellyfish” on a 2.4 GHz Intel
Core i5 processor with 2 GiB memory. Computation time is less than 1 second. Sources,
binaries, models and results are available at imitator.fr/static/FORTE19/

87

imitator.fr/static/FORTE19/

Chapter 5

TCTL model checking
lower/upper-bound
parametric timed automata
without invariants

5.1 Introduction

Recall that, EF-emptiness is undecidable even for a single bounded parame-
ter [Mil00], even for a single rational-valued or integer-valued parameter [BBLS15],
even with only one clock compared to parameters [Mil00], or with strict con-
straints only [Doy07] (see [And19] for a survey). In contrast, decidability is
ensured in some restrictive settings such as over discrete time with a single
parametric clock (i. e., compared to parameters in at least one guard) [AHV93],
or over discrete or dense time with one parametric clock and arbitrarily many
non-parametric clocks [BO14, BBLS15], or over discrete time with two para-
metric clocks and a single parameter [BO14]. But the practical power of these
restrictive settings remains unclear.

5.1.1 Motivation

In order to overcome these disappointing results, lower-bound/upper-bound
parametric timed automata (L/U-PTAs) are introduced as a subclass of PTAs
where each parameter either always appears as an upper bound when compared
to a clock, or always as a lower bound [HRSV02]. L/U-PTAs enjoy mixed
decidability results: while the EF-emptiness problem and the EF-universality
problem (“Can we reach a given location, regardless of what valuations we give
to the parameters?”) are decidable, AF-emptiness (“is the set of valuations for
which all runs eventually reach a given location empty?”) is undecidable [JLR15];
as for EG-emptiness (“is the set of valuations for which one infinite or finite
maximal run always remains in a given set of locations empty?”), it is decidable
only when the parameter domain is bounded with closed bounds [AL17].

U-PTAs are L/U-PTAs with only upper-bound parameters [BL09], and are

88

Class
U-PTAs

without invariants

integer-valued
L/U-PTAs

without invariant
L/U-PTAs bounded PTAs PTAs

EF [HRSV02] [HRSV02] [HRSV02] [Mil00] [AHV93, Mil00]
AF open Theorem 8 [JLR15] [ALR16a] [JLR15]
EG open Theorem 8 [AL17] [AL17] [AL17]
AG [HRSV02] [HRSV02] [HRSV02] [ALR16a] [ALR16a]

flat TCTL open Theorem 8 [JLR15] [Mil00] [AHV93]
TCTL Theorem 6 Theorem 6 [JLR15] [Mil00] [AHV93]

Table 5.1: Decidability of the emptiness problems for PTAs and subclasses

TAs’ simplest parametric extension; since their introduction, no problem was
ever shown undecidable for U-PTAs, when decidable for TAs, and all their
known decidability results only came from the decidability for the larger class of
L/U-PTAs. [ALR16b] showed that, in terms of union of untimed words, U-PTAs
are not more expressive than TAs. A natural question is to investigate whether
their expressiveness is anyhow beyond that of TAs, or whether the parametric
emptiness version of all problems decidable for TAs remains decidable for U-
PTAs.

Note that in [JLR13], the authors claim that AF-emptiness is undecidable
for U-PTAs but the original unpublished proof had a fatal flaw, which is why
the result was weakened to L/U-PTAs in [JLR15]. The result for U-PTAs is
therefore still open.

5.1.2 Contribution

Our first contribution is to show that the TCTL-emptiness problem (“given
a TCTL formula, is the set of valuations v for which v(A) |= ϕ empty?”) is
undecidable for U-PTAs. This result comes in contrast with the fact that
investigated flat TCTL formulas (namely EF, AG)—formulas that cannot be
obtained by restraining another TCTL formula—are known to be decidable for
U-PTAs, while others (EG and AF) are open. Our proof relies on the reduction
of the halting problem of a 2-counter machine to the emptiness of the EGAF=0

formula.
Our second contribution is that EG-emptiness is PSPACE-complete for (un-

bounded) integer-valued L/U-PTAs without invariants. Let us stress that
EG-emptiness is undecidable for classical unbounded integer-valued L/U-PTAs
with invariants [AL17], which draws a more accurate border between decid-
ability and undecidability results regarding L/U-PTAs. Moreover, we show
that EG-universality (also known as AF-emptiness) is PSPACE-complete for
(unbounded) integer-valued L/U-PTAs without invariants, despite being undecid-
able for classical (rational- or integer-valued) L/U-PTAs with invariants [JLR15].
These results highlight the power invariants confer upon the expressiveness of
L/U-PTAs. We deduce from all this that flat TCTL emptiness and universality
is also decidable for integer-valued L/U-PTAs without invariants, which also
makes the decidability frontier more precise with respect to nesting of TCTL
formulas.

We give a summary of the known decidability results in Table 5.1, with our

89

contributions in bold. We give from left to right the (un)decidability for U-PTAs,
L/U-PTAs with integer-valued parameters without invariants, L/U-PTAs (the
undecidability results also hold for integer-valued parameters), bounded PTAs
(i. e., with a bounded parameter domain), and PTAs. We review the emptiness
of TCTL subformulas (EF, AF, EG, AG), flat TCTL and full TCTL. Decidability
is given in green, whereas undecidability is given in italic red. As U-PTAs can be
seen as the simplest parametric extension of TAs, our undecidability result moves
the undecidability frontier closer to TAs, and confirms that timed automata
(while enjoying many decidability results) are a formalism very close to the
undecidability frontier.

5.1.3 Outline

Sections 5.2 and 5.3 show that TCTL-emptiness is undecidable for U-PTAs and
bounded U-PTAs, respectively. Section 5.4 consists of the decidability results for
integer-valued L/U-PTAs without invariants. Section 5.5 concludes the section
and proposes some perspectives.

5.1.4 Additional notations

Given U ⊆ X, we define the reset of a valuation w, denoted by [w]U , as follows:
[w]U (x) = 0 if x ∈ U , and [w]U (x) = w(x) otherwise.

An upper-bound (resp. lower-bound) parameter p is such that, whenever it
appears in a constraint x ./ p+ d with d ∈ N then necessarily ./ ∈ {≤, <} (resp.
./ ∈ {≥, >}). A parameter valuation v is a function v : P → Q+. An integer
parameter valuation v is a function v : P → N. A clock is parametric if it is
compared at least once to a parameter, and non-parametric otherwise.

A u-guard g (resp. an l -guard g) is a conjunction of inequalities of the form
x ./ d, or x / p+ d with p an upper-bound parameter (resp. p+ d / x with p a
lower-bound parameter) and d ∈ N.

5.1.5 Lower/Upper-bound parametric timed automata

Let AP be a set of atomic propositions. Let us recall L/U-PTAs [BL09], in
which we added a label function:

Definition 18 (L/U-PTA). An L/U-PTA A is a tuple A = (Σ, L,L, l0,X,P, ζ),
where:

1. Σ is a finite set of actions,

2. L is a finite set of locations,

3. L is a label function L : L→ 2AP ,

4. l0 ∈ L is the initial location,

5. X is a finite set of clocks,

6. P is a finite set of parameters partitioned into lower-bound parameters and
upper-bound parameters

90

idle add sugar preparing coffee

done

press
x1 := 0
x2 := 0

x1 ≥ 1
press
x1 := 0

x2 ≤ p1
cup

x2 ≤ p2
coffee
x1 := 0

press
x1 := 0
x2 := 0

x1 = 10
idle

Figure 5.1: A coffee machine modeled using a U-PTA

7. ζ is a finite set of edges e = (l, g, a, U, l′) where l, l′ ∈ L are the source and
target locations, a ∈ Σ, U ⊆ X is a set of clocks to be reset, and g is a
conjunction of a u-guard and an l-guard.

Unlike the classical definition of [HRSV02], we consider L/U-PTAs without
invariants. We define a U-PTA [BL09] as an L/U-PTA where in each edge, g is
a u-guard. An example of U-PTA is given in Figure 5.1.

Example 4. Consider the coffee machine in Figure 5.1, modeled using a U-PTA
with 4 locations, 2 clocks (x1 and x2) and 2 parameters (p1, p2). The only
accepting location (with a double border) is done. Only x2 is a parametric clock,
i. e., compared to a parameter.

The machine can initially idle for an arbitrarily long time. Then, whenever
the user presses the (unique) button (action press), the U-PTA enters location
“add sugar”, resetting both clocks. There, the user can add a dose of sugar by
pressing the button (action press), provided the guard (x1 ≥ 1) is satisfied, which
resets x1. That is, the user cannot press twice the button (and hence add two
doses of sugar) in a time less than 1. Then, at most p1 time units after the
machine left the idle mode, a cup is delivered (action cup), and the coffee is being
prepared; eventually, at most p2 time units after the machine left the idle mode,
the coffee (action coffee) is delivered. Then, after 10 time units, the machine
returns to the idle mode—unless a user again requests a coffee by pressing the
button.

Note that an L/U-PTA where we replace all guards are made of conjunctions
of inequalities of the form x ./ p, or x ./ d, with d ∈ N, becomes a PTA as
defined in [AHV93].

Given a state s = (l, w), we say that s is reachable if s appears in a run of
v(A). By extension, we say that a label lb is reachable in v(A) if there exists a
state (l, w) that is reachable such that lb ∈ L(l). Given a set of locations G ⊆ L,
we say that a run stays in G if all of its states (l, w) are such that l ∈ G.

A maximal run is a run that is either infinite (i. e., contains an infinite number
of discrete transitions), or that cannot be extended by a discrete transition. A

91

l l′′
x1 = a

x := 0

(a) Gadget fragment
of [BBLS15]

l l′ l′′ qerror
x1 ≤ a, t ≤ b

y := 0

y = 0, t ≤ b
x1 := 0

x1 ≤ a, y > 0

(b) Modified gadget of [BBLS15] enforcing EGAF=0♥

Figure 5.2: A gadget fragment and its modification into a U-PTA

maximal run is deadlocked if it is finite, i. e., contains a finite number of discrete
transitions. By extension, we say that a TA is deadlocked if it contains at least
one deadlocked run.

In this chapter, we address the following problems:

TCTL-emptiness problem:
Input: an L/U-PTA A and a TCTL formula ϕ
Problem: is the set of valuations v such that v(A) |= ϕ empty?

TCTL-universality problem:
Input: an L/U-PTA A and a TCTL formula ϕ
Problem: are all valuations v such that v(A) |= ϕ?

More specifically, we will address in Section 5.4 the EG-emptiness (resp.
EG-universality problem) i. e., whether, given an L/U-PTA A and a subset of
its locations G, the set of parameter valuations for which there is a run in v(A)
that stays in G is empty (resp. universal).

5.2 Undecidability of TCTL emptiness for U-
PTAs

We exhibit here a formula that shows that TCTL emptiness is undecidable for
U-PTAs.

Theorem 6. The EGAF=0-emptiness problem is undecidable for U-PTAs.

Proof. We reduce from the halting problem for two-counter machines, which is
undecidable [Min67]. Recall that a two-counter machine is a finite state machine
with two integer-valued counters c1, c2. Two different instructions (presented
for c1 and identical for c2) are considered:

1. when in state qi, increment c1 and go to qj ;

2. when in state qi, if c1 = 0 go to qk, otherwise decrement c1 and go to qj .

We assume w.l.o.g. that the machine halts iff it reaches a special state qhalt.
We define a U-PTA that, under some conditions, will encode the machine,

and for which EGAF=0♥-emptiness holds iff the machine does not halt (for
some ♥ ∈ AP). Our U-PTA A uses two (possibly integer-valued) parameters
a, b, and five clocks i. e., a single non-parametric clock y and four parametric
clocks x1, x2, z, t. We also omit the transition labels as they are not relevant for

92

li li1

li2 li3 li4

qerror

li5

li6

li7

lj

li8 li9 li10 li11

z = 1, t ≤ b
z := 0

x1 ≤ a, t ≤ b
y := 0

y = 0, t ≤ b
x1 := 0

x
1 ≤

a, y >
0

x2 ≤ a, t ≤ b
y := 0

x
2
≤
a
,
y
>

0

y = 0, t ≤ b
x2 := 0

x2 = 1, t ≤ b
x2 := 0

z ≤ a, t ≤ b
y := 0

z ≤ a, y > 0

y = 0, t ≤ b
z := 0

x2 ≤ a, t ≤ b
y := 0

y = 0, t ≤ b
x2 := 0

x2
≤ a

, y
>

0

x2 = 1, t ≤ b
x2 := 0

x1 ≤ a, t ≤ b
y := 0

x
1 ≤

a, y
>
0

y = 0, t ≤ b
x1 := 0

Figure 5.3: increment gadget

the emptiness problem. Each state qi of the two-counter machine is encoded by a
location li of A. Each increment (resp. decrement) instruction of the two-counter
machine is encoded into a U-PTA fragment depicted in Figures 5.3 and 5.4,
respectively.

Our encoding is inspired by [BBLS15] and is such that when in li with
w(z) = 0 then w(x1) (resp. w(x2)) represents the value of the counter c1
(resp. c2). However, as U-PTAs disallow constraints of the form x = a, we
need to considerably modify the encoding. Each of our locations has exactly
one label: ♥ for the locations already present in [BBLS15] (depicted in yellow

in our figures), and ♠ for the newly introduced locations (depicted in white
in our figures). In [BBLS15], the gadgets encoding the two-counter machine
instructions use edges of the form of Figure 5.2a. To define a proper U-PTA, we
replace each of these edges by a special construction given in Figure 5.2b using
only inequalities of the form x ≤ a. Our goal is to show that a run will exactly
encode the two-counter machine if all guards x ≤ a are in fact taken when the
clock valuation is exactly equal to a. Those runs are further denoted by ρ♥.
Consider the transformed version given in Figure 5.2b: due to the ≤, runs exist
that take the guard “too early” (i. e., before x1 = a). Those are denoted by ρ♠.
But, in that case, observe that in l′, one can either take the transition to l′′

in 0-time, or spend some time in l′ and then (with guard y > 0) go to qerror.
Therefore on this gadget, EGAF=0♥ is true at l′ iff the guard x1 ≤ a from l
to l′ is taken at the very last moment. Note that EGAF=0♥ is trivially true in l
and l′′ as both locations are labeled with ♥. (Also note that there are plenty
of runs from l to qerror that do not encode properly the machine; they will be
discarded in our reasoning later.)

We also assume a condition t ≤ b on all guarded transitions, where t is a
clock never reset. As presented in Figure 5.2b, there are transitions without
guard (dashed) from l, l′′ (labeled with ♥) to qerror. This is done to enforce the
violation of EGAF=0♥ whenever t = b: indeed, while t < b a run can either go
to qerror from a location labeled with ♥, or not, but as t = b every run is forced
to go to qerror, making EGAF=0♥ false.

The gadgets presented in Figures 5.3 and 5.4 provide an encoding to re-
spectively increase and decrease the values of the counters of the two-counter

93

machine.

Increment We give the increment gadget for c1 in Figure 5.3 (the gadget for c2
is symmetric). Let v be a valuation, and assume we are in configuration (li, w),
where w(z) = 0. First note that if w(x1) ≥ v(a), there is no execution ending
in lj due to the delay of one time unit on the transition from li to li1, and the
guard x1 ≤ a tested in both the upper and the lower branch in the automaton.
The same reasoning is relevant for w(x2).

Assume w(x1), w(x2) < v(a). Two cases show up: w(x1) ≤ w(x2) and w(x1) >
w(x2), which explains why we need two paths in Figure 5.3. First, if w(x1) ≤
w(x2), we can perform several executions with different time delays, but those
are bounded. In the following, we write w as the tuple (w(x1), w(x2), w(z), w(y)),
omitting t.

From li, we prove that there is a unique run that reaches lj without violating
our property. It is the one that takes each transition with a u-guard x ≤ a at
the exact moment w(x) = v(a) which we describe in the following.

From (li , w), the unique delay to pass the transition is 1, hence we arrive

in the configuration (li1 , (w(x1) + 1, w(x2) + 1, w(y) + 1, 0)). Here, the largest

delay to pass the transition is v(a)− w(x1)− 1 so a configuration we possibly
obtain is (li2, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (v(a), w(x2)−w(x1)+v(a), v(a)−
w(x1) − 1). If (d1, d2, d3) < (v(a), w(x2) − w(x1) + v(a), v(a) − w(x1) − 1)
then the guard y > 0 in the transition to qerror is verified, hence our property
EGAF=0♥ is violated. We remove all these runs and keep the only run that ends
in the exact configuration (li2, (v(a), w(x2)− w(x1) + v(a), v(a)− w(x1)− 1, 0)).

As y = 0 holds the next configuration is (li3 , (0, w(x2)− w(x1) + v(a), v(a)−
w(x1)−1, 0)). The largest delay to pass the next transition is w(x1)−w(x2), so a
configuration we possibly obtain is (li4, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (w(x1)−
w(x2), v(a), v(a)−w(x2)−1). If (d1, d2, d3) < (w(x1)−w(x2), v(a), v(a)−w(x2)−
1) then the guard y > 0 in the transition to qerror is verified, hence our property
EGAF=0♥ is violated. We remove all these runs and keep the only run that ends
in the exact configuration (li4, (w(x1)−w(x2), v(a), v(a)−w(x2)−1, 0). As y = 0

holds the next configuration is (li5 , (w(x1)−w(x2), 0, v(a)−w(x2)− 1, 0). Now

the unique delay to pass the transition is 1, hence as we reset x2 we arrive

in the configuration (li6 , (w(x1) − w(x2) + 1, 0, v(a) − w(x2), 1). The largest

delay to pass the next transition is w(x2), so a configuration we possibly obtain
is (li7, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (w(x1) + 1, w(x2), v(a)). If (d1, d2, d3) <
(w(x1)+1, w(x2), v(a)) then the guard y > 0 in the transition to qerror is verified,
hence our property EGAF=0♥ is violated. We remove all these runs and keep
the only run that ends in the exact configuration (li7, (w(x1) + 1, w(x2), v(a), 0)).

As y = 0 holds the next configuration is (lj , (w(x1) + 1, w(x2), 0, 0)), and as
w(z) = 0, w(x1) represents the exact value of the counter c1 increased by 1.

In its shorter form, this run is: (li , w)
1−→ (li1 , (w(x1)+1, w(x2)+1, w(y)+

1, 0))
v(a)−w(x1)−1−→ (li2, (v(a), w(x2) − w(x1) + v(a), v(a) − w(x1) − 1, 0))

0−→
(li3 , (0, w(x2) − w(x1) + v(a), v(a) − w(x1) − 1, 0))

w(x1)−w(x2)−→ (li4, (w(x1) −

w(x2), v(a), v(a) − w(x2) − 1, 0))
0−→ (li5 , (w(x1) − w(x2), 0, v(a) − w(x2) −

94

li li1

li2 li3 li4

qerror

li5

li6

li7

lj

li8 li9 li10 li11

li12 li13 li14 li15 lk

z = 0,
x1 > 0, t ≤ b

x1 ≤ a, t ≤ b
y := 0

y = 0, t ≤ b
x1 := 0

x
1 ≤

a, y >
0

x1 = 1, t ≤ b
x1 := 0

x2 ≤ a, t ≤ b
y := 0

y = 0, t ≤ b
x2 := 0

x2
≤
a,
y
>
0

z ≤ a, t ≤ b
y := 0

z ≤ a, y > 0

y = 0, t ≤ b
z := 0

x2 ≤ a, t ≤ b
y := 0

y = 0, t ≤ b
x2 := 0

x2
≤ a

, y
> 0

x1 ≤ a, t ≤ b
y := 0

x1 ≤ a, y > 0, t ≤ b

y = 0, t ≤ b
x1 := 0

x1 = 1, t ≤ b
x1 := 0

x1 = 0, z = 0, t ≤ b x2 ≤ a+ 1,
t ≤ b

y := 0

x
2
≤
a
+

1
, y
>

0

y = 0, t ≤ b
x2 := 0

x1 ≤ a+ 1,
t ≤ b

y := 0

x
1
≤
a
+

1
, y
>

0

y = 0, t ≤ b
x1, z := 0

Figure 5.4: decrement gadget

1, 0))
1−→ (li6 , (w(x1)−w(x2)+1, 0, v(a)−w(x2), 1))

w(x2)−→ (li7, (w(x1)+1, w(x2), v(a), 0))
0−→

(lj , (w(x1) + 1, w(x2), 0, 0)).

Second, if w(x1) > w(x2) we take the lower branch of the automaton and
apply the same reasoning.

Decrement and 0-test The decrement and 0-test gadget is similar: we reuse
the reasoning of [BBLS15], and apply the same modifications as in Figure 5.2b.
Note that the 0-test gadget has been completely rewritten from [BBLS15] to
ensure a time elapsing of at least a+ 1 time units when the guards are taken at
the last moment.

We give the decrement gadget in Figure 5.4. Assume we are in a config-
uration (li, w) where w(z) = 0 and suppose w(x1) > 0. We can enter the
configuration (l1, (w(x1), w(x2), 0, w(y))) as the guard z = 0 ensures no time has
elapsed.

Two cases show up: w(x1) ≤ w(x2) and w(x1) > w(x2).
First, if w(x1) ≤ w(x2), we can perform several executions with different time

delays, but those are bounded. From li, there is a unique run that reaches lj

without violating our property. It is the one that takes each transition with a
u-guard x ≤ a at the exact moment w(x) = v(a):

(li , (w(x1), w(x2), 0, w(y))
0−→ (li1 , (w(x1), w(x2), 0, w(y))

v(a)−w(x1)−→ (li2, (v(a), w(x2)+

v(a)−w(x1), v(a)−w(x1), 0))
0−→ (li3 , (0, w(x2)+v(a)−w(x1), v(a)−w(x1), 0))

1−→

(li4 , (0, w(x2)+v(a)−w(x1)+1, v(a)−w(x1)+1, 1))
w(x1)−w(x2)−1−→ (li5, (w(x1)−

w(x2)−1, v(a), v(a)−w(x2), 0))
0−→ (li6 , (w(x1)−w(x2)−1, 0, v(a)−w(x2), 0))

w(x2)−→

(li7, (w(x1)− 1, w(x2), v(a), 0))
0−→ (lj , (w(x1)− 1, w(x2), 0, 0)).

From (li , w), the unique delay to pass the transition is 0. From (li1 , (w(x1), w(x2), 0, w(y),

the largest delay to pass the next transition is v(a)− w(x1), so a configuration

95

we possibly obtain is (li2, (d1, d2, d3, 0)) with (d1, d2, d3) ≤ (v(a), w(x2) + v(a)−
w(x1), v(a)−w(x1)). If (d1, d2, d3) < (v(a), w(x2) + v(a)−w(x1), v(a)−w(x1)),
then the guard y > 0 in the transition to qerror is verified, hence our property
EGAF=0♥ is violated. We remove all these runs and keep the only run that ends in
the exact configuration (li2, (v(a), w(x2)+v(a)−w(x1), v(a)−w(x1), 0)). As y = 0

holds the next configuration is (li3 , (0, w(x2) + v(a)− w(x1), v(a)− w(x1), 0)).

Now the unique delay to pass the transition is 1, hence as we reset x1 we arrive

in the configuration (li4 , (0, w(x2) + v(a)−w(x1) + 1, v(a)−w(x1) + 1, 1)). The

largest delay to pass the next transition is w(x1)−w(x2)− 1, so a configuration
we possibly obtain is (li5, (d1, d2, d3, 0)), with (d1, d2, d3) ≤ (w(x1) − w(x2) −
1, v(a), v(a) − w(x2)). If (d1, d2, d3) < (w(x1) − w(x2) − 1, v(a), v(a) − w(x2)),
then the guard y > 0 in the transition to qerror is verified, hence our property
EGAF=0♥ is violated. We remove all these runs and keep the only run that ends
in the exact configuration (li5, (w(x1)−w(x2)−1, v(a), v(a)−w(x2), 0)). As y = 0

holds the next configuration is (li6 , (w(x1)−w(x2)− 1, 0, v(a)−w(x2), 0)). The

largest delay to pass the next transition is w(x2), so a configuration we pos-
sibly obtain is (li7, (d1, d2, d3, 0)), with (d1, d2, d3) ≤ (w(x1) − 1, w(x2), v(a)).
If (d1, d2, d3) < (w(x1) − 1, w(x2), v(a)), then the guard y > 0 in the tran-
sition to qerror is verified, hence our property EGAF=0♥ is violated. We re-
move all these runs and keep the only run that ends in the exact configura-
tion (li7, (w(x1) − 1, w(x2), v(a), 0)). As y = 0 holds the next configuration

is (lj , (w(x1) − 1, w(x2), 0, 0)), and as w(z) = 0, w(x1) represents the exact
value of the counter c1 decreased by 1.

Secondary, if w(x1) > w(x2) we take the lower branch of the automaton and
apply the same reasoning.

Now assume we are in a configuration (li , w) where w(z) = 0 and sup-

pose w(x1) = 0. We have to reach location lk , and ensure this is done in a a+ 1

time unit delay. We can enter the configuration (li13 , (0, w(x2), 0, w(y)) as the

guard x1 = 0, z = 0 ensures no time has elapsed. The largest delay to pass
the next transition is v(a) + 1 − w(x2), so a configuration we possibly obtain
is (li14, (d1, d2, d3, 0)), with (d1, d2, d3) ≤ (v(a)+1−w(x2), v(a), v(a)+1−w(x2)).
If (d1, d2, d3) < (v(a) + 1− w(x2), v(a), v(a) + 1− w(x2)), then the guard y > 0
in the transition to qerror is verified, hence our property EGAF=0♥ is violated.
We remove all these runs and keep the only run that ends in the exact con-
figuration (li14, (v(a) + 1 − w(x2), v(a), v(a) + 1 − w(x2), 0)). As y = 0 holds

the next configuration is li15 , (v(a) + 1 − w(x2), 0, v(a) + 1 − w(x2), 0)). The

largest delay to pass the next transition is w(x2), so a configuration we possi-
bly obtain is (li16, (d1, d2, d3, 0)), with (d1, d2, d3) ≤ (v(a) + 1, w(x2), v(a) + 1).
If (d1, d2, d3) < (v(a) + 1, w(x2), v(a) + 1), then the guard y > 0 in the tran-
sition to qerror is verified, hence our property EGAF=0♥ is violated. We re-
move all these runs and keep the only run that ends in the exact configura-
tion (li16, (v(a) + 1, w(x2), v(a) + 1, 0)). As y = 0 holds the next configuration

is (lk , (0, w(x2), 0, 0)), and as w(z) = 0, w(x1) still represents the value of the
counter c1 = 0.

Simulating the 2-counter machine Now, consider the runs ρ♠ that take a
u-guard x ≤ a “too early”. At this moment, since after a small amount of time

96

we have x ≤ a and y > 0 are true, there is a run that eventually reaches qerror
and can never leave it; hence EGAF=0♥ does not hold for these runs. The
same way, the runs ρ♠ that take an unguarded transition to qerror (whether or
not t ≤ b is true) are stuck in a location labeled by ♠; hence EGAF=0♥ does not
hold for these runs. In the following, we do not consider these runs anymore.

Now, let us consider the runs ρ♥ that take each u-guard at the very last
moment, which is exactly when a clock w(x) = v(a).

• If the two-counter machine halts then, there exist parameter valuations v
(typically v(a) larger than the maximum value of the counters during
the computation and v(b) larger than the duration of the corresponding
run in A), for which there is a (unique) run in the constructed U-PTA
simulating correctly the machine, reaching qhalt and staying there forever,
so EGAF=0♥ holds for these valuations: hence EGAF=0♥-emptiness is false.

• Conversely, if the two-counter machine does not halt, then for any valuation,
all runs either end in qerror (either because they took an unguarded transi-
tion to qerror or because they blocked due to the guard t ≤ b—each gadget
takes at least one time unit, so we can combine at most v(b) gadgets—and
again reached qerror); hence there is no parameter valuation for which
EGAF=0♥ holds. Then EGAF=0♥-emptiness is true.

Therefore EGAF=0♥-emptiness is true iff the two-counter machine does not
halt.

Remark 2 (CTL). We may wonder if the timed aspect of TCTL is responsible
for the undecidability. In fact, it is not, and we could modify the proof to show
that CTL itself leads to undecidability. The idea is that we remove the unguarded
transitions in both the increment and the decrement and 0-test gadgets, label
each location of L \ {qerror} with ♥, and add an unguarded self-loop on qhalt.
We claim that EGAX-emptiness is undecidable: we show that EGAX♥ holds for a
unique run of a U-PTA that simulates a two-counter machine, with a similar
reasoning.

5.3 Undecidability for bounded U-PTAs

We now show that undecidability remains even when the parameter domain is
bounded. Note that, if we were addressing the full class of PTAs, showing an
undecidability result for bounded PTAs automatically extends to the full class of
PTAs, as we can simulate any bounded PTA by an unbounded PTA (see, e. g.,
[ALR16b, Fig. 3]). This is not the case for U-PTAs: indeed, in [ALR16b], we
showed that bounded (L/)U-PTAs are incomparable with (L/)U-PTAs; that is,
it is impossible to simulate a bounded U-PTA using a U-PTA (e. g., by using a
gadget that enforces parameters to be bounded), due to the nature of guards,
preventing us to artificially bound a parameter both from above and from below
(in fact, for U-PTAs, bounding from below is possible, but not from above).
Therefore, we must study both problems. Finally note that the EG-emptiness is
decidable for bounded L/U-PTAs but undecidable for L/U-PTAs [AL17], which
motivates further the need to investigate both versions.

97

Theorem 7. The EGAF=0-emptiness is undecidable for bounded U-PTAs.

li li1

li2 li3

qerror li4 lj

li5 li6

z = 0

x2
=
1

x2
:=

0

x1 ≤ a+ 1

y := 0

x
1
≤
a
+

1
, y
>

0

y
=
0

x
1
:=

0

z = 1

z := 0

x
1 ≤

a
+
1

y
:=

0

y = 0

x1 := 0

x1
≤
a
+
1,
y
>
0

x2
=
1

x2
:=

0

Figure 5.5: increment gadget

We reduce this time from the boundedness problem for two-counter machines
(i. e., whether the value of the counters remains bounded along the execution),
which is undecidable [KC10].

We define a U-PTA that, under some conditions, will encode the machine,
and for which EGAF=0♥-emptiness holds iff the counters in the machine remain
bounded. The idea is as follows: we reuse a different encoding (originally
from [ALR16a]), and apply the same modifications as we did in the proof of
Theorem 6.

Our U-PTA A uses one parameter a, and four clocks i. e., a single non-
parametric clock y and three parametric clocks x1, x2, z. Each state qi of
the two-counter machine is encoded by a location li of A. Each increment
instruction of the two-counter machine is encoded into a U-PTA fragment
depicted in Figure 5.5; the decrement instruction is a modification of the one
in [ALR16a] using the same modifications as the increment gadget, and is
depicted in Figure 5.6.

li

lk

li1

li2 li3

qerror li4 li5 lj

li6 li7

z = 0, x1 < 1

z
=
0,
x1

=
1

x1
=
1

x1
:=

0

x2 ≤ a+ 1

y := 0

x
2
≤
a
+

1
, y
>

0

y
=
0

x
2
:=

0

z ≤ a+ 1

y := 0

z ≤ a+ 1, y > 0

y = 0

z := 0

x
2 ≤

a
+
1

y
:=

0

y = 0

x2 := 0

x2
≤
a
+
1,
y
>
0

x1
=
1

x1
:=

0

Figure 5.6: decrement gadget

Given v, our encoding is such that when in li with w(z) = 0 then w(x1) (resp.
w(x2)) represents the value of the counter c1 (resp. c2) encoded by 1− v(a)c1
(resp. 1−v(a)c2). Each of our locations has exactly one label: ♥ for the locations

already present in [ALR16a] (depicted in yellow in our figures), and ♠ for the

newly introduced locations (depicted in white in our figures).

98

We assume a ∈ [0, 1]. The initial encoding when w(z) = 0 is w(x1) =
1− v(a)c1, w(x2) = 1− v(a)c2, w(y) = 0. Suppose w(x2) ≤ w(x1). From li, we
prove that there is a unique run, going through the upper branch of the gadget,
that reaches lj without violating our property. It is the one that takes each
transition with a u-guard x ≤ a+ 1 at the exact moment w(x) = v(a) + 1:

(li , w)
0−→ (li1 , (1 − v(a)c1, 1 − v(a)c2, 0, 0))

v(a)c2−→ (li2 , (1 − v(a)c1 +

v(a)c2, 0, v(a)c2, v(a)c2))
v(a)−v(a)c2+v(a)c1−→ (li3, (v(a)+1, v(a)−v(a)c2+v(a)c1, v(a)+

v(a)c1, 0)
0−→ (li4 , (0, v(a) − v(a)c2 + v(a)c1, v(a) + v(a)c1, 0)

1−v(a)−v(a)c1−→

(lj , (1− v(a)(c1 + 1), 1− v(a)c2, 0, 1− v(a)(c1 + 1)).

The case were w(x2) ≤ w(x1) is similar, taking the lower branch of the
gadget.

Now, let us consider the runs ρ♥ that take each u-guard at the very last
moment, which is exactly when a clock w(x) = v(a) + 1. (For the same reason
as in the proof of Theorem 6, other runs violate the property anyway.)

• If the counters of the two-counter machine remain bounded then,

– either the two-counter machine halts (by reaching qhalt) and there
exist parameter valuations v (typically v(a) small enough to encode
the required value of the counters during the computation), for which
there is a (unique) run in the constructed U-PTA simulating correctly
the machine, reaching qhalt and staying there forever, so EGAF=0♥
holds for these valuations: hence EGAF=0♥-emptiness is false;

– or the two-counter machine loops forever (and never reaches qhalt)
with bounded values of the counters, and again there exist parameter
valuations v (again small enough to encode the maximal value of
the counters) for which there is an infinite (unique) run in the U-
PTA simulating correctly the machine. As this run is infinite, we
infinitely often visit the decrement and/or the increment gadget(s),
so EGAF=0♥ holds for these valuations: hence EGAF=0♥-emptiness
is again false.

• Conversely, if the counters of the two-counter machine are unbounded,
then for any valuation, all runs either end in qerror, either because they
took an unguarded transition to qerror or because they blocked due to
the guard x ≤ a + 1 —indeed when in li6, we have w(z) = v(a)(c1 + 1)
so if c1 is unbounded, after a sufficient number of steps we cannot pass
the guard z = 1— and again reached qerror. Hence there is no parameter
valuation for which EGAF=0♥ holds. Then EGAF=0♥-emptiness is true.

Using the same reasoning as in the proof of Theorem 6 and [ALR16a], we
conclude that EGAF=0♥-emptiness is true iff the values of the counters of the
two-counter machine are unbounded.

99

5.4 Decidability of flat-TCTL for L/U-PTAs with-
out invariants

In this section, we prove that the EG-emptiness and universality problems are
decidable for L/U-PTAs without invariants and with integer-valued parameters.
Recall that for L/U-PTAs in their classical form with invariants (even over integer-
valued parameters), these same problems are undecidable [AL17]. L/U-PTAs
enjoy a well-known monotonicity property recalled in the following lemma (that
corresponds to a reformulation of [HRSV02, Prop 4.2]), stating that increasing
upper-bound parameters or decreasing lower-bound parameters can only add
behaviors. As our definition of L/U-PTAs does not involve invariants, our model
is a subclass of L/U-PTAs as defined in [HRSV02, BL09]. Therefore, it holds
for our definition of L/U-PTAs.

Lemma 21 (monotonicity). Let A be an L/U-PTA without invariant and v
be a parameter valuation. Let v′ be a valuation such that for each upper-bound
parameter p+, v′(p+) ≥ v(p+) and for each lower-bound parameter p−, v′(p−) ≤
v(p−). Then any run of v(A) is a run of v′(A).

We will see that EG-emptiness can be reduced to the following two problems.
The first one is cycle-existence [AL17]: given a TA v(A), is there at least one run
of v(A) with an infinite number of discrete transitions? Before introducing the
second problem, we need to have a closer look at deadlocks: recall that a state
is deadlocked when no discrete transition can be taken, even after elapsing some
time. As we do not have invariants, it will be either a state with no outgoing
edge, or a state in which each outgoing transition contains at least one constraint
on any clock x of the form x / k, where k is a constant, or x / p+, where p+ is a
parameter. Indeed, for any parameter valuation, it suffices to wait enough time
until all such guards are disabled—and the state becomes deadlocked. Note that
with invariants, like in the L/U-PTAs of [HRSV02], this would not be sufficient:
a state containing an invariant x/k and a transition containing a constraint x/k
is not a deadlocked state, as the transition is forced to be taken. Formally,
given an L/U-PTA1 A = (Σ, L,L, l0,X,P, ζ), we define LD(A) := {l ∈ L | for
all edges (l, g, a, U, l′) ∈ ζ, g contains at least one constraint on a clock x of the
form x / k, where k ∈ N, or x / p+, where p+ ∈ P}.2

Now, the second problem we need to distinguish is deadlock-existence: given
a TA v(A), is there at least one run of v(A) that is deadlocked, i. e., has no
discrete successor (possibly after some delay)? As mentioned above, unlike the
L/U-PTAs of [HRSV02], given an L/U-PTA A, detecting deadlocks is equivalent
in our L/U-PTAs without invariants to the reachability problem of a given
location of LD(A). Let v0/∞ be the parameter valuation s.t. for each lower-
bound parameter p−, v0/∞(p−) = 0 and for each upper-bound parameter p+,
v0/∞(p+) =∞.

Recall that EG G holds if either there is an infinite run staying in G, or there
is a finite deadlocked run staying in G.

1Throughout this section, we do not use the labeling function L.
2Observe that this definition also includes the locations with syntactically no outgoing edge

at all.

100

Lemma 22. Let A be an L/U-PTA without invariant. There is a dead-
lock in v(A) for some parameter valuation v iff there is l ∈ LD(A) reachable
in v0/∞(A).

Proof. ⇒ Suppose v(A) is deadlocked. There is a run in v(A) ending in a
state (l, w) with no possible outgoing transition. That means for all edges
(l, g, a, U, l′) ∈ ζ, guard v(g) is not satisfied by w + d, for all d ≥ 0. In
particular, let M be the maximal constant appearing in the guards of
v0/∞(A) plus one, then g is not satisfied for w +M . Yet, for that clock
valuation, for sure, all simple constraints of the form k / x are satisfied, so
this means that g must contain at least one constraint on a clock x of the
form x / k, where k ∈ N and k < w(x) +M , or x / p+, where p+ ∈ P and
v(p+) < w(x) +M . Therefore, l ∈ LD(A).

Moreover as constraints in v(A) are stronger than those in v0/∞(A) (i. e.,
for each lower-bound parameter p−, v0/∞(p−) ≤ v(p−) and for each upper-
bound parameter p+, v(p+) ≤ v0/∞(p+)), from Lemma 21 l is reachable
along a run of v0/∞(A).

⇐ Conversely, let l ∈ LD(A) and suppose there is a run of v0/∞(A) reach-
ing (l, w), for some clock valuation w. Let v be the parameter valuation,
defined as in the proof of [HRSV02, Prop 4.4], such that (l, w) is also
reachable in v(A). That valuation assigns a finite value to upper bound
parameters that we denote by µ.

Let e = (l, g, a, U, l′) ∈ ζ. For each constraint of the form x / k with k ∈ N
in g, define d1 = max(0,maxx(k − w(x))) + 1. Then, for all clocks x
and for all d ≥ d1, w(x) + d / k is false. Similarly, for each constraint
of the form x / p+ with p+ an upper-bound parameter in g, define d2 =
max(0,maxx(µ − w(x))) + 1. Then, for all clocks x and for all d ≥ d2,
w(x) + d / v(p+) is false. Let d0 = max(d1, d2) then, by construction
(l, w + d0) is a deadlocked state in v(A).

Consider now a TA without invariants A, and a subset G of its locations.
We build a TA G+(A) as follows: first remove all locations not in G and remove
all transitions to and from those removed locations. Second, add self-loops to all
locations in LD(A), with a guard that is true, and no reset.

Lemma 23. EG(G) holds if and only if there exists an infinite run in G+(A).

Proof. ⇒ Suppose EG(G) holds. Then there is a maximal path in A that
stays in G. If that path is infinite then, by construction it is still possible
in G+(A). Otherwise, it is finite and therefore it is a deadlock. From
Lemma 22, this means that some location in G ∩ LD(A) is reachable in
A, by always staying in G. Consequently that location is still reachable in
G+(A) and since it belongs to LD(A), it has a self-loop in G+(A), which
implies that there is an infinite run there.

⇐ In the other direction, suppose that there is an infinite run in G+(A).
Either the corresponding infinite path never uses any of the added self-
loops and therefore it is possible as is in A, which implies EG(G), or it
goes through LD(A) at least once. The latter means that some location in

101

LD(A) is reachable in A by staying in G, and by Lemma 22, this implies
that there exists a finite maximal path in A, and finally that we have
EG(G) in A.

Corollary 7. The EG-emptiness and EG-universality problems are PSPACE-
complete for integer-valued L/U-PTAs without invariants.

Proof. PSPACE-hardness comes from the fact that an L/U-PTA that does not
use parameters in guards is a TA and EG is PSPACE-hard for TAs [AD94].

Let A be an L/U-PTA and G a subset of its locations. Remark that the
construction of Lemma 23 is independant of the constants in the guards, and
hence can be done in the same way for a PTA, giving another PTA G+(A) such
that, for all parameter valuations v, G+(v(A)) = v(G+(A)). By Lemma 23,
EG-emptiness (resp. EG-universality) then reduces to the emptiness (resp. uni-
versality) of the set of parameter valuations v such that v(G+(A)) has an infinite
accepting path. We conclude by recalling that the latter problem can be solved
in PSPACE for both emptiness and universality [BL09].

This result is important as it is the first non-trivial subclass of PTAs for
which EG-universality (equivalent by negation to AF-emptiness) is decidable.

We already had the same complexity for EF-emptiness and EF-universality [HRSV02],
and by negation we can get the other flat formulas of TCTL, both for universality
and emptiness (e. g., AF-emptiness is “not EG-universality”). It is also easy to
see that all those results would hold for flat formulas using the “until” operator.
Therefore we have:

Theorem 8. Flat-TCTL-emptiness and flat-TCTL-universality are PSPACE-
complete for integer-valued L/U-PTAs without invariant.

Remark 3. These results come without Flat-TCTL-synthesis. Indeed, suppose
we can compute the set of parameters s.t. a Flat-TCTL formula is satisfied by an
integer-valued L/U-PTAs without invariant, say EF, and check for the emptiness
of its intersection with a set of equality constraints. Consider an integer-valued
PTA A without invariants. For each parameter p of A that is used both as
an upper-bound and as a lower-bound, syntactically replace its occurrences as
an upper-bound (resp. lower-bound) by a new parameter p+ (resp. p−). We
obtain an integer-valued L/U-PTAs without invariant A′. By hypothesis, let S
be the solution set of parameters valuations to the EF-synthesis problem for A′.
Let S′ be the set of equality constraints p+ = p−. Therefore we can decide
whether S ∩ S′ = ∅ and the EF-emptiness problem is decidable for integer-valued
PTAs without invariants, in contradiction with the results of [BBLS15].

5.5 Conclusion and perspectives

In this chapter, we solved the open problem of the nested TCTL-emptiness for
U-PTAs, that implies the undecidability of the whole TCTL-emptiness problem
for this subclass of L/U-PTAs. Note that our proof holds even for integer-
valued parameters, and even without invariants. This is a reminder that the
border between undecidability and decidability problems for L/U-PTAs and its

102

subclasses is quite thin. We used a reduction from a U-PTA to a two-counter
machine using several gadgets to prove that a precise TCTL-emptiness problem
is undecidable. Unlike PTAs and bounded PTAs, U-PTAs and bounded U-
PTAs are incomparable, hence we had to verify whether the same reasoning
was applicable when the parameter domain is bounded. For this purpose, we
used another construction to reduce to a bounded U-PTA from a two-counter
machine to prove that the same TCTL-emptiness problem is also undecidable.

Moreover, we proved that EG-emptiness and universality are PSPACE-
complete for (unbounded) integer-valued L/U-PTAs without invariants. This
result is particularly interesting as it was undecidable with invariants [AL17].
Using existing results, we have that flat TCTL-emptiness and universality are
decidable for this class, and therefore for integer-valued U-PTAs without invari-
ants, which contrasts with our undecidability result and shows that we are there
again at the frontier of decidability.

Future work This work opens new perspectives: where exactly the unde-
cidability starts (in particular whether EG and AF are decidable for U-PTAs
with invariants or real-valued parameters, which remains open, see Table 5.1),
whether our proofs in Sections 5.2 and 5.3 can be extended over bounded time,
and whether the same results hold for L-PTAs (lower-bound PTAs).

Also, extending our decidability result in Theorem 8 while keeping decidability
will be an interesting challenge.

Chapters 3 to 5 mainly focused on the theoretical study of formalisms related
to TAs and PTAs. After studying PTAs themselves, in Chapter 6 we will
find how an extension of PTAs can be successfully applied to the domain of
security, especially in modeling attack and fault scenarios of organizations or
infrastructures.

103

Chapter 6

Parametric analyses of
attack-fault trees

This work is the result of a visit at Universiteit Twente, The Netherlands, in the
Formal Methods and Tool team. This visit was partially supported by the PHC
Van Gogh project PAMPAS.

6.1 Introduction

In the past few years, the range of security breaches in the security of or-
ganizations has become larger and larger. The process of unifying them by
determining relations and consequences between separated events has become
more difficult: how to relate the presence of solid oxygen in a helium tank
in SpaceX rocket Falcon 9 to its the explosion during firing tests? What is
the cost for the attacker and the damages caused to SpaceX manufacturing
plants? One of the tools available to help structure risk assessments and security
analyses is attack trees, recommended, e. g., by NATO Research and Technology
Organisation (RTO) [NAT08] and OWASP (Open Web Application Security
Project) [MGK+13]. Attack trees [SSSW98] were formalized in [KMRS10] as
a popular and convenient formalism for security analysis (see [KPS14] for a
survey) and are inspired by fault trees [FMC09, RS15] a well-known formalism
used in safety engineering. Bottom-up computation for a single parameter (e. g.,
cost, probability or time of an attack), can be performed directly on attack
trees [BKMS12]. Attack trees and fault trees are quite similar but differ on
their gates and/or goals [BKMS12, KMRS14]. Both are constructed with leaves
that model component and attack step failures or successes that propagate
through the system via gates. While fault trees focus on safety properties, attack
trees considerate skills, resources and risk appetite possessed by an attacker
performing actions. Attack-fault trees (AFTs) [KS17] combine safety properties
from fault trees and security conditions from attack trees; therefore gates of
both fault trees and attack trees are used in this formalism.

Quantitative analysis of AFTs with multiple quantitative annotations on
AFTs like cost, time, failure probabilities—which can functionally be dependent
on each other—evaluates risks and helps to determine the most risky scenarios
and therefore to select the most effective counter-measures.

104

6.1.1 Contribution

In this chapter, we study a more abstract version of the security problem, and
we propose an approach to synthesize times and costs necessary to individual
actions in order to perform a successful attack or individual failures causing
the failure of the entire system. The global attack time and cost can then be
expressed as a combination of the parametric unit costs. To this end, we propose
a formalization of attack-fault trees using an ad-hoc extension of parametric
timed automata called parametric weighted timed automata (PWTAs). PWTAs
can be seen as a generalization of parametric timed automata (PTAs) [AHV93]
and weighted/priced automata [BFH+01, ALP04] with only costs on transitions.

We implement our framework within the tool ATTop presented in [KSR+18],
allowing to define AFTs in the Galileo format, and provide an automated trans-
lation into the IMITATOR input format [AFKS12].

As a proof of concept, we apply our framework to an attack tree of [KS17]
and an original attack-fault tree. With the help of the parametric timed model
checker IMITATOR, we are able to synthesize constraints in several dimensions;
further we discuss induced possible attack and fault scenarios.

This enlarges the scope of quantitative analysis for AFTs by parameterizing
multiple annotations on the AFT at once such as time, cost and damages and
then compute for instance the optimal combination of parameter values for the
attack to fail quickly while keeping damages to the system low.

6.1.2 Related work

Attack tree analysis has been studied through lattice theory [KMRS10], timed
automata [KRS15, KS17, KSR+18], I/O-IMCs [KGS15, AGKS15], Bayesian net-
works [GIM15], Petri nets [DMCR06], stochastic games [ANP16, HKKS16], etc.
UPPAAL has been used for model transformations in [SYR+17] and in [HV06]
UML sequence diagrams are manually transformed into timed automata models.
[KS17] especially tackles the problem of multiple complex risk metrics and at-
tacker profiles, in a probabilistic and timed formalism that can be computed and
analyzed using stochastical model-checking [RS14] and Uppaal SMC [DLL+15].
AFTs are modeled in the Galileo format and translated with the tool AT-
Top [KSR+18] into stochastic timed automata [DLL+11].

However, synthesis of multidimensional parameters (time, cost for the at-
tacker, damages for the organization...) at once for fully timed systems is not
treated in the previously cited works, and these works require testing one by one
a set of possible attribute values for an AFT.

Besides, attack-defense trees are one of the most well-studied extensions of
attack trees and new analysis methods are still developed [KMRS14, KW18].

In a completely different area, asynchronous hardware circuits’ gates were
translated into (parametric) timed automata in [CEFX09]; our translation of
AFTs gates into PWTAs synchronized using parallel composition shares some
similarities with that approach.

6.1.3 Outline

We recall attack-fault trees in Section 6.2. We then introduce the formalism of
parametric weighted timed automata in Section 6.3. Our translation from AFTs

105

to PWTAs is given in Section 6.4. Then, we describe our implementation in
Section 6.5 and report on experiments in Section 6.6. We conclude by discussing
future works.

6.2 Attack-fault Trees

Attack-fault trees (AFTs) model how a safety or security goal can be refined into
smaller sub-goals, represented as gates, until no further refinement is possible,
represented as leaves. The leaves of the tree model are either basic component
failures (BCF) or basic attack steps (BAS). Since subtrees can be shared in the
literature (see e. g., [KS17]), AFTs are actually directed acyclic graphs, rather
than trees. In this work, we consider only trees without shared gates or leaves.
Safety is compromised with the failure of a BCF, i. e., without any outside spark
action. Security is compromised when an outside attacker causes the activation
of a BAS. Following the terminology of [KS17], in this work we write that a gate
or a leaf is disrupted if the output is true i. e., it succeeds, and fails otherwise.
A success event (disruption) models the fact that a component (gate or leaf) is
compromised i. e., the attack is successful or the component fails. In contrast, a
fail event models the robustness of the component against an attacker through a
BAS, or a BCF.

6.2.1 AFT leaves

AFT leaves are equipped with an execution time and a rich cost structure
that includes the cost incurred by an attacker and the damage inflicted on the
organization. In contrast to [RS15, KS17] where BCF and BAS are equipped
with probability distributions, we consider both BCF and BAS as parametric
time-dependent events. This allows us to compute a range of cost values, damages
values and time intervals at once in order to perform operations such as optimum
time values for a counter-measure while keeping damage to the organization low,
and cost for the attacker high.

6.2.2 AFT gates

In order to model complex scenarios with multiple leaves, BCF and BAS have
to be composed. For this purpose, logical gates are used that output either the
propagation of a disruption, or not. Gates take as an input either leaves or
outputs from gates in their subtrees. Logical gates used in AFTs are taken from
both dynamic fault trees and attack trees: AND, PAND, SAND, OR, SOR, FDEP,
SPARE, VOT(k/n), depicted in Figure 6.1. These gates are the translatable ones
in ATTop [KSR+18] from the Galileo format. We also added the XOR gate to
improve our modeling capabilities.

AND gate propagates a disruption (i. e.,, it synchronizes a success event [KS17])
if all of its children are disrupted, regardless of the order of disruption. Children
are activated initially by the AND. Children of a SAND gate are activated sequen-
tially from left to right. After the success (disruption) of the leftmost child, the
second left most child is activated, and so on until the disruption of rightmost
child. If all children are disrupted, the SAND gate is disrupted. However, if
any child fails (to be disrupted), the SAND gate directly fails. SAND gate is a

106

k/n

Figure 6.1: From left to right: AND, SAND, PAND, OR, SOR, XOR, FDEP,
SPARE, VOT(k/n) gates

specific gate of attack trees. Compared with SAND gate, all children of a PAND
gate are activated initially when the PAND gate is activated. The rest of the
execution is similar to a SAND gate, and propagates a disruption if all children
are disrupted from left to right (which in contrast is not mandatory for an AND
gate), otherwise the PAND gate fails.

OR gate propagates a disruption if at least one of its children is disrupted.
Children are activated initially by the OR gate. Similarly to a SAND gate,
children of a SOR gate are activated sequentially after the termination of the
previous one and from left to right. It propagates a disruption when one of its
children is disrupted, otherwise if all children fail the SOR gate fails. XOR gate
propagates a disruption if one of its children is disrupted and the other one fails.

FDEP (functional dependency) gate consists of a trigger event and several
dependent events, and is a specific gate of fault trees. When the trigger event
occurs, all its dependent BCF events are disrupted (i. e., the failure of the power
supply automatically deactivate the alarm and security cameras, therefore the
BCFs are successful).

SPARE gate is similar to SAND, but is a specific gate for fault events while
SAND gate is used for attack events. SPARE gate consists of one primary BCF
and several secondary BCF which are activated sequentially. If the primary BCF
is disrupted (i. e., the component fails), a secondary becomes primary. If no
BCFs are left (they all are disrupted), SPARE gate propagates a disruption.

VOT(k/n) gate is similar to OR gate and consists of n ∈ N children initially
activated. VOT(k/n) gate is disrupted when k of its n children are disrupted.

6.3 Parametric weighted timed automata

First we introduce a slighlty different notation than for PTAs that will be used
in this chapter.

Given U ⊆ X, we define the reset of a valuation w, denoted by [w]U , as
follows: [w]U (x) = 0 if x ∈ U , and [w]U (x) = w(x) otherwise.

We assume a set TP = {p1, . . . , pJ} of timing parameters. A timing parameter
valuation tv is a function tv : TP→ Q+. A guard g is a constraint over X ∪ TP
defined by a conjunction of inequalities of the form x ./ d, or x ./ p with x ∈ X,
d ∈ N and p ∈ TP. Given g, we write w |= tv(g) if the expression obtained by
replacing each x with w(x) and each p with tv(p) in g evaluates to true.

We assume a set W = {w1, . . . , wM} of weights. A weight valuation µ is a
function µ : W → Q. We write ~0W for the weight valuation assigning 0 to all
weights. We assume a set WP = {q1, . . . , qN} of weight parameters , i. e., unknown
weight constants. A weight parameter valuation wv is a function wv : WP→ Q.1

1Observe that, in contrast to timing parameters that should be non-negative (which is

107

compromise IoT device

exploit software vulnerability in IoT device

cost = 60 US$, duration = 1 hour

access home network run malicious script

cost = 50 US$
duration = 0.5 hour

gain access to private networksget credentials

cost = 40 US$,
duration = 10 hours

access LAN access WLAN

find LAN access port

cost = 20 US$,
duration = 1 hour

spoof MAC address

cost = 30 US$,
duration = 0.5 hour

find WLAN

cost = 2 US$,
duration = 5 hours

break WPA keys

cost = 80 US$,
duration = 2 hours

0–20–5

0–10

10–11

11–11.5

Figure 6.2: Attack Tree modeling the compromise of an IoT device
from [SYR+17]. Leaves are equipped with the cost and time required to execute
the corresponding step. The parts of the tree attacked in a successful attack are
indicated by a darker color, with start and end times for the steps in this attack
denoted in red.

A linear arithmetic expression over W ∪WP is
∑
i aiwi +

∑
j bjqj + c, where

wi ∈W, qj ∈WP and ai, bj , c ∈ Q. Let LA(W∪WP) denote the set of arithmetic
expressions over W and WP. A parametric weight update is a partial function
α : W 9 LA(W ∪WP). That is, we can assign a weight to an arithmetic
expression of parametric weights and other weight values, and rational constants.
Given a weight valuation µ, a parametric weight update α and a weight parameter
valuation wv, we need an evaluation function evalwv(α, µ) returning a weight
valuation, and defined as follows:

evalwv(α, µ)(w) =

{
µ(w) if α(w) is undefined

µ(wv(α(w))) otherwise

where µ(wv(α(w))) denotes the replacement within the linear arithmetic ex-
pression α(w) of all occurrences of a weight parameter qi by wv(qi), and of a
weight variable wj with its current value µ(wj). Observe that this replacement
gives a rational constant, therefore evalwv(α, µ) is indeed a weight valuation
W → Q. That is, evalwv(α, µ) computes the new (non-parametric) weight
valuation obtained after applying to µ the partial function α valuated with wv.

We extend further PTA with (discrete) rational-valued weight parameters,
giving birth to parametric weighted timed automata (PWTA).

Definition 19. A parametric weighted timed automaton (PWTA) A is a tuple
A = (Σ, L, l0, F,X,TP,W,WP, I, ζ), where:

1. Σ is a finite set of synchronization actions,

2. L is a finite set of locations,

usual for parametric timed automata), our weight parameters may be negative.

108

3. l0 ∈ L is the initial location,

4. F ⊆ L is the set of accepting locations,

5. X is a finite set of clocks,

6. TP is a finite set of timing parameters,

7. W is a finite set of weights,

8. WP is a finite set of weight parameters,

9. I is the invariant, assigning to every l ∈ L a guard I(l),

10. ζ is a finite set of edges e = (l, g, a, U, α, l′) where l, l′ ∈ L are the source
and target locations, g is a guard, a ∈ Σ, U ⊆ X is a set of clocks to be
reset, and α : W 9 LA(W ∪WP) is a parametric weight update.

Given a timing parameter valuation tv and a weight parameter valuation wv,
we denote by tv|wv(A) the non-parametric structure where all occurrences of a
timing parameter pi have been replaced by tv(pi), and all occurrences of a weight
parameter qj have been replaced by wv(qj). The resulting structure can be seen
as an extension of a parametric weighted/priced timed automaton [BFH+01,
ALP04] with only rational weights on edges.2 However, our structure goes
beyond a simple parametric extensions of weighted/priced timed automata, for
two reasons:

1. we allow multiple weights;

2. we allow to not only increment weight values over a path, but also perform
more complex operations on that weight, notably incrementing it with
another weight value, which is clearly not possible in [BFH+01, ALP04].

Note that, if we restrict our parametric weight update function to expressions
of the form α(wi) = wi + z, where z is either a weight parameter or a rational
constant, then our formalism is exactly the parametric extension of (the discrete
“switch” weight part of) [BFH+01, ALP04].3

In addition, our formalism shares some similarities with the statically para-
metric timed automata of [Wan00], where timed automata are extended with
parameters that can only be used in guards, but not compared to clocks. In
contrast, our weight parameters can only be used in updates, and not in guards;
in addition, we also feature the timing parameters of [AHV93] that can be
compared to clocks.

Example 5. In the PWTA in Figure 6.3, we have the following elements:
L = {l1, l2, l3}, l0 = l1 (also the unique element of F), X = {x, y}, and Σ =
{press,prepare, serve}, with the set TP = {p1, p2} and weights W = {w}, WP =
{q}. There are four edges:

2In [ALP04] cost is defined as the sum of each discrete cost on transitions (switch cost)
plus the time spent in a location multiplied by an integer rate (duration cost), resulting in a
rational value. Here, we omit the duration costs.

3Technically, as weighted/priced timed automata use integer constants, a rescaling of
the constants is necessary: by multiplying all constants in tv|wv(A) by the least common
multiple of their denominators, we obtain an equivalent (integer-valued) weighted/priced timed
automata.

109

l1 l2 l3
press
x := 0
y := 0
w := 2e

prepare
y = p1

press
y ≤ 5 ∧ x > 1

x := 0
w := w + q

serve
y = p2

Figure 6.3: A PWTA modeling a coffee machine

• e1 = 〈l1, g, a, U, l2〉 where U sets both x, y to 0, α is w = 2e,

• e2 = 〈l2, g, a, U, l2〉 where g is y ≤ 5 ∧ x > 1 and U sets x to 0, α is
w := w + q,

• e3 = 〈l2, g, a, U, l3〉 where g is y = p1 and

• e4 = 〈l3, g, a, U, l1〉 where g is y = p2.

Let us now define the concrete semantics of PWTA as the union over all
timing parameter and weight parameter valuations.

Definition 20 (Semantics of a valuated PWTA). Given a PWTA A = (Σ, L, l0, F,X,TP,W,WP, I, ζ),
a timing parameter valuation tv, and a weight parameter valuation wv, the se-
mantics of tv|wv(A) is given by the TTS (S, s0,→), with

• S = {(l, w, µ) ∈ L× RH+ ×QM | w |= tv(I(l))},

• s0 = (l0,~0,~0W),

• → consists of the discrete and (continuous) delay transition relations:

1. discrete transitions: (l, w, µ)
e7→ (l′, w′, µ′), if (l, w, µ), (l′, w′, µ′) ∈ S,

and there exists e = (l, g, a, U, α, l′) ∈ ζ, such that w |= tv(g), w′ =
[w]U , and µ′ = evalwv(α, µ)(w);

2. delay transitions: (l, w, µ)
d7→ (l, w + d, µ), with d ∈ R+, if ∀d′ ∈

[0, d], (l, w + d′, µ) ∈ S.

That is, a state is a triple made of the current location, the current (non-
parametric) clock valuation, and the current (non-parametric) weight valuation.
The clock valuations evolve naturally as in timed automata, while the current
weight evolves according to the weight update function.

Moreover we write (l, w, µ)
(e,d)−→ (l′, w′, µ′) for a combination of a delay and

discrete transition if ∃w′′ : (l, w, µ)
d7→ (l, w′′, µ)

e7→ (l′, w′, µ′). Given tv|wv(A)
with concrete semantics (S, s0,→), we refer to the states of S as the concrete states
of tv|wv(A). A run of tv|wv(A) is an alternating sequence of concrete states of
tv|wv(A) and pairs of edges and delays starting from the initial state s0 of the
form s0, (e0, d0), s1, · · · with i = 0, 1, . . . , ei ∈ ζ, di ∈ R+ and (si, ei, si+1) ∈ →.

110

Example 6. A concrete execution of the PWTA tv|wv(A) of Example 5 with w =
2e, wv(q) = 0.5e, tv(p1) = 5 and tv(p2) = 8 is

(l1, (0, 0), (0))
(press,2)−→ (l2, (0, 0), (2))

(press,1.5)−→ (l2, (0, 1.5), (2.5))
(press,1)−→ (l2, (0, 2.5), (3))

(prepare,2.5)−→
(l3, (2.5, 5), (3))

(serve,3)−→ (l1, (5.5, 8), (2.5)).
Note that no coffee can be served if tv(p1) = 8 and tv(p2) = 5.

Remark 4. Despite the name of weights (justified by our context of measuring
costs and damages), our parametric weights are in fact sufficiently expressive to
encode parametric (rational-valued) data.

6.4 Translation of AFTs to PTAs

6.4.1 Overview of the translation

We will model an attack-fault tree using a network of PWTAs that will synchro-
nize along actions (using the usual composition semantics). Each gate and each
leaf (i. e., BAS or BCF) will be modeled as a PWTA. Leaves PWTA have a
duration and a weight, while gates PWTA store the weight value of their children
to forward it to their parents. Therefore, each gate PWTA maintains its own
weight, and its value will be added to that of their parents in case of success
(thanks to the parametric weight update).

All gates and leaves PWTAs initially synchronize their start action—referred
as activation in this work—, and end with either a success or fail synchronization
action. After gates synchronize their start action, they synchronize the start
action of their children.

Intuitively, the process is top-bottom-top: the top level gate PWTA activates
its children, which themselves activate their children (if any), and so on until
the leaves PWTAs at the bottom of the attack-falt tree. Once a leaf PWTA
terminates, it synchronizes either its success or fail action. In case of success,
the leaf PWTA forwards its weight value to its parent, where this value is stored.
When its parent gate PWTA terminates, the gate PWTA synchronizes either a
success or a fail action. In case of success, the gate PWTA forwards its weight
value to its parent, and so on until the top-level gate PWTA terminates.

If the top-level PWTA terminates in its success location, the attack is
successful. We apply the reachability synthesis algorithm of PTAs on the success
location in the top-level PWTA, that is, we synthesize all valuations for which
this location is reachable: this gives us the success conditions of an attack. The
set of constraints on time and weight (such as cost for the attacker, damages for
the organization) that allowed this attack to be successful are output by this
analysis.

As a running example, we consider the attack tree in Figure 6.2 taken
from [SYR+17].

6.4.2 Translation of leaves

A BAS/BCF is modeled as a PWTA with clocks and weights (see Figure 6.4).
Note that in real life while a BAS needs to success so the attack is possibly
successful, a BCF needs to fail in order to propagate a disruption (as in basic

111

l1 l2

x ≤ 5

l3

l4

start

x := 0

success
x ≥ 5

wparent := wparent + wleaf

fail
x ≥ 5

Figure 6.4: PWTA translation of leaf that can reach the success location in
exactly 5 units of time, and of weight wleaf

component failure). However we consider in our models that both BAS and
BCF need to reach the success location.

Figure 6.5: BAS translation
of find WLAN

There is two paths in a BAS/BCF PWTA,
one that reaches the success location and one
that reaches the fail location. In case of suc-
cess, its weight is forwarded to and stored in
its parent gate.

Example 7. The translation of leaf find WLAN

of Figure 6.2 is given in Figure 6.5. To ex-
press the leaf find WLAN we use four locations,
one clock x4. The first step is to activate the
basic attack step using the synchronization ac-
tion launchFindWLAN. Once activated, and
at most five units of time after (modeled by
the invariant 5 ≥ x4 and the guard x4 ≥ 5) it
can either success with the action successFind-
WLAN or fail with the action failFindWLAN.
If the success state is reached, the weight of its
parent gate is increased by its own weight 10.

6.4.3 Translation of gates

Concrete translations of SAND, AND, OR gates are given in Table 6.1 (yellow
locations denote urgency: time cannot elapse). We describe them and give
examples in the following. Other gates are similar.

AND recall that an AND gate is disrupted if all of its children are disrupted. It
activates all of its children then waits for their disruptions regardless of the order
of the successes. At any moment if one fails, the AND gate fails. If the success
action is synchronized, its parent weight wparent is updated: the weight wAND

carried by the AND gate is added to wparent.

Example 8. We give in Figure 6.6b the PWTA corresponding to the AND
gate access home network of Figure 6.2. When all children are activated in
the PWTA of Figure 6.6b, there are four paths leading to the fail state, while
only two (success of the two children in any order) leading to the success state.
startAND3 launches the AND gate access home network. Both children, the
BAS get credential and the OR gate gain access to private networks are

112

AND gate

A B

l1 l2 l3 l4 l7

l5

lf

l8

l6 ls
startAND startA startB

successA successB

successAND
wparent += wANDsuccessB successA

failA
failB

failB

failA

failAND

SAND gate

BA C

l1 l2 l3 l4 l5 l6 l7 l8 ls

l9 lf

startSAND startA

successA

failA

startB

successB

failB

startC

successC

failC

successSAND
wparent += wSAND

failSAND

OR gate

A B

l1 l2 l3 l4 l7

l5

ls

l8

l6 lf
startOR startA startB

failA failB

failOR

failB failA

successA
successB

successB

successA

successOR

wparent += wOR

Table 6.1: Translation rules of AND, SAND and OR gates to PWTA

activated with the synchronization of the actions launchGetCred and startOR.
Unlike the SAND gate, AND gate waits for any of its child to synchronize a success
action. If successGetCred is synchronized, it then will wait for successOR to
go to the location success. If failGetCred is synchronized, the automaton will
go to the location failing. When waiting for the action successOR, if failOR
is synchronized the automaton will also go to the location failing. The other
possibility (successOR then successGetCred) is similar. When in location failing
it synchronizes the action failAND3, while if going to the location success it will
synchronize the action successAND3. If the success state is reached, the weight
of its parent gate is increased by its own weight.

SAND recall that a SAND gate is disrupted if all its children from left to right
are disrupted sequentially from left to right. It activates its leftmost child then
waits for its success or failure, then activates its second leftmost child and so on.
If the rightmost child succeeds, the SAND gate is disrupted. If one child fails, the
SAND gate fails. For a SAND gate modeled as a PWTA with n children, there
is only one path leading to the success state, while there are n paths leading to
the fail state (one from each child). If the success action is synchronized, its
parent weight wparent is updated: the weight wSAND carried by the SAND gate
is added to wparent.

Example 9. The top event of the attack tree in Figure 6.2 is a SAND gate. We
give the PWTA corresponding to this SAND in Figure 6.6a. It synchronizes the
action startSAND. Then it activates its leftmost child access home network

with the action startAND3, which is an AND gate. If the action successAND3

113

is synchronized, its second leftmost child is activated with the action launchEx-
ploit. If the action successExploit is synchronized, its third and last child is
activated with the action launchRunMScript. If the action successRunMScript
is synchronized, the action successSAND is synchronized. At any moment, if
one of its children fail and an action failAND3, failExploit or failRunMscript
is synchronized the automaton goes to the location failing where the action fail-
SAND is synchronized. If the success state is reached, the weight of its parent
gate is increased by its own weight.

(a) Translation of the top-level SAND gate

(b) Translation of the AND gate
access home network

Figure 6.6: SAND and AND gate

114

OR OR gate initially activates all of its children. OR gate is disrupted if at
least one of its children is disrupted, and fails if all of its children fail. Therefore
in the case of two children, one child can fail and the OR gate still propagates a
disruption if the other one succeeds right after. However, if one child succeeds
no need to wait for the second one and the success action of the OR gate is
synchronized.

Figure 6.7: Translation of the OR gate
gain access to private networks

If the success action is synchro-
nized, its parent weight wparent is
updated: the weight wOR carried by
the OR gate is added to wparent.

Example 10. The PWTA translat-
ing the only OR of Figure 6.2 (given
in Figure 6.7) activates all of its chil-
dren, then waits for one to succeed,
regardless of the order. Afterwards,
whatever happens leads to the suc-
cess state. If one child fails, then
the other has to succeed, otherwise the
OR fails. Therefore there is six possi-
ble paths to the success state, while
there is two paths to the fail state
(failure of both children in any or-
der). startOR launches the OR gate
gain access to private networks

which activates its two children us-
ing the actions startAND1 and star-
tAND2 which activates the AND
access LAN and AND access WLAN.
Only one action successAND1 or suc-
cessAN2 is needed to be synchronized
so the automaton goes to the location
success regardless of which action is
synchronized afterwards. Then it syn-
chronizes the action successOR. If at
first the action failAND1 (resp. fai-
lAND2) is synchronized, then succes-
sAND2 (resp. successAND1) has to
be synchronized afterwards in order to
reach the location success. Otherwise,
if failAND2 (resp. failAND1) is syn-

chronized, the automaton will go to the location failing and then synchronize the
action failOR. If the success state is reached, the weight of its parent gate is
increased by its own weight.

6.4.4 Top-level automaton

Finally, we need to create an automaton that will activate the first top-event
gate of the AFT. We call it rootTA. This PWTA is the one that starts the chain
reaction by activating the top-event PWTA gate, which at its turn will activate

115

its own children and so on. It waits for the success or fail action of this PWTA
gate. In case of success, its weight has been updated with the total weight value
of the execution forwarded by the top-event gate PWTA.

l1 l2

l3

l5

l4

l6

startSAND

successSAND
successRoot

total cost = current cost root
abs time = total time

failSAND

failROOT

Figure 6.8: The rootTA

This bottom-to-top addition stores in the weight current cost root the total
weight of the attack. The rootTA also stores the total time spent since the first
activation of the top-event PWTA (using an extra clock and parameter).

Example 11. We give in Figure 6.8 the top-level PWTA for the AFT in
Figure 6.2. It is very similar to a leaf PWTA. It activates the top-level
gate PWTA, then waits for its success or fail action. If the success action is
synchronized, its weight has been updated to the total weight value of the execution
and is checked against an additional parameter total cost so IMITATOR outputs
this current cost root value. Likewise, the clock abs time which is never reset
since the activation of rootTA is checked against a timing parameter total time.
Therefore IMITATOR outputs the total time of execution.

6.5 Implementation of the translation

6.5.1 IMITATOR

IMITATOR [AFKS12] is a parametric model checker taking as input an exten-
sion of networks parametric timed automata extended with synchronization,
stopwatches and discrete variables. IMITATOR supports global (shared) discrete
rational-valued variables, that can be either concrete (in which case they are
syntactic sugar for an unbounded number of locations), or symbolic, in which
case they can be updated to or compared with parameters. While IMITATOR
technically considers a single type of parameters (where symbolic variables can
be compared or even updated to timing parameters), our weight parameters are
never compared to timing parameters, and this setting can be considered as a
subclass of the IMITATOR expressiveness.

IMITATOR implements several synthesis algorithms, notably reachability syn-
thesis (EFsynth), that attempts to synthesize all parameter valuations for which a
given location is reachable—which is the algorithm we use here. IMITATOR relies
on the symbolic semantics of parametric timed automata (see e. g., [JLR15]),
where symbolic states are made of a discrete location, and a constraint over
the clocks and parameters. The weight parameters are added to this symbolic
semantics in a straightforward manner, with symbolic states enriched with linear
constraints over weight parameters.

116

Note that, while parametric timed automata are highly undecidable (see [And19]
for a survey), and while our parametric extension adds a new layer of complexity,
all analyses terminate with an exact result (sound and complete) because our
models are acyclic: our AFTs are trees, and their translation yields structurally
acyclic PWTAs. As a consequence, the symbolic semantics of these PWTAs can
be represented as a finite structure, and the analysis is guaranteed to terminate.

6.5.2 Translation from AFTs to PWTAs

I implemented the translation from AFTs to PWTAs (around 700 lines of code)
within the framework of ATTop [SYR+17]. The existing software ATTop can
take as input a Galileo formatted file. This format is pretty easy to use and to
understand. The code in Figure 6.9 expresses an attack-fault tree of one OR
gate named A, with two children B and C. The BAS B takes between 50 and 100
units of time to terminate, and costs $50 to the attacker. The BAS C takes
between 30 and 70 units of time to terminate, and costs $30 to the attacker.

1 toplevel ”A” ;
2 ”A” or ”B” ”C” ;
3 ”B” mintime=50 maxtime=100 cost=50;
4 ”C” mintime=30 maxtime=70 cost=30;

Figure 6.9: Example of Galileo attack-tree

ATTop takes as an input a Galileo file and parses it to represent it as an
attack-fault tree meta-model (ATMM) (see [SYR+17, Section 3], and Figure 6.10
for a screenshot of the tool).

Then, different translations are available: one quite interesting is the trans-
lation into an UPPAAL file, for instance a network of stochastic timed au-
tomata [KS17]. ATTop takes the ATMM and translates it in its UPPAAL

Figure 6.10: Screenshot of the tool ATTop after the translation of the SpaceX
AFT

117

meta-model, then serializes it into an UPPAAL formatted file. In our approach
we directly translate the representation of the ATMM into an IMITATOR for-
matted file, using the Epsilon Generation Language (EGL) [RPKP08]. This
translation is a very efficient way to obtain AFTs modeled using PWTAs: de-
signing manually a PWTA model from an AFT is very tedious to achieve, while
defining an AFT within the Galileo syntax is simple.

Once the PWTA obtained, we synthesize using IMITATOR all parameter
valuations for which the success location of the rootTA can be reached (using
EFsynth). These sets of parameter values will help us to determine attack and
fault scenarios in the following section.

6.6 Case studies

As a proof of concept, we apply our approach to an attack tree from the literature
and an original attack-fault tree. Experiments were conducted with IMITATOR
2.10.4 “Butter Jellyfish”,4 on a 2,4 GHz Intel Core i5 processor with 2 GiB of
RAM. Computation times of parameter values ranges from 1 to 9 seconds with
four parameters.

6.6.1 Compromising an IoT device

We apply our approach to the AFT depicted in Figure 6.2 taken from [SYR+17].
We choose to parametrize the cost of finding a LAN access point (CostF indLAN AP)
and the maximum amount of time to break WPA keys (tMax Break) of the
AFT. This configuration will describe which attack (WLAN or LAN) is smarter
for the attacker, depending on their resources: finding a LAN access point
can be difficult depending on the infrastructure security and perhaps social
engineering is needed. However, if the attacker does not have enough resources
but a large amount of time (s)he can spend time trying to break WPA keys.
IMITATOR computes several constraints on these parameters such that the attack
is successful.

Different constraints are possible representing possible time and weight values
s.t. an attack is possible. This is represented as a disjunction of conjunctions of
constraints on parameters. For instance it can be a quick but very costly attack,
or a long but cheap one; therefore different attack and fault scenarios appear.
The conjunction of constraints

2 ∗ tMax Break ≥ 23 ∧ CostF indLAN AP ≥ 0

∧CostF indLAN AP + 180 = total cost ∧ 2 ∗ total time = 23

represents an attack that is very expensive for the attacker: indeed, the total
cost of the attack is at least $180 and fully depends on the cost of finding a
LAN access point. However, the time spent on the attack is negligible and fixed
(11.5h).

4Sources, binaries, models and results are available at https://www.imitator.fr/static/

ACSD19PAT/

118

https://www.imitator.fr/static/ACSD19PAT/
https://www.imitator.fr/static/ACSD19PAT/

In opposition, the constraint

2 ∗ tMax Break + 3 ≥ 2 ∗ total time
∧CostF indLAN AP ≥ 0

∧2 ∗ total time ≥ 23 ∧ total cost = 232

shows a an attack that will last at least 11.5h—that is, the attacker does not
exactly knows when (s)he will break the WPA keys depending for instance of
her/his computation power—but with a fixed cost of $232..

Contrarily to our initial intuition, the cost of this second attack can be high
above the first one, as breaking the WPA keys is quite costly ($80) in opposition
with finding a LAN access point. A smart attacker could choose, regardless of
their time and resources the first attack through LAN access point.

Figure 6.11: AFT of SpaceX rocket explosion

6.6.2 SpaceX rocket Falcon 9 explosion

Our second case study is an adaptation of the anomaly investigation that
followed the explosion of SpaceX rocket Falcon 9 in september 20165. The AFT
in Figure 6.11 depicts the different configurations that can eventually end up
with the explosion. The objective of this case-study is to show that the explosion
is more likely to be accidental, due to the expensiveness of the BAS for the
attacker who could attempt a sabotage.

The rocket carries a helium tank with three composite overwrapped pressure
vessels (COPVs) inside. One COPV possibly had a manufacturing defect and
buckles in its liner and the carbon overwrap (AND gate). Afterwards (PAND

5SpaceX anomaly update, https://www.spacex.com/news/2016/09/01/anomaly-updates

119

https://www.spacex.com/news/2016/09/01/anomaly-updates

gate) liquid oxygen (LOx) can pool in these buckles and become trapped when
pressurized under the carbon overwrap, resulting in a flawed COPV. An other
possibility is the presence of solid oxygen (SOx) either due to the loading
temperature of helium or placed here intentionally by an attacker (OR gate).

These two configurations result in a compromised COPV. When the COPV
is compromised, a friction due to take-off tests can start the rocket ignition
(SAND gate).

BCFs have a duration representing the time taken until the component failure.
Damage is the cost for the organization for having built a defective component,
or the cost induced when the component has failed. BASs have a cost for the
attacker to perform the attack, and a duration for the attack to be successful.

We choose to parametrize the damages induced to the manufacturing facility
by damage BuckleInInnerLiner, and the cost of pooling solid oxygen near the
COPV, cost SOXmaliciouslyIntroduced.

The constraint

13 ≥ total time ≥ 8

∧cost SOXmaliciouslyIntroduced ≥ 0

∧total damages ≥ 100

∧damage BuckleInInnerLiner + 100 = total damages

∧total cost = 1700

represents the attack using the malicious introduction of LOx between the inner
liner and the carbon overwrap of the COPV. Clearly this attack is very costly
($1700) and assumes the presence of these buckles. It is highly prejudicial to
SpaceX as the company may want to investigate the manufacturing facility that
produces COPV components.

The other attack, represented by the constraint

total time = 6

∧cost SOXmaliciouslyIntroduced ≥ 0

∧total damages = 0

∧damage BuckleInInnerLiner ≥ 0

∧total cost = cost SOXmaliciouslyIntroduced

shows that the cost of the attack is equal to the cost of introducing SOx near
the COPV. The higher is the parameter cost SOXmaliciouslyIntroduced, the
higher is the cost of the attack. We may assume this cost is high enough as SpaceX
surely secured its launch complex. Otherwise, an efficient counter-measure would
be to find means to increase this cost for the attacker.

The constraint

cost SOXmaliciouslyIntroduced ≥ 0

∧total damage ≥ 150

∧damage BuckleInInnerLiner + 150 ≥ total damage
∧total time = 3 ∧ total cost = 0

represents the fact that buckles in the inner liner and in the carbon overwrap of
the COPV, and then LOx pooled under the overwrap, lead to a complete failure

120

of the system, i. e., the rocket explodes. In this scenario, there is in all likelihood
no attacker. However, the damages for the manufacturing facility can be huge if
it is flawed: SpaceX should probably investigate in their manufacturing facilities
in order to prevent the production of other flawed components.

Finally, the constraint

cost SOXmaliciouslyIntroduced ≥ 0

∧total damage = 100

∧damage BuckleInInnerLiner ≥ 0

∧3 ≥ total time ≥ 1 ∧ total cost = 0

shows that the explosion can be provoked by the presence of SOx due to cold
helium. This case is possible without any attacker or component failure and is
therefore fully accidental. No damages are caused to SpaceX (excepted the cost
of the unusable rocket) or its suppliers.

These scenarios indicate that the rocket explosion is more likely to be acciden-
tal, as the cost in both scenarios where there is an attacker is very high. However,
the worst case indicates that SpaceX should investigate their production lines to
prevent other flawed components, as well as the presence of an attacker.

6.7 Conclusion

We addressed the problem of formalizing attack-fault trees in a more abstract
framework allowing to cope with parametric timings, costs and damages. We
defined and implemented a translation from attack-fault trees to PWTAs (a new
extension of PTAs) that can be analyzed using the IMITATOR model-checker.
This translation allows us to define easily an AFT using the Galileo syntax, and
obtain as an output this AFT modeled with PWTAs. Using IMITATOR, we
synthesize all parameter values such that there is a successful attack and/or
a system failure. Finally, obtaining a disjunction of convex sets of parameter
values allows us to define different attack and fault scenarios. Therefore it helps
selecting the most plausible scenario and the most efficient counter-measures.

Future works In this work, we only considered three parameters: timing, cost
and damage parameters. However, it is trivial to split these parameters into
more precise ones, such as human damages (health and insurance) and material
damages caused by the attacker or the failure of the system: an attack can be
cheap for the attacker but inflict many kind of damages to the organization, as in
our SpaceX case study. Thanks to the vector of weights defined in our PWTAs,
this would be immediate to consider in our framework and implementation.

Moreover, extending our framework to attack-defense trees [KMRS14, GHL+16]
is also on our agenda.

Finally, adding probabilities in order to create probabilistic parametric attack-
fault trees will be an interesting and challenging future work. Indeed, in our
SpaceX rocket case study adding probabilities to the manufacturing defects of
the COPV on top of the damages inflicted to the company would strengthen
considerably our formalism.

121

Chapter 7

Conclusion

In this thesis we mainly focused on developing new extensions and restrictions
of a widely studied formalism, Timed Automata extended with parameters.
We tried to determine whether classic TCTL properties are decidable for these
extensions of PTAs and also if we can efficiently compute the set of parameters
such that a given TCTL property evaluates to true. After this theoretical study,
we also applied an extension of PTAs to cyber-security by demonstrating its
usefulness in modeling attack and fault scenarios of IT infrastructures.

7.1 Summary

In Chapter 3 we defined a new extension of TAs, U2P-TA, which
are TAs where parameters are allowed in updates. We proved that the EF,
AF-emptiness and universality problems are undecidable when the parameters
take rational values.

Nonetheless, when we consider only integer-valued parameters, we discovered
that these problems become decidable, and even PSPACE-complete. Moreover,
and unlike classical PTAs, EF, AF-emptiness and universality problems are
decidable with unbounded integer values. We also can perform the synthesis of
parameters for these problems. This result sharpens the thin border between
decidability and undecidability results [ALR18b].

Following this lead and trying to investigate deeper the parametric
updates, in Chapter 4 we focused on PTAs and also allowed parameters
in updates. Our second extension, U2P-PTA allows parameters in guards and
in updates. Its syntactic restriction R-U2P-PTA forces the update function to
be total—i. e., each clock is updated to a parameter or a constant—each time
a clock is compared to a parameter in a guard. For R-U2P-PTA, we proved
that EF-emptiness is PSPACE-complete for bounded rational-valued parameters
in guards, but unbounded in parametric updates. Moreover we can compute
EF-synthesis [ALR19].

In Chapter 5, we investigated L/U-PTAs and U-PTAs, without in-
variants. For L/U-PTAs without invariants we proved that EG-emptiness and
-universality are PSPACE-complete for integer-valued parameters, completing

122

the exploration of decidability questions of flat TCTL for L/U-PTAs without
invariants. This result is interesting as EG-emptiness is undecidable for classical
L/U-PTAs [AL17]. We also answered an open question that is, non-flat TCTL
is undecidable for U-PTAs without invariants by exhibiting a formula for which
the emptiness problem is undecidable: it is the first time a problem decidable
for TAs that is undecidable for U-PTAs is found. We proved this for bounded
and unbounded integer valued parameters [ALR18a].

Finally in Chapter 6, we studied a parametric extension of attack-
fault trees. We defined and implemented a translation from attack-fault trees
to PWTAs that can be analyzed using the IMITATOR model-checker. This
translation allows us to define easily an AFT using the Galileo syntax, and obtain
as an output this AFT modeled with PWTAs using the tool ATTop. We can
augment this model with parameters such as time and cost and we perform, using
IMITATOR, the synthesis of all parameter values such that there is a successful
attack and/or a system failure [ALRS19].

Therefore, this thesis can be summarized the following way:

• introduction of parametric updates in TAs and PTAs, which leads to
several subclasses of PTAs for which, in some cases, the EF-emptiness
problem is decidable;

• study of TCTL-emptiness decidability for L/U-PTAs and U-PTAs without
invariants, sharpening the thin border between decidability and undecid-
ability results.

• definition of a parametric extension of attack-fault trees, implementation
of the translation from attack-fault trees in the Galileo syntax into PWTAs
that can be analysed in IMITATOR.

7.2 Perspectives

As a follow-up to this work we will investigate hybrid systems when
parameters are allowed. Indeed, hybrid systems [HKPV98, LPY99, BMRT04]
represent a powerful formalism to model physical systems. Adding parameters
along with strongly restrictions on the syntax, as done with initialised rect-
angular automata in [HKPV98] seems to be an interesting investigation: our
intuition being, inspired by [HKPV98] where they transform an initialised rect-
angular automaton into a TA, to transform a parametric hybrid system into a
R-U2P-PTA.

In [BDG+13], time-bounded reachability is proved decidable for a subclass
of hybrid automata with monotonic (either non-negative or non-positive) rates:
parametric timed automata can fit into this framework: clocks and parameters
all have non-negative rates (1 for clocks, and 0 for parameters). To “initialize”
parameters, one can initialize them to 0, let time elapse for an arbitrary amount of
time (for each parameter), and then set their rate to 0 (while resetting all clocks).
However, to compare clocks and parameters together in a hybrid automaton, one
needs diagonal constraints—that are not allowed in [BDG+13]. As we showed
that our undecidability results hold over bounded-time with a single parameter,

123

one can revisit the result of [BDG+13] as follows: allowing a single variable
(our parameter) in diagonal constraints, with only one location with a non-zero
rate for this variable (the initialization location for this parameter) renders the
decidable problem of [BDG+13] undecidable.

Investigating O-minimal hybrid systems, where rates of variables, guards
and updates are defined in a O-minimal structure, seemed also to be a nice
opportunity. O-minimal structure allows one to express an infinite number of
elements in a finite union of possibly infinite sets. Unfortunately, it happened
that diagonal constraints where not allowed in [BMRT04], going back to the
similar case discussed above.

Besides, we would like to investigate L-PTAs where parameters can be
used only as lower bounds, and figure out whether the same properties we proved
for U-PTAs are still satisfied. It is interesting also to study these subclasses of
PTAs over bounded time.

Another research opportunity lies in security: we would like to study
attack defense trees in which, besides probabilities we allow parameters to model
cost constraints. Studying also parameterized extensions of non-interferent
timed systems [GMR07, BCLR15], which are systems that communicate possibly
important data through channels that are more or less safe, is an interesting
future work.

124

Bibliography

[ABPvdP19] Étienne André, Vincent Bloemen, Laure Petrucci, and Jaco van de
Pol. Minimal-time synthesis for parametric timed automata. In
Tomáš Vojnar and Lijun Zhang, editors, TACAS, Part II, volume
11428 of LNCS, pages 211–228. Springer, April 2019.

[ACD93] Rajeev Alur, Costas Courcoubetis, and David L. Dill. Model-
checking in dense real-time. Information and Computation,
104(1):2–34, 1993.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[AFKS12] Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain
Soulat. IMITATOR 2.5: A tool for analyzing robustness in schedul-
ing problems. In Dimitra Giannakopoulou and Dominique Méry,
editors, FM, volume 7436 of LNCS, pages 33–36. Springer, August
2012.

[AGKS15] Florian Arnold, Dennis Guck, Rajesh Kumar, and Mariëlle
Stoelinga. Sequential and parallel attack tree modelling. In Floor
Koornneef and Coen van Gulijk, editors, SAFECOMP, volume
9338 of LNCS, pages 291–299. Springer, September 2015.

[AHV93] Rajeev Alur, Thomas A. Henzinger, and Moshe Y. Vardi. Para-
metric real-time reasoning. In S. Rao Kosaraju, David S. Johnson,
and Alok Aggarwal, editors, STOC, pages 592–601. ACM, May
1993.

[AK12] Étienne André and Ulrich Kühne. Parametric analysis of hybrid
systems using HyMITATOR. In Franco Mazzanti and Gianluca
Trentanni, editors, iFM posters, pages 16–19. CNR and ISTI, June
2012.

[AL17] Étienne André and Didier Lime. Liveness in L/U-parametric timed
automata. In Alex Legay and Klaus Schneider, editors, ACSD,
pages 9–18. IEEE, June 2017.

[ALP04] Rajeev Alur, Salvatore La Torre, and George J. Pappas. Optimal
paths in weighted timed automata. Theoretical Computer Science,
318(3):297–322, 2004.

125

[ALR16a] Étienne André, Didier Lime, and Olivier H. Roux. Decision prob-
lems for parametric timed automata. In Kazuhiro Ogata, Mark
Lawford, and Shaoying Liu, editors, ICFEM, volume 10009 of
LNCS, pages 400–416. Springer, November 2016.

[ALR16b] Étienne André, Didier Lime, and Olivier H. Roux. On the expres-
siveness of parametric timed automata. In Martin Fränzle and
Nicolas Markey, editors, FORMATS, volume 9984 of LNCS, pages
19–34. Springer, August 2016.

[ALR18a] Étienne André, Didier Lime, and Mathias Ramparison. TCTL
model checking lower/upper-bound parametric timed automata
without invariants. In David N. Jansen and Pavithra Prabhakar,
editors, FORMATS, volume 11022 of LNCS, pages 37–52. Springer,
September 2018.

[ALR18b] Étienne André, Didier Lime, and Mathias Ramparison. Timed
automata with parametric updates. In ACSD, pages 21–29. IEEE
Computer Society, June 2018.

[ALR19] Étienne André, Didier Lime, and Mathias Ramparison. Parametric
updates in parametric timed automata. In Jorge A. Pérez and
Nobuko Yoshida, editors, FORTE, volume 11535 of LNCS, pages
39–56. Springer, June 2019.

[ALRS19] Étienne André, Didier Lime, Mathias Ramparison, and Mariëlle
Stoelinga. Parametric analyses of attack-fault trees. In ACSD,
2019. To appear.

[ALS+13] Étienne André, Yang Liu, Jun Sun, Jin Song Dong, and Shang-Wei
Lin. PSyHCoS: Parameter synthesis for hierarchical concurrent
real-time systems. In Natasha Sharygina and Helmut Veith, editors,
CAV, volume 8044 of LNCS, pages 984–989. Springer, July 2013.

[ALSD14] Étienne André, Yang Liu, Jun Sun, and Jin Song Dong. Parameter
synthesis for hierarchical concurrent real-time systems. Real-Time
Systems, 50(5-6):620–679, 2014.

[And17] Étienne André. A unified formalism for monoprocessor schedu-
lability analysis under uncertainty. In Laure Petrucci, Cristina
Seceleanu, and Ana Cavalcanti, editors, FMICS-AVoCS, volume
10471 of LNCS, pages 100–115. Springer, September 2017.

[And19] Étienne André. What’s decidable about parametric timed au-
tomata? International Journal on Software Tools for Technology
Transfer, 21(2):203–2019, 2019.

[ANP16] Zaruhi Aslanyan, Flemming Nielson, and David Parker. Quantita-
tive verification and synthesis of attack-defence scenarios. In CSF,
pages 105–119. IEEE Computer Society, June 2016.

[BBLS15] Nikola Benes, Peter Bezdek, Kim Guldstrand Larsen, and Jiŕı Srba.
Language emptiness of continuous-time parametric timed automata.
In Magnús M. Halldórsson, Kazuo Iwama, Naoki Kobayashi, and

126

Bettina Speckmann, editors, ICALP, Part II, volume 9135 of
LNCS, pages 69–81. Springer, July 2015.

[BC13] Sandie Balaguer and Thomas Chatain. Avoiding shared clocks in
networks of timed automata. Logical Methods in Computer Science,
9(4), 2013.

[BCLR15] Gilles Benattar, Franck Cassez, Didier Lime, and Olivier H. Roux.
Control and synthesis of non-interferent timed systems. Interna-
tional Journal of Control, 88(2):217–236, 2015.

[BDFP04] Patricia Bouyer, Catherine Dufourd, Emmanuel Fleury, and An-
toine Petit. Updatable timed automata. Theoretical Computer
Science, 321(2-3):291–345, 2004.

[BDG+13] Thomas Brihaye, Laurent Doyen, Gilles Geeraerts, Joël Ouaknine,
Jean-François Raskin, and James Worrell. Time-bounded reacha-
bility for monotonic hybrid automata: Complexity and fixed points.
In Dang Van Hung and Mizuhito Ogawa, editors, ATVA, volume
8172 of LNCS, pages 55–70. Springer, October 2013.

[BFH+01] Gerd Behrmann, Ansgar Fehnker, Thomas Hune, Kim Guldstrand
Larsen, Paul Pettersson, Judi Romijn, and Frits W. Vaandrager.
Minimum-cost reachability for priced timed automata. In Maria
Domenica Di Benedetto and Alberto L. Sangiovanni-Vincentelli,
editors, HSCC, volume 2034 of LNCS, pages 147–161. Springer,
March 2001.

[BHJL13] Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Didier
Lime. Parametric interrupt timed automata. In Parosh Aziz
Abdulla and Igor Potapov, editors, RP, volume 8169 of LNCS,
pages 59–69. Springer, September 2013.

[BHJL16] Béatrice Bérard, Serge Haddad, Aleksandra Jovanovic, and Di-
dier Lime. Interrupt timed automata with auxiliary clocks and
parameters. Fundamenta Informaticae, 143(3-4):235–259, 2016.

[BHP+15] Béatrice Bérard, Serge Haddad, Claudine Picaronny, Mohab
Safey El Din, and Mathieu Sassolas. Polynomial interrupt timed au-
tomata. In Mikolaj Bojanczyk, Slawomir Lasota, and Igor Potapov,
editors, RP, volume 9328 of LNCS, pages 20–32. Springer, Septem-
ber 2015.

[BKMS12] Alessandra Bagnato, Barbara Kordy, Per H:=akon Meland, and
Patrick Schweitzer. Attribute decoration of attack-defense trees.
International Journal of Secure Software Engineering, 3(2):1–35,
2012.

[BL09] Laura Bozzelli and Salvatore La Torre. Decision problems for
lower/upper bound parametric timed automata. Formal Methods
in System Design, 35(2):121–151, 2009.

127

[BLL+95] Johan Bengtsson, Kim G. Larsen, Fredrik Larsson, Paul Pettersson,
and Wang Yi. Uppaal — a Tool Suite for Automatic Verification
of Real–Time Systems. In Rajeev Alur, Thomas A. Henzinger, and
Eduardo D. Sontag, editors, Proc. of Workshop on Verification
and Control of Hybrid Systems III, volume 1066 of LNCS, pages
232–243. Springer, October 1995.

[BMRS19] Damien Busatto-Gaston, Benjamin Monmege, Pierre-Alain
Reynier, and Ocan Sankur. Robust controller synthesis in timed
büchi automata: A symbolic approach. In Isil Dillig and Serdar
Tasiran, editors, CAV, volume 11561 of LNCS, pages 572–590.
Springer, July 2019.

[BMRT04] Thomas Brihaye, Christian Michaux, Cédric Rivière, and
Christophe Troestler. On o-minimal hybrid systems. In Rajeev
Alur and George J. Pappas, editors, HSCC, volume 2993 of LNCS,
pages 219–233. Springer, March 2004.

[BMS13] Patricia Bouyer, Nicolas Markey, and Ocan Sankur. Robustness in
timed automata. In Parosh Aziz Abdulla and Igor Potapov, editors,
RP, volume 8169 of LNCS, pages 1–18. Springer, September 2013.

[BO14] Daniel Bundala and Joël Ouaknine. Advances in parametric real-
time reasoning. In Erzsébet Csuhaj-Varjú, Martin Dietzfelbinger,
and Zoltán Ésik, editors, MFCS, Part I, volume 8634 of LNCS,
pages 123–134. Springer, August 2014.

[BY03] Johan Bengtsson and Wang Yi. Timed automata: Semantics,
algorithms and tools. In Jörg Desel, Wolfgang Reisig, and Grzegorz
Rozenberg, editors, ACPN, volume 3098 of LNCS, pages 87–124.
Springer, September 2003.

[CCGR00] Alessandro Cimatti, Edmund M. Clarke, Fausto Giunchiglia, and
Marco Roveri. NUSMV: A new symbolic model checker. In-
ternational Journal on Software Tools for Technology Transfer,
2(4):410–425, 2000.

[CEFX09] Rémy Chevallier, Emmanuelle Encrenaz-Tiphène, Laurent Fri-
bourg, and Weiwen Xu. Timed verification of the generic architec-
ture of a memory circuit using parametric timed automata. Formal
Methods in System Design, 34(1):59–81, 2009.

[CEHM04] Ricardo Corin, Sandro Etalle, Pieter H. Hartel, and Angelika Mader.
Timed model checking of security protocols. In Vijayalakshmi
Atluri, Michael Backes, David A. Basin, and Michael Waidner,
editors, FMSE, pages 23–32. ACM, October 2004.

[CL00] Franck Cassez and Kim Guldstrand Larsen. The impressive power
of stopwatches. In Catuscia Palamidessi, editor, CONCUR, volume
1877 of LNCS, pages 138–152. Springer, August 2000.

[Cou12] Patrick Cousot. Formal verification by abstract interpretation. In
Alwyn Goodloe and Suzette Person, editors, NFM, volume 7226 of
LNCS, pages 3–7. Springer, April 2012.

128

[Dil89] David L. Dill. Timing assumptions and verification of finite-state
concurrent systems. In Joseph Sifakis, editor, CAV, volume 407 of
LNCS, pages 197–212. Springer, June 1989.

[DLL+11] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucionis,
Danny Bøgsted Poulsen, Jonas van Vliet, and Zheng Wang. Sta-
tistical model checking for networks of priced timed automata. In
Uli Fahrenberg and Stavros Tripakis, editors, FORMATS, volume
6919 of LNCS, pages 80–96. Springer, September 2011.

[DLL+15] Alexandre David, Kim G. Larsen, Axel Legay, Marius Mikucio-
nis, and Danny Bøgsted Poulsen. Uppaal SMC tutorial. STTT,
17(4):397–415, 2015.

[DMCR06] G.C. Dalton, Robert Mills, John Colombi, and R.A. Raines. Ana-
lyzing attack trees using generalized stochastic Petri nets. In 2006
IEEE Information Assurance Workshop, pages 116 – 123, June
2006.

[Doy07] Laurent Doyen. Robust parametric reachability for timed automata.
Information Processing Letters, 102(5):208–213, 2007.

[FK11] Laurent Fribourg and Ulrich Kühne. Parametric verification and
test coverage for hybrid automata using the inverse method. In
Giorgio Delzanno and Igor Potapov, editors, RP, volume 6945 of
LNCS, pages 191–204. Springer, September 2011.

[FKPY07] Elena Fersman, Pavel Krcál, Paul Pettersson, and Wang Yi. Task
automata: Schedulability, decidability and undecidability. Infor-
mation and Computation, 205(8):1149–1172, 2007.

[FMC09] Igor Nai Fovino, Marcelo Masera, and Alessio De Cian. Integrating
cyber attacks within fault trees. Reliability Engineering & System
Safety, 94(9):1394–1402, 2009.

[Fre08] Goran Frehse. Phaver: algorithmic verification of hybrid systems
past hytech. STTT, 10(3):263–279, 2008.

[GHL+16] Olga Gadyatskaya, René Rydhof Hansen, Kim Guldstrand Larsen,
Axel Legay, Mads Chr. Olesen, and Danny Bøgsted Poulsen. Mod-
elling attack-defense trees using timed automata. In Martin Fränzle
and Nicolas Markey, editors, FORMATS, volume 9884 of LNCS,
pages 35–50. Springer, August 2016.

[GIM15] Marco Gribaudo, Mauro Iacono, and Stefano Marrone. Exploit-
ing bayesian networks for the analysis of combined attack trees.
Electronic Notes in Theoretical Computer Science, 310:91–111,
2015.

[GLMR05] Guillaume Gardey, Didier Lime, Morgan Magnin, and Olivier H.
Roux. Romeo: A tool for analyzing time petri nets. In Kousha
Etessami and Sriram K. Rajamani, editors, CAV, volume 3576 of
LNCS, pages 418–423. Springer, July 2005.

129

[GMR07] Guillaume Gardey, John Mullins, and Olivier H. Roux. Non-
interference control synthesis for security timed automata. Elec-
tronic Notes in Theoretical Computer Science, 180(1):35–53, 2007.

[HH14] Gérard P. Huet and Hugo Herbelin. 30 years of research and
development around coq. In Suresh Jagannathan and Peter Sewell,
editors, POPL, pages 249–250. ACM, January 2014.

[HKKS16] Holger Hermanns, Julia Krämer, Jan Krcál, and Mariëlle Stoelinga.
The value of attack-defence diagrams. In Frank Piessens and Luca
Viganò, editors, POST, volume 9635 of LNCS, pages 163–185.
Springer, April 2016.

[HKPV98] Thomas A. Henzinger, Peter W. Kopke, Anuj Puri, and Pravin
Varaiya. What’s decidable about hybrid automata? Journal of
Computer and System Sciences, 57(1):94–124, 1998.

[Hoa78] C. A. R. Hoare. Communicating sequential processes. Commu-
nications of the Association for Computing Machinery (ACM),
21(8):666–677, 1978.

[HRSV02] Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W.
Vaandrager. Linear parametric model checking of timed automata.
The Journal of Logic and Algebraic Programming, 52-53:183–220,
2002.

[HSTW16] Frédéric Herbreteau, B. Srivathsan, Thanh-Tung Tran, and Igor
Walukiewicz. Why liveness for timed automata is hard, and what
we can do about it. In Akash Lal, S. Akshay, Saket Saurabh,
and Sandeep Sen, editors, FSTTCS, volume 65 of LIPIcs, pages
48:1–48:14. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik,
December 2016.

[HSW16] Frédéric Herbreteau, B. Srivathsan, and Igor Walukiewicz. Better
abstractions for timed automata. Information and Computation,
251:67–90, 2016.

[HV06] Martijn Hendriks and Marcel Verhoef. Timed automata based
analysis of embedded system architectures. In IPDPS. IEEE, April
2006.

[JLR13] Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for timed automata. In Nir Piterman and
Scott A. Smolka, editors, TACAS, volume 7795 of LNCS, pages
401–415. Springer, March 2013.

[JLR15] Aleksandra Jovanović, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for real-time systems. IEEE Transactions on
Software Engineering, 41(5):445–461, 2015.

[JP07] Gizela Jakubowska and Wojciech Penczek. Modelling and checking
timed authentication of security protocols. Fundamenta Informati-
cae, 79(3-4):363–378, 2007.

130

[Kar84] Narendra Karmarkar. A new polynomial-time algorithm for linear
programming. Combinatorica, 4(4):373–396, 1984.

[KC10] E. V. Kuzmin and D. J. Chalyy. Decidability of boundedness
problems for minsky counter machines. Automatic Control and
Computer Sciences, 44(7):387–397, 2010.

[KGS15] Rajesh Kumar, Dennis Guck, and Mariëlle Stoelinga. Time de-
pendent analysis with dynamic counter measure trees. CoRR,
abs/1510.00050, 2015.

[KMRS10] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick
Schweitzer. Foundations of attack-defense trees. In Pierpaolo
Degano, Sandro Etalle, and Joshua D. Guttman, editors, FAST,
volume 6561 of LNCS, pages 80–95. Springer, September 2010.

[KMRS14] Barbara Kordy, Sjouke Mauw, Sasa Radomirovic, and Patrick
Schweitzer. Attack-defense trees. Journal of Logic and Computa-
tion, 24(1):55–87, 2014.

[KP12a] Michal Knapik and Wojciech Penczek. Bounded model checking
for parametric timed automata. Transactions on Petri Nets and
Other Models of Concurrency, 5:141–159, 2012.

[KP12b] Michal Knapik and Wojciech Penczek. Smt-based parameter syn-
thesis for L/U automata. In Lawrence Cabac, Michael Duvigneau,
and Daniel Moldt, editors, PNSE, volume 851 of CEUR Workshop
Proceedings, pages 77–92. CEUR-WS.org, June 2012.

[KP14] Michal Knapik and Wojciech Penczek. Parameter synthesis for
timed kripke structures. Fundamenta Informaticae, 133(2-3):211–
226, 2014.

[KPS14] Barbara Kordy, Ludovic Piètre-Cambacédès, and Patrick
Schweitzer. Dag-based attack and defense modeling: Don’t miss the
forest for the attack trees. Computer Science Review, 13-14:1–38,
2014.

[KRS15] Rajesh Kumar, Enno Ruijters, and Mariëlle Stoelinga. Quantitative
attack tree analysis via priced timed automata. In FORMATS,
volume 9268 of LNCS, pages 156–171. Springer, September 2015.

[KS17] Rajesh Kumar and Mariëlle Stoelinga. Quantitative security and
safety analysis with attack-fault trees. In HASE, pages 25–32.
IEEE Computer Society, January 2017.

[KSR+18] Rajesh Kumar, Stefano Schivo, Enno Ruijters, Bugra Mehmet
Yildiz, David Huistra, Jacco Brandt, Arend Rensink, and Mariëlle
Stoelinga. Effective analysis of attack trees: A model-driven ap-
proach. In FASE, volume 10802 of LNCS, pages 56–73. Springer,
April 2018.

131

[KW18] Barbara Kordy and Wojciech Widel. On quantitative analysis of
attack-defense trees with repeated labels. In Lujo Bauer and Ralf
Küsters, editors, POST, volume 10804 of LNCS, pages 325–346.
Springer, April 2018.

[LPY97] Kim Guldstrand Larsen, Paul Pettersson, and Wang Yi. UPPAAL
in a nutshell. STTT, 1(1-2):134–152, 1997.

[LPY99] Gerardo Lafferriere, George J. Pappas, and Sergio Yovine. A new
class of decidable hybrid systems. In HSCC, volume 1569 of LNCS,
pages 137–151. Springer, March 1999.

[MGK+13] Marco Morana, Tobias Gondrom, Eoin Keary, Andy Lewis,
Stephanie Tan, and Colin Watson. OWASP. CISO AppSec guide:
Criteria for managing application security risks. Technical report,
OWASP, 2013.

[Mil00] Joseph S. Miller. Decidability and complexity results for timed
automata and semi-linear hybrid automata. In Nancy A. Lynch
and Bruce H. Krogh, editors, HSCC, volume 1790 of LNCS, pages
296–309. Springer, March 2000.

[Min67] Marvin L. Minsky. Computation: finite and infinite machines.
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 1967.

[NAT08] NATO Research and Technology Organisation (RTO). Improving
common security risk analysis. Technical Report AC/323(ISP-
049)TP/193, , North Atlantic Treaty Organisation, University of
California, Berkeley, 2008.

[NPW02] Tobias Nipkow, Lawrence C. Paulson, and Markus Wenzel. Is-
abelle/HOL - A Proof Assistant for Higher-Order Logic, volume
2283 of LNCS. Springer, 2002.

[NWY99] Christer Norström, Anders Wall, and Wang Yi. Timed automata
as task models for event-driven systems. In RTCSA, pages 182–189.
IEEE Computer Society, December 1999.

[QSW17] Karin Quaas, Mahsa Shirmohammadi, and James Worrell. Revis-
iting reachability in timed automata. In LICS, pages 1–12. IEEE
Computer Society, June 2017.

[Qua14] Karin Quaas. MTL-model checking of one-clock parametric timed
automata is undecidable. In Étienne André and Goran Frehse,
editors, SynCoP, volume 145 of EPTCS, pages 5–17, April 2014.

[RPKP08] Louis M. Rose, Richard F. Paige, Dimitrios S. Kolovos, and Fiona
Polack. The epsilon generation language. In Ina Schieferdecker
and Alan Hartman, editors, ECMDA-FA, volume 5095 of LNCS,
pages 1–16. Springer, June 2008.

[RS14] Anne Remke and Mariëlle Stoelinga, editors. Stochastic Model
Checking, ROCKS, volume 8453 of LNCS. Springer, October 2014.

132

[RS15] Enno Ruijters and Mariëlle Stoelinga. Fault tree analysis: A survey
of the state-of-the-art in modeling, analysis and tools. Computer
Science Review, 15:29–62, 2015.

[San15] Ocan Sankur. Symbolic quantitative robustness analysis of timed
automata. In Christel Baier and Cesare Tinelli, editors, TACAS,
volume 9035 of LNCS, pages 484–498. Springer, April 2015.

[Sav70] Walter J. Savitch. Relationships between nondeterministic and
deterministic tape complexities. Journal of Computer and System
Sciences, 4(2):177–192, 1970.

[SBM14] Ocan Sankur, Patricia Bouyer, and Nicolas Markey. Shrinking
timed automata. Inf. Comput., 234:107–132, 2014.

[SLDP09] Jun Sun, Yang Liu, Jin Song Dong, and Jun Pang. PAT: to-
wards flexible verification under fairness. In Ahmed Bouajjani and
Oded Maler, editors, CAV, volume 5643 of LNCS, pages 709–714.
Springer, 2009.

[SSSW98] C. Salter, O. S. Saydjari, B. Schneier, and J. Wallner. Toward a
secure system engineering methodology. In NSPW, pages 2–10,
September 1998.

[SYR+17] Stefano Schivo, Bugra M. Yildiz, Enno Ruijters, Christopher Gerk-
ing, Rajesh Kumar, Stefan Dziwok, Arend Rensink, and Mariëlle
Stoelinga. How to efficiently build a front-end tool for UPPAAL: A
model-driven approach. In SETTA, volume 10606 of LNCS, pages
319–336. Springer, October 2017.

[TLR09] Louis-Marie Traonouez, Didier Lime, and Olivier H. Roux. Para-
metric model-checking of stopwatch petri nets. Journal of Universal
Computer Science, 15(17):3273–3304, 2009.

[VP99] Irina Virbitskaite and E. Pokozy. Parametric behaviour analysis
for time petri nets. In Victor E. Malyshkin, editor, PaCT, volume
1662 of LNCS, pages 134–140. Springer, September 1999.

[Wan00] Farn Wang. Parametric analysis of computer systems. Formal
Methods in System Design, 17(1):39–60, 2000.

133

	Introduction
	Preliminaries
	Timed Automata and Parametric Timed Automata
	Syntax
	Concrete Semantics

	Timed CTL
	Problems
	Related work
	Updatable Timed Automata
	Parametric Timed Automata
	Other formalisms using parameters
	Applications of timed automata to security

	Timed automata with parametric updates
	Introduction
	Contribution
	Outline

	Update-to-parameter Timed Automata
	Syntax

	Undecidability
	Decidability
	Conclusion

	Parametric updates in parametric timed automata
	Introduction
	Contribution
	Related Work

	Preliminaries
	A decidable subclass of U2P-PTAs
	Operations on p–PDBMs
	Non-parametric update
	Parametric update
	Time elapsing
	Non-parametric guard
	Parametric guard

	Parametric region automaton
	Decidability of EF-emptiness and synthesis
	Case study
	Conclusion and perspectives

	TCTL model checking lower/upper-boundparametric timed automata without invariants
	Introduction
	Motivation
	Contribution
	Outline
	Additional notations
	Lower/Upper-bound parametric timed automata

	Undecidability of TCTL emptiness for U-PTAs
	Undecidability for bounded U-PTAs
	Decidability of flat-TCTL for L/U-PTAs without invariants
	Conclusion and perspectives

	Parametric analyses of attack-fault trees
	Introduction
	Contribution
	Related work
	Outline

	Attack-fault Trees
	AFT leaves
	AFT gates

	Parametric weighted timed automata
	Translation of AFTs to PTAs
	Overview of the translation
	Translation of leaves
	Translation of gates
	Top-level automaton

	Implementation of the translation
	IMITATOR
	Translation from AFTs to PWTAs

	Case studies
	Compromising an IoT device
	SpaceX rocket Falcon 9 explosion

	Conclusion

	Conclusion
	Summary
	Perspectives

